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Abstract

Generative modeling have become an essential tool in machine learning for generat-
ing realistic samples from complex data distributions. Despite significant advance-
ments in models such as Generative Adversarial Networks , Variational Autoencoders,
Normalizing Flows, and Diffusion models, challenges persist in achieving a balance
between sample quality and sample diversity. Precision and recall have emerged as
crucial metrics for assessing the quality and diversity of generative models. Precision
measures how many generated samples are coherent with the real data distribution,
reflecting sample quality. Recall evaluates how many samples from the real data
distribution can be generated, indicating sample diversity. This thesis addresses the
fundamental problem of characterizing, tuning, and improving Precision and recall
in generative models.

The first major contribution of this work is the unification of precision and recall
definitions within the framework of f -divergences. By expressing the most popular
metrics and their derivatives as f -divergences, we establish a cohesive and compre-
hensive evaluation system for generative models. This theoretical formulation allows
for a clearer understanding and more precise measurement of model performance in
terms of quality and diversity. Building upon this theoretical foundation, the thesis
introduces a novel method for estimating the f -divergence in a tractable manner,
facilitating its use as an objective function in the training of generative models. This
approach enables the optimization of a specific trade-off between precision and
recall, addressing a critical gap in the current literature where models often fail to
achieve an optimal balance due to computational constraints. Furthermore, the the-
sis proposes an optimal rejection sampling method that enhances both precision and
recall. This method is shown to be optimal in terms of any f -divergence, providing
a robust technique for refining the outputs of pre-trained generative models. The
rejection sampling algorithm is designed to operate under limited computational
budgets, making it practical for real-world applications.

The experimental validation of the proposed methods is conducted on a variety of
datasets, including MNIST, CIFAR-10, Fashion MNIST, CelebA, FFHQ, and ImageNet.
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Using both Normalizing Flows, Generative Adversarial Networks and Diffusion
Models, we demonstrate the effectiveness of our approaches in tuning the balance
between quality and diversity of generated samples, and then in improving the
quality. The results highlight the superiority of our methods compared to traditional
metrics and existing techniques.
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Résumé

Les modèles génératifs sont devenus un outil essentiel dans l’apprentissage automa-
tique pour générer des échantillons réalistes à partir de distributions de données
complexes. Malgré des avancées significatives dans les modèles tels que les Genera-
tive Adversarial Network, les Variational Autoencoders, les Normalizing Flows et les
modèles de diffusion, des défis persistent pour régler le compromis entre la qualité
et la diversité des échantillons. Cette thèse aborde le problème fondamental de la
caractérisation, l’ajustemtn et de l’amélioration de la qualité et de la diversité dans
les modèles génératifs.

La précision et le rappel ont émergé comme des métriques cruciales pour évaluer
la qualité et la diversité des modèles génératifs. La précision mesure combien
d’échantillons générés sont réalistes avec la distribution de données réelle, reflétant
la qualité des échantillons. Le rappel évalue combien d’échantillons de la distribution
de données réelle peuvent être générés, indiquant la diversité des échantillons.

La première contribution majeure de ce travail est l’unification des définitions de la
précision et du rappel dans le cadre des f -divergences. En exprimant les métriques
les plus populaires et leurs dérivés en tant qu’un famille de f -Divergnce, la PR-
Divergence, nous établissons un système d’évaluation cohérent et complet pour les
modèles génératifs. Cette formulation théorique permet une compréhension plus
claire et une mesure plus précise des performances des modèles en termes de qualité
et de diversité. En s’appuyant sur cette base théorique, la thèse introduit une méthode
novatrice pour estimer la PR-Divergnce de manière differentiable, facilitant son
utilisation comme fonction objective dans la formation des modèles génératifs. Cette
approche permet d’optimiser n’importe quel compromis spécifique entre précision et
rappel. Cette méthode se montre complémentaire aux méthodes existantes. De plus,
la thèse propose une méthode optimale d’échantillonnage par rejet qui améliore à la
fois la précision et le rappel. Cette méthode est démontrée comme étant optimale
en termes de toute f -divergence, fournissant une technique robuste pour affiner les
sorties des modèles génératifs pré-entraînés. L’algorithme d’échantillonnage par rejet
est conçu pour fonctionner sous des budgets computationnels limités, le rendant
pratique pour des applications réelles.

La validation expérimentale des méthodes proposées est réalisée sur une variété
de jeux de données, incluant MNIST, CIFAR-10, Fashion MNIST, CelebA, FFHQ et
ImageNet. En utilisant les Normalizing Flows, les Generative Adversarial Networks
et les modèles de diffusion, nous démontrons l’efficacité de nos approches pour
ajuster le compromis entre la qualité et la diversité des échantillons générés, puis
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pour améliorer la qualité. Les résultats soulignent la supériorité de nos méthodes
par rapport aux métriques traditionnelles et aux techniques existantes.
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Notation, Symbols and Abbrevations

We denote vectors and functions with multidimensional outputs using bold lower-
case letters, scalars and real-value functions with standard lower-case letters, and
occasionally with upper-case letters. Matrices are denoted with upper-case bold
letters. We use calligraphic fonts to indicate ensembles or subsets.The following is a
non-exhaustive list of symbols and abbreviations used in this manuscript.

Notation

d, k, l n, m, K, N Integers
u, v, w, x, y, z, a, b, c, µ, λ, σ Scalars
u, v, w, z, y, z, a, b, c, µ, λ Vectors
A, B, C, Id, Σ Matrices
A, B, G,M, P, T , X , Y, Z, Ensembles
P , P̂ , P̃ , Q Probability measures
p, p̂, p̃, q Density functions

Algebra

R Set of real scalar
N Set of natural integers
Rd Set of real values d−dimensional vectors
J0, KK Set of integers between 0 and K

xi ith component of the vector x

xi∶j Vector composed of the ith to the jth components of x

∣x∣ Absolute value of the scalar x

∥x∥p ℓp-norm of the vector x

∥x∥∞ Infinite norm of the vector x

∥x∥ Euclidian norm (ℓ2) of the vector x

det(A) Determinant of the matrix A
⊙ Hadamart/Piece-wise product
Id Identity matrix of size d × d

0d Null matrix of size d × d

BR,x ℓ2 Ball of center x and radius R

BR ℓ2 Ball of center 0 and radius R

vol (A) Volume of the subset A
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Probability

P (⋅) Probability of a random event
P(X ) Set of all probability measure on the space X
T Set of all measurable functions X ↦ R
G Set of all measurable functions Z ↦ X
H(P ) Shannon Entropy of the distribution P

Supp(P ) Support of the distribution P

EP [⋅] Expected value under the distribution P
N (µ, σ2) Normal distribution with mean µ and variance σ2

N (µ, Σ) Multivariate normal distribution with mean µ and covariance matrix Σ
G#Q Push-forward distribution of Q ∈ P(Z) by a measurable function G ∈ G

Functions

1{A} Indicator function of the event A
sign(x) Indicator function of the event x > 0
dom(f) Domain of the function f

f∗ Convex conjugate of the function f

∇xf Gradient of the function f with respect to x

JacG Jacobian matrix of mapping G

Generative Modeling

X Input space
d Dimension of the input space X ⊂ Rd

Z Latent space
m Dimension of the latent space Z ⊂ Rm

P Target distribution in P(X )
Q Latent distribution in P(Z)
Θ Set of parameters
θ Parameters vector
Gθ, G Mapping function
P̂ , P̂G, P̂θ Approximated distribution
D(P ∥P̂ ) Dissimilarity measure between P and P̂

Df(P ∥P̂ ) f -divergence between P and P̂

xviii



Abreviation

DRS Discriminator Rejection Sampling (Sampling Method)
DOT Discriminator Optimal Transport (Sampling Method)
e.g. exampli gratia
Eq. Equation
Fig. Figure
GAN Generative Adversatial Network (Generative Model)
i.e. id est
MH Metropolis Hasting (Sampling Method)
NF Normalizing Flow (Generative Model)
OBRS Optimal Budgted Rejection Sampling (Sampling Method)
s.t. such that
Tab Table
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1Introduction

„All that glitters is not gold; often have you heard
that told.”

— William Shakespeare
The Merchant of Venice

1.1 Context and Motivation

Artificial Intelligence (AI) and Machine Learning (ML) have spread across various
sectors, sparking revolutionary changes across industries. The potential of AI systems
to learn patterns from data and make intelligent decisions has driven advancements
in areas such as image analysis, natural language processing, and autonomous
driving. A crucial task of ML, generative modeling, has become a central focus,
capable of creating new data instances that resemble real-world examples.

Generative models seek to reproduce the underlying distribution of a dataset to
generate new and coherent samples. This task has generated a surge of interest in
various creative and practical applications, including image synthesis for computer
graphics [16], style transfer in art [42], data augmentation for machine learning
[107], drug molecule design in pharmaceuticals [49], and speech synthesis in natural
language processing [92]. In the domain of image processing, prominent examples
of models, including Generative Adversarial Networks (GANs) [44], Variational
Autoencoders (VAEs) [69], Normalizing Flows [100], and Diffusion models [111],
have demonstrated their effectiveness in producing high-quality data across various
domains (cf. Fig. 1.1).

Formally, consider an unknown target distribution P defined in the sample space X .
A generative model is a distribution P̂G defined through the mapping G from a latent
space Z to X and a distribution Q defined on Z. The mapping function G is built,
i.e. trained, such that P̂G approximates P . However, in practice, P̂G is never equal to
P . For example, comparing the results of two promising models, like DALL-E 2 from
OpenAI and Midjourney, reveals nuances. In the case of Midjourney’s samples, they
tend to appear more convincing to human observers. On the other hand, DALL-E 2’s
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(a) Midjourney (b) DALL-E 2

Fig. 1.1.: Comparison of two generative models: DALL-E and Midjourney given the same
prompt: A dog playing with a child. The Midjourney samples have a high quality
but a low diversity. In every sample, the child is a young golden blond boy petting
a clear seated dog outside. On the other hand, DALL-E 2 samples have a better
diversity and a lower quality. The paws, hands, and faces of the subjects are less
convincing, but the subjects are displayed in various situations and backgrounds
with diverse ethnicity, gender and age.

samples might sometimes miss certain details, such as substituting a leg for a hand,
which could influence how people perceive the model’s performance. Nevertheless,
DALL-E 2 manages to capture a larger variety of scenarios, backgrounds, subjects,
and ethnicity, thus better encapsulating the underlying distribution, as illustrated in
Fig. 1.1.

Why does this limitation occur? The first hypothesis is that it reflects the limited
expressivity of existing generative models. Ideally, a model with unlimited expres-
siveness would perfectly match the target distribution P , capable of generating
both diverse and high-quality samples. Conversely, a highly restricted model might
only be capable of generating samples with either high fidelity but low diversity or
a broader range but poorly generated. Although modern models have advanced
significantly, they lie in a middle ground where their expressivity is still somewhat
constrained. In parallel with classification tasks, performance limitations might be
partly attributed to the regularization enforced on the mapping G [18, 19]. As deep
learning models have grown exponentially in size and depth, certain regularization
have become crucial in maintaining their stability in generative scenarios [8, 12, 16,
84, 91, 134]. Some studies suggest that, under specific assumptions regarding the
disconnectedness of the support of P , performance limitations can be attributed to
constraints enforce on the function G and in particular the Lipschitz constants [25,
56, 118]. However, it is crucial to note that these publications focus primarily on the
on very specific metric on P [25] or metrics exclusively related to quality [56, 118].
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These findings concentrate either on an unclear trade-off or just the quality, without
considering diversity and quality separately.

Observing these limitations, the community has predominantly directed its efforts
toward models that can generate high-quality outputs. However, depending on the
use-case, generative models might require high quality samples for high-resolution
image and video generation, artistic synthesis or 3D model design. Alternatively,
they might be required to generate high-diversity samples for applications like data
augmentation, drug discovery, or anomaly detection. The divergent requirements
and limitations reveal a crucial trade-off between sample quality and diversity. Tra-
ditional metrics that initially sufficed, such as the Inception Score [104] and the
Fréchet Inception Distance [51] in computer vision or BLEU [94], MAUVE [96]
and Perplexity [81] in Natural Language Processing, encapsulate both quality and
diversity in an unclear way, highlighting the emerging requirement for metrics that
can independently assess the quality and diversity of generative models.

Inspired by the classification task metrics, two notions have recently emerged to
assess quality and diversity: Precision and Recall. There are strong similarities
between the questions asked in the two domains.

Precision Recall

Classification
How many positively classified

samples are positive ?
How many positive samples are

positively classified ?

Generation
How many generated samples

are coherent ?
How many coherent samples

can be generated ?

The analogy appears to be straightforward. Precision refers to quality by capturing
how much P̂G can generate samples of P . Recall refers to diversity by estimating how
many samples of P can be generated by P̂G. However, answering these questions
in a generative task is more complex than in a classification task because the
model produces diverse and novel outputs, making the definitions of true and false
positives ambiguous. Unlike classifiers that produce distinct and discrete labels,
generative models are defined by continuous densities, which complicates direct
comparison. Furthermore, the desired qualities in generative models, like ensuring
diversity without mere memorization or qualitative and novelty, do not appear in
the classification metrics.

For that reason, many studies have emerged on the formal definition of precision
and recall and on developing methods to compute these metrics. These metrics
can be categorized into two distinct groups: those that produce a concise pair of
interpretable values [21, 67, 73, 85], and those providing a more intricate and
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(a) Model 1: Diverse
FID: 17.06, IS: 2.69

z
(b) Model 2: Precise

FID: 8.80, IS:2.57

0 1
0

1

β

α

Model 1

Model 2

Sajjadi et al.

Simon et al.

(c) PR-Curves for Model 1 and 2.

Fig. 1.2.: Two different models are displayed with very different performances. Model 1
have a great diversity and display all different digits, but contours, backgrounds,
and shapes are sometimes incoherent. Model 2 is generating coherent samples
from only half the classes. Traditional metrics - FID (↓) and IS (↑) - are given for
comparison.

precise evaluation through a parameterized curve [32, 103, 108]. Although the
latter category, similar to the ROC curves in classification tasks, provides more
comprehensive information, their complexity makes them less straightforward to
interpret. For example, we computed different measures to evaluate two models
that generate handwritten digits. The parameterized curves are shown in Fig. 1.2c
evaluating two different models specifically tuned to be solely diverse or solely
precise, respectively in Figures 1.2a and 1.2b. Concise measures are given in
Tab. 1.1.

Regarding the methods used to evaluate these metrics, those that rely on k-nearest
neighbors (k-NN) tend to be computationally expensive and struggle when dealing
with data in higher dimensions [21, 73, 85, 103]. On the other hand, methods
that involve classifiers or kernel density estimators vary greatly in results [67, 108].

Model 1 Model 2
Quality Diversity Quality Diversity

Sajjadi et al. [103] 0.90 0.64 0.78 0.91
Kynkäänniemi et al. [73] 0.54 0.91 0.84 0.70
Naeem et al. [85] 0.36 0.78 0.60 0.61
Simon et al. [108] 0.34 0.56 0.54 0.58

Tab. 1.1.: Different quality and diversity measures for the two models displayed in Fig-
ure 1.2a and Figure 1.2b. The higher the measure, the better the model performs.
Most measures reflect that Model 1 is more diverse and Model 2 is more precise.
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However, all of these methods share a common limitation, non-differentiability. This
non-differentiability poses a substantial issue, making it infeasible to directly train a
model for the explicit improvement of these metrics.

It is clear that a model cannot achieve both good precision and good recall. Whether
due to the training procedure or the structure of the model [83, 121], it appears that
a model naturally focuses on a specific but not explicit trade-off of precision and
recall. Various methods have emerged in generative modeling to tune the trade-off.
However, their efficacy varies. These methods only affect the training data using
instance selection [28] or, are used post hoc, by changing the sampling procedure
from Q or P̂G with a fixed mapping G [7, 9, 57, 117, 123]. Moreover, these methods
usually exhibit a strong bias toward enhancing precision only, effectively pushing
the model in one direction of the trade-off. Others, while promising, are resource
intensive and may not be practical in real-world scenarios [47, 82]. No method
currently focuses on tuning the precision-recall trade-off during training or with a
limited resource cost.

1.2 Problem Statement

These motivations underscore the fundamental questions and challenges tackled in
this thesis. Through an extensive investigation into generative models, we aim to
answer the following question:

Question: How can we characterize, tune, and improve precision and recall of
Generative Models?

To address this question, we divide the problem into two components: assessment
and enhancement of the model. Initially, our attention is directed toward evaluating
Precision (i.e. sample quality) and Recall (i.e. sample diversity). Subsequently, we
explore strategies to improve the model’s precision or recall.

1.2.1 Assessing Precision and Recall

To answer the question of characterizing Precision and Recall for generative models,
we need a cohesive definition. Therefore, the first question we will answer is:

Question 1: How can we unify the definitions of precision and recall for generative
models?
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To do so, we will regroup the different definitions in the framework of f -divergences.
We will show that the definition of PR-Curves can be written as a family of f -
divergence divergences, and we will write every other definition within our frame-
work. Once a unified evaluation system is established, we can analyze these metrics
and its link to the regularization:

Question 2: What Precision and Recall can be achieved with neural networks with
bounded Lipschitz constants?

While our work aims to be applied to generative models, we will focus on Generative
Adversarial Networks and Normalizing Flows, for which the Lipschitz properties are
an essential property for stability. Taking almost no assumption on the support of
P , we will highlight pathological cases for which the model will fail to match the
distribution.

1.2.2 Improving on Precision and Recall

Generative models face the challenge of improving both precision and recall. This is
a complex task that can be achieved by multiple approaches. In our exploration, we
focus on adjusting two main aspects: the loss function and the sampling method.

Adjusting the Loss Function: In this case, the only flexibility lies within the training
procedure and, especially in the choice of the loss function. Under these constraints,
no additional computational resources, we cannot anticipate simultaneous enhance-
ments in both precision and recall. Nevertheless, we can adjust the balance: enabling
the model to prioritize precision or recall, and particularly any explicit trade-off
between those two. This leads to a fundamental question:

Question 3: Can we train a generative model to optimize an explicit user-specified
trade-off between Precision and Recall?

We will thus leverage the theoretical analysis conducted to answer Q1, and develop a
method to train the model to minimize an f -divergence representing a well-defined
trade-off between precision and recall.

Modifying the Sampling Method: Following the loss function adjustment, we
explore the possibilities within the sampling method, allowing for a slight elevation
in the computational cost of generating samples. Thus, if we consider the distribution
P̂G defined a by a fixed model G, and focusing on the sampling method, rejection
sampling, we will answer the following question:
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Question 4: With rejection sampling under limited budget, how much can we increase
Precision and Recall of a pre-trained model?

We will demonstrate that there is a way to optimize the rejection of drawn samples
in order to maximize both Precision and Recall, while being restricted by a limited
budget.

1.3 Structure and Contribution

In this thesis, we aim to tackle to the four stated problems, linearly in five chapters:

• Chapter 2 and Chapter 3

In Chapter 2, we introduce various generative models in machine learning,
including Generative Adversarial Networks, Diffusion models, and Normalizing
Flows. The chapter provides readers with a comprehensive understanding of
these models’ principles and capabilities. Additionally, in Chapter 3, we present
the different Precision Recall measures defined in the literature. By the end of
Chapter 2 and Chapter 3, readers will have gained valuable insights into the
landscape of generative models and the essential tools used to evaluate their
performance in subsequent chapters.

• Chapter 4

In Chapter 4, we address Q1 and Q2, exploring one particular measure of
"sample quality" and "sample diversity". Our key contribution is to show that
a measure proposed by Simon et al. [108], can be elegantly expressed as
an f -divergence, denoted the Precision-Recall divergence Dλ-PR. This con-
nection allows us to link Dλ-PR with other precision and recall concepts and
establish a clear relationship between Dλ-PR and all other f -divergences, thus
answering Q1. Moreover, we leverage the Lipschitz constant of Generative
Adversarial Networks and Normalizing Flows. By analyzing these constants,
we derive insightful lower bounds on the PR-Divergence, highlighting the
limits. Throughout this chapter, to address Q2, we emphasize the existence of
certain pathological cases that can significantly impact PR-divergence.

• Chapter 5

Chapter 5, we address Q3, based on the insights from Chapter 3 and the
PR-Divergence. While PR-Divergence demonstrates promise for evaluating
generative models, we uncover the limitation that it cannot be directly opti-
mized using existing methods. To overcome this challenge, we propose and
develop a novel approach in this chapter. Our method allows models to be
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trained to minimize a specific Dλ-PR, essentially allowing the optimization of
a particular trade-off between precision and recall. In this chapter, we offer
theoretical evidence of the convergence of our proposed method, providing
reassurance of its effectiveness. Additionally, we present experimental results
obtained from applying the method to both Generative Adversarial Networks
and Normalizing Flows.

• Chapter 6

In Chapter 6, we tackle Q4, focusing on a rejection sampling method with
a restricted budget. We demonstrate that this approach is not only optimal
but also highly efficient in practice. Using this method with a given budget,
we achieve a minimal divergence after rejection. Moreover, we show that our
proposed approach allows for direct minimization of the divergence between
the original distribution P and the refined distribution P̃ .

Through rigorous theoretical analysis and practical experimentation, we estab-
lish the effectiveness and efficiency of our proposed method, offering a robust
solution to minimize divergence and refine generative models within resource
constraints.
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2Background on Deep Learning
Generative Models

„I visualize a time when we will be to robots what
dogs are to humans. And I am rooting for the
machines.

— Claude Shannon
(Father of information theory)
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In this chapter, we provide a comprehensive background on Generative Models,
a crucial foundation for our thesis. Our primary focus is on presenting general
frameworks and algorithms, but it is essential to validate our contributions using
real-world image datasets and existing models. Therefore, we introduce generative
models both theoretically as mathematical tools and then practically by showing
how they are implemented using deep neural networks.

To achieve this, it is advisable to begin with the Problem Statement in Section 2.1.1,
followed by an presentation of f -divergences in Section 2.1.2, essential for the
understanding of this thesis. Finally, we examine in Section 2.1.4 how the general
framework can be extended. Then, for those inclined toward practical implementa-
tion, a detailed overview can be found in Section 2.1.3, with dedicated sections on
Generative Adversarial Networks in Section 2.2.1, Normalizing Flows in Section 2.2.2
and Diffusion Models in Section 2.2.3. These "in-practice" sections are particularly
relevant for understanding the experiments conducted in this thesis.

9



2.1 General Framework and Notations

In this section, we introduce essential notation, symbols, and fundamental definitions
that establish the foundation for understanding generative models. Additional
complementary notations, symbols, and abbreviations can be found in the Preface.

2.1.1 Generative Modeling: Basic Problem Statement

To define a generative model, several elementary concepts are necessary.

• Consider an input space X ⊂ Rd. In P, the set of all probability distributions
defined on X , we consider a target distribution P , i.e., the data distribution. It
is defined on its support Supp(P ) ⊆ X , and we denote p its Radon-Nikodym
density function with respect to a reference distribution µ. Typically, X can be
a space of images of d pixels with values in [0, 1]: X = [0, 1]d, or it can be a set
of sentences of d tokens within a vocabulary of size K, and thus X = J0, KKd.

• Let us define a latent space Z ⊂ Rm on which we define a latent distribution Q.
The main priority set for Q is that the sampling procedure must be straight-
forward. For that reason, it is often chosen to be in the exponential family,
or a mixture of exponential distributions. Typically, Q is chosen as a simple
distribution such as a multivariate Gaussian distribution: N (0m, Im). Note
that the dimension of Z is not necessarily the same as the dimension of X , m

is usually lower or equal than d.

• Finally, consider G the set of measurable mapping functions G from Z to
X . Measurability is defined with respect to σ-algebra on X and Z. For a
given mapping G, we define the approximated distribution P̂ as the push-
forward G#Q, and thus we denote P̂(X ) = {P̂ = G#Q∣G ∈ G} the set of all
distributions P̂ induced by the generator functions of G from a fixed latent
distribution Q. The procedure for sampling from P̂ is as follows:

1. Sample z ∼ Q,

2. Compute the image x = G(z).

In general, a generative model consists of the push-forward distribution P̂ , defined
by the latent distribution Q and the mapping function G. We use the notation P̂

when it is clear from the context or P̂G when necessary to emphasize the dependency
on G.

It is pertinent to note that we do not specify a particular function G in advance.
Instead, we learn G to minimize the difference between P and P̂ . This difference
is quantified using a probability dissimilarity measure, denoted by D(P ∥P̂ ), which
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Fig. 2.1.: One-dimensional illustration of a generative model. A target distribution P
is approximated by a distribution P̂ , defined by a latent distribution Q and a
measurable mapping G.

evaluates how well the generated samples match the true data distribution. The
objective for G is to solve:

min
G∈G

D(P ∥P̂ ). (2.1)

In this work, our focus is on a popular class of dissimilarity measures for probability
distributions known as f -divergences.

2.1.2 f -divergences to measure dissimilarity between
distributions

f -divergences represent a fundamental concept in probability theory and statistics.
They provide a framework for quantifying the divergence or dissimilarity between
two probability distributions, which is a crucial aspect in comparing and contrasting
different probability models. These divergences were introduced by Alfréd Rényi in
the same paper in which he introduced the Rényi entropy [102]. Rényi’s work laid
the foundation for understanding these divergences, and subsequent research by
Csiszár, Morimoto, and Ali & Silvey further developed the theory [4, 26]. As a result,
f -divergences are sometimes known as Csiszár–Morimoto divergences, Ali–Silvey
distances, or Csiszár f -divergences.

Definitions of f -divergences To define an f -divergence, we require a convex lower
semi-continuous function f ∶ [0,+∞] →] −∞,+∞] that satisfies f(1) = 0. Typically,
we consider two distributions P and P̂ in P(X ), the set of probability measures
defined on X . We assume that P and P̂ are absolutely continuous with respect to
a reference distribution µ on X . Absolute continuity, also denoted P ≪ µ, means
that for any measurable set A ⊆ X , if µ(A) = 0, then P (A) = 0. The f -divergence
between P and P̂ is formally defined as follows:

2.1 General Framework and Notations 11



Definition 2.1.1 (f -divergences).
For any two probability distributions P and P̂ in P(X ) such that P, P̂ ≪ µ. Let p and
p̂ be the Radon-Nikodym densities of P and P̂ with respect to µ, respectively. Let f be
any convex lower semi-continuous function f ∶ [0,∞]→] −∞,+∞] such that f(1) = 0,
the f -divergence between P and P̂ is

Df(P ∥P̂ ) = ∫X p̂(x)f (p(x)
p̂(x))dµ(x). (2.2)

However, the definition of f -divergence can be extended to any distributions that are
no longer absolutely continuous if the function u↦ f(u)/(u − 1) is non-decreasing.
Note that in the literature, f -divergence is typically defined for P ≪ P̂ as:

Df(P ∥P̂ ) = ∫X f (dP

dP̂
)dP̂ , (2.3)

but we will focus on the case where P and P̂ are absolutely continuous with respect
to µ because, in this case, f -divergences can be represented using an expected value,
which will prove valuable in this thesis:

Df(P ∥P̂ ) = Ex∼P̂ [f (
p(x)
p̂(x))] . (2.4)

The function f is commonly referred to as the generator function, and many well-
known divergences can be expressed in the form of f -divergence. This justifies
the use of f -divergence as a general framework for dissimilarity measures between
probability distributions, even if there exist other types of statistical divergences, such
as Integral Probability Metrics or the Bregman Divergence. In Table 2.1, we provide
a summary of typical divergences, their notation, definitions, and the corresponding
generator function f .

f -divergences exhibit several properties, including:

• Linearity with respect to f : f -divergences are linear with respect to the
generator function f . For any two functions f1 and f2 satisfying the conditions
in Definition 2.1.1 and any real numbers a and b, the divergence

Daf1+bf2(P ∥P̂ ) = aDf1(P ∥P̂ ) + bDf2(P ∥P̂ ). (2.5)

• Non-Negativity: For any two probability distributions P, P̂ ∈ P(X ) such that
P, P̂ ≪ µ, f -divergences satisfy the non-negativity property: Df(P ∥P̂ ) ≥ 0.
The equality holds if and only if P = P̂ .

12 Chapter 2 Background on Deep Learning Generative Models



Divergence Notation Definition f(u)
Kullback-
Leibler

DKL ∫X p(x) log (p(x)
p̂(x))dµ(x) u log u

Reverse
Kullback-
Leibler

DrKL ∫X p̂(x) log ( p̂(x)
p(x))dµ(x) − log u

Total
Variation

DTV
1
2 ∫X ∣p(x) − p̂(x)∣dµ(x) 1

2 ∣u − 1∣

Jeffrey DJe DKL(P ∥P̂ ) +DKL(P̂ ∥P ) (u − 1) log(u)

Jensen-
Shannon

DJS

1
2
DKL(P ∥R) +

1
2
DKL(P̂ ∥R)

where R = 1
2
(P + P̂ )

u log u

+(1 + u) log(1 + u)

χ2

Pearson
Dχ2 ∫X

(p(x)−p̂(x))2
p̂(x) dµ(x) (u − 1)2

Hellinger DHe ∫X (
√

p(x) −
√

p̂(x))
2

dµ(x) (√u − 1)2

Amari
α-Divergence

DA
α

1
α(α−1) ∫X p(x) [(p(x)

p̂(x))
α
− 1]dµ(x) 1

α(α−1) (u
α − 1)

Tab. 2.1.: List of common f -divergences.

• Joint Convexity with respect to P and P̂ : f -divergences are jointly convex,
making them suitable for various optimization problems. For any λ ∈ [0, 1] and
any suitable distributions P1, P2, P̂1, P̂2 ∈ P(X ), we have the following.

Df(λP1 + (1 − λ)P2∥λP̂1 + (1 − λ)P̂2)
≤ λDf(P1∥P̂1) + (1 − λ)Df(P̂1∥P̂2)

(2.6)

• Invariance with respect to f with Linear functions: f -divergences remain
invariant under affine transformations in f . For f†(u) = f(u)+γ(u−1) for any
constant γ ∈ R:

Df(P ∥P̂ ) = Df†(P ∥P̂ ). (2.7)

• Reversal by Convex Inversion of f : f -divergences can be reversed by applying
a convex inversion. For any function f its convex inversion is defined as
g(u) ∶= uf(1/u), then if f satisfies the properties to be a generator function,
then g satisfies the same properties, and we have:

Df(P ∥P̂ ) = Dg(P̂ ∥P ). (2.8)
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The Variational form of f -divergences One key property of f -divergences is their
ability to be expressed in a dual variational form [87]. To explore this property,
we first introduce the concept of the Fenchel conjugate, also called the convex
conjugate.

Definition 2.1.2 (Fenchel Conjugate).
For f ∶ dom(f)→ [−∞,+∞], the Fenchel conjugate, denoted f∗, is defined as

f∗(t) = sup
u∈dom(f)

{ut − f(u)} . (2.9)

In this thesis, we focus on certain properties of the Fenchel conjugate that are
particularly relevant for our purposes:

• Biconjugate: The biconjugate (f∗)∗, i.e. Fenchel conjugate of the Fenchel
conjugate of f , is equal to f if and only if f is lower semi-continuous and
convex. Thus, for f -divergences generator function:

(f∗)∗(u) = f(u). (2.10)

• Maximizing Argument: If the function f is differentiable, then the derivative
of the Fenchel conjugates maximizes the argument in (2.9):

∇f∗(t) = arg sup
u∈dom(f)

{ut − f(u)} , (2.11)

and therefore, using the biconjugate property on suitable f , the inverse func-
tion of the derivative of f is the derivative of the Fenchel conjugate and
vice-versa:

[∇f]−1 (t) = ∇f∗(t) and [∇f∗]−1 (u) = ∇f(u). (2.12)

The Fenchel conjugate allows us to reformulate f -divergence Df(P ∥P̂ ). Denoting T
denoting the set of all measurable functions X → R:

Df(P ∥P̂ ) = ∫X p̂(x) sup
t∈dom(f∗)

{tp(x)
p̂(x) − f∗(t)}dµ(x)

= sup
T ∈T
(∫X p(x)T (x)dµ(x) − ∫X p̂(x)f∗ (T (x))dµ(x))

(2.13)

Thus, the f -divergence between two distributions can be written in terms of expecta-
tions, leading to its variational form:

14 Chapter 2 Background on Deep Learning Generative Models



Divergence f∗(t) T opt(x)

DKL exp(t − 1) 1 + log (p(x)
p̂(x))

DrKL −1 − log(−t) − p̂(x)
p(x)

DTV t 1
2sign (p(x)

p̂(x) − 1)

DJe W (e1−t) + 1
W (e1−t) + t − 2 1 + log (p(x)

p̂(x)) −
p̂(x)
p(x)

DJS − log (2 − exp(t)) log ( p(x)
p(x)+p̂(x)) + log 2

Dχ2 t2

4 + t 2 (p(x)
p̂(x) − 1)

DHe
t

1−t (1 −
√

p̂(x)/p(x))

DA
α

1
α [(t(α − 1) + 1)

α
α−1 − 1] 1

α−1 [(
p(x)
p̂(x))

α−1
− 1]

Tab. 2.2.: List of the Fenchel conjugates of the generator function of the common f -
divergences. W ∶ t→W (t) is the Lambert-W function.

Theorem 2.1.3 (Dual variational form of an f -divergence).
Let P, P̂ ∈ P(X ) two distributions such that P is absolutely continuous with respect to
P̂ and f a suitable generator function. The f -divergence between P and P̂ admits a
dual variational form:

Df(P ∥P̂ ) = sup
T ∈T
(Ex∼P [T (x)] −Ex∼P̂ [f

∗(T (x))] ). (2.14)

We use T opt ∈ T to denote the function that achieves the supremum.

Using the maximizing argument property of Fenchel conjugates, we can relate the
density ratio to the optimal function T opt:

T opt(x) = ∇f (p(x)
p̂(x)) (2.15)

In Table 2.2, we provide a list of Fenchel Conjugates corresponding to f -divergences
mentioned in Table 2.1 and the expressions of the optimal function T opt.

A Note on α-divergence The (Amari) α-divergence DA
α , introduced by Amari and

Nagaoka [5], is a versatile divergence measure that generalizes many common
f -divergences. In particular, when α → 1, it corresponds to the Kullback-Leibler
divergence, and when α = 0, it becomes the reverse KL divergence. For α = 1/2,
it is the Hellinger divergence, and for α = 2, it is equivalent to the divergence χ2.
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Additionally, another very similar definition of α-divergence has been introduced by
Tsallis [122]:

DT
α (P ∥P̂ ) =

1
α − 1 ∫X p(x) [(p(x)

p̂(x))
α

− 1]dµ(x). (2.16)

Note that DT
α = αDA

α . The Tsallis α-divergence, in addition to being prior to the
Amari α-divergence, is related to another widely used divergence, the Rényi α-
divergence denoted DR

α , which has many applications in information theory and
statistics. The Rényi α-divergence is given by:

DR
α (P ∥P̂ ) =

1
α − 1

log∫X p(x)αp̂(x)1−αdx. (2.17)

Even if the Rényi divergence is not an f -divergence, it can be related to the Tsallis
α-divergence as DR

α =
log(1+(α−1)DT

α)
α−1 . The Rényi divergence has been extensively

studied [38] and will prove to be useful in defining metrics for model evaluation.

2.1.3 Generative Models with Deep Neural Networks

As mentioned, the goal of a generative model is to minimize the difference between
the target distribution P and the approximate distribution P̂G which depends on the
mapping function G. In theory, if G is in the set of all measurable functions, one
can easily find P̂ = P . However, in practice, G is represented using a deep neural
network, whose the architecture affects its expressivity.

Mathematically, we define a neural network by a parameter vector θ ∈ Θ where
Θ is the set of all possible parameter values determined by the architecture of the
deep neural network, including factors such as its depth, width, structure, etc. For
simplicity in notation, we will use P̂ , P̂G, or P̂θ to refer to the learned distributions
defined by the mapping function Gθ represented by θ.

In practice, the objective of training a generative model is to find the optimal
parameter vector θ that minimizes the f -divergence between the target distribution P

and the approximated distribution P̂ . This objective is formalized as an optimization
problem:

θ∗ = argmin
θ∈Θ

Df(P ∥P̂θ), (2.18)

Since the f -divergence divergence cannot be directly calculated, it must be approx-
imated using a set of samples drawn from P , i.e., the training dataset D, and, if
applicable, samples drawn from P̂ . Generative models employ different methods
to estimate the measure of dissimilarity. For each model, there exists an objective
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Algorithm 1 Stochastic Gradient Descent (SGD) to train generative models

1: Initialize model parameters θ
2: for t = 1, 2, . . . , T do
3: Sample a mini-batch Breal

t from D
4: If necessary, sample a mini-batch Bfake

t from P̂θ

5: Compute the loss l using Breal
t and Bfake

t

6: Compute the gradient ∇θlt of the objective function w.r.t. θ
7: Update model parameters: θ ← θ − ηt ⋅ ∇θlt, where ηt is the learning rate
8: end for

function l that is minimized to approximate or provide an upper bound for the
dissimilarity measure. Detailed examples of loss functions used in state-of-the-art
models are provided in Section 2.2.

To minimize the objective, one of the fundamental optimization algorithms used
is the stochastic gradient descent (SGD) [14]. This algorithm iteratively adjusts
the model parameters using gradients estimated from a subset of the training data.
Although SGD forms the basis for many optimization techniques, variations such as
mini-batch SGD and variants with adaptive learning rates have been developed to
enhance convergence speed and stability [68].

In Algorithm 1 we present a simplified version of the stochastic gradient descent
algorithm used to train generative models. Bt represents a mini-batch of data
instances sampled from the training dataset in iteration t. The gradient estimate
∇θlt is calculated using the mini-batch and provides an approximation of the true
gradient of the objective function with respect to the model parameters θ. The
learning rate ηt determines the step size of each parameter update and is usually set
using techniques such as learning rate schedules or adaptive learning rate methods
[35]. Although Algorithm 1 captures the core, modern generative models may
incorporate adaptations and novel optimization techniques for better convergence
and stability. For example, one common approach is to regularize the parameter
vector θ, enforcing on Gθ Lipschitz constraints defined in Section 4.4.

Throughout this thesis, we will focus on various aspects of this training procedure,
exploring different f -divergences, different objective functions, and optimization
techniques. This exploration aim to improve our understanding of the trade-offs and
challenges in training generative models, and in particular the trade-off between
quality and diversity.
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2.1.4 Extension of the General Framework

The general framework for generative models that we have discussed so far includes
a latent distribution Q, a mapping function Gθ, and the associated push forward
distribution P̂G = Gθ#Q. However, the practical implementation can be more
complex, leading to various extensions of the framework.

In practice, certain models are trained to minimize Df(P ∥P̂G), but may not draw
samples as expected. For example, one common trick to improve generative model
quality involves the following steps:

• Sample z ∼ Q̃, a modified version of Q.

• Compute the image x = G(z).

Depending on the community, Q̃ is either a truncated version of Q, which is typically
denoted as Hard Truncation and illustrated in Figure 2.2b [16, 105], or a rescaled
version of Q, which is denoted as Soft Truncation [31, 70] and illustrated in Fig-
ure 2.2d. These modifications can improve the quality of the generated samples by
restricting the latent space to a region where the model performs better.

−3 0 3

z

q(
z)

(a) Gaussian Latent Distribu-
tion Q

−3 0 3

z

q̃(
z)

(b) Hard Truncation ψ = 2.0

−3 0 3

z

q̃(
z)

(c) Hard Truncation ψ = 1.0

−3 0 3

z

q̃(
z)

(d) Soft Truncation ψ = 0.7

−3 0 3

z

q̃(
z)

(e) Soft Truncation ψ = 0.5

Fig. 2.2.: Illustration of the hard and soft truncation methods.
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Furthermore, there are various methods for sampling from P̂ . For instance, in
rejection sampling Azadi et al. [9] and Von Neuman [129], which will be detailed in
Section 6.1.2, the sampling procedure can be more complex:

• Sample z ∼ Q.

• Compute the image x = G(z).

• Accept or reject the image x based on some function a(x).

In summary, in practice, there exist multiple ways to sample from Q and, more
importantly, from P̂ . These variations and extensions illustrate the complexity of
implementing generative models.

2.2 State-of-the-Art Models

Generative models differ in how they estimate the dissimilarity measures, leading to
variations in the objective function l and the mapping function G. In recent years,
three key architectures, Generative Adversarial Networks (GANs), Normalizing
Flows (NFs), and Diffusion Models, have played a significant role in advancing
deep generative models. These models have remained popular for several reasons.
GANs have been at the forefront of various applications for an extended period, NFs
possess a unique ability to model data density accurately, and Diffusion Models have
undergone substantial development in recent years.

2.2.1 Generative Adversarial Networks

Introduced by Goodfellow et al. [44], GANs have continued to evolve, generating
high-quality samples. At the core of this architecture is a min-max optimization
problem involving two networks: the generator G and the discriminator T . The
generator tries to create data samples that are indistinguishable from real ones,
while the discriminator attempts to differentiate between the real and generated
samples. This forms a two-player minimax game, mathematically represented by:

min
G

max
T
(Ex∼P [log T (x)] +Ez∼Q [log(1 − T (G(z)))] ). (2.19)

This equation represents the objective function of the GAN, where T (x) is the
discriminator’s estimate of the probability that real data instance x is real, and
G(z) is the data instance generated by the generator. The generator and the
discriminator are trained alternately, with the generator aiming to produce data
that the discriminator cannot distinguish from real data, hence minimizing the
log-probability of the discriminator being correct.
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Fig. 2.3.: Original structure of a GAN introduced by Goodfellow et al. [44].

Originally, GANs were designed to minimize one specific divergence, that we will
denote DGAN. However, the model has since been extended to minimize any f -
divergence. Nowozin et al. [90] introduced the f -GAN framework, based on the
variational estimation of the f -divergence presented in Equation (2.14) and solves
the following objective function:

min
G∈G

max
T ∈T

(Ex∼P [T (x)] −Ex∼P̂G
[f∗(T (x))]) . (2.20)

T is trained to improve the estimation of any f -divergence between the target
distribution P and the learned distribution P̂ , while G is trained to minimize this
estimation. As illustrated in Figure 2.4 and in Equation (2.20), T is trained using
samples from both P and P̂ , while G is trained solely using samples from P . We
can show that if the discriminator in the original framework in Equation (2.19) as
x↦ log(T (x)) then we can show that the objective function of the original GAN is
equivalent to minimizing the Jensen-Shannon divergence:

DGAN(P ∥P̂ ) = 2DJS(P ∥P̂ ) − log(4). (2.21)

DGAN is not an f -divergence as it does not, for instance, satisfy the positivity
property. For simplicity, we will frequently refer to it as a divergence and use both
terms interchangeably. In principle, GANs have the capacity to minimize various
f -divergences. However, the neural network architectures that used to parametrize
the functions G and T have witnessed substantial evolution in recent years:

Fig. 2.4.: Structure of an f -GAN introduced by Nowozin et al. [90].
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• PGGAN (2017): The Progressive Growing of Generative Adversarial Networks,
abbreviated as PGGAN, marked a significant advancement in the quality of
generated images. Introduced by Karras et al. [60], the PGGAN systematically
upscales the resolution of generated images by adding new layers to both
the generator and the discriminator progressively during the training process.
Initially, training starts with low-resolution images, which significantly simpli-
fies the network learning task. As training progresses, new layers are added
to both the generator and the discriminator to increase the resolution. This
progressive strategy not only improved the quality of the generated images, but
also significantly accelerated the training process. It enabled the generation of
images with resolutions up to 1024 × 1024 pixels, which was a groundbreaking
achievement at the time of its introduction. Moreover, the PGGAN introduced
several beneficial techniques for stabilizing training, such as mini-batch stan-
dard deviation layer, equalized learning rate, and pixel-wise normalization,
which have since become commonplace in the training of advanced GAN
models.

• W-GAN (2017): Introduced by Arjovsky et al. [8], Wasserstein GAN (W-GAN)
marked a significant stride in the training stability of GANs. Central to W-
GAN is the Wasserstein distance metric which replaces the Jensen-Shannon
divergence used in the original GAN formulation. This change addresses the
issue of mode collapse often witnessed in traditional GANs, fostering more
stable and robust training dynamics. A vital component of W-GAN is the
enforcement of a 1-Lipschitz constraint on the discrimintator. This constraint
is critical to guarantee the validity of the Wasserstein distance as a meaningful
loss metric in the training process. By adopting this Lipschitz condition, W-GAN
encourages smoother and more meaningful gradients, facilitating a balanced
growth between the generator and the discriminator and thus avoiding the
dreaded mode collapse and fostering more diversified generative outcomes.

• SAGAN (2018): Self-Attention Generative Adversarial Networks (SAGAN),
introduced in a paper by Zhang et al. [134], revolutionized the capabilities of
Generative Adversarial Networks by incorporating self-attention mechanisms
within the network structure. This key addition enables the model to focus on
long-range spatial relationships, thereby capturing patterns and structures that
were previously elusive. Moreover, SAGAN introduced Spectral Normalization,
a technique used to stabilize the training of the generator; it controls the
Lipschitz constant of the model by normalizing the spectral norm of the weight
matrices.

• BigGAN (2018) [16]: BigGAN, which stands for "Big Generative Adversarial
Networks", represents a remarkable milestone in the development of GANs,
particularly in the generation of high-fidelity and high-resolution images.
Introduced by Brock et al. [16], this model is characterized by its substantial
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Fig. 2.5.: Visualization of the bidirectional mapping in Normalizing Flows. The figure
illustrates how NFs perform a bidirectional transformation: pushing the target
distribution P into the latent space Z using the generative direction and mapping
the latent distributionQ to the approximated distribution P̂ using the normalizing
direction through the function G.

scaling in both the depth and width of the network, as well as in the batch
size during training. The primary novelty of BigGAN lies in the utilization of
a modified training objective, which incorporates a hinge loss function into
the original GAN loss function. This alteration in the loss function can be
mathematically represented as:

min
G∈G

max
T ∈T

(Ex∼P [min(0,−1 + T (x))] +Ez∼Q [min (0,−1 − T (G (z)))] ).

(2.22)

In addition, BigGAN introduced other vital techniques, such as class-conditional
batch normalization, which allows for the incorporation of class labels into
both the generator and discriminator, enabling the generation of more class-
consistent images.

• StyleGAN series (2019-2022) [62, 63, 64, 105]: Introduced varied styles
and scales with subsequent versions offering alias-free generators. Aliasing
is a phenomenon where signals become indistinct when sampled. In the
case of image generation, aliasing can result in patterns or textures that
appear distorted, pixelated, or show Moiré patterns. An alias-free generator
utilizes specific techniques to prevent these issues, often employing multi-scale
architectures, inspired by PGGAN, and strategies for smooth sampling.

2.2.2 Normalizing Flows

Normalizing Flows (NFs) are a crucial type of generative model because they can
track data density. This makes them useful in various applications such as physics
simulations [59, 74, 100], anomaly detection [29, 106], noise modeling [1], sound
generation [98] and Boltzmann samplers [75]. In theory, Normalizing Flows are
defined as a bijection, an invertible mapping between the data space X and the
latent space Z. This transformation can work in two directions: the forward pass
G ∶ X → Z, denoted as generative direction, and the inverse direction G−1 ∶ Z → X ,
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denoted the normalizing direction. As illustrated in Figure 2.5, the bijectivity is crucial
because it enables pushing the latent distribution into the image space, similar to
GAN, but it also enables pushing the target distribution into the latent space, thus
defining Q̂ = G−1#P . In doing so, we can compute the divergence Df(Q̂∥Q), which
is equal to Df(P ∥P̂ ). To do so, Normalizing Flows rely on the change of variable
formula to track the density:

p̂(x) = q(G−1(x)) ∣det JG−1(x)∣, (2.23)

The change of variable formula is composed of two terms: the term q(G−1(x))
accounting for where the point is mapped and the term ∣det JG−1(x)∣ accounting
for how the mapping locally dilates or expand the space. Using this formula, a
Normalizing Flow is usually trained by direct maximum likelihood estimation (MLE).
More precisely, the model is training by maximizing the log-likelihood:

max
G∈G

Ex∼P [log p̂G(x)]

= max
G∈G

Ex∼P [log (q (G−1(x))) + log (∣det JG−1(x)∣)] .
(2.24)

Note that training by MLE is equivalent to training the model to minimize the
Kullback-Leibler divergence DKL(P ∥P̂ ). With H(P ), the entropy of the target
distribution P , we have the following.

max
G∈G

Ex∼P [log p̂G(x)] =H(P ) −min
G∈G
DKL(P ∥P̂G). (2.25)

However, Grover et al. [46] introduced the Flow-GAN framework to train NFs
to minimize any f -divergence by using a discriminator T trained to estimate the
Df(P ∥P̂ ). Furthermore, since the GAN training procedure is known to be unstable,
Grover et al. [46] showed that adding a log-likelihood to the min-max objective is
very efficient in stabilizing the optimization:

min
G∈G
(max

T ∈T
(Ex∼P [T (x)] −Ex∼P̂G

[f∗(T (x))]) + γEx∼P [log p̂G(x)]) . (2.26)

(a) Illustration of q(G−1
(x)). (b) Illustration of ∣detJG−1(x)∣.

Fig. 2.6.: Components of the change of formula in Normalizing Flows. The first term,
q(G−1(x)), maps data points in the latent space, while the second term,
∣det JG−1(x)∣, represents the local expansion or contraction of the space.

2.2 State-of-the-Art Models 23



In practice, the set G is restricted to the bijection that can be represented by neural
networks. There exist many ways to build an invertible neural network, but according
to Kobyzev et al. [72], to be practical, Normalizing Flows should satisfy the following
critical conditions:

• Be invertible, so that G is used for sampling and G−1 is used for computing
the likelihood.

• Be expressive enough to accurately model the desired distribution.

• Offer computational efficiency, which encompasses both the calculations in-
volving G and G−1, and the calculation of the determinant of the Jacobian.

These can be designed using various strategies, including Ordinary Differential
Equations (ODEs) [23], autoregressive models [71, 93], or residual networks [11,
22] and coupling-based models, affine [30, 31], mixture of continuous distributions
[52], splines [37]. In this thesis, we focus on a few architectures:

• NICE: Introduced by Dinh et al. [30], NICE (Non-linear Independent Compo-
nents Estimation) introduced the concept of normalizing flows. This model
utilizes additive coupling layers, which facilitates the computation of the Ja-
cobian determinant (equal to 1). However, its expressiveness was somewhat
limited, making it less adaptable compared to subsequent models. A typical
transformation in NICE, represented using additive coupling layers, is given
by:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

y1∶i = x1∶i,

yi+1∶d = xi+1∶d + t(x1∶i),
(2.27)

where x and y are the input and output vectors respectively, and t is a learned
translation function implemented through a neural network. Invert mapping
uses y1∶i = x1∶i to reverse the applied translation t(x1∶i).

• RealNVP: Further developed by Dinh et al. [31], RealNVP extends the work
initiated by NICE by incorporating affine coupling layers, which can learn more
complex data distributions, while maintaining the computational efficiency in
the determination of exact likelihoods. The mathematical representation of
the affine coupling layers in RealNVP is as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

y1∶i = x1∶i,

yi+1∶d = s(x1∶i)⊙xi+1∶d + t(x1∶i),
(2.28)

Similarly to NICE, the invert function depends on inverting a scaling and
translating operation that only requires y1∶i = x1∶i. In this architecture, the
determinant Jacobian matrix is computed as ∏j s(x1∶i)j .
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• GLOW: The GLOW model, introduced by Kingma and Dhariwal [70], further
enhanced the expressiveness of normalizing flows by integrating 1x1 convolu-
tions and a more flexible coupling layer structure, facilitating the learning of
complex distributions without significantly increasing the computational load.
Its characteristic coupling layer is defined similarly to RealNVP but includes
the 1x1 convolution operation, defined a matrix:

W = PL(U + diag(s)), (2.29)

where P is a permutation matrix, L and U are, respectively, lower and upper
triangular matrix with ones on the diagonal. With this structure, the deter-
minant of the Jacobian matrix can be computed for the 1 × 1 convolution as

∏j sj .

• ResFlow: ResFlow, or Residual Flow, was proposed in works by Behrmann et al.
[11] and Chen et al. [22]. Its structure, based on Deep Residual Networks [50]
blocks, allows for rich expressiveness and deep architectures without suffering
from the problems related to training deep networks. A residual connection in
ResFlow can be mathematically represented as:

y = x + F (x), (2.30)

where F (x) is a function representing a series of transformations on the input
x. To ensure invertibility, the function F is constraint to be Lipschitz. If
the Lipschitz constant is lower than 1, the inverse can be computed with an
iterative algorithm. There is no close form for the determinant of the Jacobian
in this architecture, but it is approximated using a Russian Roulette estimator.

Similarly to GANs models, the Lipschitz continuity plays a fundamental role in
guaranteeing stability. As highlighted by Behrmann et al. [12], maintaining Lipschitz
constraints prevents issues such as the concentration of measure phenomenon,
which can cause numerical instability and hamper successful model training. This
constraint, while necessary in ResFlow models, is also an important property of
RealNVP or GLOW models, for instance.

2.2.3 Diffusion Models

Diffusion models have undergone numerous advancements in recent years. Initially
conceptualized as denoising models [53, 112], the scope has expanded with the
development of Score-Matching Diffusion Models [61, 114] which we detail in this
section.
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This model is based on diffusion processes {xt}t∈[0,T ] defined by a Îto SDE:

dxt = f(xt, t)dt + g(t)dw, (2.31)

where f(., t) ∈ Rd → Rd is the drift, g(t) ∶ R → R is the diffusion coefficient, and
w ∈ Rd is a standard Wiener process. It defines a sequence of distributions {Pt}t∈[0,T ],
with densities pt. With this definition, the target distribution is P = P0 and f , g and
T are chosen such that PT tends toward a tractable distribution Q. In practice, Q is
a normal distribution in Rd. The principle of the generative model is based on the
reverse SDE introduced by Anderson [6]:

dxt = [f(xt, t) − g(t)2∇x log pt(xt)]dt + g(t)dw̄, (2.32)

where dw̄ denotes a different standard Wiener process. Therefore, if the score
function s(t, xt) ∶= ∇xt log pt(xt) is known, the reverse process can be simulated
to go from PT to P0. Thus, by applying the reverse process with a learned score
function sθ to data points drawn from Q it defines the distributions P̂ . As shown in
the work of Song et al. [113], this principle is used to train the model to minimize the
KL divergence between the target distribution P and the approximated distribution
P̂ :

DKL(P ∥P̂ ) = DKL(PT ∥Q) + ∫
T

0
g(t)Ext∼Pt [∥∇x log pt(xt) − sθ(t, xt)∥2]dt. (2.33)

In practice, the score function is estimated with a neural network that is typically
based on U-Net architectures [101]. While they are valuable for comparing different
generative modeling techniques due to their outstanding performances in image
generation tasks, we will not dive into the details of their training in this thesis.
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Thesis Scope and Approach

This thesis focuses on the training of diverse generative models, placing particular
emphasis on the types of loss functions employed. We will both consider the type of
f -divergence and also the arguments of f -divergence. We will be required to change
not only the objective function, but also the training algorithm, when necessary.

Our work focuses mainly on models that can be trained to easily minimize any
f -divergence. Therefore, we will consider GANs in the f -GAN framework and
Normalizing Flows in the Flow-GAN framework. The diffusion models will be
considered as a reference for the training of generative models.

It is important to clarify that this thesis does not dive deeply into the nuances of
neural network architectures for these models. Rather, our focus is on a comprehen-
sive exploration of generative models as a whole, with findings applicable to a wide
range of architectures. When a model is being trained, retrained, or fine-tuned, we
fix the neural architecture and evaluate the method within the set G defined by this
architecture.

After exploring the theoretical and practical aspects of generative models, we are
prepared to discuss model evaluation methods. Generative models have broad
applications, but assessing their performance can be challenging. In the following
sections, we will explore evaluation methodologies and metrics to better understand
these models and their real-world applications.
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3A panorama of Precision Recall
measures

„“A computer would deserve to be called intelligent
if it could deceive a human into believing that it
was human.”

— Alan Turing
(Father of Computer Science)
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In the previous chapter, we discussed how generative models are trained to minimize
a dissimilarity measure between the target and generated distributions, typically
an f -divergence. The method to approximate this metric to minimize can vary
depending on the type of model, and thus the objective function is generally model-
specific. For a fair and consistent assessment of generative models, it is crucial that
the metrics used are model-agnostic. The method and algorithm to compute the
evaluation metrics must be identical for any generative model. Moreover, to be easily
computable, they should depend solely on a set of samples drawn from both P and
P̂ , without the need for additional training.

As the performance of generative models increases, the need for more refined metrics
has become more pronounced. Traditional metrics such as the Fréchet Inception
Distance (FID) and Inception Score (IS) have become less effective for comparing
state-of-the-art models. As we shall see in Section 3.1, FID and IS do not inde-
pendently assess quality and diversity, highlighting the need for additional metrics
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specifically designed to address this limitation. Consequently, we will examine the
concepts of Precision and Recall as they apply to generative models, focusing on two
main interpretations: one based on the support of distributions in Section 3.2.2, and
another based on density estimations in Section 3.2.1. In addition, we introduce
the Coverage and Density metrics, which offer another perspective on quality and
diversity, in Section 3.3.1, but also the Precision-Recall Divergence Frontier in Sec-
tion 3.3.2 and the Precision-Recall Cover in Section 3.3.3, three more alternative
methods. The final part of this chapter, Section 3.4 outlines the existing dependency
between all these metrics.

This chapter is intended to provide an overview of the various metrics used to
evaluate generative models and in particular the ones recently introduced to assess
the quality and diversity of the generated samples. We will also discuss the limi-
tations of these metrics and the challenges they present. The goal is to provide a
comprehensive understanding of the current state-of-the-art in generative model
evaluation and to highlight the need for further research in this area.

3.1 Inception Score and Fréchet Inception
Distance

The Inception Score and the Fréchet Inception Distance emerged as the first widely
accepted metrics to benchmark generative models. As direct evaluation of model-
generated samples in pixel space presents significant complexity, both IS and FID
utilize Inception-v3 [116], a model pre-trained on classification tasks, for their
computations. This model has proven its efficacy on the ImageNet dataset. Although
IS and FID both rely on Inception-v3, they employ this model distinctively to evaluate
various attributes of the images produced by generative models.

Inception Score (IS): The Inception Score introduced by Salimans et al. [104], is a
metric designed to assess both the quality and diversity of images produced by a
generative model. The IS relies on the classification capability of the model. The
generated samples should be easily classified by the Inception model with a label
distribution similar to the one of the real samples. The IS can be defined as follows:

Definition 3.1.1 (Inception Score).
Let denote P(Y ∣x) be the conditional class distribution of an image x given by the
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Inception-v3 model and P(Y ) the class distribution in dataset sampled from P . The
Inception Score is defined as:

IS(P̂ ) = exp (Ex∼P̂ [DKL(P(Y ∣x)∥P(Y ))]) (3.1)

where DKL is the Kullback-Leibler divergence.

With H being the entropy function, Equation (3.1) can be reformulated as:

log (IS(P̂ )) =H (Ex∼P̂ [P(Y ∣x)]) −Ex∼P̂ [H (P(Y ∣x))] . (3.2)

The score is optimized when it satisfies two principal conditions:

1. If the entropy of Ex∼P̂ [P(Y ∣x)] is maximized. This term is a proxy measure of
diversity. The label predictions of the generated samples must be uniformly
distributed over all possible labels. This indicates that the generative model
generates heterogeneous labels, thereby ensuring diversity.

2. If for every x ∼ P̂ , HY (P(Y ∣x)) is minimized. In theory, this term is meant
to assess the quality. In fact, the entropy of the label distribution for the
generated images must be minimal. This suggests that the classification model
is highly confident in predicting a singular label per image, which implies that
the images are distinct.

However, in practical applications, the Inception Score has revealed several short-
comings [10, 13, 41, 103]:

• The IS is not sensitive to measuring intraclass diversity. In particular, if the
model generates only one high-quality image per class, the IS will be high.

• The IS does not directly measure the realism of individual images. If the
images are peripherally saturating, noisy, or distorted, and if the classification
confidence is high, they are evaluated as realistic.

• The IS is biased toward the classes represented in ImageNet, since the Inception-
v3 model is trained on this dataset. For instance, if the goal is to evaluate
models that generate faces such as the CelebA dataset, IS will favor models
generating faces with glasses, sunglasses, or cowboy hat, since these attributes
are ImageNet classes.

• IS is not necessarily optimal when P and P̂ are identical. Since it does not
directly compare the generated distribution with the true data distribution,
Barratt and Sharma [10] shows that IS(P ) is not always optimal.
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For all the mentioned reasons, the IS has been progressively superseded as of 2020
by the Fréchet Inception Score, which is observed to be more correlated with human
perception of quality.

Fréchet Inception Distance (FID) The Fréchet Inception Distance (FID) measures the
distance between latent feature vectors calculated for real and generated images.
The FID is based on the Fréchet distance, that is, the 2-Wasserstein distance in Rm.
The FID is based on two main assumptions:

1. The latent representation of samples of P and P̂ is more meaningful than
the pixel representation of the image. In practice, using the output of the
last pooling layer of Inception-v3, which is in dimension 2048, we denote it
ϕ ∶ Rd → Rm.

2. The latent representations of the samples of P and P̂ are multivariate normal
distributions with respective latent mean vectors µ and µ̂ and their respective
latent covariance matrices Σ and Σ̂.

Considering these assumptions, the FID calculation becomes feasible: the Gaussian
assumption allows for a closed-form computation, while the assumption of lower
dimensionality ensures that this computation can be performed within a reasonable
time. In practice, we take two sets of samples {xreal

1 , . . . , xreal
N } drawn from both P

and {xfake
1 , . . . , xfake

N } drawn from P̂ . We consider the empirical mean and covariance
of the latent representation of the samples:

µ = 1
N

N

∑
i=1

ϕ(xreal
i ) and Σ = 1

N − 1

N

∑
i=1
(ϕ(xreal

i ) −µ) (ϕ(xreal
i ) −µ)⊺ , (3.3)

µ̂ = 1
N

N

∑
i=1

ϕ(xfake
i ) and Σ̂ = 1

N − 1

N

∑
i=1
(ϕ(xfake

i ) − µ̂) (ϕ(xfake
i ) − µ̂)⊺ (3.4)

Definition 3.1.2 (Fréchet Inception Distance).
Let µ, Σ, µ̂ and Σ̂ be the empirical mean and covariance of the latent representation of
samples drawn from P and P̂ . The Fréchet Inception Distance is defined as:

FID(P̂ , P ) = ∥µ − µ̂∥2 +Tr (Σ + Σ̂ − 2(ΣΣ̂)1/2) (3.5)

This approach enables us to go beyond the pixel space by comparing distributions
in the latent space of an image-trained model. This allows for a comparison that is
more in line with human visual perception. Although this method has opened new
possibilities for evaluating generative models, it is not without limitations [13, 24,
51]:
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(a) FID= 91.7 (b) FID= 16.9 (c) FID= 4.5 (d) FID= 16.7

Fig. 3.1.: Samples from StyleGAN model with different truncation set-up. FID heavily
penalizes setup A with high quality and low diversity, and yet setups B and D are
rated similarly even if the setup is mode diverse and setup A is more aligned with
human perception of performance. Finally, setup D is ranked first despite visual
artifacts. Source: Kynkäänniemi et al. [73]

• The FID compares statistical summaries (mean and covariance) of the latent
distributions of Inception, a discriminative model. Therefore, it may not
capture all aspects of image quality, such as texture and local structure, that
are perceptible to humans.

• FID does not distinguish between different types of error in image generation.
For example, it treats a noisy object the same as a completely wrong object
being generated, which may not align with human judgment.

• Similarly to IS, FID accounts for both quality and diversity, but without a clear
trade-off. For example, Kynkäänniemi et al. [73] highlights the limitations of
FID with samples drawn from StyleGAN in Figure 3.1.

In summary, the Inception Score and Fréchet Inception Distance have historically
served as valuable benchmarks for evaluating generative models. However, as
generative models advance and produce increasingly high-quality outputs, the
limitations of IS and FID become more pronounced. These metrics do not sufficiently
capture quality and diversity as independent dimensions and may not reflect the
nuanced performance of state-of-the-art models. Despite this, they are still widely
used in certain contexts, such as monitoring model convergence and detecting mode
collapse, albeit with a significant computational cost. In fact, for a robust evaluation
of generative models, both IS and FID are estimated to require up to 50,000 samples
to produce reliable and meaningful scores.

3.2 Precision and Recall for Generative Models

Several methods have been proposed to address the limitations of IS and FID. In this
thesis, we focus on Precision and Recall, which have been adapted from the field of
binary classification to the field of generative modeling in order to assess quality and

3.2 Precision and Recall for Generative Models 33



diversity independently. Before introducing their adaptation for generative models,
let us recall their classic definitions in classification tasks. They are based on the
proportions of true positive defined in Table 3.1:

Predicted Positive (PP) Predicted Negative (PN)

Positive (P) True Positive (TP) False Negative (FN)

Negative (N) False Positive (FP) True Negative (TN)
Tab. 3.1.: Confusion matrix: Taxonomy of the classification outcomes.

Building on this, precision is the proportion of predicted positive data points correctly
classified, and the recall is the proportion of positive data points correctly classified.
Formally:

Definition 3.2.1 (Precision and Recall for binary classification).
In a binary classification task, let P be the number of positive instances, PP the number
of positive prediction instances, and TP the number of true positive instances. Precision
and Recall for binary classification are then defined as:

precision ∶= TP
PP

and recall ∶= TP
P

. (3.6)

In generative models, the positive label refers to whether a point can be generated
by P and the predicted positive data points are the ones that can be generated by
P̂ . With this transposition, we can grasp what Precision and Recall stand for in
generative modeling:

• Precision measures the proportion of generated samples that could be gener-
ated by P . High precision in a generative model suggests that the generated
samples are of high quality.

• Recall evaluates the proportion of samples drawn from P that can be generated
by P̂ . High recall suggests that most of the data points generated by P̂ are
highly diverse.

However, this transposing to generative modeling is not straightforward. The
challenge in applying Precision and Recall to generative models lies in defining
whether a point can be generated by the distributions P or P̂ . Unlike in classification
tasks, where the ground-truth labels are known, in generative tasks, there is no
explicit label to say whether a point is generated by a distribution. Thus, the different
definitions differ in how the notion is transposed to the generative task. In this
thesis, we will explore two particular definitions of Precision and Recall: one based
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only on the support of the distributions and the other based on the density of the
distributions.

• Support-Based Approach: This mainstream definition considers the support
of the distributions. With this definition, a point can be generated by a
distribution if it is in its support, i.e. if the density is positive.

• Density-Based Approach: This more refined approach considers a range a dif-
ferent classifiers based on the density ratio with varying threshold. It produces
Precision-Recall Curves (PR-Curves), similar to the ones in the classification
task.

The next sections will review these concepts, describe how they are calculated, and
explore their different variations.

3.2.1 The support-based approach: (ᾱ, β̄).

In theory: One way to apply Precision and Recall to generative model, and more
specifically to distribution comparison, is to consider a binary point of view on the
samples: for any given sample x, the true label is positive if x ∈ Supp(P ) and the
predicted label is positive if x ∈ Supp(P̂ ). Kynkäänniemi et al. [73] present how
quality and diversity can be assessed with the pair of values (ᾱ, β̄):

Definition 3.2.2 (Support-Based Precision and Recall [73].).
For any distributions P ∈ P(X ) and P̂ ∈ P(X ), we say that the distribution P has
precision ᾱ at recall β̄ with respect to P̂ if

ᾱ ∶= P̂ (Supp(P )) and β̄ ∶= P (Supp(P̂ )). (3.7)

(a) Distributions P and P̂ . (b) Precision ᾱ = P̂ (Supp(P )) (c) Recall β̄ = P (Supp(P̂ )).

Fig. 3.2.: Example of 2D distributions P and P̂ . Only the support of the distributions are
considered to compute the Precision and the Recall.
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Precision ᾱ is the proportion of generated data that lies on the support of the real data.
Recall β̄ is the proportion of the support of the real data that is covered by the generated
data.

This definition is often referred in the literature as the Improved Precision and
Recall. The support-based approach simplifies the evaluation of generative models
by condensing the complex nature of distribution comparison into two interpretable
values. Consider the example given in Figure 3.2, theoretically, the Precision is the
proportion of the support of P̂ in the support of P and the Recall is the proportion
of the support of P in the support of P̂ .

In practice: Computing the exact support of P and P̂ is not feasible in large dimen-
sion. Instead, Kynkäänniemi et al. [73] rely on an estimation using a k-nearest
neighbors (k-NN) algorithm. Instead of working directly with pixel space, these
metrics are derived from latent space representations obtained from an image clas-
sification model that captures content-related features. The method uses the VGG
network [109], which is, similarly to Inception-v3, a deep convolutional neural
network popular for its image recognition capabilities. According to the authors,
using VGG, Precision and Recall correlate more than with Inception-v3 with the
human perception of diversity and quality.

More specifically, assume that we have N real points xreal
1 , . . . , xreal

N sampled from P

and N fake points xfake
1 , . . . , xfake

N sampled from P̂ . Let ϕ be the embedding function
based on VGG, which is also in dimension 2048. Let us define Bk,ϕ(x, P ) the ball
centered on ϕ(x), whose radius is the distance to the k-th nearest neighbor of ϕ(x)
in the set of projections ϕ(xreal

i ), . . . , ϕ(xreal
N ). And vice versa with Bk,ϕ(x, P̂ ) and

the set of projections ϕ(xfake
i ), . . . , ϕ(xfake

N ). This ball has a variable size, and the

(a) Samples drawn from both
distributions P and P̂ .

(b) Estimation of the support
of the distribution P .

(c) Estimation of the Precision

Fig. 3.3.: Computation of the support-based Precision given samples from P and P̂ . Sample
of P and used to estimate Supp(P ) and the Precision is the ratio of the number
of points in the support vs. the total number of points.
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higher the theoretical density, the smaller the ball. The estimation of the support is
the union of the ball centered on every point sample from a distribution:

Ŝupp(P ) ∶=
N

⋃
i=1

Bk,ϕ(xreal
i , P ) and Ŝupp(P̂ ) ∶=

N

⋃
i=1

Bk,ϕ(xfake
i , P̂ ) (3.8)

Finally, the Precision is the proportion of the points sampled from P̂ in the estimation
support of P among all the points sampled from P̂ and the recall is the proportion
of points sampled from P that are in the support of P̂ :

ᾱ = 1
N

N

∑
i=1

1{ϕ(xfake
i )∈Ŝupp(P )} and β̄ = 1

N

N

∑
i=1

1{ϕ(xreal
i )∈Ŝupp(P̂ )} (3.9)

For the example distribution given in Figure 3.2 we show in Figure 3.3, how the
support of P is estimated and how the Precision is computed. To ensure a robust
estimate of the support-based Precision and Recall, a sample size ranging from
10,000 to 50,000 is recommended.

Drawbacks: Despite its practical utility, the support-based method has some limita-
tions:

• It is unable to distinguish two distributions that share the same support but
have different densities.

• It is sensitive to the quality of the support estimation. In particular, this method
can be disproportionately affected by outliers.

• The k-NN algorithm used to estimate the support is not differentiable and
computationally expensive, especially in high dimensions.

Although support-based metrics may not be ideal for theoretical analysis of distribu-
tions due to their inherent simplicity, they have proven to be practical for comparative
evaluations of models. To address their sensitivity to outliers, various refinements
have been proposed. For example, Kim et al. [67] introduced a technique to filter
isolated data points when estimating support. In a separate development, [85]
presented an alternative metric known as Density and Coverage, which is elaborated
in Section 3.3.1.

3.2.2 The density-based approach: PR-Curves

Since the method presented in the previous section does not account for the dif-
ference between densities, it is not suitable for a theoretical analysis of probability
distributions. For example, in Figure 3.4, we give an example of two distributions
with very different densities that share the same support. In such cases, the support-
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based metrics would indicate perfect Precision and Recall, failing to capture the
true dissimilarity between the distributions. Sajjadi et al. [103] introduced a more
refined metric that incorporates the dissimilarity of densities into the evaluation of
generative models. This approach, similar to the precision and recall curves used in
classification tasks, allows for a more detailed assessment of how well the generated
distribution P̂ matches the target distribution P .

p(
x

)

x

νP̂

µ

νP

Target P

Model P̂

Fig. 3.4.: Representation of µ, νP and νP̂ . µ represent
the proportion of P and P̂ that overlap. νP

accounts for the loss in Recall and νP̂ ac-
counts for the loss in Precision.

0 1
0

1

β

α

λ = 0.1

λ = 0.5

λ = 1

λ = 2λ = 10

Fig. 3.5.: Representation of a
set PR(P, P̂ ) and the
corresponding PR-
Curve PRD(P, P̂ ).

In theory: Sajjadi et al. [103] initially proposed a version of this approach for finite
state-space distributions only. This was further extended to continuous distributions
by Simon et al. [108], allowing a comprehensive analysis that applies to a wider
range of generative modeling scenarios. The core idea is to measure how well
the generated distribution P̂ can replicate the real distribution P and vice versa,
considering every possible distribution µ that overlaps P and P̂ , in other words,
every possible distribution defined at the intersection of the supports of P and P̂ .
The Precision and Recall are defined as the proportion of the mass of P and P̂ :

Definition 3.2.3 (Precision and Recall - Sajjadi et al. [103]).
Let P and P̂ be two distributions defined on a finite state space X . For α, β ∈ [0, 1],
the probability distribution P̂ has a Precision α at Recall β w.r.t. P if there exist
distributions µ ∈ P(Supp(P ) ∩ Supp(P̂ )), νP ∈ P(Supp(P )) and νP̂ ∈ P(Supp(P̂ ))
such that

P = βµ + (1 − β)νP and P̂ = αµ + (1 − α)νP̂

The component νP denotes the part of P that is not covered by µ, and therefore cannot
be generated by P̂ . Similarly, νP̂ denotes the part of P̂ not covered by µ, and therefore
cannot generate P .

For any given distribution µ, the pair (α, β) represents a trade-off between precision
and recall for the distributions P and P̂ . This balance is influenced by the fact that µ
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Fig. 3.6.: A model P̂ with high Recall
and low Precision with the cor-
responding PR-Curve.
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Fig. 3.7.: A model P̂ with high Precision
and low Recall with the corre-
sponding PR-Curve.

overlaps with P and P̂ . If P and P̂ are not identical, µ will only partially encompass
the weights of P and P̂ . Consequently, µ might prioritize covering the overlap
support of P to achieve higher precision α, or it might focus on encompassing P̂

to achieve greater recall β. Alternatively, if µ is largely different from P and P̂ ,
both α and β will be low. We denote by PR(P, P̂ ) ⊂ [0, 1]2 the set of all possible
pairs of Precision Recall. Some sets PR(P, P̂ ) are illustrated as the blue area in
Figures 3.5, 3.6 and 3.7.

However, setting either α or β at a specific value, it is possible to determine a
distribution µ that maximizes the coverage of P̂ or P as much as possible and
therefore finds the best trade-off for a given value of α or β. This is the idea
behind the PR-Curve, which is the boundary of the set PR(P, P̂ ), and is illustrated
in Figure 3.5. The PR-Curve denoted as PRD(P, P̂ ) ⊂ [0, 1]2 is the set of all the
best possible trade-offs. It has been defined first by Sajjadi et al. [103] for finite
state-space distributions and then extended to continuous distributions by Simon
et al. [108]. In this manuscript, we will use a reformulation of the PR-Curve that
encompasses both the discrete and the continuous case, as proposed by Simon et al.
[108]:

Theorem 3.2.4 (PR-Curve - Simon et al. [108]).
Let P, P̂ ∈ P(X ) be two distributions such that P, P̂ ≪ µ. The PR-Curve is the set
PRD(P, P̂ ) defined as :

PRD(P, P̂ ) = {(αλ, βλ) ∣λ ∈ [0,∞]} (3.10)

with:

αλ = EP̂ [min(λp(x)
p̂(x) , 1)] and βλ = EP [min(1,

p̂(x)
p(x)

1
λ
)] . (3.11)
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(a) Values of αλ and βλ for the distri-
bution in Figures 3.8c and 3.8b
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Fig. 3.8.: Example of the values of αλ and βλ for the distribution in Figures 3.8c and 3.8b.
In Figures 3.8b and 3.8c, the values of α1 and α10 are represented as the ratio of
the red area and the area under the dotted curve.
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(a) Values of αλ and βλ for the distri-
bution in Figures 3.9b and 3.9c
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Fig. 3.9.: Example of the values of αλ and βλ for the distribution in Figures 3.9b and 3.9c.
In Figures 3.9b and 3.9c, the values of β1/10 and β1 are represented as the ratio
of the blue area and the area under the dotted curve.

The parameter λ in Equation (3.11) is not only a way to parameterize the PR-Curve,
but can also be interpreted as a threshold on the density ratio p(x)/p̂(x), similar to
the notion of threshold met in classification tasks:

• Consider the Precision αλ. If the distributions were identical, for every λ ≥ 1,
then αλ = 1 and for every λ ≤ 1, then αλ = λ decreases to 0. If we consider
the high values of λ (λ ≥ 1), then all values of x such that λp(x) < p̂(x),
contribute to decrease αλ. Intuitively, λ serves as a threshold on the density
ratio p(x)/p̂(x): the Precision αλ is penalized when the density of P̂ is λ times
higher than the density of P . In other words, the Precision for high values of λ

is reduced when P̂ overestimates P .

• Consider the Recall βλ. If the distributions were identical, for every λ ≤ 1, then
βλ = 1 and for every λ ≥ 1, then βλ = 1/λ decreases to 0. If we consider the
low values of λ (λ < 1), then all values of x such that p̂(x) < λp(x) contribute
to decrease βλ. In contrast to Precision, the Recall βλ is penalized when the
density of P is λ times higher than the density of P̂ . In other words, the Recall
for low values of λ is reduced whenever P̂ underestimates P .
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For example, we can consider two cases: an example with low quality and high
diversity in Figure 3.6 and an example with low diversity and high quality in
Figure 3.7. We plot how the PR-Curves are build in Figures 3.8a and 3.9a. First, we
can note how the Recall in the high diversity example and the Precision in the high
quality examples are close to the optimal. Then in the low-quality example, we show
how αλ is computed for two different values of λ in Figures 3.8b and 3.8c. It is the
ratio of the red area to the area under the dotted curve. For λ = 10, we consider that
when p̂ is 10 times lower than p, the learned distribution is not penalized; however,
if the density is higher than that, it will be considered as an overestimation. In other
words, the further λ is from 1, the less picky the evaluation is about considering if
the densities are similar. The same reasoning can then be applied to the low-diversity
example in Figure 3.9.

It is important to note one point on which the PR-Curves in classification tasks differ
from the PR-Curves introduced for generative model evaluation. The threshold in
classification is a crucial part of the classifier and each value defines a different
classifier, therefore each point on the PR-Curves corresponds to a different model.
However, here, the threshold is a crucial part of the evaluation of the model and
thus the PR-Curve assesses a single model, but the threshold will determine how (1)
picky the evaluation is on the similarity of the densities and (2) the importance of
quality or diversity. For example, for λ = 1, the density must be exactly the same
for the Precision and Recall to be maximal. On the contrary, for large values of λ,
the evaluation is less picky about the similarity of the densities. In particular, for
λ = 0 and λ =∞, the evaluation is only based on the support of the distributions and,
therefore, does not take into account the densities:

Theorem 3.2.5 (Support-based and PR-Curves).
Let P, P̂ ∈ P(X ) be two distributions. Then, the support-based Precision and Recall
(ᾱ, β̄) are related to the PR-Curve values PRD(P, P̂ ) for λ = 0 and λ =∞:

ᾱ =max
λ

αλ = α∞ and β̄ =max
λ

βλ = β0. (3.12)

This Theorem can be proven by using Equation (3.11) and using the traditional
convention of measure theory that 0 × ∞ = 0. It shows that the support-based
approach is a particular case of the density-based approach and that we can retrieve
the support-based approach metrics by looking and the maximum Precision αλ and
the maximum Recall βλ.

We can verify on discrete examples in Figure 3.10 how the PR-Curves exhibit several
fundamental properties that are desirable for Precision-Recall metrics.
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• If the supports of P and P̂ are disjoint, both precision and recall should be
minimal. For instance in Figure 3.10 A, the maximum Precision and Recall are
both 0.

• If the supports do not fully overlap, either Recall or Precision should be
compromised. As illustrated in Figures 3.10 B and E, either Precision or Recall
is limited to a maximum of 0.5. In the first case, the maximum Precision αλ is
0.5, since half of the points sampled from P̂ are in the support of P . In the
second case, the maximum Recall βλ is 0.5, since half of the points sampled
from P are in the support of P̂ .

• When the supports coincide, but the densities do not, the PR-Curves should
reflect this dissimilarity. The support is matching; therefore, the maximum
Precision and Recall are both 1. However, in Figure 3.10 C, P̂ generates an
excess of points in the second bin, which is indicated by a decrease in Precision
for high values of λ. And vice-versa, in Figure 3.10 D.

• Lastly, if both the supports and the densities are identical, the PR-Curves should
indicate maximum Precision and Recall, as shown in Figure 3.10 F.

In practice: For the continuous and discrete example distributions, we have com-
puted the PR-Curves by computing the expected values given in Equation (3.11)
using the close form of the density ratio. However, in practice the difficulty lies in
estimating the density ratio; a task particularly difficult in high dimensions [115].
Consequently, similarly to the FID and the support-based approach, the PR-Curves
are not computed using the pixel representation of the images. Both works of Sajjadi
et al. [103] and Simon et al. [108] have proposed not only distinct definitions but
also different methodologies for computing PR-Curves. However, both are based on
the embedding function ϕ built using Inception-v3 introduced for the FID score. The
two methods are summarized as follows.
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Fig. 3.10.: Example of distributions P and P̂ and their PR-Curve. Inspired from [103].
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(a) Model 1: High Precision (b) Model 2: High Recall

0 1
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Sajjadi et al.

Simon et al.

(c) PR-Curves

Fig. 3.11.: Example of PR-Curves computed with Sajjadi et al. [103] and Simon et al. [108]
for two models generating samples of the MNIST dataset: one model generating
precise samples and one model generating diverse samples.

• Sajjadi et al. [103]’s method: This approach uses a k-means-based algorithm
to group the embedding of data points sampled from both P and P̂ . Following
this, the densities per cluster are the ratio of the number of points in each
cluster to the total number of points per distribution. The PR-Curve is then
constructed by varying the threshold λ and computing the Precision and Recall
for each value of λ.

• Simon et al. [108]’s method: This technique involves the use of a discriminator-
based model. Precision and Recall are estimated by training an ensemble model
h to classify samples from P and samples from P̂ using the cross entropy loss.
At optimality, Precision and Recall are calculated by re-weighting the sum
of false positive and false negative rates with λ. If we (arbitrarily) assume
that h(x) = 1 corresponds to a sample from P̂ and h(x) = 0 corresponds to a
sample from P , then Precision and Recall are given by:

αλ = EP [1{h(x)=1}] + λEP̂ [1{h(x)=0}] and βλ =
αλ

λ
. (3.13)

For this method also, the classifier is trained on the latent representation ϕ(x)
of the images sampled from P and P̂ .

We can compare both methods on the MNIST dataset in Figure 3.11. The PR-Curves
are computed for two models generating samples of the MNIST dataset: one model
generating precise samples and one model generating diverse samples.

Drawbacks: Despite, the theoretical advantages of the PR-Curves, these methods
have limitations:

• The method relies heavily on density estimation, and every method has its own
limitations. For example, the k-means approach fails to capture a large number
of packed samples [79]. The classifier-based method drastically depends on
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Model 1 Model 2
Approach Authors Method P R P R
Support-based Kynkäänniemi et al. [73] k-NN 0.54 0.91 0.84 0.70
Density-based Sajjadi et al. [103] k-means 0.90 0.64 0.78 0.91
Density-based Simon et al. [108] Classifier 0.34 0.56 0.54 0.58

Tab. 3.2.: Metrics α and β to evaluate quality and diversity proposed by Sajjadi et al. [103]
and Simon et al. [108] for the models in Figure 3.11.

the classifier training procedure and tends to strongly underestimate the PR-
Curves, as observed in Figure 3.11 and fails to distinguish between the two
different behavior of the models.

• Although the approach is more refined compared to the support-based method,
the interpretation of the results can be more complex and less intuitive. This
complexity might make it harder for practitioners to draw clear conclusions
about the performance of their models.

To address the complexity of interpreting the results, the authors introduce a method
to summarize the PR-Curve into two scalar values, ranging from 0 to 1. This is
achieved by generalizing the F1 score for a given hyperparameter s. The generalized
formula is given as:

Fs(λ) = (1 + s2) αλβλ

s2αλ + βλ
(3.14)

The proxies for Precision and Recall are then defined as:

α =max
λ

Fs(λ) and β =max
λ

F 1
s
(λ) (3.15)

In their experiments, Sajjadi et al. [103] estimate based on visual inspection that
setting s = 8 provides the best estimation for visual quality in terms of precision
and recall. In Table 3.2 we detail the different pairs of metrics for the models in
Figure 3.11.

Precision and Recall in this thesis

In practical applications, the support-based approach to Precision and Recall, as
proposed by Kynkäänniemi et al. [73], is predominantly used within the image
generation community. This preference is attributed to its stronger correlation
with human visual perception and its straightforward interpretability. However, the
density-based approach offers a more refined theoretical evaluation of generative
models. In Section 3.4, we will elaborate on the positioning of this thesis toward the
various approaches to define and compute the Precision and Recall.
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3.3 Alternative Metrics in Generative Model
Evaluation

In this section, we review various metrics introduced in recent years to evaluate
generative models, moving beyond the early work by Sajjadi et al. [103], Kynkään-
niemi et al. [73], and Simon et al. [108]. These foundational studies focused on
assessing the quality and diversity of models, but recent developments have built
on their ideas, aiming to address specific challenges, generalize methods, or offer
new points of view. We start with the Density and Coverage metric of Naeem et al.
[85], which aims to improve the support-based approach. Then, we discuss the
PR-Curve based on Information Divergence Frontiers by Djolonga et al. [32], which
aims to generalize the definition of PR-Curves. Finally, we look at the Precision
Recall Cover by Cheema and Urner [21], which aims to bridge the gap between
theoretical concepts and practical computation of Precision and Recall.

We have chosen to explore only a few alternative metrics in this section as they are
the most relevant to the thesis. However, it is important to note that many other
metrics have been proposed in the literature that were built for orthogonal purposes
or for specific domains of applications. For example, we can mention the α-Precision,
β-Recall and Authenticity introduced by Alaa et al. [2], the Vendi Score introduced
by Friedman and Dieng [40], the MAUVE Score by Pillutla et al. [96].

3.3.1 Density and Coverage

The Density and Coverage metrics, introduced by Naeem et al. [85], offer an
alternative to the Precision and Recall metrics of Kynkäänniemi et al. [73], the
support-based approach, with a focus on addressing some of their limitations. Due
to the k-NN estimation of the support-based Precision and Recall are sensitive to
outliers, the authors aim to provide a more robust assessment of fidelity and diversity.
The metrics do not estimate how the supports of the distributions overlap, but rather
how well the generated samples populate the neighborhoods of the real data points.
For that reason, they do not fall into the category of Precision/Recall metrics and
are called Density and Coverage metrics.

These metrics rely on estimating the neighborhoods of the real data points and
therefore also rely on a k-NN algorithm. Similarly to other metrics, the algorithm
is applied in the embedding space of the Inception-v3 model defined by ϕ. This
approach is similar to the support-based method: we assume that we have N pro-
jections ϕ(xreal

1 ), . . . , ϕ(xreal
N ) and ϕ(xfake

1 ), . . . , ϕ(xfake
N ) of samples drawn from

P and P̂ . For the k-NN, we use Bk,ϕ(x, P ) the ball centered on ϕ(x) whose ra-
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dius is the distance to the k-th nearest neighbor of ϕ(x) in the set of projections
ϕ(xreal

i ), . . . , ϕ(xreal
N ). The Density and Coverage are then defined as:

Definition 3.3.1 (Density and Coverage).
Let xreal

1 , . . . , xreal
N and xfake

1 , . . . , xfake
N be samples drawn from P and P̂ . The Density

is defined as:

Density ∶= 1
kN

N

∑
i=1

N

∑
i=1

1{xfake
j ∈Bk,ϕ(xreal

i ,P )} (3.16)

The Coverage is defined as:

Coverage ∶= 1
N

N

∑
i=1

1{∃j s.t. xfake
j ∈Bk,ϕ(xreal

i ,P )} (3.17)

The Density and Coverage are build to independently assess quality and diversity:

• Density: This metric is assessing quality. It quantifies how densely the gener-
ated samples populate the regions around real data points. Unlike Precision,
which only considers whether a generated sample is within the support of
the real data, Density evaluates the concentration of generated samples in
the neighborhood of real data points. The Density is not bounded to [0, 1]:
Even if the optimal value is 1, it can be higher or lower than 1 if on average P̂

overestimates or underestimates P .

• Coverage: This metric is assessing diversity. It quantifies the ratio of neighbor-
hood of the real data points in which there exists a generated point. As the
number of samples evaluated increases, the optimal (and maximum) value of
the Coverage is 1 − 1/2k.

(a) Neighborhoods of the samples P . (b) Neighborhoods of the samples P̂ .

Fig. 3.12.: Example of samples from P and P̂ with one outlier in each set of samples. The
colored balls represent the balls Bk with k = 3, i.e. the neighborhoods. The
Density is 4/9 and the Coverage is 3/9. The Precision is 8/9 and the Recall is 7/9.
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The Precision and Recall of Kynkäänniemi et al. [73] are based on the pairwise
distances of the real samples xreal

i and the pairwise distances of the generated
samples xfake

i for both support estimation. An observation made by Naeem et al.
[85] is that datasets contain fewer outliers than the generated samples, and therefore
build their metrics on the pairwise distance of the real samples only. By doing so, the
Density and Coverage metrics are less sensitive to outliers. For example, consider
the scenario depicted in Figure 3.12, where both distributions P and P̂ include an
outlier. In Figure 3.12a, we analyze the relationship between Density and Precision.
The estimated support of P is represented by the union of colored circles, resulting
in a precision of 8/9 since eight out of nine points of P̂ fall within this support.
However, the Density is calculated as (0+1+1+1+1+1+2+2+3)/(3∗9) = 4/9. This
calculation is based on the count of neighborhoods within which each generated
point falls. Similarly, in Figure 3.12b, we examine Coverage in comparison to Recall.
While the Recall is 7/9, the Coverage is only 3/9, indicating that only three points of
P have a corresponding point from P̂ within their neighborhood. In these examples,
the presence of outliers leads to an overestimation of quality and diversity when
using Precision and Recall, whereas the Density and Coverage metrics provide a
more nuanced and potentially more accurate assessment.

Drawbacks:

• While Density and Coverage offer a more robust evaluation, their complexity
can make them less interpretable compared to the straightforward nature of
Precision and Recall.

• Similarly to the support-based approach of Precision and Recall, the effective-
ness of these metrics is highly dependent on the choice of the hyperparameter
k in the k-NN algorithm.

3.3.2 PR-Curves Using Information Divergence Frontiers

This section introduces the PR-Curves based on Information Divergence Frontiers
(IDF), a generalization of the PR-Curve concept for continuous distributions intro-
duced by Simon et al. [108].

In theory: The core idea of this method is to model the intersection of distributions P

and P̂ using auxiliary distributions Q∪ and Q∩. In Simon et al. [108], the trade-off is
based on comparing the density ratio with a threshold λ. In this work, they generalize
the notion of trade-off. The intersection distribution Qα,π is defined for the trade-off
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π ∈ [0, 1] based on the Rényi α-divergence DR
α introduced in Section 2.1.2. With

α ∈ [0,∞], the intersection distribution is defined in a way that solves the problem:

Qα,π = argmin
Q

πD̂α(Q∥P̂ ) + (1 − π)D̂α(Q∥P ) (3.18)

where D̂α ∶= 1
α−1 exp(DR

α /(α−1)). The authors show, based on the work of Nielsen and
Nock [88], that there exists an explicit form of the density of

∀x, qπ,α(x)∝ (πp̂(x)α + (1 − π)p(x)α)
1
α (3.19)

Finally the generalization of the PR-Curve is defined as:

Definition 3.3.2 (PR-Curve IDF).
Let P, P̂ ∈ P(X ) be two distributions. Let α ∈ [0,∞] and π ∈ [0, 1]. The PR-Curve IDF
is defined as:

PRDIDF
α (P, P̂ ) = {(e−DR

α (Qα,π∥P̂ ), e−D
R
α (Qα,π∥P )) ∣ π ∈ [0, 1]} (3.20)

where DR
α is the Rényi α-divergence, and Qα,π is the intersection distribution for

different values of α and λ defined in Equation (3.18).

This formulation of PR-Curves IDF aims to be a general form of expressing curves
defined on [0, 1]2 to evaluate generative models. The curve itself is parameterized
by α and the points on this curve are parameterized by π. The authors show that the
PR-Curves IDF can express both the density-based approach and the support-based
approach. First, by taking α →∞, the Rényi α-divergence becomes a weak metric
DR
∞(P ∥Q) = log supx∈X p(x)/q(x). Therefore, we have the following.

p(
x
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,λ

(x
)

x
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( −
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(Q
‖P̂

))

α = 1 (DKL)

α = 2

α = 5

α = +∞ (Simon et al.)

Fig. 3.13.: Illustration of the PR-Curves Using Information Divergence Frontiers for an
example with high diversity. From left to right: The target distribution P and
the model P̂ , the intersection distribution for different values of α and λ, and
finally the different PR-Curves. We illustrate the case where α →∞, equivalent
to the PR-Curve defined by Simon et al. [108].
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Theorem 3.3.3 (PR-Curves and PR-Curves IDF).
Let P, P̂ ∈ P(X ) be two distributions. Then, the density-based approach of Precision
and Recall, i.e., the PR-Curve PRD are related to the PR-Curve IDF values PRDIDF

α for
α →∞:

PRD(P, P̂ ) = PRDIDF
∞ . (3.21)

The trade-off parameter π is related to the threshold λ as π = λ/(1 + λ).

Therefore, by taking α →∞ and π = 0 and π = 1, one can retrieve the support-based
Precision and Recall by using Theorem 3.2.5.

In Figure 3.13, we illustrate the metric for different parameters α. First, we can see
that the intersection distribution is smoother with the definition introduced for any
Rényi α-divergence than with the one introduced by Simon et al. [108].

Drawbacks: Even if this work has been presented as a theoretical contribution, this
metrics has some limitations:

• The PR-Curves IDF is complex to compute and interpret. The framework also
includes a union model Q∪α,λ and, therefore, the evaluation process includes
two curves. This complexity makes the method less accessible to practitioners.

• The PR-Curves IDF depend on an α-divergence. Minka [83] discuss how
these divergences for different α are more biased toward quality or diversity.
Therefore, both π and α trade in quality and diversity. The authors suggest
using α = 1, that is, the DKL as the default value, but this choice arbitrarily
promotes diversity (as we will discuss in Section 4.1).

3.3.3 Precision-Recall Cover

Precision-Recall Cover , a recent metric introduced in Cheema and Urner [21]. This
metric aims to bridge the gap between theoretical concepts and practical computation
of Precision and Recall. The goal is to formulate a definition of Precision and Recall
closer to practical computation.

In theory: The practical computation of Precision-Recall Cover will rely on a k-NN
algorithm. One way to make a connection with k-NN algorithm is to build a metric
relying on ball with fixed probability:
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Definition 3.3.4 ((a, b) Precision-Recall Cover).
Let P, P̂ ∈ P(X ) be two distributions. Let a, b ∈ [0, 1] such that a ≤ b. The (a, b)-
Precision Coverage of P by P̂ is given by:

PCa,b(P, P̂ ) = Px∼P̂ [P (BP̂ (x, b)) ≥ a] (3.22)

where BP̂ (x, b) denotes the ball of probability mass b around the point x with respect
to the distribution P̂ . Similarly, the (a, b)-Recall Coverage of P by P̂ is:

RCa,b(P, P̂ ) = Px∼P [P̂ (BP (x, b)) ≥ a] (3.23)

where BP (x, b) denotes the ball of probability mass b around the point x with respect
to the distribution P .

In this definition, a and b act as tunable thresholds. The parameter a determines
the minimum probability mass required for an area to be considered as "sufficiently
covered" by the distribution, while b sets the threshold for an area to be regarded
as "negligibly small". This flexibility allows users to adjust the sensitivity of the
evaluation measure according to practical computation. Moreover, the Precision-
Recall Cover can encompass the support-based approach:

Theorem 3.3.5 (Precision-Recall Cover and Support-Based Approach).
Let P, P̂ ∈ P(X ) be two distributions. Then for any ϵ > 0, there exist sufficiently small
values of a and b such that:

∣PCa,b(P, P̂ ) − ᾱ∣ < ϵ and ∣RCa,b(P, P̂ ) − β̄∣ < ϵ. (3.24)

Computation: First, similarly to the every other method presented so far, the algo-
rithm is applied in the embedding space of the Inception-v3 model defined by ϕ.
The authors propose a method to compute the Precision-Recall Cover using a k-NN
algorithm. Although we have typically defined the ball Bk,ϕ as the ball centered on
ϕ(x) whose radius is the distance to the k-th nearest neighbor of ϕ(x) in the set of
projections ϕ(xreal

i ), . . . , ϕ(xreal
N ), here we will denote this ball as BP (x, k/N). This

ball can also be seen as the ball centered on ϕ(x), which has an empirical probability
mass k/N . Consequently, if we define the empirical probabilities of a set B ⊂ X as

PN(B) =
1
N

N

∑
i

1{ϕ(xreal
i )∈B} and P̂N(B) =

1
N

N

∑
i

1{ϕ(xfake
i )∈B}, (3.25)

then we can define the empirical Precision-Recall Cover as:

50 Chapter 3 A panorama of Precision Recall measures



Definition 3.3.6 ((k, k′) Empirical Precision-Recall Cover).
The empirical Precision-Recall Cover of P by P̂ . Let k, k′ ∈ N such that k ≤ k′. The
(k, k′)-Precision Coverage of P by P̂ is given by:

PCk,k′(P, P̂ ) = 1
N

N

∑
i=1

1{PN (BP̂ (xfake
i , k′/N))≥k/N}. (3.26)

Similarly, the (k, k′)-Recall Coverage of P by P̂ is:

RCk,k′(P, P̂ ) = 1
N

N

∑
i=1

1{P̂N (BP (xreal
i , k′/N))≥k/N}. (3.27)

Empirical Precision-recall cover is the practical way to compute the Precision-Recall
Cover. The authors provide, to some extent, a theoretical guarantee that the empirical
Precision-Recall Cover is close to the theoretical Precision-Recall Cover.

Drawbacks: This metric being very recent, it has not yet been widely used and
drawbacks are not well known.

3.4 Linking the different measures

As we mentioned in the different sections, the different metrics are built on differ-
ent theoretical concepts and have different practical computations. However, the
different metrics are not independent and can be linked together. In this section, we
recall the different links between the metrics presented in the previous sections.

All interactions are summarized in Figure 3.14. We differentiate the evaluation
methods and the theoretical tool on which the metrics are based. We specify the
relationship between the different metrics as a relation A→ B if the metric B can
be written in terms of the metric A. Therefore, it includes the case where the metric
A is a generalization of the metric B, if the metric B is a limit case of A or if the
metric B can be computed from the metric A.

We will recall all results depicted in the figure:

• PR-Curves IDF and PR-Curves: The PR-Curves IDF by Djolonga et al. [32]
is a generalization of the PR-Curves by Sajjadi et al. [103] and Simon et al.
[108]. The PR-Curves IDF computes the Rényi α-divergence. When α →∞,
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Fig. 3.14.: Different Links between definition existing in the literature. A→ B means that
the metric B can be written in terms of the metric A.

the PR-Curves IDF is equivalent to the PR-Curves by Simon et al. [108] as
expressed in Theorem 3.3.3:

PRD(P, P̂ ) = PRDIDF
∞ . (3.28)

• PR-Curves and Support Based PR: The Theorem 3.2.5 shows that the Preci-
sion and Recall Kynkäänniemi et al. [73] are a special case of the PR-Curves
by Sajjadi et al. [103] and Simon et al. [108] for λ = 0 and λ = +∞. In other
words, they represent the maximum values of the PR-Curves:

ᾱ =max
λ

αλ and β̄ =max
λ

βλ. (3.29)

• Precision-Recall Cover and Support Based PR: The Theorem 3.3.5 states
that for sufficiently small thresholds a and b, the Precision-Recall Cover ap-
proximates by the support-based Precision and Recall:

PCa,b(P, P̂ ) ≈ P̂ (Supp(P )) and RCa,b(P, P̂ ) ≈ P (Supp(P̂ )). (3.30)

Note how the Density and Coverage metrics by Naeem et al. [85] are independent of
the other metrics. This is because they are based on a different theoretical framework.
In practice, they correlate well with the support-based approach, but they are not
directly linked to it.
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Our point of view on Prior Art

In our experimental analysis in Chapter 5 and Chapter 6, we will use metrics that
are commonly accepted and used within the research community to evaluate our
models. These include the FID and the support-based approach of Precision and
Recall, but also incorporate the Density and Coverage metrics. These metrics are now
required by the community in image generation for a comprehensive comparison of
generative models.

However, in this thesis, we also add theoretical results to the existing spectrum of
precision-recall metrics and leverage these metrics to tune and improve generative
models.

PR-Curves and Precision-Recall Cover: We will bridge the gap between the PR-
Curves and the Precision-Recall Cover by showing that the PR-Curves can be com-
puted from the Precision-Recall Cover, extending the results of Cheema and Urner
[21].

Integration of PR-Curves, f -divergences: Another contribution is the introduction
of PR-divergence to directly include PR-Curves in the framework of f -divergences
framework. We also show that any f -divergence can be written as a PR-Divergences.
This connection provides a more unified understanding of model evaluation and
model training.

Tractable Measures for Model Training Building on the theoretical foundations be-
tween f -divergences and PR-Curves, we have developed methods to make these
measures more tractable in practical model training scenarios. Our approach focuses
on optimizing precision-recall trade-offs, enabling the development of models that
effectively balance these crucial aspects.

Applying PR-Curves to Rejection Sampling in Generative Models In this part of our
work, we focus on applying the theoretical framework of PR-Curves to improve
rejection sampling, a key technique to improve generative modeling. This practical
application of our theoretical findings helps to refine the sampling process, leading
to more effective generative models. Our approach demonstrates the value of
theoretical insights in advancing the field of generative modeling.
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4Precision and Recall as an
f -divergence

„Science is what we understand well enough to
explain to a computer. Art is everything else we
do.

— Donald Knuth
(1974 Turing Price Laureate

and TEX Creator)
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Question 1: How can we unify the definitions of precision and recall for generative
models?

Question 2: What Precision and Recall can be achieved with neural networks with
bounded Lipschitz constants?

Now that we have introduced both f -divergences to train models and Precision-
Recall metrics to assess, we can now explore how these concepts interrelate. In
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Section 4.1, we will elaborate on the relationships between f -divergences and the
notions of quality and diversity. Consequently, in Section 4.2, we will write the
PR-Curves as a family of f -divergences, termed the Precision-Recall divergence,
denoted PR. In Section 4.3, we will show how the PR-Divergence connects with
existing metrics such as f -divergences and Precision-Recall Cover. In doing so, we
will demonstrate how PR-Divergence is a central tool that bridges the gap between
Precision Recall metrics and f -divergences, addressing Question 1.

Furthermore, we will leverage the Precision-Recall divergence to quantify the fun-
damental limits of neural networks regarding quality and diversity. Section 4.4 is
dedicated to addressing Question 2, exploring how the PR-Divergence is influenced
by the Lipschitz constraints of the neural network.

Contributions: Several contributions are presented in this chapter:

• We introduce the Precision-Recall divergence, a family of f -divergences and
show how it can be used to fully understand the connection between f -
divergences and Precision/Recall metrics. This result has been published
at the conference:

– Alexandre Verine et al. “Precision-Recall Divergence Optimization for Gen-
erative Modeling with GANs and Normalizing Flows”. en. In: Advances in
Neural Information Processing Systems 36 (Dec. 2023), pp. 32539–32573.

• We show that there exists a relationship between PR-Curves and the PR-Cover.
This work is still unpublished.

• We show how the Lipschitz constraint of the generator impacts the Precision
and Recall. This is the generalization of results that were proven for the Total
Variation only and published at the conference:

– Alexandre Verine et al. “On the expressivity of bi-Lipschitz normalizing flows”.
en. In: Proceedings of The 14th Asian Conference on Machine Learning.
ISSN: 2640-3498. PMLR, Apr. 2023, pp. 1054–1069.

4.1 f -Divergences: quality and diversity insights

First, remark that if the mapping function G had unlimited expressivity, then for any
f -divergence, the optimal distribution P̂ minimizing Df(P ∥P̂ ) would be identical to
P . However, in practice, we observe that P̂ differs from P , and the resulting distri-
bution P̂ at convergence is significantly influenced by the choice of the f -divergence.
For example, Minka [83] noted that optimizing Kullback-Leibler divergence tends to
favor mass-covering models and that optimizing the reverse KL and Jensen-Shannon
tends to favor mode-seeking behaviors.
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Fig. 4.1.: Df between the target distribution P in Figure 4.2 and a distribution P̂ = N (µ, σ2).
The minimum is represented by★.

To illustrate this, we present an example using a simple model in Figure 4.1. In this
example, we fit a single Gaussian N (µ, σ2) to a Gaussian mixture using different
f -divergences. The figure plots these divergences in the parameter space as functions
of µ and σ. As illustrated in Figure 4.2, some divergences result in a mode-seeking
distribution, with a low variance centered on a mode, promoting diversity of samples.
Others exhibit a mass-covering effect with a large variance centered between the
two modes.

The observed behaviors of different f -divergences can be better understood by
examining the function f that defines these divergences. An f -divergence is an
expected value of a function of the density ratio p(x)/p̂(x) with respect to P̂ :

Df(P ∥P̂ ) = Ex∼P̂ [p̂(x)f (
p(x)
p̂(x))] .

Consequently, as shown in Figure 4.3, f -divergences penalize likelihood ratios
differently. For example, in the Kullback-Leibler divergence, the function fKL imposes
a significant penalty on likelihood ratios exceeding 1, that is, scenarios where P̂

−10 −5 0 5 10

x

p(
x

) Target P

argmin DrKL(P‖P̂ )

argmin DKL(P‖P̂ )

argmin DTV(P‖P̂ )

Fig. 4.2.: Mode seeking vs. mass covering effects in different f -divergences
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Fig. 4.3.: Analysis of the function f in f -divergences

underestimates P . This characteristic drives P̂ to prioritize covering all modes
of P to minimize the instances where p(x)/p̂(x) > 1 and p̂(x) > 0. In contrast,
the reverse Kullback-Leibler divergence penalizes lower likelihood ratios, leading
to a minimization strategy where P̂ aims to reduce the number of points where
p(x)/p̂(x) > 1 and p̂(x) > 0.

The Total Variation divergence, being symmetric divergence, usually induces a more
balanced behavior. In this specific scenario, it leads to a mode-seeking distribution,
but a slight adjustment in the gap between modes can shift it towards a mass-
covering distribution. In conclusion, these observations motivates a more concrete
dive into understand the exact connection between Precision and Recall, especially
PR-Curves, with f -divergences.

4.2 The Precision-Recall Divergence

In this section, we introduce a novel f -divergence, called Precision-Recall (PR)
Divergence and denoted Dλ-PR. First, we will define the f -divergence and then,
along its main properties, we will clarify its connection to PR-Curves defined in
Section 3.2.1. In 4.3, using the PR-Divergence, we show the link between PR-Curves
and traditional f -divergences and Precision-Recall Cover defined in Section 3.3.

4.2.1 Definition & Properties

f -divergences are fully characterized by their generator function f . Thus, we start
by introducing the parameterized generator function fλ as follows:
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Definition 4.2.1 (PR-Divergence generator function fλ).
Given a trade-off parameter λ ∈ [0,+∞], we define the generator function fλ ∶ [0,+∞]→
] −∞,+∞] given by

fλ(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

max(λu, 1) −max(λ, 1) for λ ∈ [0,+∞[,
1{u=0} for λ = +∞.

(4.1)

In Figure 4.4, the function fλ is illustrated for different values of λ. Based on this
generator function, we can define a family of divergences: the Precision-Recall
Divergences denoted PR-Divergence indexed by the trade-off parameter. For every
λ ∈ [0,+∞], we can show that the induced PR-Divergence is an f -divergence:

Proposition 4.2.2 (PR-Divergence).
For any distributions P, P̂ ∈ P(X ) such that P, P̂ ≪ µ, then for any λ ∈ [0,+∞] the
PR-Divergence defined as

Dλ-PR(P ∥P̂ ) = ∫X p̂(x)fλ (
p(x)
p̂(x))dµ(x) (4.2)

belongs to the class of f -divergences.

Proof. The proof is detailed in Appendix B.1.

The PR-Divergence as an f -divergence also enjoys the same properties as other
f -divergences. In particular, it can also be expressed as a dual variational form with
a specific optimal discriminator. The following proposition gives some properties of
the PR-Divergence.
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Proposition 4.2.3 (Properties of the PR-Divergence).
Let P, P̂ ∈ P(X ) such that P, P̂ ≪ µ and λ ∈ [0,+∞], then the following assertions
hold.

• The Fenchel conjugate f∗λ of fλ is defined on dom (f∗λ) = [0, λ] and given by:

f∗λ (t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

t/λ for λ ≤ 1,

t/λ + λ − 1 otherwise.
(4.3)

• The optimal discriminator for the dual variational form is:

T opt(x) = λsign(λp(x)
p̂(x) − 1) . (4.4)

• The reverse divergence is:

Dλ-PR(P̂ ∥P ) = λD 1
λ

-PR(P ∥P̂ ). (4.5)

• For λ = 1, we have:

D1-PR(P ∥P̂ ) = DTV(P ∥P̂ )/2. (4.6)

Proof. The proof is detailed in Appendix B.1.

The PR-Divergence can be seen as a generalization of the Total Variation divergence.
In particular, for λ = 1, the PR-Divergence is half the Total Variation divergence.

4.2.2 PR-Curves and PR-Divergence

We can now show how the PR-curves and the PR-Divergence are related. In fact,
we can show that every point in the PR-Curve, parameterized by λ ∈ [0,∞] can be
expressed as a function of the PR-Divergence for the exact same λ.

Theorem 4.2.4 (PR-Curves as a function of Dλ-PR).
Given P, P̂ ∈ P(X ) such that P, P̂ ≪ µ and λ ∈ [0,+∞], the PR-Curve ∂PRD is related
to the PR-Divergence Dλ-PR(P ∥P̂ ) as follows.

αλ(P ∥P̂ ) =min(1, λ) −Dλ-PR(P ∥P̂ ). (4.7)

βλ(P ∥P̂ ) =min(1, λ) −Dλ-PR(P̂ ∥P ). (4.8)

Proof. The proof is detailed in Appendix B.1.
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the abscissa αλ.

A direct consequence of Theorem 4.2.4 is that, as illustrated in Figure 4.5, every
point on the PR-Curve correspond to a specific PR-Divergence, and thus minimizing
Dλ-PR is equivalent to maximizing αλ:

argmin
P̂ ∈P(X )

Dλ-PR(P ∥P̂ ) = argmax
P̂ ∈P(X )

αλ(P ∥P̂ ). (4.9)

This makes Dλ-PR a uniquely suitable candidate for training a generative model with
a specific Precision and Recall trade-off.

For example, by taking the example models introduced in Section 4.1, we can see
that the PR-Divergence can be used to optimize models to maximize any Precision
Recall trade-off (αλ, βλ). We can observe that the model that minimizes the PR-
Divergence λ = 0.1 in Figure 4.6 has large variance. As a matter of fact, any model
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Fig. 4.6.: PR-Divergence between the target distribution P in Figure 4.7 and a distribution
P̂ = N (µ, σ2). The minimum is represented by★.
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in the triangular blue zone in Figure 4.7 minimizes the PR-Divergence for λ = 0.1.
It leads to a mass covering behavior, and thus any distribution with high variance
centered between the two modes is also an optimal solution. In the corresponding
PR-Curve in Figure 4.8, we can see that this model maximizes the value of βλ up
to 1 (and therefore αλ since αλ = λβλ). For λ = 1, the behavior is more complex:
Given the (low) expressivity of the model P̂ , this solution is highly dependent on
the distribution P and here leads to a mode-seeking distribution. Note that this is
the same distribution as the one minimizing the Total Variation. Finally, for λ = 10,
the model minimizes the PR-divergence for λ = 10 and thus is in one of the two
mode-seeking zones.

This chapter focuses on theoretically bridging the gap between f -divergences and
the notions of Precision and Recall for generative models. However, we will see
in Chapter 5 how these PR-Divergences can be used in practice to train complex
generative models in higher dimensions.
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Fig. 4.8.: PR-Curves for different values of λ in the examples illustrated in Figure 4.7
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Fig. 4.9.: Contributions to the links between Quality/Diversity Metrics. A→ B means that
the metric B can be written in terms of the metric A.

4.3 Relation with other metrics

We have shown that we could write a PR-Curve as a set of f -divergences, a first step
between bridging the gap between PR-Curves and f -divergences. In this section,
we will (1) write any f -divergences as a weighted average of PR-Divergence and
(2) connect the definition of PR-Curves and the Precision-Recall Cover introduced
by Cheema and Urner [21] defined in Section 3.3. The different contributions are
summarized in Figure 4.9.

4.3.1 Relation with f -divergences

We have seen in the Section 4.1, that f -divergences are observed to have different
behavior pushing the optimal distribution to be mode-seeking or mass-covering at
convergence. For the Total Variation, the trade-off is straightforward and balanced
since minimizing DTV is equivalent to minimizing D1-PR. However, for all the other
f -divergences the trade-off between Precision and Recall that is minimized remains
unclear.

In this section, we show the trade-offs to which minimizing an f -divergence cor-
responds. In particular, we show that every f -divergence, under mild conditions,
can be written as a weighted average of Precision-Recall Divergence. Note that an
equivalent result has been simultaneously discovered in Siry et al. [110].
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We first show the link with any f -divergence in Theorem 4.3.1 and then discuss the
cases of the DKL, the DrKL and the DJS in Corollary 4.3.2.

Theorem 4.3.1 (f -divergence as weighted sums of PR-Divergences).
For any P, P̂ ∈ P(X ) such that P, P̂ ≪ µ. If the generator function f is twice differen-
tiable, then:

Df(P ∥P̂ ) = ∫
∞

0

1
λ3 f ′′ ( 1

λ
)Dλ-PR(P ∥P̂ )dλ. (4.10)

Proof. Let c ∶ [−∞,+∞]↦ R be a C2 function. The goal is to express any f(u) for all
u ∈ R as a weighted average of fPR

λ (u) over λ ∈ [0,+∞[. In other words, we need to
write f(u) for all u ∈ R as:

∫
+∞

0
c′′(λ)fλ(u)dλ = ∫

∞

0
c′′(λ) [max(λu, 1) −max (λ, 1)]dλ (4.11)

Decomposing the integral using integration by part, fully detailed in Section B.1, we
can show that the function c must satisfy the following:

∀u ∈ [0,+∞[, f(u) = uc(1
u
) − c(1). (4.12)

Differentiating with respect to u, we have:

f ′(u) = c(1
u
) − 1

u
c′ (1

u
) and f ′′(u) = 1

u3 c′′ (1
u
) . (4.13)

Consequently, with λ = 1/u, we have the following.

c′′(λ) = 1
λ3 f ′′ ( 1

λ
) . (4.14)

With such a result we can write any f -divergence as:

Df(P ∥P̂ ) = ∫X p̂(x)f (p(x)
p̂(x))dµ(x)

= ∫X p̂(x)∫
∞

0

1
λ3 f ′′ ( 1

λ
) fPR

λ (p(x)
p̂(x))dλdµ(x)

= ∫
∞

0

1
λ3 f ′′ ( 1

λ
)[∫X p̂(x)fPR

λ (p(x)
p̂(x))dµ(x)]dλ

= ∫
∞

0

1
λ3 f ′′ ( 1

λ
)Dλ-PR(P ∥P̂ )dλ,

which concludes the proof.

As a sanity check, observe that the weights f ′′(1/λ)/λ3 remain invariant under an
affine transformation in f much like Df (see Section 2.1.2). Using this expression of
f -divergences, we can estimate how much weight an f -divergence put on every trade-
off between Precision and Recall. By combining Theorem 4.3.1 with Theorem 4.2.4,

64 Chapter 4 Precision and Recall as an f -divergence



we find the implicit relationship that captures the Precision/Recall trade-offs made
by minimizing any arbitrary f -divergences:

argmin
P̂ ∈P(X )

Df(P ∥P̂ ) = argmin
P̂ ∈P(X )

∫
∞

0

1
λ3 f ′′ ( 1

λ
)αλ(P ∥P̂ )dλ (4.15)

In particular, since Normalizing Flows and GANs are respectively minimizing the
Kullback-Leibler Divergence and the Jensen-Shannon Divergence, we can explain
their respective behavior in terms of quality and diversity by computing the weights
attributed the different trade-offs. We will also compute the weights for the reverse
Kullback-Leibler to better contextualize this result.

Corollary 4.3.2 (DKL, DJS and DrKL as an average of Dλ-PR).
The Kullback-Leibler, the Jensen-Shannon and the reverse Kullback-Leibler divergences
can be written as a weighted average of PR-Divergence Dλ-PR:

DKL(P ∥P̂ ) = ∫
∞

0

1
λ2Dλ-PR(P ∥P̂ )dλ, (4.16)

DJS(P ∥P̂ ) = ∫
∞

0

1
λ(λ + 1)Dλ-PR(P ∥P̂ )dλ, (4.17)

and DrKL(P ∥P̂ ) = ∫
∞

0

1
λ
Dλ-PR(P ∥P̂ )dλ. (4.18)

Proof. In particular for DKL, fKL(u) = u log u, therefore f ′′KL(u) = 1/u that gives:

DKL(P ∥P̂ ) = ∫
∞

0

1
λ2Dλ-PR(P ∥P̂ )dλ. (4.19)

For DrKL we can use Equation (4.14) with frKL(u) = − log u:

DrKL(P ∥P̂ ) = ∫
∞

0

1
λ
Dλ-PR(P ∥P̂ )dλ. (4.20)

Finally, for the Jensen-Shannon Divergence, we have fJS(u) = u log(u)−(u+1) log(u+
1)/2, the second derivative is f ′′JS(u) = 1

u −
1

u+1 . The weight coefficient is then

1
λ3 f ′′JS (

1
λ
) = 1

λ3 [
1

1/λ −
1

1/λ + 1
] = 1

λ3 [
λ2

1 + λ
] = 1

λ(λ + 1) . (4.21)

Applying this result in Equation (4.14), we get the expression of the Jensen-Shannon
Divergence.

As we can see in Corollary 4.3.2, both DKL DrKL and DJS can be decomposed into
a sum of PR-Divergences terms Dλ-PR, each weighted with 1/λ2, 1/λ and 1/λ(λ + 1)
which are illustrated in Figure 4.10. Note that the weights for DKL and DrKL are not
inverse. This is due to the fact that Dλ-PR is defined with respect to αλ.
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Nevertheless, we can see that for λ < 1, for trade-offs that assign more importance
to Recall rather than Precision, the weights associated by the Kullback-Leibler are
greater than the weights associated by the reverse Kullback-Leibler. This explains
why DKL is more mass-covering than the reverse Kullback-Leibler. We can have the
opposite analysis on trade-offs favoring Precision, i.e. λ > 1, explaining why DrKL is
more mode-seeking than DKL. In particular, this explains the mass-covering behavior
observed in Normalizing Flows trained with log-likelihood maximization, i.e. DKL.
We have expressed these behaviors relatively one divergence with respect to the
other by showing that one is more inclined to quality of diversity than the other, even
if both divergences are both strongly inclined to diversity. We will experimentally
show in Section 5, that both divergence are actually favoring low values of λ. The
weights assigned by the Jensen-Shannon Divergence are more balanced, reflecting
the symmetric property of DJS.

In the preceding section, we demonstrated that the PR-Divergence can be expressed
as an f -divergence. Subsequently, we illustrated how any f -divergence can be
reformulated in terms of PR-Divergences, thus establishing the relationship on both
sides.

4.3.2 Relation with Precision-Recall Cover

As explained in Section 3.4, the Precision and Recall Cover introduced by Cheema
and Urner [21] is a generalization of the support-based approach of Precision
and Recall. In other terms, the original work proves the connection between the
Precision-Recall Cover and the PR-Curve only for λ = 0 and λ = +∞. In this section,
we show that the PR-Curve can be written as a limit of the Precision-Recall Cover for
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any λ ∈]0,+∞[, thus (1) extending the results of Cheema and Urner [21] and (2)
providing a new generalization of PR-Curves.

Theorem 4.3.3 (PR-Curves in terms of Precision-Recall Cover).
For any distributions P, P̂ ∈ P(X ) such that P, P̂ ≪ µ, for any λ ∈]0,+∞[, the PR-Curve
can be written as a limit of the Precision-Recall Cover as:

αλ(P ∥P̂ ) = lim
b→0

PCb/λ,b(P, P̂ ) + λRCbλ,b(P, P̂ ) (4.22)

and βλ(P ∥P̂ ) = lim
b→0

1
λ

PCb/λ,b(P, P̂ ) +RCbλ,b(P, P̂ ). (4.23)

Proof. First, we recall that BP̂ (x, b) denotes the ball centered on x of probability
mass b with respect to P̂ . By definition, the (a, b)−Precision Cover is:

PCa,b(P, P̂ ) = Px∼P̂ [P (BP̂ (x, b)) ≥ a] . (4.24)

Setting a = b/λ and using the fact that b = P̂ (BP̂ (x, b)), we can write the Precision-
Recall Cover as:

PCa,b(P, P̂ ) = Px∼P̂ [P (BP̂ (x, b)) ≥ P̂ (BP̂ (x, b))/λ] , (4.25)

which is equivalent to:

PCa,b(P, P̂ ) = Px∼P̂ [λ
P (BP̂ (x, b))
µ(BP̂ (x, b)) −

P̂ (BP̂ (x, b))
µ(BP̂ (x, b)) ≥ 0] , (4.26)

where µ(⋅) is the Lebesgue measure. As a consequence of the Radon-Nikodym
theorem [39], by taking the limit b→ 0, we have the following.

λ
P (BP̂ (x, b))
µ(BP̂ (x, b)) −

P̂ (BP̂ (x, b))
µ(BP̂ (x, b)) ÐÐ→b→0

λp(x) − p̂(x). (4.27)

We can rewrite the Precision Cover as:

PCb/λ,b(P, P̂ )ÐÐ→
b→0 ∫X p̂(x)1{λp(x)≥p̂(x)}dµ(x) (4.28)

Using the same reasoning on the Recall Cover by setting a = bλ, we can show that:

RCbλ,b(P, P̂ )ÐÐ→
b→0 ∫X p(x)1{p̂(x)≥λp(x)}dµ(x). (4.29)
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Finally, we can write the PR-Curve as a limit of the Precision-Recall Cover:

αλ(P ∥P̂ ) = ∫X min (λp(x), p̂(x))dµ(x) (4.30)

= ∫X λp(x)1{λp(x)≤λp̂(x)}dµ(x) + ∫X λp(x)1{p(x)≥λp̂(x)}dµ(x). (4.31)

And then, considering the limit b→ 0, we have that:

αλ(P ∥P̂ ) = lim
b→0

λPCb/λ,b(P, P̂ ) +RCbλ,b(P, P̂ ). (4.32)

Finally, since βλ = αλ/λ, we have the results.

4.4 Lower bounds on the PR-Divergence in Neural
Networks

The learned distribution is defined as P̂ = G#Q, therefore the set of possible distri-
butions highly depends on the set of functions G represented by neural networks. In
particular the fundamental limits of neural networks should also translate to limita-
tions on the distributions P . In this section, we show how the Lipschitz property of
neural networks can be used to show that, depending on the target distribution P ,
we can not achieve any Precision and Recall trade-off. To do so, we reformulate the
Precision-Recall Divergence from the integral expression to a probabilistic formula-
tion. Then we introduce the reader to the Lipschitz continuity, and finally we show
how lower bounds on the PR-Divergence can be used to understand the fundamen-
tal limits of Neural Networks for generative modeling by showcasing pathological
cases.

4.4.1 Probabilistic Formulation of the PR-Divergence

We have shown in Section 4.2 that the Precision-Recall Divergence can be expressed
in terms of the Total Variation Distance (DTV) for λ = 1. This divergence has two
popular formulations, the integral formulation:

DTV(P ∥P̂ ) =
1
2 ∫X ∣p(x) − p̂(x)∣dx, (4.33)

and the probabilistic formulation:

DTV(P ∥P̂ ) = sup
A⊆X
∣P (A) − P̂ (A)∣ . (4.34)
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Therefore, the PR-Divergence can be trivially expressed as the probabilistic for-
mulation for λ = 1. We show that there exists a similar reformulation for any
λ ∈ [0,+∞]:

Lemma 4.4.1 (Probabilistic Formulation of PR-Divergence).
For any P, P̂ ∈ P(X ) and λ ∈ [0,+∞], PR-Divergence can be expressed as:

Dλ-PR(P ∥P̂ ) = sup
A⊆X
∣λP (A) − P̂ (A)∣ − ∣λ − 1∣ . (4.35)

Proof. First, we show that for any λ ∈ [0,+∞]:

Dλ-PR(P ∥P̂ ) =
1
2 ∫X ∣λp(x) − p̂(x)∣dµ(x) − 1

2
∣λ − 1∣. (4.36)

Then, we can prove that for any distributions P, P̂ ∈ P(X ) and λ ∈ [0,+∞], we have:

1
2 ∫X ∣λp(x) − p̂(x)∣ = sup

A⊆X
∣λP (A) − P̂ (A)∣ − 1

2
∣λ − 1∣ . (4.37)

The complete proof is detailed in Appendix B.1. Therefore, combining Equa-
tions (4.36) and (4.37), we have the result:

Dλ-PR(P ∥P̂ ) = sup
A⊆X
∣λP (A) − P̂ (A)∣ − ∣λ − 1∣ , (4.38)

which concludes the proof.

This reformulation allows for a versatile manipulation of the PR-Divergence. In
particular, to illustrate cases where the PR-Divergence is strictly positive, we look for
specific sets A for which the difference λP (A) − P̂ (A) is large. We will show that
leveraging the Lipschitz continuity property of the generator function G can offer
insights on the limits of Neural Networks, by lower bounding the PR-Divergence.

4.4.2 Lipschitz Properties of Neural Networks

Most of the neural network-based generative models benefit from Lipschitz con-
straints. Whether it is for training stability reasons, such as in GANs [16, 105,
134], to ensure numerical stability tracking the density ratio in Normalizing Flows
[11, 12] or stable generation of samples with Diffusion Models [131], the Lipschitz
property is a key feature of Neural Networks. We can define the Lipschitz continuity
as follows:

4.4 Lower bounds on the PR-Divergence in Neural Networks 69



Definition 4.4.2 (L1-Lipschitz Continuity).
Let G ∶ Z ⊂↦ X be a function. We say that G is L1-Lipschitz continuous if:

∀z1, z2 ∈ Z, ∥G(z1) −G(z2)∥ ≤ L1∥z1 − z2∥. (4.39)

4.4.3 Pathological Cases to bound the PR-Divergence

In this section, we will show that the Lipschitz continuity of Neural Networks can
limit the expressivity of the models. To do so, we assume that the latent distribution
Q is a standard Gaussian distribution N (0, I), which is typically the case. Let Γ and
γ be the Gamma and the lower incomplete Gamma functions respectively:

∀s > 0, ∀r > 0 Γ(s) = ∫
+∞

0
ts−1e−tdt and γ(s, r) = ∫

r

0
ts−1e−tdt. (4.40)

We can show that the PR-Divergence can be strictly positive for some target distribu-
tions P and some generator functions G.

Theorem 4.4.3 (L1-Lipschitz forward G mapping fails to capture P ).
Let P ∈ P(X ) be the target distribution defined on X ⊂ Rd, and let P̂ = G#Q where
G ∶ Z ↦ X and Q be the Gaussian distributionN (0, I) defined on Z ⊂ Rm. Let BR,G(0)
be the balls of radius R centered on G(0). If G is L1-Lipschitz, then we have the lower
bound:

Dλ-PR(P ∥P̂ ) ≥ sup
R≥0

⎛
⎜⎜⎜
⎝

γ (m
2 , R2

2L2
1
)

Γ (m
2 )

− λP (BR,G(0))
⎞
⎟⎟⎟
⎠
− ∣λ − 1∣ . (4.41)

Therefore, if there exists a ball for which the target distribution P satisfies P (BR,G(0)) <
1
λγ (m

2 , R2

2L2
1
) /Γ (m

2 ) − ∣1 − 1/λ∣, then the PR-Divergence is strictly positive.

Fig. 4.11.: Example of a target distribution for which Theorem 4.4.3 applies: the subset BR

concentrates little weight in P , but P̂ (BR) = Q(G−1(BR)) can only be as small
as Q(BR/L1).
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(a) MNIST (b) CIFAR-10

Fig. 4.12.: Representation of G(0) for a Residual Flow trained by Chen et al. [22] on the
datasets MNIST and CIFAR-10.

Proof. First, since Q is the standard Gaussian distribution in Rm, then for any r ≥ 0
and z ∼ Q, the measure Q of the ball Br,0 can be computed using the cumulative
distribution function of the χ2 distribution:

Q(Br,0) = P (∥z∥2 ≤ r2) =
γ (m

2 , r2

2 )
Γ (m

2 )
. (4.42)

Then, since G is L1-Lipschitz, thus BR/L1,0 ⊆ G−1(BR,G(0)). Therefore, we have the
following.

P̂ (BR,G(0)) ≥ P̂ (G(BR/L1,G(0))) = Q(BR/L1,0). (4.43)

Using Lemma 4.4.1, we have:

Dλ-PR(P ∥P̂ ) = sup
A⊆X
∣λP (A) − P̂ (A)∣ − ∣λ − 1∣ (4.44)

≥ sup
R≥0

P̂ (BR,G(0)) − λP (BR,G(0)) − ∣λ − 1∣ (4.45)

≥ sup
R≥0

Q(BR/L1,0) − λP (BR,G(0)) − ∣λ − 1∣ . (4.46)

Therefore, using the closed form of the measure of the ball Br,0 given in Equa-
tion (4.42), we have the result.

This theorem states that if the center of the latent Gaussian is mapped to a region with
low density then the PR-Divergence can be bounded. This assumption is significant,
but generally plausible. For example, it is not uncommon to see a multimodal
density distribution with modes that are well distinct. Assuming that these modes
are roughly of equal probability, a mapping is expected to evenly distribute these
modes around the Gaussian distribution mean within the latent space. For instance,
considering the Residual Flows trained on MNIST and CIFAR-10, we can observe in
Figure 4.12 that G(0) is either a plausible image and the low density region includes
one of the modes of the distribution or a noisy image and the low density region is
mostly empty.
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Therefore, if we assume that the function G is L1-Lipschitz, the mapping cannot
expand arbitrarily. As a result, the mass represented by the low-density region, for
example a ball BR,G(0), is mapped to a region larger than the ball BR/L1,0, thus
ensuring that the Gaussian measure associated with this broader zone is at least
as great as Q(BR/L1). This concept is demonstrated through a one-dimensional
example, as depicted in Figure 4.11.

To be more precise, the theorem says that if there exists a radius of the ball centered of

G(0) for which the target distribution P satisfies P (BR,G(0)) < 1
λγ (m

2 , R2

2L2
1
) /Γ (m

2 )−
∣1 − 1/λ∣, then the PR-Divergence is strictly positive. There are three important
parameters in this condition:

• The Lipschitz constant L1 of the forward mapping G: Q(BR/L1,0) is a decreas-
ing function of L1, thus, illustrating the importance of the Lipschitz constant
of large values of L1 trading-off the stability of the model for the expressivity.

• The dimension m: As illustrated in Figure 4.13, the Gaussian measure of the
ball BR,0 decreases with dimension m. In a high dimension, the condition is
less likely to be satisfied. In low dimension, the Lipschitz constant L1 has a
greater impact.

• The trade-off parameter λ: The condition is less likely to be satisfied for
extreme values of λ, high or low. In fact, the PR-divergence for extreme values
of λ evaluates the overlap of the supports, and we do not make assumptions
about the support of the target distribution P . However, there exists a sweat
spot for λ where the condition is more likely to be satisfied. It illustrates that
pathological will affect both the quality as weight is assigned between modes
and the diversity as less weight is mapped to those modes.

This theorem is general. In the literature, results bounding the Lipschitz constant or
the maximum precision (for λ = +∞) exist for a disconnected manifold of P only [25,
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Fig. 4.13.: Representation of the Gaussian Measure of the ball BR,0 for different values
of radius R in dimension m. The dimensions are corresponding the small
dimensions but also to the dimension of the MNIST dataset, i.e. m = 784, CIFAR-
10 dataset, i.e. m = 3072 and the ImageNet dataset, i.e. m = 116412.
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118]. Theorem 4.4.3 is a generalization of these results, bounding the PR-Divergence
for any support of the distribution P and for any trade-offs λ. Moreover, this result
only concerns the Lipschitz constraint of the forward mapping. In Appendix A, we
show that for Normalizing Flows, Lipschitz continuity of the inverse mapping can
result in a lower bound on the PR-Divergence.

4.5 Concluding Remarks and Discussion

In this chapter, we addressed two questions regarding Precision/Recall for generative
models:

• Question Q1 : How can we unify the definitions of precision and recall for
generative models?
We introduced Precision-Recall Divergence, a novel framework that encap-
sulates both precision and recall into a unified metric: the f -divergence, a
widely used class of divergences in generative modeling. We also show how
any f -divergence can be written in terms of Precision and Recall.

• Question Q2: What Precision and Recall can be achieved with neural networks
with bounded Lipschitz constants?
Building on the reformulation of the Precision-Recall Divergence, we demon-
strated that the Lipschitz property (and bi-Lipschitz, when applicable) of the
generator function G can be used to lower bound the PR-Divergence. In other
words, we showed how the Lipschitz constraint of the generator function G

can limit the expressivity of the models. We showed that PR-divergence can be
strictly positive for some target distributions P and some generator functions
G.

This chapter contributes to a more refined understanding of the quality-diversity
metrics for generative models through the PR-Divergence. Additionally, it highlights
the critical role of the Lipschitz constraint in limiting the overall expressivity of
generative models. In other words, with limited expressivity, a model cannot achieve
both high quality and high diversity. Based on this analysis, we propose in Chapter 5
an approach based on PR-Divergence to train models to be optimal for a given
trade-off between Precision and Recall.

This theoretical analysis could be further improved, and we list the potential future
works:

• Symmetric PR-Divergence: With such a definition, the PR-Divergence is
not symmetric and is directly proportional to the Precision αλ. It would be
interesting to define a symmetric version of the PR-Divergence, such that
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Dλ(P ∥P̂ ) = D1/λ(P̂ ∥P ). It would be a more intuitive metric to evaluate. The
main problem lies in expressing any f -divergence in terms of a symmetric
PR-Divergence. Although the interpretation of such a result would be easier to
understand, the mathematical complexity of the problem is likely to be much
higher.

• Connecting expressivity with the AUC: The area under the PR-Curve (AUC)
plays a crucial role in the evaluation of generative models. It would be
interesting to connect the expressivity of the model with the AUC, for instance,
with the Lipschitz. This would provide a new interpretation of the AUC and a
new way to understand the fundamental limits of generative models and the
trade-off to be made in training generative models.

74 Chapter 4 Precision and Recall as an f -divergence



5Tuning models to a user defined
trade-off

„It doesn’t matter how beautiful your theory is, it
doesn’t matter how smart you are. If it doesn’t
agree with experiment, it’s wrong.

— Richard P. Feynmann
(1965 Physics Nobel Laureate)
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Question 3: Can we train a generative model to directly focus on an explicit
user-specified trade-off between Precision and Recall?

In the previous chapter, we have shown that maximizing any point on the Precision-
Recall Curve, which represents a specific trade-off between quality and diversity,
corresponds to minimizing a specific f -divergence, the PR-Divergence. In this we
will show how to train a generative model to tackle any trade-off between Precision
and Recall. We will first recall the framework of f -GAN and show why it does not
address this problem in Section 5.1. We will therefore propose a different method to
tackle this problem in Section 5.2, and we will theoretically prove that this method
converges in Section 5.2.2. Finally, we demonstrate the effectiveness of our method
on both toy examples and real-world dataset in Section 5.3 with deep learning
generative models and compare it with the state-of-the-art methods.
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Contributions: One main contribution of this chapter is the following.

• We propose a method to train a generative model to focus on a specific trade-
off between quality and diversity, and show that this method actually changes
the trade-off of generative models.

This result has been published as:

• Alexandre Verine et al. “Precision-Recall Divergence Optimization for Genera-
tive Modeling with GANs and Normalizing Flows”. en. In: Advances in Neural
Information Processing Systems 36 (Dec. 2023), pp. 32539–32573

5.1 Framework of f -GAN

As any trade-off Precision and Recall trade-off is represented by a specific f -divergence,
it is natural to think that the f -GAN framework could be used to train a generative
model to focus this f -divergence. First, we recall the f -GAN framework and show
how it works in practice for GANs. We will show with some example that the f -GAN
framework does not tackle this problem, and we will try to explain why. The f -GAN
framework introduced in [90] is a generalization of the GAN framework. The goal
is to train a neural network function G to minimize any divergence Df between
the data distribution P ∈ P(X ) and the generated distribution P̂G = G#Q where
Q ∈ P(Z) is the latent distribution:

min
G∈G
Df(P ∥P̂G). (5.1)

However, to compute the f -divergence between P and P̂G, we need to compute the
density ratio r(x) = p(x)

p̂(x) , which is intractable in practice. To address this problem,
we leverage the dual approximation of the f -divergence defined as:

Definition 5.1.1 (Ddual
f,T (P ∥P̂ ) Dual approximation of an f -divergence Df ).

Let P, P̂ ∈ P(X ) be two probability distributions such that P, P̂ ≪ µ, and f a suitable
function for Df to be an f -divergence. The dual approximation of the f -divergence is
defined as:

Ddual
f,T (P ∥P̂ ) = Ex∼P [T (x)] −Ex∼P̂ [f

∗(T (x))] . (5.2)
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Algorithm 2 Traditional f -GAN training procedure
repeat

Update T by ascending the gradient of

Ex∼P [T (x)] −Ex∼P̂G
[f∗(T (x))] .

Update G by descending the gradient of

−Ex∼P̂G
[f∗(T (x))] .

until convergence.

Let T be the set of all measurable functions T ∶ X → R. The Theorem 2.1.3
introduced by [87] and in detail in Section 2.1.2, shows that f -divergence is an
upper of the dual approximation on T :

Df(P ∥P̂ ) = sup
T ∈T
Ddual

f,T (P ∥P̂ ) (5.3)

To estimate the f -divergence using the dual approximation, we introduce another
neural network T trained as a discriminator to approximate the f -divergence. The
optimization problem becomes a min-max problem:

min
G∈G

max
T ∈T

Ddual
f,T (P ∥P̂ ) = min

G∈G
max
T ∈T

(Ex∼P [T (x)] −Ex∼P̂G
[f∗(T (x))]). (5.4)

A gradient descent algorithm can converge to a solution of this min-max problem
by alternating between two steps: the discriminator step and the generator step. A
simplified version of the training procedure is presented in Algorithm 2.

Theoretically training a model to minimize any f -divergence should be similar
depending on the choice of the function f . However, the practical implementation
of this training is more complex: for some f -divergences the training procedure is
unstable training and, for others, does not converge.

The learning process involves two neural networks to represent the two functions.
Neural networks typically consist of real-valued output functions with an output
element-wise activation function. For the generator function G, it produces samples
from the data space X , which is commonly Rd or {0, 1}d, depending on the specific
research community. This leads to the use of either no final activation function or
a sigmoid activation function. On the other hand, the codomain of the discrimi-
nator function T must be a subset of the domain of f∗: dom(f∗). Therefore, the
seminal work by Nowozin et al. [90] introduced specific activation functions for
the discriminator for each f -divergence. Denote Wϕ ∶ X → R as the neural network
representing the discriminator and a ∶ R→ dom(f∗) as the final activation function.
Therefore, the discriminator function is defined as Tϕ(x) = a(Wϕ(x)), where ϕ ∈ Φ

5.1 Framework of f -GAN 77



f -divergence f∗(t) dom(f∗) Output Activation a(w)
DKL exp(t − 1) R w

DrKL −1 − log(−t) ] −∞, 0[ − exp(−w)
DTV t [−1

2 , 1
2]

1
2 tanh(w)

Dχ2
1
2 t2 + t [−1,+∞] −1 + log(1 + exp(w))

DGAN − log(1 − exp(−t)) ] −∞, 0[ − log(1 + exp(−w))

Tab. 5.1.: Examples of activation functions for the discriminator in the f -GAN framework.

is the parameter vector of Wϕ. Examples of the activation function a are listed in
Table 5.1. The maximization step thus solves:

max
ϕ∈Φ

(Ex∼P [a(Wϕ(x))] −Ex∼P̂G
[f∗(a(Wϕ(x)))] ). (5.5)

To update the discriminator, we need to compute the gradient of the objective with
respect to the parameters of the discriminator. This is done by backpropagation
through the discriminator and the activation function. The chain rule on ∇ϕDdual

f,a(Wϕ)
gives the following:

Ex∼P [
∂a(Wϕ(x))

∂Wϕ(x)
∂Wϕ(x)

∂ϕ
] −Ex∼P̂G

[∂f∗(a(Wϕ(x)))
∂Wϕ(x)

∂Wϕ(x)
∂ϕ

] . (5.6)

The update depends on both the gradient of a(w) and −f∗(a(w)) with respect to
w. We give some examples of functions a(w) and −f∗(a(w)) in Figure 5.1. The left
column corresponds to the loss of points x drawn from P , and the right column
corresponds to the loss for points x drawn from P̂G. On the different curves, we
represented the direction and magnitude of the gradient in red to maximize the loss.
For every divergence, it pushes Wϕ(x) = w to be high for x ∼ P and low for w ∼ P̂ .
By looking at these examples, we can grasp how the function f , and especially its
convex conjugate f∗ can affect the stability of the training. We can identify three
main cases:

• Instability: For both the DKL and the DrKL divergences, the gradient can be
exponentially large for some values of w. This can lead to unstable training, as
the discriminator can drastically change from one iteration to the next.

• Vanishing gradients: The gradients for the divergence DTV are close to 0 in
most of the domain for both real and generated data points. This means that
for any random initialization of the discriminator, the gradient will most likely
be close to 0 and the optimization will stall.

• Balanced gradients: The gradients of the Dχ2 and DGAN divergences are
balanced between the real and generated data points. The loss function being
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Fig. 5.1.: Examples of the activation function a(w) and −f∗(a(w)) for the Kullback-Leibler,
Pearson χ2 and GAN divergences.
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Fig. 5.2.: Examples of the activation function a(w) and −f∗λ(a(w)) for the PR-Divergence.

either for high or low values either has a linear or polynomial behavior and
thus the gradients are not too large or too small.

Similar experimental observations have been observed in the works of Nowozin et al.
[90], Grover et al. [46], [119], Um and Suh [125], Li and Farnia [76].

5.2 Minimizing the PR-Divergence

An intuitive approach to minimize the PR-Divergence would be to directly use the
f -GAN framework with the PR-Divergence. However, the function fλ is very similar
to fTV as

dom(fλ) = [0, λ] and f∗λ(t) = λf∗TV(t) +max(λ − 1, 0). (5.7)

Therefore, we might expect the same issues as for the Total Variation divergence.
First, we can see in Figure 5.2 that the gradients of the PR-Divergence have the
same behavior as the Total Variation. The gradients are close to 0 for most of the
domain and the discriminator will not learn anything. We expect the gradients to
vanish. This is confirmed by our experiments in Section 5.3 where we show that
the PR-Divergence is not minimized by the f -GAN framework. For example, we will
train a BigGAN model [16] on the CIFAR-10 dataset to minimize the PR-Divergence.
We can compare the naive approach, i.e., the f -GAN framework, and our method,
detailed in Section 5.2. We can see in Figure 5.3 that the naive approach does not
manage to converge, as the discriminator T will not learn to differentiate between
the real and generated data.

To overcome this issue, we propose a method to train a generative model to focus on
a specific trade-off between quality and diversity. Our method is based on the idea
of estimating the PR-Divergence by using the primal form of the f -divergence based
on the density ratio. Training GAN using the density ratio has first been introduced
in the work of Uehara et al. [124] and then Poole et al. [97] to improve GAN
training for various f -divergences. In addition to this work, we compare different
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Fig. 5.3.: Illustration of the naive approach to minimize the PR-Divergence, compared to
our method proposed in Section 5.2.

discriminator-based estimators for the density and we will prove that if the density
ratio is well estimated, the PR-Divergence will be correctly estimated.

5.2.1 The two-objectives method

If the naive approach fails because the discriminator cannot converge due to f∗λ , we
can try to change the objective of the discriminator. To estimate the value of any
f -divergence Df , we propose to train the discriminator using an auxiliary divergence
based on a function g ≠ f . The main idea is to choose a function g that is suitable
for stable discriminator training. If Tg is trained to estimate the f -divergence Dg

between P and P̂G by optimizing the following objective:

Tg ∈ arg max
T ∈T

Ddual
g (P ∥P̂G), (5.8)

then at optimality, we have:

∇g∗(T opt
g (x)) = p(x)

p̂(x) , (5.9)

and any f -divergence can be computed as follows using Tg:

Df(P ∥P̂ ) = ∫X p̂(x)f (p(x)
p̂(x))dµ(x) = ∫X p(x)f (∇g∗(T opt

g (x)))dµ(x). (5.10)
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Fig. 5.4.: Illustration of the PR-GAN training procedure.

In practice, Tg is parameterized by a neural network trained to maximize Ddual
g,T . We

can still estimate the value the f -divergence by using the primal approximation
defined as follows:

Definition 5.2.1 (Dprimal
f,T (P ∥P̂ ) Primal approximation of an f -divergence Df ).

Let P ∈ P(X ) and P̂ ∈ P(X ) be two probability distributions such that P, P̂ ≪ µ.
For any functions T ∶ X → R, f ∶ R+ → R and g ∶ R+ → R such that Df and Dg are
f -divergences

Dprimal
f,T (P ∥P̂ ) = ∫X p(x)f (r(x))dµ(x), (5.11)

where r ∶ X → R+, the estimation of the density ratio is given by r(x) = ∇g∗(T (x)).

To implement this approach, we propose this simplified approach in Algorithm 3
with f = fλ, which we illustrate in Figure 5.4. The training algorithm is very similar
to the traditional f -GAN training procedure, and the computational complexity is
exactly the same. Instead of solving a min-max problem on the same objective
function:

min
G∈G

max
T ∈T

Ddual
f,T (P ∥P̂G), (5.12)

we solve simultaneously a bi-level problem on two different objectives:

max
T ∈T

Ddual
g,T (P ∥P̂G) and min

G∈G
Dprimal

f,T (P ∥P̂G). (5.13)

Note that the training procedure no longer depends on f∗λ .

The success of this approach depends on how well r(x) approximates the density
ratio p(x)/p̂(x). In the next section, we will show that, depending on g, if the
density ratio is well estimated, the PR-Divergence can be correctly estimated.
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Algorithm 3 PR-GAN training procedure
repeat

Update T by ascending the gradient of

Ex∼P [T (x)] −Ex∼P̂G
[g∗(T (x))] .

Update G by descending the gradient of

Ex∼P̂G
[f(∇g∗(T (x)))] .

until convergence.

5.2.2 Theoretical guaranty of convergence

To prove that the PR-Divergence can be correctly estimated by the primal approxi-
mation, we need to be able to estimate how well the density ratio is estimated. A
popular tool for estimating the quality of function approximations is the Bregman
divergence introduced by Bregman [15]. It is particularly relevant for matching
density ratios and is used in the context of generative models [55, 115, 124]. The
Bregman divergence is a general framework for measuring the difference between
two points in a convex space. It is defined as follows:

Definition 5.2.2 (Bregman Divergence).
Let g ∶ Rd → R be a strictly convex differentiable function on a convex set Ω. The
Bregman divergence associated to g between two points x and y is defined as:

Breg(x, y) = g(x) − g(y) −∇g(y)⊺(x − y). (5.14)

The Bregman divergence is the different between g(x) and the Taylor expansion of
g on y evaluated in x. The Bregman divergence is always positive and is equal to
0 if and only if x = y. By choosing the right function f , the Bregman divergence
can be equal to the squared Euclidean distance, the KL-Divergence, the squared
Hellinger distance or the squared Mahalanobis distance. In Figure 5.5, we illustrate
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Fig. 5.5.: Illustration of the Bregman divergence for g = fKL and g = fχ2 for two points x
and y in R.

5.2 Minimizing the PR-Divergence 83



the Bregman divergence two functions g = fKL and g = fχ2 , for two points x and y

in R, the divergences can greatly differ.

Minimizing the Bregman divergence to estimate an f -divergence is a known result
introduced by Nguyen et al. [86] and Sugiyama et al. [115]. However, we can
prove that the Bregman divergence between the density ratio and the estimated
density ratio is exactly the approximation error of the f -divergence Dg by the dual
approximation Ddual

g,T . Therefore, minimizing the former will also minimize the latter.
This dual approximation reformulation is the following Theorem:

Theorem 5.2.3 (Error of the estimation of an f -divergence under the dual form.).
For any discriminator T ∶ X → R and r (x) = ∇f∗(T (x)),

Dg(P ∥P̂ ) −Ddual
g,T (P ∥P̂ ) = EP̂ [Bregg (r(x),

p(x)
p̂(x))] . (5.15)

Proof. For any T ∶ X → R,

Ddual
g,T = Ex∼P [T (x)] −Ex∼P̂ [g

∗ (T (x))] (5.16)

= Ex∼P̂ [
p(x)
p̂(x)T (x) − g∗ (T (x))] (5.17)

Using the optimal discriminator T opt we have that p(x)/p̂(x) = ∇g∗(T opt(x)):

Dg(P ∥P̂ ) −Ddual
g,T (P ∥P̂ ) = Ddual

g,T opt(P ∥P̂ ) −Ddual
g,T (P ∥P̂ ) (5.18)

= EP̂ [
p(x)
p̂(x)

(T opt(x) − T (x))

− g∗ (T opt(x)) + g∗ (T (x)) ]
(5.19)

= EP̂ [∇g∗(T opt(x)) (T opt(x) − T (x))
−g∗ (T opt(x)) + g∗ (T (x))]

(5.20)

Recall that for any continuously differentiable strictly convex function g, the Bregman
divergence of g is Bregg (a, b) = g(a) − g(b) − ⟨∇g(b), a − b⟩. So we have:

Dg(P ∥P̂ ) −Ddual
g,T (P ∥P̂ ) = EP̂ [Bregg∗ (T (x), T opt(x))] (5.21)

Let us now use the following property: Bregg (a, b) = Bregg∗ (a∗, b∗) where a∗ =
∇g(a) and b∗ = ∇g(b).
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Dg(P ∥P̂ ) −Ddual
g,T (P ∥P̂ ) = EP̂ [Bregg (∇g∗(T (x)),∇g∗(T opt(x)))] (5.22)

= EP̂ [Bregg (∇g∗(T (x)), p(x)
p̂(x))] (5.23)

With r (x) = ∇f∗T (x) as our estimator of p(x)/p̂(x). We have

Dg(P ∥P̂ ) −Ddual
g,T (P ∥P̂ ) = EP̂ [Bregg (r(x),

p(x)
p̂(x))] , (5.24)

which concludes the proof.

Based on this observation, the quality of the estimation of f -divergence is not only
related to g but also to ∇g. In fact, we can show that if g is strongly convex, then
the error on the estimation error of Dprimal

f,T is bounded:

Theorem 5.2.4 (Bound on the estimation of an f -divergence using an auxiliary
g-divergence).
Let f, g ∶ R+ → R be such that g is µ-strongly convex, f is σ-Lipschitz, and Df , Dg be
f -divergences. For any discriminator T ∶ X → dom(g∗), let r (x) = ∇g∗(T (x)). Then:

Dg(P ∥P̂ ) −Ddual
g,T ≤ ϵ Ô⇒ ∣Df(P ∥P̂ ) −Dprimal

f,T (P ∥P̂ )∣ ≤ σ

√
2ϵ

µ
. (5.25)

Proof. Assume that g is µ-strongly convex, then:

Bregg(a, b) ≥ µ

2
∥a − b∥2 . (5.26)

If EP̂ [Bregg (r(x),
p(x)
p̂(x))] ≤ ϵ and if g is µ-strongly convex, then

EP̂

⎡⎢⎢⎢⎢⎣
(r(x) − p(x)

p̂(x))
2⎤⎥⎥⎥⎥⎦
≤ 2ϵ

µ
. (5.27)

Consider an arbitrary f -divergence Df(P ∥P̂ ) and its primal approximation
Dprimal

f,T (P ∥P̂ ):

∣Df(P ∥P̂ ) −Dprimal
f,T (P ∥P̂ )∣ = ∣EP̂ [f (

p(x)
p̂(x)) − f (r(x))]∣ (5.28)

≤ EP̂ [∣f (
p(x)
p̂(x)) − f (r(x))∣] . (5.29)
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If we assume that f is σ-Lipschitz, then:

∣Df(P ∥P̂ ) −Dprimal
f,T (P ∥P̂ )∣ ≤ EP̂ [σ ∣r(x) −

p(x)
p̂(x)∣] (5.30)

≤ σEP̂ [∣r(x) −
p(x)
p̂(x)∣] . (5.31)

Using Jensen’s inequality, we have the following.

∣Df(P ∥P̂ ) −Dprimal
f,T (P ∥P̂ )∣ ≤ σ

¿
ÁÁÁÀEP̂

⎡⎢⎢⎢⎢⎣
(r(x) − p(x)

p̂(x))
2⎤⎥⎥⎥⎥⎦

. (5.32)

Finally, using equation (5.27), we have:

∣Df(P ∥P̂ ) −Dprimal
f,T (P ∥P̂ )∣ ≤ σ

√
2ϵ

µ
, (5.33)

which concludes the proof.

This theorem shows that if the discriminator T is sufficiently well trained to maximize
Ddual

g,T (P ∥P̂ ) then the primal approximationDprimal
f,T (P ∥P̂ ) converges to the true value

of Df(P ∥P̂ ), under the conditions that g is strongly convex and f is Lipschitz. In
our case, the PR divergence is a piecewise linear function with a Lipschitz constant
of λ. For the auxiliary function g we can take g = fχ2 which is strongly convex, since
it also has a stable training behavior. We can then expect that the PR-Divergence can
be correctly estimated by the primal approximation. Experimentally, we compare
the estimation of the PR-Divergence using fχ2 and fKL as auxiliary divergences.
For randomly generated Gaussian mixtures in 2D, we show in Figure 5.6 that the
estimation of the PR-Divergence is better using fχ2 than fKL. The average error of
the estimation, the Mahalanobis distance, is lower for fχ2 .

P

P̂

(a) Example of distributions.
0.0 0.1 0.2 0.3 0.4
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∣∣∣Df(P‖P̂ )−Dprimal
f,T (P‖P̂ )

∣∣∣

Dg(P‖P̂ )−Ddual
g,T (P‖P̂ )

fχ2

fKL

(b) Error of estimation of the PR-Divergence.

Fig. 5.6.: Primal approximation using g = fχ2 and g = fKL for 2D random Gaussian mixtures.
The Mahalanobis distance for each set in represented by the ellipses.
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5.3 Experiments

In this section, we use our proposed approach to train various models to minimize
the PR-Divergence. More specifically, we train models on 2D synthetic data in order
to visualize how the PR-Curves behave when the models are trained on PR with
various λ. Then, we increase the dimensionality of the data and train Normalizing
Flows on the MNIST [132] and Fashion-MNIST [130] datasets and GANs on the
CIFAR-10 [3] and CelebA [78] datasets. Finally, to show that our method scales to
large datasets, we show that our method can be used to fine-tune models on larger
datasets such as the ImageNet dataset [27] and the FFHQ [63].

In two dimensions, we will evaluate the quality and diversity using PR-Curves intro-
duced by Sajjadi et al. [103]. In high dimension, as PR-Curves are less reliable, we
use the support-based approach of Precision and Recall introduced by Kynkäänniemi
et al. [73]. We will also use the Fréchet Inception Distance [51] and the Inception
Score [104]. For GANs, we will add Density and Coverage [85]. For Precision, Recall,
Density, and Coverage, we used 10k samples and k = 3 for MNIST and Fashion-
MNIST, k = 5 for CIFAR-10, CelebA, ImageNet, and FFHQ. We used 50k samples for
the Inception Score and the Fréchet Inception Distance. In Appendix C, we provide
more details on the experimental setup, for instance, the exact architecture of the
models, the hyperparameters, the optimizers, etc.

5.3.1 Training on 2D synthetic data

First, we train a model on a synthetic dataset to visualize the PR-Curves for different
values of λ. If we choose a model with high expressivity, the output distribution P̂

will be able to fit the data distribution P perfectly. Therefore, we choose a model
with poor expressivity: a RealNVP [31] with only 3 coupling layers. Even, if this

(a) minP̂ D0.1−PR(P ∥P̂ ) (b) minP̂ D1−PR(P ∥P̂ ) (c) minP̂ D10−PR(P ∥P̂ )

Fig. 5.7.: P̂ minimizing the PR-Divergences for different values of λ on the 8-Gaussians
dataset. Samples from P are black and samples from P̂ are in blue.
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Fig. 5.8.: PR-Curves for the 8-Gaussians dataset.

model is a Normalizing Flow, it can be trained to minimize any f -divergence with a
discriminator with the Flow-GAN framework detailed in Section 2.2.2. We train the
models using our approach on the 8-Gaussians dataset with λ = 0.1, λ = 1 and λ = 10.
The learned distributions P̂ are shown in Figure 5.7. We can observe that the model
with λ = 0.1 is mass covering as it covers the 8 modes of the data distribution. The
model with λ = 1 is more balanced between quality and diversity. The model with
λ = 10 is focused on a single mode that illustrates a mode-seeking behavior.

We show the PR-Curves in Figure 5.8. We can see that the PR-Curves are very
different for each value of λ. The model train to maximize α0.1 performs best in α0.1,
but performs poorly in α1 and α10. The same observation can be made for the other
models. This experiment clearly shows that using our approach, we can train models
to focus on a specific trade-off between quality and diversity.

5.3.2 Training Normalizing Flows

Normalizing Flows is a good example for testing our approach on low-complexity
datasets such as MNIST and Fashion-MNIST. Normalizing Flows are traditionally
trained with maximum likelihood estimation (MLE), in other words, by minimizing
the Kullback-Leibler divergence, a divergence that usually promotes diversity. For
that reason, they typically produce lower-quality samples. However, it is still a
widely used model for generative tasks due to its ability to track the density. In
this experiment, we train a GLOW model [70] on the MNIST and Fashion-MNIST
datasets to minimize the PR-Divergence. We observe that training the Normalizing
Flow for a few steps with the MLE objective before switching to any f -divergence is
beneficial for the discriminator and increases the speed on convergence. Therefore,
in the experiments (in this section only) we first train the model with the MLE
objective for 10 epochs before switching to the PR-Divergence. We also compare
with models trained with the Flow-GAN procedure but using the Kullback-Leibler or
reverse Kullback-Leibler.
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Fig. 5.9.: Quantitative metrics for the GLOW model trained on the MNIST dataset. FID (↓),
P (↑) and R (↑).

Results on MNIST: With the MNIST dataset (and with Fashion-MNIST) the notion
of Precision and Recall can be easily inspected visually: Precision is high if the digits
are well formed, and Recall is high if the digits are diverse. We present in Figure 5.10
the samples from the models trained with MLE, λ = 0.1, λ = 1 and λ = 10. We can
see that the model trained with MLE and the model trained with λ = 0.1 produce
various samples but of poor quality. The model with λ = 10 produces samples of
better quality, but only samples of classes 0, 1, 7, 6, and 9. The model with λ = 1
is a trade-off between the two different models. In Figure 5.9, we show how the
different metrics evolve with respect to the loss function. Note how MLE and DKL

are close in terms of FID, Precision, and Recall. This result is expected since MLE is
a discriminator-free method to minimize DKL. Finally, we can see how the Precision
is increasing with λ and the Recall is decreasing. The model trained with the reverse
Kullback-Leibler divergence has a better Precision than the model trained with the
Kullback-Leibler divergence but a lower Recall, however, its Precision is lower than
that of the model trained with the PR-Divergence. As observed in Corollary 4.3.2,

(a) MLE (b) λ = 0.1 (c) λ = 1 (d) λ = 10

Fig. 5.10.: Samples from a GLOW Normalizing Flow trained with MLE and the PR-
Divergence.
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Fig. 5.11.: Quantitative metrics for the GLOW model trained on the Fashion-MNIST dataset.
FID (↓), P (↑) and R (↑).

the reverse Kullback-Leibler, while more mode-seeking than the Kullback-Leibler, is
still focus on lower values of λ.

Results on Fashion-MNIST The results on the Fashion-MNIST dataset are similar
to the results on the MNIST dataset. We show in Figure 5.11 the evolution of the
different metrics with respect to the loss function. We observe similar results: (1)
models trained with the Kullback-Leibler and the MLE have similar performance, (2)
the model trained with the reverse Kullback-Leibler is more focused on Precision
and less on Recall than the ones trained with MLE and the Kullback-Leibler, (3) the
Precision is increasing with λ and the Recall is decreasing. In Figure 5.12, we show
samples from models trained with MLE, λ = 0.1, λ = 1 and λ = 10. We can see that
the MLE-trained model and the λ = 0.1-trained model produce various samples but
of poor quality. However, we can note that the quality of the samples is better for
the model trained with λ = 0.1 than for the model trained with MLE. The model with
λ = 10 produces samples of better quality, but has collapsed to the class of trousers
and skirts only.

(a) MLE (b) λ = 0.1 (c) λ = 1 (d) λ = 10

Fig. 5.12.: Samples from a GLOW Normalizing Flow trained with MLE and the PR-
Divergence.
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5.3.3 Training and fine-tuning GANs

In this section we train a BigGAN introduced by Brock et al. [16], detailed in
Section 2.2.1. First, we show that our approach can be used to train BigGAN models
from scratch on dataset such as CIFAR-10 and CelebA. In this experiment, we will
focus on understanding the behavior of the model during training and on how λ

affects the quality and diversity of the samples. We will also show that our approach
can be used to fine-tune BigGAN models on larger datasets such as ImageNet and
FFHQ. The models are pre-trained, and we will show that our approach can be
used to tune the quality and diversity of the model by fine-tuning the model on the
PR-Divergence. We will compare our approach to the traditional truncation methods
to tune quality and diversity in generative models.

Training BigGAN: We have fully trained models on CIFAR-10 and on CelebA64 to
show that our training algorithm can help to tune models to a specific trade-off
between quality and diversity. The final values of each metric mentioned above are
given in in Table 5.2. We can see that the Precision and the Density are increasing
with λ and the Recall and the Covering are decreasing with λ. We have computed
the different metrics for some state-of-the-art models, when available. Furthermore,
we can observe some samples in Figure 5.13 generated by the model trained on
CIFAR-10 with λ = 0.1 and λ = 10 and on CelebA64 with λ = 0.5 and λ = 5. We can
observe the change in diversity through the difference in the colors. The more diverse
models have wider range of main object colors (in CIFAR-10) or background colors

Model CIFAR-10 32 × 32 CelebA 64 × 64
FID P R D C FID P R D C

Baseline BigGAN 13.37 86.51 65.66 0.76 0.81 9.16 78.41 51.42 0.89 0.48
λ = 0.05 13.29 81.10 70.63 0.61 0.80 - - - - -
λ = 0.1 11.62 81.78 74.58 0.66 0.83 - - - - -
λ = 0.2 13.36 84.85 65.13 0.74 0.82 8.79 83.37 44.07 1.09 0.54
λ = 0.5 14.50 83.27 68.23 0.70 0.81 6.03 77.60 55.98 0.88 0.50
λ = 1.0 14.03 83.04 69.35 0.68 0.79 13.07 81.70 36.85 1.00 0.47
λ = 2.0 16.94 84.93 59.79 0.75 0.78 14.23 82.98 32.87 1.16 0.49
λ = 5.0 32.54 83.39 56.94 0.68 0.73 22.45 83.96 25.81 1.21 0.43
λ = 10.0 39.69 84.11 39.29 0.75 0.67 - - - - -
λ = 20.0 67.03 90.03 21.81 0.98 0.56 - - - - -
DenseFlow [45] − 88.90 60.81 0.86 0.71 − 85.83 38.22 1.17 0.82
ADM-IP [89] 3.25 80.67 83.65 0.65 0.87 1.53∗ 23.42 64.48 0.09 0.24
EDM G++ [66] 1.77∗ 78.48 85.83 0.60 0.87 - - - - -
StyleGAN-xl [105] 1.85 85.11 70.04 0.75 0.85 - - - - -

Tab. 5.2.: BigGAN trained with the vanilla approach [16] and with a variety of λ using
our approach on CIFAR-10 and CelebA64. We compare our approach with hard
truncation on the baseline model. FID (↓), Precision (↑), Recall (↑), Density (↑)
and Coverage (↑) are reported. In bold, our best model is highlighted and the
state-of-the-art FID is marked with an exponent ∗.
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(a) CIFAR-10: λ = 0.1 (b) CIFAR-10: λ = 10 (c) CelebA64: λ = 0.5 (d) CelebA64: λ = 5

Fig. 5.13.: Samples from BigGAN trained with the PR-Divergence on CIFAR-10 and
CelebA64.

(in CelebA64). The more quality-focused models have fewer artifacts rendering the
objects or the faces.

In Figure 5.14, we can observe how Precision and Recall evolve during training. We
can see how the Precision converges to its final value in approximately 10k iterations.
Even if the final value of Precision across different λ is different, the variance is low
compared to the difference of Recall. For both CIFAR-10 and CelebA64 we can see
that the Recall is increasing slower than Precision and reaches a plateau between
15k and 30k iterations for the model trained on CIFAR-10. On CelebA the model
trained with λ = 0.5 for instance, reaches a Precision plateau at 15k iterations, but
the Recall is still slowly increasing until 80k iterations. This experiment shows that
GANs will first focus on Precision and then on Recall.

Fine-tuning BigGAN: Considering that training GANs models on high complexity and
high resolution datasets such as ImageNet and FFHQ is computationally expensive,
we show that our approach can be used to fine-tune pre-trained models on these
datasets. We use the BigGAN model pre-trained on the ImageNet dataset and
the FFHQ dataset. We fine-tune the models on the PR-Divergence with various
λ. Our results are shown in Table 5.3. We can see that our approach can be used
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Fig. 5.14.: Evolution of the Precision and Recall during training on CIFAR-10 and CelebA64.
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Model ImageNet 128 × 128 FFHQ 256 × 256
FID P R D C FID P R D C

Baseline BigGAN 9.83 28.04 41.21 0.14 0.17 41.41 65.57 10.17 0.52 0.47
Soft ψ = 0.7 11.39 23.04 31.13 0.11 0.15 56.43 76.59 4.87 0.70 0.41
Soft ψ = 0.5 15.49 20.20 19.83 0.10 0.14 82.05 84.48 1.58 0.89 0.32
Hard ψ = 2.0 9.69 25.83 39.89 0.13 0.18 43.32 68.84 8.66 0.58 0.47
Hard ψ = 1.0 12.12 21.86 35.42 0.11 0.15 56.19 76.44 4.76 0.75 0.44
Hard ψ = 0.5 15.21 21.13 29.55 0.10 0.13 71.32 80.99 4.84 0.84 0.36
λ = 0.2 9.92 26.69 42.04 0.13 0.17 35.66 78.70 9.45 0.88 0.60
λ = 0.5 10.82 26.83 42.38 0.13 0.16 35.24 78.41 9.66 0.89 0.60
λ = 1.0 20.42 29.72 28.21 0.15 0.15 35.91 78.95 8.32 0.90 0.57
λ = 2.0 20.21 30.27 30.49 0.14 0.14 36.33 81.10 8.69 1.05 0.64
λ = 5.0 20.76 30.87 28.38 0.15 0.15 38.16 84.31 8.52 1.15 0.63
ADM [53] 2.97 26.63 68.54 0.14 0.16 - - - - -
StyleGAN-xl [105] 1.81∗ 11.35 68.04 0.04 0.09 2.19∗ 79.91 38.79 0.86 0.73

Tab. 5.3.: BigGAN fine-tune with the vanilla approach [16] and with a variety of λ using
our approach on ImageNet128 and FFHQ256. We compare our approach with
hard truncation on the baseline model. FID (↓), Precision (↑), Recall (↑), Density
(↑) and Coverage (↑) are reported. In bold, our best model is highlighted and
the state-of-the-art FID is marked with an exponent ∗.

to tune Precision and Recall. Furthermore, we compare our results with another
method traditionally used to tune quality and diversity of pre-trained models: Hard
Truncation or Soft Truncation detailed in Section 2.1.4. We compare our results with
truncation because it is widely used in the literature, but our method can be used
together with truncation to further improve the quality and diversity of the samples.
We can see that our approach outperforms the traditional truncation methods in
terms of Precision and Recall.

5.4 Concluding Remarks and Discussion

In this chapter, we addressed one question concerning Precision and Recall in
generative models :

• Question Q3: Can we train a generative model to directly focus on an explicit
user-specified trade-off between Precision and Recall? We have shown, that the
PR-Divergence, which corresponds to the trade-off between Precision and
Recall defined by Sajjadi et al. [103], can be used to train generative models to
focus on a specific trade-off between quality and diversity. We have shown that
our approach can be used to train models on synthetic data, low-complexity
datasets, and high-complexity datasets. Furthermore, we have also shown that
our approach can be used to fine-tune pre-trained models on large datasets.
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This theoretical analysis could be further improved, and we list several potential
future works:

• Optimizing the AUC: In this section, we have investigated a method to
optimize a model for any point on the PR-Curve. However, we can wonder if it
is possible to optimize the area under of the PR-Curve (AUC). The AUC of the
PR-Curve is computed as follows:

AUC = ∫
+∞

0

αλ(P ∥P̂ )2
λ2 dλ. (5.34)

Therefore, one possible approach is to optimize the model to minimize a
weighted sum of PR-Divergence to optimize an approximation of the AUC.

• Trading-off Precision and Recall in Diffusion Models: Under specific
conditions, score-matching diffusion models can be trained to minimize any
f -divergences using a density ratio estimator. It would be interesting to
investigate if PR-divergence can be used to train diffusion models to focus
on a specific trade-off between quality and diversity, as it is as of today the
state-of-the-art method for generative models.

• Other methods to train the PR-Divergence: In this chapter, we have shown
that the PR-Divergence can be trained using a discriminator learned to estimate
the χ2 Divergence. It would be interesting to investigate other methods to train
the PR-Divergence: for instance, using the naive approach with decreasing
regularization to train the discriminator, or using another tractable divergence
estimation method to train the generator.
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6Optimal Budgeted Rejection
Sampling to improve Precision
and Recall

„I have not failed. I’ve just found 10,000 ways
that won’t work.

— Thomas Edison
(Founder of the first industrial laboratory.)
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Question 4: With rejection sampling under limited budget, how much can we increase
Precision and Recall of a pre-trained model?

In the previous chapters, we have seen that we could change the f -divergence
minimized by a generative model during training to tune Precision and Recall.
However, we have considered only the loss function for now. And, to train a
generative model to minimize any f -divergence, we need to train a discriminator to
estimate the value of the divergence. At the end of the training, the discriminator is
typically discarded and the generator is used to generate new samples. However, the
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discriminator can be used to estimate the density ratio between the data distribution
and the learned distribution. This density ratio can be used to improve the quality of
the generated samples. A naive approach to use the density ratio to perform rejection
sampling to generate new samples. The issue with this approach is that it can be
computationally expensive, especially in high dimensions: it can require thousands
(or millions) of inferences on the mapping function G to sample a single point. In
this chapter, we will focus on the sampling method used to generate new samples,
and see how it can improve Precision and Recall even with a limited computation
budget.

We will first review existing sampling methods that extend the traditional framework
of generative models. In particular, we will recall Rejection Sampling in Section 6.1.1
and explain how it can be used to improve generative models in Section 6.1.2.
In addition, we briefly introduce comparable methods in Section 6.1.3. Then, to
address Question Q4, we will introduce a new sampling method, the Optimal
Budgeted Rejection Sampling (OBRS) in Section 6.2.1. We will show that this
method is optimal to minimize any f -divergence with a limited budget and especially
that it can improve Precision and Recall both theoretically and experimentally in
Sections 6.2.2 and 6.2.3. Finally, we will show that training generative models to
account for rejection sampling can further improve the quality and the diversity of
the generated samples in Section 6.3.

Contributions: The contributions of this chapter are the following:

• We propose a new sampling method, the Optimal Budgeted Rejection Sampling,
that is optimal to minimize any f -divergence under a fixed budget.

• We train generative models to account for the rejection sampling, and show
that it improves (1) the convergence of the training, and (2) the f -divergence
between the data distribution and the learned distribution after rejection.

These results have been published as:

• Alexandre Verine et al. “Optimal Budgeted Rejection Sampling for Generative
Models”. In: Proceedings of The 27th International Conference on Artificial
Intelligence and Statistics (Mar. 2024). arXiv:2311.00460 [cs]

6.1 Rejection for Generative Models

The aim of this chapter is to understand how we can improve rejection sampling to
improve generative models and especially how we can do it with limited computa-
tional resources. We will first introduce the Rejection Sampling method and explain
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how it is used in practice. The seminal work of Azadi et al. [9] has led to several
other sampling methods, which we will briefly introduce.

6.1.1 Rejection Sampling

Rejection Sampling is a classical method to sample from a target distribution using a
proposal distribution and the ratio of density between both distributions. The idea
was introduced by Von Neuman [129] and has several names in the literature such
as the Acceptance-Rejection Sampling or Screening Sampling.

In the context of the thesis, we consider a target distribution P with density p

and the proposal is the learned distribution P̂ with density p̂. The idea behind
rejection sampling is to accept or reject samples from P̂ using an acceptance function
a ∶ X → [0, 1] such that the probability of accepting a sample x from P̂ is a(x).
We detail the sampling procedure in Algorithm 4. The distribution induced by the
rejection procedure based on a is a new distribution in P(X ) denoted P̃a. The
density p̃a(x) of P̃a has the following form:

p̂a(x) =
p̂(x)a(x)

Z
, (6.1)

where Z > 0 is a normalizing constant that ensures that ∫X p̃a(x)dµ(x) = 1. The
normalizing constant plays a crucial role in Rejection Sampling as it is the overall
acceptance rate:

EP̂ [a(x)] = Z. (6.2)

In other terms, one needs to draw 1/Z samples from P̂ to have on average one
sample accepted. We present a general formulation of rejection sampling, however
in the literature, this method is generally defined for a fixed acceptance function:

aRS(x) =
p(x)

p̂(x)M , (6.3)

Algorithm 4 Rejection Sampling
repeat

Sample x from P̂
Sample u ∼ U([0, 1])
if u ≤ a(x) then

Accept x.
end if

until N samples are accepted.

6.1 Rejection for Generative Models 97



0.0 0.2 0.4 0.6 0.8 1.0

x

D
en

si
ty P

P̂

(a) Example distributions with high ac-
ceptance rate

0.0 0.2 0.4 0.6 0.8 1.0

x

0

1

a
(x

)

(b) Acceptance Function for Fig 6.1a

0.0 0.2 0.4 0.6 0.8 1.0

x

D
en

si
ty P

P̂

(c) Example distributions with low ac-
ceptance rate

0.0 0.2 0.4 0.6 0.8 1.0

x

0

1

a
(x

)

(d) Acceptance Function for Fig 6.1c

Fig. 6.1.: Example of Rejection Sampling in 1D. The target distribution P is a Gaussian
mixture, and the proposal distribution in dashed line in a distribution covering
both modes. In Figure 6.1a, P̂ covers both modes of P while in Figure 6.1c, P̂
is slightly narrower on the right. The maximum ratio density M is higher in
Figure 6.1c leading to a lower acceptance rate: from 45% to 8%. The acceptance
rate is represented as the ratio of the green area on the area under p̂.

where M = supx∈X
p(x)
p̂(x) is the maximum density ratio. In this case, the acceptance

rate is Z = 1/M and the distribution P̃aRS perfectly matches the target distribution
P since:

p̃aRS(x) = p̂(x) p(x)
p̂(x)ZM

= p(x). (6.4)

However, for high-dimensional X , M can take high values and set a very low
acceptance rate as stated by MacKay [80]. We give an example in Figure 6.1 to
illustrate this point. In this example, we consider a target distribution P that is
a Gaussian mixture and the proposal distribution P̂ is a distribution that covers
both modes of P . In Figure 6.1a, the acceptance rate is approximately 45% while
in Figure 6.1c, the acceptance rate is lower than 8%, even if the distribution P̂ are
very similar. In high dimension and especially with GANs, it is not uncommon that
the learned distribution P̂ misses modes from the target distribution P , leading to
a low acceptance rate. In this case, rejection sampling can be very inefficient as it
requires drawing many samples from P̂ to have one accepted, as we will see in the
next section.
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6.1.2 Discriminator Rejection Sampling

In the seminal work of Azadi et al. [9], the authors propose to use the discriminator
of a GAN to further refine the generation process. As we have shown in the previous
chapters, at convergence the discriminator T can be used to estimate the density
ratio between the data distribution and the learned distribution:

r(x) = ∇f∗(T (x)). (6.5)

In fact, if the discriminator is optimal, then ropt(x) = p(x)/p̂(x). The idea of the
Discriminator Rejection Sampling (DRS) is to use the discriminator to estimate the
acceptance function a in Equation (6.3) and to refine the learned distribution P̂ to
match the target distribution P . The acceptance function is defined as:

a(x) = r(x)
M

, (6.6)

where M = supx∈X r(x) is the maximum estimated density ratio. For a BigGAN
model trained on CelebA, the acceptance rate can be as low as 10−6. For that reason,
the authors propose a trick to increase the acceptance rate by scaling the acceptance
function by a factor γ ∈ R:

aDRS(x) =
r(x)

r(x) (1 − eγ) +Meγ
. (6.7)

With this acceptance function, the values γ < 0 increase the acceptance rate. However,
the authors do not provide any theoretical guarantees on the choice of γ, the effect
it has on how P̃aDRS differs from P . We illustrate the effect of γ in Figure 6.2 by
manually setting γ to −1.7 and −3.6 to enforce an acceptance rate of 25% and 50%.
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Fig. 6.2.: Example of Discriminator Rejection Sampling in 1D. The target distribution P is a
Gaussian mixture, and the proposal distribution in dashed line in a distribution
covering both modes. γ = −1.7 enforces an acceptance rate of 25% while γ = −3.6
enforces an acceptance rate of 50%.
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6.1.3 Other sampling methods

The work Azadi et al. [9] has led to several other sampling methods that we will
briefly introduce in this section. Since this method is based on rejection sampling,
which is a standard but also simplistic method, other more complex methods have
been proposed to use the density ratio to improve sampling:

• MH-GAN by Turner et al. [123] uses a specific version of the Metropolis-
Hastings algorithm to sample from the learned distribution: independent
Metropolis-Hastings. The idea is to draw a first sample x0 from the proposal
distribution P̂ . Then, we successively draw K new samples xk ∼ P̂ and accept
it with probability:

min(1,
r(xk)

r(xk−1)
) . (6.8)

This method was shown to improve the quality of the generated samples. In
fact, contrary to DRS, MH-GAN compares the density ratio of K samples to
keep only the best. Moreover, the method directly sets the computational
budget by setting K, and thus using NK inferences on the generator G and
NK inferences on the discriminator T to generate N samples.

• Discriminator Optimal Transport (DOT) by Tanaka [117] consists of using the
discriminator to estimate the optimal transport between the learned distribu-
tion and the target distribution. In practice, they can draw N samples from the
learned distribution and perform a gradient descent using ∇xT (x) to move
the samples to the target distribution. This method was shown to improve the
quality of the generated samples. This method only requires N inferences on
the generator G to generate N samples, but it requires to compute the gradient
of the discriminator T numerous times.

• Discriminator Gradient Flow (DGf low) by Ansari et al. [7] is also a method
that uses the discriminator to perform a gradient flow in the latent space. To
do this, they draw N latent vectors z ∼ Q and progressively move them using
∇z(T (G(z))) to improve the f -divergence between the target distribution
and the one generated by mapping the N latent vectors. This method is
computationally expensive as it requires the computation of the gradient of
T ○G numerous times (nite) for the N samples.

These methods are more complex than DRS and have been shown to improve
the quality of the generated samples. However, a larger number of inferences
are required in the generator G and the discriminator T to generate N samples.
Similarly to DRS, these methods can set the computational budget by setting the
number of iterations. Note that in DRS, the acceptance rate is the expected budget
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per sample, therefore some samples will have a higher computational budget than
others, while MH-GAN, DOT and DGf low set the same budget for all samples. On
a two-dimensional experiment, we will later show that theses different methods
outperform DRS in terms of quality of the generated samples but at the cost of a
higher computational budget. For limited computational resources, DRS is drastically
better than the other methods, as we will show in Section 6.2.3.

In the next section, we will introduce a new method, based on Rejection Sampling,
that is optimal to minimize any f -divergence under a acceptance rate, i.e. a fixed
budget on average.

6.2 The Optimal Budgeted Rejection Sampling
(OBRS)

In this section, we study the problem of Rejection Sampling with a limited budget
K ∈ [1,+∞[. K is the expected number of samples to draw from the proposal
distribution P̂ to draw a single sample from P̃a. We will start by introducing a
method to find the optimal acceptance function to minimize any f -divergence under
a fixed budget. Then, we will show that this method can the f -divergence between
P and the refined distribution P̃a. Finally, we will characterize the improvements on
the Precision and the Recall of a generative model.

6.2.1 Optimal acceptance function

Given a fixed distribution P̂ , set by a function G, and a target distribution P , we
aim to find the optimal acceptance function a to minimize any f -divergence under a
fixed budget K, as follows:

min
a

Df(P ∥P̃a)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

EP̂ [a(x)] ≥ 1/K,

∀x ∈ X , 0 ≤ a(x) ≤ 1.

(6.9)

Here, the constraint EP̂ [a(x)] ≥ 1/K is used to bound the expected acceptance
rate. For K = 1, the only a that satisfies the constraints in (6.9) is the unit function
a(x) = 1 ∀ x ∈ X . This case corresponds to no rejection (or accept with probability
1), and we have P̃a = P̂ almost everywhere. On the other hand, if K ≥ M where
M = supx∈X

p(x)
p̂(x) , the optimal acceptance function is the one defined in (6.3), and

we have P̃a = P . In this case, the expected budget is M .
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While the problem (6.9) is a convex optimization problem, the optimal acceptance
function aOBRS is not straightforward to compute. We can however focus on the
discrete case. In the discrete case, we search for the optimal acceptance vector
a ∈ RN for a set of N samples x1, . . . , xN drawn from the proposal distribution P̂ .
In this case, the problem (6.9) can be written as:

min
a∈RN

N

∑
i

Kaip̂if (
pi

aip̂iK
)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑N
i p̂iai = 1/K
∀i, 0 ≤ ai ≤ 1

(6.10)

In that case, the objective function is continuous with respect to a and the constraint
set for a is closed and bounded, therefore according to the Weierstrass theorem,
there exist a solution to this problem. In the following theorem, we give an explicit
form for the optimal solution aOBRS for finite X using Lagrangian duality:

Theorem 6.2.1 (Optimal Acceptance Function).
For a sampling budget 1 ≤K ≤M and finite X , the solution to the problem (6.9) is,

aOBRS(x) =min(p(x)
p̂(x)

cK

M
, 1) , (6.11)

where cK ≥ 1 is such that Ex∼p̂[aOBRS(x)] = 1/K.

Proof. The full proof is given in Appendix B. However, we can give an intuition of
the proof. First, without loss of generality, we can consider Df(P̃a∥P ) instead of
Df(P ∥P̃a) by considering f ′(u) = uf(1/u). We consider that K is typically lower
than M , so we simplify the problem to EP̂ [a(x)] = 1/K. Using the definition of the
refined density p̃a in (6.1), we can rewrite the objective in the discrete case as:

min
a∈RN

N

∑
i

pif (ai
p̂iK

pi
)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑N
i p̂iai = 1/K
∀i, 0 ≤ ai ≤ 1

(6.12)

The Lagrangian function associated with the problem 6.12 is:

L(a, µ, λ1, λ2) =
N

∑
i

pif (ai
p̂iK

pi
) + µ [aT p̂ − 1/K] + (a − 1)T λ1 − aT λ2 (6.13)

Using KKT conditions, we can show that the optimal solution a⋆i is:

a⋆i =
pi

p̂iK
∇f∗ (λ⋆2i − λ⋆1i

p̂iK
− µ⋆/K) (6.14)
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For every f -divergence the Fenchel conjugate f∗ is strongly increasing on dom(f∗)
therefore the optimal solution is λ⋆1i = 0 for every i. By using strong duality and the
Fenchel conjugate definition, we can show that the solution of problem 6.12 satisfy:

a⋆i =
pi

p̂iK
∇f∗ (min(−µ⋆/K,∇f ( p̂iK

pi
))) . (6.15)

Using again that f∗ is strictly increasing and that [∇f]−1 = ∇f∗, we have the
following.

a⋆i =min( pi

p̂iK
∇f∗ (−µ⋆/K) , 1) . (6.16)

Note that ∇f∗ (−µ∗/K) /K = cK is a constant solely determined by K, p and p̂ since:

∑
i

p̂i min( pi

p̂iK
∇f∗ (−µ⋆/K) , 1) = 1/K. (6.17)

Therefore, by scaling the constant for easier intuition, the optimal solution is:

a⋆i =min(pi

p̂i

cK

M
, 1) , (6.18)

which concludes the proof.

This theorem gives an explicit form for the optimal acceptance function aOBRS

to minimize the f -divergence under a fixed budget K. Therefore, by performing
Rejection Sampling using the optimal acceptance function aOBRS, we can generate
a distribution P̃aOBRS that is optimal in terms of f -divergence under the budget K.
We call this method the Optimal Budgeted Rejection Sampling (OBRS). We can,
however, make a few remarks on the optimal acceptance function:

• The acceptance function

aOBRS(x) =min(p(x)
p̂(x)

cK

M
, 1) ,

The form of the optimal acceptance is a clipped version of the optimal ac-
ceptance function in Equation (6.3). A very similar acceptance function was
previously introduced by Grover et al. [48], with the sole argument that it is a
"natural" approximation of the optimal acceptance function, but no theoretical
argument was provided.

• We show that this acceptance function is indeed the optimal solution to problem
(6.9) for a specific constant cK . However, there is no explicit form for the
constant in the theorem. This constant is solely determined by the budget
K and the distributions P and P̂ . In practice, we can estimate cK by using
a dichotomy method (also known as a bisection algorithm) to find the value
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Fig. 6.3.: Example of Discriminator Rejection Sampling and Optimal Budgeted Rejection
Sampling in 1D. The target distribution P is a Gaussian mixture, and the proposal
distribution in dashed line in a distribution covering both modes. The acceptance
function aOBRS is computed using Algorithm 5 and the acceptance function aDRS
is computed using γ = −1.7 and γ = −3.6 to enforce an acceptance rate of 25% and
50%.

as detailed in Algorithm 5. However, a budget greater than M = supx∈X
p(x)
p̂(x)

(unbudgeted sampling) implies that cK = 1, and thus

aOBRS(x) =
p(x)

Mp̂(x) . (6.19)

• As we have said, cK is solely determined by the budget K, and therefore the
optimal acceptance function aOBRS is independent of the function f . The
OBRS method is optimal for any f -divergence. In other terms, whether we use
a mass-covering divergence such as the Kullback-Leibler divergence or a mode-
seeking divergence such as the reverse Kullback-Leibler or any PR-Divergence,
the optimal acceptance function is the same. We will see in the next section
how the OBRS method can improve the Precision and the Recall.

We show in Figure 6.3 how the optimal acceptance function aOBRS compares to the
acceptance function aDRS for the examples given in Figure 6.2, therefore for budgets
of K = 4 and K = 2. We can see that the acceptance function aOBRS is a clipped
version of aRS that leads to a less smooth acceptance function than aDRS. However,
the refined distribution P̃aOBRS appears to be closer to the target distribution P than
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Algorithm 5 Dichotomy to compute cK .

Input: N generated samples xfake
1 , . . . , xfake

N ∼ P̂ , the density ratio function r and
M = supx∈X (r(x)).
Parameter: Budget K, Threshold ϵ
Output: Constant cK

Let cmin = 1e−10 and cmax = 1e10.
Let cK = (cmax + cmin)/2
Define the loss L(cK) = ∑N

i=1 min (r (xfake
i ) cK/M, 1) − 1

K .
while ∣L(cK)∣ ≥ ϵ do

if L(cK) > ϵ then
Update: cmax = cK

else if L(cK) < −ϵ then
Update: cmin = cK

end if
Update: cK = (cmax + cmin)/2
Update: L(cK)

end while

P̃aDRS . In Figure 6.4 we compare some f -divergences between the target distribution
P and the refined distribution P̃aOBRS and P̃aDRS for different budgets. We can see
that the f -divergence between P and P̃aOBRS is lower than the f -divergence between
P and P̃aDRS for all budgets. This result is consistent with the fact that the OBRS
method is optimal to minimize any f -divergence under a fixed budget. We will
now show how the OBRS method can improve the Precision and the Recall of a
generative model.
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Fig. 6.4.: DTV, DKL andDrKL between the target distribution P and the refined distribution
P̃aOBRS and P̃aDRS for different budgets. The f -divergence is systematically lower
for P̃aOBRS than for P̃aDRS .

6.2.2 Improving the Precision and the Recall

As we have seen, the OBRS method is optimal to minimize any f -divergence un-
der a fixed budget. In this section, we first characterize how the budget affects
the f -divergence, by giving a bound on the improvement of the f -divergence be-
tween the target distribution P and the refined distribution P̃aOBRS compared to
the f -divergence between P and the learned distribution P̂ . The first bound being
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general, it is not very tight. However, we will show that we can compute the exact
improvement on the Precision and the Recall of a generative model.

We first give a bound on the improvement of the f -divergence between the target
distribution P and the refined distribution P̃aOBRS compared to the f -divergence
between P and the learned distribution P̂ :

Theorem 6.2.2 (f -divergence Improvement).
Let P, P̂ ∈ P(X ) be two distributions such that P, P̂ ≪ µ and aOBRS be the optimal
acceptance function for a budget K defined in Theorem 6.2.1. For any f -divergence, we
have

Df (P ∥P̃aOBRS) ≤ Df (P ∥P̂ ) −min(1,
K − 1

M
)Df (P ∥P̂ ) . (6.20)

Proof. We note P̃ = P̃aOBRS for simplicity. For any density pγ such that pγ ≤Kp̂:

Df(P ∥P̃ ) ≤ Df(P ∥Pγ). (6.21)

For bounding general f -divergences, we will choose pγ = p̂ + γ (p − p̂) with γ =
min (1, (K − 1) infx′∈X

p̂(x′)
p(x′)). Let us first show that pγ ≤Kp̂:

pγ(x) ≤ p̂(x) + (K − 1) inf
x′

p̂(x′)
p(x′) (p(x) − p̂(x)) . (6.22)

Note that for any x ∈ X , infx′
p̂(x′)
p(x′) (p(x) − p̂(x)) ≤ p̂(x). Thus, we have the follow-

ing.

pγ(x) ≤ p̂(x) + (K − 1)p̂ ≤Kp̂(x) (6.23)

Next, let us show the lower bound. Recall that f -divergences are jointly convex,
therefore Df (p, ⋅) is convex. Thus, convexity implies:

Df(P ∥Pγ) ≤ (1 − γ)Df(P ∥P̂ ) + γDf(P ∥P ) ≤ (1 − γ)Df(P ∥P̂ ). (6.24)

Using (6.21) and (6.24), we have the following.

Df(P ∥P̃ ) ≤ Df(P ∥Pγ) ≤ (1 − γ)Df(P ∥P̂ ) ≤ Df(P ∥P̂ ) − γDf(P ∥P̂ ) (6.25)

≤ Df(P ∥P̂ ) −min(1,
K − 1

M
)Df(P ∥P̂ ). (6.26)

Theorem 6.2.2 gives a general bound on the improvement of the f -divergence
between the target distribution P and the refined distribution P̃aOBRS compared to
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Fig. 6.5.: Bounds on the Total Variation, the Kullback-Leibler and the Reverse Kullback-
Leibler divergence between the target distribution P and the refined distribution
P̃aOBRS for different budgets for the example given in Figure 6.3b.

the f -divergence between P and the learned distribution P̂ . By being general, this
bound can be far from the actual improvement. In Figure 6.5, we show the bounds
on the f -divergence between the target distribution P and the refined distribution
P̃aOBRS for different budgets. We can see that for most budget, the bound on the
improvement is not tight and the actual improvement is higher. We will now show
that we can compute the improvement on the Precision and the Recall of a generative
model:

Theorem 6.2.3 (Precision and Recall Improvement).
Let P, P̂ ∈ P(X ) be two distributions such that P, P̂ ≪ µ and aOBRS be the optimal
acceptance function for a budget K defined in Theorem 6.2.1. For any (α, β) ∈
PRD(P, P̂ ), we have (α′, β) ∈ PRD(P, P̃aOBRS) with α′ =min {1, Kα}.

Proof. First, with a(x) =min (1, ck

M
p(x)
p̂(x)), thus:

αλ(P ∥P̃a) = ∫X min (λp(x), p̃(x))dµ(x) (6.27)

= ∫X min(λp(x), Kp̂(x), KcK

M
p(x))dµ(x). (6.28)

We can show that we have two regimes:
• For λ ≥ KcK

M :

αλ (P ∥P̃aOBRS) = 1 and βλ (P ∥P̃aOBRS) = 1/λ

• For λ ≤ KcK

M :

αλ(P ∥P̃aOBRS) =Kαλ/K(P ∥P̂ ) and βλ(P ∥P̃aOBRS) = βλ/K(P ∥P̂ )

This can be seen as a vertical scaling of the PR-Curve. For a given point (α, β) in
PRD(P ∥P̂ ), then the point with the same β in PRD(P ∥P̃ ) has a Precision Kα, up
to a certain saturating level (α < 1).

This theorem shows that for any fixed Recall, OBRS consistently improves Precision.
More precisely, the improved PR-Curve is a K-fold vertical scaling of the initial
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PR-Curve capped at 1. In other terms, if the proposal distribution P̂ has a high
Recall but a low Precision, the OBRS will be very efficient. However, if the proposal
distribution has a low Recall, the OBRS will require a high budget to improve the
Recall.

In Figure 6.6, we show the PR-Curves for the example given in Figure 6.3b. First,
we observe that the PR-Curve for P̃aOBRS is always above the PR-Curve for P̂ and
P̃aDRS . While the Recall is very similar for the two budgeted Rejection Sampling
methods, the Precision is significantly improved for the OBRS. We can see that the
PR-Curve for P̃aOBRS is a vertical scaling of the PR-Curve for P̂ for λ < KcK

M and is
capped to 1 for λ ≥ KcK

M . We will now show how OBRS performs on more complex
experiments.

6.2.3 Experiments

In this section, we will show how the OBRS method can improve the Precision and
the Recall of a generative model. We will first show the results on a simple 2D
example that is traditionally used to compare different sampling methods, then, to
demonstrate the versatility of the OBRS method, we will show how it can be used
to improve the Precision and the Recall of a Diffusion Model trained on CIFAR-10.
Finally, we will compare the OBRS method to the DRS method on a BigGAN trained
on CelebA64.

25 Gaussians: A traditional distribution to compare different sampling methods
is the 2D 25 Gaussians distribution. The target distribution P is a mixture of 25
Gaussians with equal weights and unit variance. We train a GAN to learn the
distribution P by minimizing DGAN. Using this model as the proposal distribution,
we can compare the different sampling methods detailed in Section 6.1.3. For the
baseline GAN model P̂ , we plot the samples for the different sampling methods
in Figure 6.7. We evaluated the different methods using a metric of quality and
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Fig. 6.7.: Example of DRS, OBRS, MH-GAN, DOT and DGf low on the 2D 25 Gaussians. The
target distribution P is a mixture of 25 Gaussians and the proposal distribution
is a GAN. The samples are generated using the different sampling methods with
similar budget. The Precision and Recall for the different methods are given in
Table 6.1.

diversity typically used in this experiment introduced by Dumoulin et al. [36]. The
Precision is measured by the ratio of the number of points falling within 3 standard
deviations of the closest mean of the 25 Gaussians. The Recall is measured by the
ratio of the modes that have at least one sample falling within 3 standard deviations
of the mean. Although this definition of quality and diversity is very simple, it is a
good indicator of the quality of the generated samples and is used by various authors
in the literature [7, 9, 20, 117, 123]. On the other hand, the recall is very dependent
on the number of samples generated as a single sample which falls within 3 standard
deviations of the mean can increase the recall significantly.

The computational budget of MH-GAN is hardly tunable, thus we start by setting the
number of iterations of MH-GAN. Then we fix by binary search the budget of the
other methods to have a similar computational cost. We show the results in Table 6.1.
For such a mass covering proposal distribution, all the methods have a high Recall.
However, we can see that OBRS outperforms the other methods in terms of not only
Precision but also the time required to generate the samples. The DRS method has a
similar time to the OBRS method, but a lower Precision. In terms of inferences on
the generator and the discriminator, the OBRS method requires a similar number
of calls on the generator and the discriminator as the DRS method. The MH-GAN
method requires a significantly higher number of calls to the discriminator, leading
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Model Recall (%) Precision (%) Call of G Call of D Time (s)
Baseline G 100.0 ± 0.0 55.80 ± 0.99 2500 ± 0 0 ± 0 0.03 ± 0.01
OBRS (ours) 100.0 ± 0.0 92.54 ± 0.54 6262 ± 92 6262 ± 92 0.45 ± 0.01
DRS 100.0 ± 0.0 89.87 ± 0.59 6411 ± 93 6411 ± 93 0.46 ± 0.01
MH-GAN 100.0 ± 0.0 89.98 ± 0.61 6415 ± 45 19292 ± 23 6.38 ± 0.09
DOT 100.0 ± 0.0 58.47 ± 1.00 2500 ± 0 7500 ± 0 0.94 ± 0.14
DGf low 94.81 ± 2.83 56.00 ± 1.02 7500 ± 0 7500 ± 0 0.67 ± 0.13

Tab. 6.1.: Mixture of 25 Gaussians in 2D. Metrics for the different sampling methods: Recall
(↑) and Precision (↑) as defined in [36]; Calls (↓) of G and D are the number
of times the models are called to generate 2500 samples; Time (↓) is the time
required to generate 2500 samples. For all metrics, we give the average and
standard deviation for 1000 generations of 2500 samples. The best results are
emphasized in bold.

to a higher computational cost. The DOT and DGf low methods have a fixed number
based on the number of samples generated but perform a gradient descent on the
models, thus explaining the longer time.

This experiment shows that the OBRS method outperforms the other methods in
terms of Precision and Recall for a similar computational cost. We can also compare
different methods for various budgets. In Figure 6.8, we show that for a given
precision the OBRS method requires less time than the DRS method, approximately
5 times less than MH-GAN, 10 times less than DOT and 100 times less than DGf low.
However, since DOT and DGf low allows by gradient descent to move the points,
rather than accepting or rejecting them, the refinement of the distribution can be
more efficient. We can see that for large budget, the two methods achieve a perfect
Precision to the cost of a loss of Recall. For example, in Figure 6.10 that for DOT the
refined distribution collapsed to a few single points. Finally, we can also compare
the OBRS method with the DRS method with different proposal distributions. In
Figure 6.9, we show the results for different acceptance rates. We can see that
the OBRS method systematically outperforms the DRS method for all acceptance
rates.
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Fig. 6.8.: Precision and Recall for the 2D 25 Gaussians for computation times. For a given
Precision, the OBRS method requires less time than the DRS method.

110 Chapter 6 Optimal Budgeted Rejection Sampling to improve Precision and Recall



2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Budget

0.2

0.4

0.6

0.8

P
re

ci
si

on

Table 6.1

M = 5.68

M = 9.09

M = 20.05

Model

DRS

OBRS

Fig. 6.9.: Comparison of OBRS and DRS for
proposal distributions with differ-
ent acceptance rates.

Fig. 6.10.: DOT and DGf low for a large
computational budget.

This experiment shows that the OBRS method can improve the Precision of genera-
tive models and, for low budgets, outperforms the different sampling methods in
generative models. We will now show how the OBRS performs in a higher dimension.

Comparison of OBRS and DRS on CelebA64: To evaluate OBRS and DRS, we can
use a BigGAN [16] model trained on CelebA in dimension 64 × 64. The model is
trained using a hinge loss and therefore is poorly suited for density estimation.
Therefore, after training the generator, as recommended by Azadi et al. [9] the
discriminator is fine-tuned to estimate the density ratio by estimating DGAN. The
discriminator is also calibrated as recommended by Turner et al. [123] and Che
et al. [20] so that EP̂ [r(x)] = 1. Then, we can use the discriminator to compute the
acceptance function aOBRS and aDRS for different budgets. In this experiment, M ,
the maximum value of the density ratio is approximately 105, therefore accepting
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Fig. 6.11.: Comparison of OBRS and DRS for a BigGAN trained on CelebA64. The Precision
(↑), the Recall (↑) and the FID (↓) are given for different acceptance rates.
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one sample every 105 generations. In the following experiments, we did not evaluate
traditional rejection sampling as it required more than 3 weeks to generate the 50k
samples required for the evaluation metrics using 2 A100 80GB GPUs. Note that
without rejection sampling, 50k samples can be generated in less than 20 seconds.

We can compare the two methods with the Precision, the Recall, and the FID for
different acceptance rates. We show the results in Figure 6.11. Furthermore, we
can see that the OBRS method systematically outperforms the DRS method for all
acceptance rates in terms of FID. In terms of Precision and Recall, the OBRS method
performs better than DRS only for acceptance rate larger than 30%, i.e., for lower
budget. We believe that the discrepancy between the theoretical optimality and the
empirical results can be explained by the fact that the discriminator is not perfectly
estimating the density ratio, especially in the low density regions.

Versatility of OBRS: Rejection Sampling and in particular Optimal Budgeted Rejec-
tion Sampling does not only apply to GANs but also to any generative model. To
demonstrate the versatility of our approach, we have used a discriminator trained
by Kim et al. [66] on a diffusion model trained on CIFAR-10 by Karras et al. [61].
We observe in Table 6.2 that the OBRS method improves the FID of the generative
model. However, Precision is slightly improved, and the Recall is not significantly
improved. This experiment shows that the OBRS method can be applied to any
generative model and improve the quality of the generated samples.

Every experiment shows that the OBRS method outperforms not only the DRS
method but also the other sampling methods in terms of improving quality and
preserving diversity. We have shown that the OBRS method can be applied to any
generative model and improve the quality of the generated samples. However, the
OBRS is particularly efficient when the proposal distribution has a high Recall, and
in this section we have only used OBRS on fixed (pre-trained) models. Therefore, a
different model, for instance, more mass-covering, might have lower performance
before the rejection, but could be further improved with a lower budget. In the next
section, we will show how we can train the model to take into account the rejection
mechanism and further improve the quality and diversity.

1/K FID P R
0.25 1.57 78.48 86.73
0.50 1.58 78.23 86.05
0.75 1.77 77.94 86.54
1 1.97 77.91 86.62

Tab. 6.2.: OBRS applied on a Diffusion Model EDM [61] with a classifier trained by Kim
et al. [66]. The Precision (↑), the Recall (↑) and the FID (↓) are given for different
acceptance rates.
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6.3 Training the refined distribution

In traditional generative modeling, the generator G is optimized without considering
any a priori knowledge regarding the rejection sampling that occurs post-training,
which can lead to suboptimal generative models. This section advocates training
with OBRS (Tw/OBRS) for generative models. First, we introduce the theoretical
improvements and the observed effects on the loss function. Then, we introduce an
algorithm to incorporate OBRS in the training procedure, and finally, we will show
experimental results on high-dimensional generative models.

6.3.1 Principle of training with OBRS

In order to formalize the difference between training traditional procedure and
directly training the refined distribution, let us reformulate rejection sampling, and
in particular OBRS, in the domain of probability measures.

Let us define
BK(P̂ ) = {P̃ ∈ P(X ) ∣ DR

∞(P̃ ∥P̂ ) ≤ log K} , (6.29)

where DR
∞(P̃ ∥P̂ ) = supX log p̃(x)/p̂(x) denotes the max-divergence (a limiting case

of the α-Rényi Divergence DR
α with α → ∞). Note that BK(P̂ ) is a convex set.

Moreover, the following inclusion holds for any K2 ≥K1 ≥ 1.

BK1(P̂ ) ⊆ BK2(P̂ ). (6.30)

This set, a ball defined with respect to the weak metric DR
∞, characterizes the set of

distributions allowed by a budgeted rejection sampling procedure. The following
lemma shows that BK(P̂ ) characterizes the set of distributions allowed by a rejection
sampling procedure with a budget K and a proposal distribution P̂ :

Lemma 6.3.1.
Let P̂ ∈ P(X ) be a distribution and K ≥ 1 be a budget. P̃ ∈ BK(P̂ ) if and only if there
exist an acceptance function a ∶ X → [0, 1], and a normalization constant Z such that
p̃(x) = p̂(x)a(x)/Z and the acceptance rate is greater than 1/K.

Proof. This comes from the definition of the set BK(P̂ ) as the set of distribu-
tions P̃ that can be written as p̃(x) = p̂(x)a(x)/Z with supX log p̃(x)/p̂(x) =
supX log a(x)/Z = log 1/Z ≤ log K.

Until now, we have mostly considered P(X ), the set of all probability measures
defined on X . However, in generative modeling, the distributions we can learn are
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restricted to the set P̂ = {P̂ = G#Q ∣ G ∈ G}, the set of all distributions P̂ induced
by the generator functions G ∈ G from a fixed latent distribution Q. Traditionally,
training the proposal distribution and defining the rejection scheme are sequential.
By separating the training process from the rejection sampling process, we are, in
effect, solving a two-step minimization problem, given below.

First solve P̂ opt ∈ argmin
P̂ ∈P̂

Df(P ∥P̂ ); (6.31)

Next solve P̃ opt ∈ argmin
P̃ ∈BK(P̂ opt)

Df(P ∥P̃ ). (6.32)

Crucially, P̂ opt is chosen by the training procedure to optimize (6.31) whereas the
final refined distribution P̃ opt is assessed via (6.32), resulting in a mismatched
objective since P̃ opt is the final distribution. By incorporating the rejection scheme
into the training objective, we get the following.

min
P̂ ∈P̂

min
P̃ ∈BK(P̂ )

Df(P ∥P̃ ). (6.33)

In other words, we propose to directly minimize any f -divergence between the
target distribution and the refined distribution. We give an illustration of the training
procedure in Figure 6.12. In addition to the (naive) improvement of the final
divergence, we can show with example two side effects of training with OBRS
that we will illustrate with simple examples but that we will also observe in high-
dimensional generative models in Section 6.3.3.

(a) Set P̂ (b) Training without OBRS (c) Training with OBRS

Fig. 6.12.: Illustration of the training of the refined distribution. The set P̂ is the set of
all distributions induced by the set of generator functions G. When training
without OBRS, the generator is trained to minimize the divergence between
the target distribution P and the learned distribution P̂ , and then the refined
distribution P̂ is the optimal distribution in the set BK(P̂ ). When training with
OBRS, the generator is trained such that the refined distribution P̂ is the optimal
distribution within the union of all sets BK(P̂ ).
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Flattening effect on the parameter landscape: Note that the objective in (6.33) can
be written as,

min
P̃ ∈⋃P̂ ∈P̂ BK(P̂ )

Df(P ∥P̃ ). (6.34)

Observe that the domain of P̃ is the dilatation of P̂ by the convex set BK , resulting
in a larger set ⋃P̂ ∈P̂ BK(P̂ ). In practice, this results in a flattened loss landscape
for optimizing over P̂ as in (6.33), thus preventing the model from getting stuck
in suboptimal local minima. This concept is demonstrated with two examples that
showcase its ability to flatten the parameter landscape. Firstly, Figure 6.13 shows a
one-dimensional example where the loss is flattened by OBRS. We consider P to be
a mixture of 10 Gaussians evenly distributed. The proposal distribution P̂ is also
a mixture of 10 Gaussians with the same variances. However, the Gaussians are
separated by a parameterized distance θ. In Figure 6.13a, we give two examples
of proposal distributions with θ = 1.2 and θ = 3. In Figure 6.13b, we show the loss
landscape without OBRS (K = 1) and with OBRS (K > 1). We can see that the
loss landscape is flattened by OBRS as the budget K increases. With a high budget,
K = 10, for instance, all local minima of loss have disappeared.
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Fig. 6.13.: Illustration of the flattening effect of the loss landscape. (a) The target distri-
bution P is a mixture of 10 Gaussians. The proposal distribution P̂ is also a
mixture of 10 Gaussians with the same variances separated by θ. (b) The loss
landscape for the target distribution P and the refined distribution P̃ without
OBRS (K = 1) and with OBRS (K > 1). The loss landscape is flattened by OBRS.
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Fig. 6.14.: The loss landscape in the parameter domain of a GAN trained on MNIST. The
x-axis and y-axis are random directions in the parameter space. The loss is
between the target distribution P and the post-rejection distribution. There
are three cases: no rejection (K = 1), 50% acceptance rate (K = 2) and 20%
acceptance rate (K = 5). We give samples of the generator whose parameters
are in the lowest and highest loss. In red, we show the rejected samples and in
green the accepted samples. OBRS not only reduces loss, but also flattens out
the loss landscape and helps avoid local minima.

We can also illustrate the flattening effect of the loss landscape in high-dimensional
generative models similarly to Li et al. [77]. To do so, we can observe the loss
in a two-dimensional projection of the parameters’ domain of a neural network.
Therefore, we can train a GAN on MNIST using the traditional f -GAN procedure
using a generator G and a discriminator T . Let us define θ0, the parameter vector
of the generator Gθ0 . We randomly draw two directions θ1 and θ2 in the parameter
domain: defining a hyperspace of generators defined as Gθ0+xθ1+yθ2 with (x, y) ∈ R2.
For any given set of parameters, we can fine-tune a discriminator to estimate the
density ratio and apply OBRS for different budgets. In Figure 6.14, we plot the loss
in a parameter domain and show a batch of samples drawn from Gθ0 (lower left)
and from Gθ for the highest loss (upper right). When OBRS is applied, we show in
red the rejected samples and in green the accepted samples.

We observe that similarly to the one-dimensional example, the loss landscape is
flattened by OBRS. We will see in Section 6.3.3 that this flattening effect is beneficial
for training generative models. Furthermore, we will see how training with OBRS
affects the proposal distribution.

A mass-covering P̂ : The optimal P̂ might be different between (6.31) and (6.33).
Theorem 6.2.3 explicitly states that OBRS is more efficient on mass-covering models
than on mode-seeking ones. Taking rejection sampling into account in the training
procedure pushes the distribution P̂ to be more suitable for rejection, and thus:
more mode coverage. For example, consider a target distribution P as the Gaussian
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Fig. 6.15.: Example of training without and with OBRS. The target distribution P is the
Gaussian mixture, and the proposal distribution is a single Gaussian. (a) The
loss of the generator G with respect to the target distribution P and the refined
distribution P̃ without OBRS (K = 1) and with OBRS (K = 2). (b) PR-Curves for
the different distributions. (c) Distributions P , P̂ , and P̃ trained without and
with OBRS.

mixture presented in Figure 6.15. Assume that the expressivity of P̂ is limited to
a single Gaussian N (µ, σ). If the goal is to naively minimize DGAN, then, because
of the mode-covering property of the divergence, P̂ covers only one mode. In
that case, Theorem 6.2.3 shows that only precision can be improved, and thus
a limited-budget rejection sampling scheme will not reshape P̂ , leading to poor
coverage, as the PR-Curve in Figure 6.15b shows. However, if µ and σ are set to
directly minimize DGAN(P ∥P̃ ), then the distribution P̂ changes drastically into a
mass covering distribution, allowing the rejection process to match more closely (in
terms of DGAN), and the PR-Curve to improve as shown in Figure 6.15b.

Incorporating the OBRS in the training procedure is beneficial not only for the final
quality of the generative model but also for the training procedure itself. We will
now show how we can train the refined distribution with OBRS.
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6.3.2 Our method

In this section, we propose a method to train discriminator-based generative models
similar to the f -GAN framework. In other words, our method can be applied to
either GANs or Normalizing Flows. We will first present the algorithm and then
show the results on BigGAN models in high dimension in Section 6.3.3.

A direct approach to train the generator with OBRS is to train a discriminator T̃ based
on samples of both P and P̃ to estimate Df(P ∥P̃ ). By estimating the f -divergence
via the dual approximation, the generator can by train to minimize the f -divergence
via importance sampling:

−EP̃ [f
∗(T̃ (x))] = −EP̂ [

p̃(x)
p̂(x)f

∗(T̃ (x))] (6.35)

= −EP̂ [KaOBRS(x)f∗(T̃ (x))] . (6.36)

This method is very similar to the f -GAN framework recalled in Algorithm 6. How-
ever, the loss function for the generator depends on the acceptance probability
aOBRS. This function depends on the density ratio p(x)/p̂(x). Therefore, it requires
two different discriminators:

1. T used to estimate p(x)/p̂(x) and trained with samples from P and P̂ .

2. T̃ used to estimate p(x)/p̃(x) and trained with samples from P and P̃ .

Needing two discriminators can be cumbersome, and we propose a simpler method
with only one discriminator using the primal estimation of the final f -divergence. To
do so, we train the discriminator T to estimate Df(P ∥P̂ ) in order to approximate

Algorithm 6 f -GAN Tw/oOBRS
1: repeat
2: Update T by maximizing

Ex∼P [T (x)] −Ex∼P̂G
[f∗(T (x))] .

3: Update G by minimizing

−Ex∼P̂G
[f∗(T (x))] .

4: until convergence.

Algorithm 7 f -GAN Tw/OBRS
1: repeat
2: Update T by maximizing

Ex∼P [T (x)] −Ex∼P̂G
[f∗(T (x))] .

3: Update cK such that

EP̂G
[aOBRS(x)] ≤ 1/K.

4: Update G by minimizing

Ex∼P̂G
[KaOBRS(x)f (

r (x)
KaOBRS(x)

)] .

5: until convergence.
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the density ratio p(x)/p̂(x). Using this density ratio, we can compute the final
f -divergence:

Df(P ∥P̃ ) = EP̃ [f (
p(x)
p̃(x))] (6.37)

= EP̃ [
p̃(x)
p̂(x)f (

p(x)
p̂(x)

p̂(x)
p̃(x))] (6.38)

= EP̂ [KaOBRS(x)f (
1

KaOBRS(x)
p(x)
p̂(x))] . (6.39)

Consequently, we propose the Algorithm 7 to train the generator with OBRS. The
discriminator is trained the same way as in the f -GAN framework, but the generator
is trained to minimize:

EP̂ [KaOBRS(x)f (
∇f∗(T (x))
KaOBRS(x)

)] . (6.40)

Note that aOBRS depends on the density ratio estimated by ∇f∗(T (x)) but also
on the constant cK . This value depends on the budget K but also on the proposal
distribution P̂ and thus needs to be updated at each iteration. To do so, we use
the Algorithm 5 presented in Section 6.2.1. In the next section, we will see how
the frequency of the update of cK can affect the quality of the generative model.
The update in cK is linear in the number of samples generated, and thus the
computational cost is similar to the traditional f -GAN framework. We will now show
the results of the training with OBRS on high-dimensional generative models.

6.3.3 Experiments

In this section, we implement our method to train a BigGAN model to minimize
DGAN(P ∥P̃ ) directly with a budget of K = 2. We will show that (1) the training with
OBRS improves the speed of convergences and that (2) it improves the diversity and
the FID of the model.
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Fig. 6.16.: Training of a BigGAN on CelebA64 with the Baseline (Hinge Loss) and minimiz-
ing DGAN without OBRS (Tw/oOBRS) and with OBRS (Tw/OBRS). The FID (↓)
is given for a budget K = 2.
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Improving the speed of convergence: We have discussed in Section 6.3 that training
with OBRS can flatten the loss landscape and avoid local minima. We show that
its effect translates into faster convergence in practice. To evaluate this effect, we
train BigGAN models with baseline loss (hinge loss), with traditional f -GAN loss
(Tw/oOBRS), or using our approach (Tw/OBRS). We can observe in Figure 6.16 the
FID during the training procedure for models trained on CIFAR-10 and CelebA. We
can see that models trained with OBRS converges faster than both the baseline and
the traditional loss f -GAN. Furthermore, we can also test this effect with several
frequencies of the update of cK . Several models are trained with the parameters cK

being updated every Nc iterations. In Figure 6.17, we show the FID for different
frequencies of the update of cK along with the time required to train the model.
We observe that the frequency of updates does not affect the speed of convergence.
Furthermore, we observe that updating cK every 10 operation takes on average
19% longer to train than DGAN without OBRS, while updating every 100 and 1000
iterations are only 1.69% and 0.03% longer.
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Fig. 6.17.: Effect on the frequency of the update of cK on the FID of a BigGAN trained on
CIFAR-10. The FID (↓) is given for different frequency of the update of cK during
training.

Improving the performances of the generative model: We have shown in Section 6.3
that training can lead to more mass-covering proposal distribution and that it can
improve the overall performance of the model for a given budget. To test this, we
train BigGAN models on CIFAR-10 and CelebA with the baseline loss, the traditional
f -GAN loss, and our approach. To test our approach in higher dimension, we also
fine-tune pre-trained models on CelebA and ImageNet. Every model is trained with
K = 2 and, consequently, the model is evaluated with OBRS with K = 2. We show the
results in Table 6.3 and Table 6.4. The FID for models trained with OBRS is generally
better than for models trained with the traditional loss f -GAN and the baseline.
However, a slight trade-off is observed for the Precision. The Recall is improved for
the models trained with OBRS. For the fine-tuned models, the improvement in Recall
is even more significant.

We have shown that training with OBRS can improve the performance of the genera-
tive model and that it can improve the speed of convergence. We have also shown
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Dataset Method FID P R
CIFAR-10 Hinge Loss 8.43 84.50 65.39
32 × 32 Tw/oOBRS 11.18 83.24 68.44

Tw/OBRS 8.98 80.09 69.63
CelebA Hinge Loss 9.33 80.23 57.78
64 × 64 Tw/oOBRS 6.33 78.28 61.02

Tw/OBRS 5.42 78.01 60.29
Tab. 6.3.: Results of training a BigGAN on different datasets. The FID (↓), the Precision (↑)

and the Recall (↑) are given for the different methods.

Dataset Method FID P R
CelebA Hinge Loss 9.33 80.23 57.78
64 × 64 Tw/OBRS 3.74 74.40 65.15

ImageNet Hinge Loss 12.18 27.75 34.33
128 × 128 Tw/OBRS 11.65 26.84 46.16

Tab. 6.4.: Results of fine-tuning a BigGAN on different datasets. The FID (↓), the Precision
(↑) and the Recall (↑) are given for the different methods.

that the frequency of update of cK does not affect the performance of the model.
Furthermore, we will now conclude this chapter and discuss the limitations and the
perspectives of the OBRS method.

6.4 Concluding Remarks and Discussion

In this chapter, we addressed the question on improving Precision and Recall:

• Question Q4: With rejection sampling under limited budget, how much can we
increase Precision and Recall of a pre-trained model?
We propose an optimal rejection scheme with limited budget. We showed
that this new sampling algorithm improves Precision but can hardly improve
Recall. Therefore, to tackle this limitation, we advocate training the model
with the rejection scheme. We have proposed a method to achieve this, and
we showed that training with the rejection scheme can improve the Precision
and the Recall of the model.

This work is this chapter contributes to help to improve generative models with
limited additional resources. However, this approach could be extended or improved
in several ways.

• Improving density ratio estimation: First, we are using the density ratio
estimated by the discriminator trained with the traditional f -GAN loss. How-
ever, the density ratio is not perfectly estimated, and this leads to a suboptimal
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acceptance function. Similarly to Chapter 5, we could use the density ratio
estimated with a discriminator trained with an auxiliary loss to improve the
quality of the estimation of the acceptance function.

• Extending the OBRS to diffusion models: Also, our method only applies to
rejection in the image space. In diffusion models, the image is generated by
a series of transformations. We could apply the rejection in the latent space
during the denoising process. This implies that the budget by sample can be
further quantized and, therefore, the rejection can be refined. The work of
Kim et al. [66] estimate the density ratio during the denoising process and
could be used to apply the rejection in the latent space.
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7.1 Summary of the Thesis

In this thesis, we have studied the trade-off between quality and diversity in genera-
tive models through the lens of the f -divergences in order to answer:

Question: How can we characterize, tune, and improve precision and recall of
Generative Models?

We have tackled these problems from a theoretical point of view first on then we
also addressed more practical aspects of training and refining neural network-based
models. We can summarize the main contributions of this thesis as follows.

Summary of the contributions:
1. We have unified several existing metrics of Precision and Recall in the f -divergence

framework by introducing the Precision-Recall Divergence and by showing that
most Precision-Recall based metrics can be expressed using this divergence. Fur-
thermore, we have showed how any f -divergence can be written as trade-offs
between Precision and Recall.

2. Equipped with the PR-Divergence, we have shown how popular generative models
can sometimes demonstrate Precision or Recall. Our analysis establishes the link
between the Lipschitz constraints of several neural networks with the occurrence
of pathological cases where the PR-Divergence is bounded.

3. Building the connection between Precision-Recall metrics and f -divergence, we
have shown that Precision-Recall Divergence can be used to fine-tune generative
models. We have proposed a new training algorithm that uses the PR-Divergence to
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balance the quality and diversity of discriminator-based models such as Generative
Adversarial Networks and Normalizing Flows.

4. Finally, we have used a more elaborate sampling algorithm to improve the quality
and diversity of the generated samples. We have shown that there exists a budget-
constraint rejection algorithm that can be optimal in terms of f -divergences. We
have also proposed a new training algorithm that uses this rejection mechanism,
the OBRS, to further improve the performance of generative models by reducing
the importance of the quality and diversity trade-off.

7.2 Open Question and future works

Our work consists of contributions both theoretical and experimental. One of the
key contribution of this thesis is the unification of Precision and Recall metrics in the
f -divergence framework. We have shown that the Precision-Recall Divergence can be
used to fine-tune between quality and diversity in generative models. However, for
the practical aspects, we have focused our work on discriminator-based models such
as Generative Adversarial Networks and Normalizing Flows. Therefore, there are still
many open questions that need to be addressed in future work to extend our results
to other types of generative models. Finally, we can also use the PR-Divergence for
uses. We present some of the most important questions that we believe are worth
investigating in the future.

7.2.1 Training fair generative models with PR-Divergence

Fairness is a crucial aspect of machine learning models, especially in generative
models where the generated samples can be used to make decisions. However, the
evaluation of fairness in generative models is still an open question. In particular,
the current fairness metrics are based on the equality of the representation of
sensitive attributes in the data distribution and the generated distribution [120, 133].
Typically, if there exists a sensitive attribute a(x) ∈ {0, 1} in the data distribution
such that P = π0P0 + π1P1, the fairness criterion is simply based on the equality of
the representation of a in P̂ = π̂0P̂0 + π̂1P̂1. For example,one traditional fairness
criterion can be expressed as

Criterion(P̂ ) = ∣π̂0 − π̂1∣ .

However, traditional metrics do not account for the differences of Precision Recall
trade-offs between attributes. For instance in Figure 7.1, we illustrate a distribution
P̂ for which the partition of the sensitive attribute are evenly distributed but the
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Fig. 7.1.: Pathological case for the usefulness of Precision-Recall Curves for fairness evalua-
tion.

trade-offs between quality and diversity per class are very different. We believe that
such a distribution can involve unfairness issues. Therefore, it raises the question
of evaluating and training fair generative models based on the Precision-Recall
Curve.

Question: How can we build a fairness criterion based on the Precision-Recall Curve to
train fair generative models?

The first step to answer this question is to define a fairness criterion based on the PR-
Curve. One possible way to do so is to a criterion based the dissimilarities between
the PR-Curves for each attribute. Then, we could use this criterion to regularize
f -divergences minimization during model training.

7.2.2 Quality and Diversity in Large Language Models

In this work we have focused on Precision and Recall to compare distributions over
the data. In other words, we are evaluating f -divergences between the distributions
P and P̂ . This work can also apply Large Language Models (LLMs). In fact, some
existing quality diversity metrics have been already adapted to assess LLMs, either
with PR-Curves IDF by Pillutla et al. [96] or support-based metrics of Precision and
Recall adapted by us in Bronnec et al. [17]. These works, among other study on
model collapse [33, 34, 54, 99] highlights that the trade-off between quality and
diversity also exists in LLMs. Therefore, it raises the question of how to adapt the
PR-Divergence to evaluate the quality and diversity of LLMs.

Question: How can we adapt the Precision-Recall Divergence to train LLMs on a specific
trade-off between quality and diversity?

The training of LLMs is traditionally autoregressive for the pretrained model and
based on Reinforcement Learning (RL) for fine-tuning. For the former one, the
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challenge is to adapt the PR-Divergence to train on conditional distributions. One
possible way to do so is to use is to upper bound the PR-Divergence by the conditional
PR-Divergence similarly to the Total Variation in the work of Ji et al. [58]. For the
latter, the challenge is to adapt the PR-Divergence to the reinforcement learning
framework. One possible way to do so is to use f -divergences minimization RL
framework [43, 65]. A potential future work would be to apply these methods to
fine-tune LLMs on different trade-offs between quality and diversity and evaluate
how it could mitigate model collapse.

7.2.3 Tuning the Precision-Recall Trade-off in Diffusion
Models

The training method we have proposed in this thesis can be applied to Genera-
tive Adversarial Networks and Normalizing Flows. However, for a few years now,
the state-of-the-art for image generation is diffusion models. In particular, Score-
Matching Diffusion Models achieve stunning results in image generation [114].
These models are trained by minimizing DKL. However, we can show that a score
matching model sθ can be trained to minimize any f -divergence between the data
distribution and the model distribution. Under mild conditions:

Df(P̂ ∥P ) = Df(P̂T ∥PT )+

+ ∫ λ(t)Ext∼Pt [
pt(xt)
p̂t(xt)

f ′′ (pt(xt)
p̂t(xt)

) ∥∇xtpt(xt) − sθ(xt)∥2]dt.

This equation shows that f -divergence can be minimized by score-matching models
if the density ratio can be estimated. Therefore, it raises the following question.

Question: How can we use tune the quality and diversity of Diffusion Models with
f -divergences minimization?

As f ′′ is mostly 0 for the PR-Divergence we could use other f -divergences, mode-
seeking or mass-covering, to tune the quality and diversity of diffusion models. To
do so, we can use the work of Kim et al. [66] to estimate the density ratio at each
time step t. Thus, by reweighing the score matching loss with the estimated density
ratio, we can tune the quality and diversity of diffusion models.
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AExtension to Bi-Lipschitz Neural
Networks

In this appendix, we discuss the extension of Section 4.4 to bi-Lipschitz neural
networks. First, we will define the bi-Lipschitz property of a function and then
discuss how the Precision-Recall Divergence can be bounded for models that are also
bi-Lipschitz.

A.1 Bi-Lipschitz Continuity

Normalizing Flows, as a bijective mapping, are typically considered to be bi-Lipschitz,
i.e. both the forward and the inverse mappings are Lipschitz continuous with
different Lipschitz constants:

Definition A.1.1 ((L1-L2)-bi-Lipschitz Continuity).
A function bijective function G ∶ Z ↦ X is (L1-L2)-bi-Lipschitz continuous if both G is
L1-Lipschitz and G−1 is L2-Lipschitz, i.e. if

∀z1, z2 ∈ Z, ∥G(z1) −G(z2)∥ ≤ L1∥z1 − z2∥ (A.1)

and

∀x1, x2 ∈ X , ∥G−1(x1) −G−1(x2)∥ ≤ L2∥x1 −x2∥. (A.2)

Although the bi-Lipschitz property is sometimes defined in the literature with L1 =
1/L2, we choose to differentiate the Lipschitz constants to allow for more general
results since in general the values differ. In particular, we can consider that G−1 =
F1 ○ . . . FK is a composition of K residual functions L-Lipschitz Fk(x) = x + fk(x)
with L < 1 which is the case in ResFlow models [22] . In that case, L2 ≤ (1 + L)K

and L1 ≥ 1/(1 −L)K .
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A.2 Pathological case for bi-Lipschitz neural
networks

In Section 4.4, we showed how the L1-Lipschitz continuity of the generator function
G can be used to compute a lower bound the PR-Divergence. We assumed the L1-
Lipschitz property of the forward mapping G, and thus applied to both Generative
Adversarial Networks, Normalizing Flows and Diffusion models. Here we also
assume the L2-Lipschitz property of the inverse mapping G−1, and thus applied to
Normalizing Flows only. Several works insist on the importance of enforcing the
Lipschitz continuity of Normalizing Flows and thus enforcing bi-Lipschitz continuity
[12, 22]. In this section, we highlight a different pathological case for models with a
L2-Lipschitz inverse mapping G−1.

We can also show that PR-Divergence can be strictly positive for some target distribu-
tions P and some generator functions G if the inverse mapping G−1 is L2-Lipschitz.
If the inverse mapping is L2-Lipschitz, it means that the forward mapping cannot
contract the mass indefinitely. Therefore, if we assume that there exists a ball BR,x

for which the target distribution P concentrates most of its weight, then G cannot
map this ball to a region smaller than BL2R,G−1(x). This concept is demonstrated
through a one-dimensional example as depicted in Figure A.2.1. Note that contrary
to the previous theorem, we can search for a high concentration ball with any center
x:

Theorem A.2.1 (Models with L2-Lipschitz inverse mapping G−1 fails to capture high
density balls).
Let P ∈ P(X ) be the target distribution defined on X ⊂ Rd, and let P̂ = G#Q where
G ∶ Z ↦ X and Q be the Gaussian distribution defined on Z ⊂ Rm. Let BR,x be the
balls of radius R centered on x. If G−1 is L2-Lipschitz, then we have the upper bound:

Dλ-PR(P ∥P̂ ) ≥ sup
R≥0,x∈X

⎛
⎜⎜⎜
⎝

λP (BR,x) −
γ (m

2 ,
L2

2R2

2 )

Γ (m
2 )

⎞
⎟⎟⎟
⎠
− ∣λ − 1∣ . (A.3)

Therefore, if there exists a ball for which the target distribution P satisfies P (BR,x) >
1
λγ (m

2 ,
L2

2R2

2 ) /Γ (
m
2 ) + ∣1 − 1/λ∣, then the PR-Divergence is strictly positive.

Proof. The function G−1 is L2-Lipschitz, thus, for every radius R ≥ 0 and x ∈ X , we
have G−1(BR,x) ⊆ BL2R,G−1(x). Therefore, we have the following.

P̂ (G−1(BR,x)) = Q(G−1(BR,x)) ≤ Q(BL2R,G−1(x)). (A.4)
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Fig. A.2.1.: Example of a target distribution for which Theorem A.2.1 applies: the subset
BR concentrates most weight in P , but P̂ (BR) = Q(G−1(BR)) can only be as
large as Q(BRL2).

Using Lemma 4.4.1, we have that:

Dλ-PR(P ∥P̂ ) = sup
A⊆X
∣λP (A) − P̂ (A)∣ − ∣λ − 1∣ (A.5)

≥ sup
R≥0,x∈X

λP (BR,x) − P̂ (BR,x) − ∣λ − 1∣ (A.6)

≥ sup
R≥0,x∈X

λP (BR,x) −Q(BL2R,G−1(x)) − ∣λ − 1∣ (A.7)

≥ sup
R≥0,x∈X

λP (BR,x) −Q((BL2R,0)) − ∣λ − 1∣ . (A.8)

Therefore, using the close form of the measure of the ball Br,0 given in Equa-
tion (4.42), we have the result.

Similar conclusions can be drawn as with Theorem referred to in Theorem 4.4.3. The
Lipschitz constant L2, associated with the inverse mapping G−1, plays a crucial role:
a higher value of L2 results in a less stringent bound. The dimension m is another
critical factor. However, unlike the case with the previously mentioned theorem, the
bound tends to become more limiting as the dimension increases.
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• Proposition 4.2.3 (Properties of the PR-Divergence) in page 59.
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• Theorem Convergence PR Div estimation
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B.1.1 Proof of Proposition 4.2.2

Proposition (PR-Divergence).
For any distributions P, P̂ ∈ P(X ) such that P, P̂ ≪ µ , then for any λ ∈ [0,+∞] the
PR-Divergence defined as

Dλ-PR(P ∥P̂ ) = ∫X p̂(x)fλ (
p(x)
p̂(x))dµ(x) (B.1)

belongs to the class of f -divergences.

Proof. An f -divergence is defined with a generator function that satisfies three
properties: lower semi-continuous, convexity and f(1) = 0. For λ < +∞, fλ can be
written as the max of two linear functions u ↦ λu and u ↦ 1, it is continuous and
convex. Moreover, for u = 1 we have fλ(1) =max(λ, 1) −max(λ, 1) = 0. For λ = +∞,
f+∞ the function is lower semicontinuous as the function is continuous on the set
]0,+∞[ the epigraph of the function is a convex set, therefore the function is convex.
Finally, f+∞(1) = 0. Consequently, the PR-Divergence is an f -divergence.

B.1.2 Proof of Proposition 4.2.3

Proposition (Properties of the PR-Divergence).
Let P, P̂ ∈ P(X ) such that P, P̂ ≪ µ and λ ∈ [0,+∞], then the following assertions
hold.

• The Fenchel conjugate f∗λ of fλ is defined on dom (f∗λ) = [0, λ] and given by:

f∗λ (t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

t/λ for λ ≤ 1,

t/λ + λ − 1 otherwise.
(B.2)

• The optimal discriminator for the dual variational form is:

T opt(x) = λsign(λp(x)
p̂(x) − 1) . (B.3)

• The reverse divergence is:

Dλ-PR(P̂ ∥P ) = λD 1
λ

-PR(P ∥P̂ ). (B.4)

• For λ = 1, we have:

D1-PR(P ∥P̂ ) = DTV(P ∥P̂ )/2. (B.5)
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Proof. • The generator function fλ of the Precision-Recall Divergence is f(u) =
max(λu, 1) −max(λ, 1) then its Fenchel conjugate function is:

f∗(t) = sup
u∈dom(f)

{ut − f(u)} (B.6)

=max(λ, 1) + sup
u∈R+
{ut −max (λu, 1)} . (B.7)

If t > λ or λ < 0, then the supu∈R+ {tu −max (λu, 1)} = ∞ for respectively
u → ∞ and u → −∞. The domain of f∗ is thus restricted to [0, λ]. Thus, for
0 ≤ t ≤ λ, the supremum is obtained for u = 1/λ since 0 is in the sub-differential
of the function in 1/λ as illustrated in Figure B.1.1 Consequently the Fenchel
conjugate of f is:

∀t ∈ [0, λ] , f∗(t) =max(λ, 1) + tλ − 1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

t/λ if λ ≤ 1,

t/λ − 1 + λ otherwise.
(B.8)

• We have that ∀x ∈ X , the optimal discriminator function T opt satisfies:

T opt(x) = ∇f (p(x)
p̂(x)) . (B.9)

And, given the expression of fλ in Equation (4.1), the function is constant on
[0, 1/λ] and linear on ]1/λ,+∞[ with a slope λ. Therefore, the derivative is:

∇fλ(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if u ≤ 1/λ,

λ if u > 1/λ,
= λsign (u − 1/λ) . (B.10)

0 1/λ

u

t1/λ− 1

t2/λ− 1

t3/λ− 1

u
t
−

m
ax

(λ
u
,1

)

t1 = 0.1× λ
t2 = 0.5× λ
t3 = 0.9× λ

Fig. B.1.1.: Illustration of the computation of f∗λ .
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and finally, the optimal discriminator is:

T opt(x) = λsign(λp(x)
p̂(x) − 1) . (B.11)

• Then we can compute the reverse Dλ-PR:

Dλ-PR(P̂ ∥P ) = ∫X p(x)fλ (
p̂(x)
p(x))dx (B.12)

= ∫X max(λp̂(x), p(x)) − p(x)max(λ, 1)dx (B.13)

= λ(∫X max(p̂(x), p(x)/λ)dx −max(1, 1/λ)) (B.14)

= λ∫X p̂(x)max(1,
p(x)
p̂(x)/λ) − p̂(x)max(1, 1/λ)dx (B.15)

= λ∫X p̂(x)f1/λ (
p(x)
p̂(x))dx (B.16)

= λD 1
λ

-PR(P ∥P̂ ). (B.17)

• Building on these results, we can show that :

DTV(P ∥P̂ ) = ∫X ∣p(x) − p̂(x)∣dµ(x) (B.18)

= ∫X max(p(x) − p̂(x), 0) +max(p̂(x) − p(x), 0)dµ(x) (B.19)

Then since D1-PR(P ∥P̂ ) = ∫X max(p̂(x), p(x)) − p(x)dx = ∫X max(p̂(x) −
p(x), 0)dx and D1-PR(P ∥P̂ ) = D1-PR(P̂ ∥P ), we have:

DTV(P ∥P̂ ) = D1-PR(P ∥P̂ ) +D1-PR(P̂ ∥P ) (B.20)

= 2D1-PR(P ∥P̂ ). (B.21)

B.1.3 Proof of Theorem 4.2.4

Theorem (PR-Curves as a function of Dλ-PR).
Given P, P̂ ∈ P(X ) such that P, P̂ ≪ µ and λ ∈ [0,+∞], the PR-Curve ∂PRD is related
to the PR-Divergence Dλ-PR(P ∥P̂ ) as follows.

αλ(P ∥P̂ ) =min(1, λ) −Dλ-PR(P ∥P̂ ). (B.22)

βλ(P ∥P̂ ) =min(1, λ) −Dλ-PR(P̂ ∥P ). (B.23)
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Conversely, suppose that there exists a strictly decreasing linear function h ∶ [0, 1]→ R+

and an f -divergence Df such that h(αλ(P ∥ P̂ )) = Df(P ∥P̂ ) for all P, P̂ ∈ P(X ), then
f(u) = c1fλ(u) + c2(u − 1).

Proof. Every point of the PR-Curves (αλ, βλ) can solely be determined by αλ(P ∥P̂ )
since βλ(P ∥P̂ ) = λαλ(P ∥P̂ ). We have to prove that αλ can be written as a function
of an f -divergence for any λ ∈ [0,+∞]. First for λ = +∞, we have the following:

D∞−PR(P ∥P̂ ) = EP̂ [1{ p(x)
p̂(x)=0}

] (B.24)

= EP̂ [1{p(x)=0}] (B.25)

= P̂ (Supp(P )), (B.26)

where Supp(P ) is the complement of the support of P . Consequently, 1 −
P̂ (Supp(P )) = P̂ (Supp(P )) = α+∞(P ∥P̂ ). Then for λ ∈ [0,+∞[, we can develop the
expression of αλ:

αλ = ∫X min (λp(x), p̂(x))dµ(x) (B.27)

= ∫X p̂(x)min(λp(x)
p̂(x) , 1)dµ(x) (B.28)

For this integral to be considered as an f -divergence, we need f to be first convex
lower semi-continuous and then to satisfy f(1) = 0. However, for every a, b ∈ R, the
min satisfies min(a, b) = a + b −max(a, b). Therefore,

αλ = ∫X p̂(x) [λp(x)
p̂(x) + 1 −max(λp(x)

p̂(x) , 1)]dµ(x) (B.29)

= λ∫X p(x)dµ(x) + 1 − ∫X max(λp(x)
p̂(x) , 1)dµ(x) (B.30)

= λ + 1 − ∫X p̂(x)max(λp(x)
p̂(x) , 1)dµ(x) (B.31)

Thus, we take fλ(u) =max(λu, 1)−max(λ, 1) defined Definition 4.2.1. The precision
becomes:

αλ = λ + 1 − ∫X p̂(x)fλ (
p(x)
p̂(x)) −max(λ, 1)∫X p̂(x)dµ(x) (B.32)

=min(λ, 1) − ∫X p̂(x)fλ (
p(x)
p̂(x))dµ(x) =min(λ, 1) −Dλ-PR(P ∥P̂ ). (B.33)

Consequently, αλ can be written as a function of an f -divergence Dλ-PR with
f(u) = max (λu, 1) − max (λ, 1). Now we prove the converse. Suppose there ex-
ists a strictly decreasing linear function h ∶ [0, 1]→ R+ and an f -divergence Df such
that h(αλ(P ∥P̂ )) = Df(P ∥P̂ ) for all P, P̂ ∈ P(X ).
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For P = P̂ , we get from the definition of αλ that αλ(P ∥P ) =min(λ, 1). Hence,

0 = Df(P ∥P ) = h(αλ(P ∥P )) = h(min(λ, 1)). (B.34)

Combining the above with the fact that h is a strictly decreasing linear function, we
see that for any fixed λ, h must be of the form, h(u) = cλ(min(λ, 1)−u), where cλ > 0
is a constant. Now,

Df(P ∥P̂ ) = h(αλ(P ∥P̂ )) = cλ [min(λ, 1) − αλ(P ∥P̂ )] = cλDλ-PR(P ∥P̂ ), (B.35)

where the last equality follows from the first part of the theorem, which shows
that αλ(P ∥P̂ ) =min(λ, 1) −Dλ-PR(P ∥P̂ ). Rewriting the above inequality, we get the
following.

Dλ-PR(P ∥P̂ ) =
1
cλ
Df(P ∥P̂ ) = D 1

cλ
f(P ∥P̂ ). (B.36)

By the uniqueness theorem of f -divergence f(u) = c1
cλ

fλ(u) + c2(u − 1) for some
constants c1, c2 ∈ R.

B.1.4 Proof of Theorem 4.3.1

Theorem (f -divergence as weighted sums of PR-divergences).
For any P, P̂ ∈ P(X ) such that P, P̂ ≪ µ. If the generator function f is twice differen-
tiable, then:

Df(P ∥P̂ ) = ∫
∞

0

1
λ3 f ′′ ( 1

λ
)Dλ-PR(P ∥P̂ )dλ, (B.37)

Proof. Let c ∶ [0,+∞[↦] −∞,+∞] be a C2 function . The goal is to express any f(u)
for all u ∈ [0,+∞[ as a weighted average of fPR

λ (u) over λ ∈ [0, 1/umin]:

∀u ∈ [0,+∞[,∫
∞

0
c′′(λ)fλ(u)dλ = ∫

∞

0
c′′(λ) [max(λu, 1) −max (λ, 1)]dλ (B.38)

We can split the integrals to evaluate max(λu, 1) and max(λ, 1):

∫
∞

0
c′′(λ)fλ(u)dλ = ∫

∞

0
c′′(λ)max(λu, 1)dλ

− ∫
∞

0
c′′(λ)max (λ, 1)dλ

(B.39)
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= ∫
1/u

0
c′′(λ)max(λu, 1)dλ

+ ∫
∞

1/u
c′′(λ)max(λu, 1)dλ

− ∫
1

0
c′′(λ)max (λ, 1)dλ

− ∫
∞

1
c′′(λ)max (λ, 1)dλ

(B.40)

= ∫
1/u

0
c′′(λ)dλ

+ u∫
∞

1/u
c′′(λ)λdλ

− ∫
1

0
c′′(λ)dλ

− ∫
∞

1
c′′(λ)λdλ.

(B.41)

Integrating by part for any a, b ∈ R, we have: ∫ b
a c′′(λ)λdλ = [c′(λ)λ]ba − ∫

b
a c′(λ)dλ.

Thus, it satisfies:

∫
∞

0
c′′(λ)fPR

λ (u)dλ = ∫
1/u

0
c′′(λ)dλ

+ u [c′(λ)λ]∞1/u − u∫
∞

1/u
c′(λ)dλ

− ∫
1

0
c′′(λ)dλ

− [c′(λ)λ]∞1 + ∫
∞

1
c′(λ)dλ

(B.42)

= [c′(λ)]1/u0
+ u [c′(λ)λ]∞1/u − u [c(λ)]∞1/u

− [c′(λ)]10
− [c′(λ)λ]∞1 + [c(λ)]

∞
1

(B.43)

= c′ (1
u
) − c′(0)

+ u lim
v→∞

c′ (v) v − uc′ (1
u
) 1

u
− u lim

v→∞
c (v) + uc(1

u
)

− c′(1) + c′ (0)
− lim

v→∞
c′ (v) v + c′(1) × 1 + lim

v→∞
c (v) − c(1)

(B.44)

= [ lim
v→∞
(c′ (v) v − c (v))] (u − 1)

+ uc(1
u
) − c(1).

(B.45)

We would like ∫ ∞0 c′′(λ)fPR
λ (u)dλ to be equal to f on [0,+∞[. Since the two

f -divergences generated by f and g are equal if there exists a γ ∈ R such that
f(u) = g(u)+ γ(u− 1), the divergence generated by u↦ ∫ ∞0 c′′(λ)fPR

λ (u)dλ is equal
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to the divergence generated by u↦ uc ( 1
u
) − c(1). Therefore, we require the function

c to satisfy:

∀u ∈ [0,+∞], f(u) = uc(1
u
) − c(1).

Differentiating with respect to u, we have:

f ′(u) = c(1
u
) − 1

u
c′ (1

u
) . (B.46)

And finally:

f ′′(u) = − 1
u2 c(1

u
) + 1

u2 c′ (1
u
) + 1

u3 c′′ (1
u
) (B.47)

= 1
u3 c′′ (1

u
) . (B.48)

Consequently, with λ = 1/u, we have that:

∀λ ∈ [0,+∞], c′′(λ) = 1
λ3 f ′′ ( 1

λ
) . (B.49)

With such a results we can write any f -divergence as:

Df(P ∥P̂ ) = ∫X p̂(x)f (p(x)
p̂(x))dµ(x)

= ∫X p̂(x)∫
M

0

1
λ3 f ′′ ( 1

λ
) fPR

λ (p(x)
p̂(x))dλdµ(x)

= ∫
M

0 ∫X
1
λ3 f ′′ ( 1

λ
) p̂(x)fPR

λ (p(x)
p̂(x))dλdµ(x)

= ∫
M

0

1
λ3 f ′′ ( 1

λ
)[∫X p̂(x)fPR

λ (p(x)
p̂(x))dµ(x)]dλ

= ∫
M

0

1
λ3 f ′′ ( 1

λ
)Dλ-PR(P ∥P̂ )dλ.

B.1.5 Proof of Lemma 4.4.1

Lemma B.1.1 (Probabilistic Formulation of PR-Divergence).
For any P, P̂ ∈ P(X ) such that P, P̂ ≪ µ and λ ∈ [0,+∞], the PR-Divergence can be
expressed as:

Dλ-PR(P ∥P̂ ) = sup
A⊆X
∣λP (A) − P̂ (A)∣ − ∣λ − 1∣ . (B.50)
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Proof. First, we show that for any λ ∈ [0,+∞]:

Dλ-PR(P ∥P̂ ) =
1
2 ∫X ∣λp(x) − p̂(x)∣dµ(x) − 1

2
∣λ − 1∣. (B.51)

We have that:

1
2 ∫X ∣λp(x) − p̂(x)∣dµ(x) = 1

2 ∫X max(λp(x) − p̂(x), 0)

+max(p̂(x) − λp(x), 0)dµ(x)

(B.52)

= ∫X max(λp(x), p̂(x))dµ(x)

− 1
2
(λ∫X p(x)dµ(x) + ∫X p̂(x)dµ(x))

(B.53)

= ∫X max(λp(x), p̂(x))dµ(x) −max(λ, 1)dµ(x)

+ 1
2
(2 max(λ, 1) − λ − 1)

(B.54)

= Dλ-PR(P ∥P̂ ) +
1
2
∣λ − 1∣ . (B.55)

Then, we can prove that for any distributions P, P̂ ∈ P(X ) and λ ∈ [0,+∞], we have:

1
2 ∫X ∣λp(x) − p̂(x)dµ(x)∣ = sup

A⊆X
∣λP (A) − P̂ (A)∣ − 1

2
∣λ − 1∣ . (B.56)

As a matter of fact, let B = {λp(x) − p̂(x) ≥ 0}. Then we have:

∫B λp − p̂dµ = ∫X /B p̂ − λpdµ + λ − 1. (B.57)

Therefore, on one side, we can write that:

∫X ∣λp(x) − p̂(x)∣dµ = 2∫B λp − p̂dµ + −1λ (B.58)

≤ 2 sup
A⊆X
∣∫A λp − p̂dµ∣ − ∣λ − 1∣ , (B.59)

since the supremum is reached for A = B or A = X /B. Then, on the other side, we
have for any A ⊆ X :

∣∫A λp − p̂dµ∣ =max (∫A λp − p̂dµ,∫A p̂ − λpdµ) (B.60)

≤max (∫B λp − p̂dµ,∫X /B p̂ − λpdµ) (B.61)

≤max (∫B λp − p̂dµ,∫B λp − p̂dµ + 1 − λ) (B.62)

≤max (1
2 ∫X ∣λp − p̂∣dµ + 1

2
∣λ − 1∣, 1

2 ∫X ∣λp − p̂∣dµ − 1
2
∣λ − 1∣) (B.63)
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= 1
2 ∫X ∣λp − p̂∣dµ + 1

2
∣λ − 1∣. (B.64)

Therefore, we have the result:

sup
A⊆X
∣∫A λp − p̂dµ∣ − ∣λ − 1∣

2
≤ 1

2 ∫X ∣λp − p̂∣dµ ≤ sup
A⊆X
∣∫A λp − p̂dµ∣ − ∣λ − 1∣

2
. (B.65)

Consequently, we can show Equation (B.56). Finally, combining Equations (B.51)
and (4.37), we have the result:

Dλ-PR(P ∥P̂ ) = sup
A⊆X
∣λP (A) − P̂ (A)∣ − ∣λ − 1∣ . (B.66)

B.2 Proofs of Chapter 6

B.2.1 Proof of Theorem 6.2.1

Theorem (Optimal Acceptance Function).
For a sampling budget K ≥ 1 and finite X , the solution to the problem (6.9) is,

aOBRS(x) =min(p(x)
p̂(x)

cK

M
, 1) , (B.67)

where cK ≥ 1 is such that Ex∼p̂[aOBRS(x)] = 1/K.

Proof. The goal is to find an acceptance function a(x) that first minimizes the f -
divergence between the target distribution P and the distribution after the rejection
process P̃a. With a budget of K, the average acceptance rate is 1/K. The function a

is the solution of the problem:

min
a

Df(P ∥P̃a)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

P (acceptance) ≥ 1/K
∀x, 0 ≤ a(x) ≤ 1

(B.68)

First, we can consider Df(P̃a∥P ) instead of Df(P ∥P̃a) without loss of generality:
This is because Df(P ∥P̃a) = Df ′(P̃a∥P ) for f ′ ∶ x↦ xf(1/x). Further, the solution to
the optimal a(x) turns out to be independent of f .
Moreover, we can assume that the budget is always lower that the unlimited budget.
In other terms, instead of forcing the acceptance rate to be greater to 1/K we
can force is to be exactly equal to 1/K. Then, the probability of acceptance being
P (acceptance) = EP̂ [a(x)], we can write an equivalent problem as:

140 Chapter B Mathematical Supplementary



min
a

Df(P̃a∥P )

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

EP̂ [a(x)] = 1/K
∀x, 0 ≤ a(x) ≤ 1

(B.69)

Using the definition of the densities in the rejection sampling context, p̃a(x) =
Kp̂(x)a(x), the problem is equivalent to:

min
a

EP [f (
Kp̂(x)a(x)

p(x) )]

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

EP̂ [a(x)] = 1/K
∀x, 0 ≤ a(x) ≤ 1

(B.70)

Switching to the discrete case, the problem becomes :

min
a∈RN

N

∑
i

pif (ai
p̂iK

pi
)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑N
i p̂iai = 1/K
∀i, 0 ≤ ai ≤ 1

(B.71)

The Lagrangian function associated with the problem B.71 is:

L(a, µ, λ1, λ2) =
N

∑
i

pif (ai
p̂iK

pi
) + µ [aT p̂ − 1/K] + (a − 1)T λ1 − aT λ2 (B.72)

All constraints are affine and the objective function is a convex function, therefore
the optimal vector a⋆ satisfies the KKT conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇aiL(a⋆, µ⋆λ⋆1 , λ⋆2) =Kp̂i∇f (a⋆i
p̂iK
pi
) + µ⋆p̂i + (λ⋆1i − λ⋆2i) = 0, ∀i

∑i a∗i p̂i = 1/K
λ⋆1i(a⋆i − 1) = 0, ∀i

λ⋆2ia
⋆
i = 0, ∀i

λ⋆1i, λ⋆2i ≥ 0,∀i

(B.73)

Using the 1st condition:

a⋆i =
pi

p̂iK
[∇f]−1 (λ⋆2i − λ⋆1i

Kp̂i
− µ/K) (B.74)

B.2 Proofs of Chapter 6 141



Since [∇f]−1 = ∇f∗:

a⋆i =
pi

p̂iK
[∇f∗] (λ⋆2i − λ⋆1i

p̂iK
− µ/K) (B.75)

All the usual f∗ are strictly increasing functions. Therefore, according to Eq B.75, all
ai > 0. Thus all λ⋆2i = 0. The KKT conditions B.73 become :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kp̂i∇f (a⋆i
p̂iK
pi
) + µ⋆p̂i + λ⋆1i = 0, ∀i

∑i a∗i p̂i = 1/K
λ⋆1i(a⋆i − 1) = 0,∀i

λ⋆1i ≥ 0,∀i

(B.76)

And thus :

a⋆i =
pi

p̂iK
[∇f∗] (− λ⋆1i

p̂iK
− µ/K) (B.77)

To get the full formula for a⋆i , we need to compute the λ1is. For this purpose, let us
use strong duality to reformulate our problem:

min
a

max
λ≥0,µ

N

∑
i

pif (ai
p̂iK

pi
) + µ [aT p̂ − 1/K] + (a − 1)T λ1 (B.78)

= max
λ≥0,µ

min
a

N

∑
i

pif (ai
p̂iK

pi
) + µ [aT p̂ − 1/K] + (a − 1)T λ1 (B.79)

Then, we can use the Fenchel Conjugate:

min
a

N

∑
i

p∗i f (ai
p̂iK

p∗i
) + µ [aT p̂ − 1/K] + (a − 1)T λ1

= min
a

N

∑
i

p∗i [f (ai
p̂iK

p∗i
) − ai (

−µp̂i − λ1i

pi
)]

− µ/K − 1T λ1

= − sup
a
{

N

∑
i

p∗i [ai (
−µp̂i − λ1i

pi
) − f (ai

p̂iK

p∗i
)]}

− µ/K − 1T λ1

= −
N

∑
i

[p∗i f∗ (− p∗i
p̂iK

µp̂i + λ1i

pi
)] − µ/K − 1T λ1

= −
N

∑
i

[p∗i f∗ (−µ/K − λ1i

p̂iK
)] − µ/K − 1T λ1

(B.80)

Define ui = λi1
p̂i

, assuming p̂i > 0 everywhere. Note that the constraints λi1 ≥ 0 and
ui ≥ 0 are equivalent. The above equation becomes
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sup
λ1≥0
L (a⋆, µ⋆, λ1, λ⋆2) = sup

u≥0
−

N

∑
i

p∗i f⋆ (− (µ⋆ + ui) /K) −
N

∑
i

p̂iui − µ⋆/K (B.81)

Let us make another change of variable to make a conjugate form appear. Define
vi = − (µ⋆ + vi). So ui = −µ⋆ − vi and the constraint ui ≥ 0 becomes vi ≤ −µ⋆. Also,
define g(t) = f(Kt). Then g∗(t) = f∗( t

K ). Above equation becomes

sup
λ1≥0
L (a⋆, µ⋆, λ1, λ⋆2) = sup

v≤−µ⋆

N

∑
i

p̂ivi −
N

∑
i

pig
∗ (vi) − µ⋆ (K − 1) (B.82)

Recall that arg supt ⟨a, t⟩ − f(t) = ∇f∗(a) and arg supt ⟨a, t⟩ − f∗(t) = ∇f(a). Thus,
given µ⋆ we can compute the optimal values of vi one by one as follows:

v⋆i = arg sup
vi≤−µ⋆

p̂ivi − pig
∗ (vi)

= arg sup
vi≤−µ⋆

p̂i

pi
vi − g∗ (vi)

=min(−µ⋆,∇g ( p̂i

pi
))

So u⋆i = max (0,−µ⋆ −∇g ( p̂i

pi
)). This gives us the optimal values of λ⋆i1. Note that

∇g(t) =K∇f (Kt). Replacing λ⋆1i

p̂i
by u⋆i in the formula of a⋆i gives us:

a⋆i =
pi

p̂iK
∇f∗ (−µ⋆/K −max (0,−µ⋆ −∇g ( p̂i

pi
) /K))

= pi

p̂iK
∇f∗ (−µ⋆/K +min(0, µ⋆ +∇g ( p̂i

pi
) /K))

= pi

p̂iK
∇f∗ (min(−µ⋆,∇g ( p̂i

pi
)) /K)

= pi

p̂iK
∇f∗ (min(−µ⋆/K,∇f ( p̂iK

pi
))) .

Note that ∇f∗ is strictly increasing, thus:

a∗i =
pi

p̂iK
min(∇f∗ (−µ⋆

K
) ,

p̂iK

pi
)

=min( pi

p̂iK
∇f∗ (−Kµ⋆) , 1) .

Note that ∇f∗ (−µ⋆/K) is a constant. So the optimal acceptance function under
budget looks like a(x) =min (1, c

p(x)
p̂(x)) for some constant c defined by K only as:

∫X min (p̂(x), cp(x))dµ(x) = 1/K. (B.83)
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To facilitate the understanding of c, we can set this constant to be equal to c/M
instead. Thus,

a(x) =min(p(x)
p̂(x)

c

M
, 1) . (B.84)

With that notation, c ≥ 1 and if the optimal unlimited acceptance function is obtained
with c = 1:

a(x) =min(p(x)
p̂(x)

1
M

, 1) = p(x)
p̂(x)M , (B.85)

which concludes the proof.

B.2.2 Proof of Theorem 6.2.3

Theorem (Precision and Recall Improvement).
Let P, P̂ ∈ P(X ) be two distributions such that P, P̂ ≪ µ and aOBRS be the optimal
acceptance function for a budget K defined in Theorem 6.2.1. For any (α, β) ∈
PRD(P, P̂ ) we have (α′, β) ∈ PRD(P, P̃aOBRS) with α′ =min {1, Kα}.

Proof. First, with a(x) =min (1, ck

M
p(x)
p̂(x)), let us recall that

p̃a(x) =Kp̂(x)a(x) (B.86)

=min(Kp̂(x), KcK

M
p(x)) . (B.87)

Thus:

αλ(P ∥P̃a) = ∫X min (λp(x), p̃(x))dµ(x) (B.88)

= ∫X min(λp(x), Kp̂(x), KcK

M
p(x))dµ(x). (B.89)

For λ ≥KcK/M :

αλ(P ∥P̃a) = ∫X min(Kp̂(x), KcK

M
p(x))dµ(x) (B.90)

=K ∫X min(cK

M
p(x), p̂(x))dµ(x) (B.91)

=KEP̂ [min(cK

M

p(x)
p(x) , 1)] (B.92)

=K
1
K

by definition of cK , (B.93)

= 1. (B.94)
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Thus, under a given threshold KcK/M , the precision is constant and equal to 1. For
λ ≤KcK/M :

αλ(P ∥P̃a) = ∫X min (λp(x), Kp̂(x))dµ(x) (B.95)

=K ∫X min( λ

K
p(x), p̂(x))dµ(x) (B.96)

=Kαλ/K(P ∥P̂ ). (B.97)

Finally, with αλ = λβλ,

βλ(P ∥P̃a) =
K

λ
αλ/K(P ∥P̂ ) =

K

(λ)
λ

K
βλ/K(P ∥P̂ ) = βλ/K(P ∥P̂ ), (B.98)

Therefore we have two regimes:

• For λ ≥ KcK

M :

αλ (P ∥P̃aOBRS) = 1 and βλ (P ∥P̃aOBRS) = 1/λ

• For λ ≤ KcK

M :

⎧⎪⎪⎪⎨⎪⎪⎪⎩

αλ(P ∥P̃aOBRS) =Kαλ/K(P ∥P̂ )
βλ(P ∥P̃aOBRS) = βλ/K(P ∥P̂ )

This can be seen as a vertical scaling of the PR-Curve. For a given point (α, β) in
PRD(P ∥P̂ ), then the point with the same β in PRD(P ∥P̃ ) has a Precision Kα, up
to a certain saturating level (α < 1).
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In this appendix, we provide additional details on the experiments conducted in
Chapter 5 and Chapter 6. We focus on the implementation details such the hyperpa-
rameters used for training and the architectures. We will discuss the experiments in
the order they are presented in the main text:

• In Appendix C.1.1, we present the naive approach to tune the quality and
diversity using the PR-Divergence discussed in Section 5.1 (page 76).

• In Appendix C.1.2, we present the experiments conducted on 2D Gaussians
using RealNVP discussed in Section 5.3.1 (page 87).

• In Appendix C.1.3, we present the experiments conducted on MNIST and
FashionMNIST using GLOW discussed in Section 5.3.2 (page 88).

• In Appendix C.1.4 and Appendix C.1.5, we present the experiments conducted
with BigGANs discussed in Section 5.3.3 (page 91).

• In Appendix C.2.1 and Appendix C.2.2, we present the rejection sampling on
2D Gaussians, CelebaA and CIFAR-10 discussed in Section 6.2.3 (page 108).

• In Appendix C.2.3, we present the parameter landscape of a GAN trained on
MNIST discussed in Section 6.3.1 (page 113).

• In Appendix C.2.4, we present the experiments conducted on BigGAN using
the OBRS discussed in Section 6.3.3 (page 119).
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The code for the BigGAN experiments is available at https://github.com/AlexVerine/
PrecisionRecallGan and at https://github.com/AlexVerine/RejectBigGan.

C.1 Experiments in Chapter 5

C.1.1 Naive Approach with BigGAN

The goal of this experiment is to show that using the original framework of f -GAN
applied to the Precision-Recall Divergence does not work as expected. To do so,
we use the BigGAN architecture as it is a well-known model, among the SOTA
models and easy to train. We have used the official Github repository1 of Brock et al.
[16] to train BigGAN with PyTorch [95], and we have changed the original hinge
loss in order to fit the f -GAN framework. We have run our experiment training
the same BigGAN with the same hyperparameters as the original paper: Adam
optimizer, learning rates of 5.10−5 and 2.10−4 for the generator and the discriminator,
batch size of 128. To make sure that the model is failing to train because of the
PR Divergence and not any f -divergence, we have trained several models with
different f -divergence (χ2, Kullback-Leibler, Jensen-Shannon and Total Variation)
with learning rates from 10−5 to 10−3 and several seeds, and we have observed
the same behavior: models trained with the hinge loss, χ2, Kullback-Leibler and
Jensen-Shannon divergences are able to train even if some training instability is
observed (early mode collapse), and models trained with the PR Divergence (and
the TV) are not able to train at all.

C.1.2 RealNVP on 2D Gaussians

In Section 5.3.1, we have show how a model can be tuned by minimizing the PR-
Divergence using our approach. To do so, we choose a model with low expressivity.
Moreover, to avoid the mode collapse that can occurs easily in smaller dimension,
we chose to use a Normalizing Flows trained for a few iterations with the MLE
objective and then use our approach to specifically minimize any PR-Divergence.
To do so, we use a RealNVP [31] for the generator G. We use an 8-coupling step
composed of each of 2 linear layers 2-256-2 with LeakyRelu activation in between.
For the discriminator, we used a 4 linear layers 2-1024-512-256-1 neural network
with LeakyRelu activation between layers. For both, we use Adam optimizer with a
learning rate of 2.10−5 for G and 1.10−4 for T . G has 540k parameters and 660k for
T .

1https://github.com/ajbrock/BigGAN-PyTorch
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C.1.3 GLOW on MNIST and FashionMNIST

In Section 5.3.2, we have shown how a model can be tuned by minimizing the
PR-Divergence using our approach on small dimensional real-world datasets such
a MNIST and FashionMNIST. The training procedure is relatively close. For both
datasets, we use a multiscale GLOW [70]. The model has three levels of processing:
images of size 4 × 16 × 16, 16 × 8 × 8 and 64 × 8 × 8. Each level has 16 blocks of affine
coupling with 3 layers of 512 channels of convolutional operations, leading to a
total of 85.2M parameters. For the discriminator, we use a 1024-1024-512-256-1
linear layers neural network with LeakyRelu activation between layers, with 1.7M
parameters. Both are trained with Adam using a learning rate of 1.10−5 for T and
1.10−6 for G with a batch size of 64. For both dataset, we train a model for 250
epochs using maximum likelihood estimation (MLE) with 4 GPUs V100 (∼ 200
hours). The models are then fine-tuned with their different losses on 12 V100 GPUs
for 30 epochs (∼ 2 hours). For two epochs, we train the discriminator only, and then
we train both models alternatively following our approach.

C.1.4 BigGAN on CIFAR-10 and CelebA64

While training large Normalizing Flows using discriminator is not popular in the
community, training GANs is a common practice. Therefore, we stick our experiments
to popular settings and datasets. We chose the BigGAN as its performance are close
to SOTA with a much lower computational cost of training. To do this, we modify the
official implementation of PyTorch of BigGAN by Brock et al. [16] to incorporate our
method. We use the exact same hyperparameters as the original framework (Adam
optimizer, learning rates of 5.10−5 and 2.10−4 for the generator and the discriminator,
batch size of 128). Doing so, G and T respectively count 4.3M and 4.2M parameters
for CIFAR-10 and 32.0M and 19.5M for CelebA64. CIFAR-10’s models are trained on
4 V100 16 GB GPUs with a batch size of 128 for approximately 100k iterations (∼ 7
hours), while CelebA64’s models have been trained on 4 V100 32 GB GPUs with a
batch size of 128 for 95k iteration (∼ 20 hours).

C.1.5 BigGAN on ImageNet128 and FFHQ256

We have also fine-tuned BigGAN on ImageNet128 and FFHQ256. For the pre-train
weights of the models, we have used the weights provided by Brock et al. [16]
for ImageNet128 and a model trained by us for FFHQ256. For ImageNet128, the
generator has 80.0M parameters and the discriminator 90M parameters. The models
are trained on 8 A100 80 GB for 10k iterations (∼ 2 days) using lower learning
rates than the pre-training: 1.10−5 for both networks. Similarly for FFHQ256, the
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generator has 37M parameters and the discriminator 47M parameters. The models
are trained on 8 A100 80 GB for 10k iterations (∼ 1.5 days) using lower learning
rates than the pre-training: 1.10−5 for both networks.

C.2 Experiments in Chapter 6

C.2.1 Rejection Algorithms on 2D Gaussians

Similarly to Section 5.3.1, we aim to train a generative model on a synthetic 2D
dataset. However, in this section we compare our result to alternative methods
and therefore we use the same model as in Che et al. [20] (one of the alternative
methods). We use a generator composed of 4 linear layers 2-256-512-1024-2 with
LeakyRelu activations for a total of 659k parameters. The discriminator is composed
of 4 linear layers 2-1024-512-256-1 with LeakyRelu activations for a total of 659k
parameters. We use Adam optimizer with a learning rate of 2.10−5 for G and for T .
We train the model for 100k iterations on a single GPU with a batch size of 4096 for
4000 epochs (∼ 1 hour).

C.2.2 OBRS on BigGAN and EDM

In Section 6.2.3, we have shown how the OBRS can be used to train a generative
model. We have used the same BigGAN architecture as in Appendix C.1.4 and
Appendix C.1.5 and the same hyperparameters. We have used the pretrained model
we have used in baseline in Appendix C.1.4. However, the original BigGAN is trained
with the hinge loss which offers no guaranty of the density ratio estimation [9].
Therefore, we fine-tune the discriminator using the Jensen-Shannon divergence with
the exact same hyperparameters as the original training except the learning rate of
1.10−6. We have trained the model for 10k iterations on 4 V100 16 GB GPUs (∼ 1
hour). For the EDM we have use the discriminator pre-trained by Kim et al. [66] on
the diffusion models EDM of Karras et al. [61]. In the latter experiment, no training
or fine-tuning is needed.

C.2.3 Parameter Landscape of OBRS

In Section 6.3.1, we have shown the parameter landscape of a GAN trained on
MNIST. We have used a shallow generator composed of 4 linear layers 100-256-
512-1024-784 with LeakyRelu activations for a total of 1.5M parameters. The
discriminator is composed of 4 linear layers 784-1024-512-256-1 with LeakyRelu
activations for a total of 1.5M parameters. We use Adam optimizer with a learning
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rate of 2.10−4 for G and for T . We train the model for 35k iterations on 2 A100 80 GB
GPUs with a batch size of 512 (∼ 3 hours). We freeze the training at 35k iterations
to define θ0 when the training as already converged. Furthermore, we add a random
noise to the parameters vector and restart training twice for 5k iterations to defined
θ1 and θ2. We have used the same hyperparameters as the original training. To
compute the loss landscape we use a generator using the same architecture with
a parameter vector θ build with θ0, θ1 and θ2. We fine-tune the discriminator with
the Jensen-Shannon divergence with a learning rate of 1.10−6 for 1k iterations on
2 A100 80 GB GPUs with a batch size of 512 (∼ 5 minutes) in order to have a
better estimation of the density ratio p(x)/p̂(x) . Using this discriminator and the
generator to generate samples, we train a second generator with one linear layer
784-1 to estimate p(x)/p̃(x) with a learning rate of 2.10−6 for 500 iterations on 2
A100 80 GB GPUs with a batch size of 512 (∼ 1 minutes). This second discriminator
is then used to compute the loss landscape by computing the primal approximation
of DGAN(P ∥P̃ ).

C.2.4 Training with OBRS on BigGAN

In Section 6.3.3, we have shown how model can be trained to directly minimize
the divergence between the target distribution and the refined distribution. To do
we train BigGAN models with the same hyperparameters as in Appendix C.1.4 and
Appendix C.1.5. The only difference is that we trained every model with three
different losses: the Jensen-Shannon divergence, the hinge loss and the Jensen-
Shannon divergence with the OBRS. We plot the FID during training to compare the
different methods, but the FID is computed for the refined distribution only.

Our perspective on the experiments

In this appendix, we have presented the details of the experiments conducted in
Chapter 5 and Chapter 6. We have shown that the Precision-Recall Divergence can be
used to tune generative models between quality and diversity. We have also shown
how Rejection can be used to improve the quality and the diversity of generative
models. Our approaches aim to be as general as possible as long as the density ratio
is tractable. For that reason we are using discriminator-based models, and thus we
have applied our methods to GANs and especially BigGAN in higher dimension. We
showed that Normalizing Flows could also be trained, and Diffusion models could
also be improved. Our methods are not limited to a specific architecture or dataset,
and we believe that they can be applied to tune any GANs and to any Normalizing
Flows and to improve any generative model.
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DRésumé détaillé

D.1 Introduction

D.1.1 Contexte et Motivation

L’intelligence artificielle (IA) et l’apprentissage automatique (ML) se sont répandus
dans divers secteurs, provoquant des changements révolutionnaires dans de nom-
breuses industries. Les systèmes d’IA ont la capacité d’apprendre des modèles à partir
de données et de prendre des décisions intelligentes, ce qui a permis des avancées
dans des domaines tels que l’analyse d’images, le traitement du langage naturel et la
conduite autonome. Un aspect crucial du ML, la modélisation générative, est devenu
un axe central, capable de créer de nouvelles instances de données ressemblant à
des exemples du monde réel.

Les modèles génératifs cherchent à reproduire la distribution sous-jacente d’un
ensemble de données pour générer de nouveaux échantillons cohérents. Cette
tâche a suscité un intérêt croissant pour diverses applications créatives et pratiques,
y compris la synthèse d’images pour les graphiques informatiques, le transfert
de style en art, l’augmentation de données pour l’apprentissage automatique, la
conception de molécules de médicaments en pharmacologie et la synthèse vocale
dans le traitement du langage naturel. Dans le domaine du traitement d’images,
des modèles tels que les Generative Adversarial Networks (GANs), les Variational
Autoencoders (VAEs), les Normalizing Flows et les Diffusion models ont démontré
leur efficacité à produire des données de haute qualité dans divers domaines.

Formellement, considérons une distribution cible inconnue P définie dans l’espace
d’échantillons X . Un modèle génératif est une distribution P̂G définie par la fonction
de mapping G d’un espace latent Z vers X et une distribution Q définie sur Z. La
fonction de mapping G est construite, c’est-à-dire entraînée, de manière à ce que P̂G

approche P . Cependant, en pratique, P̂G n’est jamais égal à P .

Comparant les résultats de deux modèles prometteurs, comme DALL-E 2 d’OpenAI
et Midjourney, on observe des nuances. Les échantillons de Midjourney semblent
plus convaincants pour les observateurs humains, tandis que ceux de DALL-E 2
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peuvent parfois manquer de certains détails, influençant ainsi la perception des
performances du modèle. Toutefois, DALL-E 2 parvient à capturer une plus grande
variété de scénarios, de contextes, de sujets et d’ethnicités, encapsulant ainsi mieux
la distribution sous-jacente.

D.1.2 Problématique

Pourquoi cette limitation survient-elle ? La première hypothèse est qu’elle reflète
l’expressivité limitée des modèles génératifs existants. Idéalement, un modèle
avec une expressivité illimitée correspondrait parfaitement à la distribution cible
P , capable de générer des échantillons à la fois diversifiés et de haute qualité.
Inversement, un modèle fortement restreint ne pourrait générer que des échantillons
avec une haute fidélité mais une faible diversité ou une gamme plus large mais mal
générée. Bien que les modèles modernes aient considérablement progressé, leur
expressivité reste quelque peu limitée.

En parallèle avec les tâches de classification, les limitations de performance peuvent
être en partie attribuées à la régularisation imposée sur la fonction de mapping G.
À mesure que les modèles de deep learning ont grandi exponentiellement en taille
et en profondeur, certaines régularisations sont devenues cruciales pour maintenir
leur stabilité dans des scénarios génératifs. Certaines études suggèrent que, sous des
hypothèses spécifiques concernant la déconnexion du support de P , les limitations
de performance peuvent être attribuées à des contraintes imposées sur la fonction G

et en particulier aux constantes de Lipschitz. Cependant, il est crucial de noter que
ces publications se concentrent principalement sur des métriques très spécifiques sur
P ou sur des métriques exclusivement liées à la qualité, sans considérer la diversité
et la qualité séparément.

Observant ces limitations, la communauté a principalement dirigé ses efforts vers des
modèles capables de générer des sorties de haute qualité. Cependant, en fonction
des cas d’utilisation, les modèles génératifs peuvent nécessiter des échantillons
de haute qualité pour la génération d’images et de vidéos haute résolution, la
synthèse artistique ou la conception de modèles 3D. Alternativement, ils peuvent
être requis pour générer des échantillons très diversifiés pour des applications
comme l’augmentation de données, la découverte de médicaments ou la détection
d’anomalies. Les exigences et limitations divergentes révèlent un compromis crucial
entre la qualité des échantillons et leur diversité.
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D.1.3 Problématique de la Thèse

Ces motivations soulignent les questions et les défis fondamentaux abordés dans
cette thèse. À travers une investigation approfondie des modèles génératifs, nous
visons à répondre à la question suivante :

Question: Comment caractériser, ajuster et améliorer la précision et le rappel des
modèles génératifs ?

Pour aborder cette question, nous divisons le problème en deux composants :
l’évaluation et l’amélioration du modèle. Initialement, notre attention est dirigée
vers l’évaluation de la Précision (c’est-à-dire la qualité des échantillons) et du Rappel
(c’est-à-dire la diversité des échantillons). Ensuite, nous explorons des stratégies
pour améliorer la précision ou le rappel du modèle.

Pour répondre à la question de la caractérisation de la précision et du rappel pour
les modèles génératifs, nous avons besoin d’une définition cohérente. La première
question que nous aborderons est :

Question 1: Comment unifier les définitions de la précision et du rappel pour les
modèles génératifs ?

Pour ce faire, nous regrouperons les différentes définitions dans le cadre des f -
divergences. Nous montrerons que la définition des courbes PR peut être écrite
comme une famille de f -divergences, et nous écrirons chaque autre définition dans
notre cadre. Une fois un système d’évaluation unifié établi, nous pourrons analyser
ces métriques et leur lien avec la régularisation.

Les modèles génératifs font face au défi d’améliorer à la fois la précision et le
rappel. Cette tâche complexe peut être réalisée par plusieurs approches. Dans notre
exploration, nous nous concentrons sur l’ajustement de deux aspects principaux : la
fonction de perte et la méthode d’échantillonnage.

Ajustement de la Fonction de Perte La flexibilité réside uniquement dans la procé-
dure d’entraînement et, surtout, dans le choix de la fonction de perte. Sous ces
contraintes, sans ressources computationnelles supplémentaires, nous ne pouvons
pas anticiper des améliorations simultanées de la précision et du rappel. Néanmoins,
nous pouvons ajuster l’équilibre : permettre au modèle de prioriser la précision ou
le rappel, et en particulier tout compromis explicite entre les deux. Cela nous mène
à une question fondamentale :
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Question 2: Pouvons-nous entraîner un modèle génératif pour optimiser un compromis
explicite spécifié par l’utilisateur entre la précision et le rappel ?

Nous tirerons ainsi parti de l’analyse théorique menée pour répondre à la question
1, et développerons une méthode pour entraîner le modèle à minimiser une f -
divergence représentant un compromis bien défini entre précision et rappel.

Modification de la Méthode d’Échantillonnage Après l’ajustement de la fonction de
perte, nous explorons les possibilités au sein de la méthode d’échantillonnage,
permettant une légère augmentation du coût computationnel de génération des
échantillons. Ainsi, si nous considérons la distribution P̂G définie par un modèle fixe
G, et en nous concentrant sur la méthode d’échantillonnage, l’échantillonnage par
rejet, nous répondrons à la question suivante :

Question 3: Avec un échantillonnage par rejet sous un budget limité, jusqu’à quel point
pouvons-nous augmenter la précision et le rappel d’un modèle pré-entraîné ?

Nous démontrerons qu’il existe un moyen d’optimiser le rejet des échantillons tirés
afin de maximiser à la fois la précision et le rappel, tout en étant restreint par un
budget limité.

D.1.4 Structure et Contribution

Dans cette thèse, nous visons à aborder les quatre problèmes énoncés, de manière
linéaire en cinq chapitres :

• Chapitre 2 et Chapitre 3

Dans le Chapitre 2, nous introduisons divers modèles génératifs en apprentis-
sage automatique, y compris les Generative Adversarial Networks, les Diffusion
models, et les Normalizing Flows. Ce chapitre fournit aux lecteurs une com-
préhension complète des principes et des capacités de ces modèles. De plus,
dans le Chapitre 3, nous présentons les différentes mesures de précision et
de rappel définies dans la littérature. À la fin du Chapitre 2 et du Chapitre
3, les lecteurs auront acquis des informations précieuses sur le paysage des
modèles génératifs et les outils essentiels pour évaluer leurs performances dans
les chapitres suivants.

• Chapitre 4

Dans le Chapitre 4, nous abordons les questions ?? et ??, explorant une mesure
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particulière de "qualité des échantillons" et de "diversité des échantillons".
Notre contribution clé est de montrer qu’une mesure proposée par Simon et al.
[108] peut être élégamment exprimée comme une f -divergence, dénommée la
divergence Précision-Rappel Dλ-PR. Cette connexion nous permet de lier Dλ-PR

à d’autres concepts de précision et de rappel et d’établir une relation claire
entre Dλ-PR et toutes les autres f -divergences, répondant ainsi à la question
??. De plus, nous tirons parti de la constante de Lipschitz des Generative
Adversarial Networks et des Normalizing Flows. En analysant ces constantes,
nous dérivons des bornes inférieures perspicaces sur la divergence PR, mettant
en évidence les limites. Tout au long de ce chapitre, pour répondre à la question
??, nous soulignons l’existence de certains cas pathologiques qui peuvent avoir
un impact significatif sur la divergence PR.

• Chapitre 5

Dans le Chapitre 5, nous abordons la question ??, en nous basant sur les
insights des Chapitres 3 et 4. Bien que la divergence PR montre une promesse
pour l’évaluation des modèles génératifs, nous découvrons la limitation qu’elle
ne peut pas être directement optimisée en utilisant les méthodes existantes.
Pour surmonter ce défi, nous proposons et développons une nouvelle approche
dans ce chapitre. Notre méthode permet aux modèles d’être entraînés à min-
imiser une divergence PR spécifique, permettant essentiellement l’optimisation
d’un compromis particulier entre la précision et le rappel. Dans ce chapitre,
nous offrons des preuves théoriques de la convergence de notre méthode
proposée, fournissant des garanties de son efficacité. De plus, nous présentons
des résultats expérimentaux obtenus en appliquant la méthode aux Generative
Adversarial Networks et aux Normalizing Flows.

• Chapitre 6

Dans le Chapitre 6, nous abordons la question ??, en nous concentrant sur une
méthode d’échantillonnage par rejet avec un budget restreint. Nous démon-
trons que cette approche est non seulement optimale mais aussi hautement
efficace en pratique. En utilisant cette méthode avec un budget donné, nous
atteignons une divergence minimale après rejet. De plus, nous montrons que
notre approche proposée permet la minimisation directe de la divergence entre
la distribution originale P et la distribution raffinée P̃ .

À travers une analyse théorique rigoureuse et une expérimentation pratique,
nous établissons l’efficacité et l’efficience de notre méthode proposée, offrant
une solution robuste pour minimiser la divergence et affiner les modèles
génératifs dans les contraintes de ressources.
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D.2 Contexte des Modèles Génératifs en
Apprentissage Profond

Dans ce chapitre, nous fournissons un contexte complet sur les modèles générat-
ifs, une base cruciale pour notre thèse. Nous présentons des cadres et des algo-
rithmes généraux et validons nos contributions en utilisant des ensembles de données
d’images réelles et des modèles existants. Nous introduisons les modèles génératifs
à la fois théoriquement et pratiquement, montrant leur implémentation avec des
réseaux de neurones profonds.

Pour ce faire, nous commençons par l’énoncé du problème dans la Section 2.1.1,
suivi d’une présentation des divergences f dans la Section 2.1.2. Ensuite, nous
examinons comment le cadre général peut être étendu dans la Section 2.1.4. Pour
la mise en œuvre pratique, une vue d’ensemble détaillée est disponible dans la
Section 2.1.3, avec des sections dédiées aux Generative Adversarial Networks dans la
Section 2.2.1, aux Normalizing Flows dans la Section 2.2.2 et aux Diffusion Models
dans la Section 2.2.3.

Modèle génératif Pour définir un modèle génératif, nous avons besoin de quelques
concepts de base :

• Considérons un espace d’entrée X ⊂ Rd. Nous définissons une distribution
cible P dans cet espace, qui représente la distribution des données réelles.

• Nous introduisons un espace latent Z ⊂ Rm avec une distribution latente Q,
souvent une distribution simple comme une gaussienne multivariée.

• Une fonction de mapping G transforme les variables latentes en échantillons
dans l’espace des données, définissant ainsi une distribution approximée P̂ .
L’objectif est de rendre P̂ aussi proche que possible de P .

Le but est de minimiser la différence entre P et P̂ en apprenant G. Cette différence
est mesurée à l’aide de diverses métriques, notamment les divergences f , que nous
détaillons dans la section suivante.

f -divergences pour mesurer la dissimilarité entre distributions Les f -divergences
sont des mesures essentielles pour quantifier la dissimilarité entre deux distributions
de probabilité. Elles permettent de comparer la distribution générée P̂ avec la
distribution réelle P de manière cohérente et mathématiquement rigoureuse. Ces
divergences ont été développées pour offrir une large gamme de comparaisons
en fonction de la fonction génératrice f utilisée. Les f -divergences possèdent des
propriétés importantes telles que la non-négativité et la convexité, ce qui les rend
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utiles pour l’optimisation des modèles génératifs. Pour une présentation détaillée et
des exemples spécifiques de f -divergences, reportez-vous à la Section 2.1.2.

Generative Adversarial Networks Les Generative Adversarial Networks (GANs), in-
troduits par Goodfellow et al. [44], utilisent un problème d’optimisation min-max
impliquant deux réseaux : le générateur G et le discriminateur T . Le générateur
crée des échantillons de données, tandis que le discriminateur tente de différencier
les échantillons réels des échantillons générés. Cela forme un jeu à deux joueurs où
le générateur essaie de tromper le discriminateur. Les GANs ont été étendus pour
minimiser diverses divergences f avec le cadre f -GAN introduit par Nowozin et al.
[90]. Cela permet aux GANs d’adopter une approche plus flexible et robuste pour
la génération de données, en ajustant le modèle pour minimiser des divergences
spécifiques.

Normalizing Flows Les Normalizing Flows (NFs) sont des modèles génératifs qui
permettent de suivre la densité des données. Ils fonctionnent comme une bijection
entre l’espace des données X et l’espace latent Z. Cette transformation bidirec-
tionnelle permet de calculer la densité des données générées et de maximiser
directement la vraisemblance des données. Les NFs sont particulièrement utiles
pour des applications nécessitant une estimation précise de la densité, comme la
détection d’anomalies et les simulations physiques. Pour plus de détails sur les NFs,
reportez-vous à la Section 2.2.2.

Diffusion Models Les Diffusion Models utilisent des processus de diffusion pour
générer des échantillons. Ils partent d’une distribution simple et appliquent un
processus de diffusion inversé pour générer des échantillons à partir de la distribution
cible. Ces modèles ont récemment gagné en popularité en raison de leurs excellentes
performances dans la génération d’images. Pour plus de détails sur les Diffusion
Models et leurs applications, consultez la Section 2.2.3.

Portée et Approche de la Thèse

Cette thèse se concentre sur l’entraînement de divers modèles génératifs, en met-
tant l’accent sur les types de fonctions de perte utilisées. Nous nous intéressons
principalement aux modèles pouvant minimiser facilement toute f -divergence, en
particulier les GANs dans le cadre f -GAN et les Normalizing Flows dans le cadre
Flow-GAN. Les Diffusion Models seront considérés comme une référence.
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L’objectif est d’explorer les modèles génératifs pour comprendre les compromis et les
défis liés à l’entraînement, notamment entre la qualité et la diversité des échantillons
générés.

D.3 Un panorama des mesures de
Précision-Rappel

Dans le chapitre précédent, nous avons discuté de l’entraînement des modèles
génératifs pour minimiser une mesure de dissimilarité entre les distributions cibles
et générées, généralement une divergence-f. La méthode pour approximer cette
métrique varie selon le type de modèle, et la fonction objective est donc généralement
spécifique au modèle. Pour une évaluation juste et cohérente des modèles génératifs,
il est crucial que les métriques utilisées soient indépendantes du modèle. La méthode
et l’algorithme pour calculer les métriques d’évaluation doivent être identiques pour
tout modèle génératif. De plus, pour être facilement calculables, elles doivent
dépendre uniquement d’un ensemble d’échantillons tirés à la fois de P et P̂ , sans
nécessiter d’entraînement supplémentaire.

D.3.1 Inception Score et Fréchet Inception Distance

L’Inception Score (IS) et le Fréchet Inception Distance (FID) sont des métriques
populaires pour évaluer les modèles génératifs. L’IS, introduit par Salimans et al.
(2016), utilise la capacité de classification du modèle Inception-v3. Il mesure la
qualité et la diversité des images générées, mais a plusieurs limitations, telles que la
non-sensibilité à la diversité intraclasse et le biais envers les classes d’ImageNet.

Le FID, quant à lui, mesure la distance entre les vecteurs de caractéristiques latentes
calculés pour les images réelles et générées. Il utilise la distance de Fréchet et est
plus corrélé avec la perception humaine de la qualité. Cependant, le FID ne distingue
pas entre différents types d’erreurs de génération et peut être biaisé par les classes
représentées dans ImageNet.

D.3.2 Précision et Rappel pour les Modèles Génératifs

Les mesures de précision et de rappel ont été adaptées des tâches de classifica-
tion binaire pour évaluer indépendamment la qualité et la diversité des modèles
génératifs.
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Approche basée sur le support Kynkäänniemi et al. (2019) ont introduit une méth-
ode pour évaluer la qualité et la diversité en se basant sur le support des distributions.
Dans cette approche, la précision (ᾱ) mesure la proportion des échantillons générés
se trouvant dans le support des données réelles, et le rappel (β̄) mesure la pro-
portion des données réelles couvertes par les échantillons générés. Cette méthode
utilise un algorithme de k-plus proches voisins (k-NN) pour estimer le support des
distributions dans l’espace latent des représentations d’un réseau de classification
d’images (comme VGG).

Courbes de Précision-Rappel Sajjadi et al. (2018) ont proposé une approche plus
raffinée, les courbes de précision-rappel (PR-Curves), qui intègrent la dissimilarité
des densités pour une évaluation plus détaillée. Les courbes PR sont construites
en variant un seuil λ sur le rapport de densité entre les distributions réelles et
générées, permettant de capturer le compromis entre précision αλ et rappel βλ pour
chaque valeur de seuil. En pratique, les PR-Curves sont calculées en utilisant des
méthodes basées sur k-means ou des classificateurs pour estimer les densités dans
l’espace latent des représentations d’Inception-v3. Bien que cette approche soit plus
complexe, elle offre une évaluation plus nuancée de la correspondance entre les
distributions générées et cibles.

Les relations entre les différentes métriques de précision-rappel montrent que les
méthodes basées sur le support sont des cas particuliers des courbes PR pour des
seuils spécifiques. Cette compréhension unifiée permet de mieux évaluer les modèles
génératifs et de développer des métriques plus robustes et interprétables.

Notre point de vue sur ces métriques

Nous reconnaissons la valeur des différentes approches de mesure de précision et
rappel pour évaluer les modèles génératifs. Les méthodes basées sur le support
sont largement utilisées en raison de leur simplicité et de leur interprétabilité.
Cependant, nous voyons un grand potentiel dans les courbes de précision-rappel
(PR-Curves) et les approches plus récentes comme le Precision-Recall Cover pour
offrir une évaluation plus fine et théoriquement fondée. Nous pensons que combiner
ces approches peut fournir une évaluation plus complète et nuancée des modèles
génératifs. Par conséquent, nous encourageons l’adoption de métriques intégrant à
la fois les évaluations basées sur le support et les courbes de précision-rappel pour
une meilleure compréhension des performances des modèles génératifs.
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D.4 Précision et Rappel comme une f -divergence

Maintenant que nous avons introduit les f -divergences pour entraîner des modèles et
les métriques de Précision-Rappel pour les évaluer, nous pouvons explorer comment
ces concepts s’interrelient. Dans la Section 4.1, nous élaborerons sur les relations
entre les f -divergences et les notions de qualité et de diversité. En conséquence, dans
la Section 4.2, nous exprimerons les courbes PR comme une famille de f -divergences,
appelée la divergence Précision-Rappel, dénotée PR-Divergence. Dans la Section 4.3,
nous montrerons comment la PR-Divergence se connecte avec les métriques ex-
istantes comme les f -divergences et la Précision-Rappel Cover. Ce faisant, nous
démontrerons comment la PR-Divergence est un outil central qui comble le fossé
entre les métriques de Précision-Rappel et les f -divergences, répondant ainsi à la
première question.

De plus, nous utiliserons la PR-Divergence pour quantifier les limites fondamentales
des réseaux neuronaux en termes de qualité et de diversité. La Section 4.4 est dédiée
à la deuxième question, explorant comment la PR-Divergence est influencée par les
contraintes de Lipschitz du réseau neuronal.

Contributions : Plusieurs contributions sont présentées dans ce chapitre :

• Nous introduisons la divergence Précision-Rappel, une famille de f -divergences
et montrons comment elle peut être utilisée pour comprendre pleinement la
connexion entre les f -divergences et les métriques de Précision/Rappel. Ce
résultat a été publié à la conférence : Alexandre Verine et al. “Precision-Recall
Divergence Optimization for Generative Modeling with GANs and Normalizing
Flows”. en. In: Advances in Neural Information Processing Systems 36 (Dec.
2023), pp. 32539–32573.

• Nous montrons qu’il existe une relation entre les courbes PR et la PR-Cover.
Ce travail est encore inédit.

• Nous montrons comment la contrainte de Lipschitz du générateur impacte la
Précision et le Rappel. C’est la généralisation de résultats prouvés uniquement
pour la Variation Totale et publiés à la conférence : Alexandre Verine et al. “On
the expressivity of bi-Lipschitz normalizing flows”. en. In: Proceedings of The
14th Asian Conference on Machine Learning. ISSN: 2640-3498. PMLR, Apr.
2023, pp. 1054–1069.
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D.4.1 f -Divergences : insights sur la qualité et la diversité

Nous observons que la distribution P̂ obtenue à convergence est significativement
influencée par le choix de la f -divergence. Optimiser la divergence de Kullback-
Leibler tend à favoriser des modèles couvrant la masse, tandis qu’optimiser la KL
inverse et la Jensen-Shannon tend à favoriser des comportements de recherche de
mode.

Pour illustrer cela, nous présentons un exemple en ajustant une seule gaussienne à un
mélange gaussien en utilisant différentes f -divergences. Les divergences résultantes
montrent des comportements de recherche de mode ou de couverture de masse selon
la f -divergence choisie. Ces observations motivent une exploration plus concrète
de la connexion entre Précision et Rappel, en particulier les courbes PR, et les
f -divergences.

D.4.2 La Divergence Précision-Rappel

Dans cette section, nous introduisons une nouvelle f -divergence, appelée la Diver-
gence Précision-Rappel, notéeDλ-PR. Nous définissons cette f -divergence et clarifions
sa connexion avec les courbes PR. En utilisant la PR-Divergence, nous montrons le
lien entre les courbes PR et les f -divergences traditionnelles ainsi que la PR-Cover.

Selon le Théorème 4.2.4, chaque point de la courbe PR correspond à une PR-
Divergence spécifique, et donc minimiser Dλ-PR équivaut à maximiser αλ. Cela fait de
la Dλ-PR une candidate particulièrement appropriée pour l’entraînement d’un modèle
génératif avec un compromis spécifique entre la Précision et le Rappel.

D.4.3 Relation avec d’autres métriques

Nous avons montré que nous pouvions écrire une courbe PR comme un ensemble de
f -divergences, une première étape pour combler le fossé entre les courbes PR et les
f -divergences. Dans cette section, nous montrons (1) que toute f -divergence peut
être écrite comme une moyenne pondérée de la PR-Divergence et (2) la connexion
entre les définitions des courbes PR et des métriques de Précision-Rappel.

Selon le Théorème 4.3.1, chaque f -divergence, sous des conditions légères, peut
être écrite comme une moyenne pondérée de PR-Divergences. En particulier, les
divergences de Kullback-Leibler, de Jensen-Shannon et de Kullback-Leibler inverse
peuvent être écrites comme une moyenne pondérée de PR-Divergence, comme
indiqué dans le Corollaire 4.3.2.
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D.4.4 Bornes inférieures de la PR-Divergence dans les
Réseaux Neuronaux

La distribution apprise est définie par P̂ = G#Q, donc l’ensemble des distributions
possibles dépend fortement de l’ensemble des fonctions G représentées par les
réseaux neuronaux. En particulier, les limites fondamentales des réseaux neuronaux
devraient également se traduire par des limitations sur les distributions P .

Selon le Lemme 4.4.1, la PR-Divergence peut être exprimée en termes probabilistes,
ce qui permet une manipulation plus versatile de la PR-Divergence. Nous montrons
ainsi que la continuité de Lipschitz des réseaux neuronaux peut limiter l’expressivité
des modèles. En particulier, le Théorème 4.4.3 indique que si le centre de la
gaussienne latente est mappé à une région de faible densité, alors la PR-Divergence
peut être bornée. Cette hypothèse est significative mais généralement plausible, en
particulier pour des distributions de densité multimodales.

Remarques et Discussions

Dans ce chapitre, nous avons répondu à deux questions concernant la Précision/Rappel
pour les modèles génératifs :

• Comment unifier les définitions de la précision et du rappel pour les
modèles génératifs ?
Nous avons introduit la divergence Précision-Rappel, un nouveau cadre qui
encapsule à la fois la précision et le rappel en une métrique unifiée : la f -
divergence, une classe de divergences largement utilisée dans la modélisation
générative. Nous avons également montré comment toute f -divergence peut
être écrite en termes de Précision et Rappel.

• Quelle Précision et Rappel peuvent être atteints avec des réseaux neu-
ronaux ayant des constantes de Lipschitz bornées ?
En nous appuyant sur la reformulation de la divergence Précision-Rappel, nous
avons démontré que la propriété de Lipschitz (et bi-Lipschitz, lorsque applica-
ble) de la fonction génératrice G peut être utilisée pour borner inférieurement
la PR-Divergence. En d’autres termes, nous avons montré comment la con-
trainte de Lipschitz de la fonction génératrice G peut limiter l’expressivité
des modèles. Nous avons montré que la PR-Divergence peut être strictement
positive pour certaines distributions cibles P et certaines fonctions génératrices
G.

Ce chapitre contribue à une compréhension plus raffinée des métriques de qualité-
diversité pour les modèles génératifs à travers la PR-Divergence. De plus, il souligne
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le rôle critique de la contrainte de Lipschitz dans la limitation de l’expressivité
globale des modèles génératifs. En d’autres termes, avec une expressivité limitée,
un modèle ne peut pas atteindre à la fois une haute qualité et une grande diversité.
Basé sur cette analyse, nous proposons dans la Section 5 une approche basée sur la
PR-Divergence pour entraîner des modèles de manière optimale pour un compromis
donné entre Précision et Rappel.

D.5 Ajuster les modèles selon un compromis défini
par l’utilisateur

Dans le chapitre précédent, nous avons montré que maximiser un point sur la courbe
Précision-Rappel correspond à minimiser une divergence PR spécifique. Dans ce
chapitre, nous montrons comment entraîner un modèle génératif pour traiter tout
compromis entre Précision et Rappel. Nous rappelons d’abord le cadre des f -GAN et
expliquons pourquoi il ne répond pas à ce problème. Ensuite, nous proposons une
méthode différente pour aborder ce problème et nous prouvons théoriquement que
cette méthode converge. Enfin, nous démontrons l’efficacité de notre méthode sur
des exemples jouets et des ensembles de données réels avec des modèles génératifs
d’apprentissage profond, en les comparant avec les méthodes de pointe.

Contributions : La principale contribution de ce chapitre est la suivante :

• Nous proposons une méthode pour entraîner un modèle génératif à se concen-
trer sur un compromis spécifique entre qualité et diversité, et montrons que
cette méthode modifie effectivement le compromis des modèles génératifs.

Ce résultat a été publié comme suit :

• Alexandre Verine et al. “Precision-Recall Divergence Optimization for Genera-
tive Modeling with GANs and Normalizing Flows”. en. In: Advances in Neural
Information Processing Systems 36 (Dec. 2023), pp. 32539–32573

D.5.1 Cadre des f -GAN

Le cadre des f -GAN généralise celui des GAN. L’objectif est de former une fonction
réseau neuronal G pour minimiser toute divergence Df entre la distribution des
données P et la distribution générée P̂G. Toutefois, la mise en œuvre pratique de
cette formation est complexe et certaines divergences entraînent une instabilité ou
une non-convergence de l’entraînement.
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D.5.2 Minimisation de la divergence PR

Nous proposons une méthode pour entraîner un modèle génératif à se concentrer
sur un compromis spécifique entre qualité et diversité en utilisant la forme primale
de la divergence basée sur le ratio de densité. Nous démontrons théoriquement que
cette méthode converge.

Expériences Nous utilisons notre approche pour entraîner divers modèles afin de
minimiser la divergence PR sur des ensembles de données synthétiques et réels. Nous
montrons que notre méthode permet de former des modèles pour des compromis
spécifiques entre qualité et diversité.

Entraînement sur des données synthétiques 2D Nous avons entraîné un modèle sur
un ensemble de données synthétiques pour visualiser les courbes PR pour différentes
valeurs de λ. Les résultats montrent que le modèle formé avec λ = 0.1 couvre
les 8 modes de la distribution des données, tandis que le modèle avec λ = 10 se
concentre sur un seul mode. Les courbes PR sont différentes pour chaque valeur
de λ, illustrant notre capacité à entraîner des modèles pour se concentrer sur un
compromis spécifique entre qualité et diversité.

Entraînement de Normalizing Flows Nous avons entraîné un modèle GLOW sur
les ensembles de données MNIST et Fashion-MNIST. Les résultats montrent que
l’entraînement avec λ = 0.1 produit des échantillons variés mais de qualité inférieure,
tandis que l’entraînement avec λ = 10 produit des échantillons de meilleure qualité
mais moins diversifiés.

Entraînement et ajustement de GANs Nous avons entraîné un BigGAN sur CIFAR-10
et CelebA64, puis nous avons affiné des modèles pré-entraînés sur ImageNet et
FFHQ. Les résultats montrent que notre approche permet d’ajuster la Précision et le
Rappel de manière efficace, surpassant les méthodes de troncature traditionnelles.

Remarques et Discussions

Dans ce chapitre, nous avons répondu à une question concernant la Précision et le
Rappel dans les modèles génératifs :

• Pouvons-nous entraîner un modèle génératif pour se concentrer directe-
ment sur un compromis explicite entre Précision et Rappel défini par
l’utilisateur ?
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Nous avons montré que la divergence PR peut être utilisée pour former des
modèles génératifs à se concentrer sur un compromis spécifique entre qualité
et diversité. Nous avons démontré que notre approche peut être utilisée pour
entraîner des modèles sur des données synthétiques, des ensembles de données
de faible complexité et de haute complexité, ainsi que pour affiner des modèles
pré-entraînés sur de grands ensembles de données.

D.6 Échantillonnage de rejet budgétisé optimal
pour améliorer la précision et le rappel

Dans les chapitres précédents, nous avons vu que nous pouvions ajuster la diver-
gence minimisée par un modèle génératif pour optimiser la précision et le rappel.
Cependant, nous n’avons considéré que la fonction de perte. L’échantillonnage de
rejet utilise le rapport de densité entre la distribution des données et la distribution
apprise pour améliorer la qualité des échantillons générés. Mais cette approche peut
être coûteuse en calculs, notamment en haute dimension. Nous nous concentrerons
sur la méthode d’échantillonnage pour générer de nouveaux échantillons et voir
comment elle peut améliorer la précision et le rappel avec un budget de calcul
limité.

Nous passerons en revue les méthodes d’échantillonnage existantes, en particulier
l’échantillonnage de rejet, et introduirons une nouvelle méthode : l’échantillonnage
de rejet budgétisé optimal (OBRS). Nous montrerons théoriquement et expérimen-
talement que cette méthode peut améliorer la précision et le rappel sous un budget
limité.

Contributions : Les contributions de ce chapitre sont les suivantes :

• Nous proposons une nouvelle méthode d’échantillonnage, l’Optimal Bud-
geted Rejection Sampling (OBRS), qui est optimale pour minimiser toute
f -divergence sous un budget fixe.

• Nous entraînons des modèles génératifs en tenant compte de l’échantillonnage
de rejet et montrons que cela améliore (1) la convergence de l’entraînement et
(2) la divergence entre la distribution des données et la distribution apprise
après rejet.

Ces résultats ont été publiés comme suit :
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• Alexandre Verine et al. “Optimal Budgeted Rejection Sampling for Generative
Models”. In: Proceedings of The 27th International Conference on Artificial
Intelligence and Statistics (Mar. 2024). arXiv:2311.00460 [cs]

D.6.1 Échantillonnage de rejet pour les modèles génératifs

L’échantillonnage de rejet est une méthode classique pour échantillonner à partir
d’une distribution cible en utilisant une distribution proposée et le rapport de densité
entre les deux distributions. Cette méthode est utile pour améliorer les modèles
génératifs mais peut être inefficace en haute dimension.

L’échantillonnage de rejet du discriminateur (DRS) Le DRS utilise le discrimina-
teur d’un GAN pour affiner le processus de génération. En ajustant la fonction
d’acceptation, nous pouvons améliorer la distribution apprise pour qu’elle corre-
sponde mieux à la distribution cible. Cependant, cette méthode n’a pas de garanties
théoriques sur le choix du paramètre de réglage et peut nécessiter des ajustements
manuels.

Autres méthodes d’échantillonnage D’autres méthodes d’échantillonnage incluent
le MH-GAN, le transport optimal par discriminateur (DOT), et le flux de gradi-
ent du discriminateur (DGf low). Ces méthodes peuvent améliorer la qualité des
échantillons générés mais à un coût de calcul plus élevé.

D.7 L’échantillonnage de rejet budgétisé optimal
(OBRS)

Nous introduisons l’OBRS, qui optimise la fonction d’acceptation pour minimiser
toute f -divergence sous un budget fixe. Théoriquement, cette méthode est optimale
pour améliorer la précision et le rappel tout en respectant le budget de calcul.

D.8 Amélioration de la précision et du rappel

L’OBRS améliore systématiquement la précision pour un rappel donné. La courbe
PR de la distribution raffinée est une version verticalement étirée de la courbe
PR initiale, ce qui montre une amélioration de la précision tout en maintenant le
rappel.
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D.9 Expériences

Nous montrons que l’OBRS surpasse d’autres méthodes d’échantillonnage en termes
de précision et de rappel avec un coût de calcul similaire. Les expériences incluent
des tests sur des ensembles de données synthétiques et réels, ainsi que sur des
modèles GANs et des modèles de diffusion.

En intégrant l’OBRS dans le processus d’entraînement, nous pouvons éviter les
minima locaux et accélérer la convergence. Nous proposons une méthode pour
entraîner des modèles génératifs en utilisant l’OBRS, améliorant ainsi la qualité et la
diversité des échantillons générés.

Remarques et discussions

Nous avons montré que l’OBRS peut améliorer la précision et le rappel des modèles
génératifs sous un budget limité. Nous avons également proposé une méthode pour
entraîner les modèles en tenant compte de l’échantillonnage de rejet. Cependant,
des améliorations sont possibles, notamment en optimisant l’estimation du rapport
de densité et en étendant l’OBRS aux modèles de diffusion.
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MOTS CLÉS

Modèles Génératifs, Qualité, Diversité, GANS, f -divergence

RÉSUMÉ

Les modèles génératifs sont devenus un outil essentiel dans l’apprentissage automatique pour générer des échantillons
réalistes à partir de distributions de données complexes. Cette thèse aborde le problème fondamental de la caractéri-
sation, l’ajustement et de l’amélioration de la qualité et de la diversité dans les modèles génératifs via la precision et le
rappel. La première contribution majeure de ce travail est l’unification des définitions de la précision et du rappel dans
le cadre des f -divergences. En exprimant les métriques les plus populaires en tant que famille de f -Divergence, la PR-
Divergence, nous établissons un système d’évaluation cohérent et complet pour les modèles génératifs. Cette formulation
théorique permet d’introduire une méthode novatrice pour estimer la PR-Divergence de manière differentiable, facilitant
son utilisation comme fonction de perte dans l’entrainement des modèles génératifs. Cette approche permet d’optimiser
n’importe quel compromis spécifique entre précision et rappel. De plus, la thèse propose une méthode d’échantillonnage
par rejet sous des budgets computationnels limités qui améliore à la fois la précision et le rappel. Cette méthode est dé-
montrée comme étant optimale en termes de f -divergence, fournissant une technique robuste pour affiner les modèles
génératifs pré-entraînés.

ABSTRACT

Generative models have become an essential tool in machine learning for generating realistic samples from complex
data distributions. This thesis addresses the fundamental problem of characterizing, fitting, and improving quality and
diversity in generative models through precision and recall. The first major contribution of this work is the unification of
the definitions of precision and recall within the framework of f -divergences. By expressing the most popular metrics
as a family of f -Divergence, the PR-Divergence, we establish a coherent and comprehensive evaluation system for
generative models. This theoretical formulation allows the introduction of an innovative method to estimate PR-Divergence
differentiably, facilitating its use as a loss function in training generative models. This approach enables optimizing any
specific trade-off between precision and recall. Furthermore, the thesis proposes a rejection sampling method under
limited computational budgets that improves both precision and recall. This method is demonstrated to be optimal in
terms of f -divergence, providing a robust technique for refining pre-trained models.

KEYWORDS

Generative Models, Quality, Diversity, f -divergence
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