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Chapter 1

Introduction

This document presents a survey of my research work on numerical schemes for backward stochas-
tic differential equations (BSDEs) since I defended my PhD in 2007. This thesis was supervised by
Emmanuel Gobet at CMAP (Ecole Polytechnique) and dealt with the study of some numerical meth-
ods for BSDEs and American options. Initially recruited at LPSM (Sorbonne University) and then at
LAMA (Savoie Mont Blanc University), I have continued to work on numerical methods for BSDEs.
I have also worked on numerical methods for mean reflected SDEs. It is within this context that I
co-supervised a PhD thesis with Philippe Briand on Mean reflected SDEs with jumps from 2016 to
2019. I also had the opportunity to co-supervise a PhD thesis on times series anomaly detection using
machine learning from 2020 to 2023. In order to present a coherent manuscript, despite having pub-
lished around twenty articles, I have chosen to focus on my articles related to numerical methods for
BSDEs. As such, it is centered around 8 specific articles written with several co-authors. Before pre-
senting my contributions, I briefly introduce BSDEs and present a survey on the different numerical
methods introduced so far to approximate solutions to BSDEs.

1.1 Preliminaries

The aim of this section is to briefly review the basic theory of BSDEs (Section 1.1.1) and forward
BSDEs (Section 1.1.2). In particular, we give the standard sufficient conditions that ensure existence
and uniqueness of their solutions. Let (Ω,F ,F,P) be a given filtered probability space which satisfies
the usual conditions of completeness and right continuity. On this space, we define a d-dimensional
standard Brownian motion (Wt)t∈[0,T ] whose natural filtration, augmented by the class of P-null sets
of FT , is F = (Ft)t∈[0,T ]. T denotes a strictly positive constant which represents a fixed terminal
time. We define the following probability spaces and sets.

• P: the σ-field of predictable sets in Ω× [0, T ]

• Lp(FT ) := Lp(Ω,FT ,P), p ∈ N∗, the space of all FT -measurable random variables (r.v. in the
following) satisfying ∥X∥pp := E(|X|p) <∞.

• Et(X) denotes E(X|Ft) for any X in L1(FT ).

• SpT (R
d), p ∈ N, p ≥ 2, the space of all càdlàg predictable processes ϕ : Ω× [0, T ] 7−→ Rd such

that ∥ϕ∥pSp = E(supt∈[0,T ] |ϕt|p) <∞.

• HpT (R
d), p ∈ N, p ≥ 2, the space of all predictable processes ϕ : Ω × [0, T ] 7−→ Rd such that

∥ϕ∥p
Hp

T
= E

∫ T
0 |ϕt|pdt <∞.

12



• L2([0, T ];Rd), the space of all square integrable functions on [0, T ] taking values in Rd.

• Ck,l, the set of continuously differentiable functions ϕ : (t, x) ∈ [0, T ] × Rd with continuous
derivatives w.r.t. t (resp. w.r.t. x) up to order k (resp. up to order l).

• Ck,lb , the set of continuously differentiable bounded functions ϕ : (t, x) ∈ [0, T ] × Rd with
continuous and uniformly bounded derivatives w.r.t. t (resp. w.r.t. x) up to order k (resp. up to
order l).

• Ck+α, α ∈]0, 1] is the set of Ck functions whose k-th derivative is Hölder continuous of order
α.

• Ck+αb , α ∈]0, 1] is the set of Ck bounded functions whose k-th derivative is Hölder continuous
of order α with bounded derivatives.

• Wp, p ≥ 1, stands for the Lp-Wasserstein distance: let X and X ′ be two r.v. and let us denote
by µ the law of X and by µ′ the law of X ′. With the usual abuse of notation, the Wassertein
distance is defined by

Wp(µ, µ
′) = Wp(X,X

′) := inf{E(|Y − Y ′|p)
1
p : law(Y ) = µ, law(Y ′) = µ′}.

The infimum is taken over all the couplings µ and µ′. Notice that if X and X ′ are random
variables of order p with values in Rd, then by definition we have

Wp(X,X
′) ≤

[
E|X −X ′|p

]1/p
. (1.1)

• P2(Rd) is the set of probability measures with a finite second-order moment, endowed with the
L2-Wasserstein distance.

1.1.1 Backward stochastic differential equations

Backward Stochastic Differential Equations (BSDEs) were first introduced by Jean-Michel Bismut in
1973 ([Bis73]). They were generalized by Etienne Pardoux and Shige Peng in 1990 ([PP90]) to an
equation of the following form

Yt = ζ +

∫ T

t
f(s, Ys, Zs) ds−

∫ T

t
Zs · dWs, 0 ≤ t ≤ T, (1.2)

where (Y, Z)t∈[0,T ] takes values in Rm × Rm×d. The function f : Ω× [0, T ]× Rm × Rm×d → Rm
is called the generator or driver. The r.v. ζ is a FT -measurable random variable taking values in Rm.
The pair (f, ζ) are called the parameters of the BSDE. Solving such an equation consists in finding a
pair of processes (Yt, Zt)0≤t≤T adapted to the filtration {Ft}0≤t≤T and satisfying (1.2).

Definition 1.1.1 A solution to the BSDE (1.2) is a pair of processes (Y, Z) taking values in
Rm × Rm×d such that Y is an adapted and continuous process, Z is a predictable process such
that

∫ T
0 Z2

sds < +∞ P-a.s. and (Y, Z) satisfy

Yt = ζ +

∫ T

t
f(s, Ys, Zs) ds−

∫ T

t
Zs · dWs, 0 ≤ t ≤ T.

The following theorem identifies the standard sufficient conditions imposed to ensure the existence
and uniqueness of a solution to the BSDE (1.2) in S2T (Rm)×H2

T (Rm×d).
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Hypothesis 1.1 We assume

• f : Ω× [0, T ]× Rm × Rm×d → Rm is P ⊗ B(Rm)⊗ B(Rm×d)-measurable

• the generator f is uniformly Lipschitz continuous in (y, z): there exists a constant Lf
such that for all y1, y2 ∈ Rm and z1, z2 ∈ Rm×d

∥f(ω, t, y1, z1)− f(ω, t, y2, z2)∥ ≤ Lf (∥y1 − y2∥+ ∥z1 − z2∥) dt⊗ dP− a.e.

• the terminal condition ζ and the generator f satisfy E(|ζ|2 +
∫ T
0 |f(s, 0, 0)|2ds) < +∞.

Theorem 1.1.2 ([PP90]) Under Hypothesis 1.1, there exists a unique solution (Y,Z) ∈ S2T (Rm) ×
H2
T (Rm×d) which solves (1.2).

The proof of this result is based on Picard’s iterations. A fixed point argument can also be used to
prove the result (see [EKKP+97]).

Before introducing Markovian BSDEs, we present some intuition regarding the solution (Y,Z) to
(1.2). If we consider the simple case f = 0 in (1.2) we obtain the following BSDE

{
dYt = ZtdWt, t ∈ [0, T ]
YT = ζ

(1.3)

If ζ ∈ L2(FT ), f and ζ satisfy Hypothesis 1.1 then Theorem 1.1.2 ensures that (1.3) admits a
unique solution in S2T (Rm)×H2

T (Rm×d). Then Y satisfies

Yt = E(YT |Ft) = E(ζ|Ft)

and thus Y is an (Ft)t∈[0,T ]-martingale. From (1.3) we can also write

Yt = E(ζ|Ft) = Y0 +

∫ t

0
ZsdWs = E(ζ|F0) +

∫ t

0
ZsdWs = E(ζ) +

∫ t

0
ZsdWs.

Since Y is a martingale, the martingale representation theorem ensures that there exists a unique
process Γ ∈ H2

T (Rm×d) satisfying Yt = Y0 +
∫ t
0 ΓsdWs for all t ∈ [0, T ]. Hence, we obtain

ζ = YT = Y0 +

∫ T

0
ΓsdWs = Y0 +

∫ t

0
ΓsdWs +

∫ T

t
ΓsdWs = Yt +

∫ T

t
ΓsdWs,

which shows that (Y,Γ) solves (1.3). By the uniqueness of the solution to the BSDE we get Z = Γ.
We see in this simple case that an adapted solution to the BSDE can only be a pair of processes (Y,Z)
such that Z is the component needed to ensure that Y is adapted.

1.1.2 Markovian BSDEs

Markovian BSDEs (called FBSDEs in the following) are made of a BSDE coupled with a forward
Stochastic Differential Equation (SDE) in the sense that the driver may depend on the solution to the
SDE and the terminal condition of the BSDE is a function of the terminal value of the SDE:

Yt = g(XT ) +

∫ T

t
f(s,Xs, Ys, Zs) ds−

∫ T

t
Zs · dWs, 0 ≤ t ≤ T, (1.4)
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where f : [0, T ]×Rq×Rm×Rm×d → Rm and g : Rq → Rm are deterministic functions, (Y,Z)t∈[0,T ]
takes values in Rm × Rm×d and X is the Rq-valued diffusion process solving the following standard
SDE

Xt = x+

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) · dWs, 0 ≤ t ≤ T, (1.5)

where b : [0, T ]× Rq → Rq and σ : [0, T ]× Rq → Rq×d are given functions and x ∈ Rq. We recall
that under the following hypothesis, there exists a unique strong solution to the SDE.

Hypothesis 1.2 We assume

• b and σ are Lipschitz functions in space

• there exists a constant M > 0 such that ∥b(t, 0)∥+ ∥σ(t, 0)∥ ≤M for all t ∈ [0, T ].

FBSDEs widely appear in the literature, especially in regards to numerical methods, since FB-
SDEs can be linked to partial differential equations (PDE). This equivalence is exploited in many
numerical methods. In many cases the dimension of Y is set to one (i.e. m = 1), particularly when
dealing with deterministic PDEs. Let us consider the following parabolic PDE{

∂tu(t, x) + Lu(t, x) + f(t, x, u(t, x), (∂xuσ)(t, x)) = 0,
u(T, x) = g(x),

(1.6)

where L is defined by

L(t,x)u(t, x) =
1

2

∑
i,j

[σσ∗]ij(t, x)∂
2
xixju(t, x) +

∑
i

bi(t, x)∂xiu(t, x). (1.7)

If this PDE has a sufficiently smooth solution u, Pardoux and Peng proved in [PP92, Theorem 3.1]
that, by applying Itô’s formula, (u(t,Xt), ∂xuσ(t,Xt))0≤t≤T is a solution to the BSDE (1.4). This
generalizes the Feynman-Kac formula to semi-linear parabolic PDEs. If Xt,x denotes the solution
to (1.5) starting from x at time t, then we have (Y t,x

s , Zt,xs ) = (u(s,Xt,x
s ), ∂xuσ(s,X

t,x
s )) for all s

in [t, T ]. Y t,x
t is deterministic and equals u(t, x). Conversely, Pardoux and Peng proved in [PP92]

that when b, σ, f and g are Lipschitz w.r.t. (x, y, z) uniformly in t, the FBSDE provides the unique
viscosity solution to the semilinear parabolic PDE (1.6). We also refer to [EKPQ97b, Proposition 4.3
and Theorem 4.2] for a proof of these results.

1.1.3 Applications of BSDE

BSDEs find extensive applications across various domains within the social and natural sciences.
Notably, the challenge of pricing and hedging a European option can be articulated in terms of a
BSDE. The seminal work by El Karoui, Peng, and Quenez ([EKPQ97b]) illustrates this concept,
wherein BSDEs accommodate portfolio constraints in pricing problems (see also [CK96], [BEM18],
[BCS98], [CKS98]).

These equations have been instrumental in valuing numerous financial derivatives within both
complete and incomplete or constrained markets, encompassing European and American options
(see [EKKP+97], [EKPQ97a]). BSDEs can also provide necessary and sufficient conditions for
optimality in optimal control problems such as utility maximization control problems with
constraints and risk-sensitive control problems (see [HHI+14], [EKH03], [HIM05], [REK00]).
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Because of the intricate nature of BSDEs, obtaining analytical solutions for these equations is
seldom feasible. Consequently, resorting to numerical methods becomes imperative to approximate
the exact solution. To address this challenge, various numerical techniques has been developed, and
research in this domain remains highly active. In the following sections, we present a chronolog-
ical survey of the different methods to solve BSDEs (Sections 1.2.1, 1.2.2). In Section 1.2.3, we
present other numerical methods to solve standard BSDEs. Since our contributions also deal with
non standard BSDEs (reflected BSDEs, BSDEs with jumps, Mc-Kean Vlasov BSDEs) we dedicate
Section 1.2.4 to the presentation of different existing algorithms to solve these types of BSDEs. Our
overview emphasizes methods close to our contributions and is by no means exhaustive. We refer to
[CKSY23] for a complete survey on numerical methods for BSDEs. Finally Section 1.2.5 presents
our contributions to the numerical methods to solve standard and non-standard BSDEs.

1.2 Numerical simulation of BSDEs

1.2.1 Random walk approximation

The first results on the numerical approximation of (1.2) go back to the end of the 90’s. They were
dealing with the case of a generator f independent of z (see [Che97] and [CMM99]). The authors
proposed a temporal and spatial discretization approach for the BSDE, a methodology that bears
some resemblance to the dynamic programming equation, which was introduced a few years later
(see (1.11)). The case of a generator dependent of z was first treated in [Bal97], where the author
introduced a random discretization. We also refer to the work of [MPSMT02]. In [BDM01], the
authors generalized the scheme proposed in [Che97] to the case of f depending on z and proved the
weak convergence of their scheme. The idea was to approximate the Brownian motion by a random
walk, i.e. by considering an i.i.d. Rademacher symmetric sequence {ξk}1≤k≤n and

Wn
t :=

√
h

[t/h]∑
k=1

ξnk , 0 ≤ t ≤ T

Then, they considered the following discretization of (1.2), where f does not depend on time

yk = yk+1 + hf(yk, zk)−
√
hzkξk+1, k = n− 1, · · · , 0, yn = ζn (1.8)

and ζn is a square integrable random variable measurable w.r.t. Gn, where Gk = σ(ξ1, · · · , ξk). A
solution is a process {yk, zk}0≤k≤n−1 adapted w.r.t. Gk. To solve (1.8), first choose

zk =
1√
h
E(yk+1ξk+1|Gk)

and take yk as the solution to (1.8): if f is a Lipschitz function and if h is sufficiently small, a fix point
argument ensures the existence and uniqueness of the solution. Moreover yk is Gk-measurable since it
is Gk+1-measurable and orthogonal to ξk+1. We get the following fully implementable scheme, since
in this case the computation of the conditional expectation can be done easily (yk+1 is a function of
(ξ1, · · · , ξk+1))


yn = ζn

zk =
1√
h
E(yk+1ξk+1|Gk)

yk = E(yk+1|Gk) + hf(yk, zk)

(1.9)

(1.9) ensues from (1.8) by taking the conditional expectation w.r.t. Gk.
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Remark 1.2.1 The equation (1.9) is implicit in yk. If f is a Lipschitz function and if the time step of
the grid is sufficiently small, a fix point argument ensures the existence and uniqueness of the solution.
We can replace yk by yk+1 in f to make (1.9) explicit.

By defining the following two continuous time processes

Y n
t = y[t/h], Z

n
t = z⌊t/h⌋ ∀t ∈ [0, T ]

the authors prove the convergence of (Y n, Zn) to (Y, Z) in probability. In addition, [AKH00],
[CMM99] and [CMS01] analysed the convergence of the discretized filtration. Using these results,
[BDM02] proved the convergence of a sequence of solutions to a BSDE driven by a martingale to
the exact solution (1.2). It was generalized to BSDEs with random terminal time in [Tol06]. [PX11]
presented an algorithm based on random walk and proved its convergence in the case of a one dimen-
sional Brownian motion. The rate of the convergence of this method was left as an open problem. To
deal with this question, an approach based on the dynamic programming equation was introduced by
Bouchard and Touzi in [BT04] and Zhang in [Zha04].

1.2.2 First backward Euler method and computation of the conditional expectations

1.2.2.1 Dynamic programming equation

The idea of the dynamic programming equation introduced in [BT04] and [Zha04] is the following.
Instead of approximating W by a random walk, we can approximate the solution to (1.2) in a back-
ward way by setting Y n

tn = ζ and (Y n
tk
, Zntk) is a couple of adapted processes such that for all k in

{0, · · · , n− 1}

Y n
tk

= Y n
tk+1

+ hf(tk, Y
n
tk
, Zntk)−

∫ tk+1

tk

Z̃ns dWs, ∀k ∈ 0, · · · , n− 1 (1.10)

where (Z̃ns )s∈[0,T ] is a process ensuing from the martingale representation theorem. Since Zntk has to
be Ftk -measurable, we take the best approximation Ftk -measurable of Z̃n in the L2 sense. We get

Zntk =
1

h
E
(∫ tk+1

tk

Z̃ns ds|Ftk
)

=
1

h
E(Y n

tk+1
(Wtk+1

−Wtk)|Ftk)

Taking conditional expectation in (1.10) leads to the following scheme
Y n
tn = ζ
Zntk = 1

hE(Y
n
tk+1

(Wtk+1
−Wtk)|Ftk)

Y n
tk

= E(Y n
tk+1

|Ftk) + hf(tk, Y
n
tk
, Zntk).

(1.11)

Unlike (1.9), (1.11) is not directly implementable, the computation of the conditional expectation
is the main issue. To be fully implementable, this algorithm requires to have a good approximation
of its associated conditional expectation. To address this issue, Bouchard and Touzi in [BT04] and
Zhang in [Zha04] dealt with the Markovian case, i.e. they assumed that ζ = g(XT ) where X is a
solution to a stochastic differential equation (see (1.4) and (1.5)).

X is approximated by its Euler scheme on the regular grid 0 = t0 < t1 < · · · < tn = T with n
time steps. We set h := T

n . A time discretization of X is{
Xn

0 = x,
Xn
t = Xn

tk
+ b(tk, X

n
tk
)(t− tk) + σ(tk, X

n
tk
)(Wt −Wtk),∀t ∈]tk, tk+1]

(1.12)
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This scheme enables to simulate Xn easily at each time step of the grid. If b and σ satisfy Hypothesis
1.2, we get a rate of convergence in Lp for Xn −X:

∀p ≥ 1,

(
E

(
sup
t≤T

|Xn
t −Xt|p

)) 1
p

≤ C√
n
.

[BT04] and [Zha04] proved that the convergence in L2 of the backward Euler scheme (1.11) is of
order 1

2 under standard Lipschitz assumptions and with Lipschitz terminal condition

sup
t∈[0,T ]

E
(
|Yt − Y n

t |2
)
+ E

(∫ T

0
∥Zt − Znt ∥2dt

)
≤ C

n
.

The scheme has a convergence rate of 1 if the forward scheme can be simulated perfectly on the grid
or if it is approximated by a higher order scheme and if the coefficients are sufficiently smooth (see
[L-18]). The convergence may also depend on the regularity of the terminal condition through the
L2-regularity of Z (see [GGG12]). The numerical stability analysis of (1.11) was studied in [CR15].

1.2.2.2 Computation of conditional expectations

In case of Markovian BSDEs, the computation of the conditional expectation can be well approxi-
mated. Various methods have been developed:

• Least-squares regression methods were first introduced in [LGW05] and [GLW06], [BS12]
and [Zha17]. Additionally, we point to [GT16], where the authors devise a numerical scheme
intended for solving the multi-step forward dynamic programming equation derived from dis-
cretizing FBSDEs. Their approach involved computing the resulting sequence of conditional
expectations by employing empirical least-squares regressions. Furthermore, in [GLSTV16],
the authors introduced an alternative algorithm based on least-squares Monte Carlo, specifically
designed to facilitate extensive parallelization of computations on highly multicore processors
like GPUs.

• Quantization technics were introduced in [BP03a], [BP03b] and [BPJ01] to solve multidimen-
sional optimal stopping problems and then applied to develop discretization schemes for re-
flected BSDEs (see [PS18]). Some improvements can be found in [CGG23], [ENP21] and in
[PS18].

• Malliavin calculus is used in two different ways to compute conditional expectations: by us-
ing integration by parts (see [BT04], [BET04], [FLLL01] and [CMT10]) or by introducing
Malliavin weights in the Z representation (see [GT16] inspired by the representation given in
[MZ02]).

• Cubature methods (see [CM12], [CM14], [NS19] and [CGT20]). These methods construct
explicit finitely supported measures, along a partition of [0, T ], that approximate the law of the
forward diffusion.

Remark 1.2.2 The random walk approximation can also be seen as a method to compute conditional
expectations. It is however more general than the methods mentioned above since it also includes the
non Markovian case.
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1.2.3 Other numerical methods to solve standard BSDEs

• High order schemes generalizing (1.11) have also been proposed. First introduced in [ZCP06],
the θ-scheme is proved to have a rate of convergence of order 2 when the driver does not
depend on Z (see [ZWP09]). This result is generalized to the case of a driver depending on
the control process by introducing more parameters (see [ZLZ12]). To achieve higher orders of
convergence, a multi-step scheme was developed in [ZZJ10]. The error analysis of linear multi-
step schemes was done in [Cha14] in case where the driver depends onZ. Runge-Kutta schemes
for BSDEs are studied in [CC14]. We refer to [YZZ20] to get a general framework where
the stability, consistency and convergence of different discretization schemes for FBSDEs are
studied (backward Euler method, θ-scheme and different types of multi-step schemes).

• Forward methods solve the BSDE in a forward way and thus usually avoid the computation of
conditional expectations. We list some of them

– Picard iteration methods construct an approximation of the solution to (1.2) in an iterative
way: it incorporates in the driver the solution computed at step k − 1 to compute the
solution at step k: we set (Y 0, Z0) = (0, 0) and (Y k, Zk) is the solution to the following
BSDE

Y k
t = ζ +

∫ T

t
f(s, Y k−1

s , Zk−1
s )ds−

∫ T

t
Zks dWs.

These methods were introduced in [BD07]. This work was extended in [BM10] and in
[Mos10] where the authors used a variance reduction technique based on importance sam-
pling. In [L-14], we proposed to solve the equivalent PDE by using Picard iterations and
a control variate technique. A parallel version of this algorithm was proposed in [L-12].

– Branching diffusion methods are used to solve non linear PDEs and corresponding BSDEs
(see [HL12] and [HLTT14]). The concept of branching diffusion system can also be
employed for constructing backward numerical methods where the driver depends on Z
(see [BTW17]) or not (see [BTZW17]).

– Asymptotic expansion consists in expanding a nonlinear BSDE into a sequence of linear
BSDEs (see [TY15]). The case of non smooth drivers was studied in [GP15].

– Multi-level Picard methods consist in three steps (see [EHJ20]): reformulate the PDE as
a stochastic fixed point problem, approximate the unique fixed point by Picard iteration
and then approximate the iterations by multilevel Monte Carlo methods. The idea was
initiated in [EHJK19] in which Picard iterations and multilevel Monte-Carlo methods are
used to solve high dimensional nonlinear PDEs coming from physics and finance. In
[HKN22], Picard iterations for backward stochastic differential equations with globally
Lipschitz continuous nonlinearity were shown to converge. An extension of multilevel
Picard approximation was applied to general forward diffusion in [HN22].

• Machine learning techniques, particularly deep learning methods, have emerged as a highly
dynamic and actively researched category within the realm of numerical methods for BSDEs.
These methods demonstrate remarkable capabilities in tackling high-dimensional nonlinear BS-
DEs and their associated nonlinear PDEs. This is accomplished through the use of neural net-
work approximations, enabling the estimation of nested high-dimensional expectations and gra-
dients.
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While the overall complexity of deep learning methods remains challenging to comprehen-
sively analyze presently, a handful of theoretical outcomes documented in the literature illus-
trate that the complexity tends to increase at most polynomially concerning the PDE dimension
and inversely proportional to the approximation accuracy (see [BHJK23] and [HJKN23] among
others).

– The Deep BSDE method, initially proposed in [EHJ17] and subsequently discussed in
[HJE18], revolves around utilizing the solution’s gradient concerning the control process
Z as the policy function. This gradient is approximated using a neural network, akin to
the approach employed in standard deep reinforcement learning methodologies.

In the work outlined in [HL20], an error analysis was undertaken for deep BSDE methods.
This analysis specifically involves deriving a posteriori estimates for coupled FBSDEs,
establishing a connection between the quadratic terminal loss and the approximation error
inherent in the numerical solution to the FBSDE.

– Deep backward dynamic programming was proposed in [HPW19] and improved in
[GPW22]. Unlike deep BSDE methods, deep backward dynamic programming is con-
structed based on the backward resolution technique employing an implicit backward Eu-
ler scheme. This approach incorporates machine learning techniques to estimate both the
solution and its gradient. This estimation is achieved by minimizing a loss function at
each time step. Subsequently, these localized problems are recursively addressed using a
stochastic gradient algorithm, progressing backward in time.

– The Deep Splitting method, detailed in [BBC+21], draws upon the Feynman-Kac repre-
sentation of the solution for a nonlinear parabolic PDE. This method involves creating
a recursive approximation of the solution derived from the Feynman-Kac formula, sys-
tematically progressing backward in time. To achieve this, the recursion is approximated
using a continuous function across the support of the marginal distribution.

1.2.4 The case of non standard BSDEs

To address problems in stochastic control, finance and partial differential equations, different exten-
sions of (1.2) have to be considered. We list some of them in the following.

• Reflected BSDEs (RBSDEs) were introduced in [EKKP+97]. Indeed, these equations are used
in numerous practical scenarios such as optimal stopping problems, pricing of American op-
tions, stochastic optimal control, and differential games. Their solutions are influenced by a
stochastic process known as the obstacle, against which they are reflected. A variety of methods
have been employed to tackle and solve these equations: quantization technique (see [BP03a],
[BP03b], [PS18]), random walk (see [MSMT11], [PX11]) and least-squares Monte-Carlo re-
gression with Malliavin approach (see [BT04]). The stability analysis was done in [MZ05]
and [BC08]. Other types of RBSDEs have also been studied as discrete RBSDEs, RBSDEs
with multiple obstacles and RBSDEs with jumps. The use of the penalization method provides
efficient numerical schemes (see [MPX08]). It has been applied to RBSDEs with oblique re-
flections (see [CÉK12] and [HT10]), doubly RBSDEs (see [Xu11]) and double RBSDE with
jumps (see [L-9]).

• Fully-coupled BSDEs are FBSDEs where the coefficients of the forward SDE can depend on
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the backward components (Y,Z):{
Xt = x+

∫ t
0 b(s,Xs, Ys, Zs)ds+

∫ t
0 σ(s,Xs, Ys)dWs,

Yt = g(XT ) +
∫ T
t f(s,Xs, Ys, Zs)ds−

∫ T
t ZsdWs

for t ∈ [0, T ]. Numerically, the first scheme was proposed in the 1990s in [MPY94]. A im-
plementable numerical method was developed in [DMP96]. We also refer to [BZ08] (Picard
iterations), multi-step schemes (see [LSZ20] and [ZFZ14]) and deep learning methods (see
[HL20], [JPPZ20] and [JPPZ22])

• BSDEs with generators of quadratic growth (i.e. such that |f(t, x, y, z)| ≤ C(1+ ∥y∥+ ∥z∥2))
play an important role in mathematical finance. They were introduced in [Kob00]. In contrast
to standard BSDEs, dealing with the quadratic driver is not trivial. In the development of nu-
merical methdos this issue is addressed by truncating the quadratic driver. Time-discretization
schemes are developed in [Ric11] and in [CR16].

• BSDEs with jumps contain jumps in their backward component

−dYt = f(t, Yt, Zt, Ut)dt− ZtdWt − UtdNt

with a suitable jump process (Nt)t∈[0,T ] and a control process (Ut)t∈[0,T ]. The presence of
jumps increases the complexity of numerical implementation. Discretization schemes were
developed based on Malliavin calculus (see [BE08]). A numerical algorithm was developed
in [Aaz13] to approximate the solution to a decoupled FBSDE driven by a pure Lévy process.
An explicit prediction-correction scheme was developed for solving decoupled FBSDEs with
jumps in [FYZ18]. In [LMT13], Brownian and Poissonian components were independently
approximated by random walks. An asymptotic expansion was proposed in [FT19]. We also
refer to [GPP22] for a method based on deep learning.

• McKean-Vlasov BSDEs are BSDEs where the laws of Y and Z are involved in the driver ([θ]
is the notation for the law of a random variable θ)

Yt = ζ +

∫ T

t
f(s, Ys, Zs, [Ys], [Zs])ds−

∫ T

t
Zs · dWs, 0 ≤ t ≤ T. (1.13)

They were introduced in [BDLP09] and [BLP09]. The study of numerical methods for McKean-
Vlasov BSDEs was done by using tree method in [CCD19], first-order and Crank-Nicolson
schemes in [ZM23], higher order discretization method for decoupled cases in [CdRGT15] and
deep learning (see [CCSJ21], [FZ20], [GMW22] and [HHL23]).

1.2.5 Contributions of this manuscript

In this document, we explore two distinct approaches for approximating BSDEs. The initial approach
relies on Random Walk Approximation (as detailed in Section 1.2.1), while the second approach
involves a forward method that integrates Picard iterations (we refer to Section 1.2.3) along with
Wiener chaos expansion.

Our contribution regarding random walk approximation encompasses two main aspects. The first
pertains to establishing a convergence rate for the random walk approximation, achieved in
collaboration with Philippe Briand, Christel Geiss, Stefan Geiss, and Antti Luoto. This convergence
rate was established in L2 for a Forward-Backward Stochastic Differential Equation (FBSDE) whose
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diffusion is a Brownian motion and with a Hölder terminal condition (we refer to [L-6]).
Additionally, in the case of a general FBSDE, albeit with stronger assumptions on f and g, another
convergence rate was determined in [L-3]. Subsequently, a Donsker-type result was proved in [L-1]
for a FBSDE whose diffusion is a Brownian motion and with a Hölder terminal condition. The
second contribution focusing on random walk approximation involves Doubly Reflected Backward
Stochastic Differential Equations (RBSDEs) with jumps and Right-Continuous with Left Limits
(RCLL) obstacles. This work was conducted in collaboration with Roxana Dumitrescu. In [L-8] and
[L-9], two distinct schemes have been proposed to approximate RBSDEs with jumps and RCLL
obstacles. The first scheme is based on penalization, while the second relies on reflection.
Convergence of the numerical scheme has been rigorously established for both approaches.

Our collaborative contribution, alongside Céline Acary-Robert, Philippe Briand, Christel Geiss,
and Abir Ghannoum, centers on employing Picard iterations and Wiener chaos expansion to devise
a novel method for approximating standard BSDEs. This forward method involves initially applying
Picard iterations, followed by Wiener chaos expansion to approximate conditional expectations. Un-
like most methods outlined in Section 1.2, the primary advantage of this approach is its applicability
to non-Markovian BSDEs. Additionally, Wiener chaos expansion provides an approximation of Z
without incurring any additional costs. The convergence of this algorithm was rigorously established
in [L-10]. Subsequently, this method was extended to encompass BSDEs with jumps in [L-7] and to
the realm of McKean-Vlasov BSDEs as detailed in [L-25].

1.3 Plan

This manuscript is divided into two chapters. Chapter 2 deals with random walk approximation and
Chapter 3 deals with the method based on Picard iterations and Wiener chaos expansion.

Chapter 2 is divided into three sections. Section 2.1 presents the strong error results on the rate of
convergence of a random walk approximation, in the case of a FBSDE driven by a Brownian motion
with an Hölder terminal condition (Section 2.1.4, based on [L-6]) and in the case of a FBSDE driven
by a diffusion with more regular coefficients (Section 2.1.5, based on [L-3]). Section 2.2 presents a
Donsker type result in the case of a FBSDE driven by a Brownian motion with an Hölder terminal
condition ([L-1]). Section 2.3 presents two schemes to approximate doubly reflected BSDEs with
jumps and RCLL obstacles and prove their convergence ([L-8], [L-9]).

Chapter 3 is divided into four sections. The first one (Section 3.1) is a general introduction giving
the common notations and the intuition of the method. Section 3.2 presents the algorithm and its
convergence in the standard case, ensuing from [L-10]. Section 3.3 deals with the case with jumps
([L-7]) and Section 3.4 deals with the case of a McKean-Vlasov BSDE ([L-25]).
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Chapter 2

Random walk

This Chapter deals with the study of a numerical scheme based on random walk to approximate
BSDEs as introduced in Section 1.2.1. Section 2.1 presents the strong error results on the rate of
convergence of a random walk approximation, in the case of a FBSDE driven by a Brownian motion
with an Hölder terminal condition (see Section 2.1.4, based on [L-6]) and in the case of a FBSDE
driven by a diffusion with more regular coefficients (see Section 2.1.5, based on [L-3]). Section 2.2
presents a Donsker type result in the case of a FBSDE driven by a Brownian motion with an Hölder
terminal condition (see [L-1]). Section 2.3 presents two schemes to approximate doubly reflected
BSDEs with jumps and RCLL obstacles and prove their convergence (see [L-8] and [L-9]).

2.1 Strong error approximation

2.1.1 Introduction

In this section we present results [L-6] and [L-3] written with Christel Geiss and Antti Luoto. We are
concerned with the discretization of solutions to BSDEs of the following form

Yt = g(XT ) +

∫ T

t
f(s,Xs, Ys, Zs) ds−

∫ T

t
Zs dWs, 0 ≤ t ≤ T, (2.1)

where X is either equals to W (i.e. a standard Brownian motion), f is Lipschitz continuous and g
is a Hölder continuous function (see Section 2.1.4) or X is a diffusion and f and g are more regular
functions (see Section 2.1.5). In one of the first studies on this topic, in the case X = W and the
generator f may depend on z as well, Philippe Briand, Bernard Delyon and Jean Mémin in [BDM01]
proposed an approximation based on Donsker’s theorem. They showed that the solution (Y, Z) to the
previous BSDE can be approximated by the solution (Y n, Zn) to the following discretized BSDE

Y n
tk

= g(Wn
T ) + h

n−1∑
m=k

f(tm+1,W
n
tm , Y

n
tm , Z

n
tm)−

√
h

n−1∑
m=k

Zntmξm+1, 0 ≤ k ≤ n− 1 (2.2)

where Wn is the scaled random walk

Wn
t =

√
h

[t/h]∑
k=1

ξk, 0 ≤ t ≤ T, (2.3)

and where [x] := max{r ∈ Z : r ≤ x} for any real number x, h := T
n and (ξk)k≥1 is an i.i.d.

sequence of Rademacher random variables. In this section we denote Gk := σ(ξi : 1 ≤ i ≤ k)
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and G0 = {∅,Ω}. The associated discrete-time random walk (Wn
tk
)nk=0 is (Gk)nk=0-adapted. They

proved that, in the case of a terminal condition of type G(W ) (where G(W ) is only required to be
a square integrable random variable), (Y n, Zn) converges to (Y,Z). However, the question of the
rate of convergence was left open. In Section 2.1.4 we deal with the Markovian case, meaning that
G(W ) = g(WT ). The case G(X) = g(XT ) is studied in Section 2.1.5. The question on the rate
of convergence seems to be tractable, in particular due to the PDE structure behind. Indeed, in the
diffusion case, (Y, Z) is related to the semilinear equation ∂tu(t, x) +

σ2(t,x)
2 ∆u(t, x) + b(t, x)∇xu(t, x) + f(t, x, u(t, x), σ(t, x)∇xu(t, x)) = 0,

t ∈ [0, T ), x ∈ R,
u(T, x) = g(x), x ∈ R

(2.4)

where, under certain regularity conditions, we can choose

Ys = u(s,Xs) and Zs = ∇xu(s,Xs).

The convergence of this scheme was already proved in [BDM02, Proposition 13] for a general ter-
minal condition and a generator that is Lipschitz in its spatial coordinates but without any rate of
convergence. Even though the link with PDEs was pointed out in [BDM01], the rate of convergence
of the approximation of BSDEs given by scaled random walks was completely open. In [L-6] we give
a first answer to this question in the case X =W (see Section 2.1.4). We show that the error between
(Y n, Zn) and (Y,Z) is of order n−ε/4 when g is assumed to be ε-Hölder continuous and f(t, ·) is
Lipschitz continuous. In [L-3] we answer to this question in the general case of a diffusion (see Sec-
tion 2.1.5). Compared to the case X = W , we need rather strong conditions on the smoothness and
boundedness on f and g. We show that the error between (Y n, Zn) and (Y,Z) is of order n−

1
4
∧α

2

provided that g′′ is locally α-Hölder.
One of the main arguments of Section 2.1 consists in constructing the random walk from the

Brownian motion W using the Skorohod embedding (see [Wal03]) together with generalizations of
the pioneering work of Jin Ma and Jianfeng Zhang [MZ02] on representation theorems for BSDEs.
This approach allows to work with convergence in the L2-sense even if the problem naturally arises
in the weak sense. The drawback is that the rate of convergence n−ε/4 obtained in Section 2.1.4 is not
optimal as one can expect n−ε/2. This will be discussed in Section 2.2. Before presenting our results,
we present Skorokhod embedding in Section 2.1.2 and some properties of solutions to BSDEs and
associated PDEs in Section 2.1.3.

2.1.2 Skorokhod embedding

The rate of the L2-convergence of (Y n, Zn) to (Y,Z) will rely on the fact that the random walk Wn

can be constructed from the Brownian motion W by Skorohod embedding. This enables to work on
the same probability space. Let τ0 := 0 and define

τk := inf{t > τk−1 : |Wt −Wτk−1
| =

√
h}, k ≥ 1.

Then (Wτk −Wτk−1
)∞k=1 is a sequence of i.i.d. random variables with

P(Wτk −Wτk−1
= ±

√
h) = 1

2 ,
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which means that
√
hξk

d
= Wτk −Wτk−1

. We use this random walk for our approximation, i.e. we
require

Wn
t =

[t/h]∑
k=1

(Wτk −Wτk−1
), 0 ≤ t ≤ T. (2.5)

Properties satisfied by τk and Wτk are stated in the following Lemma. We denote by Eτk the condi-
tional expectation w.r.t. Fτk .
Lemma 2.1.1 For all 0 ≤ k ≤ m ≤ n and p > 0, it holds for h = T

n that

1. Eτk = kh,

2. E|τ1|p ≤ C(p)hp,

3. E|Wτm −Wτk |2 = tm − tk,

4. E|Wτk −Wtk |2p ≤ C(p)E|τk − tk|p ≤ C(p)(tkh)
p
2 .

Remark 2.1.2 Note that for p > 0 there exists a C(p) > 0 such that for all k = 1, . . . , n it holds

1
C(p)(tkh)

1
4 ≤ (E|Wτk −Wtk |

p)
1
p ≤ C(p)(tkh)

1
4 .

The upper estimate is given in Lemma 2.1.1. For p ∈ [4,∞) the lower estimate follows from [AKU21,
Proposition 5.3]. We get the lower estimate for p ∈ (0, 4) by choosing 0 < θ < 1 and 0 < p < p1
such that 1

4 = 1−θ
p + θ

p1
. Then it holds by the log-convexity of Lp norms (see, for example [Tao10,

Lemma 1.11.5]) that

∥Wτk −Wtk∥
1−θ
p ≥ ∥Wτk −Wtk∥4

∥Wτk −Wtk∥θp1
≥ C(4)−1(tkh)

1
4(

C(p1)(tkh)
1
4

)θ ≥
(
C(p)(tkh)

1
4

)1−θ
.

Since for t ∈ [tk, tk+1) it holds Wn
t =Wτk and ∥Wt−Wtk∥p ≤ C(p)h

1
2 , we have for any p > 0 that

sup
0≤t≤T

∥Wn
t −Wt∥p = O(h

1
4 ).

2.1.3 Some properties of solutions to BSDEs and associated PDEs

In the following we recall and prove results for FBSDEs with a general forward process. Let us
consider the following SDE started in (t, x),

Xt,x
s = x+

∫ s

t
b(r,Xt,x

r )dr +

∫ s

t
σ(r,Xt,x

r )dWr, 0 ≤ t ≤ s ≤ T, (2.6)

where b and σ satisfy

Hypothesis 2.1

i. b, σ ∈ C0,2
b ([0, T ] × R), in the sense that the derivatives of order k = 0, 1, 2 w.r.t. the

space variable are continuous and bounded on [0, T ]× R,
ii. the first and second derivatives of b and σ w.r.t. the space variable are assumed to be γ-

Hölder continuous (for some γ ∈ (0, 1], w.r.t. the parabolic metric d((x, t), (x′, t′)) =

(|x− x′|2 + |t− t′|)
1
2 on all compact subsets of [0, T ]× R),

iii. b, σ are 1
2 -Hölder continuous in time, uniformly in space,

iv. σ(t, x) ≥ δ > 0 for all (t, x).
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2.1.3.1 Malliavin weights

In this section we recall the Malliavin weights and some of their properties (see [GGG12, Subsection
1.1 and Remark 3]). We denote ∇Xt,x = (∇Xt,x

s )s∈[t,T ] the variational process of Xt,x i.e. it solves

∇Xt,x
s = 1 +

∫ s

t
bx(r,X

t,x
r )∇Xt,x

r dr +

∫ s

t
σx(r,X

t,x
r )∇Xt,x

r dWr, (2.7)

with (Xt,x
s )s∈[t,T ] given in (2.6).

Lemma 2.1.3 Let H : R → R be a polynomially bounded Borel function. If Assumption 2.1 holds
and Xt,x is given by (2.6), then setting

G(t, x) := EH(Xt,x
R )

implies that G ∈ C1,2([0, R)× R). Especially it holds for 0 ≤ t ≤ r < R ≤ T that

∂xG(r,X
t,x
r ) = E[H(Xt,x

R )N
r,1,(t,x)
R |F t

r], and ∂2xG(r,X
t,x
r ) = E[H(Xt,x

R )N
r,2,(t,x)
R |F t

r],

where (F t
r)r∈[t,T ] is the augmented natural filtration of (W t,0

r )r∈[t,T ],

N
r,1,(t,x)
R =

1

R− r

∫ R

r

∇Xt,x
s

σ(s,Xt,x
s )∇Xt,x

r

dWs and N r,2,(t,x)
R =

N
ρ,1,(t,x)
R ∇Xt,x

R N
r,1,(t,x)
ρ +∇Nρ,1,(t,x)

R

∇Xt,x
r

,

with ρ := r+R
2 . Moreover, for q ∈ (0,∞) it holds a.s.

(E[|N r,i,(t,x)
R |q|F t

r])
1
q ≤ κq

(R− r)
i
2

, (2.8)

and E[N r,i,(t,x)
R |F t

r] = 0 a.s. for i = 1, 2. Finally, we have

∥∂xG(r,Xt,x
r )∥Lp(P) ≤ κq

∥H(Xt,x
R )− E[H(Xt,x

R )|F t
r]∥Lp(P)√

R− r

and

∥∂2xG(r,Xt,x
r )∥Lp(P) ≤ κq

∥H(Xt,x
R )− E[H(Xt,x

R )|F t
r]∥Lp(P)

R− r

for 1 < q, p <∞ with 1
p +

1
q = 1.

2.1.3.2 Regularity of solutions to BSDEs

Let us now consider the FBSDE

Y t,x
s = g(Xt,x

T ) +

∫ T

s
f(r,Xt,x

r , Y t,x
r , Zt,xr )dr −

∫ T

s
Zt,xr dWr, 0 ≤ t ≤ s ≤ T, (2.9)

where Xt,x is the process satisfying (2.6) and the following hypothesis on f and g.

Hypothesis 2.2

i. g is locally Hölder continuous with order ε ∈ (0, 1] and polynomially bounded (p0 ≥
0, Cg > 0) in the following sense

∀(x, y) ∈ R2, |g(x)− g(y)| ≤ Cg(1 + |x|p0 + |y|p0)|x− y|ε. (2.10)
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ii. The function [0, T ]× R3 : (t, x, y, z) 7→ f(t, x, y, z) satisfies

|f(t, x, y, z)− f(t′, x′, y′, z′)| ≤ Lf (
√
t− t′ + |x− x′|+ |y − y′|+ |z − z′|). (2.11)

Notice that (2.10) implies

|g(x)| ≤ K(1 + |x|p0+1) =: Ψ(x), x ∈ R, (2.12)

for some K > 0. From the continuity of f we conclude that

Kf := sup
0≤t≤T

|f(t, 0, 0, 0)| <∞.

The following result is taken from [GGG12, Theorem 1]. We reformulate it here for the simple
situation where we need it. On the other hand, we will use Pt,x and are interested in an estimate for
all (t, x) ∈ [0, T )× R.

Theorem 2.1.4 Let Assumption 2.1 and 2.2 hold. Then for any p ∈ [2,∞) the following assertions
are true.

1. There exists a constant Cy2.1.4 > 0 such that for 0 ≤ t < s < T and x ∈ R,

∥Ys − Yt∥Lp(Pt,x) ≤ Cy2.1.4Ψ(x)

(∫ s

t
(T − r)ε−1dr

) 1
2

,

2. There exists a constant Cz2.1.4 > 0 such that for 0 ≤ t < s < T and x ∈ R,

∥Zs − Zt∥Lp(Pt,x) ≤ Cz2.1.4Ψ(x)

(∫ s

t
(T − r)ε−2dr

) 1
2

.

The constants Cy2.1.4 and Cz2.1.4 depend on Kf , Lf , Cg, c
1,2
2.1.5, T, p0, b, σ, κq and p.

2.1.3.3 Properties of the associated PDE

We collect in the theorem below properties of the solution to the PDE which are mainly known. The
new part concerns ∆u. For Lipschitz continuous function g, the behavior of ∆u has been studied in
[Zha01]. General results related to this topic can be found in [CD12].

Theorem 2.1.5 Consider the FBSDE (2.9) and let Assumptions 2.1 and 2.2 hold. Then for the solu-
tion u to the associated PDE ∂tu(t, x) +

σ2(t,x)
2 ∆u(t, x) + b(t, x)∇xu(t, x) + f(t, x, u(t, x), σ(t, x)∇xu(t, x)) = 0,

t ∈ [0, T ), x ∈ R,
u(T, x) = g(x), x ∈ R

we have (using the notations of Lemma 2.1.3)

1. Yt = u(t,Xt) where u(t, x) = E
(
g(Xt,x

T ) +
∫ T
t f(r,Xt,x

r , Y t,x
r , Zt,xr )dr

)
and |u(t, x)| ≤

c12.1.5Ψ(x) with Ψ given in (2.12), where c12.1.5 depends on Cg, T, p0, Lf ,Kf and on the bounds
and Lipschitz constants of b and σ.
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2. ∇xu exists,

∇xu(t, x) = E
(
g(Xt,x

T )N
t,1,(t,x)
T +

∫ T

t
f(r,Xt,x

r , Y t,x
r , Zt,xr )N t,1,(t,x)

r dr

)
, (2.13)

and

(a) ∇xu is continuous in [0, T )× R,
(b) Zt,xs = ∇xu(s,X

t,x
s )σ(s,Xt,x

s ),

(c) |∇xu(t, x)| ≤
c22.1.5Ψ(x)

(T−t)
1−ε
2

,

where c22.1.5 depends on Cg, T, p0, κ2, Lf ,Kf and on the bounds and Lipschitz constants of b
and σ.

3. uxx exists,

∆u(t, x) = E

(
g(Xt,x

T )N
t,2,(t,x)
T +

∫ T

t
[f(r,Xt,x

r , Y t,x
r , Zt,xr )− f(r, x, Y t,x

t , Zt,xt )]N t,2,(t,x)
r dr

)
,

(2.14)

and

(a) ∆u is continuous in [0, T )× R,

(b) |∆u(t, x)| ≤ c32.1.5Ψ(x)

(T−t)1−
ε
2
,

where c32.1.5 depends on Cg, T, p0, κ2, Lf , C
y
2.1.4, C

z
2.1.4 and on the bounds and Lipschitz con-

stants of b and σ.

In the following c2.1.5 represents (c12.1.5, c
2
2.1.5, c

3
2.1.5) and ci,j2.1.5 (i ̸= j) represents (ci2.1.5, c

j
2.1.5),

(i, j) ∈ {1, 2, 3}.

2.1.4 Case of Markovian BSDE with Hölder terminal condition

2.1.4.1 Introduction

This Section presents the results established in [L-6]. We are concerned with the discretization of
solutions to BSDEs of the following form

Yt = g(WT ) +

∫ T

t
f(s,Ws, Ys, Zs) ds−

∫ T

t
Zs dWs, 0 ≤ t ≤ T, (2.15)

where W is a standard Brownian motion, f is Lipschitz continuous and g is a Hölder continuous
function. We are interested in studying the rate of convergence of (Y n, Zn), defined by

Y n
tk

= g(Wn
T ) + h

n−1∑
m=k

f(tm+1,W
n
tm , Y

n
tm , Z

n
tm)−

√
h

n−1∑
m=k

Zntmξm+1, 0 ≤ k ≤ n− 1 (2.16)

to (Y,Z), defined by (2.15). To do this, we construct the random walk from the Brownian motion W
by using the Skorohod embedding (see Section 2.1.2). In this case, (ξk)k and W are defined on the
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same probability space and the convergence of (Y n, Zn) to (Y,Z) can be studied in L2 (see
Theorem 2.1.8). Basically, we get that the L2-norm of the error on Y is of order n−

ε
4 and the

L2-norm of the error on Z is of order n− ε
4√

T−v . The proof of this result is based on several ingredients.
In particular, we need some estimates on the bound of the first and second derivatives of the solution
to the PDE associated to the BSDE (2.15). We use the bounds established in Section 2.1.3.3.

In this section the study of the error (Y n − Y,Zn − Z) either relies on (2.16) or on its integral
version:

Y n
t = g(Wn

T ) +

∫
]t,T ]

f(s,Wn
s−, Y

n
s−, Z

n
s−) d⟨Wn⟩s +

∫
]t,T ]

Zns dW
n
s , 0 ≤ t ≤ T, (2.17)

where the backward equation (2.17) arises from (2.16) by setting Y n
r := Y n

tm and Znr := Zntm for
r ∈ [tm, tm+1).

Remark 2.1.6 It was shown in [BDM01] that, as soon as h ∥f∥Lip < 1, the BSDE (2.17) has a unique
square integrable solution (Y n, Zn), and (Y n

tm , Z
n
tm)

n−1
m=0 is adapted to the filtration G.

Let us now introduce the Malliavin representations for Z and Zn. They are the cornerstone of our
study of the error on Z.

2.1.4.2 Representations for Z and Zn

As recalled in Theorem 2.1.5 and applied in our special case X = W , we have the following repre-
sentation for Z (see Ma and Zhang [MZ02, Theorem 4.2] or Theorem 2.1.5)

Zt = E
(
g(WT )N

t
T +

∫ T

t
f(s,Ws, Ys, Zs)N

t
sds|Ft

)
, 0 ≤ t ≤ T, (2.18)

where for all s ∈ (t, T ] we have

N t
s :=

Ws −Wt

s− t
.

Lemma 2.1.7 Suppose that Assumption 2.2 holds. Then the process Zn given by (2.16) has the
following representation

Zntk = E
(
g(Wn

T )
Wn
tn −Wn

tk

tn − tk

∣∣∣Gk)+ E

(
h

n−1∑
m=k+1

f(tm+1,W
n
tm , Y

n
tm , Z

n
tm)

Wn
tm −Wn

tk

tm − tk

∣∣∣Gk
)

(2.19)

for k = 0, 1, . . . , n− 1.

2.1.4.3 Main result

Theorem 2.1.8 Let Assumption 2.2 hold. If Wn is built by using the Skorokhod embedding (i.e. it
satisfies (2.5)) then we have, for sufficiently large n, that

E|Yv − Y n
v |2 ≤ C0h

ε
2 for v ∈ [0, T ),

E|Zv − Znv |2 ≤ C0
h

ε
2

T − tk
+ C1

h
ε
2

(T − v)1−
ε
2

1v ̸=tk for v ∈ [tk, tk+1), k = 0, ..., n− 1,

where we have the dependencies C0 = C(T, p0, Lf , Cg, C
y
2.1.4, C

z
2.1.4,Kf , c2.1.5, ε), C1 =

C(T, p0, C
z
2.1.4, ε) and Kf := sup0≤t≤T |f(t, 0, 0, 0)|.
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A detailed proof of this result can be found in [L-6]. We give here an intuition of it.

Proof. The proof of Theorem 2.1.8 is based on the following inequalities. Let v ∈ [tk, tk+1), we have

∥Yv − Y n
v ∥2 ≤ ∥Yv − Ytk∥2 + ∥Ytk − Y n

tk
∥2,

∥Zv − Znv ∥2 ≤ ∥Zv − Ztk∥2 + ∥Ztk − Zntk∥2.

∥Yv − Ytk∥2 and ∥Zv − Ztk∥2 are bounded by using Theorem 2.1.4 and ∥Ytk − Y n
tk
∥2 is bounded

by studying the difference between the conditional expectation of (2.15) at time t = tk and the
conditional expectation of (2.16) :

∥Ytk − Y n
tk
∥2 ≤∥Etk(g(WT ))− Eτk(g(W

n
T ))∥2

+ ∥Etk
∫ T

tk

f(s,Ws, Ys, Zs)ds− hEτk
n−1∑
m=k

f(tm+1,W
n
tm , Y

n
tm , Z

n
tm)∥2.

∥Etk(g(WT ))−Eτk(g(Wn
T ))∥2 is bounded by using the properties of the Skorokhod embedding (see

Lemma 2.1.1) and ∥Etk
∫ T
tk
f(s,Ws, Ys, Zs)ds− hEτk

∑n−1
m=k f(tm+1,W

n
tm , Y

n
tm , Z

n
tm)∥2 is bounded

by using Lemma 2.1.1, Theorem 2.1.4 and the properties of F (s, x) := f(s, x, u(s, x), ux(s, x))
which satisfies

|F (t, x1)− F (t, x2)| ≤ C(1 + |x1|p0+1 + |x2|p0+1)
|x1 − x2|
(T − t)1−

α
2

thanks to Theorem 2.1.5. Computing the difference between (2.18) at time t = tk and (2.19) enables
to bound ∥Ztk − Zntk∥2 by using again Lemma 2.1.1, Theorem 2.1.4 and the properties of F (s, x). A
Gronwall Lemma ends the proof. ■

Remark 2.1.9 Theorem 2.1.8 implies that

sup
v∈[0,T )

E|Yv − Y n
v |2 ≤ C0h

ε
2 and E

∫ T

0
|Zv − Znv |2dv ≤ C(C0, C1, β)h

β for β ∈ (0, ε2).

2.1.5 Case of a decoupled FBSDE

2.1.5.1 Introduction

This Section presents the results established in [L-3]. The aim is to study the rate of the L2-
approximation of (Y n, Zn) to (Y,Z) when X is a diffusion. This means that we consider the fol-
lowing FBSDE{

Xs = x+
∫ s
0 b(r,Xr)dr +

∫ s
0 σ(r,Xr)dWr,

Ys = g(XT ) +
∫ T
s f(r,Xr, Yr, Zr)dr −

∫ T
s ZrdWr, 0 ≤ s ≤ T.

(2.20)

For this, as in the previous section, we generate the random walk Wn by Skorohod embedding
from the Brownian motion W (see Section 2.1.2 and Equation (2.3)). Let (Y n, Zn) be the solution to
the FBSDE when the Brownian motion W is replaced by Wn. We consider the following discretized
BSDE:{

Xn
s = x+

∫
(0,s] b(r,X

n
r−)d⟨Wn⟩r +

∫
(0,s] σ(r,X

n
r−)dW

n
r ,

Y n
s = g(Xn

T ) +
∫
(s,T ] f(r,X

n
r−Y

n
r−, Z

n
r−)d⟨Wn⟩r −

∫
(s,T ] Z

n
r−dW

n
r , 0 ≤ s ≤ T.

(2.21)
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The special case X = W has already been studied in the previous section, assuming a locally
ε-Hölder continuous terminal function g and a Lipschitz continuous generator. In this case the rate
of convergence is of order h

ε
4 for the L2-norm of Y n

t − Yt, and of order h
ε
4√
T−t for the L2-norm of

Znt − Zt.
Here we assume that X is a solution to the SDE in (2.20), rather strong conditions on the smooth-

ness and boundedness on f and g and also on b and σ are needed. In Theorem 2.1.22, the main
result of the paper, we show that the convergence rate for (Y n

t , Z
n
t ) to (Yt, Zt) in L2 is of order h

1
4
∧α

2

provided that g′′ exists and is locally α-Hölder continuous.

Remark 2.1.10 For the diffusion setting – in contrast to the case X =W – we can derive the conver-
gence rate for (Y n

t , Z
n
t ) to (Yt, Zt) in L2 only under strong smoothness conditions on the coefficients

which include also that g′′ is locally α-Hölder continuous (see Assumption 2.3 below). These re-
quirements appear to be necessary. This becomes visible in Subsection 2.1.5.3 where we introduce
a discretized Malliavin weight to obtain a representation Ẑn for Zn. While it holds that Ẑn = Zn

when X = W, in our case Ẑn does not coincide with Zn. However, one can show that the difference
Ẑnt −Znt converges to 0 in L2 as n→ ∞ using a Hölder continuity property for the space derivative of
the generator in (2.21) (see Proposition 2.1.21). For this Hölder continuity property to hold one needs
enough smoothness in space from the solution un to the finite difference equation associated to the
discretized FBSDE (2.21). Provided that Assumption 2.3 holds we show the smoothness properties
for un in Proposition 2.1.25.

2.1.5.2 Preliminaries

Let X be a diffusion given by

Xt = x+

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, 0 ≤ t ≤ T

and its discretized counterpart

Xn
tk

= x+ h

k∑
j=1

b(tj , X
n
tj−1

) +
√
h

k∑
j=1

σ(tj , X
n
tj−1

)ξj , k = 1, ..., n, (2.22)

where (ξi)i=1,2,... is a sequence of i.i.d. Rademacher random variables. Gk still denotes σ(ξi : 1 ≤
i ≤ k) with G0 := {∅,Ω}. If we extend the sequence (Xn

tk
)k≥0 to a process in continuous time by

defining Xn
t := Xn

tk
for t ∈ [tk, tk+1), it is the solution to the forward SDE of (2.21). We introduce

the notation Xτk := Xn
tk

for all k = 0, . . . , n, so that (2.22) turns into

Xτk = x+

k∑
j=1

b(tj ,Xτj−1)h+

k∑
j=1

σ(tj ,Xτj−1)(Wτj −Wτj−1), 0 ≤ k ≤ n.

Lemma 2.1.11 Under Assumption 2.1 on b and σ it holds for p ≥ 2 that there exists a constant
C = C(b, σ, T, p) > 0 such that

1. E
∣∣Xs,y

T −Xt,x
T

∣∣p ≤ C(|y − x|p + |s− t|
p
2 ), x, y ∈ R, s, t ∈ [0, T ],

2. E supτl∧tm≤r≤τl+1∧tm |Xtk,x
tk+r

− Xtk,x
tk+τl∧tm |

p ≤ Ch
p
4 , 0 ≤ k ≤ n, 0 ≤ l ≤ n − k − 1, 0 ≤

m ≤ n− k,

3. E|∇Xs,y
T −∇Xt,x

T |p ≤ C(|y − x|p + |s− t|
p
2 ), x, y ∈ R, s, t ∈ [0, T ],
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4. E sup0≤l≤m
∣∣∇Xn,tk,x

tk+tl

∣∣p ≤ C, 0 ≤ k ≤ n, 0 ≤ m ≤ n− k,

5. E
∣∣Xtk,x

tk+tm
−X τk,y

τk+τm

∣∣p ≤ C(|x− y|p + h
p
4 ), 0 ≤ k ≤ n, 0 ≤ m ≤ n− k,

6. E|∇Xtk,x
tk+tm

−∇X τk,y
τk+τm

|p ≤ C(|x− y|p + h
p
4 ), 0 ≤ k ≤ n, 0 ≤ m ≤ n− k.

2.1.5.3 The FBSDE and its approximation scheme

Recall the FBSDE (2.20) and its approximation (2.21). The backward equation in (2.21) can equiva-
lently be written in the form

Y n
tk

= g(Xn
T ) + h

n−1∑
m=k

f(tm+1, X
n
tm , Y

n
tm , Z

n
tm)−

√
h
n−1∑
m=k

Zntmξm+1, 0 ≤ k ≤ n, (2.23)

if one puts Xn
r := Xn

tm , Y
n
r := Y n

tm and Znr := Zntm for r ∈ [tm, tm+1).
One can derive an equation for Zn = (Zntk)

n−1
k=0 if one multiplies (2.23) by ξk+1 and takes the

conditional expectation w.r.t. Gk, so that

Zntk =
1√
h
E (g(Xn

T )ξk+1|Gk) + E

(
√
h

n−1∑
m=k+1

f(tm+1, X
n
tm , Y

n
tm , Z

n
tm)ξk+1|Gk

)
, 0 ≤ k ≤ n− 1.

(2.24)

Remark 2.1.12 For n large enough, the BSDE (2.23) has a unique solution (Y n, Zn) (see [Tol06,
Proposition 1.2]), and (Y n

tk
, Zntk)

n−1
k=0 is adapted to the filtration (Gk)n−1

k=0 .

Representation for Z We will use the following representation for Z, due to Ma and Zhang (see
[MZ02, Theorem 4.2] or Theorem 2.1.5)

Zt = E
(
g(XT )N

t
T +

∫ T

t
f(s,Xs, Ys, Zs)N

t
sds
∣∣∣Ft)σ(t,Xt), 0 ≤ t ≤ T (2.25)

where

N t
s =

1

s− t

∫ s

t

∇Xr

σ(r,Xr)∇Xt
dWr. (2.26)

Remark 2.1.13 In the following we will assume that g′′ exists. In such a case we have the following
representation for Z:

Zt = E
(
g′(XT )∇XT +

∫ T

t
f(s,Xs, Ys, Zs)N

t
sds
∣∣∣Ft)σ(t,Xt), 0 ≤ t ≤ T. (2.27)

Approximation for Zn Let us state the discrete counterpart to (2.25), which, in the general case of
a forward process X , does not coincide with Zn (given by (2.24)). In contrast to the continuous-time
case, where the variational process and the Malliavin derivative are connected by ∇Xt

∇Xs
= DsXt

σ(s,Xs)
(s ≤ t), we can not expect equality for the corresponding expressions if we use the discretized
version of the processes (∇Xt)t and (DsXt)s≤t introduced in (2.28). This counterpart Ẑn to Z is a
key tool in the proof of the convergence of Zn to Z. As we will see in the proof of Theorem 2.1.22,
the study of ∥Zntk − Ztk∥2 goes through the study of ∥Zntk − Ẑntk∥2 and ∥Ẑntk − Ztk∥2.

Before defining the discretized version of (∇Xt)t and (DsXt)s≤t, we shortly introduce the dis-
cretized Malliavin derivative.
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Definition 2.1.14 (Definition of Tm,+ , Tm,− and Dn
m) For any function F : {−1, 1}n → R, the

mappings Tm,+ and Tm,− are defined by

Tm,±F (ξ1, . . . , ξn) := F (ξ1, . . . , ξm−1,±1, ξm+1, . . . , ξn), 1 ≤ m ≤ n.

For any ζ = F (ξ1, . . . , ξn), the discretized Malliavin derivative is defined by

Dn
mξ :=

E[ζξm|σ((ξl)l∈{1,...,n}\{m})]√
h

=
Tm,+ζ − Tm,−ζ

2
√
h

, 1 ≤ m ≤ n.

Definition 2.1.15 (Definition of ϕ(k,l)
x ) Let ϕ be a C0,1([0, T ]× R) function. We denote

ϕ(k,l)x :=
Dn
kϕ(tl, X

n
tl−1

)

Dn
kX

n
tl−1

:=

∫ 1

0
ϕx(tl, ϑTk,+

Xn
tl−1

+ (1− ϑ)T
k,− X

n
tl−1

)dϑ.

If Dn
kX

n
tℓ−1

̸= 0 the second ′ :=′ holds as an identity.

We are now able to define the discretized version of (∇Xt)t and (DsXt)s≤t.

Definition 2.1.16 (Discretized processes (∇Xn,tk,x
tm )m∈{k,...,n} and (Dn

kX
n
tm

)m∈{k,...,n}) For
all m in {k, . . . , n} we define

∇Xn,tk,x
tm = 1 + h

m∑
l=k+1

bx(tl, X
n,tk,x
tl−1

)∇Xn,tk,x
tl−1

+
√
h

m∑
l=k+1

σx(tl, X
n,tk,x
tl−1

)∇Xn,tk,x
tl−1

ξl, 0 ≤ k ≤ n,

Dn
kX

n
tm = σ(tk, X

n
tk−1

) + h
m∑

l=k+1

b(k,l)x Dn
kX

n
tl−1

+
√
h

m∑
l=k+1

σ(k,l)x (Dn
kX

n
tl−1

)ξl, 0 < k ≤ n.

(2.28)

Remark 2.1.17

1. Although ∇X
n,tk,X

n
tk

tm is not equal to
Dn

k+1X
n
tm

σ(tk+1,X
n
tk
) , we can show that the difference of these terms

converges in Lp (see Lemma 2.1.18).

2. With the notation introduced above, (2.24) rewrites to

Zntk = E
(
Dn
k+1g(X

n
T )|Gk

)
+ E

(
h

n−1∑
m=k+1

Dn
k+1f(tm+1, X

n
tm , Y

n
tm , Z

n
tm)|Gk

)
. (2.29)

Lemma 2.1.18 Under Assumption 2.1, and for p ≥ 2, we have

1. E|Xn
tl
− Tm,±X

n
tl
|p ≤ C(b, σ, T, p)h

p
2 , 1 ≤ l,m ≤ n,

2. E
∣∣∣∣∇Xn,tk,X

n
tk

tm −
Dn
k+1X

n
tm

σ(tk+1, X
n
tk
)

∣∣∣∣p ≤ C(b, σ, T, p)h
p
2 , 0 ≤ k < m ≤ n.

3. E|Dn
kX

n
tm |

p ≤ C(b, σ, T, p), 0 ≤ k ≤ m ≤ n.
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In order to define the discrete counterpart to (2.25), we first define the discrete counterpart to
(N t

s)s∈[t,T ] given in (2.26):

Nn,tk
tℓ

:=
√
h

ℓ∑
m=k+1

∇X
n,tk,X

n
tk

tm−1

σ(tm, Xn
tm−1

)

ξm
tℓ − tk

, k < ℓ ≤ n. (2.30)

Notice that there is some constant κ̂2 > 0 depending on b, σ, T, δ such that(
E(|Nn,tk

tℓ
|2|Gk)

) 1
2 ≤ κ̂2

(tℓ − tk)
1
2

, 0 ≤ k < ℓ ≤ n. (2.31)

Definition 2.1.19 (Discrete counterpart to (2.27)) Let the process Ẑn = (Ẑntk)
n−1
k=0 be defined by

Ẑntk := E
(
Dn
k+1g(X

n
T )|Gk

)
+ E

(
h

n−1∑
m=k+1

f(tm+1, X
n
tm , Y

n
tm , Z

n
tm)N

n,tk
tm |Gk

)
σ(tk+1, X

n
tk
),

(2.32)

Remark 2.1.20 In (2.32) we could have used also the approximate expression
E(g(Xn

T )N
n,tk
tn σ(tk+1, X

n
tk
)|Gk), but since we will assume that g′′ exists, we work with the correct

term.

The study of the convergence EG
0,x|Zntk − Ẑ

n
tk
|2, where EG

0,x := E(·|G0, X0 = x), requires stronger
assumptions on the coefficients b, σ, f and g.

Hypothesis 2.3 Assumptions 2.1 and 2.2 hold. Additionally, we assume that all first and second
derivatives w.r.t. the variables x, y, z of b(t, x), σ(t, x) and f(t, x, y, z) exist and are bounded
Lipschitz functions w.r.t. these variables, uniformly in time. Moreover, g′′ exists and satisfies
(2.10).

Proposition 2.1.21 If Assumption 2.3 holds, then

EG
0,x|Z

n
tk
− Ẑntk |

2 ≤ C2.1.21Ψ̂
2(x)hα,

where the function Ψ̂(x) := 1 + |x|6p0+8 and C2.1.21 depends on b, σ, f, g, T, p0 and δ.

Proof. The proof of Proposition 2.1.21 is based on the following representations (see [BDM01, Propo-
sition 5.1])

Y n
tm = un(tm, X

n
tm), and Zntm = Dn

m+1u
n(tm+1, X

n
tm+1

),

where un is the solution of the finite difference equation (2.35) with terminal condition un(tn, x) =
g(x), on Proposition 2.1.25 and Lemma 2.1.18. ■

2.1.5.4 Main result

Theorem 2.1.22 Let Assumption 2.3 be satisfied. Then for all v ∈ [0, T ) and large enough n, we
have

E0,x|Yv − Y n
v |2 + E0,x|Zv − Znv |2 ≤ C2.1.22Ψ̂(x)2h

1
2
∧α

with C2.1.22 = C(b, σ, f, g, T, p0, δ) and Ψ̂ is given in Proposition 2.1.21.
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Remark 2.1.23 As noticed above, the filtration Gk coincides with Fτk , for all k = 0, . . . , n. The
expectation E0,x appearing in Theorem 2.1.22 is defined on the probability space (Ω,F ,P).

Proof. As for the case X = W , we give an overview of the proof of Theorem 2.1.22. It is based on
the following inequalities. Let v ∈ [tk, tk+1), we have

∥Yv − Y n
v ∥2 ≤ ∥Yv − Ytk∥2 + ∥Ytk − Y n

tk
∥2,

∥Zv − Znv ∥2 ≤ ∥Zv − Ztk∥2 + ∥Ztk − Zntk∥2.

∥Yv−Ytk∥2 and ∥Zv−Ztk∥2 are bounded by using Theorem 2.1.4 and Proposition 2.1.24 and ∥Ytk −
Y n
tk
∥2 is bounded by studying the difference between the conditional expectation of (2.20) at time

t = tk and the conditional expectation of (2.23) :

∥Ytk − Y n
tk
∥2 ≤∥Etk(g(XT ))− Eτk(g(X

n
T ))∥2

+ ∥Etk
∫ T

tk

f(s,Xs, Ys, Zs)ds− hEτk
n−1∑
m=k

f(tm+1, X
n
tm , Y

n
tm , Z

n
tm)∥2.

∥Etk(g(XT )) − Eτk(g(Xn
T ))∥2 is bounded by using the properties of the Skorokhod embedding

(see Lemma 2.1.11) and ∥Etk
∫ T
tk
f(s,Xs, Ys, Zs)ds − hEτk

∑n−1
m=k f(tm+1, X

n
tm , Y

n
tm , Z

n
tm)∥2 is

bounded by using Lemma 2.1.11, Theorem 2.1.4, Proposition 2.1.24 and the properties of F (s, x) :=
f(s, x, u(s, x), ux(s, x)) which satisfies the following inequality under Assumption 2.3. From Theo-
rem 2.1.5 we get that for all (x1, x2) ∈ R2 there exists (α1, α2) in [min(x1, x2),max(x1, x2)] s.t.

|F (t, x1)− F (t, x2)| ≤ C

(
1 + |α1|p0+1 +

|α2|p0+1

(T − t)
1
2

)
|x1 − x2|.

Computing the difference between (2.27) at time t = tk and (2.29) enables to bound ∥Ztk − Zntk∥2.
First we introduce ±Ẑntk . Then we bound ∥Ẑntk − Zntk∥2 by using Proposition 2.1.21 and we bound
∥Ẑntk − Zntk∥2 by using Lemma 2.1.11, Theorem 2.1.4, Proposition 2.1.24 and the properties satisfied
by F (s, x). A Gronwall Lemma ends the proof. ■

2.1.5.5 Some properties of solutions to BSDEs and finite difference equations

Properties on Z Under Assumption 2.3 we are in the position to improve the bound on ∥Zs −
Zt∥Lp(Pt,x) given in Theorem 2.1.4.

Proposition 2.1.24 If Assumption 2.3 holds, then there exists a constant C2.1.24 > 0 such that for
0 ≤ t < s ≤ T and x ∈ R,

∥Zs − Zt∥Lp(Pt,x) ≤ C2.1.24Ψ(x)(s− t)
1
2 ,

where Ψ has been introduced in Assumption 2.2, C2.1.24 depends on c2,32.1.5 (see Theorem 2.1.5),
b, σ, f, g, T, p0, p, and hence C2.1.24 = C2.1.24(b, σ, f, g, T, p0, p, δ).
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Properties on the solution to the finite difference equation Recall the definition of Dn
m given in

(2.1.14). By (2.22),

Xn,tm,x
tm+1

= x+ hb(tm+1, x) +
√
hσ(tm+1, x)ξm+1, (2.33)

so that

Tm+1,±u
n(tm+1, X

n,tm,x
tm+1

) = un(tm+1, x+ hb(tm+1, x)±
√
hσ(tm+1, x)). (2.34)

Even though g is only Hölder continuous, one can observe in Theorem 2.1.5 the well-known smooth-
ing property which implies that u, the solution to the PDE (2.4), is differentiable on [0, T )×R. In the
following proposition, for the solution un to the finite difference equation, we have to require from g
the same regularity as we want for un.

Proposition 2.1.25 Let Assumption 2.3 hold and assume that un is a solution to

un(tm, x)− hf(tm+1, x, u
n(tm, x),Dn

m+1u
n(tm+1, X

n,tm,x
tm+1

))

=
1

2
[Tm+1,+u

n(tm+1, X
n,tm,x
tm+1

) + Tm+1,−u
n(tm+1, X

n,tm,x
tm+1

)], m = 0, . . . , n− 1, (2.35)

with terminal condition un(tn, x) = g(x). Then, for sufficiently small h, the map x 7→ un(tm, x) is
C2 and it holds

|un(tm, x)|+ |unx(tm, x)| ≤ Cun,1Ψ(x), |unxx(tm, x)| ≤ Cun,2Ψ
2(x)

and

|unxx(tm, x)− unxx(tm, x̄)| ≤ Cun,3 (1 + |x|6p0+7 + |x̄|6p0+7)|x− x̄|α, (2.36)

uniformly inm = 0, . . . , n−1. The constantsCun,1,Cun,2 andCun,3 depend on the bounds of f, g, b, σ
and their derivatives and on T and p0.

2.2 Donsker type result

This Section presents the results established in [L-1] written with Philippe Briand, Christel Geiss and
Stefan Geiss. The objective is to confirm this expected and optimal rate n−ε/2 which has been raised
in the introduction of Section 2.1. This improvement is possible by using a weak limit approach. The
error is then considered in the Wasserstein distance.

2.2.1 Introduction

In this section we consider the random walk approximation of

Yt = g(WT ) +

∫ T

t
f(s,Ws, Ys, Zs) ds−

∫ T

t
Zs dWs, 0 ≤ t ≤ T, (2.37)

given by

Y n
t = g(Wn

T ) +

∫
]t,T ]

f(s,Wn
s− , Y

n
s− , Z

n
s ) d⟨Wn⟩s −

∫
]t,T ]

Zns dW
n
s , t ∈ [0, T ].
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Remark 2.2.1 This approximation is close to (2.17). The main difference lies in Zn, which is here a
predictable process w.r.t. the filtration G.

In this section we establish a Donsker type result : assuming that g is ε-Hölder, the objective of our
study is to confirm the expected and optimal rate n−ε/2. Our starting point is a result of Emmanuel
Rio [Rio09] which directly implies that, when T = 1, for all p ≥ 1, there exists a constant Cp
such that, for all n ≥ 1, Wp(W

n
1 ,G) ≤ Cp n

−1/2, where Wp is the Lp-Wasserstein distance and
G a standard normal random variable. To do so, we first generalize this result to cover the case
where f ≡ 0, which corresponds to the heat equation. Then, using the associated PDE, in particular
representation formulas in the spirit of [MZ02], we are able to prove that

Wp(Y
n
t , Yt) ≤ Cp n

−(α∧ ε
2
) and Wp(Z

n
t , Zt) ≤

Cp√
T − t

n−(α∧ ε
2
)

for t ∈ [0, T ] and t ∈ [0, T [, respectively, when g and f(t, ·, y, z) are ε-Hölder continuous and
f(·, x, y, z) is α-Hölder continuous. As mentioned in Remark 2.2.15-(i), this rate of convergence is
optimal. We refer to Theorem 2.2.14 in Section 2.2.5 for the precise statement. One of the main diffi-
culties in the proof concerns various gradient estimates in order to obtain the estimate for Wp(Z

n
t , Zt).

The main step in the proof consists in the convergence estimates in Theorem 2.2.16, where we con-
sider the approximation of solutions to the following semilinear heat equation

{
∂tu(t, x) +

1
2∆u(t, x) + f(t, x, u(t, x),∇xu(t, x)) = 0, (t, x) ∈ [0, T [×R,

u(T, ·) = g(·). (2.38)

and their gradients by solutions to the associated finite difference schemes and their discretized
gradients. We show these estimates by probabilistic means.

The Section is organized as follows: we first introduce some notations (Section 2.2.2), then we
recall some properties of the random walk in the Wasserstein distance (Section 2.2.3), we give some
regularity results on the associated discrete and continuous PDEs (Section 2.2.4) and finally we estab-
lish convergence results (Section 2.2.5).

2.2.2 Notations

Hypothesis 2.4 There exist 0 < ε ≤ 1 and 0 < α ≤ 1 such that it holds:

i. The function g : R −→ R is ε-Hölder continuous: for all (x, x′) ∈ R2 one has∣∣g(x)− g
(
x′
)∣∣ ≤ ∥g∥ε

∣∣x− x′
∣∣ε .

ii. The function f : [0, T ] × R × R × R −→ R is α-Hölder continuous in time, ε-Hölder
continuous in space and Lipschitz continuous with respect to (y, z): for all (t, x, y, z) and
(t′, x′, y′, z′) in [0, T ]× R× R× R one has∣∣f(t, x, y, z)− f

(
t′, x′, y′, z′

)∣∣
≤ ∥ft∥α

∣∣t− t′
∣∣α + ∥fx∥ε

∣∣x− x′
∣∣ε + ∥fy∥Lip

∣∣y − y′
∣∣+ ∥fz∥Lip

∣∣z − z′
∣∣ . (2.39)

Most of the time, we do not need to distinguish between ∥fy∥Lip and ∥fz∥Lip and we let ∥f∥Lip :=
max

(
∥fy∥Lip, ∥fz∥Lip

)
.
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Convention: Later the phrase a constant C > 0 depends on (T, ε, f, g) stands for the fact
that C can be expressed in terms of (T, ε, ∥fx∥ε, ∥fy∥Lip, ∥fz∥Lip,Kf , ∥g∥ε, g(0)) where Kf :=
supt∈[0,T ] |f(t, 0, 0, 0)|. Similarly, a dependence on (T, α, ε, f, g) means an additional dependence
on (α, ∥ft∥α).

From [BDH+03, Theorem 4.2] it is known that under Hypothesis 2.4, the BSDE (2.37) has a
unique Lp-solution (Y,Z) for any p ∈]1,∞[. So for (t, x) ∈ [0, T [×R we let

(
Y t,x
s , Zt,xs

)
s∈[t,T ]

be

the square integrable solution to the BSDE

Y t,x
s = g

(
W t,x
T

)
+

∫ T

s
f
(
r,W t,x

r , Y t,x
r , Zt,xr

)
dr −

∫ T

s
Zt,xr dWr, t ≤ s ≤ T, (2.40)

whereW t,x
r := x+Wr−Wt, and set, as usual, for x ∈ R, u(T, x) := g(x), and, for (t, x) ∈ [0, T [×R,

u(t, x) := Y t,x
t = E

[
g(W t,x

T ) +

∫ T

t
f
(
r,W t,x

r , Y t,x
r , Zt,xr

)
dr

]
.

It is well known that the function u is continuous on [0, T ]×R (see also Lemma 2.2.10 below). Under
Lipschitz assumptions in (x, y, z) and for α ≥ 1

2 , u is the viscosity solution to (2.38), see [Zha17, The-
orem 5.5.8]. Moreover, as recalled in Theorem 2.1.5, in this Markovian setting, for (t, x) ∈ [0, T ]×R,
we have Y t,x

s = u(s,W t,x
s ) a.s. for all s ∈ [t, T ] and for a generator which is Lipschitz continuous

in all space variables and a measurable function g with polynomial growth, J. Zhang proved that u
belongs to C0,1 ([0, T [×R), that Zt,xs = ∇xu(s,W

t,x
s ) a.e. on [t, T [×Ω and that the following repre-

sentation holds (see [Zha05, Theorem 3.2])

∇xu(t, x) = E
[
g(W t,x

T )
WT −Wt

T − t
+

∫ T

t
f
(
r,W t,x

r , Y t,x
r , Zt,xr

)Wr −Wt

r − t
dr

]
,

(t, x) ∈ [0, T [×R.

If F is the function given by

F (s, x) := f(s, x, u(s, x),∇xu(s, x)) for (s, x) ∈ [0, T [×R, (2.41)

we thus have

u(t, x) = E
[
g(W t,x

T ) +

∫ T

t
F (r,W t,x

r ) dr

]
, (t, x) ∈ [0, T [×R, (2.42)

together with

∇xu(t, x) = E
[
g(W t,x

T )
WT −Wt

T − t
+

∫ T

t
F (r,W t,x

r )
Wr −Wt

r − t
dr

]
, (t, x) ∈ [0, T [×R. (2.43)

Remark 2.2.2 Theses formulas play an important role in the sequel. In Lemma 2.2.10, we extend
these results to the case where f(t, ·, y, z) is ε-Hölder continuous and make the regularity of u and
∇xu precise.

As already mentioned before, we are concerned with the approximation of the solution(
Y t,x, Zt,x

)
to (2.40) by a solution to the BSDE driven by a scaled random walk. To do this, let us con-

sider, on some probability space, not necessarily (Ω,F ,P), an i.i.d. sequence (ξk)k≥1 of Rademacher
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random variables. For n ∈ N∗ := {1, 2, 3, ...} we set h := T/n and we consider the scaled random
walk introduced in (2.3):

Wn
t :=

√
h

[t/h]∑
k=1

ξk, 0 ≤ t ≤ T.

As we did for the Brownian motion, for x ∈ R and 0 ≤ t ≤ s ≤ T we put

Wn,t,x
s := x+Wn

s −Wn
t .

Let us introduce some further notation. We denote the ceiling function by ⌈x⌉ := min{r ∈ Z :
r ≥ x} for x ∈ R. Moreover, we set

nt := [t/h], t := h[t/h] = hnt and t := h⌈t/h⌉, t ∈ [0, T ].

By construction, Y n is a piecewise constant càdlàg process with Y n
t = Y n

t . The process Zn is
defined as an element of L2(Ω× [0, T ], dP⊗ d⟨Wn⟩), where we start with a Zn defined only on the
points {tk := kh : k = 1, . . . , n} and extend it to ]0, T ] as a càglàd process (Znt )t∈]0,T ] by setting
Znt = Zn

t
. The previous BSDE is actually a discrete BSDE that can be solved by hand since, for

k = 0, · · · , n− 1, we have

Y n
tk

= Y n
tk+1

+ h f
(
tk+1,W

n
tk
, Y n

tk
, Zntk+1

)
−
√
hZntk+1

ξk+1, Y n
tn = g(Wn

T ). (2.44)

Thus, if Y n
tk+1

is given,

Zntk+1
= h−1/2 E

(
Y n
tk+1

ξk+1 | Gk
)
, (2.45)

Y n
tk

= Y n
tk+1

+ h f
(
tk+1,W

n
tk
, Y n

tk
, Zntk+1

)
−
√
hZntk+1

ξk+1

= E
(
Y n
tk+1

| Gk
)
+ h f

(
tk+1,W

n
tk
, Y n

tk
, Zntk+1

)
, (2.46)

where the last equality follows by taking the conditional equation w.r.t. Gk in the second line.

Remark 2.2.3 If we sum (2.44) we get

Y n
tk

= g(Wn
T ) + h

n−1∑
m=k

f(tm+1,W
n
tm , Y

n
tm , Z

n
tm+1

)−
√
h
n−1∑
m=k

Zntm+1
ξm+1, 0 ≤ k ≤ n− 1.

which is almost (2.2). The only difference is due to the predictable property of the Zn process con-
sidered in this section.

Since we are in a Markovian setting, there is also an analogue of the Feynman-Kac formula. If u
is a given function we set

Dn
+u(x) :=

1

2

(
u(x+

√
h) + u(x−

√
h)
)
, Dn

−u(x) :=
1

2

(
u(x+

√
h)− u(x−

√
h)
)
,

and
∇nu(x) := h−1/2Dn

−u(x). (2.47)
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Remark 2.2.4 From the definition of Dn
+ and Dn

−, we get that if u is ε-Hölder, Dn
+u and Dn

−u are
also ε-Hölder with constant ∥u∥ε.

Let Un be the solution to the finite difference equation, where for x ∈ R and k = 0, . . . , n − 1 we
require {

Un(tk, x)=D
n
+U

n(tk+1, x)+ hf(tk+1, x, U
n(tk, x), h

− 1
2Dn

−U
n(tk+1, x)),

Un(tn, x)=g(x).
(2.48)

This scheme is monotone in the sense of Barles and Souganides [BS91]. We obtain from (2.45) and
(2.46) (cf [BDM01, Proposition 5.1]) that

Y n
tk

= Un

(
tk,

√
h

k∑
i=1

ξi

)
, k = 0, . . . , n,

Zntk = ∇nUn

(
tk,

√
h

k−1∑
i=1

ξi

)
, k = 1, . . . , n.

These formulas rewrite in continuous time to

Y n
t = Y n

t = Un(t,Wn
t ), t ∈ [0, T ], and Znt = Znt = ∇nUn

(
t,Wn

t−
)
, t ∈]0, T ].

If we set, for 0 ≤ t ≤ T and x ∈ R, Un(t, x) := Un(t, x), we have Y n
t = Un(t,Wn

t ).
More generally, for 0 ≤ t < T , we define (Y n,t,x, Zn,t,x) as the solution Y n,t,x = (Y

n,t,x
s )s∈[t,T ]

and Zn,t,x = (Z
n,t,x
s )s∈]t,T ] to the BSDE

Y n,t,x
s = g(Wn,t,x

T ) +

∫
]s,T ]

f(r,Wn,t,x
r− , Y

n,t,x
r− , Zn,t,xr )d⟨Wn⟩r −

∫
]s,T ]

Zn,t,xr dWn
r , s ∈ [t, T ].

(2.49)
We set Y n,T,x

T = g(x). Then,

Y n,t,x
s = Y n,t,x

s = Un(s,Wn,t,x
s ), 0 ≤ t ≤ s ≤ T. (2.50)

Let us observe that Zn,t,x is first defined at the points t = tk, k = nt + 1, . . . , n. As before we let
Z
n,t,x
s := Z

n,t,x
s for s ∈ ]t, T ]. We have

Zn,t,xs = Z
n,t,x
s = ∇nUn(s,Wn,t,x

s− ) for s ∈ ]t, T ].

In particular,

Zn,t,xs = ∇nUn(s+ h,Wn,t,x
s ) whenever s ∈ ]t, T ]\{tk : k = nt + 1, . . . , n}. (2.51)

Of course, we have
Un(t, x) = Y n,t,x

t = Y
n,t,x
t for t ∈ [0, T ].

Similarly, we define, for (t, x) ∈ [0, T [×R,

∆n(t, x) := ∇nUn(t+ h, x) = Z
n,t,x
t+h . (2.52)

With this notation, (2.51) rewrites as

Zn,t,xs = ∆n(s,Wn,t,x
s ) whenever s ∈ ]t, T ]\{tk : k = nt + 1, . . . , n}. (2.53)
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It follows that

Un(t, x) = E

g (Wn,t,x
T

)
+ h

n∑
k=nt+1

f
(
tk,W

n,t,x
tk−1

, Y n,t,x
tk−1

, Zn,t,xtk

)
= E

[
g
(
Wn,t,x
T

)
+

∫ T

t
f
(
s,Wn,t,x

s , Y n,t,x
s , Zn,t,xs

)
ds

]
,

which rewrites, taking into account (2.50) and (2.53), to

Un(t, x) = E
[
g
(
Wn,t,x
T

)
+

∫ T

t
f
(
s,Wn,t,x

s , Un(s,Wn,t,x
s ),∆n(s,Wn,t,x

s )
)
ds

]
= E

[
g
(
Wn,t,x
T

)
+

∫ T

t
f
(
s,Θn,t,x

s

)
ds

]
, (2.54)

where

Θn,t,x
s :=

(
Wn,t,x
s , Un(s,Wn,t,x

s ),∆n(s,Wn,t,x
s )

)
. (2.55)

We prove in Section 2.2.5 that (Un,∆n) converges to (u,∇xu).
From now on we assume that n ≥ n0(T, ∥f∥Lip) where n0(T, ∥f∥Lip) ∈ N∗ is the integer given in

[L-1, Lemma 14] and which automatically implies also existence and uniqueness of solutions because
n0 > T∥f∥Lip.

2.2.3 Scaled random walk and Wasserstein distance

One starting point of this section is the following result of Emmanuel Rio [Rio09] (Theorem 2.1) (see
also [Rio11]). We then extend this result in Proposition 2.2.7 and Corollary 2.2.8 to cover the case
where the generator vanishes, i.e. f ≡ 0.

For r > 0 let ψr be defined by ψr(x) = e|x|
r − 1, and for a real random variable X we let

∥X∥ψr := inf{a > 0 : E [ψr(X/a)] ≤ 1}, inf ∅ := +∞.

Let us recall that, for any p > 0,

sup
x>0

{
xp∨r

ψr(x)

}
< +∞, ∥X∥Lp ≤

(
sup
x>0

{
xp∨r

ψr(x)

})1/(p∨r)
∥X∥ψr . (2.56)

Let X and X ′ be two random variables and let us denote by µ the law of X and by ν the law of X ′.
With the usual abuse of notation, the Wasserstein distance associated to ψr is defined by

Wψr(µ, ν) = Wψr(X,X
′) := inf

{
∥X −X ′∥ψr : law(X) = µ, law(X ′) = ν

}
.

Lemma 2.2.5 The following results hold

1. ∥|X|s∥ψr = ∥X∥sψsr
for r, s > 0.

2. ∥X∥ψr ≤ cr,s∥X∥ψs for 0 < r < s <∞ and some constant cr,s > 0.

3. There is a constant c > 0 such that for i.i.d. Rademacher variables (ξk)k≥1 it holds ∥ξ1+ · · ·+
ξn∥ψ2 ≤ c

√
n for all n ∈ N∗.
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4. Let ε ∈]0, 1], g : R → R be ε-Hölder continuous, and r > 0. Then one has

∥g(X)− g(X ′)∥ψr ≤ ∥g∥ε∥X −X ′∥εψεr

for random variables X,X ′ : Ω → R, and

Wψr(g(X), g(X ′)) ≤ ∥g∥εWψεr(X,X
′)ε.

for random variables X : Ω → R and X ′ : Ω′ → R.

5. For r ≥ 1 one has that Wψr(·, ·) is a distance.

Let (Xk)k≥1 be an i.i.d. sequence of random variables with E [X] = 0, E
[
X2
]
= 1, and such

that, for some σ > 0, E
[
eσ|X|] < +∞. Let G be a standard normal random variable. In [Rio09,

Theorem 2.1], Emmanuel Rio proved that there exists a constant C > 0 such that, for n ≥ 1,

Wψ1

(
n−1/2Sn,G

)
≤ C n−1/2, where Sn = X1 + . . .+Xn.

As a byproduct, for any p ≥ 1, there exists a constant cp > 0 such that

Wp

(
n−1/2Sn,G

)
≤ cp n

−1/2. (2.57)

where Wp stands for the Lp-Wasserstein distance

Wp(µ, ν) = Wp(X,X
′) := inf

{
E
[
|X −X ′|p

]1/p
: law(X) = µ, law(X ′) = ν

}
. (2.58)

We have also the result of Kantorovich-Rubinstein, i.e.

W1(µ, ν) = W1(X,X
′) = sup{E [f(X)]− E

[
f(X ′)

]
: ∥f∥Lip ≤ 1}. (2.59)

Remark 2.2.6 We could also consider here the case where 0 < p < 1 by using the fact that, in this
case, E(|X − X ′|p) is a distance (see the arguments in [LAS05, Section 7.1]). In general, we have
Wp(µ, ν) ≤ Wq(µ, ν) for 0 < p < q <∞.

Let us start with a straightforward generalization of Rio’s result.

Proposition 2.2.7 There exists a C > 0 such that, for all x ∈ R and all 0 ≤ t ≤ s ≤ T ,

Wψ1

(
Wn,t,x
s ,W t,x

s

)
≤ C

(
T

n

)1/2

.

Then, taking into account (2.56), for any p ≥ 1, there exists a cp > 0 such that, for all x ∈ R and
all 0 ≤ t ≤ s ≤ T ,

Wp

(
Wn,t,x
s ,W t,x

s

)
≤ cp

(
T

n

)1/2

. (2.60)

Let us finish with a simple consequence of this result that we will use in the sequel.

Corollary 2.2.8 Let 0 < ε ≤ 1 and let g : R −→ R be an ε-Hölder continuous function. Then there
exists a C > 0 depending on T such that, for all x ∈ R and all 0 ≤ t ≤ s ≤ T ,∣∣E [g (Wn,t,x

s

)]
− E

[
g
(
W t,x
s

)]∣∣ ≤ C ∥g∥ε n−ε/2,

and, setting δ(t, s) := max (s− t, s− t),∣∣E [g (Wn,t,x
s

) (
Wn,t,x
s − x

)]
− E

[
g
(
W t,x
s

) (
W t,x
s − x

)]∣∣ ≤ C ∥g∥ε δ(t, s)1/2 n−ε/2.
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2.2.4 Regularity results on u, Un, ∇u and ∆n

Let us start by known regularity properties of the function u that follow from classical a priori esti-
mates for BSDEs.

Lemma 2.2.9 Under Assumption 2.4 there exists a constant C > 0 depending on (T, ε, f, g) such
that, for all (t, x) ∈ [0, T ]× R,

|u(t, x)| ≤ C (1 + |x|)ε, ∥u(t, ·)∥ε ≤ C, ∥u(·, x)∥ε/2 ≤ C (1 + |x|)ε.

The following Lemma extends [Zha05, Theorem 3.2] and Theorem 2.1.5 to the case where
f(t, ·, y, z) is ε-Hölder continuous and f(·, x, y, z) is α-Hölder continuous. We also assume that
g is ε-Hölder continuous. Comparing to regularity results stated in Theorem 2.1.5, we also provide a
bound for ∥∇xu(t, ·)∥ϵ.

Lemma 2.2.10 Recall the notation (2.41) and let Assumption 2.4 hold.

1. The function u belongs to C0,1([0, T [×R) and, for all (t, x) ∈ [0, T [×R, we have,

Zt,xs = ∇xu(s,W
t,x
s ) for a.e. (s, ω) ∈ [t, T [×Ω, (2.61)

as well as (2.43) i.e.

∇xu(t, x) = E
(
g(W t,x

T )
WT −Wt

T − t

)
+ E

(∫ T

t
F (s,W t,x

s )
Ws −Wt

s− t
ds

)
.

Consequently, for Er := E[ · |Fr],

∇xu(r,W
t,x
r ) = Er

(
g(W t,x

T )
WT −Wr

T − r

)
+ Er

(∫ T

r
F (s,W t,x

s )
Ws −Wr

s− r
ds

)
a.s. for r ∈ [t, T [. (2.62)

2. Moreover, there exists a constant C > 0 depending on (T, ε, f, g) such that

(a) ∥∇xu(t, ·)∥ε ≤ C√
T−t for all t ∈ [0, T [,

(b) |∇xu(t, x)| ≤ C
(T−t)(1−ε)/2 for all (t, x) ∈ [0, T [×R.

Remark 2.2.11 From now on we always use the continuous version of Zt,xs given by ∇u(s,W t,x
s ).

Lemma 2.2.12 For all (t, x) ∈ [0, T [×R and for n ≥ n0 ∈ N∗, with n0 defined as in [L-1, Lemma
14], we have

1. |Un(t, x)| ≤ C(1 + |x|)ε,

2. |∆n(t, x)| ≤ Cn

(T−t)(1−ε)/2 ,

where C > 0 depends on (T, ε, f, g) and Cn > 0 depends on (T, ε, f, g, n).

Proposition 2.2.13 Under Hypothesis 2.4, there exists a constant C > 0 depending on (T, ε, f, g)
such that, for all x ∈ R,

|∇xu(t, x)−∇xu(r, x)| ≤ C
(t− r)ε/2√
T − t

for all 0 ≤ r < t < T.
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2.2.5 Main results

Theorem 2.2.14 Assume that Hypothesis 2.4 holds. Then there exists a constant Cε > 0, depending
at most on (T, α, ε, f, g) such that for all x ∈ R,

1. Wψ1/ε

(
Y n,t,x
s , Y t,x

s

)
≤ Cε (1 + |x|)ε n−(α∧ ε

2
) for all 0 ≤ t ≤ s ≤ T,

2. Wψ1/ε

(
Zn,t,xs , Zt,xs

)
≤ Cε

(1+|x|)ε√
T−s n−(α∧ ε

2
) for all s ∈ [t, T [.

In particular, for any p ∈ [1,∞[, there exists a constant Cp > 0, depending at most on
(T, α, ε, f, g, p) such that for all x ∈ R,

1. Wp

(
Y n,t,x
s , Y t,x

s

)
≤ Cp (1 + |x|)ε n−(α∧ ϵ

2
) for all 0 ≤ t ≤ s ≤ T,

2. Wp

(
Zn,t,xs , Zt,xs

)
≤ Cp

(1+|x|)ε√
T−s n−(α∧ ε

2
) for all s ∈ [t, T [.

Proof. We give here an overview of the proof of Theorem 2.2.14.

Wψr

(
Y t,x
s , Y n,t,x

s

)
= Wψr

(
u(s,W t,x

s ), Un(s,Wn,t,x
s )

)
≤ Wψr

(
u(s,W t,x

s ), u(s,Wn,t,x
s )

)
+Wψr

(
u(s,Wn,t,x

s ), Un(s,Wn,t,x
s )

)
.

The first term of the r.h.s. is bounded by Lemma 2.2.5-4, Lemma 2.2.9 and Proposition 2.2.7. The
second term of the r.h.s. is bounded by using Theorem 2.2.16. As for the error on Y , we have

Wψr

(
∇u(s,W t,x

s ),∆n(s,Wn,t,x
s )

)
≤ Wψr

(
∇u(s,W t,x

s ),∇u(s,Wn,t,x
s )

)
+Wψr

(
∇u(s,Wn,t,x

s ),∆n(s,Wn,t,x
s )

)
.

Lemma 2.2.5-4, Lemma 2.2.10 and Proposition 2.2.7 enable to bound the first term of the r.h.s.. The
second term of the r.h.s. is bounded by using Theorem 2.2.16. If s does not belong to the time grid we
have Wψr(Z

t,x
s , Zn,t,xs ) = Wψr

(
∇u(s,W t,x

s ),∆n(s,Wn,t,x
s )

)
and the result follows. Is s belongs

to the time grid we have Zn,t,xs = ∇nUn
(
s,Wn,t,x

s−

)
= ∆n

(
s− h/2,Wn,t,x

s−h/2

)
. Then we first write

Wψr

(
Zt,xs , Zn,t,xs

)
= Wψr

(
Zt,xs , Zn,t,xs−h/2

)
≤ Wψr

(
Zt,xs , Zt,xs−h/2

)
+Wψr

(
Zt,xs−h/2, Z

n,t,x
s−h/2

)
. ■

Since s − h
2 does not belong to the time grid, the second term of the r.h.s. is bounded by using the

previous result. We use Lemma 2.2.10 and Proposition 2.2.13 to bound the first term.

Remark 2.2.15

1. Esseen [Ess58] proved (we write this using the notation introduced in (2.57)) that

lim
n→∞

√
nW1

(
n−1/2Sn,G

)
= A,

where A is a constant depending on the distribution of X1. Zolotarev provided in [Zol76,
Theorem 1] a lower estimate for A. If X1 = ξ1, that is for Rademacher variables, one has
A(ξ1) ≥ 1/2. This implies that for g(x) = x and f ≡ 0 we have

lim
n→∞

√
nW1(Y

n,0,0
T , Y 0,0

T ) ≥ 1
2 T

1
2 .

In particular this result ensures that the rate we get is optimal.
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2. Dong and Krylov have shown in [DK05, Theorem 2.18], if f is linear in y and z, that the rate
in Theorem 2.2.16 (1) can be of order 1

n provided that g and f are bounded and sufficiently
smooth. Their results also include the case where the forward process is a diffusion, again with
bounded and sufficiently smooth coefficients.

3. Theorem 2.2.16 gives a probabilistic proof of the point-wise convergence of the finite difference
scheme, for u and ∇xu, when u solves a semi-linear and non-degenerate equation, with Lapla-
cian smoothing. Deterministic proofs in a general setting of this convergence can be found in
the literature for the solution u. For example, Crandall and Lions [CL84] get a convergence
order of 1/2 in the case of Hamilton-Jacobi equations, which is consistent with our result.

Theorem 2.2.14 is a consequence of Theorem 2.2.16, which gives the rate of the point-wise con-
vergence of Un, the solution to (2.48), towards the solution u to the semilinear heat equation (2.38),
as well as the point-wise convergence of the gradients. Theorem 2.2.16 is a key step to our main result
and might be of interest in its own right, in particular for its probabilistic proof.

Theorem 2.2.16 Under Assumption 2.4 there exists a constant C > 0 depending at most on
(T, α, ε, f, g) such that

1. |u(t, x)− Un(t, x)| ≤ C (1 + |x|)ε n−(α∧ ε
2
) for all (t, x) ∈ R× [0, T ],

2. |∇xu(t, x)−∆n(t, x)| ≤ C (1+|x|)ε√
T−t n

−(α∧ ε
2
) for all (t, x) ∈ R× [0, T [.

Proof. We split the proof into three parts. We begin by studying |u − Un|, we proceed by obtaining
an estimate for ∇u−∆n, and then we conclude with a Gronwall argument.

From (2.42) and (2.54) we conclude that

|u(t, x)− Un(t, x)| ≤
∣∣∣E [g (W t,x

T

)]
− E

[
g
(
Wn,t,x
T

)]∣∣∣
+

∣∣∣∣E [∫ T

t
F
(
s,W t,x

s

)
ds

]
− E

[∫ T

t
f
(
s,Θn,t,x

s

)
ds

]∣∣∣∣ . (2.63)

We use Corollary 2.2.8 to bound the first term. To bound the second term of the r.h.s., we introduce
the function Fn given by

Fn(s, x) := f(s, x, Un(s, x),∆n(s, x)) for (s, x) ∈ [0, T [×R. (2.64)

Using the notation (2.55) we also have that Fn(s,W
n,t,x
s ) = f(s,Θn,t,x

s ). Since f is
α-Hölder continuous in time and thanks to a priori estimates on (Y n,t,x, Zn,t,x) (see [L-1,
Lemma 14]), bounding the second term of the r.h.s. of (2.63) boils down to bound∣∣∣∫ Tt E

[
F
(
s,W t,x

s

)]
ds−

∫ T
t E

[
Fn

(
s,Wn,t,x

s

)]
ds
∣∣∣. We have

∣∣∣∣∫ T

t
E
[
F
(
s,W t,x

s

)]
ds−

∫ T

t
E
[
Fn
(
s,Wn,t,x

s

)]
ds

∣∣∣∣
≤
∫ T

t

∣∣E [F (s,W t,x
s

)]
− E

[
F
(
s,Wn,t,x

s

)]∣∣ ds+ ∫ T

t
E
[
|F − Fn|

(
s,Wn,t,x

s

)]
ds.

Since ∥F (s, ·)∥ε ≤ C 1√
T−s , Corollary 2.2.8 bounds the first term. Coming back to the definition of

F and Fn and using the Lipschitz continuity of f , we have

|F − Fn|
(
s,Wn,t,x

s

)
≤ ∥f∥Lip

[
|u− Un|(s,Wn,t,x

s ) + |∇u−∆n|(s,Wn,t,x
s )

]
.
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Setting for simplicity, for s ∈ [0, T ],

βn(s) := sup
x∈R

{
|u− Un|(s, x)
(1 + |x|)ϵ

}
and γn(s) := sup

x∈R

{
|∇u−∆n|(s, x)

(1 + |x|)ϵ

}
for s ∈ [0, T [, (2.63) becomes by using Lemmas 2.2.9, 2.2.10 and 2.2.12

βn(t) ≤ C

(
n−(α∧ ϵ

2
) +

∫ T

t
(βn(s) + γn(s)) ds

)
, t ∈ [0, T ],

and since γn belongs to L1[0, T ], Gronwall’s inequality gives

βn(t) ≤ C

(
n−(α∧ ϵ

2
) +

∫ T

t
γn(s)ds

)
, t ∈ [0, T ]. (2.65)

In order to take advantage of the previous inequality, we need to estimate γn(s). To do this, we use
the representation (2.43) and the following equality (see [L-1, Equation (33)])

∆n(t, x) = E

[
g(Bn,t,x

T )
Wn,t,x
T − x

T − t

]
+ E

[∫ T

t+h
f
(
s,Θn,t,x

s

)Wn,t,x
s − x

s− t
ds

]
.

Then we divide the study into two parts

|∇u(t, x)−∆n(t, x)| ≤ | g difference |+ | f difference |.

The g difference is bounded by using Corollary 2.2.8. The f difference is bounded thanks to the
regularity of F and Corollary 2.2.8. This boils down to

γn(t) ≤ C

(
n−(α∧ ϵ

2
)

√
T − t

+

∫ T

(t+h)∧T
(βn(s) + γn(s))

ds√
s− t

)
, t ∈ [0, T [.

Using (2.65) and Gronwall’s lemma ends the proof. ■

2.3 Case of Doubly reflected BSDEs with RCLL obstacles

This Section presents the results established in [L-8] and [L-9] written with Roxana Dumitrescu. We
study a discrete time approximation scheme for the solution to doubly reflected Backward Stochas-
tic Differential Equations (DBBSDEs in short) driven by a Brownian motion and a Poisson random
process which are mutually independent. We consider the non-markovian case. Moreover, the barri-
ers are supposed to be right-continuous and left-limited (RCLL in short) processes, whose jumps are
arbitrary, they can be either predictable or inaccessible. We consider the following equation:

(i) Yt = ζ
T
+
∫ T
t f(s, Ys, Zs, Us)ds+ (AT −At)− (KT −Kt)−

∫ T
t ZsdWs −

∫ T
t UsdÑs,

(ii) ∀t ∈ [0, T ], ζ
t
≤ Yt ≤ ζt a.s.,

(iii)
∫ T
0 (Yt− − ζ

t−
)dAct = 0 a.s. and

∫ T
0 (ζt− − Yt−)dK

c
t = 0 a.s.

(iv) ∀τ predictable stopping time , ∆Adτ = ∆Adτ1Yτ−=ζ
τ−

and ∆Kd
τ = ∆Kd

τ1Yτ−=ζτ−
.

(2.66)

Here, Ac (resp. Kc) denotes the continuous part of A (resp. K) and Ad (resp. Kd) its
discontinuous part, {Wt : 0 ≤ t ≤ T} is a one dimensional standard Brownian motion and
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{Ñt := Nt − λt, 0 ≤ t ≤ T} is a compensated Poisson process. Both processes are independent and
they are defined on the probability space (Ω,FT ,F = {Ft}0≤t≤T ,P). The processes A and K have
the role to keep the solution between the two obstacles ζ and ζ. Since we consider that the jumps of
the obstacles can be either predictable or totally inaccessible, A and K are also discontinuous.

In the case of a Brownian filtration, non-linear backward stochastic differential equations were
introduced by Pardoux and Peng [PP90]. One barrier reflected BSDEs were firstly studied by El
Karoui et al in [EKKP+97]. In their setting, one of the components of the solution was forced to stay
above a given barrier which is a continuous adapted stochastic process. The main motivation of such
equations is the pricing of American options especially in constrained markets. The generalization to
the case of two reflecting barriers was carried out by Cvitanic and Karatzas in [CK96]. It is also well
known that doubly reflected BSDEs are related to Dynkin games and in finance to the pricing of
Israeli options (or Game options). The case of standard BSDEs with jump processes driven by a
compensated Poisson random measure was first considered by Tang and Li in [TL94]. The extension
to the case of reflected BSDEs and one reflecting barrier with only inaccessible jumps was
established by Hamadène and Ouknine [HO03]. Later on, Essaky in [Ess08] and Hamadène and
Ouknine in [HO16] had extended these results to a RCLL obstacle with predictable and inaccessible
jumps. Results concerning existence and uniqueness of the solution for doubly reflected BSDEs with
jumps can be found in [CM08],[DQS16], [HH06], [HW09] and [EHO05].

Numerical schemes for DBBSDEs driven by the Brownian motion and based on a random tree
method were proposed by Xu in [Xu11] (see also [MPX08] and [PX11]) and, in the Markovian
framework, by Chassagneux in [Cha09]. In the case of a filtration driven also by a Poisson process,
some results were provided only in the non-reflected case. In [BE08], the authors proposed a scheme
for Forward-Backward SDEs based on the dynamic programming equation and in [LMT13] the
authors proposed a fully implementable scheme based on a random binomial tree.

Our aim is to propose an implementable numerical method to approximate the solution to DBB-
SDEs with jumps and RCLL obstacles (2.66). As for standard BSDEs, the computation of conditional
expectations is an important issue. Since we consider reflected BSDEs, we also have to modelize the
constraints. In the first part of this work (corresponding to [L-8]) we consider the following approxi-
mations

• we approximate the Brownian motion and the Poisson process by two independent random
walks,

• we introduce a sequence of penalized BSDEs to approximate the reflected BSDE.

These approximations enable us to provide a fully implementable scheme, called explicit penal-
ized discrete scheme in the following : yp,nn := ζn

n
and for j = n− 1, · · · , 0

yp,nj = E[yp,nj+1|Fn
j ] + f(tj ,E(yp,nj+1|Fn

j ), z
p,n
j , up,nj )h+ ap,nj − k

p,n
j ,

ap,nj =
ph

1 + ph

(
E[yp,nj+1|Fn

j ] + f(tj ,E[yp,nj+1|Fn
j ], z

p,n
j , up,nj )− ζn

j

)−
,

k
p,n
j =

ph

1 + ph

(
ζ
n
j − E[yp,nj+1|Fn

j ]− f(tj ,E[yp,nj+1|Fn
j ], z

p,n
j , up,nj )

)−
zp,nj = 1√

h
E(yp,nj+1ξj+1|Fn

j ),

up,nj = 1
κn(1−κn)E(y

p,n
j+1ηj+1|Fn

j ).
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We prove in Theorem 2.3.12 that the scheme weakly converges to the solution to (2.66).
Moreover, in order to prove the convergence of our scheme, we prove, in the case of jump processes
driven by a general Poisson random measure, that the solutions to the penalized equations converge
to the solution of the doubly reflected BSDE in the case of a driver depending on the solution, which
was not the case in the previous literature (see [EHO05], [HH06], [HW09]). This gives another proof
for the existence of a solution to DBBSDEs with jumps and RCLL barriers. Our method is based on
a combination of penalization, Snell envelope theory, comparison theorem for BSDEs with jumps
(see [QS13], [QS14]) and a generalized monotonic theorem under the Mokobodski’s condition. It
extends [LX07] to the case of DBBSDEs with totally inaccessible jumps. Finally, we illustrate our
theoretical results with some numerical simulations in the case of general jumps.

In a second part of this work (corresponding to [L-9]), we propose an alternative scheme to [L-8] to
solve (2.66). The scheme proposed here takes the following form: ynn := ζn

n
and for j = n− 1, · · · , 0

ynj = E[ynj+1|Fn
j ] + f(tj ,E[ynj+1|Fn

j ], z
n
j , u

n
j )δ + anj − k

n
j ,

anj ≥ 0, k
n
j ≥ 0, anj k

n
j = 0,

ζn
j
≤ ynj ≤ ζ

n
j , (y

n
j − ζn

j
)anj = (ynj − ζ

n
j )k

n
j = 0.

(2.67)

It generalizes the scheme proposed by [Xu11] to the case of jumps. Compared to the scheme
proposed in [L-8], the scheme proposed here —called reflected scheme in the following —is based
on the direct discretization of (2.66). In particular, there is no penalization step. Then, this method
only depends on one parameter of approximation (the number of time steps n), contrary to the scheme
proposed in [L-8], which also depends on the penalization parameter. We provide here an explicit
reflected scheme and an implicit reflected scheme and we show the convergence of both schemes. We
illustrate numerically the theoretical results and show they coincide with the ones obtained by using
the penalized scheme presented in [L-8], for large values of the penalization parameter.

The rest of the Section is organized as follows: Section 2.3.1 presents the general framework,
Section 2.3.2 presents the discrete time approximation, Section 2.3.3 presents the penalized scheme
and establish its convergence and Section 2.3.4 presents the reflected scheme and establish its conver-
gence.

2.3.1 General framework

Let (Ω,F ,P) be a probability space, and P be the predictable σ-algebra on [0, T ] × Ω. Let W be a
one-dimensional Brownian motion and N(dt, de) be a Poisson random measure with compensator
ν(de)dt such that ν is a σ-finite measure on R∗, equipped with its Borel field B(R∗). Let Ñ(dt, du)
be its compensated process. Let F = {Ft, 0 ≤ t ≤ T} be the natural filtration associated with W and
N .

For each T > 0, we use the following notations:

• L2
ν is the set of Borelian functions ℓ : R∗ → R such that

∫
R∗ |ℓ(u)|2ν(du) < +∞.

The set L2
ν is a Hilbert space equipped with the scalar product ⟨δ, ℓ⟩ν :=

∫
R∗ δ(u)ℓ(u)ν(du)

for all δ, ℓ ∈ L2
ν × L2

ν , and the norm ∥ℓ∥2ν :=
∫
R∗ |ℓ(u)|2ν(du).

• B(R2) (resp B(L2
ν)) is the Borelian σ-algebra on R2 (resp. on L2

ν).

• H2 is the set of real-valued predictable processes ϕ such that ∥ϕ∥2H2 := E(
∫ T
0 ϕ2tdt) < +∞.

With the notations given in the Introduction we have H2 = H2
T (R).
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• H2
ν is the set of processes l which are predictable, that is, measurable

l : ([0, T ]× Ω× R∗, P ⊗ B(R∗)) → (R ,B(R)); (ω, t, u) 7→ lt(ω, u)

such that ∥l∥2H2
ν
:= E

[∫ T
0 ∥lt∥2ν dt

]
<∞.

• S2 is the set of real-valued RCLL adapted processes ϕ such that ∥ϕ∥2S2 := E(sup0≤t≤T |ϕt|2) <
∞. With the notations given in the Introduction we have S2 = S2T (R).

• A2 is the set of real-valued non decreasing RCLL predictable processes A with A0 = 0 and
E(A2

T ) <∞.

• T0 is the set of stopping times τ such that τ ∈ [0, T ] a.s

• For S in T0, TS is the set of stopping times τ such that S ≤ τ ≤ T a.s.

• For each RCLL adapted process ϕ = (ϕt)0≤t≤T with ϕ− ∈ S2, we denote by R(ϕ) the Snell
envelope of ϕ, defined as the minimal RCLL supermartingale greater or equal to ϕ a.s.

Definition 2.3.1 (Driver, Lipschitz driver) A function f is said to be a driver if

• f : Ω× [0, T ]× R2 × L2
ν → R

(ω, t, y, z, κ(·)) 7→ g(ω, t, y, z, k(·)) is P ⊗ B(R2)⊗ B(L2
ν)− measurable,

• ∥f(., 0, 0, 0)∥∞ <∞.

A driver f is called a Lipschitz driver if moreover there exists a constant Cf ≥ 0 and a bounded,
non-decreasing continuous function Λ with Λ(0) = 0 such that dP⊗ dt-a.s. , for each (s1, y1, z1, k1),
(s2, y2, z2, k2),

|f(ω, s1, y1, z1, k1)− f(ω, s2, y2, z2, k2)| ≤ Λ(|s2 − s1|) +Cf (|y1 − y2|+ |z1 − z2|+ ∥k1 − k2∥ν).

Definition 2.3.2 (Mokobodski’s condition) Let ζ, ζ in S2. There exist two nonnegative RCLL super-
martingales H and H ′ in S2 such that

∀t ∈ [0, T ], ζ
t
1t<T ≤ Ht −H ′

t ≤ ζt1t<T a.s.

Hypothesis 2.5 A Lipschitz driver g is said to satisfy Assumption 2.5 if the following holds : dP⊗dt
a.s. for each (y, z, k1, k2) ∈ R2 × (L2

ν)
2, we have

f(t, y, z, k1)− f(t, y, z, k2) ≥ ⟨θy,z,k1,k2t , k1 − k2⟩ν ,

with

θ :Ω× [0, T ]× R2 × (L2
ν)

2 7−→ L2
ν ;

(ω, t, y, z, k1, k2) 7−→ θy,z,k1,k2t (ω, ·)

P ⊗ B(R2) × B((L2
ν)

2)-measurable, bounded, and satisfying dP ⊗ dt ⊗ dν(u)-a.s., for each
(y, z, k1, k2) ∈ R2 × (L2

ν)
2,

θy,z,k1,k2t (u) ≥ −1 and |θy,z,k1,k2t (u)| ≤ ψ(u),

where ψ ∈ L2
ν .
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Remark 2.3.3 This assumption ensures the comparison theorem for BSDEs with jumps (see [QS13,
Theorem 4.2]), which extends the result of [Roy06].

Hypothesis 2.6 ζ and ζ are two adapted RCLL processes with ζ
T
= ζT a.s., ζ ∈ S2, ζ ∈ S2, ζ

t
≤

ζt for all t ∈ [0, T ], the Mokobodski’s condition holds and g is a Lipschitz driver satisfying
Assumption 2.5.

We introduce the following general reflected BSDE with jumps and two RCLL obstacles

Definition 2.3.4 Let T > 0 be a fixed terminal time and g be a Lipschitz driver. Let ζ and ζ be two
adapted RCLL processes with ζ

T
= ζT a.s., ζ ∈ S2, ζ ∈ S2, ζ

t
≤ ζt for all t ∈ [0, T ] a.s. A process

(Y,Z, U, α) is said to be a solution to the double barrier reflected BSDE (DBBSDE) associated with
driver f and barriers ζ, ζ if


(i) Y ∈ S2, Z ∈ H2, U ∈ H2

ν and α ∈ S2, where α = A−K with A,K in A2

(ii) Yt = ζ
T
+
∫ T
t f(s, Ys, Zs, Us)ds+ (AT −At)− (KT −Kt)−

∫ T
t ZsdWs −

∫ T
t

∫
R∗ Us(e)Ñ(ds, de),

(iii) ∀t ∈ [0, T ], ζ
t
≤ Yt ≤ ζt a.s.,

(iv)
∫ T
0 (Yt− − ζ

t−
)dAt = 0 a.s. and

∫ T
0 (ζt− − Yt−)dKt = 0 a.s.

(2.68)

Remark 2.3.5 Condition (iv) is equivalent to the following condition : if K = Kc + Kd and A =
Ac+Ad, where Kc (resp. Kd) represents the continuous (resp. the discontinous) part of K (the same
notation holds for A), then∫ T

0
(Yt − ζ

t
)dAct = 0 a.s.,

∫ T

0
(ζt − Yt)dK

c
t = 0 a.s.

and

∀τ ∈ T0 predictable, ∆Adτ = ∆Adτ1Yτ−=ζ
τ−

and ∆Kd
τ = ∆Kd

τ1Yτ−=ζτ−
.

Theorem 2.3.6 ([DQS16, Theorem 4.1]) Suppose ζ and ζ are RCLL adapted processes in S2 such
that for all t ∈ [0, T ], ζ

t
≤ ζt and Mokobodski’s condition holds. Then, DBBSDE (2.68) admits a

unique solution (Y, Z, U, α) in S2 ×H2 ×H2
ν ×A2.

Remark 2.3.7 As said in [DQS16, Remark 4.3], if for all t ∈]0, T ] ζ
t−
< ζt− a.s., [DQS16, Propo-

sition 4.2] gives the uniqueness of A,K ∈ (A2)2.

2.3.2 Discrete time Approximation

We adopt the framework of [LMT13], presented below.

Random walk approximation of (W, Ñ) For n ∈ N, we introduce h := T
n and the regular grid

(tj)j=0,...,n with step size h (i.e. tj := jh) to discretize [0, T ]. In order to approximate W , we recall
the random walk approximation {

Wn
0 = 0

Wn
t =

√
h
∑[t/h]

i=1 ξi
(2.69)
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where ξ1, ξ2, ..., ξn are independent identically distributed random variables with the following
Rademacher law:

P (ξ1 = 1) = P (ξ1 = −1) =
1

2
.

To approximate Ñ , we introduce a second random walk{
Ñn

0 = 0

Ñn
t =

∑[t/h]
i=1 ηi

(2.70)

where η1, η2, ..., ηn are independent and identically distributed random variables with law

P (η1 = κn − 1) = 1− P (η1 = kn) = κn

where κn = e−
λ
n . We assume that both sequences ξ1, ..., ξn and η1, η2, ..., ηn are defined on the

original probability space (Ω,F,P). The (discrete) filtration in the probability space is Fn = {Fn
j :

j = 0, ..., n} with Fn
0 = {Ω, ∅} and Fn

j = σ{ξ1, ..., ξj , η1, ..., ηj} for j = 1, ..., n.

The following result states the convergence of (Wn, Ñn) to (W, Ñ) for the J1-Skorokhod topol-
ogy, and the convergence of Wn to W in any Lp, p ≥ 1, for the topology of uniform convergence
on [0, T ]. We refer to [LMT13, Section 3] for more results on the convergence in probability of
Fn-martingales.

Lemma 2.3.8 ([LMT13, Lemma3, (III)], and [BDM01, Proof of Corollary 2.2]) The couple
(Wn, Ñn) converges in probability to (W, Ñ) for the J1-Skorokhod topology, and

sup
0≤t≤T

|Wn
t −Wt| → 0 as n→ ∞

in probability and in Lp, for any 1 ≤ p <∞.

Martingale representation Let yj+1 denote a Fn
j+1-measurable random variable. As said in

[LMT13], we need a set of three strongly orthogonal martingales to represent the martingale dif-
ference mj+1 := yj+1 − E(yj+1|Fn

j ). We introduce a third martingale increments sequence
{µj = ξjηj , j = 0, · · · , n}. In this context there exists a unique triplet (zj , uj , vj) of Fn

j -random
variables such that

mj+1 := yj+1 − E(yj+1|Fn
j ) =

√
hzjξj+1 + ujηj+1 + vjµj+1,

and 
zj =

1√
h
E(yj+1ξj+1|Fn

j ),

uj =
E(yj+1ηj+1|Fn

j )

E((ηj+1)2|Fn
j )

= 1
κn(1−κn)E(yj+1ηj+1|Fn

j ),

vj =
E(yj+1µj+1|Fn

j )

E((µj+1)2|Fn
j )

= 1
κn(1−κn)E(yj+1µj+1|Fn

j )

(2.71)

Remark 2.3.9 (Computing the conditional expectations) Let Φ denote a function from R2j+2 to R.
We use the following formula to compute the conditional expectations

E(Φ(ξ1, · · · , ξj+1, η1, · · · , ηj+1)|Fn
j ) =

κn
2
Φ(ξ1, · · · , ξj , 1, η1, · · · , ηj , κn − 1)

+
κn
2
Φ(ξ1, · · · , ξj ,−1, η1, · · · , ηj , κn − 1)

+
1− κn

2
Φ(ξ1, · · · , ξj , 1, η1, · · · , ηj , κn)

+
1− κn

2
Φ(ξ1, · · · , ξj ,−1, η1, · · · , ηj , κn).
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2.3.3 Penalized scheme

In order to propose an implementable numerical scheme we consider that the Poisson random measure
is simply generated by the jumps of a Poisson process. We consider a Poisson process {Nt : 0 ≤ t ≤
T} with intensity λ and jumps times {τk : k = 0, 1, ...}. The random measure is then

Ñ(dt, de) =

Nt∑
k=1

δτk,1(dt, de)− λdtδ1(de)

where δa denotes the Dirac function at the point a. In the following, Ñt := Nt − λt. Then, the
unknown fonction Us(e) does not depend on the magnitude e anymore, and we write Us := Us(1).

In this particular case, (2.68) becomes:


(i) Y ∈ S2, Z ∈ H2, U ∈ H2 and α ∈ S2, where α = A−K with A,K in A2

(ii) Yt = ζ +
∫ T
t f(s, Ys, Zs, Us)ds+ (AT −At)− (KT −Kt)−

∫ T
t ZsdWs −

∫ T
t UsdÑs,

(iii) ∀t ∈ [0, T ], ζ
t
≤ Yt ≤ ζt a.s.,

(iv)
∫ T
0 (Yt− − ζ

t−
)dAt = 0 a.s. and

∫ T
0 (ζt− − Yt−)dKt = 0 a.s.

(2.72)

In view of the proof of the convergence of the numerical scheme, we also introduce the penalized
version of (2.72):

Y p
t =ζ +

∫ T

t
f(s, Y p

s , Z
p
s , U

p
s )ds+ApT −Apt − (Kp

T −Kp
t )−

∫ T

t
ZpsdWs −

∫ T

t
Ups dÑs, (2.73)

with Apt := p
∫ t
0 (Y

p
s − ζ

s
)−ds and Kp

t := p
∫ t
0 (ζs − Y p

s )−ds, and αpt := Apt −Kp
t for all t ∈ [0, T ].

2.3.3.1 Numerical scheme

The basic idea is to approximate the Brownian motion and the Poisson process by random walks
based on the binomial tree model. As explained in Section 2.3.2, these approximations enable to
get a martingale representation whose coefficients, involving conditional expectations, can be easily
computed. Then, we approximate (W, Ñ) in the penalized version of our DBBSDE (i.e. in (2.73))
by using these random walks. Taking conditional expectation and using the martingale representation
leads to the explicit penalized discrete scheme (2.78). In view of the proof of the convergence of this
explicit scheme, we introduce an implicit intermediate scheme (2.75).

Fully implementable numerical scheme In this Section we present two numerical schemes
to approximate the solution to the penalized equation (2.73): the first one, (2.75), is an
implicit intermediate scheme, useful for the proof of convergence. We denote it
(yp,nj , zp,nj , up,nj , vp,nj , ap,nj , kp,nj )j=0,··· ,n. We also introduce the main scheme (2.78), which is
explicit. We denote it (yp,nj , zp,nj , up,nj , vp,nj , ap,nj , k

p,n
j )j=0,··· ,n in the following. The implicit scheme

(2.75) is not easy to solve numerically, since it involves to inverse a function, as we will see below.
However, it plays an important role in the proof of the convergence of the explicit scheme, that’s why
we introduce it.
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In both schemes, we approximate the barrier (ζ
t
)t (resp. (ζt)t) by (ζn

j
)j=0,··· ,n (resp.

(ζ
n
j )j=0,··· ,n). We also introduce their continuous time versions:

ζ̂n
t
:= ζn

[t/δ]
, ζ̂

n
t := ζ

n
[t/δ].

These approximations satisfy

Hypothesis 2.7

(i) For some r > 2, sup
n∈N

max
j≤n

E(|ζn
j
|r) + sup

n∈N
max
j≤n

E(|ζnj |r) + sup
t≤T

E|ζ
t
|r + sup

t≤T
E|ζt|r <∞

(ii) ζ̂n (resp ζ̂
n

) converges in probability to ζ (resp. ζ) for the J1-Skorokhod topology,

i.e. there exists a family (ψn)n∈N of one-to-one random time changes from [0, T ] to [0, T ]

such that supt∈[0,T ] |ψn(t)− t| −−−→n→∞
0 almost surely and supt∈[0,T ] |ζ̂nψn(t)

− ζ
t
| −−−→
n→∞

0 in
probability.

Remark 2.3.10 Hypothesis 2.7 implies that for all t in [0, T ] ζ̂n
ψn(t)

(resp. ζ̂
n
ψn(t)) converges to ζ

t

(resp. ζt) in L2.

Remark 2.3.11 Let us give different examples of barriers in S2 satisfying Assumption 2.7. In this
Remark, X represents either ζ or ζ.

1. X satisfies the following SDE

Xt = X0 +

∫ t

0
bX(Xs−)ds+

∫ t

0
σX(Xs−)dWs +

∫ t

0
cX(Xs−)dÑs

where bX , σX and cX are Lipschitz functions. We approximate it by

X
n
t = X

n
0 +

∫ t

0
bX(X

n
s−)dc

n
s +

∫ t

0
σX(X

n
s−)dW

n
s +

∫ t

0
cX(X

n
s−)dÑ

n
s

where cns = h[s/h]. Since (Wn, Ñn) converges in probability to (W, Ñ) for the J1-topology,
[Slo89, Corollary 1] gives that Xn converges to X in probability for the J1-topology (for more
details on the convergence of sequences of stochastic integrals on the space of RCLL functions
endowed with the J1-Skorokhod topology, we refer to [JMP89]). Then, Xn satisfies Assump-
tion 2.7 (ii). We deduce from Doob and Burkhölder-Davis-Gundy inequalities that X and Xn

satisfy Assumption 2.7 (i) and that X belongs to S2.

2. X is defined by Xt := Φ(t,Wt, Ñt), where Φ satisfies the following assumptions

(a) Φ is uniformly continuous in (t, y) uniformly in x, i.e. there exist two continuous non
decreasing functions g0(·) and g1(·) from R+ to R+ with linear growth and satisfying
g0(0) = g1(0) = 0 such that

∀ (t, t′, x, y, y′), |Φ(t, x, y)− Φ(t′, x, y′)| ≤ g0(|t− t′|) + g1(|y − y′|).

We denote a0 (resp. a1) the constant of linear growth for g0 (resp. g1) i.e. ∀ (t, y) ∈
(R+)

2, 0 ≤ g0(t) + g1(y) ≤ a0(1 + t) + a1(1 + y),
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(b) Φ is “strongly” locally Lispchitz in x uniformly in (t, y), i.e. there exists a constant K0

and an integer p0 such that

∀ (t, x, x′, y), |Φ(t, x, y)− Φ(t, x′, y)| ≤ K0(1 + |x|p0 + |x′|p0)|x− x′|.

Then, ∀(t, x, y) we have |Φ(t, x, y)| ≤ a0|t|+a1|y|+K0(1+ |x|p0)|x|+ |Φ(0, 0, 0)|+a0+a1.
From this inequality, we prove that X satisfies Assumption 2.7 (i) by standard computations.
Since (Ñn) converges in probability to (Ñ) for the J1-topology and limn→∞ supt |Wn

t −Wt| =
0 in Lp for any p (see Lemma 2.3.8), we get that (Xn

t )t := (Φ(cn(t),W
n
t , Ñ

n
t ))t converges in

probability to X for the J1-topology.

Intermediate penalized implicit discrete scheme After the discretization of the penalized equation
(2.73) on time intervals [tj , tj+1]0≤j≤n−1, we get the following discrete backward equation. For all j
in {0, · · · , n− 1}


yp,nj = yp,nj+1 + f(tj , y

p,n
j , zp,nj , up,nj )h+ ap,nj − kp,nj − (zp,nj

√
hξj+1 + up,nj ηj+1 + vp,nj µj+1)

ap,nj = ph(yp,nj − ζn
j
)−; kp,nj = ph(ζ

n
j − yp,nj )−,

yp,nn := ζn
n
.

(2.74)
Following (2.71), the triplet (zp,nj , up,nj , vp,nj ) can be computed as follows


zp,nj = 1√

h
E(yp,nj+1ξj+1|Fn

j ),

up,nj = 1
κn(1−κn)E(y

p,n
j+1ηj+1|Fn

j ),

vp,nj = 1
κn(1−κn)E(y

p,n
j+1µj+1|Fn

j ),

where we refer to Remark 2.3.9 for the computation of conditional expectations. By taking the condi-
tional expectation w.r.t. Fn

j in (2.74), we get the following scheme, called implicit penalized discrete
scheme: yp,nn := ζn

n
and for j = n− 1, · · · , 0


yp,nj = (Θp,n)−1(E(yp,nj+1|Fn

j )),

ap,nj = ph(yp,nj − ζn
j
)−; kp,nj = ph(ζ

n
j − yp,nj )−,

zp,nj = 1√
h
E(yp,nj+1ξj+1|Fn

j ),

up,nj = 1
κn(1−κn)E(y

p,n
j+1ηj+1|Fn

j ),

(2.75)

where Θp,n(y) = y − f(jh, y, zp,nj , up,nj )− ph(y − ζn
j
)− + ph(ζ

n
j − y)−.

We also introduce the continuous time version (Y p,n
t , Zp,nt , Up,nt , Ap,nt ,Kp,n

t )0≤t≤T of the solution
to (2.75):

Y p,n
t := yp,n[t/h], Z

p,n
t := zp,n[t/h], U

p,n
t := up,n[t/h], A

p,n
t :=

[t/h]∑
i=0

ap,ni ,Kp,n
t :=

[t/h]∑
i=0

kp,ni . (2.76)

We also introduce αp,nt := Ap,nt −Kp,n
t , for all t ∈ [0, T ].
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Main scheme As said before, the numerical inversion of the operator Θp,n is not easy and is time
consuming. If we replace yp,nj by E(yp,nj+1|Fn

j ) in f , (2.74) becomes


yp,nj = yp,nj+1 + f(tj ,E(yp,nj+1|Fn

j ), z
p,n
j , up,nj )h+ ap,nj − k

p,n
j − (zp,nj

√
hξj+1 + up,nj ηj+1 + vp,nj µj+1)

ap,nj = ph(yp,nj − ζn
j
)−; k

p,n
j = ph(ζ

n
j − yp,nj )−,

yp,nn := ζn.
(2.77)

Now, by taking the conditional expectation in the above equation, we obtain:

yp,nj = E[yp,nj+1|F
n
j ] + f(tj ,E[yp,nj+1|F

n
j ], z

p,n
j , up,nj )h+ ap,nj − k

p,n
j .

Solving this equation, we get the following scheme, called explicit penalized scheme: yp,nn := ζn
n

and for j = n− 1, · · · , 0

yp,nj = E[yp,nj+1|Fn
j ] + f(tj ,E(yp,nj+1|Fn

j ), z
p,n
j , up,nj )h+ ap,nj − k

p,n
j ,

ap,nj =
ph

1 + ph

(
E[yp,nj+1|Fn

j ] + f(tj ,E[yp,nj+1|Fn
j ], z

p,n
j , up,nj )− ζn

j

)−
,

k
p,n
j =

ph

1 + ph

(
ζ
n
j − E[yp,nj+1|Fn

j ]− f(tj ,E[yp,nj+1|Fn
j ], z

p,n
j , up,nj )

)−
zp,nj = 1√

h
E(yp,nj+1ξj+1|Fn

j ),

up,nj = 1
κn(1−κn)E(y

p,n
j+1ηj+1|Fn

j ).

(2.78)

As for the implicit scheme, we define the continuous time version
(Y

p,n
t , Z

p,n
t , U

p,n
t , A

p,n
t ,K

p,n
t )0≤t≤T of the solution to (2.78):

Y
p,n
t = yp,n[t/h], Z

p,n
t = zp,n[t/h], U

p,n
t = up,n[t/h], A

p,n
t =

[t/h]∑
j=0

ap,nj K
p,n
t =

[t/h]∑
j=0

k
p,n
j . (2.79)

We also introduce αp,nt := A
p,n
t −K

p,n
t , for all t ∈ [0, T ].

2.3.3.2 Convergence result

The following result states the convergence of Θp,n
:= (Y

p,n
, Z

p,n
, U

p,n
, αp,n) to Θ := (Y, Z, U, α),

the solution to the DBBSDE (2.72).

Theorem 2.3.12 Assume that Assumptions 2.6 and 2.7 hold. The sequence (Y p,n
, Z

p,n
, U

p,n
) defined

by (2.79) converges to (Y,Z, U), the solution to the DBBSDE (2.72), in the following sense: ∀r ∈
[1, 2[

lim
p→∞

lim
n→∞

(
E
[∫ T

0
|Y p,n

s − Ys|2ds
]
+ E

[∫ T

0
|Zp,ns − Zs|rds

]
+ E

[∫ T

0
|Up,ns − Us|rds

])
→ 0.

(2.80)

Moreover, Zp,n (resp. Up,n) weakly converges in H2 to Z (resp. to U ) and for 0 ≤ t ≤ T , αp,nψn(t)

converges weakly to αt in L2(FT ) as n → ∞ and p → ∞, where (ψn)n∈N is a one-to-one random
map from [0, T ] to [0, T ] such that supt∈[0,T ] |ψn(t)− t| −−−→

n→∞
0 a.s..
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Proof. In order to prove this result, we split the error in three terms, by introducing
Θp,n
t := (Y p,n

t , Zp,nt , Up,nt , αp,nt ), the solution to the implicit penalized discrete scheme (2.76) and
Θp
t := (Y p

t , Z
p
t , U

p
t , α

p
t ), the penalized version of (2.72), defined by (2.73). For the error on Y , we

get

E[
∫ T

0
|Y p,n

s − Ys|2ds] ≤ 3

(
E[
∫ T

0
|Y p,n

s − Y p,n
s |2ds] + E[

∫ T

0
|Y p,n
s − Y p

s |2ds] + E[
∫ T

0
|Y p
s − Ys|2ds]

)
,

and the same splitting holds for |Zp,n − Z|r and |Up,n − U |r. For the increasing processes, we have:

E[|αp,nψn(t) − αt|2] ≤ 3
(
E[|αp,nψn(t) − αp,nψn(t)|

2] + E[|αp,nψn(t) − αpt |2] + E[|αpt − αt|2]
)
. (2.81)

The proof of Theorem 2.3.12 ensues from [L-8, Proposition 4.2], [L-8, Corollary 4.4] and [L-8, Propo-
sition 4.5]. [L-8, Proposition 4.2] states the convergence of the error between Θ

p,n, the explicit penal-
ization scheme defined in (2.79), and Θp,n, the implicit penalization scheme. It generalizes the results
of [PX11]. [L-8, Corollary 4.4] states the convergence (in n) of Θp,n to Θp. This is based on the con-
vergence of a standard BSDE with jumps in discrete time setting to the associated BSDE with jumps
in continuous time setting, which is proved in [LMT13]. Finally, [L-8, Proposition 4.5] proves the
convergence (in p) of the penalized BSDE with jumps Θp to Θ, the solution of the DBBSDE (2.72).
In fact, we prove a more general result since we show the convergence of penalized BSDEs to (2.68)
in the case of jumps driven by a general Poisson random measure. ■

2.3.4 Reflected scheme

Let us now introduce an additional assumption on f , which ensures the comparison theorem for
BSDEs with jumps (see [QS13, Theorem 4.2]). The comparison theorem plays a key role in the
proof of the convergence of the penalized scheme (see Section 2.3.3), which is useful to prove the
convergence of the reflected scheme.

In this special case where the Poisson random measure is simply generated by the jumps of a
Poisson process, Hypothesis 2.5 becomes the following Hyothesis.

Hypothesis 2.8 A Lipschitz driver f is said to satisfy Assumption 2.8 if the following holds : dP⊗dt
a.s. for each (y, z, u1, u2) ∈ R4, we have

f(t, y, z, u1)− f(t, y, z, u2) ≥ θ(u1 − u2), with − 1 ≤ θ ≤ θ0.

We also assume the following hypothesis on the barriers.

Hypothesis 2.9 ζ and ζ are Itô processes of the following form

ζ
t
= ζ

0
+

∫ t

0
b
ζ
sds+

∫ t

0
σ
ζ
sdWs +

∫ t

0
β
ζ

s−dÑs (2.82)

ζt = ζ0 +

∫ t

0
bζsds+

∫ t

0
σζsdWs +

∫ t

0
βζ
s−dÑs (2.83)

where bζ , bζ , σζ , σζ , βζ and βζ are adapted RCLL processes such that there exist r >

2 and a constant Cζ,ζ such that E(sups≤T |bζs|r) + E(sups≤T |bζs|r) + E(sups≤T |σζs |r) +

E(sups≤T |σζs |r) + E(sups≤T |βζs |r) + E(sups≤T |βζs |r) ≤ Cζ,ζ . We also assume ζ
T

= ζT

a.s., ζ
t
≤ ζt for all t ∈ [0, T ].
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The barriers ζ and ζ given in Assumption 2.9 are approximated in the following way: for all
k ∈ {1, · · · , n}

ζn
k
= ζ

0
+

k−1∑
i=0

b
ζ

ti
h+

k−1∑
i=0

σ
ζ

ti

√
hξi+1 +

k−1∑
i=0

β
ζ

ti
ηi+1, (2.84)

ζ
n
k = ζ0 +

k−1∑
i=0

bζtih+
k−1∑
i=0

σζti

√
hξi+1 +

k−1∑
i=0

βζtiηi+1. (2.85)

Lemma 2.3.13 Under Assumption 2.9, there exists a constant Cζ,ζ,T,λ depending on Cζ,ζ , T and λ
such that

(i) sup
n

max
j

E(|ζn
j
|r) + sup

n
max
j

E(|ζnj |r) + sup
t≤T

E(|ζ
t
|r) + sup

t≤T
E(|ζt|r) ≤ Cζ,ζ,T,λ

(ii) ζn (resp. ζ
n

) converges in probability to ζ (resp. ζ) in J1-Skorokhod topology.

The explicit reflected scheme is introduced by replacing ynj by E[ynj+1|Fn
j ] in f . We obtain

ynj = ynj+1 + f(tj ,E[ynj+1|Fn
j ], z

n
j , u

n
j )h+ anj − k

n
j − znj

√
hξj+1 − unj ηj+1 − vnj µj+1,

anj ≥ 0, k
n
j ≥ 0, anj k

n
j = 0,

ζn
j
≤ ynj ≤ ζ

n
j , (y

n
j − ζn

j
)anj = (ynj − ζ

n
j )k

n
j = 0.

(2.86)
with terminal condition ynn = ζn

n
. By taking the conditional expectation in (2.86) with respect to Fn

j ,
we derive that:

(S1)


ynn = ζn

n
,

ynj = E[ynj+1|Fn
j ] + f(tj ,E[ynj+1|Fn

j ], z
n
j , u

n
j )h+ anj − k

n
j a

n
j ≥ 0, k

n
j ≥ 0, anj k

n
j = 0,

ζn
j
≤ ynj ≤ ζ

n
j , (y

n
j − ζn

j
)anj = (ynj − ζ

n
j )k

n
j = 0.

We get that (S1) is equivalent to (S2)

(S2)


ynn = ζn

n
,

ynj = E[ynj+1|Fn
j ] + f(tj ,E[ynj+1|Fn

j ], z
n
j , u

n
j )h+ anj − k

n
j ,

anj = (E[ynj+1|Fn
j ] + f(tj ,E[ynj+1|Fn

j ], z
n
j , u

n
j )h− ζn

j
)−,

k
n
j = (E[ynj+1|Fn

j ] + f(tj ,E[ynj+1|Fn
j ], z

n
j , u

n
j )h− ζ

n
j )

+.

We also introduce the continuous time version (Y
n
t , Z

n
t , U

n
t , A

n
t ,K

n
t )0≤t≤T of

(ynj , z
n
j , u

n
j , a

n
j , k

n
j )j≤n:

Y
n
t := yn[t/h], Z

n
t := zn[t/h], U

n
t := un[t/h], A

n
t :=

[t/h]∑
i=0

ani ,K
n
t :=

[t/h]∑
i=0

k
n
i . (2.87)

In the following Θ
n
:= (Y

n
, Z

n
, U

n
, A

n −K
n
) and αn := A

n −K
n.

We prove in [L-9, Section 4] that Θn converges to Θ := (Yt, Zt, Ut, At −Kt)0≤t≤T , the solution
to the DRBSDE (2.66). The main result is stated in the following Theorem.
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Theorem 2.3.14 Suppose that Assumption 2.9 holds and f is a Lipschitz driver satisfying Assumption
2.8. Then we have

lim
n→∞

E
[∫ T

0
|Y n

t − Yt|2dt+
∫ T

0
|Znt − Zt|2dt+

∫ T

0
|Unt − Ut|2dt

]
= 0.

Moreover, αnψn(t) converges weakly to αt in L2(FT ).

Proof. The proof is done by splitting the error in three terms (the same inequality holds for the errors
on Z and U )

E[
∫ T

0
|Y n

t − Yt|2dt] ≤ 3E[
∫ T

0
|Y n

t − Y n
t |2dt] + 3E[

∫ T

0
|Y n
t − Y p,n

t |2dt] + 3[

∫ T

0
|Y p,n
t − Yt|2dt].

For the increasing processes, we have:

E[|αnψn(t) − αt|2] ≤ 3
(
E[|αnψn(t) − αnψn(t)|

2] + E[|αnψn(t) − αp,nt |2] + E[|αp,nt − αt|2]
)
.

[L-9, Proposition 4.5] states the convergence of the error Θn−Θn, where Θn represents the solu-
tion given by an implicit reflected scheme (see [L-9, Eq (3.6)]) which consists in replacing E[ynj+1|Fn

j ]
by ynj in f in the scheme (2.86). [L-9, Proposition 4.6] states the convergence of Θn − Θp,n, where
Θp,n := (Y p,n, Zp,n, Up,n, Ap,n − Kp,n) represents the solution given by the implicit penalization
scheme (see (2.74)) and the result of the convergence of Θp,n − Θ is recalled in [L-9, Theorem 3.5]
(it has already been proved in [L-8]). ■
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Chapter 3

Monte Carlo method and Wiener Chaos
expansion

3.1 Introduction

In this Chapter we present an algorithm based on Picard iterations and Wiener chaos expansion to
approximate the solutions of different kind of BSDEs. This forward method involves initially
applying Picard iterations, followed by Wiener chaos expansion to approximate conditional
expectations. Unlike most methods outlined in Section 1.2, the primary advantage of this approach is
its applicability to non-Markovian BSDEs. Additionally, Wiener chaos expansion provides an
approximation of Z without incurring any additional costs. The convergence of this algorithm was
rigorously established in [L-10]. Subsequently, this method was extended to encompass BSDEs with
jumps in [L-7] and to the realm of McKean-Vlasov BSDEs as detailed in [L-25].

Let us first present the principle of the algorithm in the case of standard BSDEs and a real-valued
Brownian motion. Let (Y,Z) denote the solution to

Yt = ζ +

∫ T

t
f(s, Ys, Zs) ds−

∫ T

t
Zs · dWs, 0 ≤ t ≤ T, (3.1)

when ζ belongs to L2(FT ). As already used in several quoted papers (see for example [BD07, L-14,
BS12]), our starting point is the use of Picard iterations: (Y 0, Z0) = (0, 0) and for q ∈ N,

Y q+1
t = ζ +

∫ T

t
f (s, Y q

s , Z
q
s ) ds−

∫ T

t
Zq+1
s · dWs, 0 ≤ t ≤ T.

It is well-known that the sequence (Y q, Zq) converges exponentially fast towards the solution (Y,Z)
to BSDE (3.1). First, we write this Picard scheme in a forward way

Y q+1
t = E

(
ζ +

∫ T

0
f (s, Y q

s , Z
q
s ) ds

∣∣∣ Ft)−
∫ t

0
f (s, Y q

s , Z
q
s ) ds,

Zq+1
t = DtY

q+1
t = DtE

(
ζ +

∫ T

0
f (s, Y q

s , Z
q
s ) ds

∣∣∣ Ft) ,
where DtX stands for the Malliavin derivative of the random variable X .

Then, in order to compute the previous conditional expectation, we use a Wiener chaos expansion
of the random variable

F q = ζ +

∫ T

0
f (s, Y q

s , Z
q
s ) ds.
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More precisely, we use the following orthogonal decomposition of the random variable F q

F q = E [F q] +
∑
k≥1

∑
|n|=k

dnk
∏
i≥1

Kni

(∫ T

0
gi(s)dWs

)
,

whereKl denotes the Hermite polynomial of degree l, (gi)i≥1 is an orthonormal basis of L2([0, T ];R)
and, if n = (ni)i≥1 is a sequence of integers, |n| =

∑
i≥1 ni. (dnk)k≥1,|n|=k is the sequence of

coefficients ensuing from the decomposition of F q. Of course, from a practical point of view, we only
keep a finite number of terms in this expansion:

• we work with a finite number of chaos p;

• we choose a finite number of functions g1, . . . , gN .

This leads to the following approximation with n = (n1, . . . , nN )

F q ≃ E [F q] +
∑

1≤k≤p

∑
|n|=k

dnk
∏

1≤i≤N
Kni

(∫ T

0
gi(s)dWs

)
.

One of the key points in using such a decomposition is that, for choices of simple functions g1, . . . ,
gN , there exist explicit formulas for both

E
(
F q
∣∣ Ft) and Zq+1

t = DtE
(
F q
∣∣ Ft) ; (3.2)

this plays a crucial role in our algorithm. Using these formulas and starting from M trajectories of the
underlying Brownian motion enable to construct M trajectories of the solution (Y,Z) to the BSDE.

In the following, the functions gi are chosen as step functions:

gi = 1]ti−1,ti]
(t)/

√
h, i = 1, . . . , N, where ti := ih, h =

T

N

and the previous formulas are really simple (see (3.10)-(3.11) and Proposition 3.2.7). Eventually, the
main advantage of this method is that only one decomposition has to be computed per Picard
iteration: the decomposition of F q. Therein lies a main difference between our approach and the
approach based on regression technics developed by C. Bender and R. Denk in [BD07]. In their
paper, for a given Picard iteration q and for each time ti of the mesh grid, two projections have to be
computed, one for Y q

ti
and one for Zqti . The second difference comes from the way of computing Zq.

In our method, once the decomposition of F q is computed, Zq is given explicitly as the Malliavin
derivative of Y q.

Our algorithm can handle fully path dependent terminal conditions, and was extended to the case
of BSDEs with jumps (see Section 3.3) and to McKean-Vlasov BSDEs (see Section 3.4). Section 3.2
presents the results obtained in [L-10], Section 3.3 presents the results obtained in [L-7] and Section
3.4 presents the results obtained in [L-25].

3.1.1 Definitions and Notations

• ∥∂jspf∥2∞, the norm of the derivatives of f([0, T ]×Rd,R) w.r.t. all the space variables x which
sum equals j : ∥∂jspf∥2∞ :=

∑
|k|=j ∥∂k1x1 · · · ∂

kd
xd
f∥2∞, where |k| = k1 + · · ·+ kd.

• C∞
p , the set of smooth functions f : Rn 7−→ R with partial derivatives of polynomial growth.
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• ∥(·, ·)∥pLp , p ∈ N, p ≥ 2, the norm on the space SpT (R)×HpT (R
d) defined by

∥(Y, Z)∥pLp := E( sup
t∈[0,T ]

|Yt|p) +
∫ T

0
E(|Zt|p)dt. (3.3)

We also recall some useful definitions related to Malliavin calculus. We use the notations of [Nua06].

• S denotes the class of random variables of the form F = f(W (h1), · · · ,W (hn)), where f ∈
C∞
p (Rn×d,R), for all j ≤ n hj = (h1j , · · · , hdj ) ∈ L2([0, T ];Rd) and for all i ≤ d W i(hij) =∫ T
0 hij(t)dW

i
t .

• Dr,2 denotes the closure of S w.r.t. the following norm on S

∥F∥2Dr,2 := E|F |2 +
r∑
q=1

∑
|α|1=q

E
(∫ T

0
· · ·
∫ T

0

∣∣∣Dα
(t1,··· ,tq)F

∣∣∣2 dt1 · · · dtq)
where α is a multi-index (α1, · · · , αq) ∈ {1, · · · , d}q |α|1 :=

∑q
i=1 αi = q and Dα represents

the multi-index Malliavin derivative operator. We recall D∞,2 = ∩∞
r=1Dr,2.

Remark 3.1.1 When d = 1, ∥F∥2Dr,2 := E|F |2+
∑r

q=1 E
(∫ T

0 · · ·
∫ T
0

∣∣∣D(q)
(t1,··· ,tq)F

∣∣∣2 dt1 · · · dtq) =

E|F |2 +
∑r

q=1 ∥D(q)F∥2L2(Ω×[0,T ]q).

Let m ∈ N∗ and j ∈ N, j ≥ 2. We also introduce the following notations

• Dm,j denotes the space of all FT -measurable r.v. such that

∥F∥jm,j :=
∑

1≤l≤m

∑
|α|1=l

sup
t1≤···≤tl

E[|Dα
t1,··· ,tlF |

j ] <∞

where supt1≤···≤tl means sup(t1,··· ,tl):t1≤···≤tl .

• Sm,j denotes the space of all couple of processes (Y,Z) belonging to SjT (R) × HjT (R
d) and

such that

∥(Y,Z)∥jm,j : =
∑

1≤l≤m

∑
|α|1=l

sup
t1≤···≤tl

∥(Dα
t1,··· ,tlY,D

α
t1,··· ,tlZ)∥

j
Lj <∞.

We recall

∥(Y,Z)∥jm,j =
∑

1≤l≤m

∑
|α|1=l

sup
t1≤···≤tl

{
E[ sup
tl≤r≤T

|Dα
t1,··· ,tlYr|

j ] +

∫ T

tl

E[|Dα
t1,··· ,tlZr|

j ]dr

}
.

We also denote Sm,∞ := ∩j≥2Sm,j .

3.2 Standard case

In this Section we present the results [L-10] written with Philippe Briand. As presented in the intro-
duction of this Chapter, they concern the case of standard BSDEs (3.1). In the following sections we
present the Wiener chaos expansion and its properties (Sections 3.2.1 and 3.2.2), the main steps of the
algorithm (Section 3.2.3), prove its convergence and establish the rate of this convergence w.r.t. the
different parameters (Section 3.2.4). We also present numerical results (Section 3.2.5).
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3.2.1 Wiener Chaos Expansion

3.2.1.1 Notations and useful results

We refer to [Nua06] for more details on this section. Let us briefly recall the Wiener chaos expansion
in the simple case of a real-valued Brownian motion. It is well known that every random variable
F ∈ L2(FT ) has an expansion of the following form:

F =E[F ] +
∫ T

0
u1(s1)dWs1 (3.4)

+

∫ T

0

∫ s2

0
u2(s2, s1)dWs1dWs2 + . . .+

∫ T

0

∫ sn

0
· · ·
∫ s2

0
un(sn, . . . , s1)dWs1 . . . dWsn + . . .

where the functions (un, n ≥ 1) are deterministic functions. There is an ambiguity for the definition
of these functions un. We adopt in this paper the following point of view: the function un is defined
on the simplex

Sn(T ) := {(s1, · · · , sn) ∈ [0, T ]n : 0 < s1 < . . . < sn < T} .

We define the iterated integral for a deterministic function f ∈ L2(Sn(T )) as

Jn(f) :=

∫ T

0

∫ sn

0
· · ·
∫ s2

0
f(sn, · · · , s1)dWs1 · · · dWsn .

Due to the Itô isometry, ∥Jn(f)∥2 = ∥f∥2L2(Sn(T ))
and E[Jn(f)Jm(g)] = δnm < f, g >L2(Sn(T )).

Then, ∥F∥2 =
∑

n≥0 ∥un∥2L2(Sn(T ))
.

Definition 3.2.1 Let F be a random variable in L2(FT ) whose chaos expansion is given by (3.4). We
introduce

• Pn(F ) := Jn(un) the Wiener chaos of order n of F .

• Cp(F ) :=
∑

n≤p Pn(F ) the chaos decomposition of F up to order p, i.e.

Cp(F ) = E[F ] +
∫ T

0
u1(s1)dWs1 +

∫ T

0

∫ s2

0
u2(s2, s1)dWs1dWs2

+ . . .+

∫ T

0

∫ sp

0
· · ·
∫ s2

0
up(sp, . . . , s1)dWs1 . . . dWsp .

(3.5)

We state two Lemmas useful for the sequel.

Lemma 3.2.2 (Nualart) F ∈ Dm,2 if and only if ∥DmF∥2L2(Ω×[0,T ]m) =
∑

n≥0(n+m− 1)× · · · ×
n× E[|Pn(F )|2] <∞. In this case, we have∑

n≥0

(n+m− 1)× · · · × n× E[|Pn(F )|2] ≤ ∥F∥2Dm,2 .

From Lemma 3.2.2, we deduce

Lemma 3.2.3 ([L-7, Lemma 2.4]) Let 1 ≤ m ≤ p+ 1 and F ∈ Dm,2. We have

E[|F − Cp(F )|2] ≤
∥F∥2Dm,2

(p+ 2−m) · · · (p+ 1)
.
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The following Lemma gives some useful properties of the chaos decomposition.

Lemma 3.2.4

• Let F be a r.v. in L2(FT ). ∀p ≥ 1, we have E(|Cp(F )|2) ≤ E(|F |2). If F belongs to Lj(FT ),
∀j > 2, E(|Cp(F )|j) ≤ (1 + p(j − 1)

p
2 )jE(|F |j).

• Let H be in H2
T (R). We have Cp

(∫ T
0 Hsds

)
=
∫ T
0 Cp(Hs)ds.

• For all F ∈ D1,2 and for all t ≤ r, DtEr[Cp(F )] = Er[Cp−1(DtF )].

The first result ensues from the fact that for j > 2 ∥Pn(F )∥j ≤ (j − 1)
n
2 ∥F∥j (see [Nua06, page

63]).

3.2.1.2 Wiener chaos expansion and Hermite polynomials

Another approach to Wiener chaos expansion uses Hermite polynomials. This approach can be easily
generalized when considering d-dimensional Brownian motions, this is then the one we consider in
the following. We present it for d = 1. Let {gi}i≥1 be an orthonormal basis of L2([0, T ];R). The
Wiener chaos of order n, Pn(F ), is the L2-closure of the vector field spanned by∏

i≥1

√
ni!Kni

(∫ T

0
gi(s)dWs

)
: |(ni)i≥1| :=

∑
ni = n


where Kn is the Hermite polynomial of order n defined by the expansion:

ext−t
2/2 =

∑
n≥0

Kn(x) t
n.

It is well known that

H ′
n(x) = nHn−1(x)

Hn(x) = xHn−1(x)−H ′
n−1(x) = xHn−1(x)− (n− 1)Hn−2(x).

In this paper, we will work with the following normalization of the Hermite polynomials:

∀n ∈ N, Kn(x) =
1

n!
Hn(x),

with the convention K−1 ≡ 0. With this normalization, we have K ′
n(x) = Kn−1(x) for any

integer n.

K ′
n(x) = Kn−1(x)

Kn(x) =
1

n

(
xKn−1(x)−K ′

n−1(x)
)
=

1

n
(xKn−1(x)−Kn−2(x)) .

It is well-known that (Kn)n≥0 is a sequence of orthogonal polynomials in L2(R, µ), where µ
denotes the reduced centered Gaussian measure. Moreover, we have∫

R
K2
n(x)µ(dx) =

1

n!
.

63



Every square integrable random variable F , measurable with respect to FT , admits the following
orthogonal decomposition

F = d0 +
∑
k≥1

∑
|n|=k

dnk
∏
i≥1

Kni

(∫ T

0
gi(s)dWs

)
, (3.6)

where n = (ni)i≥1 is a sequence of positive integers and where |n| stands for
∑

i≥1 ni. Taking into
account the normalization of the Hermite polynomials we use, we get

d0 = E [F ] , dnk = n!E

F ×
∏
i≥1

Kni

(∫ T

0
gi(s)dWs

) ,
where n! =

∏
i≥1 ni!. Before describing the chaos decomposition formulas we use in the algorithm,

we give a Lemma useful in the sequel.

Lemma 3.2.5 Let g ∈ L2([0, T ];R) and let Ut =
∫ t
0 g

2(s)ds. For n ∈ N, let us define

Mn
t = U

n/2
t Kn

(
W (g)t/

√
Ut

)
, W (g)t =

∫ t

0
g(s)dWs.

Then {Mn
t }0≤t≤T is a martingale and

dMn
t = g(t)Mn−1

t dWt.

3.2.2 Chaos decomposition approximations

These formulas are based on the decomposition (3.6). To get tractable formulas, we consider a finite
number of chaos and a finite number of functions (g1, · · · , gN ). The (gi)1≤i≤N functions are chosen
such that we can quickly compute E(F |Ft) and DtE(F |Ft) (as required in (3.2)). We develop in this
Section the case d = 1, we refer to [L-10, Section B.2] when d > 1.

The first step consists in considering a finite number of chaos. In order to approximate the random
variable F , we consider its projection Cp(F ) onto the first p chaos, introduced in Definition 3.2.1. We
have

Cp(F ) = d0 +
∑

1≤k≤p

∑
|n|=k

dnk
∏
i≥1

Kni

(∫ T

0
gi(s)dWs

)
. (3.7)

Of course, we still have an infinite number of terms in the previous sum and the second step
consists in working with only the firstN functions g1,. . . , gN of an orthonormal basis of L2([0, T ];R).

Let us consider a regular mesh grid of N time steps T = {ti = i TN , i = 0, · · · , N} and the N
step functions

gi = 1]ti−1,ti]
(t)/

√
h, i = 1, . . . , N, where h :=

T

N
. (3.8)

We complete these N functions g1,. . . , gN into an orthonormal basis of L2([0, T ];R), (gi)i≥1. For
instance, one can consider the Haar basis on each interval (ti−1, ti), i = 1,. . . , N . We implicitly
assume that N ≥ p. This leads to the following approximation

CNp (F ) = d0 +
∑

1≤k≤p

∑
|n|=k

dnk
∏

1≤i≤N
Kni

(∫ T

0
gi(s)dWs

)
, (3.9)
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where n = (n1, . . . , nN ) and |n| = n1 + . . . + nN . Due to the simplicity of the functions gi,
i = 1, · · · , N , we can compute explicitly∫ T

0
gi(s)dWs = Gi, where Gi =

Wti
−Wti−1√
h

.

Roughly speaking this means that Pk, the kth chaos, is generated by

{Kn1(G1) . . .KnN (GN ) : n1 + . . .+ nN = k} .

Thus, the approximation we use for the random variable F is

CNp (F ) = d0 +

p∑
k=1

∑
|n|=k

dnkKn1(G1) . . .KnN (GN ) = d0 +

p∑
k=1

∑
|n|=k

dnk
∏

1≤i≤N
Kni(Gi), (3.10)

where the coefficients d0 and dnk are given by

d0 = E[F ], dnk = n!E [FKn1(G1) . . .KnN (GN )] . (3.11)

The following Lemma, similar to Lemma 3.2.4, gives some useful properties of the operator CNp
Lemma 3.2.6 Let F be a r.v. in L2(FT ) and H be in H2

T (R). Then

• ∀(p,N) ∈ (N⋆)2, E(|CNp (F )|2) ≤ E(|Cp(F )|2) ≤ E(|F |2),

• CNp
(∫ T

0 Hsds
)
=
∫ T
0 CNp (Hs)ds.

• For all t ≤ r, DtEr[CNp (F )] = Er[CNp−1(DtF )].

From (3.10), we deduce the expressions of Et(CNp F ) and DtEt
(
CNp (F )

)
, useful for the approxi-

mation of (Y,Z) by the chaos decomposition (see (3.2)).

Proposition 3.2.7 Let F be a real random variable in L2(FT ) and let r be an integer in {1, · · · , N}.
For all tr−1 < t ≤ tr, we have

Et
(
CNp F

)
= d0 +

p∑
k=1

∑
|n(r)|=k

dnk
∏
i<r

Kni(Gi)×
(
t− tr−1

h

)nr
2

Knr

(
Wt −Wtr−1√

t− tr−1

)
,

DtEt
(
CNp (F )

)
= h−1/2

p∑
k=1

∑
|n(r)|=k
nr>0

dnk
∏
i<r

Kni(Gi)×
(
t− tr−1

h

)nr−1
2

Knr−1

(
Wt −Wtr−1√

t− tr−1

)
,

where, if r ≤ N and n = (n1, . . . , nN ), n(r) stands for (n1, . . . , nr).

Remark 3.2.8 For t = tr and r ≥ 1, Proposition 3.2.7 leads to

Etr
(
CNp F

)
= d0 +

p∑
k=1

∑
|n(r)|=k

dnk
∏
i≤r

Kni (Gi)

DtrEtr
(
CNp F

)
= h−1/2

p∑
k=1

∑
|n(r)|=k
nr>0

dnk
∏
i<r

Kni (Gi)×Knr−1 (Gr) .

When r = 0, we get Et0
(
CNp F

)
= d0 and we define Dt0

Et0
(
CNp F

)
= 1√

h
de11 (which is the limit of

DtEt
(
CNp F

)
when t tends to 0).
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3.2.3 Approximation steps of the BSDE

The algorithm is based on four types of approximations : Picard iterations, a Wiener chaos expansion
up to a finite order, the truncation of an L2([0, T ];R) basis in order to apply formulas of Proposition
3.2.7, and a Monte Carlo method to approximate the coefficients d0 and dnk defined in (3.11). Picard
iterations are presented in Section 3.2.3.1, Wiener chaos expansion is presented in Section 3.2.3.2, the
truncation is presented in Section 3.2.3.3 and the Monte Carlo method is presented in Section 3.2.3.4.

3.2.3.1 Picard iterations

The first step consists in approximating (Y, Z) — solution to (3.1) — by Picard sequence (Y q, Zq)q,
built as follows : (Y 0 = 0, Z0 = 0) and for all q ≥ 1

Y q+1
t = ζ +

∫ T

t
f (s, Y q

s , Z
q
s ) ds−

∫ T

t
Zq+1
s · dWs, 0 ≤ t ≤ T. (3.12)

From (3.12), under the assumptions that ξ ∈ D1,2 and f ∈ C0,1,1
b , we express (Y q+1, Zq+1) as a

function of the processes (Y q, Zq):

Y q+1
t = Et

(
ζ +

∫ T

t
f (s, Y q

s , Z
q
s ) ds

)
, Zq+1

t = DtY
q+1
t , (3.13)

which can also be written

Y q+1
t = Et

(
ζ +

∫ T

0
f (s, Y q

s , Z
q
s ) ds

)
−
∫ t

0
f (s, Y q

s , Z
q
s ) ds, Zq+1

t = DtY
q+1
t . (3.14)

As recalled in the introduction, the computation of the conditional expectation is the cornerstone
in the numerical resolution of BSDEs. Chaos decomposition formulas enable to circumvent this
problem.

3.2.3.2 Truncation on the first p chaos

Computing the chaos decomposition of the r.v. F = ζ +
∫ T
t f (s, Y q

s , Z
q
s ) ds (appearing in (3.13)) in

order to compute Y q+1
t is not judicious. F depends on t, and then the computation of Y q+1 on the grid

T = {ti = i TN , i = 0, · · · , N} would require N + 1 calls to the chaos decomposition function. To
build an efficient algorithm, we need to call the chaos decomposition function as less as possible, since
each call is computationally demanding and brings an approximation error due to the truncation and to
the Monte-Carlo approximation (see next Sections). Then, we look for a r.v. F q independent of t such
that Y q+1

t and Zq+1
t can be expressed as functions of Et(F q), DtEt(F q) and of Y q and Zq. Equation

(3.14) gives a more tractable expression of Y q+1. Let F q be defined by F q := ζ+
∫ T
0 f(s, Y q

s , Z
q
s )ds.

Then

Y q+1
t = Et(F q)−

∫ t

0
f (s, Y q

s , Z
q
s ) ds, Zq+1

t = DtEt(F q). (3.15)

The second type of approximation consists in computing the chaos decomposition of F q up to
order p. Since F q does not depend on t, the chaos decomposition function Cp is called only once per
Picard iteration.
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Let (Y q,p, Zq,p) denote the approximation of (Y q, Zq) built at step q using a chaos decomposition
with order p: (Y 0,p, Z0,p) = (0, 0) and

Y q+1,p
t = Et [Cp (F q,p)]−

∫ t

0
f (s, Y q,p

s , Zq,ps ) ds, Zq+1,p
t = DtEt [Cp (F q,p)] , (3.16)

where F q,p = ζ +
∫ T
0 f (s, Y q,p

s , Zq,ps ) ds. In the sequel, we also use the following equality

Zq+1,p
t = Et[DtCp(F q,p)]. (3.17)

3.2.3.3 Truncation of the basis

The third type of approximation comes from the truncation of the orthonormal L2([0, T ];R) basis
used in the definition of Cp (3.7). Instead of considering a basis of L2([0, T ];R), we only keep the
first N functions (g1, · · · , gN ) defined by (3.8) to build the chaos decomposition function CNp (3.9).
Proposition 3.2.7 gives us explicit formulas for Et(CNp F ) and DtEt(CNp F ). From (3.16), we build
(Y q,p,N , Zq,p,N )q in the following way : (Y 0,p,N , Z0,p,N ) = (0, 0) and

Y q+1,p,N
t = Et(CNp (F q,p,N ))−

∫ t

0
f
(
s, Y q,p,N

s , Zq,p,Ns

)
ds, Zq+1,p,N

t = Dt(Et(CNp (F q,p,N ))),

(3.18)

where F q,p,N := ζ +
∫ T
0 f(s, Y q,p,N

s , Zq,p,Ns )ds.
Equation (3.18) is tractable as soon as we know closed formulas for the coefficients dnk of the

chaos decomposition of Et(CNp (F q,p,N )) and Dt(Et(CNp (F q,p,N ))) (see Proposition 3.2.7). When it
is not the case, we need to use a Monte-Carlo method to approximate these coefficients. The next
Section is devoted to this method and to the practical implementation.

3.2.3.4 Monte-Carlo simulations of the chaos decomposition

Let F denote a r.v. of L2(FT ). Practically, when we are not able to compute exactly d0 and/or the
coefficients dnk of the chaos decomposition (3.10)-(3.11) of F , we use Monte-Carlo simulations to
approximate them. Let (Fm)1≤m≤M be a M i.i.d. sample of F and (Gm1 , · · · , GmN )1≤m≤M be a M
i.i.d. sample of (G1, · · · , GN ). We recall that d0 and the coefficients (dnk)1≤k≤p,|n|=k are given by
d0 = E[F ] and dnk = n!E [FKn1(G1) . . .KnN (GN )] (see (3.11)). Then, they are solutions of

argmin
c=(c0,(cnk )1≤k≤p,|n|=k)

E[|F − ψ(c,G)|2], (3.19)

where ψ : (c, G) 7−→ c0 +
∑p

k=1

∑
|n|=k c

n
k

∏
1≤i≤N Kni(Gi). We approximate d :=

(d0, (d
n
k)1≤k≤p,|n|=k) by approximating the expectations of (3.11) by empirical means d̂M :=

(d̂0, d̂nk1≤k≤p,|n|=k) where

d̂0 :=
1

M

M∑
m=1

Fm, d̂nk :=
n!

M

M∑
m=1

FmKn1(G
m
1 ) · · ·KnN (G

m
N ), (3.20)

In the following, CN,Mp (F ) denotes the approximation of the chaos decomposition of order p of
F when using the first method to approximate the coefficients dnk :

CN,Mp (F ) = d̂0 +

p∑
k=1

∑
|n|=k

d̂nk

∏
1≤i≤N

Kni(Gi). (3.21)
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Et(CN,Mp (F )) and Dt(Et(CN,Mp (F ))) denote the conditional expectations obtained in Proposition
3.2.7 when ((d0, d

n
k)1≤k≤p,|n|=k) are replaced by ((d̂0, d̂nk)1≤k≤p,|n|=k) :

Et
(
CN,Mp F

)
:= d̂0 +

p∑
k=1

∑
|n(r)|=k

d̂nk

∏
i<r

Kni(Gi)×
(
t− tr−1

h

)nr
2

Knr

(
Wt −Wtr−1√

t− tr−1

)
,

DtEt
(
CN,Mp (F )

)
:= h−1/2

p∑
k=1

∑
|n(r)|=k
nr>0

d̂nk

∏
i<r

Kni(Gi)×
(
t− tr−1

h

)nr−1
2

Knr−1

(
Wt −Wtr−1√

t− tr−1

)
,

Remark 3.2.9 When M samples of CN,Mp (F ) are needed, we can either use the same samples as the
ones used to compute d̂0 and d̂nk : (ĈNp (F ))m = d̂0 +

∑p
k=1

∑
|n|=k d̂

n
k

∏
1≤i≤N Kni(G

m
i ), or use

new ones. In the first case, we only require M samples of F and (G1, · · · , GN ). The coefficients
d̂nk and d̂0 are not independent of

∏
1≤i≤N Kni(G

m
i ). The notation Et(CN,Mp (F )) introduced above

cannot be linked to E
(
CN,Mp F |Ft

)
. In the second case, the coefficients d̂nk and d̂0 are independent

of
∏

1≤i≤N Kni(G
m
i ) and we have Et

(
CN,Mp F

)
= E

(
CN,Mp F |Ft

)
. This second approach requires

2M samples of F and (G1, · · · , GN ) and its variance increases with N . Practically, we use the first
technique.

We introduce the processes (Y q+1,p,N,M , Zq+1,p,N,M ), useful in the following. It corresponds to
the approximation of (Y q+1,p,N , Zq+1,p,N ) when we use CN,Mp instead of CNp , i.e. when we use a
Monte Carlo procedure to compute the coefficients dnk .

Y q+1,p,N,M
t = Et(CN,Mp (F q,p,N,M ))−

∫ t

0
f
(
θq,p,N,Ms

)
ds, Zq+1,p,N,M

t = Dt(Et(CN,Mp (F q,p,N,M ))),

(3.22)

where F q,p,N,M := ζ +
∫ T
0 f(θq,p,N,Ms )ds and θq,p,N,Ms =

(
s, Y q,p,N,M

s , Zq,p,N,Ms

)
.

3.2.4 Convergence results

We aim at bounding the error between (Y,Z) — the solution to (3.1) — and (Y q,p,N,M , Zq,p,N,M )
defined by (3.22). Before stating the main result of the paper, we introduce some hypotheses.

In the following, (t1, · · · , tn) and (s1, · · · , sn) denote two vectors such that

0 ≤ t1 ≤ · · · ≤ tn ≤ T, 0 ≤ s1 ≤ · · · ≤ sn ≤ T and ∀i, si ≤ ti.

Hypothesis 3.1 Letm ∈ N∗. We say that F satisfies Hypothesis Hm if F satisfies the two following
hypotheses

• H1
m : ∀j ≥ 2 F ∈ Dm,j , i.e. ∥F∥jm,j <∞

• H2
m : ∀j ≥ 2, ∀i ∈ {1, · · · ,m}, ∀l0 ≤ i − 1, ∀l1 ≤ m − i, ∀l ∈ {1, · · · , d} and for all

multi-indices α0 and α1 such that |α0| = l0 and |α1| = l1 + 1, there exist two positive
constants βF and kFl such that

sup
t1≤···≤tl0

sup
si+1≤···≤si+l1

E[|Dα0
t1,··· ,tl0

(Dα1
ti,si+1,··· ,si+l1

F −Dα1
si,··· ,si+l1

F )|j ] ≤ kFl (j)(ti − si)
jβF ,

where l = l0 + l1 + 1. In the following, we denote KF
m(j) = supl≤m k

F
l (j).
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Remark 3.2.10 If F satisfies H2
m, for all multi-index α such that |α| = l we have

|E(Dα
t1,··· ,tlF )− E(Dα

s1,··· ,slF )| ≤ KF
l ((t1 − s1)

βF + · · ·+ (tl − sl)
βF ), (3.23)

where KF
l is a constant.

Lemma 3.2.11 Let F denote a r.v. in L2(FT ) satisfying (3.23) for m = p. We have

E(|(CNp − Cp)(F )|2) ≤ (KF
p )

2

(
T

N

)2βF

T (1 + T )eT ,

where KF
p and βF are defined in Hypothesis 3.1.

Hypothesis 3.2 Let (p,N) ∈ N2. We say that a r.v. F satisfies H3
p,N if

Vp,N (F ) := V(F ) +
p∑

k=1

∑
|n|=k

n!V

(
F

N∏
i=1

Kni(Gi)

)
<∞.

Lemma 3.2.12 Let F be a r.v. satisfying Hypothesis H3
p,N . We have

E(|(CNp − CN,Mp )(F )|2) = 1

M
Vp,N (F ).

Moreover, we have E(|CN,Mp (F )|2) ≤ E(|F |2) + 1
M Vp,N (F ).

Remark 3.2.13 If F is bounded by K, we get Vp,N (F ) ≤ K2
∑p

k=0

(
N
k

)
. Then, every bounded r.v.

satisfies H3
p,N .

This Remark ensues from E
(∏N

i=1K
2
ni
(Gi)

)
= 1

n! .

Remark 3.2.14 Let X be the Rm0-valued process solution of

Xt = x+

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs,

where W is a d-dimensional Brownian motion and b : [0, T ]× Rm0 → Rm0 and σ : [0, T ]× Rm0 →
Rm0×d are two C0,m functions uniformly lipschitz w.r.t. x and Hölder continuous of parameter 1

2
w.r.t. t, with linear growth in x and with bounded derivatives. Then, every random variable ζ of type
g(XT ) or g(

∫ T
0 Xsds) with g : Rn → R in C∞

p satisfies Hm and H3
p,N , for all p and N .

Theorem 3.2.15 Let k be an integer s.t. k ≤ p. Assume that ζ satisfies Hp+q and H3
p,N and f ∈

C0,p+q−1,p+q−1
b . We have

∥(Y − Y q,p,N,M , Z − Zq,p,N,M )∥2L2
≤ A0

2q
+
A1(q, k)

(p+ 1)k
+A2(q, p)

(
T

N

)2βζ∧1
+
A3(q, p,N)

M
,

where A0, A1, A2 and A3 are given in the following proof. If f ∈ C0,∞,∞
b and ζ satisfies H∞ and

H3
∞,∞, we get

lim
q→∞

lim
p→∞

lim
N→∞

lim
M→∞

∥(Y − Y q,p,N,M , Z − Zq,p,N,M )∥2L2
= 0.
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Proof. We split the error in 4 terms :

1. Picard iterations : Eq = ∥(Y − Y q, Z − Zq)∥2L2
, where (Y q, Zq) is defined by (3.12),

2. the truncation of the chaos decomposition : Eq,p = ∥(Y q − Y q,p, Zq − Zq,p)∥2L2
, where

(Y q,p, Zq,p) is defined by (3.16),

3. the truncation of the L2([0, T ];R) basis : Eq,p,N = ∥(Y q,p− Y q,p,N , Zq,p−Zq,p,N )∥2L2
, where

(Y q,p,N , Zq,p,N ) is defined by (3.18).

4. the Monte-Carlo approximation to compute the expectations : Eq,p,N,M = ∥(Y q,p,N −
Y q,p,N,M , Zq,p,N − Zq,p,N,M )∥2L2

, where (Y q,p,N,M , Zq,p,N,M ) is defined by (3.22).

We have

∥(Y − Y q,p,N,M , Z − Zq,p,N,M )∥2L2
≤ 4(Eq + Eq,p + Eq,p,N + Eq,p,N,M ).

From [EKPQ97b, Corollary 2.1], we know that under Hypothesis 1.1 we have

Eq := ∥(Y − Y q, Z − Zq)∥2L2
≤ A0

2q
, ■

where A0 depends on T , ∥ξ∥22 and on ∥f(·, 0, 0)∥2
L2
([0,T ];R)

. The same procedure applies in the proof

of [L-10, Propositions 4.11, 4.15 and 4.17] which bound Eq,p, Eq,p,N and Eq,p,N,M . Thanks to Pi-
card iterations Eq+1,· is bounded by C0,·Eq,· + C1,·, where C1,p is related to Lemma 3.2.3, C1,p,N

is related to Lemma 3.2.11 and C1,p,N,M is related to Lemma 3.2.12. Since E0,· = 0 we get
the following upper bounds. From [L-10, Proposition 4.11] we get that Eq,p ≤ A1(q,m)

(p+1)m where

A1(q,m) :=
(C1T (T+1)L2

f )
q−1

C1T (T+1)L2
f−1

K1(q,m) and K1(q,m) depends on T , m, ∥ξ∥
m+q,2

(m+q−1)!
(m−1)!

and

on (∥∂kspf∥∞)1≤k≤m+q−1. [L-10, Proposition 4.15] gives that Eq,p,N ≤ A2(q, p)
(
T
N

)1∧2βξ , where

A2(q, p) := K2(q, p)T (T + 1)eT
(C2T (T+1)L2

f )
q−1

C2T (T+1)L2
f−1

and K2(q, p) depends on Kξ
p , T , ∥ξ∥

p+q,2
(p+q−1)!
(p−1)!

and on (∥∂kspf∥∞)1≤k≤p+q−1. [L-10, Proposition 4.17] states that Eq,p,N,M ≤ A3(q,p,N)
M , where

A3(q, p,N) := K3(p,N)
(C3T (T+1)L2

f )
q−1

C3T (T+1)L2
f−1

and K3(p,N) := 168
(
Vp,N (ξ) + T 2∥f∥2∞

∑p
k=0

(
N
k

))
.

3.2.5 Numerical Examples

The computations have been done on a PC INTEL Core 2 Duo P9600 2.53 GHz with 4Gb of RAM.

3.2.5.1 Nonlinear driver and path-dependent terminal condition

We consider the case of a non linear driver and a path-dependent terminal condition in dimension
d = 1: f(t, y, z) = cos(y) and ζ = sup0≤t≤1Wt.

• Convergence in p. Table 3.1 represents the evolution of Y q,p,N,M
0 and Zq,p,N,M0 w.r.t q (Picard

iteration index), when p = 2 and p = 3. We also give the CPU time needed to get Y 6,p,N,M
0

and Z6,p,N,M
0 . We fix M = 105 and N = 20. The seed of the generator is also fixed.

One notes that the difference between the values of Y q,2,N,M
0 and Y q,3,N,M

0 (resp. Zq,2,N,M0

and Zq,3,N,M0 ) doesn’t exceed 0.2% (resp. 0.6%). This is due to the fast convergence of the
algorithm in p. The CPU time is 12 times higher when p = 3 than when p = 2. Then, the use
of order 3 in the chaos decomposition is not necessary. In the following, we take p = 2.
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iterations 1 2 3 4 5 6 CPU time
p = 2 1.656357 1.017117 1.237135 1.186691 1.195462 1.194256 14.06
p = 3 1.656357 1.012091 1.234398 1.183544 1.192367 1.191173 174.09

Table 3.1: Evolution of Y q,p,N,M
0 w.r.t. Picard’s iterations, M = 105, N = 20 and CPU time

iterations 1 2 3 4 5 6 CPU time
p = 2 0.969128 0.249148 0.525273 0.459326 0.470069 0.469117 14.06
p = 3 0.969128 0.242977 0.523846 0.455827 0.466903 0.465939 174.09

Table 3.2: Evolution of Zq,p,N,M0 w.r.t. Picard’s iterations, M = 105, N = 20 and CPU time

• Convergence in M . Figure 3.2.1 illustrates the evolution of Y q,p,N,M
0 and Zq,p,N,M0 w.r.t. q

when p = 2 and N = 20 for different values of M . The seed of the generator is random. When
M equals 104 and 105 the algorithm stabilizes after very few iterations. When M = 103, there
is no convergence.
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Figure 3.2.1: Evolution of Y q,p,N,M
0 and Zq,p,N,M0 w.r.t. q and M when N = 20, p = 2 - ζ =

sup0≤t≤1Wt, f(t, y, z) = cos(y).

• Convergence in N . Figure 3.2.2 illustrates the evolution of Y q,p,N,M
0 and Zq,p,N,M0 w.r.t. q

when p = 2 and M = 105 for different values of N . The seed of the generator is random. The
algorithm converges even when N = 10, but Y 6,p,10,M

0 is quite below Y
6,p,40,M
0 .

3.2.5.2 Linear Driver - Financial Benchmark

We consider the case of pricing and hedging a Discrete Down and Out Barrier Call option, i.e.
f(t, y, z) = −ry and ξ := (ST − K)+1∀n∈[0,N ]Stn≥L, where S represents the Black-Scholes dif-
fusion

St = S0e
(r− 1

2
σ2)t+σWt , ∀t ∈ [0, T ].

The option parameters are r = 0.01, σ = 0.2, T = 1, K = 0.9, L = 0.85, S0 = 1 and N = 20
(N is also the number of time discretizations of the chaos decomposition).
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Figure 3.2.2: Evolution of Y q,p,N,M
0 andZq,p,N,M0 w.r.t. N whenM = 105, p = 2 - ζ = sup0≤t≤1Wt,

f(t, y, z) = cos(y)
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Figure 3.2.3: Evolution of Y q,p,N,M
0 and δ0 := Z

q,p,N,M
0
σS0

w.r.t. log(M) when N = 20, p = 2, q = 5
-Discrete Down and Out Barrier Call option
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We can get a benchmark for Y0 and Z0 by using a variance reduction Monte Carlo method. For
this set of parameters, the reference values are Y0 = 0.134267 with a confidence interval 7.9468e−05

and δ0 = Z0
σS0

= 0.8327. We compare them with Y q,p,N,M
0 and Z

q,p,N,M
0
σS0

when N = 20, p = 2, q = 5
(we choose the first value of q from which the algorithm has converged) for different values of M .
Figure 3.2.3 represents the evolution of Y 5,p,N,M

0 and δ5,p,N,M0 w.r.t. log(M). One notices that for
M = 106 the computed values are very close to the reference ones.

3.3 Case with jumps

In this Section we present the results obtained in [L-7] written with Christel Geiss. We are interested
in the numerical approximation of solutions (Y,Z, U) to backward stochastic differential equations
(BSDEs in the sequel) with jumps of the following form

Yt = ζ +

∫ T

t
f(s, Ys, Zs, Us) ds−

∫ T

t
ZsdWs −

∫
]t,T ]

UsdÑs, 0 ≤ t ≤ T, (3.24)

where W is a 1-dimensional standard Brownian motion and Ñ is a compensated Poisson process
independent from W , i.e. Ñt := Nt − κt and (Nt)t≥0 is a Poisson process with intensity κ > 0.
The terminal condition ζ is a real-valued FT –measurable random variable where {Ft}0≤t≤T stands
for the augmented natural filtration associated with W and N . Under standard Lipschitz assumptions
on the driver f , the existence and uniqueness of the solution have been stated by Tang and Li [TL94],
generalizing the seminal paper of Pardoux and Peng [PP92].

The main objective of this section is to propose a numerical method to approximate the solution
(Y,Z, U) of (3.24) by extending the results presented in Section 3.2 to the case of jumps. In case
of BSDEs driven by a Poisson random measure, Bouchard and Elie [BE08] have proposed a scheme
based on the dynamic programming equation and studied the rate of convergence of the method when
the terminal condition is given by ζ = g(XT ), where g is a Lipschitz function and X is a forward
process. More recently, Geiss and Steinicke [GS16] have extended this result to the case of a terminal
condition which may be a Borel function of finitely many increments of the Lévy forward process
X which is not necessarily Lipschitz but only satisfies a fractional smoothness condition. In the
case of jumps driven by a compensated Poisson process, Lejay, Mordecki and Torres [LMT13] have
developed a fully implementable scheme based on a random binomial tree, following the approach
proposed by Briand, Delyon and Mémin [BDM01].

As said before, we extend here the algorithm based on Picard iterations and Wiener chaos expan-
sion introduced in [L-10] to the case of BSDEs with jumps. Our starting point is the use of Picard
iterations: (Y 0, Z0, U0) = (0, 0, 0) and for q ∈ N,

Y q+1
t = ζ +

∫ T

t
f (s, Y q

s , Z
q
s , U

q
s ) ds−

∫ T

t
Zq+1
s · dWs −

∫
]t,T ]

U q+1
s dÑs, 0 ≤ t ≤ T.

73



Writing this Picard scheme in a forward way gives

Y q+1
t = E

(
ζ +

∫ T

0
f (s, Y q

s , Z
q
s , U

q
s ) ds

∣∣∣ Ft)−
∫ t

0
f (s, Y q

s , Z
q
s , U

q
s ) ds,

Zq+1
t = E

(
D

(0)
t Y q+1

t

∣∣∣ Ft−) = E
(
D

(0)
t

(
ζ +

∫ T

0
f (s, Y q

s , Z
q
s , U

q
s ) ds

) ∣∣∣ Ft−) ,
U q+1
t = E

(
D

(1)
t Y q+1

t

∣∣∣ Ft−) = E
(
D

(1)
t

(
ζ +

∫ T

0
f (s, Y q

s , Z
q
s , U

q
s ) ds

) ∣∣∣ Ft−) ,
whereD(0)

t X (resp. D(1)
t X) stands for the Malliavin derivative of the random variableX with respect

to the Brownian motion (resp. w.r.t. the Poisson process).
In order to compute the previous conditional expectation, we use a Wiener chaos expansion of the

random variable

F q = ζ +

∫ T

0
f (s, Y q

s , Z
q
s , U

q
s ) ds.

More precisely, we use the following orthogonal decomposition of the random variable F q (see [L-7,
Proposition 2.6])

F q = E [F q] +

∞∑
k=1

k∑
l=0

∑
kl∈Nl

∑
jk−l∈Nk−l

dkl, jk−l
L0,...,0
l (ẽ[k1, . . . , kl])L

1,...,1
k−l (ẽ[j1, . . . , jk−l]).

where L0,··· ,0
m (g) (resp. L1,··· ,1

m (g)) denotes the iterated integral of order m of g w.r.t. the Brownian
motion (resp. w.r.t. the compensated Poisson process), (ẽ[k1, . . . , km])km∈N is an orthogonal basis of
(L̃2)⊗m([0, T ];R), the subspace of symmetric functions from (L2)⊗m([0, T ];R). The sequence of
coefficients {dkl, jk−l

}kl∈Nl, jk−l∈Nk−l ensues from the Wiener chaos decomposition of F q.
The point to get an implementable scheme is that we only keep a finite number of terms in this

expansion: we use a finite number of chaos and we choose a finite number of functions {e1, · · · , eN}
to build {ẽ[k1, · · · , km]}km∈{1,··· ,N}. More precisely, if we choose ei := 1√

h
1]ti−1,ti]

where ti = ih

and h := T
N , we obtain

F q ∼ E [F q] +

p∑
k=1

∑
|n|=k

dnk

N∏
i=1

KnB
i

(
Wti

−Wti−1√
h

)
CnP

i
(Nti

−Nti−1
, κh),

where Ki (resp. Ci) denotes the Hermite (resp. Charlier) polynomial of degree i, n =
(nW1 , · · · , nWN , nP1 , · · · , nPN ) is a vector of integers and |n| =

∑N
i=1(n

W
i + nPi ). By using this

approximation of F q we can easily compute E(F q|Ft), E(D(0)
t F q|Ft−) and E(D(1)

t F q|Ft−), which
gives us (Y q+1

t , Zq+1
t , U q+1

t ). To get a fully implementable algorithm, it remains to approximate
E(F q) and the coefficients {dnk}n,k by Monte Carlo.

There is no hypercontractivity property in the Poisson chaos decomposition case. This property
plays an important role in the proof of the convergence in the Brownian case. To circumvent this
problem, we exploit a result of Last, Penrose, Schulte and Thäle [LPST14], which gives a formula
to compute the expectation of products of Poisson multiple integrals, and the according result for the
Brownian case from Peccati and Taqqu [PT11]. In fact, in [L-7, Proposition 2.9] we get an explicit
expression for

E(In1(fn1) · · · Inl
(fnl

))
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in terms of a combinatoric sum of tensor products of the chaos kernels fni . Here Ini(fni) denotes
the multiple integral of order ni with respect to the process W + Ñ . By this expression one gets the
required estimates for the truncated chaos without the hypercontractivity property. Therefore, to prove
the convergence of the method we may proceed similarly to [L-10], and split the error into four terms:

• the error due to Picard iterations

• the error due to the truncation onto the chaos up to order p

• the error due to the finite number of basis functions {e1, · · · , eN} for each chaos

• the error due to the Monte Carlo simulations to approximate the expectations appearing in the
coefficients {dnk}n,k.

The rest of the Section is organized as follows: Section 3.3.1 presents some preliminaries, Sections
3.3.2 and 3.3.3 introduce Wiener chaos expansion and its approximation in case of jumps, Section
3.3.4 presents the approximation steps of the BSDE with jumps, Section 3.3.5 states the convergence
results and finally Section 3.3.6 presents numerical examples.

3.3.1 Preliminaries

Definition 3.3.1 ∥(·, ·, ·)∥pLp
, p ≥ 1, the norm on the space SpT (R)×HpT (R)×HpT (R) is defined by

∥(Y,Z, U)∥pLp
:= E( sup

t∈[0,T ]
|Yt|p) +

∫ T

0
E(|Zt|p)dt+ κ

∫ T

0
E(|Ut|p)dt. (3.25)

Hypothesis 3.3 We assume

• the terminal condition ζ belongs to L2(FT );
• the generator f ∈ C([0, T ] × R3;R) is Lipschitz continuous in space, uniformly in t:

there exists a constant Lf such that

|f(t, y1, z1, u1)− f(t, y2, z2, u2)| ≤ Lf (|y1 − y2|+ |z1 − z2|+ |u1 − u2|) .

Lemma 3.3.2 If Hypothesis (3.3) is satisfied and ζ ∈ D1,2 (defined below) we get from [GS16, Theo-
rem 3.4] that for a.e. t ∈ [0, T ]

Zt = E[D(0)
t Yt|Ft−], Ut = E[D(1)

t Yt|Ft−] P− a.s. (3.26)

where D(0)
t X stands for the Malliavin derivative w.r.t. the Brownian motion of the random variable

X , and D(1)
t X stands for the Malliavin derivative w.r.t. the Poisson process of the random variable

X . Here E[·|Ft−] should be understood as the predictable projection, and since the paths s 7→ D
(i)
t Ys

are a.s. càdlàg we define D(i)
t Yt := lims↓tD

(i)
t Ys if the limit exists, and zero otherwise.

3.3.2 Wiener chaos expansion

We refer to [LJUV02] and [Pri09] for more details on this section. Let us briefly recall the Wiener
chaos expansion in the case of a real-valued Brownian motion and an independent Poisson process
with intensity κ > 0.
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We define

G0(t) = Bt, G1(t) = Nt − κt,

and Li1,··· ,ikk (f) the iterated integral of f with respect to G0 and G1

Li1,··· ,ikk (f) =

∫ T

0

(∫ t−k

0
· · ·

(∫ t−2

0
f(t1, . . . , tk)dGi1(t1)

)
· · · dGik−1

(tk−1)

)
dGik(tk).

We have the following chaotic representation property.

Proposition 3.3.3 ([LJUV02, Proposition 2.1]) For k ∈ N∗ define

ik := (i1, . . . , ik) ∈ {0, 1}k.

Any F ∈ L2(FT ) has a unique representation of the form

F = E(F ) +
∞∑
k=1

∑
ik∈{0,1}k

Lik
k (fik), (3.27)

where fik ∈ L2(Σk) and Σk = {(t1, . . . , tk) ∈ [0, T ]k : 0 < t1 < · · · < tk < T} is the simplex of
[0, T ]k.

Let |ik| :=
∑k

j=1 ij . Due to the isometry property it holds

∥Lik
k (f)∥

2 = κ|ik|∥f∥2Σk
,

and for any f ∈ L2(Σk), g ∈ L2(Σm), ik ∈ {0, 1}k, and jm ∈ {0, 1}m we have (see [LJUV02,
Proposition 1.1])

E[Lik
k (f)L

jm
m (g)] =

{
κ|ik|

∫
Σk
f(t1, · · · , tk)g(t1, · · · , tk)dt1 · · · dtk if ik = jm

0 otherwise.

Then, ∥F∥22 = E[F ]2 +
∑

k≥1

∑
ik
κ|ik|∥fik∥2L2(Σk)

. The chaos approximation of F up to order p is
defined by

Cp(F ) := E(F ) +
p∑

k=1

∑
ik

Lik
k (fik). (3.28)

• Let f ∈ L2(Σk) and j ∈ {0, 1}. Following [LJUV02], we define the derivative of Lik
k (f) w.r.t.

the Brownian motion and the Poisson process as the element of L2(Ω× [0, T ]) given by

D
(j)
t Lik

k (f) =

k∑
l=1

1{il=j}L
i1,··· ,îl,··· ,ik
k−1 (f( · · ·︸︷︷︸

l−1

, t, · · · )), (3.29)

where î means that the i-th index is omitted.
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• Let j ∈ {0, 1}. We extend the definition of D(j) to

Dom D(j) :=

F ∈ L2(FT ) satisfying (3.27) and
∞∑
k=1

∑
ik

k∑
l=1

1{il=j} κ
|ik|∥fik∥

2
Σk

<∞

 .

If F ∈ Dom D(j) then

∥F∥2
Dom D(j) := E|F |2 + κjE

∫ T

0
|D(j)

t F |2dt <∞.

• F with chaotic representation (3.27) belongs to Dom D =: D1,2 if F belongs to
Dom D(0) ∩Dom D(1), i.e.

∥F∥2D1,2 := E|F |2 +
∞∑
k=1

k
∑
ik

κ|ik|∥fik∥
2
Σk

<∞.

More generally, we define Dm,2 as follows:

• Let m ≥ 1. We say that F satisfying (3.27) belongs to Dm,2 if it holds

∥F∥2Dm,2 := E|F |2 +
m∑
l=1

∞∑
k=l

k!

(k − l)!

∑
ik

κ|ik|∥fik∥
2
Σk

<∞.

We recall
D∞,2 = ∩∞

m=1Dm,2.

Lemma 3.3.4 Let 1 ≤ m ≤ p+ 1 and F ∈ Dm,2. We have

E[|F − Cp(F )|2] ≤
∥F∥2Dm,2

(p+ 2−m) · · · (p+ 1)
.

Equation (3.27) can be rewritten in the following form

Proposition 3.3.5 Any F ∈ L2(FT ) can be represented as

F = E[F ] +
∞∑
k=1

k∑
l=0

∑
kl∈Nl

∑
jk−l∈Nk−l

dkl,jk−l
L0,...,0
l (ẽ[k1, . . . , kl])L

1,...,1
k−l (ẽ[j1, . . . , jk−l]),

where dkl,jk−l
are some coefficients depending on F and where we use the notation

ẽ[k1, . . . , km] :=
1

m!

∑
π∈Sm

ekπ(1)
⊗ · · · ⊗ ekπ(m)

, kj ∈ N,

and Sm stands for the set of all permutations of {1, ...,m}.

Remark 3.3.6 We deduce from Proposition 3.3.5 that

Cp(F ) = E[F ] +
p∑

k=1

k∑
l=0

∑
kl

∑
jk−l

dkl,jk−l
L0,...,0
l (ẽ[k1, . . . , kl])L

1,...,1
k−l (ẽ[j1, . . . , jk−l]). (3.30)
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The following Lemma, analogous to Lemma 3.2.3, gives some useful properties of the chaos
decomposition.

Lemma 3.3.7

• Let F be a r.v. in L2(FT ). ∀p ≥ 1, we have E(|Cp(F )|2) ≤ E(|F |2).

• Let H be in H2
T (R). We deduce from [L-7, Remark 2.8] that Cp

(∫ T
0 Hsds

)
=
∫ T
0 Cp(Hs)ds.

• For all F ∈ D1,2, for all i ∈ {0, 1} and for all t ≤ r, D(i)
t Er[Cp(F )] = Er[Cp−1(D

(i)
t F )].

3.3.3 Chaos decomposition approximations

Following the same steps as in Section 3.2.2, we choose N ∈ N and let {t0, t1, · · · , tN} be a regular
grid of [0, T ], i.e. ∀i ∈ {0, . . . , N}, ti = ih where h = T

N . From now on we will use a fixed
orthonormal basis {ei}i≥1 of L2([0, T ];R) : we set

ei(t) :=
1√
h
1]ti−1,ti]

(t), i ∈ {0, . . . , N} (3.31)

and complete this sequence to a basis in L2([0, T ];R), for example, by using the Haar basis on each
interval ]ti−1, ti]. Let nW = (nW1 , . . . , n

W
N ) be the vector of non-negative integers such that |nW | =

k. Then (see [Pri09, Proposition 5.1.3])

L0,··· ,0
k (e

⊗nW
1

1 ◦ · · · ◦ e⊗n
W
N

N ) =
nW !

|nW |!

N∏
i=1

KnW
i

(
∆Wi√
h

)
, (3.32)

where ∆Wi =Wti
−Wti−1

and ◦ stands for the symmetric tensor product.

Definition 3.3.8 The Charlier polynomial of order m ∈ N and of parameter t ≥ 0 is defined by

C0(x, t) = 1, C1(x, t) = x− t, x ∈ R

and by the relation

Cm+1(x, t) = (x−m− t)Cm(x, t)−mtCm−1(x, t).

The sequence
{

1√
m!(κt)m

Cm(·, κt)
}
m∈N

is an orthonormal basis for L2(N, νκt), where νκt denotes

the law of a Poisson random variable with parameter κt. Let nP = (nP1 , . . . , n
P
N ) be the vector of

non-negative integers such that |nP | = k. Using the grid (3.31), we have (see [Pri09, Proposition
6.2.9])

L1,...,1
k (e

⊗nP
1

1 ◦ · · · ◦ e⊗n
P
N

N ) =
1

|nP |!h
|nP |
2

N∏
i=1

CnP
i
(∆Ni, κh) , (3.33)

where ∆Ni = Nti
−Nti−1

.
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Instead of summing over all kl ∈ Nl and jk−l ∈ Nk−l in (3.30), we only consider the first N
functions {e1, . . . , eN} of the basis {ei}i defined in (3.31). This gives (together with the orthogonal
projection onto the chaos up to order p) the following approximation of F

CNp (F ) = E[F ]

+

p∑
k=1

k∑
l=0

∑
kl∈{1,··· ,N}l

∑
jk−l∈{1,··· ,N}k−l

dkl,jk−l
L0,...,0
l (ẽ[k1, . . . , kl])L

1,...,1
k−l (ẽ[j1, . . . , jk−l])

:= E[F ] +
p∑

k=1

PNk (F ). (3.34)

Let us now write CNp (F ) (p ≤ N) in terms of Hermite and Charlier polynomials. From [L-7,
Lemma 2.7], we get

CNp (F ) = d0 +

p∑
k=1

∑
|n|=k

dnk

N∏
i=1

KnW
i
(Gi)CnP

i
(Qi, κh), (3.35)

where n = (nW ,nP ) = (nW1 , · · · , nWN , nP1 , · · · , nPN ), d0 = E(F ) and

dnk :=
nW !

nP !(κh)|nP |E

(
F

N∏
i=1

KnW
i
(Gi)CnP

i
(Qi, κh)

)
. (3.36)

The following Proposition is similar to Proposition 3.2.7.

Proposition 3.3.9 Let F be a real random variable in L2(FT ) and let r be an integer in {1, · · · , N}.
For all tr−1 < t ≤ tr, we have

Et
(
CNp (F )

)
= d0+

p∑
k=1

∑
|n(r)|=k

dnk

(
t− tr−1

h

)nW
r
2

KnB
r

(
Wt −Wtr−1√

t− tr−1

)
CnP

r
(Nt −Ntr−1

, κ(t− tr−1))

×

(∏
i<r

KnW
i
(Gi)CnP

i
(Qi, κh)

)
︸ ︷︷ ︸

:=Ar

,

D
(0)
t Et

(
CNp (F )

)
= h−1/2

p∑
k=1

∑
|n(r)|=k
nW
r >0

dnk

(
t− tr−1

h

)nW
r −1

2

KnW
r −1

(
Wt −Wtr−1√

t− tr−1

)
CnP

r
(Nt −Ntr−1

, κ(t− tr−1))Ar,

D
(1)
t Et

(
CNp (F )

)
=

p∑
k=1

∑
|n(r)|=k
nP
r >0

dnk

(
t− tr−1

h

)nW
r
2

KnW
r

(
Wt −Wtr−1√

t− tr−1

)
nPr CnP

r −1(Nt −Ntr−1
, κ(t− tr−1))Ar,

where for r ≤ N n(r) = (nW (r),nP (r)), and nA(r) stands for (nA1 , . . . , n
A
r ), where A = W or P

and nr = (nWr ,n
P
r ).
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3.3.4 Approximation steps of the BSDE

3.3.4.1 Picard’s approximation

Picard’s iterations: (Y 0, Z0, U0) = (0, 0, 0) and for q ∈ N,

Y q+1
t = ζ +

∫ T

t
f (s, Y q

s , Z
q
s , U

q
s ) ds−

∫ T

t
Zq+1
s dWs −

∫
]t,T ]

U q+1
s dÑs, 0 ≤ t ≤ T.

It is well-known that the sequence (Y q, Zq, U q) converges exponentially fast towards the solution
(Y,Z, U) to BSDE (3.24). We write this Picard scheme in a forward way. Let F q denote F q :=

ζ +
∫ T
0 f (s, Y q

s , Z
q
s , U

q
s ) ds. We define

Y q+1
t = E

(
F q
∣∣∣ Ft)− ∫ t

0
f (s, Y q

s , Z
q
s , U

q
s ) ds, (3.37)

Zq+1
t = E

(
D

(0)
t F q

∣∣∣ Ft−) , U q+1
t = E

(
D

(1)
t F q

∣∣∣ Ft−) . (3.38)

3.3.4.2 Chaos approximation

Let (Y q,p, Zq,p, U q,p) denote the approximation of (Y q, Zq, U q) built at step q using a chaos decom-
position up to order p: (Y 0,p, Z0,p, U0,p) = (0, 0, 0) and

Y q+1,p
t = E

[
Cp (F q,p)

∣∣∣ Ft]− ∫ t

0
f (s, Y q,p

s , Zq,ps , U q,ps ) ds, (3.39)

Zq+1,p
t = E

[
D

(0)
t Cp (F q,p)

∣∣∣ Ft−] , U q+1,p
t = E

[
D

(1)
t Cp (F q,p)

∣∣∣ Ft−] , (3.40)

where F q,p = ζ +
∫ T
0 f (s, Y q,p

s , Zq,ps , U q,ps ) ds.

3.3.4.3 Truncation of the basis

The third type of approximation comes from the truncation of the orthonormal L2([0, T ];R) basis
{ei}i≥1 defined in (3.31). Instead of considering the whole basis we only keep the first N functions
{e1, · · · , eN} to build the chaos decomposition projections CNp . Proposition 3.3.9 gives us explicit

formulas for Et(CNp (F )), D(0)
t Et(CNp (F )) and D(1)

t Et(CNp (F )). From (3.39) and (3.40), we build
(Y q,p,N , Zq,p,N , U q,p,N )q in the following way : (Y 0,p,N , Z0,p,N , U0,p,N ) = (0, 0, 0) and

Y q+1,p,N
t = Et(CNp (F q,p,N ))−

∫ t

0
f
(
s, Y q,p,N

s , Zq,p,Ns , U q,p,Ns

)
ds, (3.41)

Zq+1,p,N
t = D

(0)
t (Et(CNp (F q,p,N ))), U q+1,p,N

t = D
(1)
t (Et(CNp (F q,p,N ))), (3.42)

where F q,p,N := ζ +
∫ T
0 f(s, Y q,p,N

s , Zq,p,Ns , U q,p,Ns )ds.
It is not necessary here to use predictable projections of Zq+1,p,N and U q+1,p,N . In fact, Zq+1,p,N

andU q+1,p,N are adapted and càdlàg, and from their explicit representation given above one concludes
that the predictable projections are the left-continuous modifications: Et−Z

q+1,p,N
t = Zq+1,p,N

t− and
Et−U

q+1,p,N
t = U q+1,p,N

t− .Moreover, the integral in (3.41) does not change if one uses left-continuous
modifications.
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3.3.4.4 Monte Carlo approximation

Let F denote a r.v. ofL2(FT ). In practise, when we are not able to compute exactly d0 and/or the coef-
ficients dnk of the chaos decomposition (3.35)-(3.36) of F , we use Monte-Carlo simulations to approx-
imate them. Let {Fm}1≤m≤M be a M i.i.d. sample of F and {(Gm1 , Qm1 ), · · · , (GmN , QmN )}1≤m≤M
be a M i.i.d. sample of {(G1, Q1), · · · , (GN , QN )}.

We approximate the expectations of (3.36) by empirical means

d̂0 :=
1

M

M∑
m=1

Fm, d̂nk :=
nW !

nP !(κh)|nP |M

M∑
m=1

(
Fm

N∏
i=1

KnW
i
(Gmi )CnP

i
(Qmi , κh)

)
. (3.43)

In the following, we denote

CN,Mp (F ) = d̂0 +

p∑
k=1

∑
|n|=k

d̂nk

∏
1≤i≤N

KnW
i
(Gi)CnP

i
(Qi, κh). (3.44)

Et(CN,Mp (F )) and Dt(Et(CN,Mp (F ))) denote the conditional expectations obtained in Proposition
3.3.9 when (d0, {dnk}1≤k≤p,|n|=k) are replaced by (d̂0, {d̂nk )1≤k≤p,|n|=k) :

Et
(
CN,Mp (F )

)
= d̂0+

p∑
k=1

∑
|n(r)|=k

d̂nk

(
t− tr−1

h

)nW
r
2

KnW
r

(
Wt −Wtr−1√

t− tr−1

)
CnP

r
(Nt −Ntr−1

, κ(t− tr−1))

×

(∏
i<r

KndWi
(Gi)CnP

i
(Qi, κh)

)
︸ ︷︷ ︸

:=Ar

,

D
(0)
t Et

(
CN,Mp (F )

)
=

= h−1/2
p∑

k=1

∑
|n(r)|=k
nW
r >0

d̂nk

(
t− tr−1

h

)nW
r −1

2

KnW
r −1

(
Wt −Wtr−1√

t− tr−1

)
CnP

r
(Nt −Ntr−1

, κ(t− tr−1))Ar,

D
(1)
t Et

(
CN,Mp (F )

)
=

=

p∑
k=1

∑
|n(r)|=k
nP
r >0

d̂nk

(
t− tr−1

h

)nW
r
2

KnW
r

(
Wt −Wtr−1√

t− tr−1

)
nPr CnP

r −1(Nt −Ntr−1
, κ(t− tr−1))Ar.

We introduce the processes (Y q+1,p,N,M , Zq+1,p,N,M , U q+1,p,N,M ), useful in the following. It
corresponds to the approximation of (Y q+1,p,N , Zq+1,p,N , U q+1,p,N ) when we use CN,Mp instead of
CNp , i.e. when we use a Monte Carlo procedure to compute the coefficients dnk .

Y q+1,p,N,M
t = Et(CN,Mp (F q,p,N,M ))−

∫ t

0
f
(
θq,p,N,Ms

)
ds, (3.45)

Zq+1,p,N,M
t = D

(0)
t (Et(CN,Mp (F q,p,N,M ))), U q+1,p,N,M

t = D
(1)
t (Et(CN,Mp (F q,p,N,M ))), (3.46)

where F q,p,N,M := ζ +
∫ T
0 f(θq,p,N,Ms )ds and θq,p,N,Ms =

(
s, Y q,p,N,M

s , Zq,p,N,Ms , U q,p,N,Ms

)
.
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3.3.5 Convergence results

We aim at bounding the error between (Y,Z) — the solution of (3.24) — and (Y q,p,N,M , Zq,p,N,M )
defined by (3.45)-(3.46). Before stating the main result of the paper, we introduce some hypotheses
and some intermediate results on Cp, CNp and CN,Mp .

Hypothesis 3.4 Letm ∈ N∗. We say that F satisfies Hypothesis Hm if F satisfies the two following
hypotheses

• H1
m : ∀j ∈ N∗ F ∈ Dm,j , i.e. ∥F∥jm,j <∞.

• H2
m : ∀j ∈ N∗ ∀l0, l1 ∈ N such that l = l0 + l1 + 1 ≤ m there exist two positive

constants βF and kFl (j) such that for all multi-indices α = (α1, · · · , αl0) ∈ {0, 1}l0 ,
γ = (γ1, · · · , γl1+1) ∈ {0, 1}l1+1 and for a.e. ti ∈ [0, T ], si ∈ [0, T ] it holds

ess sup
t1,··· ,tl0

ess sup
si+1,··· ,si+l1

E|Dα
t1,··· ,tl0

(Dγ
ti,si+1,··· ,si+l1

F −Dγ
si,··· ,si+l1

F )|j ≤ kFl (j) |ti − si|jβF .

In the following, we denote KF
m(j) = maxl≤m k

F
l (j).

Remark 3.3.10 If F satisfies Hm, for all l ≤ m and for all multi-indices α = (α1, · · · , αl) ∈ {0, 1}l
we have for a.e. (t1, · · · , tl) ∈ [0, T ]l and (s1, · · · , sl) ∈ [0, T ]l that

|E(Dα
t1,··· ,tlF )− E(Dα

s1,··· ,slF )| ≤ KF
m(1)(|t1 − s1|βF + · · ·+ |tl − sl|βF ). (3.47)

Lemma 3.3.11 Assume F satisfies (3.47) with m = p. Then

E|(CNp − Cp)(F )|2 ≤ KF
p

(
T

N

)2βF

T (1 + T )eT .

where KF
p :=

∑p
j=1(K

F
j )

2 (with KF
j := KF

j (1) from (3.47)).

Hypothesis 3.5 Let (p,N) ∈ N2. We say that a r.v. F satisfies H3
p,N if

Vp,N (F ) := V(F ) +
p∑

k=1

∑
|n|=k

(nW )!

(nP )!(κh)|nP |V

(
F

N∏
i=1

KnW
i
(Gi)CnP

i
(Qi, κh)

)
<∞,

where V(ζ) denotes the variance of a r.v. ζ.

Lemma 3.3.12 Let F be a r.v. satisfying Hypothesis H3
p,N . We have

E(|(CNp − CN,Mp )(F )|2) = 1

M
Vp,N (F ).

Moreover, we have E(|CN,Mp (F )|2) ≤ E(|F |2) + 1
M Vp,N (F ).

Theorem 3.3.13 Let m be an integer s.t. 1 ≤ m ≤ p+ 1. Assume that ζ satisfies Hp+q+1 and H3
p,N

and f ∈ C0,p+q+1,p+q+1,p+q+1
b . We have

∥(Y − Y q,p,N,M ,Z − Zq,p,N,M− , U − U q,p,N,M− )∥2L2

≤ A0

2q
+

A1(q,m)

(p+ 2−m) · · · (p+ 1)
+A2(q, p)

(
T

N

)2βζ∧1
+
A3(q, p,N)

M
,
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where A0, A1, A2 and A3 are given in the following proof. If f ∈ C0,∞,∞,∞
b and ζ satisfies Hm for

all m ∈ N∗ and H3
p,N for all (p,N) ∈ N2, we get

lim
q→∞

lim
p→∞

lim
N→∞

lim
M→∞

∥(Y − Y q,p,N,M , Z − Zq,p,N,M , U − U q,p,N,M )∥2L2
= 0.

Proof. We split the error into 4 terms :

1. Picard iterations : Eq = ∥(Y − Y q, Z − Zq, U − U q)∥2L2
, where (Y q, Zq, U q) is defined by

(3.37)-(3.38),

2. the truncation of the chaos decomposition : Eq,p = ∥(Y q − Y q,p, Zq − Zq,p, U q − U q,p)∥2L2
,

where (Y q,p, Zq,p, U q,p) is defined by (3.39)-(3.40),

3. the truncation of the L2([0, T ];R) basis : Eq,p,N = ∥(Y q,p − Y q,p,N , Zq,p − Zq,p,N− , U q,p −
U q,p,N− )∥2L2

, where (Y q,p,N , Zq,p,N , U q,p,N ) is defined by (3.41)-(3.42),

4. the Monte-Carlo approximation to compute the expectations : Eq,p,N,M = ∥(Y q,p,N −
Y q,p,N,M , Zq,p,N− − Zq,p,N,M− , U q,p,N− − U q,p,N,M− )∥2L2

, where (Y q,p,N,M , Zq,p,N,M , U q,p,N,M )
is defined by (3.45)-(3.46).

We have

∥(Y − Y q,p,N,M , Z − Zq,p,N,M− , U − U q,p,N,M− )∥22 ≤ 4(Eq + Eq,p + Eq,p,N + Eq,p,N,M ).

From [TL94, Lemma 2.4], we know that under Hypothesis 3.3, the sequence (Y q, Zq, U q)q defined
by (3.37)-(3.38) converges to (Y,Z, U) dP× dt a.e. and in S2T (R)×H2

T (R)×H2
T (R). Moreover, we

have

Eq := ∥(Y − Y q, Z − Zq, U − U q)∥22 ≤
A0

2q
, (3.48)

where the constant A0 depends on T , ∥ξ∥22 and on ∥f(·, 0, 0, 0)∥2
L2
([0,T ];R)

. As in the proof of The-

orem 3.2.15, the same procedure applies in the proof of [L-7, Propositions 4.9, 4.13 and 4.15] to
bound Eq,p, Eq,p,N and Eq,p,N,M . Thanks to Picard iterations Eq+1,· is bounded by C0,·Eq,· + C1,·,
where C1,p is related to Lemma 3.3.4, C1,p,N is related to Lemma 3.3.11 and C1,p,N,M is related to
Lemma 3.3.12. Since E0,· = 0 we get the following upper bounds. From [L-7, Proposition 4.9]

we get that Eq,p ≤ A1(q,m)
(p+2−m)···(p+1) where A1(q,m) :=

(C1T (T+1)L2
f )

q−1

C1T (T+1)L2
f−1

max1≤l≤qK1(l,m) and

K1(l,m) depends on T , m, ∥ξ∥
m+q,2

(m+q−1)!
(m−1)!

and on (∥∂kspf∥∞)1≤k≤m+q. [L-7, Proposition 4.13]

gives that Eq,p,N ≤ A2(q, p)
(
T
N

)1∧2βξ , where A2(q, p) := K2(q, p)T (T + 1)eT
(C2T (T+1)L2

f )
q−1

C2T (T+1)L2
f−1

and K2(p) depends on Kξ
p , T , ∥ξ∥p,1 and on (∥∂kspf∥∞)1≤k≤p. [L-7, Proposition 4.15] states

that Eq,p,N,M ≤ A3(q,p,N)
M , where A3(q, p,N) := K3(p,N)

(C3T (T+1)L2
f )

q−1

C3T (T+1)L2
f−1

and K3(p,N) :=

C
(
Vp,N (ξ) + T 2∥f∥2∞

∑p
k=0

(
2N
k

))
for some C > 0. ■

3.3.6 Numerical examples

The following example is borrowed from [LMT13]. We consider a Poisson process N with κ = 1
and the following BSDE

dYt = −cUtdt+ ZtdWt + Ut(dNt − dt),

ζ = NT .
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The explicit solution is given by

(Yt, Zt, Ut) = (Nt + (1 + c)(T − t), 0, 1).

Figure 3.3.1 represents the evolution of (Y q,p,N,M
0 , Zq,p,N,M0 , U q,p,N,M0 ) with respect to M when q =

5, p = 2 and N = 20.
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Figure 3.3.1: Evolution of (Y q,p,N,M
0 , Zq,p,N,M0 , U q,p,N,M0 ) with respect to M when p = 2, N = 20,

q = 5, c = 0.5, T = 1

Table 3.3 gives the computational time needed by the algorithm with this choice for q, p,N and for
different values of M . We notice from Figure 3.3.1 that the value of (Y q,p,N,M

0 , Zq,p,N,M0 , U q,p,N,M0 )
is close to the true solution from M = 2× 105. When M = 2× 105, the CPU time is about 1 minute,
which is quite small.

M 103 5× 103 104 5× 104 105 2× 105 5× 105 106

CPU time (in s) 0.253 1.277 2.567 13.24 26.81 56.91 142.75 283.65

Table 3.3: CPU time w.r.t. M when p = 2, N = 20, q = 5, c = 0.5, T = 1

3.4 McKean-Vlasov Case

The aim of this section is to extend the results of [L-10] to the case of McKean-Vlasov BSDEs, i.e. to
provide an algorithm based on Wiener chaos expansion to solve BSDEs of the following type
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Yt = ζ +

∫ T

t
f(s, Ys, Zs, [Ys], [Zs])ds−

∫ T

t
Zs · dWs, 0 ≤ t ≤ T, (3.49)

where [θ] is the notation for the law of a random variable θ and f is a map from [0, T ] × R × Rd ×
P2(R) × P2(Rd) into R. It is based on [L-25] and was written with Céline Acary-Robert, Philippe
Briand and Abir Ghannoum.

Such type of BSDEs have been introduced in [BDLP09] and [BLP09] in a more particular
framework: in [BDLP09], the authors study the mean field problem in a Markovian setting and
prove the existence and the uniqueness of the solution when the terminal condition is of type
ζ = E

[
g(x,XT )

]
|x=XT

where X is a driving adapted stochastic process, and the generator is de-

fined by E
[
f(s, λ,Λs)

]
|λ=Λs

where Λs = (Xs, Ys, Zs). In [BLP09], the authors extend the result of
existence and uniqueness to a more general framework and link the mean-field BSDE to non local
partial differential equation.

The first study of numerical methods for McKean-Vlasov BSDEs goes back to a few years (see
[Ala15], [CdRGT15], [CCD19]). Usually, forward McKean-Vlasov SDEs are solved by using
particle algorithms (see [AKH02], [TV03], [Bos05]) in which the McKean term is approximated by
the empirical measure of a large number of interacting particles with independent noise. Adapting
such algorithms to the backward problem is not obvious as the high dimension of the involved
Brownian motion (given by the number of particles) induces, a priori, a high dimension backward
problem with bad consequences for the numerical implementation. The above mentioned papers on
numerical methods for McKean-Vlasov BSDEs do not use particle systems. In [CdRGT15], the
authors present a method based on cubature for decoupled McKean-Vlasov forward backward SDE.
In [CCD19], the authors consider the case of strongly coupled forward-backward SDE of
McKean-Vlasov type. They propose a scheme whose principle is to implement recursively Picard
iterations on small time intervals, since Picard Theorem only applies in small time for fully coupled
problems.

In this section we propose a method based on Wiener chaos expansion and particle system ap-
proximation which is neither more complex nor more costly than solving a standard BSDE of type
(3.1) when f(y, z, µ, ν) is a separated variable function in (y, z) and (µ, ν). We recall that the method
based on Wiener chaos expansion to solve standard BSDEs consists in writing the Picard scheme of
(3.1) in a forward way

Y q+1
t = E

(
ζ +

∫ T

0
f (s, Y q

s , Z
q
s ) ds

∣∣∣ Ft)−
∫ t

0
f (s, Y q

s , Z
q
s ) ds,

Zq+1
t = DtY

q+1
t = DtE

(
ζ +

∫ T

0
f (s, Y q

s , Z
q
s ) ds

∣∣∣ Ft) ,
and to use Wiener chaos expansion to easily compute conditional expectations and their Malliavin
derivatives. More precisely, all r.v. F in L2 can be written

F = E (F ) +
∑
k≥1

∑
|n|=k

dnk
∏
i≥1

Kni

(∫ T

0
gi(s)dWs

)
,

whereKl denotes the Hermite polynomial of degree l, (gi)i≥1 is an orthonormal basis of L2([0, T ];R)
and, if n = (ni)i≥1 is a sequence of integers, |n| =

∑
i≥1 ni. (dnk)k≥1,|n|=k is the sequence of

coefficients ensuing from the decomposition of F . The numerical method consists in working with
a finite number of chaos, a finite number of functions (gi)i and in using Monte-Carlo approximation
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to compute the coefficients (dnk)k,n. In case of McKean-Vlasov BSDE, the generator depends on the
laws of the processes. The idea is to use M particles which will serve both to approximate the law of
(Y,Z) and to compute the coefficients (dnk)k,n by Monte Carlo. By doing this, we manage to get a
computational cost which is of the same order as the one obtained in case of standard BSDEs for many
cases of the driver f . However, this pooling of particles costs the independence in the Monte Carlo
approximation, making the proof of the convergence more difficult and leading to a slower speed of
convergence in M .

The rest of the Section is organized as follows: Section 3.4.1 presents some preliminaries, Sec-
tion 3.4.2 presents the approximation steps of the McKean-Vlasov BSDE, Section 3.4.3 states the
convergence results and finally Section 3.4.4 presents some numerical examples.

3.4.1 Preliminaries

Hypothesis 3.6 We assume:

• the generator f : R+ ×R×Rd ×P2(R)×P2(Rd) −→ R is Lipschitz continuous: there
exists a constant Lf such that for all t ∈ R+, y1, y2 ∈ R ,z1, z2 ∈ Rd, µ1, µ2 ∈ P2(R)
and ν1, ν2 ∈ P2(Rd)

|f(t, y1, z1, µ1, ν1)−f(t, y2, z2, µ2, ν2)| ≤ Lf

(
|y1−y2|+|z1−z2|+W2(µ1, µ2)+W2(ν1, ν2)

)
.

• E(|ζ|2 +
∫ T
0 |f(s, 0, 0, [δ0], [δ0])|2ds) <∞.

Theorem 3.4.1 Given standard parameters (f, ζ), there exists a unique pair (Y,Z) ∈ S2T (R) ×
H2
T (Rd) which solves (3.49).

A proof of this Theorem can be found in [L-25, Theorem 9].

3.4.2 Approximation steps of the BSDE

The algorithm is based on five types of approximations: Picard iterations, a Wiener chaos expansion
up to a finite order, the truncation of an L2([0, T ];R) basis in order to apply formulas of Proposition
3.2.7, a Monte Carlo method to approximate the coefficients d0 and dnk defined in (3.11) and the
particle system.

3.4.2.1 Picard approximations

The first step consists in approximating (Y,Z)—the solution to (3.49)—by Picard’s sequence
(Y q, Zq)q, built as follows: (Y 0 = 0, Z0 = 0) and for all q ≥ 1

Y q+1
t = ζ +

∫ T

t
f(s, Y q

s , Z
q
s , [Y

q
s ], [Z

q
s ])ds−

∫ T

t
Zq+1
s · dWs, 0 ≤ t ≤ T. (3.50)

From (3.50), under the assumptions that ζ ∈ D1,2 and f ∈ C0,1,1,0,0
b , we express (Y q+1, Zq+1) as a

function of the processes (Y q, Zq),

Y q+1
t = Et

(
ζ +

∫ T

t
f(s, Y q

s , Z
q
s , [Y

q
s ], [Z

q
s ])ds

)
, Zq+1

t = DtY
q+1
t , (3.51)

which can also be written
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Y q+1
t = Et

(
ζ +

∫ T

0
f(s, Y q

s , Z
q
s , [Y

q
s ], [Z

q
s ])ds

)
−
∫ t

0
f(s, Y q

s , Z
q
s , [Y

q
s ], [Z

q
s ])ds,

Zq+1
t = DtY

q+1
t .

(3.52)

As recalled in the Introduction, the computation of the conditional expectation is the cornerstone in the
numerical resolution of BSDEs. Chaos decomposition formulas enable us to circumvent this problem.

3.4.2.2 Chaos approximation

Computing the chaos decomposition of the r.v. F = ζ +
∫ T
t f(s, Y q

s , Z
q
s , [Y

q
s ], [Z

q
s ])ds (appearing

in (3.51)) in order to compute Y q+1
t is not judicious. F depends on t, and then the computation of

Y q+1 on the grid T = {t̃i = i TN , i = 0, · · · , N} would require N + 1 calls to the chaos decompo-
sition function. To build an efficient algorithm, we need to call the chaos decomposition function as
infrequently as possible, since each call is computationally demanding and brings an approximation
error due to the truncation, the Monte Carlo approximation and to the particle approximation (see next
sections). Then we look for a r.v. F q independent of t such that Y q+1

t and Zq+1
t can be expressed as

functions of Et(F q), DtEt(F q) and of Yq and Zq. Equation (3.52) gives a more tractable expression
of Y q+1. Let F q be defined by F q := ζ +

∫ T
0 f(s, Y q

s , Z
q
s , [Y

q
s ], [Z

q
s ])ds. Then

Y q+1
t = Et(F q)−

∫ t

0
f(s, Y q

s , Z
q
s , [Y

q
s ], [Z

q
s ])ds, Zq+1

t = DtEt(F q). (3.53)

The second type of approximation consists in computing the chaos decomposition of F q up to order
p. Since F q does not depend on t, the chaos decomposition function Cp (see (3.7)) is called only
once per Picard iteration.

Let (Y q,p, Zq,p) denote the approximation of (Y q, Zq)
built at step q using a chaos decomposition with order p: (Y 0,p, Z0,p) = (0, 0) and

Y q+1,p
t = Et

(
Cp(F q,p)

)
−
∫ t

0
f(s, Y q,p

s , Zq,ps , [Y q,p
s ], [Zq,ps ])ds,

Zq+1,p
t = DtEt

(
Cp(F q,p)

)
,

(3.54)

where F q,p = ζ +
∫ T
0 f(s, Y q,p

s , Zq,ps , [Y q,p
s ], [Zq,ps ])ds. In the sequel, we also use the following

equality:

Zq+1,p
t = Et

(
DtCp(F q,p)

)
. (3.55)

3.4.2.3 Truncation of the basis

The third type of approximation comes from the truncation of the orthonormal L2([0, T ];R) basis
used in the definition of Cp (3.7). Instead of considering a basis of L2([0, T ];R), we only keep the
first N functions (g1, · · · , gN ) defined by (3.8) to build the chaos decomposition function CNp (3.9).
Proposition 3.2.7 gives us explicit formulas for Et(CNp F ) and DtEt(CNp F ). From (3.54), we build
(Y q,p,N , Zq,p,N )q in the following way: (Y 0,p,N , Z0,p,N ) = (0, 0) and
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Y q+1,p,N
t = Et

(
CNp (F q,p,N )

)
−
∫ t

0
f(s, Y q,p,N

s , Zq,p,Ns , [Y q,p,N
s ], [Zq,p,Ns ])ds,

Zq+1,p,N
t = DtEt

(
CNp (F q,p,N )

)
,

(3.56)

where F q,p,N = ζ +
∫ T
0 f(s, Y q,p,N

s , Zq,p,Ns , [Y q,p,N
s ], [Zq,p,Ns ])ds.

Equation (3.56) is tractable as soon as we know closed formulas for the coefficients dnk of the
chaos decomposition of Et

(
CNp (F q,p,N )

)
and DtEt

(
CNp (F q,p,N )

)
(see Proposition 3.2.7). When it is

not the case, we need to use a Monte Carlo method to approximate these coefficients. The next section
is devoted to this method.

3.4.2.4 Monte Carlo approximation

Let F denote a r.v. of L2(FT ). Practically, when we are not able to compute exactly d0 = E(F )
and/or the coefficients dkn = n!E(FKn1(G1) · · ·KnN (GN )) of the chaos decomposition (3.10)-(3.11)
of F , we use Monte Carlo simulations to approximate them. Let (Fm)1≤m≤M be a M i.i.d. sample
of F and (Gm1 , · · · , GmN )1≤m≤M be a M i.i.d. sample of (G1, · · · , GN ). We propose a method
which consists in approximating the expectations d := (d0, (d

n
k)1≤k≤p,|n|=k) by empirical means

d̂M := (d̂0, (d̂
n
k)1≤k≤p,|n|=k) where

d̂0 :=
1

M

M∑
m=1

Fm, d̂nk :=
n!

M

M∑
m=1

FmKn1(G
m
1 ) · · ·KnN (G

m
N ). (3.57)

Definition 3.4.2 Let F be a r.v. of L2(FT ) and (F 1, · · · , FM ) be M identically distributed r.v. with
the law of F . We denote CN,Mp ((Fm)1≤m≤M ) the following approximation of CNp (F )

CN,Mp ((Fm)1≤m≤M ) = d̂0 +

p∑
k=1

∑
|n|=k

d̂nk
∏

1≤i≤N
Kni(Gi). (3.58)

where (d̂0, (d̂
n
k)1≤k≤p,|n|=k) are defined by (3.57). We also introduce the filtration (Gt)0≤t≤T defined

by Gt = σ((Bs)s≤t, (G
m
1 , · · · , GmN )1≤m≤M ).

Remark 3.4.3 When (F 1, · · · , FM ) is an independent and identically distributed sample of F , we
adopt the short notation CN,Mp (F ) to refer to CN,Mp ((Fm)1≤m≤M ). The notation CN,Mp ((Fm)1≤m≤M )
is only used when the r.v. F 1, · · · , FM are not independent. This is the case in the next paragraph,
when we introduce the particle system to approximate the law of (Y,Z) (see (3.64)).

Before introducing the processes (Y q+1,p,N,M , Zq+1,p,N,M ), we define Et(CN,Mp ((Fm)m)) the
conditional expectation of CN,Mp ((Fm)m) w.r.t. Gt which corresponds to the conditional expectation
obtained in Proposition 3.2.7 when (d0, d

n
k)1≤k≤p,|n|=k are replaced by (d̂0, d̂

n
k)1≤k≤p,|n|=k, i.e.

Et(CN,Mp ((Fm)m)) := d̂0 +

p∑
k=1

∑
|n(r)|=k

d̂nk
∏
i<r

Kni(Gi)×
(
t− t̃r−1

h

)(nr)/2

Knr

(
Wt −Wt̃r−1√

t− t̃r−1

)
.

(3.59)
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We also introduce

DtEt(CN,Mp ((Fm)m)) := h−1/2
p∑

k=1

∑
|n(r)|=k
n(r)>0

d̂nk
∏
i<r

Kni(Gi)×
(
t− t̃r−1

h

)(nr−1)/2

Knr−1

(
Wt −Wt̃r−1√

t− t̃r−1

)
.

(3.60)
which is linked to Et(CN,Mp ((Fm)m)) by the following relation

∀t ≤ T, d̂0 +

∫ t

0
DsEs(CN,Mp ((Fm)m))dWs = Et(CN,Mp ((Fm)m)). (3.61)

We keep the notation ’Dt’ since the above equality is nothing else than the Clark-Ocone formula when
considering W as a G-Brownian motion.

Remark 3.4.4 When M samples of (CN,Mp ((Fm)m))m are needed, we can use the same samples as
the ones used to compute d̂0 and d̂nk : (CN,Mp ((Fm)m))m = d̂0+

∑p
k=1

∑
|n|=k d̂

n
k

∏
1≤i≤N Kni(G

m
i ),

or use new ones. In the first case, we only require M samples (G1, · · · , GN ). We built F 1, · · · , FM

from these samples. The coefficients d̂nk and d̂0 are not independent of
∏

1≤i≤N Kni(G
m
i ). In this

case the notation Et(CN,Mp ((Fm)m)) introduced above is not equal to E
(
CN,Mp ((Fm)m)|Gt

)
. In

the second case, the coefficients d̂nk and d̂0 are independent of
∏

1≤i≤N Kni((G
′)mi ) and we have

Et
(
CN,Mp ((Fm)m)

)
= E

(
CN,Mp ((Fm)m)|Gt

)
. This second approach requires 2M samples of F

and (G1, · · · , GN ) and its variance increases with N . Practically, we use the first technique.

Let us now introduce the couple of processes (Y q+1,p,N,M , Zq+1,p,N,M ), which corresponds to
the approximation of (Y q+1,p,N , Zq+1,p,N ) when we use CN,Mp instead of CNp , that is, when we use a
Monte Carlo procedure to compute the coefficients dnk .

Y q+1,p,N,M
t := Et

(
CN,Mp (F q,p,N,M )

)
−
∫ t

0
f(θq,p,N,Ms )ds,

Zq+1,p,N,M
t := DtEt

(
CN,Mp (F q,p,N,M )

)
,

(3.62)

where F q,p,N,M := ζ +
∫ T
0 f(θq,p,N,Ms )ds and

θq,p,N,Ms := (s, Y q,p,N,M
s , Zq,p,N,Ms , [Y q,p,N,M

s ], [Zq,p,N,Ms ]).

3.4.2.5 Particle system

In this section, we introduce an interacting particle system associated to (3.62) to approximate the
law of Y q,p,N,M

s and Zq,p,N,Ms . Indeed we replace one stochastic differential equation with unknown
processes Y q,p,N,M

s and Zq,p,N,Ms with a system ofM ordinary stochastic differential equations whose
solution consists in a system of particles (Y q,p,N,M,m

s ,Zq,p,N,M,m
s )1≤m≤M , replacing the law of the

processes Y q,p,N,M
s and Zq,p,N,Ms by the empirical mean law

[Y q,p,N,M,m
s ]M =

1

M

M∑
m=1

δ
Y q,p,N,M,m
s

,

[Zq,p,N,M,m
s ]M =

1

M

M∑
m=1

δ
Zq,p,N,M,m
s

.
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Our candidates are the particles:

Y q+1,p,N,M,m
t := Et

(
CN,Mp ((F q,p,N,M,m)m)

)
−
∫ t

0
f(s, Y q,p,N,M,m

s , Zq,p,N,M,m
s , [Y q,p,N,M,m

s ]M , [Zq,p,N,M,m
s ]M )ds,

Zq+1,p,N,M,m
t := DtEt

(
CN,Mp ((F q,p,N,M,m)m)

)
,

(3.63)

where, for all m ∈ {1, · · · ,M},

F q,p,N,M,m = ζ +

∫ T

0
f(s, Y q,p,N,M,m

s , Zq,p,N,M,m
s , [Y q,p,N,M,m

s ]M , [Zq,p,N,M,m
s ]M )ds. (3.64)

Remark 3.4.5 Looking at (3.63) and (3.64), we notice that we use the M particles to compute
(d̂0, (d̂

n
k)1≤k≤p,|n|=k). Taking the same M drawings for the Monte Carlo simulations and the par-

ticle system has two impacts, one positive and one negative :

• the algorithm is not more costly than the one solving standard BSDEs when f is a separated
variable function (see Remark 3.4.6),

• the samples (F q,p,N,M,m)1≤m≤M being not independant, the speed of convergence of the algo-
rithm will be badly impacted (see [L-25, Remark 22]).

• As for (3.62), Et
(
CN,Mp ((F q,p,N,M,m)m)

)
corresponds to E

(
CN,Mp ((F q,p,N,M,m)m)|Gt

)
when

we consider the second approach of [L-25, Remark 14].

Remark 3.4.6 The computational effort regarding the particle system of the algorithm depends on
the form of the driver. To simplify we omit the z-terms in f .

• If f(y, µ) = f1(y) +
∫
ϕ(v)dµ then f(Yt, [Yt]) = f1(Yt) + E(ϕ(Yt)). Using a particle system

(Y m
t )1≤m≤M we approximate E(ϕ(Yt)) by 1

M

∑M
m=1 ϕ(Y

m
t ). This is done once and used for

all the particles Y m
t to evaluate f(Y m

t , [Y m
t ]M ). the complexity is of order M and then it is the

same as the one we get when applying the algorithm for classical BSDEs.

• If the interaction is more complicated, say for example f(y, µ) =
∫
b(y, v)dµ(v) the approxi-

mation of f(Yt, [Yt]) has to be recomputed for each particle and is approximated by

f(Y m
t , [Y m

t ]M ) =
1

M

M∑
m′=1

b(Y m
t , [Y m′

t ]).

The computational cost is ofO(M2) and thus different from the algorithm for classical BSDEs.

3.4.3 Convergence results

We aim at bounding the error between (Y,Z) — the solution to (3.49) — and
(Y q,p,N,M,m, Zq,p,N,M,m) defined by (3.63). In this Section we consider the second approach
presented in Remark 3.4.4. Before stating the main result of the paper, we recall some hypotheses
introduced in [L-10].
In the following, (t1, · · · , tn) and (s1, · · · , sn) denote two vectors such that

0 ≤ t1 ≤ · · · ≤ tn ≤ T, 0 ≤ s1 ≤ · · · ≤ sn ≤ T and ∀i, si ≤ ti.
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Hypothesis 3.7 (Hypothesis Hm). Let m ∈ N∗. We say that F satisfies Hypothesis Hm if F
satisfies the two following hypotheses:

• H1
m: ∀j ≥ 2, F ∈ Dm,j , that is ∥F∥jm,j <∞;

• H2
m: ∀j ≥ 2, ∀i ∈ {1, · · · ,m}, ∀l0 ≤ i− 1, ∀l1 ≤ m− i, ∀l ∈ {1, · · · , d} and for all

multi-indices α0 and α1 such that |α0| = l0 and |α1| = l1 + 1, there exist two positive
constants βF and kFl such that

sup
t1≤···≤tl0

sup
si+1≤···≤si+l1

E
(
|Dα0

t1,··· ,tl0
(Dα1

ti,si+1,··· ,si+l1
F −Dα1

si,··· ,si+l1
F )|j

)
≤ kFl (j)(ti − si)

jβF ,

where l = l0 + l1 + 1. In the following, we denote KF
m(j) = supl≤m k

F
l (j).

Remark 3.4.7 If F satisfies H2
m, for all multi-index α such that |α| = l, we have

|E(Dα
t1,··· ,tlF )− E(Dα

s1,··· ,slF )| ≤ KF
l

(
(t1 − s1)

βF + · · ·+ (tl − sl)
βF
)
, (3.65)

where KF
l is a constant.

Hypothesis 3.8 (Hypothesis H3
p,N ). Let (p,N) ∈ N2. We say that a r.v. F satisfies H3

p,N if

Vp,N (F ) := V(F ) +
p∑

k=1

∑
|n(N)|1=k

n(N)!V

(
F

N∏
i=1

Kni(Gi)

)
<∞,

where V denotes the variance.

Lemma 3.4.8 Let F be a r.v. satisfying Hypothesis H3
p,N and let (Fm)1≤m≤M be M identically

distributed r.v. with law F . We get

E(|(CNp − CN,Mp )((Fm)m)|2) ≤ E(|F |2) +
p∑

k=1

∑
|n(N)|1=k

n(N)!

2
E

(
|F |2

N∏
i=1

K2
ni
(Gi)

)
,

and so, we obtain

E(|CN,Mp ((Fm)m)|2) ≤ 2E(|F |2) +
p∑

k=1

∑
|n(N)|1=k

n(N)!

2
E

(
|F |2

N∏
i=1

K2
ni
(Gi)

)
.

Remark 3.4.9 If F is bounded by K, we get Vp,N (F ) ≤ K2
∑p

k=0

(
k
N

)
. Then every bounded r.v.

satisfies H3
p,N .

This remark ensues from E(
∏N
i=1K

2
ni
(Gi)) =

1
n! .

Theorem 3.4.10 Assume that ζ satisfies Hp+q and there exists a real r > 4 s.t. ζ ∈ (Lr ∩ D1,r) ⊂
H3
p,N and f is Lipschitz and in C0,p+q

b . We have

∥(Y − Y q,p,N,M,m, Z − Zq,p,N,M,m)∥2L2

≤ A0

2q
+
A1(q, p)

(p+ 1)!
+A2(q, p)

(
T

N

)2βζ∧1
+
A3(q, p,N)

M
+
A4(q, p,N)(logM)

α
2

M( 1
4
∧β

2 )
1
2q

where A0, A1, A2, A3 and A4 are given in the proof below. and (α, β) depends on the dimension d
and is defined by [L-25, Equation (5.14)].
If f ∈ C0,∞

b and ζ satisfies H∞ and H3
∞,∞, we obtain that, for each m ≥ 1,

lim
q→∞

lim
p→∞

lim
N→∞

lim
M→∞

∥(Y − Y q,p,N,M,m, Z − Zq,p,N,M,m)∥2L2
= 0.
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Proof. We split the error into 5 terms:

1. Picard iterations: εq = ∥(Y − Y q, Z − Zq)∥2L2
, where (Y q, Zq) is defined by (3.50);

2. the truncation of the chaos decomposition: εq,p = ∥(Y q − Y q,p, Zq − Zq,p)∥2L2
, where

(Yq,p, Zq,p) is defined by (3.54);

3. the truncation of the L2([0, T ];R) basis: εq,p,N = ∥(Y q,p − Y q,p,N , Zq,p − Zq,p,N )∥2L2
, where

(Yq,p,N , Zq,p,N ) is defined by (3.56);

4. the Monte Carlo approximation to compute the expectations: εq,p,N,M = ∥(Y q,p,N −
Y q,p,N,M , Zq,p,N − Zq,p,N,M )∥2L2

, where (Yq,p,N,M , Zq,p,N,M ) is defined by (3.62).

5. the particle system: εq,p,N,M,m = ∥(Y q,p,N,M−Y q,p,N,M,m, Zq,p,N,M−Zq,p,N,M,m)∥2L2
, where

(Yq,p,N,M,m, Zq,p,N,M,m) is defined by (3.63). We have

∥(Y − Y q,p,N,M,m, Z − Zq,p,N,M,m)∥2L2
≤ 5(εq + εq,p + εq,p,N + εq,p,N,M + εq,p,N,M,m).

From [L-25, Remark 11], we know that under Hypothesis 3.6, the sequence (Y q, Zq)q con-
verges to (Y,Z) dP× dt a.s. and in S2

T (R)×H2
T (Rd). Moreover, we have

εq := ∥(Y − Y q, Z − Zq)∥2L2
≤ A0

2q
,

where A0 depends on T , ∥ξ∥22 and on ∥f(., 0, 0, [0], [0])∥2
L2
([0,T ];R)

. As in the proof of The-

orem 3.2.15, the same procedure applies in the proof of [L-25, Propositions 30, 34, 36 and
38] to bound Eq,p, Eq,p,N , Eq,p,N,M and Eq,p,N,M,m. Thanks to Picard iterations Eq+1,· is
bounded by C0,·Eq,· + C1,·, where C1,p is related to Lemma 3.2.3, C1,p,N is related to Lemma
3.2.11, C1,p,N,M is related to Lemma 3.2.12 and C1,p,N,M,m is related to Lemma 3.4.8. Since
E0,· = 0 we get the following upper bounds. From [L-25, Proposition 30] we get that

Eq,p ≤ A1(q,m)
(p+2−m)···(p+1) where A1(q,m) :=

(C1T (T+1)L2
f )

q−1

C1T (T+1)L2
f−1

K1(q,m) and K1(q,m) de-

pends on T , m, ∥ξ∥
m+q,2

(m+q−1)!
(m−1)!

and on (∥∂kspf∥∞)1≤k≤m+q. [L-25, Proposition 34] gives

that Eq,p,N ≤ A2(q, p)
(
T
N

)1∧2βξ , where A2(q, p) := K2(p)T (T + 1)eT
(C2T (T+1)L2

f )
q−1

C2T (T+1)L2
f−1

and

K2(p) depends on Kξ
p , T , ∥ξ∥p,1 and on (∥∂kspf∥∞)1≤k≤p. [L-25, Proposition 36] states that

Eq,p,N,M ≤ A3(q,p,N)
M , where A3(q, p,N) := K3(p,N)

(C3T (T+1)L2
f )

q−1

C3T (T+1)L2
f−1

and K3(p,N) :=

C
(
Vp,N (ξ) + T 2∥f∥2∞

∑p
k=0

(
2N
k

))
for some C > 0. [L-25, Proposition 38] states that

Eq,p,N,M,m ≤ A4(q,p,N)(logM)
α
2

M( 1
4∧β

2 ) 1
2q

, where A4(q, p,N) depends on q, p, N , T and ∥f∥∞. ■

Remark 3.4.11 Compared to Theorem 3.2.15 we notice that the additional term A4(q,p,N)(logM)
α
2

M( 1
4∧β

2 ) 1
2q

ap-

pears in the error bound. This term corresponds to the error approximation due to the particle system.
It is clearly worse that A3(q,p,N)

M which corresponds to the error due to the Monte Carlo approximation.
As seen in Lemma 3.4.8, introducing some dependency between M identically distributed r.v. gives a
worse control of the error CNp −CN,Mp than the one obtained when considering i.i.d. r.v. (see Lemma
3.2.12).

Remark 3.4.12 As in the standard case, we could have handled the case of path-dependent genera-
tors. To do so, we should have assumed some regularity on the Malliavin derivatives of f with respect
to the path-dependent component (see [L-10, Remark 4.7]).
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3.4.4 Numerical examples

In this section, we illustrate the algorithm by presenting some explicit computations.
We consider on [0, T ] the following sort of processes

Yt = ζ +

∫ T

t

(
αYs + βE(Ys) + γE(Zs)

)
ds−

∫ T

t
Zs · dWs, 0 ≤ t ≤ T, (3.66)

where α, β and γ ∈ R. First, we study the solution of (3.66) when γ = 0. Then, we study the solution
of (3.66) in the general case.

Case (1) γ = 0. We have
Yt = eα(T−t)

(
Et(ζ) + E(ζ)(eβ(T−t) − 1)

)
,

and
Zt = eα(T−t)Et(Dtζ).

Now, if ζ =WT , we obtain

(Yt, Zt) =
(
eα(T−t)Wt, e

α(T−t)
)
,

and if ζ =W 2
T , we get

(Yt, Zt) =
(
eα(T−t)

(
W 2
t − t+ Teβ(T−t)

)
, 2eα(T−t)Wt

)
.

Case (2) γ ̸= 0. We consider two different values of ζ:
If ζ =WT and β ̸= 0 we have

(Yt, Zt) =
(
eα(T−t)

(
Wt +

γ

β
(eβ(T−t) − 1)

)
, eα(T−t)

)
.

If ζ =W 2
T we have

(Yt, Zt) =
(
eα(T−t)

(
W 2
t − t+ Teβ(T−t)

)
, 2eα(T−t)Wt

)
.

If ζ =
√

|WT | we don’t have any analytical formula for (Yt, Zt). The exact solution will be
approached by running the algorithm with a lot of drawings.

• Convergence in p. Table 1 represents the evolution of Ỹ q,p,N,M
0 w.r.t q (Picard iteration index),

when p = 2 and p = 3. We also give the CPU time needed to get Ỹ 8,p,N,M
0 and Z̃8,p,N,M

0 . We
fix M = 107, N = 20, ζ =

√
|WT | and f(t, Y, Z) = Y + E(Z). The seed of the generator

is also fixed. Note that the difference between the values of Ỹ 8,2,N,M
0 and Ỹ 8,3,N,M

0 does not
exceed 0.12%. This is due to the fast convergence of the algorithm in p. CPU time is 5 times
higher when p = 3 than when p = 2.

• Convergence in M . Figure 3.4.1 represents the evolution of Ỹ q,p,N,M
0 and Z̃q,p,N,M0 w.r.t. q

when p = 2, N = 20, f(t, Y, Z) = Y + E(Z) and ζ = W 2
T for different values of M . For

this set of parameters, the exact solution is Y0 = 2.7183 and Z0 = 0. We notice that Ỹ q,p,N,M
0

(resp. Z̃q,p,N,M0 ) converges to the exact solution when M ≥ 105 (resp. M ≥ 106). For Y and
Z, the algorithm stabilizes after very few iterations.

• Convergence in N . Figure 3.4.2 represents the evolution of Ỹ q,p,N,M
0 and Z̃q,p,N,M0 w.r.t. q

when p = 2, M = 106, f(t, Y, Z) = Y + E(Z) and ζ = W 2
T for different values of N . We

notice that (Y q
0 , Z

q
0) converges to the exact solution (Y0, Z0) when N increases.
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Iterations 1 2 3 4 5 6 7 8 Real time (s)
p=2 0.8223 1.6440 2.0337 2.1501 2.1746 2.1784 2.1788 2.1788 49.596
p=3 0.8222 1.6444 2.0350 2.1521 2.1771 2.1811 2.1816 2.1816 284.947

Table 3.4: Evolution of Ỹ q,p,N,M
0 (p = 2 and p = 3) w.r.t. Picard iterations, M = 107, N = 20,

ζ =
√
|WT |, f(t, Y, Z) = Y + E(Z) and the real time (in seconds) of calculation.

Figure 3.4.1: Evolution of Ỹ q,p,N,M
0 and Z̃q,p,N,M0 w.r.t. q for different values of M when N = 20,

p = 2, ζ =W 2
T , f(t, Y, Z) = Y + E(Z).

Figure 3.4.2: Evolution of Ỹ q,p,N,M
0 and Z̃q,p,N,M0 w.r.t. q for different values of N when M = 106,

p = 2, ζ =W 2
T , f(t, Y, Z) = Y + E(Z).
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