
HAL Id: tel-04675703
https://theses.hal.science/tel-04675703v1

Submitted on 22 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An xDSL-Based Framework for Validation of Railway
Models : Application to ERTMS/ETCS and EULYNX

Asfand Yar

To cite this version:
Asfand Yar. An xDSL-Based Framework for Validation of Railway Models : Application to
ERTMS/ETCS and EULYNX. Mathematical Software [cs.MS]. Université Grenoble Alpes [2020-..],
2023. English. �NNT : 2023GRALM090�. �tel-04675703�

https://theses.hal.science/tel-04675703v1
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : Laboratoire d'Informatique de Grenoble

Un cadre basé sur les DSL exécutables pour la validation des
modèles ferroviaires : Application à ERTMS/ETCS et EULYNX

An xDSL-Based Framework for Validation of Railway Models:
Application to ERTMS/ETCS and EULYNX

Présentée par :

Asfand YAR

Direction de thèse :

Yves LEDRU
PROFESSEUR, Université Grenoble Alpes

Akram IDANI
MAITRE DE CONFERENCES, Université Grenoble Alpes

Simon COLLART-DUTILLEUL
DIRECTEUR DE RECHERCHE, Université Gustave Eiffel

Directeur de thèse

Co-directeur de thèse

Co-directeur de thèse

Rapporteurs :

Sophie Ebersold
PROFESSEURE, Université Toulouse - Jean Jaurès
Walter SCHÖN
PROFESSEUR, Université de Technologie de Compiègne, Sorbonne Universités, France

Thèse soutenue publiquement le 19 décembre 2023, devant le jury composé de :

Yves LEDRU
PROFESSEUR, Université Grenoble Alpes
Akram IDANI
MAITRE DE CONFERENCES, Université Grenoble Alpes
Simon COLLART-DUTILLEUL
DIRECTEUR DE RECHERCHE, Université Gustave Eiffel
Amel Mammar
PROFESSEURE, TELECOM SudParis
Gwen Salaun
PROFESSEUR, Université Grenoble Alpes (President)
Jérémie Christian Attiogbé
PROFESSEUR DES UNIVERSITES, Nantes Université
Sophie Ebersold
PROFESSEURE, Université Toulouse - Jean Jaurès
Walter SCHÖN
PROFESSEUR, Université de Technologie de Compiègne,
Sorbonne Universités, France

Directeur de thèse

Co-directeur de thèse

Co-directeur de thèse

Examinatrice

Examinateur

Examinateur

Rapporteure

Rapporteur

Acknowledgment

First and foremost, I have to thank my mother Safia and father Nisar Ahmed, who
supported me emotionally and with their prayers entire all of my life. I also thank everyone
in my family, brother Afras, my auntie, and sisters: Mahnoor and Sarika, for encouraging
me in all of my pursuits and inspiring me to follow my dreams.

An immense thank you to my PhD supervisors: Akram IDANI, Yves LEDRU and
Simon COLLART-DUTILLEUL for your support and guidance throughout the Ph.D.
Akram in particular you’ve been a great supervisor and without your push, this Ph.D.
would not be accomplished and thanks for believing in me. Thanks Yves, for all the
timely administrative support and all the constructive feedback from start of Ph.D. to
final review of the manuscript. Thanks Simon, for all the discussions, it was a great time
working with you and specially your expertise knowledge of railway domain helped me
alot.

I am also grateful to everyone in VASCO team, specially: Bahareh, Nicolas and Ger-
man (all the coffee breaks that we had together). A separate special thanks to German
for helping me out of many technical headaches.

To all my friends and colleagues, thank you for your encouragement during my mo-
ments of crises. I can not list all the names here, but you are always on my mind. Special
thanks to all the jury members, for your interest, time, and willingness to be part of my
thesis jury.

3

Abstract
Nowadays, software systems are the backbone on which the railway industry is based.
They allow to reach a high level of automation which increases the global performance
level for railway mechanisms and leads to new generations of systems like autonomous
ones. Several efforts with important funding are hence devoted all around the world
to the rigorous production of these software systems along their development process.
In fact, railway systems must satisfy safety requirements in order to be certified and
made operational. In this context, one of the major requirements addressed by most
of the research works in this field is correctness, meaning that a railway system must
be accident-free. This challenging requirement is well mastered today thanks to formal
methods that allow defining a software system using mathematical notations assisted by
automated reasoning tools like provers, constraint solvers, model-checkers, etc. Indeed,
several successful stories of the application of formal methods in the railway industry
can be cited, like the application of the B method for the Paris subway automation.
Consequently, the application of formal methods is becoming vital for these systems.
However, the formal notations are not easy to understand by all actors involved in the
development process because they require good skills in mathematics. Amongst these
actors, we meet territorial agents, jurists, certification authorities, etc., who don’t have
sufficient mathematical background. Even though a railway system is proved using formal
methods, it does not guarantee it is correctly built and it might lead to errors because
the initial formal specification might not describe the right model.

In order to overcome these challenges, this thesis proposes a formal xDSL-based
framework that combines formal methods with domain-specific representations. Indeed,
domain-specific representations help for validation and acceptance by domain experts be-
cause they are expected to be more meaningful (from a human point of view) than a formal
specification, especially for actors who are not familiar with formal notations. Specific
representations (textual or graphical) of domain concepts are omnipresent thanks to their
ability to show standardized information with common knowledge about several railway
mechanisms: tracks, rules, and interlocking systems. In our framework, the railway DSL
is based on standard railway notations like EULYNX, and its semantics are defined using
the B formal method. The framework also supports the execution of the railway DSL
with dynamic semantics provided by existing proved ERTMS/ETCS B specifications.
The proved B specifications are linked with the semantics of the DSL using a linkage
machine written in B itself. The use of EULYNX and ERTMS/ETCS in the DSL-based
framework makes the railway models conformant to standards. The overall execution in
the framework and translation of DSL semantics into B is supported by Meeduse. It is
a Language Workbench, dedicated to formally instrument DSLs using the B Method and
it is built on Eclipse Modeling Framework and ProB, providing features for verification,
animation, and debugging. Further, this thesis separates the concerns of a formal method
expert from a domain expert and a model-driven engineering expert. The formal method
experts will only be responsible for verifying their specifications and linking them with
the formal semantics of the models using formal methods. Whereas the model-driven
engineering expert defines the DSL, and domain experts design and validate their models
expressed in the DSL.

4

Résumé
Aujourd’hui, les systèmes logiciels constituent l’épine dorsale sur laquelle repose l’industrie
ferroviaire. Ils permettent d’atteindre un haut niveau d’automatisation qui augmente
le niveau de performance global des mécanismes ferroviaires et conduit à de nouvelles
générations de systèmes comme les systèmes autonomes. Plusieurs projets dotés de
financements importants sont ainsi consacrés partout dans le monde à la production
rigoureuse de ces systèmes logiciels tout au long de leur processus de développement. En
effet, les systèmes ferroviaires doivent satisfaire à des exigences de sécurité pour être cer-
tifiés et rendus opérationnels. Dans ce contexte, l’une des exigences majeures abordées par
la plupart des travaux de recherche dans ce domaine est la correction, ce qui signifie qu’un
système ferroviaire ne doit pas engendrer des accidents. Cette exigence est aujourd’hui
bien mâıtrisée grâce aux méthodes formelles qui permettent de définir un système logiciel
à l’aide de notations mathématiques assistées par des outils de raisonnement automa-
tisé comme des prouveurs, des solveurs de contraintes, ou des model-checkers. En effet,
on peut citer plusieurs exemples réussis d’application de méthodes formelles dans le do-
maine ferroviaire, comme l’application de la méthode B pour l’automatisation du métro
parisien. Par conséquent, l’application de méthodes formelles devient vitale pour ces
systèmes. Cependant, les notations formelles ne sont pas faciles à comprendre par tous
les acteurs impliqués dans le processus de développement car elles nécessitent de bonnes
compétences en mathématiques. Parmi ces acteurs, on rencontre des agents territoriaux,
des juristes, des autorités de certification, etc., qui n’ont pas la formation mathématique
nécessaire à la prise en main de ces méthodes. Cela pose des problèmes de validation
car même si un système ferroviaire est prouvé à l’aide de méthodes formelles, il n’est pas
garanti qu’il soit correct vis-à-vis des exigences métier.

Afin de surmonter ces défis, cette thèse propose un cadre formel basé sur des DSLs
qui combine des méthodes formelles avec des représentations spécifiques du domaine. En
effet, les représentations spécifiques à un domaine aident à la validation et à l’acceptation
par les experts du domaine car elles sont censées être plus significatives (d’un point
de vue humain) qu’une spécification formelle ; et ce, en particulier pour les acteurs
qui ne sont pas familiers avec les notations formelles. Les représentations spécifiques
(textuelles ou graphiques) des concepts du domaine sont très utilisées grâce à leur ca-
pacité à présenter des informations standardisées des mécanismes ferroviaires : voies,
règles et systèmes d’enclenchement. Dans notre cadre, le DSL ferroviaire est basé sur des
notations ferroviaires standards comme EULYNX, et sa sémantique est définie à l’aide
de la méthode formelle B. Ce cadre prend également en charge l’exécution du DSL fer-
roviaire avec la sémantique dynamique fournie par des spécifications ERTMS/ETCS B
ayant déjà été prouvées. Ces spécifications B sont connectées à la sémantique du DSL
à l’aide d’une spécification de liaison, elle-même écrite en B. L’utilisation d’EULYNX
et d’ERTMS/ETCS dans le DSL rend les modèles ferroviaires conformes aux normes.
L’exécution et la traduction de la sémantique du DSL en B est prise en charge par Mee-
duse. Il s’agit d’un environnement dédié à l’instrumentation formelle des DSL à l’aide
de la méthode B. Il est construit au dessus de Eclipse Modeling Framework et ProB,
fournissant des fonctionnalités de vérification, d’animation et de déboggage. De plus,
cette thèse sépare les préoccupations d’un expert en méthodes formelles de celles d’un
expert de domaine et celles d’un expert en ingénierie dirigée par les modèles. Les experts
en méthodes formelles seront uniquement chargés de vérifier leurs spécifications et de les
relier à la sémantique formelle des modèles utilisant des méthodes formelles. Alors que
l’expert en ingénierie dirigée par les modèles définit le DSL, et les experts du domaine
conçoivent et valident leurs modèles exprimés dans le DSL.

5

Contents

List of Figures 10

List of Tables 11

List of Acronyms 12

Publications 14

1 Introduction 15
1.1 Context . 15

1.1.1 Validation . 16
1.1.2 Verification . 17
1.1.3 Standards . 17

1.2 Contribution . 19
1.2.1 Meeduse . 19
1.2.2 Proposed Framework . 20

1.3 Results . 21
1.4 Outline . 23
1.5 Résumé en français . 23

2 DSLs And Formal B Method 25
2.1 Domain Specific languages . 25

2.1.1 Static Semantics . 25
2.1.2 Dynamic Semantics . 27

2.2 Formal B Method . 28
2.2.1 Abstract Machine . 29
2.2.2 Refinements . 30
2.2.3 Inclusion . 32

2.3 Conclusion . 32
2.4 Résumé en français . 33

3 Railway Standards 34
3.1 ERTMS/ETCS . 34
3.2 UIC Standard documents . 37
3.3 EULYNX . 40

3.3.1 RSM Concepts . 41
3.3.2 ETCS Related Concepts . 43
3.3.3 Alignment between RSM and ERTMS/ETCS 44

3.4 Conclusion . 44
3.5 Résumé en français . 44

6

4 State-Of-The-Art 45
4.1 Introduction . 45
4.2 Modeling . 47
4.3 Structure vs Behavior . 48

4.3.1 Structure . 48
4.3.2 Behavior . 49
4.3.3 Discussion . 49

4.4 Standards . 50
4.5 V & V (Verification & Validation) . 50

4.5.1 Verification . 50
4.5.2 Validation . 53
4.5.3 Summary of V & V . 53

4.6 Conclusion . 54
4.7 Résumé en français . 54

5 Visual Animation of B Specifications 56
5.1 Introduction . 56
5.2 Approach . 57

5.2.1 The Lift Example . 57
5.2.2 Proposed architecture . 58
5.2.3 Illustration . 59

5.3 Designing a domain-centric visual animation 59
5.3.1 The Lift DSL . 59
5.3.2 Static Semantics . 60
5.3.3 Linking B data structures . 60
5.3.4 Initialization . 63
5.3.5 Operations . 64
5.3.6 Enhancements . 65

5.4 Application to Scheduler Example . 66
5.5 Discussion . 69
5.6 Conclusion . 69
5.7 Résumé en français . 70

6 Validation of proved ERTMS/ETCS B specification 71
6.1 Introduction . 71
6.2 Towards an Iterative Formal Model-Driven Approach 72
6.3 An ERTMS/ETCS Hybrid Level 3 DSL . 73

6.3.1 DSL version 0 (DSLv0) . 73
6.3.2 Translation of the meta-model . 73
6.3.3 Linkage Machines . 74
6.3.4 Modeling and visual animation . 76

6.4 Findings and Analysis . 77
6.4.1 Next Iterations . 77
6.4.2 Unexpected behaviors . 80
6.4.3 Lessons learned . 80

6.5 Conclusion . 81
6.6 Résumé en français . 82

7

7 Automatic Linkage Generation 83
7.1 Introduction . 83

7.1.1 Pattern-Definition . 84
7.1.2 Pattern-Application . 85

7.2 Experimentation with the Tool . 86
7.2.1 Lift . 87
7.2.2 Scheduler . 90
7.2.3 ERTMS/ETCS . 92

7.3 Discussion . 95
7.4 Conclusion . 96
7.5 Résumé en français . 96

8 Application 97
8.1 Introduction . 97
8.2 Methodology . 97
8.3 Alignment of Meta-models . 98
8.4 Translation of Meta-Model into B . 99
8.5 Linkage Invariants and Properties . 99

8.5.1 Mapping class SectionList to route (minTTD to maxTTD) 99
8.5.2 Mapping class TvpSection to Ttds 99
8.5.3 Mapping enumeration SectionVacancyTypes to set StateTTD . . . 101
8.5.4 Mapping TvpSection occupancy to Ttds occupancy (variable stateTTD)101
8.5.5 Mapping class VirtualSubSection to Vss 102
8.5.6 Other examples . 102

8.6 Linkage Operations . 103
8.7 Visualization . 104

8.7.1 Topology Design . 104
8.7.2 Tabular Route View . 104
8.7.3 State View . 106
8.7.4 ETCS Document’s Style View . 107

8.8 Conclusion . 108
8.9 Résumé en français . 108

9 Conclusion and Perspectives 110
9.1 Contribution . 110
9.2 Perspectives . 112
9.3 Résumé en français . 113

8

List of Figures

1.1 Use Case Diagram . 18
1.2 Meeduse Approach [60] . 20
1.3 xDSL-based Framework . 21

2.1 Four Meta-Levels of OMG [114] . 26
2.2 Petri-Net Meta-Model [44] . 26
2.3 Petri-Net Model [44] . 27
2.4 Algorithms to run Petri-Nets [44] . 27
2.5 Petri-Nets Model and Execution [44] . 28
2.6 Abstract Machine of Server [25] . 30
2.7 Development Process in B [35] . 31
2.8 Refinement of Abstract Server Machine [25] 31
2.9 Counter Machine B model example with clause INCLUDES 32

3.1 ETCS Level 1 diagram [32] . 35
3.2 ETCS Level 2 diagram [32] . 35
3.3 ERTMS level 2 and level 3 fixed block and moving block concepts [102] . . 36
3.4 Hybrid level 3 section conventions [9] . 37
3.5 VSS State Machine [9] . 37
3.6 RTM Packages [68] . 38
3.7 Classes of Net Entity Package from RailTopoModel [68] 39
3.8 Overview of RSM Packages [27] . 39
3.9 First-Level Classes from EULYNX subset 41
3.10 RSM Classes from EULYNX subset . 41
3.11 ETCS Classes from EULYNX subset . 43

4.1 Screenshot of Rail-AiD editor . 48
4.2 Errors to be avoided . 51

5.1 Lift example [84] . 57
5.2 Proposed approach . 58
5.3 Visual animation in Meeduse . 59
5.4 Lift Meta-Model . 60
5.5 Structural part of machine Liftstatic . 61
5.6 Meeduse after the initialization . 63
5.7 Structural part of Existing Scheduler B Specification 67
5.8 Scheduler Meta-Model . 67
5.9 Structural part of Scheduler B Specification 68
5.10 Graphical animation of the Scheduler example 68

6.1 The Iterative Architecture for the Case Study 72
6.2 B data structure of existing abstract machine M0 74
6.3 DSLv0 Meta-Model . 74

9

6.4 Structural part of machine DSLv0.mch (without constants and variables) . 75
6.5 A model conforming to DSLv0 . 77
6.6 Animating DSLv0 using M0 . 77
6.7 Whole DSL Meta-Model . 78
6.8 Assigning MA to Train 1 using DSLv3 . 79
6.9 Train Movement consuming MAs . 80

7.1 Linkage Generation Methodology . 83
7.2 Xtext grammar of Pattern-Definition . 84
7.3 Pattern-Definition meta-model . 85
7.4 User defined patterns . 86
7.5 Xtext grammar of Pattern-Application . 87
7.6 Pattern-Application meta-model . 87
7.7 Pattern-Application textual editor . 88
7.8 SingleValuedERefToSetElement Pattern . 89
7.9 SingleValuedERefToSetElement Application 89
7.10 MultipleValuedERefToSet Pattern . 89
7.11 MultipleValuedERefToSet Application . 89
7.12 EnumTypeToBoolean Pattern . 90
7.13 EnumTypeToBoolean Application . 90
7.14 Scheduler Pattern Template . 91
7.15 EClassToExtendedConstant Application 91
7.16 ReferenceToVariable Application . 92
7.17 EClassToConstant Pattern . 93
7.18 EClassToConstant Application . 93
7.19 EnumToSet Pattern . 93
7.20 EnumToSet Application . 94
7.21 BoolAttributeToBoolVariable Pattern . 94
7.22 BoolAttributeToBoolVariable Application 94
7.23 EnumTypeAttributeToSetValuedVariable Pattern 95
7.24 EnumTypeAttributeToSetValuedVariable Application 95

8.1 Merging EULYNX with existing ERTMS/ETCS B specifications 98
8.2 ETCS Data Meta-model . 98
8.3 Structural part of machine eTCSData.mch (without constants and variables)100
8.4 Operation trainEntering . 103
8.5 Topology Design . 104
8.6 Level 1 . 105
8.7 Level 2 . 105
8.8 Level 3 . 106
8.9 Level 4 (Assigning MA) . 106
8.10 Level 4 (Train Movement) . 106
8.11 States Legend . 107
8.12 TTD States . 107
8.13 VSS States of Route 1 . 107
8.14 ETCS Document’s Style View of Route 1 108

9.1 Our xDSL-based framework for merging railway standard notations 110

10

List of Tables

4.1 Comparison of State-of-the-Art Approaches 46
4.2 Properties and the used formal techniques 51

7.1 Comparison of Defined and Applied Patterns 88

11

List of Acronyms

AFNOR Association française de normalisation
CAD Computer Aided Design
CNL Controlled Natural Language
DSL Domain Specific Language
DSML Domain Specific Modelling Language
DP Data Preparation
EMF Eclipse Modeling Framework
EUAR European Union Agency for Railways
ERTMS European Rail Traffic Management System
ETCS European Train Control System
FM Formal Method
GMF Graphical Modeling Framework
GPL General Purpose Language
GPS Global Positioning System
GNSS Global Navigation Satellite System
GSM-R Global System for Mobile communications - Railways
HL3 Hybrid Level 3
HTML HyperText Markup Language
ISO International Standard Organization
IDL Interlocking Dynamic Language
ICL Interlocking Configuration Language
IM Infrastructure Manager
ITG Interlocking Table Generator
LEU Lineside Electronic Unit
MA Movement Authority
MBSE Model-Based System Engineering
MDE Model-Driven Engineering
OMG Object Management Group
RTM RailTopoModel
RSM RailSystemModel
RailML Railway Markup Language
RBC Radio Block Centre
Rail-AiD Railway Infrastructure and Layout Aided Designer
RSL RAISE Specification Language
SVG Scalable Vector Graphics
SQL Structured Query Language
SIL Safety Integrity Level
TCL Train Control Language
TIMS Train Integrity Monitoring System
TTD Trackside Train Detection
TSI Technical Specifications for Interoperability

12

UIC International Union of Railways
UML Unified Modeling Language
V & V Verification & Validation
VSS Virtual Sub-Section
xDSL eXecutable Domain Specific Language
xDSML eXecutable DSML
XML eXtensible Markup Language

13

Publications

1. Asfand Yar, Akram Idani, Yves Ledru, Simon Collart Dutilleul: Visual animation
of B specifications using executable DSLs. MoDELS (Companion) 2022: 617-626

2. Asfand Yar, Akram Idani, Simon Collart Dutilleul: Merging Railway Standard
Notations in a Formal DSL-Based Framework. ECSA (Companion) 2020: 411-419

14

Chapter 1

Introduction

In the railway industry, software systems are used to achieve a high level of automation
[39, 108], and safety in this automation can be ensured through techniques of Formal
Methods (FMs). FMs are used for the specification and verification. These techniques
apply theorem proving or model-checking to ensure verification. Due to the safety-critical
nature of railway systems, the use of FMs is a strong recommendation by CENELEC EN
50128 standard1.

Though FMs prove the consistency of a railway system, it does not guarantee it is
correctly built. The misunderstanding of the user requirements by FM experts may lead
to errors. In order to avoid errors, validation is performed. Validation inspects whether
specifications meet the user requirements. It has to be done by domain experts who
require familiar notations. Domain Specific Languages (DSLs) are languages designed
and tailored for a specific application domain [89]. In the railway domain, DSLs allow the
design of readable railway models thanks to domain-specific notations, and such domain-
specific models and their animation could be used for validation.

Verification and validation provide correctly built, proved railway systems. However,
the railway systems must be certified by certification bodies. For certification of railway
systems, standards are required in the design phase of railway systems. Several standards
are documented by European and national authorities in the railway domain. These docu-
ments provide engineering rules and infrastructure guidelines and allow the establishment
of common interfaces for railway systems to maintain compatibility among cross-border
infrastructure objects. All the railway systems need to be aligned and conformant to such
standards. In this chapter, we discuss the context and contribution of this thesis toward
the validation of formal railway systems using DSLs that are conformant to standards.

1.1 Context
DSL technologies offer a lot of flexibility in designing a convenient system (either graphical
or textual). The design of railway systems can be done using graphical syntax or textual
syntax, and DSLs have been a choice for this purpose. There are several tools that propose
DSLs to design railway systems, such as RaIL-AiD2, SafeCap [65, 66, 67], OnTrack [76],
etc. However, most of these tools are not formally defined, and hence they do not apply
formal verification techniques. In railway systems, the design, simulation, and animation
of models in DSLs help with the validation. Most DSLs allow the graphical design of
railways models to avoid wrongful designs that lead to errors. But they do not facilitate
railway experts to animate railway models visually. The visual animation of railway
models makes the validation more comfortable as the railway experts are familiar with

1https://standards.globalspec.com/std/13113133/en-50129.
2Railway Infrastructure and Layout Aided Designer (https://www.rail-aid.com).

15

railway-centric notions, and apart from that, animated execution of models in DSL allows
to trace errors.

The lack of either verification or validation techniques in DSLs always motivated
computer scientists to explore the domain of railway DSLs, and previously several theses
such as [108, 72, 121] have been accomplished in this domain. We can find many strategies
and tools such as [110, 66, 73] for the verification and validation of railway systems, but
the DSLs they provide are not directly derived from railway standards. In this context,
our thesis aims to start by studying existing strategies and standards to propose a novel
DSL-based solution to merge with railway standards while achieving validation. During
this section, we discuss validation, verification, and standards in the context of this thesis.

1.1.1 Validation

Validation of a software system corresponds to the question: are we developing the right
system? It can be done using testing, animation, simulation, and reviews. Validation can
be seen in all the phases of the software development. Validation of a software system is
checking whether it behaves as expected. For this purpose, the expected behavior must
be properly documented, and the requirements must be properly identified. This process
must involve an expert in the domain for which the software system is being developed.
When the system’s architecture is designed in the early phases of development, it can
be checked against the identified requirements; for example, the UML diagrams of the
system are designed based on the documented requirements. In software engineering, the
development of the system can be seen in two ways: (i) software development using pro-
gramming (writing code) e.g., agile methods, and (ii) model-driven software engineering,
where the system is defined using models. Based on these two ways of development, vali-
dation can also be classified into two ways [104]: (i) Validation of software without models
and (ii) Validation in model-driven engineering. In the first way, the code of software can
be debugged or tested (dynamic checking). In the second way, a model of the system
is checked against specific properties (called static checking by [104]), or its behavior is
analyzed using animation or simulation (dynamic checking).

In the railway domain, different methods of validation are in practice. In companies
like Alstom, test case scenarios are designed and then simulated using their simulators
for validation3. In academia, there are also several researchers that provided approaches
based on the validation of railway systems. James et al. [74] used methods like simulation
and error injection where incorrect scenarios are introduced to check whether the errors
can be identified or not. Vu et al. [115, 116] uses a static-checker for the validation
of specified data and specifications to check whether these are well-formed or not. The
industrial railway design tool Rail-AiD [28] favors the validation as it does not allow wrong
designs that lead to errors. From the previously mentioned examples about validation in
railways, it can be seen that validation in railways helps in error-free and well-formed
railway models and scenarios.

With the aim of achieving validation, this thesis focuses on Model-Driven Engineering
(MDE) paradigm, as it is supported by several tools (e.g. EMF, Xtext, Sirius, etc.) and
approaches (e.g. transformation, code generation, etc.) that allow one to define graphical
and textual domain-specific modeling languages (DSMLs). We particularly focus on ex-
ecutable DSMLs (xDSML) in order to allow domain experts to simulate domain-specific
scenarios and validate the underlying behaviors.

3Private Communication

16

1.1.2 Verification
Verification in software systems provides confidence: are we developing the system right?
Verification is part of FMs which provides a guarantee that the software meets its speci-
fication [34]. Some of the well-known examples of formal specification notation languages
are Alloy [70], CASL [91], Lustre [58], CSP [47], LOTOS [17], B-Method [35], Z notation
[36], Petri nets [53], RAISE [93], SPARK Ada [30], etc. To ensure that the system defined
as mathematical notations is correct, FMs provide techniques like logic programming (a
program written as a set of sentences in logical form), constraint solving (problems defined
as questions that must satisfy a number of constraints or limitations), theorem proving
(reasoning over proofs) and model-checking (checking whether a finite-state model of a
system meets a given specification).

Case studies of FMs can be found almost in all safety-critical domains, from aerospace
and embedded systems to railway domains and communication. The book Application
of Formal Methods [46], published in the year 1995, contains a collection of articles by
internationally renowned contributors from both academia and industry. The applications
include STV (Single transferable vote) algorithm, AAMP5 microprocessor, real-time gate
controller, rail traffic and signaling, operating system, communication system, AT&T
switching system, aerospace system, etc. Especially regarding the aerospace systems, the
NASA case study document [13] shows the use of different classes (techniques) of FMs,
like theorem proving and model-checking. It illustrates how FMs can be used in a realistic
avionics software development project.

In the railway field, the application of FMs is not a new paradigm. Formal techniques
have been used in railway systems to verify different properties like safety, capacity, inter-
locking, deadlocks, security, topology, etc. International railway infrastructure and man-
ufacturer companies like Alstom and Siemens Mobility and national rail service providers
like SNCF, ProRail, etc., are using FMs. In fact, the survey [120] on FMs acknowledged
transportation (including railway) as the first domain for the application of Formal Meth-
ods as well as for the development of real-world railway systems. Apart from being used
in industry, the research involving the application of Formal Methods on railway systems
is quite active in academia. Another survey [56] on FMs for railways shows that 68 % of
the research papers regarding the use of FM in railways published after 2015 are authored
in academia.

This thesis proposes to define the semantics of railway models using FM, and then
existing proved specifications are linked with the model’s semantics. This thesis aims to
separate the concerns of a FM expert from a domain expert and a MDE expert. FM
experts will only be responsible for verifying their specification and linking it with the
formal semantics of the model using FM. Whereas the MDE expert defines the DSL,
and domain experts design and validate their model. This separation of actors’ concerns
is depicted in Figure 1.1, illustrating the three actors and their activities (use cases).
Dependencies between the use cases are also clearly mentioned in the Figure, which shows
how the activities of actors are related to each other.

1.1.3 Standards
Standards refer to the common, agreed, and expert approaches to maintain quality and
interoperability. These standards are managed by international, regional, and national
bodies. ISO4 (International Standard Organization) provides standards in many areas like
quality, environment, health, energy, food, and IT security. Same as AFNOR5 works as the

4https://www.iso.org/.
5Association française de normalisation https://www.afnor.org/.

17

https://www.iso.org/.
https://www.afnor.org/.

Figure 1.1: Use Case Diagram

body of standardization in France, maintaining good practices and effective solutions. In
the railway domain, the EUAR6 (European Union Agency for Railways) provides TSIs7

which define the technical and operational standards to ensure the interoperability of
railway systems of the European Union.

ERTMS/ETCS [32], European Rail Traffic Management System and European Train
Control System, is a set of specifications by EUAR and European authorities. It is
introduced as a standard for a common inter-operable platform for railway management
and signaling system and is currently operational on many European railway lines. In the
future, it is intended to replace all the national signaling systems in Europe. Currently,
the use of ERTMS/ETCS is quite active in the railway domain; an industrial tool like
Rail-AiD [28] used it for its data preparation, and academic researchers mentioned and
illustrated the use of ERTMS/ETCS in their DSL-based approaches [74, 115, 63].

ERTMS/ETCS standard provides engineering and operational rules, but it does not
provide support for the infrastructural design of railway systems. To support common
infrastructure design in railway systems, infrastructure managers (IMs) came up with
RailTopoModel (RTM) [68]. It is the International Railway Standard (IRS 301008), a
domain model whose aim is to optimize the communication between the various actors of
the railway sector providing abstract concepts. Later RTM is re-branded as RailSystem-
Model9 (RSM). In this work, we pay particular attention to RailML [26] and EULYNX
[11] to use RTM/RSM. RailML (Railway Mark-up Language) is an open XML (eXten-
sible Markup Language) based data exchange format for data interoperability of railway
applications, and its infrastructure schema (containing concrete concepts) extends RTM.
EULYNX is a European initiative by 13 Infrastructure Managers to standardize interfaces
and elements of the signaling systems, and it also provides support for the logical concepts

6https://www.era.europa.eu/.
7Technical Specifications for Interoperability https://www.era.europa.eu/domains/

technical-specifications-interoperability_en
8The IRS 30100 is the foundation for quick, unambiguous, and error-free data storage and data

exchange inside and between business processes [68]
9https://rsm.uic.org/doc/rsm/rsm-1-2/

18

https://www.era.europa.eu/.
https://www.era.europa.eu/domains/technical-specifications-interoperability_en
https://www.era.europa.eu/domains/technical-specifications-interoperability_en
https://rsm.uic.org/doc/rsm/rsm-1-2/

of ERTMS/ETCS.
In this thesis, we derive the static semantics of our DSL from RTM/RSM. We use

meta-models provided by RailML or EULYNX (called common interfaces in this thesis),
which makes the design of railway models conformant to RTM/RSM standards. We use
ERTMS/ETCS formally proved specifications for the DSL’s dynamic semantics. These
proved specifications ensure that the underlying dynamic semantics are correctly derived
from the ETCS document, ultimately achieving equivalence to standards.

1.2 Contribution
Several DSL-based approaches like [38], [43], [74], [75], [109], [115, 116], [65, 67], [76], etc.
have been presented for railway systems which cover verification, validation and standards
(detailed study is done in chapter 4). The mentioned existing approaches show their
strength but the following areas of improvements and gaps were identified: (i) to have a
DSL based on EULYNX and ERTMS together, (ii) a framework to work with any railway
DSL and to provide executable models, and (iii) to use existing proved specifications for
verification activities within a DSL-based framework.

To contribute in the domain and to cover the identified gaps, in this thesis, we provide
an executable DSL-based framework, which allows the graphical design of railway models
based on a railway common interface that follows RTM/RSM. The framework supports
the execution of railway DSL with dynamic semantics provided by ERTMS/ETCS. Our
framework shown in Figure 1.3 is built on Meeduse language Workbench [60], which
first helps with the translation of railway models into FM and then the animation of
domain-specific models (responsible for steps: Translation, Valuation, and synchroniza-
tion including the overall Execution process). In this section, we discuss the components
of our framework alongside Meeduse.

1.2.1 Meeduse
Meeduse [60, 64] is developed by the VASCO team at LIG (Grenoble Computer Science
Laboratory). It can build proved DSLs and execute their dynamic semantics. It links
three technological spaces: (i) EMF [52] (Model-driven engineering), (ii) B Method (proofs
and refinements), and (iii) execution. Figure 1.2 shows the Meeduse approach, which is
composed of two layers: The semantics layer and the Modeling layer. The semantics layer
includes the component Translator, while the Modeling layer contains the components:
Injector and Animator. The approach of Meeduse starts using the Translator component
that translates Ecore10 meta-models into B specifications as part of static semantics,
generating Sets, Variables, Invariants, and basic Operations (constructors, destructors,
getters, and setters). Users can make changes to strengthen some properties of the meta-
models and can also include additional invariants (Note that AtelierB [2] can be used to
ensure the proof of correctness of B specification with respect to included invariants). B
operations can be introduced manually, but they must preserve the structural invariants.

Given a valid input model of the meta-model, the next step is to execute the behavior.
The input model can be a graphical model, designed in EMF tools like Sirius, GMF,
etc. (shown as Model Resource), or it can be a textual file given the Xtext grammar.
The injector from the Modeling layer does valuation by injecting the instances of meta-
models into the B specifications produced from the meta-models. Here, the valuation in
B specification is done first by generating constants (with defined properties), and then

10Ecore (EMF-core) is a meta-model for describing models in Eclipse Modeling Framework, https:
//www.eclipse.org/modeling/emf/

19

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/

Figure 1.2: Meeduse Approach [60]

variables are initialized from the valid input model resource of the meta-model. The
Animator component is supported by ProB model-checker [82]. It is asked to compute
the initial state of B specification and the operations that can be animated from that
state. ProB detects and stops the animation if the input model is wrong. Otherwise,
given a correct input model, when a new state is reached, Meeduse translates it back to
the model, resulting in domain-centric animation.

1.2.2 Proposed Framework
The top part of Figure 1.3 shows the DSLs Semantics layer of the framework. The se-
mantics layer is divided into two more parts: static semantics and dynamic semantics.
For the formal semantics, we use the B method. The choice of the B Method is motivated
by several aspects; firstly, the B method is widely used in the railway field, and several
success stories support this fact [80], for example, Meteor, the automated Paris subway.
Secondly, a comparative study of several formal methods regarding their industrial suit-
ability [88] has been done and rated B high for formal constructs like those applied in our
thesis.

• Static Semantics: The static semantics deals with the structural schema of the DSL.
In our approach, they are provided by meta-models based on RailML, EULYNX,
and RailTopoModel. We use a subset of these meta-models and then Meeduse
translates these into B specifications using its translator component.

• Dynamic Semantics: The dynamic semantics of a DSL deal with behavioral de-
scriptions that make the DSL executable. In this thesis, we apply ERTMS/ETCS
to introduce execution within the models provided by RailTopoModel, RailML, or
EULYNX. Our objective is to use existing ERTMS/ETCS proved B specifications
for the dynamic semantics definition. For this purpose, we create linkage B spec-
ifications in which we apply two mechanisms from the B method: refinement and
inclusion. In the B method, refinements have two main principles: add requirements
by going from abstract models to more concrete ones and prove the preservation
of the abstract model invariants. The composition, such as inclusion, allows for
breaking down the system by applying the separation of concerns principle. The
linkage B specification includes the B specification translated from meta-models and
refines/includes the existing ERTMS/ETCS B specifications.

The bottom part of Figure 1.3 shows the DSLs Execution layer of the framework.
DSL execution is intended to perform early validation since the DSL is expected to be-

20

Figure 1.3: xDSL-based Framework

have as the target system should run. In our framework, domain-specific models are
created as instances of the meta-models (RailML, EULYNX, or RailTopoModel/RSM).
This allows the railway domain expert to design their railway models. In the next step,
called (Valuation), Meeduse injects these models into B specifications issued from the
meta-models. Thanks to the dynamic semantics, Meeduse can animate the design models
making the DSL executable. All along the interactive animation, Meeduse synchronizes
the current state of the B specifications with the models (Synchronisation), which re-
sults in a domain-centric visual animation. This execution allows the railway experts to
validate the behavior of their models.

1.3 Results
The aim of this thesis is to provide an xDSL-based framework for the validation of rail-
way models where the semantics of the DSLs are conformant to railway standards. For
this purpose, we used railway infrastructural standards or interfaces like RailML, EUL-
YNX, and RailTopoModel as static semantics of the DSL; and equipped the DSL with
ERTMS/ETCS operations as dynamic semantics. We used the Meeduse language work-
bench for the animation of DSLs, which allows the railway expert to validate their stan-
dardized models. During this thesis, the following results are attained:

• Visual Animation of B Specifications using DSLs [122]: The first result of
this thesis is to provide an approach to the visual animation of B Specifications using
executable DSLs. Existing tools like BRAMA [107], AnimB11, B-Motion Studio [78],
B-Motion Web [79], and VisB [119]. have shown their strengths in practice, but
still, there are some concerns that motivate our approach. First, visual animation
provided by the existing tools requires specific skills such as in scripting languages
(Flash, JavaScript, node.js) or in Scalable Vector Graphics (SVG files), etc. These
technologies are not necessarily mastered by FM experts and can be cumbersome to

11AnimB: https://wiki.event-b.org/index.php/AnimB

21

learn and use. Second, mapping a specification to a domain representation is time-
consuming and maybe error-prone, and thirdly, FM experts might not be familiar
with the domain-specific notations.

In our approach, the FM expert links the existing B specification to the B specifi-
cation of the DSL. For this purpose, an FM expert does not require other skills, but
instead, mapping is done in B itself. FM experts also are not required to be famil-
iar with domain-specific notations since the input models are provided by domain
experts thanks to the DSL tool. We apply our approach to the examples of Lift,
Scheduler, and the realistic example of ERTMS/ETCS.

• Validation of existing proved ERTMS/ETCS Specification: The second
result of this thesis is finding an error while validating an existing proved B speci-
fication. The hypotheses mentioned earlier in this chapter “Though FMs prove the
consistency of a railway system, it does not guarantee it is correctly built” are proved
when we visually animated an existing formally proved ERTMS/ETCS specification
for validation. ABZ’2018 [49] conference organizers defined a real-life case study is-
sued from the railway domain with challenging safety requirements. The ABZ’2018
case study was related to the Hybrid ERTMS/ETCS Level 3 standard [9]. Many
FM experts published their proved ERTMS/ETCS specifications at the conference.
We select the proved ERTMS/ETCS specification of Amal Mammar [87] as the case
study example for the application of our approach.

During the validation of ERTMS/ETCS B specification, an error is identified where
a track section appeared as “ambiguous” although a train was in the section, and
the section should appear as “occupied.” As per a railway expert’s opinion, such
an error might come from a misunderstanding of the specification. Since the FM
expert fulfilled the requirements in the document for the case study, it might be
possible that the requirements are not properly documented.

• DSL-based Tool support for Linkage B Specifications: This thesis also leads
us to develop a tool to support the generation of linkage B specifications. The
tool comprises two textual DSLs: Pattern-Definition (allows to define patterns of
linkage B specification mappings) and Pattern-Application (to define the structure
of linkage B specification and apply the defined patterns). Thanks to these DSLs,
FM experts can create linkage B specifications in a (semi)-automated way, first
by defining a catalog of generic reusable patterns, and then they can select the
ones to apply. Having the definition of patterns and their application, a generator
component automatically produces the linkage machine. We experimented with the
tool on the case study of ERTMS/ETCS and examples like Lift and Scheduler.

• Application to EULYNX: The last result of this thesis is the application of
our xDSL-based framework to the EULYNX. This helped us to validate an exist-
ing proved ERTMS/ETCS B specification using a formalized EULYNX-based DSL.
The DSL provides different graphical views of a railway system with familiarized
notations. In short, this result contributes to the following: (i) formalization of
EULYNX, (ii) a DSL based on EULYNX, (iii) visualization of EULYNX, and (iv)
merging EULYNX with ERTMS/ETCS operating rules enabling formalized calcu-
lation (previous-next) of sections and sub-sections of a railway route.

22

1.4 Outline
The dissertation consists of nine chapters. The current chapter gave the motivation and
discussed the contribution of this thesis. In this section, we give the remaining outline of
the eight chapters to be followed.

• In chapter 2, the technologies used in this thesis: DSLs and the formal B Method,
are discussed in detail with examples. DSLs are languages that have been designed
and tailored for a specific application domain, while B Method is Formal Method
(FM) for specifying, designing, and coding software systems.

• The notion of ERTMS/ETCS and other railway standard notations like RTM, RSM,
and EULYNX are presented in chapter 3. ERTMS/ETCS is introduced as a stan-
dard for a safe and common inter-operable platform for railway management and
signaling system to be implemented in Europe. RTM and RSM are standards pro-
vided by UIC, International Union of Railways to supports various aspects of the
railway industry, such as signaling, safety, standardization,etc. EULYNX is an Euro-
pean initiative to standardize elements and interfaces of railway signalling systems.

• Chapter 4 evaluates the state-of-the-art works and approaches related to this thesis.
The approaches are compared on the criteria of their semantics, the syntax used,
the standards followed, and V & V.

• Chapter 5 presents our approach of introducing linkage machines for the visual
animation of B Specifications using executable DSLs. We apply our approach to a
simple but well-known example of Lift as proof of concepts.

• In chapter 6, the iterative formal-driven approach for the validation of existing
proved ERTMS/ETCS B specification is presented. We show how a DSL is devel-
oped step by step from the concepts of existing ERTMS/ETCS B specification and
how DSL-based graphical animation is used to identify errors in order to support
validation.

• The DSL-based tool to generate linkage machines in a (semi)-automated way along-
side examples is presented in chapter 7. We provide two DSLs: Pattern-Definition
(to define re-usable patterns) and Pattern-Application (to apply the defined pat-
terns).

• Chapter 8 discusses and illustrates the application of our xDSL-based framework to
the EULYNX. This application shows the formalization and visualization of EUL-
YNX and how it supports the validation of ERTMS/ETCS proved B specification.

• Finally in chapter 9, we draw the conclusion of this thesis by recalling our DSL-based
framework and briefly discuss the derived aspects. We also give some perspectives
that can be achieved as the continuation of the work in this thesis.

1.5 Résumé en français
Dans l’industrie ferroviaire, les systèmes logiciels sont utilisés pour atteindre un haut
niveau d’automatisation [39, 108], et la sûreté/sécurité de cette automatisation peut être
assurée grâce à des techniques de méthodes formelles (FM). Les FM sont utilisées pour
la spécification et la vérification. Ces techniques appliquent la preuve de théorèmes ou le
model-checking pour mener à bien les activités de vérification. En raison de la nature

23

critique des systèmes ferroviaires, l’utilisation de FM est une forte recommandation de
la norme CENELEC EN 5012812. Si les FM prouvent la cohérence d’un système fer-
roviaire, elles ne garantissent pas qu’il soit correct. Une mauvaise compréhension des
besoins des utilisateurs par les experts FM peut conduire à des erreurs. D’où la nécessité
de compléter les activités de vérification par des activités de validation. La validation a
pour vocation de confronter les spécifications aux exigences des utilisateurs pour vérifier
leur conformité. Cela doit être fait par des experts du domaine sur la base de nota-
tions qui leurs sont familières. Dans le cadre de cette thèse, nous proposons l’usage de
l’ingénierie dirigée par les modèles (IDM) et des langages dédiés domaine (ou DSL) pour
mener ces activités de validation. Les DSL sont des langages conçus pour un domaine
d’application spécifique [89]. Dans le domaine ferroviaire, un DSL permet la conception
de modèles qui se veulent lisibles grâce à des notations dédiées et bien connues par les
experts ferroviaires. La vérification et la validation permettent de produire des systèmes
avec un bon niveau de correction. Toutefois, les systèmes ferroviaires doivent aussi être
certifiés par des organismes de certification. Pour ce faire, des normes sont requises dès
la phase de conception du système. Celles-ci sont produites et documentées par des au-
torités européennes et/ou nationales. Ces documents fournissent des règles d’ingénierie et
des lignes directrices en matière d’infrastructure et permettent l’établissement d’interfaces
communes afin de maintenir la compatibilité entre les objets d’infrastructure transfrontal-
iers. Tous les systèmes ferroviaires doivent être conformes à ces normes. Dans ce chapitre,
nous discutons du contexte et de la contribution de cette thèse à la validation de systèmes
ferroviaires formels utilisant des DSLs conformes aux normes.

12https://standards.globalspec.com/std/13113133/en-50129.

24

Chapter 2

DSLs And Formal B Method

In chapter 1, we came across a few technologies used in this thesis. This thesis provides
an xDSL-based framework for the validation of railway models. The semantics of the
executable DSLs in the framework are defined into a Formal Method (FM) called B
Method; and are conformant to railway standards. So in this chapter, we discuss the
DSLs, and Formal B Method, presented in Sections 2.1 and 2.2, respectively.

2.1 Domain Specific languages
Languages in computer science are development systems that allow computer program-
mers to develop software applications and control the behavior of machines [99]. On the
basis of usage, they are divided into two categories: General Purpose Languages (GPLs)
and Domain Specific Languages (DSLs). GPLs support generality providing generic con-
structs to be used together for many applications. Common examples of GPL are Java,
C++, C, and Python. DSLs are languages that have been designed and tailored for a
specific application domain [89]. They support expressiveness such that language easily
expresses various domain-specific notations using the constructs appearing in the lan-
guage. Common examples of DSL are HTML, Excel, Latex, MATLAB, and SQL.

DSLs are defined in several ways; in one way, they can be defined through the notations
based on Language Theory, and the other way is to use the Model-Driven Engineering
(MDE) paradigm. This thesis provides a framework that allows domain experts to de-
fine their models using DSLs in the MDE paradigm. The MDE paradigm is a set of
modeling concepts, and their relationships that are used to represent a specific domain
[125]. It involves various activities such as meta-modeling, model transformation, model
verification, validation, code generation, and model execution. Multiple tools are avail-
able for the definition of DSLs in the MDE, like Enterprise Architect [8], MetaSketch
[95], MetaEdit+ [21], Microsoft DSL Tools [24], and Eclipse Modeling Framework (EMF)
[52]. In MDE, DSLs are defined through static semantics (meta-modeling) and dynamic
semantics (behavior).

2.1.1 Static Semantics
We define static semantics through meta-models. According to the definition, a meta-
model is a set of rules, principles, and conventions for constructing a model. The instance
of the model described through the meta-model depicts the real world. This relationship
between the real world, model, and meta-model is defined into four meta-levels by OMG
[22] because the meta-model itself is described through another meta-model (called meta-
meta-model). Figure 2.1 shows the four meta-levels defined by OMG where the bottom
level MO (Instances) is described by M1 (Model) and M1 itself is described through

25

M2 (Meta-Model). Then M2 level is described through M3, called Meta-Meta-Model.
Finally, the top-level M3 describes itself. In this meta-level structure, each lower layer is
an instance of the upper layer, and the last upper layer is an instance of itself.

Figure 2.1: Four Meta-Levels of OMG [114]

Figure 2.2 shows the Petri-Net meta-model [44]. It contains three classes. Net is the
root class which is composed of classes: Place and Transition. Class Transition has
two associations with class Place: (i) input (one to many) and (ii) output (one to many).
All classes have attribute name with type EString. Class Place also has an attribute
called tokens of type Integer.

Figure 2.2: Petri-Net Meta-Model [44]

In this thesis, we use EMF, a framework containing tools for creating and manipulating
models based on a structured data format called Ecore [19]. EMF supports various
MDE activities such as meta-modeling, model transformation, code generation, and model
execution [71], and it provides an Ecore meta-meta-model1 for the definition of meta-
models. The meta-models in EMF can be described through Ecore class diagrams. For
modeling, there are several EMF-based tools, like Sirius [7], EuGENia [10], and GMF [14],
which provide the graphical instantiation of meta-models. One can graphically model an
instance of Ecore meta-models using one of these tools. Figure 2.3 [44] shows one graphical
model of the Petri-Net meta-model from Figure 2.2. In the model, a white circle shows an
instance of class Place and a vertical black bar represents an instance of class Transition.
The model contains five places (p1, p2,....) and three transitions (t1, t2, and t3). The
black dots in the circle places show the tokens.

1https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/
package-summary.html

26

https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html

Figure 2.3: Petri-Net Model [44]

2.1.2 Dynamic Semantics
In general programming languages (GPL), the execution refers to the step when the
semantics are translated into machine-readable byte-code and the byte-code is interpreted.
In MDE, the execution of models is defined by means of dynamic semantics, operational
semantics, execution semantics or behavioral semantics. All these terms refer to the same
notion, which is the description of the model’s behavior, and we use the term dynamic
semantics all along this thesis for this notion. The Petri-Nets, State-Chart diagrams, and
Sequence diagrams provide graphical descriptions of behaviors for the execution of DSLs.

Figure 2.4, taken from [44], shows two algorithms that can be used as dynamic se-
mantics to run Petri-Nets. The algorithms contain five actions: run, isEnabled, fire,
addToken, and removeToken. The algorithms take a Net object as input and use run to
execute it. It chooses an enabled transition (which satisfies the enabledness 2 property
‘isEnabled’) non-deterministically from the set of transitions and then calls fire on the
enabled transition. For each input place of the enabled transition, the algorithm removes
a token (removeToken). It also adds a token (addToken) for each output place of enabled
transition.

Figure 2.4: Algorithms to run Petri-Nets [44]

Figure 2.5 shows different states of the Petri-Net model [44] executed by the above-
mentioned algorithm. Model state A is the initial state where only two places p1 and p3
contain tokens. At this state, fire is triggered on enabled transition t1, for which input
place is p1 and output places are p2 and p3. After the trigger of fire on t1, the changes
in model state B can be seen where input place p1 of transition t1 is empty, and output
places got the tokens. From this state (B), fire is triggered on enabled transition t2. The
change can be seen in model state C where the tokens are removed from the input places

2A transition is enabled if all its input places have at least one token

27

of t2, and a token is added into the output place p4. From model state C, fire is triggered
on transition t3. This fire action removes tokens from both input places p3 and p4 of
transition t3 and adds a token into place p5, as shown in the model state D.

Figure 2.5: Petri-Nets Model and Execution [44]

There are two kinds of approaches that support executable DSLs: the in-line approach
and the translational approach. In in-line approach, behavior is weaved into meta-models
using an action language, which is used to specify the bodies of operations which are in
the meta-model [48]. In the translational approach, first, the meta-model is translated
into formal language semantics using model transformation. Then the operations defined
in this formal semantics are used for the execution semantics.

In this thesis, we use Meeduse Language Workbench for the execution of the DSL.
Using a translational approach, the EMF meta-model is translated into B Method. Then
B operations serving as dynamic semantics are used to support the execution of the
DSL. We use Eclipse Sirius for the graphical model, and the states of B operations are
synchronized with the states of the models, assuming that they are equivalent. Computing
the list of enabled operations changing the current state of the model results in domain-
specific animation.

2.2 Formal B Method
According to NASA [34] “Formal Methods” refers to mathematically rigorous techniques
and tools for the specification, design, and verification of software and hardware systems.
In this thesis, we use B Method (developed by J.R. Abrial), which is a Formal Method
(FM) for specifying, designing, and coding software systems [35]. It is based on Set
Theory3 and First-order Logic [37] to specify separate versions of the system created
during the development process. B Method provides the formalization of railway models
by giving semantics to the DSL.

The choice of the B method is motivated by several aspects. First, the comparative
study of several formal methods regarding their industrial suitability [88] rated B high
regarding formal constructs related to the railway domain. Secondly, B Method is widely
used in the railway field, and there are several success stories [80] like Paris Metro lines 1
and 14. It has also been used in the development of the tram control system of Guangzhou
Huangpu Line 1 in China [94]. Big companies working in the railway domain, like Al-
stom and Siemens Mobility, are using it to fulfill the recommendation of CENELEC EN
501284 for the development of SIL4 [3] compliant components. It covers areas like speed
supervision (checking speed limits), auto-pilots for metros (metro trains without drivers),
train detection systems (locating trains on the railway lines), etc.

B Method provides the mechanism for the proof of program correctness. It is done
through theorem proving where logical formulas generated from different constructs of

3https://plato.stanford.edu/entries/set-theory/
4Recommends the use of formal methods in safety-critical railway systems. https://standards.

globalspec.com/std/2023439/afnor-nf-en-50128

28

https://plato.stanford.edu/entries/set-theory/
https://standards.globalspec.com/std/2023439/afnor-nf-en-50128
https://standards.globalspec.com/std/2023439/afnor-nf-en-50128

a B machine, called proof obligations, ensure the correctness claim for a given property,
i.e., invariant property. Alongside theorem proving, model-checking is also used in the
B Method in order to check whether a finite-state model of a system meets a given
specification.

There are a few tools developed to support the B Method. The known ones are
ProB [83] (a B animator and model-checker), AtelierB [2] (enabling the operational use
of the B method and also with proof assitance), B-Toolkit [31] (a suite of fully integrated
tools designed to support a rigorous or formal development of software systems using the
B-Method), and Rodin [12] (an Eclipse-based IDE for Event-B that provides effective
support for refinement and mathematical proof).

The development cycle of B involves three kinds of components: an abstract machine,
refinements, and implementation. Abstract machine is the first version of the system
providing a structured development. Refinement turns the abstract machine into a more
concrete one by adding details about the system. After multiple refinements, when a
deterministic version of the system is achieved, it is called implementation. It is the
last version of the system and can be coded in a programming language (like C, C++,
ADA, etc.) for compilation as an executable program. During this thesis, implementation
component is not covered; we use only abstract machines and refinements.

2.2.1 Abstract Machine
Abstract machine is also called a B machine or abstract specification, or high-level spec-
ification, and it is comprised of three parts: header, static and dynamic.

Structure of an abstract machine
MACHINE

HEADER PART
Name of the machine
Parameters
Constraints

STATIC PART
Sets
Constants
Properties of the constants
Variables (state)
Invariant (Properties of the variables)

DYNAMIC PART
Initialization of Variables
Operations

END

• Header Part contains the machine’s name, its parameters, and the corresponding
constraints of these parameters.

• Static Part, also known as the declarative part. It includes sets, constants, vari-
ables (states of the machine), and the corresponding properties of constants and
variables. The properties of variables are called invariants and are expressed in the
first-order predicate logic.

• Dynamic Part contains the initialization (of variables) and operations. Operations
modify the states of the machine, satisfying the invariant properties.

29

Figure 2.6 illustrates the notions of an abstract machine mentioned above. It shows
an abstract machine of a server (machine Server Abstract) [25] which defines a set of
processes called Process and a variable logged in (which is a subset of Process allowing
clients to log in). The machine has two operations: LogIn, and LogOut. Operation LogIn
assigns a process to the logged in provided it is not already assigned to it. Operation
LogOut removes an assigned process from the logged in.

MACHINE
Server Abstract

SETS
Process = {p1,p2}

VARIABLES
logged in

INVARIANT
logged in ∈ P (Process)

INITIALISATION
logged in := ∅

OPERATIONS
LogIn(pp) =

PRE pp ∈ Process ∧ pp ̸∈ logged in THEN
logged in := logged in ∪ {pp}

END;
LogOut(pp) =

PRE pp ∈ Process ∧ pp ∈ logged in THEN
logged in := logged in - {pp}

END
END

Figure 2.6: Abstract Machine of Server [25]

2.2.2 Refinements
A refinement must satisfy the properties and invariants of the refined machine as well
as its own properties and invariants. Figure 2.7, shows this formal development process
in B where an abstract machine as the preliminary design is refined by detailed design
refinements. It is to be noted that the development process in B can follow successive
refinements to make the system more concrete step by step. It is done by refining the
previous refinement and similarly doing the proofs.

During the refinement, the header part of the B specification contains two keywords:
REFINEMENT and REFINES. The former is the name of the refinement component,
and the latter is the name of the refined component, which looks as follows:

Header part of refined machine
REFINEMENT refinement
REFINES abstractmachine

Refinement of the Server example (Refinement Server Refinement) is illustrated in
Figure 2.8, where machine Server Abstract is refined first by data refinement with the
addition of a new set called SessionID and a new variable called session which is a partial
function (7→) from Process to SessionID. In this refinement, variable set logged in is
redefined as the domain of variable session (dom(session)). Machine Server Abstract is

30

Figure 2.7: Development Process in B [35]

REFINEMENT Server Refinement
REFINES Server Abstract
SETS

SessionID = {sid1,sid2,sid3}
VARIABLES

session
INVARIANT

session ∈ Process 7→ SessionID ∧
logged in = dom(session)

INITIALISATION
session := ∅

OPERATIONS
LogIn(pp) =

PRE pp ∈ Process ∧ pp ̸∈ dom(session) THEN
ANY sid WHERE sid ∈ SessionID ∧ sid ̸∈ ran(session)

THEN
session := session ∪ {pp 7→ sid}

END
END;

LogOut(pp) =
PRE pp ∈ Process ∧ pp ∈ dom(session) THEN

session := {pp} ◁− session
END

END

Figure 2.8: Refinement of Abstract Server Machine [25]

then refined by operation refinement. Operations LogIn, and LogOut are redefined with
respect to session instead of logged in. During the operation LogIn, a process is included
in the session such that it is not already within the domain of session and further the
SessionID associated with Process is not in the range of session. Operation LogOut
subtracts a Process from the session, which is within its domain.

31

2.2.3 Inclusion
Another mechanism of the B Method that we use in this thesis is inclusion. It allows
to break down the system by applying the separation of concerns principle and includes
other machines in a given machine. Figure 2.9 shows an example where a B model is
composed of two abstract machines that are related to each other via the inclusion mech-
anism. The left side of the figure defines a counter machine (called CounterMachine). It
has a set COUNTER and variable Counter which is defined as a member of the pow-
erset of set COUNTER. Counter is linked to a value (an integer) with one basic setter
operation setValue, which sets the value of the counter. The right side of the figure
shows the machine CounterOperations with operations: increase, and decrease, which
increase and decrease the value of the counter, respectively. This Machine also provides
two constants: MAXvalue and MINvalue which are integers to define the maximum and
minimum of the counter’s value. Note that using the Inclusion mechanism, the variables
of the first abstract machine, in this case, CounterMachine, can be read by the other
machine (CounterOperations) but their modification is only possible via operation call.

MACHINE
CounterMachine

SETS
COUNTER={counter}

VARIABLES
Counter,
value

INVARIANT
Counter ∈ P (COUNTER) ∧
value ∈ Counter 7→ Z

INITIALISATION
Counter:= {counter} ||
value:= {counter 7→ 1}

OPERATIONS
setValue(aCounter,aValue) =
PRE aCounter ∈ Counter ∧

aValue ∈ Z
THEN

value := ({aCounter} ◁− value)
∪ {(aCounter 7→ aValue)}

END
END

MACHINE
CounterOperations

INCLUDES
CounterMachine

CONSTANTS
MAXvalue,
MINvalue

PROPERTIES
MAXvalue ∈ Z ∧ MAXvalue=10 ∧
MINvalue ∈ Z ∧ MINvalue=0

OPERATIONS
increase = PRE

value(counter) < MAXvalue
THEN

setValue(counter, value(counter)+1)
END;
decrease = PRE

value(counter) > MINvalue
THEN

setValue(counter, value(counter)-1)
END

END

Figure 2.9: Counter Machine B model example with clause INCLUDES

2.3 Conclusion
In this chapter, we studied the technologies used in this thesis from the computer science
discipline point of view: DSLs and the B Method. The former helped us to understand the
rules and ways behind defining it, while the latter helped us to understand its structure,
components, and usage. DSLs are defined using the MDE paradigm, and MDE is more
convenient to model the railway notions and their relationships. Another important point
about the MDE paradigm is the support for validation activities. The verification is done
using Formal Methods (FMs) and as per CENELEC EN 50128, the use of FMs is a strong

32

recommendation in railway safety critical systems. We use the formal B Method in this
thesis as it is widely used in the railway field and has several success stories in the domain.
In the next chapter (3), we explore railway standard notions that are useful in this thesis.

2.4 Résumé en français
Cette thèse fournit un cadre basé sur des DSL pour la validation des modèles ferroviaires.
La sémantique des DSL exécutables y est définie dans une méthode formelle (FM) appelée
méthode B. Ainsi, dans ce chapitre, nous discutons des DSL et de la méthode formelle B.
Les DSL sont définis à l’aide du paradigme MDE, et MDE est bien adapté pour modéliser
les notions ferroviaires et leurs relations. Un autre point important du paradigme MDE
est la prise en charge des activités de validation. La vérification est effectuée à l’aide de
méthodes formelles (FM) et conformément à la norme CENELEC EN 50128, l’utilisation
de FM est fortement recommandée dans les systèmes critiques pour la sécurité ferroviaire.
Nous utilisons la méthode formelle B dans cette thèse car elle est largement utilisée dans
le domaine ferroviaire et compte plusieurs réussites dans le domaine.

33

Chapter 3

Railway Standards

This thesis provides an xDSL-based framework, which allows the graphical design of rail-
way models based on railway standards like RTM/RSM and EULYNX. The framework
supports the execution of railway DSL with dynamic semantics provided by ERTMS/ETCS.
We discuss thesis points in Sections 3.1, 3.2, and 3.3.

3.1 ERTMS/ETCS
ERTMS stands for European Rail Traffic Management System, and ETCS stands for Eu-
ropean Train Control System (It can be called simply ERTMS or ETCS). It is introduced
as a standard for a safe and common inter-operable platform for railway management
and signaling system to be implemented in Europe. It is intended to be adopted in all
European countries and to replace their national signaling systems [32].

In ETCS, the safe train behavior is made sure by the concept of Movement Authority
(MA). MA defines how and when a train is allowed to enter a specific section of the
track. The function of MA does not allow two trains to be on one specific section at
the same time. ETCS also looks after the concerns regarding safe driving which includes
emergency brakes in case of an accident ahead or change in the track condition. It also
assigns speed limits to the train depending on the traffic and curvedness of the line to
avoid train collisions and derailments respectively.

Moreover, ERTMS/ETCS is classified into different functional levels according to the
equipment used and operating modes. The levels are ETCS level 1, level 2, and level
3. The application of ETCS enables the trackside equipment to transmit information to
the train. In ETCS level 1, this information is transmitted by Balise (also called Euro-
balise), which is an equipment placed alongside the track and connected to the signaling
system. In level 2 and 3, this information is transmitted by GSM-R1 radio network. The
ERTMS/ETCS level 1, level 2 and level 3 are discussed below:

• ETCS level 1: It is a cab signaling system2 and can be easily implemented on existing
national signaling systems. In this level, data is exchanged from track to train using
balise. The signals alongside the track are necessary at this level. The balise gets
the signal information and sends them to train as MA with data of route. Figure
3.1 illustrates the cab signaling system of ETCS level 1 (taken from [32]) where a
signal is connected to LEU (Lineside Electronic Unit). LEU sends the appropriate
information (called a telegram) to the balise, which in turn sends it to the onboard

1GSM-R is the mobile communication system used in the railway sector.
2Cab signaling system is a railway safety approach where track status and information is communicated

to the driver’s compartment.

34

system. Train detection and train integrity3 checks are performed by the trackside
equipment beyond the scope of ERTMS.

Figure 3.1: ETCS Level 1 diagram [32]

• ETCS level 2: In this level, a radio-based system is used to display the cab’s sig-
naling, and MAs. The train continuously sends its data to the Radio Block Centre
(called RBC) to report its exact position and its direction using GSM-R. RBCs
are radio centers alongside the route, which control the train movements in their
covered area and send MA to train with speed information and data regarding the
route. The trains are equipped with sensors which determine their position be-
tween two balises. At this level, signals are optional, and tracks are divided into
fixed blocks. The operational diagram of ETCS Level 2 (taken from [32]) is shown
in Figure 3.2 where the two-way communication between the train antenna and
RBC is illustrated. Based on the train direction and position, RBC sends the in-
formation to interlocking, which is the arrangement of switches, points, signals, and
other arrangements to set the train route. At this level also, train detection and
train integrity checks are performed by the trackside equipment beyond the scope
of ERTMS/ETCS.

Figure 3.2: ETCS Level 2 diagram [32]

• ETCS level 3: This level is built around a full radio-based system without the in-
volvement of any trackside equipment like balise. The position of trains is sent to
RBC using GSM-R, and in return, RBC calculates the smallest possible distances

3Train integrity is the level of belief in the train being complete and not having left coaches or wagons
behind. (https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en)

35

https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en

between trains at any time. As there is no trackside equipment, trains have to guar-
antee their integrity. The tracks are split into moving blocks instead of fixed blocks.
Virtual balise is a concept replacing non swichable physical balises by a function-
naly equivalent components. It can be implemented usign GNSS4 technology, but
some industrial solution are based on mecanical odometry. Moreover, the moving
block technology applied by metros is not using satellite postitioning. The virtual
balise concept allows building hybrid ERTMS3 designs, but can be used in other
industrial context. Diagram from [102], illustrating the concepts of fixed block and
moving block is shown in Figure 3.3 where in level 2, tracks are divided into fixed
blocks called sections and the communicated Train 2 has authority to move until
an assigned section. The moving block in level 3 is illustrated without any sections.
The MA of Train 2 based on its actual distance from the train ahead, and this
distance is calculated continuously. In level 3, train detection and integrity checks
are within the scope of the ERTMS/ETCS.

Figure 3.3: ERTMS level 2 and level 3 fixed block and moving block concepts [102]

ERTMS/ETCS levels 1 and 2 are already operational. However, ETCS Level 3 is still
in the design and standardization phase. In this thesis, we use a case study following Hy-
brid ERTMS/ETCS Level 3 [9]. Hybrid level 3 uses fixed virtual blocks for the separation
of trains. The trains are fitted with a train integrity monitoring system (TIMS) which
reports their position and integrity. A limited installation of trackside train detection
equipment is used for the separation of trains that are without TIMS. Also, in this level,
trains which do not report their integrity can still be authorized to run on railway lines.
A line (track) is divided into sections known as Trackside Train Detection (abbreviated
as TTD). A TTD is further divided into subsections called Virtual Sub-Section (VSS).
The ERTMS hybrid level 3 section conventions are illustrated in Figure 3.4 with TTDs
and VSSs. A TTD can be free or occupied, and a VSS can be free, occupied, ambiguous,
or unknown. A section is free when there is no train located. The occupied state on TDD
is achieved when a train is located, and for VSS, it is achieved when a train position is
reported from the trackside and there is no other train located in the rear of this train on
the same VSS. A VSS is ambiguous when the trackside has information from a position
report that a train is located on the VSS, and the trackside does not have any surety that
no other train is located in the rear of this train on the same VSS. A VSS is unknown
when there is no information about a train position report from the trackside, but it is
not certain that the VSS is free. These states are illustrated in Figure 3.4 where the first
VSS is free as there is no train located on it. As per ETCS rules, if all the VSSs of a

4Global Navigation Satellite System. https://www.euspa.europa.eu/european-space/
eu-space-programme/what-gnss

36

https://www.euspa.europa.eu/european-space/eu-space-programme/what-gnss
https://www.euspa.europa.eu/european-space/eu-space-programme/what-gnss

TTD are free, then the TDD is free, and if a VSS is occupied, ambiguous, or unknown,
then TTD is occupied.

Figure 3.4: Hybrid level 3 section conventions [9]

Figure 3.5 shows VSS state transitions defined and explained in Hybrid ERTMS/ETCS
Level 3 Principles document [9]. These transitions are based on reported train information
and information from the trackside. For example, the transition from a free state to an
occupied takes place when a train (integrated) is reported from the trackside on VSS;
and similarly, from an occupied state to a free state takes place when an integrated train
reports that it has left the VSS. Another example is the transition from an occupied state
to an ambiguous state when a train loses its integrity or does not report integrity. More
detailed information on VSS state machine transitions is available in document [9].

Figure 3.5: VSS State Machine [9]

In this thesis, we define the dynamic semantics of the DSL using existing ERTMS/ETCS
specifications that have been proved. The ABZ 2018 conference [49] invited contributions
regarding the formal modeling of ERTMS/ETCS level 3, and Mammar et al. [87] pro-
vided a B model of the hybrid ERTMS/ETCS level 3 standard. We re-use this model
in our approach as a classical-B artifact which consists of four components: an abstract
machine (M0) and three refinements (M1, M2, and M3).

3.2 UIC Standard documents
UIC, International Union of Railways [33] is an international body for rail transport. It
supports many aspects of the railway industry, such as signaling, safety, standardization,
etc. In this section, we briefly cover two standard documents provided by UIC.

RailTopoModel (RTM) [68] is an International Railway Standard (IRS 30100), de-
veloped with the contribution of several railway infrastructure managers and industrial
companies. It defines and describes the structure of a railway network together with the
physical installations that it manages. The generic description of the railway topology is
considered the basic part of the RailTopoModel; it applies two modeling principles: topol-
ogy of the railway network and multilevel architecture [124]. RailTopoModel is based on
a UML class diagram divided into four packages shown in Figure 3.6. The packages

37

are Base, Topology, Net Entity (Note: Net is the short term used for the network in
RailTopoModel), and Positioning System:

Figure 3.6: RTM Packages [68]

• Base: The base package is centered around the Network and LevelNetwork classes.
The class LevelNetwork provides different levels of network abstractions like macro,
meso, and micro. The class Network in the base package contains all the network
resources (i.e., Net Elements, Net Entities, and Associated Positioning System)
issued from the other packages in the model.

• Topology: The classes in the Topology package define networks (logical paths) like
Net Elements and their relations.

• Positioning System: The Positioning Systems package in the RailTopoModel speci-
fies the network topology’s positioning system (intrinsic, linear, or geographic). The
coordinates of Net Elements and Net Entities are also defined using the Positioning
System.

• Net Entity: The Net Entity package defines the installations of entities on the
Topology. This package can be extended by concrete concepts like Tracks, bridges,
and Interlocking Net Entities (i.e., railway signals).

The complete information about the four packages and other specifications of Rail-
TopoModel is available in the IRS 30100 document [68]. RailTopoModel is not a usable
format as it is a logical object model, and it cannot be used as a data format as it is [113].
For using RailTopoModel, we need to extend it by introducing more concrete concepts
that someone can see in RailML [26] and EULYNX [11]. Figure 3.7 shows the Net En-
tity package of RailTopoModel, where concrete concepts are illustrated as shaded classes
which are not part of the generic RTM model.

38

Figure 3.7: Classes of Net Entity Package from RailTopoModel [68]

In 2021, RTM was re-branded as RailSystemModel (RSM) [27]. RSM gives a global
perspective of railway systems and corresponding operations to support and facilitate
railway sector development. It is a cross-domain inter-operable, project-independent, and
implementable model for expert projects like, i.e., EULYNX [11], IFC Rail [15], etc. The
re-branded RSM is composed of two sets of packages containing abstract concepts called
high-level classes. The two packages are Infrastructure and Common, shown in Figure
3.8.

Figure 3.8: Overview of RSM Packages [27]

• Infrastructure Packages: The packages in this set are NetEntity (same as RTM),
Track, Signalling and Energy. These packages include classes for functional objects
like signalling equipment, track work and location of resources in the network.

• Common Packages: It includes packages with classes common to all domains like:
Base, Topology, Positioning from predecessor RTM and newly introduced Location,
Geometry, etc.

39

3.3 EULYNX
As an European initiative by fourteen Infrastructure Managers (IMs), EULYNX [11] is
developed to standardize elements and interfaces of railway signalling systems. It defines
an internationally standardized signaling system and regularly publishes specification doc-
uments.

EULYNX provides a data preparation (DP) model which defines a format for IMs
and contractors to exchange information regarding signalling and data. The DP model is
currently published as XML schemata, UML (XMI), C-sharp and HTML web view. The
model contains ETCS concepts and is built in a model-based system engineering (MBSE)
paradigm. EULYNX DP is aligned with RSM and can be considered as an extended
concrete model of RSM. The introduction of EULYNX DP brought a strengthening of
cooperation among the European IMs. Leveraging from RSM, it provides conformance to
standardization and inter-operability of railway systems. DP is composed of three kinds
of packages, which are generic, signaling, and several national implementations:

• Generic package: It is a single package that defines container classes from packaging,
geo information, project management, project area, and common configuration.

• Signalling packages: These are packages that define classes having a function in sig-
naling. Such packages include Level crossing, Platform, Signal, Track, Train detection,
ETCS, Route, etc.

• National implementations: There are currently fourteen national IMs involved in
EULYNX, but to date, EULYNX only provides specialized classes for six national
IMs. The data of each IM is included in a separate package containing national and
ETCS concepts. These national implementations include DB Netz, Network Rail,
ProRail, Rete Ferroviaria Italiana (RFI), SNCF Réseau, and Trafikverket (TRV).

In this thesis, we have the option to use RailML or EULYNX for the meta-model of
railway DSL. We chose the EULYNX, and our choice is motivated by many points. First
of all, EULYNX, being standard, is accepted by multiple IMs. Secondly, it is aligned
with RSM and the integration of ETCS concepts. Thirdly, it is also provided as an UML
model, which can be easily adapted as an Ecore class diagram for DSL meta-model, and
Meeduse translates it into the formal B Method. We use a subset from the EULYNX
containing selected ETCS and RSM concepts. The subset is small and specific to the
ERTMS/ETCS hybrid level 3 case study as compared to the whole EULYNX model.

Figure 3.9 shows the first-level classes from our subset of EULYNX that we use in this
thesis. First of all, we defined a class DocumentRoot as a root class to contain the two
high-level container classes of EULYNX: RSMEntities (Container of RSM concepts) and
DataPrepEntities (Container for objects in the EULYNX DP). In the subset, we use three
kinds of entities that are defined classes associated with class DataPrepEntities and can
be further extended as general signaling concepts or concepts from a national domain,
e.g. NR, ProRail, DB, SNCF, etc. The first one is the Abstract class AssetAndState,
which can be extended as a class of pair (asset and its state).

The second one is the Abstract class TrackAsset, which can be a physical or virtual
element that is relevant to signaling. This class TrackAsset is specialized by class TvpSec-
tion, which is a virtual track asset, and it corresponds to the section of track that must
be proven vacant for safe train operations.

The abstract class RouteBodyProperty is the third one which is the base class for
additional route body properties, and in this subset, we use the class SectionList (List
of sections included in the route body) to specialize it. SectionList has a one-to-many

40

Figure 3.9: First-Level Classes from EULYNX subset

association to class TvpSection called hasSection which includes at least one or more track
sections in the route.

3.3.1 RSM Concepts

Figure 3.10 shows the ecore class diagram of RSM concepts from EULYNX subset. These
classes provide abstract infrastructural concepts from RSM common packages and can be
aligned with concrete topological concepts of railway use cases such as ETCS. In the
following, we discuss these RSM classes of the EULYNX subset.

Figure 3.10: RSM Classes from EULYNX subset

41

3.3.1.1 RsmEntities

It is the container for entities defined in RSM namespace. Its main subject is topology and
topography, and many associations from this class are linked with class Topology. In the
thesis, we only use the association for the ETCS topology called usesEtcs, which is a zero-
to-one (0 to 1) association with class Topology. Many other associations also originates
from RsmEntities class to other classes like Unit, BaseLocation, Signal, RouteBody, etc,
but we only use the association usesLocation to BaseLocation class.

3.3.1.2 Topology

It is the class for topological components where users can define separate containers for
rail, cabling, energy, and other topologies. There are two associations that originated
from this class: (i) usesNetElement to class PositioningNetElement and, (ii) usesPosi-
tionedRelation to class PositionedRelation.

3.3.1.3 PositioningNetElement

In RSM, NetElement defines nodes in the connectivity graph representing the topological
network; and a PositioningNetElement is a topological element connected and oriented
in the network by means of oriented relations. In this subset, we use LinearElement to
extend the PositioningNetElement, which is a high-level abstract class for linear entities
like track, line, or route.

3.3.1.4 PositionedRelation

In RSM, class Relation is the base class for defining edges in the connectivity graph
representing the topological network. In this thesis, we use the class PositionedRelation,
which extends the class Relation. PositionedRelation defines an oriented relation between
two PositioningNetElements with associations: elementA and elementB. This class has
four attributes. Attribute navigability indicates the direction of possible travel between
elements A and B. Attributes: positionOnA and positionOnB show whether the relation
is with the start or end of elementA and elementB respectively. Attribute leadsTowards
shows the positioned relation connected either to the left or right branch.

3.3.1.5 BaseLocation

It is an abstract class that provides basic information about the location in the net-
work topology information. The location is an abstraction in topology that is used by
a concrete concept and has no link with information about the position on Earth. It
contains three kinds of locations: class SpotLocation, LinearLocation, and AreaLocation.
All three classes have a zero-to-many association to class AssociatedNetElement called
associatedNetElements.

3.3.1.6 AssociatedNetElement

This class associates a location to an element of the topology and has an association called
netElement towards the class PositioningNetElement. Class has an attribute appliesInDi-
rection which Indicates the direction in which the function of the object along the linear
element applies. It is not used when irrelevant or without meaning to the context of the
object.

42

3.3.2 ETCS Related Concepts

ETCS related concepts in EULYNX are included in the signaling domain as well as na-
tional implementations. We choose those concepts that are useful for our application
during this thesis. ETCS classes from the subset are shown in Figure 3.11 and discussed
below.

Figure 3.11: ETCS Classes from EULYNX subset

3.3.2.1 TdsSection & VirtualSubSection

TdsSection is a logical section of the train detection system and a virtual track asset. This
section is associated with the class TvpSection using the association appliesToTvpSection.
We relate the TdsSection to a TTD (Trackside Train Detection) of ERTMS/ETCS. Class
TdsSection is extended by class VirtualSubSection (or VSS in ETCS). A VSS is a subdi-
vision of TTD used for positioning trains by means of reported position and length.

3.3.2.2 SectionAndVacancy

Class SectionAndVacancy extends class AssetAndState and is a pair: section and vacancy.
It expresses whether a train detection section is vacant or occupied and is associated
with TdsSection using association refersToTdsSection. It corresponds to states of TTDs
and VSSs in ERTMS/ETCS. In EULYNX, it has an attribute of enumeration type called
SectionVacancyTypes with values occupied and vacant. EULYNX allows us to extend this
list with extra states. We added two more states (ambiguous and unknown) for ERTMS
HL3 and tagged the values with E to be distinguished in our Ecore class diagram. Note
that the values E ambiguous and E unknown are only additions from us in the subset as
per the documentation of EULYNX.

3.3.2.3 TdsComponent & VssLimit

TdsComponent is a line-side physical track asset of a train detection installation, typically
a rail joint or axle counter head. It is located at a TVPSection boundary spot such that
the train detection can safely detect train vacancy. The TdsComponent is a delimiter to
TdsSection and is associated with it using association limitsTdsSection. It is extended by
class VssLimit, which is used to define the limit of a VSS.

43

3.3.3 Alignment between RSM and ERTMS/ETCS
In EULYNX, the concepts from its DP signaling domain and other national implementa-
tion are aligned with RSM using references. From our EULYNX subset, one example of
this referencing is illustrated in Figure 3.11. We already discussed that class TdsSection
corresponds to a TTD from ERTMS/ETCS, and it is associated one-to-one with class
TvpSection using association appliesToTvpSection. Then the class TvpSection is asso-
ciated one-to-one (using association isLocatedAt) with the class AreaLocation of RSM.
This referencing between TvpSection and AreaLocation allows to extend the RSM with
a functional signaling object (TTD of ERTMS/ETCS). EULYNX model provides many
such referencing for the alignment between RSM and other signaling domains.

3.4 Conclusion
In this chapter, we discussed the railway standard initiatives related to the context of
this thesis. First, we explored ERTMS/ETCS, which is a standardized European train
control and signaling system. Then we discussed the UIC standard initiatives like RTM
and RSM. We also discussed EULYNX, which is an initiative by Infrastructure Managers
(IMs) to standardize elements and interfaces of railway signaling systems. EULYNX
signaling domain is aligned with RSM, and it also provides packages for other national
implementations. In this thesis, we use a subset of EULYNX, which is also illustrated and
discussed during in this chapter. After getting an understanding of the technologies and
notions mentioned in chapter 2 and the current chapter, we check state-of-the-art works
and tools related to the idea of this thesis in the next chapter (4).

3.5 Résumé en français
Cette thèse fournit un cadre basé sur des DSL, qui permet la conception graphique de
modèles ferroviaires basés sur des normes ferroviaires telles que RTM/RSM et EULYNX.
Ce cadre prend en charge l’exécution du DSL ferroviaire avec une sémantique dynamique
fournie par ERTMS/ETCS. ERTMS signifie European Rail Traffic Management System
et ETCS signifie European Train Control System. ERTMS/ETCS est présenté comme
une norme pour une plate-forme interopérable sûre et commune aux systèmes de ges-
tion et de signalisation ferroviaire en Europe. Il est destiné à être adopté dans tous les
pays européens et à remplacer leurs systèmes de signalisation nationaux [32]. Dans cette
thèse, nous définissons la sémantique dynamique du DSL en utilisant des spécifications
formelles de ERTMS/ETCS. La conférence ABZ 2018 [49] a fait un appel à contributions
concernant la modélisation formelle de ERTMS/ETCS niveau 3, et Mammar et Al. [87]
a fourni un modèle B de cette norme (dans sa version hybride ERTMS/ETCS). Nous
réutilisons ce modèle B dans notre approche comme un artefact B-classique composé de
quatre composants : une machine abstraite (M0) et trois raffinements (M1, M2 et M3).
EULYNX [11] est une initiative européenne de quatorze gestionnaires d’infrastructure
(GI), développée pour normaliser les éléments et les interfaces des systèmes de signalisa-
tion ferroviaire. Il définit un système de signalisation normalisé au niveau international
et publie régulièrement des documents de spécifications. Dans cette thèse, nous utilisons
un sous-ensemble d’EULYNX, qui est également illustré et discuté dans ce chapitre.

44

Chapter 4

State-Of-The-Art

Previously, in chapters 2 and 3, we discussed the notions that are useful in this thesis.
We got familiar with the computer technologies like DSLs (including static semantics
and dynamic semantics) and B Method, which are used for modeling and verification,
respectively. We also discussed the railway standards like ERTMS/ETCS and EULYNX.
In this chapter, we evaluate the state-of-the-art works and DSL tools that support the
modeling and verification of railway systems and the use of railway standards in their
approaches.

4.1 Introduction
In the industrial context of railway signaling, CENELEC [4] norms are considered, es-
pecially 501281 and 501292. CENELEC 50128 recommends the use of FMs for critical
software development, while in CENELEC 50129, a graphical description of the system,
structured specification, and formal or semi-formal specification are highly recommended.
As mentioned in chapter 1, our proposed framework mixes FMs and DSLs where rail-
way models are graphically illustrated using domain-specific notations, and B Method
formalizes these railway models. We believe that the use of the B Method and graphical
domain-specific notations justify our work’s position with CENELEC 50128 and CEN-
ELEC 50129 norms, respectively.

In the last decade, several approaches like [38], [43], [74], [75], [109], [115, 116] and
tools such as RaIL-AiD [28], SafeCap [65, 67], OnTrack [76], have been presented for
railway systems ranging from designing railway topologies to interlocking systems. In
this chapter, we analyze and evaluate these works based on the following questions:

• Is the approach DSL based?

• Does the approach provide a graphical representation?

• Does it follow ERTMS/ETCS and RailML/EULYNX?

• Does it provide verification and validation?

Table 4.1 compares the state-of-the-art approaches, where they are first compared for
their semantics (static and dynamic). Our second criteria for the comparison is the syntax
for modeling of railway system provided by the approach. The syntax is distinguished
as either graphical or textual syntax. Railway standards are the next criteria where we
compare the state-of-the-art on their coverage of RailML/EULYNX and ERTMS/ETCS.

1https://standards.globalspec.com/std/2023439/afnor-nf-en-50128
2https://standards.globalspec.com/std/10280790/dsf-fpren-50129

45

https://standards.globalspec.com/std/2023439/afnor-nf-en-50128
https://standards.globalspec.com/std/10280790/dsf-fpren-50129

Table 4.1: Comparison of State-of-the-Art Approaches

Approaches Semantics Syntax Standards V & VStatic Dynamic Graphical Textual RailML/EULYNX ERTMS/ETCS
Bjørnar et al. [38, 86] ✓ ✓ ✓ ✓ P
RailCOMPLETE [16]
Chiappini et al. [50] ✓ ✓ UML-based ✓ ✓ P

Rail-AiD [28] ✓ ✓ ✓ P P
SafeCap [29, 65, 67] ✓ ✓ ✓ ✓

James et al. [75] ✓ ✓ P
OnTrack [76]

James et al. [74] ✓ ✓ ✓ ✓ P ✓
Vu et al. [115, 116] ✓ ✓ ✓ P ✓

Svendsen et al. [109] ✓ ✓ ✓ ✓
Idani et al. [62, 63] ✓ ✓ ✓ ✓ P ✓

Yes= ✓
Partially covered= P

Though RailML has been used by some of the approaches, most of the European infras-
tructure managers do not agree with how it has been managed and do not consider it as
standard. Note that we do not use RailML in this thesis. The last criteria for comparison
are V & V (verification and validation). We included nine state-of-the-art approaches in
this comparison, which are briefed and listed below:

• Bjørnar et al. [38] provides a way to extract railway models from CAD (Computer
Aided Design) railway designs. Their tool named RailCOMPLETE [16] is integrated
with industrial CAD software where they use RailML as the basis of representation
for designing railway infrastructure. They use logic programming methods for the
formalization of railway layout and interlocking.

• Chiappini et al. [50] provides a methodology for the formalization and validation
of the ETCS specifications going from the informal analysis of the requirements,
to their formalization and validation. They also formalized a subset of the ETCS
specification.

• Rail-AiD [28] (Railway Infrastructure and Layout Aided Designer) is a framework
that provides an editor for modeling railway signaling systems. The tool allows
the design of railway infrastructure topology based on RailML and provides the
corresponding data in tabular form. Also supports the import and export of rail-
way designs in an interchangeable format. The tool does not provide verification
activities.

• SafeCap [29, 65, 67] is an Eclipse-based toolset for modeling, simulation, and formal
verification of railway networks. The toolset includes a graphical editor for creating
and editing railway models, a simulator for testing the models, and a model-checker
for verifying the safety properties of models.

• James et al. [75] provides a methodology for encapsulating formal methods within
DSLs. They created OnTrack [76] tool, which allows the modeling and verification
of railway schemes (models).

• James et al. [74] provides a way to formulate the safety properties of ERTMS/ETCS
level 2 in Real-Time Maude [97]. This work also used the DSL tool OnTrack [76]
for the topological design of railway models.

• Vu et al. [115, 116] present domain-specific languages: IDL (Interlocking Dynamic
Language) and ICL (Interlocking Configuration Language) for defining railway mod-
els and properties. They also provide a way to verify their defined models.

46

• Svendsen et al. [109] provides an automatic way to generate train station models.
Their approach uses the Train Control Language (TCL) [55], which is a domain-
specific modeling language for modeling train stations and generating configuration
code for controlling the signaling system on the station.

• Idani et al. [62, 63] provides a tool-based domain-specific approach for the modeling
and verification of railway systems by combining MDE and FMs. The Eclipse-based
approach allows the definition of the graphical design of railway DSLs, and then the
B Method is used to define its underlying operational semantics and to guarantee
the correctness of the model’s behavior with respect to its safety properties.

4.2 Modeling
By modeling, we refer to the design of the system. The modeling can be done using
graphical syntax or textual syntax, and the state-of-the-art approaches in Table 4.1 are
compared on both of these criteria. The syntax criteria column in the table shows the
modeling perspective of the state-of-the-art approaches for designing railway systems.
The check-mark ✓(Yes) in sub-columns defines modeling perspective either as graphical
or textual. 7 out of 9 evaluated approaches used graphical syntax for modeling. We
can also find two different approaches in both industry and academia to model railway
systems: UML-based and DSL based. The UML diagrams are UML (Unified Modeling
Language) [96] based visual representations of the system. UML-based approaches are
followed in railway giant companies like ALSTOM, and other consultants, where railway
system requirements are defined using UML activity diagrams, and specific scenarios are
illustrated in sequence diagrams. During our state-of-the-art study, we found that the
methodology provided by Chiappini et al. [50] defines the railway concepts, behaviors,
and scenarios using UML diagrams. The UML class diagram is used to represent the
concepts and relationships between them. Then they extended the UML model with a
textual language called Controlled Natural Language (CNL). It combines mathematical
and English expressions to define constraints and other properties of the entities in the
model. Though using English expressions can be easier for railway experts but combining
them with mathematical expressions can be tricky. Also working with UML diagrams,
railway experts need specialized knowledge of UML concepts.

To overcome such shortcomings, DSL-based approaches are there. They allow experts
to model railway systems using the knowledge they have about their domain. DSL-based
tools OnTrack [76] and SafeCap [29] are built using GMF [14], which allows the design
of graphical railway models. The difference between them is that the Bjørner’s DSL
[40] is adopted as a meta-model for OnTrack. Another DSL tool, TCL (Train Control
Language) [55], is also developed using GMF editor. The domain-specific approach for
railway systems by Idani et al. [62] is based on EMF [52], and for the graphical editor,
they used Eclipse Sirius[7], which can provide different views of a railway model.

Bjørnar et al. [38] uses RailCOMPLETE [16], allowing experts to design railway
models. Like RailCOMPLETE, Rail-AiD [28] also supports the graphical modeling of
railway signaling and systems. Figure 4.1 is the screenshot of the Rail-AiD editor where
the left side shows the palette of objects to be drawn in the canvas (black screen in the
middle) and the right hand of the screenshot shows the properties of a selected object.
The table over the canvas shows the data of the drawn model. The DSL tools like
RailCOMPLETE and Rail-AiD are built using general programming languages like Java
and Java-script.

Apart from graphical railway DSL-based approaches, we also found some approaches
that use textual syntax for specifying models or defining constraints and properties for a

47

Figure 4.1: Screenshot of Rail-AiD editor

graphically defined model. For example, the work in Bjørnar et al. [38] is extended with
the inclusion of a domain-specific controlled natural language called RailCNL [86]. It
allows experts to write properties and constraints in a natural text language for a model
designed in RailCOMPLETE. The two textual DSLs of Vu et al. [115, 116] are IDL and
ICL. The former is a textual DSL used for specifying behavioral models and properties of
the railway interlocking system (switches and points between tracks). Then, the latter is
used to specify the interlocking system’s configuration data (objects of the model).

Summary: The graphical models can be more understandable as they contain real-
istic domain notations which are easier to be understood by domain expert and they also
help in the system’s animation. We observed that 5 out of 7 graphical syntax-based ap-
proaches used the Eclipse platform (GMF/ EMF) for the DSL design. Tools like OnTrack,
SafeCap, and TCL use GMF, while the approach by Idani et al. [62, 63] uses EMF with
Eclipse Sirius. In this thesis, we follow the approach of Idani et al. [62, 63] for graphical
modeling. This approach allows us to define railway models with different views using
Sirius. Another reason behind using Sirius is the support for defining conditional styles
with an OCL [6] like syntax.

4.3 Structure vs Behavior

4.3.1 Structure
We refer to the structure as static semantics. During the study of state-of-the-art, we
found that every approach provides a structure to define the railway system. In Chiappini
et al. [50], the structure of the system is defined with concepts like train, track, train
position, onboard system, and trackside systems using UML diagrams. In the approach
provided by Vu et al. [115, 116], railway systems are referred to as railway network layouts
where tracks, signals, switches, marker boards, level-crossings are defined in RSL (RAISE
Specification Language) [100]. Bjørnar et al. [38, 86] uses RailML [26] elements for the
structure of the railway designs. Their design in the paper includes tracks, switches, and
signals. The designs of railway topologies in Rail-AiD [28] are also based on the RailML.
In James et al. [74] just a railway station model has been designed with tracks, marker
boards, and switches using Maude [51].

James et al. [75] integrates OnTrack [76] where they use Dine Bjørner’s DSL [41]

48

for designing railway models. The DSL is well-known in the railway community and
contains concepts of a railway network with stations, lines, tracks, routes, etc. TCL[55]
in Svendsen et al. [109] follows a meta-model containing the structure of railway system
with main concepts like station, track, signal, switch, etc. The DSL of SafeCap [67]
contains the concepts to define a railway system. The common concepts in their DSL
are track, line, route switch (called point), section, and train detection circuit (called
ambit). The DSL in Idani et al. [62] is dedicated to the railway topologies and signaling
systems containing train, track, axle counter (a trackside train detection equipment), and
Movement Authority while DSL in Idani et al. [63] follows the ERTMS/ETCS 3 concepts
like Trackside and virtual block.

4.3.2 Behavior
We refer to the behavior as dynamic semantics, which corresponds to the provided ex-
ecution. In the state-of-the-art approaches, we found that it is achieved using different
ways, such as model execution, executing scenarios, and data (instance) generation. In
Chiappini et al. [50], state machines are used to model the behavior of the executable
methods of a class, and sequence diagrams are used to model scenarios requirements such
as the exchange of messages between two trains and trackside radio devices. In the ap-
proach of James et al. [74], the designed railway model is executed using the commands
of real-time Maude, which shows the behavior of the train moving on the corresponding
track with the defined movement authority.

The behavior in Vu et al. [115, 116] does not provide train operations but includes an
Interlocking Table Generator (ITG) which generates interlocking tables from the elements
in the network layout. For generating the interlocking table, their RSL specification
contains the execution command: make table (mk table(n)). In Svendsen et al. [109],
operational semantics are added to identify the unambiguous behavior of the model. Their
approach generates train station models based on user-specified properties and the train
operations are defined in TCL [55] to move it into or out of the generated station model.

SafeCap [29] tool is programmed in a way that one can include trains in their designed
railway topology and using train operations, one can simulate it. Their DSL is not formally
defined, but a B model is exported based on the defined railway model. Then the train
operations are introduced in the B model (B machine) alongside the information of static
aspects designed in the editor. As per our knowledge, these actions are performed outside
the tool. On the contrary, the DSL of Idani et al. [62, 63] is translated into B specification
using Meeduse [64] and then operations for safe train movement (train moving within
movement authority) are manually defined in B specification. These formally defined
operations are executed within the tool, and their behavior can be observed graphically.

4.3.3 Discussion
The semantics column of Table 4.1 shows whether the approaches provide structure
(static) and behavior (dynamic) or not. In the current state-of-the-art study, we found
that all approaches (either DSL or not) provide the structure and have the same concepts
in the structure of their railway topology, like tracks, switches (points), signals, etc. Some
of them (SafeCap [65], Idani et al. [62, 63], and Vu et al. [115, 116]) have their own
way of defining their structure while others follow some specific provided structures like
RailML [26] or Dine Bjørner’s DSL [41]. Regarding the behavior, we looked at how the
execution is provided by the tools. Most of the tools use general programming for the
execution, which includes generating models and train movement operations. James et
al. [74] and Idani et al. [62, 63] use formal methods (FM) to define the train movement

49

operations where former uses Maude and later uses the B method. In this thesis, we are
intended to provide an executable DSL. Regarding the structure, we will use a specific
provided structure (a subset from EULYNX), and for the behavior, we complement the
work of Idani et al. [62, 63]. This allows us to execute formally defined train operations
on the structure provided by EULYNX.

4.4 Standards
The Standards column in Table 4.1 is further classified into two sub-columns: RailML/
EULYNX and ERTMS/ETCS. Here, we put the criteria for using RailML alongside EUL-
YNX as both of them can be used in the same way to provide the structure of the railway
system. RailML has the ability to implement RTM while EULYNX includes the RSM.
From state-of-the-art, we found that none of the approaches use EULYNX. The railway
infrastructure models in Bjørnar et al. [38] complies with the RailML. The models de-
signed in Rail-AiD [28] tool conform to the RailML. In Rail-AiD, RailML file formats can
be exported and imported to and from other tools.

Regarding the ERTMS/ETCS, it is followed by Rail-AiD [28] just for track-side data
preparation. Rail-AiD did not use other applications of ERTMS/ETCS like train move-
ment, route calculations, RBC handovers, etc. The railway concepts in Chiappini et al.
[50] are taken from ERTMS/ETCS. The approach is applied to a large piece of subset
26 of ETCS specifications3. The railway system which is modeled textually in James et
al. [74] follows ERTMS/ETCS level 2. In Vu et al. [115, 116], the interlocking tables
generated are compatible with ERTMS/ETCS 2. Idani et al. [63] used a part of concepts
from ERTMS/ETCS level 3.

Summary: The RailML is just used by Bjørnar et al. [38] and Rail-AiD [28] and
EULYNX is considered by none of the other approaches mentioned in this state-of the-
art. ERTMS/ETCS contains a wide range of specifications and concepts for the design
of a railway system. Following all the dimensions of ERTMS/ETCS by an approach is
hardly possible. From the state-of-the-art, only Chiappini et al. covered a large subset of
ERTMS/ETCS and all other approaches which followed ERTMS/ETCS only covered it
partially and are marked (P) in the Table 4.1. In this thesis, we use EULYNX to provide
the structure of the railway system in our DSL, and we will use ERTMS/ETCS as a way
to provide the operational rules within the structure.

4.5 V & V (Verification & Validation)
We checked the availability of verification and validation in the current survey of state-
of-the-art approaches. In this sub-section, first, we will go through verification and then
see the validation part later.

4.5.1 Verification
Verification is a way to prove or disprove the correctness of an algorithm in a system
with respect to specific properties, using formal methods [57]. In the railway domain,
formal techniques like logic programming, constraint solving, theorem proving, and model-
checking have been used to verify safety and other properties. The evaluated approaches
in this state-of-the-art alongside their used techniques are shown in Table 4.2 that verify
properties like interlocking, topology, safety, and capacity. First, we briefly discuss these
properties before going ahead.

3https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1 en

50

Approaches or Tools Formal Techniques and Tools Properties
Bjørnar et al. [38, 86] Datalog Interlocking

(Logic Programming) Topology
James et al. [75], SPASS, eProver Safety

OnTrack [76] (Theorem Proving)
Vu et al. [115, 116] RSL, RT-Tester, LTL Safety

(Model-checking) Interlocking
James et al. [74] Maude, Maude LTL model-checker Safety

(Model-checking)
Svendsen et al. [109] Alloy, Alloy analyzer Capacity

(Theorem Proving)
SafeCap [29, 65, 67] B-method, Event-B, Topology

SMT-LIB compliant SMT solver, ProB Safety
(Constraint solving, Capacity

Model-checking)
Idani et al. [62, 63] B-method Safety

Atelier B, ProB
(Proofs,

Model-checking)

Table 4.2: Properties and the used formal techniques

Safety is ensured by avoiding accidents: collisions (train conflicts on the track blocks,
i.e., front-to-front4 or rear-to-front5) and derailment (changes in switch position configu-
rations while train movement; and also the excessive speed).

The topology of a railway network is verified to ensure static well-formedness. Static
well-formedness avoids errors, like two branches of a switch are connected to the same
track; or one end of a track is connected to two different switches. Figure 4.2 illustrates
two anomalies that can be avoided by static well-formedness. In the first one, the left and
right branches of Switch01 are connected to the same track: Track01. In the second one,
the left end and right end of a track Track02 have the same switch Switch02 which leads
to a loop.

Figure 4.2: Errors to be avoided

The interlocking table of a railway model is verified to check whether the switch
positions and signal states(lights) are correct for all the routes in the interlocking table.

4Front of 1st train colliding with the front of 2nd train.
5Rear of 1st train colliding with the front of the 2nd train.

51

Capacity properties are verified to check whether the railway model satisfies a number
of trains at the moment. During the thesis, we will consider the verification of safety
properties. The static well-formedness of the topology, Interlocking, and capacity are not
addressed and are out of the scope of this thesis.

Below is the list of approaches (from Table 4.2) and their verification methods, briefly
summarized:

• In Bjørnar et al. [38], two kinds of properties are verified: (I) Topology and the
objects (elements) in it; and (ii) Interlocking. They used Datalog [112] (a declarative
logic programming) for the verification.

• James et al. [75] wanted to verify a safety property in their specification from ETCS
rules such that a track is not assigned to two movement authorities (MAs) at the
same time (to avoid MA overlapping). They used SPASS [118] and eProver [106]
theorem prover over the specification.

• In Vu et al. [115, 116], safety and well-formedness in interlocking is ensured. They
used a static checker to check that the specification follows the well-formedness
rules. Regarding the safety properties, first, they are expressed as formulae in the
temporal logic LTL [59] and then used as input to the bounded model checker of
RT-Tester [98].

• In the approach of James et al. [74], safety is ensured in a ERTMS/ETCS model.
First, the model is defined using Maude and then Maude LTL model-checker [54] is
used to verify that the model is collision free. They defined an invariant which is
that the two trains never fall below a minimum threshold.

• The approach provided by Svendsen et al. [109] verifies the capacity of a generated
railway model (station). The property is the requirement for the station to handle a
number of trains simultaneously. The formal specification is defined using Alloy [70]
and then extended with user-defined properties. Alloy analyzer is used to generate
and analyze new models until the capacity property is satisfied.

• SafeCap [29, 65, 67] covers and satisfies many of the properties in the railway do-
main: static well-formedness properties for the definition of railway topology and
operations to ensure safety in topology. It also provides support to reason about
the capacity of the railway model. The approach uses constraint solving for the
verification of static properties, taking Event-B as input. Verification conditions
are derived from the definition of DSL schema by an automated tool and translated
into input notation of an SMT-LIB [101] compliant SMT solver. If any property
is not satisfied using SMT-solver, the tool uses ProB model-checker (which takes
the classical B of the schema and the control table as inputs). ProB reports the
sequence of steps that are not satisfied.

• In Idani et al. [62, 63], the safety property is ensured such that the railway model
is accident-free. The translated B specification of the model is extended with safety
properties and invariants. The approach uses Meeduse tool, [64] where the ProB
model-checker is incorporated which allows the user to verify the safety during the
animation. The B specification can also be checked for proofs, where Atelier B can
be used to guarantee the correctness of the model’s behavior with respect to the
defined properties and invariants.

In Table 4.2, 5 out of 7 approaches verified safety properties. These approaches ensured
safety properties by avoiding two trains on the same section or maintaining a threshold

52

distance between any two trains. The first step for verification in the above-mentioned
approaches is almost the same: the formalization of semantics (defining the railway system
in the formal specification). The difference is the use of different formal techniques, and
even if the formal technique is the same but its application is different. Vu et al. [115, 116],
James et al. [74], Svendsen et al. [109], and Idani et al. [62, 63], the static semantics are
either defined or translated into a formal language (i.e., RSL, Maude, Alloy, B-method,
etc.) and then, underlying formal techniques are applied for theorem proving or model-
checking.

4SECURail [5] (a European project that aims to improve railway security and inter-
operability by using formal methods and cyber security techniques.) suggests using the
B-method in their model-based development methodology, where model-checking is pro-
posed for formal verification of the safety properties. From the discussed approaches for
the verification of railway systems, it can be seen that model-checking has been used by
most of the works. The approaches by SafeCap [29] and Idani et al. [62, 63] are using
the B-method and model-checking (also ProB) for formal verification, which shows the
similarity with the suggestion of 4SECURail.

4.5.2 Validation
Validation is to check that the system meets the user requirements. In contrast with
verification, which is mostly done on the developer’s end, validation is done mainly by
the user. The validation can be done by reviews, simulation, animation, and testing.
OpenETCS6 [23] suggests using formal language and model-checking to inject a fault in
the model and analyze the effect. James et al. [74] used this technique of error injection
(using incorrect scenarios in the scheme plan to check that the errors can be identified or
not) and also simulation.

Vu et al. [115, 116] uses a static-checker for the validation of specified data and
interlocking specifications to check whether these are well-formed or not. The graphical
design of railway models in Rail-AiD [28] favors the validation as the tool does not allow
wrong designs that lead to errors.

The approaches of SafeCap [29] and Svendsen et al. [109] did not mention the vali-
dation explicitly, but their design and simulation of railway models favor validation. The
work of Chiappini et al. [50] is based on a three-phase approach that goes from the in-
formal analysis of the requirements, their formalization, and validation. The validation
process is achieved by formalizing a realistic ETCS subset where different scenarios are
checked against the requirements.

Idani et al. [62, 63] provides a graphical DSL for the railway system where the user can
define models and validate specific scenarios in this model by animation. The animation
is accomplished by triggering operations that were initially defined in the B specification
of DSL.

4.5.3 Summary of V & V
We analyze state-of-the-art approaches for their application towards verification and val-
idation. In the verification part, the approaches are listed, and their verification method-
ologies are discussed. We observed that the current trend is formalizing the system and
verifying the properties with formal techniques using underlying tools. Regarding the
validation, 7 out of 9 approaches favored it. EMF-based DSL approaches achieved valida-
tion mostly through simulation and animation. In Table 4.1, the V & V column is either

6A project to develop an integrated framework for modeling, development, validation, and testing of
ERTMS/ETCS.

53

filled with P (Partially covered) or available ✓. All those approaches that achieved both
verification and validation are marked as ✓. While those that either achieved verification
or validation are marked as P.

During this thesis, we use the B method for the formalization of the DSL. First DSL
meta-model is defined in EMF, and then the translation from EMF to B is done using
B4MSecure [61], and this is written in Java. This transformation can be translated into
B using Meeduse and can be verified, but this work is out of the scope of this thesis.
In fact, this thesis uses existing proved B specifications and links them with the formal
specification of the DSL. This linkage is written in B itself and contains linkage (gluing)
properties and invariants, and we ensure that these gluing properties and invariants must
satisfy the properties and invariants of the existing B specifications.

Most importantly, this thesis is focused on validation rather than verification. Our
approach provides the graphical model for the existing proved B specifications using DSLs.
Then these proved specifications are animated with their own defined operations (synced
with states of DSL), and a railway expert can validate the proved B specification against
the requirements.

4.6 Conclusion
In this chapter, we studied state-of-the-art approaches and compared them on the bases
of the criteria: semantics, syntax, standards, and V & V. We found that most of the
approaches provide graphical representation for illustrating railway topology. DSL-based
approaches and tools: OnTrack, SafeCap, TCL, and Idani et al. [62, 63, 64] are built
using eclipse EMF/ GMF, which shows the support of EMF-based tools for developing
DSLs in model-driven engineering paradigm.

Regarding the standards, the support for RailML is only present in Bjørnar et al.
[38, 86] and Rail-AiD tool. ERTMS/ETCS specifications are followed by James et al.
[74], Vu et al. [115, 116], Idani et al. [63] and Chiappini et al. [50]. As far as verification is
concerned, most of the approaches are focused on the verification of the safety properties.
Safety properties are verified by ensuring that the railway model is free from collisions
and derailment.

In this thesis, we provide a graphical DSL using EMF where the structure of the
DSL is based on standard railway notations. We use the Meeduse tool for the formaliza-
tion of the standardized DSL into B. Our approach facilitates the validation of existing
ERTMS/ETCS proved B specifications using such a DSL. This validation is done using
visual animation with the help of linkage specifications which are written in B itself. In
the next chapter, we will discuss and illustrate the approach where linkage specifications
are used to link existing B specifications with DSLs ultimately visually animating the B
specifications.

4.7 Résumé en français
Dans ce chapitre, nous évaluons les travaux de l’état de l’art et les outils qui sup-
portent aussi bien la modélisation que la vérification des systèmes ferroviaires. Nous
évaluons également l’utilisation des normes ferroviaires dans ces travaux. Au cours de
la dernière décennie, plusieurs approches comme [38], [43], [74], [75], [109], [115, 116] et
des outils comme RaIL -AiD [28], SafeCap [65, 67], OnTrack [76], ont été proposés pour
les systèmes ferroviaires allant de la conception de topologies ferroviaires aux systèmes
d’enclenchements. Dans ce chapitre, nous analysons et évaluons ces travaux en nous
basant sur les questions suivantes :

54

• L’approche est-elle basée sur un DSL ?

• L’approche fournit-elle une représentation graphique ?

• Est-ce qu’elle utilise ERTMS/ETCS et RailML/EULYNX ?

• Assure-t-elle la vérification et la validation ?

- Nous avons constaté que la plupart des approches fournissent une représentation graphique
pour illustrer la topologie ferroviaire. Les approches et outils basés sur des DSLs, tels
que OnTrack, SafeCap, TCL sont construits à l’aide d’Eclipse EMF/GMF. Cela montre
l’utilité des outils basés sur EMF pour le développement de DSLs en IDM.

Concernant les standards, le support de RailML n’est présent que dans Bjørnar et al.
[38, 86] et l’outil Rail-AiD. Les spécifications ERTMS/ETCS sont supportées par James
et al. [74], Vu et al. [115, 116], Idani et al. [63] et Chiappini et al. [50]. En ce qui
concerne la vérification, la plupart des approches se concentrent sur la vérification des
propriétés de sécurité comme l’absence de collisions et de déraillements.

55

Chapter 5

Visual Animation of B Specifications

In the previous chapter, we studied state-of-the-art railway DSL-based approaches and
compared them on different criteria, and we found that most of the approaches provide
graphical (visual) syntax of the railway model. In this thesis, we also provide the graphical
syntax of the DSL, and our objective is to use existing B specifications to provide the
dynamic semantics (behavior) of the DSL to support the animation. Visual animation
is an interesting way to do validation which inspects whether formal specifications meet
the user requirements. Validation of safety-critical systems is an essential task because
misunderstanding user requirements may lead to erroneous implementations. This task is
known to be complex, especially for formal specifications, because of their mathematical
notations. In fact, stakeholders who are not trained in formal methods (FMs), such as
domain experts, find these notations difficult to understand. To address validation issues,
several formal tools [78, 85, 117] provide graphical animation techniques. The intention is
to exhibit a visual representation of data and behaviors of a formal specification, making
it more readable for domain experts. In this chapter, we provide an approach where B
specifications written independently of Meeduse team, are visually animated using DSLs.

5.1 Introduction
This thesis is more focused on validation of specifications than the verification of specifi-
cations. The validation is achieved through visual animation using DSL where Meeduse
workbench applies B to execute the DSL. As per our knowledge, this technique has not
been investigated before, mainly because, apart from Meeduse, none of the existing lan-
guage workbenches provide execution features that are built on a well-established FM
such as B. This claim is attested by the survey of Iung et al., [69] in which the formal
dimension is completely absent. This survey shows that among the 59 discussed language
workbenches, only 9 provide support for verification, which is only done by testing.

Our approach in this thesis to visually animate B specifications, complement tools such
as BRAMA [107], AnimB1, B-Motion Studio [78], B-Motion Web [79], and VisB [119].
Existing tools have shown their strengths in practice, but still some concerns remain, which
motivates our current approach. First, visual animation often requires specific skills such
as in scripting languages (Flash, JavaScript, node.js), or in Scalable Vector Graphics (SVG
files), etc. These technologies are not necessarily mastered by the formal methods expert
and can be cumbersome to learn and use. In [77], Krings and Körner observed that “When
errors occur, it is not clear in which layer the cause is located in: is it an error in the B
model? Is an SVG file broken? Is the config file incorrect? Is there a bug in the JavaScript
code? As some errors are not reported, development can be cumbersome if one is not an

1AnimB: https://wiki.event-b.org/index.php/AnimB

56

expert in all technologies”. Second, mapping a specification to a domain representation is
time-consuming and maybe error prone. Often this is done by a formal methods expert
who is trying to document his own specification. Unfortunately, if the process of validation
reveals some misunderstandings, not only the formal specifications must be reworked, but
also the visual representations and the underlying mapping. Furthermore, the formal
methods expert might not be familiar with the domain-specific notations.

To deal with the aforementioned concerns, we propose a new technique built on
domain-specific languages (DSLs). In our approach, the domain-specific representations
are designed using a DSL tool that is created in EMF [52]. The challenge is, therefore, to
make the bridge between the DSL and the formal specification. To this purpose, we use
Meeduse for the execution capabilities. Our approach favors the separation of concerns
principle: the formal methods expert is responsible for the development of B specifi-
cations, and the domain expert provides useful input models thanks to the DSL tool.
However, our approach involves another actor, the MDE expert, who is responsible for
the development of the DSL tool.

5.2 Approach
This thesis is based on the application to the railway domain, but in this chapter, we
illustrate the application of our approach to the example of Lift as proof of concept. We
select the Lift as it is well-known in formal verification and validation [92].

5.2.1 The Lift Example
Leuschel et al., in [84] used many examples for the visualization of B specifications,
where we found the example of Lift. Several rules about the Lift specification have been
proved; for example, the lift may not move with doors open. The structural part of this
specification is given in Figure 5.1 (named Liftexisting).

MACHINE
Liftexisting

CONCRETE CONSTANTS
groundf, topf

PROPERTIES
topf ∈ NAT ∧ groundf ∈ NAT ∧ (groundf < topf)

CONCRETE VARIABLES
call buttons, cur floor, direction up, door open

INVARIANT
cur floor ∈ (groundf . . topf)
∧ door open ∈ BOOL
∧ call buttons ∈ Pow(groundf . . topf)
∧ direction up ∈ BOOL
∧ (door open = TRUE ⇒ cur floor ∈ call buttons)

INITIALISATION
cur floor := groundf
|| door open := FALSE
|| call buttons := ∅
|| direction up := TRUE

Figure 5.1: Lift example [84]

57

It represents one lift that moves between the ground floor (constant groundf) and
the top floor (constant topf). Both groundf and topf are natural numbers, such that
groundf is less than topf. Variable cur floor gives the current position of the lift among
the floors. Variables direction up and door open are booleans, representing whether the
direction of the lift is up and whether the door of the lift is open respectively. The call
buttons are represented with variable call buttons, a set of natural numbers, without any
distinction between the internal and external buttons of the lift cabin. The specification
contains seven B operations that are not presented here for space reasons: move up,
move down, reverse lift up, reverse lift down, open door, close door and push call button.
We choose the lift specification because it is a pedagogical example used in the B-Book
[35] and referenced in several papers [84, 119]. Furthermore, the example gathers several
B data structures allowing us to illustrate various concepts of our approach. Note: The
complete existing lift B specification including all the resources of this thesis are available
in Meeduse Git Repository [20].

5.2.2 Proposed architecture
Our architecture is built on Meeduse Language Workbench (discussed in 1.2.1), which
translates the semantics of DSL into a B specification as part of static semantics (struc-
ture). Then it requires to provide a B specification of the dynamic semantics (behavior).
We propose to use an existing one that is already proved correct and provided by B method
experts. Our approach is illustrated in Figure 5.2, which redefines the dynamic semantics
part from Figure 1.2. Note that this approach for visual animation of B specification is
part of our DSL-based Framework illustrated in Figure 1.3.

Figure 5.2: Proposed approach

Since the static semantics (Bstatic) of the DSL is written in B, therefore the remain-
ing part of the approach is to link the existing B specification (Bexisting) to Bstatic. To
this purpose, we add a linkage B specification (Blinkage) along with Bexisting. The linkage
B specification (Blinkage) maps the concepts of Bexisting to Bstatic. We propose two tech-
niques: RefinementInclusion and InclusionInclusion. In the RefinementInclusion tech-
nique, Blinkage refines Bexisting and includes Bstatic. In the InclusionInclusion technique,
Blinkage includes both Bexisting and Bstatic.

Note that Blinkage applies B invariants to map the variables of Bstatic to those issued
from Bexisting. By animating Blinkage, the states of both Bexisting and Bstatic are modified,
and ProB verifies that the mapping is preserved all along the animation. The task of
Meeduse is to update the input model resource during the animation conforming to the
state of Bstatic, which produces the expected visual animation.

58

Figure 5.3: Visual animation in Meeduse

5.2.3 Illustration
Figure 5.3 shows a screenshot of Meeduse while animating an EMF-based DSL that
represents the Lift example. The domain representation on the right-hand side of the
figure can be realized by a domain expert using the modeling tool. The latter allows one
to define buildings with several lifts. In this illustration, the model editor is developed
with Sirius [7]. The other views are for interactive animation. The execution view shows
the candidate operations computed by ProB from Blinkage , and the state view shows the
current valuations of the various B variables. The execution history records the operation
calls that led to the current state. After every animation step, the model resource is
updated by Meeduse, and Sirius automatically renders the graphical model without the
need for any specific implementation effort.

5.3 Designing a domain-centric visual animation
The previous section presented and illustrated a quick overview of the main concepts of
our approach. In this section, we show, using the Lift example, how a domain-centric
visual animation can be instrumented in Meeduse.

5.3.1 The Lift DSL
Figure 5.4 gives the meta-model of our Lift DSL. The three main concepts of the DSL
are buildings (class Building), floors (class Floor) and lifts (class Lift). Each floor has at
most one upper floor (association up) and one lower floor (association down). Association
liftPosition gives the position of a given lift, and selectedFloors refers to the set of selected
floors from a given lift. Each floor is composed of zero or many cabins (association cabins);
by “cabin” we mean the interface for a lift at a given floor. The concept of cabin is useful
for our DSL because it manages the graphical representation: the visual aspect of a cabin
changes depending on the current position of the lift and the door state. Class Lift has an

59

attribute Direction that can be either Up or Down. Finally, attribute Door represents the
door, which can be either Closed or Open. The model presented on the right side of Figure
5.3 is an instance of this meta-model. It gathers two lifts (Lift1 and Lift2) and five floors
(Floor1, Floor2, Floor3, Floor4, and Floor5). Each floor has two cabins, corresponding
to the two lifts. The arrow symbols at the bottom of the model show the direction of the
lift. The direction of Lift1 is up while the direction of the Lift2 is down. The doors of
both lifts are closed. The active button beside each door shows the selected floor for a
given lift.

Note that the definition of the DSL is done independently from the existing B specifi-
cation that one would like to visualize. The objective is to focus on the domain concepts
and their relationships and build a DSL modeler that is useful for domain experts. For
example, there is no explicit notion of call buttons in the DSL meta-model. This concept
is somehow similar to the association selectedFloors from Lift to Floor.

5.3.2 Static Semantics
The extraction of Bstatic from the DSL is done by Meeduse, resulting in a B machine
that covers the structure of the meta-model and gives several basic operations such as
constructors, destructors, getters, and setters. Figure 5.5 gives the structural part of this
machine (named Liftstatic).

In the generated B specification, we can notice that there are no data structures gener-
ated for the Building and Cabin classes. These concepts are useful for the lift DSL but we
do not require them in our B specification. In fact, Meeduse features an annotation mech-
anism that allows the user to select the concepts to be translated. We generated seven
variables together with their typing invariants: Lift, Floor, liftPosition, up down, selected-
Floors, Direction, and Door. For these variables, corresponding invariants, initialization,
and basic operations (setters, getters, constructors, deconstructors) are generated. The
complete generated specification of Liftstatic including initialisation and operations, can
also be found in Git repository [20].

5.3.3 Linking B data structures
Figures 5.1 and 5.5 gave respectively the existing machine (Liftexisting) and the static
semantics of the lift DSL (Liftstatic). In order to apply Meeduse for visual animation, one

Figure 5.4: Lift Meta-Model

60

MACHINE
Liftstatic

SETS
LiftDirection = {Up,Down};
DoorStatus = {Closed,Open};
LIFT; FLOOR

VARIABLES
Lift,
Floor,
liftPosition,
up down,
selectedFloors,
Direction,
Door

INVARIANT
Lift ∈ Pow (LIFT) ∧
Floor ∈ Pow (FLOOR) ∧
liftPosition ∈ Lift → Floor ∧
up down ∈ Floor 7↣ Floor ∧
selectedFloors ∈ Lift ↔ Floor ∧
Direction ∈ Lift → LiftDirection ∧
Door ∈ Lift → DoorStatus

Figure 5.5: Structural part of machine Liftstatic

needs to create a third machine (Liftlinkage) that maps B data of both machines.

5.3.3.1 Mapping a class to a machine.

Machine Liftexisting contains invariants and B operations to move a simple lift between the
floors safely without any error. In machine Liftstatic multiple objects of class Lift can be
created (abstract set LIFT and variable Lift). In this case, we consider that Liftexisting will
control only one instance of class Lift. Thus, we introduce in machine Liftlinkage variable
linked lift to select the lift object that will be controlled by the existing machine:

Listing 1: EClass to BMachine
VARIABLE: linked lift
INVARIANT: linked lift ∈ Lift
INITIALISATION: linked lift :∈ Lift

5.3.3.2 Mapping a class to a set.

In Liftexisting floors are represented with a set of natural numbers (groundf . . topf), and in
Liftstatic they are defined with a dedicated variable representing class Floor. The mapping
is then done as follows:

61

Listing 2: EClass to BSet
VARIABLE: linked floors
INVARIANT: linked floors ∈ Floor ↠↣ groundf . . topf
INITIALISATION:
1. ANY mapFloors WHERE
2. mapFloors ∈ Floor ↠↣ groundf . . topf ∧
3. ∀ (f1,f2).(f1 ∈ Floor ∧ f2 ∈ Floor ∧ (f1 7→ f2)
4. ∈ up down⇒ mapFloors(f2) = mapFloors(f1) + 1)
5. THEN
6. linked floors := mapFloors
7. END

The relation linked floors is a total bijection meaning that every floor in the DSL must
be linked to one value from (groundf . . topf) and vice-versa. The initialisation is done
such that if a floor f2 is associated to a floor f1 via relation up down then the value of
mapFloors(f2) is equal to mapFloors(f1) plus one.

5.3.3.3 Mapping a single-valued reference to a set element.

In Liftexisting the current floor of the lift is defined with variable cur floor, which is an
element of set (groundf. .topf). This concept is defined in the DSL with reference liftPo-
sition, whose source and target classes have already been mapped with the rules above.
The source has been mapped to a machine and the target to a set. To map cur floor to
reference liftPosition, we introduce the following invariant:

Listing 3: Single-valued EReference to a set element
INVARIANT:

linked floors(liftPosition(linked lift)) = cur floor

5.3.3.4 Mapping a multi-valued reference to a set.

Variable call buttons of machine Liftexisting is the set of pressed buttons that allows one
to select the floors to which the lift is to be moved. This concept is represented in the
DSL via reference selectedFloors. This leads to the following invariant:

Listing 4: Multi-valued EReference to a set
INVARIANT:
linked floors[selectedFloors[{linked lift}]] = call buttons

5.3.3.5 Mapping an enumeration to Boolean values.

In Liftexisting the Boolean variable door open defines the status of the lift door (false
if the door is closed and true if it is open). This concept is represented in the DSL via
attribute Door of class Lift, whose type is enumeration DoorStatus. The same case happens
for attribute Direction and variable direction up. Mapping these concepts to each other
introduces additional invariants to Liftlinkage:

Listing 5: EnumType to Boolean values
INVARIANT:
(Door(linked lift) = Closed ⇔ door open = FALSE)
∧ (Door(linked lift) = Open ⇔ door open = TRUE)
∧ (Direction(linked lift) = Down ⇔ direction up = FALSE)
∧ (Direction(linked lift) = Up ⇔ direction up = TRUE)

62

Figure 5.6: Meeduse after the initialization

5.3.4 Initialization
Once the data structures of both machines have been mapped to each other, using addi-
tional variables and invariants, we need to think about the initialization and the opera-
tions in order to keep the conformance of both models all along the animation. Machine
Liftlinkage includes machine Liftstatic, which allows it to use the basic operations provided
by the latter to update the state of its variables. Liftlinkage includes or refines (depending
on the strategy chosen by the user) machine Liftexisting. In both cases, the constants of
Liftexisting are visible and can be read by Liftlinkage. The initialization of the model is done
as follows:

Listing 6: Initializing the model
PROPERTIES:

card(groundf . . topf) = card(FLOOR)
INITIALISATION:

SetDirection(linked lift,Up);
SetDoor(linked lift,Closed);
UnsetSelectedFloors(linked lift) ;
SetLiftPosition(linked lift, linked floors−1(groundf))

Constants groundf and topf are not assigned to values in the existing specification.
However, the visual animation starts from a model built in the DSL tool and in which
buildings and floors have already been created. Thus, the PROPERTIES clause indicates
to ProB to choose any valuation of these constants that respects the existing number of
objects defined in the DSL model. Regarding the INITIALISATION clause, in addition to
the initialisation of the linkage variables (Cf. listings 1 and 2), it updates the DSL model
such that it starts in a state that is conformant to the initialisation of machine Liftexisting
given in Figure 5.1. To this purpose we simply call basic operations provided by Liftstatic

63

(i.e. SetDirection, SetDoor, UnsetSelectedFloors and SetLiftPosition). Figure 5.6
is a screenshot of Meeduse after the initialization.

The state view on the bottom left side of the figure shows that the linked lift is LIFT1.
Note that ProB gives the two possible initialisations of linked lift (LIFT1 and LIFT2),
and the user may select the one to be controlled with Liftexisting. In this case, we se-
lected LIFT1. Besides, the DSL model deals with five floors, which are all mapped
via linked floors satisfying the underlying invariant. The liftPosition of LIFT1 is set to
FLOOR1 because machine Liftexisting starts with a lift that is at the ground floor. Figure
5.6 also shows the LIFT2, where its position is on FLOOR5 and it has been called on
FLOOR4 (selectedFloors). Note at this stage, the specification only deals with linked lift
LIFT1.

5.3.5 Operations
We propose two strategies to build the dynamic semantics of the DSL by means of a
linkage machine: (1) RefinementInclusion and (2) InclusionInclusion. In both strategies,
the static semantics machine is included in the linkage machine.

5.3.5.1 RefinementInclusion.

In this strategy, the existing machine is refined by introducing the linkage variables and
invariants, which suggests the refinement of the operations too. In Listing 7 below, we
give the refinement of operation move up. We copied, from Liftexisting, the body of the
operation (from line 2. to line 9.) and we introduced a call to operation setLiftPosition
(line 10.). This basic setter of relation position is provided by Liftstatic; its task is to
change the position of the lift conforming to the linkage. The objective is to preserve the
invariant of Listing 3, since only variable cur floor is modified by operation move up.

Listing 7: Refining operation move up
OPERATIONS:
1. move up =
2. SELECT
3. door open = FALSE
4. ∧ cur floor < topf
5. ∧ direction up = TRUE
6. ∧ ∃ cc.((cc ∈ Z) ∧ ((cc ∈ Z) ∧ (cc > cur floor) ∧ (cc ∈ call buttons)))
7. ∧ (cur floor ̸∈ call buttons)
8. THEN
9. cur floor := ((cur floor)+(1)) ;
10. SetLiftPosition(linked lift,linked floors−1(cur floor))
12. END

5.3.5.2 InclusionInclusion

In this strategy, the existing machine is included in the linkage machine so that its op-
erations can be used without a need to copy its body like in the RefinementInclusion
strategy. The idea is to synchronize the states of both machines during the animation.
For every operation of the existing machine, we create a synchronization operation that
manages the evolution of the two machines. For example, operation move up inc below
calls both move up and SetLiftPosition.

64

Listing 8: Synchronizing models
OPERATIONS:
move up inc =
BEGIN
move up ;
SetLiftPosition(linked lift, linked floors −1(cur floor))

END

Both strategies have their advantages. The InclusionInclusion provides a lightweight
approach to the usage of operations. It is practical when the DSL or the existing machine
is not yet finished and may be changed. The RefinementInclusion is better if one would
like to continue the refinement process such that the variables from the existing machine
are completely redefined using variables of the static semantics machine. This technique
may be useful for producing step-by-step the dynamic semantics of a DSL from an existing
machine that has already been proved correct.

5.3.6 Enhancements
The initialization provided in listing 6 initializes Liftstatic based on the initial state of
Liftexisting. This approach is reasonable as far as the objective is visual animation − since
we do not introduce any modification to the existing specification, we just visualize it.
Nevertheless, the limitation is that every time we switch from one lift to another (e.g. from
LIFT1 to LIFT2) we must animate the initialization with a different lift. The selected
new lift is, therefore, re-initialized, which brings it back to the ground floor. A better
solution would be to use Liftexisting as a controller which can switch between the two lifts.
To this purpose, we need to initialize Liftexisting from Liftstatic and introduce an operation
that allows one to select on-the-fly any lift without re-initializing it. The setter (setValues)
of listing 9 is introduced within Liftexisting in order to update its variables conforming to
its invariants. This kind of setter can be generated automatically: every parameter is
assigned to a variable and the precondition applies the invariants to the parameters.

Listing 9: Adding a setter to Bexisting

OPERATIONS:
setValues
(call buttons ,cur floor , direction up ,door open) =
PRE
cur floor ∈ groundf. .topf
∧ door open ∈ BOOL
∧ call buttons ∈ Pow (groundf . . topf)
∧ direction up ∈ BOOL
∧ (door open = TRUE ⇒ cur floor ∈ call buttons)

THEN
cur floor := cur floor
|| door open := door open
|| call buttons := call buttons
|| direction up := direction up

END
To initialize Liftexisting from Liftstatic we define the substitution of listing 10 and we

use it in the initialization clause of Liftlinkage. In this case, we are applying the Inclu-
sion/Inclusion approach. Definition update existing calls setter setValues based on the
linkage invariants. Once the lift and the floors are mapped, this definition finds a valua-
tion to the variables of Liftexisting making them compatible with the valuations of Liftstatic.

65

Listing 10: Definition for updating Bexisting

DEFINITIONS:
update existing ==
ANY cur floor , door open , direction up , call buttons
WHERE
cur floor = linked floors(liftPosition(linked lift))
∧ (Door(linked lift) = Closed ⇒ door open = FALSE)
∧ (Door(linked lift) = Open ⇒ door open = TRUE)
∧ (Direction(linked lift) = Down ⇒ direction up = FALSE)
∧ (Direction(linked lift) = Up ⇒ direction up = TRUE)
∧ linked floors[selectedFloors[{linked lift}]] = call buttons

THEN
setValues(call buttons , cur floor ,direction up ,door open)

END

Finally, in order to switch between lifts at any time during the animation, we introduce
the following operation select lift. It selects a different lift, updates variable linked lift
and sequentially applies substitution update existing. An illustration of this operation is
provided in Figure 5.3. By running operation select lift(LIFT2) one can control LIFT2
without bringing it back to the ground floor, and later continue with LIFT1. Note that
operation select lift could apply a scheduling approach and provide an optimized technique
(not to re-initialize the machine) when switching between lifts.

Listing 11: change mapping on-the-fly
OPERATIONS:
select lift =

ANY lift WHERE
lift ∈ Lift ∧ lift ̸= linked lift

THEN
linked lift := lift ; update existing

END

5.4 Application to Scheduler Example
We also applied our approach to the Scheduler example discussed in [84, 81]. The struc-
tural part of the existing Scheduler B specification is presented in Figure 5.7. The machine
involves a set of processes called PID. It contains three processes (process1, process2,and
process3). We have three variables: active, ready, and waiting, which are defined as sets
of processes. Further, the predicates defined in invariants make sure that (i) a process
cannot be in states ready and waiting at the same moment, (ii) a process cannot be in
states active and ready at the same moment, (iii) a process cannot be in states active and
waiting at the same moment, (iv) only one or none of the processes can be active at the
moment, (v) and state active contains a process if and only if state ready has a process.

The meta-model of Scheduler is shown in Figure 5.8, which contains two classes:
SchedulerClass (root) and ProcessClass. The class ProcessClass has three attributes:
Number (integer), Status (enumeration : StatusEnum), and PreviousStatus (enumeration
: StatusEnum). Enumeration type StatusEnum has four values: Waiting, Ready, Active,
and Deleted.

Using Meeduse, we generated the Static B specification of the scheduler. The generated
specification includes three Sets and six variables (alongside their invariants and empty

66

MACHINE
Scheduler Existing

SETS
PID = {process1,process2,process3}

CONCRETE VARIABLES active, ready, waiting
INVARIANT

active ∈ P (PID) ∧ ready ∈ P (PID) ∧ waiting ∈ P (PID) ∧
active ⊆ PID ∧ ready ⊆ PID ∧ waiting ⊆ PID ∧
(ready ∩ waiting) = ∅ ∧
active ∩ (ready ∪ waiting) = ∅ ∧
card(active) ≤ 1 ∧
((active = ∅) ⇒ (ready = ∅))

END

Figure 5.7: Structural part of Existing Scheduler B Specification

Figure 5.8: Scheduler Meta-Model

initialization) and operations (setters, getters, etc.). Figure 5.9 shows the generated
B Specification with Sets (StatusEnum, SCHEDULERCLASS, and PROCESSCLASS),
Variables (SchedulerClass, ProcessClass, Processes, Status, Number, and PreviousStatus)
and corresponding invariants.

This scheduler example helped us to explore a new mapping rule. The three variables
of existing: active, ready, waiting which are defined as sets of processes need to be mapped
with similar concepts in DSL. We defined these concepts in the DSL via attribute Status,
whose type is enumeration StatusEnum. Mapping enumerations to sets introduces the
following invariants in the linkage machine:

Listing 12: EnumType to a Set
INVARIANT:
linked process[dom(Status ▷ {Waiting})] = waiting
∧ linked process[dom(Status ▷ {Ready})] = ready
∧ linked process[dom(Status ▷ {Active})] = active

Note: In the above listing,linked process is a constant where process PROCESSCLASS
is total bijection to process PID in existing machine (PROCESSCLASS ↠↣ PID), meaning
each process in the DSL is linked to a process in the existing machine.

Figure 5.10 applies state/ transition diagrams to visualize the behavior of processes
managed by the Scheduler example. This model introduces three processes (one state/

67

MACHINE
scheduler

SETS
StatusEnum = {Waiting,Ready,Active,Deleted};
SCHEDULERCLASS;
PROCESSCLASS

ABSTRACT VARIABLES
SchedulerClass, ProcessClass, Processes, Status, Number, Previ-

ousStatus
INVARIANT

SchedulerClass ∈ Pow (SCHEDULERCLASS) ∧
ProcessClass ∈ Pow (PROCESSCLASS) ∧
Processes ∈ ProcessClass 7→ SchedulerClass ∧
Status ∈ ProcessClass 7→ StatusEnum ∧
Number ∈ ProcessClass → Z ∧
PreviousStatus ∈ ProcessClass 7→ StatusEnum

END

Figure 5.9: Structural part of Scheduler B Specification

transition diagram per process), and deals with three states: Waiting, Ready and Active.
Transitions refer to the various operations of the formal specification, which are: ready,
active and swap. The highlighted transition shows the next enabled operations and the
highlighted state shows the current state of the process. The concepts PreviousStatus and
Delated from the DSL are not presented in the graphical animation.

Figure 5.10: Graphical animation of the Scheduler example

Process1 showed in Process1View is in state Active whereas the animatable operation
from this state is swap. Process2View and Process3View illustrate Process2 and Process3
whose current states are respectively Waiting and Ready. These state/transition diagrams
emphasize on some properties such as deadlock freedom, or the non-blocking property.
Indeed, one can see that after being active a process does not stop the system. In fact,
the animation of operation swap puts Process1 in state waiting and activates one ready

68

process. In this case, it activates Process3. As for the Lift, all the B specifications of the
Scheduler can be found in the GIT repository2.

5.5 Discussion
Looking into related works, mixing FMs and DSLs has been addressed in several works
[42, 103, 123, 90], but often with the intention to provide formal semantics to a DSL and
hence be able to reason about its correctness. In fact, the strength of FMs originates from
their precision and the availability of automated reasoning tools. Zalila et al., in [123]
suggest the use of an additional DSL to feedback formal verification results. The authors
propose a new language (called FeVeReL) that allows the designer to implement the
verification result feedback from the formal level to the DSL level. The approach is close
to visual animation, but the use of additional languages may weaken the acceptance of the
underlying technique because it requires new skills. The work of Tikhonova [111] starts
from a DSL meta-model, generates Event-B specifications, but applies classical visual
animation using BMotion Studio to the formal specifications in order to understand the
behavior of the DSL. The limitation is that the DSL syntax must be reworked in BMotion
Studio, which requires additional verifications to check the compatibility between the
initial DSL syntax and the graphical visualization.

5.6 Conclusion
This chapter presented our approach for the visual animation of B specifications using an
MDE paradigm built on DSLs. Our objective was to ensure validation thanks to domain-
centric notations that are expected to be more comprehensible for domain experts than
formal specifications. We used Meeduse, a language workbench dedicated to formally
instrumenting the static semantics (structure) and dynamic semantics (behavior) of a
DSL by means of B models.

We provided a linkage B specification which maps the B models managed by Meeduse
and the B specification to visualize. Two strategies are provided and discussed in this
chapter: (i) RefinementInclusion, and (ii) InclusionInclusion. The examples mentioned
in this chapter are covered to show the viability of our technique. Writing the linkage
B specification is easier when the DSL is based on the same concepts as the existing
B specification. DSLs can also be used to visualize specifications that are defined with
several refinement levels.

Besides, we showed that our approach also favors the reuse of existing specifications
as dynamic semantics of a DSL. It can be done with minor modifications of the existing
specification (e.g. by adding operations such as setValues and update existing in the Lift
example). The existing lift specification is used for one lift, whereas our approach allows
us to use the same existing specification for multiple instances of lifts in our DSL. In
the Lift example, we can add more lifts and floors but in the Scheduler example, we are
limited to one scheduler, and the user can not add more schedulers. This limitation in the
scheduler does not allow us to call it as DSL since a DSL is more flexible to add multiple
objects of a class. In the Scheduler example, the number of states is also fixed which is
three, but the number of processes can be increased.

Lift and Scheduler are used as proof of concepts, showing our approach’s applicability.
In the next chapter (Chapter 6), We show how our approach can be applied to a realistic
railway system based on the formal B specification of [87], the existing B specification is

2https://github.com/meeduse/Samples/tree/main/Scheduler

69

composed of 4 components (1 machine and 3 refinements). We apply our approach in a
formal model-driven way where railway DSL is built iteratively with each refinement of
B specification. This allows us to evaluate the feasibility and scalability of our technique
and explore various other mapping rules.

5.7 Résumé en français
La validation des systèmes critiques est une tâche essentielle car une mauvaise compréhension
des exigences des utilisateurs peut conduire à des implémentations erronées. Cette tâche
est connue pour être complexe, notamment pour les spécifications formelles, du fait de
leurs notations mathématiques. En fait, les parties prenantes qui ne sont pas formées
aux méthodes formelles (FM), comme les experts du domaine, ont du mal à compren-
dre ces notations. Pour résoudre les problèmes de validation, plusieurs outils formels
[78, 85, 117] fournissent des techniques d’animation graphique. L’intention est de pro-
poser une représentation visuelle des données et des comportements d’une spécification
formelle, la rendant plus lisible pour les experts du domaine. Dans ce chapitre, nous pro-
posons une approche où les spécifications B écrites indépendamment de l’équipe Meeduse
sont animées visuellement à l’aide de DSL. Nous illustrons l’application de notre approche
à l’exemple de l’ascenseur (Lift) comme preuve de concept. Nous sélectionnons ce modèle
car il est bien connu en matière de vérification et de validation formelles [92].

Nous avons fourni une spécification B de liaison qui connecte les modèles B gérés
par Meeduse et la spécification B à visualiser. Deux stratégies sont fournies et discutées
dans ce chapitre : (i) Refinement/Inclusion et (ii) Inclusion/Inclusion. Les exemples
mentionnés dans ce chapitre montrent la viabilité de notre technique. L’écriture de la
spécification B de liaison est plus facile lorsque le DSL est basé sur les mêmes concepts
que la spécification B existante. Les DSLs peuvent également être utilisés pour visualiser
des spécifications définies avec plusieurs niveaux de raffinement.

Par ailleurs, nous avons montré que notre approche favorise également la réutilisation
de spécifications existantes comme sémantique dynamique d’un DSL. Cela peut être réalisé
avec des modifications mineures de la spécification existante (par exemple en ajoutant des
opérations telles que setValues et update existing dans l’exemple Lift). La spécification
d’ascenseur existante est utilisée pour un seul ascenseur, alors que notre approche nous
permet d’utiliser la même spécification existante pour plusieurs instances d’ascenseurs
dans notre DSL. Dans l’exemple Ascenseur, nous pouvons ajouter plus d’ascenseurs et
d’étages, mais dans l’exemple du Scheduler, nous sommes limités à un seul Scheduler et
l’utilisateur ne peut pas en ajouter d’autres. Dans cet exemple, le nombre d’états est fixe.

70

Chapter 6

Validation of proved ERTMS/ETCS
B specification

In the previous chapter, we presented our approach to how B specifications are visually
animated using DSLs. We illustrated our approach with an example of Lift as proof of con-
cepts. In this chapter, we apply our approach to an existing proved ERTMS/ETCS B spec-
ification. Actually, many works provide solutions to verification issues of ERTMS/ETCS
using formal methods, but the validation of the resulting formal models has not been
investigated. So apart from visual animation, this chapter also deals with the challenge
of validation of proved ERTMS/ETCS B specifications. We present an iterative for-
mal model-driven approach that helps to validate step-by-step a real formal specification
of ERTMS/ETCS hybrid level 3. The approach introduces Domain-Specific Languages
(DSLs) to help system experts understand existing specifications that are already proved.

6.1 Introduction

The ERTMS/ETCS has gained significant attention in industry and academia, and be-
cause of the underlying safety requirements, the formal methods community has inves-
tigated numerous techniques for its modeling and verification. For instance, the call for
solutions of the ABZ’2018 conference [49] has resulted in several realistic applications
of formal methods to ERTMS/ETCS. Most of these applications deal with verification
concerns without providing insights showing whether their formal models are valid and
conform to the requirements. Some approaches propose translations from graphical mod-
els (e.g. UML, KAOS) into formal specifications, but as the transformation is not proved
correct, the resulting formal models still need to be validated. In chapter 5, we presented
an approach for visual animation of B specifications using DSLs. In this chapter, we
extend our approach with an iterative model-driven technique. Considering an existing
B specification of an ERTMS hybrid level 3 system provided by a formal methods expert
[87]. We propose to build incrementally a meta-model of the system which defines the
abstract syntax of a DSL. The system is analyzed at each level of abstraction, and the
corresponding requirements are simulated. Links are built from the current incremental
stage of the model and the corresponding provided B component. This simulation allows
railway experts to validate the formal models and compare their understandings.

71

6.2 Towards an Iterative Formal Model-Driven Ap-
proach

Mammar et al. [87] provides an EVENT- B model of the hybrid ERTMS/ETCS level 3
standard. In this model, a railway track (a line to run a train) is divided into sections
known as Trackside Train Detection (abbreviated as TTD). A TTD is further divided
into subsections called Virtual Sub-Section (VSS). An ERTMS train can be fitted with
TIMS, which is Train Integrity Monitoring System that reports its position and integrity
to the train supervisor, which is the system controller. ERTMS trains without TIMS can
only report their front position, while non-ERTMS trains do not report their position at
all to the supervisor. Train’s VSS occupation is also determined by the TIMS. In the
ERTMS/ETCS, Movement Authority (MA) is the permission assigned to the train to
move on specific sections or subsections. In this model, the supervisor assigns the MA
(containing VSSs) and sends it to the ERTMS train. A train cannot go beyond the VSS
specified in the MA in order to avoid accidents (collisions).

This model allows the trains to be connected or disconnected. A connected train
regularly reports its integrity and position to the supervisor. The concept of timer is
introduced which disconnects a connected train after a specified time. Note that, in this
use case, all trains move in the same direction on the same track, and MA is chosen
non-deterministically in order to avoid collisions. We re-use this model in our approach
as a classical-B artifact which consists of four components: an abstract machine (M0) and
three refinements (M1, M2, and M3).

Our approach discussed in chapter 5 introduces a linkage machine that allows the
usage of the B machine as dynamic semantics of the DSL. This approach is extended here
and applied to a realistic case study. We incrementally build our DSL layer and use re-
finements and inclusions to make the connection between every increment of the DSL and
the considered B model. The proposed approach is applied to each abstract/refinement
component as depicted in Figure 6.1.

Figure 6.1: The Iterative Architecture for the Case Study

First, we develop a DSL meta-model (DSLv0.ecore) based on the initial abstract com-
ponent (M0.mch) of the model. Then we provide a linkage machine (Linkage0.ref) that
refines the M0.mch and includes the translated static semantics of DSLv0.mch (translation
from ecore to B is done using Meeduse). In the next iteration, we update the DSL based

72

on refinement M1.ref (which is a refinement of the M0.mch machine), and the resulting
DSL becomes DSLv1.ecore. In this iteration, another linkage machine (Linkage1.ref) is
introduced, which refines the existing refinement M1.ref and includes the translated static
semantics DSLv1.mch. The same step is repeated until the final refinement M3. At each
iteration, we are able to visually animate the existing component using the correspond-
ing version of the DSL, thanks to the execution of the linkage machine in Meeduse. This
graphical animation allows the domain expert to check that the verified built specification
(existing model) captures the right requirements. The complete B specification of the ex-
isting model, the ones generated from the DSL and linkage machines, can be found in the
Meeduse git repository1. The mechanisms of linking B data structures, the initialization,
and the operations of linkage machines are already discussed in chapter 5.

6.3 An ERTMS/ETCS Hybrid Level 3 DSL
In a Model-Driven Architecture, a DSL is built from a meta-model. We propose to
incrementally create this meta-model based on the existing formal B model, such that each
concept in the meta-model corresponds to a concept in the B model. From each version of
the meta-model Meeduse generates B static semantics, and the dynamic semantics refer
to the corresponding component of the B model. Figure 6.7 (presented later) shows the
whole meta-model where concepts of each refinement are defined using different colors.

6.3.1 DSL version 0 (DSLv0)

DSLv0 is built based on abstract machine M0.mch of the existing model. Figure 6.2 shows
the B data structure of M0.mch with its sets, constants and variables. Initialization and
operations are not shown here due to space limitation. Machine M0.mch allows free move-
ment of trains on TTDs and collisions are possible at this level. This level contains oper-
ations: trainSupervisor, trainEntering, trainMovingInSameTTD, trainMovingFrontNextTTD,
trainMovingRearNextTTD, trainExiting, trainConnect, trainDisconnect, and TimerExpiration.

Figure 6.3 shows the meta-model of DSLv0 where class Railway is the root class. It is
composed of class Trackside and class Train. Class Trackside has the attribute TrackStatus
which can have the value Free or Occupied from the enumeration Status. Each Trackside
has 0 to 2 previous tracksides (association previous) and 0 to 2 next tracksides (association
next).

Class Train has two attributes in addition to its identifier: kindOfTrain and Connected.
Attribute kindOfTrain refers to three kinds of trains (enumeration KindOfTrains): ERTMS,
NoERTMS and TIMSERTMS. An TIMSERTMS train is equipped with Train Integrity
Management System contrary to simple ERTMS trains. Note ERTMS trains equipped
with TIMS communicate their location with the supervisor. Attribute Connected is a
Boolean that shows the connection of a train with the supervisor. Each train has a head
and a tail whose positions are defined with references front and rear to class Trackside.

6.3.2 Translation of the meta-model

In order to provide the static semantics as B specifications, Meeduse generates machine
DSLv0.mch from DSLv0.ecore, the above ECore meta-model. Figure 6.4 shows the gener-
ated Sets, Properties of the Constants, and the related typing invariants. For more details
about this translation we refer the reader to [64, 60].

1https://github.com/meeduse/Samples/tree/main/ETCSLevel3

73

MACHINE
M0

SETS
StateTTD = {freeT,occupiedT};
TRAINS ;
TrainKind = {TimErtms, Ertms, NoErtms}

CONSTANTS
Ttds, minTTD, maxTTD, trainKind, Trains, Cars

VARIABLES
stateTTD, trainOccupationTTDFront, trainOccupationTTDRear, isConnected, super-

visor
INVARIANT

stateTTD ∈ Ttds → StateTTD
∧ trainOccupationTTDFront ∈ TRAINS 7→ Ttds
∧ trainOccupationTTDRear ∈ dom(trainOccupationTTDFront) → Ttds
∧ ∀ tr . (tr ∈ dom(trainOccupationTTDFront)

⇒ trainOccupationTTDRear(tr) ≤ trainOccupationTTDFront(tr))
∧ isConnected ∈ trainKind −1 [{Ertms,TimErtms}] → BOOL
∧ supervisor ∈ BOOL

Figure 6.2: B data structure of existing abstract machine M0

Figure 6.3: DSLv0 Meta-Model

6.3.3 Linkage Machines

Based on the approach of Figure 6.1, linkage B machines are created at each iteration.
These machines link the existing B specification (e.g. machine M0), which we would like
to animate, to the DSL components (e.g. machine DSLv0). It refines the existing B
model and includes the machine issued from the meta-model of the DSL. The idea is to
map concepts from the DSL to concepts from the existing B model. In this sub-section,
we give an overview of the mappings used in this first refinement level of our case study.

74

Machine
DSLv0

SETS
Status = {Free,Occupied};
KindsOfTrains = {TIMSERTMS,ERTMS,NoERTMS};
SupervisionStatus = {Active,Deactive};
RAILWAY; TRACKSIDE; TRAIN;

VARIABLES [. . .]
CONSTANTS [. . .]
PROPERTIES

Railway ∈ Pow (RAILWAY) ∧
Trackside ∈ Pow (TRACKSIDE) ∧
Train ∈ Pow (TRAIN) ∧
KindOfTrain ∈ Train 7→ KindsOfTrains ∧
previous next ∈ Trackside ↔ Trackside ∧

INVARIANT
TrainFront ∈ Train 7→ Trackside ∧
TrainRear ∈ Train 7→ Trackside ∧
SupervisionOfTrain ∈ Railway 7→ SupervisionStatus ∧
TrackStatus ∈ Trackside 7→ Status ∧
Connected ∈ Train 7→ BOOL ∧
∀ thePrevious.(thePrevious ∈ ran(previous next)

⇒ card(previous next −1 [{thePrevious}]) ≤ 2) ∧
∀ theNext.(theNext ∈ dom(previous next) ⇒

⇒ card(previous next[{theNext}]) ≤ 2)

Figure 6.4: Structural part of machine DSLv0.mch (without constants and variables)

6.3.3.1 Rule 1: EClass to BMachine.

In the DSL, class Railway is a root class that contains all other classes. We consider that
this class and machine M0 represent the same concept, which is the railway system. Thus,
we introduce a constant Linked Railway in the linkage machine, which will be helpful later
while mapping the underlying concepts.

CONSTANTS: Linked Railway
PROPERTIES: Linked Railway ∈ Railway

6.3.3.2 Rule 2: Enumeration to BSet.

In machine M0, StateTTD is a set containing values freeT and occupiedT. A similar concept
in the DSL is the enumeration Status with the values: Free and Occupied. So, the mapping
between an enumeration and a set is done as follows:

CONSTANTS: Linked Status
PROPERTIES: Linked Status={ freeT 7→ Free, occupiedT 7→ Occupied}

6.3.3.3 Rule 3: EClass to BSet.

In the existing model, constant Ttds is set from constant minTTD to constant maxTTD.
The Ttds concept is similar to class Trackside from the DSL. Trains is a finite set of
TRAINS, and the similar concept from the DSL is class Train. Mapping these sets and
classes is done as follows:

75

CONSTANTS: Linked Trackside, Linked Trains
PROPERTIES:

Linked Trackside ∈ Trackside ↠↣ Ttds ∧
Linked Trains ∈ Train ↠↣ Trains

6.3.3.4 Rule 4: boolean EAttribute to boolean BVariable .

Attribute isConnected of class Train is a boolean attribute. A similar concept in the existing
model is variable Connected. To map these two concepts, we introduce the following
invariant:

INVARIANT: Connected = (Linked Trains ; isConnected)

6.3.3.5 Rule 5: EAttribute (EnumType) to BVariable (SetValued).

stateTTD is a variable in the existing model which is typed as a set-value from set
StateTTD. In the DSL, TrackStatus is an enumeration attribute in the class Trackside.
We used composition relation (;) in this mapping as:

INVARIANT:TrackStatus = (Linked Trackside ; stateTTD ; Linked Status)

6.3.3.6 Rule 6: Attribute (EnumType) to a Boolean variable.

The boolean variable supervisor defines the status of the controller (false if not active
and true if it is active). In the DSL, the same concept is defined using an attribute
SupervisionOfTrain (enumeration SupervisionStatus) in class Railway. Mapping between
enumeration values and the boolean values introduces the following invariant:

INVARIANT:
(supervisor = TRUE ⇒ SupervisionOfTrain(Linked Railway) = Active)
∧ (supervisor = FALSE ⇒ SupervisionOfTrain(Linked Railway) = Deactive)

6.3.3.7 Rule 7: Single valuated EReference to BVariable.

Variable trainOccupationTTDFront of the existing model defines the occupation of the
train’s front on a Ttd. In the DSL, this concept is defined with reference TrainFront from
class Train to class Trackside. We introduce the following invariant to map both concepts:

INVARIANT:
dom(TrainFront)=Linked Trains −1 [dom(trainOccupationTTDFront)]

6.3.4 Modeling and visual animation
Figure 6.5 is a graphical model conforming to DSLv0. It features two TIMS trains (Train
1, Train 2) and five tracks (Trackside 1..5). The state of each track is represented in the
right-hand side of the figure. In this model all tracks are set to Free; they are not occupied
by any of the two trains. Actually, the model of Figure 6.5 is drawn by the domain expert
to describe an initial state.

Once the linkage machine between DSLv0 and M0 is created, the model in Figure 6.5
can be animated in Meeduse. The tool assigns values to all the B data (variables and

76

Figure 6.5: A model conforming to DSLv0

constants), initializes the machine, and applies ProB for animation. In a classical anima-
tion of B specifications, the B method expert has to complete by hand the specifications
with valuations. Here, it is the domain expert who created two instances of Train and five
instances of Trackside; and then the tool automatically produces the valuated machine
together with its initialisation. Figure 6.6 shows the movement of trains in the graphical
representation by triggering the operations of M0.mch mentioned in Section 6.3.1.

Figure 6.6: Animating DSLv0 using M0

The Front of Train 1 occupies TTD 4 while its Rear occupies TTD 1. The Other shows
the occupancy of the train on TTDs that are between Front and Rear. For Train 2, the Front
is positioned at TTD 2 and Rear at TTD 1. Apart from Trackside 5, all other tracksides
are occupied. At this stage, someone can observe the collision between Train 1 and Train
2 as both occupy the TTD 1 and TTD 2. Actually, the safety property regarding the
non-collision is only satisfied in the M3 refinement level of the existing model. We chose
not to represent other concepts defined in the meta-model such as supervision status,
train connect/disconnect, because they are not directly linked to possible collisions.

6.4 Findings and Analysis
The complete meta-model of our DSL is shown in Figure 6.7. Concepts of every re-
finement level are presented using different colors. Yellow classes and black associations
show DSLv0. Associations in brown color are introduced during DSLv1. Class Virtual-
Block and associations represented in light blue are from DSLv2. Finally, attributes and
associations in purple represent DSLv3.

6.4.1 Next Iterations
6.4.1.1 DSLv1.

This version is an update of DSLv0 by introducing two new concepts introduced in re-
finement M1 of the existing specification. Since M1 refines M0, all concepts from M0 are
already included in meta-model of DSLv1. Associations frontTrackLocation and rearTrack-
Location, illustrated with brown color in Figure 6.7 are added in DSLv1. The frontTrack-
Location shows the front location of a train that is communicated to the controller (su-

77

Figure 6.7: Whole DSL Meta-Model

pervisor) and rearTrackLocation is the communicated location of the train’s rear. The
inclusion of these concepts updates the graphical representation with Train’s location
information, as known by the supervisor.

78

6.4.1.2 DSLv2.

Concepts of DSLv2 are shown in light blue in Figure 6.7. Class VirtualBlock has been
introduced. It is linked to class Railway using the composition relation. At this level, no
attributes are included in class VirtualBlock except the Id. A link between class Trackside
and VirtualBlock is created where a track side can have many virtual blocks (association
virtualblock), and in the opposite each virtual block is associated with at-least one track
(association trackside). The other introduced associations in this level are those from class
Train to class VirtualBlock, which are VssFront (front of train on virtual block), VssRear
(rear of train on virtual block), frontVssLocation (front of train on virtual block communi-
cated to the controller), and rearVssLocation (rear of train on virtual block communicated
to the controller). These additional concepts lead to the creation of a new representation
containing virtual blocks (VSSs) instead of tracks (TTDs).

6.4.1.3 DSLv3.

Concepts of DSLv3 are shown in violet in Figure 6.7. Enumeration VSSStatus gives the
state of a virtual block. It can be free (FreeVSS), occupied (OccupiedVSS), unknown
(UnknownVSS), or ambiguous (AmbiguousVSS). Enumeration TimerValuesDSL includes
values: Inactive, Running, and Expired, which are the states of a timer. The associations:
previous and next from VirtualBlock to VirtualBlock represents the connexions between
virtual blocks. The concept of movement authority (MA) is defined by associations:
frontMA (MA for train’s head) and rearMA (MA for train’s rear) from class Train to
class VirtualBlock. Association previousVssFront is used to store the value of a previous
VSS for a train’s front. We introduced the four timer concepts in the DSL as defined
in the existing ERTMS/ETCS HL3 specifications. The timers related to the trains are
defined in class Train as TrainMuteTimer and TrainWaitIntegrityTimer. The timer related
to VSS is VssDisconnectTimer, which is introduced inside class VirtualBlock, while timer
TrackGhostTimer which is related to TTD, is included in class Trackside. The VssStatus
attribute in class VirtualBlock shows the status of each virtual block using enumeration
VSSStatus. Attribute previousVssFrontStatus stores the status of the previous VSS for the
train’s front. Finally, attribute TrainReConnected is a Boolean and gets value TRUE when
a train is connected back after disconnecting.

Figure 6.8 is a graphical representation conforming to DSLv3. The figure represents
eleven VSSs and two TIMS trains, in addition to train’s location, occupation, and MA.
The right-hand side represents the states of the VSSs. Before assigning MA, train su-
pervisor calculates the VSSs and sets the state of VSSs to free if there is no train. Once
the calculation of VSSs is done, a train can be connected and can be assigned an MA. In
Figure 6.8 VSSs are free and movements authorities are assigned to Train1 from VSS 1 till
VSS 5 . Rear of MA is the “start of authority” and Front of MA is “End of Authority”
(EoA).

Figure 6.8: Assigning MA to Train 1 using DSLv3

79

6.4.2 Unexpected behaviors
Figure 6.9 shows that Train1 has entered and reached EoA. In a normal case, it should be
possible to assign a new MAs to train 1 to move on the next VSSs, but the animation tells
us that this is not possible. The only possible allowed operations are disconnection and
connection of Train1. This problem is a deadlock and was identified during the animation
of normal scenarios from ERTMS/ETCS. In Figure 6.9, a user can observe that some
VSSs remain concerned by MAs even after a train has consumed them. It can be seen
that VSS 1, 2, and 3 have been released, but still they are concerned by the MAs of
Train1. This behavior can be considered as a problem from the domain expert’s point
of view. Actually, it reveals some limits (misunderstandings of the requirements) of the
existing B specifications.

Another unexpected behavior that we observed is that a VSS never gets the state
OccupiedVSS. According to ERTMS/ETCS, when the train’s front or rear is over a VSS
then the VSS is considered to be occupied. The right side of Figure 6.9 shows that VSS
4 and VSS 5 are set to AmbiguousVSS, which should be instead OccupiedVSS as both
VSS host the rear and the front of Train1 respectively. In order to test whether this
problem is coming from the linkage machine or the existing machine, we analyzed the
states of VSSs in the existing machine. We came to the conclusion that the problem is
located in the existing machine, and this information was communicated to the authors
of the existing machine. Note that the authors of the existing model already mentioned
in their paper that proof obligations related to VSS state machine were found ambiguous
(non-deterministic) and were not discharged.

Figure 6.9: Train Movement consuming MAs

6.4.3 Lessons learned
6.4.3.1 Lessons learned from a formal methods expert’s point of view.

Amel Mammar is a professor at Télécom SudParis School in Évry, France. She has
published several research papers on topics such as intrusion detection systems, software
vulnerabilities, and formal methods. Since, we used the existing B specification from her
paper [87], we got here got here point of view regarding this case study.

Amel Mammar: “The existing animation tools (Brama, AnimeB, etc.) do not
offer a useful graphical view for the model’s animation. Indeed, ProB and AnimB, for
instance, only display the values of the variables at each animation step leaving the task of
analyzing and explaining them to the user. This is definitely not exploitable for complex
systems with several variables like ERTMS 3 system. So, the approach introduced in
this work permits overcoming the drawbacks of the existing tools by providing a useful
graphical view of the animation, permitting users a better understanding of their systems
and helping them detect errors and bugs. Among others, this approach permits us to

80

detect, for instance, that a VSS never becomes occupied, while this went unnoticed under
Rodin and ProB.”

6.4.3.2 Lessons learned from a railway expert’s point of view.

Simon Collart-Dutilleul is a Senior researcher and head of the ERTMS task force of
IFSTTAR (The French institute of science and technology for transport, spatial planning,
development and networks). He is one of the supervisors supervising this thesis. He gave
his point of view on this case study.

Simon Collart-Dutilleul: “Among the three unexpected behaviors, one is to be
pointed out at first: VSS never gets the state OccupiedVSS. This is a problem because
when a train is on a VSS, this VSS must be occupied. Particularly when the train is
connected and sends its position to the control center supervising train movement. In a
first analysis, it is surprising that such an evidence is not fulfilled. Analyzing deeper, this
is not so surprising. A railway norm is written by railway experts for railway experts. It
means that some evidences are not recalled to mind: this is an implicit requirement that
everybody is supposed to know. The paper of Mammar [87], clearly says that in their
opinion, the specification is ambiguous.

From a methodological point of view, DSL is run using various scenarios generating
behaviors that often surprise a railway expert. Two trains in the same location are correct
in the first level because the non-collision mechanisms will be implemented in a later
step. The simulation analysis by an expert helps to define the semantic limits of a given
DSL, but the more interesting part comes when a misunderstanding of the specification
is identified. The OccupiedVSS value that is never reached is a good demonstration.
Even the authors of the code never identified the problem before. It shows that the
basic specification errors happen and are really difficult to detect without a graphical
animation.”

6.5 Conclusion

In this chapter, we showed how a DSL can be used to validate an existing formal B speci-
fication through an industrial case study (ERTMS 3/ETCS). We define links (mappings)
between the concepts defined in our DSLs and those used in the B specification (based
on our approach discussed in chapter 5 previously). The existing proved B specification
used in this work is provided in Event-B originally, since our approach uses classical-B,
the B specification has been first rewritten with respect to the classical-B language syn-
tax, and then all the operations have been re-proved under AtelierB by original author of
the existing B specification. During this case study, some specific scenarios were used to
illustrate how a graphical animations can be used to illustrate domain concepts and how
experts (domain and formal methods) can collaborate to ensure that safety requirements
are met. The work in this chapter results in, firstly, the creation of DSL from the existing
B model and, secondly, proving the hypotheses “Though FMs prove the consistency of a
railway system, it does not guarantee it is correctly built”.

In the previous chapter (5) and current chapter, the linkage B specifications are pro-
duced manually but systematically. In the next chapter (7), we present the tool to produce
linkage B specifications in (semi)-automatic way.

81

6.6 Résumé en français
Dans le chapitre précédent, nous avons présenté comment les spécifications B sont animées
visuellement à l’aide de DSLs. Nous avons illustré notre approche avec un exemple (le
Lift) en tant que preuve de concept. Dans ce chapitre, nous appliquons notre approche
à une spécification B d’ERTMS/ETCS existante et déjà prouvée. Actuellement, de nom-
breux travaux proposent des solutions aux problèmes de vérification d’ERTMS/ETCS
en utilisant des méthodes formelles, mais la validation des modèles formels résultants
n’a pas été étudiée. Ainsi, outre l’animation visuelle, ce chapitre traite également du
défi de la validation des spécifications d’ERTMS/ETCS. Nous présentons une approche
formelle itérative qui permet de valider étape par étape une spécification formelle réaliste
de ERTMS/ETCS (niveau 3 hybride).

Nous proposons de construire progressivement un méta-modèle du DSL qui définit sa
syntaxe abstraite. Le système est analysé à chaque niveau d’abstraction et les exigences
correspondantes sont simulées par animation. Les liens sont construits à partir de l’étape
actuelle du modèle et du composant B fourni. Cette simulation permet aux experts
ferroviaires de valider les modèles formels et de comparer leurs compréhensions. Les
travaux de ce chapitre aboutissent, d’une part, à la création d’un DSL à partir du modèle
B existant et, d’autre part, à la démonstration de la propriété suivante “Bien que les FM
prouvent la cohérence d’un système ferroviaire, ils ne garantissent pas que ce dernier est
correctement construit”.

82

Chapter 7

Automatic Linkage Generation

Previously in chapters 5 and 6, we showed the applicability and scalability of our approach.
On the one hand, it is used for visual animation of B specifications. On the other hand,
we successfully illustrated how the domain expert identifies the unexpected behavior of
a proved system. During the application of our approach, the linkage specifications are
created manually but systematically. In this chapter, we introduce a DSL-based tool to
automate the extraction of the linkage specification.

7.1 Introduction
To generate the linkage machines, we introduce an approach built on the definition of
generation patterns that the user defines, and that can be applied (and reused) for various
specifications and models. First, we propose a textual DSL, called Pattern-Definition, that
allows one to define patterns of mappings. Secondly, to apply the patterns defined with
Pattern-Definition, another DSL is proposed. We call the latter Pattern-Application.
Figure 7.1 shows the underlying approach. Pattern-Definition and Pattern-Application
are textual DSLs conforming to their corresponding XText grammars. Thanks to these
DSLs, the user first proposes a catalog of generic reusable patterns and then he/she
can select the ones to apply. Having the definition of patterns and their application,
the component Linkage Generator automatically produces the linkage machine. This
component is built using Acceleo [1], an Eclipse-based model-to-text transformation tool.

Figure 7.1: Linkage Generation Methodology

83

7.1.1 Pattern-Definition
Figure 7.2 gives the Xtext grammar of Pattern-Definition DSL, and Figure 7.4 shows an
instance of this grammar. In this DSL, a template (defined with a rule Template) is a
list of patterns (rule Pattern). The idea is that the user can define an exhaustive catalog
of templates and patterns since there are numerous possible mappings depending on the
application case. A pattern contains parameters, aliases, and mappings. Parameters are
formal parameters that must be valuated in the application step, and aliases refer to local
expressions that can be used in a mapping. Often parameters refer to a concept of a meta-
model (e.g. EClass) and the mapping indicates how this concept is mapped to concepts
of a B machine. In Figure 7.4 for example, pattern EClassToBMachine has only one
parameter that is an EClass, and produces a variable, an invariant, and an initialisation.
Rule mapping has two parts: clause and alternative. It defines the result of the pattern
and prescribes to which B clause this result must be added. An alternative is a mixture
of aliases and free text. For technical reasons, we need to alias the parameters of the
pattern if they are used in the mappings.

Figure 7.2: Xtext grammar of Pattern-Definition

Figure 7.3 provides the EMF meta-model of Pattern-Definition DSL defined from
the given Xtext grammar shown in Figure 7.2. The meta-model is composed of eight
classes, each of which is issued from a grammar rule. Template is the root class and the
associations represent the relationships between the objects.

Figure 7.4 defines a template (named Lift) with two patterns: EClassToBMachine

84

Figure 7.3: Pattern-Definition meta-model

and EClassToBSetExtended. Pattern EClassToBMachine is composed of three mappings
with clauses: VARIABLES, INVARIANT and INITIALISATION respectively. In clause
VARIABLES, this pattern adds a variable name, represented with alias varName whose
value is the concatenation of string “linked ” with the value of parameter anEClass. The
same principle is applied to the other clauses, (INVARIANT : varName “:” anEClass)
and (INITIALISATION : varName “::” anEClass).

Pattern EClassToBSetExtended is defined with three parameters: anEClass, aBSet,
and userDefined. Alias userDefined refers to the parameter userDefined while alias re-
lation is defined as a bijection from parameter anEClass to parameter aBSet. Pattern
EClassToBSetExtended is also composed of three mappings, that produce B concepts in
clauses VARIABLES, INVARIANT and INITIALISATION.

7.1.2 Pattern-Application
The Xtext grammar of Pattern-Application DSL is given in Figure 7.5 while Figure 7.7
presents an instance of this grammar.

The objective of this DSL is to apply the patterns of a template defined using the
Pattern-Definition DSL. Pattern-Application DSL is an application (Rule Application)
with a technique (enum Technique), a header (Rule Header), multiple applyPatterns
(Rule ApplyPattern), and bclauses (Rule BClauses). A technique can be one of our
strategies, either RefinementInclusion or InclusionInclusion. A header contains headerfirst
(enum HeaderFirst), which is the type of B specification that can be either a machine or
refinement. The header also contains the name of the B specification and a text part for
the other part of the header as an OSTRING. We introduced OSTRING as a terminal
rule to define the B syntax within B{ syntax }B (line 28 and 29 in Figure 7.5). The
applyPattern applies a pattern of a template and takes an exact number of parameters as
defined using the Pattern-Definition DSL. The parts of the linkage specification, especially
clauses that can not be produced by applying patterns, are defined manually in Bclauses,
for instance, definitions, initialization, operations, etc.

The EMF meta-model of Pattern-Application is shown in Figure 7.6. It is defined

85

Figure 7.4: User defined patterns

from the Xtext grammar shown in Figure 7.5. The meta-model consists of four classes,
and the axiom Application is the root class. It is composed of three classes: BClauses,
ApplyPattern, and Header. HeaderFirst and Technique are the two enumerations in the
meta-model. Note that terminal rules are not shown in meta-model, such as OSTRING
in this case.

Figure 7.7 defines an application with the technique RefinementInclusion. The type
of B specification is defined as a refinement with the name Lift Linkage, and the text
part shows that it refines the Lift Existing and includes the Lift DSL. The application
applies two patterns from the Lift template. The first one is the EClassToBMachine which
takes an Eclass Lift as a parameter. The second one is pattern EClassToBSetExtended,
which takes three parameters: anEClass, aBSet, and userDefined. We used the Floor as
EClass, groundf..topf as the B set, and B syntax as user-defined. The application also
contains a BClause which is an initialisation where cur floor, door open, call buttons,
and direction up are initialized.

7.2 Experimentation with the Tool

We applied our approach to several case studies, including the realistic ERTMS/ETCS.
We generated the linkage B specifications of the examples as mentioned earlier in chapters
5 and 6, first by defining patterns in Pattern-Definition DSL and then applying those
patterns using Pattern-Application DSL. Table 7.1 shows the number of defined and
applied patterns used during the application of our tool.

86

Figure 7.5: Xtext grammar of Pattern-Application

Figure 7.6: Pattern-Application meta-model

7.2.1 Lift

As shown in Table 7.1, we defined 5 patterns during the application of our tool to the
example of Lift. To generate the Lift linkage B specification, we applied 6 patterns
and introduced 2 BClauses. The first two defined patterns of Lift example are already
illustrated in Figures 7.4 and Figure 7.7. Following are the other three defined patterns

87

Figure 7.7: Pattern-Application textual editor

Table 7.1: Comparison of Defined and Applied Patterns

Example Defined Patterns Applied Patterns B Clauses
Lift 5 6 2
Scheduler 2 4 3
ERTMS M0 8 10 2
ERTMS M1 8 12 2
ERTMS M2 8 14 2
ERTMS M3 8 26 2

and their application to the Lift example.

7.2.1.1 SingleValuedERefToSetElement.

As shown in Figure 7.8, two parameters are defined for this pattern. The first one is
EReferenceExp which is an expression for an EReference, and the other one is an element
of a set. Two aliases are defined for local expressions. The pattern maps EReference with
the set element and produces an invariant.

Figure 7.9 shows the application of the pattern SingleValuedERefToSetElement where
it takes two parameters as defined. EReferenceExp is the expression of liftPosition which
is a single-valued reference from EClass linked lift to EClass linked floors. The cur floor
is the current position of the floor, and it is an element from the set groundf..topf.

88

Figure 7.8: SingleValuedERefToSetElement Pattern

Figure 7.9: SingleValuedERefToSetElement Application

7.2.1.2 MultipleValuedERefToSet.

Figure 7.10 illustrates the pattern MultipleValuedERefToSet. Two parameters are defined
for this pattern: An EReferenceExp and aSet. The pattern also contains two aliases for
local expressions. The pattern produces an invariant using both parameters.

Figure 7.10: MultipleValuedERefToSet Pattern

The application of the pattern MultipleValuedERefToSet is shown in Figure 7.11 where
the first parameter is the EReference expression for selectedFloors. It is a multi-valued
reference from linked lift to linked floors. The second parameter is the set call buttons.

Figure 7.11: MultipleValuedERefToSet Application

7.2.1.3 EnumTypeToBoolean.

Pattern EnumTypeToBoolean is shown in Figure 7.12 where it is defined to accept four
parameters. This pattern maps an enumeration type attribute (with two values) to a
Boolean. The first parameter of this pattern is the attribute expression, the second one
is the Boolean expression. The other two parameters: aVal1 and aVal2 are the values of
enumeration type attribute. The pattern produces two invariants, each with a different

89

Figure 7.12: EnumTypeToBoolean Pattern

value of enumeration type attribute. One value is mapped with the FALSE, and the other
one is mapped with the TRUE value of Boolean.

Figure 7.13 presents the application of EnumTypeToBoolean pattern with two ap-
plyPatterns. This pattern accepts four parameters. In the first applyPattern, the first
parameter is the expression for the enumeration type attribute Door of EClass linked lift
and it is mapped with the Boolean door open which can be expressed in the second pa-
rameter as a B expression. The third parameter aVal1 is the value Closed of attribute
Door and similarly, the fourth parameter aVal2 is the value Open of attribute Door.

In the second applyPattern, the enumeration type attribute Direction of EClass linked lift
is mapped to the Boolean door open. Parameters aVal1 and aVal2 are the enumeration
values: Down and Up, respectively.

Figure 7.13: EnumTypeToBoolean Application

The result of applying the pattern EnumTypeToBoolean can be seen in Section 5
Listing 5.

We also defined two BClauses in the application for the complete generation of lift
linkage B specification. First one is for the initialisation and the other one is for the
operations.

7.2.2 Scheduler
To produce the scheduler linkage B specification while using our tool, we defined patterns
in a template called scheduler that is shown in Figure 7.14. The template consists of two

90

patterns: EClassToExtendedConstant and ReferenceToVariable. Pattern EClassToEx-
tendedConstant is defined with three parameters (anEClass, aConstant and userDefined)
and maps an EClass to a constant. The pattern contains four aliases, and it will produce a
constant and a property. In clause CONSTANT, this pattern adds a constant name, rep-
resented with alias consName whose value is the concatenation of string ”Linked ” with
the value of parameter anEClass. Alias relation is defined as a bijection from parameter
anEClass to parameter aConstant. Pattern ReferenceToVariable maps a reference to a
variable and it is defined with two parameters: bExp (B expression) and aVar (Variable).
It only produces an invariant. Next in this sub-section, we discuss the application of both
patterns.

Figure 7.14: Scheduler Pattern Template

7.2.2.1 EClassToExtendedConstant.

The application of pattern EClassToExtendedConstant is demonstrated in Figure 7.15
where it takes the class PROCESSCLASS as the first parameter anEClass. The second pa-
rameter is a constant PID. The third parameter is userdefined which is defined as the cardi-
nality of PROCESSCLASS equal to the cardinality of PID (card(PROCESSCLASS)=card(PID)).

Figure 7.15: EClassToExtendedConstant Application

The result of applying the pattern EClassToExtendedConstant can be seen in Listing
13.

91

Listing 13: EClass to extended Constant
CONSTANTS
Linked PROCESSCLASS

PROPERTIES
Linked PROCESSCLASS ∈ PROCESSCLASS ↠↣ PID
∧ card(PROCESSCLASS) = card(PID)

7.2.2.2 ReferenceToVariable.

Pattern ReferenceToVariable is applied three times in the application as shown in Figure
7.16. The first parameter contains the reference as a B expression. In these applyPatterns,
the variables waiting, ready, and active from existing scheduler B specification are used
in the second parameter. They are mapped with their corresponding equivalent concepts
(Waiting, Ready, and Active) from the DSL machine.

Figure 7.16: ReferenceToVariable Application

In this example of the scheduler, we used the Refinement/Inclusion technique. To
generate the complete scheduler B specification, we used the BClause tag three times in
the application: for definition, initialization, and operations.

7.2.3 ERTMS/ETCS
To use our tool on the realistic case study of ERTMS/ETCS, we defined eight patterns
in the Pattern-Definition DSL. The patterns are defined based on the ERTMS/ETCS B
specification provided by Amel Mammar [87]. In our previous examples, we already illus-
trated the application of four out of the eight patterns. The already illustrated patterns are
EClassToExtendedConstant, EclassToBMachine, EnumTypeToBoolean and ReferenceTo-
Variable. We now illustrate the following four new patterns:

7.2.3.1 EClassToConstant.

Pattern EClassToConstant is shown in Figure 7.17. It is defined to map an EClass
to a constant. The difference between the pattern EClassToConstant and the pattern
EClassToExtendedConstant is that it takes two parameters: anEClass and aConstant.
Whereas EClassToExtendedConstant takes three parameters, including the userDefined
which was used to produce an additional invariant. Apart from the parameter userDefined,
pattern EClassToConstant is the same as EClassToExtendedConstant.

92

Figure 7.17: EClassToConstant Pattern

Figure 7.18 gives the application of EClassToConstant pattern. The first parameter
is EClass Train from DSL, and the second parameter is the constant Trains from ETCS
specification.

Figure 7.18: EClassToConstant Application

7.2.3.2 EnumToSet.

To map an enumeration to a set, we defined a pattern EnumToSet with two parameters
which can be seen in Figure 7.19. It is defined with two parameters: anEnum (Enumera-
tor) and bExp (B expression). It will produce a constant and a property.

Figure 7.19: EnumToSet Pattern

The application of Pattern EnumToSet is shown in Figure 7.20. The first parame-
ter is enumeration Status from the DSL and the second parameter is a B expression.
In B expression, the elements of set StateTTD from ETCS machine are linked to the
corresponding values of enumeration Status.

93

Figure 7.20: EnumToSet Application

7.2.3.3 BoolAttributeToBoolVariable.

Figure 7.21 gives the pattern to map a Boolean attribute to a Boolean variable. The
pattern is defined with three parameters. The first parameter is called consVarName; it
can be either a constant or a variable. The second parameter is an attribute from DSL,
and the third one is a variable from the existing B machine. The pattern produces the
variable of the existing machine in the linkage specification. It also produces an invariant.

Figure 7.21: BoolAttributeToBoolVariable Pattern

Pattern BoolAttributeToBoolVariable is applied to map the attribute Connected (sec-
ond parameter) from DSL, and the variable isConnected (third parameter) from the ETCS
machine, which can be seen in Figure 7.22. The first parameter consVarName is constant
Linked Train.

Figure 7.22: BoolAttributeToBoolVariable Application

7.2.3.4 EnumTypeAttributeToSetValued- Variable.

The pattern to map an enumeration type attribute with a variable containing set values
is given in Figure 7.23. The pattern is defined with four parameters. The first parameter
is the enumeration type attribute, and the second parameter is consVarName1, which is
a constant or variable related to the attribute. The third parameter is the variable from
the existing machine, and the last parameter is the consVarName2, which is related to the
variable. The pattern also produces the variable of the existing machine with an invariant
in the linkage specification.

The application of the pattern EnumTypeAttributeToSetValuedVariable can be seen
in Figure 7.24. It maps the attribute TrackStatus from DSL to the variable stateTTD of

94

Figure 7.23: EnumTypeAttributeToSetValuedVariable Pattern

the existing ETCS machine. The second parameter consVarName1 is Linked Trackside,
and the fourth parameter consVarName2 is Linked Status.

Figure 7.24: EnumTypeAttributeToSetValuedVariable Application

As mentioned earlier in chapter 6, the existing ERTMS/ETCS B specification com-
prises one machine (M0) and three refinements (M1, M2, M3). Using the above patterns
from Pattern-Definition DSL, we applied the patterns in 4 separate application files of
Pattern-Application DSL, which produced four different linkage machines. The number
of applyPatterns in each file varies as each machine in ERTMS/ETCS specification varies
based on the number of constants, properties, variables, and invariants. The applyPat-
terns in M0, M1, M2 and M3 are 10, 12, 14, and 26, respectively. In each application file,
two BClauses are defined: one for initialisation and one for operations.

7.3 Discussion
In software engineering, patterns are used as reusable solutions for the development of
systems and applications. To the same idea, we used reusable patterns in order to create
the linkage B machines which link existing B specifications with B specifications of the
DSL meta-model. Our DSL-based tool, first allows to define the patterns then allows to
select the ones to apply. Table 7.1 shows the defined and applied patterns in multiple
examples using our tool. In the Lift example, we defined 5 patterns and the number of
applied patterns is 6, which shows that one of the patterns is used two times. In the
scheduler example, we defined two patterns and applied 4 patterns, which again shows
the reuse of patterns. The interesting part of pattern reuse is illustrated during the
ERTMS/ETCS case study, where we only defined 8 patterns once, and those 8 patterns
are reused to generate 4 different linkage machines. In Table 7.1, we can see that the
applied patterns are 10, 12, and 14 for examples of ERTMS M0, M1, and M2 respectively.

95

For ERTMS M3, applied patterns are 26, which shows the high reuse of patterns in the
example.

7.4 Conclusion
This chapter discussed the DSL-based tool to generate the linkage B specification. It
allows the FM expert to define reusable patterns and apply them to different specifica-
tions. The tool comprises two DSLs: Pattern-Definition and Pattern-Application, and
the generator component. The tool successfully generated the linkage B specifications for
the examples Lift, Scheduler, and ERTMS/ETCS mentioned in earlier chapters.

Linkage B specification is part of the dynamic semantics shown in Figure 1.3 discussed
during Chapter 1. We showed that it could be generated in a semi-automatic way, and it
also makes it possible to use proved B specifications as operational (dynamic) semantics
of a DSL. In the next chapter, we move toward the main objective of our thesis, the appli-
cation of our xDSL-based framework. In the framework, the static semantics (structure)
of the DSL is based on railway standard notations, while the execution (behavior) of the
DSL is made possible with ERTMS/ETCS proved B specifications.

7.5 Résumé en français
Dans ce chapitre, nous introduisons un outil basé sur des DSLs pour automatiser l’extraction
de la spécification de liaison. Nous introduisons une approche basée sur des modèles de
génération que l’utilisateur définit et qui peuvent être appliqués (et réutilisés) pour di-
verses spécifications et modèles. Premièrement, nous proposons un DSL textuel, appelé
Pattern-Definition, qui permet de définir des modèles de correspondances. Deuxièmement,
pour appliquer les modèles définis avec Pattern-Definition, un autre DSL est proposé.
Nous appelons ce dernier Pattern-Application. Les deux sont des DSLs textuels con-
formes à leurs grammaires XText. Grâce à ces DSLs, l’utilisateur propose dans un pre-
mier temps un catalogue de motifs génériques réutilisables puis il peut sélectionner ceux
à appliquer. Ayant la définition des modèles et de leur application, le composant Linkage
Generator produit automatiquement la machine de liaison. Ce composant est construit à
l’aide d’Acceleo [1], un outil de transformation de modèles en texte basé sur Eclipse.

L’outil a généré avec succès les spécifications B de liaison pour les exemples Lift,
Scheduler et ERTMS/ETCS mentionnés dans les chapitres précédents. Dans l’exemple
Lift, nous avons défini 5 motifs et le nombre de motifs appliqués est de 6, ce qui montre
qu’un des motifs est utilisé deux fois. Dans l’exemple du Scheduler, nous avons défini
deux motifs et appliqué 4 motifs, ce qui montre encore une fois la réutilisation des motifs
. La partie intéressante de la réutilisation des modèles est illustrée lors de l’étude de
cas ERTMS/ETCS, où nous n’avons défini qu’une seule fois 8 motifs , et ces 8 motifs
sont réutilisés pour générer 4 machines de liaison différentes. Les nombres de motifs
appliqués sont 10, 12 et 14 pour les exemples d’ERTMS M0, M1 et M2 respectivement.
Pour l’ERTMS M3, les motifs appliqués sont au nombre de 26, ce qui montre la forte
réutilisation des motifs dans l’exemple.

96

Chapter 8

Application

In the previous chapter, we demonstrated our DSL-based tool to generate linkage machines
in a semi-automated way. The linkage machines are part of our DSL-based framework,
which helps to validate proved B specifications by visual animation using DSLs, and these
machines can also be helpful to use existing B specifications as dynamic semantics of a
DSL. This chapter discusses and applies our approach to railway standard notations.

8.1 Introduction
In the railway field, standards are considered to provide cross-border interoperability and
harmonize the interfaces. In Chapter 6, we showed how a DSL is used to validate existing
proved ERTMS/ETCS B specifications. The DSL is built systematically based on the
existing B specifications. In this chapter, we define the DSL based on railway standard
notations. In chapter 3, we discussed standards like ERTMS/ETCS, RSM, and EULYNX,
and we also mentioned that we use a subset of EULYNX as our railway meta-model. To
recall EULYNX, it provides almost all the concepts to be used in railway domain and it is
accepted by various European railway stakeholders. In this thesis, we developed interest
to use EULYNX as it is aligned with RSM and provides ERTMS/ETCS concepts which
makes our xDSL-based framework conformant to standards.

8.2 Methodology
Figure 8.1 presents the methodology of our application for merging EULYNX with ERTMS/
ETCS B specifications such that the B Specification is visualized in order to be validated.
The EULYNX subset is the meta-model, which is extracted from the EULYNX DP model.
This subset is composed of RSM topology and ETCS concepts of EULYNX like VSS, TVP,
Route (list of sections), etc as mentioned and discussed earlier in chapter 3. The railway
expert can design railway models as instances of these concepts. Note that EULYNX
does not contain some concepts of ETCS like train; for this purpose, we introduced an-
other meta-model called ETCS Data, where we include concepts like train. ETCS Data
meta-model refers to the EULYNX subset, and translating ETCS Data using Meeduse
will translate both ETCS Data and EULYNX subset into DSL B specification. Since the
existing ERTMS/ETCS B specification is composed of four components, we also generate
four linkage machines. Each linkage machine maps the concepts of its refined existing B
specification with the corresponding concept in DSL B specification. Executing a linkage
machine in Meeduse will allow the user to compute the list of possible operations (from
existing B specifications) that can be animated from that given state of DSL.

97

Figure 8.1: Merging EULYNX with existing ERTMS/ETCS B specifications

8.3 Alignment of Meta-models
The ETCS Data meta-model is shown in Figure 8.2, which contains two classes: the root
class ETCSModel and class Train. The alignment with EULYNX is done using refer-
ences. First, an association called EulynxModel is established from the root class to the
DocumentRoot class of the EULYNX. Then, in order to establish the relationship of the
train with EULYNX, the references from class Train to a EULYNX class were required.
Keeping in mind the relations used in each level of existing ERTMS/ETCS specification,
we established multiple associations (from class Train) to class VirtualSubSection
of EULYNX. The associations are occupyFront, occupyRear, locationFront, loca-
tionRear, frontMA, and rearMA, which demonstrate concepts like train occupation
(actual position of the train), train location (position of the train to the system), and
train’s movement authority.

Figure 8.2: ETCS Data Meta-model

We also included some attributes and enumerations in the ETCS Data meta-model
based on the existing ERTMS/ETCS B model. The enumerations are KindOfTrains
(values: TIMSERTMS, ERTMS, and NoERTMS) and SupervisionStatus (values: Ac-
tive and Deactive). In class ETCSModel, the attribute SupervisionOfTrain of type
enumeration SupervisionStatus is introduced to show concept supervisor from the
existing B specification. In class Train, first attributes TrainConnected and Train-
ReConnected of type Boolean are introduced to show concepts isConnected and re-
Connected respectively and then attribute KindofTrain of type enumeration Kind-
OfTrains is introduced to show concept TrainKind.

98

8.4 Translation of Meta-Model into B
Once the alignment between the ETCS data meta-model and EULYNX is done, Meeduse
tool is used on the ETCS data meta-model for the translation into a B specification
(eTCSData.mch). Due to the associations from ETCS data to EULYNX, the classes
and associations of the EULYNX subset will also be translated. Figure 8.3 shows the
translated B specification (without constants and variables) of selected concepts.

8.5 Linkage Invariants and Properties
After the translation of the meta-model into B, we apply our RefinementInclusion strategy
in this application and generate the linkage B specifications. The abstract machine and
refinements of existing B specification are refined with a different linkage machine at each
level where the B machine issued from the meta-model is included. During this appli-
cation, we generated different linkage properties and invariants in the linkage machines,
which map concepts of EULYNX with the existing proved ERTMS/ETCS B specifica-
tion. The linkage invariants and properties were previously discussed in chapters 5 and 6
and their semi-automatic generation in chapter 7. In this section, we discuss some of the
important mappings (linkages) which illustrate how our approach is applied to EULYNX.

8.5.1 Mapping class SectionList to route (minTTD to maxTTD)
The existing B specification is built on a single route model, which starts from constant
minTTD to constant maxTTD. EULYNX allows the design of railway topologies with
multiple routes. During this application, we mapped only one route at a time with the
existing B specification. In EULYNX, class SectionList is part of the route body, which
contains the list of sections (TvpSection) via composition association HasSection. This
mapping generates the following constant and properties.

CONSTANTS:
Linked SectionList

PROPERTIES:
Linked SectionList ∈ SectionList ∧
Linked SectionList ∈ {ROUTEBODYPROPERTY1} ∧
minTTD = 1 ∧
maxTTD = card(ran({Linked SectionList} ◁ HasSection))

The constant Linked SectionList is defined as an element of SectionList and
ROUTEBODYPROPERTY1 is assigned to it, which is an instance of SectionList. The
value of minTTD is set to 1 and the value of maxTTD is set to the cardinality of the
range (ran) of sections in the Linked SectionList.

8.5.2 Mapping class TvpSection to Ttds
To map the TvpSection with Ttds, first, we introduced two definitions. The TTD
which is defined as the TvpSections of the mapped route (Linked SectionList). The
TTDConnection defines the relation between instances of class TvpSection using the
associations elementA and elementB in the RSM entities of EULYNX. This relation is
achieved using multiple set operations like the inverse of relation (-1) and relation composi-
tion (;). Once the definitions are introduced, we generate a constant Linked TvpSection
and the corresponding properties.

99

MACHINE eTCSData
SETS

KindOfTrains = {TIMSERTMS,ERTMS,NoERTMS};
SupervisionStatus = {Active,Deactive};
SectionVacancyTypes = {E occupied,E vacant,E ambigious,E unknown};
ETCSMODEL; TRAIN; POSITIONINGNETELEMENT;
POSITIONEDRELATION; ASSOCIATEDNETELEMENT;
AREALOCATION; TRACKASSET; ROUTEBODYPROPERTY;
DOCUMENTROOT; DATAPREPENTITIES;
ASSETANDSTATE; RSMENTITIES; TOPOLOGY

VARIABLES [. . .]
CONSTANTS [. . .]
PROPERTIES

ETCSModel ∈ Pow (ETCSMODEL) ∧ Train ∈ Pow (TRAIN) ∧
PositioningNetElement ∈ Pow (POSITIONINGNETELEMENT) ∧
PositionedRelation ∈ Pow (POSITIONEDRELATION) ∧
AssociatedNetElement ∈ Pow (ASSOCIATEDNETELEMENT) ∧
AreaLocation ∈ Pow (AREALOCATION) ∧ RsmEntities ∈ Pow (RSMENTITIES) ∧
DocumentRoot ∈ Pow (DOCUMENTROOT) ∧
DataPrepEntities ∈ Pow (DATAPREPENTITIES) ∧
LinearElement ⊆ PositioningNetElement∧SectionList ⊆ ROUTEBODYPROPERTY ∧
SectionAndVacancy ⊆ ASSETANDSTATE ∧ TvpSection ⊆ TRACKASSET ∧
TdsSection ⊆ TRACKASSET ∧ TdsCompnent ⊆ TRACKASSET ∧
VirtualSubSection ⊆ TdsSection ∧ VssLimit ⊆ TdsCompnent ∧
KindOfTrain ∈ Train 7→ KindOfTrains ∧
ElementARelation ∈ PositionedRelation → PositioningNetElement ∧
ElementBRelation ∈ PositionedRelation → PositioningNetElement ∧
ToNetElement ∈ AssociatedNetElement → PositioningNetElement ∧
AreaAssociatedNetElements ∈ AssociatedNetElement 7→ AreaLocation ∧
TvpSectionLocation ∈ TvpSection → AreaLocation ∧
ApplyTdsToTvp ∈ TdsSection → TvpSection ∧
LimitsTdsSection ∈ TdsCompnent ↔ TdsSection ∧
HasSection ∈ SectionList ↔ TvpSection ∧
VacancyToTds ∈ SectionAndVacancy ↠↣ TdsSection

INVARIANT
TrackAsset ∈ Pow (TRACKASSET) ∧
RouteBodyProperty ∈ Pow (ROUTEBODYPROPERTY) ∧
AssetAndState ∈ Pow (ASSETANDSTATE) ∧ Topology ∈ Pow (TOPOLOGY) ∧
VirtualTrackAsset ⊆ TrackAsset ∧ PhysicalTrackAsset ⊆ TrackAsset ∧
TrainFront∈↔ VirtualSubSection ∧ ∈Train ↔ VirtualSubSection ∧
TrainRearLocation ∈ Train ↔ VirtualSubSection ∧
TrainFrontLocation ∈ Train ↔ VirtualSubSection ∧
frontMA ∈ Train 7→ VirtualSubSection ∧ rearMA ∈ Train 7→ VirtualSubSection ∧
ListOfTrains∈Train 7→ ETCSModel∧ EulynxModels∈ETCSModel 7→ DocumentRoot∧
SupervisionOfTrain ∈ ETCSModel 7→ SupervisionStatus ∧
TrainConnected ∈ Train 7→ BOOL ∧ TrainReConnected ∈ Train 7→ BOOL ∧
inVacancyState ∈ SectionAndVacancy 7→ SectionVacancyTypes ∧
TdsSection ∩ TvpSection = ∅ ∧ dom(HasSection)=SectionList ∧
SectionList ⊆ RouteBodyProperty ∧ SectionAndVacancy ⊆ AssetAndState ∧
TvpSection ⊆ VirtualTrackAsset ∧ TdsSection ⊆ VirtualTrackAsset ∧

Figure 8.3: Structural part of machine eTCSData.mch (without constants and variables)

100

DEFINITIONS:
TTD == HasSection[{Linked SectionList}];
TTDConnection == ((TvpSectionLocation;AreaAssociatedNetElements −1 ;

ToNetElement);(ElementARelation −1 ;ElementBRelation);
(TvpSectionLocation;AreaAssociatedNetElements −1 ;ToNetElement) −1);

CONSTANTS:
Linked TvpSection
PROPERTIES:
Linked TvpSection ∈ TTD ↠↣ Ttds ∧
∀ (tk1,tk2).(tk1 ∈ TTD ∧ tk2 ∈ TTD ∧ (tk1 7→ tk2) ∈ TTDConnection ⇒

Linked TvpSection(tk2) = Linked TvpSection(tk1) + 1)

In the properties, Linked TvpSection is defined as a relation: TTD ↠↣ Ttds (TTD
is bijection to Ttds). The second property states that for all elements (pairs) tk1 and tk2
in the set TTD. Further it states that, if tk1 and tk2 satisfy the condition specified by
the TTDConnection relation then the value of Linked TvpSection for tk2 is equal to
the value of Linked TvpSection for tk1 incremented by 1.

8.5.3 Mapping enumeration SectionVacancyTypes to set StateTTD

SectionVacancyTypes is an enumeration in EULYNX and StateTTD is an enumer-
ation in M0 machine of the existing B specification with values freeT and occupiedT .
Mapping both of them generates the following constant and property.

CONSTANTS:
Linked SectionVacancyTypes
PROPERTIES:
Linked SectionVacancyTypes = {freeT 7→ E vacant,occupiedT 7→ E occupied}

SectionVacancyTypes has four values in EULYNX subset, but here we just mapped
E vacant and E occupiedwith corresponding values freeT and occupiedT .

8.5.4 Mapping TvpSection occupancy to Ttds occupancy (vari-
able stateTTD)

In EULYNX, the occupancy of TvpSection is defined using a variable inVacancyState of
type enum SectionVacancyTypes in class SectionAndVacancy. Then this class refers
to the class TdsSection, which further refers to the class TvpSection. Mapping this
relation to the variable stateTTD produces the following invariant, which also involves
the inverse of relation (-1) and relation composition (;).

INVARIANTS:
(inVacancyState −1 ; VacancyToTds ; ApplyTdsToTvp ; Linked TvpSection)

= (Linked SectionVacancyTypes −1 ; stateTTD −1 ;Linked TvpSection −1 ;
Linked TvpSection)

101

8.5.5 Mapping class VirtualSubSection to Vss
We also introduced definitions for this mapping. The VSS is defined as Virtual sub-
sections (class VirtualSubSection) of the Tvp Sections (class TvpSection) of the linked
route (Linked SectionList). In EULYNX, the relation between two instances of Vir-
tualSubSection is defined via class VssLimit and association LimitsTdsSection. The
definition VSSConnections gives us the set of all the related virtual sub-sections for the
mapped route. The next definition is a function next previous that takes two elements,
vs1 and vs2, and determines whether they have a next or previous relationship based
on the difference of their Linked VirtualSubSection values (it is a linkage constant
defined as a relation: VSS ↠↣ Vss). If the Linked VirtualSubSection value of vs1
is equal to the Linked VirtualSubSection value of vs2 plus one, or if it is equal to
the Linked VirtualSubSection value of vs2 minus one, then the function returns true,
indicating that vs1 and vs2 are next to each other or previous to each other in terms of
their Linked VirtualSubSection values. Otherwise, the function returns false. Once
the definitions are done, we produce the constant Linked VirtualSubSection and cor-
responding properties.

DEFINITIONS:
VSS == ran(({Linked SectionList} ◁ HasSection);ApplyTdsToTvp −1) ;
VSSConnections == ran(fnc(LimitsTdsSection ▷ VSS)) ;
next previous(vs1,vs2) == ((Linked VirtualSubSection(vs1) =

Linked VirtualSubSection(vs2)+1) ∨ (Linked VirtualSubSection(vs1) =
Linked VirtualSubSection(vs2)-1)) ;

CONSTANTS:
Linked VirtualSubSection
PROPERTIES:
Linked VirtualSubSection ∈ VSS ↠↣ Vss
∧ ∀ (vs1,vs2).(vs1 ∈ VSS ∧ vs2 ∈ VSS ∧ vs1 ̸= vs2 ∧ {vs1, vs2} ∈ VSSConnections

⇒ next previous(vs1,vs2))
∧ ∀ (vs1, vs2).(vs1 ∈ VSS ∧ vs2 ∈ VSS ∧ Linked TvpSection(ApplyTdsToTvp(vs1))

> Linked TvpSection(ApplyTdsToTvp(vs2))
⇒ Linked VirtualSubSection(vs1) > Linked VirtualSubSection(vs2))

There are three properties in this mapping. The first one is that of Linked VirtualSubSection.
The second property asserts that for all elements (pairs) vs1 and vs2 in the set VSS, if vs1
and vs2 are distinct elements and the set vs1, vs2 is a valid element in the set VSSCon-
nections, then the function next previous(vs1, vs2) returns true. The third property
makes sure that virtual subsections in Linked VirtualSubSection are mapped in the
same order as their associated Tvp sections in the Linked TvpSection. It asserts that
for all elements (pairs) vs1 and vs2 in the set VSS, if the value associated with vs1, ob-
tained by applying the ApplyTdsToTvp in Linked TvpSection, is greater than the
value associated with vs2 obtained in the same way, then the value associated with vs1, in
Linked VirtualSubSection, is also greater than the value associated with vs2 obtained
similarly.

8.5.6 Other examples
We do not cover all the linkage invariants and properties in this chapter, but some other
examples, which will be used in the linkage operations illustrated in the next section.
These include mapping class Train to set Trains (of the existing specification), class

102

ETCSModel to a B machine, and an attribute SupervisionOfTrain (of enum type) to
the boolean supervisor. These mappings are also illustrated in chapter 7. Following are
the produced constants, properties and invariants from these mappings.

CONSTANTS:
Linked Train,
Linked ETCSModel
PROPERTIES:
Linked Train ∈ Train ↠↣ Trains ∧
Linked ETCSModel ∈ ETCSModel
INVARIANTS:
(supervisor = TRUE ⇒ SupervisionOfTrain(Linked ETCSModel) = Active) ∧
(supervisor = FALSE ⇒ SupervisionOfTrain(Linked ETCSModel) = Deactive)

8.6 Linkage Operations
As mentioned in chapter 5, we refine the operations in our RefinementInclusion strategy.
We copy the body of the operation from the existing B specification and introduce a setter
operation from the included machine to preserve the linkage variables. Figure 8.4 shows
such a refined operation called trainEntring from the linkage machines. The operation
is intended to handle the process of a train entering a particular section. It first selects
an appropriate train (tr) that satisfies certain conditions (not yet assigned to a front
occupation, FALSE supervisor). Then, it sets the front and rear occupations of the train
to the minTTD (the first section in the route) and assigns the supervisor. Finally, it
activates the supervision of the train. In order to preserve the linkage variables that we
produced, such as for the train’s front and rear occupation and also the activation of the
supervisor, we introduced the setters SetTvpSectionFront, SetTvpSectionRear, and
SetSupervisionOfTrain from the included machine.

OPERATIONS:
trainEntring =

ANY tr WHERE
tr ∈ TRAINS - dom(trainOccupationTTDFront)
∧ supervisor = FALSE
∧ tr ∈ Trains

THEN
trainOccupationTTDFront(tr) := minTTD;
SetTvpSectionFront(Linked Train −1 (tr),(Linked TvpSection −1 (minTTD)));
trainOccupationTTDRear(tr) := minTTD;
SetTvpSectionRear(Linked Train −1 (tr),(Linked TvpSection −1 (minTTD)));
supervisor := TRUE;
SetSupervisionOfTrain(Linked ETCSModel,Active)

END

Figure 8.4: Operation trainEntering

The operations SetTvpSectionFront and SetTvpSectionRear take a train and a
Tvp section as arguments and set the train’s front and rear to the provided Tvp section.
In this operation, we set them to the Tvp section mapped to the minTTD. The op-
eration SetSupervisionOfTrain updates the ”SupervisionOfTrain” relation within an
ETCSModel. It takes an ETCSModel and a SupervisionStatus as input. Here, we provide

103

the ETCSModel, which is mapped to B machine. For the status, we provide Active as it
is mapped to the boolean value TRUE. We applied this approach to all the operations
during this application.

8.7 Visualization
Once the linkage machines are produced, we can animate the existing B specifications,
but first, we need the graphical models and views for our DSL. For this application, we
provide a graphical editor to design topology, a tabular view (previously illustrated in
chapter 6), state view of TTDs and VSSs, and a TTD-VSS view (inspired by ETCS
document). All the views of a model in Eclipse Sirius are synchronized.

8.7.1 Topology Design
The EULYNX subset contains RSM concepts which provides an abstraction for the rail-
way topology. Using these concepts, we provide a graphical editor which allow users to
design railway topologies using tracks where each track corresponds to an instance of class
TvpSection. Figure 8.5 shows such a designed topology composed of seven track sections.
As EULYNX also provides the definition of a route (class SectionList with composition
HasSection to class TvpSection), we extract two routes from the given topology in Figure
8.5. Route1 is composed of Track1, Track2, Track3, Track4, and Track5 while Route2 is
composed of Track1, Track2, Track3, Track6, and Track7. The tracks: Track1, Track2,
and Track3 are the common (intersecting) tracks in both routes.

Figure 8.5: Topology Design

8.7.2 Tabular Route View
The tabular views of sections and trains (such as Figure 6.5)are also illustrated in chapter
6 during the validation of the same existing ERTMS/ETCS B specification where the DSL
is built in an iteratively formal driven way. During this application, we keep the same
tabular view for illustrating trains’ front and rear occupation and location. In our model,
we provided two TIMS trains: Train1 and Train2, where Train1 is a connected train.
Note that the EULYNX concept TvpSection and Ttds (from the existing B specification)
are the same and mapped in the linkage machines, so in our graphical views, we name
this concept TTD.

8.7.2.1 Level 1: M0

Figure 8.6 illustrates the tabular view of Route1 with trains’ occupation. This view is
developed keeping in mind the concepts and executing operations of existing machine
M0. In this Figure, the front and rear of Train1 are on sections TTD 5 and TTD 2,
respectively. At the same time, the front and rear of Train2 are on sections TTD 3

104

and TTD 1, respectively. From this illustration, the user can identify which sections are
occupied by which train. It can be observed that TTD 2 and TTD 3 intersect between
the occupations of Train1 and Train2. This is something unusual, but at this level (M0),
it is normal as the condition that a section is only occupied by one train is provided in
later levels.

Figure 8.6: Level 1

8.7.2.2 Level 2: M1

In level 2 of the existing B specification (refinement M1), the concept of train location
is introduced, where a connected train communicates its location to the system. This
concept is illustrated in Figure 8.7, where the front and rear locations of the connected
train (Train1) are on TTD 4 and TTD 2, respectively. It can be observed that Train1’s
front occupation (TTD 5) and location (TTD 4) are not the same because the recent
movement of the train is not yet communicated.

Figure 8.7: Level 2

8.7.2.3 Level 3: M2

In ERTMS/ETCS HL3, a TTD is further divided into smaller subsections, VSS. In level
3 (refinement M2) of the existing B specification, the concept of VSS replaces the TTD.
In this regard, we provide a tabular view of Route1 with corresponding VSSs of TTD
sections, shown in Figure 8.7. We executed the operations of M2 to see the movement
of the train with this view, and we observed that the occupied sections of the train were
still intersecting with each other as the condition that a section is only occupied by one
train is still not yet provided.

8.7.2.4 Level 4: M3

In level 4 (refinement M3), the concept of movement authority (MA) is introduced. To
illustrate this concept, we provided a view, shown in Figure 8.9. In this Figure, train MA
to corresponding VSSs are illustrated where the front and rear MA of Train1 are on VSS

105

Figure 8.8: Level 3

32 and VSS 11, respectively. This shows that Train1 has the authority to move from Vss
11 to VSS 32, and these VSSs cannot be assigned to the MA of another train.

Figure 8.9: Level 4 (Assigning MA)

Once an MA is assigned to a train, the operations of M3 allow this train to move
on the corresponding VSSs. This train movement is illustrated in Figure 8.10 Train1’s
occupation and location can be seen on the VSSs within the range of its MA.

Figure 8.10: Level 4 (Train Movement)

8.7.3 State View
Our DSL also provides the state view of sections for each route. Figure 8.11 shows the
legend of state view for the four states: Free, Occupied, Unknown, and Ambiguous. The
section with green dots on the sides illustrates the state Free, yellow dots on the sides
illustrate the state Occupied, red dots on the sides illustrate the state Unknown, and the
ambiguous state is illustrated with orange dots on the side. The colors for the states are
inspired by the ETCS document [32].

8.7.3.1 TTD states

Figure 8.12 shows the state views of Route1 and Route2 with respect to TTDs. This view
only shows the states: Free and Occupied; and is helpful during the animation of M0 and
M1, where the states of the TTDs can be observed while moving the train. The upper
part of the Figure shows the Route1 where TTD 2 and TTD 5 are occupied. The bottom
part shows the Route2 where only TTD 2 is occupied (TTD 1, TTD 2, and TTD 3 are
common sections in both routes).

106

Figure 8.11: States Legend

Figure 8.12: TTD States

8.7.3.2 VSS states

Figure 8.13 shows the state view of Route1 with respect to VSSs. This view shows all
four states on a VSS, and it is useful during the animation of M2 and M3. The Figure
shows a scenario where VSS 11, VSS 12, and VSS 21 are in the state Unknown. VSS 22
and VSS 31 are ambiguous, while all other VSSs are in the state Free.

Figure 8.13: VSS States of Route 1

8.7.4 ETCS Document’s Style View
Our DSL provides another view of a route with TTDs and their corresponding VSSs,
inspired by a graphical view provided in the ETCS document [32]. This view is illustrated
in Figure 8.14, which shows the TTDs and VSSs of Route1. View clearly shows the ETCS
rule; if the state of a single VSS is Ambiguous, Unknown, or Occupied, then its TTD is
Occupied. In the Figure, there are the five TTDs of Route1 and each with its two VSSs.
The state of TTD 1 is Occupied, as both of its VSSs are Unknown. The state of TTD
2 is also Occupied as one of its VSS is Unknown, and the other one is Ambiguous. One

107

VSS of TTD 3 is Ambiguous, and the other one is Free, but TTD is defined as Occupied
due to that one Ambiguous VSS.

Figure 8.14: ETCS Document’s Style View of Route 1

8.8 Conclusion
In this chapter, we provide a formalized DSL based on a EULYNX subset. We used our
approach of linkage machines to validate an existing ERTMS/ETCS B specification pro-
vided by Amal Mammar [87]. We successfully animated the existing B specification using
the DSL and visually observed its behavior. The EULYNX-based DSL provides different
graphical views of a railway model, which includes the track-based railway topology, a
tabular view of routes with trains and sections, a state view of TTDs and VSSs, and an
ETCS-style view of the route. Apart from validation of the existing B specification, this
application also contributes towards the formalization of EULYNX. In the literature, we
did not find a lot of works related to the formalization of EULYNX, apart from [45] and
[105]. The approach of [45] translates SysML models created within EULYNX to formal
mCRL2 [18], a specification language for describing concurrent discrete event systems.
They verify and test the EULYNX interface for point subsystems (also called ‘turnouts’
or ‘switches’) using model-checking and model-based testing. The paper [105] describes
a formal verification approach for EULYNX models using the Event-B. They manually
transform EULYNX SysML models into UML-B and embed the safety requirements (rep-
resented as invariants) with this UML-B. Then they use the Rodin modeling platform to
check the models for any ambiguity or errors. They repeat this process until no errors
are found. These approaches provide the formalization of EULYNX models but do not
provide any DSL for designing EULYNX models. Our approach provides a DSL for the
EULYNX subset and allows the user to design a graphical model of the system and illus-
trate this model using multiple views. To our knowledge, it is the only EULYNX-based
DSL, and the behavior of the DSL is provided by ERTMS/ETCS B operations.

8.9 Résumé en français
Ce chapitre présente l’application de notre approche à EULYNX et ERTMS/ETCS. Nous
fournissons un DSL formel basé sur un sous-ensemble de EULYNX. Nous avons utilisé
notre approche de machines de liaison pour valider une spécification ERTMS/ETCS B
existante fournie par Amel Mammar [87]. Nous avons animé avec succès la spécification
B existante à l’aide du DSL et observé visuellement son comportement. Le DSL basé
sur EULYNX fournit différentes vues graphiques d’un modèle ferroviaire, qui incluent la

108

topologie ferroviaire basée sur les voies, une vue tabulaire des itinéraires avec des trains
et des sections, une vue d’état des TTD et des VSS et une vue de l’itinéraire adoptant
le style de ETCS. Outre la validation de la spécification B existante, cette application
contribue également à la formalisation d’EULYNX. Dans la littérature, nous n’avons pas
trouvé beaucoup de travaux liés à la formalisation d’EULYNX, en dehors de [45] et [105].
L’approche de [45] traduit les modèles SysML créés dans EULYNX en mCRL2 [18], un
langage de spécification pour décrire les systèmes à événements discrets concurrents. Ils
vérifient et testent l’interface EULYNX pour les sous-systèmes d’aiguillages à l’aide de
la vérification de modèles et de tests basés sur des modèles. L’article [105] décrit une
approche de vérification formelle pour les modèles EULYNX utilisant Event-B. Ils trans-
forment manuellement les modèles EULYNX SysML en UML-B et intègrent les exigences
de sûreté (représentées comme des invariants) dans cet UML-B. Ensuite, ils utilisent la
plateforme de modélisation Rodin pour vérifier les modèles en décelant toute ambigüıté
ou erreur. Ils répètent ce processus jusqu’à ce qu’aucune erreur ne soit détectée. Ces
approches fournissent la formalisation des modèles EULYNX mais ne fournissent aucun
DSL pour la conception de modèles EULYNX. Notre approche fournit un DSL pour un
sous-ensemble de EULYNX et permet à l’utilisateur de concevoir un modèle graphique du
système et d’illustrer ce modèle à l’aide de plusieurs vues. À notre connaissance, il s’agit
du seul DSL basé sur EULYNX, et le comportement du DSL est assuré par les opérations
ERTMS/ETCS écrites en B et prouvées correctes.

109

Chapter 9

Conclusion and Perspectives

In the previous chapter, we demonstrated the application of our xDSL-based framework,
which was presented in the first chapter. In this final chapter, we summarize the work
done during this thesis. Then we present the perspectives of this work by discussing
possible research directions that can extend this work.

9.1 Contribution
This thesis contributes to the areas of model-driven engineering (MDE) paradigm, formal
methods (FM), and railway systems by providing a xDSL-based framework for merging
railway standard notations, shown in Figure 9.1. The framework first allows railway
experts to graphically design railway models based on EULYNX [11], which is aligned
with RailSystemModel (RSM) [27]. Then the railway expert him/herself validates these
models based on ERTMS/ETCS [32] operational rules. The framework is composed of
two layers: the semantics layer and the execution layer.

Figure 9.1: Our xDSL-based framework for merging railway standard notations

The semantics layer is divided into static semantics and dynamic semantics. The static
semantics include meta-models based on EULYNX (a platform to standardize elements

110

and interfaces of railway signalling systems) and ETCS concepts (e.g., train). The meta-
models are translated into B specifications using the Meeduse language workbench [60].
In our framework, we provide ERTMS/ETCS operational rules as the dynamic seman-
tics of the DSL. For this purpose, existing proved ERTMS/ETCS B specifications are
re-used. Dynamic semantics are also equipped with Linkage B specifications that link
existing ERTMS/ETCS B specifications to B specifications translated from meta-models
of EULYNX and ETCS concepts.

The execution layer is supported by Meeduse, where domain-specific models represent
railway notations conforming to EULYNX. First, Meeduse injects these models into B
specifications issued from meta-models. Then it asks ProB to compute the list of possible
operations (from existing B specifications) that can be animated from that given state.
Meeduse synchronizes the current state of the B specifications with the model resulting
in graphical animation. Our framework allows railway experts to define their models and
validate the behavior of these models. The concerns of the FM expert, railway expert, and
MDE expert are separated in this framework. FM expert is responsible for verifying their
specification and generating the linkage B specification. The definition of DSL in this
framework is the task of an MDE expert. We derived four aspects from the application
of our DSL-based framework during this thesis.

1. Aspect 1. Visual animation of B specifications using DSLs. In the literature,
there are tools providing graphical animation and visualization of B specifications
such as BRAMA [107], AnimB1, B-Motion Studio [78], B-Motion Web [79], VisB
[119], and animation function in [84]. However, typical drawbacks are associated
with these tools: they use scripting or programming languages for visualization or
for mapping. This added programming layer is error-prone. The diagnosis becomes
more difficult because errors may come from the added programming layer used for
visualization. Our first result of this thesis is to provide a solution to complement the
tools mentioned above. Our solution is built on the Meeduse language workbench,
where existing B models are mapped with B static semantics of DSL. Mapping is
accomplished through a linkage B machine where the existing model is either refined
or included in the linkage machine, and the static DSL machine is included. Our
approach is applied to the existing B models of Lift, Scheduler, and realistic case
study of ERTMS/ETCS. The linkage approach built around the linkage B machine
is part of dynamic semantics in our DSL-based framework.

2. Aspect 2. Pattern-based semi-automated generation of Linkage B spec-
ifications. Our second result of this thesis is a follow-up of our first result, where
linkage B machines are generated in a semi-automated way. We provided a pattern-
based DSL tool where the user (FM expert) can define a catalog of generic reusable
patterns (in Pattern-Definition DSL) and then apply those patterns (in Pattern-
Application DSL) with parameters from the existing B and DSL models. In the last,
the component Linkage Generator tool (built using Acceleo) produces the linkage
B machine. The tool is experimented with models of Lift, Scheduler, and multi-
component ERTMS/ETCS.

3. Aspect 3. Iterative formal model-driven approach (B Model to DSL).
In our formal DSL-based framework, one of the objectives is to use the existing
proved ERTMS/ETCS B specifications as dynamic semantics. We selected the
ERTMS/ETCS hybrid level 3 specification of Amel Mammar [87] from the case
study of ABZ’2018 [49]. The existing specification comprises four components (an

1AnimB: https://wiki.event-b.org/index.php/AnimB

111

abstract machine and three refinements). We propose an iterative formal model-
driven approach where an ERTMS DSL is built and updated incrementally with
each refinement of existing B specification. The operations of existing specifications
are used to animate the graphical model based on DSL and allow to validate the
system. During the validation, an error by the domain expert was identified where a
track section appeared as “ambiguous” although a train was in the section, and the
section should appear as “occupied”. Our iterative formal model-driven approach
resulted in, firstly, the creation of DSL from the existing B model and, secondly,
proving the hypotheses “Though FMs prove the consistency of a railway system, it
does not guarantee it is correctly built”.

4. Aspect 4. Application to EULYNX. Another objective of this thesis was to pro-
vide a DSL based on railway standard notations. We used the EULYNX and applied
our approach of linkage machines to map it with the existing proved ERTMS/ETCS
B specification such that the specification is visualized in order to be validated. The
application resulted in a formalized EULYNX-based graphical DSL with multiple
views where ERTMS/ETCS B operations are used to observe the model’s behavior,
such as train movement and change in the state of the sections.

9.2 Perspectives

To extend this thesis, some research works could be developed:

1. Perspective 1. In the contribution section, Aspect 3 discussed the creation of DSL
from the existing B model. During this thesis, this step is done manually but
systematically. This step can be automated using transformation tools but requires
further investigation and study. Currently, Meeduse supports the generation of B
specifications from DSL; a reverse engineering approach is required to generate DSLs
from B specifications.

2. Perspective 2. The second perspective is somehow associated with the first per-
spective. The first perspective discusses the creation of DSL from the B model.
In this thesis, we developed a DSL issued from B specification where DSL is up-
dated incrementally with each refinement, but another interesting approach could
be investigated. The new approach could be to issue a DSL from each component
of the B model, and the DSL is refined by the other DSL issued from the refined
component. This topic of DSL refinement is currently one of the hot topics in the
field of DSLs and model-driven engineering.

3. Perspective 3. While applying our formal DSL-based framework, we used Meeduse
to translate DSL semantics to B specification. Meeduse generates static semantics
(B data, predicates, etc.) and dynamic semantics (setters, getters, constructors, and
deconstructors as operations). In this thesis, we used operations of existing proved
B specifications as dynamic semantics. The existing operations are updated with
setters and getters of the DSL machine. Another approach could be to define railway
standardized events or actions using activity diagrams and state chart diagrams and
then to associate these diagrams with the concerned DSL. Next step could be to
equip Meeduse with functionality to generate the dynamic semantics of the DSL
from these associated activity and state chart diagrams.

112

9.3 Résumé en français
Ce chapitre résume le travail effectué au cours de cette thèse. Il présente ensuite les
perspectives de ce travail en discutant des orientations de recherche possibles pouvant
prolonger ce travail. Dans la première partie, il est indiqué que cette thèse combine
l’ingénierie dirigée par les modèles (MDE), les méthodes formelles (FM) et les standards
ferroviaires en fournissant un cadre basé sur des DSLs. Cela permet d’abord aux experts
ferroviaires de concevoir graphiquement des modèles ferroviaires basés sur EULYNX [11],
qui est aligné sur RailSystemModel (RSM) [27]. Ensuite, l’expert ferroviaire valide lui-
même ces modèles en s’appuyant sur les règles opérationnelles de ERTMS/ETCS [32]. La
contribution de ce travail de cette thèse se décline selon quatre points. Le premier est
l’animation visuelle des spécifications B à l’aide de DSLs. Le second est la génération
semi-automatique basée sur des modèles de spécifications B de liaison. Le troisième est
l’approche itérative formelle basée sur un modèle dans laquelle un DSL ERTMS est con-
struit et mis à jour progressivement à chaque raffinement de la spécification B existante.
Le dernier est l’application à EULYNX.

Dans la deuxième partie, trois perspectives sont énoncées qui pourraient prolonger
les travaux de cette thèse. La première est la création automatisée de DSLs à partir de
modèles B. La deuxième perspective pointe vers le raffinement de DSLs. La troisième
et dernière est liée à la génération de la sémantique dynamique du DSL à partir de
diagrammes d’activités et d’états.

113

Bibliography

[1] Acceleo. https://www.eclipse.org/acceleo/. Accessed: 2023-02-05.

[2] AtelierB. https://www.atelierb.eu/en/. Accessed: 2023-03-14.

[3] B Method. https://www.systerel.fr/en/expertise/formal-methods/
b-method/. Accessed: 2023-05-17.

[4] CENELEC - Railways and Hyperloop Systems. https://www.cencenelec.
eu/areas-of-work/cenelec-sectors/transport-and-packaging-cenelec/
railways-and-hyperloop-systems/. Accessed: 2023-07-06.

[5] Deliverable d 2.1 specification of formal development demon-
strator. https://projects.shift2rail.org/download.aspx?id=
560cdd44-83e7-4f5d-879e-d8dcdf2e2b1b. Accessed: 2021-07-24.

[6] Eclipse OCL. https://projects.eclipse.org/projects/modeling.mdt.ocl.
Accessed: 2023-07-10.

[7] Eclipse Sirius. https://www.obeosoft.com/fr/produits/Eclipse-sirius. Ac-
cessed: 2023-06-07.

[8] ENTERPRISE ARCHITECT. https://sparxsystems.com/products/ea/. Ac-
cessed: 2023-06-30.

[9] ERTMS Hybrid Level 3. https://github.com/meeduse/Samples/blob/main/
ETCSLevel3/ERTMS_Hybrid_Level_3.pdf. Accessed: 2020-06-26.

[10] Eugenia. https://www.eclipse.org/epsilon/doc/eugenia/. Accessed: 2023-06-
07.

[11] eulynx.eu. https://eulynx.eu/. Accessed: 2023-01-13.

[12] EventB.org. http://www.event-b.org/. Accessed: 2023-05-16.

[13] Formal Methods Case Studies for DO-333. http://ntrs.nasa.gov/citations/
20140004055. Accessed: 2023-02-28.

[14] Graphical Modeling Project (GMP). https://www.eclipse.org/modeling/gmp/.
Accessed: 2023-06-07.

[15] IFC Rail Project. https://www.buildingsmartusa.org/wp-content/uploads/
2020/06/RWR-IFC_Rail-Context-Approach.pdf. Accessed: 2023-07-03.

[16] Industrial Railway CAD software. https://www.railcomplete.com/.

[17] lotus-tool. https://gesad.github.io/projects/lotus-tool/. Accessed: 2023-
08-12.

114

https://www.eclipse.org/acceleo/
https://www.atelierb.eu/en/
https://www.systerel.fr/en/expertise/formal-methods/b-method/
https://www.systerel.fr/en/expertise/formal-methods/b-method/
https://www.cencenelec.eu/areas-of-work/cenelec-sectors/transport-and-packaging-cenelec/railways-and-hyperloop-systems/
https://www.cencenelec.eu/areas-of-work/cenelec-sectors/transport-and-packaging-cenelec/railways-and-hyperloop-systems/
https://www.cencenelec.eu/areas-of-work/cenelec-sectors/transport-and-packaging-cenelec/railways-and-hyperloop-systems/
https://projects.shift2rail.org/download.aspx?id=560cdd44-83e7-4f5d-879e-d8dcdf2e2b1b
https://projects.shift2rail.org/download.aspx?id=560cdd44-83e7-4f5d-879e-d8dcdf2e2b1b
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://www.obeosoft.com/fr/produits/Eclipse-sirius
https://sparxsystems.com/products/ea/
https://github.com/meeduse/Samples/blob/main/ETCSLevel3/ERTMS_Hybrid_Level_3.pdf
https://github.com/meeduse/Samples/blob/main/ETCSLevel3/ERTMS_Hybrid_Level_3.pdf
https://www.eclipse.org/epsilon/doc/eugenia/
https://eulynx.eu/
http://www.event-b.org/
http://ntrs.nasa.gov/citations/20140004055
http://ntrs.nasa.gov/citations/20140004055
https://www.eclipse.org/modeling/gmp/
https://www.buildingsmartusa.org/wp-content/uploads/2020/06/RWR-IFC_Rail-Context-Approach.pdf
https://www.buildingsmartusa.org/wp-content/uploads/2020/06/RWR-IFC_Rail-Context-Approach.pdf
https://www.railcomplete.com/
https://gesad.github.io/projects/lotus-tool/

[18] mCRL2. https://mcrl2.org/web/index.html. Accessed: 2023-08-04.

[19] MDE Tools. https://openembedd.inria.fr/MDE/MDEtools/index.html. Ac-
cessed: 2023-06-06.

[20] Meeduse Git Repository. https://github.com/meeduse/Samples. Accessed: 2023-
08-16.

[21] MetaEdit+. https://www.metacase.com/mep/. Accessed: 2023-06-30.

[22] Object Management Group (OMG). https://www.omg.org/index.htm. Accessed:
2023-06-08.

[23] OpenETCS Project. http://openetcs.org/. Accessed: 2021-07-19.

[24] Overview of the Domain-Specific Language Tools User Inter-
face. https://learn.microsoft.com/en-us/visualstudio/modeling/
overview-of-the-domain-specific-language-tools-user-interface?view=
vs-2022. Accessed: 2023-06-30.

[25] ProB-Examples. https://github.com/hhu-stups/specifications/tree/
master/prob-examples/B. Accessed: 2023-06-30.

[26] RailML.org. https://www.railml.org/en/home.html. Accessed: 2020-01-06.

[27] RailSystemModel. https://rsm.uic.org/. Accessed: 2023-05-23.

[28] Railway Infrastructure and Layout Aided Designer. https://www.rail-aid.com/.

[29] SafeCap Platform. http://safecap.sourceforge.net/index.shtml. Accessed:
2021-07-15.

[30] SPARK Pro. https://www.adacore.com/sparkpro. Accessed: 2023-08-12.

[31] The B-Toolkit. https://web.archive.org/web/20041012141220/http://www.
b-core.com/ONLINEDOC/BToolkit.html. Accessed: 2023-05-16.

[32] The ERTMS/ETCS signalling system. http://www.railwaysignalling.eu/
wp-content/uploads/2016/09/ERTMS_ETCS_signalling_system_revF.pdf. Ac-
cessed: 2022-03-16.

[33] UIC - International Union of Railways. https://uic.org/. Accessed: 2023-06-26.

[34] WHAT IS FORMAL METHODS? http://shemesh.larc.nasa.gov/fm/fm-what.
html. Accessed: 2023-02-28.

[35] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, USA, 1996.

[36] V. S. Alagar and K. Periyasamy. The Z Notation, pages 461–538. Springer London,
London, 2011.

[37] Jon Barwise. An Introduction to First-Order Logic. In Jon Barwise, editor, HAND-
BOOK OF MATHEMATICAL LOGIC, volume 90 of Studies in Logic and the Foun-
dations of Mathematics, pages 5–46. Elsevier, 1977.

115

https://mcrl2.org/web/index.html
https://openembedd.inria.fr/MDE/MDEtools/index.html
https://github.com/meeduse/Samples
https://www.metacase.com/mep/
https://www.omg.org/index.htm
http://openetcs.org/
https://learn.microsoft.com/en-us/visualstudio/modeling/overview-of-the-domain-specific-language-tools-user-interface?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/modeling/overview-of-the-domain-specific-language-tools-user-interface?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/modeling/overview-of-the-domain-specific-language-tools-user-interface?view=vs-2022
https://github.com/hhu-stups/specifications/tree/master/prob-examples/B
https://github.com/hhu-stups/specifications/tree/master/prob-examples/B
https://www.railml.org/en/home.html
https://rsm.uic.org/
https://www.rail-aid.com/
http://safecap.sourceforge.net/index.shtml
https://www.adacore.com/sparkpro
https://web.archive.org/web/20041012141220/http://www.b-core.com/ONLINEDOC/BToolkit.html
https://web.archive.org/web/20041012141220/http://www.b-core.com/ONLINEDOC/BToolkit.html
http://www.railwaysignalling.eu/wp-content/uploads/2016/09/ERTMS_ETCS_signalling_system_revF.pdf
http://www.railwaysignalling.eu/wp-content/uploads/2016/09/ERTMS_ETCS_signalling_system_revF.pdf
https://uic.org/
http://shemesh.larc.nasa.gov/fm/fm-what.html
http://shemesh.larc.nasa.gov/fm/fm-what.html

[38] Luteberget Bjørnar and Johansen Christian. Efficient verification of railway infras-
tructure designs against standard regulations. Formal Methods in System Design,
51:1–32, 2018.

[39] Dines Bjørner. Formal Software Techniques for Railway Systems. IFAC Proceedings
Volumes, 33(9):101–108, 2000. 9th IFAC Symposium on Control in Transportation
Systems 2000, Braunschweig, Germany, 13-15 June 2000.

[40] Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic
Control and Software Engineering. In CTS2003: 10th IFAC Symposium on Con-
trol in Transportation Systems, August, Seikei University, United Kingdom, 2003.
Elsevier.

[41] Dines Bjørner. Domain Engineering - Technology Management, Research and En-
gineering, volume 4 of COE Research Monograph Series. JAIST, 2009.

[42] Jean-Paul Bodeveix, Mamoun Filali, Julia Lawall, and Gilles Muller. Formal Meth-
ods Meet Domain Specific Languages. In Proceedings of the 5th International Con-
ference on Integrated Formal Methods, page 187–206. Springer, 2005.

[43] Mark Bosschaart, Egidio Quaglietta, Bob Janssen, and Rob M.P. Goverde. Efficient
formalization of railway interlocking data in RailML. Information Systems, 49:126–
141, 2015.

[44] Erwan Bousse, Dorian Leroy, Benoit Combemale, Manuel Wimmer, and Benoit
Baudry. Omniscient Debugging for Executable DSLs. Journal of Systems and
Software, 137:261–288, 2018.

[45] Mark Bouwman, Djurre van der Wal, Bas Luttik, Mariëlle Stoelinga, and Arend
Rensink. A Case in Point: Verification and Testing of a EULYNX Interface. Form.
Asp. Comput., 35(1), mar 2023.

[46] Jonathan P. Bowen and Michael G. Hinchey. Applications of Formal Methods. Pren-
tice Hall PTR, USA, 1st edition, 1995.

[47] Stephen D. Brookes and A.W. Roscoe. CSP: A Practical Process Algebra, page
187–222. Association for Computing Machinery, New York, NY, USA, 1 edition,
2021.

[48] Barrett R. Bryant, Jeff Gray, Marjan Mernik, Peter J. Clarke, Robert B. France, and
Gabor Karsai. Challenges and Directions in Formalizing the Semantics of Modeling
Languages. Computer Science and Information Systems, 8(2):225–253, 2011.

[49] Michael J. Butler, Alexander Raschke, Thai Son Hoang, and Klaus Reichl, editors.
6th International Conference, ABZ, volume 10817 of LNCS. Springer, 2018.

[50] A. Chiappini, A. Cimatti, L. Macchi, O. Rebollo, M. Roveri, A. Susi, S. Tonetta,
and B. Vittorini. Formalization and validation of a subset of the European Train
Control System. In 2010 ACM/IEEE 32nd International Conference on Software
Engineering, volume 2, pages 109–118, 2010.

[51] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet,
José Meseguer, and Carolyn Talcott. All about Maude – a high-performance logical
framework. How to specify, program and verify systems in rewriting logic. With
CD-ROM., volume 4350. Berlin: Springer, 2007.

116

[52] Marcelo Paternostro Ed Merks Dave Steinberg, Frank Budinsky. EMF: Eclipse
Modeling Frameworke. Addison-Wesley, 2nd edition, 2009.

[53] Jack B. Dennis. Petri Nets, pages 1525–1530. Springer US, Boston, MA, 2011.

[54] S. Eker, J. Meseguer, and Ambarish Sridharanarayanan. The Maude LTL Model
Checker. Electron. Notes Theor. Comput. Sci., 71:162–187, 2002.

[55] J. Endresen, Erik Carlson, Thomas Moen, K. Alme, Øystein Haugen, Gøran K.
Olsen, and A. Svendsen. Train Control Language – Teaching Computers Interlock-
ing. WIT Transactions on the Built Environment, 103:651–660, 2008.

[56] Alessio Ferrari and Maurice H. Ter Beek. Formal Methods in Railways: A System-
atic Mapping Study. ACM Comput. Surv., 55(4), nov 2022.

[57] Brian T. Graham. Formal Methods and Verification, pages 1–7. Springer US,
Boston, MA, 1992.

[58] Nicolas Halbwachs. A Synchronous Language at Work: The Story of Lustre. In
Stefania Gnesi and Tiziana Margaria, editors, Formal Methods for Industrial Critical
Systems, pages 15–31. John Wiley & Sons, Inc., Hoboken, NJ, USA, November 2012.

[59] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, USA, 2004.

[60] Akram Idani. Meeduse: A Tool to Build and Run Proved DSLs. In Brijesh Dongol
and Elena Troubitsyna, editors, Integrated Formal Methods, pages 349–367, Cham,
2020. Springer International Publishing.

[61] Akram Idani and Yves Ledru. B for Modeling Secure Information Systems - The
B4MSecure Platform. In ICFEM 2015, volume 9407 of LNCS, pages 312–318.
Springer, 2015.

[62] Akram Idani, Yves Ledru, Abderrahim Ait Wakrime, Rahma Ben Ayed, and
Philippe Bon. Towards a Tool-Based Domain Specific Approach for Railway Sys-
tems Modeling and Validation. In Simon Collart-Dutilleul, Thierry Lecomte, and
Alexander Romanovsky, editors, Reliability, Safety, and Security of Railway Sys-
tems. Modelling, Analysis, Verification, and Certification, pages 23–40, Cham, 2019.
Springer International Publishing.

[63] Akram Idani, Yves Ledru, Abderrahim Ait Wakrime, Rahma Ben Ayed, and Simon
Collart-Dutilleul. Incremental Development of a Safety Critical System Combining
formal Methods and DSMLs. In Kim Guldstrand Larsen and Tim Willemse, editors,
Formal Methods for Industrial Critical Systems, pages 93–109, Cham, 2019. Springer
International Publishing.

[64] Akram Idani, Yves Ledru, and Germán Vega. Alliance of model-driven engineering
with a proof-based formal approach. Innov. Syst. Softw. Eng., 16(3):289–307, 2020.

[65] Alexei Iliasov, Ilya Lopatkin, and Alexander Romanovsky. The SafeCap Platform
for Modelling Railway Safety and Capacity. In Computer Safety, Reliability, and
Security, volume 8153 of LNCS, pages 130–137. Springer, 2013.

[66] Alexei Iliasov and Alexander Romanovsky. SafeCap Domain Language for Reason-
ing about Safety and Capacity. In 2012 Workshop on Dependable Transportation
Systems/Recent Advances in Software Dependability, pages 1–10, 2012.

117

[67] Alexei Iliasov and Alexander Romanovsky. The SafeCap toolset for improving rail-
way capacity while ensuring its safety. 2012.

[68] International Union of Railways (UIC). RailTopoModel - Railway infrastructure
topological model, 2016. ISBN 978-2-7461-2513-1.

[69] Ańıbal Iung, João Carbonell, Luciano Marchezan, Elder Macedo Rodrigues, Maicon
Bernardino, Fabio Paulo Basso, and Bruno Medeiros. Systematic mapping study
on Domain-Specific Language development tools. Empirical Software Engineering,
25(5):4205–4249, 2020.

[70] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT
Press, 2012.

[71] Karim Jahed, Mojtaba Bagherzadeh, and Juergen Dingel. On the benefits of file-
level modularity for EMF models. Software and Systems Modeling, 20(1):267–286,
Feb 2021.

[72] Phillip JAMES. Designing Domain Specific Languages for Verification and Appli-
cations to the Railway Domain. Theses, Swansea University, January 2014.

[73] Phillip James, Alexander Knapp, Till Mossakowski, and Markus Roggenbach. De-
signing Domain Specific Languages – A Craftsman’s Approach for the Railway Do-
main Using Casl. In Narciso Mart́ı-Oliet and Miguel Palomino, editors, Recent
Trends in Algebraic Development Techniques, pages 178–194, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[74] Phillip James, Andrew Lawrence, Markus Roggenbach, and Monika Seisenberger.
Towards Safety Analysis of ERTMS/ETCS Level 2 in Real-Time Maude. In Cyrille
Artho and Peter Csaba Ölveczky, editors, Formal Techniques for Safety-Critical
Systems, pages 103–120, Cham, 2016. Springer International Publishing.

[75] Phillip James and M. Roggenbach. Encapsulating Formal Methods within Domain
Specific Languages: A Solution for Verifying Railway Scheme Plans. Mathematics
in Computer Science, 8:11–38, 2014.

[76] Phillip James, Matthew Trumble, Helen Treharne, Markus Roggenbach, and Steve
Schneider.

[77] Sebastian Krings and Philipp Körner. Prototyping Games Using Formal Methods.
In Antonio Cerone and Markus Roggenbach, editors, Formal Methods – Fun for
Everybody, pages 124–142, Cham, 2021. Springer International Publishing.

[78] Lukas Ladenberger, Jens Bendisposto, and Michael Leuschel. Visualising Event-B
Models with B-Motion Studio. In Maŕıa Alpuente, Byron Cook, and Christophe
Joubert, editors, Formal Methods for Industrial Critical Systems, pages 202–204,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[79] Lukas Ladenberger and Michael Leuschel. BMotionWeb: A Tool for Rapid Creation
of Formal Prototypes. In Rocco De Nicola and Eva Kühn, editors, Software En-
gineering and Formal Methods, pages 403–417, Cham, 2016. Springer International
Publishing.

[80] Thierry Lecomte. Applying a Formal Method in Industry: A 15-Year Trajectory. In
Maŕıa Alpuente, Byron Cook, and Christophe Joubert, editors, Formal Methods for
Industrial Critical Systems, pages 26–34, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

118

[81] Bruno Legeard, Fabien Peureux, and Mark Utting. Automated Boundary Testing
from Z and B. In Lars-Henrik Eriksson and Peter Alexander Lindsay, editors, FME
2002:Formal Methods—Getting IT Right, pages 21–40, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[82] Michael Leuschel and Michael Butler. ProB: A Model Checker for B. In Keijiro
Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods,
pages 855–874, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[83] Michael Leuschel and Michael Butler. ProB: An Automated Analysis Toolset for
the B Method. Int. J. Softw. Tools Technol. Transf., 10(2):185–203, feb 2008.

[84] Michael Leuschel, Mireille Samia, and Jens Bendisposto. Easy graphical animation
and formula visualisation for teaching B. 2008.

[85] Shaoying Liu and Weikai Miao. A formal specification animation method for oper-
ation validation. Journal of Systems and Software, 178:110948, 2021.

[86] Bjørnar Luteberget, John J. Camilleri, Christian Johansen, and Gerardo Schneider.
Participatory Verification of Railway Infrastructure by Representing Regulations in
RailCNL. In Alessandro Cimatti and Marjan Sirjani, editors, Software Engineering
and Formal Methods, pages 87–103, Cham, 2017. Springer International Publishing.

[87] Amel Mammar, Marc Frappier, Steve Jeffrey Tueno Fotso, and Régine Laleau. A
formal refinement-based analysis of the hybrid ERTMS/ETCS level 3 standard.
International Journal on Software Tools for Technology Transfer, 22(3):333–347,
June 2020.

[88] Atif Mashkoor, Felix Kossak, and Alexander Egyed. Evaluating the suitability
of state-based formal methods for industrial deployment. Software: Practice and
Experience, 48(12):2350–2379, 2018.

[89] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to Develop
Domain-Specific Languages. ACM Comput. Surv., 37(4):316–344, December 2005.

[90] Bart Meyers, Hans Vangheluwe, Joachim Denil, and Rick Salay. A Framework for
Temporal Verification Support in Domain-Specific Modelling. IEEE Transactions
on Software Engineering, 46(4):362–404, 2020.

[91] Peter D. Mosses. CASL Reference Manual, The Complete Documentation of the
Common Algebraic Specification Language, volume 2960 of Lecture Notes in Com-
puter Science. Springer, 2004.

[92] Monika Müllerburg, Leszek Holenderski, Olivier Maffëıs, Agathe Merceron, and
Matthew Morley. Systematic testing and formal verification to validate reactive
programs. Softw. Qual. J., 4(4):287–307, 1995.

[93] Mogens Nielsen, Klaus Havelund, Kim Ritter Wagner, and Chris George. The
RAISE language, method and tools. Formal Aspects of Computing, 1(1):85–114,
Mar 1989.

[94] Liu Ning, Wang Keming, Hou Xili, Simon Xia, Wang, and Cheng Peng. Application
Exploration of B Method in the Development of Safety-Critical Control Systems.
In Computers in Railways XVII: Railway Engineering Design and Operation, page
285–292, Southampton, United Kingdom, 2020. WIT Press.

119

[95] Leonel Nóbrega, Nuno Jardim Nunes, and Helder Coelho. The Meta Sketch Editor.
In Gaëlle Calvary, Costin Pribeanu, Giuseppe Santucci, and Jean Vanderdonckt,
editors, Computer-Aided Design of User Interfaces V, pages 201–214, Dordrecht,
2007. Springer Netherlands.

[96] Object Managment Group. Unified Modeling Language (UML), v2.5.1, 2017.

[97] Peter Csaba Ölveczky and José Meseguer. The Real-Time Maude Tool. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 332–336, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[98] Jan Peleska. Industrial-Strength Model-Based Testing - State of the Art and Current
Challenges. In Alexander K. Petrenko and Holger Schlingloff, editors, Proceedings
Eighth Workshop on Model-Based Testing, Rome, Italy, 17th March 2013, volume
111 of Electronic Proceedings in Theoretical Computer Science, pages 3–28. Open
Publishing Association, 2013.

[99] Iyad Rahwan, Manuel Cebrian, Nick Obradovich, Josh Bongard, Jean-François Bon-
nefon, Cynthia Breazeal, Jacob W. Crandall, Nicholas A. Christakis, Iain D. Couzin,
Matthew O. Jackson, Nicholas R. Jennings, Ece Kamar, Isabel M. Kloumann,
Hugo Larochelle, David Lazer, Richard McElreath, Alan Mislove, David C. Parkes,
Alex ‘Sandy’ Pentland, Margaret E. Roberts, Azim Shariff, Joshua B. Tenenbaum,
and Michael Wellman. Machine behaviour. Nature, 568(7753):477–486, 2019.

[100] A. E. Haxthausen RAISE Language Group. The RAISE Specification Language.
The BCS Practitioners Series. Prentice Hall Int., 1992.

[101] Silvio Ranise and C. Tinelli. The SMT-LIB Standard: Version 1.2. 2005.

[102] Francesco Rispoli, Alessandro Neri, and Fabio Senesi. Innovative train control sys-
tems based on ERTMS and satellite-public TLC networks. WIT Transactions on
the Built Environment, 135:51–61, 2014.

[103] José Rivera, Francisco Durán, and Antonio Vallecillo. Formal Specification and
Analysis of Domain Specific Models Using Maude. Simulation, 85:778–792, 10 2009.

[104] Abhik Roychoudhury. Embedded Systems and Software Validation. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2009.

[105] Shubhangi Salunkhe, Randolf Berglehner, and Abdul Rasheeq. Formal
Verification of EULYNX Models Using Event-B and RODIN. https:
//wiki.event-b.org/images/RodinWorkshop2021_Formal_Verification_
of_EULYNX_Models_Using_Event-B_and_RODIN_slides.pdf, 2021. Accessed:
2023-08-04.

[106] Stephan Schulz. E – a brainiac theorem prover. AI Communications, 15:111–126,
2002.

[107] Thierry Servat. BRAMA: A New Graphic Animation Tool for B Models. In Jacques
Julliand and Olga Kouchnarenko, editors, B 2007: Formal Specification and Devel-
opment in B, pages 274–276, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[108] Pengfei SUN. Model based system engineering for safety of railway critical systems.
Theses, Ecole Centrale de Lille, July 2015.

120

https://wiki.event-b.org/images/RodinWorkshop2021_Formal_Verification_of_EULYNX_Models_Using_Event-B_and_RODIN_slides.pdf
https://wiki.event-b.org/images/RodinWorkshop2021_Formal_Verification_of_EULYNX_Models_Using_Event-B_and_RODIN_slides.pdf
https://wiki.event-b.org/images/RodinWorkshop2021_Formal_Verification_of_EULYNX_Models_Using_Event-B_and_RODIN_slides.pdf

[109] Andreas Svendsen, Øystein Haugen, and Birger Møller-Pedersen. Synthesizing Soft-
ware Models: Generating Train Station Models Automatically. In Iulian Ober and
Ileana Ober, editors, SDL 2011: Integrating System and Software Modeling, pages
38–53, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[110] Andreas Svendsen, Gøran K. Olsen, Jan Endresen, Thomas Moen, Erik Carlson,
Kjell-Joar Alme, and Øystein Haugen. The Future of Train Signaling. In Krzysztof
Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus Völter, editors,
Model Driven Engineering Languages and Systems, pages 128–142, Berlin, Heidel-
berg, 2008. Springer Berlin Heidelberg.

[111] U. Tikhonova, M.W. Manders, M.G.J. Brand, van den, S. Andova, and T. Verhoeff.
Applying model transformation and Event-B for specifying an industrial DSL. In
Workshop on Model Driven Engineering, Verification and Validation, CEUR Work-
shop Proceedings, pages 41–50. CEUR-WS.org, 2013.

[112] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Vol. I.
Computer Science Press, Inc., USA, 1988.

[113] VITE: Virtualisation of the Test Environment. Lab architecture State of the art
analysis, 2017.

[114] M. Völter, T. Stahl, J. Bettin, A. Haase, S. Helsen, K. Czarnecki, and B. von Stock-
fleth. Model-Driven Software Development: Technology, Engineering, Management.
Wiley Software Patterns Series. Wiley, 2013.

[115] Linh H. Vu, Anne E. Haxthausen, and Jan Peleska. A Domain-Specific Language for
Generic Interlocking Models and Their Properties. In Alessandro Fantechi, Thierry
Lecomte, and Alexander Romanovsky, editors, Reliability, Safety, and Security of
Railway Systems. Modelling, Analysis, Verification, and Certification, pages 99–115,
Cham, 2017. Springer International Publishing.

[116] Linh Hong Vu, Anne Elisabeth Haxthausen, and Jan Peleska. A Domain-Specific
Language for Railway Interlocking Systems. In Eckehard Schnieder and Geza Tar-
nai, editors, Proceedings of the 10th Symposium on Formal Methods for Automation
and Safety in Railway and Automotive Systems, FORMS/FORMAT 2014, pages
200–209. Technische Universität Braunschweig, 2014.

[117] Nathaniel Watson, Steve Reeves, and Paolo Masci. Integrating User Design and
Formal Models within PVSio-Web. volume 284, 11 2018.

[118] Christoph Weidenbach, Uwe Brahm, Thomas Hillenbrand, Enno Keen, Christian
Theobald, and Dalibor Topić. Spass Version 2.0. In Andrei Voronkov, editor, Au-
tomated Deduction—CADE-18, pages 275–279, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

[119] Michelle Werth and Michael Leuschel. VisB: A Lightweight Tool to Visualize For-
mal Models with SVG Graphics. In Alexander Raschke, Dominique Méry, and
Frank Houdek, editors, Rigorous State-Based Methods, pages 260–265, Cham, 2020.
Springer International Publishing.

[120] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal
Methods: Practice and Experience. ACM Comput. Surv., 41(4), oct 2009.

[121] Yuchen XIE. Formal Modeling and Verification of Train Control Systems. Theses,
Ecole Centrale Lille, February 2019.

121

[122] Asfand Yar, Akram Idani, Yves Ledru, and Simon Collart-Dutilleul. Visual An-
imation of B Specifications Using Executable DSLs. In Proceedings of the 25th
International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings, MODELS ’22, page 617–626, New York, NY, USA, 2022.
Association for Computing Machinery.

[123] Faiez Zalila, Xavier Crégut, and Marc Pantel. A DSL to Feedback Formal Verifica-
tion Results. In Michalis Famelis, Daniel Ratiu, and Gehan M. K. Selim, editors,
13th Model-Driven Engineering, Verification and Validation Workshop at MODELS
conference 2016 (MoDeVVa 2016), volume 1713, pages 30–39, Saint Malo, France,
October 2016. CEUR-WS : Workshop proceedings.

[124] Chen Zheng, Samir Assaf, and Benôıt Eynard. Towards Modelling and Standardis-
ation Techniques for Railway Infrastructure. In José Ŕıos, Alain Bernard, Abdelaziz
Bouras, and Sebti Foufou, editors, Product Lifecycle Management and the Industry
of the Future, pages 254–263, Cham, 2017. Springer International Publishing.

[125] Zhi Zhu, Yongling Lei, Qun Li, and Yifan Zhu. Formalizing Model Transformations
Within MDE. In Houbing Song and Dingde Jiang, editors, Simulation Tools and
Techniques, pages 25–42, Cham, 2019. Springer International Publishing.

122

	List of Figures
	List of Tables
	List of Acronyms
	Publications
	Introduction
	Context
	Validation
	Verification
	Standards

	Contribution
	Meeduse
	Proposed Framework

	Results
	Outline
	Résumé en français

	DSLs And Formal B Method
	Domain Specific languages
	Static Semantics
	Dynamic Semantics

	Formal B Method
	Abstract Machine
	Refinements
	Inclusion

	Conclusion
	Résumé en français

	Railway Standards
	ERTMS/ETCS
	UIC Standard documents
	EULYNX
	RSM Concepts
	ETCS Related Concepts
	Alignment between RSM and ERTMS/ETCS

	Conclusion
	Résumé en français

	State-Of-The-Art
	Introduction
	Modeling
	Structure vs Behavior
	Structure
	Behavior
	Discussion

	Standards
	V & V (Verification & Validation)
	Verification
	Validation
	Summary of V & V

	Conclusion
	Résumé en français

	Visual Animation of B Specifications
	Introduction
	Approach
	The Lift Example
	Proposed architecture
	Illustration

	Designing a domain-centric visual animation
	The Lift DSL
	Static Semantics
	Linking B data structures
	Initialization
	Operations
	Enhancements

	Application to Scheduler Example
	Discussion
	Conclusion
	Résumé en français

	Validation of proved ERTMS/ETCS B specification
	Introduction
	Towards an Iterative Formal Model-Driven Approach
	An ERTMS/ETCS Hybrid Level 3 DSL
	DSL version 0 (DSLv0)
	Translation of the meta-model
	Linkage Machines
	Modeling and visual animation

	Findings and Analysis
	Next Iterations
	Unexpected behaviors
	Lessons learned

	Conclusion
	Résumé en français

	Automatic Linkage Generation
	Introduction
	Pattern-Definition
	Pattern-Application

	Experimentation with the Tool
	Lift
	Scheduler
	ERTMS/ETCS

	Discussion
	Conclusion
	Résumé en français

	Application
	Introduction
	Methodology
	Alignment of Meta-models
	Translation of Meta-Model into B
	Linkage Invariants and Properties
	Mapping class SectionList to route (minTTD to maxTTD)
	Mapping class TvpSection to Ttds
	Mapping enumeration SectionVacancyTypes to set StateTTD
	Mapping TvpSection occupancy to Ttds occupancy (variable stateTTD)
	Mapping class VirtualSubSection to Vss
	Other examples

	Linkage Operations
	Visualization
	Topology Design
	Tabular Route View
	State View
	ETCS Document's Style View

	Conclusion
	Résumé en français

	Conclusion and Perspectives
	Contribution
	Perspectives
	Résumé en français

