
HAL Id: tel-04676388
https://theses.hal.science/tel-04676388

Submitted on 23 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dimension reduction for fluid simulation and animation
Chloé Paliard

To cite this version:
Chloé Paliard. Dimension reduction for fluid simulation and animation. Computer Science [cs].
Institut Polytechnique de Paris, 2024. English. �NNT : 2024IPPAT023�. �tel-04676388�

https://theses.hal.science/tel-04676388
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
4I

P
PA

T0
23 Dimension reduction for fluid simulation

and animation
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (ED IP
Paris)

Spécialité de doctorat : Informatique, données, IA

Thèse présentée et soutenue à Palaiseau, le 27/06/2024, par

CHLOÉ PALIARD

Composition du Jury :

Mathieu Desbrun
Advanced Researcher, INRIA/Ecole Polytechnique, France Président/Examinateur

Florence Bertails-Descoubes
Directrice de Recherche, INRIA Grenoble Rhône-Alpes, France Rapportrice

Maud Marchal
Professeure, Université/INSA de Rennes, France Rapportrice

Barbara Solenthaler
Professeure, ETH Zurich, Suisse Examinatrice

Marco Cagnazzo
Professeur, Université de Padoue, Italie Directeur de thèse

Kiwon Um
Maı̂tre de Conférences, Télécom Paris, France Co-encadrant de thèse

Nils Thuerey
Professeur, Université Technique de Munich, Allemagne Co-encadrant de thèse

Jean-Marc Thiery
Senior Research Scientist, Adobe, France Invité

Remerciements

I want to start by thanking the members of my jury. Barbara, Florence, Mathieu, Maud, thank
you for accepting to be part of my PhD jury. Thank you for your relevant and interesting
remarks and questions, I really appreciated our discussions during the defense, and thank you
for your very kind feedback on my manuscript and presentation. More specifically, thank you
to my reviewers, Florence and Maud, for thoroughly reading my manuscript and for your very
detailed reports. I also want to thank the members of my CSI, Barbara and Florence, for giving
me great scientific and personal advice all along my PhD. Florence, merci pour tes nombreux
conseils du premier CSI à ma soutenance, et merci de m’avoir montré que la recherche pouvait
être faite d’une manière différente. Merci de t’être rendue aussi disponible, ton aide m’a été
très précieuse.

I want to thank my PhD advisors, Kiwon, Nils and Marco. Thank you for accepting to
supervise and advise me during my PhD, and for your trust. Marco, thank you for accepting to
join us on this thesis subject and for supervising me as well as you could from Italy. Nils, thank
you for your presence during my first project and for your very relevant and sharp scientific
advice. Kiwon, thank you for your strong presence at the beginning of my PhD, and for trying
your best although a lot of (positive) change happened in your life during my thesis.

Je souhaite désormais remercier l’équipe IMAGES. J’ai d’abord été accueillie dans le CG
group de Tamy et Jean-Marc, composé également de tou.tes les ancien.nes membres avec qui
nous avons partagé de nombreux verres à la Butte aux Cailles et qui n’ont jamais manqué de
conseils pour me guider au début de ma thèse. Je voudrais surtout remercier mes co-thésard.es
pour deux ans : Jérémie, Tong, avec une mention très spéciale pour Elie et Alban.

Ensuite j’ai intégré la bien plus grande famille qu’est l’équipe IMAGES, avec ses perma-
nent.es et doctorant.es d’une qualité humaine rare. Merci infiniment à tou.tes les permanent.es
pour votre présence, vos conseils, votre humour et votre bienveillance. Plus particulièrement,
j’aimerais remercier chaleureusement Florence et Yann. Merci à vous deux de m’avoir aidée
à une période critique et de vous être rendu.es disponibles alors que vos emplois du temps
étaient bien remplis. Merci également à Yann et aux différent.es membres du conseil des
doctorant.es (Nicolas, Emanuele, Mateus, Alban, Rebeca, Zoé, Gwilherm) pour l’attention
immense portée au bien-être de tous et toutes, et pour l’investissement souvent invisible.

Evidemment un merci immense à tou.tes les doctorant.es de l’équipe, avec qui j’ai partagé
mes journées à Saclay aussi bien que les restos thaï ou les verres au Diamant, ainsi que les
soirées endiablées et inoubliables au Divan du monde. Plus particulièrement, j’ai la chance
d’avoir de véritables ami.es dans cette équipe, et sans vous je n’aurais certainement pas soutenu
ma thèse. Merci Rebeca, Raph (Remé), Marie, Pierrick, Robin, Antoine, Erwan, Nico et Raph.
Merci également à Inès, Matthis, Emma, Zoé et Gwilherm. J’espère qu’on se refera un Parc
Astérix très bientôt !

J’aimerais également remercier Delphine, secrétaire du département IDS, pour son aide
précieuse de mon premier jour comme doctorante jusqu’à ma soutenance. Nous avons

1

2

beaucoup de chance de t’avoir, ta gentillesse et ta disponibilité ainsi que ton efficacité sont
indispensables au bon fonctionnement du département.

Ensuite, j’aimerais remercier tou.tes les membres d’Adobe Paris, permanent.es et stagiaires,
qui m’ont d’abord accueillie en stage en 2022 puis comme visiteuse régulière cette dernière
année. Merci à Tamy et son formidable Paris lab pour votre confiance. En particulier, je
voudrais remercier ma tutrice et mon tuteur de stage de césure, Rosalie et Arthur. Vos
mots toujours encourageants, votre reconnaissance et votre confiance m’ont donné une force
immense pour la deuxième partie de ma thèse, merci infiniment. Arthur, j’ai une chance folle
d’avoir pu travailler avec toi quotidiennement. Ton intérêt pour divers sujets scientifiques
mais surtout ton humanité et ta sensibilité, ainsi que ton humour, ont été et sont toujours très
précieux pour moi. Merci.

J’en viens désormais à mes collègues de quatrième année de thèse du Adobe Paris lab :
Axel, Elie, JM, Jose et Loïs. J’aimerais d’abord souligner que vous êtes des chercheurs d’une
qualité rare, et je suis honorée d’avoir eu votre confiance et d’avoir partagé vos réflexions
scientifiques. JM et Elie, merci de m’avoir proposé de travailler avec vous pour la seconde
partie de ma thèse, votre confiance a été très précieuse pour moi. Jose, thank you for joining
this project with us, it was a pleasure to work with a great researcher like you. Thank you
for your kindness and your advice. Elie, tu as toujours été présent et volontaire pour m’aider,
du premier au dernier jour de ma thèse, et tu es par ailleurs un ami précieux, merci. Loïs,
merci pour ton engagement sur le projet, mais surtout merci pour les discussions toujours
passionnantes sur divers sujets de société. Tes blagues fines et toujours bien placées étaient
un élément indispensable au bon déroulement de nos réunions. Merci aussi pour ton amitié.
JM, l’enthousiasme et l’optimisme incarnés, tu m’impressionneras toujours. Merci d’avoir
cru en moi et de t’être autant engagé dans ma thèse, tu as été un quatrième encadrant hors
paire. Désolée de ne pas avoir prolongé encore ma thèse, j’aurais travaillé sur les PMVC
et les peintures dendritiques avec toi avec grand plaisir ! Enfin Axel, je crois qu’aucun mot
ne saurait décrire la gratitude que je ressens envers toi. J’ai rarement vu une personne aussi
investie dans ses projets, tu y mets tout ton coeur en plus de ton cerveau, tu es un humain et
surtout un ami formidable. Merci pour ta disponibilité, ton intelligence, ta bienveillance, ta
gentillesse et ton humour. Mais aussi merci pour les potins et même pour les petits pics quand
on était tous les deux à bout en deadline SIGGRAPH, alors que Loïs était très détendu et que
JM enchainaît les canettes de Coca... Cette scène restera gravée à jamais dans ma mémoire.

Je voudrais désormais remercier ma famille. Maé merci de m’avoir accueillie ces deux
dernières semaines dans l’hôtel de la rue Mayet, ça m’a permis d’aborder ma soutenance
sereinement. Merci également pour ta présence indispensable depuis toujours. Loïc, Emilie et
Neris, merci pour votre soutien et de vous être toujours intéressé.es à ce que je faisais, même
si ça vous semblait toujours un peu étranger. Benji, merci pour ton soutien infaillible dans la
thèse comme dans le reste. Merci pour ton humour plus ou moins fin, ta présence et ton écoute.
Mélino, merci pour ton soutien, ton écoute et tes mots, je suis heureuse de te compter parmi
mes amies. Enfin, Papa et Maman, merci d’avoir toujours cru en moi et de m’avoir encouragée
tout en me laissant une grande indépendance. Merci à vous deux de m’avoir transmis votre
bienveillance et votre gentillesse, ainsi que votre résilience. Papa, merci de m’avoir transmis la
persévérance, le dépassement de soi et l’intégrité et la droiture comme valeurs non négociables.
Maman, merci de m’avoir transmis l’attention, l’écoute, la sensibilité au monde et aux gens.
Mais également merci de m’avoir appris à ne pas me laisser faire et à m’affirmer, ça m’a été
indispensable pour terminer cette thèse.

Je voudrais maintenant remercier Géraldine, ma soeur. Tu n’as absolument jamais cessé
de croire en moi, tu m’appelais ton petit génie ou encore Einstein au lycée et tu faisais des
plans pour le jour où j’aurais mon propre théorème et où tu pourrais arrêter de travailler car

3

j’aurais assez de succès pour nous faire vivre toutes les deux convenablement. On a tout vécu
toutes les deux, une amitié comme la notre c’est rare et très précieux, et c’est une grande force
pour traverser des épreuves telles qu’une thèse. Merci pour tout.

Je pense aussi particulièrement à ma deuxième maman. Tu as toujours cru en moi et me
l’as toujours dit et montré. Je suis sûre que tu aurais été très fière de me voir soutenir et devenir
docteure, et y penser me fait chaud au coeur. Je suis heureuse d’emprunter aujourd’hui la voie
de la danse qui était la tienne.

Ensuite, j’aimerais justement remercier les amies et copines que j’ai connues par la danse :
Zoé, Mathilde, Floriane, Margot et Charlotte. Merci pour votre soutien et vos mots pendant les
derniers mois de cette thèse. Je tiens également à remercier mes deux professeures de danse
de cette année, Juliette et Lucie, qui m’ont beaucoup aidée à prendre confiance en moi.

Enfin, merci Théo de toujours être là, du moins quand les trains te le permettent... Merci
Anaïs, Madeleine, PF, Raphaëlle et Margaux pour votre amitié et votre soutien. Merci Alex,
Clémence et Ananas pour vos mots, votre écoute et votre soutien sans faille, ainsi que pour
tous les bons moments partagés ensemble. Merci aux relecteur.ices de mon manuscrit, qui
m’ont aussi fait répéter ma soutenance et sont surtout des ami.es formidables : Octave, Axel,
Rebeca, Elie. Merci Pablo, Mathu, Julo et Rekkos de me donner un espace amical où je me
sens à ma place et aimée, et merci pour votre folie. Merci Pablo pour ton amitié précieuse.
Merci Laura pour ta présence, ton soutien et ton écoute. Merci d’être toujours là dans les
moments importants et surtout dans les moments galères ou difficiles. Merci Renaud et Chloé
pour votre amitié, qui est indispensable à mon bonheur depuis bientôt dix ans.

Soso, mon soleil, merci pour ta présence et ton soutien quotidiens depuis la fin de la
première année à Télécom. Merci aussi pour ton ordi, qui a été mon plus fidèle compagnon
ces derniers mois. Mais surtout merci de toujours voir et me montrer le bon côté des choses,
merci pour ta force, pour ton écoute et pour tes mots, ainsi que pour les rires.

Rebeca, Dr Vetil, merci pour ta présence plus que quotidienne, pour ta confiance, ton
écoute et tes mots. Merci pour les très nombreux fous rires et merci aussi pour les larmes.
On s’est trouvées il y a un an et demi quand nos thèses nous avaient poussées à bout, et je
ressens une fierté immense en nous voyant être arrivées là où on est aujourd’hui, toutes les
deux docteures. Merci pour tout.

J’aimerais écrire quelques mots supplémentaires pour remercier Sylvie Coussot, psycho-
logue pour les doctorant.es de l’IPP. Son aide m’a été précieuse, que ce soit pour ma thèse
ou mon avenir ou bien sûr ma santé mentale en général. Une grande majorité de doctorant.es
présentent des symptômes dépressifs pendant leur thèse, et c’est loin d’être normal. N’hésitez
pas à consulter un.e professionnel.le de santé si vous êtes doctorant.e et que vous n’allez pas
bien, même si vous pensez que "ça n’est pas grand chose". De même, n’hésitez pas à aiguiller
vos étudiant.es si vous êtes encadrant.e.

4

Résumé

L’informatique graphique est un domaine en pleine expansion, qui vise principalement à
produire du contenu visuel sur des supports numériques, pour des applications telles que les
effets visuels, les jeux vidéo ou la conception assistée par ordinateur. Un des objectifs de
la recherche en informatique graphique est d’améliorer le photoréalisme des objets et des
matériaux virtuels, ou d’animer des personnages et des phénomènes naturels de la manière la
plus réaliste possible. Néanmoins, malgré les améliorations considérables des performances
du matériel graphique ainsi que des avancées algorithmiques majeures au cours du temps,
certains phénomènes naturels restent extrêmement coûteux à simuler. Par exemple, capturer la
dynamique et les comportements complexes d’un fluide nécessite une quantité importante de
mémoire et de calculs. Cependant, les ressources sont limitées et la consommation d’énergie
est donc coûteuse en termes d’argent et, surtout, a un impact important sur l’environnement et
les vies humaines. Pour ces différentes raisons, de nombreuses recherches se sont concentrées
sur l’optimisation de ces simulations.

Plusieurs pistes ont été proposées et explorées pour améliorer les performances des sim-
ulations de fluides, qui sont animées par la résolution d’équations différentielles partielles
(EDP). Ces équations peuvent être extrêmement coûteuses à résoudre, en particulier dans le
cas des fluides où les EDP en question sont les équations de Navier-Stokes, fortement non
linéaires. Par conséquent, il reste particulièrement difficile de produire des écoulements de
fluides en temps réel à des résolutions élevées. Un sujet important, qui s’est développé à un
rythme sans précédent dans les années 2000, est l’utilisation de réseaux de neurones profonds
en conjonction avec des solveurs basés sur la physique afin de réduire le temps de calcul
pour la résolution de ces EDP. Cette approche basée sur les données s’est avérée efficace
pour imiter de tels solveurs (ou des parties de ceux-ci), par exemple pour recréer de très
petits détails tels que des gouttelettes. Dans cette thèse, nous explorons d’abord l’utilisation
de l’apprentissage profond pour créer un espace réduit dans lequel un solveur peut opérer à
moindre coût, tout en produisant des solutions de haute qualité. En effet, la plupart des travaux
antérieurs axés sur la réduction de dimension utilisent un échantillonnage linéaire traditionnel
pour réduire les degrés de liberté d’une simulation, et nous proposons d’autres espaces plus
pertinents, sans contrainte prédéfinie. Nous proposons ainsi un modèle qui permet de simuler
des écoulements turbulents à une résolution quatre fois supérieure à celle de l’entrée dans
chaque dimension, avec des performances d’exécution améliorées par rapport à un solveur
haute résolution. Ce modèle est présenté pour divers scénarios physiques et comparé à des
techniques traditionnelles.

En plus d’utiliser des modèles d’apprentissage profond pour réduire les degrés de liberté
d’une simulation, nous proposons de relier les communautés de la simulation basée sur la
physique et du traitement de la géométrie, afin d’améliorer les performances de l’animation

5

6

de fluides. En géométrie, il est de plus en plus courant d’utiliser des opérateurs intrinsèques –
qui ne nécessitent pas de représentation 3D de la surface – car ils peuvent être plus robustes
que les opérateurs extrinsèques. D’autre part, un défi récurrent dans la simulation de fluides
est la gestion des interactions fluide-solide. En particulier, certains scénarios d’application
nécessitent de résoudre les équations de Navier-Stokes principalement sur la surface, alors que
certains modèles simulent l’ensemble du domaine 3D, ce qui est extrêmement coûteux. Partant
de ces observations, nous souhaitons utiliser les contributions récentes sur les opérateurs
intrinsèques pour simuler des fluides sur des surfaces 3D avec des coûts réduits. Nous nous
concentrons sur le modèle “smoothed-particle hydrodynamics” (SPH) qui est simple à mettre
en œuvre et dont les équations peuvent être étendues pour prendre en compte de nombreux
effets physiques, tels que les écoulements multiphases ou les interactions avec des objets
rigides. Pour adapter la formulation SPH aux surfaces 3D, nous proposons de rassembler
les voisinages des particules grâce aux géodésiques du plus court chemin, et de déplacer ces
particules de manière intrinsèque sur la surface. Tout cela est facile à mettre en œuvre sur
le GPU, ce qui permet de simuler des dizaines de milliers de particules sur divers maillages
triangulaires à une vitesse interactive. Nous présentons les effets typiques du SPH et nos
résultats sur de nombreux maillages, qui peuvent être non orientables ainsi qu’auto-intersectés,
pour des fluides aux propriétés physiques variées.

En résumé, dans cette thèse nous présentons plusieurs façons de réduire les coûts des sim-
ulations de fluides par l’utilisation de la réduction de dimension. Notre première contribution
utilise des modèles d’apprentissage profond, tandis que la seconde tire profit des recherches
récentes en matière de modélisation de la géométrie intrinsèque.

Abstract

Computer graphics is an ever growing field, which mostly aims at producing visual content on
digital media, for applications such as visual effects, video games or computer assisted design.
Part of the goal of research in computer graphics is to improve the photorealism of objects
and materials, or to animate characters and natural phenomena as realistically as possible.
Nevertheless, despite tremendous improvements in graphics hardware performance as well as
key algorithmic advancements over time, some natural phenomena remain extremely costly to
simulate. For example, capturing the complex dynamics and behaviors of a fluid requires a
significant amount of memory and computational resources. However, resources are available
in finite amounts, thus consuming energy is expensive in terms of money, and most of all has
an important impact on the environment and on human lives. For these various reasons, a lot
of research has been focusing on optimizing such simulations.

Several tracks have been proposed and explored over the years to improve the performance
of fluid simulations, that are typically animated by solving partial differential equations (PDE).
Such equations can be extremely costly to resolve, especially in the case of fluids where
the relevant PDEs are the highly non-linear Navier-Stokes equations. Therefore, it remains
particularly difficult to produce real-time fluid flows at high resolutions. An important subject,
that has been growing at an unprecedented pace since the beginning of the years 2000, is the
use of deep neural networks in conjunction with physics-based solvers in order to reduce the
computing time for solving PDEs. This data-driven approach has proven to be efficient in
mimicking such solvers (or parts of them) for example to recreate very small details such as
droplets. In this thesis, we first explore the use of deep learning to create a reduced space
in which a solver can operate with lower costs, while still outputting high-quality solutions.
Indeed, most previous works focusing on dimension reduction use a traditional bilinear down-
sampling operation to reduce the degrees of freedom of a simulation, and we propose other,
more relevant spaces, with no pre-defined constraint. We thus propose a model that enables
the simulation of turbulent flows at a resolution four times higher than that of the given input
in each dimension, with improved runtime performance compared to a high-resolution solver.
This is showcased for various physical scenarios, with comparisons to traditional techniques.

In addition to using deep learning models to reduce the degrees of freedom of a simulation,
we propose to create a bridge between the physics-based simulation and geometry processing
communities, in order to improve the performance of fluid animation. In geometry processing,
it is becoming more and more common to use intrinsic operators – that do not require a 3D
embedding of the surface – as they can provide more robustness than extrinsic ones. On the
other hand, one recurring challenge in fluid simulation is the handling of fluid-solid interac-
tions. In particular, some application scenarios require solving the Navier-Stokes equations
mostly on the surface, while some frameworks still simulate the whole 3D domain, which

7

8

is extremely costly. Starting from these observations, we use the important contributions on
intrinsic operators for simulating fluids on 3D surfaces with reduced costs. We focus on the
smoothed-particle hydrodynamics (SPH) model, which is simple to implement and whose
equations can be extended to account for numerous physical effects, such as multi-phase flows
or interactions with rigid bodies. To adapt the SPH formulation to 3D surfaces, we propose to
gather the particles’ neighborhoods thanks to shortest-path geodesics, and to displace such
particles in an intrinsic manner on the surface. All of this is straightforward to implement on
the GPU, enabling the simulation of tens of thousands of particles on various triangle meshes
at interactive speed. We present typical SPH effects and showcase our results on numerous
meshes, that can be non-orientable as well as self-intersecting, for fluids with diverse physical
properties.

In summary, in this thesis we present several ways of reducing the costs of fluid simulations
by the use of dimension reduction. Our first contribution uses deep learning models to do so,
while the second one takes benefit from the discoveries in intrinsic geometry modeling.

Contents

1 Introduction 11
1.1 Context and challenges . 12
1.2 Objectives and outline . 14

2 Technical background 17
2.1 Fluid simulation . 17

2.1.1 Definitions . 18
2.1.2 Navier-Stokes equations . 19
2.1.3 Eulerian fluid dynamics . 19
2.1.4 Lagrangian fluid dynamics . 21

2.2 Deep learning . 25
2.2.1 Multilayer perceptron . 25
2.2.2 Convolutional neural networks . 26

2.3 Intrinsic geometry processing . 29
2.3.1 Mesh representations . 29
2.3.2 Geodesic distances . 31

3 Related work 35
3.1 Fluid simulation and animation . 35

3.1.1 Eulerian specification . 35
3.1.2 Lagrangian specification . 36
3.1.3 Hybrid methods . 38

3.2 Deep learning . 38
3.2.1 Deep learning methods . 38
3.2.2 Physics-based deep learning . 40

3.3 Intrinsic geometry processing . 41

4 Exploring physical latent spaces 43
4.1 Introduction . 44
4.2 Related work . 44
4.3 Exploring physical latent spaces . 45
4.4 Experiments . 46

4.4.1 Karman vortex street . 46
4.4.2 Decaying turbulence . 47
4.4.3 Forced turbulence . 48
4.4.4 Smoke plume . 48
4.4.5 Network architecture and training procedure 49

9

10 CONTENTS

4.5 Results . 51
4.5.1 Reduced representations . 51
4.5.2 Karman vortex street . 52
4.5.3 Decaying turbulence . 53
4.5.4 Forced turbulence . 54
4.5.5 Ablation study . 56
4.5.6 Runtime performance . 56
4.5.7 Additional visual results . 57

4.6 Limitations and future work . 58
4.7 Conclusion . 59

5 Intrinsic SPH simulation on 3D surfaces 65
5.1 Introduction . 66

5.1.1 Related work . 67
5.1.2 Contributions . 68

5.2 Method . 69
5.2.1 Mathematical notations . 69
5.2.2 Neighborhoods computations . 70
5.2.3 Velocity and forces update . 71
5.2.4 Walk . 72

5.3 Results . 73
5.3.1 Implementation details . 73
5.3.2 Intrinsic SPH simulation . 73

5.4 Analysis . 75
5.4.1 Memory usage and performance . 75
5.4.2 Approximations . 76

5.5 Conclusion . 77

6 Conclusion 81
6.1 Exploring physical latent spaces . 81

6.1.1 Contributions . 81
6.1.2 Perspectives . 81

6.2 Intrinsic SPH on surfaces . 82
6.2.1 Contributions . 82
6.2.2 Perspectives . 83

6.3 Societal concerns . 84

Chapter 1

Introduction

Figure 1.1: The simulation of natural phenomena is often used for entertainement purposes, for example
in movies. Here, a poster of the movie Elemental by Pixar representing the four natural elements is
shown.

11

12 CHAPTER 1. INTRODUCTION

1.1 Context and challenges
Computer graphics is a rich and diverse field standing at the junction of Art and Science. Its
applications range from computer-aided design to biomedical imaging by way of animated
movies, visual effects (VFX) and video games. While it is easy to understand the usefulness
of Computer Science research in a field like biomedical imaging for example, one can wonder
how research can benefit artistic domains, such as animation or VFX. Nowadays, most artistic
projects are rendered on digital media or created, at least drafted, via digital tools. Creators
thus need to elaborate digital environments, such as a virtual scene with objects, characters,
lighting, etc. Therefore, computer graphics research can provide them with relevant tools,
which are usually designed in collaboration with them. Such tools can be created to answer
specific needs of artists, or to enhance their creativity by widening the range of possibilities
they are presented with. For that reason, part of the role of researchers in computer graphics
comes down to providing artists with responsive tools that are as lightweight and intuitive as
possible.

While there are probably as many artistic universes as content creators, most artistic
projects are based on a certain reality common to all. Moreover, if one wants people to identify
with their piece of art or story, to understand the intentions that they put in it, it needs to have
at least a few common features with reality. To that end, a lot of research projects focus on
reproducing real-world scenarios as accurately as possible, in environments that remain virtual.
The rendering community works on objects’ or people’s appearance, whereas the animation
community focuses on their movements or interactions. The latter is particularly important, as
an unusual physical behavior can quickly take the viewer out of immersion, especially if it
comes from a character that is supposed to mimic humans or animals.

Figure 1.2: Two scenes from the movie Frozen 2 by Disney show: (left) human, animal and imaginary
characters standing in a natural environment made of water, rocks and trees, and (right) a realistic
simulation of a dam burst.

Realistic animation consitutes a whole branch of computer graphics, comprising character
animation as well as physics-based simulation (Figure 1.1, Figure 1.2). The latter covers
an extensive range of phenomena, like rigid and deformable body dynamics, fluid motion,
or interactions between them. Physics-based simulations require solving partial differential
equations (PDE), which is done thanks to numerical methods that usually demand a lot of com-
puting power. Despite the exceptional advances in computing hardware since the beginning
of the 21st century, simulating natural phenomena at interactive speed with limited memory

1.1. CONTEXT AND CHALLENGES 13

Figure 1.3: A typical 3D mesh is the Stanford bunny. Here, three different tesselations are used, from
the most (left) to the least (right) refined.

remains a challenging task. The ever increasing urge for high resolution details in applications
such as VFX and animation leads to computationally intensive simulations with high memory
footprints. For instance, Figure 1.2 - right shows a scene from Frozen 2 representing a dam
burst, releasing huge amounts of water that are colliding with the remaining structure of the
dam. This creates splashes and droplets that require a lot of resources to be animated at the
desired high resolution.

In this thesis, we specifically focus on the domain of fluid simulation, which is particularly
demanding in terms of computation because of the non-linearity of the Navier-Stokes equa-
tions. Indeed, modeling fluids, whether in liquid or gas form, entails solving these equations
numerically for structures than can be arbitrarily complex and challenging to resolve. To
tackle performance and resolution issues that arise from this complexity, one solution is to
reduce the dimensionality of the problem. To do so, lots of works have focused on data-driven
methods. Such methods can help circumvent the heaviest parts of the simulation, by either
replacing numerical solvers or parts of them by deep neural networks (DNN). For instance,
some works simulate the least costly parts of a liquid with a typical solver, while resolving the
high-frequency details (such as droplets) with a DNN, in order to make performance gains on
these very numerous and small details. Others on the contrary prefer to make approximations
on the low frequency areas of the simulation, and concentrate their computing power on
small-scale details to enable high-resolution realistic animation. It is also possible to replace
an entire solver by a DNN, or to train models that learn the super-resolution of fluids in order
to retrieve the details of a simulation made in a lower-resolution space.

In addition to fluids being extremely demanding in terms of computing resources, the
interactions between fluids and solids can be quite complicated to model in an accurate and
stable way. However, some problems involving such interactions do not require solving the
equations on the whole domain. Indeed, the region of interest can be at the surface of the
object, for instance when modeling viscous liquids such as paint or honey pouring or dripping
down a surface, or when simulating water flowing on a window. In this case, simulating the
whole 3D domain is not necessary, and restricting the computations to a surface can lead
to significant performance gains. In computer graphics, the most common representation
for objects is a triangle mesh (Figure 1.3) where the surface is represented as a set of 3D
triangles, made of vertices interconnected by edges. A surface can be described using either
an extrinsic or intrinsic approach. In the former there exists a 3D embedding of the surface,
where the vertices have world-space positions and the distances between them are calculated

14 CHAPTER 1. INTRODUCTION

in the Euclidean space. The intrinsic description of a manifold 1 however does not require
a global coordinate system, as quantities can be measured exclusively on the surface. For
instance, distances between vertices in an intrinsic approach can be measured using geodesics,
which are lines following the surface and its curves. Geodesic distances are thus equivalent to
unfolding the mesh in a planar representation and applying Euclidean measurements there.
One simple analogy to the intrinsic approach is the use of cardinal directions in order to find
our way on Earth. These directions are defined in a 2D plane, making it easier to find our way
than using a 3D curved domain. We can easily guide ourselves in this local tangential plane,
in the same way as particles of a fluid can be displaced intrinsically on a surface.

1.2 Objectives and outline
In this thesis, we aim at using dimension reduction to make fluid simulation computationally
lighter than with traditional numerical solvers. In Chapter 2, we present technical notions
on fluid simulation, deep learning and geometry processing that we deem necessary to fully
understand the content of this thesis. We then detail in Chapter 3 the main contributions
introduced by these three communities over the years. In doing so, we wish to give more
context and perspective on our contributions.

Thanks to the breakthrough in deep learning technologies, numerous works have been
using deep learning with fluids, either for mimicking physics-based solvers that intend to solve
the Navier-Stokes equations, for transforming a simulation (e.g. using super-resolution), or for
simulating a specific part or feature of a fluid (e.g. droplets). Some works also focused on
using deep neural networks to simulate a reduced version of a fluid, or to correct the numerical
errors induced by such a reduced representation. In Chapter 4, we introduce a data-driven
model that aims at outputting a high-resolution fluid simulation from a unique low-resolution
frame, with minimal costs. To do so, we propose a deep neural network model that, when
applied together with a low-resolution differentiable solver, outputs frames in a dimension
four times larger than the input.

Our complete network, named ATO, is composed of three models that are trained together
and optimized for a joint goal. We first transform the initial frame in an unknown and physi-
cally unconstrained latent space, using an encoder network. A step of the solver is performed
on this latent state, and the next frame is adjusted to match the latent representation induced
by the encoder network. This process involving the solver and the adjustment network is
repeated multiple times to get a reduced solution. These reduced states are finally processed
by a state-of-the-art super-resolution model that is trained in conjunction with the encoder and
adjustment networks, in order to maximize the resemblance of the final approximated solution
to a high-resolution ground truth. We demonstrate the performance of our model in complex
physical scenarios, representing turbulent flows with various physical properties. We compare
our model to a high-resolution ground truth, as well as to state-of-the-art works that either
replace the reduced solver by a neural network, or correct the numerical errors brought on by
the low-resolution at which the solver is applied.

In Chapter 5, we wish to explore the intrinsic simulation of liquids on surfaces. The
smoothed-particle hydrodynamics (SPH) method has become a standard in the fluid simulation
community thanks to its flexibility and simplicity. On the other hand, intrinsic modeling has

1A manifold of dimension 1 is a curve, and a surface is a manifold of dimension 2. This notion generalizes to
dimension n.

1.2. OBJECTIVES AND OUTLINE 15

been getting more and more appreciated in geometry processing for the robustness that it
provides. Nonetheless, to the best of our knowledge no work has intended to link both yet. In
this chapter, we aim at building a bridge between these two communities by using the SPH
method on surfaces, thus restricting the simulation to a 2D domain in 3D space.

In SPH-based simulations, particles are equipped with scalar and vector quantities (e.g.,
density, pressure or velocity) averaged in local neighborhoods to compute the influence of
each particle on its neighbors. The particles’ motion is governed by Newton’s laws, and each
one of them can be treated in parallel, which makes it particularly interesting for real-time
simulation. Our model conceptually assumes that each particle sees its neighborhood through
a local logarithmic map on the surface and interacts with neighboring particles along shortest-
path geodesics, resulting in intrinsic SPH simulations on 3D surfaces. We optimize the two
canonical operators needed for this goal – neighborhood’s averaging and intrinsic particle
displacement – to obtain efficient parallel computations that cope with challenging inputs such
as self-intersecting and non-orientable surfaces with arbitrary boundaries. We demonstrate
the versatility of our approach by porting standard SPH-based effects, such as surface tension,
droplets or mixing fluids with different viscosities or masses. This leads to the simulation of
tens of thousands of particles at interactive speeds on high quality meshes.

We finally conclude this manuscript in Chapter 6 where we summarize our contributions
on dimension reduction for fluid simulation and animation. We also develop perspectives
opened by this thesis that we consider as interesting future works.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Technical background

In this chapter, we introduce some key technical elements in order to make the comprehension
of this thesis easier. We first focus on fluid simulation, detailing its governing equations and
the data structures and simulation frameworks that are typically used. We then introduce
important deep learning notions in order to correctly apprehend Chapter 4. Finally, we present
the geometry processing elements that we deem essential to fully comprehend Chapter 5. The
corresponding literature overview is given in the next chapter.

2.1 Fluid simulation

In this section, we first detail the fluid models and equations known as the Navier-Stokes
equations, and then present the numerical methods that have been introduced to solve them,
in particular the ones popularly used in computer graphics. In this thesis, we are particularly
interested in Newtonian fluid flows, i.e. fluids whose viscosity is not affected by shear rate;
water and air can be assumed of this type. In computational fluid dynamics, two different
specifications are commonly employed to model Newtonian fluids. In the Eulerian framework,
measures are made at fixed locations through which the flow is passing, whereas in the
Lagrangian one, measures are taken on moving physical parcels. In the following, we explain
how to animate fluids in both representations, which are illustrated in Figure 2.1.

Eulerian Lagrangian

Figure 2.1: Illustration of the Eulerian (left) and Lagrangian (right) specifications for fluids. The physical
quantities are measured on the blue dots.

17

18 CHAPTER 2. TECHNICAL BACKGROUND

2.1.1 Definitions

Fluid flows are described by a set of physical quantities. These can vary depending on the
use-case scenario, but the following properties are most commonly used:

• The density ρ is defined as the ratio of the mass of fluid and its volume. It is expressed
in kg.m−3.

• The pressure p is the amount of force applied perpendicularly to the surface of an
element per unit area. It is expressed in kg.m−1.s−2.

• The viscosity µ of a fluid describes its resistance to deformation. It is expressed in
kg.m−1.s−1. The kinematic viscosity ν is sometimes used, with ν = µ

ρ
.

• Finally, the flow velocity or velocity field v is a vector field that represents the flow
direction and speed of an element of fluid at a certain position and time. It is expressed
in m.s−1.

Operators The following differential operators are commonly used for fluid simulation:

• The gradient of a scalar differentiable function f : Rn → R gives a vector field and is
written as ∇ f : Rn → Rn. It represents the direction and rate of fastest change of f , and
is expressed as:

∇ f =

∂ f
∂x1
...

∂ f
∂xn

 (2.1)

• The divergence of a vector field f , written as ∇ · f : Rn → R, represents the outgoing
flux of the vector field around the point where it is evaluated. It is expressed as:

∇ · f = ∑
i

∂ f
∂xi

. (2.2)

• The Laplacian of a twice differentiable scalar function f , written as ∇2 f : R→ Rn, is
given by the divergence of the gradient of this function. It is expressed as:

∇
2 f = ∑

i

∂ 2 f
∂x2

i
. (2.3)

• Finally, the material derivative of a vector field f (x, t) depending on both time and
position, in a flow that has a velocity v, is defined as

D f
Dt

≡ ∂ f
∂ t

+v ·∇ f

where ∇ f is the covariant derivative of f .

2.1. FLUID SIMULATION 19

2.1.2 Navier-Stokes equations
Fluid flows are modeled by partial differential equations (PDE) that describe their trajectories
and behaviors, and that ensure fundamental physical principles, i.e., the conservation of mass
and momentum, which are essential for their realistic simulation. Mass conservation means
that the difference between the mass entering and leaving the considered volume must be null,
as follows:

Dρ

Dt
+ρ(∇ ·v) = 0. (2.4)

In fluid mechanics the property of compressibility describes how much a considered
volume can see its density being modified under the action of pressure. For example, gaseous
fluids are easily compressible, whereas liquids are much harder to compress. In our case,
incompressible fluid flows are simulated. Their density being constant, Equation 2.4 can be
simplified as:

∇ ·v = 0. (2.5)

Newton’s second law of motion states that “The change of motion of an object is propor-
tional to the force impressed”. We describe this change of motion with the momentum of the
object, representing the product of its mass and velocity. We thus get the following equation
for fluids:

ρ
Dv
Dt

= f (2.6)

with f representing the forces applied to the fluid. f comprises pressure and viscous forces,
and typically includes external forces such as the gravity g. It can be written as:

f =−∇p+µ∇
2v+ρg

where p represents the pressure of the fluid and µ its dynamic viscosity.

In conclusion, joining the previous equations with Equation 2.5, the movements of fluids
can be described by the incompressible Navier-Stokes equations as follows: ρ(∂v

∂ t +(v ·∇)v) =−∇p+µ∇2v+ρg

∇ ·v = 0
(2.7)

2.1.3 Eulerian fluid dynamics
In the Eulerian framework, physical properties such as density, pressure or velocity are
measured on grids, that can be collocated or staggered grids [49] (as illustrated in Figure 2.2).
In the former, the velocity vectors are stored at the cells’ centers, whereas they are stored on
the cells’ faces in the latter, making the computation of the divergence of a cell easier. In both
cases, the scalar variables are defined at the centers of the cells. These grids are given to a
numerical solver that aims at predicting the values of each physical field at the next time-step.

20 CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.2: Example of a grid in an Eulerian framework, showing that the velociy values can be stored
either at the cells’ centers (left) or on their faces (right).

Solving method Many numerical solvers have been created to try and resolve Equation 2.7
in an Eulerian framework. Among them, we use one popular algorithm which uses Chorin’s
projection method with an operator splitting scheme [29]. In this method, the velocity field
is first predicted by ignoring the pressure term −∇p of Equation 2.7, which is then used to
correct the predicted velocity in order to ensure divergence-free (Equation 2.5). First, the
physical quantities are initialized at grid points depending on the desired initial scenario. Then,
the following steps are usually executed, as described in the seminal work of J. Stam [140]:

1. Physical quantities are advected along the velocity field of the fluid,

2. External forces are applied,

3. Diffusion is applied to take viscosity effects into account,

4. The divergence-free condition is enforced.

The second step is straight-forward, but the three others have been at the heart of multiple
research works. The advection step (1) consists in transporting the physical quantities along
the velocity field of the fluid, including the velocity itself. This step is usually unstable if
solved using a naive approximation of the finite difference method, leading to the use of small
time-steps. Thus, the semi-Lagrangian method is popularly used for the advection, thanks to
its unconditionally stable algorithm. Let us consider a physical quantity A at a grid point xi at
time-step t. We first imagine that we have a particle p at this location, and compute the position
x where it would have been at the previous timestep t −∆t in a Lagrangian representation. We
know the values of A at grid points at this time-step, because they have been set at the previous
simulation step. We can thus retrieve A(x, t −∆t) by a simple interpolation of these values.
Since we consider that p was advected from x to xi without changing its physical properties,
we get that A(xi, t) = A(x, t −∆t).

Then, the diffusion step (3) consists in solving the viscosity term µ∇2v of the PDE. It
is possible to discretize the diffusion operator and use an explicit time-stepping scheme, as
follows:

vt+1 = vt +ν∆t∇2vt,

but it can suffer from numerical instabilities if the viscosity coefficient or time-step size is too
large or if the density is too small. This can be addressed by using an implicit scheme, which

2.1. FLUID SIMULATION 21

leads to a sparse linear system that can be solved using an iterative linear system solver:

(I −ν∆t∇2)vt+1 = vt.

Finally, the most expensive step in fluid solvers is the projection step (4), which consists in
ensuring that the fluid is divergence-free, as the previous steps may have created undesirable
behaviors. Indeed, the velocity obtained after the diffusion step is usually not divergence-free,
and needs to be projected into a divergence-free field, by using a pressure field that is retrieved
from the Poisson equation thanks to an iterative linear system solver:

vt+1 = v∗t − ∆t
ρ

∇pt+1

∇2 pt+1 = ρ

∆t ∇ ·v∗t

where v∗ represents the intermediate velocity field that was predicted without accounting for
the pressure forces.

Boundary conditions The steps that are described above are performed in a simulation
domain; thus, it is essential to define boundary conditions. Mainly two types are considered:
Dirichlet and Neumann boundary conditions. The choice of the boundary conditions depends
on the use case. For instance, we might want a flow to evolve in a box that is opened at one
side but closed on the others. Accordingly, we may apply a Dirichlet boundary condition for
the velocity, setting the velocity values at the closed sides to zero such that no flux through
the boundary is allowed. On the other hand, we may apply a Neumann boundary condition
for the pressure in the Poisson equation, setting the pressure gradient at the boundary to zero
such that no pressure difference is allowed. Additionally, a periodic boundary condition can
be considered such that the one side of the domain is connected to the other side.

2.1.4 Lagrangian fluid dynamics
In the Lagrangian specification for fluids, physical quantities are measured on individual
parcels. In this framework, the Navier-Stokes equations (Equation 2.7) can be considerably
simplified. Indeed, since we measure physical properties on the fluid parcels that we follow,
the material derivative of the velocity is equivalent to the simple time derivative:

Dv
Dt

≡ dv
dt

.

Therefore, if we regroup the pressure, viscosity and external forces in a single term

f := fpressure + fviscosity + fexternal , (2.8)

Equation 2.6 gives for the update of the velocity field:

dv
dt

=
f
ρ
.

In this thesis, we focus on a specific method to simulate Lagrangian fluids, namely
smoothed-particle hydrodynamics (SPH) [98]. This technique relies on a set of equations

22 CHAPTER 2. TECHNICAL BACKGROUND

that enable the interpolation of physical quantities anywhere in space. In the following, we
describe the most basic SPH method for 2D domains. We note that this SPH formulation does
not allow for the simulation of incompressible fluids and can lead to a poor approximation and
unstable simulations. Therefore we refer the reader to Chapter 3, Section 3.1 for a presentation
of more recent and better approximations.

Let A denote a scalar quantity that we wish to measure, such as density. The value of A is
stored for each particle, and it can be evaluated at any given position x by taking a weighted
average of its value at neighboring particles in a radius h, with a weighting kernel Wh. These
particles contribute depending on their position x j, their mass m j and their density ρ j, as
follows:

A(x) := ∑
j

m j

ρ j
A(x j)Wh(x− x j). (2.9)

If a quantity A has to be differentiated with respect to space, as it is the case for example to
compute some forces, only Wh in Equation 2.9 is differentiated, as follows:

∇A(x) := ∑
j

m j

ρ j
A(x j)∇Wh(x− x j)

or
∇

2A(x) := ∑
j

m j

ρ j
A(x j)∇

2Wh(x− x j).

With these equations, we can compute the different components of the force term described
in Equation 2.8, making sure that the particles have a symmetrical influence on each other as
described by Netwon’s third law. Firstly, if we used this equation in a straightforward manner
to define the pressure force −∇p applied to a particle i by its neighborhood, we would get

fpressure
i := ∑

j
m j

p j

ρ j
∇Wh(xi − x j)

which would not give the desired symmetrical behavior. Thus, it is made symmetrical by using
the average of the particles’ pressure, and it can be expressed as:

fpressure
i := ∑

j
m j

p j + pi

2ρ j
∇Wh(xi − x j). (2.10)

Similarly, the viscosity force µ∇2v applied to a particle i is expressed as:

fviscosity
i := µ ∑

j
m j

vj −vi

ρ j
∇

2Wh(xi − x j). (2.11)

Finally, the surface tension can be estimated as an additional force. It models how liquids
occupy the minimal area possible when interacting with air for example. First, the surface
normal is estimated as:

n := ∑
j

m j

ρ j
∇Wh(xi − x j)

2.1. FLUID SIMULATION 23

Figure 2.3: The three kernels W de f ault , W pressure and W viscosity (thick lines) that are typically used for
SPH simulations are shown along their gradients (thin lines) and Laplacians (dashed lines).

and its divergence represents the curvature of the surface. The surface tension is thus described
by the following equation in the SPH framework:

fsur f ace
i :=−σ

n
|n| ∑j

m j

ρ j
∇

2Wh(xi − x j) (2.12)

with σ a tension parameter.

Smoothing kernels Specific smoothing kernel functions can be used depending on the
desired quality, stability or performance. In this manuscript, we use the kernels from [101]
(shown in Figure 2.3) adapted for 2D as follows:

• The default kernel is:

W de f ault
h (r) :=

315
64πh8

{
(h2 − r2)3 0 ≤ r ≤ h
0 otherwise

• For pressure forces we use:

∇W pressure
h (r) :=

−45
πh5

x
∥x∥

{
(h− r)2 0 < r ≤ h
0 otherwise

where x is the vector pointing to the evaluation point from the center of the kernel, thus
∥x∥= r.

• For viscosity forces we use:

∇
2W viscosity

h (r) :=
45

πh5

{
h− r 0 ≤ r ≤ h
0 otherwise

24 CHAPTER 2. TECHNICAL BACKGROUND

ALGORITHM 1: A typical step of the smoothed-particle hydrodynamics algorithm.

for each particle i do
compute neighborhood

end
for each particle i do

ρi = ∑ j m jWh(xi − x j)
pi = k(ρi −ρ0) with k the stiffness parameter

end
for each particle i do

Compute fi = fpressure
i + fviscosity

i + fsur f ace
i + fexternal

i
vi,t+1 = vi,t +

∆t
ρi
× fi

xi,t+1 = xi,t +∆t ×vi,t
end

Solving method In Algorithm 1 we describe one typical step of the most basic SPH method,
as proposed by Müller and colleagues in [101]. First, at each time-step the neighborhood of
the particles must be set. The neighborhood of a particle i at position xi is defined as all the
particles lying inside a circle of radius h (the kernel smoothing radius) and center xi. To find
the particles’ neighbors, hash tables are typically used to prevent going over n2 particles at
each step (with n the total number of particles). Particles are usually sorted spatially, and only
the ones inside a restricted bounding volume are checked. In Chapter 5, we detail the specific
neighborhood structures that we employ for our intrinsic SPH implementation.

After the neighborhoods of the particles are set, we can compute the density and pressure
values of each particle thanks to Equation 2.9. We can then compute the forces acting on them
thanks to Equation 2.10, Equation 2.11, and Equation 2.12. Finally, the position and velocity
of each particle can be updated using a numerical integration scheme such as the Euler method.
The time step used for the numerical integration must obey to the Courant–Friedrichs–Lewy
condition as follows, to ensure convergence:

∆t ≤C× d
∥vmax∥

where C is called the CFL number (often set to 0.4 for SPH), d is the diameter of a particle
and vmax the maximum velocity of the flow.

Boundary conditions Finally, boundaries in SPH are in general handled using several layers
of frozen particles placed at the borders that are taken into account in the forces calculation,
but stay static during the simulation. This can cause some fluid particles to go through the
boundary, which has been tackled for example by Ihmsen and colleagues in [59] by using a
prediction-correction scheme.

2.2. DEEP LEARNING 25

2.2 Deep learning
In Chapter 4, we present a hybrid method that interleaves deep learning with a physics solver.
In this section, we thus wish to introduce deep neural networks and how they work. We
first present the seminal multilayer perceptron model, and then introduce the widely used
convolutional neural networks. A more thorough review of the literature in deep learning
methods is presented in Chapter 3.

2.2.1 Multilayer perceptron
Deep learning is a branch of machine learning, itself being a subdomain of artificial intelligence.
The goal of machine learning algorithms is to make decisons in an autonomous fashion, aiming
at the achievement of a specific task, which can be for example classification, segmentation or
content generation. A subclass of these algorithms are neural networks, which are composed
of layers of neurons that are stacked together. Each neuron can be activated under certain
conditions, which will influence the output of the algorithm. The particularity of such networks
is that they are capable of distinguishing data that is not linearly separable. These neural
networks operate by first learning features from very large amounts of data in a training phase,
in order to then extrapolate from other inputs at inference time.

The first neural network model was introduced in 1958 by Rosenblatt [121], and was
composed of three layers of neurons: one input, one output and one intermediate hidden layer.
Later, other works proposed to use more than one hidden layer, giving birth to the multilayer
perceptron (MLP), of which an example architecture is shown in Figure 2.4. A neural network
is said to be a deep neural network (DNN) if composed of more than three layers.

Let us denote as x ∈ Rn the input signal received by a neuron, we can write its output as:

fθ ,b(x) = σ(θ T x+b) (2.13)

where θ ∈ Rn is the weight vector of the neuron, b ∈ R is its bias and σ is a non-linear
function called the activation function. The combination of neurons outputs a value that is

Figure 2.4: Example architecture of a multilayer perceptron with two hidden layers from [2]. The circles
represent the neurons.

26 CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.5: Example of convolutional layer. The kernel is applied to a small patch of the input image,
resulting in an output that has the same size as the input before padding was applied.

compared to a reference, thanks to a loss function. The parameters (weight and bias) of the
neurons are optimized during training, with the goal to minimize the average error between
the model prediction and the ground truth, over the training dataset. To run this optimization, a
backpropagation is performed over the network’s neurons. To that end, the stochastic gradient
descent (SGD), introduced in 1951 [118, 70] is generally used. This algorithm runs a gradient
descent iteratively to update the weights of the neurons, starting from a random initialization
of the parameters. This method, by introducing noise in the gradients’ estimation, prevents
getting stuck in local minima. Later, the now extensively used ADAM optimizer [75] has been
proposed, introducing momentum as well as a decaying learning rate to the SGD optimization
method, thus accelerating its convergence rate.

Finally, the activation functions play an important role in the network optimization. The
rectified linear unit (ReLU), defined as σ(x) = max(0,x), has been used extensively. However,
its null derivative for negative inputs led to “dying neurons” – i.e. neurons that are never
activated for a wide range of input values – during the backpropagation process. To that end,
the Leaky ReLU function has been introduced, defined as σ(x) = max(εx,x), with ε ∈]0,1[. It
presents the advantage of having a strictly positive derivative when its input is strictly negative.

2.2.2 Convolutional neural networks

In image processing, other types of DNNs are generally used, namely convolutional neural
networks (CNN). Indeed, although MLPs proved their efficiency in many fields, they are not
very well suited for large data such as images, for which they are unnecessarily heavy. For
that reason, Le Cun and colleagues introduced CNNs in 1989 [83]. These models rely on
convolutional kernels (of which an example is shown on Figure 2.5), which can be seen as
filters that are applied all over the input image, leading to the creation of feature maps. These
operations being fully differentiable, the typical training and optimization process described
above can be implemented. Since convolutions have the particularity of being translation-
invariant, these models are frequently used for their capabilities in detecting patterns and
redundancies in an image.

In order to account for the boundary of the input image, a padding is typically applied
before each convolution. The padded values can be zero, or they can be a repetition of the
boundary values. In some cases where periodicity or self-similarity need to be enforced, a
periodic padding can be implemented. Additionally from convolutions, pooling layers are

2.2. DEEP LEARNING 27

Figure 2.6: Architecture of the U-Net model proposed by Ronneberger and colleagues in [120]. This
model is composed of an encoder, a decoder, and skip-connections concatenating feature maps from the
encoder to maps from the decoder. This figure was taken from [1].

commonly applied in CNN architectures in order to reduce the dimension of intermediate
feature maps. The most frequently used pooling layers are max-pooling and average pooling
layers, respectively keeping the maximum or average value in a given window. These are
particularly used when the network is expected to output a single value, for example for
classification algorithms.

In Chapter 4, the deep learning model that we propose is entirely composed of CNNs,
partly in the form of encoder and decoder networks. Such models, which can be seen as
a series of convolutional and pooling layers, are usually linked by a latent space. A latent
space, or latent feature space, is an embedding where elements are placed depending on their
resemblances. It is usually of lower dimensionality than the original input feature space. A first
typical example of encoder-decoder architecture is the autoencoder. An autoencoder comprises
an encoder that transforms the input data into a lower dimensional latent space, and a decoder
that aims at recreating the input from this latent representation. Such models are widely used
for text processing, as well as for image compression, denoising or generation applications.
Another famous encoder-decoder architecture is the U-Net model, first introduced for image
segmentation in biomedical imaging. In this model (of which an architecture is shown on
Figure 2.6), the dimension of the input is first reduced thanks to the encoder network, and the
encoded representation is then transformed back to the original input dimension, with the help
of intermediate skip-connections. These skip-connections concatenate intermediate feature
maps from the encoding phase to maps from the decoding phase, enabling the recovery of
compressed information.

Finally, encoder-decoder CNNs have been used extensively in the context of image
synthesis. Three architectures particularly stand out in this field, namely generative adversarial
networks (GAN), variational autoencoders (VAE) and diffusion probabilistic models Firstly,
GANs (first row of Figure 2.7) are composed of two neural networks: a generator, that learns
to synthesise high-quality outputs from a latent vector sampled from a normal distribution,
and a discriminator, that learns to distinguish between real and synthetic data. The loss of a
GAN is said to be adversarial because both elements are competing against each other. Such
models can be particularly difficult to train, because their goal is not to simply minimize
one loss. However, in cases where this adversarial training is a success, GAN architectures
allow for the generation of diverse, high-quality images. Secondly, variational autoencoders

28 CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.7: Coarse architectures of the GAN, VAE and diffusion models. This figure was taken
from [36].

(second row of Figure 2.7) have a typical autoencoder architecture, with the difference that
their latent space can be seen as a probabilistic distribution. Therefore, instead of mapping
the input data to a single point, the encoder of a VAE outputs the normal distribution of the
latent variable. This method is easy to train and leads to very diverse generation samples, but
often gives blurry outputs. Lastly, diffusion models (third row of Figure 2.7) are operating
in two phases. First, a forward pass is performed during which Gaussian noise is gradually
added to the input data, until it becomes white noise. Then, a neural network learns to remove
this noise in order to recover the original input, with the same number of steps as the forward
pass. Diffusion models are easy to train and allow for the synthesis of diverse and high-quality
samples. However, they are much slower to train than GANs or VAEs.

2.3. INTRINSIC GEOMETRY PROCESSING 29

Figure 2.8: Three manifold meshes are shown: (left) an orientable mesh of a sphere, (middle) a non-
orientable Moebius strip and (right) a non-orientable and self-intersecting Klein bottle.

2.3 Intrinsic geometry processing

In this section we introduce the technical tools that are necessary to correctly approach
Chapter 5, in which we apply geometry processing methods to fluid simulation. We first
describe how a mesh is typically represented, detailing the mathematical formalism that we
use in Chapter 5, and then present the algorithm that we base our work on to compute geodesic
distances.

2.3.1 Mesh representations

In computer graphics, surfaces are often represented by triangle meshes, which are composed
of triangles interconnected by their edges and/or vertices. If the neighborhood of every point
of a mesh is homeomorphic to a disk (or half a disk for boundary points), it is said to be
2-manifold. In this case, every edge is shared by at most two faces. To define if a mesh is also
orientable, we must:

1. define an order to enumerate the triangles’ vertices,

2. check that for each pair of triangles sharing an edge (i, j), i and j appear in opposite
order.

Such orientable meshes (see Figure 2.8 - left) represent real-life objects since they have a
clearly defined interior and exterior. However, in geometry processing, non-orientable meshes
also present interesting mathematical properties. In our case, interesting non-orientable
geometry would for example be the famous Moebius strip and Klein bottle, which is also
self-intersecting, showed in Figure 2.8 - middle and right.

In this manuscript we focus on meshes whose triangles are connected through the edges
only, and not through the vertices. We introduce the mathematical notations and geometrical
formalism that enable us to manipulate points and vectors on such surfaces, as needed for our
contribution on intrinsic fluid simulation.

30 CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.9: Triangle t = (t0, t1, t2), with eu := t1−t0 and ev := t2−t0

Canonical barycentric coordinates for positions and vectors We identify a 3D point p
on a surface S using the index t of the triangle on which p lies, along with its barycentric
coordinates (u,v) inside t = (t0, t1, t2) (see Figure 2.9):

p = t0 +u(t1−t0)︸ ︷︷ ︸
=:eu

+v(t2−t0)︸ ︷︷ ︸
=:ev

= (1−u−v)︸ ︷︷ ︸
=:α0

t0 + u︸︷︷︸
=:α1

t1 + v︸︷︷︸
=:α2

t2.

We define the 3D normal of an input triangle t as

nt =
Nt

∥Nt∥
, with Nt := eu × ev.

Given a 3D vector δδδ , we extract its tangential projection δδδ t on t by removing its normal
component:

δδδ t := (I −ntnT
t)δδδ .

Like for 3D positions, we associate tangent vectors with (δu,δv) coordinates inside t as(
δu
δv

)
=(ET

t Et)
−1ET

t δδδ t =: Ptδδδ t ,

with Et :=(eu|ev) ∈ R3×2

where Pt ∈ R2×3 allows expressing any 3D tangent vector in t as a combination of t’s edges:
δδδ t = δueu +δvev.

One can compute the (u,v) coordinates of a point p ∈ t as(
u
v

)
=: ct(p) = Pt(p− t0).

Using this simple formalism, translating a point p inside t can equivalently be performed in
3D or in (u,v) coordinates, as

ct(p+λδδδ t) = ct(p)+λPtδδδ t

as long as p+λδδδ t remains inside t – or equivalently:
0 ≤ u′ ≤ 1
0 ≤ v′ ≤ 1
0 ≤ 1−u′− v′ ≤ 1

, with (u′,v′) = (u,v)+λ (δu,δv).

2.3. INTRINSIC GEOMETRY PROCESSING 31

e

'

Figure 2.10: Transport of a vector δt1 from a triangle t1 to another triangle t2 thanks to Tt1t2 .

Trivial connections between adjacent triangles Given two adjacent triangles t1 and t2 shar-
ing an edge e (see Figure 2.10), we define f (t1; t2) = f (t2; t1) ∈ {−1;+1} indicating whether
they are oriented consistently or not (e.g., f ((a,b,c);(a,b,d)) =−1, f ((a,b,c);(b,a,d)) =
+1). Following previous work on trivial connections [116, 31], we define a rotation matrix
Tt1t2 mapping tangent vectors in t1 to tangent vectors in t2.

Tt1t2 :=B2BT
1 , with

B1 :=(e|nt1 |e×nt1) ∈ R3×3

B2 :=
(
e|n′

t2 |e×n′
t2

)
∈ R3×3

n′
t2 := f (t1; t2)nt2 .

This transport operation can be seen as (see Figure 2.10):

1. Rotating t2 along the shared edge e to align n′
t2 onto nt1 ;

2. Transporting δδδ t1 into the aligned t2;

3. Rotating t2 back to its original position, with the transported tangent vector.

Note that Tt2t1Tt1t2 = I as transporting vectors from t1 to t2, and immediately back to t1,
preserves them.

Using those notations, one can transport a vector from t1 to t2 in (δu,δv) coordinates using
the following 2D map:

Tt1t2 := Pt2Tt1t2Et1 ∈ R2×2

This map remains invertible as long as the two triangles are not degenerate (i.e., Rank(Et1) =
Rank(Et2) = 2), but it is no longer a rotation matrix in general.

2.3.2 Geodesic distances

A geodesic is a curve representing the shortest path between two points on a surface, and it is
often described as the generalization of a straight line on a manifold. Geodesics are used in
diverse fields – like physics, geography or computer graphics – for example to compute the
shortest path between the vertices of a triangle mesh. In this thesis, we choose the algorithm
proposed by Mitchell, Mount, and Papadimitriou (MMP) in [95] to compute geodesic distances
(i.e. finding the distance between points by following geodesics) on triangle meshes. An
example of geodesic paths and corresponding isolines from the paper of Surazhsky and
colleagues [143] using this algorithm is shown in Figure 2.11.

32 CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.11: Geodesic paths from a source point (orange) and corresponding isolines from [143].

Geodesic windows In order to find the geodesic distance between a source point p and any
other point of the mesh, the MMP algorithm starts by propagating geodesic windows from
p all over the mesh. To create these windows, we start from the triangle containing p and
unfold the geometry so that it becomes planar. In such a planar unfolding, the geodesic and
euclidean distances become equivalent. The geodesic window associated to a point p and an
edge e is described by a sextuplet (b0,b1,d0,d1,τ,σ) where b0 and b1 are the window’s start
and end positions along e, d0 and d1 are the geodesic distances from p to b0 and b1 and τ is
the direction perpendicular to e pointing away from p. σ is the geodesic distance between p
and a potential initial source, which we will clarify in the following. The geodesic window
associated to p and e represents the portion of e for which the accumulation of geodesics
giving the smallest total distance from p comes from the same planar unfolding (Figure 2.12).

The window propagation goes as follows:

• Given a window on an edge e and t the neighbor triangle towards which τ is pointing,
one can compute the propagation of this window on the two other edges of t. As shown
in Figure 2.13 this can be done using line-segment intersection operators. If the window
touches both facing edges then it generates two windows, one on each edge, as the
planar unfolding is different for the two neighboring triangles. This creates a possibility
to have as many as n2 windows for a single source point (with n the total number of
triangles). However, since windows not holding the smallest accumulated distance on
an edge are not propagated, the real number of handled windows is much smaller (see
[143]).

• This propagation mechanism admits a special case around saddle points q. Indeed, if
we sum the angles between the edges intersecting at q, the total can be more than 2π .
This creates a shadowing effect from the source, as described in Figure 2.13 - (d), since
no planar unfolding containing the source and q exist. Handling this case requires to
restart a propagation process from q, acting as an auxiliary source, inside the shadow. In
practice, this means that if a window has a saddle point q as an extremity, we propagate
extra windows in its shadow with q as a new source and σ increased by the distance
from the previous source to q.

2.3. INTRINSIC GEOMETRY PROCESSING 33

• When inserting a new window w on an edge, we compare it against accumulated
windows {w̃} and keep only parts of w and {w̃} that have the smallest distance to the
source.

• Implementing this method with floating point arithmetics leads to well-documented
numerical precision issues. We refer to [89] for a robust implementation.

The MMP algorithm starts from windows covering the three edges of the source triangle
and propagates in a breadth-first manner until convergence. In our implementation, we adopt a
conservative saddle point detection strategy, as false positives only degrade runtime or memory
performance, whereas false negatives result in wrong outputs. Once we have the geodesic
windows from a source point, we can compute the geodesic distance from the source to any
point covered by these windows, thanks to the given planar unfolding and the knowledge of d0
and d1.

σ

p

d0

d1

b1

b0

e
τ

Figure 2.12: A geodesic window [b0,b1] is associated with a common planar unfolding: the straight
dotted lines connecting (b0,b1) to the vertex p delimit an area (red) containing no other vertex. A
potential initial source can be present at a geodesic distance σ of p.

b0 b1 b0 b1 p

q

b1

(a) (b) (c) (d)

p

p

q

Figure 2.13: Vanilla window propagation cases (a) and (b) create one or two windows depending on
whether the opposing vertex is inside or outside the window. When a window touches a saddle point q
(c) two extra windows (orange) are created with the saddle point as source and σ ′ = d0 or σ ′ = d1. (d)
In this case, planar unfoldings (blue and orange triangles) around the saddle q lead to different realigned
positions of the primary source p, generating windows that do not reach each other. The hashed area is
the shadow of the saddle point.

We introduced some basic notions on fluid simulation, deep learning models and geometry
processing. In this thesis, we will first use deep learning models in conjunction with a fluid
solver in order to explore physical latent spaces for turbulent flow restoration. Then, we
will compute geodesic paths and distances on triangle meshes, to apply smoothed particle
hydrodynamics in order to simulate fluid flows on 3D surfaces.

34 CHAPTER 2. TECHNICAL BACKGROUND

Chapter 3

Related work

In this thesis, we focus on the numerical simulation of fluids, which has been at the heart of
numerous research projects in the fields of computational fluid dynamics (CFD) and computer
graphics since the middle of the 20th century. A lot of different techniques have been proposed
since then, and we propose to present the most important and most used ones in this chapter.
Since our first contribution is a hybrid method using both fluid simulation and deep learning,
and the second one is using geometry processing, we introduce the necessary state-of-the-art
methods in these fields too.

3.1 Fluid simulation and animation
Fluid animation is a vast field, comprising many important methods that aim at reproducing
the behavior of fluids as accurately and with the least computations as possible. These methods
can be divided in three categories: Eulerian, Lagrangian and hybrid methods. In the following,
we present the main techniques proposed in these three categories. The technical details on
how to solve the fluid equations in each representation have been given in Chapter 2.

3.1.1 Eulerian specification

In the Eulerian specification, the physical quantities that describe the fluid flow are stored
on a grid. Harlow and Welch introduced the staggered grid as a data structure used for
their marker-and-cell (MAC) method [49], which proves to be very useful when solving for
incompressibility as it makes central differences more accurate. However, such grids have the
drawback of being static and not well suited for a flow that would not be equally distributed
over space, thus showing poor memory usage and performance. Sparse blocked grids have
been proposed to tackle this issue [23, 84, 104].

The solving algorithm associated to Eulerian frameworks comprises several steps (detailed
in Chapter 2) that evolved as new research propositions arose. Firstly, to circumvent the
unstability issues created by explicit advection schemes, Stam introduced the semi-Lagrangian
method to computer graphics in 1999 [140]. Since then, many works have been published to
improve the accuracy of this advection step. Kim and colleagues first proposed to apply the
“back and forth error compensation and correction” method (BFECC) to fluid advection in [71].
Selle and colleagues then presented an unconditionally stable Mac Cormack advection method
in [127]. Their method reduces the cost of BFECC while enabling second order accuracy and

35

36 CHAPTER 3. RELATED WORK

Figure 3.1: Results from “An Advection-Reflection Solver for Detail-Preserving Fluid Simulation” [164].
The top row was made using their advection-reflection step, whereas the bottom row used a typical Mac
Cormack advection-projection step [127]. The two vortices stay separated despite moving through each
other in the top simulation, contrary to the bottom one.

unconditional stability. Finally, Zehnder and colleagues introduced an advection-reflection
method in [164] (Figure 3.1). They proposed to replace the usual projection step, that tends to
uncorrectly dissipate energy at the end of each simulation step, by a reflection step applied at
mid-time, that preserves energy.

Secondly, the main challenge with solving the Navier-Stokes equations numerically is to
perform the incompressibility step in a reasonable amount of time. This is often equivalent
to solving a Poisson equation, that leads to a sparse, symmetric and positive-definite linear
system, which many optimization methods – such as the Jacobi or Gauss-Seidel methods
– can solve. However, these are usually not well-suited for real-time applications or tend
to show poor convergence, and are generally computationally intensive. Mac Adams and
colleagues proposed to use multigrids on irregular voxelized domains with a mix of Dirichlet
and Neumann boundary conditions in [94], in order to accelerate this projection step. On
the other hand, Setaluri and colleagues leveraged in [128] the acceleration structures of
graphics hardware to propose a novel data structure for cartesian grids along with adaptive
discretizations and solvers.

Eulerian schemes have several drawbacks, in particular when it comes to rendering the fluid
after its simulation. Such frameworks also suffer from sampling and conservation artifacts,
that can be addressed with adaptive sampling techniques [90] but remain complex and costly to
implement. Eulerian frameworks are also not well suited for dynamic boundary cases because
of their lack of adaptivity. To tackle these issues, some prefer the Lagrangian specification,
that relies on particles to represent the fluid flow.

3.1.2 Lagrangian specification

In Lagrangian representations of a fluid flow, the physical quantities that are measured and that
are advected by the flow velocity are stored on individual parcels. To simulate their movement
and interactions, the smoothed-particle hydrodynamics (SPH) method was proposed. It was
first introduced to the field of astrophysics [98], and then applied to the simulation of highly
deformable bodies by Desbrun and Cani [35]. It was finally extended to the animation of fluids
with free surfaces by Müller and colleagues [101].

Since then, various contributions have been made to enhance the SPH method. One
challenge when simulating a fluid with SPH is to ensure its incompressibility. Many global
pressure solvers – such as PCISPH [137], IISPH [60] and DFSPH [14] (Figure 3.2) – have
been proposed to improve the results from the original work of Müller, which struggled to

3.1. FLUID SIMULATION AND ANIMATION 37

Figure 3.2: State-of-the-art incompressible SPH simulations from “Divergence-Free SPH for Incom-
pressible and Viscous Fluids” (DFSPH) by Bender and Koschier [14].

reproduce incompressible flows. All of these solvers rely on a prediction-correction scheme,
where a temporary velocity field is predicted without accounting for the pressure forces. Then,
this velocity is corrected by enforcing its divergence-free and a constant density.

Secondly, many works have introduced different boundary handling methods. The most
popular one consists in creating additional particles that model the boundaries of the fluid
domain [59, 12, 11]. Some works employ a single layer of boundary particles while others use
multiple layers, and the sampling of the boundary can be uniform or non-uniform [3]. This
method presents the advantage of being very simple and direct to implement. However, it
can significantly decrease the runtime performance of SPH if too many additional particles
need to be sampled, and approximating the geometry of the boundaries with particles can
also introduce artifacts. To tackle these issues, implicit boundary approaches have been
proposed [15]. They do not model the boundary explicitly like previously but implicitly, using
signed distance fields [47] or regular grids [79]. Nevertheless, they require a pre-processing
step that can be very time consuming in the case of high-resolution grids.

Since SPH methods enable the simulation of many materials, the animation of multi-phase
fluids is quite straightforward in this framework. However, some precautions must be taken
when handling the interface between different types of materials. For example, if some
physical properties, such as rest density, are too different between the phases, it can create
undesirable behaviors and discontinuities. Several works have proposed to tackle this issue,
mainly by introducing a new density calculation [56, 136]. In this formulation, the density of
a particle is calculated as if all of its neighbors had the same physical properties as it has, so
that only the geometrical information is taken into account. This novel density can then be
used in the forces calculation, and it prevents the discontinuities that were observed otherwise.

Finally, Macklin and Müller [92] proposed to adapt the position-based dynamics method
(PBD) – initially presented for solid body simulation by Müller and colleagues [102] – to fluid
animation. In PBD methods, the constraints are applied directly to the positions, avoiding the
more typical manipulation of velocities, thereby making the results more controllable. This
position-based fluids technique allows for a more stable simulation of incompressible flows
than some traditional SPH solvers, enabling real-time applications with larger time steps.

For more details on important advances in SPH-based techniques, we refer the reader to
the state-of-the-art reports of Ihmsen and colleagues [61] and Koschier and colleagues [80].
They detail contributions on data structures, boundary handling, pressure solve, viscous forces
and many other points.

38 CHAPTER 3. RELATED WORK

3.1.3 Hybrid methods
Finally, some hybrid methods have been proposed, using either an Eulerian or a Lagrangian
representation during the different stages of the solving. The first hybrid solver was introduced
in 1962 by Harlow [48] as the particle-in-cell method (PIC). In this paper, he proposed to store
the quantities on particles that are distributed all over the fluid domain. The steps that are not
related to advection are then processed on a grid, first requiring the transfer of the necessary
quantities to the grid. Once these steps are performed on the grid, as they would be with any
typical Eulerian solver, the physical quantities are transferred back to the particles thanks to a
simple interpolation, and the advection step is performed within the Lagrangian specification.
One major drawback of this method is that the consecutive interpolations needed to go from
one representation to the other tend to smooth out the results.

Twenty-five years later, Brackbill and Ruppel introduced the fluid implicit-particle method
(FLIP) [20, 21]. This paper was based on the PIC method, but instead of interpolating the
entire set of physical quantities from the grid back to the particles, they only interpolated the
change that had been computed on the grid. This proved to significantly reduce the numerical
diffusion that could be observed within the PIC method. Since these two methods were used
for compressible flows, Zhu and Bridson proposed in 2005 to adapt FLIP for incompressible
flows [166]. Moreover, Raveendran and colleagues proposed in [115] to solve for a divergence-
free velocity on a coarse grid and then transfer the pressure values on particles. The typical
SPH steps were then performed on the particles, including the density correction from previous
work.

Finally, the material point method (MPM) has also been used as a hybrid technique to
animate fluids as well as materials that have fluid-like behaviors (such as sand or snow), or to
simulate the interactions between both [142, 144]. It relies on a Lagrangian representation,
combined with a background mesh or grid, yet it is considered as a “meshless” technique.
Indeed, contrary to PIC and FLIP, the material points in MPM are equipped with strain and
stress on top of mass, position, velocity, etc.

3.2 Deep learning
Artificial intelligence (AI) is a very active field, with new topics arising at a pace rarely seen
in computer science research. This field relies on the knowledge of a given set of data, which
is used to extract information in order to fulfill a given objective. Machine learning [19, 103]
is a sub-field of AI in which algorithms learn to find correlations and patterns in the features
of the data they are presented with. From these patterns, the systems can make predictions and
extrapolate to unseen data. Finally, deep learning is a branch of machine learning that shares
the same goals but uses different tools – described in Chapter 2 – to achieve them. In the
following sections, we present the most important and game-changing contributions that were
made with deep learning since the years 1950, and then detail the advances in the hybrid field
of physics-based deep learning, which is the focus of our first contribution. For a complete
survey and detailed technical explanation of deep learning techniques, we recommend reading
the book of Goodfellow and colleagues [45].

3.2.1 Deep learning methods
Deep learning is based on the training of neural network models, which are composed of
stacked layers containing nodes that are called neurons. These models are trained on large
amounts of data in order to learn a specific task, such as classification, segmentation, or other

3.2. DEEP LEARNING 39

Figure 3.3: Results from (left) the first StyleGAN model [65] and from (right) “Denoising Diffusion
Probabilistic Models” [53], showing images entirely generated by deep neural networks.

types of predictions. Neural networks were first introduced by Rosenblatt in 1958 [121], who
found inspiration in the human brain for their design. These first networks only got three
layers, but they were the first to enable the classification of data that was not linearly separable.
Most of the models that were proposed after that contained more than three layers of neurons,
and were thus called deep neural networks (DNN). Stochastic gradient descent was introduced
for the first time in 1967 [4] as a technique to optimize these DNNs. Later, in 2014, the ADAM
optimizer was proposed by Kingma and Ba [75] and has been used extensively ever since.

Deep neural networks have been introduced to various fields since the years 2000, such
as natural language processing (NLP), image or video restoration, and image generation.
For instance, the multi-layer perceptron (MLP) of Bengio and colleagues overpeformed the
state-of-the-art model in NLP in 2003 [16], and many others have improved the processing of
language since then [44]. Moreover, convolutional neural networks (CNN) were introduced
for image processing in 1989 by Le Cun and colleagues [83], being lighter and better suited
for large data than MLPs. Some very famous deep CNNs were inspired by this work and
presented between 2012 and 2018, showing outstanding performance for image recognition,
such as AlexNet [81], ResNet [51], VGG [134] and DenseNet [58].

Image segmentation has also been developing with the rise of deep neural networks, aiming
at finding the boundary of the objects present in an image. Segmentation is commonly used
in biomedical imaging, for example for tumor detection. The well-known U-Net architec-
ture [120], introducing skip-connections in encoder-decoder models, was first proposed for
brain tumor detection in 2015 and was then widely used for other applications.

Furthermore, the now famous attention mechanism was first introduced in natural language
processing. It started from the observation that, in NLP, one has to consider more than just
the direct neighbors of a word, and that every word does not have the same importance for
the meaning of a sentence. In 2017, Vaswani and colleagues presented their transformer
architecture [155] for language processing tasks, that was leveraging this attention mechanism.
Transformers were then successfully adapted to computer vision in 2021 [39].

Content synthesis has been at the heart of deep learning research since 2014, experiencing
a significant acceleration in 2020 with the rise of diffusion models. Goodfellow and colleagues
introduced the generative adversarial network (GAN) architecture in 2014 [46]. A GAN is a
model composed of a generative and a discriminative network, which are competing against
each other. The former is trying to create content that is as realistic as possible in order to fool
the latter, whose goal is to find whether this content has been artificially generated or not. Many
contributions have been made in image synthesis since the first GAN was proposed, such as
the CycleGAN model [165] or the very popular StyleGAN architecture [65, 67, 66] (Figure 3.3

40 CHAPTER 3. RELATED WORK

- left). Variational autoencoders (VAE) have also shown excellent performance [76], allowing
for control over their latent space probabilistic distribution. Nevertheless, the quality of
the generation is usually poorer than with GANs, although synthesizing a better diversity
of samples. Moreover, diffusion models have been introduced for image synthesis in 2020
by Ho and colleagues [53]. Their work (Figure 3.3 - right), that was inspired by diffusion
probabilistic models for thermodynamics, gave high quality results in terms of fidelity and
diversity, with improved controllability compared to GANs. However, such models are much
heavier and slower to train than GANs or VAEs. Rombach and colleagues tackled this issue
in [119], where they let diffusion models operate in the latent space of pre-trained autoencoders
instead of applying them in pixel-space directly. Finally, text-to-image models have known
unprecedented advances in 2022, with the successive publications of DALL-E 2 by OpenAI
and Imagen by Google Research [114, 122]. The former was based on the CLIP algorithm [113,
108] from the NLP field, whereas the latter used transformer networks. The public quickly
gained access to simplified user interfaces implementing these algorithms, making them a very
popular subject of discussion and debate. During the same year, OpenAI released ChatGPT
– a chatbot that has become extremely popular – that was based on generative pre-trained
transformers (GPT), which are a type of large language models.

3.2.2 Physics-based deep learning
In this thesis, we focus on deep learning algorithms used in conjunction with physics-based
modeling, in particular for the animation of fluid flows. Lots of research topics combining
machine learning and numerical solvers have arisen with the very fast development of the
former [33, 69, 24], and we propose to introduce the most important ones in this section. For a
more thorough overview of physics-based deep learning, we recommend the book published
by Thuerey and colleagues in 2021 [146], as well as the review published by Karniadikis and
colleagues during the same year [64].

Machine learning algorithms highly depend on the data they are trained on, and collecting
correct and meaningful data is a crucial step to ensure the quality of the models. Fluid solvers
can thus be used to produce data that will be processed by deep learning models, in order to
predict accurate fluid simulations. Indeed, if a deep learning model is trained with physically
realistic data output by a trusted numerical solver, then this model has more chance to be
able to predict physically realistic solutions. Therefore, a conventional direction when using
machine learning for PDEs has been to aim for the replacement of entire PDE solvers by
neural network models that can efficiently approximate the solutions [91, 72, 157, 18]. In
this context, Fourier Neural Operator [86] and Neural Message Passing [22] models have also
been introduced for learning PDEs, aiming at a better representation of full solvers with neural
network models. Furthermore, for smoke simulations in particular, some works focused on
super-resolution models proposing efficient deep neural network approaches that synthesized
high-resolution results from low-resolution versions [30, 161, 41, 10], or that converted low
frame rate results into high frame rate versions [107].

Moreover, numerical solvers and deep learning frameworks can be used in an interleaved
manner, each influencing the other in the learning and solving processes. In such hybrid
methods, the data is produced by a solver, it is used to train a deep neural network model for a
specific task, and the data inferred by this model can in turn be used by the solver. For example,
a learned model can replace the most expensive part of an iterative PDE solver for fluids [147,
160] or supplement inexpensive yet under-resolved simulations [150, 135] (Figure 3.4). In
such methods, the numerical solver needs to be differentiable, in order to be integrated into
the training pipeline of deep learning models. Since the years 2010, differentiable components

3.3. INTRINSIC GEOMETRY PROCESSING 41

Figure 3.4: Results from the “Liquid Splash Modeling with Neural Networks” [150]. The small-scale
splashes are generated using a neural network model.

for machine learning have been studied extensively, particularly when training neural network
models in recurrent setups for spatio-temporal problems [5, 8, 148, 28, 125, 87, 158, 151,
78, 167]. Consequently, a variety of differentiable programming frameworks have been
developed for different domains [126, 57, 62, 54]. These differentiable frameworks allow
neural networks to closely interact with PDE solvers, which provides the model with important
feedback about the temporal evolution of the target problem.

Finally, particle-based simulations have been at the heart of numerous research works
combining deep learning with physical modeling. Ladicky and colleagues first proposed
to use regression forests as a means to predict the states of liquid simulations [82], which
showed the advantage of handling incompressibility as well as the addition of external forces
at inference time only. Tumanov and colleagues proposed in [149] to use a 3D convolutional
neural network that aimed at replacing the incompressibility solver from the “Position-based
fluids” paper [92], by first translating the particle and obstacle data into a grid structure to
give as input to the network. Both methods allowed for the simulation of millions of particles
in real-time. On the other hand, Ummenhofer and colleagues applied CNNs directly to the
particle data, enabling an improved accuracy over the particles’ trajectories [152]. Several
works also relied on graph neural networks to simulate particle-based fluids [123, 124, 85],
considering each particle as a node and simulating their interactions through the graph edges.

3.3 Intrinsic geometry processing
In this section, we do not aim at reviewing the entire geometry processing literature, since this
vast field comprises many branches that are not directly related to our contributions. Instead,
we focus on the works tackling the computation of geodesics and parallel transport of vectors,
which are the main focus of this thesis in terms of geometry processing techniques.

In Chapter 1, we defined the difference between intrinsic and extrinsic mesh representa-
tions. The former proved particularly well-suited when it came to building robust algorithms,
the latter often leading to results of poor quality with real-world, low-quality meshes. Indeed,
extrinsic algorithms are generally designed on artificial, ideally constructed meshes, whereas
in reality most of them have unperfect triangulations. Moreover, intrinsic representations
facilitate working with non-orientable meshes. Therefore, several works focused on proposing
intrinsic representations or computations for more robustness. For instance, Sharp and col-
leagues as well as Gillespie and colleagues proposed methods to create intrinsic triangulations
for poor-quality meshes without changing their geometry, making the application of algorithms
that require high-quality meshes possible [130, 43] (see Figure 3.5). In this context, it is

42 CHAPTER 3. RELATED WORK

Figure 3.5: Intrinsic triangulation from “Navigating Intrinsic Triangulations” [130], in color. The
original, low-quality triangulation is shown in grey.

important to be able to compute geodesic paths and distances on polyhedral meshes, which
usually replace the Euclidean metric in intrinsic approaches.

In Chapter 2, we introduced the algorithm of Mitchell, Mount and Papadimitriou (MMP) [95]
to compute exact geodesics by propagating windows on polyhedral meshes. This algorithm as
well as the one proposed by Chen and Han three years later in 1990 [27] were computationally
intensive and thus needed the introduction of acceleration structures to be applied [143]. Crane
and colleagues introduced the heat method for geodesic computation in 2013, enabling the
computation of geodesics on regular grids, meshes as well as point clouds by solving sparse
linear systems [32]. Nonetheless, their method resulted in approximations that could be very
different from exact geodesics. Sharp and Crane proposed a simple and efficient method to
find geodesic curves on polyhedral meshes, by flipping edges of the mesh iteratively [129].
Their work however was not meant to compute geodesic distances. For a complete survey of
methods that enabled the computation of geodesic paths and distances, we recommend the
work of Crane and colleagues [68].

Once geodesic paths are defined, one can use parallel transport to transport vectors along
them, by ensuring that the vectors stay parallel to the curve in the manifold. We focus on
discrete parallel transport, considering that a smooth surface can be discretized into locally
tangent planes. In order to use parallel transport on such a surface, it needs to be equipped
with connections that describe the mapping between these tangent planes. In 2010, Crane
and colleagues proposed a method to build connections on discrete surfaces [31], which
proved to be efficient and straighforward since it was only using standard operators. Sharp
and colleagues proposed in 2019 “The vector heat method” [131], building on the works of
Polthier and Schmies [110] and Knöppel and colleagues [77]. With this method, they allowed
for the computation of parallel transport of general vector-valued data on a curved manifold.
To do so, they did not build typical geodesic paths, but instead solved linear systems thanks to
discrete Laplacians and to the “vector heat equation”, simulating a diffusion process over the
manifold.

Chapter 4

Exploring physical latent spaces

We introduced the necessary technical notions and state-of-the-art works in the domains of
fluid simulation, deep learning and geometry processing. We now present our first contribution,
which aims at exploring physical latent spaces of deep neural networks for the simulation of
turbulent fluids. This dimension reduction enables the acceleration of typical solvers while
improving the results from previous works.

This work has been presented as Exploring Physical Latent Spaces for High-Resolution
Flow Restoration, Chloé Paliard, Nils Thuerey and Kiwon Um, in the proceedings of the 28th
International Symposium on Vision, Modeling, and Visualization (VMV), September 27-29,
2023, Braunschweig, Germany.

(a) Our model's
reduced space

(c) Reference
simulation

(b) Our restored
simulation

Karman vortex street

Frame 500 Frame 1030 Frame 1560 Frame 1990

0.15

-0.15

0

0.20s/fr

Frame 15 Frame 30 Frame 45 Frame 60

Smoke plume

0.37s/fr

Forced turbulence

Frame 10 Frame 50 Frame 90 Frame 130

0.18s/fr 1.0

-1.0

0

0.12s/fr

1.0

0

0.5

0.30s/fr

0.28s/fr

Figure 4.1: We propose a model composed of neural components and a physics solver, that autonomously
discovers the reduced representation (a) that best fulfills the goal of restoring a fine reference simulation
(b, c) from a unique coarse frame. This leads to relative improvements with respect to the baseline of
91% on average for the Karman vortex street case, 74% for the forced turbulence case and 35% for the
smoke plume case.

43

44 CHAPTER 4. EXPLORING PHYSICAL LATENT SPACES

4.1 Introduction

In this chapter, we present a data-driven simulation technique for PDE problems with a novel
training method that explores using physical states as latent space for deep learning. In contrast
to many previous studies [100, 72, 97, 138], our latent space is not composed of the output
or intermediate states of a neural network, but is rather made of the physical states of a PDE
solver, such as velocity fields. We train a deep neural network (DNN) to exploit the content of
a reduced PDE solver and shape it in a way that best satisfies the given learning objective, i.e.,
achieving solutions that are as accurate as possible at our target high resolution space. This
shaping of the physical latent space gives the neural network a chance to discover modified
dynamics and allows our model to better restore accurate high resolution solutions from them.
Examples of the reduced and restored solutions are shown in Fig 4.1.

Our training method consists of an encoder model transforming a coarse physical state
using the degrees of freedom of a learnable latent space, a physics solver corresponding to
a given PDE followed by an adjustment DNN, both operating in the reduced space, and a
decoder turning the reduced state into the target high resolution space. To train our models
with a physics solver, we adopt a differentiable simulator approach [57, 54, 146]. We let
the encoder model learn the latent space representation without any other constraint than the
restoration of the target solution. Therefore, an end-to-end training of this pipeline gives the
encoder the complete autonomy to shape the reduced representation.

We demonstrate that the autonomy of our training method leads to a better performance
than previous work, especially in terms of generalization. We apply our method to various
complex, non-linear PDE problems, based on the Navier-Stokes equations, which are essential
in the context of modeling fluid flows. For all the scenarios, our model produces more
accurate high-resolution results in a longer temporal horizon than conventional and more
tightly constrained models.

4.2 Related work

The important research works related to physics-based deep learning and differentiable solvers
have been reviewed in Chapter 3, Section 3.2.2. In the following, we focus on previous works
that specifically tackle latent space representations and reduced physical solutions.

Effectively utilizing latent spaces lies at the heart of many ML-based approaches for solving
PDEs. A central role of the latent space is to embed important (often non-linear) information
for the given training task into a set of reduced degrees of freedom. For example, with an
autoencoder network architecture, the latent space can be used for discovering interpretable,
low-dimensional dynamical models and their associated coordinates from high-dimensional
data [26]. Moreover, thanks to their effectiveness in terms of embedding information and
reducing the degrees of freedom, latent space solvers have been proposed for different problems
such as advection-dominated systems [93] and fluid flows [159, 42]. While those studies
typically focus on training equation-free evolution models, we focus on latent states that result
from the interaction with a PDE solver. Neural network models have also been studied for
the integration of a dynamical system with an ordinary differential equation (ODE) solver in
the latent space [28]. This approach targets general neural network approximations with a
simple physical model in the form of an ODE, whereas we focus on learning tasks for complex
non-linear PDE systems.

The ability to learn underlying PDEs has allowed neural networks to improve reduced,
approximate solutions. Residual correction models are trained to address numerical errors

4.3. EXPLORING PHYSICAL LATENT SPACES 45

of PDE solvers [151]. Details at sub-grid scales are improved via learning discretizations
of PDEs [13] and learning solvers [78, 138] from high-resolution solutions. Moreover,
multi-scale models with downsampled skip-connections have been used for super-resolution
tasks of turbulent flows [41]. These methods, however, typically employ a constrained
solution manifold for the reduced representation. Indeed, the reduced solutions are produced
using coarse-grained simulations with standard numerical methods, while our work shows
the advantages of autonomously exploring the latent space representation through our joint
training methodology.

4.3 Exploring physical latent spaces
For a given learning objective, our training method explores how neural network models can
leverage the physical states of a PDE as latent space. Let f ∈ Rd f and r ∈ Rdr denote two
discretized solutions of a PDE, a fine and a coarse version respectively, with dr≪d f . We focus
on the numerical integration of this target PDE problem and indicate the temporal evolution
of each state as a subscript. A reference solution trajectory integrated from a given initial
state ft0 at time t0 for n steps is represented by the finite set of states {ft0 , ft1 , · · · , ftn}. Each
reference state is integrated over time with a fixed time-step size using a numerical solver P f ,
i.e., ft+1 = P f (ft). Similarly, we integrate a reduced state rt over time using a corresponding
numerical solver Pr at the reduced space, which we will call reduced solver henceforth, i.e.,
rt+1 = Pr(rt). In this chapter, we focus on cases where the solver P is the same for both
reduced and fine discretizations.

Our model takes the bilinear down-sampling of ft0 , i.e., st0 = lerp(ft0), as input, and
transforms it with the help of an encoder function E (s|θE) : Rdr → Rdr , thus E (st0 |θE) = ŝt0 .
Then, we can obtain the next reduced state rt1 =P(ŝt0). Moreover, in order to keep the reduced
solution consistent with the encoded representation over time, the output of the reduced solver
is transformed by an adjustment function, A (rt1 |θA) = r̂t1 . Thus, each reduced state r̂ti is
obtained by i recurrent evaluations of the reduced solver and the adjustment function. Finally,
a decoder function D(r|θD) : Rdr → Rd f restores a fine solution trajectory {f̂t0 , f̂t1 , · · · , f̂tn}
from the reduced trajectory {r̂t0 , r̂t1 , · · · , r̂tn}, thus f̂ti = D(r̂ti |θD). We model the encoder,
adjustment, and decoder functions as DNNs in which trainable weights are denoted by θE , θA,
and θD, respectively.

The joint learning objective of the three DNNs is to minimize the error between the
approximate solutions and their corresponding reference solutions, i.e., ||f̂t − ft ||2. To guide
the adjustment model, we additionally minimize ∥r̂t −E (st |θE)∥2. Thus, the final loss of our
model is as follows:

L =
N

∑
i=1

λhires ×||f̂ti − fti ||2 +λlatent ×||r̂ti −E (sti |θE)||2 (4.1)

where N denotes the number of integrated time-steps for training. Hence, at each training iter-
ation, the gradients through all N steps are computed for back-propagation and, consequently,
all the models get jointly updated.

Fig 4.2 shows the architecture of our approach. As the encoder does not receive any
explicit constraint and has the complete freedom to autonomously explore the reduced space
to arrive at a suitable representation, we denote this approach by ATO.

Comparisons and baselines To illustrate the capabilities of our physical latent space, we
compare ATO to two state-of-the-art models that operate in coarse space [138, 151]. The

46 CHAPTER 4. EXPLORING PHYSICAL LATENT SPACES

: encoder

: differentiable
 solver

: decoder

: adjustment

: for training
only

Figure 4.2: Architecture of our autonomous training approach for N integrated solver steps. The initial
state is encoded into the latent space, the solver and adjustment models are applied N times, and the
adjusted states are decoded into the fine space.

former, denoted by Dil-ResNet in the following, represents a neural network model that aims
at directly predicting solution states in the reduced space at each time-step. Hence, it does
not make use of the reduced physics solver P . On the other hand, the work from [151],
denoted by SOL, consists of a differentiable physics solver and a trainable corrector model that
addresses numerical errors of the solution states. In both cases, unlike ATO, the models are
trained to make reduced solutions by targeting the bilinear down-sampling of the reference.

We note that these state-of-the-art models output solutions that stay in the coarse space. As
our ATO model aims at restoring high-resolution solutions using a decoder, a super-resolution
model can transform these models’ reduced solutions into high-resolution ones. To this end,
we give the reduced states produced by the Dil-ResNet and SOL models to a super-resolution
network specialized for spatio-temporal turbulence problems [41], resulting in high-resolution
states. Henceforth, these models will be denoted as Dil-ResNet + SR and SOL + SR.

4.4 Experiments
In order to acquire a training data-set for each scenario, we generate a set of solution sequences
of the given PDE problem. The PDEs from our experiments work with a continuous velocity
field v in the two-dimensional space, i.e., v = [vx,vy]

T . Considering reference simulations on
regularly discretized grids, we focus on exploring latent spaces (i.e., reduced representations)
that are four times coarser than the reference.

4.4.1 Karman vortex street
This first example targets a complex PDE problem within a constrained setup, where the
velocity field evolves over time while being constrained to be divergence free. We evaluate the
incompressible Navier-Stokes equations for Newtonian fluids:

∂v
∂ t

=−(v ·∇)v− ∇p
ρ

+ν∇
2v subject to ∇ ·v = 0 (4.2)

where p is the pressure, ρ is the density, and ν is the kinematic viscosity coefficient. The
reference simulation domain is discretized with 128×256 cells and a cell spacing of one using
a staggered grid scheme. We use closed boundary conditions for the sides and open boundary
conditions for the top of the domain; at the bottom, we set a constant inflow velocity. The
continuous inflow collides with a fixed circular obstacle, which creates an unsteady wake flow

4.4. EXPERIMENTS 47
R

e
=

 9
0

R
e

=
 1

19
0

0.15

-0.15

0

Figure 4.3: Two examples from the training data-set of the Karman vortex street scenario: Re = 90 (top)
and Re = 1190 (bottom). The vorticity fields are shown.

that evolves differently depending on the Reynolds number. For the temporal discretization, a
time step size of one is used.
We generate 20 simulations of 200 steps each, with the following Reynolds numbers: {90,
120, 140, 150, 160, 170, 180, 190, 200, 220, 290, 340, 390, 490, 540, 590, 690, 740, 790,
1190}. We first let the simulation run for 2000 time-steps, in order to let the flow stabilize. We
randomly choose 5% of the generated frames for the validation set and the remaining 95% for
the training set. Both the least and most turbulent simulations of the training set are shown in
Fig 4.3.

In order to make our training more stable, we pre-train our networks with eight integrated
steps as warm starts for our final models. Each training uses 100 epochs with a batch size
of ten. The learning rate starts from 4×10−4 and exponentially decays with a decaying rate
of 0.9 every ten epochs. If divergence happens while training, we restart our training with a
smaller learning rate. In this example, we compare all the models trained with 16 integrated
steps. The encoder and adjustment models of ATO, the corrector of SOL, and the solver of
Dil-ResNet take the Reynolds number as additional input.

4.4.2 Decaying turbulence

This example tackles the same incompressible Navier-Stokes equations, but with vortices
intialized all over the physical space that slowly decay over time. In this scenario, the viscosity
stays constant (equal to 0.1) within the training and test data-sets. The reference simulation
domain is discretized with 1282 cells and a cell spacing of one. Both the discrete velocity
and pressure values are stored at the center of each cell, and periodic boundary conditions are
applied. For the temporal discretization, a time step size of 1.0 is used. The training data-set
consists of 20 simulations of 200 steps each, which evolve from different initial velocity fields.
We randomly select 5% of the frames for the validation set and the remaining 95% for the
training set. An example sequence of the data is shown in Fig 4.4. As in the Karman vortex
street case, we first train our models with eight integrated steps as warm starts for the final
models. We compare all the models trained with 16 integrated steps.

48 CHAPTER 4. EXPLORING PHYSICAL LATENT SPACES

0.25

-0.25

0

Figure 4.4: Example frames from one simulation of the training data-set of the decaying turbulence
scenario. The vorticity fields are shown.

4.4.3 Forced turbulence
This case has the same experimental setup as the previous one, but with an external force
sequence g(x, t) that is added to Eq. (4.2). This force sequence yields complex, chaotic
evolutions of vortices over time. We use a different force sequence for each simulation
trajectory, composed of 20 overlapping sine functions as follows:

gx(x, t) =
20

∑
i=1

ai sin(kiαi ·x+wit +φi)

gy(x, t) =
20

∑
i=1

ai sin(kiαi ·x+wit +φi)

(4.3)

where ai is the amplitude, ki is the wave number, αi is the wave direction, wi is the frequency,
and φi is the phase shift. These values are randomly sampled from uniform distributions as
follows: ai ∈ [−0.1,0.1], ki ∈ {6,8,10,12}, wi ∈ [−0.2,0.2], and φi ∈ [0,π]. αi is a random
angle (∈ [0,2π]). The composed sine functions are, then, evaluated over the domain mapped
into [0,2π] for each dimension.

For the temporal discretization, a time step size of 0.2 is used. The training data-set
consists of 20 simulations of 200 steps each, which evolve from different initial velocity fields
with different force sequences. We randomly select 5% of the frames for the validation set and
the remaining 95% for the training set. An example sequence of the data is shown in Fig 4.5.
We use the models trained on the previous decaying turbulence case as warm starts for our
final models, trained for 100 epochs. We compare all the models trained with 16 integrated
steps.

In this set-up, a reduced force field needs to be applied at each time-step to the reduced
velocity field by the solver. Thus, the encoder of ATO shares its weights for velocity and force
in order to learn a unified operation for both reduced representations. At each time-step t, the
linearly down-sampled version of the force field lerp(g(x, t)) is passed to the encoder model,
and the output is used for the reduced solver step. The adapted architecture for this set-up with
external forces is shown in Fig 4.6.

1.0

-1.0

0

Figure 4.5: Example frames from one simulation of the training data-set of the forced turbulence
scenario. The vorticity fields are shown.

4.4.4 Smoke plume
This last scenario serves as a proof-of-concept of our method for more complex, practical
graphics applications. Aiming for complex flow behavior driven by hot smoke plumes, we

4.4. EXPERIMENTS 49

: encoder

: differentiable
 solver

: decoder

: adjustment

: at training
 only

Figure 4.6: Architecture of our autonomous training approach for N integrated solver steps in the case
where external forces gt are used.

1.0

0

0.5

Figure 4.7: Example frames from one simulation of the training data-set of the smoke plume scenario.
The marker fields are shown.

set up an initial smoke volume as a marker field with an arbitrary density distribution in a
circular shape. The marker field is then passively advected by the velocity field and, at the
same time, induces a buoyancy force via the Boussinesq approximation, that is influencing
the velocity evolution. Therefore, the marker and velocity fields are tightly coupled. This
scenario considers a more challenging problem of the Navier-Stokes equations than before,
naturally making the fluid flow more interesting and providing a harder task for our model.
The simulation domain is discretized with 1282 cells adopting a centered layout for the marker
field, a staggered layout for the velocity field, and open boundary conditions. The passive
marker field is given as an input to our encoder and adjustment models, but it is only used as
additional information. Thus, the linearly down-sampled version of this marker field is used
in the reduced solver. Then, only the velocity field is up-sampled, and the high-resolution
reference marker field is advected by the predicted velocity.

The training and test data-sets are composed of smoke volumes initialized with random
noise, with a fixed position and radius (of 0.12). We use randomly selected 5% for the
validation set and the remaining 95% for the training set. An example sequence of the data is
shown in Fig 4.7. For this case, we use more integrated solver steps than the others. We first
train our model with four, eight, and 16 integrated steps as warm starts for the final model.
Finally, we apply our ATO model trained with 32 steps, for 100 epochs.

4.4.5 Network architecture and training procedure

In this section, we detail the network architectures that compose our ATO model (Fig 4.8),
along with the state-of-the-art networks that we compare it to.

The encoder of the ATO setup consists of two convolutional layers with 32 and 16 features
each with a kernel size of five. Each convolutional layer is followed by the Leaky ReLU
activation function. A last layer with two features and the same kernel size but without the
activation infers the final encoded output. This model has approximately 15k trainable weights.

The adjustment of the ATO setup and the corrector of SOL ([151]) employ an identical

50 CHAPTER 4. EXPLORING PHYSICAL LATENT SPACES

64x32
x32

64x32
x3

Input
64x32

x32
64x32

x32

Conv2D
+ Leaky ReLU Conv2D Leaky ReLUAdd

64x32
x2

64x32
x32

64x32
x3

Input
64x32

x16
64x32

x2

64x32
x32

64x32
x32

64x32
x32

64x32
x32

64x32
x32

64x32
x32

64x32
x32

64x32
x32

skip-connection skip-connection skip-connection skip-connection skip-connection

Figure 4.8: Architecture of the encoder (top) and adjustment (bottom) networks of our ATO model.

network model. This model consists of a first convolutional layer with 32 features and a kernel
size of five, followed by five blocks of two convolutional layers with 32 features each and a
kernel size of five. Each layer is followed by the Leaky ReLU activation function, and each
block is connected to the next with a skip-connection. A last layer with two features follows
with the same kernel size yet without the activation. This architecture has approximately 260k
trainable weights.

The decoder used for the ATO setup and the super-resolution model from Dil-ResNet + SR
and SOL + SR are adapted from the multi-scale architecture of [41], such that the total number
of trainable weights is close to 97k.

The Dil-ResNet model is adapted from the architecture of the state-of-the-art network
model proposed for turbulent flow problems [138]. This model has a first convolutional layer
with 32 features with a kernel size of three and no activation. It is followed by four identical
blocks of seven convolutional layers with 32 features each with a kernel size of three and
varying dilation rates from one to eight (respectively: 1, 2, 4, 8, 4, 2, 1). Each layer is followed
by the ReLU activation function, and each block is linked to the next via a skip-connection.
A last layer with two features follows with the same kernel size yet without the activation.
This model has a similar number of trainable weights as the adjustment model’s (i.e., 260k).
We note that a larger model did not improve the performance. Contrary to the other models,
Dil-ResNet is trained for only one step at a time and uses a MSE loss.

For the Karman vortex street and smoke plume cases, we adopt zero-padding, and for
the forced and decaying turbulence cases, which use periodic boundary conditions, we use
periodic padding for all models. At each training iteration, for a given batch size, we randomly
sample the initial states from the reference solution trajectories and integrate the approximate
solution trajectories for N steps. All our trainings use an Adam optimizer [75] and a decaying
learning rate scheduling.

Training hyper-parameters Firstly, the code of the SOL model from [151] was released
publicly, which enabled an easy reproduction of their experiments. Secondly, the learning
setup of the Dil-ResNet model from [138] was precisely described in the article. We extensively
tested the various hyper-parameters and chose the Dil-ResNet model over Con-Dil-ResNet (i.e.,
without the additional loss constraint) because it performed better in our physical scenarios.
For training, we chose a Gaussian noise with σ = 0.01 for all scenarios.

4.5. RESULTS 51

Lastly, for our ATO setup, we chose the depth of the models by making a compromise
between performance and runtime/resources. For the learning rate and batch size, since
the physics solver made the models harder to train, we chose the values that best stabilized
our training. Our loss being divided in two terms of different orders of magnitude (a high-
resolution term and a low-resolution one), we set λhires to 1 for all scenarios and λlatent = 1
for the Karman vortex street case, λlatent = 1 for the decaying turbulence, λlatent = 100 for the
forced turbulence and λlatent = 10 for the smoke plume.

4.5 Results
We evaluate the trained models based on relative improvements over a baseline simulation. To
build the baseline solutions, we simply apply the solver to the linearly down-sampled frames,
and up-sample the reduced states into the reference space with a bilinear interpolation. Errors
of the different restored solutions f̂t are computed with respect to the reference solutions ft ,
and the improvement over the baseline is calculated as follows:

improvement =
∥baselinet − ft∥−∥f̂t − ft∥

∥baselinet − ft∥ (4.4)

hence an improvement of 100% would mean that the restored solutions are identical to the
reference. We evaluate each model using the mean absolute error (MAE) and mean squared
error (MSE) metrics, which we measure in both velocity and vorticity. We present the results
of the models trained with the highest number of integrated steps for each scenario, as they
show better performance in general.

4.5.1 Reduced representations
The images of Fig 4.9 show visual examples of the reduced representations for the Karman
vortex street and forced turbulence scenarios, for different time-steps. The graphs of Fig 4.10
show the quantified differences between the reduced states produced by the different trained
models and the conventionally down-sampled reference states. We observe that our training
procedure leads the latent representation to have vortex structures that are very similar to
conventional down-sampling, while being considerably different quantitatively. For example,

Frame 50 Frame 100 Frame 150

L
er

p(
re

f)
A

T
O

 r
ed

uc
ed

L
er

p(
re

f)
A

T
O

 r
ed

uc
ed

Frame 500 Frame 1030 Frame 1560

0.15

-0.15

0

1.0

-1.0

0

Figure 4.9: Reduced frames for the Karman vortex street case (left), and the forced turbulence case
(right). The latent vorticity fields of ATO (top) and the linearly down-sampled reference (bottom) are
shown.

52 CHAPTER 4. EXPLORING PHYSICAL LATENT SPACES

baseline Dil-ResNet SOL ATO
(ours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
A

E
to

le
rp

(r
ef

)

Karman vortex street

baseline Dil-ResNet SOL ATO
(ours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E
to

le
rp

(r
ef

)

Forced turbulence

Figure 4.10: Distance between each model’s reduced space and the down-sampled reference. The error
bars indicate the standard deviation over the test runs.

one can notice on Fig 4.9 (right) that the vortex structures in the forced turbulence case are very
similar but the colors are inverted and much lighter for our reduced latent space, which means
that the velocity values are much lower in our case. We believe that the reduced representation
of the ATO model stays physically meaningful for the numerical solver yet changes the content
of the frames for accurately decoding high resolution states. We note that different training
initializations of the same scenario produce latent representations that stay close to each other,
which indicates that there exists a manifold of latent solutions that our ATO model converges
to in order to get the best performance.

4.5.2 Karman vortex street
This example considers different vortex shedding behaviors depending on the Reynolds
number of each simulation. We evaluate the models trained with 16 integrated steps on six
test simulations with Reynolds numbers in {450, 650, 850, 1050, 1200, 1400}, consisting of
2000 time-steps each. In this scenario, we test the extrapolation ability of the models both
physically and temporally, with higher Reynolds number thus more turbulent simulations than
for training, and ten times longer sequences.

Table 4.1, along with Fig 4.11, which shows the velocity and vorticity error improvements
of each model over the baseline, shows that ATO outperforms the other models, with an
average relative improvement of 91% (and 88%) in terms of velocity MAE (respectively
vorticity), while SOL + SR improves the baseline by 84% (and 83%) on average. On the
other hand, the Dil-ResNet + SR model fails to retrieve the target simulation for more than
200 time-steps, and thus seems incapable of generalization in this scenario. The temporal
metrics shown in Fig 4.12 demonstrate the capability of ATO to correctly restore a solution
for longer time ranges than the other models. More specifically, the distance between the
reduced states and lerp (ref) show that the ATO model is the only one to have a consistent
latent representation over time, which proves its better temporal extrapolation capabilities.

4.5. RESULTS 53

450 650 850 1050 1200 1400

Reynolds number

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ve
lo

ci
ty

er
ro

r
im

pr
ov

em
en

t

Dil-ResNet
+ SR

SOL
+ SR

ATO
(ours)

450 650 850 1050 1200 1400

Reynolds number

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

vo
rt

ic
it

y
er

ro
r

im
pr

ov
em

en
t

Dil-ResNet
+ SR

SOL
+ SR

ATO
(ours)

Figure 4.11: Velocity (left) and vorticity (right) error improvements (the higher the better) for six
different Reynolds numbers between 450 and 1400. The highest Reynolds number used for training is
1190. The ATO model generalizes better than the others.

0 500 1000 1500 2000

Timestep

0.00

0.05

0.10

0.15

0.20

M
A

E
ve

lo
ci

ty

baseline

Dil-ResNet + SR

SOL + SR

ATO (ours)

0 500 1000 1500 2000

Timestep

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
A

E
le

rp
(r

ef
)

baseline

Dil-ResNet

SOL

ATO (ours)

Figure 4.12: MAEs of recovered velocities (the lower the better) (left) and distances of the reduced
spaces to the down-sampled reference (right) over time for the Karman vortex street scenario.

4.5.3 Decaying turbulence

In this example, we consider initially chaotic turbulent flows that slowly decay over time. We
evaluate the models trained with 16 integrated steps, on five random initializations, lasting 200
steps each.

Table. 4.1 and Fig 4.13 show that the ATO model yields greatly improved results with a
relative improvement of 83% (and 80%) in terms of velocity MAE (resp. vorticity) on average.
However, in this more simple case, the SOL + SR model also improves the baseline significantly
with 82% (and 78%) of average relative improvement. Dil-ResNet + SR, however, only yields
53% (and 6%) of improvement. As shown in Fig 4.14, ATO’s latent space representation is
more distant from the linearly down-sampled representation than the other models’, yet it
shows similar or better performance.

54 CHAPTER 4. EXPLORING PHYSICAL LATENT SPACES

Dil-ResNet
+ SR

SOL
+ SR

ATO
(ours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V
el

oc
it

y
im

pr
ov

em
en

t
M

A
E

Dil-ResNet
+ SR

SOL
+ SR

ATO
(ours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V
or

ti
ci

ty
im

pr
ov

em
en

t
M

A
E

Figure 4.13: Velocity (left) and vorticity (right) error improvements (the higher the better) for the
decaying turbulence scenario. The ATO model improves the baseline the most for every test case.

0 50 100 150 200

Timestep

0.02

0.04

0.06

0.08

0.10

M
A

E
ve

lo
ci

ty

baseline

Dil-ResNet + SR

SOL + SR

ATO (ours)

0 50 100 150 200

Timestep

0.00

0.05

0.10

0.15

0.20

0.25

M
A

E
le

rp
(r

ef
)

baseline

Dil-ResNet

SOL

ATO (ours)

Figure 4.14: MAEs of recovered velocities (the lower the better) (left) and distances of the reduced
spaces to the down-sampled reference (right) over time for the decaying turbulence scenario.

4.5.4 Forced turbulence
This complex fluid flow scenario considers the same experimental setup as in the previous
case but with external forces, which leads to highly chaotic turbulent flows. We evaluate the
models trained with 16 integrated steps, on five random initializations both in velocity and
forcing, for 200 steps.

Table 4.1 and Fig 4.15 show that the ATO model significantly improves the baseline with a
relative improvement of 74% (and 69%) on average in terms of velocity MAE (resp. vorticity).
In comparison, SOL + SR improves by only 49% (and 43%) on average and Dil-ResNet + SR
by 46% (and 38%). Therefore, in this complex case with external forcing and more turbulent
flows, the ATO model particularly stands out, while its latent space representation (Fig 4.16) is
once again more distant from the linearly down-sampled representation than the other models’.

4.5. RESULTS 55

Dil-ResNet
+ SR

SOL
+ SR

ATO
(ours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
el

oc
it

y
im

pr
ov

em
en

t
M

A
E

Dil-ResNet
+ SR

SOL
+ SR

ATO
(ours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
or

ti
ci

ty
im

pr
ov

em
en

t
M

A
E

Figure 4.15: Velocity (left) and vorticity (right) error improvements (the higher the better) for the forced
turbulence scenario. The ATO model improves the baseline the most for every test case.

0 50 100 150 200

Timestep

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
A

E
ve

lo
ci

ty

baseline

Dil-ResNet + SR

SOL + SR

ATO (ours)

0 50 100 150 200

Timestep

0.0

0.2

0.4

0.6

0.8

M
A

E
le

rp
(r

ef
)

baseline

Dil-ResNet

SOL

ATO (ours)

Figure 4.16: MAEs of recovered velocities (the lower the better) (left) and distances of the reduced
spaces to the down-sampled reference (right) over time for the forced turbulence scenario.

Karman vortex street Decaying turbulence Forced turbulence
(128×256) (128×128) (128×128)

MAE MSE runtime MAE MSE runtime MAE MSE runtime

Reference N/A N/A 28.2 N/A N/A 14.1 N/A N/A 17.9

Baseline 0.214 0.096 11.1 0.069 0.024 7.7 0.504 0.426 9.6

Dil-ResNet+SR 3580 1407 9.2 0.033 0.023 3.8 0.272 0.167 5.3

SOL+SR 0.035 0.005 20.0 0.013 0.005 12.8 0.256 0.137 14.2

ATO (ours) 0.020 0.002 20.4 0.012 0.005 11.5 0.133 0.040 12.4

Table 4.1: Summary of the MAE and MSE metrics, along with the runtime for one simulation of 100
frames (averaged over ten runs, in seconds).

56 CHAPTER 4. EXPLORING PHYSICAL LATENT SPACES

4.5.5 Ablation study
In order to see the effects of each of its components, we evaluate our ATO model with
differently ablated training setups for the forced turbulence scenario. Our ablation study
includes the following models:

• No latent loss: we remove the second term of the loss in Eq. 4.1; consequently, our
training does not constrain the adjusted states to match the encoder-induced latent space.

• No encoder: we omit the encoder such that the latent representation is constrained to be
conventional bilinear down-sampling.

• No encoder & no latent loss: since the previous model’s reduced space is constrained to
bilinear down-sampling, we test the same setup without the encoder and with no latent
constraint.

• No solver: we replace the solver + adjustment part of our ATO model with the Dil-
ResNet NN-solver in order to study the effect of a non-physical latent space.

• No adjustment: we evaluate a setup where the reduced simulation evolves without being
adjusted.

• lerp (forces): we input a simple bilinear down-sampling of the force fields to the reduced
solver, instead of their encoded representation.

Table 4.2 and Fig 4.17 show that the encoder, physics solver, and adjustment components of
our ATO model are essential for its good performance. Firstly, the no encoder and no encoder
& no latent loss experiments confirm that, with lerp (ref) as initial reduced representation and
without our encoder, the adjustment network was not able to find a latent representation that
would lead to an optimal performance. Furthermore, the no latent loss ablation shows that the
latent loss guiding the adjustment model via the encoder results in a better performance. Note
that the performance of ATO significantly decreased when the encoder was absent, whereas
the performance drop due to omitting the latent loss was relatively less significant. Secondly,
the no solver and no adjustment experiments show that using a reduced physics solver in
conjunction with an adjustment model is crucial for the good performance of our ATO model.
Finally, the lerp (forces) experiment indicates that our encoder model failed to find a latent
representation for the velocity that was compatible with an external factor conditioned to lerp.

All of the models tested in this ablation study gave comparable standard deviation values
within the test set; thus, we did not include them in the table.

4.5.6 Runtime performance
For each scenario, we compare the runtime performance of the trained models with the
reference’s, measuring timing for one simulation of 100 frames, averaged over ten different
runs. For ATO, the computations start with the initial velocity inference by the encoder model
and stop when all 100 frames are output by the decoder. All timings were computed using a
single GeForce RTX 2080 Ti with 11GiB of VRAM.

Table 4.1 shows the summary of computational timings for the reference, baseline (reduced
solver without any DNN model), and trained models. For all four cases, our ATO model yields
improvement in runtime compared to the reference. For the Karman vortex street scenario,
our ATO model speeds up the computations by 28%, against 29% for SOL+SR. Yet, as shown
in Sec 4.5.2, ATO shows an improvement of the baseline MAE that is 7% better than SOL+SR.

4.5. RESULTS 57

Velocity Vorticity Latent space

MAE MSE MAE MSE MAE lerp (ref)

ATO (ours) 0.133 0.040 0.084 0.015 0.743

no latent loss 0.156 0.057 0.097 0.020 0.488

no encoder 0.259 0.146 0.156 0.48 0.253

no enc. & no lat. loss 0.284 0.174 0.167 0.055 0.322

no solver 0.737 1.073 0.578 0.651 0.713

no adjustment 0.409 0.339 0.212 0.085 0.568

lerp (forces) 0.944 1.725 0.429 0.325 0.682

Table 4.2: Results of the ablation study: we present the MAE and MSE in velocity and vorticity for each
model, along with the distance between its reduced space and the down-sampled reference.

F
ra

m
e

50
F

ra
m

e
10

0
F

ra
m

e
15

0

ATO (ours) no latent loss no encoder no enc no lat. loss no solver no adjustment lerp(forces)

2.0

0

Figure 4.17: Results of the ablation study for one example of the forced turbulence scenario. The
absolute error of the velocity field relative to the reference field is shown.

Similarly, for the forced turbulence case, the ATO model speeds up the computations by 18%,
against 9% for SOL+SR, and improves the baseline MAE of 25% more than SOL+SR. For the
smoke plume scenario, our ATO model speeds up the reference by 20% compared to 28% for
the baseline, while improving the baseline MAE by 35%. We note that the Dil-ResNet + SR
model often has the best runtime performance because it does not contain any numerical solver,
but it has errors at least 50% higher than ATO and shows very poor temporal extrapolation
capabilities.

Training our ATO model takes between one and three days depending on the physical
scenario, on a Tesla V100 with 16GiB of VRAM.

4.5.7 Additional visual results

Example sequences of the test data and the inference results of different models for the Karman
vortex street scenario are shown in Fig 4.18, for Re = 850, along with the spatial distribution
of the velocity error in Fig 4.19. Although the visual quality of the different results seems

58 CHAPTER 4. EXPLORING PHYSICAL LATENT SPACES

equivalent at first sight, one can notice that the position of the vortices is more accurate in
ATO’s outputs than SOL+SR’s. Fig 4.20 shows the inference results of the different models
for one example of the decaying turbulence case, and Fig 4.21 shows the spatial distribution
of the error for the same example. Fig 4.22 and Fig 4.23 show similar results for the forced
turbulence scenario.

In our last example, we consider complex flow behaviors created by hot smoke plumes that
evolve from random circular densities. We evaluate our model trained with 32 integrated steps
on five test simulations with different initial marker fields from which we perform a "warm-up"
of 50 time-steps, in order to get interesting plume shapes. Fig 4.24 shows that, despite the
increased difficulty of this challenging scenario, our ATO model succeeds at reconstructing a
complex high-resolution plume of good quality. Indeed, our method presents an improvement
of 35% on average over the baseline for 100 steps.

4.6 Limitations and future work

These results show that our training method using the states of physics simulations as latent
space of DNNs can facilitate the learning task for complex simulations. This provides a starting
point for the exploration of physical latent spaces in many different problems. However, we
note that our ATO model is not particularly standing out in a simple scenario like the decaying
turbulence. Therefore, we can presume that the benefits of its unconventional reduced space
are truly visible only when the PDE system is complex enough. In addition to the distance
metric, more thorough analysis of latent space contents via, e.g., perceptual metrics, also
remains as future work.

Moreover, our method has proven its capabilities in scenarios where force fields were
inferred by our networks besides the velocity fields. In the forced turbulence case, the forces
are external factors that are independent from the velocity data, thus our ATO model has no
difficulty finding a latent representation that leads to a superior performance. In Sec. 4.5.7, we
showed that our model gives promising results in a scenario where the forces were internal,
i.e. created by a marker field that is dependent of the latent velocity. These results are limited
however, since our approximation severely diverges from the reference solution after about a
hundred time-steps. To tackle this issue, we briefly experimented inferring both the marker
and velocity fields together in our networks, but these were not conclusive. That case opens
interesting future work, such as finding the best reduced representations for the coupled marker
and velocity fields.

Although we evaluated our model on various scenarios, its generalization for broader ap-
plications still remains a challenge. For example, our ATO architecture does not perform much
better than the others on simulations of the Karman vortex street case with Reynolds numbers
superior to 1600. We believe that this might come from limitations of the differentiable solver
that we used in our experiments, thus training our models with different solvers is also an
interesting path for future work.

As our model allows for the production of high-resolution simulations with a reduced
solver, it is potentially attractive for editing physics simulations within the learned reduced
space in real-time. Indeed, once a coarse initial frame is transformed into ATO’s latent space,
it is easy to tweak the physical properties of the reduced solver (e.g., viscosity) or to add
external factors, such that it can produce high-resolution simulations in a more interactive way.
However, the current runtime performance of our model does not allow for such applications.
We have not particularly focused on optimizing our code, which leaves room for improvement
in terms of performance. But even with such improvements, we did not target very high

4.7. CONCLUSION 59

resolutions, for the training time was beyond acceptable for resolutions above 2562. We also
made some experiments with 3D data, which led to training times above a month with our
current set-ups. Adapting our model for higher resolutions and 3D would thus require a deep
revision of our neural networks’ architecture.

4.7 Conclusion
In this chapter, we have presented ATO, a model that leverages interactions between neural
networks and a differentiable physics solver to autonomously explore reduced representations
for high-resolution fluid restoration purposes. Our results show that deep neural networks can
learn to develop new dynamics for specific learning objectives by using the simulated degrees
of freedom as latent space. Our approach opens the path to the exploration of physical latent
spaces for other PDEs, as well as different learning tasks than the restoration of details of fluid
simulations.

60 CHAPTER 4. EXPLORING PHYSICAL LATENT SPACES

S
O

L
 +

 S
R

A
T

O
(o

ur
s)

Frame 10 Frame 530Frame 270 Frame 790 Frame 1310Frame 1050 Frame 1830Frame 1570

D
il

-R
es

N
et

+

 S
R

R
ef

.

0.15

-0.15

0

Figure 4.18: Restored frames of different models for the Karman vortex street scenario with Re = 850.
The vorticity fields are shown.

4.7. CONCLUSION 61

S
O

L
 +

 S
R

A
T

O
(o

ur
s)

Frame 10 Frame 530Frame 270 Frame 790 Frame 1310Frame 1050 Frame 1830Frame 1570

D
il

-R
es

N
et

+

 S
R

0.5

0

Figure 4.19: Absolute error in velocity for the different models, for the Karman vortex street scenario
with Re = 850.

Frame 10 Frame 50Frame 30 Frame 70 Frame 110Frame 90 Frame 150Frame 130

S
O

L
 +

 S
R

A
T

O
(o

ur
s)

R
ef

.
D

il
-R

es
N

et

+
 S

R

0.25

-0.25

0

Figure 4.20: Example frames of a test case for different models for the decaying turbulence scenario.
The vorticity fields are shown.

62 CHAPTER 4. EXPLORING PHYSICAL LATENT SPACES

Frame 10 Frame 50Frame 30 Frame 70 Frame 110Frame 90 Frame 150Frame 130
S

O
L

 +
 S

R
A

T
O

(o
ur

s)

0

0.1

D
il

-R
es

N
et

+

 S
R

Figure 4.21: Absolute error in velocity for the different models, for the decaying turbulence scenario.

Frame 10 Frame 50Frame 30 Frame 70 Frame 110Frame 90 Frame 150Frame 130

S
O

L
 +

 S
R

A
T

O
(o

ur
s)

R
ef

.
D

il
-R

es
N

et

+
 S

R

1.0

-1.0

0

Figure 4.22: Example frames of a test case for different models for the forced turbulence scenario. The
vorticity fields are shown.

Frame 10 Frame 50Frame 30 Frame 70 Frame 110Frame 90 Frame 150Frame 130

S
O

L
 +

 S
R

A
T

O
(o

ur
s)

1.0

0

D
il

-R
es

N
et

+

 S
R

Figure 4.23: Absolute error in velocity for the different models, for the forced turbulence scenario.

4.7. CONCLUSION 63

Frame 15 Frame 30 Frame 45 Frame 60Frame 1

A
T

O
(o

ur
s)

R
ef

er
en

ce

1.0

0

0.5

Frame 75 Frame 90

A
T

O
(o

ur
s)

R
ef

er
en

ce

1.0

0

0.5

Figure 4.24: Example frames from our ATO model for two test cases of the smoke plume scenario. The
marker fields are shown.

64 CHAPTER 4. EXPLORING PHYSICAL LATENT SPACES

Chapter 5

Intrinsic SPH simulation on 3D
surfaces

We presented our first contribution, which enables the acceleration of Eulerian solvers while
showing a better quality performance than previous works. In this Chapter, we will tackle the
problem of simulating fluids on surfaces, with a similar goal of using dimension reduction to
improve the runtime performance of state-of-the-art SPH techniques on surfaces.

This work is currently under review.

45.74ms/step
#P= 137k

7.63ms/step
#P = 32k

DropletsSurface
tension

6.26ms/step
#P = 26k

9.26ms/step
#P = 37k

Figure 5.1: We present intrinsic SPH simulation on 3D triangle meshes. Thanks to the versatility offered
by standard SPH models, we can simulate surface tension effects as well as droplets formation. Our
technique copes with challenging inputs, such as the non-orientable and self-intersecting Klein bottle.
Here, particles following trajectories that cross at self-intersections (as shown on the right), do not
interfere. Our basic operators allow to simulate scenes with 137k particles at 20 fps, including basic
rendering, on a modern laptop (right).

65

66 CHAPTER 5. INTRINSIC SPH SIMULATION ON 3D SURFACES

5.1 Introduction
Smoothed-particle hydrodynamics (SPH) have been used successfully for simulating fluids in
computer graphics, and in particular in the special effects and animation industries. Simulating
fluids and their interaction with deformable objects with high physical fidelity is extremely
complex, as it requires solving for the notoriously chaotic Navier-Stokes equations. For that
reason, we focus on SPH, which offer a tradeoff between accuracy and efficiency that we
believe not to be matched by other simulation frameworks.

The SPH method amounts to representing the fluid using a set of point particles (equipped
with physical quantities such as mass, density, pressure and velocity) that interact together
through the spatial splatting of their carried properties. A basic simulation loop can be
summarized as this two-step procedure, repeated over time:

1. For each particle pi: gather the neighboring particles {p j} in the sphere of influence
centered in pi, and evaluate physical quantities to establish the forces exerted by {p j}
onto pi using the weighted sum derived from the SPH formulae;

2. For each particle pi: update its velocity and position using a time integration scheme
respecting Newton’s laws of motion.

These two operations are embarrassingly parallel, and fit perfectly to modern graphics hard-
ware. They merely require simple geometric structures for point-to-point and point-to-object
proximity queries (for both influence computation and collision detection), which makes
integration into rich code bases simple and easy to maintain.

Physical properties A(x) at point x ∈ RN can be computed by blending the corresponding
quantities {A j} equipped on {p j}, of mass m j and density ρ j, using a smoothing kernel Wh
with local support:

A(x) := ∑
j

m j

ρ j
A(x j)Wh(x− x j). (5.1)

Together with the point-representation of the particles, this property makes adding new effects
generally straightforward. For example, simulating the interaction between fluids of different
viscosity or simulating surface tension amounts to adding corresponding forces accordingly,
while simulating dripping amounts to simply releasing a tension force onto a particle.

While it is important that the performed simulation remains physically-plausible, explicit
control and predictability are often required. In this context, SPH appear as a gold standard, as
controlling the fluid amounts to specifying space-time trajectories for points to follow, which
is made straightforward by the very point-based nature of the fluid particles. Their simplicity,
flexibility, and compatibility with industrial standards have motivated many research works,
and many rich and complex simulation effects can be implemented within the SPH framework.

As a disclaimer, our goal is not to make new contributions on fluid simulation, but rather
to offer the possibility to port existing popular SPH simulation techniques from Euclidean
domains to curved domains with intricate topology, allowing for novel rich on-surface sim-
ulations. In this chapter, we present a computational framework allowing for robust and
efficient SPH simulations on triangle meshes – the de-facto standard surface representation in
computer graphics – that copes with common deficiencies in modeled surfaces (non-orientable,
self-intersecting, with arbitrary boundaries). We illustrate the effectiveness of our approach
by integrating a few common effects in our framework (multi-viscosity simulation, surface
tension, droplets) and demonstrate its robustness on challenging inputs (see Figure 5.1), paving
the way for flexible intrinsic fluid simulations.

5.1. INTRODUCTION 67

5.1.1 Related work
Fluids in the Euclidean space Fluid simulation in Euclidean spaces (2D and 3D) has been
studied for many decades in computer graphics, and many different physics frameworks have
been developed to this intent, each coming with ways to balance realism with speed and
editability or user control. A detailed review of those different formalisms is done in Chapter 3,
and we refer the reader to the Introduction in [88], explaining them in the context of smoothed-
particle hydrodynamics (SPH), which have been used extensively in computer animation
for their simplicity and flexibility [61, 80]. SPH is a mesh-free Lagrangian particle method,
ideal for free surface and interfacial flow problems. It is easy to implement and customize,
supporting three-dimensional numerical models naturally. SPH is very GPU-friendly, with
real-time solutions for free surfaces and object interactions [101, 92].

Fluids on 3D surfaces Shi and Yu pioneered the simulation of inviscid and incompressible
surface flows in [133], adapting previous solvers for the Navier-Stokes (NS) equations from
regular 3D grids to arbitrary 3D triangle meshes. In a similar spirit, Fan and colleagues
extended the 2D unstructured Lattice-Botzmann method (LBM) to 3D triangle meshes of
arbitrary topology [40]. Neill and colleagues then solved the NS equations on dynamic
deformable 3D triangle meshes for the first time [105]. Moreover, Auer and colleagues
used the Closest Point Method (CPM) to solve the NS equations over triangle surfaces in
real-time [7]. However, no specific fluid behaviors are demonstrated and CPM tends to
smooth out high frequency details. This approach was later extended to deformable surfaces,
although not in real-time [6, 99]. Closer to our use of SPH-based simulations on arbitrary
surfaces is the subfield of bubble simulations, including the rich dynamics taking place on
their surfaces. Wang and colleagues presented a meshless simulation framework where SPH
models the volumes, the surfaces, and surface flows [156]. Deng and colleagues used implicit
incompressible SPH from [60] for solving the projection term within their Moving Eulerian-
Lagrangian Particle (MELP) framework [34]. Independently from their performance, these
works are limited to surface flows that do not consider fluid accumulation nor detachment
following the geometry of the surface and properties of the fluid.

Closer to our work, Azencot and colleagues [9] as well as Vantzos and colleagues [154]
simulated thin viscous films over 3D triangle meshes using the gradient flow model. Their
method worked over static meshes, with a strong dependence on consistent vertex normals.
Droplet formation was supported, but not their detachment from and reattachment to the
surface. The method did not run in real-time neither. Ren and colleagues derived an integration
of the Shallow Water Equation (SWE) with 3D SPH for a stable real-time solution over
oriented triangle meshes [117]. Furthermore, Vantzos and colleagues simulated viscous thin
films over planar domains, using local-stencils to solve a gradient flow approach [153], and
Yang and colleagues solved the NS equation on spherical surfaces [162], both demonstrating
real-time performance. Bharadwaj and colleagues proposed the Discrete Droplet Method
(DDM) [17], with derivatives approximated using a SPH-like approach, but performance was
not real-time. Compared to ours, none of these methods allow for a physically valid interaction
between fluid and geometry with real-time user input, over non-orientable meshes.

Intrinsic geometry processing Many works have studied intrinsic operators on 3D surfaces,
either to cope with the finite discrete nature of triangle meshes – to go beyond piecewise
linear functions, or for robustness reasons – to avoid remeshing while benefitting from well-
behaved Delaunay triangulations, that avoid badly-shaped elements under point insertion. In
the following, we focus on a few concepts that are highly related to the work presented in

68 CHAPTER 5. INTRINSIC SPH SIMULATION ON 3D SURFACES

this chapter, in particular geodesics and discrete connections for parallel transport on triangle
surfaces. More details are given in Chapter 2 and Chapter 3.

Geodesics are the fundamental tool to describe "how far are two points on a curved
domain", and are locally-shortest paths connecting points. We are interested in a particular
case: the shortest-path connecting two points on a surface (which can be ill-defined: consider
connecting opposite poles on a sphere). We refer the reader to [68] for a complete survey.
Dijkstra pioneered the search for geodesics by proposing a N log(N) algorithm to compute
shortest paths in graphs [37], and has inspired many subsequent works. While it allowed
computing distances restricted to the graph edges, it did not provide geodesics connecting
vertices across triangles. However this algorithm has been the basis for many works that
proposed exact discrete geodesics, such as the MMP [95] algorithm, which we use in our
work. This work analyzes the computation of point-to-point geodesics crossing edges only
(and avoiding vertices), which is the definition we use for our geodesics. As detailed in [68],
geodesics are indeed formally well defined across edges only. This is because one can unfold
trivially adjacent triangles in a common plane, where geodesics then become straight lines,
whereas this operation becomes ill-defined when crossing vertices (as there are infinite ways
to keep walking inside neighboring triangles after leaving the vertex). Incidentally, even in
works based on Discrete Exterior Calculus (DEC) or Finite Elements Methods (FEM), this
corresponds to the notion of discrete connection that is mostly used [116, 31] in order to
parallel transport vectors across adjacent triangles. In order to define a consistent geometry
processing framework for gathering and averaging transported tangential quantities, we borrow
those definitions of discrete geodesics and trivial connections, which result in consistent
discretizations even on ill-defined surfaces. As a result, we are able to implicitly unfold non-
orientable, and/or self-intersecting triangle meshes with arbitrary boundaries, and compute
logarithmic maps on them (which is prevented by previous methods requiring global solves on
triangle meshes [131, 141]).

5.1.2 Contributions
We introduce a simple and sound computational framework, consisting of two canonical
operators:

• Geodesic neighborhood’s gathering and averaging of scalar/tangential quantities, see
Section 5.2.2;

• Intrinsic walk on a 3D mesh (see Section 5.2.4).

We specialize these operators for the case of intrinsic SPH simulation robust to pathological
inputs, that require fast and parallel computations on small neighborhoods. Our framework
offers the following advantages:

• it is optimization-free and scalable;

• it complies with low-quality triangle meshes;

• it makes little assumptions on the connectivity: we merely require that no more than
two triangles share a given edge.

We demonstrate the robustness of our technique on complex examples, featuring variable
geometric detail as well as self-intersecting and/or non-orientable structures with arbitrary
boundaries (e.g. the Moebius strip or the Klein bottle).

5.2. METHOD 69

5.2 Method
Our technique takes as input a triangle mesh S , with the only connectivity constraint that each
edge should be connected to at most two triangles, as our intrinsic operators require to walk
from triangle to triangle on the mesh across shared edges only. In Chapter 2, we presented
the formalism for the restricted class of geodesics that we consider, and we first add a few
necessary operators in Section 5.2.1. We then introduce our neighborhood gathering and
averaging operators in Section 5.2.2, and finally our walking operator in Section 5.2.4. We
present our application to SPH simulation on 3D surfaces in Section 5.3.

5.2.1 Mathematical notations
In this section, we do not extensively remind the connectivity structure that we equip our
triangle meshes with, but complete the notions presented in Chapter 2. To comply with a large
variety of input surfaces, we consider triangle-triangle adjacency through shared edges only,
and merely require that no more than two triangles share a given edge. Our triangle structure,
detailed in Listing 5.1, requires storing little information of fixed size, which makes GPU
storage and traversal straightforward.

Listing 5.1: Our triangle structure.

s t r u c t T r i a n g l e {
i n t c o r n e r s [3] ; / / Ve r t e x i n d i c e s
i n t n e i g h b o r s [3] ; / / −1 i f boundary edge
i n t n e i g h b o r s _ f l i p [3] ; / / Are n g b r i n g t r i . o r i e n t e d c o n s i s t e n t l y
mat2x2 T [3] ;
mat2x3 P ;

} ;

Given two triangles t1 and t2 (an example triangle is shown in Figure 5.2), we define a
rotation matrix Tt1t2 mapping tangent vectors in t1 to tangent vectors in t2 in the 3D space.
One can thus transport a vector from t1 to t2 in (δu,δv) coordinates using the following 2D
map

Tt1t2 := Pt2Tt1t2Et1 ∈ R2×2 (5.2)

with

Et :=(eeeu|eeev)

Pt :=(ET
t Et)

−1ET
t

This map is stored as T in Listing 5.1.

Figure 5.2: Triangle t = (ttt0, ttt1, ttt2), with eeeu =: ttt1−ttt0 and eeev =: ttt2−ttt0

70 CHAPTER 5. INTRINSIC SPH SIMULATION ON 3D SURFACES

Boundary reflections Boundary conditions for fluids can be set in various manners. A
common practice in SPH simulations is to create virtual particles along boundaries (or
colliding objects) to repulse the fluid’s particles. In our case, we implement a bouncing
boundary condition, by transforming an incident tangent vector δδδ t as

δδδ
′
t =

(
I −2

(nnnt × eee)(nnnt × eee)T

∥eee∥2

)
δδδ t =: Bt

eeeδδδ t (5.3)

for particles bouncing on a boundary edge eee, with nnnt the 3D normal of the triangle. Like for
discrete connections, we can express this as a 2D map transforming a tangent vector’s (δu,δv)
coordinates in t using

Bt
eee = PtB

t
eeeEt ∈ R2×2 (5.4)

For compactness, we store this information in T as well in Listing 5.1, for boundary edges.

5.2.2 Neighborhoods computations
Using the computational framework just introduced, we present our construction of geodesic
neighborhoods, that we target for on-demand computation of geodesic length and combined
geodesic parallel transport within a specific geodesic radius h (given by the local influence
radius of the SPH kernel, see [101]).

Our method is based on the MMP algorithm [95], that uses the so-called window prop-
agation mechanism. This algorithm is highly compatible with our setup in practice, as we
consider discrete geodesics along shared edges only, which is the way windows are propagated
in the MMP algorithm.

In a preprocess, we compute the geodesic windows from the center of each triangle, at
a conservative distance: considering a triangle t with center ccc and circumcenter rt (distance
from ccc to t’s corners), and given a SPH kernel radius h, we compute geodesics from ccc inside
the geodesic disk of radius h+ rt . We reviewed the basics of the MMP algorithm in Chapter 2,
and now present our extensions.

MMP extension We extend the MMP algorithm in several ways:

1. While propagating/splitting windows across an edge e shared by adjacent triangles t1
and t2 (conceptually marching from t1 inside t2), we record the transformation Tt1t2
(Eq. (5.2)), and concatenate it with the series of rigid transformations from the source
triangle t, in order to align t2 with respect to t. This captures the direction d⃗cccqqq from the
center of t, ccc, to a point qqq, i.e., the normalized tangent of the geodesic at ccc.

2. During propagation, the first time a saddle point is encountered, we keep the direction
of the geodesic from the source to the point to serve as direction of the geodesics at the
source.

Geodesic distances can therefore be computed easily from the position of a point and the
associated window information. For our particle simulation we also need geodesic directions
that can be computed either using accumulated rigid transformations or by fetching the
direction if a saddle point was encountered. This also makes the application of parallel
transport of vectors straightforward, as needed in Section 5.2.3, since we simply need to apply
the accumulated transformation matrices along the geodesic path between the vectors.

During this pre-computation step, we register for each triangle the geodesic windows
starting from its center, in a radius h+ rt . This enables us to get the neighborhood of each

5.2. METHOD 71

c

p

q

Figure 5.3: To get the distance between arbitrary points ppp and qqq from different triangles, we use the
geodesic window from the center of ppp’s triangle, ccc, to qqq. We triangulate the location of ppp with respect to
qqq realigned in ppp’s triangle.

triangle, i.e. the triangles that these windows are going through. We store the corresponding
data in buffers on the GPU (the neighborhoods of all triangles being of variable size, we build
a compact indexed structure to access it).

Our structure allows capturing geodesics from the center of a triangle t to any point on S
in constant time. However, we cannot capture directly the geodesics from arbitrary points in t
to arbitrary points on S . We make an approximation to compute those, using the quantities
we derived. Given an arbitrary source point ppp ∈ t and a target point qqq inside a given window
(see Figure 5.3), we consider ppp, ccc (the center of t), gcccqqq (the geodesic window from ccc to qqq)
and d⃗cccqqq (the geodesic direction) to triangulate the location of ppp with respect to the point qqq
realigned inside t. Doing so, we make the assumption that the discrete geodesic from ppp to qqq
passes through the window corresponding to the geodesic from ccc to qqq.

This obviously results in approximate geodesics and transported directions only, but we
note that this approximation becomes accurate for small distances. The SPH kernel decreasing
with the distance, the approximation that is made is in practice harmless for our applications.
We analyze this claim in Section 5.4.

Thanks to the previously defined neighborhood of each triangle, of radius h, we are able to
find the neighbors of every particle by querying the geodesic distance to the particles lying in
these neighboring triangles.

5.2.3 Velocity and forces update
In the previous section, we described how the neighborhood of each particle can be found.
Thanks to our geodesic distance computation, we can then evaluate the necessary physical
quantities and proceed to the next steps of the SPH algorithm (see Chapter 2 for more details).

The density and pressure computations are straightforward, since the only difference
with traditional SPH is that geodesic distances are queried in the kernel function instead of
Euclidean ones. These physical properties are then used to compute the internal and external
forces applied to the particles. These forces rely not only on the distance between particles, but
also on the direction from one to the other. For instance, when we calculate the influence of
particle p j on particle pi, we need to transport the velocity v j from p j to pi along the surface.
This is once again straightforward in our case since the algorithm described in the previous
section provides us with the geodesic path and accumulated transformation matrices that we
need to parallelly transport such vectors.

Therefore, we are able to correctly accumulate the influence of all neighboring particles of
pi by making all our computations in its tangential plane. Finally, we project external forces

72 CHAPTER 5. INTRINSIC SPH SIMULATION ON 3D SURFACES

Figure 5.4: If a particle needs to leave its current triangle, its position is snapped on the closest positive
intersection of its trajectory with the triangle edges. The velocity is transformed in the adjacent triangle
and the walk continues.

that are not in the triangle plane, like gravity, thanks to Equation 2.3.1, to get the acceleration
of the particle.

That way, we can apply Newton’s second law of motion and update pi’s velocity field.
To do so, we transport the velocity at the previous time-step in pi’s current triangle, since it
might have moved from one triangle to another. We can do so by registering the necessary
transformations from one triangle to the other during the walk of the particle at the previous
time-step. Then, we can update the velocity with the acceleration since they lie in the same
plane. We use a leap-frog scheme, thus this new velocity is used for the walk algorithm
described in the following section.

5.2.4 Walk
In this section, we detail our on-surface walk algorithm. We let a particle have two possible
states: it can be strictly inside a triangle or on an edge. Since we define the connectivity
of our surface by edge adjacency, we never let a particle be on a triangle corner. Before
starting its walk on the surface, a particle carries multiple information: a triangle index triIdx,
a topological flag (ei,e j) indicating which edge it lies on ((−1,−1) if strictly inside a triangle),
barycentric coordinates (u,v), and a 2D velocity (δu,δv). Our walk algorithm (detailed in
Algo 2) starts by an update of the barycentric coordinates applying Newton’s laws of motion.
Then, four situations can arise:

1. If the particle goes in a new triangle, we compute the intersection of its trajectory
with the triangle edges and snap the particle’s position on the closest positive one (see
Figure 5.4), denoted as λ .

2. If the intersection λ is inside a corner zone, we snap the particle’s position on the
intersected edge at a distance ε of the corner, on the border of the corner zone, as shown
in Figure 5.5.

3. If the particle’s updated position stays inside the same triangle as at the previous step,
the walk is finished. We update the particle’s barycentric coordinates and perform the
next step of SPH.

4. If the particle’s updated position stays inside the same triangle, but goes in the corner
zone of this triangle, we proceed as in (2). We then update the particle’s barycentric
coordinates and perform the next step of the SPH.

In cases (1) and (2), we update the topological flag of pppi, indicating that the particle now
lies on an edge, we update its triIdx to the adjacent triangle index, and finally transform the
velocity (δu,δv) with the corresponding T matrix. If the particle did not walk its full distance,

5.3. RESULTS 73

(a) (b) (c)

Figure 5.5: (a) If the particle trajectory crosses a corner zone (red), pi is snapped at a distance ε of the
corner and the walk continues (b) until it goes out of the corner zone (c).

the walk continues with ∆t = ∆t −λ . When ∆t = 0, the walk ends and the next SPH step can
be performed.

With this algorithm, an intersection is always found when a particle needs to leave its
current triangle, and a particle never gets stuck on a triangle vertex. Therefore, we ensure that
our walking algorithm always finishes.

5.3 Results

5.3.1 Implementation details
We implemented our intrinsic operators on the GPU in compute shaders, leading to an
interactive SPH simulation with hundreds of thousands of particles (see Table 5.1 for statistics).
We pre-compute the connectivity information of the mesh on the CPU only once at loading
time, along with the particles’ initial state and a pre-filtering of their triangle’s neighborhood.
Indeed, we pre-compute the neighborhood of each triangle by iteratively going over its adjacent
triangles and adding the ones inside the SPH kernel. Then, the particles being constrained
to the surface, we only query the ones that are in neighboring triangles during neighborhood
computation on GPU. To optimize memory usage, the particles are ordered on GPU according
to their triangle index.

Once the neighborhood of each particle is set, we perform the traditional SPH stages
of computing density, pressure, and forces. To do so, we re-normalize the typical kernels
used in 3D, since we focus on surfacic (i.e. 2D) simulation. Then, we update the particles’
velocities and positions using an explicit Euler scheme. The forces applied to one particle
being calculated in its tangential plane, the updated velocity can directly be used for the walk
of the particle (Sec 5.2.4). This last step only requires the particle’s triangle index, topological
flag, and barycentric coordinates, along with the connectivity information of the mesh, which
are all already available in memory.

5.3.2 Intrinsic SPH simulation
Our intrinsic operators leverage all the benefits of Lagrangian methods, and are compatible
with various effects of SPH simulations (Figure 5.10, 5.11, 5.12, 5.13). In this section we
illustrate a few of them, including droplets (Figure 4.1), surface tension (Figure 5.11, left),
and interactions between different types of flows (Figure 5.11, right). Our droplets simulation
relies on a density threshold above which a particle can leave the surface to free-fall in the
3D space. Since the SPH stages are not performed for these particles, they are attached to an

74 CHAPTER 5. INTRINSIC SPH SIMULATION ON 3D SURFACES

ALGORITHM 2: Step i of our on-surface walk operator
Input: particle: triIdx, edge, {ui,vi}, {vu,i,vv,i}.
while WalkFinished = FALSE do

{ũi, ṽi}= {ui−1,vi−1}+∆ti−1 ×{δu,i−1,δv,i−1} ;
if α̃0 ∈ (0,1− ε) and α̃1 ∈ (0,1− ε) and α̃2 ∈ (0,1− ε) then

edge = {-1, -1 };
{ui,vi}= {ũi, ṽi};
WalkFinished = TRUE;

else
Intersect(triEdges, {ui−1,vi−1}, {δu,i−1,δv,i−1});
Keep closest positive intersection λ ;
triIdx = adjacent triangle;
edge = intersectedEdge;
{ui,vi}= {ui−1,vi−1}+λ ×{δu,i−1,δv,i−1};
for k in range 3 do

if αk > 1− ε then
αk = 1− ε;
break;

end
end
Compute {ui,vi} in new triangle;
{δu,i,δv,i}= T ×{δu,i−1,δv,i−1};
∆ti = ∆ti−1 −λ ;
WalkFinished = FALSE;
if (∆ti = 0) then

WalkFinished = TRUE;
end

end
end

additional ghost triangle, in order to optimize compute time in the shaders. We added some
randomization in the dropping test, so that the fluid can reach a new equilibrium state on the
surface without losing all its particles. Finally, if a new intersection with the surface is found
during a particle’s free fall, it is attached back to the mesh and our operators are applied again
on that particle.

Our framework is compatible with a large variety of meshes, as long as an edge is not
shared by more than two triangles. Figure 5.12, right, illustrates our results on a Moebius
strip, where particles flow all along the strip and bounce back at the borders. Figure 5.12, left,
illustrates how particles do not to interfere at self-intersections on the Klein bottle and instead
follow their own trajectory along the mesh. Indeed, our neighborhood computations with
geodesic distances do not consider such particles to be neighbors, whereas a typical Euclidean
framework would. Figure 5.9, greatly illustrates the benefits of our method upon Euclidean
neighborhoods, particles slowly flowing along the paper folds in the former, instead of getting
stuck as in the latter.

5.4. ANALYSIS 75

5.4 Analysis

5.4.1 Memory usage and performance
Memory consumption In order for the particles to have access to their neighbors, our im-
plementation requires that the underlying triangles of the mesh store their neighbors (adjacent
triangles), which has an impact on the memory consumption depending on the overall topology
of the mesh (see Table 5.1). For instance, the Folded paper scene contains hundreds of large
elongated triangles that are connected to a large set of other triangles, which explains the high
memory consumption. For particles, our framework requires very few additional data when
compared to traditional SPH simulations: the triangle index to which the particle belongs, the
edge topological flags, and the barycentric coordinates, which leads to three integers and two
floating point values. We note that we did not spend time on optimizing the memory layout
of our data structures, which currently have redundancies (especially regarding neighboring
triangles) that could be further optimized.

Performance Our pre-processing step (Section 5.3.2) can take up to a few minutes and
is done only once at startup. It is currently performed on a single thread on the CPU, and
could easily be implemented in a multi-threaded context for more efficiency. After that, our
simulation runs interactively on the GPU for scenes featuring up to thousands of particles.

As with classical SPH simulations, the performance is mainly dependent on computations
that involve neighboring particles, thus it is related to the SPH kernel radius h. In our case, a
triangle neighborhood is defined as a geodesic disk of radius h+ rt , with rt the circumcenter
of the triangle. This makes both the pre-processing step and the particles neighborhood
computations highly dependent on the kernel radius and overall topology of the mesh. Having
a mesh with isotropic triangles is thus a crucial factor for the simulation efficiency. This
explains the timings for the Folded paper scene, which features many thin and elongated
triangles especially around the folds. On the other hand, the Table scene mostly contains
isotropic triangles that greatly favor performance for similar amounts of triangles and particles.

Scene #T #P E Memory (Gb) Preprocessing Runtime
Mesh Particles Kernel radius Time (s) Av. step (ms) #Steps Total (s)

Moebius strip (Figure 5.12) 448 2323 0.37 0.002 0.005 0.15 0.02 3.9 1000 4
Klein bottle (Figure 5.12) 9232 38 488 0.58 0.03 0.08 0.05 1.1 16 1131 18.5
Spring (Figure 5.13) 43 786 19 544 0.09 1.1 0.04 0.05 33.4 6.8 5000 34
Folded paper (Figure 5.9) 82 856 128 707 0.10 2.6 0.28 0.05 154.4 90.2 2000 171.8
Table (Figure 5.13) 115 432 94 970 0.12 0.43 0.21 0.05 313.6 33.46 3000 100.4

Table 5.1: Performance statistics for the different scenes shown in the paper: triangle count #T, particle
count #P, average edge length in the mesh E, GPU memory consumption of both the mesh and the SPH
particles, SPH kernel radius, preprocessing time (s), average time for a single step (ms), total number of
steps, and total time for the entire simulation (s).

76 CHAPTER 5. INTRINSIC SPH SIMULATION ON 3D SURFACES

5.4.2 Approximations
In this section, we discuss the approximations made in our work and sketch possible avenues
for future work.

Kernel normalization The first approximation we make is about the renormalization of the
kernels we use for the SPH simulation. By setting the normalization factor for kernel Wh as

∥Wh∥ :=
∫

r∈R2
Wh(r)dr,

we assume here that the underlying surface geometry around a point x is flat, and given by a
disk at least larger than h. Formally, one could normalize the kernel at point x using

∥Wh∥(x) :=
∫

y∈S
Wh(y− x)dy

instead, i.e., capturing the surface geometry, and integrating Wh on the geodesic disk centered
in x ∈ S . Note however that it would lead to asymmetric influence weights

Wi j

∥Wh∥(pi)
̸= Wji

∥Wh∥(p j)
,

breaking an important assumption of SPH simulations, which is reciprocity (i.e., particles pi
and p j influence each other symmetrically).

Shortest-path influences Another approximation made in our work is that particles see each
other along the shortest-path geodesic connecting them. Equivalently, each particle sees its
neighborhood through a local logarithmic map parameterization. While this is a rather natural
idea, one can observe that shortest-path geodesics may be unstable in thin regions, for example
along tubular regions where the local feature size (distance to the medial axis) is small with
respect to the kernel radius h. In these situations, particles may bounce in an unstable manner,
as the shortest-path geodesic connecting them may keep jumping iteration after iteration.

Geodesic approximation As explained in Section 5.2.2, we only compute exact geodesics
(up to numerical imprecisions) from the centers of the triangles to a sub-part of the mesh
surface – as we only request geodesic neighborhoods in the support radius h of the kernel.
To establish an estimate of the distance to an arbitrary source point in a triangle, we rely on
a simple approximation. In Figure 5.6, we illustrate the errors introduced on the resulting
geodesic distance. As illustrated, the errors are mostly located far away from the source. In
our application scenario, these errors are negligible as those correspond to points outside
the support of the SPH kernel. Figure 5.7 illustrates our approximate geodesics and parallel
transport on the Moebius strip as well as on a noisy Klein bottle. We also show in Figure 5.8
a logarithmic map computed on the Moebius strip. As we do not enforce smoothness, we
observe discontinuities in the argument, revealing the presence of saddle points on the mesh.

Neigborhood structure size Our framework highly relies on GPU computations in order to
run at interactive speed, which also has its set of drawbacks. The main issue that we face is
the diffculty to allocate memory dynamically. Indeed, SPH requires that we recompute every
particle’s neighborhood at each simulation step, which thus has a variable size. This is not
compatible with the pre-processing step in which we allocate memory for the neighborhood

5.5. CONCLUSION 77

(a) (b) (c) (d)

Figure 5.6: We show our geodesic distances to a point highlighted in green on the Klein bottle. The
distances to the center of the source triangle are shown in a) and c), and our approximation of the distance
to a point far from the center are shown in b) and d). One can notice discontinuities resulting from our
approximation, which are in practice acceptable in our case since we focus on local neighborhoods.

arrays only once, when transferring the data from CPU to GPU. These arrays have a fixed size,
which can either be way too big for particles with low density, or too small in the opposite
case. In the first case, the only issue is about performance, which we tackle by ordering the
particles by triangle index. This way, particles with low density should be processed together
in the compute shaders and do not need to “wait” for each other. In the other case, where
particles have more neighbors than is allowed by the array size, physical errors can arise.
Indeed, randomization is introduced in the neighborhood choice in this scenario, which can
lead to incorrect behaviors, and might create a snowball effect with particles nearby. A more
thorough analysis of memory usage and neighborhood size could be conducted in order to fix
these potential issues.

Other approximations In Section 5.2.4, we present a corner zone to prevent numerical
instabilities that can occur on triangle vertices when using intrinsic frameworks. This zone is
delimited by segments of size ε on the triangle edges (Figure 5.5), currently set to 10−4 in
barycentric space. No particle can enter this zone, which results in physical approximations
that are barely visible when a particle slides on the surface. It can however create some
instabilities when the flow reaches equilibrium locally on the surface, for example if a big
amount of fluid is accumulating on a small area or on a border.

Finally, if a particle pi is located on an edge e and its velocity (δu,δv) is colinear to e,
we slightly shift the velocity inside the triangle. This error can propagate if many steps are
performed for the walk during one simulation time-step, which is not our case as showed in
Section 5.2.4.

5.5 Conclusion
We have presented a simple and robust computational framework to perform intrinsic SPH
simulations on 3D surfaces, that allows considering challenging inputs such as self-intersecting
and non-orientable surfaces with arbitrary boundaries. We have demonstrated that a typical
SPH implementation with our method can simulate various effects at interactive speed, such
as surface tension, multi-viscosity simulations and droplets.

Although our intrinsic simulations behave empirically as their Euclidean counterparts (in
flat spaces), the impact of simulating SPH on curved domains using a symmetric point-wise

78 CHAPTER 5. INTRINSIC SPH SIMULATION ON 3D SURFACES

method remains to be analyzed, which echoes our discussion on kernel renormalization. While
it results in the non-uniform treatment of particles, we did not observe visible artifacts that
could be linked to this in practice, even in highly-curved geometries (see the Spring example).
This may be due to the built-in smooth nature of SPH. Moreover, we use the input triangulation
for nearest neighbor queries, which we treat in spirit as a hash map. We note that we have not
investigated in depth the relationship between the physical properties of our fluids (leading to
target inter-particle distance) and the size of the triangles which we use for our simulation,
which clearly impacts performance. While it is always feasible to subdivide the input triangles
if too many particles are located on one of them (refining the neighborhood query structure
without changing the geometry of the surface), merging many small triangles together in the
opposite situation will change the surface geometry and could result in incorrect simulations.
Designing a proper intrinsic multi-resolution structure adapted to our problem will be key to
further improve performance and scalability of our approach.

the center of the triangle

a point far from the triangle center

an arbitrary point in the triangle

Geodesic distances from:

Figure 5.7: Our algorithm allows computing geodesics as well as associated parallel transport of tangent
vectors on triangle meshes, as long as no more than two triangles share an edge, regardless of non-
orientability.

Figure 5.8: Our algorithm allows computing approximate logarithmic maps on surfaces.

5.5. CONCLUSION 79

Geodesic neighborhoods

Euclidean neighborhoods

Figure 5.9: Considering Euclidean neighborhoods and distances (bottom right) prevents computing
robust intrinsic simulations, as soon as Euclidean and geodesic distances differ too much, even in the
absence of self-intersections (for which particles close in the Euclidean space wrongly interact and
prevent the flow from falling along the folded geometry). Our intrinsic simulation behaves exactly as if
this developable surface was unwrapped in the plane, as expected.

Figure 5.10: Three frames of a simulation with 100k particles dripping down the vertical part of the
mesh, slowly flowing on the horizontal plane.

No surface tension With surface tension

Figure 5.11: Our approach is compatible with a standard SPH method with various effects. Left:
comparisons with and without applying surface tension. Right: dropping a low-viscosity fluid (blue) on
top of a high-viscosity one (orange) is shown on the left part, and the opposite experience is shown on
the right. Here, the orange particles remain glued together, and progressively force the blue particles to
move to the side of the vase.

80 CHAPTER 5. INTRINSIC SPH SIMULATION ON 3D SURFACES

Figure 5.12: Thanks to the intrinsic nature of our method, the simulation can be performed on non-
orientable and/or self-intersecting surfaces. Left: the green and purple particles do not interact on the
Klein bottle. Right: the liquid flows on the Moebius strip without showing any discontinuities and
correctly handling boundaries.

Figure 5.13: Our method handles very thin structures such as strand-like meshes. In this example, 43k
particles are slowly following a standing spring-shaped object and moving down towards the ground.

Chapter 6

Conclusion

In this thesis, we introduced several contributions to the field of computer graphics, and more
specifically fluid simulation. We aimed at reducing the computational costs and resources
required to simulate such natural phenomena in a realistic way, and presented two novel
techniques that were using dimension reduction as a means to do so. In this chapter, we will
first summarize our contributions and then present the research perspectives that they open, as
well as more general societal perspectives concerning computer graphics research.

6.1 Exploring physical latent spaces

6.1.1 Contributions
Firstly, in Chapter 4, we presented a data-driven technique that enabled the production of
turbulent fluid simulations from a unique coarse frame, at a higher-resolution than given.
We proposed a deep learning model that enabled the exploration of reduced latent spaces,
without having any other constraint than fitting a target solution. Our model, named ATO, is
composed of three networks: an encoder, an adjustment and a decoder model. It was trained
on and applied to turbulent flows such as the Karman vortex street scenario, a smoke plume
or a turbulent scenario with external forces. We compared our results to two previous works
that both operate in a low-resolution space, either using a deep neural network to correct the
numerical errors created by a coarse solver, or by training a surrogate model that replaces
the numerical solver completely. We showed that our model improved the performance of
both existing works in several physical scenarios, by finding a latent space that is optimized
for applying the reduced solver and decoding the frames at a higher resolution. Taking a
closer look at that latent space, we found that it was quantitatively very far from the bilinear
down-sampling of the ground truth. However, it was easy to recognize visually the main
features of the flow, such as its vortex structures. We thus think that our model enabled the
creation of reduced physical states that contain additional relevant information compared to a
traditional down-sampling operation.

6.1.2 Perspectives
A major drawback of this method is its runtime performance. Indeed, we showed that our ATO
model accelerated the reference simulation by about 20% on average in the different scenarios
that we showcased. Even though our model improves the baseline and the other state-of-the-art

81

82 CHAPTER 6. CONCLUSION

models, it still presents a big loss in quality compared to the reference. For that reason, we can
wonder whether an artist or engineer that wishes to create a high-quality simulation would
actually use our framework, or rather wait a little longer and use more resources to get a much
better solution. Moreover, although our model accelerates the performance at inference time,
it is quite heavy to train and we did not take the training time and resources into account when
comparing performance with the high-resolution solver. Nonetheless, we believe that using
a deep neural network model to discover a relevant reduced space for fluid simulation was
an interesting first step, and that more work remains to be done if we want this idea to be
implemented for real use cases.

First of all, our architecture was not optimized and some code optimization might lighten
our computations. Secondly, we did not try for a more significant dimension reduction, i.e.
having a latent space for example eight times smaller than the reference space, instead of four.
This would allow for the production of a solution at a higher resolution than 256×256 and
thus the application to more realistic scenarios. Finally, when we analyzed the performance
of our model more deeply, we noticed that about half of the runtime (at training as well
as inference) was taken by the solver step. In our experiments, we used the differentiable
solver from the φFlow framework (itself using the φML library [55]) but we did not investigate
thoroughly its acceleration structures nor looked for potentially more efficient solvers, which
might considerably improve the runtime performance of our ATO model.

If a faster and lighter architecture than ours is found to explore physical latent spaces in
order to predict high-resolution simulations, an obvious follow-up would be the extension to
3D scenarios. In the current state of our model, solving the equations for such a scale was too
computationally intensive and training our model for 8 solver steps would have taken several
months, which is highly impractical. To extend our work to 3D, some inspiration could be
taken from other fields such as biomedical imaging, in which people are used to treating some
heavy 3D data [50, 52]. The extension of our model to 3D would also open the possibility
to interact in real-time with a simulation, and thus let the user modify its physical properties.
We could think of a use-case where the user would set up an initial coarse frame that is not
too costly to make, control some simulation parameters, and then use our model to produce
n frames in high resolution. The control parameters could for instance be different external
forces, or the viscosity of the fluid. An interesting application would be to couple this with
virtual reality, to enable the real-time production of high-resolution 3D fluid flows, while being
able to shape the simulations in an interactive way.

6.2 Intrinsic SPH on surfaces

6.2.1 Contributions

In Chapter 5, we aimed at simulating fluids on surfaces at interactive speed, by proposing
an intrinsic adaptation of the smoothed-particle hydrodynamics (SPH) method for arbitrary
meshes. Since we wished to model fluid flows on 3D surfaces, we decided to modify the
SPH algorithm by using geodesic distances and directions to gather the neighborhood of a
particle. To do so, we extended the MMP algorithm to get the geodesic distance between any
point on the surface to any other, at arbitrary positions. Furthermore, we proposed a walk
algorithm that enables the intrinsic displacement of a particle on the surface. We update its
barycentric coordinates thanks to its velocity and, in the case where its trajectory crosses an
edge, we snap its position at the intersection. We then transform its velocity in the adjacent
triangle and continue the walk until it finishes. Thanks to our intrinsic SPH simulation, we

6.2. INTRINSIC SPH ON SURFACES 83

were able to simulate fluids with various physical properties at interactive speeds, using tens
of thousands of particles, on arbitrary surfaces, with the single constraint that one edge of
the mesh could not be shared by more than two triangles. In this chapter, we showcased
a basic implementation of SPH, but most features of this method are compatible with our
intrinsic simulation. We implemented a few effects such as surface tension or droplets falling
from the mesh onto another surface, and demonstrated our results on non-orientable and/or
self-intersecting meshes such as the Klein bottle and the Moebius strip.

6.2.2 Perspectives
A first interesting avenue regarding this work is the study of the links between the simulation
parameters and the geometrical properties of the mesh. More specifically, SPH importantly
relies on its kernel radius, which both influences the speed of the computations and the
stability of the simulation. In our case, it makes the simulation highly dependent on the
length of the triangle edges, both for our neighborhood calculations and our walk algorithm.
An analysis of the optimal relation between the edge length and the SPH kernel could be
followed by an intrinsic triangulation, as presented in [43], in order to get a secondary and
better-suited mesh on which to perform our intrinsic SPH simulation. This could greatly
improve performance both in terms of runtime and quality of the results. It would also enable
the mesh to have triangles that are more isotropic than they would originally be, which would
make our neighborhood gathering more efficient and our walk algorithm more robust.

To further extend our intrinsic simulation framework, we could implement state-of-the-
art SPH variants such as incompressibility, kernel reweighting, better boundary handling or
multi-phase flows. These are all compatible with our neighborhood gathering and our use of
geodesic distances. A more challenging task would be the addition of a small thickness to
our simulation. In its current state, our framework already includes droplet simulation when
the density of a particle goes over a threshold. It would add realism to actually be able to
accumulate matter with a growing thickness, and then release some of it with droplets. To
do so, we could for example add an artificial thickness when rendering the fluid. We could
also decide that if an area has an average density above a certain value, we allow 3D SPH at a
given radius around that area. Coupled with droplets, it would enable realistic simulation of
thin fluids at interactive speeds within a simple framework. An interesting application of this,
that would require quite some additional work, would be the simulation of condensation with
droplet formation.

A more direct application of our work would be to use it to reproduce dendritic paintings as
proposed by Canabal et al. in [25] (Figure 6.1 - left). In this paper, they present the simulation
of dendritic patterns on a 2D regular grid. They couple a reaction-diffusion mechanism with
the Lattice-Boltzmann Method (LBM) to create the patterns and to make some paint flow
inside of them. We could extend their work to triangle meshes by using our intrinsic SPH
simulation instead of their LBM. The least trivial part would be to find a way to link the
particles to the reaction-diffusion happening on the mesh vertices. This could be done by
creating some virtual sites and registering for instance the density of fluid on these sites when
a particle goes through them. That way, we would be able to recreate for example some mocha
diffusion art on 3D meshes, as shown on Figure 6.1 - right.

On the geometry processing side, some work can be done to improve our neighborhood
computation. One limitation of our work for instance is the fact that we cannot set the size
of a particle’s neighborhood dynamically, because we need to pre-allocate the memory on
GPU. Some cases can lead to scenarios where a particle actually has more neighbors than the
maximum set amount, and the neighborhood becomes a bit arbitrary. It is unfortunately not

84 CHAPTER 6. CONCLUSION

Figure 6.1: Results from the paper “Simulation of Dendritic Painting” [25] (left) and real mocha
diffusion on pottery (right) from [96]

possible at the moment to allocate the memory dynamically, but we could however manage
our memory usage more efficiently. Indeed, we could analyze more thoroughly the statistics of
the particles’ neighborhoods in order to allocate memory in a more relevant manner. Finally,
part of our pre-processing steps are not parallelized yet.

Another interesting extension of our work would be to enable particles to cross corners,
in order to allow for non-manifold meshes in which some triangles are connected by only
one vertex. Finally, it would be useful to be able to interactively deform the mesh while the
simulation is taking place. It would only require the new deformed mesh to be sent on GPU,
and the triangles’ neighborhoods to be computed again. Nevertheless, this cannot be done too
often, as it would significantly slow down the performance. To circumvent this issue, we could
recompute only the neighborhoods of the triangles that are within a certain radius around the
ones that have been deformed.

6.3 Societal concerns
Working with computationally intensive simulations as well as deep learning models raises
some ecological and thus sociological questions. The most obvious criticism relates to the
very high consumption of resources induced by high-resolution and/or real-time simulations,
as well as the use of deep neural networks. Although lots of works, like ours, narrowed their
focus on improving the performance and thus usually decreasing the power and memory usage
of such models, one could wonder how they are truly used. Indeed, lots of works in many
fields focused on the now famous rebound effect, defined in [145] as follows: “The rebound
effect deals with the fact that improvements in efficiency often lead to cost reductions that
provide the possibility to buy more of the improved product or other products or services.” A
typical example of this effect is the fact that people use their car more frequently and for longer
distances as technology makes them more efficient for fuel consumption. Closer to our subject,
when new and usually more efficient graphics hardware is coming out, or when new algorithms
or methods present a better runtime performance, a rebound effect also happens. This has been
described as Blinn’s law [109]: “As technology advances, rendering time remains constant.”
Indeed, it has been observed that the average rendering time for Pixar movies remained more
or less constant over the last fifteen years, although technologies have significantly evolved
since then [106].

Most scientific reviews keep measuring the quality of the proposed works with metrics
that mostly highlight the realism of the results, and how much closer to a ground truth they
are than previous works. One solution to overcome this rebound effect would thus be for the
various scientific communities to commonly agree to change their appreciation criterias, by
including – and insisting on – the power usage and the environmental and social impact of

6.3. SOCIETAL CONCERNS 85

Figure 6.2: Results from the paper “Lifted Curls: A Model for Tightly Coiled Hair Simulation” [132]
published in 2023, comparing two different coiled hair simulations to real-world looks.

the reviewed work. In the current sociological context, we find it hard to keep selling the fact
that we are able to produce simulations of ever increasing quality, especially since we already
have beautiful photorealistic results as industry standards. We believe that research should be
aligned with the important challenges that society is facing, climate change and the various
societal crises being a major part of them.

Finally, most deep learning models require huge amounts of computational resources
and data if one wants to reproduce the results presented by their authors. This poses several
problems, the main ones being the negative impact on the environment and the unequal access
to this technology. To tackle these issues, more and more engineers and researchers get
interested in frugal AI, which consists in reducing the amount of resources used by deep neural
networks. They propose multiple types of solutions, from changing the organization of data
centers and hardware [111] to modifying the architecture and training procedure of neural
networks [112].

In this manuscript we focused on the animation of non-human elements. A significant part
of research in computer graphics however is dedicated to making virtual humans as physically
realistic as possible. This goes from animating their gait or movements to simulating their
skin, hair, bodies. To conclude this thesis, we would like to underline the importance of bias
in computer graphics projects. Theodore Kim has addressed the question of racial bias when
rendering human skin, or simulating human hair, in a talk at SIGGRAPH in 2021 [73]. In
this talk, he showed that the lack of diversity when representing human skin was particularly
appalling with the success of subsurface scattering models [63]. Subsurface scattering happens
for every skin color, but to very different extents. In fact, the predominant effect for black
skins is not subsurface scattering, contrary to white ones. Nevertheless, after the publication
of this seminal paper in 2001, articles have been referring to their models as “skin models”
instead of “white skin models” [139], which shows how computer graphics research – like
most research fields – is centered on white people. Similar behaviors happen when it comes to
simulating hair, with straight (or slightly curly) hair being the default representation [163] and
kinky (i.e. extremely curly) hair (Figure 6.2) being almost inexistant in the literature before
the years 2020 [132].

Furthermore, neural networks have gotten extremely popular for the general public since
the rise of content generation with AI (text, image or video). The very essence of neural
networks is to output results depending on the data they have seen during training, which
is usually found on the internet or annotated by hand by humans. This means that socially
biased training sets, as they almost all are, will produce biased outputs. For example, some
works assess the racial biases [74] as well as the ones concerning sex and gender [38] in
computer graphics research. They propose to change the way we simulate humans by using
more universal models, and to change our default representations – usually white/physically

86 CHAPTER 6. CONCLUSION

valid/thin/gender binary – to ones that represent the human diversity better. We also believe
that it is our role as researchers to battle for less biased datasets, which would have a very direct
impact on the public as they would lead to less biased data generation and thus representations.

Indeed, we highlighted all over this manuscript how important computer graphics research
was for the various entertainment industries, themselves having a huge influence on society’s
representations. For that reason, we believe that researchers have a critical role to play in
preventing the reproduction of people’s biases, and in the creation of virtual worlds that equally
represent all skin colors, hair types, genders and sexualities, as well as the tremendous diversity
of body types, shapes and (dis)abilities that make the human race so beautiful.

Bibliography

[1] Raphaël Achddou. “Synthetic learning for neural image restoration methods”. Theses.
Institut Polytechnique de Paris, Mar. 2023. URL: https : / / theses . hal . science / tel -
04164873.

[2] Haitham Afan et al. “Modeling the fluctuations of groundwater level by employing
ensemble deep learning techniques”. In: Engineering Applications of Computational
Fluid Mechanics 15 (Sept. 2021), pp. 1420–1439. DOI: 10.1080/19942060.2021.
1974093.

[3] Nadir Akinci et al. “Versatile Rigid-Fluid Coupling for Incompressible SPH”. In: ACM
Trans. Graph. 31.4 (July 2012), 62:1–62:8. ISSN: 0730-0301. DOI: 10.1145/2185520.
2185558.

[4] Shunichi Amari. “A Theory of Adaptive Pattern Classifiers”. In: IEEE Transactions
on Electronic Computers EC-16.3 (1967), pp. 299–307. DOI: 10.1109/PGEC.1967.
264666.

[5] Brandon Amos and J. Zico Kolter. “OptNet: Differentiable Optimization as a Layer in
Neural Networks”. In: Proceedings of the 34th International Conference on Machine
Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine
Learning Research. PMLR, June 2017, pp. 136–145. URL: https://proceedings.mlr.
press/v70/amos17a.html.

[6] S. Auer and R. Westermann. “A Semi-Lagrangian Closest Point Method for Deforming
Surfaces”. In: Computer Graphics Forum 32.7 (2013), pp. 207–214. DOI: https :
//doi.org/10.1111/cgf.12228.

[7] S. Auer et al. “Real-Time Fluid Effects on Surfaces using the Closest Point Method”.
In: Computer Graphics Forum (2012). ISSN: 1467-8659. DOI: 10 . 1111 / j . 1467 -
8659.2012.03071.x.

[8] Filipe de Avila Belbute-Peres et al. “End-to-End Differentiable Physics for Learning
and Control”. In: Advances in Neural Information Processing Systems. Ed. by S.
Bengio et al. Vol. 31. Curran Associates, Inc., 2018. URL: https://proceedings.neurips.
cc/paper/2018/file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf.

[9] Omri Azencot et al. “Functional thin films on surfaces”. In: Proceedings of the 14th
ACM SIGGRAPH / Eurographics Symposium on Computer Animation. SCA ’15. Los
Angeles, California: Association for Computing Machinery, 2015, pp. 137–146. ISBN:
9781450334969. DOI: 10.1145/2786784.2786793.

[10] Kai Bai et al. “Dynamic Upsampling of Smoke through Dictionary-Based Learning”.
In: ACM Transactions on Graphics 40.1 (Sept. 2020), 4:1–4:19. ISSN: 0730-0301.
DOI: 10.1145/3412360.

87

https://theses.hal.science/tel-04164873
https://theses.hal.science/tel-04164873
https://doi.org/10.1080/19942060.2021.1974093
https://doi.org/10.1080/19942060.2021.1974093
https://doi.org/10.1145/2185520.2185558
https://doi.org/10.1145/2185520.2185558
https://doi.org/10.1109/PGEC.1967.264666
https://doi.org/10.1109/PGEC.1967.264666
https://proceedings.mlr.press/v70/amos17a.html
https://proceedings.mlr.press/v70/amos17a.html
https://doi.org/https://doi.org/10.1111/cgf.12228
https://doi.org/https://doi.org/10.1111/cgf.12228
https://doi.org/10.1111/j.1467-8659.2012.03071.x
https://doi.org/10.1111/j.1467-8659.2012.03071.x
https://proceedings.neurips.cc/paper/2018/file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf
https://doi.org/10.1145/2786784.2786793
https://doi.org/10.1145/3412360

88 BIBLIOGRAPHY

[11] Stefan Band et al. “MLS Pressure Boundaries for Divergence-Free and Viscous SPH
Fluids”. In: Computers and Graphics 76 (Aug. 2018). DOI: 10.1016/j.cag.2018.08.001.

[12] Stefan Band et al. “Pressure Boundaries for Implicit Incompressible SPH”. In: ACM
Transactions on Graphics 37 (Feb. 2018), pp. 1–11. DOI: 10.1145/3180486.

[13] Yohai Bar-Sinai et al. “Learning data-driven discretizations for partial differential
equations”. In: Proceedings of the National Academy of Sciences 116.31 (2019),
pp. 15344–15349. DOI: 10.1073/pnas.1814058116.

[14] J. Bender and D. Koschier. “Divergence-Free SPH for Incompressible and Viscous
Fluids”. In: IEEE Transactions on Visualization and Computer Graphics 23.3 (Mar.
2017), pp. 1193–1206. ISSN: 1077-2626. DOI: 10.1109/TVCG.2016.2578335.

[15] Jan Bender et al. “Implicit Frictional Boundary Handling for SPH”. In: IEEE Trans-
actions on Visualization and Computer Graphics 26.10 (2020), pp. 2982–2993. DOI:
10.1109/TVCG.2020.3004245.

[16] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. “A Neural Probabilistic Lan-
guage Model”. In: Advances in Neural Information Processing Systems. Ed. by T. Leen,
T. Dietterich, and V. Tresp. Vol. 13. MIT Press, 2000. URL: https://proceedings.neurips.
cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf.

[17] Anand Bharadwaj et al. “A discrete droplet method for modelling thin film flows”. In:
Applied Mathematical Modelling 112 (2022), pp. 486–504. ISSN: 0307-904X. DOI:
https://doi.org/10.1016/j.apm.2022.08.001.

[18] Kaushik Bhattacharya et al. “Model Reduction and Neural Networks for Parametric
PDEs”. In: The SMAI journal of computational mathematics 7 (2021), pp. 121–157.
DOI: 10.5802/smai-jcm.74.

[19] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.
ISBN: 0387310738.

[20] J. Brackbill and H.M. Ruppel. “FLIP: A method for adaptively zoned, particle-in-cell
calculations of fluid flows in two dimensions”. In: Journal of Computational Physics
65 (Aug. 1986), pp. 314–343. DOI: 10.1016/0021-9991(86)90211-1.

[21] J.U. Brackbill, D.B. Kothe, and H.M. Ruppel. “FLIP: A Low-Dissipation, Particle-in-
Cell Method for Fluid Flow”. In: Computer Physics Communications 48.1 (Jan. 1988),
pp. 25–38. ISSN: 0010-4655. DOI: 10.1016/0010-4655(88)90020-3.

[22] Johannes Brandstetter, Daniel E. Worrall, and Max Welling. “Message Passing Neural
PDE Solvers”. In: International Conference on Learning Representations. 2022. URL:
https://openreview.net/forum?id=vSix3HPYKSU.

[23] Robert Edward Bridson. “Computational aspects of dynamic surfaces”. AAI3090563.
PhD thesis. Stanford, CA, USA, 2003.

[24] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. “Discovering governing
equations from data by sparse identification of nonlinear dynamical systems”. In:
Proceedings of the National Academy of Sciences 113.15 (2016), pp. 3932–3937.

[25] José A. Canabal et al. “Simulation of Dendritic Painting”. In: Computer Graphics
Forum (2020). ISSN: 1467-8659. DOI: 10.1111/cgf.13955.

[26] Kathleen Champion et al. “Data-Driven Discovery of Coordinates and Governing
Equations”. In: Proceedings of the National Academy of Sciences 116.45 (Nov. 2019),
pp. 22445–22451. ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.1906995116.

https://doi.org/10.1016/j.cag.2018.08.001
https://doi.org/10.1145/3180486
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1109/TVCG.2016.2578335
https://doi.org/10.1109/TVCG.2020.3004245
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.apm.2022.08.001
https://doi.org/10.5802/smai-jcm.74
https://doi.org/10.1016/0021-9991(86)90211-1
https://doi.org/10.1016/0010-4655(88)90020-3
https://openreview.net/forum?id=vSix3HPYKSU
https://doi.org/10.1111/cgf.13955
https://doi.org/10.1073/pnas.1906995116

BIBLIOGRAPHY 89

[27] Jindong Chen and Yijie Han. “Shortest paths on a polyhedron”. In: Proceedings of the
Sixth Annual Symposium on Computational Geometry. SCG ’90. Berkley, California,
USA: Association for Computing Machinery, 1990, pp. 360–369. ISBN: 0897913620.
DOI: 10.1145/98524.98601.

[28] Ricky T. Q. Chen et al. “Neural Ordinary Differential Equations”. In: Advances in
Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran
Associates, Inc., 2018. URL: https://proceedings.neurips.cc/paper_files/paper/2018/
file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

[29] Alexandre Joel Chorin. “The numerical solution of the Navier-Stokes equations for an
incompressible fluid”. In: Bulletin of the American Mathematical Society 73.6 (1967),
pp. 928–931.

[30] Mengyu Chu and Nils Thuerey. “Data-Driven Synthesis of Smoke Flows with CNN-
Based Feature Descriptors”. In: ACM Trans. Graph. 36.4 (July 2017), 69:1–69:14.
ISSN: 0730-0301. DOI: 10.1145/3072959.3073643.

[31] Keenan Crane, Mathieu Desbrun, and Peter Schröder. “Trivial connections on discrete
surfaces”. In: Computer Graphics Forum. Vol. 29. 5. Wiley Online Library. 2010,
pp. 1525–1533.

[32] Keenan Crane, Clarisse Weischedel, and Max Wardetzky. “Geodesics in heat: A new
approach to computing distance based on heat flow”. In: ACM Trans. Graph. 32.5
(Oct. 2013). ISSN: 0730-0301. DOI: 10.1145/2516971.2516977.

[33] James P Crutchfield and Bruce S McNamara. “Equations of motion from a data series”.
In: Complex systems 1.417-452 (1987), p. 121.

[34] Yitong Deng et al. “A moving eulerian-lagrangian particle method for thin film and
foam simulation”. In: ACM Trans. Graph. 41.4 (July 2022). ISSN: 0730-0301. DOI:
10.1145/3528223.3530174.

[35] Mathieu Desbrun and Marie-Paule Cani. “Smoothed particles: a new paradigm for
animating highly deformable bodies”. In: Proceedings of the Eurographics Workshop
on Computer Animation and Simulation ’96. Poitiers, France: Springer-Verlag, 1996,
pp. 61–76. ISBN: 3211828850.

[36] Diffusion Models vs. GANs vs. VAEs: Comparison of Deep Generative Models. URL:
https://pub.towardsai.net/diffusion-models-vs-gans-vs-vaes-comparison-of-deep-
generative-models-67ab93e0d9ae.

[37] EW Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische
Mathematik 1.1 (1959), pp. 269–271.

[38] Ana Dodik et al. “Sex and Gender in the Computer Graphics Research Literature”. In:
ACM SIGGRAPH 2022 Talks. SIGGRAPH ’22. Vancouver, BC, Canada: Association
for Computing Machinery, 2022. ISBN: 9781450393713. DOI: 10.1145/3532836.
3536227.

[39] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale”. In: 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL:
https://openreview.net/forum?id=YicbFdNTTy.

https://doi.org/10.1145/98524.98601
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://doi.org/10.1145/3072959.3073643
https://doi.org/10.1145/2516971.2516977
https://doi.org/10.1145/3528223.3530174
https://pub.towardsai.net/diffusion-models-vs-gans-vs-vaes-comparison-of-deep-generative-models-67ab93e0d9ae
https://pub.towardsai.net/diffusion-models-vs-gans-vs-vaes-comparison-of-deep-generative-models-67ab93e0d9ae
https://doi.org/10.1145/3532836.3536227
https://doi.org/10.1145/3532836.3536227
https://openreview.net/forum?id=YicbFdNTTy

90 BIBLIOGRAPHY

[40] Z. Fan et al. “Adapted unstructured LBM for flow simulation on curved surfaces”. In:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. SCA ’05. Los Angeles, California: Association for Computing Machinery,
2005, pp. 245–254. ISBN: 1595931988. DOI: 10.1145/1073368.1073404.

[41] Kai Fukami, Koji Fukagata, and Kunihiko Taira. “Super-resolution reconstruction of
turbulent flows with machine learning”. In: Journal of Fluid Mechanics 870 (2019),
pp. 106–120. DOI: 10.1017/jfm.2019.238.

[42] Kai Fukami et al. “Sparse Identification of Nonlinear Dynamics with Low-Dimensionalized
Flow Representations”. In: Journal of Fluid Mechanics 926 (Nov. 2021). ISSN: 0022-
1120, 1469-7645. DOI: 10.1017/jfm.2021.697.

[43] Mark Gillespie, Nicholas Sharp, and Keenan Crane. “Integer coordinates for intrinsic
geometry processing”. In: ACM Trans. Graph. 40.6 (Dec. 2021). ISSN: 0730-0301.
DOI: 10.1145/3478513.3480522.

[44] Yoav Goldberg. “A primer on neural network models for natural language processing”.
In: J. Artif. Int. Res. 57.1 (Sept. 2016), pp. 345–420. ISSN: 1076-9757.

[45] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[46] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran Associates,
Inc., 2014. URL: https : / / proceedings . neurips . cc / paper _ files / paper / 2014 / file /
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[47] Takahiro Harada, Seiichi Koshizuka, and Yoichiro Kawaguchi. “Smoothed Particle
Hydrodynamics on GPUs”. In: Computer Graphics International (Jan. 2007).

[48] Francis H Harlow. “The particle-in-cell method for numerical solution of problems in
fluid dynamics”. In: (Mar. 1962). DOI: 10.2172/4769185.

[49] Francis H. Harlow and J. Eddie Welch. “Numerical Calculation of Time-Dependent
Viscous Incompressible Flow of Fluid with Free Surface”. In: Physics of Fluids 8.12
(Dec. 1965), pp. 2182–2189. DOI: 10.1063/1.1761178.

[50] Ali Hatamizadeh et al. “UNETR: Transformers for 3D Medical Image Segmentation”.
In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV). Jan. 2022, pp. 574–584.

[51] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: arXiv:1512.03385
[cs] (Dec. 2015). arXiv: 1512.03385 [cs].

[52] Tobias Heimann and Hans-Peter Meinzer. “Statistical shape models for 3D medical
image segmentation: A review”. In: Medical Image Analysis 13.4 (2009), pp. 543–563.

[53] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic mod-
els”. In: Proceedings of the 34th International Conference on Neural Information
Processing Systems. NIPS ’20. Vancouver, BC, Canada: Curran Associates Inc., 2020.
ISBN: 9781713829546.

[54] Philipp Holl, Vladlen Koltun, and Nils Thuerey. “Learning to Control PDEs with
Differentiable Physics”. In: International Conference on Learning Representations
(ICLR) (2020).

[55] Philipp Holl and Nils Thuerey. “Phi-ML: Intuitive Scientific Computing with Dimen-
sion Types for Jax, PyTorch, TensorFlow and NumPy”. In: Journal of Open Source
Software 9.95 (2024), p. 6171. DOI: 10.21105/joss.06171.

https://doi.org/10.1145/1073368.1073404
https://doi.org/10.1017/jfm.2019.238
https://doi.org/10.1017/jfm.2021.697
https://doi.org/10.1145/3478513.3480522
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.2172/4769185
https://doi.org/10.1063/1.1761178
https://arxiv.org/abs/1512.03385
https://doi.org/10.21105/joss.06171

BIBLIOGRAPHY 91

[56] Xiangyu Hu and Nikolaus Adams. “A multi-phase SPH method for macroscopic and
mesoscopic”. In: Journal of Computational Physics 213 (Apr. 2006), pp. 844–861.
DOI: 10.1016/j.jcp.2005.09.001.

[57] Yuanming Hu et al. “DiffTaichi: Differentiable Programming for Physical Simulation”.
In: International Conference on Learning Representations (ICLR) (2020).

[58] Gao Huang et al. “Densely Connected Convolutional Networks”. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 2261–
2269. DOI: 10.1109/CVPR.2017.243.

[59] Markus Ihmsen et al. “Boundary Handling and Adaptive Time-stepping for PCISPH”.
In: Jan. 2010, pp. 79–88. DOI: 10.2312/PE/vriphys/vriphys10/079-088.

[60] Markus Ihmsen et al. “Implicit Incompressible SPH”. In: IEEE Transactions on
Visualization and Computer Graphics 20.3 (2014), pp. 426–435. DOI: 10.1109/TVCG.
2013.105.

[61] Markus Ihmsen et al. “SPH Fluids in Computer Graphics”. In: Eurographics 2014
- State of the Art Reports. Ed. by Sylvain Lefebvre and Michela Spagnuolo. The
Eurographics Association, 2014. DOI: 10.2312/egst.20141034.

[62] Mike Innes et al. A Differentiable Programming System to Bridge Machine Learning
and Scientific Computing. 2019. arXiv: 1907.07587 [cs.PL].

[63] Henrik Wann Jensen et al. “A practical model for subsurface light transport”. In:
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’01. New York, NY, USA: Association for Computing Ma-
chinery, 2001, pp. 511–518. ISBN: 158113374X. DOI: 10.1145/383259.383319.

[64] George Em Karniadakis et al. “Physics-informed machine learning”. In: Nature Re-
views Physics 3.6 (2021), pp. 422–440.

[65] Tero Karras, Samuli Laine, and Timo Aila. “A Style-Based Generator Architecture
for Generative Adversarial Networks”. In: 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 2019, pp. 4396–4405. DOI: 10.1109/CVPR.
2019.00453.

[66] Tero Karras et al. Alias-Free Generative Adversarial Networks. 2021. arXiv: 2106.
12423 [cs.CV].

[67] Tero Karras et al. Analyzing and Improving the Image Quality of StyleGAN. 2020.
arXiv: 1912.04958 [cs.CV].

[68] Enrico Puppo Keenan Crane Marco Livesu and Yipeng Qin. “A Survey of Algorithms
for Geodesic Paths and Distances”. In: CoRR abs/2007.10430 (2020). arXiv: 2007.
10430. URL: https://arxiv.org/abs/2007.10430.

[69] Ioannis G Kevrekidis et al. “Equation-free, coarse-grained multiscale computation: En-
abling mocroscopic simulators to perform system-level analysis”. In: Communications
in Mathematical Sciences 1.4 (2003), pp. 715–762.

[70] J. Kiefer and J. Wolfowitz. “Stochastic Estimation of the Maximum of a Regression
Function”. In: The Annals of Mathematical Statistics 23.3 (1952), pp. 462–466. DOI:
10.1214/aoms/1177729392.

[71] ByungMoon Kim et al. “FlowFixer: Using BFECC for Fluid Simulation”. In: Euro-
graphics Conference on Natural Phenomena. Dublin, Ireland: Eurographics Associa-
tion, 2005, pp. 51–56. ISBN: 3-905673-29-0. DOI: 10.2312/NPH/NPH05/051-056.

https://doi.org/10.1016/j.jcp.2005.09.001
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.2312/PE/vriphys/vriphys10/079-088
https://doi.org/10.1109/TVCG.2013.105
https://doi.org/10.1109/TVCG.2013.105
https://doi.org/10.2312/egst.20141034
https://arxiv.org/abs/1907.07587
https://doi.org/10.1145/383259.383319
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1109/CVPR.2019.00453
https://arxiv.org/abs/2106.12423
https://arxiv.org/abs/2106.12423
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/2007.10430
https://arxiv.org/abs/2007.10430
https://arxiv.org/abs/2007.10430
https://doi.org/10.1214/aoms/1177729392
https://doi.org/10.2312/NPH/NPH05/051-056

92 BIBLIOGRAPHY

[72] Byungsoo Kim et al. “Deep Fluids: A Generative Network for Parameterized Fluid
Simulations”. In: Computer Graphics Forum (2019). ISSN: 1467-8659. DOI: 10.1111/
cgf.13619.

[73] Theodore Kim. Anti-Racist Graphics Research, talk at SIGGRAPH. 2021. URL: https:
//www.youtube.com/watch?v=ROuE8xYLpX8.

[74] Theodore Kim et al. “Countering Racial Bias in Computer Graphics Research”. In:
ACM SIGGRAPH 2022 Talks. SIGGRAPH ’22. Vancouver, BC, Canada: Association
for Computing Machinery, 2022. ISBN: 9781450393713. DOI: 10.1145/3532836.
3536263.

[75] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:
arXiv:1412.6980 [cs] (Dec. 2014). arXiv: 1412.6980 [cs].

[76] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: 2nd
International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings. 2014. arXiv: http://arxiv.org/abs/
1312.6114v10 [stat.ML].

[77] Felix Knöppel et al. “Stripe patterns on surfaces”. In: ACM Trans. Graph. 34.4 (July
2015). ISSN: 0730-0301. DOI: 10.1145/2767000. URL: https:/ /doi.org/10.1145/
2767000.

[78] Dmitrii Kochkov et al. “Machine Learning–Accelerated Computational Fluid Dynam-
ics”. In: Proceedings of the National Academy of Sciences 118.21 (May 2021). ISSN:
0027-8424, 1091-6490. DOI: 10.1073/pnas.2101784118.

[79] Dan Koschier and Jan Bender. “Density maps for improved SPH boundary handling”.
In: Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer
Animation. SCA ’17. Los Angeles, California: Association for Computing Machinery,
2017. ISBN: 9781450350914. DOI: 10.1145/3099564.3099565.

[80] Dan Koschier et al. “A Survey on SPH Methods in Computer Graphics”. In: Computer
Graphics Forum 41.2 (2022), pp. 737–760. DOI: https://doi.org/10.1111/cgf.14508.

[81] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information
Processing Systems. 2012, pp. 1097–1105.

[82] Lubor Ladický et al. “Data-Driven Fluid Simulations Using Regression Forests”. In:
ACM Trans. Graph. 34.6 (Oct. 2015), 199:1–199:9. ISSN: 0730-0301. DOI: 10.1145/
2816795.2818129.

[83] Y. LeCun et al. “Backpropagation applied to handwritten zip code recognition”. In:
Neural Comput. 1.4 (Dec. 1989), pp. 541–551. ISSN: 0899-7667. DOI: 10.1162/neco.
1989.1.4.541.

[84] A.E. Lefohn et al. “Interactive deformation and visualization of level set surfaces using
graphics hardware”. In: IEEE Visualization, 2003. VIS 2003. 2003, pp. 75–82. DOI:
10.1109/VISUAL.2003.1250357.

[85] Zijie Li and Amir Barati Farimani. “Graph neural network-accelerated Lagrangian
fluid simulation”. In: Comput. Graph. 103.C (Apr. 2022), pp. 201–211. ISSN: 0097-
8493. DOI: 10.1016/j.cag.2022.02.004.

[86] Zongyi Li et al. “Fourier Neural Operator for Parametric Partial Differential Equa-
tions”. In: International Conference on Learning Representations. 2021. URL: https:
//openreview.net/forum?id=c8P9NQVtmnO.

https://doi.org/10.1111/cgf.13619
https://doi.org/10.1111/cgf.13619
https://www.youtube.com/watch?v=ROuE8xYLpX8
https://www.youtube.com/watch?v=ROuE8xYLpX8
https://doi.org/10.1145/3532836.3536263
https://doi.org/10.1145/3532836.3536263
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/http://arxiv.org/abs/1312.6114v10
https://arxiv.org/abs/http://arxiv.org/abs/1312.6114v10
https://doi.org/10.1145/2767000
https://doi.org/10.1145/2767000
https://doi.org/10.1145/2767000
https://doi.org/10.1073/pnas.2101784118
https://doi.org/10.1145/3099564.3099565
https://doi.org/https://doi.org/10.1111/cgf.14508
https://doi.org/10.1145/2816795.2818129
https://doi.org/10.1145/2816795.2818129
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/VISUAL.2003.1250357
https://doi.org/10.1016/j.cag.2022.02.004
https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=c8P9NQVtmnO

BIBLIOGRAPHY 93

[87] Junbang Liang, Ming C. Lin, and Vladlen Koltun. “Differentiable cloth simulation for
inverse problems”. In: Proceedings of the 33rd International Conference on Neural
Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2019.

[88] M. B. Liu and G. R. Liu. “Smoothed Particle Hydrodynamics (SPH): an Overview
and Recent Developments”. In: Archives of Computational Methods in Engineering
17.1 (Mar. 2010), pp. 25–76. ISSN: 1886-1784. DOI: 10.1007/s11831-010-9040-7.
URL: https://doi.org/10.1007/s11831-010-9040-7.

[89] Yong-Jin Liu, Qian-Yi Zhou, and Shi-Min Hu. “Handling degenerate cases in exact
geodesic computation on triangle meshes”. In: Vis. Comput. 23.9 (Aug. 2007), pp. 661–
668. ISSN: 0178-2789. DOI: 10.1007/s00371-007-0136-5.

[90] Frank Losasso, Frédéric Gibou, and Ron Fedkiw. “Simulating water and smoke with
an octree data structure”. In: ACM Trans. Graph. 23.3 (Aug. 2004), pp. 457–462. ISSN:
0730-0301. DOI: 10.1145/1015706.1015745.

[91] Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. “Deep Learning for Universal
Linear Embeddings of Nonlinear Dynamics”. In: Nature Communications 9.1 (Nov.
2018), p. 4950. ISSN: 2041-1723. DOI: 10.1038/s41467-018-07210-0.

[92] Miles Macklin and Matthias Müller. “Position based fluids”. In: ACM Trans. Graph.
32.4 (July 2013). ISSN: 0730-0301. DOI: 10.1145/2461912.2461984.

[93] Romit Maulik, Bethany Lusch, and Prasanna Balaprakash. “Reduced-order modeling
of advection-dominated systems with recurrent neural networks and convolutional
autoencoders”. In: Physics of Fluids 33.3 (Mar. 2021), p. 037106. ISSN: 1070-6631.
DOI: 10.1063/5.0039986.

[94] Aleka McAdams, Eftychios Sifakis, and Joseph Teran. “A Parallel Multigrid Poisson
Solver for Fluids Simulation on Large Grids.” In: Jan. 2010, pp. 65–73. DOI: 10.2312/
SCA/SCA10/065-073.

[95] Joseph S. B. Mitchell, David M. Mount, and Christos H. Papadimitriou. “The Discrete
Geodesic Problem”. In: SIAM Journal on Computing 16.4 (1987), pp. 647–668. DOI:
10.1137/0216045.

[96] Mocha diffusion example on pottery. URL: https://glinaiwalek.pl/.

[97] Arvind Mohan et al. Compressed Convolutional LSTM: An Efficient Deep Learn-
ing framework to Model High Fidelity 3D Turbulence. 2019. arXiv: 1903 .00033
[physics.flu-dyn].

[98] J.J. Monaghan. “Smoothed particle hydrodynamics.” In: Annual Review of Astronomy
and Astrophysics 30 (Jan. 1992), pp. 543–574. DOI: 10.1146/annurev.aa.30.090192.
002551.

[99] D. Morgenroth et al. “Efficient 2D Simulation on Moving 3D Surfaces”. In: Computer
Graphics Forum 39.8 (2020), pp. 27–38. DOI: https://doi.org/10.1111/cgf.14098.

[100] Jeremy Morton et al. “Deep dynamical modeling and control of unsteady fluid flows”.
In: Proceedings of the 32nd International Conference on Neural Information Process-
ing Systems. NIPS’18. Montréal, Canada: Curran Associates Inc., 2018, pp. 9278–
9288.

[101] Matthias Müller, David Charypar, and Markus Gross. “Particle-Based Fluid Simulation
for Interactive Applications”. In: Proceedings of the 2003 ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation. SCA ’03. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2003, pp. 154–159. ISBN: 1-58113-659-5.

https://doi.org/10.1007/s11831-010-9040-7
https://doi.org/10.1007/s11831-010-9040-7
https://doi.org/10.1007/s00371-007-0136-5
https://doi.org/10.1145/1015706.1015745
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1145/2461912.2461984
https://doi.org/10.1063/5.0039986
https://doi.org/10.2312/SCA/SCA10/065-073
https://doi.org/10.2312/SCA/SCA10/065-073
https://doi.org/10.1137/0216045
https://glinaiwalek.pl/
https://arxiv.org/abs/1903.00033
https://arxiv.org/abs/1903.00033
https://doi.org/10.1146/annurev.aa.30.090192.002551
https://doi.org/10.1146/annurev.aa.30.090192.002551
https://doi.org/https://doi.org/10.1111/cgf.14098

94 BIBLIOGRAPHY

[102] Matthias Müller et al. “Position based dynamics”. In: J. Vis. Comun. Image Represent.
18.2 (Apr. 2007), pp. 109–118. ISSN: 1047-3203. DOI: 10.1016/j.jvcir.2007.01.005.

[103] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,
2012. ISBN: 0262018020.

[104] Ken Museth. “VDB: High-resolution sparse volumes with dynamic topology”. In:
ACM Trans. Graph. 32.3 (July 2013). ISSN: 0730-0301. DOI: 10 .1145/2487228 .
2487235.

[105] Patrick Neill, Ron Metoyer, and Eugene Zhang. “Fluid flow on interacting deformable
surfaces”. In: ACM SIGGRAPH 2007 Posters. SIGGRAPH ’07. San Diego, California:
Association for Computing Machinery, 2007, 57–es. ISBN: 9781450318280. DOI:
10.1145/1280720.1280783.

[106] Alec Nevala-Lee. Blinn’s Law and the paradox of efficiency. URL: https://nevalalee.
wordpress.com/2011/08/09/blinns-law-and-the-paradox-of-efficiency/.

[107] Young Jin Oh and In-Kwon Lee. “Two-step Temporal Interpolation Network Using
Forward Advection for Efficient Smoke Simulation”. In: Computer Graphics Forum
40.2 (May 2021), pp. 355–365. ISSN: 0167-7055, 1467-8659. DOI: 10 .1111/cgf .
142638.

[108] Or Patashnik et al. “StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
Oct. 2021, pp. 2085–2094.

[109] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering: From
Theory to Implementation. 3rd. San Francisco, CA, USA: Morgan Kaufmann Publish-
ers Inc., 2016. ISBN: 0128006455.

[110] Konrad Polthier and Markus Schmies. “Straightest geodesics on polyhedral sur-
faces”. In: ACM SIGGRAPH 2006 Courses. SIGGRAPH ’06. Boston, Massachusetts:
Association for Computing Machinery, 2006, pp. 30–38. ISBN: 1595933646. DOI:
10.1145/1185657.1185664. URL: https://doi.org/10.1145/1185657.1185664.

[111] Qarnot Computing. URL: https://qarnot.com/fr.

[112] Aël Quélennec et al. “Towards On-device Learning on the Edge: Ways to Select
Neurons to Update under a Budget Constraint”. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 2024, pp. 685–694. URL: https:
//openaccess.thecvf.com/content/WACV2024W/SCIoT/papers/Quelennec_Towards_
On-Device_Learning_on_the_Edge_Ways_To_Select_Neurons_WACVW_2024_
paper.pdf.

[113] Alec Radford et al. “Learning Transferable Visual Models From Natural Language
Supervision”. In: Proceedings of the 38th International Conference on Machine
Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine
Learning Research. PMLR, 18–24 Jul 2021, pp. 8748–8763. URL: https://proceedings.
mlr.press/v139/radford21a.html.

[114] Aditya Ramesh et al. Hierarchical Text-Conditional Image Generation with CLIP
Latents. 2022. arXiv: 2204.06125 [cs.CV].

[115] Karthik Raveendran, Chris Wojtan, and Greg Turk. “Hybrid Smoothed Particle Hydro-
dynamics”. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. SCA ’11. New York, NY, USA: ACM, 2011, pp. 33–42.
ISBN: 978-1-4503-0923-3. DOI: 10.1145/2019406.2019411.

https://doi.org/10.1016/j.jvcir.2007.01.005
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/1280720.1280783
https://nevalalee.wordpress.com/2011/08/09/blinns-law-and-the-paradox-of-efficiency/
https://nevalalee.wordpress.com/2011/08/09/blinns-law-and-the-paradox-of-efficiency/
https://doi.org/10.1111/cgf.142638
https://doi.org/10.1111/cgf.142638
https://doi.org/10.1145/1185657.1185664
https://doi.org/10.1145/1185657.1185664
https://qarnot.com/fr
https://openaccess.thecvf.com/content/WACV2024W/SCIoT/papers/Quelennec_Towards_On-Device_Learning_on_the_Edge_Ways_To_Select_Neurons_WACVW_2024_paper.pdf
https://openaccess.thecvf.com/content/WACV2024W/SCIoT/papers/Quelennec_Towards_On-Device_Learning_on_the_Edge_Ways_To_Select_Neurons_WACVW_2024_paper.pdf
https://openaccess.thecvf.com/content/WACV2024W/SCIoT/papers/Quelennec_Towards_On-Device_Learning_on_the_Edge_Ways_To_Select_Neurons_WACVW_2024_paper.pdf
https://openaccess.thecvf.com/content/WACV2024W/SCIoT/papers/Quelennec_Towards_On-Device_Learning_on_the_Edge_Ways_To_Select_Neurons_WACVW_2024_paper.pdf
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://arxiv.org/abs/2204.06125
https://doi.org/10.1145/2019406.2019411

BIBLIOGRAPHY 95

[116] Nicolas Ray et al. “N-symmetry direction field design”. In: ACM Trans. Graph. 27.2
(May 2008). ISSN: 0730-0301. DOI: 10.1145/1356682.1356683.

[117] Bo Ren et al. “Real-Time High-Fidelity Surface Flow Simulation”. In: IEEE Trans-
actions on Visualization and Computer Graphics 24.8 (2018), pp. 2411–2423. DOI:
10.1109/TVCG.2017.2720672.

[118] Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. In: The
Annals of Mathematical Statistics 22.3 (1951), pp. 400–407. DOI: 10.1214/aoms/
1177729586.

[119] Robin Rombach et al. “High-Resolution Image Synthesis With Latent Diffusion
Models”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). June 2022, pp. 10684–10695.

[120] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional networks
for biomedical image segmentation”. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer. 2015, pp. 234–241.

[121] Frank Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain”. In: Psychological Review 65 (1958), pp. 386–408.

[122] Chitwan Saharia et al. Photorealistic Text-to-Image Diffusion Models with Deep
Language Understanding. 2022. arXiv: 2205.11487 [cs.CV].

[123] Alvaro Sanchez-Gonzalez et al. Graph networks as learnable physics engines for
inference and control. 2018. arXiv: 1806.01242 [cs.LG].

[124] Alvaro Sanchez-Gonzalez et al. “Learning to simulate complex physics with graph
networks”. In: Proceedings of the 37th International Conference on Machine Learning.
ICML’20. JMLR.org, 2020.

[125] Connor Schenck and Dieter Fox. “SPNets: Differentiable Fluid Dynamics for Deep
Neural Networks”. In: ArXiv abs/1806.06094 (2018). URL: https://api.semanticscholar.
org/CorpusID:49207686.

[126] Samuel S. Schoenholz and Ekin D. Cubuk. JAX, M.D.: A Framework for Differentiable
Physics. 2020. arXiv: 1912.04232 [physics.comp-ph].

[127] Andrew Selle et al. “An Unconditionally Stable MacCormack Method”. In: Journal of
Scientific Computing 35.2-3 (June 2008), pp. 350–371. ISSN: 0885-7474, 1573-7691.
DOI: 10.1007/s10915-007-9166-4.

[128] Rajsekhar Setaluri et al. “SPGrid: a sparse paged grid structure applied to adaptive
smoke simulation”. In: ACM Trans. Graph. 33.6 (Nov. 2014). ISSN: 0730-0301. DOI:
10.1145/2661229.2661269.

[129] Nicholas Sharp and Keenan Crane. “You can find geodesic paths in triangle meshes
by just flipping edges”. In: ACM Trans. Graph. 39.6 (Nov. 2020). ISSN: 0730-0301.
DOI: 10.1145/3414685.3417839.

[130] Nicholas Sharp, Yousuf Soliman, and Keenan Crane. “Navigating intrinsic triangu-
lations”. In: ACM Trans. Graph. 38.4 (July 2019). ISSN: 0730-0301. DOI: 10.1145/
3306346.3322979.

[131] Nicholas Sharp, Yousuf Soliman, and Keenan Crane. “The Vector Heat Method”. In:
ACM Trans. Graph. 38.3 (June 2019). ISSN: 0730-0301. DOI: 10.1145/3243651.

[132] Alvin Shi et al. “Lifted Curls: A Model for Tightly Coiled Hair Simulation”. In: Proc.
ACM Comput. Graph. Interact. Tech. 6.3 (2023). DOI: 10.1145/3606920.

https://doi.org/10.1145/1356682.1356683
https://doi.org/10.1109/TVCG.2017.2720672
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/1806.01242
https://api.semanticscholar.org/CorpusID:49207686
https://api.semanticscholar.org/CorpusID:49207686
https://arxiv.org/abs/1912.04232
https://doi.org/10.1007/s10915-007-9166-4
https://doi.org/10.1145/2661229.2661269
https://doi.org/10.1145/3414685.3417839
https://doi.org/10.1145/3306346.3322979
https://doi.org/10.1145/3306346.3322979
https://doi.org/10.1145/3243651
https://doi.org/10.1145/3606920

96 BIBLIOGRAPHY

[133] Lin Shi and Yizhou Yu. “Inviscid and incompressible fluid simulation on triangle
meshes”. In: Computer Animation and Virtual Worlds 15.3-4 (2004), pp. 173–181.
DOI: https://doi.org/10.1002/cav.19.

[134] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV].

[135] Justin Sirignano, Jonathan F. MacArt, and Jonathan B. Freund. “DPM: A Deep Learn-
ing PDE Augmentation Method with Application to Large-Eddy Simulation”. In:
Journal of Computational Physics 423 (Dec. 2020), p. 109811. ISSN: 0021-9991. DOI:
10.1016/j.jcp.2020.109811.

[136] B. Solenthaler and R. Pajarola. “Density contrast SPH interfaces”. In: Proceedings
of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
SCA ’08. Dublin, Ireland: Eurographics Association, 2008, pp. 211–218. ISBN:
9783905674101.

[137] B. Solenthaler and R. Pajarola. “Predictive-corrective Incompressible SPH”. In: ACM
Trans. Graph. 28.3 (July 2009), 40:1–40:6. ISSN: 0730-0301. DOI: 10.1145/1531326.
1531346.

[138] Kim Stachenfeld et al. “Learned Simulators for Turbulence”. In: International Con-
ference on Learning Representations. 2022. URL: https://openreview.net/forum?id=
msRBojTz-Nh.

[139] Jos Stam. “An Illumination Model for a Skin Layer Bounded by Rough Surfaces”. In:
Rendering Techniques 2001. Ed. by Steven J. Gortler and Karol Myszkowski. Vienna:
Springer Vienna, 2001, pp. 39–52. ISBN: 978-3-7091-6242-2.

[140] Jos Stam. “Stable Fluids”. In: SIGGRAPH ’99. ACM, 1999, pp. 121–128. ISBN:
0-201-48560-5. DOI: 10.1145/311535.311548.

[141] Oded Stein et al. “A Simple Discretization of the Vector Dirichlet Energy”. In: Com-
puter Graphics Forum 39.5 (2020). DOI: 10.1111/cgf.14070.

[142] Alexey Stomakhin et al. “A Material Point Method for Snow Simulation”. In: ACM
Trans. Graph. 32.4 (July 2013), 102:1–102:10. ISSN: 0730-0301. DOI: 10 .1145 /
2461912.2461948.

[143] Vitaly Surazhsky et al. “Fast exact and approximate geodesics on meshes”. In: ACM
Trans. Graph. 24.3 (July 2005), pp. 553–560. ISSN: 0730-0301. DOI: 10.1145/1073204.
1073228.

[144] Andre Tampubolon et al. “Multi-species simulation of porous sand and water mix-
tures”. In: ACM Transactions on Graphics 36 (July 2017), pp. 1–11. DOI: 10.1145/
3072959.3073651.

[145] Joan Thiesen et al. “Rebound effects of price differences”. In: The International
Journal of Life Cycle Assessment 13 (Mar. 2008), pp. 104–114. DOI: 10.1065/lca2006.
12.297.

[146] Nils Thuerey et al. Physics-based Deep Learning. WWW, 2021. URL: https : / /
physicsbaseddeeplearning.org.

[147] Jonathan Tompson et al. “Accelerating eulerian fluid simulation with convolutional
networks”. In: Proceedings of the 34th International Conference on Machine Learning
- Volume 70. ICML’17. Sydney, NSW, Australia: JMLR.org, 2017, pp. 3424–3433.

https://doi.org/https://doi.org/10.1002/cav.19
https://arxiv.org/abs/1409.1556
https://doi.org/10.1016/j.jcp.2020.109811
https://doi.org/10.1145/1531326.1531346
https://doi.org/10.1145/1531326.1531346
https://openreview.net/forum?id=msRBojTz-Nh
https://openreview.net/forum?id=msRBojTz-Nh
https://doi.org/10.1145/311535.311548
https://doi.org/10.1111/cgf.14070
https://doi.org/10.1145/2461912.2461948
https://doi.org/10.1145/2461912.2461948
https://doi.org/10.1145/1073204.1073228
https://doi.org/10.1145/1073204.1073228
https://doi.org/10.1145/3072959.3073651
https://doi.org/10.1145/3072959.3073651
https://doi.org/10.1065/lca2006.12.297
https://doi.org/10.1065/lca2006.12.297
https://physicsbaseddeeplearning.org
https://physicsbaseddeeplearning.org

BIBLIOGRAPHY 97

[148] Marc Toussaint et al. “Differentiable Physics and Stable Modes for Tool-Use and
Manipulation Planning”. In: Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19. International Joint Conferences on
Artificial Intelligence Organization, July 2019, pp. 6231–6235. DOI: 10.24963/ijcai.
2019/869. URL: https://doi.org/10.24963/ijcai.2019/869.

[149] Evgenii Tumanov, Dmitry Korobchenko, and Nuttapong Chentanez. “Data-Driven
Particle-Based Liquid Simulation with Deep Learning Utilizing Sub-Pixel Convolu-
tion”. In: Proc. ACM Comput. Graph. Interact. Tech. 4.1 (Apr. 2021). DOI: 10.1145/
3451261.

[150] Kiwon Um, Xiangyu Hu, and Nils Thuerey. “Liquid Splash Modeling with Neural
Networks”. In: Computer Graphics Forum 37.8 (Dec. 2018), pp. 171–182. ISSN:
1467-8659. DOI: 10.1111/cgf.13522.

[151] Kiwon Um et al. “Solver-in-the-loop: learning from differentiable physics to interact
with iterative PDE-solvers”. In: Advances in Neural Information Processing Systems
33 (2020). arXiv: 2007.00016.

[152] Benjamin Ummenhofer et al. “Lagrangian Fluid Simulation with Continuous Con-
volutions”. In: International Conference on Learning Representations. 2020. URL:
https://api.semanticscholar.org/CorpusID:211165482.

[153] Orestis Vantzos, Saar Raz, and Mirela Ben-Chen. “Real-Time Viscous Thin Films”.
In: ACM Trans. Graph. 37.6 (Dec. 2018). ISSN: 0730-0301. DOI: 10.1145/3272127.
3275086.

[154] Orestis Vantzos et al. “Functional Thin Films on Surfaces”. In: IEEE Transactions
on Visualization and Computer Graphics 23.3 (2017), pp. 1179–1192. DOI: 10.1109/
TVCG.2016.2605083.

[155] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural In-
formation Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates,
Inc., 2017. URL: https : / / proceedings . neurips . cc / paper _ files / paper / 2017 / file /
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[156] Mengdi Wang et al. “Thin-film smoothed particle hydrodynamics fluid”. In: ACM
Trans. Graph. 40.4 (July 2021). ISSN: 0730-0301. DOI: 10.1145/3450626.3459864.

[157] Rui Wang et al. “Towards Physics-Informed Deep Learning for Turbulent Flow Pre-
diction”. In: Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. KDD ’20. New York, NY, USA: Association
for Computing Machinery, Aug. 2020, pp. 1457–1466. ISBN: 978-1-4503-7998-4. DOI:
10.1145/3394486.3403198.

[158] Wujie Wang, Simon Axelrod, and Rafael Gómez-Bombarelli. Differentiable Molecular
Simulations for Control and Learning. 2020. arXiv: 2003.00868 [physics.comp-ph].

[159] S. Wiewel et al. “Latent Space Subdivision: Stable and Controllable Time Predictions
for Fluid Flow”. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. SCA ’20. Goslar, DEU: Eurographics Association, Oct. 2020,
pp. 1–11. DOI: 10.1111/cgf.14097.

[160] Xiangyun Xiao, Cheng Yang, and Xubo Yang. “Adaptive Learning-Based Projection
Method for Smoke Simulation”. In: Computer Animation and Virtual Worlds 29.3-4
(May 2018), e1837. ISSN: 1546-427X. DOI: 10.1002/cav.1837.

https://doi.org/10.24963/ijcai.2019/869
https://doi.org/10.24963/ijcai.2019/869
https://doi.org/10.24963/ijcai.2019/869
https://doi.org/10.1145/3451261
https://doi.org/10.1145/3451261
https://doi.org/10.1111/cgf.13522
https://arxiv.org/abs/2007.00016
https://api.semanticscholar.org/CorpusID:211165482
https://doi.org/10.1145/3272127.3275086
https://doi.org/10.1145/3272127.3275086
https://doi.org/10.1109/TVCG.2016.2605083
https://doi.org/10.1109/TVCG.2016.2605083
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3450626.3459864
https://doi.org/10.1145/3394486.3403198
https://arxiv.org/abs/2003.00868
https://doi.org/10.1111/cgf.14097
https://doi.org/10.1002/cav.1837

98 BIBLIOGRAPHY

[161] You Xie et al. “tempoGAN: a temporally coherent, volumetric GAN for super-
resolution fluid flow”. In: ACM Trans. Graph. 37.4 (July 2018). ISSN: 0730-0301. DOI:
10.1145/3197517.3201304.

[162] Bowen Yang et al. “Real-Time Fluid Simulation on the Surface of a Sphere”. In: Proc.
ACM Comput. Graph. Interact. Tech. 2.1 (June 2019). DOI: 10.1145/3320285.

[163] Cem Yuksel, Scott Schaefer, and John Keyser. “Hair Meshes”. In: ACM Transactions
on Graphics (Proceedings of SIGGRAPH Asia 2009) 28.5 (2009), 166:1–166:7. DOI:
10.1145/1661412.1618512.

[164] Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. “An Advection-Reflection
Solver for Detail-Preserving Fluid Simulation”. In: ACM Trans. Graph. 37.4 (July
2018), 85:1–85:8. ISSN: 0730-0301. DOI: 10.1145/3197517.3201324.

[165] Yihao Zhao, Ruihai Wu, and Hao Dong. “Unpaired Image-to-Image Translation Using
Adversarial Consistency Loss”. In: Nov. 2020, pp. 800–815. ISBN: 978-3-030-58544-0.
DOI: 10.1007/978-3-030-58545-7_46.

[166] Yongning Zhu and Robert Bridson. “Animating Sand As a Fluid”. In: ACM Trans.
Graph. 24.3 (July 2005), pp. 965–972. ISSN: 0730-0301. DOI: 10.1145/1073204.
1073298.

[167] Jiawei Zhuang et al. “Learned Discretizations for Passive Scalar Advection in a
Two-Dimensional Turbulent Flow”. In: Physical Review Fluids 6.6 (June 2021). DOI:
10.1103/PhysRevFluids.6.064605.

https://doi.org/10.1145/3197517.3201304
https://doi.org/10.1145/3320285
https://doi.org/10.1145/1661412.1618512
https://doi.org/10.1145/3197517.3201324
https://doi.org/10.1007/978-3-030-58545-7_46
https://doi.org/10.1145/1073204.1073298
https://doi.org/10.1145/1073204.1073298
https://doi.org/10.1103/PhysRevFluids.6.064605

Titre : Réduction de dimension pour la simulation et l’animation de fluides

Mots clés : Informatique graphique, Simulation de fluides, Réduction de dimension, Géométrie intrinsèque,
Apprentissage profond.

Résumé : Malgré les améliorations considérables des
performances du matériel graphique ainsi que les
avancées algorithmiques majeures depuis le début
des années 2000, certains phénomènes naturels res-
tent extrêmement coûteux à simuler. Par exemple,
plusieurs pistes ont été proposées pour améliorer
les performances des simulations de fluides, qui sont
animées par la résolution d’équations différentielles
partielles (EDP), plus particulièrement les équations
hautement non linéaires de Navier-Stokes.
Dans cette thèse, nous explorons d’abord l’utilisa-
tion de l’apprentissage profond pour créer un espace
réduit dans lequel un solveur peut opérer à moindre
coût, tout en produisant des solutions de haute qua-
lité. Nous proposons un modèle qui permet la simula-
tion d’écoulements turbulents à une résolution quatre

fois supérieure à celle de l’entrée dans chaque dimen-
sion, avec des performances d’exécution améliorées
par rapport à un solveur haute résolution.
Ensuite, nous utilisons les contributions sur les
opérateurs intrinsèques pour simuler des fluides sur
des surfaces 3D avec des coûts réduits. Nous nous
concentrons sur le modèle smoothed-particle hydro-
dynamics (SPH) que nous adaptons aux surfaces
3D, en rassemblant les voisinages des particules
grâce aux géodésiques de plus court chemin, et en
déplaçant ces particules de manière intrinsèque sur
la surface. Tout ceci est simple à mettre en œuvre sur
le GPU, ce qui permet la simulation de dizaines de
milliers de particules sur différents maillages triangu-
laires à une vitesse interactive.

Title : Dimension reduction for fluid simulation and animation

Keywords : Computer graphics, Fluid simulation, Dimension reduction, Intrinsic geometry, Deep Learning.

Abstract : Despite tremendous improvements in gra-
phics hardware performance as well as key algorith-
mic advancements since the beginning of the years
2000, some natural phenomena remain extremely
costly to simulate. For instance, several tracks have
been proposed to improve the performance of fluid si-
mulations, that are animated by solving partial diffe-
rential equations (PDE), more specifically the highly
non-linear Navier-Stokes equations.
In this thesis, we first explore the use of deep lear-
ning to create a reduced space in which a solver can
operate with lower costs, while still outputting high-
quality solutions. We propose a model that enables
the simulation of turbulent flows at a resolution four

times higher than that of the given input in each di-
mension, with improved runtime performance compa-
red to a high-resolution solver.
Secondly, we use the contributions on intrinsic ope-
rators for simulating fluids on 3D surfaces with redu-
ced costs. We focus on the smoothed-particle hydro-
dynamics (SPH) model that we adapt to 3D surfaces,
by gathering the particles’ neighborhoods thanks to
shortest-path geodesics, and by displacing such par-
ticles in an intrinsic manner on the surface. All of this
is straightforward to implement on the GPU, enabling
the simulation of tens of thousands of particles on va-
rious triangle meshes at interactive speed.

Institut Polytechnique de Paris
91120 Palaiseau, France

	1ere.pdf
	main.pdf
	Introduction
	Context and challenges
	Objectives and outline

	Technical background
	Fluid simulation
	Definitions
	Navier-Stokes equations
	Eulerian fluid dynamics
	Lagrangian fluid dynamics

	Deep learning
	Multilayer perceptron
	Convolutional neural networks

	Intrinsic geometry processing
	Mesh representations
	Geodesic distances

	Related work
	Fluid simulation and animation
	Eulerian specification
	Lagrangian specification
	Hybrid methods

	Deep learning
	Deep learning methods
	Physics-based deep learning

	Intrinsic geometry processing

	Exploring physical latent spaces
	Introduction
	Related work
	Exploring physical latent spaces
	Experiments
	Karman vortex street
	Decaying turbulence
	Forced turbulence
	Smoke plume
	Network architecture and training procedure

	Results
	Reduced representations
	Karman vortex street
	Decaying turbulence
	Forced turbulence
	Ablation study
	Runtime performance
	Additional visual results

	Limitations and future work
	Conclusion

	Intrinsic SPH simulation on 3D surfaces
	Introduction
	Related work
	Contributions

	Method
	Mathematical notations
	Neighborhoods computations
	Velocity and forces update
	Walk

	Results
	Implementation details
	Intrinsic SPH simulation

	Analysis
	Memory usage and performance
	Approximations

	Conclusion

	Conclusion
	Exploring physical latent spaces
	Contributions
	Perspectives

	Intrinsic SPH on surfaces
	Contributions
	Perspectives

	Societal concerns

	4eme.pdf

