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Jumeau numérique pour l’orchestration dynamique de systèmes
autonomes et embarqués

Résumé

À mesure que les technologies de contrôle et d’information progressent, les systèmes de
production modernes évoluent vers une automatisation et une intelligence accrues. Le
concept de jumeau numérique prend de plus en plus d’importance dans divers secteurs,
offrant une méthode claire pour gérer des systèmes complexes par le biais de contrepar-
ties numériques. Toutefois, ce domaine émergent présente plusieurs défis et questions de
recherche critiques, notamment en ce qui concerne l’application des systèmes de jumeaux
numériques à l’industrie. Au-delà des défis posés par la supervision de systèmes cyber-
physiques complexes, il existe un besoin pressant d’une représentation complète et in-
teropérable des produits, des processus de production et des ressources de l’usine, qui
puisse s’intégrer de manière transparente à divers équipements. Cette thèse étudie trois
questions principales : l’interopérabilité, l’adaptabilité et la robustesse des systèmes de
production dans le contexte de l’industrie 4.0. Elle propose une architecture de produc-
tion auto-adaptative basée sur la représentation des capacités de production (CBSAM), qui
utilise des approches d’ingénierie logicielle telles que l’ingénierie basée sur les capacités,
l’ingénierie dirigée par les modèles (IDM) et l’approche MAPE-K (surveiller, analyser,
planifier, exécuter et connaissance) pour améliorer l’adaptabilité et l’efficacité des systèmes
de production. L’architecture proposée intègre une boucle de rétroaction pour permettre
l’auto-adaptabilité du système de jumeau numérique, qui assure la continuité du proces-
sus de production sur ses performances et s’adapte aux changements du système physique.
Cette recherche va au-delà de l’architecture conceptuel pour développer des outils logiciels
pratiques, en intégrant la technologie jumeau numérique dans un écosystème existant
d’ingénierie des systèmes basée sur les modèles (ISBM) pour compléter l’architecture CB-
SAM. Un cas d’usage académique développé dans le laboratoire présente en détail la mise
en œuvre de la méthodologie CBSAM. Enfin, cette thèse se termine par une généralisation
à l’architecture et à l’achèvement de la mise en œuvre comme perspective pour l’avenir.

Mots clés : jumeaux numériques, production auto-adaptative, ingénierie dirigée par les
modèles, ontologie, interopérabilité, informatique sémantique
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Digital twin for the dynamic orchestration of autonomous
and embedded systems

Abstract

As control and information technology advance, modern manufacturing systems are evolv-
ing towards increased automation and intelligence. The concept of the digital twin is
becoming increasingly prominent across various sectors, offering a clear method for man-
aging complex systems via digital counterparts. However, this emerging field presents
several critical challenges and research questions, particularly in applying digital twin
systems to industry. Beyond the established challenges in supervising complex cyber-
physical systems, there is a pressing need for a comprehensive, interoperable representa-
tion of products, production processes, and plant resources that can integrate seamlessly
with diverse equipment. This thesis investigates three primary issues: interoperability,
adaptability, and robustness of manufacturing systems in the context of Industry 4.0. A
capability-based self-adaptive manufacturing architecture (CBSAM) has been proposed
in this thesis, utilizing software engineering approaches like capability-based engineering,
Model-Driven Engineering (MDE), and the MAPE-K (Monitor, Analyze, Plan, Execute,
and Knowledge) framework to enhance the adaptability and efficiency of production sys-
tems. The proposed architecture incorporates a feedback loop to enable the self-adaptivity
of the digital twin system, which ensures the continuity of the production process on its
performance and adapts to changes in the physical system. This research extends be-
yond conceptual methods to develop practical software tools, integrating Digital Twin
(DT) technology into an existing Model-Based Systems Engineering (MBSE) ecosystem
to complete the CBSAM architecture. An academic testbed developed in the laboratory
showcases the CBSAM methodology’s implementation in detail. Finally, this thesis con-
cludes with a generalization to the architecture and the completion of the implementation
as a perspective for the future.

Keywords: digital twins, self-adaptive manufacturing, model-driven engineering, ontology,
interoperability, semantic computing
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Chapter 1

Introduction

Contents

1.1 General context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Adaptability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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1.4 Manuscript Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 General context

The future industry will be dominated by highly autonomous and adaptive intelligent
manufacturing systems. Lot-size-one systems, as well as plug-and-produce concepts, imply
producing an increased variety of products in a highly flexible and timely manner and
making commissioning and maintenance more efficient. The smaller the production lot,
the greater the need for frequent reconfiguration, which requires a reduction in the interval
between lots hence the automation of the reconfiguration process. The speed with which
manufacturers, in particular SMEs, can reconfigure the production to a new run and thus
respond to clients and avoid costly machine downtime is critical to maintaining commercial
success and profit margins. These systems should possess a high degree of autonomy to deal
with the reconfiguration of production lines and to cope with a wide variety of unforeseen
situations.

The Industry 4.0 (I4.0) [1] paradigm appears to integrate information and communica-
tion technologies into novel manufacturing systems to elevate the efficiency and quality of
the production processes. Under this concept, self-control of complex systems is the basis
for modern industrial production. In order to establish such a self-adaptable system, the
ability to autonomously orchestrate and maintain the complex system is essential. The
flexible manufacturing and predictive maintenance of the production line management in
the vision of Industry 4.0 will primarily rely on digital twin [2] technology.

The digital twin paradigm [3] aims to achieve real-time feedback from the physical
system to its digital counterpart (Cyber part in a Cyber-Physical System). Model-driven
engineering (MDE)[4] is an approach that first arose in the software development domain,
which emphasizes the use of models to design and build systems. In the context of indus-
trial digital twins, MDE technologies can be used to create and maintain the digital twin
model. It provides a basis for building digital twin models that simplify the design and
development of complex systems. By using accurate MDE methods, manufacturers can

1



1.2. Research Problems CHAPTER 1. INTRODUCTION

implement in a rigorous way the control, simulate, and optimize the production process
under recognized software engineering principles and processes. Besides, the concept of
models@run.time [5] in MDE leverages the benefits of models, such as abstraction and
modularity, through the entire lifecycle of a system. The idea of processable and exe-
cutable models meets the definition of the digital twin when the models remain in active
connection with the physic asset during runtime. The abstraction allows designers and
developers to focus on high-level concepts that enhance human comprehension. The mod-
ularity ensures the flexibility and scalability of the system management. Models@run.time
reflects the current state of the system, which provides an framework for self-adaptation.
The self-adaptation loop consists of four phases: Monitoring, Analysis, Planning, and Ex-
ecution. This feedback loop is pivotal, which allows dynamic adaptation to changes and
ensures the robustness of the system.

1.2 Research Problems

However, several key challenges and research questions have emerged in the realm of digital
twin systems and their applications to the industry. Besides well-known challenges in the
supervisory control of complex cyber-physical systems, the need to provide a comprehen-
sive representation of products, production processes, and plant resources in an interoper-
able way among heterogeneous equipment represents significant challenges. Three central
problems investigated in this thesis are interoperability , adaptability and robustness
of manufacturing systems in the Industry 4.0 era.

1.2.1 Interoperability

Interoperability [6] refers to the ability of different systems and organizations to work
together seamlessly. It can be subdivided into syntactic interoperability and semantic
interoperability. Syntactic interoperability denotes that systems have the ability to com-
municate and exchange data, which includes specified data formats, communication pro-
tocols, interface descriptions, etc. The standards provide rules, guidance, templates, etc.,
for the consistency and conformity of a specific domain, which regulates the system con-
struction in a consistent and transparent manner. However, in emerging fields such as
Industry 4.0 or digital twins, it is not easy to find suitable standards and to implement
them. This difficulty often arises due to reliance on specific vendors and technologies. The
challenge is to standardize all the participants in an Industry 4.0 digital twin system and
provide an efficient framework to establish the digital twin models, thereby making them
vendor-independent and technology-independent.

RQ1 How can we identify and leverage the current existing standards and technologies
that we can use to design a digital twin model for the production plans and the plant
resources in a both machine-interpretable and user-friendly way?

With syntactic interoperability, the same physical entity can be represented differently
by distinct stakeholders. Even more, two different entities could be represented in the
same way. When dealing with a large number of physical entities, it is crucial to be
able to identify the entities that have the same or equivalent capabilities, in the deepest
sense. Semantic interoperability considers more than just efficient data exchange between
systems. It also includes the fully understood and processed by all parties. Many research
units and groups have realized this problem and studied this topic. However, the issue of
semantic interoperability is too domain-specific, and the semantic expressions in different
domains might differ greatly. Therefore, according to the boundary of our project, we
mainly summarize the following two questions.

2



CHAPTER 1. INTRODUCTION 1.3. Contribution Overview

RQ2 How can we semantically define the models in order to determine the most appropri-
ate selection of available plant resources that fulfill the production plan requirements?

RQ3 How to semantically process the monitoring data obtained from the digital twin during
execution and diagnose the risks in the manufacturing system?

1.2.2 Adaptability

System adaptability refers to a system that is able to timely react to changes. A man-
ufacturing system is the integration of all the existing resources, desired products, and
production processes. Therefore, an adaptive manufacturing system should be able to
respond to changes in all parts. As market demands evolve or internal goals change,
production lines may need adjustments. Therefore, a vital aspect of adaptability is to au-
tomatically realize the re-planning of the production line layout when the process workflow
changes. Another important aspect is the ability for rapid configuration/reconfiguration.
The system should be designed to be easily reconfigurable without significant downtime
[7]. These challenges raise the following research questions:

RQ4 What methodologies can be developed to facilitate dynamic re-planning of production
lines in a flexible and automated manner?

RQ5 What strategy can be employed to ensure rapid and efficient system reconfiguration
in response to varying operational needs?

1.2.3 Robustness

Furthermore, robustness, as defined in [8], is a key feature of a manufacturing system. It
refers to the system or component that can function correctly in the presence of invalid
inputs or stressful environmental conditions. It requires the system’s reactiveness, fault
tolerance, and self-adaptability. The difference between an adaptive system and a self-
adaptive system reflects whether the system includes a capability to decide by itself when
and how to be adapted. One well-known approach to implementing such a capability is a
feedback loop organized around the four steps proposed by IBM [9]: monitoring, analysis,
planning, and (adaptation) execution. The latter is capable of adjusting its own runtime
behavior in order to achieve system objectives. Monitoring and diagnosis over dynamic
digital twin models are crucial to realizing self-adaptive systems. Monitoring updates the
digital twin with real-world data. The diagnostic module examines the data and uses
the information carried by the digital twin to make decisions. Then the digital twin
should interact with the real world and perform decisions. These characteristics can make
it possible for the manufacturing systems to not only keep operating at their optimum
but also to provide recovery plans in case of anomalies. Therefore, the system’s self-
adaptability process can be theoretically completed by relying on digital twin technologies.
However, the implementation in practice of combining these theories in an appropriate and
low-cost way remains an open challenge.

RQ6 How can real-time monitoring and diagnosis modules be effectively integrated into
existing systems to ensure continuous operation during execution phases?

1.3 Contribution Overview

The main purpose of this doctoral thesis is to find solutions to the above problems. It
aims to implement a flexible production management method prototype based on digital
twin technology in an MDE environment and to validate the approaches on an academic

3
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Figure 1.1: Mindmap for concepts appear in the thesis

demonstrator. Figure 1.1 illustrates the problematic analyzed in the previous section,
the approaches adopted to shape the methodology, and the solutions incorporated in the
implementation.

• The primary contribution is to create a modeling environment designed for industrial
digital twin development. This environment should address the issue of syntactic in-
teroperability by using MDE methodologies. The Asset Administration Shell (AAS)
[10] is a strong candidate for standardizing the industrial digital twin models, pro-
posed by Plattform Industrie 4.0. The Papyrus4Manufacturing (P4M) toolset is
developed to provide an MDE approach to the AAS implementation. This toolset
integrates user-friendly editors for standardizing the model creation of production
participants. P4M provides not only the creation of digital twin models of pro-
duction systems but also an automatic deployment functionality based on model
transformations and code generation. The development of a specific toolset tailored
for this specification language is a key aspect of this contribution. (1) The AAS dig-
ital twin modeling environment provides a common interface to describe all kinds of
production participants. (2) The modeling of production processes requires a stan-
dardized language for process design. The Business Process Model and Notation
(BPMN) [11] is a set of graphical representations that describe business processes.
The contribution includes the integration of BPMN modeling plugin into the digital
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twin modeling environment.

• The AAS standard provides a syntactic interoperability interface for all assets in-
volved in smart factories. However, there is still a need to fill the gap regarding
semantic interoperability, in order to allow efficient understanding between Industry
4.0 components. Ontologies define semantic models of data combined with rele-
vant domain knowledge and formulate inference strategies. Therefore, it is a highly
relevant approach to bringing semantic interoperability. The second contribution
consists of proposing an ontology-based AAS modeling method that enables the se-
mantic interoperability of AAS digital twin models. This approach bridges the bar-
riers between ontology representation (specifically OWL) and AAS models in P4M
(UML models). This contribution is about annotating AAS digital twin models with
semantic meaning extracted from ontology knowledge. This implementation mainly
contains two different ontologies (1) MaRCO (Manufacturing Resource Capability
Ontology) [12] to provide semantic descriptions for manufacturing capabilities, and
(2) to complement model-driven engineering tools with automated reasoning.

• The capability-based engineering (CBE) [13] approach addressing the adaptability
challenges of Industry 4.0 flexible product lines management. CBE proposes to
automatically transform a series of abstract production workflows (the production
lots) exhibiting their required capabilities into production plans that select, con-
figure and operate the resources offering matching capabilities. This engineering
method responds to the adaptability research challenges mentioned in the previous
section. The limitation of current syntactic-only resource matching algorithms has
been overcome by implementing semantic interoperability based on ontologies i.e.,
by transforming AAS-based plant models into MaRCO instances. The main contri-
bution of this part is (1) to refine the CBE architecture from the model design to the
execution phase, (2) to implement the automatic capability checking functionality
in P4M, and (3) to enable the remote process execution.

• To enhance the robustness, the MAPE-K loop appears to be an accurate method to
support a self-adaptive system. The implementation of this feedback loop incorpo-
rates semantic computing techniques during model execution. Semantic computing
goes beyond traditional computing methods by giving data a more profound, con-
textual meaning, leading to smarter decisions by the system. Specifically, we utilize
runtime semantic annotations to attach raw data with the ontology concepts dynam-
ically in RDF format. RDF (Resource Description Framework), as defined by W31,
is a standard model for data interchange on the Web, which has features that facil-
itate data merging even if the underlying schemas differ. Moreover, the annotated
data act as the input for RDF stream processing, which allows the continuous query
and manipulate of semantic data streams. This combination of semantic annotations
and RDF stream processing improves the system’s self-awareness of the performance
in real-time.

• In order to leverage the previous contributions, a model-driven capability-based self-
adaptive system architecture has been proposed. The architecture integrates the
MAPE-K feedback loop to the previously mentioned CBE architecture. It provides
a methodology to formulate such an AAS-based digital twin manufacturing system
from the specification phase until the operation and maintenance phase.

• An academic demonstrator is built to showcase and validate the approaches proposed
for the research problems. My contributions of developing this demonstrator consist

1https://www.w3.org/RDF/
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of (1) identifying an accurate production process scenario for the demonstrator,
(2) designing functional digital twin models for the components and the process, (3)
automatic deployment and orchestration of functional digital twin models to execute
the real-word devices.

1.4 Manuscript Plan

The introduction about the general context and research problem has been mentioned
early in this chapter. The rest of this dissertation is organized as follows.

As introduced in the previous section, in this thesis, we have integrated and imple-
mented many technologies and concepts. Chapter 2 compares the different existing tech-
nologies and alternative solutions, including the MDE & industrial digital twin imple-
mentation, capability- and skill-based engineering, ontology and metamodel for semantic
digital twins, and self-adaptive cyber-physical systems. This chapter investigates the state-
of-the-art of the above topics and adjusts the reason for the methodology and technology
selection for the implementation.

Chapter 3 presents an extension architecture of the capability-based engineering method
with a closed feedback loop in order to construct an interoperable and self-adaptive man-
ufacturing system. The architecture follows the formal engineering phases [14] from the
specification to the maintenance. This proposed architecture provides a conceptual basis
for the previous research questions.

Chapter 4 focuses on the architecture implementation, which involves putting the
conceptual architecture discussed in the previous chapter into practical applications. This
chapter emphasizes the contributions made specifically in the realm of implementing the
CBSAM architecture.

Chapter 5 introduces an academic testbed, LocalSEA, dedicated to the testing and
validation of our research. This chapter presents the main components and the general
scenarios to give insight into the implementation section. Then, an example based on
the testbed showcases the full elaboration of the implementation details of the CBSAM
methodology.

Chapter 6 discusses and concludes this dissertation.
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2.1 Industrial Digital Twin & MDE

The convergence of information technology (IT) and operations technology (OT) in the
modern factory is the basis of the Industry 4.0 [1] revolution. This convergence of the
traditionally separate domains of IT (focusing on data, computing, and communications)
and OT (focusing on controlling and monitoring physical processes) facilitates seamless
data exchange and real-time analytics. The fact that machines and production systems can
communicate directly with business-level IT systems, provides the basis for more flexible
and customized production processes. As presented in [15], the digital twin technology
introduces fresh possibilities for managing and controlling systems of growing complexity
by establishing the technical groundwork for Industry 4.0. Grieve presented in [16] a brief
history of the digital twin from a concept without a name to a widely spread paradigm.

However, digital twins are interpreted and understood differently by different indi-
viduals and research groups, who view and define digital twins in terms of the specific
requirements and perspectives of their respective domains. In a thorough survey [17], the
authors provide an extensive exploration of digital twins, compiling various definitions
and essential characteristics from literature, along with the range of applications devel-
oped across different fields. This work serves as a vital reference for understanding the
diverse aspects and practical implications of digital twins in technology and innovation.
In this dissertation, it is important to select a definition of the digital twin that is closely
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related to the area of focus. According to the definition of French AIF1 (Industry of the
Future Alliance), the definition of digital twins are:

• A digital twin is an organized set of digital models representing a real-world entity
designed to address specific issues and uses.

• The digital twin is updated in relation to reality, with a frequency and precision
adapted to its issues and uses.

• The digital twin is equipped with advanced operating tools, including the ability to:
understand, analyze, predict, and optimize.

The use of industrial digital twins can help companies optimize their operations, re-
duce downtime, and improve overall efficiency. As the complexity of the system increases,
the transformation of the model itself, as well as the integrability, connectivity, and scal-
ability between models become crucial. The Model-Driven Engineering (MDE) paradigm
[18] is an approach first raised in software development that emphasizes the use of models
to design and build systems. Under this premise, MDE, which revolves around abstract
models and focuses on alignments and transformations between models, brings new po-
tential to digital twins. Therefore, MDE is now imposing itself as an essential direction
in the field of digital twins. The unique characteristics of connectivity and extensibility
between models ease the design and maintenance of digital twin systems. With the rise
of the internet of things (IoT) and sensor network technologies, real-time data from phys-
ical devices and business information have been incorporated into the scope of the model.
At the same time, the modeling of the asset’s entire life cycle at the core of the digital
twin also brings self-adaptation and autonomy from design to operation to model-based
systems engineering (MBSE) [4].

Models@run.time [5] refer to the execution of models at runtime, which means that
the models themselves are used to guide the behavior of a running system. This concept is
first addressed by the MDE community to extend the use of software models. With mod-
els@run.time, models remain active and executable during runtime, allowing for dynamic
adaptation and reconfiguration of the system’s behavior. Models@run.time enable var-
ious capabilities, including dynamic reconfiguration, self-healing, self-optimization, and
context-aware adaptation. These capabilities are particularly valuable in dynamic and
complex systems, such as cyber-physical systems, IoT applications, and distributed sys-
tems. [19] explore the use of MDE in developing smart Cyber-Physical Systems (CPS),
particularly sustainability systems like smart grids and cities. They emphasize the inte-
gration of engineering and scientific models to address the complex challenges in these
systems, which involve balancing social, environmental, and economic factors. In the con-
text of industrial digital twins, MDE can be used to create and maintain the digital twin
model throughout the asset’s lifecycle. Bordeleau et al. have analyzed the application of
MDE technologies to digital twins in [20]. This approach can help companies to reduce
the time and cost of developing and maintaining digital twins, while also improving their
accuracy and reliability.

2.1.1 DSLs for Industrial Digital Twin Models

The domain-specific modeling language (DSL) is always an important topic in the MDE
domain as mentioned by Wortmann et al. [21]. In MDE, DSLs help to create models
that are more expressive and easier to understand by both domain experts and machines,
thus increasing the interoperability of the system. The drive towards Industry 4.0 and the
novel concept of the Asset Administration Shell have invited professionals across industries

1http://www.industrie-dufutur.org/
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Figure 2.1: RAMI model (reproduced from: Standardization Council Industrie 4.0)

and the scientific community to put efforts towards harmonizing digital representations
in the domain. These efforts have led to standardization activities like - the development
of the RAMI (Reference Architecture Model Industrie 4.0) [22] and the Details of the
Asset Administration Shell (AAS) [10], which helps in providing the cornerstones while
developing the AASs for representing any considered ecosystem of Cyber-Physical Systems
(CPS).

The Reference Architecture Model for Industry 4.0 (RAMI 4.0 see Figure 2.1) [22] is
the first reference architecture model to accurately describe the Industry 4.0 (I4.0) compo-
nents. It enables I4.0 stakeholders (architects, developers, business decision-makers, etc.)
to adopt a common perspective and a common understanding of I4.0 systems, resources,
and assets. RAMI 4.0 encompasses the most important aspects of I4.0 components, mak-
ing them a worldwide identifiable participant able to communicate, through its virtual
representation and an asset. The former reflects the asset in the five upper layers of
RAMI (integration, communication, information, function and business processes).

The Asset Administration Shell (AAS) [10] is defined as a standardized digital repre-
sentation of the asset. It identifies the Administration Shell and the assets represented by
it, holds digital models of various aspects (submodels) and describes technical functional-
ity exposed by the Administration Shell or respective assets. Part of the AAS metamodel
is illustrated in Figure 2.2, and Table 2.1 gives definitions of some important concepts of
AAS that are involved in this thesis. The Submodels are composed of Submodel Elements.
These elements can be product properties, process variables and parameters, events for
observing properties, references to external data sources or files, capabilities, operations
and entities of the composite I4.0 component. The relationships among AAS components
are defined in [23], including the composition of entities in a bill of material submodel
and the property connections established between entities. It defines the architecture for
a digital twin, including the structure of information models and the communication in-
terfaces used to connect different components. Many organizations’ efforts on the AAS
implementation make it more competitive to dominate the domain. The related works
about the implementation of AAS will be presented in 2.1.2. By using AAS, companies
can create a standardized and syntactic interoperable way to represent and communicate
information about their assets. This helps to facilitate the development and integration
of digital twin technologies in an industrial context.

The AASs can be placed at any part of the RAMI 4.0 model cube in Figure 2.1.
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AAS Definition

Asset Physical or logical object owned by or under the custo-
dial duties of an organization, having either a perceived
or actual value to the organization

AssetAdministration Shell Standardized digital representation of the asset, the cor-
nerstone of the interoperability between the applications
managing the manufacturing systems. It identifies the
Administration Shell and the assets represented by it,
holds digital models of various aspects (submodels) and
describes technical functionality exposed by the Admin-
istration Shell or respective assets.

Submodel Models which are technically separated from each other
and which are included in the asset administration shell.

SubmodelElement Submodel elements include data properties as well as
operations, events and other elements needed to describe
a model for an asset.

SubmodelElementCollection A submodel element collection is a set or list of submodel
elements.

ConceptDescription The definition of a concept

Property Defined characteristic suitable for the description and
differentiation of products or components.

Operation An operation is a submodel element with input and out-
put variables.

Capability Implementation-independent potential of an Industrie
4.0 component to achieve an effect within a domain.

Entity An entity is used for modeling composite AASs. An en-
tity references an asset and has relationships with other
entities.

Table 2.1: Excerpt of AAS metamodel V3RC2 definition from [10]
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Figure 2.2: AAS composite metamodel

Considering the perspective of the vertical axis (layer), by definition, the assets correspond
to the asset layer, and the asset administration shells realize the integration of assets and
can extend upward to include the information of each layer. Then from the perspective of
the left horizontal axis (Life Cycle & Value Stream), an asset can be defined as a type or
an instance, which also conforms to the RAMI 4.0 model. Finally, from the perspective of
the right horizontal axis (Hierarchy Levels), since each I4.0 component can have its own
asset administration shell and the composable characteristics of AAS, the AAS model can
represent any level of “entities” in the axis.

2.1.2 AAS Implementations

A detailed overview of RAMI 4.0 and AAS is given in [24]. And [25] provides an in-
depth explanation of the concepts defined in AAS and gives suggestions to Industry 4.0
stakeholders. Open source AAS implementations (i.e. BaSyx [?], NovAAS [26]) provided
by different organizations are discussed in [27]. NovAAS contributes towards a web-
based reference implementation of the concept asset administration shell. Now researchers
tend to integrate OPC UA Information Models to the AAS skills descriptions; [28] shows
a mapping between AAS concepts and OPC UA information models. In survey [29],
the authors listed all the open-source implementations of the AAS standard such as the
modeling frameworks and middlewares, which provide the ability to connect AAS models
with their physical assets.

The advancements are not just limited to the reference architectures and standards
but are also seen in the various implementations of the concept of AAS. These projects
include not only the development of Software Development Kits (SDKs) such as BaSyx
[?], but also some implementation efforts like Fraunhofer Advanced AAS Tools (FA3ST)
[30], AAS Package Explorer [31], SAP I4.0 AAS [32] and NovAAS [26].

Eclipse BaSyx provides an execution infrastructure for AAS models, but it doesn’t
support a ready-to-use HMI (Human-Machine Interface) tool for non-tech-savy users. In-
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stead, it provides software development kits in Java, .Net Core, and C++ [33]. The SDKs
act as the basis for creating applications where information is modeled and transferred
using the standards of the AAS.

FA3ST [30] is a Java-coded service-oriented tool. It includes a predefined implementa-
tion for HTTP and OPC UA-based protocols endpoint, JSON serializer and deserializer,
file and database-backed persistence manager, as well as MQTT and OPC UA-based asset
connections. A FA3ST service can be deployed either as a Java JAR file or as a Docker
container. Compared to BaSyx, FA3ST provides more features, such as the integration
with Apache StreamPipes (a toolbox for Industrial IoT with a focus on stream processing)
as well as with the international data spaces (IDS).

The AASX Package Explorer (AASX PE) is a user-friendly application with a GUI
which provides working tools and components for the creation of AAS models based on
the specification [10] [31]. As AASX PE is a tool most used today for the specification of
AAS models, many middelwares offer the possibility of being configured with .aasx files
for execution.

Both the FA3ST service and AASX Package Explorer offer an HTTP and an OPC
UA-based service endpoint; however, in the AASX Package Explorer, they are not syn-
chronized, meaning that changes to the DT via one type of endpoint are not reflected in
the other. The AASX PE provides some functionality beyond the specification and is not
implemented by FA3ST Service, such as HTTPS/SSL MQTT endpoint and a graphical
user interface. However, connecting the DT to existing assets is limited to OPC UA.

On the other hand, the SAP I4.0 AAS, implemented in JavaScript, TypeScript, and
Go, offers a GUI for describing an asset as per the standard of AAS. NovAAS [26] is a
Node-RED-based implementation of the AAS specification [33]. It has a strong focus on
JSON, HTTP, MQTT, and usability, e.g., it provides user management and a dashboard
to visualize live data. Still, it does not address essential parts of the specification, such as
different data formats or OPC UA. Moreover, NovAAS is realized using only Node-RED
so it is less capable to integrate with other systems.

An aspect that lacks in all of the above-mentioned tools for the creation of the AAS is
the model-driven approach. The CEA has initiated the developement of an open source
model-driven toolset for the AAS specification. This toolset Papyrus4Manufacturing2

(P4M), extends the UML modeling tool Papyrus [34] to meet the AAS specification. In
addition to the AAS models creation, P4M facilitates the deployment of these models
by automatic code generation. The generated executable code from the AAS models
permits the establishment of communication between the digital twin and its physical
counterpart. The above features are detailed in [35]. In light of the benefits that model-
driven development approaches bring, it is apparent that a model-driven development
approach to the AAS is also necessary. The tool Papyrus4Manufacturing [36] provides
exactly the needed MDE approach to AAS. P4M was developed on top of the UML
modeling tool, which provides features restricted to the standard - Details of the Asset
Administration Shell, in order to provide a graphical modeling environment that helps to
model an AAS.

Moreover, while Roth and Rumpe (2015) [37] mention that code generators are an
integral part of any model-driven development process, Höllder et al. [38] say that con-
structive generation or synthesis of code from the models needs to be among the first steps
of a model-based development process implying the necessity of code generation. Thus,
during the development of P4M, the feature of code generation from the models developed
using the UML-based modeling tool was taken into account. The BaSyx Java SDK [39],
an open-source middleware for the implementation of AAS, was used as the code genera-
tion target. BaSyx stands out for its suitability as a starting point due to its executable

2https://eclipse.dev/papyrus/components/manufacturing/documentation.html
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features and compatibility with the AAS standard. More description about the BaSyx
project will be given in Section 2.1.3. Moreover, it is important to note that the selection
of BaSyx does not limit the generality of the MDE approach, which means that although
BaSyx is the initial tool of choice, our approach remains compatible with other tools.

Table 2.2: Tools implementing AAS standard

Tool HMI MBSE Asset Connection AAS Execution

AASX PE Yes No OPC UA Yes (with different
middlewares)

NOVAAS Yes (web based) No OPC UA/ HTTP/
MQTT

Yes

SAP Yes (web based) No No Yes

FA3ST No No OPC UA/ HTTP/
MQTT

Yes

P4M Yes Yes OPC UA/ HTTP/
MQTT/ WebSocket/
ROS

Yes (automatic code
generator to BaSyx)

Table 2.2 illustrates a comparison of the previous related works, i.e. tools implementing
the AAS Standards. We can see that all the tools are implementing the AAS standard
and propose an execution of the AAS model by manually creating the software code.
However, only P4M toolset is (1) providing the automatic generation of the executable
code from the AAS models and (2) ensuring the synchronization between the AAS models
and the executable code. One of the contributions of the thesis is proposing a model-driven
toolset for the AAS specification in the context of Papyrus4Manufacturing. The work
extends Papyrus4Manufacturing to enable (1) modeling composite AASs (2) modeling
and executing production processes.

2.1.3 Asset Connection and Orchestration

Eclipse BaSyx [?] is one of the first implementations as an execution infrastructure of
digital twins using AAS. Choosing Eclipse BaSyx as a middleware for Industrie 4.0 appli-
cations is driven by its comprehensive support for its alignment with open standards. As
an open-source platform, BaSyx embodies the principles of the fourth industrial revolution
by facilitating inclusive participation from businesses of all sizes, research institutions, and
academia. Its implementation of the AAS as a standardized digital twin, exemplifying its
commitment to industry standards. Moreover, its versatile connectivity options, including
MQTT3 (Message Queuing Telemetry Transport), OPC UA4 (OPC Unified Architecture),
S3 cloud technology5, and PLC4X6 (under development), enable seamless integration with
various entities ranging from edge devices to PLCs to cloud-based systems and more. By
offering reusable Industrie 4.0 components and SDKs in multiple programming languages,
BaSyx significantly streamlines the development of Industrie 4.0 solutions, enhancing effi-
ciency, minimizing downtime, and reducing costs. This makes BaSyx an ideal middleware
choice for future development.

The article [40] focuses on evaluating the performance and scalability of AAS when
integrated into the BaSyx environment through experiments.

3https://mqtt.org/
4https://opcfoundation.org/about/opc-technologies/opc-ua/
5https://aws.amazon.com/fr/s3/
6https://plc4x.apache.org/
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BPMN (Business Process Model and Notation) [11] is used in process orchestration
design due to its standardized, widely understood notation, which facilitates clear and
consistent documentation of business processes. Its ability to visually represent complex
workflows, makes it a valuable tool for simplifying and understanding complex processes.
Despite the criticisms for its complexity and visual semantic ambiguity, BPMN is still
generally considered as a representation enhancing the communication between different
stakeholders, bridging the gap between business analysts, process designers and IT pro-
fessionals, ensuring business and IT alignment. BPMN’s flexibility enables it to model a
wide range of business processes and adapt to changing needs, while its compatibility with
business process management systems simplifies process automation and execution.

However, BPMN diagrams themselves are not executable. However, being a digital
twin of a production process requires for orchestrating the digital twin at the application
level. For the implementation in this thesis, Node-RED will serve as an execution engine
for workflows expressed in BPMN. Node-RED7 provides a visual programming interface
that simplifies the creation and management of complex workflows. This process-based de-
velopment tool is particularly user-friendly, allowing programmers and non-programmers
alike to easily configure and link different data sources and services. Its broad support for
various integrations makes it highly adaptable to different IoT ecosystems, a key aspect of
digital twin technology that requires seamless interaction with a large number of sensors,
devices, and systems. The open source nature of Node-RED provides rich resources and
ongoing enhancements, supported by a strong community, enhancing its reliability and
scalability. The authors of [41] propose a novel workflow manager built on Node-RED.
This proposed solution enables the Node-RED to load and execute business processes
using BPMN recipes.

2.2 Capability-Based Engineering

Under the concept of AAS, capability-based engineering (CBE) is a method to realize flex-
ible production. The idea is proposed by Plattform Industrie 4.0 in [13], where they stated
three fundamental elements in a production practice are resource, product, and process,
therefore it is important to build accurate AAS models for them. Processes use resources
to build products and in the I4.0 vision processes express the capabilities required to build
the products while resources express the capabilities they are offering. The main goal of
CBE is to design, implement and operate the system according to the functionalities re-
quired in each step of the production process, rather than explicitly specifying the actual
production resources. The aim is to abstract and decouple the production process and
its requirements with the resources. Given accurate representations of processes and re-
sources, CBE aims at automatically finding available resources for a process by matching
their offered capabilities with the required ones.

First and foremost, it is essential to define some key concepts, as the understanding
of terms like “capability” and “skill” can vary across different fields. For instance, in
the referenced work [42], the author highlights that there is often confusion among many
individuals regarding definitions, such as mixing up “skill” with “task”. The author’s
definition is completely different from our understanding, which confirms that there is a
bit of arbitrariness in the definition of terminology. Therefore, before continuing, we need
to emphasize again the definitions of the terms to be used. In this paper, we will adhere
to the naming conventions and definitions as outlined in [13] and [43].

• Capability: The implementation-independent description of the function of a re-
source to achieve a certain effect in the physical or virtual world.

7https://nodered.org/
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• Skill: The asset-dependent implementation of the function of a resource to achieve
a certain effect in the physical or virtual world

• Service: A service specifies the means of provision of one or more capabilities of-
fered by a service provider to a service requester and extends its description with
commercial aspects.

As described in [13], a Capability Submodel can be used to describe the abstract func-
tionality of a resource. The SubmodelElement Capability is used to define the abstract
functionality that the digital twin possesses or the production processes requirement. The
Skill describe the concrete implementation. The CBE is divided into three main phases.

• Capability Checking: this phase aims to automatically match the resource with the
designed production process by their semantic function description without explic-
itly assigning the resource. Ontology is a method to construct semantic descrip-
tions for domain concepts and attributes. Ontology concepts can be connected and
combined using semantic rules, so reasoners will infer possible production plans for
required/provided capabilities matching.

• Feasibility Checking: a procedure to bring in environmental factors and constraints
to validate the production plan. The feasibility checking is supposed to take into
account operational, environmental or more global constraints which are not directly
linked to the resources but which can lead to the preference of one resource. This will
further determine the feasible parameters that meet the conditions or avoid possible
faults (i.e. collision detection, trajectory calculation) before the deployment on the
real production line.

• Skill Execution: puts the resources into operation according to the validated pro-
duction work plan. The production plan will be executed according to the process
orchestration design.

In article [44], the authors aim to provide a structured overview of skills-based manu-
facturing research, conducts a literature survey of ETFA (IEEE Conference on Emerging
Technologies and Factory Automation) contributions over the past decade, and analyzes
34 relevant papers to explore the current status, consensus and research gaps in capa-
bilities and skills. A significant increase in related research articles after 2019 is stated,
which shows the interest of researchers on this topic. Among them, the ontology widely
discussed to express and create holistic models.

In conclusion, we want to use appropriate capability description ontology and tech-
nologies through this thesis to develop a framework that supports capability engineering
to solve the adaptability challenge mentioned in the introduction.

2.3 Semantic Digital Twin

Knowledge and ontology are closely related concepts in the field of knowledge manage-
ment, where ontology refers to the study of the nature of existence and the relationship
between different entities, while knowledge more generally refers to human understanding
of the world. Ontologies provide a framework for organizing and classifying knowledge
for accurate consistency and semantics. At the same time, knowledge can make ontolo-
gies better relevant to real-world problems. The Knowledge Graph serves as a powerful
driver for the adoption of Semantic Web standards and all the semantic technologies that
implement them. The Knowledge Graph improves data management and content man-
agement to new levels of efficiency by introducing semantic metadata, and breaks down
silos, allowing them to interoperate with various forms of data and knowledge.
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As stated in [45], A language ideal to represent phenomena in a given domain if the
metamodel of this language is isomorphic to the ideal ontology of that domain, and the lan-
guage only has as valid specifications those whose logical models are exactly the logical mod-
els of the ideal ontology. Ontology and metamodel provide a framework for understanding
and constructing complex systems. A metamodel can be considered an instantiation of an
ontology, providing a concrete representation of the concepts and relationships within a
specific domain. In this way, ontology and metamodeling are complementary approaches
to understanding complex systems. The work of [46] describes combining knowledge and
model-driven methods to complement each other.

Applying semantic knowledge to represent and reason about the data associated with
an asset allows for more advanced data analytics, which can lead to insights and optimiza-
tions that might not be possible with traditional digital twin technologies. By combining
ontology technologies to model construction, we can bring digital twin systems a formal
description of the concepts and relationships, which can help to facilitate the sharing and
integration of data across different systems and organizations.

Semantic interoperability has long been recognized as a major concern in the field of
industrial digital twin systems. This subsection introduces this problem, and then leads
to two related works that will be reused in our solution.

The Digital Twin Consortium published a whitepaper [47] on the digital twin system
interoperability framework. It introduces seven interoperability concepts that frame the
design considerations necessary to make systems interoperate at scale. The article [48]
introduces the definition of semantic interoperability in the context of Industry 4.0 and
Smart Manufacturing as follows: “Semantic interoperability enables systems to interpret
meaning from structured data in a contextual manner. Semantic interoperability relies on
ontology-based “contextual metadata” supplementing “data” to form “information” ex-
changed among connected systems. This ontology must account for metadata exchanged
between disparate systems and environments. It represents the highest level of interoper-
ability between connected systems - beyond syntactic interoperability”.

[49] provides an overview of various articles and applications of data analysis, expert
knowledge, and knowledge-based system drivers in production systems. On top of that, it
describes how to use “data analysis” in a production system to create knowledge-based dig-
ital twin systems. [50] articulates new concepts of value creation through the use of digital
twin decision support services in industrial service ecosystems, and discusses mixed seman-
tic modeling and model-based systems engineering for their implementation. A customiz-
able conversion system for converting ABB Ability™ digital twins to Asset Administration
Shell format is presented in [51], showing a real-world example for interoperability in in-
dustrial environments. A. Perzylo et al. [52], introduces concepts developed by the BaSys
4.0 initiative dealing with the semantics of manufacturing skills, orchestrating higher-level
skills from basic skills, and using them in a cognitive manufacturing framework.

Ontologies bring to systems engineers and researchers the high value of semantic inter-
operability and makes them aware of the importance of combining ontology vocabularies
with system model design. [53] introduced an approach of a dynamic mapping of the
ontology vocabularies into system models stereotyped by meta-classes defined in a profile.
This approach enriches the semantic meanings of system modeling without affecting the
definition of existing meta-models.

According to the above work and many other articles not mentioned, the use of on-
tologies to solve semantic interoperability appears as a common solution in the field. Our
idea is to combine ontology-based knowledge representation with the AAS digital twins
to achieve the semantic interoperability between digital twins. In our work, we overcome
the limitation of current syntactic-only resource matching algorithms by implementing
semantic interoperability based on ontologies i.e., by transforming AAS-based plant mod-
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els into ontology instances and then query the expanded ontology to find the needed
resources. To achieve this, we rely on two former works described next: MaRCO [12]
provides capability-related ontology for manufacturing systems, and the OML Adapter
[54] provides a transformation basis from OWL ontologies to OML and UML models.

2.3.1 Manufacturing Resource Capability Ontology (MaRCO)

Ontologies are widely accepted for knowledge representation in specific domains. In [13],
C4I ontology [55] is given as an example for the semantic representation of capabilities.
C4I is designed with a broad focus, encompassing a wide spectrum of industrial capabili-
ties, processes, resources, and products. This generality makes it applicable across various
manufacturing scenarios. It plays a crucial role in enhancing interoperability among di-
verse systems in industry, facilitating effective communication and data exchange.

The OWL-based Manufacturing Resource Capability Ontology (MaRCO) [12] is used
to describe the capabilities of manufacturing resources. MaRCO’s strength lies in its
precision and granularity in modeling the capabilities and limitations of manufacturing
resources, which is critical for complex and advanced manufacturing processes. The ex-
pressive power of MaRCO supports the representation of simple resources but also their
combination into collaborative resources, hence a good candidate for capability-based en-
gineering. In addition, MaRCO is also provided as a complete capability matchmaking
web service [56]. While its implementation language OWL has good knowledge repre-
sentation features, pure OWL [57] is limited when it comes to querying. To effectively
support semantic-based resource selection, SPARQL (SPARQL Protocol and RDF Query
Language) [58] has been chosen to implement the capability matchmaking rules. More pre-
cisely, SPARQL allows to write queries that combines the capability parameters of several
resources to select sets of compatible and covering resources for given requirements. Fi-
nally, the use of SPIN (SPARQL Inference N otation) allows to represent SPARQL queries
as knowledge within the ontology and then the SPIN API allows to make inferences and
generate new individuals within the ontology.

2.3.2 OML Adapter

The OML (Ontological Modelling Language) [54] is defined by the openCAESAR8 plat-
form, which is also an ontology description language inspired by OWL and SWRL (Se-
mantic Web Rule Language). OML is a modeling language designed for ontologies, which
aims to close the gap between modeling and programming languages. It offers a struc-
tured framework for representing ontologies with complex relationships and hierarchies in
a machine-readable format.

Implemented using the Eclipse Modeling Framework (EMF), OML benefits from a
robust Java API, enhancing its accessibility and ease of integration within a variety of
software development environments. This integration with EMF not only facilitates the
creation and manipulation of ontology models but also ensures compatibility with a wide
range of existing tools and libraries in the Java ecosystem.

Moreover, the utility of OML is further extended by tools such as the OML Adapter
provided by the openCAESAR project. This adapter enables the round-trip transforma-
tion between OML and UML (Unified Modeling Language), allowing for greater flexibility
and interoperability in modeling practices. This feature is especially beneficial for projects
that require the integration of ontological models with MDE methodologies.

In the subsequent of this dissertation, more detailed insights into the process of con-
verting between OML and UML are provided, illustrating the practical applications of this
transformation in our platform. This discussion will include examples of how OML has

8http://www.opencaesar.io/oml/
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been effectively utilized within our platform, demonstrating its utility in bridging the di-
vide between abstract ontological concepts and their practical implementation in software
solutions.

2.4 Self-Adaptive CPS

Self-adaptive systems [9] are characterized by their ability to autonomously adjust and op-
timize their behavior based on dynamic changes in environmental and internal conditions.
Self-adaptivity is an important subject in complex systems, making it particularly relevant
for cyber-physical systems (CPS), where maintaining the robustness is often crucial.

Research in self-adaptive manufacturing systems is paving the way for more flexible,
efficient, and resilient manufacturing processes. In the realm of self-adaptive systems, one
significant approach presented in [59] utilizes a multiagent framework. This approach is
particularly geared towards addressing the challenges inherent in the realization of self-
adaptive systems, where multiple agents collaborate and adapt to changing manufacturing
conditions and requirements. Furthermore, the work presented in [60] introduces an in-
novative method for the design of knowledge structures in Cyber-Physical Production
Systems (CPPS). This approach aims at minimizing or avoiding adverse impacts on cog-
nitive activities, thus enhancing the system’s ability to predict and mitigate disruptions
before they escalate. Seiger et al., in their study [61], delve into the potential of a self-
adaptive workflow framework within the context of Cyber-Physical Systems (CPS). Their
framework is built upon the MAPE-K (Monitor, Analyze, Plan, Execute over a shared
Knowledge) feedback loop, a well-known concept in the field of autonomic computing,
which is instrumental in enabling systems to self-manage and adapt to changing condi-
tions. Additionally, the research conducted by Ma et al. [62] brings a new perspective
with an executable model-based approach. This approach is specifically tailored to test
self-healing behaviors in CPS under a variety of environmental uncertainties. The model-
based nature of this approach allows for a systematic and thorough examination of how
systems can autonomously detect, diagnose, and repair faults, thereby ensuring continuous
operation.

By the following subsections, the Property Value Statements (PVS) metamodel will
be analyzed in order to facilitating effective and semantic data exchange between systems.
Then an explore of semantic reasoning over data streams by the RDF stream processing
will be presented. Follows with a study of existing fault diagnosis methods for ensuring
the reliability and resilience of self-adaptive CPS.

2.4.1 Property Value Statement

The property value statement (PVS) proposed in DIN SPEC 92000 [63], standardized
the exchange of values and statements on properties in Industry 4.0 applications. The
metamodel of PVS is shown in Figure 2.3.

• SubjectID: points to the subject where this property belongs.

• PropertyID: refers to the definition of this property.

• PredicateRelation: relation between the comparative value in an expression and the
effective value.

• PredicateValue: comparative value the property magnitude expression refers to.

• ExpressionSemantic: describes the context and purpose of the statement that de-
fines the meaning of the logic expressed by the predicate. Important categories of
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Figure 2.3: Property value statement metamodel

expressions are, for example, assurance (A), requirement (R), offer (O), statement
(S), measurement (M).

– Assurance: statement that, in case of a realization, the actual value will be set
in predicate relation to the predicate value.

– Requirement: statement that the effective value shall be set in predicate relation
to the predicate value.

– Offer: statement that, during the realization, the actual value can be set in
predicate relation to the predicate value.

– Statement: expression about the value of a property.

– Measurement: actual value measurement.

In [64], the concepts of property value statement are presented which fit to the stan-
dardized property definition models and build a platform for a metadata-based information
handling in the digital factory.

More generally, capability-based engineering has roots into the concept of reflection
[65]. Smith [66] introduced the seminal concept of reification as a causally connected
representation of a program and its execution state i.e., a digital twin used by the program
to reason about and act upon itself. This concept so much permeated over the last 40 years
that it is impossible to provide here a fair account but just point a few of the most relevant
works. The primary goal of reflection is to dynamically adapt systems, especially to meet
quality of service (QoS) objectives. In this very active area, PVS-like statements match
required QoS of systems to offered QoS of their building blocks. The language QML [67],
for example, builds QoS contracts constraining measures of QoS against requirements
both individually and as probability distributions. This kind of approaches has been
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developed in networks, service-oriented architectures (SOA), robotics, etc. Orchestrating
services given their QoS in SOA has been developed, for example, by [68], and even as
the selection, at call-time, of the service among alternatives with the best current QoS
treated as a multicriteria decision problem [69]. In robotics, [70] develops a constraint-
based composition logic for component-based architectures where PVS-like statements are
attached to rich interfaces both to statically prove the correctness of assemblies and to get
configuration settings respecting time and QoS contraints. The paper [71] focuses on three
critical aspects: ensuring functionality through semantic matching, optimizing Quality-of-
Service (QoS) measurements, and adhering to global QoS constraints. Their experiments,
based on the Web Service Challenge 2009 dataset, demonstrate the approach’s ability to
efficiently identify optimal or near-optimal solutions while improving fitness and execution
time. [72] proposes a resource-conscious framework to plan autonomous robotic missions
that attacks capability-based engineering in a way very similar to RAMI 4.0, albeit not
using this standard.

2.4.2 RDF Graph Stream Processing

Data streams are one of the main sources of information in the digital twin applications,
and it is required to make these streams available in a machine interpretable manner. For
this to become a reality, there is a need for the definition of standards and guidelines on how
to produce and consume structured data streams.The Resource Description Framework
(RDF) [73], a World Wide Web Consortium (W3C) recommendation, plays a significant
role in structuring and representing data on the Web. RDF effectively organizes data in
a triple format (subject-predicate-object), enabling a flexible, graph-based data structure
that is ideal for linking and integrating diverse data sources.

However, the traditional RDF model is aligned with the persistent data paradigm and
focuses primarily on managing a fixed set of data elements in a static knowledge base. The
knowledge base remains relatively stable over time, allowing for efficient retrieval, querying,
and maintenance. However, the static nature of RDF contrasts with the dynamic and fluid
nature of data flows.

In digital twin applications, data elements are not static but flow continuously, creating
an infinite and constantly evolving sequence of information. This continuous flow raises
a great challenge for data management and processing, as traditional methods of storing
and querying static data sets are insufficient. Addressing this gap requires innovation in
data representation and processing models. In this context, the W3C RSP Community
Group [74] has taken the task to explore the technical and theoretical proposals that
incorporate streams to the RDF model and to its query language. Approaches such as
streaming reasoning, which extends traditional reasoning techniques to handle dynamic
data. This allows for the real-time processing of streaming data, enabling information to
be interpreted and utilized immediately as it is generated. These advances are critical to
realizing the full potential of digital twin technology, where timely, accurate data is key
to mirroring and optimizing real-world processes and systems. A survey [75] analyses the
growth and traces the result of the RSP community.

RSP4J (RDF Stream Processing for Java) [76] is an open source library9 designed
for building RDF Stream Processing (RSP) Engines, aligning with the RSP-QL (a refer-
ence model for explaining the semantics of RSP dialects and the execution semantics RSP
engines). Inspired by the OWL API and other Semantic Web research efforts, particu-
larly in Stream Reasoning, RSP4J aims to foster the application of Semantic Web concepts
through practical and user-friendly software tools. The use of existing engines with RSP4J
involves integrating well-established RDF Stream Processing engines like CSPARQL [77]

9https://github.com/streamreasoning/rsp4j
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and CQELS [78] into the RSP4J framework. This integration allows for leveraging the
unique features and capabilities of these engines within the RSP4J environment. [79] high-
lights the challenges in stream reasoning (SR) due to a lack of standardization among SR
engines. It focuses on how the RSP-QL model in the RSP4J framework aids in standard-
izing SR semantics. A survey comparing SR engines on performance and configurability
shows RSP4J implementations outperforming CSPARQL. The need for further improve-
ment in SR engines is also noted.

2.4.3 Fault detection methods

Fault detection determines the occurrence of fault in the monitored system. It consists of
detection of faults in the processes, actuators and sensors by using dependencies between
different measurable signals. Related tasks are fault isolation and fault identification.
The task of fault diagnosis consists of the determination of the type of the fault, with
as many details as possible such as the fault size, location and time of detection. Iqbal
et al. [80] present a novel approach to fault detection and isolation (FDI) in automotive
instrument cluster systems, focusing on computer-based manufacturing assembly lines.
Traditionally limited to simple boundary checking, this paper introduces an automated
FDI method based on deep learning. The method is capable of diagnosing and locating
multiple classes of faults in real-time working conditions, demonstrating superiority over
other established FDI methods by effectively modeling spatial/temporal patterns in data
from manufacturing systems equipped with local and remote sensing devices.

Fault detection in high-cost and safety-critical processes has become increasingly im-
portant, as early detection can prevent the progression of abnormal events. Miljković’s
survey [81] provides a comprehensive overview of the major methods and the current state
of research in this field. The paper categorizes fault detection methods into (1) data and
signal model-based methods, (2) process model-based methods, and (3) knowledge-based
methods, offering clear definitions of fault, failure, and malfunction. This classification
aids in understanding the varied approaches used in fault detection and their respective
applications. This article plays a great role in guiding us in the definition of metamodel
later.

Knowledge-based methods are increasingly pertinent due to their ability to handle com-
plex, data-intensive environments. Knowledge-based approaches utilize a more dynamic
framework, often incorporating advanced technologies like artificial intelligence, machine
learning, and semantic web technologies. Chi et al. [82] examine knowledge-based fault
diagnosis in the Industrial Internet of Things (IIoT). They discuss the limitations of plain
model-based and data-driven diagnosis approaches in the IIoT context, where complex-
ity can increase exponentially due to the high connectivity among devices. Their work
advocates for knowledge-based approaches, which use ontologies to improve interoperabil-
ity and provide high-level reasoning and responses to nonexpert users. This approach
is gaining preference over traditional methods in recent IIoT systems, underscoring the
importance of constructing effective knowledge bases.

Búr et al. [83] propose a distributed graph query model for runtime monitoring of
CPS, using attributed graphs for high-level knowledge representation. Their models are
adaptable in continuously evolving environments, extends publish–subscribe middleware
like DDS, enabling dynamic creation and deletion of graph nodes and scalable performance
in real-time, resource-constrained environments. In the context of aircraft fault diagnosis,
Tang et al. [84] explore the construction and application of knowledge graphs. They em-
phasize the efficiency of fault diagnosis using deep learning and heuristic rules to extract
fault knowledge from data, significantly aiding maintenance engineers in accurately iden-
tifying faults. Xu et al. [85] focus on ontology-based fault diagnosis methods for loaders,
overcoming complexities in fault diagnosis knowledge. Their method integrates ontology
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with case-based reasoning (CBR) and rule-based reasoning (RBR), using Semantic Web
Rule Language (SWRL) rules to cover shortages of the CBR method, especially when
concerned cases are lacking.

In the realm of robotics, Hernández et al. [86] introduce a self-adaptation framework
based on functional knowledge to enhance robot autonomy. They integrate a metacon-
troller on top of the robot control system, using a functional ontology to adapt the control
architecture for failure recovery. Bozhinoski et al. [87] present MROS, a model-based
framework for runtime adaptation of robot control architectures in ROS. MROS utilizes
domain-specific languages and an ontology-based implementation of the MAPE-K and
meta-control visions, showcasing benefits in mission execution quality and extensibility
across robotic applications. Both [86] and [87] are focused on the self-adaptation of a
robot, while the thesis focuses on the self-adaptation of a distributed system of robots
constituting a production line.

2.5 Conclusion

By linking theoretical and conceptual insights with practical challenges in flexible produc-
tion, this section will return to the six research questions listed in the introduction and
underscore the necessity of a research approach that bridges this gap. It will highlight how
the thesis intends to contribute to both theoretical understanding and practical applica-
tion in the field. This is a crucial link between the literature review and the subsequent
parts of the paper, where the original contributions and solutions are further developed.

RQ1 How can we identify and leverage the current existing standards and technologies
that we can use to design a digital twin model for the production plans and the plant
resources in a both machine-interpretable and user-friendly way?

Section 2.1 first analyzed the potential of combining Model-Driven Engineering
(MDE) with digital twins. This analysis illuminated various advantages of this
integration. By leveraging MDE’s structured approach to model creation, deploy-
ment and maintenance, ensuring they remain accurate reflections of their physical
counterparts.

Following this, the focus shifted to Asset Administration Shell (AAS) as the emerg-
ing standard for digital twins in the realm of Industry 4.0. AAS offers a structured
meta-model for the industrial digital twin, which is an important basis for the syn-
tactic interoperability. An examination of how various research groups are currently
implementing AAS is included in this section. Through this analysis, it became
evident that there is still a gap in the field - a need for a method that utilizes MDE
in conjunction with the expressive meta-model provided by AAS. Such a method
would bridge the theoretical aspects of MDE with the practical functionalities of
AAS, leading to more efficient to industrial digital twin implementations. To this
end, we have included UML class diagrams for the AAS model design, the BPMN
process diagram for the process design also the UML structure diagram to show the
internal structure of an asset.

The proposed method includes not only the graphical modeling environment for the
model design, but also the development of automated deployment functions as a
part of this method. These functions are critical for facilitating the creation and
deployment of digital twin models, making the process more user-friendly and less
time-consuming. This AAS-compliant MDE approach would not only enhance the
scalability of digital twin technologies but also make them syntactic interoperable
to a wider range of use cases and applications.
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RQ2 How can we semantically define the models in order to determine the most appropri-
ate selection of available plant resources that fulfill the production plan requirements?

In Section 2.3, we discussed the crucial need for semantic interoperability and ef-
fective communication in the Industry 4.0 context. And analyzed the significant
advantages of choosing ontologies for semantic expression in a specific domain.

However, it is essential to select an appropriate ontology to accurately describe a
specific domain, in our case, the representation of capabilities of resources in the
manufacturing sector. MaRCO, as an ontology for describing manufacturing capa-
bilities, stands out due to its comprehensive taxonomy and the inclusion of built-in
SPIN rules for resource-process matchmaking. The joint use of models and ontologies
makes it necessary to maintain automatic consistency between the two representa-
tions. Therefore, we have analyzed OML as a bridge between ontology and modeling.
OML facilitates the integration of the rich semantic structures of ontologies with the
practical implementation to the modeling framework.

Despite the existence of many current methodologies, we identified a gap that ne-
cessitates a method to integrate the AAS model with ontological semantics. Such
integration would endow digital twin models with both syntactic and semantic inter-
operability. The proposed method aims to leverage the strengths of AAS in modeling
the physical aspects of assets and the ontological approach for detailed semantic rep-
resentation and rich inference features.

RQ3 How to semantically process the monitoring data obtained from the digital twin during
execution and diagnose the risks in the manufacturing system?

In RQ2, we discussed the semantic expression of ontologies. However, knowledge
imbued with semantics, when combined with appropriate rules, can exhibit powerful
reasoning capabilities. Traditional knowledge-based reasoning methods are typically
suited to static models, which do not align with the dynamic nature of digital twins.
This necessitates a reasoning mechanism that can handle not just static data but
also adapt to continuously changing data streams. Therefore, in Section 2.4.2, we
explored the advantages of RSP and various implementations for the dynamic query-
ing. RSP provides a solution in this regard. It allows systems to process data in a
stream format, enabling real-time analysis and reasoning.

Our research aims to the needs of real-time monitoring and analysis for digital twin
models in a semantic interoperable manner and also at the metadata level. Such
models will not only reflect the current state of the system but also make decisions
based on real-time data.

RQ4 What methodologies can be developed to facilitate dynamic re-planning of production
lines in a flexible and automated manner?

In Section 2.2, we discussed a CBE method aimed at abstractly conceptualizing
the AAS digital twin model of production resources, processes, and products within
“capability” at a semantic level regardless the actual implementation. This method
begins with automated capability checking through abstract semantic reasoning to
align available resources with the designed process, followed by verification through
simulation (feasibility checking) and the automated reconfiguration (skill execution).
Conceptually, this method enhances the adaptability of the system and has garnered
widespread attention and recognition in the field.

However, at the outset of my work, all efforts related to this method were purely
conceptual, with no practical implementation of the method in place. We have
developed the design time capability checking phase of this concept by integrating
ontologies semantics and the reasoning feature within the AAS modeling framework.
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RQ5 What strategy can be employed to ensure rapid and efficient system reconfiguration
in response to varying operational needs?

Subsequent to the capability checking phase, there’s a crucial need for the recon-
figuration and orchestration of the digital twin models. In this part of the process,
establishing connections from the model to the asset and facilitating communica-
tion between models within a system are of paramount importance. Addressing this
need, BaSyx was chosen as a middleware solution. Its capabilities extend beyond
merely providing connection methods with various industrial protocols to field de-
vices. BaSyx also plays a vital role in deploying AAS models as REST servers, which
significantly eases the accessibility of the model by various applications. This de-
ployment strategy is instrumental in integrating digital twins into broader industrial
systems, ensuring seamless data flow and interoperability.

On the execution and orchestration side, Node-RED emerges as a user-friendly and
potent tool for managing device operations. However, the default nodes provided
by Node-RED often require additional effort for the utilization, especially for users
who are not specialists in the field. To address this challenge, we have designed a
set of customized nodes that matches with the BPMN semantics. These nodes are
designed to simplify the understanding and creation of process orchestrators.

RQ6 How can real-time monitoring and diagnosis modules be effectively integrated into
existing systems to ensure continuous operation during execution phases?

In Section 2.4, we discussed the significance and feasibility of the MAPE-K (Monitor,
Analyze, Plan, Execute, and Knowledge) method for realizing self-adaptive systems.
Additionally, we explored various existing methods for system diagnosis.

We have developed a method for rule-based diagnosis that operates on dynamic data
streams. The essence of this method lies in its ability to process and analyze data
stream, as it flows continuously from various sources within the production system.
By focusing on dynamic data streams, the method is capable of capturing the most
current state of the system, offering timely insights that are crucial for effective
diagnosis.

Another primary contribution is the integration of the MAPE-K approach with
previously established methods to form a more comprehensive methodology. This
integration culminates in a framework that leverages digital twins to achieve a syn-
thesis of interoperability, adaptability, and robustness, ultimately enabling flexible
production.
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3.1 Architecture Overview

Whenever we think of future manufacturing, the images that always come to mind are of
highly flexible production lines and fully autonomous systems. However, as we mentioned
in the introduction, there are still many challenges in the realm of realizing this vision,
including interoperability, adaptability, and robustness. This section provides a generic
approach for the construction of such a flexible and self-adaptable manufacturing system.
Figure A.3 and Figure A.4 illustrate the architectural overview of this capability-based
self-adaptation manufacturing (CBSAM) approach. The above problems presented in
Section 1.2 can be tackled through this architecture with the integration of the various
advanced approaches and methods that have been chosen in the previous section.

Tailored for the manufacturing system under the Industry 4.0 context, the CBSAM ar-
chitecture has been carefully designed to be easy to use and engage with by non-specialists,
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bridging the gap between complex technical frameworks and practical, user-friendly appli-
cations. Our overall goal is to create an architecture that not only meets current Industry
4.0 trends and requirements but is also forward-thinking and facilitates the integration of
emerging tools and technologies. By employing software engineering methodologies like
MDE, we abstract the complexity of the digital twin system, making it easier to under-
stand, manage, and control. This architecture is further complemented by the MAPE-K
loop structuring, which forms a self-adaptive system essential for ensuring the production
systems’ runtime behavior and real-time decision-making to meet the business require-
ment. The use of ontology in systems facilitates semantic interoperability and enables se-
mantic computing. It allows systems to understand and interpret the context and meaning
of data, rather than just processing raw data. This understanding leads to more intelligent
and efficient processing, analysis, and decision-making, as the systems can comprehend
and work with the underlying semantics of the data they handle. The integration of
the emerging standard AAS for digital twin modeling, is a strategic choice that not only
adheres to industry standards to ensure the syntactic interoperability in accommodat-
ing diverse workflows and equipment types. This architecture significantly enhances our
system’s flexibility in processing commands and orchestrating production lines.

This CBSAM architecture supports the engineering phases as presented by G.Urgese et
al. [14], with the intention of covering the production system lifecycle from the beginning
of design to the production operation process.

• Specification phase: This phase collects information related to the production
system specification. In order to ensure the smooth progress of the following phases,
some indispensable elements need to be identified at this very first phase. Three
main aspects of achieving the CBSAM are capability, operational, and monitoring
submodel information. The capability specification of each resource includes col-
lecting and analyzing the resource data sheets. The process capability specification
consists of the identification of the working scenario. The appropriate manufacturing
capability semantic representation should be selected for the capability specification
as well. The operational information refers to the information related to the asset
connection, for instance, the OPC UA information model and server configurations
can be a good basis. Specifications for monitoring and diagnosis necessitate the
inclusion of establishing a relationship between monitoring-related semantic require-
ments and dynamic data that the digital twin model can monitor. It is essential to
specify the potential events, like the device’s malfunction, for the production system
with the help of the domain experts.

• Design phase: All AAS models (Resources, Processes, and Products) should be
designed at this phase according to the specification information gathered in the
previous phase. The structure of an AAS model and the existing creation meth-
ods are introduced in Section 2.1.1. An AAS model is composed of submodels,
and submodels are composed of submodel elements. Different submodels are used
to describe different aspects, so three different submodels are created to contain
information related to “Capability”, “Operational data”, and “Monitoring”. A “Ca-
pability Submodel” describes the manufacturing capabilities from the abstract level
by annotating the SubmodelElement Capability with ontology semantics. The “Op-
erationalData Submodel” details the operational properties and the executable oper-
ations. This is the submodel that exchanges data with physical assets, including the
read/write of dynamic property values and the invocation of available operations.
The “Monitoring Submodel” can be designed for various assets, including different
production resources and production processes. It concerns to design of the elements
to be monitored for each asset at this stage, the events that may be triggered, and
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the trigger conditions of the events (the diagnosis rules).

• Engineering & Deployment phase: A global knowledge base can be generated
by a model to knowledge transformation at the engineering phase. This knowledge
base contains information on AAS models specified and designed in the previous
phases. Meanwhile, each AAS model can be generated to an AAS server for ex-
ecutable mode after the model design. These generated AAS servers enable the
connection to the assets and the transparency and interoperability of data exchange
during the assets’ execution. Then, an initial CBE process should be realized for
the first system configuration, where the production work plan can be found and
validated as introduced in Section 2.2. The capability checking module uses the ini-
tial global knowledge base, which automates the production plan selection from the
resource pool. The inferred knowledge results obtained in the capability checking
step are conserved for future maintenance. The feasibility checking module not only
validates the resource candidates inferred by the capability checking module but
also finds the appropriate parameters for the system configuration. The resource
parameters are reconfigured as the validated plan. At the skill execution step, the
previously determined parameters are configured to the device. A production pro-
cess orchestrator will interact with the executing AAS resource model according to
the validated production plan. This orchestrator invokes the operations following
the process design. A table 3.1 summarizes different transformations involved in the
engineering and deployment phase.

Name Target Input(Type) Output(Type)

AAS2MaRCO Knowledge Annotated capability
submodels (UML)

MaRCO individuals
(OWL)

AAS2Monitor Knowledge Annotated monitoring
submodels (UML)

Monitor individuals
(OWL)

AAS2CSPARQL Knowledge Annotated monitoring
submodels (UML)

Event queries (OWL)

BPMN2NodeRED Code Business process
(BPMN)

Executable workflow
(Node-RED)

AAS2BaSyx Code AAS model (UML) Deployable BaSyx code
(Java)

Table 3.1: Different transformations in CBSAM architecture

• Operations & Maintenance phase: During the production operation, the whole
process can be monitored by collecting data from the equipment on the production
line. Continuous local knowledge can be extracted by transforming the real-time
data into knowledge graphs. A knowledge-based fault diagnosis is required in this
phase to analyze the real-time data stream coming from the production line. Faults
can be detected by rules predefined in the knowledge base. According to the repair
recommendation gathered from the analysis phase, a system replanning is required to
ensure rapid management and adjustment methods in abnormal situations to achieve
a stable and continuous production process. Depending on the repair advice, either
a local effector will be triggered to reinvoke an operation or the central recovery
effector will be activated. When the planning module decides to replace the resource
from the production line, the execution module will update the local knowledge to
the global knowledge base and invoke the central recovery effector. The central
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recovery effector will start a CBE query, and in this specific process, the capability
checking will rely on the updated global knowledge base.

Through this architecture, it is possible to build a factory digital twin system from the
ground up that supports both syntactic and semantic interoperability. The use of MDE
technologies also facilitates swift deployment of executable models through automation.
CBE permits the rapid replanning and reconfiguration of the production lines. And the
MAPE-K loop empowers the manufacturing system to be able to make optimal decisions
and respond to changes according to the runtime behavior.

3.2 Specification

The capability specification is foundational for the realization of CBSAM. In diverse multi-
vendor production environments, a common resource capability information model is im-
perative for swift system design and adjustments. This model should enable resource
providers to describe their product’s features in a way that’s easy to compare and help
system planners align product needs with resource offered capabilities. We opted for
MaRCO ontology [12] for the semantic representation of manufacturing resource capa-
bilities in our study. Completed semantic selection shows that in order to fully utilize
resource capabilities, all relevant resource data sheets must be systematically collected,
whether from suppliers or manufacturers. Beyond just resource details, pinpointing prod-
uct parameter necessities and recognizing specific operational scenarios are also vital. We
must also parameterize the manufacturing processes needed to create the product and
critical aspects like efficiency, accuracy, and other functional and non-functional manufac-
turing characteristics.

Operational information is essential for establishing a bidirectional connection between
models and assets, and it is also a crucial component that makes a general information
model meet the fundamental characteristics of digital twins. Through the establishment
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of a digital twin model, the bottleneck issue of connecting information between the infor-
mation technology (IT) layer and the operational technology (OT) layer can be resolved.
Therefore, in this part of the specification, we can gather information related to asset
connectivity. The primary focus is on identifying the communication protocols of devices,
whether it’s OPC UA, MQTT, or any other standard, ensuring compatibility in trans-
parent data transmission. Within the OPC UA information model, data are constructed
with a clear hierarchical structure that ensures consistent and direct access. Metadata, or
data about data, is critical to understanding the context and lineage of operational data.
The specification should clarify how metadata is collected, stored, and linked to actual
operational data, ensuring users can trace the origin and transformation of any data point.
Therefore, taking the OPC UA protocol as an example, in the phase of operational data
specification, we need to collect the information model on the OPC UA server.

For the specification of monitoring and diagnostics, a clear mapping needs to be estab-
lished between each semantic requirement and its corresponding data point in the digital
twin. We need to specify whether the object is equipment, a production process, or a
product, as well as all the dynamic information that needs to be monitored. This not
only facilitates accurate monitoring of the dynamic properties of the asset but also en-
sures real-time feedback from the digital twin for subsequent intervention in abnormal
situations. Defining precise alert thresholds for each potential event ensures timely noti-
fication. The event specifications should also detail the level of time granularity and time
windows required to monitor data. The definition of time granularity significantly affects
the real-time degree of monitoring and processing speed. This has important implications
for event tracking in production systems.

3.3 Design

This design phase concerns the modeling of digital twin models within a manufacturing
system, particularly the three fundamental elements (Resources, Processes, and Products)
involved in the production practice. The use of the AAS standard shapes the industrial
digital twin in a syntactic interoperable manner. Combining the AAS standard with MDE
provides a comprehensive framework that not only supports the conceptualization of dig-
ital twins but also ensures compatibility and interoperability across different systems and
platforms. Therefore the need to present this modeling environment is essential. How-
ever, while the MDE provides the necessary AAS modeling structure, it requires further
refinement through the development of aspect-oriented model designs. These models are
crucial for detailing specific characteristics and functionalities of the digital twins, in or-
der to meet the requirements. The subsequent subsections introduce the AAS modeling
environment and offer a detailed model design guide. This guide outlines various method-
ologies essential for the design of these digital twin models.

3.3.1 AAS Modeling environment

The AAS-based modeling environment was designed as an ISO/IEC/IEEE 42010 compli-
ant architecture framework [88] (Fig.3.3). It provides several modeling editors in order to
create multiple views for the description of AAS-based digital twins architectures. The
modeling environment is embedding a domain-specific modeling language (DSML) that
governs all the viewpoints of the architecture framework. The DSML is a UML profile
that implements the AAS meta-model (version 3RC1). We have chosen the UML profile
mechanism since the AAS-based modeling environment is implemented as an extension
of Papyrus [34], which is an open-source model-driven workbench supporting the OMG
modeling language standards: UML, SysML, and BPMN (Business Process Model No-
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tation [11]). Extending an existing modeling environment is a well-suited approach for
developing DSMLs in an iterative way, taking advantage of the already existing modeling
diagrams and consequently avoiding developing the environment from scratch. Deploy-
ing AAS models using UML profiles enables building and describing digital twins in a
standardized way, thereby promoting common understanding, interoperability, and data
sharing between different applications and systems.

UML Meta-Model BPMN Meta-ModelAAS Meta-Model BaSyx deployment
requirements

stereotypes constraints

AAS UML Profile

restrictsextends

Graphical
Modeling
Diagrams

AAS Modeling Editors

governs

Tabular
Editors

shapes

AAS Models

satisfiesimplements implements

Figure 3.3: Papyrus4Manufacturing modeling environment

UML profiles are a straightforward mechanism for extending the UML meta-model
with concepts specific to a particular domain. The primary extension construct in a
profile is the “Stereotype”. We established a correspondence (Table 3.2) between the AAS
meta-model and the UML meta-model, ensuring that the mapping adheres to the inherent
semantics of each meta-model construct for compliance.

UML Meta-model AAS Meta-model

Class Asset, AssetAdministrationShell, Submodel, SubmodelCollection,
Reference, ConceptDescription

Property Capability, Entity, DataElement (Property, File, ReferenceEle-
ment, etc.), Event

Operation Operation

DataType AssetInformation

Table 3.2: AAS Meta-model and UML Meta-model Mapping
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• AssetAdministrationShell, Asset, Submodel, SubmodelElementCollection, Reference,
ConceptDescription stereotypes extend the UML meta-class Class since each of the
semantics of these AAS concepts are compliant with the semantics of Class: “The
purpose of a Class is to specify a classification of objects and to specify the Features
that characterize the structure and behavior of those objects” [89]. In order to re-
strict the semantics of the UML meta-class Class, we define constraints attached to
each stereotype. For example, an Asset must not contain attributes, operations, and
behaviors.

• Each SubmodelElement extends a specific meta-class depending on its semantics.
For example, the “Operation” stereotype extends the UML meta-class Operation
with the restriction: the return parameter of the UML operation is not considered
since AAS operations support only in, out, and inout parameters.

• Capabilities and Skills are specializations of SubmodelElements. Capabilities are
represented using the “Capability” stereotype that extends the Property meta-class
from UML with the constraint that the Capability does not have a type. Skills
are represented using the “Operation” stereotype that extends the Operation meta-
class from UML. In capability-based engineering captured from [13] and [43], the
Capability concept (a type of AAS SubmodelElement) is an abstract description
of the functionality of a production resource while the Skill concept is the asset-
dependent implementation to achieve a certain effect. Different resources may have
the same capability but implemented by different skills. The main goal of capability-
based engineering is to design, implement and then dynamically operate the system
according to the functions required in each step of the production process, rather
than explicitly specifying the actual production resources.
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Figure 3.4: Excerpt from the AAS UML profile
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3.3.2 Capability Submodel Design

The objective of capability submodel design is to be able to select resources according to
their “capability” at a semantic level. Our platform relies on the alignment of digital twins
AAS models (using UML profiles) and ontologies (in MaRCO). This alignment requires a
comprehensive definition of mappings between concepts in the different languages used to
express our AAS models and ontologies.

UML, as a graphical language, allows the creation of visual models of digital twins,
thereby simplifying the analysis and design of digital twin systems. Additionally, the use
of specific profiles or extensions to UML allows the model to be tailored to the specific
needs and semantics of the digital twin, thus ensuring an accurate semantic representation
of the model. Ontology serves as a structural framework that systematically classifies and
defines relationships between various concepts within a specific domain or across multiple
domains. Ontology provides a powerful way to define the semantics and relationships
between different entities and concepts, thereby ensuring coherent understanding and in-
terpretation among the platform’s various applications and users.

However, a method to guarantee consistency between the AAS model and the ontol-
ogy is required. This requires a comprehensive and detailed mapping framework as a
transformation layer that ensures that the concepts, properties, and relationships defined
in the UML-based AAS model are semantically and syntactically consistent with those
expressed in the MaRCO-based ontology. This mapping also establishes a foundation that
can leverage consistent data and ontology reasoning rules to seamlessly integrate and ex-
ecute rule-based analytics and various AI-driven applications. This cannot be achieved
through a primitive model-driven engineering framework alone.

General Concepts Mapping

Originally the study focused on the mapping between OWL concepts and UML metaclasses
for the general concepts mapping. However, in order to achieve the transformations be-
tween AAS and OWL models, a tool OML adapter has been used for the implementation
in Papyrus. We chose to use the OML adapter because it allows automatic conversion of
the ontology concepts into a UML profile and its extraction from UML profile-compliant
instance models back to OWL. OML is a language to describe ontologies, where adapters
for transformations from OML to UML, and UML to OWL are provided. In this context,
OML can be seen as an intermediate language to enable the conversions.

OWL OML UML Metaclass UML Profile

Class Aspect / Concept Abstract Class / Class Stereotype

Individual Instance Instance specification Stereotype applicable
element

Object Property Relation Entity Association / Property Stereotype attribute

Data Property Property Property Stereotype attribute

Cardinality, exactly Multiplicity Multiplicity

MinCardinality, min

MaxCardinality max

Table 3.3: General concept mapping

To pave the way to model alignment, a mapping between OWL, OML, UML general
concepts and the AAS-UML profile concepts has been designed (see Table 3.3). The
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classes in OWL are represented as aspects and concepts in OML. The aspect refers to
the abstract class, while the concept refers to the class. They are all transformed to
stereotypes of a UML profile. An individual in OWL refers to an instance in OML and
instance specification in UML, this represents a UML element to which a stereotype is
applied to. The OWL object properties are represented in OML as relation entities and
refer to associations or properties in UML. The OWL data properties refer to properties
both in OML and UML. The object properties and data properties are transformed to the
attributes of a stereotype.

In OWL, the concept of “class” is equivalent to “aspect” or “concept” in OML, “ab-
stract class” or “class” in UML metaclass, and is mirrored by “stereotype” in UML profile .
Furthermore, the concept of “individuals” in OWL is consistent with “instances” in OML,
equivalent with “instance specifications” in UML metaclasses, and is referred to “ele-
ments” that apply to “stereotypes” in UML. At the same time, the “object attributes” of
OWL are parallel to the “relationship entities” in OML, matched with the “association”
or “attribute” in the UML metaclass, and the “stereotype attributes” in the UML pro-
file terminology. Similarly, “data attributes” in OWL are consistent with “properties” in
OML and UML metaclasses, and map to another form of “Stereotype attributes” in UML
Profile. For the cardinalities, OWL classifies expressions into “Cardinality”, “MinCardi-
nality” and “MaxCardinality”, while OML simplifies them to “exactly”, “min” and “max”.
Instead, both UML Metaclasses and UML Profiles leverage “multiplicity” to convey these
constraints.

AAS & MaRCO Vocabularies Mapping
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Figure 3.5: AAS Marco vocabularies mapping

In order to use OML for our MaRCO-specific semantics, the mappings between general
concepts are not enough. Hence, we defined transformation rules between the vocabularies
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of MaRCO and AAS metamodel in Figure 3.5. MaRCO concepts are on the left, while
AAS concepts are in the middle. As presented in Table 3.3, the OWL classes are trans-
formed to stereotypes in a UML Profile. A subset of MaRCO concepts have been chosen,
such as Resource, ProductElement and Activity, which are transformed to stereotypes
that can be applied to the “Asset Administration Shell” models of resources, products
and processes. It is worth mentioning that the DeviceBlueprint ontology class needs to
correspond to the AAS model with the asset kind as “type”, while the IndividualDevice
can only match the AAS model with the asset type as “instance”. The Capabilities or
ProcessTaxonomyDescriptions stereotypes should be applied to AAS “Capability” mod-
els. Then the object properties requiresProcessCapability and hasCapability refer to the
attributes of these stereotypes. And the value type of these attributes should be Capabil-
ities or ProcessTaxonomyDescriptions. Each stereotype may contain two different types
of attributes, one is the scalar properties such as weight or depth which refers to the data
property parameter, and the other is object properties that point to other stereotyped
elements in the model package. In the ontology representation, IRI (Internationalized
Resource Identifier) serves as a fundamental component for uniquely identifying classes,
properties, and instances (individuals). The use of IRI refers to the distinction between
entities in the ontology. In the AAS standard specification, an identifier semanticID is
defined to facilitate the interoperability between different systems and platforms. By using
this identifier, different systems can more easily recognize and process shared data. By
applying stereotype to an AAS model, the semanticId of the AAS model will be associated
with the vocabulary’s IRI in MaRCO ontology.

Once the AAS models are annotated with stereotypes from the MaRCO ontology,
these AAS models become instance models that comply with MaRCO semantics. So we
can convert these stereotype applicable elements to MaRCO compliant OWL individu-
als. Semantic connections between model elements are also transformed according to the
previously mentioned mapping rules. So an AAS class is transformed to an OWL individ-
ual, and its type is either a Resource, a ProductElement, or an Activity. It may contain
object properties hasCapability or requiresProcessCapability with the value of individual
capabilities as defined in the AAS model.

3.3.3 Operational Data Submodel Modeling

The design of the operational data submodel aims to arrange the various dynamic prop-
erties and operations to facilitate data acquisition and remote orchestration. It involves
the insertion of server information, which is acquired during the preceding specification
stage, into the AAS submodel in a structured and coherent manner. It’s imperative that
the connection information is consistent and accurate, to ensure the models are valid and
reliable, thereby guaranteeing the integrity of future deployments and applications of this
AAS digital twin.

In this operational data submodel, the concrete skill can be designed. As defined in
[43], skill represents the implementation of abstract capability at the device level, and
also represents the behavior that will be actually performed during operation. Skills are
usually implemented by the orchestration of a set of atomic actions. In the model design
stage, we chose to use “AAS Operation” to model skills and actions. Various processing
languages can be used to describe the composition of behaviors, such as BPMN, FSM,
BehaviorTree, etc.
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3.3.4 Monitoring Submodel Modeling

This section presents the proposed conceptual metamodels for self-adaptation, which in-
cludes concepts related to the MAPE-K loop of CBSAM. As we discuss the modeling
based on AAS models, the metamodel extends the AAS metamodel. As knowledge is an
important part of the MAPE-K loop, this section also includes mapping the introduced
metamodel and the ontology concepts for the implementation. This essentially means
examining how our system responds to changes in runtime behavior and adapting its op-
erations accordingly to maintain optimal performance. When confronted with deviations
or anomalies, we will shed light on how the self-adaptive system can invoke self-repair
protocols, ensuring resilience and operation continuity. This consistency is critical not
only to maintain consistency between the digital twin and its physical counterpart, but
also to ensure seamless interoperability and communication within the integrated digital
platform. The system’s self-adaptability is essential to ensure production on time with
the required product quality from the business level.
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Monitoring Metamodel

Like the previous method of capability interoperability, we also implement this monitoring
metamodel through the UML profile. The monitoring metamodel is shown in Figure
3.7. There are two types of Monitors. ResourceMonitor is used to observe and manage
manufacturing resources to ensure optimal functionality and performance. ProcessMonitor
is to monitor whether the entire production line is running smoothly according to the given
process work plan. Monitor inherits the characteristics of Submodel from AAS profile and
can have its own observation objects ObservedElements.

We regard ObservedElement as a SubmodelElement. Each ObservedElement has a spe-
cial attribute reference, which points to its original observing SubmodelElement. According
to different observation types, we divide ObservedElement into three categories, namely
ObservedProperty, ObservedOperation, and ObservedSkill. Skill is an implementation of a
function specified through a capability that is deployed on a specific resource, which pro-
vides an interface to be invoked by other systems by encapsulating the internal complex
functions. So to observe a skill, one needs to observe also the properties and operations
wrapped into this interface. The data collected in real-time is the measurement of Ob-
servedProperty. This Measurement stereotype will inherit from PropertyValueStatement
and has the special attribute timestamp to record the measurement time. It is worth
mentioning that the value of the ExpressionSemantic attribute of Measurement should
always be “measurement”.

Diagnosis Metamodel

The construction of this diagnosis metamodel Figure 3.9 is inspired by the work of [90]
and [91], where [90] introduces a conceptual model of a self-healing CPS system, and [91]
gives definitions to different fault types. The analysis phase includes the fault diagnosis
and provides a recovery method. Our Diagnosis is supposed to be realized by domain
knowledge so that we focus more on the type of RuleBasedDiagnosis. A stereotype Di-
agnosisRule is created to describe the rules for performing diagnosis reasoning. In the
implementation phase, the DiagnosisRules models will be converted into RSP-QL queries
for runtime reasoning. To achieve this function, some necessary attributes must be in-
cluded in DiagnosisRule models. Threshold inherits also from PropertyValueStatement to
define constraints. An RSP-QL query verifies the real-time data (Measurements) conforms
to the constraint values (Thresholds) within a time window. The window range defines the
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Table 3.4: Definitions of concepts for monitoring

Concept Definition

Monitor An entity that is responsible for observing and recording activities
or changes.

ResourceMonitor A specialized monitor designed to observe and manage manufac-
turing resources to ensure optimal functionality and performance.

ProcessMonitor A specialized monitor observing the status and performance of a
process.

ObservedElement An entity, function, or variable within a system that is subject to
observation and analysis, by the diagnosis tool or system.

ObservedProperty A particular characteristic or attribute of an element being mon-
itored, which can be measured or evaluated.

ObservedOperation A function or method being monitored for performance, success,
failure, or other measurable metrics within a system.

ObservedSkill A skill being monitored for the process required capability imple-
mentation.

Measurement Quantifiable data or metrics obtained through observation, per-
taining to an observed property, or observed operation.
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Figure 3.9: Diagnosis metamodel

window time frame, and the window step indicates the query execution frequency. Finally,
the query results will lead to different Events.

This analysis module should not only point out the Faults but also provide the ability
to issue Warnings. Therefore, they are all classified as Events. To clarify the terminology,
Warning is the potential problems of the system, while FaultEvent is the detection of
an unacceptable deviation of the system compared with the standard conditions. Failure
means a system cannot perform the demanding operation. Malfunction refers to the
operation is not executed in the desired way.

After the Diagnosis, the RecoveryEffector provides the recovery method to heal the
system. As defined in [90], three kinds of RecoveryEffectors are classified by the nature
of the modification. ParameterEffector modifies the property of the system component.
BehaviorEffector makes changes to the behavior. ArchitectureEffector refers to adding,
replacing, or removing a component from the system.
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Table 3.5: Definitions of concepts for diagnosis

Concept Definition

Threshold A specified limit or boundary that must be maintained in order
to keep the system or process running smoothly.

Diagnosis The process of identifying the root cause or nature of a problem
or deviation within a system through systematic investigation
and analysis.

RuleBasedDiagnosis A diagnostic approach that employs a set of predefined rules or
criteria to identify issues or anomalies within a system.

DiagnosisRule A specific guideline or criterion used within a rule-based diag-
nostic framework to detect and categorize issues.

Event A significant occurrence or change of state within a system, typ-
ically triggering specific behaviors or responses.

Warning A preemptive alert or notification that signals a potential prob-
lem or risk, typically allowing for preventive action to be taken.

FaultEvent An event characterized by a malfunction or failure within a sys-
tem, typically requiring diagnostic and corrective actions.

Failure A state in which a system or component is unable to perform its
intended function due to an issue or fault.

Malfunction An aberrant state in which a system or component is not oper-
ating according to its intended or expected manner.

RecoveryEffector A component or process designed to restore a system or appli-
cation to a normal or safe state following a failure or deviation.

ParameterEffector A module or function that influences or adjusts parameters
within a system.

BehaviorEffector An element that manages or manipulates to change the behavior.

ArchitectureEffector A function or component that modifies the architectural elements
of a system, potentially altering its structure or behavior.

AdaptationAction A deliberate modification or adjustment enacted within a system
to accommodate changes or to optimize its performance under
varying conditions.
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3.4 Engineering & Deployment

Digital twins play a key role in the engineering phase. Automatically generated digital
twins (AAS2BaSyx) are not only deployable, but can also accurately reflect real-world enti-
ties and processes. It plays an important role in building knowledge bases (AAS2MaRCO,
AAS2Monitor, AAS2CSPARQL) during this engineering phase. These knowledge bases
record the initial state of the system in detail, providing reference points and basic data
layers for future diagnosis, modifications, and system enhancements. The process of find-
ing and validating the resources that meet the work plan requirement, the capability-based
engineering method, enables the system’s rapid replanning.

The deployment phase involves thorough configuration and integration of the process,
ensuring a seamless start-up workflow through the deployed digital twin. The production
process designed earlier will be transformed into an orchestrator (BPMN2NodeRed). Syn-
chronization of virtual and physical systems is addressed here, ensuring consistency and
optimal functionality between them.

Figure 3.10 shows the whole process of the capability-based engineering. In a model-
based Digital Twin production system, each resource (or asset) has its own representative
AAS provided by different stakeholders (product and process designers, equipment sup-
pliers, integrator, etc.). The AAS contains the technical descriptions (nameplate), the
simulation models, the operational data, or other business information. The resource pool
of a plant contains all the resources as well as the system layout design. During the design
phase, the system architect specifies the products and their manufacturing processes. The
rounded rectangles in the figure represent different levels in the automation pyramid from
ISA95 [92]. From top to bottom, they represent the manufacturing operation management
(level3), the monitoring and automated control (level2), and the manipulation of produc-
tion processes (level1). In the latter level, the “AASs” (or digital twins) are continuously
updated to represent the assets real time status.

The AAS of a resource describes the provided capabilities and related features, with-
out knowing the process to complete and the product to produce. The AAS of a process
describes the capabilities required by the work plan and some environmental constraints.
The AAS of a product describes the product from different aspects. Flexible production
systems must automatically match resources, processes and products in order to achieve
continuous capacity-based engineering. Capability checking takes the AAS capability sub-
models of process, products, and resources as input and computes the possible resource
combinations that may currently achieve production. During the feasibility checking step,
these combinations and environmental contexts will be simulated to validate the selected
resource combinations against their current constraints. Then the next step automati-
cally supervises the skill execution of the selected models. The supervisor deploys the
selected resource pool models according to the reconfiguration plan obtained through the
capability-based reconfiguration phase. During the whole process execution, the supervi-
sor monitors the status of all asset models and will re-plan the production process in a
timely manner when abnormalities are detected.

3.4.1 Capability Checking

Design Time Capability Checking

Capability-based engineering aims to deploy resources dynamically rather than directly
specifying the actual production participants. By defining the capabilities required for
the product’s production process and letting the automated production line management
system find the resources and implement the process to achieve the reliability of the digital
twin production system. The capability checking module design, as shown in Figure 3.11,
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interacts with AAS models to set/get their semantics and then to trigger the capability
matchmaking reasoner in order to compute the best resources matching the requirements
of each production process. The four stages depicted in Figure 3.11 are:

Figure 3.11: Capability checking architecture

1. The designer annotate the AAS models with semantic definitions (semanticIds) from
the ontology.

2. The designer triggers the automatically transformation of the AAS models (Product,
Process, Resources) into ontology compliant individuals.

3. With the input individuals, the automated reasoning engine matches the capabilities
required by the process with the capabilities provided by the resources.

4. Finally the capability checking module returns the matchmaking result to the de-
signer.

Since there was a comprehensive expert investment in its design, the ontology will not
frequently change over time but to add new resources and drop decommissioned ones.
Consequently, the first stage (ontology to UML profile conversion part) only needs to be
performed once, as long as the ontology concepts do not change. The second, third, and
fourth stages will be repeated, whenever a PPR model update occurs. All the actions
represented by the arrows shown in Figure 3.11 are automated, system architects only
need to define and select the required production models. A concrete example to describe
this capability checking process shows how to select a device that can provide transport-
ing capability from the alternative resources when an object needs to be moved in the
production process.
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Runtime Capability Checking

The major difference between the capability checking at design time and the capability
checking at runtime concerns the availability and status of the resource. As illustrated
in Figure 3.10, by monitoring the models@run.time, runtime capability checking can be
triggered by the recovery adapter, which will be presented in Section 5.4.1. With the
knowledge integration from runtime data (See Section 3.5.5), the actual status of the
system will be updated to the global knowledge base that is considered by the runtime
capability matchmaking mechanism.

3.4.2 Feasibility Checking

Feasibility Checking is a procedure that brings in environmental factors and constraints.
Simulations for feasibility checks are conducted during the feasibility checking phase, which
enables the engineers and developers to test and validate the systems in a virtual environ-
ment before physically implementing them in the real world. This will further filter out the
skills that meet the conditions and will be deployed on the production line. This enables
the engineers and developers to optimize, and validate systems in a virtual environment
before physically building and implementing them in the real world.

3.4.3 Skill Execution

Digital Twins Models

  

ShopFloor

ROS MQTT

ROS Zigbee
Modbus

IoT Gateway

OPC UA

ROS Bridge

DT AAS
Server

Automatic
Code Gen

TM

Figure 3.12: Skill execution architecture
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The diagram 3.12 is an illustration of the top-down skill execution architecture, high-
lighting the key stages in which the field equipment operates according to the business
process designed in the process digital twin model. This representation emphasizes the im-
portance of seamless integration between conceptual design and actual execution, bridging
the gap between virtual planning and physical execution. In this phase, the middleware
plays an integral role in enabling the connection between the digital twin model and the
physical shop floor equipment.

As introduced previously, BaSyx [39] is an appropriate candidate for the skill exe-
cution. Digital twin models and business processes are transformed from models into
executable code. The BaSyx AAS digital twin deployed as a REST server adds another
layer of flexibility and accessibility to the system. This feature enables the external appli-
cations that support the HTTP protocol to interact effortlessly with the digital twin server.
These applications can perform a range of functions, from configuration and execution to
orchestrating digital twins.

3.5 Operations & Maintenance

A Cyber-Physical System (CPS) incorporating a MAPE-K (Monitor, Analyze, Plan, Ex-
ecute over a shared Knowledge base) architecture represents a strategic approach that
primarily facilitates intelligent and adaptive system behaviors for the operations and
maintenance phase. The effort of integrating MAPE-K into CPS can be comprehensively
elucidated through AAS digital twin. Figure 3.13 shows the structure of an individual
self-adaptive loop for a single AAS. The description of each module will be precise in the
following subsections.

3.5.1 Monitoring

In the context of CPS, the Monitor component perpetually observes the system’s opera-
tional status, considering both cyber and physical aspects, ensuring that any deviations
or anomalies are promptly identified. It continuously collects data regarding the system’s
state and performance through various sensors and log files.

Based on the designed framework, the monitor already has a good understanding of
the specific elements within the system that require to be closely observed. This prior
knowledge allows for a more targeted and efficient monitoring process. One component
of the monitoring mechanism is the “Stream Generator”. This component performs the
task of processing real-time data collected from the system. It continuously generates
raw data into runtime RDF graphs that provide a dynamic and semantic representation
of the ongoing performance and state of the system. This generator not only facilitates
immediate understanding and analysis but also ensures that real-time data is seamlessly
integrated into the local knowledge base.

3.5.2 Analysis

The analysis component methodically examines the data acquired by the monitoring phase,
identifying patterns, detecting anomalies, and scrutinizing system performance against
predefined benchmarks or objectives. This analysis module can utilize various data pro-
cessing and machine learning techniques to derive insights and ascertain the system’s
condition and performance.

In the designed framework, the analysis module is integrated in the form of a “Con-
tinuous Query Engine”. This engine enables the dynamic execution of queries, which are
generated from the AAS2CSPARQL procedure of each AAS model. It enables intelligent
parsing through the real-time knowledge graph to discern patterns that indicate potential
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Figure 3.13: MAPE-K loop for a single AAS model

system anomalies or dysfunctions. This is a rule-based analysis method. However, the
implementation of this part is not limited to this method. The main mechanism is analysis
based on dynamic data.

3.5.3 Planning

Plan seeks to devise strategies or create actionable plans based on the insights obtained
during the analysis phase. This involves crafting potential responses, corrections, or adap-
tive strategies to cater to the system’s present and future operational requirements. The
planning component can leverage optimization algorithms and planning techniques to con-
struct efficient and feasible plans.

The “recovery planner” is an integral part of this phase and is tasked with making
decisions after an event or anomaly is detected. It assesses whether the detected event is a
behavior malfunction, a major failure, or a system warning. Based on this assessment, the
recovery planner determines the appropriate course of action. This may include minor ad-
justments or corrections to mitigate minor malfunction, or it may include a comprehensive
recovery strategy in the event of a major failure. Additionally, the planning component
also includes proactive measures to preemptive actions based on predictive analysis to
prevent potential warnings.
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3.5.4 Execution

Execution implements the strategies formulated in the planning phase. This component
interacts directly with the system, enacting control commands, and deploying adaptive
actions to align system behavior with the formulated plans. The execution phase might
involve activating actuators, modifying system parameters, or altering the configuration
of the cyber or physical components to implement the strategies. This requires a high
level of precision and responsiveness, as the system needs to quickly adapt to the dynamic
operating environment.

The execution phase is the phase in which the strategic plan is realized, translating
the strategies elaborated during the planning phase into concrete actions. The addition
of different types of effectors (parameters, behaviors, and architectures) adds a layer of
complexity to this phase, allowing for a more nuanced and efficient implementation of
operational strategies.

3.5.5 Knowledge Integration
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belongsTo

ObservedElement
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originateFrom

originateFrom
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EventRecoveryEffector
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Figure 3.14: Ontology relation

However, in order to aggregate all the digital twin models together, it is necessary to
establish a common knowledge base. After constructing our self-adaptation metamodel,
we need to connect it with the existing knowledge base, that is, the knowledge results
obtained in the capability checking stage. Because we chose MaRCO Ontology as capa-
bility checking, we also combined the main concepts we built with MaRCO to form a new
knowledge graph. Figure 3.14 shows the relations.

The relationship between the ObservedElement and its potential parent entities, In-
dividualDevice and Process, is foundational to our metamodel. This relationship ensures
that any observed element can be accurately traced back to its source, whether a specific
device or a process. Similarly, the origination of an Event from either an IndividualDe-
vice or a Process provides insights into the original cause of the event. Such traceability
provided by the relationships is crucial for the context awareness of the system, which
updates the change to the production cell for the new planning phase.

Integrating our self-adaptation concepts with the MaRCO Ontology allows us to com-
bine newly acquired knowledge with existing knowledge and create new relationships.
It combines distributed knowledge information gathered from different monitors into a
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centralized knowledge base. Then enters the new planning phase and provides a new
production plan for the self-adaptive manufacturing system.

3.6 Conclusion

This chapter provides a generic approach to building a flexible, adaptive manufacturing
system, CBSAM, an architecture that selects and integrates state-of-the-art methodologies
for ease of use and participation by non-specialists. The CBSAM architecture is designed
for manufacturing systems in the context of Industry 4.0, finding a balance between com-
plex technical frameworks and practical, user-friendly applications. The complexity of the
digital twin is abstracted and made easier to understand, manage and control by adopt-
ing software engineering methods such as MDE, which is further complemented by the
MAPE-K loop architecture to form an adaptive system. The use of ontologies in the sys-
tem promotes semantic interoperability and enables semantic computing. It enables the
system to understand and interpret the context and meaning of data, allowing the system
to analyze, predict and plan more wisely.
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4.1 Overview

Implementation marks the process of bringing the methods explored in the previous section
to practical realization. This phase is the concrete application of the concepts, strategies,
and techniques discussed in the previous chapters. It bridges the gap between conceptual
exploration and realistic results, emphasizing the practical application of conceptual in-
sights. This phase is not only a test of the feasibility of the proposed methods, but also an
opportunity to refine them by hands-on experience and feedback. To ensure consistency
with the research questions and contributions presented in the Introduction, the structure
of this chapter revisits the initial assumptions and objectives mentioned previously. The
outline of this chapter is as follows.

Section 4.2 presents the Papyrus4Manufacturing (P4M) toolset development. The
presentation includes the integration of user-friendly editors for standardizing the AAS-
compliant digital twins creation, and the automatic deployment functionality based on
model transformations and code generation methods.

The following two sections present the partial implementation of the CBE operation.
Section 4.3 explains how an MDE approach can aggregate around digital twin modeling
tools both I4.0 technologies and AI (Knowledge Representation and Reasoning) tools.
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The implemented platform aligns modeling and ontological elements by AAS2MaRCO
tranformation, in order to get both the manipulable models and an ontology on which
we can make semantic queries. This module not only provides semantic descriptions for
digital twin models, but also complements model-driven engineering tools with automated
reasoning. Section 4.4 describes a tool developed in order to ease the orchestration of
process digital twin. The implementation brings on the transformation from a static
BPMN process into an executable Node-RED flow.

Section 4.5 implements the monitoring and diagnosis of dynamic AAS models with
semantic computing technologies. These features are essential to realizing the self-adaptive
CBE, which provides the ability to detect or predict the failure or potential issues of the
system to reduce production line downtime.

The central objective of this thesis is to demonstrate the practicality of applying the
proposed architectural design in an educational and experimental framework. It should
be emphasized that while certain aspects are advantageous, they are not indispensable for
fulfilling the main goal of the study. Specifically, the deployment of applications in real-
time is a fundamental aspect yet its treatment can be postponed to future work, given that
the primary focus of our case study is not centered on real-time operations. Moreover,
the selection of tools for this project, though efficient, results in unpredictable delays.
However, this factor does not undermine the principal results of the thesis, which is to
ascertain the practical application of the architecture within a well-defined, experimental
environment and can be expanded to cover real-time issue later on.

4.2 Modeling Environment Development

4.2.1 AAS Model Design Diagrams

P4M provides a graphical modeling environment, and different types of diagrams are im-
plemented to describe different perspectives. AAS design diagrams are able to visually
express the “who contains what” relationship to achieve clarity at varying degrees of pre-
cision. BOM (Bill Of Material) diagrams focus on the relationships between entities at the
same level, emphasizing the interactions and connections between them. BPMN process
diagrams provide a comprehensive way for process modeling to all business stakeholders.
I participated as a member of a comprehensive series of tutorial videos1 production. This
resource is an excellent supplement for in-depth understanding and practical guidance of
the P4M toolset.

AAS Design Diagram

The AAS design diagram (e.g. Figure 4.1) is an extension of UML class diagram which
defines the detailed information of an asset. Within this diagram, one can list and display
all information related to an asset. In order to better organize and give a clear structure,
different aspects of information are grouped into different submodels.

We can add submodel elements as additional layers of information for each submodel
block. The IDTA2 (Industrial Digital Twin Association) provides a list of submodel tem-
plates to provide a uniform for the submodels. This helps to improve the interoperability of
the AASs defined by different users. For example, the submodel Nameplate help to shape
the asset nameplate information in a unified manner. The P4M provides the functionality
of importing those .aasx template files.

1https://www.youtube.com/playlist?list=PL9nkS1KDTMm7IH0ucDZ7YjlJyZnwSxTk9
2https://industrialdigitaltwin.org/en/
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Figure 4.1: AAS design diagram

Composite AAS Modeling

I4.0 components represented by an AAS can be combined into a new I4.0 component.
Then, certainly a composite I4.0 component should provide a composite method to show
the sub-components it contains. By defining a bill of material (BOM) in a submodel,
all the sub-components can be listed here as “Entities”. These entities can be classified
into two types, co-managed or self-managed. Co-managed entity refers to an entity that
needs to be managed by a higher-level entity, because it does not have its own asset
administration shell. On the contrary, a self-managed entity has an AAS attached to
itself. The connections between two entities are realized by their joint properties. As
defined in [10, 23], if two entities are connected with each other, it means that at least
one property of one of the assets is set into relation with at least one matching property
of the other asset. By a property of an asset, we mean a property defined in one of the
submodels of this asset, for instance, the number of objects remaining in stock.

In order to visualize the composite AAS and the connections between sub-components,
it is possible to create a BOM diagram for the BOM Submodel of the composite AAS,
which is a customized UML composite structure diagram. Figure 4.2 shows the customized
BOM diagram view in P4M, where the example diagram is the composition of a robotic
cell. It shows the interactions of the five assets in a closed environment. The exchange data
between them are property values related to a part. In detail, the property item number of
the storage holds the value that counts the total parts in the storage; the property load of
Niryo Ned, UR3e, the TurtleBot3 WP, and the conveyor belt hold a value corresponding
to whether a device is loading a part; the properties counter 1 and 2 of a working scenario
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hold an accumulated number of parts passing each transporter.

Figure 4.2: Bill of material composition diagram

Process Modeling

The production process is also represented in an Asset Administration Shell with a sub-
model “Work Plan” where we define the process steps and requirements. BPMN allows
the creation of end-to-end business processes designed to convey a variety of information
to a wide audience. We choose to attach the process model to the submodel element
“operation” as shown in Fig. 4.3, from this submodel element, a BPMN Process diagram
is created to describe the tasks and possibly execute them. This BPMN Process diagram
is a customized UML activity diagram composed of a subset of BPMN concepts as men-
tioned in 3.3.1. The use of this standardized diagram can allow non-specialists to define
production processes.

• The “Lane” is reused to represent different production process steps to distinguish
work on different production equipment.

• “Tasks” are atomic activities in the process. Different types of tasks are defined in
BPMN to distinguish the types of inherent behaviors that tasks can express.

– “Task” that is not further specified is called “abstract task”.

– A “Service Task” is a “Task” that uses some sort of service, which calls an
operation during execution.

• The “Gateways” are used to control the convergence and divergence of sequence
flows in the process, which is a gating mechanism that allows or prohibits passing
through the gateway. Gateway is not necessary, if there is no need for control flow
in the production process.
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Figure 4.3: Workflow BPMN process diagram

4.3 Capability Checking @ Design Time Development

When we implement the capability checking architecture, the numbers used in Figure 4.4
represent the implementation process of their tagged stage in Figure 3.11. This entire
capability checking feature is developed as an Eclipse plug-in bundled with P4M [35].

Figure 4.4: Capability checking implementation workflow

1. Semantic annotation.

(a) Define. The original MaRCO is defined in OWL format, while the OML
Adapter provides only the conversion from OML to UML profile. In order
to reuse the adapter, the first step is to define the selected part of MaRCO
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concepts into OML vocabulary. As can be seen from, some attributes but not
all of them are chosen from the original ontology. Although some information
is ignored in this step, these vocabularies can still correspond to the ontology
concept with the same name in the final conversion process, because we have
defined the same URL as the original ontology in the OML file.

(b) Generate. This converting process is realized by the OML Adapter, which
generates UML profile from the OML files defined in the previous step.

(c) Apply. The generated MaRCO UML profile file will be applied to the AAS
model as stereotypes. The model designer will refine the AAS models based on
the properties of the equipments and capabilities provided in the profile.

2. Compliant instances. This step concerns to regenerate the specified AAS models to
MaRCO compliant instances in an OWL file. All AAS models and the information
stored in the stereotypes that come from the MaRCO profile will be converted as
OWL individuals that conform to the MaRCO ontology.

3. Inference. In this phase, the instances to be selected will be inferred from the newly
generated individuals and the production process required capabilities, thanks to the
capability matchmaking SPIN rules embedded in MaRCO ontology.

4. Retrieve. The related inference results can be processed and selected by a SPARQL
query (Listing 4.1). The results will point to the originally designed AAS models
with the matching between OWL instances and AAS models in P4M.

Our capability checking implementation involves three different modules: (A) the
model transformation module for the ontology concept conversions between different file
natures, (B) the capability matchmaker module for inferences, and (C) user interface
module for launching capability checking requests and displaying the reasoning results in
Papyrus4Manufacturing. To implement the above functions, we have selected two well-
established jobs. One is OML Adapter, which is used to convert OWL to UML profile.
The other is MaRCO ontology, on the one hand, because the description of capabilities
in manufacturing perfectly suits our needs. On the other hand, it also provides complete
inference rules for capability matchmaking.

4.3.1 Model Transformation Module

The model transformation module provides a round-way transformation between OWL
ontologies and UML models. The three dotted steps in Figure 4.4 correspond to the first
stage introduced in Section 3.4.1, which enriches AAS models with semantic annotations
in the manufacturing capability domain. As mentioned earlier, once generated from the
ontology, this UML profile can be reused for all forthcoming actions.

The OML adapter takes care of the transformation from OML vocabularies to UML
profiles. However, the MaRCO ontology was initially described in OWL format. To
better use the existing works, we need to first define OML vocabularies referencing the
original OWL ontology. Figure 4.5 shows an example of OML syntax of semantic concept
expression that keeps aligned with the example of OWL concept structure of MaRCO
(Figure 4.6).

After confirming the definition of OML vocabularies and the corresponding relationship
between these concepts and UML meta-model, we can obtain the MaRCO UML Profile
(Figure 4.7) through OML adapter. Here we will briefly introduce some concepts from the
MaRCO ontology involved in this capability matchmaking process. The MaRCO ontol-
ogy is composed of several distributed ontologies. By using the OML Adapter, a subset of
MaRCO vocabularies is transformed into a UML profile that can be applied to AAS models
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Figure 4.5: Exemplary OML syntax

as stereotypes, including different sub-classes of the concepts. The capabilities are sep-
arated into simple capabilities like Moving and combined capabilities like PickAndPlace,
and these capabilities have parameters to describe their characteristics. The combined ca-
pabilities are compositions of simple or other combined capabilities, these information are
defined in the Capability Model ontology. The resource model stereotypes define differ-
ent resource types, including atomic resources (DeviceBlueprint and IndividualDevice) as
well as different resource combination types including DeviceCombination, and the com-
bination at the FactoryUnit level. The concepts of Product, Process and a selection of
ProcessTaxonomyDescription have been included in the UML profile as well.
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Figure 4.6: MaRCO screenshot in
Protégé

Figure 4.7: MaRCO UML profile

The MaRCO concepts in the generated UML profile are applied as stereotypes to the
AAS models. The concrete mapping rules are described in Section 3.4.1. The designer
improves the AAS model based on the device properties and capabilities provided in the
configuration file. The system designer should refine the stereotyped AAS models based
on the properties of the equipment and capabilities. The semanticID concept is designed
to refer the semantic meaning of the submodel or submodel element of an AAS model. So
when we assign a MaRCO concept to an AAS element, the semanticID should refer to the
IRI of this concept in the ontology.

The second step refers to the second stage in the capability checking architecture (Fig-
ure 3.11), which generates the MaRCO concept instances from the AAS system model
for further inferences. Based on the APIs provided by the org.eclipse.uml2.uml and
org.semanticweb.owlapi packages, we developed a converter. This plugin serves for the
transformation from stereotyped UML models to OWL individuals. All AAS models
and the information stored in the stereotypes that come from the MaRCO profile will
be converted as OWL individuals that conform to the MaRCO ontology (AAS2MaRCO
transformation).

Three important variables and data structures are integral to the conversion process.

• OWLDataFactory df : to handle the creation of OWL entities.

• Map <Element, OWLNamedIndividual> individualMap: to map the UML elements
with OWL entities.

• List<Triple<OWLObjectProperty, Element, OWLNamedIndividual>> opTriple: to
save the triple between OWL object properties, UML elements, and OWL named
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individuals.

The conversion process is managed through methods like createOWL(Resource re-
source, OntologyManager manager), which converts an entire EMF resource or UML
model into an OWL ontology. The convertElement(Element current, OntologyManager
manager) method handles the conversion of individual UML elements to OWLNamedIn-
dividuals, considering their semanticID for correspondence mapping. Property handling
is a critical aspect of this class. The addProperties(...) method adds object and data
properties to an OWL individual, reflecting the properties of the UML model. Finally,
the generated ontology is saved in RDF XML format. For example, in Figure 4.8 shows
the generated MaRCO individual of a Process model “AASProcess1” that belongs to the
Process class definition and has two object properties.

Figure 4.8: Exemplary OWL instance

4.3.2 Capability Matchmaker Module

The capability matchmaker is responsible for resource combination and combined capa-
bility computation, as well as the matchmaking reasoner which aligns the corresponding
capabilities between production processes and resources. The implementation of this mod-
ule reuses as much as possible other existing open-source projects. The MaRCO ontology
and the associated SPARQL queries and SPIN rules are open-source [93].

By leveraging all the existing packages, we have implemented a matchmaking plugin
that performs the automatic capability matchmaking. This plugin includes the following
components:

1. Initialization: Initializing a client for matchmaking and setting up locations for input
and output data. This includes loading and managing ontological models using the
Apache Jena framework, a popular Java framework for working with RDF and OWL
ontologies.

2. Matchmaker: It reads in ontological models, sets up matchmaking conditions, and
performs the matchmaking process. The process involves finding required capabil-
ities, generating combination possibilities, and executing matchmaking rules. The
pre-defined SPARQL queries update the capabilities for the individual devices and
compute combined capabilities for the device combinations.

3. Rule Executor: The SPIN rules integrated in the Parameter Rule ontology are exe-
cuted in order to infer these novel capabilities’ parameters. The SpinAPI (provided
by TopBraid) is used for the reasoning process. And the SPARQL queries can be
executed by Openllet reasoner.

4. Result Processor: After the matchmaking process, results are processed and for-
matted, in order to be used in further steps of the planning or, more precisely, the
simulation process in Papyrus4Manufacturing.
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The matchmaking reasoner deals with the matching between capabilities required by
the process and capabilities provided by the newly updated resource system. During this
process, not only are the capabilities matched at the name level has capability match, but
also the adaptations of the parameters can be implemented with are computed. These
reasoned relationships and inferred elements are saved in a separate file (match.ttl).

4.3.3 User Interface Module

This user interface ties the above two modules together and establishes a relationship
with the model in the modeling environment. The usage scenario we envisage is shown in
Figure 4.9. The module is mainly composed of 3 parts:

Option 1

Option 2

Option 3

...

Figure 4.9: User interaction scenario

1. Simplicity in Selection: Designed for users without specialized technical expertise,
this tool should feature a user-friendly interface for the production process selection.
It incorporates straightforward elements like right-click menus and pop-up windows
with checkbox. These components simplify the organization and selection of mod-
els, aiding users in easily choosing the required products and processes to perform
matchmaking.

2. Sequential Invocation of Components: The user’s action triggers a series of backend
processes starting with the AAS2MaRCO converter.

3. Result Presentation: The result retrieval aims to integrate and extract the results
of ontology inferences, return them to the user, and save them for later use. We
defined a SPARQL query (Listing 4.4) to automatically extract information from
newly reasoned relationships. We want to select the equipment (either an individual
or a combined device) that can provide the capabilities required for the production
process through the query (Line 10). Via Lines 13-15, it is possible to select all
processes participating in the capability checking. Lines 17 select the capabilities
required for the aforementioned production processes. The eighth line finds the de-
vices capable of implementing the required capabilities. The capability matchmaking
results show the DeviceBlueprints or DeviceCombinations the that can realize the
capability. However, in our application, the production process is realized by the
device instances (IndividualDevices). So when the result is a DeviceBlueprint, we
will find all available IndividualDevices belonging to it (Line 22-25). The results are
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sorted out via a popup window for the users to choose from. And the inferred infor-
mation is again connected to the AAS digital twin models. The selected information
can then be included as input for a feasibility checking or device deployment step
coming next.

1 # created f o r aas models use only
2 PREFIX mmo: <https : // r e s o u r c e d e s c r i p t i o n . rd . tun i . f i / onto logy /MatchmakingOntology#>
3 PREFIX pm: <https : // r e s o u r c e d e s c r i p t i o n . rd . tun i . f i / onto logy /productModel#>
4 PREFIX cm: <https : // r e s o u r c e d e s c r i p t i o n . rd . tun i . f i / onto logy / capab i l i tyMode l#>
5 PREFIX rm : <https : // r e s o u r c e d e s c r i p t i o n . rd . tun i . f i / onto logy / resourceModel#>
6 PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
7 PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
8 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
9

10 SELECT d i s t i n c t ? p roce s s ? requirement ? r equ i r ed ?match ? dev i c eB luepr in t ?
deviceCombination ? ind iv idua lDev i c e

11 WHERE {
12 # get a l l a c t i v i t y i n s t an c e s
13 ? a c t i v i t yC l s r d f s : subClassOf+ pm: Act i v i ty .
14 ? proce s s rd f : type ? a c t i v i t yC l s .
15 f i l t e r not e x i s t s { ? proce s s mmo: i gno r eProce s s t rue } .
16 # get proce s s c a p ab i l i t y i f any
17 ? proce s s pm: r equ i r e sP ro c e s sCapab i l i t y ? requirement .
18 ? requirement pm: matchmakingRequired ? r equ i r ed .
19 op t i ona l {
20 ? requirement mmo: hasCapabi l ityMatch ?match .
21 op t i ona l {
22 ? dev i c eB luepr in t rm : hasCapab i l i ty ?match .
23 ? ind iv idua lDev i c e rm : hasDev iceBluepr int ? dev i c eB luepr in t .
24 }
25 op t i ona l {
26 ? deviceCombination rm : hasCa l cu la tedCapab i l i ty ?match .
27 }
28 }
29 # get durat ion from performance i . e . how long i t takes to execute s tep with

t h i s match
30 op t i ona l { ? performance pm: durat ion ? time }
31 }
32 order by ? requirement

Listing 4.1: SPARQL query for result extraction

4.4 Skill Execution & Orchestration Development

4.4.1 Deployable AAS Server Architecture

The code generation mechanism in P4M simplifies implementation over the BaSyx mid-
dleware, on the one hand it neatly handles the deployment to the AAS HTTP server. By
implementing this widely used and open mechanism, AAS digital twins can be easily ac-
cessed via the REST API while active on the AAS server. As a result, a range of IT-level
applications, such as a range of data analytics applications and dashboards, can seamlessly
connect to the AAS server, allowing them to obtain data and orchestrate directly from
the AAS digital twin.

On the other hand, by utilizing BaSyx as middleware, critical communication links
with physical assets are established. The communication protocol adapters supported by
P4M have been mentioned above. This function has been implemented in P4M, and my
task is to solve the problem of the dynamic orchestration of the digital twin models at the
application level.
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Figure 4.10: Papyrus4Manufacturing architecture

4.4.2 Node-RED Package Development

In order to bring the production process to real-world orchestration, we leveraged Node-
RED, an innovative visual programming environment that enables seamless integration
between physical devices and online services through APIs. This tool is particularly adept
at transforming BPMN diagrams into executable workflows, exemplified in P4M where
the BPMN process is effortlessly converted into a Node-RED flow (as illustrated in Figure
4.11).

The creation of the two specialized Node-RED nodes aims at facilitating the devel-
opment effort. The idea behind developing these modules was to enable the execution
of BPMN diagrams designed in P4M, thus orchestrating the AAS digital twin models.
These nodes facilitate the orchestration of processes through REST APIs provided by
BaSyx server. This offers a high degree of flexibility and control in process management.
Firstly, the “AAS Operation” node allows for the direct calling of AAS Operations with
just the necessary URL endpoint and input parameters. Secondly, the “AAS Property”
node provides a straightforward way to manage the values associated with a URL endpoint.

Table 4.1 presents a mapping between BPMN concepts and their corresponding Node-
RED nodes, providing a clear guide for translating process diagrams into an executable
workflow. The Start Event in BPMN is associated with the HTTP IN node from the
network package provided in Node-RED by defaults. Conversely, the End Event is linked
to the HTTP RESPONSE node, signaling the process’s completion. For tasks denoted as
ServiceTask in BPMN, the AAS Operation node from the aas package is used, while Ser-
viceTask with Dataflow is translated into the AAS Property node, both facilitating inter-
action with the AAS digital twins. Timing control, represented by the Timer intermediate
in BPMN, is executed using the delay function in Node-RED. Lastly, decision-making in
the process, indicated by the Exclusive Gateway in BPMN, is implemented through the
switch node from the function package in Node-RED.

The underlying technology stack for the customized Node-RED nodes combines the
programming language JavaScript for scripting functions, with HTML for defining the user
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Figure 4.11: Node-RED flow representation of Process1

interface. JavaScript’s ubiquity and flexibility make it a choice for creating the functional
aspects of the nodes, while HTML’s standardization across the web allows for a familiar
and widely supported method of structuring the nodes’ visual elements. This combination
ensures that the nodes are not only powerful in terms of functionality but are also user-
friendly and accessible to those who may not have extensive programming experience.

These custom nodes enhance the automation and efficiency of production processes.
This integration represents a significant step forward, as it bridges the gap between design
and execution, allowing for sophisticated process management through digital twins.

BPMN Concept Node-RED Node

Start Event HTTP IN (network package)

End Event HTTP RESPONSE (network package)

ServiceTask AAS Operation (aas package)

ServiceTask Dataflow AAS Property (aas package)

Timer intermediate delay (function package)

Exclusive gateway switch (function package)

Table 4.1: BPMN and Node-RED nodes mapping
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Figure 4.12: Overall run-time monitoring & diagnosis implementation

4.5 Monitoring & Diagnosis Development

There are several important modules to realize the self-adaptation loop, which includes
the monitor, analyze, plan, and execute modules as seen in Figure 4.12 and Figure 3.13
presented in Section 3.5, also including the integration with the knowledge base. The right
part shows the plan and execution modules will not be detailed in the following sections
because they are out of the scope of this thesis. A Kafka server is integrated for the global
message transfer.

4.5.1 Local Monitor Knowledge Generation

Subsequent to the detailed model design, an automatic generation mechanism facilitates
the transformation of UML AAS models into ontology individuals. This procedure results
in creating an OWL file for each monitor submodel. This file includes all ontology model
instances related to monitoring, inclusive of the submodel itself.

Among them, this submodel will be converted into a Monitor. If its observation object
is an ObservedProperty or ObservedOperation type, it will simply produce the correspond-
ing element. If the observation object is an ObservedSkill, it will traverse the properties
and operations that it participates in the sub-process and convert them into ObservedEle-
ments. This ontology will be generated along with the dynamic model described in the
next section. This generated ontology imports the monitoring ontology presented in Sec-
tion 3.5.5.

The generation of DiagnosisRules into CSPARQL Queries leverages the attributes de-
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Figure 4.13: Diagnosis rule modeling in P4M

scribed within the metamodel. Since the metamodel inherently contains the necessary
information, it facilitates a seamless conversion, ensuring that the rules are comprehensive
and aligned with the system’s data structure (From Figure 4.13 to Listing 4.4). This
translation into CSPARQL, a query language for streaming RDF data, enables real-time
processing and diagnosis of data streams, which is crucial for dynamic environments where
conditions change rapidly. The capability to generate CSPARQL queries from Diagnosis-
Rules underscores the system’s adaptability and intelligence. By utilizing the predefined
attributes in the AAS model, the system can automatically formulate queries that are tai-
lored to the specific diagnostics required. The automated generation of queries minimizes
the likelihood of human error and reduces the need for manual intervention, resulting in a
more robust and reliable diagnostic process. As these queries are executed, they can de-
tect anomalies, predict potential issues, and suggest corrective actions, thereby supporting
proactive maintenance and decision-making.

4.5.2 Data Acquisition and Real-Time Stream generation

Real-time data plays an indispensable role in the digital twin system, which is also the
basis of realizing the self-adaptive system. The AAS servers offer connectivity to devices
and make real-time operational data accessible in json format. The monitor module is
supposed to interact only with the AAS servers but not OPC UA server level. To have
a more stable and manageable message distributing system, we have implemented Kafka
server for the data sharing. However, the data need to be pre-processed by adding semantic
value to raw data. A stream generator offers the transformation functionality from JSON
stream data to RDF stream.

A Kafka producer generates the information of an AAS server to different Kafka topics.
When an AAS is registered to the AAS register, the producer continuously fetches data
from this AAS server. It sends the data to a Kafka topic and then fetches and sends
the SubmodelElements with a given frequency. The code (Listing 4.2) sets up the Kafka
producer configuration. It sets producer acknowledgments to “all” to ensure that record
writes are fully acknowledged. The retries configuration is set to 0, indicating that it won’t
retry sending a message if an error occurs. Buffer size and linger time are configured to
control the batching behavior of the producer. The bufferṁemory setting allocates memory
for the producer’s buffering, which holds records that haven’t been transmitted to the
server yet. The producer uses string serializers for both the key and the value, which means
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that the producer will convert keys and values to strings before sending them. An instance
of KafkaProducer named producer turtle is created with the configured properties. This
producer is meant to send string keys and values. Within a try block, a KafkaAASProducer
object named ksp turtle is instantiated with the URL http://127.0.0.1:2021/aas/.
The method “publishAAS()” would then be responsible for the actual data publishing.

1 //Assign topicName to s t r i n g va r i ab l e
2 St r ing topicName = ”TestAASSubmodelProducer” ;
3

4 // c r e a t e i n s t anc e f o r p r op e r t i e s to a c c e s s producer c on f i g s
5 Prope r t i e s props = new Prope r t i e s ( ) ;
6

7 //Assign l o c a l h o s t id
8 // I t s p e c i f i e s the Kafka s e r v e r l o c a t i o n with l o c a l h o s t : 9092 , i n d i c a t i n g that Kafka

i s running on the l o c a l machine at port 9092 .
9 props . put ( ProducerConfig .BOOTSTRAP SERVERS CONFIG, ” l o c a l h o s t :9092 ” ) ;

10

11 // Set acknowledgements f o r producer r eque s t s .
12 props . put ( ” acks ” , ” a l l ” ) ;
13

14 // I f the r eque s t f a i l s , the producer can automat i ca l l y re t ry ,
15 props . put ( ” r e t r i e s ” , 0) ;
16

17 // Spec i f y bu f f e r s i z e in c on f i g
18 props . put ( ”batch . s i z e ” , 16384) ;
19

20 //Reduce the no o f r eque s t s l e s s than 0
21 props . put ( ” l i n g e r .ms” , 1) ;
22

23 //The bu f f e r .memory c on t r o l s the t o t a l amount o f memory av a i l a b l e to the producer
f o r bu f f e r i n g .

24 props . put ( ” bu f f e r .memory” , 33554432) ;
25

26 props . put ( ”key . s e r i a l i z e r ” , ” org . apache . kafka . common . s e r i a l i z a t i o n . S t r i n g S e r i a l i z e r ”
) ;

27 props . put ( ” value . s e r i a l i z e r ” , ” org . apache . kafka . common . s e r i a l i z a t i o n .
S t r i n g S e r i a l i z e r ” ) ;

28 Producer<Str ing , Str ing> producer ned = new KafkaProducer<Str ing , Str ing >(props ) ;
29 t ry {
30 KafkaAASProducer k s p t r u t l e = new KafkaAASProducer ( producer ned , ” http

: / / 1 2 7 . 0 . 0 . 1 : 2 0 2 1 / aas /” ) ;
31 k s p t r u t l e . publishAAS ( ) ;
32 } f i n a l l y {
33 producer ned . c l o s e ( ) ;
34 }
35 }

Listing 4.2: Kafka producer example

Each monitor module has a Kafka consumer stream generator that interfaces with a
Kafka cluster, consumes data from monitor-relevant topics, and processes it. It is notable
that the consumer stream generator is designed for RSP (RDF Stream Processing) reason-
ing use. It is initialized using a stream URI, Kafka topics, and Kafka consumer properties.
The class continuously polls monitor related Kafka topics for new records, with each record
being transformed into a JSON object that’s appended with a timestamp. This processed
data is then added to a data stream.

Once the JSON stream is formed, in order to perform subsequent RSP reasoning, we
need to convert the JSON stream into RDF triples. RML is used to describe rules for
transforming structured data into RDF datasets, and we need to define the RML mapping
rule in a ttl file. This mapping is applied using the CARMLJSONMapper class, and the
resulting RDF triples are added to a DataStream. The data in this stream is expected to
be in JSON format, as indicated by the rml:referenceFormulation ql:JSONPath directive
(Listing 4.3). A triples map, “MesurementMapping” uses the previously defined logical
source. For each iteration over the source: A subject is created based on the values
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1

2 # de f i n i t i o n o f a l o g i c a l source
3 <source> rml : source [
4 a carml : Stream ;
5 carml : streamName ”MYSTREAM” ;
6 ] ;
7 rml : r e f e r enceFormula t i on q l : JSONPath ;
8 rml : i t e r a t o r ”$” ; .
9

10 # de f i n i t i o n o f a t r i p l e map
11 <#MesurementMapping> a r r : TriplesMap ;
12 rml : l o g i c a l S ou r c e <source> ;
13 r r : subjectMap [
14 r r : template ”MYSTREAM
15 #{idShort } mesurement { timestamp}” ;
16 r r : c l a s s monitor : Mesurement ;
17 ] ;
18

19 r r : predicateObjectMap [
20 r r : p r ed i c a t e monitor : isOwnedBy ;
21 r r : objectMap [
22 r r : template ”MYSTREAM#{idShort }” ;
23 ] ;
24

25 r r : p r ed i c a t e
26 monitor : PredicateValue ;
27 r r : objectMap [
28 rml : r e f e r e n c e ” value ” ;
29 ] ;
30

31 r r : p r ed i c a t e monitor : Timestamp ;
32 r r : objectMap [
33 rml : r e f e r e n c e ”timestamp” ;
34 ] ;
35 ] ;
36 }

Listing 4.3: RML mapping

extracted from the source (namely, idShort and timestamp).

4.5.3 Runtime Analysis

The analyzer first loads the monitoring ontology and then runs CSPARQL queries on the
data stream generated by the monitor using the CSPARQL engine. CSPARQL queries
must be registered with the CSPARQL engine to process the RDF data stream. These
queries check for specific conditions in the operational data coming from the monitor
stream. Different Events will be constructed according to the diagnosis rules. Listing 4.4
is an example of CSPARQL query to verify the battery status of LittleTurtle.

The runtime diagnosis implementation consists of different steps.

• Initialization of Continuous Query Execution:

The JenaContinuousQueryExecution registers a new continuous query with the CSPARQL
engine. The query and configuration are passed as parameters.

• Query Type Check:

The step checks the type of the CSPARQL query (whether it is a CONSTRUCT or
SELECT query). CONSTRUCT queries typically create new RDF triples based on
the query pattern. SELECT queries select results from existing triples.

• Continuous Query Execution:
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1 PREFIX mo: <http :// cea . l i s t . papyrus4manufacturing /monitor ing#>
2 PREFIX t u r t l e : <http :// cea . l i s t . papyrus4manufacturing /monitor ing / t u r t l e#>
3 PREFIX : <https : //www. ge l d t . org / stream#>
4 REGISTER RSTREAM <http :// out speed /stream> AS
5 CONSTRUCT { t u r t l e : BatteryTooLow a mo:Warning}
6 FROM NAMED WINDOW <w> ON <http :// example . org / t e s t / rdf> [RANGE PT2S STEP PT2S ]
7 WHERE {
8 WINDOW ?w {
9 ?mesurement a mo: Mesurement ;

10 mo: PredicateValue ? value ;
11 mo: isOwnedBy ?prop .
12 FILTER(? prop = t u r t l e : BatteryStatus && ? value < \”15\” )
13 }
14 } ;

Listing 4.4: CSPARQL query example

Continuous query execution implies that the query is evaluated continuously as the
data changes, rather than just once. The configuration of the CSPARQL engine can
be seen in Listing 4.5. This is particularly useful in dynamic environments where
the data is frequently updated. Upon the type of resulting events, different effectors
will be invoked.

1 # This s e t s the eng ine to use event time f o r proce s s ing , meaning that i t r e l i e s on
the timestamps o f the events in the data stream i t s e l f .

2 r sp eng in e . time=EventTime
3 r sp eng in e . b a s e u r i=http :// st reamreason ing . org / c spa rq l /
4 r sp eng in e . stream . item . c l a s s=org . s t reamreason ing . r s p4 j . c spa rq l 2 . stream .

GraphStreamSchema
5

6 # Sets the format f o r r e sponse s from the engine to JSON−LD (JSON f o r Linked Data )
7 r sp eng in e . r e sponse fo rmat=JSON−LD
8

9 # Query r e s u l t s should occur when a window c l o s e s .
10 r sp eng in e . on window close=true
11

12 # The engine should only con s id e r windows with non−empty content f o r p ro c e s s i ng .
13 r sp eng in e . non empty content=true
14

15 # The pro c e s s i ng or querying i s not p e r i o d i c .
16 r sp eng in e . p e r i o d i c=f a l s e
17

18 # The engine does not t r i g g e r a c t i on s or computations on every change in content .
19 r sp eng in e . on content change=f a l s e
20

21 # Sets the engine ’ s t i ck , or p ro c e s s i ng i n t e r va l , to be dr iven by time .
22 r sp eng in e . t i c k=TIME DRIVEN

Listing 4.5: CSPARQL engine configuration

• Output Stream Consumer:

This step adds a consumer to the output stream of the continuous query execution.
The consumer seems to be performing some form of adaptation action on the output.
The exact nature of this action would depend on the implementation of adaptation
action to be provided by AAS.

4.6 Conclusion

This chapter provides a holistic implementation of the CBSAM architecture mentioned
in the previous section. P4M, a toolkit for the model design, the development, and de-
ployment. The workflow development of the orchestration between different digital twins.
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And a concrete implementation of the concept of capability-based engineering. Due to
the time constraints, the development of the self-adaptive system has been limited to the
monitoring and analyzing phase, and only some initial explorations and attempts have
been made.
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5.1 Overview

In essence, the digital twin system is a cyber-physical construct that encompasses real
world entities and digital entities. Thus, beyond offering a conceptual architecture, the
ability to implement and validate it in reality becomes a critical step. To furnish a plat-
form for validating research theories, our researchers have devised a testbed. One of the
key goals is to establish a robust and flexible experimental base that can adapt to varying
research needs and innovation trajectories. The digital layer, that is, the AAS integration
part, is an important aspect of testbed to complete the development of digital twins. Fur-
thermore, the utilization of an Industry 4.0 test bed promotes an in-depth understanding
of the practical challenges and opportunities that may be encountered when transitioning
from conceptual to practical application.

Developing a testbed is a complex task that entails constructing a specialized environ-
ment where both software and hardware can undergo rigorous testing. This environment is
meticulously designed to replicate real-world conditions, ensuring that the tests conducted
provide accurate and reliable results. The primary goal of such a testbed is to simulate the
actual use cases and challenges that the system or application will face in the real world.
These use cases are important for validating the research results and identifying potential
issues in its intended environment. In Section 5.2, a set of requirements and limitations
have been considered.

Section 5.3 presents an academic testbed developed in the laboratory for versatile
utilization. This section provides extensive details to help readers comprehend the system
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as a cyber-physical entity, encompassing more than just its virtual perspective that has
been mainly analyzed since the beginning of this manuscript.

Section 5.4 allows for a full elaboration of the implementation details of the CBSAM
methodology introduced in chapter 3. This section shows how to establish a flexible
manufacturing system that is interoperable across entities, easily adapts to changes in
demand, and has strong stability to ensure that the production process runs smoothly.

5.2 Testbed Requirement

The specific requirements for setting up a testbed can greatly vary, depending on the nature
and complexity of the application or system being tested. This variation in requirements
demands a high level of customization and careful planning to ensure that the testbed
effectively addresses the unique aspects of each application. The development of a testbed
must also consider future scalability and adaptability, allowing for system updates or new
features for future applications. The consideration of real life limitations is also important
for the realization of a feasible and reasonable testbed. Here are some requirements that
have been considered when developing this testbed:

1. Context: Identifying the context.

Our testbed is designed to serve multiple objectives, primarily centered on the realm
of Industry 4.0. In terms of context, the testbed will be implemented in scenarios
that are inherently aligned with the paradigms of Industry 4.0 and it should follow
the RAMI4.0 model. One of the main objectives of this testbed is to test and validate
the realization of CBSAM architecture presented in Chapter 3.

2. Methodology: Selecting an appropriate methodology model.

Using a methodology model for a testbed development provides a systematic and
organized way to ensure that every aspect is considered, thereby promoting consis-
tency across different projects. This systematic approach provides clear direction,
ensuring the understands of the steps and goals. The consistency provided by a
methodology also supports scalability for different projects. The methodology to
develop the testbed is mini-waterfall with triggers. Mini-waterfall inspired by the
well-known waterfall methodology also contains fives phases: (1) specification, (2)
design, (3) implementation, (4) testing, and (5) maintenance. More details about
the development process and evolution of this testbed are presented in work [94].

3. Environment: Considering real-life limitations.

The testbed should closely mimic the actual production system in the real industry.
Therefore, the selection of the configuration of each part such as hardware, software,
and network needs to be close to reality, such as selecting a common industrial
network protocol (like OPC UA). It is also necessary to consider some limitations
that exist in real life, such as some devices that do not have intelligent control
capabilities. Therefore, in addition to smart devices with powerful processing units,
the components selected to make up the testbed also need to include devices with
low processing capabilities and processor-less parts.

However developping a testbed, particularly in an academic setting, must navigate
various real-life constraints and considerations, among which budget and test bound-
aries are prominent. The choice of robots for education use is, therefore, a decision
influenced by balancing budget constraints with the need for sufficient technical com-
plexity to ensure meaningful testing and research outcomes. Furthermore, there is
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an absence of a wireless network with guaranteed service within this testbed’s design
and operation.

4. Composition: Determining the composition of testbed.

According to [95], a general outline of the construction of an instrumental I4.0
testbed is provided. It needs to be composed of different building blocks, includ-
ing digital entity, physical entity, interface, communication, sensor, data conversion,
data storage, software, intelligence, etc.

5. Scenarios: Defining test scenarios.

There’s also a need to set the scenario for the testbed based on the content of the
test. This scope might differ from testing a single module to the integration testing
of multiple components or the entire system. Planning the testbed scenario helps
ensure that the testing platform can offer a realistic and efficient testing environment.

5.3 LocalSEA Testbed Composition

A small-scale testbed has been developed in the laboratory named LocalSEA 5.1. The
testbed provides an experimental environment to deploy technologies, demonstrations,
and use cases addressing Industry 4.0. LocalSEA conforms to the RAMI4.0 model so
that the data and information can be easily shared over different layers. This section is
dedicated to present the LocalSEA testbed composition from several aspects, including
hardware architecture, software architecture, and communication architecture. The hard-
ware architecture subsection focus on the descriptions of different physical devices in the
testbed. The software architecture discusses the frameworks, applications, and software
tools utilized. The communication architecture aspect examines the networking and data
exchange protocols in the testbed.

5.3.1 Hardware Architecture

This subsection introduces the overall physical elements of LocalSEA, which contains
several components for production, communication, and control. It includes two robotic
arms, an AGV, two buttons with a controller, a conveyor belt, storage and working areas,
a multi server, end devices and human operators.

• Niryo Ned1: NedRobot

A 6-axis collaborative robot designed for education and light industry tasks. Built
with open-source software and hardware, it offers a user-friendly experience for
robotics and automation learning purpose.

• UR3e2: UR

A flexible collaborative 6-axis robot arm designed for assembly tasks and automated
workbench scenarios. Developed by Universal Robots, it offers precision control,
easy programming, and safety features for human-robot collaboration.

• TurtleBot3 Waffle Pi3: LittleTurtle

A modular and customizable mobile robot platform designed for robotics research
and education.

1https://docs.niryo.com/product/ned
2https://universal-robots.com/products/ur3-robot
3https://robotis.us/turtlebot-3-waffle-pi
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NET
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LocalSEA
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External Users

Nuc8

Pico

LittleTurtle

Belt

NedRobot

UR

Storage

Figure 5.1: LocalSEA cell

• Conveyor belt: Belt

The Niryo Conveyor Belt is an accessory designed for automation and educational
purposes, compatible with Niryo robots. And it is also possible to be further con-
figured to work with other robots. It’s equipped with two DC motors to manage
both speed and direction and can be easily integrated with other devices through its
user-friendly interface. Ideal for simulating industrial assembly line processes.

• Storage zone: Storage

A specific place for storing.

• Workspace area: WS

A dedicated space designed for specific tasks.

• Raspberry Pico: Pico

A low-cost, high-performance microcontroller board. It offers a powerful solution for
embedded systems projects and DIY electronics.

• Raspberry Pi 3 Model B+: Pi

A credit-card-sized computer offers improved performance and connectivity. In Lo-
calSEA, it is an I4.0 gateway that provides a connection to the internet.

• Nuc8: Nuc8

A compact and powerful mini PC, which acts as a multi-sever in the testbed.
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• End devices:

Hardware components that serve as communication endpoints in a network. These
devices can range from personal computers, smartphones, and tablets for data or
service requests.

• Human operators:

In the LocalSEA testbed, human operators primarily serve to perform activities that
are too complex to be performed by a machine.

• Button:

A simple device that can send a specific signal or command when pressed. Using
the button as a sign for users to indicate the completion of a task is a practical
application in a testing environment.

5.3.2 Software Architecture

Software components can be programs and middlewares. Some of the physical entities
have computational units, and some of them do not. For instance, the conveyor belt is
controlled by Niryo Ned, which does not have a separate processor itself. Same for the
buttons that Raspberry Pico controls. Other production devices such as the Niryo Ned
robotic arm, UR3e robotic arm, and TurtleBot3 mobile robot have their own calculation
unit. The software components are installed to these smart devices for different usages.
The following list will detail the software components included in each intelligent physical
entity.

• Nuc8:

– OPC UA server: provides operational data and device operational access through
the OPC UA information model that belongs to communication and informa-
tion.

– Docker Nned controller: a motion planner of Niryo Ned.

– Node-RED server: for streamlined device communication.

– Prostgresql server: storage and management of historical data.

– Mosquitto broker: enables MQTT communication.

• NedRobot:

– ROS 1

– OPC UA-ROS Bridge

• UR3:

– ROS 1

– OPC UA-ROS Bridge

• LittleTurtle:

– ROS 2

– OPC UA-ROS Bridge

• Pico:

– Button control

73



5.3. LocalSEA Testbed Composition CHAPTER 5. LOCALSEA TESTBED

Application

B
us

in
es

s

Devices

I4.0 Connectivity and Brokerage

 Niryo Ned: nned

ROS 1 UA-ROS
Bridge

 TurtleBot3 Waffle Pi: t3wp

ROS 2 UA-ROS
Bridge

DELL PRECISION: pc

AAS
server

Node-Red
server

C
om

m
un

ic
at

io
n

D
ev

ic
e

In
te

gr
at

io
n

In
fo

rm
at

io
n

 Raspberry Pi 4: Pi

I4.0
Gateway

Fu
nc

tio
na

l

 UR3e: ur3e

ROS 1 UA-ROS
Bridge

(R
A

M
I 4

.0
 L

ay
er

s)

 NUC8: nuc8

Docker Nned
Controller

Node-Red
server

Postgresql
server

Mosquitto
broker

Raspberry Pico: pico

Button
control

UA-ROS
Bridge

Kafka
server P4M

Figure 5.2: LocalSEA description

– OPC UA-ROS Bridge

• Pi:

– I4.0 gateway: provides a connection to the internet.

• Application server:

– P4M: Executing the implementation of these software models completes the
CBSAM architecture.

– AAS server

– Node-RED server

– Kafka server: for information distribution.

5.3.3 Communication Architecture

Communication is an essential part of digital twin systems, so it is important to under-
stand the testbed’s network architecture. However, enabling communication connections
is not the focus of this thesis. Therefore, in the following content, some simple technical
information will be provided about the LocalSEA communication architecture. To facil-
itate a common understanding, the presentation will follow the TCP/IP model layering
[96]. It is worth mentioning that this part is not the contribution of this thesis. The reason
to include this subsection aims to provide a better understanding of the entire testbed.
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• Network Interface Layer:

Figure 5.1 illustrates the network interfaces provided by various physical entities
within the system. All system components are equipped with a Wi-Fi module,
which allows for the creation of a wireless network architecture. However, due to
its mobility and nature as an AGV, the Turtlebot3 relies on Wi-Fi connectivity as
it cannot be tethered with a wired connection. Meanwhile, the other robots and
components within the testbed are relatively stationary, allowing them to establish
connections through RJ45 Ethernet cables. This decision to employ wired con-
nections for the stationary devices helps maintain low-latency communication and
ensures a stable network environment, which is crucial for the reliable operation of
LocalSEA. In factories, fixed equipment is also often connected via a wired network.
In contrast, the Turtlebot3’s wireless connection is optimized to support its mobility
and functionality within the system.

• Internet Layer:

All devices within LocalSEA testbed communicate at the Internet Layer using the IP
protocol. Wired networks are less susceptible to interference and can ensure higher
service quality than wireless networks. IP protocol allows for the devices to be
uniquely identified and located within the network system, facilitating the efficient
routing of data packets. Furthermore, the IP-based communication system enables
access from external networks and remote locations, which enables the remote control
of a digital twin system.

• Transport Layer

The communication at the transport layer is described in article [97]. In order to
enrich the scenario, the communication architecture is rather complex in this testbed,
which is composed of different middlewares (ROS1 & ROS2) and protocols (mainly
OPC UA). Regarding robotic implementation, ROS 1 and ROS 2 are two widely-used
middleware. ROS stands for Robot Operating System. They are open-source and
receive great support from the robotic community. In detail, ROS 1 uses XMLRPC
combined with TCP/IP-based and UDP-based message transport, and ROS 2 relies
on Data Distributed Service (DDS).

Open Platform Communication Unified Architecture (OPC UA) standard is selected
to be the core communication protocol of LocalSEA since it is a potential candidate
to overcome the Information Technology (IT) and Operational Technology (OT)
convergence challenge [98]. With more detail of the OT data layer, OPC UA provides
two PubSub communication modes: broker-based and broker-less. Broker-based
means there is a broker in the middle that manages topics. A topic is an association
between a data source and the information required to create links between the
publisher and subscriber sides. Broker-less relies on the multicast mechanism of the
UDP/IP stack. In detail, a publisher publishes a message to a multicast address.
All subscribers who subscribe to the multicast address can receive the message.
The IT layer communication in our testbed, is communication between AAS servers
and OPC UA server. This connection is established by BaSyx connectors, and the
communication protocol is TCP.

The above methods are widely adopted by robotics and industry domains. However,
different robots using different middlewares can only communicate by additionally
using one of the bridge solutions available in the robotic community. And it is
even more challenging when deploying these robots as part of an OPC UA-based
industrial testbed. In [97], the authors have investigated this problem and proposed
an approach (5.3) that uses UA bridges to bridge the ROS 1 and ROS 2 spaces to
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the testbed’s OPC UA PubSub network. This UA bridge works as a logical portal
with two sides: one side is its ROS space, and the other side is the OPC UA PubSub
network. This approach enables robots with the same middleware to collaborate in
their space with their default communication method and can still have a route to
communicate with other devices through a UA bridge.

 Legends:

ROS 1 UA bridge node

ROS 2 node
ROS 1 node
OPC UA PubSub node

ROS 2 space

OPC UA PusSub space

ROS 1 space

ROS 2 UA bridge node

Figure 5.3: The architecture of ROS 1 and ROS 2 with UA bridges

• Application Layer:

The application layer is the top layer of the TCP/IP network model that interacts
directly with end users. It provides communication between software and lower lay-
ers of the network model. As presented in Section 4.4.1, the AAS servers enable
the HTTP connection from client side to the operational data and digital twin re-
lated information. The use of AAS takes care of the data exchange between user
applications and the field devices. Instead of controlling and monitoring field device
directly, the users can access all the information through the digital twin. However,
one potential drawback of the AAS server is the added latency in data communica-
tion. Introducing an additional layer of abstraction like the AAS can lead to delays
in data retrieval and transmission, which might be critical in real-time applications
where instantaneous response is essential. This latency might affect the industrial
application, especially scenarios requiring real-time critical at high frequency.

To the best of our knowledge, there is only one work [40] conducted on the latency
caused by BaSyx-based AAS. However, there are too many influencing factors in the
process that can lead to inaccurate conclusions. So with this testbed, the focus of the
study is not to conclude what kind of latency the AAS layer produces specifically during
the connection process. In order to approximately characterize the type of applications
achievable with the current implementation, we have estimated the average latencies and
that this can serve as a guide to decide whether a certain monitoring/diagnosis is feasible
or not. Below is a table of a network connection evaluation in the absence of AAS (see
Table 5.1).
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Table 5.1: A summary of simple network communication evaluation for the testbed

TurtleBot3 WP Niryo Ned UR3e End Device

Network Type Wifi 802.11n RJ45 cable RJ45 cable RJ45 cable

Transportation
Protocol

UDP UDP UDP TCP

Throughput 1.05 Mbits/sec 1.05 Mbits/sec 1.05 Mbits/sec 932 Mbits/sec

Jitter 1.462 ms 0.022 ms 0.022 ms

Loss 0% 0% 0% 0%

Latency 1.396 ms 0.317 ms 0.317 ms 0.383 ms

A disparity in throughput is evident, with the TurtleBot3 WP, Niryo Ned, and UR3e
all at 1.05 Mbits/sec, significantly lower than the End Device’s 932 Mbits/sec, suggesting
a higher data handling capacity for the latter. Jitter, an indicator of network stability, is
notably higher in the wireless TurtleBot3 WP at 1.462 ms compared to the near-identical
and lower jitter in the wired Niryo Ned and UR3e. This implies the instability in the
wireless connection. The latency as a factor for the network responsiveness, also varies,
with the TurtleBot3 WP experiencing the highest latency at 1.396 ms, indicating faster
response times in the wired connections. All devices in this testbed are connected to a
local network, and the number of the connected devices are limited. Therfore they are
all reporting zero packet loss, which reflects overall stable connections in both wireless
and wired setups in this condition. This table can serve as an indicator for the frequency
setting of the MAPE-K loop implementation.

5.4 CBSAM Architecture Implementation

It is first necessary to briefly review the structure of the CBSAM architecture as well as the
overall goals of the implementation. This provides the necessary basis of understanding
for reading this implementation phase section.

As presented in Chapter 3, the CBSAM architecture covers four phases of a produc-
tion system lifecycle: specification, design, engineering & deployment, and operation &
maintenance. Therefore, this section follows this structure in describing how these phases
are implemented in the LocalSEA academic use case from scratch. This section carefully
outlines the implementation process for each phase and how it could be practically applied
on the LocalSEA testbed.

5.4.1 Specification

Requirement Diagram

The specification phase can be implemented in a variety of ways. According to the AAS
engineering methodology proposed in a structured way is to employ requirement diagrams.
The requirement diagrams provide a visual representation and system layout of the nec-
essary details and interconnections. By doing so, stakeholders can more easily identify all
the requirements from different aspects, which leads to more informed strategic decisions
and robust system design. Figure 5.4 presents the functional requirements for the AAS
digital twin management in order to realize the CBSAM architecture. The requirements
are formalized using SysML v1.6 language.

The three primary requirements of the resource AAS digital twins development are:
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1. The requirement of exposing manufacturing capability-related information of the
asset.

2. The necessity of accessing operational data from the asset, and exposing this in-
formation to external applications underscores the interoperability nature of AAS
digital twins.

3. The predefinition of all potential events and the submodel elements to monitor.

req AAS Management

<<requirement>>
AAS Digital Twin Management

 Id = "RT"
 Text = "AAS DT shall expose its capabilities and allow

other applications to access data, execute skills, and monitor"

<<requirement>>
Operational Data Access

 Id = "RT2"
 Text = " AAS DT shall update the property with the 
data received from an asset and expose it, and able 
to execute skills."

<<requirement>>
Capability  Exposure

 Id = "RT1"
 Text = "AAS DT shall show its capabilities."

<<testCase>>
System Test

 << verify >> 

<<requirement>>
Monitor Definition

 Id = "RT3"
 Text = "AAS DT shall specify the potential events and 
the properties to monitor.."

<<requirement>>
Asset Connection

 Id = "RT2.1"
 Text = "AAS DT shall connect  and 
exchange information and invoke the 
operation within an asset."

<<requirement>>
Information Accessiblity

 Id = "RT2.2"
 Text = "AAS DT shall allow access 
to the submodel elements." 

<< deriveReqt >>

decomposition

Figure 5.4: REQs related to the AAS digital twin management

Required Scenario

By constructing a comprehensive, detailed, and criticable relevant scenario in a testbed
environment, the practical application of the conceptual concepts and methods outlined
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previously will be explored in practice. The purpose of creating this testbed scenario is
not only to affirm the validity and utility of our proposed methods, but also to concretely
illustrate how they can be coordinated to address the research questions posed in the
introduction.

In this scenario, a new product has been designed and the system architect wants
to automatically configure a robust production line. The use case considered in this
thesis starts from this potential scenario and tackles partially the transportation process
with the help of Papyrus4Manufacturing toolset. By doing so, we aim to identify the
capabilities and constraints required by the process, the behavior anomalies within the
process execution, and the adaptation advice. When one of the participants is not working
properly, the system should be aware of the fact and able to fix or find an ultimate solution
according to the diagnosis rules given by the domain expert.

Therefore, a simple production process is described as follows:

• Detect and grasp the required pieces from the storage unit and place them on the
transporting device.

• Transport the required parts to the assembly area.

Capability Information

The implementation of the capability checking module is fundamentally dependent on a
well-defined ontology of capability specifications. This process requires a comprehensive
definition and integration of information related to capability specifications. Figure 5.5
aims to show the structure and name abbreviations of MaRCO ontology. The matching
rules are provided by MaRCO ontology in the mmo ontology through embedding SPIN
rules, which serves to align the capability offered by the resource (defined by cm) with
the capability required by the production process (defined by pt). Figure 5.6 and 5.7
respectively illustrate examples of the capability model and the process taxonomy model
in the original MaRCO ontology. The specification of capability information draws from
both the ontology properties and the technical data of the testbed.

Import Import

Matchmaking
Ontology (mmo)

Import Import

Resource Model
(rm)

Import

Product Model
(pm)

ImportCapability Model
(cm)

Process Taxonomy
Model (pt)

Resource Interface
Model (rim)

Figure 5.5: MaRCO structure

• Resource Specification:

As presented in Section 5.3 NedRobot1, LittleTurtle, Belt, and UR3e are the resource
assets existing in the LocalSEA testbed. The MaRCO ontology and the robot techni-
cal documents are studied to build accurate capability submodels. Both LittleTurtle
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Figure 5.6: MaRCO transporting capability definition in Protégé
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and Belt specialize in transportation functions. NedRobot1 excels primarily in pick-
and-place tasks. UR3e is more advanced that can achieve pick-and-place with a
vision detection function. (It is worth mentioning that the Niryo Ned itself is capa-
ble of visual detection. In this particular scenario, to enhance the functionality of the
capability checking module, it is imperative that the NedRobot is designated as a de-
vice equipped only with the standard PickAndPlace capability, thereby augmenting
the complexity of the scene.)

Here, the LittleTurtle is taken as an example to explain the capability information
extraction. The capability transporting is defined in MaRCO ontology4 as shown in
Figure 5.6.

(1) In ontology representation, object properties and data properties are used to
define the characteristics of classes. The “subclass of” relationship seen in this
context is a way of stating that instances of a class must have certain properties, not
that the properties are themselves subclasses. From the concept definition, we can
easily found the properties related to Transporting capability such as acceleration,
speed, accuracy, degree of freedom, etc.

(2) The term Transporting displayed at the bottom of the figure is a reference to the
Transporting class within the pt ontology (see Figure 5.5). This semantic relationship
between ontology concepts is the basis for the automatic capability matchmaking
feature.

LittleTurtle is an instance of TurtleBot3 Waffle Pi, and the capability-related hard-
ware specifications can be found in their official manual5 as follows:

– Accuracy: 10 mm

– Maximum payload: 30 Kg

– Degree of freedom: translational movement to all directions

– Repeatability: 0.5 mm

– Maximum translational velocity: 0.26 m/s

– Maximum rotational velocity: 1.82 rad/s (104.27 deg/s)

– Acceleration range: [0, 4457932] rev/min2 ≈ 40.86 m/s2

– Size (L * W * H): 281 mm ∗ 306 mm ∗ 141 mm

Although the information that can be found in the specification may not cover all
fields demanded in MaRCO, it is not very important. This is simply an illustration
of the possibilities of our CBSAM.

• Product & Process Specification:

The raw material of the product we designed here is some plastic blocks. They
will be passed between different devices according to the scenario. Therefore, the
capabilities required by this partial manufacturing process are: PickAndPlace and
Transporting. According to MaRCO’s definition of product, a product needs to
identify its mass and requiredActivity, i.e. the process required to produce it. And
the Process needs to identify the requiredCapabilities defined in pt ontology.

Figure 5.7 shows a concrete example of the definition of Transporting in pt ontol-
ogy. Accordingly, an example will be used below to illustrate how to specify the
required capability of a process. The properties related to the matchmaking are
requiredAccuracy, requiredDOF, and requiredSpeed.

4https://resourcedescription.rd.tuni.fi/ontology/capabilityModel
5https://emanual.robotis.com/docs/en/platform/turtlebot3/features/
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Figure 5.7: MaRCO required transporting capability definition in Protégé

– requiredAccuracy: 10 mm

– requiredDOF: translatex

– requiredSpeed x: 0.02 m/s

Based on the provided examples, it’s clear that LittleTurtle offers the precision
needed for the process, which demands a 10mm accuracy. Additionally, LittleTurtle
is capable of supplying the process with a translational speed along the x-axis of
0.02m/s. These qualities facilitate the realization of semantic matchmaking between
the two capabilities.

Operational Data Information

• Asset Connection:

The specification of operational data access in the AAS digital twin system pro-
vides a flexibility in the deployment, which allows the system to be configured in a
parameterized manner rather than through pre-established connections. The AAS
Digital Twin should be configured to receive data from within the asset. Upon re-
ceiving this data, the AAS digital twin updates the appropriate attributes to reflect
the current state of the asset. This update mechanism allows the digital twin to
become an sufficiently accurate representation of the physical asset for the applica-
tions to be performed correctly. The AAS digital twin should also be able to expose
the updated data to external systems and stakeholders. In the integration between
the Asset Administration Shell (AAS) Digital Twin and the assets, the OPC UA
standard is fundamental for internal connectivity. Consequently, the specification of
operational information entails gathering the information model of OPC UA server.
The OPC UA server configuration of LocalSEA can be found in Figure 5.8.
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The LittleTurtle is utilized here as an illustrative example. Tables 5.2 and 5.3 de-
lineate the OPC UA server information specific to LittleTurtle. The first table
illustrates dynamic properties that reflect the status of the system, while the sec-
ond details the various methods available for executing skills. These methods vary
in complexity, encompassing simple actions such as moving forward and backward,
as well as more sophisticated tasks like navigating to a pre-defined position in the
cartography or following a set trajectory.

Figure 5.8: LocalSEA OPC UA server configuration

Table 5.2: Dynamic properties of Little Turtle in OPC UA server

Data Type Rate Node Id Unit

OperationalStatus UInt16 Event ns=6, i=5181 -

LatestMission UInt16 Event ns=6, i=5182 -

LatestOperationalStatus UInt16 Event ns=6, i=5183 -

Wheel Left ActualPosition Double 5Hz ns=5, i=6123 Rad

Wheel Left ActualSpeed Double 5Hz ns=5, i=6143 Rad/s

Wheel Right ActualPosition Double 5Hz ns=5, i=6126 Rad

Wheel Right ActualSpeed Double 5Hz ns=5, i=6146 Rad/s

T3wp Status Int32 5Hz ns=6, i=65411 -

T3wp EnergyConsumption UInt32 0.1Hz ns=6, i=65412 kJ

T3wp BatteryStatus Double 5Hz ns=6, i=65413 -

CPU Temperature Double 0.1Hz ns=5, i=6180 °C
Bucket Status Int32 Event ns=6, i=6031 -

Park Status Int32 Event ns=6, i=6021 -

The Table 5.2 indicates that property data updating occurs at regular intervals,
which represents a discrete sampling of the reported values. This results in latency,
creating a discrepancy between the real-world situation and its digital twin repre-
sentation. Additionally, all these measurements are prone to errors stemming from
the instrumentation that affect the accuracy with which the digital twin mirrors.
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Table 5.3: OPC UA methods of LittleTurtle

Method Node Id Input

t3wp act start ns=6;i=61001 -

t3wp act move place workspace ns=6;i=61002 -

t3wp act move place storage ns=6;i=61003 -

t3wp act move place ns=6:i=61004 -

t3wp act start with init ns=6;i=61011 UInt32

t3wp act end ns=6;i=61099 -

t3wp behave go round trip ns=6;i=61100 -

t3wp restart ns=6;i=61998 -

t3wp shutdown ns=6;i=61999 -

• Information Accessiblity:

This functionality is realized by BaSyx. Since the specification required by BaSyx
is the AAS model, the description will be expanded in the design phase.

Monitoring & Diagnosis Information

• Resource Operating Events:

The specification phase of the system’s operation is indispensable. This involves
analyzing each component’s role and impact on the overall system performance. The
elements selected for monitoring are those whose performance metrics are essential
to the smooth functioning of the entire system.

For each identified AAS model, it is crucial to specify the possible events that need
monitoring. This includes defining the nature and type of each event. Events can
range from routine operational status to critical system alerts. The RSP4J will
be used as a framework for runtime stream processing. The CSPARQL is chosen
as the inference query language, which verifies the constraint values within a time
window. Specifically, in the definition of CSPARQL syntax, the term window range
(WR) refers to the time frame of the window, while window step (WS) indicates the
frequency at which queries are executed.

The constraints and performance metrics for each event are detailed in Table 5.4.
This table provides an essential overview of the events associated with the resource
performance, delineating both the event types and their corresponding constraints.
These limits are related to the performance of the device, so no matter how the
process is defined, the above constraints should always be met to ensure that the
system is functioning properly. For example, to ensure optimal performance of the
conveyor belt, a constraint is set where the belt speed should exceed 20 mm/s. These
performance metrics are pivotal in evaluating the efficiency and effectiveness of the
AAS models. A critical aspect of monitoring is the detection of system failures. In
our case study, a failure is indicated when the “Status” value of any resource drops
to 0.
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Table 5.4: Exemplary events of LocalSEA resources

Monitor EventType Event Constraints WR WS

Belt Warning SpeedTooLow Speed ≤ 20 1 1

Failure SystemOFF Belt.Status = 0 2 2

NedRobot1 Failure SystemOFF NedRobot1.Status = 0 2 2

Warning CPUTooHot NedRobot1.Temperature ≥
60

2 2

Storage Warning NumberLow Number ≤ 1 2 2

Warning NoObjects Number = 0 2 2

LittleTurtle Warning BatteryTooLow BatteryStatus ≤ 15 10 10

LittleTurtle Failure SystemOFF LittleTurtle.Status = 0 2 2

UR Failure SystemOFF UR.Status = 0 2 2

Warning CPUTooHot UR.Temperature ≥ 60 2 2

• Process Related Events:

Event specifications on processes need to be analyzed for different scenarios. This is
because the constraints encountered in different scenarios will be different depending
on the desired product and even product orders for the same product. For instance,
as shown in Table 5.5 events are categorized into types such as ’Failure’, ’Malfunc-
tion’, and ’Warning’. A ’Failure’ event, like ’ResourceSystemOFF’, occurs when any
resource status equals zero and has specific implications in scenarios where unin-
terrupted resource availability is critical. It is assigned a weight of 2 in both WR

(time-based window) and WS (frequency) categories.

Similarly, ’Malfunction’, characterized by ’DefectiveOperation’, is triggered when a
resource’s operation status is at 3. This type of event may have different repercus-
sions in scenarios where precision and operational efficiency are paramount. The
’Warning’ category includes events such as ’NoObjectsInStorage’, indicating zero
storage, and ’NoObjectArrive’, occurring when all infrared sensor statuses are zero.
These warnings are essential in scenarios where inventory management and timely
arrival of objects are critical factors. Thus, the table not only catalogs these events
but also implicitly guides the analysis of how different constraints in varied scenarios
can influence the process flow and the quality of the end product.

Table 5.5: Exemplary events of related to scenario process

EventType Event Constraints WR WS

Failure ResourceSystemOFF ∃ Resource.Status = 0 2 2

Malfunction DefectiveOperation ∃ Resource.OperationStatus = 3 2 2

Warning NoObjectsInStorage Storage.Number = 0 2 2

Warning NoObjectArrive ∀ Infrared Sensor Status = 0 20 1
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5.4.2 AAS Model Design

This section introduces the design of AAS models leveraging the AAS graphical modeling
diagrams within the context of the P4M framework. It delves into the methodology of
constructing precise AAS models, utilizing these diagrams and incorporating the informa-
tion amassed during the preceding specification phase. In that phase, data is methodically
collected and categorized into various aspects such as capability specification, operational
data specification, and monitoring specification.

To effectively construct digital twin models that encapsulate all relevant real-world in-
formation within a singular model for each asset, it is imperative to integrate the collected
data as comprehensively as possible. The integration process is designed to ensure that
the digital twin sufficiently reflects the multifaceted nature of the physical asset. Owing
to the diverse and complex nature of these models, the presentation of this process will be
segmented, allowing for a more detailed and clearer explanation of the design and imple-
mentation strategies. This approach facilitates a deeper understanding of how each aspect
of the collected information contributes to the representation of the assets in the digital
twin models.

The Table 5.6 categorizes these components into four main types: Resource Type,
Resource Instance, Process, and Product. Each type is evaluated against three main
aspects: Capability, Operational, and Monitor. For Resource Type, the table indicates
a direct relevance to the Capability aspect, highlighting its role in defining the potential
abilities of a resource, but it shows no direct correlation with Operational and Monitor
aspects. On the other hand, Resource Instance is associated with all three aspects. It’s not
only related to its type (Capability) but also plays a significant role in the Operational and
Monitor phases, underlining its importance in the functioning and oversight of the actual
resources. The Process category is marked as integral to all three aspects: Capability,
Operational, and Monitor. This indicates the all-encompassing nature of processes within
the AAS models. Lastly, the Product category is linked with the Capability aspect.

Capability Operational Monitor

Resource Type ✓

Resource Instance related to its type ✓ ✓

Process ✓ ✓ ✓

Product ✓

Table 5.6: Overview of AAS model design

In the previous chapters, we emphasized the significance of using a UML profile for
the implementation of a metamodel in an MDE environment. We also discussed sev-
eral critical metamodels, such as AAS, MaRCO, and the self-adaptive metamodel. The
implementation step is the application of these metamodels to our current model.

This application is essential to guarantee that our model is fully compatible with and
can effectively utilize all the previously mentioned DSLs. Incorporating the AAS meta-
model, for instance, will allow our model to better manage and represent digital twins of
physical assets. By applying MaRCO profile, our model will be able to represent manufac-
turing resources and their capabilities. The self-adaptive metamodel will be particularly
beneficial when designing the monitoring and diagnosis conditions and requirements.

Figure 5.9 shows different UML profiles applied to the AAS model package.
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Figure 5.9: Profile application to AAS model package

Resource Type AAS Model Design

• AAS:

In the AAS model (see Figure 5.10), the component designated as the resource
type is primarily focused on capability information, which is effectively implemented
through the DeviceBlueprint stereotype, a feature originating from the MaRCO pro-
file. This aspect of the model is critical in defining the functional capabilities of the
device or resource in question. However, the scope of the AAS model for the resource
type extends beyond just capabilities. It is also designed to integrate a range of ad-
ditional informational elements that are vital for a comprehensive understanding of
the resource. These elements include “Nameplate”, which provides basic identifica-
tion details; “Technical Specification”, offering detailed descriptions of the resource’s
technical attributes; “Mechanical Interface”, outlining the mechanical connectivity
aspects; and “Electrical Interface”, detailing the electrical connection specifications.
Together, these components provide a holistic view of the resource, encompassing
both its functional potential and its technical and physical characteristics, thereby
enhancing the model’s utility and applicability in various contexts.

Figure 5.10: TurtleBot3 Type AAS model design

• Capability Submodel:

In the capability submodel (see Figure 5.11), it is required to populate the capabil-
ity element in accordance with the information related to capabilities as outlined in
the Section 5.4.1. This submodel involves a meticulous alignment of the submodel’s
capability element with the predefined specifications, ensuring consistency and ac-
curacy. As demonstrated in the accompanying figure, the procedure for integrating
these capability-related details is methodically illustrated, guiding the accurate rep-
resentation of capabilities within the submodel. This step is crucial for maintaining
the integrity of the model and ensuring that it accurately reflects the specified ca-
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pabilities, thereby providing a reliable and effective tool for analysis and application
in relevant scenarios.

Figure 5.11: TurtleBot3 Type capability design

Resource Instance Model

• AAS:

To effectively establish digital twin models that are accurate and deployment-ready,
certain attributes of the AAS model require identification. For an instance model,
the attribute derivedFrom must reference its corresponding type model. For instance,
AASLittleTurtle (see Figure 5.12) should refer to AASTurtleBot3 Type. As listed
earlier, this AAS model should encompass at least three distinct submodels: the “Ca-
pability Submodel”, “OperationalData Submodel”, and “Monitoring Submodel”.

For the deployment of the AAS model as an executable BaSyx server, it is imperative
to specify endpoint information during this phase. For instance, to deploy the server
locally, the address should be set to “localhost”. Additionally, each AAS server must
be assigned a unique port to prevent any connection conflicts. Furthermore, each
AAS model requires a unique identifier to ensure its distinctiveness.

In the context of the AAS resource instance model, it should also be annotated with
the IndividualDevice stereotype. This annotation signifies the model’s alignment
with the DeviceBlueprint model, which is essential for accurately defining the model
within the AAS framework. This step is critical for ensuring that each resource in-
stance is properly represented and identifiable within the overall digital twin system.
And it is also crucial for the further engineering phase.
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Figure 5.12: LittleTurtle AAS model design
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• OperationalData Submodel:

Figure 5.13 details the configuration of a Property of the “OperationalData Sub-
model” named “BucketStatus”. The “BucketStatus” property is marked as isDy-
namic, and is associated with an OPC UA protocol endpoint, as shown by its address
(opc.tcp://10.8.32.213:4840) and protocol attributes. This endpoint is named
“Wlan0”, which refers to a wireless network interface and is linked to a NodeId
characterized by a namespace index and an identifier. The above information are
already gathered from the OPC UA server.

Figure 5.13: Little Turtle property

In the “OperationalData Submodel” delineated herein, additional to the dynamic
properties and operations as specified in Section 5.4.1, there exists the requisite to
architect the skill as an operation. Skills embody the tangible executions of capa-
bilities. For example, the skill employed by LittleTurtle to actualize the capability
Transporting is denominated as “go round trip”. The conduct of this skill is de-
pictable through a BPMN (Business Process Model and Notation) process diagram,
the representation of which is illustrated in Figure 5.20.

Figure 5.14: Little Turtle behavior BPMN representation
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• Monitoring Submodel:

As an AAS submodel, the monitoring model can be designed for various assets,
including different production resources and production processes. According to the
previous introduction, we need to design the elements to be monitored for each asset
at this stage, the events that may be triggered, and the trigger conditions of the
events (the diagnosis rules).

For example, consider the scenario illustrated in Figure 5.15. In this instance, the
belt monitor is responsible for observing its own “Status” and “Battery” properties.
The diagnosis rules are applied through certain operations, such as “check battery”,
which regularly verifies the battery status every two seconds. Two kinds of events are
predefined in the diagnosis. The first event is a warning when the battery is lower
than 15%, which means the battery of little turtle is too low to ensure a smooth
production process. The second event is “SystemOFF”, which indicates the system
is in OFF mode. Either the robot is not started, or the robot is broken and can not
be started.

Figure 5.15: Little Turtle monitor
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Process AAS Model Design

• AAS:

The AAS model of a process should encompass at least three distinct submodels: the
“Capability Submodel”, “OperationalData Submodel”, and “Monitoring Submodel”.
At the same time, the Process (from mmo-profile) stereotype should be applied to the
AAS model (see Figure 5.16), which indicates this object is semantically recognized
as a process within the model. The presence of requiresProcessCapability suggests
that this AAS component is designed to perform or manage specific functions or
tasks within an automated or industrial process. The capabilities “PickAndPlace”
and “Transporting” imply actions typically involved in manufacturing or logistics
processes.

Figure 5.16: Process AAS annotation design

• Capability Submodel:

The Capability Submodel should include the capabilities required by the given pro-
cess. Each capability should be annotated with concepts coming from the pt (Process
Taxonomy Ontology) and well-refined with specified data. As shown in Figure 5.17,
the attribute fields are supposed to be filled in with the information given in Section
5.4.1.

Figure 5.17: Required capability (Transporting)

• OperationalData Submodel:

The OperationalData Submodel should include the process workflow that is the
BPMN Process diagram. The process diagram of “AASAssemblyProcess” is show-
cased in Figure 5.18. As the project progresses into the engineering and deployment
stages, each service task within this diagram will be allocated a specific skill, a de-
cision that is determined based on the requirements and outcomes identified during
the engineering phase. This allocation is essential for ensuring that each task is
executed efficiently and effectively, aligning with the overall project objectives.
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Figure 5.18: Assembly process BPMN diagram

• Monitoring Submodel:

At the core of this submodel are observed properties, which include status ob-
servations for entities named Ned and LittleTurtle, suggesting these are critical
components or agents within the system whose operational statuses are continu-
ously tracked. Other observed properties such as “Ned pap Observe”, “LittleTur-
tle transporting Observe”, “Storage Number Observe”, and “Infrared Sensor Obse-
rve” indicate a detailed surveillance setup designed to monitor an array of operational
metrics, from transport activities to storage logistics and sensor data.

The submodel also encapsulates a set of basic events that serve as triggers or alerts
within the system. These include notifications for malfunctions tagged as “Defec-
tiveOperation”, and warnings for inventory issues such as “NoObjectsInStorage”
and “NoObjectArrive”. These events are critical for maintaining system integrity,
as they likely initiate corrective actions or flag issues for immediate attention.

Lastly, the operations listed like “checkOperationStatus()”, “checkSkills()”, “check-
StorageNumberStatus()”, and “checkSensorStatus()” are indicative of diagnostic or
analytical functions. These operations are purposed to evaluate the current state
of various system elements, such as the efficacy of performed skills, the accuracy of
storage counts, and the functionality of sensors.
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Figure 5.19: Process monitor

Product AAS Model Design

• AAS:

the “ProductElement” stereotype from the mmo-profile shows that “AASProduct1”
is recognized as a product component within the model, with specific attributes
associated with it. The attributes listed include ’mass’, which is of type Real and
currently set to 0.1, likely indicating the weight of the product or part in some unit.
The entityID attribute is of type String and appears to be empty, suggesting that a
unique identifier for the product element has yet to be assigned or is not displayed
in the snapshot.

Additionally, the requiresActivity attribute refers to an Activity array, which is linked
to “AASAssemblyProcess” AAS model. This indicates that “AASProduct1” is as-
sociated with an assembly process, suggesting that its existence or function is con-
tingent upon the activities defined within the AASAssemblyProcess, likely detailing
the steps or operations required to produce or manage the product.

Figure 5.20: Little Turtle behavior BPMN representation
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5.4.3 Engineering & Deployment

For the implementation of the Engineering & Deployment phase, the focus is on the
combination of conceptual design and emerging technologies used to implement functional
systems. According to Chapter 3, this phase consists mainly of the automated generation
and deployment of AAS digital twins, the initial CBE process, and the construction of the
initial knowledge base.

BaSyx Server Deployment

The functionality of transforming AAS models into BaSyx code facilitates the deployment
of an AAS model into an HTTP server. The asset’s dynamic information model can
be accessed and modified through the HTTP requests sent to the dynamic AAS server.
Additionally, the API for invoking AAS operations is available. To orchestrate the pro-
duction process, all the resources’ AAS servers involved in the process plan should be
started and continuously accessible. The highlighted part of Figure 5.21 indicates that
the “AASServer” of LittleTurtle is actively listening at http://localhost:2021/aas as
designed in the previous section.

Figure 5.21: AAS BaSyx server deployment example

Process Reconfiguration Capability Checking

During the design phase, the MaRCO Ontology profile is applied to the LocalSEA models.
Also, the AASs have applied stereotypes corresponding to the different types of Resources
existing in MaRCO. The stereotype DeviceBlueprint is applied to “AASTurtleBot3 type”
contains the information about a Turtlebot3 robot in LocalSEA. The capabilitiy Trans-
porting mentioned above are attached to AAS capabilities owned by the “AASTurtle-
Bot3 type” as stereotypes. “LittleTurtle”, an instance of Turtlebot3, is defined as an
IndividualDevice, so the attribute hasDeviceBlueprint is set to “AASTurtleBot3 type”.

Once the user selects the product to produce, the rest of capability checking process
is fully automated and triggered by a right-click command. Firstly, the OML Adapter is
called to transform the AAS models into MaRCO instances. The resulting AASs.owl file
contains all the AAS model capability-related information. Then the capability match-
maker takes the resources and product descriptions as input to infer the matchmaking
results. These inference results are generated in the same folder as AASs.owl under
the name of matches.ttl. Figure 5.22 shows the changing status of the required capability
Transporting in the LocalSEA production process at different stages of capability checking.
In the modeling environment, the corresponding stereotypes are applied to “AASProcess1”
model.

As shown at the upper part of the figure, the attribute of matchmakingRequired is
set to true to trigger the matchmaking inference. All the information defined in the
process model is written to AASs.owl, as shown in the middle screenshot. The lower part
of the figure shows the inferred information stored in matches.ttl after inference by the
capability matchmaker. The figure shows the transporting process has capability match
with the human operator typed devices, ConveyorBelt typed devices, or a human operator.

95



5.4. CBSAM Architecture Implementation CHAPTER 5. LOCALSEA TESTBED

But it can only be implemented with TurtleBot3, because the parameters of the conveyor
belt in this case doesn’t fit the requirement.

Inference
Results

Inference

Generate

Figure 5.22: An AAS2MaRCO generation of a required capability

The capability checking results of the “AASProduct1” are grouped in a pop-up win-
dow shown in Figure 5.23. According to these results, PickAndPlaceFlexible can be im-
plemented by NiryoNeds, Transporting can be done by TurtleBot or conveyor belt, and
human operators can realize all the capabilities required in this process, which just matches
our previous definition of LocalSEA devices. Through this result list, the user can select
the production line combination to be further checked in the feasibility checking module.
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Figure 5.23: Capability checking result window

Process Orchestration

The functionality of transforming AAS models into BaSyx code facilitates the deployment
of an AAS model into an HTTP server. The asset’s dynamic information model can be
accessed and modified through the HTTP requests sent to the dynamic AAS server. Addi-
tionally, the API for invoking AAS operations is available. To orchestrate the production
process, all the resources’ AAS servers involved in the process plan should be started and
continuously accessible. To visualize the result of the process execution, we published a
video6 in the documentation of Papyrus4Manufacturing. Figure 5.24 is an example flow
that represents the transporting behavior of Little Turtle, which is defined in a BPMN
diagram (see Figure 5.20).

Figure 5.24: Node-RED orchestration flow of Little Turtle

Global Capability Knowledge Generation

Following the completion of the capability checking procedure, a ’match.ttl’ file is pro-
duced, which serves as a repository for all the AAS capability information along with
inferenced knowledge. This file emerges as a foundational component for constructing a
global knowledge base. Its significance lies in the encapsulation of comprehensive global

6https://youtu.be/G5Hfinm_guE
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information which is pertinent to the system’s capabilities and the relational knowledge
inferred during the capability checking. It also provides a structured framework that can
facilitate the integration and synchronization of knowledge across the platform. As such,
the match.ttl file not only reflects the current state of AAS capabilities but also paves the
way for the enhancement of data cohesion and interoperability within the entire manufac-
turing system. Moreover, by serving as a central point of reference, it can greatly improve
the efficiency of querying and updating system capabilities.

5.4.4 Operation & Maintenance

The Figure 5.25 shows the project structure of the process’s monitor. ConsumerStream-
Generator.java generates a stream for Kafka consumer stream for RSP reasoning use. This
class subscribes to the topics that are generated from the AAS monitoring submodel. The
class ProcessKafkaConsumer.java consumes Kafka messages, which involve reading data
from a Kafka topic and processing it with the CSPARQL queries. aasmap.ttl contains the
mapping definitions from JSON raw data to AAS RDF graph. monitor process1.ttl con-
tains the mapping definitions from JSON raw data to self-adaptation ontology-compliant
triples. Process1Monitor.ttl is the RDF data model generated from the AAS monitor-
ing submodel. monitoring.owl is the self-adaptation ontology representation presented
in Section 3.3.4. Each of these files is essential from setting up the data streaming and
consumption with Kafka to defining the data models and configurations for how the mon-
itoring should be structured and understood semantically.

Figure 5.25: Project structure of process monitor

Here we refer to the scenario described in section 4.5.3, which discusses a continuous
query evaluates whether the battery level of the LittleTurtle is sufficiently maintained
to persist in its assigned task. The following listing (Listing 5.1) provides a snapshot of
the query result at a given time. This excerpt illustrates how the system monitors and
responds to the battery status, showcasing the practical application of the query in a real-
world scenario. Based on the experimental data we have gathered, it has been observed
that the disparity between the event time and the processing time for this particular query
typically ranges from 7 to 15 milliseconds. This time difference reflects the efficiency and
responsiveness of the system in handling real-time data. The event time refers to the
actual moment when the data or event occurs, while the processing time is when the
system processes this information. A narrower gap between these two times indicates
a more efficient system, capable of quickly responding to changes in the LittleTurtle’s
battery level and ensuring timely decision-making for its continued operation.

In light of the inferred triples from the system’s queries, it’s possible to implement

98



CHAPTER 5. LOCALSEA TESTBED 5.5. Conclusion

1 {
2 ”@graph” : [ {
3 ”@id” : ” http :// cea . l i s t . papyrus4manufacturing /monitor ing / t u r t l e#BatteryTooLow

” ,
4 ”@type” : ” http :// cea . l i s t . papyrus4manufacturing /monitor ing#Warning”
5 } , {
6 ”@id” : ” http :// st reamreason ing . org / r e s u l t /1702286076128” ,
7 ”eventTime” : ”1702286076128” ,
8 ” process ingTime ” : ”1702286076139”
9 } ] ,

10 ”@context” : {
11 ” process ingTime ” : {
12 ”@id” : ” http :// st reamreason ing . org / c spa rq l / process ingTime ” ,
13 ”@type” : ” http ://www.w3 . org /2001/XMLSchema#dateTimeStamp”
14 } ,
15 ”eventTime” : {
16 ”@id” : ” http :// st reamreason ing . org / c spa rq l /eventTime ” ,
17 ”@type” : ” http ://www.w3 . org /2001/XMLSchema#dateTimeStamp”
18 }
19 }
20 }

Listing 5.1: CSPARQL query outstream result

further adaptations to the system’s behavior. However, due to time constraints, we were
unable to cover the complete MAPE-K loop within the scope of our current work. The
incompleteness of this loop in our implementations points to an area for future exploration
and development. In the conclusion section, we will discuss and outline potential directions
for future research and development.

5.5 Conclusion

This chapter provides a complete explanation of how the CBSAM architecture was de-
signed, developed, and used, utilizing several use cases from the testbed LocalSEA. How
the AAS model was elaborated using P4M, how the capability checking was accomplished,
how the AAS digital twin was deployed and orchestrated, and finally how the AAS digital
twin was monitored are all described in this chapter. However, due to time constraints and
the fact that all development is a proof-of-concept phase, the verification and comparison
of performance is not covered in this chapter.
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Chapter 6

Conclusion & Perspectives

In conclusion, this thesis emphasizes the upcoming transformation of manufacturing driven
by Industry 4.0. The emergence of intelligent and adaptive manufacturing systems repre-
sents a significant advancement characterized by the ability to manage diverse and flexible
production. Challenges related to the interoperability, adaptability, and robustness of
manufacturing systems are at the heart of this transformation. The digital twin approach
offers an opportunity to bring the physical world closer to the digital world, leading to bet-
ter monitoring, more accurate planning, and efficient execution of production processes.
The implementation of digital twins combined with the principles of model-driven engi-
neering is a promising solution to these challenges. The proposed architecture CBSAM
(Capability-Based Self-Adaptive Manufacturing) leverages the methodologies in software
engineering and Industry 4.0, such as CBE (capability-based engineering), MDE (model-
driven engineering), and MAPE-K (Monitor, Analyze, Plan, Execute over a shared Knowl-
edge) structure to improve the responsiveness and flexibility of production systems.

This section gives a conclusion to the thesis, which will be outlined in two main parts.
Firstly, this section recapitulates the contributions made by this research, which includes
(1) the proposition of the CBSAM architecture to enable flexible manufacturing through
digital twins, (2) the implementation of this architecture that brings the conceptual as-
pects into practical software applications, (3) the real-world application through a robotic
testbed, (4) the dissemination of the research results through various publications and
communication in the international conferences. The second part focuses on the future
perspectives stemming from this research. This includes a discussion on the consolidation
of the implementation and the generalization of the CBSAM architecture.

6.1 Contributions

6.1.1 Proposed Architecture

This CBSAM architecture aligns with the engineering phases that cover the entire lifecycle
of the production system, from design to operation. Its design enables the ease of use, even
for non-specialists, for the management of the manufacturing system through digital twins.
This alignment with industry trends underlines its forward-thinking approach, which is
crucial for meeting the demands of Industry 4.0.

1. To address the challenge of syntactic interoperability, the architecture incorporates
the emerging standard AAS for digital twin modeling, accommodating different types
of production processes, products, and resources. Since AAS is mainly focusing on
structural digital twins modeling, we proposed to integrate the standard BPMN
language for production processes modeling.
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2. For semantic interoperability, the use of ontology enables systems to interpret and
process data contextually, leading to a more automatic process-resource matchmak-
ing procedure.

3. The adaptability challenge is enhanced through capability-based engineering, allow-
ing it to adjust to various production plans seamlessly.

4. The incorporation of the MAPE-K loop structure is fundamental for robustness,
ensuring self-adaptive system behavior and responding dynamically to changes in
the production environment.

6.1.2 Software Implementations

The implementation phase is a crucial transition from conceptual exploration to practi-
cal realization, emphasizing the core contributions of the thesis research. The primary
contributions revolve around the development of software tools and methodologies.

1. The innovative integration of the MDE technologies in the realm of digital twin
modeling. The development of the P4M toolset provides the modeling environment
that eases the creation and comprehension of AAS-compliant digital twins with the
graphical diagrams. This thesis contributes to the production process modeling
design by integrating the BPMN modeling plugin and the asset’s internal structure
modeling by extending the UML composite structure diagram.

2. The implementation of capability checking of CBE represents another contribution
of this research. This implementation successfully bridges the integration of MDE
with ontology, which not only provides rich semantic descriptions to digital twin
models but also empowers model-driven engineering tools with enhanced automated
reasoning capabilities. The capability checking procedure results to the automatic
semantic alignment of the process requirements with the potential resources for the
production.

3. The creation of a set of customized nodes in Node-RED simplifies the orchestration of
process digital twins marks yet another important contribution. Transforming the
static BPMN processes into executable and dynamic workflows demonstrates the
practicality and applicability of the research in real-world manufacturing scenarios.

4. The implementation of monitoring and diagnosis module for dynamic AAS mod-
els using semantic computing technologies, which provides better interoperability
between sensors that are supplied by different manufacturers with specific charac-
teristics that can be taken into account by the diagnostic rules, from units of mea-
surement to non-functional properties. This module is a crucial step for realizing
a self-adaptive CBE system, enabling it to detect or anticipate system failures or
potential issues, thus contributing to the awareness of the problem happening in
production lines and enhancing the robustness.

6.1.3 Testbed Validation

In addition to the software development contributions, this thesis also contributes to the
digital twin construction for an academic robotic testbed. The use of an academic robotic
testbed allows a flexible environment where experimental and innovative ideas can be
tested with less constraints and pressures than in industrial practice. This flexibility is
essential for thorough testing and validation of new concepts and architectures.
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This testbed serves as a proof of concept for the CBSAM architectural framework
proposed in the thesis, and a mean for validating the various implementations that have
been discussed. This testbed not only tests and validates the functionality and efficiency
of the proposed methods but also provide insights into their potential improvements.

6.1.4 Publications

Throughout the course of this research, several conference articles have been published,
contributing significantly to the communication and dissemination of the work. These arti-
cles encompass various aspects of the research, presenting the development and application
of digital twin technology in the Industry 4.0 context.

1. ETFA 2021 [99]: This work-in-progress paper discusses the concept of Industry 4.0,
emphasizing the challenges for the implementation of flexible production lines. It ad-
dresses the criticality of rapid reconfiguration for manufacturers, especially SMEs, to
maintain commercial success. The paper analyzed the capability-based engineering
approach to address interoperability and adaptability problems in flexible production
lines.

2. IECON 2021 [100]: Focusing on the autonomy of future intelligent manufacturing
systems, this article underlines the importance of monitoring the production process,
rapid re-planning, and responding to unforeseen situations securely. It proposes a
capability-based operation and engineering approach using the AAS standard and
details the modeling concepts necessary for this approach.

3. ISIE 2022 [94]: This paper shares insights on an OPC UA-based robotic testbed for
Industry 4.0 research, discussing the challenges of updating the information model
with system design evolution. It outlines the testbed’s development strategy, follow-
ing the SysML and OPC UA standards.

4. Moddit’22 [101]: Addressing the gap in semantic interoperability for Industry 4.0
components, this article proposes a modeling approach for AAS-based digital twins
using ontologies. It emphasizes the role of formal semantics and the general mapping
between UML taxonomies and ontology taxonomies.

5. ONCON 2022 [97]: This paper presents an approach to bridge ROS 1 and ROS 2
robots to an OPC UA PubSub network, derived from the development of an OPC
UA-based robotic testbed. It addresses the challenges of networking robots with
OPC UA devices and enabling rapid system integration for quick experiments.

6. ICPS 2023 [102]: This article focuses on the interoperability gap in digital twins.
It introduces an ontology-based approach for semantic capability checking and im-
plements the capability checking step by enabling the semantic interoperability of
AAS-based digital twin models, which transforms AAS-based plant models into on-
tology instances for resource matching. The implemented framework includes the
transformation module, the matchmaking module, and the user interface.

7. ETFA 2023 [35]: This paper introduces the Papyrus4Manufacturing tool, which pro-
vides a model-based systems engineering approach to AAS. It supports the creation,
deployment, and connection of AAS digital twins using the OPC UA protocol and
evaluates its usability with an academic use case.
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6.2 Future Perspectives

6.2.1 Short-Term Perspectives

One of the primary objectives is to implement and cover the architecture proposed in
this thesis work. This involves enhancing the integration of the various components and
processes to create a more cohesive and comprehensive system. The short-term future
involved here are basically issues that have been studied but have not been completed.

Completing Real-Time Adaptation in the MAPE-K Framework

The implementation of the MAPE-K loop, which currently halts at monitoring and di-
agnosis, could be extended to incorporate real-time adaptive decision-making and action-
taking. Envisioning a future where the planning component of MAPE-K is driven by an
intelligent algorithm allows for dynamic and responsive system management. This ad-
vancement would enable systems to not only identify and diagnose issues in real-time but
also to autonomously adapt and respond effectively.

Enhanced Feasibility Checking through AAS-Compliant Digital Twins

The concept of feasibility checking, currently focused on tests and validations within a
simulation environment, stands on the brink of a significant evolution. An enhancement
could be realized through the integration of AAS-compliant digital twins. This advance-
ment would involve defining specialized simulation-related information within a submodel
that will enable the automatic deployment of simulations using MDE methods. Such an
approach promises to streamline the simulation process, allowing for more flexible and
efficient feasibility assessments in complex system environments.

6.2.2 Long-Term Perspectives

The goal here is to enhance the proposed architecture in this thesis, ensuring its seamless
integration and efficient operation in larger-scale systems. This involves refining the system
to accommodate greater complexity and increased resource demands while maintaining its
reliability and performance.

Global Event Correlation in MAPE-K

The central research challenge lies in advancing the MAPE-K framework to tackle the
complex task of correlating global events across numerous interconnected devices and
equipment. While current implementations demonstrate alerts only for single assets, a fu-
ture approach would consider scenarios where multiple components collectively contribute
to a specific outcome or effect. Developing capabilities for this kind of complex event
correlation and analysis would vastly improve the system’s ability to predict, diagnose,
and respond to multi-faceted issues. Such an enhancement would significantly elevate the
framework’s utility in managing intricate and interconnected production lines, leading to
more resilient operational management.

Advanced Implementation of Skill Execution in Plug-and-Produce Systems

In the realm of skill execution, the future requires a shift towards advanced “plug-and-
produce” concepts. As the number of resources in the system continues to increase, the
efficiency of centrally locating the corresponding resources decreases. Therefore, a corre-
sponding approach is to give AAS digital twins with a degree of intelligence to endow them
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with environmental awareness. This involves analyzing their own geometric location in-
formation and current capabilities to determine if they can handle a specific task required
for the overall production process. Subsequently, these resources can autonomously self-
organize to test whether they can form new production lines. The key research challenge
lies in efficiently transitioning from centralized capability checking to distributed demand
sensing while incorporating intelligence into AAS and optimizing resource self-organization
for improved production efficiency. Each device in a system should, upon integration, be-
come immediately aware of its role and configuration. This may require the establishment
of a central registry for the digital twin models of AAS, where the digital twin mod-
els within the system can autonomously register or unregister themselves. Additionally, it
would necessitate an enhanced task allocation controller equipped with greater intelligence
to monitor the overall system. The development of such an intelligent system would enable
seamless integration among devices, leading to more adaptable production processes.

6.2.3 Domain Perspectives

Another aspect of future research is to abstract and generalize the methods developed in
this thesis. The aim is to extend the applicability of these methods beyond the specific
requirements of the project, creating a universally applicable approach. This involves
refining the techniques to be adaptable and relevant across different domains, enabling a
wider range of applications for industrial digital twins in general.

Multiple Production Line

The first focus on the generalization involves integrating continuous command flows, en-
compassing planning, and maintenance of equipment across multiple production lines.
This integration will provide a more holistic view of the entire manufacturing system.
The challenge lies in creating a framework that is sufficiently flexible to accommodate the
unique dynamics of different production environments while maintaining its core business
objective.

Complete Management of Production Flow

Another aspect to consider is the facilitation of inter-company exchanges to manage pro-
duction flows. This includes taking into account upstream supplier constraints and down-
stream customer demands. The future architecture should include also the representation
of the product orders which trigger the process from the design to the delivery of the prod-
ucts. The development of algorithms to handle such complex, multi-faceted production
networks is inherently challenging, with the potential for exponential complexity.

AAS for Logistics

Finally, the inclusion of the AAS with logistics management [103] in the future devel-
opment of these methodologies is imperative. This integration is crucial for ensuring
seamless interoperability and standardization across different systems and platforms. The
AAS standard will provide a solid foundation for the development of more sophisticated
and integrated digital twin models, paving the way for widespread adoption and imple-
mentation of the AAS standard in various industrial sectors.

In conclusion, the different types of perspectives discussed here underscore the enor-
mous complexity of efforts required to realize the promise of Industry 4.0. These insights
show that while significant progress has been made, there is still quite a long way to go.
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Recognizing these challenges is critical as it frames the current discussion and identifies
some possible directions for future efforts.
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Appendix A

Résumé en Français

A.1 Contexte Général

L’industrie future sera caractérisée par des systèmes de fabrication intelligents haute-
ment autonomes et adaptatifs. Les systèmes de type “lot-size-one”, ainsi que les concepts
“plug-and-produce”, impliquent la production d’une plus grande variété de produits d’une
manière très flexible, et rendent la mise en service et la maintenance plus efficaces. Plus le
lot de production est petit, plus le besoin de reconfiguration est fréquent, ce qui nécessite
une réduction du délai entre les lots et l’automatisation du processus de reconfiguration de
la ligne de production. Ces nouveaux systèmes de production doivent offrir des propriétés
particulières pour leur adoption par les industriels. La rapidité avec laquelle les fabricants,
en particulier les petites et moyennes entreprises (PME), peuvent reconfigurer la produc-
tion en fonction d’une nouvelle série et ainsi répondre aux besoins des clients et éviter des
temps d’arrêt coûteux des machines. De plus, l’intégration de ces PME dans des châınes de
production multi-entreprises optimisées, qui pousse encore davantage à l’automatisation.
Ces caractéristiques sont essentielle pour maintenir le succès commercial et la rentabilité.
Ces systèmes doivent présenter un haut degré d’autonomie pour gérer la reconfiguration
des lignes de production et faire face à une grande variété de situations imprévues.

Le paradigme de l’industrie 4.0 (I4.0) vise à intégrer les technologies de l’information
et de la communication dans des systèmes de fabrication traditionnels afin d’améliorer
l’efficacité et la qualité des processus de production. Selon ce concept, l’autocontrôle des
systèmes complexes est la base de la production industrielle moderne. Pour mettre en
place un tel système auto-adaptable, la capacité d’orchestrer et de maintenir de manière
autonome le système complexe est essentielle. La fabrication flexible et la robustesse
de la gestion de la châıne de production dans la vision de l’industrie 4.0 s’appuieront
principalement sur la technologie du jumeau numérique [2].

Le paradigme du jumeau numérique [3] vise à fournir un retour d’information en temps
réel entre le système physique et son équivalent numérique (partie cyber d’un système
Cyber-Physique). L’ingénierie dirigée par les modèles (IDM)[4] est une approche qui
a vu le jour dans le domaine du développement de logiciels qui promeut l’utilisation
de modèles pour la conception et le développement de systèmes. Dans le contexte des
jumeaux numériques industriels, les technologies IDM peuvent être utilisées pour créer
et préserver le modèle de jumeau numérique tout au long du cycle de vie du système.
Elles fournissent une base pour la construction de modèles de jumeaux numériques qui
simplifient la conception et le développement de systèmes complexes. En utilisant des
méthodes d’IDM précises, les fabricants peuvent développer des systèmes ouverts, exten-
sibles et obéissants aux meilleurs principes du génie logiciel capables de contrôler, simuler
et optimiser le processus de production. En outre, le concept de models@run.time [5] dans
l’IDM vise à exploiter les avantages des modèles, tels que l’abstraction et la modularité,
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Figure A.1: Concept de jumeau numérique pour une ligne de production

tout au long du cycle de vie d’un système. L’idée de modèles exécutables répond à la
définition du jumeau numérique lorsque les modèles restent en connexion active avec son
jumeau physique pendant toute sa durée de vie. L’abstraction permet aux concepteurs
et aux développeurs de se concentrer sur des concepts de haut niveau qui facilitent la
compréhension humaine. La modularité garantit la flexibilité et l’évolutivité de la gestion
du système. Les models@run.time reflètent l’état actuel du système, ce qui fournit un
cadre idéal pour l’auto-adaptation. La boucle d’auto-adaptation se compose de quatre
phases : Surveillance, Analyse, Planification et Exécution. Cette boucle de rétroaction
est essentielle, car elle permet une adaptation dynamique aux changements et garantit la
robustesse du système.

A.2 Problématiques de Recherche

Cependant, plusieurs défis et questions de recherche essentiels sont apparus dans le do-
maine des jumeaux numériques et de leurs applications à l’industrie. Outre les défis bien
connus liés à la supervision de systèmes cyber-physiques complexes, la nécessité de fournir
une représentation complète des produits, des processus de production et des ressources de
l’usine d’une manière interopérable entre les équipements hétérogènes représente des défis
significatifs. Trois problèmes centraux étudiés dans cette thèse sont interopérabilité ,
adaptabilité et robustesse des systèmes de fabrication à l’ère de l’industrie 4.0.
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A.2.1 Interopérabilité

L’interopérabilité [6] fait référence à la capacité de différents systèmes et organisations à
travailler ensemble de manière transparente. Elle peut être subdivisée en interopérabilité
syntaxique et interopérabilité sémantique. L’interopérabilité syntaxique indique que les
systèmes ont la capacité de communiquer et d’échanger des données, ce qui inclut les for-
mats de données spécifiés, les protocoles de communication, les descriptions d’interface,
etc. Les normes fournissent des règles, des guides, des templates, etc., pour la cohérence
et la conformité d’un domaine spécifique, ce qui régit la construction du système d’une
manière cohérente et transparente. Cependant, pour les domaines émergents tels que
l’industrie 4.0 ou les jumeaux numériques, il n’est pas facile de trouver des normes appro-
priées et de les mettre en œuvre. Le défi consiste à identifier et à tirer parti des normes
existantes pour spécifier l’interface unifiée de tous les participants à un système de jumeaux
numériques de l’industrie 4.0, de sorte qu’ils ne soient plus dépendants des fournisseurs et
de la technologie.

RQ1 Comment pouvons-nous identifier et exploiter les normes et technologies existantes
que nous pouvons utiliser pour concevoir un modèle de jumeau numérique pour les
plans de production et les ressources de l’usine d’une manière à la fois interprétable
par les machines et qui facilite les échanges entre les différentes parties prenantes ?

L’interopérabilité sémantique quant à elle ne se limite pas à un échange efficace de
données entre systèmes. Elle comprend également le fait que les données soient comprises
et traitées dans leur signification propre et communément admise par toutes les parties.
Bien que l’utilisation de normes assure l’interopérabilité syntaxique des actifs entre four-
nisseurs, le problème de l’interopérabilité sémantique demeure. De nombreux groupes et
unités de recherche ont pris conscience de ce problème et ont commencer à étudier ce sujet.
Cependant, la question de l’interopérabilité sémantique demeure spécifique à un domaine,
et les expressions sémantiques dans différents domaines peuvent être très différentes. Par
conséquent, en fonction des limites de notre projet, nous formulons principalement les
deux questions suivantes.

RQ2 Comment pouvons-nous définir sémantiquement les modèles afin de déterminer la
sélection la plus appropriée des ressources disponibles dans l’usine qui répondent aux
exigences du procédé de production ?

RQ3 Comment traiter sémantiquement les données de surveillance obtenues à partir du
jumeau numérique pendant l’exécution pour diagnositiquer de manière correcte et
précise les risques dans le système de fabrication ?

A.2.2 Adaptabilité

L’adaptabilité du système fait référence à sa capacité à réagir de manière pertinente et dans
les délais aux changements. Un système de fabrication intègre l’ensemble des ressources
existantes, des produits souhaités et des processus de production. Par conséquent, un
système de fabrication adaptatif doit être en mesure de répondre aux changements dans
toutes ses composantes. Lorsque les demandes du marché évoluent ou que les objec-
tifs internes changent, les lignes de production peuvent nécessiter des ajustements. Par
conséquent, un aspect essentiel de l’adaptabilité consiste à réaliser automatiquement la re-
composition et la replanification de la ligne de production lorsque le flux de travail change.
Un autre aspect important est la capacité de configuration/reconfiguration rapide. Le
système doit être conçu pour être facilement reconfigurable sans temps d’arrêt important.
Ces défis soulèvent les questions de recherche suivantes :
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RQ4 Quelles méthodologies peuvent être développées pour faciliter la recomposition et la
replanification dynamique des lignes de production de manière flexible et automatisée
?

RQ5 Quelle stratégie peut-on employer pour garantir une reconfiguration rapide et efficace
du système en réponse à des besoins opérationnels variés ?

A.2.3 Robustesse

En outre, la robustesse est une caractéristique clé d’un système de fabrication; elle fait
référence à la réactivité du système, à sa tolérance aux pannes et à sa capacité d’auto-
adaptation. La différence entre un système adaptatif et un système auto-adaptatif tient
au fait que le système comprend ou non une boucle de rétroaction (surveillance, analyse,
planification et exécution). Ce dernier est capable d’ajuster son propre comportement
en cours d’exécution afin d’atteindre les objectifs du système. La surveillance et le diag-
nostic des modèles de jumeaux numériques dynamiques sont essentiels à la réalisation des
systèmes auto-adaptatifs. La surveillance met à jour le jumeau numérique avec des données
du monde réel. Le module de diagnostic examine les données et utilise les informations
transmises par le jumeau numérique pour prendre des décisions. Le jumeau numérique
doit ensuite interagir avec le monde réel et prendre des décisions. Ces caractéristiques
peuvent permettre aux systèmes de fabrication non seulement de continuer à fonctionner
de manière optimale, mais aussi de fournir des plans de reprise en cas d’anomalies. Par
conséquent, le processus d’auto-adaptation du système peut théoriquement être réalisé
en s’appuyant sur les technologies de jumeaux numériques. Toutefois, la mise en œuvre
pratique de la combinaison de ces théories de manière appropriée et peu coûteuse reste un
défi à relever.

RQ6 Comment intégrer efficacement les modules de surveillance et de diagnostic en temps
réel dans les systèmes existants afin de garantir un fonctionnement continu pendant
les phases d’exécution ?

A.3 Contributions Principales

L’objectif principal de cette thèse de doctorat est de trouver des solutions aux problèmes
susmentionnés. Elle vise à mettre en œuvre un prototype de méthode de gestion de
production flexible basée sur la technologie du jumeau numérique dans un environnement
IDM et à valider les théories sur un démonstrateur académique. La figure A.2 illustre la
problématique analysée dans la section précédente, les approches adoptées pour façonner
la méthodologie et les solutions incorporées dans la mise en œuvre.

• La principale contribution est de créer un environnement de modélisation conçu
pour le développement de jumeaux numériques industriels. Cet environnement
aborde la question de l’interopérabilité syntaxique en utilisant des méthodologies
IDM. L’ensemble d’outils Papyrus4Manufacturing (P4M) est développé pour fournir
une approche IDM à cet environnement de modélisation. Cet ensemble d’outils
intègre des éditeurs conviviaux pour normaliser la création de modèles de jumeaux
numériques des ressources et processus de la production. Le P4M fournit une fonc-
tionnalité de déploiement automatique basée sur des transformations de modèles et
la génération de codes. Le développement d’un ensemble d’outils spécifiques adaptés
à ce langage de spécification est un aspect clé de cette contribution.
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Figure A.2: Carte conceptuelle pour les concepts apparaissant dans la thèse

– La modélisation des jumeaux numériques industriels de manière standardisée.
L’Asset Administration Shell (AAS) [10] est un candidat solide pour la normali-
sation des modèles de jumeaux numériques industriels, qui fournit une interface
commune pour décrire tous les types de participants à la production.

– La modélisation des processus de production nécessite un langage normalisé
pour la conception des processus. Le Business Process Model and Notation
(BPMN) est un langage de modélisation graphique qui décrit les processus
d’entreprise. La contribution comprend l’extension et l’intégration du plu-
gin de modélisation BPMN dans l’environnement de modélisation du jumeau
numérique.

• La norme AAS fournit une interface d’interopérabilité syntaxique pour tous les ac-
tifs impliqués dans les usines intelligentes. Cependant, il est encore nécessaire de
combler les exigences concernant l’interopérabilité sémantique, afin de permettre
une compréhension efficace entre les composants de l’industrie 4.0. Les ontologies
définissent des modèles sémantiques de données combinés à des connaissances du
domaine pertinentes et formulent des stratégies d’inférence. Il s’agit donc d’une
approche très pertinente pour apporter une interopérabilité sémantique. Notre
deuxième contribution consiste à proposer une méthode de modélisation AAS basée
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sur l’ontologie qui permet l’interopérabilité sémantique des modèles de jumeaux
numériques AAS. Cette approche franchit les barrières entre la représentation on-
tologique (spé-cifiquement OWL) et les modèles AAS dans P4M (modèles UML).
Cette contribution porte sur l’annotation de la signification sémantique extraite des
concepts de l’ontologie aux modèles AAS. Cette mise en œuvre contient principale-
ment trois avantages.

– MaRCO (Manufacturing Resource Capability Ontology) [12] pour fournir des
descriptions sémantiques des capacités de fabrication

– Les transformations permettant de conserver l’alignement entre l’ontologie et
des modèles

– Compléter les outils d’ingénierie dirigé par les modèles avec un raisonnement
automatisé.

• L’approche de l’ingénierie basée sur les capacités (IBC) [13] aborde les défis d’adaptabilité
de la gestion des lignes de produits flexibles de l’industrie 4.0. L’IBC propose de
transformer automatiquement une série de flux de production abstraits (les lots de
production) présentant leurs capacités requises en plans de production qui sélectionnent,
configurent et exploitent les ressources offrant des capacités correspondantes. Cette
méthode d’ingénierie répond aux défis de la recherche sur l’adaptabilité mentionnés
dans la section précédente. La limitation des algorithmes actuels de mise en cor-
respondance des ressources uniquement syntaxiques a été surmontée en mettant en
œuvre l’interopérabilité sémantique basée sur les ontologies i.e., en transformant les
modèles d’usine basés sur l’AAS en instances MaRCO. La principale contribution
de cette partie est

– d’affiner l’architecture de l’IBC de la conception du modèle à la phase d’exécution,

– de mettre en œuvre la fonctionnalité de vérification automatique des capacités
dans P4M, et

– de permettre l’exécution du processus à distance.

• Pour améliorer la robustesse, la boucle MAPE-K propose une méthode précise pour
structurer et organiser de manière souple et évolutive un système auto-adaptatif. La
mise en œuvre de cette boucle de rétroaction intègre des techniques d’informatique
sémantique pendant l’exécution du modèle. L’informatique sémantique va au-delà
des méthodes informatiques traditionnelles en donnant aux données une signification
plus profonde et contextuelle, ce qui permet au système de prendre des décisions
plus pertinentes et intelligentes. Plus précisément, nous utilisons des annotations
sémantiques en cours d’exécution pour associer dynamiquement les données brutes
aux concepts de l’ontologie. En outre, les données annotées servent d’entrée pour le
traitement des flux RDF, ce qui nous permet d’interroger et de manipuler en perma-
nence les flux de données sémantiques. Cette combinaison d’annotations sémantiques
et de traitement de flux de données annotés sémantiquement (RDF) améliore la con-
naissance qu’a le système de ses performances en temps réel.

• Afin de tirer parti des contributions précédentes, une architecture de système auto-
adaptatif basé sur les capacités et piloté par un modèle (CBSAM) a été proposée.
Cette architecture intègre la boucle de rétroaction MAPE-K à l’architecture IBC
mentionnée précédemment. Elle fournit une méthodologie pour formuler un tel
système de développement de jumeaux numériques basé sur l’AAS, de la phase de
spécification à la phase d’exploitation et de maintenance.
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• Un démonstrateur académique est construit pour présenter et valider les approches
proposées pour les problèmes de recherche. Mes contributions au développement de
ce démonstrateur consistent en

– l’identification d’un scénario de processus de production précis pour le démonstrateur,

– la conception de modèles de jumeaux numériques fonctionnels pour les com-
posants et le processus,

– le déploiement automatique et l’orchestration de modèles de jumeaux numériques
fonctionnels pour exécuter les dispositifs en situation réelle.

A.4 L’architecture CBSAM

Cette section présente une approche générique pour la construction d’un tel système de
production flexible et auto-adaptable. Les problèmes susmentionnés peuvent être résolus
grâce à cette architecture qui intègre les différentes approches et méthodes avancées qui
ont été analysées dans la section précédente. Cette architecture suit les phases d’ingénierie
présentées par G.Urgese et al. [14], avec l’intention de couvrir le système de production
depuis le début de la conception jusqu’au processus d’exploitation de la production. Les
figures A.3 et A.4 illustrent la vue d’ensemble de l’architecture de cette approche de
fabrication auto-adaptative basée sur les capacités (CBSAM).

• Phase de spécification :

Cette phase permet de collecter les informations relatives à la spécification du modèle.
Afin d’assurer le bon déroulement des phases suivantes, certains éléments indis-
pensables doivent être identifiés dès cette première phase. Les trois principaux as-
pects de la réalisation du CBSAM sont les informations relatives aux capacités,
à l’exploitation et au suivi du modèle. La spécification de la capacité de chaque
ressource doit comprendre la collecte et l’analyse des fiches de caractéristiques tech-
niques de la ressource. La spécification de la capacité du processus consiste à iden-
tifier le scénario de travail. La représentation sémantique appropriée de la capacité
de fabrication doit également être sélectionnée pour la spécification de la capacité.
Les informations opérationnelles concernent les informations relatives à la connex-
ion des actifs ; par exemple, le modèle d’information du réseau d’interconnexion
(OPC UA) et les configurations de serveur peuvent constituer une bonne base. Les
spécifications relatives à la surveillance et au diagnostic nécessitent l’établissement
d’une relation entre les exigences sémantiques liées à la surveillance et les données
dynamiques que le modèle de jumeau numérique peut surveiller. Il est essentiel de
spécifier les événements potentiels qui vont déclencher des réactions, comme le dys-
fonctionnement d’équipements, pour le système de production avec l’aide des experts
du domaine.

• Phase de conception :

Tous les modèles AAS (ressources, processus et produits) doivent être conçus au
cours de cette phase en fonction des informations de spécification recueillies au
cours de la phase précédente. Un modèle AAS est composé de sous-modèles, et
les sous-modèles sont composés d’éléments de sous-modèles. Différents sous-modèles
sont utilisés pour décrire différents aspects. Un “sous-modèle de capacité” décrit les
capacités de fabrication au niveau abstrait en annotant l’élément de sous-modèle
Capacité avec la sémantique de l’ontologie. Le “sous-modèle OperationalData”
détaille les propriétés opérationnelles et les opérations exécutables. Il s’agit du
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sous-modèle qui permet l’échange des données avec les biens physiques, y com-
pris la lecture/écriture des valeurs dynamiques des propriétés et l’invocation des
opérations disponibles. Le “Monitoring Submodel” peut être conçu pour différents
actifs, y compris différentes ressources de production et processus de production.
Conformément à l’introduction précédente, nous devons concevoir les éléments à
surveiller pour chaque bien à ce stade, les événements qui peuvent être déclenchés
et les conditions de déclenchement des événements (les règles de diagnostic).

• Phase d’ingénierie et de déploiement :

Une base de connaissances ontologique globale peut être générée par une transfor-
mation du modèle en connaissances lors de la phase d’ingénierie. Cette base de
connaissances contient des informations sur les modèles AAS spécifiés et conçus au
cours des phases précédentes. Entre-temps, chaque modèle AAS peut être généré
vers un serveur AAS pour le mode exécutable après la conception du modèle. Ces
serveurs AAS générés permettent la connexion aux équipements et la transparence
et l’interopérabilité de l’échange de données pendant l’exécution des équipements de
production. Ensuite, un processus initial d’IBC doit être réalisé pour la première
configuration du système, où le plan de travail de production peut être trouvé et
validé. Le module de vérification des capacités utilise la base de connaissances glob-
ale initiale, qui automatise la sélection du plan de production à partir de la réserve
de ressources. Les résultats des connaissances déduites obtenus lors de l’étape de
vérification des capacités sont conservés en vue d’une maintenance ultérieure. Le
module de vérification de la faisabilité ne se contente pas de valider les ressources can-
didates déduites par le module de vérification de la capacité, mais trouve également
les paramètres appropriés pour la configuration du système. Les paramètres des
ressources sont reconfigurés en fonction du plan validé. Lors de l’étape d’exécution
des compétences, les paramètres précédemment déterminés sont configurés sur l’appareil.
Un orchestrateur de processus de production interagit avec le modèle de ressources
AAS en cours d’exécution conformément au plan de production validé. Cet orches-
trateur invoque les opérations conformément à la conception du processus.

• Phase d’opérations et de maintenance :

Pendant la production, l’ensemble du processus peut être surveillé en collectant des
données à partir de l’équipement sur la ligne de production. Des connaissances lo-
cales extraites en continu peuvent être extraites en transformant les données en temps
réel en graphes de connaissances. Un diagnostic des défauts basé sur la connais-
sance est nécessaire dans cette phase pour analyser le flux de données en temps réel
provenant de la ligne de production. Les défauts peuvent être détectés par des règles
prédéfinies dans la base de connaissances. Selon les conseils de réparation recueillis
lors de la phase d’analyse, une replanification du système est nécessaire pour garantir
une gestion rapide et des méthodes d’ajustement dans les situations anormales afin
de parvenir à un processus de production stable et continu. En fonction de l’avis
de réparation, un actionneur local sera déclenché pour réinitialiser une opération
ou l’actionneur central de récupération sera activé si une réaction plus importante
est requise. Lorsque le module de planification décide de remplacer la ressource de
la châıne de production, le module d’exécution met à jour les connaissances locales
dans la base de connaissances globale et invoque l’actionneur de récupération cen-
tral. L’actionneur central de récupération lance un nouveau processus d’IBC et le
nouvel appariement des capacités s’appuie sur la base de connaissances globale mise
à jour.

Grâce à cette architecture, il est possible de construire un système de jumeau numérique
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Figure A.4: Vue d’ensemble de l’architecture CBSAM - Partie 2

d’usine à partir de la base qui prend en charge l’interopérabilité syntaxique et sémantique.
L’utilisation des technologies IDM facilite également le déploiement rapide de modèles
exécutables grâce à l’automatisation. L’IBC permet la replanification et la reconfiguration
rapides des lignes de production. Et la boucle MAPE-K permet au système de fabrica-
tion de prendre des décisions optimales et de répondre aux changements en fonction du
comportement en cours d’exécution.

A.5 Contenu du manuscrit

L’introduction sur le contexte général et le problème de recherche a été mentionnée au
début de ce chapitre. Le reste de cette thèse est organisé comme suit.

Comme indiqué dans la section précédente, nous avons intégré et mis en œuvre de
nombreux concepts et technologies dans cette thèse. Le chapitre 2 compare les différentes
technologies existantes et les solutions alternatives, y compris la mise en œuvre du jumeau
numérique industriel suivant les technologies sur l’IDM, l’ingénierie basée sur les capacités
et les compétences, l’ontologie et le métamodèle pour les jumeaux numériques sémantiques,
et les systèmes cyber-physiques auto-adaptatifs. Ce chapitre étudie l’état de l’art des sujets
susmentionnés et justifie les choix de la sélection de la méthodologie et de la technologie
pour la mise en œuvre.

Le chapitre 3 présente une architecture d’extension de la méthode d’ingénierie basée
sur les capacités avec une boucle de rétroaction fermée afin de construire un système
de fabrication interopérable et auto-adaptable. L’architecture suit les phases d’ingénierie
formelle [14] de la spécification à la maintenance. L’architecture proposée fournit une base
théorique pour les questions de recherche précédentes.

La mise en œuvre est le processus qui consiste à mettre en pratique les méthodes
explorées dans la section précédente. La phase de mise en œuvre implique l’application des
concepts, approches et techniques examinés dans les chapitres précédents. Dans le chapitre
4, les détails de la mise en œuvre de l’approche CBSAM présentée au chapitre 3 peuvent
être pleinement élaborés. Afin d’être cohérent, il est tout d’abord nécessaire d’examiner
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brièvement la structure de l’architecture CBSAM ainsi que les objectifs généraux de la
mise en œuvre. Ce chapitre met en lumière les contributions à la partie du sujet consacrée
à l’implémentation.

Par essence, le système de jumeau numérique est une construction cyber-physique
qui englobe des entités du monde réel et des entités numériques. Ainsi, au-delà de
l’architecture conceptuelle, la capacité à la mettre en œuvre et à la valider dans la
réalité devient une étape critique. Pour fournir une plateforme de validation des théories
de recherche, Le chapitre 5 présente un cas d’usage. L’un des principaux objectifs est
d’établir une base expérimentale robuste et flexible qui puisse s’adapter aux différents
besoins de la recherche et aux trajectoires de l’innovation. La couche numérique, c’est-à-
dire la partie d’intégration AAS, est une partie importante du cas d’usage pour compléter
le développement des jumeaux numériques. En outre, l’utilisation d’un cas d’usage de
l’industrie 4.0 favorise une compréhension approfondie des défis pratiques et des oppor-
tunités qui peuvent être rencontrés lors de la transition du concept à une application
pratique.

Le chapitre 6 résume l’ensemble du manuscript et discute des orientations futures de
la recherche.

A.6 Conclusion et perspectives

En conclusion, cette thèse met l’accent sur la transformation à venir des systèmes de pro-
duction sous l’impulsion de l’industrie 4.0. L’émergence de systèmes de production intelli-
gents et adaptatifs représente une avancée significative caractérisée par la capacité à gérer
une production diversifiée et flexible. Les défis liés à l’interopérabilité, à l’adaptabilité et à
la robustesse des systèmes de fabrication sont au cœur de cette transformation. L’approche
des jumeaux numériques offre la possibilité de rapprocher le monde physique du monde
numérique, ce qui permet une meilleure surveillance, une planification plus précise et une
exécution efficace des processus de production. La mise en œuvre de jumeaux numériques
combinée aux principes de l’ingénierie dirigée par les modèles est une solution prometteuse
pour relever ces défis. L’architecture proposée (CBSAM) s’appuie sur les méthodologies du
génie logiciel, telles que l’ingénierie basée sur les capacités, l’IDM et l’approche MAPE-K,
pour améliorer la réactivité et la flexibilité des systèmes de production.

Les travaux futurs peuvent être divisés en deux catégories :

• Consolidation de l’implémentation : L’une des principales perspectives est
compléter le développement de l’architecture proposée dans ce travail de thèse. Il
s’agit d’améliorer l’intégration des différents composants (tel que le module d’exécution
dans MAPE-K) et processus afin de couvrir tous les modules architecturaux de
l’approche MAPE-K.

• Généralisation et abstraction : Un autre aspect de la recherche future est
l’abstraction et la généralisation de l’architecture. L’objectif est d’étendre l’applicabilité
de cette méthode au-delà des exigences spécifiques du projet, en créant une approche
universellement applicable. Cela implique d’affiner les techniques pour qu’elles soient
adaptables et pertinentes dans différents domaines, permettant ainsi une plus large
gamme d’applications pour les jumeaux numériques industriels en général.
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Capability Checking Module

This appendix provides a detailed installation guide for the capability checking module
plugin within the Papyrus4Manufacturing framework1. It includes step-by-step instruc-
tions on how to successfully integrate the module into the existing framework.

B.1 Download extensions

1. Open P4M -> Help -> Install New Software. (Figure B.1)

Figure B.1: Installation Window

2. Add.. -> Add a name to this software location -> Archive.

3. Select the eclipse-update-site-capability-checking.zip.

4. Select Papyrus4Manufacturing semantic feature and continue the installation until
finish. (Figure B.2)

1https://eclipse.dev/papyrus/components/manufacturing/downloadaas.html
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Figure B.2: Select Semantic Feature

5. Trust unsigned contents. (Figure B.3)

Figure B.3: Trust Unsigned Contents

6. Restart Application

B.2 Example

1. Create/import an AAS project. You can import the provided LocalSEA-AAS-
Model.

2. Add MaRCO profile to root model. (Figure B.4)
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Figure B.4: Add MaRCO Profile

3. Annotate AAS models with MaRCO semantics and specify the attribute values.
(Figure B.5)

Figure B.5: Annotate AAS Models

4. Right click on root model -> Capability Checking This command permits the trans-
formation the AAS models to MaRCO individuals in an OWL file named AASindi-
viduals.rdf, which can be found in the same project location with the AAS model.
(Figure B.6)
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Figure B.6: Capability Checking Command

5. Then a pop-up window will show up, and the user needs to select the products and
processes that require matchmaking. (Figure B.7)

Figure B.7: Matchmaking Requirement

6. The matchmaking process requires a bit of time, after the calculation a result window
should pop-up. (Figure B.8)
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Figure B.8: Result Window

7. The generated ontologies can be found in the same location with the AAS model
after refreshing the Project Explorer. (Figure B.9)

Figure B.9: Project Explorer
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AAS BaSyx Node-RED Package

A collection of customized Node-RED nodes designed to facilitate communication and ser-
vice integration using the AAS BaSyx framework. These nodes enable seamless interaction
between Node-RED and BaSyx. The nodes provide user-friendly interfaces for connect-
ing, managing, and exchanging data with AAS environments, simplifying the process of
building complex industrial digital twin orchestration applications.

C.1 Prerequisite

To install these nodes, it’s essential to have Node-RED installed and running correctly
on your system. You can refer to the Node-RED Getting Started guide1 for detailed
instructions on setting up Node-RED locally. This guide provides comprehensive steps for
installation, including system requirements, download procedures, and initial configuration
settings. Once Node-RED is successfully installed and operational, you can proceed with
the integration of the AAS BaSyx nodes into your Node-RED environment.

C.2 Install Steps

1. Run command under ./node-red

npm install path/to/your/project/node-red-aas-bpmn

2. Start Node-RED

C.3 Workflow for List Days

Two flows has been created for the List Days Demonstration. They are also deployed
on nuc8’s nodered service, so the URL is http://192.168.56.8:1880/. – CEA-List-Day
View: provides the UI interface – CEA-List-Day Prepare: provides the implementation of
orchestration The two flows can be found in the Tuleap repo.

C.3.1 Flow Deployment

1. Make sure you have Node-RED installed on your machine.

2. Install node-red-aas-bpmn from the tuleap repo.

3. Start Node-RED

4. Import the flows to Node-RED

1https://nodered.org/docs/getting-started/local
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