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Notations

A := B A is defined as being equal to B,

un
n→∞∼ vn un is equivalent to vn,
X ∼ PX X follows the distribution PX ,

[n] = J1, nK Set of the firsts n integers,
|E| = #E Cardinal of the set E,

|x| Absolute value of the real number x,
n ∧m = min(n,m) Minimum between n and m,
n ∨m = max(n,m) Maximum between n and m,

R+ Set of non negative real numbers,
R∗
+ Set of positive real numbers,

Rp Set of real-valued vectors of size p,
Rp×q Set of real-valued matrices of size p× q,
x(k) kth coefficient of the vector x,
Sp Set of symmetric matrices of size p,
S+p Set of symmetric positive matrices of size p,

S++
p Set of symmetric positive definite matrices of size p,

Tp Set of Toeplitz matrices of size p,
Op Set of orthogonal matrices of size p,

Diagn,m(αk, 1 ≤ k ≤ r) Matrix of size n×m with diagonal entries in the list and zero elsewhere,

[M ]i. ith row of the matrix M,

[M ].j jth column of the matrix M,

[M ]ij Coefficient on the ith row and jth column of the matrix M,

M+ :=M † Moore-Penrose pseudo inverse of M,

UMΣMV
⊤
M Singular Value Decomposition of M,

∥M∥F Frobenius norm of M,

∥M∥∗ Nuclear norm of M,

∥M∥op Operator norm of M,

Tr(M) Trace of the matrix M,

1 Indicator function,

N
(
µ, σ2

)
Univariate Gaussian distribution with mean µ ∈ R and variance σ2 ∈ R∗

+,

(Ω,A,P) Probability space with a sample space Ω, a σ-algebra A and a probability function P,

PΣ(A) Probability of the event A when the parameter takes the value Σ,

EΣ[X] Expectation of the random variable X when the parameter takes the value Σ,

≍ Equality up to constants.
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Chapitre 1

Introduction

The main motivation of this manuscript is to deepen our understanding of phenomena with a tem-
poral component. Most machine learning algorithms and high-dimensional statistical models are lar-
gely studied under assumptions of independence of observations. Indeed, there are fewer and techni-
cally more demanding tools for measure concentration under this setting. This leads to non-asymptotic
control of deviations being more challenging in the more realistic setup of dependence between obser-
vations. Very frequently, an evolution with time is obvious in the underlying model but not always taken
into account in the proposed methods and the inference results.

This thesis investigates various non-parametric and high-dimensional inference problems including
hypothesis testing, support recovery, prediction in matrix regression and estimation of dynamic topic
models that combine matrix factorization and auto-regression. Although they share a common motiva-
tion, the chapters presented in this thesis can be read and understood separately as they are focusing
on specific problems.

Assessing the quality of forecasting algorithms is crucial across diverse applications, from natural
phenomena like weather patterns and seismic events to economic variables such as stock prices and
energy demand. A key indicator of algorithm performance is the quality of residuals, representing the
difference between observed and predicted values. More precisely, the closer the residuals are to a
white noise distribution, the less information was lost by the predictor or the model at hand. In chapter 2
we study the testing and support recovery problems of a high-dimensional covariance matrix of a sta-
tionary time series. Specifically, we consider X1, . . . , Xn independent p-dimensional Gaussian vectors
with a covariance matrix Σ. When the vectors Xi are issued from a stationary process, the covariance
matrix Σ has a Toeplitz structure, that is its diagonal elements are all constants. As mentioned in [46],
stationary time series are used as approximations of geometrically ergodic time series. This setting is
motivated by the following observation : given a time series of length T with T ≫ p, it is possible to
consider vectors of length p sufficiently far apart to assume they are independent vectors of dimension
p. The aim is then to test whether the distribution is close to a white noise. To do so we test if the
covariance matrix Σ is the identity matrix Ip or there exists a number s of covariance elements that
are significantly positive or significantly different from zero. We provide testing procedures with non
asymptotic upper bounds on the maximal testing risks both for moderately sparse and highly sparse
covariance structures. If the test is rejected, it is of interest to select the non-null entries in Σ, pinpointing
where information may be lost in the modelling process. We then define a lag-selection procedure and
provide a non asymptotic upper bound on its risk.

Next, we introduce a new matrix regression model where the correlations in the output matrix are

1



2 CHAPITRE 1. INTRODUCTION

explained by two matrix parameters that multiply the design matrix from the left and from the right,
respectively. We assume that the noise matrix has independent σ2-subGaussian entries. This general
matrix regression model is highly non-identifiable without additional stringent assumptions, thus only
prediction results were provided. The predictors are first defined as solutions of the minimization pro-
blem of the squared Frobenius prediction risk under a maximal fixed rank constraint. By using the SVD
of the target and design matrices we provide solutions to this optimization problem together with a non
asymptotic upper bound on the prediction risk. We show that this upper bound can be decomposed
as the sum of a bias term and a stochastic term. We then derive a model selection procedure for es-
timating the true common rank of the parameter matrices, first under the assumption that the noise
parameter σ is available. We examine the non asymptotic performance of this procedure and we adapt
the initial minimization problem by fixing the rank constraint to this estimated rank. This leads to new
rank-adaptive predictors. We provide again a non asymptotic upper bound on the rank-adaptive predic-
tion risk under this model selection framework. Then, we adapt the rank-adaptive procedure to propose
a data-driven rank-adaptive procedure free of the noise parameter σ. Again, we provide a non asympto-
tic upper bound on the data-driven rank-adaptive prediction risk. Finally, we study the convex relaxation
of the rank-penalized squared Frobenius risk minimization. We provide explicit solutions of this problem
and a non asymptotic upper bound on the prediction risk. Numerical results are provided illustrating the
theoretical results.

Finally, we consider topic models. We assume we collect a batch of documents and have access to
the frequencies of each word of the vocabulary for each document. The columns of this word-document
frequency matrix Y are modelled as realizations of multinomial distributions centered on word-document
probability vectors. In real world examples, few different topics are covered in corpora of documents.
This suggests that the word-document probability matrix Π exhibits a low rank structure. The objective
is to factorize this word-document probability matrix Π into a word-topic probability matrix A and a
topic-document probability matrix W , that is Π = AW . In this setting, all these three matrices Π, A
and W are left stochastic, that is their entries are non-negative and their columns sum to one. Under
specific mild assumptions, the identifiability of both A and W can be established. We also recall the
algorithm from [84] for performing this factorization. In this thesis, we assume a temporality in the
document collection and model the evolution in time of the topic-document probability matrix W by an
autoregressive stationary process, which becomes a time dependent random matrix W t. Specifically,
at each time step t, the distribution of topics given a document is a linear combination of the previous
distribution and a Dirichlet-distributed noise, which drives the temporal evolution of the topics. Especially
we assume that the noise parameters are unknown. Careful attention is devoted to ensuring that this
autoregressive model keeps the property that the columns of the topic-document probability matrix sum
to one. We first study an oracle case where the full word-document probability matrix (Π1, . . . ,ΠT ) is
available. We first provide non asymptotic bounds on the spectrum of the empirical covariance matrix
of (W 1, . . . ,W T ). Then we adapt the algorithm from [84] to retrieve the word-topic probability matrix A.
This allows to recover (W 1, . . . ,W T ) by projection. Then we propose estimators of the autoregressive
parameters driving the evolution of W t. We provide non asymptotic upper bounds on the estimation
risks. Then, we adapt this procedure to the real case where only the full word-document frequency
matrix (Y 1, . . . ,Y T ) is available. In the estimation procedure of A, we give more explicit upper bounds
than [84] up to log factors. We also provide the dependence on all dimensions of appearing matrices.
Finally, we show that the noise due to the multinomial distribution of word-counts and the Dirichlet
noise of the stationary distribution of topics given the published documents in time add up in the final
estimation rates of the autoregressive parameters. Especially, when the number of words per document
grows, that is when the multinomial noise diminishes, we retrieve the oracle rates.
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Historically, time series analysis is usually done in an asymptotic framework. The asymptotic ana-
lysis of real-valued and vector-valued time series is well understood since [71], [62], [99] and [31]
were published. This is still an active field of research both from a theoretical point of view, see
[79, 50, 91, 117, 51, 59] and as a tool for studying algorithms, see [142]. Recently, the study of matrix-
valued time series and more globally tensor-valued time series has emerged. The studies are still mainly
conducted under an asymptotic framework, see [47, 49, 44, 96]. The non-asymptotic analysis of time
series is however gaining momentum, see [16, 15, 58, 135]. This thesis is part of this research dyna-
mic and all studied problems are conducted within a non-asymptotic framework. By addressing these
challenges and exploring innovative methodologies in each chapter, this thesis contributes to advancing
statistical theory in vector-valued and matrix-valued data analysis within high-dimensional settings. The
first part of the introduction serves as a comprehensive presentation of the technical tools necessary
for understanding the main chapters of this thesis. Then, in the second part, we give the setups and the
details of the results.

1.1 A non-asymptotic viewpoint

We begin by providing a rationale for employing a non-asymptotic framework, which is consis-
tently applied throughout the presented research. Subsequently, we delve into a detailed exploration
of concentration inequalities, outlining their significance and specifying the classical inequalities that
will be employed in our analyses. Additionally, we offer an overview of the problems one may face while
working in a high dimensional regime. Finally, we briefly introduce the tools that will be useful to control
random matrices and random processes.

1.1.1 From Chebyshev to McDiarmid

The non-asymptotic framework is highly relevant in modern statistical analysis, particularly in sce-
narios involving high-dimensional data and finite-sample settings. Unlike traditional asymptotic ap-
proaches that rely on large sample sizes and convergence to theoretical distributions, the non-asymptotic
framework focuses on deriving results that hold for finite sample sizes, providing more practical and im-
mediate insights into statistical properties and performances. Concentration inequalities constitute a
cornerstone of our methodological approach, providing rigorous bounds on the deviation of random
variables from their expected values.

To avoid unessential technicalities as a first step, we will consider real random variables, i.e. p =
1. Let’s assume the finiteness of E[X1] and denote X̄n the empirical mean of the n random vectors
(X1, . . . , Xn). We are interested in understanding the behaviour of X̄n. To this extent, the strong law of
large numbers (SLLN) states that X̄n converges almost surely towards E[X̄n] = E[X1]. Once we have
defined the asymptotic limit of X̄n, another interesting question is to determine the rate at which X̄n

approaches E[X̄n]. We assume from now on the finiteness of σ2 = V[X1]. The Lindeberg–Lévy central
limit theorem (LLCLT) then provides the asymptotic convergence rate of X̄n towards E[X̄n].

Lemma 1.1.1 (Lindeberg–Lévy central limit theorem) Consider (X1, . . . , Xn) independent and iden-
tically distributed random variables with finite second order moment. Let us denote σ2 their common
variance. Then the random variable

√
n
(
X̄n − E[X̄n]

)
converges in distribution toward N (0,V[X1]). Es-
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pecially, considering U ∼ N (0, 1), we get that for all ϵ > 0,

P
(∣∣X̄n − E[X̄n]

∣∣ > ϵ
) n→∞∼ P

(
|U | >

√
nϵ

σ

)
.

However, this rate of convergence is only holding true asymptotically. Thus another natural question
arises : what can be said about the behaviour of the quantity |X̄n − E[X̄n]| for a finite value of n? One
can already notice that the property of the probability distribution of X1, denoted PX , will play a key role
in answering this question. Indeed, if X1 is normally distributed, the sample mean X̄n is also normally

distributed and we get X̄n ∼ N
(

E[X̄n],
σ2

n

)
. Thus in this context the asymptotic behaviour is satisfied

for any sample size, i.e. for any ϵ > 0 and for any n ∈ N, P
(∣∣X̄n − E[X̄n]

∣∣ > ϵ
)
= P

(
|U | >

√
nϵ

σ

)
where

U ∼ N (0, 1). On the other hand if PX is not symmetric or exhibits heavy tails (e.g., due to skewness or
extreme values) the asymptotic behaviour will appear for larger sample sizes.

The objective is thus to bound from above with high probability the quantity |X̄n − E[X̄n]| for any
fixed value of n. The first non asymptotic result that can be used for this purpose is the Chebyshev’s
inequality.

Lemma 1.1.2 (Chebyshev’s Inequality) Consider (X1, . . . , Xn) independent and identically distribu-
ted random variables with finite second order moment. Denote σ2 := V[X1],. Then for any ϵ > 0,

P
(
|X̄n − E[X̄n]| > ϵ

)
<

σ2

nϵ2
.

Notice that in the asymptotic framework, the LLCLT ensures that this probability behaves as P

(
|U | >

√
nϵ

σ

)
where U ∼ N (0, 1). Moreover, the tails of the centered reduced normal distribution satisfy for all ϵ > 0
and n ∈ N,

σ3
√
2(nϵ2/σ2 − 1)

n
√
nϵ3
√
π

exp

(
−nϵ

2

2σ2

)
≤ P

(
|U | >

√
nϵ

σ

)
≤ σ

√
2

ϵ
√
nπ

exp

(
−nϵ

2

2σ2

)
.

Hence the convergence rate of the quantity P
(
|X̄n − E[X̄n]| > ϵ

)
towards zero exhibits asymptotically

an exponential decay with respect to (w.r.t) n while the non-asymptotic rate of decay provided by the
Chebyshev’s inequality is only linear w.r.t n. A natural approach would be to improve the Chebyshev’s

linear rate of decay by controlling the deviation of P
(
|X̄n − E[X̄n]| > ϵ

)
from P

(
|U | >

√
nϵ

σ

)
, i.e. de-

termine the rate of convergence in the LLCLT. With the additional assumption that X1 has a finite third
order moment, Berry-Esseen central limit theorem (BECLT) provides the answer to this problem.

Lemma 1.1.3 (Berry-Esseen central limit theorem) Consider (X1, . . . , Xn) independent and identi-
cally distributed random variables with finite third order moment. Denote σ2 := V[X1] and ρ := E[|X1 −
E[X1]|3]. Then, there exists a positive constant C > 0 such that for any ϵ > 0 and for any n ∈ N∗ :∣∣∣∣P (|X̄n − E[X̄n]| > ϵ

)
− P

(
|U | >

√
nϵ

σ

)∣∣∣∣ ≤ Cρ

σ3
√
n
.
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Thus, the convergence rate in the LLCLT is of order root of n, which can be shown to be optimal,
and will therefore dominate the desired exponential decay that arises asymptotically. Indeed, under the
previously stated assumptions, the BECLT ensures that there is a positive constant C > 0 such that for
any ϵ > 0,

P
(
|X̄n − E[X̄n]| > ϵ

)
≤ Cρ

σ3
√
n
+
σ
√
2

ϵ
√
π
exp

(
−nϵ

2

2σ2

)
.

The previously stated result indicates that controlling non-asymptotically the deviation of X̄n from its
expectation by the LLCLT is worse than using directly Chebyshev’s inequality. In addition, Chebyshev’s
inequality is optimal under the stated assumptions. It implies that stronger assumptions are required in
order to get the asymptotic behaviour for finite sample sizes. In order to get a better control over the
deviation of X̄n from its expectation, one notices that Chebyshev’s inequality is directly obtained from
Markov’s inequality.

Lemma 1.1.4 (Markov’s Inequality) For a nonnegative random variable Y with finite expectation, it
ensures that for all ϵ > 0, P(Y ≥ ϵ) ≤ ϵ−1E[Y ].

Thus, for any increasing function Φ, provided that Φ(Y ) is nonnegative and has a finite expectation,
Markov’s inequality guarantees that for all ϵ > 0,

P(Φ(Y ) ≥ Φ(ϵ)) ≤ Φ(ϵ)−1E[Φ(Y )].

This inequality cannot be improved under these assumptions. Notice that Chebyshev’s inequality is de-
rived by considering the square function for Φ and setting Y := X−E[X]. Hence, to derive Chebyshev’s
inequality, the finiteness of the second order moment of X1 is needed, as previously stated. It therefore
appears that getting a better control of the deviation requires a better control of the law PX . Thus, if X1

has a finite higher order moment, a similar reasoning ensures that for any ϵ > 0,

P
(
|X̄n − E[X̄n]| > ϵ

)
≤ min

p∈N∗
ϵ−pE[

(
|X̄n − E[X̄n]|

)p
].

If stronger assumptions are even made, for example the existence of the moment generating function
(MGF) of |X̄n − E[X̄n]|, i.e. the function defined on a real interval [−α, α] with α > 0 by GX : λ 7→
E[exp(λX1)], the Cramer-Chernoff bound (CCB) ensures that for any ϵ > 0,

P
(
|X̄n − E[X̄n]| > ϵ

)
≤ inf

λ>0
exp (−λϵ)E[λ

(
|X̄n − E[X̄n]|

)
].

Hence in order to get Gaussian-like tails for |X̄n − E[X̄n]|, i.e. an exponential decay, one will need
to control the MGF of |X̄n − E[X̄n]|. Finally to get a better control over the deviation of X̄n from its
expectation, one needs to control PX and avoid any reference to the LLCLT.

The main assumptions that will be made in the core chapters of this thesis is the subGaussianity
of the considered random variables. This assumption allows to control the MGF of the variables at
hand and thus provides a sharp non-asymptotic rate of convergence for the deviation of X̄n from its
expectation. We start by defining the notion of σ2-subGaussian random variable. We highlight that it
denotes a class of distributions rather than a single specific distribution.

Definition 1.1.1 (σ2-subGaussian random variable) A random variableX ∈ R is said to be σ2-subGaussian
if, for all s ∈ R,

E [exp (s(X − E[X]))] ≤ exp

(
s2σ2

2

)
.
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As previously explained, controlling the MGF of a random variable allows to control the tightness of
its tails. A subGaussian random variable function then reveals Gaussian-like tails. In addition, it can be
shown that if a random variable exhibits Gaussian-like tails, one can control its MGF and thus prove
that it has to be subGaussian.

Lemma 1.1.5 (Tails of σ2-subGaussian r.v., Lemma 1.5 in [115]) Assume X is a centered random
variable such that there exists σ > 0 satisfying, for all ϵ > 0,

P [X > ϵ] ≤ exp

(
− ϵ2

2σ2

)
and P [X < −ϵ] ≤ exp

(
− ϵ2

2σ2

)
.

Then for any s > 0, it holds

E [exp (sX)] ≤ exp
(
4s2σ2

)
≤ exp

(
s2
(
8σ2
)

2

)
,

that is X is ν2-subGaussian with ν2 := 8σ2.

This leads to the following question : what are the characterisations of σ2-subGaussian variables?
The following lemma provides equivalent characterisations.

Lemma 1.1.6 (Characterization of subGaussian r.v., Proposition 2.5.2 in [130]) Let X be a cente-
red random variable. Then the following statements are equivalent for finite positive constants (Ci)

7
i=1 :

for all λ ∈ R, E [exp (λX)] ≤ exp
(
C2
1λ

2
)
,

for all ϵ ∈ R+, P [|X| ≥ ϵ] ≤ 2 exp
(
−ϵ2/C2

2

)
,

for all k ∈ N∗, E
[
|X|k

]1/k
≤ C3

√
k,

E
[
exp

(
X2/C2

4

)]
≤ 2,

for all λ ∈ [− 1

C5
,
1

C5
], E

[
exp

(
λ2X2

)]
≤ exp

(
C2
5λ

2
)
.

Thus, Lemma 1.1.6 provides a characterization of subGaussian variables based on the MGF, the
tails, the moments, the exponential moment of X2 and the local MGF of X2. Note that the σ2 in defini-
tion 1.1.1 provides an upper bound on the variance of X. However, for ν ≤ σ a random variable being
ν2-subGaussian will also be σ2-subGaussian and thus there isn’t any notion of optimality in the choice
of σ2. However, this notion of optimality can be helpful in some contexts. Thus, we use the exponential
moment of X2 for this purpose, which leads to a norm on the set of subGaussian random variables.

Definition 1.1.2 (subGaussian norm) For a subGaussian random variable X, the subGaussian norm
of X, denoted ∥X∥Ψ2 is defined as follows :

∥X∥Ψ2 := inf
s∈R∗

+

(
E
[
exp

(
X2/s2

)]
≤ 2
)

Example 1.1.1 Consider a random variable X and a positive constant C such that |X| ≤ C alsmost
surely. Then X is subGaussian and satisfies for any s ∈ R∗

+ :

E
[
exp

(
X2/s2

)]
≤ E

[
exp

(
C2/s2

)]
.
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Hence for s ≥ C√
log(2)

, there is E
[
exp

(
X2/s2

)]
≤ 2. This proves that X is subGaussian and ∥X∥Ψ2 =

C√
log(2)

.

Finally, assuming that (X1, . . . Xn) are independent and subGaussian provides a control over the
deviation of X̄n from its expectation. Notice that the following result is even more general than the firstly
considered context as the random variables need not be identically distributed. Only the independence
and a control over each probability distribution are enough.

Lemma 1.1.7 (Hoeffding’s inequality for σ2-subGaussian random variables, Proposition 2.5 in [131])
Suppose that (Xi)i∈[n] are independent r.v. and that Xi has mean E[Xi] and is σ2i -subGaussian for all
i ∈ [n]. Then for all ϵ > 0, we have

P
[∣∣X̄n − E[X̄n]

∣∣ ≥ ϵ] ≤ 2 exp

(
− n2ϵ2

2
∑n

i=1 σ
2
i

)
.

In the case of i.i.d. random variables with PX being σ2-subGaussian, one finds that the deviation be-

comes P
[∣∣X̄n − E[X̄n]

∣∣ ≥ ϵ] ≤ 2 exp

(
−nϵ

2

2σ2

)
. Hence independence and Gaussian-like MGFs ensure

that the asymptotic behaviour of
∣∣X̄n − E[X̄n]

∣∣ is reached even for finite samples. In addition, it can be
noticed that the subGaussianity of the random variables at hand can sometimes be deduced from their
definition. The next lemma proves that bounded random variables are indeed subGaussians.

Lemma 1.1.8 (Hoeffding’s inequality for bounded random variables) Suppose that (Xi)i∈[n] are in-
dependent r.v. and that Xi has mean E[Xi] and belongs to some interval [ai, bi] a.s. for all i ∈ [n]. Then
for all ϵ > 0, we have

P
[∣∣X̄n − E[X̄n]

∣∣ ≥ ϵ] ≤ 2 exp

(
− 2n2ϵ2∑n

i=1(bi − ai)2

)
Proof. If Xi belongs to [ai, bi] a.s., then Xi is σ2i -subGaussian with σi =

bi − ai
2

. We conclude using
Lemma 1.1.7

In the case of i.i.d. random variables with PX being supported on [a, b], one finds that the deviation

becomes P
[∣∣X̄n − E[X̄n]

∣∣ ≥ ϵ] ≤ 2 exp

(
− 2nϵ2

(b− a)2

)
. It can be noticed that in Lemma 1.1.8, there is

no assumption on the second order moment of the random variables. However, a more precise bound
can be derived if more details are provided on (X1, . . . , Xn). Indeed, if theses variables have a finite
second order moment smaller than half the length of the interval in which they are almost surely, a
better control on the deviation of X̄n can be derived. Hoeffding is in fact valid in the worst case possible
under the stated hypotheses cited, i.e. for a variable Xi that is fairly distributed between the two ends of
the interval [ai, bi]. The following lemma provides a better control over the deviation of X̄n for bounded
random variables when their second order moment is known.

Lemma 1.1.9 (Bernstein’s inequality for bounded random variables, Theorem 2.9 in [29]) Suppose
that the variables (Xi)i∈[n] are independent with finite variance and verify for M > 0 and v > 0,

|Xi − E[Xi]| < M a.s. and
n∑
i=1

V[Xi] = v. Then for all ϵ > 0, we have

P
[∣∣X̄n − E[X̄n]

∣∣ ≥ ϵ] ≤ 2 exp

(
− n2ϵ2/2

v + nMϵ/3

)
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In the case of i.i.d. random variables with PX being supported on [a, b] with finite variance σ2, one

finds that the deviation becomes P
[∣∣X̄n − E[X̄n]

∣∣ ≥ ϵ] ≤ 2 exp

(
− nϵ2

2σ2 + 2Mϵ/3

)
. To conclude this

section on concentration, we remind that the main tool we presented for controlling the deviation of
X̄n from its expectation is the control of the MGF. The previously stated results focused mainly on
Gaussian-like MGFs for the considered independent random variables. Obviously, weaker assumptions
can be made which will result as a weaker control on the deviation. This means that the asymptotic
behaviour, guaranteed by the LLCLT, will not be reachable for finite sample sizes. To illustrate this fact,
we define another class of random variables with a wider MGF than Gaussian ones.

Definition 1.1.3 ((σ2, α)-subExponential random variable) A random variable X ∈ R is said to be
subExponential with parameters (σ2, α) if E[X] is finite and its MGF satisfies, for all s ∈ R such that

|s| ≤ 1

α
,

E [exp (s(X − E[X]))] ≤ exp

(
s2σ2

2

)
.

In this case we say that X is (σ2, α)-subExponential.

Following the definition, a random variable is subExponential if its MGF is at least Gaussian-like
around zero. This will ensure that for small deviations,

∣∣X̄n − E[X̄n]
∣∣ will exhibits a Gaussian-like beha-

viour. However, for larger deviation this will not be the case anymore and we lose the asymptotic regime.
This idea is formalised in the following result.

Lemma 1.1.10 (Bernstein’s inequality for subExponential random variables, Theorem 2.8.1 in [130])
Suppose that the variables (Xi)i∈[n] are independent, centered and subExponential with parameters
(σ2, α). Then for all ϵ > 0, we have

P [|Xn| ≥ ϵ] ≤ 2 exp

(
−cnmin

(
ϵ2

K2
,
ϵ

K

))
,

where K := max
i∈J1,nK

(∥Xi∥ψ1) and c > 0 is an absolute constant. In addition, ∥ ∥ψ1 denotes the sub-

exponential norm.

Hence, for ϵ < K one notices that the deviation one gets from Lemma 1.1.10 agrees with the
asymptotic behaviour provided by the LLCLT. However for ϵ > K the deviation is wider and one doesn’t
get the same tight control over

∣∣X̄n

∣∣ anymore.
Finally, we have briefly presented a methodology to derive sharp bounds to control the deviation of

X̄n from its expectation given the existence of the MGF. As previously mentioned, if the MGF doesn’t
exist at least on an open interval around zero, one can leverage the higher finite moment of the ran-
dom variables at hand. However, at this stage, one last question remains unanswered : is it possible to
control the deviation of a quantity other than the empirical mean? Indeed, the exposed section focused
on controlling

∣∣X̄n − E[Xn]
∣∣. Let’s consider a real-valued function f . Is it possible to control the devia-

tion of |f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]| at least under some regularity conditions for f ? McDiarmid’s
inequality, which will be used throughout the proofs exposed in this thesis, provides an answer to this
question.
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Lemma 1.1.11 (McDiarmid’s inequality, Theorem B.5 in [64]) Let X be some measurable set and f
a measurable function taking its arguments in X n and with values in R. We assume that f satisfies the
bounded difference assumption, meaning there exist constants δ1, . . . , δn such that for all i ∈ [n], for all(
x1, . . . , xn, x

⊤
i

)
∈ X n+1 such that xi ̸= x⊤i ,∣∣∣f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x

⊤
i , xi+1, . . . , xn)

∣∣∣ ≤ δi.
Then for any ϵ > 0 and any independent random variables X1, . . . , Xn with values in X , we have

P [|f(X1, . . . , Xn)− E [f(X1, . . . , Xn)]| ≥ ϵ] ≤ 2 exp

(
− 2ϵ2∑n

k=1 δ
2
i

)
.

Notice that Lemma 1.1.11 implies Lemma 1.1.8. Indeed consider (a, b) ∈ R2 and the real-valued
function f defined on [a, b]n as follows f : (x1, . . . , xn) 7→ x̄n. This function satisfies the bounded
difference assumption and if the random variables (X1, . . . , Xn) are bounded in [a, b] almost surely,
McDiarmid’s inequality then yields the Hoeffding’s bound.

Finally, this section exposes the reasons why assumptions are constantly made on the moment
generating functions of the considered random variables in the core chapters of this thesis. These
assumptions are necessary in order to be able to control the deviation of an empirical quantity from its
probabilistic value in a non-asymptotic way. This allows to have a precise control over the deviation for
finite sample sizes. As the next section shows, this will also allow us to control the role played by the
dimension in the deviation.

1.1.2 High-dimensional covariance matrix estimation

Let’s return to the initial context and recall that we considered real random variables, i.e. random
variables defined on (Ω,A,P) and taking values in the measurable space (Rp,B(Rp)) with p = 1. The
above considerations and developments are based on an asymptotic analysis of the deviation of X̄n

from its expectation. The objective was then to understand how to obtain similar guarantees in a non-
asymptotic framework. However, the role played by the dimension p of the random variables was omitted
in this first exposition. For a fixed and arbitrarily large value of p, the LLCLT is still valid under similar
assumptions. However, this asymptotic result disregards the fact that the dimension p can be of the
same order of magnitude as the sample size n. In this context, sending n to infinity while keeping p
fixed is not appropriate. To illustrate this point, consider the example of covariance matrix estimation,
which will be the focus of chapter 2.

Consider (X1, . . . , Xn)
i.i.d.∼ PX on Rp with E[X1] = 0 and covariance matrix Cov(X1) = Ip. The

empirical covariance matrix is defined as Σ̂ :=
1

n

n∑
i=1

XiX
⊤
i . For any (i, j) ∈ J1, pK, SLLN ensures that[

Σ̂
]
ij

converges almost surely towards 1i=j when n goes to infinity. Hence we deduce that Σ̂ converges

almost surely towards Ip when n goes to infinity. It ensures that when p is kept fixed and n goes to
infinity, the empirical distribution of the random eigenvalues of Σ̂ converges almost surely towards the
Dirac measure on 1, denoted δ1. However, in the high dimensional asymptotic regime, when both n
and p go to infinity at a constant aspect ratio i.e. when p/n converges towards β ∈ (0, 1], the limiting
distribution of the empirical spectrum is not δ1 anymore. In this regime, the empirical distribution of the
eigenvalues converges almost surely to the Marchenko-Pastur distribution, see [63]. Hence, in this high
dimensional setting, Σ̂ is not a good estimator of the covariance matrix anymore, even if the sample
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size is huge. This exposure reinforces the need not to limit ourselves to an asymptotic study. Indeed, a
non asymptotic bound will explicit the dependence on both n and p. The following lemma provides such
an example and we underline that the definition of the matrix norm ∥ ∥op is given in the definition 1.1.6.

Definition 1.1.4 (σ2-subGaussian random vector) A random vector Y ∈ Rp is said to be σ2-subGaussian
if for any vector u ∈ Rp such that ∥u∥2 = 1, u⊤Y is σ2-subGaussian.

Lemma 1.1.12 (Non asymptotic rate of covariance matrix estimation, Theorem 5.7 in [115]) Consider
Σ ∈ S++

p where S++
p represents the set of symmetric positive definite matrices of size p × p and let

Y ∈ Rp a centered σ2-subGaussian random vector of parameter 1 such that E[Y Y ⊤] = Id. Consider
X1, . . . , Xn i.i.d. random vectors with the same distribution as Σ1/2Y . Then E[X1] = 0, E[X1X

⊤
1 ] = Σ

and X1 is ∥Σ∥op-subGaussian. Define Σ̂ :=
1

n

n∑
i=1

XiX
⊤
i . Then there exists a positive constant C such

that for any ϵ > 0,

P

[
∥Σ̂− Σ∥op > C∥Σ∥opmax

(√
p+ ϵ

n
,
p+ ϵ

n

)]
≤ exp(−ϵ).

Lemma 1.1.12 indicates that for fixed p, Σ̂ is a consistent estimator of Σ. However, the bound is not
satisfactory when p > n. The problem of estimating a covariance matrix in a high dimensional regime is
well-studied and we refer the reader to [39], [40], [37] and [38] for more details.

1.1.3 Random matrices with independent entries or rows

In the preceding sections, our focus has been on random vectors (or variables) defined in Rp, with
p ≥ 1. However, chapters 3, 4 and 5 will delve into random matrices, i.e. (X1, . . . , Xn)

i.i.d.∼ PX defined on
Rp×q. Here, PX represents a distribution over the set of all p× q matrices. Asymptotic results pertaining
to the spectrum of such random matrices can be viewed as random matrix analogues of the LLCLT, see
[14] for more details. However, this thesis will focus exclusively on non-asymptotic results due to the
considerations outlined earlier and the asymptotic results will only be mentioned to have an idea on the
sharpest bounds one can expect to derive.

A fundamental aspect to highlight is the concept of convergence within a matrix space. The most
straightforward method to define a mode of convergence is by deriving it from a distance, or more
restrictively, from a norm. It’s crucial to recall that a matrix can be uniquely associated with a linear
transformation. Therefore, the key aspect of interest is the expansion or contraction induced by this as-
sociated linear transformation on the vectors of a basis. This essential information is fully encapsulated
within the spectrum of the matrix, specifically its singular values.

Singular value decomposition (SVD). Consider M ∈ Rp×q a matrix of rank r. Then M can be

decomposed as M =
r∑
i=1

σi(M)uiv
⊤
i where σ1(M) ≥ . . . ≥ σr(M) > 0 are the singular values of M ,

(u1, . . . , ur) is an orthonormal family of Rp and (v1, . . . , vr) is an orthonormal family of Rq. In addition,
the squared singular values are the shared nonzero eigenvalues of MM⊤ and M⊤M associated with
the eigenvectors (u1, . . . , ur) (respectively (v1, . . . , vr)).

This allows to partially summarize the information of a matrixM ∈ Rp×q in a vector (σ1(M), . . . , σr(M)) ∈
Rr. Notice that we can omit the rank and define by extension (σ1(M), . . . , σm(M)) ∈ Rm, where
m := min(p, q) and extending the definition such that σr+1(M) = . . . = σm(M). The remaining in-
formation pertains to the vectors comprising the eigenvector bases of MM⊤ and M⊤M . Moreover, the
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SVD is valuable for understanding how perturbing a matrix M by another matrix E influences the pro-
perties of M . Specifically, if we consider a signal M and a noise E as two matrices in Rp×q and define
∆ := M + E, we are interested in understanding how the singular values of the perturbed signal ∆
behave in comparison to those of the pure signal M . Weyl’s inequality provides an answer.

Lemma 1.1.13 (Weyl’s inequality, Theorem C.6 in [64]) For two matrices A and B in Rn×p, we have
for any k ≤ min(n, p),

|σk(A)− σk(B)| ≤ σ1(A−B),

where σk(A) (respectively σk(B)) denotes the kth largest singular value of A (respectively B).

Moreover, the SVD leads to a natural way of defining a norm on the matrix space Rp×q. The idea is
to look at a matrix M ∈ Rp×q as a vector in Rm and derive a matrix-norm from a vector-norm. Norms
defined in this manner are referred to as Schatten norms.

Definition 1.1.5 (k-Schatten norms) Consider M ∈ Rp×q and m = min(p, q). For k ∈ N, the k-
Schatten norm of M is defined as

∥M∥k :=

(
m∑
i=1

σi(M)k

)1/k

.

Another way to naturally define the norm of a matrix is to consider the largest expansion it causes
in any direction. To measure this expansion, we can again consider vector norms.

Definition 1.1.6 ((k, j)-operator norms) Consider M ∈ Rp×q. For (k, j) ∈ N2, the (k, j) operator norm
of M is defined as

∥M∥(k,j)op := sup
x∈Rq

∥Mx∥j
∥x∥k

.

By convention we denote ∥M∥op := ∥M∥(2,2)op and this quantity is referred to as the operator norm.

Notice that for k =∞, the k-Schatten norm is equal to the operator norm and that Weyl’s inequality
proves that singular values are 1-Lipschitz w.r.t. the operator norm. Finally, it is important to remind that
the matrix multiplication is non commutative which will raise new challenges in the study of deviations
Once we have established various norms within the matrix space, we can delve into the main topic of
convergence. The first natural idea is to derive similar results for X̄n defined on Rp×q as those previously
derived for X̄n when the variables (X1, . . . , Xn) were defined on Rp. The matrix-Bernstein inequality
provides such a result when q = p and the matrices Xi are self-adjoint, i.e. X⊤ = X.

Lemma 1.1.14 (Matrix Bernstein inequality, Theorem 1.6.2 in [125]) Consider (X1, . . . , Xn) independent
centered self-adjoint random p × p matrices such that there exist positive constants C and v satisfying

for all i ∈ J1, nK, ∥Xi∥op ≤ C a.s. and
∥∥∥∥E

[
n∑
i=1

X2
i

]∥∥∥∥
op

≤ v. Then for every ϵ > 0,

P
(∥∥X̄n

∥∥
op
≥ ϵ
)
≤ 2p exp

(
− n2ϵ2

2v + 2nCϵ/3

)
.
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Lemma 1.1.14 is a matrix generalization of Lemma 1.1.9. It is noteworthy to mention that no as-
sumption is required on how the entries of X1 are generated. In addition, one may also be interested
in understanding the behaviour of a single matrix whose entries are randomly generated. Especially
we will now distinguish two types of random matrices : ones with independent real-valued entries, at
the core of chapter 3 and ones with independent vector-valued rows/columns, at the core of chapters 4
and 5. The main objective, as previously mentioned, will be to control the spectrum of those random
matrices. In order to know the best result we can hope for, we first need to have an idea of the asymp-
totic regime. Let’s first consider a random matrix M ∈ Rp×q whose entries are independent centered
identically distributed random variables. The limiting behavior of the extreme singular values of M as p
and q grow to infinity at a constant aspect ratio β ∈ (0, 1] is given by the Bai-Yin’s law.

Lemma 1.1.15 (Bai-Yin’s law, Theorem 5.31 in [129]) Consider M ∈ Rp×q a random matrix whose
entries are centered independent and identically distributed with unit variance, and finite fourth moment.
Then as p and q grow to infinity at an aspect ratio

q

p

p,q→∞−−−−→ β ∈ (0, 1] there is a.s.

σm(M) =
√
p−√q + o(

√
q)and σ1(M) =

√
p+
√
q + o(

√
q).

Remind that in the real-valued setting, the bounds provided by the LLCLT were non-asymptotically
exact for the deviation of the empirical mean of independent and identically distributed gaussian random
variables. The following lemma is a generalization for the spectrum of random matrices with independent
gaussian entries.

Lemma 1.1.16 (Spectrum of a Gaussian matrix with independent entries, Corollary 5.35 in [129])
Consider M ∈ Rp×q a random matrix whose entries are independent standard normal random variable.
Then for any ϵ > 0, with probability at least 1− 2 exp(−ϵ2/2) there is :

√
p−√q − ϵ ≤ σm(M) ≤ σ1(M) ≤ √p+√q + ϵ.

More general results exist for controlling the spectrum of random matrices with independent entries,
even for non subGaussian ones and non identically distributed ones. This theory, in line with what
has been presented so far, goes beyond the useful framework for a proper understanding of the work
presented in this thesis. Interested readers may, however, wish to consult [129] for more details.

Next, our focus is shifted on a relaxed version of the previously exposed result. We now assume that
the rows of the random matrix M ∈ Rp×q are subGaussian random vectors. This relaxation is important.
It is then possible to interpret the random matrix M as a set of p independent random points taken in
a space of dimension q. The following lemma proves that the spectrum of M can be control almost as
sharply as in Lemma 1.1.16.

Lemma 1.1.17 (Spectrum of a subGaussian matrix with independent rows, Theorem 4.6.1 in [130])
Consider M ∈ Rp×q a random matrix whose rows are independent mean zero, subGaussian isotropic
random vectors in Rq. Then for any ϵ > 0, with probability at least 1− 2 exp(−ϵ2) there is :

√
p− CK2√q − CK2ϵ ≤ σm(M) ≤ σ1(M) ≤ √p+ CK2√q + CK2ϵ,

where C is a positive constant and K := maxi∈J1,pK ∥[M ]i.∥Ψ2 with ∥[ ∥Ψ2 the subGaussian norm.

Finally, the last extension we will address is the question of controlling the spectrum of a matrix
whose columns are non-subGaussian random vectors. Lemma 1.1.18 provides sharp bounds in this
context.
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Lemma 1.1.18 (Spectrum of random matrix with independent columns) Let M be a p × q matrix
whose columns (Mj)j∈[n] are independent random vectors in Rp with the common second moment
matrix Σ. Let κ be a number such that ∥Mi∥2 ≤

√
κ almost surely for all i ∈ J1, qK. Then for every ϵ > 0,

the following inequality holds with probability at least 1− exp(−ϵ2),

∥1
q
MM⊤ − Σ∥op ≤ max

(√
ϵ2 + log(p)

C

√
κ∥Σ∥op

q
,
ϵ2 + log(p)

C
· κ
n

)
,

where C > 0 is an absolute constant.

Proof. Theorem 5.44 in [129] considers a matrixM of size p×q whose rowsMi are independent random
vectors in Rq with a common second moment matrix Σ. This matrix is assumed to have a uniform bound
which holds almost surely on the L2 norms of its rows. More specifically there is a number κ such that
∥Mi∥2 ≤

√
κ almost surely for all i ∈ J1, qK. Then for every δ > 0, the following inequality holds with

probability at least 1− q exp(−cδ2),

∥1
p
M⊤M − Σ∥op ≤ max

(
δ

√
κ∥Σ∥op

p
, δ2 · κ

p

)
,

where c > 0 is an absolute constant. We apply this result to the transposed matrix M⊤ and consider

ϵ2 :=
δ2 + log(q)

c
.

To conclude, this section briefly introduces the notion of random matrices. We are mainly interested
in the control that can be obtained on the spectrum, which represents the expansion/contraction that
the corresponding linear (random) operator induces on the vectors of a basis. We mainly present the
non-asymptotic behaviour of the largest and smallest singular values in the framework of a matrix
with independent Gaussian entries, independent subGaussian rows and independent non-subGaussian
columns.

1.1.4 Stochastically dependent data

In the previous sections we focused on the study of independent random variables. However, the
assumption of independence is sometimes too strong to study some real phenomena. For example,
weather data cannot be modelled as a series of independent variables. Indeed the collected data on
day t will influence the data that will be collected on day t + 1, see [17]. It is therefore necessary,
especially when studying phenomena with a time component, to extend the theory presented above
to non-independent variables. In a time series context, we consider random processes indexed by T ,
usually assumed to be a subset of R. It possible to extend this setting and consider a random process
indexed on any general abstract set T . Especially, when the set T is a subset of N which is finite,
the random process can be identified with a random vector in RCard(T ). A comprehensive probabilistic
model for a random process involving the random variables {Xt}t∈T would ideally describe all the
joint probability distributions of the random vectors (X1, . . . , Xt), or equivalently all the probabilities
P [X1 ≤ x1, . . . , Xt ≤ xt] across different time points t ∈ T . A special case of a random process is one
in which the joint probability distribution does not change over time. Such a random process is said to
be stationary and is at the core of chapter 2.
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Definition 1.1.7 (Strictly Stationary Process) Consider a set T ⊂ R and a random process {Xt}t∈T .
Define n ∈ N∗ and consider FX(xt1 , . . . , xtn) the cumulative distribution function of the joint distribution
of {Xt} at times t1, . . . , tn. The process {Xt} is strictly stationary if

FX(xt1+τ , . . . , xtn+τ ) = FX(xt1 , . . . , xtn) for all t1, . . . , tn, t1 + τ, . . . , tn + τ ∈ T.

Consequently, a strictly stationary process exhibits means and variances that do not change over
time. This allows for the definition of a weaker stationarity, named weak stationarity.

Definition 1.1.8 (Weakly Stationary Process) Consider a set T ⊂ R and a random process {Xt}t∈T .
The process {Xt} is weakly stationary if

E[Xt] = E[Xt+τ ] for all (t, τ) ∈ T 2,

Cov(Xt, Xs) = Cov(Xt−s, X0) for all (t, s) ∈ T 2,

E[|Xt|2] <∞ for all t ∈ T.

Considering a (strictly or weakly) stationary process (Xt)t∈T , it can be noticed that its covariance
matrix exhibits notable properties. Indeed the covariance between any two observations depends only
on their time difference, leading to a simplified and structured representation of the covariance matrix
based on a single function of the time lag. This implies that the quantity Cov(Xt, Xs) for any (t, s) ∈ T 2

only depends on |t − s|. Hence, if T = J1, nK ⊂ N∗, the covariance matrix of (Xt)t∈T is a symmetric
Toeplitz matrix of size n× n.

Definition 1.1.9 (Symmetric Toeplitz matrix) A matrix Σ ∈ Rn×n is symmetric Toeplitz if Σ is symme-
tric and each descending diagonal from left to right is constant. Thus there exists (σ1, . . . , σn) ∈ Rn such
that for any (i, j) ∈ J1, nK2,

[Σ]ij = σ|i−j|.

Another special type of random process, which is briefly mentioned in chapter 2 is the Gaussian
process. A random process is said to be Gaussian if any finite collection of random variables follows a
joint Gaussian distribution.

Definition 1.1.10 (Gaussian process) Let {Xt}t∈T be a collection of random variables indexed by a
set T . The process {Xt} is said to be a Gaussian process if for any finite subset {t1, t2, . . . , tn} ⊆ T , the
random vector (Xt1 , Xt2 , . . . , Xtn) follows a multivariate Gaussian distribution.

Mathematically, a Gaussian process is completely specified by its mean function m(t) = E[Xt] and
its covariance function k(t, s) = Cov(Xt, Xs) for all t, s ∈ T . If m(t) = 0 for all t (zero-mean Gaussian
process), then k(t, s) is called the covariance function.

Chapter 2 considers the p-dimensional observations X1, . . . , Xn which are assumed to be inde-
pendent with Gaussian probability distribution Np(0,Σ). The objective is to provide a testing procedure
to determine if the covariance matrix Σ of the generating stationary process is the identity or not. The
considered alternative hypotheses are sub classes of symmetric Toeplitz matrices.

Building upon the foundation of random processes and stationarity, the next step is to introduce
fundamental concepts that enable the control of deviations in dependent quantities. These concepts
include adapted sequences, martingale differences, and Azuma-Hoeffding inequalities. A random pro-
cess is said to be adapted if, informally, the information about its value at a given time step t is only
accessible for the first time at that same time step t. An adapted process is also referred to as a non-
anticipating process.
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Definition 1.1.11 (Adapted process) Let (Ω,A,P) be a probability space and I ⊂ N. For all i ∈ I, let
Fi be a sub-σ-algebra of A such that for all (i, j) ∈ I2, if i ≤ j then Fi ⊆ Fj . Let (Xi)i∈I be a random
process on Ω with values in the measurable space (E,Ξ). We say that the process (Xi)i∈I is adapted
to the filtration (Fi)i∈I if for all i ∈ I, Xi is (Fi,Ξ) measurable.

In addition to adapted processes, the notion of martingale difference sequences (MDS) plays a
crucial role in the understanding of dependent quantities. Indeed, in most limit theorems, the assumption
of independence can be relaxed with the assumption of MDS which requires weaker restrictions on the
dependence structure. Informally, a random process is said to be a MDS if, conditionally on the values
taken by the process up to the time step t− 1, the expected value of Xt is null.

Definition 1.1.12 (Martingale difference) The process (Xi)i∈N adapted to the filtration (Fi)i∈N is a
martingale difference if for all i ∈ N,

E [|Xi|] <∞, and E [Xi+1|Fi] = 0.

Finally, we present the main tool for controlling the deviation of the empirical mean of dependent
quantities.

Lemma 1.1.19 (Azuma-Hoeffding’s inequality, Corollary 2.20 in [131]) Let (Xi)i∈[n] adapted to the
filtration (Fi)i∈[n] be a martingale difference and assume there are constants {(ai, bi)}i∈[n] such that
each Xi belongs to [ai, bi] almost surely. Then, for all ϵ > 0, we have

P
[∣∣X̄n

∣∣ ≥ ϵ] ≤ 2 exp

(
− 2n2ϵ2∑n

i=1(bi − ai)2

)
.

Lemma 1.1.19 is a generalization of Lemma 1.1.8 for non independent random variables. To conclude,
we mention that it is possible to control random processes in a more general framework. Especially,
there is a large body of literature on controlling the supremum of a random process. First, we give some
results on Gaussian processes. Indeed, the study of the supremum of a collection of Gaussian random
variables is of fundamental importance. In such cases, certain comparison inequalities are helpful in
reducing the problem at hand to the same problem for a simpler correlation matrix. Slepian’s lemma
states that for two Gaussian processes with the same variances, the one with larger intrinsic distances
has stochastically larger maximum. Similarly, Sudakov-Fernique inequality ensures that for two Gaus-
sian processes, the one with larger intrinsic distances has larger expected maximum. For subGaussian
processes, Dudley’s inequality provides an upper bound on the supremum of a random process with
subGaussian increments in terms of covering numbers of T , the set used for indexing the random
process. Talagrand’s comparison inequality ensures that any subGaussian process is bounded by a
Gaussian process. For more general processes, the study of the supremum of empirical processes has
benefited greatly from the work of Talagrand and the famous result presented in [123], Theorem 1.4.
Readers interested in these concepts, which go beyond the scope of this thesis, will benefit from rea-
ding the following works : [130] for an introduction to the chaining method and [92] for a more general
overview.

1.1.5 Time series analysis

Time series analysis is a fundamental area of study within statistics and data science, focusing
on understanding and modelling sequential data points indexed by time. This field plays a crucial role
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in various disciplines, including economics, finance, engineering, epidemiology, and climate science,
among others. The overarching goal of time series analysis is to extract meaningful insights, identify
patterns, and make informed forecasts based on historical observations. We introduce the analysis of
vector-valued time series and matrix-valued time series. In the same spirit as the section 1.2.2, we focus
the presentation on linear prediction models. In particular, we seek to understand how the sequential
dependence of the data impacts the performance of the estimators previously introduced.

Vector-valued time series

A general approach to time series modelling consists into plotting the series and examining the
main features of the graph, checking in particular whether there is a trend, a seasonal component, any
apparent sharp changes in behaviour or any outlying observations. In a trend-stationary process, the
first objective will be to remove the trend in order to model the stationary process. Several methods exist
for removing the trend such as a least squares estimation of the trend, a smoothing by means of moving
average, or the differencing method. If the process exhibits both a trend and a seasonal component,
they can both be removed by the small trend method, the moving average estimation method or the
differencing method, see [31] for more details. We then assume to have observations coming from a
stationary process. Indeed stationarity simplifies the analysis of time series data. When a process is
stationary, its statistical properties (such as mean, variance, and autocovariance) remain constant over
time. It also enables the use of time-invariant models, where the parameters of the model do not change
over time.

The analysis of univariate time series benefits from an extensive list of references, see [31], [71], [62]
and [31] for great introductions. However, situations may arise where the values of interest depend not
only on past values but also on other variables. Therefore, it becomes necessary to consider additional
variables into the forecasting model to leverage more information. This is not allowed by the standard
univariate time series theory and motivates the consideration of vector-valued random processes Xt.
The primary objective is to develop effective forecasting methods. We focus on linear models.

Given the d-dimensional vector-valued observations x1, . . . , xp, realizations of the p-dimensional
random vectors X1, . . . , Xp, the objective is to provide a forecast for the period p+ 1. A standard linear
model is the following one :

Xt =

p∑
i=1

A∗
iXt−i + ϵt.

where for all i ∈ J1, pK, A∗
i ∈ Rd×d and ϵt ∈ Rd is a zero-mean stochastic process with constant variance.

However, even if ϵt is independent of Xt, it is not independent of Xt+1 anymore. Thus, a careful investi-
gation is needed to derive well performing estimators. If the dataset contains T ∈ N∗ observations, the
model can be rewritten as follows :

Y = A∗Z + E,
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where

Y :=
(
Xp Xp+1 · · · XT

)
∈ Rd×(T−p+1),

A∗ =
(
A1 A2 · · · Ap

)
∈ Rd×dp,

Z :=


Xp−1 Xp · · · XT−1

Xp−2 Xp−1 · · · XT−2
...

... · · ·
...

X1 X2 · · · XT−p

 ∈ Rdp×(T−p+1),

E :=
(
ϵp ϵp+1 · · · ϵT

)
∈ Rd×(T−p+1).

In the time series literature, this model is referenced as the vector autoregressive model of order p.

Definition 1.1.13 (Vector autoregressive process of order p : V AR(p)) A discrete-time d-dimensional
vector-valued stochastic process {Xt}t∈N is defined as a vector autoregressive process of order p if it
can be written, for any t ∈ Jp+ 1,∞J, as :

Xt =

p∑
i=1

AiXt−i + ϵt,

where (Ai)i∈J1,pK is a set of d× d matrices corresponding to the parameters of the model, and {ϵt} is a
serially uncorrelated, zero-mean stochastic process with covariance matrix σ2Id.

Similar to the univariate autoregressive model, the vector autoregressive model is stationary when
the effects of shocks dissipate over time. This condition holds true if all the eigenvalues of the companion-
form matrix are less than one in absolute value.

Definition 1.1.14 (Companion-form matrix of V AR(p) model) The companion-form matrix of the V AR(p)
model from definition 1.1.13 is the following matrix :

Γ :=


A1 A2 · · · Ap−1 Ap
Id 0d · · · 0d 0d
0d Id · · · 0d 0d
...

...
...

...
0d 0d · · · Id 0d

 .

The usual main objectives are to estimate the transition matrices (Ai)i∈J1,pK and the order of the mo-
del p. Notice that the structure of the matrices (Ai)i∈J1,pK provides insight into the temporal relationships
amongst the time series. In addition, the number of parameters to be estimated in a V AR(p) model
with fixed given p is pd2. In the low-dimensional regime, that is T > pd2, the estimation is carried out
by reformulating the problem as a multivariate regression as in (1.1), see [99]. This setting has been
extensively studied in the literature. In addition to previous references, see [73], [113] and [126] for an
overview. In the high-dimensional regime, that is T < pd2, the VAR model is ill-posed : it suffers from
the over-parametrization issue. Hence the estimation is carried out by assuming sparse structures on
the transition matrices and adding a regularisation into the optimisation problem. However, Lasso type
estimators cannot be used without considering the temporal dependence, as shown in [120]. Hence a
careful control is needed on how the dependency affects the rate of estimation.
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A popular approach is the low-rank VAR model, introduced in [128]. The rank-penalized least
squares estimator, introduced in (1.2) is then leveraged by [1] in this low-rank VAR context. More re-
cently, [135] proposed a method for estimating the transition matrix using the constrained Yule-Walker
equations and demonstrated its optimality under the β-mixing dependency condition. Another approach
is to assume entry-wise sparsity on the transition matrices, leading to L1 regularised least squares es-
timation. Authors in [139] provided guarantees for this estimator that hold even when there is temporal
dependence in data. Previously, [16] examined Gaussian Vector Autoregressive models with finite lag
and introduced a measure of stability based on the spectral density. The spectral density is defined as
the Fourier transform of the autocovariance function of the time series. A subset selection method is
proposed for vector autoregressive processes in [78]. Moreover, [15] examined a combination of low-
rank and entry-wise sparsity structure on these transition matrices. Finally, these procedures assume
a universal lag order applying to all components which constrains the relationship between the compo-
nents. Providing an adaptive estimation with different lag structures is at the core of current research.
This problem is especially tackled in [105].

Another approach for modelling high-dimensional multivariate time series is to use factor models. If
we are interested in the linear dynamic structure of the d dimensional vector-valued process {Xt}, we
assume the existence of a static part i.e. the serially uncorrelated, zero-mean stochastic process {ϵt}
and a dynamic component with an unknown low-dimensional structure, denoted B∗Zt where B∗ ∈ Rd×r

is fixed and {Zt} is a latent r dimensional vector-valued process with r ≤ d. This leads to the following
factor model :

Xt = B∗Zt + ϵt.

In this setting, {Zt} is unobserved and thus called the factor process. In addition, the serial dependency
in the process {Xt} is only driven by the dynamic low-dimensional part B∗Zt. The objective in this
context is to derive an estimator of the fixed parameter B∗, of the factor process {Zt} altogether with
an estimator of the dimension r of the factor process. This type of model is well studied in the literature,
see e.g. [91], [61] and [11]. In addition, matrix factorisation techniques are recently being studied to
model vector-valued time series, see [2] and [3].

Finally, we mention the change-point theory in VAR models. Change points refer to sudden or abrupt
shifts in time series data, which can signify transitions between different states. Detecting these change
points is valuable for modelling and predicting time series. Especially, the previously mentioned mo-
dels are based on the stationarity assumption of the processes at hand. However, this assumption is
broken when the data exhibits structural breaks. Detecting such breaks efficiently heavily depends on
understanding the underlying mechanism of the temporal evolution of the data. In a low-rank piecewise
stationary VAR model, [56] developed a test of presence of a change-point in the transition matrix with
minimax guarantees. For piecewise stationary VAR models, [12] presents a R-package that implements
two classes of algorithms to detect multiple change points and [134] proposed a dynamic programming
algorithm consistently localizing change points even as the dimensionality, the sparsity of the coeffi-
cient matrices, the temporal spacing between two consecutive change points, and the magnitude of the
difference of two consecutive coefficient matrices are allowed to vary with the sample size. For global
reviews on the topic, see [145], [109] and [13].

Matrix-valued time series

As detailed above, multivariate time series analysis represents a foundational area within the dis-
cipline of time series analysis. This multivariate framework not only unveils the temporal dynamics of
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the time series but also delves into the relationships among a group of time series, leveraging the avai-
lable information more comprehensively. While it has been traditional to treat multiple observations as a
vector, the relationships among the time series often exhibit additional structure, leading to the concept
of matrix-valued time series, introduced by [132]. For example, consider meteorological data where at
each time step t, one collects several weather information such as air humidity, wind speed, rainfall level
and temperature in five different cities. This leads to a collection of matrices (Xt)t with 4 rows and 5
columns. In this context, the matrix structure of the data is extremely important. The variables within the
same column (representing the meteorological parameter) often exhibit stronger inter-relationships, as
do the variables within the same row (related to the same location). Therefore, it is essential to analyze
the entire group of variables while fully preserving and leveraging its matrix structure. However, while
matrix-valued data are well studied under an independence assumption, see e.g. [70], [87], [144] and
[125], the impact of the dependence structure is still not well understood. To present the problem, we
adopt the same framework as the one previously introduced.

Given the d × k matrix-valued observations x1, . . . , xp, realizations of the random d × k matrices
X1, . . . , Xp, the objective remains to provide a forecast for the period p + 1. A standard linear model is
the following one :

Xt =

p∑
i=1

A∗
iXt−iB

∗
i + ϵt.

where for all i ∈ J1, pK, A∗
i ∈ Rd×d, B∗

i ∈ Rk×k and ϵt ∈ Rd×k is a serially uncorrelated, zero-mean
stochastic process with constant variance. Note that an identifiability problem occurs in this model as
for any α ∈ R, the pairs (A∗

i , B
∗
i ) and (αA∗

i , α
−1B∗

i ) lead to the same model. A common practice would
be to require for all i ∈ J1, pK, ∥A∗

i ∥F = 1. However this requirement wouldn’t be sufficient as taking
α = −1 would still lead to the same model and satisfy this requirement. The additional requirement that
for all i ∈ J1, pK, Tr(B∗

i ) solves the issue. This leads to the matrix autoregressive model of order p.

Definition 1.1.15 (Matrix autoregressive process of order p : MAR(p)) A discrete-time d×k matrix-
valued stochastic process {Xt}t∈N is defined as a matrix autoregressive process of order p if it can be
written, for any t ∈ Jp+ 1,∞J, as :

Xt =

p∑
i=1

A∗
iXt−iB

∗
i + ϵt,

where (A∗
i )i∈J1,pK is a set of d × d matrices satisfying ∥A∗

i ∥F = 1, (B∗
i )i∈J1,pK is a set of k × k matrices

satisfying Tr(B∗
i ) > 0 and {ϵt} is a serially uncorrelated, zero-mean matrix-valued stochastic process

with covariance matrix σ2Id×k.

«««< HEAD One notices that the MAR(p) model can be vectorized. Consider {Xt} following the
MAR(p) from definition 1.1.15, then it satisfies for all t ∈ Jp + 1,∞J ======= One notices that the
MAR(p) model can be vectorized. Consider {Xt} following the MAR(p) from Definition 1.1.15, then it
satisfies for all t ∈ Jp+ 1,∞J »»»> 0ec5dd4 (Intro)

vec(Xt) =

p∑
i=1

(B∗
i ⊗A∗

i )vec(Xt−i) + vec(ϵt−i),

where ⊗ denotes the matrix Kronecker product and vec the vectorization of a matrix by stacking its
columns. Hence one can define the matrices Φi := B∗

i ⊗A∗
i and assume that vec(Xt) follows a V AR(p)
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model. However, the matrices Φi present a special structure that is not leveraged in the standard
V AR(p) estimation procedures. Thus the initial matrix structure of the problem would be lost.

Matrix-variate time series models have garnered increasing attention within the research commu-
nity, evidenced by recent publications on this emerging topic. In [47], the MAR(1) model was studied
under an asymptotic framework, focusing on probabilistic properties and establishing conditions on A∗

1

and B∗
1 for model stationarity. Estimators were defined, and their asymptotic properties were rigorously

demonstrated. Building on this, [141] introduced an estimation procedure based on alternating least
squares tailored for low-rank assumptions on matrices A∗

1 and B∗
1 , providing further insights into the

derived estimators’ asymptotic behaviors. These foundational works were extended to tensor scena-
rios in [96], maintaining autoregression of order 1 through an alternating least squares approach and
continuing to offer asymptotic guarantees. They also propose to determine the autoregressive order
with an information criterion based procedure. In the context where T > p, [77] introduces a compre-
hensive examination of a generalized rank-R autoregressive model of order p. Their approach involves
vectorizing the problem, and their estimation procedure hinges on constrained maximum likelihood, as-
suming a Gaussian distribution for the vectorized noise matrix. Sparsity in the coefficients is explored in
[75] by introducing spatial neighborhoods. The factor model approach is also gaining traction to study
matrix-variate time series, see [136], [72] and [45].

1.2 Problems and contributions

In this section we present the statistical problems studied in the core chapters of the thesis. We
first detail the hypothesis testing problem, which is central to the understanding of Chapter 2. We then
explore the regression problem and especially the multivariate linear regression for which Chapter 3
provides an extension. Then we present the topic model problem, for which a dynamic extension is
studied in Chapters 4 and 5.

1.2.1 Hypothesis Testing : deciding where lives a covariance matrix

In all fields, from scientific experimentation to everyday life, we are required to make decisions
about risky activities based on the results of experiments or observations of phenomena in an uncertain
context. The decision problem consists of deciding, on the basis of observations, between a hypothesis
known as the null hypothesis, denoted H0, and another hypothesis known as the alternative hypothesis,
denoted H1. A hypothesis test is therefore a decision-making procedure used to determine whether or
not the null hypothesis can be rejected in favour of the alternative hypothesis given the observed data.
We assume that the observations are realizations of the random variables (X1, . . . , Xn) taking values
in (E, E).

Definition 1.2.1 (Test procedure) A test ∆n is a measurable function of the observations taking its
values in {0, 1} :

∆n : En → {0, 1}.

∆n then separates the set of possible outcomes of some random event in two contiguous sets, H0 is
rejected whenever ∆n = 1 and not rejected whenever ∆n = 0.

We consider in Chapter 2 the observation of n i.i.d random vectors (X1, . . . , Xn) defined on Rp with
a common covariance matrix Σ ∈ S++

p , where S++
p represents the set of symmetric positive definite
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matrices of size p × p. The considered testing problem is :

H0 : Σ = {Ip}, vs. H1 : Σ ∈ Fp,

where Fp ⊂ S++
p is a set of sparse Toeplitz matrices. We consider two different alternative hypotheses,

either there exists a number s of covariance elements that are significantly positive (the one-sided
alternative Fp = F+(s, S, σ)) or significantly different from zero i.e. (the two-sided alternative Fp =
F(s, S, σ)). The alternative classes are presented in Definition 2.2.1.

In a decision problem, two types of error are possible. A type I error occurs when we decide that
H1 is true, i.e. observing ∆n = 1, when H0 is actually true. A type II error occurs when we fail to reject
H0, i.e. observing ∆n = 0, when H1 is true. The consequences of these two errors can be of varying
degrees of importance. Every decision has thus a probability of being right and a probability of being
wrong. The type I error probability, in words the worst "chance" of falsely rejecting the null hypothesis, is
denoted α and is called the significance level of the test. The type II error probability, in words the worst
"chance" of failing to reject the null hypothesis, is denoted 1 − β. Thus β is the probability of correctly
rejecting the null hypothesis and is called the power of the test.

Definition 1.2.2 (Type I and type II errors) Consider the testing procedure ∆n for the testing problem
H0 : Σ = Ip, vs. H1 : Σ ∈ Fp. Then the type I error probability of ∆n is defined as :

α := PIp (∆n = 1) .

Similarly, the type II error probability of ∆n is defined as :

1− β := sup
Σ∈Fp

PΣ (∆n = 0) .

To define a test procedure, the ideal would obviously be to find one that minimises both risks of error
at the same time. Unfortunately, one can show that they vary in opposite directions, i.e. any procedure
that decreases α will generally increase 1 − β and vice versa. Thus there are essentially two ways to
define an optimal testing procedure. The first one is the Neyman-Pearson’s optimal testing procedure.
In this setting, we will consider that one of the two errors is more important than the other, and try to
avoid this error. Usually we choose H0 and H1 so that the error we are trying to avoid is the type I
error. Notice that the ideal test would then almost surely never wrongly reject H0. However, in usual
cases, the only test having α = 0 is the trivial test ∆n = 0. Thus we need to let the other error to occur.
For example, in the case of a trial, we generally do everything we can to avoid convicting an innocent
person, even if it means taking the risk of acquitting a guilty person. Mathematically, we fix a value for
the level α ∈ [0, 1]. The more serious the consequence of the type I error, the smaller α will be. However,
for the same decision problem, several tests with a type I error probability smaller than α may exist. In
this case, the best of these tests is the one that minimises the probability of the type II error, i.e. the one
that maximises the power β among the tests with a level being at most α.

Definition 1.2.3 (Neyman-Pearson’s optimal testing procedure) Let’s ∆α denote the set of all tes-
ting procedures with level at most α. Then the Neyman-Pearson optimal test, denoted ∆NP , is a test of
level α which solves the following :

for all Σ ∈ Fp, PΣ[∆NP = 0] = inf
∆∈∆α

PΣ[∆ = 0].

If it exists, ∆NP is called a uniformly most powerful test.
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Because the problem ∆NP needs to solve does not always have a solution, the notion of optimality
defined by the Neyman-Pearson’s optimal testing procedure is not universal. Hence, there is a need for
a more general approach to finding an optimal testing procedure. As described previously, one can’t
find a test both minimizing the level α and maximizing the power β as α and 1 − β evolve in opposite
directions. However, it is possible to minimize the sum of the type I and type II error probabilities. Hence
an equal role is given to H0 and H1. This criterion is described as the minimax approach.

Definition 1.2.4 (Maximal testing risk) Let’s consider a testing procedure ∆ and defineR(∆) its maxi-
mal testing risk :

R(∆,Fp) := PIp (∆ = 1) + sup
Σ∈Fp

PΣ (∆ = 0) .

Then a test is said to be minimax optimal if it minimises the maximal testing risk among all testing
procedures. Its maximal testing risk is then called the minimax testing risk.

Definition 1.2.5 (Minimax testing risk) The minimax testing risk is defined as

R∗(Fp) := inf
∆
R(∆,Fp).

If it exists, the testing procedure achieving the minimax testing risk, denoted ∆∗, is called a minimax
test.

Another important point to mention is that the null hypothesis class is a singleton, namely the identity
matrix. Hence the objective of the procedure is to determine whether or not it is possible to reject
with high probability the hypothesis that Σ is the identity. In addition, we have chosen the alternative
hypothesis classes to be a subset of sparse Toeplitz matrices, Fp = F+(s, S, σ) or Fp = F(s, S, σ).
Essentially, one can wonder why such a testing problem doesn’t take the more general following shape :

H0 : Σ = Ip, vs. H1 : Σ ∈ S++
p \{Ip}.

In this scenario, one notices that for any standard choice of distance on S++
p , e.g. the distance derived

from the Frobenius norm, denoted as ∥ ∥F , we have

inf
Σ∈S++

p \{Ip}
∥Ip − Σ ∥F = 0.

Hence it is not possible to separate the null hypothesis from the alternative one. This leads to the
minimax testing risk being equal to one and thus the random guessing test becomes optimal. Hence,
in this goodness of fit testing problem, it is mandatory that the alternative hypothesis class is well
separated from the null hypothesis singleton. Thus for a fixed ϵ > 0, we need to define F (ϵ)

p such that

inf
Σ∈F(ϵ)

p

∥Ip − Σ ∥F ≥ ϵ.

From the definition of our alternative classes we see that both F+(s, S, σ) and F(s, S, σ) are well se-
parated from the singleton {Ip}. Finally, the optimal choice of the separation radius ϵ is discussed in
the literature and can be defined as the minimax separation radius. This goes beyond the scope of
this thesis. However, interested readers may wish to consult [95] and [82] for more details on minimax
testing procedures.
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Chapter 2 : Covariance matrix testing and support recovery. We consider (Xi)i=1,...,n
i.i.d.∼ Np(0,Σ)

where Σ has a Toeplitz structure. We then denote σ|i−j| the covariance Cov(Xi, Xj) for i, j ∈ {1, . . . , p}.
First, we test whether the covariance matrix Σ is the identity matrix Ip against the one-sided alterna-
tive F+(s, S, σ) or the two-sided alternative F(s, S, σ), see Definition 2.2.1. From an asymptotic point
of view, s can tend to infinity as p tends to infinity, thus a nonparametric model is allowed, that is the
number of parameters can increase. Such models have only been considered in nonparametric estima-
tion of the spectral density of stationary time series, see [89]. First we define φA the linear functional of
the covariance matrix Σ associated to the matrix A belonging to Sp as φA(Σ) := Tr(AΣ). The sample
covariance matrix is denoted Σn. Thus, the covariance element σj , j ≥ 1, can be written as

σj = E[XTAjX] = Tr(AjΣ) = φAj (Σ), with [Aj ]kℓ =
1

2(p− j)
1(|k − ℓ| = j)

- a matrix that has 0 elements except on jth upper and lower diagonals. Similarly, the empirical estimator
of σj can be defined as φAj (Σn).

In the moderately sparse case, the sum of all S values will allow to test, whereas in the highly sparse
case a search over subsets of size s will be necessary. This is called a scan procedure and it is compu-
tationally fast for vectors. Note that, if the sparsity s is unknown a second search over different possible
values of s will produce an aggregated procedure, free of s. In the moderately sparse case with the
alternative hypothesis being F+(s, S, σ), we consider for some threshold tMS+

n,p the test statistic ∆MS+
n

defined in (2.5). When the alternative hypothesis is F(s, S, σ), we consider for some threshold tMS
n,p the

test statistic ∆MS+
n defined in (2.6). Upper bounds on their maximal testing risks are derived respecti-

vely in Theorem 2.3.1 and Theorem 2.3.2. In the highly sparse case, when the alternative hypothesis
is F+(s, S, σ), we consider for some threshold tMS+

n,p the test statistic ∆HS+
n defined in (2.7). When the

alternative hypothesis is F(s, S, σ), we consider for some threshold tMS
n,p the test statistic ∆HS+

n defined
in (2.8). The tests ∆HS+

n and ∆HS
n successively try all possible sets C of s diagonals among the first S

diagonal values. If any of these tests decides to reject H0, then ∆HS+
n also rejects H0. Upper bounds

on their maximal testing risks are derived respectively in Theorem 2.3.3 and Theorem 2.3.4.
To bound from above the maximal testing risks of the stated procedures, we give a new variant of

concentration inequality for quadratic forms of large Gaussian vectors and these bounds are specified
for covariance matrices that are Toeplitz with few non-null diagonals in Theorem 2.2.2. These bounds
are specified for covariance matrices that are Toeplitz with few non-null diagonals in Corollary 2.2.4.

Theorem 2.2.2 The random variable φA(Σn − Σ) is centered and sub-exponential with parameters(
ν2 =

2||AΣ||2F
n(1−K) , b =

2||AΣ||∞
nK

)
, for some arbitrary K in ]0, 1[. Therefore, for any u > 0 :

P[φA (Σn − Σ) ≥ max

{
√
u
||AΣ||F√
n(1−K)

, u
||AΣ||∞
nK

}
] ≤ exp

(
−u
4

)
.

Previous concentration inequalities were given for such functionals. The closest to our case is the
chi-square type concentration inequality in [121] for standardized Gaussian vectors and generalized
to sub-Gaussian vectors. Let us also mention [65] who gave a Bernstein inequality for the empirical
covariance element of a stationary centered Gaussian process and generalized it to locally stationary
Gaussian processes.

We also propose a method to identify diagonal elements σj , j = 1, ..., S, with non-null entries in Σ,
pinpointing where information may be lost in the modelling process. The objective is to properly select
non-null correlation coefficients. It can be defined a lag-selection problem as estimation of η, a vector
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with entries ηj = 1(|φAj (Σ) | > 0). The aim is to find a selector η̂ with η̂j = 1(|φAj (Σn) | > τn) that
is consistent in the sense that the risk RLS(η̂,F) =

∑S
j=1 EΣ[|η̂j − ηj |] stays bounded. We provide

in Theorem 2.4.1 an explicit value of τn such that the risk RLS(η̂,F) remains bounded by a quantity
decreasing in S.

1.2.2 Regression framework

Regression analysis is a fundamental statistical method used to explore and quantify the relationship
between one or more independent variables (the predictors) and a dependent variable (the target). The
goal of regression analysis is to develop a predictive model that can estimate the value of the target
based on the values of the predictors. This problem is at the core of chapter 3.

We observe a dataset consisting of T ⊂ N∗ responses Yt and T corresponding features Xt. The
objective is to develop a model capable of predicting the response YT+1 based on a new feature XT+1.
We write our model as follows :

for all t ∈ [T ], Yt = f∗(Xt) + ϵt,

where ϵt encompasses measurement errors and factors that cause Y to depend on more than just the
considered X. The true function f∗ is unknown, leading us to seek an appropriate f that accurately pre-
dicts Y values at new points X = x. A well-performing function f aids in identifying which components
of X are significant for explaining Y and which are not. During data collection, there may be instances
where numerous features share the same value, such as Xi = Xj = x with i ̸= j. Despite this, we might
observe Yi ̸= Yj , indicating that ϵi and ϵj represent irreducible errors in our model. Even with an optimal
function f , predicting Yt using f at each Xt = x can still result in errors because f(x) represents only
one value among a distribution of potential Yt values. One approach is to consider that the function f∗

evaluated on x outputs the average of the observed values Yt corresponding to Xt = x. This leads to
model the regression function f∗ as f∗(x) = E[Y |X = x]. The regression function f∗ is the optimal
predictor of Y with respect to the mean-squared error :

f∗ ∈ argming E
[
(Y − g(X))2 |X = x

]
.

Furthermore, for any estimate f̂ of f∗, we have

E[
(
Y − f̂(X)

)2
|X = x] =

(
f∗(x)− f̂(x)

)2
+ V(ϵ).

This shows that there is an irreducible error we can’t shrink, namely V(ϵ), even if we know the true
function f∗. We are especially interested in linear models, that is when f∗ is a linear function. We refer
to this problem as the linear regression problem.

Vector-valued target

In the conventional regression framework, the target variables Yt are scalar. However, in various
applications, the objective is not to predict a scalar variable but rather a vector YT+1 ∈ Rm. We still
consider that the predictors are vector-valued, namely for t ∈ J1, T K, Xt ∈ Rp. As a consequence, the
regression function f∗(x) = E[Y |X = x] takes arguments in Rp and outputs values in Rm. Without
additional assumption, f∗ can be estimated independently for each coordinate, leading to independent
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linear regressions with real-valued targets. Indeed, the linearity assumption on f allows to rewrite the
model as follows :

Y = XB∗ + E, (1.1)

where Y ∈ RT×m is the target matrix, X ∈ RT×p is the predictor matrix and B∗ ∈ Rp×m is the parameter
and E ∈ RT×m is the noise matrix, usually assumed to have i.i.d. σ2-subGaussian entries. One notices
that for any j ∈ J1,mK, the jth column of Y , denoted [Y ].j only depends on the jth column [B∗].j of B∗

and for any i ∈ J1, T K, the ith row of Y , denoted [Y ]i., only depends on the ith row [X]i. of X. Hence we
can view this problem as p independent linear regression problems with real-valued targets :

for all j ∈ J1, pK, [Y ].j = X[B∗].j + [E].j .

This problem is an instance of multi-task learning, which is heavily studied in the literature [107, 101,
5, 119, 55, 9, 143]. Especially, an estimator of XB∗ can be derived by solving p ordinary least squares
problems. Let us denote XB̂ the corresponding estimator. If E has independent σ2-subGaussian en-
tries, we derive from the standard OLS analysis, see [115], the existence of a positive constant C such
that :

1

T
E

[∥∥∥XB̂ −XB∗
∥∥∥2
F

]
≤ Cσ2 pm

T
.

This result proves that in the high dimensional setting, that is when T < pm, the mean squared predic-
tion error of B̂ doesn’t go to zero. Hence it is natural to ask if another estimator of B∗ can be derived
solving this problem. Unfortunately, Corollary 4.13 in [115] proves that the least squares estimator
achieves the minimax rate of estimation in the univariate Gaussian sequence model. This implies that
the least squares estimator is optimal among all estimators without any prior knowledge on the struc-
ture of B∗. Since this bound is optimal, it might seem like there’s no hope to solve this high-dimensional
statistical problem.

Fortunately, it is often noted that high dimensional data exhibit inherent low complexity. When the
low-dimensional structures are well-defined, the analysis reverts to more conventional low-dimensional
statistics. However, high-dimensional data present challenges due to the unknown underlying low di-
mensional structures. Therefore, a fundamental task is to identify or approximate these structures. In
the multivariate regression setting, there often exist shared structures across coordinates that can be
exploited to improve the prediction bounds. For example, one can assume that the columns of B∗ share
the same sparsity pattern with only s non null entries. If each task is performed individually, this leads
to the group-lasso estimator B̂GL studied in [98]. In this setting, there exists a positive constant C > 0
such that the mean squared prediction error of B̂GL becomes :

1

T
E

[∥∥∥XB̂GL −XB∗
∥∥∥2
F

]
≤ Cσ2 sm log(p)

T
.

We remind that the extra log factor appears because of the unknown support of the non null entries of
B∗. Hence in the high dimensional regime under this sparsity structure assumption, the mean squared
prediction error is converging to zero as long as T > sm log(p). Moreover, we underline that this spar-
sity structure assumption mimics the standard univariate one, solved with the Lasso procedure and its
variant, see [124, 22, 114, 33, 19]. Fortunately, more complex structures can be captured in the multi-
variate regression setting. For example, if the columns of Y are correlated, one can assume a low-rank
structure on B∗. This leads to the low-rank multivariate regression.
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A possible solution to this problem is to consider an estimator B̂λ of B∗ that can be defined as the
solution of a rank penalized version of the ordinary least squares problem. Hence for any λ > 0 we
consider :

B̂λ ∈ argminB ∥Y −XB∥
2
F + λrB, (1.2)

where rB denotes the rank of B. A first question of interest is the selection of the hyperparameter
λ > 0. This problem falls into the category of model selection and we refer the reader to [64, 100] for
comprehensive introductions. The first step to compute this estimator is to define the restricted rank
estimators, that is B̂(k) which minimizes ∥Y −XB∥2F among matrices B of rank no larger than k.

Lemma 1.2.1 (Lemma 8.1 in [64]) Consider P := X
(
X⊤X

)+
X⊤ the orthogonal projector onto the

range ofX where
(
X⊤X

)+ denotes the Moore-Penrose pseudo inverse ofX⊤X. Denote
rank(PY )∑

i=1
σiuiv

⊤
i

the SVD of PY . Then XB̂(k) can be defined as
k∑
i=1

σi(PY )uiv
⊤
i .

When the rank of B∗ is unknown, the previous estimator can be computed for any value of r ∈ N∗,
leading to B̂(k). The quality of this estimator is given in the following lemma.

Lemma 1.2.2 (Non asymptotic bound on the squared prediction error, Theorem 5 in [32]) There is
a positive constant C such that for any k ∈ N∗,

∥∥∥ XB̂(k) −XB∗
∥∥∥2
F
≤ C

rank(XB∗)∑
i=r+1

σi(XB
∗)2 + k∥PE∥2op

 .
Note that this bound, which exhibit a bias-variance trade-off, holds almost surely but depends on

the largest singular valse of the projection of the noise matrix E onto the range of X. One can derive
an upper bound not depending on E by controlling the spectrum of the random matrix PE and then
provide an upper bound holding true with high probability. The bounds thus derived will be more or less
tight depending on the assumptions one makes on the distribution of the noise matrix E. The following
lemma provides an example.

Lemma 1.2.3 (Mean squared error in the low-rank multivariate regression, Corollary 6 in [32]) Assume
that the noise matrix E has independent centered gaussian entries with variance σ2. Then there is a
positive constant C such that for any r ∈ N∗,

E

[∥∥∥ XB̂(k) −XB∗
∥∥∥2
F

]
≤ C

rank(XB∗)∑
i=r+1

σi(XB
∗)2 + σ2k(m+ rX)

 ,
where rX denotes the rank of X.

Lemma 1.2.3 shows that the mean squared error is bounded by an approximation error and a
stochastic term. The approximation error is decreasing in k and vanishes for k > rank(XB∗). Moreover
the mean squared error satisfies for k > rank(XB∗) :

1

T
E

[∥∥∥XB̂ −XB∗
∥∥∥2
F

]
≤ Cσ2k(m+ rX)

T
.



1.2. PROBLEMS AND CONTRIBUTIONS 27

One can then notice that rank(B∗) ≥ rank(XB∗) and that in a high-dimensional setting with very low
rank, rank(XB∗)(m+ rX)≪ pm. However, the value of rank(XB∗) is unknown and thus the previously
stated oracle bound cannot be achieved. A data adaptive procedure is proposed in [32] both in the case
of known σ2 and unknown σ2, the parameter of the noise. Similar performances are achieved as in the
oracle case.

Hence, if the columns of the observed matrix Y are correlated and if we then assume that B∗ has
a low-rank structure, an estimator B̂r of B∗ can be derived with non-asymptotic guarantees. However,
if the rows of Y are correlated, the previously exposed model cannot capture it. This can happen when
the observed predictors and targets exhibit serial dependency. This problem is the core of chapter 3.
To conclude, generalizing those results for higher order tensors is a matter of considerable interest
within the research community. We refer the reader to [97] and references therein for a comprehensive
introduction.

Chapter 3 : Two-sided matrix regression. In this chapter, we study a multivariate regression pro-
blem where both the columns and the rows of the target quantity Y are assumed to be correlated. We
observe the target matrix Y ∈ Rn×p and a design matrix X ∈ Rm×q related via the two-sided matrix
regression (2MR) model. This model involves two parameter matrices A∗ ∈ Rn×m and B∗ ∈ Rq×p and
is expressed as

Y = A∗XB∗ + E.

The noise matrix E is assumed to have independent centered σ−subGaussian entries. The objective is
to derive predictors Â and B̂ such that ÂXB̂ stays close to the signal A∗XB∗, under low-rank assump-
tions on A∗ and B∗.

While this model does not involve time-dependency, the non-asymptotic results obtained here can
enhance our understanding of matrix-valued autoregressive time series : Yt = A∗XtB

∗ + Et (see [47]).
The 2MR model also encompasses known models such as matrix regression and matrix factorization.
For instance, if n = m and A∗ is the identity matrix, the 2MR model reduces to the one-sided matrix
regression model Y = XB∗ + E (see [108], [32], [104]). Similarly, if m = q and the design matrix X
is the identity matrix with rank m smaller than both n and p, the 2MR model becomes a factorization
model of the signal M∗ = A∗B∗ observed with noise.

Another representation of the 2MR model is in the form of a vector regression model. By stacking
the columns of matrices Y , X and E into vec(Y ), vec(X) and vec(E), respectively, we obtain

vec(Y )⊤ = vec(X)⊤ · (A∗)⊤ ⊗B∗ + vec(E)⊤,

where ⊗ denotes the tensor product of two matrices. Under this formulation, we predict a row vector
of size np using a row vector of size mq (with the feature matrix having rank 1) via a parameter of size
(mq)× (np). This approach is problematic unless the structure of A∗ and B∗ is trivial. It fails to account
for the matrix structure of the features and the matrices A∗ and B∗, leading to suboptimal results.

The objective is to build explicit predictors (Âr, B̂r) solutions to the squared Frobenius prediction
risk under maximal rank constraint, see (3.3). Theorem 3.2.1 provides, for an equivalent problem (3.5),
explicit predictors Â0r and B̂0r with a non-asymptotic upper bound on the prediction risk. We notice
especially that this bound can be decomposed as the sum of a bias term, which is the cause of the
choice of the rank r of the predictors, potentially lower than the rank of the matrices A∗ and B∗ and a
stochastic term. The analysis of this stochastic term mainly involves random matrix theory, see [129].
These predictors lead to derive Âr and B̂r solution of the initial optimization problem (3.3). This result
is stated in Corollary 3.2.2.
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However, in the optimization problem (3.3), the question of how to select r arises. We propose a
rank-adaptive procedure to answer it. We first select the rank r̂ by solving a rank-penalized version
of the squared Frobenius minimization problem, (3.8). Then we consider the corresponding predictors
(Âr̂, B̂r̂). The prediction risk of these predictors is studied in Theorem 3.2.3. The rank selection proce-
dure (3.8) is also proven to be consistent in Proposition 3.2.6. However both these results are stated
under the condition that the subGaussian parameter σ2 of the noise matrix entries is known.

Finally, we propose a data-driven rank-adaptive procedure, allowing to select r̄ and derive predictors
(Âr̄, B̂r̄). These predictors exhibit non asymptotic provable guarantees without requiring the true value
σ being known. To do so we modify the penalized minimization problem (3.8) by replacing the rank r
with rσ̂2r , see (3.9), where

σ̂2r =
1

np
∥Y − ÂrXB̂r∥2F .

The performance of this prediction procedure is detailed in Theorem 3.2.7.
Finally, similar to the standard linear regression scenario where the BIC estimator is replaced

by its convex relaxed version, the Lasso estimator, we compare the prediction performance achie-
ved using a rank penalty against that obtained using a nuclear norm penalty, which serves as the
convex relaxation of the rank penalty. Specifically, we consider the nuclear norm penalized version of
the squared Frobenius prediction risk minimization, see (3.10). We provide solutions Ā and B̄ to this
problem in Theorem 3.3.1 and derive a non asymptotic upper bound on the corresponding prediction
risk ∥A∗XB∗ − ĀXB̄∥2F .

We conclude by noting that the two-sided matrix regression model suffers from identifiability draw-
backs. Indeed many couples of matrices (A,B) solve the equation M = AXB for a given matrix M . We
can only hope to identify matrices A and B under very restrictive conditions where X⊤X has full rank
and either the matrix A or the matrix B is assumed to have known singular values, e.g. like a projector
with singular values 1 or 0. Few other setups are known to be identifiable in the literature of factorisation
of matrices, e.g. non-negative matrix factorisation (NMF), see [54], NMF for topic models [84], [25], [86]
or covariance matrix factorization [57].

1.2.3 Topic Modeling

This section is devoted to the presentation of the topic modeling framework, which is at the core of
Chapters 4 and 5. Consider a corpus comprising n textual documents written in a language characteri-
sed by a dictionary of size p. To analyze and leverage the information conveyed in these n documents,
the primary goal is to derive a vector representation for this document set. This mathematical expres-
sion will enable the application of analytical tools to extract and scrutinise information more effectively.
Given the varying lengths of documents, a straightforward count of each word’s occurrence would not
be pertinent. Consequently, for each document the focus is shifted to the frequency of appearance for
individual words. Each document can thereby be represented as a point within the simplex in Rp. This
implies that the whole corpus is depicted as a set of n points within the simplex. Importantly, the order
of the documents bears no significance in this context. Additionally, we assume that those n points are
not linearly independent but span a subspace of Rp with dimension K ≪ min(n, p). Interpreted as the
number of topics discussed in the corpus, K plays a crucial role in capturing the underlying structure.
The principal aim is to find an embedding of these n points within the lower-dimensional space RK .
Consequently, the task is to identify a mapping from Rp to RK such that the initial n points in Rp can be
effectively embedded in RK through this mapping.
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In a more formal context, each document j ∈ [n] is modeled as a collection of Nj words drawn from
a dictionary of size p. Each document follows a discrete distribution π∗j on the simplex of Rp. For each
document j ∈ [n], the p-dimensional vector Yj of word frequencies is observed and assumed to follow
a multinomial distribution centered on π∗j :

NjY j ∼ Multinomialp(Nj , π
∗
j ). (1.3)

However, in real world examples, only few different topics are discussed in huge corpora of documents.
This leads to assuming that the word-document probability matrix Π∗ = (π∗1, . . . , π

∗
n) ∈ Rp×n is of rank

K ≪ min(n, p), the number of topics, and can be factorized as :

Π∗ = A∗W ∗, (1.4)

where A∗ ∈ Rp×K is the word-topic probability matrix and W ∗ ∈ RK×n is the topic-document probability
matrix.

This framework assumes that the probability of occurrence of word i ∈ [p] in a document discussing
topic k ∈ [K] is independent of the document itself. Specifically, the probability vector π∗j of document j,
referred to as the word-document probability vector, is a convex combination of K word-topic probability
vectors with weights corresponding to the allocation of K topics. From a probabilistic standpoint, this
can be expressed with the total probability formula, as :

P(word i|document j) =
K∑
k=1

P(word i|topic k)P(topic k|document j),

The primary objective within the traditional topic model framework is to recover A∗ and/or W ∗ based on
the observations Y 1 . . . ,Y n with or without a known fixed number of topics K. The estimation of ma-
trices A∗ and W ∗ serves distinct purposes. Indeed, the estimation of matrix A∗ discerns the distribution
of words in the dictionary given some topic, while the estimation of W ∗ reveals the distribution of topics
given some document.

It is noteworthy that without noise, i.e., the matrix Π∗ being observed, the recovery of A∗ and W ∗

becomes an instance of non-negative matrix factorization. The non-negative matrix factorization (NMF)
problem has been extensively studied, with algorithms attracting attention due to their ability to ge-
nerate factors with non-negative constraints, enhancing interpretability. Commonly, NMF is formulated
as the minimization of a regularized cost function [94, 93, 112], presenting non-convex optimization
challenges, especially in scenarios where numerous words are absent in a single document (N ≪ p).
The main limitation of NMF is that solving the exact NMF problem, i.e., assuming a known rank K of
Π∗ ∈ Rp×n and retrieving matrices A∗ ∈ Rp×K and W ∗ ∈ RK×n such that A∗W ∗ = Π∗, without any
additional assumption, is NP-hard, see [127]. This result implies the necessity of additional assump-
tions to ensure the existence of fast-running algorithms capable of estimating A∗ and/or W ∗. Moreover,
NMF algorithms face an identifiability issue. It is conceivable to find different non-negative matrices
(A∗

1,W
∗
1 ) ∈ Rp×K × RK×n and (A∗

2,W
∗
2 ) ∈ Rp×K × RK×n such that A∗

1W
∗
1 = A∗

2W
∗
2 . Additional assump-

tions are required to ensure the uniqueness of the representation. The first such assumption is the
separability assumption and was initially introduced by [54]. It ensures the uniqueness of NMF. This
assumption was later incorporated into the topic model framework by [8], with the interpretation that,
for each topic, there exist certain words that exclusively occur in that specific topic. These words are
referred to as anchor words. The anchor word assumption has subsequently been adopted in most
literature on topic models.
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Assumption 1 (Anchor word assumption) For each topic k ∈ [K], there exists at least one word j
such that [A∗]jk > 0 and [A∗]jl = 0 for l ∈ [K]\{k}.

Model (1.4) assumes that both the matrix of word-topic and the matrix of topic-document are static.
In addition it assumes that the documents are exchangeable within the collection. Indeed the model
remains the same under a permutation of the columns of the observed matrix Y .

Recent works address the algorithmic aspects and give inference results in the problem of estima-
ting the matrix A∗ in a static framework under the anchor words assumption. For example authors in
[84] propose an estimator Â achieving minimax rates for dense A∗, i.e. not sparse, with a known, fixed
K. The procedure of [84] performs an SVD on a normalized version of the matrix Y followed by an ex-
haustive search over a p-dimensional simplex. For unknown K and dense A∗, authors in [24] consider
ÂK , provably achieving the minimax optimal rates in this setting. The procedure of [24] starts by reco-
vering the anchor words and then derive an estimator from a scaled version of Y Y ⊤. Sparse A∗ with
unknown K is tackled by [25], proposing a minimax optimal estimation procedure Âsparse of A∗. The
procedure of [25] mainly focuses on the estimation of the portion of A∗ corresponding to non-anchor
words. To adapt to the sparsity of A∗, their algorithm also requires the solution of a quadratic program
for each non-anchor row. Recently, several papers have also studied the problem of estimating a static
W ∗ under various assumptions. When A∗ is known, and W ∗ is assumed to be sparse, [23] suggests
a Maximum-Likelihood Estimator (MLE) for W ∗. Their analysis proved that the MLE is both minimax
optimal and adaptive to the unknown sparsity in a large class of sparse topic distributions. When A∗ is
unknown, [23] estimates W ∗ by optimizing the likelihood function corresponding to a plug in estimator Â
of A∗. Hence the estimation error of W ∗ in their procedure depends on how well Â estimates A∗. When
both A∗ and W ∗ are unknown with a sparsity assumption on the columns of W ∗ with K allowed to be
large, [140] proposes computationally efficient procedures for estimating both matrices. In addition, it is
possible to directly estimate W ∗ by assuming additional structure. Hence [86] assumes another version
of the anchor word assumption, named anchor document. This assumption means that for each topic,
there is a document only discussing this topic. Their procedure, called Successive Projection Overlap-
ping Clustering (SPOC) is inspired by the Successive Projection Algorithm (SPA). The idea is to start
with the singular value decomposition (SVD) of the matrix Y , and launch an iterative procedure that, at
each step, chooses the maximum norm row of the matrix composed of singular vectors. Then it projects
on the linear subspace orthogonal to the selected row.

Chapter 4 : Dynamic Expected Topic Model In this chapter, we assume that batches of n docu-
ments are collected in T steps over time. The aim is to consider the temporal aspect in the collection
of documents and to reflect the dynamic evolution of the topics discussed in the corpora. We assume
that the topic-document probability matrix W ∗ follows a simplex-valued autoregressive model of order
one. Hence the matrix W 1:T :=

(
W 1, . . . ,W T

)
is now considered random. Specifically, at each time

step t, the distribution of topics given a document is a linear combination of the previous distribution
and a Dirichlet-distributed noise, which drives the temporal evolution of the topics. More specifically we
consider that for all t ∈ [T − 1] :

W t+1 = (1− c∗) ·W t + c∗ ·∆t

where c∗ ∈ (0, 1), and each ∆t is a noise matrix of size K × n such that the columns are independently
and identically drawn from a Dirichlet D(θ∗) distribution having parameter θ∗ ∈ RK+ . We denote α the L1

norm of θ∗ and θ̃∗ its L1-normalization. The objective of this chapter is to estimate the parameters of
this autoregressive model, i.e. c∗, θ̃∗ and α, under the assumption that the word-document probability
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matrix Π1:T := (Π1, . . . ,ΠT ) is available. We call this framework the oracle case. We begin by studying
the spectral properties of the empirical covariance matrix Σ1:T

W := 1
nT

(
W 1:T

) (
W 1:T

)⊤. Specifically in
Theorem 4.3.3 we provide a control on its smallest eigenvalue and show that it is bounded from above
and below by quantities depending on c∗, α and θ̃∗ with high probability. In Proposition 4.3.1 we control
its largest eigenvalue by bounding it from above and below almost surely with quantities depending
exclusively on K. These results legitimise a strong assumption we are making on the spectrum of this
matrix. Following the work in [84], we present an SVD-based algorithmic procedure that recovers exactly
the word-topic probability matrix A∗. Projecting the word-document probability matrix Π1:T on A∗ allows
to recover exactly the topic-document probability matrix W 1:T . Then, we estimate the parameters θ̃∗,
c∗ and α with the estimators defined respectively in (4.8), (4.9) and (4.11). Non asymptotic bounds on
their estimation error are derived respectively in Theorem 4.4.1, Theorem 4.4.2 and Theorem 4.4.3. In
particular, we prove that there exist absolute constants C1, C2 > 0 such that :

P

[
max{∥θ̂ − θ̃∗∥2, |(̂1− c)− (1− c∗)|, |α̂− α∗|} ≤ C1 ·

√
log(nT )

nT

]
≥ 1− C2

nT
,

Note that the dimension of the vector θ∗, which is the number K of topics.
Chapter 5 : Dynamic Topic Model In this chapter, we consider the same setting as in Chapter 4

without the word-document probability matrix Π1:T being available anymore. We assume to only have
access to the word-document frequency matrix Y 1:T . Then, we first define the empirical versions of
the quantities involved in the previously exposed procedure recovering A∗. This empirical adapted pro-
cedure leads to an estimator Â of A∗. We provide a careful study of this estimation procedure. More
precisely, we give explicit upper bounds up to log factors and their dependence on all dimensions of
appearing matrices. Then we project the word-document frequency matrix Y 1:T onto the estimated
word-topic matrix Â. This leads to an estimated topic-document Ŵ 1:T . The estimators of the autore-
gressive parameters, introduced in Chapter 4, are adapted to this setting. Non asymptotic bounds on
their estimation errors are derived respectively in Theorem 5.4.1, Theorem 5.4.2 and Theorem 5.4.3. In
particular, we prove that there exist absolute constants C1, C2 > 0 and a, b > 0 such that :

P

[
max{∥θ̂ − θ̃∗∥2, |(̂1− c)− (1− c∗)|, |α̂− α∗|} ≤ C1 ·Kapb

(√
log(nT )

nT
+

√
log(nT )

N

)]
≥ 1− C2

nT
.

This shows the additive contributions to the convergence rates of the Dirichlet noise driving the pro-
bability of topics given documents and the multinomial model of word-counts. Moreover, for very long
documents, that is when N ≫ nT , the convergence rates are only driven by the Dirichlet noise up to
multiplicative terms in the number of topics K and the size of the vocabulary p.

1.3 List of publications

The core chapters of this thesis are based on the following manuscripts :

— Chapter 2, [21] : "Fast nonasymptotic testing and support recovery for large sparse Toeplitz
covariance matrices" (2022) , Nayel Bettache, Cristina Butucea and Marianne Sorba.

Journal of Multivariate Analysis.
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— Chapter 3, [20] : "Two-sided matrix regression" (2023), Nayel Bettache and Cristina Butucea.
arXiv :2303.04694, Electronic Journal of Statistics, tentatively accepted,

— Chapter 4 and Chapter 5 : "Dynamic Topic Model" (2024), Nayel Bettache, Cristina Butucea and
Tracy Ke,

under preparation.



Chapitre 2

Covariance matrix testing and support
recovery

2.1 Introduction

Covariance matrices of high-dimensional vectors appear in machine learning, signal processing and
statistical procedures. In these fields, e.g., in the test-phase of an algorithm or in the validation step of
a statistical model, the quality of the residuals (the difference between the observed and the predicted
values) is a good indicator of the good performance of the procedure. More precisely, the closer the
residuals are to a white noise distribution, the less information was lost by the predictor or the model at
hand. It is therefore natural to look for very weak, sparse information in the covariance matrix of such
residuals.

Goodness-of-fit tests are designed to assess whether the underlying (unknown) covariance matrix
of high-dimensional vectors is the identity (which defines the null hypothesis), or it is far from it with
respect to some distance (the alternative hypothesis). The separation radius is a measure of how far
the covariance matrix needs to be from the identity matrix in order to be able to distinguish it given
the observations. Another important information is to recover the support of the covariance matrix,
i.e., the set where the non-null values can be found. As in high-dimensional regression, this support
is used to reduce dimension of the problem, produce unbiased estimators of the non-null entries and
so on. A selector is a vector with coordinates taking value 1 when the covariance value is non-null,
respectively 0 when it is null. The quality of a selector is appreciated with the Hamming loss, which
counts the number of miss-classified coordinates. Our main interests are both testing the covariance
matrix and recovering the support of significant covariance elements under the alternative hypothesis
of weak sparse covariance values.

The p-dimensional observations X1, . . . , Xn are considered independent with Gaussian probabi-
lity distribution Np(0,Σ) where Σ = [σij ]1≤i,j,p belongs to the set S++

p of positive definite symmetric
matrices. Let us denote by X a generic vector with the same Gaussian Np(0,Σ) distribution.

More particularly, when the vector X is issued from a stationary process, its covariance matrix Σ
has a Toeplitz structure, that is its diagonal elements are all constant and denoted by

σi,j = Cov(Xi, Xj) =: σ|i−j|, i, j ∈ {1, . . . , p}.

As mentioned in [46], stationary time series are used as approximations of geometrically ergodic
time series (whose transition probabilities converge exponentially fast to the stationary distribution). The

33
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information on the Toeplitz matrix is fully contained in the vector (σ0, σ1, . . . , σp−1) of its diagonal values.
More generally, any covariance matrix can be similarly studied by looking at the energy of each diagonal
of the covariance matrix, that is its Euclidean norm σk = ∥(σ1,k+1, . . . , σp−k,p)∥2. Here, our efforts are
devoted to quantifying the benefits of the Toeplitz structure in terms of rates for testing and for support
recovery. Indeed, the Toeplitz structure helps improving the rates for testing and lag selection when the
dimension p grows, and we do not have here a curse but a blessing of dimensionality. All methods are
evaluated for all possible values of p less than or greater than n, without restriction.

In this paper is given a new variant of concentration inequality for quadratic forms of large Gaus-
sian vectors and these bounds are specified for covariance matrices that are Toeplitz with few non-null
diagonals. We show non-asymptotic separation rates for testing large sparse Toeplitz covariance ma-
trices which are remarkably fast due to the structure of the matrix. The aim is to test here whether
the covariance matrix is the identity matrix Ip or there exists a number s of covariance elements among
σ1, . . . , σp−1 that are significantly positive (one-sided alternative), respectively significantly different from
zero (two-sided alternative). The test procedure combines a sum and a scan procedure in order to de-
tect small (relatively) numerous non-null entries and very few but sufficiently large entries, respectively.
This is analogous to but more general than the detection of sparse Gaussian means [53, 80, 81] where
observations have the same variance, whereas our model is heteroscedastic.

Moreover, we propose a selector of the diagonals with non-null entries - a lag selector, which is
constructed by universal thresholding of some linear estimators. Fast non asymptotic bounds are provi-
ded for the expected value of its loss.

Experimental results show the excellent behaviour of these procedures with small values of n (non-
asymptotic character of our results) and large values of p. Indeed, by exploiting the Toeplitz structure,
the matrix size p does not act as a nuisance parameter anymore, but diminishes the convergence rates.
All test procedures and the lag-selector are computationally trivial to implement. Note that the scan
procedure is performed on a vector as well and it is therefore computationally fast, in contrast with the
scan procedure of matrices, see e.g. [6, 34].

High-dimensional statistics is the major research topic nowadays as attest many recent international
events and numerous collections of papers such as [66, 4, 111]. The study of the covariance operator is
very often at the core of functional data analysis. Our manuscript contributes in that sense and it makes
a first step towards dynamic modelling of time series in the sense that the dimension p may grow when
the sample size n increases and, moreover, the sparsity parameter s may evolve with p and n. This may
happen within the framework of stationary time series when the sequence of auto-correlations is sparse
but infinite : depending on p and n the noise level in the model is more or less important and therefore,
s can be viewed as the number of sufficiently significant correlations (above the corresponding noise
leve) that obviously increases with the accuracy (that is when p and n increase).

Previously, Cai and Ma [43] considered the same goodness-of-fit test with alternative characterized
by covariance values that belong to an L2 ball of fixed radius. Tests for sparse covariance matrices
were given by Arias-Castro, Bubeck and Lugosi [7, 6]. They considered alternative covariance matrices
having at most s significant values and also the structured alternative of a clique of size s producing a
small submatrix of significant values. Our testing rates are faster, but they are difficult to compare as
the Toeplitz structure does not allow for the block or the clique sparsity structure in their paper. Butucea
and Zgheib [35, 36] considered the test problem with alternatives that generalize the L2-ball in [43] to
dense ellipsoids for both Toeplitz and not necessarily Toeplitz covariance matrices, respectively. More
precisely, it was assumed that σk decreased slowly as a polynomial (Sobolev ellipsoids) or faster, as an
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exponential of k. The test procedure involved an optimal banding parameter - specific for testing and
different from the optimal parameter for estimation of the matrix. It was thus noticed that the minimax
rates for goodness-of-fit testing of large covariance matrices are faster for Toeplitz matrices than for non
Toeplitz ones, and that they are faster for testing than for estimation of the covariance matrix. In this
paper, an alternative class is considered where at most s significant values appear sparsely.

Cai and Liu [41] and Cai, Liu and Xia [42] considered the problem of support recovery in the sense
that the estimated set Ĉn is different from the true set C with probability tending to 0. To the best of our
knowledge, no quantitative rates were given for support recovery in the covariance matrix setup. In the
context of Toeplitz covariance matrices, we call this problem lag-selection.

Our bounds for testing and lag selection are non-asymptotic, thus n can be equal to 1 when one
cannot observe repeated measurements. However, an important remark is that the rates are faster
when the significant covariance values have lags in the recent past : k ≤ S, for some S < p. Indeed, the
rates depend on p−S. From an asymptotic point of view, s can tend to infinity as p tends to infinity, thus
a nonparametric model is allowed (in the sense that the number of parameters increases). Such models
have only been considered in nonparametric estimation of the spectral density of stationary time series,
see Kreiss, Paparoditis and Politis [89] who uses thresholded empirical covariance coefficients.

2.2 Linear functionals of the covariance matrix

We define φA the linear functional of the covariance matrix Σ associated to the matrix A belonging
to Sp (the set of symmetric p× p matrices) as φA(Σ) = Tr(AΣ).

Recall that Tr(A2) is also denoted by ||A||2F , the squared Frobenius norm, for any A in Sp. The
largest eigenvalue of the matrix A is denoted by ∥A∥∞.

Recall that a centered real-valued random variable Z is sub-exponential with positive parameters
(ν2, b) if

E[exp(tZ)] ≤ exp

(
ν2t2

2

)
, |t| ≤ 1

b
. (2.1)

The sample covariance matrix is denoted

Σn =
1

n

n∑
k=1

XkX
T
k .

The next theorem states that forX1, . . . , Xn independent multivariate GaussianNp(0,Σ) vectors, the
random variable Z = φA(Σn −Σ), for A in Sp, is sub-exponential with explicit values for the parameters
(ν2, b). We recall the Bernstein inequality that holds for sub-exponential random variables [131].

Proposition 2.2.1 If Z is a sub-exponential random variables with parameters (ν2, b), then

P[Z ≥ t] ≤

{
exp

(
− t2

2ν2

)
, if 0 ≤ t ≤ ν2

b ,

exp
(
− t

2b

)
, if t > ν2

b .

Equivalently, for tu = max(ν
√
u, bu), Z satisfies :

P[Z ≥ tu] ≤ exp
(
−u
2

)
, u > 0.



36 CHAPITRE 2. COVARIANCE MATRIX TESTING AND SUPPORT RECOVERY

Thus, a concentration inequality for the plug-in estimator φA(Σn) of φA(Σ) follows immediately.

Theorem 2.2.2 The random variable φA(Σn − Σ) (respectively φA(Σ − Σn)) is centered and sub-
exponential with parameters

(
ν2 =

2||AΣ||2F
n(1−K) , b =

2||AΣ||∞
nK

)
, for some arbitrary K in ]0, 1[. Therefore :

P[φA (Σn − Σ) ≥ tu] ≤ exp
(
−u
4

)
, u > 0, (2.2)

with tu = max

{
√
u ||AΣ||F√

n(1−K)
, u ||AΣ||∞

nK

}
Previous concentration inequalities were given for such functionals. The closest to our case is the

chi-square type concentration inequality in Spokoiny and Zhilova [121] for standardized Gaussian vec-
tors and generalized to sub-Gaussian vectors. They generalized Hsu, Kakade and Zhang [74] who
assumed finite exponential moments of any order for the vector X. Let us also mention Giurcanu and
Spokoiny [65] who gave a Bernstein inequality for the empirical covariance element of a stationary
centered Gaussian process and generalized it to locally stationary Gaussian processes.

Let us also mention the Hanson-Wright inequality which is stated for more general sub-Gaussian
vectors but having independent components i.e. a diagonal covariance matrix (see Rudelson and Ver-
shynin [118] and its improvement under Bernstein condition on moments by Bellec [18]).

The concentration inequality (2.2) is the main tool in the applications considered hereafter to study
stationary time series. In this context, X1, . . . , Xn are assumed to be repeated, independent obser-
vations of length p of an underlying stationary process X = {X1, . . . , Xp}. Note that our results are
non-asymptotic, thus n can be equal to 1. Without loss of generality, the process is assumed to be
centered. The covariance matrix of a stationary process is a Toeplitz covariance matrix. Let’s denote
σj = Cov(Xi, Xi+j) for arbitrary integer number i. Let us denote by Tp the set of p× p Toeplitz matrices
and by |A| the cardinal of a set A.

Definition 2.2.1 F+(s, S, σ) is defined, for σ > 0 real number and s ≤ S integer numbers between 1
and p−1, as the set of sparse Toeplitz covariance matrices Σ such that there are s significantly positive
covariance elements with lags no larger than S :

F+(s, S, σ) =

{
Σ ∈ S++

p ∩ Tp and there exists C ⊆ {1, . . . , S}, |C| = s, ∀j ∈ {1, p− 1}, σj ≥ σ > 0, j ∈ C,
σj = 0, j /∈ C

}
.

Similarly, the two-sided set F(s, S, σ) is defined :

F(s, S, σ) =

{
Σ ∈ S++

p ∩ Tp and there exists C ⊆ {1, . . . , S}, |C| = s, ∀j ∈ {1, p− 1}, |σj | ≥ σ > 0, j ∈ C,
|σj | = 0, j /∈ C

}
.

Let us apply Theorem 2.2.2 to several choices of the matrices A. First, the covariance element σj ,
j ≥ 1, can be written as σj = E[XTAjX] = Tr(AjΣ), with [Aj ]kℓ =

1
2(p−j)I(|k − ℓ| = j) - a matrix that

has 0 elements except on jth upper and lower diagonals. Note that the notation Aj is used instead of
A{j}. The empirical estimator of σj is

σ̂j =
1

n

n∑
k=1

XT
k AjXk = Tr(AjΣn).
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Remark 2.2.1 It is useful to note that our results can be generalized to time series that are "nearly"
stationary, by considering

σ̃j = Tr(AjΣn) =
1

2(p− j)

p∑
i,k=1,|i−k|=j

σi,k.

In this case, slightly different sets of sparse covariance matrices are considered : F̃+(s, S, σ) and
F̃(s, S, σ), not necessarily Toeplitz matrices with s diagonal average values σ̃j of the first S being signifi-
cant. By taking into consideration that all studied methods in the sequel for testing and lag selection are
exclusively based on the concentration of the mean empirical correlations around their expected values
σ̃j , the following results remain valid provided that ||AΣ||F and ||AΣ||∞ are controlled.

Let W ⊆ {1, . . . , S} be a set of w values between 1 and S.
∑

j∈W Aj is denoted by AW and
∑

j∈W σj =∑
j∈W Tr(AjΣ) can then be written Tr(AWΣ). This allows to estimate

∑
j∈W σj by a plug-in estimator,

Tr(AWΣn).
Next Proposition gives properties of the matrix AW .

Proposition 2.2.3 Let W ⊆ {1, . . . , S} contain w elements and AW =
∑

j∈W Aj . Then :

1. ||AW ||∞ ≤ w
p−S , ||AW ||2F ≤

w
2(p−S)

2. For any covariance matrix Σ belonging to F(s, S, σ),

||AWΣ||∞ ≤ σ0w(2s+1)
p−S , ||AWΣ||2F ≤ σ20·

{ K(2s+1)
(p−S) , w = 1,

w(2s+1)2

2(p−S) , w > 1,
withK =

{
1, W ⊆ {1, . . . , p2 − 1},
p
2 , W ⊆ {p2 , . . . , p− 1}.

The next Corollary specifies the concentration inequality in Theorem 2.2.2 using the bounds in Propo-
sition 2.2.3.

Corollary 2.2.4 Let X1, . . . , Xn be i.i.d, Np(0p,Σ), Σ belonging to F+(s, S, σ) or F(s, S, σ) and W ⊆
{1, . . . , S} with S < p

2 having w elements. Then, for some arbitrary K in ]0, 1[,

PIp [φAW
(Σn − Ip) ≥ σ0 · t] ≤ exp

(
−u
4

)
, u > 0, (2.3)

where

t = max

{√
u

2(1−K)

√
w

n(p− S)
,
u

K

w

n(p− S)

}
.

Moreover, for any Σ in F(s, S, σ),

PΣ[φAW
(Σn − Σ) ≥ σ0 · t̃] ≤ exp

(
−u
4

)
, u > 0, (2.4)

where for w = 1,

t̃ = max

{√
u

(1−K)

√
2s+ 1

n(p− S)
,
u

K

2s+ 1

n(p− S)

}
and for w > 1, t̃ = (2s+ 1)t.

Similar inequalities hold for |φAW
(Σn − Ip) | and |φAW

(Σn − Σ) | with the exponential term being
multiplied by a factor two respectively in (2.3) and (2.4).

If W = {1, . . . , S}, it is enough to replace w by S in the previous results. However, if W = {j} for
some j ≤ S, the previous results are still true with w replaced by 1.

From now on, we assume that S < p
2 such that K = 1 in the previous proposition. Indeed, in the

context of time series, it is natural to look for significant correlations in the recent past.
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2.3 Non-parametric testing for stationary time series

From now on is assumed for simplicity that σ0 = 1, thus dealing with correlation matrices only. The
one-sided test problem is

H0 : Σ = Ip, vs. H1 : Σ ∈ F+(s, S, σ).

The following two-sided test problem will also be discussed as a generalization :

H0 : Σ = Ip vs. H1 : Σ ∈ F(s, S, σ).

Recall that a test procedure ∆n is a binary valued random variable ∆n : (Rp)⊗n → {0, 1}. It separates
the set of possible outcomes of some random event in two contiguous sets, H0 is rejected whenever
∆n = 1 and not rejected whenever ∆n = 0. The maximal testing risk is defined as

R(∆n,F+) = PIp(∆n = 1) + sup
Σ∈F+

PΣ(∆n = 0),

that is the sum of the type I and the maximal type II error probabilities over the set in the alternative
hypothesis. A separation rate is the least possible value for σ > 0 such that the maximal testing risk
stays below some prescribed value.

We proceed by considering successively two measures of the separation between Ip and Σ under
the alternative hypothesis H1. The sets W = {1, . . . , S}, W = C, and an arbitrary subset of {1, . . . , S}
with s elements are successively chosen. For testing over F+(s, S, σ), consider

Tr(A1:S), max
C⊆{1,...,S},#C=s

Tr(ACΣ).

Correspondingly, over F(s, S, σ) are considered

S∑
j=1

|σj | =
S∑
j=1

|Tr(AjΣ)|, max
C⊆{1,...,S},#C=s

S∑
j∈C
|Tr(AjΣ)|.

By analogy to the vector case, moderately sparse and highly sparse covariance structures are dis-
tinguished. In the first case, the sum of all S values will allow to test, whereas in the latter a search over
subsets of size s will be necessary. This is called a scan procedure and it is computationally fast for
vectors. Note that, if the sparsity s is unknown a second search over different possible values of s will
produce an aggregated procedure, free of s.

2.3.1 Moderately sparse covariance structure

When the alternative hypothesis is F+(s, S, σ), we consider for some threshold tMS+
n,p the test statistic

∆MS+
n = 1

(
φA1:S

(Σn − Ip) ≥ tMS+
n,p

)
. (2.5)
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Theorem 2.3.1 The test ∆MS+
n defined in (2.5), with

tMS+
n,p = max

{√
u · S

n(p− S)
,

2u · S
n(p− S)

}
, u > 0,

is such that if σ ≥ 2(s+1)
s tMS+

n,p ,

R(∆MS+
n ,F+) ≤ 2 exp

(
−u
4

)
.

When the alternative set of hypothesis is F(s, S, σ), we consider for some threshold tMS
n,p the test statistic

∆MS
n = 1

(
S∑
i=1

|φAi(Σn − Ip)| ≥ tMS
n,p

)
. (2.6)

Theorem 2.3.2 The test ∆MS
n defined in (2.6), with

tMS
n,p = Smax

{√
4u log(S)

n(p− S)
,
8u log(S)

n(p− S)

}
, u > 1,

is such that if σ ≥ tMS
n,p +max

{√
4(u−1)(2s+1) log(S)

n(p−S) , 8(u−1)(2s+1) log(S)
n(p−S)

}
,

R(∆MS
n ,F) ≤ 4 exp (−(u− 1) log(S)) .

2.3.2 Highly sparse covariance structure

Let us consider now for some threshold tHS+n,p the test statistic

∆HS+
n = max

C⊆{1,...,S},#C=s
1
(
φAC(Σn − Ip) ≥ t

HS+
n,p

)
. (2.7)

The test ∆HS+
n successively tries all possible sets C of s diagonals among the first S diagonal values.

If any of these tests decides to reject H0, then ∆HS+
n also rejects H0, otherwise ∆HS+

n accepts the null
hypothesis H0.

Theorem 2.3.3 The test ∆HS+
n defined in (2.7), with

tHS+n,p = max


√

4u · s log
(
S
s

)
n(p− S)

,
8u · s log

(
S
s

)
n(p− S)

 , u > 1,

is such that if σ ≥ 1
s

(
tHS+n,p + (2s+ 1)max

{√
u·s

n(p−S) ,
2u·s

n(p−S)

})
,

R(∆HS+
n ,F+) ≤ exp

(
−(u− 1) log

(
S

s

))
+ exp

(
−u
4

)
.
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When the alternative set of hypotheses is F(s, S, σ), we consider for some threshold tHSn,p > 0 the test
statistic

∆HS
n = max

C⊆{1,...,S},#C=s
1

∑
j∈C
|φAj (Σn − Ip)| ≥ tHSn,p

 . (2.8)

Theorem 2.3.4 The test ∆HS
n defined in (2.8), with

tHSn,p = smax


√√√√4u log

(
s
(
S
s

))
n(p− S)

,
8u log

(
s
(
S
s

))
n(p− S)

 , u > 1,

is such that if σ ≥ tHSn,p +max

{√
4(u−1) log(s(2s+1)(Ss))

n(p−S) ,
8(u−1) log(s(2s+1)(Ss))

n(p−S)

}
,

R(∆HS
n ,F) ≤ 4 exp

[
−(u− 1) log

(
s

(
S

s

))]
.

Remark 2.3.1 When the separation is measured by maxC
∑

j∈C σj , its estimator is known as the scan
statistic. Note that the computations are not very involved. Indeed, after computing ξ1 = φA1(Σn −
Ip), . . . , ξS = φAS

(Σn− Ip), these values are sorted in decreasing order : ξ(1) ≥ ξ(2) ≥ · · · ≥ ξ(S), and then

max
C⊆{1,··· ,S},#C=s

∑
j∈C

φAj (Σn − Ip) = ξ(1) + · · ·+ ξ(s)

Similar calculations hold for maxC
∑

j∈C |σj | and |ξ|(1) ≥ |ξ|(2) ≥ · · · ≥ |ξ|(S). The Toeplitz structure is
thus exploited which reduces the matrix structure to a vector and makes the scan statistic computationally
efficient.

Remark 2.3.2 Note that the previous tests must be aggregated over a set of possible values for s in
order to be free of the sparsity s : ∆̃HS

n = maxs∆
HS
n will reject wherever at least one test rejects.

Remark 2.3.3 If S ≍ log(p), giving p−S ≍ p, the series has short memory. Then tMS+
np ≍

√
log(p)/(np)

which gives a test rate smaller than
√
log(p)/(np), and with Stirling’s approximation, tHS+np ≍ s

√
log
(
log(p)
s

)
/(np)

giving the following bound for the testing rate
√

log(log(p)/s)
np +

√
s
np . Thus ∆HS+

n detects smaller values

of σ than ∆MS+
n when s ≤ log(p), hence our choice to name the procedures MS and HS respectively.

Remark 2.3.4 If the stationary time series has longer memory, for example S = p/2 − 1, this gives

p−S = p/2+1 and S
p−S ≍ 1. In this case, tMS+

np ≍ 1/
√
n and σ ≥ 1/

√
n, while tHS+np ≍ s

√
log(p/s)
np +

√
s
np .

Again, if s/p → 0, the test ∆HS+
n detects smaller values of σ then ∆MS+

n . However, if s = S ≍ p
2 , it is

sufficient to use only ∆MS+
n .
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TABLE 2.1 – The four test statistics to test H0 : Σ = Ip vs. H1 : Σ ∈ F+(s, S, σ) (MS+ and HS+) or
H1 : Σ ∈ F(s, S, σ) (MS and HS). Are presented the threshold values tn,p and the lower bounds σ0 on
σ, conditions under which a small upper bound Rmax on the maximal testing risk is guaranteed. The
threshold tn,p is the smallest value of the test statistic for which the null hypothesis is rejected. The σ0
value is the smallest non null entry of Σ under the alternative hypothesis that can be tested and Rmax
is the upper bound of the sum of the type I and the maximal type II error probabilities.

Test Expression Threshold
∆MS+

n 1
(
φA1:S

(Σn − Ip) ≥ tMS+
n,p

)
tMS+
n,p = max

{
C1

√
S

n(p−S) , C2
S

n(p−S)

}
∆HS+

n maxC⊆{1,...,S},#C=s 1
(
φAC (Σn − Ip) ≥ tHS+

n,p

)
tHS+
n,p = max

{
C1

√
s log (Ss)
n(p−S) , C2

s log (Ss)
n(p−S)

}
∆MS

n 1
(∑S

i=1 |φAi
(Σn − Ip)| ≥ tMS

n,p

)
tMS
n,p = Cmax

{
C1

√
log(S)
n(p−S) , C2

log(S)
n(p−S)

}
∆HS

n maxC⊆{1,...,S},#C=s 1
(∑

j∈C |φAj (Σn − Ip)| ≥ tHS
n,p

)
tHS
n,p = smax

{
C1

√
log(s(Ss))
n(p−S) , C2

log(s(Ss))
n(p−S)

}
Test σ0 Rmax

∆MS+
n

2(s+1)
s tn,p 2 exp

(
−u

4

)
∆HS+

n
t
s + 2s+1

s max

{
C1

√
s

n(p−S) , C2
s

n(p−S)

}
exp

(
−(u− 1) log

(
S
s

))
+ exp

(
−u

4

)
∆MS

n t+max
{
C∗

1

√
(2s+1) log(S)

n(p−S) , C∗
2
(2s+1) log(S)

n(p−S)

}
4 exp (−(u− 1) log(S))

∆HS
n t+max

{
C∗

1

√
log(s(2s+1)(Ss))

n(p−S) , C∗
2

log(s(2s+1)(Ss))
n(p−S)

}
4 exp

[
−(u− 1) log

(
s
(
S
s

))]

Table 2.1 summarizes our results where C1, C2, C
∗
1 and C∗

2 denote constants depending only on u.
A detailed numerical study is included in the Supplementary material, containing an example of

a sparse MA(⌊p/4⌋) series with increasing p. The graphs of the power function are also provided,
EΣ(∆n = 1), for different values of Σ, for the tests ∆MS

n and ∆HS
n . The plots represent the power of

the tests by the measure of separation, namely
∑S

j=1 σj for the one sided tests, and
∑S

j=1 |σj | for the
two-sided tests. To generate the plots, 5000 samples were generated under the alternative hypothesis
and the mean value of the power of the tests is then plotted. The α value will always be 0.1. The plots
show very steep power functions, that indicate a narrow band where the decision is hard to make. The
power goes from small values near α = 10% to high values close to 1 in a fast increasing way. There
are little differences in the behaviour of moderately and highly sparse tests.

An improvement is noted as p grows (the tests detect matrices closer to the identity), in agreement
with theoretical rates that first indicated that p is not a nuisance parameter here. The plots also show
that for p smaller than, equal to or bigger than n, the tests behave similarly as the measure of sepa-
ration increase. However, it can be noticed that the performances are better in high dimension. This
is in agreement with our theoretical rates and indicates that p is not a nuisance parameter. The test
procedures are not only robust but also more efficient in high dimension. It can also be noticed that
the two-sided tests benefit more from the high-dimension than their one-sided versions. The impact,
with fixed value of the separation measure, of the number of non null entries in the covariance ma-
trix as well as the impact of their location on the test performances are also studied. The simulations
show that the tests are sensitive neither to the number of non null entries nor to their location. Finally
the comparison between the moderately and the highly sparse procedures is also provided. When the
sparsity of the covariance matrix is known, the simulations show that the highly sparse procedure has a
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better detection power than its moderately counter part. It can also be noticed that this outperformance
is emphasized when the value of the non null entries increase. When the sparsity level is unknown, an
aggregation of the highly sparse procedure with different s values can be compared to the moderately
sparse procedure. The simulations prove in this context again that the highly sparse procedure is more
efficient.

2.4 Lag-selection for stationary time-series

The objective here is to properly select non-null correlation coefficients. It can be defined a (two-
sided) lag-selection problem as estimation of η, a vector with entries ηj = 1(|φAj (Σ) | > 0). The aim is
to find a selector η̂ with η̂j = 1(|φAj (Σn) | > τn) that is consistent in the sense that the risk

RLS(η̂,F) =
S∑
j=1

EΣ[|η̂j − ηj |]

stays bounded (is small). The Hamming loss counts the number of miss-classified elements.

Theorem 2.4.1 If Σ belongs to F(s, S, σ), with σ ≥ 2τn, the selector η̂ with

τn = max

{(√
log(s) +

√
log(S − s)

)√
u

2s+ 1

n(p− S)
, 2u log(s(S − s)) 2s+ 1

n(p− S)

}
, u > 1,

is such that

RLS(η̂,F) ≤ 2 exp

(
−(u− 1)

log(s)

4

)
+ 2 exp

(
−(u− 1)

log(S − s)
4

)
.

Remark 2.4.1 If the only class considered is F+, with σ > 2τn, a one-sided selection is defined by
η+j = 1(φAj (Σ) > 0) and η̂j+ = 1(φAj (Σn) > τn) can be considered. Then

RLS(η̂
+,F) ≤ exp

(
−(u− 1)

log(s)

4

)
+ exp

(
−(u− 1)

log(S − s)
4

)
.

Take for example S = p
2−1, and assume that s/p = p−β for some β in (0,1). This implies that log(S−s) ∼

(1− β) log(p) and the asymptotic value of τn as p tends to infinity is

τn ∼ (1 +
√
1− β)

√
2u

log(p)

npβ
, u > 1.

Fig. 2.1 shows the good behaviour of our lag selector under Σ ∈ F(s, S, σ) hypothesis. The Hamming
loss between η and η̂, averaged over 1000 repetitions, is plotted as a function of n, for numerous values
of p with S =

√
p. In red is plotted the Hamming loss between η and η̂ for p = 10, in blue for p = 100,

in magenta for p = 500 and in green for p = 1000. The fast decrease to 0 of the Hamming loss can
be noted for both s = S − 1 in Fig. 2.1 (a) and s = (S − 1)/2 in Fig. 2.1 (b), despite the small values
of σ ≍ τn to detect. It can also be noticed that the higher is the value of p, the higher the Hamming
loss tends to be. This can be explained by the increase of non null values induced by the increase of p.
Mechanically, the bigger is the number of non null values, the higher the Hamming loss is susceptible
to be.
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(a) s = S − 1 (b) s = S−1
2

FIGURE 2.1 – Hamming-loss of the lag selector as a function of n, for numerous values of p with S =
√
p.

The Hamming-loss is plotted for s = S − 1 in (a) and for s = (S − 1)/2 in (b).

2.5 Proofs

Proof of Theorem 2.2.2. The following lemma is useful to prove this theorem. A more general state-
ment involving an arbitrary constant K in (0,1) is proved. It is sufficient to take K = 1/2 to deduce the
theorem.

Lemma 2.5.1 Let Σ ∈ S++
p and Σ1/2 be its square root. Let A ∈ Sp and M = Σ1/2AΣ1/2. Then, for an

arbitrary K ∈]0, 1[, the matrix Ip − tM is invertible and

det ((Ip − tM))−1 ≤ exp

(
tTr(AΣ) +

t2||AΣ||2F
2(1−K)

)
, |t| < K

||AΣ||∞
.

Proof of Lemma 2.5.1. Let λ1, . . . , λp be the real eigenvalues of the symmetric matrix M associated to
the eigenvectors x1, . . . , xp. Then for an arbitrary K ∈]0, 1[, for all |t| < K

||AΣ||∞ , 1 − tλ1, . . . , 1 − tλp are
the strictly positive eigenvalues of the matrix Ip − tM associated to the eigenvectors x1, .., xp. Then

det (Ip − tM)−1 = exp

{
−

p∑
k=1

log(1− tλk)

}
= exp

{
p∑

k=1

∞∑
i=1

1

i
(tλk)

i

}
= exp

{
tTr(AΣ) +

p∑
k=1

t2λ2k

( ∞∑
i=0

ti

i+ 2
λik

)}
,

det (Ip − tM)−1 ≤ exp

{
tTr(AΣ) +

p∑
k=1

t2λ2k
2

( ∞∑
i=0

tiλik

}}
= exp

(
tTr(AΣ) +

t2

2

p∑
k=1

λ2k
1− tλk

)
.

By using the fact that ||AΣ||2F = ||M ||2F =
∑p

k=1 λ
2
k and that ||AΣ||∞ = ||M ||∞ = maxk |λk|, it comes :

det (Ip − tM)−1 ≤ exp

(
tTr(AΣ) +

t2||AΣ||2F
2(1−K)

)

which ends the proof.
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Let us note that if X ∼ N (0p,Σ), then Y = Σ−1/2X ∼ N (0p, Ip). For all |t| < nK
2||AΣ||∞ , there is :

E [exp (tφA (Σn − Σ))] = E

[
exp

(
t

n

(
XTAX

))]n
exp(−tTr(AΣ))

= E

[
exp

(
t

n

(
Y TΣT1/2AΣ1/2Y

))]n
exp(−tTr(AΣ))

= E

[
exp

(
t

n

(
Y TMY

))]n
exp(−tTr(AΣ)) =: T.

Now, the probability density of Y is used to calculate explicitly

T := exp(−tTr(AΣ))

((
1

2π

)p/2 ∫
. . .

∫
exp

(
t

n
Y TMY − 1

2
Y TY

)
dy1 . . . dyp

)n

= exp(−tTr(AΣ))

((
1

2π

)p/2 ∫
. . .

∫
exp

(
−1

2
Y T (Ip −

2t

n
)M)Y

)
dy1 . . . dyp

)n

= exp(−tTr(AΣ))
(

det
(
Ip − t

2

n
M

))−n/2
.

By applying Lemma 2.5.1 with ν2 = 2||AΣ||2F
n(1−K) :

E [exp (tφA (Σn − Σ))] ≤ exp(−tTr(AΣ)) exp
(
tTr(AΣ) +

t2||AΣ||2F
n(1−K)

)
= exp

(
t2||AΣ||2F
n(1−K)

)
= exp

(
ν2t2

2

)
.

Proof of Proposition 2.2.3. First, to bound the operator norm of the matrix AW , the Gershgorin’s circle
theorem is used. Let M = (mi,j)1≤i,j≤p be a p × p matrix. Then, all eigenvalues of the matrix M lie
within at least one of the Gershgorin discs D(mii,

∑
j ̸=i |mij |).

Gershgorin’s circle theorem applied to the matrix AW gives :

||AW ||∞ = max
k
|λk| ∈ D

0, 2
∑
j∈W

1

2(p− j)

⇒ ||AW ||∞ ≤ w

p− S
.

To bound the squared Frobenius norm, sum all the squared elements of AW , which gives :

||AW ||2F = 2
∑
j∈W

p− j
4(p− j)2

=
∑
j∈W

1

2(p− j)
≤ w

2(p− S)
.

Then to bound the operator norm of the matrix AWΣ for some Σ in F(s, S, σ), use the Cauchy-
Schwarz inequality together with Gershgorin’s circle theorem :

||AWΣ||∞ ≤ ||AW ||∞||Σ||∞ ≤ σ0
(2s+ 1)w

p− S
.

To bound the squared Frobenius norm of the matrix AWΣ the following lemma will be used.
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Lemma 2.5.2 Let M and N be two p× p symmetric matrices. Then ||MN ||2F = Tr(M2N2) and

||MN ||2F ≤ max
1≤k≤p

|λk|2||N ||2F = ||M ||2∞||N ||2F .

Proof of Lemma 2.5.2. First, ||MN ||2F = Tr(MNNTMT ) = Tr(M2N2), with M2 and N2 symmetric
and positive semi-definite matrices (M2 ≥ 0, N2 ≥ 0). Recall that, if A ≤ B (in the sense that
B − A ≥ 0), then Tr(AC) ≤ Tr(BC), for any C ≥ 0. Here, M2 ≤ λmax(M

2)Ip ≤ λ2max(M)Ip and this
gives Tr(M2N2) ≤ λ2max(M)Tr(N2).

If w > 1, using Lemma 2.5.2 on M = Σ and N = AW , it follows

||AWΣ||2F ≤ ||AW ||2F ||Σ||2∞ ≤ σ20
w(2s+ 1)2

2(p− S)
.

If w = 1 and W = {j}, using Lemma 2.5.2 on M2 = Σ and N2 = Σ1/2A2
jΣ

1/2, then

||AjΣ||2F = Tr(A2
jΣ

2) ≤ ||AjΣ1/2||2F ||Σ1/2||2∞ ≤ σ0(2s+ 1)||AjΣ1/2||2F .

It suffices to prove that ||AjΣ1/2||2F = Tr(A2
jΣ) ≤ σ0

K
(p−S) so that the proof can be finished, namely that

||AjΣ||2F ≤ σ20
K(2s+1)
p−S . Let Bj = A2

j = (bjk,l)1≤k,l≤p. For every 1 ≤ k, l ≤ p,

bjk,l =

p∑
i=1

ajk,ia
j
i,l =

p∑
i=1

aj|k−i|a
j
|l−i| =

p∑
i=1

δ|k−i|=jδ|l−i|=j

4(p− j)2
:

if k = l, bjk,k =


1

2(p−j)2 , j < p
2 , j < k ≤ p− j,

0, j ≥ p
2 , p− j ≤ k < j,

1
4(p−j)2 , otherwise.

if k ̸= l, for δ|k−i|=jδ|l−i|=j to be non-null requires :{
k − i = j, l − i = −j,
l − i = j, k − i = −j, ⇔

{
k − l = 2j, i = k+l

2 ,

l − k = 2j, i = k+l
2 ,

⇔
{
|k − l| = 2j,

i = k+l
2 .

Therefore, bjk,l =

{
1

4(p−j)2 , j < p
2 , |k − l| = 2j,

0, otherwise.
Summing up the results gives us

||AjΣ1/2||2F = Tr(A2
jΣ) =

p∑
m=1

(
p∑
i=1

bm,iσi,m

)
≤ σ0

p∑
m=1

(
p∑
i=1

bm,i

)
= σ0

p∑
m=1

bm,m + σ0
∑
m̸=i

bm,i

≤ σ0

{
2(p−j)+2(p−2j)

4(p−j)2 , j < p
2 ,

2(p−j)
4(p−j)2 , otherwise.

≤ σ0

{
1

(p−j) , j < p
2

1
2(p−j) , otherwise.

This means that
||AjΣ||2F ≤ σ0(2s+ 1)||AjΣ1/2||2F ≤ σ20

K(2s+ 1)

(p− S)
, K =

{
1, W ⊆ {1, . . . , p2 − 1},
p
2 , W ⊆ {p2 , . . . , p}.
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Proof of Theorem 2.3.1. It is known from Corollary 2.2.4 that the type I error probability is such that

PIp
[
φA1:S

(Σn − Ip) ≥ tMS+
n,p

]
≤ exp

(
−u
4

)
and that, for any Σ in F+(s, S, σ), there is

PΣ[φA1:S
(Σn − Σ) ≥ (1 + 2s)tMS+

n,p ] ≤ exp
(
−u
4

)
, u > 0.

The type II error probability can be bounded under the assumption that σ ≥ 2(s+1)
s tMS+

n,p :

PΣ

[
φA1:S

(Σn − Ip) ≤ tMS+
n,p

]
= PΣ

[
φA1:S

(Σn − Σ) ≤ tMS+
n,p − φA1:S

(Σ)
]

= PΣ

[
φA1:S

(Σ− Σn) ≥ φA1:S
(Σ)− tMS+

n,p

]
≤ PΣ

[
φA1:S

(Σ− Σn) ≥ sσ − tMS+
n,p

]
≤ PΣ

[
φA1:S

(Σ− Σn) ≥ (2s+ 1)tMS+
n,p

]
≤ exp

(
−u
4

)
, u > 0.

Finally :

R(∆MS+
n ,F+) = PIp(φA1:S

(Σn − Ip) ≥ tMS+
n,p ) + sup

Σ∈F+

PΣ(φA1:S
(Σn − Ip) ≤ tMS+

n,p ) ≤ 2 exp
(
−u
4

)
.

Proof of Theorem 2.3.2. Similarly to the proof of Theorem 2.3.1, Corollary 2.2.4 is used to bound the
type I error probability

PIp

[
S∑
i=1

|φAi(Σn − Ip)| ≥ tMS
n,p

]
≤ PIp

[
S⋃
i=1

{
|φAi(Σn − Ip)| ≥

tMS
n,p

S

}]
≤

S∑
i=1

PIp

[
|φAi(Σn − Ip)| ≥

tMS
n,p

S

]

=

S∑
i=1

PIp

[
|φAi(Σn − Ip)| ≥ max

{√
u

2(1−K)

√
4 log(S)

n(p− S)
,
u

K

4 log(S)

n(p− S)

}]

≤
S∑
i=1

2 exp (−u logS) = 2 exp (−(u− 1) logS) .

To bound the type II error probability, a condition on σ is used :

PΣ

[
S∑
i=1

|φAi(Σn − Id)| ≤ tMS
n,p

]
≤ PΣ

[
S⋂
i=1

{
|φAi(Σn − Id)| ≤ tMS

n,p

}]
≤ sup

1≤i≤S
PΣ

[
|φAi(Σn − Ip)| ≤ tMS

n,p

]
≤ sup

1≤i≤S
PΣ

[
|φAi(Σn − Σ)| ≥ |φAi(Σ− Ip)| − tMS

n,p

]
≤ sup

1≤i≤S
PΣ

[
|φAi(Σn − Σ)| ≥ σ − tMS

n,p

]
≤ sup

1≤i≤S
PΣ

[
|φAi(Σn − Σ)| ≥ max

{√
u− 1

2(1−K)

√
4 logS(2s+ 1)

n(p− S)
,
(u− 1)

K

4 logS(2s+ 1)

n(p− c)

}]
≤ 2 exp (−(u− 1) logS) .

This finally gives :
R(∆MS

n ,F) ≤ 4 exp (−(u− 1) logS) .
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Proof of Theorem 2.3.3. The type I error probability is bounded by

PIp [∆
HS+
n = 1] ≤

∑
C⊆{1,...,S},#C=s

PIp
[
φAC(Σn − Ip) ≥ t

HS+
n,p

]
≤

∑
C⊆{1,...,S},#C=s

exp

(
−u log

(
S

s

))
= exp

(
−(u− 1) log

(
S

s

))

while the type II error probability is, for an arbitrary set C ⊆ {1, . . . , S} containing s values, bounded by

PΣ[∆
HS+
n = 0] = sup

Σ∈F+(s,S,p,σ)

PΣ

 ⋂
C⊆{1,...,S},#C=s

{|φAC(Σn − Ip)| ≤ t
HS+
n,p }


≤ sup

Σ∈F+(s,S,p,σ)

PΣ

[
φAC(Σn − Σ) + φAC(Σ− Ip) ≤ t

HS+
n,p

]
= sup

Σ∈F+(s,S,p,σ)

PΣ

[
φAC(Σ− Σn) ≥ φAC(Σ)− t

HS+
n,p

]
≤ sup

Σ∈F+(s,S,p,σ)

PΣ

[
φAC(Σ− Σn) ≥ sσ − tHS+n,p .

]
Under the condition

sσ − tHS+n,p ≥ (2s+ 1)max

{√
u

2(1−K)

√
s

n(p− S)
,
u

K

s

n(p− S)

}
and Corollary 2.2.4, it comes :

PΣ[∆
HS+
n = 0] ≤ sup

Σ∈F+(s,S,p,σ)

PΣ

[
φAC(Σ− Σn) ≥ t̃

]
≤ exp

(
−u
4

)
.

Proof of Theorem 2.3.4. The proof is similar to the proof of Theorem 2.3.2. The type I probability error
is bounded by

PIp [∆
HS
n = 1] ≤

∑
C⊆{1,...,S},#C=s

PIp

[∑
i∈C
|φAi(Σn − Ip)| ≥ tHSn,p

]
≤

∑
C⊆{1,...,S},#C=s

∑
i∈C

PIp

[
|φAi(Σn − Ip)| ≥

tHSn,p
s

]

≤
∑

C⊆{1,...,S},#C=s

∑
i∈C

2 exp

[
−u log

(
s

(
S

s

))]
= 2 exp

[
−(u− 1) log

(
s

(
S

s

))]

The type II probability is bounded by

PΣ[∆
HS
n = 0] = PΣ

[
max

C⊆{1,...,S},#C=s

∑
i∈C
|φAi(Σn − Id)| ≤ tHSn,p

]
≤ PΣ

 ⋂
C⊆{1,...,S},#C=s

⋂
i∈C

{
|φAi(Σn − Id)| ≤ tHSn,p

}
≤ sup

C⊆{1,...,S},#C=s
sup
i∈C

PΣ

[
|φAi(Σn − Σ)| ≥ σ − tHSn,p

]
≤ 2 exp

[
−(u− 1) log

(
s

(
S

s

))]
.
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Proof of Theorem 2.4.1. Using Theorem 2.2.2 and Proposition 2.2.3, we have :

RLS(η̂,F+) =
S∑
j=1

EΣ[|η̂j − ηj |] =
∑
j∈C

EΣ[|η̂j − ηj |] +
∑

j /∈C,j≤S

EΣ[|η̂j − ηj |] =
∑
j∈C

EΣ[|η̂j − 1|] +
∑

j /∈C,j≤S

EΣ[|η̂j |]

=
∑
j∈C

PΣ[|φAj (Σn) | < τn] +
∑

j /∈C,j≤S

PΣ[|φAj (Σn) | > τn]

≤
∑
j∈C

PΣ[|φAj (Σn − Σ) | > φAj (Σ)− τn] +
∑

j /∈C,j≤S

PΣ[|φAj (Σn − Σ) | > τn]

≤
∑
j∈C

PΣ[|φAj (Σn − Σ) | > σ − τn] +
∑

j /∈C,j≤S

PΣ[|φAj (Σn − Σ) | > τn]

≤
∑
j∈C

PΣ

[
|φAj (Σn − Σ) | > max

{√
2u log(s)

||AjΣ||F√
n

, 2u log(s)
||AjΣ||∞

n

}]

+
∑

j /∈C,j≤S

PΣ

[
|φAj (Σn − Σ) | > max

{√
2u log(S − s) ||AjΣ||F√

n
, 2u log(S − s) ||AjΣ||∞

n

}]

≤
∑
j∈C

2 exp

(
−u log(s)

4

)
+

∑
j /∈C,j≤S

2 exp

(
−u log(S − s)

4

)

≤2 exp
(
−(u− 1)

log(s)

4

)
+ 2 exp

(
−(u− 1)

log(S − s)
4

)
.

2.6 Supplementary material

Numerical results related to the presented procedures are available in the supplementary material.
They show the good behaviour of the procedures, especially in high dimension, which is in agreement
with the theoretical guarantees of the procedures given here. It can be noticed that the higher the value
of p, the more efficient the tests are. Indeed, the dimension of the vectors is not a nuisance parameter
in this setup. The tests are also robust both to the number of non null entries and to their locations in the
covariance matrix. The moderately and highly sparse tests present the same behaviours but an in-depth
study shows that the highly sparse procedure behaves better compared to the moderately sparse one
in the case of sparser covariance matrices. Moreover the highly sparse test procedure which requires
the number of non null entries as an input has a better detection power when this value is known. When
the number of non null entries is unknown, a grid-search aggregated procedure is implemented. In such
cases the highly sparse test procedure presents similar performances to those of the moderately sparse
test procedure.

In order to illustrate a setup where our procedures are of particular interest, we build a moving
average stationary process having non-zero coefficients only for even lags and up to p/4. Thus the
covariance matrix belongs to the considered set of sparse covariance matrices and the entries depend
on the parameter ϕ of our MA process. The moderately sparse procedure is applied to this process
and the results show how the power of the test procedure increases when the parameter ϕ and the
dimension p increase for fixed sample sizes n of 50 and 500, respectively. We conclude our numerical
results for synthetic data with a comparison of the presented test procedures to previously existing
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ones. The results show that on the set of considered covariance matrices the presented procedures
have a better detection power for smaller values of the covariance values than the previously existing
ones.

The last section of the supplementary material is focused on a real data set, namely meteorological
data available at http://berkeleyearth.org/data/. An in-depth study of the data is provided to show
that the test procedures detect the significant values in the covariance matrices of the processes from
which are issued the data.

2.6.1 Power curves of the test procedures

Several examples are included to illustrate the numerical behavior of our test procedures. First are
presented the powers of the ∆MS

n and ∆HS
n tests. Then is highlighted why the plots will be drawn with a

logarithmic scale. The power of the following four test procedures are estimated : ∆MS+
n , ∆MS

n , ∆HS+
n ,

∆HS
n to test the null hypothesis Σ = I.

The numbers of non-null entries s and the non-null entries support C ⊂ {1, . . . , S} are chosen to be

s = (S − 1)/2, S =
√
p.

The location of the non zero entries is randomly chosen. The common value of non-null entries
are defined as growing fractions of σ. The threshold of the test procedure is defined as t = tn,p,α the
empirical (1 − α)-quantile of the test statistic under the null hypothesis. In order to determine its value
empirically, 5000 repeated samples were generated under the null hypothesis. The plots represent the

power of the tests by the measure of separation, namely
S∑
j=1

σj for the one sided tests, and
S∑
j=1
|σj | for

the two-sided tests.
To generate the plots, we sample 5000 times under the alternative hypothesis and plot the mean

value of the power of the tests. The α value will always be 0.1.
Fig.2.2 and Fig.2.3 show the power for different values of p and n as function of respectively∑S
j=1 |σj | and

∑
j∈C |σj | - in a logarithmic scale that allow to better read this graphics. The plots show

very steep power functions, that indicate a narrow band where the decision is hard to make. The power
goes from small values near α = 10% to high values close to 1 in a fast increasing way. There are little
differences in the behaviour of moderately and highly sparse tests.

Fig.2.4 shows that the logarithmic scale should be preferred as it helps to better understand the
behaviour of the test procedure when the measure of separation increases. The power of the ∆MS+

n

test procedure is now represented as a function of the measure of separation for numerous values of n
and p. The best power function goes the fastest from low values above α = 0.1 to high values close to
1. The change happens around the theoretical value of the separation rate.

Fig.2.5 shows that for p smaller than, equal to or bigger than n, the ∆MS+
n test presents similar

behaviour as the measure of separation increases. However, it can be noticed that the performances
are better in high dimension, that is the power curves are shifted to the left. This is in agreement with
our theoretical rates and indicates that p is not a nuisance parameter. The ∆MS+

n test is not only robust
but also more efficient in high dimension.

Let us consider the two-sided ∆MS
n test and plot its estimated power curve.

Fig.2.6 shows that the ∆MS
n test shows a similar behaviour as the ∆MS+

n test. However, the two-
sided test efficiency benefits more from the high-dimension p than the one-sided version, in the sense
that the curves shift more to the left, towards the small values of the measure of separation when p is
large. Let us consider the ∆HS+

n test.

http://berkeleyearth.org/data/
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(a) n = 100 (b) n = 500

(c) n = 1000

FIGURE 2.2 – Power of the ∆MS
n test by the sum of the S =

√
p entries of the covariance matrix in

absolute value. The power is plotted as function of
∑S

j=1 |σj | for different values of n in (a), (b), (c) and
different values of p in red, blue, magenta, green.

Fig.2.7 shows that the ∆HS+
n test behaves similarly to the ∆MS+

n and ∆MS
n tests. Finally, the two-

sided HS test is considered.
Fig.2.8 shows that the ∆HS

n tests also behaves as the previous ones. It can be noticed that the
higher the value of p, the better the tests behave. The high dimension improves the efficiency of the
tests. It can also be underlined that the power of the tests increase rapidly around -3 on the logarithmic
scale of the measure of separation.

2.6.2 Effect of non null entries

In the previous Section are plotted numerical simulations of the four tests presented in the paper.
However we want to understand in more details the impact of the different choices that can be made
in this procedures namely : the impact of the number of non null entries s, the impact of the location of
non-null entries (close to the main diagonal or far from it).

In this sub-section the focus is put on the ∆MS+
n test as its behaviour can be extrapolated to the other

three tests. The underlying covariance matrix belongs to the class F+(s, S, σ), for some s ∈ {1, . . . , S}.
First, is studied the impact of the number of non null entries. For all the previous graphs s was fixed

and set to (S − 1)/2. The objective is to observe how the value of s impacts the behaviour of the test.
For this purpose are plotted side by side the ∆MS+

n test with s = S − 1 and s = (S − 1)/2 for n = 100
and different values of p (10, 20 and 50).

Fig. 2.9 shows that the number of non null entries has no major impact on the power of the test
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(a) n = 100 (b) n = 500

(c) n = 1000

FIGURE 2.3 – Power of the ∆HS
n test by the sum of the s = (S − 1)/2 entries of the covariance matrix

in absolute value, with S =
√
p. The power is plotted as function of

∑
j∈C |σj | for different values of n in

(a), (b), (c) and different values of p in red, blue, magenta, green.

(a) Logarithmic scale (b) Identity scale

FIGURE 2.4 – Power of the ∆MS+
n test by the sum of the entries of the covariance matrix in absolute

value, on a logarithmic scale in (a) and identity scale in (b).

procedure ∆MS+
n .

Second, the impact of the randomness in the location of the non null entries is measured. In all
previous graphs the non null entries were randomly located. The objective is to observe how the location
of the non null entries impacts the behaviour of the test. To this end is plotted the power function
of ∆MS+

n test with s = (S − 1)/2 for n = 100 and different values of p. The non null entries are :
(a) randomly located, (b) located next to the main diagonal. The plot (c) shows simultaneously the
power functions of ∆MS+

n test for p = 10 and n = 100, but with non null entries randomly chosen i.e
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(a) n = 100 (b) n = 500

(c) n = 1000

FIGURE 2.5 – Power of the ∆MS+
n test by the sum of the entries of the covariance matrix in absolute

value, for different values of p in red, blue, magenta, green and different values of n in (a), (b), (c).

(a) n = 100 (b) n = 500

(c) n = 1000

FIGURE 2.6 – Power of the ∆MS
n test by the sum of the entries of the covariance matrix in absolute

value, for different values of p in red, blue, magenta, green and different values of n in (a), (b), (c).
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(a) n = 100 (b) n = 500

(c) n = 1000

FIGURE 2.7 – Power of the ∆HS+
n test by the sum of the entries of the covariance matrix in absolute

value, for different values of p in red, blue, magenta, green and different values of n in (a), (b), (c).

(a) n = 100 (b) n = 500

(c) n = 1000

FIGURE 2.8 – Power of the ∆HS
n test by the sum of the entries of the covariance matrix in absolute

value, for different values of p in red, blue, magenta, green and different values of n in (a), (b), (c).
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(a) s = S − 1 (b) s =
S − 1

2

FIGURE 2.9 – Impact of the number of non null entries in the covariance matrix entries on the power of
∆MS+
n .

C ⊂ {1, . . . , S} with |C| = s (red), fixed next to the main diagonal i.e C = {1, . . . , s} (blue) and fixed on
the last values of the support i.e C = {S − s, . . . , S} (magenta).

(a) Randomly chosen (b) Next to the main diagonal

(c) On the same graph

FIGURE 2.10 – Impact of the position of the non null entries in the covariance matrix on the power of
∆MS+
n

Fig. 2.10 shows that the location of the non null entries has no impact on the ∆MS+
n test perfor-

mances. In conclusion, the tests are sensitive neither to the number of non null entries nor to their
location.
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2.6.3 Comparison between ∆MS
n and ∆HS

n

The four test procedures ∆MS+
n , ∆MS

n , ∆HS+
n and ∆HS

n present very similar behaviour of their power
curves. However, for high sparsity levels of the covariance matrix ∆HS+

n and ∆HS
n were designed to be

more efficient than respectively ∆MS+
n and ∆MS

n . The objective is to observe the difference in their
behaviours under such high sparsity levels assumption. In this sub-section our study is illustrated on
the two-sided ∆MS

n and ∆HS
n tests only, as they are analogous to their one-sided versions.

In order to observe the difference in the impact of sparsity on these two tests the power curves by
the number of non null entries s are plotted. The parameters are set as follows n = 100, p = 100 and
S =

√
p = 10. The plot is repeated for the non null entries common value to be σ = tn,p,α/100 ≈ 0.01473

and σ = tn,p,α/50 ≈ 0.02945. As the ∆HS
n test requires a value for s the true value is given in Fig.2.11.

(a) σ =
tn,p,α

100
(b) σ =

tn,p,α

50

FIGURE 2.11 – Power of ∆MS
n in red and ∆HS

n in blue by the number s, known by the procedures, of
non null entries. The powers are plotted for different values of the separation rate σ in (a) and (b).

Fig.2.11 shows that indeed the ∆HS
n test procedure with known sparsity s has better detection power

than ∆MS
n for higher sparsity, as it was expected. It can also be noticed that larger significant values of

the non-null correlations improve even more the power ∆HS
n over ∆MS

n .
Now a new ∆HS

n procedure that is free of knowledge of s is built by aggregating several procedures
∆HS
n (s) for different values of s. This new procedure is then compared to ∆MS

n . Consider a grid of
plausible values of s from 1 to S, build all ∆HS

n (s) and decide according to

∆HS
n = max

s
∆HS
n ,

that is reject whenever at least one of the tests rejected and accept otherwise.
Let us confront the aggregated high-sparsity test and the moderate-sparsity test procedures. The

two test procedures have been run in the same setup n = 100, p = 100 and S =
√
p = 10. The true

values of s are being set to s = 4 and s = 7, respectively. The power curves of the two procedures are
plotted by the measure of separation on a log-scale. The latter is rising because of growing values of σ.

In both cases, the grid of plausible sparsity levels has been fixed to two values : 2 and 10, which
means that

∆HS
n = max{∆HS

n (2),∆HS
n (10)}

even though the true underlying sparsity value is not on the grid. This does not seem to be a drawback.
In Fig.2.12 it appears that even with unknown value of s the ∆HS

n test procedure performs better
than ∆MS

n . It can be noticed that the curves show larger differences for lower values of the measure of
separation.
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(a) s = 4 (b) s = 7

FIGURE 2.12 – Power of ∆MS
n in red and ∆HS

n in blue by the sum of non null entries of the covariance
matrix in absolute value. The powers are plotted for different values of s, unknown by the procedures,
in (a) and (b).

In conclusion, the theoretical improvements of highly-sparse over moderately sparse procedures
show up in the very extreme cases where the underlying signal is very close to white noise either
because of very weak correlations or of very few non-null values.

2.6.4 A moderately sparse high-dimensional MA series

Let us construct a stationary process belonging to our set of sparse covariance matrices. Consider
the stationary process Xt defined by the following moving average (MA) model :

Xt =

⌊ p
4
⌋∑

i=0

ϕiϵt−2i

with {ϵt}t∈N a Gaussian white noise and |ϕ| < 1. The auto-covariance function of this series is

Cov(Xt+h, Xt) =

 0, if h odd, or h ≥ p
4 ,

ϕ−
h
2

(
ϕh−ϕ2(⌊

p
4+1⌋)

1−ϕ2

)
, otherwise.

In this example, the p-dimensional Gaussian vector X = (Xt, ..., Xt+p) has a covariance matrix belon-
ging to the class F(s, S, σ) with s ≥ p

4 − 1 tending to infinity with p, S ≤ p
2 and

σ = ϕ−
1
2
⌊ p
4
⌋

(
ϕ⌊

p
4
⌋ − ϕ2(⌊

p
4
+1⌋)

1− ϕ2

)
.

The power of the ∆MS
n test is plotted on the y-axis and the value of ϕ < 1 on the x-axis.

Fig.2.13 shows the power of the ∆MS
n test for this example for various values of p. It can be seen that

the ∆MS
n test performs better when the value of p increases showing again that higher the dimension

better information on the underlying model. It can be pointed out that for p < 8 the MA(⌊p/4⌋) is a white
noise. It explains why the power of the ∆MS

n test stays constantly low when p < 8.
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(a) n = 500 (b) n = 50

FIGURE 2.13 – Power of ∆MS
n test for the MA(⌊p/4⌋) for n = 500 in (a), n = 50 in (b) and for p = 4 in

red, p = 10 in blue, p = 20 in magenta, p = 50 in green, p = 100 in cyan. The horizontal axis represents
the value of ϕ and the vertical axis represents the power of ∆MS

n .

2.6.5 Comparison to other test procedures

Our two-sided test procedures are compared with the ones presented in [122] and [60] that are
implemented here. In order to calculate these test statistics, is first denoted by αk the k-th moment of
the spectral distribution of Σ, αk = 1

pTr(Σk) and by β̂k the k-th moment of the spectral distribution of Σn,

β̂k =
1
pTr(Σkn).

The authors propose to estimate the αi, i ∈ {1, 2, 3, 4} using

α̂1 = β̂1, α̂2 = γ(2)n ·
(
β̂2 −

p

n
β̂21

)
, α̂3 = γ(3)n ·

(
β̂3 − 3

p

n
β̂2β̂1 + 2(

p

n
)2β̂31

)
,

α̂4 = γ(4)n ·
(
β̂4 − 4

p

n
β̂3β̂1 −

2n2 + 3n− 6

n2 + n+ 2

p

n
β̂22 +

10n2 + 12n

n2 + n+ 2
(
p

n
)2β̂2β̂

2
1 −

5n2 + 6n

n2 + n+ 2
(
p

n
)3β̂41

)
,

γ(2)n =
n2

(n− 1)(n+ 2)
, γ(3)n =

n4

(n− 1)(n− 2)(n+ 2)(n+ 4)
,

γ(4)n =
n5(n2 + n+ 2)

(n+ 1)(n+ 2)(n+ 4)(n+ 6)(n− 1)(n− 2)(n− 3)
.

Using these estimators [122] proposed the test statistic Tsri and [60] proposed two test statistics Tf1
and Tf2 defined as follows :

Tsri =
n

2
(α̂2−2α̂1+1), Tf1 =

n

c
√
8
(α̂4 − 4α̂3 + 6α̂1 + 1) , Tf2 =

n√
8(c2 + 12c+ 8)

(α̂4 − 2α̂2 + 1) ,

where c = lim p
n , as n and p tend to infinity, is supposed finite and positive.

Additional assumptions are needed.
Assumption 1 : There exists (wi,j)i,j≥1 random variables with E[w11] = 0, E[w2

11] = 1 and E[w4
11] <∞

and for all p, n, W = (wi,j)1≤i≤p,1≤j≤n such that the observed vector Xj can be represented as Xj =

Σ
−1/2
p W.j .

Assumption 2 : The spectral distribution of Σp weakly converges to a probability distribution when
p→∞ and the sequence of spectral norms (||Σp||) is uniformly bounded.

Under H0 : Σ = Ip and assumptions (1) and (2) there are Tsri → N (0, 1), Tf1 → N (0, 1) and
Tf2 → N (0, 1).
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Is then plotted the histogram of the defined test statistics under H0 : Σ = Ip in Fig.2.14 and H1 : Σ ∈

F(s, S, σ), with n = 200, p = 20, S =
√
p, s = S−1 and σ = tHSn,p+max

{√
4(u−1) log(s(2s+1)(Ss))

n(p−S) ,
8(u−1) log(s(2s+1)(Ss))

n(p−S)

}
,

in Fig.2.15.

(a) Tsri (b) Tf1 (c) Tf2

FIGURE 2.14 – Histograms of Tsri in (a), Tf1 in (b) and Tf2 in (c) under H0 : Σ = Ip for n = 200, p = 20,
S =
√
p, s = S − 1. On the horizontal axis are represented the values taken by the statistic and on the

vertical axis the number of times each value has been taken.

(a) Tsri (b) Tf1 (c) Tf2

FIGURE 2.15 – Histograms of Tsri in (a), Tf1 in (b) and Tf2 in (c) under H1 : Σ ∈ F(s, S, σ) for n = 200,
p = 20, S =

√
p, s = S − 1. On the horizontal axis are represented the values taken by the statistic and

on the vertical axis the number of times each value has been taken.

In Fig.2.16 are reproduced the powers of the tests associated to Tsri, Tf1 and Tf2 showing their
powers for different values of p, with n = 200, as function of

∑
j∈C |σj | on a logarithmic scale. To plot

those powers the same steps are followed as for the powers of ∆MS
n and ∆HS

n tests. The 0.1-quantile
of the three tests statistics under the null hypothesis are defined by Monte-Carlo simulation with 5000
samples. Then the value of the non null entries in the alternative hypothesis are gradually increased and
it is checked if the test statistics are higher than the defined 0.1-quantile bound. The x-axis represent
the sum of non null entries in a logarithmic scale. Under the alternative hypothesis, the covariance
matrix is Toeplitz with constant entries on the s =

⌊√
p
⌋

first diagonals equal to σ as defined above.
In Fig.2.17 is plotted the graph for ∆MS

n and ∆HS
n with the exact same parameters in order to provide

a fair comparison.
In Fig.2.18 are simultaneously plotted the 5 tests in low dimension as well as in high dimension,

respectively.
When comparing Fig.2.16 and Fig.2.17 it can be seen that ∆MS

n and ∆HS
n powers are better than

those of Tsri, Tf1 and Tf2 ones. The ∆MS
n and ∆HS

n tests are more sensitive to the non null entries in
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(a) Tsri (b) Tf1

(c) Tf2

FIGURE 2.16 – Power of the tests associated with Tsri, Tf1 and Tf2 for p = 10 in red, p = 50 in blue,
p = 100 in magenta, p = 500 in green and n = 200. The powers are plotted as function of

∑
j∈C |σj | on

a logarithmic scale. The horizontal axis represents the sum of entries in absolute value and the vertical
axis represents the value of the power.

(a) ∆MS
n (b) ∆HS

n

FIGURE 2.17 – Power of ∆MS
n and ∆HS

n for p = 10 in red, p = 50 in blue, p = 100 in magenta, p = 500
in green and n = 200. The powers are plotted as function of

∑
j∈C |σj | on a logarithmic scale. The

horizontal axis represents the sum of entries in absolute value and the vertical axis represents the
value of the power.
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(a) n = 20 and p = 10 (b) n = 20 and p = 50

FIGURE 2.18 – Power of ∆MS
n , ∆HS

n , Tsri, Tf1 and Tf2 for n = 20 and p = 10 in (a), p = 50 in (b). The
powers are plotted as function of

∑
j∈C |σj | on a logarithmic scale. The horizontal axis represents the

sum of entries in absolute value and the vertical axis represents the value of the power.

the sparse Toeplitz covariance matrix. This is confirmed by the Fig.2.18.

Are now compared our two-sided test procedures to the test procedure associated with the statis-
tic Vn,k presented in [110] that takes advantage of the sparsity assumption. The authors proposed a
generalisation of the Vn = p−1Tr

(
(Σn − In)2

)
test statistic previously proposed by [83] and [102]. The

generalization is Vn,k that bands the empirical covariance matrix to its first k diagonals and adds the
necessary corrections.

The following assumptions are needed.

Assumption 1 : Σ ∈

{
Σ : max

j

∑
|i−j|>k0

|σi,j | ≤ Ck−α0 ∀k0 ≥ 0, 0 < ϵ0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ 1/ϵ0

}
for some constants ϵ0, C and α which are unrelated to p.

Assumption 2 : Data X1, . . . , Xn are independent and identically distributed p-dimensional random
vectors such that Xi = ΓZi where Γ ∈ Rp×m is a constant loading matrix such that p ≤ m and ΓΓT = Σ
and Zi are independent and identically p-dimensional random vectors with zero mean and identity
covariance.

Then E(Vn,k) = p−1Tr
(
(Bk(Σ)− Ip)2

)
and V(Vn,k) = p−2σVn,k

(1 + o(1)) with σVn,k
defined in [110].

Finally under Assumptions 1 and 2, it is proven that p · σ−1
Vn,k,H0

· Vn,k −→ N (0, 1).

In order to limit the computation cost of this simulation the study only focuses on Vn,k and it is chosen
to not estimate σVn,k

. We choose n = 10 and define the 0.1-quantile of Vn,k under the null hypothesis
with only 50 samples. Then the non null entries of Σ are gradually increased under the alternative
hypothesis for different values of p. The power of the test procedure based on Vn,k, named TVn,k

, is then
plotted here under. To provide a fair comparison the powers of ∆MS

n and ∆HS
n tests are also plotted

under the same environment. The x-axis is the sum of non null entries in a logarithmic scale. To provide
a fair comparison again let’s choose k = S meaning only non null entries inside the lag support are
being looked for.

Fig.2.19 shows that the Vn,k procedure is performing well to detect non null entries inside the lag
support. It can also be observed that the dimension is improving the performance of the Vn,k procedure.
However our two-sided test procedures are more sensitive as they detect smaller non-null entries than
the Vn,k procedure.
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(a) TVn,k (b) ∆MS
n

(c) ∆HS
n

FIGURE 2.19 – Power of TVn,k
, ∆MS

n and ∆HS
n for different values of p and n as function of

∑
j∈C |σj | on

a logarithmic scale.

2.6.6 Application to real data

This section proves that the procedures previously presented can be successfully applied on real
data. The test procedures are applied on meteorological data available at http://berkeleyearth.
org/data/and since they reject the null hypothesis, the lag-selection procedure is also applied. The
considered dataset gives the monthly average temperature available in 100 cities since February 1847.
Only the four cities with the smallest number of missing values are kept, namely Mexico, New-York,
Santo-Domingo, Toronto. The monthly data are then averaged by year in order to avoid seasonality.

FIGURE 2.20 – Yearly average temperature over time of Mexico, New-York, Santo Domingo and Toronto
since 1847.

http://berkeleyearth.org/data/
http://berkeleyearth.org/data/
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An augmented Dickey-Fuller Test is performed to verify whether the time series are stationary or
not. The null hypothesis of the test is that the time series can be represented by a unit root, that it is not
stationary. The alternative hypothesis is that the time series is stationary. The test is interpreted using
its p-value. If the p-value is below the 5% threshold suggests that the null hypothesis has to be rejected
and then the time series is assumed to be stationary. If the p-value is above the 5% threshold then the
null hypothesis cannot be rejected and the time series is assumed to not be stationary.

TABLE 2.2 – P-value of the augmented Dickey-Fuller Test on yearly average temperatures. The series
is not stationary if the p-value is above the 5% threshold.

City Mexico New-York Santo-Domingo Toronto
p-value 0.583765 0.933036 0.776110 0.952561

Conclusion Non Stationary Non Stationary Non Stationary Non Stationary

Table 2.2 shows that the time series are not stationary. The first difference method is used to make
the time series stationary.

FIGURE 2.21 – Time series after first difference method applied.

Fig. 2.21 shows that after applying the first difference method time series look stationary. The Aug-
mented Dickey-Fuller Test is applied again to verify whether the time series are now indeed stationary
or still not.

TABLE 2.3 – P-value of the augmented Dickey-Fuller Test on first difference yearly averaged tempera-
tures. The series is not stationary if the p-value is above the 5% threshold.

City Mexico New-York Santo-Domingo Toronto
p-value 2.680904e-11 2.529196e-09 1.163820e-15 8.470041e-10

Conclusion Stationary Stationary Stationary Stationary

Table 2.3 confirms that the time series are stationary after applying the first difference method. We
now want to check if the time series are normally distributed.

Fig. 2.22 shows histograms that do not contradict normality of the distributions. To ensure the nor-
mality of the time series the Shapiro-Wilk test is performed as well as the D’Agostino’s K-squared test.
Both tests are interpreted using their p-values. A p-value below the 5% threshold suggests the null
hypothesis has to be rejected and that the data can be assumed not to be drawn from a gaussian
distribution.
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FIGURE 2.22 – Histograms of the temperatures after first difference applied.

TABLE 2.4 – Shapiro-Wilk and D’Agostino’s K-squared tests on first difference yearly averaged tempe-
ratures. We reject the normal distribution hypothesis when the p-value is below the 5% threshold.

City Mexico New-York Santo-Domingo Toronto
Shapiro-Wilk p-value 0.773 0.273 0.458 0.409

D’Agostino’s K-squared p-value 0.748 0.508 0.493 0.288
Conclusion Normal Normal Normal Normal

Table 2.4 confirms the normality of the time series. Before applying our procedure the autocorrela-
tions of the four time series are plotted. This will give some additional informations on the structure of
the time series.

(a) Mexico (b) New-York (c) Santo-Domingo (d) Toronto

FIGURE 2.23 – Autocorrelation plots of the first difference yearly averaged temperature time series.

The p-dimensional vectors Xt = (xt−i)1≤i≤p are now created. The value of p is set to be 10, namely
p = 10. To ensure lack of significant correlations between the vectors (Xt)t we separate them by the
largest non null autocorrelation. The largest non null autocorrelation is considered to be 1 for Mexico,
9 for New-York, 2 for Santo-Domingo and 1 for Toronto. As an example, the Mexico time series will be
XMexico

1 = (xMexico
1 , xMexico

2 , . . . , xMexico
10 ) and XMexico

2 = (xMexico
12 , xMexico

13 , . . . , xMexico
21 ).

Our procedures can no be applied. The ∆MS
n and ∆HS

n tests can be performed to verify if the p-
dimensional vectors Xt = (xt−i)1≤i≤p are issued from a Np(0, Ip) (null hypothesis) or Np(0,Σ) for some
Σ ∈ F(s, S, σ).

Table 2.5 shows that according to the ∆MS
n and ∆HS

n tests, the vectors Xt are not issued from
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TABLE 2.5 – ∆MS
n and ∆HS

n tests on first difference yearly averaged temperatures to test H0 : Xt ∼
Np(0, Ip) vs H1 : Xt ∼ Np(0,Σ). In the table are presented the accepted hypothesis for each test
executed on each city.

City Mexico New-York Santo-Domingo Toronto
∆MS
n Test Np(0,Σ) Np(0,Σ) Np(0,Σ) Np(0,Σ)

∆HS
n Test Np(0,Σ) Np(0,Σ) Np(0,Σ) Np(0,Σ)

Np(0, Ip) but from a Np(0,Σ) with Σ ∈ F(s, S, σ). This demonstrates that our procedure detect the
significant correlations in the true underlying covariance matrix Σ.

The support of the non null entries is then recovered by using the lag-selection procedure exposed
in Section 4. τn is set to be the 0.75-quantile of |φAj (Σn) | where Σn is the empirical covariance matrix
of vectors generated from a Np(0, Ip). The results are reported in Table 2.6.

TABLE 2.6 – Support of non null entries recovered by the lag selection procedure.

City Mexico New-York Santo-Domingo Toronto
Support {1} {1, 6, 7, 9} {2} {1}

Those results are consistent with the autocorrelations plotted in Fig.2.23. It can be seen that the
Mexico time series presents only a non null autocorrelation at lag 1. For the New-York time series the
lag 1 is non null as well as the lags 8 and 9. The procedure selects lags 1, 6, 7 and 9 and is not as
efficient for this time series as for the others, but that can be explained by the very small number of
vectors (n = 8) that are available within this series. For the Santo-Domingo time series the lags 1 and
2 are non null with the second being larger than the first. The procedure only selects the second one.
Finally for the Toronto time series it can be seen that only the first lag is significantly non null and it is the
only one selected by the procedure. The non null lags in the autocorrelation plots are thus consistent
with the ones selected by our procedure.



Chapitre 3

Two-sided Matrix Regression

3.1 Introduction

Supervised learning is often performed on large data bases. Matrix regression assumes that the
data Y can be well explained by a set of features given by the columns of the matrix X and linear
combinations of these columns. It is often the case in real-life that the rows of Y can be explained by
linear combinations of the rows of X.

For example, economic data store economic indicators as column features and countries as rows.
Such a matrix is usually explained by a smaller matrix roughly containing a smaller number of countries
(representatives of groups of geographically or economically close countries) and a few economic fea-
tures or some factors produced out of all these indicators. We would like to predict a larger number of
indicators for a larger number of countries, i.e. Y a n× p matrix, using the features X a m× q matrix.
Recommendation systems want to predict the opinion of n clients concerning p items. We can use pu-
blicly available data on a number m of different groups of clients and their affinity to a number q of large
categories of items in order to predict by evaluating the client’s correlation to the prescribed groups in
the population and the item’s weight in its category. We may include a multiple-label situation where the
items belonging to a main category are also related to other categories.
Other examples can be given for meteorological data, medical or pharmaceutical data and so on.

Model. We observe the matrix Y ∈ Rn×p and a design matrix X ∈ Rm×q related via the two-sided
matrix regression (2MR) model involving two parameter matrices A∗ ∈ Rn×m and B∗ ∈ Rq×p :

Y = A∗XB∗ + E, (3.1)

where the noise matrix E is assumed to have independent centered σ−sub-Gaussian entries.
The 2MR model encompasses known models like, e.g. matrix regression and matrix factorisation.

Indeed, if n = m andA∗ is the identity, the matrix model (3.1) becomes the (one-sided) matrix regression
(MR) model Y = XB∗ + E, see [108], [32], [104].
Assume now that m = q and that the design matrix X is the identity matrix of rank m smaller than both
n and p. Our model becomes a factorisation model of the signal M∗ = A∗B∗ observed with noise. The
idea is to recover a low-rank structure generating the observed data. In [85] the authors have considered
structured factorisation of the signal under assumptions that the rows of A∗ and the columns of B∗ have
a common sparsity parameter and X, which they do not observe, has a much smaller dimension than
Y .

65
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The 2MR model (3.1) is strongly related to other models, but we argue that it cannot be reduced to
these other models of a different nature. Indeed, note that the entry Yij of the matrix Y can be written

Yij = Tr(X ·B∗
·,jA

∗
i,·) + Eij ,

for any i in [n], where [n] = {1, . . . , n}, and for any j in [p]. Thus every entry Yij brings information
through the same design matrix X on the rank 1 matrix B∗

·,jA
∗
i,·. This is unlike the trace-regression

model or the more general matrix completion studied by [116], [88], where a different design matrix
brings information on the parameter matrix B∗A∗.
Another way of writing model (3.1) is in the form of vector regression model, by stacking the columns of
matrices Y , X and E into vec(Y ), vec(X) and vec(E), respectively, to get

vec(Y )⊤ = vec(X)⊤ ·A⊤ ⊗B + vec(E)⊤, (3.2)

where ⊗ denotes the tensor product of two matrices. Under this relation, we predict a row vector of size
np using a row vector of size mq (the matrix of features has rank 1) via a parameter of size (mq)× (np)
which cannot go well unless the structure of A∗ and B∗ is trivial. This approach cannot take into account
the matrix structure of the features, of the matrices A∗, B∗, and it gives poor results on that account.

This model has been introduced in time series by [48] as the auto-regressive matrix-valued model
of order 1, MAR(1), Yt = A∗Yt−1B

∗ +Et, observed at times t in [T ]. In this case A∗ and B∗ are squared
matrices with spectral radii strictly less than 1 in order to ensure stability of the time series (Xt is thus
stationary and causal). The authors propose three estimation methods : first, they use the vector form
analogous to (3.2), stack the T lines of vec(Yt)⊤ and they use the nearest Kronecker product (NKP)
problem to give estimators of A∗ and B∗ out of the global least squares estimator of A∗⊤ ⊗ B∗ ; then,
their next method minimizes the least squares over A and B

min
A,B

1

T

T∑
t=1

∥Yt −AYt−1B∥2F ,

by a sequential procedure minimizing over A for fixed given B, then over B for fixed A, and iterating ;
finally, they give an MLE procedure over A and B under a particular structure of the covariance matrix
of E and proceed also sequentially. Theoretical results state the asymptotic normality as T tends to
infinity, for fixed dimensions. However, the first procedure is cumbersome as the estimated matrix is
very large, while the other two procedures are based on non-convex minimization without theoretical
guarantees as to the limit points of the algorithm.
Least squares and MLE estimators with AIC and BIC penalties have been numerically studied by [76]
of a more general time series model

Yt =
L∑
ℓ=1

AℓYt−ℓBℓ + Et, t = 1, . . . , T,

which is treated as Yt = A∗XtB
∗+Et, where Xt is the block diagonal matrix containing the L−past ob-

served matrices Yt−1, . . . , Yt−L and A∗ = (A1, . . . , AL) and B∗ = (B⊤
1 , . . . , B

⊤
L )

⊤ are the concatenated
matrices in the previous equation.
Thus, our paper is motivated by the need to deal with high-dimensional data and finite (non-asymptotic)
time (say T = 1) in order to provide theoretical guarantees for prediction.

Contributions. We show in Section 3.2 that by using the SVD of matrices Y = UY ΣY V
T
Y and

X = UXΣXV
T
X , the least squares procedure can be reduced to fitting predictors of the form A0ΣXB0
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to the diagonal matrix ΣY with explicit relations between A0, B0 and A,B. There is a natural choice of
predictors of A0 and of B0 under diagonal form. We study these predictors for given ranks r and that
we transform back into the original space of Y without loss of prediction rate. Then we give a data-
dependent rank selector and show that the predictors associated to it attain optimal bounds. We give
sufficient conditions so that the rank selector is consistent. Finally, we slightly modify the procedure to
be free of the parameter σ of the noise and show new upper bounds in this case. In Section 3.3, we
study the nuclear norm penalized least squares and show it attains the optimal bounds too. All proofs
are in a dedicated section in the Appendix. Finally, we illustrate in Section 3.4 via numerical simulations
the excellent prediction results of these fast running, explicit predictors.

Notations. For any matrix M of size n×m and rank rM , we denote its singular value decomposition
(SVD) by M = UMΣMV

⊤
M , where UM belongs to On - the set of orthogonal matrices of size n× n, VM

belongs to Om and ΣM = Diagn,m(σk(M), 1 ≤ k ≤ rM ). Note that σ1(M), . . . , σrM (M) are the positive
singular values of M listed in decreasing order, and the n × m diagonal matrix Diagn,m(σk(M), 1 ≤

k ≤ rM ) has diagonal entries in the list and 0 elsewhere. Furthermore, denote ∥M∥2F =
n∧m∑
k=1

σk(M)2

its Frobenius norm, ∥M∥2(2,q) =
q∑

k=1

σk(M)2 its Ky-Fan (2, q) norm, ∥M∥op = σ1(M) its operator norm,

∥M∥∗ =
n∧m∑
k=1

σk(M) its nuclear norm, M † its Moore-Penrose inverse, rM its rank and MT its transpose.

For any matricesM1 andM2 in Rn×m, ⟨M1,M2⟩F denotes the canonical scalar product, i.e. ⟨M1,M2⟩F =
Tr(MT

1 M2). For any r ∈ [rM ], we denote [M ]r the best rank r approximation of M for the Frobenius
norm. In the model (3.1), let us denote by r∗ the rank of A∗XB∗.

3.2 Rank penalized learning

In this section we propose rank adaptive predictors and provide theoretical guarantees for their
error. First we give explicit predictors under the assumption that the ranks of the parameter matrices
are known, then a selection procedure will allow to provide a data-dependent rank selector and the
associated rank-adaptive predictor. Even though we follow classical results for rank penalized (one-
sided) matrix regression, e.g. [32], [63] and [26], we give details for the fixed rank two-sided matrix
regression which is novel to the best of our knowledge. Surprisingly, explicit predictors can be proposed
despite the identifiability issues of this model. Only after this, we proceed to rank selection and rank-
adaptive learning.

3.2.1 Prediction for given ranks

Let r belong to [n ∧ p ∧ rX ]. Let us build explicit predictors (Âr, B̂r) solutions to the non-convex
minimization problem

min
A,B:

rankA∧rankB≤r

∥Y −AXB∥2F . (3.3)

Notice that the rank constraints on A and B use the same value r. Indeed the objective is to build
a predictor for the signal A∗XB∗ which satisfies rank(A∗XB∗) ≤ min (rA∗ , rX , rB∗). In the steps of the
proof of our results, we see that the upper bound of the risk depends on the ranks of A∗ and of B∗ only
through their least value and no information can be recovered on the largest rank of the two. Hence it
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makes sense to look for A and B sharing the same rank as a dimension reduction technique without
any impact on the final results.

The model (3.1) can be rewritten using the SVD of the observed matrix Y and of the design matrix
X as

ΣY = A∗
0 · ΣX ·B∗

0 + E0, (3.4)

where A∗
0 = UTY A

∗UX , B∗
0 = V T

XB
∗VY and E0 := UTY · E · VY . In the particular case where E has

independent entries with distribution N (0, σ2) than so does E0, see Lemma 3.5.1. Now, ΣY and ΣX
are diagonal matrices, not necessarily squared, not necessarily full rank. Given the invariance of the
Frobenius norm by left or right multiplication with orthogonal matrices, we get that for any matrices
A ∈ Rn×m and B ∈ Rq×p we have

∥Y −AXB∥2F = ∥ΣY −A0ΣXB0∥2F ,

where A0 = UTY AUX and B0 = V ⊤
X BVY are obtained via analogous transformations to those relating

the true underlying parameters.
Obviously, matrices A and A0 have the same rank, and the same holds for B and B0. Therefore,

solving (3.3) is equivalent to solving for Â0r and B̂0r solutions of

min
A0,B0:

rankA0∧rankB0≤r

∥ΣY −A0ΣXB0∥2F . (3.5)

Theorem 3.2.1 Let us define for r ∈ [n ∧ p ∧ rX ]

Â0r = Diagn,m(σk(Y ), 1 ≤ k ≤ r ∧ rY ) and B̂0r = Diagq,p(σk(X)−1, 1 ≤ k ≤ r). (3.6)

Then, (Â0r, B̂0r) belong to the set of solutions of problem (3.5) and the predictor Â0rΣXB̂0r satisfies
for an absolute constant C > 0 and for any t > 0, the oracle inequality

∥A∗
0ΣXB

∗
0 − Â0rΣXB̂0r∥2F ≤ 9 inf

A0,B0:
rankA0∧rankB0≤r

∥A∗
0ΣXB

∗
0 −A0ΣXB0∥2F

+ 24Cσ2(1 + t)2 · r(n+ p),

with probability larger than 1− 2 exp(−t2(
√
n+
√
p)2).

Next, from the explicit solutions (Â0r, B̂0r) of (3.5) we deduce explicit solutions of (3.3).

Corollary 3.2.2 Let us define for r ∈ [n ∧ p ∧ rX ]

Âr = UY Â0rU
T
X and B̂r = VXB̂0rV

T
Y , (3.7)

with Â0r and B̂0r defined in (3.6). Then (Âr, B̂r) are solution to the problem (3.3) and the predictor
ÂrXB̂r satisfies for an absolute constant C > 0 and for any t > 0, the oracle inequality

∥A∗XB∗ − ÂrXB̂r∥2F ≤ 9 inf
A,B:

rankA∧rankB≤r

∥A∗XB∗ −AXB∥2F + 24Cσ2(1 + t)2 · r(n+ p),

with probability larger than 1− 2 exp(−t2(
√
n+
√
p)2).
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The proofs of Theorem 3.2.1 and of Corollary 3.2.2 can be found in Section 3.5. In the proofs we explicit
the bias in terms of the unknown matrix parameters :

inf
A,B:

rankA∧rankB≤r

∥A∗XB∗ −AXB∥2F =
r∗∑

k=r+1

σk(A
∗XB∗)2 · 1r<r∗ .

Note that our choice for the couple of predictors (Â0r, B̂0r) is not unique and we can easily derive
families of solutions to the problem (3.5). Each family of solutions can be turned into a solution to the

problem (3.3). Indeed, consider (αÂ0r,
1

α
B̂0r) with arbitrary α > 0. Alternatively, let λi for all i ≤ m ∧ q

be arbitrary positive numbers, then

(Â0rDiagm,m(λ1, . . . , λm∧q), Diagq,q(λ
−1
1 , . . . , λ−1

m∧q)B̂0r)

give the same prediction. Let us see that the same transformations applied to the parameter matrices
A∗

0 and B∗
0 also lead to the same signal matrix A∗

0ΣXB
∗
0 . Indeed, the model is non-identifiable and so,

without further strong assumptions, we can only hope to learn the global signal, and not the parameters
of the model.

Alternative predictors. Let us define a second couple of predictors (Ã, B̃r) producing exactly the
same prediction as (Âr, B̂r) with the same theoretical properties, but having the advantage that Ã is full
rank and does not depend on r. Define

Ã0 = In,m and B̃0r = Diagq,p

(
σk(Y )

σk(X)
, 1 ≤ k ≤ r ∧ rY

)
where In,m denotes the identity matrix of dimension n × m, whereas B̃0r has rank r ∧ rY . Using the
analogous transformations we obtain

Ã = UY In,mU
T
X and B̃r = VXB̃0rV

T
Y .

It is easy to see that Theorem 3.2.1 is valid for Ã0 and B̃0r, and that Corollary 3.2.2 is valid for Ã and
B̃r.

3.2.2 Rank-adaptive prediction

In this section, we propose rank-adaptive predictors (Âr̂, B̂r̂) which are selected from the family
{(Âr, B̂r) : r ∈ [n∧ p∧ rX ]} by a model selection procedure analogous to that of [32]. Let us first define,
for a generic matrix M and any λ > 0, the λ−rank of M as

rM (λ) = 1 ∨
rankM∑
k=1

1σk(M)2≥λ.

For given λ > 0, let
r̂ := arg min

r∈[n∧p∧rX ]

{
∥Y − ÂrXB̂r∥2F + λr

}
. (3.8)

Consider the predictors introduced in (3.7) for the data-driven rank r̂ as defined in (3.8). The next Theo-
rem extends the oracle inequality to the rank-adaptive predictors (Âr̂, B̂r̂) associated to the estimated
rank r̂ and to some λ > 0 large enough.
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Theorem 3.2.3 The rank-adaptive predictors (Âr̂, B̂r̂) associated to r̂ in (3.8) and to λ such that, for
some absolute constant C > 0 and for any t > 0, λ ≥ 4C(1 + t)2σ2(n+ p), satisfy the oracle inequality

∥A∗XB∗ − Âr̂XB̂r̂∥2F ≤ min
r∈[n∧p∧rX ]

{
9

r∗∑
k=r+1

σk(A
∗XB∗)2 · 1r<r∗ + 6λr

}
,

with probability larger than 1− 2 exp(−t2(
√
n+
√
p)2).

Note that the minimum on the right-hand side of the previous display is always smaller than the value
at r = r∗, giving under the assumptions of Theorem 3.2.3 that

∥A∗XB∗ − Âr̂XB̂r̂∥2F ≤ 6r∗λ,

with probability larger than 1− 2 exp(−t2(
√
n+
√
p)2).

The bounds of order r∗(n+ p) attained by our procedure are analogous to those for the low-rank matrix
regression models in [116] and [63]. Indeed, the 2MR model is more difficult than the MR model, (i.e.
one of the matrices is known) and we will suppose known the matrix with larger rank in order to achieve
the correct lower bounds. Thus the lower bounds for prediction in the low-rank MR model will be valid
for our model.

3.2.3 Consistent rank selection

We study the consistency of the rank selector r̂ in (3.8) and see when it recovers the true rank r∗

with high probability. First, we show that, for properly chosen λ, the data-driven rank r̂ is actually the
unique solution and coincides with the λ−rank of Y , r̂ = rY (λ).

Proposition 3.2.4 If λ > σrY (Y )2, there is a unique solution r̂ to the optimisation problem in (3.8) and
it is actually the λ−rank of Y , i.e. r̂ = rY (λ).

Next, we prove that r̂ recovers with high probability the λ−rank of A∗XB∗.

Proposition 3.2.5 Let λ > 0 and denote by r∗(λ) the λ−rank of A∗XB∗ . If for some constant c in (0,1),
σr∗(λ)(A

∗XB∗)2 > (1 + c)2λ and σr∗(λ)+1(A
∗XB∗)2 < (1− c)2λ, then

P(r̂ = r∗(λ)) ≥ P(∥E∥2op ≤ c2λ).

In particular, if λ ≥ 2C(n + p)σ2(1 + t)2/c2 for some absolute constant C > 0 and for any t > 0, then
r̂ = r∗(λ) with probability larger than 1− 2 exp(−t2(

√
n+
√
p)2).

Finally, remember that the fact that r∗(λ) coincides with the true underlying rank r∗ is equivalent to
having σr∗(A∗XB∗)2 ≥ λ > 0. The rank selector will then coincide with r∗ if λ also satisfies σ1(E)2 ≤
c2λ, for some absolute constant c > 0. It is therefore necessary that a signal-to-noise ratio, given
here by σr∗(A∗XB∗)2/σ1(E)2 be significant in order to have the true underlying rank selected by r̂. By
combining this with the previous Propositions we get the following.

Proposition 3.2.6 Let λ > 0. If for some constant c in (0,1), σr∗(A∗XB∗)2 > (1 + c)2λ, then

P(r̂ = r∗) ≥ P(∥E∥2op ≤ c2λ).

In particular, if λ ≥ 2C(n + p)σ2(1 + t)2/c2 for some absolute constant C > 0 and for any t > 0, then
r̂ = r∗ with probability larger than 1− 2 exp(−t2(

√
n+
√
p)2).
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3.2.4 Data-driven rank-adaptive prediction

The rank selector r̂ in (3.8) is used for building consistent predictors as detailed in Theorem 3.2.3
provided that the condition λ ≥ 4C(1 + t)2σ2(n + p) is satisfied. However the noise parameter σ is
not known in general settings. Thus a data dependent rank selector is needed for building consistent
predictors in those cases. Motivated by the previous case where σ2 was supposed known, we proceed
as follows. First, we change the penalty to λ · rσ̂2r with

σ̂2r =
1

np
∥Y − ÂrXB̂r∥2F .

Note that in the particular case of Gaussian noise σ̂2r estimates the variance σ2 of the noise. Next, given
a largest possible value for the true rank rmax ≤ n ∧ p ∧ rX , we define the data-driven rank selector

r̄ := arg min
r∈[rmax]

{
∥Y − ÂrXB̂r∥2F + λ · rσ̂2r

}
. (3.9)

Finally, we use the predictors (Âr̄, B̂r̄). The next theorem extends the upper bounds of Theorem 3.2.3
to these data-driven rank-adaptive predictors.

Theorem 3.2.7 The data-driven rank-adaptive predictors (Âr̄, B̂r̄) associated to r̄ in (3.9) with rmax ≤
n ∧ p ∧ rX , and to λ = (1 + ε)np/(rmax ∨ rY ) for some ε > 0, satisfy for some absolute constant C > 0
and for any t > 0 the oracle inequality

∥A∗XB∗ − Âr̄XB̂r̄∥2F ≤ min
r∈[rmax]

{
9∥A∗XB∗ − ÂrXB̂r∥2F + 6(1 + ε) · rσr+1(A

∗XB∗)2
}

+ 12C(2 + ε)(1 + t)2 · σ2rmax(n+ p),

with probability larger than 1− 2 exp(−t2(
√
n+
√
p)2).

Apply the Corollary 3.2.2, to get under the assumptions of Theorem 3.2.7 that

∥A∗XB∗ − Âr̄XB̂r̄∥2F ≤ min
r∈[rmax]

92 inf
A,B:

rA∧rB≤r

∥A∗XB∗ −ArXBr∥2F + 6(1 + ε) · rσr+1(A
∗XB∗)2


+ 12(20 + ε)C(1 + t)2 · σ2rmax(n+ p),

with probability larger than 1− 2 exp(−t2(
√
n+
√
p)2).

Note that the minimum on the right-hand side of the previous display is always smaller than its value
at r = r∗ if rmax is larger than r∗, giving under the assumptions of Theorem 3.2.7 that

∥A∗XB∗ − Âr̄XB̂r̄∥2F ≤ 12(20 + ε)C(1 + t)2 · σ2rmax(n+ p).

In order to compare to the previous results, note that the upper bound derived from Theorem 3.2.3 for
the value r = r∗ and the least value λ = 4C(1 + t)2σ2(n+ p) gives the very similar bound

∥A∗XB∗ − Âr̂XB̂r̂∥2F ≤ 24C(1 + t)2 · σ2r∗(n+ p).

From a computational point of view, it is preferable to change σ̂2r in some cases. For example, we
use in our numerical simulations

σ̂2r =
1

np− (m ∧ q)rX
∥Y − ÂrXB̂r∥2F

when n ≥ m, p ≥ q and thus np > (m∧q)rX . It is straightforward to prove the analogue of Theorem 3.2.7
by considering λ = (1 + ε)(np− (m ∧ q)rX)/(rmax ∨ rY ).
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3.3 Nuclear norm penalized learning

Nuclear norm penalized least squares is known to exhibit good properties, see [10] or [103]. Hence
it may show advantages over rank-penalized methods. Let us define the nuclear norm penalized (NNP)
optimisation problem

min
A,B
∥Y −AXB∥2F + 2λ · ∥AXB∥∗, (3.10)

for some λ > 0. The objective of the optimization problem is non-jointly convex in A and B. Note that
in matrix regression (when A∗ is the identity matrix) the nuclear norm of XB has been used , see [88],
or other adaptive forms depending on the feature matrix X, [90]. However, we exhibit explicit predictors
belonging to the set of solutions of this problem and show an oracle inequality they satisfy.

Theorem 3.3.1 The predictors (Ā, B̄) defined by

Ā = UY In,mU
⊤
X and B̄ = VX ·Diagq,p

(
(σk(Y )− λ)+

σk(X)
, 1 ≤ k ≤ rY ∧ rX

)
V ⊤
Y (3.11)

are solutions to the problem in (3.10). Moreover, if λ is such that, for some absolute constant C > 0 and
for any t > 0, λ ≥ 2C(1 + t)2σ2(n+ p), they satisfy the oracle inequality

∥A∗XB∗ − ĀXB̄∥2F ≤ 9 min
r∈[n∧p∧rX ]

{
r∗∑

k=r+1

σk(A
∗XB∗)2 · 1r<r∗ + 16λr

}
,

with probability larger than 1− 2 exp(−t2(
√
n+
√
p)2).

The proof can be found in Section 3.5.
Remark. Another approach could be to consider the model under the vectorized form (3.2) and

solve the problem
min
A,B
∥vec(Y )⊤ − vec(X)⊤ ·A⊤ ⊗B∥22 + 2λ∥A⊤ ⊗B∥∗,

for some λ > 0. Recall that A⊤ ⊗ B denotes the tensor product of matrices A⊤ and B and that we
can write ∥A⊤ ⊗B∥∗ =

∑
k,j≥1 σk(A)σj(B). However, the features are 1-dimensional and we loose the

structured information contained in the original matrix X. This approach could make more sense in
the case of repeated observation (Yt, Xt) for t in [T ], by stacking the rows vec(Yt)⊤ and vec(X⊤

t ) into
matrices Y and X, respectively, and do a classical matrix regression. Even so, the usual assumptions
on the feature matrix X in order to achieve good prediction are not reasonable in this context as they
are not much related to the original matrix data sets Xt, t in [T ].

Remark (Sufficient conditions for identifiability) We have indicated at several times that many
couples of matrices (A,B) solve the equation M = AXB for a given matrix M . Given the SVD of the
matrix M , we may reduce the dimensionality of the problem by choosing the solution (A,B) given by
A = UMA0U

⊤
X and B = VXB0V

⊤
M , with A0 and B0 diagonal matrices such that

σk(A)σk(X)σk(B) = σk(M), for all k ≤ rX ∧ rA ∧ rB.

Thus, even under diagonal forms we can only identify the product of respective singular values of A and
B. We can only hope to identify matrices A and B under very restrictive conditions where X⊤X has
full rank and either the matrix A or the matrix B is assumed to have known singular values, e.g. like a
projector with singular values 1 or 0. Few other setups are known to be identifiable in the literature of
factorisation of matrices, e.g. non-negative matrix factorisation (NMF), see [54], NMF for topic models
[84], [25], [86] or covariance matrix factorization [57].
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FIGURE 3.1 – Evolution of the risk
∥ÂrXB̂r −A∗XB∗∥2F

∥A∗XB∗∥2F
in function of r for different values of σ

3.4 Numerical Results

Let us set the dimensions of the observed matrix Y to be n = 100 and p = 300, the dimensions of the
design matrix X to be m = 50 and q = 60. We randomly generate three matrices : A∗, B∗, and X, with
independent random gaussian entries with mean 0 and variance 1. These matrices are then projected
onto the best low-rank matrix approximation, with the matrix A∗ having a rank r∗A = 16, the matrix B∗

having a rank r∗B = 12, and the matrix X having a rank rX = 25. The signal matrix is defined as A∗XB∗

and shows a rank of 12 in all experiments. We also define various settings for the variance σ2 of the
Gaussian noise E so that the signal-to-noise ratio SNR := σr∗(A

∗XB∗)2/σ1(E)2 varies approximately
in the range [0.5, 2].

Figure 3.1 illustrates the prediction performances of the predictor ÂrXB̂r, defined in (3.7), for dif-
ferent values of r. For σ < 8 giving the SNR approximately above the value 1, the prediction risk
decreases when the rank increases while remaining bounded from above by 12 and then increases
with the rank when the rank is above 12. For σ ≥ 8 giving the SNR below the value 1, the prediction risk
decreases when the rank increases while remaining bounded from above by 11 and then increases with
the rank when the rank is above 11. It highlights that the best predictor is achieved when r = r∗ = 12 for
small noise variance levels (i.e. σ < 8) and when r = 11 for strong noise variance levels (i.e. σ ≥ 8). This
shows that there is a strong overfitting phenomenon in the case of strong noise and that it is therefore
better to slightly underestimate the rank in these situations.

Figure 3.2 represents the predicted r̂, defined in (3.8), for various values of λ. Independently of
the noise variance level, for small values of λ the estimated r̂ is maximal and there is r̂ = rX =
25. This illustrates the previously exposed overfitting phenomenon, that is the higher the rank r, the
lower the error ∥Y − ÂrXB̂r∥2F . As λ increases the penalty on the rank r becomes more important
in the minimization procedure and r̂ decreases. However, for moderate values of λ (i.e. approximately
log(λ) ≤ 5) the smaller the noise variance level σ, the faster r̂ decreases. Ultimately, for large values of
λ (i.e. approximately log(λ) > 5) the rate of decay of r̂ as a function of λ no longer depends on σ.

The numerical value of λ is an important issue. We exhibit explicit (fast to calculate) procedures for
the choice of this tuning parameter. In the case of known noise variance, the rule of thumb suggested
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FIGURE 3.2 – Evolution of the estimated r̂ as a function of log(λ) for different values of σ

by [27] indicates to choose
λ(σ) = 2C(n+ p)σ2(1 + t)2

in Theorem 3.2.3 with t = 0, and C = 2. The two solid vertical lines represent λ(4.5) (blue) and λ(10)
(green). With these choices of the tuning parameter we get successful estimators of the underlying rank
of the signal r̂ ≈ 12 = r∗. We underline that in the small noise regime the rank is slightly overestimated
and in the strong noise regime it is slightly underestimated. This behaviour perfectly matches the results
drawn from Figure 3.1 showing that overestimating the rank in small noise regime does not impact the
performances and slightly underestimating it in strong noise regime improves the performances.

However, in real world applications the noise has unknown variance. This raises the question of
how to choose a data-driven λ in this case, without deteriorating the prediction. This situation is more
challenging as it first requires an estimator of σ2 before using the previously exposed rule of thumb.
We choose the initial value of r equal to rX ∧ n ∧ p and propose the r-dependent estimator σ̂2r :=

∥Y − ÂrXB̂r∥2F
np− (m ∧ q)rX

. It allows to compute the previously defined λ(σ̂r) and using this data-driven tuning

parameter we produce the rank estimator r̄. This procedure takes r as an argument and returns λ(σ̂r)
and r̄. However, when r is substantially larger than r∗, ÂrXB̂r is overfitting Y and performing this
procedure once will not lead to a satisfying output r̄. Hence we iterate while r̄ < r. We note λ(σ̂r̄) and
r̄ the final outputs of the procedure. The two dashed vertical lines represent λ(σ̂r̄) when σ = 4.5 (cyan)
and σ = 10 (magenta). The proposed procedure exhibits great numerical properties.

Finally, numerical simulations generated in the same context, with different values for the true un-
derlying ranks, show similar excellent prediction bounds, combined with correct rank selection. To-
gether with the current case where min(r∗A, rX , r

∗
B) = r∗B, we have explored successfully the cases

min(r∗A, rX , r
∗
B) = r∗A, min(r∗A, rX , r

∗
B) = rX and min(r∗A, rX , r

∗
B) = r∗A = rX = r∗B.

3.5 Proofs

Basic facts For any matrix M ∈ Rn×m, ∥M∥2∗ ≤ rM∥M∥2F . In addition, for any matrices M1 and M2

in Rn×m, the following inequalities hold ⟨M1,M2⟩F ≤ ∥M1∥∗∥M2∥op and ∥M1+M2∥F ≤ ∥M1∥F+∥M2∥F .
Furthermore, if we set a = rankM1 ∧ rankM2 then ⟨M1,M2⟩F ≤ ∥M1∥(2,a)∥M2∥(2,a).
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Lemma 3.5.1 Let E be a n × p random matrix whose entries are independent and having Gaussian
distribution N (0, σ2). If U and V belong to On and Op respectively, then E0 := U⊤EV has independent
entries with Gaussian distribution N (0, σ2).

Proof of Lemma 3.5.1. Note that we can vectorize the matrix E0 and get that

vec(E0) = (V ⊤ ⊗ U⊤) · vec(E),

where vec(E) is a Gaussian vector of dimension np, centered, with variance σ2Inp. Moreover, the tensor
product V ⊤ ⊗ U⊤ belongs to Onp, thus vec(E0) is still a Gaussian vector with distribution Nnp(0, σ2Inp).

Recall that, for an arbitrary matrix M , we denote UMΣMV
⊤
M its SVD.

Lemma 3.5.2 If M∗ is a n× p matrix of rank r∗, than for any r ≤ n ∧ p, we have

inf
M :rankM≤r

∥M −M∗∥2F =

r∗∑
k=r+1

σk(M
∗)2 · 1r<r∗ ,

and the infimum is attained by the projection [M∗]r of M∗ on the space of n × p matrices with rank r
given by the matrix

[M∗]r = UM∗ ·Diagn,p(σ1(M∗), ..., σr∧r∗(M
∗)) · V ⊤

M∗ .

3.5.1 Proof of Theorem 3.2.1

Let r ∈ [n ∧ p ∧ rX ] and (Â0r, B̂0r) defined in (3.6). Let us denote here M∗
0 = A∗

0ΣXB
∗
0 and M̂0 =

Â0rΣXB̂0r. By construction, M̂0 is the projection [ΣY ]r of ΣY onto the set of matrices with rank less
than or equal to r, in the sense of Lemma 3.5.2. Therefore,

∥ΣY − M̂0∥2F ≤ ∥ΣY − [M∗
0 ]r∥2F

We recall that in our model ΣY =M∗
0 + E0 which leads to

∥M∗
0 − M̂0 + E0∥2F ≤ ∥M∗

0 − [M∗
0 ]r + E0∥2F .

We expand the squares and arrange terms to get

∥M∗
0 − M̂0∥2F ≤ ∥M∗

0 − [M∗
0 ]r∥2F + 2⟨M̂0 − [M∗

0 ]r, E0⟩F .

Now, since rank(M̂0) = r and rank([M∗
0 ]r) ≤ r, we get that rank(M̂0− [M∗

0 ]r) ≤ 2r. This inequality gives

∥M∗
0 − M̂0∥2F ≤ ∥M∗

0 − [M∗
0 ]r∥2F + 2∥E0∥(2,2r) · ∥M̂0 − [M∗

0 ]r∥(2,2r)
≤ ∥M∗

0 − [M∗
0 ]r∥2F + 2∥E0∥(2,2r) · ∥M̂0 − [M∗

0 ]r∥F

≤ ∥M∗
0 − [M∗

0 ]r∥2F + 2∥E0∥(2,2r) ·
(
∥M̂0 −M∗

0 ∥F + ∥M∗
0 − [M∗

0 ]r∥F
)
.

We apply the inequality 2xy ≤ αx2 + α−1y2 with x, y ≥ 0 and α > 0. We obtain, for real numbers α > 1
and β > 0,

(1− α−1) · ∥M∗
0 − M̂0∥2F ≤ (1 + β−1) · ∥M∗

0 − [M∗
0 ]r∥2F + (α+ β) · ∥E0∥2(2,2r).
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Let us use that ∥E0∥2(2,2r) ≤ 2r · ∥E0∥2op and Lemma 3.5.2 to further get

∥M∗
0 − M̂0∥2F ≤

1 + β−1

1− α−1
· inf
M :rankM≤r

∥M∗
0 −M∥2F +

α+ β

1− α−1
· 2r∥E0∥2op. (3.12)

Noticing that for any matrices A0, B0 having rank less than or equal to r, rank(A0ΣXB0) ≤ rA0 ∧ rX ∧
rB0 ≤ r, we deduce that

inf
M :rankM≤r

∥M∗
0 −M∥2F ≤ inf

A0,B0:
rankA0∧rankB0≤r

∥M∗
0 −A0ΣXB0∥2F .

Indeed, the second inf is taken over a possibly smaller family of matrices. We actually show that equa-
lity holds in the previous display. Indeed, by Lemma 3.5.2 we have that infM :rankM≤r ∥M∗

0 −M∥2F =∑r∗

k=r+1 σk(M
∗
0 )

2 ·1r<r∗ , where r∗ = rank(M∗
0 ). Recall that M∗

0 = A∗
0ΣXB

∗
0 is a product of diagonal ma-

trices, giving that r∗ = min(rX , rA∗
0
, rB∗

0
) and σk(M∗

0 ) = σk(A
∗
0)σk(X)σk(B

∗
0) ·1k≤r∗ . Thus, the particular

choice

A0r := Diagn,m(σ1(A
∗
0), . . . , σr∧rA∗

0
(A∗

0)) and B0r := Diagq,p(σ1(B
∗
0), . . . , σr∧rB∗

0
(B∗

0))

solves exactly the problem giving M∗
0 = A0rΣXB0r. Finally,

inf
M :rankM≤r

∥M∗
0 −M∥2F = inf

A0,B0:
rankA0∧rankB0≤r

∥M∗
0 −A0ΣXB0∥2F . (3.13)

Plugging this into (3.12) and considering the particular choice α = 3/2 and β = 1/2 give the theo-
rem :

∥A∗
0ΣXB

∗
0 − Â0rΣXB̂0r∥2F ≤ 9 inf

A0,B0:
rankA0∧rankB0≤r

(
∥A∗

0ΣXB
∗
0 −A0ΣXB0∥2F

)
+ 12r∥E0∥2op.

The last step is the high-probability bound on ∥E0∥op. Recall that E0 = U⊤
Y EVY with UY in On and

VY in Op and therefore E0 and E have the same singular values. Therefore ∥E∥op = ∥E0∥op. The noise
matrix E has independent, centered, σ−sub-Gaussian entries and its spectral norm verifies (see [130])
for some absolute constant C > 0

P
(
∥E∥2op ≤ 2Cσ2 · (1 + t)2(n+ p)

)
≥ 1− 2e−t

2(
√
n+

√
p)2 , for any t > 0. (3.14)

Moreover, E [∥E∥op] ≤
√
Cσ(
√
n+
√
p).

3.5.2 Proof of Corollary 3.2.2

Recall the notation M∗
0 = A∗

0ΣXB
∗
0 and M̂0 = Â0rΣXB̂0r with Â0r and B̂0r given by (3.6) and let

us denote M∗ = A∗XB∗ and M̂ = ÂrXB̂r with Âr and B̂r given by (3.7). Notice that the Frobenius
norm and the rank are invariant under left or right multiplication by orthogonal matrices. Therefore, we
follow the lines of the proof of Theorem 3.2.1 and see that ∥Y − M̂∥2F = ∥ΣY − M̂0∥2F and rankM∗ =

rankM∗
0 = r∗. Also, M̂ is the projection [Y ]r of Y on the space of matrices with rank less than or equal

to r. Finally, the equality (3.13) can be pushed forward

inf
M :rankM≤r

∥M∗
0 −M∥2F = inf

A0,B0:
rankA0∧rankB0≤r

∥M∗
0 −A0ΣXB0∥2F = inf

A,B:
rankA∧rankB≤r

∥M∗ −AXB∥2F .

Indeed, we have one-to-one transformations of A0, B0 into A, B, respectively, and equality of the Fro-
benius norms. This finishes the proof.
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3.5.3 Proof of Theorem 3.2.3

By definition of r̂ = r̂(λ), we have that, for all r ∈ [n ∧ p ∧ rX ],

∥Y − Âr̂XB̂r̂∥2F + λr̂ ≤ ∥Y − ÂrXB̂r∥2F + λr.

Since ÂrXB̂r is the projection [Y ]r of Y on the space of matrices M with rankM ≤ r, we get that for
all matrices A and B such that rankA ∧ rankB ≤ r

∥Y − ÂrXB̂r∥2F ≤ ∥Y −AXB∥2F .

Indeed, rank(AXB) ≤ r and Pythagora’s theorem gives the former inequality. We deduce that

∥Y − Âr̂XB̂r̂∥2F + λr̂ ≤ ∥Y −AXB∥2F + λr.

Next, replace Y = A∗XB∗ + E, expand the squares and rearrange terms to get

∥A∗XB∗ − Âr̂XB̂r̂∥2F ≤ ∥A∗XB∗ −AXB∥2F + λ(r − r̂)
+ 2⟨E, Âr̂XB̂r̂ −AXB⟩.

Let us denote by M̂(r̂) = Âr̂XB̂r̂, M(r) = AXB and see that rank(M̂(r̂)−M(r)) ≤ r̂ + r. We have

⟨E, Âr̂XB̂r̂ −AXB⟩ ≤ ∥E∥op · ∥M̂(r̂)−M(r)∥∗
≤ ∥E∥op ·

√
r̂ + r∥M̂(r̂)−M(r)∥F

≤ ∥E∥op ·
√
r̂ + r(∥M∗ − M̂(r̂)∥F + ∥M∗ −M(r)∥F ).

Then, using twice the inequality 2xy ≤ αx2 + α−1y2 with x, y ≥ 0 and α > 0, we obtain for arbitrary real
numbers α > 1, β > 0 :

(1− α−1)∥M∗ − M̂(r̂)∥2F ≤ (1 + β−1)∥M∗ −M(r)∥2F
+ (α+ β)∥E∥2op(r + r̂) + λ(r − r̂).

Consequently, if (α+ β)∥E∥2op ≤ λ :

(1− α−1)∥M∗ − M̂(r̂)∥2F ≤ (1 + β−1)∥M∗ −M(r)∥2F + 2λr,

for all r in [n ∧ p ∧ rX ] and all M(r) = AXB with rankA ∧ rankB ≤ r. We get the result by replacing
again α = 3/2 and β = 1/2. Then we use that

min
A,B

rankA∧rankB≤r

∥A∗XB∗ −AXB∥2F =

r∗∑
k=r+1

σk(A
∗XB∗)2

and the high-probability bounds in (3.14).
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3.5.4 Proofs of results in Section 3.2.3

Proof of Proposition 3.2.4. For any r in [n ∧ p ∧ rX ], we have that ÂrXB̂r = [Y ]r is the projection of
Y on the space of matrices having rank smaller than or equal to r. Now, write

F (r) : = ∥Y − ÂrXB̂r∥2F + λr

=

rY∑
k=r+1

σk(Y )2 · 1r<rY + λr

=

rY∑
k=r+1

(σk(Y )2 − λ) · 1r<rY + λrY .

It is easy to see that F as a function of r has a unique minimum at rY (λ) if λ > σrY (Y )2, but is minimal
and constant for r = rY , . . . , (n ∧ p ∧ rX) whenever λ ≤ σrY (Y )2.
Proof of Proposition 3.2.5. By definition of r̂, we have k > r̂ if and only if λ > σk(Y )2 and k < r̂ if and
only if λ ≤ σk+1(Y )2. In our model Y = A∗XB∗ + E, the Weyl inequality gives |σk(A∗XB∗)− σk(Y )| ≤
σ1(E) for all k. The events on r̂ can be written in terms of σ1(E) = ∥E∥op as follows. We have

{k > r̂} implies λ > (σk(A
∗XB∗)− σ1(E))2,

{k < r̂} implies λ ≤ (σk+1(A
∗XB∗) + σ1(E))2.

Thus {r̂ ̸= k} implies either σ1(E) > σk(A
∗XB∗) −

√
λ or σ1(E) ≥

√
λ − σk+1(A

∗XB∗). Let us take
k = r∗(λ). Then the assumption that σr∗(λ)(A∗XB∗) > (1 + c)

√
λ gives that σ1(E) > c

√
λ and the

assumption that σr∗(λ)+1(A
∗XB∗) < (1− c)

√
λ gives also that σ1(E) > c

√
λ. Thus,

P (r̂ ̸= r∗(λ)) ≤ P
(
σ1(E) > c

√
λ
)
.

The proof is finished using the inequality (3.14).

3.5.5 Proof of Theorem 3.2.7

The optimization problem (3.9) can be written, after replacing σ̂2r , as follows

r̄ ∈ arg min
r∈[rmax]

∥Y − ÂrXB̂r∥2F
(
1 +

λr

np

)
.

We denote by M̄ = Âr̄XB̂r̄, M̂r = ÂrXB̂r and M∗ = A∗XB∗. With this notation it follows that, for
r ≤ rmax,

∥Y − M̄∥2F
(
1 +

λr̄

np

)
≤ ∥Y − M̂r∥2F

(
1 +

λr

np

)
.

Developing the squares and using the equality Y =M∗ + E, we get

∥M∗ − M̄∥2F ≤ ∥M∗ − M̂r∥2F + 2⟨E, M̄ − M̂r⟩F +
λr

np
∥Y − M̂r∥2F −

λr̄

np
∥Y − M̄∥2F .

We now use the upper bound ⟨E, M̄ − M̂r⟩F ≤ ∥E∥op∥M̄ − M̂r∥∗ and the definition of M̄ and M̂r to
derive

∥M∗ − M̄∥2F ≤ ∥M∗ − M̂r∥2F + 2∥E∥op∥M̄ − M̂r∥∗ +
λr

np

∑
k>r

σk(Y )2 − λr̄

np

∑
k>r̄

σk(Y )2.
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Let us note that we use σk(Y ) = 0 in case k > rY . We recall that ∥M̄ − M̂r∥∗ ≤
√
r + r̄ · ∥M̄ − M̂r∥F

and further obtain

∥M∗ − M̄∥2F ≤ ∥M∗ − M̂r∥2F + 2∥E∥op
√
r + r̄

(
∥M∗ − M̄∥F + ∥M∗ − M̂r∥F

)
+
λr

np

∑
k>r

σk(Y )2 − λr̄

np

∑
k>r̄

σk(Y )2.

Using twice the inequality 2ab ≤ αa2 + α−1b2 for a, b > 0, with α > 1 first and with β > 0 second, we get

(1− α−1)∥M∗ − M̄∥2F ≤ (1 + β−1)∥M∗ − M̂r∥2F + (α+ β)∥E∥2op(r + r̄)

+
λr

np

∑
k>r

σk(Y )2 − λr̄

np

∑
k>r̄

σk(Y )2. (3.15)

We now distinguish the two cases : r ≤ r̄ and r > r̄. In the first case, namely r ≤ r̄, we bound from
above as follows :

λr

np

∑
k>r

σk(Y )2 − λr̄

np

∑
k>r̄

σk(Y )2 =
λ

np

(
r

r̄∑
k=r+1

σk(Y )2 + (r − r̄)
∑
k>r̄

σk(Y )2

)

≤ λ

np
r(r̄ − r)σr+1(Y )2

≤ 2λr

np
(r̄ − r)(σr+1(M

∗)2 + ∥E∥2op)

≤ 2λr

np
rmaxσr+1(M

∗)2 +
2λrmax
np

(r̄ − r)∥E∥2op,

where we used Weyl inequality σr+1(Y ) ≤ σr+1(M
∗)+∥E∥op leading to σr+1(Y )2 ≤ 2∥E∥2op+2σr+1(M

∗)2.
We plug this into (3.15) to get

(1− α−1)∥M∗ − M̄∥2F ≤ (1 + β−1)∥M∗ − M̂r∥2F +
2λrmax
np

rσr+1(M
∗)2

+ r∥E∥2op(α+ β − 2λrmax
np

)

+ r̄∥E∥2op(α+ β +
2λrmax
np

),

for all r ≤ r̄ belonging to [rmax]. Thus, for λ such that 2λ·(rmax∨rY )
np = (1 + ε)(α + β) for some ε > 0 we

get

(1− α−1)∥M∗ − M̄∥2F ≤ min
r∈[r̄]

{
(1 + β−1)∥M∗ − M̂r∥2F + (1 + ε)(α+ β)rσr+1(M

∗)2
}

+ (2 + ε)(α+ β)rmax∥E∥2op.
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We now focus on the second case, namely r > r̄. We observe that in this case,

λr

np

∑
k>r

σk(Y )2 − λr̄

np

∑
k>r̄

σk(Y )2 =
λ

np

(
(r − r̄)

∑
k>r

σk(Y )2 − r̄
r∑

k=r̄+1

σk(Y )2

)

≤ λ(r − r̄)
np

(rY − r)σr+1(Y )2

≤ 2λr

np
rY · σr+1(M

∗)2 +
2λ(r − r̄)

np
· (rY ∨ rmax)∥E∥2op,

by a similar reasoning in the previous case. We plug this into (3.15) to get

(1− α−1)∥M∗ − M̄∥2F ≤ (1 + β−1)∥M∗ − M̂r∥2F +
2λ · rmax ∨ rY

np
rσr+1(M

∗)2

+ r∥E∥2op(α+ β +
2λ · rmax ∨ rY

np
)

+ r̄∥E∥2op(α+ β − 2λ · rmax ∨ rY
np

).

With the same choice of λ such that 2λ·rmax∨rY
np = (1+ ε)(α+ β) for some ε > 0 we get also in this case

that

(1− α−1)∥M∗ − M̄∥2F ≤ min
r̄<r≤rmax

{
(1 + β−1)∥M∗ − M̂r∥2F + (1 + ε)(α+ β)rσr+1(M

∗)2
}

+ (2 + ε)(α+ β)rmax∥E∥2op.

Taking α = 3/2 and β = 1/2 and combining both cases leads to the following result

∥M∗ − M̄∥2F ≤ min
r∈[rmax]

{
9∥M∗ − M̂r∥2F + 6(1 + ϵ) · rσr+1(M

∗)2
}
+ 6(2 + ϵ) · rmax∥E∥2op,

where we choose λ such that λ · rmax ∨ rY = (1 + ε)np for some ε > 0. We conclude by using the
inequality (3.14).

3.5.6 Proof of Theorem 3.3.1

We proceed by solving the problem in two steps for solving the optimization problem (3.10) which
can be equivalently written as

min
A,B

M=AXB

min
M
∥Y −M∥2F + 2λ · ∥M∥∗,

for λ > 0. The solution to the problem in M is explicit and it is known to be obtained from Y by soft-
thresholding of its eigenvalues : M̄ = UYDiagn,p((σk(Y ) − λ)+)V

⊤
Y , where we used the SVD of Y :

UY ΣY V
⊤
Y . Next, we project M̄ on the space of matrices AXB for A and B in Frobenius norm. It is easy

to check that our choice of Ā, B̄ are exact solutions, that is M̄ = ĀXB̄.
Similarly to the proof of Theorem 3.2.3, by applying the definition of M̄ , expanding the squares and

rearranging terms we get for all M :

∥M̄ −M∗∥2F ≤ ∥M∗ −M∥2F + 2⟨E, M̄ −M⟩+ 2λ(∥M∥∗ − ∥M̄∥∗)

≤ ∥M∗ −M∥2F + 2
√
λ(∥M̄ −M∥∗ + ∥M∥∗ − ∥M̄∥∗),
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under the event that ∥E∥2op ≤ λ. We use the decomposability of the nuclear norm of matrices as in [32],
to find M̄1 and M̄2 such that M̄ = M̄1 + M̄2, ∥M̄∥∗ = ∥M̄1∥∗ + ∥M̄2∥∗ and ∥M̄ −M∥∗ = ∥M̄1 −M∥∗ +
∥M̄2∥∗. Moreover, rank(M̄1) ≤ 2 rank(M). This implies

∥M̄ −M∗∥2F ≤ ∥M∗ −M∥2F + 4
√
λ∥M̄1 −M∥∗

≤ ∥M∗ −M∥2F + 4
√
λ
√
3 rank(M) · ∥M̄1 −M∥F

≤ ∥M∗ −M∥2F + 4
√
λ
√
3 rank(M) · (∥M̄ −M∗∥F + ∥M −M∗∥F ).

We obtain for arbitrary real numbers α > 1 and β > 0, for all M ,

(1− α−1)∥M̄ −M∗∥2F ≤ (1 + β−1)∥M∗ −M∥2F + 4(α+ β)λ · 6 rank(M).

For the particular values α = 3/2 and β = 1/2, we get

∥M̄ −M∗∥2F ≤ min
M

{
9∥M∗ −M∥2F + 144λ · rank(M)

}
≤ 9 min

r∈[n∧p∧rX ]

{
min

M :rankM=r
∥M∗ −M∥2F + 16λ · r

}
.

Recall that minM :rankM=r ∥M∗ −M∥2F =
∑r∗

K=r+1 σK(M∗)2 · 1r<r∗ to get the final result.
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3.6 Auxiliary results

Algorithm 1 Data-driven procedure for selecting r̄ and λ
Input : data X, Y
Require : np ≥ (m ∧ q)rX > 0

Define : σ̂2r :=
∥Y − ÂrXB̂r∥2F
np− (m ∧ q)rX

Define : λ(σ) := 4(n+ p)σ2

Define : r̂λ := argminr∈[n∧p∧rX ]

(
∥Y − ÂrXB̂r∥2F + λ · r

)
Initialize : r ← rX ∧ n ∧ p, r̄ ← r̂λ(σ̂2

r)

while r̄ < r do
r ← r̄
r̄ ← r̂λ(σ̂2

r)

end while
Output : r̄, λ(σ̂2r̄ )



Chapitre 4

Dynamic Expected Topic Models

4.1 Introduction

Topic modeling is a widely used statistical technique that has gained significant attention in the field
of natural language processing (NLP) and text mining. It provides a valuable framework for uncovering
latent thematic structures within large collections of textual data. The fundamental goal of topic mode-
ling is to automatically discover underlying topics or themes that are present in a corpus of documents,
without any prior knowledge or manual annotation. Topic models have found applications in various do-
mains, including biology, collaborative filtering, population genetics, social networks and image analysis.
These models provide researchers with a means to effectively organize, condense, and scrutinize tex-
tual data, facilitating a deeper understanding of the inherent semantic organization within documents.
For instance, by employing topic modeling techniques, one can uncover thematic patterns in large cor-
pora. This allows to discern topics present in a collection of documents and explore how they relate to
each other, thereby extracting valuable insights about the underlying content and structure.

Notations : In addition to the notation introduced at the beginning of this manuscript, we add some
specific notations for the following two chapters. For any matrix M of size n×m and rank rM , we
denote M⊤ its transpose and for all i ∈ [n] and for all j ∈ [m], [M ]ij denotes the entry of M in the ith

row and jth column, [M ]i. its ith row and [M ].j its jth column. We denote M = UMΣMV
⊤
M its singular

value decomposition (SVD), where UM belongs to Rn×rM and satisfies U⊤
MUM = IrM , VM belongs to

to Rm×rM and satisfies V ⊤
MVM = IrM . ΣM is a diagonal matrix containing the non null singular values

σ1(M), . . . , σrM (M) of M listed in decreasing order and null entries elsewhere. We denote σmin(M) :=

σrM (M) the smallest singular value of M . For k ≤ min(n,m) we define U (k)
M Σ

(k)
M

(
V

(k)
M

)⊤
the k-SVD of

M where U (k)
M belongs to Rn×k and satisfies

(
U

(k)
M

)⊤
U

(k)
M = Ik, V

(k)
M belongs to to Rm×k and satisfies(

V
(k)
M

)⊤
V

(k)
M = Ik and

Σ
(k)
M := diag(σi(M), 1 ≤ i ≤ k) ∈ Dk(R∗

+) if k ≤ rM ,

Σ
(k)
M := diag(σ1(M), . . . , σrM (M), 0, . . . , 0) ∈ Dk(R∗

+) if k > rM .

For any diagonalizable matrix Q ∈ Rn×n, we denote λ1(Q), . . . , λn(Q) the eigenvalues of Q listed in
decreasing order. We denote λmin(Q) the smallest non zero eigenvalue of Q. For any set E and any
integer p we denote Dp(E) the set of diagonal matrices of size p with entries in E. For any matrix M ,

83
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we denote M+ the matrix obtained by setting all negative entries in M to 0. We denote by Φrow(M)
the matrix obtained by normalizing each row of M to have a unit L1-norm and, analogously, Φcol(M) is
the matrix obtained by normalizing each column of M to have a unit L1-norm. Random quantities are
written in bold, except for the estimators which are marked with a hat.

4.2 Dynamic topic model framework

In this study, we assume that n textual documents are observed successively in time, and that the
topics distribution given a document follows a stationary time series whereas the distribution of words
given a topic remains the same. This is akin to the regular intervals at which daily newspapers publish.
Rather than treating this collection of documents independently of their publication date, our objective
is to develop a model capable of capturing the temporal evolution inherent in the successive corpora.

In our study, we make the assumption that the number of topics discussed remains constant over
time. Additionally, we assert that the word-topic probability matrix A∗, remains static over time. This
assumption is grounded in the interpretation of the columns of matrix A∗ as the distribution of each
topic across the vocabulary. It is asserting that the same words distribution is systematically used to
discuss a given topic.

More precisely, the collection process unfolds in T steps, where at each time step t ∈ [T ], a fixed
number n of documents is collected. In this context, the jth document at step t comprises N t

j words.
As we exclusively focus on the frequencies of each word, for simplicity and without loss of generality,
we presume uniformity in the word count, i.e., N t

j = N for all j and t. The overall number of documents
collected throughout the entire procedure is nT . The model of interest becomes, for all t in [T ] and
j ∈ [n] :

NY t
j |W t

j ∼ Multinomialp(N,Πt
j), (4.1)

where for all columns j, the vectors (Y t
j)t are assumed to be conditionally independent given (W t

j)t.
We also assume that for all time step t, the vectors (W t

j)j are independent. We still assume that the
word-document probability matrix Πt =

(
πt1, . . . , π

t
n

)
, can be factorized as follows :

Πt = A∗W t, t ∈ [T ]. (4.2)

We remind that the topic-document probability matrix at the step t, namely W t which belongs to RK×n

is now a random matrix following a simplex-valued autoregressive model and that the anchor word
assumption on the word-topic probability matrix A∗, which belongs to Rp×K , is still made :

Assumption 2 (Anchor word assumption) For each topic k ∈ [K], there exists at least one word j
such that [A∗]jk > 0 and [A∗]jl = 0 for l ∈ [K]\{k}.

Let us denote the concatenated matrices by

W 1:T =
(
W 1, . . . ,W T

)
and by Π1:T =

(
Π1, . . . ,ΠT

)
,

which belong respectively to RK×(nT ) and to Rp×(nT ), respectively. The model (4.2) can be re-written as

Π1:T = A∗W 1:T .
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Let us consider an autoregressive model of order 1 for the matrices (W t)t∈[T ]. However, at each time
step t, it is crucial to emphasize that each column W t

j is structured as a probability vector, meaning it
consists of non-negative entries that sum up to one. Moreover, an insightful observation underlies our
modeling approach : a topic that enjoys high popularity at time t is anticipated to sustain its prevalence at
time t+1. Given these considerations, we define the autoregressive model with the following constraints
for all t ∈ [T − 1] :

W t+1 = (1− c∗) ·W t + c∗ ·∆t (4.3)

where c∗ ∈ (0, 1), and each ∆t is a noise matrix of size K × n such that the columns are independently
and identically drawn from a Dirichlet D(θ∗) distribution having parameter θ∗ ∈ RK+ . The primary focus
of this study is to estimate the parameters associated with this dynamic evolution and to establish
non-asymptotic rates of convergence.

Model (4.3) encapsulates the notion that at time t + 1, W t+1
j serves as a barycenter between W t

j

and a noise vector ∆t
j drawn from D(θ∗). As a consequence of this formulation, W t+1

j is a probability
vector for all j ∈ [n].

We then assume that the value c∗ is included in a closed subset of (0, 1). Therefore, c∗ is mixing the
contribution of the present value W t in trade-off with that of the noise in order to get the future value
W t+1 in (4.3). It is thus natural to exclude that c∗ gets too close to either 1 (no influence of the current
value, only noise) or 0 (no time evolution, static model).

Assumption 3 There exist two real values c and c in (0, 1) such that the parameter c∗ satisfies :

c ≤ c∗ ≤ c.

Recall that a K−dimensional vector distributed according to the Dirichlet distribution D(θ∗) lives on
the simplex of dimension K and has expected value and variance given by

θ̃∗ and Σ := Σ(θ∗) =
1

α+ 1

(
diag(θ̃∗)− θ̃∗ · (θ̃∗)⊤

)
, (4.4)

respectively, where we denote by α := ∥θ∗∥1 > 0 and by θ̃∗ := θ∗/α which belongs to the simplex
S(K−1). We denote by diag(θ̃∗) the K ×K diagonal matrix with values θ̃∗(k) on its diagonal.

The third assumption is focused on giving a lower bound to the variance of the Dirichlet distribution
from which the noise matrices

(
∆t
)
t∈[T ] are drawn. Let us note that for any parameter θ∗, the Trace of

Σ(θ∗) can be expressed and bounded from above by one as follows :

Tr(Σ(θ∗)) =
1− ∥θ̃∗∥22
α+ 1

≤ 1.

Assumption 4 There exist real values 0 < θ < 1 and 0 < m < 1 such that the parameter θ∗ satisfies :

min
k∈[K]

θ̃∗(k) ≥ θ and m ≤ Tr(Σ(θ∗)) ≤ 1.

This assumption prevents Tr(Σ(θ∗)) to be too close to 0. Implicitly, this gives on the one hand that
α = ∥θ∗∥1 cannot tend to infinity and stays bounded by some constant A(m) < ∞ and on the other
hand that ∥θ̃∗∥2 does not get too close to 1. The latter can happen only when θ̃∗ gets close to a corner
of the simplex, where the euclidean and the L1 norms are both equal to 1.
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Finally, Assumption 5 states that we start our study when the stationary regime is already reached
and thus avoid any transitional regime. We also assume that the initial vectors

(
W 1

j

)
j

are random with
a continuous distribution and that their first and second moments are compatible with the stationary
regime.

Assumption 5 (Stationary regime) We assume that the initial vectors W 1
j , j = 1, . . . , n are inde-

pendent and identically distributed following the continuous stationary distribution.

Hence for all j ∈ [n], W 1
j is almost surely in the simplex SK−1 and

E
[
W 1

j

]
= θ̃∗ and V

[
W 1

j

]
=

c∗

2− c∗
· Σ.

Combining equations (4.2) and (4.3) leads to the following dynamic expected topic model (DETM).

Definition 4.2.1 (Dynamic Expected Topic Model) We refer to the Dynamic Expected Topic Model
(DETM) described by the following equation :

Πt+1
j = (1− c∗)Πt

j + c∗A∗ ·∆t
j , (4.5)

where we observe Πt
j for t ∈ [T ], j ∈ [n], satisfying Πt = A∗W t with W t given by the AR(1) model

(4.3). We assume that Assumptions 2, 3, 4, and 5 are met.

Notice that (4.5) is a simplex-valued autoregressive model of order one and can be further developed
as

Πt = (1− c∗)t−1A∗W 1 + c∗
t−1∑
s=1

(1− c∗)t−1−sA∗∆s.

Our first objective will be to estimate the parameters c∗, θ̃∗ and α in the DETM. However, the DETM
is an oracle case where the word-document probability vectors Πt

j are available. The real case where
only the word-document frequency vectors Y t

j are available will be considered in the next chapter.
The primary goal of this work is to grasp the temporal dynamics embedded in textual data. We intro-

duce a model designed to accommodate the evolution and shifting of topics across discrete time per-
iods. Indeed, themes within textual data often exhibit temporal variations. For instance, during election
periods, news articles may emphasize different topics compared to periods of economic downturns.
By integrating temporal information, our objective is to facilitate the discovery of how topics evolve,
emerge, or diminish over time, thereby offering valuable insights into the dynamic nature of textual data.
The question of modeling dynamic components in the topic model framework has been first treated by
[28]. They introduced Dynamic Topic Model (DTM) as a solution to the limitations of Latent Dirichlet
Allocation (LDA) when modeling topics across a series of documents. Numerous papers followed this
initial work, mainly using variational approximate inference algorithms [137, 133, 138, 52]. However,
these estimation procedures lack statistical guarantees.

In this chapter we assume that we have access to the word-document probability matrix Π1:T . This
is equivalent to assuming that we observe the word-document frequency matrix Y 1:T :=

(
Y 1, . . . , Y T

)
where each document has an infinite number of words, i.e. N = +∞ in (4.1). The randomness here
is only due to the time series describing the distribution of topics in the document at time t. Hence,
our attention is focused on the DETM. The goal of this chapter is to recover the data W 1:T following
the AR(1) model (4.3), and then to estimate the underlying parameters of this model, by giving non-
asymptotic high-probability bounds.
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4.3 Recovery of the word-topic matrix

In this subsection, we follow the work by [84] and recall the procedure to recover the static deter-
ministic word-topic matrix A∗ given Π1:T under their assumptions. Then, we project Π1:T on the linear
space spanned by the columns of A∗ and retrieve W 1:T . Finally, we show that under the AR(1) model
(4.3), assumptions on W are valid with high probability.

Definition 4.3.1 We define H := diag(h1, . . . , hp) ∈ Dp(R∗
+), where for i ∈ [p], hi := ∥A∗

i.∥1 sums the
frequencies of each word across all topics. Define the topic-topic overlapping matrix ΣA ∈ RK×K as
follows

ΣA := (A∗)⊤H−1A∗.

The quantities h1, . . . , hp reflect the variability in the frequency of occurrence of each word. The matrix
ΣA measures the affinity of topics using the same words. The authors in [84] require that the frequencies
of the words considered in the vocabulary stay bounded from below by some positive constant. This
condition aligns with the prevalent pre-processing practice of eliminating exceedingly low-frequency
words or aggregating them into a pseudo-word. In addition, we underline that extreme heterogeneity
remains allowed.

Assumption 6 (Minimal word frequency) We assume that for some constant c1 ∈ (0, 1),

min
i
hi := hmin ≥ c1

K

p
.

Definition 4.3.2 Define the topic-topic concurrence matrix Σ1:T
W ∈ RK×K as follows

Σ1:T
W :=

1

nT

(
W 1:T

) (
W 1:T

)⊤
.

The matrix Σ1:T
W captures the affinity of topics to be covered together in the same document.

The following assumption coupled with Assumption 2 ensure the identifiability of A∗ and W 1:T . We
recall that by design, the topic model assumes that the matrix Π1:T ∈ Rp×nT is of rank K and thus
can be written as the product of maximal rank matrices A∗ ∈ Rp×K and W 1:T ∈ RK×nT . Hence A∗

and W 1:T are of rank K when K ≤ p ∧ (nT ) which implies that ΣA and Σ1:T
W are also of rank K.

The following assumption allows to control the smallest eigenvalue of both matrices. We also consider
M∗ = (nT )−1diag

(
Π1:T 1nT

)
∈ Dp(R∗

+).

Assumption 7 We assume θ∗ is a vector with positive entries and that for some constants c2 > 0 and
c3 > 0,

λK (ΣA) ≥ c2 and min
k,l

[ΣA]kl ≥ c2, λK(Σ1:T
W ) ≥ c2, a.s.,

c−1
3 ≥

∣∣∣λ1(Σ1:T
W

(
[A∗]⊤M−1

∗ A∗
)
)− λ2(Σ1:T

W

(
[A∗]⊤M−1

∗ A∗
)
)
∣∣∣ ≥ c3, a.s..

The matrix A∗ is fixed and thus the assumptions on ΣA are mild. The assumption on the smallest
singular value of Σ1:T

W can be relaxed as it holds true with high probability as shown in Theorem 4.3.3.
Finally, we justify the last assumption using Perron-Frobenius theorem, see Lemma 5.6.9. Note that
Σ1:T
W

(
[A∗]⊤M−1

∗ A∗)) is a K × K symmetric matrix with entries in [0, 1] a.s. because both Σ1:T
W and
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[A∗]⊤M−1
∗ A∗ are. We need to prove that the entries of Σ1:T

W

(
[A∗]⊤M−1

∗ A∗)) are positive. Let us re-
write the matrix Σ1:T

W

(
[A∗]⊤M−1

∗ A∗) as Σ1:T
W

(
[A∗]⊤H−1A∗) + Σ1:T

W

(
[A∗]⊤

(
M−1

∗ −H−1
)
A∗). Proposi-

tion 5.2.8 gives that M−1
∗ −H−1 is a diagonal matrix with almost surely non-negative entries. Moreover

assumptions on ΣA ensure that the entries of [A∗]⊤H−1A∗ are bounded from below by c2. Finally this
proves that the K×K matrix Σ1:T

W

(
[A∗]⊤M−1

∗ A∗) is a square matrix with positive entries almost surely.
Conditionally on W 1:T , Perron–Frobenius theorem gives that Σ1:T

W

(
[A∗]⊤M−1

∗ A∗) has a unique positive
largest eigenvalue which is also its operator norm. We deduce that conditionally on W 1:T , the following
inequality holds almost surely∣∣∣λ1(Σ1:T

W

(
[A∗]⊤M−1

∗ A∗
)
)− λ2(Σ1:T

W

(
[A∗]⊤M−1

∗ A∗
)
)
∣∣∣ > 0.

Moreover, Proposition 4.3.1 allows to get a milder assumption if one accepts c3 to depend on K.

Proposition 4.3.1 The entries of ΣA are in [0, 1] and the entries of Σ1:T
W are almost surely in [0, 1]. In

addition their spectral norm satisfies :

1√
K
≤ λ1(Σ1:T

W ) ≤
√
K a.s.,

1√
K
≤ λ1 (ΣA) ≤

√
K.

Proof. By definition of Σ1:T
W and ΣA we get immediately that their coefficients are positive and bounded

from above by one a.s.. In addition Lemma 5.6.8 ensures the bounds on the spectral norm of those two
matrices.

Under these assumptions, we recover exactly A∗ following the steps below. We remind that in the
DETM setting, the matrix Π1:T is accessible and thus all the random quantities introduced in the proce-
dure are available.

1. Pre-SVD normalization : Consider M∗ = (nT )−1diag
(
Π1:T 1nT

)
∈ Dp(R∗

+). Then derive Π∗ :=

M
−1/2
∗ Π1:T . This multiplication mimics the pre-SVD normalization to be used in the real case.

The matrix M∗ addresses word frequency heterogeneity in real corpora in order to boost the
signal-to-noise ratio in SVD. In the DETM, pre-SVD normalization is optional and the procedure
exhibits the same performance for any choice of M∗ among diagonal matrices of dimension p
with positive entries.

2. SVD : Compute the Singular Value Decomposition of Π∗ ∈ Rp×nT which satisfies rank(Π∗) = K
a.s. :

Π∗ := UΣV ⊤.

Let [U ].1, . . . , [U ].K be the column vectors of U ∈ Rp×K and notice that Perron-Frobenius’s theo-
rem, Lemma 5.6.9, guarantees that [U ].1 does not possess any null entry a.s. . The SVD creates
a low dimensional word embedding into RK but these vectors do not directly lead to the recovery
of A∗.

3. Post-SVD normalization : Compute R ∈ Rp×(K−1) defined as follows, for i ∈ [p] and k ∈ [K − 1] :

[R]ik =
[U ]i(k+1)

[U ]i1
.

This post-SVD normalization yields normalized vectors [R]1., . . . , [R]p., the row vectors of R. Pro-
position 5.2.14 ensures that there exist η1, . . . ,ηK ∈ R(K−1) such that the row vectors of R are
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located in Gη ⊂ R(K−1) defined as follows :

Gη :=

{
x : x =

K∑
k=1

αkηk, ∀k ∈ [K], αk ≥ 0
K∑
k=1

αk = 1

}
.

The vertices η1, . . . ,ηK of Gη are determined in the following step.
4. Vertex Hunting : The vertices η1, . . . ,ηK of Gη are recovered by computing the convex hull of the

point cloud [R]1., . . . , [R]p.. Subsequently we define the matrix Λ ∈ Rp×K by solving the following
system, for all i ∈ [p],

[R]i. =
K∑
k=1

[Λ]ikηk,

K∑
k=1

[Λ]ik = 1, [Λ]ik ≥ 0, k ∈ [K].

5. Word-topic matrix estimation : Define the matrix Γ := M
1/2
∗ diag([U ].1)Λ. Normalize each column

of Γ by its L1 norm. The resulting matrix is Â which is almost surely equal to A∗, as stated in
Theorem 4.3.2.

Finally, in the DETM setting, the matrix Â, estimator of A∗, can be represented as

Â = Φcol

(
M

1/2
∗ diag([U ].1)Φrow (Λ+)

)
. (4.6)

Theorem 4.3.2 In the DETM setting, the matrices Â and A∗ are equal almost surely.

Proof. See Lemma 2.1, 2.2 and 2.3 in [84].
It is important to highlight that under our assumptions, the matrix (A∗)⊤(A∗) becomes full rank, faci-

litating the precise reconstruction of the matrix W 1:T through regression of Π1:T onto A∗. Specifically,
W 1:T can be recovered as :

W 1:T =
[
(A∗)⊤(A∗)

]−1
(A∗)⊤Π1:T .

Let us recall that here, we assume that the matrix W 1:T is issued by an AR(1) model and thus Σ1:T
W

is random. We show that its smallest eigenvalue is bounded away from 0 with high probability in Theo-
rem 4.3.3. Then we prove in Proposition 4.3.4 that each topic is well-represented across documents.
We demonstrate in Proposition 4.3.5 that the covariance matrix of each W t

j , namely Σ(θ∗), is singular.
This explains why we focus on the second order moment matrix and its empirical version, the topic-topic
concurrence matrix Σ1:T

W . Then we control the spectral norms of Σ1:T
W and ΣA in Proposition 4.3.1.

Theorem 4.3.3 Consider the DETM under Assumptions 2, 3, 4 and 5.Denote θ̃∗(1) ≥ θ̃∗(2) ≥ . . . ≥ θ̃∗(K)

the components of θ̃∗ ∈ RK in increasing order and γ :=
c∗

(2− c∗)(α+ 1)
. Then, for an absolute constant

C > 0 and for any ϵ > 0, we have, with probability at least 1− T exp(−ϵ),

λK(Σ1:T
W ) ≤ γθ̃∗(K−1) +max

√ϵ+ log(K)

C

√
γθ̃∗(1) + (1− γ)

n
,
ϵ+ log(K)

nC

 ,

λK(Σ1:T
W ) ≥ γθ̃∗(K) −max

√ϵ+ log(K)

C

√
γθ̃∗(1) + (1− γ)

n
,
ϵ+ log(K)

nC

 .
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In particular, under the assumptions of the previous theorem we get for ϵ = log(nT ) that, with probability

at least 1− 1

n
,

λK(Σ1:T
W ) ≤ γθ̃∗(K−1) +max


√√√√ log(nTK)

(
γθ̃(1) + (1− γ)

)
nC

,
log(nTK)

nC

 ,

λK(Σ1:T
W ) ≥ γθ̃∗(K) −max


√√√√ log(nTK)

(
γθ̃(1) + (1− γ)

)
nC

,
log(nTK)

nC

 .

Proof. See Proof in Subsection 4.5.1
Under Assumption 3 and 4, ensuring that θ̃∗(K) ≥ θ > 0 and leading to α < A(m), we get that

γθ̃∗(K) ≥ (A(m) + 1)−1 c · θ
(2− c)

. Thus, for n large enough, we can find c2 > 0 such that λK(Σ1:T
W ) ≥ c2

with high probability, which is a relaxed version of the a.s. constraint in Assumption 7.
It is important to note that Theorem 4.3.3 guarantees that each topic is well-represented across do-

cuments. Indeed, this implies a uniform lower bound on the frequency of each topic as shown in the next
proposition. We reiterate the probabilistic interpretation of the matrix W 1:T : for all (j, t, k) ∈ [n]× [T ]×
[K], W t

j(k) is the probability to observe the topic k given the document j at time t, P(topic k| document j, step t).

Proposition 4.3.4 (Topic distribution among documents) Consider the model (4.3) under assump-

tion 5. Then for all k ∈ K,
1

nT

n∑
j=1

T∑
t=1

W t
j(k) ≥ λK(Σ1:T

W ) almost surely.

Proof. See Proof in Subsection 4.5.2
In addition we highlight that the variance Σ(θ∗) = V

[
W t

j

]
is singular. Thus we work with the second

order moment matrix E
[
W t

j(W
t
j)

⊤].
Proposition 4.3.5 (Σ(θ∗) is singular) For any θ∗ ∈ RK+ , Σ(θ∗) := 1

α+1

(
diag(θ̃∗)− θ̃∗ · (θ̃∗)⊤

)
∈ RK×K

+

is singular, where α := ∥θ∗∥1 > 0 and θ̃∗ := θ∗/α.

Proof. It is sufficient to note that 1K/
√
K, the K−dimensional vector with entries equal to 1/

√
K, is an

eigenvector of Σ(θ∗) associated to the eigenvalue 0. Therefore, the rank of this matrix is at most K − 1
and the matrix is singular.

Following the recovery of W 1:T , the subsequent section outlines a detailed procedure to estimate
the key parameters of interest, c∗, θ̃∗ and α. More specifically, we leverage the recovery of W 1:T using
(4.3) to derive estimators for ĉ, θ̂, and α̂. However, it’s worth noting that an equivalent procedure can
also be applied. By utilizing the availability of Π1:T and directly using (4.5), one can estimate the key
parameters. Although ĉ can be readily derived using this equation, estimating θ̃ and α still requires
recovering A∗ and the projection of an estimated ∆1:T onto the span of A∗. Our approach here involves
the projection of Π1:T onto the span ofA∗, followed by the estimation of all scalar parameters. Therefore,
in this context, both approaches yield similar results, and our approach offers theoretical results that are
easier to derive.

As mentioned in [86], it may appear possible to apply the results on the recovery of the matrix A∗

to the recovery of W 1:T by merely transposing equation (4.2) and interchanging the roles of these two
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matrices. However, such an inference is not possible due to the inherent disparity between the resulting
models. In fact, the independence assumption among the columns of Π1, stated in assumption 5, does
not hold after transposition. In addition, the row-wise summation of matrices A∗, W 1:T and Π1:T does
not yield unity, leading to the need of a distinct statistical treatment. This discrepancy underscores the
need for a nuanced analysis, recognizing that the implications and statistical properties of estimating A∗

differ substantially from those associated with recovering W 1:T . This justifies our prioritization of initially
recovering A∗ and subsequently leveraging A∗ to infer W 1:T . A direct focus on W 1:T would require
an additional set of assumptions, surpassing the scope of this study. Therefore, our focus remains on
describing the methodology for recovering A∗ and subsequently utilizing it to infer W 1:T .

4.4 Estimation of the autoregressive model

In this section, we present non-asymptotic rates of convergence in the case where the matrix W 1:T

is observed. This scenario arises in the DETM, once A∗ is recovered and Π1:T is regressed on A∗.
We observe that model (4.3) can be alternatively expressed as a collection of n independent vector
autoregressive processes of order 1, denoted VAR(1), as follows, where (t, j) ∈ [T − 1]× [n],

W t+1
j = (1− c∗)W t

j + c∗θ̃∗ + c∗ ·
(
∆t
j − θ̃∗

)
. (4.7)

Assumption 5 asserts that our analysis commences after the system has entered a stationary re-
gime, bypassing any transitional phase. Additionally, we assume that the initial vectors

(
W 1

j

)
j

are sto-
chastic, and their first and second moments align with the characteristics of the stationary regime.

To estimate the parameters of model (4.3), we adopt the method of moments. We define θ̂ as the
empirical mean of the observed

(
wt+1
j

)
j,t

:

θ̂ :=
1

n(T − 1)

n∑
j=1

T−1∑
t=1

wtj . (4.8)

We estimate 1−c∗ by the normalized sum of scalar products between the centered consecutive vectors
wt+1
j − w+1 and wtj − w :

(̂1− c) :=

T−1∑
t=1

n∑
j=1

〈
wt+1
j − w+1; wtj − w

〉
T−1∑
t=1

n∑
j=1

∥∥∥wtj − w∥∥∥2
2

, (4.9)

where w+1 :=
1

n(T − 1)

T−1∑
t=1

n∑
j=1

wt+1
j and w :=

1

n(T − 1)

T−1∑
t=1

n∑
j=1

wtj = θ̂.

Finally, using the variance of the stationary sequence wtj and the explicit expression of the matrix Σ,
we see that :

Tr(V(wtj)) =
c∗

2− c∗
1− ∥θ̃∗∥22
α+ 1

. (4.10)

Thus, we plug-in estimators θ̂, ĉ and the empirical variance to get

α̂ =
ĉ

2− ĉ
1− ∥θ̂∥22
V

− 1, where V :=
1

n(T − 1)

T−1∑
t=1

n∑
j=1

∥∥wtj − w∥∥22 . (4.11)



92 CHAPITRE 4. DYNAMIC EXPECTED TOPIC MODELS

Next we give the convergence rates of these three estimators. It is worth emphasizing that the
convergence rates of these estimators are independent of the dimension K.

Theorem 4.4.1 (Estimation of θ̃∗) In the DETM, under the Assumptions 3, 4 and 5, the estimator θ̂

defined in (4.8) is such that for T ≥ 2 +
2

c
and any 0 < ϵ <

√
nm

c

2− c
/2 :

∥∥∥θ̂ − θ̃∗∥∥∥
2
≤ ϵ+ 1√

n(T − 1)

(
1

c
√
T − 1

+ 1

)
, (4.12)

with probability larger than 1− 2 exp
(
−ϵ2/4

)
.

Proof. See Proof in Subsection 4.5.3

Theorem 4.4.2 (Estimation of c∗) In the DETM, under the Assumptions 3, 4 and 5, the estimator
(̂1− c) defined in (4.9) is such that for n and T large enough, for all 0 < ϵ <

√
nm c

2−c/2 :

|(̂1− c)− (1− c∗)| ≤ C1 · ϵ√
n(T − 1)

+

(
1

c
√
T − 1

+ 1

)
C2

(
ϵ2 + 1

)
n(T − 1)

, (4.13)

with probability larger than 1− 15 exp(−ϵ2/4) where C1 :=
44

cm
and C2 :=

8

cm
.

Proof. See Proof in Subsection 4.5.4

Theorem 4.4.3 (Estimation of α) In the DETM, under the Assumptions 3, 4 and 5, the estimator α̂
defined in (4.11) is such that for n and T large enough, for all 0 < ϵ <

√
nm c

2−c/2 :

|α̂− α∗| ≤ C3 · ϵ√
n(T − 1)

+

(
1

c
√
T − 1

+ 1

)[
C4 (ϵ+ 1)√
n(T − 1)

+
C5

(
ϵ2 + 1

)
n(T − 1)

]
, (4.14)

with probability larger than 1− 17 exp
(
−ϵ2/4

)
where C3 :=

176 (1 + c)

c22m2
, C4 :=

8c
cm(2−c) +

16(A(m)+1)
cm , and

C5 :=
32 (1 + c)

c2m2
, and A(m) is defined after the Assumption 4.

Proof. See Proof in Subsection 4.5.5
It’s worth mentioning that an alternative model could involve assigning distinct parameters θ∗j to the

n columns of the noise matrices ∆t. In this scenario, we forfeit the benefit of multiple vectors sha-
ring a common parameter. Nevertheless, our results remain valid for estimating the n parameters θ∗j
when n = 1. In particular we may have n different estimators θ̂j showing a convergence rate of order
O
(
1/
√
T − 1

)
. Such a model is useful for capturing the distinct ways in which newspapers address

current affairs, exhibiting unique preferences and avoidances. By considering different θ∗j , we enable
newspapers to have distinct stationary distributions, reflecting differences in their treatment of informa-
tion. This flexibility allows us to capture variations in information dissemination among different news-
papers. Another possible extension is to consider a matrix distribution on the noise, which would make
it possible to lift the hypothesis of independence between newspapers and to consider that journalists
influence each other in the processing of information. This model goes beyond the scope of this paper
and is left for future works.
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4.5 Proofs

4.5.1 Proof of Theorem 4.3.3

Proof of Theorem 4.3.3. First, we recall that

Σ1:T
W =

1

T

T∑
t=1

(
1

n
W t(W t)⊤

)
,

where W t := [W t
1, . . . ,W

t
n] is a matrix of size K × n. However, the matrices [W t]t∈[T ] are not inde-

pendent. By Lemma 5.6.2 we have that

λK
(
Σ1:T
W

)
≥ 1

T

T∑
t=1

λK

(
1

n
W t(W t)⊤

)
.

Next, we see that, for each t ∈ [T ], W t has independent columns [W t
j ]j∈[n] which are random probability

vectors. Therefore,
∥∥W t

j

∥∥
2
≤
∥∥W t

j

∥∥
1
≤ 1. Let us denote by

Ω := E
[
W t

j

(
W t

j

)⊤]
the common second order moment matrix of the vectors

(
W t

j

)
j,t

. By Proposition 5.1.1 we see that

Ω = γdiag(θ̃∗) + (1− γ) θ̃∗
(
θ̃∗
)⊤

.

By assumption, θ̃∗ has positive entries and thus diag(θ̃∗) ∈ DK
(
R∗
+

)
is full rank with positive coefficient :

1− γ > 0. Elementary linear algebra results, see [67], give that :

γθ̃∗(K) ≤ λK (Ω) ≤ γθ̃∗(K−1) and γθ̃∗(1) ≤ λ1 (Ω) ≤ γθ̃
∗
(1) + (1− γ) .

The Weyl’s inequality, see Lemma 1.1.13, provides, for all t ∈ [T ], almost surely :

λK (Ω) +

∥∥∥∥ 1nW t(W t)⊤ − Ω

∥∥∥∥
op

≥ λK
(
1

n
W t(W t)⊤

)
≥ λK (Ω)−

∥∥∥∥ 1nW t(W t)⊤ − Ω

∥∥∥∥
op

.

Finally, we apply Lemma 1.1.18 with κ = 1 to get that for all t ∈ [T ] and for all ϵ > 0, with probability at
least 1− exp

(
−ϵ2

)
,

∥∥∥∥ 1nW t(W t)⊤ − Ω

∥∥∥∥
op

≤ max

(√
ϵ2 + log(K)

C

√
λ1 (Ω)

n
,
ϵ2 + log(K)

nC

)
,

where C > 0 is an absolute constant. We conclude, using a union bound in t ∈ [T ], the upper bounds
on λ1(Ω) and λK(Ω) and the lower bound on λK(Ω).
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4.5.2 Proof of Proposition 4.3.4

Proof of Proposition 4.3.4. Let us consider the model (4.3) under Assumption 5 . Under this setting,
for all k ∈ [K] and for all (j, t) ∈ [n]× [T ], W t

j(k) ≤ 1 almost surely. This implies almost surely that

1

nT

n∑
j=1

T∑
t=1

W t
j(k) ≥

1

nT

n∑
j=1

T∑
t=1

W t
j(k)

2 =
[
Σ1:T
W

]
kk
.

However, Σ1:T
W is positive definite under Assumption 7. Moreover, diagonal entries of a positive definite

matrix cannot be smaller than the smallest eigenvalue. Indeed by definition

λK(Σ1:T
W ) := min

∥x∥2=1
x⊤Σ1:T

W x.

Fixing k ∈ [K] and considering x = ek where (e1, . . . , eK) is the canonical basis of RK leads to ∥x∥2 = 1
and ⟨Σ1:T

W x, x⟩ =
[
Σ1:T
W

]
kk

. This proves that almost surely we have

1

nT

n∑
j=1

T∑
t=1

W t
j(k) ≥ λK(Σ1:T

W ).

4.5.3 Proof of Theorem 4.4.1

Proof of Theorem 4.4.1. We use repeatedly the equation of our model to get that, for any integer t ≥ 2
and any j ≥ 1, we have :

wtj − θ̃∗ = (1− c∗)(wt−1
j − θ̃∗) + c∗(∆t−1

j − θ̃∗)

= (1− c∗)t−1 (w1
j − θ̃∗) + c∗

t−1∑
s=1

(1− c∗)t−1−s
(
∆s
j − θ̃∗

)
. (4.15)

We plug this in the estimator to get :

θ̂ − θ̃∗ = 1

n(T − 1)

n∑
j=1

T−1∑
t=1

(wtj − θ̃∗)

=
1

n(T − 1)

n∑
j=1

T−1∑
t=1

(1− c∗)t−1 (w1
j − θ̃∗)

+
c∗

n(T − 1)

n∑
j=1

T−1∑
t=2

t−1∑
s=1

(1− c∗)t−1−s
(
∆s
j − θ̃∗

)
=

1− (1− c∗)T−1

c∗(T − 1)n

n∑
j=1

(w1
j − θ̃∗)

+
c∗

n(T − 1)

n∑
j=1

T−2∑
s=1

T−1∑
t=s+1

(1− c∗)t−1−s
(
∆s
j − θ̃∗

)
.
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Finally, we get :

θ̂ − θ∗ = 1− (1− c∗)T−1

c∗(T − 1)

 1

n

n∑
j=1

w1
j − θ̃∗

+
T−2∑
t=1

1− (1− c∗)T−2−t

n(T − 1)

n∑
j=1

(
∆t
j − θ̃∗

)
.

We apply a vector-Bernstein inequality (see Lemma 5.6.1) successively to each term above.

On the one hand, Assumption 5 ensures that
(
w1
j − θ̃∗

)
j∈[n]

are centered and independent. In

addition,
(
w1
j

)
j∈[n]

are in the simplex as well as θ̃∗. This implies that for all j ∈ [n],
∥∥∥w1

j − θ̃∗
∥∥∥
2
≤∥∥∥w1

j − θ̃∗
∥∥∥
1
≤ 2 almost surely. Let us define V1 :=

n∑
j=1

E

[∥∥∥w1
j − θ̃∗

∥∥∥2
2

]
and note that V1 ≤ 4n. More

precisely, Assumption 5 gives that :

V1 =
n∑
j=1

K∑
k=1

E

[(
w1
j (k)− θ̃∗(k)

)2]
= n · Tr

(
V(w1

j )
)
= n · c∗

2− c∗
Tr (Σ) ≤ n.

Therefore, by Lemma 5.6.1, we get that for all ϵ ∈ (0,
√
V1/2) we have :

∥∥∥∥∥∥ 1n
n∑
j=1

w1
j − θ̃∗

∥∥∥∥∥∥
2

≤ (ϵ+ 1)
√
V1

n
≤ ϵ+ 1√

n
, (4.16)

with probability larger than 1− exp

(
−ϵ

2

4

)
.

On the other hand, let us denote by at :=
[
1− (1− c∗)T−1−t

]
, and see that

(
at ·
(
∆t
j − θ̃∗

))
t∈[T−1]

are independent vectors, centered, uniformly bounded from above in Euclidean norm and have variance
bounded from above by 1 :

E
[[
1− (1− c∗)T−1−t

] (
∆t
j − θ̃∗

)]
= 0,∥∥∥[1− (1− c∗)T−1−t

] (
∆t
j − θ̃∗

)∥∥∥
2
≤ 2, a.s.

E

[∥∥∥[1− (1− c∗)T−1−t
] (

∆t
j − θ̃∗

)∥∥∥2
2

]
= a2t · Tr(Σ) ≤ 1.

Note that the last inequality is due to the Assumption 4. Let us denote by

V2 :=
n∑
j=1

T−2∑
t=1

E

[∥∥∥[1− (1− c∗)T−1−t
] (

∆t
j − θ̃∗

)∥∥∥2
2

]
= n · Tr(Σ) ·

T−2∑
t=1

a2t
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and note that V2 ≤ n(T − 1). Lemma 5.6.1 finally proves that for all ϵ ∈ (0,
√
V2/2),∥∥∥∥∥∥ 1

n(T − 1)

n∑
j=1

T−2∑
t=1

at

(
∆t
j − θ̃∗

)∥∥∥∥∥∥
2

≤ (ϵ+ 1)
√
V2

n(T − 1)

≤ (ϵ+ 1)√
n(T − 1)

,

≤ (ϵ+ 1)√
n(T − 1)

, (4.17)

with probability larger than 1− exp

(
−ϵ

2

4

)
.

Let us define V∗ := min (V1; V2) and for ϵ ∈ (0,
√
V∗/2) we get using a union bound and inequalities

(4.16) and (4.17) that :

∥∥∥θ̂ − θ̃∗∥∥∥
2
≤

(
1− (1− c∗)T−1

c∗
√
n(T − 1)

+
1√

n(T − 1)

)
(ϵ+ 1)

≤ ϵ+ 1√
n(T − 1)

(
1

c
√
T − 1

+ 1

)
,

with probability larger than 1−2 exp

(
−ϵ

2

4

)
. We conclude by giving a lower bound on V∗ using Assump-

tions 3, 4 and 5. We first bound from below V1 and V2 as follows :

V1 = n · Tr
(
V
(
w1
1

))
= n

c∗

2− c∗
Tr(Σ) ≥ n c

2− c
m,

V2 = n · Tr
(
V
[
∆1

1

]) T−1∑
t=1

(
1− (1− c∗)T−1−t

)2
= n · Tr(Σ)

T−1∑
t=1

(
1− 2(1− c∗)T−t−1 + (1− c∗)2T−2t−2

)
= n · Tr(Σ)

(
(T − 1)− 2

1− (1− c∗)T−1

c∗
+

1− (1− c∗)2(T−1)

1− (1− c∗)2

)

≥ n · Tr(Σ)
(
T − 1− 2

c∗

)
≥ nm

(
T − 1− 2

c

)
.

We conclude that V∗ ≥ nmmin

(
c

2− c
, T − 1− 2

c

)
. In particular, for T ≥ 2 +

2

c
,

V∗ ≥ nm
c

2− c
.
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4.5.4 Proof of Theorem 4.4.2

Proof of Theorem 4.4.2. We denote ∆ :=
1

n(T − 1)

T−1∑
t=1

n∑
j=1

∆t
j and see that

(̂1− c)− (1− c∗) = c∗

T−1∑
t=1

n∑
j=1

〈
∆t
j − θ̃∗; wtj − θ̃∗

〉
− n(T − 1)

〈
∆− θ̃∗; w − θ̃∗

〉
T−1∑
t=1

n∑
j=1

∥∥∥wtj − w∥∥∥2
2

.

We note that w+1 = (1− c∗)w + c∗∆. This implies the following :〈
wt+1
j − w+1; wtj − w

〉
= (1− c∗)

∥∥wtj − w∥∥22 + c∗
〈
∆t
j −∆; wtj − w

〉
.

Thus,

(̂1− c) = (1− c∗) + c∗

T−1∑
t=1

n∑
j=1

〈
∆t
j −∆; wtj − w

〉
T−1∑
t=1

n∑
j=1

∥∥∥wtj − w∥∥∥2
2

.

By expansion of the numerator above and using the bilinearity of the scalar product, we get :

T−1∑
t=1

n∑
j=1

〈
∆t
j − θ̃∗ −

(
∆− θ̃∗

)
; wtj − θ̃∗ −

(
w − θ̃∗

)〉

=

T−1∑
t=1

n∑
j=1

〈
∆t
j − θ̃∗; wtj − θ̃∗

〉
− n(T − 1)

〈
∆− θ̃∗; w − θ̃∗

〉
.

(4.18)

We then bound from above with high probability the first term of the right-hand side of the equation
(4.18) :

T−1∑
t=1

n∑
j=1

〈
∆t
j − θ̃∗; wtj − θ̃∗

〉
.

We use the expansion in (4.15) to get :

T−1∑
t=1

n∑
j=1

〈
∆t
j − θ̃∗; wtj − θ̃∗

〉
=

T−1∑
t=1

n∑
j=1

(1− c∗)t−1
〈
∆t
j − θ̃∗; w1

j − θ̃∗
〉

+ c∗
T−1∑
t=2

n∑
j=1

t−1∑
s=1

(1− c∗)t−1−s
〈
∆t
j − θ̃∗; ∆s

j − θ̃∗
〉

=

T−1∑
t=1

n∑
j=1

Ztj +

T−1∑
t=2

n∑
j=1

Xt
j ,
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where we denote by Ztj and Xt
j the real-valued random variables defined as follows

Ztj := (1− c∗)t−1
〈
∆t
j − θ̃∗; w1

j − θ̃∗
〉
,

Xt
j := c∗

t−1∑
s=1

(1− c∗)t−1−s
〈
∆t
j − θ̃∗; ∆s

j − θ̃∗
〉

= c∗(1− c∗)t−1

〈
∆t
j − θ̃∗;

t−1∑
s=1

(1− c∗)−s
(
∆s
j − θ̃∗

)〉
.

We first notice that the (Ztj)j,t are centered i.e. E
[
Ztj

]
= 0, and uniformly bounded. Indeed, for all (j, t),

Cauchy-Schwarz inequality ensures that

|Ztj | ≤ (1− c∗)t−1
∥∥∥∆t

j − θ̃∗
∥∥∥
2

∥∥∥w1
j − θ̃∗

∥∥∥
2
≤ 4 a.s..

Moreover, they are independent conditionally on (w1
j )j . Thus Hoeffding’s concentration inequality, Lemma 1.1.8,

ensures that for any ϵ > 0, conditionally on (w1
j )j ,∣∣∣∣∣∣ 1

n(T − 1)

T−1∑
t=1

n∑
j=1

Ztj

∣∣∣∣∣∣ ≤ 2
√
2√

n(T − 1)
ϵ, (4.19)

with probability larger than 1−2 exp

(
−ϵ

2

4

)
. Since this bound is free of the (w1

j )j it remains unchanged

after integrating with respect to the stationary distribution of these r.v..
Similarly, the real-valued random variables (Xt

j)j,t are uniformly bounded. Indeed for all (j, t), we
have almost surely that :

|Xt
j | ≤ c∗(1− c∗)t−1

t−1∑
s=1

(1− c∗)−s
∥∥∥∆s

j − θ̃∗
∥∥∥
2

∥∥∥∆t
j − θ̃∗

∥∥∥
2

≤ 4 ·
(
1− (1− c∗)t−1

)
≤ 4 a.s..

However, for each j = 1, . . . , n, the (Xt
j)t are dependent random variables that form a martingale

difference. Indeed, ∆t
j is independent of (∆s

j)s<t. We denote F t−1
j := σ

(
∆1
j , . . . ,∆

t−1
j

)
the natural

filtration of the random process
(
∆t
j

)
t
. This ensures that for all t,

E[Xt
j ] = 0,

E[Xt
j |F t−1

j ] = 0 a.s.,

E[|Xt
j |] ≤ 4

(
1− (1− c∗)t−1

)
≤ 4.

Hence, for all j ∈ [n], the adapted sequence
({
Xt
j ,F

t−1
j

})
t∈[T−1]

is a martingale difference, see Defi-

nition 1.1.12. Azuma-Hoeffding’s inequality, see Lemma 1.1.19, ensures that for all j ∈ [n] and for any
ϵ > 0 : ∣∣∣∣∣ 1

T − 1

T−1∑
t=2

Xt
j

∣∣∣∣∣ ≤ T − 2

T − 1

4ϵ√
T − 2

≤ 4ϵ√
T − 1

,
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with probability larger than 1− 2 exp

(
−ϵ

2

2

)
. We also deduce that for all ϵ > 0,

P

(∣∣∣∣∣ 1

T − 1

T−1∑
t=2

Xt
j

∣∣∣∣∣ ≥ ϵ
)
≤ 2 exp

(
−ϵ

2(T − 1)

32

)
≤ 2 exp

(
− ϵ2

2σ2

)
with σ2 =

16

T − 1
.

Lemma 1.1.6 shows that the random variables Xj := 1/(T − 1)
∑T−1

t=1 X
t
j for j = 1, . . . , n are ν2-

subGaussian with ν2 = 8σ2 =
128

T − 1
. As the (Xj)j are independent, the more general Hoeffding’s

inequality for independent sub-Gaussian random variables, Lemma 1.1.7, ensures that for all ϵ > 0,∣∣∣∣∣∣ 1n
n∑
j=1

Xj

∣∣∣∣∣∣ ≤ 8ϵ√
n(T − 1)

, (4.20)

with probability larger than 1− 2 exp

(
−ϵ

2

4

)
. Indeed Hoeffding’s inequality, Lemma 1.1.7 ensures that

P

 1

n

∣∣∣∣∣∣
∑
j

Xj

∣∣∣∣∣∣ ≥ ϵ
 ≤ 2 exp

(
−nϵ

2

2ν2

)

≤ 2 exp

(
−n(T − 1)ϵ2

256

)
,

from which (4.20) follows. Putting together (4.19) and (4.20) we get, for any ϵ > 0,∣∣∣∣∣∣ 1

n(T − 1)

T−1∑
t=1

n∑
j=1

〈
∆t
j − θ̃∗; wtj − θ̃∗

〉∣∣∣∣∣∣ ≤
(
8 + 2

√
2
)
ϵ√

n(T − 1)
≤ 11ϵ√

n(T − 1)
, (4.21)

with probability larger than 1− 4 exp

(
−ϵ

2

4

)
.

We now bound from above with high probability the second term of the right-hand side of the equa-
tion (4.18), namely : 〈

∆− θ̃∗; w − θ̃∗
〉
.

First, recall for convenience that w = θ̂ and Theorem 4.4.1 ensures that for any 0 < ϵ <
√
nm c

2−c/2 :

∥∥∥θ̂ − θ̃∗∥∥∥
2
≤ ϵ+ 1√

n(T − 1)

(
1

c
√
T − 1

+ 1

)
,

with probability larger than 1− 2 exp

(
−ϵ

2

4

)
, see (4.12).
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In addition, the vectors
(
∆t
j − θ̃∗

)
are centered and satisfy for any j ∈ [n] and any t ∈ [T − 1],∥∥∥∆t

j − θ̃∗
∥∥∥
2
≤
∥∥∥∆t

j − θ̃∗
∥∥∥
1
≤ 2 a.s.. Hence we define

V3 :=
n∑
j=1

T−1∑
t=1

E

[∥∥∥∆t
j − θ̃∗

∥∥∥2
2

]
= n(T − 1)Tr(Σ),

which verifiesmn(T−1) ≤ V3 ≤ n(T−1). Thus, Lemma 5.6.1 gives that for any ϵ ∈
(
0,
√
m/2 ·

√
n(T − 1)

)
,

∥∥∥∆− θ̃∗∥∥∥
2
≤ (ϵ+ 1)√

n(T − 1)
, (4.22)

with probability larger than 1 − exp

(
−ϵ

2

4

)
. Indeed vector Bernstein’s inequality ensures that for all

ϵ ∈ (0,
√
V3/2),

P

∥∥∥∥∥∥
n∑
j=1

T−1∑
t=1

(
∆t
j − θ̃∗

)∥∥∥∥∥∥
2

≥ (ϵ+ 1)
√
V3

 ≤ exp

(
−ϵ

2

4

)
,

which implies (4.22). By Cauchy-Schwarz,〈
∆− θ̃∗; w − θ̃∗

〉
≤
∥∥∥∆− θ̃∗∥∥∥

2

∥∥∥θ̂ − θ∗∥∥∥
2
.

The bounds in (4.12) and (4.22) combined with a union bound give, for any ϵ ∈ (0,
√
nm c

2−c/2),∣∣∣〈∆− θ̃∗; w − θ̃∗〉∣∣∣ ≤ (ϵ+ 1)2

n(T − 1)

(
1

c
√
T − 1

+ 1

)
, (4.23)

with probability larger than 1− 3 exp

(
−ϵ

2

4

)
.

The final step is to bound from below with high probability the empirical variance

V :=
1

n(T − 1)

T−1∑
t=1

n∑
j=1

∥∥wtj − w∥∥22 . (4.24)

Note that we can write using the stationarity of (wtj)t for all j :

V =
1

n(T − 1)

T−1∑
t=1

n∑
j=1

∥∥∥wtj − θ̃∗∥∥∥2
2
−
∥∥∥θ̃∗ − w∥∥∥2

2

= E

[∥∥∥w1
1 − θ̃∗

∥∥∥2
2

]
+

1

n(T − 1)

T−1∑
t=1

n∑
j=1

(∥∥∥wtj − θ̃∗∥∥∥2
2
− E

[∥∥∥wtj − θ̃∗∥∥∥2
2

])
−
∥∥∥θ̃∗ − w∥∥∥2

2
.
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Let us define

U1 := E

[∥∥∥w1
1 − θ̃∗

∥∥∥2
2

]
,

U2 :=
1

n(T − 1)

T−1∑
t=1

n∑
j=1

(∥∥∥wtj − θ̃∗∥∥∥2
2
− E

[∥∥∥wtj − θ̃∗∥∥∥2
2

])
,

U3 :=
∥∥∥θ̃∗ − w∥∥∥2

2
.

Recall that U1 = c∗

2−c∗ Tr(Σ) ≥ c
2−cm and that we use (4.12) to bound from above U3 with high

probability. Hence U1 − U3 is bounded from below with high probability. Next notice that

V = U1 + U2 − U3 ≥ U1 − U3 − |U2|.

The last step is thus to give a high probability bound from above for U2. Recall that (4.15) is giving that
wtj − θ̃∗ = (1 − c∗)t−1(w1

j − θ̃∗) + c∗
∑t−1

k=1(1 − c∗)t−1−kEkj , for all t ≥ 2, where Ekj = ∆k
j − θ̃∗ is the

centered, bounded, noise random variable. Thus we can decompose U2 in the following terms

U2 =
1

n(T − 1)

T−1∑
t=1

n∑
j=1

(1− c∗)2(t−1)

(∥∥∥w1
j − θ̃∗

∥∥∥2
2
− E

[∥∥∥w1
j − θ̃∗

∥∥∥2
2

])

+
(c∗)2

n(T − 1)

T−1∑
t=2

n∑
j=1

∥∥∥∥∥
t−1∑
k=1

(1− c∗)t−1−kEkj

∥∥∥∥∥
2

2

− E

∥∥∥∥∥
t−1∑
k=1

(1− c∗)t−1−kEkj

∥∥∥∥∥
2

2


+ 2

c∗

n(T − 1)

T−1∑
t=2

n∑
j=1

(1− c∗)t−1⟨w1
j − θ̃∗,

t−1∑
k=1

(1− c∗)t−1−kEkj ⟩

≤ T1 + T2 + T3, say.

We bound successively these last three terms in absolute values. First,

|T1| =
1− (1− c∗)2(T−1)

c∗(2− c∗)(T − 1)

∣∣∣∣∣∣ 1n
n∑
j=1

(∥∥∥w1
j − θ̃∗

∥∥∥2
2
− E

[∥∥∥w1
j − θ̃∗

∥∥∥2
2

])∣∣∣∣∣∣ .
Remark that the random variables

(∥∥∥w1
j − θ̃∗

∥∥∥2
2

)
j∈[n]

are almost surely bounded in [0, 4] and inde-

pendent. Applying Hoeffding’s inequality for bounded random variables, see Lemma 1.1.8, leads to :∣∣∣∣∣∣ 1n
n∑
j=1

(∥∥∥w1
j − θ̃∗

∥∥∥2
2
− E

[∥∥∥w1
j − θ̃∗

∥∥∥2
2

])∣∣∣∣∣∣ ≤
√
2ϵ√
n
,

with probability larger than 1− 2 exp

(
−ϵ

2

4

)
. Hence this leads to

|T1| ≤
1− (1− c∗)2(T−1)

c∗(2− c∗)(T − 1)
·
√
2ϵ√
n
, (4.25)
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with probability larger than 1− 2 exp

(
−ϵ

2

4

)
.

Next, we write T2 := 1
n

∑n
j=1

(
Φ(E1

j , . . . , E
T−1
j )− EΦ(E1

j , . . . , E
T−1
j )

)
, where for all j ∈ [n],

Φ : B2(2)T−1 −→ R+

Φ(E1
j , . . . , E

T−1
j ) :=

(c∗)2

T − 1

T−1∑
t=2

∥∥∥∥∥
t−1∑
k=1

(1− c∗)t−1−kEkj

∥∥∥∥∥
2

2

.

We show that Φ is a function with bounded differences in each argument. More precisely, for an arbitrary
ℓ from 1 to T − 1 and any x and x′ having euclidean norm not larger than 2, we have :

Φ(E1
j , . . . , E

ℓ−1
j , x, Eℓ+1

j , . . . , ET−1
j )− Φ(E1

j , . . . , E
ℓ−1
j , x′, Eℓ+1

j , . . . , ET−1
j )

=
(c∗)2

T − 1

T−1∑
t=ℓ+1

(
(1− c∗)2(t−1−ℓ)(∥x∥22 − ∥x′∥22)

+2(1− c∗)t−1−ℓ⟨x− x′;
t−1∑

k=1,k ̸=ℓ
(1− c∗)t−1−kEkj ⟩


≤ (c∗)2

T − 1

T−1∑
t=ℓ+1

(
4(1− c∗)2(t−1−ℓ)

+2(1− c∗)t−1−ℓ∥x− x′∥2 ·
t−1∑
k=1

(1− c∗)t−1−k∥Ekj ∥2

)

≤ (c∗)2

T − 1

(
4
1− (1− c∗)2(T−ℓ−1)

c∗(2− c∗)
+ 16

T−1∑
t=ℓ+1

(1− c∗)t−1−ℓ 1− (1− c∗)t−1

c∗

)

≤ 4c∗

T − 1
+

16

T − 1
≤ 20

T − 1
.

Thus, we deduce using McDiarmid’s inequality, see Lemma 1.1.11, that for all ϵ > 0 and for any j in [n] :

|Φ(E1
j , . . . , E

T−1
j )− EΦ(E1

j , . . . , E
T−1
j )| ≤ 10ϵ√

T − 1
,

with probability larger than 1 − 2 exp(−ϵ2/2). Lemma 1.1.6 thus proves that the random variables(
Φ(E1

j , . . . , E
T−1
j )− EΦ(E1

j , . . . , E
T−1
j )

)
j∈[n]

are σ2-subGaussian with σ2 =
800

T − 1
.

Using the independence with respect to j and Hoeffding inequality for sub-Gaussian random va-
riables, see Lemma 1.1.7, we get :

|T2| ≤
20ϵ√

n(T − 1)
, (4.26)

with probability larger than 1− 2 exp(−ϵ2/4), for all ϵ > 0.
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Finally, for T3 we use the Hoeffding inequality conditionnaly on (w1
j )j . Indeed,

T3 =
2c∗

n(T − 1)

n∑
j=1

T−1∑
t=2

t−1∑
k=1

(1− c∗)2(t−1)−k⟨w1
j − θ̃∗, Ekj ⟩

=
2c∗

n(T − 1)

n∑
j=1

T−1∑
k=1

T−1∑
t=k+1

(1− c∗)2(t−1)−k⟨w1
j − θ̃∗, Ekj ⟩

=
2

n(T − 1)

n∑
j=1

T−1∑
k=1

(1− c∗)k 1− (1− c∗)2(T−1−k)

2− c∗
⟨w1

j − θ̃∗, Ekj ⟩.

Conditionally on (w1
j )j the random variables (Ukj )j,k are independent, centered and bounded :

|Ukj | :=

∣∣∣∣∣(1− c∗)k 1− (1− c∗)2(T−1−k)

2− c∗
⟨w1

j − θ̃∗, Ekj ⟩

∣∣∣∣∣ ≤ 4, a.s..

By Hoeffding’s inequality, see Lemma 1.1.8, we get that

P

 1

n(T − 1)

∣∣∣∣∣∣
n∑
j=1

T−1∑
k=1

(
Ukj − EUkj

)∣∣∣∣∣∣ ≥ ϵ
 ≤ 2 exp

(
−2ϵ2n(T − 1)

64

)
.

This immediately leads to

|T3| ≤
4
√
2ϵ√

n(T − 1)
, (4.27)

with probability larger than 1 − 2 exp(−ϵ2/4). Putting together (4.25), (4.26) and (4.27), we get for all
ϵ > 0,

|U2| ≤ |T1|+ |T2|+ |T3|

≤ 1− (1− c∗)2(T−1)

c∗(2− c∗)(T − 1)
·
√
2ϵ√
n

+
20ϵ√

n(T − 1)
+

4
√
2ϵ√

n(T − 1)

≤ 1

c(T − 1)
·
√
2ϵ√
n

+

(
20 + 4

√
2
)
ϵ√

n(T − 1)
(4.28)

with probability larger than 1− 6 exp(−ϵ2/4). This leads to, for all 0 < ϵ <
√
nm c

2−c/2

V ≥ |U1| − |U3| − |U4|

V ≥ m
c

2− c
− ϵ+ 1√

n(T − 1)

(
1

c
√
T − 1

+ 1

)
−

√
2ϵ

c
√
n(T − 1)

−
(
20 + 4

√
2
)
ϵ√

n(T − 1)

≥ m
c

2− c
−
(
1 +
√
2
)
ϵ+ 1

c
√
n(T − 1)

−
(
21 + 4

√
2
)
ϵ+ 1√

n(T − 1)
≥ cm

4
, (4.29)

for n and T large enough, with probability larger than 1− 6 exp(−ϵ2/4). Large enough means we need

2
(
1 +
√
2
)
ϵ+ 2

mc2
√
T − 1

(2− c) + 2(21 + 4
√
2)ϵ+ 2

mc
(2− c) ≤

√
n(T − 1).
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And thus, as long as T ≥ 2, it is sufficient to have

2
(
1 +
√
2
)
ϵ+ 2

mc2
(2− c) + 2(21 + 4

√
2)ϵ+ 2

mc
(2− c) ≤

√
n(T − 1). (4.30)

We conclude using (4.21), (4.23) and (4.29) that, for n and T satisfying (4.30), for all 0 < ϵ <√
nm c

2−c/2,

|1̂− c− (1− c∗)| ≤ 1

V
·

[
(ϵ+ 1)2

n(T − 1)

(
1 +

1

c
√
T − 1

)
+

11ϵ√
n(T − 1)

]
,

≤ 4

cm
√
n(T − 1)

·

[
11ϵ+

(ϵ+ 1)2√
n(T − 1)

(
1 +

1

c
√
T − 1

)]
,

≤ 4

cm
√
n(T − 1)

·

[
11ϵ+

2(ϵ2 + 1)√
n(T − 1)

(
1 +

1

c
√
T − 1

)]
,

with probability larger than 1− 15 exp(−ϵ2/4), see (4.13).

4.5.5 Proof of Theorem 4.4.3

Proof of Theorem 4.4.3. Using (4.10) and (4.24) we get new expressions for α∗ := ∥θ̃∗∥1 and α̂ :

α∗ =
c∗

2− c∗
1− ∥θ̃∗∥22
Tr(V(wtj))

− 1,

α̂ =
ĉ

2− ĉ
1− ∥θ̂∥22
V

− 1, where V :=
1

n(T − 1)

T−1∑
t=1

n∑
j=1

∥∥wtj − w∥∥22 .
We decompose this difference and bound from above as follows :

|α̂− α∗| ≤

∣∣∣∣∣ ĉ

2− ĉ
1− ∥θ̂∥22
V

− c∗

2− c∗
1− ∥θ̂∥22
V

∣∣∣∣∣
+

∣∣∣∣∣ c∗

2− c∗
1− ∥θ̂∥22
V

− c∗

2− c∗
1− ∥θ̃∗∥22
V

∣∣∣∣∣
+

∣∣∣∣∣ c∗

2− c∗
1− ∥θ̃∗∥22
V

− c∗

2− c∗
1− ∥θ̃∗∥22
Tr(V(wtj))

∣∣∣∣∣ .
Then we bound from above the three following quantities :

Q1 :=

∣∣∣∣ ĉ

2− ĉ
− c∗

2− c∗

∣∣∣∣ , Q2 :=
∣∣∣∥θ̂∥22 − ∥θ̃∗∥22∣∣∣ and Q3 :=

∣∣V − Tr(V(wtj))
∣∣ .

We first bound from above Q1 :∣∣∣∣ ĉ

2− ĉ
− c∗

2− c∗

∣∣∣∣ = ∣∣∣∣ 1

2− ĉ
(ĉ− c∗) + c∗

(
1

2− ĉ
− 1

2− c∗

)∣∣∣∣ ≤ (1 + c∗) · |ĉ− c∗|

≤ 4 (1 + c)

cm
√
n(T − 1)

·

[
11ϵ+

2(ϵ2 + 1)√
n(T − 1)

(
1 +

1

c
√
T − 1

)]
,
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with probability larger than 1− 15 exp(−ϵ2/4), see Theorem 4.4.2.
We next bound from above Q2 :∣∣∣∥θ̂∥22 − ∥θ̃∗∥22∣∣∣ = ∣∣∣⟨θ̂ − θ̃∗; θ̂ + θ̃∗⟩

∣∣∣ ≤ ∥∥∥θ̂ + θ̃∗
∥∥∥
2
·
∥∥∥θ̂ − θ̃∗∥∥∥

2
,

≤ 2 ·

[
ϵ+ 1√
n(T − 1)

(
1

c
√
T − 1

+ 1

)]
,

with probability larger than 1− 2 exp
(
−ϵ2/4

)
, see Theorem 4.4.1.

Recalling w := θ̂, we then bound from above Q3

∣∣V − Tr(V(wtj))
∣∣ = 1

n(T − 1)

∣∣∣∣∣∣
∑
jt

∥∥wtj − w∥∥22 −∑
jt

∥∥∥wtj − θ̃∗∥∥∥2
2

∣∣∣∣∣∣ ,
=

1

n(T − 1)

∣∣∣∣∣∣2
∑
jt

〈
wtj ; θ̃

∗ − w
〉
+ n(T − 1)

(
∥w∥22 −

∥∥∥θ̃∗∥∥∥2
2

)∣∣∣∣∣∣ ,
≤ 2 ∥w∥2 ·

∥∥∥θ̃∗ − w∥∥∥
2
+

∣∣∣∣∥w∥22 − ∥∥∥θ̃∗∥∥∥22
∣∣∣∣ ,

≤ 2∥θ̂∥2 ·
∥∥∥θ̃∗ − θ̂∥∥∥

2
+ ∥θ̂ − θ̃∗∥2 ·

(
∥θ̂∥2 + ∥θ̃∗∥2

)
,

≤ ∥θ̂ − θ̃∗∥2 ·
(
3∥θ̂∥2 + ∥θ̃∗∥2

)
,

≤ 4∥θ̂ − θ̃∗∥2,

≤ 4 ·

[
ϵ+ 1√
n(T − 1)

(
1

c
√
T − 1

+ 1

)]
,

with probability larger than 1−2 exp
(
−ϵ2/4

)
, see Theorem 4.4.1. Notice that the high probability bounds

on Q2 and Q3 are based on the same event, realised with high probability.
Those three bounds together with (4.29) allow to bound from above the distance between α̂ and α∗

from above :

|α̂− α∗| =

∣∣∣∣∣∣∣
ĉ

2− ĉ
·
1−

∥∥∥θ̂∥∥∥2
2

V
− c∗

2− c∗
·
1−

∥∥∥θ̃∗∥∥∥2
2

Tr(V(wtj))

∣∣∣∣∣∣∣ ,
≤ Q1 ·

1−
∥∥∥θ̂∥∥∥2

2

V
+

c∗Q2

V (2− c∗)
+

1 + α

V
Q3

≤ 16 (1 + c)

c2m2
√
n(T − 1)

·

[
11ϵ+

2(ϵ2 + 1)√
n(T − 1)

(
1 +

1

c
√
T − 1

)]

+
8c

cm (2− c)

[
ϵ+ 1√
n(T − 1)

(
1

c
√
T − 1

+ 1

)]

+
16(1 + α)

cm
·

[
ϵ+ 1√
n(T − 1)

(
1

c
√
T − 1

+ 1

)]
,

with probability larger than 1− 17 exp
(
−ϵ2/4

)
.
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Chapitre 5

Dynamic topic model

5.1 Introduction

We consider the same framework as the one exposed in Chapter 4. In this new chapter, we shift our
attention to the estimation of parameters in the dynamic topic model, presented in definition 5.1.1. In
this scenario, we make the assumption that both the matrix W 1:T and the matrix Π1:T are not directly
accessible. We use the same notation as in Chapter 4.

Definition 5.1.1 (Dynamic Topic Model) We call Dynamic Topic Model (DTM) the model summarized
by the following equations, where t ∈ [T ], j ∈ [n] and c∗ ∈ (c, c) and satisfying assumptions 2, 3, 4 and
5 :

NY t
j |W t

j ∼ Multinomialp
(
N,A∗W t

j

)
,

W t+1
j := (1− c∗)W t

j + c∗∆t
j , t ∈ [T − 1],

∆t
j

i.i.d∼ D(θ∗).

The definition entails many properties for the matrix process at hand. Indeed, the columns of the matrix
W 1 are assumed independent and having the stationary distribution by Assumption 5 and the noise
vectors are i.i.d. imply that column vectors of W t are independent and have the stationary distribution
at any time t ∈ [T ]. Also, Y 1

j , . . . ,Y
T
j are independent given W 1

j , ...,W
T
j . This is summarized in the

following Proposition.

Proposition 5.1.1 (DTM attributes) The Dynamic Topic Model satisfies the following :

E
[
W t

j

]
:= θ̃∗ and V

[
W t

j

]
:=

c∗

2− c∗
· Σ(θ∗),

P(W t
1,...,W

t
n)

:=
n⊗
j=1

PW t
j
, for all t ∈ [T ],

P(Y 1
j ,...,Y

T
j )|(W 1

j ,...,W
T
j ) :=

T⊗
t=1

PY t
j |W t

j
, for all j ∈ [n].

Our only available information is the word-document frequencies Y 1:T . The conditional distribution
of the jth column at time step t in this matrix, given W 1:T , follows a multinomial distribution with an

107
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expectation of A∗W t
j . For simplicity, it is presumed that all documents share the same word count,

denoted as N . We still assume that the previously stated assumptions are holding true. The subsequent
proposition outlines the first and second moments, as well as the conditional moments of Y 1:T given
W 1:T .

Proposition 5.1.2 In the model (4.1) under the constraints defined in (4.2) and (4.3), we have, for all t
in [T − 1] and j ∈ [n],

E[Y t
j |W t

j ] = A∗W t
j

V[Y t
j |W t

j ] = N−1
(

diag(A∗W t
j)− (A∗W t

j)
⊤(A∗W t

j)
)

E[Y t
j ] = A∗θ̃∗,

V[Y t
j ] = N−1E[

(
diag(A∗W t

j)− (A∗W t
j)

⊤(A∗W t
j)
)
] +AV[W t

j ]A
⊤.

5.2 Estimation of the word-topic matrix A∗

The estimation procedure of A∗ uses the recovery procedure presented in Chapter 4 applied to the
matrix of empirical frequencies Y 1:T instead of the true underlying Π1:T . Hence, in this case, all the
previously introduced random quantities will be replaced by there empirical versions. First, M∗ ∈ Rp×p

defined as M∗ := (nT )−1diag
(
A∗W 1:T 1nT

)
∈ Rp×p is replaced by a data driven M̂ as follows

M̂ := (nT )−1diag
(
Y 1:T 1nT

)
∈ Rp×p.

Similarly Π∗ := M
−1/2
∗ Π1:T is replaced by Π̂ := M̂−1/2Y 1:T ∈ Rp×nT and R := [diag([U ].1)]

−1[[U ].2, . . . , [U ].K ] ∈
Rp×(K−1) is replaced by its empirical version R̂ where [Û ].1, . . . , [Û ].K are the first K left singular vectors
of Π̂. We recall that for all i ∈ [p], the quantity hi denotes the L1 norm of the ith row of A∗. In this pro-
cedure, we need to control the noise introduced by replacing the population quantities by their sample
estimates. We update the procedure with the following steps :

— Pre-SVD Normalization : Consider M̂ := (nT )−1diag
(
Y 1:T 1nT

)
∈ Dp(R∗

+) and derive Π̂ :=

M̂−1/2Y 1:T ∈ Rp×nT .
— SVD Computation : Π̂ is not guaranteed to have rank K, so we compute the K-SVD of Π̂ ∈

Rp×nT :

Û Σ̂V̂ ⊤ := U
(K)

Π̂
Σ
(K)

Π̂

(
V

(K)

Π̂

)⊤
.

Let [Û ].1, . . . , [Û ].K be the column vectors of Û ∈ Rp×K .
— Post-SVD Normalization : Compute R̂ ∈ Rp×(K−1) defined as follows, for i ∈ [p] and k ∈ [K − 1] :

[R̂]ik :=
[Û ]i(k+1)

[Û ]i1
.

This post-SVD normalization yields normalized vectors [R̂]1., . . . , [R̂]p., the row vectors of R̂.
— Vertex Hunting : We run the vertex hunting procedure as in the DETM on the estimated [R̂]1., . . . , [R̂]p..

It outputs estimated vertices η̂1, . . . , η̂K ∈ RK−1. Further, we obtain Λ̂ ∈ Rp×K such that for all
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i ∈ [p],
K∑
k=1

[Λ̂]ik = 1 and for all i ∈ [p],

[R̂]i. =
K∑
k=1

[Λ̂]ikη̂k.

— Topic Matrix Estimation : Normalize each column of the matrix M̂1/2diag([Û ].1)Φrow

(
Λ̂+

)
to

derive an estimator Â of the word-topic matrix A∗.
Finally, in this setting, the matrix Â can be represented as

Â = Φcol

(
M̂1/2diag([Û ].1)Φrow

(
Λ̂+

))
. (5.1)

Our primary objective remains to derive estimators of the autoregressive parameters, namely c∗,
θ̃∗, and α. To accomplish this, we follow the approach outlined in Chapter 4, using a projection of
the observed Y 1:T onto Â to derive a data-driven version Ŵ of W 1:T . We then adapt the previously
introduced estimators to this Ŵ . However, in order to establish non-asymptotic convergence rates for the
estimators ĉ, θ̂, and α̂, theoretical guarantees on the deviation of Â from A∗ are necessary. Specifically,
we need to analyze how M̂ deviates from M∗, how [Û ].1, . . . , [Û ].K deviate from [U ].1, . . . , [U ].K , and
finally, how the vertex hunting algorithm behaves with noisy entries. We adapt the theoretical analysis of
[84] to our setting with random matrices and further improve their results by providing explicit constants
and probability control.

We first consider a vertex hunting procedure that satisfies specific assumptions.

Assumption 8 (Vertex Hunting procedure) When the vertex hunting algorithm is given the noisy point
cloud [R̂]1., . . . , [R̂]p., the algorithm outputs η̂1, . . . , η̂K such that, up to a permutation and for a constant
CV H > 0,

max
k∈[K]

∥η̂k − ηk∥2 ≤ CV H max
i∈[p]

∥∥∥[R̂]
i.
− [R]i.

∥∥∥
2

a.s..

Deviation of M̂ from M∗

In this subsection we study the deviation of M̂ from M∗ in the Dynamic Topic Model framework, see
Definition 5.1.1.

Proposition 5.2.1 (Estimation error of M∗) For all i ∈ [p], for any ϵ > 0, with probability at least
1− 2 exp

(
−ϵ2

)
, we have ∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ < 2ϵ

√
min(2, hi)

NnT
.

Proof. See Proof in Subsection 5.5.1

Remark 5.2.1 Proposition 5.2.1 improves the result presented in Lemma E.1 in [84]. Specifically, by
setting ϵ2 = 5 log(nT ), it establishes that for all i ∈ [p], with probability at least 1− 2(nT )−5, we have∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ < 2

√
5hi log(nT )

NnT
.

Notably, unlike Lemma E.1 in [84], Proposition 5.2.1 does not require any assumption on the asymptotic
behavior of NnThmin/ log(nT ), the probability of the stated event is controlled non-asymptotically, and
the constants are explicitly provided.
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Corollary 5.2.2 (Estimation error of M∗) For any ϵ > 0, with probability at least 1 − 2p exp
(
−ϵ2

)
, we

have
max
i∈[p]

h
−1/2
i

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ < 2ϵ√
NnT max(hi/2, 1)

.

Proof. See Proof in Subsection 5.5.1
Next, we control for i ∈ [p] and k ∈ [K], the norm of the scalar products [Z1:T ]⊤i. [W

1:T ]k. where
Z1:T := Y 1:T −A∗W 1:T .

Proposition 5.2.3 (Concentration of cross products) For all i ∈ [p] and for all k ∈ [K], for any ϵ > 0,
with probability at least 1− 2 exp(−ϵ2), we have∣∣∣[Z1:T ]⊤i. [W

1:T ]k.

∣∣∣ < 2ϵ

√
min(2, hi)nT

N
.

Proof. See Proof in Subsection 5.5.2

Remark 5.2.2 Proposition 5.2.3 improves the first result presented in Lemma E.2 in [84]. Specifically,
by setting ϵ2 = 3 log(nT ), it establishes that for all i ∈ [p], with probability at least 1− 2(nT )−5, we have∣∣∣[Z1:T ]⊤i. [W

1:T ]k.

∣∣∣ < 2

√
5hi log(nT )nT

N
.

Notably, unlike Lemma E.2 in [84], Proposition 5.2.3 does not require any assumption on the asymptotic
behavior of NnThmin/ log(nT ), the probability of the stated event is controlled non-asymptotically, and
the constants are explicitly provided.

Corollary 5.2.4 (Concentration of cross products) For all k ∈ [K], for any ϵ > 0, with probability at
least 1− 2p exp

(
−ϵ2

)
, we have

max
i∈[p]

h
−1/2
i

∣∣∣[Z1:T ]⊤i. [W
1:T ]k.

∣∣∣ < 2ϵ

√
nT

N
.

Proof. See Proof in Subsection 5.5.2
The following corollary gives for all k ∈ [K], an upper bound on the norm of the vectors

∥∥∥M−1/2
∗ Z1:T [W 1:T ]k.

∥∥∥
2
.

Corollary 5.2.5 Consider the Dynamic Topic Model, see definition 5.1.1. Then, for all ϵ > 0 with proba-
bility at least 1− 2pK exp(−ϵ2), we have, for all k ∈ [K],

max
k∈[K]

∥∥∥M−1/2
∗ Z1:T [W 1:T ]k.

∥∥∥
2
≤ 2ϵ

√
pnT

c2N
.

Proof. See Proof in Subsection 5.5.2

Remark 5.2.3 Corollary 5.2.5 improves the second result presented in Lemma E.2 in [84]. Specifically,
by setting ϵ2 = 5 log(nT ), it establishes that with probability at least 1− 2pK(nT )−5, we have

max
k∈[K]

∥∥∥M−1/2
∗ Z1:T [W 1:T ]k.

∥∥∥
2
< 2

√
5pnT log(nT )

c2N
.

Notably, unlike Lemma E.2 in [84], Proposition 5.2.3 does not require any assumption on the asymptotic
behavior of NnThmin/ log(nT ), the probability of the stated event is controlled non-asymptotically, and
the constants are explicitly provided.
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We now state a proposition which controls the deviation of the entries of the matrix [Z1:T ]⊤[Z1:T ]
from its expectation.

Proposition 5.2.6 For the absolute constant c > 0 introduced in Lemma 1.1.10, for any ϵ > 0, with
probability at least 1− 4 exp

(
2 log(p)−min

(
ϵ2;
√
cnTϵ

))
we have

max
(i,m)∈[p]2

∣∣∣∣∣ [Z1:T ]⊤i. [Z
1:T ]m. − E

[
[Z1:T ]⊤i. [Z

1:T ]m.
]

√
hi · hm

∣∣∣∣∣ < 576 · e
log(2)

√
c
· ϵ

√
nT

N max(hmin/2, 1)
.

Proof. See Proof in Subsection 5.5.3

Remark 5.2.4 Proposition 5.2.6 improves the results presented in Lemmas E.3 and E.4 in [84]. Specifi-
cally, by setting ϵ2 = 5 log(nT ), it establishes that for all (i,m) ∈ [p]2, with probability at least 1−4(nT )−5

if c ≥ 5 log(nT )

nT
, we have∣∣∣∣∣ [Z1:T ]⊤i. [Z

1:T ]m. − E
[
[Z1:T ]⊤i. [Z

1:T ]m.
]

√
hi · hm

∣∣∣∣∣ ≤ 576 · e
log(2)

√
c
·
√
5 log(nT )nT

N
.

Notably, unlike Lemmas E.3 and E.4 in [84], Proposition 5.2.6 does not require any assumption on
the asymptotic behavior of log(nT ), the probability of the stated event is controlled non-asymptotically.
Finally, the upper bound in Proposition 5.2.6 does not contain additional terms in contrast to the ones
in [84], which represents an improvement.

Finally we derive deviation bounds for the matrix

M
−1/2
∗

(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
M

−1/2
∗ .

Proposition 5.2.7 For the absolute constant c > 0 introduced in Lemma 1.1.10, for any ϵ > 0, with
probability at least 1− 2 exp

(
p log(9)−min

(
ϵ2,
√
cnTϵ

))
, we have

∥M−1/2
∗

(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
M

−1/2
∗ ∥op ≤

576 · e
c2 log(2)

·
√
nTϵ

N
√
cmax(hmin/2, 1)

.

Proof. See Proof in Subsection 5.5.4

Remark 5.2.5 Proposition 5.2.7 improves the result presented in Lemmas E.5 and E.6 in [84]. Spe-
cifically, by setting ϵ2 = p log(9) + 5 log(nT ), it establishes that with probability at least 1 − 2(nT )−5 if

c ≥ p log(9) + 5 log(nT )

nT
we have

∥M−1/2
∗

(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
M

−1/2
∗ ∥op ≤

2304

c2
·
√
5nT (p log(9) + 5 log(nT ))

N
√
c

.

Notably, unlike Lemmas E.5 and E.6 in [84], Proposition 5.2.1 does not require any assumption on either
the asymptotic behavior of log(nT + N) or the asymptotic behaviour of p. Moreover, the probability of
the stated event is controlled non-asymptotically. Finally, the upper bound in Proposition 5.2.6 does not
contain additional terms in contrast to the ones in [84], which represents an improvement.
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Deviation of the estimated singular space from the true

In this subsection, we consider the Dynamic Topic Model framework, see Definition 5.1.1 and give
deviation bounds for the estimated left-singular vectors with respect to the true ones in the factorization
procedure. More precisely, the vectors [U ].K , . . . , [U ].K (respectively [Û ].1, . . . , [Û ].K) are the singular
vectors of M−1/2

∗ A∗W 1:T (respectively M̂−1/2Y 1:T ). We define two symmetric matrices of size p× p as
follows,

Ĝ := M̂−1/2Y 1:T
[
Y 1:T

]⊤
M̂−1/2− nT

N
Ip, G∗ :=

(
1− 1

N

)
M

−1/2
∗ A∗W 1:T

[
A∗W 1:T

]⊤
M

−1/2
∗ . (5.2)

We also consider the following K ×K matrices :

Φ̂ := Â⊤M̂−1Â, Φ∗ := (A∗)⊤M−1
∗ A∗. (5.3)

We then consider the eigenvalues [λ1(G∗), . . . , λmin(G∗)] of G∗ and [λ1(Ĝ), . . . , λmin(Ĝ)] of Ĝ. We no-
tice that Theorem 4.3.3 ensures that rankG∗ = K almost surely and thus λmin(G∗) > 0 almost surely.
In addition we notice that G∗ = Π∗Π

⊤
∗ and Ĝ = Π̂Π̂⊤. Hence [Û ].1, . . . , [Û ].K are the eigenvectors of Ĝ

and [U ].K , . . . , [U ].K are the eigenvectors of G∗.

Proposition 5.2.8 Consider the Assumption 7. Then the following inequality holds almost surely for all
i ∈ [p],

c2hi ≤ λK(Σ1:T
W )hi ≤ [M∗]ii ≤ hi.

Proof. See Proof in Subsection 5.5.5

Proposition 5.2.9 Consider the matrix G∗ in (5.2) and Assumption 7. Then rank(G∗) = K and its
eigenvalues satisfy almost surely the following inequalities,(
1− 1

N

)
nTK

c2
≥ λ1(G∗) and λK(G∗) ≥

(
1− 1

N

)
nTc22 and λ1(G∗) ≥

(
1− 1

N

)
nTc3 + λ2(G∗).

Proof. See Proof in Subsection 5.5.6

Remark 5.2.6 Proposition 5.2.9 extends the first result presented in Lemma F.2 in [84]. Notably, Pro-
position 5.2.9 does not require any assumption on either the asymptotic behavior of log2(nT ) or the
asymptotic behaviour of p log(nT ). Moreover, the constants are explicitly provided.

Proposition 5.2.10 Consider the Assumption 7. We denote [U ].K , . . . , [U ].K the eigenvectors of G∗
and U = [[U ].K , . . . , [U ].K ] ∈ Rp×K . Then for all i ∈ [p], we have almost surely,

∥Ui.∥2 ≤
√
Khi

λK(Σ1:T
W )

.

Proof. See Proof in Subsection 5.5.7

Remark 5.2.7 Proposition 5.2.10 improves the result presented in Lemma F.3 in [84]. Notably, Pro-
position 5.2.10 does not require any assumption on either the asymptotic behavior of log2(nT ) or the
asymptotic behaviour of p log(nT ). Moreover, the constants are explicitly provided.
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Theorem 5.2.11 Consider the Assumptions 6 and 7. Then for N , n and T large enough, for all i ∈ [p]
and for any ϵ1, ϵ2, ϵ3, ϵ4 > 0, with probability at least 1 − 2p exp(−ϵ21) − 2K exp(−ϵ22) − 2pK exp(−ϵ23) −
4p exp

(
−min

(
ϵ24;
√
cnTϵ4

))
, the quantity h−1/2

i

∥∥∥e⊤i (Ĝ−G∗

)∥∥∥
2

is bounded from above by

2

√
nTp

N

[
ϵ1

(
2

√
p

Nc1c2K
+ 4

K

c22
+ 3

√
K

c22
√
c1

)
+ 4

ϵ3 + ϵ2
√
K/c1

c2
+ 4ϵ4

288 · e
log(2)

√
c
·

√
p

c2
√
Nc1K

]
,

where c is an absolute constant appearing in Lemma 1.1.10. In addition, N , n and T large enough
means :

NnT ≥ ϵ21max

(
16

c22hmin
;
32

c22
;

9K2

c32h
3
min

)
.

Proof. See Proof in Subsection 5.5.8

Remark 5.2.8 We set ϵ21 = ϵ24 = log(nTp), ϵ22 = log(nTK) and ϵ23 = log(nTpK) and we assume

c ≥ log(nTp)

nT
. We notice that forN , n and T large enough the sample size conditions of Theorem 5.2.11

is fulfilled :

NnT ≥ log(nTp)max

(
16

c22hmin
;
32

c22
;

9K2

c32h
3
min

)
.

Then, there exists χ, a positive constant only depending on K such that for all i ∈ [p], with probability at

least 1− 10

nT
:

h
−1/2
i

∥∥∥e⊤i (Ĝ−G∗

)∥∥∥
2
≤ χ

√
nTp log(nTp)

N

(√
p

N
+ 1

)
.

This convergence rate matches with the one stated in Lemma F.4 in [84].

Theorem 5.2.12 Consider the Assumptions 6 and 7. Then for N , n and T large enough, for all i ∈ [p]

and for any ϵ1, ϵ3, ϵ4 > 0, with probability at least 1−2p exp
(
−ϵ21

)
−2pK exp

(
−ϵ23

)
−2·9p exp

(
−min

(
ϵ24,
√
cnTϵ4

))
,

the quantity
∥∥∥(Ĝ−G∗

)∥∥∥
op

is bounded from above by

4ϵ1
√
nTp

Nc2
√
Nc1K

+
8ϵ3K

√
nTp

c2
√
N

+
4ϵ4
√
nT

N
· 288 · e
c2 log(2)

√
c
+

24ϵ1
√
nTpK2

c22
√
N

.

where c is an absolute constant appearing in Lemma 1.1.10. In addition, N , n and T large enough
means :

NnT ≥ ϵ21max

(
16p2

c42c1K
,
4pK

c32

)
.

Proof. See Proof in Subsection 5.5.9

Remark 5.2.9 We set ϵ21 = log(nTp), ϵ23 = log(nTpK) and ϵ24 = log(nT ) + p log(9) and we assume

c ≥ log(nT ) + p log(9)

nT
. We notice that for N , n and T large enough the sample size conditions of

Theorem 5.2.12 is fulfilled :

NnT ≥ log(nTp)max

(
16p2

c42c1K
,
4pK

c32

)
.
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Then, there exists χ, a positive constant only depending onK such that, with probability at least 1− 6

nT
:

∥∥∥(Ĝ−G∗

)∥∥∥
op
≤ χ

√
nTp log(nT )

N
.

This convergence rate matches with the one stated in Lemma F.5 in [84].

We now derive a large-deviation bound for singular vectors. We recall that Û =
[
[Û ].1, . . . , [Û ].K

]
contains the first K left singular vectors of the noisy quantity Π̂. Their population counterparts are deno-
ted respectively U and Π∗. For any matrix M we denote [M ]i. the ith row of M .

Theorem 5.2.13 Consider Assumptions 6 and 7. Then there exists a matrix Ω = diag(ω,Ω2:K) ∈ RK×K

where ω ∈ {−1, 1} and Ω2:K ∈ R(K−1)×(K−1) is an orthogonal matrix such that for N , n and T large
enough, for any ϵ1, ϵ2, ϵ3, ϵ4 > 0 satisfying

max(ϵ1, ϵ2, ϵ3, ϵ4) ≤
√
nT

c32min
(
c3, c

2
2

)
12
√
K

(
2
√
p

N
+ 2K

√
p+

576e

log(2)
√
Nc

+
4K2

c2

√
p

) ,
for all i ∈ [p] and with probability at least 1 − 2p exp(−ϵ21) − 2K exp(−ϵ22) − 2pK exp(−ϵ23) − 2 · (2p +
9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
we have

∥∥∥Ω[Û ]i. − [U ]i.

∥∥∥
2
≤ Ctot(p,N)max(ϵ1, ϵ2, ϵ3, ϵ4)

√
hip

nT (N − 2)
,

where

Ctot(p,N) ≤ 40K3/2

c42min
(
c3, c22

) (K + 2 +
√

2K/c1 + 2K2c−1
2 + 2880(cpN)−1/2 +N−1

c2
+ 2 + 2

√
K/c1 +

√
p

Nc1K
+

√
Kp

c1N

)
.

Moreover, N , n and T large enough means :

NnT ≥ ϵ21max

(
36K

c32
;

64p

c42c1K
;

16

c22hmin
;
32

c22
;

9K2

c32h
3
min

)
.

Proof. See Proof in Subsection 5.5.10

We note that the dependency ofCtot(p,N) is of the order of magnitude of
K3/2

c42min
(
c3, c22

) (√ Kp

c1N
+K2

)
.

Remark 5.2.10 We set ϵ21 = log(nTp), ϵ22 = log(nTK), ϵ23 = log(nTpK) and ϵ24 = log(nT ) + log(2p +

9p) ≤ log(nT ) + p once p ≥ 2 and we assume c ≥ log(nT ) + p

nT
. We notice that for N , n and T large

enough the sample size conditions of Theorem 5.2.13 are fulfilled :

nT ≥ ψ · (log(nT ) + p) (
√
p+ 1),

NnT ≥ log(nTp)max

(
36K

c32
;

64p

c42c1K
;

16

c22hmin
;
32

c22
;

9K2

c32h
3
min

)
,
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for any positive constant ψ only depending on K. Then, there exists χ, a positive constant only depen-

ding on K such that for all i ∈ [p], with probability at least 1− 8

nT
:

∥∥∥Ω[Û ]i. − [U ]i.

∥∥∥
2
≤ χ

√
hip(log(nT ) + p)

nT (N − 2)

(
1 +

√
p

N

)
.

This convergence rate matches with the one stated in Theorem 3.1 in [84].

Proposition 5.2.14 (Rows of R Lie in a Simplex) There exist K vectors of R(K−1) denoted η1, . . . , ηK
such that the matrix R ∈ Rp×(K−1) defined in the Post-SVD Normalization step in Chapter 4 has its rows
embedded in Gη, where

Gη :=

{
x ∈ RK−1 : x =

K∑
k=1

αkηk, ∀k ∈ [K], αk ≥ 0,
K∑
k=1

αk = 1

}
.

Furthermore, we denote N := [η1, . . . , ηK ]⊤ ∈ RK×(K−1).

Proof. See proof in Subsection 5.5.11

Theorem 5.2.15 Consider the Assumptions 6 and 7. Consider the matrices R and R̂ defined in the
Post-SVD Normalization step. Then, for N , n and T large enough, for any ϵ1, ϵ2, ϵ3, ϵ4 > 0 satisfying

max(ϵ1, ϵ2, ϵ3, ϵ4) ≤
√
nT

c32min
(
c3, c

2
2

)
12
√
K

(
2
√
p

N
+ 2K

√
p+

576e

log(2)
√
Nc

+
4K2

c2

√
p

) ,
for all i ∈ [p], with probability at least 1 − 2p exp(−ϵ21) − 2K exp(−ϵ22) − 2pK exp(−ϵ23) − 2 · (2p +

9p) exp
(
−min

(
ϵ24;
√
cnTϵ4

))
, there exists Ω2:K ∈ R(K−1)×(K−1), an orthogonal matrix, such that

∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
≤

(
2
Ctot(p,N)max(ϵ1, ϵ2, ϵ3, ϵ4)

c1c
9/2
2 K

p3/2√
nT (N − 2)

)(
2 +

p

c52c1K

)
,

with Ctot(p,N) defined in Theorem 5.2.13. Moreover, N , n and T large enough means :

NnT ≥ ϵ21max

(
36K

c32
;

64p

c42c1K
;

16

c22hmin
;
32

c22
;

9K2

c32h
3
min

)
and (N−2)nT ≥ Ctot(p,N)2max(ϵ1, ϵ2, ϵ3, ϵ4)

2 p3

c92c
2
1K

2
.

Proof. See proof in Subsection 5.5.12

Remark 5.2.11 We set ϵ21 = log(nTp), ϵ22 = log(nTK), ϵ23 = log(nTpK) and ϵ24 = log(nT ) + log(2p +
9p) ≤ log(nT ) + p once p ≥ 2. We notice that for N , n and T large enough the sample size conditions
of Theorem 5.2.15 are fulfilled :

nT ≥ ψ · (log(nT ) + p) (
√
p+ 1),

(N − 2)nT ≥ ψ · p3 (log(nT ) + p)
( p
N

+ 1
)
,

NnT ≥ ψ · log(nTp)max

(
36K

c32
;

64p

c42c1K
;

16

c22hmin
;
32

c22
;

9K2

c32h
3
min

)
,
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for any positive constant ψ only depending on K. Then, there exists χ, a positive constant only depen-

ding on K such that for all i ∈ [p], with probability at least 1− 8

nT
:

∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
≤ χp

√
p log(nT ) + p2

nT (N − 2)

(
1 +

√
p

N

)
(1 + p) .

This convergence rate matches with the one stated in Theorem 3.2 in [84].

Theorem 5.2.16 Consider the Assumptions 6 and 7. Let Â be the estimator of A∗ defined in (5.1). Let
DK be the set of matrices Ω = diag(ω,Ω2:K) ∈ RK×K where ω ∈ {−1, 1} and Ω2:K ∈ R(K−1)×(K−1) is
an orthogonal matrix. Then, for N , n and T large enough, for any ϵ1, ϵ2, ϵ3, ϵ4 > 0 satisfying

max(ϵ1, ϵ2, ϵ3, ϵ4) ≤
√
nT

c32min
(
c3, c

2
2

)
12
√
K

(
2
√
p

N
+ 2K

√
p+

576e

log(2)
√
Nc

+
4K2

c2

√
p

) ,
for all i ∈ [p], with probability at least 1 − 2p2 exp(−ϵ21) − 2pK exp(−ϵ22) − 2p2K exp(−ϵ23) − 2p · (2p +
9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
and up to a permutation of columns of Â we have

max
i∈[p]


∥∥∥ [Â]i. − [A∗]i.

∥∥∥
1

hi

 ≤ CA(p,N)max(ϵi)i∈[4]

√
p

nT (N − 2)
+ ϵ1

CB√
NnT

.

Moreover, N , n and T large enough imply that :

NnT ≥ ϵ21max

(
36K

c32
;
4K

c22
;

4p

c1K
;

64p

c42c1K
;

16

c22hmin
;
32

c22
;

9K2

c32h
3
min

)
,

√
NnT ≥ 4

c
9/2
2 c1

[
Ctot(p,N)max(ϵi)i∈[4]

√
p

[
1 +

(
2 +

p

c52c1K

)(
8pK1/2

c1c
13/2
2

+
8pK2

c1c
15/2
2

max
x∈Gη

∥x∥2

)]
+

2
√
Kϵ1
c2

]
,

(N − 2)nT ≥ Ctot(p,N)2max(ϵi)
2
i∈[4]p

3max

(
1

c92c
2
1K

2
;
4K2C2

V H

c22

(
2 +

p

c52c1K

)2
)
.

In addition Ctot(p,N) is bounded from above in Theorem 5.2.13 and the quantities CA(p,N) and
CB(p,N) are defined as follows :

CA(p,N) := Ctot(p,N)
4
√
2(

c
9/2
2 c1

) [1 + (2 + p

c52c1K

)(
8pK1/2

c1c
13/2
2

+
8pK2

c1c
15/2
2

max
x∈Gη

∥x∥2

)]
, CB :=

8
√
2K

c
11/2
2 c1

.

Proof. See proof in Subsection 5.5.13

We note that the dependency ofCA(p,N) is of the order of magnitude of
K5/2p2

c212 c
3
1min

(
c3, c22

) (√ Kp

c1N
+K2

)
.

Remark 5.2.12 We set ϵ21 = 2 log(nTp), ϵ22 = log(nTpK), ϵ23 = 2 log(nTpK) and ϵ24 = log(nT )+log(2p2+
p9p) ≤ log(nT )+ p once p ≥ 34. We notice that for N , n and T large enough the sample size conditions
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of Theorem 5.2.16 are fulfilled :

nT ≥ ψ · (log(nT ) + p) (
√
p+ 1),

(N − 2)nT ≥ ψ · p3 (log(nT ) + p)
( p
N

+ 1
)
(1 + p)2,

NnT ≥ ψ · log(nTp)max

(
36K

c32
;
4K

c22
;

4p

c1K
;

64p

c42c1K
;

16

c22hmin
;
32

c22
;

9K2

c32h
3
min

)
,

√
NnT ≥ ψ · √p (log(nT ) + p)

(√
p

N
+ 1

)(
1 + max

x∈Gη

∥x∥2
)
,

for any positive constant ψ only depending on K. Then, there exists χ, a positive constant only depen-

ding on K such that with probability at least 1− 8

nT
:

max
i∈[p]


∥∥∥ [Â]i. − [A∗]i.

∥∥∥
1

hi

 ≤ χ√p log(nT ) + p2

nT (N − 2)
p

(
1 +

√
p

N

)
(1 + p)(1 + max

x∈Gη

∥x∥2).

This convergence rate matches with the one stated in Lemma G.1 in [84].

Theorem 5.2.17 Consider the Assumptions 6, 7 and 8. Let Â be the estimator of A∗ defined in (5.1).
Then, under the same conditions and with the same notations as in Theorem 5.2.16 we have

p∑
i=1

∥∥∥[Â]i. − [A∗]i.

∥∥∥
1
≤ KCA(p,N)max(ϵi)i∈[4]

√
p

nT (N − 2)
+ ϵ1

KCB√
NnT

,

with probability at least 1−2p2 exp(−ϵ21)−2pK exp(−ϵ22)−2p2K exp(−ϵ23)−2p·(2p+9p) exp
(
−min

(
ϵ24;
√
cnTϵ4

))
.

Proof. See proof in Subsection 5.5.14

Remark 5.2.13 We set ϵ21 = 2 log(nTp), ϵ22 = log(nTpK), ϵ23 = 2 log(nTpK) and ϵ24 = log(nT )+log(2p2+
p9p) ≤ log(nT )+ p once p ≥ 34. We notice that for N , n and T large enough the sample size conditions
of Theorem 5.2.17 are fulfilled, see the remark under Theorem 5.2.16. Then, there exists χ, a positive

constant only depending on K such that with probability at least 1− 8

nT
:

p∑
i=1

∥∥∥[Â]i. − [A∗]i.

∥∥∥
1
≤ χ

√
p log(nT ) + p2

nT (N − 2)
p

(
1 +

√
p

N

)
(1 + p)(1 + max

x∈Gη

∥x∥2).

This convergence rate matches with the one stated in Theorem 3.3 in [84].

5.3 Estimation of the topic-document matrix

This section is devoted to giving a proxy random matrix W 1:T of the unobserved W 1:T , once an
estimator Â of A∗ is derived, see Section 5.2. First, let us denote

Φ∗ := (A∗)⊤M−1
∗ A∗ and Φ̂ := Â⊤M̂−1Â.
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Notice that for all j ∈ [n] and for all t ∈ [T ],

W t
j =

(
(A∗)⊤M−1

∗ A∗
)−1
·
(
(A∗)⊤M−1

∗ Πt
j

)
,

= (Φ∗)−1 ·
(
(A∗)⊤M−1

∗ Πt
j

)
.

This motivates to define for all j ∈ [n] and for all t ∈ [T ],

W̃ t
j =

(
Â⊤M̂−1Â

)−1
·
(
Â⊤M̂−1Y t

j

)
,

=
(
Φ̂
)−1
·
(
Â⊤M̂−1Y t

j

)
.

However, each W t
j lies in the K dimensional simplex non-negative entries and unit L1 norm. Hence we

derive for all j ∈ [n] and for all t ∈ [T ] the estimator Ŵ t
j by setting negative entries of W̃ t

j to zero and
normalizing it to have a unit L1 norm.

Theorem 5.3.1 For every t ∈ [T ] and for every j ∈ [n], for N , n and T large enough, for any (ϵi)i∈[5] ∈
(R∗

+)
5 satisfying

max(ϵ1, ϵ2, ϵ3, ϵ4) ≤
√
nT

c32min
(
c3, c

2
2

)
12
√
K

(
2
√
p

N
+ 2K

√
p+

576e

log(2)
√
Nc

+
4K2

c2

√
p

) ,
with probability at least 1−2p2 exp(−ϵ21)−2pK exp(−ϵ22)−2Kp2 exp(−ϵ23)−2p·(2p+9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
−

2K exp(−ϵ25), we have : ∥∥∥Ŵ t
j −W t

j

∥∥∥
1
≤
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+
ν2ϵ5√
N

+
ν3ϵ1√
NnT

,

where ν1(p,N) := 32K7/2√p
[
CA(p,N)

√
p+ CB

] [2 + c2
c22

+
2K3/2(2

√
K + 1)

c42

]
, ν2 :=

4
√
2K3/2

c22
and

ν3 :=
16K3

c52
. Moreover, N , n and T large enough imply that :

NnT ≥ ϵ21max

(
36K

c32
;
4K

c22
;

4p

c1K
;

64p

c42c1K
;

16

c22hmin
;

32

c22h
2
min

;
32

c22
;

9K2

c32h
3
min

)
,

√
NnT ≥ 4

c
9/2
2 c1

[
Ctot(p,N)max(ϵi)i∈[4]

√
p

[
1 +

(
2 +

p

c52c1K

)(
8pK1/2

c1c
13/2
2

+
8pK2

c1c
15/2
2

max
x∈Gη

∥x∥2

)]
+

2
√
Kϵ1
c2

]
,

nT (N − 2) ≥ 8K3/2max(ϵ2i )i∈[4] [CA(p,N)
√
p+ CB]

√
p,

(N − 2)nT ≥ Ctot(p,N)2max(ϵi)
2
i∈[4]p

3max

(
1

c92c
2
1K

2
;
4K2C2

V H

c22

(
2 +

p

c52c1K

)2
)
,

√
nT (N − 2) ≥ 4K3/2ϵ1

c22
+

√
16K3ϵ21/c

4
2 + 32

[
2
√
K + 1

]
max(ϵ2s)s∈[4]K

7/2
[
CA(p,N)

√
p+ CB

]√
p

c2
.
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Proof. See proof in Subsection 5.5.15

We note that the dependency of ν1(p,N) is of the order of magnitude of
p3K6

c212 c
3
1min

(
c3, c22

) (√ Kp

c1N
+K2

)
and the sample size condition can be restated, in order of magnitude, as :

√
NnT ≥ p5/2K5/2

c212 c
3
1min(c3, c22)

(√
Kp

c1N
+K2

)
, nT (N − 2) ≥ max(ϵ2i )i∈[4]

K4p3

c212 c
3
1min

(
c3, c22

) (√ Kp

c1N
+K2

)
.

Remark 5.3.1 We set ϵ21 = 2 log(nTp), ϵ22 = log(nTpK), ϵ23 = 2 log(nTpK), ϵ25 = log(nTK) and ϵ24 =
log(nT ) + log(2p2 + p9p) ≤ log(nT ) + p once p ≥ 34. We notice that for N , n and T large enough the

sample size conditions of Theorem 5.3.1 are fulfilled. Then, with probability at least 1− 8

nT
, in order of

magnitude there is :

∥∥∥Ŵ t
j −W t

j

∥∥∥
1
≤ p3K6(log(nT ) + p)

c212 c
3
1min

(
c3, c22

)
nTN

(√
Kp

c1N
+K2

)
+
K3/2

√
log(nTK)

c22
√
N

+
K3
√
log(nTp)

c52
√
NnT

.

5.4 Estimation of the underlying parameters of the autoregressive mo-
del

This subsection is devoted to the estimation of the parameters of the autoregressive model (4.3)
once an estimator Ŵ 1:T of the realization W 1:T of W 1:T is defined, as in the previous subsection.
Similarly as in Chapter 4, we define the estimators of θ̃∗, c∗ and α via the method of moments. We
define θ̂ as the empirical mean of the estimated

(
Ŵ t
j

)
j,t

:

θ̂ :=
1

n(T − 1)

n∑
j=1

T−1∑
t=1

Ŵ t
j . (5.4)

We estimate 1−c∗ by the normalized sum of scalar products between the centered consecutive vectors
Ŵ t+1
j − Ŵ+1 and Ŵ t

j − Ŵ :

(̂1− c) :=

T−1∑
t=1

n∑
j=1

〈
Ŵ t+1
j − Ŵ+1; Ŵ t

j − Ŵ
〉

T−1∑
t=1

n∑
j=1

∥∥∥Ŵ t
j − Ŵ

∥∥∥2
2

, (5.5)

where Ŵ+1 :=
1

n(T − 1)

T−1∑
t=1

n∑
j=1

Ŵ t+1
j and Ŵ :=

1

n(T − 1)

T−1∑
t=1

n∑
j=1

Ŵ t
j = θ̂.

Finally, using the variance of the stationary sequence W t
j and the explicit expression of the matrix

Σ, we see that :

Tr(V(W t
j)) =

c∗

2− c∗
1− ∥θ̃∗∥22
α+ 1

.
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Thus, we plug-in estimators θ̂, ĉ and the empirical variance to get

α̂ =
2− ĉ

ĉ · (1− ∥θ̂∥22)
· 1

n(T − 1)

∑
j

∑
t

Tr((Ŵ t
j − Ŵ )(Ŵ t

j − Ŵ )⊤). (5.6)

Next we give the convergence rates of these three estimators.

Theorem 5.4.1 (Estimation of θ̃∗) In the DTM model, under the Assumptions 2, 3, 4 and 5, the esti-
mator θ̂ defined in (5.4) is such that for N , n and T large enough, for every (ϵi)i∈[6] ∈ (R∗

+)
6 satisfying

ϵ6 <

√
nm

c

2− c
/2 and

max(ϵ1, ϵ2, ϵ3, ϵ4) ≤
√
nT

c32min
(
c3, c

2
2

)
12
√
K

(
2
√
p

N
+ 2K

√
p+

576e

log(2)
√
Nc

+
4K2

c2

√
p

) ,
we have∥∥∥θ̂ − θ̃∗∥∥∥

2
≤ ϵ6 + 1√

n(T − 1)

(
1

c
√
T − 1

+ 1

)
+ ϵ5

4
√
2K3/2

c22
√
N

+ ϵ1
16K3

c52
√
NnT

+
32max(ϵ2s)s∈[4]K

7/2√p
[
CA(p,N)

√
p+ CB

]
c22nT (N − 2)

[
(2 + c2) +

2K3/2(2
√
K + 1)

c22

]
.

with probability larger than 1−2p2 exp(−ϵ21)−2pK exp(−ϵ22)−2Kp2 exp(−ϵ23)−2p·(2p+9p) exp
(
−min

(
ϵ24;
√
cnTϵ4

))
−

2K exp(−ϵ25)−2 exp
(
−ϵ26/4

)
. Moreover the condition on N , n and T is similar to the one stated in Theo-

rem 5.3.1.

Proof. Let us denote θ̄ the empirical mean of the unobserved W t
j . Then use the triangle inequality to

get : ∥∥∥θ̂ − θ̃∗∥∥∥
2
≤
∥∥∥θ̂ − θ̄∥∥∥

2
+
∥∥∥θ̄ − θ̃∗∥∥∥

2
.

The quantity
∥∥∥θ̄ − θ̃∗∥∥∥

2
is bounded from above in Theorem 4.4.1 and the L1-L2 inequality combined with

the triangle inequality ensure that the quantity
∥∥∥θ̂ − θ̄∥∥∥

2
is bounded from above by

1

nT

n∑
j=1

T∑
t=1

∥∥∥(Ŵ t
j −W t

j

)∥∥∥
1
.

We conclude using Theorem 5.3.1.

Remark 5.4.1 We set ϵ21 = 2 log(nTp), ϵ22 = log(nTpK), ϵ23 = 2 log(nTpK), ϵ25 = log(nTK), ϵ24 =
log(nT ) + log(2p2 + p9p) ≤ log(nT ) + p once p ≥ 34 and ϵ26 = 4 log(nT ). Then, for N , n and T large

enough with probability at least 1− 12

nT
, in order of magnitude there is :

∥∥∥θ̂ − θ̃∗∥∥∥
2
≤
√

log(nT )√
n(T − 1)

(
1

c
√
T − 1

+ 1

)
+
K

c22

√
K log(nTK)

N
+

√
log(nTp)K3

c52
√
NnT

+

[log(nT ) + p]K6p3
(√

Kp

c1N
+K2

)
c232 c

3
1min

(
c3, c22

)
nT (N − 2)

[
c2 +

K2

c22

]
.
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This rate of convergence can be compared to the one obtained in Theorem 4.4.1. In the oracle DETM,

the convergence rate is of order O

(√
log(nT )

n(T − 1)

)
with probability at least 1 − 2

nT
. In the realistic

DTM, fixing the number of topics K and the vocabulary size p, the rate of convergence is of order

O

(√
log(nT )

n(T − 1)
+

√
log(nT )

N

)
with probability at least 1− 12

nT
. Hence the probability control is weaker

by a constant factor in the DTM and an extra term

√
log(nT )

N
appears due to the multinomial noise. We

underline that the other terms come from the estimation error of A∗.

Theorem 5.4.2 (Estimation of c∗) In the DTM, under the Assumptions 2, 3, 4 and 5, the estimator
(̂1− c) defined in (5.5) is such that for n and T large enough, for any (ϵi)i∈[7] ∈ (R∗

+)
7 satisfying

max(ϵ6, ϵ7) <

√
nm

c

2− c
/2 and

max(ϵ1, ϵ2, ϵ3, ϵ4) ≤
√
nT

c32min
(
c3, c

2
2

)
12
√
K

(
2
√
p

N
+ 2K

√
p+

576e

log(2)
√
Nc

+
4K2

c2

√
p

) ,
we have

|(̂1− c)− (1− c∗)| ≤ 64(1− c∗)
cm

(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+
ν2ϵ5√
N

+
ν3ϵ1√
NnT

)

+
8c∗

cm

[
(ϵ7 + 1)2

n(T − 1)

(
1 +

1

c
√
T − 1

)
+

11ϵ7√
n(T − 1)

]
,

with probability larger than 1−2n(T −1)p2 exp(−ϵ21)−2n(T −1)pK exp(−ϵ22)−2n(T −1)Kp2 exp(−ϵ23)−
2n(T − 1)p · (2p + 9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
− 2n(T − 1)K exp(−ϵ25) − 2n(T − 1) exp

(
−ϵ26/4

)
−

13 exp(−ϵ27/4). Moreover, N , n and T large enough means :(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+
ν2ϵ5√
N

+
ν3ϵ1√
NnT

)
≤ 2,

where ν1(p,N), ν2 and ν3 are defined in Theorem 5.3.1.

Proof. See proof in Subsection 5.5.16

Remark 5.4.2 We set ϵ21 = 2 log(nTp), ϵ22 = 2 log(nTpK), ϵ23 = 2 log(nTpK), ϵ25 = 2 log(nTK), ϵ24 =
2 log(nT ) + 2 log(2p2 + p9p) ≤ 2 log(nT ) + 2p once p ≥ 34, ϵ26 = 8 log(nT ) and ϵ27 = 4 log(nT ). Then, for

N , n and T large enough with probability at least 1− 25

nT
, in order of magnitude there is :

|(̂1− c)− (1− c∗)| ≤(1− c∗)
cm

(
p3K6(log(nT ) + p)

NnTc212 c
3
1min

(
c3, c22

) (√ Kp

c1N
+K2

)
+

√
log(nTK)K3/2c22√

N
+
K3
√

log(nTp)

c52
√
NnT

)

+
c∗

cm

[
log(nT )

n(T − 1)

(
1 +

1

c
√
T − 1

)
+

√
log(nT )

n(T − 1)

]
.
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This rate of convergence can be compared to the one obtained in Theorem 4.4.2. In the oracle case, the

convergence rate is of orderO

(√
log(nT )

n(T − 1)

)
with probability at least 1− 15

nT
. In the real case, fixing the

number of topicsK and the vocabulary size p, the rate of convergence is of orderO

(√
log(nT )

n(T − 1)
+

√
log(nT )

N

)
with probability at least 1− 25

nT
. Again, we see that for a probability control of the same order, an extra

term

√
log(nT )

N
appearing the upper bounds due to the multinomial noise.

Theorem 5.4.3 (Estimation of α) In the DTM, under the Assumptions 2, 3, 4 and 5, the estimator α̂
defined in (5.6) is such that for n and T large enough, for any (ϵi)i∈[7] ∈ (R∗

+)
7 satisfying max(ϵ6, ϵ7) <√

nm
c

2− c
/2 and

max(ϵ1, ϵ2, ϵ3, ϵ4) ≤
√
nT

c32min
(
c3, c

2
2

)
12
√
K

(
2
√
p

N
+ 2K

√
p+

576e

log(2)
√
Nc

+
4K2

c2

√
p

) ,
we have :

|α̂− α∗| ≤256(1− c∗)2

c2m2

(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+

ν2ϵ5

cm
√
N

+
ν3ϵ1

cm
√
NnT

)

+
32c∗(1− c∗)

c2m2

[
(ϵ7 + 1)2

n(T − 1)

(
1 +

1

c
√
T − 1

)
+

11ϵ7√
n(T − 1)

]

+
4c∗

cm (2− c∗)

[
2(ϵ6 + 1)√
n(T − 1)

(
1

c
√
T − 1

+ 1

)
+ ϵ5

8
√
2K3/2

c22
√
N

+ ϵ1
32K3

c52
√
NnT

]

+
256c∗max(ϵ2s)s∈[4]K

7/2√p
[
CA(p,N)

√
p+ CB

]
c22cm (2− c∗)nT (N − 2)

[
(2 + c2) +

2K3/2(2
√
K + 1)

c22

]

+
1 +A(m)

cm

16(ϵ6 + 1)√
n(T − 1)

(
1

c
√
T − 1

+ 1

)
+ ϵ5

32
√
2K3/2

c22
√
N

+ ϵ1
128K3

c52
√
NnT

+
1 +A(m)

cm

256max(ϵ2s)s∈[4]K
7/2√p

[
CA(p,N)

√
p+ CB

]
c22nT (N − 2)

[
(2 + c2) +

2K3/2(2
√
K + 1)

c22

]
,

with probability larger than 1−2n(T −1)p2 exp(−ϵ21)−2n(T −1)pK exp(−ϵ22)−2n(T −1)Kp2 exp(−ϵ23)−
2n(T − 1)p · (2p + 9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
− 2n(T − 1)K exp(−ϵ25) − 2n(T − 1) exp

(
−ϵ26/4

)
−

19 exp(−ϵ27/4).

Proof. See proof in Subsection 5.5.17

Remark 5.4.3 We set ϵ21 = 2 log(nTp), ϵ22 = 2 log(nTpK), ϵ23 = 2 log(nTpK), ϵ25 = 2 log(nTK), ϵ24 =
2 log(nT ) + 2 log(2p2 + p9p) ≤ 2 log(nT ) + 2p once p ≥ 34, ϵ26 = 8 log(nT ) and ϵ27 = 4 log(nT ). Then, for
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N , n and T large enough with probability at least 1− 31

nT
, in order of magnitude there is :

|α̂− α∗| ≤
(
1 +

c∗

cm
+

(1− c)2

c3m3

)[√
log(nTK)

K3/2

c22
√
N

+
√

log(nTp)
K3

c52
√
NnT

]

+
A(m) + c∗

cm

√
log(nT )√
n(T − 1)

(
1

c
√
T − 1

+ 1

)

+
c∗(1− c∗)
c2m2

[
log(nT )

n(T − 1)

(
1 +

1

c
√
T − 1

)
+

√
log(nT )

n(T − 1)

]

+

(
(1− c)2

c2m2
+
p(A(m) + c∗)

c22cm

[
c2 +

K2

c22

]) (log(nT ) + p)K6p3
(√

Kp

c1N
+K2

)
c212 c

3
1min

(
c3, c22

)
nT (N − 2)

.

This rate of convergence can be compared to the one obtained in Theorem 4.4.3. In the oracle DETM,

the convergence rate is of order O

(√
log(nT )

n(T − 1)

)
with probability at least 1 − 17

nT
. In the realistic

DTM, fixing the number of topics K and the vocabulary size p, the rate of convergence is of order

O

(√
log(nT )

n(T − 1)
+

√
log(nT )

N

)
with probability at least 1 − 31

nT
. Hence the same probability of control

up to a constant factor, an extra term

√
log(nT )

N
appears due to the multinomial noise.

In conclusion, the convergence rates obtained in the dynamic topic model show an additive behavior
of the noise contained at different levels in the model. The bounds are driven by the Dirichlet noise
driving the probability of topics given documents and by the noise in the multinomial model of word-
counts. In particular, for very long documents, that is when N ≫ nT , the convergence rates are only
driven by the Dirichlet noise in the autoregressive model.

5.5 Proofs

5.5.1 Proof of Proposition 5.2.1 and its Corollary

Proof of Proposition 5.2.1. We start by reminding M∗ := (nT )−1diag
(
A∗W 1:T 1nT

)
and M̂ :=

(nT )−1diag
(
Y 1:T 1nT

)
. Thus the two following equations hold where A∗W t

j(i) :=
K∑
k=1

A∗
ikW

t
j(k) ∈ R,

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ = (nT )−1

∣∣∣∣∣∣
n∑
j=1

T∑
t=1

(
Y t
j(i)−A∗W t

j(i)
)∣∣∣∣∣∣ , i ∈ [p]

∥∥∥M∗ − M̂
∥∥∥
op

= max
i∈[p]

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ .
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Let us fix i ∈ [p] and consider any u > 0. The tail of
∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ can be defined through its conditio-

nal distribution given W 1:T as follows,

P
(∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ > u
)
= EW

[
P
(∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ > u
)
|W 1:T

]
.

In addition, the variables
(
Y t
j(i)−A∗W t

j(i)
)
j,t

are real-valued and independent conditionally on W 1:T .

From the definition of the multinomial distribution, they can be expressed, conditionally on W 1:T , for all
(t, j, i) ∈ [T ]× [n]× [p], as,

Y t
j(i)−A∗W t

j(i) =
1

N

N∑
l=1

(
Qtjl(i)− E[Qtjl(i)]

)
, (5.7)

where for all l ∈ [N ] and for all (t, j) ∈ [T ]× [n], Qtjl|W
t
j ∼ Multinomialp

(
1, A∗W t

j

)
and

P(Q1
j1,...,Q

1
jN ,Q

2
j1...,Q

T
jN )|(W 1

j ,...,W
T
j ) =

T⊗
t=1

N⊗
l=1

PQt
jl|W

t
j
. Then the following equalities hold for all (t, j, i, l) ∈

[T ]× [n]× [p]× [N ],

E
[
Qtjl(i)− E[Qtjl(i)]|W 1:T

]
= 0 a.s.,

P
[∣∣Qtjl(i)− E[Qtjl(i)]

∣∣ > 2|W 1:T
]
= 0 a.s.,

V
[
Qtjl(i)− E[Qtjl(i)]|W 1:T

]
=

K∑
k=1

A∗
ikW

t
j(k)

(
1−

K∑
k=1

A∗
ikW

t
j(k)

)
= A∗W t

j(i)
(
1−A∗W t

j(i)
)
a.s.

Hence applying Hoeffding’s inequality, Lemma 1.1.8, conditionally on W 1:T to
n∑
j=1

T∑
t=1

N∑
l=1

(
Qtjl(i)− E[Qtjl(i)]

)
gives, for all ϵ > 0,

P
[∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ > ϵ|W 1:T
]
≤ 2 exp

(
−NnTϵ

2

8

)
a.s.,

P
[∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ > ϵ
]
≤ 2EW

[
exp

(
−NnTϵ

2

8

)]
.

The last inequality proves that, for all i ∈ [p], with probability at least 1− exp(−ϵ2) we have∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ <√ 8

NnT
ϵ. (5.8)

For the second part of the proof, we adapt the proof of Hoeffding’s lemma as follows to control
the moment generating function of Qtjl(i). It will allow to control the deviation of [M̂ ]ii − [M∗]ii with
the conditional variance of Qtjl(i). We first consider, for all (j, t, l, i) ∈ [n] × [T ] × [N ] × [p] an identical
and independent copy of Qtjl(i), conditionally on W 1:T , that we name Rtjl(i). We name this step the
symmetrisation. We then consider their conditionally centered version, namely Qjlt(i)

⊤ = Qtjl(i) −
E[Qtjl(i)|W

1:T ] and Rjlt(i)⊤ = Rtjl(i) − E[Rtjl(i)|W
1:T ]. We first notice that the following equality holds

for all λ ∈ R,

EQ
[
exp

(
λQ⊤

jlt(i)
)
|W 1:T

]
= EQ

[
exp

(
λQ⊤

jlt(i)− λER
[
R⊤
jlt(i)

])
|W 1:T

]
,
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where EQ (respectively ER) denotes the conditional expectation taken w.r.t the distribution of Qjlt(i)⊤

(respectively Rjlt(i)⊤). Then applying conditional Jensen’s inequality provides, for all λ ∈ R,

EQ
[
exp

(
λQ⊤

jlt(i)
)
|W 1:T

]
≤ EQ,R

[
exp

(
λQ⊤

jlt(i)− λR⊤
jlt(i)

)
|W 1:T

]
.

We notice that the random variable Q⊤
jlt(i) − R⊤

jlt(i) is symmetric and centered conditionally on W 1:T .
Indeed the random variables Q⊤

jlt(i)−R⊤
jlt(i) and R⊤

jlt(i)−Q⊤
jlt(i) share the same distribution conditio-

nally on W 1:T . This proves that for all k ∈ N, if k is odd we get EQ,R

[(
Q⊤
jlt(i)−R⊤

jlt(i)
)k
|W 1:T

]
= 0

almost surely. Indeed for all k ∈ N such that k is odd we get

EQ,R

[(
Q⊤
jlt(i)−R⊤

jlt(i)
)k
|W 1:T

]
= EQ,R

[(
R⊤
jlt(i)−Q⊤

jlt(i)
)k
|W 1:T

]
.

We also note that conditionally on W 1:T , the variable Q⊤
jlt(i)−R⊤

jlt(i) are bounded almost surely in [-4,
4]. Taylor’s theorem ensures that for all λ ∈ R, for all x ∈ [−4, 4], there exists γ ∈ [min(0, x);max(0, x)]
such that

exp(λx) = 1 + λx+
λ2x2

2
+
λ3x3 exp(λγ)

6

If x is positive, then x3 is positive and γ ≤ x. We get x3 exp(λγ) ≤ x3 exp(λx). If x is negative, then x3 is
negative and γ ≥ x. We get x3 exp(λγ) ≤ x3 exp(λx). Finally this leads to

exp(λx) = 1 + λx+
λ2x2

2
+
λ3x3 exp(λx)

6
,

≤ 1 + λx+
λ2x2

2
+
λ3x3 exp(4λ)

6
.

Finally this leads to the following inequality which holds almost surely,

EQ
[
exp

(
λQ⊤

jlt(i)
)
|W 1:T

]
≤ 1 + λEQ,R

[
(Q⊤

jlt(i)−R⊤
jlt(i))|W 1:T

]
+
λ2

2
EQ,R

[
(Q⊤

jlt(i)−R⊤
jlt(i))

2|W 1:T
]

+
λ3 exp(4λ)

6
EQ,R

[
(Q⊤

jlt(i)−R⊤
jlt(i))

3|W 1:T
]
.

The conditional symmetry of Q⊤
jlt(i)−R⊤

jlt(i) around zero ensures that its conditional odd moments are
almost surely null and we get,

EQ
[
exp

(
λQ⊤

jlt(i)
)
|W 1:T

]
≤ 1 +

λ2

2
VQ,R

[
(Q⊤

jlt(i)−R⊤
jlt(i))|W 1:T

]
.

By independence and identical conditional distributions of Q⊤
jlt(i) and R⊤

jlt(i) we have

EQ
[
exp

(
λQ⊤

jlt(i)
)
|W 1:T

]
≤ 1 + λ2VQ

[
Q⊤
jlt(i)|W 1:T

]
,

≤ 1 + λ2A∗W t
j(i)

(
1−A∗W t

j(i)
)
.

We notice that for all i ∈ [p] and for all k ∈ [K] the quantity A∗
ik is bounded from above by 1. In

addition the random vector W t
j is non negative and sum to one almost surely. Hence for all i ∈ [p] the
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quantity A∗W t
j(i) :=

K∑
k=1

A∗
ikW

t
j(k) is bounded from above by 1. This leads to, for all i ∈ [p] and for

all (j, t) ∈ [n] × [T ], A∗W t
j(i)

(
1−A∗W t

j(i)
)
:=

K∑
k=1

A∗
ikW

t
j(k)

(
1−A∗

ikW
t
j(k)

)
≤

K∑
k=1

A∗
ik := hi almost

surely. Hence, using the inequality exp(s) ≥ 1 + s for all s ∈ R, we finally have, almost surely, and for all
λ ∈ R,

EQ
[
exp

(
λQ⊤

jlt(i)
)
|W 1:T

]
≤ 1 + λ2hi,

≤ exp
(
λ2hi

)
.

This ensures the following bound which holds for all λ > 0 and for all t > 0,

P

∑
j,t,l

Q⊤
jtl(i) ≥ t|W 1:T

 = P

exp
λ∑

j,t,l

Q⊤
jtl(i)

 ≥ exp (λt) |W 1:T

 ,
≤ exp(−λt)E

exp
λ∑

j,t,l

Q⊤
jtl(i)

 |W 1:T

 , by Markov’s inequality

≤ exp(−λt)
∏
j,t,l

E
[
exp

(
λQ⊤

jtl(i)
)
|W 1:T

]
, by conditional independence

≤ exp(−λt)
∏
j,t,l

exp
(
λ2hi

)
,

≤ exp(−λt) exp
(
NnTλ2hi

)
.

Choosing λ :=
t

2NnThi
and taking the conditional expectation w.r.t W 1:T leads to, for all ϵ > 0,

P

∣∣∣∣∣∣
∑
j,t,l

Q⊤
jtl(i)

∣∣∣∣∣∣ ≤ t
 ≥ 1− 2 exp

(
− t2

4NnThi

)
.

Finally, for all i ∈ [p] and for all ϵ > 0, it comes

P
[∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ < ϵ
]
≥ 1− 2 exp

(
−NnTϵ

2

4hi

)
.

We finally get for all ϵ > 0, with probability at least 1− 2 exp(−ϵ2),

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ <√ 4hi
NnT

ϵ. (5.9)

We conclude by combining (5.8) and (5.9).
Proof of Corollary 5.2.2. We consider Proposition 5.2.1 which leads to the following inequalities,
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holding for all i ∈ [p],

P
[
h
−1/2
i

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ > ϵ
]
≤ 2 exp

(
− NnThiϵ

2

4min(2, hi)

)
,

P
[
h
−1/2
i

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ > ϵ
]
≤ 2 exp

(
− NnTϵ2

4min(2/hi, 1)

)
,

P
[
h
−1/2
i

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ > ϵ
]
≤ 2 exp

(
−NnT max(hi/2, 1)ϵ

2

4

)
.

This provides, for all ϵ > 0,

P

[
h
−1/2
i

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ > 2ϵ√
NnT max(hi/2, 1)

]
≤ 2 exp

(
−ϵ2

)
.

Using a union bound leads to the stated result.

5.5.2 Proof of Proposition 5.2.3 and its Corollaries

Proof of Proposition 5.2.3. We define, for (j, l, t) ∈ [n]× [N ]× [T ], the random variables Qtjl similarly
as in (5.7). This leads, for all (i, k) ∈ [p]× [K], to

[Z1:T ]⊤i. [W
1:T ]k. =

n∑
j=1

T∑
t=1

Ztj(i)W
t
j(k),

=
1

NnT

n∑
j=1

T∑
t=1

N∑
l=1

nT
(
Qtjl(i)− E[Qtjl(i)]

)
W t

j(k),

=
1

N

n∑
j=1

T∑
t=1

N∑
l=1

(
Qtjl(i)− E[Qtjl(i)]

)
W t

j(k).

Let us remind that for all (j, t, k) ∈ [n] × [T ] × [K], |W t
j(k)| ≤ 1 almost surely. This implies the

following equalities for all (t, j, i, l) ∈ [T ]× [n]× [p]× [N ],

E
[(
Qtjl(i)− E[Qtjl(i)

)
W t
j (k)]|W 1:T

]
= 0 a.s.,

P
[∣∣(Qtjl(i)− E[Qtjl(i)]

)
W t

j(k)
∣∣ > 2|W 1:T

]
= 0 a.s.,

V
[(
Qtjl(i)− E[Qtjl(i)]

)
W t

j(k)]|W 1:T
]
= A∗W t

j(i)
(
1−A∗W t

j(i)
)
W t

j(k)
2 a.s..

Applying Hoeffding’s inequality, Lemma 1.1.8, conditionally on W 1:T to

n∑
j=1

T∑
t=1

N∑
l=1

(
Qtjl(i)− E[Qtjl(i)]

)
W t

j(k)

gives, for all ϵ > 0, for all (i, k) ∈ [p]× [K],

P
[∣∣∣[Z1:T ]⊤i. [W

1:T ]k.

∣∣∣ > ϵ|W 1:T
]
≤ 2 exp

(
−Nϵ

2

8nT

)
a.s.,

P
[∣∣∣[Z1:T ]⊤i. [W

1:T ]k.

∣∣∣ > ϵ
]
≤ 2EW

[
exp

(
−Nϵ

2

8nT

)]
.
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The last inequality proves that, for all i ∈ [p], for all k ∈ [K] and for all ϵ > 0, with probability at least
1− exp(−ϵ2) we have, ∣∣∣[Z1:T ]⊤i. [W

1:T ]k.

∣∣∣ <√8nT

N
ϵ. (5.10)

For the second part of the proof, we adapt the proof of Hoeffding’s lemma as follows to control the
moment generating function of Qtjl(i)W

t
j(k) for all i ∈ [p] and for all k ∈ [K]. It will allow to control

the deviation of [Z1:T ]⊤i. [W
1:T ]k. with the conditional variance of Qtjl(i). We follow the same technical

steps as in the proof of Proposition 5.2.1. Namely we consider the symmetrisation step, then we ap-
ply conditional Jensen’s inequality, we notice that the random variables W t

j(k)
(
Q⊤
jlt(i)−R⊤

jlt(i)
)

are

symmetric and centered conditionally on W 1:T and that the variables W t
j(k)

(
Q⊤
jlt(i)−R⊤

jlt(i)
)

are
bounded almost surely in [-4, 4]. Then we use Taylor’s theorem and notice that the conditional sym-
metry of Q⊤

jlt(i) − R⊤
jlt(i) around zero ensures that its conditional odd moments are almost surely null.

In addition W t
j(k) is almost surely bounded from above by one. We finally use the independence and

identical conditional distributions of Q⊤
jlt(i) and R⊤

jlt(i) to get for all λ > 0 :

EQ
[
exp

(
λW t

j(k)Q
⊤
jlt(i)

)
|W 1:T

]
≤ exp

(
λ2hi

)
.

This then ensures for all λ > 0 and all t > 0 :

P

∑
j,t,l

W t
j(k)Q

⊤
jtl(i) ≥ t|W 1:T

 ≤ exp(−λt) exp
(
NnTλ2hi

)
.

Choosing λ :=
t

2NnThi
and taking the conditional expectation w.r.t W 1:T leads to, for all ϵ > 0,

P

∣∣∣∣∣∣
∑
j,t,l

W t
j(k)Q

⊤
jtl(i)

∣∣∣∣∣∣ ≤ t
 ≥ 1− 2 exp

(
− t2

4NnThi

)
.

Finally, for all i ∈ [p], for all k ∈ [K] and for all ϵ > 0, it comes

P
[∣∣∣[Z1:T ]⊤i. [W

1:T ]k.

∣∣∣ < ϵ
]
≥ 1− 2 exp

(
− Nϵ2

4nThi

)
.

We finally get for all ϵ > 0, for all i ∈ [p] and for all k ∈ [K], with probability at least 1− 2 exp(−ϵ2),∣∣∣[Z1:T ]⊤i. [W
1:T ]k.

∣∣∣ <√4nThi
N

ϵ. (5.11)

Combining (5.10) and (5.11) gives the stated result.
Proof of Corollary 5.2.4. We consider Proposition 5.2.3 which leads to the following inequalities,
holding for all i ∈ [p], for all k ∈ [K] and for all ϵ > 0,

P
[
h
−1/2
i

∣∣∣[Z1:T ]⊤i. [W
1:T ]k.

∣∣∣ > ϵ
]
≤ 2 exp

(
− Nhiϵ

2

4nT min(2, hi)

)
,

P
[
h
−1/2
i

∣∣∣[Z1:T ]⊤i. [W
1:T ]k.

∣∣∣ > ϵ
]
≤ 2 exp

(
− Nϵ2

4nT min(2/hi, 1)

)
,

P
[
h
−1/2
i

∣∣∣[Z1:T ]⊤i. [W
1:T ]k.

∣∣∣ > ϵ
]
≤ 2 exp

(
−N max(hi/2, 1)ϵ

2

4nT

)
.
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This leads to, for all i ∈ [p], for all k ∈ [K] and for all ϵ > 0,

P

[
h
−1/2
i

∣∣∣[Z1:T ]⊤i. [W
1:T ]k.

∣∣∣ > ϵ

√
4nT

N max(hi/2, 1)

]
≤ 2 exp

(
−ϵ2

)
.

Using a union bound leads to the stated result.
Proof of Corollary 5.2.5. We start by recalling that, for all k ∈ [K], the quantity

∥∥∥M−1/2
∗ Z1:T [W 1:T ]k.

∥∥∥
2

can be expressed as follows,

∥∥∥M−1/2
∗ Z1:T [W 1:T ]k.

∥∥∥2
2
=

p∑
i=1

1

[M∗]ii

∣∣∣[Z1:T ]⊤i. [W
1:T ]k.

∣∣∣2 .
Moreover for all i ∈ [p], the following inequalities hold,

[M∗]ii :=
1

nT

n∑
j=1

T∑
t=1

K∑
k=1

A∗
ikW

t
j(k) =

K∑
k=1

A∗
ik

 1

nT

n∑
j=1

T∑
t=1

K∑
k=1

W t
j(k)

 ,

≥
K∑
k=1

A∗
ik

 1

nT

n∑
j=1

T∑
t=1

K∑
k=1

(
W t

j(k)
)2 ,

≥
K∑
k=1

A∗
ik

[
Σ1:T
W

]
kk
.

In addition, as is proved in Proposition 4.3.4 we have for all k ∈ [K],
[
Σ1:T
W

]
kk
≥ λK(Σ1:T

W ). This result
ensures that for all i ∈ [p],

[M∗]ii ≥ λK(Σ1:T
W ) ·

K∑
k=1

A∗
ik,

≥ λK(Σ1:T
W ) · hi.

Hence this leads to, for all k ∈ [K],

∥∥∥M−1/2
∗ Z1:T [W 1:T ]k.

∥∥∥2
2
≤

p∑
i=1

1

λK(Σ1:T
W ) · hi

∣∣∣[Z1:T ]⊤i. [W
1:T ]k.

∣∣∣2 ,
≤ p

λK(Σ1:T
W )

max
i∈[p]

h−1
i

∣∣∣[Z1:T ]⊤i. [W
1:T ]k.

∣∣∣2 .
Finally, using the result of Corollary 5.2.4 gives, for all ϵ > 0 and for all k ∈ [K], with probability at least
1− 2p exp(−ϵ2), ∥∥∥M−1/2

∗ Z1:T [W 1:T ]k.

∥∥∥2
2
< ϵ2

4pnT

λK(Σ1:T
W )N

.
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5.5.3 Proof of Proposition 5.2.6

Proof of Proposition 5.2.6. We start by fixing (i,m) ∈ [p]2 and we remind that the diagonal matrix
H ∈ Rp×p is defined as H := diag (h1, . . . , hp) where for all s ∈ [p], hs := ∥As.∥1. We also remind that
A ∈ Rp×K and As. ∈ RK . In addition we have the following developments,

[Z1:T ]⊤i. [Z
1:T ]m. =

n∑
j=1

T∑
t=1

ZtijZ
t
mj ,

[Z1:T ]⊤i. [Z
1:T ]m.√

hi · hm
=

n∑
j=1

T∑
t=1

Ztij√
hi

Ztmj√
hm

.

The Parallelogram law then ensures that

[Z1:T ]⊤i. [Z
1:T ]m.√

hi · hm
=

n∑
j=1

T∑
t=1

(
Ztij√
hi

+
Ztmj√
hm

)2

−

 Ztij√
hi
−

n∑
j=1

T∑
t=1

Ztmj√
hm

2

.

For all s ∈ [p] we denote es the standard basis vector of Rp of order s, i.e. the vector with all coordinates

equal to zero except the sth coordinate which equals one. We then define ϵ+im :=
ei + em

2
and ϵ−im :=

ei − em
2

and we derive the following equality,

[Z1:T ]⊤i. [Z
1:T ]m.√

hi · hm
=

n∑
j=1

T∑
t=1

([
ϵ+im
]⊤ ·H−1/2 · Ztj

)2
−

n∑
j=1

T∑
t=1

([
ϵ−im
]⊤ ·H−1/2 · Ztj

)2
.

Finally we get

[Z1:T ]⊤i. [Z
1:T ]m. − E

[
[Z1:T ]⊤i. [Z

1:T ]m.
]

√
hi · hm

=

n∑
j=1

T∑
t=1

([
ϵ+im
]⊤ ·H−1/2 · Ztj

)2
−

n∑
j=1

T∑
t=1

E

[([
ϵ+im
]⊤ ·H−1/2 · Ztj

)2]

−
n∑
j=1

T∑
t=1

([
ϵ−im
]⊤ ·H−1/2 · Ztj

)2
+

n∑
j=1

T∑
t=1

E

[([
ϵ−im
]⊤ ·H−1/2 · Ztj

)2]
.

We start by deriving an upper bound for the first term :

A :=

n∑
j=1

T∑
t=1

([
ϵ+im
]⊤ ·H−1/2 · Ztj

)2
−

n∑
j=1

T∑
t=1

E

[([
ϵ+im
]⊤ ·H−1/2 · Ztj

)2]
.

We define here again the random variables (Qtjl) for (j, l, t) ∈ [p] × [N ] × [T ] as in (5.7). It allows to

express, for all (j, l, t) ∈ [p]× [N ]× [T ], the random variables
[
ϵ+im
]⊤ ·H−1/2 · Ztj as follows,

[
ϵ+im
]⊤ ·H−1/2 · Ztj =

1

N

N∑
l=1

[
ϵ+im
]⊤ ·H−1/2 ·

(
Qtjl − E

[
Qtjl|W 1:T

])
a.s..
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We recall that conditionally on W 1:T ,

[
ϵ+im
]⊤ ·H−1/2 · diag(AW t

j) ·H−1/2 ·
[
ϵ+im
]
=

1

4


√
AW t

j(i)
√
hi

+

√
AW t

j(m)
√
hm

2

≤ 1 a.s.,

because we have almost surely, AW t
j(i) ≤ hi and AW t

j(m) ≤ hm. Hence, given the definition of(
Qtjl

)
j,l,t

the following equalities hold almost surely for (j, l, t) ∈ [p]× [N ]× [T ],

V
[[
ϵ+im
]⊤ ·H−1/2 ·

(
Qtjl − E

[
Qtjl|W 1:T

])
|W 1:T

]
≤
[
ϵ+im
]⊤ ·H−1/2 · diag(AW t

j) ·H−1/2 ·
[
ϵ+im
]
≤ 1,∣∣∣[ϵ+im]⊤ ·H−1/2 ·

(
Qtjl − E

[
Qtjl|W 1:T

])∣∣∣ ≤ 1√
hi

+
1√
hm
≤ 2√

hmin
.

Hence applying Hoeffding’s inequality, for bounded random variables, Lemma 1.1.8, conditionally on

W 1:T to
N∑
l=1

1

N

[
ϵ+im
]⊤ ·H−1/2 ·

(
Qtjl − E

[
Qtjl|W

1:T
])

and taking the conditional expectation w.r.t W 1:T

gives, for all (j, t) ∈ [n]× [T ], for all s > 0,

P
[∣∣∣[ϵ+im]⊤ ·H−1/2 · Ztj

∣∣∣ > s|W 1:T
]
≤ 2 exp

(
−Nhmins

2

8

)
. (5.12)

On the other hand we adapt the proof of Hoeffding’s lemma as follows to control the moment generating
function of

[
ϵ+im
]⊤ ·H−1/2 ·(Qtjl(i)−E[Qtjl|W

1:T ]). It will allow to control the deviation of
[
ϵ+im
]⊤ ·H−1/2 ·Ztj

with the conditional variance of Qtjl. We first consider, for all (j, t, l, i) ∈ [n] × [T ] × [N ] × [p] an iden-
tical and independent copy of Qtjl, conditionally on W 1:T , that we name Rtjl. We then consider their
conditionally centered version, namely Q⊤

jlt = Qtjl − E[Qtjl|W
1:T ] and R⊤

jlt = Rtjl − E[Rtjl|W
1:T ]. We first

notice that the following equality holds for all λ ∈ R, EQ
[
exp

(
λ
[
ϵ+im
]⊤ ·H−1/2 ·Q⊤

jlt

)
|W 1:T

]
is equal to

EQ
[
exp

(
λ
[
ϵ+im
]⊤ ·H−1/2 ·

(
Q⊤
jlt − ER

[
R⊤
jlt

]))
|W 1:T

]
where EQ (respectively ER) denotes the condi-

tional expectation taken w.r.t the distribution of Q⊤
jlt (respectively R⊤

jlt). Then applying conditional Jen-
sen’s inequality provides, for all λ ∈ R,

EQ
[
exp

(
λ
[
ϵ+im
]⊤ ·H−1/2 ·Q⊤

jlt

)
|W 1:T

]
≤ EQ,R

[
exp

(
λ
[
ϵ+im
]⊤ ·H−1/2 ·

(
Q⊤
jlt −R⊤

jlt

))
|W 1:T

]
.

We notice that the random variables
[
ϵ+im
]⊤ ·H−1/2 ·

(
Q⊤
jlt −R⊤

jlt

)
are symmetric and centered condi-

tionally on W 1:T . Indeed the random variables
[
ϵ+im
]⊤ · H−1/2 ·

(
Q⊤
jlt −R⊤

jlt

)
and

[
ϵ+im
]⊤ · H−1/2 ·(

R⊤
jlt −Q⊤

jlt

)
share the same distribution conditionally on W 1:T . This proves that for all k ∈ N, if k is odd

we get EQ,R

[([
ϵ+im
]⊤ ·H−1/2 ·

(
Q⊤
jlt −R⊤

jlt

))k
|W 1:T

]
= 0 almost surely. We also note that conditio-

nally on W 1:T , the variables
[
ϵ+im
]⊤·H−1/2·

(
Q⊤
jlt −R⊤

jlt

)
are bounded almost surely in [−4/

√
hmin, 4/

√
hmin].

Taylor’s theorem ensures that for all λ ∈ R, for all x ∈ [−4/
√
hmin, 4/

√
hmin], there exists γ ∈ [min(0, x);max(0, x)]

such that

exp(λx) = 1 + λx+
λ2x2

2
+
λ3x3 exp(λγ)

6
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If x is positive, then x3 is positive and γ ≤ x. We get x3 exp(λγ) ≤ x3 exp(λx). If x is negative, then x3 is
negative and γ ≥ x. We get x3 exp(λγ) ≤ x3 exp(λx). Finally this leads to

exp(λx) = 1 + λx+
λ2x2

2
+
λ3x3 exp(λx)

6
,

≤ 1 + λx+
λ2x2

2
+
λ3x3 exp(4λ)

6
.

Finally this leads to the following inequality which holds almost surely,

EQ
[
exp

(
λ
[
ϵ+im
]⊤ ·H−1/2 ·Q⊤

jlt

)
|W 1:T

]
≤ 1 + λEQ,R

[[
ϵ+im
]⊤ ·H−1/2 · (Q⊤

jlt −R⊤
jlt)|W 1:T

]
+
λ2

2
EQ,R

[([
ϵ+im
]⊤ ·H−1/2 · (Q⊤

jlt −Rjlt)⊤
)2
|W 1:T

]
+
λ3 exp(4λ)

6
EQ,R

[([
ϵ+im
]⊤ ·H−1/2 · (Q⊤

jlt −R⊤
jlt)
)3
|W 1:T

]
.

The conditional symmetry of Q⊤
jlt − R⊤

jlt around zero ensures that its conditional odd moments are
almost surely null and we get,

EQ
[
exp

(
λ
[
ϵ+im
]⊤ ·H−1/2 ·Q⊤

jlt

)
|W 1:T

]
≤ 1 +

λ2

2
VQ,R

[[
ϵ+im
]⊤ ·H−1/2 · (Q⊤

jlt −R⊤
jlt)|W 1:T

]
.

By independence and identical conditional distributions of Q⊤
jlt and R⊤

jlt we have

EQ
[
exp

(
λ
[
ϵ+im
]⊤ ·H−1/2 ·Q⊤

jlt

)
|W 1:T

]
≤ 1 + λ2VQ

[[
ϵ+im
]⊤ ·H−1/2 ·Q⊤

jlt|W 1:T
]
,

≤ 1 + λ2.

This ensures the following equalities which hold almost surely for all λ ∈ R and for all t > 0,

P

[∑
l

[
ϵ+im
]⊤ ·H−1/2 ·Q⊤

jtl ≥ t|W 1:T

]
= P

[
exp

(
λ
∑
l

[
ϵ+im
]⊤ ·H−1/2 ·Q⊤

jtl(i)

)
≥ exp (λt) |W 1:T

]
,

≤ exp(−λt)E

[
exp

(
λ
∑
l

[
ϵ+im
]⊤ ·H−1/2 ·Q⊤

jtl

)
|W 1:T

]
,

≤ exp(−λt)
∏
l

E
[
exp

(
λ
[
ϵ+im
]⊤ ·H−1/2 ·Q⊤

jtl

)
|W 1:T

]
,

≤ exp(−λt)
∏
l

exp
(
λ2
)
,

≤ exp(−λt) exp
(
Nλ2

)
.

Choosing λ :=
t

2N
and taking the conditional expectation w.r.t W 1:T leads to, for all ϵ > 0, for all j ∈ [n]

and for all t ∈ [T ]

P

[∣∣∣∣∣∑
l

[
ϵ+im
]⊤ ·H−1/2 ·Q⊤

jtl

∣∣∣∣∣ ≤ t
]
≥ 1− 2 exp

(
− t2

4N

)
.
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Finally, for all j ∈ [n], for all t ∈ [T ] and for all ϵ > 0, it comes

P
[∣∣∣[ϵ+im]⊤ ·H−1/2 · Ztj

∣∣∣ < ϵ
]
≥ 1− 2 exp

(
−Nϵ

2

4

)
.

We finally get for all ϵ > 0, with probability at least 1− 2 exp(−ϵ2),∣∣∣[ϵ+im]⊤ ·H−1/2 · Ztj
∣∣∣ < 2ϵ√

N
. (5.13)

Combining (5.12) and (5.13) leads to, for all ϵ > 0, with probability at least 1− 2 exp(−ϵ2),∣∣∣[ϵ+im]⊤ ·H−1/2 · Ztj
∣∣∣ < 2min(

√
2hmin, 1)ϵ√
N

.

Equivalently, this says that for all ϵ > 0,

P
[∣∣∣[ϵ+im]⊤ ·H−1/2 · Ztj

∣∣∣ < ϵ
]
≥ 1− 2 exp

(
−N max(hmin/2, 1)ϵ

2

4

)
.

This proves that the variables (
[
ϵ+im
]⊤ ·H−1/2 · Ztj) are SubGaussian. We recall that the SubGaussian

norm of a SubGaussian random variable X is defined as

∥X∥ψ2 := inf
s>0

{
E

[
X2

s2

]
≤ 2

}
.

Hence for all (j, t) ∈ [n] × [T ], the SubGaussian norm of
[
ϵ+im
]⊤ ·H−1/2 · Ztj satisfies ∥

[
ϵ+im
]⊤ ·H−1/2 ·

Ztj∥ψ2 ≤ 12 ·
√

e

N max(hmin/2, 1) log(2)
. Indeed, Proposition 2.5.2 in [130] proves that for a random

variable X satisfying, for all s > 0, P[|X| > s] ≤ 2 exp

(
−s2

K2
1

)
where K1 > 0 is a constant then

E

 X2(
6K1

√
e/ log(2)

)2
 ≤ 2. This proves the stated result for K2

1 =
4

N max(hmin/2, 1)
. In addition we

immediately get that (
[
ϵ+im
]⊤ ·H−1/2 · Ztj)2 is SubExponential, see Lemma 2.7.6 in [130]. We recall that

the SubExponential norm of a SubExponential random variable X is defined as

∥X∥ψ1 := inf
s>0

{
E

[
|X|
s

]
≤ 2

}
.

This Lemma also ensures that its Subexponential norm satisfies ∥(
[
ϵ+im
]⊤ ·H−1/2 ·Ztj)2∥ψ1 = ∥(

[
ϵ+im
]⊤ ·

H−1/2 · Ztj)∥2ψ2
. Moreover, recalling that a norm is a convex function and using Jensen’s inequality

provides that its SubExponential norm also satisfies the centering property ∥(
[
ϵ+im
]⊤ · H−1/2 · Ztj)2 −

E
[
(
[
ϵ+im
]⊤ ·H−1/2 · Ztj)2

]
∥ψ1 ≤ 2∥

[
ϵ+im
]⊤ ·H−1/2 · Ztj∥2ψ2

≤ 288 · e
N max(hmin/2, 1) log(2)

:= γ. Using Bern-

stein’s inequality for SubExponential random variables, Lemma 1.1.10, conditionally on W 1:T leads to,
for all s > 0 and for an absolute constant c > 0,

P

∣∣∣∣∣∣
n∑
j=1

T∑
t=1

[
(
[
ϵ+im
]⊤ ·H−1/2 · Ztj)2 − E

[
(
[
ϵ+im
]⊤ ·H−1/2 · Ztj)2

]]∣∣∣∣∣∣ > nTs|W 1:T
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being bounded from above by 2 exp

(
−cnT min

(
s2

γ2
;
s

γ

))
, where γ :=

288 · e
N max(hmin/2, 1) log(2)

. Then,

let us fix s > 0 and define ϵ =
√
cnTs

γ
. This provides that for all ϵ > 0,

P

∣∣∣∣∣∣
n∑
j=1

T∑
t=1

[
(
[
ϵ+im
]⊤ ·H−1/2 · Ztj)2 − E

[
(
[
ϵ+im
]⊤ ·H−1/2 · Ztj)2

]]∣∣∣∣∣∣ > γϵ
√
nT√
c
|W 1:T


is bounded from above by 2 exp

(
−min

(
ϵ2;
√
cnTϵ

))
. Taking on both sides the expectation w.r.t W 1:T

leads to, for all ϵ > 0,

|A| < 288 · e
log(2)

√
c
· ϵ

√
nT

N max(hmin/2, 1)
,

with probability at least 1− 2 exp
(
−min

(
ϵ2;
√
cnTϵ

))
.

We now derive an upper bound for the second term B :=
n∑
j=1

T∑
t=1

E

[([
ϵ−im
]⊤ ·H−1/2 · Ztj

)2]
−

n∑
j=1

T∑
t=1

([
ϵ−im
]⊤ ·H−1/2 · Ztj

)2
. The exact same proof hold as we can again express, for all (j, l, t) ∈

[p]× [N ]× [T ], the random variables
[
ϵ−im
]⊤ ·H−1/2 · Ztj as follows,

[
ϵ−im
]⊤ ·H−1/2 · Ztj =

1

N

N∑
l=1

[
ϵ−im
]⊤ ·H−1/2 ·

(
Qtjl − E

[
Qtjl|W 1:T

])
a.s..

It follows similarly that, for all ϵ > 0, with probability at least 1− 2 exp
(
−min

(
ϵ2;
√
cnTϵ

))
we have

|B| < 288 · e
log(2)

√
c
· ϵ

√
nT

N max(hmin/2, 1)
.

Finally, for all ϵ > 0, for all (i,m) ∈ [p]2, with probability at least 1− 4 exp
(
−min

(
ϵ2;
√
cnTϵ

))
, we have∣∣∣∣∣ [Z1:T ]⊤i. [Z

1:T ]m. − E
[
[Z1:T ]⊤i. [Z

1:T ]m.
]

√
hi · hm

∣∣∣∣∣
bounded from above by

576 · e
log(2)

√
c
· ϵ

√
nT

N max(hmin/2, 1)
.

We conclude by controlling the probability that this event holds simultaneously for all (i,m) ∈ [p]2.

5.5.4 Proof of Proposition 5.2.7

Proof of Proposition 5.2.7. We start by recalling that, for all i ∈ [p],

[M∗]jj :=
1

nT

n∑
j=1

T∑
t=1

K∑
k=1

[A∗]ikW
t
j(k) =

K∑
k=1

[A∗]ik

 1

nT

n∑
j=1

T∑
t=1

W t
j(k)

 .
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Hence under Assumption 7 we have, for all i ∈ [p], almost surely

[M∗]jj ≥ λK(Σ1:T
W )hi.

By considering H := diag(h1, . . . , hp) follows

∥M−1/2
∗ H1/2∥ ≤ λK(Σ1:T

W )−1/2.

This implies the following results,

∥M−1/2
∗

(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
M

−1/2
∗ ∥,

=∥M−1/2
∗ H1/2∥∥H−1/2

(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
H−1/2∥∥H1/2M

−1/2
∗ ∥,

≤λK(Σ1:T
W )−1∥H−1/2

(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
H−1/2∥.

We denote, for all ϵ > 0, Nϵ an ϵ-net of the Euclidean Sphere of Rp and N (Sp−1, ϵ) the smallest possible
cardinality of an ϵ-net of Sp−1, called the covering number. For any ϵ > 0, Corollary 4.2.13 in [130]
ensures that

N (Sp−1, ϵ) ≤
(
1 +

2

ϵ

)p
.

In addition Lemma 4.4.1 together with Exercise 4.4.3 in [130] ensure that for any ϵ ∈ (0, 1/2) and any
symmetric matrix A ∈ Rp×p,

∥A∥ ≤ 1

1− 2ϵ
sup
x∈Nϵ

∣∣∣x⊤Ax∣∣∣ .
We fix ϵ = 1/4 and consider an ϵ-net Nϵ which satisfies N (Sp−1, ϵ) ≤ 9p. The following inequality then
holds,

∥H−1/2
(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
H−1/2∥

≤2 sup
x∈Nϵ

∣∣∣x⊤H−1/2
(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
H−1/2x

∣∣∣ .
In addition, for any x ∈ Sp−1,

x⊤H−1/2
(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
H−1/2x

=

n∑
j=1

T∑
t=1

{(
x⊤H−1/2Ztj

)2
− E

[(
x⊤H−1/2Ztj

)2]}
.

We fix x ∈ Sp−1 and we define here again the random variables (Qtjl) for (j, l, t) ∈ [p] × [N ] × [T ]

as in (5.7). It allows to express, for all (j, l, t) ∈ [p]× [N ]× [T ], the random variables x⊤ ·H−1/2 · Ztj as
follows,

x⊤ ·H−1/2 · Ztj =
1

N

N∑
l=1

x⊤ ·H−1/2 ·
(
Qtjl − E

[
Qtjl|W 1:T

])
a.s..
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We want to derive an upper bound for the quantityC :=
n∑
j=1

T∑
t=1

(
x⊤ ·H−1/2 · Ztj

)2
−

n∑
j=1

T∑
t=1

E

[(
x⊤ ·H−1/2 · Ztj

)2]
.

We recall that conditionally on W 1:T ,

x⊤ ·H−1/2 · diag(AW t
j) ·H−1/2 · x ≤ ∥x∥22 ≤ 1 a.s.,

because we have almost surely, AW t
j(i) ≤ hi and AW t

j(m) ≤ hm. Hence, given the definition of(
Qtjl

)
j,l,t

the following equalities hold almost surely for (j, l, t) ∈ [p]× [N ]× [T ],

V
[
x⊤ ·H−1/2 ·

(
Qtjl − E

[
Qtjl|W 1:T

])
|W 1:T

]
≤ 1,∣∣∣x⊤ ·H−1/2 ·

(
Qtjl − E

[
Qtjl|W 1:T

])∣∣∣ ≤ 2√
hmin

.

Hence applying Hoeffding’s inequality, for bounded random variables, Lemma 1.1.8, conditionally

on W 1:T to
1

N

N∑
l=1

x⊤ ·H−1/2 ·
(
Qtjl − E

[
Qtjl|W

1:T
])

and taking the conditional expectation w.r.t W 1:T

gives, for all (j, t) ∈ [n]× [T ], for all s > 0,

P
[∣∣∣x⊤ ·H−1/2 · Ztj

∣∣∣ > s|W 1:T
]
≤ 2 exp

(
−Nhmins

2

8

)
. (5.14)

On the other hand we adapt the proof of Hoeffding’s lemma as follows to control the moment genera-
ting function of x⊤ ·H−1/2 · (Qtjl(i)− E[Qtjl|W

1:T ]). It will allow to control the deviation of x⊤ ·H−1/2 ·Ztj
with the conditional variance of Qtjl. We first consider, for all (j, t, l, i) ∈ [n] × [T ] × [N ] × [p] an iden-
tical and independent copy of Qtjl, conditionally on W 1:T , that we name Rtjl. We then consider their
conditionally centered version, namely Q⊤

jlt = Qtjl − E[Qtjl|W
1:T ] and R⊤

jlt = Rtjl − E[Rtjl|W
1:T ]. We

first notice that the following equality holds for all λ ∈ R, EQ
[
exp

(
λx⊤ ·H−1/2 ·Q⊤

jlt

)
|W 1:T

]
is equal to

EQ
[
exp

(
λx⊤ ·H−1/2 ·

(
Q⊤
jlt − ER

[
R⊤
jlt

]))
|W 1:T

]
where EQ (respectively ER) denotes the conditional

expectation taken w.r.t the distribution of Q⊤
jlt (respectively R⊤

jlt). Then applying conditional Jensen’s
inequality provides, for all λ ∈ R,

EQ
[
exp

(
λx⊤ ·H−1/2 ·Q⊤

jlt

)
|W 1:T

]
≤ EQ,R

[
exp

(
λx⊤ ·H−1/2 ·

(
Q⊤
jlt −R⊤

jlt

))
|W 1:T

]
.

We notice that the random variables x⊤ · H−1/2 ·
(
Q⊤
jlt −R⊤

jlt

)
are symmetric and centered conditio-

nally on W 1:T . Indeed the random variables x⊤ · H−1/2 ·
(
Q⊤
jlt −R⊤

jlt

)
and x⊤ · H−1/2 ·

(
R⊤
jlt −Q⊤

jlt

)
share the same distribution conditionally on W 1:T . This proves that for all k ∈ N, if k is odd we get

EQ,R

[(
x⊤ ·H−1/2 ·

(
Q⊤
jlt −R⊤

jlt

))k
|W 1:T

]
= 0 almost surely. We also note that conditionally on W 1:T ,

the variables x⊤ ·H−1/2 ·
(
Q⊤
jlt −R⊤

jlt

)
are bounded almost surely in [−4/

√
hmin, 4/

√
hmin]. Taylor’s theo-

rem ensures that for all λ ∈ R, for all y ∈ [−4/
√
hmin, 4/

√
hmin], there exists γ ∈ [min(0, y);max(0, y)]

such that

exp(λx) = 1 + λy +
λ2y2

2
+
λ3y3 exp(λγ)

6
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If y is positive, then y3 is positive and γ ≤ y. We get y3 exp(λγ) ≤ y3 exp(λy). If y is negative, then y3 is
negative and γ ≥ y. We get y3 exp(λγ) ≤ y3 exp(λy). Finally this leads to

exp(λy) = 1 + λx+
λ2y2

2
+
λ3y3 exp(λy)

6
,

≤ 1 + λy +
λ2y2

2
+
λ3y3 exp(4λ)

6
.

Finally this leads to the following inequality which holds almost surely,

EQ
[
exp

(
λx⊤ ·H−1/2 ·Q⊤

jlt

)
|W 1:T

]
≤ 1 + λEQ,R

[
x⊤ ·H−1/2 · (Q⊤

jlt −R⊤
jlt)|W 1:T

]
+
λ2

2
EQ,R

[(
x⊤ ·H−1/2 · (Q⊤

jlt −Rjlt)⊤
)2
|W 1:T

]
+
λ3 exp(4λ)

6
EQ,R

[(
x⊤ ·H−1/2 · (Q⊤

jlt −R⊤
jlt)
)3
|W 1:T

]
.

The conditional symmetry of Q⊤
jlt − R⊤

jlt around zero ensures that its conditional odd moments are
almost surely null and we get,

EQ
[
exp

(
λx⊤ ·H−1/2 ·Q⊤

jlt

)
|W 1:T

]
≤ 1 +

λ2

2
VQ,R

[
x⊤ ·H−1/2 · (Q⊤

jlt −R⊤
jlt)|W 1:T

]
.

By independence and identical conditional distributions of Q⊤
jlt and R⊤

jlt we have

EQ
[
exp

(
λx⊤ ·H−1/2 ·Q⊤

jlt

)
|W 1:T

]
≤ 1 + λ2VQ

[
x⊤ ·H−1/2 ·Q⊤

jlt|W 1:T
]
,

≤ 1 + λ2.

This ensures the following equalities which hold almost surely for all λ ∈ R and for all t > 0,

P

[∑
l

x⊤ ·H−1/2 ·Q⊤
jtl ≥ t|W 1:T

]
= P

[
exp

(
λ
∑
l

x⊤ ·H−1/2 ·Q⊤
jtl(i)

)
≥ exp (λt) |W 1:T

]
,

≤ exp(−λt)E

[
exp

(
λ
∑
l

x⊤ ·H−1/2 ·Q⊤
jtl

)
|W 1:T

]
,

≤ exp(−λt)
∏
l

E
[
exp

(
λx⊤ ·H−1/2 ·Q⊤

jtl

)
|W 1:T

]
,

≤ exp(−λt)
∏
l

exp
(
λ2
)
,

≤ exp(−λt) exp
(
Nλ2

)
.

Choosing λ :=
t

2N
and taking the conditional expectation w.r.t W 1:T leads to, for all ϵ > 0, for all j ∈ [n]

and for all t ∈ [T ]

P

[∣∣∣∣∣∑
l

x⊤ ·H−1/2 ·Q⊤
jtl

∣∣∣∣∣ ≤ t
]
≥ 1− 2 exp

(
− t2

4N

)
.
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Finally, for all j ∈ [n], for all t ∈ [T ] and for all ϵ > 0, it comes

P
[∣∣∣x⊤ ·H−1/2 · Ztj

∣∣∣ < ϵ
]
≥ 1− 2 exp

(
−Nϵ

2

4

)
.

We finally get for all ϵ > 0, with probability at least 1− 2 exp(−ϵ2),∣∣∣x⊤ ·H−1/2 · Ztj
∣∣∣ < 2ϵ√

N
. (5.15)

Combining (5.14) and (5.15) leads to, for all ϵ > 0, with probability at least 1− 2 exp(−ϵ2),

∣∣∣x⊤ ·H−1/2 · Ztj
∣∣∣ < 2min(

√
2hmin, 1)ϵ√
N

.

Equivalently, this says that for all ϵ > 0,

P
[∣∣∣x⊤ ·H−1/2 · Ztj

∣∣∣ < ϵ
]
≥ 1− 2 exp

(
−N max(hmin/2, 1)ϵ

2

4

)
.

This proves that the variables (x⊤ ·H−1/2 ·Ztj) are SubGaussian. We recall that the SubGaussian norm
of a SubGaussian random variable X is defined as

∥X∥ψ2 := inf
s>0

{
E

[
X2

s2

]
≤ 2

}
.

Hence for all (j, t) ∈ [n] × [T ], the SubGaussian norm of x⊤ · H−1/2 · Ztj satisfies ∥x⊤ · H−1/2 ·

Ztj∥ψ2 ≤ 12 ·
√

e

N max(hmin/2, 1) log(2)
. Indeed, Proposition 2.5.2 in [130] proves that for a random

variable X satisfying, for all s > 0, P[|X| > s] ≤ 2 exp

(
−s2

K2
1

)
where K1 > 0 is a constant then

E

 X2(
6K1

√
e/ log(2)

)2
 ≤ 2. This proves the stated result for K2

1 =
4

N max(hmin/2, 1)
. In addition we

immediately get that (x⊤ ·H−1/2 · Ztj)2 is SubExponential, see Lemma 2.7.6 in [130]. This Lemma also
ensures that its Subexponential norm satisfies ∥(x⊤ ·H−1/2 ·Ztj)2∥ψ1 = ∥(x⊤ ·H−1/2 ·Ztj)∥2ψ2

. Moreover,
recalling that a norm is a convex function and using Jensen’s inequality provides that its SubExpo-
nential norm also satisfies the centering property ∥(x⊤ · H−1/2 · Ztj)2 − E

[
(x⊤ ·H−1/2 · Ztj)2

]
∥ψ1 ≤

2∥x⊤ · H−1/2 · Ztj∥2ψ2
≤ 288 · e
N max(hmin/2, 1) log(2)

:= γ. Using Bernstein’s inequality for SubExponential

random variables, Lemma 1.1.10, conditionally on W 1:T leads to, for all s > 0 and for an absolute
constant c > 0,

P

∣∣∣∣∣∣
n∑
j=1

T∑
t=1

[
(x⊤ ·H−1/2 · Ztj)2 − E

[
(x⊤ ·H−1/2 · Ztj)2

]]∣∣∣∣∣∣ > nTs|W 1:T

 ≤ 2 exp

(
−cnT min

(
s2

γ2
;
s

γ

))
,



5.5. PROOFS 139

where γ :=
288 · e

N max(hmin/2, 1) log(2)
. Considering ϵ > 0, choosing s =

γϵ√
cnT

and taking on both sides

the expectation w.r.t W 1:T leads to

|C| < 288 · e
log(2)

·
√
nTϵ

N
√
cmax(hmin/2, 1)

,

with probability at least 1− 2 exp
(
−min

(
ϵ2,
√
cnTϵ

))
. Using a union bound over the ϵ-net we get that

with probability at least 1− 2 exp
(
p log(9)−min

(
ϵ2,
√
cnTϵ

))
we have

1

2
∥H−1/2

(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
H−1/2∥

<
288 · e
log(2)

·
√
nTϵ

N
√
cmax(hmin/2, 1)

.

5.5.5 Proof of Proposition 5.2.8

Proof of Proposition 5.2.8. For all i ∈ [p], we have

[M∗]ii =
1

nT

n∑
j=1

T∑
t=1

K∑
k=1

[A∗]ikW
t
j(k) =

K∑
k=1

[A∗]ik
1

nT

n∑
j=1

T∑
t=1

W t
j(k).

Moreover Proposition 4.3.4 ensures that almost surely,

1

nT

n∑
j=1

T∑
t=1

W t
j(k) ≥ λK(Σ1:T

W ).

The stated results follows.

5.5.6 Proof of Proposition 5.2.9

Proof of Proposition 5.2.9. We start by recalling that the matrices M∗ and H are diagonal and thus

commute. Then we re-write the matrix G∗ as follows, G∗ =

(
1− 1

N

)
H1/2M

−1/2
∗ H−1/2A∗W 1:T

[
A∗W 1:T

]⊤
H−1/2M

−1/2
∗ H1/2.

Hence, for any matrix M , denoting λmin(M) its smallest non-zero eigenvalue, we have

λmin(G∗) ≥
(
1− 1

N

)
λmin

(
H1/2M

−1/2
∗

)
λmin

(
H−1/2A∗W 1:T

[
A∗W 1:T

]⊤
H−1/2

)
λmin

(
M

−1/2
∗ H1/2

)
.

However M∗ and H being diagonal, we obtain almost surely

λmin(G∗) ≥
(
1− 1

N

)
λmin

(
M−1

∗ H
)
λmin

(
H−1/2A∗W 1:T

[
A∗W 1:T

]⊤
H−1/2

)
.
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Moreover Proposition 5.2.8 ensures that λmin

(
M−1

∗ H
)
≥ 1 almost surely. Hence we get almost surely

that

λmin(G∗) ≥
(
1− 1

N

)
λmin (Ψ) ,

for Ψ = H−1/2A∗W 1:T
[
A∗W 1:T

]⊤
H−1/2. In addition, Theorem 4.3.3 proves that W 1:T [W 1:T ]⊤ ∈

RK×K is symmetric positive definite with high probability. In additionH−1/2A∗ ∈ Rp×K satisfies rank(H−1/2A∗) =
K. Using lemma 5.6.3 and assumption 6 we get the following inequalities holding true almost surely,

λmin(G∗) ≥
(
1− 1

N

)
λmin

(
[A∗]⊤H−1A∗

)
λmin

(
W 1:T [W 1:T ]⊤

)
,

≥
(
1− 1

N

)
nTλK(ΣA)λK(Σ1:T

W ),

≥
(
1− 1

N

)
nTλK(Σ1:T

W )2 ≥
(
1− 1

N

)
nTc22.

To bound from above almost surely the largest singular value of G∗ we recall that for any matrices U
and V we have λ1(UV ) = λ1(V U). In addition the spectral norm is sub-multiplicative and by defining
Ω := H1/2M

−1/2
∗ we get almost surely

λ1 (G∗) ≤
(
1− 1

N

)
λ1(Ψ)λ1(Ω

⊤Ω).

However the following equalities hold true almost surely : λ1(ΩΩ⊤) = λ1(Ω
⊤Ω) = λ1(M

−1
∗ H) ≤

1

λK(Σ1:T
W )
≤ 1

c2
.

Similarly there is almost surely λ1(Ψ) ≤ λ1
(
[A∗]⊤H−1A∗)λ1 (W 1:T [W 1:T ]⊤

)
. Finally this leads,

under assumption 7 to, almost surely,

λ1 (G∗) ≤
(
1− 1

N

)
nT

c2
λ1(ΣA)λ1(Σ

1:T
W ).

We conclude using Proposition 4.3.1.

To prove the last inequality, we start by noting that G∗ and
(
1− 1

N

)
nTΣ1:T

W

(
[A∗]⊤M−1

∗ A∗) share

almost surely the same eigenvalues. Thus

λ1(G∗)− λ2(G∗) =

(
1− 1

N

)
nT
[
λ1(Σ

1:T
W

(
[A∗]⊤M−1

∗ A∗
)
)− λ2

(
Σ1:T
W

(
[A∗]⊤M−1

∗ A∗
))]

Assumption 7 ensures that

|λ1(Σ1:T
W

(
[A∗]⊤M−1

∗ A∗
)
)− λ2(Σ1:T

W

(
[A∗]⊤M−1

∗ A∗
)
)| ≥ c3.

Finally this leads to the following inequality holding true almost surely, for all k ≥ 2,(
1− 1

N

)
nTc3 + λ2(G∗) ≤ λ1(G∗).
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5.5.7 Proof of Proposition 5.2.10

Proof of Proposition 5.2.10. We start by proving that there exists a non singular matrix B ∈ RK×K

such that almost surely there are (
BB⊤

)−1
= [A∗]⊤M−1

∗ A∗,

U = M
−1/2
∗ A∗B.

We recall that the matrix Π∗ := M
−1/2
∗ Π1:T is almost surely of rank K and its SVD is defined as

Π∗ = UΣV . Hence by definition U⊤U = V V ⊤ = IK and Σ is diagonal and invertible. Hence the
following equalities hold almost surely,

U = (UΣV )V ⊤Σ−1,

= Π∗V
⊤Σ−1,

= M
−1/2
∗ A∗W 1:TV ⊤Σ−1.

Defining B := W 1:TV ⊤Σ−1 proves that U = M
−1/2
∗ A∗B almost surely. In addition U⊤M

−1/2
∗ A∗B =

U⊤U = IK almost surely and thus B is uniquely defined and almost surely non-singular. Finally U⊤U =
B⊤[A∗]⊤M−1

∗ A∗B = IK almost surely. Hence BB⊤ = BB⊤[A∗]⊤M−1
∗ A∗BB⊤ almost surely. This

proves the stated results and thus for each i ∈ [p] we have almost surely

Ui. = [M
−1/2
∗ ]iiBA

∗
i.

Proposition 5.2.8 ensures that almost surely we have

∥Ui.∥2 ≤
∥B∥op∥A∗

i.∥2√
[M∗]ii

≤
λ
−1/2
min

(
[A∗]⊤M−1

∗ A∗) ∥A∗
i.∥1√

[M∗]ii

≤
λ
−1/2
min

(
[A∗]⊤H−1A∗)hi√

[M∗]ii

≤
λK(Σ1:T

W )−1/2hi√
λK(Σ1:T

W )hi

≤
√
hi

λK(Σ1:T
W )

Finally we get

∥Ui.∥2 ≤
√
K∥Ui.∥1 ≤

√
Khi

λK(Σ1:T
W )

.

5.5.8 Proof of Theorem 5.2.11

Theorem 5.5.1 Consider the Dynamic Topic Model, see definition 5.1.1 and assumptions 6 and 7.
Then for all i ∈ [p] and for all ϵ1, ϵ2, ϵ3, ϵ4 > 0, with probability at least 1 − 2p exp(−ϵ21) − 2K exp(−ϵ22) −
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2pK exp(−ϵ23)−4p exp
(
−min

(
ϵ24;
√
cnTϵ4

))
, the quantity h−1/2

i

∥∥∥e⊤i (Ĝ−G∗

)∥∥∥
2

is bounded from above
by

2ϵ1

√
nTp

N

√
p

Nc1K
·
(
c2 − 2ϵ1

√
1

hminNnT

)−1

+ 2

√
nTp

N

ϵ3 + ϵ2
√
K/c1

c2

√
1− 2ϵ1

c2

√
1

NnThmin

1 +

ϵ1max
i∈[p]

ξi
√
NnT



+ 2ϵ4

√
nTp

N
· 288 · e
log(2)

√
c
·

√
p

√
Nc1Kc2

1 +

ϵ1max
i∈[p]

ξi
√
NnT

2

+ 2ϵ1K

√
nTp

N

(
c2 −

2ϵ1√
NnThmin

)−2

+ 2ϵ1

√
nTp

N

√
K

√
c1c2

(
c2 −

2ϵ1√
NnThmin

)−3/2

.

where c is an absolute constant appearing in Lemma 1.1.10 and for all i ∈ [p],

∆i := c2hi − 2ϵ1

√
min(2, hi)

NnT
, ξi :=

(
∆

−3/2
i

√
himin(2, hi)

)
.

Remark 5.5.1 Theorem 5.5.1 improves the result presented in Lemma F.4 in [84]. Specifically, by set-
ting

ϵ21 = log(p) + 5 log(nT ), ϵ22 = log(K) + 5 log(nT ), ϵ23 = log(pK) + 5 log(nT ),

ϵ24 = log(p) + 5 log(nT ),

it establishes that with probability at least 1− 10(nT )−5 if c ≥ log(p) + 5 log(nT )

nT
and with probability at

least 1−2 exp
(
−
√
cnT (log(p) + 5 log(nT ))

)
−6(nT )−5 if c ≤ log(p) + 5 log(nT )

nT
we have, for all i ∈ [p],
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h
−1/2
i

∥∥∥e⊤i (Ĝ−G∗

)∥∥∥
2

bounded from above by

2

√
nTp(log(p) + 5 log(nT ))

N

√
p

Nc1K
·

c2 − 2

√
p(log(p) + 5 log(nT ))

c1KNnT

−1

+2

√
nTp

N

√
log(pK) + 5 log(nT ) +

√
K(log(K) + 5 log(nT ))/c1

c2

√
1− 2ϵ1

c2

√
1

NnThmin

1 +

ϵ1max
i∈[p]

ξi
√
NnT



+2

√
nTp(log(p) + 5 log(nT ))

N
· 288 · e
log(2)

√
c
·

√
p

√
Nc1Kc2

1 +

ϵ1max
i∈[p]

ξi
√
NnT

2

+2K

√
nTp(log(p) + 5 log(nT ))

N

c2 − 2

√
p(log(p) + 5 log(nT ))

c1KNnT

−2

+ 2

√
nTp(log(p) + 5 log(nT ))

N

√
K

√
c1c2

c2 − 2

√
p(log(p) + 5 log(nT ))

c1KNnT

−3/2

.

Notably, unlike Lemma F.4 in [84], Theorem 5.5.1 does not require any assumption on either the number
nT of documents or the size of the number of words per documents N compared to the vocabulary size
p. Moreover, the probability of the stated event is controlled non-asymptotically, and the constants are
explicitly provided. Focusing on the asymptotic behaviour of this upper bound we have, when nT goes
to infinity and assuming K, p,N remain fixed, for all i ∈ [p], with probability at least 1−onT→∞

(
(nT )−3

)
,

h
−1/2
i

∥∥∥e⊤i (Ĝ−G∗

)∥∥∥
2

bounded from above by

(
C1

√
p

N
+ C2 + C3

√
p

N
+ C4

)√
nTp log(nT )

N
,

where

C1 =
10

c1Kc2
, C2 = 10(1 +

√
K/c1), C3 =

2880 · e
log(2)c2

√
c1Kc

,

C4 =
10K

c22
+

10
√
K

c22
√
c1
.

It is finally noteworthy to state that with probability at least 1 − onT→∞
(
(nT )−3

)
, for all i ∈ [p], the

following inequality is asymptotically holding true,

∥e⊤i
(
Ĝ−G∗

)
∥2

√
hi

≤ C(1 +N−1/2p1/2 +N−1p1/2)

√
nTp log(nT )

N

where C = 2max(C1, C2, C3, C4). This improves the result presented under an asymptotic framework in
Lemma F.4 in [84].
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Proof of Theorem 5.5.1. We start by considering the matrix Z1:T := Y 1:T −A∗W 1:T and we recall that

Π1:T := A∗W 1:T and that Ĝ−G∗ = M̂−1/2Y 1:T
(
Y 1:T

)⊤
M̂−1/2−nT

N
Ip−

(
1− 1

N

)
M

−1/2
∗ Π1:T

(
Π1:T

)⊤
M

−1/2
∗ .

Hence according to model (4.1) under the constraints defined in (4.2) and (4.3), the conditional distri-
bution of Z1:T given W 1:T allows to derive its conditional covariance matrix as follows. First notice that

for each j ∈ [n] and for all t ∈ [T ], Ztj ∈ Rp and V
[
Ztj |W t

j

]
=

1

N

[
diag(A∗W t

j)− (A∗W t
j)(A

∗W t
j)

⊤].
Hence we derive the following equalities,

E
[
Z1:T (Z1:T )⊤|W 1:T

]
=

1

N

n∑
j=1

T∑
t=1

[
diag(A∗W t

j)− (A∗W t
j)(A

∗W t
j)

⊤
]
,

=
1

N

[
M∗ − (Π1:T )(Π1:T )⊤

]
.

We then rewrite the matrix Ĝ−G∗ as a sum of quantities which we can control. We define

R1 :=
nT

N
M̂−1/2

(
M∗ − M̂

)
M̂−1/2,

R2 := M̂−1/2
(
Π1:T (Z1:T )⊤ +Z1:T (Π1:T )⊤

)
M̂−1/2,

R3 := M̂−1/2
(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
M̂−1/2,

R4 :=

(
1− 1

N

)(
M̂−1/2Π1:T (Π1:T )⊤M̂−1/2 −M

−1/2
∗ Π1:T (Π1:T )⊤M

−1/2
∗

)
.

We recall that the matrices M̂ and M∗ are diagonal. Hence one can verify that these quantities can be
expanded as follows,

R1 =
nT

N
M̂−1M∗ −

nT

N
Ip,

R2 = M̂−1/2
(
Π1:T (Y 1:T )⊤ −Π1:T (Π1:T )⊤ + Y 1:T (Π1:T )⊤ −Π1:T (Π1:T )⊤

)
M̂−1/2,

R3 = M̂−1/2
(
Y 1:T (Y 1:T )⊤ −Π1:T (Y 1:T )⊤ − Y 1:T (Π1:T )⊤ +Π1:T (Π1:T )⊤

)
M̂−1/2

− nT

N
M̂−1M∗ +

1

N
M̂−1/2Π1:T (Π1:T )⊤M−1/2,

R4 =

(
1− 1

N

)(
M̂−1/2Π1:T (Π1:T )⊤M̂−1/2 −M

−1/2
∗ Π1:T (Π1:T )⊤M

−1/2
∗

)
.

Hence it is easy to verify that Ĝ−G∗ =
4∑
s=1

Rs. We consider (e1, . . . , ep) the canonical basis of Rp. This

gives that for all i ∈ [p],

∥e⊤i (Ĝ−G∗)∥2 ≤
4∑
s=1

∥e⊤i Rs∥2.

We now aim to bound each ∥e⊤i Rs∥2 with high probability. We start with R1. For all i ∈ [p] we have

∥e⊤i R1∥2 = [R1]ii =
nT

N
[M̂−1]ii

(
[M∗]ii − [M̂ ]ii

)
.
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Proposition 5.2.1 ensures that for all i ∈ [p], for all ϵ1 > 0 with probability at least 1 − 2 exp
(
−ϵ21

)
, we

have ∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ < 2ϵ1

√
min(2, hi)

NnT
.

Moreover Proposition 5.2.8 gives that almost surely for all i ∈ [p],

λK(Σ1:T
W )hi ≤ [M∗]ii ≤ hi.

Hence we obtain that with probability at least 1− 2 exp
(
−ϵ21

)
we have, for all i ∈ [p],

[M̂ ]ii > [M∗]ii − 2ϵ1

√
min(2, hi)

NnT
,

> λK(Σ1:T
W )hi − 2ϵ1

√
min(2, hi)

NnT
.

This leads to, for all i ∈ [p], with probability at least 1− 2 exp
(
−ϵ21

)
,

∥e⊤i R1∥2 ≤
2nTϵ1
N

√
min(2, hi)√
NnT

·

(
λK(Σ1:T

W )hi − 2ϵ1

√
min(2, hi)

NnT

)−1

,

≤
2ϵ1
√
nT min(2, hi)

N3/2
·

(
λK(Σ1:T

W )hi − 2ϵ

√
min(2, hi)

NnT

)−1

,

≤ 2ϵ1
√
nThi

N3/2
·

(
λK(Σ1:T

W )hi − 2ϵ

√
hi

NnT

)−1

,

≤ 2ϵ1
√
nThi

N3/2hi
·
(
λK(Σ1:T

W )− 2ϵ

√
1

NnThi

)−1

,

≤ 2ϵ1
√
nT

N
√
Nhi

·
(
λK(Σ1:T

W )− 2ϵ

√
1

hiNnT

)−1

.

We now consider R2 and we note that Π1:T := A∗W 1:T =
K∑
k=1

[A∗].k
(
[W 1:T ]k.

)⊤. Hence we get

R2 =

K∑
k=1

(
M̂−1/2[A∗].k

(
M̂−1/2Z1:T [W 1:T ]k.

)⊤
+ M̂−1/2Z1:T [W 1:T ]k.

(
M̂−1/2[A∗].k

)⊤)
.

From this result we derive that for all i ∈ [p], we have

∥e⊤i R2∥2 ≤
K∑
k=1

[A∗]ik[M̂
−1/2]ii∥M̂−1/2Z1:T [W 1:T ]k.∥2

+

K∑
k=1

|[Z1:T ]⊤i. [W
1:T ]k.|[M̂−1/2]ii∥M̂−1/2[A∗].k∥2
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First Proposition 5.2.3 ensures that for all i ∈ [p] and for all k ∈ [K], for all ϵ2 > 0 with probability at least
1− 2 exp(−ϵ22) we have ∣∣∣[Z1:T ]⊤i. [W

1:T ]k.

∣∣∣ < 2ϵ2

√
hinT

N
.

Moreover Corollary 5.2.5 ensures that for all for all ϵ3 > 0 and for all k ∈ [K], with probability at least
1− 2p exp(−ϵ23), we have ∥∥∥M−1/2

∗ Z1:T [W 1:T ]k.

∥∥∥
2
≤ 2ϵ3

√
pnT

NλK(Σ1:T
W )

.

In addition
∑K

k=1[A
∗]ik = hi and we recall that for all i ∈ [p], and for all ϵ1 > 0 with probability at least

1− 2 exp(−ϵ21),

[M̂−1/2]ii <

(
[M∗]ii − 2ϵ1

√
min(2, hi)

NnT

)−1/2

.

We also recall that for all i ∈ [p], Proposition 5.2.8 ensures that

λK(Σ1:T
W )hi ≤ [M∗]ii ≤ hi.

Furthermore, the function x 7→ x−1/2 is convex and Lemma 5.6.5 ensures that for all (x, y) ∈ R2 such
that x > y, we have

(x− y)−1/2 ≤ x−1/2 +
1

2
(x− y)−3/2y.

In addition we recall the previously proved result, that for all i ∈ [p] and for all ϵ1 > 0 with probability at
least 1− 2 exp(−ϵ21),

[M̂ ]ii ≥

(
[M∗]ii − 2ϵ1

√
min(2, hi)

NnT

)
. (5.16)

This provides especially with probability at least 1− 2 exp(−ϵ21),

[M̂−1/2]ii < [M
−1/2
∗ ]ii + ϵ1

√
min(2, hi)

NnT

(
[M∗]ii − 2ϵ1

√
min(2, hi)

NnT

)−3/2

.

Hence we get that for all i ∈ [p], with probability at least 1− 2 exp(−ϵ21),

[M̂−1/2]ii[M
1/2
∗ ]ii ≤ 1 + [M

1/2
∗ ]iiϵ1

√
min(2, hi)

NnT

(
[M∗]ii − 2ϵ1

√
min(2, hi)

NnT

)−3/2

,

≤ 1 +
√
hiϵ1

√
min(2, hi)

NnT

(
λK(Σ1:T

W )hi − 2ϵ1

√
min(2, hi)

NnT

)−3/2

Moreover ∥M̂−1/2M
1/2
∗ ∥op = max

i∈[p]

(
[M̂−1/2]ii[M

1/2
∗ ]ii

)
which leads to, with probability at least 1 −

2p exp(−ϵ21),

∥M̂−1/2M
1/2
∗ ∥op ≤ 1 + max

i∈[p]

√hiϵ1√min(2, hi)

NnT

(
λK(Σ1:T

W )hi − 2ϵ1

√
min(2, hi)

NnT

)−3/2
 .
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In addition we have, for all k ∈ [K],

∥M−1/2
∗ [A∗].k∥22 =

p∑
i=1

[M
−1/2
∗ ]2ii[A

∗]2ik,

≤
p∑
i=1

λK(Σ1:T
W )−1h−1

i [A∗]2ik.

Hence we deduce from the definition of the quantities hi and by recalling that A∗ ∈ Rp×K+ has columns
summing to one the following inequality,

K∑
k=1

∥M−1/2
∗ [A∗].k∥22 ≤

K∑
k=1

p∑
i=1

λK(Σ1:T
W )−1h−1

i [A∗]2ik,

≤ λK(Σ1:T
W )−1

K∑
k=1

p∑
i=1

[A∗]ik ≤
K

λK(Σ1:T
W )

.

Then Cauchy-Schwarz inequality ensures that(
K∑
k=1

∥M−1/2
∗ [A∗].k∥2

)2

≤ K
K∑
k=1

∥M−1/2
∗ [A∗].k∥22 ≤

K2

λK(Σ1:T
W )

.

For notation simplicity, we denote, for all i ∈ [p],

∆i := λK(Σ1:T
W )hi − 2ϵ1

√
min(2, hi)

NnT
,

ξi :=
(
∆

−3/2
i

√
himin(2, hi)

)
.

We have especially established with (5.16) that for all i ∈ [p], [M̂−1/2]ii ≤∆
−1/2
i with probability at least

1 − 2 exp(−ϵ21). The previously proved results provide, for all ϵ1, ϵ2, ϵ3 > 0 and with probability at least
1− 2p exp(−ϵ21)− 2K exp(−ϵ22)− 2pK exp(−ϵ23),

∥e⊤i R2∥2 ≤ hi∆−1/2
i ·

(
1 + max

i∈[p]

(√
hiϵ1

√
min(2, hi)

NnT
∆

−3/2
i

))
· 2ϵ3

√
pnT

NλK(Σ1:T
W )

+ 2ϵ2

√
hinT

N
∆

−1/2
i ·

(
1 + max

i∈[p]

(√
hiϵ1

√
min(2, hi)

NnT
∆

−3/2
i

))
· K√

λK(Σ1:T
W )

.

Hence, for all ϵ1, ϵ2, ϵ3 > 0 and with probability at least 1−2p exp(−ϵ21)−2K exp(−ϵ22)−2pK exp(−ϵ23),

∥e⊤i R2∥2 ≤ 2∆
−1/2
i

√
nT

NλK(Σ1:T
W )

1 +

ϵ1max
i∈[p]

ξi
√
NnT

[hiϵ3√p+Kϵ2
√
hi

]
,

≤ 2

(
1− 2ϵ1

λK(Σ1:T
W )hi

√
min(2, hi)

NnT

)−1/2√
nT

NλK(Σ1:T
W )2

1 +

ϵ1max
i∈[p]

ξi
√
NnT

[ϵ3√hip+Kϵ2

]
.
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We now considerR3 := M̂−1/2
(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
M̂−1/2. Hence the following results

come, holding for all i ∈ [p],

∥e⊤i R3∥22 =
p∑
s=1

[R3]
2
is,

=

p∑
s=1

(
[Z1:T ]⊤i. [Z

1:T ]s. − E
[
[Z1:T ]⊤i. [Z

1:T ]s.
])2

[M̂ ]ii[M̂ ]ss
,

=

p∑
s=1

(
[Z1:T ]⊤i. [Z

1:T ]s. − E
[
[Z1:T ]⊤i. [Z

1:T ]s.
])2

[M∗]ii[M∗]ss

[M̂ ]ii[M̂ ]ss[M∗]ii[M∗]ss
,

=

p∑
s=1

(
[M̂−1/2]ii[M

1/2
∗ ]ii

)2 (
[M̂−1/2]ss[M

1/2
∗ ]ss

)2 ([Z1:T ]⊤i. [Z
1:T ]s. − E

[
[Z1:T ]⊤i. [Z

1:T ]s.
])2

[M∗]ii[M∗]ss
,

≤ ∥M̂−1/2M
1/2
∗ ∥4op

p∑
s=1

(
[Z1:T ]⊤i. [Z

1:T ]s. − E
[
[Z1:T ]⊤i. [Z

1:T ]s.
])2

[M∗]ii[M∗]ss
.

Moreover, Proposition 5.2.6 ensures that for all (i, s) ∈ [p]2, for all ϵ4 > 0, with probability at least
1− 4 exp

(
−min

(
ϵ24;
√
cnTϵ4

))
and for an absolute constant c > 0, we have

∣∣∣[Z1:T ]⊤i. [Z
1:T ]s. − E

[
[Z1:T ]⊤i. [Z

1:T ]s.

]∣∣∣ < 576 · e
log(2)

√
c
· ϵ4

√
hi · hs

√
nT

N max(hmin/2, 1)
.

Furthermore, we proved that for all ϵ1 > 0, with probability at least 1− 2p exp(−ϵ21),

∥M̂−1/2M
1/2
∗ ∥op ≤

1 +

ϵ1max
i∈[p]

ξi
√
NnT

 .

In addition, Proposition 5.2.8 ensures that for all i ∈ [p],

[M∗]ii ≥ λK(Σ1:T
W )hi.

Hence, for all i ∈ [p], for all ϵ1, ϵ4 > 0, with probability at least 1 − 4p exp
(
−min

(
ϵ24;
√
cnTϵ4

))
−

2p exp(−ϵ21) and for an absolute constant c > 0 we have

∥e⊤i R3∥22 ≤

1 +

ϵ1max
i∈[p]

ξi
√
NnT

4

p ·

(
576 · e

log(2)
√
c
· ϵ4

√
nT

NλK(Σ1:T
W )max(hmin/2, 1)

)2

.

Thus, for all i ∈ [p], for all ϵ1, ϵ4 > 0, with probability at least 1 − 4p exp
(
−min

(
ϵ24;
√
cnTϵ4

))
−

2p exp(−ϵ21) and for an absolute constant c > 0 we have

∥e⊤i R3∥2 ≤

1 +

ϵ1max
i∈[p]

ξi
√
NnT

2

· 576 · e
log(2)

√
c
· ϵ4

√
nTp

NλK(Σ1:T
W )max(hmin/2, 1)

.
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We now consider R4 :=

(
1− 1

N

)(
M̂−1/2Π1:T (Π1:T )⊤M̂−1/2 −M

−1/2
∗ Π1:T (Π1:T )⊤M

−1/2
∗

)
. Moreo-

ver, Π1:T := A∗W 1:T =
K∑
k=1

[A∗].k
[
W 1:T

]⊤
k.

. Hence we can re-write R4 as follows,

R4 =

(
1− 1

N

)
M̂−1/2

K∑
k=1

[A∗].k
[
W 1:T

]⊤
k.
(
K∑
l=1

[A∗].l
[
W 1:T

]⊤
l.
)⊤M̂−1/2

−
(
1− 1

N

)
M

−1/2
∗

K∑
k=1

[A∗].k
[
W 1:T

]⊤
k.
(
K∑
l=1

[A∗].l
[
W 1:T

]⊤
l.
)⊤M

−1/2
∗ ,

=

(
1− 1

N

)
M̂−1/2

K∑
k=1

K∑
l=1

[A∗].k
[
W 1:T

]⊤
k.

[
W 1:T

]
l.
[A∗]⊤.l M̂

−1/2

−
(
1− 1

N

)
M

−1/2
∗

K∑
k=1

K∑
l=1

[A∗].k
[
W 1:T

]⊤
k.

[
W 1:T

]
l.
[A∗]⊤.l M

−1/2
∗ ,

=

(
1− 1

N

) K∑
k=1

K∑
l=1

([
W 1:T

]⊤
k.

[
W 1:T

]
l.

)
M̂−1/2 [A∗].k [A

∗]⊤.l M̂
−1/2

−
(
1− 1

N

) K∑
l=1

([
W 1:T

]⊤
k.

[
W 1:T

]
l.

)
M

−1/2
∗ [A∗].k [A

∗]⊤.l M
−1/2
∗ ,

=

(
1− 1

N

) K∑
k=1

K∑
l=1

([
W 1:T

]⊤
k.

[
W 1:T

]
l.

)
M̂−1/2 [A∗].k [A

∗]⊤.l

(
M̂−1/2 −M

−1/2
∗

)
+

(
1− 1

N

) K∑
k=1

K∑
l=1

([
W 1:T

]⊤
k.

[
W 1:T

]
l.

)(
M̂−1/2 −M

−1/2
∗

)
[A∗].k [A

∗]⊤.l M
−1/2
∗ .

This leads to, for all i ∈ [p],

∥e⊤i R4∥2 ≤ nT
[
M̂−1/2

]
ii

K∑
k=1

[A∗]ik

K∑
l=1

∥∥∥(M̂−1/2 −M
−1/2
∗

)
[A∗].l

∥∥∥
2

+ nT
([
M̂−1/2

]
ii
−
[
M

−1/2
∗

]
ii

) K∑
k=1

K∑
l=1

[A∗]ik

∥∥∥M−1/2
∗ [A∗].l

∥∥∥
2
.

First we already proved that for all i ∈ [p],

[M∗]ii ≥ λK(Σ1:T
W )hi.

Proposition 5.2.1 ensures that for all i ∈ [p], for all ϵ1 > 0, with probability at least 1− 2 exp(−ϵ21),∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ < 2ϵ1

√
min(2, hi)

NnT
.

This proves that for all i ∈ [p], for all ϵ1 > 0, with probability at least 1− 2 exp(−ϵ21),[
M̂
]
ii
≥ λK(Σ1:T

W )hi − 2ϵ1

√
min(2, hi)

NnT
.
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Using the mean value theorem we get that for all i ∈ [p], for all ϵ1 > 0, with probability at least 1 −
2 exp(−ϵ21), ∣∣∣[M̂−1/2]ii − [M

−1/2
∗ ]ii

∣∣∣ ≤ 2ϵ1

(
λK(Σ1:T

W )hi − 2ϵ

√
min(2, hi)

NnT

)−3/2√
min(2, hi)

NnT
,

≤ 2ϵ1

hi
√
NnT

λK(Σ1:T
W )− 2ϵ1

√
min(2/hi, 1)

NnThi

−3/2

,

≤ 2ϵ1

hi
√
NnT

(
λK(Σ1:T

W )− 2ϵ1√
NnThi

)−3/2

.

Hence, reminding that by definition, for all i ∈ [p] we have hi =
K∑
k=1

[A∗]ik leads to, for all l ∈ [K], for all

ϵ1 > 0, with probability at least 1− 2p exp(−ϵ21),∥∥∥(M̂−1/2 −M
−1/2
∗

)
[A∗].l

∥∥∥
2
≤

 p∑
i=1

(
2ϵ1

hi
√
NnT

(
λK(Σ1:T

W )− 2ϵ1√
NnThi

)−3/2

[A∗]il

)2
1/2

,

≤ 2ϵ1√
NnT

(
λK(Σ1:T

W )− 2ϵ1√
NnThmin

)−3/2
[

p∑
i=1

(
h−1
i [A∗]il

)2]1/2
,

≤
2ϵ1
√
p

√
NnT

(
λK(Σ1:T

W )− 2ϵ1√
NnThmin

)−3/2

.

Moreover we also proved the following inequality
K∑
l=1

∥M−1/2
∗ [A∗].l∥2 ≤

K√
λK(Σ1:T

W )
.

These inequalities lead to, for all i ∈ [p], for all ϵ > 0, with probability at least 1− 2pK exp
(
−ϵ21

)
,

∥e⊤i R4∥2 ≤
2ϵ1nThiK

√
p

√
NnT

(
λK(Σ1:T

W )hi − 2ϵ1

√
min(2, hi)

NnT

)1/2

(
λK(Σ1:T

W )− 2ϵ1√
NnThmin

)−3/2

+
2ϵ1nThiK√
λK(Σ1:T

W )

1

hi
√
NnT

(
λK(Σ1:T

W )− 2ϵ1√
NnThi

)−3/2

.

Finally, for all i ∈ [p], for all ϵ1 > 0, with probability at least 1− 2pK exp
(
−ϵ21

)
,

∥e⊤i R4∥2 ≤ 2ϵ1K

√
hinTp

N

(
λK(Σ1:T

W )− 2ϵ1√
NnThmin

)−2

+
2ϵ1K

√
nT√

NλK(Σ1:T
W )

(
λK(Σ1:T

W )− 2ϵ1√
NnThmin

)−3/2

.
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We combine all the previously obtained results and get that, for all i ∈ [p] and for all ϵ1, ϵ2, ϵ3, ϵ4 > 0,
with probability at least 1− 2p exp(−ϵ21)− 2K exp(−ϵ22)− 2pK exp(−ϵ23)− 4p exp

(
−min

(
ϵ24;
√
cnTϵ4

))
,

∥e⊤i (Ĝ−G∗)∥2 ≤
2ϵ1
√
nT

N
√
Nhi

·
(
λK(Σ1:T

W )− 2ϵ1

√
1

hiNnT

)−1

+ 2

(
1− 2ϵ1

λK(Σ1:T
W )hi

√
min(2, hi)

NnT

)−1/2√
nT

NλK(Σ1:T
W )2

1 +

ϵ1max
i∈[p]

ξi
√
NnT

[ϵ3√hip+Kϵ2

]

+

1 +

ϵ1max
i∈[p]

ξi
√
NnT

2

· 576 · e
log(2)

√
c
· ϵ4

√
nTp

NλK(Σ1:T
W )max(hmin/2, 1)

+ 2ϵ1K

√
hinTp

N

(
λK(Σ1:T

W )− 2ϵ1√
NnThmin

)−2

+
2ϵ1K

√
nT√

NλK(Σ1:T
W )

(
λK(Σ1:T

W )− 2ϵ1√
NnThmin

)−3/2

.

We then divide by
√
hi and remind that for all i ∈ [p], hi ≥ hmin, to get under the same conditions,

h
−1/2
i ∥e⊤i (Ĝ−G∗)∥2 ≤

2ϵ1
√
nT

Nhmin

√
N
·
(
λK(Σ1:T

W )− 2ϵ1

√
1

hminNnT

)−1

+ 2
ϵ3
√
p+Kh

−1/2
min ϵ2√

1− 2ϵ1

λK(Σ1:T
W )

√
1

NnThmin

√
nT

NλK(Σ1:T
W )2

1 +

ϵ1max
i∈[p]

ξi
√
NnT



+

1 +

ϵ1max
i∈[p]

ξi
√
NnT

2

· 576 · e
log(2)

√
c
·

ϵ4h
−1/2
min

√
nTp

NλK(Σ1:T
W )max(hmin/2, 1)

+ 2ϵ1K

√
nTp

N

(
λK(Σ1:T

W )− 2ϵ1√
NnThmin

)−2

+
2ϵ1K

√
nT√

NhminλK(Σ1:T
W )

(
λK(Σ1:T

W )− 2ϵ1√
NnThmin

)−3/2

.

Assumption 6, stating that hmin ≥
c1K

p
, ensures the following inequality, holding true under the same
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conditions as previously stated,

h
−1/2
i ∥e⊤i (Ĝ−G∗)∥2 ≤

2ϵ1p
√
nT

Nc1K
√
N
·
(
λK(Σ1:T

W )− 2ϵ1

√
1

hminNnT

)−1

+ 2
ϵ3
√
p+ ϵ2

√
Kp/c1√

1− 2ϵ1

λK(Σ1:T
W )

√
1

NnThmin

√
nT

NλK(Σ1:T
W )2

1 +

ϵ1max
i∈[p]

ξi
√
NnT



+

1 +

ϵ1max
i∈[p]

ξi
√
NnT

2

· 576 · e
log(2)

√
c
· ϵ4p

√
nT

NλK(Σ1:T
W )
√
c1K

+ 2ϵ1K

√
nTp

N

(
λK(Σ1:T

W )− 2ϵ1√
NnThmin

)−2

+
2ϵ1
√
KnTp√

Nc1λK(Σ1:T
W )

(
λK(Σ1:T

W )− 2ϵ1√
NnThmin

)−3/2

.

Finally we have, for all s ∈ [p], hs ≤ K and

ξs :=

√
hsmin(2, hs)(

λK(Σ1:T
W )hs − 2ϵ

√
min(2, hs)

NnT

)3/2

≤
√
2K(

λK(Σ1:T
W )− 2ϵ

√
p

NnTc1K

)3/2
.

Moreover c is an absolute constant appearing in Lemma 1.1.10.

Proof of Theorem 5.2.11. Use the result stated in Theorem 5.5.1 and notice thatNnT ≥ ϵ21max

(
16

c22hmin
;
32

c22
;

9K2

c32h
3
min

)
ensures NnT ≥ ϵ21maxi ξ

2
i .

5.5.9 Proof of Theorem 5.2.12

Theorem 5.5.2 Consider the Dynamic Topic Model, see definition 5.1.1 and assumptions 6 and 7.
Then for all i ∈ [p] and for all ϵ1, ϵ3, ϵ4 > 0, with probability at least 1 − 2p exp

(
−ϵ21

)
− 2pK exp

(
−ϵ23

)
−
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2 · 9p exp
(
−min

(
ϵ24,
√
cnTϵ4

))
, the quantity

∥∥∥(Ĝ−G∗

)∥∥∥
op

is bounded from above by

2ϵ1
√
nTp

Nc2
√
Nc1K

·
(
1−

2ϵ1
√
p

c2
√
NnTc1K

)−1

+
4ϵ3K

√
nTp

c2
√
N

(
1 + 2ϵ1

√
p

NnTc1K

(
c2 − 2ϵ1

√
p

NnTc1K

)−2
)

+
2ϵ4
√
nT

N
· 288 · e
c2 log(2)

√
c
·

(
1 + 2ϵ1

√
p

NnTc1K

(
c2 − 2ϵ1

√
p

NnTc1K

)−2
)

+
4ϵ1
√
nTpK2

c22
√
N

1 + ϵ1

√
K

√
2NnT

(
c2 − 2ϵ1

√
p

NnTc1K

)3/2


(
1−

2ϵ1
√
p

c2
√
NnTc1K

)−3/2

.

where c is an absolute constant appearing in Lemma 1.1.10.

Remark 5.5.2 Theorem 5.5.2 improves the result presented in Lemma F.5 in [84]. Specifically, by set-
ting

ϵ21 = log(p) + 5 log(nT ), ϵ23 = log(pK) + 5 log(nT ), ϵ24 = p log(9) + 5 log(nT ),

it establishes that with probability at least 1 − 6(nT )−5 if c ≥ p log(9) + 5 log(nT )

nT
and with probabi-

lity at least 1 − 2 exp
(
−
√
cnT (p log(9) + 5 log(nT ))

)
− 4(nT )−5 if c ≤ p log(9) + 5 log(nT )

nT
we have∥∥∥Ĝ−G∗

∥∥∥
op

bounded from above by

2
√
nTp (log(p) + 5 log(nT ))

Nc2
√
Nc1K

·

(
1−

2
√
p (log(p) + 5 log(nT ))

c2
√
NnTc1K

)−1

+
4K
√
nTp (log(pK) + 5 log(nT ))

c2
√
N

·

1 + 2

√
p (log(p) + 5 log(nT ))

NnTc1K

c2 − 2

√
p (log(p) + 5 log(nT ))

NnTc1K

−2
+
2
√
nT (p log(9) + 5 log(nT ))

N

288e

c2 log(2)
√
c

1 + 2

√
p (log(p) + 5 log(nT ))

NnTc1K

c2 − 2

√
p (log(p) + 5 log(nT ))

NnTc1K

−2

+
4
√
nTp (log(p) + 5 log(nT ))K2

c22
√
N

1 +

√
K (log(p) + 5 log(nT ))/

√
2NnT(

c2 − 2

√
p (log(p) + 5 log(nT ))

NnTc1K

)3/2


·

(
1−

2
√
p (log(p) + 5 log(nT ))

c2
√
NnTc1K

)−3/2

.

Notably, unlike Lemma F.5 in [84], Theorem 5.5.2 does not require any assumption on either the number
nT of documents or the size of the number of words per documents N compared to the vocabulary size
p. Moreover, the probability of the stated event is controlled non-asymptotically, and the constants are
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explicitly provided. Focusing on the asymptotic behaviour of this upper bound we have, when nT goes
to infinity and assuming K, p,N remain fixed, with probability at least 1− onT→∞

(
(nT )−3

)
,
∥∥∥Ĝ−G∗

∥∥∥
op

bounded from above by

C1

√
nTp log(nT )

N

1

N
+ C2

√
nTp log(nT )

N
+ C3

√
nT log(nT )

N

√
1

N
+ C4

√
nTp log(nT )

N
,

where

C1 =
10√
c1Kc2

, C2 =
20K

c2
, C3 =

2880 · e
log(2)c2

√
c
, C4 =

20K2

c22
.

It is finally noteworthy to state that with probability at least 1− onT→∞
(
(nT )−3

)
the following inequality

is asymptotically holding true,

∥Ĝ−G∗∥op ≤ C(1 +N−1/2p−1/2 +N−1)

√
nTp log(nT )

N

where C = 2max(C1, C2, C3, C4). This improves the result presented under an asymptotic framework in
Lemma F.5 in [84].

Proof of Theorem 5.5.2. We follow the proof structure of Theorem 5.5.1 and will use the same nota-
tions. Especially, for all i ∈ [p],

∆i := λK(Σ1:T
W )hi − 2ϵ

√
min(2, hi)

NnT
,

ξi :=
(
∆

−3/2
i

√
himin(2, hi)

)
.

We remind that Ĝ−G∗ =
4∑
s=1

Rs which leads to

∥(Ĝ−G∗)∥op ≤
4∑
s=1

∥Rs∥op.

We now aim to bound each ∥Rs∥op with high probability. We start with R1 which is diagonal. Hence we
get, for all ϵ1 > 0, with probability at least 1− 2p exp

(
−ϵ21

)
,

∥R1∥op = max
i∈[p]
∥e⊤i R1∥2 ≤

2ϵ1
√
nT

N
√
Nhmin

·
(
λK(Σ1:T

W )− 2ϵ1

√
1

hminNnT

)−1

.

We now consider R2 and notice that

∥R2∥op ≤ 2
K∑
k=1

∥∥∥M̂−1/2[A∗].k

∥∥∥
2

∥∥∥M̂−1/2Z1:T [W 1:T ]k.

∥∥∥
2
,

≤ 2∥M̂−1/2M
1/2
∗ ∥2op

K∑
k=1

∥∥∥M−1/2
∗ [A∗].k

∥∥∥
2

∥∥∥M−1/2
∗ Z1:T [W 1:T ]k.

∥∥∥
2
.
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Hence, using the previously derived upper bound on
∥∥∥M−1/2

∗ Z1:T [W 1:T ]k.

∥∥∥
2
, for all k ∈ [K], we get that

for all ϵ3 > 0, with probability at least 1− 2p exp(−ϵ23),

∥R2∥op ≤ 4ϵ3max
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[M̂−1]ii[M∗]ii

)√ pnT
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W )
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∥∥∥
2
,

≤ 4ϵ3max
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(
[M̂−1]ii[M∗]ii

)√nTp

N

K

λK(Σ1:T
W )

,

where the second inequality is due to the following result,

K∑
k=1

∥M−1/2
∗ [A∗].k∥2 ≤

K√
λK(Σ1:T

W )
.

Reminding that the function x 7→ x−1 is convex, Lemma 5.6.5 guarantees that for all (x, y) ∈ R2,

(x− y)−1 ≤ x−1 + (x− y)−2y.

In addition we recall that for all i ∈ [p], for all ϵ1 > 0with probability at least 1− 2 exp(−ϵ21),

[M̂ ]ii ≥

(
[M∗]ii − 2ϵ1

√
min(2, hi)

NnT

)
.

This provides especially with probability at least 1− 2 exp(−ϵ21),

[M̂−1]ii < [M−1
∗ ]ii + 2ϵ1

√
min(2, hi)

NnT

(
[M∗]ii − 2ϵ1

√
min(2, hi)

NnT

)−2

.

Hence we get that for all i ∈ [p], with probability at least 1− 2 exp(−ϵ21),

[M̂−1]ii[M∗]ii ≤ 1 + [M∗]ii2ϵ1

√
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√
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√
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√
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W )− 2ϵ1

√
1

NnThi

)−2

.

Finally using an union bound to control the max and the inequalities hi ≥ hmin ≥
c1K

p
holding for all

i ∈ [p], leads to, for all ϵ1, ϵ3 > 0 and with probability at least 1− 2p exp(−ϵ21)− 2pK exp(−ϵ23),

∥R2∥op ≤
4ϵ3K

λK(Σ1:T
W )

√
nTp

N

(
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1
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(
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≤ 4ϵ3K
√
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√
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(
1 + 2ϵ1

√
p

NnTc1K

(
λK(Σ1:T

W )− 2ϵ1

√
p

NnTc1K

)−2
)
.
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We now consider R3. Following the definition of R3, we have

∥R3∥op ≤
∥∥∥M̂−1/2

(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
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∥∥∥
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(
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[
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])
M
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∥∥∥
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∥∥∥
op

∥∥∥M−1/2
∗

(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
M

−1/2
∗
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.

Hence with probability at least 1− 2p exp(−ϵ21), we have ∥R3∥op bounded from above by(
1 + 2ϵ1

√
1

NnThi

(
λK(Σ1:T

W )− 2ϵ1

√
1

NnThi

)−2
)∥∥∥M−1/2

∗

(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
M

−1/2
∗

∥∥∥
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.

Moreover, Proposition 5.2.7 ensures that for all ϵ4 > 0, with probability at least 1−2 exp
(
p log(9)−min

(
ϵ24,
√
cnTϵ4

))
,

where c > 0 is an absolute constant, we have

∥M−1/2
∗

(
Z1:T (Z1:T )⊤ − E

[
Z1:T (Z1:T )⊤

])
M

−1/2
∗ ∥op

≤ 576 · e
λK(Σ1:T

W ) log(2)
·

√
nTϵ4

N
√
cmax(hmin/2, 1)

.

Finally, for all ϵ1, ϵ4 > 0, with probability at least 1− 2 exp
(
p log(9)−min

(
ϵ24,
√
cnTϵ4

))
− 2p exp

(
−ϵ21

)
,

we have

∥R3∥op ≤
576 · e

λK(Σ1:T
W ) log(2)

√
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·

√
nTϵ4
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(
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√
1

NnThi

(
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√
1
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.

We now consider R4 :=

(
1− 1

N

)(
M̂−1/2Π1:T (Π1:T )⊤M̂−1/2 −M

−1/2
∗ Π1:T (Π1:T )⊤M
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∗

)
. As de-

tailed in the proof of Theorem 5.5.1, R4 can be written as follows,
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N
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Hence we get that

∥R4∥op ≤ nT
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K∑
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op
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2
·
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∥∥∥
2
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K∑
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)
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2
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2
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The proof of Theorem 5.5.1 provides the following results. For all l ∈ [K], for all ϵ > 0, with probability
at least 1− 2p exp(−ϵ21), we have

∥∥∥(M̂−1/2 −M
−1/2
∗

)
[A∗].l

∥∥∥
2
≤

2ϵ1
√
p

√
NnT

(
λK(Σ1:T

W )− 2ϵ1√
NnThmin

)−3/2

.

In addition, we have
K∑
k=1

∥M−1/2
∗ [A∗].k∥2 ≤

K√
λK(Σ1:T

W )
.

Furthermore, we proved that with probability at least 1− 2p exp(−ϵ21),

∥M̂−1/2M
1/2
∗ ∥op ≤

1 +

ϵ1max
i∈[p]

ξi
√
NnT

 .

Hence we deduce that with probability at least 1− 2p exp
(
−ϵ21

)
, we have

∥R4∥op ≤

2 +

ϵ1max
i∈[p]

ξi
√
NnT

 nTK2√
λK(Σ1:T

W )

2ϵ1
√
p

√
NnT

(
λK(Σ1:T

W )− 2ϵ1√
NnThmin

)−3/2

.

Finally we have, for all s ∈ [p], hs ≤ K and

ξs :=

√
hsmin(2, hs)(

λK(Σ1:T
W )hs − 2ϵ1

√
min(2, hs)

NnT

)3/2

≤
√
2K(

λK(Σ1:T
W )− 2ϵ1

√
p

NnTc1K

)3/2
.

We combine all the previously proved results and get the stated inequality.
Proof of Theorem 5.2.12. We use the result stated in Theorem 5.5.2 and the given bound on the
sample size NnT to get the result.

5.5.10 Proof of Theorem 5.2.13

Theorem 5.5.3 Consider the Dynamic Topic Model, see definition 5.1.1 and assumptions 6 and 7.
For all l ∈ [5], the quantities Cl(K, p,N, n, T,W , hmin, ϵ), defined here under, converge towards a
fixed constant when either N , n or T goes to infinity. Under this setup, there exists a matrix Ω =
diag(ω,Ω2:K) ∈ RK×K where ω ∈ {−1, 1} and Ω2:K ∈ R(K−1)×(K−1) is an orthogonal matrix such that
for all i ∈ [p] and for all α > 0 satisfying

α ≤ λK(Σ1:T
W )

min
(
c3, λK(ΣA)λK(Σ1:T

W )
)

λ1(ΣA)λ1(Σ1:T
W )

< 1,
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for all ϵ1, ϵ2, ϵ3, ϵ4 > 0 satisfying

max(ϵ1, ϵ2, ϵ3, ϵ4) ≤ α
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√
p

N
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√
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N
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√
p

) ,
with probability at least 1−2p exp(−ϵ21)−2K exp(−ϵ22)−2pK exp(−ϵ23)−2·(2p+9p) exp

(
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(
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))
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is bounded from above by
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√
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√
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√
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converge towards constants when NnT grows. The quantities (Cl)l∈[5] are defined as follows,
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√
p

√
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)−1
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√
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√
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√
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√
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√
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√
2NnT

(
c2 − 2ϵ1

√
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√
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√
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,
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√
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√
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√
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i∈[p]

ξi
√
NnT

 ,

with ξi defined in Theorem 5.5.1.

Remark 5.5.3 Theorem 5.5.3 improves the result presented in Theorem 3.1 in [84]. Specifically, by
setting

ϵ21 = log(p) + 5 log(nT ), ϵ22 = log(K) + 5 log(nT ), ϵ23 = log(pK) + 5 log(nT ),

ϵ24 = log(2p+ 9p) + 5 log(nT ),
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it establishes that with probability at least 1−8(nT )−5 if c ≥ log(2p+ 9p) + 5 log(nT )

nT
and with probability

at least 1 − 2 exp
(
−
√
cnT (log(2p+ 9p) + 5 log(nT ))

)
− 6(nT )−5 if c ≤ log(2p+ 9p) + 5 log(nT )

nT
we

havewe have for all i ∈ [p],
∥∥∥Ω[Û ]i. − [U ]i.

∥∥∥
2

bounded from above by

20
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+
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√
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√
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)
.

Notably, unlike Theorem 3.1 in [84], Theorem 5.5.3 does not require any assumption on either the
number nT of documents or the value of log(nT ) compared to min(N, p) or the asymptotic beha-

viour of
p log(nT )

NnT
. Moreover, the probability of the stated event is controlled non-asymptotically, and

the constants are explicitly provided. It is finally noteworthy to state that with probability at least 1 −
onT→∞

(
(nT )−3

)
the following inequality is asymptotically holding true,∥∥∥Ω[Û ]i. − [U ]i.

∥∥∥
2
≤ C

(
1 +

1

N
+

√
p

N
+

√
p

N

)√
hip log(nT )

NnT

where C = 2
20K
√
5

αc1λK(ΣA)c22
max(C1, C2, C3, C4)

3/2. This improves the result presented under an asymp-

totic framework in Theorem 3.1 in [84].

Proof of Theorem 5.5.3. We first recall that for any vector v ∈ Rd, for all j ∈ [d], v(j) denotes the
jth entry of v. We then define Û2:K =

[
û2, . . . , [Û ].K

]
and U2:K its population counterpart. We recall

that Û =
[
[Û ].1, . . . , [Û ].K

]
contains the first K left singular vectors of the noisy quantity Π̂. Their po-

pulation counterparts are denoted respectively U and Π∗. Then for any matrix Ω = (ω,Ω2:K), where
ω ∈ {+1,−1} and Ω2:K ∈ R(K−1)×(K−1) is orthogonal, we have∥∥∥Ω[Û ]i. − [U ]i.

∥∥∥
2
≤ |ω[Û ].1(i)− [U ].1(i)|+

∥∥∥Ω2:K [Û2:K ]i. − [U2:K ]i.

∥∥∥
2
.

Proposition 5.2.9 proves that(
1− 1

N

)
nT

λ1(ΣA)λ1(Σ
1:T
W )

λK(Σ1:T
W )

≥ ∥G∗∥op ≥ λK(G∗) ≥
(
1− 1

N

)
nTλK(ΣA)λK(Σ1:T

W ).

In addition, proposition 5.2.9 also ensures that

∥G∗∥op ≥
(
1− 1

N

)
nTc3 +max

k≥2
λK(G∗).

In addition, Theorem 5.5.2 states that for all ϵ1, ϵ3, ϵ4 > 0, with probability at least 1 − 2p exp
(
−ϵ21

)
−

2pK exp
(
−ϵ23

)
− 2 · 9p exp

(
−min

(
ϵ24,
√
cnTϵ4

))
,

∥∥∥(Ĝ−G∗

)∥∥∥
op
≤ 2ϵ1

√
nTp

N
√
N
· C1 +

2ϵ3
√
nTp√
N

· C2 +
2ϵ4
√
nT

N
· C3 +

2ϵ1
√
nTp√
N

· C4,



160 CHAPITRE 5. DYNAMIC TOPIC MODEL

where for all l ∈ [4], the quantities Cl(K, p,N, n, T,W , hmin, ϵ) converge towards a fixed constant when
either N , n or T goes to infinity while the other quantities remain fixed. Let us denote A the quantity[
C1
√
p

N
+ C2

√
p+

C3√
N

+ C4
√
p

]
. Consider two groups for the eigenvalues of G∗, namely : {λ1 (G∗)}

and {λ2 (G∗) , . . . , λmin (G∗)}. The gap between two eigenvalues lying in two different groups is at least(
1− 1

N

)
nTc3 as proved in proposition 5.2.9. Next consider α ∈ R+. Proposition 5.2.9 ensures that if

α ≤
λK(Σ1:T

W )c3

λ1(ΣA)λ1(Σ1:T
W )

, then λ1 (G∗)− λ2 (G∗) ≥ α ∥G∗∥op .

In addition if

α ≤
λK(Σ1:T

W )2λK(ΣA)

λ1(ΣA)λ1(Σ1:T
W )

< 1, then λmin (G∗) ≥ α ∥G∗∥op .

Hence if

α ≤ λK(Σ1:T
W )

min
(
c3, λK(ΣA)λK(Σ1:T

W )
)

λ1(ΣA)λ1(Σ1:T
W )

< 1 then min {λ1 (G∗)− λ2 (G∗) , λmin (G∗)} ≥ α ∥G∗∥op .

Moreover, if

max(ϵ1, ϵ3, ϵ4) ≤ α
(1− 1/N)

√
nTλK(ΣA)λK(Σ1:T

W )

6A
then 2

√
nT

N
max(ϵ1, ϵ3, ϵ4)A ≤

α

3
(1− 1

N
)nTλK(ΣA)λK(Σ1:T

W ),

which leads to, with probability at least 1−2p exp
(
−ϵ21

)
−2pK exp

(
−ϵ23

)
−2·9p exp

(
−min

(
ϵ24,
√
cnTϵ4

))
,∥∥∥(Ĝ−G∗

)∥∥∥
op
≤ α

3
∥G∗∥op .

Finally, conditions required to apply Lemma 5.6.6 are fulfilled. Applying this Lemma with respectively
s = k = 1 and s = 2, k = K gives the existence of ω ∈ {+1,−1} and Ω2:K ∈ R(K−1)×(K−1) orthogonal
such that,∥∥∥ω[Û ].1(i)− [U ].1(i)

∥∥∥ ≤ 5

α ∥G∗∥op

(∥∥∥(Ĝ−G∗

)∥∥∥
op
∥[U ]i. ∥2 +

√
K
∥∥∥ e⊤i (Ĝ−G∗

)∥∥∥
2

)
,∥∥∥Ω2:K [Û2:K ]i. − [U2:K ]i.

∥∥∥
2
≤ 5

α ∥G∗∥op

(∥∥∥(Ĝ−G∗

)∥∥∥
op
∥[U ]i. ∥2 +

√
K
∥∥∥ e⊤i (Ĝ−G∗

)∥∥∥
2

)
.

In addition, Proposition 5.2.10 ensures that under the same conditions,∥∥∥ω[Û ].1(i)− [U ].1(i)
∥∥∥ ≤ 5

α ∥G∗∥op

(∥∥∥(Ĝ−G∗

)∥∥∥
op

√
K

λK(Σ1:T
W )

√
hi +

√
K
∥∥∥ e⊤i (Ĝ−G∗

)∥∥∥
2

)
,

∥∥∥Ω2:K [Û2:K ]i. − [U2:K ]i.

∥∥∥
2
≤ 5

α ∥G∗∥op

(∥∥∥(Ĝ−G∗

)∥∥∥
op

√
K

λK(Σ1:T
W )

√
hi +

√
K
∥∥∥ e⊤i (Ĝ−G∗

)∥∥∥
2

)
.

Theorem 5.5.1 states that for all i ∈ [p] and for all ϵ1, ϵ2, ϵ3, ϵ4 > 0, with probability at least 1 −
2p exp(−ϵ21)−2K exp(−ϵ22)−2pK exp(−ϵ23)−4p exp

(
−min

(
ϵ24;
√
cnTϵ4

))
, the quantity h−1/2

i

∥∥∥e⊤i (Ĝ−G∗

)∥∥∥
2

is bounded from above by

2

√
nTp

N

[
C ′
1ϵ1

√
p

N
+ C ′

2(ϵ2 + ϵ3) + C ′
3ϵ4

√
p

N
+ C ′

4ϵ1 + C ′
5ϵ1

]
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where for all l ∈ [5], the quantities C ′
l(K, p,N, n, T,W , hmin, ϵ) converge towards a fixed constant when

either N , n or T goes to infinity. Let us denote B the quantity
[
C ′
1
√
p

N
+ C ′

2 + C ′
3

√
p

N
+ C ′

4 + C ′
5

]
. Then

Theorems 5.5.1 and 5.5.2 provide, under the conditions on ϵ1, ϵ2, ϵ3, ϵ4 and α previously stated, with
probability at least 1−2p exp(−ϵ21)−2K exp(−ϵ22)−2pK exp(−ϵ23)−2·(2p+9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
,∥∥∥ω[Û ].1(i)− [U ].1(i)

∥∥∥ ≤ 10max(ϵ1, ϵ2, ϵ3, ϵ4)

α ∥G∗∥op

( √
nTKhi

λK(Σ1:T
W )
√
N
A+

√
KhinTp

N
B

)
,

∥∥∥Ω2:K [Û2:K ]i. − [U2:K ]i.

∥∥∥
2
≤ 10max(ϵ1, ϵ2, ϵ3, ϵ4)

α ∥G∗∥op

( √
nTKhi

λK(Σ1:T
W )
√
N
A+

√
KhinTp

N
B

)
.

This provides∥∥∥Ω[Û ]i. − [U ]i.

∥∥∥
2
≤ 20max(ϵ1, ϵ2, ϵ3, ϵ4)

α ∥G∗∥op

√
KhinTp

N

(
A

√
pλK(Σ1:T

W )
+B

)
.

Using the lower bound on ∥G∗∥op provided by Proposition 5.2.9 gives∥∥∥Ω[Û ]i. − [U ]i.

∥∥∥
2
≤ 20max(ϵ1, ϵ2, ϵ3, ϵ4)

α(N − 1)λK(ΣA)λK(Σ1:T
W )

√
NKhip

nT

(
A

√
pλK(Σ1:T

W )
+B

)
.

The conclusion comes by noticing
√
N

N − 1
≤
√

1

N − 2 + 1/N
.

Proof of Theorem 5.2.13. Consider the statement of Theorem 5.5.3 and notice that

NnT ≥ ϵ21max

(
36K

c32
;

64p

c42c1K
;

16

c22hmin
; maxi∈[p] ξ

2
i

)
ensures :

C1 ≤ 2/c2; C2 ≤ 2K/c2; C3 ≤
576e

c2 log(2−
√
c
; C4 ≤

4K2

c22
; C5 ≤

4

c2

(
1 +

√
K/c1

)
.

In addition, 1− 1/N ≤ 0.5 and we have almost surely
√
K ≥ λK(ΣA) ≥ c2,

√
K ≥ λK(Σ1:T

W ) ≥ c2,√
K ≥ λ1(ΣA) ≥ K−1/2,

√
K ≥ λ1(Σ1:T

W ) ≥ K−1/2.

This allows to consider α = c2
min

(
c3, c

2
2

)
K

which implies the stated bound on maxi∈[4] ϵi and the value

of Ctot(p,N). Finally notice that by definition, maxi∈[p] ξi ≤
3K

c
3/2
2 h

3/2
min

if NnT ≥ ϵ21
32

c22
. Thus under this

condition, maxi∈[p] ξ
2
i ≤

9K2

c32h
3
min

.

5.5.11 Proof of Proposition 5.2.14

Proof of Proposition 5.2.14. In the proof outlined in Proposition 5.2.10, it has been established that
there exists a non singular matrix B ∈ RK×K such that almost surely the following relationships hold :(

BB⊤
)−1

= [A∗]⊤M−1
∗ A∗,

U = M
−1/2
∗ A∗B.



162 CHAPITRE 5. DYNAMIC TOPIC MODEL

For all k ∈ [K] and for all l ∈ [K − 1], we introduce the matrix N ∈ RK×(K−1) with elements defined as
follows :

[N ]kl =
[B]k(l+1)

[B]k1
.

This allows us to express the matrix B in terms of N as B = diag ([B].1) [1K , N ]. By employing these
results, we arrive at the following expression for R ∈ Rp×(K−1) :

[1p, R] = diag(u1)−1M
−1/2
∗ A∗diag ([B].1) [1K , N ] .

Furthermore, following Lemma D.2 in [84] we demonstrate that the first column of B, denoted [B].1, is
an eigenvector of Σ1:T

W (A∗)⊤M−1
∗ A∗. Indeed Let us denote σ1 (Π∗) , . . . , σK (Π∗) the singular values of

Π∗. By the definition of the singular values and recalling that Π∗ has nonnegative entries, we have, for
all k ∈ [K],

Π∗ (Π∗)
⊤ uk = σk (Π∗)

2 uk.

Combining that Π∗ := M
−1/2
∗ A∗W 1:T and U = M

−1/2
∗ A∗B leads to(

M
−1/2
∗ A∗W 1:T

(
W 1:T

)⊤
(A∗)⊤M

−1/2
∗

)
M

−1/2
∗ A∗ [B].k = σk (Π∗)

2M
−1/2
∗ A∗ [B].k .

Left multiplying both sides by
(
(A∗)⊤M−1

∗ A∗)−1
(
(A∗)⊤M

−1/2
∗

)
ensures that

W 1:T
(
W 1:T

)⊤
(A∗)⊤M−1

∗ A∗ [B].k = σk (Π∗)
2 [B].k .

Recall that Σ1:T
W := (nT )−1W 1:T

(
W 1:T

)⊤ finally gives, for all k ∈ [K],

Σ1:T
W (A∗)⊤M−1

∗ A∗ [B].k = (nT )−1σk (Π∗)
2 [B].k .

By applying Perron Frobenius theorem and establishing that Σ1:T
W (A∗)⊤M−1

∗ A∗ is a strictly positive
matrix we conclude that the entries of [B].1 have the same sign. In addition, we have for all i ∈ [p],
[U ].1(i) =

[
M

−1/2
∗

]
ii
[A∗]i. [B].1 . Given that the entries of A∗ are nonnegative by design, and all entries

of [B].1 are either all positive or all negative, it follows that the entries of u1 are either all positive or all
negative. Notably U and B are defined up to a sign flip, allowing us to choose U in a manner that u1
becomes a positive vector. Finally M∗ is a diagonal matrix with positive entries, establishing that the
rows of R are convex combinations of the rows of N .

5.5.12 Proof of Theorem 5.2.15

Theorem 5.5.4 Consider the Dynamic Topic Model, see definition 5.1.1 and assumptions 6 and 7.
Consider the matrices R and R̂ defined in the Post-SVD Normalization step. Then, for all i ∈ [p], for all
α > 0 such that

α ≤ c2
min (c3, λK(ΣA)c2)

λ1(ΣA)λ1(Σ1:T
W )

< 1,

for all ϵ1, ϵ2, ϵ3, ϵ4 > 0 such that

max(ϵ1, ϵ2, ϵ3, ϵ4) ≤ α
(1− 1/N)

√
nTλK(ΣA)c2

6

(
C1
√
p

N
+ C2

√
p+

C3√
N

+ C4
√
p

) ,
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with probability at least 1−2p exp(−ϵ21)−2K exp(−ϵ22)−2pK exp(−ϵ23)−2·(2p+9p) exp
(
−min

(
ϵ24;
√
cnTϵ4

))
,

there exists Ω2:K ∈ R(K−1)×(K−1), an orthogonal matrix, such that∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
≤ Z

[(√
hi min

k∈[K]
|[B]k1|

)−1

+ Z

(√
hi min

k∈[K]
|[B]k1| − Z

)−2
](

2 + max
k∈[K]

∥ηk ∥2
)
,

where (
min
k∈[K]

[B]k1

)−1

≤ p

c
9/2
2 c1K

, max
k∈[K]

∥ηk∥2 ≤
p

c52c1K
,

Z :=
Ctot(p,N)

α
max(ϵ1, ϵ2, ϵ3, ϵ4)

√
Khip

nT (N − 2)
,

with Ctot(p,N) defined in Theorem 5.5.3.

Remark 5.5.4 Theorem 5.5.4 improves the result presented in Theorem 3.2 in [84]. Specifically, by
setting

ϵ21 = log(p) + 5 log(nT ), ϵ22 = log(K) + 5 log(nT ), ϵ23 = log(pK) + 5 log(nT ),

ϵ24 = log(2p+ 9p) + 5 log(nT ),

it establishes that with probability at least 1−8(nT )−5 if c ≥ log(2p+ 9p) + 5 log(nT )

nT
and with probability

at least 1−2 exp
(
−
√
cnT (log(2p+ 9p) + 5 log(nT ))

)
−6(nT )−5 if c ≤ log(2p+ 9p) + 5 log(nT )

nT
we have

for all i ∈ [p],
∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

bounded from above by

Z

[(√
hi min

k∈[K]
|[B]k1|

)−1

+ Z

(√
hi min

k∈[K]
|[B]k1| − Z

)−2
](

2 + max
k∈[K]

∥ηk ∥2
)

where Z is bounded from above by

20
√

log(2p+ 9p) + 5 log(nT )

α(N − 1)c22

√
NKhip

nT

(
C1

Nc2
+
C2

c2
+

C3√
pNc2

+
C4

c2

)
,

+
20
√

log(2p+ 9p) + 5 log(nT )

α(N − 1)c22

√
NKhip

nT

(
C1
√
p

Nc1K
+ C5 +

C3√
c1K

√
p

N
+ C2

1 + C
3/2
1

√
K

√
c1c2

)
.

Notably, unlike Theorem 3.2 in [84], Theorem 5.5.4 does not require any assumption on either the
number nT of documents or the value of log(nT ) compared to min(N, p) or the asymptotic beha-

viour of
p log(nT )

NnT
. Moreover, the probability of the stated event is controlled non-asymptotically, and

the constants are explicitly provided. It is finally noteworthy to state that with probability at least 1 −
onT→∞

(
(nT )−3

)
the following inequality is asymptotically holding true,∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
≤ Cp

(
1 +

1

N
+

√
p

N
+

√
p

N

)√
p log(nT )

NnT

where C = 2
20
√
5

αc21c
15/2
2

·
(
2 +

p

c52c1K

)
max(C1, C2, C3, C4)

3/2.
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Proof of Theorem 5.5.4. First, examine the matrix Ω as defined in Theorem 5.5.3. It is worth noting that
the normalized eigenvectors are unique only up to a sign. Consequently, u1 and [Û ].1 can be selected
in a manner that sets their first coordinate to be positive, thus fixing ω = 1. Recall that for all i ∈ [p],(

1
[R]i.

)
= [U ].1(i)

−1[U ]i. and

(
1

Ω2:K

[
R̂
]
i.

)
= [Û ].1(i)

−1Ω
[
Û
]
i.
.

This provides, for all i ∈ [p],∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
=
∥∥∥[U ].1(i)

−1[U ]i. − [Û ].1(i)
−1Ω

[
Û
]
i.

∥∥∥
2
,

=
∥∥∥[U ].1(i)

−1[U ]i. − [Û ].1(i)
−1 [U ]i. + [Û ].1(i)

−1 [U ]i. − [Û ].1(i)
−1Ω

[
Û
]
i.

∥∥∥
2
.

Factoring by [Û ].1(i) on one side and by [U ]i. on the other yields :∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
=
∥∥∥[U ].1(i)

−1[U ]i. − [Û ].1(i)
−1 [U ]i. − [Û ].1(i)

−1
(
Ω
[
Û
]
i.
− [U ]i.

)∥∥∥
2
,

=
∥∥∥([U ].1(i)

−1 − [Û ].1(i)
−1
)
[U ]i. − [Û ].1(i)

−1
(
Ω
[
Û
]
i.
− [U ]i.

)∥∥∥
2
.

Bringing the terms to a common denominator and applying the previously mentioned inequalities results
in : ∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
=

∥∥∥∥∥
(
[Û ].1(i)− [U ].1(i)

[U ].1(i)[Û ].1(i)

)
[U ]i. − [Û ].1(i)

−1
(
Ω
[
Û
]
i.
− [U ]i.

)∥∥∥∥∥
2

,

=

∥∥∥∥∥
(
[Û ].1(i)− [U ].1(i)

[Û ].1(i)

)(
1

[R]i.

)
− [Û ].1(i)

−1
(
Ω
[
Û
]
i.
− [U ]i.

)∥∥∥∥∥
2

,

The triangle inequality ultimately guarantees the following inequality :∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
≤
∣∣∣[Û ].1(i)

−1
∣∣∣ (∥∥∥Ω [Û]

i.
− [U ]i.

∥∥∥
2
+
(
1 + ∥[R]i.∥2

) ∣∣∣[Û ].1(i)− [U ].1(i)
∣∣∣)

Additionally, for all i ∈ [p], the quantity
∣∣∣[Û ].1(i)− [U ].1(i)

∣∣∣ is upper-bounded by
∣∣∣Ω[Û ]i. − [U ]i.

∣∣∣
2
. This

ensures that ∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
≤
∣∣∣[Û ].1(i)

−1
∣∣∣ ∥∥∥Ω [Û]

i.
− [U ]i.

∥∥∥
2

(
2 + ∥[R]i.∥2

)
Moreover, Theorem 5.5.3 ensures that for all i ∈ [p], for all α > 0 such that

α ≤
λK(Σ1:T

W )λK(ΣA)λK(Σ1:T
W )

λ1(ΣA)λ1(Σ1:T
W )

< 1,

and for all ϵ1, ϵ2, ϵ3, ϵ4 > 0 such that

max(ϵ1, ϵ2, ϵ3, ϵ4) ≤ α
(1− 1/N)

√
nTλK(ΣA)λK(Σ1:T

W )

6

(
C1
√
p

N
+ C2

√
p+

C3√
N

+ C4
√
p

) ,
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with probability at least 1−2p exp(−ϵ21)−2K exp(−ϵ22)−2pK exp(−ϵ23)−2·(2p+9p) exp
(
−min

(
ϵ24;
√
cnTϵ4

))
the quantity

∥∥∥Ω[Û ]i. − [U ]i.

∥∥∥
2

is bounded from above by

20max(ϵ1, ϵ2, ϵ3, ϵ4)

α(N − 1)λK(ΣA)λK(Σ1:T
W )

√
NKhip

nT

(
C1

NλK(Σ1:T
W )

+
C2

λK(Σ1:T
W )

+
C3√

pNλK(Σ1:T
W )

+
C4

λK(Σ1:T
W )

)
,

+
20max(ϵ1, ϵ2, ϵ3, ϵ4)

α(N − 1)λK(ΣA)λK(Σ1:T
W )

√
NKhip

nT

 C1
√
p

Nc1K
+ C5 +

C3√
c1K

√
p

N
+ C2

1 + C
3/2
1

√
K√

c1λK(Σ1:T
W )

 .

Moreover, the matrix R is constructed in such a way that for all i ∈ [p], the [R]i. ∈ R(K−1) lies in Gη.
Thus, for all i ∈ [p], ∥[R]i.∥2 ≤ maxk∈[K] ∥ηk∥2. We proceed to bound maxk∈[K] ∥ηk∥2 from above using
a non-random constant. To this end, we recall that the following statement is established as part of the
proof of Proposition 5.2.10 : there exists a non-singular matrix B ∈ RK×K such that almost surely there
are (

BB⊤
)−1

= [A∗]⊤M−1
∗ A∗,

U = M
−1/2
∗ A∗B.

Then, observe that B is non-singular, which establishes that [1k, N ] is also non-singular. Indeed, B =
diag ([B].1) [1k, N ], as demonstrated in the proof of Proposition 5.2.14. Furthermore, for all k ∈ [K],(

1
ηk

)
= [1k, N ]⊤ ek,

where ek is the kth canonical vector of RK . We define P = [1k, N ]⊤ leading to, for all k ∈ [K],

∥ηk∥2 ≤ ∥P∥op .

Recalling that P = diag ([B].1)
−1B leads to PP⊤ = diag ([B].1)

−1BB⊤diag ([B].1)
−1. The submultipli-

cativity of the operator norm guarantees that

∥ηk∥2 ≤
∥∥∥PP⊤

∥∥∥1/2
op
≤
∥∥∥[B]−1

.1

∥∥∥
∞

∥∥∥BB⊤
∥∥∥1/2
op

,

where [B]−1
.1 denotes the vector whose entries are the inverses of the entries of [B].1. We first control∥∥BB⊤∥∥

op
. Proposition 5.2.8 states that for all i ∈ [p],

λK(Σ1:T
W )hi ≤ [M∗]ii ≤ hi.

Hence (A∗)⊤
(
M−1

∗ −H−1
)
A∗ is a positive semi-definite symmetric matrix. It follows that the smal-

lest eigenvalue of (A∗)⊤M−1
∗ A∗ is above the smallest eigenvalue of (A∗)⊤H−1A∗ := ΣA. Similarly

(A∗)⊤
(
λK(Σ1:T

W )−1H−1 −M−1
∗
)
A∗ is a positive semi-definite symmetric matrix. It follows that the hi-

ghest eigenvalue of (A∗)⊤M−1
∗ A∗ is below the highest eigenvalue of λK(Σ1:T

W )−1ΣA. Under the As-
sumption 7 the smallest eigenvalue of ΣA is bounded from below by λK(Σ1:T

W ). In addition, the columns
of A are probability vectors which guarantees that the highest eigenvalue of ΣA is bounded from above
by 1. Finally we have

λK(Σ1:T
W ) ≤ λmin

(
(A∗)⊤M−1

∗ A∗
)
≤ λ1

(
(A∗)⊤M−1

∗ A∗
)
≤ λK(Σ1:T

W )−1.
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Using that
(
BB⊤)−1

= [A∗]⊤M−1
∗ A∗ finally provides

λK(Σ1:T
W ) ≤ λmin

(
BB⊤

)
≤ λ1

(
BB⊤

)
≤ λK(Σ1:T

W )−1.

In the proof of Proposition 5.2.14 it has been demonstrated that the entries of [B].1 have the same sign,
which can be chosen to be positive. Subsequently,

∥∥∥[B]−1
.1

∥∥∥
∞

is bounded from above by the inverse of

the minimum value of the first column of B, denoted as
(
mink∈[K] [B]k1

)−1. This yields the inequality :

∥ηk∥2 ≤
∥∥∥PP⊤

∥∥∥1/2
op
≤
(
min
k∈[K]

[B]k1

)−1

λK(Σ1:T
W )−1/2.

Finally, as mentionned in the proof of Proposition 5.2.14, [B].1 is an eigenvector of Σ1:T
W (A∗)⊤M−1

∗ A∗

associated with the eigenvalue (nT )−1σ1 (Π∗)
2. Therefore, for all k ∈ [K], we have

[B]k1 = nTσ1 (Π∗)
−2

K∑
l=1

[
Σ1:T
W (A∗)⊤M−1

∗ A∗
]
kl
[B]l1 .

However, for all (k, l) ∈ [K]2, the entry
[
Σ1:T
W (A∗)⊤M−1

∗ A∗]
kl

can be expanded as follows :

[
Σ1:T
W (A∗)⊤M−1

∗ A∗
]
kl
=

K∑
r=1

[
Σ1:T
W

]
kr

[
(A∗)⊤M−1

∗ A∗
]
rl
.

Under Assumption 7 the entries of ΣA := [A∗]⊤H−1A∗ are bounded from below by λK(Σ1:T
W ). In ad-

dition, the entries of M∗ are bounded from below by the ones of λK(Σ1:T
W )H. Hence the entries of

(A∗)⊤M−1
∗ A∗ are bounded from below by λK(Σ1:T

W )2. This guarantees that

[
Σ1:T
W (A∗)⊤M−1

∗ A∗
]
kl
≥ λK(Σ1:T

W )2
K∑
r=1

[
Σ1:T
W

]
kr
.

Moreover, as proven in Proposition 4.3.4, diagonal entries of a positive definite matrix cannot be smaller
than the smallest eigenvalue and Assumption 7 states that λK(Σ1:T

W ), the smallest eigenvalue of Σ1:T
W is

positive. This provides

[
Σ1:T
W (A∗)⊤M−1

∗ A∗
]
kl
≥ λK(Σ1:T

W )2

∑
r ̸=k

[
Σ1:T
W

]
kr

+
[
Σ1:T
W

]
kk

 ,

≥ λK(Σ1:T
W )2

[
Σ1:T
W

]
kk
,

≥ λK(Σ1:T
W )3.

Finally, this leads to, for all k ∈ [K],

(nT )−1σ1 (Π∗)
2 [B]k1 ≥ λK(Σ1:T

W )3
K∑
l=1

[B]l1 .
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However, entries of [B].1 are positive and thus
K∑
l=1

[B]l1 = ∥ [B].1∥1 . The L1-L2 inequality then ensures

(nT )−1σ1 (Π∗)
2 [B]k1 ≥ λK(Σ1:T

W )3 ∥ [B].1∥2 .

Finally, notice that ∥ [B].1∥
2
2 =

K∑
k=1

[B]2k1. Moreover, for all (l,m) ∈ [K]2, we have
[
B⊤B

]
lm

=
K∑
k=1

[B]kl [B]km .

Hence we have
∥ [B].1∥

2
2 =

[
B⊤B

]
11
.

Recalling that diagonal entries of a positive definite matrix cannot be smaller than the smallest eigen-
value and that eigenvalues of a matrix and its transpose are equal ensures that[

B⊤B
]
11
≥ λmin

(
B⊤B

)
= λmin

(
BB⊤

)
.

With the result previously demonstrated, this provides

∥ [B].1∥
2
2 ≥ λK(Σ1:T

W ).

Finally, we have for all k ∈ [K],

[B]k1 ≥ nTλK(Σ1:T
W )7/2σ1 (Π∗)

−2 ,

which leads to (
min
k∈[K]

[B]k1

)−1

≤ (nT )−1λK(Σ1:T
W )−7/2σ1 (Π∗)

2 ,

finally providing for all k ∈ [K],

∥ηk∥2 ≤ (nT )−1σ1 (Π∗)
2 λK(Σ1:T

W )−4.

However, Π∗ is a random matrix, making σ1 (Π∗) itself a random variable. To control this quantity, we
invoke the submultiplicativity of the operator norm. This leads to the following sequence of inequalities :

σ1 (Π∗) = σ1

(
M

−1/2
∗ A∗W 1:T

)
,

≤ σ1
(
M

−1/2
∗

)
σ1
(
A∗W 1:T

)
,

≤ λK(Σ1:T
W )−1/2h

−1/2
min σ1

(
A∗W 1:T

)
,

≤
√

p

λK(Σ1:T
W )c1K

σ1
(
A∗W 1:T

)
.

According to Definition 5.6.1, A∗ and W 1:T are left stochastic matrices. By Lemma 5.6.7 their product
A∗W 1:T remains left stochastic. Subsequently, Lemma 5.6.8 guarantees that

∥∥A∗W 1:T
∥∥
1
= 1 almost

surely and the following bounds on the spectrum of A∗W 1:T ∈ Rp×nT hold true almost surely :√
1

p
≤ σ1

(
A∗W 1:T

)
≤
√
nT .
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Combining these results yields a non-random upper bound on σ1 (Π∗) :

σ1 (Π∗) ≤

√
nTp

λK(Σ1:T
W )c1K

.

This outcome establishes a non-random upper bound on
(
mink∈[K] [B]k1

)−1.

Next, the equality U = M
−1/2
∗ A∗B also ensures that for all i ∈ [p] and for all k ∈ [K], uk(i) =

[M∗]
−1/2
ii [A∗]i. [B].k. Hence, the following inequality holds true :

|[U ].1(i)| ≥ [M∗]
−1/2
ii ∥[A∗]i.∥1 min

k∈[K]
|[B]k1| .

Proposition 5.2.8 ensures that for all i ∈ [p],

λK(Σ1:T
W )hi ≤ [M∗]ii ≤ hi.

In addition, for all i ∈ [p], ∥[A∗]i.∥1 = hi. This leads to, for all i ∈ [p],

|[U ].1(i)| ≥
√
hi min

k∈[K]
|[B]k1| .

Finally, for all i ∈ [p], we have [Û ].1(i) ≥ [U ].1(i)−
∣∣∣[Û ].1(i)− [U ].1(i)

∣∣∣ . This provides, under the conditions
previously stated that

[Û ].1(i) ≥
√
hi min

k∈[K]
|[B]k1|

− 20max(ϵ1, ϵ2, ϵ3, ϵ4)

α(N − 1)λK(ΣA)λK(Σ1:T
W )

√
NKhip

nT

(
C1

NλK(Σ1:T
W )

+
C2

λK(Σ1:T
W )

+
C3√

pNλK(Σ1:T
W )

+
C4

λK(Σ1:T
W )

)
,

− 20max(ϵ1, ϵ2, ϵ3, ϵ4)

α(N − 1)λK(ΣA)λK(Σ1:T
W )

√
NKhip

nT

 C1
√
p

Nc1K
+ C5 +

C3√
c1K

√
p

N
+ C2

1 + C
3/2
1

√
K√

c1λK(Σ1:T
W )

 .

Finally, Lemma 5.6.5 ensures that for all (x, y) ∈ R2 such that x > y we have

(x− y)−1 ≤ x−1 + y(x− y)−2.

Let us define the quantity A as follows,

A :=
20max(ϵ1, ϵ2, ϵ3, ϵ4)

α(N − 1)λK(ΣA)λK(Σ1:T
W )

√
NKhip

nT

(
C1

NλK(Σ1:T
W )

+
C2

λK(Σ1:T
W )

+
C3√

pNλK(Σ1:T
W )

+
C4

λK(Σ1:T
W )

)
,

+
20max(ϵ1, ϵ2, ϵ3, ϵ4)

α(N − 1)λK(ΣA)λK(Σ1:T
W )

√
NKhip

nT

 C1
√
p

Nc1K
+ C5 +

C3√
c1K

√
p

N
+ C2

1 + C
3/2
1

√
K√

c1λK(Σ1:T
W )

 .

Hence this provides∣∣∣[Û ].1(i)
∣∣∣−1
≤
(√

hi min
k∈[K]

|[B]k1|
)−1

+A

(√
hi min

k∈[K]
|[B]k1| −A

)−2

.



5.5. PROOFS 169

Combining these results leads to∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
≤
∣∣∣[Û ].1(i)

−1
∣∣∣ ∥∥∥Ω [Û]

i.
− [U ]i.

∥∥∥
2

(
2 + max

k∈[K]
∥ηk ∥2

)
,

≤ A

[(√
hi min

k∈[K]
|[B]k1|

)−1

+A

(√
hi min

k∈[K]
|[B]k1| −A

)−2
](

2 + max
k∈[K]

∥ηk ∥2
)
.

The previously demonstrated inequalities provide the stated result, namely∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
≤ A

(
hi

−1/2(nT )−1σ1 (Π∗)
2 λK(Σ1:T

W )−7/2
)(

2 + (nT )−1σ1 (Π∗)
2 λK(Σ1:T

W )−4
)

+A2

(√
hi min

k∈[K]
|[B]k1| −A

)−2 (
2 + (nT )−1σ1 (Π∗)

2 λK(Σ1:T
W )−4

)
.

Using the non-random upper bound on σ1 (Π∗) leads to :∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
≤ A

(
hi

−1/2 p

c1K
λK(Σ1:T

W )−9/2

)(
2 +

p

c1K
λK(Σ1:T

W )−5

)
+A2

(√
hi min

k∈[K]
|[B]k1| −A

)−2(
2 +

p

c1K
λK(Σ1:T

W )−5

)
.

Proof of Theorem 5.2.15. The same results as the ones stated in Theorem 5.2.13. hold. In addition,

(N − 2)nT ≥ Ctot(p,N)2max(ϵ1, ϵ2, ϵ3, ϵ4)
2 p3

c92c
2
1K

2
ensures

√
hi min

k∈[K]
|[B]k1| − Z ≥

√
hi min

k∈[K]
|[B]k1 /| 2.

Thus the stated result holds by derivation of the bounds stated in Theorem 5.5.4.

5.5.13 Proof of Theorem 5.2.16

Theorem 5.5.5 Consider the Dynamic Topic Model, see definition 5.1.1 and assumptions 6 and 7. Let
Â be the estimator of A∗ defined in (5.1). Let DK be the set of matrices Ω = diag(ω,Ω2:K) ∈ RK×K

where ω ∈ {−1, 1} and Ω2:K ∈ R(K−1)×(K−1) is an orthogonal matrix. Let us denote

Θ1 := max
i∈[p]

h
−1/2
i

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ ,
Θ2 := min

Ψ∈DK

max
i∈[p]

h
−1/2
i

∥∥∥Ψ[Û ]i. − [U ]i.

∥∥∥
2
.

Then, up to a permutation of columns of Â we have

max
i∈[p]


∥∥∥ [Â]i. − [A∗]i.

∥∥∥
1

hi

 ≤ 2
κ(

c
9/2
2 c1K − κ

) ,
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where

κ ≤K
2

c2

√
1 + Θ1

√
p

c1K

2maxi∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2(

c2√
K
−KCV H max

i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

)

+
K7/2

c22

√
1 + Θ1

√
p

c1K

2CV H max
i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2(

c2√
K
−KCV H max

i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

) max
x∈Gη

∥x∥2

+K

√
1 + Θ1

√
p

c1K
Θ2

+
K3/2

c2
Θ1,

Proof of Theorem 5.5.5. For notation simplicity we omit the permutation σ ∈ SK in the defintion of Θ3.
From the definitions of Θ1, Θ2 and Θ3 there exists ω ∈ {−1,+1} and Ω2:K ∈ R(K−1)×(K−1) an orthogonal
matrix such that for all (i, k) ∈ [p]× [K],∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ ≤ Θ1hi,∥∥∥Ω[Û ]i. − [U ]i.

∥∥∥
2
≤ Θ2

√
hi,

Θ3 = ∥Ω2:K η̂k − ηk∥2 .

In addition, Perron-Frobenius’s theorem guarantees that u1 does not possess any null entry and the
proof of Theorem 5.5.4 contains the following inequality holding true for all i ∈ [p] :

|[U ].1(i)| ≥
√
hi min

k∈[K]
|[B]k1| ,

where B ∈ RK×K is the non-singular matrix satisfying :(
BB⊤

)−1
= [A∗]⊤M−1

∗ A∗,

U = M
−1/2
∗ A∗B.

Moreover
∣∣∣ω[Û ].1(i)− [U ].1(i)

∣∣∣ is upper-bounded by
∣∣∣Ω[Û ]i. − [U ]i.

∣∣∣
2

which is itself bounded from above

by Θ2

√
hi. Note that fixing ω = 1 ensures that

p∑
i=1

ω[Û ].1(i) > 0. In addition, if N , n and/or T is sufficiently

large such that Θ2 < mink∈[K] |[B]k1| then for all i ∈ [p] we have [Û ].1(i) > 0. Next, Theorem 4.3.2
ensures that

A∗ = Ncol
(
M

1/2
∗ diag(u1)Pround

(
Λ̂
))

.

Let us recall that Λ̂ = [λ̂1, . . . , λ̂p]
⊤ ∈ Rp×K is defined as solving the following linear system for all

i ∈ [p] : (
1 . . . 1
η̂1 . . . η̂K

)
λ̂i =

(
1
r̂i

)
.
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This implies (
1 . . . 1

Ω2:K η̂1 . . . Ω2:K η̂K

)
λ̂i =

(
1

Ω2:K r̂i

)
.

For any matrixM we denoteM † its Moore-Penrose inverse. Then consider T̂K :=

(
1 . . . 1

Ω2:K η̂1 . . . Ω2:K η̂K

)
∈

RK×K . If rank
(
T̂K

)
= K − 1, then theere is one vector η̂l which is a linear combination of the vectors

(η̂k)k ̸=l. Let eK be a vector completing (η̂k)k ̸=l in a basis of RK . For any ϵ > 0, we define η̂ϵl as η̂l + ϵeK
and for k ̸= l, η̂ϵk = η̂k. Hence, (η̂ϵk)k is a basis of RK and Assumption 8 remains true. Indeed for all
k ∈ [K]\{l}

∥ η̂ϵk − ηk∥2 = ∥ η̂k − ηk∥2 ,

and
∥ η̂ϵl − ηl∥2 ≤ ∥ η̂l − ηl∥2 + ϵ ∥eK − ηl∥2 .

Then for ϵ > 0 small enough we have

max
k∈[K]

∥ Ω2:K η̂
ϵ
k − ηk∥2 ≤ CV H max

i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
.

The same holds by induction if rank
(
T̂K

)
< K − 1. For the remainder of the proof, ϵ > 0 is chosen

so that the previously stated condition is satisfied and η̂ and η̂ϵ are used interchangeably. Hence T̂K
can be assumed to be invertible and for all i ∈ [p], λ̂i is defined as follows :

λ̂i = T̂−1
K

(
1

Ω2:K r̂i

)
.

It follows that
Λ̂ =

[
1p,Ω2:KR̂

] (
T̂⊤
K

)−1
,

where
[
1p,Ω2:KR̂

]
= Ω2:K [diag([Û ].1)]

−1Û . Similarly, the population counterparts satisfy the following
equality holding true for all i ∈ [p] :

λi = T †
K

(
1
ri

)
,

where TK =

(
1 . . . 1
η1 . . . ηK

)
∈ RK×K . It follows that

Λ = [1p, R]
(
T⊤
K

)†
∈ Rp×K+ ,

where [1p, R] = [diag(u1)]−1U . This implies that

[1p, R] = [diag(u1)]−1M
−1/2
∗ A∗B.

Let us define N ∈ RK×(K−1) as follows :

∀(k, s) ∈ [K]× [K − 1], [N ]ks =
[B]k,(s+1)

[B]k1
.
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This ensures that B = diag([B].1)[1K , N ] and thus we have

[1p, R] = [diag(u1)]−1M
−1/2
∗ A∗diag([B].1)[1K , N ].

This equality can be equivalently written as

1p = [diag(u1)]−1M
−1/2
∗ A∗diag([B].1)1K ,

R = [diag(u1)]−1M
−1/2
∗ A∗diag([B].1)N.

This ensures that the rows of R are convex combinations of the rows of N and thus we have

∀k ∈ [K], ηk := [N ]k. ∈ R(K−1).

This implies that T⊤
K = [1K , N ] = diag([B].1)

−1B. Moreover, B is non-singular. In the proof of Propo-
sition 5.2.14 is proven that [B].1 has positive entries and thus diag([B].1)[1K , N ] is non singular. This
proves that TK is non singular and thus T †

K = T−1
K . Globally, it implies that for all i ∈ [p],

λ̂i − λi = T̂−1
K

(
1

Ω2:K r̂i

)
− T̂−1

K

(
1
ri

)
+ T̂−1

K

(
1
ri

)
− T−1

K

(
1
ri

)
.

From this expansion is deduced that for all i ∈ [p],∥∥∥ λ̂i − λi∥∥∥
2
≤
∥∥∥T̂−1

K

∥∥∥
op

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
+
∥∥∥T̂−1

K − T−1
K

∥∥∥
op
∥[R]i. ∥2 .

In addition, T−1
K can be expressed as diag([B].1)(B

⊤)−1. Recalling that for any matrix A ∈ Rn×m we
have ∥A∥2op =

∥∥AA⊤∥∥
op

=
∥∥A⊤A

∥∥
op

it comes :

∥∥T−1
K

∥∥2
op

=

∥∥∥∥ (T⊤
KTK

)−1
∥∥∥∥
op

=

∥∥∥∥ T−1
K

(
T⊤
K

)−1
∥∥∥∥
op

=
∥∥∥diag([B].1)(B

⊤)−1 B−1diag([B].1)
∥∥∥
op
.

Hence by definition of (BB⊤)−1 we have∥∥T−1
K

∥∥2
op

=
∥∥∥diag([B].1)(BB⊤)−1diag([B].1)

∥∥∥
op

=
∥∥∥ diag([B].1)[A

∗]⊤M−1
∗ A∗diag([B].1)

∥∥∥
op
.

Finally, the operator norm being submultiplicative, the following inequality holds true :∥∥T−1
K

∥∥2
op
≤ ∥ diag([B].1) ∥2op

∥∥∥[A∗]⊤M−1
∗ A∗

∥∥∥
op
.

Proposition 5.2.8 then ensures that∥∥∥[A∗]⊤M−1
∗ A∗

∥∥∥
op
≤ λmin

(
Σ1:T
W

)−1
∥∥∥[A∗]⊤H−1A∗

∥∥∥
op
.

By definition of the matrix H presented in Assumption 7, we have

∥∥∥[A∗]⊤H−1A∗
∥∥∥
op

= max
k∈[K]

K∑
l=1

p∑
i=1

h−1
i [A∗]ik[A]il.
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In addition, for all i ∈ [p] and for all k ∈ [K], we have h−1
i [A∗]ik =

[A∗]ik
∥ [A∗]i.∥1

≤ 1. Hence

∥∥∥[A∗]⊤H−1A∗
∥∥∥
op
≤ max

k∈[K]

K∑
l=1

p∑
i=1

[A∗]il = K.

Moreover, the proof of Theorem 5.5.4 contains the following inequality :

λK(Σ1:T
W ) ≤ λmin

(
BB⊤

)
≤ λ1

(
BB⊤

)
≤ λK(Σ1:T

W )−1.

Noticing that ∥ [B].1∥
2
2 =

K∑
k=1

[B]2k1 and that, for all (l,m) ∈ [K]2, we have
[
B⊤B

]
lm

=
K∑
k=1

[B]kl [B]km

leads to :
∥ [B].1∥

2
2 =

[
B⊤B

]
11
.

Recalling that diagonal entries of a positive definite matrix cannot be above the biggest eigenvalue and
that eigenvalues of a matrix and its transpose are equal ensures that[

B⊤B
]
11
≤ λ1

(
B⊤B

)
= λ1

(
BB⊤

)
.

Then it comes :
∥ [B].1∥

2
2 ≤ λK(Σ1:T

W )−1.

This ensures
∥ diag([B].1) ∥2op = max

k∈[K]

∣∣∣ [B]2k1

∣∣∣ ≤ λK(Σ1:T
W )−1.

Finally ∥∥T−1
K

∥∥2
op
≤ KλK(Σ1:T

W )−2.

Lemma 5.6.8 ensures that for any matrix M ∈ Rn×m,

1√
n
∥M∥1 ≤ ∥M∥op ≤

√
m ∥M∥1 and ∥M∥1 = max

j∈[m]

n∑
i=1

∣∣∣[M ]ij

∣∣∣ .
Hence ∥∥∥T̂K − TK ∥∥∥

op
≤
√
K
∥∥∥T̂K − TK ∥∥∥

1
=
√
K max

l∈[K]

K∑
k=1

∣∣∣[T̂K − TK]
kl

∣∣∣ .
Moreover, for all l ∈ [K], we have

K∑
k=1

∣∣∣[T̂K − TK]
kl

∣∣∣ ≤ ∥ Ω2:K η̂l − ηl∥1. Recalling that for any x ∈ Rd we

have ∥x∥1 ≤
√
d ∥x∥2 which leads∥∥∥T̂K − TK ∥∥∥

op
≤
√
K
√
K − 1max

l∈[K]
∥ Ω2:K η̂l − ηl∥2 .

Assumption 8 then ensures that∥∥∥T̂K − TK ∥∥∥
op
≤ KCV H max

i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
.
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Next, notice that ∥∥∥T̂−1
K − T−1

K

∥∥∥
op

=
∥∥∥T̂−1

K

(
TK − T̂K

)
T−1
K

∥∥∥
op
.

The operator norm being submultiplicative, we get :∥∥∥T̂−1
K − T−1

K

∥∥∥
op
≤
∥∥∥T̂−1

K

∥∥∥
op

∥∥∥TK − T̂K∥∥∥
op

∥∥T−1
K

∥∥
op
.

Hence we have ∥∥∥T̂−1
K − T−1

K

∥∥∥
op
≤ K3/2λK(Σ1:T

W )−1 max
l∈[K]

∥ Ω2:K η̂l − ηl∥2
∥∥∥T̂−1

K

∥∥∥
op
.

The last step is to control
∥∥∥T̂−1

K

∥∥∥
op

. For any matrix M ∈ RK×K , for all k ∈ [K], σk(M) define the

kth largest singular value of M and λk(MM⊤) define the kth largest eigenvalue of MM⊤ which is

symmetric. First note that
∥∥∥T̂−1

K

∥∥∥
op

= σmin

(
T̂K

)−1
. Weyl’s inequality, see Lemma 1.1.13, ensures that

σmin

(
T̂K

)
≥ σmin (TK)− σmax

(
T̂K − TK

)
.

Moreover, TK = B⊤diag ([B].1)
−1 and Lemma 5.6.4 ensures that

σmin (TK) ≥ min
k∈[K]

(
([B]k1)

−1
)
σmin(B).

By definition of singular values and using a previously stated result, for all k ∈ [K],

σk (B)2 = λk

(
BB⊤

)
≥ λK(Σ1:T

W ).

In addition, entries of [B].1 being positive, we have

min
k∈[K]

(
([B]k1)

−1
)
= ∥[B].1∥

−1
∞ .

Moreover there are
∥[B].1∥∞ ≤ ∥[B].1∥1 ≤

√
K ∥[B].1∥2 ,

and
∥ [B].1∥

2
2 ≤ λK(Σ1:T

W )−1.

Hence
∥[B].1∥∞ ≤

√
KλK(Σ1:T

W )−1/2.

Thus,

∥[B].1∥
−1
∞ ≥

√
λK(Σ1:T

W )

K
.

Finally,

σmin (TK) ≥
λK(Σ1:T

W )√
K

.
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Hence we derive :

σmin

(
T̂K

)
≥
λK(Σ1:T

W )√
K

−K max
l∈[K]

∥ Ω2:K η̂l − ηl∥2 .

Assumption 8 then ensures that maxl∈[K] ∥ Ω2:K η̂l − ηl∥2 ≤ CV H max
i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
. Hence

σmin

(
T̂K

)
≥
λK(Σ1:T

W )√
K

−KCV H max
i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
.

Hence we have

∥∥∥T̂−1
K

∥∥∥
op
≤
(
λK(Σ1:T

W )√
K

−KCV H max
i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

)−1

.

Finally,

∥∥∥T̂−1
K − T−1

K

∥∥∥
op
≤

K3/2CV H max
i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

λK(Σ1:T
W )

(
λK(Σ1:T

W )√
K

−KCV H max
i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

) .
From these results is deduced that for all i ∈ [p],

∥∥∥ λ̂i − λi∥∥∥
2
≤

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2(

λK(Σ1:T
W )√
K

−KCV H max
i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

)

+

K3/2CV H max
i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

λK(Σ1:T
W )

(
λK(Σ1:T

W )√
K

−KCV H max
i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

) ∥[R]i. ∥2 .

Moreover, (5.1) ensures that Â = Ncol
(
M̂1/2diag([Û ].1)Pround

(
Λ̂
))

. Let us denote Λ̃ = Pround
(
Λ̂
)
∈

Rp×K+ . Hence for all i ∈ [p], λ̃i =

(
λ̂i

)
+∥∥∥∥(λ̂i)+
∥∥∥∥
1

where for any vector x ∈ Rd, for all s ∈ [d], (x)+(s) =

max(x(s), 0). Thus the following inequalities hold true for all i ∈ [p] and are deduced using the triangle
inequality and the definition of λ̃i :∥∥∥ λ̃i − λi∥∥∥

1
≤
∥∥∥∥ λ̃i − (λ̂i)+

∥∥∥∥
1

+

∥∥∥∥ (λ̂i)+ − λi
∥∥∥∥
1

,

≤
∥∥∥∥ λ̃i − λ̃i

∥∥∥∥(λ̂i)+
∥∥∥∥
1

∥∥∥∥
1

+

∥∥∥∥ (λ̂i)+ − λi
∥∥∥∥
1

,

≤
∣∣∣∣1− ∥∥∥∥(λ̂i)+

∥∥∥∥
1

∣∣∣∣+ ∥∥∥∥ (λ̂i)+ − λi
∥∥∥∥
1

.
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By definition ∥λi∥1 =
∥∥∥λ̂i∥∥∥

1
= 1. This implies that

∣∣∣∣1− ∥∥∥∥(λ̂i)+
∥∥∥∥
1

∣∣∣∣ = ∣∣∣∣∥λi∥1 − ∥∥∥∥(λ̂i)+
∥∥∥∥
1

∣∣∣∣. Using the

reverse triangle inequality leads to ∥∥∥ λ̃i − λi∥∥∥
1
≤ 2

∥∥∥∥ (λ̂i)+ − λi
∥∥∥∥
1

.

Moreover, the entries of λi are non negative which gives∥∥∥ λ̃i − λi∥∥∥
1
≤ 2

∥∥∥ λ̂i − λi∥∥∥
1
.

Finally, using the L1-L2 inequality provides∥∥∥ λ̃i − λi∥∥∥
1
≤ 2
√
K
∥∥∥ λ̂i − λi∥∥∥

2
.

Hence we have

∥∥∥ λ̃i − λi∥∥∥
2
≤

2
√
K
∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2(

λK(Σ1:T
W )√
K

−KCV H max
i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

)

+

2K2CV H max
i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

λK(Σ1:T
W )

(
λK(Σ1:T

W )√
K

−KCV H max
i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

) ∥[R]i. ∥2 .
The last step is to control ∥[R]i. ∥2. Proposition 5.2.14 ensures that [R]i. is in the convex hull of η1, . . . , ηK
and thus ∥[R]i. ∥2 ≤ max

x∈Gη

∥x∥2. Theorem 5.5.4 then concludes to control
∥∥∥ λ̃i − λi∥∥∥

2
.

Next, consider the step of estimating ∆∗ := A∗diag([B].1) = M
1/2
∗ diag([U ].1)Λ ∈ Rp×K with

Ã := M̂1/2diag([Û ].1)Λ̃ ∈ Rp×K .

For all i ∈ [p], using the triangle inequality leads to the following inequality :∥∥∥ [Ã]i. − [∆∗]i.

∥∥∥
1
=
∥∥∥ [M̂ ]

1/2
ii [Û ].1(i)λ̃i − [M∗]

1/2
ii [U ].1(i)λi

∥∥∥
1
,

=
∥∥∥ [M̂ ]

1/2
ii [Û ].1(i)

(
λ̃i − λi

)
+
(
[M̂ ]

1/2
ii [Û ].1(i)− [M∗]

1/2
ii [U ].1(i)

)
λi

∥∥∥
1
,

≤
∣∣∣[M̂ ]

1/2
ii [Û ].1(i)

∣∣∣ ∥∥∥ λ̃i − λi

∥∥∥
1
+
∥∥∥[M̂ ]

1/2
ii

(
[Û ].1(i)− [U ].1(i)

)
λi + [U ].1(i)

(
[M̂ ]

1/2
ii − [M∗]

1/2
ii

)
λi

∥∥∥
1
,

≤
∣∣∣[M̂ ]

1/2
ii [Û ].1(i)

∣∣∣ ∥∥∥ λ̃i − λi

∥∥∥
1
+
∣∣∣[M̂ ]

1/2
ii

∣∣∣ ∣∣∣[Û ].1(i)− [U ].1(i)
∣∣∣ ∥λi∥1

+ |[U ].1(i)|
∣∣∣[M̂ ]

1/2
ii − [M∗]

1/2
ii

∣∣∣ ∥λi∥1 .
First notice that ∣∣∣[Û ].1(i)− [U ].1(i)

∣∣∣ ≤ ∥∥∥Ω̃[Û ]i. − [U ]i.

∥∥∥
2
≤ h1/2i Θ2.
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Moreover, the equality U = M
−1/2
∗ A∗B also ensures that for all i ∈ [p] and for all k ∈ [K], uk(i) =

[M∗]
−1/2
ii [A∗]i. [B].k. Hence, the following inequality holds true :

|[U ].1(i)| ≤ [M∗]
−1/2
ii ∥[A∗]i.∥1 ∥[B].1∥∞ .

Let us remind that for all i ∈ [p], hi = ∥[A∗]i.∥1, ∥[B].1∥∞ is bounded from above by
√
KλK(Σ1:T

W )−1/2

and Proposition 5.2.8 ensures that for all i ∈ [p],

λK(Σ1:T
W )hi ≤ [M∗]ii ≤ hi.

We deduce that for all i ∈ [p],
|[U ].1(i)| ≤

√
hiKλK(Σ1:T

W )−1.

Moreover, this leads to the following inequality holding true for all i ∈ [p],∣∣∣[Û ].1(i)
∣∣∣ ≤ (√KλK(Σ1:T

W )−1 +Θ2

)√
hi.

In addition , for all i ∈ [p], ∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ ≤ h1/2i Θ1.

Proposition 5.2.8 then ensures that for all i ∈ [p],

[M̂ ]ii ≤ hi + h
1/2
i Θ1.

As a result, ∥∥∥ [Ã]i. − [∆∗]i.

∥∥∥
1
≤
√
hi + h

1/2
i Θ1

√
hiKλK(Σ1:T

W )−1
∥∥∥ λ̃i − λi

∥∥∥
1

+

√
hi + h

1/2
i Θ1h

1/2
i Θ2 ∥λi∥1

+
√
hiKλK(Σ1:T

W )−1h
1/2
i Θ1 ∥λi∥1

Assumption 6 combined with the definition of λi ensuring that for all i ∈ [p], ∥λi∥1 = 1 provides

∥∥∥ [Ã]i. − [∆∗]i.

∥∥∥
1
≤ hi

√
1 + Θ1

√
p

c1K

√
KλK(Σ1:T

W )−1
∥∥∥ λ̃i − λi

∥∥∥
1

+ hi

√
1 + Θ1

√
p

c1K
Θ2

+ hi
√
KλK(Σ1:T

W )−1Θ1.

Finally, consider the step of estimating A∗ ∈ Rp×K , which is equal to Ncol
(
M

1/2
∗ diag(u1)Pround (Λ)

)
according to Theorem 4.3.2, with

Â := Ncol
(
M̂1/2diag([Û ].1)Pround

(
Λ̂
))

= Ncol
(
Ã
)
.
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Notice that Â is the matrix obtained from renormalizing each column of Ã and by definition A∗ =
∆∗diag([B].1)

−1. It follows that for all k ∈ [K], for all i ∈ [p],[
Â
]
ik

=
[
Ã
]
ik

∥∥∥ [Ã]
.k

∥∥∥−1

1
,

[A∗]ik = [∆∗]ik [B]−1
k1 .

Hence, for all k ∈ [K], for all i ∈ [p],

∣∣∣[Â]
ik
− [A∗]ik

∣∣∣ ≤ ∥∥∥ [Ã]
.k

∥∥∥−1

1

∣∣∣[Ã]
ik
− [∆∗]ik

∣∣∣+
∣∣∣∥∥∥ [Ã]

.k

∥∥∥
1
− [B]k1

∣∣∣∥∥∥ [Ã]
.k

∥∥∥
1

|[A∗]ik| .

Moreover, for all k ∈ [K], ∥ [A∗].k∥1 = 1 which ensures that ∥ [∆∗].k∥1 = [B]k1. Then the following
inequalities hold true for all k ∈ [K],∣∣∣∥∥∥ [Ã]

.k

∥∥∥
1
− [B]k1

∣∣∣ ≤ ∣∣∣∥∥∥ [Ã]
.k

∥∥∥
1
− ∥ [∆∗].k∥1

∣∣∣ ,
≤
∥∥∥ [Ã]

.k
− [∆∗].k

∥∥∥
1
,

≤
p∑
i=1

∣∣∣[Ã]
ik
− [∆∗]ik

∣∣∣ ,
≤

p∑
i=1

∥∥∥ [Ã]
i.
− [∆∗]i.

∥∥∥
1
.

Then, applying the previously proved inequality on
∥∥∥ [Ã]

i.
− [∆∗]i.

∥∥∥
1

holding true for all i ∈ [p] and

using that
K∑
i=1

hi = K leads to, for all k ∈ [K],

∣∣∣∥∥∥ [Ã]
.k

∥∥∥
1
− [B]k1

∣∣∣ ≤K3/2

√
1 + Θ1

√
p

c1K
λK(Σ1:T

W )−1max
i∈[p]

∥∥∥λ̃i − λi

∥∥∥
1
+K

√
1 + Θ1

√
p

c1K
Θ2

+K3/2λK(Σ1:T
W )−1Θ1.

It can then be deduced that for all k ∈ [K],∥∥∥ [Ã]
.k

∥∥∥
1
≥ [B]k1 −

∣∣∣∥∥∥ [Ã]
.k

∥∥∥
1
− [B]k1

∣∣∣ .
Moreover, in the proof of Theorem 5.5.4 is proven the following inequalities holding true almost surely
and for all k ∈ [K] :

[B]k1 ≥ nTλK(Σ1:T
W )7/2σ1 (Π∗)

−2 ,

σ1 (Π∗) ≤

√
nTp

λK(Σ1:T
W )c1K

.

These ensure that for all k ∈ [K],
[B]k1 ≥ λK(Σ1:T

W )9/2c1K.
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Hence ∥∥∥ [Ã]
.k

∥∥∥
1
≥λK(Σ1:T

W )9/2c1K −K3/2

√
1 + Θ1

√
p

c1K
λK(Σ1:T

W )−1max
i∈[p]

∥∥∥λ̃i − λi

∥∥∥
1

−K

√
1 + Θ1

√
p

c1K
Θ2 −K3/2λK(Σ1:T

W )−1Θ1.

Let us define

κ := K3/2

√
1 + Θ1

√
p

c1K
λK(Σ1:T

W )−1max
i∈[p]

∥∥∥λ̃i − λi

∥∥∥
1
+K

√
1 + Θ1

√
p

c1K
Θ2 +K3/2λK(Σ1:T

W )−1Θ1.

These results lead to, for all i ∈ [p],∥∥∥[Â]
i.
− [A∗]i.

∥∥∥
1
≤
(
λK(Σ1:T

W )9/2c1K − κ
)−1 ∥∥∥[Ã]

i.
− [∆∗]i.

∥∥∥
1

+
(
λK(Σ1:T

W )9/2c1K − κ
)−1
∥[A∗]i.∥1 max

k∈[K]

∣∣∣∥∥∥ [Ã]
.k

∥∥∥
1
− [B]k1

∣∣∣ .
Using that for all i ∈ [p], ∥[A∗]i.∥1 = hi brings∥∥∥[Â]

i.
− [A∗]i.

∥∥∥
1
≤
(
λK(Σ1:T

W )9/2c1K − κ
)−1 ∥∥∥[Ã]

i.
− [∆∗]i.

∥∥∥
1

+
(
λK(Σ1:T

W )9/2c1K − κ
)−1

hi max
k∈[K]

∣∣∣∥∥∥ [Ã]
.k

∥∥∥
1
− [B]k1

∣∣∣ .
Finally, noticing that for all i ∈ [p],

∥∥∥[Ã]
i.
− [∆∗]i.

∥∥∥
1
≤ κhiK−1 ensure that for all i ∈ [p],∥∥∥[Â]

i.
− [A∗]i.

∥∥∥
1
≤
(
λK(Σ1:T

W )9/2c1K − κ
)−1

hiκK
−1

+
(
λK(Σ1:T

W )9/2c1K − κ
)−1

hiκ,

≤2
(
λK(Σ1:T

W )9/2c1K − κ
)−1

hiκ.

Using the upper bound derived on
∥∥∥ λ̃i − λi∥∥∥

2
for all i ∈ [p] leads to

κ ≤ K2

λK(Σ1:T
W )

√
1 + Θ1

√
p

c1K

2maxi∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2(

λK(Σ1:T
W )√
K

−KCV H max
i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

)

+
K7/2

λK(Σ1:T
W )2

√
1 + Θ1

√
p

c1K

2CV H max
i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2(

λK(Σ1:T
W )√
K

−KCV H max
i∈[p]

∥∥∥ Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

) max
x∈Gη

∥x∥2

+K

√
1 + Θ1

√
p

c1K
Θ2

+
K3/2

λK(Σ1:T
W )

Θ1.
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The conclusion follows.
Proof of Theorem 5.2.16. Proposition 5.2.1 demonstrates that with probability 1−2p exp(−ϵ21) we have

Θ1 ≤
2ϵ1√

NnT max(hi/2, 1)
≤ 2ϵ1√

NnT
.

If NnT ≥ 4ϵ21p

c1K
then Θ1

√
p

c1K
≤ 1. Theorem 5.2.13 ensures that under the stated conditions on max(ϵi)

and N , n and T we have with probability at least 1 − 2p2 exp(−ϵ21) − 2pK exp(−ϵ22) − 2p2K exp(−ϵ23) −
2p · (2p+ 9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
:

Θ2 ≤ Ctot(p,N)max(ϵ1, ϵ2, ϵ3, ϵ4)

√
p

nT (N − 2)
.

Theorem 5.2.15 guarantees that under the stated conditions on max(ϵi) and N , n and T we have with
probability at least 1−2p2 exp(−ϵ21)−2pK exp(−ϵ22)−2p2K exp(−ϵ23)−2p·(2p+9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
:

max
i∈[p]

∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
≤

(
2
Ctot(p,N)max(ϵ1, ϵ2, ϵ3, ϵ4)

c1c
9/2
2 K

p3/2√
nT (N − 2)

)(
2 +

p

c52c1K

)
.

Moreover, (N − 2)nT ≥ Ctot(p,N)2(ϵ1, ϵ2, ϵ3, ϵ4)
2p3

4K2C2
V H

c22

(
2 +

p

c52c1K

)2

ensures

KCV H max
i∈[p]

∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
≤ c2

2
√
K
.

Then the quantity κ introduced in Proposition 5.5.5 is bounded from above as follows :

κ ≤2KCtot(p,N)max(ϵi)i∈[4]

√
p

nT (N − 2)

[
1 +

(
2 +

p

c52c1K

)(
8pK1/2

c1c
13/2
2

+
8pK2

c1c
15/2
2

max
x∈Gη

∥x∥2

)]
+

4K3/2ϵ1

c2
√
NnT

.

In addition, if

√
NnT ≥ 4

c
9/2
2 c1

[
Ctot(p,N)max(ϵi)i∈[4]

√
p

[
1 +

(
2 +

p

c52c1K

)(
8pK1/2

c1c
13/2
2

+
8pK2

c1c
15/2
2

max
x∈Gη

∥x∥2

)]
+

2
√
Kϵ1
c2

]
,

we have c9/22 c1K − κ ≥ c9/22 c1K/2. This concludes.

5.5.14 Proof of Theorem 5.2.17

Theorem 5.5.6 Consider the Dynamic Topic Model, see definition 5.1.1 and assumptions 6, 7 and 8.
Let Â be the estimator of A∗ defined in (5.1). Then for all ϵ1, ϵ2, ϵ3, ϵ4 > 0 satisfying the conditions of
Theorem 5.5.3, with probability at least 1 − 2p2 exp(−ϵ21) − 2pK exp(−ϵ22) − 2Kp2 exp(−ϵ23) − 2p · (2p +
9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
, we have

p∑
i=1

∥∥∥[Â]i. − [A∗]i.

∥∥∥
1
≤ 2K

κ(
c
9/2
2 c1K − κ

) ,
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with κ is defined in Proposition 5.5.5. In addition, Θ1 is bounded from above by
2ϵ1
√
2p√

NnTc1K
, Θ2 is

bounded from above by Z, defined in Theorem 5.5.4, and maxi∈[p]

∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

is bounded

from above by

Z

[
p3/2

c
9/2
2 c

3/2
1 K3/2

+ Z

(√
hi min

k∈[K]
|[B]k1| − Z

)−2
](

2 +
p

c52c1K

)
.

Proof of Theorem 5.5.6. Firstly, notice that

p∑
i=1

∥∥∥[Â]i. − [A∗]i.

∥∥∥
1
=

(
p∑
i=1

hi

)
max
i∈[p]


∥∥∥ [Â]i. − [A∗]i.

∥∥∥
1

hi

 .

Using the equality
p∑
i=1

hi =
p∑
i=1

K∑
k=1

[A∗]ik = K leads to

p∑
i=1

∥∥∥[Â]i. − [A∗]i.

∥∥∥
1
≤ Kmax

i∈[p]


∥∥∥ [Â]i. − [A∗]i.

∥∥∥
1

hi

 .

Then, Corollary 5.2.2 ensures that for all ϵ1 > 0, with probability at least 1− 2p exp
(
−ϵ21

)
, we have

max
i∈[p]

h
−1/2
i

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ < 2
√
2ϵ1√

NnThi
.

Using Assumption 6 leads to, for all ϵ1 > 0, with probability at least 1− 2p exp
(
−ϵ21

)
,

Θ1 := max
i∈[p]

h−1
i

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ < 2ϵ1
√
2p√

NnTc1K
.

Let us consider

α := λK(Σ1:T
W )

min
(
c3, λK(ΣA)λK(Σ1:T

W )
)

λ1(ΣA)λ1(Σ1:T
W )

< 1.

Then consider ϵ1, ϵ2, ϵ3, ϵ4 > 0 satisfying

max(ϵ1, ϵ2, ϵ3, ϵ4) ≤ α
(1− 1/N)

√
nTλK(ΣA)λK(Σ1:T

W )

6

(
C1
√
p

N
+ C2

√
p+

C3√
N

+ C4
√
p

) .
Theorem 5.5.3 ensures that with probability at least 1−2p2 exp(−ϵ21)−2pK exp(−ϵ22)−2Kp2 exp(−ϵ23)−
2p · (2p+ 9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
,

Θ2 := min
Ψ∈DK

max
i∈[p]

h
−1/2
i

∥∥∥Ψ[Û ]i. − [U ]i.

∥∥∥
2
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is bounded from above by

20max(ϵ1, ϵ2, ϵ3, ϵ4)

α(N − 1)λK(ΣA)λK(Σ1:T
W )

√
NKhip

nT

(
C1

NλK(Σ1:T
W )

+
C2

λK(Σ1:T
W )

+
C3√

pNλK(Σ1:T
W )

+
C4

λK(Σ1:T
W )

)
,

+
20max(ϵ1, ϵ2, ϵ3, ϵ4)

α(N − 1)λK(ΣA)λK(Σ1:T
W )

√
NKhip

nT

 C1
√
p

Nc1K
+ C5 +

C3√
c1K

√
p

N
+ C2

1 + C
3/2
1

√
K√

c1λK(Σ1:T
W )

 .

We denote Ω = diag (w,Ω2:K) the matrix which attains the minimum.
Theorem 5.5.4 and Assumption 6 finally provide, with the same lower bound on the probability, the

following upper bound on maxi∈[p]

∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2

:

∥∥∥Ω2:K

[
R̂
]
i.
− [R]i.

∥∥∥
2
≤ Z

[
p3/2

λK(Σ1:T
W )9/2c

3/2
1 K3/2

+ Z

(√
hi min

k∈[K]
|[B]k1| − Z

)−2
](

2 +
p

λK(Σ1:T
W )5c1K

)
,

where (
min
k∈[K]

[B]k1

)−1

≤ p

λK(Σ1:T
W )9/2c1K

.

and

Z :=
20max(ϵ1, ϵ2, ϵ3, ϵ4)

α(N − 1)λK(ΣA)λK(Σ1:T
W )

√
NKhip

nT

(
C1

NλK(Σ1:T
W )

+
C2

λK(Σ1:T
W )

+
C3√

pNλK(Σ1:T
W )

+
C4

λK(Σ1:T
W )

)
,

+
20max(ϵ1, ϵ2, ϵ3, ϵ4)

α(N − 1)λK(ΣA)λK(Σ1:T
W )

√
NKhip

nT

 C1
√
p

Nc1K
+ C5 +

C3√
c1K

√
p

N
+ C2

1 + C
3/2
1

√
K√

c1λK(Σ1:T
W )

 .

Proof of Theorem 5.2.17.
As detailed in the proof of Theorem 5.5.6,

p∑
i=1

∥∥∥[Â]i. − [A∗]i.

∥∥∥
1
≤ Kmax

i∈[p]


∥∥∥ [Â]i. − [A∗]i.

∥∥∥
1

hi

 .

We then use Theorem 5.2.16 to conclude.

5.5.15 Proof of Theorem 5.3.1

Theorem 5.5.7 (Estimation of the realizations W t
j ) For every t ∈ [T ] and for every j ∈ [n], for every

(ϵi)i∈[5] ∈ (R∗
+)

5 satisfying the conditions of Theorem 5.5.3, with probability at least 1 − 2p2 exp(−ϵ21) −
2pK exp(−ϵ22)−2Kp2 exp(−ϵ23)−2p·(2p+9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
−2K exp(−ϵ25), we have

∥∥∥Ŵ t
j −W t

j

∥∥∥
1

bounded from above by :

2K3/2(
c2 −

∥∥∥Φ̂−Φ∗
∥∥∥
op

)
max(ϵs)s∈[4]

2
√
Kγ3κ(

c
9/2
2 c1K − γ3κ

)√ p

nT (N − 2)
max
i∈[p]

(
(hi + ξi)

(c2hi − ξi)2
h
3/2
i

)
+ ϵ5

√
2

c2
√
N

+

∥∥∥Φ̂−Φ∗
∥∥∥
op

c22

 ,



5.5. PROOFS 183

with

Θ1 := max
i∈[p]

h−1
i

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ , Θ2 := min
Ψ∈DK

max
i∈[p]

h
−1/2
i

∥∥∥Ψ[Û ]i. − [U ]i.

∥∥∥
2
,

γ0 :=

(
K

c2
+
CV HK

5/2

c22
max
x∈Gη

∥x∥2

)
, γ1 := c

9/2
2 c

3/2
1 K3/2, γ2 := c52c1K, γ3 :=

√
1 + Θ1

√
p

c1K
,

Z :=
Ctot(p,N)

α
max(ϵ1, ϵ2, ϵ3, ϵ4)

√
Khip

nT (N − 2)
, ξi := 2ϵ1

√
min(2, hi)

NnT
,

∆1 := max(ϵ1, ϵ2, ϵ3, ϵ4)
2Kγ3κ(

c
9/2
2 c1K − κ

)√ Kp

nT (N − 2)
, ∆2 := 2ϵ1c

−1
2

√
p

c1KNnT
,

Ctot(p,N) :=
20

λK(ΣA)c2

(
C1

c2N
+
C2

c2
+

C3

c2
√
pN

+
C4

c2
+ C5

)
+

20

λK(ΣA)c2

(
C1
√
p

Nc1K
+

C3√
c1K

√
p

N
+ C2

1 + C
3/2
1

√
K

√
c1c2

)
,

κ := K3/2

√
1 + Θ1

√
p

c1K
λK(Σ1:T

W )−1max
i∈[p]

∥∥∥λ̃i − λi

∥∥∥
1
+K

√
1 + Θ1

√
p

c1K
Θ2 +K3/2λK(Σ1:T

W )−1Θ1,∥∥∥Φ̂−Φ∗
∥∥∥
op
≤
[
(1 + ∆1)

√
K + 1

] max(ϵ1, ϵ2, ϵ3, ϵ4)2K
7/2γ3κ

√
p

c2(1−∆2)
(
c
9/2
2 c1K − κ

)√
nT (N − 2)

+
2K3/2ϵ1

c22(1−∆2)
√
NnT

.

where α,C1, C2, C3, C4, C5 are defined in Theorem 5.5.3 and Θ1, Θ2 and κ are defined in Proposi-
tion 5.5.5.

Proof of Theorem 5.5.7. By definition, for all j ∈ [n] and for all t ∈ [T ], we have

W̃ t
j =

(
Â⊤M̂−1Â

)−1
·
(
Â⊤M̂−1Y t

j

)
and W t

j =
(
(A∗)⊤M−1

∗ A∗
)−1
·
(
(A∗)⊤M−1

∗ Πt
j

)
.

Using the triangle inequality leads to

∥∥∥W̃ t
j −W t

j

∥∥∥
1
≤
∥∥∥∥(Â⊤M̂−1Â

)−1
·
(
Â⊤M̂−1Y t

j

)
−
(
Â⊤M̂−1Â

)−1
·
(
(A∗)⊤M−1

∗ Y t
j

)∥∥∥∥
1

+

∥∥∥∥(Â⊤M̂−1Â
)−1
·
(
(A∗)⊤M−1

∗ Y t
j

)
−
(
Â⊤M̂−1Â

)−1
·
(
(A∗)⊤M−1

∗ Πt
j

)∥∥∥∥
1

+

∥∥∥∥(Â⊤M̂−1Â
)−1
·
(
(A∗)⊤M−1

∗ Πt
j

)
−
(
(A∗)⊤M−1

∗ A∗
)−1
·
(
(A∗)⊤M−1

∗ Πt
j

)∥∥∥∥
1

.

Let us recall that for any matrix M ∈ Rq×r, the maximum absolute column sum of M is defined as the

matrix norm of M induced by the vector L1 norm : ∥M∥1 := supx ̸=0

∥Mx∥1
∥x∥1

= maxj∈[r]
q∑
i=1

∣∣∣[M ]ij

∣∣∣ . The
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matrix L1-norm being an operator norm we derive the following inequality :∥∥∥W̃ t
j −W t

j

∥∥∥
1
≤
∥∥∥∥(Â⊤M̂−1Â

)−1
∥∥∥∥
1

∥∥∥(Â⊤M̂−1Y t
j

)
−
(
(A∗)⊤M−1

∗ Y t
j

)∥∥∥
1

+

∥∥∥∥(Â⊤M̂−1Â
)−1

∥∥∥∥
1

∥∥∥((A∗)⊤M−1
∗ Y t

j

)
−
(
(A∗)⊤M−1

∗ Πt
j

)∥∥∥
1

+

∥∥∥∥(Â⊤M̂−1Â
)−1
−
(
(A∗)⊤M−1

∗ A∗
)−1

∥∥∥∥
1

∥∥∥ ((A∗)⊤M−1
∗ Πt

j

)∥∥∥
1
.

Let us recall that we denote Φ∗ := (A∗)⊤M−1
∗ A∗ and Φ̂ := Â⊤M̂−1Â. We start by bounding from above∥∥∥ (Φ̂)−1 − (Φ∗)−1

∥∥∥
1

∥∥ ((A∗)⊤M−1
∗ Πt

j

)∥∥
1
. The focus is firstly set on bounding from above

∥∥ ((A∗)⊤M−1
∗ Πt

j

)∥∥
1
.

Proposition 5.2.8 ensures that for all i ∈ [p],

c2hi ≤ [M∗]ii ≤ hi.

It follows that (A∗)⊤
(
M−1

∗ −H−1
)
A∗ and (A∗)⊤

(
λK(Σ1:T

W )−1H−1 −M−1
∗
)
A∗ are two positive semi-

definite matrices almost surely. In addition (A∗)⊤M−1
∗ A∗, (A∗)⊤H−1A∗ and (A∗)⊤λK(Σ1:T

W )−1H−1A∗

are symmetric with real entries and are thus diagonalizable. We deduce the following bounds on the
spectrum of Φ∗ holding almost surely,

λK (Φ∗) ≥ λK
(
(A∗)⊤H−1A∗

)
= λK(ΣA),

λ1 (Φ
∗) ≤ λ1

(
(A∗)⊤λK(Σ1:T

W )−1H−1A∗
)
= λK(Σ1:T

W )−1λ1(ΣA).

Lemma 5.6.8 ensures that λ1(ΣA) ≤
√
K ∥ΣA ∥1. Moreover,

∥ΣA ∥1 = max
k∈[K]

p∑
i=1
|[ΣA]ik| = max

k∈[K]

p∑
i=1

K∑
l=1

[A∗]il
[
H−1

]
ii
[A∗]ik . However, for all i ∈ [p],

K∑
l=1

[A∗]il = hi =

[H]ii. Hence ∥ΣA ∥1 = max
k∈[K]

p∑
i=1

[A∗]ik = max
k∈[K]

∥[A∗].k ∥1 = 1 and then λ1(ΣA) ≤
√
K. In addition,

Assumption 7 ensures that λK(ΣA) ≥ c2. It can then be deduced the following inequalities

λK (Φ∗) ≥ c2 and λ1 (Φ
∗) ≤

√
Kc−1

2 .

Then, from the definition of Π1:T we deduce∥∥∥ ((A∗)⊤M−1
∗ Πt

j

)∥∥∥
1
=
∥∥ (Φ∗W t

j

)∥∥
1
.

By definition of the matrix norm induced by the vector L1 norm :∥∥∥ ((A∗)⊤M−1
∗ Πt

j

)∥∥∥
1
≤ ∥Φ∗∥1

∥∥W t
j

∥∥
1
.

Lemma 5.6.8 ensures that ∥Φ∗∥1 ≤
√
Kλ1 (Φ

∗). For all j ∈ [n] and for all t ∈ [T ], W t
j is almost surely

in the simplex SK−1. Hence, the following inequality holds almost surely∥∥∥ ((A∗)⊤M−1
∗ Πt

j

)∥∥∥
1
≤ Kc−1

2 .
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Next, the objective is to bound from above
∥∥∥∥(Φ̂)−1

− (Φ∗)−1

∥∥∥∥
1

. First, let us expand the quantity
∥∥∥ Φ̂−Φ∗

∥∥∥
1

as follows∥∥∥Φ̂−Φ∗
∥∥∥
1
= max

1≤k≤K

{
K∑
l=1

∣∣∣∣∣
p∑
i=1

[Â]ik[Â]il

[M̂ ]ii
− [A∗]ik[A

∗]il
[M∗]ii

∣∣∣∣∣
}
,

≤ max
1≤k≤K


K∑
l=1

p∑
i=1

[Â]ik

∣∣∣[Â]il − [A∗]il

∣∣∣
[M̂ ]ii

+ max
1≤k≤K


K∑
l=1

p∑
i=1

[A∗]il

∣∣∣[Â]ik − [A∗]ik

∣∣∣
[M̂ ]ii


+ max

1≤k≤K


K∑
l=1

p∑
i=1

[A∗]ik[A
∗]il

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣
[M̂ ]ii[M∗]ii

 .

Then, consider ϵ1, ϵ2, ϵ3, ϵ4 > 0 satisfying the conditions of Theorem 5.5.3. Proposition 5.2.1 and
Proposition 5.5.5 provide that, with probability at least 1−2p2 exp(−ϵ21)−2pK exp(−ϵ22)−2Kp2 exp(−ϵ23)−
2p · (2p+ 9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
, we have for all i ∈ [p],

∥∥∥ [Â]i. − [A∗]i.

∥∥∥
1
≤ himax(ϵ1, ϵ2, ϵ3, ϵ4)

2Kγ3κ(
λK(Σ1:T

W )9/2c1K − γ3κ
)√ Khip

nT (N − 2)
,

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ < 2ϵ1

√
min(2, hi)

NnT
,

where

κ ≤
2γ0Ctot(p,N)

[
p3/2

γ1
+ Z

(√
himink∈[K] |[B]k1| − Z

)−2

](
2 +

p

γ2

)

α

(
λK(Σ1:T

W )√
K

−KCV HZ

[
p3/2

γ1
+ Z

(√
himink∈[K] |[B]k1| − Z

)−2

](
2 +

p

γ2

))

+
Ctot(p,N)

α
+

2ϵ1
√
2

max(ϵ1, ϵ2, ϵ3, ϵ4)γ3λK(Σ1:T
W )
√
hic1K

.

Applying the reverse triangle inequality also leads, with the same upper bound on the probability, to, for
all i ∈ [p],

∥∥∥[Â]i.∥∥∥
1
≤ ∥[A∗]i.∥1 + himax(ϵ1, ϵ2, ϵ3, ϵ4)

2Kγ3κ(
λK(Σ1:T

W )9/2c1K − κ
)√ Khip

nT (N − 2)
.

Hence ∥∥∥[Â]i.∥∥∥
1
≤ hi

(
1 + max(ϵ1, ϵ2, ϵ3, ϵ4)

2Kγ3κ(
λK(Σ1:T

W )9/2c1K − κ
)√ Khip

nT (N − 2)

)
.

Similarly, with the same upper bound on the probability, we have for all i ∈ [p],

[M̂ ]ii ≥ [M∗]ii − 2ϵ1

√
hi

NnT
.
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Proposition 5.2.8 and Assumption 6 then ensure that with the same upper bound on the probability, for
all i ∈ [p],

[M̂ ]ii ≥ λK(Σ1:T
W )hi − 2ϵ1

√
hi

NnT
,

≥ hi
(
λK(Σ1:T

W )− 2ϵ1

√
1

hiNnT

)
,

≥ hiλK(Σ1:T
W )

(
1− 2ϵ1λK(Σ1:T

W )−1

√
p

c1KNnT

)
.

From these results, the following inequalities are holding true with the same upper bound on the
probability :

∥∥∥Φ̂−Φ∗
∥∥∥
1
≤

p∑
i=1

∥∥∥[Â]i.∥∥∥
1

∥∥∥[Â]i. − [A∗]i.

∥∥∥
1

[M̂ ]ii
+

p∑
i=1

∥[A∗]i.∥1
∥∥∥[Â]i. − [A∗]i.

∥∥∥
1

[M̂ ]ii

+

p∑
i=1

∥[A∗]i.∥21
∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣
[M̂ ]ii[M∗]ii

,

≤
p∑
i=1

h
3/2
i (1 + ∆1)

∥∥∥[Â]i. − [A∗]i.

∥∥∥
1

hiλK(Σ1:T
W )(1−∆2)

+

p∑
i=1

hi

∥∥∥[Â]i. − [A∗]i.

∥∥∥
1

hiλK(Σ1:T
W )(1−∆2)

+

p∑
i=1

h2i

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣
h2iλK(Σ1:T

W )2(1−∆2)
,

≤
[
(1 + ∆1)max

s∈[p]

√
hs + 1

] p∑
i=1

∥∥∥[Â]i. − [A∗]i.

∥∥∥
1

λK(Σ1:T
W )(1−∆2)

+

p∑
i=1

∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣
λK(Σ1:T

W )2(1−∆2)
.

Using the bounds on
∥∥∥[Â]i. − [A∗]i.

∥∥∥
1

and
∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣, holding true for all i ∈ [p], leads to, with pro-

bability at least 1−2p2 exp(−ϵ21)−2pK exp(−ϵ22)−2Kp2 exp(−ϵ23)−2p·(2p+9p) exp
(
−min

(
ϵ24;
√
cnTϵ4

))
:

∥∥∥Φ̂−Φ∗
∥∥∥
1
≤
[
(1 + ∆1)max

s∈[p]

√
hs + 1

] p∑
i=1

h
3/2
i max(ϵ1, ϵ2, ϵ3, ϵ4)2Kγ3κ

√
Kp

c2(1−∆2)
(
c
9/2
2 c1K − κ

)√
nT (N − 2)

+

p∑
i=1

2hiϵ1

c22(1−∆2)
√
NnT

,

≤
[
(1 + ∆1)max

s∈[p]

√
hs + 1

]
max(ϵ1, ϵ2, ϵ3, ϵ4)2Kγ3κ

√
Kp

c2(1−∆2)
(
c
9/2
2 c1K − κ

)√
nT (N − 2)

p∑
i=1

h
3/2
i

+
2ϵ1

c22(1−∆2)
√
NnT

p∑
i=1

hi.

Then, using that
p∑
i=1

hi = K leads to max
s∈[p]

hs ≤ K. Hence we deduce max
s∈[p]

√
hs ≤

√
K. Then, we deduce
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that
p∑
i=1

h
3/2
i ≤

(
max
s∈[p]

√
hs

)
p∑
i=1

hi ≤ K3/2. It follows that with probability at least 1 − 2p2 exp(−ϵ21) −

2pK exp(−ϵ22)− 2Kp2 exp(−ϵ23)− 2p · (2p+ 9p) exp
(
−min

(
ϵ24;
√
cnTϵ4

))
:

∥∥∥Φ̂−Φ∗
∥∥∥
1
≤
[
(1 + ∆1)

√
K + 1

] max(ϵ1, ϵ2, ϵ3, ϵ4)2K
3γ3κ
√
p

c2(1−∆2)
(
c
9/2
2 c1K − κ

)√
nT (N − 2)

+
2Kϵ1

c22(1−∆2)
√
NnT

.

Next, we notice that Lemma 5.6.8 ensures :∥∥∥ (Φ̂)−1 − (Φ∗)−1
∥∥∥
1
≤
√
K
∥∥∥ (Φ̂)−1 − (Φ∗)−1

∥∥∥
op
,

≤
√
K
∥∥∥ (Φ̂)−1

(
Φ̂−Φ∗

)
(Φ∗)−1

∥∥∥
op
,

≤
√
K
∥∥∥ (Φ̂)−1

∥∥∥
op

∥∥∥(Φ̂−Φ∗
)∥∥∥

op

∥∥(Φ∗)−1
∥∥
op
.

Next, we notice that Weyl’s inequality, Lemma 1.1.13, ensures that

λK(Φ∗)−
∥∥∥(Φ̂−Φ∗

)∥∥∥
op
≤ λK(Φ̂) ≤ λK(Φ∗) +

∥∥∥(Φ̂−Φ∗
)∥∥∥

op
.

Hence we deduce that for N , n or T sufficiently large, λK(Φ∗)−
∥∥∥(Φ̂−Φ∗

)∥∥∥
op
≥ 0 and then :

∥∥∥ (Φ̂)−1
∥∥∥
op

= λK(Φ̂)−1 ≤
(
λK(Φ∗)−

∥∥∥(Φ̂−Φ∗
)∥∥∥

op

)−1

.

Finally this provides :

∥∥∥ (Φ̂)−1 − (Φ∗)−1
∥∥∥
1
≤
√
K
∥∥∥(Φ̂−Φ∗

)∥∥∥
op

(
λK(Φ∗)−

∥∥∥(Φ̂−Φ∗
)∥∥∥

op

)−1 ∥∥(Φ∗)−1
∥∥
op
,∥∥∥ (Φ̂)−1 − (Φ∗)−1

∥∥∥
1
≤
√
K
∥∥∥(Φ̂−Φ∗

)∥∥∥
op

(∥∥(Φ∗)−1
∥∥−1

op
−
∥∥∥(Φ̂−Φ∗

)∥∥∥
op

)−1 ∥∥(Φ∗)−1
∥∥
op
,∥∥∥ (Φ̂)−1 − (Φ∗)−1

∥∥∥
1
≤
√
K
∥∥∥(Φ̂−Φ∗

)∥∥∥
op

(
c2 −

∥∥∥(Φ̂−Φ∗
)∥∥∥

op

)−1

c−1
2 .

The second step consists of bounding
∥∥∥∥(Â⊤M̂−1Â

)−1
∥∥∥∥
1

∥∥((A∗)⊤M−1
∗ Y t

j

)
−
(
(A∗)⊤M−1

∗ Πt
j

)∥∥
1
.

The DTM model, see Definition 5.1.1 ensures that for every k ∈ [K], the variables
((

M−1
∗ [A∗].k

)⊤ (
Y t
j −Πt

j

))
j,t

are real-valued and independent conditionally on W 1:T . From the definition of the multinomial distribu-
tion, they can be expressed, conditionally on W 1:T , for all (k, t, j) ∈ [K]× [T ]× [n], as,

(
M−1

∗ [A∗].k
)⊤ (

Y t
j −Πt

j

)
=

1

N

N∑
l=1

(
M−1

∗ [A∗].k
)⊤ (

Qtjl − E[Qtjl]
)
, (5.17)
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where for all l ∈ [N ] and for all (t, j) ∈ [T ]×[n],Qtjl|W
t
j ∼ Multinomialp

(
1,Πt

j

)
and P(Q1

j1,...,Q
1
jN ,Q

2
j1...,Q

T
jN )|(W 1

j ,...,W
T
j ) =

T⊗
t=1

N⊗
l=1

PQt
jl|W

t
j
. Then the following equalities hold for all (k, t, j, l) ∈ [K]× [T ]× [n]× [N ],

E
[(
M−1

∗ [A∗].k
)⊤ (

Qtjl − E[Qtjl]
)
|W 1:T

]
= 0 a.s.,

P
[∣∣∣(M−1

∗ [A∗].k
)⊤ (

Qtjl − E[Qtjl]
)∣∣∣ > ∥∥M−1

∗ [A∗].k
∥∥
∞ |W

1:T
]
= 0 a.s.

Then notice that for every k ∈ [K],
∥∥M−1

∗ [A∗].k
∥∥
∞ = maxi∈[p][(M

∗)−1]ii[A
∗]ik. Thus Proposition 5.2.8

and the definition of hi in Assumption 6 ensure that for every k ∈ [K] :∥∥M−1
∗ [A∗].k

∥∥
∞ ≤ c

−1
2 .

Hence applying Hoeffding’s inequality, Lemma 1.1.8, for every k ∈ [K] conditionally on W 1:T , to(
M−1

∗ [A∗].k
)⊤ (

Y t
j(i)−Πt

j(i)
)

gives, for all ϵ > 0,

P
[∣∣∣(M−1

∗ [A∗].k
)⊤ (

Y t
j −Πt

j

)∣∣∣ > ϵ|W 1:T
]
≤ 2 exp

(
−Nc

2
2ϵ

2

2

)
a.s.,

P
[∣∣∣(M−1

∗ [A∗].k
)⊤ (

Y t
j −Πt

j

)∣∣∣ > ϵ
]
≤ 2EW

[
exp

(
−Nc

2
2ϵ

2

2

)]
.

We conclude that for all k ∈ [K], for all ϵ > 0, with probability 1− 2 exp(−ϵ2),

(
M−1

∗ [A∗].k
)⊤ (

Y t
j −Πt

j

)
≤
√
2N−1/2c−1

2 ϵ.

Using a union bound provides, for all ϵ > 0, with probability 1− 2K exp(−ϵ2),∥∥∥(A∗)⊤M−1
∗
(
Y t
j −Πt

j

)∥∥∥
1
≤
√
2KN−1/2c−1

2 ϵ.

Then, note that Lemma 5.6.8 ensures :∥∥∥∥(Â⊤M̂−1Â
)−1

∥∥∥∥
1

=
∥∥∥Φ̂−1

∥∥∥
1
≤
√
K
∥∥∥Φ̂−1

∥∥∥
op
.

Thus we deduce ∥∥∥∥(Φ̂)−1
∥∥∥∥
1

≤
√
K

(
λK(Φ∗)−

∥∥∥(Φ̂−Φ∗
)∥∥∥

op

)−1

.

This finally allows to bound
∥∥∥∥(Φ̂)−1

∥∥∥∥
1

∥∥((A∗)⊤M−1
∗ Y t

j

)
−
(
(A∗)⊤M−1

∗ Πt
j

)∥∥
1
.

The third and final step consists of bounding
∥∥∥∥(Φ̂)−1

∥∥∥∥
1

∥∥∥(Â⊤M̂−1Y t
j

)
−
(
(A∗)⊤M−1

∗ Y t
j

)∥∥∥
1
. The

quantity
∥∥∥∥(Φ̂)−1

∥∥∥∥
1

is already as detailed here above. Thus it remains to control
∥∥∥(Â⊤M̂−1 − (A∗)⊤M−1

∗

)
Y t
j

∥∥∥
1
.
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We get, for all t ∈ [T ] and j ∈ [n], the following results by computation :

∥∥∥(Â⊤M̂−1 − (A∗)⊤M−1
∗

)
Y t
j

∥∥∥
1
=

K∑
k=1

∣∣∣∣∣
p∑
i=1

[
[Â]ik

[M̂ ]ii
− [A∗]ik

[M∗]ii

]
Y t
j(i)

∣∣∣∣∣ ,
≤

[
p∑
i=1

Y t
j(i)

]
max
i∈[p]

(
K∑
k=1

∣∣∣∣∣ [Â]ik[M̂ ]ii
− [A∗]ik

[M∗]ii

∣∣∣∣∣
)
,

≤ max
i∈[p]

(
K∑
k=1

∣∣∣∣∣ [Â]ik[M̂ ]ii
− [A∗]ik

[M∗]ii

∣∣∣∣∣
)
,

where we use that the columns of Y 1:T are L1 normalized by definition, providing
p∑
i=1

Y t
j(i) = 1. In

addition, Proposition 5.2.1 ensures that for all i ∈ [p], for all ϵ1 > 0 with probability at least 1−2 exp
(
−ϵ21

)
,

we have ∣∣∣[M̂ ]ii − [M∗]ii

∣∣∣ < 2ϵ1

√
min(2, hi)

NnT
.

Moreover Proposition 5.2.8 gives that almost surely for all i ∈ [p],

c2hi − 2ϵ1

√
min(2, hi)

NnT
≤ c2hi ≤ [M∗]ii ≤ hi ≤ hi + 2ϵ1

√
min(2, hi)

NnT
.

Hence we obtain that with probability at least 1− 2 exp
(
−ϵ21

)
we have, for all i ∈ [p],

c2hi − 2ϵ1

√
min(2, hi)

NnT
< [M̂ ]ii < hi + 2ϵ1

√
min(2, hi)

NnT
.

Thus with probability at least 1− 2 exp
(
−ϵ21

)
:

∥∥∥(Â⊤M̂−1 − (A∗)⊤M−1
∗

)
Y t
j

∥∥∥
1
≤max

i∈[p]

(
K∑
k=1

∣∣∣∣∣ [M∗]ii[Â]ik − [M̂ ]ii[A
∗]ik

[M∗]ii[M̂ ]ii

∣∣∣∣∣
)
,

≤max
i∈[p]

(c2hi − 2ϵ1

√
min(2, hi)

NnT

)−2(
hi + 2ϵ1

√
min(2, hi)

NnT

)
K∑
k=1

∣∣∣[Â]ik − [A∗]ik

∣∣∣
 ,

≤max
i∈[p]

(c2hi − 2ϵ1

√
min(2, hi)

NnT

)−2(
hi + 2ϵ1

√
min(2, hi)

NnT

)∥∥∥[Â]i. − [A∗]i.

∥∥∥
1

 .

Finally, we recall that for all ϵ1, ϵ2, ϵ3, ϵ4 > 0, with probability at least 1− 2p2 exp(−ϵ21)− 2pK exp(−ϵ22)−
2Kp2 exp(−ϵ23)− 2p · (2p+ 9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
, we have for all i ∈ [p],

∥∥∥ [Â]i. − [A∗]i.

∥∥∥
1
≤ himax(ϵ1, ϵ2, ϵ3, ϵ4)

2Kγ3κ(
c
9/2
2 c1K − κ

)√ Khip

nT (N − 2)
.
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Hence, with probability at least 1−2p2 exp(−ϵ21)−2pK exp(−ϵ22)−2Kp2 exp(−ϵ23)−2p·(2p+9p) exp
(
−min

(
ϵ24;
√
cnTϵ4

))
,

we have
∥∥∥(Â⊤M̂−1 − (A∗)⊤M−1

∗

)
Y t
j

∥∥∥
1

bounded from above by

max(ϵs)s∈[4]
2K3/2γ3κ(
c
9/2
2 c1K − κ

)√ p

nT (N − 2)
max
i∈[p]


(
hi + 2ϵ1

√
min(2, hi)

NnT

)
(
c2hi − 2ϵ1

√
min(2, hi)

NnT

)2h
3/2
i

 .

Finally, for all j ∈ [n] and t ∈ [T ], for every (ϵi)i∈[5] ∈ (R∗
+)

5, with probability at least 1 − 2p2 exp(−ϵ21) −
2pK exp(−ϵ22)−2Kp2 exp(−ϵ23)−2p·(2p+9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
−2K exp(−ϵ25), we have

∥∥∥W̃ t
j −W t

j

∥∥∥
1

bounded from above by :

K3/2(
λK(Φ∗)−

∥∥∥(Φ̂−Φ∗
)∥∥∥

op

)
max(ϵs)s∈[4]

2
√
Kγ3κ(

c
9/2
2 c1K − κ

)√ p

nT (N − 2)
max
i∈[p]

(
(hi + ξi)

(c2hi − ξi)2
h
3/2
i

)
+ ϵ5

√
2√
Nc2



+
K3/2

∥∥∥(Φ̂−Φ∗
)∥∥∥

op

c22

(
c2 −

∥∥∥(Φ̂−Φ∗
)∥∥∥

op

) ,

where ξi := 2ϵ1

√
min(2, hi)

NnT
, λK(Φ∗) ≥ c2 and

∥∥∥Φ̂−Φ∗
∥∥∥
op
≤
[
(1 + ∆1)

√
K + 1

] max(ϵ1, ϵ2, ϵ3, ϵ4)2K
7/2γ3κ

√
p

c2(1−∆2)
(
c
9/2
2 c1K − κ

)√
nT (N − 2)

+
2K3/2ϵ1

c22(1−∆2)
√
NnT

.

The final part of the proof is to bound
∥∥∥Ŵ t

j −W t
j

∥∥∥
1
. By definition, Ŵ t

j is defined by setting negative

entries of W̃ t
j to zero and normalizing it to have a unit L1 norm. We start by defining W̌ t

j the vector

obtained by setting the negative entries of W̃ t
j to zero. Then Ŵ t

j =
W̌ t
j

∥W̌ t
j ∥1

. Then using the triangle

inequality and the definition of Ŵ t
j we deduce the following :∥∥∥W t

j − Ŵ t
j

∥∥∥
1
≤
∥∥W t

j − W̌ t
j

∥∥
1
+
∥∥∥W̌ t

j − Ŵ t
j

∥∥∥
1
,

≤
∥∥W t

j − W̌ t
j

∥∥
1
+
∥∥W̌ t

j

∥∥
1

∣∣∣∣∣1− 1

∥W̌ t
j ∥1

∣∣∣∣∣
1

.

We recall that ∥W t
j ∥1 = 1 and we use the reverse triangle inequality to get :∥∥∥W t

j − Ŵ t
j

∥∥∥
1
≤
∥∥W t

j − W̌ t
j

∥∥
1
+
∣∣∥W̌ t

j ∥1 − 1
∣∣
1
,

≤
∥∥W t

j − W̌ t
j

∥∥
1
+
∣∣∥W̌ t

j ∥1 − ∥W t
j ∥1
∣∣
1
,

≤ 2
∥∥W t

j − W̌ t
j

∥∥
1
.
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Finally, notice that both W t
j and W̌ t

j have non negative entries. Thus we have :

∥∥ W̌ t
j −W t

j

∥∥
1
≤
∥∥∥ W̃ t

j −W t
j

∥∥∥
1
.

This finally leads to ∥∥∥ Ŵ t
j −W t

j

∥∥∥
1
≤ 2

∥∥∥ W̃ t
j −W t

j

∥∥∥
1
.

Proof of Theorem 5.3.1. As detailed in the proof of Theorem 5.2.16, under the stated conditions on
NnT , with probability at least
1−2p2 exp(−ϵ21)−2pK exp(−ϵ22)−2Kp2 exp(−ϵ23)−2p·(2p+9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
−2K exp(−ϵ25),

we have γ3 ≤ 2 and

κ ≤2KCtot(p,N)max(ϵi)i∈[4]

√
p

nT (N − 2)

[
1 +

(
2 +

p

c52c1K

)(
8pK1/2

c1c
13/2
2

+
8pK2

c1c
15/2
2

max
x∈Gη

∥x∥2

)]
+

4K3/2ϵ1

c2
√
NnT

Under the stated conditions on NnT we also have c
9/2
2 c1K − κ ≥ c

9/2
2 c1K/2, as detailed in the proof

of Theorem 5.2.16. Moreover, NnT ≥ 64p

c42c1K
≥ 16p

c1Kc22
ensures (1 − ∆2)

−1 ≤ 2. Next, consider the

constants CA(p,N) and CB defined in Theorem 5.2.16 and notice that the previously stated bound

ensures
κ

c
9/2
2 c1

≤
Kmax(ϵi)i∈[4]√
nT (N − 2)

[
CA(p,N)

√
p+ CB

]
.

Thus if nT (N − 2) ≥ 8K3/2max(ϵ2i )i∈[4]
[
CA(p,N)

√
p+ CB

]√
p we have ∆1 ≤ 1. This leads to, under

these conditions,

∥∥∥Φ̂−Φ∗
∥∥∥
op
≤ 16

[
2
√
K + 1

] max(ϵs)s∈[4]K
5/2

c2

κ

c
9/2
2 c1

√
p

nT (N − 2)
+

4K3/2ϵ1

c22
√
NnT

.

Thus we get

∥∥∥Φ̂−Φ∗
∥∥∥
op
≤ 16

[
2
√
K + 1

] max(ϵ2s)s∈[4]K
7/2√p

c2nT (N − 2)
[CA(p,N)

√
p+ CB] +

4K3/2ϵ1

c22
√
NnT

.

We look for a condition on NnT ensuring
∥∥∥Φ̂−Φ∗

∥∥∥
op
≤ c2/2. Let us denote X :=

√
nT (N − 2). Then∥∥∥Φ̂−Φ∗

∥∥∥
op
≤ c2/2 is ensured if

16
[
2
√
K + 1

] max(ϵ2s)s∈[4]K
7/2√p

c2X2
[CA(p,N)

√
p+ CB] +

4K3/2ϵ1
c22X

≤ c2/2.

Thus we get a second degree polynomial inequality. The condition is then ensured if

√
nT (N − 2) ≥ 4K3/2ϵ1

c22
+

√
16K3ϵ21/c

4
2 + 32

[
2
√
K + 1

]
max(ϵ2s)s∈[4]K

7/2
[
CA(p,N)

√
p+ CB

]√
p

c2
.
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Under this condition we get with the stated probability that
∥∥∥Ŵ t

j −W t
j

∥∥∥
1

is bounded from above by :

4K3/2

c2

[
max(ϵs)s∈[4]

4
√
Kγ3κ

c
9/2
2 c1K

√
p

nT (N − 2)
max
i∈[p]

(
(hi + ξi)

(c2hi − ξi)2
h
3/2
i

)
+ ϵ5

√
2√
Nc2

]

+
4K3/2

c32

[
16
[
2
√
K + 1

] max(ϵ2s)s∈[4]K
7/2√p

c2nT (N − 2)
[CA(p,N)

√
p+ CB] +

4K3/2ϵ1

c22
√
NnT

]
.

Next notice that for all i ∈ [p], ξi := 2ϵ1

√
min(2, hi)

NnT
≤ 2ϵ1

√
2

NnT
. Hence NnT ≥ 32ϵ21

c22h
2
min

ensures for all

i ∈ [p] ξi ≤
c2hmin

2
≤ c2hi

2
. Thus under this condition and using that for all i ∈ [p], hi ≤ K leads to

max
i∈[p]

(
(hi + ξi)

(c2hi − ξi)2
h
3/2
i

)
≤ K3/2 2 + c2

c2
.

Finally, under the stated conditions,

∥∥∥Ŵ t
j −W t

j

∥∥∥
1
≤4K3/2

c2

[
max(ϵs)s∈[4]

4
√
Kγ3κ

c
9/2
2 c1K

√
p

nT (N − 2)
K3/2 2 + c2

c2
+ ϵ5

√
2√
Nc2

]

+
4K3/2

c32

[
16
[
2
√
K + 1

] max(ϵ2s)s∈[4]K
7/2√p

c2nT (N − 2)
[CA(p,N)

√
p+ CB] +

4K3/2ϵ1

c22
√
NnT

]
,

≤4K3/2

c2

[
max(ϵ2s)s∈[4]

8K2√p
nT (N − 2)

[CA(p,N)
√
p+ CB]

2 + c2
c2

+ ϵ5

√
2√
Nc2

]

+
4K3/2

c32

[
16
[
2
√
K + 1

] max(ϵ2s)s∈[4]K
7/2√p

c2nT (N − 2)
[CA(p,N)

√
p+ CB] +

4K3/2ϵ1

c22
√
NnT

]
,

≤ϵ5
4
√
2K3/2

c22
√
N

+ ϵ1
16K3

c52
√
NnT

+
32max(ϵ2s)s∈[4]K

7/2√p
[
CA(p,N)

√
p+ CB

]
c22nT (N − 2)

[
(2 + c2) +

2K3/2(2
√
K + 1)

c22

]
.

5.5.16 Proof of Theorem 5.4.2

Proof of Theorem 5.4.2. On the one hand, we need to bound from above the quantity
T−1∑
t=1

n∑
j=1

〈
Ŵ t+1
j − Ŵ+1; Ŵ t

j − Ŵ
〉

.

First, we notice that for all j ∈ [n], for all t ∈ [T − 1], we have :〈
Ŵ t+1
j − Ŵ+1; Ŵ t

j − Ŵ
〉
=
〈
Ŵ t+1
j −W t+1

j +W t+1
j −W+1 +W+1 − Ŵ+1; Ŵ t

j −W t
j +W t

j −W +W − Ŵ
〉
.
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Using the bilinearity of the scalar product, we get that
〈
Ŵ t+1
j − Ŵ+1; Ŵ t

j − Ŵ
〉

is equal to

⟨Ŵ t+1
j −W t+1

j ; Ŵ t
j −W t

j ⟩+ ⟨W t+1
j −W+1; Ŵ t

j −W t
j ⟩+ ⟨W+1 − Ŵ+1; Ŵ t

j −W t
j ⟩

+⟨Ŵ t+1
j −W t+1

j ; W t
j −W ⟩+

∣∣∣〈W t+1
j −W+1; W t

j −W
〉∣∣∣+ ⟨W+1 − Ŵ+1; W t

j −W ⟩

+⟨Ŵ t+1
j −W t+1

j ; W − Ŵ ⟩+ ⟨W t+1
j −W+1; W − Ŵ ⟩+ ⟨W+1 − Ŵ+1; W − Ŵ ⟩.

In addition, the proof of Theorem 4.4.2 contains the following equality :

〈
W t+1
j −W+1

; W t
j −W

〉
= (1− c∗)

∥∥W t
j −W

∥∥2
2
+ c∗

〈
∆t
j −∆; W t

j −W
〉
.

Moreover we notice that for all j ∈ [n], for all t ∈ [T − 1],

∥∥∥Ŵ t
j − Ŵ

∥∥∥2
2
=
∥∥∥Ŵ t

j −W t
j

∥∥∥2
2
+
∥∥W t

j −W
∥∥2
2
+
∥∥∥W − Ŵ∥∥∥2

2

+ 2
〈
Ŵ t
j −W t

j ;W
t
j −W

〉
+ 2

〈
Ŵ t
j −W t

j ;W − Ŵ
〉
+ 2

〈
W t
j −W ;W − Ŵ

〉
.

Hence
1

n(T − 1)

T−1∑
t=1

n∑
j=1

∥∥∥Ŵ t
j − Ŵ

∥∥∥2
2

[
(̂1− c)− (1− c∗)

]
is equal to

1

n(T − 1)

T−1∑
t=1

n∑
j=1

[
⟨Ŵ t+1

j −W t+1
j ; Ŵ t

j −W t
j ⟩+ ⟨W t+1

j −W+1; Ŵ t
j −W t

j ⟩+ ⟨W+1 − Ŵ+1; Ŵ t
j −W t

j ⟩
]

+
1

n(T − 1)

T−1∑
t=1

n∑
j=1

[
⟨Ŵ t+1

j −W t+1
j ; W t

j −W ⟩+ c∗
〈
∆t
j −∆; W t

j −W
〉
+ ⟨W+1 − Ŵ+1; W t

j −W ⟩
]

+
1

n(T − 1)

T−1∑
t=1

n∑
j=1

[
⟨Ŵ t+1

j −W t+1
j ; W − Ŵ ⟩+ ⟨W t+1

j −W+1; W − Ŵ ⟩+ ⟨W+1 − Ŵ+1; W − Ŵ ⟩
]

− 1− c∗

n(T − 1)

T−1∑
t=1

n∑
j=1

[∥∥∥Ŵ t
j −W t

j

∥∥∥2
2
+
∥∥∥W − Ŵ∥∥∥2

2
+ 2

〈
Ŵ t
j −W t

j ;W
t
j −W

〉
+ 2

〈
Ŵ t
j −W t

j ;W − Ŵ
〉]

− 1− c∗

n(T − 1)

T−1∑
t=1

n∑
j=1

2
[〈
W t
j −W ;W − Ŵ

〉]
.

Cauchy-Schwarz inequality ensures that
1

n(T − 1)

T−1∑
t=1

n∑
j=1

∥∥∥Ŵ t
j − Ŵ

∥∥∥2
2

∣∣∣(̂1− c)− (1− c∗)
∣∣∣ is boun-
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ded from above by

1

n(T − 1)

T−1∑
t=1

n∑
j=1

[∥∥∥Ŵ t+1
j −W t+1

j

∥∥∥
2

∥∥∥Ŵ t
j −W t

j

∥∥∥
2
+
∥∥∥W t+1

j −W+1
∥∥∥
2

∥∥∥Ŵ t
j −W t

j

∥∥∥
2
+
∥∥∥W+1 − Ŵ+1

∥∥∥
2

∥∥∥Ŵ t
j −W t

j

∥∥∥
2

]

+
1

n(T − 1)

T−1∑
t=1

n∑
j=1

[∥∥∥Ŵ t+1
j −W t+1

j

∥∥∥
2

∥∥W t
j −W

∥∥
2
+ c∗

∣∣〈∆t
j −∆; W t

j −W
〉∣∣+ ∥∥∥W+1 − Ŵ+1

∥∥∥
2

∥∥W t
j −W

∥∥
2

]

+
1

n(T − 1)

T−1∑
t=1

n∑
j=1

[∥∥∥Ŵ t+1
j −W t+1

j

∥∥∥
2

∥∥∥W − Ŵ∥∥∥
2
+
∥∥∥W t+1

j −W+1
∥∥∥
2

∥∥∥W − Ŵ∥∥∥
2
+
∥∥∥W+1 − Ŵ+1

∥∥∥
2

∥∥∥W − Ŵ∥∥∥
2

]

+
2(1− c∗)
n(T − 1)

T−1∑
t=1

n∑
j=1

[∥∥∥Ŵ t
j −W t

j

∥∥∥
2

∥∥W t
j −W

∥∥
2
+
∥∥∥Ŵ t

j −W t
j

∥∥∥
2

∥∥∥W − Ŵ∥∥∥
2
+
∥∥W t

j −W
∥∥
2

∥∥∥W − Ŵ∥∥∥
2

]
.

Theorem 5.3.1 combined with the triangle inequality and the L1-L2 inequality provide upper bounds,
converging towards zero, on the quantities

∥∥∥Ŵ t+1
j −W t+1

j

∥∥∥
2
,
∥∥∥Ŵ t

j −W t
j

∥∥∥
2
,
∥∥∥W − Ŵ∥∥∥

2
and

∥∥∥W+1 − Ŵ+1
∥∥∥
2

with high probability. In addition, notice that the quantities
∥∥∥W t

j −W
∥∥∥
2

and
∥∥∥W t+1

j −W+1
∥∥∥
2

are boun-

ded from above by one almost surely. Let us consider (ϵi)i∈[6] ∈ (R∗
+)

6 satisfying the conditions of
Theorem 5.3.1 and assume the conditions on the sample size satisfied. Then using a union bound we
get that

1

n(T − 1)

n∑
j=1

T−1∑
t=1

[∥∥∥Ŵ t+1
j −W t+1

j

∥∥∥
2

(∥∥∥Ŵ t
j −W t

j

∥∥∥
2
+
∥∥W t

j −W
∥∥
2
+
∥∥∥W − Ŵ∥∥∥

2

)]

+
1

n(T − 1)

n∑
j=1

T−1∑
t=1

[∥∥∥W+1 − Ŵ+1
∥∥∥
2

∥∥W t
j −W

∥∥
2

]

+
1

n(T − 1)

n∑
j=1

T−1∑
t=1

[∥∥∥W − Ŵ∥∥∥
2

(∥∥∥W t+1
j −W+1

∥∥∥
2
+
∥∥∥W+1 − Ŵ+1

∥∥∥
2

)]

+
1

n(T − 1)

n∑
j=1

T−1∑
t=1

[∥∥∥Ŵ t
j −W t

j

∥∥∥
2

(∥∥∥W t+1
j −W+1

∥∥∥
2
+
∥∥∥W+1 − Ŵ+1

∥∥∥
2

)]

+
2(1− c∗)
n(T − 1)

n∑
j=1

T−1∑
t=1

[∥∥∥Ŵ t
j −W t

j

∥∥∥
2

(∥∥W t
j −W

∥∥
2
+
∥∥∥W − Ŵ∥∥∥

2

)
+
∥∥W t

j −W
∥∥
2

∥∥∥W − Ŵ∥∥∥
2

]
.

is bounded from above by

2

(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+
ν2ϵ5√
N

+
ν3ϵ1√
NnT

)

·

(
(3− c∗)

ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+ (3− c∗)ν2ϵ5√

N
+ (3− c∗) ν3ϵ1√

NnT
+ 2(2− c∗)

)

with probability larger than 1−2n(T −1)p2 exp(−ϵ21)−2n(T −1)pK exp(−ϵ22)−2n(T −1)Kp2 exp(−ϵ23)−
2n(T − 1)p · (2p + 9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
− 2n(T − 1)K exp(−ϵ25) − 2n(T − 1) exp

(
−ϵ26/4

)
. In
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addition, c∗
∣∣∣〈∆t

j −∆; W t
j −W

〉∣∣∣ is controlled in the proof of Theorem 4.4.2. Using (4.21) and (4.23)

we get that for n and T satisfying (4.30), for all 0 < ϵ7 <
√
nm c

2−c/2 :

1

n(T − 1)

∣∣∣∣∣∣
n∑
j=1

T−1∑
t=1

〈
∆t
j −∆; W t

j −W
〉∣∣∣∣∣∣ ≤

[
(ϵ7 + 1)2

n(T − 1)

(
1 +

1

c
√
T − 1

)
+

11ϵ7√
n(T − 1)

]
,

with probability larger than 1− 7 exp(−ϵ27/4). Finally, under the stated conditions,

the quantity
1

n(T − 1)

T−1∑
t=1

n∑
j=1

∥∥∥Ŵ t
j − Ŵ

∥∥∥2
2

∣∣∣(̂1− c)− (1− c∗)
∣∣∣ is bounded from above by

2

(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+
ν2ϵ5√
N

+
ν3ϵ1√
NnT

)

·

(
(3− c∗)

ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+ (3− c∗)ν2ϵ5√

N
+ (3− c∗) ν3ϵ1√

NnT
+ 2(2− c∗)

)

+c∗

[
(ϵ7 + 1)2

n(T − 1)

(
1 +

1

c
√
T − 1

)
+

11ϵ7√
n(T − 1)

]
,

with probability larger than 1−2n(T −1)p2 exp(−ϵ21)−2n(T −1)pK exp(−ϵ22)−2n(T −1)Kp2 exp(−ϵ23)−
2n(T − 1)p · (2p + 9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
− 2n(T − 1)K exp(−ϵ25) − 2n(T − 1) exp

(
−ϵ26/4

)
−

7 exp(−ϵ27/4).

On the other hand, we need to bound from below the quantity
T−1∑
t=1

n∑
j=1

∥∥∥Ŵ t
j − Ŵ

∥∥∥2
2
. We recall that for

all j ∈ [n], for all t ∈ [T − 1] :∥∥∥Ŵ t
j − Ŵ

∥∥∥2
2
≥
∥∥W t

j −W
∥∥2
2
− 2

∥∥∥Ŵ t
j −W t

j

∥∥∥
2

(∥∥W t
j −W

∥∥
2
+
∥∥∥W − Ŵ∥∥∥

2

)
− 2

∥∥W t
j −W

∥∥
2

∥∥∥W − Ŵ∥∥∥
2
.

Using Theorem 5.3.1 and the (ϵi)i∈[7] previously introduced we get that, under the stated conditions,

1

n(T − 1)

T−1∑
t=1

n∑
j=1

∥∥∥Ŵ t
j − Ŵ

∥∥∥2
2
≥ 1

n(T − 1)

T−1∑
t=1

n∑
j=1

∥∥W t
j −W

∥∥2
2

− 2

(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+
ν2ϵ5√
N

+
ν3ϵ1√
NnT

)

·

(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+
ν2ϵ5√
N

+
ν3ϵ1√
NnT

+ 2

)
,

with probability larger than 1−2n(T −1)p2 exp(−ϵ21)−2n(T −1)pK exp(−ϵ22)−2n(T −1)Kp2 exp(−ϵ23)−
2n(T−1)p·(2p+9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
−2n(T−1)K exp(−ϵ25)−2n(T−1) exp

(
−ϵ26/4

)
. Moreover,

the proof of Theorem 4.4.2 contains the following inequality holding true for all 0 < ϵ7 <
√
nm c

2−c/2 :

1

n(T − 1)

n∑
j=1

T−1∑
t=1

∥∥W t
j −W

∥∥2
2
≥ m c

2− c
−
(
1 +
√
2
)
ϵ7 + 1

c
√
n(T − 1)

−
(
21 + 4

√
2
)
ϵ7 + 1√

n(T − 1)
≥ cm

4
,
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for n and T large enough, see the proof of Theorem 4.4.2, with probability larger than 1− 6 exp(−ϵ27/4).
Thus we get that for n and T large enough, with probability larger than 1−2n(T−1)p2 exp(−ϵ21)−2n(T−
1)pK exp(−ϵ22) − 2n(T − 1)Kp2 exp(−ϵ23) − 2n(T − 1)p · (2p + 9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
− 2n(T −

1)K exp(−ϵ25)− 2n(T − 1) exp
(
−ϵ26/4

)
− 6 exp(−ϵ27/4) :

1

n(T − 1)

T−1∑
t=1

n∑
j=1

∥∥∥Ŵ t
j − Ŵ

∥∥∥2
2
≥cm

4

− 2

(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+
ν2ϵ5√
N

+
ν3ϵ1√
NnT

)

·

(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+
ν2ϵ5√
N

+
ν3ϵ1√
NnT

+ 2

)
.

We then combine both results and assume that N , n and T are large enough to ensure

2

(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+
ν2ϵ5√
N

+
ν3ϵ1√
NnT

)(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+
ν2ϵ5√
N

+
ν3ϵ1√
NnT

+ 2

)
≤ cm

8
.

Finally, we also assume that

(3−c)

(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+
ν2ϵ5√
N

+
ν3ϵ1√
NnT

)2

≤ 2(2−c)

(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+
ν2ϵ5√
N

+
ν3ϵ1√
NnT

)
.

It is then sufficient to state that(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+
ν2ϵ5√
N

+
ν3ϵ1√
NnT

)
≤ 2.

This concludes.

5.5.17 Proof of Theorem 5.4.3

Proof of Theorem 5.4.3. Following the proof of Theorem 4.4.3, we get :

|α̂− α∗| ≤

∣∣∣∣∣ ĉ

2− ĉ
1− ∥θ̂∥22
V

− c∗

2− c∗
1− ∥θ̂∥22
V

∣∣∣∣∣
+

∣∣∣∣∣ c∗

2− c∗
1− ∥θ̂∥22
V

− c∗

2− c∗
1− ∥θ̃∗∥22
V

∣∣∣∣∣
+

∣∣∣∣∣ c∗

2− c∗
1− ∥θ̃∗∥22
V

− c∗

2− c∗
1− ∥θ̃∗∥22

Tr(V(W t
j))

∣∣∣∣∣ .
Then we bound from above the three following quantities :

Q1 :=

∣∣∣∣ ĉ

2− ĉ
− c∗

2− c∗

∣∣∣∣ , Q2 :=
∣∣∣∥θ̂∥22 − ∥θ̃∗∥22∣∣∣ and Q3 :=

∣∣V − Tr(V(W t
j))
∣∣ .
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We first bound from above Q1 :∣∣∣∣ ĉ

2− ĉ
− c∗

2− c∗

∣∣∣∣ = ∣∣∣∣ 1

2− ĉ
(ĉ− c∗) + c∗

(
1

2− ĉ
− 1

2− c∗

)∣∣∣∣ ≤ (1 + c∗) · |ĉ− c∗|.

Using Theorem 5.4.2, we have, for every (ϵi)i∈[7] ∈ (R∗
+)

7 satisfying max(ϵ6, ϵ7) <

√
nm

c

2− c
/2 and

max(ϵ1, ϵ2, ϵ3, ϵ4) ≤
√
nT

c32min
(
c3, c

2
2

)
12
√
K

(
2
√
p

N
+ 2K

√
p+

576e

log(2)
√
Nc

+
4K2

c2

√
p

) :

∣∣∣∣ ĉ

2− ĉ
− c∗

2− c∗

∣∣∣∣ ≤64(1− c∗)2

cm

(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+
ν2ϵ5√
N

+
ν3ϵ1√
NnT

)

+
8c∗(1− c∗)

cm

[
(ϵ7 + 1)2

n(T − 1)

(
1 +

1

c
√
T − 1

)
+

11ϵ7√
n(T − 1)

]
,

with probability larger than 1−2n(T −1)p2 exp(−ϵ21)−2n(T −1)pK exp(−ϵ22)−2n(T −1)Kp2 exp(−ϵ23)−
2n(T − 1)p · (2p + 9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
− 2n(T − 1)K exp(−ϵ25) − 2n(T − 1) exp

(
−ϵ26/4

)
−

13 exp(−ϵ27/4). We next bound from above Q2 :∣∣∣∥θ̂∥22 − ∥θ̃∗∥22∣∣∣ = ∣∣∣⟨θ̂ − θ̃∗; θ̂ + θ̃∗⟩
∣∣∣ ≤ ∥∥∥θ̂ + θ̃∗

∥∥∥
2
·
∥∥∥θ̂ − θ̃∗∥∥∥

2
≤ 2

∥∥∥θ̂ − θ̃∗∥∥∥
2
.

Using Theorem 5.4.1 we get :∣∣∣∥θ̂∥22 − ∥θ̃∗∥22∣∣∣ ≤ 2(ϵ6 + 1)√
n(T − 1)

(
1

c
√
T − 1

+ 1

)
+ ϵ5

8
√
2K3/2

c22
√
N

+ ϵ1
32K3

c52
√
NnT

+
64max(ϵ2s)s∈[4]K

7/2√p
[
CA(p,N)

√
p+ CB

]
c22nT (N − 2)

[
(2 + c2) +

2K3/2(2
√
K + 1)

c22

]
,

with probability larger than
1−2p2 exp(−ϵ21)−2pK exp(−ϵ22)−2Kp2 exp(−ϵ23)−2p·(2p+9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
−2K exp(−ϵ25)−

2 exp
(
−ϵ26/4

)
.

Recalling Ŵ := θ̂, we then bound from above Q3

∣∣V − Tr(V(W t
j))
∣∣ = 1

n(T − 1)

∣∣∣∣∣∣
∑
jt

∥∥∥Ŵ t
j − Ŵ

∥∥∥2
2
−
∑
jt

∥∥∥W t
j − θ̃∗

∥∥∥2
2

∣∣∣∣∣∣ ,
=

1

n(T − 1)

∣∣∣∣∣∣2
∑
jt

〈
Ŵ t
j ; θ̃

∗ − Ŵ
〉
+ n(T − 1)

(∥∥W∥∥2
2
−
∥∥∥θ̃∗∥∥∥2

2

)∣∣∣∣∣∣ ,
≤ 2

∥∥∥Ŵ∥∥∥
2
·
∥∥∥θ̃∗ − Ŵ∥∥∥

2
+

∣∣∣∣∥∥W∥∥2
2
−
∥∥∥θ̃∗∥∥∥2

2

∣∣∣∣ ,
≤ 2∥Ŵ∥2 ·

∥∥∥θ̃∗ − Ŵ∥∥∥
2
+ ∥W − θ̃∗∥2 ·

(
∥W ∥2 + ∥θ̃∗∥2

)
,

≤ 2
∥∥∥θ̃∗ − Ŵ∥∥∥

2
+ 2∥W − θ̃∗∥2.
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Notice that the quantity ∥W−θ̃∗∥2 is bounded by Theorem 4.4.1 and the quantity
∥∥∥θ̃∗ − Ŵ∥∥∥

2
is bounded

by Theorem 5.4.1. This leads to

∣∣V − Tr(V(W t
j))
∣∣ ≤ 4(ϵ6 + 1)√

n(T − 1)

(
1

c
√
T − 1

+ 1

)
+ ϵ5

8
√
2K3/2

c22
√
N

+ ϵ1
32K3

c52
√
NnT

+
64max(ϵ2s)s∈[4]K

7/2√p
[
CA(p,N)

√
p+ CB

]
c22nT (N − 2)

[
(2 + c2) +

2K3/2(2
√
K + 1)

c22

]
,

with probability larger than 1−2p2 exp(−ϵ21)−2pK exp(−ϵ22)−2Kp2 exp(−ϵ23)−2p·(2p+9p) exp
(
−min

(
ϵ24;
√
cnTϵ4

))
−

2K exp(−ϵ25)− 2 exp
(
−ϵ26/4

)
. Next, we remind that (4.29) ensures the following :

V ≥ m c

2− c
− ϵ7 + 1√

n(T − 1)

(
1

c
√
T − 1

+ 1

)
−

√
2ϵ7

c
√
n(T − 1)

−
(
20 + 4

√
2
)
ϵ7√

n(T − 1)
,

≥ m c

2− c
−
(
1 +
√
2
)
ϵ7 + 1

c
√
n(T − 1)

−
(
21 + 4

√
2
)
ϵ7 + 1√

n(T − 1)
≥ cm

4
,

for n and T large enough, with probability larger than 1− 6 exp(−ϵ27/4). Large enough means we need

2
(
1 +
√
2
)
ϵ7 + 2

mc2
√
T − 1

(2− c) + 2(21 + 4
√
2)ϵ7 + 2

mc
(2− c) ≤

√
n(T − 1).



5.6. AUXILIARY RESULTS 199

Finally, it is possible to bound from above the distance between α̂ and α∗ from above :

|α̂− α∗| =

∣∣∣∣∣∣∣
ĉ

2− ĉ
·
1−

∥∥∥θ̂∥∥∥2
2

V
− c∗

2− c∗
·
1−

∥∥∥θ̃∗∥∥∥2
2

Tr(V(W t
j))

∣∣∣∣∣∣∣ ,
≤Q1 ·

1−
∥∥∥θ̂∥∥∥2

2

V
+

c∗Q2

V (2− c∗)
+

1 + α∗

V
Q3,

≤Q1 ·
1−

∥∥∥θ̂∥∥∥2
2

V
+

c∗Q2

V (2− c∗)
+

1 + α∗

V
Q3,

≤256(1− c∗)2

c2m2

(
ν1(p,N)max(ϵ2s)s∈[4]

nT (N − 2)
+

ν2ϵ5

cm
√
N

+
ν3ϵ1

cm
√
NnT

)

+
32c∗(1− c∗)

c2m2

[
(ϵ7 + 1)2

n(T − 1)

(
1 +

1

c
√
T − 1

)
+

11ϵ7√
n(T − 1)

]

+
4c∗

cm (2− c∗)

[
2(ϵ6 + 1)√
n(T − 1)

(
1

c
√
T − 1

+ 1

)
+ ϵ5

8
√
2K3/2

c22
√
N

+ ϵ1
32K3

c52
√
NnT

]

+
256c∗max(ϵ2s)s∈[4]K

7/2√p
[
CA(p,N)

√
p+ CB

]
c22cm (2− c∗)nT (N − 2)

[
(2 + c2) +

2K3/2(2
√
K + 1)

c22

]

+
1 + α∗

cm

16(ϵ6 + 1)√
n(T − 1)

(
1

c
√
T − 1

+ 1

)
+ ϵ5

32
√
2K3/2

c22
√
N

+ ϵ1
128K3

c52
√
NnT

+
1 + α∗

cm

256max(ϵ2s)s∈[4]K
7/2√p

[
CA(p,N)

√
p+ CB

]
c22nT (N − 2)

[
(2 + c2) +

2K3/2(2
√
K + 1)

c22

]
,

with probability larger than 1−2n(T −1)p2 exp(−ϵ21)−2n(T −1)pK exp(−ϵ22)−2n(T −1)Kp2 exp(−ϵ23)−
2n(T − 1)p · (2p + 9p) exp

(
−min

(
ϵ24;
√
cnTϵ4

))
− 2n(T − 1)K exp(−ϵ25) − 2n(T − 1) exp

(
−ϵ26/4

)
−

19 exp(−ϵ27/4).

5.6 Auxiliary results

Lemma 5.6.1 (Vector Bernstein Inequality) Let X1, . . . , Xn be independent vector-valued centered

random variables with common dimension K. Let N :=

∥∥∥∥ n∑
i=1

Xi

∥∥∥∥
2

and V :=
n∑
i=1

E
[
∥Xi∥22

]
. Then, for any

0 < ϵ < V/maxi∈[n](∥Xi∥2) :

P
[
N ≥ ϵ+

√
V
]
≤ exp

(
− ϵ2

4V

)
.

This implies for any 0 < ϵ <
√
V /maxi∈[n](∥Xi∥2) :

P
[
N ≥ (ϵ+ 1)

√
V
]
≤ exp

(
−ϵ

2

4

)
.
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Proof. The proof of this theorem is given in Lemma 12 in [69].

Lemma 5.6.2 (Smallest eigenvalue of the sum of Hermitian matrices) Consider A and B two full
rank Hermitian matrices in RK×K . Then

λK (A+B) ≥ λK (A) + λK (B)

Proof. MatricesA andB are Hermitian and the spectral theorem ensures that they are both diagonalizable
and that their eigenvalues are real valued. We denote (λ1(A), . . . , λK(A)) and (λ1(B), . . . , λK(B)) the
eigenvalues of A and of B, respectively.

We have, for all x ∈ RK ,

⟨(A+B)x, x⟩ = ⟨Ax, x⟩+ ⟨Bx, x⟩ ≥ (λK(A) + λK(B)) · ∥x∥22.

Finally, we note thatA+B is also a Hermitian matrix and if we replace x by the eigenvector xmin(A+B) of
A+B associated to the smallest eigenvalue λK(A+B), we get that ⟨(A+B)xmin(A+B), xmin(A+B)⟩ =
λK(A+ B). This finishes the proof. For a given diagonalizable matrix M such that rank(M) = r, the
smallest non-zero eigenvalue of M , λr(M), is defined by

λr(M) = min
x/∈Ker(M)

⟨x,Mx⟩
∥x∥2

.

Lemma 5.6.3 Consider p > K two integers, a matrix A ∈ Rp×K such that rank(A) = κ ≤ K and a
symmetric positive definite matrix B ∈ RK×K . Then we have

λκ(ABA
⊤) ≥ λK(B)λκ(A

⊤A).

Proof. First, we have Im(A⊤) ⊆ RK . Hence, B being symmetric, B is diagonalizable by the spectral
theorem, and B being positive definite, B has positive eigenvalues. Thus, by the variational characteri-
sation of the eigenvalues, we have :

λK(B) = min
x∈RK

⟨x,Bx⟩
∥x∥2

≤ min
z∈Im(A⊤)

⟨z,Bz⟩
∥z∥2

= min
y∈Rp

〈
A⊤y,BA⊤y

〉
∥A⊤y∥2

.

The matrixABA⊤ is also symmetric and the spectral theorem ensures that it is diagonalizable. However,
ABA⊤ ∈ Rp×p and rank(ABA⊤) = κ ≤ K. Hence the variational characterisation of the eigenvalues
ensures that :

λκ(ABA
⊤) = min

x∈Rp;
x/∈Ker(ABA⊤)

〈
x,ABA⊤x

〉
∥x∥2

.

Moreover, Ker(A⊤) ⊂ Ker(ABA⊤). Hence

λκ(ABA
⊤) ≥ min

x∈Rp;
x/∈Ker(A⊤)

〈
x,ABA⊤x

〉
∥x∥2

.
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Then we can bound from below the smallest eigenvalue of ABA⊤ as follows,

λκ(ABA
⊤) ≥ min

x∈Rp;
x/∈Ker(A⊤)

〈
A⊤x,BA⊤x

〉
∥x∥2

≥ min
x∈Rp;

x/∈Ker(A⊤)

〈
A⊤x,BA⊤x

〉
∥A⊤x∥2

· ⟨A
⊤x,A⊤x⟩
∥x∥2

≥ min
x∈Rp;

x/∈Ker(A⊤)

(〈
A⊤x,BA⊤x

〉
∥A⊤x∥2

· ⟨x,AA
⊤x⟩

∥x∥2

)

≥ min
z∈Im(A⊤)

(
⟨z,Bz⟩
∥z∥2

)
· min

x∈Rp;
x/∈Ker(A⊤)

(
⟨x,AA⊤x⟩
∥x∥2

)
> 0.

To conclude, notice that Ker(A⊤) = Ker(AA⊤). Indeed, Ker(A⊤) ⊂ Ker(AA⊤). Moreover, for all
v ∈ Ker(AA⊤) we have :

v⊤AA⊤v =
∥∥∥A⊤v

∥∥∥2
2
= 0.

Hence Ker(AA⊤) ⊂ Ker(A⊤). We deduce from this equality :

min
x∈Rp;

x/∈Ker(A⊤)

(
⟨x,AA⊤x⟩
∥x∥2

)
= min

x∈Rp;
x/∈Ker(AA⊤)

(
⟨x,AA⊤x⟩
∥x∥2

)
= λκ(AA

⊤).

Finally, AA⊤ and A⊤A have the same non-zero eigenvalues and thus λκ(AA⊤) = λκ(A
⊤A).

Lemma 5.6.4 (Smallest singular value of a product) Suppose A ∈ Rn×m and B ∈ Rm×p. We denote
σmin(A) and σmin(B) the smallest singular value of A and B, respectively. Then,

σmin(AB) ≥ σmin(A)σmin(B).

Proof. By definition of the smallest eigenvalue, see Theorem C.3 in [64],

σmin(AB) = min
x∈Rp\{0}

∥ABx∥2
∥x∥2

.

Then the following inequalities are easily deduced

σmin(AB) = min
x∈Rp\{0}

∥ABx∥2
∥Bx∥2

∥Bx∥2
∥x∥2

,

≥ min
y∈Rm\{0}

∥Ay∥2
∥y∥2

min
x∈Rp\{0}

∥Bx∥2
∥x∥2

,

≥ σmin(A)σmin(B).
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Lemma 5.6.5 ( First order characterization of convex functions) Suppose f is a differentiable convex
function from an open domain of Rn to R. Then for all (x, y) in the domain of f we have

f(y) ≥ f(x) +∇f(x)⊤(y − x).

Proof. The proof can be found in section 3.1.3 of [30]

Lemma 5.6.6 (A row-wise perturbation bound for eigenvector) Let G0 and G be p × p symmetric
matrices with rank (G0) = K. Write Y = G − G0 = [y1, y2, . . . , yp]. For 1 ≤ k ≤ K, let δ0k and δk be the
respective k-th largest eigenvalue of G0 and G, and let u0k and uk be the respective k-th eigenvector of
G0 and G. Fix 1 ≤ s ≤ k ≤ K. For some c ∈ (0, 1), suppose (by default, if s = 1, δ0s−1 − δ0s =∞ )

min

{
δ0s−1 − δ0s , δ0k − δ0k+1, min

1≤ℓ≤K

∣∣δ0ℓ ∣∣} ≥ c ∥G0∥ , ∥Y ∥ ≤ (c/3) ∥G0∥

Write U0 =
[
u0s, u

0
s+1, . . . , u

0
k

]
, U = [us, us+1, . . . , uk] and U∗

0 =
[
u01, u

0
2, . . . , u

0
K

]
. There exists an ortho-

gonal matrix O such that

∥∥e′i (UO − U0)
∥∥ ≤ 5

c ∥G0∥

(
∥Y ∥

∥∥e′iU∗
0

∥∥+√K ∥yi∥) , for all 1 ≤ i ≤ p.

Proof. See Lemma F.1 in [84].

Definition 5.6.1 (Left stochastic matrices) A real-valued matrix M of size n × m is said to be left
stochastic if all its columns consist of non-negative entries and form probability vectors. Namely, for all
j ∈ [m],

∀i ∈ [n], [M ]ij ≥ 0, and
n∑
i=1

[M ]ij = 1.

Lemma 5.6.7 (Stability of the set of left stochastic matrices) Let M1 ∈ Rn×m and M2 ∈ Rm×p be
two left stochastic matrices. Then M1M2 is a left stochastic matrix.

Proof. Consider M1M2 ∈ Rn×p. Then for all (i, j) ∈ [n]× [p] we have

[M1M2]ij =
m∑
k=1

[M1]ik [M2]kj .

Hence for all (i, j) ∈ [n]× [p], [M1M2]ij ≥ 0. Additionally, since M1 and M2 are left stochastic matrices,
for all j ∈ [p],

n∑
i=1

[M1M2]ij =
n∑
i=1

m∑
k=1

[M1]ik [M2]kj =
m∑
k=1

[M2]kj = 1.
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Lemma 5.6.8 (Spectral norm inequalities) Let M ∈ Rn×m. Then, its 1-norm and∞-norm satisfy :

∥M∥1 = max
j∈[m]

n∑
i=1

∣∣∣[M ]ij

∣∣∣ and ∥M∥∞ = max
i∈[n]

m∑
j=1

∣∣∣[M ]ij

∣∣∣ .
Finally, the following inequalities are verified :√

1

m
∥M∥∞ ≤ σ1 (M) ≤

√
n ∥M∥∞ and

√
1

n
∥M∥1 ≤ σ1 (M) ≤

√
m ∥M∥1 .

Proof. See section 2.3.2 in [68]

Lemma 5.6.9 (Perron-Frobenius theorem) Let M ∈ Rn×n be a symmetric matrix such that for all
(i, j) ∈ [n]2, [M ]ij > 0. Then the largest eigenvalue of M , λ1(M) is positive and is non degenerate,
meaning it is a simple root of the characteristic polynomial or equivalently that its associated eigenspace
is one dimensional. In addition there exists a corresponding eigenvector with positive entries. Moreover,
other eigenvalues satisfy :

∀k ∈ [n]\{1}, λ1(M) > |λk(M)|.

Proof. See [106].
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Chapitre 6

Introduction en français

La motivation principale de ce manuscrit est d’approfondir notre compréhension des phénomènes
comportant une composante temporelle. La plupart des algorithmes d’apprentissage automatique et
des modèles statistiques en grande dimension sont largement étudiés sous des hypothèses d’indépen-
dance des observations. En effet, il existe moins d’outils, et ceux-ci sont techniquement plus exigeants,
pour la concentration des mesures dans ce contexte. Cela rend le contrôle non asymptotique des dévia-
tions plus difficile dans ce cadre où la dépendance entre les observations est considérée. Très souvent,
une évolution temporelle est évidente dans le modèle sous-jacent, mais n’est pas toujours prise en
compte dans les méthodes proposées et dans les résultats d’inférence.

Cette thèse explore divers problèmes d’inférence non paramétrique et d’inférence en grande dimen-
sion. En particulier, nous étudions des tests d’hypothèses sur des matrices de covariance et l’estimation
de leur support, la prédiction bilatérale en régression matricielle et l’estimation de topiques-modèles dy-
namiques combinant la factorisation matricielle et un processus autorégressif. Bien qu’ils partagent une
motivation commune, les chapitres présentés dans cette thèse peuvent être lus et compris séparément
car ils se concentrent sur des problèmes spécifiques et indépendants.

Évaluer la qualité des algorithmes de prévision est crucial dans diverses applications allant des
phénomènes naturels comme les modèles météorologiques et les événements sismiques aux variables
économiques telles que la prédiction du prix des actions ou de la demande future en énergie. Un indi-
cateur clé de la performance des algorithmes de prédiction est la qualité des résidus, représentant la
différence entre les valeurs observées et celles prédites. Ainsi, plus les résidus se rapprochent d’une
distribution de bruit blanc, plus le modèle est performant. Dans le chapitre 2, nous étudions les pro-
blèmes de test et d’estimation de support d’une matrice de covariance en grande dimension issue d’une
série temporelle stationnaire. Plus précisément, nous considérons X1, . . . , Xn des vecteurs gaussiens
indépendants de dimension p avec une matrice de covariance Σ. Lorsque les vecteurs Xi proviennent
d’un processus stationnaire, la matrice de covariance Σ a une structure de Toeplitz, c’est-à-dire que ses
éléments diagonaux sont tous constants. Comme mentionné dans [46], les séries temporelles station-
naires sont utilisées comme approximations des séries temporelles géométriquement ergodiques. Ce
contexte est motivé par l’observation suivante : étant donné une série temporelle de longueur T avec
T ≫ p, il est possible de considérer des vecteurs de longueur p suffisamment éloignés pour supposer
qu’ils sont des vecteurs indépendants de dimension p. Le but est alors de tester si la distribution est
proche d’un bruit blanc. Pour ce faire, nous testons si la matrice de covariance Σ est la matrice identité
Ip ou s’il existe un nombre s d’éléments de covariance qui sont significativement positifs ou signifi-
cativement différents de zéro. Nous fournissons des procédures de test avec des bornes supérieures
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non asymptotiques sur les risques de test maximaux pour des structures de covariance modérément
parcimonieuses et grandement parcimonieuses. Si le test est rejeté, il est intéressant de retrouver les
entrées non nulles dans Σ, indiquant où l’information peut être perdue dans le processus de modéli-
sation. Nous définissons ensuite une procédure de sélection de ce support et fournissons une borne
supérieure non asymptotique sur son risque.

Ensuite, nous introduisons un nouveau modèle de régression matricielle où les corrélations dans la
matrice de sortie sont expliquées par deux paramètres matriciels qui multiplient la matrice de prédic-
tion respectivement par la gauche et la droite. Nous supposons que la matrice de bruit a des entrées
σ2-sous gaussiennes indépendantes. Ce modèle général de régression matricielle est largement non
identifiable sans hypothèse supplémentaire forte. Ainsi seuls des résultats de prédiction sont fournis.
Les prédicteurs sont d’abord définis comme solutions d’un problème de minimisation du risque de pré-
diction pour la norme de Frobenius au carré sous une contrainte de rang maximal fixe. En utilisant la
décomposition en valeurs singulières (SVD) de la matrices cible et de la matrice de prédiction, nous
fournissons des solutions à ce problème d’optimisation ainsi qu’une borne supérieure non asympto-
tique sur le risque de prédiction. Nous montrons que cette borne supérieure peut être décomposée en
une somme d’un terme de biais et d’un terme stochastique. Nous dérivons ensuite une procédure de
sélection de modèle pour estimer le vrai rang commun des matrices de paramètres, d’abord sous l’hy-
pothèse que le paramètre de bruit σ est disponible. Nous examinons la performance non asymptotique
de cette procédure et nous adaptons le problème de minimisation initial en fixant la contrainte de rang
maximal à ce rang estimé. Cela conduit à de nouveaux prédicteurs adaptatifs au rang. Nous fournis-
sons à nouveau une borne supérieure non asymptotique sur le risque de prédiction adaptatif au rang
dans ce cadre de sélection de modèle. Ensuite, nous adaptons la procédure pour la rendre adaptative
au rang et indépendante du paramètre de bruit σ. Nous fournissons à nouveau une borne supérieure
non asymptotique sur son risque de prédiction. Enfin, nous reconsidérons le problème de minimisation
initial en étudiant la relaxation convexe de la pénalisation par le rang. Nous fournissons des solutions
explicites à ce problème et à nouveau une borne non asymptotique sur le risque de prédiction. Des
résultats numériques sont fournis pour illustrer les résultats théoriques.

Enfin, nous considérons les topiques-modèles. Nous supposons que nous recueillons un lot de do-
cuments et avons accès aux fréquences de chaque mot du vocabulaire pour chaque document. Les
colonnes de cette matrice de fréquence mot-document Y sont modélisées comme des réalisations de
distributions multinomiales centrées sur des vecteurs de probabilité mot-document. Dans des exemples
réels, peu de sujets différents sont abordés dans les corpus de documents. Cela suggère que la ma-
trice de probabilité mot-document Π présente une structure de faible rang. L’objectif est de factoriser
cette matrice de probabilité mot-document Π par le produit d’une matrice de probabilité mot-sujet A
et d’une matrice de probabilité sujet-document W , c’est-à-dire Π = AW . Dans ce contexte, ces trois
matrices Π, A et W sont toutes stochastiques à gauche, c’est-à-dire que leurs entrées sont positives et
que leurs colonnes somment à un. Sous des hypothèses précises, que nous supposons, l’identifiabilité
de A et W peut être établie. Nous rappelons également l’algorithme de [84] qui permet de retrouver les
termes de cette factorisation. Dans cette thèse, nous supposons une temporalité dans la collecte de
documents et modélisons l’évolution dans le temps de la matrice de probabilité sujet-document W par
un processus autorégressif stationnaire. Ainsi la matrice W devient dans ce contexte une matrice aléa-
toire dépendant du temps W t. Plus précisément, à chaque étape temporelle t, la distribution des sujets
donnés un document est une combinaison linéaire de la distribution précédente et d’un bruit suivant
une distribution de Dirichlet, qui dirige l’évolution temporelle des topiques. Nous supposons en particu-
lier que les paramètres de bruit sont inconnus, c’est-à-dire le paramètre de la distribution de Dirichlet.
Une attention particulière est accordée à garantir que ce modèle autorégressif conserve la propriété
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que les colonnes de la matrice de probabilité sujet-document somment à un. Nous étudions d’abord
un cas oracle où la matrice de probabilité mot-document (Π1, . . . ,ΠT ) est disponible. Nous fournis-
sons d’abord des bornes non asymptotiques sur le spectre de la matrice de covariance empirique de
(W 1, . . . ,W T ). Nous adaptons ensuite l’algorithme de [84] pour récupérer la matrice de probabilité
mot-sujet A. Cela permet de récupérer (W 1, . . . ,W T ) par projection. Nous proposons ensuite des es-
timateurs des paramètres autorégressifs conduisant l’évolution de W t. Nous fournissons des bornes
supérieures non asymptotiques sur les risques d’estimation. Ensuite, nous adaptons cette procédure
au cas réel où seule la matrice complète de fréquence mot-document (Y 1, . . . ,Y T ) est disponible.
Dans la procédure d’estimation de A, nous donnons des bornes supérieures plus explicites que [84]
jusqu’aux facteurs log. Nous fournissons également la dépendance sur toutes les dimensions des ma-
trices apparaissant. Enfin, nous montrons que le bruit dû à la distribution multinomiale des décomptes
de mots et le bruit Dirichlet de la distribution stationnaire des sujets donnés les documents publiés dans
le temps s’ajoutent dans les vitesses d’estimation finales des paramètres autorégressifs. En particulier,
lorsque le nombre de mots par document augmente, c’est-à-dire lorsque le bruit multinomial diminue,
nous retrouvons les vitesses oracles.

Historiquement, l’analyse des séries temporelles est généralement effectuée dans un cadre asymp-
totique. L’analyse asymptotique des séries temporelles à valeurs réelles et vectorielles est bien com-
prise depuis la publication de [71], [62], [99] et [31]. Il s’agit toujours d’un domaine de recherche actif
tant d’un point de vue théorique, [79, 50, 91, 117, 51, 59] que comme outil pour l’étude des propriétés
des algorithmes, [142].

Récemment, l’étude des séries temporelles à valeurs matricielles et plus globalement des séries
temporelles à valeurs tensorielles a émergé. Les études sont encore principalement menées dans un
cadre asymptotique, [47, 49, 44, 96]. Cependant, l’analyse non asymptotique des séries temporelles
gagne en importance, [16, 15, 58, 135]. Cette thèse s’inscrit dans cette dynamique de recherche et
tous les problèmes étudiés sont conduits dans un cadre non asymptotique. En abordant ces défis et en
explorant des méthodologies innovantes dans chaque chapitre, cette thèse contribue à l’avancement
de la théorie statistique dans l’analyse des données à valeurs vectorielles et matricielles dans des
contextes de grande dimension.

La première partie de l’introduction sert de présentation exhaustive des outils techniques néces-
saires à la compréhension des principaux chapitres de cette thèse. Ensuite, dans la deuxième partie,
nous présentons les configurations et les détails des résultats.

Problèmes étudiés et contributions

Cette section est consacrée à la présentation des problèmes statistiques étudiés dans les principaux
chapitres de la thèse. Nous détaillons d’abord le problème des tests d’hypothèse, qui est essentiel à
la compréhension du chapitre 2. Nous explorons ensuite le problème de la régression et en particulier
la régression linéaire multivariée pour laquelle le chapitre 3 fournit une extension. Nous présentons
ensuite le problème du modèle thématique, pour lequel une extension dynamique est étudiée dans les
chapitres 4 et 5.
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Test d’hypothèse : décider où se trouve une matrice de covariance

Dans tous les domaines, de l’expérimentation scientifique à la vie quotidienne, nous sommes ame-
nés à prendre des décisions sur des activités risquées à partir de résultats d’expériences ou d’obser-
vations de phénomènes dans un contexte incertain. Le problème de décision consiste à trancher, sur
la base d’observations, entre une hypothèse dite nulle, notée H0, et une autre hypothèse dite alterna-
tive, notée H1. Un test d’hypothèse est donc une procédure de décision permettant de déterminer si
l’hypothèse nulle peut être rejetée en faveur de l’hypothèse alternative compte tenu des données obser-
vées. Nous supposons que les observations sont des réalisations des variables aléatoires (X1, . . . , Xn)
prenant des valeurs dans (E, E).

Definition 6.0.1 (Procédure de test) Un test ∆n est une fonction mesurable des observations prenant
ses valeurs dans {0, 1} :

∆n : En → {0, 1}.

∆n sépare alors l’ensemble des résultats possibles d’un événement aléatoire en deux ensembles conti-
gus, H0 est rejeté chaque fois que ∆n = 1 et n’est pas rejeté chaque fois que ∆n = 0.

Nous considérons dans le chapitre 2 l’observation de n vecteurs aléatoires i.i. d vecteurs aléatoires
(X1, . . . , Xn) définis sur Rp avec une matrice de covariance commune Σ ∈ S++

p , où S++
p représente

l’ensemble des matrices symétriques définies positives de taille p × p. Le problème de test considéré
est le suivant

H0 : Σ = {Ip}, vs. H1 : Σ ∈ Fp,

où Fp ⊂ S++
p est un ensemble de matrices de Toeplitz éparses. Nous considérons deux hypothèses

alternatives différentes : soit il existe un nombre s d’éléments de covariance qui sont significativement
positifs (l’alternative unilatérale Fp = F+(s, S, σ)) ou significativement différents de zéro i.e. (l’alter-
native bilatérale Fp = F+(s, S, σ)). (l’alternative bilatérale Fp = F(s, S, σ)). Les classes d’hypothèse
d’alternative sont présentées dans la Définition 2.2.1.

Dans un problème de décision, deux types d’erreur sont possibles. Une erreur de type I se produit
lorsque nous décidons que H1 est vrai, i.e. observant ∆n = 1, alors que H0 est en fait vrai. Une erreur
de type II se produit lorsque nous ne parvenons pas à rejeter H0, i.e. observant ∆n = 0, alors que
H1 est vrai. Les conséquences de ces deux erreurs peuvent être plus ou moins importantes. Chaque
décision a donc une probabilité d’être juste et une probabilité d’être fausse. La probabilité d’erreur de
type I, c’est-à-dire la pire "chance" de rejeter à tort l’hypothèse nulle, est notée α et est appelée niveau
de signification du test. La probabilité d’erreur de type II, c’est-à-dire la pire "chance" de ne pas rejeter
l’hypothèse nulle, est notée 1−β. Ainsi, β est la probabilité de rejeter correctement l’hypothèse nulle et
est appelée la puissance du test.

Definition 6.0.2 (Erreurs de type I et de type II) Considérons la procédure de test ∆n pour le pro-
blème de test H0 : Σ = Ip, vs. H1 : Σ ∈ Fp. La probabilité d’erreur de type I de ∆n est alors définie
comme suit :

α := PIp (∆n = 1) .

De même, la probabilité d’erreur de type II de ∆n est définie comme suit :

1− β := sup
Σ∈Fp

PΣ (∆n = 0) .
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Pour définir une procédure de test, l’idéal serait évidemment de trouver celle qui minimise les deux
risques d’erreur en même temps. Malheureusement, on peut montrer qu’ils varient dans des directions
opposées, i.e. toute procédure qui diminue α augmentera généralement 1−β et vice versa. Il existe donc
essentiellement deux façons de définir une procédure de test optimale. La première est la procédure
de test optimale de Neyman-Pearson. Dans ce cadre, nous considérons que l’une des deux erreurs est
plus importante que l’autre et nous essayons d’éviter cette erreur. En général, nous choisissons H0 et
H1 de manière à ce que l’erreur que nous essayons d’éviter soit l’erreur de type I. Remarquez que le
test idéal ne rejetterait alors presque jamais à tort H0. Cependant, dans les cas habituels, le seul test
ayant α = 0 est le test trivial ∆n = 0. Nous devons donc laisser l’autre erreur se produire. Par exemple,
dans le cas d’un procès, nous faisons généralement tout notre possible pour éviter de condamner un
innocent, même si cela implique de prendre le risque d’acquitter un coupable. Mathématiquement, on
fixe une valeur pour le niveau α ∈ [0, 1]. Plus les conséquences de l’erreur de type I sont graves,
plus α sera petit. Toutefois, pour le même problème de décision, il peut exister plusieurs tests dont
la probabilité d’erreur de type I est inférieure à α. Dans ce cas, le meilleur de ces tests est celui qui
minimise la probabilité de l’erreur de type II, i.e. celui qui maximise la puissance β parmi les tests dont
le niveau est au plus α.

Definition 6.0.3 (Procédure de test optimale de Neyman-Pearson) Désignons par ∆α l’ensemble de
toutes les procédures de test dont le niveau est au plus égal à α. Le test optimal de Neyman-Pearson,
noté ∆NP , est alors un test de niveau α qui résout la question suivante :

∀Σ ∈ Fp, PΣ[∆NP = 0] = inf
∆∈∆α

PΣ[∆ = 0].

S’il existe, ∆NP est appelé test uniformément le plus puissant.

Comme le problème que ∆NP doit résoudre n’a pas toujours de solution, la notion d’optimalité dé-
finie par la procédure de test optimal de Neyman-Pearson n’est pas universelle. Il est donc nécessaire
d’adopter une approche plus générale pour trouver une procédure de test optimale. Comme décrit pré-
cédemment, il n’est pas possible de trouver un test qui minimise le niveau α et maximise la puissance
β car α et 1 − β évoluent dans des directions opposées. Cependant, il est possible de minimiser la
somme des probabilités d’erreur de type I et de type II. Un rôle égal est donc accordé à H0 et H1. Ce
critère est décrit comme l’approche minimax.

Definition 6.0.4 (Risque de test maximal) Considérons une procédure de test ∆ et définissons R(∆)
son risque de test maximal :

R(∆,Fp) := PIp (∆ = 1) + sup
Σ∈Fp

PΣ (∆ = 0) .

On dit alors qu’un test est optimal minimax s’il minimise le risque de test maximal parmi toutes les
procédures de test. Son risque de test maximal est alors appelé risque de test minimax.

Definition 6.0.5 (Risque de test minimax) Le risque de test minimax est défini comme suit

R∗(Fp) := inf
∆
R(∆,Fp).

Si elle existe, la procédure de test qui permet d’obtenir le risque de test minimax, noté ∆∗, est appelée
test minimax.
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Un autre point important à mentionner est que la classe d’hypothèse nulle est un singleton, à savoir
la matrice d’identité. L’objectif de la procédure est donc de déterminer s’il est possible ou non de rejeter
avec une forte probabilité l’hypothèse selon laquelle Σ est la matrice identité. En outre, nous avons
choisi comme classes d’hypothèses alternatives un sous-ensemble de matrices de Toeplitz peu denses,
Fp = F+(s, S, σ) ou Fp = F(s, S, σ). Essentiellement, on peut se demander pourquoi un tel problème
de test ne prend pas la forme plus générale suivante :

H0 : Σ = Ip, vs. H1 : Σ ∈ S++
p \{Ip}.

Dans ce scénario, on remarque que pour tout choix standard de distance sur S++
p , i.e. la distance

dérivée de la norme de Frobenius, dénotée par ∥ ∥F , on a

inf
Σ∈S++

p \{Ip}
∥Ip − Σ∥F = 0.

Il n’est donc pas possible de séparer l’hypothèse nulle de l’hypothèse alternative. Le risque de test
minimax est donc égal à un et le test de supposition aléatoire devient optimal. Par conséquent, dans
ce problème de test d’adéquation, il est obligatoire que la classe d’hypothèses alternatives soit bien
séparée du singleton d’hypothèses nulles. Ainsi, pour un ϵ > 0 fixé, nous devons définir F (ϵ)

p de telle
sorte que

inf
Σ∈F(ϵ)

p

∥Ip − Σ ∥F ≥ ϵ.

La définition de nos classes alternatives montre que F+(s, S, σ) et F(s, S, σ) sont bien séparés du
singleton {Ip}. Enfin, le choix optimal du rayon de séparation ϵ est discuté dans la littérature et peut
être défini comme le rayon de séparation minimax. Cela dépasse le cadre de cette thèse. Cependant,
les lecteurs intéressés peuvent consulter [95] et [82] pour plus de détails sur les procédures de test
minimax.

Chapter 2 : Test de la matrice de covariance et récupération du support . Nous considérons
(Xi)i=1,...,n

i.i.d.∼ Np(0,Σ) où Σ a une structure de Toeplitz. Nous notons ensuite σ|i−j| la covariance
Cov(Xi, Xj) pour i, j ∈ {1, . . . , p}. Tout d’abord, nous testons si la matrice de covariance Σ est la
matrice identité Ip par rapport à l’alternative unilatérale F+(s, S, σ) ou l’alternative bilatérale F(s, S, σ),
voir Definition 2.2.1. D’un point de vue asymptotique, s peut tendre vers l’infini lorsque p tend vers l’infini,
ce qui autorise un modèle non paramétrique, c’est-à-dire que le nombre de paramètres peut augmenter.
De tels modèles n’ont été considérés que dans l’estimation non paramétrique de la densité spectrale
de séries temporelles stationnaires, voir [89]. Nous définissons tout d’abord φA la fonctionnelle linéaire
de la matrice de covariance Σ associée à la matrice A appartenant à Sp comme φA(Σ) := Tr(AΣ). La
matrice de covariance de l’échantillon est notée Σn. Ainsi, l’élément de covariance σj , j ≥ 1, peut être
écrit comme suit

σj = E[XTAjX] = Tr(AjΣ) = φAj (Σ), avec [Aj ]kℓ =
1

2(p− j)
1(|k − ℓ| = j);

où Aj est une matrice qui a 0 pour élément sauf sur les jeme diagonales supérieure et inférieure. De
même, l’estimateur empirique de σj peut être défini comme φAj (Σn).

Dans le cas modérément clairsemé, la somme de toutes les valeurs de S permettra d’effectuer
le test, alors que dans le cas très clairsemé, une recherche sur des sous-ensembles de taille s sera
nécessaire. C’est ce qu’on appelle une procédure de balayage, qui est très rapide pour les vecteurs.
Il convient de noter que, si la densité s est inconnue, une deuxième recherche sur différentes valeurs
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possibles de s produira une procédure agrégée, exempte de s. Dans le cas modérément clairsemé où
l’hypothèse alternative est F+(s, S, σ), nous considérons pour un certain seuil tMS+

n,p la statistique de
test ∆MS+

n définie dans (2.5). Lorsque l’hypothèse alternative est F(s, S, σ), nous considérons pour
un certain seuil tMS

n,p la statistique de test ∆MS+
n définie dans (2.6). Les bornes supérieures de leurs

risques de test maximaux sont dérivées respectivement dans le Théorème 2.3.1 et le Théorème 2.3.1.
Dans le cas très peu dense, lorsque l’hypothèse alternative est F+(s, S, σ), nous considérons pour un
certain seuil tMS+

n,p la statistique de test ∆HS+
n définie dans (2.7). Lorsque l’hypothèse alternative est

F(s, S, σ), nous considérons pour un certain seuil tMS
n,p la statistique de test ∆HS+

n définie dans (2.8).
Les tests ∆HS+

n et ∆HS
n essaient successivement tous les ensembles possibles C de s diagonales parmi

les premières S. Si l’un de ces tests décide de rejeter H0, alors ∆HS+
n rejette également H0. Les bornes

supérieures de leurs risques maximaux de test sont dérivées respectivement dans le Théorème 2.3.1
et le Théorème 2.3.1.

Pour limiter par le haut les risques de test maximaux des procédures mentionnées, nous donnons
une nouvelle variante de l’inégalité de concentration pour les formes quadratiques des grands vecteurs
gaussiens et ces limites sont spécifiées pour les matrices de covariance qui sont Toeplitz avec peu
de diagonales non nulles dans le Théorème 2.3.1. Ces bornes sont spécifiées pour les matrices de
covariance qui sont des Toeplitz avec quelques diagonales non nulles dans le Corollaire 2.2.4.

Théorème 2.3.1 en français La variable aléatoire φA(Σn − Σ) est centrée et sous-exponentielle
avec des paramètres(
ν2 =

2||AΣ||2F
n(1−K) , b =

2||AΣ||∞
nK

)
, pour un K arbitraire dans ]0, 1[. Par conséquent, pour tout u > 0 :

P[φA (Σn − Σ) ≥ max

{
√
u
||AΣ||F√
n(1−K)

, u
||AΣ||∞
nK

}
] ≤ exp

(
−u
4

)
.

Des inégalités de concentration ont déjà été données pour de telles fonctionnelles. La plus proche
de notre cas est l’inégalité de concentration de type chi-carré dans [121] pour les vecteurs gaussiens
standardisés et généralisée aux vecteurs sous-gaussiens. Mentionnons également [65] qui a donné
une inégalité de Bernstein pour l’élément de covariance empirique d’un processus gaussien centré
stationnaire et l’a généralisée aux processus gaussiens localement stationnaires.

Nous proposons également une méthode pour identifier les éléments diagonaux σj , j = 1, ..., S,
avec des entrées non nulles dans σ, en indiquant où l’information peut être perdue dans le processus
de modélisation. L’objectif est de sélectionner correctement les coefficients de corrélation non nuls. On
peut définir un problème de sélection de retard comme l’estimation de η, un vecteur avec des entrées
ηj = 1(|φAj (Σ) | > 0). L’objectif est de trouver un sélecteur η̂ avec η̂j = 1(|φAj (Σn) | > τn) qui soit
cohérent au sens où le risque RLS(η̂,F) =

∑S
j=1 EΣ[|η̂j − ηj |] stays bounded. Nous fournissons dans

le Théorème 2.4.1 une valeur explicite de τn telle que le risque RLS(η̂,F) reste limité par une quantité
décroissante en S.

Regression multivariée

L’analyse de régression est une méthode statistique fondamentale utilisée pour explorer et quantifier
la relation entre une ou plusieurs variables indépendantes (les prédicteurs) et une variable dépendante
(la cible). L’objectif de l’analyse de régression est de développer un modèle prédictif capable d’estimer
la valeur de la cible en fonction des valeurs des variables prédictives. Ce problème est au cœur du
chapitre 3.
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Nous observons un ensemble de données composé de T ⊂ N∗ réponses Yt et T caractéristiques
correspondantes Xt. L’objectif est de développer un modèle capable de prédire la réponse YT+1 sur la
base d’une nouvelle caractéristique XT+1. Nous écrivons notre modèle comme suit :

∀t ∈ [T ], Yt = f∗(Xt) + ϵt,

où ϵt englobe les erreurs de mesure et les facteurs qui font que Y dépend d’autres facteurs que le seul
X considéré. La véritable fonction f∗ est inconnue, ce qui nous amène à rechercher une fonction f
appropriée qui prédit avec précision les valeurs Y aux nouveaux points X = x. Une fonction f perfor-
mante permet d’identifier les composantes de X qui sont significatives pour expliquer Y et celles qui
ne le sont pas. Au cours de la collecte des données, il peut arriver que de nombreuses caractéristiques
partagent la même valeur, par exemple Xi = Xj = x avec i ̸= j. Malgré cela, nous pouvons observer
Yi ̸= Yj , ce qui indique que ϵi et ϵj représentent des erreurs irréductibles dans notre modèle. Même
avec une fonction optimale f , prédire Yt en utilisant f à chaque Xt = x peut toujours donner lieu à
des erreurs car f(x) ne représente qu’une valeur parmi une distribution de valeurs potentielles de Yt.
Une approche consiste à considérer que la fonction f∗ évaluée sur x produit la moyenne des valeurs
observées Yt correspondant à Xt = x. Cela conduit à modéliser la fonction de régression f∗ comme
f∗(x) = E[Y |X = x]. La fonction de régression f∗ est le prédicteur optimal de Y en ce qui concerne
l’erreur quadratique moyenne :

f∗ ∈ argming E
[
(Y − g(X))2 |X = x

]
.

De plus, pour toute estimation f̂ de f∗, on a

E[
(
Y − f̂(X)

)2
|X = x] =

(
f∗(x)− f̂(x)

)2
+ V(ϵ).

Cela montre qu’il existe une erreur irréductible que nous ne pouvons pas réduire, à savoir V(ϵ), même
si nous connaissons la vraie fonction f∗. Nous sommes particulièrement intéressés par les modèles
linéaires, c’est-à-dire lorsque f∗ est une fonction linéaire. Nous appelons ce problème le problème de
la régression linéaire.

Cible à valeur vectorielle

Dans le cadre de la régression conventionnelle, les variables cibles Yt sont scalaires. Cependant,
dans diverses applications, l’objectif n’est pas de prédire une variable scalaire mais plutôt un vecteur
YT+1 ∈ Rm. Nous considérons toujours que les prédicteurs sont à valeur vectorielle, à savoir pour
t ∈ J1, T K, Xt ∈ Rp. Par conséquent, la fonction de régression f∗(x) = E[Y |X = x] prend des argu-
ments dans Rp et produit des valeurs dans Rm. Sans hypothèse supplémentaire, f∗ peut être estimé
indépendamment pour chaque coordonnée, ce qui conduit à des régressions linéaires indépendantes
avec des cibles à valeur réelle. En effet, l’hypothèse de linéarité sur f permet de réécrire le modèle
comme suit :

Y = XB∗ + E, (6.1)

où Y ∈ RT×m est la matrice cible, X ∈ RT×p est la matrice prédicteur et B∗ ∈ Rp×m est le paramètre
et E ∈ RT×m est la matrice de bruit, généralement supposée avoir i.i.d. σ2-sousGaussiennes. On
remarque que pour tout j ∈ J1,mK, la jieme colonne de Y , dénotée [Y ].j ne dépend que de la jieme

colonne [B∗].j de B∗ et pour tout i ∈ J1, T K, la iieme ligne de Y , notée [Y ]i., ne dépend que de la
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iieme ligne [X]i. de X. Nous pouvons donc considérer ce problème comme p problèmes de régression
linéaire indépendants avec des cibles à valeurs réelles :

∀j ∈ J1, pK, [Y ].j = X[B∗].j + [E].j .

Ce problème est une instance de l’apprentissage multitâche, qui est fortement étudié dans la littérature
[107, 101, 5, 119, 55, 9, 143]. En particulier, un estimateur de XB∗ peut être dérivé en résolvant p
problèmes de moindres carrés ordinaires. Notons XB̂ l’estimateur correspondant. Si E a des entrées
indépendantes σ2-sous-Gaussiennes, on déduit de l’analyse standard des MCO, voir [115], l’existence
d’une constante positive C telle que :

1

T
E

[∥∥∥XB̂ −XB∗
∥∥∥2
F

]
≤ Cσ2 pm

T
.

Ce résultat prouve que dans un cadre de grande dimension, c’est-à-dire lorsque T < pm, l’erreur
quadratique moyenne de prédiction de B̂ n’est pas nulle. Il est donc naturel de se demander si un
autre estimateur de B∗ peut être dérivé pour résoudre ce problème. Malheureusement, le corollaire
4.13 de [115] prouve que l’estimateur des moindres carrés atteint la vitesse d’estimation minimax dans
le modèle de séquence gaussienne univariée. Cela implique que l’estimateur des moindres carrés est
optimal parmi tous les estimateurs sans aucune connaissance préalable sur la structure de B∗. Puisque
cette borne est optimale, on pourrait penser qu’il n’y a aucun espoir de résoudre ce problème statistique
de grande dimension.

Heureusement, on constate souvent que les données à grande dimension présentent une faible
complexité inhérente. Lorsque les structures de basse dimension sont bien définies, l’analyse revient
à des statistiques de basse dimension plus conventionnelles. Toutefois, les données à grande dimen-
sion posent des problèmes en raison des structures sous-jacentes inconnues à basse dimension. Par
conséquent, une tâche fondamentale consiste à identifier ou à approximer ces structures. Dans le
cadre de la régression multivariée, il existe souvent des structures partagées entre les coordonnées
qui peuvent être exploitées pour améliorer les limites de prédiction. Par exemple, on peut supposer
que les colonnes de B∗ partagent le même modèle de rareté avec seulement s entrées non nulles. Si
chaque tâche est exécutée individuellement, on obtient l’estimateur de groupe-lasso B̂GL étudié dans
[98]. Dans ce cadre, il existe une constante positive C > 0 telle que l’erreur quadratique moyenne de
prédiction de B̂GL devient :

1

T
E

[∥∥∥XB̂GL −XB∗
∥∥∥2
F

]
≤ Cσ2 sm log(p)

T
.

Nous rappelons que le facteur logarithmique supplémentaire apparaît en raison du support inconnu
des entrées non nulles de B∗. Par conséquent, dans le régime de grande dimension sous cette hypo-
thèse de structure de sparsité, l’erreur quadratique moyenne de prédiction converge vers zéro tant que
T > sm log(p). En outre, nous soulignons que cette hypothèse de structure de rareté imite la struc-
ture univariée standard, résolue avec la procédure Lasso et sa variante, voir [124, 22, 114, 33, 19].
Heureusement, des structures plus complexes peuvent être capturées dans le cadre de la régression
multivariée. Par exemple, si les colonnes de Y sont corrélées, on peut supposer une structure de faible
rang sur B∗. Cela conduit à la régression multivariée de rang faible.

Une solution possible à ce problème est de considérer un estimateur B̂λ de B∗ qui peut être défini
comme la solution d’une version pénalisée par le rang du problème des moindres carrés ordinaires.
Ainsi, pour tout λ > 0, nous considérons :

B̂λ ∈ argminB ∥Y −XB∥
2
F + λrB, (6.2)
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où rB représente le rang de B. Une première question d’intérêt est la sélection de l’hyperparamètre
λ > 0. Ce problème relève de la catégorie de la sélection de modèles et nous renvoyons le lecteur à
[64, 100] pour des introductions complètes. La première étape du calcul de cet estimateur consiste à
définir les estimateurs de rangs restreints, c’est-à-dire B̂(k) qui minimise ∥Y −XB∥2F parmi les matrices
B de rang inférieur ou égal à k.

Lemme 6.0.1 (lemme 8.1 dans [64]) Considérons P := X
(
X⊤X

)+
X⊤ le projecteur orthogonal sur

l’intervalle deX où
(
X⊤X

)+ désigne le pseudo-inverse de Moore-Penrose deX⊤X. Dénote
rank(PY )∑

i=1
σiuiv

⊤
i

la SVD de PY . Alors XB̂(k) peut être défini comme
k∑
i=1

σi(PY )uiv
⊤
i .

Lorsque le rang de B∗ est inconnu, l’estimateur précédent peut être calculé pour toute valeur de
rdansN∗, ce qui conduit à B̂(k). La qualité de cet estimateur est donnée dans le lemme suivant.

Lemme 6.0.2 (Limite non asymptotique de l’erreur quadratique de prédiction, Théorème 5 dans [32])
Il existe une constante positive C telle que pour tout kdansN∗,

∥∥∥ XB̂(k) −XB∗
∥∥∥2
F
≤ C

rank(XB∗)∑
i=r+1

σi(XB
∗)2 + k∥PE∥2op

 .
Notons que cette limite, qui présente un compromis biais-variance, tient presque sûrement mais

dépend de la plus grande valeur singulière de la projection de la matrice de bruit E sur l’étendue de X.
On peut dériver une borne supérieure ne dépendant pas de E en contrôlant le spectre de la matrice
aléatoire PE, puis fournir une borne supérieure vraie avec une probabilité élevée. Les bornes ainsi
dérivées seront plus ou moins étroites selon les hypothèses que l’on fait sur la distribution de la matrice
de bruit E. Le lemme suivant en donne un exemple.

Lemme 6.0.3 (Erreur quadratique moyenne en régression multivariée de rang faible, corollaire 6 dans [32])
Supposons que la matrice de bruit E ait des entrées gaussiennes centrées indépendantes avec une
variance σ2. Il existe alors une constante positive C telle que pour tout r ∈ N∗,

E

[∥∥∥ XB̂(k) −XB∗
∥∥∥2
F

]
≤ C

rank(XB∗)∑
i=r+1

σi(XB
∗)2 + σ2k(m+ rX)

 ,
où rX représente le rang de X.

Le Lemme 6.0.3 montre que l’erreur quadratique moyenne est limitée par une erreur d’approxi-
mation et un terme stochastique. L’erreur d’approximation est décroissante en k et disparaît pour
k > rank(XB∗). De plus, l’erreur quadratique moyenne satisfait pour k > rank(XB∗) :

1

T
E

[∥∥∥XB̂ −XB∗
∥∥∥2
F

]
≤ Cσ2k(m+ rX)

T
.

On peut alors remarquer que rank(B∗) ≥ rank(XB∗) et que dans un cadre à grande dimension avec
un rang très faible, rank(XB∗)(m + rX) ≪ pm. Cependant, la valeur de rank(XB∗) est inconnue et la
limite oracle précédemment énoncée ne peut donc pas être atteinte. Une procédure d’adaptation des
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données est proposée dans [32] à la fois dans le cas d’un σ2 connu et d’un σ2 inconnu, le paramètre
du bruit. Les performances obtenues sont similaires à celles obtenues dans le cas de l’oracle.

Par conséquent, si les colonnes de la matrice observée Y sont corrélées et si nous supposons que
B∗ a une structure de faible rang, un estimateur B̂r de B∗ peut être dérivé avec des garanties non
asymptotiques. Cependant, si les lignes de Y sont corrélées, le modèle exposé précédemment ne peut
pas le capturer. Cela peut se produire lorsque les prédicteurs et les cibles observés présentent une
dépendance sérielle. Ce problème est au cœur du chapitre 3. En conclusion, la généralisation de ces
résultats à des tenseurs d’ordre supérieur suscite un intérêt considérable au sein de la communauté
des chercheurs. Nous renvoyons le lecteur à [97] et aux références qui y figurent pour une introduction
complète.

Chapter 3 : Régression matricielle bilatérale.
Dans ce chapitre, nous étudions un problème de régression multivariée dans lequel les colonnes

et les lignes de la quantité cible Y sont supposées être corrélées. Nous observons la matrice cible
Y ∈ Rn×p et une matrice de prédiction X ∈ Rm×q liées par le modèle de régression matricielle bilatérale
(2MR). Ce modèle implique deux matrices de paramètres A∗ ∈ Rn×m et B∗ ∈ Rq×p et s’exprime comme
suit

Y = A∗XB∗ + E.

La matrice de bruit E est supposée avoir des entrées indépendantes centrées σ−sousGaussiennes.
L’objectif est de dériver des prédicteurs Â et B̂ tels que ÂXB̂ reste proche du signal A∗XB∗, sous des
hypothèses de faible rang sur A∗ et B∗.

Bien que ce modèle n’implique pas de dépendance temporelle, les résultats non asymptotiques
obtenus ici peuvent améliorer notre compréhension des séries temporelles autorégressives à valeur
matricielle : Yt = A∗XtB

∗+Et (voir [47]). Le modèle 2MR englobe également des modèles connus tels
que la régression matricielle et la factorisation matricielle. Par exemple, si n = m et A∗ est la matrice
identité, le modèle 2MR se réduit au modèle de régression matricielle unilatérale Y = XB∗ + E (voir
[108], [32], [104]). De même, si m = q et que la matrice de prédiction X est la matrice identité de rang
m inférieur à la fois à n et à p, le modèle 2MR devient un modèle de factorisation du signal M∗ = A∗B∗

observé avec du bruit.
Une autre représentation du modèle 2MR se présente sous la forme d’un vector regression model.

En empilant les colonnes des matrices Y , X et E dans vec(Y ), vec(X) et vec(E), respectivement, on
obtient

vec(Y )⊤ = vec(X)⊤ · (A∗)⊤ ⊗B∗ + vec(E)⊤,

où ⊗ représente le produit tensoriel de deux matrices. Selon cette formulation, nous prédisons un vec-
teur de lignes de taille np en utilisant un vecteur de lignes de taille mq (la matrice de caractéristiques
étant de rang 1) par l’intermédiaire d’un paramètre de taille (mq) × (np). Cette approche est problé-
matique à moins que la structure de A∗ et B∗ ne soit triviale. Elle ne tient pas compte de la structure
matricielle des caractéristiques et des matrices A∗ et B∗, ce qui conduit à des résultats sous-optimaux.
L’objectif est de construire des prédicteurs explicites (Âr, B̂r) solutions au risque de prédiction de Fro-
benius au carré sous contrainte de rang maximal, voir (3.3).

Le théorème 3.2.1 fournit, pour un problème équivalent (3.5), des prédicteurs explicites Â0r et B̂0r

avec une borne supérieure non asymptotique sur le risque de prédiction. Nous remarquons en parti-
culier que cette borne peut être décomposée comme la somme d’un terme de biais, qui est la cause
du choix du rang r des prédicteurs, potentiellement inférieur au rang des matrices A∗ et B∗ et d’un
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terme stochastique. L’analyse de ce terme stochastique fait principalement appel à la théorie des ma-
trices aléatoires, voir [129]. Ces prédicteurs permettent de dériver Âr et B̂r la solution du problème
d’optimisation initial (3.3). Ce résultat est énoncé dans le Corollaire 3.2.2.

Cependant, dans le problème d’optimisation (3.3), la question de la sélection de r se pose. Nous
proposons une procédure adaptative au rang pour y répondre. Nous sélectionnons d’abord le rang
r̂ en résolvant une version pénalisée par le rang du problème de minimisation du carré de Frobenius,
(3.8). Nous considérons ensuite les prédicteurs correspondants (Âr̂, B̂r̂). Le risque de prédiction de ces
prédicteurs est étudié dans le Théorème 3.2.3. La cohérence de la procédure de sélection des rangs
(3.8) est également démontrée dans la Proposition 3.2.6. Toutefois, ces deux résultats sont énoncés à
la condition que le paramètre sous-gaussien σ2 des entrées de la matrice de bruit soit connu.

Enfin, nous proposons une procédure adaptative aux rangs guidée par les données, qui permet
de sélectionner r̄ et de dériver des prédicteurs (Âr̄, B̂r̄). Ces prédicteurs présentent des garanties
prouvables non asymptotiques sans que la vraie valeur σ soit connue. Pour ce faire, nous modifions le
problème de minimisation pénalisé (3.8) en remplaçant le rang r par rσ̂2r , voir (3.9), où

σ̂2r =
1

np
∥Y − ÂrXB̂r∥2F .

Les performances de cette procédure de prédiction sont détaillées dans le théorème 3.2.7.
Enfin, comme dans le cas de la régression linéaire standard où l’estimateur BIC est remplacé par

sa version relâchée convexe, l’estimateur Lasso, nous comparons les performances de prédiction ob-
tenues à l’aide d’une pénalité de rang à celles obtenues à l’aide d’une pénalité de norme nucléaire,
qui sert de relâchement convexe de la pénalité de rang. Plus précisément, nous considérons la version
pénalisée par la norme nucléaire de la minimisation du risque de prédiction de Frobenius au carré, voir
(3.10). Nous fournissons des solutions Ā et B̄ à ce problème dans le Théorème 3.3.1 et dérivons une
borne supérieure non asymptotique sur le risque de prédiction correspondant ∥A∗XB∗ − ĀXB̄∥2F .

Nous concluons en notant que le modèle de régression matricielle bilatérale souffre d’inconvénients
liés à l’identifiabilité. En effet, de nombreux couples de matrices (A,B) résolvent l’équation M = AXB
pour une matrice M donnée.

Nous ne pouvons espérer identifier les matrices A et B que dans des conditions très restrictives où
X⊤X est de plein rang et où la matrice A ou la matrice B est supposée avoir des valeurs singulières
connues, e.g. comme un projecteur avec des valeurs singulières 1 ou 0. Peu d’autres configurations
sont connues pour être identifiables dans la littérature de la factorisation des matrices, e.g. la factorisa-
tion des matrices non négatives (NMF), voir [54], NMF pour les topiques-modèles [84], [25], [86] ou la
factorisation des matrices de covariance [57].

Topiques-Modèles

Cette section est consacrée à la présentation du cadre de modélisation thématique, qui est au cœur
des chapitres 4 et 5. Considérons un corpus comprenant n documents textuels écrits dans une langue
caractérisée par un dictionnaire de taille p. Pour analyser et exploiter l’information véhiculée dans ces
n documents, l’objectif principal est de dériver une représentation vectorielle pour cet ensemble de do-
cuments. Cette expression mathématique permettra d’appliquer des outils analytiques afin d’extraire et
d’examiner les informations plus efficacement. Compte tenu de la longueur variable des documents, un
simple comptage de l’occurrence de chaque mot ne serait pas pertinent. Par conséquent, pour chaque
document, l’accent est mis sur la fréquence d’apparition des mots individuels. Chaque document peut
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ainsi être représenté comme un point dans le simplexe de Rp. Cela implique que l’ensemble du cor-
pus est représenté comme un ensemble de n points à l’intérieur du simplexe. Il est important de noter
que l’ordre des documents n’a pas d’importance dans ce contexte. En outre, nous supposons que ces
n points ne sont pas linéairement indépendants mais couvrent un sous-espace de Rp de dimension
K ≪ min(n, p). Interprété comme le nombre de sujets discutés dans le corpus, K joue un rôle crucial
dans la capture de la structure sous-jacente. L’objectif principal est de trouver un encastrement de ces
n points dans l’espace de dimension inférieure RK . Par conséquent, il s’agit d’identifier une correspon-
dance entre Rp et RK de telle sorte que les n points initiaux de Rp puissent être effectivement intégrés
dans RK par le biais de cette correspondance.

Dans un contexte plus formel, chaque document jdans[n] est modélisé comme une collection de
Nj mots tirés d’un dictionnaire de taille p. Chaque document suit une distribution discrète π∗j sur le
simplexe de Rp. Pour chaque document j ∈ [n], le vecteur de dimension p Yj des fréquences de mots
est observé et supposé suivre une distribution multinomiale centrée sur π∗j :

NjY j ∼ Multinomialp(Nj , π
∗
j ). (6.3)

Cependant, dans les exemples réels, seuls quelques sujets différents sont abordés dans d’énormes
corpus de documents. Cela conduit à supposer que la matrice de probabilité mot-document Π∗ =
(π∗1, . . . , π

∗
n) ∈ Rp×n est de rang K ≪ min(n, p), le nombre de sujets, et peut être factorisée comme

suit :
Π∗ = A∗W ∗, (6.4)

où A∗ ∈ Rp×K est la matrice de probabilité mot-sujet et W ∗ ∈ RK×n est la matrice de probabilité
sujet-document.

Ce cadre suppose que la probabilité d’occurrence du mot idans[p] dans un document traitant du
sujet kdans[K] est indépendante du document lui-même. Plus précisément, le vecteur de probabilité
π∗j du document j, appelé vecteur de probabilité mot-document, est une combinaison convexe de K
vecteurs de probabilité mot-sujet avec des poids correspondant à l’attribution de K sujets. D’un point
de vue probabiliste, cela peut être exprimé par la formule de la probabilité totale, comme suit :

P(mot i|document j) =
K∑
k=1

P(mot i|sujet k)P(sujet k|document j),

L’objectif principal dans le cadre du modèle thématique traditionnel est de récupérer A∗ et/ou W ∗ sur
la base des observations Y 1 . . . ,Y n avec ou sans un nombre fixe connu de sujets K. L’estimation des
matrices A∗ et W ∗ répond à des objectifs distincts. En effet, l’estimation de la matrice A∗ permet de
discerner la distribution des mots dans le dictionnaire pour un sujet donné, tandis que l’estimation de
la matrice W ∗ révèle la distribution des sujets pour un document donné.

Il convient de noter qu’en l’absence de bruit, c’est-à-dire lorsque la matrice Π∗ est observée, la
récupération de A∗ et W ∗ devient un cas de factorisation de matrices non négatives. Le problème de
la factorisation de matrices non négatives (NMF) a été largement étudié, les algorithmes attirant l’at-
tention en raison de leur capacité à générer des facteurs avec des contraintes non négatives, ce qui
améliore l’interprétabilité. Généralement, la NMF est formulée comme la minimisation d’une fonction
de coût régularisée [94, 93, 112], présentant des défis d’optimisation non convexe, en particulier dans
les scénarios où de nombreux mots sont absents dans un seul document (N ≪ p). La principale li-
mitation de la NMF est que la résolution du problème exact de la NMF, c’est-à-dire, en supposant un
rang connu K de Π∗Rp×n et en récupérant les matrices A∗Rp×K et W ∗RK×n telles que A∗W ∗ = Π∗,
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sans aucune hypothèse supplémentaire, est NP-hard, voir [127]. Ce résultat implique la nécessité d’hy-
pothèses supplémentaires pour garantir l’existence d’algorithmes rapides capables d’estimer A∗ et/ou
W ∗. De plus, les algorithmes NMF sont confrontés à un problème d’identifiabilité. Il est concevable
de trouver différentes matrices non négatives (A∗

1,W
∗
1 ) ∈ Rp×K × RK×n et (A∗

2,W
∗
2 ) ∈ Rp×K × RK×n

tel que A∗
1W

∗
1 = A∗

2W
∗
2 . Des hypothèses supplémentaires sont nécessaires pour garantir l’unicité de

la représentation. La première de ces hypothèses est l’hypothèse de séparabilité et a été initialement
introduite par [54]. Elle garantit l’unicité de la NMF. Cette hypothèse a ensuite été incorporée dans
le cadre du modèle thématique par [8], avec l’interprétation que, pour chaque thème, il existe cer-
tains mots qui se produisent exclusivement dans ce thème spécifique. Ces mots sont appelés "mots
d’ancrage". L’hypothèse mot d’ancrage a ensuite été adoptée dans la plupart des publications sur les
modèles thématiques.

Assumption 9 (Anchor word assumption) Pour chaque sujet k ∈ [K], il existe au moins un mot j tel
que [A∗]jk > 0 et [A∗]jl = 0 pour l ∈ [K]\{k}.

Le modèle (1.4) suppose que la matrice mot-sujet et la matrice sujet-document sont statiques. En outre,
il suppose que les documents sont échangeables au sein de la collection. En effet, le modèle reste le
même en cas de permutation des colonnes de la matrice observée Y .

Des travaux récents abordent les aspects algorithmiques et donnent des résultats d’inférence sur
le problème de l’estimation de la matrice A∗ dans un cadre statique sous l’hypothèse mots d’ancrage.
Par exemple, les auteurs de [84] proposent un estimateur Â atteignant les vitesses minimax pour A∗

dense, i.e. non parcimonieuse, avec un K fixe et connu. La procédure de [84] effectue une SVD sur une
version normalisée de la matrice Y suivie d’une recherche exhaustive sur un simplexe de dimension p.
Pour K inconnu et A∗ dense, les auteurs de [24] considèrent ÂK , atteignant les vitesses optimales mi-
nimax dans ce cadre. La procédure de [24] commence par la récupération des mots d’ancrage et dérive
ensuite un estimateur à partir d’une version normalisée de Y Y ⊤. Les auteurs de[25] étudient l’estima-
tion de A∗ sous l’hypothèse de parcimonie avec K inconnu, en proposant une procédure d’estimation
optimale minimax Âsparse de A∗. La procédure de [25] se concentre principalement sur l’estimation de
la partie de A∗ correspondant aux mots non ancrés. Pour s’adapter à la parcimonie de A∗, leur algo-
rithme nécessite également la résolution d’un programme quadratique pour chaque ligne non ancrée.
Récemment, plusieurs articles ont également étudié le problème de l’estimation de la matrice W ∗ sta-
tique sous différentes hypothèses. Lorsque A∗ est connue et que W ∗ est supposée parcimonieuse, [23]
propose un estimateur du maximum de vraisemblance (MLE) pour W ∗. Leur analyse a prouvé que le
MLE est à la fois minimax optimal et adaptatif à la parcimonie. Lorsque A∗ est inconnue, [23] estime
W ∗ en optimisant la fonction de vraisemblance correspondant à un estimateur plug-in Â de A∗. Par
conséquent, l’erreur d’estimation de W ∗ dans leur procédure dépend de la qualité de l’estimation de
A∗ par Â. Lorsque A∗ et W ∗ sont tous deux inconnues et que les colonnes de W ∗ sont supposées
peu nombreuses, K pouvant être grand, [140] propose des procédures computationellement efficaces
pour estimer ces deux matrices. En outre, il est possible d’estimer directement W ∗ en supposant une
structure supplémentaire. Ainsi, [86] suppose une autre version de l’hypothèse mot d’ancrage, appe-
lée document d’ancrage. Cette hypothèse signifie que pour chaque sujet, il existe un document qui ne
traite que de ce sujet. Leur procédure, appelée Successive Projection Overlapping Clustering (SPOC),
s’inspire de l’algorithme de projection successive (SPA). L’idée est de commencer par la décomposition
en valeurs singulières (SVD) de la matrice Y , et de lancer une procédure itérative qui, à chaque étape,
choisit la ligne de norme maximale de la matrice composée de vecteurs singuliers. Elle projette ensuite
sur le sous-espace linéaire orthogonal à la ligne sélectionnée.
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Chapitre 4 : Topiques-modèles dynamique : cas oracle Dans ce chapitre, nous supposons que
des lots de n documents sont collectés en T étapes dans le temps. L’objectif est de prendre en compte
l’aspect temporel de la collecte de documents et de refléter l’évolution dynamique des thèmes abor-
dés dans les corpus. Nous supposons que la matrice de probabilité sujet-document W ∗ suit un modèle
autorégressif simplex-valué d’ordre un. Par conséquent, la matrice W 1:T :=

(
W 1, . . . ,W T

)
est mainte-

nant considérée comme aléatoire. Plus précisément, à chaque pas de temps t, la distribution des sujets
donnés par un document est une combinaison linéaire de la distribution précédente et d’un bruit distri-
bué par Dirichlet, qui détermine l’évolution temporelle des sujets. Plus précisément, nous considérons
que pour tout t ∈ [T − 1] :

W t+1 = (1− c∗) ·W t + c∗ ·∆t

où c∗ ∈ (0, 1), et chaque ∆t est une matrice de bruit de taille K × n telle que les colonnes sont
indépendamment et identiquement tirées d’une distribution de Dirichlet D(θ∗) ayant pour paramètre
θ∗ ∈ RK+ . L’objectif de ce chapitre est d’estimer les paramètres de ce modèle autorégressif en supposant
que la matrice de probabilité mot-document Π1:T := (Π1, . . . ,ΠT ) est disponible. Nous appelons ce
cadre le cas de l’oracle. Nous commençons par étudier les propriétés spectrales de la matrice de
covariance empirique Σ1:T

W := 1
nT

(
W 1:T

) (
W 1:T

)⊤.
En particulier, dans le Théorème 4.3.3, nous fournissons un contrôle sur sa plus petite valeur propre

et montrons qu’elle est bornée par des quantités dépendant de c∗, α et θ̃∗ avec une grande probabilité.
Dans la Proposition 4.3.1, nous contrôlons sa plus grande valeur propre en la bornant presque sûre-
ment par des quantités dépendant exclusivement de K. Ces résultats légitiment une hypothèse forte
que nous faisons sur le spectre de cette matrice. À la suite du travail effectué dans [84], nous présen-
tons une procédure algorithmique basée sur la SVD qui récupère exactement la matrice de probabilité
mot-sujet A∗. La projection de la matrice de probabilité mot-document Π1:T sur A∗ permet de récupé-
rer exactement la matrice de probabilité sujet-document W 1:T . Nous estimons ensuite les paramètres
θ̃∗, c∗ et α avec les estimateurs définis respectivement dans (4.8), (4.9) et (4.11). Des bornes non
asymptotiques sur leurs erreurs d’estimation sont dérivées respectivement dans le Théorème 4.4.1, le
Théorème 4.4.2 et le Théorème 4.4.3. En particulier, nous prouvons qu’il existe des constantes abso-
lues C1, C2 > 0 telles que :

P

[
max{∥θ̂ − θ̃∗∥2, |(̂1− c)− (1− c∗)|, |α̂− α∗|} ≤ C1 ·

√
log(nT )

nT

]
≥ 1− C2

nT
.

En particulier, la dimension du vecteur θ∗, qui est le nombre K de sujets, n’apparaît pas dans ces
bornes grâce aux propriétés du bruit de Dirichlet.

Chapitre 5 : Topique-modèles dynamiques : cas réel Dans ce chapitre, nous considérons le
même cadre que dans le chapitre 4 sans que la matrice de probabilité mot-document Π1:T ne soit plus
disponible. Nous supposons que nous n’avons accès qu’à la matrice de fréquence mot-document Y 1:T .
Ensuite, nous définissons d’abord les versions empiriques des quantités impliquées dans la procédure
exposée précédemment, en récupérantA∗. Cette procédure empirique adaptée conduit à un estimateur
Â de A∗. Nous présentons une étude minutieuse de cette procédure d’estimation. Plus précisément,
nous donnons des bornes supérieures explicites jusqu’à des facteurs logarithmiques et leur dépen-
dance à l’égard de toutes les dimensions des matrices d’apparition. Nous projetons ensuite la matrice
de fréquence mot-document Y 1:T sur la matrice mot-sujet estimée Â. Il en résulte une matrice sujet-
document estimée Ŵ 1:T . Les estimateurs des paramètres autorégressifs, introduits dans le chapitre 4,
sont adaptés à ce cadre. Des bornes non asymptotiques sur leur erreur d’estimation sont dérivées res-
pectivement dans Theoreme 5.4.1, Theoreme 5.4.2 et Theoreme 5.4.3. En particulier, nous prouvons
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que pour chaque estimateur, il existe des constantes absolues C1, C2 > 0 et a, b > 0 telles que :

P

[
max{∥θ̂ − θ̃∗∥2, |(̂1− c)− (1− c∗)|, |α̂− α∗|} ≤ C1 ·Kapb

(√
log(nT )

nT
+

√
log(nT )

N

)]
≥ 1− C2

nT
.

Par conséquent, les taux de convergence obtenus dans le cas réel montrent des contributions additives
du bruit Dirichlet, qui détermine la probabilité des sujets pour des documents donnés, et du modèle
multinomial des nombres de mots. De plus, pour les documents très longs, c’est-à-dire lorsque N ≫
nT , les taux de convergence ne sont influencés par le bruit de Dirichlet que par des termes multiplicatifs
du nombre de sujets K et de la taille du vocabulaire p.
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Résumé : L’objectif de cette thèse est de mo-
déliser des séries temporelles à valeurs ma-
tricielles dans un cadre de grande dimension.
Pour ce faire, la totalité de l’étude est présen-
tée dans un cadre non asymptotique. Nous four-
nissons d’abord une procédure de test capable
de distinguer dans le cas de vecteurs ayant une
loi centrée stationnaire si leur matrice de cova-
riance est égale à l’identité ou si elle possède
une structure de Toeplitz sparse. Dans un se-
cond temps, nous proposons une extension de

la régression linéaire matricielle de faible rang
à une régression à deux paramètres matriciels
qui créent des corrélations entre les lignes et
les colonnes des observations. Enfin nous intro-
duisons et estimons un topiques-modèle dyna-
mique où l’espérance des observations est fac-
torisée en une matrice statique et une matrice
qui évolue dans le temps suivant un processus
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model matrix-valued time series in a high-
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simplex-valued auto-regressive process of order
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