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Contrôle du réseau cloud basé Intelligence Artificielle
Résumé

L’explosion du nombre d’utilisateurs d’Internet et du volume de trafic constitue un défi majeur
pour la gestion efficace des réseaux de diffusion de contenu (CDN). Bien que ces réseaux aient
amélioré le temps de réponse en exploitant la mise en cache dans des serveurs cloud proches
des utilisateurs, les services non mis en cache continuent de poser des problèmes de gestion
de trafic. Pour répondre à cette problématique, les réseaux overlay cloud ont émergé, mais ils
introduisent des complexités telles que les violations d’inégalités triangulaires (TIV).
Dans ce contexte, l’application du paradigme des réseaux à définition logicielle (SDN) com-
binée aux techniques d’apprentissage par renforcement profond (DRL) offre une opportunité
prometteuse pour s’adapter en temps réel aux fluctuations de l’environnement. Face à l’aug-
mentation constante du nombre de serveurs edge, les solutions distribuées de DRL, notamment
les modèles d’apprentissage par renforcement profond multi-agent (MA-DRL), deviennent
cruciales. Cependant, ces modèles rencontrent des défis non résolus tels que l’absence de simu-
lateurs réseau réalistes, le surcoût de communication entre agents et la convergence et stabilité.
Cette thèse se concentre donc sur l’exploration des méthodes MA-DRL pour le routage de
paquets dans les réseaux overlay cloud. Elle propose des solutions pour relever ces défis, no-
tamment le développement de simulateurs de réseau réalistes, l’étude du surcoût de communi-
cation et la conception d’une solution MA-DRL adaptée aux réseaux overlay cloud. L’accent
est mis sur le compromis entre la performance et la quantité d’information partagée entre les
agents, ainsi que sur la convergence et la stabilité de l’entraînement.

Mots-clés : Apprentissage par Renforcement Profond Multi-Agent ; Routage de Paquets Distri-
bué ; Réseaux Cloud Overlay ; Contrôle de Réseaux Autonomes ; Intelligence Artificielle; Optimi-
sation

Artificial Intelligence-based cloud network control
Abstract

The exponential growth of Internet traffic in recent decades has prompted the emergence of
Content Delivery Networks (CDNs) as a solution for managing high traffic volumes through
data caching in cloud servers located near end-users. However, challenges persist, particularly
for non-cacheable services, necessitating the use of cloud overlay networks. Due to a lack of
knowledge about the underlay network, cloud overlay networks introduce complexities such
as Triangle inequality violations (TIV) and dynamic traffic routing challenges.
Leveraging the Software Defined Networks (SDN) paradigm, Deep Reinforcement Learning
(DRL) techniques offer the possibility to exploit collected data to better adapt to network
changes. Furthermore, the increase of cloud edge servers presents scalability challenges, moti-
vating the exploration of Multi-Agent DRL (MA-DRL) solutions. Despite its suitability for the
distributed packet routing problem in cloud overlay networks, MA-DRL faces non-addressed
challenges such as the need for realistic network simulators, handling communication over-
head, and addressing the multi-objective nature of the routing problem.
This Ph.D. thesis delves into the realm of distributed Multi-Agent Deep Reinforcement Learn-
ing (MA-DRL) methods, specifically targeting the Distributed Packet Routing problem in
cloud overlay networks. Throughout the thesis, we address these challenges by developing
realistic network simulators, studying communication overhead in the non-overlay general set-
ting, and proposing a distributed MA-DRL framework tailored to cloud overlay networks,
focusing on communication overhead, convergence, and model stability.

Keywords: Multi-Agent Deep Reinforcement Learning; Distributed Packet Routing; Cloud Over-
lay Networks; Autonomous Network Control; Artificial Intelligence; Optimization
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CHAPTER 1
Introduction

1.1 Motivation

The traffic over the Internet has scaled massively during the last decades: the number of In-
ternet users worldwide has reached 4.7 billion in 2020 (Ritchie, Mathieu, Roser, & Ortiz-Ospina,
2023). As of 2023, approximately 67% of the world’s population, equivalent to 5.4 billion people,
is connected to the Internet (Facts and Figures 2023 - Internet Use, s. d.) According to the
Cisco Annual Internet Report (Cisco Annual Internet Report - Cisco Annual Internet Report

(2018–2023) White Paper, s. d.), the landscape of Internet traffic is shaped by several key fac-
tors. Firstly, a substantial portion of this traffic stems from video streaming, particularly following
the advent of Ultra-High-Definition (UHD) or 4K compatible devices. Additionally, platforms de-
dicated to file-sharing, cloud computing services, and online gaming significantly contribute to the
overall volume of Internet data. Moreover, the increasing popularity of remote work and online
learning has increased the usage of video conferencing applications, further intensifying Internet
traffic. Lastly, the growth of the Internet of Things (IoT), characterized by Machine-to-Machine
(M2M) connections facilitated by interconnected homes, cities, and vehicles, has notably augmen-
ted the global Internet traffic load.

To handle this high demand, Content Delivery Networks (CDNs) have emerged as a practical
solution by providing data caching on cloud servers near the end user. Video streaming accounts
for a significant portion of internet traffic, which is why CDNs are essential for data-heavy services
such as YouTube and Netflix. Doan et al. (Doan, Bajpai, & Crawford, 2020) showed that caching
reduces throughput by up to three times. However, some services like live video streaming are non-
cacheable or cacheable for only short periods. In such cases, the requested content is downloaded
from the origin server via a cloud overlay network operated by the CDN provider.

Overlay networks are virtual or logical networks built on top of a physical network (under-
lay networks). They provide flexible traffic routing between nodes that are not directly connected
by a physical link, such as CDN servers positioned at the Internet’s edge. The overlay nodes are
connected via tunnels traversing different Autonomous Systems managed by different Internet Ser-
vice Providers. These tunnels are virtual or logical links corresponding to paths in the underlying
network.

The complexity of routing traffic within cloud overlay networks stems from four factors. First,
the lack of knowledge about the underlay topology, which continues to grow in complexity since
the Internet’s infrastructure has expanded, leading to more intricate network topology: more and
more Autonomous Systems (AS) (CIDR REPORT for 15 Sep 23, s. d.). As a consequence, each
overlay link could pass through multiple network operators (i.e., multiple AS). Each AS is run-
ning a routing policy which is also unknown by the overlay nodes. This leads to the presence of
Triangle Inequality Violations, in which the direct tunnel connecting two remote servers may not

1



2 CHAPITRE 1 — Introduction

be the optimal one. Second, the presence of unknown dynamic underlay traffic (generated by the
underlay nodes) makes predicting the overlay links capacities more complex and hard to handle
by classical methods like Border Gateway Protocol (BGP) (Rekhter, Li, & Hares, 2006) or Cisco
Overlay Routing Protocol (OMP). Those methods rely on shared administrative weights that may
not properly represent the rapid variation of the inaccessible underlay network metrics like the
delay and the loss rate. Third, similar to the variability observed in underlay traffic, overlay traffic
exhibits dynamic and complex characteristics (S. Yang & Kuipers, 2014 ; Sun et al., 2021). Rou-
ting such dynamic traffic typically involves formulating it as a constrained shortest path problem
and solving multiple instances of general multi-commodity flow problems, each with a modified
traffic matrix. However, finding the optimal solution in this setting is NP-hard (Trimponias, Xiao,
Wu, Xu, & Geng, 2019). Also, this approach assumes the model to be fixed with varying traffic
for the general multi-commodity flow problem (Quang et al., 2022). Consequently, these methods
struggle to effectively manage sudden fluctuations in traffic demand, as they require frequent re-
computation of solutions, leading to inefficiencies in network resource management (S. K. Singh,
Das, & Jukan, 2015 ; Hasan, Al-Rizzo, & Al-Turjman, 2017 ; Kim, Kim, & Lim, 2022). Further-
more, this approach fails to accurately model the network’s behavior given the unknown underlay
topology and routing policies and the presence of dynamic underlay traffic. These limitations mo-
tivate the adoption of Machine Learning (ML) techniques, especially Deep Reinforcement Lear-
ning (DRL) (Sutton & Barto, 2018 ; Bengio, 2009). The latter method has proven its effectiveness
by achieving breakthrough results in various complex tasks (Mnih et al., 2015). In the context of
network management, DRL can provide the capacity to adapt to sudden changes in traffic, handle
the lack of knowledge about the topology, and optimize the performance of the network in real-
time (Mukhutdinov, Filchenkov, Shalyto, & Vyatkin, 2019 ; You et al., 2022 ; Manfredi, Wolfe,
Wang, & Zhang, 2021 ; L. Chen, Hu, Guan, Zhao, & Shen, 2021). The adoption of Machine Lear-
ning method has also been available thanks to Software-Defined Networking (SDN) paradigm.
SDN provides flexible management of the network by decoupling the data plane (packet transmis-
sion) from the control plane (control operations) (Benzekki, El Fergougui, & Elbelrhiti Elalaoui,
2016 ; Belzarena, Sena, Amigo, & Vaton, 2016). The control plane can embed the training of the
ML model and deploy the resulting policies into the data plane. The last factor of complexity of
routing in cloud overlay networks is the increasing number of edge servers. This surge can be
attributed to the substantial data volumes generated by data-driven businesses and IoT applica-
tions, as well as the diversification of services such as cloud computing and the emergence of the
cloud continuum (Yousefpour et al., 2019 ; Moreschini et al., 2022). This increase in the num-
ber of overlay nodes poses a scalability concern, which centralized approaches facilitated by the
SDN paradigm struggle to address efficiently. Consequently, researchers are turning to multi-agent
approaches, considering each overlay node (i.e., cloud server) as an autonomous agent making de-
cisions on incoming packets based on locally collected information. This problem formulation is
termed as Distributed Packet Routing (DPR). Multi-Agent Deep Reinforcement Learning, which
it is an extension of Deep Reinforcement Learning, has become popular in solving communication
network problems like the DPR problem (Mukhutdinov et al., 2019 ; You et al., 2022 ; Manfredi
et al., 2021 ; L. Chen et al., 2021). In this setting, DRL agents collaborate to optimize a global ob-
jective. In addition to the scalability and resilience of the network, having a decentralized training
approach allows fast response to the changes in the network while circumventing issues linked to
maintaining a centralized database.

Although the distributed Multi-Agent Deep Reinforcement Learning (MA-DRL) scheme
seems intuitively suited for routing and can extend the classical distributed routing algorithms like
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Routing Information Protocol (RIP) (Malkin, 1998) or Back-Pressure (BP) routing (Tassiulas &
Ephremides, 1992), the network research community has not thoroughly investigated it for several
reasons. First, there is a lack of a common realistic network simulator to test and compare the solu-
tions. Existing simulators often align better with the centralized SDN paradigm, leaving the fully
decentralized scheme under-explored. Second, as pointed out by the previous studies (Gronauer
& Diepold, 2022 ; Matignon, Laurent, & Le Fort-Piat, 2012), the agents need to communicate to
overcome the non-stationarity of the environment, especially in the cloud overlay setting. This
results in a high communication overhead between the agents during the training. Lastly, applying
Reinforcement Learning (RL) for the DPR problem is a hard problem due to its multi-objective
nature. Indeed, the agents may need to optimize more than one network metric (i.e., delay and
loss). This poses challenges when designing the reward, which ensures stability in the learning
process.

1.2 Goal of the thesis

Given the motivation detailed above, this Ph.D. thesis is oriented towards studying distributed
Multi-Agent Deep Reinforcement Learning methods for the Distributed Packet Routing problem
for cloud overlay networks.

This thesis presents an in-depth study of this approach, focusing on its multiple challenges,
such as realistic experimentation, communication between the agents, and learning stability. The
objective is to address those challenges and design a fully distributed Multi-Agent Deep Rein-
forcement Learning framework for the Distributed Packet Routing problem in the cloud overlay
setting.

To achieve this main objective, we define two goals:
G.1- Realistic network simulator
This first goal aims to provide a realistic platform to evaluate and compare the state-of-the-art
models. This simulator should also allow the emulation of control packets to evaluate the commu-
nication overhead between the agents. This goal consists of two steps :

— G1.1- General simulator
Developing a general realistic network simulator adapted to MA-DRL for the general non-
overlay case.

— G1.2- Simulator for the cloud overlay case
Extending the general simulator (G1.1) to the cloud overlay case by implementing the over-
lay topology on top of a physical one. Also, add the underlay background traffic.

G.2- Distributed Multi-Agent Deep Reinforcement Learning framework for Distributed Pa-
cket Routing problem
The goal is to propose an efficient distributed Multi-Agent Deep Reinforcement Learning that ta-
ckles the Distributed Packet Routing problem. The framework should present competitive results
regarding performance, communication overhead, and stability. This goal consists of two steps:

— G2.1- General framework
Implement the framework in the general non-overlay case. This sub-goal focuses on this
less complex case to analyze and minimize the communication overhead and study its effect
on the model’s performance.
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— G2.2- Framework for the cloud overlay case
Extend the general framework to the cloud overlay case. In this case, the proposed frame-
work should handle the lack of knowledge about the underlay topology, the underlay routing
policies, and the underlay traffic. The focus is also put on the stability of the agents’ learning.

A summary of the goals of the thesis is presented in Table 1.1.

Table 1.1 – Thesis goals

G.1-
Realistic network simulator
problem in cloud overlay networks

G1.1-
General simulator
G1.2-
Simulator for overlay case

G.2-
Distributed MA-DRL framework
for DPR problem

G2.1-
General framework
G2.2-
Framework for the cloud overlay case

1.3 Methodology

This thesis treats the packet routing problem in a distributed manner using Multi-Agent Deep
Reinforcement Learning. We assume the architecture presented in Figure 1.1 for the general Dis-
tributed Packet Routing problem. Each network node embeds an Reinforcement Learning agent
interacting with its environment. This environment includes the local information gathered by the
node and the information coming from its neighbors through a communication channel. After ta-
king action, the agent receives a reward that it uses to improve its policy and adapt to changes in
the environment.

  Environment: 
Neighborhood

Agent

Action
At

Reward
Rt

Observation
Ot

Figure 1.1 – Illustration of the Distributed Packet Routing problem considered in the thesis
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Figure 1.2 describes the architecture of a cloud overlay node in this setting. The cloud over-
lay control plane embeds four elements: the AI Forwarder Agent, the AI Trainer Agent, the AI
communicator Agent, and the node database. The packet header information, like the packet des-
tination, is extracted and sent to the AI Forwarded Agent along with locally monitored data for
each incoming data packet. This information is used as an input of the Deep Neural Network by
the AI Forwarder Agent. The Deep Neural Network then outputs an action, which is the outgoing
port. The packet’s header and the locally monitored data are also sent to the AI Trainer Agent. The
latter treats the information and stores it in the node database. The AI Trainer Agent periodically
samples data from the node database to train and update the Deep Neural Network (DNN) weights
that are sent to the AI Forwarder Agent. The AI Communicator Agent handles the communication
between the cloud overlay node and its neighbors through an in-band control packet exchange. The
data collected by the AI Communicator Agent updates the missing information needed to train the
agent.

Underlay network

Forwarding 
Plane

AI Forwarder
Agent

Train the
model

Forward packet using Deep
Neural Network

AI Trainer
Agent

Treat and
store packet

data

Data Models

Send control
packet

Treat control
packets

AI Communicator
Agent

Node Database

Forwarding 
Plane

AI Forwarder
Agent

AI Trainer
Agent

AI Communicator
Agent

Node Database

Outgoing control packet
 to a neighbor

Incoming control packets
from neighbors

Update the 
Deep Neural Network

Outgoing port

Treat control
packets

Send control
packet

Data Models

Overlay node Overlay node

DNN output
Packet's

header and 
local monitored data

DNN input

Routing decision
Collected information
Memory access
Control packet exchange
Overlay link
Control plane

Train the
model

Forward packet using Deep
Neural Network

Treat and
store packet

data

Outgoing port

Packet's
header and 

local monitored data

DNN outputDNN input

Update the 
Deep Neural Network

Figure 1.2 – Architecture of the network agent in the distributed MA-DRL setting

Considering the system architecture presented above, the methodology illustrated in Figure
1.3 was followed to achieve the thesis goal.
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Design the use
case

Design/update
a realistic
network
simulator

Define
research
questions

Launch
Experimentation

Answer
research
questions

Improve the
Model

Design the
Model Conclude

Figure 1.3 – Thesis methodology

First, we define the use case scenario. We start with the general non-overlay case and then
tackle the cloud overlay networks. After that, we design or update our network simulator for each
of the two scenarios. To ensure realistic simulation, ns-3 (nsnam, s. d.) is chosen. Then, inspired
by the scientific literature, a Multi-Agent Deep Reinforcement Learning framework is designed to
address the problem. Research questions are then defined based on performance, communication
overhead, and model stability. Based on those questions, an experimentation scenario is designed,
and experiments are launched. We analyze the results obtained and answer the previously defined
questions. Based on the answers, we can either improve the model and relaunch the experiments
or conclude by disseminating the results in international conferences or journals.

1.4 Contributions

As pointed out in the motivation section, applying distributed MA-DRL to address the DPR in
cloud overlay networks presents multiple challenges: realistic simulation environment, communi-
cation between agents overhead, stability given the lack of knowledge in the overlay setting. Given
those challenges, we sort our contributions in the following table (Table 1.2).

Table 1.2 – Contributions

Use case scenario
Build a realistic
simulation environment

Analyze and reduce
communication overhead

Address the stability
Apply DRL in other cases
different from the MA-DRL
for DPR problem

DPR problem in
general non-overlay networks

PRISMA IMPACT - -

DPR problem
in cloud overlay networks

PRISMA-2 O-DQR O-DQR -

Quantum virtual link
generation

- - - QUANTUM

Cloud network slicing
management

- - - SLICE

The acronyms used in the previous table correspond to publications detailed in the following
and sorted in chronological order.

1. PRISMA (G1.1): corresponds to the paper entitled "Prisma: a packet routing simulator for
multi-agent reinforcement learning" (Alliche, Barros, Aparicio-Pardo, & Sassatelli, 2022).
It was presented at the IFIP networking conference 2022 workshop.

2. IMPACT (G2.1): the paper entitled "Impact evaluation of control signalling onto distribu-
ted learning-based packet routing" (Alliche, da Silva Barros, Aparicio-Pardo, & Sassatelli,
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2022). It was presented at the 34th International Teletraffic Congress (ITC) 2022. It also
includes an overhead reduction method illustrated in Chapter 4.

3. SLICE: corresponds to the paper entitled "Reconfiguring network slices at the best time
with deep reinforcement learning" (Gausseran et al., 2022). It was done in collaboration
with the COATI team in INRIA and presented at the 11th International Conference on Cloud
Networking (CloudNet) 2022.

4. PRISMA-2 (G1.2): corresponds to the paper entitled "prisma-v2: Extension to cloud
overlay networks" (Alliche, Barros, Aparicio-Pardo, & Sassatelli, 2023). It was presented at
the 23rd International Conference on Transparent Optical Networks (ICTON) 2023.

5. QUANTUM: corresponds to the paper entitled "Quantum virtual link generation via rein-
forcement learning" (Aparicio-Pardo, Cousson, & Alliche, 2023). It was presented at the
23rd International Conference on Transparent Optical Networks (ICTON) 2023.

6. O-DQR (G2.2): corresponds to the paper entitled "O-DQR: a Multi-agent Deep Reinfor-
cement Learning for Distributed Packet Routing in Overlay Networks". It is submitted to
IEEE Transactions on Network and Service Management.

1.5 Thesis outline

The remainder of this thesis manuscript is organized as follows.
Chapter 2 provides the needed background on Reinforcement Learning, Multi-Agent Deep

Reinforcement Learning systems and the application of those methods to the Distributed Packet
Routing problem. It also includes a review of the available simulation tools and finishes with a
presentation of the constrained models used to address the stability of the model.

Chapter 3 reviews state-of-the-art related to the goals of this thesis, focusing on MA-DRL
models applied to Distributed Packet Routing problem, communication between the agents, and
stability of the learning using constrained models.

Chapter 4 focuses on goal G.1. It contains two parts corresponding to the two contributions
PRISMA and PRISMA-2. The first concerns the implementation of PRISMA (Alliche, Barros,
et al., 2022): a realistic network simulator for distributed routing using independent Multi-Agent
Deep Reinforcement Learning methods. The second part presents the extension of our simulator
to overlay networks, which is called prisma-v2 (Alliche et al., 2023).

Chapter 5 presents the contribution IMPACT (G2.1) related to the general non-overlay net-
work scenario. It has two sections. The first one presents the study done on the communication
overhead of Multi-Agent Deep Reinforcement Learning method applied to the Distributed Packet
Routing problem (Alliche, da Silva Barros, et al., 2022). This study was motivated by the fact
that communication overhead between agents was not deeply covered by the literature in general
non-overlay networks. The second section presents a new proposed communication strategy to
significantly reduce this overhead. The strategy was presented in the submitted paper O-DQR.

Chapter 6 presents the contribution Q-DQR (G2.2), which is a novel distributed Multi-Agent
Deep Reinforcement Learning framework for cloud overlay networks. It is based on the submitted
journal publication.

Chapter 7 gathers two contributions during the thesis involving Reinforcement Learning ap-
plied to network control (Gausseran et al., 2022 ; Aparicio-Pardo et al., 2023), which are QUAN-
TUM and SLICE.

Finally, chapter 8 concludes this Ph.D. thesis.
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Background

In this chapter, we go through the core aspects necessary to understand the Ph.D. the-

sis. We first introduce the single-agent Reinforcement Learning (RL) framework. Then,

we extend the concept to Multi-Agent Reinforcement Learning (MA-RL). We present the

Distributed Packet Routing (DPR) problem and the proposed RL methods to solve it, of

which the Q-routing paradigm. We also present the available network simulation tools

and the RL libraries. Finally, we present the concept of constrained reinforcement lear-

ning at the end of this chapter

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 From Single-Agent to Multi-Agent Reinforcement Learning . . . 11

2.2.1 Single-Agent Reinforcement Learning . . . . . . . . . . . . 11
2.2.1.1 Markov Decision Process formulation . . . . . . 12
2.2.1.2 State-value function and Q-function . . . . . . . . 12
2.2.1.3 Finding the optimal policy . . . . . . . . . . . . . 13

2.2.2 Multi-Agent Reinforcement Learning . . . . . . . . . . . . 14
2.2.2.1 Multi-Agent Reinforcement Learning under the

Markov Games framework . . . . . . . . . . . . 14
2.2.2.2 Types of Markov Games . . . . . . . . . . . . . . 14
2.2.2.3 Challenges of Multi-Agent Reinforcement Learning 14
2.2.2.4 Training and execution schemes . . . . . . . . . . 15
2.2.2.5 Communication between agents . . . . . . . . . . 15

2.3 Distributed Packet Routing problem . . . . . . . . . . . . . . . . 16
2.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Q-Routing framework . . . . . . . . . . . . . . . . . . . . 17

2.4 Simulation tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 The ns-3 Network Simulator . . . . . . . . . . . . . . . . 17
2.4.2 Reinforcement Learning environments for network simulation 18

2.5 Constrained Reinforcement Learning (CRL) . . . . . . . . . . . 18
2.5.1 Constrained Markov Decision Processes (CMDPs) . . . . . 18
2.5.2 Lagrangian Relaxation . . . . . . . . . . . . . . . . . . . . 19

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9





2.2 – Introduction 11

2.1 Introduction

Reinforcement Learning (RL) has been widely used to tackle networking problems. One clas-
sical problem is the Distributed Packet Routing (DPR). It consists of routing packets in a distri-
buted manner where each node (router) acts independently from the others. This problem can be
challenging when the traffic becomes highly dynamic and hard to predict using classical routing
methods. This motivates researchers to use Deep Reinforcement Learning (DRL) since it can adapt
to the changes of the environment, like the changes in the traffic and the topology. Multi-Agent
Deep Reinforcement Learning (MA-DRL) is the extension of DRL to multiple agents, which fits
naturally with the distributed aspect of packet routing. However, MA-DRL can experience stabi-
lity issues, especially when the reward includes multiple goals (i.e., optimizing the packet loss and
the packet end-to-end delay). In this case, concepts from the theory of constrained models can be
used to construct the reward signal in a way that ensures stability. Additionally, a realistic network
simulator is required to evaluate the performance of the developed solutions.

The goal of this chapter is to provide the necessary materials to understand the thesis and its
contributions. It is structured as follows. First, In Section 2.2, we cover reinforcement learning
principles, moving from a single-agent approach to a multi-agent approach. Then, we describe the
Distributed Packet Routing in Section 2.3. In Section 2.4, we present available simulation tools.
Constrained Reinforcement Learning (CRL) is covered in Section 2.5. Finally, we conclude this
chapter in Section 2.6.

2.2 From Single-Agent to Multi-Agent Reinforcement Learning

This section is inspired by Sutton and Barto’s book: "Reinforcement Learning: An Introduc-
tion" (Sutton & Barto, 2018) and "Multi-agent deep reinforcement learning: a survey" (Gronauer
& Diepold, 2022). The goal is to briefly introduce the Reinforcement Learning method.

2.2.1 Single-Agent Reinforcement Learning

The idea of Reinforcement Learning is to learn by interacting with the environment. As illus-
trated by Figure 2.1, the agent observes the state of the environment at each time t, denoted as s.
Based on this state, the agent takes an action a. In response to his action, the agent receives at time
t + 1 a reward r and observes a new state s′. The agent’s objective is to maximize the expected
performance in a long-term perspective, given the unknown dynamics of the environment.

  Environment

Action
a

Reward
r

State
s

Agent

Figure 2.1 – Single-Agent system model
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The standard formulation for such a system is the Markov Decision Process (Bellman, 1957),
which is defined below.

2.2.1.1 Markov Decision Process formulation

A Markov Decision Process (MDP) is a discrete-time stochastic control process where the
Markov property is met: the future behavior of a stochastic process depends only on the present
state of the system and is independent of the past states. An MDP is formalized by the tuple
(S,A, p, R, γ) where S and A are the state and action space, respectively. Let p : S × A × S →
p(X) be the transition function describing the probability of a state transition, R : S ×A → R be
the reward function, and γ ∈ [0, 1] be the discount factor. The agent implements a mapping from
the state s ∈ S to the probability of selecting each possible action a ∈ A. This mapping is called
a policy and is denoted π(a♣s).

During an episode and in a fully observable environment, the agent follows its policy and takes
action at at each time step t after observing a state st.

The episode return Gt is defined as:

Gt = R(st, at) + γR(st+1, at+1) + · · · =
T −t
∑︂

k=0

γkR(st+k, at+k)] (2.1)

Equation 2.1 includes the possibility that T =∞ and γ < 1 or T <∞ and γ ∈ [0, 1] for infinite-
horizon and finite-horizon problems, respectively. For simplicity, we consider the infinite-horizon
problem formulation for the rest of the chapter. The formulations for finite-horizon problems can
be found in (Bertsekas, 2012). We note that by changing the discount factor γ, we define the
importance of the future interactions (k > 0) in the return.

2.2.1.2 State-value function and Q-function

To evaluate the expected performance given a policy π and stating from a state s, we define
the state-value function vπ : S → R.

vπ(s) = Eπ[Gt♣St = s]

= Eπ[
∞

∑︂

t=0

γkR(st+k, at+k)♣st = s]
(2.2)

A fundamental property of the value function (Equation (2.2)) is that it satisfies the recursive
Bellman equation described by Equation (2.3).

vπ(s) = Eπ[Gt♣St = s]

= Eπ[
∞

∑︂

t=0

γkR(st+k, at+k)♣st = s]

=
∑︂

a

π(a♣s)
∑︂

s′,r

p(s′, r♣s, a)[r + γvπ(s′)],

(2.3)

where p(s′, r♣s, a) is the probability of getting the state s′ and the reward r after taking the action
a and being in the state s, the actions a ∈ A, the state s ∈ S and the next state s′ ∈ S.
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Similarly, we define the expected performance given a starting state s, a policy π, and after
taking an action a by the action-value function Qπ : S × A → R, which is also called the Q-

function.

Qπ(s, a) = E[Gt♣st = s, at = a] = E[
∞

∑︂

t=0

γkR(st+k, at+k)♣st = s, at = a] (2.4)

The Bellman equation is also satisfied for the q-function, which is given by Equation (2.5).

Qπ(s, a) = E[Gt♣st = s, at = a]

= E[
∞

∑︂

t=0

γkR(st+k, at+k)♣st = s, at = a]

=
∑︂

s′,r

p(s′, r♣s, a)[r + γQπ(s′, a′)],

(2.5)

2.2.1.3 Finding the optimal policy

The goal of the agent is to find an optimal policy that maximizes the expected return. In a
single-agent setting, at least one policy is always better than or equal to all the other policies. The
optimal policies π∗ share the same optimal state value function, denoted v∗(s) (Equation (2.6)),
and the same optimal Q-function, denoted Q∗(s, a) (Equation (2.7))

v∗(s) = max
π

vπ(s)

= max
a∈A

∑︂

s′,r

p(s′, r♣s, a)[r + γv∗(s′)], (2.6)

Q∗(s, a) = max
π

Qπ(s, a)

=
∑︂

s′,r

p(s′, r♣s, a)[r + γ max
a′

Qπ(s′, a′)], (2.7)

To improve any policy π to get to the optimal policy π∗, a popular method is to use temporal-

difference (TD) learning. The advantage of this method is that it allows the agent to update its
policy after each transition without waiting for a final state (final return Gt) and without having a
model of the environment (Model-Free). It is done by bootstrapping using the estimated value of
subsequent states to figure out the value of the current state.

For example, Q-learning (C. J. C. H. Watkins, 1989) is an off-policy TD learning algorithm,
which is one of the most popular algorithms in Reinforcement Learning. In its simplest form, the
one-step Q-learning is defined by:

Q(s, a)← Q(s, a) + α[r + γ
′

max
a

Q(s′, a′)−Q(s, a)], (2.8)

where α is the learning rate.
Finally, the key idea of Deep Reinforcement Learning is to represent the value function Vπ,

the policy function Qπ, or both by a Deep Neural Network (DNN).
Additionally, The environment can be partially observable, where the agent cannot observe the

entire state s but only an observation o of it. In this setting, we formulate the problem as Partially
Observable Markov Decision Process (POMDP), and the agent must take the actions under the
uncertainty of the actual environment state.
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2.2.2 Multi-Agent Reinforcement Learning

The above setting can be extended to multiple agents. In this case, we use Markov
Games (Littman, 1994) as a framework.

2.2.2.1 Multi-Agent Reinforcement Learning under the Markov Games framework

A Markov Game is formalized by the tuple (N , S, Ai, p, Ri, γ), where N = ¶1, . . . , N♢
denotes the set of N > 1 agents, S is the set of the observed states by all the agents,Ai is the joint
action space, which is the collection of the action spaces of all the agents Ai = A1 × · · · ×AN , p
is the transition probability for the environment, Ri is the reward function associated to each agent
i ∈ N , and γ is the discount factor.

At each time step t, each agent i ∈ N observes the state st and takes an action ai
t based on

each agent’s policy πi. The environment then evolves from the state st to the state st+1, and each
agent gets an immediate reward ri.

Similar to the single-agent problem, each agent needs to change its policy to optimize the
long-term return. However, unlike the first case, the state-value function and the Q-function do not
depend only on the policy of the agent i denoted πi but also on the policies of the other agents
denoted π−i.

When all the agents learn simultaneously, the optimal policy, which may not be unique,
is described as the Nash equilibrium (Leyton-Brown & Shoham, 2022). This is a solution
where each agent’s policy π∗(i) is the best response to the other agents’ policy π∗(−i) such that
vi

π∗(i),π∗(−i)(s) ≥ vi
πi,π∗(−i)(s) holds for all state s ∈ S and all policies πi ∈ Πi∀i.

2.2.2.2 Types of Markov Games

Depending on the type of the task, Multi-Agent Reinforcement Learning can be categorized
into the following:

1. Fully cooperative setting. All the agents are encouraged to collaborate and maximize the
team’s performance. In this case, the reward can be equally shared among the agents.

2. Fully competitive setting. The agents aim to maximize their reward and minimize the
reward of the others. It can be described as either (i) a zero-sum Markov Game R =
√︂N

i=1 Ri(s, a) = 0 or (ii) a competitive game where the rewards do not sum to zero.

3. Mixed setting. It is known as a general-sum game where the game does not incorporate
restrictions on the agents’ goal.

2.2.2.3 Challenges of Multi-Agent Reinforcement Learning

The multi-agent setting brings a lot of challenges and complexities to consider when designing
a model. We detail below the most important ones.

1. Non-stationarity. As mentioned before, the agents in the Multi-Agent Reinforcement Lear-
ning setting update their policies simultaneously. Consequently, the environment appears
non-stationary from an agent’s perspective, and thus, the Markov assumption of an MDP
no longer holds. In this situation, the agents face a moving target problem (E. Yang & Gu,
2004 ; Busoniu, Babuska, & De Schutter, 2008)
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2. Partially observable environment. Also known as Partially observable Markov Games

(POMG). Like Partially Observable Markov Decision Process, each agent can only observe
a part of the state, denoted oi. In this setting, the history of the interaction with the environ-
ment is meaningful; thus, it is relevant to incorporate history-dependent policies.

3. Converging to sub-optimal solutions. It was shown that agents could possibly converge
to sub-optimal solutions (Wiegand, 2004). This can be explained by the shadowed equili-

brium (Fulda & Ventura, 2007 ; Matignon et al., 2012). In essence, it suggests that despite
agents’ efforts, they may converge to near-optimal solutions but not necessarily globally op-
timal. This occurs when agents receive minimal rewards by unilaterally deviating from this
equilibrium. If the potential gain from deviating is lower than the minimal gain achievable
by deviating from another equilibrium, agents tend to remain in this sub-optimal state.

4. Credit assignment problem. In a cooperative setting with a joint reward signal, the contri-
bution of each agent’s action to the reward can be unknown. Therefore, the agents face a
credit assignment problem (Chang, Ho, & Kaelbling, 2003 ; Wolpert & Tumer, 1999).

5. Alter-exploration problem. It is a dilemma that is also present in the single-agent case
and is amplified by the partial observability of the environment. It represents the tradeoff
between taking non-optimal action to explore the environment or taking optimal decisions
according to the current knowledge of the environment.

2.2.2.4 Training and execution schemes

The training of the agents is a challenging problem since the complexity of the state and action
space increases exponentially with the number of agents. We distinguish two training paradigms:
centralized and distributed (Weiß, 1995). The first describes the situation where the agents rely
on global state information to update their policies. The second refers to the situation where each
agent updates its policy independently without relying on a centralized point.

Regarding execution, we also distinguish two strategies: centralized and decentralized. The
first refers to relying on a global controller to make decisions, and the second refers to taking
action independently.

In practice, we can have three types of architecture: (i) Centralized Training Centralized Exe-
cution (CTCE), (ii) Centralized Training Decentralized Execution (CTDE), and (iii) Distributed
Training Decentralized Execution (DTDE). The definition of those architectures may differ in the
literature. Still, in this Ph.D. thesis, we consider the following:

— Centralized Training Centralized Execution (CTCE): the agents rely on a centralized point
during training and inference.

— Centralized Training Decentralized Execution (CTDE): the agents rely on a centralized point
during the training but are independent in inference.

— Distributed Training Decentralized Execution (DTDE): the agents are independent to a cen-
tralized point during training and inference. However, they may share information and in-
teract locally at both phases, training and inference.

2.2.2.5 Communication between agents

One of the previously mentioned challenges is the environment’s non-stationarity, especially
when considering a distributed training architecture. To address this problem, the simplest ap-
proach is to neglect the adaptative behavior of the agents by ignoring them (Matignon et al., 2012)
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or assuming the others’ behavior to be static or optimal (Lauer & Riedmiller, 2000). This so-
lution, which is called independent learners, can perform well in simple deterministic environ-
ments (Claus & Boutilier, 1998), but often results in poor performance (Matignon et al., 2012 ;
Lowe et al., 2017) and can over-fit and fail to generalize (Lanctot et al., 2017). To handle this, the
literature proposed more efficient solutions. Foerster et al. (Foerster et al., 2017) proposed to use
an experience replay buffer to store past interactions and decay the outdated transition samples to
stabilize the training. Baker et al. (Baker et al., 2019) and Leibo et al. (Leibo, Zambaldi, Lanc-
tot, Marecki, & Graepel, 2017) used short-term experience replay buffers. Bono et al. (Bono,
Dibangoye, Matignon, Pereyron, & Simonin, 2019) adopted a centralized training decentralized
execution approach. Another approach, called meta-learning, was proposed by Finn et al. (Finn &
Levine, 2017) and used by Rabinowitz et al. (Rabinowitz et al., 2018) to construct agent models.
The idea of this approach is to allow the agent to learn to predict other agents’ future actions.
Finally, another research track proposes to address the problem of non-stationarity and partial ob-
servability by allowing the agents to communicate. The communication can be either broadcast to
all the agents (Foerster, Assael, De Freitas, & Whiteson, 2016), targeted to a specific agent (Das
et al., 2019 ; Jiang & Lu, 2018 ; A. Singh, Jain, & Sukhbaatar, 2018), or sent only to the neighbors
(networked communication) (K. Zhang, Yang, Liu, Zhang, & Basar, 2018 ; Chu, Wang, Codecà,
& Li, 2019).

2.3 Distributed Packet Routing problem

In this section, we review the application of Reinforcement Learning to tackle the Distributed
Packet Routing problem. We first formulate the Distributed Packet Routing problem. Then, we
detail the Q-Routing framework, which is an RL solution to the problem. Finally, we conclude the
section by presenting DQN-Routing, which is the DRL extension of Q-Routing.

2.3.1 Problem formulation

The Distributed Packet Routing problem pertains to the optimization and efficient management
of data packet routing in decentralized communication networks. In this context, "distributed"
refers to the absence of a centralized routing authority, requiring each node within the network to
make autonomous decisions regarding the forwarding of data packets. This problem naturally fits
the fully decentralized multi-agent scheme (Distributed Training Decentralized Execution).

The Distributed Packet Routing problem can be formalized as a Multi-Agent
POMDP (Littman, 1994): a Markov Decision Process where each agent can only locally ob-
serve its environment without knowing the actual state of the whole process.

Let N be the set of routing nodes (agents), where each agent n has its own local observation
space On and its own action space An. When a new packet arrives at time t at the node n, the
node n selects as an action an the next hop node n′ to forward the packet to. This decision is taken
depending on the local observation of the router on (e.g., the current packet destination, the node

buffers’ occupancy, . . . ). As a consequence, the agent n receives a reward rn: the next-hop packet

delay (i.e., the packet delay to travel from n to n′), and the whole network makes a transition to a
new state. This procedure is repeated each time a packet arrives at a node.
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2.3.2 Q-Routing framework

The first RL method proposed to tackle the DPR was the Q-routing (Boyan & Littman, 1993),
based on the classical Q-learning algorithm (C. J. C. H. Watkins, 1989). We will use this method
as a framework to describe the POMDP and the RL approach used to solve it. Note that other RL
methods different from Q-learning could also be adapted to the DPR problem.

The framework selects an action an that minimizes an estimate of the expected end-to-end

packet delay from node n to its final destination using the estimate of the neighbors. This idea
is extended to Deep Reinforcement Learning by Mukhutdinov et al. (Mukhutdinov et al., 2019)
denoted as Qn(on, an; θn) (the Q-function). This is the output of a DNN with θn weights. The
DNN is trained to fit the target value Y Q

n below:

Y Q
n = rn + γ · τ · (1− f) (2.9)

where f indicates if the next hop is the packet destination, γ ∈ [0, 1] is a discount factor, r is
the next-hop packet delay and τ is the remaining end-to-end delay from the next hop n′ to the
destination. The latter is computed as follows:

τ = min
an′ ∈An′

Qn′(on′ , an′ ; θn′) (2.10)

where Qn′(·; θn′) is the output of the DNN of the next hop agent.
The θn weights are updated by stochastic gradient descent when minimizing the Temporal

Difference (TD) error:

LDQN =
(︂

Qn(on, an; θn)− Y Q
n

⎡2
(2.11)

We note that compared to classical Q-learning presented by Equation (2.8), here, to build the
target value Y Q

n , we use the DNN Qn′(., θn′) of the neighbor n′ instead of using the local target
network Qn(o′, a′, θn) for the next local observation o′ at the node n.

2.4 Simulation tools

After presenting the MA-DRL approach to tackle the DPR problem, we discuss in this sec-
tion the available simulation tools to evaluate those methods. One of the most popular network
simulators is called ns-3, which was adapted to handle the distributed MA-DRL case for gene-
ral non-overlay networks (Alliche, Barros, et al., 2022) and the cloud overlay networks (Alliche
et al., 2023). In this section, we present the ns-3 network simulator and the available tools that
transform a network simulation in a DRL environment.

2.4.1 The ns-3 Network Simulator

The ns-3 simulator (nsnam, s. d.) is a stable discrete-event network simulator, largely adopted
by the research and educational community and accepted as a standard. It is free and open-source
under GPLv2 and developed in C++ using object-oriented programming. The success of this tool
is based on two main features: (i) realistic modeling of the network systems: the protocol stack is
properly abstracted by the simulator classes; (ii) a wide range of networking protocols (e.g., IP,
TCP, UDP), communication technologies (e.g., Ethernet, Wi-Fi, LTE) and statistical models for
channels, mobility, and traffic generation are supported by built-in classes.
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2.4.2 Reinforcement Learning environments for network simulation

RL agents are usually implemented using Python packages (e.g., TensorFlow (TensorFlow:

An end-to-end open source machine learning platform, s. d.)) and interfaced with an environment
where agents take decisions. The OpenAI™Gym (Gym: Gym toolkit for creating reinforcement

learning environments, s. d.) is one of the most popular toolkits to define RL environments in
Python. Gym is used to test and compare different RL algorithms for a variety of problems,
like Atari games or robotics (Zamora, Lopez, Vilches, & Cordero, 2016). Gym also provides a
simple interface to pass the interactions between the agent and the environment without making
assumptions about the agent structure. Moreover, the Gym toolkit allows the creation of customi-
zed environments, which is very convenient since no network environment is natively available in
Gym.

The first solution to this lack of networking RL environments was ns3-gym (Gawłowicz
& Zubow, 2019), which interfaces OpenAI ™Gym with the ns-3 network simulator. In other
words, ns3-gym "transforms" a ns-3 network simulation into an RL environment by serving as
a gateway connecting ns-3 with Gym. Then, it provides an easy-to-use platform for developing
and testing RL algorithms for networking problems. The Python process (the agent and the
Gym environment) communicates with the C++ process (the ns-3 network simulation) via ZMQ
sockets (Zero MQ: An open-source universal messaging library, s. d.). ns3-gym is also open
source under a GPL license and can be easily extended. Other tools were released after ns3-gym,
such as ns3-ai (Yin et al., 2020).

2.5 Constrained Reinforcement Learning (CRL)

The optimization for the DPR problem can be multi-objective and can include constraints (like
the links capacity constraint). For this reason, we introduce in this section the Constrained Rein-
forcement Learning (CRL) approach. It is an approach within the field of Reinforcement Learning
that focuses on optimizing decision-making processes under specific constraints. In CRL, the ob-
jective is to maximize the expected goal while satisfying a set of predefined constraints. This
methodology is particularly relevant in scenarios where there are essential limitations or requi-
rements that the learning algorithm must adhere to during the training and inference phases. To
understand CRL, we need to present two concepts: (i) the Constrained Markov Decision Processes
(CMDPs) and (ii) the Lagrangian Relaxation.

2.5.1 Constrained Markov Decision Processes (CMDPs)

Constrained Markov Decision Processes (CMDPs) are a variant of the classical Markov De-
cision Processes (MDPs) that incorporate additional safety constraints. It is formulated with the
tuple (S, A, p, R, γ, c, d). Similarly to MDPs, S and A represent state and action spaces, res-
pectively. p is the transition probability function, R is the reward function and γ is the discount
factor. c(s, a) ∈ R is the cost function and d is the safety threshold. The cost function evaluates
whether the constraints are satisfied under the current state s and after taking the action a. In this
framework, the Q-function is the same as in MDPs (see Equation (2.4)).

We add the estimation of the expected discounted cost for a given policy, denoted C-function:

Cπ(s, a) = E[
∞

∑︂

t=0

γtc(st, at)♣s0 = s, a0 = a] (2.12)
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The objective function of a CMDP is formulated as follows:

max
π

E(s,a)∼ρπ
[

∞
∑︂

t=0

γtr(st, at)], s.t. E(s,a)∼ρπ
[

∞
∑︂

t=0

γtc(st, at)] ≤ d. (2.13)

This objective function seeks to maximize the expected cumulative rewards under a policy π while
ensuring that the expected cumulative cost over time does not exceed the predefined safety thre-
shold d. Here, ρπ represents the distribution induced by the policy π over state-action pairs.

As a recap, CMDPs provide a formal framework for decision-making under constraints, where
the goal is to balance the optimization of rewards with the satisfaction of safety requirements.

2.5.2 Lagrangian Relaxation

The problem defined in Equation (2.13) can be solved using the Lagrangian relaxation method.
In the Lagrangian relaxation, the original constrained optimization problem is transformed into an
unconstrained form by introducing Lagrange multipliers, also known as dual variables. These
multipliers act as penalty terms associated with each constraint, allowing the incorporation of the
constraints into the objective function.

We apply the Lagrangian relaxation to transform the Equation (2.13) and define the uncons-
trained dual problem as follows:

min
λ≥0

max
θ

L(λ, θ) = min
λ≥0

max
θ

[Jπθ

R − λ.(Jπθ

C − d)] (2.14)

Where

Jπθ

R = max
π

E(s,a)∼ρπ
[

∞
∑︂

t=0

γtr(st, at)], (2.15)

Jπθ

C = max
π

E(s,a)∼ρπ
[

∞
∑︂

t=0

γtc(st, at)]. (2.16)

2.6 Conclusion

The objective of this chapter is to give the essential information needed to understand the
context of the Ph.D. thesis. We first introduced the single-agent DRL and extended them to
MA-DRL. Then, we formulated the core problem tackled in this thesis, the DPR problem. We
also present the available simulation tools. Finally, we introduced the concept of constrained rein-
forcement learning, which could be considered to stabilize the agents’ learning and integrate the
constraints of the environment into the model.

In the following chapter, we will review the literature related to the goals of the thesis.
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3.1 Introduction

The chapter provides a literature review related to the goals of the thesis, which is the ap-
plication of Multi-Agent Deep Reinforcement Learning (MA-DRL) techniques to networking,
specifically addressing Distributed Packet Routing (DPR) challenges in the cloud overlay case.

The first section (Section 3.2) discusses existing network simulation tools, such as ns-3, and
extensions like ns3-gym. Then, Section 3.3 delves into the works exploring Deep Reinforcement
Learning (DRL) applications in general non-overlay network cases. It reviews existing works using
single-agent and MA-DRL. In Section 3.4, the discussion is extended to packet routing in cloud
overlay networks, which introduces additional challenges, such as the lack of knowledge about the
underlay topology and traffic. Existing routing protocols along with DRL techniques are reviewed.
Section 3.5 investigates a critical aspect of deploying distributed MA-DRL solutions: the impact
of network control signaling on training processes. Different approaches to handling communica-
tion between agents, including model sharing and value sharing, are discussed. Furthermore, the
section identifies a lack of investigation into the trade-off between performance and communica-
tion overhead in the general non-overlay case. Moreover, the final section (Section 3.6) presents
the challenges related to the stability and safety of MA-DRL solutions for the DPR problem. It
highlights the importance of considering the stability of the MA-DRL in the cloud overlay case.

3.2 DRL tools for networking

One of the most popular network simulating tools is ns-3 (nsnam, s. d.), a discrete-event
simulator implemented in C++. It allows researchers to model and test different aspects of net-
work configuration and protocols. However, ns-3 does not support deep learning algorithms
since most of these algorithms rely on open-source Python frameworks like TensorFlow and
PyTorch. To enable the interaction between ns-3 and the latter frameworks, many extensions
have been proposed, such as ns3-gym (Gawłowicz & Zubow, 2019) and ns3-ai (Yin et al.,
2020). Another direction for extending ns-3 is to focus on specific domains or applications of
network systems, such as wireless and Internet of Things (IoT) networks. These domains pose new
challenges and opportunities for network research. To address these challenges, some extensions
have been developed, such as GrGym (Zubow, Rösler, Gawłowicz, & Dressler, 2021), which is
designed for radio communication, MR-iNet Gym (Farquhar, Kafle, Hamedani, Jagannath, &
Jagannath, 2023) for wireless networks and mobile-env (Schneider, Werner, Khalili, Hecker,
& Karl, 2022) which enables the use of DRL in wireless mobile networks.

Only two tools have been developed to allow a Python agent to interact with a network
simulation: first, ns3-gym (Gawłowicz & Zubow, 2019); and ns3-ai (Yin et al., 2020). Both
are based on the well-known ns-3 network simulator, but they follow different approaches to
implementing a Reinforcement Learning (RL) environment. The main difference is that ns3-ai
makes use of a shared memory pool as a mechanism to connect the ns-3 simulator with the
Python framework (agent and environment). In contrast, the ns3-gym adopts a sockets-based
approach.

However, ns3-gym and ns3-ai are suited for the single-agent DRL model and do not pro-
vide native support for the MA-DRL approach nor an isolation between the agents. Furthermore,
these frameworks are designed for general non-overlay networks and do not support cloud overlay
cases.
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This lack of features limits the study of MA-DRL methods for the DPR problem in both
general non-overlay and cloud overlay cases, which motivates the first goal of the thesis (G.1).

3.3 DRL for packet routing in general non-overlay case

In recent years, works addressing the DPR problem in the general non-overlay case by making
use of DRL have been published in (Boyan & Littman, 1993 ; Mukhutdinov et al., 2019 ; You et
al., 2022 ; L. Chen et al., 2021 ; Manfredi et al., 2021). The seminal paper (Boyan & Littman,
1993) was the first to apply a RL method, the Q-learning (C. J. C. H. Watkins, 1989), to DPR,
giving rise to the Q-routing paradigm. In this work, routing decisions are made based on the
packet destination. The study in (Mukhutdinov et al., 2019) applies the Deep Q-Network (DQN)
framework to this Q-routing by using a Deep Neural Network (DNN) to approximate the Q-value
function, yielding its deep learning version: the DQN routing.

After DQN routing, other proposals of MA-DRL applied to DPR were published in (You et al.,
2022 ; L. Chen et al., 2021 ; Manfredi et al., 2021). These works concentrate on how to improve the
quality of the learned routing from a Machine Learning (ML) perspective (i.e., changing the model,
the input features, or the RL algorithm), neglecting networking aspects as the signalling. DQRC

(DQR with Communication) (You et al., 2022) adds the action history, the future destinations,
and the most loaded neighboring node to the packet destination as input. The neural network
architecture of DQRC also considers an LSTM layer to exploit the new time series features (action
history and future destinations). Authors in (Manfredi et al., 2021) enlarge the input algorithm with
relational features, such as the node buffers’ occupancy, the distance from the routing device to
the packet destination, or the packet TTL field. The values of these features can vary for individual
packets and devices. Still, the features list (and its size) is the same for all the routing nodes, which
helps to improve the generalization among the nodes (the same neural network model is used for
all the nodes). Finally, the work in (L. Chen et al., 2021) adapts the Proximal Policy Optimization
(PPO) (Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017) RL algorithm to the multi-agent
scheme of the DPR problem, yielding the Multi-Agent Proximal Policy Optimization (MAPPO)
algorithm. In MAPPO, the task to learn is considered as to find a routing for a given traffic matrix,
using as input the packet destination and the buffers’ occupancy. Finally, this work also aims to
generalize the routing policies to different traffic matrices (i.e., tasks) by extending MAPPO to the
meta-learning framework.

In all the above-mentioned works, the impact of network control signalling on the training
process is ignored or superficially considered. In the more recent works (L. Chen et al., 2021 ;
Manfredi et al., 2021), the training is centralized in a node that gathers all the past experiences
(forwarding decisions) of all the forwarded packets at all the routers. The model for each routing
node is learned at this central node using this large training set and is eventually pushed to the
routing agents that will forward the packets. The significant overhead associated with these data
transfers is not analyzed, questioning the actual gains of the proposed methods. On the contrary,
the first works (Mukhutdinov et al., 2019 ; You et al., 2022) assumed a distributed training ope-
ration where training data are exchanged only locally between neighboring agents at the cost of
the non-stationarity of multi-agent environments (Littman, 1994), which makes the agents’ po-
licies convergence harder. To tackle this problem, Foerster et al. (Foerster et al., 2017) propose
that the neighboring agents share their policies (models) to stabilize the learning when larger da-
tasets of past experiences are used (i.e., replay memories). However, current DQN routing such



3.4 – DRL for packet routing in the cloud overlay case 25

as (Mukhutdinov et al., 2019) operates by sharing the values of model estimates (value sharing)
instead of sharing the model at every neighboring node (model sharing). Value sharing reduces the
signalling overhead but yields poor results when replay memories are used (known to stabilize the
training of DQN (Mnih et al., 2015)). On the contrary, DQRC (You et al., 2022) shares the neigh-
bors’ routing models (model sharing), but at each training step, which introduces a significant
communication overhead not properly evaluated.

The lack of investigations about the trade-off between performance and communication
between the agents overhead in the general non-overlay case motivates goal G2.1 of the the-
sis.

3.4 DRL for packet routing in the cloud overlay case

Overlay networks can be implemented in different scenarios (Peterson & Davie, 2012), such
as End System Multi-cast, Peer-to-Peer networks, resilient networks, or the Content Distribution
Network (CDN) scenario. The routing protocol chosen depends on these cases. In general, Mul-
tiprotocol Border Gateway Protocol (MP-BGP) is the most commonly used protocol to manage
a company’s overlay network, whereas protocols like Open Shortest Path First (OSPF) or Inter-
mediate System to Intermediate System (IS-IS) can be used to route in the underlay networks.
MP-BGP is an extension of Border Gateway Protocol (BGP) that supports Virtual Private Net-
works (VPN) encapsulation, such as Virtual Extensible LAN (VXLAN), and can share reachabi-
lity information across the overlay nodes. Even though this method is distributed, it suffers from
scalability issues when the cloud overlay nodes are connected in a full mesh. This motivates confe-
derations or route reflectors (RRs) (Bates, Chandra, & Chen, 2000).

Similar to BGP, MP-BGP shares a basic weight to distinguish a preferred path, which does
not consider the rapid changes in traffic, topology, or the Quality of Service (QoS) requirements.
Other methods have been proposed to tackle some of these limitations. Andersen et al. (Andersen,
Balakrishnan, Kaashoek, & Morris, 2001) have optimized the network’s resiliency by detecting
path outages and periods of degraded performance and recovering from them fast. The authors of
(Jones, Paschos, Shrader, & Modiano, 2014) propose an adaptation of backpressure routing for
cloud overlay networks to handle traffic changes and maximize throughput.

In the context of Software-Defined Networking (SDN) (Masoudi & Ghaffari, 2016), cloud
overlay networks can be managed by a centralized controller, which can exploit information col-
lected by the cloud overlay nodes and design custom control plans. Industrial actors, like Cisco,
propose their custom control plan, such as Cisco Overlay Management Protocol (OMP). In the lat-
ter protocol, the routes are computed in a centralized controller (vSmart) and are then propagated
to the cloud overlay nodes (vEdges), which, by default, are connected in a full mesh. In addition
to administrative weights, the controller can use Service Level Agreements (SLA) metrics, like
the latency, jitter, and packet loss for each link (via Bidirectional Forwarding Detection (BFD) pa-
ckets) to choose the overlay link in the case where there is more than one virtual link between two
nodes (i.e., load balancing over virtual links). Other studies, like (Tootaghaj, Ahmed, Sharma, &
Yannakakis, 2020) and (Quang et al., 2022), proposed cloud overlay network management in the
context of Software Defined Wide Area Network (SD-WAN) by formulating the routing problem
given the collected information about the nodes using linear programming.

The use of DRL in the general non-overlay case described in the previous section can be exten-
ded to the cloud overlay networks. Kamri et al. (Kamri, Quang, Huin, & Leguay, 2021) employed
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a single agent DRL to determine the flow splitting ratios for balancing traffic over multiple virtual
links to minimize the latency of tunnels while satisfying capacity constraints. The study held by
Houidi et al. (Houidi et al., 2022) extends the previous one, using MA-DRL for scheduling flows
in an SD-WAN scenario based on their traffic category. Botta et al. (Botta, Canonico, Navarro,
Stanco, & Ventre, 2023) studied the scalability of such approaches in SD-WAN scenarios. All the
above studies treated cloud overlay routing as a flow routing or a load balancing problem over
known paths. Furthermore, the previous works worked under Centralized Traning Decentralized
Execution (CTDE) scheme, where the agents take the actions in a decentralized way, but the trai-
ning relies on a centralized controller or requires some centralization mechanisms (i.e., centralized
reward, gathering global network metrics or paths. . .).

One of the contributions of this thesis (G2.2) is to consider the scenario as DPR problem
in a Distributed Training Decentralized Execution (DTDE), which allows : (i) scalability in
terms of the number of agents (nodes); (ii) high flexibility of the agents, since they can re-
spond fast to the changes of network conditions (traffic and links capacity); (iii) low overhead
compared to a CTDE approach since the agents are allowed only to communicate with their
neighbors.

3.5 Communication between the agents

Most studies applying MA-DRL to networking problems have been devoted to designing ef-
fective architectures to reach the best performances, ignoring the impact of the communication
overhead. However, sharing the DNN model weights like in DQRC (You et al., 2022) can have a
significant impact on the congestion of the network during training and thus must be taken into
consideration when designing MA-DRL models for tackling the DPR problem.

In terms of communication between the agents, we can distinguish two types:

1. The communication needed to train the models, which consists of the agent interacting with
the other agents as part of its environment (retrieving the reward and other information
necessary to compute the loss)

2. The communication established between the agents to enable an exchange of information
between them and prevent the environment from becoming non-stationary (Matignon et al.,
2012), and thus stabilize the training.

The first type of communication is often ignored, considering that the reward and observation
are directly accessible by the agent without any cost. However, this assumption is not valid any-
more in the DPR scheme. In this scenario, each agent retrieves information about its environment
from its neighbors, which requires receiving communication packets.

The second type of communication gained more interest from the ML research community
in recent years. Foerster et al. (Foerster et al., 2016) propose to design a communication channel
between the agents and add the information gathered from the neighbors to the observation. Other
studies like the one held by Zhang et al. (K. Zhang et al., 2018) developed more by restricting
the communication only between the neighbors. Jiang et al. (Jiang, Dun, Huang, & Lu, 2018)
extend this idea by introducing Graph Convolutional Network (GCN), which enables the agents
to follow the changes in the network topology. The problem of non-stationarity is handled, in our
case, by adopting the Q-routing scheme (Boyan & Littman, 1993 ; Mukhutdinov et al., 2019),
where each agent has access to the DNN of its neighbors. However, this introduced a significant
communication overhead, much more significant than the first type of communication.
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One objective of goal G2.2 of this thesis is to address the problem raised by the two
types of communication. We propose a novel communication between agents strategy with
minimal overhead while preserving performance and stability.

3.6 Stability and safety of MA-DRL solutions

Agents often deal with conflicting or heterogeneous goals. In the context of the DPR problem,
each agent seeks to optimize two goals: end-to-end packet delay and packet loss. One approach
to address this issue is to design an appropriate reward function that describes all the goals. The
authors of Q-routing (Boyan & Littman, 1993) and Deep Q-routing (Mukhutdinov et al., 2019)
consider only the delay and ignore the loss. Other studies, such as (You et al., 2022), incorporate
the loss as a pre-defined penalty in the reward. However, the stability of the training depends on
the value of this loss penalty, and setting its value in practice can be challenging. If the loss is
poorly handled, it can also raise a safety problem during the training, resulting in a high packet
loss, which deteriorates the QoS. To address the above issue and properly set the weight for each
goal, Constrained Markov Decision Process (CMDP) (Altman, 2021) can be considered. Those
weights can be set dynamically using a Primal-Dual algorithm (Bhatnagar & Lakshmanan, 2012 ;
Tessler, Mankowitz, & Mannor, 2018). The latest work, Reward Constrained Policy Optimization
(RCPO) (Tessler et al., 2018), was adapted by (Kamri et al., 2021) to find load-balancing weights
that minimize the end-to-end delay while respecting capacity constraints. However, their work
used a centralized single-agent solution in a general non-overlay setting, where the agent can
directly measure link capacities and traffic. This raises a challenge to adopt the RCPO to the
cloud overlay scenario, which differs from the work of Khamri et al. (Kamri et al., 2021) in two
significant ways : (i) multihop packet routing instead of flow routing over known paths; and (ii)
routing in an overlay network, where information about the capacity and occupation of the physical
links is hidden.

One objective of goal G2.2 is to stabilize the learning of the distributed MA-DRL solution
for the DPR in the cloud overlay case. We propose to adapt the RCPO algorithm to this case
and thus provide stability and safety for the model.

3.7 Conclusion

This chapter provides a literature overview of MA-DRL tools and techniques applied to net-
working, particularly focusing on packet routing challenges. Overall, the chapter highlights the
potential of MA-DRL in solving complex networking challenges while acknowledging the need
to overcome communication and stability issues in both general non-overlay and cloud overlay
scenarios. It sets the stage for the rest of the thesis, where those challenges will be addressed.

In the following chapter, we will tackle the first challenge faced when adopting distributed
MA-DRL methods to address the DPR problem, which is the lack of a realistic simulation frame-
work.





CHAPTER 4
Packet Routing

Simulator for
Multi-Agent

Reinforcement Learning

This chapter presents the software contributions of this thesis. It is divided into two parts.

In the first one, we present PRISMA (Alliche, Barros, et al., 2022): Packet Routing Si-

mulator for Multi-Agent Reinforcement Learning. To our knowledge, this is the first

tool specifically conceived to develop and test Multi-Agent Deep Reinforcement Lear-

ning (MA-DRL) algorithms for the Distributed Packet Routing (DPR) problem.

Indeed, no MA-DRL tools have been developed to tackle the DPR problem, forcing

the researchers to implement their own simplified Reinforcement Learning (RL) simu-

lation environments, complicating reproducibility and reducing realism. We developed

PRISMA to overcome these issues and offer the community a standardized framework

where: (i) the communication process is realistically modeled (thanks to ns3); (ii) dis-

tributed nature is explicitly considered (nodes are implemented as separated threads);

(iii) and, RL proposals can be easily developed (thanks to a modular code design and

real-time training visualization interfaces) and fairly compared each other.

In the second part, we present prisma-v2 (Alliche et al., 2023), a new release of PRISMA

for cloud overlay networks. prisma-v2 brings a new set of features. First, it allows the

simulation of cloud overlay network topologies by integrating virtual links. Second, this

release offers the possibility to simulate control packets, which allows for a better eva-

luation of the overhead of the network protocol. Last, we integrate the modules along

with the core (ns-3) to a Docker (Docker, 2020) container so that it can run on any ma-

chine or platform. prisma-v2 is the first realistic overlay network simulation playground

that offers the community the possibility to test and evaluate new network protocols ba-

sed on the MA-DRL scheme.
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4.1 Introduction

In the last years, Reinforcement Learning (RL) (Sutton & Barto, 2018) using Deep Neural
Networks (DNNs) (Bengio, 2009), also called Deep Reinforcement Learning (DRL), has obtained
ground-breaking results in solving highly complex tasks, such as human-like performance results
at Atari video games (Mnih et al., 2015) or beating AlphaGo (Silver et al., 2017) world champion.
In communication networks, DRL has also been widely used in many networking technologies
and problems. One of them is the DPR (Mukhutdinov et al., 2019 ; You et al., 2022 ; L. Chen et
al., 2021 ; Manfredi et al., 2021). In this problem, no complete and centralized view of network
topology and traffic demands is available, which poses a challenge. This is the case in multi-hop
wireless networks (Tassiulas & Ephremides, 1992) or multi-domain optical networks (X. Chen et
al., 2019). More precisely, in the DPR problem, each packet can be potentially routed differently
regardless of the flow they belong to. Besides, the per-packet decisions are made locally by dis-
tributed agents placed at the routing nodes. These agents exploit local information, such as packet
headers, the neighboring nodes, and link states.

Moreover, the DPR can be extended to cloud overlay networks. Overlay networks are virtual or
logical networks built over a physical network (called underlay networks). Overlay networks pro-
vide flexible and dynamic traffic routing between nodes that are not directly connected by physical
links but rather by virtual or logical links that correspond to paths in the underlying network. Those
virtual links can be established using technologies like Generic Routing Encapsulation (GRE), Vir-
tual Private Networks (VPN), or network virtualization. The underlay topology is managed by a
third party, typically one or more network operators. One particular example of overlay networks
is Software Defined Wide Area Network (SD-WAN) (Z. Yang, Cui, Li, Liu, & Xu, 2019), which
fully utilizes the bandwidth of all available transport networks serving one location, like Multiple
Protocol Label Switching (MPLS) fabric, Internet, and 5G, considering each one of them as an
overlay link.

In the context of overlay networks, the problem of routing the traffic between the overlay links,
especially in muti-hop scenarios, becomes challenging since the underlay routing policies are unk-
nown and can involve different protocols, like Open Shortest Path First (OSPF), Border Gateway
Protocol (BGP) and others. The absence of information about the underlay network topology and
routing policies yields the existence of Triangle Inequality Violations (TIV) (Lumezanu, Baden,
Spring, & Bhattacharjee, 2009): it is highly possible to find another path relayed by cloud servers
which has a much lower delay than following the shortest path in the overlay topology. DRL can
also be used to overcome the above challenges in this scenario. The DRL agent can exploit the
information gathered from the network to overcome the lack of knowledge about the underlay
network. An example is the work of Houdi et al. (Houidi et al., 2023). They followed a Centra-
lized Traning Decentralized Execution (CTDE) approach (Oliehoek, Spaan, & Vlassis, 2008) to
optimize load balancing weights for selected overlay paths in the context of SD-WAN.

However, in all the works mentioned above, whether it is in general non-overlay networks or
overlay networks, the proposed DRL approaches were evaluated on ad-hoc discrete-time packet-
level simulation environments (typically implemented in Python). Those simulation environ-
ments were tailored to the assumptions and simplifications made by each study. Namely, these
works do not generally implement the MA-DRL agents as separated threads or processes (although
they claim to be multi-agent studies), and they usually assume that at most one packet per router
can be transmitted at each time step, which introduces an artificial synchronization into the routers’
dynamics. This has two main consequences: (i) a reduced realism of the simulated communication
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process and (ii) an obstacle to fairly comparing this DRL proposals to state-of-the-art approaches
(e.g., Bellman-Ford shortest path routing algorithm (Bellman, 1958)) or even against each other.
This lack of standardized Machine Learning (ML) tools in the networking community (Mestres et
al., 2017 ; Gawłowicz & Zubow, 2019) represents a major issue in guaranteeing reproducibility.
We point out that ML reproducibility issues are becoming a serious concern (Pineau et al., 2021).

Consequently, in the last years, some tools (Gawłowicz & Zubow, 2019 ; Yin et al., 2020)
devoted to the application of RL to networks have been developed. These tools allow Python

RL agents to interact with the popular ns-3 network simulator (nsnam, s. d.). Nevertheless, these
proposals are not natively compatible with the multi-agent setting of the DPR problem, where
agents collaborate to take decisions in a distributed manner.

We first propose PRISMA (PRISMA tool: An open MARL framework for packet routing., s. d.),
an open-source RL simulation environment designed to overcome the aforementioned drawbacks
in the application of MA-DRL to the DPR problem for the general non-overlay scenario. This
simulator serves as a playground where the community can easily validate their own MA-DRL
approaches and compare them in a realistic network simulation.

Then, given the challenging aspect of routing in cloud overlay networks, we propose a new
release of PRISMA, namely prisma-v2 (PRISMA-v2: A Packet Routing Simulator for Multi-Agent

Reinforcement Learning - Extension to CLoud Overlay Networks, s. d.), which offers the possibi-
lity to experiment MA-DRL approaches in the context of cloud overlay networks.

Before diving into the technical details of the two proposed solutions, we present briefly their
features.

4.1.1 Features of PRISMA

— A RL framework designed specifically for considering the distinctive characteristics of
the DPR problem, serving as a playground where the community can easily validate their
MA-DRL approaches and compare them.

— More realistic modeling of the communication process based on: (i) the ns-3 (nsnam, s. d.)
network simulator; and (ii) a multi-threaded implementation for each agent (no artificial
synchronization between the nodes).

— A modular code design, which allows researchers to test their own RL algorithm without
needing to work on implementing the environment.

— Visual tools based on TensorBoard (TensorBoard: TensorFlow’s visualization toolkit,
s. d.) allowing to track network and ML metrics during both the training and testing phases.

4.1.2 Features of prisma-v2

— Cloud overlay topology simulation and control management.

— Ability to add dynamic underlay traffic along with the overlay one.

— High reproducibility of results by supplying containerizing capability using Docker (Docker,
2020).

— Refactoring the code for better readability.

— Improve Tensorboard (TensorBoard: TensorFlow’s visualization toolkit, s. d.) logging
by incorporating both training and testing phases.
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— Implement control signalling packets to simulate the communication between the agents
and evaluate the overhead realistically.

The PRISMA source code is publicly available at (PRISMA tool: An open MARL framework for

packet routing., s. d.). The prisma-v2 (PRISMA-v2: A Packet Routing Simulator for Multi-Agent

Reinforcement Learning - Extension to CLoud Overlay Networks, s. d.) code source is available as
the v0.2 release of PRISMA.

The rest of this chapter is split into two main sections. First, in Section 4.2, we present
PRISMA, our proposed realistic network simulation for experimenting MA-DRL on DRL pro-
blem for the general non-overlay setting. Second , in Section 4.3, we describe prisma-v2, the
extension of PRISMA for overlay networks. Finally, we conclude in Section 4.4.

4.2 PRISMA: A Packet Routing Simulator for Multi-Agent Reinfor-
cement Learning

4.2.1 PRISMA description

In the following, we present the technical details of PRISMA. First, a description of the fra-
mework’s design is given. Then, each feature is explained, ranging from the network definition to
simulation visualization using TensorBoard (TensorBoard: TensorFlow’s visualization toolkit,
s. d.).

4.2.1.1 Framework design principles

We consider the following principles:

1. Training-Forwarding separation: the agent training does not disturb the packet forwarding.

2. Modularity: code easy to reuse and modify.

3. Realistic simulation: implement the agent as close as possible to the real world.

4. Fast prototyping: easy and rapid modifications of the decision model.

5. Online simulation tracking: visualize in real-time the simulation evolution.

For point 1, we choose a multi-threading approach: each node will run on two separate threads
(agents). One is dedicated to the training process, and the other to the decision process. Hence, the
node agents can be trained at a fixed timestamp without disturbing the action computation at each
packet arrival.

For point 2, we built node agents in an object-oriented manner, with separated functions for
each task, so that a user can easily modify the agent’s behavior without affecting the rest of the
code. We document each part of the code and provide scripts for running the simulation.

Point 3 is a very important aspect of the PRISMA design since we need reliable results as close
as possible to the deployment of the agents in the real world. For that, we keep the link propagation
delay and use ns-3 to simulate the network. We have also integrated the action handling into the
environment and added a Poisson random traffic generator.

For point 4 (which is close to point 2), PRISMA is separated into independent modules so
that a user may easily modify the code. For example, changing the neural network or the model’s
inputs will not affect the other parts of the framework.
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Finally, for point 5, we give the user the ability to monitor the simulation progress in real-
time. For example, the user can track some network or ML metrics (e.g., average delay, buffers
occupancy, error progression) to identify training issues in real-time. To do so, TensorBoard
has been integrated into the framework offering network monitoring. In addition, it offers the
possibility to generate custom plots.

4.2.1.2 Feature description

Figure 4.1 depicts the PRISMA code structure, showing in green our contribution over the
existing ns-3 and ns3-gym modules. We describe next these green modules.

Main codeUseAgent class

Stats writer

Poisson  
data generator

Tensorboard 
server 

Tensorflow
summary

writer

Use

Arguments
parserUse Use

Existing code

Our contribution

C++ codePython Code

OpenAI
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network

simulator
MARL lib Action and

observation
handler

Use

Use

ZMQ sockets

Node 1
Node 1Node 2Node 

 forwarder
thread

ns3-gym 
 Interface

Node 1
Node 1Node 2Node 

trainer  
thread

Multi-threaded agent instances

Use

Run

Figure 4.1 – PRISMA code structure, separated into two parts: Python code and C++ code,
highlighting our contribution in green. The figure shows the multi-threaded approach, where each
node agent is composed of two threads: one forwarding the packets and another training the model.

Main code. The core of the tool enables to:

— Gather the user arguments from the Arguments parser and manage the simulation
parameters.

— Instantiate the agents from the Agent class and create the threads for each node.

— Run ns-3 simulator and TensorBoard server in separate processes.

— Log the simulation statistics using the Stats writer.

— Clean the environment when the simulation is done.

Agent class. This class represents a node agent containing two main methods:
run_forwarder and run_trainer. The first one interacts with the ns3-gym environ-
ment as follows: (i) retrieve the observations, (ii) take action, (iii) compute the reward, (iv) store
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the states’ transitions in the experience replay buffers, and, (v) update the information about
the environment. The second method trains the model, performing a gradient descent step. The
run_forwarder also tracks the packets using their IDs to build the target value Y Q

n at the
node n, since the reward r, the next hop agent observation on′ and the next hop agent Q-value

Qn′(·; θn′) are associated with the packet ID.
Multi-threaded agent instances. These are Agent class instances. Each one
corresponds to a network node. They share different information among themselves and with the
Main code using static variables. As aforementioned, we decide to allocate two threads for
each instance: one calling run_forwarder method and the other one calling run_trainer
method to guarantee that training and forwarding can take place separately.
Stats writer. This module is called by the Main code and Agent class instances to
log information about the environment or the training progress. The following variables are tra-
cked to be visualized using TensorBoard: average packet delay, loss ratio, Temporal Difference
error at each agent, replay buffers’ occupancy at each node, exploration ratio for each node, the
number of new arriving packets, the number of delivered packets, and, the number of buffered
packets. We also add the ability to define custom plots and to compare between execution’s
hyperparameters.
Argument parser. This module is used to retrieve and parse the arguments given by the user
in the script call.
Poisson traffic generator. This is a ns-3 application class that generates random
packets following a Poisson process at each node. The average rate is retrieved from a given traffic
matrix, and the packet length is fixed to a given value. The application is not installed in the node
itself but in a virtual one directly connected to the real node. To be able to transfer the packet
from the generator to the network, we have created a corresponding virtual node that is directly
connected to each node. The virtual node generates the packets and sends them to the real node.
Action and observation handler. The action an and the observation on are defined as
the output network interface index and the packet destination, respectively. For the local observa-
tion on, other data, such as the buffer occupancy of the outgoing interfaces, could be considered.
This module, implemented as a ns-3 handler, retrieves on from the network simulation when
a new packet arrives at the node n and forwards the packet to the output interface an. If the
buffer interface is full, then the packet is discarded. This first version of PRISMA provides an
observation containing the destination of the packet and the occupancy of each node’s network
interface buffers (in number of packets or bytes). We also provide the packet ID in the info field
so that we can track each packet.
MARL lib. With this module, we extend the OpenAI Baselines library (OpenAI Baselines:

high-quality implementations of reinforcement learning algorithms, s. d.) to the MA-DRL ap-
proach. The MARL lib provides the tools for defining, training, and testing an agent. It contains
the following modules:

— models: a module containing the Deep Neural Network (DNN) models.

— Replay buffer: a class handling the experience replay buffer. It contains methods like
add, sample or save.

— agent: a class defining an Deep Q-Network (DQN) agent in the context of DPR. It contains
methods like step, train, and sync neighbor target neural network

— utils: a set of other useful functions like save_model and load_model.
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4.2.2 Usage

We now describe the parameters of PRISMA, and we present the guidelines for using the
framework.

4.2.2.1 Framework parameters

PRISMA parameters are separated into the following groups:

— Global simulation arguments: it contains the simulation time, the base port, the seed, and
whether to run training.

— Network parameters: it contains network attributes like the path to the adjacency matrix, the
maximum output buffer size, or the load factor.

— DRL agent arguments: it concerns the agent’s training and contains parameters like the batch
size, the learning rate, or the training time step.

— Session logging arguments: it contains parameters about the session, like the name of the
session and the path to store the result of the simulation.

— Other parameters: some misc arguments like whether to run a TensorBoard server and
its port number.

4.2.2.2 Usage guide

Before using the framework, the user must install the ns3-gym and the Python dependen-
cies. To do that, we provide installation files.

The main prisma folder is composed of four folders: source, ns-3, examples, and
scripts. The source folder contains the MARL lib, the agent class, and utils mo-
dules. The ns3 folder contains the ns-3 files: (i) the Poisson data generator, and; (ii)
the ns-3 simulation itself (sim.cc). The latter file creates and runs the simulation scenario de-
fined by the examples folder files, which define the network topologies and traffic matrices.
Scripts for launching the simulations of the example (Section 4.2.3) are provided in the scripts
folder.

The DNN model can be changed in models.py. The reward, observation, and action
definitions can be modified in the methods _get_reward (in agent_class located in
source.py), Get_Observation (in packet-routing-gym.cc) and
Get_action (in packet-routing-gym.cc), respectively. Finally, a user may test the fra-
mework by calling main.py with the corresponding arguments. Calling the latter file with the
"–help" argument will show all the possible parameters.

4.2.3 Illustrative example

We end this section by presenting an illustrative example. This example aims to show how
PRISMA can be used to assist the training and testing of a DRL algorithm to solve the Distributed
Packet Routing problem. Namely, we make a Deep Q-Network routing model (Mukhutdinov et
al., 2019) learn the Shortest Path (SP) routing in backbone network scenarios. The tool can be
applied to more challenging ad-hoc wireless networks by modifying the sim.cc file and properly
adapting the DQN routing model.
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4.2.3.1 Simulation settings

We ran PRISMA in two different machines: (i) a Dell Precision 7920 workstation equipped
with an Intel Xeon Gold 6230R Dual CPU (26 Cores, 2.1-4.0GHz Turbo, 128 GB RAM) with
2 NVIDIA RTX A5000 GPUs; and, (ii) an Intel Inspiron 14 laptop equipped with an Intel Core
i7-8565U CPU (Quad Core, 1.80 GHz, 8 GB RAM) with one NVIDIA GeForce MX130 GPU.

The DRL agent is implemented in TensorFlow (TensorFlow: An end-to-end open source

machine learning platform, s. d.) as a three-layer neural network in models.py with a first
dense layer of 32 nodes, then two layers of 128 nodes each having a Leaky ReLU activation
function. This model considers only the packet destination as input and outputs the estimated end-
to-end packet delay based on the selected network interface. The action is retrieved by applying
an argmin function to the output layer. In the examples folder, we define the two network
topologies considered in this experiment: Abilene (11 nodes) and Geant (23 nodes), as well as
the traffic matrices (randomly generated using a uniform distribution). We fix the packet size to
512KB, the link propagation delay to 2ms, and the maximum output buffer length to 30 packets.
We chose the reward rn (the next hop packet delay) to be one, which means that the agent policy
will aim to minimize the total number of hops from source to destination. These parameters,
along with the model hyperparameters, are set as arguments when calling main.py. We expect
that DQN-routing will have a similar performance to Shortest Path routing since both algorithms
minimize the number of hops taken by a packet to reach its destination.

4.2.3.2 Model training

We show how the training process is performed successfully. The model is trained at each 7ms
(network simulation time) with a learning rate of 0.001, a batch size of 512, a load factor of 50%,
and a γ of 1. The duration of the simulation time for training was set to 30 seconds. Moreover, we
use an ϵ-greedy approach (ϵ decays from 1 to 0.01) to move from exploration to exploitation.

Figure 4.2 – Screenshot of TensorBoard interface. The x − axis represents the time in ns,
and the y − axis represents the variables tracked during the simulation. For the training metrics
(bottom subfigures), each curve corresponds to an agent.
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We can watch the training progress thanks to TensorBoard visualization tools (see Fi-
gure 4.2). Figure 4.3 shows in detail the most relevant metrics to watch the learning progress
for Abilene and Geant. Figures 4.3a and 4.3b show the average cost over the simulation time. The
cost is computed by dividing the sum of the rewards over time by the total number of packets.
Since the reward is one at each hop, the cost represents the average hop count per packet. We
can observe an early cost increase due to the initial exploration: the network is flooded with pa-
ckets needing many hops to arrive at their destinations since the forwarding decisions are mainly
random. Afterward, we move progressively to the exploitation phase, where the decision comes
from the DNN model. As we can see, the packets reduce the hop count to reach their destination
since model decisions improve. Figures 4.3c and 4.3d show the Temporal Difference (TD) error
for each node over the simulation time. We can observe that this error is decreasing, which means
that all the agents are converging (learning) to a feasible routing policy (packets are not forwarded
indefinitely). Therefore, the model could learn a SP routing.
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Figure 4.3 – The average cost per packet and TD errors at each node during training for Abilene
(rightmost subfigures) and Geant (leftmost subfigures) topology.
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4.2.3.3 Model testing

In this part, we evaluate the performances of the trained DQN-routing agents at different traffic
intensities (low, medium, high, and very high traffic, in which the load factor was 50%, 100%,
150%, and 200%, respectively). In Figure 4.8, we compare the results with SP routing in terms of
the average end-to-end delay and the packet loss ratio. For low and medium traffic rates, DQN-

routing presents the same performance as SP since both methods use the shortest path decision
policy, which is sufficient to handle all the packets at this rate. For high traffic rate, DQN-routing

outperforms SP routing in terms of the end-to-end delay for both topologies; and, in terms of loss

ratio, for Abilene. On the contrary, SP routing is slightly better in loss ratio in Geant. Anyway,
these differences are not significant since we intend to learn a routing close to the SP, which is the
case.
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Figure 4.4 – Abilene’s end-to-end delay
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Figure 4.5 – Geant’s end-to-end delay
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Figure 4.6 – Abilene’s packet loss ratio
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Figure 4.7 – Geant’s packet loss ratio

Figure 4.8 – The average end-to-end delay per arrived packet and packet loss ratio for different
traffic rate intensities for Abilene (right row) and Geant (left row) topology
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4.3 prisma-v2: Extension to Cloud Overlay Networks

4.3.1 prisma-v2 Structure

prisma-v2 allows the usage of packet routing in overlay networks. The simulation framework
creates two topologies (based on two adjacency matrices): a physical topology containing the phy-
sical links between the nodes and an overlay topology where some nodes are connected through
virtual tunnels. This overlay topology is the environment used to define the routing policy. The
main features of this release are illustrated in Figure 4.9.

In the following, we will explain the different components of prisma-v2. Based on Figure 4.9,
we can distinguish two parts: ns-3 part and Python part. We first present the ns-3 part, then
the Python part, and finally, we will present the changes in the Tensorboard logger.

4.3.1.1 ns-3 part

The prisma-v2 allows controlling the packet routing policy in overlay networks and also simu-
lating control signalling packets. The simulation framework creates two topologies: an underlay
topology containing the physical links and an overlay topology where some nodes are connected
through virtual tunnels. This overlay topology is the environment used to define the routing policy.

We implemented three types of control signalling packets: the target update packets genera-
ted at a fixed time interval and used to simulate the transfer of neural network weights between
neighbors; the replay memory update packets generated as a response to data packets, to transport
the new observation and the reward; and the tunnel delay estimate packets created according to a
parameterized number of data packet transmissions and used to collect the overlay link’s delay.

For managing the data and control signalling packets, we developed the class
PacketManager, inherited by five specific packet manager classes.

The SmallSignallingPacketManager manages the arrival of replay memory update

packets. The class extracts the overlay link’s delay measured during the sending of the data packet.
The BigSignallingPacketManager manages thetarget update packets, ex-

tracting the information about the neural network weights shared by a node. The
PingForwardPacketManager receives a tunnel delay estimate packet sent and calculates
the overlay link’s delay in the overlay scenario. The PingBackPacketManager receives the
response of the tunnel delay estimate packet containing the tunnel delay and stores it.

The DataPacketManager manages the data packets. It collects the observation informa-
tion to transmit to the agent. Furthermore, it sends the packet for the next hop based on the agent’s
action. This class communicates with the ComputeStats class, which is responsible for the sta-
tistics of the network simulation, such as the number of injected packets by the node, the number
of lost packets by the node, and the end-to-end delay of the arrived packets.

4.3.1.2 Python part

The left side of figure 4.9 presents the Python code structure of prisma-v2. Like the first
version, the program is launched by calling main.py with the simulation arguments.

Packet Forwarder agent objects are instantiated from the Forwarder class stored in
forwarder.py. In contrast, trainer daemon agent objects are instantiated from the Trainer
class stored in Trainer.py. Both classes are children of the Agent class stored in agent.py.
The agent class supplies the blueprint for the two child classes. It implements the static method
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init_static_vars. This method sets the static variables used to share information between
the different agents and the main program.

The Agent class implements the methods run, reset, and step, which will be over-
ridden by the children’s classes. For the Trainer class, the run method will launch the daemon
main loop that checks if it is the time to train and calls the step method to run a training step. For
the Forwarder class, the run method will start the agent episode and connect it to the network
node in ns-3. It calls the step method to run a transition (waiting for a packet to arrive at the
node, taking an action using the take-action method, and handling the information returned
as a response to the action). We use the field info to send relevant information collected from
ns-3 to the python agent, like the packet’s size or the environment statistics. This field is trea-
ted by treat-info method of the Forwarder class. The reset method of the Forwarder
class will reset the agent environment before starting a new episode.

Along with the agent’s classes, we provide the DQN_Agent class in agent.py, which pro-
vides the necessary methods to use an adaptation of DQN model for the Distributed Packet Routing
problem like in (You et al., 2022) and (Alliche, da Silva Barros, et al., 2022). This class relies on
the files replay_buffer.py and models.py for the experience replay buffer and the neural
network architecture, respectively.

4.3.1.3 TensorBoard logger part

In the first release, we used to compute many network metrics (like the delay and loss) in the
Python part, which we found is not optimal regarding the realistic claims of PRISMA. In prisma-
v2 release, the network metrics (end-to-end delay, packet loss, control overhead) are computed
by the ns-3 part and transmitted to the python for being displayed in the TensorBoard

logger. Moreover, the TensorBoard displays in real-time all the metrics to the user during the
simulation.

We also improved the logger to automatically store the train and test stats in the same instance.
The logs are saved in the session folder, given by the argument session_name, respectively.

4.3.2 Usage

In this subsection, we will go through different parts of the code, and explain the basic use cases
that a user may encounter to launch a simulation.

4.3.2.1 Installation

After cloning the repository, the user can run prisma-v2 by three different ways:

— Run locally by installing the required packages and dependencies by calling install.sh.

— Create a local docker image by running the docker build command on the root folder. This
is possible since we provide a docker definition file. This will copy all the folders in the
image so that the user may run prisma-v2 by calling the docker run command and binding
the results’ folder to be able to retrieve the results in the host machine.

— Pull a docker image provided in Docker Hub. This image only contains the Linux environ-
ment with the requirements installed, so the user needs to bind the prisma-v2 folder to the
image.
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We have provided an illustrative example in the readme.md file, guiding the user from the ins-
tallation to training a Multi-Agent Deep Q-Network (MA-DQN) model to solve the DPR problem
in an overlay network.

4.3.2.2 Use cases

Modifying or Adding parameters.
Like the previous version, the parameters are organized by groups and can be visualized by calling
“python3 main.py –help”. They are accessible in the file argument_parser.py, where the
user can add a new parameter or modify an existing one. In the find run_ns3.py, we parse the
arguments to ns-3, so the user can modify this function to pass arguments to the NS-3 part.
Changing the DRL algorithm.
The state can be modified for in GetObservation method of the DataPacketManager.
The user may modify the DRL model input shape to match the new observation shape. Pre-defined
neural network models are already implemented in models.py, and a DRL algorithm is imple-
mented in the DQN_Agent class. The user may change the latter class to change the learning
algorithm.
Sharing the information between the agents.
The agent forwarder and trainer objects share information with the main process using the Agent
class static variables. In those variables, we can find shared attributes between the agents like the
DQN_Agent objects and pkt_tracking_dictwhich tracks transiting packets in the network.
Changing the topology settings.
To change the overlay topology configuration, the user may change some parameters:
physical_adjacency_matrix_path,
overlay_adjacency_matrix_path and map_overlay_path for the paths to the
underlay topology’s adjacency matrix file, the overlay topology’s adjacency matrix file, and
the map between the indices of overlay and underlay nodes file, respectively; The traffic in
underlay topology is handled, by default, using the OSPF protocol, which is used for compu-
ting the routing tables. Changing the routing policy is possible by the native ns-3 method
RecomputeRoutingTables.
Customize control packets.
For customizing the control packets, the user may create a new class that inherits the class
PacketManager. For example, The receivePacket method recovers the packet informa-
tion at its arrival, and the method GetInfo encapsulates the useful collected information to
send it to the agent. For generating control signalling packets, the user may be inspired by the
methods sendSmallSignalingPacket and sendPingForwardPacket, providing the
packet size and the information which the control signalling packet should encapsulate. For the
target update packets, the parameters syncStep and bigSignalingSize contain the period
of time for sharing the model weights and the weights’ total size, respectively. For creating new
control signalling mechanisms, the user may be inspired by the current mechanisms developed in
prisma-v2.
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4.4 Conclusion

In this chapter, we first presented the PRISMA tool, which is, to the best of our knowledge, the
first DRL framework specifically devoted to the DPR problem. PRISMA aims to provide a play-
ground for researchers interested in applying this machine learning paradigm to this challenging
problem, allowing fast prototyping and benchmarking. We illustrated its main functionalities by
applying the tool to learn in a distributed manner a SP routing policy in two backbone networks.

Then, we presented prisma-v2, a new release of PRISMA, extending this tool to cloud overlay
networks. This version adds a new set of features, like offering the possibility to add a control
signalling packet and measure the impact of having communication between the agent, and so,
evaluate the real cost of implementing MA-DRL solutions for DPR in overlay networks.

By providing these two contributions, we can realize realistic simulation and evaluate
MA-DRL methods for the DPR in both overlay and general non-overlay network scenarios.

In the next chapter, we will tackle the second scenario, which is the general non-overlay net-
works. In this case, we evaluate the existing solutions in terms of performance and the overhead
due to the communication between the agents. We propose a distributed MA-DRL framework to
improve those solutions.



CHAPTER 5
Distributed

Learning-based Packet
Routing in general

non-overlay networks

In recent years, several works have studied Multi-Agent Deep Reinforcement Lear-

ning (MA-DRL) for the Distributed Packet Routing (DPR) problem. Unfortunately, these

previous works focus on an ideal scenario where the impact of control signalling is

neglected, and network simulation is tailored to simplistic assumptions. This chapter

presents the first experimental investigation of control signalling mechanisms for distri-

buted learning-based packet routing. We rely on PRISMA, our open-source simulation

ns-3-based module.

First, we compare two signalling mechanisms between agents (value sharing and mo-

del sharing) used in the literature. We investigate the net gains considering off-band

signalling and show that routing policies close to those provided by an oracle with full

knowledge of traffic and network topology can be discovered with a control overhead

of 150 % with respect to injected data packets if neighboring agents share their Deep

Neural Network (DNN) models. We discuss the generality of our results to underline the

importance of assessing net gains of MA-DRL-based routing.

Then, we propose a novel signalling mechanism called logit sharing. This mechanism si-

gnificantly reduces the communication overhead while maintaining performance similar

to model sharing.

Lastly, we reduce even more the communication overhead by implementing a dynamic

control packet sending between the agents. In that manner, the agents will only commu-

nicate when necessary, avoiding unnecessary control packet exchange.

45
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5.1 Introduction

After the breakthrough results obtained by Deep Reinforcement Learning (DRL) (Bengio,
2009) in solving highly complex tasks (Mnih et al., 2015), DRL has started to be ap-
plied to communication network problems. One of them is the Distributed Packet Routing
(DPR) (Mukhutdinov et al., 2019 ; You et al., 2022 ; Manfredi et al., 2021 ; L. Chen et al., 2021).
This is a challenging problem because there is no complete and centralized view of network to-
pology and traffic demands (e.g., multi-hop wireless networks (Tassiulas & Ephremides, 1992) or
multi-domain optical networks (X. Chen et al., 2019)). In the DPR problem, distributed agents
make per-packet forwarding decisions locally, exploiting local information, such as packet hea-
ders and neighboring node states. Nevertheless, these works (Mukhutdinov et al., 2019 ; You et al.,
2022 ; Manfredi et al., 2021 ; L. Chen et al., 2021) focused on improving the learning performance
by modifying the training mechanisms and the model design, neglecting the impact of control
signalling on the routing performance. Indeed, the distributed multi-agent setting of the DPR pro-
blem imposes a non-negligible level of communication between the neighboring agents during the
training phase, which is meant to run continuously or frequently to adapt the routing policy to
any network change (traffic, topology). This information exchange constitutes the control signal-
ling, and it introduces a certain level of overhead. Thus, a trade-off appears between this overhead

and the quality of the learned routing: a minimal amount of signalling (overhead) is required to
make the agents learn a routing policy at the cost of increased bandwidth requirements. On the
other hand, an excessive control overhead could slow down data packets and impede the learning
process.

This chapter focuses on the study and the reduction of communication overhead between the
agents in the general non-overlay scenario. It hence has two parts. The first one focuses on the
impact evaluation of this control signalling. To perform the above-mentioned impact evaluation,
a realistic modeling of the communication is necessary, in contrast to the simplified simulations
performed with ad hoc network simulators in the previous works. For this reason, we use our
PRISMA tool, detailed in the previous chapter.

In the MA-DRL framework, neighboring agents collaborate by exchanging information, par-
ticularly the estimated packet end-to-end delay. In the literature, we can distinguish two ways of
sharing this information: one is to share the current value of the estimate (value sharing), and the
second one is to share the estimating model itself (model sharing).

The second part of this chapter proposes two novel methods to reduce the communication
overhead between the agents while maintaining the performance. The first method is called logit

sharing, which is a novel way to share the estimated packet end-to-end delay. It takes the best
from both value sharing and model sharing. The second method consists of dynamically sending
control packets by allowing each agent to compute the relevancy of a control packet and decide
whether to send it or not. Both methods are evaluated and compared to value sharing and model

sharing using prisma-v2.
To summarize, the contributions presented in this chapter are listed as follows:

— To the best of our knowledge, we present the first experimental investigation of control si-
gnalling mechanisms for distributed learning-based packet routing. We rely on PRISMA,
which enables testing MA-DRL-based routing in a reproducible and realistic man-
ner (Alliche, Barros, et al., 2022).

— We compare two signalling mechanisms under the DQN routing (Mukhutdinov et al., 2019)
framework, where routing nodes periodically communicate copies (target) of their Machine
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Learning (ML) models to their neighbors (named model sharing) or only communicate de-
lay estimates (named value sharing).

— We investigate net gains considering off-band signalling and show that (i) model sharing

between agents is necessary to find routing policies close to the optimal routing of an Oracle
with perfect knowledge of topology and traffic, but at the cost of possibly significant control
overhead during training (150 % of extra traffic in the considered network settings with
respect to data traffic); and (ii) value sharing incurs in much more reduced overhead (10 %),
but barely improves a Shortest Path (SP) routing policy. We discuss the generality of our
results to underline the importance of assessing net gains of MA-DRL-based routing.

— We propose a novel signalling mechanism (named logit sharing), which takes the best of the
two signalling mechanisms: minimizing the communication overhead to a level comparable
to value sharing while keeping the high performance as model sharing.

— We implement a dynamic control packet mechanism, where the agents can decide whether
to send the control packet or not based on the relevancy of that packet.

— We evaluate both methods, and we show that logit sharing, along with the dynamic control
packet mechanism, keeps similar performance to model sharing while reducing the commu-
nication overhead by up to 86% compared to model sharing.

Section 5.2 evaluates the impact of the control signalling by comparing two signalling mecha-
nisms between agents (value sharing and model sharing) used in the literature. First, we present
a formulation of the problem (Section 5.2.1) and propose an oracle routing policy based on a
Minimum Cost Multi-Commodity Flow (MCF) formulation (Section 5.2.2). Then, the MA-DRL
framework and the control signalling mechanisms are described in Section 5.2.3 and Section 5.2.5,
respectively. Simulation results are analyzed in Section 5.2.6 and discussed in Section 5.2.7.

In Section 5.3, we propose a novel signalling technique, logit sharing that aims to overcome
the limitations of the techniques evaluated in Section 5.2. Additionally, we propose a dynamic
control packet-sending mechanism, which is explained in Section 5.3.2. Then, the two proposed
methods are evaluated in Section 5.3.3 and discussed in Section 5.3.4.

Finally, Section 5.4 concludes the chapter.

5.2 Impact Evaluation of Control Signalling onto Distributed
Learning-based Packet Routing

5.2.1 Network Model

Let G(N , E) be a directed network graph, whereN is the nodes set and E is the unidirectional
links set. A link (a, b) ∈ E initiates at node a, terminates at node b and has a capacity of C traffic
units (i.e., Kbps or packets/sec). The incoming and outgoing neighbor nodes of the node n ∈ N
are denoted asN in

n andN out
n , respectively. The traffic matrixH = ¶hsd, (s, d) ∈ N ×N♢ counts

up the average volumes hsd in traffic units (i.e., Kbps or packets/sec) of packet flows between
the node pairs (s, d) ∈ N × N . Each node n ∈ N is a router equipped with ♣N out

n ♣ outgoing
network interfaces. Each interface i ∈ ♣N out

n ♣ has its buffer queue of size B. The queue follows
a FIFO (First-In First-Out) policy. Hence, if a packet arrives at a full buffer, it is rejected (i.e.,
lost). Otherwise, the packet is admitted, eventually getting to the buffer head, and then forwarded
to a next-hop node n′ ∈ N out

n . This procedure is repeated at each hop until the packet finally
reaches its final destination d (or is lost elsewhere en route). Table 5.1 gathers the notation.
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Name Description

xsd
ab ∈ [0, 1] Fraction of the packet flow between the node

pair (s, d) to be forwarded via the link (a, b).
ysd ∈ [0, 1] Fraction of the packet flow between the node

pair (s, d) that is rejected.
hsd ∈ R≥0 Average flow volume between the node pair

(s, d) in traffic units (i.e., Kbps).
C ∈ R≥0 Link capacity in traffic units (i.e., Kbps).
B ∈ R≥0 Buffer size in data units (i.e., Bytes).
M ∈ R≥0 Large number to penalize a loss more than

a large delay.

Table 5.1 – General non-overlay model notation

5.2.2 An Oracle Routing Policy

In this subsection, we propose an oracle policy to be used as a routing optimality benchmark.
We devise a centralized version of the DPR problem, where an Oracle observer (different from the
routing nodes) has a full knowledge of the network topology and the traffic matrix. This centralized
version is formulated as the Minimum Cost MCF (Min Cost MCF) problem solved by the Linear
Programming (LP) model (5.1). The optimal solution of this model provides a lowest-cost routing
policy, which we call oracle routing in the remainder of this chapter.

min
¶§,†♢

∑︂

s∈N
d∈N

hsd

∏︁

∐︂

∑︂

(a,b)∈E

xsd
ab + M · ysd

∫︁

ˆ︁ (5.1a)

s.t.
∑︂

a∈N in
n

xsd
an −

∑︂

b∈N out
n

xsd
nb =

∏︂

⋁︂

⨄︂

⋁︂

⋃︂

−1 + ysd, if n = s
1− ysd, if n = d

0, otherwise

s ∈ N , d ∈ N , n ∈ N (5.1b)
∑︂

s∈N
d∈N

hsd · x
sd
ab ≤ C, (a, b) ∈ E (5.1c)

xsd
ab ∈ [0, 1], s ∈ N , d ∈ N , (a, b) ∈ E (5.1d)

ysd ∈ [0, 1], s ∈ N , d ∈ N (5.1e)

The objective function (5.1a) minimizes a twofold objective: (i) primarily, the total amount of
rejected traffic

√︂

hsd · ysd; and, (ii) secondly, the average hop count
√︂

hsd

√︂

xsd
ab. Optimizing (ii)

minimizes the average end-to-end delay in this model. The flow conservation constraints (5.1b)
ensure that all the traffic admitted at the source is routed until the destination. The constraints (5.1c)
limit the link capacity. Finally, the constraints (5.1d) and (5.1e) define the lower and upper bounds
of the variables.
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The Oracle policy is not necessarily optimal for the DPR problem since it was computed to
solve a centralized and flow-based version of the routing problem. The LP model (5.1) works with
averaged packets’ flows and is unaware of the traffic dynamics at the packets’ scale (e.g., a burst
of packet arrivals whose data rate exceeds nominal link capacities C). Hence, a per-packet routing
algorithm could find policies exploiting outgoing buffers, which are unknown for the LP mo-
del (5.1), able to beat this Oracle routing in some circumstances (as we will see in Section 5.2.6).
Anyway, we use it since it constitutes a high-quality benchmark that is difficult to attain without a
global view of the exact network topology and the precise traffic matrix.

5.2.3 The DPR Problem and our DQN routing Algorithm

As described in the Background section 2.3, the DPR problem consists of deciding, at each
node, the output port (next hop) for each upcoming packet. The objective is to find a global routing
policy that minimizes the end-to-end delay for all the packets over the network.

Let N be the set of routing nodes (agents), where each agent n has its own local observation
space On and its own action space An. When a new packet arrives at time t at the node n, the
node n selects as action an the next hop node n′ to forward the packet to. This decision is taken
depending on the local observation of the router on.

As a consequence of the decision, the agent n receives a reward rn′ from the next hop node
n′: the next-hop packet delay (i.e., the packet delay to travel from n to n′). Hence, a transition is
made to a new state. When the packet arrives at a node, this procedure is repeated. The action an

is selected to minimize an estimate of the expected end-to-end packet delay from the node n to its
final destination.

In the next paragraphs, we detail (i) the node observation representation, (ii) the node action,
and (iii) the reward definition.
Node observation.
The node observation On ∈ On is represented as on =

)︄

d,
}︄

bi, i ∈ 1 . . . ♣N out
n ♣

⟨︄)︁

. This is the
concatenation of two components: (i) the current packet destination d and (ii) the buffers’ occu-

pancy bi, in Bytes, of each node interface i at the node n.
Node action.
The node action an ∈ An is the choice of the out-neighbor n′ ∈ N out

n of the node n (i.e., the
outgoing interface to this next hop node n′) to forward the packet to the buffer head.
Reward.
The reward rn′ is the next-hop packet delay, defined as the time required by the packet to travel
from the buffer tail of n up to the buffer tail of the next hop node n′. Then, it is computed as
rn′ = l + q, where: (i) l denotes the link transmission delay, the transmission latency in the link
connecting n and n′; and, (ii) q refers to the queuing delay, the time spent by the packet in the
outgoing buffer of node n taking to n′. If in the next hop node n′, the outgoing buffer where the
packet should be forwarded is full, the packet is lost, and rn′ is considered infinity since the packet
did not arrive at n′. In practice, we use the worst-case end-to-end delay: ♣N ♣×(B+1)

C
, that is, the

delay of traversing over the ♣N ♣ nodes when all the output buffers are full. Thus, the reward can be
measured in time units (typically, in seconds). This reward definition allows the end-to-end delay

estimate Qn(·; θn) to account for both buffer delays and packet losses, but giving more weight
to the packet losses to favor its minimization in priority, similarly to the LP model of the oracle

routing (see Section 5.2.2).
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5.2.4 Neural Network Architecture

In this subsection, we detail the architecture of the neural network Qn(sn, an; θn), which is
depicted in Figure 5.1. This architecture is inspired by (You et al., 2022).

The input layer is split into two parts according to the description of the node state sn in Sec-
tion 5.2.3: (i) the packet destination, as a ♣N ♣-element vector in one-hot encoding (i.e. the position
corresponding to the destination is set to one, the rest to zero); and, (ii) the buffer occupancy of

outgoing buffers of node n, as an ♣N out
n ♣-element vector, whose values are layer normalized.

The first hidden layer is also split into two parts, each being a 32-neuron fully connected
layer fed by their respective input. Afterward, their outputs are concatenated before feeding two
64-neuron fully connected layers.

Finally, the output layer is fully connected with as many neurons as the node action space (i.e.,
out-degree ♣N out

n ♣ of n). The value of each output neuron is simply the estimate of the Q-value

Qn(sn, an; θn). All the activations are ELUs (Exponential Linear Units).

Dense  
(32)  

+
ELU

Packet
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in one hot  

(1, N)

Concatenate 
(64)

Dense  
(64)  

+  
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+  
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buffer  
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Dense  
(32)  

+  
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Figure 5.1 – NN layers architecture

5.2.5 MA-DRL Signalling: value sharing or model sharing

DPR consists of forwarding decisions taken in a distributed manner without cooperation bet-
ween the routing nodes. However, with MA-DRL, control signalling exchanges are necessary to
enable agent training since agents need to share their past observations (i.e., experiences), network
metric estimates, and ML models before the training takes place.

We consider two agent information-sharing techniques proposed by the literature: (i) value

sharing and (ii) model sharing. The main difference between the two techniques is how the loss
function (defined in Equation (2.9)) is computed during the training phase. We present in the
following each of these techniques along with the control packets associated with it.

5.2.5.1 Value sharing

Value sharing was used by Mukketdidinov (Deep Q Routing) (Mukhutdinov et al., 2019). In
this technique, the target value τn′ is collected directly from the neighbor node n′ control packet
that we refer to as replay memory update packet. These packets are used to complete the entries
in the local replay memory of each agent with the neighbors’ information since a state-action
transition (on, an, rn′ , τn′ , f) involves two nodes: the forwarding node n and the next hop n′. More
precisely, when a node n forwards a data packet to the next hop n′, the corresponding observation-
action pair (on, an) is stored in the replay memoryMn. Once the data packet arrives at n′, a replay
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memory update packet is generated and sent back to n. This packet contains the tuple (rn′ , τn′ , f)
where rn′ corresponds to the reward observed at the node n′, which is the next hop delay for the
packet to go from the node n to the next hop n′. τn′ is the estimate of the remaining end-to-end

delay computed by the next hop agent n′ at the reception of a packet at n′ as Equation (2.10).
f indicates whether the packet arrived at its final destination. These next node information are
required to build the current entry in the replay memory. This communication is needed during the
training phase, adding a moderate overhead per data packet.

5.2.5.2 Model sharing

Model sharing is a term coined by us in (Alliche, da Silva Barros, et al., 2022), but it was
first used in DQRC (You et al., 2022). In this technique, instead of collecting the target value
τn′ from the neighbor n′, the node n computes it locally as in the Equation (2.10). For that, the
node n needs a copy of the next hop agent DNN Qn′(·, on′ ; θn′). We refer to this copy as target

network, and we denote it as Q̂n′(·; θ−
n′). Thus, the model weights θn′ have to be sent from n′ to

n periodically to update this target network, adding a heavier control overhead with respect to the
one induced by the replay memory update packets. We call the packets carrying the model weights
target update packets. The time between two consecutive target updates is the target update period

U , which controls the overhead level of the model sharing method. Additionally, the node n needs
the observation on′ at node n′. This is added to the replay memory update packets by replacing the
τn′ values used in value sharing.

Figure 5.2 depicts the control packets sent for the two techniques when a data packet is re-
ceived by the next hop node n′ coming from a node n. The replay memory update packets are
represented in yellow and are triggered at the reception of each data packet during the training
phase. The target update packets are represented in red and are triggered at each U during the
training phase.

Agent n Agent n'
Link

Qn'(.; θn')Qn(.; θn)
(rn', f, τn')

(a) Value sharing

Agent n Agent n'
Link

Qn'(.; θn')

Qn(.; θn)

 n(.; θ−
n')

(rn', f, on')

θn'

(b) Model sharing

Figure 5.2 – Control packets for model sharing and value sharing techniques. replay memory

update packets and target update packets are represented in yellow and red, respectively.
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Finally, we conclude this section with Algorithm 1 that depicts the pseudocode of the training
routine of our approach. We highlight in red and blue italics the lines corresponding to the value

sharing and model sharing method, respectively.

Algorithm 1: DQN Routing training routine at a node n with value sharing (or with model
sharing)

Input: Training session duration S; Gradient descent update period T ; Target update period U ; Weights
θSP

v , v ∈
}︄

n ∪N out
n

⟨︄

Output: Final routing model weights θn

1 Initialize experience replay memoryMn;
2 Initialize Qn(·) with weights θn ← θSP

n ;

3 Initialize targets Q̂v(·), v ∈ N out
n with weights θ−

v ← θSP
n ;

4 while current simulation timestamp t < S do
5 for each arrival packet do
6 Observe the current node state on;
7 Select action an = n′, where

8 n′ =

⎭

a random neig. v ∈ N out
n , with prob. ϵ

argmaxvn∈N out
n

Qn(on, vn), otherwise
Forward packet p to next hop node n′;

9 Receive back from n′ next hop estimate τ and reward rn;

10 Receive back from n′ next hop state on′ and reward rn;

11 Set packet destination flag f ;
12 Store transition (on, an, rn′ , τn′ , f) in memoryMn;

13 Store transition (on, an, rn′ , on′ , f) in memoryMn;

14 if t mod T then

15 Sample random batch B
i.i.d.
∼ Mn;

16 Set target values Y Q
n as (2.9) for B;

17 Update weights θn by gradient descent on TD error for B;

18 if t mod U then
19 Get neighgbors’ weights: θv, v ∈ N out

n ;

20 Update target weights: θ−
v ← θv, v ∈ N out

n ;

5.2.6 Experiments

In this section, we present the experimental approach to answer quantitatively the following
research questions:

1. How does the cost and overhead of value sharing and model sharing techniques evolve when
modulating the target update period U?

2. How much overhead is required to make the model sharing solution close to the Oracle cost
solution?

5.2.6.1 Experiment Settings

Hardware and Software settings.
We ran the tests in a Dell Precision 7920 workstation equipped with an Intel Xeon Gold 6230R
Dual CPU (26 Cores, 2.1-4.0GHz Turbo, 128 GB RAM) with 2 NVIDIA RTX A5000 GPUs, run-
ning Linux Ubuntu 20.04. The DRL agent model is implemented in TensorFlow (TensorFlow:

An end-to-end open source machine learning platform, s. d.) version 2.8 as described in 5.2.4.
The implementation of the MA-DRL method is based on the OpenAI™ Baselines li-
brary (OpenAI Baselines: high-quality implementations of reinforcement learning algorithms,
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s. d.). The PRISMA tool (PRISMA tool: An open MARL framework for packet routing., s. d.)
is used as Reinforcement Learning (RL) simulation environment.
Competitors.
We compare the routing optimality of the two versions of the DQN routing in Algorithm 1 (value

sharing and model sharing) to the Shortest Path routing (Bellman, 1958), and the Oracle routing

from LP model (5.1). The SP routing and Oracle routing solutions represent performance bench-
marks used to assess the quality of the DRL solution. The DQN routing with value sharing is,
in practice, an extension of the original DQN routing (Mukhutdinov et al., 2019), where buffers’
occupancy is added to packet destination in the node observation on. We cannot compare our DQN

routing directly to the literature algorithms (You et al., 2022 ; L. Chen et al., 2021 ; Manfredi et
al., 2021) since they are based on different assumptions. In DQRC (You et al., 2022), there is a
unique buffer at each node, which constraints the outgoing node throughput since, at each time,
only one packet can be transferred from the buffer head to one of the forwarding ports. In the
works (L. Chen et al., 2021 ; Manfredi et al., 2021), the training is centralized in a node collecting
all the past experiences, in contrast to us, where the training is done on the distributed node agents.
Evaluation metrics.
To measure the performance of each routing policy, we use the average cost per packet, calculated
as the accumulated reward along the simulation divided by the number of generated packets. We
point out that we can reward each packet arrival during a network simulation using the same reward
definition as in Section 5.2.3. Thus, the average cost per packet represents an average end-to-end
delay per packet, where packet losses are also accounted as worst-case delays (see Section 5.2.3).
Topology and traffic.
Simulations are performed over the Abilene network (♣N ♣=11) (SNDlib: Library of test instances

for Survivable fixed telecommunication Network Design, s. d.). We fix link propagation delay and
link rate C to 1 ms and 500 Kbps, respectively. Four traffic matrices HHH are generated by sampling
each element hsd from a uniform distribution U(0, 1). We scale up these matrices by multiplying
by a coefficient α. We increase α up to the largest value αmax for which an optimal routing with
no packet loss can still be found by the LP model (5.1). The matrix αmax ·HHH is associated to a
load factor ρ = 1. Data packets are generated as UDP over IP datagrams. Their payload is 512 B
long. The UDP and IP headers are 8B and 20B long, respectively. Then, the total packet size is
540 B. Packet traces are produced assuming that packet inter-arrival time follows an exponential
distribution with mean 540B/hsd. And finally, the output buffer size B is fixed to 16, 200B (i.e.,
30 data packets of 540B long).
Control signalling packets.
As explained in Section 5.2.5, DRL agents share information in the form of control packets. For
the replay memory update packets, we encode each float or integer data type unit in 8B. Then, a
pair (rn′ , τn′) (value sharing) is 16B long and a pair (rn′ , on′) (model sharing) is 16 + 8 · ♣N out

n ♣B
long. Control packets are also encapsulated into UDP over IP datagrams. For a target update,
the size of a DRL agent model (as described in Section 5.2.4) is around 36KB, which we split in
target update packets of 512B long. Those packets are sent through a dedicated channel (off-band)
in order to avoid network saturation.
Training procedure.
The training is performed in two phases: a supervised pre-training phase followed by the main

reinforcement learning phase.
Supervised pre-training is done to improve the convergence of the DQN routing, as authors
in (Mukhutdinov et al., 2019) demonstrated. They pre-trained the Q-network (Qn(·; θn) using a
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dataset of tuples ¶d, LSP
n (d, n′)♢, where d is the packet destination, n′ is the next hop node and

LSP
n (d, n′) is the length of the shortest path between n and d, which contains the next hop node n′.

The Q-network is trained till the square loss is minimized. The so-obtained weights are denoted
as θSP

n .
Main reinforcement learning (see Section 5.2.3). The weights θn are initialized with θSP

n . The
model is trained using ADAM optimizer with a learning rate of 0.001, batch size of 512, and γ
of 1. The total duration of the training session S is 1 minute (in ns-3 simulation time), which
is sufficient to cancel the agents’ TD error. The gradient descent is launched every T = 10 ms
(in ns-3 simulation time). Moreover, we use an ϵ-greedy approach (ϵ decays from 1 to 0.1) to
trade between exploration and exploitation. We execute different training sessions for each traffic
matrix, information sharing technique (value sharing and model sharing), replay memory size,
and target update period. We consider several values for the replay memory size (512, 1024, 2500,
5000, 10000, and 15000 experiences), and for the target update period U (from 1s to 9s with 1s
step). Each session corresponds to a packet trace generated using a traffic matrix scaled to the load
factor ρ of 0.4. After each training session, the corresponding model weights are saved.
Testing procedure.
A test phase is performed for each trained model corresponding to the tuple {traffic matrix, sharing

technique, replay memory size, target update period}. We ran nine simulations for load factors ρ
from 0.6 up to 1.4 with 0.1 step. The rationale behind testing for traffic loads higher than 1.0 is to
evaluate the model in highly saturated scenarios, where buffer delays become huge. The test packet
traces are generated using the same traffic matrix as training but scaled to the corresponding load
factor ρ. In other words, with respect to the training procedure, we test each DNN model with the
same traffic distribution among nodes but with higher loads. The duration (in simulation time) of
each testing simulation was 20 s, sufficient to reach a stationary state in the simulation.

5.2.6.2 Tradeoff between Overhead and Optimality

In this subsection, we evaluate the impact of the control signalling on the learning performance
by studying the tradeoff between average cost per packet and control overhead ratio. During
the training, the control overhead ratio is computed as the ratio between the total byte count
of signalling packets and the total byte count of useful data packets. The results presented are
computed as an average over the four traffic matrices and the nine load factors.

Figures 5.3a and 5.3b show the average cost per packet versus the replay memory size and
the target update period U , respectively. From their observation, first, we see that DQN routing

with value sharing has a slightly better average cost than SP when choosing the experience re-
play memory size of 5000 samples. We recall that the original DQN routing algorithm presented
in (Mukhutdinov et al., 2019) uses value sharing. However, in (Mukhutdinov et al., 2019), the
routing decisions are taken based only on the packet destination, which yields routing policies
close to the SP routing since features depending on traffic dynamics, as the buffers’ occupancy,
are not provided to the neural network. Interestingly, although, in the current chapter, we also add
the buffers’ occupancy to the neural network input, our enriched version of the original DQN rou-

ting in (Mukhutdinov et al., 2019) does not manage to improve significantly over the SP policy,
obtaining even worse results for any replay memory size value except 5000, which seems large
enough to store the states’ diversity, and small enough to not consider too many outdated expe-
riences. In contrast, model sharing outperforms the SP routing and gets close to the Oracle routing
cost when the replay memory is large enough (more than 5, 000 experiences) and the target update
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period U is small enough (less than 8s). This result suggests that routing agents need to share their
DNN models to be able to learn a routing policy close to an Oracle routing. Previous literature
has shown the importance of conditioning the learning of each agent on an estimate of the other
agents’ policies to alleviate the non-stationarity effect of MA-DRL. Since other agents’ policies
are continuously updated during the training, their Q-value (and, then τ ) estimates become ob-
solete with time. For value sharing, that means that the replay memory can be populated with
outdated τn′ conducting to have different estimates of the end-to-end delay from next hop n′ to
destination for the same state transition (on, an, on′). Model sharing overcomes this problem by
sharing the model Qn′(·, on′ ; θn′). Since τn′ estimates are computed using Equation (2.10) at the
gradient descent update, two identical transitions (on, an, on′) stored at the replay memory will be
associated to the same estimate τn′ of the end-to-end delay from n′.
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Figure 5.3c depicts the relation between target update period U and the control overhead

ratio. In the model sharing technique, the control overhead strongly decreases with U , since the
number of target update packets diminishes as well. For value sharing, only the much lighter replay

memory update packets are sent, giving a much smaller control overhead (0.1). This overhead
is shown as constant since it corresponds to only one point (value sharing does not depend on
U ). Analyzing the overhead for model sharing in detail, we see two different behaviors for the
signalling packets. The overhead due to the target model update packets, the main overhead source,
decreases with the target update period, but the replay memory update packets overhead increases
linearly. This indicates a growth in packet hops during the training, which is related to a worse
training performance for larger U values: the agents do not complete to find short routing policies
(see Figure 5.3b).

Figure 5.3d depicts the tradeoff between average cost per packet and control overhead ratio

for model sharing and value sharing techniques. Replay memory sizes are set to the best values
in Figure 5.3a for each sharing technique: 5, 000 and 15, 000 for value and model sharing, respec-
tively. Each point in the curve for DQN routing with model sharing corresponds to a given target
update period value U , which is associated with a given cost per packet (see Figure 5.3b) and a
given overhead (see Figure 5.3c). For value sharing, we have a unique point corresponding to the
cost per packet for the best memory size (5, 000) and a constant value sharing overhead (0.1).
Two observations can be made from this figure: (i) value sharing incurs in a very small overhead
(0.1) but cannot improve significantly the SP routing performance, and (ii) model sharing can
outperform SP routing and approach the Oracle performance but with much higher overhead (for
U = 5s, an overhead of 1.5 and a cost 28 % smaller than SP routing and model sharing). These
observations provide an important insight: for the presented settings, the price to pay to become

close to the Oracle performance is a control overhead larger than the useful data volume during

training.

5.2.6.3 Packet Cost Performance in Detail

We now analyze the performance of DQN routing for both signalling techniques in terms of:
(i) average cost per packet (Figure 5.4a), (ii) packet loss ratio (Figure 5.4b), and (iii) average end

to end packet delay (Figure 5.4c). The x-axis represents the load factor, ranging from 0.6 up to
1.4 with 0.1 step, and the y-axis represents the average, the minimum, and the maximum value of
the corresponding performance metric over the four traffic matrices. A solid line is used to depict
the average value, whereas the area between the minimum and the maximum value is presented
with a shaded color. In these figures, the replay memory sizes are fixed to the best values found
in the previous subsection: 5, 000 and 15, 000 for value sharing and model sharing, respectively.
Similarly, the target update period for model sharing is set up to the selected value of 5s.

From the observation of Figure 5.4a, we confirm the remarks stated in the previous subsection:
in terms of average cost per packet, the model sharing is always better than value sharing and SP
routing, and close to the Oracle routing performance. We recall that the average cost per packet
is computed as an accumulated reward during a simulation session. Then, it accounts for both
buffer delays and packet losses, but giving more importance to the latter to minimize it in the
first place (see Section 5.2.3) as the LP model of the Oracle routing also does (see Section 5.2.2).
Consequently, Figure 5.4b, which shows the packet loss performance, presents the same trends.
Figure 5.4c shows the average end-to-end packet delay for the different loads. Interestingly, DQN

routing manages to outperform the Oracle routing for medium loads (from 0.7 to 1.1). This can be
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partly explained by superior performance in terms of packet loss (if present, the main contributor
to the average cost per packet) of the Oracle, namely for the loads 1.0 and 1.1, which leads the
Oracle to have poorer behavior in terms of delay. But, for the loads between 0.7 and 0.9, DQN

routing outperforms the Oracle in delay and matches its packet loss, yielding a better average cost
per packet in Figure 5.4a. This better behavior of DQN routing can be explained by the flow-based
nature of the LP model of the Oracle routing policy. This model has a coarse-grained view of
the packets’ flows where the notion of packets’ buffers is absent: the LP model works with flows
defined by an average value in traffic units (i.e., bps). On the contrary, the DQN routing has a fine-
grained view of the flows, being aware of individual packets. The packets do not arrive regularly
and periodically but randomly follow an exponential distribution, giving rise to situations where
the instantaneous value of flow in traffic units (i.e., bps) exceeds the average flow. In this case,
buffers allow absorbing the temporary traffic peaks. Particularly, the packet’s buffers can have a
bigger impact on the network performance when the average traffic becomes close to the nominal
network capacity (medium loads between 0.7 and 0.9) since buffers are mostly empty for lower
loads, and saturated for higher loads. Therefore, the DQN routing can benefit from the observation
of the buffers’ occupancy in these medium loads to overcome the Oracle routing, which is unaware
of the buffers.

5.2.7 Discussion

The results presented in this study, especially the ratio between the signalling packets and
useful data packets, may change if we change the experimental settings, such as using a larger
link rate. Doing so will increase the number of data packets per second and hence the number
of replay memory update packets. The ratio between replay memory update signalling and useful
data will remain the same, and so the overhead for target value sharing. However, when keeping
the same target update period, the ratio between target update signalling and useful data will
decrease, and so the gap in overhead between model sharing and value sharing will narrow, but
the gradient step period T may need to be reduced to maintain the number of experiences per
gradient step, and hence possibly have a smaller target update period. When changing network
topology, the overhead, particularly the one due to target update signalling, will scale with the
number of nodes, and so if we add more nodes in the network, the overhead will increase. The
relationship between the overhead, the performances, and the topology settings will be studied in
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future works. To conclude this analysis, when changing the network configurations, DRL based
methods need to be re-evaluated in a simulation environment taking into account the overhead of
control packets, to have a precise estimation of the net gains of such an MA-DRL routing policy.

5.3 Novel methods to reduce communication overhead between the
agents

As shown by the previous results, to get the best performance, the control overhead needed
for the model sharing technique is around 150% of the injected data packet size. This significantly
impacts the network if we choose to send the control packets in-band. Target update packets re-
present the most part of this information exchange, which is due to the size of the DNN weights
and the frequency of sending those weights. The objective of this section is to present two ways to
reduce this communication overhead.

— We first aim to reduce the communication overhead by removing the target update packets.
For that, we present a novel sharing technique called logit sharing. It is inspired by both
model sharing and value sharing and offers a low communication overhead and stable per-
formance.

— Then, to still reduce the communication overhead, we explain how to reduce the amount of
replay memory update packets by proposing an adaptive method that reduces the frequency
of the neighbor’s exchanges depending on the training progress.

— Finally, we evaluate both methods and compare them to model sharing and value sharing.

5.3.1 Removing the target update overhead: logit sharing

The target update packets introduce a significant burden on the agent’s communication. In the
following, we propose a new sharing technique, named logit sharing. This new technique aims
to bring the best of the two previous methods: the lower communication overhead of value

sharing, and the higher performance of model sharing.
The idea is to locally train the target network Q̂n′(·; θ−

n′) instead of updating it from the original
neighbor network Qn′(·; θn′). During the training phase, the node n collects from the next hop n′

the observed state o′
n and the output vector of the DNN, i.e., the logit vector of neighbor n′ for

this observation Qn′(on′ , .; θn′). This information is sent along with the reward rn′ and the flag
f as a replay memory update packet. The observed state and the logit vector will be used by the
node n to construct a dataset containing the inputs and the outputs of the DNN of that neighbor,
namely the tuple (on′ , Qn′(on′ , .; θn′)). At each time step T , the agent uses the database to train
the target network in a supervised manner. The objective is to keep the weights θ−t

n′ of the target

network at time t as close as possible to the weights θt
n′ of the DNN of the neighbor n′. The

computation of the target value τn′ is done the same way as model sharing using the target network

(see Equation (2.10)).
Logit sharing technique presents a low communication overhead since the agents are sending

only the replay memory update packets and are not sharing the weights anymore. However, to
work correctly, the weights of the target network and the neighbor DNN should have the same
initialization (in our experiments, we initialize to the shortest path policy). Also, the supervised
training time step T should be set properly: a too-big value will cause a divergence between the
weights of the target network and the neighbor’s DNN, whereas a too-small value will result in
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small batches of training data and induce instability in the supervised learning (overfitting to the
last period). In our experiments, we set this period T to the target update period of the best model

sharing model running off-band.
We present, in Figure 5.5, a summary of the control packets when adopting the logit sharing

technique.

Agent n Agent n'
Link

(rn', f, on', Qn'(on'; θn'))
Qn'(.; θn')

    n'(.; θ−
n')

Qn(.; θn)

DBn'

Figure 5.5 – Control packets for the logit sharing technique. replay memory update packets are
represented in yellow.

5.3.2 Reducing the replay memory update overhead

In this subsection, we study how to reduce even more the communication overhead by sending
replay memory update packets only when they are relevant to the training process. During the
training phase and in all the previously-mentioned techniques, the agents need to send replay

memory update packets as a response to each incoming data packet. Even though these packets
are small compared to a data packet, they can represent a significant overhead, especially in the
continual learning setting.

5.3.2.1 Evaluation of replay memory update packets overhead for the three techniques

— The value sharing introduces the lowest overhead since the agents share only three values
(rn′ , τn′ , f): two floating points (rn′ , τn′), and one binary (f). This overhead scales with
the traffic load and the number of hops.

— For model sharing, we have to send (rn′ , on′ , f), i.e., two values (one floating point rn′ , and
one binary f ) and a vector (on′), whose length is the number of neighbors of the node n′.
The overhead, in that case, scales with the degree of the overlay network, the traffic load,
and the number of hops.

— We can do the same reasoning with logit sharing technique. In logit sharing, a replay me-

mory update packet carries the tuple (rn′ , on′ , f, Qn′(on′ , .; θn′)). In comparison with model

sharing, we have an additional vector (the logit vector Qn′(on′ , .; θn′)), whose size is also
the number of neighbors of the node n′. Thus, the overhead here scales, as in model sharing,
with the degree of the overlay network, the traffic load, and the number of hops.

5.3.2.2 Dynamic sending of replay memory update packets

To reduce the overhead of this communication, we need to answer these two questions:

1. Are all the replay memory entries relevant for the agent to learn?

2. How to evaluate the importance of each experience replay memory entry (on, an, r′
n, o′

n, f)?
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To answer the above questions, we propose to use the Temporal Difference (TD) error defined in
Equation (2.11) to evaluate the importance of an entry. A high value of this loss means that the
entry is relevant, and the agent needs to include it in its experience replay memory. In contrast, a
small value of the loss means that the entry has little contribution to the learning of the agent, so
it can be discarded. From that reasoning, we define the experience relevancy ER as the TD-error
normalized by the target value Y Q

n , as in Equation (2.9), as follows:

ER =

/︂

/︂

/︂

/︂

/︂

LDQN

Y Q
n

/︂

/︂

/︂

/︂

/︂

=

/︂

/︂

/︂

/︂

Qn(on, an; θn)

rn′ + γ · τ ′
n · (1− f)

− 1

/︂

/︂

/︂

/︂

(5.2)

where τ ′
n is computed as in Equation (2.10). The experience relevancy ER hence represents a

normalized deviation of the two models Qn and Qn′ for the transition (on, an, rn′ , on′ , f). We can
compute this value in the next hop node n′, and use it to decide whether to send back to n the
replay memory update packet or not, based on a predefined threshold on it, denoted as ERthr.
To compute the experience relevancy ER at n′, the only information missing is the DNN output
Qn(on, an; θn) of the node n for the transition. Thus, the node n needs to send this value with the
data packet, corresponding to one extra floating point per data packet. When the next hop node
receives the data packet with Qn(on, an; θn), it computes ER and compares it to the predefined
experience relevancy threshold ERthr. If the deviation exceeds the threshold, the next hop node
n′ sends back a replay memory update packet. Otherwise, it discards the transition.

The presented mechanism applies to all the above information-sharing techniques, and it can
significantly reduce the replay memory update packets overhead. It makes continual learning pos-
sible since the agents will have reduced communication after convergence and only share transi-
tions when necessary.

5.3.3 Experiments

5.3.3.1 Experimental settings

To evaluate logit sharing and the dynamic control packet mechanism, we hold the same ex-
periments as the first part of this chapter (Section 5.2.6). We consider the same four randomly
generated traffic matrices and the same DNN architecture with the same observation, action, and
reward. The training is done at each 50ms on a load factor of 40% and lasts for 60 seconds. Af-
ter that, the trained models are evaluated in a session of 25 seconds on seven load factors (from
60% to 120% by a step of 10%). The batch size and the learning rate are set to 512 and 0.0001
respectively. The experience replay memory size is set to 15000, and the exploration follows an
epsilon-greedy decaying from 1.0 to 0.01. The main difference between this experiment and the
previous one is that we send the replay memory update packets in the link (in-band) since we have
the capability to do it under prisma-v2 (see Section 4.3). The high overhead of model sharing due
to the target update packets forced us to keep it off-band to avoid overloading the network. We
set the target update period to its best value from the previous experiments, which is U = 5s.
We set the logit sharing training step to the same value (T = 5s). The training step for the logit

sharing local copy is 100 smaller than the actual models’ learning rate. We reevaluate the sizes of
the replay memory update packets by adding the data packet ID that triggers the control packet,
which results in the following:

— 25B for value sharing (8B for the reward, and packet id, target value, respectively, and 1B
for the flag).
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— 17 + 8 · (♣N out
n ♣ + 1)B for model sharing (8B for the reward, and packet id, respectively,

and 8 · (♣N out
n ♣+ 1)B for the next hop observation and 1B for the flag).

— 17 + 8 · (2 · ♣N out
n ♣+ 1)B for logit sharing (same as model sharing with an additional vector

representing the output of the neighbor’s DNN).

This results in a more accurate measure of the control overhead, which is higher than the values
presented in the previous study.

5.3.3.2 Experimental results

We train and test the three techniques and vary the experience relevancy threshold ERthr from
0% to 75% by a step of 25%. Figure 5.6 depicts the results obtained after the training represen-
ted in terms of average end-to-end delay per arrived packet (Figure 5.6a) and average loss packet
rate (Figure 5.6b). The average is computed over all the test loads and all the traffic matrices.
The results show that in terms of performance, logit sharing is similar to model sharing in both
delay (around 100ms) and loss rate (around 7%). Value sharing, as shown by the previous study,
struggles to converge and thus presents a very high loss, which is due to the outdated experiences
phenomenon. In terms of control overhead, the use of the logit sharing technique reduces the ove-
rhead compared to model sharing from 205% to 158% when ERthr = 0. This effect is amplified
when activating the dynamic sending of the control packets, for example, for ERthr = 75%, the
overhead ratio decreases from 122% with model sharing to 28% with logit sharing.
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Figure 5.6 – Evaluation of logit sharing technique and dynamic control packet method in Abilene
topology



5.4 – Conclusion 63

5.3.4 Discussion

The experiment shows that coupling logit sharing with the dynamic sending of control packets
significantly reduces the communication overhead while keeping the performance at the same level
as model sharing. However, this effect is verified for a static traffic matrix evaluation. In this case,
the transitions will become redundant throughout the training and thus will be filtered out by the
dynamic sending mechanism. This also helps logit sharing since the neighbors’s model does not
drastically change after the convergence of the models, which keeps the local copy following
the same trajectory as the neighbor’s model. These presented two techniques are also beneficial
when adopting a continual learning approach. The communication overhead will be high in the
beginning of the training when all the models are learning, and then it settles to a reasonable value
when the models converge.

Finally, we show that those two techniques work well in the general non-overlay setting when
the agents have access to their outgoing buffer. However, this is not verified for the cloud overlay
setting. This will be investigated in the next chapter.

5.4 Conclusion

In this chapter, we have presented an experimental framework to investigate, for the first time
to the best of our knowledge, the control signalling mechanisms of distributed learning-based
packet routing in the general non-overlay scenario. We have considered two main control exchange
techniques brought by the literature, value sharing and model sharing. Both techniques have been
evaluated in terms of routing cost (combining packet delay and loss rate) and the overhead packets
due to control. We have shown that model sharing yields routing policies able to approach the
optimal one provided by an oracle. However, to obtain such results, the model presents a control
overhead of 150% of extra traffic.

In the second part of this chapter, we provide two novel methods to address the problem of
high overhead of model sharing. First, a new communication technique called logit sharing, which
brings the best of model sharing and value sharing. The second method is a dynamic control
packet-sending mechanism, which enables the agents to send only relevant control packets.

We finally discussed the impact of the proposed methods and showed that combining them
significantly reduces the overhead of model sharing from 200% to 28% while maintaining its
performance.

In the next chapter, we will tackle the more challenging overlay scenario. We will adapt the
proposed methods and propose a novel MA-DRL framework to handle this case.





CHAPTER 6
Distributed

Learning-based Routing
in Cloud Overlay

Networks
This chapter addresses the problem of Distributed Packet Routing (DPR) in cloud over-

lay networks using a fully decentralized Multi-Agent Deep Reinforcement Learning

(MA-DRL). Cloud overlay networks are built by having a virtual topology on top of an

Internet Service Provider (ISP) underlay network, where those nodes are running a fixed,

single path routing policy decided by the ISP. In such a scenario, the cloud overlay net-

work’s underlay topology and traffic are unknown. In this setting, we propose O-DQR,

which is a MA-DRL framework working under Distributed Training Decentralized Exe-

cution (DTDE), where the agents are allowed to communicate only with their immediate

cloud overlay neighbors during both training and inference. We address three funda-

mental aspects for deploying such a solution: (i) performance (delay, loss rate), where

the framework can achieve near-optimal performance , (ii) control overhead, which is

reduced by enabling the agents to send control packets only when needed dynamically;

and (iii) training convergence stability, which is improved by proposing a guided reward

mechanism for dynamically learning the penalty applied when a packet is lost. The ove-

rhead management allows the framework to have minimal overhead, paving the way for

deploying the models in continuous learning scenarios. The guided reward mechanism

significantly improves the convergence rate and gives guarantees under mild assump-

tions. Finally, we evaluate our solution in a realistic network simulation, which allows

transmitting actual control packets and measuring their impact on the performance in a

cloud overlay traffic configuration.
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6.1 Introduction

The internet has seen a massive increase in usage over the last few decades, with more than
4.7 billion users worldwide in 2020 (Ritchie et al., 2023), and it is expected to reach a third
of the global population by 2023 (Cisco Annual Internet Report - Cisco Annual Internet Report

(2018–2023) White Paper, s. d.). To handle this high demand, Content Delivery Networks (CDNs)
have emerged as a solution by providing data caching to servers near the end user. Video streaming
accounts for a significant portion of internet traffic, so CDNs are essential for data-heavy services
like YouTube and Netflix. Doan et al. (Doan et al., 2020) showed that caching reduces throughput
by up to three times. However, some services are non-cacheable or cacheable for only short per-
iods. In such cases, the requested content is downloaded from the origin server via a cloud overlay
network operated by the CDN provider.

Cloud overlay networks are virtual or logical networks built over physical networks (called
underlay networks). They provide flexible and dynamic traffic routing between nodes that are
not directly connected by a physical link (i.e., as CDN servers that are placed at the Edge of
the Internet). Instead, they are connected by tunnels traversing different Autonomous Systems
(AS) operated by different Internet Service Providers. These tunnels are virtual or logical links
corresponding to paths in the underlying network.

Routing traffic between the cloud overlay nodes is a challenging problem due to the lack of
information about the underlay network. This yields the existence of Triangle Inequality Violations
(TIV) (Lumezanu et al., 2009), which means that it is possible to find another path relayed by cloud
overlay nodes that has a lower delay than following the direct path connecting them (usually the
shortest path over the underlay topology). To illustrate this phenomenon, consider the example
shown in Figure 6.1. Traffic from cloud overlay node A to C has two possible paths: a direct path
(in red) and an alternative path (in green). If we assume high congestion in the hidden underlay
node 5, the “default path”, i.e., the direct path, becomes suboptimal.

A C

B

1

5

32

6

4

Figure 6.1 – Cloud overlay network architecture: cloud overlay topology is on top; underlay topology
is on bottom. Underlay nodes 1, 3, 6 are mapped to cloud overlay nodes A, B, C. Underlay nodes 2, 4, 5
are hidden from the cloud overlay topology. The shortest paths in the underlay correspond to virtual links
(tunnels) in the cloud overlay.
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The TIV holds on the Internet since its infrastructure consists of an increasing number of
ASs (CIDR REPORT for 15 Sep 23, s. d.). Each AS can correspond to an ISP, optimizing its
local routing, ignoring the end-to-end routing performance, which impacts the performance of the
Content Distribution Network (CDN).

Therefore, instead of taking the tunnel between two cloud overlay nodes (i.e., the default rou-
ting proposed by the ISPs), it may be advisable to use other routing policies. Traditionally, CDN
providers, as Akamai (Sitaraman, Kasbekar, Lichtenstein, & Jain, 2014), apply a two-phase me-
thodology to find these routing policies. First, they estimate the unknown and uncertain problem
input data, such as traffic demands, using data collected from the nodes. Then, they update the
routing between the cloud overlay nodes using a classical optimization algorithm (i.e., linear pro-
gramming) fed by these estimates. However, such approaches are highly dependent on (i) the
quality and periodicity of the estimates of the first phase, and (ii) the trade-off between optimality
and solving time of the classical optimization techniques of the second phase. This two-phase ap-
proach may lead to a slow and outdated adaptation to changes in traffic and topology. For instance,
the traffic in novel Internet services, such as Internet of Things (IoT) communications, multime-
dia streaming, or cloud computing, is characterized by becoming highly dynamic (Cisco Annual

Internet Report - Cisco Annual Internet Report (2018–2023) White Paper, s. d.) and difficult to
predict using these two-phase methods (S. Yang & Kuipers, 2014).

As a consequence, the new scenarios require solutions that can rapidly adapt to sudden traffic
changes, motivating researchers to adopt Machine Learning (ML) techniques, like Deep Rein-
forcement Learning (DRL) (Sutton & Barto, 2018 ; Bengio, 2009). Those methods have proven
their effectiveness by achieving breakthrough results in various complex tasks (Mnih et al., 2015).
MA-DRL, which is an extension of DRL, has become popular in solving communication net-
work problems like the Distributed Packet Routing (DPR) problem (Mukhutdinov et al., 2019 ;
You et al., 2022). Here, the DRL agents collaborate to optimize a global objective. The training
of MA-DRL agents can be done either in a centralized node Centralized Traning Decentralized
Execution (CTDE) or distributed through the nodes Distributed Training Decentralized Execu-
tion (DTDE)(Gronauer & Diepold, 2022). DTDE is suitable for the packet routing problem, where
each agent (i.e., network node) exploits the locally collected data to adapt its routing policy in real
time. This allows a fast response to changes in the network and provides scalability since each
agent is autonomous. However, referring to previous studies such as (Gronauer & Diepold, 2022 ;
Matignon et al., 2012 ; You et al., 2022), implementing the DTDE approach can be challenging for
two main reasons. First, the agents need to communicate to overcome the non-stationarity of the
environment, resulting in a high communication overhead between the agents during the training.
This has been demonstrated in our previous work (Alliche, da Silva Barros, et al., 2022) and pre-
sented in the previous chapter. Second, agents can suffer from stability issues due to the shaping of
the reward, especially when optimizing more than one metric (such as end-to-end delay and loss
rate). As a consequence, different questions arise when designing a DTDE approach: (i) how to
ensure a good trade-off between performance and communication overhead, (ii) how to send only
data that are relevant to the training, and (iii) how to design a suitable reward function to ensure
a stable convergence. Additionally, other questions arise in a cloud overlay network context, such
as what data an agent can collect and exploit to overcome the lack of information about the under-
lay network and the dynamic traffic flowing across it. Can the agents handle multiple overlapping
cloud overlay links in the underlay topology?

In the previous chapter, we analyzed and addressed the challenges of communication between
the agents by proposing logit sharing strategy and dynamic sending of control packets. In this
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chapter, we provide answers to the remaining challenges, and we propose a distributed MA-DRL
framework called O-DQR that works under the DTDE scheme. Our framework is designed to ad-
dress the problem of multihop routing (formulated as DPR) in cloud overlay networks without any
information about the underlay topology. To our knowledge, O-DQR is the first MA-DRL frame-
work that tackles the multihop routing (as DPR) problem in this context. We focus on three main
aspects in our design: performance, communication overhead, and convergence. We confirm, in
the cloud overlay case, the results obtained in the general non-overlay case by logit sharing and
the dynamic sending of control packets. Based on the latest research on constrained policy op-
timization, namely RCPO (Tessler et al., 2018), we integrate the loss rate and the delay in the
reward function, ensuring fast convergence and stability during model training. We validated the
performance, stability, and communication overhead of our framework through extensive experi-
mentation on a realistic network simulator prisma-v2 (Alliche, Barros, et al., 2022). Our frame-
work achieved near-optimal results, improving the default ISP routing policy by more than 66%
on average in the loss rate. In high loads, O-DQR cuts the loss rate by up to five times. The model
achieves those performances while maintaining low communication overhead.

Our work differs from previous studies that predict the load weights for a set of pre-computed
shortest paths (Kamri et al., 2021 ; Barzegar, Ruiz, & Velasco, 2023) in several aspects. Firstly,
we assume no knowledge about the underlay topology and cannot choose relevant cloud overlay
paths. Secondly, we consider the possibility of having multiple cloud overlay links that overlap in
the underlay topology. Finally, we simulate cloud overlay data packets, underlay data packets, and
control packets used for the communication between the agents and cloud overlay link measure-
ment.

The summary of our contributions, along with the corresponding sections, are listed below.

— We present O-DQR, which is the first MA-DRL solution, working under DTDE, to tackle
the multihop routing (as DPR) problem in cloud overlay networks without any knowledge
about the underlay topology. (Section 6.2)

— We present different possibilities to integrate the lost packets into the reward function
and design a guided reward mechanism to improve stability and convergence speed. (Sec-
tion 6.3)

— We evaluate the O-DQR in terms of performance, communication overhead, and conver-
gence through extensive experimentation. (Section 6.4)

The rest of this chapter is structured as follows. The MA-DRL framework is described in
Section 6.2. The convergence and stability of the framework are studied in Section 6.3, where the
guided reward mechanism is presented. At the end of Section 6.3, we illustrate the final algorithm
(Algorithm 2) describing O-DQR. Finally, we analyze the simulation results in Section 6.4, provide
a discussion of the results in Section 6.5, and conclude the chapter in Section 6.6.

6.2 Framework Description

In this section, we first formulate the multihop DPR problem in the overlay case and propose
an oracle optimal solution to solve it under some assumptions. Then, we write the problem as Par-
tially Observable Markov Decision Process (POMDP). Finally, we detail our proposed framework,
namely O-DQR, which follows a fully decentralized MA-DRL approach.
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6.2.1 Problem Statement

Let Gu(N ,L) be the directed underlay network representing the physical topology, where N
is the set of nodes, and L is the set of unidirectional physical links. Each link has a fixed capacity
C (i.e., Kbps). The incoming and outgoing links of the node n ∈ N are denoted as Lin

n and Lout
n ,

respectively. Let Go(N o,P) be the directed overlay network implementing the virtual topology
onto the physical one, where N o ⊂ N denotes the set of overlay nodes, and P is the set of
virtual links connecting the nodes n ∈ N o. A virtual link p ∈ P is an overlay tunnel starting and
terminating at an overlay node pair. At the starting node ap, packets are encapsulated into overlay
packets destined to bp. Then, the overlay packets pass through a sequence of physical links (i.e.,
a path) l ∈ Lp. The subset of tunnels (paths) traversing a link l is called Pl. The incoming and
outgoing tunnels (virtual links) of the node n ∈ N o are denoted as P in

n and Pout
n , respectively.

The incoming and outgoing neighbor nodes of the node n ∈ N o in the Go(N o,P) are denoted as
N in

n and N out
n , respectively.

Each packet originates from a source node s ∈ N and is targeted to a destination node d ∈ N .
The traffic matrix HHH = ¶hsd, (s, d) ∈ N × N counts up the average volumes hsd in traffic units
(i.e., Kbps) of packet flows between the node pairs (s, d) ∈ N × N . A packet flow between
any node pair (s, d) ∈ N × N can be routed onto the underlay network topology Gu(N ,L) via
the underlay routing policy rsd

l : link l is used in the route between (s, d) if rsd
l =1. The underlay

routing policy is an implicit input parameter to our problem but assumed as unknown by the cloud
overlay nodes N o. The flows between node pairs (s, d) where one of the nodes is not an overlay
node (s /∈ N o or d /∈ N o) are routed using the underlay routing policy rsd

l . We call these flows
underlay flows. On the contrary, the flows between node pairs (s, d) where both nodes are cloud
overlay nodes (s ∈ N o and d ∈ N o) are routed via the cloud overlay routing policy xsd

p over the
overlay virtual topology Go(N o,P). We call these flows overlay flows. In Go(N o,P), a tunnel
p ∈ P connecting a cloud overlay node pair (s, d) traverses the physical links l ∈ Lp defined
by the underlay routing policy rsd

l . We draw the attention that the overlay routing policy can set
up multi-hop routes between cloud overlay nodes: a cloud overlay pair can be connected by a
direct tunnel (i.e., via the underlay routing) or by a sequence of tunnels (each one defined by the
underlay routing). The second option avoids using the underlay routing if a better routing can be
found as a sequence of tunnels. Namely, we aim to find the cloud overlay routing policy xsd

p that
minimizes the total end-to-end delay for all the delivered packets and minimizes the number of
dropped packets.

Each node n ∈ N (cloud overlay or not) is a router equipped with ♣Lout
n ♣ outgoing network

interfaces. Each interface i ∈ ♣Lout
n ♣ has its own buffer queue of size B. The queue follows a

FIFO (First-In-First-Out) policy and stores all cloud overlay and underlay packets outgoing from
the network interfaces. Hence, if a packet arrives at a full buffer, it is rejected (i.e., lost). Otherwise,
the packet is admitted, eventually getting to the buffer head, where it is forwarded to a next-hop
link l ∈ Lout

n . This procedure is repeated at each hop until the packet reaches its final destination d.
zsd represents the fraction of rejected packets per flow (s, d). In this scenario, the packet will travel
in the network until it reaches its destination or is dropped due to a full outgoing buffer queue. This
means that there is no limit in terms of hops or time in the network (ignored Time-To-Live).

Table 6.1 gathers the above-mentioned notation.



6.2 – Framework Description 71

Name Description

xsd
p ∈ [0, 1] Decision variable. Fraction of the cloud

overlay flow between the node pair
(s, d) ∈ N o ×N o to be forwarded via
the virtual link (cloud overlay tunnel)
p ∈ P .

ysd
l ∈ [0, 1] Decision variable. Fraction of the un-

derlay flow between the node pair
(s, d) ∈ (N ×N ) \ (N o × N o) to be
forwarded via the physical link l ∈ L.

zsd ∈ [0, 1] Decision variable. Fraction of the flow
between the node pair (s, d) ∈ (N ×
N ) that is rejected.

rsd
l ∈ [0, 1] rsd

l =1, if the physical link l ∈ L be-
longs to the underlay route (tunnel) bet-
ween the node pair (s, d) ∈ (N ×N )\
(N o ×N o); rsd

l =0, otherwise.
hsd ∈ R ≥ 0 Average flow volume between the node

pair (s, d) in traffic units (i.e., Kbps).
C ∈ R ≥ 0 Link capacity in traffic units (i.e.,

Kbps)
B ∈ R ≥ 0 Buffer size in data units (i.e., Bytes)
M ∈ R ≥ 0 Large number to penalize a loss (i.e.,

loss penalty)

Table 6.1 – Cloud overlay model notation

6.2.2 Oracle Routing Policy

To provide a benchmark solution to the scenario defined above, we propose an Oracle policy
corresponding to the centralized version of the multihop DPR problem, where an Oracle obser-
ver (different from the routing nodes) has a full knowledge of the underlay network topology
Gu(N ,L), the traffic matrix HHH and the underlay routing policy rsd

l . For this solution, we assume
that (i) a packet belonging to a flow (s, d) follow a path decided at the source node (flow routing);
(ii) the routers can reject new incoming packets at the source node, following a rejection proba-
bility of zsd; and (iii) the buffer queues are ignored. This centralized version is formulated as the
Minimum Cost Multi-Commodity Flow (MCF) problem solved by a Linear Programming (LP)
model. The optimal solution of this model provides a lowest-cost routing policy, which we call
oracle routing in the remainder of this paper. We formulate the MCF problem in the cloud overlay
setting as follows:

min
¶x,y,z♢

∑︂

s∈N o

d∈N o

p∈P

hsdxsd
p +

∑︂

(s,d)∈(N ×N )
\(N o×N o)

l∈L

hsdysd
l +

∑︂

s∈N
d∈N

Mhsdzsd (6.1a)
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s.t
∑︂

p∈Pin
n

xsd
p −

∑︂

p∈Pout
n

xsd
p =

∏︂

⋁︂

⋁︂

⨄︂

⋁︂

⋁︂

⋃︂

−1 + zsd, if n = s

1− zsd, if n = d

0, otherwise

(s, d) ∈ N o ×N o, n ∈ N o (6.1b)

∑︂

l∈Lin
n

ysd
l −

∑︂

l∈Lout
n

ysd
l =

∏︂

⋁︂

⋁︂

⨄︂

⋁︂

⋁︂

⋃︂

−1 + zsd, if n = s

1− zsd, if n = d

0, otherwise

(s, d) ∈ (N ×N ) \ (N o ×N o), n ∈ N (6.1c)

∑︂

s∈N o

d∈N o

p∈Pl

hsdxsd
p +

∑︂

(s,d)∈(N ×N )
\(N o×N o)

hsdysd
l ≤ C, l ∈ L (6.1d)

xsd
p ∈ [0, 1], (s, d) ∈ N o ×N o, p ∈ P (6.1e)

ysd
l ∈ [0, rsd

l ], (s, d) ∈ (N ×N ) \ (N o ×N o), l ∈ L (6.1f)

zsd ∈ [0, 1], s ∈ N , d ∈ N (6.1g)

In the above MILP formulation 6.1, xsd
p represents the fraction of the cloud overlay flow between

the node pair (s, d) ∈ N o × N o to be forwarded via the virtual link (overlay tunnel) p ∈ P . ysd
l

represents the fraction of the underlay flow between the node pair (s, d) ∈ (N×N )\(N o×N o) to
be forwarded via the physical link l ∈ L. Equation (6.1a) is the objective function, which gathers
the terms to minimize, namely: (i) the total capacity used by the overlay traffic (which is correlated
to the end-to-end delay for cloud overlay packets if link capacities are fixed); (ii) the total capacity
used by the underlay traffic (which is correlated to the end-to-end delay for underlay packets if
link capacities are fixed); (iii) the total lost traffic in the network, where M is the loss penalty.
In practice, we fix M to a high value (i.e., 1000). Equations (6.1b, 6.1c) are the cloud overlay
and underlay flow conservation constraints, respectively. Equation (6.1d) describes the capacity
constraint for each link l ∈ L. Finally, the constraints (6.1e, 6.1f, 6.1g) define the lower and upper
bounds of the variables. We impose that the underlay flows ysd

l comply with the underlay routing

policy rsd
l by means of the constraint (6.1f).

6.2.3 Overlay-Deep-Q-Routing (O-DQR)

The oracle routing is the solution of the problem considering a centralized full view of the
environment (the underlay network topology Gu(N ,L), the traffic matrix HHH and the underlay

routing policy rsd
l ), under the assumptions described before. However, such a centralized full view

is not always available. In that case, only a decentralized version of the problem with a partial

view of the environment is accessible: the so-called Distributed Packet Routing (DPR) problem.
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This DPR problem can be formulated as Multi-Agent Partially Observable Markov Decision Pro-
cess (Littman, 1994): a Markov Decision Process where each agent can only observe its environ-
ment and receive its reward based on its action taken. We adopt the Deep-Q-Routing framework, as
in (Mukhutdinov et al., 2019 ; You et al., 2022) and (Alliche, da Silva Barros, et al., 2022), which
is based on the Q-Routing approach (Boyan & Littman, 1993) and considers a neural network to
approximate the policy.

The choice of the Deep-Q-Routing framework is justified in the context of DTDE since it
provides a simple and easy way to implement a control algorithm in this MA-POMDP problem.
For this scheme, the agents are installed on the cloud overlay nodes. We consider the underlay
layer (underlay nodes, underlay flows, and underlay routing) and the traffic demand for the cloud
overlay flows as a part of the environment unknown by the agents.

In the following, we refer to this decentralized MA-DRL framework for the cloud overlay

routing problem as Overlay-Deep-Q-Routing (O-DQR). In O-DQR, a “node” refers to a “cloud
overlay node,” and a “packet” refers to a “cloud overlay packet”.

Let the set of the cloud overlay nodes N o be the set of the agents, where each agent n ∈ N o

has its own local observation space On and its own action space An. When a new packet arrives
at time t at node n, the node performs an observation on ∈ On from the environment and takes
an action an ∈ An based on it. This action corresponds to choosing an outgoing tunnel to another
node n′ ∈ N o. Consequently, the node n receives from the node n′ a reward rn′ . The reward must
represent the cost of sending the packet to the next hop. It can be defined as the time taken by the
packet to arrive at the next hop, which corresponds to the next-hop packet delay (i.e., waiting time

at node n + transmission time in the tunnel). A transition is made to a new state each time a packet
enters a node, and so a routing decision needs to be made. The action an is selected to minimize
an estimate of the expected end-to-end packet delay from the node n to its final destination. Under
the DRL scheme, this estimate, denoted as Qn(on, an; θn) (the Q-value), is the output of the Deep
Neural Network (DNN) with weights θn. This DNN is trained to fit the target value Y Q

n below:

Y Q
n = rn′ + γ · τn′ · (1− f) (6.2)

where f indicates if the next hop is the packet destination, γ ∈ [0, 1] is a discount factor, rn′ is
the next-hop packet delay and τn′ is the remaining end-to-end delay from the next hop n′ to the
destination computed as follows:

τn′ = min
an′ ∈An′

Qn′(on′ , an′ ; θn′) (6.3)

where Qn′(·; θn′) is the Q-value estimate of the next hop agent.
To approach the estimated Qn(·; θn) to the optimal Q∗

n, at each agent n, the weights θn are
updated by stochastic gradient descent when minimizing the next square loss called Temporal

Difference (TD) error:

LDQN =
(︂

Qn(on, an; θn)− Y Q
n

⎡2
(6.4)

In the next paragraphs, we detail (i) the node observation representation, (ii) the node action,
and (iii) the reward definition.
Node observation.
The node observation on ∈ On is represented as on =

)︄

d,
}︄

δp, p ∈ 1 . . . ♣Pout
n ♣

⟨︄)︁

. This is the
concatenation of two components. The first one is the current packet destination d ∈ N o, which is
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the index of the destination node. The second one is the tunnel delay δp ∈ R, in seconds, of each
outgoing tunnel p ∈ Pout

n at the node n. In practice, this delay can be estimated from instantaneous
measurements collected by sending ping packets through each tunnel at each time step P . Then, a
moving average is computed over these measurements by sliding a window corresponding to the
last W samples. A timeout is set to detect a lost ping packet due to high congestion in the tunnel.
Node action.
The node action an ∈ An is the choice of the outgoing tunnel p ∈ Pout

n to forward the packet to
the next hop node n′. Compared to the Oracle routing, the agents cannot decide to drop a packet.
Reward.
The reward rn′ is the next-hop packet delay, defined as the time required by the packet to travel
from the buffer tail of n up to the buffer tail of the next hop node n′. Then, it is computed as
rn′ = q + l, where: (i) q refers to the queuing delay, the time spent by the packet in the outgoing
buffer of node n taking to the next hop node in the tunnel; (ii) l denotes the tunnel transmission

delay, the transmission latency in the tunnel connecting n and n′. However, if the packet is lost
in the tunnel, the reward can be ignored, fixed to a high value, or set dynamically. This will be
detailed in the Section 6.3.
Lost packet’s treatment.
If the packet is lost in the tunnel, we have multiple options to consider

— No loss: ignore lost packets and do not include the transition of lost packets in the training
of the DNN.

— Fixed loss penalty: rn′ is considered as infinity since the packet did not arrive at n′. In
practice, we use the worst-case end-to-end delay, which we refer to as loss penalty lpen =
♣N o♣×(B+1)

C
, that is, the delay of traversing over the ♣N o♣ underlay nodes when all the output

buffers are full. Thus, the reward can be measured in time units (typically, in seconds).
This reward definition allows the end-to-end delay estimate Qn(·; θn) to account for both
buffer delays and packet losses, but giving more weight to the packet losses to favor its
minimization in priority, similarly to the LP model of the oracle routing (see Section 6.2.2).

— Guided reward: a more advanced way to consider lost packets in the reward. This will be
explained in the Section 6.3.

Tunnel delay estimate packets.
Along with the control packets discussed in the previous chapter (Section 5.2.5), we add a new
type of control packet specific to the overlay case. These packets, implemented as ping packets, are
required to construct the observation on as stated above. The agents need to send them periodically
into each outgoing tunnel to estimate the tunnel’s delay. This information is used to construct the
observation on, and so to provide continual monitoring of the outgoing interface state. Thanks
to this communication, the agents can detect potential changes in the underlay network topology
and the traffic load impacting the tunnel’s delay. This communication is required during both the
training and the execution phase and represents an overhead that depends on the time interval
between two ping packets, denoted as P . Figure 6.2 depicts the control packets sent for model

sharing, value sharing, and logit sharing when a data packet is received by the next hop node
n′ coming from a node n. The replay memory update packets are represented in yellow and are
triggered at the reception of each data packet during the training phase. The target update packets

are represented in red and are triggered at each U during the training phase. The ping packets are
represented in blue and are triggered at each P during the training and execution phases.
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Agent n Agent n'
Tunnel

Qn'(.; θn')Qn(.; θn)

(rn', f, τn')

on

(a) Value sharing

Agent n Agent n'
Tunnel

Qn'(.; θn')

Qn(.; θn)

 n(.; θ−
n')

(rn', f, on')

θn'

on

(b) Model sharing

Agent n Agent n'
Tunnel

on

(rn', f, on', Qn'(on'; θn'))

Qn'(.; θn')

    n'(.; θ−
n')

Qn(.; θn)

DBn'

(c) Logit sharing

Figure 6.2 – Different information sharing strategies. Tunnel delay estimate packets, replay me-

mory update packets, and target update packets are represented in blue, yellow, and red, respecti-
vely.

6.2.4 Neural Network Architecture

The architecture of the neural network Qn(sn, an; θn) chosen is depicted in Figure 6.3. This
architecture is inspired by (You et al., 2022) and (Alliche, da Silva Barros, et al., 2022) and confir-
med through experimentation. The observation on is split into two parts: (i) the packet destination,
which will be transferred to a one-hot encoding layer (i.e., the position corresponding to the des-
tination is set to one, the rest to zero) resulting in a ♣N o♣-element vector; and, (ii) the delay for

each outgoing tunnel at node n, as an ♣Pout
n ♣-element vector, whose values are layer normalized.

The outputs of each block are fed to a 32-neuron fully connected layer. Afterward, their outputs
are concatenated before feeding two 32-neuron fully connected layers. This split architecture is
useful for efficiently treating the different types of data (i.e., the destination is a binary vector,
and the tunnel delays are floating points) before merging them, where each block acts as a pre-
processing block. Finally, the output layer is fully connected with as many neurons as the node
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action space (i.e., out-degree ♣Pout
n ♣ of n). The value of each output neuron estimates the Q-value

Qn(sn, an; θn). All the activation functions are ELUs (Exponential Linear Units), which avoids
the "dead neurons" problem of RELUs (Rectified Exponential Linear Units) (Lu, Shin, Su, &
Karniadakis, 2019).

Packet Destination
(1)

Outgoing tunnel's
delay

(1, out degree)

On

(1+out degre)

Split
Layer

One hot
encoding
(1)→(1, N)

Concatenate
(64)

Dense
(out degree)

+
ELU

Qn
(out degree)

Dense
(32)

+
ELU

Dense
(32)

+
ELU

Dense
(32)

+
ELU

Dense
(32)

+
ELU

Layer
Norm

Figure 6.3 – DNN architecture

6.2.5 Training of the model

The training of the model and the DNN architecture are kept the same as our previous
study (Alliche, da Silva Barros, et al., 2022). The objective is to update the neural network weights
using gradient descent in order to minimize the loss given by Equation (6.4). To compute this loss,
it is necessary to know the observation on, the action an, the reward rn′ , the flag f and the target
value τn′ (defined by Equation 6.3). The latter can be obtained using three techniques: value sha-

ring, model sharing and logit sharing. The first two techniques were covered in Section 5.2.5. The
latter, logit sharing, was introduced in Section 5.3.1. It is a novel technique that brings the best of
model sharing and value sharing while preserving a low communication overhead.

6.3 Stabilizing convergence by a guided reward

In this section, we propose a guided reward technique to integrate the lost packet into the
reward optimally. We want to answer the research question: How to define the reward when a

packet is dropped in the link ?

This section is structured as follow:

1. Present a motivation behind the proposed approach.

2. Introduce RCPO (Tessler et al., 2018), a guided reward technique based on a Lagrangian
relaxation.

3. Explain how we integrate the idea of RCPO to our framework.

6.3.1 Motivation

Generally, in Reinforcement Learning (RL) systems, the goal is to maximize the accumulated
reward. This reward can be computed from a single signal, like in Atari games (Bellemare, Naddaf,
Veness, & Bowling, 2013 ; Schwarzer et al., 2023), in which the reward is the game score. Howe-
ver, the problem becomes complex when dealing with multiple rewards. In our case, we have two
signals: the delay and the loss. Following a multi-objective approach (Mannor & Shimkin, 2004),
we define a penalty coefficient for each signal. Depending on the choice of these coefficients, there
exists a different optimal solution known as Pareto optimality (Censor, 1977). In some studies, the
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authors considered only the delay and ignored the loss like in (Mukhutdinov et al., 2019 ; You
et al., 2022). In other studies, the weights are defined and fixed before the training. They can be
obtained using an optimization algorithm like in (Kaviani et al., 2021), or fixed manually to a sui-
table value as a hyperparameter like in our previous study (Alliche, da Silva Barros, et al., 2022),
where a fixed value is considered for the loss penalty lpen. In practice, setting the weights to the
best value can be tedious and time-consuming. Also, selecting a fixed value of the penalty weights
can lead to the convergence to sub-optimal solutions (Tessler et al., 2018); when the coefficient
related to the loss is too big compared to the delay, it is plausible that at the beginning of training,
the agents will only focus on avoiding losing packets, which can results in conservative policy,
and thus getting stuck in a local minimum.

Tessler et al. (Tessler et al., 2018) bring a solution to this problem named Reward Constrai-
ned Policy Optimization (RCPO). The idea is to formulate the problem as a constrained Markov
Decision Process (MDP) and convert it into an unconstrained problem by adopting Lagrangian
relaxation, where the penalty weights are the Lagrangian coefficients.

This approach is similar, in its conception, to primal-dual optimization: inside an episode, the
agent optimizes its DNN weights while fixing the reward coefficients, and after the episode, the
agent optimizes the reward coefficients while fixing the DNN weights. Under mild assumptions,
RCPO is proven to provide convergence guarantees and safety with respect to the violation of the
constraints. However, RCPO was originally designed and fitted for a single agent actor-critic based
approach, like Proximal Policy Optimization (PPO) (Schulman et al., 2017). Our contribution is
to adapt this method to our framework, which is a fully decentralized MA-DRL approach based
on a Deep Q-Network (DQN) model. The challenges of such an adaptation are: (i) defining the
constraint to consider in the model. Intuitively, the link capacity can be considered as such, but in
our case, the cloud overlay agents do not have access to the underlay links, where this violation
occurs; (ii) making sure to run the data collection and the update of the reward coefficients in a
decentralized way (inside an agent and not in a centralized controller).

6.3.2 Reward Constrained Policy Optimization (RCPO)

In classical MDP, the goal is to optimize the expectation of discounted reward Jπ
R, given the

initial state distribution µ and the discount factor γ. In our case, we aim to minimize the end-to-end
delay, which yields the next optimization problem:

min
π∈Π

Jπ
R, where Jπ

R = E
π
s0∼µ

⎟

∞
∑︂

t=0

γtrt

⟨︂

=
∑︂

s∈S

µ(s)V π
R (s) (6.5)

V π
R (s) represents the value due to following a policy π started from the state s. This value function

solves the recursive Bellman equation:

V π
R (s) = E

π[r(s, a) + γV π
R (s′)♣s] (6.6)

Constrained Markov Decision Process (Altman, 2021) extends MDPs by introducing a penalty
signal c(s, a), a constraint C(st) = F (c(st, at), . . . , c(sN , aN )), and a threshold α ∈ [0, 1]. The
function F could be a discounted sum or an average sum. The objective in this case is to optimize
the expectation of the discounted reward with respect to the expectation over the constraint Jπ

C :

min
π∈Π

Jπ
R , s.t. Jπ

C ≤ α, where Jπ
C = E

π
s0∼µ[C(s)] (6.7)
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The Lagrangian relaxation of this MDP gives the following unconstrained problem:

max
λ≥0

min
θ

L(λ, θ) = max
λ≥0

min
θ

[Jπθ

R + λ.(Jπθ

C − α)] (6.8)

where L is the Lagrangian, and λ ≥ 0 are the Lagrange multipliers, which are the penalty coef-
ficients. The solution of this problem is done on a two timescale approach: on a faster timescale
(inside an episode), we update θ with temporal-difference learning considering the penalized re-
ward function r′(λ, st, at) = r(st, at) + λc(st, at), and the new discounted penalized reward
V

′π(λ, st) = V π
R (st) + λV π

C (st), with λ being fixed; on a slower timescale (between two epi-
sodes), we update λ using gradient descent (see Equation (6.9)), with θ being fixed.

λk+1 = λk + v2∇λL(λ, θ) (6.9)

where v2 is the learning rate and∇λL(λ, θ) is the gradient for the coefficient, which is given by:

∇λL(λ, θ) = E
πθ
s∼µ[C(s)− α] (6.10)

6.3.3 Adapting the RCPO technique to the cloud overlay DPR problem

In our case, we consider the end-to-end delay as the primary goal, which we have to minimize
with respect to the capacity constraint (described in Equation (6.1d)). The capacity constraint
concerns the underlay links (physical links). So, unlike (Kamri et al., 2021), we don’t have access
to the buffers of the underlay network interfaces. Thus, we are not able to measure directly the
constraint signal c(s, a) to define its violation. Thus, a research question arises: How can the
constraint penalty be properly set in this complex case?

We propose answering the above question by measuring the constraint violation with an over-
lay lost packet signal. In this solution, the constraint signal corresponds to a packet loss during its
transition to the next hop. For each cloud overlay node n, we define a set of λk which corresponds
to each outgoing tunnel k ∈ Pout

n . When a node n sends a data packet to a next hop n′ and the
packet is lost, the penalty signal c(s, a) is set to 1, and the delay reward r(s, a) is set to 0. If the
packet was successfully delivered, we ignore the penalty signal, that is, c(s, a) is set to 0, and
consider only the reward r(s, a). So, the final reward is defined as follows:

rn′ =

∮︂

r(s, a), if next hop was reached

λi, if packet was dropped
(6.11)

The constraint C(st) is the average sum of the penalties c(s, a). We set the constraint threshold α
to 0 since we aim to have zero packet loss when training in low to average traffic loads.

We have designed this solution to make sure that all the information needed to compute the
constraint C(t) along with the coefficient gradient ∇λL(λ, θ) are available locally on the node,
and thus do not introduce additional interaction between the nodes or the need to have a centralized
controller. However, this solution requires the detection of dropped packets, which can be done by
establishing a packet acknowledgment mechanism.

Algorithm 2 depicts the pseudo-code of the training routine of O-DQR on a node n, namely
MA-DRL with logit sharing, dynamic sending of replay memory update packets, and guided re-

ward mechanism.
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Algorithm 2: Training O-DQR on a node n

Input: Total number of training episodes NEp, Episode duration S; Gradient descent update period T ; target
network supervised training period T ; Learning rate to update DNN weights ν1; Learning rate for
guided reward coefficients update ν2; tunnel delay estimate period P ; Weights θSP

v , v ∈
}︄

n ∪N out
n

⟨︄

Output: Final routing model weights θn

1 Initialize experience replay memoryMn;
2 Initialize Qn(·) with weights θn ← θSP

n ;

3 Initialize targets Q̂v(·), v ∈ N out
n with weights θ−

v ← θSP
n ;

4 while current episode index iep < NEp do
5 while current simulation timestamp t < S do
6 if t mod P then
7 for neighbor do
8 Send a ping packet to the neighbor;

9 for each arrival packet do
10 Observe the current node state on;
11 Select action an = n′, where

12 n′ =

⎭

a random neig. v ∈ N out
n , with prob. ϵ

argmaxvn∈N out
n

Qn(on, vn), otherwise
Forward packet p to next hop node n′ with

the output value Qn(on, an; θn);
13 Receive back from n′ next-hop state on′ , the logit vector Qn′ (on′ , .; θn′ ),the reward rn and the

flag f ;
14 Store transition (on, an, rn′ , on′ , f) in memoryMn;
15 Store the state on and the output Qn′ (on′ , .; θn′ ) in the supervised database for this neighbor n

DB∫ n
;

16 Receive back from n′ next hop state on′ , output of the neighbor’s DNN Qn′ (on′ , .; θn′ ), the
reward rn and the flag f ;

17 observe the penalty value c(on, an);
18 store the penalty value in the memoryMn along with the transition;
19 if t mod T then

20 Sample random batch B
i.i.d.
∼ Mn;

21 Set target values Y Q
n as (6.2) for B;

22 Update weights θn by gradient descent on TD error for B;

23 if t mod T then
24 Update target weights: θ−

v ← θv, v ∈ N out
n based on the data stored in the supervised

database DB∫ v
;

25 clear the database DB∫ n
;

26 for neighbor do
27 Retrieve the penalties c(s, a) stored for this neighbor i fromMi;
28 Aggregate the penalties c(s, a) to compute the constraint C(s);
29 Update loss penalty for this neighbor i λi following the Equation 6.9;

6.4 Experiments

6.4.1 Experimental Settings

In this section, as pointed out above, we assume that O-DQR refers to the MA-DRL framework

for the cloud overlay routing problem as described in Algorithm 2, i.e., with logit sharing, dynamic
sending of replay memory update packets, and guided reward mechanism. In this subsection, we
describe the experimental approach to answer the following research questions:
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— Q1: What is the performance of O-DQR compared to taking the direct cloud overlay tunnel
(the by-default ISP configuration) and to the Oracle routing policy 6.2.2?

— Q2: What is the effect of having a guided reward penalty on the convergence of O-DQR
compared to ignoring the packet loss or applying a predefined packet loss penalty?

— Q3: How much overhead can we reduce, compared to model sharing, by using logit sharing

and enabling the dynamic sending of replay memory packets?

Hardware and software settings.
We ran the training and testing of the different models locally in a Dell Precision 7920 workstation
equipped with an Intel Gold 6230R (26 Cores, 2.1-4.0GHz, 128GB RAM) with 2 NVIDIA RTX
A5000 GPUs, running Linux Ubuntu 20.04. The DNN agent model is implemented in Tensor-
Flow (TensorFlow: An end-to-end open source machine learning platform, s. d.) version 2.8. The
implementation of the MA-DRL method is based on the OpenAI™ Baselines library (Brockman
et al., 2016). The prisma-v2 tool (PRISMA tool: An open MARL framework for packet routing.,
s. d.) (Alliche, Barros, et al., 2022) is used as a multi-agent network simulation environment, which
can emulate the data and the control packets.
Results reproduction.
The simulator used, prisma-v2, which is described in Section 4.3 of Chapter 3.
Evaluation metrics.
We evaluate the performance of O-DQR by considering the network metrics collected over all
the cloud overlay nodes during the test period: average end-to-end packet delay and loss ratio for
cloud overlay packets. For the control packet overhead, we consider the total size of sent control
packets divided by the total size of sent data packets over the training period. We refer to the latter
metric by overhead ratio.
Competitors.
We compare the routing optimality of O-DQR in Algorithm 2 to the ISP default path, and the
Oracle routing from LP model in Section 6.2.2. The ISP default path and Oracle routing solutions
represent performance benchmarks used to assess the quality of our DRL solution. The ISP default

path in our full mesh setting consists of routing the traffic between two cloud overlay nodes by
taking the direct tunnel connecting them. We assume in this work that the underlay routing policy
used by the ISPs is the shortest path routing. However, we cannot compare directly O-DQR to the
DPR literature algorithms (You et al., 2022 ; L. Chen et al., 2021 ; Manfredi et al., 2021) since they
do not support the cloud overlay setting. The other track of works treating cloud overlay routing
under Software-Defined Networking (SDN), like (Kamri et al., 2021 ; Botta et al., 2023), considers
the problem as a load balancing over a set of predefined paths, which is different from our concep-
tion, where we consider multihop distributed packet routing. Also, the training is centralized in a
controller node, collecting all the past experiences. In contrast to our settings, the training is done
on the distributed node agents.
Network topologies.
We test O-DQR in two different cloud overlay topologies. Those topologies are built on top of
real-world networks. The first topology consists of a five-node full mesh cloud overlay network
built on top of Abilene (♣N ♣=11) (SNDlib: Library of test instances for Survivable fixed telecom-

munication Network Design, s. d.). The second topology consists of a 10-node full mesh cloud
overlay network built on top of Geant (♣N ♣=23) (SNDlib: Library of test instances for Survivable

fixed telecommunication Network Design, s. d.) network. Both topologies are presented in the Fi-
gure 6.4. We opted for a full mesh cloud overlay topology to allow any cloud overlay node pair
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to be connected by a direct tunnel. We assume no knowledge about the underlay topology. We fix
link propagation delay and link rate C for the underlay topology to one millisecond and 500Kbps,
respectively.
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Figure 6.4 – Network topologies. In red, the cloud overlay nodes

Traffic generation.
We consider 10 traffic matrices for both topologies. Each traffic matrix HHH is generated by sam-
pling each element hsd from a uniform distribution U(0, 1). Then, we multiply element-wise this
traffic matrix by a generated matrix AAA to have a configuration that maximizes the gap between the
Oracle routing and ISP default path. The values of this matrix, AAA, are found using a heuristic that
finds the cloud overlay flows with the maximum number of alternative paths in the underlay. For
each source/destination pair, (i) get the kmax shortest paths in the overlay network (where kmax

is a fixed parameter); (ii) compute their equivalence in the underlay topology; (iii) remove the
redundant paths and the path using the direct underlay shortest path; (iv) set the elements aij ∈ AAA
proportional to the number of alternative underlay paths found for the flow connecting the node
pair (i, j).

We scale up the resulting traffic matrices (HHH ⊙ AAA) by multiplying it by a coefficient α. We
increase α up to the largest value αmax for which an optimal routing with no packet loss can still
be found by the LP model (6.1). The matrix αmax (HHH ⊙AAA) is associated with a load factor ρ = 1.
Data packets are generated as UDP over IP datagrams. Their payload is 512 B long. The UDP and
IP headers are 8 B and 20 B long, respectively. Then, the total packet size is 540 B.

We do not explicitly consider the additional header needed to distinguish cloud overlay packets
since it depends on the tunneling technology. Cloud overlay packets have cloud overlay nodes as
sources and destinations. The rest of the traffic packets are considered underlay packets, which are
not controlled by the cloud overlay nodes and, thus, do not trigger actions from the agent. Packet
traces are produced assuming that packet inter-arrival time follows an exponential distribution
with mean 540B/hsd. Finally, the output buffer size is fixed to 16, 200B (i.e., 30 data packets of
540B long).
Control signalling packets.
As explained in the previous chapter (Sections 5.2.5 and 5.3), DRL agents share information
through control packets that we want to quantify. For the replay memory update packets, we encode
each float or integer data type unit in 8B, and we ignore the flag f since it is a binary value (1bit).
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Then, a pair (rn′ , on′) (model sharing) is 16+8·♣N out
n ♣B long, and a pair (rn′ , on′ , Qn′(on′ , .; θn′))

(logit sharing) is 16 + 16 · ♣N out
n ♣B long. Control packets are also encapsulated into UDP over IP

datagrams, which adds a header size of 28B. For a target update, the size of a DRL agent model
is around 36KB, which we split into target update packets of 512B long. Since the cloud overlay
topology is full mesh, the communication overhead for target update packets becomes significant
and will strongly impact the model’s training. For this reason, we decided to send those packets in
an off-band control channel different from the data channel, which allows us to access the perfor-
mance of model sharing without overloading the network. For the tunnel delay estimate packets,
the size of the payload is 8B, which is encapsulated into UDP over IP datagrams.
Training procedure.
The weights θn are initialized with supervised pre-training on the shortest path routing onto the
cloud overlay topology or randomly sampled. The model is trained using ADAM optimizer with
a learning rate of 1e − 4, batch size of 512, and γ of 1. The training is divided into 20 episodes
of 20 seconds each, which results in a total training duration of 400 seconds (in ns-3 simulation
time). The gradient descent is launched every T = 10 milliseconds (in ns-3 simulation time).
Moreover, we use an ϵ-greedy approach (ϵ decays from 1 to 0.01) for each episode to trade between
exploration and exploitation. The moving average window for the tunnel delay estimate is set to
W = 5 packets. We consider a replay memory size of 10K experiences. The local training period
in logit sharing is done every five seconds, with 50 epochs and the same learning rate and batch
size as DRL. We clear the local learning database after each training. The update of the constraint
penalties is done between two episodes, and its learning rate (v2) is set to 100 times lower than the
DRL learning rate. We fix the random seed for all the experiences. Based on previous studies and
experimental search, we set the training load to 0.4, the target update period for model sharing to
U = 5s, and the tunnel delay estimate packets period P to P = 100ms).

We execute different training sessions for each traffic matrix, information-sharing technique
(model sharing and logit sharing), reward definition technique (ignoring the packet loss, fixing
a packet loss penalty, or considering the guided reward as in Section 6.3), experience relevancy

threshold ERT hr (0%, 25%, 50%, 75%). After each episode, the corresponding model weights
are saved for all the agents.
Testing procedure.
For each trained model, a test phase is performed on the tuple {episode number, traffic matrix,

sharing technique, reward definition technique, experience relevancy threshold}. We ran three

simulations for load factors ρ = [0.6, 0.9, 1.2]. The rationale behind testing for traffic loads higher
than 1.0 is to evaluate the model in highly saturated scenarios, where buffer delays become huge.
The test packet traces are generated using the same traffic matrix as training but scaled to the
corresponding load factor ρ. In other words, with respect to the training procedure, we test each
DNN model with the same traffic distribution among nodes but with higher loads. Each testing

simulation lasts 20 seconds. This duration is sufficient to reach a stationary state in the network.
We disable the delay estimate packets for the competitors since they do not exploit the tunnel
delay.

6.4.2 Experiments results

In the following section, we present the results of the experiments to answer the above-
mentioned research questions.
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6.4.2.1 Answering Q1: performance of O-DQR

We answer the first question by evaluating the trained O-DQR in different test loads. We chose
ρ = 0.6 as a low load, ρ = 0.9 as a mid load, and ρ = 1.2 as a high load. Figure 6.5 compares the
performance (in terms of average end-to-end delay and loss rate) of O-DQR with the ISP default

path routing and the Oracle routing. We run the experiments on all ten traffic matrices for Abilene
topology and four matrices for Geant topology. Each bar shows the average over all the traffic ma-
trices. The supervised training time step T is set to five seconds. In the low-load scenario, all the

Oracle Routing O-DQR ISP default path

Low Mid High
Traffic Load

450

500

550

600

650

700

D
el

ay
 (m

s)

A. End-to-End Delay on Abilene Topo-
logy

Low Mid High
Traffic Load

0%

2%

4%

6%

8%

10%

Pa
ck

et
 L

os
s R

at
io

B. Loss Rate on Abilene Topology

Low Mid High
Traffic Load

450

500

550

600

650

700

D
el

ay
 (m

s)

C. End-to-End Delay on Geant Topology

Low Mid High
Traffic Load

0%

2%

4%

6%

8%

10%

Pa
ck

et
 L

os
s R

at
io

D. Loss Rate on Geant topology

Figure 6.5 – Performance Metrics vs Load

models perform equally well, with no packet loss and an average delay of 540 milliseconds. This
is because the best policy in this case is to follow the direct tunnel (i.e., ISP default path routing)
adopted by both O-DQR and Oracle routing. However, in the mid-load scenario, the nodes expe-
rience packet loss when using the ISP default path or Oracle routing policies. O-DQR outperforms
these models by maintaining a zero loss rate and a lower average end-to-end delay. This shows that
O-DQR discovers the tunnels traversing the congested underlay links, even though the underlay
configuration is unknown to the cloud overlay agents. In particular, O-DQR outperforms Oracle in
delay and loss in the mid-load scenario. This can be explained by the flow-based nature of the LP
model of the Oracle routing. The Oracle has a coarse-grained view of the packets’ flows. Then,
it cannot correctly handle temporary traffic peak scenarios (instantaneous flow values exceeding
average ones), where disposing of an estimate of the current tunnel congestion (like the tunnel

delay estimate in O-DQR) can improve the routing policy.
In the high load scenario, the loss ratio for the ISP default path reaches almost 9% as the direct

tunnel becomes saturated with packets. O-DQR significantly reduces the loss rate in this scenario
by up to 66% compared to the direct tunnel. O-DQR performs better in the Geant topology since
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it has a greater degree of freedom. Moreover, O-DQR matches, and even slightly overcomes, the
performance of the Oracle routing, even though the latter can reject packets at the source and
"knows" the traffic matrix, the underlay topology and the underlay routing.
Conclusion for Q1: O-DQR beats the ISP default path in mid and high-load scenarios and
achieves a performance close to the Oracle routing.

6.4.2.2 Answering Q2: convergence and stability study.

In this part, we study the effect of the guided reward strategy on the convergence of O-DQR

by comparing it to two approaches to introduce the packet loss in the reward: (i) the loss blind

approach, which ignores the lost packet and (ii) the fixed loss-pen approach that considers a fixed
penalty. To evaluate the convergence, we retrieve the model at each episode and run an evaluation
on it. Figure 6.6 illustrates the evolution of the performance of each loss penalty method at dif-
ferent states of the training phase for the two topologies. Each point represents an average over all
the loads and traffic matrices. Regarding loss rate, we observe that guided reward significantly im-
proves convergence speed compared to loss blind and fixed loss-pen. It reaches a steady state after
the fourth episode, whereas the other methods need at least twice this duration to converge. The
end-to-end delay continues to improve slightly with time for all the methods. The results confirm
the importance of the guided reward in stabilizing and speeding up the training and convergence
of the agents.

Conclusion for Q2: Furthermore, the utilization of the "guided reward" approach not only en-
hances performance but also improves the model’s convergence and stability. Models employing
the "guided reward" strategy typically achieve convergence approximately twice as quickly as
those employing "loss blind" and "fixed loss-pen" strategies. Additionally, they demonstrate smoo-
ther convergence curves for increased stability.

6.4.2.3 Answering Q3: communication overhead study.

The control communication overhead is evaluated in this part. To do that, the overhead of our
logit sharing strategy, denoted here as O-DQR, is benchmarked against the model sharing strategy.
For both strategies, the training period of the local copies of the neighbors’ models is fixed at five
seconds.

Since the target update packets (only used by model sharing) introduces significant overhead,
the model sharing agents overload the network links with control packets, preventing the O-DQR

convergence. Thus, we are forced to send the target update packets in an off-band channel different
from the channel used for the data. In the remainder of the section, we assume off-band target

update packets. Then, their overhead contribution in the model sharing method is estimated, in
contrast to the other control packets, whose contribution is measured from the simulation. For
logit sharing, we vary the experience relevancy threshold ERthr from 0% to 75% with a step of
25%.

— Control packets overhead and performance trade-off. Plots A to D of Figure 6.7 illustrate
the trade-off between the performance of the model in the evaluation phase and its commu-
nication overhead ratio during the training phase. This trade-off depends on the experience

relevancy threshold ERthr for logit sharing. The number of replay memory update packets in
logit sharing (and, then, the overhead) decrease when the value of ERthr augments. In parti-
cular, increasing ERthr reduces the overhead from 54% to 26% in Abilene and from 79% to
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Figure 6.6 – Performance metrics vs episode number

56% in Geant for logit sharing, but at the cost of degrading the performance. However, even
for the lowest overhead (ERthr = 75%), O-DQR obtains, with respect to the ISP default path,
a better performance in loss rate (42% improvement in Abilene and 66% in Geant for the worst
case) and a similar one in delay. When we compare the two sharing techniques, without dy-
namic sending of replay memory update packets (ERthr = 0%), logit sharing (i.e., O-DQR)
outperforms model sharing in loss rate (over 31.62% in Abilene and 49.33% in Geant), while
keeping the same end-to-end delay and requiring significantly fewer control packets (over 55%
reduction in Abilene and 64% in Geant).

— Control packets overhead evolution during the training Figure 6.8 illustrates the evolution
of the overhead ratio per episode during the training phase when enabling the dynamic sen-
ding of replay memory update packets in O-DQR. We then observe that the control overhead
decreases with the training time until reaching a minimum. At the beginning of the training,
the experience relevancy is high since the policies are not optimal. Then, when the models get
better, the experience relevancy lowers, and the agents send fewer and fewer control packets.

Conclusion for Q3: The results show that O-DQR with logit sharing outperforms the model sha-

ring version. This is because it offers stability in the changes of the target model weights, helping
the convergence: the weights are updated progressively in a supervised way, which is smoother
than changing all the weights between two target update periods as done in model sharing. Mo-
reover, by tuning the dynamic sending of replay memory update packets with the experience rele-

vancy threshold ERthr, O-DQR can achieve delay and loss rate performances superior to the ISP

default path and close to the Oracle routing, with a moderate overhead in comparison with the
model sharing version. On the other hand, in terms of overhead, we can control how often agents
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Figure 6.7 – Study of the communication overhead of our model. Plots A to D represent the trade-off
between the performance and the overhead

share their experiences based on their relevancy. The experience relevancy threshold parameter
allows tuning the system sensitivity to the experience relevancy. Depending on its value, we can
reduce the maximum training overhead ratio from 54% to 26% in Abilene and 79% to 56% in
Geant.

6.5 Discussion

First, the logit sharing strategy implemented in O-DQR relies only on the dynamic sending
of replay memory update packets, which can be controlled by the experience relevancy threshold

ERthr. The mechanism allows tuning the control signalling overhead. For a fixed ERthr, the
overhead diminishes with the progression of the training. By changing ERthr, we can trade the
performance of the learned routing policy with the overhead required for learning it. In a continual

learning scenario, these features imply that (i) most of the overhead will take place at the moments
when significant changes (e.g., in the traffic matrix or the underlay network) happen, (ii) the cloud
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Figure 6.8 – Evolution of the communication overhead during the training when varying the ex-
perience relevancy threshold

overlay operator can select the performance-overhead trade-off point required for satisfying their
clients.

Second, the guided reward mechanism is based on an episodic run. The loss penalty coef-
ficients are updated between each two episodes. To ensure the convergence of this method, the
learning rate of updating the coefficients should be significantly lower than the learning rate of
updating the DNN weights. Also, it is necessary to keep the initial conditions, exploration policy,
and network settings (traffic and topology) static between two episodes. This condition was pre-
served in our simulations since the network is reset at the start of each episode, but it can be hard to
ensure in a continual learning case. In this case, the guided reward mechanism should be adapted
to define an episode.

The continual learning scenario is more relevant to cloud overlay operators, as CDNs. Conse-
quently, future works will focus on adapting the proposed framework to this scenario. That means
making the traffic matrix evolve along with time, and continuously training the models, in contrast
to our experiments where we evaluated the framework in an offline setting with a static traffic
matrix. We then plan to evaluate the model in a dynamic traffic situation and address the issues
pointed out in the previous paragraphs.
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6.6 Conclusion

In this chapter, we have presented a complete MA-DRL framework to address the problem
of multi-hop packet routing in cloud overlay networks. It is, to the best of our knowledge, the
first fully decentralized solution under the DTDE scheme, in which the control communication
overhead is evaluated and controlled. This framework includes three novelties in order to reduce
the overhead and improve the convergence speed and stability: (i) DNN agents exchange their
logits (instead of all the DNN weights as in the State-of-the-Art) to tackle the non-stationary of
multi-agent environments, (ii) DNN agents can tune how often to share their experiences based
on their relevancy for the training process, and (iii) a guided reward penalty mechanism is used
to prevent the convergence issues from learning a multi-objective function (end-to-end delay and
packet loss). The results of the different experiments that we ran show that our framework achieved
near-optimal performance on a small or large network topology while having a reasonable and
controlled overhead.

In the next chapter, we present two other applications of DRL to networks that have been held
during the thesis: (i) DRL for cloud slices reconfiguration and (ii) DRL for virtual link allocation
in quantum networks.



CHAPTER 7
Other Applications of

Reinforcement Learning
to Network Control

This chapter focuses on the application of Deep Reinforcement Learning (DRL) to two

challenging scenarios. The first scenario involves the management of cloud slicing from

the perspective of 5G network operators. This research was conducted in collabora-

tion with the COATI team at INRIA and was part of Adrien Gausseran’s Ph.D. the-

sis (Gausseran, 2021). Our findings were presented at the IEEE 11th International

Conference on Cloud Networking (CloudNet) (Gausseran et al., 2022).

The second endeavor concerns the generation of quantum virtual links, approached

from the standpoint of quantum network operators. Our work on this frontier was pre-

sented at the 23rd International Conference on Transparent Optical Networks (ICTON

2023) (Aparicio-Pardo et al., 2023).

This chapter unfolds in two sections, each dedicated to elucidating each study.
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7.1 Introduction

Up to this point, we have explored network optimization using DRL within the context of
Content Distribution Network (CDN), showcasing compelling results in cloud overlay configura-
tions. Expanding our investigation, this chapter delves into two additional complex scenarios: 5G
network slicing and quantum network entanglement management.

The emerging 5G landscape brings a multitude of challenges, characterized by an increasing
number of connections and throughput and imposing stringent quality of service requirements such
as low latency and request isolation. Network Function Virtualization (NFV) and Software Defi-
ned Networking (SDN) introduce network slicing to address these growing demands. However,
efficiently provisioning network and cloud resources for a myriad of applications with fluctuating
user demands remains a challenging task. The dynamic nature of these demands necessitates regu-
lar reconfiguration of network slices to maintain efficient provisioning. Balancing the frequency
of reconfigurations poses a significant challenge, as it involves a trade-off between mitigating net-
work congestion and minimizing additional costs incurred by reconfiguration.

In the first section of this study, we tackle the problem of deciding the optimal moment for
reconfiguration, considering this trade-off. By coupling DRL for decision-making and a Column
Generation algorithm for reconfiguration computation, we propose an innovative approach, named
Deep-REC. Our approach identifies optimal reconfiguration timings, maximizing network ope-
rator profit while minimizing resource utilization and network congestion. Moreover, by selecting
the best moment for reconfiguration, our method reduces the number of required reconfigurations
compared to periodic approaches, thereby enhancing overall network efficiency.

In the context of quantum networks, the utilization of quantum entanglement enables the de-
velopment of novel applications such as quantum key distribution and distributed quantum com-
putation. However, managing quantum entanglement effectively presents significant challenges
due to its probabilistic nature and dependency on the characteristics of quantum devices. The ma-
nagement of entanglement, crucial for maintaining high-quality connections, poses a stochastic
control problem that can be modeled as a Markov Decision Process (MDP) and addressed using
Reinforcement Learning (RL).

In the second section of this study, we apply a DRL framework to learn an entanglement mana-
gement policy, surpassing existing methodologies, particularly in scenarios where precise models
of the quantum devices are unavailable. By harnessing DRL, we optimize entanglement mana-
gement, enhancing the performance and reliability of quantum networks in diverse operational
environments.

Finally, we conclude this chapter with Section 7.4

7.2 Reconfiguring Network Slices at the Best Time With Deep Rein-
forcement Learning

To meet the growing and increasingly diverse demands of users and companies, networks have
evolved, adopting new technologies to make their management more efficient and more respon-
sive to dynamic changes in traffic. The first fundamental evolution in the management of modern
networks is Software-Defined Networking (SDN). SDN is a network paradigm that decouples the
control plane from the data plane and enables centralized network control. The network becomes
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programmable, and routing rules can be adjusted in real-time, leading to better responsiveness of
network management in case of traffic changes.

Network Function Virtualization (NFV) comes with SDN as a paradigm allowing the decou-
pling of network functions from the hardware. Functions can be virtualized on generic servers
located in data centers dispersed all over the network. NFV allows, first of all, the reduction of
capital expenditure (Capex) by avoiding the purchase of dedicated equipment for each function.
It also reduces operational costs (Opex) since a function can be easily stopped when not used.
Finally, NFV allows more flexible network management since functions can be instantiated on
demand anywhere in the network when needed due to traffic dynamics.

By combining SDN and NFV technologies, network management thus is greatly enhanced by
making the network programmable, dynamic, and flexible and by allowing for controlled sharing
of resources between different services and users. The increasing importance of wireless networks
and the emergence of 5G bring out new needs such as massive device connectivity, high mobi-
lity, and a great diversity in the quality of service (QoS) requirements. Network slicing has been
proposed to meet this challenge and to satisfy these diversified service needs. By dividing the net-
work infrastructure into multiple logical isolated networks, network slicing allows the support of
a wide range of communication scenarios with a diversified set of service demands, requirements,
and performance. To meet a demand, a slice needs to fulfill an end-to-end service that requires
the joint allocation of different types of resources. A slice must be deployed in real-time, and
thus, the corresponding provisioning of network, computing, and storage resources has to be done
dynamically.

In 5G networks, traffic is highly dynamic, and network requests may be subject to frequent
changes such as arrivals and departures. This dynamicity may fragment the slice resource usage
and make the use of network resources less efficient. To counter this effect, network operators need
to reconfigure the network slices regularly. Indeed, thanks to SDN and NFV, the routing of flows
and the allocation of the network functions can be easily modified. Thus, the slice allocation can
be adjusted to reduce resource utilization and minimize operational costs (e.g., software licenses,
energy consumption, and Service Level Agreement (SLA) violations).

In this work, we propose a method to efficiently reconfigure the network without severe inter-

ruptions of traffic (as it is done in (Gausseran, Giroire, Jaumard, & Moulierac, 2020)). We focus on
the case where 5G slices correspond to service chains. We use a make-before-break mechanism, in
which we first allocate the resources for a secondary route while keeping the first one intact (i.e.,
two redundant routes are reserved in parallel). Then, we migrate the flow to the new route and
release the resources of the old one. There is no traffic disruption, severely impacting the quality
of service (QoS) of the slices. The computations of the new routes are done by using a scalable op-

timization decomposition method making use of a column generation approach. Even when using
such a mechanism to avoid degrading the QoS, network operators do not want to reconfigure their
network too frequently, which may lead to additional management costs. On the other hand, re-
configuring too rarely during the day may lead to sub-optimal network usage. A simple policy
with low computational cost is to reconfigure regularly after a fixed number of minutes. However,
reconfiguring in response to traffic variation can reduce the number of reconfigurations required
each day without impacting the overall improvement obtained.

In this section, we propose a reconfiguration management agent that chooses when to initiate
reconfiguration as a function of different parameters, such as the traffic dynamics and the network
congestion level. We use a Deep Reinforcement Learning technique (DRL) by implementing it
with Tensorflow (TensorFlow: An end-to-end open source machine learning platform, s. d.) and
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their Deep Q-learning Network (DQN) agent. We then show that our agent improves the efficiency
of reconfigurations by performing fewer reconfigurations while still minimizing the network ope-
rational costs compared to doing periodic and frequent reconfigurations.

The rest of this section is organized as follows. In Section 7.2.1, we discuss related work.
Section 7.2.2 presents the formal definition of our problem, 7.2.3 the column generation model,
and 7.2.4 the optimization model Deep-REC based on reinforcement learning. In Section 7.2.6,
we validate Deep-REC by various numerical results.

7.2.1 Related Work

Routing and provisioning of slices. The VNF allocation and SFC provisioning problems have
recently been widely studied.

Some works focus on static scenarios such as (Huin, Jaumard, & Giroire, 2018 ; Tomassilli,
Giroire, Huin, & Pérennes, 2018) in which the authors develop efficient methods coupling chained
allocation of VNFs and traffic routing within SFCs. The dynamic nature of network traffic raises
a range of problems concerning the acceptance of incoming slices, resource management, and
Service Level Agreement compliance. Cheng et al. (Cheng, Wu, Min, Zomaya, & Fang, 2020)
use method to deploy and manage slice provisioning using deep learning and Lyapunov stability
theories. In (Harutyunyan, Fedrizzi, Shahriar, Boutaba, & Riggio, 2019), the authors present a
Mixed Integer Linear Program and a heuristic to add new slices by minimizing the bandwidth
consumption and the slice provisioning cost while considering the VNF migrations. In (Sharma,
Gumaste, & Tatipamula, 2020), a method is presented to manage the creation, modification, or
deletion of slices by adapting to the traffic. They aim to minimize the number of slices while
having enough bandwidth to serve the traffic.

Reconfiguration using standard techniques. The reconfiguration of SFCs and/or slices aims to
maintain a near-optimal state of the network over time to optimize the network usage and the ac-
ceptance of demands. Wang et al. (Wang et al., 2019) develop an algorithm that manages two types
of reconfiguration to maximize the operator’s profits. First, a reconfiguration to adapt the slices to
the current traffic. Second, a reconfiguration modifies the flows traversing the slices. The algorithm
then schedules the reconfigurations and reserves resources for future traffic to reduce the number
of potential future reconfigurations. Each reconfiguration includes the service interruption and re-
source usage as costs. In (Pozza et al., 2020), authors proposed a slice reconfiguration technique
in which the new state of the network is pre-computed. The reconfiguration is done in several
steps, during which the VNFs and routes are modified while considering capacities and delays.
In (Gausseran, Tomassilli, Giroire, & Moulierac, 2021), authors proposed an integer linear pro-
gram and a heuristic to efficiently reconfigure Service Function Chains using a make-before-break

strategy. In (Gausseran, Giroire, Jaumard, & Moulierac, 2021), column generation techniques are
used to optimize the reconfiguration of hundreds of network slices in only a few seconds.

Learning-based reconfiguration Some recent works use reconfiguration techniques based on
reinforcement learning and try to predict the dynamicity of the network. Liu et al. (Liu, Feng,
Chen, Qin, & Zhao, 2020) propose a VNF migration strategy based on Double-Deep Q-Network.
They aim to equally place VNFs between Mobile Edge clusters and core clouds to avoid conges-
tion at the Edge. The migration considers future traffic and tries to reduce the number of migrations
while minimizing the number of congested links. In (Troia, Alvizu, & Maier, 2019), the authors
use reinforcement learning to perform dynamic SFC resource allocation in optical networks. They
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define an agent that decides for each SFC when and which reconfiguration to perform (migration,
scaling-up, scaling-down) to meet the QoS criteria. Each SFC has a bound on the maximum num-
ber of authorized reconfigurations, and the optimization objective is determining the total number
of reconfigurations. Each reconfiguration has a penalty for service interruption.

In (Wei et al., 2020), the authors use DRL to predict when to reconfigure to minimize the
resources consumed. Unlike our work, the authors focus on intra-slice reconfigurations with a
fixed number of requests throughout the experiment and with unchanging service sources and
destinations. Their algorithm optimizes slices only locally and uses a pre-computed set of paths
using a Depth-first search algorithm.

Guan et al. (Guan, Zhang, & Leung, 2020) use a Markov Renewal Process to predict changes
in the resource occupancy of slices and reserve resources for slices that obtain higher revenues at
lower cost. They use a deep dueling neural network combined with Q-Learning to choose whether
to reconfigure each slice. Their goal is to maximize long-term revenue: the increased user utility
minus the cost of resource utilization and service interruptions. Like the last two works mentioned,
we establish an agent based on DRL to choose when to reconfigure the slices.

To the best of our knowledge, we are the first to propose a methodology for reconfiguring a
dynamic network with incoming and outgoing slices without being dependent on a fixed number
of slices throughout the day.

Our deep reconfiguration learning algorithm adapts its behavior based on the variations of
the whole network traffic and not on a fixed set of flows within a slice. Moreover, we do not fix
a limit on the reconfigurations per slice or day. The agent determines the best time to reconfi-
gure and performs the needed number of reconfigurations depending on the traffic variations. The
reconfiguration is computed independently using a column generation algorithm based on a make-

before-break reconfiguration that chooses which slices to reconfigure. This allows our method to
deal with a large number of slices, taking only a few seconds to compute the reconfiguration.

7.2.2 System Model and Problem Formulation

We consider the network a directed capacitated graph G = (V, L) where V represents the
node set and L is the link set. Using the resources available in this network, we must allocate a set
of slice requests D. A network slice request d ∈ D is modeled as a Service Function Chain (SFC)
(as in (N. Zhang et al., 2017)) with a quintuplet: (i) the source vSRC, (ii) the destination vDST, (iii)
the required bandwidth BWd in traffic units, (iv) the delay requirement γd, and, (v) the ordered
sequence of network functions cd that need to be performed, where f cd

i is the i − th function of
chain cd. Each network function instance f ∈ F has an installation cost cf accounting for all the
VNF usage costs (licenses, energy consumption, etc). Each slice d ∈ D provides a revenue u per
bandwidth unit.

We aim to find an allocation of the slice requests such that the network operator profit ac-
cumulated over a certain time window is maximized. This cumulative profit is the sum of the
instantaneous profits pt at each observation time (i.e., minute). The profits pt are computed as the
difference between the overall revenue of the allocated slices and the overall cost of the deployed
VNFs at time t:

pt =
∑︂

d∈Dt

u · BWd −
∑︂

f∈Ft

cf (7.1)

where Dt and Ft are the set of slices and function instances allocated at observation time t, res-
pectively.
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In a dynamic scenario with no information on future traffic, the impact of recently arrived
requests on the cumulative profit (at the operator time horizon) is still unknown: slices routed
using long paths will consume too many resources, preventing the allocation of future requests.
To consider that, at each time, we target placing new requests on paths so that resources (i.e.,
bandwidth at each link and network functions at each node) are minimized. Therefore, in the
method detailed in Section 7.2.3, the slice revenue maximization (first term in Equation 7.1) is
obtained by minimizing the resources used by the slices (see Equation 7.2).

Due to the lack of information about the future, the trivial mechanics of requests coming
and leaving over time will bring the network to a global sub-optimal state. Hence, we are for-
ced to reconfigure the network periodically. To do that, we use the make-before-break mecha-
nism (Gausseran et al., 2020) that avoids network service disruption due to traffic rerouting. We
detail the process of reconfiguring a request in the following example of Figure 7.1.

B     C

F     E

A     F

xx

xx

(a) Requests

A

B D

F

C E

(b) Two requests

A

B D

F

C E

(c) A 3rd request

A

B D

F

C E

(d) First two requests leave

A

B D

F

C E

(e) Reconfiguration phase

A

B D

F

C E

(f) Optimal routing for the third
request

Figure 7.1 – An example of the reconfiguration of a request using a make-before-break approach
with one step.

Example.
Two requests, B to C and F to E are routed during step (b). Four VNFs have been installed in B,

C, E, and F to satisfy the needs of these requests. To avoid the usage cost of new VNFs, the route
from A to F with minimum cost is a long 5–hops route, and the VNF already installed in node B is
shared by the two slices (step (c)). When requests from B to C and from F to E leave, the request
is routed on a non-optimal path (step (d)), which uses more resources than necessary. We compute
one optimal 3-hop path and reroute the request on it (step (f)) with an intermediate make-before-

break step (step (e)) in which both routes co-exist. During this intermediate step, traffic can follow
both paths and resources are accordingly reserved. The old path is removed when all the allocation
and provisioning are ready to be used. In doing so, no packet losses occur, and the traffic is not
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interrupted. In this example, the reconfiguration can be done in only one step of reconfiguration,
but we will consider the following up to 3 steps of reconfiguration.

7.2.3 Column Generation Optimization models

In this section, we first describe the main principles of the column generation algorithm to
solve the problem of reconfiguration of network slices (first proposed in (Gausseran et al., 2021)),
and then we show how we will use this for our deep reinforcement learning algorithm.

Column generation (CG) (Desaulniers, Desrosiers, & Solomon, 2005) is a model allowing to
solve an optimization model without explicitly introducing all variables. It thus allows solving
larger problem instances than a compact model with an exponential number of variables. In this
work, the master problem (MP) seeks a possible global reconfiguration for all slices with a path
formulation. This means that the problem decision variables (columns) correspond to paths on the
layered graph. In the restricted master problem (RMP), only a subset of potential paths is used
for each slice. At the initialization, the set of paths is the one used before reconfiguration. Each
pricing problem (PP) then generates a new path for a request, together with the placement of the
VNFs. During a reconfiguration, slices are migrated from one path to another. Note that, as the
execution of each pricing problem is independent of the others, their solutions can be obtained in
parallel.

7.2.3.1 Layered graph

In order to model the chaining constraint of demand, we associate to each demand d a layered
graph GL(d) with ♣cd♣ layers where ♣cd♣ denotes the number of VNFs in the chain of the demand.
Each layer is a duplicate of the original graph, and the capacities of both nodes and links are shared
among layers.
A path on the layered graph starts at layer 0 and ends at layer cd and corresponds to an assignment
of both a path and the locations where functions are being run (the links between layers).

Representing the original graph as a layered graph is a modeling trick first proposed
in (Dwaraki & Wolf, 2016). It allows for simplification of the problem by reducing it to a routing
problem with shared capacities. This allows a drastic reduction of computation time compared to
usual strategies using a large number of binary variables due to the ordering constraints of VNFs
in the slice.

7.2.3.2 Master Problem

The Master Problem of the column generation algorithm is described in this section.
Parameters:
• δp

l is the number of times the link ℓ appears on path p (considering all the layers in the layered
graph).
• θp

i,u = 1 if node u is used as a VNF on path p on layer i.
Variables:
• φd,t

p ∈ [0, 1] is the amount of flow of demand d on path p at time step t.
• yd,t

p ∈ [0, 1] is the maximum amount of flow of demand d on path p between time step t− 1 and
t.
• zu,f ∈ [0, 1], is equal to 1 if function f is activated on Node u at time step T in the final routing.
We assume an initial configuration is provided with fixed values for φd,0

p . The optimization model
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Layer 0

u1,0

u2,0

u3,0

Layer 1

u1,1

u2,1

u3,1

Layer 2

u1,2

u2,2

u3,2

Figure 7.2 – The layered network GL(d) associated with a demand d such that vs = u1, vd = u3,
and cd = f1, f2, within a triangle network. f1 is allowed be installed on u1 and f2 on u1 and u3.
Source and destination nodes of GL(d) are u1,0 and u3,2. Two possible slices that satisfy d are
drawn in red (f1 is in u1, f2 in u3) and blue (f1 and f2 are in u1).

is written as follows.
Objective: minimize the amount of network resources consumed during the last reconfiguration
time step T , which is the sum of the bandwidth used (BW) added to the sum of the costs of the
deployed VNFs multiplied by a factor β.

min
∑︂

d∈D

∑︂

p∈Pd

∑︂

ℓ∈E

BWd φd,T
p δp

ℓ + β
∑︂

u∈V VNF

∑︂

f∈F

cu,f zu,f (7.2)

Note that maximizing the accepted bandwidth in Equation 7.1 implies minimizing the link band-
width used by the paths (first term in Equation 7.2); whereas the second term in Equation 7.2
represents the cost of the VNFs deployed at time t in Equation 7.1. Since the actual cost of the
bandwidth and the VNFs can vary depending on the network operator, we considered a value of β
for which the bandwidth and the VNFs have the same weight in the objective optimization.
Constraints:
One path constraint. For d ∈ D, time step t ∈ ¶0, ..., T♢.

∑︂

p∈Pd

φd,t
p = 1 (7.3)

Path usage over two consecutive time periods. For d ∈ D, p ∈ Pd, t ∈ ¶1, ..., T♢.

φd,t
p ≤ yd,t

p and φd,t
p ≤ yd,t−1

p (7.4)

Make Before Break - Node capacity constraints. The capacity of a node u in V is shared between
each layer and cannot exceed Cu considering the resources used over two consecutive time per-
iods. ∆ is the amount of computational units required by function f ∈ F per unit of bandwidth
processed. For u ∈ V VNF, t ∈ ¶1, ..., T♢.

∑︂

d∈D

∑︂

p∈Pd

♣cd♣−1
∑︂

i=0

yd,t
p · θ

p
i,u · BWd ·∆f

cd
i
≤ Cu (7.5)
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Make Before Break - Link capacity constraints. The capacity of a link ℓ ∈ E is shared between
each layer and cannot exceed Cℓ considering the resources used over two consecutive time periods.
For ℓ ∈ E, t ∈ ¶1, ..., T♢,

∑︂

d∈D

∑︂

p∈Pd

BWd yd,t
p δp

ℓ ≤ Cℓ. (7.6)

Function activation. To know which functions are activated on which nodes in the final routing.
For u ∈ V , f ∈ F , d ∈ D, i ∈ ¶0, ..., ♣cd♣ − 1♢,

yd,T
p θp

i,u ≤ zu,f
cd
i

. (7.7)

7.2.3.3 Pricing Problem

The pricing problem searches for a possible placement for the slice. Since a reconfiguration
can be done in several steps, a pricing problem is launched for each demand, at each time step.
The objective of the pricing problem for each demand d at time t is called the reduced cost and is
expressed using the Equation in (Desaulniers et al., 2005).
Parameters:
• µ are the dual values of the master’s constraints. The number written in upperscript is the refe-
rence of the master’s constraints.
Variables:
• φℓ,i ∈ ¶0, 1♢ is the amount of flow on link ℓ in layer i.
• αu,i ∈ ¶0, 1♢ is the amount of flow on node u in layer i.
Objective: minimize the amount of network resources consumed for the demand d at time t.

min
∑︂

ℓ∈E

♣cd♣
∑︂

i=0

φℓ,i BW(1 + µ
(7.6)
l,t ) + BW

∑︂

u∈V
VNF

µ
(7.5)
u,t

♣cd♣−1
∑︂

i=0

∆f
cd
i

αu,i

− µ
(7.3)
d,t + β

∑︂

u∈V VNF

∑︂

f∈F

cu,f zu,f µ
(7.7)
d,u,f (7.8)

where µ
(7.7)
d,u,f = 0 when t ̸= T , see constraints 7.7.

Constraints:
Flow conservation constraints for the demand d. For u ∈ V VNF.

∑︂

ℓ∈ω+(u)

φℓ,0 −
∑︂

ℓ∈ω−(u)

φℓ,0 + αu,0 =

∮︂

1 if u = vs

0 else
(7.9)

∑︂

ℓ∈ω+(u)

φℓ,♣cd♣ −
∑︂

ℓ∈ω−(u)

φℓ,♣cd♣ − αu,♣cd♣−1 =

∮︂

−1 if u = vd

0 else
(7.10)

∑︂

ℓ∈ω+(u)

φℓ,i −
∑︂

ℓ∈ω−(u)

φℓ,i + αu,i−1 − αu,i−1 = 0

0 ≤ i < ♣cd♣ (7.11)

Delay constraints. The sum of the link delays Γℓ of the flow must not exceed the delay requirement
of demand d.

♣cd♣
∑︂

i=0

φℓ,i Γℓ ≤ γd (7.12)
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Function activation. To know which functions are activated on which nodes. For u ∈ V VNF, f ∈ F ,
layer i ∈ ¶0, ..., ♣cd♣ − 1♢

αu,i ≤ zu,f
cd
i

(7.13)

Location constraints. A node may be enabled to run only a subset of the virtual network functions.
For u ∈ V VNF, i ∈ ¶0, ..., ♣cd♣−1♢, if the (i+1)th function of cd cannot be installed on u, we have

αu,i = 0. (7.14)

7.2.3.4 Motivation for Deep-REC

Our algorithm reconfigures a given set of network slices from an initial routing and placement
of network functions to another solution that improves the usage of the network resources (both
in terms of link bandwidth and VNFs). This reconfiguration is done with a make-before-break
approach to avoid interruptions of the flows.

In a dynamic scenario, due to the frequent arrival and departure of slices, the network is re-
gularly in a sub-optimal state. Nevertheless, the frequency to run this reconfiguration algorithm
was found in an empirical manner. Indeed, works (Gausseran et al., 2020 ; Gausseran et al., 2021)
showed that reconfiguring every 15 minutes allowed a good ratio between cost reduction, quality
of reconfigurations, acceptance rate, and computation time.

A fixed frequency is easy to set up, but in practice, at some specific time of the day, reconfigu-
ration may not be needed as traffic remains stable and the network is already in an optimal state.
A new reconfiguration at this time won’t bring any gain. On the opposite, during high-dynamic
traffic periods, more frequent reconfigurations may be suitable to maintain an acceptable state of
the network with efficient network resource usage. Therefore, a network operator might be inter-
ested in adapting the reconfiguration frequencies depending on the congestion of the network and
the nature of the traffic. This is the main goal of this work.

Indeed, even if we use a make-before-break reconfiguration model, which allows us to reconfi-
gure without disrupting the traffic, reconfiguring generates network management costs to migrate
VNFs and to compute and instantiate the intermediate and the new paths (Noghani, Kassler, &
Taheri, 2019).

We present in the new section our DRL model named Deep-REC to choose when to recon-
figure in order to optimally adapt to the evolving network state. Our objective is to maximize the
cumulative profit as presented before: the sum of the instantaneous profits pt (See 7.1).

7.2.4 Deep Reinforcement Learning (DRL) Algorithm: Deep-REC

The reinforcement learning paradigm formalizes a discrete time stochastic control process (as
our networking problem) where an agent interacts with an environment (in our case, the network).
At each time step t, the agent interacts with its environment by (i) observing from the environment

the current state s, (ii) accordingly, taking a decision (an action) a, (iii) receiving a reward r(s, a),
and, (iv) observing a new state s′ (the network has transitioned from s to s′). The agent can repeat
this process for a potentially infinite number of time steps, giving rise to a trajectory. The sum of
the discounted rewards over a trajectory from time t, or discounted return, is calculated as:

Gt =
∞

∑︂

k=0

γkrt+k+1
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where γ ≤ 1. The expectation of Gt over all possible trajectories initiated at a state s after taking
an action a is the so-called Q-value function Q(s, a). We aim to take, at each state s, the action a
maximizing the Q-value function. Then, we need to estimate Q(s, a).

In (C. J. Watkins & Dayan, 1992), authors proposed the Q-learning algorithm to learn Q(s, a)
from a sequence of agent interactions with the environment. Unfortunately, when the state and
action spaces are huge, Q-learning needs a prohibitive computation time. To overcome that, Deep
Q-learning Network (DQN) (Mnih et al., 2015) makes use of a deep neural network to approximate
the Q-value function for high-dimensional state-space problems, as in our case. Finally, we also
opt for DQN since, conversely to other reinforcement learning algorithms, it can learn efficiently
from past experiences without introducing bias.

Description. For the implementation, we use the DQN agent from tf_agents.agents.dqn.dqn_agent,
and the neural network from tf_agents.networks.q_network (TensorFlow: An end-to-end open

source machine learning platform, s. d.). The network comprises a pre-processing layer from Ke-
ras (Chollet, s. d.) used for batch normalization and 3 layers of 64, 64, and 2 neurons, respectively.
The batch size is 288, which is large enough to normalize properly. We use Adam optimizer with
a learning rate of 1e-3, and we update the network every 16 states. The discount factor γ is set
to 0.9, a value large enough to show the importance of future actions. We use an epsilon-greedy
policy, where ϵ is set to 0.99 and decays to 0 in 200 instances. The replay buffer is 50 instances,
and we train the agent on 250 instances.

Context. A 24-hour day consists of 1440 minutes. We decided to discretize it into 288 periods of
5 minutes to optimize the training of our agent. It is recalled that the objective is to maximize the
profit while reconfiguring as efficiently as possible. The agent can potentially choose to reconfigure
288 times. To make the agent aware of the implicit trade-off between reconfiguring now or later,
an artificial cost per reconfiguration vR is introduced. Reconfiguring a network will never decrease
the profit, but the agent has to learn when a reconfiguration is worth it.

The agent will then learn the optimal number of reconfigurations to maximize the profit with
this artificial cost. This cost can be real (management cost) or it can be fixed to get a given number
of reconfigurations per day. The advantage of this technique compared to having a maximum
number of reconfigurations allowed is that allows the agent to make more or less reconfigurations,
adapting its behavior to the current period of the day.

State and Action Spaces. The network state can be described based on the next five quantities:
(i) the number of minutes since the last reconfiguration ∆T , (ii) the number of slices added since
the last reconfiguration λ, (iii) the number of slices released since the last reconfiguration µ, (iv)
the current profit pt 7.1 and, (v) the current time t. ∆T represent the current allocation oldness, λ
and µ estimate the current network load.

The action space consists of two actions: to perform or not a reconfiguration at the current
time based on the agent’s decision. Thus, our agent decides when or not to reconfigure.

Reward Function. If the agent has chosen not to perform a reconfiguration, the reward is 0.
Otherwise, the agent selects the reconfiguration, and two scenarios are possible:

1. The reconfiguration was worth it. A reconfiguration at time t is computed. To have a long-
term vision, we simulate the network behavior (slices arrivals and departures) with the new
network configuration for the next three time slots. This presents a good balance between
accuracy and computational overhead (in training, we can simulate future requests). Finally,
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Figure 7.3 – Learning Curves

we estimate the accumulated profit gained with the reconfiguration as

∆pR = ¶
t+3
∑︂

k=t

pk♣reconf at t♢

2. The reconfiguration was not worth it. The reward is estimated differently. We suppose that
no reconfiguration was performed at t and we also simulate the network behavior (slices
arrivals and departures) for the next three time slots. We estimate the accumulated profit
gained without the reconfiguration as

∆pNR = ¶
t+3
∑︂

k=t

pk♣no reconf at t♢

Finally, we compute the reward as follows:

r = ∆pR −∆pNR − vR.

We, therefore, have a positive reward when the profit increase ∆pR (if reconfiguring was the good
decision) compensates both the profit increase ∆pNR (if not reconfiguring was the good decision)
and the reconfiguration cost.

Training. We are now studying the efficiency of the learning of our agent trained on 250 instances.
In Figure 7.3a, the agent’s return on the training environment increases during the 250 trained
instances, which implies that it learns to maximize the accumulated rewards on each instance.

We should not reconfigure too often during a day, so in Figure 7.3b, we study the variation
of the number of reconfigurations made by the agent on each instance. The agent starts by re-
configuring randomly: 1 time out of 2 and thus about 144 times per instance, and it learns that it
must reduce the number of reconfigurations to maximize the accumulated reward. When the agent
has trained on around 200 instances, the epsilon reaches 0, and the number of reconfigurations
converges to around 70 reconfigurations per instance.
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7.2.5 Experimental settings

Topology. We conduct simulations on a real-world topology from SNDlib (Orlowski, Wessäly,
Pióro, & Tomaszewski, 2010), ta1 (24 nodes, 55 links), which includes 6 datacenters on which
all VNFs can be instantiated. The cost of VNF cf equals 2000 times the revenue u of a megabyte
served.

Slice demands Each slice is composed of a chain of up to 5 VNFs, requires a specific amount of
bandwidth and has latency constraints. We consider four different types of demands corresponding
to four services: Video Streaming, Web Service, VoIP, and online gaming. The characteristics of
each service are reported in Table 7.1 and have already been used by (Savi, Tornatore, & Verticale,
2015). The bandwidth usage was chosen according to the Internet traffic distribution described
in (“Cisco Visual Networking Index: Forecast and Methodology, 2014–2019”, 2015). The latency
requirements are expressed in milliseconds and represent the maximum delay between the source
and destination.

Each minute, 1 to 5 slice requests arrive (uniform random distribution), and slices that have
reached the end of their life are removed from the network. By varying the lifetime of the slices,
we can vary the maximum number of slices present at the same time on the network so that
the load on the network follows a curve representing a real distribution of traffic measured on a
dedicated network operator. We divided this traffic into five different periods, where D1 is a low-
traffic period, and in D5, the network is highly congested. There are between 30 and 180 slices
present at each moment on the network and in 24 hours, there are about 4320 arrivals of slices.

Reconfiguration Cost. To train Deep-REC, we define a fixed and artificial cost to the reconfi-
guration vR. This cost can be adapted to reconfigure more or less. In our study, it is equal to the
cost of deploying a VNF for 15 minutes, which means that a reconfiguration is considered useful
if it allows to shut down a VNF for at least 15 minutes. To be usable in practice, a reconfiguration
must be done quickly. Thanks to the column generation, we can reduce the computation time of
each reconfiguration up to 30 times less (Gausseran et al., 2021) without affecting its efficiency.

Slice Types VNF chain Latency bw (Mbps)

Web Service NAT-FW-TM-WOC-IDPS 10ms 100
Video Streaming NAT-FW-TM-VOC-IDPS 5ms 256
VoIP NAT-FW-TM-FW-NAT 3.5ms 64
Online Gaming NAT-FW-VOC-WOC-IDPS 2.5ms 50

Table 7.1 – Characteristics of network slices

7.2.6 Numerical Results

We compare the results obtained with three solutions in this section:

— No-REC: the slices are added in and removed from the network over time, and no reconfi-
guration is performed,

— REC-15: the reconfiguration is carried out every 15 minutes using a make-before-break

strategy,

— Deep-REC: our deep-learning make-before-break reconfiguration proposal.
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We first show that reconfiguring the network leads to significant profit gains. We then discuss
the importance of selecting the best moments to carry out the reconfigurations, allowing them to
perform fewer reconfigurations while achieving similar gains.
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7.2.6.1 Improved network operational Cost

Figure 7.4a presents the network cost ((second term in Equation 7.2)) per megabyte of data
sent over the network throughout the day. We observe that the costs achieved by REC-15 and
Deep-REC are very similar with a clear improvement compared to No-REC: REC-15 allows
an improvement of 36.82% when Deep-REC performs a little better with 38.05%. We also see
that the cost is rather stable throughout the day, while with No-REC, the cost increases strongly
during the low-congestion period (periods D1 and D2, between 2 am and 7 am). The global cost
improvement through a day (not presented in this paper due to lack of space) of REC-15 is 34.18%
versus 35.55% with Deep-REC.

Figure 7.4b presents the network operational cost for the three strategies in terms of VNF costs
(second term in Equation 7.2). This shows that both Deep-REC and REC-15 reduce the network
operational cost compared to No-REC. This justifies the necessity of reconfiguring. Moreover, the
two reconfiguring strategies are comparable for this parameter.

7.2.6.2 Improved Profit and link utilization

Figure 7.4c shows the achieved profit, whose maximization is the objective of the reconfigu-
ration: Deep-REC and REC-15 have similar performance and improve the profit compared to
No-REC. Indeed, the profit improvement of REC-15 is 32.75% versus 32.53% for Deep-REC.
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Finally, Figure 7.4d shows that even when minimizing VNF costs, reconfiguring the network
does not lead to an increase of congestion: we observe a slightly higher utilization of links during
periods D1-D2, but when the network is heavily loaded (periods D4-D5), there is a reduction of
the congestion of the network.

As a conclusion, reconfiguring the network reduces congestion while reducing costs. Moreo-
ver, we validate with these results the performance of Deep-REC as it leads to similar profit as a
periodic reconfiguration strategy such as REC-15. We show in the following that Deep-REC, by
performing reconfigurations at the ideal moment, achieves this efficiency while reducing the total
number of reconfigurations through a day compared to a regular and fixed reconfiguration strategy
such as REC-15.

7.2.6.3 Number of reconfigurations

Figure 7.4e presents the cost improvement divided by the number of reconfigurations over
periods of two hours. This shows that Deep-REC performs more efficient reconfigurations than
REC-15. Each reconfiguration leads to a better improvement in terms of network costs.

Figure 7.4f presents the number of slices modified during the reconfiguration. Our algorithm
Deep-REC modified approximately 20% less slices than REC-15, and thus, there is less impact
on the network (less modifications, less computation).

Finally, Figure 7.5 shows the distribution of the number of reconfigurations during a day over
two-hour periods. The green line on the figure represents REC-15, which does a constant number
of reconfigurations, namely 8 (a reconfiguration every 15 minutes). In contrast, Deep-REC adapts
its actions to the network load and does not carry out reconfigurations when they are not necessary,
leading to a reduction of their number during the majority of the day, see the period between 10
am and 4 pm. Moreover, Deep-REC performs more reconfigurations than REC-15 during the
ascending phase (between D1 and D5) in order to react to the rapid change of the network and,
thus, to maintain a good profit. With 96 reconfigurations during a day (against 73.2 on average for
Deep-REC), REC-15 has 31.15% more reconfigurations, for only 0.22% profit improvement.

REC-15 Deep-REC

0 6 12 18 24
Time (h)

0

5

10

15

N
um

be
r 

of
R

ec
on

fig
ur

at
io

ns

Figure 7.5 – Reconfiguration distribution for Deep-REC compared to REC-15.
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7.3 Quantum virtual link generation via reinforcement learning

In the last years, the application of quantum physics principles to computer networks is gai-
ning momentum among the research and industry communities, as shown by the first attempts of
standardization of a so-called "Quantum Internet" (Kozlowski et al., 2023) (Wang, Rahman, Li,
Aelmans, & Chakraborty, 2023) by the Internet Engineering Task Force (IETF). Amongst these
principles, the quantum entanglement has been identified as a fundamental resource for Quantum
Communication (Kozlowski et al., 2023), since it enables the Quantum Internet applications, as
secure cryptographic key distribution and, distributed quantum computing (Wang et al., 2023).
But, quantum entanglement is a probabilistic process strongly dependent on the features of the
involved communication devices. Consequently, the entanglement management constitutes a sto-
chastic control problem that can be formulated as a MDP (Khatri, 2021). In this preliminary work,
we investigate the capacity of DRL to solve these problems, in particular, when a quantum entan-
glement is set up between two remote communication nodes not directly connected by a link. In
the paragraphs below, we will introduce the required background.
Qubit and entanglement. In quantum communication and quantum computing, the counterpart
of a classical bit is the quantum bit (or qubit). But, whereas the classic bit can take either the “0"
state or the “1" state, the qubit can be in a superposition of the two, with a certain probability
to be at one of the states. The qubit exists in this superposition until its eventual measurement.
Afterward, it will take the “0" or “1" value according to the corresponding probability. When two
qubits are entangled, their states cannot be described separately: a state change, i.e., a qubit reading
measurement, in one of them implicitly comes with a change in the other, regardless of the physical
distance between them. Thus, the measurements at the two entangled qubits exhibit non-classical
correlations used to design new applications that are not possible with classical communication,
such as quantum key distribution or distributed quantum computation.
Quantum network. A set of nodes able to exchange qubits and distribute entangled states amongst
themselves is defined as a quantum network in the RFC (Kozlowski et al., 2023). These quan-

tum nodes are connected by optical fiber or satellite laser links. In this section, we assume fiber
links. When an entanglement is set up between two qubits located at two adjacent quantum nodes
connected by a direct link (e.g., between nodes A and B in Figure 7.6), the entanglement consti-
tutes an elementary quantum link (Kozlowski et al., 2023). Its success probability Pe exponentially
decreases with distance, which means that short-distance entanglements (like A-B, in Figure 7.6)
are more likely to succeed than long-distance entanglements (like A-C, in Figure 7.6). To over-
come this issue, we can create a virtual link (Kozlowski et al., 2023) over two elementary links
via the so-called entanglement swapping (Kozlowski et al., 2023 ; Gyongyosi & Imre, 2022). This
process allows the creation of long-distance entangled pairs by consuming the previously gene-
rated elementary links on the path between two further end-points. In Figure 7.6, the elementary
links A-B and B-C are consumed to create a longer virtual link A-C. Quantum nodes (as B in
Figure 7.6) that create long-distance entangled pairs via entanglement swapping are called quan-
tum repeaters (Kozlowski et al., 2023), and they must store intermediate elementary links on the
so-called quantum memories (Kozlowski et al., 2023) to be consumed later.
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Figure 7.6 – Elementary link vs virtual link.

Quantum memory lifetimes. The probability that a qubit stored in a quantum memory is still, af-
ter a certain time, in its original state (e.g., an entangled state) decreases with time (Ortu, Holzäp-
fel, Etesse, & Afzelius, 2022). This probability is referred to as the memory efficiency ηm (Ortu et
al., 2022), and its decay is known as decoherence. This process is the consequence of the progres-
sive interactions of the quantum memory with the environment since memory cannot be perfectly
isolated from it. The entanglement swapping success probability Ps depends on the memory effi-
ciency ηm of the oldest loaded quantum memory involved in the swapping (Sangouard, Simon, de
Riedmatten, & Gisin, s. d.).

This section, as far as we know, is one of the first works modeling a quantum virtual link gene-
ration process as a classical MDP and using a DRL algorithm to find an optimal generation policy
tracking the age of the elementary links. This supposes an innovative contribution with respect to

the related works, where this age of the elementary is not used in the generation procedures.

Related works are presented in Section 7.3.1. The MDP modeling of the virtual link generation
along with the DRL approach used to solve it are described in Section 7.3.2. Numerical results and
experiment settings are shown in Section 7.3.3.

7.3.1 Related Works

The idea that the management problem of quantum elementary and virtual links can be mathema-
tically formalized as a quantum generalization of an MDP was developed in the Khatri’s PhD dis-
sertation (Khatri, 2021). This dissertation assumes the Quantum Decision Process (QDP) frame-
work, (Barry, Barry, & Aaronson, s. d.), the quantum analog of a MDP, where states are quantum
and actions are quantum operators, which implies the usage of a quantum computer. In contrast
to this work, we model the decision problem as a classical, MDP with states described by measu-
red physical properties and actions taken on a macroscopic level. We think that many of Khatri’s
ideas can be adapted to the current state-of-the-art without waiting for the development of a quan-
tum computer. Then, in this section, we model as a classical MDP the QDP with entanglement

swapping presented in Appendix D of (Khatri, 2021). This process aims to generate a virtual link

from two elementary links via entanglement swapping as explained before. The virtual link gene-
ration has been recently studied in two contexts: (i) quantum repeaters chains (B. Li, Coopmans,
& Elkouss, 2021) and (ii) quantum entanglement routing (C. Li, Li, Liu, & Cappellaro, 2021). In
both of them, we aim to set up long-distance entanglements between non-adjacent communication
nodes when the topologies are Daisy chains and mesh networks, respectively. In these works, the
“history” of the links is ignored, i.e., the timestamps at which the elementary (and virtual) link
generation processes succeed are not used. Besides, the virtual link generation always follows an
infinity memory cutoff-time policy when, once the early elementary link is successfully set up, we
keep it till the late also succeeds, regardless of the impact of larger decoherence of the oldest one
onto the swapping probability Ps.
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7.3.2 Reinforcement Learning For Virtual Link Generation

7.3.2.1 Problem Statement

As aforementioned, the management of a virtual link generation over two elementary links via en-
tanglement swapping can be formulated as a MDP (Khatri, 2021). In this decision process, we aim
to maximize the number of successful entanglement swaps per time unit, i.e., the virtual link gene-
ration rate. To generate the virtual link, two elementary links must have been successfully created
before attempting the entanglement swapping with probability Ps. The older the first generated
elementary link is, the more likely the swapping will fail. Then, after a cutoff time tc, discarding
the oldest elementary link and trying to generate it again (i.e., resetting it) becomes beneficial
since links freshly reset have always a higher swapping probability. Unfortunately, this reset (a
new elementary link generation) comes with a cost, as it is also a stochastic process with success
probability Pe, which must be repeated till success, delaying the eventual swapping attempt. Thus,
the cutoff time tc of the elementary link has to be carefully selected to reduce the time between
two successful swaps and, hence, maximize the virtual link generation rate.

Now, we describe the process as a MDP. At each time step t, a control agent applies a certain
action at after observing the current state st. The execution of this action will trigger a transition
into a new state st+1 with a certain probability p(st, at, st+1). The agent receives a reward rt+1

based on the “quality" of the pair (st, at) to maximize a long-term objective. Then, the agent

observes the new state st+1 and repeats these steps. Assuming an initial state s0, the MDP gives
rise to a trajectory: s0, a0, r1, s1, a1, r2, s2, a2, r3, , . . .. This trajectory is generated based on an
agent policy π(s, a) denoting the probability that action at = a is taken at state st = s. In our
case, the system state (action) consists of the concatenation of the states (actions) of the two
elementary links and the virtual link. The state of each link is a vector s = [x, m], where x is 1

if entanglement is active (0, otherwise); and, m is the entanglement age (-1, if entanglement is
inactive). Two actions can be taken over each link: either the link is re(set), i.e., a link generation
is (re)tried; or the link waits, i.e., no link generation is (re)tried. The former provokes a stochastic
transition with probability Pe (Ps) to a state s = [1, 0] for an elementary (virtual) link generation.
The latter leaves the current link state unchanged. Here, we assume a unique virtual link to be set
up by swapping two elementary links, i.e., a space action of size 23 = 8. The reward is simply 1 if
the entanglement swapping succeeds; and 0, otherwise.

Finally, we conclude this subsection by detailing the assumptions about the quantum environ-
ment model. In our work, entanglements are created in a “heralded" fashion, i.e., we know when
the entanglement has been successfully established (therefore, cutoff times tc can be measured).
Once created, entanglements must be stored in quantum memories to eventually be swapped to
create virtual links. Amongst the different methods of entanglement generation, the DLCZ-based
protocols (Sangouard et al., s. d.) are an option satisfying these requirements. When DLCZ-based
protocols are used the time becomes slotted with time slots L0/v long, where L0 is the length
of the elementary link (fiber) and v is the light propagation speed at the fiber. This slot duration
represents the time required to know if an elementary link generation has succeeded: the duration
of the time step before observing a new state and taking a new action (retry or not a link gene-
ration). The elementary link generation success probabilities Pe exponentially decrease with fiber
distance L0 according to the work (Sangouard et al., s. d.). Whereas, the memory efficiency ηm,
the main factor defining the swapping success probability Ps, falls with the storage time following
the Mims’ model described in (Ortu et al., 2022). The exact values of these probabilities depend
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on the precise characterization of the optical fiber and quantum memories involved. We assume
that we do not know them.

7.3.2.2 Reinforcement Learning based approach

If we do not possess models characterizing precisely the elementary link generation probability Pe

and the memory efficiency ηm (and, thus, the entanglement swapping success probability Ps), the
state transition probabilities p(st, at, st+1) are unknown. In this case, we can apply Deep Reinfor-
cement Learning (DRL) (Bengio, 2009 ; Mnih et al., 2015) to find a policy maximizing the virtual
link generation rate. In Reinforcement Learning (RL), we define a Q-value function Qπ(s, a) as
the expected discounted return from a given state-action pair (s, a) when following a policy π
thereafter. The discounted return is the sum of the discounted rewards the agent receives over the
future in a trajectory: sum∞

k=0γkrt+k+1, with γ ∈ [0, 1]. Therefore, an agent solving a RL pro-
blem searches an optimal policy π∗ maximizing this Q-value function. Here, this policy consists
of finding the best cutoff time tc for the oldest elementary link (see Section 7.3.2.1). When state
transition probabilities are unknown (our case), this Q-value function can be estimated by using
statistical learning with the Deep Q-Network (DQN) algorithm (Mnih et al., 2015). In the present
work, the learning routine simply follows the classical DQN (Mnih et al., 2015) but is adapted to
our virtual link generation problem.

7.3.3 Experiments

7.3.3.1 Experimental Settings

We use OpenAI™Gym (Gym: Gym toolkit for creating reinforcement learning environments, s. d.),
one of the most popular toolkits to define RL environments in Python, to program a quantum
environment modeling the MDP as described in Section 7.3.2.1. We consider the length of the
fiber links L0 and the light speed are 100 km and 200, 000 km/s, respectively, which yields a
time step duration of 0, 5 ms. We assume fiber losses of 0.2 dB/km achievable around 1, 550
nm. We use the Mims’ equation corresponding to the DD sequence ’XX’ in study (Ortu et al.,
2022), but considering a zero-time efficiency of 1.

The agent is implemented in TensorFlow (TensorFlow: An end-to-end open source machine

learning platform, s. d.) as a three-layer neural network with two dense layers of 32 neurons, each
having a tanh activation function, and an output layer without activation with as many neurons as
actions (8, here since we consider two elementary links and one virtual link). The neural network
is trained using the DRL algorithm called DQN (Mnih et al., 2015) provided by the OpenAI™
Baselines library (OpenAI Baselines: high-quality implementations of reinforcement learning

algorithms, s. d.).
Figure 7.7a depicts the episode reward evolution along the training time. An episode reward

is the sum of the rewards r produced during all the steps in a training episode. We observe that
the average episode reward increases with time, stabilizing after 600 episodes, where an episode
is 10, 000 steps long.

7.3.3.2 Numerical Results

In Figure 7.7b, we compare the policy learned by the DRL agent with two benchmarks:
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— Inf-cutoff-time policy: the cutoff time of the oldest link is set to infinity, then, when the first
elementary link to succeed is set up, we keep it till the second one also succeeds regardless
of the decoherence level of the first one. This is the by-default policy considered by the
State-of-the-Art (B. Li et al., 2021 ; C. Li et al., 2021). It represents a lower bound on the
optimal policy.

— Opt-cutoff-time policy: the optimal cutoff time of the oldest link is found by brute force.
This process cannot scale up with larger problem instances. It trivially represents an upper

bound on the policy learned by the DRL agent.

We test the policies by simulating the MDP process 1000 times. An episode is a simulation
instance. Each episode again consists of 10, 000 steps. We observe that the DRL agent outperforms
the Inf-cutoff-time policy and is close to the opt-cutoff-time policy. The found cutoff times are 146.0
steps and 108 steps for the DRL policy and opt-cutoff-time policy, respectively.

(a) Episode reward evolution during trai-

ning
(b) Swap rate of DRL agent vs. benchmarks du-

ring the test

Figure 7.7 – DRL evaluation during training and test

7.4 Conclusion

In conclusion, this chapter has introduced innovative applications of Deep Reinforcement
Learning in addressing critical challenges within network optimization, spanning both 5G net-
work slicing and quantum network entanglement management.

We have showcased Deep-REC, a novel DRL framework tailored for efficient network slice
reconfiguration. Through adaptive decision-making, Deep-REC optimizes reconfiguration ti-
mings, minimizing network congestion while maximizing operator profit. Our results demonstrate
significant reductions in the number of reconfigurations required, without compromising network
performance or operational costs.

Moreover, our exploration into utilizing DRL for learning entanglement management policies
in quantum networks has yielded promising initial results. By surpassing existing State-of-the-
Art Inf-cutoff-time policy, we have demonstrated the potential of DRL in maximizing virtual link
generation rates, especially in scenarios where a model of the entanglement success probabilities
is not previously known.

In the next chapter, we provide a closing discussion and present future directions to conclude
this Ph.D. thesis manuscript.





CHAPTER 8
Conclusion

This Ph.D. thesis focuses on studying and developing Deep Reinforcement Learning (DRL)
solutions, especially Multi-Agent Deep Reinforcement Learning (MA-DRL) to cloud network
control. Throughout this thesis, we propose innovative improvements in performance, communi-
cation overhead, and stability. We fulfilled the goals of the thesis and showcased promising results
that constitute an important milestone towards adopting those models in production.

As follows, we summarize the main contributions:

— First, realistic network platforms for experimenting MA-DRL solutions in the general non-
overlay and cloud overlay cases (PRISMA and prisma-v2 respectively) were developed
and introduced in Chapter 4. PRISMA fills a crucial gap in the field by providing the first
dedicated framework for developing and testing MA-DRL algorithms for the Distributed
Packet Routing (DPR) problem in general non-overlay scenarios. Before its development,
researchers had to rely on their own simplified Reinforcement Learning (RL) simulation
environments, hindering reproducibility and realism. PRISMA overcomes these challenges
by realistically modeling the communication process, explicitly considering the distributed
nature of nodes, and providing a modular code design with real-time training visualization
interfaces, facilitating the development and comparison of MA-DRL proposals. prisma-v2
expands upon the capabilities of PRISMA by incorporating features such as the simulation
of cloud overlay network topologies and the ability to simulate control packets, enabling a
more comprehensive evaluation of network protocol overhead. Furthermore, prisma-v2 in-
tegrates all modules with the core (ns-3) into a docker container, ensuring ease of deploy-
ment across different platforms. By providing a realistic simulation environment, prisma-v2
serves as a valuable playground for testing and evaluating new network protocols based on
the MA-DRL framework in the context of overlay networks.

— Next, we point out the overhead problem due to the agents’ communication in the general
non-overlay scenario. In this regard, the first part of Chapter 5 was devoted to the experimen-
tal investigation of control signaling impact for distributed learning-based packet routing,
facilitated by the PRISMA simulator. We illustrated two types of signalling mechanisms
adopted by the literature: model sharing and value sharing. Our results show the existence
of a tradeoff between the communication overhead and the performance, and thus, commu-
nication overhead should be taken into account when implementing MA-DRL solution for
the DPR problem. Motivated by these findings, the second part of the chapter proposed two
novel improvements in order to reduce this communication overhead. The first one is a new
signalling mechanism, called logit sharing, which substantially reduces the communication
overhead while maintaining performance comparable to model sharing. The second is a dy-
namic control packet sending between agents, optimizing network efficiency by minimizing
unnecessary control packet exchange.

111
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— Chapter 6 adapted MA-DRL to cloud overlay networks. We proposed a novel framework,
called O-DQR, suited for this case. O-DQR addresses three fundamental aspects for de-
ploying such a solution. First, the performance of the network (delay, loss rate), where the
framework can achieve near-optimal performance. Second, the control overhead is reduced
by enabling the agents to send control packets only when needed dynamically and adopting
the logit sharing strategy. Third, the training convergence and stability are improved thanks
to a guided reward mechanism that dynamically learns the penalty applied for a packet loss.

— Finally, in Chapter 7, we studied applications of DRL to network control, addressing two
challenging scenarios. Firstly, we tackled the problem of deciding the optimal moment for
cloud network slice reconfiguration, considering the tradeoff between mitigating network
congestion and minimizing additional costs incurred by reconfiguration. Our proposed ap-
proach successfully identifies optimal reconfiguration timings, maximizing network ope-
rator profit while minimizing resource utilization and network congestion. Moreover, by
selecting the best moment for reconfiguration, our method reduces the number of required
reconfigurations compared to periodic approaches, thereby enhancing overall network ef-
ficiency. Subsequently, we shifted our focus to the novel quantum networks, namely on an
optimal entanglement management policy using DRL. The proposed method surpassed exis-
ting methodologies, particularly in scenarios where precise models of the quantum devices
are unavailable, thereby enhancing the performance and reliability of quantum networks.

As a future extension to the proposed framework, O-DQR, which only considers end-to-end
delay and packet loss, other Quality of Service (QoS) metrics can be regarded. The thesis considers
the global optimization of network congestion by assuming all data packets are treated identically.
Future improvements to our framework could include classes of service and adjust routing de-
pending on the packet type (some packets require low latency, whereas others require low jitter).
Also, packets could have different priorities. Finally, a notion of "intent" could be integrated into
the model. It describes how an operator interacts with the agents and changes their behavior. This
started to be explored by tuning the model’s hyperparameters, like the relevancy threshold, used
to balance between performance and communication overhead.

Furthermore, many other aspects could be explored, such as the security of the communication
between the agents. Besides adding an additional security layer to the control packet in order to
avoid sniffing information, it is important to include a data integrity verification process on each
node to make it robust. Since the system is fully decentralized, the agents are vulnerable to security
attacks like:

— Byzantine attacks (Young, Kate, Goldberg, & Karsten, 2012): when a node behaves in an
unexpected or malicious way, such as sending incorrect information to other nodes.

— Sybil attacks (Mohaisen & Kim, 2013): caused by the effect of churn (Trifa & Khemakhem,
2014) when nodes join and leave the networks because of power or link failures.

A zero trust based approach could be adopted where the agents verify the incoming data before
adding it to their experience replay buffers and databases.

Finally, we might explore the integration of the framework into Software-Defined Networking
(SDN) environment. In this context, many challenges arise, such as how to exploit the existing
statistics collected by the SDN node and how to handle heterogeneous devices, where some routers
are legacy or non-IA SDN controllers. The framework should be able to communicate with such
devices and exploit the information they give, as well as how to handle the exploration in the
continual learning settings.
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Contrôle du réseau cloud basé Intelligence Artificielle
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Résumé

L’explosion du nombre d’utilisateurs d’Internet et du volume de trafic constitue un défi majeur
pour la gestion efficace des réseaux de diffusion de contenu (CDN). Bien que ces réseaux aient
amélioré le temps de réponse en exploitant la mise en cache dans des serveurs cloud proches
des utilisateurs, les services non mis en cache continuent de poser des problèmes de gestion
de trafic. Pour répondre à cette problématique, les réseaux overlay cloud ont émergé, mais ils
introduisent des complexités telles que les violations d’inégalités triangulaires (TIV).
Dans ce contexte, l’application du paradigme des réseaux à définition logicielle (SDN) com-
binée aux techniques d’apprentissage par renforcement profond (DRL) offre une opportunité
prometteuse pour s’adapter en temps réel aux fluctuations de l’environnement. Face à l’aug-
mentation constante du nombre de serveurs edge, les solutions distribuées de DRL, notamment
les modèles d’apprentissage par renforcement profond multi-agent (MA-DRL), deviennent
cruciales. Cependant, ces modèles rencontrent des défis non résolus tels que l’absence de simu-
lateurs réseau réalistes, le surcoût de communication entre agents et la convergence et stabilité.
Cette thèse se concentre donc sur l’exploration des méthodes MA-DRL pour le routage de
paquets dans les réseaux overlay cloud. Elle propose des solutions pour relever ces défis, no-
tamment le développement de simulateurs de réseau réalistes, l’étude du surcoût de communi-
cation et la conception d’une solution MA-DRL adaptée aux réseaux overlay cloud. L’accent
est mis sur le compromis entre la performance et la quantité d’information partagée entre les
agents, ainsi que sur la convergence et la stabilité de l’entraînement.

Mots-clés : Apprentissage par Renforcement Profond Multi-Agent ; Routage de Paquets Distribué ;
Réseaux Cloud Overlay ; Contrôle de Réseaux Autonomes ; Intelligence Artificielle; Optimisation

Abstract

The exponential growth of Internet traffic in recent decades has prompted the emergence of
Content Delivery Networks (CDNs) as a solution for managing high traffic volumes through
data caching in cloud servers located near end-users. However, challenges persist, particularly
for non-cacheable services, necessitating the use of cloud overlay networks. Due to a lack of
knowledge about the underlay network, cloud overlay networks introduce complexities such
as Triangle inequality violations (TIV) and dynamic traffic routing challenges.
Leveraging the Software Defined Networks (SDN) paradigm, Deep Reinforcement Learning
(DRL) techniques offer the possibility to exploit collected data to better adapt to network
changes. Furthermore, the increase of cloud edge servers presents scalability challenges, moti-
vating the exploration of Multi-Agent DRL (MA-DRL) solutions. Despite its suitability for the
distributed packet routing problem in cloud overlay networks, MA-DRL faces non-addressed
challenges such as the need for realistic network simulators, handling communication over-
head, and addressing the multi-objective nature of the routing problem.
This Ph.D. thesis delves into the realm of distributed Multi-Agent Deep Reinforcement Learn-
ing (MA-DRL) methods, specifically targeting the Distributed Packet Routing problem in
cloud overlay networks. Throughout the thesis, we address these challenges by developing
realistic network simulators, studying communication overhead in the non-overlay general set-
ting, and proposing a distributed MA-DRL framework tailored to cloud overlay networks,
focusing on communication overhead, convergence, and model stability.

Keywords: Multi-Agent Deep Reinforcement Learning; Distributed Packet Routing; Cloud Overlay
Networks; Autonomous Network Control; Artificial Intelligence; Optimization
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