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Structures substitutives en combinatoire, théorie des nombres, et géométrie discrete

Résumé : Ce travail vise a découvrir et a développer des liens entre trois domaines mathématiques liés
mais distincts : la combinatoire des mots, la théorie des nombres et la géométrie discrete. Du point
de vue de la combinatoire des mots, nous étudions les mots finis et infinis et les morphismes, qui agis-
sent comme des fonctions sur les mots. Les substitutions sont des morphismes qui satisfaisant certaines
propriétés supplémentaires. Nous nous concentrons sur les mots sturmiens, les mots d’Arnoux-Rauzy
et sur les morphismes sturmiens. Nous fournissons une formule pour déterminer I’exposant critique et
'exposant critique asymptotique de mots d’Arnoux—Rauzy réguliers. A ’aide de cette formule, il est
possible de prouver que ’exposant critique minimal et ’exposant critique asymptotique minimal parmi
les mots d’Arnoux—Rauzy réguliers d-aires sont atteints par le mot de d-bonacci. Nous introduisons une
représentation fidele du monoide spécial de Sturm par des matrices 3 X 3 avec des entrées entiéres pos-
itives (y compris 0) qui ont une matrice d’incidence correspondante dans le coin supérieur gauche. A
I’aide de cette représentation, nous abordons la question des racines carrées des points fixes des mor-
phismes dans le monoide spécial de Sturm. En ce qui concerne la théorie des nombres, nous étudions
les numérations de position pour les nombres entiers positifs et négatifs: nous définissons un analogue de
la notation du complément & deux pour Z en nous basant sur ’algorithme du complément a deux basé
sur la séquence des nombres de Fibonacci. Nous ’appelons la numération du complément de Fibonacci
pour Z et nous démontrons ses propriétés en ce qui concerne l’addition. Nous retrouvons la numération
du complément de Fibonacci dans un autre contexte de systémes de numération qui décrivent des points
fixes et périodiques de substitutions. Nous appelons ces systémes de numération systemes de numération
de Dumont-Thomas pour 7Z, nous montrons qu’ils sont caractérisés par un ordre total particulier et qu’ils
peuvent étre naturellement étendus & Z?, d > 1. La géométrie discréte est présente sous la forme de
pavages de Wang. En utilisant le systéme de numération du complément de Fibonacci étendu & Z2, nous
caractérisons un pavage particulier du plan comme une séquence automatique.

Mots-clés : langage, pavage, dynamique symbolique, combinatoire

Substitutive structures in combinatorics, number theory, and discrete geometry

Abstract: This work aims to discover and develop links between three related but distinct mathematical
domains: combinatorics on words, number theory and discrete geometry. From the point of view of
combinatorics on words, we study finite and infinite words and morphisms, which act as maps on words.
Substitutions are morphisms satisfying some additional properties. Namely, we focus on Sturmian and
Arnoux—Rauzy words and on Sturmian morphisms. We provide a formula to determine both critical and
asymptotic critical exponent of regular Arnoux—Rauzy words. With the help of this formula, we prove
that the minimal critical and minimal asymptotic critical exponent among regular d-ary Arnoux—Rauzy
words is attained by the d-bonacci word. We introduce a faithful representation of the special Sturmian
monoid by 3 x 3 matrices with nonnegative integer entries, which enables us to tackle the question of the
square roots of fixed points of morphisms in the special Sturmian monoid. As for the number theory, we
study positional numeration systems for both nonnegative and negative integers: we define an analogue
of the two’s complement notation for Z based on the sequence of Fibonacci numbers. We call it the
Fibonacci complement numeration system and we study its properties with respect to addition. We
recover this positional numeration system in another context of numeration systems which describe fixed
and periodic points of substitutions as automatic sequences. We call these numeration systems Dumont—
Thomas numeration systems for Z, we show that they are characterized by a particular total order and
they extend naturally to Z¢, d > 1. The discrete geometry is present in the form of Wang tilings. Using
the Fibonacci complement numeration system extended to Z2, we characterize a particular tiling of the
plane as an automatic sequence.

Keywords: language, tilings, symbolic dynamics, combinatorics




Substitutivni struktury v kombinatorice, teorii Cisel a diskrétni geometrii

Abstrakt: Cilem této prace je zkoumat a rozvijet souvislosti mezi tfemi pribuznymi matematickymi
obory: kombinatorikou na slovech, teorii ¢isel a diskrétni geometrii. Z hlediska kombinatoriky na slovech
zkoumame konecna a nekonecné slova a morfismy, které zobrazuji slova na slova. Specidlnim ptipadem
morfismt jsou substituce, které spliuji urcité dalsi vlastnosti. Konkrétné se zabyvame sturmovskymi
a Arnouxovymi-Rauzyovymi slovy a sturmovskymi morfismy. Prezentujeme vzorec pro vypocet kritick-
ého a asymptotického kritického exponentu regularnich Arnouxovych-Rauzyovych slov. Pomoci tohoto
vzorce lze ukéazat, ze minimdlni kriticky i minimélni asymptoticky kriticky exponent mezi regularnimi
Arnouxovymi-Rauzyovymi slovy nad abecedou kardinality d je nabyvan pro d-bonacciho slovo. Pred-
stavime vérnou reprezentaci specidlniho sturmovského monoidu pomoci matic rozméru 3 x 3 s neza-
pornymi celoc¢iselnymi prvky, kterd umoznuje urcit morfismus, jehoz pevnym bodem je tzv. odmocnina
z pevného bodu morfismu. Navic popiSeme algoritmus urceni vérné reprezentace, diky Cemuz objasnime
vztah mezi vérnymi reprezentacemi vzajemné konjugovanych morfismii. Co se tyce teorie ¢isel, studujeme
pozi¢ni ¢iselné soustavy pro celd ¢isla: definujeme pozi¢ni ¢iselnou soustavu, kterd je analogicka ke dvo-
jkovému doplnku, ale namisto mocnin ¢isla 2 uziva Fibonacciho ¢isla. Tuto ¢iselnou soustavu nazyvame
Fibonacciho doplnék a popisujeme jeji vlastnosti vzhledem ke s¢itdni. V jiném kontextu ukazeme, zZe
Fibonacciho doplnék patii mezi ¢iselné soustavy, které popisuji pevné a periodické body substituci jako
automatické posloupnosti. Tyto soustavy nazyvame Dumontovy—Thomasovy numeracni systémy pro Z,
ukézeme, Ze jsou charakterizovany uréitym tdplnym uspofadanim a lze je pFirozené rozsfiit na Z<¢, d > 1.
Diskrétni geometrie je zastoupena predevsim ve formé Wangovych dlazdéni. S pomoci Fibonacciho do-
plitku rozsifeného na Z2 charakterizujeme uréité Wangovo dlazdéni roviny jako automatickou posloupnost.
Klicova slova: jazyk, dldzdéni, symbolické dynamické systémy, kombinatorika




This thesis was written within the scope of a “Cotutelle contract” between the Czech Technical
University in Prague and the University of Bordeaux. According to this agreement, the long
abstract is written in English, French and Czech.

Long abstract

This work aims to discover and develop links between three related but distinct mathematical
domains: combinatorics on words, number theory and discrete geometry. The representation of
these domains in this work is the following. From the point of view of combinatorics on words,
we study finite and infinite words and morphisms, which act as maps on words. Substitutions
are morphisms satisfying some additional properties. Both morphisms and substitutions provide
what we call a substitutive structure. Namely, we focus on Sturmian and Arnoux—Rauzy words
and on Sturmian morphisms. As for the number theory, we study positional numeration systems
for both nonnegative and negative integers. The discrete geometry is present in the form of
Wang tilings — coverings of the plane by squares with colors on the edges, called Wang tiles, so
that colors on the adjacent edges match. As the highlight of this text, we study a particular set
of Wang tiles Z and we show its close relation to two-dimensional morphisms and numeration
systems. Characterizing a particular tiling of the plane by the tiles Z as an automatic sequence,
we make an unconventional link between the three domains. This text is structured into five
chapters containing results of five scientific papers (including 2 conference papers), which have
either been published or are under review in international scientific journals. We present the
list of the papers in Section [[.I] Moreover, each chapter contains additional results where the
author develops or generalizes the published or submitted papers.

Positional numeration systems: Numeration systems enable us to represent numbers
by finite words over a suitable alphabet. In this text, we only consider the numeration systems
which represent integers by finite words over an alphabet consisting of nonnegative integers. For
instance, in the classical binary numeration system, a nonnegative integer n € N is expressed
as a sum of powers of 2, which gives rise to its representation over the binary alphabet X =
{0,1}. The value map valy : ¥* — N of the binary numeration system evaluates a word w =
Wg_1Wg_3 - - - wiwg of length k over the binary alphabet as the sum

k—1
valg(w) = Z w; 2",
=0

For every nonnegative integer n € N, there exists a unique binary word w which does not start
with leading zeroes such that valy(w) = n. This word w is called the binary representation of n
and denoted repy(n). One of the ways to generalize the binary numeration system to all integers
is the two’s complement notation [Knu98| §4.1]. Its value map valg. : ¥* — Z assigns to a binary
word w = wi_qwWi_s - - - wiwo € B the difference between valy (w) and the most significant digit
wg_1 multiplied by the k-th power of 2

k—1
valg.(w) = —wy_12% + Z w; 2"
i=0

The numeration systems which are based on an increasing sequence of nonnegative integers and
which evaluate representations by multiplying letters in w with the elements in the sequence
in a corresponding position are called positional. The so far presented positional numeration
systems use the sequence of powers of 2, however, we can use other strictly increasing sequences

such as the sequence of Fibonacci numbers (F;)£%. This sequence is defined by a recurrence



relation such that the next number is obtained as the sum of the previous two numbers, starting
from Fy = 1 and F; = 2. The value map valr of the Fibonacci numeration system for N evaluates
a binary word w as the sum

k—1
valr(w) = Z w; F;.
1=0

In Chapter [3] we generalize the Fibonacci numeration system to Z in an analogous way to the
two’s complement notation and we call it the Fibonacci complement numeration system for Z.
Its value map valr. : ¥* — Z assigns to a binary word w the sum

k—1
Val}'c(w) = —wg_1F, + Z w; F.
=0

We show that for every n € Z there exists a unique odd-length word such that n = valz.(w), w
does not contain consecutive ones and w ¢ 000¥* U 101X*.

Proposition The map valz.: L(EX)* \ (2*11¥X* U 000X* U 101X*) — Z is a bijection.

The representation map repr, of the Fibonacci complement numeration system is thus defined
as the inverse map of valr.. We show the properties of the Fibonacci complement numeration
system with respect to addition. Moreover, we describe a new class of numeration systems for
Z which contains both the two’s complement numeration system and the Fibonacci complement
numeration system. This is why we call the class the complement numeration systems. We char-
acterize the representation map of every complement numeration system as a bijection increasing
with respect to a particular total order <.

n rep . (n) n | repr.(n) n | repr.(n)
—10 1000100 0 0 10 0010010
-9 1000101 1 001 11 0010100
-8 1001000 2 010 12 0010101
-7 1001001 3 00100 13 0100000
—6 1001010 4 00101 14 0100001
—5 10000 5 01000 15 0100010
—4 10001 6 01001 16 0100100
-3 10010 7 01010 17 0100101
—2 100 8 0010000 18 0101000
-1 1 9 0010001 19 0101001

Sturmian and Arnoux—Rauzy words and morphisms: Sturmian words are a class
of infinite aperiodic words over the binary alphabet, which belong to the most explored objects
in combinatorics on words. They may be defined as the infinite words which contain n + 1
distinct finite words (factors) of length n, for every n € N. An example of Sturmian words is the
Fibonacci word which starts with the following prefix

f = abaababaabaababaabab - - - .

Words that generalize Sturmian words to d-ary alphabets for any integer d > 2 are called
episturmian [DJP01|. Episturmian words are such that their language is closed under reversal
and they have at most one right special factor of every length. The d-ary Arnoux—Rauzy words
form a subclass of the episturmian words, which are called strict episturmian. An example of
Arnoux—Rauzy words is the Tribonacci word which starts with the following prefix

t = abacabaabacababacabaabacab - - - .
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A particular subclass of the Arnoux—Rauzy words are the d-bonacci words. The Fibonacci word
is a d-bonacci word for d = 2 and the Tribonacci word is a d-bonacci word for d = 3.

The critical exponent of a right-infinite word expresses the maximal repetition rate of factors
in the word. Similarly, the asymptotic critical exponent of a right-infinite word expresses the
maximal repetition rate of factors in the word when their length grows to infinity. In Chapter [4]
we present our results concerning the critical exponents of d-ary Arnoux—Rauzy words. We
provide a formula to determine both critical and asymptotic critical exponent of regular Arnoux—
Rauzy words. With the help of this formula, it is possible to prove that the minimal critical
exponent and the minimal asymptotic critical exponent among regular d-ary Arnoux—Rauzy
words is attained by the d-bonacci word. Moreover, in the special case of d-bonacci words
for 4 < d < 15, we show that their critical exponent coincides with their asymptotic critical
exponent.

A morphism p is a map which assigns to every letter a in an alphabet A a finite word over
A and which fulfills the condition that p(uv) = u(u)u(v), for every pair of finite words u, v over
A. Tt can be naturally extended to right-infinite words u € AN by the rule pu(uouiuz---) =
p(ug)p(ur)p(ug) -+, A right-infinite word u € AN is called a fixed point of p if u = p(u).
Similarly, a right-infinite word u € AN is called a periodic point of j if there exists an integer
p > 1 (called a period) so that u = p?(u). Left-infinite and two-sided fixed and periodic points
are defined in an analogous way. A letter a € A is called growing with respect to p if the length
of u™(a) grows to infinity when n goes to infinity. If u € A% is a two-sided word, we separate
by a vertical bar its elements u_; and wug to indicate the origin. If the letters u_; and ug are
growing, then the periodic point u = pP(u) is defined entirely by its seed u_1|ug. More precisely,
u = limyg s oo g% (u1)|pP* (uo).

Morphisms which map Sturmian words to Sturmian words are called Sturmian morphisms
and they form the so-called monoid of Sturm. A particular submonoid of the monoid of Sturm
is called the special monoid of Sturm. Morphisms over the binary alphabet can be represented
by 2 x 2 matrices with nonnegative integer entries which are called incidence matrices. Two
distinct morphisms might be represented with the same incidence matrix, meaning that this
representation is not faithful. In Chapter [5] we introduce a faithful representation of the special
Sturmian monoid by 3 x 3 matrices with nonnegative integer entries which have a corresponding
incidence matrix in the top-left corner. With the help of this representation, we tackle the
question of the so-called square roots of fixed points of morphisms in the special Sturmian monoid.
Moreover, we describe an algorithm to determine the faithful representation of morphisms in the
special Sturmian monoid, which clarifies the relationship between the faithful representations of
mutually conjugate morphisms.

Automatic sequences: Cobham proved in 1972 that there is an equivalence between
the right-infinite fixed points of k-uniform morphisms and the sequences obtained by feeding
a deterministic finite automaton with output with the base-k representations of N [CobT72|,
[AS03, §6], where k > 2. A k-uniform morphism is such that u(a) has length k, for every a € A.
More precisely, it follows from the Cobham’s results that if 4 : A* — A* is a k-uniform morphism
and u is the fixed point u = p(u) with growing letter ug = a, the letter at every position n € N is
obtained as A, q(repy(n)) where A, 4 is a deterministic finite automaton with output canonically
associated with p and a. The k-uniform morphisms fulfill naturally that they are not erasing
and they have a growing letter. Morphisms having these two properties are called substitutions
[Fog02]. The idea of Cobham was extended to the fixed points of all substitutions [RMO02],
using the deterministic finite automata with output canonically associated with substitutions and
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a much broader definition of numeration systems as regular languages. These numeration systems
which might not be positional are called abstract numeration systems. Later on, a generalization
for the fixed points of multidimensional morphisms was proposed [CKR10]. Another approach
to define numeration systems for representing nonnegative integers, as well as real numbers in
a certain interval, were proposed in [DT89] by Dumont and Thomas. Every Dumont—Thomas
numeration system for N is based on a fixed point of a substitution.

In Chapter [6] we extend the Dumont-Thomas numeration systems for N to Z. We show that
every two-sided periodic point of a substitution with a growing seed is an automatic sequence.

Theorem Let n : A* — A* be a substitution and u be a two-sided periodic point with
a growing seed s = u_i|ug. Then, for every n € Z, we have u, = A, s(rep,(n)).

The deterministic finite automaton emerges from the canonical automaton A, , by adding a new
initial state start and two extra edges. Also, we prove that the Dumont—Thomas numeration
systems for Z are bijections increasing with the total order < defined in Chapter[3] Thanks to this
property, we recover the two’s complement numeration system and the Fibonacci complement
numeration system as Dumont—Thomas numeration systems for Z. As a new unpublished result,
we show a sufficient condition for the Dumont—Thomas numeration systems to be positional,
linking them to the positional numeration systems described in Chapter Finally, we show
that these numeration systems can be naturally extended to Z¢ for every d > 1. The Fibonacci
complement numeration system extended to Z? is of particular interest as it may be used to
describe a Wang tiling as an automatic sequence which we show in Chapter [7]

Wang tilings: A Wang tile is a unit square with a color on each edge. Given a finite set
of Wang tiles, we assume that we have infinitely many copies of them and we are allowed to
arrange two Wang tiles side by side (without rotating them) provided that the colors on their
common edge match. In general, we are interested in such sets of Wang tiles which tile the
plane, but which do not do so in a periodic way. Given a set of Wang tiles, the set of all tilings
of the plane is called a Wang shift and a Wang shift is called aperiodic if it does not contain
a periodic tiling. Wang shifts have been studied since 1961 and since then aperiodic Wang shifts
with gradually smaller tile sets were discovered. Finally in 2021, Jeandel and Rao described an
aperiodic Wang shift based on 11 tiles and they proved that every set with less than 11 Wang
tiles admits a periodic tiling [JR21]. Shortly after, a set of 19 Wang tiles ¢ which is aperiodic,
minimal and self-similar was constructed based on the Jeandel-Rao Wang set [Lab21},Lab19].

O O M M P P K K O L
JOF||HIF||[F2J||F3D||J4H||H5H||[F6H|[D7TH||I8B||E9G
O L P K P N P P ) )

L L P P P P K K N
C10G|| I11A||G12E|| T13E||G14T || 1151 ||B161 [|[A171 || I118C
L 0 P P K K M K P

In Chapter [7], we study a particular set Z of 16 Wang tiles which emerged from U by identi-
fying some colors. As a new unpublished result, we show that the Wang shift 2z is topologically
conjugate to the Wang shift €2,. As a corollary, we have that )z is aperiodic, minimal and
self-similar.

O O M M P P
JODIH1D|D2J||D3D||J4H||H5H|[D6H||I 7B
O L P P N P 0
L L L P K N
EST|[CO9T|/T10A||I11IE|| 1121 |B131||A141| 115C
(0) L 0) P M K P
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We show that the set Z admits a Wang tiling of the plane described by a deterministic finite
automaton with output, which takes as input the representation of a position nm € Z? in the
Fibonacci complement numeration system extended to Z? and outputs a Wang tile.

Theorem [7.4.1] There exists a deterministic finite automaton with output A such that the
configuration
r: 7> — {0,1,...,15}
n o Alreps(n))

satisfies the condition that x € Qz.

Résumé long

Ce travail vise & découvrir et développer des liens entre trois domaines mathématiques liés
mais distincts: la combinatoire des mots, la théorie des nombres et la géométrie discréte. La
représentation de ces domaines dans ce travail est la suivante. Du point de vue de la combinatoire
des mots, nous étudions les mots finis et infinis et les morphismes, qui agissent comme des
fonctions sur les mots. Les substitutions sont des morphismes satisfaisant certaines propriétés
supplémentaires. Les morphismes et les substitutions fournissent ce qu’on appelle une structure
substitutive. Nous nous concentrons sur les mots sturmiens, les mots d’Arnoux—Rauzy et sur les
morphismes sturmiens. En ce qui concerne la théorie des nombres, nous étudions les numérations
de position pour les nombres entiers. La géométrie discréte est présente sous la forme de pavages
de Wang. Une tuile de Wang est un carré avec des couleurs sur les bords. Un pavage de Wang
est un recouverment du plan par des tuiles de Wang, de maniére a ce que les couleurs des bords
adjacents correspondent. Nous étudions un ensemble particulier de tuiles de Wang Z et nous
démontrons son rapport avec les morphismes multidimensionnels et les systemes de numération.
Caractérisant un pavage particulier du plan par les tuiles Z comme une séquence automatique,
nous établissons un lien non-conventionnel entre les trois domaines. Cette these est structurée
en cing chapitres contenant les résultats de cing articles (dont 2 articles de conférence), qui ont
été publiés ou sont en cours de révision. Nous présentons la liste des articles dans la Section [1.1
Chaque chapitre contient des résultats supplémentaires ou 'auteur développe ou généralise les
articles publiés ou soumis.

Numération de position: Les systémes de numération nous permettent de représenter
les nombres par des mots finis sur un alphabet approprié. Dans ce texte, nous ne considérons
que les systemes de numération qui représentent les entiers par des mots finis sur un alphabet
composé d’entiers positifs (y compris 0). Par exemple, dans le systéme de numération binaire
classique, un entier positif n € N est exprimé comme une somme de puissances de 2, ce qui donne
lieu & sa représentation sur l'alphabet binaire ¥ = {0, 1}. La fonction valy : ¥* — N du systéme
de numération binaire évalue un mot w = wy_jwg_o - - - wiwg de longueur k sur ’alphabet binaire
comme la somme

k—1
valg(w) = Z w; 2"
=0

Pour tout entier positif n € N, il existe un unique mot binaire w qui ne commence pas par
des zéros initiaux, tel que vala(w) = n. Ce mot w est appelé représentation binaire de n et
noté repy(n). Une des fagons de généraliser le systeme de numération binaire & tous les entiers,
y compris les négatifs, est la notation du complément & deux [Knu98| §4.1]. La fonction valy, :
Y* — Z attribue & un mot binaire w = wy_jwk_o - - - wiwg € LF la différence entre vala(w) et le
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chiffre le plus significatif wy_1 multiplié par la k-iéme puissance de 2

k—1
valge(w) = —wp_12F + Z w; 2"
i=0

Les systemes de numération qui sont basés sur une séquence croissante d’entiers positifs et qui
évaluent les représentations en multipliant les lettres de w avec les éléments de la séquence a une
position correspondante, sont appelés numérations de position. Les numérations de position
présentées jusqu’a présent utilisent la séquence des puissances de 2. Cependant, on peut utiliser
d’autres séquences strictement croissantes comme la suite des nombres de Fibonacci (F;)f5.
Cette suite est définie par une relation de récurrence telle que chaque terme est obtenu comme
la somme des deux termes précédents, en commencant par Fy = 1 et F; = 2. La fonction valr

de la numération de Fibonacci pour N évalue un mot binaire w comme la somme
k—1
valr(w) = Z w; F.
i=0

Dans le chapitre [3} nous généralisons la numération de Fibonacci & Z de maniére analogue a la
notation du complément a deux et nous ’appelons la numération du complément de Fibonacci
pour Z. Notons la Fec. Sa fonction valg. : ¥* — Z assigne & un mot binaire w la somme

k—1

val;c(w) = —wp_1Fp + Z w; F;.
=0

Nous démontrons que pour chaque n € Z il existe un mot unique de longueur impaire tel que
n = valz.(w), w ne contient pas de 1 consécutifs et w ¢ 0003* U 101%*.

Proposition La fonction valg.: L(X3)*\ (X*11X* U000X* U 101¥*) — Z est une bijec-
tion.

La fonction de représentation repr, de la numération Fc est donc définie comme la fonction in-
verse de val r.. Nous démontrons les propriétés de la numération Fc en ce qui concerne I’addition.
De plus, nous décrivons une nouvelle classe de numération pour Z qui contient a la fois le complé-
ment & deux et la numération du complément de Fibonacci. C’est pourquoi nous appelons cette
classe systemes de numération complémentaire. Nous caractérisons la fonction de représentation
de chaque systeme de numération complémentaire par une bijection croissante relativement a un
ordre total particulier <.

n repr.(n) n | repr.(n) n | repr.(n)
—10 1000100 0 0 10 0010010
-9 1000101 1 001 11 0010100
-8 1001000 2 010 12 0010101
-7 1001001 3 00100 13 0100000
—6 1001010 4 00101 14 0100001
-5 10000 5 01000 15 0100010
—4 10001 6 01001 16 0100100
-3 10010 7 01010 17 0100101
-2 100 8 0010000 18 0101000
-1 1 9 0010001 19 0101001

Mots sturmiens, mots d’Arnoux—Rauzy, morphismes sturmiens Let mots stur-
miens sont une classe de mots apériodiques infinis sur ’alphabet binaire, qui font partie des
objets les plus explorés en combinatoire des mots. Ils peuvent étre définis comme les mots infinis



qui contiennent n + 1 mots finis distincts (facteurs) de longueur n + 1, pour chaque n € N. Un
exemple de mots sturmiens est le mot de Fibonacci qui commence par le préfixe suivant

f = abaababaabaababaabab - - - .

Les mots généralisant les mots sturmiens aux alphabets d-aires pour tout entier d > 2 sont
appelés épisturmiens [DJP01]. Les mots d’Arnoux—Rauzy d-aires forment une sous-classe des
mots épisturmiens, qui sont appelés mots épisturmiens stricts. Un exemple de mots d’Arnoux—
Rauzy est le mot de Tribonacci qui commence par le préfixe suivant

t = abacababacababacababacab - - - .

Une sous-classe particuliere de mots d’Arnoux—Rauzy sont les mots de d-bonacci. Le mot de
Fibonacci est un mot de d-bonacci pour d = 2 et le mot de Tribonacci est un mot de d-bonacci
pour d = 3.

L’exposant critique d’un mot infini exprime le taux de répétition maximal des facteurs dans
le mot. De méme, ’exposant critique asymptotique d’un mot infini exprime le taux de répétition
maximal des facteurs dans le mot lorsque leur longueur croit a l'infini. Dans le chapitre [4]
nous présentons nos résultats concernant les exposants critiques de mots d’Arnoux—Rauzy d-
aires. Nous fournissons une formule pour déterminer ’exposant critique et I’exposant critique
asymptotique de mots d’Arnoux-Rauzy réguliers. A Dlaide de cette formule, il est possible de
prouver que l'exposant critique minimal et 'exposant critique asymptotique minimal parmi les
mots d’Arnoux—Rauzy réguliers d-aires sont atteints par le mot de d-bonacci. De plus, dans le
cas de mots de d-bonacci pour 4 < d < 15, nous démontrons que leur exposant critique coincide
avec leur exposant critique asymptotique.

Un morphisme p est une fonction qui assigne a chaque lettre a dans un alphabet A un mot
fini sur A et qui remplit la condition que p(uv) = p(u)p(v), pour toute paire de mots finis u, v
sur A. Elle peut étre naturellement étendue aux mots infinis vers la droite u € AN par la régle
pwluguiug - -+ ) = p(ug)p(uy)mw(uz)---. Un mot infini u € AN est appelé un point fixe de p si
u = p(u). De méme, un mot infini u € AN est appelé un point périodique de u s’il existe un
entier p > 1 (appelé période) de sorte que u = pP(u). Les points fixes et les points périodiques
infinis vers la gauche et bi-infinis sont définis d’une maniere analogue. Une lettre a € A est appelé
croissante par rapport a u si la longueur de p(a) croit a 'infini quand n tend vers Uinfini. Si
u € A% est un mot bi-infini, nous séparons par une barre verticale ses éléments u_; et uy pour
indiquer l'origine. Si les lettres u_j et ug sont croissantes, alors le point périodique u = p?(u)
est défini entierement par son germe u_1|ug. Plus précisément, u = limy_, o0 P* (u_1)|P* (uo).

Les morphismes qui font correspondre des mots sturmiens & des mots sturmiens sont appelés
morphismes sturmiens et forment ce que 'on appelle le monoide de Sturm. Un sous-monoide
particulier du monoide de Sturm est appelé le monoide spécial de Sturm. Les morphismes
sur I'alphabet binaire peuvent étre représentés par des matrices 2 x 2 avec des entrées entieres
positives (y compris 0), appelées matrices d’incidence. Deux morphismes distincts peuvent étre
représentés par la méme matrice d’incidence, ce qui signifie que cette représentation n’est pas
fidele. Dans le chapitre [5| nous introduisons une représentation fidele du monoide spécial de
Sturm par des matrices 3 x 3 avec des entrées entiéres positives (y compris 0) qui ont une matrice
d’incidence correspondante dans le coin supérieur gauche. A T’aide de cette représentation, nous
abordons la. question des racines carrées des points fixes des morphismes dans le monoide spécial
de Sturm. De plus, nous décrivons un algorithme pour déterminer la représentation fidele, ce
qui clarifie la relation entre les représentations fideles de morphismes mutuellement conjugués.
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Suites automatiques: Cobham a prouvé en 1972 qu’il existe une équivalence entre les
points fixes infinis vers la droite de morphismes k-uniformes et les suites k-automatiques, ou
k > 2 |Cob72], [AS03, §6]. Un morphisme k-uniforme est tel que u(a) a une longueur k, pour
tout a € A. 1l est possible d’associer canoniquement & p et a un automate fini déterministe avec
une sortie noté A, ,. Il découle des résultats de Cobham que si p : A* — A* est un morphisme
Ek-uniforme et que u € AY est le point fixe u = p(u) avec la lettre croissante ug = a, la lettre
a chaque position n € N dans u est obtenue comme A, ,(rep,(n)). Les morphismes k-uniformes
ont naturellement deux propriétés: ils ne sont pas effacants et ils ont une lettre croissante.
Les morphismes ayant ces deux propriétés sont appelés substitutions. L’idée de Cobham a été
étendue aux points fixes de toutes les substitutions [RMO02] avec une définition des systemes de
numération plus abstraite. Ces systemes de numération, qui peuvent ne pas étre des numérations
de position, sont appelés systémes de numération abstraits. Plus tard, une généralisation pour
les points fixes des morphismes multidimensionnels a été proposée |[CKR10|. Une autre approche
pour définir des systémes de numération pour représenter les entiers positifs, ainsi que les réels
dans un certain intervalle, a été proposée dans [DT89] par Dumont et Thomas. Chaque systéme
de numération Dumont—Thomas pour N est basé sur un point fixe d’une substitution.

Dans le chapitre [6] nous étendons les systémes de numération de Dumont—Thomas pour N
a Z. Nous démontrons que chaque point périodique bi-infini d’une substitution avec un germe
croissant est une suite automatique.

Theorem Soit p 1 A* — A* une substitution et u son point périodique bi-infini avec un
germe croissant s = u_i|ug. Alors, pour tout n € Z, u, = Ay s(repy(n)).

L’automate fini déterministe A, s émerge de 'automate canonique A, , en ajoutant un nouvel
état initial start et deux arétes supplémentaires. Nous prouvons également que les systémes
de numération de Dumont—-Thomas pour Z sont des bijections croissantes avec l'ordre total
< défini au chapitre Gréace a cette propriété, nous retrouvons le systeme de numération du
complément a deux et le systéme de numération du complément de Fibonacci comme systemes de
numération de Dumont—Thomas pour Z. Dans un nouveau résultat non publié, nous démontrons
une condition suffisante pour que les systemes de numération de Dumont—Thomas pour Z soient
des numérations de position, en les reliant aux systémes de numération de position décrits dans le
chapitre |3 Enfin, nous démontrons que ces systémes de numération peuvent étre naturellement
étendus & Z? pour tout d > 1. Le systéme de numération du complément de Fibonacci étendu
A Z? est particulicrement intéressant, car il peut étre utilisé pour décrire un pavage de Wang
comme une suite automatique, ce que nous démontrons dans le chapitre

Pavages de Wang: Une tuile de Wang est un carré unitaire dont chaque bord est coloré.
Etant donné un ensemble fini de tuiles de Wang, nous supposons que nous en avons une infinité
de copies et nous sommes autorisés a disposer deux tuiles de Wang cote a cote (sans les faire
pivoter) a condition que les couleurs de leur bord commun correspondent. En général, nous nous
intéressons a de tels ensembles de tuiles de Wang qui tapissent le plan, mais qui ne le font pas
de manitre périodique. Etant donné un ensemble de tuiles de Wang, I’ensemble de touts les
pavages du plan est appelé un sous-shift de Wang et celui-ci est dit apériodique s’il ne contient
pas de pavage périodique. Les sous-shifts de Wang sont étudiés depuis 1961 et depuis lors, des
sous-shifts de Wang apériodiques avec des ensembles de tuiles de plus en plus petits ont été
découverts. Enfin, en 2021, Jeandel et Rao ont décrit un sous-shift de Wang apériodique basé
sur un ensemble de 11 tuiles et ils ont prouvé que tout ensemble de moins de 11 tuiles de Wang
admet un pavage périodique [JR21|. Peu de temps apres, un ensemble de 19 tuiles de Wang U
qui est apériodique, minimal et autosimilaire a été construit. Il est basé sur ’ensemble de Wang
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de Jeandel et Rao [Lab21}Labl19].

O O M M P P K K 0] L
JOF|HIF||F2J||F3D||J4H||H5H||[F6H||[D7TH||I8B||E9G
(6) L P K P N P P 0] )
L L P P P P K K N
C10G||I11A||GI12E|| I13E||G14T || 1151 ||B161 [[A171 || I118C
L (0) P P K K M K P

Dans le chapitre[7], nous étudions un ensemble particulier Z de 16 tuiles de Wang qui a émergé
de U en identifiant certaines couleurs. Dans un résultat non publié, nous démontrons que le
sous-shift de Wang €2z est topologiquement conjugué au sous-shift de Wang €);. En corollaire,
le sous-shift 2z est apériodique, minimal et autosimilaire.

0) O M M P P K 0]
JOD||H1D||D2J||D3D||J4H|H5H|[D6H||I 7B
O L P K P N P O

L L L P P K N
ESI|CY9T|I10A||I11E||I12]||B131||A141||115C
) L O P K M K P

Nous démontrons que ’ensemble Z admet un pavage de Wang du plan décrit par un automate
fini déterministe avec une sortie, qui prend en entrée la représentation d’une position n € 72
dans le systéme de numération du complément de Fibonacci étendu & Z? et produit ainsi une
tuile de Wang.

Theorem 1l existe un automate fini déterministe avec une sortie A tel que

r: 7% — {0,1,...,15}
n = A(repg.(n))

satisfait @ la condition x € Qz.

Rozsireny abstrakt

Cilem této prace je zkoumat a rozvijet souvislosti mezi tfemi pribuznymi matematickymi
obory: kombinatorikou na slovech, teorii ¢isel a diskrétni geometrii. Zastoupeni téchto obort v
této praci je nasledujici. Z hlediska kombinatoriky na slovech zkouméme konecnd a nekonecna
slova a morfismy, které zobrazuji slova na slova. Specidlnim pripadem morfismu jsou substituce,
které splnuji urcité dalsi vlastnosti. Jak morfismy, tak substituce poskytuji takzvanou substi-
tutivni strukturu. Konkrétné se zabyvame sturmovskymi a Arnouxovymi-Rauzyovymi slovy
a sturmovskymi morfismy. Co se tyce teorie ¢isel, studujeme pozi¢ni ¢iselné soustavy pro cela
¢isla. Diskrétni geometrie je zastoupena predevsim ve formé Wangovych dlazdéni. Wangova
dlazdice je ¢tverec o jednotkové plose, ktery mé na kazdé hrané barvu. Wangovo dlazdéni je
pokryti roviny Wangovymi dlazdicemi tak, aby barvy na dotykajicich se hranich sousednich
dlazdic byly stejné. Jeden z vyraznych vysledkt tohoto textu se tykd konkrétni mnoziny Wan-
govych dlazdic Z, o niz ukdzZeme, ze tzce souvisi s 2-dimenzionalnimi morfismy a ¢iselnymi
soustavami. PopiSeme konkrétni dldzdéni roviny Wangovymi dlazdicemi Z jako automatickou
posloupnost, ¢imz ziskdme nekonvencéni souvislost mezi kombinatorikou na slovech, teorii ¢isel
a diskrétni geometrii. Tento text je clenén do 5 kapitol, z nichz kazda obsahuje vysledky nék-
terého z 5 odbornych ¢lanki (véetné dvou prispévku v konferenénim sborniku), které byly pub-
likovany v mezinarodnich impaktovanych casopisech nebo jsou v recenznim fizeni. Seznam téchto
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¢lankd uvddime v Sekei [I.1] Kazda kapitola obsahuje navic dalsi vysledky, které zobecnuji nebo
jinak rozvijeji vysledky dosazené v ¢lancich.

Pozi¢ni &iselné soustavy: Ciselné soustavy umoziiuji reprezentaci ¢isel koneénymi slovy
nad vhodnou abecedou. V tomto textu se zabyvame pouze ¢iselnymi soustavami, které reprezen-
tuji celd ¢isla koneé¢nymi slovy nad abecedami, které sestavaji z nezadpornych celych ¢isel. Napiik-
lad pro reprezentaci nezdporného celého ¢isla n € N v bindrni (dvojkové) ¢iselné soustavé je n
vyjadfeno jako soucet mocnin ¢isla 2. Bindrni reprezentace n je konecné slovo nad binarni
abecedou ¥ = {0,1}. Zobrazeni valy : ¥* — N bindrni ¢iselné soustavy vycisluje koneéné slovo
W = Wg_1Wk—9 - - - wiwg délky k nad bindrni abecedou jako soucet

k—1
valg(w) = Z w; 2"
=0

Pro kazdé nezdporné celé ¢islo n € N existuje pravé jedno slovo w nad bindrni abecedou, které
neza¢ind nulami a plati, ze valy(w) = n. Toto slovo w nazyvadme bindrni reprezentaci ¢isla n
a zna¢ime w = repy(n). Jednim ze zpusobu rozsifeni bindrni ¢iselné soustavy pro vSechna celd
¢isla (véetné zédpornych celych ¢isel) je dvojkovy doplnék ¢i také dopliikovy kéd [Knu98, §4.1].
Zobrazeni valy, : ¥* — 7 piifazuje slovu nad bindrni abecedou w = wy_jwy_o - - - wiwg € F
rozdil mezi valy(w) a nejvyznamnéjsi ¢islici wg_1 vyndsobenou k-tou mocninou éisla 2

k—1
valg.(w) = —wy_12% + Z w; 2"
i=0

Ciselné soustavy, které pouzivaji jako bézi ostie rostouci posloupnost nezapornych celjch ¢isel
a které vycisluji reprezentace jako soucet nasobku Cislic ve w se ¢leny posloupnosti na odpovi-
dajici pozici, jsou nazyvany pozicni ¢iselné soustavy. Pozi¢ni ¢iselné soustavy, které byly dosud
predstaveny, pouzivaji jako bazi posloupnost mocnin ¢isla 2, nicméné lze pouzit i jiné ostie ros-
touci posloupnosti, jako napiiklad posloupnost Fibonacciho ¢isel (Fz):;og Tato posloupnost je
definovana nésledujicim rekurentnim vzorcem - dalsi ¢len posloupnosti se spocte jako soucet
predchozich dvou ¢lenti. Poc¢atecni podminky jsou Fy = 1 a Fy; = 2. Zobrazeni valr Fibonacciho

¢iselné soustavy pro N vycéisluje slovo w nad binarni abecedou jako soucet

k—1
valr(w) = Z w; F.
=0

V kapitole 3] rozsifime Fibonacciho ¢iselnou soustavu na Z analogickym zptisobem k dvojkovému
dopliku. Proto tuto ¢iselnou soustavu nazyvame Fibonacciho doplitkem ( Fibonacci complement
numeration system). Zobrazeni valr. : 3* — Z prirazuje slovu w nad bindrni abecedou soucet

k—1

val;:c(w) = —wp_1Fp + Z w; F;.
=0

Ukézeme, ze pro kazdé celé ¢islo n € Z existuje pravé jedno slovo nad binarni abecedou liché
délky takové, ze n = valr.(w), w neobsahuje po sobé jdouci jednicky a w ¢ 0003* U 101%*.

Proposition Zobrazeni valr.: ¥(XX)*\ (£*11X* U000X* U 101X*) — Z je bijekce.

Zobrazeni repr, Fibonacciho doplnku je pak definovano jako inverzni zobrazeni k zobrazeni
valr.. Ukéazeme vlastnosti Fibonacciho dopliku vzhledem ke s¢itani. Navic popiseme novou
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tridu pozi¢nich c¢iselnych soustav pro Z, kterd obsahuje jak dvojkovy doplnék, tak Fibonacciho
doplnék. Proto tyto ¢iselné soustavy nazyvame doplinkové (complement numeration systems).
Kazdou dopliikovou ¢iselnou soustavu popiseme jako jazyk usporadany vzhledem ke konkrétnimu
uplnému usporadani <.

n_ | repro(n) | | n | repro(n) | | n | repro(n)
—10 1000100 0 0 10 0010010
-9 1000101 1 001 11 0010100
—8 1001000 2 010 12 0010101
-7 1001001 3 00100 13 0100000
—6 1001010 4 00101 14 0100001
-5 10000 5 01000 15 0100010
—4 10001 6 01001 16 0100100
-3 10010 7 01010 17 0100101
-2 100 8 0010000 18 0101000
—1 1 9 0010001 19 0101001

Sturmovska a Arnouxova—Rauzyova slova a morfismy: Sturmovska slova jsou tii-
dou nekonecnych aperiodickych slov nad binarni abecedou, které pati k nejlépe prozkoumanym
objektiim v kombinatorice na slovech. Jedna z moznych ekvivalentnich definic je definuje jako
nekonecnd slova, kterd obsahuji n+ 1 ruznych kone¢nych slov (faktori) délky n pro kazdé n € N.
Prikladem sturmovskych slov je Fibonacciho slovo, které zac¢ina nasledujicim prefixem

f = abaababaabaababaabab - - - .

Slova, kterd zobecnuji sturmovské slova pro abecedy kardinality d > 2, se nazyvaji epistur-
movskd |[DJPO1]. Arnouxova—Rauzyova slova tvori podtiidu episturmovskych slov, kterd se
nazyvaji také striktné episturmovskd. Prikladem Arnouxovych—Rauzyovych slov je Tribonac-
ciho slovo, které zac¢ind nasledujicim prefixem

t = abacabaabacababacabaabacab - - - .

Specidlni podtridou Arnouxovych—Rauzyovych slov jsou d-bonacciho slova. Fibonacciho slovo je
d-bonacciho slovo pro d = 2 a Tribonacciho slovo je d-bonacciho slovo for d = 3.

Kriticky exponent nekonecného slova vyjadiuje maximélni moznou miru opakovani faktoru
v daném nekonecném slové. Podobné asymptoticky kriticky exponent nekonecného slova vy-
jadfuje maximélni moznou miru opakovani faktor v daném nekone¢ném slové tak, ze délka
faktora roste limitné do nekonec¢na. V kapitole 4] shrnujeme nasSe vysledky tykajici se krit-
ickych exponentti Arnouxovych—Rauzyovych slov. Prezentujeme vzorec pro vypocet kritick-
ého a asymptotického kritického exponentu regularnich Arnouxovych—-Rauzyovych slov. Pomoci
tohoto vzorce lze ukézat, ze minimalni kriticky i minimélni asymptoticky kriticky exponent
mezi reguldrnimi Arnouxovymi—Rauzyovymi slovy nad abecedou kardinality d je nabyvan pro
d-bonacciho slovo. Navic pro specidlni ptipad d-bonacciho slov pro 4 < d < 15 ukazeme, ze jejich
kriticky exponent splyva s jejich asymptotickym kritickym exponentem.

Morfismus p je zobrazeni, které pritazuje pismenu a v abecedé A konec¢né slovo nad abecedou
A a které spliuje, ze p(uv) = p(u)u(v) pro kazdou dvojici koneénych slov u,v nad A. Morfis-
mus milZzeme piirozené rozsitit na nekoneénd slova u € AN pomoci pravidla p(uguiug---) =
p(ug)p(ur)p(usg) - - -. Nekoneéné slovo u € AN se nazyva pevny bod morfismu u, pokud plati,
7e u = pu(u). Podobné se nekoneéné slovo u € AN nazjva periodicky bod morfismu j, pokud
plati, Ze existuje celé ¢islo p > 1 takové, ze u = pP(u). Dosud jsme uvazovali jednostranné
nekonecnd slova u € AN, Podobné lze uvazovat oboustranné nekonecna slova u € A% a defino-
vat oboustranné nekonecné pevné a periodické body morfisma analogickym zptusobem. Pismeno
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a € A nazyva rostouci vzhledem k p jestlize délka u'(a) roste do nekonecéna, pokud n roste
do nekone¢na. V pifpadé oboustranné nekoneénych slov u € A% oddélujeme vertikalni éarou
prvky u_; a ug k oznaceni pocatku na ose Z. Pokud jsou prvky u_; a ug rostouci vzhledem
k u, pak je periodicky bod u = pP(u) tplné definovan pomoci "seminka" (seed) u_1|ug, nebo-li
u = limy s oo g% (u1)| 7" (uo).

Morfismy, které zobrazuji sturmovska slova na sturmovska slova, se nazyvaji sturmovské
morfismy a tvori tzv. sturmovsky monoid. Urcity submonoid sturmovského monoidu se nazyva
specidlni sturmovsky monoid. Morfismy nad bindrni abecedou lze klasicky reprezentovat mat-
icemi rozméru 2 x 2 s celoc¢iselnymi nezdpornymi prvky. Tyto matice se nazyvaji incidencni.
Inciden¢ni matice nékterych morfismu splyvaji, a tedy tato reprezentace neni "vérnd" (faithful).
V kapitole [5| pfedstavime vérnou reprezentaci specialniho sturmovského monoidu pomoci matic
rozméru 3 X 3 s nezdpornymi celociselnymi prvky, které maji odpovidajici incidenéni matici
v levém hornim rohu. S pomoci této reprezentace dokdzeme, jakym postupem urcit morfismus,
jehoz pevnym bodem je tzv. odmocnina z pevného bodu morfismu ze specidlniho sturmovského
monoidu. Navic popiseme algoritmus urceni vérné reprezentace morfismi ve specidlnim stur-
movském monoidu, diky ¢emuz objasnime vztah mezi vérnymi reprezentacemi vzajemné konju-
govanych morfismu.

Automatické posloupnosti: Cobham dokizal v roce 1972 vztah mezi jednostranné
nekone¢nymi pevnymi body k-uniformnich morfismt a posloupnostmi generovanymi pomoci de-
terministického koneéného automatu a reprezentaci nezapornych celych ¢isel v ¢iselnych sous-
tavach o zakladu k |Cob72|, [AS03, §6], £ > 2. Morfismus p se nazyva k-uniformni, pokud
p(a) je délky k pro kazdé a € A. Presnéji tedy plyne z Cobhamovych vysledku, ze pokud je
p: A* — A* k-uniformni morfismus a u je jeho pevny bod u = p(u) s rostoucim ug = a, potom
pismeno na kazdé pozici n € N v u lze ziskat jako A, q(repy(n)), kde A, , je deterministicky
konec¢ny automat kanonicky prifazeny morfismu p a pismenu a. Kazdy k-uniformni morfismus
splnuje, Ze zobrazuje pismena na neprazdna slova a ma rostouci pismeno. Morfismy spliu-
jici tyto dvé vlastnosti se nazyvaji substituce. Cobhamiv piistup byl zobecnén pro pevné body
vSech substituci [RM02], s pomoci deterministickych kone¢nych automati kanonicky prifazenych
substitucim a ¢iselnych systémt v mnohem obecnéjsim smyslu, nez jsou pozi¢ni ¢iselné soustavy.
Tyto systémy se nazyvaji abstraktni numeracéni systémy (abstract numeration systems). Pozdéji
byl tento pfistup zobecnén pro pevné body morfismi ve vyssich dimenzich [CKR10|. Dalsi zpu-
sob, jak reprezentovat nezaporné cela Cisla na zakladé pevnych bodu substituci, byl predstaven
autory Dumontem a Thomasem [DT89).

V kapitole [6] rozsifime piistup autori Dumonta a Thomase pro reprezentaci vSech celych
¢isel, ¢imz definujeme Dumontovy—Thomasovy numerac¢ni systémy pro Z. Ukédzeme, ze kazdy
oboustranné nekoneény periodicky bod urcité substituce s rostoucim seminkem je automaticka
posloupnost.

Theorem Necht n : A* — A* je substituce a u je oboustranné nekonecny periodicky bod
s rostoucim seminkem s = u_i|ug. Pak u, = Ay s(repy(n)) pro kazdé n € Z.

Deterministicky konecny automat vytvoiime z kanonického automatu A, , pfiddnim nového
pocateéniho stavu start a dvou novych hran. Dale dokazeme, ze Dumontovy—Thomasovy nu-
meracni systémy pro Z jsou bijekce rostouci vzhledem k tUplnému usporadani <, které bylo
definovano v kapitole Diky této vlastnosti dokazeme, ze dvojkovy doplnék a Fibonacciho
doplnék jsou Dumontovy—Thomasovy numeracéni systémy pro Z. Novym dosud nepublikovanym
vysledkem je postacujici podminka, aby Dumontovy—Thomasovy numerac¢ni systémy byly poz-
iéni, ¢imz vytvarime souvislost s tfidou pozi¢nich ¢iselnych soustav definovanou v kapitole
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Nakonec ukézeme, ze Dumontovy—Thomasovy numerac¢ni systémy mohou byt rozsireny pro vyssi
dimenze Z% pro kazdé d > 1. Fibonacciho doplnék pro Z? mé zvlastni dilezitost pro tento text,
protoze ho pouzijeme v kapitole [7| k popisu Wangova dlazdéni jako automatické posloupnosti.

Wangova dlazdéni: Wangova dlazdice je ¢tverec jednotkového obsahu, ktery méa na
kazdé hrané barvu. Pro danou konec¢nou mnozinu Wangovych dlazdic predpokldadame, ze mame
nekonec¢né mnoho kopii téchto dlazdic. Dvé Wangovy dlazdice mohou sousedit, pokud sdili ste-
jnou barvu na spolecné hrané. Obecné néas zajimaji mnoziny Wangovych dlazdic, kterymi lze
vydlazdit rovinu, ale neni to mozné periodickym zptsobem. MnozZina vsech dlazdéni roviny po-
moci dané mnoziny Wangovych dlazdic se nazyva Wanguv posun (Wang shift) a Wangiv posun
se nazyva aperiodicky, pokud neobsahuje periodické dldzdéni. Wangovy posuny jsou predmétem
zajmu od roku 1961. Od té doby byly zkonstruovany rtzné aperiodické Wangovy posuny s ¢im
déal mensim poétem generujicich Wangovych dlazdic. Koneéné v roce 2021 byl popsan aperiod-
icky Wanguv posun s generujici mnozinou 11 Wangovych dlazdic [JR21]. Autori Jeandel a Rao
navic dokazali, ze kazda mensi mnozina Wangovych dlazdic umoznuje periodické dlazdéni roviny.
Na zékladé téchto 11 Wangovych dlazdic byla popsana mnozina 19 Wangovych dlazdic U, ktera
generuje aperiodicky, minimalni a sobépodobny Wangiuv posun |Lab21}|Labl19).

O O M M P P K K Q) L
JOF|HIF||F2J||F3D||J4H||HS5H||[F6H|[D7TH||I 8B||E9G
(6) L P K P N P P 0] )

L L P P P P K K N
C10G||I11A||GI12E|| T13E||G14T || 1151 ||B161 [[A171 || I118C
L (0) P K M K P

V kapitole [7] studujeme konkrétni mnozinu 16 Wangovych dlazdic Z, kterd byla vytvorena
z mnoziny U slouc¢enim nékterych barev. Nové ukazeme, ze Wangtiv posun {2z a Wanglv posun
Qs jsou topologicky konjugované. V dusledku toho ukazeme, ze je Wangiv posun 2z aperiod-
icky, minimalni a sobépodobny.

0) O M M P P K 0]
JOD||H1D||D2J||D3D||J4H||H5H|[D6H||I 7B
) L P K P N P O
L L L P P K K N
ESI|CYO9T|I10A||I11E||I12]||B131|/A141||I15C
) L O P K M K P

Ukéazeme, ze existuje Wangovo dlazdéni pomoci dlazdic Z, které lze vygenerovat determini-
stickym koneénym automatem, ktery akceptuje jazyk reprezentaci Fibonacciho dopliiku pro Z2.

Theorem Ezistuje deterministicky konecny automat A takovy, Ze

r: 7> — {0,1,...,15}
n — Afrepr.(n))

spliuje x € Qz.
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Chapter 1

Introduction

This work aims to discover and develop links between three related but distinct mathematical
domains: combinatorics on words, number theory and discrete geometry. The presence of these
domains in this work is the following. From the point of view of combinatorics on words, we
study finite and infinite strings of symbols (called words) and morphisms, which act as maps
on words. Substitutions are morphisms satisfying some additional properties, however, both
substitutions and morphisms provide what we call a substitutive structure. As for the number
theory, we are interested in numeration systems and, in particular, in those numeration systems
which one may use to represent both nonnegative and negative integers. The discrete geometry
is present in the form of Wang tilings — coverings of the plane by squares with colors on the edges
so that colors on the adjacent edges match. We study a particular set of such tiles and its close
relation to two-dimensional morphisms and numeration systems.

The common thread of this work are objects related to the name Fibonacci. This Italian
mathematician, also known as Leonardo of Pisa (1170 — 1250), studied a problem involving the
growth of a population of rabbits, which led to the definition of Fibonacci numbers. These are
defined by a recurrence relation such that the next number is obtained as the sum of the previous
two numbers, starting from 1 and 2. This gives rise to the sequence of Fibonacci numbers:

(F)S =1,2,3,5,8,13,21,34,55,89, . ..

It belongs to the common knowledge that we can uniquely represent nonnegative integers N =
{0,1,2...} using a sequence (N%);5 of powers of an integer N > 2, which gives rise to the integer-
base numeration systems. The most well-known examples include the decimal numeration system
where N = 10 and the binary numeration system where N = 2. However, other sequences may
be used to define more general numeration systems, such as the sequence of Fibonacci numbers
(F})i. Every integer n € N can be decomposed into a sum Zf;ol w; F; for some k € N so that w;
are digits in the set {0, 1}, for every 0 < ¢ < k—1. The concatenation of symbols wy_jwg_2 - - - wo
is called a Fibonacci representation of n. There exists a unique Fibonacci representation of every
integer n such that wg_1 - --wo does not contain consecutive ones and wy_1 # 0 [Zec72|. Such
representations are called greedy and denoted repr(n) = wy_1 ---wo. For instance, the greedy
Fibonacci representations of integers n < 6 are:

repr(1) =1, repr(2) = 10, repx(3) = 100, repr(4) = 101, rep(5) = 1000, repr(6) = 1001, ...

Over the last 40 years, various generalizations of integer-base numeration systems such as the
Pisot, Parry and Bertrand numeration systems [BM89, BHMV94,/Hol98, MPR19,/CCS22| were



o (o)

0

Figure 1.1: The deterministic finite automaton with output Ax.

extensively studied. The Fibonacci numeration system F is an example of all of these numeration
systems, which have the following hierarchy

Pisot & Parry G Bertrand.

Another famous object carrying the Fibonacci name is the Fibonacci word. This right-infinite
string of symbols 0 and 1 is created recursively so that its next prefix f,1s is a concatenation of
the previous two prefixes f,,11 - fn, starting from the prefixes fo = a and f; = ab:

fo=a,
fi = ab,
fo=ab-a = aba,
f3 = aba - ab = abaab,

f4 = abaab - aba = abaababa.

Thus, the Fibonacci word f is an infinite string over the binary alphabet beginning with the
prefix
f = abaababaabaababaabab - - - .

The Fibonacci word f is an example of Sturmian words. Sturmian words are a class of infinite
aperiodic words over the binary alphabet, which belong to the most explored objects in com-
binatorics on words. They may be defined as the infinite words which contain n + 1 distinct
finite words of length n, for every n € N. First, they appeared in the work of Morse and Hed-
lund [MH40| in 1940 and, since then, various equivalent definitions were proposed. For instance,
Sturmian words are exactly the balanced words which are aperiodic. Balanced words have been
studied recently with respect to their repetition rate of factors [DDP23,|DPOS22]. The words
that generalize Sturmian words to larger alphabets are called Arnoux—Rauzy words [AR91] or
episturmian words [DJPO1|. In particular, the words that generalize the Fibonacci word f to an
alphabet of size d > 2 are called the d-bonacci words.
Among other interesting properties, the Fibonacci word f is fixed by the morphism

Y :a—ab, b— a,

which means that ¢(f) = f. We refer to the morphism ¢ as to the Fibonacci morphism. The
morphism ¢ belongs to the so-called monoid of Sturm, meaning that it maps every Sturmian
word to a Sturmian word. Its second power 2 : a — aba, b — ab belongs to a certain submonoid
of the monoid of Sturm, which is called the special monoid of Sturm. Recent results on the
Sturmian morphisms concern the properties of the derived words of their fixed points [KMPS18],
[PS21].

The Fibonacci word f is also an automatic sequence — it can be generated by feeding the
deterministic finite automaton with output in Figure [I.I] with the Fibonacci representations

4
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Figure 1.2: A partial valid tiling with a certain set of Wang tiles.

repr(n), for every n € N. For instance, the automaton Az reading repr(5) = 1000 starts at

the initial state and it moves between states a = b > a > a > a, finishing at the state a
and thus outputting the letter a. This connection between the fixed points of morphisms and
automatic sequences was first observed by Cobham in 1972 [Cob72], [AS03| §6]. He proved that
the automatic sequences with a k-state automaton are exactly the fixed points of morphisms
having the images of all letters of length k, where k& > 2. In this case, the classical base-k
representations are inputted into the automaton. The idea was extended to the fixed points of
all morphisms [RMO02], using a much broader definition of the abstract numeration systems. This
direction is broadly studied in the following book [Rigl4]. Abstract numeration systems were
generalized to describe the fixed points of multidimensional morphisms |[CKR10]. Recently, the
automatic sequences based on Parry and Bertrand numeration systems were studied [MPR19)].

Last but not least, the Fibonacci morphism ¢ is also involved in a particular Wang tiling,
which can be described as a fixed point of a 2-dimensional substitution closely related to (.
A Wang tile is a unit square with a color on each edge. Given a finite set of Wang tiles, we
assume that we have infinitely many copies of them and we are allowed to arrange two Wang
tiles side by side (without rotating them) provided that the colors on their common edge match;
see a partial valid tiling in Figure In general, we are interested in such sets of Wang tiles
which tile the plane, but which do not do so in a periodic way. Given a set of Wang tiles,
the set of all tilings of the plane is called a Wang shift and the Wang shift is called aperiodic
if it does not contain a periodic tiling. Wang shifts have been studied since 1961 [Wan61],
when Wang proposed the fundamental conjecture stating: if a Wang shift is not empty, then it
contains a periodic Wang tiling. This conjecture was refuted by Berger, who constructed the first
aperiodic Wang shift |Ber66] based on more than 20 000 distinct Wang tiles. During the next
decades, the number of generating Wang tiles gradually decreased to 13 [Kar96,/Cul96]. In 2021,
Jeandel and Rao constructed a set of 11 Wang tiles, which generates an aperiodic Wang shift
and they proved that every set of less than 11 Wang tiles admits a periodic tiling [JR21]. It is
worth noting that the domain of tilings is much broader as the plane can be tiled by other shapes



than unit squares; see |GS87] for more details. Until recently, the smallest known sets of tiles
which admit only non-periodic tilings of the plane contained two tiles, the Penrose tiling being
the most famous example [Pen79]. Furthermore, the Penrose tiling is a model of quasicrystals,
linking tilings to another mathematical domain [Sen96]. During the work on this thesis, a set
containing a single tile was described [SMKGS23], much to the delight of the tiling community.

1.1 Listing of the author’s contributions

The five chapters of this text contain results of five papers (including 2 conference papers) that
have either been published or are under review. Among the five papers, four are a common
work of the author and her advisors. We present the list of the papers in the same order as the
chapters in this text.

(I) Sébastien Labbé and J. L., A Fibonacci analogue of the two’s complement numeration
system, RAIRO - Theoretical Informatics and Applications, 57:12, 2023.

(IT) Lubomira Dvotédkova and J.L., Critical exponents of reqular Arnouz-Rauzy sequences. In
Combinatorics on words, volume 13899 of Lecture Notes in Comput. Sci., pages 130-142.
Springer, 2023.

(III) J. L., Edita Pelantova and Stépan Starosta, On a faithful representation of Sturmian mor-
phisms. In European Journal of Combinatorics, 110:103707, 2023.

e Jana Lepsova is a co-author, worked mainly on the part concerning the square roots
of fixed points of Sturmian morphisms, found the hypothesis of the main theorem
concerning square roots of fixed points based on computer experiments, assisted with
editing the paper.

(IV) Sébastien Labbé and J. L., Dumont-Thomas numeration systems for Z. Under review in
Integers — Electronic Journal of Combinatorial Number Theory. Preprint accessible at
https://arxiv.org/abs/2302.14481.

(V) Sébastien Labbé and J. L., A numeration system for Fibonacci-like Wang shifts. In Com-
binatorics on words, volume 12847 of Lecture Notes in Comput. Sci., pages 104-116.
Springer, Cham, 2021.

1.2 Structure of the thesis

In Chapter (3|, we extend the Fibonacci numeration system to all integers including the negative
ones, defining the Fibonacci complement numeration system Fc. We show its properties with
respect to addition. As a new result not presented in (I), we describe a class of positional
numeration systems for all integers, which contains the numeration system Fc, and we study
their properties with respect to a certain order.

In Chapter 4] we study the repetitions of finite words appearing in Arnoux—Rauzy words.
We provide a formula for the critical exponent and the asymptotic critical exponent of regular
Arnoux-Rauzy words. Also, we show that, among regular Arnoux-Rauzy words over a d-ary
alphabet, the minimal (asymptotic) critical exponent is reached by the d-bonacci word. As a new
result not presented in (II), we show that the critical exponent coincides with the asymptotic
critical exponent of d-bonacci words for every 4 < d < 15.


https://arxiv.org/abs/2302.14481

In Chapter [5 we faithfully represent the elements of the special Sturmian monoid by 3 x 3
matrices with nonnegative entries. Using the faithful representation, we study the so-called
square roots of fixed points of Sturmian morphisms. As a new result not presented in (III), we
provide an algorithm to determine the faithful representation of a given Sturmian morphism,
which enables us to answer an open question from (III) concerning the intercepts of the fixed
points of mutually conjugate Sturmian morphisms.

In Chapter [6] we define numeration systems for Z based on substitutions and we show their
properties with respect to automata and order. We call these numeration systems Dumont—
Thomas numeration systems for Z as they extend the numeration systems for nonnegative in-
tegers described by Dumont and Thomas. The Fibonacci complement numeration system Fec
is recovered here as a numeration system related to the Fibonacci substitution ¢. Unlike the
numeration systems studied in Chapter [3] Dumont—-Thomas numeration systems might not be
positional. However, they are positional assuming a certain sufficient condition, which we provide
as a new result not presented in (IV).

In Chapter [7, we study a particular set of 16 Wang tiles Z. We find an automatic char-
acterization of a particular valid Wang configuration over Z, using the Fibonacci complement
numeration system Fc extended to Z2. As a new result not presented in (V), we prove that the
Wang shift )z is topologically conjugate to another Wang shift €;, which was derived from the
Jeandel-Rao Wang shift [JR21].






Chapter 2

Preliminaries

In this part, we present the essential background and notation in combinatorics on words, au-
tomata theory, number theory and Wang tilings. We clarify that the notation N refers to the set
of nonnegative integers {0, 1,2,...}, Z-q refers to the set of negative integers {...,—3,—2,—1}
and Z refers to the set of all integers {...,—2,—1,0,1,2,...}. For every pair of integers i,j € Z
such that i < j, we denote the interval of integers between i and j by [i, j] = {7,i+1,...,j—1,5}.

2.1 Words and languages

We introduce terminology concerning finite and infinite words from [Lot02]. An alphabet A is
a finite set and the elements of an alphabet are called letters. A finite word u over A of length n
is a finite string u = uguy - - - u,—1 of letters u; € A, i € [0,n — 1]. The length of u is denoted by
|u|, whereas |ul, denotes the number of occurrences of a letter a € A in u. The set of all finite
words over A is denoted A*. If u = zyz is a concatenation of finite words x,y,z € A*, then x is
a prefix of u, z is a suffix of u and y is a factor of u. A finite word x € A* is a proper prefix of
u if it is a prefix of u and z # u. A reversed factor @ of a factor u = uguq - - - up—1 is the factor
U= Up_1---urg. A finite word u = uguy - - - up—_1 is a palindrome if u = 4. The set A* with the
operation of concatenation of finite words forms a monoid whose neutral element is the empty
word €.

A right-infinite word (or simply a word) u over A is a right-infinite string u = uoujusg - - - of
letters u; € A, for alli € N. A left-infinite word u over A is a left-infinite stringu = - - - u_gu_gu_;
of letters u; € A, for all ¢ € Z.g. We call a biinfinite string u : Z — A a two-sided word over A
and we separate its elements u_; and ug by a vertical bar to indicate the origin, i.e.,

u=-- .u_3u_2u_1”u0u1u2 Tt

The set of all right-infinite (resp., left-infinite, two-sided) words over A is denoted by AN (resp.,
Al<o AT,

Let u € AN, A finite word v € A* such that v = Ui 1 U2 - - - uj—1 for somed,j € N, 4 < 7, is
called a factor of u. The number i is called an occurrence of the factor v in the word u. A factor
v € A* is a prefix of u if ¢ = 0 is an occurrence of v in the word u. We call u

o recurrent if every factor of u has infinitely many occurrences in u;

o uniformly recurrent if u is recurrent and the distances between the consecutive occurrences
of each factor in u are bounded;



e eventually periodic if there exist v, w € A* such that u = vwww - - - = vw®;

e periodic if u is eventually periodic and v = ¢;
e aperiodic if it is not eventually periodic.

Now, assume that u is recurrent and consider a factor v of u. Let i < j be two consecutive
occurrences of v in u. The word w;u;q1---uj—1 is called a return word to v in u. The set of
all return words to v in u is denoted by Ry(v). If v is a prefix of u, then u can be written

as a concatenation u = r4,7rq,74, - -- of the return words to v. The derived word of a word u
to a factor v is the word dy(v) = rg,ra, T4, - over the alphabet {r;,rs,...} of cardinality
#Ru(v).

Let u € AN, The language L£(u) of is the set of factors occurring in u. The factor complexity
of u is the map Cy : N — N defined for every n € N as Cy(n) = #{w € L(u) : |w| = n}. The
language L(u) is called closed under reversal if, for every factor w € L(u), it contains its reversed
factor w € L(u). A factor w of u is called right special if there exist two distinct letters a,b € A
such that wa, wb € L(u). Similarly, a factor w of u is called left special if there exist two distinct
letters a,b € A such that aw,bw € L(u). A factor is called bispecial if it is both left and right
special.

2.2 Automata

We introduce terminology concerning automata theory from [BR10]. A finite automaton is
a labeled graph given by a 5-tuple A = (Q, A, E, I, T} where

Q is a finite set of states,

E C @ x A* x Q) is a finite set of edges defining the transition relation,

I C Q is a set of initial states,
e and T is a set of final states.

A path in the automaton A is a sequence (qo,uo,q1,U1,---,qk—1,Uk—1,qk) such that, for all
i € [0,k —1], (¢,ui,qi+1) € E, and the finite word ug---up_1 € A* is called the label of the
path. We visualize such a path as

uo ul Uk —1
qQ —q1 — ... — (k.

A path is successful if gy € I and g € T. The language L(A) accepted or recognized by A is the
set of labels of all successful paths in .A. Moreover, we denote L,,(A) = L(A) N A™, for every
m € N. A state ¢ € Q) is accessible if there exists a path from an initial state to ¢ and a state
q € @ is co-accessible if there exists a path from ¢ to a final state. If all states of A are both
accessible and co-accessible, then A is said to be trim.

A finite automaton is said deterministic if it has only one initial state, edges are labeled by
letters and for every pair (g,a) € @ x A, there is at most one state r € @ such that (¢,a,r) € E.
Then E defines a transition function, which might be partial. We summarize that a deterministic
finite automaton is a labeled graph given by a 5-tuple A = (Q, A, §, ¢ini, T') where

e () is a set of states,
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o A is an alphabet,

e J:Q X A— (@ is called the transition function,
e @ini € Q is the initial state,

e and T C @ is a set of final states.

The transition function § = §4 is naturally extended to @ x A* by d(q,e) = ¢ for every q € Q,
and, for every ¢ € @, a € A and w € A*, §(q,aw) = §(6(¢,a),w). For every w € A*, we denote
A(w) = §(gini, w). Consequently, the language L£(A) is the set {w € A* : §(gni, w) € T}. We
refer to a deterministic finite automaton as to the 5-tuple (Q, A, 0.4, Gini, ).

A set of finite words X C A* is recognizable or regular if there exists a finite automaton
A so that X = L(A). It can be shown that finite automata and deterministic finite automata
recognize exactly the same languages of finite words. Therefore, equivalently, X C A* is regular
if there exists a deterministic finite automaton A so that X = L£(A).

Let X C A* and w € A*. The left quotient |Lot02] is defined as the set of all finite words
u € A* which can be concatenated after w € A* so that wu € X:

w X ={u€ A" wu € X}.
We denote by A(X) the deterministic automaton (Q(X), A, 4(x), [(X),T(X)) such that
e Q(X)={w X :we A*}, ie., every state is a set,
o dax)(S,a) =a"'S, for every S € Q(X) and a € A,
. I(X) =X,
e and T'(X)={Se€Q(X):c€ S}

The automaton A(X) is called the minimal automaton of X and it recognizes X. Note that
A(X) is not necessarily finite. However, a set X C A* is regular if and only if its minimal
automaton A(X) is finite.

A deterministic finite automaton with output is a 6-tuple A = (Q, A, 6, {¢i}, B,&) where A
and B are alphabets, @), 6 and giy; are defined as in the case of a deterministic finite automaton
and £ : Q — B is the output function. In this text, we have always B = () and £ is the identity
map.

2.3 Morphisms

We introduce terminology concerning morphisms and substitutions from [BR10| and [Fog02].
Let A, B be alphabets. A morphism is a map ¢ : A* — B* such that ¥ (uv) = 1 (u)i(v) for
all words u,v € A*. In particular, if A = B, then we call 1) a morphism over the alphabet A.
A morphism v is called

o non-erasing if 1(a) € AT is nonempty, for every a € A4;
o growing or with a growing letter if there exists a € A such that limy_,  |1*(a)| = +o00;

o k-uniform for some integer k > 2 if [¢)(a)| = k, for every a € A;
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o primitive if there exists k € N such that, for every pair a,b € A, a occurs in ¥ (b).

A morphism 1 that is non-erasing and growing is called a substitution. The incidence matriz
My € NAXIAL of a morphism ¢ is defined as (My)ap = [¥(D)|q, for every a,b € A, where
|A| denotes the cardinality of A. In the matrix theory, a matrix is called primitive if there
exists k € N such that all entries of M* are positive. An important theorem treating primitive
matrices is called the Perron-Frobenius theorem; see for instance [Fie08]. The eigenvalue from
Theorem [2.3.1]is called the Perron—Frobenius eigenvalue of M. Clearly, a morphism is primitive
if and only if its incidence matrix is primitive and, consequently, the Perron—Frobenius theorem
is relevant for primitive morphisms.

Theorem 2.3.1 (Perron-Frobenius). Let d € N and let M € N%*¢ be primitive. Then

o M has a positive eigenvalue \ which fulfills the condition that |\'| < X, for every eigenvalue
N of M such that N # X;

e X is algebraically simple, i.e., the eigenspace associated with A is one-dimensional;

e the eigenvector corresponding to A may be chosen as a vector with positive entries and no
other eigenvalue has an eigenvector having this property.

Morphisms can be naturally extended to AN, A%<0 and A% by setting

Y(uourug - -+ ) = P(uo)p(ur)y(uz) -+,
Y(--u_zu_su_1) = - P(u_3)Y(u_2)Y(u_1),
Y(- - u_gu_su_t|ugurug - - ) = - Y(u_3)Y(u_2)Y(u_1)[1(uo)Y(u1)(ug) - - - .

Let D € {Z,N,Zo}. A word u € AP is called a periodic point of a morphism v if there exists an
integer p > 1 such that ¢?(u) = u. In this case, p is called a period of u. The minimal integer
p > 1 such that ¢P(u) = u is called the period of u. A periodic point with the period p =1 is
called a fized point of ¢p. The set of periodic points of ¢ is denoted Perp(v)) = {u € A”: ¢P(u) =
u for some p > 1}. We omit the domain when D = Z and we write Per(¢)) = Pery(¢). If
u € Per(¢) is a two-sided periodic point of a substitution 1, we say that the pair of letters
u—_1|ug is the seed of u [BG13| §4.1]. If the seed-letters of a two-sided periodic point are growing,
then the periodic point is defined entirely by its seed, which is called growing. More precisely,
u = lim; 4 oo /P (u_1)[9pP(up) where p is a period of u.

2.4 Beta-expansions

We use the terminology from [BR10, §2]. Let 5 > 1 be a real number. The S-transformation is
a map 75 : [0,1) — [0,1) defined as 75(z) = Bz — |Bz]. For a real number z € [0, 1), let (z;)F
be the sequence of integers such that x; = LﬁTéﬁl(x)J, for every i > 1. Then = = jzof z; 37,

Interpreting ; as letters from the alphabet {0, 1, ..., [3] — 1}, the right-infinite word (z;);-
is called the S-expansion of x and denoted dg(x). The set of S-expansions of all real numbers in
[0,1) is denoted Dg. The set of factors occurring in the S-expansions of the real numbers in [0, 1)
is denoted Fact(Dg). The [S-expansion of unity dg(1), sometimes called the Rényi expansion of
unity, is defined as

dg(l) = tita---, where t; = |] and tot3--- = dg(8 — | B]).
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The quasi-greedy B-expansion of unity dj(1) is defined as

" (tl cee tm—l(tm — 1))‘”, if dﬁ(l) =t1 -ty is finite;
ds(1), otherwise.

A Parry number is such a real § > 1 that dg(1) is eventually periodic. In particular, a Parry
number 3 is simple if dg(1) is finite.
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Chapter 3

Complement numeration systems

In this chapter, we present our work concerning the Fibonacci complement numeration system,
which generalizes the classical Fibonacci numeration system for N to Z. In particular, we show
its properties with respect to addition. The above mentioned results were published in RAIRO
— Theoretical Informatics and Applications |[LL23a. Also, we present our results, which do
not make part of the publication. We extend numeration systems associated with simple Parry
numbers to Z, creating a class of numeration systems which contains both the two’s comple-
ment notation and the Fibonacci complement numeration system. We show the properties of
complement numeration systems with respect to a particular total order.

3.1 Introduction to positional numeration systems

First, we summarize properties of positional numeration systems [Lot02, §7]. A positional nu-
meration system U is a strictly increasing sequence of integers U = (U,,);/%) such that Uy = 1

and Cy = supnzO[U{}:l] is finite. The value map valy : A* — N of the numeration system U

maps a word w = wg_1 - - - wg € A* over an integer alphabet A to the integer Zf:_ol w;U;
k—1
ValU: Wh—1 "W H— szUz (3.1)
i=0

We denote ¥y = [0, Cyy — 1] the alphabet of U. A U-representation of an integer n € N is a word
w € Xj; such that valy(w) = n. The normal or greedy U-representation of an integer n € N is
a U-representation w = wg_1---wg € E'{} such that wy_; # 0 and valy(w; - - -wop) < Uj41, for
every j € [0,k — 1]. The normalization on A* is the partial function A* — 37, that maps every
word w € A* such that valy(w) > 0 onto the normal U-representation of valy(w). We omit the
letter U in a U-representation if the numeration system is clear from context.

The representation map repy : N — X7, maps an integer n € N to its greedy representation
repy;(n). In particular, rep;;(0) = ¢ is the empty word. The set 0*rep;(N) of all greedy
representations preceded by leading zeroes is called the numeration language. For every n € N,
it holds that

valy (repy(n)) =n (3.2)

and thus repy; : N — repy;(N) is a bijection. Moreover, the set repy;(N) of greedy representations
is totally ordered with respect to the radix order. The radix order is a total order on an alphabet
A such that, for every u,v € A*, u <yaq v if and only if |u| < |v| or |u| = |v| and u <je, v. This
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order is sometimes called genealogical. The radix order on repy(N) is induced by the natural
order of the integer alphabet ¥;;. We reformulate [Lot02, Proposition 7.3.5].

Proposition 3.1.1. [Lot02] Let U be a positional numeration system. For all m, n € N,
m < n if and only if rep;(m) <rad repy(n).

We illustrate the introduced notions on two important examples for our study.

Example 3.1.2 (Binary numeration system). The sequence of integers U = (2");720 is strictly
increasing, Up = 1 and Cy = sup,,> (2;#} = 2 is finite. The positional numeration system U is

called the binary numeration system, it has the binary alphabet ¥y = ¥ = {0,1} and the value
map denoted valy acting on a word w = wg_1 - --wiwg € X* as

k—1
vals : Wg—1 - WLWQ Z wi2i. (3.3)
1=0

The numeration language is ¥*. The representations repy(n) in the binary numeration system
of the integers n € [0, 7] are shown in Table

Example 3.1.3 (Fibonacci numeration system). The sequence of the Fibonacci numbers (F,);729

is defined by the recurrence relation F,, = F,,_1 + F,_s, for all n > 2, with the initial conditions

Fyp =1, F1 = 2. It holds that lim,_, 1~ Fg—:l = 7, where 7 denotes the golden mean. Therefore

the sequence U = (F,),:%} is strictly increasing, Uy = 1 and Cyy = suanO[F}:W = 2 is finite.
The positional numeration system U is called the Fibonacci numeration system, it has the binary

alphabet Yy = ¥ and the value map acting on a word w = wg_1 - - - wiwg € X* as

k—1
valr : wg_1 - wg — Z w; F. (3.4)
i=0

The numeration language is ¥*\ (£*11X*) as proved in |Lek52,Day60,(Car68|Zec72]. We reformu-
late the corresponding theorem, which is usually called Zeckendorf’s theorem, in Theorem [3.1.4]
The representations rep z(n) of the integers n € [0, 7] are shown in Table

Theorem 3.1.4. [Zec72| The map valg: ¥* \ (0X* U X*11%*) — N is a bijection.

Positional numeration systems are classically defined for nonnegative integers N and this
theoretical framework is widely explored. To be able to perform arithmetical operations in
a computer, various ways were described to extend the numeration systems to Z. Let ¥ denote
an integer alphabet. A positional numeration system U for Z has a value map valy : ¥* — Z.
We aim to find a subset £ C ¥* which fulfills that valy : £ — Z is a bijection. Then we call
the inverse map Val(}1 the representation map and we denote it rep;; : Z — L. Clearly, then
valy (repy (n)) = n.

An intuitive approach to extend a numeration system for N to Z is interpreting the most
significant digit as the sign. However, a disadvantage of this approach is that minus zero and
plus zero have distinct representations. Examples that avoid this disadvantage include the two’s
complement notation, which generalizes the binary numeration system [Knu69, §4.1], and the
negaFibonacci numeration system, which generalizes the Fibonacci numeration system [Knull
§7.1.3].
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Example 3.1.5 (Two’s complement notation). The sequence of integers U = (2")°0 and the
alphabet X is the same as for the binary numeration system presented in Example How-
ever, its value map valy. opposed to the binary value map vals has the term, which contains the
most significant digit, multiplied by (—1):
k—2 A
valg, @ wp_1 - - - wiwp —> Z w28 — wy_ 1281, (3.5)
i=0
Note that (3.6 can also be expressed in another form, which we use in the next parts
k-1 .
Valgc P Wh—1 - WLWo Z wi2l — wk_12k. (36)
i=0
It holds that valy. : £\ (00X* U 11%*) — Z is a bijection. We prove this in a broader framework
in Section We show the representations repy.(n) of the integers n € [—5,7] in Table
We observe that repy.(n) € 0X* if and only if n € N. We refer to the two’s complement notation
also as to the two’s complement numeration system.

Example 3.1.6 (NegaFibonacci numeration system). The sequence of negaFibonacci numbers
(Fn)f£ is given by the same recurrence relation as the Fibonacci numbers F,, = F,,_1 + Fj,_2,
but it is defined for all n € Z. Therefore we have

o, Fg=-3 Fy5=2 F,=-1, Fg=1 Fo=0,F =1 Fy=1 F =2, ...

The terms (F},), 275 can be used to define the negaFibonacci numeration system for Z. It
has the binary alphabet ¥y = X and the value map denoted val,e; 7 acting on a binary word
W = Wp_q1- - wiwy € X* as Valneg]: D Wk—1 - W1Wo > Zf:_ol w;F_;_3. The map Valneg]: is
a bijection X*\ (0X* UX*11%*) — Z. The representations rep,e, #(n) of the integers n € [-5,7]
are shown in Table We observe that rep,,, (1) has odd length if and only if n € N.

n_ | repy(n) | repr(n) | repy.(n) | rephegr(n) | repg(n)
7 111 1010 0111 10100 01010
6 110 1001 0110 10001 01001
5 101 1000 0101 10000 01000
4 100 101 0100 10010 0101
3 11 100 011 101 0100
2 10 10 010 100 010
1 1 1 01 1 01
0 € € 0 5 0
—1 - - 1 10 1
-2 - - 10 1001 10
-3 - - 101 1000 100
—4 - - 100 1010 1001
—5 - - 1011 100101 1000

Table 3.1: The binary, the Fibonacci, the two’s complement, the negaFibonacci numeration system and
the numeration system G.

3.2 Fibonacci complement numeration system

The two’s complement notation presented in Example [3.1.5] extends the binary numeration sys-
tem for N to all integers Z. Similarly, the negaFibonacci numeration system presented in Exam-
ple 3.1.6] extends the Fibonacci numeration system for N to all integers Z. However, these two
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approaches differ significantly. In this section, we extend the Fibonacci numeration system to
all integers using the approach of the two’s complement notation.

An analogue of the two’s complement notation emerges if we choose the value map to have
the same structure as , using the Fibonacci numbers instead of powers of 2:

k-1
valye t wp—1 - wo > > wiFy — w1 Fy. (3.7)
i=0

The representations in the numeration system derived from cannot include 0, 1 and rep-
resentations of all lengths, because we have that valr.(0) = 0, valr.(1) = —1, valz.(10) = —1,
valr.(11) = 0. Even though this might seem as a disadvantage at first glance, we will see later
that the contrary is true. A choice was made in [LL23a] to only consider odd-length repre-
sentations not containing consecutive 1s, which resulted in the following proposition. In this
text, we carry out its proof in a broader framework in Section see Proposition and

Example [3.3.7]

Proposition 3.2.1. The map valg.: L(XX)* \ (*11¥X* U 000X* U 101X*) — Z is a bijection.

It is thus possible to define the representation map
repr, : Z — X(XX)*\ (£*11¥" U000X* U 101¥%)

as the inverse of the map valr.. We show the representations of integers n € [—10,19] in the
numeration system Fc in Table

—10 1000100 0 0 10 0010010
-9 1000101 1 001 11 0010100
-8 1001000 2 010 12 0010101
-7 1001001 3 00100 13 0100000
—6 1001010 4 00101 14 0100001
-5 10000 5 01000 15 0100010
—4 10001 6 01001 16 0100100
-3 10010 7 01010 17 0100101
-2 100 8 0010000 18 0101000
-1 1 9 0010001 19 0101001

Table 3.2: The Fibonacci complement numeration system Fc.

Remark 3.2.2. It might seem more natural to construct an analogue of the two’s complement
notation with the value map having the same structure as (3.5)):

k—2
Valg PWh—1 - WLWo Z wiFi — wklekfl. (3.8)
1=0

Observe that and do not coincide. It is indeed possible to construct a numeration
system for Z with the value map valg, which is a bijection X\ (X*113* U 101%* U 00X*) — Z.
We omit the proof of this fact as this numeration system is not of interest for our study, which we
explain further in Section[3.3, Chapter[f and Chapter[] However, we still show in Table[3]] the
representations, which might indeed look more natural and closer to the original two’s complement
numeration system than those in the numeration system Fc.
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We observe that the Fibonacci complement numeration system has the following interesting
property. In Proposition we excluded words starting with the prefixes 000 and 101 so that
the value map valr is a bijection. Moreover, these prefixes can be used to pad words without
changing their value, as stated in the following lemma. Its proof follows easily from our work in

a broader framework in Section see Example and Equation (3.16]).

Lemma 3.2.3. For every word w € ¥*, we have
valr.(000w) = valr.(Ow) and  valr.(101w) = valg.(1w).

Hence, Lemma [3.2.3] leads to the definition of the neutral prefiz. In Section [3.3] the concept
of a neutral prefix is slightly modified to give rise to neutral words; see Equation (3.16]).

Definition 3.2.4 (Neutral prefix of Fc). Let w € ¥*. We say that 00 (resp., 10) is the neutral
prefix of w if w € 0X* (resp., if w € 1¥*).

We show in Section that the numeration system JFc has interesting properties with respect
to addition. In Chapter [6 we recover the numeration system Fc as a numeration system based
on the Fibonacci substitution, and in Chapter [7} we use the numeration system Fc extended to
7?2 to describe a particular Wang subshift.

3.3 Complement numeration systems associated with simple Parry
numbers

The classical binary and Fibonacci numeration system for N fall into a broader framework of
numeration systems associated with simple Parry numbers. The two’s complement numeration
system extends the binary numeration system to Z and the Fibonacci complement numeration
system extends the Fibonacci numeration system to Z. We extend all numeration systems
associated with simple Parry numbers to Z in an analogous way.

First, we summarize the background of numeration systems canonically associated with real

numbers 3. Let 8 > 1 be a real number and denote d;‘g(l) = (x;)i>1 its quasi-greedy expansion

“+o0o
n=0

of unity. The numeration system Ug = (Uy) canonically associated with 3 is defined by the

relation .
U, = Zl‘iUn_i + 1, for every n > 0. (3.9)
i=1
The canonical alphabet Y5 and the representation map repg of the numeration system Up are
defined as in Section ie., ¥ = [0,Cy — 1], where Cyy := suanO[U{}:l} is finite, and the
representation map repg : N — EE maps every integer n € N to its greedy representation.
A greedy representation of an integer n € N is a word w = wy_1 ---wp over the alphabet Xz,
which satisfies the condition that

k—1 j—1
ZwiUi =n, wp_17#0, and ZwiUi < Uj, for every j € [1,k].
i=0 i=0

The value map valg maps every word w = wj_1---wp € A* over an integer alphabet A to
the sum valg(w) = Y¥1w,U;. Consequently, valg(repg(n)) = n for every n € N and Up is
a positional numeration system for N. We recall that a Parry number is such a real § > 1 that
its greedy expansion of unity dg(1) is eventually periodic and, in particular, a Parry number
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 is called simple if dg(1) is finite. A numeration system canonically associated with a Parry
number f is called a Parry numeration system. Parry numeration systems are a strict subset of
Bertrand numeration systems, which are positional numeration systems called after Bertrand-
Mathis [BM89,|BH97]. They were studied recently in [CCS22].

From now on, we assume that 5 > 1 is a simple Parry number with the greedy expansion
of unity dg(1) = t1---t;,. We can derive from Equation the following linear recurrence
relation for the numeration system Ug = (U,),/2%:

U, = ZtiUn_i, for every n > m. (3.10)
i=1

The numeration language preceded by leading zeroes 0% repg(N) is a regular language [Hol98].
We denote Hg 4, the trim minimal automaton which accepts the numeration language:

L(Hp,q) = 0" repg(N). (3.11)
It is shown in [Lot02, Theorem 7.2.13] that Hg 4, has a particular form.

Remark 3.3.1. Denote dj(1) = (z122---2)*. The automaton Hpg,, has the set of states
Qs ={q1,...,qm}, all of which are final. The initial state is q1. For every j € [1,m], there are
xj edges qj — q1 labeled O, ..., (x; — 1), and for every j € [1,m — 1] there is one edge q; — qj4+1
labeled x;. There is also one edge qm — q labeled x,.

We show the automata associated with § = 2, the golden mean 8 = 7 and 3 the real root
of the irreducible polynomial #3 — 322 4 2z — 2 in Figure We denote L, (Hgq,) = {w €
L(Hpq): |w| =n} and we denote Hp 4, the automaton which arises from Hg 4, by changing its
initial state to the state gy, for a fixed state x € [1,m].

1

\
OB O8O

Figure 3.1: The automata Hg 4, associated with the simple Parry numbers 5 € {2, 7, '}, where 3’ is the
real root of the irreducible polynomial 23 — 322 + 2z — 2. If 8 = 2, then dg(1) = 2 and ds(1) = 1. If
B =7, then dg(1) = 11 and dj(1) = (10)~. If 8 = ', then dg(1) = 2102 and dj(1) = (2101)* [Bas02].

The following lemma can be derived from Equation (3.11)).
Lemma 3.3.2. The automaton Hg 4, has the property that U, = #L,(Hg,q, ), for every n € N,

We aim to define a new value map that will enable us to evaluate words over an integer
alphabet as both nonnegative and negative integers. Let x € [1,m]. We base the value map

on the automaton Hg,, which arises from the automaton Hg,, by creating a new initial state
start and adding two additional edges start 9, ¢q1 and start EN ¢y; compare Figure and
Figure Clearly, then the language L(Hg,) = 0L(Hgq,) U 1L(Hpg,q, ). We denote Wy, the

label of the path of length m in the automaton Hg , starting at the state ¢; and following the
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Figure 3.2: The automata Hs 1, H,2 and Hg/ 3 which were created by modifying the automata in Fig-
ure We recall that 3 denotes the real root of the irreducible polynomial 2% — 322 + 2z — 2.

edges with minimal lexicographical value and we denote WX, the label of the path of length m in
the automaton Hg , starting at the state ¢, and following the edges with maximal lexicographical
value. Therefore we have

W, =07 and WX, =ty tmo1(tm — 1)t byt (3.12)
We observe that the words Wy, and WYX, fulfill the condition that, for every w € L(Hg ),
Ha (0(WY. V*v), if w = Ov;
/HBvX(w) _ 57X( ( mln) U) 1 w v (313)
Hp(1(WE ) ), if w=1w.
We define, for every n € Z,
V; x = #ﬁn(/ﬂﬁ qx)' (3.14)
As a consequence of Lemma we have (V,1)720 = (U,), 25, Also, by definition, we have
Vax = 0, for every n < 0. We define the value map valg, so that, for every word w =
Wy_1 - - wo € AF over an integer alphabet, we have
valg\ (w) = SIF wili — Wg—1Vi—1,x- (3.15)

We prove the following proposition in Section [3.3.1

Proposition 3.3.3. Let 8 be a simple Parry number with the quasi-greedy expansion of unity
di(1) = (tita - tm—1(tm — 1)) and let ¥ = g be the canom’cal alphabet of Ug. Let x € [1,m].
Denote WY, = 0™ and Wax =ty tm—1(tm — 1)t1 -+ -ty—1. Then the map valg, is a bijection:

V&l@xi ,C(’Hg,x) N E(Em)* \ (OwX SF U 1WX

min max

) = Z.

With the help of Proposition 3.3.3], we extend the numeration systems for N associated with
simple Parry numbers to Z. More precisely, a numeration system Ug associated with a simple
Parry number § such that dg(1) = t;---t, can be extended to Z in m different ways. We
call these numeration systems complement numeration systems as their value map has the same
structure as the two’s complement numeration system; compare Equations (3.6 and -
Their representation map is defined as the inverse of the map valg , .

Definition 3.3.4 (Complement numeration system). Let § > 1 be a simple Parry number with
the greedy expansion of unity dg(1) = tita---ty,. Let x € [1,m]. We define repg ., = Valgi.
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Remark 3.3.5. The language repg ,(Z) contains words of length mé + 1, for all £ € N. In
particular, 0 and 1 belong to the language repB,X(Z) and we have that

repg (0) =0 and repg,(—1)=1.
Indeed, from Equation (3.15) we observe that valg, (0) =0 and valg, (1) = —1.

The two’s complement numeration system and the Fibonacci complement numeration system
JFc belong to the class of complement numeration systems; see Example and Example
The numeration system G from Remark [3:2.2] is not a complement numeration system; see
Example To illustrate a complement numeration system on a larger alphabet than the
binary one, we show the complement numeration system associated with 8 the real root of the
irreducible polynomial 23 — 322 4+ 2z — 2 in Example

Example 3.3.6. Let 3 = 2. Then dg(1) = 2 and dj(1) = 1. From Equation (3 (3-9), we have
Up = 1, and from Equation (3.10)), U, = 2U,—; for every n > 1. Thus Uz = (2”) As the
greedy expansion of unity dg(1 ) has length 1, we have only one choice for x = 1. In Flgure we
observe that V,,, = #L,(Hgq,) = Un, for every n € N. Then valg , (w) = Sk P w2 — wk_12 -
which is exactly the value map of the two’s complement notation from Equation (3 .

Example 3.3.7. Let § = 7. Then dg(1) = 11 and d;g(l) = (10)“. From Equation (3.9), we
have Uy = 1 and U; = 2, and from Equation (3 , Up = U,_1+ U,_o for every n > 2. Thus
Us = (F,);/29, the sequence of Fibonacci numbers As the greedy expansion of unlty ds(1) has
length 2, we have two possible choices of x € {1,2}. We choose xy = 2. In Figure we observe
that Vi, = #Ln(Hp,g) = #0Lp—1(Hp,q) = Un—1, for every n > 1. Therefore

k-1

valg  (w Z wiF; —wp—1Frg = > wiF; — wp_1(Fr—g + Fr_1) = > wiF; — wp_1 Fy,
i=0 ;

which is the value map of the Fibonacci complement numeration system Fe¢ from Equation (3.7]).

Example 3.3.8. Assume by contradiction that there exists a simple Parry number g such that
dg(1) = t1---ty, and there exists a state xy € [1,m] so that, for every n € [—5,7], we have
repg \(n) = repg(n) as shown in Table As the G-representations do not exclude words of
any length, it follows from Remark [3:3.5/that m = 1. The simple Parry numbers with the greedy
expansion of unity of length 1 are exactly the integers § > 2. As the G-representations are words
over the binary alphabet, the only option left is 5 = 2. But the only complement numeration
system associated with 8 = 2 is the two’s complement system, which does not coincide with G.

Example 3.3.9. . Let 3’ be the real root of the irreducible polynomial 23 — 322 + 22 — 2. Then
dg (1) = 2102 and d (1) = (2101)* [Bas02]. From Equation (3.9), we have Uy = 1, Uy = 3,
Us = 8, Us = 20, and from Equation , we have U, = 2U,,—1 + U,—9 + 2U,_4, for every
n > 4. As the greedy expansion of unity dg (1) has length 4, we have 4 possible choices of
X € [1,4]. We choose y = 3. From Figure we observe that Vp, =1, V1, =1, and, for every
n > 2,

Vix = #Ln(Mpqs) = #0{0, 1} Ln2(Hp,q,) = 2Un—2.

Then, for every word w = wy_1 - - - wp of length & > 2 over an integer alphabet, we have

k—2

Valﬁ’ Z w;U; wkflkal,x = Z w;U; — wi_1Uk_3.
=0
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We show in Table all words of length 4¢ + 1, ¢ € {0,1}, accepted by the automaton Hg
evaluated by the value map valg . We observe that all words have distinct values, expect for two

cases. The words 0 and OWX. = 00000 have the same value and the words 1 and 1WX, = 10121
have the same value. Indeed, OWX. and 1WY, . are excluded in Proposition

w | valg , (w) w | valg , (w) w | valgs , (w) w | valgs , (w)
10000 ~16 0 0 00200 16 01112 33
10001 ~15 00000 0 00201 17 01120 34
10002 ~14 00001 1 00202 18 01121 35
10010 ~13 00002 2 00210 19 01200 36
10011 ~12 00010 3 01000 20 01201 37
10012 —11 00011 4 01001 21 01202 38
10020 ~10 00012 5 01002 22 01210 39
10021 -9 00020 6 01010 23 02000 40
10100 -8 00021 7 01011 24 02001 41
10101 -7 00100 8 01012 25 02002 42
10102 -6 00101 9 01020 26 02010 43
10110 -5 00102 10 01021 27 02011 44
10111 —4 00110 11 01100 28 02012 45
10112 -3 00111 12 01101 29 02020 46
10120 -2 00112 13 01102 30 02021 47
10121 -1 00120 14 01110 31 02100 48

1 ~1 00121 15 01111 32 02101 49

Table 3.3: A complement numeration system associated with 3, the real root of 2® — 322 4 2z — 2, and
X =3

We believe that the construction of complement numeration systems may be carried out with
some modifications for the numeration systems associated with non-simple Parry numbers as
well. For now, we leave this as an open question.

Question 3.3.10. Can we construct complement numeration systems for Z associated with non-
simple Parry numbers in analogy with Definition [3.3.4]?

3.3.1 Proof of Proposition [3.3.3

We summarize some existing results and prove several lemmas in order to prove Proposition|3.3.3
As Up is a positional numeration system for N, the language reps(N) is ordered with respect to

the radix order; see Proposition Combining Proposition with Equation (3.11f), we
reformulate this property in the following lemma.

Lemma 3.3.11. Let 8 > 1 be a simple Parry number and U = Ug be the numeration system
associated with 8. Then the map valg: (L(Hp,q,) \0Xj, <raa) — (N, <) is an increasing bijection.

We recall that the automaton Hg,, plays an essential role for a numeration system Ug and
the automaton Hp 4 is created by changing the initial state of Hp 4, to q,. We show that the
words accepted by the automaton Hg 4, are also accepted by the automaton Hpg g,

Lemma 3.3.12. Let 3 be a simple Parry number with the quasi-greedy expansion of unity dg(l) =
(tita - tm—1(tm — 1))¥ and let ¥ = X3 be the canonical alphabet of Ug. Let x € [1,m]. For
every word w € X*, we have that if w € L(Hpgq, ), then w € L(Hpgq, ).

Proof. If w = ¢ is the empty word, the statement holds. Let w = wy_1---wo € L(Hgq, ) such
that [w| > 0. Then ¢ ---t,_yw € L(Hpg, ). From Equation (3.11)) and the fact that t; # 0, there
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exists a nonnegative integer n > 0 such that repg(n) = t1---t,_jw. As this representation is
greedy, we have that valg(w; - - - wg) < Uj41, for every j € [0,k —1]. We denote u € ¥* the word
of maximal length so that w € 0*u. Then u = ug_1 - - - ug fulfills uy_1 # 0 and it is thus a greedy
representation. Therefore w € 0% reps(N) and the statement holds from Equation (3.11)). O

The following observation holds from the definition of the map valg, in Equation (3.15).

Lemma 3.3.13. Let 8 be a simple Parry number with the greedy expansion of unity dg(1) =
tity -ty Let x € [1,m] and let w € ¥%. Then valg , (0‘w) = valg(w) > 0, for every £ > 1.

The following lemma helps us to express the values of V,, , as a function of (U,) and the
greedy expansion of unity. Its proof is based on the definition of the automata Hg 4, and Hpg g, -

Lemma 3.3.14. Let 8 be a simple Parry number with the greedy expansion of unity dg(1) =
tita - -tm. Let x € [1,m]. Let U = Ug denote the numeration system canonically associated
with B and V = (Vy, )25 be the sequence defined in Equation (3.14). Then

i) Vax = 2ity tiUntx—1-i, for everyn >m — x + 1;

.. —1
“) me,x = Uml+x—-1 — Z?:l tiUm€+x—l—iv for every £ € N.

Proof. i) Paths starting at ¢, in the automaton Hg, pass through the state q; after at most
m — X + 1 edges. From the form of the automaton Hg 4, , we have, for every n > m — x + 1,

Hﬁ qX |_| t tx-l—l i—1{07 R 7ti - 1}£n7(ifx+1) (Hﬁﬂl)

= |_| tytyrr - tic1{0, .t = 1} Lh iy 1-i(Hpq ),

where the symbol | | denotes a disjoint union. As a consequence of Equation (3.14]) and Lemma

we have
Vax = #Ln(Hpq,)

=# (|_| tytyt - tim1{0,... b — 1}[‘n+xli(Hﬁ,q1)>

i=x

= Z#(t tyt1 - tic1{0,... t; — 1}£n+x—1—z’(%ﬁ,q1))

= Z #({0, cey b — l}ﬁn-f-x—l—i(HB,m))

= Z ti#‘cn+X*1*i (Hﬂ,m ))

=X
m

= Z tiUntx—1—i-
=X

ii) Assume ¢ = 0. Then we use Equation (3.9)) for n = x — 1 to obtain

x—1 x—1
Vmé,x = ‘/O,x =1= Ux—l - Z tiUx—l—i = Um€+xfl - Z tiUmH»Xflfi-
i=1 =1
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Assume ¢ > 0. Then mf¢ > m — x + 1 and we use part i) for n = mf and Equation (3.10) for
n=ml+ x — 1 to obtain

m
Vmé,x = Z tiUmf-l-x—l—i

=X

m
= Umltx—-1 — Um€+x—1 + Z tiUm€+x—1—i
=X

m m
= Untix—1— Y tiUmtix—1-i + Y tiUmesx—1-i
i=1 i=x
x—1
= Unttx—1 — Z tiUmerx—1—i- U
i=1

In the next lemma, we show the neutral role of the word WY, for the value map valg .

Lemma 3.3.15. Let 3 be a simple Parry number with the greedy expansion of unity dg(1) =
tity - tm. Let x € [0,m] and ¢ € N. Then for every w € Le(Hp,q,), we have

valg  (1tytyq1 - tm—1(tm — 1)t1 - - ty—qw) = valg , (1w).
Proof. Let x € [0,m], £ € N and let w € L,,0(H3,4,). Then we have

valg y (1w) — valg(w) = =V
x—1

= _UmZ-i—x—l + Z tiUm€+x—1—i
=1
x—1

= —Umegyx—1+ Z tiUmZ+X—1—i — Vm(¢+1),x + Vm(€+1),x
i=1

x—1 m
= —Umeyy—1+ Z tiUm€+Xflfi = VYm(l+1),x + Z tiUm(£+l)+x—l—i
i=1 i=x
m x—1
- _Vm(ZJrl),X + Z tiUm(€+1)+Xflfi - Um€+xfl =+ Z tiUmZ+xflfi
=X =1

= Vit x T xUmer)—1 + - + tm—1Unmesx + (tm — DUnesx—1 + tUnmiry—2 + - + ty—1Une
= Valﬁ,x(ltxtx-i-l . -tm_1(tm — 1)t1 cee tx_lw) — Valg(’w),

where we used Lemma [3.3.14]ii) and Lemma [3.3.14] i) for n = m(¢ + 1). O

As a consequence of Lemma [3.3.13| and Lemma [3.3.15 we see that the words WX, and WX,
fulfill the condition that

15 (O(WX. )* if w = Ov;
Valmx(u}) = {Va 57)(( ( mln) U)? 1w U3 (316)

valg y (1(WX,) ), if w = 1.

That is why we call the words WX, and WX,  neutral. We can insert a corresponding neutral
word right after the first letter 0 (or 1) without changing the value of the original word. In
the following lemma, we show that excluding words with a corresponding neutral word inserted
enables us to determine, in which interval a word is evaluated.
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Lemma 3.3.16. Let 3 be a simple Parry number with the quasi-greedy expansion of unity d’g(l) =
(tita - tm—1(tm — 1))¥ and let ¥ = X be the canonical alphabet of Uz. Let x € [1,m]. Denote

WY = 0™ and W, =ty b1 (b — D)t1--ty—1. Let u € L(Hg,) ND(X™)*\ (OWY,;, X% U
1WX . 2*) and £ € N. Then we have

(1) w € 0X™ if and only if Un(e—1y < valg y(u) < Upe;
(2) u € 15™ if and only if —Viye, < valg, (u) < ~Vin(e=1),x-

Proof. First we prove the implication from left to right for both cases.

(1) We denote u = Ow. Assume |w| = 0. Then U_; = valg,(0) =0 < 1 = Up. Now, assume
that |w| = m{ for £ > 1. By Lemma the word w fulfills the condition that w € L(Hg,q, ).
From Equation , we have that w is a greedy representation possibly preceded by leading
zeroes. Thus

valg , (0w) = valg(w) < Upy.

The lexicographically smallest word in the language L,,0(Hg,q,) \ 0™E* is Wmin = om—l1om(t=1)
Then using Lemma [3.3.13| and Lemma [3.3.11} we have

valg , (Ow) = valg(w) > valg(wmin) = Valﬁ(Om_llom(é_l)) = Up(t—1)-

(2) We denote v = 1w. Assume |w| = 0. Then —Vj, = valg, (1) = -1 <0 = —V_,, . Now,
assume that |w| = mf for £ > 1. We observe that 0™ <. w and therefore 0" <, .4 w. Thus
using Lemma we have

valg  (1w) = —Viney + valg(w) > —Vine, + valg(0™) = — Vi .

Let wmax denote the lexicographically largest word in the language Le(Hg,q,) \ W X" By
Lemma the word wmax fulfills the condition that wmax € L(Hg,q, ). From Equation ,
we have that wpyax is a greedy representation possibly preceded by leading zeroes and there exists
a word w' € L(Hg,q, ) such that valg(w’) = valg(wmax) + 1. More precisely, w' = WX, 0™~ 1.
We observe that w' € L(Hgq, ). Using Lemma and Lemma we have

valg y (1w) = = Ve, + valg(w)
< - me,x + V&lﬁ (wmax)
= Vit + valg(W, 0™y —1

= valg , (1WX,, 0™y — 1
= valg, (10™ D) -1

= Vine-nx 1

< =Vin(e—1),x-

The converse follows from the following observation. Let X = U/ 5 X él) UULSS X 152) be
a disjoint union. Let F: X — Y be a map, such that F(X)n F(XJ(-;I)) = () for every

2

i1,71 € {1,2} and i, j2 € N such that Xz-(;l) # Xgl). Then it holds that, for every z € X,
F(z) € F(Xi(;l)) implies = € X", Indeed, if z € X](-gl) such that Xi(;l) # X;gl), then F(z) €

2
F(X,(“)) N F(X](.gl)), a contradiction. It suffices to use this observation with F' = valg, and

X = L(Hg2) N EE™)\ (00,5 U 11, 5 O

min max )
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Now, we turn to the proof of Proposition [3.3.3] We will need a simple observation following
from Equation (3.15). For every word w = wy_1 - --wp € A¥ over an integer alphabet, we have

valg y(w) = valg(w) — w1 (Vi—1, + U—1). (3.17)
Proof of Proposition[3.3.3. Denote ¥ = Xz and D = L(Hg,) N S(E™)* \ (OW);, T* U 10X, 5%).

(Injectivity): Let u,v € D be such that valg, (u) = valg,(v). By Lemma [3.3.16] u and v
have the same length ¢ € N and the same first digit d € {0,1}. Using Equation (3.17)), we have

valg(u) = valg, (u) + d(Vi—1y + Up—1) = valg , (v) + d(Vi—1y + Us—1) = valg(v).

Denote u = du’ and v = dv’. Denote u”,v” the words of minimal length so that v’ € 0*u” and
v' € 0*v”. Thus v”,v"” ¢ 0X* and valg(u”) = valg(v”). If d = 0, then v/, v € L(Hp,, ). If d =1,
then v',v" € L(Hgz,4, ) and from Lemma u',v" € L(Hp,q ). Consequently, in both cases,
u' 0" € L(Hpgq,)\ 0X* and valg(u”) = valg(v”). By Lemma[3.3.11] u = v.

(Surjectivity): It holds that Z = [J£55 [Um(e=1)» Ume) U [=Vine,x, = Vin(e—1,x)» @ disjoint union,
and

+00 Fo0
D= U O'Cmf(/Hﬁ,fh) \ OWi;inE* U U 1£m€(HB,qx) \ W,
=0 =0

a disjoint union. As valg, is an injective map D — Z, it suffices to show for every £ € N, that

o 0Lme(Hpq) \ OWY;, X% has the same cardinality as [Up,(s—1), Ume), and

min

o 1Lne(Hpg,) \ 1WN.x 2" has the same cardinality as [~V v, —Ving—1),x)-

max

Indeed,
H#OLme(Hpq) \ OWgin 2" = #Lme(Hpg) \ Wiin 2"
= #Line(Mp.g) \ Win Lon(e—1)(Hpa1)
= #Emé(HBm) - #Em(ﬁ—l)(Hﬁm)
=Umt — Une-1)
and

H#1Lme (Mg ) \ Whax 2 = #Lime(Hp ) \ Whax X"
= #Lme(Hp ) \ WhaxLme—1)(Hpax)
= #EmE(Hﬁ,qx) - #ﬁm(ﬂ—l)(Hﬁ,qx)
S T A

3.4 Total order <

A positional numeration system U for N has the language repy;(N) ordered with respect to the
radix order; see Proposition Equivalently, this fact may be reformulated in the sense that
the value map of a positional numeration system is an increasing bijection with respect to the
radix order between the language rep;;(N) and N. In this part, we introduce a total order suitable
to characterize positional numeration systems for Z such as the two’s complement notation and
its Fibonacci analogue.

First, we define the reversed-radix order as a total order such that u <,ey v if and only if
|u| > |v| or |u| = |v|] and u <je, v. Next, we define a total order on {0,1}A* as follows.
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Definition 3.4.1 (total order <). For every u,v € {0,1}A*, we define u < v if and only if
o u € 1A* and v € 0A*, or
e u,v € 0A* and u <,aq v, OT
o u,v € 1A* and u <iev V.
For instance, ordering the language {0, 1}*, we get
-+ <100<101<110<111 <10<11 <1 <0<00<01<000<001<010<011<---.

We prove that the value map of every complement numeration system associated with a simple
Parry number is increasing with respect to the order <.

Proposition 3.4.2. Let 5 be a simple Parry number with the quasi-greedy expansion of unity
d;(l) = (tita -+ - tm—1(tm — 1))¥. Let x € [1,m]. Then the map valg,, is an increasing bijection:
valg i (L(Hgy) NZ(Z™)\ (OWY, X U 1w

min max

), <) = (Z,<),

where ¥ =Yg, W, = 0™ and WY, =ty tm—1(tm — 1)t1 -+ ty—1.

min max

min max

that valg,: D — Z is a bijection. We prove that it is increasing with respect to the order <.
Let u,v € £ be such that u < v. Let k,¢ € N be such that |u| = mk + 1 and |v| = ml + 1.

Proof. Denote D = L(Hg,) NB(X™)*\ (0OWY,;, X U 1W¥,, X*). It follows from Proposition m

e Ifu e 1¥* and v € 0X*, then by Lemma [3.3.16

valg y (u) < V=1 x <0< Uppe—y < valg y (v).

o Assume that u,v € 0X* and |u| < |v|. Then k < ¢ — 1 and, by Lemma [3.3.16]
valg y(u) < Upp < Un(e-1) < valg y (v).
o Assume that u,v € 1¥* and |u| > |v|. Then k — 1 > ¢ and, by Lemma [3.3.16]
valg (1) < =Vig—1)x < —Viney < valg (v).

o Assume that u,v € dX* for some d € {0,1} and |u| = |v|. In this case, we have k = ¢ and
U <jegy v. Thus u <;»q v and from Lemma [3.3.11] valg(u) < valg(v). From Equation (3.17]),

valgy (u) = valg(u) — d(Vi—1,y + Ur—1) < valg(v) — d(Vi—1, + Up—1) = valg (u). O

We prove that the map repg , is characterized by the fact of being an increasing bijection.

Proposition 3.4.3. Let 8 be a simple Parry number with dj(1) = (tita - ty—1(tm — 1))°. Let
x € [1,m]. Let f: Z — {0,1}%* be a map. The following statements are equivalent:

* f = repﬁ?x’

o f is increasing with respect to the order <, its image is f(Z) = L(Hpgy) N X(E™)*\
(OWX, X* U1wX . >*) and f(0) = 0.

min max
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Proof. Suppose that f = repg,. As f is the inverse map ValEé(, from Proposition it is
increasing and its image is £(Hg,) N B(X™)* \ (0WY;, 3* U WX, ). Also, repg, (0) = 0 from
Remark 3.3.5

Let f: Z — {0,1}X*. Suppose f is increasing, its image is L(Hg,) N S(X™)* \ (OWY;, X* U
WX, X*) and f(0) = 0. The map repg , satisfies the same properties. Since there is a unique

increasing bijection Z — f(Z) such that f(0) = 0, we conclude that f = repg . O

As a corollary, the value maps valy. and valr. are increasing bijective functions with respect
to the total order < on the corresponding languages of representations; see Example [3.3.6] and
Example Hence, Proposition provides a unified proof of results proved in [LL23a].

Corollary 3.4.4. [LL23a] The map repy, is the unique increasing bijection
repy.: (Z,<) — (Z+ \ (11¥* U 00%"), < )

such that 0 — 0.

Corollary 3.4.5. [LL23a] The map repz, is the unique increasing bijection
repr.: (Z,<) = (B(E%)"\ (21157 U 0005 U1013), < )

such that 0 — 0.

The numeration system G seems to be increasing with respect to the order < as well, even
though it is not a complement numeration system associated with a simple Parry number; see
Table and Example On the other hand, the value map of the negaFibonacci numeration
system is not increasing with respect to the order <. In fact, it does not even preserve the radix
order on N; see Table For instance, we have

IePpeg 7 (5) = 10000 <paq= 10010 = rep, e, 7(4)-

It seems convenient that the order < extends the radix order, which characterizes the po-
sitional numeration systems for N. In this light, the numeration systems such as the two’s
complement notation and the Fibonacci complement numeration system seem to be natural
extensions of the classical numeration systems to Z.

3.5 Addition in the Fibonacci complement numeration system

Integers represented in the two’s complement notation [Knu69, §4.1] are added using the same
algorithm, which applies for the addition of nonnegative integers represented in the binary nu-
meration system; see Example [3.5.1] Due to this property, the two’s complement notation is
nowadays used in computers to represent signed (meaning both nonnegative and negative) in-
tegersﬂ The Fibonacci complement numeration system is an analogue of the two’s complement
notation, using the Fibonacci numbers instead of powers of 2. In this part, we show that these
two numeration systems share the same properties with respect to addition. More precisely, the
addition of integers represented in the Fibonacci complement numeration system is performed
with (almost) the same algorithm as the addition of nonnegative integers represented in the
Fibonacci numeration system.

I"All operations on signed integers assume a two’s complement representation." Section 4.2.1 in Intel 64 and
TA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture, retrieved September 2023
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Example 3.5.1. We illustrate the addition in the binary and in the two’s complement numer-
ation system. We add two representations 01011 and 10001 with the classical carry method,
starting from the right and transferring a carry at each step. The resulting representation is
11100, which is not greedy.

11 01011 +11

+17 10001 —15
+28 11100 —4

If we interpret all three binary words as the binary representations, we obtain
valy(01011) +valy(10001) = (23 +21 +29) (20 +2°) = 11417 = 28 = 21+ 23+ 22 = valy(11100).
But if we interpret all three binary words as the two’s complement representations, we obtain

valp,(01011)4valy.(10001) = (284214-20)+(—24420) = 114(-15) = —4 = —224-234-2% = valy(11100).

3.5.1 Addition in the Fibonacci numeration system

Addition of integers represented in the binary numeration system can be performed using a pencil-
and-paper algorithm shown in Example Addition of integers represented in the Fibonacci
numeration system is less elementary as the traditional carry method clearly does not work. In
[Ber86, p. 22], Berstel introduced a Mealy machine B called adder, which can perform addition
of the Fibonacci representations.

A Mealy machine M is a labeled directed graph. Its vertices are called states and its edges
are called transitions |Lin12, Appendix A]. Let A and B be finite alphabets. The transitions are
labeled by pairs a/b of letters a € A, b € B. The first letter a € A is called the input symbol,
the second letter b € B is called the output symbol and A (resp. B) is called the input (resp.
output) alphabet. The empty word ¢ is sometimes included in the output alphabet B. For every
state s and every letter a, there is at most one transition starting from the state s with the input
symbol a. One distinguished state is called the initial state.

A machine M computes a function M : A* — B*. Let x = xox1---xp_1 € A* and y =
Yoyl - - Yp—1 € B* be two words of length k£ € N over the input and output alphabet. The word y
is the output of « under the machine M if and only if there is a sequence {s; }o<;<i of states of
M such that sg is the initial state and for every ¢ with 0 < ¢ < k, there is a transition from s; to
si+1 labeled by x;/y;. The output word y is denoted by M (z). The last state s is denoted by
Mast(2) and an extra output word depending on the last state is denoted by M| (z).

The Berstel adder is the Mealy machine B = (@, 000.0, {0,1,2},{0, 1}, 3, 13, ¢5) with the
set of 10 states

~ { 000.0, 001.1, 010.3, 100.5, 101.6,
Q= 000.1, 001.2, 010.4, 100.6, 101.7

with the initial state 000.0, the input alphabet {0, 1,2}, the output alphabet {0, 1}, the transition
function dp and the output function nz as shown in Figure The states of the Berstel adder
is a subset of S x {0,1,...,7}, where S = {000,001,010,100,101}. The function ¢z is the
canonical projection S x {0,1,...,7} — S. Note that our notation of the 10 states is not the
same as the 10 states provided by Berstel, however, it is equivalent.

Reading an input word u € {0, 1,2}* from left to right, the Berstel adder B produces an out-
put word B(u) € {0,1}* concatenated with a three-letter word B (u) € {000, 001,010,100, 101},
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001.1

0/0

1/0__000.1

2/1
010.3 1

/0

Figure 3.3: The Berstel adder B is a 10-state Mealy machine with 30 transitions illustrated as solid edges
with the initial state 000.0. The Mealy machine 7T is obtained by adding a new state start that replaces
000.0 as initial state and adding three additional transitions shown with dashed edges.

which depends on the final state reached after reading u. We illustrate this in Example [3.5.3
The resulting concatenation B(u) - B (u) is a binary word which has the same Fibonacci value
as the input word wu:

valr(u) = valg(B(u) - By(u)).
We reformulate this result in Theorem [3.5.21

Theorem 3.5.2. [Ber86| The Berstel adder B has the property that for every input u € {0, 1,2},
it outputs a word B(u) - By(u) € {0,1}* with same value in the Fibonacci numeration system:

valr(u) = valg(B(u) - By(u)).
Example 3.5.3. Feeding the Berstel adder B in Figure [3.3| with the word u = 2220121 gives

000.0 2% 010.4 2% 001.2 2% 101.7 2% 010.3 2% 101.7 2% 101.7 2% 100.5:

therefore the last state is Bjast(u) = 100.5 and we obtain B(u) - By (u) = 0101011 - 100. Thus
valz(2220121) = 42426 + 16 +34+4 + 1 =92 = 554 21 + 8 + 5+ 3 = val 7(0101011100).

Consequently, we can perform addition of integers represented in the Fibonacci numeration
system by summing the Fibonacci representations digit by digit and feeding the resulting word
over the alphabet {0, 1,2} to the Berstel adder B. The word produced by the Berstel adder B
is a binary word with the correct Fibonacci value. However, it might not be its greedy rep-
resentation. Indeed, it is known [Ber86,[Sak87,Fro91] that no single right-to-left and no single
left-to-right transducer can normalize all words u € {0, 1,2}*. We illustrate this in Examplem

Example 3.5.4. We use the Berstel adder to compute the sum 33 + 25. First, we express 33
and 25 by their Fibonacci representation (in general, if representations do not have the same
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length, the shorter one is padded with leading 0’s). Then, we add them digit by digit to obtain
a ternary word in {0, 1, 2}*:
33 1010101
+25 1000101

o8 2010202

Reading from left to right and giving the word v = 2010202 as input to the Berstel adder (see
Figure , we obtain the following path from the initial state 000.0:

2/0

000.0 — 01 0/0

11 0/0 2/1 0/1 2/0

04 — 101.6 — 010.4 — 101.6 — 100.6 — 001.1 — 100.6.

Therefore, the output word is B(u) = 0010110 and the path ends in state By, (u) = 100.6.
Removing the last digit (6) of the state Biagst(u), which we can ignore for now, we obtain the
three-letter extra output word B)(u) = 100. Concatenating the two words gives 0010110 - 100,
which has the correct Fibonacci value 334+25=58

valr (B(u) - By(u)) = valr (0010110 - 100) = 3 + 8 + 13 4 34 = 58.

However, it is not the greedy representation as it contains leading Os and consecutive 1s.

3.5.2 Extension to Z

In Section [3.5.1) we recalled an algorithm for addition of nonnegative integers represented in
the Fibonacci numeration system with the use of Berstel adder B. A simple counterexample
suffices to see that it is not possible to use the Berstel adder in its original form to add integers
represented in the Fibonacci complement numeration system; see Example [3.5.5]

Example 3.5.5. We compute the sum —1+ (—1) using the Berstel adder B. The representation
of —1 in the Fibonacci complement numeration system is repr.(—1) = 1 and the digit-by-digit
addition gives repz.(—1) + repr.(—1) = 2. The Berstel adder follows the path

/0

000.0 2% 010.4

and therefore the output word is B(2) = 0, the path ends in state Bijast(2) = 010.4 and the extra
output word is B|(2) = 010. Concatenating the two words gives 0-010, which does not have the
correct Fibonacci complement value

valp. (0-010) =2 # -2 = —1+ (-1).

Nevertheless, it is possible to adapt the Berstel adder B to perform addition of integers
represented in the Fibonacci complement numeration system. We do so by adding a new initial
state start and three additional transitions

start —> 0/ 000.0, start — L/e 101.7, start — 2/¢ 100.6,

creating a new Mealy machine which we denote T; see Figure The following theorem is an
analogue of Theorem [3.5.2] for the Fibonacci complement numeration system.
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Theorem 3.5.6. [LL23a| The Mealy machine T has the property that for every nonempty input
uw € {0,1,2}F, it outputs a word T (u) - Ti(u) € {0,1}" with the same value in the Fibonacci
complement numeration system:

valrc(u) = valz.(T (u) - Ty (u)).
In analogy with Example we illustrate Theorem in the following two examples.

Example 3.5.7. We feed the modified Berstel adder 7 in Figure [3.3] with the same word
u = 2220121 as in Example this time obtaining
start 2% 100.6 2% 100.5 2% 010.4 2% 101.6 % 010.4 2% 001.2 % 100.5:

therefore the last state is Tjast(u) = 100.5 and we obtain 7 (u)- 7 (u) = 110110-100. Interpreting
the results in the Fibonacci complement numeration system, we observe

valr.(2220121) = (—42)+424+16+34+4+1 =24 = (—34) +34+13+8+3 = val z(110110100).

Example 3.5.8. We use the Mealy machine 7 to compute the sum —14(—9). First, we express
(—1) and (—9) by their Fibonacci complement representation and we pad the shorter word with
an appropriate neutral prefix (00’s if it starts with 0 or 10’s if it starts with 1, see Deﬁnition
so that they have the same length. Then, we add them digit by digit to obtain a ternary word
in {0,1,2}*:
—1 1010101
+(-9) 1000101

— 10 2010202

Note that the resulting word u = 2010202 coincides with the one in Example |3.5.4] where we
show properties of addition in Fibonacci numeration system. Reading from left to right and
giving the word u = 2010202 as input to the Mealy machine 7 (see Figure , we obtain the
following path from the initial state start:

start 25 100.6 25 001.1 2% 010.4 2% 101.6 2% 100.6 2% 001.1 2% 100.6.

Therefore, the output word is 7 (u) = 100110 and the path ends in state Tpas(u) = 100.6.
Removing the last digit (6) of the last state, we obtain the three-letter extra output word
T, (u) = 100. Concatenating the two words gives 100110 - 100, which is a Fibonacci complement
representation of the sum —1+ (—9). We confirm that its Fibonacci complement value is correct:

valre (T (u) - T (u)) = valg, (100110 - 100) = 3+ 8 + 13 — 34 = —10.

It would be interesting to construct transducers to perform addition in a similar manner for
all complement numeration systems associated with simple Parry numbers, which we defined in
Section @ For now, we leave this as an open question.

Question 3.5.9. Can we construct a Mealy machine, which performs addition in a given com-
plement numeration system associated with a simple Parry number?
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Chapter 4

Critical exponents of Arnoux—Rauzy
words

In this chapter, we summarize properties of Sturmian words [Lot02, §2] and Arnoux—Rauzy
words, which are a generalization of Sturmian words to larger alphabets [AR91]. We present
our work concerning the repetitions of factors in Arnoux—Rauzy words [DL23|, which includes
a formula for the critical exponents of regular Arnoux—Rauzy words and a proof that the minimal
critical exponents among regular Arnoux—Rauzy words are attained by the d-bonacci words. It
is known that the critical and asymptotic critical exponent of a d-bonacci word coincide for d = 2
and d = 3. We present a new result stating that, for d € [4, 15], the critical and asymptotic
critical exponent of a d-bonacci word coincide as well. During the course of finalizing this text,
a significantly stronger result was proved — for every d > 2, the critical and asymptotic critical
exponent of a d-bonacci word coincide and, moreover, the minimal critical exponent among all
d-ary episturmian words is attained by the d-bonacci word [DP23].

4.1 Introduction to Sturmian and Arnoux—Rauzy words

4.1.1 Sturmian words

Sturmian words belong to the core subjects of combinatorics on words. Named after the French
mathematician Charles Francois Sturm (1803-1855), the term Sturmian words (trajectories) first
appeared in the work of Morse and Hedlund [MH40| in 1940. Sturmian words can be defined in
multiple ways. Morse and Hedlund proposed a definition connected to the solutions of second
order differential equations. However, for our purposes, a definition using the factor complexity
function is more appropriate. A Sturmian word is an infinite word u over the binary alphabet
with the factor complexity function fulfilling the condition that Cy(n) = n + 1, for every n € N.
In other words, a Sturmian word contains exactly n + 1 distinct factors of every length n. The
Fibonacci word belongs to the well-known examples of Sturmian words.

Example 4.1.1. The Fibonacci word may be defined in various ways, but for now we choose
the one closest to the notion of Fibonacci numbers. Let (f,);7>9 be the sequence of finite words
defined recurrently by fni2 = fat+1fn, for every n € N, with the initial conditions fy = 0 and
fi1 = 01. Then

f= lim f,=0100101001001010010100100101001001...

n—-+oo

defines the Fibonacci word as the infinite word, which has f,, as a prefix, for every n € N.
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Recall that a binary word u € {0, 1} is balanced if for every pair of words x,y € £(u) such
that |z| = |y| it holds that ||x|; — |y|1| < 1, i.e., every pair of factors x,y occurring in u of the
same length fulfills that = and y have the number of occurrences of the symbol 1 differing by at
most one. Balanced words have well-defined slopes — the slope of a balanced word is the limit
limy,— 400 |u(”)|17 where u(™) denotes the prefix of u of length n, for every n € N. The slope of
a balanced infinite word u is denoted 7(u). The Fibonacci word is a balanced aperiodic word

and we compute its slope in Example see also |Lot02, Example 2.1.9 ].

Example 4.1.2. We compute the slope of the Fibonacci word f. It suffices to compute the

limit limg,— 400 ‘&Ji For every n € N, we have |f,| = F,, and |f,|1 = F,—2. Therefore 7(f) =
limy, 100 ||€?J|1 = lim, 100 Fgf = T%, where 7 denotes the golden mean.

Sturmian words coincide with the set of binary balanced aperiodic words. It follows from
[Lot02, Theorem 1.3.13 ] that an infinite word u over an alphabet A is aperiodic if and only
if its factor complexity function fulfills the condition that Cy(n) > n + #A — 1. In this sense,
Sturmian words are aperiodic words with the minimal factor complexity. As, according to [Lot02]
Proposition 2.1.2], the factor complexity function of a balanced word v satisfies the condition
that Cy(n) < n + 1, Sturmian words are balanced words with the maximal factor complexity.
Also, the language of a Sturmian word is closed under reversal [Lot02, Proposition 2.1.19].

Sturmian words coincide with mechanical words with irrational slopes. We recall the defini-
tion of a lower and upper mechanical word. Let o € [0,1] and § € R be real numbers. The word
Sa,s ' N — {0,1} and the word s, ; : N — {0, 1}, defined for every n € N by the relation

Sas(n) == la(n+1)+0] — lan+6] and s s5(n) = [a(n+1)+ 6] — [an+ 4],

is called the lower and the upper, respectively, mechanical word with the slope o and the inter-
cept 9. It is easy to see that the words s, s and S:L 5 are indeed binary. Also, the slope a of an
upper (lower) mechanical word u coincides with the slope 7(u) [Lot02], and thus

a= lim &L (4.1)

n—+oo T

where (™ denotes the prefix of u of length n, for every n € N.

Mechanical words with the irrational slope « and the intercept § = 0 fulfill the condition that
5a,0(0) = 0, 8,0(0) = 1, and s4,0(n) = s;, o(n), for every n > 1. The word ¢, such that s, = Oc,
and s;’O = lc, is called the characteristic word of the slope a. Equivalently, ¢, = 84,0 = sfl,a.

We interpret the Fibonacci word f as a mechanical word in Example More precisely, the
Fibonacci word f is a characteristic Sturmian word.

Example 4.1.3. The Fibonacci word f interpreted as a mechanical word is shown in Figure [4.1

As this word is the characteristic word of slope %, it is equal to both the lower and the upper

mechanical word with the slope a = T% and the intercept § = }2:

1 (4.2)

where 7 = 1+T\/g denotes the golden mean.

Mechanical words can be interpreted also as the so-called cutting sequences. Again, we
consider a straight line y = Sx + p for some § > 0, which is not restricted from above this time,
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Figure 4.1: Lower and upper mechanical words associated with the line y = T%J: + T%, where 7 =
denotes the golden mean.

and some p € R not restricted to be positive. We consider the intersections of this line with a grid
with integer coordinates. If the line y = Sx+p intersects a vertical line of the grid, we call such an
intersection wvertical. Otherwise the intersection is called horizontal. If an intersection is vertical
and horizontal simultaneously, we consider this intersection as two intersections, horizontal and
vertical, in this particular order. Writing a letter 0 for every vertical intersection and a letter
1 for every horizontal intersection, we obtain an infinite binary word Kpg ,, which is called the
lower cutting sequence. We obtain the upper cutting sequence K /6 0 if we choose the opposite
order in treating the intersections that are both horizontal and vertical. It can be shown that
a lower cutting sequence coincides with a lower mechanical sequence with the slope and intercept
transformed in the following way

Kpp = 88/(148),0/(1+8)-

Thus, there are two different notions of slope. The slope of a mechanical word expresses the
frequency of the letter 1 in the word, see Equation (4.1)), whereas the slope of a cutting sequence
u is the ratio of the frequencies of letters 1 and 0:

= lim "L (4.3)

n——+00 ‘U(") o’

where u(™ denotes the prefix of u of length n, for every n € N. Further in the text, we always
specify whether the slope is in the sense of a mechanical word or a cutting sequence. We interpret
the Fibonacci word as a cutting sequence in Example In the graphical illustration, we
mark vertical intersections with white points and horizontal intersections with black points; see

Figure

Example 4.1.4. The Fibonacci word f interpreted as a cutting sequence is shown in Figure |4.2
The slope of the Fibonacci word as a cutting sequence is %

We return to the concept of mechanical words. Denote {an+ ¢} the fractional part of an+9.
We observe that s, s(n) = 0 if and only if {an + 6} € [0,1 — ) and s8], 5(n) = 0 if and only if
{an 4+ §} € (0,1 — «]. This leads to an equivalent definition of mechanical words by rotations
on a circle. The rotation of angle « is the map R, : [0,1) — [0, 1) defined by R,(z) = {z + a}.
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Figure 4.2: Lower cutting sequence K
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= 0100101001001 - - - associated with the line y = %er %, where

11
T'T

T = % denotes the golden mean.

Consequently, R (z) = {na+x} for every n € N. Note that, in this setup, the points 0 and 1 are
identified. Defining a partition of the interval [0, 1), we get an equivalent definition of mechanical
words

5u5(1) = 0, if R2(9) € 0,1 — a);
T RN €1 a1

0, if R2(9) € (0,1 — af;

) (4.4)
1, if R'(0) € (1 —a,1].

and s, 5(n) = {
Note that the intervals are left-closed right-open for the lower and left-open right-closed for

the upper mechanical word. We interpret the Fibonacci word as a coding of a rotation in
Example [4.1.5

Example 4.1.5. Interpreting the Fibonacci word as a coding of a rotation on a circle is shown in
Figure The partition of the circle (1-dimensional torus) is Iy = [0,1 —a) and [} = [1 —a, 1).
Starting at the initial point § = % and rotating by the angle @ = %2 up to 7 times gives the
iterations R () for n € [0, 7]. The iterations are coded as 01001010, which is the prefix of the

Fibonacci word f. In particular, it is easy to see that the factor 11 does not occur in f.

Iy

I

Figure 4.3: Rotation on a l-dimensional torus with identified points 0 and 1 by the angle o = —,
where 7 denotes the golden mean. The n-th iteration of the initial point ¢ is coded as 0 if and only if
R(8) € [0,1 — ). On the right, observe the iterations R () of the initial point § = 2 for n € [0, 7].

Sturmian words can also be defined using the 2 interval exchange transformation, which
generalizes the rotation on a circle. We discuss this approach in more detail in Section
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4.1.2 Arnoux—Rauzy words

As shown in the previous section, Sturmian words possess various interesting properties which
inspired researchers to try and generalize them to larger alphabets. Rauzy [Rau82| introduced
a word on the ternary alphabet, which can be interpreted as a coding of a rotation on a 2-
dimensional torus. This word is called the Rauzy word, or, as it shares plenty of properties
with the Fibonacci word and it is ternary, the Tribonacci word. Later on, Arnoux and Rauzy
introduced certain words of the factor complexity 2n + 1 [AR91] as an attempt to generalize
Sturmian words to the alphabet of size 3. Their definition led to a geometrical interpretation
of these words as codings of 6 interval exchange transformation on a circle. The construction
described in [AR91] may be extended even further. Every d-ary word with the factor complexity
(d — 1)n + 1 having language closed under reversal and exactly one right special factor of every
length prolongable by all letters a € A, may be represented as a coding of 2d interval exchange
transformation on a circle. Such words are classically called d-ary Arnoux—Rauzy words. Later
in this text, we define the d-ary Arnoux—Rauzy words in a different manner, which is equivalent.

Another generalization of Sturmian words to d-ary alphabets for any integer d > 2 was done
in [DJPO1|, where the words were called episturmian. Episturmian words are such that their
language is closed under reversal and they have at most one right special factor of every length.
Note that, in particular, episturmian words over an alphabet A include trivial examples such as
a® for every letter a € A. The d-ary Arnoux—Rauzy words form a subclass of the episturmian
words, which are called strict episturmian.

A word u over the alphabet A of cardinality d is Arnouz—Rauzy if the language L£(u) is closed
under reversal and if there exists exactly one right special factor w of every length such that
wa € L(u) for every letter a € A. An Arnoux—Rauzy word u is called standard if each of its
prefixes is a left special factor of u. For every Arnoux—Rauzy word, there exists a unique standard
Arnoux—Rauzy word with the same language. As Sturmian words have languages closed under
reversal and they have exactly one right special factor of every length, it is readily seen that
Arnoux—Rauzy words over the binary alphabet coincide with the Sturmian words. Moreover, it
follows from [Lot02, Proposition 2.1.23] that the set of left special factors of a Sturmian word
is the set of prefixes of the characteristic word with the same slope. Consequently, standard
Arnoux—Rauzy words over the binary alphabet coincide with the characteristic Sturmian words.

Example 4.1.6. In analogy with the Fibonacci word, we define the Tribonacci word which
generalizes the Fibonacci word to the ternary alphabet. It was first introduced in [Rau82| as
the fixed point of the morphism 0 — 01, 1 — 02, 2 — 0, but we can define it in analogy to the
definition of the Fibonacci word in Example Let (t,,),%) be the sequence of finite words
defined recurrently by the relation t, 13 = t,1otht1ty, for every n € N, with the initial conditions
to =0, t;1 = 01 and t9 = 0102. The Tribonacci word t is the following limit

t= lim ¢, =01020100102010102010010201 - - - .

n—-+00

We summarize some properties of the Arnoux—Rauzy words. A d-ary Arnoux—Rauzy word
u has the factor complexity function Cy(n) = (d — 1)n + 1. Consequently, we observe that
Cu(n) > n+d—1, for every n € N, which implies that u is aperiodic (see [Lot02, Theorem 1.3.13]).
It can be derived easily that a word is uniformly recurrent if and only if its set of return words
Ru(y) to every factor y € L(u) is finite. A d-ary Arnoux—Rauzy word u is uniformly recurrent
and, moreover, its set of return words Ry(y) to every factor y € L£(u) has exactly d elements
[JVO0O0]. Similarly, the derived word to a prefix of a d-ary Arnoux—Rauzy word is again a d-ary
Arnoux—Rauzy word |[Med19)].
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Standard Arnoux—Rauzy words can be described by their S-adic representation based on the
morphisms ¢, : A* — A* defined for every a € A and every x € A so that

() = {a, if x = a; (4.5)

ar, otherwise.

For every standard d-ary Arnoux—Rauzy word u there exists a unique sequence of morphisms
A = (1) such that 1; € {p, : a € A}, for every i € N, and a unique sequence of standard
Arnoux—Rauzy words (u(")):?j such that u = Y1913 - - - b, (u™), for every n > 1 [JP02]. The
sequence A is called the directive sequence of u.

In Section we study regular d-ary Arnoux—Rauzy words which were first studied by
Glen [Gle07] and, more recently, by Peltoméki [Pel21]|, who was the first to call them by the
name regular. A d-ary Arnoux-Rauzy word on the alphabet {1,2,...,d} is called regular if its
directive sequence A written in the form ¥{'¢5% - -+ with ¥ # ¥n4+1 and ay > 0 for all N > 1
fulfills that the sequence (wl):;of is periodic with the period @15 - - - pq; see Example and
Example The slope of such a regular Arnoux-Rauzy word is defined as § = (an)n>0 with
ap = 0. The name slope is chosen for the following reason. All Sturmian words are regular and
the slope 6 = (an)n>0 of a Sturmian word u is closely related to the slope 3 of u interpreted as
a cutting sequence — the continued fraction of § fulfills the condition that g = [0; a1, a2, as,...],

which means that

1
B=0+

ay + 1
G2t
az + —

Observe that as the slope 6 fulfills by definition the condition that 8 < 1, we describe only cutting
sequences with the slope 8 < 1. Such cutting sequences have a frequency of the letter 1 smaller
than the frequency of the letter 0; see Equation . We could recover the remaining Sturmian
words by exchanging the letters 0 and 1.

Example 4.1.7. To clarify the definition of regular Arnoux—Rauzy words, we illustrate that the
classes of regular Arnoux—Rauzy words and fixed points of morphisms are not a subset of one
another. The fixed point u of the morphism 12013 is not regular, even though its directive
sequence A = (p1p2p1¢93)® is periodic. On the other hand, the word u with the directive
sequence A = p103p3pFp5¢5 - - - is regular, even though its directive sequence is not periodic.

Example 4.1.8. The Fibonacci word f has the directive sequence A = (pop1)“, which results in
the slope # = (0,1). Simultaneously, f interpreted as a cutting sequence has the slope %, where
7 denotes the golden mean and % = [0;1]; see Example The Tribonacci word t has the
directive sequence A = (¢op1p2)“, which results in the slope § = (0,1). Therefore the Fibonacci
and Tribonacci word have the same slope, even though the cardinality of their alphabet differs.

We observed in Example that the Fibonacci and Tribonacci word have the same slope
6 = (0,1). This leads to a generalization called the d-bonacci word ug, for every integer d > 2.

Definition 4.1.9 (d-bonacci words). Let d > 2 be an integer. A regular d-ary Arnouz—Rauzy
word u with the slope 6 = (0,1) is called a d-bonacci word and denoted ug.
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4.2 Critical exponents of regular Arnoux—Rauzy words

In this part, we present results on the critical and asymptotic critical exponent of regular Arnoux—
Rauzy words. The critical exponent of an infinite word expresses the maximal repetition rate of
factors in the word. Similarly, the asymptotic critical exponent of an infinite word expresses the
maximal repetition rate of factors in the word when their length grows to infinity.

If w is a non-empty word of length ¢/ € N and e € Q is a positive rational number of the
form n /¢, then u® denotes the prefix of length n of the infinite periodic word uuu --- = u*. The
rational exponent e describes the repetition rate of w in the string u¢. The critical exponent E(u)
of an infinite word u is defined as

E(u) =sup{e € Q: u® € L(u) for some u #¢e}.

The asymptotic critical exponent E*(u) of u is defined as

E*(u) = limsupmax{e € Q:u® € L(u) and |u| =n}, otherwise.
n—oo

Clearly, E*(u) < E(u) and the equality holds whenever E(u) is irrational. By the term critical
exponents, we mean both the critical and the asymptotic critical exponent together. Let us
remark that the terminology around critical exponents is not unified. The critical exponent is
called the index in [Cas08] and the free index in [TWO07]. The asymptotic critical exponent is
called the asymptotic index in [Cas08] and it is called the critical exponent in [JP02,/GJ09).

In [DDP23|, Dolce, Dvorakova and Pelantovd deduced a formula to compute the critical
exponents of a uniformly recurrent aperiodic word based on its bispecial factors and return
words. More precisely, if u is a uniformly recurrent aperiodic word, (b,)nen is the sequence of
all bispecial factors in u ordered by length, D and, for every n € N, r, is the shortest return word
to the bispecial factor b,, then the critical exponents of u satisfy the formula

E(u) =1+ sup {M} and E*(u) =1+ limsup [5a] (4.6)

neN |rn‘ n—00 |7an’

As d-ary Arnoux—Rauzy words are uniformly recurrent and aperiodic, Equation (4.6]) served as
a base for the formula derived in [DL23] for a subset of regular words.

Theorem 4.2.1. [DL23| The critical exponent and the asymptotic critical exponent of a reqular
d-ary Arnouz—Rauzy word u with the slope § = (an)n>o satisfy

d 1 Yo ((d—day—is1+1)Qni —d
E(u) = —— 4+ supayn + = : 4.7
() d—1 NZ%{N d—1 QN-1 (4.7)
d . 1 Y, ((d=iay—it1 +1) Qn—i
E*(u) = —— + limsup | ay + L ,
(u) d—1 N%+£<N d—1 QN1
where Qn fulfills Qn = Z?;ll aN—i+1QN—; + QN—_g, for every N > 1, with the initial conditions

a; =0 and Q; =1 for everyi € {—d+1,...,—1,0}.

! An arbitrary order may be chosen for the bispecial factors having the same length.
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Choosing d = 2 in Theorem [£.2.1] gives the formula for the critical exponent of Sturmian words
derived independently by Damanik and Lenz [DL02] and Carpi and de Luca |[CdL00].

We show in [DL23] that the minimal (asymptotic) critical exponent among regular Arnoux—
Rauzy words is attained for the d-bonacci word; see Definition[£.1.9]and Theorem[4.2.2] A stronger
result is known for the critical exponent in the binary case — the minimal value of the critical
exponent among all Sturmian words is attained by the Fibonacci word [CdLO00,DL02].

Theorem 4.2.2. |DL23| Let d > 2. The minimal (asymptotic) critical exponent for regular
d-ary Arnouz—Rauzy words is attained by the d-bonacci word ug with the slope 8 = (an) = (0,1).
Moreover, denoting t the dominant real root of the polynomial z% — g:l %, the asymptotic

critical exponent E*(ug) can be computed as

E*(ug) =2+ L (4.8)
t—1
The critical exponent of the Fibonacci and Tribonacci word is irrational [CdLO00], [TWO07].
Therefore the Fibonacci and Tribonacci word fulfill the condition that their critical exponent
and asymptotic critical exponent coincide. In [DL23], we conjectured that every d-bonacci word
has this property. In the next part, we provide a proof of this conjecture for d < 15.

Conjecture 4.2.3. [DL23| Let d > 4. The d-bonacci word ug satisfies E(ug) = E*(uy).

During the finalization of this thesis, a significantly stronger result was proved. For every
d > 2, the critical and asymptotic critical exponent of a d-bonacci word coincide and, moreover,
the minimal critical exponent among all d-ary episturmian words is attained by the d-bonacci
word [DP23].

4.3 Critical exponents of d-bonacci words
In this part, we prove Conjecture for d € [4,15]. First, we summarize important facts about

the d-bonacci words, which have the slope § = (0,1). Thus, the sequence (ay) in Theorem
fulfills the condition that

an = 0, for every N <0; (4.9)
1, forevery N >1,
and the sequence (Qy) satisfies the condition that
1, for every N € [-d + 1, —1];
Qn =<2V, for every N € [0,d — 1]; (4.10)
2?21 Qn_;, forevery N >d.
Also, we recall that the polynomial 2% — Zg:1 2% has d roots, which we denote t1,...,ts € C.

One of the roots, say t1, is called dominant as it fulfills the condition that ¢; > [t;|, for every
1 > 2, and moreover t1 € R.

The critical exponents E(u) and E*(u) of an infinite word u fulfill the condition that E*(u) <
E(u). Therefore they coincide if and only if E(u) < E*(u). Considering Equations and
(4.8)), it suffices to prove the following proposition to prove Conjecture for d < 15.
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Proposition 4.3.1. Let d € N be such that 4 < d < 15. We denote t the dominant real root of

the polynomial x% — 2;1:1 4. The d-bonacci word ug fulfills that, for every integer N > 1,

4 d—i i 1 _i—d
i—i-l—l-ﬁZZ:Q(( z)agleﬁ- )QN §2+t—il’ (4.11)

where the sequences (an) and (Qn) are given in Equations (4.9) and (4.10)).
We summarize the results presented in [DD14] in the following lemma.

Lemma 4.3.2. [DD14] Let d > 4 be an integer. Denote t1,...,tq the roots of the polynomial
zd — Zle %" and, in particular, denote t = t; € R the dominant root. It holds that

i) 2-1<t<2;
i) there exist ¢y € R and ca,...,cq € C such that, for every N > 0, we have QN = E;-i:l Citfv;

ii1) we have limy_, o ey = 0, where we denote

d
en = Qn — otV = Zcitfv, for every N > 0. (4.12)
i=2

We prove a lemma inspired by [DD14]. It has an important corollary stated below.

Lemma 4.3.3. Let d > 4 be an integer. Let (en)n>o be the sequence defined by Equation (4.12)).
Let K >0 and let M > d be an integer such that |ep;—;| < K, for every i € [1,d]. Then

ler| < K.

Proof. Let K > 0 and let M > d be an integer such that |ejy;—;| < K, for every i € [1,d]. We
assume by contradiction that |eps| > K. Consequently, we obtain

lear| — lear—i| > 0, for every i € [1,d]. (4.13)

By definition, (ex) fulfills the linear recurrence relation ey = 3%, ex_;, for every N > d;
see Equation (4.12)). Hence, we have for every N > d that

d d

EN41—EN = D ENt1—i— D EN—i = EN — EN—d- (4.14)
=1 i—1

We prove that |eyt1| > |en], for every N > M, in two steps 1) and 2). This will be a contradic-
tion to Lemma iii) and finish the proof.

1) We prove that |eyy1| > |en]| for every integer N such that M < N < M +d—1. If
N = M, then using Equation and Equation with ¢ = d, we have

len+1] = [2em — enr—al = 2lem| — lenr—al > len].

Assume that for an integer N such that M +1 < N < M +d — 1, it holds that |ex| > |eas|-
Note that we have M — N +d € [1,d — 1]. Then using Equation (4.14) and Equation (4.13])
with ¢ = M — N + d, we have

lens1] = [2en — en—a| = 2len| — len—dl > len| + lem| = len—(m—N+a)| > len]:
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So far, we proved that for N = M + d, we have
’6]\[‘ > ‘eN_ﬂ >0 > ’€N7d+1’ > |€Nfd| = \eM] (4.15)

2) We prove by induction that |enx41]| > |en|, for every N > M + d. Induction hypothesis:
Equation (4.15)) holds for an integer N > M + d. Using Equation (4.14) and Equation (4.15),

we have

len+1] = |2en — en—al = 2|en| — |en—d| > [en];

and thus Equation (4.15)) holds for N + 1. O

Corollary 4.3.4. Let K > 0 and let M > d be an integer such that |epr—;| < K, for every
i € [1,d]. Then |en| < K, for every N > M.

We need another lemma to prove Proposition

Lemma 4.3.5. Let d > 4 be an integer. Let (Qn)n>0 and (en)n>o be the sequences defined
by Equation (4.10) and Equation (4.12)), respectively. Let N > d. The following inequalities are
equivalent

(t—1) < N+Z —)QnN_ 1—d> (d—1)Qn_1, (4.16)
(t—1) (eN+Z —i)en_ Z—d) (d—1)en_1. (4.17)
Proof. We start by deriving a relation, which will be useful in the proof. We denote ¢ the
dominant real root of the polynomial z¢ — d ' L x%7%, For every m € N, summing up m powers
of ¢ gives 37", t = tmttll_l, which we can dlﬁerentlate with respect to ¢ to obtain
il Dt —1) — (™t -1

(t—1)

Substituting Equation (4.12]) into Inequality (4.16]), we have

d—1 d—1
(t—1) (clt +en + Z —1) cltN iy Z(d— i)enN—; — d) =(d-1) (clthl + eN,1> .

=2 =2

Thus, to prove the equivalence between Inequalities (4.16) and (4.17)), it suffices to show that

d—2
(t—Derth + (¢ — 1) jert" = (d— 1)egtV L (4.19)
j=1
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We modify Equation (4.19)) in the following steps, using twice Equation (4.18)

d—2
t—DtN +(t—1)) N = (@ — 1),
j=1
d—2 ‘
(t—D)tN + (¢ = DN " g = (d - 1)V
j=1

d—2
-t (1) gt = (d - 1)t
j=1

(d—1)t472(t —1) — (t971 = 1)

(t— Dttt —1) = (d—1)t72,

(t—1)2
d—1 _ 1
(t— 1)t (d— 1)t2 — (ttl) = (d—1)t%72,
td_l o 1)
P S Gt
(t—1) e 0,
d—2
-1t =>"¢ =0,
j=0

a—1
-3 " =0,
7=0

which holds as ¢ is a root of the polynomial 2% — ?;(1) . O

We may now prove Proposition

Proof of Proposition[{.3.1] Let d € [4,15]. We observe that Equation (4.1I)) can be modified
into the following equivalent forms

1 Qv+, ((d—dan—i1+1)Qn_i —d < 1
d—1 Qn-_1 —t—1

(t—1) (QNI + i ((d—i)an—i+1 +1) Qn-i — d) < (d—1)Qn-1. (4.20)
i=2
Also, from Equation and Lemma i), we have that, for every i € [0,d — 2],
tQ; = 12" < 2.2 = 2T = Q4. (4.21)
1) Assume N € [1,d — 1]. Then we have that
2-(d—N+4+1)—N(t—-1)<2-2—-N=-N<0. (4.22)
The left-hand side of Inequality can be gradually rewritten using Equation , Inequal-
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ity (4.21)) and Inequality (4.22), which finishes the proof of part 1):

i=N+1

(t_l (QN 1+Z _Z+1QN i+ Z QN z_d)
=(t—1<QN 1+Z d—i)+1)Qn_i+(d—N) — d)

=t (QN—l + Z((d — i)+ 1)@N—i> (QN 1+ Z DQn- z) N(t—1)

=2

N
S(QN+Z — 1) +1)QNH-1> (QN1+Z — 1 +1QNZ>_N(t_]‘)

(QN+Z d—i—1) +1)QNZ> (QN 1+Z —z+1QNZ>—N(t—1)
N-1
=QN+(d—2)Qn-1— Y Qn-i—(d=N+1)Qo— N(t—1)
=2
=2N 4 (d—2)2N1 — 221 (d—N+1)—-N(t-1)
:2N—|—(d—2)2N1—(2N1—1)+1—(d—N+1)—N(t—1)
V1412 (d=N+1)—-N(t—1)

2) Assume N > d. We modify the left-hand side of Inequality (4.20]), obtaining

(t_l (QN 1+Z —l +1 QN— l—)
d
=(t—1) (QN—l + Z(d —D)QN—i+ > Qn_i— d)

=2 1=2

d
=(t—1) (QNl + Z(d —)QN—i T QN —Qn-1— d)
=(t—-1) (QN+Z —1)QN— Z—d)

Then, Inequality (4.20) becomes Inequality (4.16)), which holds if and only if Inequality (4.17))
holds; see Lemma' 5l We prove Inequality (4.17] - to finish the proof.

We show in Table that there exists an integer M > d such that |epr—;| <
i € [1,d]. Then we have from Corollary [4.3.4) that |ey| < 25, for every N > M.
a) In the case that N > M + d — 1, we can modify the left-hand side of Inequality (4.17) in

d 5, for every
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the following way

and the right-hand side of Inequality in the following way
(d=Ven-1 2 (d=1) (~75) = —45-
To prove Inequality , it suffices to prove
(t-1) (£ - %) < -5,
which is equivalent to the following series of inequalities:

ﬁé(t—l)(wy

2
2(d—1) < (t—1)(d* —d —4).
As by Lemma m i) we have t > 2 — é, we strengthen the condition to
2d—1) < (1—3)(d> —d—4),

which holds for d > 4.
b) It remains to verify Equation (4.17) for N € [d, M + d — 2]. This finite number of cases
was treated by computer experiments. O
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d 4 5 6 7 8 9 10 11 12 13 14 15
- ][ 0.500 | 0.333 [ 0.250 [ 0.200 | 0.167 | 0.143 | 0.125 | 0.111 | 0.100 | 0.091 | 0.083 | 0.077
leo] 1] 0.092 | 0.058 [ 0.035 [ 0.021 | 0.012 | 0.007 | 0.004 [ 0.002 [ 0.001 [ 0.001 | 0.000 [ 0.000
lex] || 0.104 | 0.079 | 0.053 | 0.033 | 0.020 | 0.012 | 0.007 | 0.004 | 0.002 | 0.001 | 0.001 | 0.000
le2| || 0.056 | 0.087 | 0.072 | 0.050 | 0.032 | 0.020 | 0.012 | 0.007 | 0.004 | 0.002 | 0.001 | 0.001
les| || 0.182 | 0.035 | 0.078 | 0.068 | 0.049 | 0.032 | 0.020 | 0.012 | 0.007 | 0.004 | 0.002 | 0.001
lea] - 0.203 | 0.023 | 0.072 | 0.066 | 0.048 | 0.032 | 0.020 | 0.012 | 0.007 | 0.004 | 0.002
les| - - 0.218 | 0.014 | 0.068 | 0.065 | 0.048 | 0.031 | 0.020 | 0.012 | 0.007 | 0.004
les| - - - 0.229 | 0.009 | 0.066 | 0.064 | 0.047 | 0.031 | 0.020 | 0.012 | 0.007
ez - - - 0.030 | 0.236 | 0.006 | 0.065 | 0.063 | 0.047 | 0.031 | 0.020 | 0.012
les| - - - 0.040 | 0.021 | 0.241 | 0.003 | 0.064 | 0.063 | 0.047 | 0.031 | 0.020
les| - - - 0.046 | 0.029 | 0.014 | 0.245 | 0.002 | 0.063 | 0.063 | 0.047 | 0.031
leto - - - 0.042 | 0.038 | 0.020 | 0.009 | 0.247 | 0.001 | 0.063 | 0.063 | 0.047
le11] - - - 0.015 | 0.043 | 0.028 | 0.013 | 0.005 | 0.248 | 0.001 | 0.063 | 0.063
le1s] - - - 0.042 | 0.038 | 0.037 | 0.020 | 0.009 | 0.003 | 0.249 | 0.000 | 0.063
le1s] - - - 0.098 | 0.010 | 0.042 | 0.028 | 0.013 | 0.005 | 0.002 | 0.249 | 0.000
le1a] - - - - 0.048 | 0.036 | 0.036 | 0.020 | 0.009 | 0.003 | 0.001 | 0.250
le1s| - - - - 0.105 | 0.007 | 0.041 | 0.028 | 0.013 | 0.005 | 0.002 | 0.001
leis] - - - - - 0.053 | 0.034 | 0.036 | 0.020 | 0.009 | 0.003 | 0.001
leir| - - - - - 0.111 | 0.004 | 0.040 | 0.028 | 0.013 | 0.005 | 0.002
leis] - - - - - - 0.056 | 0.033 | 0.036 | 0.020 | 0.009 | 0.003
le1g] - - - - - - 0.115 | 0.003 | 0.040 | 0.027 | 0.013 | 0.005
le2o - - - - - - - 0.058 | 0.032 | 0.035 | 0.020 | 0.009
2| - - - - - - - 0.119 | 0.002 | 0.039 | 0.027 | 0.013
leas] - - - - - - - 0.010 | 0.060 | 0.032 | 0.035 | 0.020
le2s] - - - - - - - 0.014 | 0.121 | 0.001 | 0.039 | 0.027
le2d| - - - - - - - 0.019 | 0.006 | 0.061 | 0.032 | 0.035
leas| - - - - - - - 0.024 | 0.009 | 0.122 | 0.001 | 0.039
e - - - - - - - 0.028 | 0.014 | 0.004 | 0.061 | 0.031
lear| - - - - - - - 0.029 | 0.019 | 0.006 | 0.123 | 0.000
leas| - - - - - - - 0.022 | 0.024 | 0.009 | 0.003 | 0.062
leo] - - - - - - - 0.003 | 0.028 | 0.014 | 0.004 | 0.124
|eso - - - - - - - 0.026 | 0.028 | 0.018 | 0.006 | 0.002
lesi| - - - - - - - 0.055 | 0.021 | 0.024 | 0.009 | 0.003
lesz] - - - - - - - 0.053 | 0.002 | 0.028 | 0.013 | 0.004
|es] - - - - - - - - 0.028 | 0.028 | 0.018 | 0.006
lesal - - - - - - - - 0.058 | 0.020 | 0.024 | 0.009
less] - - - - - - - - 0.055 | 0.001 | 0.028 | 0.013
|ess| - - - - - - - - - 0.029 | 0.028 | 0.018
|les7] - - - - - - - - - 0.059 | 0.020 | 0.024
|eas| - - - - - - - - - 0.058 | 0.001 | 0.027
e - - - - - - - - - - 0.030 | 0.028
leao] - - - - - - - - - - 0.060 | 0.020
|ea1] - - - - - - - - - - 0.059 | 0.001
‘642 ‘ - - - - - - - - - - - 0.030
‘643‘ - - - - - - - - - - - 0.061
‘644 ‘ - - - - - - - - - - - 0.060

Table 4.1: The values |e;| for d € [4,15] and 4 € [0,44]. If the values |e;| satisfy for some integer M > d
and for every i € [1,d] the condition that |epr—;| < then the values |e;| for ¢ > M are omitted.

The values |e;| such that |e;| > 75 are shown in bold.

1
d—27
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Chapter 5

Faithful representation of Sturmian
morphisms

In this chapter, we present our results on a faithful representation of the special Sturmian monoid
and on the so-called square roots of fixed points of Sturmian morphisms [LPS23|. Results which
do not make part of the publication include an algorithm to determine the faithful representation
of morphisms in the special Sturmian monoid, which helps to clarify the relationship between
the representations of mutually conjugate morphisms. Based on this algorithm, we describe the
relationship between intercepts of fixed points of mutually conjugate morphisms in the special
Sturmian monoid, which provides an answer to an open question in |[LPS23].

5.1 Introduction to Sturmian morphisms

A morphism is called Sturmian if it maps Sturmian words to Sturmian words. It is readily seen
that a composition of Sturmian morphisms is a Sturmian morphism, and thus Sturmian mor-
phisms form a submonoid of the monoid of morphisms on the binary alphabet. This submonoid
is called the monoid of Sturm and it is denoted St. In particular, a Sturmian morphism is called
standard if it maps every characteristic Sturmian word to a characteristic Sturmian word. Two
trivial examples of Sturmian morphisms are the identity morphism Id : 0 — 0, 1 — 1 and the
morphism F : 0+ 1, 1+ 0. The following morphisms

fo—o01, _ [0+ 10,
v 1+ 0, v 1+ 0,

map mechanical words to mechanical words, see [Lot02, Lemma 2.2.18]. Consequently, ¢ and @
are Sturmian morphisms; see Section Moreover, it can be shown that the morphisms F,
© and @ generate the monoid of Sturm, which is denoted as

St = (E, ¢, ).

In other words, every Sturmian morphism is a composition of the morphisms F, ¢ and ¢. The
morphism ¢ is a substitution and we refer to it as to the Fibonacci substitution due to the
following example.

Example 5.1.1. , The Fibonacci word f defined in Example is the fixed point of the mor-
phism ¢. Indeed, it follows from [Lot02, Lemma 2.2.18] that the morphism ¢ maps every lower
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mechanical word s, , to the upper mechanical word s',_, ;_,. Together with Equation (4.2)),

2—a’2—«

we have that p(f) =s'; ;| =f.

7272
Moreover, it follows from [Lot02, Theorem 2.3.12] that a morphism is standard if and only if it
maps a characteristic word to a characteristic word. In other words, it suffices that the morphism
maps one characteristic word to a characteristic word. The Fibonacci word f is characteristic

and ¢(f) = f. Hence, the morphism ¢ is standard.

The generators of the monoid of Sturm enable defining other morphisms as follows

0~ 01,

~
0'_>O, ~ O'_>0, . 0'_>10,
1’_>1.

G=poFE: G=0@poFE:
4 { 4 1+— 10, 1—1,

D=FEop:
1+— 01, 4 {

Remark 5.1.2. Observe that choosing a binary alphabet {0,1} in Equation , we obtain
that oo = G and 1 = D. However, the notation chosen in Chapter[{] is more suitable in the
context of d-ary Arnoux—Rauzy words, whereas the notation G and D is typical in the context of
Sturmian morphisms.

The morphisms G, D, G and D generate the submonoid M = (G, D, G, l~)> which is called
the special Sturmian monoid. Every morphism ¢ € M can be written as a concatenation of
the generators G, D, G and D. However, this decomposition might not be unique as the special
Sturmian monoid M is not free — for every k € N, it holds that

GD*G = GD*G and DG*D = DG*D. (5.1)

Moreover, Equations (5.1) are a presentation of the monoid M, which is to say that no other
non-trivial independent relation can be found. Consequently, all decompositions of a Sturmian
morphism have the same number of generators.

Example 5.1.3. The morphism 7 : 0+ 010,1 — 01010 has two decompositions

n = GDG and = GDG.

5.1.1 Mutually conjugate Sturmian morphisms

In this part, we recall the relation of conjugacy on Sturmian morphisms and its properties.
A morphism 7 is a right conjugate of a morphism ), denoted by v < n, if there exists a word
w € A* such that, for every letter a € A,

wib(a) = na)w. (5.2)
We say that a morphism ¢ is a left conjugate of a morphism 7 if and only if ¥ <.

Remark 5.1.4. Note that there is some confusion around the notation of right conjugate mor-
phisms. We choose notation close to the one used in [LPS23] to remain consistent while present-
ing our results. However, in [Lot02], the fact that n is the right conjugate of 1 is defined with
Equation symmetrically modified into wn(a) = Y (a)w.

Due to Remark we reformulate [Lot02, Proposition 2.3.18] and |Lot02, Proposition
2.3.19] into our notation. They imply that the monoid of Sturm St is the closure under left
conjugacy of the monoid of standard morphisms.
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Proposition 5.1.5. [Lot02] A morphism is Sturmian if and only if it is a left conjugate of
a standard morphism.

Proposition 5.1.6. [Lot02] Let 1) and ¢y’ be standard morphisms such that ) <y)’. Then ) =)'.

We call two morphisms 7 and 1 mutually conjugate (or conjugate) if n < or ¥ <n. Clearly,
this relation is an equivalence relation. It follows from Proposition that the equivalence
class of a Sturmian morphism has finitely many distinct elements and we can order the elements
with respect to the relation < from the leftmost conjugate morphism to the rightmost conjugate
morphism. The rightmost conjugate morphism is standard. Also, assuming that n and ¢ are
mutually conjugate and u € {0,1}Y is an infinite word such that 0 and 1 occur in u, we have
that if u = ¢ (u) = n(u), then ¢» = . Thus mutually conjugate morphisms which are distinct
fix distinct words.

Clearly, mutually conjugate morphisms have the same incidence matrix. Moreover, a matrix
(2%) € SI(N, 2) is the incidence matrix of a+b+c+d—1 mutually conjugate Sturmian morphisms
[Lot02, Proposition 2.3.21], where we used the notation SI(N,n) = {R € N"*" : det R = 1}.

Example 5.1.7. The second power of the Fibonacci substitution ¢? : 0 — 010, 1 +— 01 has the
incidence matrix M = (2 1). All conjugate morphisms having the incidence matrix M are

0 0010, 4y [0=00L, 5 (0100, (4 [0~ 010,
1 10, 1+ 01, 1+ 10, 1+ 01,

and 7© <n® an@ qy®). The rightmost conjugate morphism 1) = ¢? is standard.

Given a morphism n©) (f), C:’), the following algorithm produces all conjugate morphisms
in the equivalence class of 7(9) ordered from the leftmost morphism to the rightmost morphism.
We call ||| = [7(9(0)] + |7(®(1)| the length of the morphism 5(®).

Algorithm 5.1.8. Put 7(© € (D, G) and denote L = ||n©)||. Fori e [0,L — 2] do this:
(1) Lety; € {G,D,é,f)}, for every j € [0,k — 1], be such that 0D = oipy - - - Pp_,.
(2) Find minimal j € [0,k — 1] such that ¢; € {G, D}.

(3) Ify; = D, then:

(a) Replace every morphism ; such that i € [0,5 — 1] and ¥; = G by the morphism G.
(b) Replace 1p; by D.

(4) Ify; = G, then:

(a) Replace every morphism v; such that i € [0,5 — 1] and v; = D by the morphism D.
(b) Replace v; by G.

(5) Put n"tY) equal to the resulting morphism.

We call the sequence of all Sturmian morphisms in the same equivalence class ordered with
respect to the relation < a chain of conjugate Sturmian morphisms. Algorithm produces
a chain of conjugate Sturmian morphisms [Pel], which we illustrate in the following example.
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| 9(0) [ n®(1)
DGG| 10 | 10101
DGG| 01 |o1011
G| 10 | 10110
DGG | 01 | 01101
DGG | 10 | 11010
DGG | 01 | 10101

e N T
>
()
)

Table 5.1: A chain of Sturmian morphisms ((®)2_, such that 7(©) = DGG.

Example 5.1.9. Let 7(® = DGG : 0 — 01, 1 — 10101. Then ||n@|| = |01] +]10101| = 7 and
there are ||7(?)]| — 1 = 6 morphisms in the equivalence class of 7(9), including itself. Observe in
Table that the sequence of morphisms (n(i))?:[) produced by Algorithm fulfills that, for
every i € [0,4], we have n(®) an(+1),

Given a particular morphism n € M, we can determine all morphisms in the equivalence
class of n with the help of Algorithm Denote L = ||n|| the length of n and consider the
morphism 7 e <5, é), which is created from the morphism 7 by replacing G Gand D— D
in its decomposition. We denote this operation as

0) _ . -
n® = sub,,  zsub,  =(n).

Then, Algorithm produces a chain of conjugate Sturmian morphisms (77(1'))%:_01 such that
n®) =7 for an integer i € [0, L — 1].

5.2 Faithful representation of the special Sturmian monoid

Elements of the special Sturmian monoid M can be represented by 3 x 3 matrices with non-
negative entries. Although closely related to the classical representation by incidence matrices,
this representation introduced in [LPS23| has an important property of faithfulness, i.e., dis-
tinct morphisms are represented by distinct matrices. We assign the following matrices to the
morphisms G, é, D, D:

1 10 1 10 1 00 100
Re=|010]|,Rz=|1 010 |,Rp=(110], Rzg=|110 (5.3)
0 0 1 01 1 1 01 0 0 1
These matrices preserve the presentation of the special Sturmian monoid (5.1])
RgR%RG = RGRpR; and  RpRERp = RpRERp. (5.4)

Following the notation of [LPS23|, we denote by £ the monoid generated by the matrices (5.3)
& =(Rg,Rg, Rp, Ry)- (5.5)

We can assign a matrix to every element in the special Sturmian monoid M.
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Definition 5.2.1. Let R : M — Z3*3 be defined for 1 € M by
R($) = Ryy Ry, -+~ Ry,
where 1) = g oy o0y, and P; € {G, é,D,ﬁ}, for every i € [0,n].

Definition is correct because, thanks to Equations (5.1) and (5.4)), it does not depend on
the decomposition of ¢ into the elements {G, G, D, D}. We summarize the main results proved
in [LPS23| in the following theorem. We recall the notation SI(Z,n) = {R € Z™*" : det R = 1}.

Theorem 5.2.2. [LPS23| The monoid M and E are connected in the following way.

i) Let R € SI(Z,3). Then R € £ if and only if there exist a,b,c,d,e, f € N such that

a b 0
R=|c d 0
e f 1
and
ad —be =1, (5.6)
e<a+ec, f<b+d (5.7)
—c<cf—de<d. (5.8)

it) The monoid € coincides with R(M) = <Rg,R5, RD,R5>.
iti) The map R is a bijection R : M — £.

Remark 5.2.3. Observe that the 2 X 2 matriz in the upper left corner of the matriz Rg (resp.,
R5, Rp, Rﬁ) is the incidence matriz of the morphism G (resp., G, D, D); see Equation (5.3).

We can derive from Theorem and Remark that, for a given morphism 1 € M, the
matrix R (7)) is of the form

R(¢) =

0 9
= o O

- a o

where (29) is the incidence matrix of ¢ and a,b,c,d, e, f € N satisfy Equations (5.6)), and
. Note that sometimes we refer to the parameters a,b,c,d, e, f of a morphism v as to ay,
by, Cy, dy, ey and fy. Also, we have the following simple observation, which follows from the
fact that the incidence matrices of the morphisms D and D coincide, and the incidence matrices
of the morphisms G and G coincide.

Remark 5.2.4. Let n,9 € M be such that n = nom -~ and ¢ = o1 -+ - P with 0, P; €
{G,G,D, D}, for every i € [0,k]. Moreover, assume that for every i € [0,k] it holds that
v; € {G, G} if and only if n; € {G,G}. Then n and v have the same incidence matriz.

We determine the faithful representation of a morphism fixing the Fibonacci word f.
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Example 5.2.5. The Fibonacci word f is the fixed point of the Fibonacci substitution ¢; see
Example Clearly, for every k > 1, the morphism ¢* fixes f. The Fibonacci substitution
¢ € St is not an element of M, however, ©?> = G o D € M. Thus, we can determine

210
R(p?) =R(G)R(D)=RgRp=|(1 1 0
10 1

In other words, e, = 1 and f_2 = 0. Indeed, the morphism ©? : 0+ 010, 1 — 01 has the
incidence matrix ( 1) and, denoting a = ap2,b="0by2,c=cu,d=ds,e=ey, f= f,, wehave

e=1<2+1=a+c, f=0<1+1=0b+4d, —c=-1<c¢f—-de<1=d.

Let us stress the advantage of the representation R. We already mentioned that, for exam-
ple, the generators G and G have the same incidence matrix. Similarly, any mutually conjugate
morphisms share the same incidence matrix. The representation R, on the other hand, assigns
distinct matrices to distinct morphisms. However, there is also a disadvantage of the represen-
tation R. Given a morphism %), it is not that easy to determine the parameters ey, fy, € N. In
the next part, a relatively simple algorithm to determine ey, fy is introduced.

5.3 Algorithm to determine the faithful representation

We start this part by illustrating the relations between the faithful representations of some
mutually conjugate morphisms on an example.

Example 5.3.1 (NCQntinuation ~of Example . We use the notation from Example - We
have that () = GD, n¥ = GD, n® = GD, n<3> = GD and therefore

210 210 210 210
Ry =[11 0], RoGM=[11 0|, RH®P)=|1 1 0|, RHP)=]|1 1 0

1 11 0 01 2 11 1 01
Observe that denoting (¢4) = (2 1) the incidence matrix of the morphisms (7)2_,, we have

e,0 =1=(a—1+0a)mod (a+c), f © = 1= (b+0b) mod (b+ d),

e,y =0=(a—1+1a)mod (a+c), f,a=0=(b+1b)mod (b+d),

ey =2=(a—1+2a) mod (a+c), f 2 = 1= (b+2b) mod (b+ d),

ey =1=(a—1+3a)mod (a+c), fus =0=(b+3b)mod (b+d).

In the following theorem, we extend the observation stated at the end of Example [5.3.1] to
all elements in the special Sturmian monoid.

Theorem 5.3.2. Let (77(1'))5:_01 be a chain of conjugate Sturmian morphisms. Denote (‘Cl g) €
SI(N, 2) their incidence matriz. Then, for every i € [0, L — 1],

e i) = (a(i+1) —1)mod (a+¢) and fo = (b(i+1)) mod (b+d).

To prove Theorem [5.3.2] we show some properties of the elements of the monoid £. We note
that, in particular, the identity matrix belongs to all four cases of Lemma [5.3.3]
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Lemma 5.3.3. Let R = (

o0
o
OO

Jee.

i) If R € Rﬁ>R§

i) if R € (R5, Rg), then e =0 and f = 0;

( ), thene=a—1 and f = b;

( )

iii) if R € (RD,R5>, thene=a+c—1and f=b+d—1;
w) if R € (Rp,Rq), thene=cand f =d— 1.

Proof. We can check that all the cases i), ii), iii) and iv) are true for the identity matrix.
i) The statement holds for R € { Ry, R5}. We show that if R € & fulfills the statement, then
RRj and RR3 fulfill the statement. Indeed,

a b0 100 atb b0 a b0 110 a at+b0
RR~ = ¢ do (110): c+d do and RR~ = c do <o1o): ¢ c+d0 ).
D a—1b1 001 a+b—1b 1 G a—1b1 011 a—1 atb 1

ii) The statement holds for R € {Rz, Rg}. We show that if R € £ fulfills the statement,
then RR5 and RR fulfill the statement. Indeed,

ab0\ /100 at+b b0 ab0\ /110 aatb0
RR5:<cd0)(110>= ct+d d 0 and RRG:(ch><010>: ccrdO | .
001/ \001 0 01 001/ \001 00 1

iii) The statement holds for R € {Rp, Rz}. We show that if R € £ fulfills the statement,
then RRp and RR fulfill the statement. Indeed,

+b b 0
rRp= (0 4 ) (1) = (49
ate—1b+d-11/) \101 atbtctd—1 b+d—1 1
and ,
+ 0
RRg=( 0 4 S () = (5, 5 o).
at+c—1 b+d—-11 011 at+c—1 a+b+c+d—1 1
iv) The statement holds for R € {Rp, Rg}. We show that if R € £ fulfills the statement,
then RRp and RR¢ fulfill the statement. Indeed,

a b 0\ /100 at+b b0 a b 0\ /110 a at+b 0
RRp=|c d 0 (110): c+d d 0 and RRg=|c d 0 (010): ¢ c+d 0 ). O
cd—11 101 c+d 01 cd-11/)\001 ¢ ctd—11

We illustrate Lemma [5.3.3| on an example.

Example 5.3.4 (Continuation of Example . We use the notation from Example We
check easily that as n© = GD e (D, G), we have that R(n©) e (Rp, Rz) and R(n©)) satisfies
the condition that

e=a—-1=2—-1=1 and f=b=1,

which is in correspondence with Lemma i). Similarly, it is possible to show that the param-
eters of the morphism n") = GD are in correspondence with Lemma ii), the parameters
of the morphism 77(2) = GD are in correspondence with Lemma iii), and the parameters of
the morphism 7® = GD are in correspondence with Lemma iv).

We prove the following proposition.
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Proposition 5.3.5. Let (n(i))iL:_Ol be a chain of conjugate Sturmian morphisms. Denote (‘Cl g) €
SI(N, 2) their incidence matriz. Then, for every i € [0, L — 2], we have

e+ = (€, +a)mod (a+c¢) and  f a1 = (f» +b) mod (b+d).
Proof. Let i € [0,L —2]. It follows from Algorithm that there exist unique morphisms
€(D,G), £ € {D,G} and ¥ € (D, G, D,G) such that (¥ = p&p. We denote

0= (2 41) maor - (159).

(I) Assume £ = G. Then it follows from Algorithm |5.1.8/ that, denoting i = sub,

5(#) and
€ = @, we have (1) = gy, As i € (D, @), it holds by Lemma |5.3.3]ii) and Remark .5 Al that

-y _ (abO0
R(p) = (861(1)) . Then we have

where we used Lemma iv) to obtain that e, = c and f, =d — 1.
i

; ~ a b 0 110 ABO aA+(a+b)C  aB+(a+b)D 0
R(nW) =R = (c d o) 010)(cDo0) = cA+(c+d)C  eB+(c+d)D 0
e () cd-11 (0 1 1> (E F 1) cA+(c+d)C+E cB+(c+d)D+F 1

and
(i+1) ab0 110 ABO aA+(a+b)C aB+(a+b)D 0
R(n ) =R(agy) = (8 8 ?) (8 (1) (lJ) (% Ilg ?) = cA+(;+d)C cB+(;+d)D (1)

Consequently, we obtain
epity = E=((a+c)A+(a+b+c+d)C+ E)mod ((a+c)A+ (a+b+c+d)C)
= (ey) + aym ) mod (a6 + ¢y)
and
fyasn =F=((a+c¢)B+(a+b+c+d)D+ F)mod ((a+c)B+(a+b+c+d)D)
= (fy@ + by) mod (by) + dyo),
where we used the pair of inequalities

E<A+4+C<(a+c)A+(a+b+c+d)C,
F<B+D<(a+c¢)B+(a+b+c+d)D.

(I) Assume € = D. Then it follows from Algorithm [5.1.8|that, denoting i = sub coo(p) and
¢ = D, we have nD) = gy, As fi € (D,G), it holds by Lemma iii) and Remark -

that R(f) = ( c 3 0) Then we have
ato—1 bad—1 1
) ~ a (a+b)A+bC (a+b)B+bD 0
R(nW) = R(uép) = (c b 8) (% 9 8) (é D 8) = (c+d)A+dC (c+d)B+dD 0
cd-11 001/ \EF1 (c+d—1)A+(d—1)C+E (c+d—1)B+(d—1)D+F 1
and
o e (a-+b) A+bC (a+b)B+bD 0
(i+1) ‘(7:‘ 100 0y (c+d)A+dC (c+d)B+dD 0
R(n") = R(gy) = (a+0_1 prd (1’) (% 5 (1)) (% B (1)) = | (atbtetd—1)A  (atbtctd—1)B 1
+(b+d—1)C+E  +(b+d—1)D+F
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Consequently, we obtain
ey = (@+b+ec+d—1)A+ (b+d-1)C+E
=((a+b+c+d—1)A+(b+d—1)C+ E)mod ((a+b+c+d)A+ (b+d)C)
= (ey + ay@) mod (a,m) + ¢yi)
and
foarn =(@+b+c+d=1)B+(b+d-1)D+F
=((a+b+c+d—-1)B+(b+d—1)D+ F)mod ((a+b+c+d)B+ (b+d)D)
= (fyo + bye) mod (b + dyy),
where we used F < A+ C and FF < B+ D. O
We turn to the proof of Theorem [5.3.2

Proof of Theorem[5.3.3 Let (n™)Z! be a chain of conjugate Sturmian morphisms. Denote
(2%) € SI(N, 2) their incidence matrix. We carry out the proof by finite induction.

Assume i = 0. Then (¥ € (D, G) and we have from Lemma i) that

e =a—1=(a—1)mod(a+c) and f 0 =b=>bmod (b+d).

Induction hypothesis: for an integer i € [1, L — 1], it holds that e, -1y = (ai — 1) mod (a+c)

and f, -1 = bi mod (b + d). Then from Proposition we have
Cpli) = (677(1;1) + a) mod (a + ¢)
=(a(i+1)—1) mod (a +c)

and
fn(i) = (fn(i—l) + b) mod (b+ d)

=(b(i+1)) mod (b+d). O

We illustrate how Proposition [5.3.5| eases the determination of the faithful representation of
a given morphism.

Example 5.3.6. Determining the faithful representation of the morphism 7 = DGGDG based
solely on Definition [5.2.1] requires multiplying 5 matrices to obtain

R(n) = RpRRaR5Re

1 00 1 10 1 10 1 00 1 10
=110 010 010 110 010
1 01 0 01 0 01 0 01 0 01
350
=4 70
3 5 1

Now, we determine the faithful representation with the knowledge of Algorithm[5.1.8] Lemma
and Proposition [5.3.5] The incidence matrix of the morphism is obtained by multiplying 2 x 2
matrices, giving (¢ %) = (32). Denote i € N the integer such that = 7 in the chain of Stur-
mian morphisms. From Algorithm we notice that n(i—1 = DGGDG. From Lemma m

we have e, 1) = 0 and fn“*” = 0. From Proposition we have e, ) = 3 and fn(“ = 5.
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Let us remark that it is possible to assign a 3 x 3 matrix with integer entries to the morphism

E: 0+ 1,1+ 0. However, this matrix clearly cannot have nonnegative entries, because E? = Id.

As the proofs in [LPS23] exploit Perron—Frobenius theorem, which is applicable for matrices with

nonnegative entries, we did not explore this direction. We claim, however, that the natural choice
for the representation of the morphism F is

01 0

Rp=]1 0 0

11 -1

Then it is possible to extend the representation R of the special Sturmian monoid M to a rep-
resentation of the Sturmian monoid St. For more details, see [LPS23, Remark 10].

We finish this part with an open question. As we observed in Chapter [4] Sturmian words
present a binary case of words on d-ary alphabets which are called episturmian and there is a
monoid of morphisms that map episturmian words to episturmian words [JP02]. It seems natural
to ask whether it is possible to faithfully represent this monoid.

Question 5.3.7. Can we faithfully represent the monoid of morphisms which map episturmian
words to episturmian words?

5.4 Intercepts of fixed points of conjugate Sturmian morphisms

In Section we explained the description of Sturmian words as irrational mechanical words,
irrational rotations on a circle and cutting sequences. Sturmian words can also be described with
the help of two interval exchange transformation and it is this description, which was used to
derive the faithful representation of special Sturmian monoid.

The two interval exchange transformation (2iet) generalizes the rotation on a circle. For
given parameters £y, ¢1 > 0, consider an interval I of length ¢y and an interval I; of length ¢;.
Sometimes, it is convenient that the intervals are left-closed right-open

Ip =[0,4y) and Iy = [lo, Ly + 1),

whereas, sometimes, the opposite case is considered. In both cases, we define the map T :
IgpUl; —» IgUI; as
x+ 0, ifzxely

T =
(@) {x—ﬁg, if x € 1.

Setting an initial point p € Ip U I, the word u = ugujus - - - € {0, 1} defined by the relation

w — 0, if T"(p) € Iy;
"N 1, iTp) e,

is a 2iet word with the vector of parameters v(u) = (fo, {1, p).
We show a connection between 2iet words and mechanical words; see Section

Lemma 5.4.1. A 2iet word u with the parameters ({y, 41, p) coincides with the lower mechanical

word Sq,5 with the slope o = 60261 and the intercept § = ﬁ.
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Proof. Let u be a 2iet word with the vector of parameters v = (g, 41, p) and let Iy = [0, {o),
I = [€y, Ly + £1) be half-open intervals of the same type (the procedure would be analogous for
left-open right-closed intervals). For every n € N, we have that

T"(p) € Iy if and only if T”(Zoﬁp) c EO%AIO‘

Consequently, the 2iet word v with the rescaled parameters ﬁ(ﬁo, {1, p) satisfies the condition
that v = u. Simultaneously, the word v fulfills the condition that the length of the interval
IpU I is equal to 1 and therefore the map T coincides with the rotation by the angle o = Z.KTI&?
compare with Equation . As a result, the 2iet word u is the lower mechanical word s, s

. ¢ .
with the slope o = Ko-ﬁﬁl and the intercept § = éo%ﬁl' O

We observe that Lemma [(5.4.] enables us to describe Sturmian words as 2iet words with
a vector of parameters closely related to the slope and intercept of the word interpreted as
a mechanical word. The following lemma, which is closely related to the Perron—Frobenius
theorem, was proved in |[LPS23, Corollary 9].

Lemma 5.4.2. [LPS23| Let 1) € M be a primitive morphism. The matriz R(1)) has eigenvalues
A, 1 and %, where A > 1 is a quadratic unit. An eigenvector corresponding to A can be found in

the form (x,y, z) € (Q(A))3 withx > 0, y > 0 and z > 0. No other eigenvalue has an eigenvector
with the first two components positive.

We call A from Lemma the dominant eigenvalue. The following proposition gives
a simple criterion on whether a Sturmian word is fixed by a certain morphism from the special
Sturmian monoid based on its vector of parameters.

Proposition 5.4.3. |[LPS23| Let ¢ € M be a primitive morphism and u be a Sturmian word
with the vector of parameters v(u). The word u is fized by v if and only if ¥(u) is an eigenvector
to the dominant eigenvalue of R(1)).

We illustrate Proposition [5.4.3| on an example.

Example 5.4.4. The Fibonacci word f is a Sturmian word with the slope a = T% and the

intercept § = T%, where the term slope refers to the slope of a mechanical word; see Example
We denote its vector of parameters 0(f) = (fo,¢1,p). From Lemma we have that = =

40251 =r iél' Therefore, we have 9(f) = (7,1,1). In Example we observed that the word

f is fixed by the morphism GD € M and

2 1
R(GD)= |1 1
10

= o O

We see that @(f) = (7,1, 1) is the eigenvector to the dominant eigenvalue A = 72:

2 1 0\ [T 27+ 1 247
L 1o|ftf=]r+1|=| = |=7
1 0 1/ \1 T+1 72

= o= N

The following lemma follows easily from Proposition [5.4.3
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Lemma 5.4.5. Let ¥ € M be a primitive morphism and u be a Sturmian word with the vector
of parameters v(u) = (Lo, {1, p), which is fized by 1. Let A > 1 denote the dominant eigenvalue

ab0
of R(v) = <c ? (1)> Then we have
ely + fty
OA-1

Proof. Using Proposition [5.4.3] we have that

aly + blq a b 0 Lo loy

cly + dly =]lec d O Ll =A40],

ebo+ fli+p e [ 1) \p p

which implies that efy + f¢1 + p = Ap, and therefore p = %. O

Combining Lemma, [5.4.5] with Theorem we can compute the intercepts of the Sturmian
words fixed by conjugate Sturmian morphisms, which we illustrate on the following example.

Example 5.4.6. Let n() = DGGDG and denote (¢4) = (332) its incidence matrix. Then
7] = 19 and there are ||7(?)]| — 1 = 18 morphisms in the equivalence class of n(¥), including
itself. We denote (n(i))}io the chain of Sturmian morphisms produced by Algorithm such
that n© = DGGDG. For every i € [0,16], we determine the parameters (e, fyn) from
Theorem see Table We denote e; = e, and f; = f, for simplification.

We have that, for every i € [0, 17], the faithful representation

‘ 3 5 0
RWy=[4 7 0
e fi 1
has the same dominant eigenvalue A = 5 + 2v/6. Denote v; = ({, {1, p;) the corresponding
eigenvector. Choosing £y = 1, we have {1 = % and we use Lemma to obtain
_ et filh
PPm A1

Consequently, we determine the value of the intercept J; from Lemma [5.4.T] as the rescaled value

o; = ﬁ—i&. The approximate values are shown in Table

5.5 Square roots of fixed points of Sturmian morphisms

We recall that a factor v € {0,1}T of the form v = ww = w? for some w € {0,1}7 is called
a square. A square is called minimal if none of its proper prefixes is a square. Saari [Saal(|
showed that, for every Sturmian word u, there exist 6 minimal squares v1, ..., vg such that

u= wi21wi22wi23 Ty (59)

where v; = w?, for every i € [1,6], and i, € [1,6], for every k € N. Inspired by this result,
Peltoméki and Whiteland introduced the square root y/u of the Sturmian word u as

Vu = w wi,wiy -

and they proved that if u is a Sturmian word with the slope « and the intercept J, then the
word /u is a Sturmian word with the same slope a and the intercept %"M [PW17].
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i nt (eyis fo@) | pi di

17 | DGGDG | (4,6) | 1.37980 | 0.57980
16 || DGGDG | (1,1) | 0.26742 | 0.11237
15 || DGGDG |  (5,8) | 1.80227 | 0.75732
14 || DGGDG | (2,3) | 0.68990 | 0.28990
13 || DGGDG |  (6,10) | 2.22475 | 0.93485
1.11237 | 0.46742

o
-l
)
()
'
Q
w
=

11 || DGGDG |  (0,0) 0 0

10 || DGGDG | (4,7) | 1.53485 | 0.64495
9 || DGGDG | (1,2) |0.42247 | 0.17753
8 || DGGDG | (5,9) 1.95732 | 0.82247
7 | DGGDG | (2,4) | 0.84495 | 0.35505
6 || DGGDG | (6,11) | 2.37980 1

5 | DGGDG | (3,6) |1.26742 | 0.53258
4 | DGGDG| (0,1) |0.15505 | 0.06515
3 | DGGDG | (4,8) |1.68990 | 0.71010
2 || DGGDG | (1,3) | 0.57753 | 0.24268
1 || DGGDG | (5,10) |2.11237 | 0.88763
0 || DGGDG | (2,5) 1 0.42020

of R(n@) for every i € [0,17] is A = 5+ 2/6 and the vector of parameters v(u) = (Lo, £1, p) has values
lo=1and f, = 24551

Example 5.5.1. We show the square root of the Fibonacci word f. As we can write

f = 010 010 100 100 10 10 01 01 O 0 10010 10010
= w w1 W2 W2 W3 W3 W4 W4 W5 W5 We We T,

the square root of the Fibonacci word is defined as the word

vE = 010 100 10 01 0 10010
= w; W2 W3 W4 W5 We

It follows from [PW17] that the word v/f is Sturmian with the slope a = ?12 and the intercept
0= % Note that all square roots of characteristic words have the intercept § = %

Additional properties were proved in [LPS23| for those square roots of Sturmian words, which
emerged from the fixed points of elements in the special Sturmian monoid.

Theorem 5.5.2. |[LPS23] Let u € {0,1}N be a Sturmian word fived by a primitive morphism
1 € M. The square root \/u is fized by a morphism ¢ € M, which is a conjugate of one of the
morphisms 1, 92,3 or .

With the knowledge of some details from the proof of Theorem it is possible to precisely
determine the minimal power k € {1,2,3,4} such that the square root is fixed by a conjugate
of the k-th power of the original morphism. We summarize important steps from the proof of

Theorem [(.5.2] in Remark [£.5.3]

61



Remark 5.5.3. Let v € M be a primitive morphism and denote M its incidence matriz. In
the proof of Theorem we search for an integer k € N, such that the term qu;{:_(]l M?* has all
elements even. As M € SI(N,2), it is equal mod 2 to one of the following 6 matrices

(a) (3 (1)),

11 01
(b) : (1 0)’ (1 1)’

01 10 11
(c) - (1 o)’ (1 1)’ (0 1)'

It follows that there exists k € {2,3,4} such that the term Zf;ol M? has all elements even. We
choose

2, if M is of type (a);
k=43, if M is of type (b);
4

if M is of type (c).

Example 5.5.4. The morphism ¢ = DG has the incidence matrix M = (11). As M is of type
(b), the smallest possible integer k < 4 such that a conjugate of ¥* fixes /u is k = 3.

The morphism ¢ = DGG has the incidence matrix M = (12). As M is of type (c), the
smallest possible integer k < 4 such that a conjugate of ¥* fixes y/u is k = 4.

In the special case of characteristic Sturmian words, it suffices to search for k € {1,2,3} and
the desired morphism fixing the square root has palindromic letter images of odd length.

Corollary 5.5.5. [LPS23] Let u € {0, 1} be a characteristic Sturmian word fived by a primitive
morphism ¢ € M having the incidence matriz M. Let k be the minimal positive integer such
that (1,1)M* = (1,1) mod 2. Then k < 3 and the  square root \/u is fized by a morphism Y eM,
which is a conjugate of Y*. Moreover, 1(0) and (1) are palindromes of odd length.

We can deduce even more from Corollary [5.5.5] As every pair of morphisms which are
conjugate satisfies the condition that their fixed points are distinct, there is exactly one morphism
Y € M which is a conjugate of 1/* and which fixes the square root /u = 1(y/u). Thus, if we
find a morphism 7 which is a conjugate of ¥* and which has palindromic images of letters, then
n fixes the square root y/u. We illustrate Corollary on several examples.

Example 5.5.6. Let ©» = DG? : 0 — 10, 1 — 10101 be an element of the special Sturmian
monoid M. The fixed point u = ¥ (u) can be expressed as a concatenation of the squares of the
factors 10, 1, 0110101, 101, 01, 01101.

101011010101101010110101101010110101011010101101 -

). We have (1,1)M = (2,5) # (1,1) mod 2. Then we

The incidence matrix of ¢ is M = (13
mod 2. Hence, it suffices to find the palindromic conjugate

see that (1,1)M? = (7,19) = (1,1)
of ¢2. The square root

v/u=101010110101101010110101011010101101011010101 -



is fixed by the palindromic conjugate of 12
0 +— 1010101,1 ~ 1010101101011010101.

To illustrate Corollary more thoroughly, we show other examples, where a conjugate of 1,
Y2 or ¢ is used to fix the corresponding square root.

Y k conjugate of ¥

D?G? | 1 0+ 101,1 — 1011101

GDG | 1 0 +— 010,1 — 01010

DG | 2 0+ 10111011101,1 ~ 101110111011101

DG |3 0 +— 1010110110101, 1 — 101011011010110110101
GD 3 0 — 010100100101001001010, 1 — 0101001001010
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Chapter 6

Dumont—Thomas numeration
systems for Z

In this chapter, we mostly summarize our results |[LL23b|, which are currently under review in In-
tegers — Electronic Journal of Combinatorial Number Theory. We generalize certain substitution-
based numeration systems for N to Z. Let us remark that substitutions form a subset of mor-
phisms. We refer to the newly defined numeration systems as to the Dumont—Thomas numeration
systems for Z and we describe their properties with respect to automata and a particular total
order. As a matter of fact, this total order coincides with the one presented in Chapter [3] Also,
we show how these numeration systems can be extended naturally to Z¢, for d > 1. In particular,
we recover the two’s complement notation and the Fibonacci complement numeration system,
which we studied in a different context in Chapter 3| As a new result not included in |[LL23b|, we
provide a sufficient condition for the Dumont—Thomas numeration systems for Z to be positional.

6.1 Dumont—Thomas numeration systems for N

Numeration systems for representing nonnegative integers, as well as real numbers in a certain
interval, were introduced in [DT89] by Dumont and Thomas. They are based on right-infinite
fixed points of substitutions and we refer to them as to the Dumont—Thomas numeration systems
for N. Note that, as opposed to the previous chapters, in this chapter we distinguish between
right-infinite, left-infinite and two-sided fixed points. Also, we only treat substitutions, which
are a special case of morphisms. We illustrate the main idea of admissible sequences, which form
a base for the Dumont—Thomas numeration systems for N, on the following example.

Definition 6.1.1 ([DT89], admissible sequence). Let n: A* — A* be a substitution. Let a € A
be a letter, k an integer and, for each integer i, 0 <i < k, (m;,a;) be an element of A* x A. We
say that the finite sequence (m;, a;)i=o,... x is admissible with respect to n if and only if, for all i,
1<i<k, mi—1a;—1 is a prefix of n(a;). We say that this sequence is a-admissible with respect
to n if it is admissible with respect to n and, moreover, myay, is a prefix of n(a).

Example 6.1.2. Consider the substitution n : a — abc, b — baa, ¢ — cbb and its right-infinite
fixed point u = n(u) = limy_, 4 n*(a). The first 4 images of a under the substitution 7 are
illustrated in a tree in Figure[6.I} The letters in the tree are connected by lines labeled by 0, 1 or

2 according to the rule d = e if and only if n(d) has letter e at position i, for every d,e € {a,b, c}
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Figure 6.1: Tlustration of a-admissible sequences of length up to 4 for the substitution a — abc,b —
baa, c — cbb.

and every ¢ € {0,1,2}. The lines connecting letters form paths, such as the path shown in bold
asbS0> a,
which starts at the top of the tree and ends with a letter a at position 11 in the right-infinite fixed
point u. Using the notion of admissible sequences, we can interpret this path as the sequence
(my, ai)i—o,... 2 with the terms
(m27 CLQ) - (CL, b)7
(mla a/l) == (87 b)7

(mo, ap) = (ba,a).

We note immediately that, starting again at the top of the tree, the path a SabrSp3a
shown in dash-dotted style also brings us to the letter a at position 11, and so does the path
b3 a, which does not start at the top of the tree. Simply speaking, paths in the tree illustrate
admissible sequences and those paths which start at the top of the tree illustrate a-admissible
sequences.

We saw in Example that every letter at position n € N in the fixed point is reached by
multiple paths. However, every position n > 1 is reached by exactly one path, which starts at
the top of the tree and which does not start with 0. This is the idea of the following theorem
proved by Dumont and Thomas, which enabled them to represent all nonnegative integers in
a unique way.

Theorem 6.1.3. [DT89, Theorem 1.5] Let a € A and let n : A* — A* be a substitution. Let
u = n(u) be a right-infinite fized point of n with a growing letter ug = a. For every integern > 1,
there exists a unique integer k = k(n) and a unique sequence (m;,a;)i=o,... k-1 such that

weey
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o this sequence is a-admissible and my_1 # €,

kfl( k72(

® UQUL "~ Up—1 =1 My—1)1 Mi_2) - ~-770(m0).

From Theorem given a right-infinite fixed point of a substitution n with a growing
letter a € A, every integer n > 1 is represented with a unique a-admissible sequence. We refer to
the map which assigns the unique a-admissible sequence to every position n > 1 and the empty

word to the position n = 0 as to a Dumont—Thomas numeration system for N.

Definition 6.1.4 (Numeration system for N). Let a € A and let n : A* — A* be a substi-
tution. Let u = n(u) be a right-infinite fived point of n with a growing letter uy = a. Let
D ={0,...,maxcca [n(c)| — 1}. We define
rep,,: N — D~
|mp_1] - |mg—a| - ...~ |mo|, ifn>1;
n
€, ifn=0;

where k = k(n) is the unique integer and (m;, a;)i=o,.. k-1 S the unique sequence obtained from
Theorem [6.1.3.

Remark 6.1.5. The notation () throughout this text stands for the concatenation of words
within the monoid D*, not the multiplication of integers.

Let K > 2 be an integer. Dumont—Thomas numeration systems for N based on K-uniform
substitutions coincide with the classical K-ary numeration systems, which we illustrate in the
following example.

Example 6.1.6 (Continuation of Example[6.1.2). Using the greedy algorithm, the ternary rep-
resentation of the number 11 is reps(11) = 102 as

11=9+2
=1-324+0-3"+2.3°
Now, we represent n = 11 in the Dumont—Thomas numeration system for N based on the 3-

uniform substitution 7 : a — abe, b — baa, ¢ — cbb. We apply Theorem on the prefix of
length 11 of the right-infinite fixed point u = n(u) with a growing letter a. We obtain

abcbaacbbba = abcbaachd - € - ba
=n*(a) -n'(e) - n° (ba).
Hence we have rep, ,(11) = |a| - |¢] - [ba| = 102.
Note that as mg_1 # € in Theorem we have that |mg—_1| # 0 and thus the Dumont—
Thomas representations do not start with leading zeroes. This is why, from now on, we draw the
paths starting with leading zeroes in the figures illustrating a-admissible sequences in a dashed

style; see Figure We show a Dumont—-Thomas numeration system for N based on the
Tribonacci substitution, which is not K-uniform.

Example 6.1.7. Consider the Tribonacci substitution © : a — ab, b — ac, ¢ — a and its
right-infinite fixed point t = O(t) = limy_, ;o ©%(a). We show the first 3 images of a under the
substitution © in a tree in Figure [6.2] and we show the representations of small integers in the
Dumont-Thomas numeration system associated with © and a in the following table.

n [o[1]2|3] 4| 5|6

repg o(n) || €[ 1]10 ] 11100 | 101 | 110
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Figure 6.2: Illustration of all a-admissible sequences of length up to 3 for the Tribonacci substitution.

Let us stress the fact that, as opposed to the numeration systems in Chapter [3| the Dumont—
Thomas numeration systems for N might not be positional, which we show in the following
example.

Example 6.1.8. We slightly modify the Tribonacci substitution from Example Let 7 be
the substitution 7: a — aba, b — ac, ¢ — a. We observe that a is a growing letter as n(a)
starts with a and |n(a)| > 2. In analogy with Example we show the first 2 images of
the growing letter a in a tree; see Figure [6.3] By contradiction, we assume that there exists
a positional numeration system U = (Un):{i‘a such that, for every n € N, the representation

repna( n) = wk 1--wp € {0,1,2}* is mapped to the correct position n by the value map
valy: w — ZZ 0 Lw;Us; see Equation (3.1). The representations of the first five positions are:

rep, ,(1) =1, rep,,(2) =2, rep,,(3) =10, rep,,(4) =11, rep, ,(5)=20.

Clearly, Up = 1 and we have valy (1) = 1 and valy(2) = 2. As rep, ,(3) = 10, we have

3 = valy(10)
=1-U;+0-Up
and therefore U; = 3. Conbequently, evaluating the representations of n € {3,4,5} gives
valy (10) = 3, valy(11) = 4, valy(20) = 6. This is a contradiction, as rep, ,(5) = 20 and
5 # valy (rep, ,(5))
= valU(QO)
=2-U1+0-Uy
= 6.

6.1.1 Some extensions of Dumont—Thomas results

In this section, we provide some lemmas |LL23b|, which extend the results of Dumont and
Thomas. Also, we show that the Dumont—Thomas numeration systems for N fall into the frame-
work of abstract numeration systems [BR10].
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Figure 6.3: Illustration of admissible sequences of length up to 2 associated with the substitution a — aba,
b — ac, c— a and letter a.

First, we recall that we can associate an automaton with every substitution [BR10]. Let
D denote the alphabet D = {0, ...,max.c4 |n(c)| — 1}. The deterministic finite automaton with
output associated with a substitution n: A* — A* and a letter a € A is the 6-tuple A,, =
(A,D,d,a, B,§), where the transition function § : A x D — A is a partial function such that
d(b,i) = c if and only if ¢ = w; and n(b) = wog - - W}, )|-1, B is an alphabet and § : A — B is
the output function. We restrict ourselves to the case where B = A and £ is the identity map.
In Figure [6.4] we show the automata associated with a 2-uniform substitution, the Fibonacci
substitution ¢ and the Tribonacci substitution ©.

Figure 6.4: The automata A, o, A, q, Ae,q associated with the 2-uniform substitution w : a — aa, the
Fibonacci substitution ¢: a — ab, b — a and the Tribonacci substitution © : a — ab, b — ac, ¢ — a.

We observe that, for every letter ¢ € A, the c-admissible sequences are related to the au-
tomaton A, . in the following way.

Lemma 6.1.9. [LL23b, Lemma 3.6] Let n : A* — A* be a substitution, k > 1 be an integer and
ce A If (mi,a;)i=0,... k—1 is a c-admissible sequence, then, for every i € [0,k — 1],

a; = Ane(|mp—1| - [mp—2| - ... - [mil).

We can reformulate Lemma[6.1.9]in the following way: a concatenation of the lengths of m;’s
of every c-admissible sequence is a finite word accepted by the automaton A, .. The following
lemma states that, on the other hand, every finite word accepted by the automaton A, . is
a concatenation of the lengths of m;’s of a c-admissible sequence.

Lemma 6.1.10. [LL23b, Lemma 3.8] Let n: A* — A* be a substitution, k > 1 be an integer and
ce A If vg_qug—2---vy € L(Ayc), then there exists a c-admissible sequence (m;,a;)i=o,... k—1
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such that, for everyi € [0,k — 1], we have
‘m7,| = ;.

We can construct an admissible sequence from a prefix of the image of a letter under the
p-th power of a substitution. Consequently, that allows us to define a map which we call the tail
map.

Lemma 6.1.11. [LL23b, Lemma 3.9] Let n: A* — A* be a substitution and p > 1 be an integer.
If m € A* and ¢ € A are such that m is a proper prefix of nP(c), then there exists a unique
c-admissible sequence (mj, a;)i=o,...p—1 such that

[m| = S8 I (my)]. (6.1)
Moreover, m = nP~t(mp,_1)nP~2(mp_2) - - - n°(mo).

Definition 6.1.12 (tail map). Letn : A* — A* be a substitution and D = {0, ..., max.c4 |n(c)| — 1}.
Let p > 1 be an integer. We define a map

tailype: [0, (0] —1] — D
n = mp_1] - Imp—a| - ... |mo],

where (m;, ai)izo,m,p_l is the unique c-admissible sequence satisfying Equation (6.1]) with m being
the prefix of n?(c) of length n.

Example 6.1.13 (Continuation of Example . We return to Figure where we illustrate
the successive images of ¢ under the Tribonacci substitution ©. The path from the top of the
tree to a node of length p reaching a position n € N is labeled by tailg p o(n). Their values are
shown in the following table.

n | tailg 1 q(n) | taile 24(n) | taile 3,4(n)
0 0 00 000
1 1 01 001
2 10 010
3 11 011
4 100
9 101
6 110

We observe that considering that the alphabet {0, 1} is totally ordered by 0 < 1, we have that
tailg 3 4(0) = 000 is lexicographically smaller than tailg 3 ,(1) = 001.

An important property of the tail map is related to the lexicographical order as we observed
in Example [6.1.13

Lemma 6.1.14. [LL23b, Lemma 3.12] Let n : A* — A* be a substitution and p > 1 be an
integer. Let c € A. Let n,n’ € [0, |n"(c)| — 1]. Then

(i) n=n'if and only if taily , .(n) = tail, ,.(n),

(it) n < n' if and only if taily p o(n) <jey tail, pc(n').
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In the next lemma, we describe the relationship between the tail map and the automaton
associated with a substitution.

Lemma 6.1.15. [LL23b, Lemma 3.11] Let n : A* — A* be a substitution and p > 1 be an
integer. Let c € A. Then, for every ¢ € [0, |nP(c)| — 1], we have

1 ()[l] = Ap.e(tailype(£))-

We clarify that a Dumont—Thomas numeration system for N is an abstract numeration sys-
tem. An abstract numeration system is defined as a triple S = (L, A, <) where L is an infinite
regular language over a totally ordered alphabet (A, <). The map repg : N — L is the bijection
mapping n € N to the nth word in radix order in L. Therefore, for every m,n € N, it holds that
m < n if and only if repg(m) <;aq repg(n) [BR10].

Lemma 6.1.16. Let n : A* — A* be a substitution with a growing letter a € A. Let D =
{0, ...,maxceca [n(c)| = 1}. Let L = L(A;q) \OD*. Then S = (L, D, <) is an abstract numeration
system and rep,, , = repg.

Proof. Let n: A* — A* be a substitution and a € A. Setting L = L( A, ) \ 04*, we have that L
is an infinite regular language. Therefore (L, D, <) is an abstract numeration system. We prove
that rep, , : N — L is an increasing bijection with respect to the radix order.

Let n,n’ € N be such that n < n/. Applying Theorem on n (resp., n’) we ob-
tain a unique integer k (resp., k) and a unique a-admissible sequence (m;, a;)i—o,.. k-1 (resp.,
(m}, a})i=o,. k—1). From Lemma we deduce that

tail, ko(n) = |me—1] - |mr—2| - ... - [mol,

taﬂn,k’,a(n,) = |mp |- |mp o ... Imgl,

and k < K. If k < K/, then |tail, ; o(n)| < [tail, 1 o(n')|, and thus |rep, ,(n)| < |rep, ,(n')|. If
k = k', then from Lemma tail, (1) <ier taily g q(n’) and thus rep, ,(n) <jer rep, ,(n').
In both cases, rep,, ,(n) <rad rep, ,(n’). Consequently, rep, , is increasing with respect to the
radix order and thus it is injective.

It remains to prove that rep, , is surjective. Let v € L(A;4) \ 0D* be of length k € N.
Applying Lemma on v, we obtain an a-admissible sequence (m;,a;)i=o_. x—1 such that
m; = v;, for every i € [0,k —1]. Set n = Z?;& |7 (m;)|. Using Lemma [6.1.11} we have that
gty - U1 = NP N (mp—1)n* 2 (mg_2) - - -n°(mg). Moreover, vp_; # 0 and thus my_; # €.

From Theorem rep, ,(n) = v. O

As a consequence, we recover |BR10, Proposition 3.4.12], which we reformulate in the fol-
lowing corollary: the automaton A, , associated with a substitution 7 and a growing letter a
produces the right-infinite fixed point limy_, o 7*(a) if it is fed gradually with representations
of n € N in the Dumont—Thomas numeration system for N. For more details, see the proof of
[BR10| Proposition 3.4.12].

Corollary 6.1.17. Let n: A* — A* be a substitution and u = n(u) be a right-infinite fixed point
of m with a growing letter ug = a. Then, for every n € N,

Uy, = .Ama(repn,a (n)).
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6.2 Dumont—Thomas numeration systems for Z

In [LL23b], we extended the idea of Dumont—Thomas numeration systems to Z. The following
two theorems generalize Theorem [6.1.3] for the right-infinite and left-infinite periodic points of
substitutions with a growing letter.

Theorem 6.2.1. [LL23b| Let n : A* — A* be a substitution with a growing letter a € A. Let
u € Pery(n) such that ug = a. Let p > 1 be a period of u. For every integer n > 1, there exists
a unique integer k = k(n) such that p divides k and a unique sequence (m;, a;)i=o,.. k—1 such that

(i) this sequence is a-admissible and myg_1mp_g - - - Mp_p # €,

k72(

(i) wouy - un—1 = 0" (mp_1)n* "2 (mp—2) - - - n°(my).

Theorem 6.2.2. [LL23b| Let n : A* — A* be a substitution with a growing letter b € A. Let
u € Perg_,(n) such that u_y =b. Let p > 1 be a period of u. For every integer n < —2, there
exists a unique integer k = k(n) such that p divides k and a unique sequence (m;, a;)i=o,.. k—1
such that

(i) this sequence is b-admissible and

P (- )P (mk—2) - 0° (Mi—p)ak—p # nP(b), (6.2)

k—l( k—z(

(1) U_ iy - Un—2Un—1 = 10" (mp_1)n* "2 (mg_2) - - 1" (mo).

With the help of Theorem and Theorem [6.2.2] it is possible to define Dumont—Thomas
numeration systems for Z. Similarly to the Dumont—Thomas numeration systems for N, these
numeration systems may not be positional.

Definition 6.2.3 (Dumont-Thomas numeration systems for Z). Let n: A* — A* be a substitu-
tion and u € Per(n) be a two-sided periodic point with a growing seed u_q|ug. Let p > 1 be the
period of u. Let D = {0, ...,max.ca [n(c)| — 1}. We define

rep,: Z — {0,1}D*

O-]mk,1]~\mk,2\-...-]mol, z'fnZl;
0 ifn=0;
e ifn =0
1, ifn=-—1;
1 mg_1| - |mg—o| - ... |mo|, ifn <=2,

where k = k(n) > 0 is the unique integer and (m;, a;)i=o,... k—1 @S the unique sequence obtained

from Theorem (Theorem applied on the right-infinite periodic point u|y (on the
left-infinite periodic point u|z_,) if n > 1 (if n < =2, respectively) both with period p.

Note that the period p € N of u divides |rep,(n)| — 1 for every n € Z. Also, we observe that

0-taily g uo(n),  ifn>0;
1-taily po  (n), ifn<O.

repy(n) = {

We illustrate the Dumont—Thomas numeration systems for Z based on the Fibonacci and
Tribonacci substitution, which are the common thread of this text. We denote f’ the two-sided
periodic point of the Fibonacci substitution with the growing seed bla and we denote t’ the
two-sided periodic point of the Tribonacci substitution with the growing seed c|a.
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Figure 6.5: Illustration of representations of small integers in the Dumont—Thomas numeration system
associated with the two-sided periodic point of the Fibonacci substitution ¢ and the growing seed b|a.

Example 6.2.4. Let ¢ : a — ab, b — a be the Fibonacci substitution and let

fl=... abaablabaababaab - - -

be the two-sided periodic point of ¢ with the growing seed bla. The representations of small
integers based on f’ are in Table In Figure a representation repg (n) of n € Z labels the
shortest path from the root of the tree to a node at position n € Z such that |repg (n)| mod 2 = 1.

n repgs (n) n | repe (n) n | repg (n)
—10 1000100 0 0 10 0010010
-9 1000101 1 001 11 0010100
—8 1001000 2 010 12 0010101
-7 1001001 3 00100 13 0100000
—6 1001010 4 00101 14 0100001
-5 10000 5 01000 15 0100010
—4 10001 6 01001 16 0100100
-3 10010 7 01010 17 0100101
—2 100 8 0010000 18 0101000
—1 1 9 0010001 19 0101001

Table 6.1: The Dumont—Thomas numeration system for Z based on the two-sided point f’ of the Fibonacci
substitution ¢ with the growing seed b|a.

Example 6.2.5. The successive images of the growing seed c|a under the Tribonacci substitution
© :awr ab, b — ac, ¢c — a are illustrated in Figure . We denote t' = - - - abac|abacaba - - -
the two-sided periodic point of © of period 3 with the growing seed c|a. The representations of
small integers based on the periodic point t’ are in the following table.

n_ ||4[-3]-2|-1j0)1]2]|38|4]5]F6
repy (1) H 1000‘1001‘1010‘ 1 ‘o‘0001‘0010‘0011‘0100‘0101‘0110

In Figure a representation repy (n) of n € Z labels the shortest path from the root of the
tree to a node at z-position n € Z such that |repy (n)| mod 3 = 1.
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Figure 6.6: Illustration of representations of small integers in the Dumont—Thomas numeration system
associated with the two-sided periodic point of the Tribonacci substitution © and the growing seed c|a.

Definition 6.2.6 (quotient, remainder). Let n: A* — A* be a substitution and u € Per(n) be
a two-sided periodic point with a growing seed s = u_ijlug. Let p > 1 be the period of u. Let
n € Z\ {—1,0} be an integer and k = k(n) be the unique integer and (mj, a;)i=o,.. k-1 be the
unique sequence obtained from Theorem (Theorem applied on u|y (u|z_,) if n > 1
(if n < =2, respectively) both with period p. We define the u-quotient of n as

_ [P~ (mp_ ) P72 (my_a) - - 'Wo(mp)\7 ifn =1
q =
P (g ) P2 (mge—a) -0 ()| = [P (usn)l, i n < -2

and the u-remainder of n as r = [P~ (my_1)nP"2(mp—2) - - - n°(my)].

The u-quotient ¢ and the u-remainder r of an integer n € Z\ {—1, 0} fulfill the condition that
if n >1then 0 < g < nand if n < —2 then —1 > ¢ > n. Consequently, |¢| < |n|. The choice
of the names stems from the fact that if n is K-uniform, then the u-quotient and u-remainder
of n correspond to the quotient and remainder of the division of n by KP. The u-quotient and
u-remainder have the following particular role in the description of the substitutive structure of
a two-sided periodic point u.

Lemma 6.2.7. [LL23b] Let n : A* — A* be a substitution and u € Per(n) be a two-sided periodic
point with a growing seed. Let p > 1 be the period of u. Let n € Z \ {—1,0} be an integer. If
q € Z is the u-quotient and r € N is the u-remainder of n, then

up = 1P (ug)[r] and  repy(n) = repy(q) - taily pu, (7).

Remark 6.2.8. Let us note that Theorem and Theorem[6.2.3 apply for every period p > 1
of the corresponding periodic point and not just the smallest one. Therefore we could define
the Dumont—Thomas representations for Z using any period p > 1 of the corresponding periodic
point. See Table[6.9 where we illustrate this in the case of the Fibonacci substitution and a period
p=4.
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n repgr 4(n) n repgr 4(n) n repgs 4(n)
—10 101000100 0 0 10 000010010
-9 101000101 1 00001 11 000010100
-8 101001000 2 00010 12 000010101
-7 101001001 3 00100 13 000100000
—6 101001010 4 00101 14 000100001
—5 10000 5 01000 15 000100010
—4 10001 6 01001 16 000100100
-3 10010 7 01010 17 000100101
-2 10100 8 000010000 18 000101000
—1 1 9 000010001 19 000101001

Table 6.2: The representations reps, 4(n) based on Theorem (resp., Theorem|6.2.2) with the Fibonacci
substitution ¢, the growing letter a (resp., b) and a period p = 4.

6.3 Periodic points as automatic sequences

We recalled in Corollary that the automaton A, , associated with a substitution n and
a letter a enables us to describe the right-infinite fixed point limg_, 1 7*(a) with the growing
letter up = a. In this section, we extend the automaton A, , so that it describes a two-sided
periodic point of n. Let n : A* — A* be a substitution and u € Per(n) be a two-sided periodic
point with a growing seed s = u_1|ug. Let D = {0,...,maxcca |n(c)| —1}. We associate an
automaton A, , with the pair (1, s) by adding a new initial state start and two additional edges

start > ug and start EN u_1 to the automaton A, ,,; compare Figure and Figure

~[start] ~[start] _[svart]
0 1 0 1 : 7 1 1 .
RO SO = OSOMG
0 0
0

Figure 6.7: The automata A, s, A, s, Ae,s associated with the 2-uniform substitution w : ¢ — aa and
the seed s = ala, the Fibonacci substitution ¢: a — ab, b — a and the seed s = b|a, and the Tribonacci
substitution © : a — ab, b — ac, ¢ — a and the seed s = cla.

Denoting the seed s = bla for some letters a,b € A, the automaton A, ; is related to the
usual automata A, , and A, ; by the following equalities, for every w € D*:

Ap.s(0w) = Ay o(w) and Ap.s(lw) = Ay p(w). (6.3)
Also, if A, s(w) = a for a nonempty word w € DT, then we have, for every v € D*,
Ap.a(v) = Ay s(wo). (6.4)

As a consequence, we observe that £(A, ;) = 0L(Ay ) UL1L(A,p). The automaton A, ; together
with the Dumont—-Thomas numeration system rep,, enables us to describe the periodic point u
in the following way.

Theorem 6.3.1. [LL23b] Let n : A* — A* be a substitution and u € Per(n) be a two-sided
periodic point with a growing seed s = u_1|ug. Then, for every n € Z, we have

Un = Ay s(repy(n))-
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We denote W2. and W“

ot W ax the following minimal and maximal element under the tail map:

Winin = taily pug (0) = 0F, Wiy = taily pou, (197 (u—1)| = 1), (6.5)

u

and we observe that the words Wy,;, and W4, play the following neutral role.

Lemma 6.3.2. [LL23b| Let n : A* — A* be a substitution and u € Per(n) be a two-sided periodic
point with a growing seed s = u_1|ug. Let w € L(A; ). Then

AU:S(O(w%in)*U)a /wa = OU;
Ap,s(L(Wiay) ), if w = 1v.

Aps(w) = {

The words WY,;, and W4 ..., which we call the neutral words, enable us to make a link between the
complement numeration systems and the Dumont—Thomas numeration systems in Section [6.5

and to extend the Dumont—Thomas numeration systems to higher dimensions in Section [6.6]

Remark 6.3.3. Let n be a substitution and let u € Per(n) with a growing seed s = u_1|ug and

the period p > 1. We observe that, by Lemma Wiin € L(Ayu) and Wi, € L(Ayu_,)-
Moreover, combining Lemma |6.1.14] and Equation (6.5)), the word W2, (resp., Wi, ) can be

min

obtained as the label of the path of length p in the automaton A, s starting at the state ug (resp.,
u_1) following the edges with minimal (resp., maximal) lexicographical value.

6.4 Properties with respect to the total order <

Dumont—Thomas numeration systems have interesting properties with respect to order. We ob-
served that the Dumont—Thomas numeration systems for N belong to the class of abstract numer-
ation systems [BR10, §3], which are increasing with respect to the radix order; see Lemma
In this context, it is not surprising that the Dumont—Thomas numeration systems for Z are in-
creasing with respect to the total order <, which extends the radix order; see Definition [3.4.1

Proposition 6.4.1. [LL23b| Let n : A* — A* be a substitution and u € Per(n) be a two-sided
periodic point with a growing seed s. Let p > 1 be the period of u. The map rep,, : Z — repy(Z)
is an increasing bijection with respect to the order <.

It follows from Theorem that the representations rep,, associated with a substitution
n: A* — A* and a two-sided periodic point u € Per(n) with a growing seed s = u_j|ug form
a subset of the language £(A, ). In the following lemma, this subset is specified.

Lemma 6.4.2. [LL23b| Let n : A* — A* be a substitution and u € Per(n) be a two-sided periodic
point with a growing seed s = u_1|ug. Let p > 1 be the period of u. Then

repu(Z) = U £€P+1(A7778) \ {Ow&im 1w;ax}p*‘
LeN

Consequently, we show that a Dumont—Thomas numeration system based on every 2-uniform
substitution, which has a two-sided fixed point, is the two’s complement numeration system.

Example 6.4.3. Let ¢ : A — A* be a 2-uniform substitution and let u € Per(¢)) be a two-sided
periodic point with the period 1. By Corollary the map repy, : Z — X7\ (00X* U 11%*) is
the unique increasing bijection with respect to the order < such that 0 — 0. By Proposition|6.4.1
the map rep,, : Z — rep,(Z) is an increasing bijection with respect to the order <. From
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Remark we have W, = 0 and Wi, = 1. Also, rep,(0) = 0 by definition. Finally, we use
Lemma [6.4.2] to obtain

repy(Z) = |J Les(Ap,s) \ {00, 1050} {0, 1}
leN
= Ezl(‘Aw,S) \ {Ow;inﬂ 1wgax}{o7 1}*
=¥\ (00Z* U 11%%).

As there is a unique increasing bijection Z — X1\ (003* U 11X*) such that 0 + 0, we conclude
rep, = repo.

In [LL23b], we showed that the Fibonacci complement numeration system coincides with
a Dumont—Thomas numeration system associated with the Fibonacci substitution. We prove
this in a broader framework in the next section.

6.5 Positional Dumont—Thomas numeration systems for Z

We observed that the Dumont—Thomas numeration systems for Z associated with 2-uniform sub-
stitutions are positional numeration systems. We provide a sufficient condition for the Dumont—
Thomas numeration systems for Z to be positional — it suffices to consider Dumont—Thomas
numeration systems associated with canonical substitutions of simple Parry numbers.

Let 8 > 1 be a simple Parry number with the greedy expansion of unity dg(1) =t; - - -t,, and
the quasi-greedy expansion of unity d3(1) = (tit2 - - - tm—1(tm — 1))*. The canonical substitution
ng over the alphabet {1,...,(m — 1), m} is defined by [Fab95]

ng: 1 o 11

2 o 12713

(m—1) — 1tm-171y

m o 1t

We recall the notation concerning the numeration systems Ug associated with simple Parry
numbers 3, which were presented in Section such as the language repB(N), the canonical
alphabet X3 and the representation map repg. The automaton Hg,, is the trim minimal au-
tomaton accepting 0" repz(N). Let x € [1,m]. Recall from Section (3.3 that we denote Hp 4, the
automaton which arises from Hg 4, by changing its initial state to the state ¢, and we denote
Hp,y the automaton which arises from the automaton Hg 4, by creating a new initial state start
and adding two additional edges start RN q1 and start EN qy; see Figure and Figure
We state a simple observation, which makes a link between the automaton Hg, associated
with a simple Parry number 8 and x and the automaton A, s associated with the canonical
substitution 7z and the growing seed s = x|1.

Lemma 6.5.1. Let 3 > 1 be a simple Parry number such that dj(1) = (t1 - ty—1(tm — 1))*.
Let ng = {1,2,...,m)}* — {1,2,...,m}* be the canonical substitution associated with . Let
x € [1,m]. Let u € Per(ng) be a two-sided periodic point with the growing seed s = x|1. Then
the automaton Hg , and the automaton Anﬁ,s coincide.
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Proof. 1t follows from Equation that Hp 4, = Ay, 1; see Remark @ As the procedure of
modifying the automaton Hg 4, into the automaton Hg , is the same as modifying the automaton
Aus uo into the automaton A, s, where the growing seed is s = x|1, we have that the automaton
Hg, and the automaton Ane, s coincide. O

We show that Dumont-Thomas numeration systems based on canonical substitutions asso-
ciated with simple Parry numbers coincide with the complement numeration systems associated
with simple Parry numbers. In particular, we have that the complement numeration systems
associated with simple Parry numbers are Dumont—Thomas. On the other hand, the Dumont—
Thomas numeration systems based on simple Parry canonical substitutions are positional.

Proposition 6.5.2. Let 3 > 1 be a simple Parry number such that dj(1) = (t1 -+ tm—1(tm—1))~.
Let ng : {1,2,...,m}* = {1,2,...,m}* be the canonical substitution associated with 3. Let
X € [1,m]. Let u € Per(ng) be a two-sided periodic point with the growing seed s = x|1. Then

rep, =repg, -

Proof. Let 8 > 1 be a simple Parry number such that d/’g(l) = (t1- tm—1(tm — 1))¥ and let ng
be the canonical substitution associated with 5. Denote ¥ = Y3 the canonical alphabet. Let
X € [1,m] and let u € Per(ng) be a two-sided periodic point with the growing seed s = x|1.
Denote D = {0, ..., max.ca |ng(c)| — 1}. From Lemma we observe that

i) the period of u is equal to m because of the cycle of maximal edges in the automaton Hg ,,
ii) the alphabets ¥ and D coincide, that is ¥ = D, and,
iii) using Remark we have WX. =Wl and WX, =W . .

min min
By Proposition the map rep,, : Z — rep,(Z) is an increasing bijection with respect to the
order <. Also, rep,(0) = 0 by definition. Finally, we use Lemma and the observations ii)
and iii) to obtain
repy(Z) = | Lmer1(Ays,s) \ {0W5in, 1030} D
{eN
= L(Apg,s) NE(E") \ {0Wipin, 10y } X7
= L(Hp) NZ(E™)\ {0y, 100}

By Proposition the map repg , : Z — L(Hp ) NE(E™)*\ (WY, X*U1WY,, X*) is the unique

min
increasing bijection with respect to the order < such that 0 — 0. We conclude rep,, = repg, .. [l
Example 6.5.3. Let 8 = 2. Then dg(1) = 2 and dj(1) = 1*. The canonical substitution is thus

ng : 1 — 11, which is 2-uniform. Let u € Per(7g) be a two-sided periodic point with the period 1
and the growing seed 1|/1. We observed in Example that rep, = repy,.

Example 6.5.4. Let 8 = 7 be the golden mean. Then dg(1) = 11 and dj(1) = (10)“. The
canonical substitution is thus 7z : 1 — 12, 2 +— 1, which is the Fibonacci substitution ¢ : a — ab,
b — a. Let f € Per(p) be a two-sided periodic point with the period 2 and the growing seed
s = bla. Thus x = 2. Observe that the automata H., in Figure and A, in Figure
coincide. Also, the representations in the Dumont—Thomas numeration system for Z in Table
coincide with the representations in the Fibonacci complement numeration system in Table [3.2]

If a Dumont—Thomas numeration system for Z is positional, we can represent an integer
n € Z without the knowledge of the other representations in the numeration system.
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Example 6.5.5. Let v be the dominant root of the polynomial 23 — 22—z —1. Then d,(1) = 111
and d(1) = (110)“. The canonical substitution is 7, : 1 + 12, 2 = 13, 3 + 1, which is the
Tribonacci substitution © : a + ab, b — ac, ¢ — a. Let t' € Per(0©) be a two-sided periodic
point with the period 3 and the growing seed s = c|a. Thus xy = 3.

We construct the value map val, , defined by Equation . The sequence U = (Un);ti%
defined by Equation (3.10) satisfies the property that Uy = 1, Uy = 2, Us = 4 and U, =
Ef’zl U,—;, for every n > 3. From Figure we have that

Vax = #Ln(Aec) = #Ln-1(A0,0) = Up-1.

“+o00

We show the first values of the sequences (U,);r29 and (V3 )79 in the following table.

Vo | Vo | Vo | ~Vox | Uo | Us | Us | Us | Us | Us | Us | Uz | Us | U |
—149 [ —24 | —4 | -1 [ 1|2 |4 |7 [13]24[44[81[149]274|

Thus for every w = wg_1 - - - wp € {0,1}{0, 1,2}3, for some integer £ > 1, we have

k-2 k—2
valy  (w) = Z Ui — wp—1Vi—1x = Z Ui — wi_1Ug_s.
1=0 i=0
We represent n = —53 in the Dumont—Thomas numeration system associated with the two-sided

periodc point t’. We have

—53 = —149 + 96
= 149 +81+15
= 149+ 81 + 13 +2
= —Vy + OUg 4 1U7 + OUg + OUs + 1Uy4 + 0U3 4 0Us + 1U; + 0Uy

and therefore repy (—53) = 1010010010.

Example 6.5.6. Let 3 = 1 + /2 be the silver mean. Then dg(1) = 21 and d5(1) = (20)¥. The
canonical substitution is thus ng : 1 ~ 112, 2 — 1, which we rename to a — aab, b — a. Let
u € Per(ng) be a two-sided periodic point with the period 2 and the growing seed s = bla. The
representations in the corresponding Dumont—Thomas numeration system for Z are in Table

Another substitution related to the silver mean is the substitution p : a — abb, b — ab.
This is due to the fact that the silver mean is the Perron—Frobenius eigenvalue of the incidence
matrix of p. Let v € Per(p) be a two-sided periodic point with the period 1 and the growing
seed s = bla. We show the representations in the corresponding Dumont—Thomas numeration
system for Z in Table We observe that, unlike the Dumont-Thomas numeration system
based on the canonical substitution of the silver mean, this numeration system is not positional.
Indeed, we assume by contradiction that there exists a value map such that val(rep,(n)) = n.
As rep,(3) = 010, we have that Uy = 1 and U; = 3. Then val(rep,,(5)) = val(020) = 6 # 5.

We observed that a Dumont—Thomas numeration system for Z is positional provided a certain
sufficient condition. Moreover, in Example we showed two substitutions closely related to
the silver mean such that the numeration system associated with one of them is positional and
the numeration system associated with the other is not. Further research is needed to answer
the following open question.

Question 6.5.7. What is the necessary condition for a Dumont—Thomas numeration system
for Z to be positional?
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n | repy(n) | | n | repy(n) n | repy(m) | | n | repy(n)
-8 10102 0 0 -8 1020 0 0
-7 10110 1 001 -7 1021 1 01
-6 10111 2 002 -6 1022 2 02
-5 10112 3 010 -5 100 3 010
-4 10120 4 011 -4 101 4 011
-3 100 5 012 -3 102 5 020
-2 101 6 020 -2 10 6 021
-1 1 7 0100 -1 1 7 0100

Table 6.3: Dumont—Thomas numeration systems for Z related to the silver mean 1 + \/5, where u is the
two-sided periodic point of the canonical substitution a — aab, b — a with the growing seed bla and v is
the two-sided periodic point of the substitution p : a — abb, b — ab with the growing seed b|a.

6.6 Dumont—Thomas numeration systems for Z?

Dumont—Thomas numeration systems can be extended naturally to higher dimensions. Let
n: A* — A* be a substitution and u € Per(n) be a two-sided periodic point with a growing seed
s = u_1|ug. We use the neutral words Wp;, and Wi, to pad representations to a certain length;

see Equation (6.5)). Let A, ; be the automaton associated with n and s. Let w € Ly,11(A,. ) for
some ¢ € N. Let ¢ € N such that ¢t > |w| and ¢ mod p = 1. We define

o(W2. Y™y, if w = Ov;
pady () = | )" 00w 700
1(We, )M, if w=1v,

where m = (t — |w|)/p. The pad map allows to represent coordinates in Z¢, for every d > 1.

Definition 6.6.1 (Numeration system for Z%). Letn : A* — A* be a substitution and u € Per(n)

with a growing seed. Let D = {0, ...,maxcc |n(c)| — 1}. For every n = (ny,na,...,nq) € Z%, we
define
pad,(repy(n1))
pad,(repy(n2))
repy(m) = | T | e {00
pad, (repy (nq))

where t = max{|rep,(n;)|: 1 <7 < d}.

In the following example, we illustrate the procedure to obtain a Dumont—Thomas represen-
tation of a position in Z? based on a particular periodic point.

Example 6.6.2. Let n: a — abe, b — a, ¢ — ca be a substitution and denote u = Per(n) with
the growing seed s = c|a. The corresponding automaton A, s and the representations rep,(n),

for n € [-7,6], are in Figure[6.8] Thus we have that W%;, = 00 and W2, = 12; see Remark
We show how to represent a position (6, —5) € Z2. We have that

rep,(6) = 00100 and rep,(—5) = 100.

As the word rep,(—5) is shorter in length than the word rep,(6), we pad the representation
rep, (—5) with the word W.. = 12 so that they have the same length. Hence, we obtain

max
00100 00100
rep, ((6,—5)) = ( 100 ) - < 11200 )
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n | rep,(n) n_| repy(n)
6 00100 1 1
0 1 5 021 -2 111
' 1
0 C@ ) }@D 0 4 020 -3 110
S 3 010 4 101
0 Y 2 002 5 100
@ 1 001 -6 11102
0 0 7 11101

Figure 6.8: The automaton A, , associated with the substitution n : a — abc, b — a, ¢ — ca and the
growing seed s = c|a and the corresponding Dumont—Thomas numeration system.

It is readily possible to generalize Definition [6.6.1|so that a different periodic point is used in
each coordinate, provided that all such periodic points have the same period. With Definition
extended to any period p > 1 of a periodic point (see Remark , Definition could
be generalized even further, using a different periodic point and a different pad map in each
coordinate. Our intuition is that the Dumont-Thomas numeration systems for Z¢ using such
a generalized definition of the representation map could describe all d-dimensional configurations
which are periodic points of d-dimensional substitutions as automatic sequences. For now, we
leave this as an open question.

Question 6.6.3. Is it possible to generalize Theorem to Z2, ford > 17

6.6.1 Fibonacci complement numeration system for 72

The Fibonacci complement numeration system is a Dumont—Thomas numeration system for Z;
see Example Thus we can extend it to Z2. In Figure we show all representations of the
positions n € [-5,7] x [5, 7] in the Fibonacci complement numeration system for Z2. We omit
the brackets around representations due to the lack of space. The properties of the Fibonacci
complement numeration system extended to Z? allow us to find an automatic characterization
of a Wang configuration in Chapter [7]
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Figure 6.9: The Fibonacci complement numeration system Fc extended to Z2.
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Chapter 7

Automatic characterization of an
aperiodic Wang shift

In this chapter, we present our results concerning a particular Wang shift Qz |[LL21]. More
precisely, we characterize it as a 2-dimensional automatic sequence with the help of the Fibonacci
complement numeration system Fc extended to Z2. As a new result not provided in [LL21], we
show that )z is topologically conjugate to another Wang shift %, described by Labbé [Lab20],
which is minimal, aperiodic and self-similar. As the Wang shift 3, is related to the 11 tile Wang
shift discovered by Jeandel and Rao, this creates a link between the Jeandel-Rao Wang shift
and Qz.

7.1 Introduction to Wang tiles and Wang shifts

First, we summarize basic notions about Wang tiles. A Wang tile is a 4-tuple (A, B,C, D) € C*
of letters in an alphabet C [Wan61]. Geometrically speaking, a Wang tile (A, B, C, D) represents
the labeling of edges of a unit square, where A is the east edge label, B is the north edge label, C
is the west edge label and D is the south edge label, by convention. We show the tile (A, B, C, D)
with an index 0 in Figure [7.I] When clear from context, we refer to tiles as to their indices.

B
COA
D

Figure 7.1: A Wang tile (A4, B,C, D) with an index 0.

Given a finite set of Wang tiles, we assume that we have infinitely many copies of them,
which we can translate but not rotate. We refer to an ordered pair of Wang tiles arranged side
by side horizontally (resp., vertically) as to a horizontal (resp., vertical) pattern. A horizontal
(or vertical) pattern consisting of two Wang tiles is called allowed provided that the labels of the
tiles on their common edge match. Otherwise a pattern is called forbidden; see Figure [7.2

O M M M
H1DD3D D2J|D3D
L K P K

Figure 7.2: An allowed horizontal pattern (1,3) and a forbidden horizontal pattern (2, 3).

The two main questions that we ask when studying a given set of Wang tiles 7 are:
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e Is it possible to tile the plane with 7, avoiding forbidden patterns?
e If so, is it possible in a periodic way?

To answer the first main question, we need the definition of Wang configurations. A Wang
configuration over a finite set of Wang tiles 7 = {to,t1,...,t;_1} is a map f : Z2 — T, which
assigns a Wang tile from 7 to every position in Z2. A Wang configuration is called walid if, for
every n € Z2, the east label of the tile f(n) equals the west label of the tile f(n + e;) and the
north label of the tile f(n) equals the south label of the tile f(n + e3), where e; = (1,0) and
es = (0,1) denote the canonical generators of Z2. In other words, a Wang configuration is valid
if all of its horizontal and vertical patterns are allowed. A Wang configuration f is called periodic
if there exists a vector m € Z? such that f(n+m) = f(n), for every n € Z?; see Example[7.1.1
Therefore, to answer the second main question, the set 7 tiles the plane in a periodic way if
there exists a periodic Wang configuration Z? — T .

Example 7.1.1. Let P = {po, p1, p2, p3} be the set of Wang tiles shown in Figure

B B D D
COA||A1C||IC2A||A3C
D D B B

Figure 7.3: A set of Wang tiles.
Let p: Z? — {0,1,2,3} be the Wang configuration such that

, if ny mod 2 = 0 and ns mod 2 = 0;
if n1 mod 2 =1 and no mod 2 = 0;

p(n) = .
if n1 mod 2 = 0 and ng mod 2 = 1;

0
1
2
3, if ny mod2 =1 and ny mod 2 = 1.

Then we have that p(n+(2,2)) = p(n), for every n € Z2, and p is a periodic Wang configuration.
We observe that p is formed by the 2 x 2 pattern shown in Figure translated infinitely many

times. As by placing the 2 x 2 pattern side by side does not create forbidden patterns, we have
that p is a valid Wang configuration.

D D D D D D
C2A|A3C|C2A|A3C|C2A|A3C

B B B B B B

B B B B B B
COA|A1IC|COA|AICI|ICOA|ALC

D D D D D D

D D D D D D D D
C2A|A3C C2A|A3C|C2A|A3C|C2A|A3C

B B B B B B B B

B B B B B B B B
CO0A|ALC COA|A1C|COA|ALICI|ICOA|ALC

D D D D D D D D

Figure 7.4: A 2 x 2 pattern created from the tiles P and a partial valid configuration p € Qp.

A Wang shift Q7 associated with the set of Wang tiles 7T is the set of all valid Wang configu-
rations. A Wang shift Q7 is called aperiodic if every configuration f € 27 satisfies the condition
that it is not periodic.
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Example 7.1.2. We consider a set containing a single Wang tile from Figure The horizontal
pattern (0,0) is forbidden. Hence, no valid Wang configuration exists and the corresponding
Wang shift is empty.

Example 7.1.3 (Continuation of Example[7.1.1)). We observe that the Wang shift {2p is nonempty

as it contains the valid Wang configuration p. Also, as the Wang shift Q0p contains a periodic
Wang configuration p, it is not aperiodic.

7.2 Preliminaries on two-dimensional languages and subshifts

We can approach Wang configurations as 2-dimensional words if we only consider the indices of
the Wang tiles. In this section, we provide preliminaries on two-dimensional words, languages
and subshifts which enables us to study the Wang shifts as symbolic dynamical systems. This
subject is broadly studied in the following book [Kur03].

Let A be an alphabet. A 2-dimensional word over A of shape n = (n1,n2) € N? is a map
w: 0,71 — 1] x [0,n2 — 1] — A. We represent it as a matrix with Cartesian coordinates:

Uong—1 -+ Uni—1no—1

U0 .- Un;—1,0

and we call n; the width of u and ngy the height of u. We denote width(u) = n; and height(u) = ns.
The set of all 2-dimensional words over A of shape n is denoted by A™ and the set J,cnz A"
of all 2-dimensional words over A is denoted by A*2. Let n = (n1,m2), m = (my1,my) € N
and let u € A", v € A™. If no = mo, the concatenation of v and v in direction e is defined as
a 2-dimensional word u ®! v of shape (n; + m1,ns) given as

Uo,ng—1 -+ Uny—1nao—1 VOno—1 --- Umy—1ns—1
uetv =
up,0 ... Uny—1,0 V0,0 oo Umy—1,0
If ny = mq, the concatenation of v and v in direction es is defined in an analogous way. A word
v e A*? is a subword of a word u € A*? if there exist words uq, us, us, ug € A*? such that

u=u3 ®? (u; O v O ug) % uy.

A subset L C A*? is called a 2-dimensional language. A language L C A*? is factorial if for
every u € L it holds that v € L for every subword v of w.

Example 7.2.1. The 2-dimensional words u; = (0), uz = (23), ug = (3), wa = (93), have

shape (1,1),(2,1),(1,2),(2,2), respectively. We observe that u;, us and ug are subwords of uy.
1 2 01 1 2

We can concatenate ug ©' u; = (230) and ug ©° ug = (% %), but u1 ®* uz and us ®“ ug are not

defined. The language L = {u; : i € [1,4]} is not factorial, whereas LU{e, (1), (2), (3),(9),(01)}

is factorial.

Let A% be the set of all maps Z? — A equipped with the compact product topology. A map
x : 72 — A is called a configuration. The compact product topology is compatible with the
metric dist : AZ° x AZ® — R defined for every x,y € A by
. o, if z =y;
dlSt(CU, y) - {Q—min{|n1|+|n2 : Z‘niyn}’ OtherWise.
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The space AZ? equipped with the metric dist is a compact metric space. Let (a:n):{i% c A% pe
a sequence of configurations and = € A% We say that (xn);ti% converges to x if for all ¢ > 0
there exists N € N such that, for all integers n > N, dist(z,, z) < €. We denote lim,,_, 4 T, = .

Let 2 € A% be a configuration and let n € Z2. The shift action is the map o : n — o™ of
the additive group Z2 on A% defined for every m € Z2 by the rule (6™(2))m = Zmin. For every

X C AZ2, the shift-closure of X is defined as
X7 :={o™(z) |z € X, ncZ?}.

A subset X C A% closed with respect to the compact product topology such that X = X° is
called a subshift. Consequently, X is a compact metric space equipped with the metric dist.

Let 2 € A% be a configuration. We call z periodic if there is a vector n € Z2\ {(0,0)} such
that © = o™ (). Otherwise we call it non-periodic. We denote L(x) the language containing all
subwords of . We observe that £(x) is factorial. If X C AZ s a subshift, we call the factorial
language £(X) = U,cx £(x) the language of X. Conversely, if L C A* is a factorial language,
we let Xy, = {x € A% | £(z) C L} denote the subshift generated by L.

Let X C AZ” and Y C BZ® be subshifts. A map 0 : X — Y is continuous if for all sequences
(z,),20 C X and all x € X, it holds that lim,,_, 4 0(7,) = 0(z) if and only if limy,— o0 T, = .
A homeomorphism is a map X — Y which fulfills the condition that

e 0:X —Y is a bijection,
e f:X — Y is continuous,
e the inverse map 67! : Y — X is continuous.

We say that X and Y are topologically conjugate if there exists a homeomorphism 6 : X — Y
such that § o o™ = o™ o 0, for every n € Z>. We refer to the last property as to the commuting
property of 6.

Let A and B be alphabets and let L C A be a factorial language. A 2-dimensional morphism
isamap ¢ : L — B* fulfilling the condition that for every i € {1,2} and every u,v € L such
that u ®’ v is defined and u ®° v € L, we have that the concatenation ¢(u) ®' ¢(v) in direction
e; is defined and

$(u @ v) = ¢(u) & ¢(v).

Thus, a 2-dimensional morphism ¢ is completely defined from images of the letters a € A and
it can be extended to a continuous map ¢ : X — BZ® in such a way that the origin of ¢(z)
is at zero position in the word ¢(x (o)), for all * € A, A 2-dimensional morphism ¢ is called
expansive if, for every letter a € A, the width and height of ¢*(a) goes to +o0o. The language Ly
of an expansive 2-dimensional morphism ¢ is the set

Ly={ue A* :u is a subword of ¢"(a) for some a € A and n € N}.

Let X C A% be a subshift. We say that X is

o minimal if for every subshift Y C X it holds that Y =0 or Y = X

(<

o self-similar if there exists an expansive morphism ¢ : Ly — A* such that X = o(X)

e aperiodic if every configuration x € X is non-periodic.
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7.3 Wang shifts related to the Jeandel-Rao Wang shift

In 2021, Jeandel and Rao constructed a set of 11 Wang tiles, which generates an aperiodic Wang
shift and they proved that this size of an aperiodic Wang set is minimal [JR21]. In other words,
every set of less than 11 Wang tiles admits a periodic configuration. Based on the set of 11 Wang
tiles described by Jeandel and Rao, a set of 19 Wang tiles & with some remarkable properties was
constructed [Lab21]; see Figure The Wang shift {3, was proved to be self-similar, minimal
and aperiodic [Labl9]. Moreover, it has three characterizations: as a self-similar subshift, as
a Wang shift and as the coding of a toral Z2-rotation [Lab20].

O O M M P P K K O L
JOF||H1F||[F2J||F3D||JA4H|H5H||F6H||D7H||I 8B||E9G
(0] L P K P N P P 0O 0

L L P P P P K K N
Cl0G|| I11A||G12E|| I13E||G141||I151 ||B161||A17I | 118C
L (0] P P K K M K P

Figure 7.5: The set U = {ug,...,u1s} of 19 Wang tiles.

Theorem 7.3.1. [Lab2l] The Wang shift y is minimal, aperiodic and self-similar. The 2-
dimensional morphism ¥ such that Qyy = \IJ(QU)U is defined by

W [0,18] — [0, 18]*

0 (17), 1 (16), 2+ (15, 11), 3+ (13, 9),
4 (17, 8), 5 (16, 8), 6+ (15,8), 7w (14, 8),
6 3 3 2
8r—>(14), 9#—)(17), 10}—>(16>, 11H<14>, (7.1)

71 6 1 71 61
12 (15 11)’ 13— (14 11)7 = (13 9)’ 15— (12 9)’
5 1 41 20
16 — (18 10)7 17— (13 9>, 18 (14 8)'
We introduce a set of Wang tiles Z, which is a simplification of the set U/ after the unification
of some labels; see Figure We prove that the Wang shift 2z has the same properties as 2.

0) (@) M M P P K 0
JOD||H1D||D2J||D3D||J4H|H5H|[D6H||I 7B
) L P K N P 0

L L L P K K N
EST|[CY9T|/T10A||I11E||T121 | B131||A141| I115C
0) L (0) P K M K P

Figure 7.6: The set Z = {29, ..., 215} of 16 Wang tiles.

Theorem 7.3.2. The Wang shift Qz is minimal, aperiodic and self-similar. The 2-dimensional
morphism ¢ such that Qz = (b(Qg)U is defined by

¢: [0,15] — [0, 15]**

0~ (14), 1+ (13), 2 (12,10), 3+ (11,8),

40 (14,7), 5-(13,7), 6~ (12,7), 7%(12), (7.2)
8»—)(12) 9»—>(1§), 10»—>(l§) 11»—>(121(1)>,
12%(1?é),13w(123> 14»—>(1[11é13>,15»—><1§7)



7.3.1 Proof of Theorem [7.3.2]

We approach the Wang shifts €, and Qz as subshifts; see Section[7.2] The subshifts ; and Qz
are equipped with the metric dist. A map 6 : 4y — €z is continuous if for all sequences
(2r),20 C U and all @ € Oy, it holds that lim, 40 0(x,) = 6(z) in Qz if and only if
lim, 4100 Ty = « in Qy. A homeomorphism is a map 6 : yy — Qz which fulfills the condi-
tion that @ is a continuous bijection, and the inverse map 6~ : Qz — 4y is continuous. We
show that {; and 2z are topologically conjugate by discovering a homeomorphism ;; — Qz
which has the commuting property. As 2z and ), are compact metric spaces, we will use the

following observation during the proof. It reformulates Theorem 4.17 from [Rud76].

Lemma 7.3.3. [Rud76| Suppose 0 is a continuous bijection of a compact metric space X onto
a metric space Y. Then the inverse map 0~' defined on' Y by 0~Y(0(x)) = =z, for x € X, is
a continuous map of Y onto X.

We have a simple observation concerning the language £(€2z) of the subshift (Z). If a hor-
izontal pattern is in the language £(€2z), then it is allowed. The reverse, however, is not true.
In the following lemma, we show some horizontal patterns, which are allowed, but which do not
occur in the language £(Qz).

Lemma 7.3.4. The horizontal patterns (zs,z2), (23,23), (z8,27), (28,210), (28,215), (29,27),
(29, 210), (29, 215), (212, 212) do not occur in L(Qz).

Proof. We show the statement case by case based on Figure

o (23,292): the north label of both tiles is M and the only tile with the south label M is z3.
The pattern (z13, z13) is forbidden, hence (z3,22) ¢ L(Qz).

o (23,23): the same argument as for the pattern (z3, 2z2).

o (zs,27): the south label of both tiles is O. The set of tiles having O as a north label is
{20, 21, 27}. For all i, j € {0,1,7}, the pattern (z;, z;) is forbidden. Hence (zg, z7) ¢ L(Qz).

o (z8,210): the same argument as for the pattern (zs, z7).

o (z8,215): the north labels of this pattern read LN. The set of tiles having L as a south
label is {z1, 29} and the only tile with the south label N is z5. The patterns (21, z5) and
(29, z5) are forbidden, Hence, (zs, z15) ¢ L(2z).

o (29, 215): the same argument as for the pattern (zg, z15).

o (29, 27): assume by contradiction that (z9,27) € £(Qz). The south labels of this pattern
read LO. The tiles having L as the north label are {zg, 29, 210} and the tiles having O as
the north label are {zg, 21, 27}. The only horizontal patterns from the set {zg, 29, 210} X
{20, 21, 27}, which are allowed, are (zg, z7) and (z9, 27). We showed in a previous part that
(z8,27) ¢ L(Qz). Thus (3 37) € L(Qz). The west label of zg is C' and the only tile
with east label C' is z15. Thus (212) € £(Qz). As the pattern (12) is forbidden, we have
a contradiction.

o (z9,210): an analogous argument as for the pattern (zg, z7).

88



o (212,212): the south labels of this pattern read K K. The set of tiles having K as a north
label is {zg, 213, z14}. For all 4,5 € {6,13,14}, the pattern (z;,z2;) is forbidden. Hence,
(Zlg, 2’12) ¢ ﬁ(QZ) O

Let myz : U — Z be a map, which assigns to a tile u € U such a tile z € Z that z is created
from w by unifying the labels F'— D and G +— I. We show the map my,z in Figure [7.7 and we
observe some of its properties in the following lemma.

0 0 P P L L P
JOF|—|J 0D H5H| — [H5H c10G| — |91 G141
0 0 N N L L K |~ P
1121
%) 0 K L L p |— LK
H1F| — |H1D F6H I11A| — [110A 1151
L L P |~ & 0 0 K
D6 H
—LP P K K
F2J|— D2J D7H GI12E B16I|— |B131
P P P P |~ M M
111E
M M o) 9) p |—LF K K
F3D| — [D3D ISB|— 178 113E AITI|—> |A141
K K 0 0 P K K
L L N
J4H|—> |J4H E9G| — [ES T 118C| — |115C
0 P P

Figure 7.7: The map myz : U — Z that maps a Wang tile u € U to a Wang tile z € Z so that the tile z
is created from u by replacing F' +— D and G — I. We draw the labels F, D, G, I in bold. The tiles u € U
are shown in gray color to avoid confusion with the tiles z € Z.

Lemma 7.3.5. Let z,Z € Z and u,v € U. The map myz : U — Z has the following properties.
i) The preimage m&}z(z) contains one or two elements. It contains two elements if and only

lf zZ € {2’6, 211, 212}.

i) If myz(u) = myz(v) and u # v, then {u,v} € {{us, ur}, {wiz2, vz}, {uia, w15}}, and u and
v differ exactly on their west label.

i) If (u,v) is allowed, then (myz(u), myz(v)) is allowed.
w) If z,% ¢ {z6, 211, 212} are such that (z,%) € L(Nz), then (my 5(2),my = (%)) is allowed.

v) If 2 € Z and # € {26, 212} are such that (z,%) € L(Qz), then my,;5(2) contains one element

and there exists a unique v € my, 5(2) such that (my5(2),v) is allowed.

vi) If z € Z\{z12} is such that (z,211) € L(Qz), then my, 5 (2) contains one element and there
exists a unique v € my, 5(211) such that (my;5(2),v) is allowed.

vii) If z € Z is such that (2,212, 211) € L(Qz), then my,5(2) contains one element and there
exists a unique pair u € my,5(212) and v € my 5 (211) such that (my;5(2),u,v) is allowed.

Proof. i): This observation is trivial from Figure
ii): From Figure the unordered pairs of tiles u,v € U such that u # v and myz(u) =
myz(v) are the following:
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K K P P P P
F6H||D7H GI12E| | I13E G141 |[I151
P P P P K K

We observe that they differ exactly on their west label.

iii): If (u,v) is an allowed horizontal pattern with respect to U, then the east label of u equals
to the west label of v. As myz is a map, we have that the east label of myz(u) equals to the
west label of my z(v). Thus the horizontal pattern (myz(u), myz(v)) is allowed.

iv): From part i), we have that m;,z(z) and my,%(2) contain one element. As (z,Z) is an
allowed horizontal pattern, we have that the east label of z equals to the west label of Z. Denote
this label R. If R ¢ {D,I}, then (my%(z),m;;5(%)) is allowed as the map myz acts as the
identity on R. Assume R € {D, I}.

« R = D: By inspection of the tiles Z in Figure[7.6] we have that (z, 2) € {20, 21, 23} x {22, 23}
(recall that we do not consider zg by assumption). By Lemma [7.3.4] (z,2) € {z0,21} X
{29, 23}. Then the east label of m;,%(2) equals to the west label of m,, % (%); see Figure [7.7

e R = I: By inspection of the tiles Z in Figure we have that (z, 2) € {zs, 29, 213, 214} X
{27, 210, 215} (recall that we do not consider z1; and z12 by assumption). By Lemma [7.3.4]

(z,2) € {z13, 214} X {27, 210, 215} Then the east label of m&lz(z) equals to the west label
of my,%(2); see Figure

v): We assume that z € Z and Z € {6,12} are such that (z, 2) € L(Qz).

o Assume Z = zg. From Figure we have m;, % (%) = {ug, u7} and we observe that the tile
ug has the west label F' and the tile u; has the west label D. As (z, Z) is allowed, we have
from Figure that z € {z0,21,23}. By Lemma i), my;z(2) contains one element.
If z € {z0,21}, then m&%(z) has the east label F' and we choose v = ug. If 2 = 23, then
my, % (2) has the east label D and we choose v = us.

e Assume Z = z19. From Figure we have m&%(%) = {u14,u15} and we observe that the
tile u14 has the west label G and the tile w15 has the west label I. From Figure @L we have
z € {zs, 29, 212, 713, 214} By Lemma the horizontal pattern (z12, z12) ¢ £(22z). Thus
z € {zs, 29, 213, 214} and by Lemma M;), m;, = (2) contains one element. If z = {23, 29},
then we have that m&}z(z) has the east label G and we choose v = uy4. If z = {213, 214},
then we have that m&%(z) has the east label I and we choose v = uys.

vi): We assume that z € Z\ {z12} is such that (z,z11) € £(2z). From Figure we have
m&%(zn) = {u12,u13}. By inspection of the tiles Z in Figure we have z € {zs, 29, 213, 214},
because z # z12 by assumption. By part i), m&é(z) contains one element. If z € {zg, 29}, then
we have that m&%(z) has the east label G and we choose v = ujg. If z € {213, 214}, then we have
that m&%(z) has the east label I and we choose v = wu13.

vii): We assume that z € Z is such that (z,z19,211) € L(Qz). From Figure we have
m&lz(zn) = {u12,u13}. By inspection of the tiles Z in Figure we have z € {zs, 29, 212, 213, 214}
and, using Lemma we have z € {zg, 29, 213, 214}. Consequently, m&}z(z) contains one ele-
ment. From Figure we observe that both elements in maé(zlg) = {u14,u15} have the same
east label I, whereas the tile ujs € my, 5 (211) has the west label G' and the tile w13 € my,%(211)
has the west label I. Therefore we have a unique choice v = wu;3 so that (u,v) is allowed, for
every u € my5(z12). If 2 € {28,29}, then we have that my,%(2) has the east label G and we
choose u = uj9. If z € {213, 214}, then we have that m&%(z) has the east label I and we choose
U = uis. ]
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We define a map, which maps a valid Wang configuration over U to a Wang configuration
over Z by merging labels F'— D and G — I:

Wy — 2%
y— x such that z, = myz(yn), for every n € Z2.
We observe in the following lemma that the resulting Wang configuration is valid.
Lemma 7.3.6. The map ¢ fulfills the condition that ¥ : Qyy — Qz.
Proof. Tt follows directly from Lemma iii). O

As a counterpart to the map v, we define a map p, which maps a valid Wang configuration
x € Qz to a Wang configuration over U in the following way:

p: QZ — Z/{ZQ
Mz (%), if 2, ¢ {6,11,12);
01 (zn— if x, € {6,12};
r+—y such that y, = l(x"’ e1s Tn); 1 Tn { ) }7
92(l’n_el,l‘n), if T, = 11 and Tn—e; ;ﬁ 12;

03(Tn—2e,s Tn—e;, Tn), if xn =11 and xp_e, = 12;

where 01 : Z x {6,11,12} — U maps (Tp—e,,Tn) to the unique tile v from Lemma v),
Oy : 2\ {12} x {11} — U maps (Tn_e,,Tn) to the unique tile v from Lemma vi), and
O3 : Z x {12} x {11} — U maps (Tn—2e,, Tn—e,, Tn) to the unique tile v from Lemma vii).

Remark 7.3.7. The map p fulfills the condition that, for every n € Z2, we have y,, € m&é(xn)
Lemma 7.3.8. The map p fulfills the condition that p : Qz — Q.

Proof. We prove that p(Q2z) C Oy, i.e., all Wang configurations in p(2z) are valid. Let x € )z
and let y = p(z). Let n € Z2. Then (y_o,,Tn) € L(2z). We prove that (yn_e,, yn) is allowed.

o If 2n_e,,%n & {26, 211, 212}, then (Yn—e,, yn) is allowed by Lemma [7.3.5]iv).

o If xp, € {26,212}, then (Yn—e,,yn) is allowed by Lemma V).

o If xp, = 211 and Tp_e, # 212, then (Yp—e,,yn) is allowed by Lemma vi).

o If z, = 211 and zp_e, = 212, then (Yn—e,, yn) is allowed by Lemma vii). O
Theorem 7.3.9. The Wang shifts Qz and y are topologically conjugate.

Proof. We show that 1 : 0y — €1z is continuous, injective and onto €2z, that ¥ commutes with
the shift action o and that there exists an inverse map ¥ ~!. This will finish the proof as Oy
and 2z are compact metric spaces and the inverse map of a continuous bijection between two
compact metric spaces is continuous; see Lemma [7.3.3]

We show that ¥ is onto 2z by showing that p is the right inverse of 1. Assume z € Qz.
From Lemma and Lemma we have ¢(p(x)) € Qz. For every tile z € Z, we have that
myz(v) = 2, for every v € my, (). Thus, by Remark we have ¢(p(x)) = .

We show that v is injective. Assume by contradiction that there exist y,y’ €  such that
y # v and ¥(y) = ¥(y'). Denote = = 1(y) and 2’ = ¢(y/). Let n € Z? such that y,, # y/,. Thus
Tn = ), and from the definition of the map 1, we have myz(yn) = muz(y,,). From Lemma[7.3.5]
ii), we have that {yn,yh} € {{ue,ur}, {u12, u1s}, {u14,u15}}. This implies one of the following
three cases, where we assume without loss of generality that the pair {yp,y,,} is ordered.
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o Yn = ug,y, = ur: From Figure we have yn_e; € {uo,u1} and y;, o, = u3. From Fig-
ure we have that myz(yn—e,) € {20, 21} and myz(yy,_o,) = 23. Thus myz(Yn—e,) #
myz(Yy_e,) and (y) # ¢(y’), which is a contradiction.

° Yn = ui2,y, = uiz: From Figure we have that yn e, € {ug,u10} and ¥, o €
{u14,u15,u16, u17}. From Figure we have myz(Yn—e,) € {28, 20} and myz(yy,_o,) €
{712, 213, 214} Thus myz(Yn—e;) # MuzYn_e,) and Y (y) # ¥ (y'), a contradiction.

o Yn = u14,Y,, = u1s: The east label of uja and ui4 coincide and the east label of u13 and
w15 coincide; see Figure [7.5] Therefore, the same argument applies as in the previous case.

We show that p is the inverse of 1. As the map 1) is injective and onto 2z, it has an inverse
map ! : Qz — Oy equal to its right inverse map, which is p. Thus ¢¥~! = p.

We show that ¢ commutes with o. Let € Qy and denote y = ¥(z) € Qz. Let n € Z2
Then, for every m € Z2, we have

(Y(0™(@)))m = muz((0™(x))m)
= myz(Tmin)
= Ym+n
= (0" (Y)m
= (0" (¢(2)))m-

Thus 1) o 6™ = o™ 0 1), for every n € Z2.
We show that 1 is continuous. If z, y € Qy, then

dist (), $(y)) < dist(z, ).

Thus if (2,)nen is a sequence of tilings z;, € O such that x = lim,_,o 2, exists, then ¢(x) =
lim,, o0 9¥(2,) and ¥ is continuous. d

From Theorem [7.3.1] and Theorem [7.3.9, we deduce the proof of Theorem [7.3.2}

Proof of Theorem[7.3.3. We prove that Qz is minimal, aperiodic and self-similar. We use the
following observations in the proof. We denote 6 : {; — Qz the homeomorphism derived in
Theorem and we denote 07! : Qz — (O its inverse map. Thus we have §(%,) = Qz and
6~1(Qz) = Oy, which implies the observations and The observation is the
commuting property of . From Theorem we have a 2-dimensional morphism ¥ such that
Qi = U(Qy)” and thus Q = {o™(¥(y)) : m € Z2,y € Uy }. This implies observation @

1) = € Qz if and only if 071 (z) € Q,

2) y € O if and only if there exists 2’ € Qz so that y = §71(2'),
3) for every v,y € Qu, y = if and only if 0(y) = 0(y/),

4) for every x,2' € Qz, x = 2’ if and only if 8~ (z) = 6= 1(2),
5) 6~ Loo™ = o™ o071, for every n € 72,

)

(
(
(
(
(
(

6) y € Q if and only if there exists y' € )y and n € Z? so that y = o™ (¥ (y/)).

92



(Minimality): Let Y C Qz be a subshift. Then ='(Y) C 071(Qz) = Q. As 6! is a con-
tinuous map, we have that §~1(Y) is a closed shift-invariant set — a subshift. By Theorem
) is minimal and thus it contains no nonempty proper subshift. Therefore §~1(Y) is either
empty or 0~H(Y) = Q. If071(Y) =0, then Y = . If = 1(Y) = Qy, then Y = Qz. Hence Qz
is minimal.

(Aperiodicity): Assume by contradiction that x € Qz is a periodic configuration, i.e., there
exists n € Z? such that x = o™ (z). Applying #~! and using and we have

67! (2) = 67 (0" (x)) = (67 (a)).

Together with we have that 0! (z) € () is a periodic configuration. This is a contradiction
as () is an aperiodic Wang shift; see Theorem [7.3.1]
(Self-similarity): We aim to prove that there exists a 2-dimensional morphism ¢ : Qz — Q2=

such that Qz = ¢(Qz) , where the shift-closure is defined as ¢(Qz)" = {o™(d(z')) : n € Z2,2’ €
Qz}. We obtain a series of equivalent propositions:

x ez 01 (x) € Qy

L there exist n € Z2 and y' € Oy such that 671 (x) = o™ (¥ (y))

there exist n € Z? and y' € Qy such that z = 6(c™ (¥ (y')
)

there exist n € Z? and y € O such that z = o™ (0(¥(y

— T E ¢(QZ)Ua

where ¢ : Qz — Qz is the continuous map defined as ¢ = # o W o #~L. Thus Qz is self-similar.
Moreover, ¢ is well-defined from letters in the alphabet Z as, for every y € () and every n € Z2,
we have (0(y))n = myz(yn). Consequently, for every z € Z, we have ¢(z) = myz o ¥ o m;,5(2)
which is well-defined as we show in Figure See Equation and Figur

Observe that, indeed, ¢ is the map in Equation (|7.2)). O

7.4 Automatic characterization of )z

The Wang shift €2z is a minimal, aperiodic and self-similar Wang shift related to the Jeandel-Rao
Wang shift. In this part, we characterize a configuration x € {0z as a 2-dimensional automatic
sequence. As the Wang shift 2z is minimal, in a certain sense this result characterizes {2z as
a whole. Note that it is the Fibonacci complement numeration system for Z? which is used in
the automatic characterization.

Theorem 7.4.1. [LL21] There exists a deterministic finite automaton with output A such that

the configuration
r: 7> — {0,1,...,15}
n = A(repg.(n))

satisfies the condition that x € Qz.

We do not repeat the proof of Theorem which is present in |[LL21]. We show, however,
how the configuration z and the automaton A are constructed. The inspiration for these steps
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Myz v myz Myz v myz
: =Y w) TUE ) : L gy TUE )
0 - 0 17 - 14 8 9 - (3) — ()
1 -1 - 16 - 13 9 - 10 () — (3)
2 .9+ (15,11) — (12,10) 10 - 11 - (1) — (1)
7 1 6 1
3 3 (13,9) — (11,8) 11 12 15 11) - (12 10)
el
4 -4 —— (17,8) — (14,7) 13 140

(
— (i)
5 c5—+ (16,8) — (13,7) 12 ~1—(55) — (58)
6 6 (15,8) — (12,7) \15%(123)/
\ — 5 1 51
7— (14,8) 13 ~ 16 '(1810)4> 159
7 - 8 - (15) — (1) 14 17— (139) — (115)
-18— (113

Figure 7.8: The map ¢ : Qz — Qz defined from letters.

comes from [AA20] where a similar procedure was done for a fixed point N> — A over an alphabet
A. Recall that the 2-dimensional morphism ¢ which satisfies the condition that Qz = ¢(Qz)” is
in Equation (7.2)). Let

s=(1%)-
We observe that ¢?(s) prolongates s at the origin.

11 8|12 7 13

306 1 4 1]6 1 3
8|12 S 1411 8 % 11 8]12 10 14 & ...
116 13012 7 5 116 1 6

15 911 8 12

In other words, there exists a configuration x : Z2 — A such that x = ¢?(z) and Tl_101x{-1,0y =
s. As z = ¢?(x), we have that = € Qz, i.e., it is a valid Wang configuration. A finite part of the
configuration x is shown in Figure The tiles xy,, for every n € {—1,0} x {—1,0}, are drawn
in yellow color. It is the tiles contained in s. The tiles that emerge from s by applying ¢ are
drawn in green color. The tiles that emerge from s by applying ¢* are drawn in blue color.

In analogy with the 1-dimensional substitutions, it is possible to associate with ¢ and
a € A a deterministic finite automaton with output A4, [BR10]. Let D = {0,1} x {0,1}
and A = {0,1,...,15}. The automaton associated with ¢ and a € A is the 6-tuple Ay, =
(A, D, d4,a,A,¢§), where the transition function d4 : A x D — A is a partial function such that
ds(c,e) = b for any ¢,d € A and e € D if and only if d is in ¢(c) at position e and the output
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-5 -4 -3 -2 -1 O 1 2 3 4 5 6 7

Figure 7.9: A finite part of the valid configuration x € Qz from Theorem

function ¢ is the identity map. In analogy with the procedure described in Section[6.3] we modify
the automaton Ay , into an automaton Ay s by adding a new initial state start and additional
edges connecting the new initial state to the letters contained in s. The deterministic finite
automaton with output

Ags = (AU {start},D,dy,, start, A,§)
has the transition function d4 , such that
¢ bou(start,(3)) = 12, 8y, (start, (9)) = 8,
o 04 s(start,(§)) =6, 04 s(start, (1)) =1,
o pslaxp = 0.

We illustrate in the following example that feeding an Fe-representation of a position n € Z?2
gives the index of the tile in the configuration x at position 7.
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START (v)

Figure 7.10: The automaton Ay , associated with the 2-dimensional morphism ¢ and s = (§ 12).

Example 7.4.2. Let n = (—1,6) € Z%. Then, repz.(n) = (33831) and Ay ¢ gives

start ((1)),8 ((1))\3 (é) 8 (8) (1)

14 1.

The tile at position n in the tiling = in Figure [7.9]is indeed zp, = 1.

Other Wang shifts with an automatic characterization might exist. For now, we leave this as
an open question.

Question 7.4.3. Are there other minimal aperiodic Wang shifts which have an automatic char-
acterization?
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Chapter 8

Conclusion and open problems

This work embodies three main subjects of interest — combinatorics on words, number theory and
discrete geometry. There are remarkable links between these areas. For instance, the Fibonacci
word may be defined purely from the point of view of combinatorics on words as the fixed point
of the morphism a — ab, b — a. However, it may be described also as a cutting sequence with
the slope of the golden mean, which links the combinatorics on words to discrete geometry and
number theory. Moreover, the Fibonacci word is an automatic sequence created with the use of
the Fibonacci numeration system. In this work, we continued developing these links, but open
problems remain to be tackled.

In Chapter [3| we described a class of positional numeration systems for Z associated with
simple Parry numbers. As the two’s complement numeration system for Z belongs to this class,
we called the class the complement numeration systems. It would be interesting to generalize this
construction to non-simple Parry numbers. Also, an analogue for Z of the Fibonacci numeration
system belongs to this class. We constructed a Mealy machine which performs addition in this
numeration system. The question, whether there exists a Mealy machine performing addition in
a given complement numeration system for Z, remains open.

Question Can we construct complement numeration systems for 7 associated with
non-simple Parry numbers?

Question Can we construct a Mealy machine, which performs addition in a given
complement numeration system associated with a simple Parry number?

In Chapter [ we studied the repetition rate of regular Arnoux—Rauzy words which are
a subclass of episturmian words. These words generalize Sturmian words to d-ary alphabets,
for d > 2. There is a monoid of morphisms which map episturmian words to episturmian
words. In the case of a binary alphabet, this monoid is called the monoid of Sturm and its
submonoid called the special Sturmian monoid M is of particular interest to us. In Chapter
we faithfully represented M by 3 x 3 matrices with nonnegative entries. We ask whether the
faithful representation may be found in the case of the monoid of episturmian morphisms.

Question Can we faithfully represent the monoid of morphisms which map epistur-
mian words to episturmian words?

In Chapter [6] we approached numeration systems in a broader framework as the regular
languages which describe two-sided automatic sequences. We provided a sufficient condition for
these numeration systems, which we call Dumont—Thomas, to be positional and we ask naturally
what are the necessary conditions. Also, we showed that the Dumont—Thomas numeration
systems can be extended naturally to Z?, for d > 1. We believe that the Dumont-Thomas
numeration systems extended to Z¢ may be used to describe all d-dimensional words Z¢ — A

97



which are periodic points of d-dimensional substitutions.

Question What is the necessary condition for a Dumont—Thomas numeration system
for Z to be positional?

Question Is it possible to generalize Theorem to Z%, for d > 17

In Chapter [7], we observed a remarkable link between a particular Wang shift, a numeration
system for Z? and a 2-dimensional morphism. More precisely, we described a particular Wang
configuration as an automatic sequence. Naturally, we ask the question: are there other Wang
shifts sharing this property? Our knowledge of Dumont-Thomas numeration systems for Z2
might be a cornerstone for the future research in this area.

Question7.4.3] Are there other minimal aperiodic Wang shifts which have an automatic
characterization?
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