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Modéliser les processus cognitifs dans une tâche de résolution
créative de problème : des approches symboliques à
neuro-symboliques en sciences computationnelles de l’éducation
Résumé L’intégrationde compétences transversales telles que la créativité, la résolution
de problèmes et la pensée informatique, dans les programmes d’enseignement primaire
et secondaire, est un défi majeur dans le domaine de l’éducation aujourd’hui. Nous
postulons que l’enseignement et l’évaluation de ces compétences transversales pour-
raient bénéficier d’une meilleure compréhension des comportements des apprenants
dans des activités spécifiques qui requièrent ces compétences. A cette fin, les sciences
computationnelles de l’apprentissage (computational learning sciences) sont un champ en
émergence qui requiert l’étroite collaboration des neurosciences computationnelles et
des sciences de l’éducation pour permettre l’évaluation des processus d’apprentissage.
Nous nous concentrons sur une tâche de résolution créative de problème dans laquelle
le sujet est amené à construire un “véhicule” en combinant des cubes robotiques modu-
laires. Dans le cadre d’une action de recherche exploratoire, nous proposons plusieurs
approches s’appuyant sur des formalismes symboliques à neuro-symboliques, afin de
spécifier une telle tâche et de modéliser les comportements et processus cognitifs sous-
jacents d’un sujet engagé dans cette tâche. Bien qu’étant à un stade très préliminaire, une
telle formalisation semble prometteuse pour mieux comprendre les mécanismes com-
plexes impliqués dans la résolution créative de problèmes à plusieurs niveaux : (i) la
spécification du problème et les observables d’intérêt à collecter pendant la tâche ; (ii) la
représentation cognitive de l’espace-problème, en fonction des connaissances préalables
et de la découverte des affordances, permettant de générer des trajectoires-solutions
créatives ; (iii) une implémentation du raisonnement par inférence au sein d’un sub-
strat neuronal.

Mots-clés Sciences computationnelles de l’éducation, Résolution créative de problème,
Neurosciences cognitives, Raisonnement et représentation des connaissances, Appren-
tissage par renforcement, Architectures à vecteurs symboliques.
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Modeling cognitive processes within a creative problem-solving
task: from symbolic to neuro-symbolic approaches in
computational learning sciences
Abstract Integrating transversal skills such as creativity, problem solving and compu-
tational thinking, into the primary and secondary curricula is a key challenge in today’s
educational field. We postulate that teaching and assessing transversal competencies
could benefit from a better understanding of the learners’ behaviors in specific activi-
ties that require these competencies. To this end, computational learning science is an
emerging field that requires the close collaboration of computational neuroscience and
educational sciences to enable the assessment of learning processes. We focus on a cre-
ative problem-solving task in which the subject is engaged into building a “vehicle” by
combining modular robotic cubes. As part of an exploratory research action, we pro-
pose several approaches based on symbolic to neuro-symbolic formalisms, in order to
specify such a task andmodel the behavior and underlying cognitive processes of a sub-
ject engaged in this task. Despite being at a very preliminary stage, such a formalization
seems promising to better understand complex mechanisms involved in creative prob-
lem solving at several levels: (i) the specification of the problem and the observables
of interest to collect during the task; (ii) the cognitive representation of the problem
space, depending on prior knowledge and affordance discovery, allowing to generate
creative solution trajectories; (iii) an implementation of reasoning mechanisms within
a neuronal substrate.

Keywords Computational Learning Sciences, Creative ProblemSolving, CognitiveNeu-
roscience, Knowledge Representation and Reasoning, Reinforcement Learning, Vector
Symbolic Architectures
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A propos
L’intégration de compétences transversales, telles que la créativité, la résolution de pro-
blèmes et la pensée informatique dans les programmes scolaires du primaire au secon-
daire est un défi majeur dans le domaine de l’éducation d’aujourd’hui. Nous postulons
que l’enseignement et l’évaluation des compétences transversales pourraient bénéficier
d’une meilleure compréhension des comportements des apprenants dans les activités
spécifiques qui requièrent ces compétences. Dans le cadre d’une action de recherche ex-
ploratoire, nous proposons une approche tri-disciplinaire, s’appuyant sur les sciences
de l’apprentissage, les neurosciences cognitives et l’informatique, pour formaliser une
tâche créative de résolution de problème et le comportement d’un sujet engagé dans
une telle tâche.

Contexte
Compétences transversales dans l’éducation Parmi les compétences dites “du 21e
siècle” qui doivent être abordées dans l’enseignement du primaire au secondaire, la
créativité et la résolution de problèmes sont deux compétences transversales qui sont
étroitement liées et qui peuvent être étudiées conjointement (Voogt et Roblin, 2012). Ceci
implique la conception de nouvelles activités pédagogiques et l’évaluation de leur ef-
ficacité, y compris l’étude du comportement des apprenants dans ces activités. Nous
ciblons ici une tâche de résolution de problème, présenté sous la forme d’un problème
ouvert avec une consigne ambigüe et accompagné de matériel inconnu de l’apprenant.
Cette tâche demande ainsi aux apprenants de s’engager dans une démarche créative
pour générer des idées nouvelles et de les mettre en œuvre pour réussir à résoudre le
problème. En outre, le matériel associé à la tâche est constitué de cubes robotiques tan-
gibles nécessitant de les manipuler et générer, par essai-erreur, des hypothèses pour
comprendre leur comportement. Ceci pourrait ainsi permettre de développer la pensée
informatique et l’esprit critique, deux autres compétences du 21e siècle particulièrement
intéressantes dans l’ère numérique d’aujourd’hui (Romero, David et al., 2019).

La résolution créative de problèmes du point de vue des sciences cognitives. Nous
nous concentrons sur un problème mal défini dans lesquel, contrairement au cadre clas-
sique de résolution de problèmes proposé parNewell et Simon (1972), les états de l’espace
du problème ne sont que partiellement observables par l’apprenant, y compris l’état du
but (qui n’est pas nécessairement unique). De plus, les opérateurs possibles sur l’es-
pace du problème sont découverts par l’apprenant au fur et à mesure qu’il manipule
l’environnement et en perçoit les caractéristiques physiques comme des “potentialités

1



A propos

d’actions” (ou affordances (Gibson, 1979)). Par conséquent, il est attendu de l’apprenant
qu’il alterne entre deux stratégies principales : l’exploration, qui vise à expérimenter de
nouvelles alternatives ou à agir sur l’environnement pour générer de nouveaux stimuli,
et l’exploitation, qui se réfère à l’utilisation des connaissances existantes (sémantiques
ou procédurales) dans une situation donnée. En relation avec cette distinction, nous
pouvons introduire la double notion de pensée convergente et divergente, qui ont été dé-
crites comme étant au coeur de la cognition créative (Alexandre, 2020a) : la première est
orientée vers la génération d’idées nouvelles, tandis que la seconde se concentre sur la
sélection d’un candidat efficace comme solution du problème.

Matériel et méthodes

Figure A : La tâche CreaCube

La tâche CreaCube. Romero, David et al. (2019) décrit une tâche de résolution de pro-
blèmes appelée CreaCube (Fig. A), qui peut être donnée dans le contexte d’une salle
de classe pour initier les enfants à la résolution créative de problèmes et à la pensée
informatique. Dans cette tâche, l’apprenant se voit présenter deux points de repère et
quatre cubes robotiques modulaires qu’il peut assembler, pour construire une structure
qui répondra à la contrainte de la consigne, à savoir “construire un véhicule autonome”.
L’ambiguïté de la consigne rend ce problème mal défini, comme mentionné précédem-
ment.
Au stade actuel de nos travaux, quelques centaines de vidéos ont été annotées et enco-

dées sous forme de données JSON représentant la chronologie des événements observés
(y compris les configurations de cubes testées par l’apprenant, les problèmes rencontrés,
etc.).

Une approche par les sciences computationnelles de l’apprentissage. Afin de mieux
enseigner ces compétences, nous partons de l’hypothèse qu’une meilleure compréhen-
sion des mécanismes sous-jacents de la cognition humaine est nécessaire. À cette fin,
la science cognitive computationnelle offre à la fois un cadre théorique et des résultats
expérimentaux récents qui éclairent ces processus cognitifs. Par exemple, les notions
d’exploration et d’exploitation sont précisément formalisées dans les paradigmes d’ap-
prentissage par renforcement. Sont-ils adaptés pour modéliser les phases de pensée di-
vergente et convergente dans une telle tâche? De même, la représentation ontologique
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des connaissances en informatique fournit des outils permettant de caractériser précisé-
ment des concepts et leurs relations, afin de raisonner logiquement. Peut-on représenter
la tâche à l’aide de ces outils, et en quoi cela peut-il être utile? Est-ce pertinent de mo-
déliser le raisonnement d’un apprenant par l’inférence ontologique, et est-ce plausible
d’un point de neuro-biologique?

Contributions
Une ontologie pour formaliser les connaissances structurées et les configurations
matérielles. Nous avons tenté de formaliser la tâche de CreaCube en utilisant la mo-
délisation ontologique (Mercier,Alexandre et al., 2022). L’ontologie résultante est alignée
sur des ontologies de haut niveau pour s’assurer que le vocabulaire est bien spécifié, ce
qui permet une meilleure communication entre les domaines de recherche convoqués.
Cette formalisation a été réalisée étape par étape dans le but d’encapsuler les connais-
sances du domaine utilisées par les chercheurs en sciences de l’apprentissage lorsqu’ils
analysent une telle expérience, afin de la rendre plus robuste et reproductible. Au-delà
de cet objectif de spécification, nous proposons de réaliser des inférences à l’aide des rai-
sonneurs disponibles pour mieux guider l’analyse qualitative des données collectées.

Modélisation du processus de résolution créative de problème par apprentissage par
renforcement sur des données symboliques. Pour aller plus loin, nous proposons d’étu-
dier comment caractériser la pensée convergente-divergente et les comportements d’ex-
ploration et exploitation dans une telle tâche. Au niveau computationnel, le paradigme
est celui de l’apprentissage par renforcement avec une récompense finale (réussite de la
tâche) et des récompenses intermédiaires (découverte d’affordances, résultat partiel par
rapport à l’objectif), paradigme largement utilisé dans les neurosciences cognitives pour
modéliser les fonctions de contrôle exécutif de haut niveau (Alexandre, 2020a).Nous pro-
posons ici de considérer une structure de données d’entrée symbolique (représentant
l’état de l’espace-problème) tandis que la “récompense” pourrait être calculée dynami-
quement à l’aide d’une distance d’édition entre la représentation de l’état actuel et celle
de l’état-but (Mercier, Alexandre et al., 2021).

Mise en œuvre biologiquement plausible d’inférences symboliques. Enfin, nous étu-
dions comment les mécanismes de raisonnement logique peuvent être mis en œuvre
dans les réseaux de neurones à impulsions (Mercier, Chateau-Laurent et al., 2021). Nous
nous concentrons sur le raisonnement déductif tout en envisageant la possibilité d’ap-
pliquer de tels formalismes au raisonnement inductif et abductif, tous ces procédés
pouvant potentiellement être utilisés dans la résolution de problèmes complexes. Nous
considérons une architecture symbolique vectorielle (Vector Symbolic Architecture (VSA))
permettant de manipuler des symboles encapsulés dans vecteurs numériques porteurs
d’informations sémantiques, ce qui nous permet de décrire les implémentations neu-
ronales à un niveau algébrique. Cette approche neuro-symbolique illustre comment les
précédents mécanismes cognitifs peuvent émerger du calcul distribué.
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A propos

Perspectives pour les Sciences de l’Education
Cette approche tri-disciplinaire, combinant les sciences de l’éducation, les neurosciences
cognitives et l’informatique, pourrait permettre d’étudier demanière plus systématique
le comportement d’un apprenant engagé dans une tâche de résolution créative de pro-
blèmes, grâce à l’utilisation d’une représentation informatique de cette tâche et d’un
modèle cognitif de l’apprenant, utilisant à la fois des formalismes symboliques et nu-
mériques.
A l’heure actuelle, nos propositions consistent en des applications-jouets prélimi-

naires ; en effet, nous n’avons pas suffisamment de données correctement annotées sur
la tâche CréaCube pour leur appliquer des méthodes de type apprentissage par renfor-
cement inverse (i.e., interpréter le comportement d’un apprenant en inférant la récom-
pense en supposant un tel paradigme). Pour pallier cela, nous avons commencé deux
nouvelles collaborations afin de (i) développer desmodèles permettant l’annotation au-
tomatique des données ; (ii) développer une simulation de la tâche sur PC ou en réalité
virtuelle, permettant de collecter automatiquement les données (bien que l’expérience
utilisateur soit différente, les mêmes analyses pourraient être envisagées).
Une autre perspective consiste à utiliser des modèles de Markov cachés (Hidden Mar-

kov Models (HMM)) où chaque séquence d’activité peut être considérée comme une
chaîne de Markov avec des états cachés (qui, selon notre hypothèse, correspondent à
des représentations internes de l’apprenant, par exemple ses croyances, ses objectifs,
ses émotions) à partir desquels nous observons une certaine sortie (c’est-à-dire les don-
nées JSON collectées) avec une certaine probabilité d’émission à partir de laquelle nous
pourrions déterminer la stratégie de résolution de l’apprenant. Les algorithmes de re-
groupement (clustering) pourraient également être envisagés, afin de “structurer” l’es-
pace du problème et de trouver des régularités qui aideraient à définir une distance
appropriée entre les états du problème.

Bien qu’elle en soit à un stade très préliminaire, une telle formalisation ouvre la voie à
la science de l’éducation computationnelle, qui semble prometteuse pour mieux appré-
hender la complexité des processus de résolution créative de problèmes à plusieurs ni-
veaux : (i) la spécification du problème et des observables d’intérêts collectés pendant la
tâche ; (ii) la représentation cognitive de l’espace du problème, en fonction des connais-
sances préalables et de la découverte des affordances, permettant de générer des tra-
jectoires de solutions créatives ; (iii) l’implémentation de mécanismes de raisonnement
au sein d’un substrat neuronal. Une telle compréhension pourrait être utile pour conce-
voir les activités pédagogiques les mieux adaptées à l’enseignement des compétences
transversales, tout en tenant compte des différences individuelles dans l’apprentissage.
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About
[extended abstract]

Integrating transversal competencies, such as creativity, problem solving and compu-
tational thinking, into the K-12 curricula is a key challenge in today’s educational field.
We postulate that teaching and assessing transversal competencies could benefit from
a better understanding of the learners’ behaviors in specific activities that require these
competencies. As part of an exploratory research action, we propose a tri-disciplinary
approach, drawing from learning science, cognitive neuroscience and computer science,
to formalize a creative problem-solving task and the behavior of a subject engaged in
such a task.

Context
Transversal competencies in education. Among the so-called “21st century skills”
that are to be addressed in K-12 education, creativity and problem solving are two
transversal competencies that are closely intertwined and can be studied in conjunc-
tion (Voogt and Roblin, 2012). In order to better teach these competencies, we make the
assumption that a better understanding of the underlyingmechanisms of human cogni-
tion is needed. For that purpose, computational cognitive science offers both a theoret-
ical framework and recent experimental results enlightening such cognitive processes.
We target here a problem-solving task which requires learners to engage in a creative
behavior to generate novel ideas and implement them to succeed in solving an unknown
problem situation. Besides, this activity involves tangible robotic cubes that appeal to
visuo-spatial intelligence and are expected to help learners develop computational and
critical thinking, two more 21st century skills that are especially interesting in today’s
digital era (Romero, David, et al., 2019).

Creative problem solving from a cognitive science perspective. We focus on ill-defined
problems in which, as opposed to the classical problem-solving framework proposed
by Newell and Simon (1972), the problem space states are only partially observable by
the learner, including the goal state (which is not necessarily unique). Moreover, pos-
sible operators on the problem space are discovered by the learner as they manipulate
the environment and perceive its physical features as “potentialities of actions” or af-
fordances (Gibson, 1979)). Therefore, the learner is expected to alternate between two
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main strategies: exploration, which aims at experimenting with new alternatives or act-
ing on the environment to generate new stimuli, and exploitation, which refers to the use
of existing knowledge (semantic or procedural) in a given situation. In relation to this
distinction, we can introduce the dual notions of convergent and divergent thinking, which
have been described as central to creative cognition (Alexandre, 2020a): the former is di-
rected towards novel idea generation, while the latter focuses on selecting an effective
candidate solution to the problem.

Material and Methods
TheCreaCube task. Romero, David, et al. (2019)described a problem-solving task called
CreaCube (Figure A), which can be given in the context of a classroom to initiate chil-
dren to creative problem solving and computational thinking. In this task, the learner is
presented with two waypoints and four modular robotic cubes that they can assemble
together, to build a structure that will answer the guideline constraint, namely to “build
an autonomous vehicle”. The ambiguity of the guideline makes this problem ill-defined
(as defined earlier).

Figure A: The CreaCube task

At the present stage of our work, a few hundreds of videos have been annotated and
encoded as JSON data sequences representing the observed timeline of events (includ-
ing the cube configurations tested by the subject, the problems encountered, etc.).

Contributions
An ontology to formalize structured knowledge and material configurations. We
have attempted to formalize theCreaCube task using ontologymodeling (Mercier, Alexan-
dre, et al., 2022). The resulting ontology is aligned on upper ontologies to ensure that the
vocabulary is well specified, allowing for a better communication between the sum-
moned research fields. This formalization was achieved step by step with the aim of
encapsulating domain knowledge used by learning science researchers when they an-
alyze such an experiment, in order to make it more robust and reproducible. Beyond
this specification purpose, we suggest performing inferences using available reasoners
to better guide the qualitative analysis of the collected data.
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Modeling the creative problem-solving process through reinforcement learning on
symbolic data. A step further, we propose to study how to characterize convergent-
divergent thinking and exploration-exploitation behaviors in such a task. At a compu-
tational level, the paradigm is reinforcement learningwith a final reward (success of the
task) and some intermediate rewards (discoveries of affordances, partial result regard-
ing the goal), which is extensively used in cognitive neuroscience to model high-level
executive control functions (Alexandre, 2020a). Here, we propose to consider a symbolic
input data structure (accounting for the problem space state) while the “reward” could
be dynamically computed using an edit distance between the current state and the goal
state (Mercier, Alexandre, et al., 2021).

Biologically plausible implementation of symbolic inference. Finally, we investigate
how reasoningmechanisms can be implemented in spiking neuronal networks (Mercier,
Chateau-Laurent, et al., 2021). We focus on deductive reasoning and discuss whether this
could also apply to inductive and abductive reasoning, as all these mechanisms can po-
tentially be summoned in complex problem solving. We consider a vector symbolic ar-
chitecture (VSA) providing a way tomanipulate symbols embedded as numeric vectors
that carry semantic information, allowing us to describe neuronal implementations at
an algebraic level. This development illustrates how the former cognitive mechanisms
can naturally emerge from distributed calculus, yielding neuro-symbolic computations.

Perspectives for Learning Sciences
This tri-disciplinary approach, combining learning science, cognitive neuroscience, and
computer science, could provide a more systematic way to study the behavior of a
learner engaged in a creative problem-solving task, through the use a computational
representation of this task and a cognitive model of the learner, using both symbolic
and numerical formalisms. Despite being at a very preliminary stage, such a formal-
ization paves the way for computational learning science, which seems promising to
better understand complex processes involved in creative problem solving at several
levels: (i) the specification of the problem and the observables of interest to collect dur-
ing the task; (ii) the cognitive representation of the problem space, depending on prior
knowledge and affordance discovery, allowing to generate creative solution trajectories;
(iii) an implementation of reasoning mechanisms within a neuronal substrate. Such
an understanding could be useful to design pedagogical activities best suited to teach
transversal skills, while taking into account individual differences in learning.
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Introduction
Teaching and assessing transversal skills in K-12 education
Transversal competencies, which are sometimes referred to as “twenty-first century skills”,
include (but are not limited to) creativity, problem solving, computational thinking,
critical thinking1 and collaboration2 (Romero, Lepage, et al., 2017). Integrating these skills
in the K-12 curricula is a key challenge in today’s education (OECD, 2012; 2017; 2023) as
studied by the field of learning sciences (Alexandre, Becker, et al., 2020; Romero, Lepage,
et al., 2017). We postulate that teaching and assessing transversal competencies could
benefit from a better understanding of the learners’ behaviors and underlying cognitive
processes in specific activities that require these competencies.
These skills are intrinsically related to each other, which leads to interdependent def-

initions. In this work, we will mainly focus on the first two aforementioned skills as a
combination, namely creative problem solving (CPS), while keeping in mind that un-
derstanding this skill at an individual level could be helpful as a starting point to better
understand other competencies, e.g, collaborative problem solving.
In our context, creativity refers to the process of producing something new and ade-

quatewith regard to the task being performed (e.g., a problem being solved) (Alexandre,
2020a; Dietrich, 2004; Guilford, 1967). Problem solving in everyday life takes many differ-
ent forms, depending on the task and context; in the general sense, it has been formal-
ized at a computational level (Newell and Simon, 1972) as finding a path from an initial
state (the current situation) to a final state (the goal), while taking into account some
constraints (e.g., task requirements). Computational thinking uses tools inspired by the
field of computer science (e.g., algorithms, information coding and data representation)
to (for example) solve problems or design systems (Wing, 2006) (see also Lodi (2020) for a
recent review). By extension, computational thinking can also be considered to include
technology literacy (Jacob andWarschauer, 2018). Furthermore, techno-creative activities
(Heiser et al., 2022) have the potential to develop computational thinking while also en-
gaging learners in critical thinking by encouraging them to form and test hypotheses or
interpret the outcome of their actions (Alexandre, Becker, et al., 2020). We have therefore
chosen to focus on a problem-solving activity involving robotic artifacts, as developed
in the sequel. Such an activity can also be adapted into group (2-4 people) activities,
1Critical thinking is defined as “a form of directed, problem-focused thinking in which the individual tests
ideas or possible solutions for errors or drawbacks. It is essential to such activities as examining the
validity of a hypothesis or interpreting the meaning of research results.” (APA Dictionary of Psychol-
ogy)

2Collaboration refers to “the act or process of two or more people working together to obtain an outcome
desired by all” (APA Dictionary of Psychology)
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making it interesting to study collaboration mechanisms and develop social and inter-
personal skills. However, we will study this task at an individual level and not at the
group level, as collaborative problem solving is another large field of research that we
will not address in this work.

Metacognition for self-regulation These transversal competencies also need to be
considered in relation to (meta-)cognitive processes;metacognition referring to “the aware-
ness of one’s own cognitive processes, often involving a conscious attempt to control
them” (APA Dictionary of Psychology). Pintrich (2000) has shown that students who are
self-regulating, in other words, capable of setting their own goals and plans, and try to
monitor and control their behavior in line with these goals are more likely to do well in
school. More specifically, meta-learning or self-regulated learning is a meta-cognitive
process which involves the awareness of one’s own learning processes, which is key to
be able to transfer skills from a given problem-solving task to another (DeGrave et al.,
1996),while Callan et al. (2021) have investigated the relationship between self-regulated
learning and key indicators of creativity in the context of problem solving. Here, we
hypothesize that better formalizing and understanding the learner upstream to meta-
learning may contribute to better pedagogical resource design and help teach this criti-
cal awareness of one’s own learning process.

Learning with tangible objects At a more concrete level, we aim to study creative
problem solving through screen-less activities, also knownas unplugged activities (Huang
and Looi, 2021); for instance, using tangible artifacts, such as pedagogical robots or con-
nected objects (Romero, David, et al., 2019), or even everyday objects. Using tangible ma-
terial allows to observe behavioral patterns (Romero, David, et al., 2019)which, if properly
characterized, may help infer cognitive processes. This paradigm has demonstrated its
efficiency in education, especially for computational thinking initiation (Huang and Looi,
2021). However, in contrast to online activities on a computer, a non-trivial setup is re-
quired to track the learning process through the activity. One of the challenges is the
use of efficient measurement devices of reasonable cost. It also appears that a precise
model of the task allows us to define specific observables that are thus more robust to
estimate (Romero, David, et al., 2019). Another obstacle is the bias that is induced by the
fact that the learner is observed and monitored. One solution is to take this as a chance
to involve the learner in their own learning process, as it is the case with Open Learner
Models (Bull and Kay, 2010). This is yet to be properly studied in this context of tangible
manipulation; see Barnabé et al. (2020) for a discussion on these points. Ethical issues of
collecting human data in a way that ensures data privacy also needs to be considered,
to ensure that only required data is effectively collected.

TheObservation Relevance Challenge Properly characterizing observable behavioral
patterns can be difficult because we are working on a relatively small batch of data
(around a hundred individuals, compared to the thousands of data used in classical
statistical methods). For the results to be meaningful, we propose to introduce prior
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information upstream to the analysis of the observables, taken from existing theoreti-
cal models in learning sciences. For this purpose, ontology modeling is regarded as an
appropriate tool to describe structured knowledge, as we will develop in Chapter 2.

A Computational Learning Sciences approach
Learning sciences, an interdisciplinary field suited for computationalmodels Learn-
ing sciences3 are an interdisciplinary field aimed at better understanding how humans
learn, with concrete applications towards the implementation of innovations in educa-
tion and the improvement of instructional methodologies.

In the mid-1950s, researchers from several fields (namely psychology, philosophy,
linguistics, computer science, neuroscience and anthropology) began to develop theo-
ries of mind based on complex representations and computational procedures (see also
Appendix A for a timeline recapitulating the evolution of learning sciences towards
computational models). In the meantime, computational cognitive architectures pro-
pose to implement operational algorithms to solve problems. Throughout the following
decades, researchers in computer science (and some of its sub-fields referred to under
the umbrella term “Artificial Intelligence”) often drew inspiration from human cogni-
tion and findings from cognitive neuroscience and psychology, to develop diverse algo-
rithms capable of handling a specific set of tasks. In turn, this led to new frameworks
of interest to model and study behaviors and cognitive processes in animals, including
humans. A famous example is reinforcement learning, a computational paradigm in-
spired by Pavlovian conditioning, which is now often used in neuroscience: typically,
TD-learning to model dopaminergic firing. In a nutshell, these disciplines benefit from
one another when putting in perspective their results (Alexandre, Becker, et al., 2020).
Recent computational approaches combine problem solvingwithmodular and evolu-

tive knowledge representation in order to be able to solve ill-defined problems. Beyond
problem solving, some models also replicate tasks assessing two modes of thinking in-
volved in the creative process, either divergent thinking or convergent thinking, or both.
We focus here on a specific learning task instead of considering human learning at a
general level to offer a precise and operational formalization that may be translatable to
other learning tasks.

What for? The finality of developing a computational model of a creative problem-
solving task involving computational thinking (Romero, Lepage, et al., 2017) aims to con-
tribute, as a long-term perspective, to a better understanding of fundamental notions
regarding natural versus artificial so-called intelligence, as studied in Alexandre, Becker,
et al. (2020), potentially yielding a better understanding of our human intelligence. Such
a model is intended to be applicable to the observables (including the learner’s behav-
ior) and learning analytics, and aims at interpreting them. Indeed, phenomenological
3In French, the discipline is usually referred to as “sciences de l’éducation”, although the term “sciences
de l’apprentissage” is sometimes preferred to include all learning contexts beyond school settings.
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models already exist — for example, the activity theory (Engestrom, 2000) provides a
framework that is appropriate to the context of this study: it specifies an activity as per-
formed by a subject through the mediation of a tool to achieve a certain outcome. Based
on such phenomenological frameworks, our present study is positioned at an opera-
tional level.
We postulate that understanding the underlying mechanisms of human cognition

could be beneficial to better teach these competencies (not necessarily in a prescriptive
way, but rather as a more integrative framework to design and evaluate related learning
activities; this will be discussed in Chapter 5). For that purpose, cognitive neuroscience
offers both a theoretical framework and recent experimental results enlightening such
cognitive processes. Of course, these results are not directly translatable to a classroom
set-up and should be put in relation to cognitive and educational psychology, consider-
ing more ecological approaches.

The CreaCube task: an ill-defined problem to study human
creative problem solving
This task has been designed considering the cognitive science literature regarding prob-
lem solving tasks (Newell and Simon, 1972; Schraw et al., 1995), but addressing here con-
siderations regarding ill-defined problems, and manipulation of tangible objects.
Research on human problem solving has focused on a diversity of tasks but most of

all on well-defined problems, such as the chess game or the Tower of Hanoi, which al-
lows us to define task models and problem-solving methods (Newell and Simon, 1972).
Nonetheless, problem solving in everyday life is typically ill-defined in the sense that the
goal is only partially defined or may have to be changed throughout the resolution, the
initial state is only partially observable, and the problem constraints are discovered on
the way towards the solution. Consequently, solving these problems requires us to con-
sider not only prior knowledge but also the contextual knowledge that is built through-
out the task process based on the different operations that the subject performs (Romero,
2017). Moreover, the exploration of the means given to solve the problem should facil-
itate the generation of new stimuli, which can then help the learner to make progress
towards the goal by fulfilling sub-goals and validating or invalidating hypotheses. This
is what we would like to consider here: in particular, we aim to consider the problem-
solving process instead of considering only performance scores of the task.
The CreaCube study4 focuses on problem-solving strategies using modular robotic

cubes, targeting children between 8 and 12 years old. The guideline given to the partici-
pants indicates to “build an autonomous vehicle, composed of four items, able to move
from a point A to another point B”, while a set of four modular robotic cubes that differ
in their appearances (e.g., different colors) and features (e.g., wheels, switch etc.) is
presented. The learner is expected to understand that the four items are the four cubes
on the table and to assemble these cubes into a certain configuration that will be able
4See https://creamaker.wordpress.com/ for full details
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to move autonomously. It is worth noting that this problem does not have a unique so-
lution because several configurations may satisfy the goal requirements. Furthermore,
additional goals may emerge, such as understanding the cube behaviors, exploring al-
ternative outcomeswith those items, preserving the egowith respect to the task achieve-
ment, experiencing playful pleasure, and so on. The task is relatively easy in the sense
that most participants come up with a solution in less than 15 minutes but complex to
model because of the large problem space and the lack of specification (e.g., the possible
actions, i.e operators on the problem space states, are not clearly stated) (Romero, 2017),
which makes it an ill-defined problem according to the previous definition.
In this activity, the participant has likely no prior experience of the modular robotic

cubes. To complete the task, there is thus a need for exploration, defined here from a
learning sciences perspective, as a way to gather information from the environment (Ka-
plan and Flum, 2010). Throughout the task, the participant moves towards the goal by
mobilizing prior knowledge that appears to make sense in relation to their experience
with the material being manipulated and the requirements defined by the guideline.
This includes understanding the artifacts, their physical and technological characteris-
tics, leading to formulate hypotheses on the material and define sub-goals to solve the
problem. This process is better explained using the notion of affordances (Gibson, 1977),
i.e., the practical possibilities offered by the cubes, as we will further develop in the
sequel.
The problem is modeled based not only on the knowledge needed to solve it but also

on the initial states of the hardware and the final state for its success, as detailed in Fig. B.
We can see the different observables taken into account (i.e., the possible configurations
of the cubes—disassembled or assembled into a certain shape), the identification and
conceptualisation of affordances, the outcomes of actions performed (e.g., at themotion
level), and also elements regarding the subject’s emotions or attitude (perseverance,
abandonment) towards the task. These observables will serve as a basis for modeling
the activity in the form of structured knowledge.
The data model that is generated from this interface has been developed as a hierar-

chical data structure (in JSON syntax at the file format level), with both the raw and
computed data, as well as the description of each type of information and its relation-
ships to other types. This allows formal manipulation and representation of the col-
lected information, as a first structuring step towards an ontology representation, and
integrated as an interactive platform to facilitate the ergonomics of manual video anal-
ysis (Romero, Vieville, et al., 2021). Each video for the CreaCube activity is encoded as a
temporal sequence of states, corresponding either to a configuration of the activity ma-
terial or to a state of the learner engaged in the activity, as explained above (Fig. B). This
is done manually by the experimenter using a dedicated interactive interface.
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Figure B: The CreaCube observables, reproduced from (Mercier, 2023) and adapted from the
annotation interface CreaCube interface designed by Margarida Romero and devel-
oped by Eloïse Duhot-Prévot (ANR CreaMaker). This figure describes a part of the
system states to which is added, for example, the identification of each cube (recog-
nizable by its color: dark blue battery, black sensor, white motor, red inverter) and
the states of the cubes (e.g., “connected/disconnected” or “on/not on wheels”). This
sub-ensemble of the possible states corresponds to the observables that have been cho-
sen to analyse the activity (see http://aide-line.inria.fr/public/doc/vid.mp4 for a
video of the experiment.)
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An example of encoded data generated from the interface follows:

{

"idVideo": "v0001",

"nbParticipants": "1",

"events": [

{

"time": "12",

"tclicks": [

"U00",

"START1"

]

},

{

"time": "58",

"tclicks": [

"AF01"

]

},

{

"time": "73",

"tclicks": [

"AF04"

]

},

{

"time": "77",

"tclicks": [

"AF03"

]

},

{

"time": "95",

"tclicks": [

"AF02"

]

},

{

"time": "121",

"tclicks": [

"U00",

"S02"

]

},

{

"time": "146",

"tclicks": [

"F030-BSWI-F",

"P02"

]

},

[...]

{

"time": "232",

"tclicks": [

"F030-BIWS-F",

"P02"

]

},

{

"time": "268",

"tclicks": [

"F030-BIWS-T"

]

},

{

"time": "274",

"tclicks": [

"T03"

]

}

],

"idParticipant": "p0001",

"age": 11

}

The methodology to generate an organized set of learning analytic log from video
analysis has been developed from a learning sciences perspective through the ANR
CreaMaker project to study problem solving activities (Romero, Vieville, et al., 2021). Be-
yond the analysis of observables for research purposes, these videos can also be used
to train the teachers who would be willing to put this activity into practice within their
classes (Albero and Guérin, 2014).
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Organization and contributions of the thesis

We propose a tri-disciplinary approach drawing from learning sciences, cognitive neu-
roscience, and computer science in order to provide a more systematic way to study
the behavior of a learner engaged in a creative problem-solving task, through the use
a computational representation of this task and a cognitive model of the learner, using
both symbolic and sub-symbolic formalisms.

We start with a literature review of creative problem-solving studies from these three
disciplines (Chapter 1): from educational psychology and the pedagogy of creativity,
to the cognitive neuroscience of creativity and related brain processes, concluding with
a review of the computational formalisms that have been used to decipher and opera-
tionalize the creative problem-solving process.
Our subsequent contributions are organized by three levels of analysis related to

Marr’s hierarchy (Kitcher, 1988): (i) Chapter 2 describes the construction of an ontol-
ogy to better specify the CreaCube task and the observables of interest to collect during
the task; (ii) in Chapter 3, we investigate how a cognitive representation of the problem
space, depending on prior knowledge and affordance discovery, allows to generate cre-
ative solution trajectories; (iii) in Chapter 3, we implement deductive reasoning mech-
anisms within a neuronal substrate and discuss to what extent these could be extended
to inductive and abductive reasoning, or even analogy.
Finally, in Chapter 5, we reflect on the perspectives and limitations of our approach,

which, despite being still quite preliminary, seems promising to clarify concepts that are
used in the three aforementioned disciplines with some nuances, to describe cognitive
processes: as a matter of fact, deciphering these nuances might be a first step in un-
derstanding, operationalizing and finally teaching transversal skills such as creativity
and problem-solving. This could be useful to design pedagogical activities best suited
to teach transversal skills, while taking into account individual differences in learning.
Nevertheless, we need to keep in mind that findings from computational and cogni-
tive modeling are usually not directly applicable to the classroomwithout the empirical
input of the teachers: validation and adjustments “on the field” are to be expected.

How to read this manuscript

This work contains many definitions due to its anchoring in various disciplines, and we
aim for it to be accessible to a researcher coming from any of those disciplines.
Wehave therefore tried tomake it easier to navigate through these numerous notions5.

When a word is colored in dark red, clicking on it will make you jump to its definition
in context (where the same word will be in italic font). An index of all notions is also
available at the end of the thesis (Index).

5Credits to the amazing knowledge LaTeX package!
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Introduction

Collaborations
This whole manuscript results from a strong collaboration with my advisors Margarida
Romero∗† and Thierry Viéville†∗ as well as my co-advisor Frédéric Alexandre∗. Axel
Palaude∗, who I like to call my “co-PhD” peer, has also contributed to some of the ideas
developed in Chapters 1 and 3.
As a matter of fact, Chapter 1 results from a collaborative review between the five of

us, resulting in two papers in revision at the time of writing (Alexandre, Mercier, Palaude,
Romero, and Vieville, 2024; Romero, Palaude, et al., 2024) and a poster presented at the 7th
annual meeting of the Society for the Neuroscience of Creativity (SfNC 2022) (Alexandre,
Mercier, Palaude, Romero, and Viéville, 2022). With regard to this work, Lola Denet’s in-
ternship was also very valuable to decipher the role of intrinsic motivation in learning
(Denet, 2021) in collaboration with Inria Flowers team.
Chapter 2 is adapted from a conference paper presented at ICDL 2021 (Mercier, Roux,

et al., 2021) which was extended as a journal article for IEEE TCDS (Mercier, 2023). Lisa
Roux is gratefully acknowledged for her first version of the ontology drafted as part of
her post-doctoral studies (Roux et al., 2020).
Chapter 3 stems from an idea we first presented at ICANN 2021 (Mercier, Alexandre,

et al., 2021). We then elaborated on this idea thanks to a collaboration with Axel Palaude
(Palaude et al., 2023) as well as Louis Kohler’s internship and two student projects that
Axel and I co-supervised (Bernard et al., 2023; Radji et al., 2023).

Chapter 4 originated as a collaboration with Hugo Chateau-Laurent†, co-author of a
work we presented at the KR workshop on Knowledge Representation for Hybrid & Com-
positional AI (KRHCAI 2021) (Mercier, Chateau-Laurent, et al., 2021). Terrence Stewart§ is
gratefully acknowledged for his feedback on this work. We also wish to thank Gabriel
Doriath Döhler¶ for clarifying the use of VTB algebra (Doriath-Döhler, 2021) and Théo-
phane Vallaeys¶ for exploring possibility and necessity representation in VSAs (Vallaeys,
2021), during their respective undergraduate internships.

Finally, we wish to acknowledge researchers from the LINE∗ for the CreaCube ex-
perimentations and their interventions at the recurring CreaComp meetings as well as
Cédric Brun‖, for his epistemology and philosophy of science perspective, which helped
nurturing Chapter 5 by providing a broader view. Another more technical perspective
was brought by the Inria Potioc/Bivwac team, thanks to Arnaud Prouzeau‡ with whom
I co-supervised a student project to draft a virtual desktop version of the CreaCube task
(Villars et al., 2023), and Juliette LeMeudec‡ who took upon the development of this task
in virtual reality as part of her internship (LeMeudec et al., 2024), which may serve as a
basis for her starting PhD to study collaborative mechanisms in virtual environments.
∗LINE (Laboratory of Digital Innovation for Education), Université Côte d’Azur, Nice, France. (All affili-
ations indicated here refer to the ones mentioned at the time of the collaboration andmay have changed
since.)

†Inria, Mnemosyne team, Bordeaux, France.
‡Inria, Potioc/Biwvac team, Bordeaux, France.
§Centre for Theoretical Neuroscience, University of Waterloo, Canada.
¶Ecole Normale Supérieure, PSL University, Paris, France.
‖CNRS, Institute of Neurodegenerative Diseases, UMR 5293, Bordaux, France.

16

https://creamaker.wordpress.com/calendar/


Contributions
Open-source code
Clustering experiments on the CreaCube task data (ongoing):
https://gitlab.inria.fr/line/aide-group/creadata

Ontology specifying the CreaCube task:
https://gitlab.inria.fr/line/aide-group/creaonto

How to simulate ontology inferences in a Semantic PointerArchitecture (usingNengo/Spaun):
https://gitlab.inria.fr/line/aide-group/onto2spa

Journal articles
Mercier, C. (2023). An Ontology to Formalize a Creative Problem Solving Activity. IEEE
Transactions on Cognitive and Developmental Systems 15:4, pp. 1891–1904. issn: 2379-
8939. doi: 10.1109/TCDS.2022.3210234.

Conference papers
Mercier, C., L. Roux, M. Romero, F. Alexandre, and T. Vieville (23, 2021). “Formalizing
Problem Solving in Computational Thinking : an Ontology approach”. In: 2021 IEEE
International Conference on Development and Learning (ICDL). IEEE, Beijing, China /
Virtual, pp. 1–8. isbn: 978-1-72816-242-3. doi: 10.1109/ICDL49984.2021.9515660.

Mercier, C., F. Alexandre, and T. Viéville (2021). “Reinforcement Symbolic Learning”.
In: Artificial Neural Networks and Machine Learning – ICANN 2021. Ed. by I. Farkaš, P.
Masulli, S. Otte, and S. Wermter. Lecture Notes in Computer Science. Springer Inter-
national Publishing, Bratislava, Slovakia / Virtual, pp. 608–612. isbn: 978-3-030-86380-
7. doi: 10.1007/978-3-030-86380-7_49.

Mercier, C., H. Chateau-Laurent, F. Alexandre, and T. Viéville (11, 2021). “Ontology as
neuronal-space manifold: towards symbolic and numerical artificial embedding”. In:
KRHCAI-21@KR2021. Hanoi, Vietnam / Virtual.

Posters and presentations
Palaude, A., C. Mercier, andM. Romero (2, 2023). “Représenter l’apprentissage humain

dans des problèmes ouverts”. Presentation. Dataquitaine 2023 - IA, Recherche Opéra-
tionnelle & Data Science. Kedge Business School Bordeaux, France.

Alexandre, F., C.Mercier, A. Palaude,M. Romero, and T. Viéville (12, 2022). “The role of
cognitive processes in creative problem solving: a computational approach”. Poster.
7th annual meeting of the Society for the Neuroscience of Creativity (SfNC 2022).
United States / Virtual.

Mercier, C., F. Alexandre, and T. Viéville (31, 2022). “Ontology as manifold: towards
symbolic and numerical artificial embedding”. Webinar. Workshop on VSA and hy-
perdimensional computing - Winter 2022 session, Luleå University and UC Berkeley.
Lulea, Sweden / Virtual.
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1 Creative Problem Solving: A
tridisciplinary review

1.1 Creative problem solving: a complex phenomenon studied at
multiple levels

1.1.1 A definition of creative problem solving
In psychology, problem solving is defined as “the process bywhich individuals attempt to
overcomedifficulties, achieve plans thatmove them froma starting situation to a desired
goal, or reach conclusions through the use of highermental functions, such as reasoning
and creative thinking” while creative thinking denotes “the mental processes leading to
a new invention, solution, or synthesis in any area” and creativity refers to “the ability
to produce or develop original work, theories, techniques, or thoughts” (APA Dictionary
of Psychology). More specifically, we consider here “personal” everyday creativity in the
sense of (Boden, 1998) rather than “historical”1 creativity found in culturally significant
achievements. Besides, we aim to analyze creativity in the context of problem-solving
tasks, as it can be experienced during learning activities. Therefore, wewill rather adopt
the operational definition of creativity as the process of producing something that is
both2 novel (i.e., original and unexpected) and appropriate (i.e., useful and adequate
regarding the task constraints) with regard to the task being performed (e.g., a problem
being solved) (Alexandre, 2020a; Dietrich, 2004; Guilford, 1967).
This clarifies the definition of creative problem solving (CPS) as the process of solv-

ing a problem using creativity. We focus on ill-defined CPS tasks, corresponding to
problem-solving tasks in which the subject also needs to disambiguate different stages
of the problem-solving process towards a potential solution which could not be antici-
pated by the initial problem state. We postulate that such disambiguation also requires
creativity, from the problem posing to the problem-solving enaction within a specific
task and socio-cultural context (Engestrom, 1987), mediated by the subject’s body and
actions but also by all the different types of analogical or digital artifacts engaged in the
development of a creative performance or product (Leroy et al., 2021).

1also called Big-C creativity by some authors (Kaufman and Beghetto, 2009)
2Creative production may be neither valuable nor new for an entire population, in a given era of time,
and so on. As this description could also include production by chance (a random natural structure
from a natural phenomenon, for instance), it should be completed with the capacity of the creators to
assess their work in a particular context, with a certain degree of skill, judgment, or understanding if
not flair (Gaut, 2010).
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1 Creative Problem Solving: A tridisciplinary review

1.1.2 Multiple levels of analysis
Creativity has already been studied in learning sciences (Leroy et al., 2021) and in other
related disciplines, such as psychology (Boden, 1998), cognitive neuroscience (Alexandre,
2020a), and computer science (Oltet,eanu, 2020) as well as philosophy (Gaut, 2010). Never-
theless, as pointed out by (Kupers et al., 2019), current studies on CPS need to overcome
the macro analysis of creativity, perceived as a static personal trait, to better character-
ize creativity as a dynamic process to be assessed at the micro level, e.g. within a task.
We aim to achieve this objective by contributing to a better understanding of creativ-
ity within complex ill-defined CPS tasks, through a multi-disciplinary approach using
computational and neuro-cognitive formalisms. This approach allows us to propose a
multi-factor theoretical description of such cognitive human activities3. Based on this,
we aim to operationalize a computational framework of creative processes during CPS
learning tasks, focusing on an ill-defined CPS task performed by a unique learner.

Multiple levels in social and learning sciences
A shift in education emerged in the 1960s when creativity research started to enrich
teaching objectives and methods (Torrance and Goff, 1989). Researchers such as Guilford
and Torrance proposed to use creativity, perceived as a personal trait and a key dimen-
sion of intelligence (Guilford, 1967), to measure “potential” and detect “gifted” students
who might have not performed so well at IQ tests (Alabbasi et al., 2022; Cramond et al.,
2005). As a result, new frameworks were developed to study creativity in psychology,
encompassing – but not limited to – an educational context. Rhodes (1961) pointed out
four aspects of creativity which are interrelated and need to be studied in conjunction,
namely “the 4 Ps”, as reviewed, for example, by Tang and Hanneghan (2011):

(i) The Person: one’s personality, intellect, temperament, traits, habits, attitudes, val-
ues, skills, and behavior4;

(ii) The Problem: the mental activities that occur during thinking;

(iii) The Product: the creative outcome of such mental activities;

(iv) The Press: the socio-cultural environment.

Buiding on this pioneering work, Kupers et al. (2019) defined creativity, considering a
child student, as an iterative process of interrelations between the child, the task, and the
social environment, organized in a hierarchical way, yielding top-down “constraints”
3Of course, creative problem-solving is not only exhibited by humans: other species (most notoriously
apes or corvids) develop creative uses of tools to solve problems (Lefebvre, 2013). Non-biological
organisms (so-called artificial intelligence) may also display creative behaviors, as reviewed in the se-
quel.

4In this work, we use a restrictive definition of behavior as an observable sequence of actions displayed
by the subject, following classical reinforcement learning paradigms. We thus do not include mental
activity, despite these notions being deeply intertwined.
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and bottom-up“emergences”. Further clarification in the framework proposed by Ku-
pers et al. (2019) concerns the different levels of creativity study: from the micro-level
within a task (behavior) to the macro-level considering “creative personalities” across
tasks; and how they can be evaluated (e.g., by product assessment or personality ques-
tionnaires), whether the study is static (measurement at a given time) or dynamic (mea-
surement of the evolution of creativity over time), and whether the proposed interven-
tion is unidirectional (simple evaluation of its effect on creativity) or takes place within
a causality process (examining the chain of causes and effects over time).

Taking a step further, Mansfield et al. (1978) highlighted the fact that studies of the
effectiveness of creativity training methods generally suffer frommethodological weak-
nesses, for example the Hawthorne effect (individuals modify aspects of their behavior
in response to their awareness of being observed). Regarding creativity training, they
observed that considering only divergent thinking (defined in the next section) as a
creative process yields biased results, whereas it is a complete process influenced by
cognitive, motivational, personality, and situational factors.

While cognitive neuroscience advances the understanding of how the brain func-
tions in creative tasks (Alexandre, 2020a; Daikoku et al., 2021), education and psychology
researchers undertaking creative studies have developed a diversity of approaches in
which we can find studies at the cognitive level (Hao et al., 2016; Lubart and Sternberg,
1995; Radel et al., 2015) or the behavioral level (Nemiro et al., 2017). Learning scientists
have focused more often on situated learning tasks in ecological contexts of education
in some cases to analyze the creative process (Savic, 2016), to consider the emergence
of the creative process at different social scales as represented in Fig. 1.1, namely the
individual, small-group, or classroom level (Mathisen et al., 2004; Stinkeste et al., 2021),
and to observe differences with respect to culture, personality, and recognized values
(Basantia, 2017; Lubart, 1998). These approaches also lead to applications in pedagogy,
as reported by Ni et al. (2014), in which the theoretical approach successfully helped
students to improve their creativity.

These different levels of analysis of creativity create diversity not only of conceptual
but also ofmethodological models in the study of this phenomenon in education. To ad-
vance in the consideration of amultilevel approach to creativity, we consider a pluralistic
epistemological approach (Turkle and Papert, 1992) in the study of creativity in domain-
specific tasks, thus being restrained to an activity-oriented approach (Albero and Guérin,
2014; Romero, Vieville, et al., 2021), and we focus on ill-defined problem-solving tasks en-
gaging one learner. This allows us, as stated in the introduction, to consider a behavioral
time sequence inwhich divergent and convergent thinking processes appear at different
moments. Despite this specificity, we acknowledge that studying human creativity also
requires the consideration of a socio-cultural perspective to analyze how knowledge is
shaped by prior experiences, the cultural context, and the activity system in which the
subjects are developing their creative processes, as briefly reviewed below.
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Multiple levels in neuro-cognitive and computational cognitive science

While learning scientists focus on diverse ecological and social scales, studying the brain
in cognitive neuroscience is performed at different temporal, spatial and topological
scales (Betzel and Bassett, 2016). We reproduce part of this hierarchy in Fig. 1.1 (leaving
out the topological aspect).

This multi-level modeling can be related to symbolic versus sub-symbolic modeling;
that is to say, from high-level “human-readable” representation, to low-level numerical
implementation in neuronal structures. As reviewed by Glennerster (2002), Marr and
Gibson pointed out, in separate works, that cognitive processing (e.g., vision) passes
through a series of stages of information processing, each corresponding to a different
representation, from neural input activity (e.g., a retinal image), to the representation
of a scene as real-world objects. A key idea in both theories is that contingent regulari-
ties in the physical environment, known by the system, explain how the visual system
determines the shape and location of objects in the world on the basis of the retinal in-
put. This generalizes to other sensorimotor skills. Such knowledge is to be represented
as symbolic information (what we mean by symbols is defined in 1.4). In line with this
idea, Betzel and Bassett (2016) show that multi-scale topological structure modeling re-
quires a qualitative symbolic description of the “communities” hierarchy (e.g., clusters
or attractors), in addition to their qualitative properties in the sense of dynamic system
theory. This means that the description requires a non-trivial symbolic data structure,
and not only a numerical representation of the behavior.

Marr’s original formulation referred to these 3 levels as (i) the “computational” level,
i.e. the specification or description of the problem the system is solving; (2) the “algo-
rithmic” level, i.e. the representations and manipulations used by the system to solve
that problem; and (3) the “implementation” level, i.e. how that algorithm is computed
in the physical hardware of the system. However, as pointed out by V.G. Hardcastle and
K. Hardcastle (2015), the notion of “computational” has highly evolved with the progress
in computational neuroscience. More than a mere description of the problem to solve,
the computational paradigm is at the core of the interaction between the biophysical
implementation and higher-level behavioral stages (e.g., Kitcher (1988)). That is why
we prefer to use the terms “specification”, “representation/manipulation” and “imple-
mentation”, less ambiguous with regard to today’s use of computational and algorith-
mic paradigms, while still in line with Marr’s idea. We put this three stages in relation
to modeling from neuronal to cognitive and behavioral aspects, and numerical to sym-
bolic approaches, as sketched out in Fig.1.1. This also lets us clarify that the numerical,
i.e., quantitative, aspects mainly stand on the biophysical side, while symbolic repre-
sentation mainly stands on the behavioral stage. The key point is that computational
modeling should intrinsically be able to manage both representations conjointly. This
corresponds to the development proposed in Chapter 4.
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Figure 1.1:Multiple levels of analysis (adapted and synthesized from Romero (2022), Lodge et
al. (2017), Betzel and Bassett (2016) and Kitcher (1988)). We consider here 3 dimen-
sions to distinguish between different scientific angles to study the CPS process: (a)
a spatial scale, (b) a temporal scale and (c) a social scale5. Beside the spatial scale,
we put in perspective the levels of Marr as a scale of abstraction of information, in
relation to symbolic and numerical modeling. The areas circled in red are the ones
we are going to focus on in this thesis, while the dotted circled areas could be the
closest potential perspectives of this work.
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Where are we?
A natural follow-up question is: at which level(s) is this thesis situated? Here, our
geometric formulation of CPS is rather “micro” (within the scope of a task, performed
by one individual), andwe consider the creative process as a dynamic causality process,
therefore being complementary to what is generally studied, according to Kupers et al.
(2019) for children or Thurlings et al. (2015) at the level of teachers’ innovative behaviors
and pedagogical innovation. From a computational neuro-cognitive point of view, we
aim to give a symbolic specification of the task (Chapter 2) and investigate sub-symbolic
to numerical approaches to better understand knowledge representation and reasoning
within the CPS process, thus target the behavioral and cognitive level (Chapter 3) and
to some extent, implementation within neuronal populations (Chapter 4).

1.1.3 Decomposing the CPS process
First approaches to CPS modeling Prior to the cognitive revolution and its advances
in computational models (G. Mandler, 2002), the two main approaches to study were
associationism and – starting from the 1930s – Gestaltism (J.M. Mandler and G. Mandler,
1964) (see also Appendix A). The former holds that cognitive processing in the mind
consists of following a chain of “ideas”, that is, interconnected cognitive representations.
This does not explain, however, how one can find a solution to a problem that has never
been seen before. Conversely, the Gestalt approach considers cognitive representations
as coherent patterns than separate ideas merely connected by associations. Gestaltists
are interested in the nature of perception and how we can make sense of patterns, e.g.,
reconstitute the contour of an incomplete shape. Similarly, they hypothesize that we can
also “see” the structure of a solution to a problem through a sudden illumination called
insight, and point out this empirical phenomenon, despite not being able to explainwhy
it occurs. These two theories are still underlying current approaches to CPS modeling,
includingmore recent computationalmodels based on information processing (see 1.4).

Howmany stages? Many attempts to decompose the CPS process have been proposed,
as reviewed e.g. in Howard et al. (2008) and Childs et al. (2022).

One of the first models is the one of Wallas (1926), who identifies four stages:
(i) Preparation: the problem is “investigated in all directions” (Wallas, 1926) in order

to collect as much information as possible about the problem.
(ii) Incubation: a periodduringwhich unconscious and involuntarymental processes

occur while the learner is either relaxing or working on other problems.
(iii) Illumination: mental processes that occurred during incubation spontaneously

come together in the form of a recognizable and worthwhile idea, also referred to
as insight by other authors (e.g., Z. Zhang et al. (2016)) and in this thesis.

(iv) Verification: deliberate mental processes involved to convert the idea into its in-
tended outcome.
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Thismodel leans on theGestalt approach by introducing the “illumination” stage, cor-
responding to a moment of insight. However, other authors such as Max Wertheimer
(as reported in Wertheimer (2000)) argue that creativity can also be achieved through
more deliberate ways: he suggests a distinction between “productive thinking” which
is spontaneous (such as insight) and reproductive thinking whereby one proceeds al-
gorithmically or by trial and error.

Guilford (1967)’s formulation of the creative process relies on two main subprocesses
of divergent and convergent thinking, consistent with the definition of creative thinking
as the act of producing new and appropriate ideas (Guilford, 1967). Divergent thinking
(DT) is directed towards idea generation (fostering originality and novelty), while con-
vergent thinking (CT) focuses on selecting an effective candidate solution to the problem
(ensuring adequation). These two processes have been characterized bymeasurable in-
dicators (Jung et al., 2013) despite some contradictions among studies which might be
due to a lack of refinement in the process breakdown (Dietrich and Kanso, 2010).
Interestingly, these models of creative problem solving mirror the ones developed in

the educational context, the most prominent one being Polya (1945)’s four-phase model
consisting in:
(i) Understanding the problem, related to estimating the present state and choosing

a goal or subgoal;
(ii) Devising a plan;
(iii) Carrying out the plan;
(iv) Looking back on the observed outcome compared to the predicted outcome.
These phases still resonate in the PISA framework for CPS (OECD, 2017) and similar

phase-oriented approaches to studying problem solving as a competency in education.
For example, Zelazo et al. (1997) considered the definition and representation of the prob-
lemmentally, the development of a solution strategy, themonitoring or regulation of the
problem-solving progress, and the evaluation of the solution. The looking-back step
leads to an iterative process of improving the solution, although this was not explicit
in Polya (1945)’s presentation. The planning aspect of problem solving in this model,
and the “incubation/illumination” creative stages of Wallas (1926), are both considered
in creative problem solving.
In a nutshell, creative problem solving is thus decomposed intomultiple cycles (Alexan-

dre, 2020a; Dietrich and Haider, 2017; Hennessey and Amabile, 2010) of a DT phase in which
new ideas or responses are generated, and a CT phase in which the appropriateness of
these solutions is evaluated. As developed in more detail by Amabile (1996), these two
phases are preceded by a preparation phase and ends with the creative outcome, as il-
lustrated in Fig. 1.2. Other models have been proposed but most of them are built on
the same core stages (see the recapitulative table of Howard et al. (2008) reproduced in
Appendix B).
According toAmabile (1996), the problem presentation corresponds to the task identi-

fication, driven by internal or external stimuli; the preparation step involves building up
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or reactivating relevant knowledge and policies or heuristics; the idea generation step
corresponds to the divergent phase, that is, search in the memories and the immedi-
ate environment of possibilities; while the idea evaluation step refers to the convergent
phase, that is, the response test against available knowledge and criteria; and the out-
come corresponds to observing the expected achievement, considering that there is no
reasonable response, or deciding that some progress has been made and looping back
to one of the previous steps 6.

Figure 1.2: The componential model of creativity proposed by Amabile (1983), updated in Am-
abile (2012).

Creative elements are generated during the divergent phase: new ideas are gener-
ated in a way that may require the most obvious responses to be inhibited (which is
referred to as “outside-the-box thinking”). Existing assumptions are questioned, and
unexplored possible solutions are considered. This approach includes estimating the
partially observable current situation, that is, which state we are in, and identifying the
available resources and the possible actions to reach the goal, that is, what the possible
path toward the chosen goal or subgoal is.
Ideas elaborated in the divergent phase are evaluated during the convergent thinking

phase, and then the internal representation, and potentially the chosen goal, is reviewed
or refined, as during the initial preparation phase, yielding an iterative process.

6This recurrent process was evoked as follows byAmabile (1983): “As tasks become more complex, the
application of this outline to the production of creative responses on those tasks also becomes increas-
ingly more complex. Work on any given task or problem may involve a long series of loops through
the process, until success in a final product is achieved. Indeed, work on what seems to be a single task
may actually involve a series of rather different subtasks, each with its own separate ‘solution.’ These
subtasks may be hierarchically arranged, and the completion of any single subtask may in itself involve
several runs through the process until success is finally achieved. For example, the superordinate goal
of ‘writing a poem’ involves several subtasks, including finding a theme, deciding on a meter to use,
choosing major and minor guiding images, inventing metaphors and similes, writing particular words,
phrases, and lines. Each of these can be seen as a task or a subtask whose achievement is necessary for
successful poetry-writing. Thus, success on a task depends in part upon the outcomes of subtasks and
the difficulty of achieving success on those subtasks.”
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Amabile (1996) also considered creativity in context regarding task-intrinsic and task-
extrinsic motivation, involved when engaging in the task during the problem presenta-
tion step and during the DT phase. Liu et al. (2016) considers that motivation is strongly
involved during the preparation step, including goal setting, but also during the eval-
uation step. The componential approach also identifies domain-relevant skills versus
transversal creative abilities, the former being mainly involved during preparation and
evaluation and the latter during generation.

Dual processes in interaction In the previously reviewed approaches, we have al-
ready identified some dual processes involved in creativity: spontaneous insight ver-
sus deliberate thinking, explicit versus implicit knowledge, convergent versus divergent
thinking. In the following sections, we will review how these dual notions are under-
stood in light of the learning sciences and cognitive neuroscience. A recapitulative table
can be found in Appendix B.

1.2 CPS in learning sciences: from creative pedagogy to
pedagogy of creativity

Creativity in education is summoned at two levels. On the one hand, a creative approach
to disciplinary learning at both the teacher and the student level is of great benefit, for
instance, to optimize student engagement or to widen the ways to learn better (Leroy
et al., 2021). On the other hand, creativity on its own is one of the important 21st-century
skills and is thus a competence in itself (Engeness, 2020).

1.2.1 From primary to secondary knowledge: goal setting for intrinsically
motivated learning

Primary vs secondary knowledge How to teach creative problem solving is particu-
larly challenging as it could be considered to fall under what is referred to as primary
knowledge, as opposed to secondary knowledge (Lespiau and Tricot, 2022): according
to this distinction made in evolutionary psychology, primary knowledge is “naturally”
acquired because humans need it to survive and adapt to a changing world, whereas
secondary knowledge includes the academic knowledge that requires more time and ef-
fort to learn (Sweller et al., 2019). However, while primary knowledge is easier to learn,
it is also, by essence, mostly tacit in the sense of Nonaka (1994), that is to say “highly
personal and hard to formalise, making it difficult to communicate to others or to share
with others”. It may thus seem paradoxical to teach such a skill.
As a matter of fact, while being mostly tacit, creative problem solving also includes

methods, that is to say, i.e. high-level procedures that can be applied to a large number
of tasks, and can be explicitly taught to some extent 7. However, we postulate that such
7Such methods include, for instance, analogical reasoning, deductive reasoning, inductive reasoning or
abductive reasoning; we detail these further in the sequel)
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explicit methods are best acquiredwhen integrated to an activity that does not explicitly
appeals to them. Building secondary knowledge upon primary knowledge by present-
ing primary knowledge activities first, has been studied, for instance, in the context of
teaching logical reasoning (Lespiau and Tricot, 2022). This study also seemed to illustrate
the existence of a continuum between the knowledge types with, at one extreme, pri-
mary knowledge met in our direct environment and, at the other extreme, secondary
knowledge; the intermediate step would be the primary knowledge that is not part of
our direct environment (Roussel et al., 2017). This could justify the use of tangible ob-
jects that are unknown to the learner but include familiar elements (such as wheels or
magnets) (Romero and Barma, 2022).
Here, we need to clarify the difference between a task and an activity: a task necessar-

ily holds a goal, whereas an activity merely refers to being active and doing something,
while the goal may be undefined or ill-defined. An activity may therefore include sev-
eral tasks. In the activity theory, an activity is still associated with an outcome, but
this outcome may have not been defined before the start of the activity (Sannino and En-
geström, 2018). In the following, wemay sometimes refer to learning activities as learning
tasks when they hold a specific learning goal.

Motives and goals From a socio-cultural perspective, in problem-solving activities,
the initial tensions of a problematic situation lead to cognitive dissonance between con-
flicting motives and related instruments to reach the goal (Sannino and Laitinen, 2015).
These conflictingmotives could be overcome through an auxiliarymotive (e.g., an object
of motivation) that helps people to make a decision (Sannino and Engeström, 2018). Goal
setting thus involves choosing this auxiliary motive. A famous example is the experi-
ment of making someone wait inside a roomwith a clock (Sannino and Engeström, 2018):
most people will be conflicted between keeping on waiting or leaving the room, and
choose a specific position on the clock as an auxiliary motive (e.g. “At 3:15, if nothing
happens, I will leave”), thus “delegating” their decision to an external element. Such
interactions between the agent and the environment, including socio-cultural dimen-
sions, correspond to additional constraints to be taken into account when developing a
computational model of problem solving, even if the possibility for taking such aspects
into consideration will be rather limited for the model to be tractable.
Complex problem solving typically involves a hierarchy of goals, each goal yielding

some sub-goals to achieve in order to complete the task (Eppe et al., 2022). We also wish
to consider goal orientation (Pintrich, 2000), distinguishing between mastery goals and
performance goals. Participants concerned with mastery are oriented to develop task-
related self-improvement (Poortvliet, 2016), while those focusing on performance aim to
achieve the task objective using “known ways to quickly implement knowledge and
skills that have already been mastered” (Seijts and Latham, 2005).

Weconsider here a cognitive framework inwhich these goals can be organized around
four fundamental questions (Alexandre, 2021) that relate to the learner’s cognitive func-
tions: (i)What is the object of the goal? (ii)Why does it answer some current motivation
or specification? (iii)Where is it located and how can it be accessed? And, (iv) how can
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it be manipulated andmore generally addressed by a skill? This description of the goals
represent an operational way to deal with all semantic, motivational and sensori-motor
aspects of a goal to be considered in problem solving, consistent with what is known
about associative neural circuits, as detailed in 1.3.

Motivation and engagement Motivation is the drive by which we pursue motives and
goals. Traditionally, a distinction has been made between extrinsic motivation, oriented
towards external motives such as the expectation of punishment or reward, and intrinsic
motivationwhich derives from interest or curiosity in the activity itself. In this sense, the
acquisition of primary knowledge is thought to bemore intrinsically motivated, making
it easier to learn, whereas the motivation to learn secondary knowledge is often more
extrinsic (Lespiau and Tricot, 2022). InMoerland et al. (2018), extrinsic motivation is assim-
ilated to homeostasis (that is, keeping some internal variables at a steady state, such as
temperature or sugar level) and intrinsic motivation to appraisal (that is, the result of
evaluations of incoming stimuli according to personal relevance), following the litera-
ture in affective computing.
This dichotomy has since been replaced by a more complex continuumm of motiva-

tional styles from extrinsic to intrinsic (Molinaro andA.G. E. Collins, 2023). This is the case
in self-determination theory (SDT), a theoretical framework for addressing humanmo-
tivation that has shown empirical support over the the last decades (Ryan et al., 2022).
As amatter of fact, contrarily to a common intuition, recent studies show that the differ-
ence between intrinsic and extrinsic motivation is not much correlated with academic
performance (as reviewed e.g. in Sander et al. (2018)) ; however, overall motivation is
correlated with academic performance but an even greater correlation exists between
academic failure and amotivation, i.e., the absence of motivation (Denet, 2021; Sander et
al., 2018). Therefore, fostering motivation remains crucial for the success of students.
Another point of interest is the level of attention and engagement into the activity,

essentially theorized by the ICAP framework, which categorizes learning activities from
passive to active to constructive to interactive (Chi, 2009). The ICAP hypothesis predicts
that students learnmore as they becomemore engagedwith the learningmaterials, and
has been empirically validated in the context of three specific engagement activities:
note taking, concept mapping and self-explaining (Chi andWylie, 2014). Following these
footsteps, Romero, Laferrière, et al. (2016) have proposed an extension of this framework
adapted to digital and technological learning activities.

1.2.2 Acquiring knowledge through learning activities
A typology of knowledge The acquisition of knowledge is tightly related to the tasks
that involve it. In the context of instructional design, Musial and Tricot (2020) propose
to consider not only the knowledge to acquire when designing a learning activity, but
a couple (K,Ti) where where K is the knowledge needed to solve tasks Ti. Similarly,
the couple (T,Ki) for a given task T and all Ki needed to achieve this task is to be con-
sidered when one focuses on the task itself. This formulation allows to define, on the
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one hand, declarative knowledge (K,Ti) and procedural knowledge (T,Ki). This first
dimension (that we could characterize as explicit-implicit 8 is completed by consider-
ing a second dimension of knowledge, from the most task-specific to the most general.
A typology of knowledge along these two dimensions is represented in Fig. 1.3. Such
a typology is related to different types of memories in interaction, as reviewed in 1.3,
and is useful to distinguish between different stages of learning and the processes in-
volved: for instance, a learner may first memorize a literal trace, that is to say, a piece of
knowledge that has been presented to themwithout understanding how to apply it in a
given context (comprehend) or how to generalize it to other contexts (conceptualize). We
can note that what we previously referred to as methods (e.g. analogical reasoning) are
general procedural knowledge that can be explicitized (as opposed to automatisms that
are completely implicit).

Figure 1.3: A typology of knowledge, adapted and translated from Musial and Tricot (2020).
This typology follows two main dimensions: specific-general, and explicit-implicit.
We here assimilateMusial and Tricot (2020)’s declarative and procedural knowledge
to, respectively, conceptual and behavioral knowledge in the sense of Dillenbourg
and Self (1992). We distinguish betweenMusial and Tricot (2020)’s two types of pro-
ceduralization by introducing metacognitive proceduralization, following Conway-
Smith et al. (2023), to denote the process of forming methods.

8“Implicit cognition’ refers to unconscious influences reflecting perception, memory, and learning, with-
out subjective phenomenal awareness” (Reingold and Ray, 2006); see also Appendix B, especially
Table B.1)
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Language as a metacognitive tool The distinction between explicit and tacit knowl-
edge raises the question of how language mediates this transition. Constructivism and
social constructivism (see also Appendix A) highlighted the role of language in de-
velopment, learning, and self-regulation: Piaget (1997) observed that young children
tend to vocally describe their ongoing activities, and he suggested that such “egocentric
language” has the purpose to coordinate sensorimotor processes. Vygotsky and Luria
(1980) later added that egocentric language was not only a descriptive tool but also
a way for children to generate novel goals. For Vygotsky, as reported by Engestrom
(1987), language is progressively integrated as inner speech through internalization. En-
gestrom (1987) extends this definition of internalization as a process of embedding ex-
plicit knowledge into tacit knowledge. Language is thus a metacognitive tool, allowing
to explicitize tacit processes that have been or are about to be internalized, and to set
oneself some goals in order to plan one’s behavior. Language implies the manipulation
of symbols, as reviewed in 1.4.

Monitoring learning activities

Figure 1.4: Framework chosen for the analysis of the observables, adapted from Dillenbourg
and Self (1992) completed by the activity theory (Engestrom, 2000). This frame-
work corresponds to the concepts from learning sciences taken into account for the
construction of the ontology. The observables are the ones described in Fig. B in the
Introduction.

Thanks to the development of tutoring systems, new frameworks have been devel-
oped for monitoring learning activities and modeling the learners within these activi-
ties.
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Dillenbourg and Self (1992) proposed a general framework for learner modeling in
problem-solving activities, considering two dimensions: on the one hand, they distin-
guished the system from the learner and defined concepts regarding the system’s rep-
resentation of the learner; and on the other hand, they established a distinction between
behavior, behavioral knowledge, and conceptual knowledge. Behavioral knowledge refers
to a set of rules and primitives that can be used to infer some behavior for a given prob-
lem, whereas conceptual knowledge contains the definition of the concepts underlying the
behavioral knowledge. For the sake of simplification, we will assimilate these to the for-
merly defined procedural knowledge and declarative knowledge from Musial and Tricot
(2020)9. This representation allows us to precisely define, for example, misconceptions
(i.e., the difference between the learner’s and the system’s conceptual knowledge) or
bugs (i.e., the difference between the learner’s and the system’s behavioral knowledge).
In our case, even if we are not implementing a tutoring system, we are in the situation of
a system observing the learner’s behavior and inferring their knowledge. Moreover, the
problem is ill-defined from the point of view of the learner, but it can be well-specified
from the point of view of the system to guide the analysis of the observables, which is
what we are trying to achieve here.
This frameworkdoes not really address the use of tangible artifacts in problem-solving

activities. The activity theory (see e.g. Engestrom (2000) for a review) fills in the blank
by introducing the notion of tools that play the role of mediator for the activity, which
enables the learner (subject) to pursue a goal (object). Fig. 1.4 shows how we incorpo-
rate these notions into the learner modeling framework proposed byDillenbourg and Self
(1992). In CreaCube, the tools are the cubes and the waypoints, and the main object is
to solve the problem (e.g., build a vehicle), which can be broken down into (possibly
concurrent) several sub-goals. In what follows, we will also explicitize how conceptual
and behavioral knowledge can be understood in light of the distinction that is made in
cognitive neuroscience between different types of memory.

1.2.3 Assessing creativity in CPS activities
Creativity as a requirement for ill-defined problem solving
Focusing on ill-defined CPS tasks corresponds to considering situations in which prior
knowledge does not allow people to engage in conversative10 behavior (only exploiting
existing knowledge and how-to) but requires the generation of novel ideas and their im-
plementation to succeed in solving an unknown problem (Romero, DeBlois, et al., 2018).
This is especially interesting in the context of digital interactive and manipulative tech-
nologies, which requires subjects of all ages to deal with unknown artifacts. In well-
defined problem-solving tasks, more prior knowledge can support the identification of
the problem and the use of existing relevant knowledge to solve the problem (Brand-
Gruwel et al., 2005). Nevertheless, in ill-defined problems which require the ability to
9Here, conceptual knowledge includes high-levels concepts but also contextual knowledge, i.e. concepts
with a limited scope that apply only to specific situations.

10As opposed to exploratory (Romero, DeBlois, et al., 2018).
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think outside the box, prior knowledge may inhibit early ideas of a solution (Leroy et
al., 2021). In other words, we hypothesize that ill-defined problem solving requires cre-
ativity11, as experimentally observed, except in the limited case of completely random
behavior yielding (or not) a solution by chance.

Creativity with tangible objects

problem instantiation 
(top-down)

problem recognition 
(bottom-up)

agent environmentconceptualization
 - goal setting

perceived situation

Figure 1.5: Top-down and bottom-upmechanisms at stake during the preparation phase in CPS,
in relation the gulfs of execution and evaluation defined by Norman (2013). The
bottom figure is adapted from Romero (2023).

Buildingwithmodular bricks is based on visuo-spatial constructive play objects (Ness
and Farenga, 2007) used for engaging learners into tangible programming brick games
(Kalmpourtzis and Romero, 2020; McNerney, 2004)withmodular educational robots (Leroy
et al., 2021; Romero, 2019). In the context of an ill-defined problem solving task (Schraw et
al., 1995), the affordances of the robotic elements will influence the actions of the partici-
pant (Jamone et al., 2016) towards the objects (observing, grasping, assembling). Indeed,
as opposed to a well-defined problem, the legal operators that can be considered to act
on the problem states are not specified here. Instead, they are suggested by the physi-
cal features of the artifacts: for example, the blue cube has a switch on one of its faces,
appealing to be activated. The exploration of one’s environment (as developed in the
next paragraph) aims to discover such affordances defined by Gibson (1977) as opportu-
nities offered by the environment. Norman (2013) adapted this concept to the context of
11Of course, this is not exclusive of the fact that well-defined tasks may also (when not “must” also) be

solved with some creativity, this issue being beyond our present problem position.
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human–computer interaction to refer to “action possibilities” that are readily perceiv-
able by a subject. In Norman (2013)’s definition, affordances depend not only on the
physical capabilities of the subject, but also on their goals, beliefs, and past experiences.
Through their interactionswith the taskmaterial, the learner relates the perceived phys-
ical properties of the artifacts to prior knowledge stored in long-term memories (e.g., a
switch can be flipped to activate a device) and generates new hypotheses. Affordances
are a way to make sense of stimuli, and a key point in the creative process is to be able
to think of different appropriate ways to use the material to solve the problem, using
mechanisms such as analogy to transfer knowledge from a task to another (Alexandre,
2020a; DeGrave et al., 1996; Guilford, 1967). This is to be put in relation to the preparation
phase in the sense of Amabile (2012), whereby one recognizes a problem from both the
external stimuli and the internal goals and prior knowledge, thus combining both top-
down and bottom-up mechanisms (as detailed in 1.3). Norman (2013) refers to the gulf
of execution (gap between a user’s goal for action and the means to execute that goal)
and the gulf of evaluation (gap between an external stimulus and the time a person
understands what it means). These mechanisms are illustrated in Figure 1.5.

Common tasks and assessment dimensions of creativity
Several tests have been developed to assess human creativity, that have then been used
in computational creativity evaluation. Some tasks, such as the AUT or the RAT, focus
respectively on divergent and convergent thinking as described in the sequel, while bat-
teries of tests such as the popular TTCT aim to consider multiple aspects of the creative
process.

DT assessment The Free Association Task, also called Verbal Fluency Test is a popular
verbal DT task: starting from a given concept (category in VFT), subjects are asked to
say whatever comes to their minds within a limited amount of time (see e.g. Denervaud
et al. (2021) or Lopez-Persem et al. (2023)).
The Alternative Uses Test (AUT) (Guilford, 1967) is another popular DT task that con-

sists in finding affordances as defined previously: participants are given an everyday
object, and they have a few minutes to think of as many possible uses for that object as
they can come up with.
In both of these tests, the participants are evaluated according to several criteria, the

most common ones being the four dimensions originally introduced by Guilford (1967):

(i) Fluency or Fluidity: The number of ideas the participant can come up with;

(ii) Flexibility: The number of conceptual domains the answers relate to, or the number
of distinctly conceptually different ideas the answers relate to;

(iii) Originality or Novelty: Originality is generally a frequency measure that shows
howuncommon the solutions are, as compared to the uses other participants came
up with. Novelty is assessed by human judges;
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(iv) Elaboration: How detailed these answers are (there is often a trade-off between
Fluency and Elaboration).

The Torrance Test of Creative Thinking (TTCT) (Torrance, 1974; 1990)was built upon this
work to conceive a battery of verbal and figural tasks, with or without stimuli. Tasks in-
clude, for instance, finding unsual uses of objects (similar to the AUT), inventing stories,
improving a given product, sketch pictures starting from a given shape, etc. The TTCT is
assessed using 5 norm-referenced scores, including Guilford’s dimensions (discarding
flexibility because of its high correlation with fluency), with the addition of abstractness
(regarding titles in the figural tasks) and tolerance to ambiguity (referred to as resistance
to premature closure by the author). The TTCT is one of the most well-known and widely
used creativity assessment tools (Besançon et al., 2011; Cramond et al., 2005), although its
validity has been questioned by some authors (Almeida et al., 2008; Kim, 2006).
In theCreaCube task, DTdimensions have been assessed as follows (Kohler andRomero,

2023): fluidity is computed as the number of configurations made, regardless of differ-
ences between configurations; flexibility refers to configurations that are different, for a
given participant during the activity, from other configurations; and originality is com-
puted considering configurations appearing in less than 5% of the totality of them.

Convergent thinking assessment The TTCT includes tasks that appeal more to con-
vergent thinking, such as figure completion, and the last versions introduce a checklist
of 13 creative strengths (Torrance, 1974; 1990), some of them being not only related to DT
(Alabbasi et al., 2022), e.g. expressiveness and articulateness in the context of story-telling,
or synthesis in the context of incomplete figures (the ability to combine several incom-
plete figures and complete them within a same drawing).

Amabile (1982) proposed a method to evaluate both dimensions of creativity called
the Consensual Assessment Technique (CAT), which relies on the domain-specific ex-
pertise of several judges to assess the novelty and the appropriateness of a products.
This comes from the postulate that the average should counteract the subjectivity of the
judges, however this test has not been used a lot in creativity research, making it hard
to assess its validity (Jeffries, 2012).
Another test, purely verbal, is expected to focus only on the convergent thinking part,

making it a kind of convergent counterpart of the Free Association Test: in the Remote
Associates Test (RAT) (Mednick, 1968), the participants are given 3 words and are asked
to come up with a fourth word that is associated to all three of them (e.g. manners,
round and tennis→ table).

Creativity: a stable trait or a neural process to be considered in context?
Kupers et al. (2019)mentioned that, whereas children’s creativity is often conceptualized
as a static and stable trait, it is probablymore realistic and fruitful to study it at themicro-
level as a dynamic process with moment-to-moment interactions between the child and
the environment. In addition, authors have claimed that interventions could be more
beneficial if theywere related to chains of causes and effects in the underlying processes.
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Elucidating the neural bases of creativity is an interestingway to propose such a descrip-
tion at the micro and dynamic levels. In addition, such a study can help substantially in
answering related questions, like understanding the influences between creativity and
motivation or considering the role of behavioral disorders (e.g., hyperactivity or autism
spectrum disorders) in children’s creativity (see Khalil and Moustafa (2022) for a recent
review).

1.3 The neural basis of creativity
1.3.1 Memories for learning, recall and imagination
CPS involves recalling knowledge and experience in order to recognize a problematic
situation, generate ideas and apply adequate skills to find a solution. The role of mem-
ory in creativity has been extensively studied (Gerver et al., 2023), more precisely the
interactions between memories that are of several types (Alexandre, 2020b). A distinc-
tion is traditionally made between short-term (i.e., working) memory and long-term
explicit (or declarative) and implicit memories, with regard to how the information is
stored in the brain. This supports the typology of knowledge presented in Figure 1.3
and explains in more details the multiple sub-processes involved in human learning.

Working memory Working memory is considered not simply as a system for the transi-
tory storage of information but also as a processing system (Cowan, 2008)). Incoming
stimuli perceived by sensory modalities are encoded in a sensory “buffer” (sometimes
called sensory memory, e.g. by Cowan (2010)) where they persist very briefly. Stimuli
consist of external or internal informationwhich is received and activates sensory areas,
including exteroception (the perception of the situation by, for example, the visual or au-
ditory cortical areas), proprioception (the perception of one’s own body and movement)
and interoception (the sensation of pain, pleasure, and emotions in the insular cortex12).
Beyond immediate perception, regularities and rules are extracted frompast experience,
and different kinds of learning shape cerebral circuits’ ability to be exploited in creative
problem-solving tasks. After being filtered through attentional mechanisms, some of
them can be temporarily retained in working memory for future use and manipulation.
This mainly controlled by the prefrontal cortex (PFC). For example, when solving a prob-
lem, working memory makes it possible to store traces useful to the processes involved
in carrying out the task, as well as updating them as the task progresses. Because these
processes often require prior information, working memory also enables retrieval from
longer-term memories.

Semantic memory Associative learning in the sensory cortex takes care of the multi-
modal sensory dimensions of situations and learns to associate the most frequently
12In this work, wemention somemajor brain regions of interest regarding CPS. A popularized cartography

of the human brain is reproduced in C to facilitate reading for non specialists.
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linked. Building on this, the sensory cortex is associated with the elaboration of seman-
tic memory, a declarative long-term memory in which the organization of knowledge
extends beyond association: a hierarchy of concepts is built from experience and can be
found in a semantic network, with both the idea of hierarchy (one specific class belong-
ing to amore general class, like a dog being an animal, the relation being “is-a-kind-of”),
and the idea of associated relations and properties (visual or auditory characteristics but
also more abstract as a name or a link to the owner). It is also worth noting that, on the
surface of the sensory cortex, the features and properties related to the identification
of the corresponding “objects” are mapped onto the ventral regions (called the what
pathway), whereas those related to their localization or use are mapped onto the dor-
sal regions (the how pathway). The associative nature of semantic memory is believed
to be of primary importance in creative thinking (Dietrich, 2004; Jung et al., 2013) (see
also Gerver et al. (2023) for a meta-review) as a function of both educational experience
(Denervaud et al., 2021) and lifespan (Cosgrove et al., 2021).

Episodic memory Episodic memory involves a cerebral region called the hippocampus (or
more generally the hippocampal formation) and corresponds to memorizing episodes,
i.e. multimodal neural activity patterns related to personally experienced situations
within their spatio-temporal contexts and associated responses and outcomes. Episodes
including a strong emotional dimension (for example associated with an error, nov-
elty, or other kinds of reinforcement) correspond to stronger traces, whereas episodes
in which nothing special happened have the tendency to be forgotten quickly. To store
such information, the hippocampus receives as an input a compressed summary of the
activities of most regions of the cortex at the moment of the episode and has a power-
ful mechanism associated with its recurrent architecture that allows the binding of the
references to these multimodal elements to form a unique trace: frequently repeated
segments of temporal inputs are concatenated into single conceptual units (Gobet and
Sala, 2019). Episodicmemory retrieval is a dynamic process that draws upon the sequen-
tial ability to reconstruct past experiences from corresponding cues, by a phenomenon
called replay (Rabinovich et al., 2023). Later, when a similar episode (or a part of it, re-
ferred to as a cue) is experienced, the hippocampus is able to recall the full initial episode
and to reactivate the corresponding cortical regions, yielding the same various sensa-
tions associated with that episode. Furthermore, when similar episodes are stored, an
internal mechanism within the hippocampal formation allows the brain to detect that
these episodes bind common features. In a process called consolidation (Eichenbaum,
2017), if this binding is not yet represented in the semantic memory, these episodes will
be sent back by replay to the cortex during specific off-line moments (particularly dur-
ing sleep), to train the cortex actively and help in the formation of new concepts binding
these features, improving the quality of the information representation in the semantic
network.

Procedural memory Procedural memory is an example of implicit memory: it stores
know-how and integrated procedures that have been automatized, such as motor skills.
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These procedures are gradually learned through a transfer from declarative and work-
ing memories.
In problem-solving tasks, the brain figures out the problem situations by associating

its sensory representations with a physical or mental behavior encoded in the motor
and premotor cortex (respectively for elementary and integrated action plans) and in the
orbito-frontal cortex (for giving an emotional value to a situation and making a decision
accordingly). More precisely, as previously mentioned, this goal-directed organization
can be brokendown intowhat–why–where–how loops (Alexandre, 2021) inwhich the value
of an action is evaluated in terms of general preference (what) and motivation (why) to
decide both a general goal and a next-step sub-goal, allowing the generation of rules for
action (where and how).

The elaborated multiscale distributed representation of sensory information is asso-
ciated through training with a variety of behaviors, corresponding to responses that can
be given in the physical and mental worlds. What is specifically considered here is the
capacity to anticipate the resulting situation when the response is triggered. This is the
case for procedural learning, mainly associating the motor and premotor cortex with
the dorsal (how) cortical regions. Throughout this learning, the consequences of ac-
tions in the real world can be anticipated. This gives rise to the concept of affordances,
whereby the perception of a situation can pre-activate possible actions and anticipate
their outcomes (Gibson, 1977). Each object is always associated with some “what to
do with” properties. This is also the case for respondent conditioning, associating the
orbito-frontal cortex with the what cortical regions. Here, the decision to give a certain
emotional value to a situation allows us to anticipate the corresponding reinforcement
(reward or punishment).
In both cases, such learning involves loops associating the cortex with the basal ganglia

13. After a certain time, this process results in what is called the dominant behavior, the
behavior generally triggered in the corresponding situation. After extensive training, it
can even become a habitual behavior in the sense that the response is automatically trig-
geredwhen the situation is perceived, with no anticipation of the forthcoming outcome.
This response is called stimulus-based behavior, as traditionally opposed to goal-directed
behavior. It can be remarked that such automatic behaviors, which are very frequent
in a stable and predictable world, are exactly the opposite to what is sought in a cre-
ative intention oriented towards novelty and appropriateness. Therefore, in most cases,
cognitive control is needed to inhibit the dominant behavior and promote less usual –
goal-directed – behaviors, as detailed further.

1.3.2 Neuronal networks in interaction during CPS
Observing brain activity with imaging devices (e.g., fMRI and MEG) during elemen-
tary cognitive tasks has led to the definition of large-scale brain networks, associating
widespread brain regions. Among them, three are particularly active in some steps of
13This learning involves dopaminergic firing and is often modeled by TD Reinforcement learning, taking

the prediction error as reward.
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Figure 1.6: Large-scale brain networks involved in CPS, according to Beaty et al. (2016) and sup-
ported by Dietrich (2004), Jung et al. (2013) and Kounios and Beeman (2014).
The DMN, involved in mind wandering and idea generation, is mainly composed of
the ventro-medial prefrontal cortex (vMPFC), the lateral parietal cortex (LPC) and
the precuneus cortex (PCC). Thanks to the connection of the PCC to the hippocam-
pal regions (precisely the caudal part of the parahippocampus), it enables episodic
memory retrieval and replay.
The CEN, involved in cognitive control, is mainly composed of the dorso-lateral pre-
frontal cortex (dLPFC) and the posterior parietal cortex (PCC). There is a slight
asymmetry between the right and left hemisphere, the dLPFC and PPC of the dom-
inant hemisphere (left here) being more active in convergent mode.
Finally, the SN, involved in attention and control, is mainly composed of the rostral
prefrontal cortex (rPFC), the anterior cingulate cortex (ACC) and the insular cortex
(INS - primarily the anterior insula AI).

39



1 Creative Problem Solving: A tridisciplinary review

the creative process (Beaty et al., 2016). The default mode network (DMN) corresponds to
brain regions that are active during spontaneous thought and mind wandering. It in-
cludes regions surrounding the hippocampus (precisely the precuneus cortex), together
with the ventro-medial prefrontal cortex and the lateral parietal cortex; a primary func-
tion of this network is episodic memory retrieval. The central executive network (CEN)
includes the dorso-lateral prefrontal cortex and is activated for the control of sustained
attention and planning, thus playing a key role in working memory. The salience net-
work (SN) mainly consists of the insular cortex and the anterior cingulate cortex (ACC).
It monitors the salience of stimuli, integrating a variety of internal and external infor-
mation. It is hypothesized to play the role of mediator activating a switch between the
DMN and CEN (Uddin, 2015). Beaty et al. (2016) reported a major association between
the DMN and the CEN during creativity, in which the DMN proposes candidate ideas
(divergent phase) and the CEN stands for the evaluation of their appropriateness (con-
vergent phase).

Spontaneous versus deliberate processes A distinction is made between the sponta-
neous emergence of an idea, as a “bounce” effect of the creative approach, and a delib-
erate search for new ideas, including questioning existing beliefs or knowledge about
the problem to solve. In a more spontaneous mode, new ideas are generated from the
default network and episodic memory (Kounios and Beeman, 2014), subsequently evalu-
ated by the CEN. In a more deliberate mode, the SN and CEN can take into account the
characteristics of the task and orient the DMN toward a more systematic exploration
of possible ideas. Dietrich (2004) related the first mode to intuition and discussed the
correlation of age with this dual process of imposing constraints to be appropriate and
relaxing them to be creative, with amore spontaneous approach observed in childhood.
Kounios and Beeman (2014) also reported a neural inhibition of visual inputs by the CEN
to reduce distracting inputs, facilitate the retrieval of weak solutions, and evoke actors
influencing insight (see below), like mood (positive affects and reduced anxiety favor-
ing a long-term view and broadened semantic processing; see also Diamond and Ling
(2016) on these topics).

Idea generation Jung et al. (2013) insisted on the important role of episodic memory in
the replay of retrospective and prospective memories and of interoception in the insular
cortex to set the selection of replays toward more original ideas. Amnesic patients suf-
fering from episodic memory loss due to hippocampal damage have been reported to
performpoorly on the TTCT (Jung-Beeman et al., 2004). As amatter of fact, the hippocam-
pus is not only able to recall a full initial episode or an episodewith common features but
episodes also able to replay a partial episode or composite episodes made up of several
pieces, in other words to predict unrealized episodes through simulation (Stachenfeld
et al., 2017). The prefrontal cortex plays a fundamental biasing role towards hippocam-
pal replay, these two structures being deeply interconnected (Eichenbaum, 2017). In one
direction, the hippocampus can provide arbitrary cue binding to the PFC, allowing to
refine the contexts in which the dominant behavior should be inhibited and replaced
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by specific rules. In the other direction, the prefrontal cortex can control the retrieval of
memories in the hippocampus in certain contexts by suppressing the recall of inappro-
priate memories. Altogether, this forms the basis of prospective memory (Buckner, 2010), a
phenomenonwhereby the prefrontal cortex can control the hippocampus step by step to
make it produce a virtual (i.e., not really experienced) trajectory within the mapping of
previous episodes. This generative capability of the hippocampus thus allows for imag-
ination and generation of candidate ideas, for which metacognitive judgement will help
selecting those that can lead to an efficient and creative process or outcome. Altogether,
as pointed out by Schlichting and Preston (2015), it is interesting to observe that imagina-
tion is achieved through the recombination of prior memories and is consequently not
so “novel.”

Regulation Such recombinations are performed under the control of both sponta-
neous and deliberate regulatory processes, allowing to behave in a creative way instead
of reusing existing habitual behaviors, especially when these become inappropriate. At
this stage, a rather subtle difference is to be made between regulation and evaluation:
during the DT phase, the role of the deliberate system is not to evaluate the result of the
spontaneous generation process but rather to regulate the way in which the generation
process is performed (Tubb and Dixon, 2014).

This involves judgment along both “hot” (affective) and “cold” (analytic) dimensions
Dietrich (2004), emotion allowing the comparison of different signals using emotional
value as a common currency (D. J. Levy and Glimcher, 2012). Tubb and Dixon (2014) maps
this distinction onto an explicit-implicit dimension: implicit judgement is fast and affec-
tive, resulting in what is sometimes called a “gut feeling”, whereas explicit judgement
is more demanding but provides additional information such as the value function gra-
dient.

Idea evaluation Regarding the control of idea appropriateness, the same distinction
between the ventral (what, semantic representation) and the dorsal (how, perception for
action) regions of the sensory cortex can be made for the PFC (Bunge, 2004). In the PFC,
the former is in charge of biasing the activity of the ventral part of the sensory cortex,
setting the focus on “objects” and dimensions that will be of specific interest for the
contextual rule, and keeping the representation of the desired goal active. The latter
takes care of the organization of the generated behavior, including over time, so that
the global behavior obeys the constraints of the ongoing task and displays appropriate
temporal characteristics. More specifically,Dietrich (2004) reported that the dorsal lateral
PFC is involved in its syntactic aspect, whereas the dorsal medial PFC is for the control
and inhibition of common ideas (Mayseless et al., 2015) (also useful in the regulation of
DT phases, as reviewed earlier).
In addition, the posterior to anterior axis of the lateral PFC seems to correspond to

a concrete to abstract axis. At the how level, Badre (2008) observed that more concrete
and proximal in time rules are represented on the posterior side, whereas more anterior
regions display more abstract and temporally extended rules, leading to a hierarchical
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view of the representation of rules, in which more abstract rules can control more con-
crete ones. At the what level, this concrete to abstract axis corresponds to the level of
abstraction of the representation (O’Reilly, 2010).

Intuition and insight As far as the spontaneous aspect is concerned, a distinction is
made between insight (the aha or eurêka effect), which is a sudden and unexpected ap-
prehension of the solution, and intuition, which is mainly characterized by reaching,
more gradually, a solution with neither an explicit representation nor a clear explana-
tion of how it emerged (Zander et al., 2016). Z. Zhang et al. (2016) observed that insight is
related to a sudden appearance of what could be the solution, after an implicit restruc-
turing ofmental processes and tacit knowledge associations; whereas—in experimental
paradigms— intuition is more related to the spontaneous selection of a solution among
alternatives, with an emerging perception of coherence (Zander et al., 2016). Using the
RAT task, Jung-Beeman et al. (2004) found a gamma-band oscillation associatedwith con-
scious retrieval in insight problem solving. In addition, they observed an alpha burst
preceding the gamma burst, which may reflect unconscious solution-related process-
ing (Jung-Beeman et al., 2004). In line with this observation, using fMRI, W. Zhang et al.
(2020) reported that a diffuse and weak activation of the superior temporal gyrus (STG)
precedes the moment of insight, which is followed by a strong activation of STG in co-
herence with the burst of positive surprise (as illustrated on Figure 1.7.
Taking a step further with regard to metacognition, Metcalfe and Wiebe (1987) ex-

amined the difference in metacognitive judgment processes between insight and non-
insight problem solving by using metacognitive judgments such as “warmth” ratings of
perceived closeness to the solutions. Their results of higher warmth ratings during non-
insight problem solving than during insight problem solving support the view that the
unexpected realization of the solution is a distinguishing characteristic of insight prob-
lem solving. More recently, Gilhooly and Murphy (2005) have observed that deliberate
processes are required in both insight and non-insight problem solving, but their roles
differ: specifically, deliberate processes are more involved in strategy switching and in-
hibition in insight problem solving, whereas they support systematic search processes
in non-insight tasks.

1.3.3 Cognitive control: from behavior persistence to flexibility
Here, let us first underline the difference between persistence / flexibility with regard
to a goal, and persistence / flexibility with regard to a behavior. In creative behavior,
we are aiming for flexible behavior (possibly inhibiting the dominant behavior) while
staying persistent towards a goal, ensuring a novel and appropriate response. The com-
mon distinction between stimulus-based and goal-directed behaviors thus needs a little
more nuance, since creative behavior should always be more or less goal-directed. In-
stead, let us review in more details the top-down and bottom-up mechanisms involved
in attention and allowing to bias the behavior with regard to goal persistence.
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Figure 1.7:Metacontrol of insight, adapted from W. Zhang et al. (2020). During an insight trial
of the RAT, W. Zhang et al. (2020) reported a diffuse and weak activation of the
superior temporal gyrus (STG) preceding the moment of insight, which is followed
by a burst of positive surprise and a strong activation of STG.

Top-down versus bottom-up bias

Following Ede et al. (2020), the distinction proposed between goal-directed and stimulus-
based behaviors is highly related to sources of attentional selection, that is, to focus
voluntarily on things that are relevant to our goals rather than involuntarily capturing
salient events in the external world. These two sources jointly influence the selection of
internal memory representations.

It is thus not possible to restrain stimulus-based mechanisms to a simple bottom-up
process because attentional mechanisms the brain are, from the beginning, modulated
by top-downprocessing: in the posterior (temporal/parietal) cortex, this top-downpro-
cess ismodulatory andmaps the injection of prior information onto the involved percep-
tual stimulus processing (Friston, 2003). These attentional mechanisms are of primary
importance during the preparation phase as defined in Figure 1.2.
Following this track, in line with W. Zhang et al. (2020)’s metacontrol approach, both

persistent (i.e., characterized by a strong top-down bias and competition between goals)
and flexible (i.e., characterized by some weak top-down bias and weak competition be-
tween goals) behaviors are goal-directed behaviors. Furthermore, goal-directed behav-
ior is hierarchical as soon as the problem-solving task becomes complex, as pointed out
by, for example, (Eppe et al., 2022).
According to W. Zhang et al. (2020), creative cognition in divergent and convergent

thinking is modulated by metacontrol states, as described in Fig. 1.8. DT and insight
solutions are enhanced by goal flexibility whereas CT seems to benefit frommetacontrol
biases toward goal persistence.
To this end, the prefrontal cortex is amajor cerebral region to behave beyond stimulus-

driven dominant behavior and to promote more flexible behavior driven by internal
analysis. This is achieved through two internal processes (O’Reilly et al., 2014), encoun-
tered previously: the medial part monitors errors, suggesting that the dominant be-
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Figure 1.8:Metacontrol between goal flexibility and goal persistence, adapted from Hommel
and Wiers (2017) and W. Zhang et al. (2020). Flexibility towards the goal is charac-
terized by a weak top-down bias and a weak mutual competition between alterna-
tive decisions. W. Zhang et al. (2020) report that flexibility is promoted by a weak
activation of the dorsolateral prefrontal cortex (dLPFC) together with the tempo-
ral/parietal cortex (T/PC)while the inferior frontal gyrus (IFG) is strongly activated
in the dominant hemisphere (represented on the left here) in comparison with the
non-dominant hemisphere. The opposite pattern is observed for goal persistence.

havior might not be adopted in certain circumstances, and aims to predict when these
errors might occur to inhibit the dominant behavior accordingly; while the lateral part
learns new contextual rules, which are better adapted to new specific cases, based on
interactions with episodic memory.

In both processes, this is implemented with the specific mechanism of working mem-
ory, in which prefrontal neurons display sustained activity to evaluate histories of activ-
ity, maintain constant inhibition of the dominant behavior, and bias the activity of the
sensory cortex to promote other more adapted rules instead. In particular, the biasing
might correspond to increasing the saliency of some (classically supposed) minor fea-
tures to orient the behavior toward responses dealing with them. Behavior switching is
much more efficient than learning and unlearning a new behavior and is crucial in CPS.

The prefrontal cortex implements biasing activity to orient other cortical regions to-
ward non-dominant behavior, rather than implementing a behavioral rule per se. The
consequence is genericity, and, in the framework of reasoning by analogy, for example,
it should be rather easy to adapt the contextual rule to another similar biasing of activ-
ity in another cortical region. The task set model reviewed below proposes a model for
such behavior switching.
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Task switching: between exploration and exploitation

Task sets (see, e.g., Donoso (2013) for an introduction) are basic executive units sub-
serving cognitive control, formalised as instantiating (hidden) states of the environ-
ments corresponding to stable external contingencies over time. Task-sets are temporal
abstraction including action sets which in turn comprise a selective model mapping stim-
uli onto actions (S→ A) and a predictive model predicting action outcomes from stimuli
(S,A→O). The selective model can be organised hierarchically according to additional
cues (C), the likelihood (LH) of which is encoded into a contextual model given external
states associated with task sets. The anatomical mapping of these functions onto the
frontal lobes is illustrated on Fig.1.9. Task sets thus constitute an operational model of
cognitive control to promote more flexible behaviors, which can be implemented and
simulated within computational models using reinforcement learning, as developed in
the next section 1.4.

Figure 1.9: Task switching, adapted from Domenech and Koechlin (2015) and Duverne and
Koechlin (2017). The lateral regions comprise the fronto-polar cortex (FpC), the
middle and caudal lateral prefrontal (mLPFC and cLPFC) and the premotor (PM).
The medial regions comprise the orbito-frontal (not represented here but involved
in giving an emotional value to a situation and making a decision accordingly), ven-
tromedial prefrontal (vMPFC), the dorsomedial prefrontal (dMPFC) including the
dorsal anterior cingulate cortex (dACC) and the pre-supplementarymotor area (pre-
SMA).
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Having highlighted the main psychological and neuro-cognitive notions inherent to
creative problem solving, let us now review computational approaches aiming to oper-
ationalize such mechanisms.

1.4 Computational approaches for CPS: from symbolic to neural
formalisms

Following the cognitive revolution in the 1950s (G. Mandler, 2002), novel cognitive and
computational approaches emerged to study creative problem solving.
This implicit/explicit duality reviewed earlier can be paralleled to an analogous du-

ality between symbolic and numerical AI (Garcez and Lamb, 2020), the former relying
on symbolic knowledge representation and reasoning, while the latter corresponding
to sub-symbolic or numerical computation (as it is the case in most machine learning
algorithms, including deep learning).
While the first proposed computational models for problem-solving relied on sym-

bolicmanipulation (e.g.,Newell and Simon (1972) as introduced below), novel approaches
in deep learning display impressive capabilities for playing non-trivial board games
such as Go14 in which symbolic rules are not enough to account for intuitive recogni-
tion of potentially winning configuration (in amanner similar to insight). Furthermore,
recent advances in generative models, such as generative artificial neural networks, dif-
fusion models and transformers (Epstein et al., 2023), enabled the release of DALL-E15

or Midjourney16, which are able to provide “creative” (as in novel and appropriate) re-
sponses to a textual prompt in a pictural form (photographs or paintings), or in the case
of ChatGPT17 in a verbal form (e.g., poems).

For this computational review, we chose to focus on models that do not need exten-
sive data training (hence avoid generative and deep-learning approaches) for reasons
we develop in Chapter 5. Nonetheless, as reviewed inGarcez and Lamb (2020), recent ad-
vances in AI propose to integrate both symbolic and numerical approaches allowing for
fruitful interactions between the two paradigms. We thus focus on symbolic paradigms
forwhich a sub-symbolic representation could be considered, allowing to use numerical
computations in a frugal way while still considering biological plausibility (Kajić et al.,
2017; T. Stewart and Eliasmith, 2011)

1.4.1 The information processing approach
The problem space hypothesis
In Human Problem Solving, Newell and Simon (1972) proposed an information processing
approach to problem solving; alongwith a formalization ofwell-defined problems. This
14As performed by AlphaGo (https://deepmind.google/technologies/alphago/)
15https://openai.com/dall-e-2
16https://www.midjourney.com
17https://openai.com/chatgpt
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approach, based on the computer metaphor, consists of applying a search algorithm to
a mental representation of what they call the problem space (1.4.1). They illustrated
this formalization with the well-known problem of the Tower of Hanoi (Newell, 1981)
(Figure 1.10).
With this formulation, solving the problem thus consists of searching the problem

space using heuristics in its computational sense18, that is to say, functions that rank
alternatives in search algorithms at each branching step based on available information
to decide which branch to follow. A heuristic may not always give the best solution but
allows to approach it when exploring the whole problem space would be too greedy.

Problem space characterization in well-defined problems

For Newell (1981), the problem space consists of:

• a set of symbolic structures called the states of the space

• a set of operators over the space, i.e. functions (possibly partially) defined
over the state space andproducing states as outputs. Sequences of operators
thus define paths that unfold into sequences of states.

A problem is specified by:

• a set of initial states,

• a set of goal states,

• a set of path constraints,

and consists of finding a path in the problem space, starting at any initial state
and ending at any goal state while satisfying the path constraints (Newell, 1981).

The interest of such an information processing approach is that it allows to test prob-
lem solving algorithms using computer simulations: Newell and Simon (1972) have im-
plemented such problems and heuristics allowing to solve them within the General
Problem Solver (GPS), which would later on inspire other computational cognitive ar-
18In psychology, heuristics are more considered as mental shortcuts that ease the cognitive load of making

a decision. Such shortcuts include using trial and error, a rule of thumb or an educated guess, but to
our best knowledge, there is no consensus on a typology or precise definition. Polya (1945) propose
several examples of heuristics, quoting: “

• If you are having difficulty understanding a problem, try drawing a picture.
• If you can’t find a solution, try assuming that you have a solution and seeingwhat you can derive

from that (“working backward”).
• If the problem is abstract, try examining a concrete example.
• Try solving a more general problem first (the “inventor’s paradox”: the more ambitious plan

may have more chances of success).
”
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chitectures such as SOAR (J. Laird et al., 1986; J. E. Laird et al., 2017) orACT-R (J. R. Anderson
et al., 1997).

The key principle, which the GPS relies on, is the physical symbol system hypothesis
(PSSH) (Newell and Simon, 1972), that is, the problem space is represented as units of
information called symbols that the GPS can manipulate and combine into structures
(expressions) using logical rules. This is the basis for what we now call symbolic artifi-
cial intelligence.

Figure 1.10: The problem space, illustrated on the Tower of Hanoi, reproduced from Newell
(1981). The definition from 1.4.1 applies as follows:

• States: Arbitrary configurations of the N disks on the three pegs.
• Operators: (i) Move a disk by removing it from a peg and putting it on another peg; (ii)

Recognize a configuration as an instance of a pattern.

• Initial state: The configuration shown in the diagram on the left.
• Goal state: The configuration shown in the diagram on the right.
• Path constraints: No disk may be placed on a smaller disk.

Despite being a significant advance in the computational study of problem solving,
Newell and Simon (1972)’s approach remains limited to well-defined problems such as
the Tower of Hanoi. In the next section, we propose to extend this formalization to
ill-defined problems. Another obstacle is the combinatorial explosion which may arise
with a very large problem space (a fortiori in ill-defined problems). This is where diver-
gent and convergent processes may come into play to find heuristics that will narrow
down the space to explore. Finally, the symbolic representation raises the non-trivial
question of semantic grounding, that is to say, how to make sense of symbols and relate
them to sensorimotor processes, as reviewed in the sequel.
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A geometrical definition extended to ill-defined problem solving

Considering creativity: the concept space When attempting to define creativity, Bo-
den (2004) introduced another notion called the concept space, that Wiggins (2006a) and
Ritchie (2012) have formalized into computational terms. The idea of the concept space
is that generating new creative concepts can be considered as a search process similar
to the ones used in problem solving within the problem space. Does that mean that the
concept space and the problem space refer to the same notion? According to Wiggins
(2006b), the creative system framework is more a generalisation of the problem space
search into a geometrical space: in particular, it admits expansion, which requires an
open-world assumption to allow for the creation of new ideas, and uses the notion of
relative comparison for evaluation rather that absolute Boolean values. In the follow-
ing, we will review what kinds of creative search algorithms can be performed in such
a space. From now on, when referring to the problem space, we use a generalized geo-
metrical definition allowing for such extensions.

Considering ill-defined tasks The spatial model of problem solving extends to com-
plex problem-solving tasks in the sense of Eppe et al. (2022). In such a case, a complex
problem is solved in several steps by generating subgoals on the trajectory. Eppe et al.
(2022) considered both a temporal modular approach (i.e., a sequential decomposition
of the path) and a spatial modular approach (i.e., a multi-scale decomposition of the
state space), in addition to concurrent policies, to solve the problem (i.e., alternative
routes in the problem space), yielding hierarchical decompositions.
Beyond complex problem-solving tasks, we are interested here in ill-definedproblems

for which we propose a computational formulation following Newell and Simon (1972)’s
criteria, given below. In such tasks, it not possible to apply a predefined heuristic or
policy, that is, a predefined set of rules allowing learners to choose the next action given
the observed state, from the initial to the final state. Indeed, understanding the initial
state, choosing some final goal parameters, and adapting the trajectory generation as a
function of the evolution of the problem state are also part of the task. The solution is
thus adaptive and emerges from an important process of disambiguation throughout
the problem-solving task.

Problem solving as trajectory generation We summarize here the geometrical ap-
proach of problem solving as the selection of a trajectory within a (possibly continuous)
problem space, as illustrated in Figure 1.11. Interestingly, the states can be abstract and
can include contextual information about the state of the environment but also about
the agent (learner), including their internal (e.g., emotional) state. Selecting a trajec-
tory corresponds to deciding, as a step in the problem-solving process, to operate of the
problem space both at the external level (e.g., moving an object) and at the internal level
(e.g. modifying some internal value of the learner) (Alexandre, 2020a). Our representa-
tion of problem solving in Figure 1.11 is also consistent with the work ofHay et al. (2017)
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considering the multiplicity of paths that can be generated from the problem state to a
goal state as part of the “solution search” process.

Problem space characterization in ill-defined problems

Adapting (Newell and Simon, 1972)’s formulation of problem solving, we consider
ill-defined problems as problems for which one or several of the following non-
exclusive possibilities exist:

• the open-ended goal is not well defined but simply constrained by certain
requirements, making the final state not unique and/or not known from the
beginning;

• the initial state is only partially known (and observable) to the learner;

• there is no explicit operation to move from one state to another, but poten-
tial actions are discovered by the learner when interacting with the envi-
ronment, for instance discovering new objects and perceiving their features
as affordances, thus inferring how to use them (Gibson, 1977)with regard to
their goals (Norman, 2013).

Figure 1.11: Ill-defined problem-solving as trajectory generation. We hereby extend Newell and
Simon (1972)’s definition of problem-solving and the problem space to ill-defined
problems. In this context, operators are limited by the learner’s procedural knowl-
edge and discovery of affordances. The goal could be loosely defined, thus po-
tentially reached in multiple states. Examples from the CreaCube task illustrate
this definition. (Adapted from Alexandre, Mercier, Palaude, Romero, and Viéville
(2022)).
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The initial present state is a point in this state space resulting from the problem-posing
activity of the learner commencing the task. The goal is a region of this state space, con-
strained by requirements to fulfill (this region can be reduced to a point if the goal is to
reach a given state). The problem-solving task process corresponds to a (not necessarily
unique) path, that is, transforming the initial present state into a final one; each feasible
path being constrained by certain requirements.
This spatial representation corresponds to a formal computer science definition of

problem solving with generic algorithms as soon as the problem has been embedded in
a continuous space. Such optimization algorithms formulate the problem as the generic
minimization of “potential,” yielding a biologically plausible and computationally ef-
ficient mechanism (see, e.g., Viéville (2002)), which is also deeply related to computa-
tional neurosciencemodels; the hippocampal brain structures, for instance, are involved
in both navigation tasks and planning, with similar functional characteristics (Stachen-
feld et al., 2017). Of course, suchmechanisms require to equip the space with a definition
of distance, as developed in Chapter 3.

1.4.2 Semantic grounding: representing and manipulating symbols
In the brain, it is usually admitted that data is represented a distributed rather than
localist way, through activation ofmultiple (rather than single) neurons (McClelland and
Rogers, 2003). However, at the computational level, a symbolic specification is useful at
the level of abstraction chosen for this study, although wewill also investigate how such
a representation can be implemented and manipulated into more biologically plausible
architectures.

From sensorimotor features to concepts
Before going any further, let us first review what is a symbol. This non-trivial notion is
the ground of our human knowledge, andwhen daring to consider “symbolic represen-
tation”, we need to clarify in detail what is defined here.
The semiotic approach as reviewed inDeVilliers (2007), introduces a hierarchy of “signs”,

through which an object or concept (signified) is represented by a signifier, based on
three different levels of abstraction: the “icon” built from the sensible likeness with
the object; the “index” built from concrete relationships between given objects (e.g.,
a weathercock indexing the wind direction and strength), and finally the “symbol” in
the semiotic sense, which is an arbitrary designation (such as a word) for the signified
object, and thus must be culturally learned.
At the syntactic level, a symbol is therefore nomore than the label (or identifier) of an

object or concept. It has a “meaning” in the sense ofHarnad (1990), as reviewed and dis-
cussed in Taddeo and Floridi (2005), when it is semantically grounded, understood as the
process of embedding symbolic computations onto real-valued features (Badreddine et
al., 2021), thus providing a semantic interpretation ormodel (in the sense of amodel of a
set of logical assertions) of the symbolic system, which involves the capacity to pick ref-
erents of concepts, including their affordances. As discussed in, e.g., Raczaszek-Leonardi
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and Deacon (2018), the key problem is how a symbolic representation can emerge from
sensorimotor features and interactionwith the environment. Enactive and developmen-
tal processes contribute to the formation of stable visuo-spatial symbols (as reviewed,
e.g., in Ness and Farenga (2007)).
Such a multi-level representation, corresponding to various levels of abstraction, is

in line with the “quality dimensions” proposed by Gärdenfors (2004) i.e., features with
some typed value. A step further, Freksa (2015) and Oltet,eanu (2020) argue that such
features are anchored in feature spaces built around different sensorimotor dimensions,
following a mild abstraction approach, as represented in Figure 1.12.
It is interesting to note that, in the brain, sensory and motor information seem to be

encoded using a common representation, accounting for mirror neurons (Hommel, Müs-
seler, et al., 2001). Oltet,eanu (2020)’s framework incorporates this idea by defining affor-
dances as a feature space at the same level of representation than other sensory infor-
mation (e.g. visual, such as color).

Figure 1.12: Three levels of symbolic abstraction, as proposed in Oltet,eanu (2020)’s CreaCog
framework.

Gärdenfors (2004) also hypothesizes that a concept is a convex region around proto-
typical examples. This formulation, compatible with our geometric formulation of the
problem space, implies the existence of “default” attributes; for example, not all birds
fly (a penguin, for instance, does not fly), but when we are asked to think of any bird,
the example of a flying bird is more likely to come into mind than a penguin; which
supposes that a prototypical bird has, by default, the capacity of flying as an attribute.

A concept is thus a bipartite notion corresponding to: (i) a prototype for this concept
(e.g. in our example, the node “bird” defines a typical bird) with features accounting
for “default” values; and (ii) a region of the concept space, corresponding to all individ-
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uals having features that are compatible with a certain specification called schema. Such
a notion of schema19 is relevant in our context because DT might be implemented as
relaxing some of these constraints while CT woud consist of verifying that the resulting
new data are still compliant withwhat could be expected to attain the desired goal. This
could be generalized to other kinds of semantic constraints (e.g., bounds on the weight
or constraints on the feature type), still defining convex regions or structural constraints
(e.g., conditional constraints given some feature values).

The open-world assumption required byWiggins (2006b) also implies the definition of
a generic concept, namely a thing that is an empty concept and thus for which nothing
is known. This makes it quite interesting to implement the “thinking-out-of-the-box”
process because it could be related to relaxing some features to consider a less specified
concept and then exploring other feature values, as also discussed by Wiggins (2006b).
We will develop this idea in the next section.
In the end, this geometrical representation of concepts anchored on features allow us

to define an ill-defined CPS task, the initial state or the goal not being a precise value
but a region; the wider the region, the fewer constraints on it. We can also define a
deterministic notion of partial knowledge, with features lying in a given region of values
rather than having precise values.

Memory as semantic networks

Having defined concepts and features (e.g., the two lower layers of Oltet,eanu (2020)’s
framework), we need to develop how relationships between concepts can be expressed
and manipulated (e.g., the higher-level layer).
Associative processes are typically modeled by random walks in semantic networks

(accounting for the structure of semantic memory), as developed by Zemla and Auster-
weil (2018) or Lopez-Persem et al. (2023); that is, modeling semantic knowledge as a net-
work of concepts. From this semantic network approach, high connectivity and low
modularity allow formore flexibility (Denervaud et al., 2021; Kenett and Faust, 2019). How-
ever, these networks do not account for other kinds of memory organizations mecha-
nisms beyond associativity (J. Mandler, 2010), such as hierarchical and sequential rela-
tionships, or different levels of abstraction.

McClelland and Rogers (2003) proposed to use four different predicates in order to link
the concepts to their features: hierarchical taxonomy (is-a), capability (can), extrinsic
features (has), and intrinsic features (is). Such a representation corresponds to a se-
mantic graph where the nodes are concepts or features, and the edges are predicates,
which can be hierarchical or relational. It is an augmentation of semantic networks pro-
posed earlier, in that edges are annotated and directed. In terms of concepts as defined
by Gärdenfors (2004), hierarchical taxonomic relationships mean that, if a concept is sub-
sumed by another concept, it is a region enclosed in the parent concept region and thus
“inherits” its features.
19In the sense of XML-schema.
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This is actually very similar to a standard knowledge graph representation as it is
formalized, e.g., in the SemanticWeb (RDFS or OWL)with the RDFmodel using triples
of the form <subject> <predicate> <object> (e.g., <bird> <is-a> <vertebrate>).
Such a representation is, for instance, used byHan et al. (2018) to implement computer-

assisted analogy reasoning using an OWL ontology. OWL builds on both RDF triples
on the one hand, and on the other hand description logics, a fragment of first-order
logic which also has the benefit of directly implementing the open-world assumption
mentioned previously; that is, all that is not specified is unknown. For this reason, this
representation is also effective in the sense that it can bemanipulated by symbolic logical
reasoners (see also Chapter 2 for some examples).
At a higher level, such a specification allows meta-reasoning about rule mechanisms

since such rules are also structured objects using concepts. Similarly, we could extend
this formalism to sequences: in that case, a given instance of behaviorwould correspond
to a sequence of rule applications. This proposal corresponds to the third level of the
theoretical framework of CreaCogs (Oltet,eanu, 2020)with problem templates structured
around the concepts that are anchored in sensorimotor features.

1.4.3 State generation mechanisms as a search in the problem space
Dietrich and Haider (2017) discussed several computational mechanisms of DT, such as
evolutionary algorithms and Bayesian-based prediction that could implement some of
these modalities, while Wiggins (2006b) and Ritchie (2012) established that generating
new creative concepts can be considered as a search process.

Random walks As mentioned earlier, random walks in semantic networks (Zemla and
Austerweil, 2018) are search algorithms that often use to model, mainly spontaneous,
associative processes; but there are also more deliberate associative processes that we
will now consider.

Bisociation and conceptual blending Bisociation, defined by Dubitzky et al. (2012) as
the association of two concepts fromdifferent domains perceived simultaneously, allows
the generation of novel ideas. Conceptual blending (Fauconnier and M. Turner, 2003)is a
particular case of bisociation: starting from a partial match between two concepts (e.g.,
sharing a subset of common features), conceptual blending consists of selecting a few
features from the first concept that do not belong to the second concept and adding them
to that second concept, resulting in the emergence of a new structure and newmeaning.

Oltet,eanu (2020)’s CreaCog framework is primarily based on bisociation. It has been
used to replicate results of the AUT, producing plausible answers that were comparable
to findings in humans (Oltet,eanu, 2020). Aspointed out byMekern et al. (2019), thismodel
could account for inter-individual differences in the way its feature space is organized:
the search for affordances is dependent on the size and number of feature spaces in the
knowledge base (i.e., semantic memory): the more feature spaces are considered, the
more divergent the search can be.
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Analogy Another example is analogy, or analogical reasoning, defined as translating
a known relationship between two concepts in a source context or domain from a target
domain given an “analogy” between concepts (e.g., “Robin is to Batman what Sancho
is to Don Quixote”). Analogy is key to, e.g., transfer a solution to a known problem, to
another problem of the same structure (P.N. Johnson-Laird, 1989; Keefer and Landau, 2016).

The Retriever model (Han et al., 2018) has been developed as a tool to assist creative
design by generating new ideas of uses for everyday objects. This model relies on ana-
logical reasoning performed on an ontology based on ConceptNet20. The results have
indicated that the tool could significantly improve the fluency and flexibility of idea
generation for groups who were using it.

Convergent associations Although this rather pertains to CT, we wish to mention
here how associative processes similar to the one described before can be used in amore
convergent fashion, in order to perform a task such as the RAT. As reviewed by Mekern
et al. (2019), this has been recently tested in different computational paradigms. In the
comRAT model also based on the CreaCog framework (Oltet,eanu, 2020), when a triple
of words is provided, all related word pairs in the comRAT knowledge base are acti-
vated and an associative search is performed to find an answer present in the threeword
pairs at once. If an answer can not be found, an alternative answer matching only two
word associations could be returned. In the general cognitive architecture Soar (Schatz
and J. Laird, 2018), an agent can retrieve information from a semantic memory, either by
providing a specific cue that is matched against elements in long-term memory (Cued
Retrieval model), or an agent can use a general cue and leverage spreading activation
to retrieve words based on context as defined by the contents of working memory (Free
Recall model). Such spreading activation has been used in more biologically plausible
way within a spiking neural network (Kajić et al., 2017) using a sub-symbolic encoding
based on a VSA approach similar to the one alreadymentioned in T. Stewart and Eliasmith
(2011). All three models – comRAT, SOAR and the VSA approach – showed compara-
ble results to human data on the RAT. CT, however, relies not only on associativity and
spreading activation of nodes in a semantic network, or by finding common features be-
tween concepts. We may also need more sophisticated ways of evaluating the relevance
of an idea using reasoning, as reviewed below.

Geometric formulation In a geometric formalism, projectionmaybe an adequatemodel
of bisociation: indeed, in a conceptual space, it is akin to projecting features of a con-
cept onto another concept, replacing some features of the latter with features from the
former, resulting in a new“blended” concept.
Conversely, analogy would correspond to a translation. This is well formalized in

terms of vectors in the case of embeddings such as word2vec (Ethayarajh et al., 2019): for
instance, given the vectors batman, robin and donquixote, the vector donquixote −
batman+ robin should yield a representation of Don Qixote’s companion Sancho.
20https://conceptnet.io/, a collaborative commonsense knowledge graph.
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In a nutshell, at the geometric level, DT consists of extrapolating new concepts from
existing ones, either by projection (bisociation) or translation (analogy). On the other
hand, associative processes described to perform the RAT are more similar to interpo-
lation: indeed, we only consider the subset of common features between two (or three,
in the RAT) concepts.

1.4.4 State evaluation mechanisms as logical or probabilistic reasoning
Reasoning refers to determiningwhether a conclusion follows frompremises (P.N. Johnson-
Laird et al., 1999), and is a key mechanism in problem solving. We make the distinction
between:

• deductive reasoning, which is the process of determining the formal logical conse-
quence of some assumptions considered as true or approximately true;

• inductive reasoning, which is the process of inferring some general principle from
a set of knowledge and plausible induction rules;

• abductive reasoning, which is the process of inferring an explanation of some asser-
tions, i.e., hypothesizing the precondition of a consequence.

Deductive logic has a long history of formalization in Western civilizations, starting
from Aristotle (Oaksford and Chater, 2009). As pointed out by Mangan (1978), such a
mechanism includes a cultural bias, since not all cultures feel the need to develop formal
logical operation competencies, and obviouslymost people do not use such formal oper-
ations in all aspects of their lives. Furthermore, as thoroughly studied by, e.g., Purves et
al. (2001), the experience of conscious or subconscious emotion has a powerful influence
on rational decisions, including the choice of alternatives in deductive reasoning.
Nonetheless, as discussed in, e.g., Keefer and Landau (2016), especially for goal-driven

behavior, deductive reasoning is deeply interleaved with heuristic deduction, which we
need in order to solve problems in everyday life; while inductive reasoning and abduc-
tive reasoning as defined by Pierce are key to the hypothesis generation and evaluation
epistemic process (Boutilier and Beche, 1995; Rodrigues, 2011). Therefore, our understand-
ing is that human cognition must implement some kind of such (potentially loosely)
reasoning mechanism. Piaget (1997) viewed formal logical reasoning as defining the
end-point of cognitive development, and contemporary psychology of reasoning has
focused on comparing human reasoning against logical standards. This has been stud-
ied, for instance, by Wason (1968), using a card-turning problem formulated as: “If a
card has a vowel on one side, it has an even number on the other side. Select those cards
that you definitely need to turn over to find out whether or not they violate the rule: A
D 4 7”. The card-turning task has been replicated multiple times, showing that people
do not typically use classical logic (in this case, themodus ponens andmodus tollens rule)
to draw their conclusion (Oaksford and Chater, 2009).
Moreover, ill-defined situations call for a certain tolerance for ambiguity, thus a need

to consider the notion of partial knowledge and its related degree of belief, that is, the
estimation of the available knowledge by a subject.
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Probabilities and bayesian inference For the last century (see, e.g., Smithson (1970)
for a presentation), human evaluation of knowledge has been deeply driven by a weak
notion of probability, with two key ideas:

1. that the degree of belief can be expressed by a number between 0 and 1 (often
given as a percentage between 0% and 100% of “plausibility,” “chance,” or any
other qualification of a belief evaluation);

2. that, for a given event, some knowledge about the possibility and necessity of its
occurrence can be acquired through the observation of a count of its past occur-
rences.

Since brain functions often involve integrating different sources of information, and
since processing inherently involves uncertainty, Bayesian inference can be a good de-
scriptive framework for a number of neuroscience study topics (O’Reilly et al., 2012). For
example, it can be applied to perceptual decisions, during which the subject attempts
to categorize an object or estimate a measure of it on the basis of uncertain sensory
information. The authors point out, however, that the human brain is unlikely to oper-
ate entirely according to Bayesian inference, given the high cost in terms of computing
power, incompatible with working memory limitations. Oaksford and Chater (2009) ar-
gue that, although people are typically poor at numerical reasoning about probability,
human thought is sensitive to subtle patterns of qualitative Bayesian, probabilistic rea-
soning. As a result, it has been suggested that non-Bayesian learningmight be preferred
to Bayesian learning in situations where the latter offers little added value. According to
this perspective, the brain could therefore use non-Bayesian heuristics to approximate
Bayesian inference, in all situations where these heuristics offer a reasonable compro-
mise between computational demand and performance. Thismay also be put in relation
to spontaneous and deliberate evaluation processes, as evoked in 1.3.

Modal logic and mental models Another hypothesis accounting for human reason-
ing is modal logic, privileged by Piaget (1997). Modal logic is based on possibility and
necessity, rather than probability (see Denœux et al. (2020) for an introduction of the
general possibility theory).
Subsequent research has shown that people perform better when the card-turning

problem is presented in concrete form, such as detecting underage drinkers21(Cox and
Griggs, 1982). According to P. Johnson-Laird and Ragni (2019), this illustrates the multi-
plicity of semantic interpretations used in modal reasoning, the main ones being:

• Alethic knowledge, regarding relations between two sets of possibilities, including
necessary and possible inferences, and causal relations.

21For instance, in this case, the problem would be formulated as: “If a person is drinking beer, then the
person must be over 19 years of age. Select the card or cards you would definitely need to turn over to
determine whether or not the people are violating the rule: “Drinking a beer”, “Drinking a coke”, “16
years old”, “22 years old”
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• Deontic knowledge concerns social relations governing obligations and permis-
sions, which speech acts themselves can create.

• Epistemic knowledge regarding scientific interpretations of observations, varying
on a scale of degrees of belief from impossible to certain (akin to naive probabilities
as in Khemlani, Lotstein, et al. (2015)).

Based on a series of empirical investigations, P. Johnson-Laird and Ragni (2019)’s mental
model theory provides an account of deductive reasoning in which people build con-
cretementalmodels of the situation described in the premises. Mentalmodels represent
possibilities as iconic representations of what is common to their infinite realizations,
which also takes inspiration from the Gestalt approach, with a representation adapted
for “fast thinking” and one for “slow thinking” (in the sense ofKahneman (2011)which is
related to the implicit-explicit or spontaneous-deliberate distinction made earlier, with
nuances reviewed in Appendix B); the “fast” representation being related to insight.

Different evaluation rules for different contexts Overall, these findings point to the
domain specificity of reasoning, that is, the idea that people use the concrete context of
the problem to guide their reasoning rather than apply the same general logical rules
to all problems. Furthermore, experimental results in cognitive psychology suggested
that there are situations in which people reason about uncertainty using the rules of
possibility theory rather than those of probability theory but still in line with it (Raufaste
et al., 2003). Another key aspect (Dubois and Prade, 2015b) is the fact that we can interpret
possibility (and necessity) measures in terms of probabilities of rare events, especially
crucial events or events of substantial interest.

Tettamanzi et al. (2017) have related possibility theory and ontology-based represen-
tations and proposed an example of effective combining rules, while Dubois and Prade
(2015a) discussed how such combining rules are constrained by the theory. At the data
representation level, this corresponds to attributing belief value to the ontology state-
ments (see also Chapter 4) while the possibility theory provides rules to combine those
belief values. At the cognitive level, thismeans that the estimated feature values are now
weighted by a level of belief combining the belief with prior information and a level of
confidence in the stimulus.
In a geometric model, both the current state approximative estimation and the tar-

geted goal correspond to regions of the state space, as schematized in Figure 1.11. Each
of them is estimated with regard to both bottom-up, external stimuli, and top-down,
internal information (that is, prior knowledge as well as emotional and cognitive con-
siderations), as illustrated in Figure 1.5. Furthermore, the estimated value is both im-
precise, that is, partially defined, and approximate, that is, bound to some uncertainty
(in the probabilistic case) or precision (in the deterministic case).
Given these two ingredients, in a probabilistic framework, the notions of prior versus

posterior probability, for example in Bayesian approaches, implement such ideas with a
numeric data representation. Such a computingmechanism, asmade explicit byViéville,
Lingrand, et al. (2001), for example, corresponds to a geometric projection of the incoming
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stimulus onto the region specified byprior information. In otherwords, given a stimulus
and prior information, the estimated value is the state value that is as close as possible to
the stimulus and compatiblewith the prior information. Our geometrical representation
is thus relevant at this level.

1.4.5 Regulating mechanisms
As observed by Mekern et al. (2019) and W. Zhang et al. (2020), convergent and divergent
mechanisms are often studied in isolation, offering little chance for direct comparison.
As a matter of fact, creative intention and exploration are not enough; regulatory cog-
nitive processes are also required in CPS in order to switch from phase to phase as pro-
posed in the componential approach (Figure 1.2, using behavior switching as reviewed
in 1.3. For this purpose, reinforcement learning (RL) constitutes an interesting starting
point.

Figure 1.13: Illustration of the “vanilla” reinforcement learning paradigm. See Chapter 3 for
details.

Without getting into the details of the framework (described in Chapter 3), let us in-
troduce the principle on Figure 1.13. In a classical RL set-up, an agent interacts with the
environment until it reaches some terminal state. At a given discrete time, it perceives a
part of the environment, i.e., a stimulus, including a reward, which leads it to compute
the next action22. One such traversal is called an episode and consists of a sequence of
states, actions, and rewards that the agent got on his path. The sequence of actions de-
fines the behavior of the agent. This behavior follows a policy function π (potentially
stochastic) that predicts the next action based on the current state. Choosing between
making the best decision given the current information or starting exploring and finding
more information, is known as the exploration/exploitation dilemma.

22In psychology, an action is a self-initiated sequence of movements, usually with respect to some goal
(APA Dictionary of Psychology). This obviously leads to a difficulty of determining the level of ab-
straction used to specify such an action, as pointed out in the activity theory (Engestrom, 2000). In
RL, the set of possible actions is typically predefined and fixed.
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Figure 1.14: The Probe model for task sets, adapted from A. Collins and Koechlin (2012). The
monitoring buffer comprises a limited number of task sets, each indexing a behav-
ioral strategy stored in long-term memory and comprising: a selective, predictive
and contextual mapping (M.). A single task-set (the actor) is used to guide the
action, and updated by reinforcement learning. However, different task-sets are
continuously monitored, and their ex-ante reliability signals (λi) are used to decide
on state and actor changes. If the model is in exploitation and the actor’s λ falls
below a certain threshold, it enters exploration and creates a probe. If it is in explo-
ration and one of the alternative task-sets goes above that threshold, this task-set
becomes the new actor and the probe is destroyed. If it is the probe that goes over
the threshold, the probe becomes the new actor (translated from Donoso (2013)).
See A. Collins and Koechlin (2012) or more details on how reliability signals (λi

and µi) are calculated from contextual and predictive models.

While the notion of exploration and exploitation is well known in cognitive science
and in machine learning at the level of reinforcement learning, they are two distinct
conceptualizations that we will now make explicit. In problem-solving activities, sub-
jects alternate between two main strategies: exploration, which aims at experimenting
with new alternatives or acting on the environment to generate new stimuli (Kaplan
and Flum, 2010), and exploitation, which is the use of existing knowledge (declarative
or procedural) in a given situation. At this level of description, we can draw parallels
with these notions in reinforcement-based machine learning, but in this second domain
exploration is mostly random, whereas in problem solving as studied in learning sci-
ences, exploration is seen as a divergent thinking process for generating new internal
representations (ideas or stimuli) and new behaviors by recombining prior knowledge
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or behaviors and/or bymanipulating the environment. This being said, although explo-
ration/exploitation is not superposable with divergent/convergent thinking, it could be
an account for behavior switching as an operationalization of the task set model intro-
duced in Chapter 1.3, such as the Probe model (see e.g., A. Collins and Koechlin (2012) or
Donoso (2013)). In this approach, represented in Figure 1.14, each task set corresponds
to a Q-learning mechanism (i.e., a quite simple RL algorithm). In Chapter 3, we also
propose to consider extend Q-learning by coupling it to a symbolic model of the envi-
ronment.

1.5 Main take-aways
Sharing a common acceptable and operational framework of creative problem solving
between three communities constitutes an important challenge. Through this overview
of CPS as studied in the learning sciences, cognitive neuroscience and computational
modeling, wehave identified somemajor notions and their similarities or nuances through-
out the disciplines. From implicit to explicit knowledge representation and manipula-
tion, convergent vs divergent thinking, exploration vs exploitation; these dual notions
correspond to rather sophisticated complementary aspects of creativity but are some-
times ambiguous. To this end, we elaborated two recapitulative tables B.2 and B.1which
can be found in Appendix B.

Our motive is to demystify human CPS using computational models, with a further
perspective to provide new tools of assessment. This has been done in other works, for
example, Denervaud et al. (2021) has used the semantic network approach developed in
Kenett and Faust (2019) to measure the impact ofMontessori pedagogy onDT. This could
have implications on education beyond the simple understand of CPS mechanisms and
be helpful e.g. to address learning inequalities. The present review enlightens what
design choices could be of interest for modelling the kind of task we target.

First, we generalized the usual geometric formalism of problem solving to an abstract
trajectory generation in a state space. We explicitized what ill-defined means with such
a definition of problem solving and how creative processes unfold dynamically within
the problem-solving task.
Regarding data representation, we agree with the mild abstraction approach adopted

by Freksa (2015) and Oltet,eanu (2020) whereby concepts are anchored onto physical fea-
tures. This is especially important in the case of modelling a task such as CreaCube,
which uses tangible objects and is not merely a verbal creativity task (such as the RAT
or the AUT). We also think that this symbolic representation should reflect the organi-
zation of memory as evoked by Eichenbaum (2017), thus integrate not only an associative
structure but also sequential and hierarchical organizations. For this purpose, the Se-
mantic Web technologies (e.g. RDFS, OWL) seem interesting as an existing standard
to formalize semantic graphs with hierarchical taxonomy and other kinds of relation-
ships. Logical reasoners already exist to perform semantic evaluation using deductive
inference for CT, while other processes relevant for DT such as analogy can also be im-
plemented (e.g. Han et al. (2018)). The representation of different degrees of belief re-
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quired to tolerate the ambiguity inherent to problem solving could be considered in a
way similar to what has been done in Tettamanzi et al. (2017) regarding modal notions of
possibility and necessity (that we also proposed to relate to a probabilistic framework
in Viéville and Mercier (2022)).

We target here a symbolic representation that has more explanatory potential for the
purposewe are aiming at, but we are also interested in the biological plausibility of such
a representation into sub-symbolic architectures such as using VSAs, as developed in
Chapter 4. The important point is that this representation could be processed explicitly
(through logical inference) but also implicitly thanks to hybrid mechanisms (such as
Bayesian inference or RL algorithms computing numerical rewards on symbolic states)
and we also need to equip the space with a metric (i.e., a distance) in order to perform
search and evaluation mechanisms, as we will develop in Chapter 3. Finally, a metacon-
trol mechanism should be implemented to switch behaviors according to the context,
simulating an exploration-exploitation paradigm allowing to combine divergent and
convergent thinking.
Therefore, considering the description of creative process in the literature already

mentioned, it seems that a relatively simple paradigm such as reinforcement learning
(combined with an ontology), the biological plausibility of which has been studied in
depth, seems more reasonable than more sophisticated frameworks aiming for general-
ized problem solving, such as the IDyOT architecture (Wiggins, 2020) implementing the
creative framework of Wiggins (2006a) following Boden (2004), or the SOAR architecture
(J. E. Laird et al., 2017), in which a hierarchy of goals and problem spaces is generated,
with operator selection and evaluation mechanisms. Such general architectures can in-
deed account for the CPS process discussed here but at a level of complexity that might
be oversized.
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2.1 Introduction
Modeling across several disciplines often constitutes a terminological challenge, hence
the need to agree on a shared vocabulary. To this end, ontologies provide a compu-
tational tool for structured knowledge representation, allowing to define concepts and
relationships between them at a symbolic level.

Besides, the CreaCube task being rather innovative and unprecedented, it is useful to
give a precise specification of it. This includes the previously introduced observables,
describing how the material works, but also synthesizing the first observations made
by experimenters in terms of knowledge necessary to understand the task and solve the
problem. Such an ontology allows to share the task efficiently with other researchers1,
as it includes relevant information about the task in a standard format that can be pro-
cessed by other computer programs.
1This ontology is publicly available here: https://line.gitlabpages.inria.fr/aide-group/
creaonto/
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2 An Ontology approach

The following chapter is adapted from Mercier, Roux, et al. (2021) and Mercier (2023).
We describe here our methodology to develop this ontology, explicitize the entities that
have been selected and present some possible perspectives of applications.

2.2 The ontology approach
2.2.1 Terminology
Ontologies allow us to represent structured knowledge by defining concepts, as well as
relationships and hierarchies between these concepts. In the following, we use the Web
Ontology Language (OWL) terminology, as used in the Semantic Web.

OWL terminology

(i) Individuals represent atomic, real-world objects.

(ii) Classes represent concepts; a class may therefore be a collection of individ-
uals (which are called instances of the class).

(iii) Individuals may be linked by relationships, which are labeled by proper-
ties. Properties may have a domain (i.e., the class of individuals that they
can be applied to) and a range (i.e., the class that they can take values from).

OWL also defines both class hierarchy and property hierarchy. This formalism allows
us to structure and specify data that can be provided in a standard such as the Resource
Description Framework (RDF).
OWL specifications are based on description logics, providing in some cases2 compu-

tational completeness anddecidability (a didactic introduction can be found inAllemang
et al. (2020)). This makes it possible to perform logical reasoning to validate the model,
as well as logical inference to find all of the assertions that can be deduced from the
user-defined statements.

2.2.2 Related work
Ontologies to model learning activities A recent systematic review (Stancin et al.,
2020) of ontology use in education has observed a growing trend in the contribution of
ontologies to educational systems in the last five years, and has identified the following
common use cases:

• Describing learning domains,

• Describing learner data,
2Several OWL “profiles” are available, each of them providing a different trade-off between expressivity
and reasoning power. The OWL-DL profile fully adheres to description logic principles and is thus
decidable.
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• Modeling and managing curricula,
• Describing learning services.

In our case, we are particularly interested in works that attempt to model both the learn-
ing domain and the learner data. This has been done especially in intelligent tutoring
systems and adaptive learning systems, as reviewed in George and Lal (2019), where se-
mantic inference is performed on learning analytics and the learning content to tune the
resources that are presented to the learner (e.g., in Nouira et al. (2019)). These studies
are inspiring but they differ from our approach in some important aspects.
Most reviewed approaches attempt to give a general model the learner (i.e., in a di-

versity of learning tasks). From that perspective, learner modeling is often directed to-
wards classification of learners into several learner profiles with regard to a set of char-
acteristics, and by doing so to select the more adequate resources for a given learner.
This is also the case for knowledge representation beyond ontology approaches, such as
those related to the xAPI and game-based learning strategies (Torrente et al., 2009). The
cognitive trajectories introduced by Fuchs andHenning (2018) are an interesting approach
to better understand the learner behavior, at a general level or in a specific task.
Another point is that a largemajority of these tasks arewell defined (e.g., well defined

knowledge or how-to acquisition), whereas we consider here a more open ill-defined
problem solving task. We can, however, cite thework of the LudoGameModelOntology
(LUDO) (Tang and Hanneghan, 2011) to describe serious games. These activities can be
presented as open problems, and (despite being not really reusable here, because it
does not involve tangible artifacts) the ontology itself includes both amodel of the game
(task) and a model of the player (learner) behavior.
Eventually, the goal of the existing ontologies is to improve the learner’s performance

(George and Lal, 2019), which is less easy to define in our problem solving context (solv-
ing the problem faster does not mean that we learn a lot from it) and is not our main
purpose, which is to better understand how we solve such an open-ended problem.
With respect to these works, we introduce here computational and cognitive neuro-

science knowledge in the modeling process, which does not seem to be a current prac-
tice, and we also consider open-ended problem solving, which is seldom addressed.

Ontologies in neuroscience and cognitive Science The Cognitive Atlas3 (Poldrack et
al., 2011) is a collaborative initiative that aims to unify the vocabulary used in cogni-
tive science and indexes cognitive tasks described in the literature. It includes over 800
cognitive concepts but does not encompass much logic, aiming for a more flexible ap-
proach. Its task model is partially based on CogPO (J. A. Turner and A.R. Laird, 2012),
which is another ontology that focuses on the description of experimental paradigms
used in neuroscience (mainly fMRI) tasks. While CogPO might be slightly too specific
and medical-oriented for our problem, the Cognitive Atlas encloses many of the cogni-
tive concepts that we may need to refer to in subsequent work. It also seems that the
3See http://www.cognitiveatlas.org/ for a browsable version, and on BioPortal for a reusable ontol-
ogy version.
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concepts we target here are not (to the best of our knowledge) addressed at the level of
ontology modeling.
Beyond ontology-based methods, a wide spectrum of approaches, out of the scope of

the present work, have been recruited to model ill-defined creative problem solving; for
instance, using description logic, extendedwith probabilistic approaches (Lieto, Perrone,
et al., 2019). This example is interesting because the authors have made the distinction
between different types of knowledge and memories, and considered its integration in
a cognitive architecture (Lieto and Pozzato, 2020).

Considering foundational ontologies A good practice in ontology modeling is to
base our model on a foundational ontology to better specify the design choices by relat-
ing our concepts to well-established formalized semantics and facilitate the integration
with other ontologies. Neuroscience ontologies often rely on recommendations set by
the Open Biological and Biomedical Ontology (OBO) Foundry, which is itself built on
the principles of Basic Formal Ontology (BFO), as is the case for CogPO. However, the
ontological choices made in BFO are meant to represent real-world elements and not,
for example, mental states. Integration to biomedical ontologies is not necessarily a re-
quirement for us, and the Cognitive Atlas, in that matter, is rather agnostic; therefore, a
more appropriate choice for us would likely be the Descriptive Ontology for Linguistic
and Cognitive Engineering (DOLCE) (Masolo et al., 2003)which is general enough to be
linked with both the cognitive and learning science aspects of our formalization work.
In brief, it is a descriptive ontology of particulars that “aims at capturing the ontological
stands that shape natural language and human cognition, based on the assumption that
the surface structure of natural language and the so-called commonsense have ontolog-
ical relevance” (Masolo et al., 2003), which may better fit which our paradigm.

2.2.3 Methodology
Noy andMcGuinness (2001)describes a simplemethodology to build an ontology in seven
steps:

(a) Determine the domain and scope of the ontology.

(b) Consider reusing existing ontologies.

(c) Enumerate important terms in the ontology.

(d) Define the classes and the class hierarchy.

(e) Define the slots (i.e., the properties shared by a class).

(f) Define the facets of each slot (i.e., the possible values that a property can take).

(g) Create instances.
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Considering (a) the scope defined in the previous paragraph, we have chosen to (b)
rely on a lightweight version of the DOLCE foundational principles (DOLCE+DnS Ul-
traLite) and reuse concepts defined in the Cognitive Atlas. In the following, we describe
(c,d,e,f) the terms used to define the concepts and properties in our ontology (the slots
refer here to the properties shared by a class, and the facets to the possible values that a
property can take). Finally, we explicitize (g) how we instantiated those classes.
Based on these elements, the ontology has been designed at two levels. At the taskma-

terial level, all cubes configurations and other physical elements of the setup have been
identified and encoded, factorizing equivalent configurations (e.g., up to a rotation),
and reducing the state space to a few qualitative relevant values. At the learner mod-
eling level, considering the previously published studies (Romero, 2017; 2019; Romero,
David, et al., 2019), our work has been to formalize what has been experimentally deter-
mined by learning scientists and education experts from the first experiments, including
the chosen pertinent observables. In order to do so, we have attempted to rely on theo-
retical learning science and cognitive science frameworks, and to identify the concepts
that were the most relevant for our context. Observing experiment courses and dis-
cussing with the learning experimenters allowed us to capture those different aspects,
both at the task level and at the learner level, and specify them as ontology entities.

2.3 Ontology Implementation
We implemented the ontology using the software Protégé4. First, we formalized the
classes corresponding to the material environment of the task, and the classes referring
to the learner’s cognition and behavior. Then, we have defined specific classes and prop-
erties to include the observables of the task, which are situated in time, such as events
and situations (in the sense of DOLCE+DnS Ultralite). Finally, we have instantiated
these classes, listing their individuals based on the task design itself and the observa-
tions collected during the experiments, according to themethodology described in 2.2.3.

2.3.1 Modeling the activity process
The CreaCube activity itself is a dul:Process; that is to say, considered in its evolution.
Each scene of interest annotated in the videos is a dul:Situation, which we call an Activi-
tyState.

Activity states are transitional and situated in time. To account for this transitionality,
we use theDescription& Situation ontology pattern5 of DOLCE+DnSUltralite (we now
use the prefix dul: for pre-defined entities).

A dul:Situation is, as per the entity specification, a relational context that is created by
an observer on the basis of a dul:Description. Consequently, a dul:Description is itself a
conceptualization that provides an interpretation for a set of entities in a given situation.
4https://github.com/protegeproject
5http://ontologydesignpatterns.org/wiki/Submissions:DescriptionAndSituation
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We consider here two aspects of the activity situation: the learner’s mental represen-
tation (their representation of the scene) and the material states, from the point of view
of an expert of the activity (cf Fig1.4). We therefore assign, for each ActivityState, two
kinds of dul:Description: a MaterialStateDescription and a LearnerMentalRepresentation.

2.3.2 Modeling the material states
The task involves several tools (in the sense of the activity theory), which can consist in
dul:PhysicalObjects (cubes, waypoints) or dul:SocialObjects (guideline recording). Phys-
ical objects have features that can themselves be considered as physical objects constitu-
tive of the cubes (e.g., switch, wheels, magnets etc.). The cubes can be assembled into
multiple configurations (encoded by a series of letters and numbers as per Fig. B) char-
acterizing thematerial states. As opposed to transitionalmaterial states, physical objects
have a proper space region and mass. Their state is represented by the values taken by
certain properties called dul:Quality (e.g., color) in a given qualitative dul:Region (e.g.,
red): for example, a switch has the quality of being either ON or OFF.
Material states are characterized by a specific configurations of those physical objects,

their quality values, and correspond to the observables shown on Fig 2.1. We have also
listed the possible permutations of the cubes within each configuration shape, so that
each configuration encoding (e.g., “F000-BSIW-T”) is characterized by its connections.
These connections are themselves specified by the cubes they connect alongwhat spatial
axis. This allows us to give a better description of the material states and relates them
to their JSON encodings.
These material states represent the problem space of the task in the sense of Newell

and Simon (1972). Indeed, the goal states of the task are those where the cubes are in a
configuration that satisfies the guideline (which is itself a dul:Description describing the
requirements for a state to be a solution state). The participants may interact with the
material and change its state through their actions: this is formalized as follows in the
sequel.

2.3.3 Modeling the learner’s behavior and mental states
Actions and affordances Some actions are only available to the learner in some par-
ticular states of the material environment. These states define the preconditions of the
action. Similarly, post-conditions define changes of state that an action results in. These
pre- and post-conditions also constitute knowledge to acquire. They are represented in
the ontology by properties relating a dul:Task (referring to the execution of an action) to
an ActivityState (i.e. the dul:Situation before and after the action has been performed).
Actions are suggested by the physical objects—or their features—that the learner re-
lates to their knowledge, which we introduced earlier as Affordances. Affordances allow
a dul:Task to be executed. When appropriate, we related those affordances to the ones
defined in AfNet (Varadarajan and Vincze, 2013), a semantic network aiming at categoriz-
ing structural affordances based on physical properties of objects.
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Stimuli and perceptions Throughout the activity, the learners receive various stimuli
from the material environment. Stimuli are sometimes modeled as events in DOLCE-
based ontologies, as is the case in the Stimulus-Sensor-Observation ontology (Janowicz
and Compton, 2010). Indeed, in the CreaCube activity, stimuli are most often the result
of events occurring when participants proactively interact with the environment. For
instance, when they flip the switch on the blue cube, a diode lights up as a response to
their action. However, the learner may not always perceive stimuli as soon as a trigger-
ing event occurs, and stimuli might remain in the environment for some time before the
learner focuses their attention on it (e.g., the diode that lights up is very small and some
participants only notice it later). Therefore, we prefer to view them as sensory informa-
tion input provided to the learner, rather than events themselves; hence, extending the
InformationObject class. When they are filtered by the attentional focus of the learner,
traces of these stimuli are kept active during the task before being eventually consoli-
dated as knowledge. These traces constitute Perceptions: they are a conceptualization of
the perceived stimuli, thus a kind of dul:Description.

Knowledge retrieval and hypotheses To complete the task, the learner needs to re-
trieve knowledge that has been acquired in the course of past experiences and learning.
Most of the time, this knowledge is activated through the discovery of affordances. For
instance, after finding of the wheels, the learner might retrieve the fact that wheels on a
vehicle must be in contact with the ground to allow it to move. It can also be activated
by the concepts evoked in the guideline.
We previously distinguished between conceptual knowledge and procedural knowl-

edge, before deciding to represent only ConceptualKnowledge in the ontology because be-
havioral knowledge consists of procedures and inference rules that are, in our case, not
declarative. However, we accounted for the result of inferenceswith the classHypothesis,
representing hypotheses drawn by the learner by contextualizing pieces of conceptual
knowledge with regard to their perceptions, using procedural knowledge.
ConceptualKnowledge, Perceptions andHypotheses are allmental representations that the

learner forms tomake sense of the environment. These items extend the class dul:Description
and are interdependent (i.e. some of them can be inferred or induced from others).
These dependencies are represented by ontological properties, such as requires (logical
necessity), induces (inductive reasoning) and isEvidenceFor/hasEvidenceIn (e.g., when a
perception tends to confirm a hypothesis).
Instead of directly identifying discrepancies at the behavioral knowledge level (which

were called “bugs” in Dillenbourg and Self (1992) and on Fig 1.4), we identified misper-
ceptions and misinterpretations. Misperceptions happen when internal representations
of stimuli formed by the learner are erroneous; for example, if the learner misheard
the guideline, did not see a visible feature on the cubes, or mistook the dark blue cube
for another black cube. Misinterpretations refer to erroneous hypotheses that can be
inferred, either from misperceptions or from some conceptual knowledge not transfer-
able to the situation at hand. For example, the fact thatwheels automatically start to turn
after the user has pulled the vehicle backwards is only applicable in certain situations—
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most often, this mechanism is found in children car toys. However, in this task, trying
to press down on the white cube by manually rolling it backwards will not cause it to
move forward autonomously. Such misinterpretations can be corrected after verifica-
tion showing a lack of evidence in favor of the hypothesis. Nonetheless, if it comes from
a misconception that the underlying conceptual principle is a general truth that is valid
in any situation, then it might hinder the completion of the task: as long as the learner
keeps on trying to make the wheels work this way, they might not look for other clues.
This makes it clear that the learner needs to understand which pieces of knowledge are
effectively applicable in the context of the activity and relevant to complete it.

Goals The learner’sGoals are a subclass of dul:Goals, which are in turn “theDescription
of a Situation that is desired by anAgent” as per theDUL specification. The combination
of aGoal and anAffordance thus allow to define a Task, e.g., a practical way to achieve the
Goal. Goals are broken down into the four queries described in 1.3 (namely,What, Why,
Where, How) and towards goal orientation (mastery, performance). As described in sec-
tion 1.3, goals are a way for the participant to organize their understanding of the task
and plan their actions hierarchically. For instance, testing hypotheses defines sub-goals
that will help to solve the problem. Global goals (essentially responding to What and
Why, in relation to high-level executive functions (Alexandre, 2021))may be instructed by
an external direction—in this case, the guideline—or a metacognitive reflection, induc-
ing (Where, How) sensori-motor mechanisms (Alexandre, 2021) thus yielding sub-goals
at a more local level. This goal hierarchy is represented in our ontology through the
property hasSubGoal.

These are clearly preliminary prior assumptions to bootstrap a first version of the on-
tology, with the perspective to adapt them from further observation by learning sciences
experts and logical validation by ontological reasoners.

2.4 Results and perspectives of application
2.4.1 Modeling as an interdisciplinary tool
This work allowed us to confirm the multiple interest of working with ontological mod-
eling when we bring together three disciplines to tackle a problem, as follows:

• Terminological interest to begin with: beyond periphrases and phenomenologi-
cal descriptions in each discipline, constraining us to define things through lexical
choices and fully specified properties and relations between these keywords, forc-
ing us to clearly posit what we are talking about.

• Interest in formalization: this approach allows, without even using algorithmic
reasoning skills at this stage, to take stock of what can be defined rigorously to
formalize completely.

Defining a well-formulated ontology is therefore already by itself a structuring ex-
ercise, an epistemological tool in a way, before even using it. As with any modeling, it
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gives an exhaustive and explicit view of what is to retain compared to what is neglected.
Once the specification has been set, the use of available reasoners, such as Pellet or Her-
mit, allows to check its consistency and query the data on the consequences that may or
may not be drawn from it.
This being done, we also have an immediate check of the model properties, in partic-

ular its logical coherence and soundness. This not only allows us to verify the absence
of contradictory statements but we also experimented that if our definitions are not suf-
ficiently specified, then we can easily deduce spurious consequences (e.g., mixing cate-
gories of concepts). We thus have an operational tool to verify the completeness of our
formalization.
An illustrative example of how a JSON video annotation can be translated into this

formalism is given here.

2.4.2 Reasoning about the model

A query language, such as SPARQL6 in the case of RDF data, combined with a rea-
soner (in our case, Pellet7), allowsus to retrieve specific information—asserted or inferred—
from our model. This raises some perspectives of application both at the material level
and at the learner level. Let us illustrate each aspect in the following examples, the
former being already operational and the latter being still at an exploratory stage.

Relating the configuration encodings to the material states

At the material level, this ontology can be used to retrieve physical information from
configuration encodings. In the JSON annotations of the videos, configurations tested
by the subject are encoded as strings of characters and letters (e.g., “F000-BSIW-T”) that
are not intelligible at a first glance, and hard to relate to real-world connections between
the cubes. The ontology does this strenuouswork for us: by querying a configuration by
its encoding, we can retrieve the associated connections between the cubes. Correspond-
ing ontology assertions are based on simple geometric considerations and the design of
the cubes provided by the manufacturer. Conversely, we can also query the knowledge
base on configurationswhich have, for instance, a connection between the blue cube and
the red cube. Integrating an ontology-based module to the annotation interface might
help to avoid encoding mistakes. A step further, we could also add some transforma-
tion rules between those configurations to validate the pre- and post-conditions of the
learner’s actions to verify the consistency of the annotations on a sequential scale. For
example, if the learner has disconnected two cubes from each other, then we should see
that there is one less connection in the new configuration.

6We used the Protégé Snap-SPARQL plugin which allows us to perform logical inference and an-
swer queries not only based on asserted data but also inferred data: https://github.com/
protegeproject/snap-sparql-query

7https://www.w3.org/2001/sw/wiki/Pellet
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Figure 2.2: Example of a SPARQLquery on thematerial states: Retrieving connections and cubes
for a given configuration.

Inferring the knowledge of the learner from the observables

At the learner behavior level, the main perspective of this work would be to interpret
observables and infer, for example, the participants’ goals and associated plans or mo-
tivations. Although more data and further investigation is needed to validate the rel-
evance of the ontology inferences on this aspect, we propose here the general idea of
such an application.

Storing domain knowledge about behavioral processes in an ontology allows to con-
sistently interpret new data. For example, we may observe a new action which changes
the state of the switch, and wonder what motivated the learner to execute this action.
As illustrated by Fig. 2.3, a SPARQL query on themodel helps us retrieve that the action
may have been either a simple reaction to the stimulus of seeing the switch, in the case
of a stimulus-based behavior, or, in a goal-directed mode, the result of a more elaborate
reasoning, such as an attempt to understand the function of the blue cube (thus testing
the hypothesis that it is indeed a switch) or, this hypothesis being verified, to activate the
movement of the vehicle. However, deciding which of the possible scenarios returned
by the reasoner (i.e., valid regarding logical consistency) is the right interpretation for
a particular learner in a particular situation, remains unclear. We would probably need
more complex models such as Bayesian networks (see, e.g., Hidden Markov Models in
Chapter 3, Table 3.1) allowing to rank scenarios by probability. Another difficulty is
the high computational complexity of assertions regarding the learner behavior, which
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does not scale well with a large knowledge base and may lead to poor reasoning perfor-
mances.

(a) An example SPARQL query

(b) SPARQL results returned for the query (a): We enquired
about which actions change the state of the blue switch,
what stimuli may have provoked them, or what goal they
might be aiming at, and if that goal might be the sub-goal
of another one, as well as what knowledge they are using
and what hypothesis might be tested.

Figure 2.3: Example of SPARQL queries on the learner’s behavior.

Predicting the learner’s behavior
Instead of querying the model using backward chaining as in the previous example, we
could also use forward chaining to simulate the learner’s deduction, hence predicting
their behavior. For example, wemight wonder how the learner would react to the visual
stimulus of seeing the switch. In a stimulus-based mode, they would likely try to flip
it immediately (assuming that the knowledge relative to switches being flipped has be-
come a procedural knowledge, that is to say automated into an almost reflex behavior).
In a goal-directed mode, wemay infer that the learner will elaborate the hypothesis that
the switch can be used to activate the vehicle, which will result in planning goals (flip
the switch, connect the cube to the structure) and sub-goals (they have to grasp the cube
before connecting it to the others).

This ontology thus provides a subset of plausible behaviors. However, we still need a
way to decidewhich of these behaviors to choose to simulate the learner. Mechanisms to
explain what the learner’s attention is more focused on in a given situation are still to be
developed. Moreover, we need to take into account inter-individual differences: some
participants might be more interested in achieving a performance goal, thus appealing
for a predominant exploitation strategy, whereas others might pursue a mastery goal
and try to understand asmuch as possible about the environment of the task, displaying
more exploratory behaviors.

2.5 Discussion and conclusion
This study introduces the formalization of a creative problem-solving task. Within this
type of task, we need to consider both exploration and exploitation strategies directed
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toward different concurrent goals (e.g., performance versus mastery). These goals refer
to an objective (What) but we also need to consider the Why; that is, extrinsic motiva-
tion (e.g., task performance) and intrinsic motivation (e.g., increase knowledge). They
result in concrete plans to achieve them (Where and How). The execution of such plans
is the observable behavior of the learner that we attempt to capture and formalize in
our ontology. Through this process, we take into account the stimuli received during
the interactions of the learner with the modular robotic cubes, and the perception and
interpretation of the different technological affordances that will support the problem-
solving activity through concrete actions to be executed. The learner’s prior knowledge
is mobilised to understand current perceptions and transform knowledge into a way
that makes sense within the context of activity (Musial and Tricot, 2020), formulating and
testing in-task hypotheses.
This formalization was achieved step by step with the aim of encapsulating domain

knowledge used by learning science researchers when they analyze such an experiment,
in order to make it more robust and reproducible. The purpose of this description is not
to remain phenomenological; that is, driven by a theoretical framework expressed in
human language to guide the analysis of the data. We hereby reformulate these notions
at a computational level to give us the means to process them in a more systematic way
using an algorithmic approach, as discussed here, specifying the concepts invoked in a
formal language.
As stated in the introduction, wemodel the learners’ behavior and the artefact config-

urations during a creative problem-solving activity that is ill-defined at the participant
level, while the activity state space is entirely formalized at the observer level. As such,
our approach is voluntarily specific, while the proposed methodology is easy to gen-
eralize, as pointed out in (Barnabé et al., 2020) where three other computational think-
ing learning tasks have been also considered. From the paradigm choice to rely on an
ontology modeling to the general knowledge about cognition when engaged in a cre-
ative problem solving task, an important part of this formalization translates to another
learning task. Relying on a robust foundational ontology such as DOLCE also ensures
compatibility and facilitates such knowledge transfer. Besides, our paradigm is based
on frameworks that are already widely used in learning sciences such as the activity
theory and the ITS learner/observer representation, combined with a cognitive basis.
With respect to the state of the art, briefly reviewed previously, our approach applies

to tangible activities, modeling both the task and the learner in the task. This approach
is rather disruptive with respect to learning science because, to the best of our knowl-
edge, there has not been such modeling of an ill-defined task using an ontology. This is
only a first step but it already shows that formalizing such a problem-solving activity is
a complex but attainable work. From a practical point of view, this ontology has proven
useful to collaborate with other teams; for instance, we are working towards developing
a version of the task in virtual reality (LeMeudec et al., 2024) and automatizing the an-
notation process of the video. For these two applications, having a formal description
of the task at hand has been a valuable asset.
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To complete this description, one of the next steps would be to better formalize the
relationship between affordances and knowledge (e.g., we could draw inspiration from
Asprino et al. (2017) who proposed a design pattern involving the use of frames 8). We
also consider to address the emotional aspect, such as how to identify observable emo-
tions (e.g., the ones listed in Fig. B) and link inferred cognitive states to emotional states.
Finally, we need tomake use of reasoningmechanisms to better infer the subject internal
motivation and behaviors from the experiment observables (e.g., learner state observa-
tion, post-activity evaluation) and conduct statistical analyses on the results to assess
the validity of such an application.

8in the sense of https://framenet.icsi.berkeley.edu/fndrupal/frameIndex
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3.1 Introduction
Complex problem solving involves representing structured knowledge, reasoning and
learning, all at once. InMercier, Alexandre, et al. (2021),we introduce the idea of applying
a reinforcement learning paradigm to a symbolic representation of a concrete problem-
solving task, modeled here by an ontology. This chapter develops this idea and proposes
a small proof-of-concept as well as perspectives of further applications and connections
to other frameworks.
Reinforcement Learning (RL) is a computational paradigm whereby an agent interacts

with its environment and learns to perform sequences of actions by maximizing some
notion of cumulative reward (Sutton and Barto, 2018). This family of models have been
extensively used in cognitive neuroscience to model high-level executive control func-
tions (e.g., Domenech and Koechlin (2015) and Rmus et al. (2021)).

77



3 A Markovian approach

In Chapter 2, we have introduced the operationalization of a creative problem-solving
task, via the construction of an ontology. The state is defined by the configuration of the
objects manipulated during the task and some other observables regarding the learner.
The key point is that, in our case, the internal state of the subject and the external state of
the task material constitute a complex structure, modeled here by a set of “statements”;
that is to say, in the ontological vocabulary, entities typed by classes and linked together
through relationships labeled byproperties. Unlike usualmechanisms based onMarkov
chains, the state space to consider in our RL setup is thus not reduced to an unordered
finite enumeration. We would like to study here to what extent reinforcement learning
could be designed on such state spaces.
In “symbolic reinforcement learning” (e.g. Garnelo et al. (2016)), deep neural networks

transform raw perceptual data into a symbolic representation which is then fed to a
symbolic module that might perform, for instance, action selection. Other approaches
such asMaet al. (2020)propose architectureswhere a numerical reinforcement algorithm
communicates with a reasoner. Here we would like to explore another track and make
the reinforcement algorithm work directly on the symbolic data space itself in a more
integrative way, which we propose to call “reinforcement symbolic learning”.

3.2 Symbolic state space specification
3.2.1 General framework
Markov Decision Processes

Ths typical setting for RL is theMarkov Decision Process (MDP) framework.

Markov Decision Process (MDP)

A Markov decision process is a 4-tuple (S,A, Pa, Ra), where:

• S is a set of states called the state space,

• A is a set of actions called the action space (alternatively, As is the set of
actions available from state s),

• Ta(s, s
′) = Prob(st+1 = s′ | st = s, at = a) is the probability that action a in

state s at time t will lead to state s’ at time t+1 (i.e., the transition function),

• Ra(s, s
′) is the immediate reward (or expected immediate reward) received

after transitioning from state s to state s’ due to action a.

Some extensions of this framework allow to involve multiple agents or to infer an op-
timal behavior from partially observable states (see Table 3.1). All of these frameworks
have in common theMarkov property, which states that a future state s’must only depend
on the current state s and not on its predecessor: in other words,
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3.2 Symbolic state space specification

Prob(st+1 | st, at) = Prob(st+1 | s0, · · · st, at)

i.e. the transition function is memoryless. Aworkaround for this is to introduce some
sort of episodic memory, as detailed below.

Agency (control over the state transitions)
No agent 1 agent Multiple agents

States totally
observable

Markov chain Markov
Decision

Process (MDP)

Markov
Stochastic Game

States partially
observable

Hidden Markov
Model

Partially
Observable
Markov
Decision
Process

(POMDP)

Partially
Observable

Stochastic Game
(POSG)

Table 3.1: Markovian frameworks and their use-cases

The state and action spaces may be finite or infinite, for example the set of real num-
bers. Some processes with countably infinite state and action spaces can be reduced to
ones with finite state and action spaces.

Reinforcement Learning (with a pseudo-episodic memory)

Figure 3.1: The classical Reinforcement Learning paradigm

In such a MDP set-up, our agent interacts with the environment until it reaches some
terminal state at time T (potentially infinite). At a given discrete time, it perceives a part
of the environment, i.e., a stimulus, including a reward. It infers elements (e.g., causes)
from this input cue, including the computation of the next action. One such traversal
is called an episode and consists of a sequence of states, actions, and rewards that the
agent got on his path. The sequence of actions defines the behavior of the agent.
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3 A Markovian approach

In our case, we consider a potentially hypermnesic agent for which any previous in-
put, including rewards, might be part of the internal state. This choice is directly related
to the notion of episodic memory, an episode here being represented by an event se-
quence (a list of times of occurrence of atomic events). This frees us from theMarkovian
constraint taking into account not just one step in the past, at the cost of a multiplicative
increase of the state space. This is going to be manageable thanks to the hierarchical
structure of our state space, which encompasses a lot of information without the need
for an exhaustive enumeration.

3.2.2 Finding an optimal policy
The agent’s behavior follows a policy function π (potentially stochastic) that predicts the
next action based on the current state:

π : A× S → [0, 1]

π(a, s) = Prob(at = a | st = s)

This policy can be either deterministic or stochastic. The goal of the agent is to opti-
mize the policy, that is to say, to decide which action a to take in a certain state s that
will result in the best possible reward at a more or less long-term.
In practice, rewards are usually not immediately observable. There are even set-

tings where the only reward happens at a terminal state and no intermediate reward
is observed. Instead, we use the discounted return R , which is the combination of dis-
counted rewards in the future (future rewards are valued less).

R =
T∑
t=0

γtrt+1

γ is a discount factor accounting for the importance of future rewards: a factor of
0 means that the agent only considers current rewards, whereas a factor of 1 makes it
strive for long-term rewards (with the risk of a cumulative reward becoming infinite,
resulting in diverging computed values).
Hence, what is actually maximized is the state value function V π of a state s defined

by:

V π(s) = E
a∼π

[R | s0 = s]

that is to say, the expected return of a trajectory starting from state s and following
the policy π.

Temporal Difference Learning (TD-Learning)
The Temporal Difference Error is the difference between the ultimate correct reward and
our current prediction:
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3.2 Symbolic state space specification

TDE = V ∗
t − Vt

TDE = V ∗
t − Vt

= rt+1 + γVt+1 − Vt

In TD-learning, the value is updated following the Bellman equation 1:

V (s)← V (s) + αTDE
= V (s) + α( r + γV (s′)︸ ︷︷ ︸

The TD target V ∗
t

−V (s))

The learning rate α (or step size) determines to what extent newly acquired informa-
tion overrides old information. A factor of 0 makes the agent learn nothing (exclusively
exploiting prior knowledge), while a factor of 1 makes the agent consider only the most
recent information (ignoring prior knowledge to explore possibilities). In fully deter-
ministic environments, a learning rate ofαt = 1 is optimal. When the problem is stochas-
tic, the algorithm converges under some technical conditions on the learning rate that
require it to decrease to zero. In practice, often a constant learning rate is used, such as
αt = 0.1 for all t.

Values and policies are updated iteratively:

V (s) :=
∑
s′

Pπ(s)(s, s
′)
(
Rπ(s)(s, s

′) + γV (s′)
)

π∗(s) := argmaxa

{∑
s′

Pa(s, s
′)
(
Ra(s, s

′) + γV (s′)
)}

Exploration vs. Exploitation When interactingwith its environment, if the agent only
takes actions leading to immediate rewards, actions and states not on the greedy path
may not be sampled sufficiently and potentially better rewards would stay hidden from
the learning process. Choosing between making the best decision given the current
information or starting exploring and finding more information, is known as the explo-
ration/exploitation dilemma.
A greedy policy (choosing the best value each time)wouldmean full-on exploitation,

which can make us stuck in the local minima. Conversely, full-on exploration would
mean that we would need a lot of time to collect the needed information. In order to
balance this dilemma, we can resort an ϵ-greedy policy as explained below.

On-policy vs off-policy On-policymethods solve the exploration/exploitationdilemma
by including randomness, meaning that non-greedy actions are selected with some
1The Bellman equation, foundational to dynamic programming, is commonly used for optimization prob-
lems and can be used iteratively: the current value to optimize will be updated by itself + learning rate
∗ error.
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3 A Markovian approach

probability. These policies are called ϵ-greedy policies as they select random actions
with an ϵ probability and follow the optimal action with 1-ϵ probability.
While on-policy algorithms try to improve the same ϵ-greedy policy that is used for

exploration, off-policy approaches have two policies: a behavior policy b and a target
policy π. The behavioral policy is used for exploration and episode generation, while
the target policy is used for function estimation and improvement. Therefore, the target
policy π gets a “balanced” view of the environment and can learn from potential mis-
takes of b while still keeping track of the good actions and trying to find better ones.
The distribution “mismatch” between the two policies can be facilitated by a technique
called importance sampling.

Model-free vs model-based RL

RL algorithms are also categorized with regard to how they represent the environment.
Model-based algorithms maintain a representation of the environment beyond the state
and action space, typically the transition and reward function. The agent is thus able
to plan the consequences of its action (post-conditions). In contrast, model-free algo-
rithms do not maintain such an explicit model, but rather a chunked representation
of values, computed from the previous events and rewards. The model-free / model-
based dichotomy has traditionally often beenmapped ontomodels of habitual and goal-
directed behavior, but recent works suggest that such a mapping is less relevant than
e.g. value-free vs value-based algorithms (indeed, habitual behaviors can result from
a simple association between stimuli and actions, without any kind of reinforcement
through reward, due to Hebbian plasticity) (Miller et al., 2018); besides, model-free and
model-based learning are probably not that segregated in the brain, and may rely on
shared components or representations (A.G. E. Collins and Cockburn, 2020).

Q-Learning

Value evaluations in TD-learning require a full episode, hence it can be useful to define
state-action values to immediately assess the quality of a situation. The state-action value
of the pair (s,a) under π is defined by:

Qπ(s, a) = E
a∼π

[R | s0 = s, a]

where R now stands for the expected return associated with first taking action a in
state s before following π from the next state s’.

Q-learning is a popular off-policy learning algorithm, illustrated on Figure 3.2. It up-
dates its state-action values using the state-action value of the next state s’ and the greedy
action a’. In other words, it estimates the return (total discounted future reward) for
state-action pairs assuming a greedy policy is followed (by always choosing the action
with the maximum value), despite actually following an ϵ-greedy policy:
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3.2 Symbolic state space specification

Q(st, at)← Q(st, at) + α︸︷︷︸
learning rate

(
Rt − γmax

a
Q(st, a)−Q(st, at)

)
(3.1)

= Q(st, at) + α︸︷︷︸
learning rate

(
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

)
(3.2)

Here, we update the function using both at, which is chosen by the ϵ-greedy behavior
policy b, andmaxaQ(st, a)which is selected by the greedy target policy.

Figure 3.2: The Q-Learning paradigm

Q-learning has proven to be a powerful technique for a variety of problems, including
game playing, robotics, and control systems. However, one limitation of Q-learning is
that it can struggle to generalize to new and unseen states. This is because Q-learning
relies on an explicit representation of the state space, which can be difficult to achieve
for complex and high-dimensional environments. To avoid this issue, techniques com-
bining Q-learning with deep neural networks, such as the deep Q-networks (DQN)
approach (Mnih et al., 2015), have been proposed.
The approach proposed here, following Mercier, Alexandre, et al. (2021), is less ambi-

tious and more economical: To what extent could classical reinforcement learning al-
gorithms not interact but intrinsically manipulates symbolic information? Considering
Q-learning with state and action being symbolic data structures, how can we adapt the
former algorithmic scheme?

3.2.3 Symbolic data structure
Input structure

At the computing level, we aim at manipulating the symbolic representation of knowl-
edge as hierarchical data structure, as introduced in Mercier and Vieville (2023). Con-
cepts are anchored in an input/output, i.e., stimulus/response, framework, whichmight
consist of sensorimotor feature spaces (colored regions) corresponding, for example,
to different sensor modalities. Literal values are taken among a finite enumeration of
qualitative values (e.g., a color set) or quantitative values (i.e., finite precision bounded
values). They are completed by meta-information that is not explicitly manipulated by
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3 A Markovian approach

the agent but is used for process specification or interpretation (e.g., the weight unit and
bounds).
At the modeling level, we follow Gärdenfors (2004), with the idea that an individual

resource can be defined by “feature dimensions,” i.e., attributes with some typed value.
For instance, a bird could be the following. The used syntax is a weak form of the JSON
syntax, which could be equivalently represented as RDF triples 2.

bird: {

is_a: vertebrate

can: { sing fly eat: { worm fish } }

has: { feather beak }

is: { weight: { min: 0.010 max: 50 unit: kilogram } }

}

This illustrative example is sufficient to allow us to detail the main characteristics of
our representation. Concepts can be hierarchical, e.g. bird is a sub-concept of vertebrate.
Some features are intrinsic properties, and others are relations. A property can be qual-
itative (e.g. beak, or quantitative (e.g., the weight). The features can be hierarchical,
either because the value is an enumeration (e.g., can takes a value in {sing, fly}) or
because the value has some metadata attributes (e.g., weight). Such a data structure
defines a “concept” in the sense of Gärdenfors (2004) and corresponds to a geometric
conceptual space as reviewed in Chapter 1.
UsingVector SymbolicArchitecture implemented at the neural spiking assembly level

thanks to theNeural Engineering Framework (Eliasmith, 2013), such a cognitive symbolic
data structure can be implemented as biologically plausible memory, allowing to ma-
nipulate it conjointly at both a symbolic and numeric level (Mercier and Vieville, 2023), as
developed in Chapter 4.

A symbolic metric space
Distance
Ametric or distance function is a function d(·, ·)which satisfies the following rules:

• The distance between an object and itself is always zero: ∀x, d(x, x) = 0

• The distance between distinct objects is always positive: ∀x ̸= y, d(x, y) ≤ 0

• Distance is symmetric: ∀(x, y), d(y, x) = d(x, y).

• “Intermediate stops can’t speed you up”, also known as the triangle in-
equality: d(x, z) ≤ d(x, y) + d(y, z).

A metric or distance allows to defined geodesics, i.e. the shortest path between two
points. A geodesic can be defined for a Riemannian manifold (e.g. a surface in Euclid-
2See also https://www.w3.org/TR/rdf-json/
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3.2 Symbolic state space specification

ian geometry) but also has a sense in graph theory, where the distance between two ver-
tices in a graph is the number of edges in a shortest path (also called a graph geodesic)
connecting them.
Edit distance is originally defined as a string metric, i.e. a way of quantifying how

dissimilar two strings are to one another. They can be thus extended to sequences or
even (under certain constraints) tree structures.

Edit Distance (strings)

Given two strings a and b on an alphabet Σ, the edit distance d(a, b) is the
minimum-weight series of edit operations that transforms a into b.
One of the simplest sets of edit operations is that defined by Levenshtein (1966):

• Insertion of a single symbol. If a = uv, then inserting the symbol xproduces
uxv.

• Deletion of a single symbol x changes uxv to uv.

• Substitution of a single symbol x for a symbol y ̸= x changes uxv to uyv.

In this definition, each of these operations has a unit cost. The Levenshtein dis-
tance is thus equal to the minimum number of operations required to transform
a to b.

Ouangraoua and Ferraro (2009), following K. Zhang (1996), proposed an extension of
edit distances to semi-ordered labeled trees.
An input s is thus a tree data structure, equippedwith a a partial semi-order compatible

with an extended semi-distance3. This means that two values may be equal, indistinguish-
able (i.e., too close to be ordered, thus equal or not), comparable or incomparable (i.e.,
too different to be compared). The distance between two inputs is defined as the mini-
mal cost of editing sequences transforming one input into another, i.e., an edit distance.
We consider edit operations given an input (l+) adding, (l-) deleting or (l#) changing a
value in a list, (t+) defining, (t-) undefining or (t#) changing a value in a tuple, each
of these operations having a user-defined positive cost. This mechanism also allows,
when comparing two inputs, to make explicit which node has been added, deleted, or
changed. Thus, it offers a “geodesic”, i.e., a path of transformation from one structure
to another, allowing to interpolate intermediate input structure between both of them.

Inferring other elements from input
Each data structure is translated in terms of RDF statements as follows. Each tuple is a
“subject” and each named value corresponds to a relationship labeled by a “property”,
3The key point is that we consider restricted edit distances preserving the tree filiation, computable in
polynomial time (Ouangraoua and Ferraro, 2009), which would not have been the case otherwise,
or if considering the tree as a general graph or ontology portion.
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the value being the “object” targeted by the relationship. This transformation allows us
to generate an ontology, offering the possibility to perform inferences, thus implement-
ing the learner behavior at a pure symbolic level. Conversely, each RDF ontology graph
may be mapped back onto the data structure, with tuples having the value undefined if
the corresponding statement is absent from the ontology after reasoning, and defined
as the property object·s otherwise — hence the need for a pre-defined schema.

3.3 Reinforcement learning on a symbolic state space.
3.3.1 Q-Learning on symbolic data

Let us consider a concrete example on a Q-learning set-up with ϵ-greedy exploration.
At each step this function is updated, using the weighted average of the old value and
the new information, while the action is chosen to either maximize the reward, given
the state, or with a small probability randomly explore new actions. This algorithm
is known as model-free, however, we are using it in a non-conventional way with in-
ferences we generate from prior information on symbolic states, bringing it somewhat
closer to model-based algorithms.
The key point is that, given the largeness of the state space, each state is very likely

different from another, so that one state is very likely visited once, making it impossible
to use the usual update rule on tabulated valuesQ[st, at]. However, given a new state st
and reward rt+1, we can easily update all preceding state-action values in a neighbor-
hood.

Considering an exponential weighting of radius ρ, for a learning rate α, a discount
factor γ, this writes, for all state-action values:

Q(st, at)← Q(st, at)+α e

−

edit distance︷ ︸︸ ︷
d(st+1, st)

ρ︸︷︷︸
neighborhood radius

 rt+1︸︷︷︸
immediate reward

+ γ max
a

Q(st+1, a)−Q(st, at)


where d(st+1, st) stands for the predefined edit distance between both states. Dur-

ing an epoch (or episode) of T steps, it means that we have to compute O(T 2) edit
distances, and state-action value updates, but this complexity depends only on the tra-
jectory length, rather than on the state space itself.
The computation of themaximum reward predictionmaxaQ(st+1, a), requires to both

(i) interpolate the state-action value given available tabulated values and (ii) enumerate
action candidates, including unprecedented actions. For (ii) consider a set of potential
actions ak including previous actions, predefined prototypical actions, and putative ac-
tions generated by an external process. For (i) we can use an exponential interpolation,
consistent with the previous design choice:
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Figure 3.3: Ontology of the symbolic environment used by Radji et al. (2023).

Q(s, ak) =
∑
st,at

e
−(d(s,st)+d(ak,at))

ρ Q[st, at]

/∑
st,at

e
−(d(s,st)+d(ak+,at))

ρ

3.3.2 Preliminary results
As part of a student project we supervised, Radji et al. (2023) have applied some of the
ideas introduced earlier. They have implemented an environment, described as anOWL
ontology, illustrated in 3.3, in which an agent needs to explore the environment and
choose the best actions for its survival. Their code is open-source and available at https:
//github.com/riiswa/symbolic-rl.

Set-up At each step, the agent receives an observation (among 6400 possible combina-
tions)which is composed of an integer that represents the internal state of the agent, and
another integer that represents the entity that the agent encounters in the environment.
Each entity has some attributes (defined as ontology properties) that belong to spe-
cific sensory modalities (similar to feature spaces in Oltet,eanu (2020)’s representation).
The internal state of the agent is a vector calculated from homeostatic and emotional
variables which can have either a positive effect (energy, health, joy) or a negative one
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(anger, sadness, fear). The agent must then choose an action which will have a postcon-
dition (defined in the environment ontology) updating the agent’s internal state. The
edit distance used in this study quantifies the similarity between two observations, de-
fined as the average of the distances between their internal states and their associated
external entities. More specifically, Radji et al. (2023) propose to calculate the distance
between two entities using two sub-metrics: a “tree distance”, defined as the sum of the
length of the ancestors of each individual in the ontology; and a “property distance”
which is an empirical distance within a given feature space (for example, in the color
space, the distance between yellow and orange might be defined as 1, while the dis-
tance between yellow and red might be defined as 2). The distance between two inter-
nal states d(i1, i2), is calculated as the usual Euclidean normalized distance of their two
representation vectors. The agent takes as argument the distance function to compute
the distance between two observations, and for faster computation, distances between
each observation are pre-computed and stored in a matrix of size 2562. At each step, the
agent updates the Q-table (of size 256×25×9 in this set-up) using equation 3.3.1.

Results Radji et al. (2023) trained both classical Q-Learning agents and symbolic Q-
Learning agents for 10000 steps, using a linear epsilon greedy policy with the same
hyperparameters (except for the radius ρ which exists only for symbolic Q-Learning),
and evaluated the agents performances every 10 training steps. The evaluation involved
performing 100 rollouts in 100 environments with fixed seeds, and the score of an agent
was calculated as the sum of the cumulative rewards obtained during each rollout.
Figures 3.4 show the evolution of the scores of the different agents throughout the

training. Unsurprisingly, the Q-Learning agent struggles to learn, which is simply due
to the fact that the Q-Table is too large. The Symbolic Q-Learning agent seems to have
much better generalization capabilities and needs far fewer steps in the environment to
perform. Radji et al. (2023) propose several hypotheses of interpretation:

• With a very small ρ for example (0.01) SymbolicQ-Learningwill not update theQ-
Table significantly, so the performance will be close to that of classical Q-Learning.

• With a slightly larger radius (0.04) it is possible to obtain performances that are
significantly better than the classical Q-Learning, so we see that the ρ hyperaram-
eter is very sensitive, and a small change can drastically change the results.

• When ρ is a bit too large (0.06) the symbolic Q-learning agent seems to try to
generalise too much, and probably has to update values that it shouldn’t, which
makes its learning go quite badly, and even performs worse than Q-Learning. The
results are quite unstable compared to smaller values of ρ. A potential improve-
ment could be to lower the radius over time, in order to “stabilize” the agent’s
generalization process.

Radji et al. (2023)’s work thus constitutes an interesting proof of concept of combining
Q-learning with a symbolic ontological description of the environment, ensuring that
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Figure 3.4: Comparison of Q-Learning and Symbolic Q-Learning performances with varying ρ

the state space remains tractable. The results we obtained with Symbolic Q-Learning
suggest that this approach could be a promising direction for our research perspectives.

3.4 Discussion: perspectives of application to the CreaCube task
How could we use the previous framework to interpret the observed behavior of a
learner engaged in a creative problem-solving task such as CreaCube, from a Marko-
vian perspective?

Towards inverse reinforcement learning
Aperspective of such a frameworkwould be to characterize convergent-divergent phases
and goal orientation in theCreaCube task (or some other creative problem solving task).
At the cognitive level, we need to consider both exploration and exploitation strategies
related to convergent and divergent thinking as described earlier. At a computational
level, the paradigm is reinforcement learning (RL) with a final reward (success of the
task) and some intermediate rewards (discoveries of affordances, partial result regard-
ing the goal), more precisely intrinsically motivated reinforcement learning (Singh et al.,
2010).
The key point is that the reward is not provided by the environment but computed

by the agent itself, using both a representation of the state of the environment, and the
beliefs and goals integrated by the agent. For example, we could imagine that an agent
oriented towards performance would want to solve the problem as fast as possible, and
would find it more rewarding when the distance between (i) its representation of the
state of the environment and (ii) its representation of a possible goal implied by the
guideline, decreases as much as possible. Conversely, an agent oriented towards mas-
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Figure 3.5: Perspective: a reinforcement symbolic learning paradigm applied to the CreaCube
task.

tery would seek to find new states that are very semantically distant from the present
state, in order to gather more information (using some entropy measure). Kohler and
Romero (2023) have formalized an edit distance between CreaCube configurations at the
static material level, that we could partially use in the calculus of the edit distance pro-
posed in our context (we would need to add other information regarding the state of
the configuration, e.g. is the switch on, is the configuration moving, etc).
More precisely, we aim to evaluate the cost toward a given goal from the previously

defined distance between a current state and the estimated subgoal state. Regarding
the performance-related goal, we thus make the strong assumption that the shorter this
distance, the lower the potential cost, that is, that edit distance operations can be related
to actions generating a trajectory in the state space. We also consider that the reward
provided by a subgoal is related to the estimated distance to the desired goal; the shorter
this distance, the higher the reward. Combining the cost and reward provides a rule
for choosing the goal: the one with the maximal reward at the minimal cost. Such a
common currency is directly related to emotion, as studied by Dietrich (2004), reported
by Alexandre (2020a) and reviewed in Chapter 1 (1.3). Regarding mastery-related goals,
wemust introduce the notion ofmissing information, which corresponds to the fact that
we cannot apply a behavioral rule because we cannot decide whether a precondition is
to be applied, that is, because the current state of the knowledge is not in a region where
the information is available4. This generates an internal subgoal, which is to minimize
4Given a sensorimotor feature or meta information, the region where the feature is defined corresponds
simply to a region where the feature value is any defined value but the default “undefined” value.
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the distance to such a region, and is thus still a distance minimization problem. This
design choice is coherent with the fact that, with performance-related goals, we may
apply a rule, even if the precondition is not false but not totally verified, to attempt to
reduce the distance to the final goal, while, with mastery-related goals, intermediate
subgoals are added.
The next step would be to infer the reward function of an observed agent, given its

observed behavior, using Inverse Reinforcement Learning (IRL) as illustrated in Figure
3.6 (see, e.g., Arora and Doshi (2020) for a survey).

Figure 3.6: The Inverse Reinforcement Learning paradigm

Regarding the characterization of convergent-divergent behaviors, we could in first
approximation map it on exploration-exploitation behavior switching, using the Probe
model of task sets.
A step further, we could implement a more sophisticated RL algorithm using task

sets, to allow for different behaviors depending on the context.
In first approximation, we could consider that the contexts correspond to the stages of

componential model of Amabile (2012): preparation, generation, or generation regula-
tion, enforced by selecting a task set of a corresponding category. Given a current stage,
for example generation, there is a concurrent process between carrying on and stopping
to switch to the evaluation stage, the result ofwhich could be to consider success, failure,
or starting another task.
However, what if the task sets contexts do not correspond to the componentialmodel’s

stages? Instead of testing every possibility, we could instead derive a certain number of
contexts by using other methods such as clustering, reviewed below.

State clustering, trajectory clustering
As a quantitative step towards the analysis of the collected data, we propose to fit the ob-
served problem solving trajectory on Bayesian models using statistical methods, while
we can also benefit from logical inferences that are allowed by our ontology representa-
tion. The goal is to infer the internal state of the learner (e.g. their beliefs, goals, emo-
tions) from the observed state. A first idea is to use Hidden Markov Models (HMM)
(see Table 3.1) where each activity sequence could be seen as a Markov chain with hid-
den states (that, we hypothesize, correspond to internal representations of the learner)
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Figure 3.7: Perspective: Hidden Markov Models applied to the CreaCube task. (We have not
represented all possible probabilities of transition and emission for clarity purpose.)

from which we observe a certain output (i.e. the collected JSON data) with a certain
probability of emission. This would allow us to determine the probabilities of transi-
tions between (hidden) states, and guide us on the metric we should use to generate
our trajectory (e.g. edit distance as suggested in the previous paragraph). An illus-
trative example is given on Figure 3.7. Clustering algorithms on hidden states could
then be considered, as a way to “structure” the problem space and find regularities that
would help define an appropriate distance between states. These hidden states might
correspond to CPS componential stages, or other kinds of stages that are specific to the
task, and might constitute different contexts as the ones used by task sets.

Figure 3.8: An illustration of dynamic-time wrapping, reproduced from Martin et al. (2022)

We could also compare trajectories themselves using sequence clustering, in order
to distinguish several “profiles” of CPS behaviors among learners. To achieve that, we
suggest using Dynamic-Time Wrapping (DTW), which has the benefit of comparing
the shapes of trajectory regardless of translation or minor dilatation in time (see Figure
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3.8). In Palaude et al. (2023), we have proposed to use such trajectory clustering in rela-
tion to common assessment dimensions of divergent thinking (e.g., fluidity, flexibility,
originality).
These two proposals do not take into account timing, which could be of interest in

the study of the CPS process. Regarding this, Köhler et al. (2021) have considered us-
ing Hawkes processes to model the timed changes of behavior. Drift-diffusion models,
which are commonly used to model reaction times in neuroscience and psychology ex-
periments (Bogacz, 2007), could also be taken into account.

93



4 Reasoning on symbols: towards a
biologically plausible model?

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.1.1 Representing neuronal activity at a symbolic level . . . . . . . . . 96
4.1.2 From sensorimotor processing to logical reasoning . . . . . . . . 97

4.2 Basic design choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.1 From symbols to numbers . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.2 Semantic similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.3 Classes and approximate Boolean properties . . . . . . . . . . . . 100
4.2.4 Statements: facts and rules . . . . . . . . . . . . . . . . . . . . . . 101

4.3 A first, simple but partial, mapping . . . . . . . . . . . . . . . . . . . . . . 102
4.3.1 Ontology numerical mapping . . . . . . . . . . . . . . . . . . . . . 102

A Semantic Pointer Triplestore . . . . . . . . . . . . . . . . . . . . 102
Using the VTB algebra . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.2 Relationship and membership composition . . . . . . . . . . . . . 105
Hierarchical representations . . . . . . . . . . . . . . . . . . . . . . 105
Relational representations . . . . . . . . . . . . . . . . . . . . . . . 107
Other intrinsic OWL properties . . . . . . . . . . . . . . . . . . . . 108

4.3.3 Introducing data and data structure . . . . . . . . . . . . . . . . . 109
Representing literals . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Data container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.4 Effective neuronal implementation: an illustrative example for the
case of hierarchical rules . . . . . . . . . . . . . . . . . . . . . . . . 111
Nengo architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Limits of the current approach . . . . . . . . . . . . . . . . . . . . 112

4.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

The following chapter is based on a conference article presented at the Workshop on
Knowledge Representation for Hybrid and Compositional AI at KR2021 (Mercier, 2023),
augmented with updates submitted to the Cognitive Computation journal (Mercier and
Vieville, 2023).

94



4.1 Introduction

4.1 Introduction
It is generally admitted that human problem solving involves tightly interleaved numer-
ical but also symbolic (including logical) computations. In order tomodel some specific
tasks such as CreaCube, which involves cognitive functions as diverse as sensorimotor
skills and exploitation of (sometimes partial) explicit and tacit knowledge, we postu-
late there is a need for an integration of both numerical and symbolic paradigms which
cannot be achieved with separate modules.
In hybrid systems, both symbolic and numerical components are involved (Lallement

et al., 1995), but their contributions are usually kept separate in distinct aspects of the
system. This is the case for examplewith ontology-based deep learning (Hohenecker and
Lukasiewicz, 2020; Petrucci et al., 2016; Phan et al., 2017) or “black-box” cooperation between
deep-networks and ontology reasoners (Ayadi et al., 2019; Jiménez et al., 2018). However,
geometric mapping of ontologies onto Euclidean spaces or manifolds (Eidoon et al., 2008;
Tous and Delgado, 2006; Xiao et al., 2015) allows to perform reasoning at both a symbolic
and to a limited extent numerical level, while the relationship between neural network
representation and manifolds is well established in both machine learning (Chui and
Mhaskar, 2018; Zhu et al., 2017) and computational neuroscience (Duncker and Sahani, 2021;
Langdon et al., 2023).
SinceMcCulloch and Pitts (1943), the idea that neural activity is computational and that

cognition emerges fromneural computations has led some authors to argue that a purely
numerical approach could implement the needed unified system (see, e.g., Pulvermüller
(2013) for a general review), as the brain seems to manipulate symbolic information
with neuronal units generally considered as numerical systems. Yet it is a wide and
still open issue to establish the numerical primitives required for modeling symbolic
representation and manipulation (see Alexandre (2019) for a general discussion). As a
result, in the last few years, models using numerical mechanisms to process symbolic
information such as logical computation (Shi et al., 2020) or reasoning (Riegel et al., 2020)
have flourished.
Given a symbolic graph representation, there are numerous vectorization approaches,

such as translational distance models or random walk based methods (see Wang et al.
(2021) for a review regarding approximate statistical reasoning, or Sajjad et al. (2019)
regarding representation learning from data) including taking into account dynamic
knowledge such as Sauerwald and Zanetti (2019) or combining vector representations
and inference rules such as Guo et al. (2016). Other approaches propose to integrate or
interface real-valued first-order logic (e.g., probabilistic) computations with machine
learning algorithms (see Garcez and Lamb (2020) for a general review and, e.g., Cohen
et al. (2017) for an example). Our approach is complementary in the sense that we focus
on both a biologically plausible neuronal framework, and a symbolic formalism based
on triples (as defined in 4.2.4) that seems appropriate to model human reasoning in
psychology (McClelland and Rogers, 2003).
Specific questions may arise when trying to integrate for example relations between

ontology specifications and partial knowledge (Tettamanzi et al., 2017), allowing one to
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consider not only true or false knowledge, but relative degree of truth. In most machine
learning algorithms, this is usually represented by probabilities. However, the human
“level of truth” seems to be different and related to other notions such as possibility
and necessity, related to a given modality, that is a context, a given time, and so on,
which is also considered as representative to what is modeled in educational science
and philosophy (see Smith (1994) while Rusawuk (2018) proposes a discussion).

4.1.1 Representing neuronal activity at a symbolic level
As a possible entry to a unified approach, Vector Symbolic Architectures (VSA) were in-
troduced as a way to manipulate symbolic information represented as numeric vectors
(see e.g. S.D. Levy and Gayler (2008) for an introduction). VSAs have been proven help-
ful to model high-level cognition and account for multiple biological features (Eliasmith,
2013; Gayler, 2003), providing vectors that can bemanipulatedwithin networks of spiking
neurons, as demonstrated by Eliasmith (2013). This approachmakes a significant step to-
wards the unification of symbolic and sub-symbolic processing in that it provides a way
to translate the former into the latter. Consequently, complex knowledge representation
in the form of compositional structures that are traditionally restricted to symbolic ap-
proaches can now be distilled in numerical and even neural systems (Crawford et al.,
2016).
How can we represent a symbol in a neuronal assembly? A localist representation

(one neuron or neuron group represented by a symbol) does not correspond to what
is observed in the brain, and the basic idea is that a symbol corresponds to a pattern of
activity distributed over the whole assembly. Let us consider a spiking neuron network
and quantify its activity using, e.g., the neuron rates or higher-order statistics (see, e.g.,
Cessac and Viéville (2008) for a discussion). As developed by Eliasmith and C.H. Ander-
son (2002), this includes timing codes and population codes (i.e., relative timing codes
between neurons). This high-dimensional set of bounded quantitative values can be
collected and normalized, as a unitary stochastic vector in a high-dimensional space
(with a few thousand dimensions for a biological neuronal map and often a few hun-
dred dimensions at the simulation level), thus defining a Semantic Pointer Architecture
(SPA). This builds upon a particular case of VSA and the Neural Engineering Frame-
work (NEF) (Eliasmith andC.H. Anderson, 2002). TheNEF provides a set of principles for
implementing such an architecture through synaptic connections, including a time rep-
resentation in spiking neuron systems (rather than, e.g., other representations based on
synchrony within the neural assembly; (see Eliasmith and C.H. Anderson (2002) for tech-
nical details). This framework is a rather scalable alternative for a biologically plausible
implementation of VSA, and it has already been implemented into a simulator called
Nengo (Bekolay et al., 2014).
In the present study, we consider these developments as prerequisites and will sim-

ply consider that neural assembly activity is represented by a high-dimensional unary
stochastic vector. We also need to specify transformations and define them at this ab-
stract algebraic level. We will mainly consider the hetero-association mechanism, as
developed in T.C. Stewart et al. (2011), and functional transformations, as detailed in Elia-
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smith and C.H. Anderson (2002); their development is based, in a nutshell, on parameter-
ized kernel-based approaches.

Manifolds and neural networks
In mathematics, amanifold is a topological space that locally resembles Euclidean
space near each point.
The activity of a large number of neurons can often be captured by amuch smaller
number of key dimensions. Therefore, in the neuroscience literature, manifold
usually refers to a subspace of neuronal activity, identified using a dimensionality
reduction method (see Fig. 4.1).

Figure 4.1: From neural activity to manifold: figure reproduced from Duncker and Sahani
(2021). (a): The activity of the neuronal population evolves in a high dimensional
coordinate space, where each axis corresponds to the firing rate of a recorded unit.
(b) Dimensionality reduction techniques can be applied to obtain a low-dimensional
latent description of the high-dimensional population activity. This is illustrated
here by a one-dimensionalmanifold, embeddednon-linearly in the high-dimensional
space of recorded neurons. Similar topologies have been identified in the head-
direction cell system. (c): Illustration of a manifold representing different state val-
ues, where each state engages different groups of neurons.

4.1.2 From sensorimotor processing to logical reasoning
As review in Chapter 1, logical reasoning with symbols emerges through a complex
interplay of cognitive processes, including enactive and developmental processes, in-
volving sensori-motor associations which contribute to the formation of stable symbols
or concepts (as reviewed, e.g., in Ness and Farenga (2007)).

In particular, creative problem solving requires sophisticated reasoning mechanisms,
such as deductive, inductive and abductive reasoning. We need to make deductions to
solve problems in everyday life, while the elements we briefly reviewed here demon-
strate that such deductions are not boolean (either true or false) but related to a given
context, weighted by a certain level of belief, and biased by motivational elements in a
wide sense. Furthermore, as discussed in, e.g., Keefer and Landau (2016), especially for
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goal-driven behavior, deductive reasoning is deeply interleaved with heuristic deduc-
tion, which involves analogy and metaphor. In this study, we show how such deduc-
tive reasoning could emerge from biologically plausible neuronal implementation, and
discuss to what extent this could be extended to approximate deductive reasoning, in
addition to inductive and abductive reasoning mechanisms.
Considering knowledge representation and reasoning, the capabilities of Semantic

Webmodeling languages, such as the ResourceDescription Framework Schema (RDFS)
and the Web Ontology Language (OWL) (see, e.g. Allemang et al. (2020) for a recent di-
dactic reference) is a rather accessible and powerful way to manipulate symbolic data.
To what extent could such a mechanism be implemented in a biologically plausible ar-
chitecture such as the SPA? In order to contribute to this issue, we propose here some
design choices allowing us to implement a RDFS specification using VSAs. We illustrate
this on a simple example and also discuss to which extent OWL specification could ben-
efit from the same method.

4.2 Basic design choices
4.2.1 From symbols to numbers
In order to represent symbolic information, we use RDFS to structure knowledge repre-
sentation. It is based on the RDF data model, which represent knowledge as triples, as
made explicit in section 4.2.4.

Resource Description Framework Schema

In the Resource Description Framework Schema (RDFS), the universe of discourse is
made of resources, referenced by some universal resource identifier (IRI), i.e. a
fixed lexical token. To structure this universe of discourse, we consider:

(i) individuals that refer to real-world concrete or abstract objects, or

(ii) literals to characterize individuals using data attributes, i.e., numerical val-
ues, character strings, or any structured information such as dates

(iii) concepts and roles (namely classes and properties) that allow to structure the
knowledge about individuals.

Before going further, we canpoint out that the present definition follows theRDF/RDFS
framework, with the following variants:

• we conflate namewith both IRI and blank node, since on the one hand blank node
can be eliminated,1 and on the other hand because we only process the informa-
tion locally at this stage, thus avoiding considering all issues regarding distributed
information between different sources;

1Using a standard process related to skolemisation.
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• we do not consider (i) semantic web specific literal (e.g., rdf:XMLLiteral), or (ii)
utility and annotation or other human-targeted properties (e.g., rdfs:seeAlso) at
this stage;

• we will introduce both containers, i.e., ordered or unordered sequences, and col-
lections, i.e., chained lists, later in these specifications, but in a somehow different
form, adapted to the numerical representation and obvious to map on RDF repre-
sentations;

• we do not consider all XSD data-types, but will introduce a precise notion of nu-
merical values and will detail how to represent structured data in our framework.

The RDFS framework allows to formalize entailment rules, used for deductive rea-
soning, that are detailed in Appendix D.
At the numerical level, each resource is implemented as a randomly drawn fixed

unit d-dimensional vector, x ∈ Rd, and the key idea is to study to what extent sym-
bolic reasoning on resources may correspond to algebraic operations implemented via
numerical computations (that we explicitize in 4.3.1, based on the SPA framework in-
troduced in Eliasmith (2013)). Typically, d ≃ 100 · · · 1000 and we expect to manipulate
k ≃ 100 · · · 10000 resources. A similarity measure is now introduced in order to seman-
tically compare two vectors.

4.2.2 Semantic similarity
Classically, the cosine similarity (i.e., normalized dot product, denoted ·) is used to com-
pute the semantic similarity between two unit vectors:

x · y def
= x⊤y

where x⊤ denotes the transpose of x.
The key property is that, provided that the space dimension d is large enough, two

randomly chosen different vectors will be approximately orthogonal. More precisely,

x · y ∼ N (0, O(1/d)),

i.e., follows a centered normal distribution (Schlegel et al., 2020), while by construction
x · x = 1.

Based on this, mostVSAapproaches consider that twovectors x and y are semantically
equivalent when this similarity τ equals to 1, but with different ways to interpret the
result:

• Closed-world assumption: Anything, that cannot be stated as true is false, thus τ ∈
{0, 1}, often obtained by projection and rectification (to avoid negative values).
This is the most common interpretation in VSAs.

99



4 Reasoning on symbols: towards a biologically plausible model?

• Open-world assumption: Anything might be true unless it can be proven false,
prompting a need to characterize unknown statements; furthermore the notion
of negation is either not defined (as in the RDFS model, yielding only monotonic
reasoning2), or defined at a higher level (as in OWL and more generally in de-
scription logics, that we also consider as a perspective of this work).

Here we consider open-world reasoning and we enrich the notion of being either true
or false, by a numeric representation of partial knowledge, as illustrated in Fig 4.2. The
true value corresponds to 1 (fully possible and fully necessary), the false value to -1
(neither possible nor necessary, i.e., impossible) and the unknown value to 0, which
corresponds to a fully possible but absolutely not necessary value. Inbetween these
extremes, negative values correspond to partially possible but unnecessary values and
positive values to fully possible and more or less necessary values.

Figure 4.2: Representation of partial truth τ ∈ [−1, 1], in relation to necessity and possibility.

This representation has been designed to be compatible with the ternary Kleene logic,
beside being also coherent with respect to the possibility theory3 (not developed here,
please refer to (Denœux et al., 2020) for a general introduction). This deterministic repre-
sentation of partial knowledge can be generalized in order to also include a probabilistic
representation (using a 2D representation), as developed in Viéville and Mercier (2022).

4.2.3 Classes and approximate Boolean properties
The first kind of concept to structure the knowledge is the hierarchical notion of class,
which is equivalent to the notion of Boolean property, defining the class of all individu-
als enjoying (or not) this property, and defining the property that an individual belongs
(or not) to a given class.
In RDFS this translates into, given a scoring τ as introduced previously:

x rdf:type c ▷ τ

2Monotonic reasoning means that former conclusions cannot be withdrawn considering new knowledge.
Deductive reasoning is typically monotonic, while abductive reasoning is non monotonic.

3To make the link explicit, given necessity ν and possibility π, with ν ≤ π by construction, while ν >
0 ⇒ π = 1 and π < 1 ⇒ ν = 0, we have the one to one correspondence with our representation using
τ ∈ [−1, 1]:

τ
def
= ν + π − 1with

{
π = 1 +H(−τ) τ
ν = H(τ) τ,
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We assume in the following that classes and individuals are in disjoint semantic sets.
Although this is not necessarily the case in RDFS, this assumption is compatible with
description logics (i.e. the OWL-DL level of specification) we target to use in future
developments, and ensures to avoid self-reference paradoxes.
At the numeric level, they both correspond to unit vectors, with the following inter-

pretation:

• For a given vector x encoding an individual, the vector c = x corresponds to the
singleton class C = {x}.

• For a given class vector c the individual vector x = c can be interpreted as a “pro-
totype” for this class.

At a geometric level, this can be interpreted as covariant/contravariant duality, and
the similarity between a class covariant vector c and an individual contravariant vector
x may be interpreted as the fact this individual approximately belongs, or not, to the
class.

4.2.4 Statements: facts and rules
RDF Triples

In the Resource Description Framework (RDF), knowledge about the universe of
discourse is structured into statements of the form subject predicate object,
called triples, where subject and object are two resources linked by a relation-
ship (property) explicitized by the predicate.

We introduce weighted triples of the form:

subject predicate object ▷ τ

with a value τ as discussed previously, which generalizes usual RDF statements, intro-
ducing a scoring value (refer to (Tettamanzi et al., 2017) for an introduction and a recent
literature review). This is easily stated in the RDF language itself, using reification,
while in our case, it is an intrinsic feature of our design. More precisely, when consid-
ering RDFS where only true (but not false) assertions can be stated, we have τ ∈ [0, 1],
while when generalizing to the OWL languagewhere negation can be statedwewill use
τ ∈ [−1, 1], this setting being compatible with both levels of specification.
It is worth noting that such statements are of three kinds, although this is not explicit

in the model:

• entity data-property literal ▷ τ

defines attributes allowing to specify some entity attributes as literal values (e.g.,
numbers, dates, strings...);
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• entity object-property entity ▷ τ

defines relations between entities;

• concept predicate resource ▷ τ

defines meta-properties about classes or properties.

4.3 A first, simple but partial, mapping
4.3.1 Ontology numerical mapping
A Semantic Pointer Triplestore
Let us suppose we need to represent the following weighted statements:

subject1 predicate1 object1 ▷ τ1
subject2 predicate2 object2 ▷ τ2
subject2 predicate3 object3 ▷ τ3

(note that the same subject subject2 is used in the two last statements).
The first step towards a Semantic Pointer representation is to encode each resource by

a randomly sampled vector on the unit hypersphere of our d-dimensional vector space:
let us denote si,pi,oi the respective vector representations of the resources subjecti,
predicatei, objecti.
Next, we may store each of these statements into an associative memory (T. C. Stew-

art et al., 2011), similar to a hash table, where each “key” would be a resource and the
corresponding value would express the statements for which this resource is a subject:4

s1 → τ1 B(o1,p1)

s2 → τ2 B(o2,p2) + τ3 B(o3,p3)

for which we need to introduce the following operations:

1. A scalar multiplication a = τb that scales a vector b by a factor of τ and preserves
its direction.

2. A vector superposition (e.g. element-wise addition) a = b + c that results in a
vector a with a · b = 1 and a · c = 1, assuming b and c are orthonormal.

3. A binding operation a = B(b, c) that outputs a vector a that is not collinear with
either b or c.

VSAs and, in particular, the SPA implement such operations (Eliasmith, 2013). Several
choices are available for the binding operation. The most classical one is the circular
convolution a = b⊛ c, which is used in Holographic Reduced Representations (HRR)
(Plate, 1995), one of the first examples of VSA. This operation is commutative, associative
4In RDF/RDFS, this kind of database is known as a triplestore, as it stores statements in the form of triples.
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and distributive. In order to retrieve an element vector b from the resulting vector a, the
circular convolution can be used with the approximate convolutive inverse of the other
element (c−1): b ≈ a⊛ c−1.

However, commutativity and associativity could lead to serious misunderstandings.
Let us illustrate this point with an example: considering the statements “Luigi eats this
Pizza” and “this Pizza has a topping of Mozzarella”, encoded as:

Luigi→ eats⊛ Pizza (4.1)
Pizza→ hasTopping ⊛Mozzarella (4.2)

By injecting the Pizza subject from the statement (2) into the Pizza object in the state-
ment (1), we can infer the new statement:

Luigi→ eats⊛ (Pizza⊛ (hasTopping ⊛Mozzarella) (4.3)

Under this form, (4.3)may be interpreted as “Luigi eats this Pizzawhich has a topping
of Mozzarella”, but the right member can be rewritten as:

Luigi→ eats⊛ Pizza⊛ hasTopping ⊛Mozzarella (associativity) (4.4)
= hasTopping ⊛Mozzarella⊛ eats⊛ Pizza (commutativity) (4.5)

which would interpreted as “Luigi has a topping of Mozzarella which eats a Pizza”.
Note that circular references are easily managed with this setup, thanks to the binding
mechanism generating always an almost orthogonal combined vector.
To overcome this issue, a possible “work-around” consists in adding new vectors

predicate and object accounting for the functions in the triple, as well as an index
ti (represented by a vector ti) to each statement and store the triples as:

s1 → τ1 t1 ⊛ (p1 ⊛ predicate+ o1 ⊛ object)

s1 → τ2 t2 ⊛ (p2 ⊛ predicate+ o2 ⊛ object)

+ τ3 t3 ⊛ (p3 ⊛ predicate+ o3 ⊛ object)

Such a representation similar to what has been done by Crawford et al. (2016) to repre-
sent the Wordnet database. However, this formalism is quite heavy and we would miss
some interesting properties induced by binding directly the predicate to the object.
Instead, we will use another binding operation offered by the Vector-derived Trans-

formation Binding (VTB) algebra, described by Gosmann and Eliasmith (2019) and also
implemented in Nengo.

Using the VTB algebra

The Vector-derived Transformation Binding (VTB) algebra (Gosmann and Eliasmith, 2019)
is neither commutative nor associative, but distributive and bilinear: this is of interest
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for our specific use case, as explained previously. We need to define the binding and
unbinding operations in such an algebra.

The binding operation With d the dimensionality of the vector space, which the VTB
requires to be square, and d′2 = d, the binding operation is defined, following (Gosmann
and Eliasmith, 2019):

B(x,y) def
= By x

where By is block-diagonal matrix defined as

By
def
=


B′

y 0 . . . 0
0 B′

y . . . 0
... ... . . . ...
0 0 . . . B′

y


where

B′
y = d

1
4


y1 y2 . . . yd′

yd′+1 yd′+2 . . . y2d′

... ... . . . ...
yd−d′+1 yd−d′+2 . . . yd


With these notations, the first relation above becomes

s1 → τ1Bp1 o1

This design choice enjoys the following interesting properties:

• The relation is not commutative in x and y, in the general case, as required.

• The relation is bilinear in x and y (this is obvious for the former, and easily verified
on the matrix form for the latter).

• The relation is approximately left and right invertible as discussed now.

The right unbinding operation In order to retrieve an element vector from the bound
vector, we need to bind it to the inverse of the other element vector. Unlike HRR and
the circular convolution, the VTB algebra does not provide two-side inverses: there is
no left inverse for VTB.
The right approximate inverse y∼ must enjoy the following property:

∀x, B(B(x,y),y∼)) = By∼ By x = x.

The key point here is that since the coefficients of y are chosen randomly and indepen-
dently identically distributed, the matrix By is almost orthogonal, thus:

B⊤
y ≃ By∼ ,
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which corresponds to simply permuting the elements of y.
Consequently, the right identity vector iB such that BiB = I, writes explicitly:

[iB]i =

{
d−

1
4 if i = (k − 1) d′ + k, 0 < k ≤ d′

0 otherwise.

where [iB]i stands for the i-th coordinate of the vector. We get iB by “unfolding” the
identity matrix Id′ line by line and concatenating it d′ times (and adjusting the resulting
vector by a d− 1

4 factor).
This allows us to check if a property is a predicate for a given resource and, if so,

retrieve the corresponding object (thus performing right unbinding):

x→ z = B(y,p) = Bp y

if and only if Bp
⊤ z = Bp

⊤Bp y = y and y belongs to the vocabulary. Specifically, “y
belongs to the vocabulary” means that there exists a vector v in the vocabulary such
that v · y ≃ 1. Otherwise the result is simply undefined, leading to the conclusion that
the predicate is undefined for the given resource.

The left unbinding operation A step beyond what is proposed by Gosmann and Elia-
smith (2019), we may also want to check if two resources are linked to each other by a
predicate and, if so, retrieve the corresponding property (referred to as left unbinding).
In order to do that, we first need to “flip” the order of the terms involved in the binding.
This is achievable by performing the following operation:

B(a,b) = B↔ B(b,a)

considering the matrix B↔ defined as:

[B↔]ij
def
=

 1 if j = 1 +

⌊
i− 1

d′

⌋
+ d′[(i− 1) mod d′]

0 otherwise.

Thanks to this, we obtain:
x→ z = B(y,p) = Bp y

if and only if By
⊤B↔ z = By

⊤By p = p and p belongs to the vocabulary.

4.3.2 Relationship and membership composition
Hierarchical representations
The most common deductive rule is likely the inheritance rule, a particular syllogism
that is well understood as soon as formal reasoning emerges in children (Smith, 1994).
RDF/RDFS provides two preset properties to account for hierarchical representations

between individuals and classes:
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• x rdf:type c, expresses that the individual x belongs to the class c.
• c rdfs:subClassOf c’ expresses that the class c is a subclass of the class c’, or in

other words, that the concept c is included in the class c’. This means that all
individuals that belong to c automatically belong to c’.

Consequently, some entailment rules 5 can be used to disclose implicit memberships:

• inheritance (referred to as rdfs9 by the W3C):
x rdf:type c ∧ c rdfs:subClassOf c’ =⇒ x rdf:type c’

• transitivity of rdfs:subClassOf (rdfs11):
c rdfs:subClassOf c’ ∧ c’ rdfs:subClassOf c” =⇒ c rdfs:subClassOf c”

The Semantic Pointer representation that we proposed earlier, using the VTB algebra,
allows us to implement such rules. For example, the inheritance rule can be expressed
as follows: x→ Btype c and c→ BsubClassOf c

′ implies

x→ Btype c+BtypeBsubClassOf c
′ +Btype c

′

A sufficient condition for this implication to be true would beBtypeBsubClassOf = Btype,
which would mean subClassOf = iB; that may not be desirable as it would lead to
many wrongly inherited memberships.
Instead, we prefer using a second associativememory to encode entailment rules such

as BtypeBsubClassOf → Btype, as schematized in Fig.4.5. However, we cannot store ma-
trices in the associative memory, only vectors. But we can observe that both of these
matrices are block-diagonal, and of the form

Bz =

[
Bz

′ 0 0
0 Bz

′ 0
0 0 Bz

′

]
,

thus correspond to a given vector z which can be stored instead into the associative
memory.
In this particular case, we would therefore store the association:

type⊘ subClassOf→ type

where we introduce a vector composition operator ⊘ defined as: z = a⊘ b such that:

Bz
′ = d

1
4 Ba

′Bb
′,

yielding Bz = BaBb.
Similarly, we can express the transitivity of c rdfs:subClassOf c’:

c→ BsubClassOf c
′

5A recapitulative table of RDFS entailment rules as defined by the W3C can be found in Appendix D.
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and
c′ → BsubClassOf c

′′

implies
c→ BsubClassOf c

′ +BsubClassOfBsubClassOf c
′′ +BsubClassOf c

′′

As a consequence, the inference rule will be stored as:

subClassOf⊘ subClassOf→ subClassOf

Then, by iterating on such inference rule, we easily obtain the transitive closure of
hierarchical properties inferred from rdf:type and rdfs:subClassOf statements. At the
distributed implementation level, this means using a loop between the second associa-
tive memory encoding inference rules and the first associative memory encoding the
input statements, as schematized in Fig.4.5, on the last page. This general principle al-
lows the system to compute the closure of the reasoning rules. i.e., fixed point iteration,
adding any new statement derived from the application of the rules, until a fixed point
is reached.
Let us nowdiscuss, towhich extentswe can generalize the present formalism, to other

kinds of relationships.

Relational representations

The previous mechanism allows us to express any entailment of the form:

(x p y) ∧ (y p’ z) =⇒ (x p” z)

by storing the rule
p⊘ p’→ p”

thus implemented by an operator product, for some predicate p, p’, p”. In other words,
we may express any entailment based on predicate chaining.
A step further, we need to implement property restrictions, i.e. at the RDFS level,

property range rdfs:range and domain rdfs:domain, e.g., inference of the form:
(x p y) ∧ (p rdfs:domain c) =⇒ (x rdf:type c)

and
(x p y) ∧ (p rdfs:range c) =⇒ (y rdf:type c)

and subproperty hierarchy of the form:
(x p y) ∧ (p rdfs:subPropertyOf q) =⇒ (x q y).

for the rdfs2, rdfs3 and rdfs7 entailment rules, respectively.
These rules belong to Description Logic Programming (DLP), roughly speaking at

the intersection of OWL and Logic Programming with Horn clauses (Grosof et al., 2003),
allowing to implement the complete RDFS language targeted here and beyond an inter-
esting part of OWL axioms (Levesque, 1986).
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In order to derive such generalization, we need non trivial algebra. Let us rewrite, for
a given triple:

(x p y) i.e., x = Bp y

using tensorial notations:
x = po

s Bpy, p ≃ so
p Bxy, y ≃ sp

o Bxp,

x = op
s B yp, p ≃ os

p Byx, y ≃ ps
o Bpx,

these notations being well defined because, as stated in the previous section, since (i)
the operator is bi-linear, (ii) theB↔ operator allows to swap property and subject, (iii)
the operator is approximately invertible, while we also can define:

x = p
sBp, p ≃ s

pBx, y ≃ s
oBx,

x = o
sBy, p ≃ o

pBy, y ≃ p
oBp,

introducing projection (e.g., x = p
sBp simply states that the subject x has a property p

for some unknown object value, and so on). Explicitly deriving these expressions is a
perspective of the present preliminary work.
If we are able to explicitly compute the previous forms of theBwhich exist, thanks to

the stated algebraic properties, it would allow us to translate, at least the three previous
inference rules at the numerical level. However, in this case, at the implement level, we
do not set a single value to accumulate all possible derived results. Given this precision,
since:

x = p
sBp, p = po

s Bdomain c

we may implement
x = p

sB
po
s Bdomain c

while x = po
s Btype c, for any x and any c, we derive:

p
sB

po
s Bdomain = po

s Btype

and similarly:
p
oB

po
s Brange = po

s Btype

while for the last inference rule, we obtain:
po
s B po

s BsubPropertyOf = po
s B,

using the same kind of algebra.
Since our design choice leads to a multi-linear relation between the three statement

elements, by construction we can also easily define reification, i.e., define the statement
s itself, via a relation of the form:

s = spoBxpy

which is to be explicitized, and then obtain the rdf:subject, rdf:predicate, or rdf:object
from the calculated statement, by further algebraic combinations.

Other intrinsic OWL properties
Beyond our objective of integrating RDFS axioms, it appears that the properties of the
chosen algebraic VTB structure allows us to directly implement some of the OWL fea-
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tures. We already mentioned in 4.2 the possibility of inferring any predicate chaining,
allowing to implement OWL2 property chains (owl:ObjectPropertyChain, i.e., property
defined by appending two other properties)which generalizes thismechanism. Further
OWL features include:

• −c the complement of a class c (owl:complementOf)

• c1 + c2 the union of two classes c1 and c2, this definition may be extended to any
number of classes (owl:unionOf)

• the inverse p∼ of a property p (owl:inverseOf)

• if a property p is encoded as a vector p such that the matrix Bp is symmetric, we
can directly conclude that this property is symmetric. Indeed, the transpose of a
symmetric matrix is equal to itself; since the matrices are considered orthogonal,
the transpose is also the approximate inverse, therefore the approximate inverse
of a symmetric matrix is equal to itself (owl:SymmetricProperty)

Further investigating how other intrinsic OWL properties can be integrated is a per-
spective of the present work.

4.3.3 Introducing data and data structure
Representing literals
A step further, we not only define relationships between entities (i.e., “ObjectProperty”)
but also relate an entity to a literal (i.e., “DataProperty”), i.e., a quantitative or qualita-
tive value.
Regarding numerical values, it appears that we can easily define multidimensional

numerical values of the form:
v = ek11 + ek22 + · · ·

where ei is a identifier representing the ki-th component and ekii stands for the i-th
iterate of the binding operator (Komer et al., 2019). This allows to define integer values,
and even more.
If the binding is performed using a convolution operator, it is easily shown that this

generalizes to complex numbers.6
In our case, we propose an alternative and consider only “physical” numerical values

r, i.e., bounded in [min,max] and with a finite precision ε, which is practice, the case for
any physical value. We must thus write:

r
def
= k ε

max−min +min, k ∈ {0 · · · ⌊max−min
ε ⌋}

considering that two values v1, v2 with |v1 − v2| < ε are indistinguishable. Such strong
6In a nutshell, because it can be related to a numerical exponentiation via a Fourier transform (Komer
et al., 2019).
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specification is particularly useful for numerical calculus (normalized estimations, spu-
rious value detection, estimation precision threshold, . . . ) and in our case, it allows to
consider only the related positive integer value k.

Regarding string literals or qualitative values (e.g,. Boolean “true” or “false” value),
at this stage we simply propose to define one identifier (i.e. a string literal and a random
unit vector) for each value.

Data container
In RFD and in any knowledge specification, we need to define data containers (i.e.,
rdfs:Container),mainly either unordered (i.e., rdf:Bag or “set”) or ordered (i.e., rdf:Seq
or “list”).
More precisely, RDF/RDFS provides several classes to represent collections:
(i) rdf:Container, which includes the following subclasses:

(i.i) rdf:Seq, which is an ordered container,
(i.ii) rdf:Bag, which is an unordered container,
(i.iii) rdf:Alt, which contains a set of “alternatives”, the first element of which be-

ing the default, and the other elements constituting an unordered collection
(ii) rdf:List completed by:

• the properties rdf:first and rdf:rest

• the instance rdf:nil corresponding to the empty list

In our representation, ordered sets (rdf:List or rdf:Seq) could all be represented as
lists in the sense of RDF, in a recursive manner, by storing the following associations:

l→B(rdf:List, rdf:type)
+ B(l1, rdf:first)
+ B(l′, rdf:rest)

l′ →B(rdf:List, rdf:type)
+ B(l2, rdf:first)
+ B(l′′, rdf:rest)

...

l(n−1) →B(rdf:List, rdf:type)
+ B(ln, rdf:first)
+ B(rdf:nil, rdf:rest)

Furthermore, unordered sets of value are obviously represented by simple addition,
i.e.:

bag = x1 + x2 + · · ·
allowing to easily implement membership property, element addition and deletion.
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A step ahead, “Alternative” containers (i.e., rdf:Alt in the RDFS sense) are simply
implemented by a combination of the two previous representations, where rdf:first

points to an addition. Similarly, we could define vectors like indexed containers like in
(Eliasmith, 2013).

4.3.4 Effective neuronal implementation: an illustrative example for the
case of hierarchical rules

In order to illustrate these developments and validate the fact the proposed formalism is
effectively compatible with a biologically inspired approach, we have considered a very
small example of ontology (schematized in Fig. 4.3) inspired by the so-called “pizza”
tutorial ontology 7 (Horridge, 2011). To that end, we used theNengo simulator (Bekolay et
al., 2014),which provides an effective implementation of the Neural Engineering Frame-
work (NEF) and the Semantic Pointer Architecture (SPA). It enables building large-
scale bio-inspired models of spiking neurons by connecting together reusable modular
components (see Bekolay et al. (2014) for more details). Therefore, instead of directly
manipulating the neurons, we can implement our architecture using only those mod-
ular neural networks and the available connecting operations. Among other features,
it encompasses binding and unbinding operations defined within the VTB algebra, as
well as associative memories which allow us to store and recall patterns organized into
SPAvocabularies. Theoretical details underlying the implementation of such associative
memories are described in T.C. Stewart et al. (2011).

Figure 4.3: An example of a very simple ontologywith two individuals, black arrows correspond
to factual statements input in the data base and red arrows to inferred statements.
Rectangular boxes stand for individuals, round boxes for classes and arrows are la-
beled by properties.

7https://github.com/owlcs/pizza-ontology
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4 Reasoning on symbols: towards a biologically plausible model?

Nengo architecture
To illustrate the use of these features with an example, we considered two associative
memories as schematized in Fig. 4.5. 8 We created a Nengo vocabulary containing all
the resources of our ontology encoded as vectors, and we stored asserted memberships
and relationships between these resources into a first associative memory (AM1). In
a second associative memory (AM2), we stored the class inheritance entailment rule
correponding to rdfs9 in RDFS. Such an architecture could store more rules based on
predicate chaining but, for the sake of simplicity, we restricted our example to this one
only.

The idea is to query the knowledge base (stored into AM1) against the entailment
rules (stored into AM2) according to some specific cues: our network can therefore be
seen as a question answering system, where the question to answer is raised by these
cues. For instance, in our example, the system receives a subject cue (thisPizza) and
a predicate cue (type), which induce the question “what is the type of thisPizza”. A
third cue indicates which rule to use: in this case, the class inheritance entailment (in
practice, instead of a third cue, the network could keep a buffer of several rules to test
successively).

Results
In order to visualize the different steps of the data processing, we plotted the similar-
ities of the module outputs at several points of the architecture, compared against the
symbols in our vocabulary (Fig 4.4). From the initial set of statements, we are able to
infer that thisPizza belongs to the class Pizza.

Limits of the current approach
This preliminary study is to be completed at different levels. At a technical level, the
tensorial generalization in section 4.3.2 has been stated at an abstract level, and has yet
to be effectively implemented in order to target all RDFS mechanisms. The fact that
we rely on Description Logic Programming (DLP) restrains the possibility to take into
account the whole decidable part OWL2 specification and we aim to surpass this limit
by further studying the intrinsic algebraic properties of our representation. Wewill also,
as in human cognitive processes, consider “approximate” reasoning about undecidable
facts, by better considering the semantic offered by the possibility/necessity score used
here. Finally, we made explicit how literal representation is easily possible, but a lot of
work is still to be done to have this part fully operational.

4.4 Discussion and conclusion
What has been presented here is a proof of concept of mapping between RDFS (with
some OWL extensions) ontology specification and a biologically plausible numerical
8The code is openly shared at https://gitlab.inria.fr/line/aide-group/onto2spa
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Figure 4.4: The numerical simulation results. For each signal, we plot its cosine similarity against
the vocabulary. The cues guiding the reasoning (under the form of square inputs)
are plotted on the left, and processing steps are on the right (refer to Fig. 4.5 for the
location of each signal, marked by the circled numbers). We can observe the correct-
ness of the inferred object and predicate (respectively PIZZA and TYPE, plotted on
5 and 6) bound together to characterize the subject THIS_PIZZA.

implementation based on VSAs, with a preliminary partial numerical experimentation.
The key point is to demonstrate that symbolic knowledge, as possibly expressed in lan-
guages such as RDFS and OWL, can be also represented and manipulated with a nu-
merical neuronal formalism of associative memory. It is worthwhile to note that both
induction, as, for instance, in Domingos, 1996, and abduction could be formalized by in-
ference rules (see, e.g., Lakkaraju and Y. Zhang, 2000 for a computational example and
Shanahan, 2000 for a contribution regarding temporal reasoning). However, RDFS alone
only allows monotonic reasoning, which is insufficient for abductive reasoning; hence
the need for more generic OWL mechanisms for which non monotonic semantics have
been proposed (Knorr et al., 2012). Our position is that reasoning in the brain is mainly
related to the construction of mental models, as discussed in, e.g., Khemlani, Barbey, et
al., 2014, considering common-sense reasoning. Such a framework better corresponds to
human reasoning than pure logic reasoning, including modal logic reasoning Ragni and
P.N. Johnson-Laird, 2018. In any case, a mechanism to construct, enrich, and modify such
a mental model must be described. Regarding the genericity of this demonstration, it
is worth mentioning that G. Mandler (2011) propose that human memory can represent
three classes of structures (in short, associations, sequences and relational structures),
the three of them being discussed here. By plausibility, we indeed do not claim that this
is directly coded “as is” in the brain, but that what corresponds to symbolic processing
in the brain may be represented by such processing, as discussed by Eliasmith (2013).

We are well-aware that, in our representation, the ontology and inference rules are
“hard-coded” within the associative memories; the long-term perspective would be to
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Figure 4.5: A proposition of architecture to implement our ontology and inference rules in a
neuronal system, using the modules provided by the Nengo simulator. A subject
cue (thisPizza) and a predicate cue (type) prompt the question “what is the type of
thisPizza”; a third cue indicates the rule to use (class inheritance entailment). The
network retrieves information in each associative memory and combines them to in-
fer that thisPizza is not only a MargheritaPizza but also, through class inheritance,
a Pizza. (Data is in square boxes and their processing in round boxes. Rectangu-
lar purple boxes account for associative retrievals. The circled numbers are markers
locating which signals are plotted on Fig. 4.4.)
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learn those associations. As new observations come along, we wish to store the newly
observed relationships between individuals. A step further, logical inference as we pro-
posed is a way to learn new associations, both memberships and relationships, within
the ontology itself: for now, the newly inferred statements are only kept into the work-
ing memory, but we could store them for future use. Last but not least, we also wish to
learn the inference rules themselves, by spotting some patterns that are repeated within
the ontology. We presume that this vector formalism will facilitate learning, as it is the
representation used by most learning algorithms, although a concrete implementation
for this feature is still an open question. In order to remember inferred relationships,
the naive approach would be to change the connections in the associative memory or
even add new ensembles by hand. However, the neuroscience and machine learning
fields provide more sophisticated and biologically plausible solutions to this problem.
For example, Voelker et al. (2014) used a combination of unsupervised and supervised
learning to learn new key-value associations in spiking neurons online.
Regarding concrete applications to model problem solving as a process, T. Stewart and

Eliasmith (2011) have proposed an implementation for solving the Tower of Hanoi. The
SPA is also interesting regarding creativity, as reviewed earlier, with Kajić et al. (2017)’s
proposal which implements a version of the RAT test. This leads us to believe that such
an architecture could be a good starting point to implement the multiple processes in-
volved in creative problem solving at a biologically plausible level, although other neu-
ral dynamic approaches could also be considered (e.g., the cognon architecture pro-
posed by Rabinovich et al. (2023), or recurrent neural newtorks such as conceptors (Jaeger,
2017)).
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5.1 Perspectives and limits for learning sciences and education
The starting point for this thesis work was to discuss the potential contributions of
neuro-cognitive and computational modeling in education, andmore specifically in un-
derstanding and teaching transversal skills. In hindsight, what didwe bring to the table?

Using learning analytics to fit the trajectory of a simulated learner In the short
term, we should first point out that a direct computational model is not a finality in
itself; however, by simulating a parametrizable artificial agent, we could generate a CPS
trajectory and fit it to an actual learner’s trajectory. The question of what parameters to
adjust is a key point for learning science, because it also gives a measurable account of
individual differences in learning, which is useful for e.g. evaluating a skill with more
nuance than merely “being able to solve a problem”. Parameters could include both
symbolic and numerical variables such as prior knowledge (behavioral, conceptual) and
goal orientation (mastery, performance) associatedwith someweights. The parameters
fitting best to the learner’s trajectory may be validated or invalidated by pre- and post-
test questionnaires. However, in order to do that, we would need much more data than
we currently have (e.g. to perform Inverse Reinforcement Learning (Arora and Doshi,
2020)). To this end, we have also started two collaborations during my thesis.

First, with the help of Xlim in Poitiers, we are looking at algorithms to automatize
the annnotation of the CreaCube videos 1. The ontology of observables developed in
Chapter 2 may be useful in this context to constraint deep-learning methods, as it has
been done e.g. in Ruiz et al. (2023).
Second, thanks to LeMeudec et al. (2024)’s work, a virtual reality implementation of the

CreaCube task is now available, with at least two potential applications for our team:
(i) We can easily collect data on this task, for which annotations can be extracted from
the program logs. Of course, the user experience is quite different, but the protocol of
analysis should be very similar. (ii) We now have a physical model of the environment
that a simulated agent can interact with, potentially allowing to develop artificial agents
that behave in a more “embodied” way (well, still with virtual bodies).

Towards aCPS framework applicable tometa-learning In the longer term,wewish to
extend such a framework of analysis to other creative problem-solving tasks, including
collaborative problem solving.
1A first prototype has been developed as part of Théo Carmes’ internship, with the code available here:
https://github.com/TheoCarme/CreaCube
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Indeed, group processes are being studied in the CreaCube task from a learning sci-
ences perspective (Cassone et al., 2019). Operationalizing this to a computational level
would require a lot more work, but some elements regarding the computational and
social aspects are already underlying our study: from learning and developmental as-
pects as developed by Vygotski et al. (1934), to the collective perspective in the activity
theory as studied by Engestrom (2000),with influences on the componentialmodel of cre-
ative problem solving developed by Engestrom (2000). We could imagine an extension
of the present framework to Markovian multi-agents (see Table 3.1). Besides, the work
of LeMeudec et al. (2024) is actually a preliminary step towards the study of collaborative
processes in virtual reality, which is the subject of her PhD.

For obvious ethical reasons, the learner is aware of being engaged in a taskwith learn-
ing analytic evaluation. To what extends this could perturb the outcomes has been ad-
dressed in (Romero, 2019), in fact only marginally. Besides, this could be turned into a
significant advantage, since it is a way to engage the participants in understanding their
own learning process, opening opportunities tometa-learning. As discussed previously,
teaching such transversal skills may increase the students’ confidence by helping them
gain awareness about their own learning process, and getting themmotivated to “learn-
ing to learn” (UNESCO, 1996).
This could help preventing amotivation, which as shownahigh correlationwith school

failure (Sander et al., 2018). Furthermore, a better understanding of creative problem
solvingmayhelp bridging the gap betweendisciplines that are sometimes seen as antony-
mous (e.g. mathematics vs humanities) and strongly gendered, despite appealing to a
common set of skills. Highlighting the the common ground for these disciplines may
help balancing the gender repartition in higher education fields of study. Xiao et al. (2015)
has demonstrated it is equally essential for both men and women to provide them with
more creation-related cognitive activities, which is conducive to internalizing scientific
motivation for both groups and the improvement of scientific innovation level. In ad-
dition, it is more effective for girls to cultivate intrinsic motivation in science through
practical engagement in creative activities. This ambition is associated with the STEAM
approach: this acronym stands for “Sciences, Technology, Engineering, Art and Math-
ematics”, thus relating artistic aspects to technical disciplines formerly referred to as
STEM. Such skills should also be studied considering not only gender differences but
also other factors such as socio-cultural background, age (Romero, 2019) or neurodiver-
sity (Khalil and Moustafa, 2022).

Considering other transversal skills Beyond academic purposes, transversal skills
are crucial to develop the well-being and qualities of a citizen able to navigate in to-
day’s society. We have already mentioned the importance of developing a critical mind
and computational literacy at the era of Artificial Intelligence, in order to avoid passive
consumption of technology. A step further, we also include in transversal skills what is
commonly referred to as soft skills, that is to say, socio-emotional skills such as empathy,
which could be enhanced through collaborative activities. Some countries such as Den-
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mark already promote teaching empathy at school (Mygind and Bølling, 2022), hereby
preventing school harassment and bullying.
Transversal skills are all the more important in a fact-paced changing world. A few

decades ago, it was common to study for one specific job. With the development of
cutting-edge generative technologies, some professions may soon become outdated (al-
though possibly replacedwith newones), hence the need to be able to adapt quickly and
be able to learn new skills within a short time frame. Besides, navigating a world where
the frontier between deepfakes and reality is becoming blurry and the consequences of
climate change will be more and more impactful, present and future students are likely
to require stronger scientific and technical knowledge as well as critical thinking (OECD,
2019).

Limits of neuro-computationalmodels for education Despite the aformentioned ben-
efits of incorporating computational and neuro-cognitive frameworks to analyse educa-
tional practices, we need to be cautious of drawing prescriptive conclusions.
First, although computational models are useful to better understand a phenomenon,

it can be counter-productive to use suchmodels to, e.g, automatize learning paths at the
expense of self-led learning. In particular, adaptive learning (AI-led or not) consists in
adapting the difficulty and coverage of exercises based on the students’ skills to make
them progress best (e.g. as in Clement et al. (2014) by taking inspiration from the notion
the Zone of Proximal Development defined by Vygotsky and Luria (1980) in the context
of children development). Of course, this is not a bad practice in itself, and it is basically
what teachers do. However, in order to develop meta-learning, it is a good idea to make
this adaptive process flexible and transparent for the learner, e.g. by usingOpen Learner
Models (Guerra et al., 2016).
Another point of caution is minding the gap between neuro-cognitive theories, em-

pirical practices on the field and the students’ and teachers’ needs. One the one hand,
the foundations of educational practices sometimes suffer from a lack of evidence-based
studies (Carnine, 2000; L. Zhang et al., 2022). On the other hand, it seems unlikely that neu-
roscience alone can improve teaching and learning, at least not without the support of
psychology to bridge the gap between highly different levels of analysis as described in
our first chapter 1.1.2 and as discussed by e.g. Bowers (2016) and Horvath and Donoghue
(2016).
Moreover, theway such theories are diffused are often prone tomisinterpretation, and

numerous examples of “neuromyths” have been integrated into the popular thought or
even to the educational field, either due to an erroneous diffusion of a valid study, or a
lack of methodology in the study itself. Regarding creativity, a famous example is the
idea that the right brain hemisphere would be intuitive and emotional while the left
brain hemisphere would be analytical and reasoning oriented, with creative people us-
ing their right brain more. As reviewed in Chapter 1, creativity implies both analytical
and intuitive aspects, and despite the brain being indeed asymmetrical with a lateraliza-
tion of cognitive and motricity functions, this asymmetry does not follow such a simple
schema. Besides, an fMRI study has shown that most people do not use a hemisphere
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more than the other (Nielsen et al., 2013). The confusion may come from fact that, for
right-handed people, the left brain hemisphere dealing with the right-sided motricity
is called the “dominant hemisphere” because it specializes in some routine tasks. Some
other erroneous beliefs more specifically related to education have been debunked but
remain popular, such as the numerous theories of learning styles: these theories all pro-
pose different typologies to account for individual differences in learning (e.g. the VAK
model stating that we are either visual, auditory or kinesesthical learners), but none of
them has proven efficient to actually increase academic performance (Sander et al., 2018).
Regardless, there are also some successful examples of how neuro-cognitive theories
were used in instructional design to develop better teaching methods. For instance,
the cognitive load theory when designing exercises and problems with an appropri-
ate presentation of the information (Sweller et al., 2019) Another example is how spaced
repetition learning, based on knowledge on memory retention, has been proven to fos-
ter memorization (Kelley and Whatson, 2013); even better, Kang (2016) have shown that
spaced practice combinedwith tests could also enhance other forms of learning, includ-
ing problem solving, and generalization to new situations. We can thus hope for a simi-
lar success in the development of creative (sic) pedagogical activities allowing students
to better understand CPS processes so that they can approach new complex problems
without getting overwhelmed, through a critical and operational lens; and beyond CPS,
enhancing other transversal skills for their own confidence, well-being, and adaptation
to a fast-paced changing world.

5.2 Perspectives for computer science: towards better
explainable computational cognitive models?

Paradoxically, is the development of computational cognitive models indirectly con-
tributing to the fast-paced evolution of technology, the risks of which we previously
recalled? It is hard to predict how the field of artificial intelligence is going to evolve in
the next decade. Nevertheless, studying creative problem-solving from a computational
point of view also interrogates the limits of natural intelligence: this is one of the skills
targeted by Artificial General Intelligence (AGI) (J. E. Laird et al., 2017). Although most
researchers agree that we are still far from it, recent advances especially in the field of
generative machine learning has led models to display impressive capabilities, includ-
ing creative abilities, despite having no access to sensorimotor interactions and thus to
any kind of semantic grounding (Harnad, 2024).
Nevertheless, whenmanipulating knowledge, explicit symbolicmachine learningmech-

anism (i.e. reasoning), is muchmore efficient to infer knowledge from known facts, and
hybridmechanisms seemmandatory for complex taskswhere non-trivial a priori knowl-
edge is to be introduced (see, e.g, DePenning et al. (2011) for a realistic application). It
has also great advantages when both interpretability (by an expert) and explainability
(for end users) is a key feature, as discussed in Chraibi Kaadoud et al. (2022).

These features are essential if such learning mechanisms are used to model cognitive
functions. In addition, formal reasoning is by no means less costly than billions of oper-
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ations of deep networks computation, as studied by Desislavov et al. (2023), which limit
their academic use for usual research teams, beyond raised ecologic and ethical issues,
discussed by the authors. The use of such “black-box” tools at the modeling level is also
questionable as analyzed in Schaeffer et al. (2022).

Coupling both approaches should bring the required computational power to solve
complex problems or model complex brain functions, in an explainable way, and with
parsimonious resources consumption, and neural-symbolic computing brings together
robust learning in neural networks with reasoning and explainability via symbolic rep-
resentations. This has been an active area of research for many years, as recently re-
viewed in details byGarcez and Lamb (2023),who distinguish between different coupling
levels summarized as follow:

• Type 1: standard numeric computation with symbolic input/output (e.g., word2vec
nicely introduced in Rong (2016)). In this class of method, symbolic input is em-
bedded in a numerical space that is able to encounter the pertinent relation be-
tween the input symbols. The symbolic processing is devoted to, e.g., a deep
neural network in which output units feed a softmax (sometimes hierarchical)
mechanism attributing a kind of probability to each expected symbol.

• Type 2,3: hybrid systemswith symbolic and numericmodules interaction (e.g., AlphaGo)
corresponds to loosely-coupled neural networkwith a symbolic problem solver up
to more sophisticated interactions between both systems.

• Type 4,5: symbolic knowledge and rules are compiled in distributed calculation (e.g. Vec-
tor Symbolic Architectures (VSA) (Eliasmith, 2013)) either using localist mapping
of symbols or more complex embedding of symbolic rules, in both cases symbolic
knowledge is translated into the network architecture and parameters. Relevant
examples stand from localist logical neural networks (Riegel et al., 2020) to logic
tensor network (Serafini and Garcez, 2016).

An additional type 6 is evoked as a perspective on ongoing research2. The present work
precisely aims at considering type 4 or 5 coupling levels.
Up to our best knowledge, computational neuroscience models are mainly based on

either Type 1 mechanisms such as encoders, which yields an epistemological issues at
the modeling level, as evoked before. Models based on Types 2 and 3 are also used,
although quite exceptionally (e.g., Spens and Burgess (2023) who studied to what extent
the GPT model can account for hippocampus replay, by training neocortical generative
models; although it is not clearwhat is learned by such a general-purposemodel regard-
ing the hippocampus specificity, while such an approach is far from being refutable3),
2This layer is described as able to solve high cognitive functions, like attention schema, with the hope
of being able to perform efficient combinatory reasoning (i.e., find approximate solutions to NP-hard
problems by hybrid, de facto polynomial systems). This last point corresponds to existing algorithms
as for instance reviewed in Paschos (2007).

3We make here a distinction between the historic notion of falsifiability and refutability, see Olszewski
and Sandroni (2011) and Cartwright (1983) for a wider epistemological discussion on modeling.
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while the Type 5 SPA architecture (after Eliasmith (2013)) introduces an intermediate
algebraic abstract view of spiking neural network architectures, in order to develop
biologically plausible cognitive functionalities, and human knowledge representations
(Crawford et al., 2016), including high-level symbolic representation allowing reasoning
as covered in Chapter 4. Beyond epistemological issues, generative models of computa-
tional art also raise plagiarism-related ethical issues, as they are often trained on human
creative content and are likely to reuse such material in their outputs, even when it is
protected by copyright (Murray, 2023).

5.3 General conclusion
The present work, bound to the exploratory research action AIDE (Artificial Intelligence
for Education) is indeed still at an exploratory stage, with numerous perspectives and
only preliminary results. Following this divergent research phase, a convergent phase
will be needed to study behavioral data in light of our proposed framework. We believe,
however, that this approach constitutes a promising step towards computational learn-
ing sciences for a better understanding of complex creative problem-solving processes.
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A Schools of thought in Learning
Sciences

Learning Sciences are a multi-disciplinary field that has been influenced by various
schools of thoughts in psychology, cognitive neuroscience and artificial intelligence.
We propose in Figure A.1 a recapitulative timeline organized into three major themes –
(i) learning by association, (ii) learning by manipulating internal representations, (iii)
learning by interacting with the environment. We chose to focus mainly on compu-
tational paradigms that are addressed in this thesis work, which may result in partial
coverage, but allows for a better understanding of our perspective.
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A Schools of thought in Learning Sciences

WE LEARN BY 
ASSOCIATION

WE LEARN BY MANIPULATING
INTERNAL REPRESENTATIONS

WE LEARN BY INTERACTING 
WITH THE ENVIRONMENT

17th-19th
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Computational learning sciences in the Western world:
A partial timeline of schools of thought

In De memoria et reminiscentia, Aristotle posits that thoughts are
systematically connected within a chain, through relationships he
formalizes as similarity, contrast, and contiguity: association is thus the
natural ability to recall past experiences that are stored in the mind from
various cues.

Aristotelian laws of association

Ancient Greek philosophers such as Plato and Aristotle tried to understand
how humans learn and reason. Plato used dialectic as both a method of
reasoning and a means of philosophical training, while Aristotle is credited
with the  first formal study of logic, understood as the study of arguments.
An argument is a series of true or false statements which lead to a true or
false conclusion, and invalid arguments are called syllogisms. Aristotelian
principles dominated Western logic up to the 19th century.

Aristotelian formal logic

Members of the Associationist School included John Locke (17th),  David
Hume (18th), and two centuries later, Ivan Pavlov. The phrase “association
of ideas” was first used by John Locke in 1689, following Thomas Hobbes, to
describe how ideas can be connected. Some of the Associationists'
principles anticipated the notion of conditioning and its applications in
behavioral psychology.

The Associationist School

CENTURY

4th
CENTURY BC

In addition to rigorously articulating inductive and deductive reasoning,
Pierce proposed and defined the notion of abductive reasoning. This type of
reasoning is frequently employed in experimental research as of today to
draw conclusions from empirical observations. Peirce was also a pioneer in
statistics, and realized —long before computers were invented— that
electrical switching circuits could perform logical operations. 

Abductive reasoning

Bayesian probability theory

In the early 1900s, following his experiments on dogs, Ivan Pavlov develops
the concept of "conditioned reflex" (or in his own words the conditional
reflex) and the idea of "classical conditioning" as an automatic form of
learning by association. Classical conditioning can be used to alter
behavioral reactions by introducing preceding conditions. Later on, classical
conditioning has been examined across many different organisms,
including humans, and different contexts including learning settings. Its
underlying principles have influenced preventative antecedent control
strategies used in the classroom.

Pavlovian Conditioning

As Pavlov's research gained popularity in the West, behaviorism emerged
as a response to psychoanalysis and other forms of psychology directed
towards the unconscious, which frequently struggled to produce
hypotheses that could be verified through experimentation. Behaviorists
like J. B. Watson argued that psychology should only investigate the
relationship between perceptible stimuli and perceptible behavioral
reactions. Discussions about consciousness and mental images were
frowned upon. Through the 1950s, behaviorism dominated the
psychological scene, particularly in North America. 

Behaviorism

1900s

Hebbian theory is a neuropsychological theory introduced by Donald Hebb
in 1949, an attempt to explain synaptic plasticity (i.e., the adaptation of
brain neurons during the learning process). The theory postulates that an
increase in synaptic efficacy arises from a presynaptic cell's repeated and
persistent stimulation of a postsynaptic cell.

Fire Together, Wire Together

1950s

Cognitivism emerged in the 1950s as a response to behaviorism, which
cognitivists said neglected to explain cognition. In particular,  Noam
Chomsky argued that language acquisition could not be explained merely by
habit and had to be at least partially explained by the existence of internal
mental states. He instead suggested that language comprehension be
explained in terms of mental rules called grammars.
Meanwhile, in 1956, George Miller summarized numerous studies which
showed the limited capacity of human thinking (and in particular, working
memory). He proposed that such constraints can be overcome by forming
synthetic mental representations (chunks) that require mental procedures for
encoding and decoding the information.  Cognitive psychology is thus an
information-processing perspective on psychology, presupposing a mental
representation and manipulation of symbols, and a specific form of mental
activity of the kind advanced by computationalism.
At the same time, marked by the 1956 Darthmouth conference, pioneers
such as John McCarthy, Marvin Minsky, Allen Newell, and Herbert Simon
founded the field of (symbolic) Artificial Intelligence (AI).

The Cognitive Revolution: Cognitivism 
and the birth of Artificial Intelligence

Computationalism is a family of views that hold that the human mind is not
simply analogous to a computer program, but it is literally an information
processing (i.e., computational) system, that is realized (i.e. physically
implemented) by neural activity in the brain. McCulloch and Pitts (1943) were
the first to suggest that neural activity is computational and that neural
computations explain cognition. Computation here is commonly understood
in terms of Turing machines which manipulate symbols according to a rule, in
combination with the internal state of the machine. Computationalism was
vigorously disputed in the 1990s due to work by Putnam,  Searle, and others.

Computationalism

Associationism regain popularity in the studying of problem solving and
creativity, with the idea that cognitive processing in the mind involves
following a chain of associations from one idea to the next (Mandler, 1964)
and the development of the Remote Associate Test (Mednick, 1962). These
approaches were precursors for the study of creativity and memory
organization using random walks in semantic networks.

Associationism - the come back

1960s

The first wave appeared in the 1950s with Warren McCulloch and Walter
Pitts (1943) focusing on comprehending neural circuitry through a formal
and mathematical approach, and Frank Rosenblatt who introduced the
Perceptron in 1958. However, in 1969, a book written by Minsky and Papert
about the limitations of the original perceptron idea greatly contributed to
discouraging major American funding agencies from investing in
connectionist research, resulting in a period of inactivity for the field.

Connectionism - First Wave

The term “connectionist model” was reintroduced in the early 1980s by
Jerome Feldman and Dana Ballard. The second wave blossomed in the late
1980s, following the 1987 book about Parallel Distributed Processing by
James L. McClelland, David E. Rumelhart et al., which introduced several
improvements to the original perceptron, such as intermediate processors
(hidden layers) between input and output units. They also proposed the use
of a sigmoid activation function, building upon the work of John Hopfield,
who investigated the mathematical characteristics of such functions.

Connectionism - Second Wave

1980s

Constructivism has its roots in educational psychology and is associated with
Jean Piaget's theory of cognitive development. Piaget focused on how
humans form knowledge by relating their experiences and their ideas. His
views tended to focus on development of humans as individuals, rather than
influenced by other persons. Piaget's theory of constructivist learning has
had a significant influence on educational theories and pedagogies. Despite
being sometimes confused with constructionism, an educational theory
created by Seymour Papert and influenced by Piaget's concepts,
constructivism does not refer to a particular pedagogy. 
Piaget was also interested in representing how humans think about
uncertainty by possibility and necessity rather than probability, following the
work of his contemporaries on modal logic led by Kripke.

Constructivism and modal logic
Social constructivism stems from the work of Lev Vygotsky, who stressed the
importance of sociocultural learning and how learners internalize interactions with
more knowledgeable peers to form mental constructs through the zone of proximal
development (ZPD). Expanding upon Vygotsky's theory, social constructivist
psychologists developed the concept of instructional scaffolding, whereby the
environment offers supports for learning that are gradually withdrawn as they
become internalized.

Social Constructivism

In the 1930s, Alexei Leontiev developed and popularized a line of phenomelogical and
social science research now referred to as the Activity Theory, building upon
Vygotsky's cultural-historical framework. Leontiev proposes to view human processes
under the prism of activity, that is, a system in which a subject acts on an object,
towards a desired outcome, and through the mediation of instruments or tools.
This approach became predominant in both theoretical and applied psychology in the
former USSR, including education.

Activity Theory - First Wave (Russian)

Gestaltism is a theory of perception that focuses on the processing of whole patterns
rather than individual components. The Gestaltists empirically investigated the
perception of movement and contour, often using perceptual illusions. German
Gestalt psychologists such as Wertheimer were also particularly involved in the study
of problem solving: they proposed to distinguish between productive and
reproductive thinking, corresponding respectively to spontaneous insight versus
deliberation based on previous experience and knowledge.

Gestalt theory

The Scandinavian activity theory aims to integrate and develop concepts from
Vygotsky's and Leontiev's works with Western intellectual developments such as
Cognitive Science and Human-Computer Interaction. Engeström proposed to
reformulate and extend the Activity Theory by introducing “expansive learning” in the
late 1980s. He added a new layer to the original activity scheme in order to better
specify the case of collective activity, hereby introducing the notions of community,
rules,  and division of labour.

Activity Theory - Second Wave (Scandinavian)

The term affordances was coined by American psychologist James J. Gibson in 1966, and
defined as follow in 1979: “The affordances of the environment are what it offers the
animal, what it provides or furnishes, either for good or ill. [...]
 It implies the complementarity of the animal and the environment.”
In 1988, Donald Norman adapted the concept to the context of Human–Computer
Interaction to refer to “action possibilities” that are readily perceivable by a subject. In
Norman's definition, affordances depend not only on the physical capabilities of the
subject, but also on their goals, beliefs, and past experiences.

Affordance theory

Reinforcement learning (RL) emerged in the late 1980s and early 1990s, with TD-
Learning proposed by Richard Sutton in 1988 and Q-Learning developed by Chris
Watkins in 1992. It became an interdisciplinary area of machine learning with
applications in cognitive neuroscience, concerned with how an intelligent agent takes
actions in a dynamic environment to maximize a cumulative reward while considering
the exploration vs. exploitation trade-off.

Reinforcement Learning

1930s

In the 1990s and throughout the 2000s, various new theories, often influenced by
phenomenological and postmodern philosophy, challenged cognitivism and the idea
that thought was best described as computation. These include (among others):

enactivism: cognition arises through a dynamic interaction between an acting
organism and its environment;
situated cognition: knowledge is bound to activities within specific social, cultural,
and physical contexts;
embodied cognition: sensorimotor capacities shape cognitive functions.

Post-Cognitivism

The current wave has been marked by advances in Deep Learning allowing
for  great progress and research in tasks such as natural language
processing, image classification and speech recognition, resulting in a
connectionist revolution in the AI field.
Up until the 2010s, neural networks were typically trained as discriminative
models. Starting from 2014, innovations such as variational autoencoders
and generative adversarial networks allowed to develop the first deep
neural networks capable of learning generative models, followed by the
first transformer models in 2017.
In 2021, the release of DALL-E, followed by Midjourney and Stable Diffusion
marked the emergence of artificial intelligence art from natural language
prompts, questioning the nature of creativity.
In March 2023, GPT-4 was released, displaying impressive capacities of
mimicking human intelligence.

Connectionism - Third Wave

1990s

2000s

2010s

2020s

Cognitive load theory (Sweller, 1988) is a learning theory based on the
amount of working memory resources available in the human brain. It has
often been used in instructional design to improve the presentation of the
information to learners, as a way to enhance understanding and retention.

Cognitive Load Theory

Following the work of symbolic AI pioneers, several research projects of
computational cognitive architectures started in the late 1980s to be
pursued until the 2020s, the most famous ones being:

SOAR (Laird 83), oriented towards (although still far from) General AI,
that is, agents that can manipulate and learn knowledge to realize the
full range of cognitive capabilities found in humans;
ACT-R (Anderson 90), intended to specify how the human brain itself is
organized in a way that enables individual processing modules to
produce cognition;
CLARION (Sun and Peterson 98), aimed at an integrative framework to
explain and simulate cognitive and psychological phenomena.

More recent approaches include the Nengo/Spaun architecture, a neuro-
symbolic architecture allowing to manipulate symbols through artificial
spiking neural networks.

Cognitive Architectures

Neuro-symbolic AI is a type of artificial intelligence that integrates neural
and symbolic AI architectures to address the weaknesses of each, providing
a robust AI capable of reasoning, learning, and cognitive modeling. As
argued by Leslie Valiant, Gary Marcus and others, the effective construction
of robust computational models capable of reasoning, learning, and
cognitive modeling, demands the combination of symbolic reasoning and
efficient machine learning.

Neuro-symbolism

 In 1763, Thomas Bayes proved a special case of what is now called the Bayes'
theorem, paving the way for Bayesian inference and the Bayesian
Probability theory. From this theory derived the Markov Decision Processes
framework on which is based Reinforcement Learning. Bayesian inference is
also related to subjective logic, and hereby to abductive reasoning.

Figure A.1: Schools of thought in Learning Sciences.
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B The Creative Problem Solving
literature: stage models and dual
notions

The CPS literature produced a variety of models describing the CPS process. However,
despite their differences in terminology, they are rather similar in how they decompose
the process in several stages, as shown by Howard et al. (2008) in a recapitulative table
reproduced below.

Figure B.1: A comparison of creative process models proposed by, and reproduced from,
Howard et al. (2008).

These models have in common several dual notions, beyond the well-accepted di-
chotomy between divergent and convergent phases. Authors have made a distinction
between implicit versus explicit (or spontaneous versus deliberate) modes in interac-
tion, to be put in relation to stimulus-based versus goal-directed creative behavior, which
is likely to be influenced by the dual processing model of the fast-thinking versus slow-
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B The Creative Problem Solving literature: stage models and dual notions

thinking view of Kahneman (2011). The general idea is to differentiate explicit CPS,
which can be reported and consciously organized, experimented with, and analyzed,
from implicit CPS, with possibly the same level of efficiency but carried out automati-
cally from the expression of the problem with no access to its constituents and its mo-
tivations. Cognitive science researchers have agreed on such distinctions, but, when
entering into details, their descriptions have differed, with an established effect on the
scientific community as discussed in Zander et al. (2016).

Table B.1: The S1/S2 System as summarized by Tubb and Dixon (2014) following Stanovich and
West (2000), with supplements from Garcez and Lamb (2020); Reproduced from
Alexandre, Mercier, Palaude, Romero, and Vieville (2024)

System 1/implicit System 2/explicit
spontaneous mode deliberate mode
associative reasoning rule-based reasoning
parallel processing sequential processing
holistic dialectical reasoning, involving
understanding a system as a whole, con-
sidering its large-scale patterns, and re-
acting to them

analytic reasoning, thinking about system
parts and how they work together to pro-
duce larger-scale effects

automatic processing controlled processing
machine learning numeric processing
implementation

machine learning symbolic processing im-
plementation

short-term reactions long-term planning
relatively undemanding cognitively demanding
with large associative memory with limited working memory capacity
acquisition through biology and experi-
ence (see also primary knowledge)

acquisition through cultural and formal tu-
ition (see also secondary knowledge)

slow learning: requires a certain amount
of examples to extract pattern regular-
ities and adapt internal parameters ac-
cordingly

faster learning (a few explicit examples can
be enough)

fast retrieval thanks to the acquisition of
automatisms

slower retrieval; requires more cognitive
load

phylogenetically evolved first evolved recently

With the research objective of developing a computational model accounting for hu-
man learning, weneed to dissect these notions precisely up to their computationalmean-
ing at the implementation level. On the one hand, as summarized by Tubb and Dixon
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(2014) and detailed in Table B.1, there is the idea that these complementary dual pro-
cesses can all be related to each other. Such a view is not far from the Taoist concepts
of yin and yang, as discussed in Deborah Frisch’s commentary in the study by Stanovich
and West (2000). We consider this to be an interesting integrated view but believe that
it should be taken as an inspired outline; while (i) the two systems can act conjointly
and interact, (ii) some qualities may also be related to the other system; for instance, we
may consciously (thus explicitly) partially control our implicit system, as discussed by
Kühberger in Stanovich and West (2000) study. On the other hand, as summarized in Ta-
ble B.2, other dual aspects are to be taken into account that cannot be projected onto the
S1/S2 dual axis, thus showing that the cognitive processes involved in creative complex
ill-defined problem solving are multi-dimensional.

Table B.2: Other dual notions encountered in CPS. Reproduced from Alexandre, Mercier,
Palaude, Romero, and Vieville (2024)

Divergent /
convergent thinking As discussed earlier, these are two temporally separated phases

in creativity, in fact forming a triad with the preparation phase, as
analyzed by Amabile (1996).

Fast thinking (S1) /
slow thinking (S2) As shown in Table 1 and discussed by Tubb and Dixon, 2014 and

Augello et al., 2015. They considered that the divergent process de-
composes into exploratory versus reflective mechanisms, respec-
tively, with regard to the S1 versus the S2 system, and the conver-
gent process decomposes into tacit versus analytic mechanisms,
respectively.

Emotional /
cognitive According to Dietrich, 2004, the emotional versus cognitive knowl-

edge domain is crossed with the spontaneous versus deliberate
(thus S1 versus S2) domain to produce four basic types of creativ-
ity at the cognitive neuroscience level.

Semantic /
syntactic In the study by Alexandre, 2020a, the standard S1/S2 distinction

was discussed at the neuro-cognitive level, with different perspec-
tives making the difference between semantic and syntactic as-
pects. Furthermore, semantic value was related to emotional val-
uation.
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B The Creative Problem Solving literature: stage models and dual notions

Exploration /
exploitation This polysemic notion has a precise definition in reinforcement

learning and has been related to divergent versus convergent pro-
cesses by several authors, as reviewed by Quillien, 2019; to the best
of our understanding, it has a different meaning. The divergent
process in implicit (S1)modewas also named exploration by Tubb
and Dixon, 2014 and subsequent authors, and this seems to be yet
another concept.

Model-free /
model-based In problem solving involving reinforcement learning, as discussed

by, for example, A.G. E. Collins and Cockburn, 2020, learning and
decision making may involve a predictive mechanism of the envi-
ronment either explicitly or implicitly (with or without a model).
When considering a creative process, these aspects interact with
other dimensions mentioned here, as discussed by the authors.

Stimulus-driven /
goal-directed Alexandre, 2021 considered a systemic approach, distinguishing

two different neuro-cognitive modalities, as discussed in the con-
clusion of section 3, relating to the attention to external versus in-
ternal goals (Ede et al., 2020) Ede et al., 2020.This is also related to
top-down versus bottom-up processes, which are a relevant but
polysemic notion, as clarified in the text.

Flexibility /
persistence W. Zhang et al., 2020, following Nijstad et al., 2010 and Hommel and

Wiers, 2017, drew a link between divergent thinking and cognitive
flexibility, promoting “loose thinking” and creative thought as a
process introducingmore positivemood states, as opposed to con-
vergent thinking, which is associated with cognitive persistence,
for instance narrowing the focus of attention and increasing the
top-down control. As discussed by A. Collins and Koechlin, 2012,
flexibility is related to a form of exploration (as detailed above)
when referring to the choice of task sets and related actions when
attempting to complete a task, while the persistence of using a
given task set is related to exploitation, the link with the corre-
sponding reinforcement learning mechanisms being made by the
authors at the implementation level.

Default mode
network (DMN) /
central executive
network (CEN)

As reviewed by Alexandre, 2020a and Dietrich and Haider, 2017, the
DMN network is involved in the spontaneous bottom-up process-
ing mode of creativity, while the CEN network is used in creativ-
ity that emanates from the explicit system, a deliberate top-down
mode.
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C The anatomy of the human brain
The following recapulative figures and tables are aimed towards non neuroscientists
who, like I did, get a little lost within themap of brain regions. Please note that this pop-
ularization material synthesized from Wikipedia is only meant to spare you the hassle
of clicking multiple links and is by no means a scientific review.

Figure C.1: Localization of the different lobes in the human brain: the frontal lobe (blue), the
parietal lobe (yellow), the occipital lobe (red) and the temporal lobe (green). The
limbic lobe is not represented because it is situated underneath the other lobes, on
the medial surface of each hemisphere. The regions of the human brain within these
lobes are recapitulated in the two tables on the next page. Picture reprinted from
Wikimedia (public domain image).

(a) The surface of the cortex consists of ridges called
gyri (sg. gyrus) and depressions called sulci (sg.
sulcus). The largest sulci are also called fissures.
Reprinted from Wikimedia (public domain im-
age)

(b)We usually refer to specific regions by their loca-
tion with regard to one or several of these axes:
rostral-caudal (front-back), dorsal-ventral, and
medial-lateral.

Figure C.2: Some vocabulary regarding the names of the brain regions.
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C The anatomy of the human brain

Table C.1: Regions of the human brain within the lobes presented in Fig C.1 with matching col-
ors. Some of them, in bold text, are mentioned in the manuscript.

Cortex Frontal lobe Superolateral Prefrontal

Superior frontal gyrus
Middle frontal gyrus,

including Dorsolateral prefrontal cortex (dLPFC)
Inferior frontal gyrus (IFG)

(including Broca’s area in the dominant hemisphere)
Superior frontal sulcus
Inferior frontal sulcus

Precentral Precentral gyrus
Precentral sulcus

Medial/inferior Prefrontal

Superior frontal gyrus
Medial frontal gyrus

Paraterminal gyrus/Paraolfactory area
Straight gyrus

Orbital gyri/Orbitofrontal cortex
Ventromedial prefrontal cortex (vMPFC)

Subcallosal area
Olfactory sulcus

Orbital sulcus
Precentral Paracentral lobule

Paracentral sulcus

Both

Primary motor cortex
Premotor cortex

Supplementary motor area (SMA)
Supplementary eye field

Frontal eye fields

Parietal lobe Superolateral

Superior parietal lobule
Inferior parietal lobule
Supramarginal gyrus

Angular gyrus
Parietal operculum
Intraparietal sulcus

Medial/inferior
Paracentral lobule

Precuneus cortex (PCC)
Marginal sulcus

Both
Postcentral gyrus/Primary somatosensory cortex

Secondary somatosensory cortex
Posterior parietal cortex (PPC)

Occipital lobe Superolateral

Occipital pole of cerebrum
Occipital gyri

Lateral occipital gyrus
Lunate sulcus

Transverse occipital sulcus

Medial/inferior

Visual cortex
Cuneus

Lingual gyrus
Calcarine sulcus

Temporal lobe Superolateral

Transverse temporal gyrus/Auditory cortex
Superior temporal gyrus (STG)

(including Wernicke’s area in the dominant hemisphere)
Inferior temporal gyrus

Superior temporal sulcus
Middle temporal gyrus

Medial/inferior

lcus
Fusiform gyrus

Medial temporal lobe
Inferior temporal sulcus
Inferior temporal gyrus
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Table C.2: Regions of the human brain within the limbic and insular lobes, as well as the sub-
cortical areas.

Cortex Limbic lobe Parahippocampal gyrus

Entorhinal cortex (EC)
Perirhinal cortex
Postrhinal cortex

Posterior parahippocampal gyrus
Prepyriform area

Cingulate cortex/gyrus

Subgenual area
Anterior cingulate cortex (ACC)

Posterior cingulate cortex
Isthmus of cingulate gyrus:

Retrosplenial cortex

Hippocampal formation

Subiculum
Hippocampal sulcus

Fimbria of hippocampus
Dentate gyrus
Rhinal sulcus

Hippocampus proper (HPC):
Cornu Ammoni CA1, CA2, CA3, CA4

(sometimes considered part of the
medial temporal lobes)

Other
Indusium griseum

Uncus
Amygdala

Insular cortex (INS) or insular
lobe, folded deep within the lat-
eral sulcus (the fissure separating
the temporal lobe from the parietal
and frontal lobes)

Anterior insula
Posterior insula

Subcortical areas Thalamus

Basal Ganglia (BG)

Striatum:
dorsal striatum (caudate nucleus and putamen)

ventral striatum (nucleus accumbens and olfactory tubercle)

globus pallidus
ventral pallidum
substantia nigra

subthalamic nucleus
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D RDFS entailment rules
This appendix reproduces the entailment rules permitted by RDFS, allowing for deduc-
tive reasoning, defined in https://www.w3.org/TR/rdf-mt/. These rules are implemented
by reasoners such as Pellet.
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Index

abductive reasoning, 27, 56, 97, 98, 100
action, 20, 59
activity, 28
affordance, 12, 15, 33, 34, 38, 50–52
Alternative Uses Test (AUT), 34, 35, 54,

61
analogy, 27, 34, 55
anterior cingulate cortex (ACC), 40, 45

basal ganglia (BG), 38
behavior, 20, 59, 79
binding, 37

central executive network (CEN), 39, 40
closed-world, 99
collaboration, 8
computational thinking, 8
convergent thinking (CT), 10, 25, 43, 53,

55, 61
creative problem solving (CPS), 8, 19
creativity, 8, 19
critical thinking, 8

declarative/conceptual knowledge, 30, 32
deductive reasoning, 27, 56, 97, 98, 100
default mode network (DMN), 39, 40
distance, 51, 62, 84
divergent thinking (DT), 10, 21, 25, 27,

34, 35, 41, 43, 53, 54, 56, 60, 61,
93

edit distance, 85, 88, 90
elaboration (DT dimension), 35
episode, 37, 59, 79
episodic memory, 37, 40, 79, 80
exploitation, 59, 81
exploration, 59, 81

exteroception, 36

flexibility (DTdimension), 34, 35, 53, 55,
93

fluency (DT dimension), 34, 35, 55, 93

geodesic, 84, 85
goal-directed, 38, 42, 43, 73, 74, 82

habitual; stimulus-based, 38, 42, 43, 73,
74, 82

heuristic, 26, 47, 49
hippocampus (HPC), 37, 40

ill-defined, 10–12, 19
inductive reasoning, 27, 56, 97, 98
insight, 24, 40, 42, 46, 58
insular cortex (INS), 36, 39, 40
internalization, 31
interoception, 36
intuition, 40, 42

manifold, 84, 95, 97
Markov decision process (MDP), 78, 79
Markov property, 78
metacognition, 9, 42
method, 27, 30
model-based, 82
model-free, 82, 86
monotonic, 100, 113
motivation, 27–29
motive, 28

ontology, 10, 64, 86
open-world, 49, 53, 54, 100
orbito-frontal cortex (OFC), 38, 45
originality (DT dimension), 34, 35, 93
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Index

policy, 26, 49, 59, 80–83
prefrontal cortex (PFC), 36, 40, 41, 43
premotor cortex (PMC), 38
primary knowledge, 27, 29, 126
problem solving, 8, 19
problem space, 47
procedural memory, 37
procedural/behavioral knowledge, 30, 32
proprioception, 36
prospective memory, 40, 41
Q-learning, 10, 38, 61, 81–83
reinforcement learning, 10, 20, 45, 59, 77
RemoteAssociates Test (RAT), 34, 35, 42,

43, 55, 56, 61, 115
ResourceDescription Framework (RDF),

54, 72, 84, 101
ResourceDescription Framework Schema

(RDFS), 54, 61, 98, 100, 107, 112,
113, 132

salience network (SN), 39, 40
secondary knowledge, 27, 29, 126
semantic memory, 37, 53
Semantic PointerArchitecture (SPA), 96,

98, 99, 102, 115
sensory cortex, 36, 41
state value, 80
state-action value, 82
stimulus, 11, 25, 29, 34, 36, 40, 60
symbol, 22, 31, 48, 51
task, 28
task set, 44, 45, 61, 91, 92
Torrance Test of Creative Thinking (TTCT),

34, 35, 40
triples, 54, 95, 98, 101
Vector SymbolicArchitecture (VSA), 96,

98, 102, 113
Vector-derived Transformation Binding

(VTB), 103, 106
WebOntology Language (OWL), 54, 61,

64, 87, 98, 100, 107, 112, 113

working memory, 36, 40, 44, 57
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