
HAL Id: tel-04677532
https://theses.hal.science/tel-04677532

Submitted on 26 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic generation of proof obligations parameterised
by domain theories implementation in Event-B : The

EB4EB Framework
Peter Riviere

To cite this version:
Peter Riviere. Automatic generation of proof obligations parameterised by domain theories implemen-
tation in Event-B : The EB4EB Framework. Computer Science [cs]. Université de Toulouse, 2024.
English. �NNT : 2024TLSEP052�. �tel-04677532�

https://theses.hal.science/tel-04677532
https://hal.archives-ouvertes.fr

Doctorat de
l’Université de Toulouse

préparé à Toulouse INP

Génération automatique d'obligations de preuves paramétrée
par des théories de domaine dans Event-B : Le cadre de travail

EB4EB

Thèse présentée et soutenue, le 7 juin 2024 par

Peter RIVIERE
École doctorale
EDMITT - Ecole Doctorale Mathématiques, Informatique et Télécommunications de Toulouse

Spécialité
Informatique et Télécommunications

Unité de recherche
IRIT : Institut de Recherche en Informatique de Toulouse

Thèse dirigée par
Neeraj SINGH et Yamine AIT AMEUR

Composition du jury
Mme Régine LALEAU, Présidente, Université Paris Est Créteil
M. Frédéric MALLET, Rapporteur, Université Côte d'Azur
M. David DELAHAYE, Rapporteur, Université de Montpellier
M. Michael LEUSCHEL, Rapporteur, Heinrich-Heine-Universität Düsseldorf
Mme Rosemary MONAHAN, Examinatrice, Maynooth University Faculty of Science and Engineering
M. Neeraj SINGH, Directeur de thèse, Toulouse INP
M. Yamine AÏT-AMEUR, Co-directeur de thèse, Toulouse INP

Membres invités
M. Guillaume DUPONT, Toulouse INP

2

Abstract

Nowadays, we are surrounded by complex critical systems such as microproces-
sors, railways, home appliances, robots, aeroplanes, and so on. These systems
are extremely complex and are safety-critical, and they must be verified and
validated. The use of state-based formal methods has proven to be effective in
designing complex systems. Event-B has played a key role in the development
of such systems. Event-B is a formal system design method that is state-based
and correct-by-construction, with a focus on proof and refinement. Event-B facil-
itates verification of properties such as invariant preservation, convergence, and
refinement by generating and discharging proof obligations.

Additional properties for system verification, such as deadlock-freeness, reach-
ability, and liveness, must be explicitly defined and verified by the designer or
formalised using another formal method. Such an approach reduces re-usability
and may introduce errors, particularly in complex systems.

To tackle these challenges, we introduced the reflexive EB4EB framework in
Event-B. In this framework, each Event-B concept is formalised as a first-class
object using First Order Logic (FOL) and set theory. This framework allows for
the manipulation and analysis of Event-B models, with extensions for additional,
non-intrusive analyses such as temporal properties, weak invariants, deadlock free-
ness, and so on. This is accomplished through Event-B Theories, which extend
the Event-B language with the theory’s defined elements, and also by formal-
ising and articulating new proof obligations that are not present in traditional
Event-B. Furthermore, Event-B’s operational semantics (based on traces) have
been formalised, along with a framework for guaranteeing the soundness of the
defined theorems, including operators and proof obligations. Finally, the proposed
framework and its extensions have been validated across multiple case studies, in-
cluding Lamport’s clock case study, read/write processes, the Peterson algorithm,
Automated Teller Machine (ATM), autonomous vehicles, and so on.

3

4

Résumé

De nos jours, nous sommes entourés de systèmes critiques complexes tels que les
microprocesseurs, les trains, les appareils intelligents, les robots, les avions, etc.
Ces systèmes sont extrêmement complexes et critiques en termes de sûreté, et
doivent donc être vérifiés et validés. L’utilisation de méthodes formelles à états
s’est avérée efficace pour concevoir des systèmes complexes. Event-B a joué un
rôle clé dans le développement de tels systèmes. Event-B est une méthode formelle
de conception de systèmes à états avec une approche correcte par construction,
qui met l’accent sur la preuve et le raffinement. Event-B facilite la vérification de
propriétés telles que la préservation des invariants, la convergence et le raffinement
en générant des obligations de preuve et en permettant de les décharger.

Certaines propriétés additionnelles du système, telles que l’absence d’inter-
blocage, l’atteignabilité ou encore la vivacité, doivent être explicitement encodées
et vérifiées par le concepteur, ou formalisées à l’aide d’une autre méthode formelle.
Une telle approche pénalise la réutilisabilité des modèles et des techniques, et peut
introduire des erreurs, en particulier dans les systèmes complexes.

Pour pallier cela, nous avons introduit un framework réflexif EB4EB, formalisé
au sein de Event-B. Dans ce cadre, chacun des concept d’Event-B est formalisé
comme un objet de première classe en utilisant la logique du premier ordre (FOL)
et la théorie des ensembles. EB4EB permet la manipulation et l’analyse de mod-
èles Event-B, et permet la définition d’extensions afin de réaliser des analyses
supplémentaires non-intrusives sur des modèles, telles que la validation de pro-
priétés temporelles, l’analyse de la couverture d’un invariant, ou encore l’absence
de blocage. Ce framework est réalisé grâce aux théories d’Event-B, qui étendent le
langage d’Event-B avec des éléments définis dans des théories, et aussi en formal-
isant de nouvelles obligations de preuves, qui ne sont pas présentes initialement
dans Event-B. De plus, la sémantique opérationnelle d’Event-B (basée sur les
traces) a été formalisée, de même qu’un cadre qui sert à garantir la correction des
théorèmes définis, y compris les opérateurs et les obligations de preuve. Enfin, le
cadre proposé et ses extensions ont été validés dans de multiples études de cas,
notamment l’horloge de Lamport, le problème du lecteur/rédacteur, l’algorithme
de Peterson, les distributeurs automatiques de billets (DAB), les véhicules au-
tonomes, etc.

5

6

Contents

Abstract 3

Résumé 5

List of Tables 13

List of Figures 15

List of Listings 19

I Introduction 21

1 Introduction 23
1.1 Context . 23
1.2 The addressed problem . 23
1.3 Our proposal . 25
1.4 Our contribution . 25
1.5 Organisation of the manuscript . 26
1.6 List of Published Paper: . 27

1.6.1 Journal . 27
1.6.2 International Conference . 27
1.6.3 Workshop . 28

II Contribution 29

2 The Reflexive Framework EB4EB 31
Overview . 31
2.1 Introduction . 32
2.2 Event-B . 34

2.2.1 Event-B Contexts and Machines 34
2.2.2 Event-B extensions with Theories 36

2.3 The EB4EB Framework . 37
2.3.1 Motivation . 37

7

8 CONTENTS

2.3.2 Related work . 38
2.3.3 The EB4EB framework . 39

2.4 EB4EB structure (see Fig. 2.1.(A)) 40
2.4.1 Data types and constructors 40
2.4.2 Well Structured Machine 41

2.5 EB4EB Proof obligations (see Fig. 2.1.(A)) 43
2.5.1 Feasibility Proof Obligation (FIS) 43
2.5.2 Invariant Proof Obligation (INV) 44
2.5.3 Natural Variant Proof Obligation (NAT) 44
2.5.4 Variant decrease Proof Obligation (VAR) 45
2.5.5 Theorem THM . 46
2.5.6 Proof Obligation Generation 46

2.6 Trace’s semantics of Event-B . 46
2.6.1 Event-B traces . 47
2.6.2 Trace’s Semantics in EB4EB 47

2.7 EB4EB Correctness (see Fig. 2.1.(B,C)) 48
2.7.1 Principle (See Fig.2.1.(C)) 48
2.7.2 Correctness of the Invariant PO formalised in EB4EB . . . 48

2.8 Modelling Event-B machines in EB4EB 49
2.8.1 Instantiation Methodology 49
2.8.2 Deep modelling based instantiation (see Fig. 2.2a) 50
2.8.3 Shallow modelling based instantiation (see Fig. 2.2b) 51

2.9 Case Study . 54
2.10 EB4EB deep and Shallow modelling of the clock case study 55

2.10.1 Deep modelling instantiation for the clock model 55
2.10.2 Shallow modelling instantiation for the clock model 56

2.11 Extending the EB4EB Reasoning Mechanism (see Fig. 2.1.(D)) . . 59
2.11.1 Analysis principle: New POs 59
2.11.2 Introduction of deadlock-freeness as a new proof obligation 61

2.12 Proof Process . 62
2.13 Conclusion . 62
Assessment . 66

3 Advanced Reasoning on Event-B Models 67
Overview . 67
3.1 Introduction . 68
3.2 Event-B . 70

3.2.1 Contexts and machines (Tables 3.1.a and 3.1.b) 70
3.2.2 Event-B extensions with Theories 71

3.3 The EB4EB framework . 72
3.3.1 The Event-B Meta-theory 72
3.3.2 The Clock Example . 74
3.3.3 The clock machine as an instance of EvtBTheo theory . . 75

3.4 POs for new properties: Extending the Meta-Theory 76
3.4.1 Analysis principle: New POs 76
3.4.2 Deadlock-freeness . 77

CONTENTS 9

3.4.3 Invariant Weakness as a Non-intrusive Analysis 78
3.4.4 Reachability . 79
3.4.5 Proof assessment . 81

3.5 Positioning this approach . 82
3.5.1 Related work . 82
3.5.2 Advantages of the approach 83

3.6 Conclusion . 84
Assessment . 85

4 Extending Event-B with Temporal Logic 87
Overview . 87
4.1 Introduction . 88
4.2 Event-B . 90
4.3 Linear Temporal Logic . 91
4.4 The EB4EB Framework . 92
4.5 Trace-Based Semantics of Event-B 93

4.5.1 Semantics: traces of Event-B machines in EB4EB 94
4.5.2 Correctness Principle . 94

4.6 A Case Study: A read write machine 95
4.7 Temporal logic proof rules as EB4EB POs 96

4.7.1 Liveness properties . 96
4.7.2 Deadlock freeness ⟲ P applied to the Read-Write machine 98
4.7.3 Temporal operator proof rules 98
4.7.4 Existence □♢P applied to the read write machine 100

4.8 Correctness of the temporal logic properties proof rules 101
4.9 Related Work . 102
4.10 Conclusion . 103
Assessment . 104

5 Extending Event-B with Explicit Model Annotations 105
Overview . 105
5.1 Introduction . 106

5.1.1 Context . 106
5.1.2 Objective of this paper . 107
5.1.3 Organisation of this paper 108

5.2 Event-B method . 108
5.2.1 Contexts and machines (see Table 5.1.(b) and 5.1.(c)) . . . 108
5.2.2 Event-B extensions with Theories (see Table 5.1.(a)) 109

5.3 Background and Related Work . 110
5.3.1 Ontology Modelling Language as Event-B Theory 110
5.3.2 The Event-B Meta-theory 111
5.3.3 Domain Knowledge in Formal Modelling 113

5.4 Domain-Specific Behavioural Analysis 115
5.4.1 Components of the methodology 115
5.4.2 A Methodology for defining Event-B models domain knowl-

edge based analyses . 116

10 CONTENTS

5.5 Case Study . 117
5.5.1 Informal Description . 117
5.5.2 Formal Description in Event-B 117

5.6 Methodology at work . 119
5.6.1 Step 1 - Event Ontology Instantiation (Fig. 5.2.(1)) 119
5.6.2 Step 2 - Behaviour Analysis definition (Fig. 5.2.(2)) 119
5.6.3 Step 3 - Exporting Event-B models as instances of the Meta-

Event-B theory (Fig. 5.2.(3)) 121
5.6.4 Step 4 - Annotation & analysis (Fig. 5.2.(4)) 122

5.7 Assessment . 123
5.7.1 Principled Methodology vs. Ad hoc Analysis. 123
5.7.2 Domain-Specific Analyses and Reusability & Sharability. . . 123
5.7.3 The Methodology Is Non-Intrusive. 124
5.7.4 Proof-Based Verification. 124
5.7.5 Proof & Modelling Effort Reduction. 124

5.8 Conclusion . 124
Assessment . 126

6 Empowering the Event-B Method 127
Overview . 127
6.1 Introduction . 128
6.2 Invariants and Well-Definedness (WD) 129
6.3 Overview of Event-B . 131

6.3.1 Contexts and machines (Tables 6.1.b and 6.1.c) 131
6.3.2 Event-B extensions with Theories 132

6.4 An Illustrative Case Study . 133
6.5 Invariant Preservation: Core Event-B 134
6.6 Data type theory-based invariant preservation 136

6.6.1 An Event-B datatype based domain-specific theory (Step 1) 137
6.6.2 An Event-B instantiation context (Step 2) 138
6.6.3 A domain-specific Event-B machine (Step 3) 138

6.7 The Proof Process . 139
6.8 Revisited Event-B Models for LTS 140

6.8.1 A data type for LTS (Step 1) 140
6.8.2 An instanciation context for LTS (Step 2) 142
6.8.3 A data type specific machine for LTS (Step 3) 142
6.8.4 Proof process. 143

6.9 Conclusion . 143
Assessment . 145

7 Conclusion 147
Contributions . 147
Perspectives . 149

Bibliography 153

CONTENTS 11

III Appendices 163

A Theories 165
A.1 EB4EB Core Theories . 165

A.1.1 Core definition of EB4EB: 165
A.1.2 Generic Machine for Shallow modelling 167
A.1.3 Helper Theory . 169

A.2 EB4EB Analyses Properties . 171
A.2.1 Core definition of analyses 171

A.3 EB4EB Liveness Properties . 175
A.3.1 Core definition of temporal properties 175
A.3.2 Helper Theory . 177

A.4 Domain specific Analysis . 178
A.4.1 Ontologies Theory . 178
A.4.2 Behavioural theory of domain specific property 184

A.5 Correctness . 186
A.5.1 Peano theory . 186
A.5.2 Event-B traces formalism 188
A.5.3 Soundness of Invariant Proof Obligation 189
A.5.4 Soundness of Temporal Properties 189

B Models 193
B.1 Clock Models . 193

B.1.1 Classical Event-B . 193
B.1.2 Instantiation of EB4EB . 194
B.1.3 Analyses . 198

B.2 Read/Write system . 202
B.2.1 Classical Event-B . 202
B.2.2 Instantiation of EB4EB with analyses 202

B.3 Peterson . 203
B.3.1 Classical Event-B . 203
B.3.2 Instantiation of EB4EB . 205

B.4 Calibration . 207
B.4.1 Classical Event-B . 207
B.4.2 Instantiation of EB4EB with analyses 208

B.5 Automatic Teller Machine . 209
B.5.1 Classical Event-B . 209
B.5.2 Instantiation of EB4EB . 213
B.5.3 Analyses . 220

12 CONTENTS

List of Tables

2.1 Global structure of Context, Machines and Refinements 35
2.2 Machine Proof obligations . 35
2.3 Refinement Proof obligations . 35
2.4 Global structure of Event-B Theories 36
2.5 Proof statistics . 62
2.6 Proof statistic for the Clock model and its analyses 66

3.1 Global structure of Event-B Contexts, Machines and Theories . . 70
3.2 Relevant POs for Event-B contexts and machines 70
3.3 Proof statistic for the Clock model and its analyses 81

4.1 Global structure of Event-B Contexts, Machines and Theories . . 90
4.2 Relevant Proof Obligations for Event-B contexts and machines . . 91
4.3 Leads from P1 to P2 encoded in EB4EB 97
4.4 Convergence in P encoded in EB4EB 97
4.5 Divergence in P encoded in EB4EB 97
4.6 Deadlock-freeness in P encoded in EB4EB 98
4.7 Invariance encoded in EB4EB . 99
4.8 Existence encoded in EB4EB . 99
4.9 Until encoded in EB4EB . 99
4.10 Progress encoded in EB4EB . 100
4.11 Persistence encoded in EB4EB . 100

5.1 Global structure of Event-B Theories, Contexts and Machines . . 109
5.2 Relevant Proof Obligations for Event-B contexts and machines . . 109

6.1 Global structure of Event-B Theories, Contexts and Machines . . 132
6.2 Relevant Proof Obligations . 132

13

14 LIST OF TABLES

List of Figures

2.1 Architecture of the theories . 40
2.2 EB4EB framework . 50

5.1 Methodology overview . 107
5.2 Event-B-based framework for domain behavioural properties analysis115

6.1 Examples of LTS operators applications 134

15

16 LIST OF FIGURES

List of Listings

2.1 Machine Data-type Definition . 41
2.2 Machine Well Constructed Operators 42
2.3 Feasibility proof obligation operators 43
2.4 Invariant proof obligation operators 44
2.5 Variant proof obligation operators 45
2.6 Variant decrease proof obligation operators 45
2.7 Theorem proof obligation operator 46
2.8 Machine Proof Obligation . 46
2.9 An inductive list . 47
2.10 Inductive trace of Event-B . 48
2.11 New Operator on the list . 48
2.12 Theorem of correction of the proof obligation 49
2.13 A skeleton of a machine in the deep modelling 51
2.14 A static element of abstract machine (S.2) 51
2.15 A generic abstract machine (S.2) 52
2.16 A shallow modelling machine skeleton 53
2.17 A machine of clock . 54
2.18 A deep instance of the clock machine (D.2) 56
2.19 Instances for static elements: clock machine (S.3) 57
2.20 A shallow instance of the clock machine (S.4) 58
2.21 Analyses Theory . 60
2.22 Analyses Correctness . 60
2.23 Analyses Machine . 60
2.24 DeadlockFree Theory . 61
2.25 Clock DeadlockFreeness . 61
2.26 Theorem of Deadlock freeness’ correctness 61
2.27 Machine Data-Type . 64
2.28 Proof Rule to unfold operator definition 65

3.1 Machine Data-type . 73
3.2 Operators to check well-defined data-type (static semantics) 73
3.3 Well defined Data-type operators (behavioural semantics) 73
3.4 Operator encoding Event-B machine consistency 74
3.7 Analyses Theory Pattern . 76
3.8 Analyses Machine . 76

17

18 LIST OF LISTINGS

3.9 DeadlockFree Theory . 77
3.10 Clock DeadlockFreeness . 77
3.11 An Bad-event: progress by 5 min. 78
3.12 Weak specification analysis theory 78
3.13 Performing analysis on clock model 78
3.14 Clock resulting after the strengthening of the invariant 79
3.15 Thoery of reachable property in Event-B 80
3.16 Clock machine with a reachable property checked 81

4.1 Machine Data type . 92
4.2 Operators to check well-defined data type (static semantics) 92
4.3 Well-defined data type operators (behavioural semantics) 93
4.4 Operator for Event-B machine consistency 93
4.5 Theory of Event-B Traces . 94
4.6 Liveness Analyses Correctness . 94
4.7 Theorem of correction of the proof obligation 95
4.8 Read write machine in Event-B (a) and instantiation with EB4EB

(b) . 95
4.9 Liveness operators Theory . 96
4.10 Generation of Proof Obligation of Deadlock_Free_In_ P 98
4.11 Generation of Proof Obligation of Existence 100
4.12 Theory of correctness . 101
4.13 Theorem of correctness of the operators Existence 101

5.1 Ontology modelling language Event-B theory 111
5.2 Machine Data type . 111
5.3 Operators to check well-defined data type (static semantics) 112
5.4 Well-defined data type operators (behavioural semantics) 112
5.5 Operator for Event-B machine consistency 113
5.6 Context of the ATM . 117
5.7 ATM machine . 118
5.8 Context for event ontology instantiation 119
5.9 Domain Behavioural Properties Theory 120
5.10 Reachability Theory . 121
5.11 Annotation and analysis context 121
5.12 Annotation and analysis context 122

6.1 Basic Lts constructs. 135
6.2 Lts determinism invariants. 135
6.3 Model events building a deterministic Lts. 135
6.4 Data type theory template . 137
6.5 Context instantiation. 138
6.6 An Event-B machine with domain-specific properties 138
6.7 A theory of Lts: data-type and constructor. 140
6.8 A theory of Lts: operators, WD conditions and theorems. 140
6.9 A theory of LTS: operators, WD conditions and theorems. 141

LIST OF LISTINGS 19

6.10 An instantiated context of LTS. 142
6.11 A Machine of LTS with a type state variable. 142

A.1 Theory of the Syntax representation of Event-B 165
A.2 Theory of the Proof obligation definition 166
A.3 Context of the generic machine of shallow modelling 167
A.4 Generic machine for the shallow modelling 168
A.5 Helper Theory for Event-B machine manipulation 169
A.6 Proof rule Definition . 170
A.7 Theory of the deadlock freeness analysis 171
A.8 Theory of the reachability analysis 172
A.9 Theory of the weak invariant analysis 174
A.10 Theory of temporal propreties . 175
A.11 Proof rules for temporal properties 177
A.12 Ontologies theory . 178
A.13 Theory of behavioural analyses derived from a ontology 184
A.14 Theory of Peano . 186
A.15 Basic operator for peano arithmetic 187
A.16 Theory of Event-B traces . 188
A.17 Soundness theorem of the Invariant proof obligations 189
A.18 Soundness theorems for all temporal properties 189

B.1 The Clock models . 193
B.2 Instantiation of the Clock in Deep modelling 194
B.3 Instantiation of the static part of the clock models in shallow mod-

elling . 195
B.4 Instantiation of the dynamic part of the clock models in shallow

modelling . 196
B.5 Dealock freeness analysis on the Clock models 198
B.6 Weak invariant analysis on the Clock models 198
B.7 The Strenghtening Clock machine resulting of the Weak invariant

analysis . 199
B.8 Reachability analysis on the Clock models 201
B.9 The Read/Write machine . 202
B.10 The instance of read write machine with temporal properties . . . 202
B.11 The peterson algorithm models . 203
B.12 The instantiation of the peterson algorithm with liveness properties 205
B.13 The context of calibration models 207
B.14 the calibration models . 207
B.15 The instantiation of the calibration models with temporal properties208
B.16 The context of the ATM models 209
B.17 The ATM models . 210
B.18 The instantiation of the calibration models 213
B.19 The generation of the domain specific properties on the ATM models220

20 LIST OF LISTINGS

Part I

Introduction

21

Chapter 1

Introduction

1.1 Context
Complex information systems include several components and actors such as hard-
ware, software, physical plants, communication devices, humans, surrounding en-
vironment and so on. These systems can be data-driven, distributed, centralised,
reactive, real-time, etc. The design of such systems relies on several methods, tech-
niques, tools, standards, processes, and so on to ensure their quality. In particular,
when these systems are critical, more attention and confidence in their design are
required. The advancement of formal methods has demonstrated their effective-
ness in assisting with the design phase of critical systems by providing powerful
modelling languages and associated verification and validation techniques.

Among the proposed formal methods, we are particularly interested in state-
based formal methods. These methods have demonstrated the ability to model
and reason about complex systems in order to establish properties that reflect the
modelled requirements. They have been particularly effective in ensuring system
safety by verifying safety and other behavioural properties such as liveness. These
approaches manipulate states and their evolution while allowing properties to be
expressed and reasoned about. Several state-based methods have been designed
supporting various aspects of system modelling, validation and/or verification and
addressing functionality, safety, real-time, reliability, security, etc. Each of these
methods are efficient in their “area of expertise". As a result, different formal
methods may be set up to address specific requirements for a single system.

The use of different formal methods in a multi-modelling setting may result
in semantic mismatches and thus different interpretations.

1.2 The addressed problem
The introduction of semantic mismatches as a result of different modelling lan-
guages is a key issue. Several proposals for avoiding or reducing such semantic
mismatches have been proposed for many formal methods.

23

24 CHAPTER 1. INTRODUCTION

Our work focuses on addressing the issue of reducing heterogeneity that arises
from the use of multiple formal modelling languages and verification techniques.

Below, we provide an overview of the different approaches we have identified.

• Multi-modelling. A collection of formal models is presented, each one fo-
cusing on a specific aspect of the designed system. Informal arguments are
included to ensure that the desired properties are related to the same sys-
tem. Challenges may arise when a rely guarantee reasoning is performed
between different models. In this instance, no formal proof of correctness is
offered, only informal arguments are provided.

• Ad hoc transformations. In this case, certain models are transformed into
another model using a target modelling language. The transformation pro-
cess is informal and, consequently, not certified.

• Model transformations. Here, model transformations are discussed. Tools,
typically in the form of plug-ins, are provided for transforming a model
provided in a source modelling language into another model in a target
modelling language. There are numerous tools available in the field of
Model-Driven Engineering (MDE) for performing model transformations,
like ATL [Jouault et al., 2006], Kermeta [Jézéquel et al., 2009] or Via-
tra [Csertán et al., 2002] In this case, semantic mismatch is addressed by
either certifying each model produced by the transformation or certifying
the transformation itself.

• Certified model transformations. They align with the earlier example where
the transformation generates a certificate that guarantees semantic preserva-
tion. Typically, this approach necessitates an additional formal framework
like a proof assistant to help with certificate generation. In this scenario, the
semantics of both the source and target modelling languages are formally
defined. An illustrative and widely recognised example is CompCert [Leroy
et al., 2016], which validates the conversion of C code into assembly lan-
guage.

• Exportation in a unified modelling language. In this case, the semantics of
the modelling language are defined in a unified framework. The models are
exported as instances within this unified modelling language. Exporting
or instantiating various formal models within a unified framework or meta-
model that expresses their semantics. This method involves formalising each
modelling language and transformation within this unified framework. For
examples, Unifying Theory of Programming (UTP) [He & Hoare, 1998] and
COQ [Bertot & Castéran, 2010] can be used for this purpose. In [Woodcock
& Cavalcanti, 2004], the authors have used UTP to formalise Z [Spivey,
1985] and CSP [Hoare, 1978].

• Extension of the modelling language. The method involves creating ex-
tensions of the formal modelling language that enable the description of
concepts and properties, along with a verification process to validate these

1.3. OUR PROPOSAL 25

properties. Of course, these extensions must ensure the coherence of the
original semantics of the extended formal modelling language.

Each of the approaches described above aims to create a framework that enables
the modelling and verification of complex systems in a unified environment. Each
approach has its advantages and disadvantages. Indeed, ensuring the certifica-
tion of the transformation/export process and receiving feedback from the model
analyses are key requirements when dealing with formal verification.

1.3 Our proposal
Our work focuses on refinement and proof based development of complex systems
using the Event-B method. We have chosen the Event-B method as it supports
system development and checking of safety and functionality together with some
behavioural properties.

During our experiments with this formal method, we encountered many situ-
ations in which it was impossible, or too complicated to model specific properties
using Event-B, such as temporal logic properties or domain specific properties.
Therefore, we needed to bridge the gap between Event-B and other formal mod-
elling languages, allowing us to express and verify related properties.

Following the various approaches described in the previous section, we pro-
pose a hybrid approach. It relies on both extending the modelling language and
exporting models to a unified modelling language. Certainly, we utilise the concept
of extensions in Event-B to enhance the formal expression and verification capa-
bilities that are not present in the native Event-B. Additionally, we establish a
meta-model of Event-B using Event-B itself (known as reflexive modelling) where
Event-B models are exported as instances of this meta-model. The definition of
Event-B extension/export is possible since Event-B,

• is grounded in set theory and first order logic (FOL), which are useful for
modelling the core concepts of systems,

• offers meta-modelling capabilities thanks to the availability of set theory and
FOL. It also proposes the capability to define additional algebraic theories,

• allows for both deep and shallow modelling capabilities.

1.4 Our contribution
In order to support the capability of handling the verification of properties that
are not explicitly formalised in Event-B, we have developed a framework allowing
to

• support the explicit formalisation of various properties, including their as-
sociated semantics using traces.

26 CHAPTER 1. INTRODUCTION

• automatically generate proof obligations to ensure newly defined properties
are valid,

• check the consistency of the proposed formalisation for Event-B via the
definition of its trace-based semantics.

By leveraging algebraic theories, the construction of this framework led to the
creation of a series of formalised components and services in the following manner:

• First, a meta-model is presented that formalises all Event-B features, such
as states, events, proof obligations (invariant, feasibility, etc.).

• A model of traces is provided to formalise the trace-based semantics of
Event-B, along with a generic template for proving the soundness of both
Event-B and any defined extensions.

• Two different modelling techniques are used to support the formalisation of
Event-B models in the designed framework:

– Deep modelling, where an Event-B machine is represented by a context
instantiating the above defined meta-model,

– Shallow modelling, where an Event-B machine is defined as a refine-
ment of a generic Event-B machine.

• An annotation mechanism is used to link a meta-model of externally defined
semantic features with the core Event-B meta-model. This mechanism pro-
vides the ability to analyse Event-B models that incorporate these additional
semantic features.

It is worth noting that for each of the exports and extensions we defined,
a proof of consistency is provided to certify the correctness of these definitions.
Furthermore, all the developments we have made are supported by the Rodin
platform and are included in the appendices to this thesis.

1.5 Organisation of the manuscript
The following chapters of this thesis describe the specifics of our contribution. We
have grounded our thesis manuscript in a collection of research papers published
since the start of our thesis work. The chapters are arranged in chronological
order to reflect the work we completed. Each chapter wraps up one or more
published research papers relevant to the described contribution. In addition to
the published papers, an overview and assessment are provided. They enable the
integration of the various contributions.

This thesis is structured as follows.
In Chapter 2, we present the foundation of our research, which is the meta-

model formalised as an Event-B theory of core Event-B. We discuss the trace-
based semantics of Event-B and provide the essential theorems for consistency.

1.6. LIST OF PUBLISHED PAPER: 27

This chapter synthesises the content of the published papers [Riviere et al., 2022a,
2022b, 2023b].

In Chapter 3, we demonstrate the ability to conduct non-intrusive Event-
B model analyses using Event-B without additional semantic features. These
analyses are outlined by either proposing new proof obligations or manipulating
the structure of the Event-B models. This chapter encapsulates the content of
the published paper [Riviere et al., 2023c].

In Chapter 4, we present the initial extension we developed for Event-B to
address temporal logic properties. We formalise a collection of operators for tem-
poral logic expressions and proof obligations within a theory that extends the
meta-model theory of core Event-B. This chapter compiles the content of the
published papers [Riviere et al., 2023a].

Chapter 5 introduces the second type of extension, which enables the annota-
tion of Event-B models by linking them to externally defined domain knowledge
features, particularly ontologies. This chapter summarises the contents of the
published papers [Mendil et al., 2022].

Finally, Chapter 6 introduces an alternative, reusable method for proving
invariant proof obligations. This approach emerged from our experiments and
research into defining Event-B proof obligations in the meta-model. It entails
splitting the proof of these obligations into two parts: one at the theory level and
one at the model level, thereby reducing the complexity of the proof on the model
side. This chapter covers the contents of the published papers [Aït Ameur et al.,
2022].

Chapter 7 provides a conclusion and set of perspectives.
Finally, every model presented in the papers have been developed and proved

on the Rodin platform, and are included as appendices, at the end of this manu-
script.

1.6 List of Published Paper:

1.6.1 Journal
1. Riviere, P., Singh, N. K., & Aït Ameur, Y. [2022b]. Reflexive Event-B:

Semantics and Correctness the EB4EB Framework. IEEE Transactions on
Reliability, 1–16

2. Riviere, P., Singh, N. K., Aït Ameur, Y., & Dupont, G. [2024,(Submitted)].
Extending the EB4EB framework with parameterised events

1.6.2 International Conference
1. Riviere, P., Singh, N. K., & Aït Ameur, Y. [2022a]. EB4EB: A Framework

for Reflexive Event-B. International Conference on Engineering of Complex
Computer Systems, ICECCS 2022, 71–80

28 CHAPTER 1. INTRODUCTION

2. Aït Ameur, Y., Dupont, G., Mendil, I., Méry, D., Pantel, M., Riviere, P.,
& Singh, N. K. [2022]. Empowering the Event-B Method Using External
Theories. IFM, 13274, 18–35

3. Mendil, I., Riviere, P., Aït Ameur, Y., Singh, N. K., Méry, D., & Palanque,
P. A. [2022]. Non-intrusive annotation-based domain-specific analysis to
certify event-b models behaviours. 29th Asia-Pacific Software Engineering
Conference, APSEC, 129–138

4. Riviere, P., Singh, N. K., Aït Ameur, Y., & Dupont, G. [2023c]. Standalone
Event-B models analysis relying on the EB4EB meta-theory. International
Conference on Rigorous State Based Methods, ABZ 2023

5. Riviere, P., Singh, N. K., Aït Ameur, Y., & Dupont, G. [2023a]. Formalising
liveness properties in Event-B. NASA Formal Methods 2023

6. Ferrarotti, F., Rivière, P., Schewe, K.-D., Singh, N. K., & Aït Ameur, Y.
[2024]. A complete fragment of LTL(EB). 13th International Symposium on
Foundations of Information and Knowledge Systems FoIKS 24

7. Riviere, P., Kobayashi, T., Singh, N. K., Ishikawa, F., Aït Ameur, Y.,
& Dupont, G. [2024,(Submitted)]. On-the-Fly Proof-Based Verification of
Reachability in Autonomous Vehicle Controllers Relying on Goal-Aware
RSS

1.6.3 Workshop
1. Riviere, P., Singh, N. K., & Aït Ameur, Y. [2021]. Data-types definitions:

Use of Theory and Context instantiations Plugins. 9th Rodin User and
Developer Workshop collocated with the ABZ 2021 Conference, 1–6

2. Riviere, P., Singh, N. K., Aït Ameur, Y., & Dupont, G. [2023b]. Proof
automation for Event-B theories. 10th Rodin User and Developer Workshop
collocated with the ABZ 2023 Conference

Part II

Contribution

29

Chapter 2

The Reflexive Framework
EB4EB

Overview
This chapter introduces the EB4EB framework, which is based on meta-modelling
techniques inspired by reflexive modelling concepts. This framework allows us
to manipulate Event-B components, as well as extend the core of the Event-B
language by defining new meta theories, such as the introduction of new proof
obligations, LTL and CTL properties, domain specific properties, and so on. This
framework consists of datatypes, operators, theorems, and proof-rules that are
defined using algebraic definitions derived from the Event-B book. In addition,
each defined operator is equipped with well-defined conditions to ensure the cor-
rect usages of the defined operators. The trace-based semantics preserves the
operational soundness of each defined operator. This framework is developed in
the Event-B modelling language using the Theory plugin and Rodin IDE. A set
of new tactics is defined to assist proving.

Associated papers of this chapter:

• Riviere, P., Singh, N. K., & Aït Ameur, Y. [2022a]. EB4EB: A Framework
for Reflexive Event-B. International Conference on Engineering of Complex
Computer Systems, ICECCS 2022, 71–80

• Riviere, P., Singh, N. K., & Aït Ameur, Y. [2022b]. Reflexive Event-B:
Semantics and Correctness the EB4EB Framework. IEEE Transactions on
Reliability, 1–16

• Riviere, P., Singh, N. K., Aït Ameur, Y., & Dupont, G. [2023b]. Proof
automation for Event-B theories. 10th Rodin User and Developer Workshop
collocated with the ABZ 2023 Conference

31

32 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

Reflexive Event-B: Semantics and Correctness
The EB4EB framework

Peter Rivière, Neeraj Kumar Singh, Yamine Aït-Ameur

INPT-ENSEEIHT/IRIT
University of Toulouse, Toulouse, France

{peter.riviere, neeraj.singh, yamine}@enseeiht.fr

The Event-B method enables correct by construction modelling of systems.
It relies on set theory and first-order logic, to describe a series of refined system
models expressed as a set of events modifying state variables. Invariants and the-
orems are introduced to express system properties submitted to the proof system
associated to Event-B. While Event-B has proven its efficiency for the proof of this
type of properties, it does not offer powerful means allowing the explicit descrip-
tion of properties other than safety and specific forms of reachability. Checking
other properties like deadlock-freeness, liveness or event scheduling, etc. requires
ad hoc modelling techniques and external tools such as model checkers or other
proof systems. This paper presents EB4EB, a new modelling framework offering
the capability to introduce formally defined Event-B extensions, in particular new
proof obligations corresponding to new properties. It is based on meta-modelling
techniques. It includes a theory (a meta-theory) modelling Event-B and offers
means for explicit manipulation of Event-B features and an extension mechanism
to explicitly formalise and prove other properties. This reflexive framework relies
on a trace-based semantics of Event-B and introduces a set of Event-B theories
defining data types, operators, well-defined conditions, theorems and proof rules
to define Event-B constructs and their semantics. Deep and shallow instantia-
tion mechanisms are set up to instantiate the obtained meta-theory. The EB4EB
framework and its instantiation mechanisms are developed in Event-B using the
Rodin platform ensuring correctness and internal consistency of the defined the-
ories. Lamport’s clock example, instantiating EB4EB in both shallow and deep
mechanisms, is used to evaluate the proposed approach.

2.1 Introduction
Metamodelling is a standard approach in software engineering for describing ab-
stractions of models and properties, as well as performing analysis to guarantee
the quality of the developed models, rules, operations, and constraints. This ap-
proach is widely used in the field of model-driven engineering. Formal methods
also offer frameworks to support meta-modelling facilities through the develop-
ment of meta-theories, axiomatising metamodels, to represent higher-level reason-
ing concepts used in the specification, development, and verification of complex
systems [Bertot & Castéran, 2010; Fallenstein & Kumar, 2015; Muñoz & Rushby,
1999; Sozeau et al., 2020].

2.1. INTRODUCTION 33

Event-B [J.-R. Abrial, 2010] enables correct by construction modelling of sys-
tems. It relies on set theory and first-order logic (FOL), to describe a series of
refined system models expressed as a set of events modifying state variables. In-
variants and theorems are introduced to express system properties submitted to
the proof system associated to Event-B. An integrated development environment
(IDE), Rodin [J.-R. Abrial et al., 2010], enables model development as well as the
automatic generation of proof obligations. The associated proof process ensures
system consistency thanks to the proof system it supports. Rodin has been ex-
tended with several plugins including composition/decomposition [Silva & Butler,
2012], Theory plug-in [J.-R. Abrial et al., 2009; M. Butler & Maamria, 2010], code
generation [Fürst et al., 2014; Méry & Singh, 2011] and so on. In particular, the
theory plugin [J.-R. Abrial et al., 2009; M. Butler & Maamria, 2010] enables to
extend the core concepts of Event-B by defining new data types, theories, and
operators that can be used in Event-B models. In addition to the classical theo-
ries for lists, trees, graphs and reals, several other theories have been developed
to support complex constructs like continuous features [Dupont et al., 2020, 2021]
or domain knowledge ontologies [Mendil, Aït Ameur, et al., 2021; Mendil, Ameur,
et al., 2021].

For checking system consistency and refinement, Event-B and its Rodin IDE
rely on induction and provide automatically generated proof obligations for in-
variant preservation, variant progress, events feasibility, proof theorems, guard
strengthening, refinement, and so on. To check additional properties such as
deadlock freeness, liveness, reachability, event scheduling, and domain-specific
properties, the designer must provide an adhoc Event-B model based on the core
Event-B features or must rely on other modelling tools, such as model checkers and
external interactive theorem provers. Indeed, there is no mechanism for encod-
ing and reasoning on Event-B trace semantics. Moreover, Event-B does not offer
the capability to manipulate Event-B concepts explicitly to formalise properties
in a generic an reusable setting. Therefore, performing advanced reasoning level
by introducing new, reusable and automatically generated POs for any designed
model is not yet possible.

Our objective is to define a novel framework based on a reflexive formalisation,
using Event-B, of a meta-theory allowing to manipulate Event-B concepts. This
theory is enriched by new concepts allowing to formalise and generate new proof
obligations formalising advanced and reusable reasoning mechanisms.

This paper extends our work presented in [Riviere et al., 2022a]. Our primary
contribution is to present an EB4EB framework based on meta modelling con-
cepts, including trace semantics of the core Event-B, for explicitly manipulating
Event-B features and extending its reasoning mechanism to support other prop-
erties. In order to express the Event-B core modelling constructs, trace-based
semantics, and new proof obligations for the EB4EB framework, a set of theo-
ries including data types, operators, well-defined conditions, theorems, and proof
rules is developed. In addition, these theories enable manipulation of static and
dynamic concepts of Event-B features as well as defining new proof obligations
to support a reusable (defined once and for all) advanced reasoning level. Two
instantiation mechanisms, deep and shallow, associated to these generic theories,

34 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

are introduced to exploit this correct by construction framework to support new
Event-B model analyses. The formalised trace-based semantics is used to prove
the soundness of the defined models analyses associated to the native and new
generated Event-B POs allowed by EB4EB. Finally, we evaluate our approach on
Lamport’s clock example.

This paper is organised as follows. Section 2.2 presents Event-B modelling
concepts, including refinement and proof obligations. Section 2.3 describes re-
flexive concepts, related work, and the EB4EB framework. The core concepts
of Event-B are described in Sections 2.4 and 2.5 of the EB4EB framework. Sec-
tion 2.6 describes the trace semantics and the correctness of proof obligations
is provided in Section 2.7. Deep and shallow embeddings are described in Sec-
tion 2.8. Section 2.9 describes Lamport’s clock example, which is used to describe
the application of EB4EB framework by applying the deep and shallow embed-
dings in Section 2.10. Section 2.11 presents the EB4EB reasoning mechanism,
including a new set of proof obligations. The proof process related to the de-
velopment of the clock model and deadlock reasoning extension is described in
Section 2.12. Finally, Section 2.13 concludes the paper and discusses future work.

2.2 Event-B
Event-B [J.-R. Abrial, 2010] is a correct-by-construction method supporting the
development of large and complex systems. Its formal modelling language is
based on set theory and first-order logic (FOL) and relies on the definition of
state variables characterising systems state and a set of events to model state
changes. A system model is designed as a series of refined intermediate models
starting from an abstract model. The main components of the Event-B modelling
language are summarised below.

2.2.1 Event-B Contexts and Machines
Contexts (Tables 2.1(a)) describe all the static elements of the models through
the definition of carrier sets s, constants c, axioms A and theorems Tctx .

Machines (Table 2.1(b)) describe model behaviour. It consists of Variables
x, Invariants I(x), Theorems Tmch(x) and Variants V (x). It defines a transition
system represented as a set of guarded events evt recording state changes using a
Before-After Predicates (BAP). Events which decrease the variant are tagged as
convergent otherwise they are ordinary. Invariants I(x) and Theorems Tmch(x)
ensure safety properties, while Variant V (x) ensures convergence properties for
convergent events.
- Refinements. Refinement (see Table 2.1(c)) enables incremental design by in-
troducing characteristics such as functionality, safety, reachability at different
abstraction levels. It decomposes a machine, a state-transition system, into a
more concrete model, by refining events and variables (simulation relationship).
Introduction of gluing invariants preserves already proven properties.

2.2. EVENT-B 35

Context Machine Refinement
CONTEXT Ctx MACHINE MA MACHINE MC

SETS s SEES Ctx REFINES MA

CONSTANTS c VARIABLES xA VARIABLES xC

AXIOMS A INVARIANTS IA(xA) INVARIANTS
THEOREMS Tctx THEOREMS Tmch (xA) J(xA, xC) ∧ IC (xC)
END VARIANT V (xA) EVENTS

EVENTS EVENT evtC

EVENT evtA REFINES evtA

ANY αA ANY αC

WHERE GA(xA, αA) WHERE GC (xC , αC)
THEN WITH

xA :| BAPA(xA′, αA: W (xA′, αA,

αA, xA, xA′
) xA, αC , xC , xC′

)
END THEN

END xC :| BAPC (

αC , xC , xC′
)

END
END

(a) (b) (c)

Table 2.1: Global structure of Context, Machines and Refinements

(1) Theorems (THM) A ⇒ TctxA ∧ IA(xA) ⇒ Tmch(xA)
(2) Initialisation (INIT) A ∧ GA(αA) ∧ BAPA(αA, xA′) ⇒ IA(xA′)
(3) Invariant A ∧ IA(xA) ∧ GA(xA, αA)

preservation (INV) ∧BAPA(xA, αA, xA′) ⇒ IA(xA′)
(4) Event A ∧ IA(xA) ∧ GA(xA, αA)

feasibility (FIS) ⇒ ∃xA′ · BAPA(xA, αA, xA′)
(5) Variant A ∧ IA(xA) ∧ GA(xA, αA)

progress (VAR) ∧BAPA(xA, αA, xA′) ⇒ V (xA′) < V (xA)

Table 2.2: Machine Proof obligations

(6) Event A ∧ IA(xA) ∧ J(xA, xC) ∧ GC (xC , αC)
Simulation ∧W (αA, αC , xA, xA′, xC , xC′)

(SIM) ∧BAPC (xC , αC , xC′)
⇒ BAPA(xA, αA, xA′)

(7) Guard A ∧ IA(xA) ∧ J(xA, xC)
Strengthening ∧W (αA, αC , xA, xA′, xC , xC′)

(GRDS) ∧GC (xC , αC) ⇒ GA(xA, αA)

Table 2.3: Refinement Proof obligations

- Proof Obligations (PO) and Property Verification. Several POs are associated
with the Event-B models shown in Table 2.2 and 2.3. These POs are generated
automatically, and all of them must be successfully discharged to guarantee the
correctness of an Event-B model, including refinements. Two additional POs
related to refinement, guard strengthening and simulation, are required in our
shallow modeling approach.
- Core Well-definedness (WD). The WD POs are associated to all built-in oper-
ators of the Event-B modelling language. Once proved, these WD conditions are
used as hypotheses to prove other POs related to invariants, theorems, feasibility,
etc.

36 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

2.2.2 Event-B extensions with Theories
In order to handle more complex modelling concepts not supported by native
Event-B, an extension of Event-B based on mathematical definitions has been
proposed in [J.-R. Abrial et al., 2009; M. J. Butler & Maamria, 2013]. This
extension, like Isabelle/HOL [Nipkow et al., 2002] or PVS [Owre et al., 1992],
allows to define new theories by introducing new data types, operators, theorems
and proof rules. They can be further used in the core development of Event-B
models.
- Theory description. Table 2.4 shows core modelling elements for developing
new theories. The core modelling elements are classified in different clauses
known as data types, operators, axiomatic definitions, axioms, theorems and
proof rules. A theory can be parameterized by Type in the clause TYPE PARAME-

Theory
THEORY Th
IMPORT Th1, ...
TYPE PARAMETERS E, F , ...
DATATYPES

Type2(E, ...)
constructors

cstr1(p1: T1, ...)
OPERATORS

Op1 <nature> (p1: T1, ...)
well−definedness WD(p1, ...)
direct definition D1

AXIOMATIC DEFINITIONS
TYPES A1, ...
OPERATORS

AOp2 <nature> (p1: T1, ...): Tr

well−definedness WD(p1, ...)
AXIOMS A1, ...

THEOREMS T1, ...
END

Table 2.4: Global structure
of Event-B Theories

TERS. The description of the data-type, operator,
theorems and proof rules use the type parameters.
Data types (DATATYPES clause) can be defined with
constructors, and each constructor can have some
destructors. Note that a destructor can also have
an inductive definition.

A theory may contain several operators of dif-
ferent nature (<nature> tag), expression or pred-
icate. These new defined operators extend the ca-
pabilities of the Event-B core language and can be
used directly in core modelling components like
expression and predicate. Operators may be de-
fined in two ways. First, explicitly in the direct
definition clause where the operator is equiva-
lent to an expression, and second, axiomatically
in the AXIOMATIC DEFINITIONS clause where the
behaviour of the operator is expressed by a set of
axioms. Last, a theory defines a set of theorems proven with the help of defined
operators and axioms.

Many theories have been defined for sequences, lists, groups, reals, differential
equations, and so on [M. J. Butler & Maamria, 2013; Dupont et al., 2021].
- Well-definedness (WD) in Theories. This useful clause associates well-

definedness (WD) conditions to each operator defined in a theory. This condition
restricts the use of an operator to its licit parameters (partial definitions). In
particular, when a function is denoted as operator, this condition defines the do-
main of this function as well-definedness additional constraints. When the defined
operator is used, a WD proof obligation is generated and must be discharged to
ensure the correctness of the modeled specification as well as defined properties.

All the WD POs and theorems are proved using the Event-B proof system.
- Event-B proof system and its IDE Rodin. Rodin1 is an open-source Eclipse-based
Integrated Development Environment for modelling in Event-B. It offers resources
for model editing, automatic PO generation, project management, refinement

1Rodin Integrated Development Environment http://www.event-b.org/index.html

2.3. THE EB4EB FRAMEWORK 37

and proof, model checking, model animation and code generation. The theories
extension for Event-B is available as a plug-in. Theories are tightly integrated in
the proof process. Depending on their definition (direct or axiomatic), operator
definitions are expanded either using their direct definition (if available) or by
enriching the set of axioms (hypotheses in proof sequents) using their axiomatic
definition. Theorems can be imported as hypotheses and used in proofs just like
any other theorem. The proof system is partially automatic, the other parts are
interactive. Many tools are available to help with proof like predicate provers or
SMT solvers.

2.3 The EB4EB Framework
2.3.1 Motivation
As mentioned in the introduction, Event-B extensions are not possible as the
modelling language does not offer the capability to manipulate Event-B concepts
as first-order objects. Meta-modelling features are not available in the core Event-
B modelling language. Offering meta-modelling capabilities is the main idea of
the EB4EB framework.

Embedding modelling language constructs in another modelling language is
well accepted by the model-driven engineering. When this embedding is realised
in the same modelling language, it is qualified as reflexive. Two embedding tech-
niques have been identified: deep and shallow embeddings. Deep embedding
describes explicitly the semantics and syntax of the source language in the logic
of the host language, whereas shallow embedding simply expresses by translation
the semantics of the source language in the semantics host language [Boulton
et al., 1992] (i.e. here the translator carries the semantics). Both approaches
have their pros and cons. Deep embedding requires more modelling effort to
address structural and semantic elements of the source language. As a result,
while this approach may be difficult to grasp and tedious, it offers full access,
in the logic of the host modelling language, to the elements of the source mod-
elling language for formal verification. On the other hand, the shallow embedding
approach is straightforward and easy to use once the semantics of the source
modelling language is directly formalised in the modelling language enconding
the transformation. It leads to limited access to the source modelling language
constructs for formal verification, in particular when tracing verification results
(e.g. counter-examples). Munoz et al. [Muñoz & Rushby, 1999] proposed a struc-
tural embedding approach in which only the language structure is deep/shallow
embedded in the host logic and the source language expression is replaced by the
host logic expression.

In order to design a formal setting for defining Event-B extensions, the pro-
posed EB4EB framework defines a reflexive embedding on Event-B in an Event-B
theory. Before entering into the details of the EB4EB framework, we review some
approaches of the literature which addressed the problem of embedding formal
modelling languages in other formal modelling languages.

38 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

2.3.2 Related work
Several modelling languages use a reflexive approach to handle higher-order mod-
elling concepts and their manipulation for improving reasoning mechanisms and
other advanced level modelling features. Riccobene et al. [Riccobene & Scan-
durra, 2004] proposed the ASM-Metamodel (AsmM) for manipulating Abstract
State Machine (ASM) [Börger & Stärk, 2003] concepts like abstract machines,
signatures, terms, rules, and so on. The developed API offers to express analyses
and ASM tool extensions, such as requirements validation [Scandurra et al., 2012],
model checking [Arcaini et al., 2010a], animation [Bonfanti et al., 2018; Carioni et
al., 2008], flattener for the ASMETA framework [Arcaini et al., 2018], and review-
ing ASM model by meta property verification [Arcaini et al., 2010b]. Bicarregui
et al. [Bicarregui & Ritchie, 1991] proposed reflexive concepts for VDM [C. B.
Jones, 1986] in a mathematical reasoning environment MURAL [C. B. Jones et
al., 1991] to provide modelling and reasoning capabilities for higher-order con-
cepts. The Event-B API available in Rodin tools enables the development of core
plug-ins such as model checker and animation ProB [Leuschel & Butler, 2003],
code generation [Fürst et al., 2014; Méry & Singh, 2011], extending modelling
features [T. S. Hoang et al., 2017; Silva & Butler, 2012].

The reflexive approach is not limited to modelling languages; other formal
methods approaches related to type theory use it to manipulate their syntax and
higher-order modelling concepts. For example, the reflexive approach is proposed
for Agda [Stump, 2016], Lean [Ebner et al., 2017], and Coq [Anand et al., 2018].
Moreover, this approach can be used in functional programming languages such
as MetaML [Taha & Sheard, 1997], and Template Haskell [Sheard & Jones, 2002].
In [Sozeau et al., 2020], the authors proposed a framework in the MetaCoq project
to define the semantic of Coq in order to support the certified meta-programming
environment. This framework aided in the development of CertiCoq [Anand et
al., 2017], a certified compiler of Coq. The reflection principle is implemented
in Isabelle/HOL [Fallenstein & Kumar, 2015] to express HOL models as well as
reasoning mechanisms in order to describe complex systems with self-replacement
functionality. Similarly, Mitra et al. [Mitra & Archer, 2005] proposed the reflection
mechanism in PVS based on theories and templates to generalise proofs and make
them highly reusable using strategies concepts for proving abstraction relation
between automata.

Regarding the B method [J.-R. Abrial, 1996], Munoz et al. [Muñoz & Rushby,
1999] proposed a formalisation in the higher-order theorem prover PVS [Owre et
al., 1992]. In the same vein, Event-B is also formalised to ensure the correctness of
modelling and reasoning concepts. Bodeveix et al. [Bodeveix & Filali, 2021] pro-
posed context formalisation in order to prove the theorems expressing properties
on Event-B models. Schneider et al. [Schneider et al., 2011] proposed the core se-
mantics of Event-B, including refinement, in CSP [Hoare, 1978], which is based on
trace semantics. In [Farrell et al., 2017], the authors proposed the Event-B formal-
isation to express the theory of institution, but it is not tool supported. Event-B
modelling constructs are also formalised in Coq to express Event-B traces, and a
set of theorems is proved in Coq to ensure the correctness of proof obligations.

2.3. THE EB4EB FRAMEWORK 39

Our approach provides a homogeneous framework for using the Event-B ma-
chine concept as a first-class object in models, similar to Coq and HOL, and the
user does not require to use different semantic frameworks to manipulate it, as de-
scribed in CSP [Schneider et al., 2011] and Coq [Castéran, 2021]. Thus, our work
is free of semantic heterogeneity constraints, which could reduce embedding cor-
rectness. Our method can handle two types of semantics: native and axiomatic.
The first native semantics deal with the core concept of state-based modelling
and refinement, while the second axiomatic semantics deal with first-order logic.
These semantical representations play a central role in analysing and ensuring
any complex systems that have been built correctly in a non-intrusive manner.

In [Castéran, 2021; T. S. Hoang & Abrial, 2011; Leuschel & Butler, 2003;
Schneider et al., 2011, 2014], trace-based semantic was used to validate the Event-
B modelling and analysis concepts. Most of this work emphasises on Event-B
embedding in other formalisms or APIs to ensure the Event-B semantics, whereas
our work provides a set of operators, axioms, and theorems developing a theory
(a meta-theory) to manipulate and extend the core concepts of Event-B while
preserving the semantics in the same formal modelling language. Moreover, our
framework allows expressing some important properties such as liveness, deadlock
freeness, event scheduling and so on. In addition, this framework also provides a
set of operators to represent the Event-B trace semantics in order to ensure the
correctness of modelling features, functionalities, properties, and proof obliga-
tions. This framework enables non-intrusive analysis for checking the correctness
of complex systems. As far as we know, this is the first reflexive framework for
the Event-B method to analyse a system systematically.

2.3.3 The EB4EB framework
The EB4EB framework is based on first-order logic and set theory, which enable
a simple and easy mechanism for exporting Event-B core concepts, including
semantics, in other formalisms without redoing the entire work, and its use does
not impose many well-typed proof obligations. This framework supports two types
of proof processes: the first is operational with axiomatic semantics in the Event-
B context, and the second is induction to handle machine mechanisms similar to
Event-B native proof process.

The EB4EB framework defines a set of generic and reusable Event-B theories
formalising all the concepts available in an Event-B model. It uses an algebraic
style with concept types, constructors, operators and a set of axioms and theorems
providing their properties. This theory is instantiated to define specific Event-
B models. Two instantiation mechanisms have been defined: deep and shallow.
Fig. 2.1 depicts the architecture of this framework. The core theory (Fig 2.1.A)
models the core Event-B method. The correctness of the defined proof obligations
with respect to the provided-trace based semantics is supported by Fig. 2.1.B
and Fig. 2.1.C. Last, the extensions of the framework and their correctness are
presented in the theories of Fig. 2.1.D.

In the following, we provide a detailed presentation of this framework. The
formalisation of the model the constructs (Section 2.4), Event-B proof obligations

40 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

import

import

EvtBTraces

import

import
EvtBCorrectness

import
Theo4PO

import

import

Theo4POCorrectness

NotEmptyList

EvtBPO

import

EvtBStruc

EB4EB
Extension (D)

General Theories (B)

EB4EB Core (A) EB4EB Correctness (C)

Figure 2.1: Architecture of the theories

(Section 2.5) and the semantics and the theorem guaranteeing the correctness of
the approach (Sections 2.6 and 2.7) are presented. The two instantiation mecha-
nisms are presented in Section 2.8.

2.4 EB4EB structure (see Fig. 2.1.(A))
This section introduces the EvtBStruc Event-B theory of EB4EB (see Fig. 2.1.(A))
dedicated to the definition of the structure of an Event-B model. It includes data
types constructors and well-structured machine.

2.4.1 Data types and constructors
In order to model states and events (transitions), the two main components of a
state-transition system, the Event-B meta-theory EvtBStruc introduces, in the
TYPE PARAMETERS clause, two polymorphic type parameters, represented as car-
rier sets, STATE and EV ENT (see Listing 2.1). The type parameter STATE
is used to represent a set of variables. An explicit description of each variable is
not required at this abstract level. Indeed, the type parameter STATE abstracts
the state as a Cartesian product of all variables. At the instantiation step, this
abstract type is replaced with concrete variables of the considered Event-B model.
The second type parameter EV ENT is used to abstract the label of events.

These type parameters are used in the definition of a new datatype Machine
in the DATATYPES clause. A single constructor Cons_machine is defined in the
CONSTRUCTOR clause associated with destructors to represent and access various

2.4. EB4EB STRUCTURE (SEE FIG. 2.1.(A)) 41

constituents of Event-B components. The following destructors are defined.

- Event - a set of machine events;

- State - a set of machine states;

- Init - an initialisation event;

- Progress - a set of progress events;

- AP - the after-predicate defining the initialisation state;

- Grd - a set of event guards as a pair made of allowed state and an event;

- BAP - a set of before after-predicates as a triple made of an event and
before and after states;

- Inv - machine invariants as a set of licit states;

- Thm - machine theorems as a set of licit states;

- V ariant - machine variants as a pair associating an integer to a state;

- Ordinary - a set of ordinary events, i.e. events which do not constrain the
variant;

- Convergent - a set of events decreasing a variant.

THEORY EvtBStruc // Part 1
TYPE PARAMETERS EV ENT ,ST AT E
DATA TYPES

Machine (STATE ,EVENT)
CONSTRUCTORS

Cons_machine (
Event : P(EVENT) ,
State : P(STATE) ,
Init : EVENT ,
Progress : P(EVENT) ,
AP : P(STATE) ,
Grd : P(EVENT × STATE) ,
BAP : P(EVENT × (STATE × STATE)) ,
Inv : P(STATE) ,
Thm : P(STATE) ,
Variant : P(STATE × Z) ,
Ordinary : P(EVENT) ,
Convergent : P(EVENT)

)

Listing 2.1: Machine Data-type Definition

2.4.2 Well Structured Machine
The DATATYPES clause defines a constructor and destructors to access the Event-B
modelling components. The above-defined constructors and destructors contain
typing information only. Therefore, they may lead to ill-defined datatype defini-
tions. It is necessary to associate well-definedness (WD) conditions that restrict
their use in consistent cases. For example, the BAP destructor is a relation

42 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

between events and states, but the initialisation event is not concerned by this
before-after relation and shall be excluded from the set of events involved in a
BAP.

In order to avoid such ill-defined typing definitions, we introduce a set of
new operators in Listing 2.2 each of which is equipped with WD conditions. In
Listing 2.2, the first well-defined operator BAP_WellCons is declared with one
argument machine m, and its direct definition shows that all events in the domain
of the BAP relation are progress events, implying that the event set contains no
initialisation event. The next well-defined operator Grd_WellCons is also defined
with single machine m argument. Its direct definition states that all events in
the domain of the Grd relation are progress events. To check the well definedness
condition of the Event operator, the Event_WellCons is declared. Its direct
definition states that the union of the progress and initialisation events equals the
machine events.

The direct definition of the next Variant_WellCons operator shows that all
the states belonging to the variant states are convergent and identified from the
set of invariant states, i.e. each variant state element is associated with an integer.
Note that the variant is a total function in the invariant states. The direct defini-
tion of the Tag_Event_WellCons operator shows that the union of convergent and
ordinary events equals mutually exclusive machine events and the initialisation
event is an ordinary event.

The last Machine_WellCons operator is important. It collects all the well-
definedness conditions of all the defined operators. Its direct definition is the
conjunction of all other well-defined operators. It represents the global well-
defined condition associated with an Event-B machine m.

//THEORY EvtBStruc Part 2
OPERATORS

BAP_WellCons p r e d i c a t e (m : Machine(STATE, EVENT))
direct def init ion

dom(BAP(m)) = Progress(m)
Grd_WellCons p r e d i c a t e (m : Machine(STATE, EVENT))

direct def init ion
dom(Grd(m)) = Progress(m)

Event_WellCons p r e d i c a t e (m : Machine(STATE, EVENT))
direct def init ion

partition(Event(m), {Init(m)}, Progress(m))
Variant_WellCons p r e d i c a t e (m : Machine(STATE, EVENT))

direct def init ion
Inv(m) ◁ Variant(m) ∈ Inv(m) → Z

Tag_Event_WellCons p r e d i c a t e (m : Machine(STATE, EVENT))
direct def init ion

partition(Event(m), Ordinary(m), Convergent(m))∧
Init(m) ∈ Ordinary(m)

Machine_WellCons p r e d i c a t e (m : Machine(STATE, EVENT))
direct def init ion

BAP_WellCons(m)∧
Grd_WellCons(m)∧
Event_WellCons(m)∧
Tag_Event_WellCons(m)∧
Variant_WellCons(m)

Listing 2.2: Machine Well Constructed Operators

2.5. EB4EB PROOF OBLIGATIONS (SEE FIG. 2.1.(A)) 43

2.5 EB4EB Proof obligations (see Fig. 2.1.(A))
Once Event-B models are structurally well built, semantics can be addressed. This
section presents a set of proof obligations formalised as operators of the EvtBPO
theory (see Fig. 2.1.(A)) of the EB4EB framework. These operators express and
help to discharge the generated proof obligations given in Section 2.2, such as INV,
FIS, NAT and VAR. Their definitions are inductive as they apply to the initialisation
and then to all other events. The formalisation relies on an encoding of FOL
expressions set comprehension. Below, we formalise all POs at the meta-theory
level.

2.5.1 Feasibility Proof Obligation (FIS)
Principle

The objective of this proof obligation rule is to ensure that when the guard of an
event holds, its BAP allows to reach the next state, i.e. the action defined by the
BAP is feasible. It is defined as,

M ⊢ ∀i, α, x · Gi(α, x) ∧ I(x) ⇒ (∃x′ · BAPi(α, x, x′))
M ⊢ F IS

FIS Operators formalised in EB4EB

The feasibility rule is encoded in the Event-B meta-theory presented in Listing 2.3.
We defined three operators Mch_FIS_Init, Mch_FIS_One_Ev, and Mch_FIS. The
first two operators represent the base case and induction case for the feasibility
PO, respectively. The first operator is declared with one argument machine m,
and its direct definition for the base case ensures that the intersection of machine
invariants (Inv(m)) and machine after-predicates (AP (m)) should not be empty.
The second operator is declared with two arguments machine m and event e. The
direct definition for the induction case ensures that the invariants and guards
of the progress event e are a subset of the domain of the BAP of e. The last
operator checks the machine feasibility by induction. Its direct definition shows
that the machine is feasible at initialisation (base case) and for all progress events
(inductive case).

Mch_FIS_Init p r e d i c a t e (m : Machine(STATE, EVENT))
direct def init ion

Inv(m) ∩ AP(m) ̸= ∅
Mch_FIS_One_Ev p r e d i c a t e (m : Machine(STATE, EVENT) ,e : EVENT)

well−definedness e ∈ Progress(m)
direct def init ion

Inv(m) ∩ Grd(m)[{e}] ⊆ dom(BAP(m)[{e}])
Mch_FIS p r e d i c a t e (m : Machine(STATE, EVENT))

direct def init ion
Mch_FIS_Init(m)∧
(∀e · e ∈ Progress(m) ⇒ Mch_FIS_One_Ev(m, e))

Listing 2.3: Feasibility proof obligation operators

44 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

2.5.2 Invariant Proof Obligation (INV)
Principle

Invariant proof obligation rule ensures that each event of a machine preserves the
invariant. It uses two abbreviations to increase it readability. It is defined as,

initCaseINV ≡ ∀α, x
′ · AP (α, x

′) ⇒ I(x
′)

inducCaseINV (i) ≡ ∀α, x, x
′ · Gi(α, x) ∧ BAPi(α, x, x

′) ∧ I(x) ⇒ I(x
′)

M ⊢ initCaseINV M ⊢ ∀i · i ∈ 1..n ⇒ inducCaseINV (i)
M ⊢ INV

Here, for an Event-B machine containing n progress events, Gi(x, α) and
BAPi(α, x, x′) represent the guard and the before-after predicate of the event
ei(i ∈ 1..n)

INV Operators in EB4EB

The invariant proof obligation rule is also formalised in Event-B meta-theory pre-
sented in Listing 2.4. Three predicate operators, Mch_INV_Init, Mch_INV_One_Ev
and Mch_INV, define the initialisation, the induction case of the invariant PO for
a single event e, and the induction case of invariant properties for all progress
events, respectively. The direct definition of the first operator states that the
machine after predicate (AP (m)) is a subset of machine invariant. The next op-
erator, Mch_INV_One_Ev, ensures that the BAP of progress event e preserves the
invariants if guards and invariants are held before. The last operator is defined to
check each event preserves the machine invariants by induction. The direct defini-
tion of this operator shows that the machine invariant is preserved at initialisation
and for all progress events, i.e. invariant for all machine events.

Mch_INV_Init p r e d i c a t e (m : Machine(STATE, EVENT))
direct def init ion

AP(m) ⊆ Inv(m)
Mch_INV_One_Ev p r e d i c a t e (m : Machine(STATE, EVENT) ,e : EVENT)

well−definedness e ∈ Progress(m)
direct def init ion

BAP(m)[{e}][Inv(m) ∩ Grd(m)[{e}]] ⊆ Inv(m)
Mch_INV p r e d i c a t e (m : Machine(STATE, EVENT))

direct def init ion
Mch_INV_Init(m)∧
(∀e · e ∈ Progress(m) ⇒ Mch_INV_One_Ev(m, e))

Listing 2.4: Invariant proof obligation operators

2.5.3 Natural Variant Proof Obligation (NAT)
Principle

The objective of this proof obligation rule is to ensure that a proposed numeric
variant is a natural number under the guards of each convergent event. The
variant proof obligation rule is defined as,

M ⊢ ∀i, α, x · ei ∈ convergent ∧ Gi(α, x) ∧ I(x) ⇒ v(x) ∈ N
M ⊢ NAT

2.5. EB4EB PROOF OBLIGATIONS (SEE FIG. 2.1.(A)) 45

Natural Variant in EB4EB

Listing 2.5 shows two operators, Mch_NAT_One_Ev and Mch_NAT, to define a variant
for an event e as a natural number and that all convergent events have a natural
number as a variant, respectively. Their direct definitions are provided below.

Mch_NAT_One_Ev p r e d i c a t e (m : Machine(STATE, EVENT) ,e : EVENT)
well−definedness e ∈ Convergent(m)
direct def init ion

Variant(m)[Inv(m) ∩ Grd(m)[{e}]] ⊆ N
Mch_NAT p r e d i c a t e (m : Machine(STATE, EVENT))

direct def init ion
Variant(m)[Inv(m) ∩ Grd(m)[Convergent(m)]] ⊆ N

Listing 2.5: Variant proof obligation operators

2.5.4 Variant decrease Proof Obligation (VAR)
Principle

This proof obligation rule ensures that each convergent event decreases the pro-
posed numeric variant. This proof obligation rule is defined as,

M ⊢ ∀i, α, x, x′ · ei ∈ Convergent ∧ Gi(α, x)

∧I(x) ∧ BAP (x, x′, α) ⇒ v(x′) < v(x)
M ⊢ V AR

Variant decrease in EB4EB

Two new operators, Mch_VARIANT_One_Ev and Mch_VARIANT, are declared to rep-
resent convergent properties in Listing 2.6. The Mch_VARIANT_One_Ev definition
guarantees that if invariants and guards hold, then the BAP decreases the variant
associated with the convergent event e. The WD clause defines other well-defined
operators to ensure the correctness and the required WD conditions for the vari-
ants. Similarly, the operator Mch_VARIANT generalises the definition of conver-
gence, it checks the required properties for all convergent events of machine m.

Mch_VARIANT_One_Ev p r e d i c a t e (m : Machine(STATE, EVENT) ,e : EVENT ,
s : STATE)

well−definedness Variant_WellCons(m) ,Mch_INV_One_Ev(m, e) ,
e ∈ Progress(m) ,e ∈ Convergent(m) ,s ∈ Inv(m) ,s ∈ Grd(m)[{e}]

direct def init ion
∀sp · sp ∈ BAP(m)[{e}][{s}]

⇒ (Inv(m) ◁ Variant(m))(s) >
(Inv(m) ◁ Variant(m))(sp)

Mch_VARIANT p r e d i c a t e (m : Machine(STATE, EVENT))
well−definedness Variant_WellCons(m) ,Mch_INV (m) ,BAP_WellCons(m) ,

Tag_Event_WellCons(m) ,Event_WellCons(m)
direct def init ion

∀e, s · e ∈ Event(m) ∧ e ∈ Convergent(m)∧
s ∈ State(m) ∧ s ∈ Inv(m) ∧ s ∈ Grd(m)[{e}]
⇒ Mch_VARIANT_One_Ev(m, e, s)

Listing 2.6: Variant decrease proof obligation operators

46 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

2.5.5 Theorem THM
Principle

This rule ensures that a context or machine theorem can be proven. Theorems are
important for simplifying some proofs. The theorem proof obligation rule states
that theorems are deduced from invariants, it is defined as,

M ⊢ ∀x · I(x) ⇒ T hm(x)
M ⊢ T HM

Theorem THM in EB4EB

The declared operator Mch_THM consists of one argument machine m, and its direct
definition shows that the invariants are a subset of theorems in Listing 2.7.

Mch_THM p r e d i c a t e (m : Machine(STATE, EVENT))
direct def init ion

Inv(m) ⊆ Thm(m)

Listing 2.7: Theorem proof obligation operator

2.5.6 Proof Obligation Generation
Listing 2.8 shows the most important predicate operator check_Machine_Consis-
tency. When this predicate is used as a theorem at the instance level, it allows
generating automatically all possible POs. This predicate expresses the proof
obligations as the conjunction of all the proof obligations related to Event-B
constituents, expressed using the predicate operators previously defined. By the
WD condition associated to this operator, it only applies to well-built machines,
as defined by the properties described in Section 2.4.
check_Machine_Consistency p r e d i c a t e

(m : Machine(STATE, EVENT))
well−definedness Machine_WellCons(m)
direct def init ion

Mch_INV (m)∧
Mch_FIS(m)∧
Mch_NAT(m)∧
Mch_VARIANT(m)∧
Mch_THM(m)

Listing 2.8: Machine Proof Obligation
Note that the POs generation mechanism described in this section can be seen

as another approach to generating them. Instead of using the PO generator of the
RODIN platform, one can use the WD and Theorem proof obligations obtained
by the use of the EB4EB theories.

2.6 Trace’s semantics of Event-B
In this section, we present a trace-based semantics for Event-Machines and then
relate it to the proof obligations formalised in the previous section.

2.6. TRACE’S SEMANTICS OF EVENT-B 47

2.6.1 Event-B traces
For a given machine M , a sequence of states tr = s0 7→ s1 7→ . . . 7→ sn describes
a trace of machine M iff,

1. tr contains at least one state. A trace includes at least the initialisation
event;

2. s0 is the initial state satisfying the After Predicate (AP) of the initialisation
event;

3. for each successive states si, si+1 of the sequence tr, there exists a progress
event e such that

• si satisfies the guard of e and
• si 7→ si+1 satisfies the Before-After Predicate of the event e

This notion of trace is formalised in an Event-B theory.

2.6.2 Trace’s Semantics in EB4EB
Non-empty lists (see Fig. 2.1.(B))

THEORY NotEmptyList // Part 1
TYPE PARAMETERS T
DATA TYPES

NotEmptyList (T)
CONSTRUCTORS

cons (el : T ,
next : NotEmptyList(T))

base_case (base : T)
OPERATORS

first e xpr es s io n (
l : NotEmptyList(T))

recursive def init ion
case l :

cons(t, q) => t
base_case(t) => t

Listing 2.9: An inductive list

To formalise the trace semantics of Event-
B, we develop another theory NotEmptyList as
shown in Listing 2.9. This theory relies on the
list data type and declares a List type T. The
data type NotEmptyList has two constructors,
one for describing the base case and one for de-
scribing the inductive case. The base case con-
structor has only one element in the list, while
the inductive case constructor has one element
at the head of the list and a tail to represent
a list of other elements. In this theory, we de-
fine the first operator, which takes a list as
an argument and returns the first element of the list. The list theory is used
to represent a trace as a list of states, where the list is the inverse of the state
sequence. If n is the size of the list, then the state si is at the index n − i of the
list, and the state sn is at the head of the list.

A theory of Event-B traces (See Fig. 2.1.(C))

The formalisation of Event-B machine traces is proposed in the theory of List-
ing 2.10. This theory imports the two developed theories, EvtBStruc and Not-
EmptyList allowing to access to the Event-B features already formalised and to
lists respectively. It defines two operators: IsATrace and IsANextState. The
first operator is a predicate that checks if a trace tr of a machine m is a trace
of this machine. It is defined inductively on the trace structure and refers to the

48 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

second operator IsANextState to check that every state in the trace is a cor-
rect next state. The direct definition of this operator states that there exists a
progress event e such that s belongs to the guard of event e and s 7→ sp satisfies
the Before-After predicates of event e.
THEORY EvtBTraces IMPORT EvtBStruc , NotEmptyList

TYPE PARAMETERS ST AT E, EV ENT
OPERATORS

IsATrace p r e d i c a t e (tr : NotEmptyList(STATE) ,m : Machine(STATE, EVENT))
recursive def init ion

case t r :
base_case(s) => s ∈ AP(m)
cons(sp, q) => IsANextState(sp, first(q), m) ∧ IsATrace(q, m)

IsANextState p r e d i c a t e (sp : STATE ,s : STATE ,m : Machine(STATE, EVENT))
direct def init ion

∃e · e ∈ P rogress(m)∧
s ∈ Grd(m)[{e}] ∧ s 7→ sp ∈ BAP(m)[{e}])

Listing 2.10: Inductive trace of Event-B

2.7 EB4EB Correctness (see Fig. 2.1.(B,C))
The correctness of the expression of each proof obligation defined in the Event-B
Theory presented in section 2.5 is established at the trace semantics level of Sec-
tion 2.6. Correctness is stated according to the definition of the proof obligations
available in the Event-B reference book [J.-R. Abrial, 2010]. The EB4EB is set
up for this purpose. A theorem ensuring that the defined proof obligation entails
the property on the traces is formalised and proved.

2.7.1 Principle (See Fig.2.1.(C))
To establish correctness, we introduce another Event-B theory EvtBCorrectness
that imports the EvtBPO and EvtBTraces two theories (See Fig.2.1.(C)). It
includes a set of theorems stating that the expressed PO implies that the PO
property holds on the trace.

We demonstrate our approach using invariant proof obligation. In this case,
we ensure that invariant is a valid machine invariant if any state in a trace satisfies
it.

2.7.2 Correctness of the Invariant PO formalised in EB4EB
In order to define the theorem ensuring the correctness of the definition of the
Invariant PO defined in Section 2.5.2, the NotEmptyList theory has been ex-
tended with the AllAre operator (see Listing 2.11) checking that the predicate
pred (expressed using set-theoretical "belongs to" relationship) holds for all the
elements of a non-empty list l (used later to model a trace). It is recursively
defined on the elements of a non-empty list
// THEORY NotEmptyList Part 2
OPERATORS

AllAre p r e d i c a t e (l : NotEmptyList(T) ,pred : P(T))
recursive def init ion

2.8. MODELLING EVENT-B MACHINES IN EB4EB 49

case l :
base_case(el) => el ∈ pred
cons(t, q) => t ∈ pred ∧ AllAre(q, pred)

END

Listing 2.11: New Operator on the list
Listing 2.12 presents the proved theorem for checking the Invariant’s PO cor-

rectness. It states that if for all traces tr of any well structured Event-B ma-
chine m satisfying the invariant PO Mch_INV of Listing 2.4, then the invariant
property inv(m) of machine m holds in any state of the trace tr. The previous
AllAre(tr, inv(m)) operator is used for this purpose.
THEORY EvtBCorrectness

IMPORT EvtBTraces , EvtBPO
TYPE PARAMETERS ST AT E, EV ENT
THEOREMS

thm1 :
∀m, tr · m ∈ Machine(STATE, EVENT)∧

Machine_WellCons(m) ∧ IsATrace(tr, m) ∧ Mch_INV (m)
⇒ AllAre(tr, Inv(m))

END

Listing 2.12: Theorem of correction of the proof obligation
The theorem of Listing 2.12 has been proved using the proof system of the

Rodin platform. The main proof step of this proof is a case-based proof on the
structure of the trace by unfolding the definition of the AllAre operator. Following
this approach, similar theorems have been defined and proved for the remaining
proof obligations.

2.8 Modelling Event-B machines in EB4EB
In the previous section, we presented the theory axiomatising Event-models. The
well-definedness conditions and the relevant theorems introduced allows to check
the correctness of the specific models defined as instances of this generic theory.
Below, we describe the defined instantiation mechanisms.

2.8.1 Instantiation Methodology
Two instantiation mechanisms, depicted in Fig. 2.2, are envisioned: deep and
shallow modelling.

Deep modelling consists in the definition of the various elements composing
a machine conforming to the EvtBStruc. At instantiation, these definitions are
provided in an Event-B context, where witnesses for type parameters STATE and
EVENT are provided. Deep instantiation mechanism is recommended when ma-
nipulating and/or reasoning on Event-B features as first order objects is required.
In particular, this mechanisms allows for the extension of Event-B to formalise
and prove other properties not available in core Event-B.

Shallow modelling is close to shallow embedding [Boulton et al., 1992]. It relies
on an abstract Event-B machine and model instances are defined as a refinement
of this machine. This instantiation mechanism is recommended when the model
can be expressed and proved. The benefit of this mechanism is the use of the

50 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

(a) Deep Modelling (b) Shallow Modelling

Figure 2.2: EB4EB framework

refinement operation associated to the built-in induction principle available in
core Event-B.

To compare both mechanisms, one can state that deep instantiation mecha-
nism offers the capability to extend the Event-B method to handle other type of
properties not available in core Event-B while shallow instantiation mechanism
allows for the use of the refinement operation offered by core Event-B.

In both mechanisms, the defined operators, when invoked in a machine or a
context, automatically generate well-definedness and theorem POs that must be
proven in order to ensure machine consistency. These two instantiation mecha-
nisms are detailed below.

2.8.2 Deep modelling based instantiation (see Fig. 2.2a)
This instantiation mechanism consists in defining an instance of the data type
Machine in an Event-B context (D.2) where the generic type parameters of
the meta-theory are instantiated by sets describing machines state variables and
events. All the Event-B constructs described in the EvtBStruc Meta-theory such
as invariants, theorems, event guards and before after predicate and so on are
defined in the form of axioms. Consistency is ensured by the introduction of
the theorem check_Machine_Consistency corresponding to the predicate con-
sistency operator of the Meta-theory. It generates two kinds of proof obligation:
first the well-definedness PO to ensure that the Event-B machine is well built,
and second the PO related to the Event-B machine consistency such as invariant
preservation, and variant decreasing corresponding to the theorem proof obliga-
tion. Both proof obligations must be proved (see Listing 2.13). These obtained
POs are proved using the Event-B Rodin theorem prover as well as the other
supporting theorem provers.

Listing 2.13 represents the skeleton of a context representing an instantiated
machine in which each axiom characterises different components of the Event-B
machine for reasoning and analysis using EB4EB framework. Our goal is to gen-
erate an instance machine automatically, thus the skeleton of the context model

2.8. MODELLING EVENT-B MACHINES IN EB4EB 51

is fixed in a sequence of axioms. These sequences are: axm1 - to define parti-
tions set Ev of machine events; axm2 - to define a machine m as an instance of
theory’s data type by instantiating EV ENT as an event set Ev, and STATE as
a cartesian product of variables type; axm3 - to set event accessor as partition
event set Ev; axm4 - to set state accessor as a cartesian product variables type;
axm5 - to set initial event of a machine m; axm6 - to define a set of progress
events; axm7 - to define a set of machine after-predicates; axm8 - to define a
set of machine guards; axm9 - to define a set of machine before-after predicates;
axm10 - to define a set of machine invariants; axm11 - to define a set of machine
theorems; axm12 - to define a set of a machine variants; axm13 - to define a
set of ordinary events; axm14 - to define a set of convergent events. Finally, the
theorem check_Machine_Consistency is defined to ensure that the machine m
is well-constructed and consistent by satisfying all associated proof obligations.
A THM PO is generated for this theorem.
CONTEXT Deep
SETS Ev , . . .
CONSTANTS mch , . . .
AXIOMS

axm1 : partition(Ev, . . .)
axm2 : mch ∈ Machine(. . . , Ev)
axm3 : Event(mch) = Ev
axm4 : State(mch) = . . .
axm5 : Init(mch) = . . .
axm6 : Progress(mch) = {. . .}
axm7 : AP(mch) = {. . .}
axm8 : Grd(mch) = {. . .}
axm9 : BAP(mch) = {. . .}
axm10 : Inv(mch) = {. . .}
axm11 : Thm(mch) = {. . .}
axm12 : Variant(mch) = {. . .}
axm13 : Ordinary(mch) = {. . .}
axm14 : Convergent(mch) = {. . .}

THEOREMS
thm1 : check_Machine_Consistency(mch)

END

Listing 2.13: A skeleton of a machine in the deep modelling

2.8.3 Shallow modelling based instantiation (see Fig. 2.2b)
As mentioned above, this mechanism introduces a context and an abstract ma-
chine to be refined by the instance Event-B model. Listings 2.14 and 2.15 show
these context and machine of the abstract model for shallow instantiation. The
context defines the sets Ev and St as instances of the type parameters for events
and states. For this purpose, a constant mch is introduced as a member of
Machine(St, Ev).
CONTEXT ShallowGenCtx
SETS St , Ev
CONSTANTS mch
AXIOMS

axm1 : mch ∈ Machine(St, Ev)
END

Listing 2.14: A static element of abstract machine (S.2)

52 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

In the abstract machine model, two variables s and InitDone (for scheduling
event triggering) are declared in the inv1−inv2 invariant clauses. These variables
are set in the INITIALISATION event. inv3 ensures that the invariant Inv(mch)
of the instance model is satisfied. In this model, we define three events: Do_Init,
Do_Ordinary, and Do_Convergent whose actions modify the state using the AP
(for initialisation) and BAP operators (act1). The first event is used to initialise
state variables in action (act1). Its guards ensure that InitDone is FALSE
(grd1), and the feasibility and invariants hold for the Init event (grd2). The
Do_Ordinary event updates the machine state s for an event e annotated as
Ordinary. Its guards state that InitDone is TRUE; the event e is a progress
and ordinary event (grd2); the machine state s belongs to Grd of e (grd3); and
feasibility and invariant properties of mch hold for the event e (grd4). Similar to
the ordinary event, the last event Do_Convergent contains additional guards grd2
to tag the event e as convergent and grd6 to ensure that the variant properties of
mch for the event e hold.

Note that our generic abstract model contains initialisation, ordinary and
convergent events, whereas we may only have initialisation and progress events,
in the same spirit of TLA+, where the progress event can be refined by ordinary
and convergent events later in further refinement. In this instantiation mechanism,
the proof process relies on the induction principle offered by Event-B. Following
the shallow modelling principle, the proof of machine consistency is delegated to
Event-B itself. The defined properties are verified in the machine refining the
generic machine ShallowMchGen.

MACHINE ShallowGenMch
SEES ShallowGenCtx
VARIABLES

s ,
InitDone

INVARIANTS
inv1 : s ∈ St
inv2 : InitDone ∈ BOOL
inv3 : InitDone = TRUE ⇒ s ∈ Inv(mch)

EVENTS
INITIALISATION
THEN

act1 : s, InitDone :| s′ ∈ St ∧ InitDone′ := FALSE
END

Do_Init
WHERE

grd1 : InitDone = FALSE
grd2 : Mch_INV_Init(mch) ∧ Mch_FIS_Init(mch)

THEN
act1 : s, InitDone :| s′ ∈ AP(mch) ∧ InitDone := TRUE

END

Do_Ordinary
ANY e
WHERE

grd1 : InitDone = TRUE
grd2 : e ∈ Progress(mch) ∧ e ∈ Ordinary(mch)
grd3 : s ∈ Grd(mch)[{e}]
grd4 : Mch_INV_One_Ev(mch, e) ∧ Mch_FIS_One_Ev(mch, e)

THEN
act1 : s :∈ BAP(mch)[{e}][{s}]

END

2.8. MODELLING EVENT-B MACHINES IN EB4EB 53

Do_Convergent
ANY e
WHERE

grd1 : InitDone = TRUE
grd2 : e ∈ Progress(mch) ∧ e ∈ Convergent(mch)
grd3 : s ∈ Grd(mch)[{e}]
grd4 : Mch_INV_One_Ev(mch, e) ∧ Mch_FIS_One_Ev(mch, e)
grd5 : Variant_WellCons(mch)
grd6 : Mch_VARIANT_One_Ev(mch, e, s)∧

Mch_NAT_One_Ev(mch, e)
THEN

act1 : s :∈ BAP(mch)[{e}][{s}]
END

END

Listing 2.15: A generic abstract machine (S.2)
Listing 2.16 presents a skeleton of an Event-B machine representing an instance

formalising an Event-B model. Similarly to the deep modelling instantiation
approach, a static part is described in another context. This skeleton machine
refines the abstract machine (see Listing 2.15). It represents the dynamic part of
the machine instantiate, where:

• inv1 provides the gluing invariant of the abstract state s and the concrete
one.

• each event is refined by the concrete one, and each concrete event provides
witnesses (WITH clause) for the event parameters.

• grd1 is the guard’s state, InitDone is true or false depending on which
events are refined, and the refinement of abstract state s in the concrete
guard.

• grd2 and grd3 introduces instances of the guard, and BAP/AP.

• act1 defines the concrete assignment as well as updates event parameters
with a concrete one.

MACHINE ShallowMch REFINES ShallowGenMch SEES . . .
VARIABLES

. . . ,
InitDone

INVARIANTS
inv1 : s = . . . // Gluing i n v a r i a n t f o r a b s t r a c t s t a t e

// v a r i a b l e s s and concrete s t a t e v a r i a b l e s
EVENTS // S t a t i c parts d e s c r i b e in the Event−B context

INITIALISATION
WITH s′ : s′ = . . .
THEN

act1 : . . . , InitDone :| . . . ∧ InitDone′ = FALSE
END
Do_Init REFINES Do_Init
WHERE

grd1 : InitDone = F ALSE
grd2 : . . . = AP (mch)

WITH s′ : s′ = . . .
THEN

act1 : . . . , InitDone :| . . . ∈ AP (mch) ∧ InitDone′ = T RUE
END

54 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

. . . REFINES Do_Ordinary// Refines Do_Convergent i f the event
// has the tag convergent

WHERE // Guard st re ng th en in g encode the PO d e s c r i b e
// as a guard in the a b s t r a c t m.

grd1 : InitDone = TRUE ∧ . . . ∈ Grd(mch)[{. . .}]
grd2 : . . . = Grd(mch)[{. . .}]
grd3 : . . . = BAP(mch)[{. . .}]

WITH e : e = . . . , s′ : s′ = . . .
THEN

act1 : . . . :| . . . ∈ BAP(mch)[{. . .}][{. . .}]
END
. . .

END

Listing 2.16: A shallow modelling machine skeleton

2.9 Case Study
MACHINE Clock
VARIABLES m , h
INVARIANTS

inv1 : m ∈ N
inv2 : h ∈ N
inv3 : m < 60
inv4 : h < 24

THEOREMS
thm1 : m < 59∨

(m = 59 ∧ h < 23)∨
(m = 59 ∧ h = 23)

VARIANTS
24 ∗ 60 − 1 − (m + h ∗ 60)

EVENTS
INITIALISATION
THEN act1 : m, h :|

m′ = 0 ∧ h′ = 0
END
tick_min <convergent>
WHERE grd1 : m < 59
THEN act1 : m :| m′ = m + 1
END
tick_hour <convergent>
WHERE grd1 : m = 59 ∧ h < 23
THEN act1 : m, h :|

m′ = 0 ∧ h′ = h + 1
END
tick_midnight <ordinary>
WHERE grd1 : m = 59 ∧ h = 23
THEN act1 : m, h :|

m′ = 0 ∧ h′ = 0
END

END

Listing 2.17: A machine of clock

To illustrate our approach, we have cho-
sen the case study of a 24h hour clock
originally defined by L. Lamport. The
main functionalities (FUN) and require-
ments (REQ) of the clock case study are
given as follows:

• FUN1 A minute can progress

• FUN2 An hour can progress

• REQ1 The hours are represented in a
24-hour format.

• REQ2 The clock must converge at
midnight.

• REQ3 The clock never stops.

In Listing 2.17, we describe the clock
model that is formalised in the native Event-
B language. In this model, two variables are
defined, minute m and hour h, in inv1 −
inv2. Two safety properties are introduced
in inv3 − inv4. The first safety property
(REQ1) states that the minute m is always
less than 60 and hour h is less than 24.The next safety property (REQ3) is de-
fined as a theorem that is a disjunction of all guards to state that the clock
never stops means always the guard of at least one event is true. The last safety
property (REQ2) is related to convergence (variant) expressed by the number
24 ∗ 60 − 1 − (m + h ∗ 60). In this model, in addition to the initialisation ordinary
event INITIALISATION , we introduce three events: tick_min - to model the
minute progress by 1; tick_hour - to model the hour progress by 1 (two convergent
events); and tick_midnight - to reset the clock at midnight (an ordinary event).

2.10. EB4EB DEEP AND SHALLOW MODELLING OF THE CLOCK CASE STUDY55

The required guards are added in the defined events to update the minute m and
hour h.

2.10 EB4EB deep and Shallow modelling of the
clock case study

Below we present the two instantiation mechanisms corresponding to the clock
model of Listing 2.17.

2.10.1 Deep modelling instantiation for the clock model
We describe the development of the clock case study using the deep modelling
instantiation technique of Section 2.8 using the meta-theory introduced in Sec-
tion 2.4 and 2.5. All constituents of the Clock model are explicitly expressed in
terms of the EvtBStruc and EvtBPO Meta-theory constructs. The Clock Event-
B model is represented as an Event-B context using the skeleton shown in the
Listing 2.13 of the Section 2.8, and POs are described either as theorems or as
well-definedness POs.

The deep modelling resulting context of the Event-B clock model given in
Listing 2.17 is presented in Listing 2.18. In this context, a set Ev lists all the
clock events in axm1. The clock machine clock is defined by axiom axm2 as a
member of Machine(Z×Z, Ev), where the first argument defines machine state as
Z×Z and the second one machine events Ev.Note that Z×Z and Ev correspond
respectively to the instantiation of the type parameters STATE and EV ENT
of the EvtBPO theory. Furthermore, three axioms (axm3 − axm5) are used to
instantiate Event with the enumerated set Ev, State with Z × Z, and Init with
the event label init.

The next axiom (axm6) is instantiated with progress events. Axiom axm7
instantiates the after-predicate AP derived from the action of the initialisation
event (act1) in the Clock machine. Similarly, axioms axm8 and axm9 are used
to instantiate the guard Grd and the before-after predicate BAP with a set of
guards and actions of all events derived from the Clock machine using compre-
hensive sets. The next axiom (axm10) is defined to instantiate invariant Inv
using comprehensive sets derived from inv1 − inv4 of Listing 2.17, and axm11
is used to instantiate theorem Thm derived from thm1 of the clock model (see
Listing 2.17). Axiom axm12 is used to instantiate the V ariant with the defined
variant of the Clock model. The next axioms axm13 − axm14 instantiate the
Ordinary and Convergent with a list of ordinary and convergent events, respec-
tively. In this model, we have only two ordinary events init and tick_midnight
and two convergent events tick_min and tick_hour.
Machine correctness. It is important to note the introduction, in Listing 2.18,
of a theorem thm1 referring to the check_Machine_Consistency operator. The
automatically generated well-definedness PO associated to the check_Machine_-
Consistency operator and the one for the theorem shall be proved. They entail
machine correctness.

56 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

CONTEXT ClockDeep
SETS Ev
CONSTANTS c lock , tick_min , tick_hour , tick_midnight , i n i t
AXIOMS

axm1 : partition(Ev,
{init}, {tick_midnight}, {tick_hour}, {tick_min})

axm2 : clock ∈ Machine(Z × Z, Ev)
axm3 : Event(clock) = Ev
axm4 : State(clock) = Z × Z
axm5 : Init(clock) = init
axm6 : Progress(clock) = {tick_midnight, tick_hour, tick_min}
axm7 : AP(clock) = {m 7→ h | m = 0 ∧ h = 0}
axm8 : Grd(clock) = {t 7→ (m 7→ h) | (

(t = tick_min ∧ m < 59)∨
(t = tick_hour ∧ m = 59 ∧ h < 23)∨
(t = tick_midnight ∧ m = 59 ∧ h = 23))}

axm9 : BAP(clock) = {t 7→ ((m 7→ h) 7→ (mp 7→ hp)) | (
(t = tick_min ∧ mp = m + 1 ∧ hp = h)∨
(t = tick_hour ∧ mp = 0 ∧ hp = h + 1)∨
(t = tick_midnight ∧ mp = 0 ∧ hp = 0))}

axm10 : Inv(clock) = {m 7→ h | m ∈ N ∧ h ∈ N ∧ m < 60 ∧ h < 24}
axm11 : Thm(clock) = {m 7→ h |

m < 59 ∨ (m = 59 ∧ h < 23) ∨ (m = 59 ∧ h = 23)}
axm12 : Variant(clock) = {m 7→ h 7→ v |

v = 24 ∗ 60 − 1 − (m + h ∗ 60)}
axm13 : Ordinary(clock) = {init, tick_midnight}
axm14 : Convergent(clock) = {tick_min, tick_hour}

THEOREMS
thm1 : check_Machine_Consistency(clock)

END

Listing 2.18: A deep instance of the clock machine (D.2)

2.10.2 Shallow modelling instantiation for the clock model
We describe the development of the clock case study using the shallow modelling
instantiation technique of Section 2.8 using the meta-theory introduced in Sec-
tion 2.4 and 2.5.

All the constituents of the Clock model are explicitly expressed using the
EvtBStruc and EvtBPO Meta-Theory constructs. The corresponding Clock Event-
B model is represented as a context (Listing 2.19) and a machine (Listing 2.20)
corresponding to the skeleton machine of Listing 2.16. The POs guaranteeing
the correctness of the instantiation are obtained by the theorems and by guard
strengthening POs generated by the refinement of the abstract machine of List-
ing 2.15.

In the same vein as shallow embedding, we use Event-B to preserve semantics.
We describe an abstract Event-B model formalising the required properties for
Event-B models correctness: a context for the static part and properties and a
generic machine for the dynamic parts i.e. transitions represented by events.

The concrete model refines the abstract generic model introduced above. The
static elements of the clock model are described by the context of Listing 2.19
and dynamic elements are described in machine of Listing 2.20.
Static constituents (Event-B context). In the context of Listing 2.19, we define a
constant pr in axm1 as a bijection relation between (Z × Z) and St to maintain
an exact correspondence between abstract and concrete states. We enumerate the
set Ev with clock events in axm2. Axioms (axm3-axm5) are used to instantiate

2.10. EB4EB DEEP AND SHALLOW MODELLING OF THE CLOCK CASE STUDY57

Event with enumerated set Ev, State with St, and Init with the event init.
Axiom axm6 is defined to instantiate progress events of the clock machine. Axiom
axm7 defined invariant Inv using comprehensive sets derived from inv1 − inv4
of Listing 2.17. Axiom axm8 instantiates theorem Thm derived from thm1 of
the clock model. Variant of the clock machine is introduced in axm9. Then two
axioms (axm10−axm11) are used to instantiate Ordinary and Convergent with
a set of ordinary and convergent events.
Context correctness. We define four theorems (thm1-thm4) to check the proof
obligation associated with the well-constructed event, well-constructed variant,
well-constructed events tags (ordinary or convergent), and machine theorem.
Once proved, these theorems guarantee that the context is well-defined and the
required properties hold.
CONTEXT ClockShallowCtx
EXTENDS ShallowGenCtx
CONSTANTS tick_min , tick_hour , tick_midnight , i n i t , pr
AXIOMS

axm1 : pr ∈ (Z × Z) ↣→ St
axm2 : partition(Ev,

{init}, {tick_midnight}, {tick_hour}, {tick_min})
axm3 : Event(mch) = Ev
axm4 : State(mch) = St
axm5 : Init(mch) = init
axm6 : Progress(mch) = {tick_midnight, tick_hour, tick_min}
axm7 : Inv(mch) = pr[{m 7→ h | m ∈ N ∧ h ∈ N ∧ m < 60 ∧ h < 24}]
axm8 : Thm(mch) = pr[{m 7→ h |

m < 59 ∨ (m = 59 ∧ h < 23) ∨ (m = 59 ∧ h = 23)}]
axm9 : Variant(mch) = {s, v, m, h · s = pr(m 7→ h)∧

v = (24 ∗ 60 − 1 − (m + h ∗ 60)) | s 7→ v}
axm10 : Ordinary(mch) = {init, tick_midnight}
axm11 : Convergent(mch) = {tick_min, tick_hour}

THEOREMS
thm1 : Event_WellCons(mch)
thm2 : Variant_WellCons(mch)
thm3 : Tag_Event_WellCons(mch)
thm4 : Mch_THM(mch)

END

Listing 2.19: Instances for static elements: clock machine (S.3)
Dynamic constituents (event-B machine). The abstract machine is refined in
Listing 2.20 to introduce the events of the Clock Event-B machine. In this model,
we declare two new variables m and h and a gluing invariant inv1 to link (glue)
concrete and abstract variables. No new event is added but each abstract event
has been refined by concrete ones by providing concrete guards and actions. The
newly introduced variables are set in the refined INITIALISATION event, and a
witness is provided to map the abstract and concrete variables. In the Do_Init
event, we introduce a new guard (grd2) to instantiate AP operator and a witness
is provided for the state s′. The action of this event modifies the concrete clock
variables m and h. The event Do_Convergent is refined by two concrete clock
events Tick_min and Tick_hour, and the event Do_Ordinary is refined by the
concrete event Tick_midnight. In the Tick_min event, grd1 is a data refinement,
it introduces the two concrete variables m and h. The two other guards grd2
and grd3 respectively refer to the concrete guard and before after predicate of the
tick_min event defined in the context of Listing 2.19. In this event, two witnesses
are provided for the abstract parameter event e and the state s′. The action of

58 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

this event uses BAP operator to update concrete variables m and h. Similarly,
the two other events Tick_hour and Tick_midnight are also obtained by refining
the abstract events Do_Convergent and Do_Ordinary by providing witnesses
and appropriate instantiations of guards and before-after predicates.
Machine correctness. Gluing invariant (inv1), witnesses and guard strengthening
are introduced to check the POs associated with machine events (initial and tagged
events). New generated POs are proved to guarantee that the machine is correct
and the required properties hold. Here, the classical proof process associated to
Event-B with its inductive reasoning is used.

MACHINE ClockShallow REFINES ShallowGenMch
SEES ClockShallowCtx
VARIABLES

m ,
h ,
InitDone

INVARIANTS
inv1 : s = pr(m 7→ h) // Gluing Invar iant

EVENTS
INITIALISATION
WITH

s′ : s′ = pr(m′ 7→ h′)
THEN

act1 : m, h, InitDone :| m′ ∈ Z ∧ h′ :∈ Z ∧ InitDone′ = FALSE
END

Do_Init REFINES Do_Init
WHERE

grd1 : InitDone = FALSE
grd2 : pr[{0 7→ 0}] = AP(mch)

WITH
s′ : s′ = pr(m′ 7→ h′)

THEN
act1 : m, h, InitDone :| pr(m′ 7→ h′) ∈ AP(mch)∧

InitDone = TRUE
END

Tick_min REFINES Do_Convergent
WHERE

grd1 : InitDone = TRUE ∧ pr(m 7→ h) ∈ Grd(mch)[{tick_min}]
grd2 : pr[{ms, hs · ms < 59 ∧ hs ∈ Z | ms 7→ hs}]

= Grd(mch)[{tick_min}]
grd3 : {ss, ssp, ms, hs, msp, hsp·

ss = pr(ms 7→ hs) ∧ ssp = pr(msp 7→ hsp)∧
msp = ms + 1 ∧ hs = hsp | ss 7→ ssp}

= BAP(mch)[{tick_min}]
WITH

e : e = tick_min , s′ : s′ = pr(m′ 7→ h′)
THEN

act1 : m, h :|
pr(m′ 7→ h′) ∈ BAP(mch)[{tick_min}][{pr(m 7→ h)}]

END

Tick_hour REFINES Do_Convergent
WHERE

grd1 : InitDone = TRUE ∧ pr(m 7→ h) ∈ Grd(mch)[{tick_hour}]
grd2 : pr[{ms, hs · hs < 23 ∧ ms = 59 | ms 7→ hs}]

= Grd(mch)[{tick_hour}]
grd3 : {ss, ssp, ms, hs, msp, hsp·

ss = pr(ms 7→ hs) ∧ ssp = pr(msp 7→ hsp)∧
msp = ms ∧ hsp = hs + 1 | ss 7→ ssp}

= BAP(mch)[{tick_hour}]
WITH

e : e = tick_hour , s′ : s′ = pr(m′ 7→ h′)

2.11. EXTENDING THE EB4EB REASONING MECHANISM (SEE FIG. 2.1.(D))59

THEN
act1 : m, h :|

pr(m′ 7→ h′) ∈ BAP(mch)[{tick_hour}][{pr(m 7→ h)}]
END

Tick_midnight REFINES Do_Ordinary
WHERE

grd1 : InitDone = TRUE∧
pr(m 7→ h) ∈ Grd(mch)[{tick_midnight}]

grd2 : pr[{ms, hs · ms = 59 ∧ hs = 23 | ms 7→ hs}]
= Grd(mch)[{tick_midnight}]

grd3 : {ss, ssp, ms, hs, msp, hsp·
ss = pr(ms 7→ hs) ∧ ssp = pr(msp 7→ hsp)∧
msp = 0 ∧ hsp = 0 | ss 7→ ssp}

= BAP(mch)[{tick_midnight}]
WITH

e : e = tick_midnight , s′ : s′ = pr(m′ 7→ h′)
THEN

act1 : m, h :|
pr(m′ 7→ h′) ∈ BAP(mch)[{tick_midnight}][{pr(m 7→ h)}]

END
END

Listing 2.20: A shallow instance of the clock machine (S.4)

2.11 Extending the EB4EB Reasoning Mechanism
(see Fig. 2.1.(D))

Extensibility is one of the benefits of the meta-theory EvtBStruc and EvtBPO of
Sections 2.4 and 2.5: every Event-B feature is explicitly formalised and can be
manipulated using operators, making it possible to define specific development
operations or new reasoning mechanisms, as new operators, in a non-intrusive
way. By non-intrusive, we mean that these development operations do not affect
the classical Event-B development as machines are manipulated as instances of
the meta-theory EvtBStruc and EvtbPO. The principle of designing such Event-B
machine analyses is described below.

2.11.1 Analysis principle: New POs
In our framework, model analysis is defined by introducing a new PO which must
fulfil two requirements 1) first this PO shall be reusable and 2) and second, it shall
be generated automatically. The first requirement is met by formalising the PO
at the meta-theory level as a predicate operator and the second one relies on the
exploitation of well-definedness (WD) and Theorems (THM) POs automatically
generated.

Event-B machine analysis pattern

The definition of a new PO is depicted by the theory pattern of Listing 2.21.
Theo4PO theory (see Fig. 2.1.(D)) imports the meta-theory EvtBPO and intro-
duces a third, optional type parameter TArgs possibly needed by the analysis. The
PO associated to the analysis is defined by a predicate operator [PO]_Definition
formalising the PO as a predicate. Then, checking the defined PO, is realised by

60 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

the check_Machine[PO] predicate operator which is well-defined when machine
m is well structured and consistent.

THEORY Theo4PO IMPORT EvtBPO
TYPE PARAMETERS ST AT E, EV ENT, TArgs

OPERATORS
[PO]_Definition <pred ica te > (m : Machine(ST AT E, EV ENT), args : TArgs)

well−definedness condition . . .
direct def init ion . . .

check_Machine_[PO] <pred ica te > (m : Machine(ST AT E, EV ENT), args : TArgs)
well−definedness condition

Machine_W ellCons(m) ∧ check_Machine_Consistency(m)
direct def init ion [PO]_Definition(m, args)

END

Listing 2.21: Analyses Theory
Once a PO is defined, its correctness is established following the same approach as
the one we set up in section 2.7 to prove the correctness of native proof obligation.
Another theory Theo4POCorrectness (see Fig 2.1.(C, D)) is introduced. It relies
on trace semantics proposed in Section 2.6. Listing 2.22 shows the skeleton of the
Theo4POCorrectness theory with a correctness theorem to be proved. It states
that [PO]_Definition implies the expression PO_Spec_On_Traces(. . .), on
the traces, of the specification of the concerned PO.

THEORY Theo4POCorrectness IMPORT EvtBTraces , Theo4PO
TYPE PARAMETERS ST AT E, EV ENT, TArgs

THEOREMS
thmCorrectnessPO :

∀m, tr · m ∈ Machine(STATE, EVENT)∧
Machine_WellCons(m) ∧ IsATrace(tr, m)∧
. . . ∧ [PO]_Definition(m,args)

⇒ P O_Spec_On_T races(. . .)

Listing 2.22: Analyses Correctness

Checking PO context pattern

CONTEXT MachinePO
EXTENDS Deep
THEOREMS

thmPO :
check_Machine_[PO](mch, args)

END

Listing 2.23: Analyses Machine

Listing 2.23 shows the Event-B context
pattern defined to check the newly defined
PO. A consistent instance machine context
Deep, associated to an Event-B machine
resulting from the instantiation of the
meta-theory EvtBStruc and EvtBPO, is
extended by the context MachinePO in-
stantiating the extended theory Theo4PO. Theorem thmPO checks that the PO
holds for the machine mch. The WD and THM associated POs are automatically
generated.

The main key points of using this framework is that 1) well-definedness condi-
tions ensure elements are used correctly, 2) meta-properties on these analyses are
done once and for all, and 3) these analyses can be performed without altering
the machine’s behaviour, in a non-intrusive way.

This approach is demonstrated below on the definition of the deadlock freeness
proof obligation.

2.11. EXTENDING THE EB4EB REASONING MECHANISM (SEE FIG. 2.1.(D))61

2.11.2 Introduction of deadlock-freeness as a new proof obli-
gation

Requirements

Deadlock-freeness states that a machine m cannot be in a state where no progress
is possible, i.e. at least one event in a machine m is always enabled. Informally,
it can be formulated as: when the invariant holds then the disjunction of all the
events guards holds.

PO Definition

The PO shall state that, for a machine m, there exists at least one event e such that
the current state satisfies its guard i.e. s ∈ Grd(m)(e). When expressed using the
operators of the meta-theory, we write Inv(m) ⊆ Grd(m)[Progress(m)]. This
operator does not require any additional argument for args.
THEORY Theo4Deadlock IMPORT EvtBPO
TYPE PARAMETERS ST AT E, EV ENT
OPERATORS

DeadlockFreeness_Definition <pred ica te > (m : Machine(ST AT E, EV ENT))
direct def init ion Inv(m) ⊆ Grd(m)[P rogress(m)]

END

Listing 2.24: DeadlockFree Theory
According to the defined pattern, we introduce, in Listing 2.24, a new theory

Theo4Deadlock, with two new operators and required well-definedness condition.

Deadlock freeness PO for Clock model

The extended context with the thmDLK theorem generating WD and THM POs
of the clock machine is shown in Listing 2.25.
CONTEXT ClockDeadlockFree
EXTENDS ClockDeep
THEOREMS

thmDLK : check_Machine_DeadLock(clock)
END

Listing 2.25: Clock DeadlockFreeness

Correctness

We specify the deadlock freeness properties using the Event-B trace semantics
described in Section2.7 in order to check the correctness of the defined PO, and
thus ensure that a developed model is deadlock-free. The deadlock freeness PO
is defined as DeadlockFreeness_Definition in Listing 2.24.
THEOREMS

ThmCorrectnessDeadlockFree :
∀m, tr · m ∈ Machine(STATE, EVENT)∧
Machine_WellCons(m) ∧ IsATrace(tr, m)∧
Mch_INV (m) ∧ DeadlockF reeness_Definition(m)

⇒ AllAre(tr, Grd(m)[P rogress(m)])

Listing 2.26: Theorem of Deadlock freeness’ correctness

62 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

Listing 2.26 presents the theorem Theo4DeadlockCorrectness to ensure the
correctness of deadlock freeness PO. It states that for all well-constructed ma-
chines (Machine_WellCons(m)) and for all traces of any machine such that
traces of machines (IsATrace(tr, m)) are valid ones, machine invariants fold
(Mch_INV (m)), and the proof obligation of deadlock freeness (DeadlockFree-
ness_Definition(m)) holds, then any state satisfies at least one guard of a
progress event at any state of the trace (AllAre).

2.12 Proof Process
The Rodin platform is well-equipped with different types of provers and SMT
solvers to support proof automation for the core Event-B. However, the current
proof process for meta models developed in the EB4EB framework lacks automa-
tion. Thus, user interaction is needed to discharge the generated proof obligations.
One of our primary goals is to experiment with shallow modelling mechanisms to
use the native induction proof process in Event-B to reduce overall proof efforts
and improve proof automation. On the other hand, we propose some proof rules
in the developed theories to define some rewriting rules to simplify the direct def-
initions and well definedness of the EB4EB framework’s defined operators. One
of these rewrite rules is based on the deep modelling template given in the List-
ing 2.13, where the destructor of the machine instantiated in the proof obligation
is replaced by the instance’s set comprehension. Then, the definitions of these
proof rules are integrated with existing or new proof tactics of Rodin. These rules
are automatically applied by the Rodin prover when tactics are invoked.

Model PO
Max

Nodes
Interac- Number

tive of Tactic
Depth Nodes application

Clock deep thm1/WD 47 137 1 2
thm1/THM 108 352 0 1

DeadlockFree thmDLK/THM 169 221 1 2

Table 2.5: Proof statistics

Table 2.5 shows the number of automatic nodes for each theorem of the deep
modelling. Without any tactic, these nodes are discharged manually for each
operator by instantiating correctly. The introduction of new proof rules in form
of tactics enables to discharge most of the nodes automatically. For example,
most of the proof obligations of the clock model are discharged automatically and
only one node requires manual interaction. Similarly, the deadlock freeness has
169 nodes without tactic and only one interactive node with tactic.

2.13 Conclusion
We presented the EB4EB framework, which allows for the explicit manipulation
of Event-B features using meta-modelling concepts. The developed framework
is a collection of theories that includes data types, operators, WD conditions,

2.13. CONCLUSION 63

theorems, and proof rules. These theories are specially designed for encoding
the core modelling constructs and proof obligation rules of Event-B. In addition,
trace semantics is provided to ensure the correctness of the introduced Event-
B language constructs. We developed two instantiation mechanisms, deep and
shallow, to use the defined theories and associated operators, definitions, WD and
proof rules. These mechanisms allow manipulation of static and dynamic concepts
of Event-B features as well as defining new proof obligations to support advanced
level reasoning once and for all. Note that these theories must be instantiated in
new development, and the generated POs must be discharged to ensure correct
instantiation. The expressiveness, effectiveness, portability, and scalability of
our developed EB4EB framework and its trace semantics were evaluated using
Lamport’s clock case study. Finally, we showed, on the case of the deadlock
freeness, that correct extensions can be introduced.

In the future, we intend to use EB4EB framework to extend the reasoning
mechanism by supporting externally defined POs to analyse domain-specific prop-
erties, such as continuous behaviour, human-machine interactions etc. In addition,
we plan to certify Rodin plugins like composition/decomposition, code genera-
tion and model transformations and so on, using EB4EB framework. Another
important goal is to use Dedukti [Boespflug et al., 2012] to import and export
the Event-B theory and models into proof assistants such as Coq, PVS and Is-
abelle/HOL.
Acknowledgements This study was undertaken as part of the EBRP (Enhancing
Event-B and RODIN: EventB-RODIN-Plus) project funded by ANR, the French
National Research Agency.

64 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

Proof automation for Event-B theories

P. Rivière, N. K. Singh, Y. Aït-Ameur, G. Dupont 2

INPT-ENSEEIHT/IRIT, University of Toulouse, France
{peter.riviere, nsingh, yamine, guillaume.dupont}@enseeiht.fr

In order to enrich its expressiveness, Butler et al. [M. J. Butler & Maamria,
2013] proposed a mathematical extension to Event-B. This extension enables the
description of algebraic definitions for data-types and operators in a reusable
component, theories. Theories may also present new theorems and proof rules
to handle the new user-defined constructs, which may be used seamlessly when
proving models.

Currently, the elements introduced by theories are not always properly handled
by automatic provers, especially SMT solvers and Atelier-B provers. If users want
to use these tools, they need to manually unfold and rewrite each operator to
classical Event-B expressions, which can be cumbersome.

In this presentation, we propose to encode new proof principles as well as to
introduce new strategies to automatically unfold theory operator, hence improving
proof automation. This solution is adopted in the development of the reflexive
EB4EB framework [Riviere et al., 2022a, 2022b].

THEORY EvtBTheo
TYPE PARAMETERS ST AT E, EV ENT
DATATYPES

Machine(ST AT E, EV ENT)
CONSTRUCTORS

Cons_machine(
Event : P(EV ENT),
State : P(ST AT E),
Init : EV ENT,
P rogress : P(EV ENT)
AP : P(ST AT E),
Grd : P(EV ENT × ST AT E),
BAP : P(EV ENT × (ST AT E × ST AT E)),
Inv : P(ST AT E)
T hm : P(ST AT E),
V ariant : P(ST AT E × Z),
Ordinary : P(EV ENT),
Convergent : P(EV ENT))

Listing 2.27: Machine Data-Type

The main objective of the EB4EB
reflexive framework [Riviere et al.,
2022a, 2022b] is to provide explicit ma-
nipulation of Event-B components as
first-class objects, making it possible
to reason on these objects and define
new Event-B analyses. For this pur-
pose, the concept of Event-B machine
is formalised as a data-type in a theory
(a meta-theory), together with a set of
operators that guarantee the correct-
ness, relative to Event-B semantics,
of instances of this data-type. The
meta-theory formalises the semantics
of Event-B, as described in the Event-B Book [J.-R. Abrial, 2010], i.e. a set of
states and guarded events defined as a relation between states. In addition, the
EB4EB framework is extended to support new analyses, possibly non-intrusive,
mechanisms associated to different properties not expressed in core Event-B [Riv-
iere et al., 2023c]. In this work, we present three properties, deadlock freeness,
invariant weakness analysis and reachability, to demonstrate extension of reason-
ing mechanism using the reflexive Event-B. Furthermore, this reflexive framework
EB4EB has been extended to formalise and operationalise the automatic genera-

2The authors thank the ANR-19-CE25-0010 EBRP:EventB-Rodin-Plus project.

2.13. CONCLUSION 65

tion of proof obligations associated to temporal properties expressed in LTL [Riv-
iere et al., 2023a].

These theories are extended with automatic rewriting rules that substitute
operators by their given definition in order to automate proof processes. These
rules are written to extract relevant information from machine objects, add them
to the hypotheses, and produce multiple simpler goals. For example, Listing rew2
shows rewriting rule for simplifying proof process related to deadlock freeness.
Similarly, several rules are encoded in the theories. These rules are defined to be
applied automatically and chained together, greatly improving proof automation.
Indeed, these rewrite rules are included in Rodin’s user-defined proof tactics,
once and for all, increasing automation when proving the theorems formalising
the newly defined POs. Note that these rules follows a pattern that can be applied
systematically.
PROOF RULES

extens ion_def :
Metavariables

m : Machine(STATE, EVENT)
Rewrite Rules
. . .

rew2 : DeadlockFreeness_Definition(m)
rhs1 : ⊤ ⇒ ∀g, i, p · Progress(m) = p ∧ Grd(m) = g ∧ Inv(m) = i ⇒ i ⊆ g[p]

Listing 2.28: Proof Rule to unfold operator definition
Proof automation using rewriting rules is demonstrated on Clock examples in

particular analysis of different POs. Table 2.6 presents the proof statistics for
each analysis. The important number of nodes (representing atomic steps) in the
proof trees is due to the extensive use of theory operators which the prover cannot
handle directly, and thus their definitions must be unfolded. The rewrite rules
introduced in a proof tactic performs automatically these unfolds and reductions,
making almost every steps fully automatic despite the introduction of the meta
level (an entry of 0 in the interactive nodes column of Table 2.6). The rightmost
column provides the number of tactic applications (iterations) during the proof.
Indeed, a single tactic application may not be sufficient to fully discharge the
proof goals.

66 CHAPTER 2. THE REFLEXIVE FRAMEWORK EB4EB

Model PO Max Depth Nodes
Interac- Number

tive of Tactic
Nodes application

DeadlockFree clock thmDeadlock (THM) 169 221 1 2

Reachability clock thmReach (WD) 112 577 0 1
thmReach (THM) 191 731 4 5

Inspect Inv clock

thmInspectInvEVTM5 111 167 0 1(THM)
thmInspectInvEVTH5 112 169 0 1(THM)

thmInspectInvEVTMH1 113 171 0 1(THM)

Strong Inv clock

thmInspectInvEVTM5 105 158 0 1(THM)
thmInspectInvEVTH5 118 171 0 1(THM)

thmInspectInvEVTHM1 128 181 0 1(THM)

Table 2.6: Proof statistic for the Clock model and its analyses

Assessment
The EB4EB framework lays the foundations to build a powerful mechanism for de-
veloping and analysing Event-B models, facilitating modularisation and a higher
level of abstraction. It also permits extensions to the Event-B method in terms of
the introduction of new kinds of proof obligations and domain-specific properties.
It is inbuilt with trace semantics for ensuring correctness. The Lamport’s clock
case study is used to demonstrate the EB4EB framework.

One of the main advantages of using this framework is the ability to customise
the Event-B method to fit specific modelling and verification needs, from novel
semantics to domain-specific properties. As machines are first-class elements, the
framework also promotes a high level of re-usability for models. Last, having
access to explicit trace-based semantics paves the way for encoding other types
of semantics, featuring different sorts of transitions (e.g., continuous) while pre-
serving the correctness of the method.

This framework has some limitations that will be addressed over time. These
limitations include a lack of support for proof automation, an incomplete alge-
braic formalisation of Event-B components within the framework, and consistency
check for the defined axioms. A set of new proof rules is developed, however they
are built on fixed patterns that can be enhanced in the future to improve proof
automation. All the defined operators are introduced in accordance with our re-
quirements. In the future, we may need to add more algebraic definitions for other
remaining Event-B components to make this framework more advanced and com-
plete. In order to check the consistency in the defined axioms, we may use other
advanced theorem prover like Coq[Bertot & Castéran, 2010], Isabelle [Nipkow et
al., 2002], or PVS [Owre et al., 1992].

Chapter 3

Advanced Reasoning on
Event-B Models

Overview
This chapter describes the core methodology for enhancing the reasoning capa-
bilities of Event-B, in order to check other advanced properties, not available in
native Event-B. This core methodology is based on extending the EB4EB frame-
work; it is used to define three analyses: deadlock-freeness, invariant weakness
analysis, and reachability. The EB4EB framework is extended via a new theory,
which includes a set of additional operators in the form of algebraic definitions,
as well as the requisite well-definedness conditions. This methodology is also de-
veloped in the Event-B modelling language with the Theory plugin and Rodin
IDE, and a set of extra proof tactics is defined to aid with proof automation. Fi-
nally, Lamport’s clock case study is employed to demonstrate the new reasoning
capabilities.

Associated paper of this chapter:

• Riviere, P., Singh, N. K., Aït Ameur, Y., & Dupont, G. [2023c]. Standalone
Event-B models analysis relying on the EB4EB meta-theory. International
Conference on Rigorous State Based Methods, ABZ 2023

67

68 CHAPTER 3. ADVANCED REASONING ON EVENT-B MODELS

Standalone Event-B models analysis relying on
the EB4EB meta-theory

P. Rivière, N. K. Singh, Y. Aït-Ameur, G. Dupont 1

INPT-ENSEEIHT/IRIT, University of Toulouse, France
{peter.riviere, nsingh, yamine, guillaume.dupont}@enseeiht.fr

Event-B is a state-based correct-by-construction system design formal method
relying on proof and refinement where system models are expressed using set the-
ory and First Order Logic (FOL). Through the generation and discharging of proof
obligations (POs), Event-B natively supports the establishment of properties such
as safety invariant, convergence and refinement. Other properties, relevant to sys-
tem verification, may be studied as well, but need to be explicitly formalised by
the designer, or expressed in another formal method. This process compromises
reusability and is error-prone, especially on larger systems. Recently, the reflexive
EB4EB framework has been proposed for formalising Event-B concepts as first-
class objects. It allows manipulating these concepts using FOL and set theory
in Event-B. In this paper, we propose a rigorous methodology for extending the
EB4EB framework, to support new system analysis mechanisms associated to
properties that are not natively present in core Event-B. Thanks to the reflexive
nature of this framework, new generic and reusable system properties and their
associated POs are expressed once and for all, and for any refinement level. For
specific systems, designers instantiate these properties and the associated POs are
automatically generated and submitted to Event-B’s provers. This methodology
is used to define three analyses: deadlock-freeness, invariant weakness analysis
and reachability, all of which are demonstrated on a case study.

Reflection, Refinement and Proof, Meta-theory, Reachability, Deadlock-Free-
ness, Invariant weakness, EB4EB framework, Event-B.

3.1 Introduction
Context. The refinement and proof state-based Event-B formal method [J.-R.
Abrial, 2010] supports complex system development using a correct-by-construc-
tion approach. It is based on set theory and First Order Logic (FOL) for describing
state transition systems. It relies on an inductive proof process to discharge a set
of proof obligations (POs) expressing various properties. Basically, core Event-
B offers built-in modelling constructs to express invariants, event convergence,
simulation, guard strengthening and event feasibility. POs associated to these
constructs are automatically generated and are discharged using automatic and
interactive provers.

In order to enrich the method’s expressiveness, Event-B has been extended
with the ability to define new algebraic data-types resulting in a richer type sys-

1The authors thank the ANR-19-CE25-0010 EBRP:EventB-Rodin-Plus project.

3.1. INTRODUCTION 69

tem [J.-R. Abrial et al., 2009; M. J. Butler & Maamria, 2013], through the intro-
duction of Theories. This extension allows the formalisation of complex systems
at a higher level of abstraction.
Motivation. Event-B theories make it possible to formalise new data types, but
they do not allow the definition of new POs that correspond to properties other
than the usual ones (i.e., invariants preservation, event convergence, etc.).

Indeed, when properties such as deadlock-freeness, event scheduling, liveness,
and so on need to be proved, they are explicitly formalised by the designer, or
expressed in another formal method. This process compromises reusability and is
error-prone, especially on large systems. The designer shall formalise each desired
property for each system under design using the native Event-B POs. This pro-
cess may be cumbersome, must be repeated for each model to be analysed (not
reusable) and results in formal developments scattered across multiple heteroge-
neous frameworks and semantics.

To incorporate such properties in Event-B once and for all and allow the
automatic generation of property-specific POs, it is necessary to embed, in the
Event-B engine, the POs associated to these new properties. Such embedding
requires the manipulation, in Event-B, of Event-B concepts as first-order objects
(i.e., through a reflexive meta-model). We have recently proposed a reflexive
EB4EB framework[Riviere et al., 2022a, 2022b] that formalises Event-B concepts
as first-class objects in Event-B. It allows manipulating these concepts in Event-
B using first-order logic and set theory. It is built on an algebraic meta-theory
formalised as an Event-B theory, where each Event-B feature can be handled
at the meta-model level, as first-class citizen. This framework also formalises
Event-B’s trace-based semantics and offers constructs for machines, states, and
events together with a set of operators for manipulating them. Consequently,
the EB4EB framework makes it possible to formally express, at any abstraction
level (i.e. in the refinement chain), new reusable and automatically generated POs
and high-level constructs, easing the development of complex systems with specific
properties or semantics. Furthermore, it opens the door to formally embed Event-
B’s semantics in other formal methods and exploit their respective strengths.
Objective of this paper. This paper extends and enriches our previously devel-
oped EB4EB framework [Riviere et al., 2022a, 2022b] to support new analysis
mechanisms (possibly non-intrusive), formalised as logic properties not available
in native Event-B nor in its base PO generator. It extends the EB4EB Event-B
meta-theory with new operators formalising such new properties. The POs asso-
ciated to each operator are automatically generated. Adding the desired property,
corresponding to a specific analysis, to an Event-B model is performed by invok-
ing an operator. Designers do not need to formalise this property explicitly in the
model.
Structure of the paper. The paper is organised as follows. Section 3.2 describes the
Event-B method and the Theory mathematical extension. Section 3.3 introduces
the EB4EB framework and its Event-B meta-theory, as well as the case study
used throughout this paper. Three externally defined Event-B analyses and POs
are introduced in Section 3.4 and applied to the case study. The positioning of

70 CHAPTER 3. ADVANCED REASONING ON EVENT-B MODELS

Context Machine Theory
CONTEXT Ctx MACHINE M THEORY Th
SETS s SEES Ctx IMPORT Th1, ...
CONSTANTS c VARIABLES x TYPE PARAMETERS E, F , ...
AXIOMS A INVARIANTS I(x) DATATYPES
THEOREMS Tctx THEOREMS Tmch(x) Type1(E, ...)
END VARIANT V (x) constructors

EVENTS cstr1(p1: T1, ...)
EVENT evt OPERATORS

ANY α Op1 <nature> (p1: T1, ...)
WHERE Gi(x, α) well−definedness WD(p1, ...)
THEN direct definition D1

x :| BAP(α, x, x′) AXIOMATIC DEFINITIONS
END TYPES A1, ...
... OPERATORS

END AOp2 <nature> (p1: T1, ...): Tr
well−definedness WD(p1, ...)

AXIOMS A1, ...
THEOREMS T1, ...
PROOF RULES R1, ...
END

(a) (b) (c)

Table 3.1: Global structure of Event-B Contexts, Machines and Theories

(1) Ctx Theorems (ThmCtx) A(s, c) ⇒ Tctx (For contexts)
(2) Mch Theorems (ThmMch) A(s, c) ∧ I(x) ⇒ Tmch(x) (For machines)
(3) Initialisation (Init) A(s, c) ∧ BAP(x′)⇒ I(x′)
(4) Invariant preservation (Inv) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ I(x′)
(5) Event feasibility (Fis) A(s, c) ∧ I(x) ∧ G(x, α)⇒ ∃x′ · BAP(x, α, x′)
(6) Variant progress (Var) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ V (x′) < V (x)

Table 3.2: Relevant POs for Event-B contexts and machines

this work with respect to the state of the art and its advantages are discussed in
Section 3.5. Finally, Section 3.6 concludes the paper and discusses future work.

3.2 Event-B
Event-B [J.-R. Abrial, 2010] is based on set theory and FOL. It relies on an
expressive state-based modelling language where a set of events models state
changes.

3.2.1 Contexts and machines (Tables 3.1.a and 3.1.b)
A Context (Table 3.1.a) describes the static part of a model. It introduces carrier
sets s and constants c, and their properties using axioms A and theorems Tctx . A
Machine (Table 3.1.b) describes the model behaviour as a transition system. A
set of events evt, possibly guarded by G and/or parameterized by α, is used to
modify a set of state variables x using Before-After Predicates (BAP) to record
state changes. A machine may define invariants I(x), theorems Tmch(x) and vari-
ants V (x) to capture particular properties (e.g., safety and convergence). Model
consistency is ensured via a set of generated POs, given in Table 3.2.
Refinements. Refinement decomposes a machine into a less abstract one with
more design decisions (refined states and events) moving from an abstract level to

3.2. EVENT-B 71

a less abstract one (simulation relationship). Gluing invariants relating abstract
and concrete variables ensure property preservation.
Core Well-definedness (WD). In addition to machine-related POs, each operator
is associated to a WD, that must be established for expressions to be meaningful.
Once proved, these WD conditions are used as hypotheses to prove further POs.

3.2.2 Event-B extensions with Theories
To handle more complex and abstract concepts beyond set theory and FOL,
an Event-B extension for externally defined mathematical objects has been pro-
posed [J.-R. Abrial et al., 2009; M. J. Butler & Maamria, 2013]. It introduces
user data types with new types, operators, theorems and associated rewrite and
inference rules, all bundled in so-called theories. Close to proof assistants like
Coq [Bertot & Castéran, 2010], Isabelle/HOL [Nipkow et al., 2002] or PVS [Owre
et al., 1992], this capability is convenient to model, as data types, concepts un-
available in core Event-B.
Theory description (See Table 3.1.c). Theories define new data types, operators,
and theorems. Data types (DATATYPES clause) define constructors to build inhabi-
tants of the defined type. It may define various operators further used in Event-B
expressions as FOL predicates or expressions producing actual values (<nature>
tag). Operators may be used in theories, contexts and machines.

Operators may be defined explicitly in the DIRECT DEFINITION clause (con-
structive definition), or axiomatically in the AXIOMATIC DEFINITIONS clause (a
set of axioms). Last, a theory defines a set of axioms, completing the definitions,
as well as theorems and proof rules. Theorems and proof rules are proved from
the definitions and axioms used by the proof system. Many theories have been
defined for sequences, lists, groups, reals, differential equations, etc.
Well-definedness (WD) in Theories. An important feature provided by Event-B
theories is the possibility to define Well-Definedness (WD) conditions (close to
Type-Correctness Condition (TCC) conditions in PVS [Owre et al., 1992]). TCC
must be discharged before the corresponding theory types correctly. Similarly,
in Event-B theories, each defined operator (thus partially defined) is associated
with a user-defined condition ensuring its well-formedness. Note that, when an
operator is applied, it automatically invokes its WD condition and generates a PO
requiring to establish that this condition holds, i.e., the operator is used correctly
and that its parameters belong to its definition domain.
Event-B proof system and its IDE Rodin. Rodin is an open source IDE for mod-
elling in Event-B. It offers resources for model editing, automatic PO generation,
project management, refinement and proof, model checking, model animation and
code generation. The Event-B theories extension is available as a plug-in. The-
ories are tightly integrated in the proof process. Depending on their definition
(direct or axiomatic), operator definitions are expanded either using their direct
definition (if available) or by enriching the set of axioms (hypotheses in proof
sequents) using their axiomatic definition. Theorems may be imported as hy-
potheses and used in proofs like other theorems. Many provers for first-order

72 CHAPTER 3. ADVANCED REASONING ON EVENT-B MODELS

logic as well as SMT solvers are plugged to Rodin for helping the proof process.

3.3 The EB4EB framework
The main objective of the EB4EB reflexive framework [Riviere et al., 2022a,
2022b] is to provide explicit manipulation of Event-B components as first-class
objects, making it possible to reason on these objects and define new Event-B
analyses. For this purpose, the concept of Event-B machine is formalised as a data-
type in a theory (a meta-theory), together with a set of operators that guarantee
the correctness, relative to Event-B semantics, of instances of this data-type. The
meta-theory formalises the semantics of Event-B, as described in the Event-B
Book [J.-R. Abrial, 2010], i.e. a set of states and guarded events defined as a
relation between states. In addition, the meta-theory is equipped with relevant
proved (once and for all) theorems useful for discharging the generated POs.
These additional theorems are available to help users reduce proof efforts and aid
in system development and analysis.

Event-B machines (models) are defined using the meta-theory mentioned a-
bove, by instantiating the machine data-type and providing appropriate values
for each of its fields: states, events, guards, before-after predicates, invariants,
variant and so on. At instantiation, operators of the meta-theory are used in
theorems; the related POs ensure the defined machine’s consistency, including
invariant preservation, event feasibility, variant progress, etc.

As previously stated, the goal of this paper is to demonstrate that the meta-
theory can be extended with new operators for manipulating machine elements of
the meta-theory, in order to define so-called analyses, expressed with new POs.
Based on the work presented in [Aït Ameur et al., 2022], such analyses allow the
system designer to check new properties, obtain feedback about their behaviour,
enrich model design phases and check new properties that are not available in
core Event-B.

This section summarises the main features of the Event-B meta-theory (List-
ings 3.1, 3.2 and 3.3), and presents the case study used to illustrate our approach
throughout this paper.

3.3.1 The Event-B Meta-theory

Machine structure. Listing 3.1 shows the Machine data-type, defined using type
parameters for abstracting event labels (EVENTS) and states (STATES). It is built
using the Cons_machine single constructor with a parameter for each machine
component, and defines a state-transition system with state State (constrained
by invariants Inv and theorems Thm) and a set of, possibly parameterised, events
(Event), with an initialisation event Init and progress events Progress, split into
ordinary Ordinary and convergent Convergent events. State changes are recorded
using an after-predicate (AP) for initialisation and a set of before-after predicates
(BAP) associated to progress events, possibly guarded (Grd). Finally, integer
variants for event convergence are introduced as well (Variant).

3.3. THE EB4EB FRAMEWORK 73

THEORY EvtBTheo
TYPE PARAMETERS ST AT E, EV ENT
DATATYPES

Machine(ST AT E, EV ENT)
CONSTRUCTORS

Cons_machine(
Event : P(EV ENT),
State : P(ST AT E),
Init : EV ENT,
P rogress : P(EV ENT)
AP : P(ST AT E),
Grd : P(EV ENT × ST AT E),
BAP : P(EV ENT × (ST AT E × ST AT E)),
Inv : P(ST AT E)
T hm : P(ST AT E),
V ariant : P(ST AT E × Z),
Ordinary : P(EV ENT),
Convergent : P(EV ENT))

Listing 3.1: Machine Data-type
Well-Constructed machines. To ensure machines are structurally well-defined, the
meta-theory introduces several predicate operators (Listing 3.2): BAP_WellCons
to check that each progress event is associated to a BAP, Grd_WellCons to check
that progress events are possibly guarded, and Event_WellCons to check that
machine events are composed of an initialisation (Init) and progress (Progress)
events. The Machine_WellCons predicate operator, defined as a conjunction of
the previous operators (and others), ensures that a machine is well-structured
(static semantics).

BAP_WellCons <pred ica te > (m : Machine(ST AT E, EV ENT))
direct def init ion dom(BAP (m)) = P rogress(m)

Grd_WellCons <pred ica te > (m : Machine(ST AT E, EV ENT))
direct def init ion dom(Grd(m)) = P rogress(m)

Event_WellCons <pred ica te > (m : Machine(ST AT E, EV ENT))
direct def init ion partition(Event(m), {Init(m)}, P rogress(m))
. . .

Machine_WellCons <pred ica te > (m : Machine(ST AT E, EV ENT))
direct def init ion

BAP _W ellCons(m) ∧ Grd_W ellCons(m) ∧ Event_W ellCons(m) ∧ . . .

Listing 3.2: Operators to check well-defined data-type (static semantics)
Machine POs (behavioural semantics). The Machine data-type offers operators to
access and handle its components. In addition to structural consistency, machine
correctness is also encoded, through its behavioural semantics and correctness
criteria. Formally, this is done by providing an operator for each PO of Event-
B (see Table 3.2), as shown in Listing 3.3. Such operators are usually defined
inductively on the structure of a machine (for initialisation and progress events).

Mch_THM <pred ica te > . . .
Mch_INV_Init <pred ica te > (m : Machine(ST AT E, EV ENT))

direct def init ion AP (m) ⊆ Inv(m)
Mch_INV_One_Ev <pred ica te > (m : Machine(ST AT E, EV ENT), e : EV ENT)

well−definedness e ∈ P rogress(m)
direct def init ion BAP (m)[{e}][Inv(m) ∩ Grd(m)[{e}]] ⊆ Inv(m)

Mch_INV <pred ica te > (m : Machine(ST AT E, EV ENT))
direct def init ion

Mch_INV _Init(m) ∧ (∀e · e ∈ P rogress(m) ⇒ Mch_INV _One_Ev(m, e))
Mch_FIS_Init <pred ica te > (m : Machine(ST AT E, EV ENT))

direct def init ion Inv(m) ∩ AP (m) ̸= ∅
Mch_FIS_One_Ev <pred ica te > (m : Machine(ST AT E, EV ENT), e : Event)

74 CHAPTER 3. ADVANCED REASONING ON EVENT-B MODELS

well−definedness e ∈ P rogress(m)
direct def init ion Inv(m) ∩ Grd(m)[{e}] ⊆ dom(BAP (m)[{e}])

Mch_FIS <pred ica te > (m : Machine(ST AT E, EV ENT))
direct def init ion

Mch_F IS_Init(m) ∧ (∀e · e ∈ P rogress(m) ⇒ Mch_F IS_One_Ev(m, e))
Mch_VARIANT_One_Ev <pred ica te > . . .
Mch_VARIANT <pred ica te > . . .
Mch_NAT_One_Ev <pred ica te > . . .
Mch_NAT <pred ica te > . . .

Listing 3.3: Well defined Data-type operators (behavioural semantics)
The details of the invariant preservation (INV - 3 and 4 in Table 3.2) and

feasibility (FIS - 5 in Table 3.2) POs are shown in Listing 3.3. Three opera-
tors are associated to the definition of these POs: Mch_INV_Init, stating that
an invariant holds at initialisation (i.e., states after the AP are included in the
invariant states, AP (m) ⊆ Inv(m)); Mch_INV_One_Ev, stating that any event e
characterised by its guard and BAP preserves the invariant (e.g. the image of in-
variant states through BAP is included in invariant states, BAP (m)[{e}][Inv(m)∩
Grd(m)[{e}]] ⊆ Inv(m)); and Mch_INV, the conjunction of these two operators,
where Mch_INV_One_Ev must hold for all progress events. Similarly, three oper-
ators Mch_FIS_Init, Mch_FIS_One_Ev and Mch_FIS_Init define the event feasi-
bility PO (existence of a next state after AP or BAP of progress events). The
other POs in Table 3.2 are defined in the same manner.

The POs of an Event-B machine are gathered in the conjunctive predicate
check_Machine_Consistency, with Machine_WellCons as well-definedness (see
Listing 3.4). It formalises machine’s behavioural semantics and general correct-
ness.

check_Machine_Consistency <pred ica te > (m : Machine(ST AT E, EV ENT))
well−definedness Machine_WellCons (m)
direct def init ion Mch_T HM(m)∧

Mch_INV (m) ∧ Mch_F IS(m)∧
Mch_V ARIANT (m) ∧ Mch_NAT (m)

Listing 3.4: Operator encoding Event-B machine consistency
When this operator is used in a theorem clause, two POs, corresponding to its

definition and WD condition, are automatically generated. Proving the theorem
ensures the consistency of the machine, defined as an instance of the meta-theory.
Instantiation of the meta-theory. Specific Event-B machines are defined by in-
stantiating the meta-theory. The instantiation process presented in this paper
is so-called deep, as it relies solely on set theory and FOL with a set of axioms
and theorems. It consists in defining an Event-B context with witnesses (sets) for
type parameters STATE and EVENT defined as sets using Cons_machine. Opera-
tors may be used in theorems, triggering the generation of POs ensuring machine
consistency. Another instantiation process qualified as shallow has also been de-
fined [Riviere et al., 2022a, 2022b]. It relies on the definition of an Event-B
machine and its refinement. It is not reviewed here as it is not used in this paper.

3.3.2 The Clock Example
This section presents a case study adapted from Lamport’s clock case study [Lam-
port, 2002a]. It is used to demonstrate the application of the proposed frame-

3.3. THE EB4EB FRAMEWORK 75

MACHINE Clock
VARIABLES m , h
INVARIANTS

inv1 : m ∈ N ∧ h ∈ N
inv2 : m < 60 ∧ h < 24

EVENTS
INITIALISATION
THEN act1 : m, h :| m′ = 0 ∧ h′ = 0
END
tick_min
WHERE grd1 : m < 59
THEN act1 : m :| m′ = m + 1
END
tick_hour
WHERE grd1 : m = 59 ∧ h < 23
THEN act1 :

m, h :| m′ = 0 ∧ h′ = h + 1
END
tick_midnight
WHERE grd1 : m = 59 ∧ h = 23
THEN act1 : m, h :| m′ = 0 ∧ h′ = 0
END

END

Listing 3.5: Clock as Event-B machine

CONTEXT ClockMachineInstance
SETS Ev , Z × Z
CONSTANTS clock , tick_min , tick_hour ,

tick_midnight , init
AXIOMS

axm1 : clock ∈ Machine(Z × Z, Ev)
axm2 : partition(Ev, {init}, {tick_midnight},

{tick_hour}, {tick_min})
axm3 : State(clock) = Z × Z
axm4 : Event(clock) = Ev
axm5 : Init(clock) = init
axm6 : Inv(clock) = {m 7→ h | m ∈ N ∧ h ∈ N

∧m < 60 ∧ h < 24}
axm7 : AP(clock) = {m 7→ h | m = 0 ∧ h = 0}
axm8 : Grd(clock) = {e 7→ (m 7→ h) |

(e = tick_min ∧ m < 59)∨
(e = tick_hour ∧ m = 59 ∧ h < 23)∨
(e = tick_midnight ∧ m = 59 ∧ h = 23)}

axm9 : BAP(clock) =
{e 7→ ((m 7→ h) 7→ (m′ 7→ h′)) |
(e = tick_min ∧ m′ = m + 1 ∧ h′ = h)∨
(e = tick_hour ∧ m′ = 0 ∧ h′ = h + 1)∨
(e = tick_midnight ∧ m′ = 0 ∧ h′ = 0)}

. . .
THEOREMS

thm1 : check_Machine_Consistency(clock)
END

Listing 3.6: Clock as meta-theory instance

work, including meta-theory instantiation and definition of new POs. Note that
this simple case study is chosen to demonstrate the usability of the new extended
mechanism.

The functional requirements of the clock state that minutes and hours progress
by 1 and hours are represented in a 24-hour format. The clock must converge to
midnight, and never stop. Listing 3.5 gives a model of the clock as an Event-B
machine. In this model, variables m and h represent minutes and hours, respec-
tively. A safety property (inv2) ensures that minutes m (resp. hours h) are always
less than 60 (resp. 24). The clock’s behaviour is expressed through three events:
tick_min (progressing minutes by 1), tick_hours (progressing hours by 1) and
tick_midnight (resetting the clock to midnight).

While the previous example does not show parameterised events, however, our
approach handles such events. The same approach has been successfully applied
to complex case studies in [Mendil et al., 2022] for critical interactive systems.

3.3.3 The clock machine as an instance of EvtBTheo theory
Listing 3.6 shows the Event-B context ClockMachineInstance instantiating the
meta-theory EvtBTheo. First, axm1 defines the clock machine with the sets Ev
(set of events enumerated in axm2) and Z × Z (for m and h). axm3 − axm9
define associated machine components. Note that invariant is defined (axm6) on
the state as a set of pairs m 7→ h, AP is defined on the initialisation event axm7
and guards and BAPs are associated with an event and a state and defined (axm8
and axm9) on a set of triples e 7→ m 7→ h. In the case of BAPs, it is necessary to

76 CHAPTER 3. ADVANCED REASONING ON EVENT-B MODELS

record before (m 7→ h) and after (m′ 7→ h′) states (axm9).
Last, theorem thm1 uses check_Machine_Consistency (see Listing 3.4). It is

associated with a well-definedness (WD) PO, Machine_WellCons(clock), and a
theorem (THM) PO for machine correctness.

3.4 POs for new properties: Extending the Meta-
Theory

The meta-theory EvtBTheo presented in Section 3.3.1 is highly extensible: every
Event-B feature is explicitly formalised, and can be manipulated using operators,
making it possible to define specific development operations or new reasoning
mechanisms as new operators. Doing so is non-intrusive (self-contained), in the
sense that no modification is needed to the classical development of Event-B
models, as machines are handled as instances of the meta-theory.

The main design principle for such Event-B machine analyses, including the-
ories with required operators, definitions, and WD conditions, is given below.

3.4.1 Analysis principle: New POs
In the proposed extension to the EB4EB framework, a model analysis is defined
as a PO and must meet two requirements: 1) it must be reusable, and 2) it must
be generated automatically. The first requirement is met by formalising the PO
at the meta-theory level, while the second one is met by leveraging automatically
generated well-definedness (WD) and theorem (THM) POs.
Event-B machine analysis pattern. Listing 3.7 depicts a generic pattern for defin-
ing new POs for Event-B machine analysis. Theo4PO theory imports the meta-
theory EvtBTheo and introduces a third, optional type parameter TArgs possibly
needed by the analysis, depending on the nature of new POs (e.g. guards, BAP,
etc.). The PO associated to the analysis is formalised as a predicate operator
[PO]_Definition. Then, checking the PO is done using the check_Machine[PO]
predicate, which is well-defined when machine m is consistent.
THEORY Theo4PO IMPORT EvtBTheo
TYPE PARAMETERS ST AT E, EV ENT, TArgs

OPERATORS
[PO]_Definition <pred ica te > (m : Machine(ST AT E, EV ENT), args : TArgs)

well−definedness condition . . .
direct def init ion . . .

check_Machine_[PO] <pred ica te > (m : Machine(ST AT E, EV ENT), args : TArgs)
well−definedness condition Machine_W ellCons(m)
direct def init ion [PO]_Definition(m, args)

END

Listing 3.7: Analyses Theory Pattern
CONTEXT MachinePO
EXTENDS MachineInstance
THEOREMS

thmPO : check_Machine_[PO](m, args)
END

3.4. POS FOR NEW PROPERTIES: EXTENDING THE META-THEORY 77

Listing 3.8: Analyses Machine
Checking PO context pattern. Listing 3.8 shows an Event-B context pattern for
checking the newly defined PO. A consistent instance machine context Machine-
Instance, that defines the Event-B machine m by instantiation of the meta-theory
EvtBTheo, is extended by context MachinePO instantiating the extended theory
Theo4PO. Theorem thmPO performs the check of the defined PO for machine
m. The associated WD and THM POs are automatically generated.

Following this idea, this section introduces new reasoning mechanisms, not
natively present in Event-B, based on the EB4EB framework and the EvtBTheo
meta-theory, in the form of analyses that handle Event-B components. Three
analyses are detailed: deadlock-freeness, invariant weakness analysis (tracking
model holes) and reachability. The key points of using this framework are that:
1) WD conditions ensure elements are used correctly, 2) meta-properties on these
analyses are established once and for all, and 3) these analyses can be performed
without altering the machine’s behaviour, in a non-intrusive way.

Note that only the definition of the [PO]_Definition operator is given, as
check_Machine_[PO] is derived by replacing [PO] with the proposed PO name.

3.4.2 Deadlock-freeness

Requirements. Deadlock-freeness states that a machine m can always progress;
i.e., there is always at least one enabled event in machine m, or more formally
when the invariant holds then the disjunction of the guards holds.
PO Definition. The PO states that, for a machine m, there exists a progress event
e such that any correct state s ∈ Inv(m) verifies the guard of e (s ∈ Grd(m)[{e}]).
When expressed using the meta-theory operators, it is formalised as Inv(m) ⊆
Grd(m)[Progress(m)]. This operator does not require any additional argument
for args.

THEORY Theo4Deadlock IMPORT EvtBTheo
TYPE PARAMETERS ST AT E, EV ENT
OPERATORS

DeadlockFreeness_Definition <pred ica te > (m : Machine(ST AT E, EV ENT))
direct def init ion Inv(m) ⊆ Grd(m)[P rogress(m)]

. . .
END

Listing 3.9: DeadlockFree Theory

CONTEXT ClockDeadlockFree
EXTENDS ClockMachineInstance
THEOREMS

thmDeadlock : check_Machine_DeadLock(clock)
END

Listing 3.10: Clock DeadlockFreeness

Following the defined pat-
tern, Listing 3.9 introduces a
new theory Theo4Deadlock with
two new operators together with
the required WD condition.
Deadlock-freeness PO for Clock model. Listing 3.10 shows the context with
thmDeadlock theorem generating WD and THM POs of the clock machine.

78 CHAPTER 3. ADVANCED REASONING ON EVENT-B MODELS

3.4.3 Invariant Weakness as a Non-intrusive Analysis

Requirements. A deployed system may present a number of vulnerabilities, that
tick_M5
WHERE grd1 :m < 55
THEN act1 : m :| m′ = m + 5
END

Listing 3.11: An Bad-
event: progress by 5 min.

can be exploited by opponents (or make it weak to the
environment) to modify its behaviour. These vulner-
abilities usually come from under-specification, i.e.,
“holes” in the system’s requirements or in its formal
specification. To address this issue, a non-intrusive
analysis of the model’s specification is implemented,
that does not alter its behaviour. It consists in investigating the robustness of
the model’s invariants with regard to bad-events, that model potential attacks
(under-specification) against the system (model holes). If the system’s invariant
is preserved by the bad-event, it implies that the invariant is not strong enough
to prevent the attack. For instance, the bad event of Listing 3.11 can be added
to the clock machine without falsifying its original invariant. Similarly, other
bad-events may be introduced: the event tick_H5 guarded by h < 19 with action
m, h :| m′ = 0 ∧ h′ = h + 5 and the event tick_HM1 guarded by h < 23 ∧ m < 59
with action m, h :| m′ = m + 1 ∧ h′ = h + 1. Note that a class of bad events could
be added using two parameters hn ̸= 1 and mn ̸= 1 and a corresponding action
of the form m, h :| m′ = m + mn ∧ h′ = h + hn.
Bad-events PO definition. This PO is formalised with the AllowedMachineHole-
Sub_Definition operator (Listing 3.12), with the bad-events as parameters.
THEORY EvtBTheorySubs IMPORT THEORY EvtBTheory
TYPE PARAMETERS ST AT E, EV ENT
OPERATORS

AllowedMachineHoleSub_Definition <pred ica te > (m : Machine(ST AT E, EV ENT),
nGrd : P(ST AT E), nBAP : P(ST AT E × ST AT E))

direct def init ion nBAP[Inv (m)∩nGrd] ⊆Inv (m)
. . .

END

Listing 3.12: Weak specification analysis theory
Each bad-event is characterised by its guard nGrd and its BAP nBAP . This
operator defined as nBAP [Inv(m) ∩ nGrd] ⊆ Inv(m) states that the bad-event
preserves the invariant. So, if the given PO is proved, the bad-event represents a
successful attack, and the defined invariant is not strong enough.
Bad events PO for clock model. The analysis to Check the clock specification for-
bids minutes from progressing by 5 rather than 1, is handled by theorem thmIn-
spectInvEVTM5 of Listing 3.13, using the AllowedMachineHoleSub_Definition
operator, where the bad-event is enabled when minutes are below 55 and thus pro-
gresses by 5. This corresponds to adding event tick_M5 of Listing 3.11. Similar
theorems are written for the tick_H5 and tick_HM1 bad-events.
CONTEXT ClockInspect Inv EXTENDS ClockMachineInstance
THEOREMS

thmInspectInvEVTM5 : check_Machine_AllowedMachineHoleSub(clock,
{m 7→ h | h ∈ Z ∧ m < 55} ,
{(m 7→ h) 7→ (m′ 7→ h′) | m′ = m + 5 ∧ h′ = h ∧ h ∈ Z})

thmInspectInvEVTH5 : check_Machine_AllowedMachineHoleSub · · ·
thmInspectInvEVTHM1 : check_Machine_AllowedMachineHoleSub · · ·

END

3.4. POS FOR NEW PROPERTIES: EXTENDING THE META-THEORY 79

Listing 3.13: Performing analysis on clock model
Note that the thmInspectInvEVTM5, thmInspectInvEVTH5 and thmInspect-

InvEVTHM1 theorems are proven for the clock model of the ClockMachine-
Instance corresponding to the Event-B machine of Listing 3.5. As a conclusion,
the original model is insufficiently strong and does not provide sufficient con-
straints on the safe evolution of variables.
A strengthened machine. The designer strengthens the original machine, through
instantiation, resulting in the new model shown in Listing 3.14. New state vari-
ables mb and hb are introduced to explicitly record the value of minutes and hours
before a tick event occurs. In addition, the events are required to explicitly link
these variables as m = mb + 1 and h = hb + 1.
CONTEXT ClockInvStrong
SETS Ev ,Z × Z × Z × Z
CONSTANTS c lock , tick_min , tick_hour , tick_midnight , i n i t
AXIOMS

axm1 : clock ∈ Machine(Z × Z × Z × Z, Ev) . . .
axm2 : . . .
axm3 : State(clock) = Z × Z × Z × Z
axm4−5 : . . .
axm6 : Inv(clock) = {m 7→ h 7→ mb 7→ hb | m ∈ N ∧ h ∈ N ∧ m < 60 ∧ h < 24∧

(m = mb + 1 ∧ hb = h) ∨ (m = 0 ∧ (h = hb + 1 ∨ h = 0))}
axm7 : AP(clock) = {m 7→ h 7→ mb 7→ hb | m = 0 ∧ h = 0 ∧ mb ∈ Z ∧ hb ∈ Z}
axm8 : BAP(clock) = {t 7→ ((m 7→ h 7→ mb 7→ hb) 7→ (m′ 7→ h′ 7→ mb′ 7→ hb′)) |

(t = tick_min ∧ m′ = m + 1 ∧ h′ = h ∧ hb′ = h ∧ mb′ = m ∧ mb ∈ Z ∧ hb ∈ Z)∨
(t = tick_hour ∧ m′ = 0 ∧ h′ = h + 1 ∧ hb′ = h ∧ mb′ = m ∧ mb ∈ Z ∧ hb ∈ Z)∨
(t = tick_midnight ∧ m′ = 0 ∧ h′ = 0 ∧ hb′ = h ∧ mb′ = m ∧ mb ∈ Z ∧ hb ∈ Z)}

. . .
THEOREMS

thm1 : check_Machine_Consistency(clock)
thmInspectInvEVTM5 : ¬check_Machine_AllowedMachineHoleSub(clock,

{m 7→ h 7→ mb 7→ hb | mb ∈ Z ∧ hb ∈ Z ∧ h ∈ Z ∧ m < 55} ,
{(m 7→ h 7→ mb 7→ hb) 7→ (m′ 7→ h′ 7→ mb′ 7→ hb′) |

m′ = m + 5 ∧ h′ = h ∧ hb′ = h ∧ mb′ = m ∧ mb ∈ Z ∧ hb ∈ Z})
thmInspectInvEVTH5 : ¬check_Machine_AllowedMachineHoleSub . . .
thmInspectInvEVTMH1 : ¬check_Machine_AllowedMachineHoleSub . . .

END

Listing 3.14: Clock resulting after the strengthening of the invariant
To guarantee that the identified bad-events are no longer triggerable, the

predicates are negated in thmInspectInvEVTM5, thmInspectInvEVTH5 and thm-
InspectInvEVTHM1. These theorems are proven to hold, demonstrating that the
provided specification prohibits the presented inconsistent behaviour.

3.4.4 Reachability

Requirements. The reachability property is not natively available in Event-B.
Such a property can be expressed using the EB4EB framework. Reachability
property asserts that particular states can be attained under given constraints.
The definition used below asserts that there exists a trace where a given state is
reachable. This definition differs from the eventually operator of LTL. Note that
a formalisation of the eventually operator of LTL is available in [Mendil et al.,
2022; Riviere et al., 2023a].

80 CHAPTER 3. ADVANCED REASONING ON EVENT-B MODELS

THEORY Theo4Reachabi l i ty IMPORT THEORY EvtBTheory
TYPE PARAMETERS ST AT E, EV ENT
OPERATORS
// At l e a s t one " t r g S e t " event i s t r i g g e r a b l e a f t e r " src " event

At_Least_One_Triggerable_Evt <pred ica te > (m : Machine(STATE, EVENT) ,
src : EVENT , trgSet : P(EVENT)) . . .

// A l l " SubSetEvt " events decrease the " var iant "
VariantDecrease <pred ica te > (m : Machine(STATE, EVENT) ,variant : P(STATE × Z),

SubSetEvt : P(EVENT)) . . .
// For a l l " SubSetEvt " events , the " var iant " i s a Natural number

NaturalVariant <pred ica te > (m : Machine(STATE, EVENT) ,variant : P(STATE × Z) ,
SubSetEvt : P(EVENT)) . . .

// When " var iant " i s not nul l , there e x i s t s a " SubSetEvt " t r i g g e r a b l e
event

One_Next_Evt_Is_Triggerable <pred ica te > (m : Machine(STATE, EVENT) ,
variant : P(STATE × Z) ,SubSetEvt : P(EVENT)) . . .

// " t r g " event i s reachab le from " src " event through at l e a s t one "
SubSetEvt " event

Evt_Is_Reachable_From_Definition <pred ica te > (m : Machine(STATE, EVENT) ,
src : EVENT , trg : EVENT ,SubSetEvt : P(EVENT) ,variant : P(STATE × Z))

well−definedness Machine_WellCons(m) , trg ∈ Progress(m) ,src ∈ Event(m) ,
Inv(m) ◁ variant ∈ Inv(m) → Z ,Mch_INV (m),SubSetEvt ⊆ Progress(m)

direct def init ion
NaturalVariant(m, variant, SubSetEvt)∧ // Preserve the " var iant " natura l
VariantDecrease(m, variant, SubSetEvt)∧ // " SubSetEvt " decrease the "

var iant "
Next_Conv_Evt_Is_Triggerable(m, variant, SubSetEvt)∧ // the " var iant " are

always p o s s i b l e to decrease
At_Least_One_Triggerable_Evt(m, src, SubSetEvt)∧ // " src " can t r i g g e r a "

SubSetEvt "
variant−1[Z \ N] ∩ Inv(m) ⊆ Grd(m)[{trg}] // " var iant "=0 can t r i g g e r " t r g "

. . .
END

Listing 3.15: Thoery of reachable property in Event-B
A trace σ of a machine m is a sequence of states s0, s1, . . . where s0 is in

the AP of the initialisation event and, for two consecutive state si, si+1 in the
trace, si must satisfy the guards of at least one event and (si, si+1) must satisfy
the before-after predicate of this event. For k ≥ 0, σ(k) denotes the k-th state
sk of the trace. Then, sj is reachable from si (denoted siRsj) if and only if
∃σ, k, n · n ≥ 0 ∧ σ(n) = si ∧ k > 0 ∧ σ(n + k) = sj .
Reachability PO definition. The reachability property siRsj is encoded using the
Event-B meta-theory (Listing 3.15). The Theo4Reachability theory begins by
defining the At_Least_One_Triggerable_Evt predicate, which states that, for
any state reached after the source event, the guard of at least one target event
is enabled. Then, the predicates VariantDecrease and NaturalVariant are de-
fined. The former is satisfied only if, for machine m, each event of the SubSetEvt
set decreases the given variant; the latter ensures that the guards of the SubSet-
Evt events imply that the variant is a natural number. The One_Next_Evt_-
Is_Triggerable predicate evaluates to true in machine m if the given variant is
positive and at least one event in SubSetEvt is activated.

These four operators formalise the induction-based definition of reachability.
They are used to define the main predicate, Evt_Is_Reachable_From_Definiton,
stating that, in machine m, target event trg can be triggered after a (finite)
sequence of SubSetEvt event triggers for the given variant, beginning with src
event. Formally, triggering src activates at least one event in SubSetEvt and each

3.4. POS FOR NEW PROPERTIES: EXTENDING THE META-THEORY 81

event of SubSetEvt decreases the variant and enables at least one other event of
SubSetEvt, and then trg is enabled when the variant reaches 0.
CONTEXT C l o c k R e a c h a b i l i t y EXTENDS ClockMachineInstance
THEOREMS

thmReach : check_Machine_Evt_Is_Reachable_F rom(clock, init, tick_midnight,
{tick_min, tick_hour}, {m 7→ h 7→ v | v = 24 ∗ 60 − 2 − (m + h ∗ 24)})

END

Listing 3.16: Clock machine with a reachable property checked
Clock machine reachability PO for clock model. In the clock model of Listing 3.6,
it is worth checking that midnight is reachable from the initial event. This analysis
is performed with theorem thmReach (see Listing 3.16), that checks whether the
event tick_midnight is reachable from the event init, via events tick_min and
tick_hours. The proposed variant is then v = 24 ∗ 60 − 2 − (m + h ∗ 24). Proving
the generated POs for this theorem establishes reachability.

3.4.5 Proof assessment
The defined operators of the proposed framework have been designed in the spirit
of Event-B, i.e., 1) complex analyses are decomposed into simple ones (case of
reachability in Section 3.4.4) and 2) expressed in a single semantic setting: the
one of Event-B (reflexive modelling) with set theory. This formalisation is in-
fluenced by two characteristics of the proof process, that 1) the Rodin prover is
efficient when handling set expressions, and 2) theories may define customised
proved rewrite rules, that may be summoned manually or automatically in the
proof. Automatic rewriting rules that substitute operators by definitions are au-
tomatically generated. These rules are written to extract relevant information
from machine objects, add them to the hypotheses, and produce multiple simpler
goals. They are defined to be applied automatically and chained together, greatly
improving proof automation. Indeed, these rewrite rules are included in Rodin’s
user-defined proof tactics, once and for all, increasing automation when proving
the theorems formalising the newly defined POs.

Model PO Max Depth Nodes
Interac- Number

tive of Tactic
Nodes application

DeadlockFree clock thmDeadlock (THM) 169 221 1 2

Reachability clock thmReach (WD) 112 577 0 1
thmReach (THM) 191 731 4 5

Inspect Inv clock

thmInspectInvEVTM5 111 167 0 1(THM)
thmInspectInvEVTH5 112 169 0 1(THM)

thmInspectInvEVTMH1 113 171 0 1(THM)

Strong Inv clock

thmInspectInvEVTM5 105 158 0 1(THM)
thmInspectInvEVTH5 118 171 0 1(THM)

thmInspectInvEVTHM1 128 181 0 1(THM)

Table 3.3: Proof statistic for the Clock model and its analyses

82 CHAPTER 3. ADVANCED REASONING ON EVENT-B MODELS

Table 3.3 presents the proof statistics for each analysis. The important num-
ber of nodes (representing atomic steps) in the proof trees is due to the extensive
use of theory operators which the prover cannot handle directly, and thus their
definitions must be unfolded. The introduction of the rewrite rules in a proof tac-
tic perform automatically these unfold and reductions, making almost all steps
fully automatic despite the introduction of the meta level (An entry of 0 in the
interactive nodes column of Table 3.3). The rightmost column provides the num-
ber of tactic applications (iterations) during the proof. Indeed, a single tactic
application may not be sufficient to fully discharge the proof goals.

3.5 Positioning this approach
3.5.1 Related work
Formalising model analyses has been addressed by several authors: Riccobene
et al. [Riccobene & Scandurra, 2004] presented the ASM-Metamodel (AsmM) for
Abstract State Machine (ASM) models considering core modelling constructs and
semantics, expressed as an API manipulating ASM-related concepts like abstract
machines, signatures, terms, rules, and so on. It is used to embed ASM in an-
other formal method. This work resulted in a number of analyses, tools, and
extensions for a variety of purposes [Gargantini et al., 2008]. A similar approach
exists for VDM with MURAL, an interactive mathematical reasoning environ-
ment extended to support VDM [Bicarregui & Ritchie, 1991] specifications based
on meta-modelling concepts, and designed to offer a theorem prover for VDM
models. Similarly, the Rodin tool offers an API for handling Event-B models,
intended to be used to develop plug-ins. This API is used by ProB [Leuschel &
Butler, 2003] as well as by plug-ins handling model development [T. S. Hoang
et al., 2017] and code generation [Fürst et al., 2014; Méry & Singh, 2011].

Ebner et al. [Ebner et al., 2017] described the meta-programming framework
used in Lean, which is an interactive theorem prover based on dependent type
theory. This framework provides a means for reflecting object-oriented expres-
sions into a meta-language by extending Lean’s object language, based on Lean’s
modelling constructs. In [Paul van der Walt, 2012], the authors present reflec-
tion in Agda in the style of Lisp, MetaML, and Template Haskell, as well as
several typed programming applications. The MetaCoq [Sozeau et al., 2020]
project proposed a certified meta-programming environment in Coq based on
meta-modelling Coq concepts, including typing and operational semantics. This
certified meta-modelling environment was also used in the development of the
CertiCoq [Anand et al., 2017] certified compiler project. Similarly, this reflection
principle [Fallenstein & Kumar, 2015] is implemented in Isabelle/HOL to build a
HOL model within HOL to analyse and reason about various modelling concepts
such as infinite hierarchy of large cardinals, polymorphism, verifying systems with
self-replacement functionality, etc. In PVS, Miltra et al. [Mitra & Archer, 2005]
proposed strategies for proving abstraction relations between automata, based on
theories and templates. This mechanism generalises proofs, making them highly

3.5. POSITIONING THIS APPROACH 83

reusable. With regard to Event-B, the formalisation of contexts (and only con-
texts) in the Event-B language has been proposed [Bodeveix & Filali, 2021]. In
related approaches, the B method has been embedded in PVS [Muñoz & Rushby,
1999], to benefit from the modelling power of B, while accessing the proving power
of the PVS theorem prover. However, this embedding is not formalised, and leads
to the use of two separate methods.

Abstract interpretation showed its power to check system properties (absence
of runtime errors, dead code, ...). Frameworks like [Brat et al., 2014; Bühler,
2017; Cousot et al., 2005] apply to programs through the definition of param-
eterised abstract domains corresponding to model analyses. The correctness of
these analyses is expressed outside the framework.

The proposed approach is based on reflecting Event-B in itself i.e. its elements
can be used as first-class objects in models. This is similar in Coq and HOL based
approaches using dependent types, except that 1) it relies on set theory and FOL,
easing transfer to other formalisms and 2) it is defined in the same setting as the
state-transitions model of the system to be designed.

3.5.2 Advantages of the approach
This paper highlights several advantages of the EB4EB framework.
- Formal modelling and verification integrated in EB4EB. This framework
enables the simultaneous use of two approaches for both modelling (operational
with machines or axiomatic with contexts) and proving (meta-theory-based and
model/induction-based) allowing users to use one or the other non-intrusively
on pre-existing models. The proposed theories of the EB4EB framework can be
easily extended following the methodology introduced in this paper, to handle new
reusable models analyses by introducing, in Event-B, new automatically generated
POs that preserve the semantics of Event-B.
- Easing proof process. The EB4EB reflexive framework enables the explicit
manipulation of Event-B components by introducing meta-elements such as re-
quired datatypes, operators and theorems, extremely useful for expressing com-
plex problems as well as proposing new reasoning mechanisms. However, due to
the lack of advanced level proof engines such as SMTs, this resulted in enormous
manual proof efforts. The introduced proved proof rules reduce interactive proof
efforts while increasing proof automation.
- On-the-fly analysis. The EB4EB framework, which includes reasoning ex-
tensions, enables on-the-fly model analysis as well as advanced reasoning level for
each Event-B model in the refinement chain. Note that the majority of Event-B
models consist of several refinement layers, where each model of a given abstrac-
tion level can be analysed; i.e, the model is lifted as an instance of the EB4EB
meta-level and is submitted for performing model analyses, at an advanced rea-
soning level, ensured by new POs generation.
- Correctness of the defined analyses. The EB4EB framework associates a
trace to any Event-B machine (trace-based semantics). Such semantics is used
to prove the correctness of the defined analyses. Indeed, a theorem stating that
the property specifying a given model analysis holds on the traces of a machine

84 CHAPTER 3. ADVANCED REASONING ON EVENT-B MODELS

is defined for this purpose. Such a correctness theorem has been proved for each
of the analyses introduced in Section 3.4.

3.6 Conclusion
This paper presented a technique allowing a designer to define new POs for Event-
B corresponding to model analyses that are not available in core Event-B. It is
based on the extension of the reflexive EB4EB framework and its meta-theory
EvtBTheo. The defined extended reasoning mechanisms and POs are not avail-
able in core Event-B. They have been defined as Event-B meta-modelling concepts
allowing to express deadlock-freeness, bad-events and invariant strengthening, and
reachability. It is demonstrated that non-intrusive analysis for Event-B models
formalised in Event-B can be performed, at any abstraction level in the refine-
ment chain, and without resorting to another formal method, which would require
additional proofs to ensure the correct embedding of Event-B in that method.
Moreover, the proof process has been enriched with relevant and proved rewrite
rules, included in tactics, leading to a high level of proof automation. All the
developments shown in this paper are completely formalised and all the proofs
are realised2.

Two future directions extending this work have been identified. The first one
consists in defining domain-specific engineering theories in order to define specific
domain-oriented properties as POs to be satisfied by system models. Such an
approach opens towards standard conformance and certification. The second
future direction exploits the fact that EB4EB defines an Event-B machine as
an instance of a meta-theory as a set of axioms and theorems instances in FOL
and set theory. This format can be exported into the higher order framework
Dedukti [Boespflug et al., 2012; Dowek, 2015], and thus makes way for the design
of correct import in, and export from Event-B of formal models through Dedukti.

2https://www.irit.fr/~Peter.Riviere/models/

3.6. CONCLUSION 85

Assessment
This chapter contributes by extending the EB4EB framework to provide rea-
soning mechanisms and advanced characteristics not present in native Event-B.
A new theory is developed, consisting of a collection of new operators and ax-
iomatic definitions, as well as new proof rules. Three key analysis techniques,
deadlock-freeness, invariant weakness analysis, and reachability, are presented,
and Lamport’s clock example is used to demonstrate each of them.

The key advantage of this extension in the EB4EB framework is the abil-
ity to scale Event-B reasoning capabilities simply by specifying new reasoning
mechanisms. In addition, this extension allows non-intrusive analysis of Event-B
models, as well as the possibility to formalise modelling techniques usual in Event-
B, but not natively supported by the method explicitly (i.e., deadlock-freeness).
There are two main limitations to this extension. First, there is a lack of proof
automation that can be improved by defining new generic proof rules, and a lack
of refinement preservation for performing non-intrusive analysis.

86 CHAPTER 3. ADVANCED REASONING ON EVENT-B MODELS

Chapter 4

Extending Event-B with
Temporal Logic

Overview
There is a lack of support for expressing and verifying both temporal and liveness
properties in core Event-B. However, such properties may be validated using other
external tools such as model checkers. The main contribution of this chapter
is to extend the EB4EB framework to support the modelling and verification
of temporal properties. This extension enables the production of the required
proof obligations, and aid in their proving process. This work was inspired by
the work of Hoang and Abrial [T. S. Hoang & Abrial, 2011]. Similarly to our
previous developments, a set of new operators is specified in algebraic form to
encode basic temporal properties and composition of temporal properties, and
the necessary well-defined conditions are provided to ensure the correct usage
of the said operators. Furthermore, to ensure correctness, all defined operators
are encoded in trace-based semantics, to assess that the proof obligations indeed
correspond to the expected behaviour. The whole development is also carried
out in the Event-B modelling language with the Theory plugin and Rodin IDE,
and a set of new proof tactics are added to support the proving processes. This
approach is demonstrated on the same case study presented in the initial paper
of Hoang and Abrial.

Associated paper of this chapter:

• Riviere, P., Singh, N. K., Aït Ameur, Y., & Dupont, G. [2023a]. Formalising
liveness properties in Event-B. NASA Formal Methods 2023

87

88 CHAPTER 4. EXTENDING EVENT-B WITH TEMPORAL LOGIC

Formalising Liveness Properties in Event-B with
the Reflexive EB4EB Framework

P. Rivière, N. K. Singh, Y. Aït-Ameur, G. Dupont 1

INPT-ENSEEIHT/IRIT, University of Toulouse, France
{peter.riviere, nsingh, yamine, guillaume.dupont}@enseeiht.fr

The correct-by-construction state-based Event-B formal method lacks the ability
to express liveness properties using temporal logic. To address this challenge, two
approaches can be envisioned. First, embed Event-B models in another formal
method supporting liveness properties verification. This method is cumbersome
and error-prone, and the verification result is not guaranteed on the source model.
Second, extend Event-B to support the expression of and reasoning on liveness
properties, and more generally temporal properties. Following the second ap-
proach, in [T. S. Hoang & Abrial, 2011], J.-R. Abrial and T. S. Hoang proposed
an axiomatisation of linear temporal logic (LTL) for Event-B with a set of proof
obligations (POs) allowing to verify these properties. These POs are mathemati-
cally formalised, but are neither implemented nor generated automatically. In this
paper, using the reflexive EB4EB framework [Riviere et al., 2022a, 2022b] allow-
ing for manipulation of the core concepts of Event-B, we propose to formalise and
operationalise the automatic generation of proof obligations associated to liveness
properties expressed in LTL. Furthermore, relying on trace-based semantics, we
demonstrate the soundness of this formalisation, and provide a set of intermediate
and generic theorems to increase the rate of proof automation for these properties.
Finally, a case study is proposed to demonstrate the use of the defined operators
for expressing and proving liveness properties.

Proof and state-based methods, Event-B and Theories, Meta-theory, Reflexive
EB4EB framework, Temporal logic, Liveness properties, Traces and soundness

4.1 Introduction
Event-B is a formal method based on explicit state expression, refinement and
formal proof. It enables the design of complex systems using a correct by con-
struction approach. This method has been used successfully for the design of many
complex systems in various engineering areas such as aeronautics [Su & Abrial,
2017], railway systems [M. J. Butler et al., 2017, 2020], health and medicine [Singh,
2013], etc. In particular, it has shown its effectiveness in establishing properties
related to system functionalities, safety, security, reachability, compliance with
some temporal requirements, and so on.

Event-B models are machines that express state-transition systems using set
theory and first-order logic (FOL). A mechanism of proof by induction enables
the demonstration of inductive properties based on the preservation of properties

1The authors thank the ANR-19-CE25-0010 EBRP:EventB-Rodin-Plus project.

4.1. INTRODUCTION 89

at initialization and by each transition (event). Refinement, on the other hand,
is defined by a weak simulation relation in which proof obligations guarantee the
preservation of behaviours between levels of abstraction. The Rodin platform
supports the development of Event-B models. It offers an environment for model
editing, automatic and interactive proofs, animation, model checking, etc.

However, Event-B, like every formal methods, lacks some capabilities. It sup-
ports the verification of a fragment of temporal logic properties: □ using invari-
ants and theorem clauses and ♢ using variants and convergence proof obligations.
However, there is a lack of composition of temporal logic operators, as well as the
ability to express and reason about liveness properties. To remedy this absence,
two solutions are possible in general. The first solution consists in embedding
an Event-B model in another formal method offering the possibility of express-
ing and reasoning about liveness properties such as TLA+ [Lamport, 2002a],
NuSMV [Cimatti et al., 2002], PRISM [Kwiatkowska et al., 2011], PAT [Sun et
al., 2009], Spin [Holzmann, 2003], Uppaal [Behrmann et al., 2004], ProB [Leuschel
& Butler, 2008] etc. However, tracing the verification results on the source Event-
B models is difficult and care must be taken to guarantee the correctness of this
embedding. This approach is very popular and is followed by many authors who
use other formal methods allowing to express and verify this type of property
without worrying about the correctness of the transformation. However, there
exist several approaches to ensuring the transformation’s correctness [Bodeveix
et al., 2015; Halchin et al., 2020; Leroy et al., 2016; Pnueli et al., 1998]. The
second solution consists in extending the Event-B method to allow the expression
of and reasoning on liveness properties. This second approach requires the ex-
pression of the semantics and the proof system of the temporal logic in Event-B,
as well as establishing the soundness of this extension.

Based on the second approach, JR. Abrial and TS. Hoang [T. S. Hoang
& Abrial, 2011] proposed an axiomatisation of linear temporal logic (LTL) for
Event-B in their article entitled “Reasoning about liveness properties in Event-B".
This work has defined a set of proof obligations allowing to establish temporal
properties such as reachability, progress, persistence or until. However, these
proof obligations are mathematically formalised in that paper but are neither
implemented nor generated automatically. They must be explicitly described in
Event-B by the developer for each model, thus leading to formalization errors.
Moreover, their proofs are cumbersome and require too much manual effort to
proving them.

Relying on the reflexive EB4EB framework [Riviere et al., 2022a, 2022b, 2023c]
defined in Event-B, we propose to formalise and operationalise the automatic
generation of proof obligations associated with liveness properties expressed in
LTL temporal logic. We define an extension of EB4EB including a set of operators
expressing these properties on traces. In addition, we demonstrate the soundness
of these properties on model traces. Finally, a set of intermediate and generic
theorems are also proposed to increase the rate of proof automation.

Note that our proposed approach is non-intrusive (self-contained) and does
not require the use of any other formal techniques or tools; it is fully formalised
in Event-B and mechanised on the Rodin platform.

90 CHAPTER 4. EXTENDING EVENT-B WITH TEMPORAL LOGIC

Context Machine Theory
CONTEXT Ctx MACHINE M THEORY Th
SETS s SEES Ctx IMPORT Th1, ...
CONSTANTS c VARIABLES x TYPE PARAMETERS E, F , ...
AXIOMS A INVARIANTS I(x) DATATYPES
THEOREMS Tctx THEOREMS Tmch (x) Type1(E, ...)
END VARIANT V (x) constructors

EVENTS cstr1(p1: T1, ...)
EVENT evt OPERATORS

ANY α Op1 <nature> (p1: T1, ...)
WHERE Gi(x, α) well−definedness WD(p1, ...)
THEN direct definition D1

x :| BAP(α, x, x′) AXIOMATIC DEFINITIONS
END TYPES A1, ...
... OPERATORS

END AOp2 <nature> (p1: T1, ...): Tr
well−definedness WD(p1, ...)

AXIOMS A1, ...
THEOREMS T1, ...
PROOF RULES R1, ...
END

(a) (b) (c)

Table 4.1: Global structure of Event-B Contexts, Machines and Theories

This paper is organised as follows. Section 4.2 describes the Event-B modelling
language and its Theory plugin extension. Section 4.3 recalls linear temporal
logic, and the EB4EB framework is described in Section 4.4. Section 4.5 presents
the trace-based semantics of Event-B, and its soundness properties. Section 4.6
describes a case study that will be used as a running example to show how to
use defined LTL operators. Section 4.7 presents the temporal logic proof rules
encoded as EB4EB proof obligations. Their correctness is discussed in Section 4.8.
Section 4.9 summarises related work, and Section 4.10 concludes the paper.

4.2 Event-B
Event-B [J.-R. Abrial, 2010] is a state-based, correct-by-construction formal me-
thod, where systems are modelled with a set of events representing state changes,
using first-order logic (FOL) and set theory.
Contexts and machines (Tables 4.1.a and 4.1.b). Contexts (Table 4.1.a) encom-
pass the model’s static part: carrier sets s and constants c, as well as their
properties, through axioms A and theorems Tctx . Machines (Table 4.1.b) describe
the model’s behaviour, using a set of events evt, each of which may be guarded G
and/or parameterized by α. An event models the evolution of a set of variables
x using a Before-After Predicate (BAP) that links the before (x) and after (x′)
value of the variables. Safety properties are encoded using invariants I(x) and
theorems Tmch(x), and variants V (x) may be defined to demonstrate the ma-
chine’s convergence. Model consistency is established by discharging a number of
automatically generated POs (Table 4.2).

Refinements. One strength of Event-B is its refinement operation, which is used
to transform an abstract model into a more concrete one, adding information
(refined states) and behavioural (refined events) details gradually, while retaining
a similar observational behaviour (simulation relationship). Refinement correct-
ness is established with the help of a gluing invariant, and ensures properties are

4.3. LINEAR TEMPORAL LOGIC 91

(1) Ctx Theorems (ThmCtx) A(s, c) ⇒ Tctx (For contexts)
(2) Mch Theorems (ThmMch) A(s, c) ∧ I(x) ⇒ Tmch(x) (For machines)
(3) Initialisation (Init) A(s, c) ∧ BAP(x′)⇒ I(x′)
(4) Invariant preservation (Inv) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ I(x′)
(5) Event feasibility (Fis) A(s, c) ∧ I(x) ∧ G(x, α)⇒ ∃x′ · BAP(x, α, x′)
(6) Variant progress (Var) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ V (x′) < V (x)

Table 4.2: Relevant Proof Obligations for Event-B contexts and machines

preserved from the abstract to the concrete model.
Extension with theories. Being based on set theory and FOL, the Event-B for-
malism is mathematically low-level and thus very expressive. However, it lacks
features to build up more complex structures. The theory extension has been
proposed to address this issue [M. J. Butler & Maamria, 2013]. A theory is a
type of component that makes it possible to define new type-generic datatypes
together with constructive and axiomatic operators, specific theorems and axioms
and even proof rules (see Table 4.1.c). The resulting theories consistency can be
established by providing witnesses for axioms and definitions, ensuring conserva-
tive extensions of Event-B. Once defined, elements of a theory become seamlessly
available in an Event-B model and its proofs.

This extension is central for embedding, as data types, concepts that are un-
available in core Event-B, similar to Coq [Bertot & Castéran, 2010], Isabelle/HOL
[Nipkow et al., 2002] or PVS [Owre et al., 1992]. Many theories have been defined,
for supporting real numbers, lists, differential equations and so on.
Well-definedness (WD). Beyond machine-related POs, one key aspect of model
consistency is the well-definedness (WD) of the expressions involved in it. This
notion supplements the one of syntactical correctness with the idea of a formula
being “meaningful”, i.e. it can always be safely evaluated (e.g., dividing by a
term that is provably non 0). Each formula of a model is associated to a WD PO,
usually consisting in checking that operators are correctly used and combined.
Once proven, WDs are added to set of hypotheses of other POs.

Note that theories allow designers to provide custom WD conditions for par-
tially defined operators in order to precisely characterise their proper use.
The Rodin Platform. Rodin is an open source integrated development platform for
designing, editing and proving Event-B models. It also supports model checking
and animation with ProB, as well as code generation. Being based on Eclipse, it
also allows the definition of plug-ins, including theory extensions. Many provers
for first-order logic as well as SMT solvers are plugged to Rodin for helping the
proof process.

4.3 Linear Temporal Logic
This section recalls the principles of linear temporal logic (LTL) following the
definition of Manna and Pnueli [Manna & Pnueli, 1984]. Linear temporal logic is
defined syntactically as an extension of propositional logic. A valid LTL formula

92 CHAPTER 4. EXTENDING EVENT-B WITH TEMPORAL LOGIC

consists of literals (usually, predicates on the state of the system), the usual
logical connectors (∧, ∨, ¬ and ⇒) as well as modal operators □, ♢ and U . The
semantics of LTL is expressed in terms of traces of a system. Given a trace
tr = s0 7→ s1 7→ . . ., then tri (i ∈ N) denotes the suffix trace of tr, starting from
si, tri = si 7→ si+1 7→ . . .

A state that satisfies a predicate P is called a P -state. LTL semantics are
given with the following rules:

1. For any state predicate P , tr ⊨ P iff s0 is a P-state.

2. tr ⊨ ϕ1 ∧ ϕ2 iff tr ⊨ ϕ1 and tr ⊨ ϕ2

3. tr ⊨ ϕ1 ∨ ϕ2 iff tr ⊨ ϕ1 or tr ⊨ ϕ2

4. tr ⊨ ¬ϕ iff not tr ⊨ ϕ

5. tr ⊨ ϕ1 ⇒ ϕ2 iff not tr ⊨ ϕ1 or tr ⊨ ϕ2

6. tr ⊨ □ϕ iff for all k, trk ⊨ ϕ

7. tr ⊨ ♢ϕ iff there exists a i such that tri ⊨ ϕ

8. tr ⊨ ϕ1Uϕ2 iff there exists a i such that tri ⊨ ϕ2, and for all j < i, trj ⊨ ϕ1

A machine M satisfies a property ϕ, denoted M ⊨ ϕ if and only if for all traces
tr of M , that trace satisfies ϕ (tr ⊨ ϕ).

4.4 The EB4EB Framework
The EB4EB framework [Riviere et al., 2022a, 2022b] proposes to extend the
reasoning capabilities of Event-B by enabling the access of Event-B components as
first-class citizens within Event-B models (reflection), thereby making it possible
to express new reasoning mechanism at the meta-level.
THEORY EvtBT heo
TYPE PARAMETERS St, Ev
DATATYPES Machine (St , Ev)

CONSTRUCTORS
Cons_machine(

Event : P(Ev),
State : P(St),
Init : Ev,P rogress : P(Ev)
V ariant : P(St × Z),
AP : P(St),
BAP : P(Ev × (St × St)),
Grd : P(Ev × St),
Inv : P(St) ,
. . .)

Listing 4.1: Machine Data type

Event_WellCons <pred ica te >
(m : Machine(St, Ev))

direct def init ion
partition(Event(m), {Init(m)}, P rogress(m))

. . .
Machine_WellCons <pred ica te >

(m : Machine(St, Ev))
direct def init ion Event_W ellCons(m) ∧ . . .

Listing 4.2: Operators to check well-defined
data type (static semantics)

Machine structure. Event-B is formalised in an Event-B theory. A machine
is represented using the data-type Machine (see Listing 4.1) parameterised by
generic types with event labels (Ev) and states (St). Constructor Cons_machine
gathers the components of a machine, such as Event, State, Grd, Inv, BAP, etc.

4.5. TRACE-BASED SEMANTICS OF EVENT-B 93

Well-Construction. A machine built using Cons_machine may not be consistent,
despite being syntactically correct. Thus, additional operators are defined to
encode the well-construction of a machine, i.e. the consistency of its components
with regard to each others (Listing 4.2). For instance, Event_WellCons ensures
that events are partitioned between initialisation and progress events.
Machine Proof Obligations. For any machine expressed in the framework, its
associated proof obligations are provided under the form of operators (see List-
ing 4.3). Such operators are predicates that rely on the set-theoretical definition
of the machine and guarded transition system semantics.

In particular, for a given machine m the predicate Mch_INV(m) holds if and
only if the invariants of m hold with regard to m’s behaviour, corresponding to
PO INV (see Table 4.2). Following similar principles, every machine-related POs
of the Event-B method is formalised in the theory.
Mch_INV_Init <pred ica te > (m : Machine(St, Ev))

direct def init ion AP (m) ⊆ Inv(m)
Mch_INV_One_Ev <pred ica te > (m : Machine(St, Ev), e : Ev)

well−definedness e ∈ P rogress(m)
direct def init ion BAP (m)[{e}][Inv(m) ∩ Grd(m)[{e}]] ⊆ Inv(m)

Mch_INV <pred ica te > (m : Machine(St, Ev))
direct def init ion

Mch_INV _Init(m) ∧ (∀e · e ∈ P rogress(m) ⇒ Mch_INV _One_Ev(m, e))
. . .

Listing 4.3: Well-defined data type operators (behavioural semantics)
Finally, the PO operators are all gathered in a conjunctive expression within

the check_Machine_Consistency operator (Listing 4.4), which thus encode the
correctness condition for the machine. It uses Machine_WellCons as WD condi-
tion. At instantiation, it is used as a theorem to ensure machine correctness.
check_Machine_Consistency <pred ica te > (m : Machine(St, Ev))

well−definedness Machine_W ellCons(m)
direct def init ion Mch_INV (m) ∧ . . .

Listing 4.4: Operator for Event-B machine consistency
Remark. The EB4EB framework makes accessible all the features of Event-B
machines, and thus enables the formalisation and verification of the fragment of
temporal logic properties already supported by classical Event-B machines: □
using invariants and theorem clauses and ♢ using variants and convergence proof
obligations. However, it does not support the composition of these operators nor
any of the other temporal logic properties.
Instantiation of the meta-theory is used to define specific Event-B machines
(instantiation) using the Cons_machine constructor. An Event-B context where
values for the type parameters St and Ev are provided.

4.5 Trace-Based Semantics of Event-B
Establishing the correctness of the POs provided in the EB4EB framework re-
quires modelling of Event-B trace-based semantics. We express traces in an
Event-B theory and relate them to an EB4EB machine. It becomes possible to
prove that a PO defined in EB4EB encodes correctly the property it formalises.

94 CHAPTER 4. EXTENDING EVENT-B WITH TEMPORAL LOGIC

4.5.1 Semantics: traces of Event-B machines in EB4EB
A machine m consists of state variables and events describing their evolution. A
trace tr of m is a sequence of states tr = s0 7→ s1 7→ . . . 7→ sn 7→ . . . such that:

1. the initial state s0 satisfies the after predicate (AP) of the initialisation
event

2. each pair of consecutive states si, si+1 corresponds to the activation of an
event e of m, i.e.: 1) si verifies the guard, and 2) si 7→ si+1 verifies the BAP

3. if tr is finite, its final state deadlocks (i.e., system cannot progress any more)

In EB4EB, traces are encoded in a theory (Listing 4.5) extending EvtBTheo.
They are linked to machines. A trace is a partial function tr ∈ N 7→ St such that,
for any n in the domain, tr(n) = sn is the n-th state of the trace.
THEORY EvtBT races IMPORT EvtBT heo
TYPE PARAMETERS St ,Ev
OPERATORS

IsANextState p r e d i c a t e (m : Machine(St, Ev) ,s : St ,sp : St)
direct def init ion ∃e · e ∈ Progress(m) ∧ s ∈ Grd(m)[{e}] ∧ s 7→ sp ∈ BAP(m)[{e}]

IsATrace p r e d i c a t e (m : Machine(St, Ev) , tr : P(N × St))
direct def init ion

(tr ∈ N → St ∨ (∃n · n ∈ N ∧ tr ∈ 0..n → St ∧ tr(n) /∈ Grd(m)[Progress(m)]))∧
tr(0) ∈ AP(m)∧
(∀i, j · i ∈ dom(tr) ∧ j ∈ dom(tr) ∧ j = i + 1 ⇒ IsANextState(m, tr(i), tr(j)))

. . .
END

Listing 4.5: Theory of Event-B Traces
The operator IsATrace captures the relation between machines and traces. A
transition associated to an event in a trace is defined by the IsANextState oper-
ator. Considering a machine m and two states s and sp, the operator checks that
there exists an event e such that: 1) s verifies the guard of e (s ∈ Grd(m)[{e}]),
and 2) the pair s 7→ sp verifies the BAP of e (s 7→ sp ∈ BAP (m)[{e}]).

4.5.2 Correctness Principle
Soundness properties can be expressed with the formalisation of the semantics
using traces, in particular the correctness of the newly defined POs [Riviere et al.,
2022b]. A generic principle can be stated as follows.

In Listing 4.6, each PO [PO] is associated with a thm_of_Correctness_of-
_[PO] soundness theorem in the Theo4[PO]Correctness theory. It states that
the [PO] predicate definition (see Section 4.7) implies the PO predicate definition
expressed on traces using the PO_Spec_On_Traces expression. Such theorems
have been proved for each PO introduced in the EB4EB framework.
THEORY Theo4 [PO] C o r r e c t n e s s IMPORT EvtBTraces , Theo4 [PO]
TYPE PARAMETERS St, Ev
THEOREMS

thm_of_Correctness_of_[PO] : ∀m, tr · m ∈ Machine(St, Ev) ∧ Machine_WellCons(m)∧
IsATrace(tr, m) ∧ . . . ∧ [PO](m,args) ⇒ PO_Spec_On_Traces(. . .)

Listing 4.6: Liveness Analyses Correctness

4.6. A CASE STUDY: A READ WRITE MACHINE 95

Example: Soundness of the Invariant PO (INV). The theorem of List-
ing 4.7 states that for any well-constructed machine m, if the invariant PO holds
(Mch_INV (m)) then for any trace tr associated to this machine (IsATrace(tr , m)),
each state of that trace is in the invariant of the machine (tr(i) ∈ Inv(m)).

It has been proved, by induction on the indexes of the traces, using the Rodin
platform provers. This principle is applied for all the newly introduced POs, in
particular for the temporal logic properties POs introduced in this paper.
THEORY EvtBCorrectness IMPORT EvtBTraces , EvtBPO
TYPE PARAMETERS St, Ev
THEOREMS

thm_of_Correctness_of_Invariant_PO : ∀m, tr · m ∈ Machine(St, Ev)∧
Machine_WellCons(m) ∧ IsATrace(tr, m) ∧ Mch_INV(m)

⇒ (∀i · i ∈ dom(tr) ⇒ tr(i) ∈ Inv(m))
END

Listing 4.7: Theorem of correction of the proof obligation
This approach follows the work presented in [Aït Ameur et al., 2022]. It has

been used in particular for hybrid systems as well [Dupont et al., 2021].

4.6 A Case Study: A read write machine
In the original paper [T. S. Hoang & Abrial, 2011], the authors used the read-
write case study to illustrate their approach. For comparison purposes, we use
the same case study.

MACHINE RdW rMch
VARIABLES r , w
INVARIANTS

inv1−2 : r ∈ N , w ∈ N
inv3−4 : 0 ≤ w − r , w − r ≤ 3

EVENTS
INITIALISATION
THEN

act1 : r, w := 0, 0
END

read
WHERE grd1 : r < w
THEN act1 : r := r + 1
END

write
WHERE grd1 : w < r + 3
THEN act1 : w := w + 1
END

END

a

CONTEXT RdW r
SETS Ev
CONSTANTS rdwr , init , read , write
AXIOMS

axm1 : partition(Ev, {init}, {read}, {write})
axm2 : rdwr ∈ Machine(Z × Z, Ev)
axm3 : Event(rdwr) = Ev
axm5 : State(rdwr) = Z × Z
axm6 : Init(rdwr) = init
axm7 : Inv(rdwr) = {r 7→ w | r ∈ N ∧ w ∈ N∧

0 ≤ w − r ∧ w − r ≤ 3}
axm8 : AP(rdwr) = {0 7→ 0}
axm9 : BAP(rdwr) = {e 7→ (

(r 7→ w) 7→ (rp 7→ wp)) |
(e = read ∧ rp = r + 1 ∧ wp = w)

∨(e = write ∧ rp = r ∧ wp = w + 1)}
axm10 : Grd(rdwr) = {e 7→ (r 7→ w) |

(e = read ∧ r < w)∨
(e = write ∧ w < r + 3)}

axm11 : Progress(rdwr) = {read, write}
. . .
thm1 : check_Machine_Consistency(rdwr)

END

b

Listing 4.8: Read write machine in Event-B (a) and instantiation with EB4EB
(b)

The system requirements are: Req1 – The reader process reads data from the
buffer; Req2 – The writer process writes data to the buffer; Req3 – The reader

96 CHAPTER 4. EXTENDING EVENT-B WITH TEMPORAL LOGIC

and the writer share the same buffer; Req4 – The shared buffer has a fixed size
of 3; Req5 – The system does not stop when data is written and not read; and
Req6 – The reader eventually reads L, L ∈ N, pieces of data.

Listing 4.8.a proposes the RdWrMch Event-B machine fulfilling the above re-
quirements. The reader (resp. writer) is modelled by variable r (resp. w) corre-
sponding to its position in the buffer and by event read (resp. write) that rep-
resents the associated input/output operation and increments the pointer (Req1
and Req2). The shared buffer is captured by interval r + 1..w (Req3). The cor-
rect formalisation of the events, i.e. data that has not been written yet is not read
and the amount of data in the buffer does not exceed 3 (Req4), is guaranteed
by invariants inv3-4. Listing 4.8.b shows the context obtained when instantiating
the EvtBTheo theory (Listing 4.1) of the EB4EB framework. The thm1 theorem
guarantees the consistency of the RdWrMch Event-B machine.
Missing requirements. Req5 and Req6 are not safety properties in the usual
sense and are not present in the current model. Event-B does not natively provide
explicit constructs for handling them. Additional modelling effort is necessary,
like introducing variants and new theorems and altering events.

4.7 Temporal logic proof rules as EB4EB POs

THEORY T heo4Liveness
IMPORT EvtBT heo
TYPE PARAMETERS Ev ,St
. . .

Listing 4.9: Liveness
operators Theory

To support temporal logic properties and handle the
missing requirements, we propose an Event-B exten-
sion relying on the EB4EB framework. This section
presents the formalisation of the liveness properties,
introduced in [T. S. Hoang & Abrial, 2011], that are
missing in core Event-B. For this purpose, we extend
the EB4EB framework to introduce the corresponding PO definitions. All the
definitions are formalised in the Theo4Liveness theory (see Listings 4.9) extend-
ing the EvtBTheo theory of EB4EB using a set of operators, defined for each proof
rule defined in [T. S. Hoang & Abrial, 2011]. Each of these definitions is intro-
duced below. Note that each of the following tables contain two parts, where (a)
is from [T. S. Hoang & Abrial, 2011] and (b) our corresponding formalization.
Notations. For a predicate P on states of St, we define the subset P̂ of states
satisfying the property P as P̂ = {x ∈ St | P (x)}.

4.7.1 Liveness properties
This section presents core definitions for expressing formal definition of liveness
properties. We first describe the basic building operators.
Machine M Leads From P1 to P2, P1 ↷ P2 (TLLeads_From_P1_To_P2 operator).
For a machine M , given two state formulas P1 and P2, we state that M leads from
P1 to P2 if for every trace of M with two successor states such that si ∈ P̂1 then
si+1 ∈ P̂2. The given property of Table 4.3(a) is formally defined by the operator
TLLeads_From_P1_To_P2 with a machine m and two set of states P̂1 and P̂2 as
parameters. Its direct definition is a predicate BAP (m)[{e}][P̂1 ∩ Grd(m)[{e}] ∩

4.7. TEMPORAL LOGIC PROOF RULES AS EB4EB POS 97

Inv(m)] ⊆ P̂2 stating that for all progress events of machine m that preserve
invariant, states of P̂1 lead to P̂2.

The Sequent Rule for ↷ Associated Operator in EB4EB
TLLeads_From_P1_To_P2 <predicate>

(m : Machine(St, Ev), P̂1 : P(St), P̂2 : P(St))
P1 ↷ P2 ≡ ∀v, v′, x· direct definition

P1(v) ∧ G(x, v) ∧ A(x, v, v′) ⇒ P2(v′) ∀e · e ∈ P rogress(m) ⇒
BAP (m)[{e}][P̂1 ∩ Grd(m)[{e}] ∩ Inv(m)] ⊆ P̂2

(a) (b)

Table 4.3: Leads from P1 to P2 encoded in EB4EB

Machine M is Convergent in P , ↓ P (TLConvergent_In_P operator). For a given
property P , a machine M is convergent in P if it does not allow for an infinite
sequence of P -states (i.e. states satisfying the property P). It is formalised in
Table 4.4(a) by the predicate operator TLConvergent_In_P on machine m, set of
states P̂ and variant v. The operator’s WD condition ensures that the variant is
associated to each state. The operator states that, for all progress events e, when
its before-after-states s and s′ satisfy P , variant v decreases (v(s′) < v(s)).

The Sequent Rule of ↓ Associated Operator in EB4EB
TLConvergent_In_P <predicate>

(m : Machine(St, Ev), P̂ : P(St), v : P(St × Z))
well−definedness v ∈ St → Z

↓ P ≡ ∀x, v, v′· direct definition
(P (v) ∧ G(x, v) ⇒ V (v) ∈ NN)∧ ∀e · e ∈ P rogress(m) ⇒ (

(P (v) ∧ G(x, v) ∧ A(x, v, v′) v[P̂ ∩ Grd(m)[{e}] ∩ Inv(m)] ⊆ NN∧
⇒ V (v′) < V (v)) (∀s, s′ · s ∈ Inv(m) ∧ s ∈ P̂ ∧

s ∈ Grd(m)[{e}] ∧ s′ ∈ BAP (m)[{e}][{s}]
⇒ v(s′) < v(s)))

(a) (b)

Table 4.4: Convergence in P encoded in EB4EB

Machine M is Divergent in P , ↗ P (TLDivergent_In_P operator). Divergence
property guarantees that any infinite trace of a machine M ends with an infinite
sequence of P -states. The operator TLDivergent_In_P of Table 4.5(a) is identical
to the previous convergent operator, except that the variant does not decrease
strictly (v(s′) ≤ v(s)) allowing divergent sequences of P -states.

The Sequent Rule of ↗ Associated Operator in EB4EB
TLDivergent_In_P <predicate>

↗ P ≡ ∀x, v, v′· (m : Machine(St, Ev), P̂ : P(St), v : P(St × Z))
(¬P (v) ∧ G(x, v) ⇒ V (v) ∈ NN) ∧ well−definedness v ∈ St → Z
(¬P (v) ∧ G(x, v) ∧ A(x, v, v′) ⇒ direct definition

V (v′) < V (v)) ∧ T LConvergent_In_P (m, St \ P̂ , v)∧
(P (v) ∧ G(x, v) ∧ A(x, v, v′) ∧ V (v′) ∈ NN ∀e · e ∈ P rogress(m) ⇒ (

⇒ V (v′) ≤ V (v)) (∀s, s′ · s ∈ Inv(m) ∧ s ∈ P̂ ∧ s ∈ Grd(m)[{e}]
∧ s′ ∈ BAP (m)[{e}][{s}] ∧ v(s′) ∈ NN

⇒ v(s′) ≤ v(s)))
(a) (b)

Table 4.5: Divergence in P encoded in EB4EB

98 CHAPTER 4. EXTENDING EVENT-B WITH TEMPORAL LOGIC

Machine M is Deadlock-free in P , ⟲ P (TLDeadlock_Free_In_P operator). The
deadlock-freeness states that a trace of a machine M never reaches a P -state
where no event is enabled. It requires that, in a P -state, at least one event of
M is enabled. This property is defined in Table 4.6(a) and is formalised by the
operator TLDeadlock_Free_In_P in Table 4.6(b).

The expression P̂ ∩ Inv(m) ⊆ Grd(m)[Progress(m)] ensures that at least
one progress event of the Progress(m) set is enabled in a P -state satisfying the
invariant.

The Sequent Rule of ⟲ Associated Operator in EB4EB

⟲ P ≡ ∀v · P (v) ⇒
W

i
(∃x · Gi(x, v))

TLDeadlock_Free_In_P <predicate>
(m : Machine(St, Ev), P̂ : P(St))
direct definition

P̂ ∩ Inv(m) ⊆ Grd(m)[P rogress(m)]
(a) (b)

Table 4.6: Deadlock-freeness in P encoded in EB4EB

4.7.2 Deadlock freeness ⟲ P applied to the Read-Write
machine

We illustrate how the operators defined above work in the extended EB4EB frame-
work on the read write case study, with the case of the deadlock-freeness property
ensuring requirement Req5.

CONTEXT RdWrDeadlockFree
EXTENDS RdWr
THEOREMS

thmDeadlockFreeInP :
TLDeadlock_Free_In_P(rdwr ,

{r 7→ w | w ∈ Z ∧ r ∈ Z ∧ r < w})
END

Listing 4.10: Generation of Proof
Obligation of Deadlock_Free_In_ P

A context RdWrDeadlockFree, extend-
ing the context RdWr of Listing 4.8 is de-
fined with a theorem, thmDeadlockFree-
InP. This theorem uses the predicate oper-
ator Deadlock_Free_In_P, previously for-
malised. Here, the P̂ parameter is com-
posed of the pair of state variables r 7→ w
and the property P defined by w ∈ Z∧r ∈
Z ∧ r < w. Indeed, the machine does not deadlock if it reads less data than it
writes. Remember that when a theorem is stated, a PO is automatically generated
requiring to prove it.

4.7.3 Temporal operator proof rules
Section 4.7.1 presents a formalisation of the basic temporal operators allowing to
define liveness properties. This section is devoted to the formalisation of more
complex temporal properties, relying on the operators previously defined, like
TLGlobally, TLExistence TLUntil, TLProgress, and TLPersistence. Each of
them is defined in the same manner as the previous ones.
Invariance, □I (TLGlobally operator). In Event-B, safety properties are com-
monly described as invariants. Although this property is already available in core
Event-B, it can be formalised in EB4EB as well.

4.7. TEMPORAL LOGIC PROOF RULES AS EB4EB POS 99

Table 4.7(a) expresses this property using two sequents. The first one is the
inductive invariant proof rule and the second one defines, as theorems, all of the
entailed stronger invariants. The TLGlobally operator of Table 4.7(b) defines
this property as Inv(m) ⊆ Î; it reuses the native invariant PO of EB4EB.

The Sequent Rule of □ Associated Operator in EB4EB
⊢ init ⇒ I M ⊢ I ↷ I

M ⊢ □I

TLGlobally <predicate>
(m : Machine(St, Ev), Î : P(St))

⊢ J ⇒ I M ⊢ □J

M ⊢ □I

direct definition
Inv(m) ⊆ Î

(a) (b)

Table 4.7: Invariance encoded in EB4EB

Existence, □♢P (TLExistence operator). The existence temporal property states
that a property P always eventually holds for machine M . To express existence
□♢P in a machine M , we rely on convergence and deadlock-freeness. Indeed,
the machine shall be convergent on ¬P -states, i.e., sometimes ¬P does not hold
and ¬P -states are not deadlocks. The defined TLExistence predicate operator is
defined as the conjunction of the two corresponding previously defined operators
on a set P̂ and a variant v.

The Sequent Rule of □♢ Associated Operator in EB4EB

M ⊢ ↓ ¬P M ⊢ ⟲ ¬P

M ⊢ □♢P

TLExistence <predicate>
(m : Machine(St, Ev), P̂ : P(St), v : P(St × Z)
well−definedness v ∈ St → Z
direct definition
T LConvergent_In_P (m, St \ P̂ , v)∧

T LDeadlock_F ree_In_P (m, St \ P̂)
(a) (b)

Table 4.8: Existence encoded in EB4EB

Until, □(P1 ⇒ (P1UP2)) (TLUntil operator). The Until property states that a
P1-state is always followed eventually by a P2-state. Its definition relies on the
leads-to and existence properties we have introduced. The Until property requires
two antecedents, a leads to from P1∧¬P2 to P1∨P2 in the next state and the second
is the existence of ¬P1∨P2 (see Table 4.9(a)). This proof rule is directly formalises
using the TLUntil operator (see Table 4.9(b)). It requires two properties P1 (P̂1
set) and P2 (P̂2 set) and a variant v. It is defined as the conjunction of the
TLLeads_From_P1_To_P2 and TLExistence predicate operators.

The Sequent Rule of □(P1 ⇒ (P1UP2) Associated Operator in EB4EB
TLUntil<predicate> (m : Machine(St, Ev),

A ≡ (P1 ∧ ¬P2) ↷ (P1 ∨ P2) P̂1 : P(St), P̂2 : P(St), v : P(St × Z)
B ≡ □♢(¬P1 ∨ P2) well−definedness v ∈ St → Z

M ⊢ A M ⊢ B

M ⊢ □(P1 ⇒ (P1UP2))

direct definition
Leads_F rom_P 1_T o_P 2(

m, P̂1 ∩ (St \ P̂2), P̂1 ∪ P̂2)
∧ T LExistence(m, (St \ P̂1) ∪ P̂2, v)

(a) (b)

Table 4.9: Until encoded in EB4EB

100 CHAPTER 4. EXTENDING EVENT-B WITH TEMPORAL LOGIC

Progress, □(P1 ⇒ (♢P2)) (TLProgress operator). Close to the Until property,
a more general property, namely Progress can be defined. It states that always
P1-states reaches P2-states. This property does not require P1 to always hold
before reaching P2-states. To describe this property, an intermediate property
P3 holding before P2 holds is introduced. It acts as a local invariant between
P1-states and P2-states.

The Sequent Rule of □(P1 ⇒ ♢P2) Associated Operator in EB4EB
TLProgress<predicate> (m : Machine(St, Ev),

A ≡ □(P1 ∧ ¬P2 ⇒ P3) P̂1 : P(St), P̂2 : P(St), P̂3 : P(St), v : P(St × Z)
B ≡ □(P3 ⇒ (P3UP2)) well−definedness v ∈ St → Z
M ⊢ A M ⊢ B

M ⊢ □(P1 ⇒ (♢P2))
direct definition

T LGlobally(m, P̂3 ∪ P̂2 ∪ (St \ P̂1))∧
T LUntil(m, variant, P̂3, P̂2)

(a) (b)

Table 4.10: Progress encoded in EB4EB

The Progress proof rule of Table 4.10(a) has two antecedents. One states that
always P1∧¬P2 ⇒ P3 and the second uses the previously defined Until property as
□(P3 ⇒ (P3UP2)). The TLProgress predicate operator is the conjunction of the
application of the two predicate operators, Leads_From_P1_To_P2 and TLUntil
on the P̂1, P̂2 and P̂3 sets and the variant v, encoding the antecedents.
Persistence, ♢□P (TLPersistence operator). Persistence is the last property we
formalise. It states that a predicate P must eventually hold forever (♢□P). The
two antecedents of the associated proof rule, presented in Table 4.11(a), state
that P -states are divergent ¬P -states are deadlock-free. The TLPersistence
predicate operator is defined as a conjunctive expression of TLDivergent_In_P
and TLDeadlock_Free_In_P operators with the P̂ for the property P and the
variant v as input parameters.

The Sequent Rule of ♢□ Associated Operator in EB4EB

M ⊢ ↗ P M ⊢ ⟲ ¬P

M ⊢ ♢□P

TLPersistence <predicate>
(m : Machine(St, Ev), P̂ : P(St), v : P(St × Z)
well−definedness v ∈ St → Z
direct definition

T LDivergent_In_P (m, P̂ , variant)∧
T LDeadlock_F ree_In_P (m, St \ P̂)

(a) (b)

Table 4.11: Persistence encoded in EB4EB

4.7.4 Existence □♢P applied to the read write machine

CONTEXT RdWrExistence
EXTENDS RdWrDeadlockFree
CONSTANTS L
AXIOMS

axm1 : L ∈ N
thmExistence : TLExistence(rdwr, {r 7→ w | w ∈ Z ∧ r ≥ L},

{(r 7→ w) 7→ v | v = ((L − r) + (L + 3 − w))})
END

Listing 4.11: Generation of Proof Obligation of Existence

4.8. CORRECTNESS OF THE TEMPORAL LOGIC PROPERTIES PROOF RULES101

The temporal operators defined in [T. S. Hoang & Abrial, 2011] have been
successfully formalised in the EB4EB as predicate operators used as theorems to
be proved for any Event-B machine.

Here, we show how Req6 (the reader eventually reads L, L ∈ N, pieces of data)
expressed for the read write case study is fulfilled thanks to the TLExistence oper-
ator. Like for deadlock freeness in section 4.7.2, we introduce a new Event-B con-
text RdWrExistence (see Listing 4.11), extending the RdWr context of Listing 4.8,
with a theorem stating the existence property. The existence operator is used with
a set of states {r 7→ w | w ∈ Z∧r ≥ L} and a variant v = ((L−r)+(L+3−w))}).

4.8 Correctness of the temporal logic properties
proof rules

THEORY Theo4LivenessCorrectness
IMPORT T heo4Liveness , EvtBT races
TYPE PARAMETERS St, Ev
. . .

Listing 4.12: Theory of correctness

The last step establishes the correct-
ness of our formalisation with respect to
the semantics of trace, i.e. the defined
proof rules actually hold on the traces
of the Event-B machines. The verifi-
cation principle of Section 4.5.2 is set up for this purpose. A theory
Theo4LivenessCorrectness (Listing 4.12) provides a list of correctness theorems
for each of the defined operators. It imports the previously developed theories
related to liveness properties Theo4Liveness and Event-B traces EvtBTraces.

Below, we present the correctness theorem for the TLExistence property. All
the other theorems are formalised2 and proved using the Rodin Platform.

Existence in P correctness theorem □♢P (TLExistence). The correct-
ness of the existence property follows the principle of Section 4.5.2. It is sup-
ported by the proved thm_of_correctness_of_Existence theorem stating that
a property P always eventually holds in traces of a machine m. It states that
for any well constructed (Machine_WellCons(m)) and consistent (check_Ma-
chine_Consistency(m)) machine, and for any trace tr of this machine satisfying
the existence property TLExistence(m, P̂ , variant), then for all i there exists j
with j ≥ i where tr(j) satisfies the property P .

THEOREMS
thm_of_Correctness_of_Existence : ∀m, tr, v, P̂ · v ∈ STATE → Z∧

m ∈ Machine(STATE, EVENT) ∧ Machine_WellCons(m)∧
check_Machine_Consistency(m) ∧ IsATrace(m, tr) ∧ TLExistence(m, P̂ , v)

⇒ (∀i · i ∈ dom(tr) ⇒ (∃j · j ≥ i ∧ j ∈ dom(tr) ∧ tr(j) ∈ P̂))
. . .

Listing 4.13: Theorem of correctness of the operators Existence

2https://www.irit.fr/~Peter.Riviere/models/

102 CHAPTER 4. EXTENDING EVENT-B WITH TEMPORAL LOGIC

4.9 Related Work
Reflexive modelling is present under various forms in formal methods. For in-
stance, the ASM-Metamodel API (AsmM) for Abstract State Machines (ASM)
has been developed to be able to handle ASM-related concepts. This leads to
several extensions, analyses and tools for ASMs [Riccobene & Scandurra, 2004].
This is also the case when using Mural to modify a VDM specification [Bicarregui
& Ritchie, 1991]. Furthermore, the reflexive modelling is also addressed with
proof assistants like Coq with MetaCoq [Sozeau et al., 2020], Agda [Paul van der
Walt, 2012], PVS [Mitra & Archer, 2004], HOL [Fallenstein & Kumar, 2015] and
Lean [Ebner et al., 2017] and Event-B with EB4EB [Riviere et al., 2022a, 2022b].

Correctness of the Event-B method and its modelling components has been
tackled in various previous work. A meta-level study of Event-B context structure
is proposed in particular to validate the expected properties of theorem instantia-
tion [Bodeveix & Filali, 2021]. Event-B has also been formalised as an institution
in category theory [Farrell et al., 2016, 2022], with the aim to facilitate and en-
able composition of heterogeneous semantics and of different model specifications.
Similarly, Event-B has been embedded in Coq [Castéran, 2021] in order to estab-
lish the correctness of refinement, i.e. that the refinement POs entail the validity
of refinement in the trace-based semantics. Last, a form of shallow embedding
of Event-B in itself has been proposed and serves as the basis of a methodol-
ogy for proving the correctness of decomposition and re-composition of Event-B
machines [Hallerstede & Hoang, 2014].

Event-B’s methodology is mainly aimed at defining and proving safety prop-
erties (that must always hold), or possible convergence. Expressing liveness prop-
erties (that must hold at some point [Lamport, 1977]) is not as trivial, and many
authors address this issue. For Event-B, the ProB model-checker [Leuschel &
Butler, 2008] handles Event-B models and enables the expression and verification
of liveness properties. Some liveness operators have been formalised to be used
in Event-B, together with their related hypotheses [T. S. Hoang & Abrial, 2011],
making it possible to express some liveness properties. However, it is to be noted
that liveness properties are not generally preserved by refinement. To address this
latter issue, additional conditions on the refinement must be posed, leading to the
definition of particular refinement strategies [T. S. Hoang et al., 2016], which are
proven to preserve liveness properties through to the concrete model. In addition,
the problem of fairness has also been studied. For instance, the work of [Méry
& Poppleton, 2017] proposes to check fairness of Event-B machines in TLA (on
a per-machine basis). Refinement strategies have been defined as well to ensure
that fairness and liveness properties are preserved [Zhu et al., 2023].

Our proposed approach is based on the reflexive modelling of Event-B on itself,
which is fully integrated into Rodin development environment using the Theory
Plugin [M. J. Butler & Maamria, 2013]. Our framework is fully formalised in
Event-B and relies solely on FOL and set theory, similar to other approach like
MetaCoq [Sozeau et al., 2020] with dependent type. Such characteristic makes it
possible to export models expressed using the framework to any other formalism
based on FOL and set theory while preserving the state-transition semantics of the

4.10. CONCLUSION 103

model. Therefore, the issue of the translation of the universe and the semantics’
preservation are not related to our work due to the reflexive modelling.

4.10 Conclusion
This paper has presented a formalisation of liveness properties for Event-B models
by encoding LTL temporal logic expressions on the Rodin platform using the
reflexive EB4EB framework. LTL logic expressions of properties are formalised
within the defined framework. Automatic generation of proof obligations related
to the expressed properties and the soundness of the defined proof rules using
a trace based semantics have been addressed as well. The proposed approach
relies on the definition of algebraic theories offering the capability to define new
operators. The read write machine case study was borrowed from [T. S. Hoang &
Abrial, 2011] to illustrate our approach. Other case studies have been developed
as well (Peterson algorithm [Riviere et al., 2023c] and behavioural analyses in
human computer interaction [Mendil et al., 2022]).

The proposed framework supports non-intrusive analysis for Event-B mod-
els, allowing liveness properties to be expressed and verified on any size Event-B
formal model and at any refinement level without resorting to any other formal
methods. Since our framework allows checking temporal properties at any re-
finement level, it avoids dealing with the preservation of temporal properties by
refinement. Furthermore, the proof process has been enhanced with relevant and
proven rewrite rules, which have been incorporated into Rodin tactics, resulting
in a high level of proof automation. All the developments illustrated in this paper
have been fully formalised and proved using the Rodin platform. They can be
accessed on https://www.irit.fr/~Peter.Riviere/models/

This work leads to several perspectives. First, we plan to study the capability
to allow compositional definitions of LTL properties relying on the defined basic
operators. In addition, the proposed approach makes it possible to define other
Event-B model analyses or domain specific theories shared by many Event-B
models. Last, we believe that our approach can be scaled up to other state based
methods provided that a reflexive meta-model is available.

104 CHAPTER 4. EXTENDING EVENT-B WITH TEMPORAL LOGIC

Assessment
This chapter presents a major result: the EB4EB framework is capable of express-
ing temporal properties (such as liveness properties) on models, and then proving
said properties formally. Such properties are expressed using fragments of linear
temporal logic, encoded algebraically, directly in the framework, and proven to
be sound relative to trace-based semantics. The algebraic definitions are based
on the work of Hoang and Abrial.

The primary benefit of this extension to the EB4EB framework is the inclu-
sion of temporal reasoning capabilities within the proof method for infinite state
spaces. Currently, such analyses can only be performed on models with a reduced
number of states, using model checking tools like ProB. Furthermore, the theory
of temporal operators can be enhanced by defining more complex operators to
cover other temporal properties, like CTL, as well as to address the notions of
completeness for expressing any temporal properties. The proposed mechanism
for temporal properties’ extension of the EB4EB framework can be adapted for
designing various reasoning extensions of different kinds of temporal logic, such
as MTL (Metric Temporal Logic). Furthermore, the proposed framework can be
extended to include other advanced reasoning notions such as probability, parallel
computing, and quantum commuting.

Similar to our previous development, there is a lack of proof automation, but
by providing the additional proof tactics the proof burden is reduced significantly.
However, there is still room to improve the automation steps.

Chapter 5

Extending Event-B with
Explicit Model Annotations

Overview
This chapter presents a methodology for handling domain knowledge requirements
and modelling system behaviour in order to perform domain specific behaviour
analysis by extending the EB4EB framework and its accompanying theories. This
work was carried out in collaboration with PhD student Ismail Mendil, who de-
veloped the domain theories based on ontologies as well as a system model based
on said theories. Further, we applied the EB4EB framework for analysing domain
specific behaviour properties represented using the algebraically defined temporal
operators. To demonstrate our approach, we used an Automated Teller Machine
(ATM) case study. The Theory plugin and Rodin IDE were used to develop do-
main theories and system models, as well as the domain specific behaviour analysis
performed using the EB4EB framework and its associated proof tactics.

Associated paper of this chapter:

• Mendil, I., Riviere, P., Aït Ameur, Y., Singh, N. K., Méry, D., & Palanque,
P. A. [2022]. Non-intrusive annotation-based domain-specific analysis to
certify event-b models behaviours. 29th Asia-Pacific Software Engineering
Conference, APSEC, 129–138

105

106CHAPTER 5. EXTENDING EVENT-B WITH EXPLICIT MODEL ANNOTATIONS

Non-Intrusive Annotation-Based Domain-Specific
Analysis to Certify Event-B Models Behaviours

I. Mendil1, P. Rivière1, Y. Ait-Ameur1, N. K. Singh1, D. Méry2, P. Palanque3

1 INPT-ENSEEIHT / IRIT Universié de Toulouse, France
2 Telecom Nancy, LORIA Université de Lorraine, France

3 IRIT Université de Toulouse, France

5.1 Introduction
5.1.1 Context
System behaviour analysis necessitates handling domain constraints, knowledge
and standards together with the use of different logics and in particular temporal
logic which allows for expressing requirements related to the system behaviour.
Event-B [J.-R. Abrial, 2010], like other formal methods, offers built-in mecha-
nisms like invariant preservation for verifying properties of complex systems mod-
els expressed using abstract machines. However, in order to formalise complex
properties, in particular behavioural properties, the designer must accommodate
the Event-B modelling language constructs especially since these constructs are
based on first-order logic and set theory.

While safety properties are explicitly modelled in Event-B thanks to invari-
ants and theorems, the temporal properties related to liveness require a complex
operational formalisation. Moreover, handling constraints raised by standards or
domain knowledge properties require ad hoc modelling by the designer.

In article [T. S. Hoang & Abrial, 2011], the authors extend the class of liveness
properties for Event-B by defining a list of proof obligations used to express proof
rules. A behavioural semantics to Event-B and a collection of conditions allowing
for verifying LTL properties across a refinement chain are proposed in [S. Hoang
et al., 2016; Schneider et al., 2014]. Although the approach supports extended
LTL operators, the paper does not address the issue of explicitly handling domain
knowledge. Several modelling frameworks, including DOL, CASL [Mossakowski,
2016] and RAISE [Bjørner, 2006, 2017, 2019], advocate for explicit domain knowl-
edge in formal modelling where several fields, such as railways systems, shipping,
and logistics, are described. Additionally, the authors of [Aït Ameur & Méry,
2016] highlight the benefits of expressing explicitly domain properties, and a col-
lection of applications that use explicit domain knowledge in modelling is pre-
sented in [Aït Ameur et al., 2021]. A certification process that ensures a system
model meets the requirements of a standard formalised as an ontology discussed
in [Mendil, Ameur, et al., 2021]. This approach is constructive and relies on the
annotation of state variables with ontology concepts and a set of operators used
to transfer domain knowledge formalised as properties to models.

To the best of our knowledge, no previous work has addressed the issue of deal-

5.1. INTRODUCTION 107

M0

M1

Mi

Mn

refines

refines

refines

Domain
Theory

analysed by

Domain Knowledge
Behavioural Properties

Analysis

Event-B
Modelling

Chain

Figure 5.1: Methodology overview

ing with domain-knowledge behavioral properties in formal design model analysis.
The methodology described in this article claims novelty in this regard, and the
proposed approach goes beyond the intrusive approach in dealing with behavioral
analyses, which integrate elements of the analysis within formal design models
such as auxiliary variables or events. By contrast the proposed approach employs
a non-intrusive technique that is accomplished through external annotation of
events using the EB4EB framework, which allows us to lift the Event-B model by
providing handles for manipulating and referencing the model’s elements. More-
over the methodology shed light on the importance and relevance of the contextual
information related to the system under study.

This paper describes behavioural analyses mined from domain knowledge.
Moreover, the analyses discussed here do not require an a priori alteration of the
models (non-intrusive approach), but rather the certification of the behavioural
model is established through annotations.

5.1.2 Objective of this paper
The prime objective of this paper is to provide an integrated framework (see
Fig. 5.1) for verifying domain-specific behavioural properties of formal design
models. The framework meets an important requirement: non-intrusiveness,
achieved by annotation i.e. the model’s elements are associated with domain
knowledge concepts. This high-level goal is divided into subgoals as follows:

1. Supply a language for expressing domain knowledge concepts and rules.

108CHAPTER 5. EXTENDING EVENT-B WITH EXPLICIT MODEL ANNOTATIONS

Ontologies are good candidates for this purpose.

2. Lift formal models to a meta-level to manipulate explicitly their constituents.

3. Provide a mechanism for defining analyses combining both domain knowl-
edge and formal modelling concepts

4. Bind system models concepts and domain knowledge concepts and set up
the domain-specific behavioural analysis.

Note that the subgoals (1) and (2) are studied and described in [Mendil, Aït
Ameur, et al., 2021] and [Riviere et al., 2022a], respectively. The novelty of
this article is the proposition of an integrated framework for handling behav-
ioral requirements issued from standards through formal models analyses. This
framework takes into account explicit domain knowledge of formal design mod-
els. Moreover, the proposed methodology is based on non-intrusive reasoning
mechanism i.e. it does not require updating the system model.

5.1.3 Organisation of this paper
This paper is structured as follows. Section 5.2 overviews the Event-B method
which is the backbone of the proposed framework. Section 5.3 recalls the two
formal languages used to address sub-goals (1) and (2) respectively, where the
ontology modelling and the meta-Event-B languages are introduced. Section 5.4
presents the integrated framework, meeting sub-goals (3) and (4), to address for-
mal model analyses and annotation mechanisms. Section 5 describes the case
study illustrating the proposed approach and Section 6 defines a specific domain
knowledge-based analysis according to the methodology devised in this article.
Sections 7 provides an assessment and Section 8 concludes with future perspec-
tives.

5.2 Event-B method
Event-B [J.-R. Abrial, 2010] is a correct-by-construction method based on set the-
ory and first-order logic. It supports state-based modelling where a set of events
encodes state changes. Proof Obligations (PO) (see Table 5.2) are automatically
generated.

5.2.1 Contexts and machines (see Table 5.1.(b) and 5.1.(c))
A Context describes the static properties of a model: Axioms and theorems de-
scribing required concepts using carrier sets s, constants c, axioms A and theorems
Tctx . A Machine describes the model behaviour as a transition system. A set of
guarded events is used to modify the state using Before-After Predicates.

5.2. EVENT-B METHOD 109

Theory Context Machine
THEORY Th CONTEXT Ctx MACHINE M
IMPORT Th1, ... SETS s SEES Ctx
TYPE PARAMETERS E, F , ... CONSTANTS c VARIABLES x
DATATYPES AXIOMS A INVARIANTS I(x)

Type1(E, ...) THEOREMS Tctx THEOREMS Tmch (x)
constructors END VARIANT V (x)

cstr1(p1: T1, ...) EVENTS
OPERATORS EVENT evt

Op1 <nature> (p1: T1, ...) ANY α
well−definedness WD(p1, ...) WHERE Gi(x, α)
direct definition D1 THEN

AXIOMATIC DEFINITIONS x :| BAP(α, x, x′)
TYPES A1, ... END
OPERATORS ...

AOp2 <nature> (p1: T1, ...): Tr END
well−definedness WD(p1, ...)

AXIOMS A1, ...
THEOREMS T1, ...
PROOF RULES R1, ...
END

(a) (b) (c)

Table 5.1: Global structure of Event-B Theories, Contexts and Machines

(1) Ctx Theorems (ThmCtx) A(s, c) ⇒ Tctx (For contexts)
(2) Mch Theorems (ThmMch) A(s, c) ∧ I(x)

⇒ Tmch(x) (For machines)
(3) Initialisation (Init) A(s, c) ∧ G(α) ∧ BAP(α, x′)

⇒ I(x′)
(4) Invariant preservation (Inv) A(s, c) ∧ I(x) ∧ G(x, α)∧

BAP(x, α, x′) ⇒ I(x′)
(5) Variant progress (Var) A(s, c) ∧ I(x) ∧ G(x, α)∧

BAP(x, α, x′) ⇒ V (x′) < V (x)

Table 5.2: Relevant Proof Obligations for Event-B contexts and machines

Refinements. Refinement decomposes a machine into a less abstract one with
more design decisions moving from an abstract level to a less abstract one. Gluing
invariants relating abstract and concrete variables ensure property preservation.

Core Well-definedness (WD). WD POs are associated with all Event-B
operators. Once proved, these WD conditions are used as hypotheses to prove
other POs.

5.2.2 Event-B extensions with Theories (see Table 5.1.(a))
To handle more complex and abstract concepts beyond set theory and first-order
logic, an Event-B extension for externally defined mathematical objects has been
proposed in [J.-R. Abrial et al., 2009; M. J. Butler & Maamria, 2013]. It in-
troduces user data types, operators, theorems and associated rewrite and infer-
ence rules, all bundled in so-called theories similar to other proof assistants like
Coq [Bertot & Castéran, 2010], Isabelle/HOL [Nipkow et al., 2002] or PVS [Owre
et al., 1992].

Theories Definition. Theories contain datatypes and operators that can be used
in Event-B expressions as predicates or expressions producing values. Operators
may be defined explicitly in the OPERATORS clause, or defined axiomatically in the
AXIOMATIC DEFINITIONS clause. Last, a theory may provide theorems and proof

110CHAPTER 5. EXTENDING EVENT-B WITH EXPLICIT MODEL ANNOTATIONS

rules. Many theories have been defined for lists, reals, differential equations, etc.

Well-definedness (WD) in Theories. An important feature provided by Event-B
theories is the possibility to define Well-Definedness (WD) conditions (close to
TCC conditions in PVS [Owre et al., 1992]). Each defined operator (thus partially
defined) is associated with a user-defined condition ensuring its correct definition.
When it is applied, this WD condition generates a PO that needs to be discharged.

Event-B proof system and Rodin. Rodin1 is an open source IDE for modelling
in Event-B. It provides model editing, automatic PO generation, project man-
agement, refinement and proof, model checking, model animation and code gen-
eration. The Event-B theories extension is available as a plug-in. They tightly
integrated in the proof process. Depending on their definition, operator definitions
are expanded either using their direct definition or by enriching the hypotheses
pool using their axiomatic definition. Theorems may be imported as hypotheses.
Many provers for first-order logic as well as SMT solvers are plugged into Rodin.

5.3 Background and Related Work
This section reviews the previous work which is the foundation of the methodology
presented in this article. The subsections 5.3.1 and 5.3.2 recall important elements
of two languages formalised as Event-B theories; (1) ontology modelling language
allowing the description of the domain knowledge, and (2) the meta-Event-B
allowing a direct manipulation of the Event-B concepts.

Moreover, this section also review the role and the techniques used across dif-
ferent disciplines notably in formal methods for specifying and referencing domain
knowledge.

5.3.1 Ontology Modelling Language as Event-B Theory
The ontology modelling language [Mendil, Aït Ameur, et al., 2021] is used for
describing domain-specific behavioural properties. It features a trade-off between
the expressive power of first-order logic and the practicality of high-level primi-
tives. It comes as an Event-B theory providing one data type and a collection of
operators and theorems.

Listing 5.1 shows important elements used for modelling an ontology. Ontolo-
giesTheory is an Event-B theory which is parameterised by C, P and I denoting
Classes, Properties and Instances, respectively. This theory defines a construc-
tor consOntology with 7 attributes: classes, properties, instances, class-
Properties, classInstances, classAssociations, instanceAssociations.

In addition, expression and predicate operators allowing to manipulate the
ontology are defined. Operators returning an expression allows computing val-
ues based on ontology attributes. Predicate operators are used defining well-

1Rodin Integrated Development Environment http://www.event-b.org/index.html

5.3. BACKGROUND AND RELATED WORK 111

definedness conditions and to check logical properties. For example, getClass-
Instances is an operator that allows retrieve the relation class to instances in
a safe way since the operator is correctly used only if its well-defined condition
is discharged. The well-definedness condition of this operator is formalised in
the isWDClassInstances stating that the classes and instances of the relation
correspond respectively to classes and instances of the ontology. Another impor-
tant operator is isWDOntology which checks that an ontology is well defined in the
sense that all the attributes obey the individual well-definedness condition. Other
operators are provided among them isA and ontologyContainsClasses where
the former checks where a class subsumes another class and the latter verifies
whether a collection of classes belongs to a given ontology.
THEORY OntologiesT heory
TYPE PARAMETERS C, P, I
DATA TYPES

Ontology(C, P, I)
CONSTRUCTORS

consOntology(classes : P(C), properties : P(P), instances : P(I),
classProperties : P(C × P), classInstances : P(C × I),
classAssociations : P(C × P × C),
instanceAssociations : P(I × P × I))

OPERATORS
isWDClassInstances <pred ica te > . . .
getClassInstances <express ion > . . .
isWDOntology <pred ica te > (o : Ontology(C, P, I))

direct def init ion
isW DClassP roperites(o) ∧ isW DClassInstances(o) ∧
isW DClassAssociations(o) ∧ isW DInstancesAssociations(o)

ontologyContainsClasses <pred ica te > . . .
isA <pred ica te > (o : Ontology(C, P, I), c1 : C, c2 : C)

well−definedness isW DOntology(o), ontologyContainsClasses(o, c1, c2)
direct def init ion

getInstancesOfaClass(o, c1) ⊆ getInstancesOfaClass(o, c2)
. . .

THEOREMS
isATrans :

∀o, c1, c2, c3 · o ∈ Ontology(C, P, I) ∧ isW DOntology(o) ∧
c1 ∈ C ∧ c2 ∈ C ∧ c3 ∈ C∧
ontologyContainsClasses(o, c1, c2, c3)

⇒ (isA(o, c1, c2) ∧ isA(o, c2, c3) ⇒ isA(o, c1, c3))

Listing 5.1: Ontology modelling language Event-B theory
Last, theorems may be derived for the ontology modelling language from the

data type operator definitions. For example, the theorem isATran states that
isA is transitive. It is noteworthy that the theorems are valid provided that the
ontology is well defined, the same applies to all the operators which require a
well-defined ontology as an argument.

5.3.2 The Event-B Meta-theory
For enhancing the reasoning support of Event-B, a reflexive framework has been
defined in the article [Riviere et al., 2022a]. To access Event-B components as
first-class elements and keep the semantics, and propose a reasoning mechanism
expressed with the meta-level.
THEORY EvtBT heo
TYPE PARAMETERS St, Ev

112CHAPTER 5. EXTENDING EVENT-B WITH EXPLICIT MODEL ANNOTATIONS

DATATYPES Machine (St , Ev)
CONSTRUCTORS

Cons_machine(Event : P(Ev), State : P(St), Init : Ev,
Progress : P(Ev), V ariant : P(St × Z), AP : P(St),
BAP : P(Ev × (St × St)), Grd : P(Ev × St), Inv : P(St), . . .)

Listing 5.2: Machine Data type
Listing 5.2 shows the data type representing the machine’s elements, which are

parameterised by two types: Ev and St. A constructor is defined Cons_machine
where each argument corresponds to a machine component. The machine denotes
a state transition system on the set of states (State) constrained by the invariant
(Inv).

Machine structure Events are triggered by the initialisation event (Init) then
by progress events (Progress). State changes are provoked by the After predicate
(AP) for Init, and the Before After Predicate (BAP) for progress events if their
corresponding guards (Grd) are true. A numeric variant (Variant) is defined for
liveness properties.

Event_WellCons <pred ica te > (m : Machine(St, Ev))
direct def init ion partition(Event(m), {Init(m)}, P rogress(m))
. . .

Machine_WellCons <pred ica te > (m : Machine(St, Ev))
direct def init ion Event_W ellCons(m) ∧ . . .

Listing 5.3: Operators to check well-defined data type (static semantics)

Well-Constructed machines The data type requires to formalise the con-
straints on the constructor’s arguments. For example Event_WellCons (see List-
ing 5.3) encodes the property stating that events are partitioned as initialisation
event and progress events and Machine_WellCons defines well constructed ma-
chines (not detailed here because of space limitations reasons).

Machine POs (Semantics of Event-B machines) The proof obligations are
formalised upon the semantics of guarded transitions systems. Each proof obli-
gation is formalised using set theory. Predicates over state variables are modelled
as sets of states satisfying the predicate and logical connectives are formalised by
operations on sets.

Mch_THM <pred ica te > . . .
Mch_INV_Init <pred ica te > (m : Machine(St, Ev))

direct def init ion AP (m) ⊆ Inv(m)
Mch_INV_One_Ev <pred ica te > (m : Machine(St, Ev), e : Ev)

well−definedness e ∈ P rogress(m)
direct def init ion BAP (m)[{e}][Inv(m) ∩ Grd(m)[{e}]] ⊆ Inv(m)

Mch_INV <pred ica te > (m : Machine(St, Ev))
direct def init ion

Mch_INV _Init(m)∧
(∀e · e ∈ P rogress(m) ⇒ Mch_INV _One_Ev(m, e))

Mch_FIS_Init <pred ica te > . . .
Mch_FIS_One_Ev <pred ica te > . . .
Mch_FIS <pred ica te > . . .
Mch_VARIANT_One_Ev <pred ica te > . . .
Mch_VARIANT <pred ica te > . . .
Mch_NAT_One_Ev <pred ica te > . . .
Mch_NAT <pred ica te > . . .

5.3. BACKGROUND AND RELATED WORK 113

Listing 5.4: Well-defined data type operators (behavioural semantics)
For example, Listing 5.4 describes the induction principle for verifying the

invariant PO where Mch_INV_Init predicate states that the initialisation event
must establish the invariant (AP (m) ⊆ Inv(m)) and Mch_INV_One_Ev states that
a given progress event e must preserve the invariant (BAP (m)[{e}] [Inv(m) ∩
Grd(m)[{e}]] ⊆ Inv(m)). Last, the Inv PO (see. Table 5.2) is formalised by the
Mch_INV operator as the conjunction of the two previous operators. Likewise, all
POs are formalised using the same transformation principle.

check_Machine_Consistency <pred ica te > (m : Machine(St, Ev))
well−definedness Machine_WellCons (m)
direct def init ion Mch_T HM(m) ∧ Mch_INV (m) ∧ Mch_F IS(m)∧

Mch_V ARIANT (m) ∧ Mch_NAT (m)

Listing 5.5: Operator for Event-B machine consistency
Last, the operator check_Machine_Consistency of Listing 5.5 is the conjunc-

tion of all the predicates formalising the various POs. It formalises an Event-B
machine correctness condition. When this predicate is used as a theorem in an
Event-B system development then the core POs (see Table 5.2) as well as the
well-definedness POs are automatically generated by the Rodin platform. Dis-
charging all the generated POs along with this theorem ensures the consistency
of the machine.

Instantiation of the meta-theory. The defined meta-theory is instantiated
to define specific Event-B machines. Instantiation consists in defining an Event-B
context with instances for the type parameters St and Ev and providing instances
for the attributes of Cons_machine.

5.3.3 Domain Knowledge in Formal Modelling
This section discusses various works related to research challenges: (1) explicit
domain knowledge in formal specification and (2) the well-adopted formalism for
representing domain knowledge i.e. ontologies.

Domain Knowledge in Formal Specification

Handling domain knowledge and contextual information in long-term research
problem is formal methods. Several approaches and frameworks were devel-
oped like in Coq [Bertot & Castéran, 2010], Isabelle/HOL [Nipkow et al., 2002],
PVS [Owre et al., 1992], Event-B with theories [J.-R. Abrial et al., 2009; M. J. But-
ler & Maamria, 2013] (e.g. control theory for control-command systems [Dupont
et al., 2020]) and critical systems [Aït Ameur & Méry, 2016], DOL - Distributed
Ontology Model and Specification Language based on algebraic specification with
CASL [Mossakowski, 2016] integrated to the OntoHub ontology repository and
RSL - RAISE Specification Language [Bjørner, 2006, 2017, 2019] for railway sys-
tems and shipping, and logistic systems.

114CHAPTER 5. EXTENDING EVENT-B WITH EXPLICIT MODEL ANNOTATIONS

The challenge of linking domain knowledge and design models as well as the
potential benefits of doing so is discussed in [Henderson-Sellers, 2012]. It includes
a mathematical analysis of models and meta models, ontologies, modelling and
meta-modelling languages. Design models annotation by domain-specific knowl-
edge has been studied for state-based methods [Aït Ameur & Méry, 2016] as
well. More recently, the textbook [Aït Ameur et al., 2021] reviewed many cases of
exploiting explicit models of domain knowledge by system models spanning med-
ical systems [Singh et al., 2018, 2021], e-voting systems [Gibson & Raffy, 2021],
distributed systems etc.

Last, focusing on Event-B, a proposal for a simplified ontology description
language was put forward and illustrated on case studies in [Hacid & Aït Ameur,
2016; Hacid & Ameur, 2017]. This approach was based on context extension
where the design models need to discharge proof obligation in form of theorems to
completely validate the compliance of the formal design models to the formalised
domain knowledge.

In this paper, we are interested in engineering domain ontologies in the view
of [Aït Ameur et al., 2017; Jean, Pierra, & Ameur, 2006; Pierra, 2008] to model
domain knowledge as Event-B theories and use typing to annotate system de-
sign models formalised in Event-B allowing an non-intrusive domain-specific be-
havioural analysis.

Ontologies and Domain Modelling

Ontologies, as explicit knowledge models [Gruber, 1995], have been extensively
studied in the literature and applied in several domains spanning semantic web,
artificial intelligence, information systems, system engineering etc.

Several approaches for describing, designing and formalising ontologies for
these application domains have been proposed. Models [OWL Working Group,
2009; Pierra & Wiedmer, 1996], browsers like Protégé 2 [Knublauch et al., 2004]
or PlibEditor 3, query languages like RQL [Karvounarakis et al., 2002], SPARQL
[Prud’hommeaux, 2008], OntoQL [Aït Ameur et al., 2017; Jean, Aït Ameur,
& Pierra, 2006], reasoners like Pellet [Sirin & Parsia, 2004], annotators like
CREAM [Handschuh & Staab, 2003], Terminae [Despres & Szulman, 2006] or
SAWSDL [Kopecký et al., 2007] were proposed.

Domain ontologies have been described for domains such as encyclopedia [Hof-
fart et al., 2013], logistics and rivers and canals [Bjørner, 2006], transportation
systems [Bjørner, 2006; Zayas et al., 2010], electronic components [IEC-61360-4,
1999], bio-informatics [Barrell et al., 2009] etc. Examples of general purpose on-
tologies are [Maio et al., 2012; Niles & Terry, 2004]. Most of mentioned approaches
rely on XML-based formats and pay lot of attention to web knowledge and to the
automatisation characteristic (which may limit the scope of addressed knowledge
models). To the best of our knowledge, principled domain-specific non-intrusive
behavioural analyses of formal design models has not been addressed with above
mentioned approaches.

2http://protege.stanford.edu/
3, https://www.iso.org/standard/43423.html

5.4. DOMAIN-SPECIFIC BEHAVIOURAL ANALYSIS 115

5.4 Domain-Specific Behavioural Analysis
The proposed proposal consists in expressing generic domain knowledge proper-
ties, particularly behavioral ones, as Event-B model concepts. Such properties
are commonly found in domain requirements or standards.

The proposed framework (see Fig. 5.2) is composed of two basic blocks: on-
tology modelling language (see Section 5.3.1) and meta-Event-B language (see
Section 5.3.2). The first component provides primitives to write domain concepts
and constraints as ontologies, while the second component allows for the abstrac-
tion of a system as an instance of the meta-Event-B language, allowing for a
reasoning extension. Moreover, all the behavioural properties encoded in first-
order logic can be written in this proposed framework and validated on models
using the proposed methodology. In addition to purely temporal properties, the
framework allows expressing enriched analyses that take the domain knowledge
into account. A mechanism for referencing domain knowledge in design mod-
els is also defined. The framework is composed of three parts, and the resulting
step-by-step methodology for analysing Event-B models is divided into four major
steps.

Ontology modelling
language

OntologiesTheory

Meta-Event-B Language

EvtBTheory

Behavioural Properties
Theory

predicate operator

Annotated machine

Analysis Theorem

Domain Ontology

ontoContext

Mi
Machine as Context

MiContext

(A)
Event-B

development

(B)
Theories

(C)
Instances

(Event-B contexts)

extendsextends

importsimports

instantiates

instantiates
(operator use)

exports

refines

refines

instantiates

(1)

(4)

(2)

(3)

Mn

M1

M0

refines

Figure 5.2: Event-B-based framework for domain behavioural properties analysis

5.4.1 Components of the methodology
Three main components have been identified: Event-B development Fig. 5.2.(A),
theories Fig. 5.2.(B) and instances as Event-B contexts Fig. 5.2.(C).

(A) Event-B development represents the Event-B model development, in-
cluding the refinement chain for the system design with an abstract machine Mi

116CHAPTER 5. EXTENDING EVENT-B WITH EXPLICIT MODEL ANNOTATIONS

to be analysed;
(B) Theories enabling a designer to manipulate and analyse Event-B models.
Three theories have been introduced :

• EvtBTheory Event-B theory, introduced in section 5.3.2, allowing to for-
malise an Event-B model as a context and to define proof obligations;

• An ontology modelling language (OntologiesTheory in Listing 5.1 of Sec-
tion 5.3.1) for describing domain knowledge concepts and constraints.

• A theory importing both theories in order to 1) annotate Event-B models
with ontological concepts and to 2) define new POs as predicate operators
expressing specific behavioural domain properties and used as theorems on
specific Event-B models expressed as instances.

(C) Instances (Event-B contexts). The third part describes the contexts
instantiating the theories of Part (B). The context (4) describes the annotated
model, which extends the ontology context, the Event-B model context, and de-
fines theorems corresponding to the behavioural properties to be checked. The
proof of these theorems guarantees that the properties hold on the analysed ma-
chine Mi of part (A).

5.4.2 A Methodology for defining Event-B models domain
knowledge based analyses

Our methodology is divided into four steps (see Fig. 5.2).
Step 1: Ontology definition. This step consists in describing the domain

ontology with the domain concepts and properties as an instance, represented by
an Event-B context, of the theory presented in Section 5.3.1.

Step 2: Express a domain-specific behavioural analysis. It consists in defining
a predicate based on an ontology and applying it to an Event-B model

Step 3: Export the Event-B machine. Export the Event-B machine as an
instance of the theory EvtBTheory to be analysed. This instance allows the
machine elements to be explicitly manipulated by the operators of Section 5.3.2
theory.

Step 4: Annotate the Event-B machine. Annotate the Event-B machine with
the ontology concepts from Step 1. Machine concepts (variables and events) are
linked to ontology concepts (tags). The annotated machine is an instance of
the theory defining the behavioural properties with a theorem, formalising this
property requirement by a theorem to be proved.

The remainder of the article demonstrates the approach using Event-B method.

5.5. CASE STUDY 117

5.5 Case Study
5.5.1 Informal Description
A critical interactive system is modelled to demonstrate the proposed approach:
the user interface of an automatic teller machine (ATM), where the primary re-
quirement is that an authenticated client withdraws banknotes safely. The im-
portant requirements associated with HMI are presented below.

• REQ-1 A user can exclusively use a keyboard or a screen.

• REQ-2 To withdraw banknotes, a user must be authenticated.

• REQ-3 A user can adjust the brightness a finite number of times.

• REQ-4 Any entered passcode must be followed by a confirmation.

First, a user inserts a credit card and chooses an input device to enter a
passcode. The user must confirm the entered passcode. Before performing this
operation, the user may adjust the brightness of the screen. When the user
confirms the input, validation starts. It may result in the acceptance or refusal of
the passcode. If the passcode is correct, the ATM delivers banknotes and ejects
the card. Otherwise, the user may try again to enter the correct passcode. A
user makes new attempts a fixed number of times only. REQ-4 is of particular
interest to this work. Indeed, it is issued from the standard independently of any
particular system. In addition, it includes two characteristics: (1) domain-specific
knowledge based requirements and (2) expression of a behavioural property that
must hold for any system complying the standard.

We would like to draw the reader’s attention to the fact that a complete
development of the ATM system would be intractable with a frontal approach.
Relying on system model refinement and decomposition is more appropriate.

5.5.2 Formal Description in Event-B
This section presents the formal development of the ATM user interface corre-
sponding to Fig. 5.2.(A). It consists of a context and a machine defining static
dynamic properties, respectively. Listing 5.6 shows relevant types and constants
for modelling the ATM interface. In axm1 and axm2, two enumerated types,
IPT_MOD and IRT_STS, are defined to select possible input devices (keyboard,
screen) and credit card modes (in, out), respectively. MAX_ATP represents the
maximum number of attempts. Contextual information for managing the bright-
ness limit and brightness levels are defined using axioms (axm7-axm11). Moreover
axm4 to axm6 defines the string type with two constants: EPT_STR for the empty
string and CRT_KYW representing the correct password.
CONTEXT AT MEnvironment
SETS IP T _MOD, IRT _ST S, ST R
CONSTANTS MAX_AT P, CRT _KY W, KBD,

SCR, IN, OUT, BRT _LV S, BRT _MIN, B
RT _MAX, EP T _ST R, MAX_BRT _UP D

118CHAPTER 5. EXTENDING EVENT-B WITH EXPLICIT MODEL ANNOTATIONS

AXIOMS
axm1 : partition(IPT_MOD, {KBD}, {SCR})
axm2 : partition(IRT_STS, {IN}, {OUT})
axm3 : MAX_ATP ∈ N1
axm4 : CRT_KYW ∈ STR
axm5 EPT_STR ∈ STR
axm6 : CRT_KYW ̸= EPT_STR
axm7−8 : BRT_MIN ∈ N ∧ BRT_MAX ∈ N
axm9 : BRT_MAX > BRT_MIN
axm10 : BRT_LVS = BRT_MIN ..BRT_MAX
axm11 : MAX_BRT_UPD ∈ N

END

Listing 5.6: Context of the ATM
Listing 5.7 shows an extract of the machine where 14 variables and safety

properties are introduced to formalize ATM interactions. Several Events are in-
troduced; chnBrt is defined to cover REQ-3, for adjusting the brightness of the
screen. The guard of chnBrt ensures that the maximum number of updates is
not exceeded.
MACHINE ATMUserInterface
SEES ATMEnvironment
VARIABLES str, scrReg, kbdReg, atp, cnfSts, valSts, dlvSts, isStrVis,

iptMod, crdSts, brt, brtUpd, cnfKBDstr, cnfSCRstr
INVARIANTS

inv1−14 : . . .
inv15 : str = scrReg ∨ str = kbdReg
inv16 : isStrVis = ⊥

EVENTS
INITIALISATION. . .
etrKBDStr
WHERE

grd1 : 0 ≤ atp ∧ atp < MAX_ATP
grd2−3 : iptMod = KBD ∧ crdSts = IN
grd4 : cnfKBDstr = ⊥

THEN
act1 : str, kbdReg :| kbdReg′ ∈ STR ∧ str′ = kbdReg′

act2 : brtUpd, cnfKBDstr := 0, ⊤
END
chnBrt
WHERE

grd1 : crdSts = IN
grd2 : brtUpd < MAX_BRT_UPD

THEN
act1 : brt :∈ BRT_LVS
act2 : brtUpd := brtUpd + 1

END
cnfKBDStr
WHERE

grd1 : 0 ≤ atp ∧ atp < MAX_ATP
grd2−3 : iptMod = KBD ∧ crdSts = IN

THEN
act1 : atp := atp + 1
act2 : cnfSts := ⊤
act3 : cnfKBDstr := ⊥

END
. . .

Listing 5.7: ATM machine
Other requirements are checked by invariant proving like inv16: the entered

password is never displayed. REQ-4 embeds a different kind of properties since
(1) it references domain knowledge concepts (2) it is a behavioural property. Due
to space limitation, only important variables and safety properties are presented.

5.6. METHODOLOGY AT WORK 119

5.6 Methodology at work
The methodology’s first step (see Section 5.4) is to define an ontology of events
which is the basis for modelling domain analyses. The main objective is to check
if the ATM model satisfies REQ-4 stating that when an event annotated as input
is activated, a confirmation event will be triggerable. Verifying this requirement
necessitates the instantiation of the triptych: OntologiesTheory, EvBTheory and
predicate operator (see Figure 5.2). The structure of this section follows the
steps of the methodology set up in Section 5.4.

5.6.1 Step 1 - Event Ontology Instantiation (Fig. 5.2.(1))
The ontology modelling language (see. Section 5.3.1) is used to describe Event
tags. input, confirmation, and finite are particularly relevant in the ATM
case study. The first two tags are used to denote interaction events that provide
user input information and formalise a user response. Finally, finite designates
events that does not occur indefinitely. Listing 5.8 (corresponding to ontoContext
of Fig. 5.2.(1)) contains the instantiation of the ontology modelling theory.
It provides 3 type parameters: tags for ontology classes, Ps for tag properties,
and instances for model events. The other ontology contents are not provided
here as they are not relevant for this development.
CONTEXT EventT agOntology
SETS T ags, P s, Ev
CONSTANTS eventOntology, tag, input, confirmation, . . . , finite
AXIOMS

axm1 : partition(Tags, {tag}, {input}, {confirmation}, . . . , {finite})
axm2 : eventOntology ∈ Ontology(Tags, Ps, Ev)
axm3−4 : classes(eventOntology) = Tags∧

instances(eventOntology) = Ev
. . .

END

Listing 5.8: Context for event ontology instantiation

5.6.2 Step 2 - Behaviour Analysis definition (Fig. 5.2.(2))
The definition of the the analysis is composed of 2 phases. First, the terms defining
the analysis are specified and then the predicate formed by the conjunction of these
conditions is parameterised by the domain ontology. This subsection is divided
accordingly and starts with the latter phase.

Domain-Specific Analysis Operator Definition.

The theory for expressing behavioural properties is presented in Listing 5.9. It
corresponds to the predicate operator in Fig. 5.2.(2). For example, REQ-4
is formalised using two operators, isNecFollowedByWD defining the WD condi-
tion of the second one defining the property analysis isNecFollowedBy. Indeed,
isNecFollowedBy verifies whether events annotated by tags in srcTg are always
followed by events annotated by tags in trgTg passing through the intermediate

120CHAPTER 5. EXTENDING EVENT-B WITH EXPLICIT MODEL ANNOTATIONS

events annotated with internalTg. It asserts that each EvtInst event annotated
as srcTg is reachable in the sense of is_Reachable predicate operator.

This operator has 6 arguments: m - machine to be analysed, eo - ontology to
represent the domain concepts and constraints, srcTg - source tags, internalTg
- transit tags, trgTg - target tags, and v - a list of variants. Note that insOfC re-
turns events annotated by tags. To ensure the correct application of this operator,
a WD condition is provided: isNecFollowedByWD predicate. This operator has
six arguments similar to the previous operator. The direct definition of this oper-
ator ensures the well-defined ontology (isWDOntology), reachability conditions
(WD_reach) and satisfies the given variant for each departing event.
THEORY BehaviouralP ropertiesT heory
IMPORT THEORY T heo4Reachability, OntologiesT heory
TYPE PARAMETERS St, Ev, T g, P rop
OPERATORS
isNecFollowedByWD <pred ica te >

(m : Mach(St, Ev), eo : Ontology(T g, P rop, Ev),
srcT g : P(T g), internalT g : P(T g), trgT g : P(T g),
v : P(E × P(St × Z)))

direct def init ion
isW DOntology(eo) ∧ srcT g ∪ internalT g ∪ trgT g ⊆ cls(eo)∧
srcT g ̸= ∅ ∧ trgT g ̸= ∅ ∧ internalT g ̸= ∅∧
srcT g ∩ internalT g = ∅ ∧ trgT g ∩ internalT g = ∅∧
(∀ti · ti ∈ srcT g ∪ internalT g ∪ trgT g ⇒ insOfC(eo, ti) ̸= ∅)∧
v ∈ insOfC(eo, srcT g) → P(St × Z)∧
(∀i, t · i ∈ insOfC(eo, srcT g) ∧ t ∈ insOfC(eo, trgT g) ⇒

W D_reach(m, i, insOfC(eo, trgT g),
insOfC(eo, internalT g), v(i)))

isNecFollowedBy <pred ica te >
(m : Mach(St,E), eo : Ontology(Tg,Prop,Ev),
srcTg : P(Tg), internalTg : P(Tg), trgTg : P(Tg),
v : P(Ev × P(St × Z)))

well−definedness isNecF ollowedByW D(m, eo, srcT g, internalT g, trgT g, v)
direct def init ion

∀EvtInst · EvtInst ∈ insOfC(eo, srcTg) ⇒
Is_Reachable(m,EvtInst, insOfC(eo, trgTg),

insOfC(eo, internalTg), v(EvtInst))
END

Listing 5.9: Domain Behavioural Properties Theory

Analysis Terms Definition

Listing 5.10, based on EvtBTheory in Fig. 5.2.(2), shows reachability theory
where several operators are defined for analysing the reachability properties.
WD_reach operators’s definition ensures that the machine m is well constructed
(Machine_WellCons), the machine invariants are preserved (Mch_INV), the tar-
get event is not the initialisation event (Init(m)), the variant is defined for all
reachable states.

Given a source event src, a set of intermediary events es, and a target event
trg, Is_Reachable(m, src, trg, es, v) holds if, when src is activated, then
some intermediate events in es may be observed finitely many times before trg
is activated.

The definition of Is_Reachable operator states that first, the src event must
imply either the guards of the events in es or the guard of the events in trg
(Init_Local_Inv). Second, the local invariant Local_Inv_Preserved must be

5.6. METHODOLOGY AT WORK 121

preserved by intermediary events. Note that the set Grd(m)[{trg}] defined by
the local invariant guarantees that the guard of the trg always holds. Then, the
definition excludes the events not in es (No_Exit operator). Last, the intermedi-
ary events es must not be indefinitely active (variants operator TGMch_NAT and
TGMch_VARIANT).

The analysis is strong since it requires that the events imply the guards of
the target events. This can be applied for analysis to systems that do not satisfy
this condition without losing generality; indeed, by refinement, this can address
systems that reach the desired states after many steps; the refinement of the
intermediary events does not break the analysis.
THEORY Theo4Reachabi l i ty IMPORT THEORY EvtBT heory
TYPE PARAMETERS St, Ev
OPERATORS
next_states <express ion > (m : M(St, Ev)) direct def init ion . . .
WD_reach <pred ica te >

(m : M(St, Ev), src : Ev, trg : P, es : P(Ev), v : P(St × Z))
direct def init ion

Machine_W ellCons(m) ∧ trg ⊆ P rogress(m) ∧ src ∈ Event(m)∧
Inv(m) ◁ v ∈ Inv(m) → Z ∧ Mch_INV (m) ∧ es ⊆ P rogress(m)

Init_Local_Inv <pred ica te > (m : M(St, Ev), src : Ev, lInv : P(St)) . . .
Local_Inv_Preserved <pred ica te >

(m : M(St, Ev), initE : Ev, evs : P(Ev), lInv : P(St))
. . .

No_Exit <pred ica te > (m : M(St, Ev), yesE : P(Ev), noE : P(Ev),
trg : P(Ev), v : P(St × Z))

. . .
TGMch_VARIANT <pred ica te > (m : M(St, Ev), v : P(St × Z), es : P(Ev)) . . .
TGMch_NAT <pred ica te > (m : M(St, Ev), v : P(St × Z), es : P(Ev)) . . .
Is_Reachable <pred ica te >

(m : M(St, Ev), src : Ev, trg : Ev, es : P(Ev), v : P(St × Z))
well−definedness W D_reach(m, src, trg, es, v)
direct def init ion

Init_Local_Inv(m, src, Grd(m)[trg])∧
Local_Inv_P reserved(m, src, es, Grd(m)[trg])∧
No_Exit(m, es, P rogress(m) \ (es ∪ src ∪ trg), trg, v)
T GMch_NAT (m, v, es)∧
T GMch_V ARIANT (m, v, es)∧

END

Listing 5.10: Reachability Theory

5.6.3 Step 3 - Exporting Event-B models as instances of
the Meta-Event-B theory (Fig. 5.2.(3))

CONTEXT AT MmEBModel
EXTENDS AT MEnvironment, EventT agOntology
CONSTANTS istCrd ,KBDStr ,SCRStr ,dlvBnkNts ,cnfKBDStr ,

chnBrt ,cnfSCRStr ,chkStrCrt ,chkStrW rg ,AT M ,init
AXIOMS

axm1 : partition(Ev, {KBDStr}, {chnBrt}, {cnfKBDStr},
. . . , {chkStrWrg}, {dlvBnkNts})

axm2 : ATM ∈ Machine(STR × STR × STR × Z × BOOL × BOOL×
BOOL × BOOL × IPT_MOD × IRT_STS × Z×
Z × BOOL × AMT, Ev)

axm3 : Event(ATM) = Ev
axm4 : Grd(ATM) = {e 7→ (str 7→ scrReg 7→ kbdReg 7→ atp 7→

cnfSts 7→ valSts 7→ dlvSts 7→ isStrVis 7→ iptMod 7→
crdSts 7→ brt 7→ brtUpd 7→ nStr 7→ sum) |

(e = istCrd ∧ crdSts = OUT)∨
(e = KBDStr ∧ 0 ≤ atp ∧ atp < MAX_ATP∧

122CHAPTER 5. EXTENDING EVENT-B WITH EXPLICIT MODEL ANNOTATIONS

iptMod = KBD ∧ crdSts = IN ∧ nStr = ⊥)∨
(e = chnBrt ∧ brtUpd ≤ MAX_BRT_UPD ∧ crdSts = IN)∨
(e = cnfKBDStr ∧ 0 ≤ atp ∧ atp < MAX_ATP∧

iptMod = KBD ∧ crdSts = IN∧
cnfSts = ⊥ ∧ valSts = ⊥ ∧ nStr = ⊥) ∨ . . .}

axm5 BAP(ATM) = {e 7→ ((str 7→ 7→ sum) 7→
(strp 7→ . . . 7→ sump)) |

(e = KBDStr ∧ kbdRegp ∈ STR ∧ strp = kbdRegp∧
brtUpdp = 0 ∧ nStrp = ⊤∧
scrReg 7→ . . . 7→ sum = scrRegp 7→ . . . 7→ sump)∨

(e = cnfKBDStr ∧ atpp = atp + 1 ∧ cnfStsp = ⊤∧
str 7→ . . . 7→ sum = strp 7→ . . . 7→ sump)∨

(e = chnBrt ∧ brtp ∈ BRT_LVS ∧ brtUpdp = brtUpd + 1∧
str 7→ . . . sum = strp 7→ . . . sump) ∨ . . .}

THEOREMS
thm : check_Machine_Consistency(ATM)

END

Listing 5.11: Annotation and analysis context
Each Event-B machine can be formalised as an instance of the Event-B meta-

theory (Machine Mi on Fig. 5.2.(A)) . To define an Event-B machine as an instance,
it is enough to instantiate (give values) the Machine(St, Ev) attributes at in-
stantiation (see Listing 5.2). The St type parameter is substituted by a Cartesian
product of the set types of ATMUserInterface machine state variables (14 in to-
tal) and Ev by the set of the events of this machine. Listing 5.11, corresponding
to MiContext in Fig. 5.2.(3), shows an extract of the ATMUserInterface machine
exported as an instance of the meta-Event-B theory. Guards and actions of the
events are formalised, as instances, in the Grd(ATM) and BAP(ATM) sets (axioms
axm4 and axm5).

5.6.4 Step 4 - Annotation & analysis (Fig. 5.2.(4))
The final step before checking the property is annotation. It links the domain
concepts and constraints to the design model. The events are assigned to tags
satisfying the subsumption relation. For example, the cnfKBDStr is assigned to
textualConfirmation, confirmation and Tag.
CONTEXT AnnotatedMachine
EXTENDS EventT agOntology, AT MmEBModel
CONSTANTS annotationDef, variantsDef
AXIOMS

axm1 : annotationDef = ({bounded} × {chnBrt})∪
({inputByKeyboard} × {KBDStr}) ∪ . . . ∪
({input} × {KBDStr, SCRStr})∪
({textualConfirmation} × {cnfKBDStr})∪
({confirmation} × {cnfSCRStr, cnfKBDStr})∪
({interaction} × {KBDStr, SCRStr, cnfKBDStr, cnfSCRStr})∪
({tag} × Ev)

axm2 : classInstances(eventOntology) = annotationDef
axm3 : variantsDef = {KBDStr 7→ {p 7→ bright 7→ ck 7→ cs 7→ v

| p 7→ bright 7→ ck 7→ cs ∈ State(AT M)∧
v = MAX_BRT_UPD − bright}}∪

{SCRStr 7→ {p 7→ bright 7→ ck 7→ cs 7→ v
| p 7→ bright 7→ ck 7→ cs ∈ State(AT M)∧

v = MAX_BRT_UPD − bright}}
THEOREMS

isWDOntologyThm : isWDOntology(eventOntology)
vThm : variantsDef ∈ annotationDef [{input}] → P(State(ATM) × Z)
anaThm : isNecFollowedBy(ATM , eventOntology,{input},

{bounded},{confirmation, abortion}, variantsDef)

5.7. ASSESSMENT 123

END

Listing 5.12: Annotation and analysis context
The model events are annotated using the annotationDef relation. They

are related to the eventOntology via classInstances. Indeed, the events are
instances of the ontology classes of tags. In Listing 5.12, which materialises
Analysis Theorem in Fig. 5.2.(4), there are 3 main theorems isWDOntologyThm,
vThm and anaTh. The first proves that the eventOntology is well-defined as de-
scribed in Section 5.3.1. The second is important to establish the WD condition of
the analysis operator; it ensures that variants are supplied for all events annotated
with input. The last theorem is the most important, it ensures the correctness of
the analysis performed by discharging the generated proof obligations associated
to theorems. The proof of application of the predicate operator isNecFollowedBy
states that the requirement REQ-4 is satisfied for the ATMUserInterface.

5.7 Assessment
This section discusses the evaluation of the framework described in section 5.4
corroborated by the observations of section 5.6. All the models are available via
this link 4.

5.7.1 Principled Methodology vs. Ad hoc Analysis.
The prime objective of the methodology is to define a set of principles that can
be used for describing domain-specific behavioural analyses. A direct approach
would be to follow a shallow paradigm analysis, which consists of incorporating
the analysis elements into the model. The methodology provides two modules: (1)
the ontology modelling language which allows defining domain knowledge as an
ontology, and (2) the Meta-Event-B modelling language which provides a handle
to reason on Event-B concepts. Furthermore, refinement is used when possible to
overcome the definition of complex analyses (see. section 5.6.2).

5.7.2 Domain-Specific Analyses and Reusability & Shara-
bility.

The ability to parameterise the behavioural analyses with domain-specific con-
straints and concepts is a significant aspect of the analyses discussed in this ar-
ticle. This enables precise analyses based on concepts and rules drawn from a
domain knowledge description. This was the case for the analysis presented in
this article, which is based on an event ontology. The framework architecture (see
Fig. 5.2) improves the reusability and shareability of the analysis.

4https://www.irit.fr/~Ismail.Mendil/recherches/

124CHAPTER 5. EXTENDING EVENT-B WITH EXPLICIT MODEL ANNOTATIONS

5.7.3 The Methodology Is Non-Intrusive.
Integrating domain knowledge concepts and constraints directly into the system
model could be one approach to investigating the behaviour properties. Such an
approach suffers from a lack of generalisation and is intrusive when modelling a
system is mixed with analysis details and it may not be scalable. The approach
presented in this article allows to avoid these difficulties; indeed, the methodology
uses the model as an argument, and the annotation is not intrusive.

5.7.4 Proof-Based Verification.
Another approach would be to boil down the domain knowledge behaviour prop-
erties into temporal properties and then use model checking to verify the resulting
set of temporal properties. The model is passed as an argument to the analysis
procedure alongside the domain knowledge model, which has the advantage of be-
ing non-intrusive. Yet, this method meets quickly its limitation when the systems
are large and complex due to the classical problem of state explosion. Further-
more, manual translation of domain knowledge constraints is fastidious. The
methodology proposed in this article goes beyond this limitation thanks to the
proof-based verification. Indeed, the analysis is established by proving a predicate
operator where variant and invariant proof obligations are discharged.

5.7.5 Proof & Modelling Effort Reduction.
The methodology proposed in this article reduces proof effort by factorising out
common parts such as the proof of the well-definedness analysis and the definition
of a collection of lemmas useful at the model side. In addition, the framework
components are described once and for all, and they are only proved before being
deployed and used for multiple system models. All the proofs performed on the
theory side (see Fig. 5.2.(A)) are achived once and for all. They are reused at the
machine instance level.

5.8 Conclusion
This article addressed the issue of analysing domain-specific behavioural proper-
ties over formal models of systems. The proposal begins by identifying several
intermediate subgoals for achieving the main goal and consists of an integrated
framework and methodology centred around the Event-B method for investigat-
ing non-intrusively behavioural properties mined from domain knowledge. Sev-
eral challenges are identified: (1) formalising domain knowledge, (2) accessing and
manipulating Event-B concepts (3) defining domain-specific behavioural analyses,
and (4) annotating and analysing Event-B models. Solutions for all subgoals are
proposed in the Event-B setting, indeed (1) domain knowledge is formalised using
an ontology modelling language; (2) meta-Event-B is used as a handle for express-
ing properties on Event-B machines; (3) a methodology for formalising analyses
based on the two former theories is presented; and (4) annotating Event-B models

5.8. CONCLUSION 125

for analysis purposes. The methodology is illustrated through a concrete analysis
applied to a real-world case study.

This framework will be used in future work to generalize the ontology of events
to include associations between events. In addition, this approach can be ex-
ploited for certification purposes. Indeed, a non-intrusive analysis may be carried
out for such purposes if certification standards are formalised as theories formal-
ising certification properties. Last, other case studies may be analysed to draw
quantitative assessment of our methodology.

Acknowledgment
This study was undertaken as part of the FORMEDICIS (FORmal MEthods for
the Development and the engineering of Critical Interactive Systems) ANR-16-
CE25-0007 and EBRP (EventB-Rodin-Plus) ANR-19-CE25-0010.

126CHAPTER 5. EXTENDING EVENT-B WITH EXPLICIT MODEL ANNOTATIONS

Assessment
This chapter plays a vital role in assessing the usability, scalability, and expres-
sivity of the EB4EB framework, in particular for handling domain knowledge
requirements and system modelling behaviour analyses by annotating Event-B
models. In this study, we performed domain specific behaviour analyses using the
algebraically defined operators of EB4EB and its temporal extension, which in-
cludes LTL operators. All generated proof obligations are discharged successfully
to ensure the behavioural correctness.

The key advantages of this approach are that it allows for non-intrusive be-
haviour analysis, which can help to meet standard criteria as well as certification
requirements considering domain knowledge. It should be noted that most of the
proofs are accomplished interactively; nevertheless, there is some good support
for proof rules supplied within the development of the EB4EB framework and its
other theory extensions.

Chapter 6

Empowering the Event-B
Method

Overview
This chapter presents the results of combining various modelling techniques ad-
dressing different classes of problems as well as systems to determine how impor-
tant it is to carefully define well-definedness conditions for the defined operators
and other modelling constructs such as partial functions and relations to ensure
invariant preservation through inductive proofs over execution traces and prevent
ill-defined state changes. To support this claim, we describe transitions explicitly
as partial functions in an Event-B theory, and the associated well-defined condi-
tions of these functions prevent ill-defined transitions during system modelling.
Based on our findings, well-definedness conditions are adequate to preserve induc-
tive invariants and the specified safety properties. Furthermore, well-definedness
conditions assist in the proving process and encapsulate the required properties
to ensure the correct uses of defined operators and modelling constructs. This
work is carried out in the Event-B modelling language with the Theory plugins
and Rodin IDE. Several proof rules are defined for simplifying and rewriting well-
defined predicates. It can be used to define reusable higher-order data types and
their properties.

Associated paper of this chapter:

• Aït Ameur, Y., Dupont, G., Mendil, I., Méry, D., Pantel, M., Riviere, P.,
& Singh, N. K. [2022]. Empowering the Event-B Method Using External
Theories. IFM, 13274, 18–35

127

128 CHAPTER 6. EMPOWERING THE EVENT-B METHOD

Empowering the Event-B Method Using External
Theories

Y. Aït-Ameur1, G. Dupont1, I. Mendil1, D. Méry2, M. Pantel1, P. Rivière1, N.
K. Singh1

1 INPT-ENSEEIHT/IRIT, University of Toulouse, France
{yamine,guillaume.dupont, ismail.mendil, marc.pantel, peter.riviere,

nsingh}@enseeiht.fr
2 LORIA, Université de Lorraine and Telecom Nancy, Nancy, France

dominique.mery@loria.fr

Event-B offers a rigorous state-based framework for designing critical systems.
Models describe state changes (transitions), and invariant preservation is ensured
by inductive proofs over execution traces. In a correct model, such changes trans-
form safe states into safe states, effectively defining a partial function, whose
domain prevents ill-defined state changes. Moreover, a state can be formalised as
a complex data type, and as such it is accompanied by operators whose correct
use is ensured by well-definedness (WD) conditions (partial functions).

This paper proposes to define transitions explicitly as partial functions in an
Event-B theory. WD conditions associated to these functions prevent ill-defined
transitions in a more effective way than usual Event-B events. We advocate that
these WD conditions are sufficient to define transitions that preserve (inductive)
invariants and safety properties, thus providing easier and reusable proof methods
for model invariant preservation. We rely on the finite automata example to
illustrate our approach.

6.1 Introduction
Our proposal stems from the following two extensive research observations:

First, formal state-based methods have demonstrated their ability to model
complex systems and reason about them to establish properties reflecting the
modelled requirements. In particular, they have proven to be effective in ensuring
system safety through the verification of invariant properties. This ensures that
each reachable state of the modelled system fulfills these invariants, i.e. the
system state is always in a safe region and never leaves it. In general, invariants
verification is based on an induction principle over traces of transition systems,
i.e. invariants hold in the initial state and if they hold in any state, then they hold
in the next state (deterministic) or next states (non-deterministic). The proof is
carried out on the formalised model using the associated proof system.

Second, the modelling of complex systems in system engineering relies on
domain knowledge that is shared and reused in system models. It contains defi-
nitions as well as domain-specific properties. In general, this domain knowledge
is formalised as theories with data types, operators, axioms and theorems proved

6.2. INVARIANTS AND WELL-DEFINEDNESS (WD) 129

using the associated proof system, independently of the designed models. In these
theories, a Well-Definedness (WD) condition is associated to each operator ex-
pressing the constraints to be fulfilled for its application (partial function). The
theories are used to type concepts in system models, to manipulate them with
operators, and finally to establish system specific properties with the help of the
axioms and theorems issued from these theories.

Our claim. From our observations, we claim that it is possible to exploit ex-
ternally defined theories and rely on the associated WD conditions to establish
system properties, in particular, safety ones. The idea consists in formalising state
changes (transitions) explicitly as partial function expressed by operators defined
in external theories. The WD conditions associated with each theory operator
when discharged as proof obligations (PO) prevent ill-defined transitions.

Objective of this work. In the presence of theories that axiomatise domain
specific data types, our approach defines another modelling and proof technique
for invariant preservation in Event-B [2]. It relies on the use of automatically gen-
erated WD proof obligations associated with operators coded as partial functions,
to circumscribe the states of the system under design to a given safety domain.

Organisation of the paper. Next section discusses invariant and WD proof
obligations with respect to related work. Section 3 overviews the Event-B concepts
needed for our approach. Section 4 describes the formalism of finite automata,
used to illustrate our approach and Section 5 shows their formalisation as an
Event-B model. Section 6 presents our approach, and its correctness is justified
in Section 7. Section 8 shows its application on finite automata. Last, a conclusion
and future research directions are presented in Section 9.

6.2 Invariants and Well-Definedness (WD)
State-based methods are characterised by the explicit definition of a state, usually
characterised by variables as well as a set of actions that modify them. These
actions rely on the generalised assignment operation based on the “becomes such
that” before-after predicate (for deterministic and non deterministic assignments)
introduced, in particular, by the seminal work of [J.-R. Abrial, 1996; Dijkstra,
1975; Floyd, 1967; Hoare, 1969]. This operation defines a state transition and it
is encapsulated in ASM rules [Börger & Stärk, 2003], substitutions or events in B
and Event-B [J.-R. Abrial, 2010], Hoare triples [Hoare, 1969], Guarded Commands
(GCL) [Dijkstra, 1975], operations in RSL [George, 1991] and VDM [C. B. Jones,
1986], actions in TLA+ [Lamport, 2002b], schemas in Z [Spivey, 1992] and so on.
All these methods provide a proof obligation (PO) generation mechanism that
generates proof goals submitted to the underlying method’s proof system. These
ones are involved in the description and verification of invariants defining safety
properties resulting from requirements.

130 CHAPTER 6. EMPOWERING THE EVENT-B METHOD

Invariants.

The before-after predicate (BAP) allows to observe the state of a system and
state changes in traces describing system behaviours. Inductive-based reasoning
defined on such traces establishes properties, in particular invariant preservation.
Informally, it states that if a property holds for the initial state and that, for any
transition, this property holds before and after this transition, then it holds for
every state of the system.

Without loss of generality, let us consider an Event-B guarded event: WHEN
G(x) THEN x :| BAP (x, x′) END. x is a state variable, G(x) a guard (predicate)
and BAP (x, x′) a BAP relating before x and after x′ state variable values. Under
A(s, c) axiomatisation of sets and constants definitions, the invariant I(x) preser-
vation PO for such event is A(s, c) ∧ G(x) ∧ BAP (x, x′) ∧ I(x) =⇒ I(x′). This
PO shall be proved for each event of the model.

Well-Definedness (WD).

According to [J. Abrial & Mussat, 2002], Well-Definedness describes the circum-
stances under which it is possible to introduce new term symbols by means of
conditional definitions in a formal theory as if the definitions in question were un-
conditional, thus recovering completely the right to subsequently eliminate these
symbols without bothering about the validity of such an elimination. It avoids
describing ill-defined operators, formulas, axioms, theorems, and invariants.

In Event-B, each formula is associated to well-definedness POs [Leuschel, 2020]
that ensure that the formula is well-defined and that two-valued logic can be used.
A WD predicate WD(f) is associated with each formula f . This predicate is
defined inductively on the structure of f . For example, if we consider a and b
being two integers, P and Q two predicates, f of type P(D × R), the following
WD definitions can be written as WD(a÷ b) ≡ WD(a)∧WD(b)∧ b ̸= 0, WD(P ∧
Q) ≡ WD(P) ∧ (P ⇒ WD(Q)), WD(P ∨ Q) ≡ WD(P) ∧ (P ∨ WD(Q)) or
WD(f(a)) ≡ WD(f) ∧ WD(a) ∧ a ∈ dom(f) ∧ f ∈ D 7→ R where 7→ denotes a
partial function. Once the WD POs are proved, they are added as hypotheses in
the proofs of the other POs [J.-R. Abrial, 2010].

Invariants and WD.

When reporting an error in a proof by J-P. Verjus, A. J. M. van Gasteren and G.
Tel [van Gasteren & Tel, 1990] identified the concepts of “always-true” and “invari-
ant”. In Event-B, “always-true” is expressed using theorems on variables, while
“invariant” is expressed as inductive invariants. In addition, invariant properties
shall be expressive enough to derive safety properties. Our approach is illustrated
on Event-B. We consider a state change as a transformation function on state
variables. As this function is partial, it is associated with WD conditions.

Handling WD conditions and partial functions (7→) definitions in proofs and
proof systems is not new. The paper of C.B. Jones [C. B. Jones, 1995] clearly high-
lights the importance of dealing with such definitions. In formal proof systems, it
has been addressed in different manners using two-valued and three-valued logic

6.3. OVERVIEW OF EVENT-B 131

(with weak and strong equality), subset types, denotational approaches, type-
correct conditions of total functions, etc. [J. Abrial & Mussat, 2002; Barringer
et al., 1984; C. B. Jones & Middelburg, 1994; Leuschel, 2020; Nipkow et al., 2002;
Owre et al., 1992; Stoddart et al., 1999].

Our proposal.

Our research focuses on state-based modelling with Event-B but may be trans-
ferred to other state-based methods. We view a state change (transition) as a
partial function Trans : State 7→P(State) (or Trans : State 7→State for a determin-
istic system). Here, State denotes the Cartesian product of the type of each state
variable. As an invariant must restrict state changes to safe states, this function
can be seen as a partial function, well-defined on the set of safe states SafeSt as
TransInv : SafeSt 7→ P(State). To preserve the invariant, one has to prove that:
ran(TransInv) ⊆ P(SafeSt).

Based on the definition of such function, our proposal consists in describ-
ing an alternative approach to Event-B invariant preservation based on the def-
inition, in an Event-B theory, of a data type T describing a State with a set
of well-founded operators (well-defined partial functions). An operator Op(x1 :
T1, x2 : T2, . . . , xn : Tn) with n arguments returns an expression of type T and
is associated to a logical condition of the form WD(x1, x2, . . . , xn) stating that
x1, x2, . . . , xn ∈ dom(Op). Each operator describes safe state changes according
to a given reusable property independently of any model. Below, we show how
this approach works for Event-B models.

6.3 Overview of Event-B
Event-B [J.-R. Abrial, 2010] is a correct-by-construction method based on set
theory and first order logic (FOL). It relies on an expressive state-based modelling
language where a set of events models state changes.

6.3.1 Contexts and machines (Tables 6.1.b and 6.1.c)
A Context component describes the static properties of a model. It introduces the
definitions, axioms and theorems needed to describe the required concepts using
carrier sets s, constants c, axioms A and theorems Tctx . A Machine describes
the model behaviour as a transition system. A set of guarded events is used to
modify a set of state variables using Before-After Predicates (BAP) to record state
changes. Machines are made of variables x, invariants I(x), theorems Tmch(x),
variants V (x) and events evt (possibly guarded by G and/or parameterized by
α).

Refinements. Refinement (not used in this paper) decomposes a machine into
a less abstract one with more design decisions (refined states and events) moving
from an abstract level to a less abstract one (simulation relationship). Gluing

132 CHAPTER 6. EMPOWERING THE EVENT-B METHOD

Theory Context Machine
THEORY Th CONTEXT Ctx MACHINE M
IMPORT Th1, ... SETS s SEES Ctx
TYPE PARAMETERS E, F , ... CONSTANTS c VARIABLES x
DATATYPES AXIOMS A INVARIANTS I(x)

Type1(E, ...) THEOREMS Tctx THEOREMS Tmch(x)
constructors END VARIANT V (x)

cstr1(p1: T1, ...) EVENTS
OPERATORS EVENT evt

Op1 <nature> (p1: T1, ...) ANY α
well−definedness WD(p1, ...) WHERE G(x, α)
direct definition D1 THEN

AXIOMATIC DEFINITIONS x :| BAP(α, x, x′)
TYPES A1, ... END
OPERATORS ...
AOp2 <nature> (p1: T1, ...): Tr END

well−definedness WD(p1, ...)
AXIOMS A1, ...

THEOREMS T1, ...
END

(a) (b) (c)

Table 6.1: Global structure of Event-B Theories, Contexts and Machines

invariants relating abstract and concrete variables ensure property preservation.
We do not give more details on refinement as the approach we propose applies to
any Event-B machine being either a root machine or a refinement machine.

Proof Obligations (PO) and Property Verification. Table 6.2 provides a
set of automatically generated POs to guarantee Event-B machines consistency.

(1) Ctx Theorems (ThmCtx) A(s, c) ⇒ Tctx (For contexts)
(2) Mch Theorems (ThmMch) A(s, c) ∧ I(x) ⇒ Tmch(x) (For machines)
(3) Initialisation (Init) A(s, c) ∧ G(α) ∧ BAP(α, x′)⇒ I(x′)
(4) Invariant preservation (Inv) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ I(x′)
(4) Event feasibility (Fis) A(s, c) ∧ I(x) ∧ G(x, α)⇒ ∃x′ · BAP(x, α, x′)
(5) Variant progress (Var) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ V (x′) < V (x)

Table 6.2: Relevant Proof Obligations

Core Well-definedness (WD). In addition, WD POs are associated to all
Event-B built-in operators of the Event-B modelling language. Once proved,
these WD conditions are used as hypotheses to prove further proof obligations.

6.3.2 Event-B extensions with Theories
In order to handle more complex and abstract concepts beyond set theory and
first-order logic, an Event-B extension for supporting externally defined mathe-
matical objects has been proposed in [J.-R. Abrial et al., 2009; M. J. Butler &
Maamria, 2013]. This extension offers the capability to introduce new data types
by defining new types, operators, theorems and associated rewrite and inference
rules, all bundled in so-called theories. Close to proof assistants like Coq [Bertot
& Castéran, 2010], Isabelle/HOL [Nipkow et al., 2002] or PVS [Owre et al., 1992],
this capability is convenient to model concepts unavailable in core Event-B, using
data types.

6.4. AN ILLUSTRATIVE CASE STUDY 133

Theory description (See Table 6.1.a). Theories define and make available
new data types, operators and theorems. Data types (DATATYPES clause) are
associated to constructors, i.e. operators to build inhabitant of the defined type.
These ones may be inductive. A theory may define various operators further used
in Event-B expressions. They may be FOL predicates, or expressions producing
actual values (<nature> tag). Operator application can be used in other Event-B
theories, contexts and/or machines. They enrich the modelling language as they
occur in the definition of axioms, theorems, invariants, guards, assignments, etc.

Operators may be defined explicitly in the DIRECT DEFINITION clause (case
of a constructive definition), or defined axiomatically in the AXIOMATIC DEFINI-
TIONS clause (a set of axioms). Last, a theory defines a set of axioms (AXIOMS
clause), completing the definitions, and theorems (THEOREMS clause). Theorems
are proved from the definitions and axioms. Many theories have been defined for
sequences, lists, groups, reals, differential equations, etc.

Well-definedness (WD) in Theories. An important feature provided by
Event-B theories is the possibility to define Well-Definedness (WD) conditions.
Each defined operator (thus partially defined) is associated to a condition ensur-
ing its correct definition. When it is applied (in the theory or in an Event-B
machine or context), this WD condition generates a proof obligation requiring to
establish that this condition holds, i.e. the use of the operator is correct. The
theory developer defines these WD conditions for the partially defined operators.
All the WD POs and theorems are proved using the Event-B proof system.

Event-B proof system and its IDE Rodin. Rodin1 is an open source IDE
for modelling in Event-B. It offers resources for model editing, automatic PO gen-
eration, project management, refinement and proof, model checking, model ani-
mation and code generation. Event-B’s theories extension is available under the
form of a plug-in. Theories are tightly integrated in the proof process. Depend-
ing on their definition (direct or axiomatic), operator definitions are expanded
either using their direct definition (if available) or by enriching the set of axioms
(hypotheses in proof sequents) using their axiomatic definition. Theorems may
be imported as hypotheses and, like other theorems, they may be used in proofs.
Many provers like first-order logic, or SMT solvers, are plugged to Rodin as well.

6.4 An Illustrative Case Study
We illustrate our approach for invariant preservation by using finite automata
as a running example. We define finite automata using a set of operators, and
consider the deterministic property as an invariant property we wish to study.
Finite automata are modelled as labelled state transitions systems (LTS). A set
of operators are defined on LTS together with a logical property formalising the
deterministic property.

1Rodin Integrated Development Environment http://www.event-b.org/index.html

134 CHAPTER 6. EMPOWERING THE EVENT-B METHOD

l1_st

l2_st

l4_st

l3_st

l1_l l2_l

l3_ll4_l

a: l_lts

r1_st r2_st r3_st
r1_l r2_l

r3_l

b: r_lts

l1_st

l2_st

l4_st

l3_st r1_st r2_st r3_st

l1_l l2_l

l3_ll4_l

r1_l r2_l

r3_l

l

l

l

l

c: PrefixedMerge application

new_init_st

l1_st

l2_st

l4_st

l3_st

r1_st r2_st r3_st

l1_l l2_l

l3_ll4_l

r1_l r2_l

r3_l

rl

ll

d: PrefixedUnion application

Figure 6.1: Examples of LTS operators applications

A Lts ∈ LT S is defined as a tuple Lts = (s0, S, Σ, →) where s0 ∈ S is an
initial state belonging to the set of states S, Σ an alphabet and →⊆ S × Σ × S is
a transition relation. ϵ ∈ Σ denotes the empty label.

In order to keep the paper in reasonable length, we focus on two operators:
PrefixedUnion (Fig. 6.1d) builds the union of two Lts, each of which is prefixed by
discriminating labels ll and rl and linked to a new initial state, and PrefixedMerge
(Fig. 6.1c) merges two Lts using an intermediate label l. We require that each
operation preserves the deterministic property of Lts: if the Lts fed into these
operators are deterministic, then so are their output.

Remark. It is worth noticing that finite automata are our objects of study, and
should not be confused with the state-based semantics of Event-B expressed as
transition systems.

Next steps. Below, we present two Event-B developments: a classical one (Sec-
tion 6.5) relying on inductive proofs of the invariant using core Event-B and a
second one (Section 6.8), corresponding to the proposed approach relying on the
use of externally defined Event-B theories and on WD conditions. This enables
us to compare both modelling approaches by highlighting

6.5 Invariant Preservation: Core Event-B
Modelling finite automata in Event-B follows the classical development process of
defining the context axiomatising the concepts required to model these automata

6.5. INVARIANT PRESERVATION: CORE EVENT-B 135

and the machine modelling transformations on them through a set of events while
ensuring invariants (here, determinism) are preserved.

As the purpose of the paper is to show that invariant preservation can be
guaranteed using theories and associated WD conditions, only extracts of the
model based on the classical approach using Event-B are shown.

An Event-B context for LTS definition.

The Ltsbasic context of Listing 6.1 is a set of axioms defining LTS constructs.
They introduce a ConsLts constructor (axm5 bijection ↣→) and accessors to handle
any Lts ∈ LT S. Last, axm8 defines a specific LTS, namely InitLts, that will be
used in the machine for initialisation.
CONTEXT L t s b a s i c
SETS S Σ LT S
CONSTANTS i n i t t r a n s i t i o n s t a t e UsedAlphabet ϵ ConsLts i n i t _ s t a t e
AXIOMS

axm1 : init ∈ LTS → P(S)
axm2 : transition ∈ LTS → P(S × Σ × S)
axm3 : state ∈ LTS → P(S)
axm4 : UsedAlphabet ∈ LTS → P(Σ)
axm5 : ConsLts ∈ (P(S) × P(S) × P(Σ) × P(S × Σ × S)) ↣→ LTS
axm6 : ∀lts, init_st, tr, s, a · lts = ConsLts(init_st 7→ s 7→ a 7→ tr) ⇔

init(lts) = init_st ∧ transition(lts) = tr ∧ state(lts) = s ∧ UsedAlphabet(lts) = a
axm7 : ϵ ∈ Σ ∧ init_state ∈ S
axm8 : InitLts = ConsLts({init_state} 7→ {init_state} 7→ ∅ 7→ ∅)

END

Listing 6.1: Basic Lts constructs.

An Event-B machine to manuipulate LTS.

The objective is to define a set of transformations formalised by events to build
a deterministic automaton. The idea is to use a trace of events leading to a
deterministic LTS. For this purpose, we use a correct-by-construction method
relying on a set of events to build deterministic LTS, preserving the invariant
stating LTS determinism.
MACHINE l tsDeterm
SEES L t s b a s i c
VARIABLES lts
INVARIANTS

inv1 : lts ∈ LTS
inv2 : init(lts) ̸= ∅// I n i t s t a t e e x i s t s
inv3 : state(lts) = init(lts) ∪ dom(dom(transition(lts))) ∪ ran(transition(lts))// s t a t e s
inv4 : UsedAlphabet(lts) = ran(dom(transition(lts))) // w e l l b u i l t Used Alphabet
inv5 : ∃i · init(lts) = {i}// Unique i n i t i a l s t a t e
inv6 : ϵ /∈ ran(dom(transition(lts)))// No ϵ t r a n s i t i o n
inv7 : transition(lts) ∈ S × Σ 7→ S// Determinis t ic t r a n s i t i o n (funct ion)

Listing 6.2: Lts determinism invariants.
Listing 6.2 shows the list of invariants stating that an LTS is deterministic.

inv2-4 define constraints on the states and labels while inv5-7 define determin-
ism with single initial state, absence of ϵ label and finally the transition relation
is a function (single image 7→).
EVENTS

136 CHAPTER 6. EMPOWERING THE EVENT-B METHOD

INITIALISATION =̂
THEN

act1 : lts := InitLts
END
PrefixedMergeEvt =̂
ANY l_lts ,r_lts , l , l_init_st ,r_init_st , l_st , r_st , l_UsedAlpha ,r_UsedAlpha
WHERE

grd1 : l_lts ∈ LTS ∧ r_lts ∈ LTS ∧ l ∈ Σ
grd2−3 : init(l_lts) = {l_init_st} ∧ init(r_lts) = {r_init_st}
grd4−5 : l_st = ({l_init_st} ∪ dom(dom(transition(l_lts))) ∪ ran(transition(l_lts)))∧

r_st = ({r_init_st} ∪ dom(dom(transition(r_lts))) ∪ ran(transition(r_lts)))
grd6−7 : l_UsedAlpha = ran(dom(transition(l_lts))) ∧ r_UsedAlpha = ran(. . .)
grd8 : (l_st ∩ r_st) = ∅
grd9−10 : l /∈ ran(dom(transition(l_lts))) ∧ l ̸= ϵ
grd11−12 : ϵ /∈ r_UsedAlpha ∧ ϵ /∈ l_UsedAlpha
grd13−14 : transition(r_lts) ∈ S × Σ 7→ S ∧ transition(l_lts) ∈ S × Σ 7→ S

THEN
act1 : lts := ConsLts(

{l_init_st} 7→ l_st ∪ r_st 7→
(l_UsedAlpha ∪ r_UsedAlpha ∪ {l}) 7→
(transition(l_lts) ∪ transition(r_lts) ∪ {s · s ∈ l_st | s 7→ l 7→ r_init_st}))

END
PrefixedUnionEvt =̂ . . .
. . .

END

Listing 6.3: Model events building a deterministic Lts.
Listing 6.3 shows the set of events building a LTS (Figure 6.1). Due to space

constraints, only the PrefixedMergeEvt event is shown. It is parameterised by
two LTS (left l_lts and right r_lts) and a connecting label l. It is guarded by
conditions ensuring that l_lts and r_lts are well-built and that l ̸= ϵ (grd1-14).
Action act1 builds the resulting LTS by updating the state variable lts.

In this approach, it is necessary to describe the invariants ensuring that the
state variable defines a deterministic LTS so that the invariant preservation PO
(4 of Table 6.2) is discharged.

Although the studied example is well-known and simple, writing these invari-
ants may be a difficult task for the system designer.

6.6 Data type theory-based invariant preserva-
tion

The invariant-preservation approach of Section 6.5 relies on an inductive proof
where invariants and state variables are directly modelled by the designer using
Event-B set theory and its type system (which can be seen as a weak typing
system compared to proof assistants like Coq or Isabelle/HOL).

In this approach, the designer describes explicitly safe states, invariants and
mandatory guards in the models. The designer has to prove invariant preserva-
tion POs for each event. Moreover, this invariant has to be written and proven in
further developments, so reusability is compromised. It is possible to design mod-
els of systems which exploit externally defined theories to type system features
and to manipulate these features using the operators associated to these types
defined as partial functions. When these operators are used, the WD conditions,
associated with them, generate POs on the system design model.

6.6. DATA TYPE THEORY-BASED INVARIANT PRESERVATION 137

We claim that it is possible to use these WDs to enforce invariants and there-
fore ensure the safety requirements of the system being designed. In the context
of state-based formal methods, this claim is based on the view of invariants as
conditions for well-defined partial functions/transformations, defined in external
theories, with system state type corresponding to one parameter of each of these
functions. In addition, the proofs performed on the theory side, achieved once
and for all, are reused in system design models verification.

Three main steps are identified. The first one (Step 1) is to produce, once
and for all, the relevant theories formalising the data types and operators used in
the models. The second step (Step 2) requires to instantiate the defined theories
for the specific types used by the model. Finally, the third step (Step 3) uses the
defined types and operators for typing and manipulating the state variables.

6.6.1 An Event-B datatype based domain-specific theory
(Step 1)

Theories conforming to the template of Listing 6.4 are built and proved once
and for all. These theories provide generic and parameterised data types, with
operators (partial functions) associated to WD conditions and relevant theorems.
THEORY Theo
TYPE PARAMETERS ArgsT ypes
DATA TYPES

T (ArgsT ypes)
Cons(args : ArgsT ypes)

OPERATORS
Op1 <Predicate > (el : T (ArgsT ype), args : ArgsT ypes)

well−definedness condition WD_Op1(args)
direct def init ion Op_Exp1(el, args)

. . .
Opn <Predicate > (el : T (ArgsT ypes), args : ArgsT ypes) . . .

well−definedness condition WD_Opn(args)
direct def init ion Op_Expn(el, args)

Properties <Predicate > (el : T (ArgsT ypes))
direct def init ion properties(el)

THEOREMS
ThmTheoOp1 : ∀x, args · x ∈ T (ArgsT ypes) ∧ args ∈ ArgsT ypes∧

WD_Op1(args) ∧ Op1(x, args) ⇒ Properties(x)
. . .

ThmTheoOpn : ∀x, args · x ∈ T (ArgsT ypes) ∧ args ∈ ArgsT ypes∧
WD_Opn(args) ∧ Opn(x, args) ⇒ Properties(x)

Listing 6.4: Data type theory template
Listing 6.4 shows a template of theory where the data type T is built from

type parameters ArgsType and a set of predicate operators Opi defining rela-
tions between concepts of type T and other parameters. These predicates are
used in a model to define before-after predicates as one of their type parameters
T (ArgsTypes) corresponds to the type of the model state.

The predicate Properties is defined to capture properties on data of type
T (ArgsTypes). It formalises requirements and many of them can be defined.

Last, the central theorems ThmTheoOpi state that, for each operator Opi, if
its WD condition holds then its application implies properties expressed on any
element x of type T (ArgsTypes) using the predicate Properties. It can be used
to check invariant preservation. It is worth noticing that these theorems encode

138 CHAPTER 6. EMPOWERING THE EVENT-B METHOD

a structural induction principle. It is proved once and for all, independently
of any model behaviour description. Additional theorems, for other properties,
characterising the defined data type may be expressed.

6.6.2 An Event-B instantiation context (Step 2)
The theory of Section 6.6.1 is generic. Next step instantiates it with the specific
objects of interest, i.e. state manipulated by the Event-B machine.

The context Ctx of Listing 6.5 instantiates the theory of Listing 6.4. Type
synthesis and matching of Event-B is used to instantiate the generic data type T
with sets s as data type T (s). Then constants and axioms are defined classically.
CONTEXT Ctx
SETS s
CONSTANTS c
AXIOMS . . .
THEOREMS

ThmTheoOp1Inst : ∀x, args · x ∈ T (s) ∧ args ∈ s∧
WD_Op1(args) ∧ Op1(x, args) ⇒ Properties(x)

. . .
ThmTheoOpnInst : ∀x, args · x ∈ T (s) ∧ args ∈ s∧

WD_Opn(args) ∧ Opn(x, args) ⇒ Properties(x)

Listing 6.5: Context instantiation.
Here again, the important theorems ThmTheoOpiInst are introduced. They

instantiate the generic theorems ThmTheoOpi. As the generic theorems Thm-
TheoOpi are already proved, the proofs of these theorems are trivial provided
that type checking succeeds. These theorems are the reduction of the polymorphic
type of the theory to the concrete type of the model, here the set s.

6.6.3 A domain-specific Event-B machine (Step 3)
At this level, a machine template that exploits the defined theory and the instan-
tiated context is built. Listing 6.6 depicts an Event-B machine with a single state
variable x of type T (s) by typing invariant TypingInv. Then, a set of events Evt i,
including the initialisation event2, possibly parameterised, manipulate state vari-
able x. Action act1 of each event uses operators of the theory in the before-after
predicate (BAP) for state variables changes.
MACHINE Machine
SEES Ctx
VARIABLES x
INVARIANTS

TypingInv : x ∈ T (s)
AllowedOper : ∃∃args · args ∈ s ∧ (WD_Op1(args) ∧ Op1(x, args))∨

(WD_Opn(args) ∧ Opn(x, args) ∨ . . .)
THEOREMS

SafThm : Properties(x)
EVENTS

Evt1 =̂ . . . Evtn =̂
ANY α ANY α
WHEN WHEN

grd1 : α ∈ s ∧ WD_Op1(α) grd1 : α ∈ s ∧ WD_Opn(α)
THEN THEN

2For the initialisation event, the guard does not involve state variables.

6.7. THE PROOF PROCESS 139

act1 : x :| Op1(x′, α) act1 : x :| Opn(x′, α)
END END

END

Listing 6.6: An Event-B machine with domain-specific properties
A useful consequence of the use of operators as before-after predicates of

events, is the identification of event guards. Indeed, operators application is only
possible if their WD conditions in the guards hold.

Two main properties are formalised. First, invariant AllowedOper expresses
that state variable x is only handled using the operators of the theory when
their WD hold; this is crucial in the method as it excludes any other type of
event from altering x (completeness). Second, theorem SafThm captures that
the properties Properties hold. According to the ThmMch PO (Table 6.2), this
theorem results from invariants TypingInv and AllowedOper , together with the
axioms and theories of the context Ctx.

6.7 The Proof Process
We have presented a revisited model relying on a data-type-based approach, simi-
lar to proof assistants like Coq or Isabelle/HOL, in which a data type and a set of
operators are defined to manipulate system states through their type. Then, we
have encoded, in the invariant clause, the typing (TypingInv) and constraints (Al-
lowedOper) corresponding to closure and well-foundedness of operators to strongly
type the state variable with respect to the needed operators. Doing so, we em-
bed a stronger type system than Event-B provides. Last, as invariant guarantees
typing, safety property SafThm can be proved deductively.

Unlike the invariant-based approach of Section 6.5, this approach offers a sys-
tematic way to prove invariant preservation. Indeed, proving SafThm is straight-
forward, it is a direct use of the instantiated theorems ThmTheoOpInst proved in
the context as an instantiation of the generic theorems ThmTheoOp of the theory
using the modus-ponens proof rule (⇒-elimination rule). Concretely, the proof
effort is concentrated on the reusable proof once and for all of ThmTheoOpi.
Other POs are straightforward: AllowedOper consists in identifying which al-
lowed operator is used in the disjunction, and SafThm is proven deductively using
ThmTheoOpiInst for each allowed operator.

The correctness of this approach consists in establishing that any property P
proven true in this approach can be proven true in the classical, invariant-based
approach. Concretely, correctness is captured by the ThmTheo ⇒ PO_Inv meta-
theorem. We have formalised the proof of this theorem in the Coq [Bertot &
Castéran, 2010] proof assistant.

Finally, the approach presented here is similar to encapsulation and applica-
tion programming interfaces available in programming languages with modules.
The Theo theory offers a set of generic operators used by models (interface) and
the AllowedOper invariant encodes encapsulation as the defined state variable is
manipulated with the theory-based operators of its type only.

140 CHAPTER 6. EMPOWERING THE EVENT-B METHOD

6.8 Revisited Event-B Models for LTS
Back to the case study of deterministic finite automata (Section 6.5), we de-
scribe how the proposed approach is applied. We follow the steps identified in
Section 6.6.

6.8.1 A data type for LTS (Step 1)
THEORY

TYPE PARAMETERS S , L
DATA TYPES

LT S(S, L)
ConsLts(init : P(S), state : P(S),

alphabet : P(L),
transition : P(S × L × S), eps : L)

Listing 6.7: A theory of Lts:
data-type and constructor.

Listings 6.7, 6.8 and 6.9 describe the the-
ory of LT S that we have formalised.

Listing 6.7 describes a theory of LTS defin-
ing a data type LT S(S, L) where S and L are
types for states and labels, respectively. A
constructor ConsLts is defined together with
accessors to retrieve LTS components (init,
state, alphabet, transition and ϵ).

OPERATORS
UniqueLabelTrans it ion <pred ica te > . . .
In i tUnique <pred ica te > . . .
NoEpsTransition <pred ica te > . . .
GetUniqueInit . . .
WellBui l t <pred ica te > (lts : LT S(S, L))

direct def init ion
init(lts) ̸= ∅ ∧ alphabet(lts) = ran(dom(transition(lts)))∧
state(lts) = init(lts) ∪ dom(dom(transition(lts))) ∪ ran(transition(lts))

IsDeter <pred ica te > (lts : LT S(S, L))
direct def init ion

WellBuilt(lts) ∧ InitUnique(lts) ∧ NoEpsTransition(lts) ∧ UniqueLabelTransition(lts)
Wd_ConsLtsDeter <pred ica te > . . .
ConsLtsDeter <pred ica te > . . .
ConsSingleStateLts <pred ica te > . . .
Wd_PrefixedUnion <pred ica te > . . .
PrefixedUnion <pred ica te > . . .
Wd_PrefixedUnionDeter <pred ica te > . . .
PrefixedUnionDeter <pred ica te > . . .
Wd_PrefixedMerge <pred ica te > (l_lts : LT S(S, L), l : L, r_lts : LT S(S, L))

direct def init ion
InitUnique(r_lts) ∧ state(l_lts) ∩ state(r_lts) = ∅ ∧ eps(l_lts) = eps(r_lts)

PrefixedMerge <pred ica te > (lts : LT S(S, L), l_lts : LT S(S, L), l : L, r_lts : LT S(S, L))
well−definedness Wd_PrefixedMerge(l_lts, l, r_lts)
direct def init ion

lts = ConsLts
(init(l_lts), state(l_lts) ∪ state(r_lts), alphabet(l_lts) ∪ alphabet(r_lts) ∪ {l},
transition(l_lts) ∪ transition(r_lts)∪

{s, init_r_lts · s ∈ state(l_lts) ∧ init_r_lts = GetUniqueInit(r_lts) |
s 7→ l 7→ init_r_lts}, eps(l_lts))

Wd_PrefixedMergeDeter <pred ica te > (l_lts : LT S(S, L), l : L, r_lts : LT S(S, L))
direct def init ion

IsDeter(r_lts) ∧ isDeter(l_lts) ∧ state(l_lts) ∩ state(r_lts) = ∅∧
eps(l_lts) = eps(r_lts) ∧ l /∈ alphabet(l_lts) ∧ l ̸= eps(l_lts)

PrefixedMergeDeter <pred ica te > (
lts : LT S(S, L), l_lts : LT S(S, L), l : L, r_lts : LT S(S, L))

well−definedness Wd_PrefixedMergeDeter(l_lts, l, r_lts)
direct def init ion

PrefixedMerge(lts, l_lts, l, r_lts)

Listing 6.8: A theory of Lts: operators, WD conditions and theorems.
Listing 6.8 shows a subset of operators associated with the LT S(S, L) data

type. In particular, we show the PrefixedMerge and PrefixedUnion operators,

6.8. REVISITED EVENT-B MODELS FOR LTS 141

used in the development of our example (Section 6.5). Each operator is associ-
ated to a relevant WD conditions for excluding wrong arguments (partial func-
tion). General operators for LT S are defined: WellBuilt, stating that an LTS is
correctly built from the constructor using the defined acessors, IsDeter asserting
that a LTS is deterministic, other operators required to manipulate LTS, such
as UniqueLabelTransition, InitUnique, NoEpsTranstion, etc. and other operators
required for our case study:

• ConsLtsDeter , a derived constructor for deterministic LTS. It restricts the
constructor ConsLts of LT S(S, L) with a WD condition Wd_ConsLtsDeter
to build deterministic LTS only;

• consSingleStateLts, a specific operator, used for initialisation, building a
LTS with a single state;

• PrefixedUnion and PrefixedMerge applied to not necessarily deterministic
LTS with Wd_PrefixedUnion and Wd_PrefixedMerge WD conditions;

• deterministic union (PrefixedUnionDeter) and merge (PrefixedMergeDeter)
build deterministic LTS. Their WD conditions (Wd_PrefixedUnionDeter
and Wd_PrefixedMergeDeter respectively) express, in particular, that both
l_lts and r_lts parameters shall be deterministic;

Note that each operator outputs the lts parameter from two input parameters
l_lts and r_lts. This definition style defines a transformation allowing to write
Event-B before-after predicates.

This theory does not guarantee that the produced LTS are deterministic if
the operators are not applied in the appropriate manner.
THEOREMS

thm1-5 : . . .
ThmTheoConsOneSt : ∀lts, new_init_st, ϵ · lts ∈ LT S(S, L) ∧ ϵ ∈ L ∧ new_init_st ∈ S∧

ConsSingleStateLts(lts, new_init_st, ϵ) ⇒ IsDeter(lts)
ThmTheoUnion : ∀lts, l_lts, r_lts, ll, rl, new_init_st·

l_lts ∈ LT S(S, L) ∧ r_lts ∈ LT S(S, L) ∧ ll 7→ rl ∈ L × L ∧ new_init_st ∈ S∧
Wd_PrefixedUnionDeter(new_init_st, ll, rl, l_lts, r_lts)∧

PrefixedUnionDeter(lts, new_init_st, ll, rl, l_lts, r_lts) ⇒ IsDeter(lts)
ThmTheoMerge : ∀lts, l_lts, r_lts, l·

l_lts ∈ LT S(S, L) ∧ r_lts ∈ LT S(S, L) ∧ l ∈ L ∧ eps(l_lts) = eps(r_lts)∧
Wd_PrefixedMergeDeter(l_lts, l, r_lts)∧

PrefixedMergeDeter(lts, l_lts, l, r_lts) ⇒ IsDeter(lts)
END

Listing 6.9: A theory of LTS: operators, WD conditions and theorems.
The remaining part of the defined theory (Listing 6.9) contains a set of theo-

rems useful to prove model properties that use the defined types.
In particular, the proven theorems ThmTheoOp state that all the operators

manipulating deterministic LTS (by the WD condition as hypotheses) produce
deterministic automata. Thus, starting with a deterministic automaton, the cor-
rect application of any number of operators will always produce a deterministic
automaton. As mentioned in Section 6.6.1, these theorems encode structural
induction. They guarantee that LTS are effectively deterministic.

142 CHAPTER 6. EMPOWERING THE EVENT-B METHOD

6.8.2 An instanciation context for LTS (Step 2)
Next step, following Section 6.6.2, leads to an Event-B context describing specific
LTS through theory instantiation. It is obtained by instantiating theory type
parameters S and L with States and Σ, respectively.
CONTEXT CtxLts
SETS S t a t e s Σ
CONSTANTS i n i t _ s t a t e ϵ
AXIOMS

axm1 : init_state 7→ ϵ ∈ States × Σ// I n i t i a l i s a t i o n
THEOREMS

ThmTheoConsOneStInst : ∀lts, new_init_st, ϵ · lts ∈ LT S(States, Σ)∧
ϵ ∈ Σ ∧ new_init_st ∈ States∧

ConsSingleStateLts(lts, new_init_st, ϵ) ⇒ IsDeter(lts)
ThmTheoUnionInst : ∀lts, l_lts, r_lts, ll, rl, new_init_st · l_lts ∈ LT S(States, Σ)∧

r_lts ∈ LT S(States, Σ) ∧ ll 7→ rl ∈ Σ × Σ ∧ new_init_st ∈ States∧
Wd_PrefixedUnionDeter(new_init_st, ll, rl, l_lts, r_lts)∧

PrefixedUnionDeter(lts, new_init_st, ll, rl, l_lts, r_lts) ⇒ IsDeter(lts)
ThmTheoMergeInst : ∀lts, l_lts, r_lts, l · l_lts ∈ LT S(States, Σ) ∧ r_lts ∈ LT S(States, Σ)∧

l ∈ Σ ∧ eps(l_lts) = eps(r_lts)∧
Wd_PrefixedMergeDeter(l_lts, l, r_lts)∧

PrefixedMergeDeter(lts, l_lts, l, r_lts) ⇒ IsDeter(lts)
END

Listing 6.10: An instantiated context of LTS.
Useful constants are defined and typed in axiom axm1. Theorem ThmTheoInst

corresponding to the instantiation of the generic theorem ThmTheo is also de-
scribed. Its proof is straightforward by instantiation of the hypotheses.

6.8.3 A data type specific machine for LTS (Step 3)
Last step, corresponding to Section 6.6.3, describes an Event-B machine in List-
ing 6.11 that is equivalent to the Event-B machine of Listing 6.3.
MACHINE MachineLts
SEES CtxLts

VARIABLES lts

INVARIANTS
TypingInv : lts ∈ LTS(S, L)
AllowedOper : ∃∃l_lts, r_lts, ll, rl, l, new_init_st, eps·

l_lts ∈ LTS(S, L) ∧ r_lts ∈ LTS(S, L) ∧ l 7→ ll 7→ rl ∈ L × L × L∧
new_init_st ∈ S ∧ eps ∈ L ∧ (
consOneStateLts(lts, new_init_st, eps)∨
(Wd_PrefixedUnionDeter(new_init_st, ll, rl, l_lts, r_lts)∧

PrefixedUnionDeter(lts, new_init_st, ll, rl, l_lts, r_lts))∨
(Wd_PrefixedMergeDeter(l_lts, l, r_lts)∧

PrefixedMergeDeter(lts, l_lts, l, r_lts)))

THEOREMS
SafThm : IsDeter(lts)

EVENTS
INITIALISATION =̂
THEN

act1 : lts :| ConsSingleStateLts(lts′, init_state, ϵ)
END
PrefixedMergeEvt =̂
ANY l_lts , r_lts , l
WHERE

grd1 : l_lts 7→ r_lts 7→ l ∈ LTS(S, L) × LTS(S, L) × L
grd2 : Wd_PrefixedMergeDeter(l_lts, l, r_lts)

6.9. CONCLUSION 143

THEN
act1 : lts :| PrefixedMergeDeter(lts′, l_lts, l, r_lts)

END
PrefixedUnionEvt =̂ . . .
. . .

END

Listing 6.11: A Machine of LTS with a type state variable.
The MachineLts of Listing 6.11 describes a single state variable lts and two

invariants. The first one TypingInv types the state variable lts with the data type
of the instantiated theory.

The second invariant AllowedOper states that, once initialised with ConsSin-
gleStateLts operator, the lts variable can be manipulated with PrefixedMerge and
PrefixedUnion operators only. None of the other operators are allowed to manip-
ulate the state variables (closure and well-foundedness). The SafThm theorem
states that the lts state transition system is deterministic. Finally, the events
that manipulate the state variables are defined, they implement machine state
changes.

6.8.4 Proof process.
The development presented in this section is a reformulation of the one presented
in Section 6.5. However, the mechanism of proof of invariants provided by these
two developments differs. In this development, the proofs are eased thanks to the
WD conditions associated with each operator and used as guards, together with
the proved theorem instantiated in the context. All of the proofs follow and reuse
the proof schema shown in Section 6.7.

6.9 Conclusion
In this paper, we have presented an alternative approach for checking invariants
and thus safety properties in the Event-B state-based formal method. In the
same spirit as proof assistants like Coq or Isabelle/HOL, this approach relies on
the extension of Event-B with typing that enforces the checking of conditions
related to partial functions using well-definedness (WD) conditions. It consists in
encapsulating data types and allowing behavioural models to manipulate typed
state variables within events using a subset of operators as long as their WD
conditions are met. Furthermore, we demonstrated that it is possible to satisfy
invariant preservation proof obligations by using theorems expressed at the data
type level and instantiated at the model level.

The defined approach combines algebraically defined data types and their use-
ful properties expressed as WD conditions and theorems (Event-B theories) with
behavioural models based on state-transitions systems expressed as a set of state
changes using guarded events (Event-B machines). This approach complements
the invariant-based approach by enabling inductive proofs at the machine level,
or proof of the structural induction principle on the data type theory side. The
designer can choose the most appropriate one depending on the difficulty of the
modelling and proving activities.

144 CHAPTER 6. EMPOWERING THE EVENT-B METHOD

Finally, the proposed approach has been implemented in many different cases:
data types, operators and relevant properties (WD and theorems) have been de-
fined for hybrid systems [Dupont et al., 2021] (mathematical extension with a
data type for differential equations), interactive critical systems [Mendil et al.,
2020][Mendil, Aït Ameur, et al., 2021] [Mendil, Ameur, et al., 2021] (a domain
model with a data type for aircraft cockpits widgets) and Event-B models anal-
ysis [Riviere, 2021] (Event-B reflexive meta-model with a data type for Event-B
states and events).

In the future, we plan to integrate the proposed approach into a refinement
chain. On the theory side, we intend to describe refinement of data types so that
gluing invariants can be proved using the proposed approach. Studying liveness
properties by introducing variants is also targeted. Last, we intend to develop a
Rodin plug-in to automate the whole approach.

6.9. CONCLUSION 145

Assessment
This chapter highlighted essential concepts for identifying and exploiting well-
definedness conditions during theory development and system modelling. The
usage of well-definedness conditions allows us to define new proof obligations
and ensures that inductive invariants and the given safety features are preserved.
Furthermore, it aids in the proof mechanisms by giving the necessary hypothesis
for the defined theorems and operators. The introduction of well-definedness
conditions has considerably boosted the automatic generation of proof obligations
and proof automation. Furthermore, such proofs are done once and for all on the
theory side. It should be noted that all the defined operators in our EB4EB
framework define well-definedness conditions as well as other extensions, such as
new types of proof obligations and temporal features, that have been used in their
development. It plays a key role in the design of the EB4EB framework as well
as its extensions.

Moreover, similar to the identification of well-definedness conditions from the
core models, we may extract other core modelling components or their properties
into theory using the EB4EB framework that can assist in modelling process as
well as simplifying the proving process.

146 CHAPTER 6. EMPOWERING THE EVENT-B METHOD

Chapter 7

Conclusion

Contributions
The work presented in this thesis consists in designing a formalised framework
for reasoning on state-transitions systems based models expressed as Event-B
machines. This framework allows users to manipulate formal models expressed
as Event-B machines and define model analyses. It also enables the definition
of extensions for Event-B models, providing the ability to conduct additional
model analyses beyond what is supported in the core Event-B framework. All
the developments we designed have been realised in Event-B, demonstrating that
this approach is capable of accommodating modelling and reasoning extensions
while still maintaining its ability to support refinement and inductive reasoning
for invariant preservation.

A Theory for Event-B. Our main contribution is to formalise every Event-B
concept (state variables, guards, before-after predicates, events, invariants, and
so on) using an algebraic theory, the EB4EB theory, which manipulates two basic
type parameters: states and events. A constructor and a set of operators are
formalised to model and manipulate Event-B concepts as first-order objects, us-
ing set theory and first-order logic. Each operator is linked to well-definedness
conditions, which generate proof obligations when the operators are used. Fi-
nally, a set of proven theorems and proof rules are provided, which can be used
to demonstrate the consistency of Event-B models.

Event-B machines as instances of the EB4EB theory: shallow or deep
modelling The theory mentioned above can be instantiated to describe Event-
B machines. Two instantiation mechanisms have been identified. The first one
describes an Event-B context and introduces all the sets that define the various
machine components. Theorems relating to machine consistency are also written,
and they employ the predicate operators defined in the EB4EB theory. The second
mechanism is to define an Event-B machine as a refinement of a “root” generic

147

148 CHAPTER 7. CONCLUSION

machine that includes two events: initialisation and progress. This mechanism
allows you to use Event-B’s induction principle, whereas the first involves proving
first-order logic theorems.

Extensions for Event-B. The establishment of the EB4EB framework enabled
the defining of numerous extensions for Event-B. As Event-B concepts can now be
explicitly manipulated, it enables the expression of more advanced, higher-order
properties and operations involving these concepts.

• Reasoning extensions. The first extension that appears in the definition
of EB4EB is related to reasoning. New proof obligations can be expressed
and generated automatically for Event-B machines. Here, the logical prop-
erties expressed on Event-B machines are formalised. Using this approach,
we formalised deadlock freeness, invariant weakness, and reachability proof
obligations.

• Event-B models analyses. In addition to proof obligation generation,
the same framework allowed to define model analyses by querying a ma-
chine and checking its robustness. In our work, we introduced additional
events (other events external to the Event machine, not to be confused with
added events at refinement), known as bad or hidden events, that may be
corresponded to non required behaviours (holes in the model) but still sat-
isfy the invariant. This kind of analysis can be used in the security domain
to determine whether an attack (described as a bad event) can be triggered.
To strengthen the model, we employ the reasoning capabilities extension for
invariant weakness checking.

• Modelling extensions. The EB4EB framework proved useful in defin-
ing other semantic formalisations by extending the EB4EB theory. First, a
theory of traces that correspond to Event-B machine traces has been for-
malised. We used this theory to demonstrate the soundness of the EB4EB
theory, specifically that the defined proof obligations are correctly defined
on the machine traces. The second modelling extension focuses on domain
knowledge modelling. It has been defined in terms of human-computer in-
teraction, where the EB4EB theory has been linked to an ontology theory.
This association demonstrated that Event-B’s semantics can be extended
by associating Event-B concepts with other concepts that correspond to
semantic features not available in native Event-B.

• Support of state and events annotations. This extension distinguishes
itself by combining two other extensions. Indeed, we used temporal logic
theory as well as ontologies to express properties that could not be expressed
in any of the previous extensions. In a collaborative work, we defined an-
other theory that extends both the temporal logic theory and the ontology
theory, allowing us to annotate events with ontology references and use
temporal logic property expressions to formalise domain-specific temporal
properties on critical interactive systems.

149

Tool support. Finally, all the development we have done is supported by the
Rodin platform and the associated theory plug-in, and all the generated proof
obligations have been successfully discharged. In addition, to increase the au-
tomation rate of our proofs, we have updated the Rodin tactics by defining new
proof rules and rewrite rules. All developments and associated proofs are publicly
available and can be found on the https://www.irit.fr/~Peter.Riviere/models/
web page.

Perspectives
The EB4EB framework provides advanced modelling and reasoning capabilities
to Event-B, extending its outreach and interoperability.

Below, we highlight new directions made available by the work in this thesis.
We have organised them into two categories: improvements and extensions to
Event-B, as well as development operations involving Event-B model manipula-
tion.

Event-B improvements and extensions

• Instantiation and validation. The definition of contexts, and more gen-
erally of logical expressions require checking their consistency, i.e., being
inhabited. During our work, we identified three scenarios where the EB4EB
framework we developed can be used to address consistency.
First, context consistency consists in checking if their formalisation actually
allows some behaviour to exist. In particular, contexts describe elements and
hypotheses needed by the system, often represented as abstract sets (akin
to types) and axioms. Although abstract sets are non-empty by definition,
the method does not require axioms to be consistent. Currently, when
model checking fails due to state number explosion, consistency of contexts is
expressed manually and in an ad hoc manner. When contexts are formalised
in the EB4EB framework, elements become accessible as first-class objects,
and the consistency of the context can be expressed and thus proven.
Second, context validation is a key issue in the Event-B method, which does
not differentiate between definition/prescriptive axioms and properties/de-
scriptive axioms. Checking that so-called instances of a context abide by
the axioms defined in said context is done in a completely ad hoc way.
Continuing the context consistency verification approach, and in the same
vein as the context instantiation plug-in defined for Event-B, we can use
EB4EB’s context formalisation to express properties encoding the correct
instantiation of a given context.
Last, the definition of witness for parameterised events raises the same issue
as context extension consistency. Event parameters are limited by the con-
straints set by the event’s guards. Similar to axioms in a context, the Event-
B method does not distinguish between prescriptive guards, which define the

150 CHAPTER 7. CONCLUSION

expected properties of the event parameter, and other guards that only de-
termine when the event is activated. As a result, even if a witness is correct,
it may not satisfy any of the guards, effectively disabling the event (which
in itself is a perfectly correct refinement, but may not be what the designer
is expecting). As with context consistency, the user can perform manual
and ad hoc checks that the witness satisfies some guards; however, by lever-
aging the EB4EB framework’s ability to access specific model elements, it is
possible to encode and proof “correct witness instances” properties, thereby
alleviating this issue.

Other development operations The perspectives that were previously dis-
cussed focused on Event-B machines. Here, we outline the viewpoints associated
with manipulating Event-B machines.

• Refinement. EB4EB currently does not handle Event-B’s refinement op-
eration, although its foundations are already present. The formalisation of
refinement into the framework supplements its coverage of the method, but
also allows to reason on refinement itself. Once a general definition of re-
finement is incorporated into the EB4EB framework, it becomes possible to
write refinement-related analyses, i.e. check the properties of a refinement
relation between two machines. Moreover, different refinement relationships
can be defined. The possibility to specialise the refinement operation, re-
stricting its use to some domain elements, while extending its capabilities
and semantics may be allowed.

• Composition/decomposition. In [Silva & Butler, 2012], the authors
propose a mechanism for the decomposition of Event-B machines. The core
idea is to enable splitting a machine in parts that may share events and/or
states. Composition and decomposition performed in this way is associated
to particular proof obligations, and the authors demonstrate, on paper, that
the correctness of the (de)composition entails the preservation of interest-
ing properties, and in particular that refinement of the composed machine
may be transferred to the refinement of its components (and vice versa).
The interest of deploying the EB4EB framework here is twofold. First,
the framework makes it possible to encode the composition/decomposition
mechanism as operators on EB4EB machines, and to provide the proposed
proof obligations as predicates to be used in theorems, effectively making
the approach available in the framework. Second, the availability of trace-
based semantics enables proving the correctness of the mechanism, i.e. to
mechanise the soundness proof proposed in the paper. Similarly, the work
in [T. S. Hoang et al., 2017] lays out a mechanism for component modu-
larity, empowering machine re-usability and interfacing (through so-called
“machine inclusion”). Such an approach is provided in the form of a Rodin
plug-in and is associated with proof obligations. Again, the EB4EB can
encode this mechanism and verify its correctness, essentially providing a
mechanised proof of the plug-in’s soundness.

151

• Formal model transformations. Recent advancements in the usage of
Event-B show that this method is perfectly capable of handling different
types of semantics. Currently, new semantics are usually embedded in an
ad hoc manner into Event-B models, and the correctness of such embedding
is established manually, outside of the method. The EB4EB framework
can be extended to propose new natures of variables and events, effectively
encoding, directly in the method, new kinds of semantics, provided they
can be expressed using FOL and set theory (which is usually the case). In
addition, once these semantics are formalised within the EB4EB framework,
model transformations can be formalised using a transformation function
formalised on top of the defined semantics. Moreover, since the framework
already features the possibility to express traces, meaning it is possible to
link the new semantics’ embedding in EB4EB with new types of traces, and
thus to characterise these new semantics, it becomes possible to check the
consistency of the defined transformations as well.

Accessibility and ease of use. The use of the EB4EB framework is generally
associated to complex and large proofs. This is due to the encoding of properties to
be proved as theorems and well-definedness conditions, which are not decomposed
by the proof obligation generator (unlike machine invariants, which are proved for
each event rather than for the entire machine). To alleviate this issue, we had
to extensively use the proof rules definition capabilities of the theory plug-in, as
well as Rodin’s rudimentary tactic system. The development of an environment
allowing the designers to define domain specific modelling languages and their
semantics together with relevant proof rules and tactics will undoubtedly improve
the accessibility for non Event-B experts.

152 CHAPTER 7. CONCLUSION

Bibliography

Abrial, J.-R. (2010). Modeling in Event-B: System and software engineering. Cam-
bridge University Press.

Abrial, J.-R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M., & Voisin, L.
(2009). Proposals for mathematical extensions for Event-B (tech. rep.).
http://deploy-eprints.ecs.soton.ac.uk/216/

Abrial, J.-R., Butler, M. J., Hallerstede, S., Hoang, T. S., Mehta, F., & Voisin, L.
(2010). Rodin: An open toolset for modelling and reasoning in Event-B.
STTT, 12 (6), 447–466.

Abrial, J., & Mussat, L. (2002). On using conditional definitions in formal the-
ories. In D. Bert, J. P. Bowen, M. C. Henson, & K. Robinson (Eds.),
ZB 2002: Formal specification and development in Z and b, 2nd interna-
tional conference of B and Z users, grenoble, france, january 23-25, 2002,
proceedings (pp. 242–269, Vol. 2272). Springer.

Abrial, J.-R. (1996, August). The B book - assigning programs to meanings. Cam-
bridge University Press.

Aït Ameur, Y., Baron, M., Bellatreche, L., Jean, S., & Sardet, E. (2017). Ontolo-
gies in engineering: The ontodb/ontoql platform. Soft Comput., 21 (2),
369–389.

Aït Ameur, Y., Dupont, G., Mendil, I., Méry, D., Pantel, M., Riviere, P., & Singh,
N. K. (2022). Empowering the Event-B Method Using External Theories.
IFM, 13274, 18–35.

Aït Ameur, Y., & Méry, D. (2016). Making explicit domain knowledge in formal
system development. Sci. Comput. Program., 121, 100–127.

Aït Ameur, Y., Nakajima, S., & Méry, D. (2021). Implicit and explicit seman-
tics integration in proof-based developments of discrete systems. Springer.
https://www.springer.com/gp/book/9789811550539

Anand, A., Boulier, S., Cohen, C., Sozeau, M., & Tabareau, N. (2018). Towards
certified meta-programming with typed template-coq. In J. Avigad & A.
Mahboubi (Eds.), 9th international conference, ITP. part of floc 2018
(pp. 20–39, Vol. 10895). Springer.

Anand, A., Appel, A., Morrisett, G., Paraskevopoulou, Z., Pollack, R., Belanger,
O. S., Sozeau, M., & Weaver, M. (2017). CertiCoq: A verified compiler
for Coq. CoqPL Workshop.

153

154 BIBLIOGRAPHY

Arcaini, P., Gargantini, A., & Riccobene, E. (2010a). Asmetasmv: A way to link
high-level ASM models to low-level nusmv specifications. In M. Frappier,
U. Glässer, S. Khurshid, R. Laleau, & S. Reeves (Eds.), 2nd international
conference, ABZ (pp. 61–74, Vol. 5977). Springer.

Arcaini, P., Gargantini, A., & Riccobene, E. (2010b). Automatic review of abstract
state machines by meta property verification. In C. A. Muñoz (Ed.), 2nd
NASA formal methods symposium - NFM (pp. 4–13, Vol. NASA/CP-
2010-216215).

Arcaini, P., Melioli, R., & Riccobene, E. (2018). Asmetaf: A flattener for the
ASMETA framework. In P. Masci, R. Monahan, & V. Prevosto (Eds.),
4th workshop on formal integrated development environment, f-ide@floc
(pp. 26–36, Vol. 284).

Barrell, D., Dimmer, E., Huntley, R. P., Binns, D., O’Donovan, C., & Apweiler,
R. (2009). The GOA database in 2009 - an integrated gene ontology
annotation resource. Nucleic Acids Res., 37 (Database-Issue), 396–403.

Barringer, H., Cheng, J. H., & Jones, C. B. (1984). A logic covering undefinedness
in program proofs. Acta Informatica, 21, 251–269.

Behrmann, G., David, A., & Larsen, K. G. (2004). A tutorial on uppaal. In For-
mal methods for the design of real-time systems: International school on
formal methods for the design of computer, communication, and software
systems, bertinora, italy (pp. 200–236). Springer.

Bertot, Y., & Castéran, P. (2010). Interactive theorem proving and program de-
velopment: Coq’art the calculus of inductive constructions. Springer Pub-
lishing.

Bicarregui, J. C., & Ritchie, B. (1991). Reasoning about VDM developments using
the VDM support tool in Mural. In S. Prehn & W. J. Toetenel (Eds.),
Vdm’91 formal software development methods (pp. 371–388). Springer
Berlin Heidelberg.

Bjørner, D. (2006). Software engineering 3 - domains, requirements, and software
design. Springer.

Bjørner, D. (2017). Manifest domains: Analysis and description. Formal Aspects
Comput., 29 (2), 175–225.

Bjørner, D. (2019). Domain analysis and description principles, techniques, and
modelling languages. ACM Trans. Softw. Eng. Methodol., 28 (2), 8:1–8:67.

Bodeveix, J., & Filali, M. (2021). Event-B Formalization of Event-B Contexts. In-
ternational Conference on Rigorous State-Based Methods (ABZ), 12709,
66–80.

Bodeveix, J., Filali, M., Garnacho, M., Spadotti, R., & Yang, Z. (2015). Towards
a verified transformation from AADL to the formal component-based
language FIACRE. Elsevier SCP, 106, 30–53.

Boespflug, M., Carbonneaux, Q., Hermant, O., & Saillard, R. (2012). Dedukti: A
Universal Proof Checker. Journées communes LTP - LAC.

Bonfanti, S., Gargantini, A., & Mashkoor, A. (2018). AsmetaA: Animator for ab-
stract state machines. In M. J. Butler, A. Raschke, T. S. Hoang, & K. Re-
ichl (Eds.), 6th international conference, ABZ (pp. 369–373, Vol. 10817).

BIBLIOGRAPHY 155

Börger, E., & Stärk, R. F. (2003). Abstract state machines. A method for high-
level system design and analysis. Springer. http://www.springer.com/
computer/swe/book/978-3-540-00702-9

Boulton, R. J., Gordon, A., Gordon, M. J. C., Harrison, J., Herbert, J., & Tas-
sel, J. V. (1992). Experience with embedding hardware description lan-
guages in HOL. IFIP TC10/WG 10.2 International Conference on The-
orem Provers in Circuit Design: Theory, Practice and Experience, 129–
156.

Brat, G., Navas, J. A., Shi, N., & Venet, A. (2014). IKOS: A framework for
static analysis based on abstract interpretation. Software Engineering and
Formal Methods - 12th International Conference, SEFM 2014, 8702, 271–
277.

Bühler, D. (2017). Structuring an abstract interpreter through value and state
abstractions:eva, an evolved value analysis for frama-c. [Doctoral disser-
tation, University of Rennes 1, France].

Butler, M., & Maamria, I. (2010). Mathematical extension in Event-B through
the Rodin theory component.

Butler, M. J., Dghaym, D., Fischer, T., Hoang, T. S., Reichl, K., Snook, C. F.,
& Tummeltshammer, P. (2017). Formal modelling techniques for efficient
development of railway control products. International Conference on
Reliability, Safety, and Security of Railway Systems (RSSRail), 10598,
71–86.

Butler, M. J., Körner, P., Krings, S., Lecomte, T., Leuschel, M., Mejia, L., &
Voisin, L. (2020). The first twenty-five years of industrial use of the b-
method. International Conference on Formal Methods for Industrial Crit-
ical Systems (FMICS), 12327, 189–209.

Butler, M. J., & Maamria, I. (2013). Practical theory extension in Event-B. The-
ories of Programming and Formal Methods - Essays Dedicated to Jifeng
He on the Occasion of His 70th Birthday, 8051, 67–81.

Carioni, A., Gargantini, A., Riccobene, E., & Scandurra, P. (2008). A scenario-
based validation language for asms. In E. Börger, M. J. Butler, J. P.
Bowen, & P. Boca (Eds.), First international conference, ABZ (pp. 71–
84, Vol. 5238). Springer.

Castéran, P. (2021). An explicit semantics for event-b refinements. In Y. Ait-
Ameur, S. Nakajima, & D. Méry (Eds.), Implicit and explicit semantics
integration in proof-based developments of discrete systems: Communica-
tions of nii shonan meetings (pp. 155–173). Springer Singapore.

Cimatti, A., Clarke, E. M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., & Tacchella, A. (2002). NuSMV 2: An OpenSource
tool for symbolic model checking. International Conference on Computer
Aided Verification (CAV), 359–364.

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., & Rival,
X. (2005). The astreé analyzer. Programming Languages and Systems,
14th European Symposium on Programming, ESOP 2005, 3444, 21–30.

156 BIBLIOGRAPHY

Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., & Varró, D. (2002).
VIATRA - visual automated transformations for formal verification and
validation of UML models. ASE, 267–270.

Despres, S., & Szulman, S. (2006). Terminae method and integration process
for legal ontology building. In M. Ali & R. Dapoigny (Eds.), Advances in
applied artificial intelligence (pp. 1014–1023). Springer Berlin Heidelberg.

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal deriva-
tion of programs. Commun. ACM, 18 (8), 453–457.

Dowek, G. (2015). Deduction modulo theory. CoRR, abs/1501.06523. http ://
arxiv.org/abs/1501.06523

Dupont, G., Ameur, Y. A., Singh, N. K., & Pantel, M. (2021). Event-b hybri-
dation: A proof and refinement-based framework for modelling hybrid
systems. ACM Trans. Embed. Comput. Syst., 20 (4), 35:1–35:37.

Dupont, G., Yamine Aït Ameur, Pantel, M., & Singh, N. K. (2020). Formally
verified architecture patterns of hybrid systems using proof and refine-
ment with Event-B. Rigorous State-Based Methods - 7th International
Conference, ABZ, 12071, 169–185.

Ebner, G., Ullrich, S., Roesch, J., Avigad, J., & de Moura, L. (2017). A metapro-
gramming framework for formal verification. Proc. ACM Program. Lang.,
1 (ICFP).

Fallenstein, B., & Kumar, R. (2015). Proof-producing reflection for HOL - With
an application to model polymorphism. Interactive Theorem Proving -
6th International Conference, ITP 2015, 9236, 170–186.

Farrell, M., Monahan, R., & Power, J. F. (2016). An institution for Event-B.
Recent Trends in Algebraic Development Techniques (IFIP) WG 1.3 In-
ternational Workshop (WADT), 10644, 104–119.

Farrell, M., Monahan, R., & Power, J. F. (2017). Combining event-b and CSP: an
institution theoretic approach to interoperability. In Z. Duan & L. Ong
(Eds.), 19th international conference ICFEM (pp. 140–156, Vol. 10610).
Springer.

Farrell, M., Monahan, R., & Power, J. F. (2022). Building specifications in the
Event-B institution. Springer LMCS, 18 (4).

Ferrarotti, F., Rivière, P., Schewe, K.-D., Singh, N. K., & Aït Ameur, Y. (2024). A
complete fragment of LTL(EB). 13th International Symposium on Foun-
dations of Information and Knowledge Systems FoIKS 24.

Floyd, R. W. (1967). Assigning meanings to programs. Reprinted from Proceed-
ings of Symposium in Applied Mathematics , Volume 19 - Mathematical
aspects of computer science, 19, 19–32.

Fürst, A., Hoang, T. S., Basin, D., Desai, K., Sato, N., & Miyazaki, K. (2014).
Code Generation for Event-B. Integrated Formal Methods, 323–338.

Gargantini, A., Riccobene, E., & Scandurra, P. (2008). A metamodel-based lan-
guage and a simulation engine for abstract state machines. J. Univers.
Comput. Sci., 14 (12), 1949–1983.

George, C. (1991). The RAISE specification langiage: A tutorial. In S. Prehn
& W. J. Toetenel (Eds.), VDM ’91 - formal software development, 4th

BIBLIOGRAPHY 157

international symposium of VDM europe, proceedings, volume 2: Tutorials
(pp. 238–319, Vol. 552). Springer.

Gibson, J. P., & Raffy, J.-L. (2021). Modelling an e-voting domain for the formal
development of a software product line: When the implicit should be
made explicit. In Y. Ait-Ameur, S. Nakajima, & D. Méry (Eds.), Implicit
and explicit semantics integration in proof-based developments of discrete
systems: Communications of nii shonan meetings (pp. 3–18). Springer
Singapore.

Gruber, T. R. (1995). Toward principles for the design of ontologies used for
knowledge sharing? International Journal of Human-Computer Studies,
43 (5), 907–928. https://doi.org/https://doi.org/10.1006/ijhc.1995.1081

Hacid, K., & Aït Ameur, Y. (2016). Strengthening MDE and formal design models
by references to domain ontologies. A model annotation based approach.
In T. Margaria & B. Steffen (Eds.), Leveraging applications of formal
methods, verification and validation: Foundational techniques - 7th inter-
national symposium, isola 2016, greece, october 10-14, 2016, proceedings,
part I (pp. 340–357, Vol. 9952). https://doi.org/10.1007/978-3- 319-
47166-2_24

Hacid, K., & Ameur, Y. A. (2017). Handling domain knowledge in design and
analysis of engineering models. Electron. Commun. Eur. Assoc. Softw.
Sci. Technol., 74. https://doi.org/10.14279/tuj.eceasst.74.1045

Halchin, A., Ameur, Y. A., Singh, N. K., Ordioni, J., & Feliachi, A. (2020).
Handling B models in the PERF integrated verification framework: For-
malised and certified embedding. Science of Computer Programming, El-
sevier, 196, 102477.

Hallerstede, S., & Hoang, T. S. (2014). Refinement of decomposed models by
interface instantiation. Elsevier SCP, 94, 144–163.

Handschuh, S., & Staab, S. (2003). Cream: Creating metadata for the semantic
web [The Semantic Web: an evolution for a revolution]. Computer Net-
works, 42 (5), 579–598. https://doi.org/https://doi.org/10.1016/S1389-
1286(03)00226-3

He, J., & Hoare, C. A. R. (1998). Unifying theories of programming. RelMiCS,
97–99.

Henderson-Sellers, B. (2012). On the mathematics of modelling, metamodelling,
ontologies and modelling languages. Springer.

Hoang, S., Schneider, S. A., Treharne, H., & Williams, D. M. (2016). Foundations
for using linear temporal logic in event-b refinement. Formal Aspects of
Computing, 28, 909–935.

Hoang, T. S., & Abrial, J. (2011). Reasoning about liveness properties in event-
b. In S. Qin & Z. Qiu (Eds.), 13th international conference on formal
engineering methods, ICFEM 2011 (pp. 456–471, Vol. 6991). Springer.

Hoang, T. S., Dghaym, D., Snook, C. F., & Butler, M. J. (2017). A composition
mechanism for refinement-based methods. 22nd International Conference
on Engineering of Complex Computer Systems, ICECCS, 100–109.

158 BIBLIOGRAPHY

Hoang, T. S., Schneider, S. A., Treharne, H., & Williams, D. M. (2016). Foun-
dations for using linear temporal logic in Event-B refinement. Springer
FAOC, 28 (6), 909–935.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun.
ACM, 12 (10), 576–580.

Hoare, C. A. R. (1978). Communicating sequential processes. Commun. ACM,
21 (8), 666–677.

Hoffart, J., Suchanek, F. M., Berberich, K., & Weikum, G. (2013). YAGO2: A
spatially and temporally enhanced knowledge base from wikipedia. Artif.
Intell., 194, 28–61.

Holzmann, G. (2003). Spin model checker, the: Primer and reference manual
(First). Addison-Wesley Professional.

IEC-61360-4. (1999). Standard data element types with associated classification
scheme for electric components - part 4 : Iec reference collection of stan-
dard data element types, component classes and terms (tech. rep.). Inter-
national Organization for Standardization.

Jean, S., Aït Ameur, Y., & Pierra, G. (2006). Querying ontology based database
using ontoql (an ontology query language). In R. Meersman & Z. Tari
(Eds.), On the move to meaningful internet systems 2006: Coopis, doa,
gada, and odbase, OTM confederated international conferences, coopis,
doa, gada, and ODBASE 2006, montpellier, france, october 29 - november
3, 2006. proceedings, part I (pp. 704–721, Vol. 4275). Springer. https :
//doi.org/10.1007/11914853_43

Jean, S., Pierra, G., & Ameur, Y. A. (2006). Domain ontologies: A database-
oriented analysis. In J. Filipe, J. Cordeiro, & V. Pedrosa (Eds.), Web in-
formation systems and technologies, international conferences, WEBIST
2005 and WEBIST 2006. revised selected papers (pp. 238–254, Vol. 1).
Springer. https://doi.org/10.1007/978-3-540-74063-6_19

Jézéquel, J., Barais, O., & Fleurey, F. (2009). Model driven language engineering
with kermeta. GTTSE, 6491, 201–221.

Jones, C. B. (1995). Partial functions and logics: A warning. Inf. Process. Lett.,
54 (2), 65–67.

Jones, C. B., & Middelburg, C. A. (1994). A typed logic of partial functions
reconstructed classically. Acta Informatica, 31 (5), 399–430.

Jones, C. B. (1986). Systematic software development using VDM. Prentice Hall.
Jones, C. B., Jones, K. D., Lindsay, P. A., & Moore, R. C. (1991). Mural - a

formal development support system. Springer.
Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., & Valduriez, P. (2006). ATL: a

qvt-like transformation language. OOPSLA Companion, 719–720.
Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., & Scholl,

M. (2002). RQL: a declarative query language for RDF. In D. Lassner,
D. D. Roure, & A. Iyengar (Eds.), Proceedings of the eleventh interna-
tional world wide web conference, WWW 2002, may 7-11, 2002, honolulu,
hawaii, USA (pp. 592–603). ACM.

Knublauch, H., Fergerson, R. W., Noy, N. F., & Musen, M. A. (2004). The protégé
OWL Plugin: An open development environment for semantic web appli-

BIBLIOGRAPHY 159

cations. In S. A. McIlraith, D. Plexousakis, & F. van Harmelen (Eds.),
The semantic web – iswc 2004 (pp. 229–243). Springer Berlin Heidelberg.

Kopecký, J., Vitvar, T., Bournez, C., & Farrell, J. (2007). SAWSDL: semantic
annotations for WSDL and XML schema. IEEE Internet Comput., 11 (6),
60–67. https://doi.org/10.1109/MIC.2007.134

Kwiatkowska, M., Norman, G., & Parker, D. (2011). PRISM 4.0: Verification of
probabilistic real-time systems. In G. Gopalakrishnan & S. Qadeer (Eds.),
International conference on computer aided verification (CAV) (pp. 585–
591, Vol. 6806). Springer.

Lamport, L. (1977). Proving the correctness of multiprocess programs. IEEE TSE,
3 (2), 125–143.

Lamport, L. (2002a). Specifying a simple clock. In Specifying systems, the TLA+
language and tools for hardware and software engineers (pp. 15–22). Ad-
dison-Wesley.

Lamport, L. (2002b). Specifying systems, the TLA+ language and tools for hard-
ware and software engineers. Addison-Wesley.

Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., & Ferdinand, C.
(2016). CompCert - A formally verified optimizing compiler. Embedded
Real Time Software and Systems (ERTS).

Leuschel, M. (2020). Fast and effective well-definedness checking. In B. Dongol
& E. Troubitsyna (Eds.), Integrated formal methods - 16th international
conference, IFM 2020, lugano, switzerland, november 16-20, 2020, pro-
ceedings (pp. 63–81, Vol. 12546). Springer.

Leuschel, M., & Butler, M. (2003). ProB: A Model Checker for B. In Fme 2003:
Formal methods (pp. 855–874). Springer.

Leuschel, M., & Butler, M. J. (2008). ProB: An automated analysis toolset for
the B method. Springer International Journal STTT, 10 (2), 185–203.

Maio, C. D., Fenza, G., Furno, D., Loia, V., & Senatore, S. (2012). OWL-FC:
an upper ontology for semantic modeling of fuzzy control. Soft Comput.,
16 (7), 1153–1164.

Manna, Z., & Pnueli, A. (1984). Adequate proof principles for invariance and
liveness properties of concurrent programs. Elsevier SCP, 4 (3), 257–289.

Mendil, I., Singh, N. K., Aït-Ameur, Y., Méry, D., & Palanque, P. (2020, De-
cember). An Integrated Framework for the Formal Analysis of Critical
Interactive Systems. In Y. Liu, S.-P. Ma, S. Chen, & J. Sun (Eds.), The
27th Asia-Pacific Software Engineering Conference (p. 10). IEEE.

Mendil, I., Aït Ameur, Y., Singh, N. K., Méry, D., & Palanque, P. A. (2021). Lever-
aging event-b theories for handling domain knowledge in design models.
In S. Qin, J. Woodcock, & W. Zhang (Eds.), 7th international symposium,
SETTA (pp. 40–58, Vol. 13071). Springer.

Mendil, I., Ameur, Y. A., Singh, N. K., Méry, D., & Palanque, P. A. (2021). Stan-
dard conformance-by-construction with event-b. In A. Lluch-Lafuente &
A. Mavridou (Eds.), 26th international conference, FMICS (pp. 126–146,
Vol. 12863). Springer.

Mendil, I., Riviere, P., Aït Ameur, Y., Singh, N. K., Méry, D., & Palanque, P. A.
(2022). Non-intrusive annotation-based domain-specific analysis to cer-

160 BIBLIOGRAPHY

tify event-b models behaviours. 29th Asia-Pacific Software Engineering
Conference, APSEC, 129–138.

Méry, D., & Poppleton, M. (2017). Towards an integrated formal method for
verification of liveness properties in distributed systems: With application
to population protocols. SoSyM, 16 (4), 1083–1115.

Méry, D., & Singh, N. K. (2011). Automatic code generation from Event-B models.
Symposium on Information and Communication Technology, 179–188.

Mitra, S., & Archer, M. (2004). PVS strategies for proving abstraction properties
of automata. International Workshop on Strategies in Automated Deduc-
tion, 125, 45–65.

Mitra, S., & Archer, M. (2005). PVS strategies for proving abstraction properties
of automata [Proceedings of the 5th International Workshop on Strategies
in Automated Deduction (Strategies 2004)]. Electronic Notes in Theoret-
ical Computer Science, 125 (2), 45–65.

Mossakowski, T. (2016). The distributed ontology, model and specification lan-
guage - DOL. In 23rd IFIP WG 1.3 international workshop, WADT
(pp. 5–10, Vol. 10644). Springer.

Muñoz, C., & Rushby, J. (1999). Structural embeddings: Mechanization with
method. International Symposium on FFormal Methods, 452–471.

Niles, I., & Terry, A. (2004). The MILO: A general-purpose, mid-level ontology.
In H. R. Arabnia (Ed.), Proceedings of the international conference on
information and knowledge engineering. ike’04, june 21-24, 2004, nevada,
USA (pp. 15–19). CSREA Press.

Nipkow, T., Paulson, L. C., & Wenzel, M. (2002). Isabelle/HOL - A proof assistant
for higher-order logic (Vol. 2283). Springer.

OWL Working Group, W. (2009). OWL 2 Web Ontology Language: Document
Overview [Available at http://www.w3.org/TR/owl2-overview/].

Owre, S., Rushby, J. M., & Shankar, N. (1992). PVS: A prototype verification
system. Automated Deduction - CADE-11, 11th International Conference
on Automated Deduction, 607, 748–752.

Paul van der Walt. (2012). Reflection in Agda [Master’s thesis, University of
Utrecht, Department of Computing Science].

Pierra, G. (2008). Context representation in domain ontologies and its use for
semantic integration of data. Journal on Data Semantics, 10, 174–211.

Pierra, G., & Wiedmer, H. (1996). Industrial automation systems and integra-
tion parts library part 42: Methodology for structuring part families (tech.
rep.). Technical Report ISO DIS 13584-42, International Organization for
Standardization, 30 May 1996. ISO/TC 184/SC4/WG2.

Pnueli, A., Siegel, M., & Singerman, E. (1998). Translation validation. Interna-
tional Conference on Tools and Algorithms for Construction and Analysis
of Systems(TACAS), 1384, 151–166.

Prud’hommeaux, E. (2008). Sparql query language for rdf, w3c recommendation.
http://www. w3. org/TR/rdf-sparql-query/.

Riccobene, E., & Scandurra, P. (2004). Towards an interchange language for
ASMs. International Workshop on Abstract State Machines, Advances
in Theory and Practice (ASM), 3052, 111–126.

BIBLIOGRAPHY 161

Riviere, P. (2021). Formal Meta Engineering Event-B: Extension and Reasoning
The EB4EB Framework. In A. Rashke & D. Méry (Eds.), 8th interna-
tional conference, ABZ. proceedings (Vol. 12709). Springer.

Riviere, P., Kobayashi, T., Singh, N. K., Ishikawa, F., Aït Ameur, Y., & Dupont,
G. (2024,(Submitted)). On-the-Fly Proof-Based Verification of Reacha-
bility in Autonomous Vehicle Controllers Relying on Goal-Aware RSS.

Riviere, P., Singh, N. K., & Aït Ameur, Y. (2021). Data-types definitions: Use of
Theory and Context instantiations Plugins. 9th Rodin User and Developer
Workshop collocated with the ABZ 2021 Conference, 1–6.

Riviere, P., Singh, N. K., & Aït Ameur, Y. (2022a). EB4EB: A Framework for
Reflexive Event-B. International Conference on Engineering of Complex
Computer Systems, ICECCS 2022, 71–80.

Riviere, P., Singh, N. K., & Aït Ameur, Y. (2022b). Reflexive Event-B: Semantics
and Correctness the EB4EB Framework. IEEE Transactions on Reliabil-
ity, 1–16.

Riviere, P., Singh, N. K., Aït Ameur, Y., & Dupont, G. (2023a). Formalising
liveness properties in Event-B. NASA Formal Methods 2023.

Riviere, P., Singh, N. K., Aït Ameur, Y., & Dupont, G. (2023b). Proof automation
for Event-B theories. 10th Rodin User and Developer Workshop collocated
with the ABZ 2023 Conference.

Riviere, P., Singh, N. K., Aït Ameur, Y., & Dupont, G. (2023c). Standalone
Event-B models analysis relying on the EB4EB meta-theory. Interna-
tional Conference on Rigorous State Based Methods, ABZ 2023.

Riviere, P., Singh, N. K., Aït Ameur, Y., & Dupont, G. (2024,(Submitted)). Ex-
tending the EB4EB framework with parameterised events.

Scandurra, P., Arnoldi, A., Yue, T., & Dolci, M. (2012). Functional requirements
validation by transforming use case models into abstract state machines.
In S. Ossowski & P. Lecca (Eds.), ACM symposium SAC (pp. 1063–1068).
ACM.

Schneider, S. A., Treharne, H., & Wehrheim, H. (2011). A CSP account of event-b
refinement. In J. Derrick, E. A. Boiten, & S. Reeves (Eds.), 15th inter-
national refinement workshop, refine@fm (pp. 139–154, Vol. 55).

Schneider, S. A., Treharne, H., & Wehrheim, H. (2014). The behavioural semantics
of event-b refinement. Formal Aspects Comput., 26 (2), 251–280. https:
//doi.org/10.1007/s00165-012-0265-0

Sheard, T., & Jones, S. P. (2002). Template meta-programming for haskell. SIG-
PLAN Not., 37 (12), 60–75. https://doi.org/10.1145/636517.636528

Silva, R., & Butler, M. (2012). Shared Event Composition/Decomposition in
Event-B. In B. K. Aichernig, F. S. de Boer, & M. M. Bonsangue (Eds.),
Formal methods for components and objects (pp. 122–141). Springer.

Singh, N. K. (2013). Using Event-B for critical device software systems. Springer.
Singh, N. K., Aït Ameur, Y., & Méry, D. (2021). Formal ontological analysis for

medical protocols. In Y. Aït Ameur, S. Nakajima, & D. Méry (Eds.),
Implicit and explicit semantics integration in proof-based developments of
discrete systems: Communications of nii shonan meetings (pp. 83–107).
Springer Singapore.

162 BIBLIOGRAPHY

Singh, N. K., Ameur, Y. A., & Méry, D. (2018). Formal ontology driven model
refactoring. 23rd International Conference on Engineering of Complex
Computer Systems, ICECCS 2018, 136–145.

Sirin, E., & Parsia, B. (2004). Pellet: An OWL DL reasoner. In V. Haarslev
& R. Möller (Eds.), Proceedings of the 2004 international workshop on
description logics (dl2004), whistler, british columbia, canada, june 6-8,
2004 (Vol. 104). CEUR-WS.org. http://ceur-ws.org/Vol-104/30Sirin-
Parsia.pdf

Sozeau, M., Anand, A., Boulier, S., Cohen, C., Forster, Y., Kunze, F., Malecha,
G., Tabareau, N., & Winterhalter, T. (2020). The MetaCoq Project. J.
Autom. Reason., 64 (5), 947–999.

Spivey, J. M. (1985). Understanding Z : A specification language and its formal
semantics [Doctoral dissertation, University of Oxford, UK].

Spivey, J. M. (1992). Z notation - a reference manual (2. ed.) Prentice Hall.
Stoddart, B., Dunne, S., & Galloway, A. (1999). Undefined expressions and logic

in Z and B. Formal Methods Syst. Des., 15 (3), 201–215.
Stump, A. (2016). Verified functional programming in agda. Association for Com-

puting Machinery; Morgan & Claypool.
Su, W., & Abrial, J. (2017). Aircraft landing gear system: Approaches with Event-

B to the modeling of an industrial system. Springer International Journal
STTT, 19 (2), 141–166.

Sun, J., Liu, Y., Dong, J. S., & Pang, J. (2009). Pat: Towards flexible verification
under fairness. In A. Bouajjani & O. Maler (Eds.), International confer-
ence on computer aided verification (CAV) (pp. 709–714). Springer.

Taha, W., & Sheard, T. (1997). Multi-stage programming with explicit annota-
tions. SIGPLAN Not., 32 (12), 203–217.

van Gasteren, A. J. M., & Tel, G. (1990). Comments on "on the proof of a dis-
tributed algorithm": Always-tru is not invariant. Inf. Process. Lett., 35 (6),
277–279.

Woodcock, J., & Cavalcanti, A. (2004). A tutorial introduction to designs in
unifying theories of programming. IFM, 2999, 40–66.

Zayas, D. S., Monceaux, A., & Aït Ameur, Y. (2010). Knowledge models to re-
duce the gap between heterogeneous models: Application to aircraft sys-
tems engineering. In R. Calinescu, R. F. Paige, & M. Z. Kwiatkowska
(Eds.), 15th IEEE international conference on engineering of complex
computer systems, ICECCS 2010, oxford, united kingdom, 22-26 march
2010 (pp. 355–360). IEEE Computer Society.

Zhu, C., Butler, M., Cirstea, C., & Hoang, T. S. (2023). A fairness-based re-
finement strategy to transform liveness properties in Event-B models.
Elsevier SCP, 225, 102907.

Part III

Appendices

163

Appendix A

Theories

A.1 EB4EB Core Theories
A.1.1 Core definition of EB4EB:

Listing A.1: Theory of the Syntax representation of Event-B
THEORY EvtBStruc

TYPE PARAMETERS STATE ,EV ENT
DATA TYPES

Machine (STATE ,EVENT)
CONSTRUCTORS

Cons_machine (
Event : P(EVENT) ,
State : P(STATE) ,
Init : EVENT ,
Progress : P(EVENT) ,
AP : P(STATE) ,
Grd : P(EVENT × STATE) ,
BAP : P(EVENT × (STATE × STATE)) ,
Inv : P(STATE) ,
Thm : P(STATE) ,
Ordinary : P(EVENT) ,
Variant : P(STATE × Z) ,
Convergent : P(EVENT))

OPERATORS
Grd_WellCons predicate (m : Machine(STATE , EVENT))

direct definition
dom(Grd(m)) = Progress(m)

BAP_WellCons predicate (m : Machine(STATE , EVENT))
direct definition

dom(BAP(m)) = Progress(m)

165

166 APPENDIX A. THEORIES

Event_WellCons predicate (m : Machine(STATE , EVENT))
direct definition

partition(Event(m), {Init(m)}, Progress(m))
Variant_WellCons predicate (m : Machine(STATE , EVENT))

direct definition
Inv(m) ◁ Variant(m) ∈ Inv(m) → Z

Tag_Event_WellCons predicate (m : Machine(EVENT , STATE))
direct definition

partition(Event(m), Ordinary(m), Convergent(m))
∧Init(m) ∈ Ordinary(m)

Machine_WellCons predicate (m : Machine(STATE , EVENT))
direct definition

BAP_WellCons(m)∧
Grd_WellCons(m)∧
Event_WellCons(m)∧
Tag_Event_WellCons(m)∧
Variant_WellCons(m)

END

Listing A.2: Theory of the Proof obligation definition
THEORY EvtBPO

IMPORT THEORY EvtBStruc
TYPE PARAMETERS STATE ,EV ENT
OPERATORS

Mch_THM predicate (m : Machine(STATE , EVENT))
direct definition

Inv(m) ⊆ Thm(m)
Mch_INV_Init predicate (m : Machine(STATE , EVENT))

direct definition
AP(m) ⊆ Inv(m)

Mch_INV_One_Ev predicate (m : Machine(STATE , EVENT) ,
e : EVENT)

well−definedness e ∈ Progress(m)
direct definition

BAP(m)[{e}][Inv(m) ∩ Grd(m)[{e}]] ⊆ Inv(m)
Mch_INV predicate (m : Machine(STATE , EVENT))

direct definition
Mch_INV _Init(m)∧
(∀e · e ∈ Progress(m) ⇒ Mch_INV _One_Ev(m, e))

Mch_FIS_Init predicate (m : Machine(STATE , EVENT))
direct definition

Inv(m) ∩ AP(m) ̸= ∅
Mch_FIS_One_Ev predicate (m : Machine(STATE , EVENT) ,

e : EVENT)
well−definedness e ∈ Progress(m)
direct definition

A.1. EB4EB CORE THEORIES 167

Inv(m) ∩ Grd(m)[{e}] ⊆ dom(BAP(m)[{e}])
Mch_FIS predicate (m : Machine(STATE , EVENT))

direct definition
Mch_FIS_Init(m)∧
(∀e · e ∈ Progress(m) ⇒ Mch_FIS_One_Ev(m, e))

Mch_VARIANT_One_Ev predicate (
m : Machine(STATE , EVENT) ,e : EVENT ,s : STATE)

well−definedness Variant_WellCons(m) ,
Mch_INV _One_Ev(m, e) ,e ∈ Progress(m) ,e ∈ Convergent(m) ,
s ∈ Inv(m) ,s ∈ Grd(m)[{e}]

direct definition
∀sp · sp ∈ BAP(m)[{e}][{s}]

⇒ (Inv(m) ◁ Variant(m))(s) > (Inv(m) ◁ Variant(m))(sp)
Mch_VARIANT predicate (m : Machine(STATE , EVENT))

well−definedness Variant_WellCons(m) ,Mch_INV (m) ,
BAP_WellCons(m) ,Tag_Event_WellCons(m) ,
Event_WellCons(m)

direct definition
∀e, s · e ∈ Event(m)∧

e ∈ Convergent(m) ∧ s ∈ State(m) ∧ s ∈ Inv(m)∧
s ∈ Grd(m)[{e}]

⇒ Mch_VARIANT_One_Ev(m, e, s)
Mch_NAT_One_Ev predicate (m : Machine(STATE , EVENT) ,

e : EVENT)
well−definedness e ∈ Convergent(m)
direct definition

Variant(m)[Inv(m) ∩ Grd(m)[{e}]] ⊆ N
Mch_NAT predicate (m : Machine(STATE , EVENT))

direct definition
Variant(m)[Inv(m) ∩ Grd(m)[Convergent(m)]] ⊆ N

check_Machine_Consistency predicate (
m : Machine(STATE , EVENT))

well−definedness Machine_WellCons(m)
direct definition

Mch_THM (m)∧
Mch_INV (m)∧
Mch_FIS(m)∧
Mch_NAT (m)∧
Mch_VARIANT (m)

END

A.1.2 Generic Machine for Shallow modelling

Listing A.3: Context of the generic machine of shallow modelling
CONTEXT

168 APPENDIX A. THEORIES

ShallowCtx
SETS

S
EV

CONSTANTS
m

AXIOMS
axm1 : m ∈ Machine(S, EV)

END

Listing A.4: Generic machine for the shallow modelling
MACHINE

ShallowMch
SEES

ShallowCtx
VARIABLES s , InitDone
INVARIANTS

inv1 : s ∈ S
inv2 : InitDone ∈ BOOL
inv3 : InitDone = TRUE ⇒ s ∈ Inv(m)

EVENTS
INITIALISATION
THEN

act1 : s :∈ S
act2 : InitDone := FALSE

END

Do_Init
WHERE

grd1 : InitDone = FALSE
grd2 : Mch_INV _Init(m) ∧ Mch_FIS_Init(m)

THEN
act1 : s :∈ AP(m)
act2 : InitDone := TRUE

END

Do_Ordinary
ANY e
WHERE

grd1 : InitDone = TRUE
grd2 : e ∈ Progress(m) ∧ e ∈ Ordinary(m)
grd3 : s ∈ Grd(m)[{e}]
grd4 : Mch_INV _One_Ev(m, e) ∧ Mch_FIS_One_Ev(m, e)

THEN
act1 : s :∈ BAP(m)[{e}][{s}]

END

A.1. EB4EB CORE THEORIES 169

Do_Convergent
ANY e
WHERE

grd1 : InitDone = TRUE
grd2 : e ∈ Progress(m) ∧ e ∈ Convergent(m)
grd3 : s ∈ Grd(m)[{e}]
grd4 : Mch_INV _One_Ev(m, e) ∧ Mch_FIS_One_Ev(m, e)
grd6 : Variant_WellCons(m)
grd5 : Mch_VARIANT_One_Ev(m, e, s) ∧ Mch_NAT_One_Ev(m, e)

THEN
act1 : s :∈ BAP(m)[{e}][{s}]

END

END

A.1.3 Helper Theory

Listing A.5: Helper Theory for Event-B machine manipulation
THEORY EvtBManip

IMPORT THEORY
EvtBTheory

TYPE PARAMETERS EV ENT ,STATE
OPERATORS

Get_next_act_state expression (m : Machine(STATE , EVENT))
well−definedness Event_WellCons(m)
direct definition

{e, s·
((e = Init(m) ∧ s = AP(m))∨
(e ∈ Progress(m) ∧ s = BAP(m)[{e}][Inv(m) ∩ Grd(m)[{e}]]))

| e 7→ s}
THEOREMS

thm1 :
∀e, m · m ∈ Machine(STATE , EVENT) ∧ e ∈ Event(m)∧

Event_WellCons(m) ⇒
e ∈ dom(Get_next_act_state(m))

thm2 :
∀m · m ∈ Machine(STATE , EVENT) ∧ Event_WellCons(m) ⇒

Get_next_act_state(m) ∈ EVENT 7→ P(STATE)
PROOF RULES

extens ion_def :
Metavariables

m : Machine(STATE , EVENT)
e : EVENT

Rewrite Rules

170 APPENDIX A. THEORIES

rew1 : Get_next_act_state(m)(e)
rhs1 : e = Init(m) ⇒ AP(m)
rhs2 : e ∈ Progress(m) ⇒ BAP(m)[{e}][Inv(m) ∩ Grd(m)[{e}]]
rhs3 : e /∈ dom(Get_next_act_state(m)) ⇒ ∅ : P(STATE)

END

Listing A.6: Proof rule Definition
THEORY EvtBTheoryProofRule

IMPORT THEORY EvtBPO
TYPE PARAMETERS STATE ,EV ENT
THEOREMS

thm1 :
∀m, e · m ∈ Machine(STATE , EVENT) ∧ e ∈ Convergent(m)∧

e ∈ Event(m) ∧ Event_WellCons(m) ∧ Tag_Event_WellCons(m)
⇒ e ∈ Progress(m)

PROOF RULES
extens ion_def :
Metavariables

m : Machine(STATE , EVENT)
Rewrite Rules

rewConsistency : check_Machine_Consistency(m)
rhs1 : ⊤ ⇒ Mch_THM (m)∧

Mch_INV (m)∧
Mch_FIS(m)∧
Mch_NAT (m)∧
Mch_VARIANT (m)

rewMCH : m ∈ Machine(STATE , EVENT)
rhs1 : ⊤ ⇒ ∃p_E , p_S , p_Ie, p_P, p_V , p_C ,

p_O, p_AP, p_B, p_G, p_In, p_T · m =
Cons_machine(p_E , p_S , p_Ie, p_P, p_AP, p_G, p_B,

p_In, p_T , p_V , p_O, p_C)
rewWCons : Machine_WellCons(m)

rhs1 : ⊤ ⇒ BAP_WellCons(m)∧
Grd_WellCons(m)∧
Event_WellCons(m)∧
Tag_Event_WellCons(m)∧
Variant_WellCons(m)

rewBAPWC : BAP_WellCons(m)
rhs1 : ⊤ ⇒ ∀b, p · Progress(m) = p ∧ BAP(m) = b ⇒ dom(b) = p

rewGRDWC : Grd_WellCons(m)
rhs1 : ⊤ ⇒ ∀g, p · Progress(m) = p ∧ Grd(m) = g ⇒ dom(g) = p

rewEvtWC : Event_WellCons(m)
rhs1 : ⊤ ⇒ ∀Ev, In, Pro·

Init(m) = In ∧ Event(m) = Ev ∧ Progress(m) = Pro
⇒ partition(Ev, {In}, Pro)

rewVarWC : Variant_WellCons(m)

A.2. EB4EB ANALYSES PROPERTIES 171

rhs1 : ⊤ ⇒ ∀variant, inv · Inv(m) = inv ∧ Variant(m) = variant
⇒ inv ◁ variant ∈ inv → Z

rewTagWC : Tag_Event_WellCons(m)
rhs1 : ⊤ ⇒ ∀ordinary, init, ev, convergent·

Init(m) = init ∧ Ordinary(m) = ordinary∧
Convergent(m) = convergent ∧ Event(m) = ev

⇒ partition(ev, ordinary, convergent) ∧ init ∈ ordinary
rewThm : Mch_THM (m)

rhs1 : ⊤ ⇒
∀inv, thm · Inv(m) = inv ∧ Thm(m) = thm ⇒ inv ⊆ thm

rewInvInit : Mch_INV _Init(m)
rhs1 : ⊤ ⇒ ∀inv, ap · Inv(m) = inv ∧ AP(m) = ap ⇒ ap ⊆ inv

reFISInit : Mch_FIS_Init(m)
rhs1 : ⊤ ⇒ ∀inv, ap · Inv(m) = inv ∧ AP(m) = ap ⇒ ap ∩ inv ̸= ∅

rewFIS : Mch_FIS(m)
rhs1 : ⊤ ⇒ Mch_FIS_Init(m)∧

(∀e, pro, inv, grd, bap · Progress(m) = pro ∧ e ∈ pro∧
Inv(m) = inv ∧ Grd(m) = grd ∧ BAP(m) = bap

⇒ inv ∩ grd[{e}] ⊆ dom(bap[{e}]))
rewInv : Mch_INV (m)

rhs1 : ⊤ ⇒ Mch_INV _Init(m)∧
(∀e, pro, inv, grd, bap · Progress(m) = pro ∧ e ∈ pro∧

Inv(m) = inv ∧ Grd(m) = grd ∧ BAP(m) = bap
⇒ bap[{e}][inv ∩ grd[{e}]] ⊆ inv)

rewNat : Mch_NAT (m)
rhs1 : ⊤ ⇒ ∀variant, inv, grd, convergent·

Variant(m) = variant ∧ Inv(m) = inv∧
Convergent(m) = convergent ∧ Grd(m) = grd

⇒ variant[inv ∩ grd[convergent]] ⊆ N
rewVar : Mch_VARIANT (m)

rhs1 : ⊤ ⇒ ∀e, s, ev, conv, st, inv, grd, sp, bap, var ·
Event(m) = ev ∧ Convergent(m) = conv ∧ Inv(m) = inv∧
State(m) = st ∧ Grd(m) = grd ∧ e ∈ ev ∧ e ∈ conv∧
s ∈ st ∧ s ∈ inv ∧ BAP(m) = bap ∧ Variant(m) = var∧
s ∈ grd[{e}] ∧ sp ∈ bap[{e}][{s}]

⇒ (inv ◁ var)(s) > (inv ◁ var)(sp)
END

A.2 EB4EB Analyses Properties
A.2.1 Core definition of analyses

Listing A.7: Theory of the deadlock freeness analysis
THEORY Theo4DeadlockFree

172 APPENDIX A. THEORIES

IMPORT THEORY
EvtBTheory

TYPE PARAMETERS EV ENT ,STATE
OPERATORS

DeadlockFreeness_Definition predicate (
m : Machine(STATE , EVENT))

direct definition
Inv(m) ⊆ Grd(m)[Progress(m)]

check_Machine_DeadLockFreeness predicate (
m : Machine(STATE , EVENT))

well−definedness Machine_WellCons(m)
direct definition

DeadlockFreeness_Definition(m)
PROOF RULES

extens ion_def :
Metavariables

m : Machine(STATE , EVENT)
Rewrite Rules

rew1 : check_Machine_DeadLockFreeness(m)
rhs1 : ⊤ ⇒ DeadlockFreeness_Definition(m)

rew2 : DeadlockFreeness_Definition(m)
rhs1 : ⊤ ⇒

∀g, i, p · Progress(m) = p ∧ Grd(m) = g ∧ Inv(m) = i ⇒ i ⊆ g[p]
END

Listing A.8: Theory of the reachability analysis
THEORY Theo4Reachabi l i ty

IMPORT THEORY
EvtBManip

TYPE PARAMETERS EV ENT ,STATE
OPERATORS

At_Least_One_Triggerable_Evt predicate (
m : Machine(STATE , EVENT) ,src : EVENT , trgSet : P(EVENT))

well−definedness trgSet ⊆ Progress(m) ,src ∈ Event(m) ,
Machine_WellCons(m)

direct definition
Get_next_act_state(m)(src) ∩ Grd(m)[trgSet] ̸= ∅

VariantDecrease predicate (m : Machine(STATE , EVENT) ,
variant : P(STATE × Z) ,SubSetEvt : P(EVENT))

well−definedness Inv(m) ◁ variant ∈ Inv(m) → Z ,Mch_INV (m)
,BAP_WellCons(m) ,SubSetEvt ⊆ Progress(m)

direct definition
∀e, s · e ∈ Event(m) ∧ e ∈ SubSetEvt ∧ s ∈ State(m) ∧ s ∈ Inv(m)∧

s ∈ Grd(m)[{e}] ⇒ (∀sp · sp ∈ BAP(m)[{e}][{s}]
⇒ (Inv(m) ◁ variant)(s) > (Inv(m) ◁ variant)(sp))

NaturalVariant predicate (m : Machine(STATE , EVENT) ,

A.2. EB4EB ANALYSES PROPERTIES 173

variant : P(STATE × Z) ,SubSetEvt : P(EVENT))
well−definedness Inv(m) ◁ variant ∈ Inv(m) → Z ,

BAP_WellCons(m) ,SubSetEvt ⊆ Progress(m)
direct definition

variant[Inv(m) ∩ Grd(m)[SubSetEvt]] ⊆ N
One_Next_Evt_Is_Triggerable predicate (

m : Machine(STATE , EVENT) ,variant : P(STATE × Z) ,
SubSetEvt : P(EVENT))

well−definedness Inv(m) ◁ variant ∈ Inv(m) → Z ,
BAP_WellCons(m) ,SubSetEvt ⊆ Progress(m) ,Mch_INV (m)

direct definition
∀e, s · e ∈ SubSetEvt∧

s ∈ BAP(m)[{e}][Inv(m) ∩ Grd(m)[{e}]]∧
(Inv(m) ◁ variant)(s) ∈ N ⇒

s ∈ Grd(m)[SubSetEvt]
Evt_Is_Reachable_From_Definition predicate (

m : Machine(STATE , EVENT) ,src : EVENT , trg : EVENT ,
SubSetEvt : P(EVENT) ,variant : P(STATE × Z))

well−definedness Machine_WellCons(m) , trg ∈ Progress(m) ,
src ∈ Event(m) ,Inv(m) ◁ variant ∈ Inv(m) → Z ,Mch_INV (m) ,
SubSetEvt ⊆ Progress(m)

direct definition
NaturalVariant(m, variant, SubSetEvt)∧
VariantDecrease(m, variant, SubSetEvt)∧
One_Next_Evt_Is_Triggerable(m, variant, SubSetEvt)∧
At_Least_One_Triggerable_Evt(m, src, SubSetEvt)∧
variant−1[Z \ N] ∩ Inv(m) ⊆ Grd(m)[{trg}]

check_Machine_Evt_Is_Reachable_From predicate (
m : Machine(STATE , EVENT) ,src : EVENT , trg : EVENT ,
SubSetEvt : P(EVENT) ,variant : P(STATE × Z))

well−definedness Machine_WellCons(m) , trg ∈ Progress(m) ,
src ∈ Event(m) ,Inv(m) ◁ variant ∈ Inv(m) → Z ,Mch_INV (m) ,
SubSetEvt ⊆ Progress(m)

direct definition
Evt_Is_Reachable_From_Definition(m, src, trg, SubSetEvt, variant)

PROOF RULES
extens ion_def :
Metavariables

m : Machine(STATE , EVENT)
src : EVENT
trg : EVENT
convergent : P(EVENT)
variant : P(STATE × Z)
trgs : P(EVENT)

Rewrite Rules
rew2 : One_Next_Evt_Is_Triggerable(m, variant, convergent)

174 APPENDIX A. THEORIES

rhs1 : ⊤ ⇒ ∀e, s, i, g, b·
Inv(m) = i∧
Grd(m) = g∧
BAP(m) = b∧
e ∈ convergent∧
s ∈ b[{e}][i ∩ g[{e}]]∧
(i ◁ variant)(s) ∈ N ⇒

s ∈ g[convergent]
rew3 : NaturalVariant(m, variant, convergent)

rhs1 : ⊤ ⇒ ∀i, g·
Inv(m) = i∧
Grd(m) = g ⇒

variant[i ∩ g[convergent]] ⊆ N
rew4 : VariantDecrease(m, variant, convergent)

rhs1 : ⊤ ⇒ ∀e, s, i, g, b·
Inv(m) = i∧
Grd(m) = g∧
BAP(m) = b∧
e ∈ Event(m)∧
e ∈ convergent∧
s ∈ State(m)∧
s ∈ Inv(m)∧
s ∈ Grd(m)[{e}] ⇒

(∀sp·
sp ∈ BAP(m)[{e}][{s}] ⇒

(Inv(m) ◁ variant)(s) > (Inv(m) ◁ variant)(sp))
rew5 : At_Least_One_Triggerable_Evt(m, src, trgs)

rhs1 : ⊤ ⇒ ∀g·
Grd(m) = g ⇒

Get_next_act_state(m)(src) ∩ g[trgs] ̸= ∅
rew6 :

Evt_Is_Reachable_From_Definition(m, src, trg, convergent, variant)

rhs1 : ⊤ ⇒ ∀i, g·
Inv(m) = i ∧ Grd(m) = g ⇒

NaturalVariant(m, variant, convergent)∧
VariantDecrease(m, variant, convergent)∧
One_Next_Evt_Is_Triggerable(m, variant, convergent)∧
At_Least_One_Triggerable_Evt(m, src, convergent)∧
variant−1[Z \ N] ∩ i ⊆ g[{trg}]

rew7 : check_Machine_Evt_Is_Reachable_From(
m, src, trg, convergent, variant)

rhs1 : ⊤ ⇒ Evt_Is_Reachable_From_Definition(
m, src, trg, convergent, variant)

Listing A.9: Theory of the weak invariant analysis

A.3. EB4EB LIVENESS PROPERTIES 175

THEORY Theo4WeakInv
IMPORT THEORY

EvtBTheory
TYPE PARAMETERS EV ENT ,STATE
OPERATORS

AllowedMachineHoleSub_Definition predicate (
m : Machine(STATE , EVENT) ,nGrd : P(STATE) ,
nBAP : P(STATE × STATE))

direct definition
nBAP[Inv(m) ∩ nGrd] ⊆ Inv(m)

check_Machine_AllowedMachineHoleSub predicate (
m : Machine(STATE , EVENT) ,nGrd : P(STATE) ,
nBAP : P(STATE × STATE))

well−definedness Machine_WellCons(m)
direct definition

AllowedMachineHoleSub_Definition(m, nGrd, nBAP)
PROOF RULES

extens ion_def :
Metavariables

m : Machine(STATE , EVENT)
nGrd : P(STATE)
nBAP : P(STATE × STATE)

Rewrite Rules
rew1 : AllowedMachineHoleSub_Definition(m, nGrd, nBAP)

rhs1 : ⊤ ⇒ ∀i · i = Inv(m) ⇒ nBAP[i ∩ nGrd] ⊆ i
rew2 : check_Machine_AllowedMachineHoleSub(m, nGrd, nBAP)

rhs1 : ⊤ ⇒ AllowedMachineHoleSub_Definition(m, nGrd, nBAP)
END

A.3 EB4EB Liveness Properties

A.3.1 Core definition of temporal properties

Listing A.10: Theory of temporal propreties
THEORY Theo4Liveness

IMPORT THEORY EvtBPO
TYPE PARAMETERS EV ENT ,STATE
OPERATORS

LeadsP1ToP2OneEvt predicate (m : Machine(STATE , EVENT) ,
p1 : P(STATE) ,p2 : P(STATE) ,e : EVENT)

well−definedness e ∈ Progress(m)
direct definition

BAP(m)[{e}][p1 ∩ Grd(m)[{e}] ∩ Inv(m)] ⊆ p2

176 APPENDIX A. THEORIES

LeadsP1ToP2 predicate (m : Machine(STATE , EVENT) ,
p1 : P(STATE) ,p2 : P(STATE))

direct definition
∀e · e ∈ Progress(m) ⇒ LeadsP1ToP2OneEvt(m, p1 , p2 , e)

ConvPOneEvt predicate (m : Machine(STATE , EVENT) ,
p : P(STATE) ,variant : P(STATE × Z) ,e : EVENT)

well−definedness e ∈ Progress(m) ,variant ∈ STATE → Z
direct definition

variant[Inv(m) ∩ p ∩ Grd(m)[{e}]] ⊆ N∧
(∀s, sp · s ∈ Inv(m) ∧ s ∈ p ∩ Grd(m)[{e}] ∧ sp ∈ BAP(m)[{e}][{s}]

⇒ variant(s) > variant(sp))
ConvP predicate (m : Machine(STATE , EVENT) ,p : P(STATE) ,

variant : P(STATE × Z))
well−definedness variant ∈ STATE → Z
direct definition

∀e · e ∈ Progress(m) ⇒ ConvPOneEvt(m, p, variant, e)
DiverPOneEvt predicate (m : Machine(STATE , EVENT) ,

p : P(STATE) ,variant : P(STATE × Z) ,e : EVENT)
well−definedness e ∈ Progress(m) ,variant ∈ STATE → Z
direct definition

ConvPOneEvt(m, STATE \ p, variant, e)∧
(∀s, sp · s ∈ Inv(m) ∧ s ∈ p ∩ Grd(m)[{e}]∧

sp ∈ BAP(m)[{e}][{s}] ∧ variant(sp) ∈ N
⇒ variant(s) ≥ variant(sp))

DiverP predicate (m : Machine(STATE , EVENT) ,p : P(STATE) ,
variant : P(STATE × Z))

well−definedness variant ∈ STATE → Z
direct definition

∀e · e ∈ Progress(m) ⇒ DiverPOneEvt(m, p, variant, e)
DeadlockFreeP predicate (m : Machine(STATE , EVENT) ,

p : P(STATE))
direct definition

p ∩ Inv(m) ⊆ Grd(m)[Progress(m)]
Globaly predicate (m : Machine(STATE , EVENT) ,I : P(STATE))

direct definition
Inv(m) ⊆ I

ExistenceP predicate (m : Machine(STATE , EVENT) ,
p : P(STATE) ,variant : P(STATE × Z))

well−definedness variant ∈ STATE → Z
direct definition

ConvP(m, STATE \ p, variant)∧
DeadlockFreeP(m, STATE \ p)

P1UntilP2 predicate (m : Machine(STATE , EVENT) ,
variant : P(STATE × Z) ,p1 : P(STATE) ,p2 : P(STATE))

well−definedness variant ∈ STATE → Z
direct definition

A.3. EB4EB LIVENESS PROPERTIES 177

LeadsP1ToP2 (m, p1 ∩ (STATE \ p2), p1 ∪ p2)∧
ExistenceP(m, (STATE \ p1) ∪ p2 , variant)

P1ProgressByP3ToP2 predicate (m : Machine(STATE , EVENT) ,
variant : P(STATE × Z) ,p1 : P(STATE) ,p2 : P(STATE) ,
p3 : P(STATE))

well−definedness variant ∈ STATE → Z
direct definition

Globaly(m, p3 ∪ p2 ∪ (STATE \ p1))∧
P1UntilP2 (m, variant, p3 , p2)

PersistenceP predicate (m : Machine(STATE , EVENT) ,
p : P(STATE) ,variant : P(STATE × Z))

well−definedness variant ∈ STATE → Z
direct definition

DiverP(m, p, variant)∧
DeadlockFreeP(m, STATE \ p)

END

A.3.2 Helper Theory

Listing A.11: Proof rules for temporal properties
THEORY Theo4LivenessProofRules

IMPORT THEORY Theo4Liveness
TYPE PARAMETERS EV ENT ,STATE
PROOF RULES

extens i on_l ivene s s_de f :
Metavariables

m : Machine(STATE , EVENT)
p1 : P(STATE)
p2 : P(STATE)
p3 : P(STATE)
v : P(STATE × Z)

Rewrite Rules
rew1 : LeadsP1ToP2 (m, p1 , p2)

rhs1 : ⊤ ⇒ ∀bap, g, i, p · bap = BAP(m) ∧ g = Grd(m)∧
i = Inv(m) ∧ p = Progress(m)

⇒ (∀e · e ∈ p
⇒ bap[{e}][p1 ∩ g[{e}] ∩ i] ⊆ p2)

rew2 : ConvP(m, p1 , v)
rhs1 : ⊤ ⇒ ∀bap, g, i, p · bap = BAP(m) ∧ g = Grd(m)∧

i = Inv(m) ∧ p = Progress(m)
⇒ (∀e · e ∈ p

⇒ (v[Inv(m) ∩ p1 ∩ Grd(m)[{e}]] ⊆ N∧
(∀s, sp · s ∈ i ∧ s ∈ p1 ∩ g[{e}] ∧ sp ∈ bap[{e}][{s}]

⇒ v(s) > v(sp))))
rew3 : DiverP(m, p1 , v)

178 APPENDIX A. THEORIES

rhs1 : ⊤ ⇒ ∀bap, g, i, p · bap = BAP(m) ∧ g = Grd(m)
∧i = Inv(m) ∧ p = Progress(m)

⇒ (∀e · e ∈ p
⇒ (v[Inv(m) ∩ (STATE \ p1) ∩ Grd(m)[{e}]] ⊆ N∧
(∀s, sp · s ∈ i∧

s ∈ (STATE \ p1) ∩ g[{e}] ∧ sp ∈ bap[{e}][{s}]
⇒ v(s) > v(sp))∧

(∀s, sp · s ∈ i∧
s ∈ p1 ∩ g[{e}] ∧ sp ∈ bap[{e}][{s}] ∧ v(sp) ∈ N

⇒ v(s) ≥ v(sp))))
rew4 : DeadlockFreeP(m, p1)

rhs1 : ⊤ ⇒ ∀g, i, p · g = Grd(m) ∧ i = Inv(m) ∧ p = Progress(m)
⇒ (p1 ∩ i ⊆ g[Progress(m)])

rew5 : Globaly(m, p1)
rhs1 : ⊤ ⇒ ∀i · i = Inv(m) ⇒ (i ⊆ p1)

rew6 : ExistenceP(m, p1 , v)
rhs1 : ⊤ ⇒

ConvP(m, STATE \ p1 , v) ∧ DeadlockFreeP(m, STATE \ p1)
rew7 : P1UntilP2 (m, v, p1 , p2)

rhs1 : ⊤ ⇒ LeadsP1ToP2 (m, p1 ∩ (STATE \ p2), p1 ∪ p2)∧
ExistenceP(m, (STATE \ p1) ∪ p2 , v)

rew8 : P1ProgressByP3ToP2 (m, v, p1 , p2 , p3)
rhs1 : ⊤ ⇒

Globaly(m, p3 ∪ p2 ∪ (STATE \ p1)) ∧ P1UntilP2 (m, v, p3 , p2)
rew9 : PersistenceP(m, p1 , v)

rhs1 : ⊤ ⇒ DiverP(m, p1 , v) ∧ DeadlockFreeP(m, STATE \ p1)
END

A.4 Domain specific Analysis
A.4.1 Ontologies Theory

Listing A.12: Ontologies theory

THEORY OntologiesTheory
TYPE PARAMETERS C, P, I
DATA TYPES

Ontology (C, P, I)
CONSTRUCTORS

consOntology (
classes : P(C),
properties : P(P),
instances : P(I),
classProperties : P(C × P),

A.4. DOMAIN SPECIFIC ANALYSIS 179

classInstances : P(C × I),
classAssociations : P(C × P × C),
instanceAssociations : P(I × P × I))

OPERATORS
getClasses <expression> (o : Ontology(C, P, I))

direct definition
classes(o)

getProperties <expression> (o : Ontology(C, P, I))
direct definition

properties(o)
getInstances <expression> (o : Ontology(C, P, I))

direct definition
instances(o)

isWDClassProperites <predicate> (o : Ontology(C, P, I))
direct definition

classProperties(o) ∈ getClasses(o) ↔ getProperties(o)
getClassProperties <expression> (o : Ontology(C, P, I))

well−definedness i sWDClassProper ites (o)
direct definition

classProperties(o)
isWDClassInstances <predicate> (o : Ontology(C, P, I))

direct definition
classInstances(o) ∈ getClasses(o) ↔ getInstances(o)

getClassInstances <expression> (o : Ontology(C, P, I))
well−definedness i sWDClassInstances (o)
direct definition
classInstances(o)

isWDClassAssociations <predicate> (o : Ontology(C, P, I))
well−definedness isWDClassProperites(o)
direct definition

classAssociations(o) ∈ getClassProperties(o) → classes(o)
getClassAssociations <expression> (o : Ontology(C, P, I))

well−definedness isWDClassAssociations(o)
direct definition

classAssociations(o)
isWDInstancesAssociations <predicate> (o : Ontology(C, P, I))

well−definedness isWDClassProperites(o) ,
isWDClassInstances(o) , isWDClassAssociations(o)

direct definition
instanceAssociations(o) ⊆

instances(o) × properties(o) × instances(o)∧
instanceAssociations(o) ⊆ {i1 7→ p 7→ i2 | i1 ∈ I ∧ p ∈ P ∧ i2 ∈ I∧

i1 7→ p 7→ i2 ∈ instances(o) × properties(o) × instances(o)∧
(∃c1, c2 · c1 ∈ C ∧ c2 ∈ C ∧ {c1, c2} ⊆ getClasses(o) ⇒

(c1 7→ p 7→ c2 ∈ getClassAssociations(o)∧
p ∈ getClassProperties(o)[{c1}]∧

180 APPENDIX A. THEORIES

i1 ∈ getClassInstances(o)[{c1}]∧
i2 ∈ getClassInstances(o)[{c2}]))

}
getInstanceAssociations <expression> (o : Ontology(C, P, I))

well−definedness isWDInstancesAssociations(o)
direct definition

instanceAssociations(o)
isWDOntology <predicate> (o : Ontology(C, P, I))

direct definition
isWDClassProperites(o)∧
isWDClassInstances(o)∧
isWDClassAssociations(o)∧
isWDInstancesAssociations(o)

isItWDOntology <predicate> (o : Ontology(C, P, I))
well−definedness isWDOntology(o)
direct definition

⊤
ontologyContainsClasses <predicate> (o : Ontology(C, P, I) ,

cc : P(C))
well−definedness isWDOntology(o) ,cc ̸= ∅
direct definition

cc ⊆ getClasses(o)
ontologyContainsProperties <predicate> (o : Ontology(C, P, I) ,

pp : P(P))
well−definedness isWDOntology(o) ,pp ̸= ∅
direct definition

pp ⊆ getProperties(o)
ontologyContainsInstances <predicate> (o : Ontology(C, P, I) ,

ii : P(I))
well−definedness isWDOntology(o) , ii ̸= ∅
direct definition

ii ⊆ getInstances(o)
getPropertiesOfaClass <expression> (o : Ontology(C, P, I) ,c : C)

well−definedness isWDOntology(o) ,
ontologyContainsClasses(o, {c})

direct definition
getClassProperties(o)[{c}]

getInstancesOfaClass <expression> (o : Ontology(C, P, I) ,c : C)
well−definedness isWDOntology(o) ,

ontologyContainsClasses(o, {c})
direct definition

getClassInstances(o)[{c}]
getInstancesOfClasses <expression> (o : Ontology(C, P, I) ,

cc : P(C))
well−definedness isWDOntology(o) ,

ontologyContainsClasses(o, cc)

A.4. DOMAIN SPECIFIC ANALYSIS 181

direct definition
getClassInstances(o)[cc]

isPropertyOfTheClass <predicate> (o : Ontology(C, P, I) ,c : C ,
p : P)

well−definedness isWDOntology(o) ,
ontologyContainsClasses(o, {c}) ,
ontologyContainsProperties(o, {p})

direct definition
p ∈ getPropertiesOfaClass(o, c)

getPropertyRangeClasses <expression> (o : Ontology(C, P, I) ,
p : P)

well−definedness isWDOntology(o) ,
ontologyContainsProperties(o, {p})

direct definition
{c2 | ∀c1 · c1 ∈ getClasses(o) ⇒

c1 7→ p 7→ c2 ∈ getClassAssociations(o)}
getPropertyRangeInstances <expression> (o : Ontology(C, P, I) ,

p : P)
well−definedness isWDOntology(o) ,

ontologyContainsProperties(o, {p})
direct definition

{j | ∀i · i ∈ getInstances(o) ⇒
i 7→ p 7→ j ∈ getInstanceAssociations(o)}

getValueOfAInstanceProperty <expression> (
o : Ontology(C, P, I) , i : I ,p : P)

well−definedness isWDOntology(o) ,
ontologyContainsProperties(o, {p}) ,
ontologyContainsInstances(o, {i})

direct definition
getInstanceAssociations(o)[{i 7→ p}]

getClassesOfInstance <expression> (o : Ontology(C, P, I) , i : I)
well−definedness isWDOntology(o) ,

ontologyContainsInstances(o, {i})
direct definition

getClassInstances(o)−1[{i}]
classContainsProperties <predicate> (o : Ontology(C, P, I) ,

c : C, pp : P(P))
well−definedness isWDOntology(o) ,

ontologyContainsClasses(o, {c}) ,
ontologyContainsProperties(o, pp)

direct definition
pp ⊆ getPropertiesOfaClass(o, c)

classContainsInstances <predicate> (o : Ontology(C, P, I) ,c : C ,
ii : P(I))

well−definedness isWDOntology(o) ,
ontologyContainsClasses(o, {c}) ,

182 APPENDIX A. THEORIES

ontologyContainsInstances(o, ii)
direct definition

ii ⊆ getInstancesOfaClass(o, c)
instanceHasPropertyValue <predicate> (o : Ontology(C, P, I) ,

i : I ,p : P ,v : I)
well−definedness isWDOntology(o) ,

ontologyContainsInstances(o, {i, v}) ,
ontologyContainsProperties(o, {p})

direct definition
v ∈ getV alueOfAInstanceProperty(o, i, p)

isA <predicate> (o : Ontology(C, P, I) ,c1 : C ,c2 : C)
well−definedness isWDOntology(o) ,

ontologyContainsClasses(o, {c1, c2})
direct definition

getInstancesOfaClass(o, c1) ⊆ getInstancesOfaClass(o, c2)
addInstancesToOntology <expression> (o : Ontology(C, P, I) ,

ii : P(I))
well−definedness isWDOntology(o) ,

¬ontologyContainsInstances(o, ii)
direct definition

consOntology(
getClasses(o),
getProperties(o),
getInstances(o) ∪ ii,
getClassProperties(o),
getClassInstances(o),
getClassAssociations(o),
getInstanceAssociations(o))

addInstancesToAClass <expression> (o : Ontology(C, P, I) ,c : C ,
ii : P(I))

well−definedness isWDOntology(o) ,
ontologyContainsClasses(o, {c}) ,
ontologyContainsInstances(o, ii) ,
¬classContainsInstances(o, c, ii)

direct definition
consOntology(

getClasses(o),
getProperties(o),
getInstances(o),
getClassProperties(o),
getClassInstances(o) ∪ ({c} × ii),
getClassAssociations(o),
getInstanceAssociations(o))

ontologyContainsIpv <predicate> (o : Ontology(C, P, I) ,
ipvs : P(I × P × I))

well−definedness isWDOntology(o)

A.4. DOMAIN SPECIFIC ANALYSIS 183

direct definition
ipvs ⊆ getInstanceAssociations(o)

isWDAddValueOfAInstanceProperty <predicate> (
o : Ontology(C, P, I) , ipvs : P(I × P × I) , i : I ,p : P ,v : I)

direct definition
⊤

addValueOfAInstanceProperty <expression> (
o : Ontology(C, P, I) , ipvs : P(I × P × I) , i : I ,p : P ,v : I)

well−definedness
isWDAddV alueOfAInstanceProperty(o, ipvs, i, p, v)

direct definition
ipvs ∪ {i 7→ p 7→ v}

isWDRemoveValueOfAInstanceProperty <predicate> (
o : Ontology(C, P, I) , ipvs : P(I × P × I) , i : I ,p : P ,v : I)

direct definition
⊤

removeValueOfAInstanceProperty <expression> (
o : Ontology(C, P, I) , ipvs : P(I × P × I) , i : I ,p : P ,v : I)

well−definedness
isWDRemoveV alueOfAInstanceProperty(o, ipvs, i, p, v)

direct definition
ipvs \ {i 7→ p 7→ v}

isVariableOfOntology <predicate> (o : Ontology(C, P, I) ,
ipvs : P(I × P × I))

well−definedness isWDOntology(o)
direct definition

ipvs ⊆ getInstanceAssociations(o)
isWDInstanceHasPropertyValuei <predicate> (

o : Ontology(C, P, I) , ipvs : P(I × P × I) , i : I ,p : P ,v : I)
direct definition

isWDOntology(o)∧
isV ariableOfOntology(o, ipvs)∧
ontologyContainsInstances(o, {i, v})∧
ontologyContainsProperties(o, {p})

instanceHasPropertyValuei <predicate> (o : Ontology(C, P, I) ,
ipvs : P(I × P × I) , i : I ,p : P ,v : I)

well−definedness
isWDInstanceHasPropertyV aluei(o, ipvs, i, p, v)

direct definition
v ∈ ipvs[{i 7→ p}]

THEOREMS
thm1 :

∀o, c1, c2, c3 · o ∈ Ontology(C, P, I) ∧ isWDOntology(o)∧
c1 ∈ C ∧ c2 ∈ C ∧ c3 ∈ C∧
ontologyContainsClasses(o, {c1, c2, c3})

⇒ (isA(o, c1, c2) ∧ isA(o, c2, c3) ⇒ isA(o, c1, c3))

184 APPENDIX A. THEORIES

thm2 :
∀o, cs1, cs2 · o ∈ Ontology(C, P, I) ∧ isWDOntology(o)∧

cs1 ⊆ C ∧ cs2 ⊆ C ∧ cs1 ̸= ∅ ∧ cs2 ̸= ∅∧
ontologyContainsClasses(o, cs1) ∧ ontologyContainsClasses(o, cs2)

⇒ (ontologyContainsClasses(o, cs1 ∪ cs2))
END

A.4.2 Behavioural theory of domain specific property

Listing A.13: Theory of behavioural analyses derived from a ontology
THEORY BehaviouralPropertiesTheory

IMPORT THEORY
Theo4Reachability
OntologiesTheory

TYPE PARAMETERS STATEE , EV ENTT , Tags , Ps
OPERATORS

isPossiblyFollowedByWD <predicate> (
m : Machine(STATEE, EV ENTT) ,
eo : Ontology(Tags, Ps, EV ENTT) ,startTags : P(Tags) ,
transitTags : P(Tags) ,endTags : P(Tags) ,
variants : P(EV ENTT × P(STATEE × Z)))

direct definition
isWDOntology(eo)∧
startTags ∪ transitTags ∪ endTags ⊆ getClasses(eo)∧
startTags ∩ transitTags = ∅∧
endTags ∩ transitTags = ∅∧
startTags ̸= ∅∧
endTags ̸= ∅∧
transitTags ̸= ∅∧
(∀ti · ti ∈ startTags ∪ transitTags ∪ endTags

⇒ getInstancesOfClasses(eo, {ti}) ̸= ∅)∧
variants ∈

getInstancesOfClasses(eo, startTags) → P(STATEE × Z)∧
(∀i · i ∈ getInstancesOfClasses(eo, startTags)

⇒ WD_reach(m,
i,
getInstancesOfClasses(eo, endTags),
getInstancesOfClasses(eo, transitTags),
variants(i)))

isPossiblyFollowedBy <predicate> (
m : Machine(STATEE, EV ENTT) ,
eo : Ontology(Tags, Ps, EV ENTT) ,startTags : P(Tags) ,
transitTags : P(Tags) ,endTags : P(Tags) ,
variants : P(EV ENTT × P(STATEE × Z)))

well−definedness isPossiblyFollowedByWD(

A.4. DOMAIN SPECIFIC ANALYSIS 185

m, eo, startTags, transitTags, endTags, variants)
direct definition

∀i · i ∈ getInstancesOfClasses(eo, startTags)
⇒ Evt_Is_Sometimes_Reachable_From_Definition(

m,
i,
getInstancesOfClasses(eo, endTags),
getInstancesOfClasses(eo, transitTags),
variants(i))

isNecessarilyFollowedByWD <predicate> (
m : Machine(STATEE, EV ENTT) ,
eo : Ontology(Tags, Ps, EV ENTT) ,startTags : P(Tags) ,
transitTags : P(Tags) ,endTags : P(Tags) ,
variants : P(EV ENTT × P(STATEE × Z)))

direct definition
isWDOntology(eo)∧
startTags ∪ transitTags ∪ endTags ⊆ getClasses(eo)∧
startTags ∩ transitTags = ∅∧
endTags ∩ transitTags = ∅∧
startTags ̸= ∅∧
endTags ̸= ∅∧
transitTags ̸= ∅∧
(∀ti · ti ∈ startTags ∪ transitTags ∪ endTags

⇒ getInstancesOfClasses(eo, {ti}) ̸= ∅)∧
variants ∈

getInstancesOfClasses(eo, startTags) → P(STATEE × Z)∧
(∀i · i ∈ getInstancesOfClasses(eo, startTags)

⇒ WD_reach(m,
i,
getInstancesOfClasses(eo, endTags),
getInstancesOfClasses(eo, transitTags),
variants(i)))

isNecessarilyFollowedBy <predicate> (
m : Machine(STATEE, EV ENTT) ,
eo : Ontology(Tags, Ps, EV ENTT) ,
startTags : P(Tags) ,
transitTags : P(Tags) ,
endTags : P(Tags) ,
variants : P(EV ENTT × P(STATEE × Z)))

well−definedness isNecessarilyFollowedByWD(
m, eo, startTags, transitTags, endTags, variants)

direct definition
∀i · i ∈ getInstancesOfClasses(eo, startTags)

⇒ Evt_Is_Always_Reachable_From_Definition(
m,
i,

186 APPENDIX A. THEORIES

getInstancesOfClasses(eo, endTags),
getInstancesOfClasses(eo, transitTags),
variants(i))

THEOREMS
WDNisWDP :

∀m, eo, startTags, transitTags, endTags, variants·
(m ∈ Machine(STATEE, EV ENTT)∧
eo ∈ Ontology(Tags, Ps, EV ENTT)∧
startTags ∪ transitTags ∪ endTags ∈ P(Tags)∧
variants ∈ P(EV ENTT × P(STATEE × Z)))

⇒ (isNecessarilyFollowedByWD(
m, eo, startTags, transitTags, endTags, variants)

⇒ isPossiblyFollowedByWD(
m, eo, startTags, transitTags, endTags, variants))

NisP :
∀m, eo, startTags, transitTags, endTags, variants·
(m ∈ Machine(STATEE, EV ENTT)∧
eo ∈ Ontology(Tags, Ps, EV ENTT)∧
startTags ∪ transitTags ∪ endTags ∈ P(Tags)∧
variants ∈ P(EV ENTT × P(STATEE × Z)))

⇒ (isNecessarilyFollowedByWD(
m, eo, startTags, transitTags, endTags, variants)∧

isNecessarilyFollowedBy(
m, eo, startTags, transitTags, endTags, variants)

⇒ isPossiblyFollowedBy(
m, eo, startTags, transitTags, endTags, variants))

END

A.5 Correctness
A.5.1 Peano theory

Listing A.14: Theory of Peano
THEORY Natural

DATA TYPES
iNAT
CONSTRUCTORS

iZe ro ()
iSucc (iPrec : iNAT)

OPERATORS
mk_int expression (n : iNAT)

recursive definition
case n :

iZero =>

A.5. CORRECTNESS 187

0
iSucc(m) =>

1 + mk_int(m)
AXIOMATIC DEFINITIONS xdb1 :

OPERATORS
mk_iNAT expression (x : Z) : iNAT

well−definedness x ∈ N
AXIOMS

axm1 : mk_iNAT (0) = iZero
axm2 : ∀x · x ∈ N ⇒ mk_iNAT (1 + x) = iSucc(mk_iNAT (x))
axm3 : ∀x · x ∈ N ⇒ mk_int(mk_iNAT (x)) = x

THEOREMS
thm1 : ∀n · n ∈ iNAT ⇒ mk_int(n) ∈ N
thm2 : ∀n · n ∈ iNAT ⇒ mk_iNAT (mk_int(n)) = n
thm3 : ∀n · n ∈ N ⇒ (∃ni · ni ∈ iNAT ∧ mk_iNAT (n) = ni)
thm4 : ∀x · x ∈ N1 ⇒ (∃ni · mk_iNAT (x) = iSucc(ni))

END

Listing A.15: Basic operator for peano arithmetic
THEORY NaturalOp

IMPORT THEORY Natural
OPERATORS

add associative commutative expression (n1 : iNAT ,n2 : iNAT)
direct definition

mk_iNAT (mk_int(n1) + mk_int(n2))
miniNAT predicate (set : P(iNAT))

well−definedness set ̸= ∅
direct definition

∃i · i ∈ set ∧ (∀j · j ∈ set ⇒ mk_int(i) ≤ mk_int(j))
THEOREMS

succ add left :
∀n1 , n2 · n1addiSucc(n2) = iSucc(n1addn2)

succ add right :
∀n1 , n2 · iSucc(n1)addn2 = iSucc(n1addn2)

thm3 :
∀set · set ̸= ∅ ⇒ miniNAT (set)

PROOF RULES
ru l e sB lock1 :
Metavariables

n1 : iNAT
n2 : iNAT

Rewrite Rules
rew1 : n1addiSucc(n2)

rhs1 : ⊤ ⇒ iSucc(n1addn2)
rew2 : iSucc(n1)addn2

rhs1 : ⊤ ⇒ iSucc(n1addn2)

188 APPENDIX A. THEORIES

Inference Rules
inf1 : n1 ∈ iNAT ,n2 ∈ iNAT ⊢ mk_int(n1) + mk_int(n2) ∈ N
inf2 : n1 ∈ iNAT ,n2 ∈ iNAT ⊢ mk_int(n1addn2) ≥ mk_int(n1)
inf3 : n1 ∈ iNAT ,n2 ∈ iNAT ⊢ mk_int(n1addn2) ≥ mk_int(n2)

END

A.5.2 Event-B traces formalism

Listing A.16: Theory of Event-B traces
THEORY Traces

IMPORT THEORY EvtBStruc , Natural
TYPE PARAMETERS STATE ,EV ENT
OPERATORS

IsANextState predicate (m : Machine(STATE , EVENT) ,
s : STATE ,sp : STATE)

direct definition
∃e · e ∈ Progress(m) ∧ s ∈ Grd(m)[{e}] ∧ s 7→ sp ∈ BAP(m)[{e}]

IsATrace predicate (m : Machine(STATE , EVENT) ,
tr : P(iNAT × STATE))

direct definition
(

tr ∈ iNAT → STATE∨
(∃n · n ∈ iNAT∧

tr ∈ {i | mk_int(i) ∈ 0..mk_int(n)} → STATE∧
tr(n) /∈ Grd(m)[Progress(m)])

)∧
tr(iZero) ∈ AP(m)∧
(∀i, j · i ∈ dom(tr) ∧ j ∈ dom(tr) ∧ j = iSucc(i)

⇒ IsANextState(m, tr(i), tr(j)))
THEOREMS

tr is a partial fun :
∀m, tr · m ∈ Machine(STATE , EVENT) ∧ IsATrace(m, tr)

⇒ tr ∈ iNAT 7→ STATE
i f succ(n) in tr then n in tr :

∀i, j, tr , m · m ∈ Machine(STATE , EVENT) ∧ IsATrace(m, tr)∧
j = iSucc(i) ∧ j ∈ dom(tr)

⇒ i ∈ dom(tr)
PROOF RULES

type_rules :
Metavariables

m : Machine(STATE , EVENT)
tr : P(iNAT × STATE)
i : iNAT
j : iNAT

Inference Rules

A.5. CORRECTNESS 189

inf1 : IsATrace(m, tr) ⊢ tr ∈ iNAT 7→ STATE
inf2 : IsATrace(m, tr) ,j ∈ dom(tr) ,j = iSucc(i) ⊢ i ∈ dom(tr)

END

A.5.3 Soundness of Invariant Proof Obligation

Listing A.17: Soundness theorem of the Invariant proof obligations
THEORY InvCorrectness

IMPORT THEORY Traces ,EvtBPO
TYPE PARAMETERS STATE ,EV ENT
THEOREMS

thm1 :
∀m, tr · m ∈ Machine(STATE , EVENT) ∧ Machine_WellCons(m)∧

IsATrace(m, tr)∧
Mch_INV (m)

⇒ (∀n · n ∈ dom(tr) ⇒ tr(n) ∈ Inv(m))
END

A.5.4 Soundness of Temporal Properties

Listing A.18: Soundness theorems for all temporal properties
THEORY LivenessCorrectness

IMPORT THEORY InvCorrectness , Theo4Liveness , NaturalOp
TYPE PARAMETERS STATE , EV ENT
THEOREMS

thm of correctness of Leads_From_P1_To_P2:
∀m, tr , p1 , p2 · m ∈ Machine(STATE , EVENT)∧

Machine_WellCons(m)∧
check_Machine_Consistency(m)∧
IsATrace(m, tr)∧
TLLeads_From_P1_To_P2 (m, p1 , p2)

⇒ (∀i · i ∈ dom(tr) ∧ iSucc(i) ∈ dom(tr) ∧ tr(i) ∈ p1
⇒ tr(iSucc(i)) ∈ p2)

Lemme Convergent_In_P :
∀m, tr , variant, p · variant ∈ STATE → Z∧

m ∈ Machine(STATE , EVENT)∧
Machine_WellCons(m)∧
check_Machine_Consistency(m)∧
IsATrace(m, tr)∧
TLConvergent_In_P(m, p, variant)∧
dom(tr) = iNAT

⇒ (∀i · i ∈ dom(tr) ⇒ ((∀k · tr(iaddk) ∈ p)
⇒ (∀k · variant(tr(iaddk)) ≤ variant(tr(i)) − mk_int(k))))

thm of correctness of Convergent_In_P :

190 APPENDIX A. THEORIES

∀m, tr , variant, p · variant ∈ STATE → Z∧
m ∈ Machine(STATE , EVENT)∧

Machine_WellCons(m)∧
check_Machine_Consistency(m)∧
IsATrace(m, tr)∧
TLConvergent_In_P(m, p, variant)∧
dom(tr) = iNAT

⇒ (∀i · i ∈ dom(tr)
⇒ (∃j · j ∈ iNAT ∧ mk_int(j) ≥ mk_int(i)∧

j ∈ dom(tr) ∧ tr(j) /∈ p))
lemme 1 Divergent_In_P :

∀m, tr , variant, p · variant ∈ STATE → Z∧
m ∈ Machine(STATE , EVENT)∧

Machine_WellCons(m)∧
check_Machine_Consistency(m)∧
IsATrace(m, tr)∧
TLDivergent_In_P(m, p, variant)∧
dom(tr) = iNAT

⇒ (∀i · ∀j · variant(tr(iaddj)) ≤ variant(tr(i))
∨variant(tr(iaddj)) /∈ N)

lemme 2 Divergent_In_P :
∀m, tr , variant, p · variant ∈ STATE → Z∧
m ∈ Machine(STATE , EVENT)∧

Machine_WellCons(m)∧
check_Machine_Consistency(m)∧
IsATrace(m, tr)∧
TLDivergent_In_P(m, p, variant)∧
dom(tr) = iNAT

⇒ (∀i · ∀k·
(∃j · variant(tr(iaddj)) < variant(tr(i)) − mk_int(k))∨
(∃j · variant(tr(iaddj)) /∈ N))

thm of correctness of Divergent_In_P :
∀m, tr , variant, p · variant ∈ STATE → Z∧

m ∈ Machine(STATE , EVENT)∧
Machine_WellCons(m)∧
check_Machine_Consistency(m)∧
IsATrace(m, tr)∧
TLDivergent_In_P(m, p, variant)∧
dom(tr) = iNAT

⇒ (∃i · ∀j · mk_int(j) ≥ mk_int(i) ⇒ tr(j) ∈ p)
thm of correctness of Deadlock_Free_In_P :

∀m, tr , variant, p · variant ∈ STATE → Z∧
m ∈ Machine(STATE , EVENT)∧

Machine_WellCons(m)∧
check_Machine_Consistency(m)∧
IsATrace(m, tr)∧

A.5. CORRECTNESS 191

TLDeadlock_Free_In_P(m, p)
⇒ (dom(tr) = iNAT ∨ (∃n · n ∈ iNAT∧

tr ∈ {i | mk_int(i) ∈ 0..mk_int(n)} → STATE ∧ tr(n) /∈ p))
thm of correctness of Globally :

∀m, tr , variant, p · variant ∈ STATE → Z∧
m ∈ Machine(STATE , EVENT)∧

Machine_WellCons(m)∧
check_Machine_Consistency(m)∧
IsATrace(m, tr)∧
TLGlobally(m, p)

⇒ (∀i · i ∈ dom(tr) ⇒ tr(i) ∈ p)
thm of correctness of Existence :

∀m, tr , variant, p · variant ∈ STATE → Z∧
m ∈ Machine(STATE , EVENT)∧

Machine_WellCons(m)∧
check_Machine_Consistency(m)∧
IsATrace(m, tr)∧
TLExistence(m, p, variant)

⇒ (∀i · i ∈ dom(tr)
⇒ (∃j · mk_int(j) ≥ mk_int(i) ∧ j ∈ dom(tr) ∧ tr(j) ∈ p))

thm of correctness of Until :
∀m, tr , variant, p1 , p2 · variant ∈ STATE → Z∧

m ∈ Machine(STATE , EVENT)∧
Machine_WellCons(m)∧
check_Machine_Consistency(m)∧
IsATrace(m, tr)∧
TLUntil(m, variant, p1 , p2)

⇒ (∀i · i ∈ dom(tr) ∧ tr(i) ∈ p1
⇒ (∃j · mk_int(j) ≥ mk_int(i) ∧ j ∈ dom(tr) ∧ tr(j) ∈ p2∧

(∀k · k ∈ mk_int(i)..(mk_int(j) − 1)
⇒ tr(mk_iNAT (k)) ∈ p1)))

thm of correctness of Progress :
∀m, tr , variant, p1 , p2 , p3 · variant ∈ STATE → Z∧
m ∈ Machine(STATE , EVENT)∧

Machine_WellCons(m)∧
check_Machine_Consistency(m)∧
IsATrace(m, tr)∧
TLProgress(m, variant, p1 , p2 , p3)

⇒ (∀i · i ∈ dom(tr) ∧ tr(i) ∈ p1
⇒ (∃j · mk_int(j) ≥ mk_int(i)∧

j ∈ dom(tr) ∧ tr(j) ∈ p2))
thm of correctness of Persistence :

∀m, tr , variant, p · variant ∈ STATE → Z∧
m ∈ Machine(STATE , EVENT)∧

Machine_WellCons(m)∧
check_Machine_Consistency(m)∧

192 APPENDIX A. THEORIES

IsATrace(m, tr)∧
TLPersistence(m, p, variant)

⇒ (∃i · i ∈ dom(tr)∧
(∀j · mk_int(j) ≥ mk_int(i) ∧ j ∈ dom(tr) ⇒ tr(j) ∈ p))

END

Appendix B

Models

B.1 Clock Models
B.1.1 Classical Event-B

Listing B.1: The Clock models
MACHINE

Horloge
VARIABLES m , h
INVARIANTS

inv1 : m ∈ N
inv2 : h ∈ N
inv3 : m < 60
inv4 : h < 24
thm : m < 59 ∨ (m = 59 ∧ h < 23) ∨ (m = 59 ∧ h = 23)

VARIANT 24 ∗ 60 − 1 − (m + h ∗ 60)
EVENTS

INITIALISATION
THEN

act1 : m, h :| m′ = 0 ∧ h′ = 0
END

tick_min convergent
WHERE

grd1 : m < 59
THEN

act1 : m :| m′ = m + 1
END

tick_heure convergent
WHERE

193

194 APPENDIX B. MODELS

grd1 : m = 59 ∧ h < 23
THEN

act1 : m, h :| m′ = 0 ∧ h′ = h + 1
END

tick_minuit
WHERE

grd1 : m = 59 ∧ h = 23
THEN

act1 : m, h :| m′ = 0 ∧ h′ = 0
END

END

B.1.2 Instantiation of EB4EB
Deep Modelling

Listing B.2: Instantiation of the Clock in Deep modelling
CONTEXT

ClockDeep
SETS

Ev
CONSTANTS

c l o ck
tick_min
tick_hour
tick_midnight
i n i t

AXIOMS
axm1 : partition(Ev, {init}, {tick_midnight}, {tick_hour}, {tick_min})
axm2 : clock ∈ Machine(Z × Z, Ev)
axm3 : Event(clock) = Ev
axm4 : Init(clock) = init
axm5 : State(clock) = Z × Z
axm6 : Inv(clock) = {m 7→ h | m ∈ N ∧ h ∈ N ∧ m < 60 ∧ h < 24}
axm7 : Progress(clock) = {tick_midnight, tick_hour , tick_min}
axm8 : Thm(clock) = {m 7→ h | m < 59 ∨ (m = 59 ∧ (h < 23 ∨ h = 23))}
axm9 : AP(clock) = {m 7→ h | m = 0 ∧ h = 0}
axm10 :

BAP(clock) = {t 7→ ((m 7→ h) 7→ (mp 7→ hp)) | (
(t = tick_min ∧ mp = m + 1 ∧ hp = h)∨
(t = tick_hour ∧ mp = 0 ∧ hp = h + 1)∨
(t = tick_midnight ∧ mp = 0 ∧ hp = 0))}

axm11 :

B.1. CLOCK MODELS 195

Grd(clock) = {t 7→ (m 7→ h) | (
(t = tick_min ∧ m < 59)∨
(t = tick_hour ∧ m = 59 ∧ h < 23)∨
(t = tick_midnight ∧ m = 59 ∧ h = 23))}

axm12 : Convergent(clock) = {tick_min, tick_hour}
axm13 : Variant(clock) = {m 7→ h 7→ v | v = 24 ∗ 60 − 1 − (m + h ∗ 60)}
axm14 : Ordinary(clock) = {init, tick_midnight}

THEOREMS
axm16 : check_Machine_Consistency(clock)

END

Shallow Modelling

Listing B.3: Instantiation of the static part of the clock models in shallow mod-
elling
CONTEXT

ClockShallowCtx
EXTENDS

ShallowCtx
CONSTANTS

tick_min
tick_hour
tick_midnight
i n i t
pr

AXIOMS
axm1 : pr ∈ (Z × Z) ↣→ S
axm2 : partition(EV , {init}, {tick_midnight}, {tick_hour}, {tick_min})
axm3 : Event(m) = EV
axm4 : Init(m) = init
axm5 : State(m) = S
axm6 : Inv(m) = pr [{mi 7→ h | mi ∈ N ∧ h ∈ N ∧ mi < 60 ∧ h < 24}]
axm7 : Thm(m) =

pr [{mi 7→ h | mi < 59 ∨ (mi = 59 ∧ h < 23) ∨ (mi = 59 ∧ h = 23)}]
axm8 : Variant(m) =

{s, n, mi, h · s = pr(mi 7→ h) ∧ n = (24 ∗ 60 − 1 − (mi + h ∗ 60)) | s 7→ n}
axm9 : Convergent(m) = {tick_min, tick_hour}
axm10 : Ordinary(m) = {init, tick_midnight}
axm12 : Progress(m) = {tick_midnight, tick_hour , tick_min}
axm11 : Anticipated(m) = ∅
thm1 : Mch_THM (m)
thm2 : Event_WellCons(m)
thm3 : Variant_WellCons(m)
thm4 : Tag_Event_WellCons(m)

END

196 APPENDIX B. MODELS

Listing B.4: Instantiation of the dynamic part of the clock models in shallow
modelling
MACHINE

ClockShal low
REFINES

ShallowMch
SEES

ClockShallowCtx
VARIABLES mi , h , InitDone
INVARIANTS

inv1 : s = pr(mi 7→ h)
EVENTS

INITIALISATION
WITH

s′ : s′ = pr(mi ′ 7→ h′)
THEN

act1 : mi :∈ Z
act2 : h :∈ Z
act3 : InitDone := FALSE

END

Do_Init
REFINES Do_Init
WHERE

grd1 : pr [{0 7→ 0}] = AP(m)
grd2 : InitDone = FALSE

WITH
s′ : s′ = pr(mi ′ 7→ h′)

THEN
act2 : InitDone := TRUE
act1 : mi, h :| pr(mi ′ 7→ h′) ∈ AP(m)

END

Tick_min
REFINES Do_Convergent
WHERE

grd1 : pr(mi 7→ h) ∈ Grd(m)[{tick_min}]
grd2 : InitDone = TRUE
grd3 : pr [{ms, hs · ms < 59 ∧ hs ∈ Z | ms 7→ hs}] = Grd(m)[{tick_min}]
grd4 : {ss, ssp, ms, hs, msp, hsp·

ss = pr(ms 7→ hs) ∧ ssp = pr(msp 7→ hsp)∧
msp = ms + 1 ∧ hs = hsp
| ss 7→ ssp} = BAP(m)[{tick_min}]

WITH
e : e = tick_min

B.1. CLOCK MODELS 197

s′ : s′ = pr(mi ′ 7→ h′)
THEN

act1 : mi, h :| pr(mi ′ 7→ h′) ∈ BAP(m)[{tick_min}][{pr(mi 7→ h)}]
END

Tick_hour
REFINES Do_Convergent
WHERE

grd1 : pr(mi 7→ h) ∈ Grd(m)[{tick_hour}]
grd2 : InitDone = TRUE
grd3 :

pr [{ms, hs · hs < 23 ∧ ms = 59 | ms 7→ hs}] = Grd(m)[{tick_hour}]
grd4 : {ss, ssp, ms, hs, msp, hsp·

ss = pr(ms 7→ hs) ∧ ssp = pr(msp 7→ hsp) ∧ msp = ms∧
hsp = hs + 1
| ss 7→ ssp} = BAP(m)[{tick_hour}]

WITH
e : e = tick_hour
s′ : s′ = pr(mi ′ 7→ h′)

THEN
act1 : mi, h :| pr(mi ′ 7→ h′) ∈ BAP(m)[{tick_hour}][{pr(mi 7→ h)}]

END

Tick_midnight
REFINES Do_Ordinary
WHERE

grd1 : pr(mi 7→ h) ∈ Grd(m)[{tick_midnight}]
grd2 : InitDone = TRUE
grd3 :

pr [{ms, hs · ms = 59 ∧ hs = 23 | ms 7→ hs}] = Grd(m)[{tick_midnight}]

grd4 : {ss, ssp, ms, hs, msp, hsp·
ss = pr(ms 7→ hs) ∧ ssp = pr(msp 7→ hsp)
∧msp = 0 ∧ hsp = 0
| ss 7→ ssp} = BAP(m)[{tick_midnight}]

WITH
e : e = tick_midnight
s′ : s′ = pr(mi ′ 7→ h′)

THEN
act1 : mi, h :| pr(mi ′ 7→ h′) ∈ BAP(m)[{tick_midnight}][{pr(mi 7→ h)}]

END

END

198 APPENDIX B. MODELS

B.1.3 Analyses

Listing B.5: Dealock freeness analysis on the Clock models
CONTEXT

ClockDeadlockFree
SETS

Ev
CONSTANTS

c l o ck
tick_min
tick_hour
tick_midnight
i n i t

AXIOMS
axm1 : partition(Ev, {init}, {tick_midnight}, {tick_hour}, {tick_min})
axm2 : clock ∈ Machine(Z × Z, Ev)
axm3 : Event(clock) = Ev
axm4 : Init(clock) = init
axm5 : State(clock) = Z × Z
axm6 : Inv(clock) = {m 7→ h | m ∈ N ∧ h ∈ N ∧ m < 60 ∧ h < 24}
axm7 : Progress(clock) = {tick_midnight, tick_hour , tick_min}
axm8 : Thm(clock) = State(clock)
axm9 : AP(clock) = {m 7→ h | m = 0 ∧ h = 0}
axm10 :

BAP(clock) = {t 7→ ((m 7→ h) 7→ (mp 7→ hp)) | (
(t = tick_min ∧ mp = m + 1 ∧ hp = h)∨
(t = tick_hour ∧ mp = 0 ∧ hp = h + 1)∨
(t = tick_midnight ∧ mp = 0 ∧ hp = 0))}

axm11 :
Grd(clock) = {t 7→ (m 7→ h) | (

(t = tick_min ∧ m < 59)∨
(t = tick_hour ∧ m = 59 ∧ h < 23)∨
(t = tick_midnight ∧ m = 59 ∧ h = 23))}

axm12 : Convergent(clock) = {tick_min, tick_hour}
axm13 : Anticipated(clock) = ∅
axm14 : Variant(clock) = {m 7→ h 7→ v | v = 24 ∗ 60 − 1 − (m + h ∗ 60)}
axm15 : Ordinary(clock) = {init, tick_midnight}
thm1 : check_Machine_Consistency(clock)
thmDeadlock : check_Machine_DeadLockFreeness(clock)

END

Listing B.6: Weak invariant analysis on the Clock models
CONTEXT

ClockInspect Inv
SETS

B.1. CLOCK MODELS 199

Ev
CONSTANTS

c l o ck
tick_min
tick_hour
tick_midnight
i n i t

AXIOMS
axm1 : partition(Ev, {init}, {tick_midnight}, {tick_hour}, {tick_min})
axm2 : clock ∈ Machine(Z × Z, Ev)
axm3 : Event(clock) = Ev
axm4 : Init(clock) = init
axm5 : State(clock) = Z × Z
axm6 : Inv(clock) = {m 7→ h | m ∈ N ∧ h ∈ N ∧ m < 60 ∧ h < 24}
axm7 : Progress(clock) = {tick_midnight, tick_hour , tick_min}
axm8 : Thm(clock) = State(clock)
axm9 : AP(clock) = {m 7→ h | m = 0 ∧ h = 0}
axm10 :

BAP(clock) = {t 7→ ((m 7→ h) 7→ (mp 7→ hp)) | (
(t = tick_min ∧ mp = m + 1 ∧ hp = h)∨
(t = tick_hour ∧ mp = 0 ∧ hp = h + 1)∨
(t = tick_midnight ∧ mp = 0 ∧ hp = 0))}

axm11 :
Grd(clock) = {t 7→ (m 7→ h) | (

(t = tick_min ∧ m < 59)∨
(t = tick_hour ∧ m = 59 ∧ h < 23)∨
(t = tick_midnight ∧ m = 59 ∧ h = 23))}

axm12 : Convergent(clock) = {tick_min, tick_hour}
axm13 : Anticipated(clock) = ∅
axm14 : Variant(clock) = {m 7→ h 7→ v | v = 24 ∗ 60 − 1 − (m + h ∗ 60)}
axm15 : Ordinary(clock) = {init, tick_midnight}
thm1 : check_Machine_Consistency(clock)
thmInspectInvEvtM5 : check_Machine_AllowedMachineHoleSub(clock,

{m 7→ h | m < 55 ∧ h ∈ Z},
{(m 7→ h) 7→ (mp 7→ hp) | mp = m + 5 ∧ hp = h})

thmInspectInvEvtH5 : check_Machine_AllowedMachineHoleSub(clock,
{m 7→ h | m = 0 ∧ h < 19},
{(m 7→ h) 7→ (mp 7→ hp) | mp = 0 ∧ hp = h + 1 ∧ m ∈ Z})

thmInspectInvEvtMH1 : check_Machine_AllowedMachineHoleSub(clock,
{m 7→ h | m < 59 ∧ h < 23},
{(m 7→ h) 7→ (mp 7→ hp) | mp = m + 1 ∧ hp = h + 1})

END

Listing B.7: The Strenghtening Clock machine resulting of the Weak invariant
analysis
CONTEXT

200 APPENDIX B. MODELS

ClockInvStrong
SETS

Ev
CONSTANTS

c l o ck
tick_min
tick_hour
tick_midnight
i n i t

AXIOMS
axm1 : partition(Ev, {init}, {tick_midnight}, {tick_hour}, {tick_min})
axm2 : clock ∈ Machine(Z × Z × Z × Z, Ev)
axm3 : Event(clock) = Ev
axm4 : Init(clock) = init
axm5 : State(clock) = Z × Z × Z × Z
axm6 :

Inv(clock) = {m 7→ h 7→ mb 7→ hb | m ∈ N ∧ h ∈ N ∧ m < 60 ∧ h < 24∧
((m = mb + 1 ∧ h = hb) ∨ (m = 0 ∧ (h = hb + 1 ∨ h = 0)))}

axm7 : Progress(clock) = {tick_midnight, tick_hour , tick_min}
axm8 : Thm(clock) = State(clock)
axm9 :

AP(clock) = {m 7→ h 7→ mb 7→ hb | m = 0 ∧ h = 0 ∧ mb ∈ Z ∧ hb ∈ Z}
axm10 :

BAP(clock) = {t 7→ ((m 7→ h 7→ mb 7→ hb) 7→ (mp 7→ hp 7→ mbp 7→ hbp)) |
mb ∈ Z ∧ hb ∈ Z ∧ (

(t = tick_min ∧ mp = m + 1 ∧ hp = h ∧ mbp = m ∧ hbp = h)∨
(t = tick_hour ∧ mp = 0 ∧ hp = h + 1 ∧ mbp = m ∧ hbp = h)∨
(t = tick_midnight ∧ mp = 0 ∧ hp = 0 ∧ mbp = m ∧ hbp = h))}

axm11 :
Grd(clock) = {t 7→ (m 7→ h 7→ mb 7→ hb) | mb ∈ Z ∧ hb ∈ Z ∧ (

(t = tick_min ∧ m < 59)∨
(t = tick_hour ∧ m = 59 ∧ h < 23)∨
(t = tick_midnight ∧ m = 59 ∧ h = 23))}

axm12 : Convergent(clock) = {tick_min, tick_hour}
axm13 : Variant(clock) = {m 7→ h 7→ mb 7→ hb 7→ v |

mb ∈ Z ∧ hb ∈ Z ∧ v = 24 ∗ 60 − 1 − (m + h ∗ 60)}
axm14 : Ordinary(clock) = {init, tick_midnight}
axm15 : Anticipated(clock) = ∅
thm1 : check_Machine_Consistency(clock)
thmInspectInvEvtM5 : ¬check_Machine_AllowedMachineHoleSub(clock,

{m 7→ h 7→ mb 7→ hb | m < 55 ∧ h ∈ Z ∧ mb ∈ Z ∧ hb ∈ Z},
{(m 7→ h 7→ mb 7→ hb) 7→ (mp 7→ hp 7→ mbp 7→ hbp) |

mp = m + 5 ∧ hp = h ∧ mbp = m ∧ hbp = h ∧ mb ∈ Z ∧ hb ∈ Z})

thmInspectInvEvtH5 : ¬check_Machine_AllowedMachineHoleSub(clock,
{m 7→ h 7→ mb 7→ hb | m = 59 ∧ h < 19 ∧ mb ∈ Z ∧ hb ∈ Z},

B.1. CLOCK MODELS 201

{(m 7→ h 7→ mb 7→ hb) 7→ (mp 7→ hp 7→ mbp 7→ hbp) |
mp = 0 ∧ hp = h + 5 ∧ mbp = m ∧ hbp = h ∧ mb ∈ Z ∧ hb ∈ Z})

thmInspectInvEvtMH1 :
¬check_Machine_AllowedMachineHoleSub(clock,

{m 7→ h 7→ mb 7→ hb | m < 59 ∧ h < 23 ∧ mb ∈ Z ∧ hb ∈ Z},
{(m 7→ h 7→ mb 7→ hb) 7→ (mp 7→ hp 7→ mbp 7→ hbp) |
mp = m + 1 ∧ hp = h + 1 ∧ mbp = m ∧ hbp = h ∧ mb ∈ Z ∧ hb ∈ Z})

END

Listing B.8: Reachability analysis on the Clock models
CONTEXT

ClockReachab i l i ty
SETS

Ev
CONSTANTS

c l o ck
tick_min
tick_hour
tick_midnight
i n i t

AXIOMS
axm1 : partition(Ev, {init}, {tick_midnight}, {tick_hour}, {tick_min})
axm2 : clock ∈ Machine(Z × Z, Ev)
axm3 : Event(clock) = Ev
axm4 : Init(clock) = init
axm5 : State(clock) = Z × Z
axm6 : Inv(clock) = {m 7→ h | m ∈ N ∧ h ∈ N ∧ m < 60 ∧ h < 24}
axm7 : Progress(clock) = {tick_midnight, tick_hour , tick_min}
axm8 : Thm(clock) = State(clock)
axm9 : AP(clock) = {m 7→ h | m = 0 ∧ h = 0}
axm10 :

BAP(clock) = {t 7→ ((m 7→ h) 7→ (mp 7→ hp)) | (
(t = tick_min ∧ mp = m + 1 ∧ hp = h)∨
(t = tick_hour ∧ mp = 0 ∧ hp = h + 1)∨
(t = tick_midnight ∧ mp = 0 ∧ hp = 0))}

axm11 :
Grd(clock) = {t 7→ (m 7→ h) | (

(t = tick_min ∧ m < 59)∨
(t = tick_hour ∧ m = 59 ∧ h < 23)∨
(t = tick_midnight ∧ ((m ≥ 59 ∧ h = 23) ∨ h ≥ 24)))}

axm12 : Convergent(clock) = {tick_min, tick_hour}
axm13 : Variant(clock) = {m 7→ h 7→ v | v = 24 ∗ 60 − 2 − (m + h ∗ 60)}
axm14 : Ordinary(clock) = {init, tick_midnight}
axm15 : Anticipated(clock) = ∅
thm1 : check_Machine_Consistency(clock)
thmReach : check_Machine_Evt_Is_Reachable_From(clock,

202 APPENDIX B. MODELS

init, tick_midnight, Convergent(clock), Variant(clock))
END

B.2 Read/Write system
B.2.1 Classical Event-B

Listing B.9: The Read/Write machine
MACHINE RdWRMch
VARIABLES r , w
INVARIANTS

inv1 : r ∈ N
inv3 : w ∈ N
inv4 : 0 ≤ w − r
inv2 : w − r ≤ 3

EVENTS
INITIALISATION
THEN

act1 : r, w := 0, 0
END

read
WHERE

grd1 : r < w
THEN

act1 : r := r + 1
END

write
WHERE

grd1 : w < r + 3
THEN

act1 : w := w + 1
END

END

B.2.2 Instantiation of EB4EB with analyses

Listing B.10: The instance of read write machine with temporal properties
CONTEXT RdWR
SETS Ev
CONSTANTS rdwr , init , read , write , L

B.3. PETERSON 203

AXIOMS
axm1 : partition(Ev, {init}, {read}, {write})
axm2 : rdwr ∈ Machine(Z × Z, Ev)
axm3 : Event(rdwr) = Ev
axm5 : State(rdwr) = Z × Z
axm6 : Init(rdwr) = init
axm7 : Inv(rdwr) = {r 7→ w | r ∈ N ∧ w ∈ N ∧ 0 ≤ w − r ∧ w − r ≤ 3}
axm8 : AP(rdwr) = {0 7→ 0}
axm9 : BAP(rdwr) = {e 7→ ((r 7→ w) 7→ (rp 7→ wp)) |

(e = read ∧ rp = r + 1 ∧ wp = w)
∨(e = write ∧ rp = r ∧ wp = w + 1)}

axm10 : Grd(rdwr) = {e 7→ (r 7→ w) |
(e = read ∧ r < w) ∨ (e = write ∧ w < r + 3)}

axm11 : Progress(rdwr) = {read, write}
axm12 : Convergent(rdwr) = ∅
axm13 : Ordinary(rdwr) = Ev
axm14 : Variant(rdwr) ∈ Z × Z → N
axm15 : Thm(rdwr) = State(rdwr)
thm1 : check_Machine_Consistency(rdwr)
axm17 : L ∈ N
thmEx1 : TLExistence(

rdwr ,
{r 7→ w | w ∈ Z ∧ r ≥ L},
{(r 7→ w) 7→ v | v = ((L − r) + (L + 3 − w))})

thmEx2 : TLProgress(
rdwr ,
{(r 7→ w) 7→ v | v = ((L − r) + (L + 3 − w))},
{r 7→ w | r ∈ Z ∧ w = L},
{r 7→ w | r = L ∧ w ∈ Z}, {r 7→ w | r < L ∧ w ∈ Z})

thmEx3 : TLPersistence(
rdwr ,
{r 7→ w | L ≤ w ∧ r ∈ Z},
{(r 7→ w) 7→ v | v = (L − r) + (L − w)})

END

B.3 Peterson

B.3.1 Classical Event-B

Listing B.11: The peterson algorithm models
MACHINE PetersonMch
VARIABLES a , b , w_a , w_b , turn
INVARIANTS

204 APPENDIX B. MODELS

inv1 :
a 7→ b 7→ w_a 7→ w_b 7→ turn ∈ {0, 1} × {0, 1} × {0, 1} × {0, 1} × {0, 1}

inv0_1 : (w_a = 0 ⇒ a = 0)
inv0_2 : (w_b = 0 ⇒ b = 0)
inv0_3 : (a = 0 ∨ b = 0)
inv1_1 : (turn = 0 ∧ w_a = 1 ⇒ b = 0)
inv1_2 : (turn = 1 ∧ w_b = 1 ⇒ a = 0)
inv2 : (w_a = 1 ∧ w_b = 0 ⇒ turn = 1)

EVENTS
INITIALISATION
THEN

act1 : a := 0
act2 : b := 0
act3 : w_a := 0
act4 : w_b := 0
act5 : turn := 0

END

wish_a
WHERE

grd1 : w_a = 0
THEN

act1 : w_a := 1
act2 : turn := 1

END

enter_a
WHERE

grd1 : w_a = 1
grd3 : a = 0
grd2 : w_b = 0 ∨ turn = 0

THEN
act1 : a := 1

END

leave_a
WHERE

grd1 : a = 1
THEN

act1 : a := 0
act2 : w_a := 0

END

wish_b
WHERE

grd1 : w_b = 0

B.3. PETERSON 205

THEN
act1 : w_b := 1
act2 : turn := 0

END

enter_b
WHERE

grd1 : w_b = 1
grd3 : b = 0
grd2 : w_a = 0 ∨ turn = 1

THEN
act1 : b := 1

END

leave_b
WHERE

grd1 : b = 1
THEN

act1 : b := 0
act2 : w_b := 0

END

END

B.3.2 Instantiation of EB4EB

Listing B.12: The instantiation of the peterson algorithm with liveness properties
CONTEXT Peterson
SETS Ev
CONSTANTS peterson , init , wish_a , enter_a , leave_a , wish_b ,

leave_b , enter_b ,
AXIOMS

axm1 : partition(Ev,
{init},
{enter_a}, {wish_a}, {leave_a},
{enter_b}, {wish_b}, {leave_b})

axm2 : peterson ∈ Machine(Z × Z × Z × Z × Z, Ev)
axm3 : Event(peterson) = Ev
axm5 : State(peterson) = Z × Z × Z × Z × Z
axm6 : Init(peterson) = init
axm7 : Inv(peterson) = {a 7→ b 7→ w_a 7→ w_b 7→ turn |

a 7→ b 7→ w_a 7→ w_b 7→ turn ∈ {0, 1} × {0, 1} × {0, 1} × {0, 1} × {0, 1}∧
(w_a = 0 ⇒ a = 0) ∧ (w_b = 0 ⇒ b = 0) ∧ (a = 0 ∨ b = 0)∧
(turn = 0 ∧ w_a = 1 ⇒ b = 0) ∧ (turn = 1 ∧ w_b = 1 ⇒ a = 0)∧
(w_a = 1 ∧ w_b = 0 ⇒ turn = 1)}

206 APPENDIX B. MODELS

axm8 : AP(peterson) = {0 7→ 0 7→ 0 7→ 0 7→ 0}
axm9 : BAP(peterson) =

{e 7→
((a 7→ b 7→ w_a 7→ w_b 7→ turn) 7→
(ap 7→ bp 7→ w_ap 7→ w_bp 7→ turnp)) |
(e = wish_a∧
w_ap = 1 ∧ turnp = 1 ∧ ap = a ∧ bp = b ∧ w_bp = w_b)

∨(e = enter_a∧
w_ap = w_a ∧ turnp = turn ∧ ap = 1 ∧ bp = b ∧ w_bp = w_b)

∨(e = leave_a∧
w_ap = 0 ∧ turnp = turn ∧ ap = 0 ∧ bp = b ∧ w_bp = w_b)

∨(e = wish_b∧
w_ap = w_a ∧ turnp = 0 ∧ ap = a ∧ bp = b ∧ w_bp = 1)

∨(e = enter_b∧
w_ap = w_a ∧ turnp = turn ∧ ap = a ∧ bp = 1 ∧ w_bp = w_b)

∨(e = leave_b∧
w_ap = w_a ∧ turnp = turn ∧ ap = a ∧ bp = 0 ∧ w_bp = 0)

}
axm10 : Grd(peterson) = {e 7→ (a 7→ b 7→ w_a 7→ w_b 7→ turn) |

(e = wish_a ∧ w_a = 0)
∨(e = enter_a ∧ w_a = 1 ∧ a = 0 ∧ (w_b = 0 ∨ turn = 0))
∨(e = leave_a ∧ a = 1)
∨(e = wish_b ∧ w_b = 0)
∨(e = enter_b ∧ w_b = 1 ∧ b = 0 ∧ (w_a = 0 ∨ turn = 1))
∨(e = leave_b ∧ b = 1)}

axm11 : Progress(peterson) =
{enter_a, wish_a, leave_a, enter_b, wish_b, leave_b}

axm12 : Convergent(peterson) = ∅
axm13 : Ordinary(peterson) = Ev
axm14 : Variant(peterson) ∈ Z × Z × Z × Z × Z → N
axm15 : Thm(peterson) = State(peterson)
thm1 : check_Machine_Consistency(peterson)
thmEx2 : TLProgress(

peterson,
{(a 7→ b 7→ w_a 7→ w_b 7→ turn) 7→ v |

v = 2 ∗ w_b + 3 ∗ turn − b − a ∧ w_a ∈ Z},
{a 7→ b 7→ w_a 7→ w_b 7→ turn |

w_a = 1 ∧ a 7→ b 7→ w_b 7→ turn ∈ Z × Z × Z × Z},
{a 7→ b 7→ w_a 7→ w_b 7→ turn |

a = 1 ∧ w_a 7→ b 7→ w_b 7→ turn ∈ Z × Z × Z × Z},
{a 7→ b 7→ w_a 7→ w_b 7→ turn |

w_a = 1 ∧ a 7→ b 7→ w_b 7→ turn ∈ Z × Z × Z × Z})
END

B.4. CALIBRATION 207

B.4 Calibration
B.4.1 Classical Event-B

Listing B.13: The context of calibration models
CONTEXT CalibrationCtx
SETS Mode
CONSTANTS on , off , M
AXIOMS

axm1 : partition(Mode, {on}, {off })
axm2 : M ∈ N

END

Listing B.14: the calibration models
MACHINE CalibrationMch
SEES CalibrationCtx
VARIABLES s , t
INVARIANTS

inv1 : s ∈ Mode
inv3 : t ∈ Z
inv2 : s = off ⇒ t ≤ M

EVENTS
INITIALISATION
THEN

act1 : t := 0
act2 : s :∈ Mode

END

calibrate_on
WHERE

grd1 : s = off
grd2 : t ≤ M

THEN
act1 : t := t + 1
act2 : s := on

END

calibrate_off
WHERE

grd1 : s = on
grd2 : t < M

THEN
act1 : t := t + 1
act2 : s := off

END

208 APPENDIX B. MODELS

working
WHERE

grd1 : s = on
grd2 : M ≤ t

THEN
act1 : t := t + 1

END

END

B.4.2 Instantiation of EB4EB with analyses

Listing B.15: The instantiation of the calibration models with temporal properties
CONTEXT Calibration
SETS Ev , Mode
CONSTANTS calibration , init , calibrate_on , calibrate_off , working ,

on , off , M
AXIOMS

axm1 : partition(Mode, {on}, {off })
axm2 : M ∈ N
axm3 : partition(Ev, {init}, {calibrate_on}, {calibrate_off }, {working})
axm4 : calibration ∈ Machine(Mode × Z, Ev)
axm5 : Event(calibration) = Ev
axm6 : State(calibration) = Mode × Z
axm7 : Init(calibration) = init
axm8 : Inv(calibration) = {s 7→ t | s = off ⇒ t ≤ M}
axm9 : AP(calibration) = {on 7→ 0, off 7→ 0}
axm10 : BAP(calibration) = {e 7→ ((s 7→ t) 7→ (sp 7→ tp)) |

tp = t + 1∧
((e = calibrate_on ∧ sp = on)

∨(e = calibrate_off ∧ sp = off)
∨(e = working ∧ sp = s))}

axm11 : Grd(calibration) = {e 7→ (s 7→ t) |
(e = calibrate_on ∧ s = off ∧ t ≤ M)

∨(e = calibrate_off ∧ s = on ∧ t < M)
∨(e = working ∧ s = on ∧ M ≤ t)}

axm12 : Progress(calibration) = {calibrate_on, calibrate_off , working}
axm13 : Convergent(calibration) = ∅
axm14 : Ordinary(calibration) = Ev
axm15 : Variant(calibration) ∈ Mode × Z → N
axm16 : Thm(calibration) = State(calibration)
thm1 : check_Machine_Consistency(calibration)
thmEx3 : TLPersistence(

calibration,

B.5. AUTOMATIC TELLER MACHINE 209

{s 7→ t | s = on ∧ t ∈ Z},
{(s 7→ t) 7→ v | v = M − t ∧ s ∈ Mode})

END

B.5 Automatic Teller Machine
B.5.1 Classical Event-B

Listing B.16: The context of the ATM models
CONTEXT

ATMEnvironment
SETS

INPUT_MODE
INSERTION_STATUS
STRINGS
AMOUNTS

CONSTANTS
MAX_ATTEMPTS
CORRECT_PASSCODE
KEY BOARD
SCREEN
IN
OUT
BRIGHTNESS_LEV ELS
BRIGHTNESS_MIN
BRIGHTNESS_MAX
EMPTY _STRING
MAX_BRIGHTNESS_UPDATE
NO_MONEY

AXIOMS
axm1 : MAX_ATTEMPTS ∈ N1
axm2 : CORRECT_PASSCODE ∈ STRINGS∧

EMPTY _STRING ∈ STRINGS
axm3 : CORRECT_PASSCODE ̸= EMPTY _STRING
axm4 : partition(INPUT_MODE , {KEYBOARD}, {SCREEN})
axm5 : partition(INSERTION_STATUS , {IN}, {OUT})
axm6 : BRIGHTNESS_MIN ∈ N
axm7 : BRIGHTNESS_MAX ∈ N
axm8 : BRIGHTNESS_MAX > BRIGHTNESS_MIN
axm9 :
BRIGHTNESS_LEVELS = BRIGHTNESS_MIN ..BRIGHTNESS_MAX
axm10 : MAX_BRIGHTNESS_UPDATE ∈ N
axm11 : NO_MONEY ∈ AMOUNTS
axm12 : AMOUNTS \ {NO_MONEY } ̸= ∅

210 APPENDIX B. MODELS

END

Listing B.17: The ATM models
MACHINE

ATMUserInterface
SEES

ATMEnvironment
VARIABLES string , virtualNumpadRegister , keyboardRegister , attempts ,

confirmationStatus , validationStatus , deliveryStatus , isStringVisible ,
inputMode , cardStatus , brightness , brightnessUpdates , newString ,
sum

INVARIANTS
inv1 : string ∈ STRINGS
inv2 : virtualNumpadRegister ∈ STRINGS
inv3 : keyboardRegister ∈ STRINGS
inv4 : attempts ∈ 0..MAX_ATTEMPTS
inv5 : validationStatus ∈ BOOL
inv6 : deliveryStatus ∈ BOOL
inv7 : confirmationStatus ∈ BOOL
inv8 : isStringVisible ∈ BOOL
inv9 : inputMode ∈ INPUT_MODE
inv10 : cardStatus ∈ INSERTION_STATUS
inv11 : string = virtualNumpadRegister ∨ string = keyboardRegister
inv12 : isStringVisible = FALSE
inv13 : brightness ∈ BRIGHTNESS_LEVELS
inv14 : brightnessUpdates ∈ Z
inv15 : newString ∈ BOOL
inv16 : sum ∈ AMOUNTS

EVENTS
INITIALISATION
THEN

act1 : string := EMPTY _STRING
act2 : attempts := 0
act3 : virtualNumpadRegister := EMPTY _STRING
act4 : keyboardRegister := EMPTY _STRING
act5 :
confirmationStatus, validationStatus, deliveryStatus, isStringVisible :=

TRUE , FALSE , FALSE , FALSE
act6 : inputMode :∈ INPUT_MODE
act7 : cardStatus := OUT
act8 : brightness :∈ BRIGHTNESS_LEVELS
act9 : brightnessUpdates := 0
act10 : newString := FALSE
act11 : sum := NO_MONEY

END

B.5. AUTOMATIC TELLER MACHINE 211

insertCard
WHERE

grd1 : cardStatus = OUT
THEN

act1 : cardStatus := IN
act2 : inputMode :∈ INPUT_MODE
act3 : sum := NO_MONEY
act4 : validationStatus := FALSE
act5 : newString := FALSE

END

KBDString
WHERE

grd1 : cardStatus = IN
grd2 : inputMode = KEYBOARD
grd3 : confirmationStatus = TRUE
grd4 : newString = FALSE
grd5 : 0 ≤ attempts ∧ attempts < MAX_ATTEMPTS

THEN
act1 : string, keyboardRegister :|

keyboardRegister ′ ∈ STRINGS ∧ string′ = keyboardRegister ′

act2 : brightnessUpdates := 0
act3 : confirmationStatus := FALSE
act4 : newString := TRUE
act5 : validationStatus := FALSE

END

SCRString
WHERE

grd1 : cardStatus = IN
grd2 : inputMode = SCREEN
grd3 : confirmationStatus = TRUE
grd4 : newString = FALSE
grd5 : 0 ≤ attempts ∧ attempts < MAX_ATTEMPTS

THEN
act1 : string, virtualNumpadRegister :|

virtualNumpadRegister ′ ∈ STRINGS∧
string′ = virtualNumpadRegister ′

act2 : brightnessUpdates := 0
act3 : confirmationStatus := FALSE
act4 : newString := TRUE
act5 : validationStatus := FALSE

END

changeBrightness
WHERE

212 APPENDIX B. MODELS

grd1 : cardStatus = IN
grd2 : brightnessUpdates < MAX_BRIGHTNESS_UPDATE

THEN
act1 : brightness :∈ BRIGHTNESS_LEVELS
act2 : brightnessUpdates := brightnessUpdates + 1

END

confirmKBDString
WHERE

grd1 : cardStatus = IN
grd2 : inputMode = KEYBOARD
grd3 : confirmationStatus = FALSE
grd4 : validationStatus = FALSE
grd5 : 0 ≤ attempts ∧ attempts < MAX_ATTEMPTS
grd6 : newString = TRUE

THEN
act1 : attempts := attempts + 1
act2 : confirmationStatus := TRUE

END

confirmSCRString
WHERE

grd1 : 0 ≤ attempts ∧ attempts < MAX_ATTEMPTS
grd2 : inputMode = SCREEN
grd3 : cardStatus = IN
grd4 : confirmationStatus = FALSE
grd5 : validationStatus = FALSE
grd6 : newString = TRUE

THEN
act1 : attempts := attempts + 1
act2 : confirmationStatus := TRUE

END

checkStringCorrect
WHERE

grd1 : cardStatus = IN
grd2 : confirmationStatus = TRUE
grd3 : string = CORRECT_PASSCODE
grd4 : newString = TRUE

THEN
act1 : validationStatus := TRUE
act2 : confirmationStatus := FALSE

END

checkStringWrong
WHERE

B.5. AUTOMATIC TELLER MACHINE 213

grd1 : cardStatus = IN
grd2 : confirmationStatus = TRUE
grd3 : string ̸= CORRECT_PASSCODE
grd4 : newString = TRUE

THEN
act1 : validationStatus := FALSE
act2 : confirmationStatus := FALSE
act3 : newString := FALSE

END

deliverBankNotes
WHERE

grd1 : cardStatus = IN
grd2 : validationStatus = TRUE
grd3 : deliveryStatus = FALSE

THEN
act1 : deliveryStatus := TRUE
act2 : sum :∈ AMOUNTS \ {NO_MONEY }
act3 : cardStatus := OUT

END

END

B.5.2 Instantiation of EB4EB

Listing B.18: The instantiation of the calibration models
CONTEXT

ATMmEBModel
EXTENDS

ATMEnvironment
SETS

Ev
CONSTANTS

ATM
init
insertCard
KBDString
SCRString
changeBrightness
confirmKBDString
confirmSCRString
checkStringCorrect
checkStringWrong
deliverBankNotes

AXIOMS

214 APPENDIX B. MODELS

Ev :
partition(Ev, {init}, {insertCard}, {KBDString}, {SCRString},

{changeBrightness}, {confirmKBDString}, {confirmSCRString},
{checkStringCorrect}, {checkStringWrong}, {deliverBankNotes})

axm17 : 0 ≤ MAX_ATTEMPTS − 1
axm18 : partition(BOOL, {FALSE}, {TRUE})
axm19 : BRIGHTNESS_MIN + 1 ≤ BRIGHTNESS_MAX
axm21 : BRIGHTNESS_MIN ≤ BRIGHTNESS_MIN + 1
ATM:

ATM ∈ Machine(STRINGS × STRINGS × STRINGS × Z×
BOOL × BOOL × BOOL × BOOL×
INPUT_MODE × INSERTION_STATUS×
Z × Z × BOOL × AMOUNTS , Ev)

State :
State(ATM) = STRINGS × STRINGS × STRINGS × Z×

BOOL × BOOL × BOOL × BOOL×
INPUT_MODE × INSERTION_STATUS×
Z × Z × BOOL × AMOUNTS

Event : Event(ATM) = Ev
Init : Init(ATM) = init
Progress :

Progress(ATM) = {insertCard, KBDString, SCRString,
changeBrightness, confirmKBDString, confirmSCRString,
checkStringCorrect, checkStringWrong, deliverBankNotes}

Inv :
Inv(ATM) = {string 7→ virtualNumpadRegister 7→ keyboardRegister 7→

attempts 7→ confirmationStatus 7→
validationStatus 7→ deliveryStatus 7→
isStringVisible 7→ inputMode 7→
cardStatus 7→ brightness 7→
brightnessUpdates 7→
newString 7→
sum |
string ∈ STRINGS∧
virtualNumpadRegister ∈ STRINGS∧
keyboardRegister ∈ STRINGS∧
attempts ∈ 0..MAX_ATTEMPTS∧
validationStatus ∈ BOOL∧
deliveryStatus ∈ BOOL∧
confirmationStatus ∈ BOOL∧
isStringVisible ∈ BOOL∧
inputMode ∈ INPUT_MODE∧
cardStatus ∈ INSERTION_STATUS∧
brightness ∈ BRIGHTNESS_LEVELS∧
brightnessUpdates ∈ Z∧
newString ∈ BOOL∧

B.5. AUTOMATIC TELLER MACHINE 215

sum ∈ AMOUNTS∧
isStringVisible = FALSE∧
(string = virtualNumpadRegister ∨ string = keyboardRegister)}

Thm: Thm(ATM) = State(ATM)
AP:

AP(ATM) = {string 7→ virtualNumpadRegister 7→ keyboardRegister 7→
attempts 7→ confirmationStatus 7→
validationStatus 7→ deliveryStatus 7→
isStringVisible 7→ inputMode 7→
cardStatus 7→ brightness 7→ brightnessUpdates 7→
newString 7→ sum |
string 7→ virtualNumpadRegister 7→ keyboardRegister 7→

attempts 7→ confirmationStatus 7→
validationStatus 7→ deliveryStatus 7→
isStringVisible 7→
cardStatus 7→
brightnessUpdates 7→
newString 7→
sum = EMPTY _STRING 7→
EMPTY _STRING 7→ EMPTY _STRING 7→
0 7→ TRUE 7→ FALSE 7→
FALSE 7→ FALSE 7→
OUT 7→ 0 7→ FALSE 7→ NO_MONEY ∧

inputMode ∈ INPUT_MODE∧
brightness ∈ BRIGHTNESS_LEVELS}

Grd : Grd(ATM) =
{e 7→ (string 7→ virtualNumpadRegister 7→ keyboardRegister 7→

attempts 7→ confirmationStatus 7→
validationStatus 7→ deliveryStatus 7→
isStringVisible 7→ inputMode 7→
cardStatus 7→ brightness 7→
brightnessUpdates 7→
newString 7→
sum) |
(e = insertCard ∧ cardStatus = OUT)∨
(e = SCRString ∧ 0 ≤ attempts∧

attempts < MAX_ATTEMPTS∧
inputMode = SCREEN∧
cardStatus = IN∧
newString = FALSE)∨

(e = KBDString ∧ 0 ≤ attempts∧
attempts < MAX_ATTEMPTS∧
inputMode = KEYBOARD∧
cardStatus = IN∧
newString = FALSE)∨

(e = changeBrightness∧

216 APPENDIX B. MODELS

brightnessUpdates ≤ MAX_BRIGHTNESS_UPDATE∧
cardStatus = IN)∨

(e = confirmKBDString ∧ 0 ≤ attempts∧
attempts < MAX_ATTEMPTS∧
inputMode = KEYBOARD∧
cardStatus = IN∧
confirmationStatus = FALSE∧
validationStatus = FALSE∧
newString = TRUE)∨

(e = confirmSCRString ∧ 0 ≤ attempts∧
attempts < MAX_ATTEMPTS∧
inputMode = SCREEN∧
cardStatus = IN∧
confirmationStatus = FALSE∧
validationStatus = FALSE∧
newString = TRUE)∨

(e = checkStringCorrect ∧ confirmationStatus = TRUE∧
string = CORRECT_PASSCODE∧
cardStatus = IN∧
newString = TRUE)∨

(e = checkStringWrong ∧ confirmationStatus = TRUE∧
string ̸= CORRECT_PASSCODE∧
cardStatus = IN∧
newString = TRUE)∨

(e = deliverBankNotes ∧ validationStatus = TRUE∧
cardStatus = IN∧
deliveryStatus = FALSE)}

BAP: BAP(ATM) =
{e 7→ ((string 7→ virtualNumpadRegister 7→ keyboardRegister 7→

attempts 7→ confirmationStatus 7→
validationStatus 7→ deliveryStatus 7→
isStringVisible 7→ inputMode 7→
cardStatus 7→ brightness 7→
brightnessUpdates 7→
newString 7→
sum) 7→
(stringp 7→ virtualNumpadRegisterp 7→ keyboardRegisterp 7→
attemptsp 7→ confirmationStatusp 7→
validationStatusp 7→ deliveryStatusp 7→
isStringVisiblep 7→ inputModep 7→
cardStatusp 7→ brightnessp 7→
brightnessUpdatesp 7→
newStringp 7→
sump)) |
(e = insertCard ∧ cardStatusp = IN∧

inputModep ∈ INPUT_MODE∧

B.5. AUTOMATIC TELLER MACHINE 217

newStringp = FALSE∧
sump = NO_MONEY ∧ validationStatusp = FALSE∧
string 7→ virtualNumpadRegister 7→ keyboardRegister 7→

attempts 7→ confirmationStatus 7→ deliveryStatus 7→
isStringVisible 7→ brightness 7→
brightnessUpdates =
stringp 7→ virtualNumpadRegisterp 7→ keyboardRegisterp 7→
attemptsp 7→ confirmationStatusp 7→ deliveryStatusp 7→
isStringVisiblep 7→ brightnessp 7→
brightnessUpdatesp)∨

(e = SCRString ∧ virtualNumpadRegisterp ∈ STRINGS∧
stringp = virtualNumpadRegisterp∧
brightnessUpdatesp = 0∧
newStringp = TRUE ∧ confirmationStatusp = FALSE∧

validationStatusp = FALSE∧
keyboardRegister 7→

attempts 7→ deliveryStatus 7→
isStringVisible 7→ inputMode 7→
cardStatus 7→ brightness 7→
sum =
keyboardRegisterp 7→
attemptsp 7→ deliveryStatusp 7→
isStringVisiblep 7→ inputModep 7→
cardStatusp 7→ brightnessp 7→
sump)∨

(e = KBDString ∧ keyboardRegisterp ∈ STRINGS∧
stringp = keyboardRegisterp∧
brightnessUpdatesp = 0∧
newStringp = TRUE ∧ confirmationStatusp = FALSE∧

validationStatusp = FALSE∧
virtualNumpadRegister 7→

attempts 7→
deliveryStatus 7→
isStringVisible 7→ inputMode 7→
cardStatus 7→ brightness 7→
sum =
virtualNumpadRegisterp 7→
attemptsp 7→
deliveryStatusp 7→
isStringVisiblep 7→ inputModep 7→
cardStatusp 7→ brightnessp 7→
sump)∨

(e = confirmKBDString ∧ attemptsp = attempts + 1∧
confirmationStatusp = TRUE∧
string 7→ virtualNumpadRegister 7→ keyboardRegister 7→

validationStatus 7→ deliveryStatus 7→

218 APPENDIX B. MODELS

isStringVisible 7→ inputMode 7→
cardStatus 7→ brightness 7→
brightnessUpdates 7→
newString 7→ sum =
stringp 7→ virtualNumpadRegisterp 7→ keyboardRegisterp 7→
validationStatusp 7→ deliveryStatusp 7→
isStringVisiblep 7→ inputModep 7→
cardStatusp 7→ brightnessp 7→
brightnessUpdatesp 7→
newStringp 7→ sump)∨

(e = changeBrightness ∧ brightnessp ∈ BRIGHTNESS_LEVELS∧
brightnessUpdatesp = brightnessUpdates + 1∧
string 7→ virtualNumpadRegister 7→ keyboardRegister 7→

attempts 7→ confirmationStatus 7→
validationStatus 7→ deliveryStatus 7→
isStringVisible 7→ inputMode 7→
cardStatus 7→
newString 7→
sum =
stringp 7→ virtualNumpadRegisterp 7→ keyboardRegisterp 7→
attemptsp 7→ confirmationStatusp 7→
validationStatusp 7→ deliveryStatusp 7→
isStringVisiblep 7→ inputModep 7→
cardStatusp 7→
newStringp 7→
sump)∨

(e = confirmSCRString ∧ attemptsp = attempts + 1∧
confirmationStatusp = TRUE∧
string 7→ virtualNumpadRegister 7→ keyboardRegister 7→

validationStatus 7→ deliveryStatus 7→
isStringVisible 7→ inputMode 7→
cardStatus 7→ brightness 7→
brightnessUpdates 7→
newString 7→ sum =
stringp 7→ virtualNumpadRegisterp 7→ keyboardRegisterp 7→
validationStatusp 7→ deliveryStatusp 7→
isStringVisiblep 7→ inputModep 7→
cardStatusp 7→ brightnessp 7→
brightnessUpdatesp 7→
newStringp 7→ sump)∨

(e = checkStringCorrect ∧ validationStatusp = TRUE∧
confirmationStatusp = FALSE∧
string 7→ virtualNumpadRegister 7→ keyboardRegister 7→

attempts 7→ deliveryStatus 7→
isStringVisible 7→ inputMode 7→
cardStatus 7→ brightness 7→

B.5. AUTOMATIC TELLER MACHINE 219

brightnessUpdates 7→
newString 7→
sum =
stringp 7→ virtualNumpadRegisterp 7→ keyboardRegisterp 7→
attemptsp 7→ deliveryStatusp 7→
isStringVisiblep 7→ inputModep 7→
cardStatusp 7→ brightnessp 7→
brightnessUpdatesp 7→
newStringp 7→ sump)∨

(e = checkStringWrong ∧ validationStatusp = FALSE∧
confirmationStatusp = FALSE∧
newStringp = FALSE∧
string 7→ virtualNumpadRegister 7→ keyboardRegister 7→

attempts 7→ deliveryStatus 7→
isStringVisible 7→ inputMode 7→
cardStatus 7→ brightness 7→
brightnessUpdates 7→

sum =
stringp 7→ virtualNumpadRegisterp 7→ keyboardRegisterp 7→
attemptsp 7→ deliveryStatusp 7→
isStringVisiblep 7→ inputModep 7→
cardStatusp 7→ brightnessp 7→
brightnessUpdatesp 7→
sump)∨

(e = deliverBankNotes ∧ deliveryStatusp = TRUE∧
cardStatusp = OUT∧
sump ∈ AMOUNTS \ {NO_MONEY }∧
string 7→ virtualNumpadRegister 7→ keyboardRegister 7→

attempts 7→ confirmationStatus 7→
isStringVisible 7→ inputMode 7→
brightness 7→
brightnessUpdates 7→
newString =
stringp 7→ virtualNumpadRegisterp 7→ keyboardRegisterp 7→
attemptsp 7→ confirmationStatusp 7→
isStringVisiblep 7→ inputModep 7→
brightnessp 7→
brightnessUpdatesp 7→
newStringp)}

Ordinary : Ordinary(ATM) = Ev
Convergent : Convergent(ATM) = ∅
Anticipated : Anticipated(ATM) = ∅
Variant : Variant(ATM) ∈ State(ATM) → Z
check_Machine_Consistency : check_Machine_Consistency(ATM)
GetNextStatesRw :

Get_next_states_of _evts(ATM)[{changeBrightness}] =

220 APPENDIX B. MODELS

BAP(ATM)
[{changeBrightness}]

[Grd(ATM)[{changeBrightness}] ∩ Inv(ATM)]
END

B.5.3 Analyses

Listing B.19: The generation of the domain specific properties on the ATM models
CONTEXT

AnnotatedModel
EXTENDS

EventTagOntology
CONSTANTS

annotate
vv

AXIOMS
annotate : annotate =

({nonPreEmptive}×
{changeBrightness, checkStringCorrect,

checkStringWrong, deliverBankNotes})∪
({internal}×

{changeBrightness, checkStringCorrect,
checkStringWrong, deliverBankNotes})∪

({bounded} × {changeBrightness})∪
({inputByKeyboard} × {KBDString})∪
({inputByScreen} × {SCRString})∪
({inputByVoice} × ∅)∪
({input} × {KBDString, SCRString})∪
({textualConfirmation} × {confirmKBDString})∪
({visualConfirmation} × {confirmSCRString})∪
({auralConfirmation} × ∅)∪
({hapticConfirmation} × ∅)∪
({confirmation} × {confirmSCRString, confirmKBDString})∪
({interaction}×

{KBDString, SCRString, confirmKBDString, confirmSCRString})∪
({tag}×

{insertCard, KBDString, SCRString,
changeBrightness, confirmKBDString,
confirmSCRString, checkStringCorrect,
checkStringWrong, deliverBankNotes})

classInstances : classInstances(eventOntology) = annotate
isWDOntology : isWDOntology(eventOntology)
vv : vv =

{KBDString 7→
{p 7→ bright 7→ ck 7→ cs 7→ v |

B.5. AUTOMATIC TELLER MACHINE 221

p ∈ STRINGS × STRINGS × STRINGS × Z×
BOOL × BOOL × BOOL × BOOL×
INPUT_MODE × INSERTION_STATUS × Z∧

bright ∈ Z∧
ck 7→ cs ∈ BOOL × AMOUNTS∧
v = MAX_BRIGHTNESS_UPDATE − bright}}∪

{SCRString 7→
{p 7→ bright 7→ ck 7→ cs 7→ v |

p ∈ STRINGS × STRINGS × STRINGS × Z×
BOOL × BOOL × BOOL × BOOL×
INPUT_MODE × INSERTION_STATUS × Z∧

bright ∈ Z∧
ck 7→ cs ∈ BOOL × AMOUNTS∧
v = MAX_BRIGHTNESS_UPDATE − bright}}

vvbis : vv ∈ annotate[{input}] → P(State(ATM) × Z)
isNecessarilyFollowedBy : isNecessarilyFollowedBy(

ATM ,
eventOntology,
{input},
{bounded},
{confirmation},
vv)

END

Titre : Génération automatique d’obligations de preuves paramétrée par des théories de domaine dans Event-B : Le cadre de travail EB4EB
Mots clés : Raffinement et preuve, Théories de domaines, Event-B, Annotation de modèles
Résumé : De nos jours, nous sommes entourés de systèmes critiques complexes tels que les microprocesseurs, les trains, les appareils intelligents,
les robots, les avions, etc. Ces systèmes sont extrêmement complexes et critiques en termes de sûreté, et doivent donc être vérifiés et validés.
L'utilisation de méthodes formelles à états s'est avérée efficace pour concevoir des systèmes complexes. Event-B a joué un rôle clé dans le
développement de tels systèmes. Event-B est une méthode formelle de conception de systèmes à états avec une approche correcte par
construction, qui met l'accent sur la preuve et le raffinement. Event-B facilite la vérification de propriétés telles que la préservation des invariants, la
convergence et le raffinement en générant des obligations de preuve et en permettant de les décharger.
 Certaines propriétés additionnelles du
système, telles que l'absence d'inter-blocage, l'atteignabilité ou encore la vivacité, doivent être explicitement encodées et vérifiées par le concepteur,
ou formalisées à l'aide d'une autre méthode formelle. Une telle approche pénalise la réutilisabilité des modèles et des techniques, et peut introduire
des erreurs, en particulier dans les systèmes complexes.
Pour pallier cela, nous avons introduit un "framework" réflexif EB4EB, formalisé au sein de
Event-B. Dans ce cadre, chacun des concepts d'Event-B est formalisé comme un objet de première classe en utilisant la logique du premier ordre
(FOL) et la théorie des ensembles. EB4EB permet la manipulation et l'analyse de modèles Event-B, et permet la définition d'extensions afin de réaliser
des analyses supplémentaires non intrusives sur des modèles, telles que la validation de propriétés temporelles, l'analyse de la couverture d'un
invariant, ou encore l'absence de blocage. Ce framework est réalisé grâce aux théories d'Event-B, qui étendent le langage d'Event-B avec des
éléments définis dans des théories, et aussi en formalisant de nouvelles obligations de preuves, qui ne sont pas présentes initialement dans Event-B.
De plus, la sémantique opérationnelle d'Event-B (basée sur les traces) a été formalisée, de même qu'un cadre qui sert à garantir la correction des
théorèmes définis, y compris les opérateurs et les obligations de preuve. Enfin, le cadre proposé et ses extensions ont été validés dans de multiples
études de cas, notamment l'horloge de Lamport, le problème du lecteur/rédacteur, l'algorithme de Peterson, les distributeurs automatiques de
billets (DAB), les véhicules autonomes, etc.

Title: Automatic generation of proof obligations parameterised by domain theories implementation in Event-B: The EB4EB Framework
Key words: Refinement and proof, Domain theories, Event-B, Model annotation
Abstract: Nowadays, we are surrounded by complex critical systems such as microprocessors, railways, home appliances, robots, aeroplanes, and so
on. These systems are extremely complex and are safety-critical, and they must be verified and validated. The use of state-based formal methods
has proven to be effective in designing complex systems. Event-B has played a key role in the development of such systems. Event-B is a formal
system design method that is state-based and correct-by-construction, with a focus on proof and refinement. Event-B facilitates verification of
properties such as invariant preservation, convergence, and refinement by generating and discharging proof obligations.
Additional properties for
system verification, such as deadlock-freeness, reachability, and liveness, must be explicitly defined and verified by the designer or formalised using
another formal method. Such an approach reduces re-usability and may introduce errors, particularly in complex systems.
To tackle these challenges,
we introduced the reflexive EB4EB framework in Event-B. In this framework, each Event-B concept is formalised as a first-class object using First
Order Logic (FOL) and set theory. This framework allows for the manipulation and analysis of Event-B models, with extensions for additional, non-
intrusive analyses such as temporal properties, weak invariants, deadlock freeness, and so on. This is accomplished through Event-B Theories, which
extend the Event-B language with the theory's defined elements, and also by formalising and articulating new proof obligations that are not present
in traditional Event-B. Furthermore, Event-B's operational semantics (based on traces) have been formalised, along with a framework for
guaranteeing the soundness of the defined theorems, including operators and proof obligations. Finally, the proposed framework and its extensions
have been validated across multiple case studies, including Lamport's clock case study, read/write processes, the Peterson algorithm, Automated
Teller Machine (ATM), autonomous vehicles, and so on.

	Abstract
	Résumé
	Contents
	List of Tables
	List of Listings
	Part I - Introduction
	Chapter 1 - Introduction
	1.1 Context
	1.2 The addressed problem
	1.3 Our proposal
	1.4 Our contribution
	1.5 Organisation of the manuscript
	1.6 List of Published Paper
	1.6.1 Journal
	1.6.2 International Conference
	1.6.3 Workshop

	Part II - Contribution
	Chapter 2 - The Reflexive Framework EB4EB
	Reflexive Event-B: Semantics and CorrectnessThe EB4EB framework
	2.1 Introduction
	2.2 Event-B
	2.2.1 Event-B Contexts and Machines
	2.2.2 Event-B extensions with Theories

	2.3 The EB4EB Framework
	2.3.1 Motivation
	2.3.2 Related work
	2.3.3 The EB4EB framework

	2.4 EB4EB structure (see Fig. 2.1.(A))
	2.4.1 Data types and constructors
	2.4.2 Well Structured Machine

	2.5 EB4EB Proof obligations (see Fig. 2.1.(A))
	2.5.1 Feasibility Proof Obligation (FIS)
	2.5.2 Invariant Proof Obligation (INV)
	2.5.3 Natural Variant Proof Obligation (NAT)
	2.5.4 Variant decrease Proof Obligation (VAR)
	2.5.5 Theorem THM
	2.5.6 Proof Obligation Generation

	2.6 Trace’s semantics of Event-B
	2.6.1 Event-B traces
	2.6.2 Trace’s Semantics in EB4EB

	2.7 EB4EB Correctness (see Fig. 2.1.(B,C))
	2.7.1 Principle (See Fig.2.1.(C))
	2.7.2 Correctness of the Invariant PO formalised in EB4EB

	2.8 Modelling Event-B machines in EB4EB
	2.8.1 Instantiation Methodology
	2.8.2 Deep modelling based instantiation (see Fig. 2.2a)
	2.8.3 Shallow modelling based instantiation (see Fig. 2.2b)

	2.9 Case Study
	2.10 EB4EB deep and Shallow modelling of theclock case study
	2.10.1 Deep modelling instantiation for the clock model
	2.10.2 Shallow modelling instantiation for the clock model

	2.11 Extending the EB4EB Reasoning Mechanism(see Fig. 2.1.(D))
	2.11.1 Analysis principle: New POs
	2.11.2 Introduction of deadlock-freeness as a new proof obligation

	2.12 Proof Process
	2.13 Conclusion

	Proof automation for Event-B theories

	Chapter 3 - Advanced Reasoning on Event-B Models
	Standalone Event-B models analysis relying onthe EB4EB meta-theory
	3.1 Introduction
	3.2 Event-B
	3.2.1 Contexts and machines (Tables 3.1.a and 3.1.b)
	3.2.2 Event-B extensions with Theories

	3.3 The EB4EB framework
	3.3.1 The Event-B Meta-theory
	3.3.2 The Clock Example
	3.3.3 The clock machine as an instance of EvtBTheo theory

	3.4 POs for new properties: Extending the Meta-Theory
	3.4.1 Analysis principle: New POs
	3.4.2 Deadlock-freeness
	3.4.3 Invariant Weakness as a Non-intrusive Analysis
	3.4.4 Reachability
	3.4.5 Proof assessment

	3.5 Positioning this approach
	3.5.1 Related work
	3.5.2 Advantages of the approach

	3.6 Conclusion

	Chapter 4 - Extending Event-B withTemporal Logic
	Formalising Liveness Properties in Event-B with the Reflexive EB4EB Framework
	4.1 Introduction
	4.2 Event-B
	4.3 Linear Temporal Logic
	4.4 The EB4EB Framework
	4.5 Trace-Based Semantics of Event-B
	4.5.1 Semantics: traces of Event-B machines in EB4EB
	4.5.2 Correctness Principle

	4.6 A Case Study: A read write machine
	4.7 Temporal logic proof rules as EB4EB POs
	4.7.1 Liveness properties
	4.7.2 Deadlock freeness ⟲ P applied to the Read-Write machine
	4.7.3 Temporal operator proof rules
	4.7.4 Existence □♢P applied to the read write machine

	4.8 Correctness of the temporal logic properties proof rules
	4.9 Related Work
	4.10 Conclusion

	Chapter 5 - Extending Event-B with Explicit Model Annotations
	Non-Intrusive Annotation-Based Domain-Specific Analysis to Certify Event-B Models Behaviours
	5.1 Introduction
	5.1.1 Context
	5.1.2 Objective of this paper
	5.1.3 Organisation of this paper

	5.2 Event-B method
	5.2.1 Contexts and machines (see Table 5.1.(b) and 5.1.(c))
	5.2.2 Event-B extensions with Theories (see Table 5.1.(a))

	5.3 Background and Related Work
	5.3.1 Ontology Modelling Language as Event-B Theory
	5.3.2 The Event-B Meta-theory
	5.3.3 Domain Knowledge in Formal Modelling

	5.4 Domain-Specific Behavioural Analysis
	5.4.1 Components of the methodology
	5.4.2 A Methodology for defining Event-B models domain knowledge based analyses

	5.5 Case Study
	5.5.1 Informal Description
	5.5.2 Formal Description in Event-B

	5.6 Methodology at work
	5.6.1 Step 1 - Event Ontology Instantiation (Fig. 5.2.(1))
	5.6.2 Step 2 - Behaviour Analysis definition (Fig. 5.2.(2))
	5.6.3 Step 3 - Exporting Event-B models as instances of the Meta-Event-B theory (Fig. 5.2.(3))
	5.6.4 Step 4 - Annotation & analysis (Fig. 5.2.(4))

	5.7 Assessment
	5.7.1 Principled Methodology vs. Ad hoc Analysis.
	5.7.2 Domain-Specific Analyses and Reusability & Sharability.
	5.7.3 The Methodology Is Non-Intrusive.
	5.7.4 Proof-Based Verification.
	5.7.5 Proof & Modelling Effort Reduction.

	5.8 Conclusion

	Chapter 6 - Empowering the Event-BMethod
	Empowering the Event-B Method Using External Theories
	6.1 Introduction
	6.2 Invariants and Well-Definedness (WD)
	6.3 Overview of Event-B
	6.3.1 Contexts and machines (Tables 6.1.b and 6.1.c)
	6.3.2 Event-B extensions with Theories

	6.4 An Illustrative Case Study
	6.5 Invariant Preservation: Core Event-B
	6.6 Data type theory-based invariant preservation
	6.6.1 An Event-B datatype based domain-specific theory(Step 1)
	6.6.2 An Event-B instantiation context (Step 2)
	6.6.3 A domain-specific Event-B machine (Step 3)

	6.7 The Proof Process
	6.8 Revisited Event-B Models for LTS
	6.8.1 A data type for LTS (Step 1)
	6.8.2 An instanciation context for LTS (Step 2)
	6.8.3 A data type specific machine for LTS (Step 3)
	6.8.4 Proof process.

	6.9 Conclusion

	Chapter 7 - Conclusion

	Bibliography
	Part III - Appendices
	Appendix A
	Appendix B

