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Notations

A:=1B

n—oo
~ ’Un

X ~Px
[n] = [1,7]
|E| = #E

||

Un

n A'm = min(n, m)
n V. m = max(n, m)
Ry

[M];.

A is defined as being equal to B,

uy, is equivalent to v,

X follows the distribution Px,

Set of the firsts n integers,

Cardinal of the set F,

Absolute value of the real number z,

Minimum between n and m,

Maximum between n and m,

Set of non negative real numbers,

Set of positive real numbers,

Set of real-valued vectors of size p,

Set of real-valued matrices of size p x ¢,

k" coefficient of the vector ,

Set of symmetric matrices of size p,

Set of symmetric positive matrices of size p,

Set of symmetric positive definite matrices of size p,

Set of Toeplitz matrices of size p,

Set of orthogonal matrices of size p,

Matrix of size n x m with diagonal entries in the list and zero elsewhere,
i" row of the matrix M,

4% column of the matrix M,

Coefficient on the i row and j* column of the matrix M,
Moore-Penrose pseudo inverse of M,

Singular Value Decomposition of M,

Frobenius norm of M,

Nuclear norm of M,

Operator norm of M,

Trace of the matrix M,

Indicator function,

Univariate Gaussian distribution with mean . € R and variance o2 € R* ,

Probability space with a sample space €2, a o-algebra A and a probability function P,

Probability of the event A when the parameter takes the value ¥,

Expectation of the random variable X when the parameter takes the value X,

Equality up to constants.



Table des matieres

1 _Intr ion
(1.1 A non-asymptotiC VIEWPOINt| . . . . . . . . . . . . e e e e
(1.1.1  From Chebyshevto McDiarmid| . . . . . .. ... ... ... ... .. ........
[1.1.2  High-dimensional covariance matrix estimation| . . . . . .. .. .. .. .. .. ...
[1.1.3 Random matrices with independent entries orrows|. . . . . . . . . .. .. .. ...
[1.1.4 Stochastically dependentdata| . . . . . .. ... ... ... ... .. ...
[1.1.5 Timeseriesanalysis| . . . . . . . . . .. . . . . e
(1.2 Problems and contributlons| . . . . . . . . . . .
[1.2.1  Hypothesis lesting : deciding where lives a covariance matrix|. . . . . . . .. ...
(1.2.2 Regression framework| . . . . . . . . . . .
(1.2.3 TopicModelingl . . . . . . . . o
(1.3 Listof publications| . . . . . . . . . . . . . . e
2 Covariance matrix testing and support recovery|
2.1 Intr ION] .« . o e e
2.2 __Linear functionals of the covarlance matrix|. . . . . . . . . . .. . ... ... ...
[2.3 Non-parametric testing for stationary time series| . . . . . . . .. ... ... ... ... ..
[2.3.1  Moderately sparse covariance structure| . . . . . . . . ... ... ... L.
[2.3.2 Highly sparse covariance structure| . . . . . . . . . ... Lo
[2.4 Lag-selection for stationary time-series| . . . . . . . ... ... .. oL
RE_Proofsl . . . . .
[2.6 Supplementarymateriall . . . . . ...
[2.6.1 Power curves of the test procedures| . . . . . . . . . . . ... oo
2.6.2 Eff fnonnullentries| . . . . ... ... . ..
[2.6.3 Comparison between AM>and AZ°|. . ... o L
[2.6.4 A moderately sparse high-dimensional M Aseries| . . . ... ... ... ......
[2.6.5 Comparison to othertestprocedures|. . . . . . . . ... ... ...
[2.6.6 Applicationtorealdatal] . ... ... ... ... ...
3__Two-sided Matrix Regression|
3.1 Introduction| . . . . . . . . . L
[3.2 Rankpenalizedlearning| . . . . . . . . . .
[3.2.1 Predictionforgivenranks| . . . . . . . ...
[3.2.2 Rank-adaptive prediction] . . . . . . . . . ..
[3.2.3 Consistentrank selection| . . . . . . . . ... L



viii TABLE DES MATIERES
[3.2.4 Data-driven rank-adaptive prediction| . . . . . . . . . . ... L L Lo 71

[3.3 Nuclear norm penalizedlearning| . . . . . . . . . . . . 72
A4 Numerical Results| . . . . . . . . . . e 73
............................................... 74
5.1 Proofof Theorem[3.2.1] . . . . . . . . . . . . oo 75
[3.5.2 Proof of Corollary[3.2.2] . . . . . . . . . . . e 76

5.3 Proofof Theorem|3.2.3] . . . . . . . . . . . . . o 77
[3.5.4 Proofs of results in Sectionl3.2.3 . . . . . ... ... oo 78
B55 Proofof TheoremB2.70l . . . . . . o o o v it e e 78
356 Proofof TheoremI3.311 . . ... ... . . .. . . ... . . . 80

[3.6 Auxiliary results|. . . . . . . e e 82
[4 Dynamic Expected Topic Models| 83
4.1 Introductionl . . . . . . . . . e 83
4.2 Dynamic topic model framework| . . . . . . . ..o 84
[4.3 Recovery of the word-topic matrix| . . . . . . . . . . . ... 87
[4.4 Estimation of the autoregressive modell . . . . . . ... ... .. ... L. 91
M5 Proofsl . . . . . 93
4.5.1 Proof of Theorem|4.3.3] . . . . . . . . . . . . . ... 93
[4.5.2 Proof of Proposition|4.3.4] . . . . . . . . .. .. ... 94

4.5.3 Proof of Theoreml4.4.1] . . . . . . . . . . . . . . . e 94
4.5.4 Proof of Theoreml4.4.2] . . . . . . . . . . . . . e 97
4.5.5 Proof of Theoreml4.4.31 . . . . . . . . . . . . . . e 104

5 Dynamic topic model| 107
1 Intr IONl & . . o e e e e e e e e e e e 107
[5.2 Estimation of the word-topic matrix A* . . . . . . .. . ... .. .. ... . .. .. 108
[5.3 Estimation of the topic-document matrix|. . . . . .. ... ... ... ... ... ... . 117
[5.4 Estimation of the underlying parameters ot the autoregressive model| . . . . . . .. .. .. 119
5.5 Proofs| . . . . . o 123
[5.5.1  Proof of Proposition[s.2.1fand its Corollary| . . . . ... ... .. ... ... .... 123
[5.5.2 Proof of Proposition[5.2.3[and its Corollaries| . . . .. ... ... .......... 127
[5.5.3 Proof of Proposition[s5.2.6[ . . . . . ... ... 130
[5.5.4 Proof of Proposition[s5.2.7] . . . . . . . . .. 134
[5.5.5 Proof of Proposition[5.2.8[ . . . . . . .. ... 139
[5.5.6 Proof of Proposition[5.2.9 . . . . . . . . ... 139
[5.5.7 Proof of Proposition[5.2.10[ . . . . . . . .. . . ... . 141

5.8 Proofof Theoreml5.2.11]. . . . . . . . . . . . . . . oo 141
5.5.9 Proofof Theoremb.2.12f. . . . . . . . . . ... ... . . . . . . . 152

0 Proof o eorem|5.2. 13l . . . . ... 157

[5.5.11 Proof of Proposition[s5.2.14[| . . . . . . . .. . ... ... . ... . 161
.b5.12 Proof of Theorem5.2.15[1 . . . . . . . . . . . . . . . 162

5.5.14 Proof of Theorem[5.2.1/]]

5.5.15 Proof of Theorem|5.3.1l1




TABLE DES MATIERES

[5.6 Auxiliary results|

[6 Introduction en francais|




TABLE DES MATIERES



Chapitre 1

Introduction

The main motivation of this manuscript is to deepen our understanding of phenomena with a tem-
poral component. Most machine learning algorithms and high-dimensional statistical models are lar-
gely studied under assumptions of independence of observations. Indeed, there are fewer and techni-
cally more demanding tools for measure concentration under this setting. This leads to non-asymptotic
control of deviations being more challenging in the more realistic setup of dependence between obser-
vations. Very frequently, an evolution with time is obvious in the underlying model but not always taken
into account in the proposed methods and the inference results.

This thesis investigates various non-parametric and high-dimensional inference problems including
hypothesis testing, support recovery, prediction in matrix regression and estimation of dynamic topic
models that combine matrix factorization and auto-regression. Although they share a common motiva-
tion, the chapters presented in this thesis can be read and understood separately as they are focusing
on specific problems.

Assessing the quality of forecasting algorithms is crucial across diverse applications, from natural
phenomena like weather patterns and seismic events to economic variables such as stock prices and
energy demand. A key indicator of algorithm performance is the quality of residuals, representing the
difference between observed and predicted values. More precisely, the closer the residuals are to a
white noise distribution, the less information was lost by the predictor or the model at hand. In chapter 2]
we study the testing and support recovery problems of a high-dimensional covariance matrix of a sta-
tionary time series. Specifically, we consider X1, ..., X,, independent p-dimensional Gaussian vectors
with a covariance matrix X. When the vectors X; are issued from a stationary process, the covariance
matrix ¥ has a Toeplitz structure, that is its diagonal elements are all constants. As mentioned in [46],
stationary time series are used as approximations of geometrically ergodic time series. This setting is
motivated by the following observation : given a time series of length 7" with 7" > p, it is possible to
consider vectors of length p sufficiently far apart to assume they are independent vectors of dimension
p. The aim is then to test whether the distribution is close to a white noise. To do so we test if the
covariance matrix X is the identity matrix I, or there exists a number s of covariance elements that
are significantly positive or significantly different from zero. We provide testing procedures with non
asymptotic upper bounds on the maximal testing risks both for moderately sparse and highly sparse
covariance structures. If the test is rejected, it is of interest to select the non-null entries in X, pinpointing
where information may be lost in the modelling process. We then define a lag-selection procedure and
provide a non asymptotic upper bound on its risk.

Next, we introduce a new matrix regression model where the correlations in the output matrix are

1



2 CHAPITRE 1. INTRODUCTION

explained by two matrix parameters that multiply the design matrix from the left and from the right,
respectively. We assume that the noise matrix has independent o2-subGaussian entries. This general
matrix regression model is highly non-identifiable without additional stringent assumptions, thus only
prediction results were provided. The predictors are first defined as solutions of the minimization pro-
blem of the squared Frobenius prediction risk under a maximal fixed rank constraint. By using the SVD
of the target and design matrices we provide solutions to this optimization problem together with a non
asymptotic upper bound on the prediction risk. We show that this upper bound can be decomposed
as the sum of a bias term and a stochastic term. We then derive a model selection procedure for es-
timating the true common rank of the parameter matrices, first under the assumption that the noise
parameter o is available. We examine the non asymptotic performance of this procedure and we adapt
the initial minimization problem by fixing the rank constraint to this estimated rank. This leads to new
rank-adaptive predictors. We provide again a non asymptotic upper bound on the rank-adaptive predic-
tion risk under this model selection framework. Then, we adapt the rank-adaptive procedure to propose
a data-driven rank-adaptive procedure free of the noise parameter . Again, we provide a non asympto-
tic upper bound on the data-driven rank-adaptive prediction risk. Finally, we study the convex relaxation
of the rank-penalized squared Frobenius risk minimization. We provide explicit solutions of this problem
and a non asymptotic upper bound on the prediction risk. Numerical results are provided illustrating the
theoretical results.

Finally, we consider topic models. We assume we collect a batch of documents and have access to
the frequencies of each word of the vocabulary for each document. The columns of this word-document
frequency matrix Y are modelled as realizations of multinomial distributions centered on word-document
probability vectors. In real world examples, few different topics are covered in corpora of documents.
This suggests that the word-document probability matrix IT exhibits a low rank structure. The objective
is to factorize this word-document probability matrix II into a word-topic probability matrix A and a
topic-document probability matrix W, that is IT = AW. In this setting, all these three matrices II, A
and W are left stochastic, that is their entries are non-negative and their columns sum to one. Under
specific mild assumptions, the identifiability of both A and W can be established. We also recall the
algorithm from [84] for performing this factorization. In this thesis, we assume a temporality in the
document collection and model the evolution in time of the topic-document probability matrix W by an
autoregressive stationary process, which becomes a time dependent random matrix W. Specifically,
at each time step ¢, the distribution of topics given a document is a linear combination of the previous
distribution and a Dirichlet-distributed noise, which drives the temporal evolution of the topics. Especially
we assume that the noise parameters are unknown. Careful attention is devoted to ensuring that this
autoregressive model keeps the property that the columns of the topic-document probability matrix sum
to one. We first study an oracle case where the full word-document probability matrix (I, ...,IIr) is
available. We first provide non asymptotic bounds on the spectrum of the empirical covariance matrix
of (W,...,Wr). Then we adapt the algorithm from [84] to retrieve the word-topic probability matrix A.
This allows to recover (W,..., W) by projection. Then we propose estimators of the autoregressive
parameters driving the evolution of W;. We provide non asymptotic upper bounds on the estimation
risks. Then, we adapt this procedure to the real case where only the full word-document frequency
matrix (Y1,...,Y r) is available. In the estimation procedure of A, we give more explicit upper bounds
than [84] up to log factors. We also provide the dependence on all dimensions of appearing matrices.
Finally, we show that the noise due to the multinomial distribution of word-counts and the Dirichlet
noise of the stationary distribution of topics given the published documents in time add up in the final
estimation rates of the autoregressive parameters. Especially, when the number of words per document
grows, that is when the multinomial noise diminishes, we retrieve the oracle rates.
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Historically, time series analysis is usually done in an asymptotic framework. The asymptotic ana-
lysis of real-valued and vector-valued time series is well understood since [71], [62], [99] and [31]
were published. This is still an active field of research both from a theoretical point of view, see
[79]50L 91], 117, 511 [59] and as a tool for studying algorithms, see [142]. Recently, the study of matrix-
valued time series and more globally tensor-valued time series has emerged. The studies are still mainly
conducted under an asymptotic framework, see [47, |49| 44| [96]. The non-asymptotic analysis of time
series is however gaining momentum, see [16} (15| |58, [135]. This thesis is part of this research dyna-
mic and all studied problems are conducted within a non-asymptotic framework. By addressing these
challenges and exploring innovative methodologies in each chapter, this thesis contributes to advancing
statistical theory in vector-valued and matrix-valued data analysis within high-dimensional settings. The
first part of the introduction serves as a comprehensive presentation of the technical tools necessary
for understanding the main chapters of this thesis. Then, in the second part, we give the setups and the
details of the results.

1.1 A non-asymptotic viewpoint

We begin by providing a rationale for employing a non-asymptotic framework, which is consis-
tently applied throughout the presented research. Subsequently, we delve into a detailed exploration
of concentration inequalities, outlining their significance and specifying the classical inequalities that
will be employed in our analyses. Additionally, we offer an overview of the problems one may face while
working in a high dimensional regime. Finally, we briefly introduce the tools that will be useful to control
random matrices and random processes.

1.1.1 From Chebyshev to McDiarmid

The non-asymptotic framework is highly relevant in modern statistical analysis, particularly in sce-
narios involving high-dimensional data and finite-sample settings. Unlike traditional asymptotic ap-
proaches that rely on large sample sizes and convergence to theoretical distributions, the non-asymptotic
framework focuses on deriving results that hold for finite sample sizes, providing more practical and im-
mediate insights into statistical properties and performances. Concentration inequalities constitute a
cornerstone of our methodological approach, providing rigorous bounds on the deviation of random
variables from their expected values.

To avoid unessential technicalities as a first step, we will consider real random variables, i.e. p =
1. Let's assume the finiteness of E[X;] and denote X,, the empirical mean of the n random vectors
(X1,...,X,). We are interested in understanding the behaviour of X,,. To this extent, the strong law of
large numbers (SLLN) states that X,, converges almost surely towards E[X,,] = E[X;]. Once we have
defined the asymptotic limit of X,,, another interesting question is to determine the rate at which X,
approaches E[X,,]. We assume from now on the finiteness of 02 = V[X;]. The Lindeberg—Lévy central
limit theorem (LLCLT) then provides the asymptotic convergence rate of X,, towards E[X,,].

Lemma 1.1.1 (Lindeberg-Lévy central limit theorem) Consider (X, ..., X,,) independent and iden-
tically distributed random variables with finite second order moment. Let us denote o2 their common
variance. Then the random variable /n (X, — E[X,]) converges in distribution toward N (0,V[X1]). Es-
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pecially, considering U ~ N (0, 1), we get that for all e > 0,

P (1%~ EL%] > ) "2 P (j0] > L)

However, this rate of convergence is only holding true asymptotically. Thus another natural question
arises : what can be said about the behaviour of the quantity | X,, — E[X,,]| for a finite value of n? One
can already notice that the property of the probability distribution of X, denoted Px, will play a key role
in answering this question. Indeed, if X; is normally distributed, the sample mean X,, is also normally

2
distributed and we get X,, ~ N/ (E[Xn], U). Thus in this context the asymptotic behaviour is satisfied
n

Ve

for any sample size, i.e. for any e > 0 and forany n € N, P (| X,, — E[X,]| > €) = (]U| > > where

U ~ N(0,1). On the other hand if Py is not symmetric or exhibits heavy tails (e.g., due to skewness or
extreme values) the asymptotic behaviour will appear for larger sample sizes.

The objective is thus to bound from above with high probability the quantity | X,, — E[X,,]| for any
fixed value of n. The first non asymptotic result that can be used for this purpose is the Chebyshev’s
inequality.

Lemma 1.1.2 (Chebyshev’s Inequality) Consider (X1,...,X,) independent and identically distribu-
ted random variables with finite second order moment. Denote o2 := V[X1],. Then for any ¢ > 0,

P (X, —E[X ]|>e)<—

Notice that in the asymptotic framework, the LLCLT ensures that this probability behaves as P { |U| >

where U ~ N(0,1). Moreover, the tails of the centered reduced normal distribution satisfy for all € > 0
and n € N,

3 D) 2 2_1 2 2 2
T D) ey (1) <P (101> YY) < DV ey (-2,
ny/ned\/m 202 o ey/nm 202

Hence the convergence rate of the quantity P (|.X,, — E[X,]| > €) towards zero exhibits asymptotically
an exponential decay with respect to (w.r.t) n while the non-asymptotic rate of decay provided by the
Chebyshev’s inequality is only linear w.r.t n. A natural approach would be to improve the Chebyshev’s

e

linear rate of decay by controlling the deviation of P (|X,, — E[X,,]| > ¢) from P (!U\ > ) i.e. de-

termine the rate of convergence in the LLCLT. With the additional assumption that X; has a finite third
order moment, Berry-Esseen central limit theorem (BECLT) provides the answer to this problem.

Lemma 1.1.3 (Berry-Esseen central limit theorem) Consider (X1,...,X,,) independent and identi-
cally distributed random variables with finite third order moment. Denote o* := V[X4] and p := E[|X; —
E[X1]|%]. Then, there exists a positive constant C' > 0 such that for any e > 0 and for any n € N* :

P (1%, ~ ELXI > 9 - (01> )| < 2

V/ne
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Thus, the convergence rate in the LLCLT is of order root of n, which can be shown to be optimal,
and will therefore dominate the desired exponential decay that arises asymptotically. Indeed, under the
previously stated assumptions, the BECLT ensures that there is a positive constant C' > 0 such that for
any e > 0,

P (X, — E[X,]| >€) <

Cp o2 ne
3 + exp | —535 |-

o3y/n  eym ( 20 >

The previously stated result indicates that controlling non-asymptotically the deviation of X,, from its
expectation by the LLCLT is worse than using directly Chebyshev’s inequality. In addition, Chebyshev’s
inequality is optimal under the stated assumptions. It implies that stronger assumptions are required in
order to get the asymptotic behaviour for finite sample sizes. In order to get a better control over the
deviation of X,, from its expectation, one notices that Chebyshev’s inequality is directly obtained from
Markov’s inequality.

Lemma 1.1.4 (Markov’s Inequality) For a nonnegative random variable Y with finite expectation, it
ensures that for all e > 0, P(Y > ¢) < e 'E[Y].

Thus, for any increasing function ®, provided that ®(Y") is nonnegative and has a finite expectation,
Markov’s inequality guarantees that for all € > 0,

P(2(Y) > ®(¢)) < ®(e) 'E[®(Y)).

This inequality cannot be improved under these assumptions. Notice that Chebyshev’s inequality is de-
rived by considering the square function for ® and setting Y := X —E[X]. Hence, to derive Chebyshev’s
inequality, the finiteness of the second order moment of X is needed, as previously stated. It therefore
appears that getting a better control of the deviation requires a better control of the law Px. Thus, if X;
has a finite higher order moment, a similar reasoning ensures that for any ¢ > 0,
P(|Xn — E[Xy]| >€) < m}\ln e PE[(| X, — E[X,])".
peN*

If stronger assumptions are even made, for example the existence of the moment generating function
(MGF) of | X,, — E[X,]|, i.e. the function defined on a real interval [—a,a] with @ > 0 by Gx : A —
E[exp(AX1)], the Cramer-Chernoff bound (CCB) ensures that for any e > 0,

P (1%, — ELXu]l > €) < inf exp (—Ae) EIN (X — E[Xal )

Hence in order to get Gaussian-like tails for |X,, — E[X,]|, i.e. an exponential decay, one will need
to control the MGF of |X,, — E[X,,]|. Finally to get a better control over the deviation of X,, from its
expectation, one needs to control Py and avoid any reference to the LLCLT.

The main assumptions that will be made in the core chapters of this thesis is the subGaussianity
of the considered random variables. This assumption allows to control the MGF of the variables at
hand and thus provides a sharp non-asymptotic rate of convergence for the deviation of X,, from its
expectation. We start by defining the notion of o2-subGaussian random variable. We highlight that it
denotes a class of distributions rather than a single specific distribution.

Definition 1.1.1 (o2-subGaussian random variable) A random variable X < R is said to be o*>-subGaussian

if. for all s € R,
820'

E fexp (s(X — E[X]))] < exp (2) |
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As previously explained, controlling the MGF of a random variable allows to control the tightness of
its tails. A subGaussian random variable function then reveals Gaussian-like tails. In addition, it can be
shown that if a random variable exhibits Gaussian-like tails, one can control its MGF and thus prove
that it has to be subGaussian.

Lemma 1.1.5 (Tails of o2-subGaussian r.v., Lemma 1.5 in [115]) Assume X is a centered random
variable such that there exists o > 0 satisfying, for all e > 0,
62 62

Then for any s > 0, it holds

52 (802
E [exp (sX)] < exp (45202) < exp < (i )> ,

that is X is v2-subGaussian with 1% := 82.

This leads to the following question : what are the characterisations of o2-subGaussian variables ?
The following lemma provides equivalent characterisations.

Lemma 1.1.6 (Characterization of subGaussian r.v., Proposition 2.5.2 in [130]) Let X be a cente-
red random variable. Then the following statements are equivalent for finite positive constants (C;)7_, :

forall A € R, El[exp (AX)] < exp (C7A?),
foralle e Ry, P[|X]|>¢] <2exp(—€/C3),

1/k
forallk € N*, E [\Xﬂ < C3Vk,

E [exp (X?/C3)] < 2,
1 1
forall\ € [——,—], E [exp ()\2X2)] < exp (C’g)\Q) .
C5' Cs
Thus, Lemma provides a characterization of subGaussian variables based on the MGF, the
tails, the moments, the exponential moment of X? and the local MGF of X?2. Note that the ¢ in defini-
tion provides an upper bound on the variance of X. However, for v < ¢ a random variable being
v2-subGaussian will also be o?-subGaussian and thus there isn’t any notion of optimality in the choice
of o2. However, this notion of optimality can be helpful in some contexts. Thus, we use the exponential

moment of X? for this purpose, which leads to a norm on the set of subGaussian random variables.

Definition 1.1.2 (subGaussian norm) For a subGaussian random variable X, the subGaussian norm
of X, denoted || X ||v, is defined as follows :

| X |lw, := inf (E [exp (XQ/SQ)] < 2)
SERY
Example 1.1.1 Consider a random variable X and a positive constant C such that |X| < C alsmost
surely. Then X is subGaussian and satisfies for any s € R :

E [exp (X2/52)] < E[exp (02/32)] .
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Hence for s >

C
Viog(2)’

Finally, assuming that (X;,... X,,) are independent and subGaussian provides a control over the
deviation of X,, from its expectation. Notice that the following result is even more general than the firstly
considered context as the random variables need not be identically distributed. Only the independence
and a control over each probability distribution are enough.

Ok there is E [exp (X?/s%)| < 2. This proves that X is subGaussian and || X ||w, =
og

Lemma 1.1.7 (Hoeffding’s inequality for o2-subGaussian random variables, Proposition 2.5 in [131])
Suppose that (X;);c| are independent r.v. and that X; has mean E[X;] and is o2-subGaussian for all
i € [n]. Then for all e > 0, we have

_ _ n2€2
i=1"1%

In the case of i.i.d. random variables with P x being o2-subGaussian, one finds that the deviation be-

_ _ 2
comes P HXn — E[X"H > e} < 2exp <—;L€2> Hence independence and Gaussian-like MGFs ensure
g

that the asymptotic behaviour of \Xn — E[Xn]\ is reached even for finite samples. In addition, it can be

noticed that the subGaussianity of the random variables at hand can sometimes be deduced from their
definition. The next lemma proves that bounded random variables are indeed subGaussians.

Lemma 1.1.8 (Hoeffding’s inequality for bounded random variables) Suppose that (X;);c(,, are in-
dependent r.v. and that X; has mean E[X;] and belongs to some interval [a;,b;] a.s. for all i € [n]. Then
for all e > 0, we have

B B n2€2
P 1%, — ELE| > < 20 (~ o=

Proof. If X; belongs to [a;,b;] a.s., then X; is o?-subGaussian with o; =
Lemma[l17 =

In the case of i.i.d. random variables with Px being supported on [a, b], one finds that the deviation

2ne? , : :
(67_172)2 . It can be noticed that in Lemma [1.1.8] there is
no assumption on the second order moment of the random variables. However, a more precise bound
can be derived if more details are provided on (Xi,...,X,). Indeed, if theses variables have a finite
second order moment smaller than half the length of the interval in which they are almost surely, a
better control on the deviation of X, can be derived. Hoeffding is in fact valid in the worst case possible
under the stated hypotheses cited, i.e. for a variable X; that is fairly distributed between the two ends of
the interval [a;, b;]. The following lemma provides a better control over the deviation of X, for bounded
random variables when their second order moment is known.

bi—ai

. We conclude using

becomes P [| X, — E[X,]| > €] < 2exp | —

Lemma 1.1.9 (Bernstein’s inequality for bounded random variables, Theorem 2.9 in [29]) Suppose
that the variables (X;);c, are independent with finite variance and verify for M > 0 and v > 0,

|X; —E[X;]| < M a.s. and )" V[X;] = v. Then for all e > 0, we have
=1

n2€2
P [| X, — E[X,]| > < 2exp (‘an\ﬁ/g)
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In the case of i.i.d. random variables with Py being supported on [a, b] with finite variance o2, one
2
>. To conclude this

ne
202 +2Me/3

section on concentration, we remind that the main tool we presented for controlling the deviation of
X, from its expectation is the control of the MGF. The previously stated results focused mainly on
Gaussian-like MGFs for the considered independent random variables. Obviously, weaker assumptions
can be made which will result as a weaker control on the deviation. This means that the asymptotic
behaviour, guaranteed by the LLCLT, will not be reachable for finite sample sizes. To illustrate this fact,
we define another class of random variables with a wider MGF than Gaussian ones.

finds that the deviation becomes P [| X, — E[X,]| > €] < 2exp (

Definition 1.1.3 ((02, o)-subExponential random variable) A random variable X € R is said to be

subExponential with parameters (o2, «) if E[X] is finite and its MGF satisfies, for all s € R such that

1
|s] < =,
«

820'2
e fexp (s(X — E[X)] < exp (7).
In this case we say that X is (o2, o)-subExponential.

Following the definition, a random variable is subExponential if its MGF is at least Gaussian-like
around zero. This will ensure that for small deviations, |X,, — E[X,]| will exhibits a Gaussian-like beha-
viour. However, for larger deviation this will not be the case anymore and we lose the asymptotic regime.
This idea is formalised in the following result.

Lemma 1.1.10 (Bernstein’s inequality for subExponential random variables, Theorem 2.8.1 in [130])
Suppose that the variables (X:);c[, are independent, centered and subExponential with parameters
(02, ). Then for all e > 0, we have

2
P[| X, > € <2exp (—cnmin (;{2, ;{)) )

where K := ‘nﬁxﬂ(HXinl) and ¢ > 0 is an absolute constant. In addition, || ||, denotes the sub-
1€(1l,n

exponential norm.

Hence, for ¢ < K one notices that the deviation one gets from Lemma agrees with the
asymptotic behaviour provided by the LLCLT. However for e > K the deviation is wider and one doesn’t
get the same tight control over | X,,| anymore.

Finally, we have briefly presented a methodology to derive sharp bounds to control the deviation of
X,, from its expectation given the existence of the MGF. As previously mentioned, if the MGF doesn’t
exist at least on an open interval around zero, one can leverage the higher finite moment of the ran-
dom variables at hand. However, at this stage, one last question remains unanswered : is it possible to
control the deviation of a quantity other than the empirical mean ? Indeed, the exposed section focused
on controlling | X,, — E[X,,]|. Let's consider a real-valued function f. Is it possible to control the devia-
tion of |f(X1,...,Xn) — E[f(X1,...,Xy)]| at least under some regularity conditions for f ? McDiarmid’s
inequality, which will be used throughout the proofs exposed in this thesis, provides an answer to this
question.
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Lemma 1.1.11 (McDiarmid’s inequality, Theorem B.5 in [64]) Let X be some measurable set and f
a measurable function taking its arguments in X™ and with values in R. We assume that f satisfies the
bounded difference assumption, meaning there exist constants é1, . .., 6, such that for all i € |n], for all
(z1,..., 20,2 ) € X" such that z; # «],

< d;.

T
‘f(xl,. ey Lj—1yLgy L4145« - - ,xn) — f(Il,. s Li—1,T5 s Tg415 - - - ,xn)

Then for any € > 0 and any independent random variables X1, . .., X,, with values in X, we have

2
P (X0 X) ~E L (Xr o X 2 6 < 20— )
Zk:l 51‘

Notice that Lemma implies Lemma Indeed consider (a,b) € R? and the real-valued
function f defined on [a,b]" as follows f : (z1,...,2,) — Z,. This function satisfies the bounded
difference assumption and if the random variables (Xi,...,X,) are bounded in [a,b] almost surely,
McDiarmid’s inequality then yields the Hoeffding’s bound.

Finally, this section exposes the reasons why assumptions are constantly made on the moment
generating functions of the considered random variables in the core chapters of this thesis. These
assumptions are necessary in order to be able to control the deviation of an empirical quantity from its
probabilistic value in a non-asymptotic way. This allows to have a precise control over the deviation for
finite sample sizes. As the next section shows, this will also allow us to control the role played by the
dimension in the deviation.

1.1.2 High-dimensional covariance matrix estimation

Let’s return to the initial context and recall that we considered real random variables, i.e. random
variables defined on (2, .4, P) and taking values in the measurable space (R?, B(RP)) with p = 1. The
above considerations and developments are based on an asymptotic analysis of the deviation of X,
from its expectation. The objective was then to understand how to obtain similar guarantees in a non-
asymptotic framework. However, the role played by the dimension p of the random variables was omitted
in this first exposition. For a fixed and arbitrarily large value of p, the LLCLT is still valid under similar
assumptions. However, this asymptotic result disregards the fact that the dimension p can be of the
same order of magnitude as the sample size n. In this context, sending n to infinity while keeping p
fixed is not appropriate. To illustrate this point, consider the example of covariance matrix estimation,
which will be the focus of chapter 2|

Consider (X1,...,X,) e Px on RP with E[X;] = 0 and covariance matrix Cov(X;) = I,. The
! an X;X,". For any (i,j) € [1,p], SLLN ensures that
=1

1

[E} ~ converges almost surely towards 1,—; when n goes to infinity. Hence we deduce that 3> converges
v

empirical covariance matrix is defined as & :=

almost surely towards I, when n goes to infinity. It ensures that when p is kept fixed and n goes to
infinity, the empirical distribution of the random eigenvalues of 3 converges almost surely towards the
Dirac measure on 1, denoted 4,. However, in the high dimensional asymptotic regime, when both n
and p go to infinity at a constant aspect ratio i.e. when p/n converges towards g € (0, 1], the limiting
distribution of the empirical spectrum is not §; anymore. In this regime, the empirical distribution of the
eigenvalues converges almost surely to the Marchenko-Pastur distribution, see [63]. Hence, in this high
dimensional setting, 3 is not a good estimator of the covariance matrix anymore, even if the sample
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size is huge. This exposure reinforces the need not to limit ourselves to an asymptotic study. Indeed, a
non asymptotic bound will explicit the dependence on both n and p. The following lemma provides such
an example and we underline that the definition of the matrix norm || ||, is given in the definition{1.1.6

Definition 1.1.4 (o?-subGaussian random vector) A random vectorY < RP is said to be o -subGaussian
if for any vector u € RP such that ||ul|s = 1, u"Y is o%-subGaussian.

Lemma 1.1.12 (Non asymptotic rate of covariance matrix estimation, Theorem 5.7 in [115]) Consider
¥ e S5t where S represents the set of symmetric positive definite matrices of size p x p and let
Y € RP a centered o?-subGaussian random vector of parameter 1 such that E[YY "] = I,. Consider
X1,..., X, iid. random vectors with the same distribution as ¥'/?Y. Then E[X;] = 0, E[X1X]] = &

and X1 is ||%||op-subGaussian. Define > := — >~ X;X,". Then there exists a positive constant C such
ni=1

- +€ pt+e
P |rz—z|op>c|z||opmax(\/pn — )

Lemma|1.1.12]indicates that for fixed p, 3 is a consistent estimator of X. However, the bound is not
satisfactory when p > n. The problem of estimating a covariance matrix in a high dimensional regime is
well-studied and we refer the reader to [39], [40], [37] and [38] for more details.

that for any € > 0,

< exp(—e).

1.1.3 Random matrices with independent entries or rows

In the preceding sections, our focus has been on random vectors (or variables) defined in RP, with
p > 1. However, chaptersandwill delve into random matrices, i.e. (X1,...,Xp,) "% P x defined on
RP*4_ Here, Px represents a distribution over the set of all p x ¢ matrices. Asymptotic results pertaining
to the spectrum of such random matrices can be viewed as random matrix analogues of the LLCLT, see
[14] for more details. However, this thesis will focus exclusively on non-asymptotic results due to the
considerations outlined earlier and the asymptotic results will only be mentioned to have an idea on the
sharpest bounds one can expect to derive.

A fundamental aspect to highlight is the concept of convergence within a matrix space. The most
straightforward method to define a mode of convergence is by deriving it from a distance, or more
restrictively, from a norm. It’s crucial to recall that a matrix can be uniquely associated with a linear
transformation. Therefore, the key aspect of interest is the expansion or contraction induced by this as-
sociated linear transformation on the vectors of a basis. This essential information is fully encapsulated
within the spectrum of the matrix, specifically its singular values.

Singular value decomposition (SVD). Consider M € RP*? a matrix of rank r. Then M can be

T

decomposed as M = ) Ui(M)uwiT where o1 (M) > ... > o,(M) > 0 are the singular values of M,
=1

(ui,...,u,) is an orthonormal family of RP and (v, ..., v,) is an orthonormal family of R?. In addition,
the squared singular values are the shared nonzero eigenvalues of MM " and M " M associated with
the eigenvectors (u1,...,u,) (respectively (vi,...,v,)).

This allows to partially summarize the information of a matrix M € RP*?in a vector (o1(M),...,0.(M)) €
R". Notice that we can omit the rank and define by extension (o1(M),...,0n(M)) € R™, where
m := min(p,q) and extending the definition such that o,1(M) = ... = 0,,(M). The remaining in-

formation pertains to the vectors comprising the eigenvector bases of MM " and M " M. Moreover, the



1.1. A NON-ASYMPTOTIC VIEWPOINT 11

SVD is valuable for understanding how perturbing a matrix M by another matrix E influences the pro-
perties of M. Specifically, if we consider a signal M and a noise E as two matrices in RP*? and define
A := M + FE, we are interested in understanding how the singular values of the perturbed signal A
behave in comparison to those of the pure signal M. Weyl’s inequality provides an answer.

Lemma 1.1.13 (Weyl’s inequality, Theorem C.6 in [64]) For two matrices A and B in R"*P, we have
for any k < min(n, p),
|0k(A) — ox(B)| < 01(A - B),

where o}, (A) (respectively o;,(B)) denotes the k' largest singular value of A (respectively B).

Moreover, the SVD leads to a natural way of defining a norm on the matrix space RP*%. The idea is
to look at a matrix M € RP*? as a vector in R™ and derive a matrix-norm from a vector-norm. Norms
defined in this manner are referred to as Schatten norms.

Definition 1.1.5 (k-Schatten norms) Consider M € RP*? and m = min(p,q). For k € N, the k-
Schatten norm of M is defined as

m 1/k
1M = (Z az-<M>’“) .
=1

Another way to naturally define the norm of a matrix is to consider the largest expansion it causes
in any direction. To measure this expansion, we can again consider vector norms.

Definition 1.1.6 ((k, j)-operator norms) Consider M < RP*4. For (k,j) € N2, the (k, j) operator norm
of M is defined as
||M||gk,j) — su HMxH]
P zere |12k

By convention we denote || M ||, = || M ||,(§;2) and this quantity is referred to as the operator norm.

Notice that for k = oo, the k-Schatten norm is equal to the operator norm and that Weyl's inequality
proves that singular values are 1-Lipschitz w.r.t. the operator norm. Finally, it is important to remind that
the matrix multiplication is non commutative which will raise new challenges in the study of deviations
Once we have established various norms within the matrix space, we can delve into the main topic of
convergence. The first natural idea is to derive similar results for X,, defined on RP*? as those previously
derived for X,, when the variables (X1,..., X,) were defined on RP. The matrix-Bernstein inequality
provides such a result when ¢ = p and the matrices X; are self-adjoint, i.e. X" = X.

Lemma 1.1.14 (Matrix Bernstein inequality, Theorem 1.6.2 in [125]) Consider (X, ..., X, ) independent

centered self-adjoint random p x p matrices such that there exist positive constants C' and v satisfying

£ [z Xg}
=1

for alli € [1,n], || X;|lop < C a.s. and < wv. Then for every ¢ > 0,

op

= n262
P (1% I, =€) < 2pexp <_2+2nC'/3> -
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Lemma is @ matrix generalization of Lemma It is noteworthy to mention that no as-
sumption is required on how the entries of X; are generated. In addition, one may also be interested
in understanding the behaviour of a single matrix whose entries are randomly generated. Especially
we will now distinguish two types of random matrices : ones with independent real-valued entries, at
the core of chapter[3]and ones with independent vector-valued rows/columns, at the core of chapters4]
and 5| The main objective, as previously mentioned, will be to control the spectrum of those random
matrices. In order to know the best result we can hope for, we first need to have an idea of the asymp-
totic regime. Let’s first consider a random matrix M € RP*? whose entries are independent centered
identically distributed random variables. The limiting behavior of the extreme singular values of M as p
and ¢ grow to infinity at a constant aspect ratio 5 € (0, 1] is given by the Bai-Yin’s law.

Lemma 1.1.15 (Bai-Yin’s law, Theorem 5.31 in [129]) Consider M € RP*? a random matrix whose

entries are centered independent and identically distributed with unit variance, and finite fourth moment.

Then as p and q grow to infinity at an aspect ratio % PA72, 8 € (0,1] there is a.s.

om(M) = p—Va+o(Vgand o1(M)=/p+/q+0(/q).

Remind that in the real-valued setting, the bounds provided by the LLCLT were non-asymptotically
exact for the deviation of the empirical mean of independent and identically distributed gaussian random
variables. The following lemma is a generalization for the spectrum of random matrices with independent
gaussian entries.

Lemma 1.1.16 (Spectrum of a Gaussian matrix with independent entries, Corollary 5.35 in [129])
Consider M € RP*7 a random matrix whose entries are independent standard normal random variable.
Then for any € > 0, with probability at least 1 — 2 exp(—¢2/2) there is :

VP—Vi—€e<on(M)<o(M)<\p+q+e.

More general results exist for controlling the spectrum of random matrices with independent entries,
even for non subGaussian ones and non identically distributed ones. This theory, in line with what
has been presented so far, goes beyond the useful framework for a proper understanding of the work
presented in this thesis. Interested readers may, however, wish to consult [129] for more details.

Next, our focus is shifted on a relaxed version of the previously exposed result. We now assume that
the rows of the random matrix M € RP*? are subGaussian random vectors. This relaxation is important.
It is then possible to interpret the random matrix M as a set of p independent random points taken in
a space of dimension ¢. The following lemma proves that the spectrum of M can be control almost as

sharply as in Lemma|(1.1.16

Lemma 1.1.17 (Spectrum of a subGaussian matrix with independent rows, Theorem 4.6.1 in [130])
Consider M € RP*Y a random matrix whose rows are independent mean zero, subGaussian isotropic
random vectors in RY. Then for any ¢ > 0, with probability at least 1 — 2 exp(—¢?) there is :

VD — CK?*/q— CK% < 0,,(M) < 01(M) < /p+CK?/q+ CK?,
where C'is a positive constant and K := max;c[y p [|[[M]i.||w, with ||[ ||v, the subGaussian norm.

Finally, the last extension we will address is the question of controlling the spectrum of a matrix
whose columns are non-subGaussian random vectors. Lemma [1.1.18| provides sharp bounds in this
context.
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Lemma 1.1.18 (Spectrum of random matrix with independent columns) Let M be a p x q matrix
whose columns (Mj) jeln) are independent random vectors in RP with the common second moment

matrix 3. Let k be a number such that | M;||2 < \/k almost surely for all i € [1,q]. Then for every ¢ > 0,
the following inequality holds with probability at least 1 — exp(—e?),

1 /€2 +1 by 241
H*MMT _ EHO;D < max €+ Og(p) ’iH HOP’ €+ Og(p) . K 7
q C q C n

where C > 0 is an absolute constant.

Proof. Theorem 5.44 in [129] considers a matrix M of size px ¢ whose rows M; are independent random
vectors in R? with a common second moment matrix . This matrix is assumed to have a uniform bound
which holds almost surely on the L, norms of its rows. More specifically there is a number  such that
| Mill2 < +/k almost surely for all i € [1,q]. Then for every § > 0, the following inequality holds with
probability at least 1 — g exp(—cs?),

1 b))
I=MTM — 3|op < max | ElZlep g2 %)
p p p

where ¢ > 0 is an absolute constant. We apply this result to the transposed matrix A/ and consider
2. 0% +1og(q)

To concﬁude, this section briefly introduces the notion of random matrices. We are mainly interested
in the control that can be obtained on the spectrum, which represents the expansion/contraction that
the corresponding linear (random) operator induces on the vectors of a basis. We mainly present the
non-asymptotic behaviour of the largest and smallest singular values in the framework of a matrix
with independent Gaussian entries, independent subGaussian rows and independent non-subGaussian
columns.

1.1.4 Stochastically dependent data

In the previous sections we focused on the study of independent random variables. However, the
assumption of independence is sometimes too strong to study some real phenomena. For example,
weather data cannot be modelled as a series of independent variables. Indeed the collected data on
day ¢ will influence the data that will be collected on day ¢ + 1, see [17]. It is therefore necessary,
especially when studying phenomena with a time component, to extend the theory presented above
to non-independent variables. In a time series context, we consider random processes indexed by T,
usually assumed to be a subset of R. It possible to extend this setting and consider a random process
indexed on any general abstract set T. Especially, when the set T is a subset of N which is finite,
the random process can be identified with a random vector in R°29d(T) A comprehensive probabilistic
model for a random process involving the random variables {X;}.cr would ideally describe all the
joint probability distributions of the random vectors (Xi,...,X;), or equivalently all the probabilities
P[X; < z1,...,X; < x4 across different time points ¢ € T". A special case of a random process is one
in which the joint probability distribution does not change over time. Such a random process is said to
be stationary and is at the core of chapter 2
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Definition 1.1.7 (Strictly Stationary Process) Consider a set T C R and a random process { X }icr.
Define n € N* and consider Fx (x4, ..., x:,) the cumulative distribution function of the joint distribution
of {X,} attimest,...,t,. The process {X,} is strictly stationary if

Fx($t1+77...,$tn+7) :Fx(l’tl,...,l‘tn) forallty,...  tp,t1+7,...,th +7€T.

Consequently, a strictly stationary process exhibits means and variances that do not change over
time. This allows for the definition of a weaker stationarity, named weak stationarity.

Definition 1.1.8 (Weakly Stationary Process) Consider a setT C R and a random process { X;}ier.
The process { X} is weakly stationary if

E[X:] = E[Xy,] forall (t,7)¢cT?
Cov(X:, X)) = Cov(X;_s, Xo) forall (t,s) e T?
E[|X:|] <oo forall teT.

Considering a (strictly or weakly) stationary process (X;):cr, it can be noticed that its covariance
matrix exhibits notable properties. Indeed the covariance between any two observations depends only
on their time difference, leading to a simplified and structured representation of the covariance matrix
based on a single function of the time lag. This implies that the quantity Cov(X;, X) for any (¢, s) € T2
only depends on |t — s|. Hence, if T = [1,n] C N*, the covariance matrix of (X;);cr is @ symmetric
Toeplitz matrix of size n x n.

Definition 1.1.9 (Symmetric Toeplitz matrix) A matrix ¥ € R"*™ is symmetric Toeplitz if ¥ is symme-
tric and each descending diagonal from left to right is constant. Thus there exists (o1, ...,0,) € R™ such
that for any (i, j) € [1,n]?,

Elig = 01—

Another special type of random process, which is briefly mentioned in chapter |2 is the Gaussian
process. A random process is said to be Gaussian if any finite collection of random variables follows a
joint Gaussian distribution.

Definition 1.1.10 (Gaussian process) Let {X,}.cr be a collection of random variables indexed by a
setT. The process { X.} is said to be a Gaussian process if for any finite subset {t,,ts,...,t,} C T, the
random vector (X, , X4,, ..., Xy, ) follows a multivariate Gaussian distribution.

Mathematically, a Gaussian process is completely specified by its mean function m(t) = E[X;] and
its covariance function k(¢,s) = Cov(X, X;) for all t,s € T'. If m(t) = 0 for all ¢ (zero-mean Gaussian
process), then k(t, s) is called the covariance function.

Chapter [2| considers the p-dimensional observations X, ..., X,, which are assumed to be inde-
pendent with Gaussian probability distribution N, (0, X). The objective is to provide a testing procedure
to determine if the covariance matrix X of the generating stationary process is the identity or not. The
considered alternative hypotheses are sub classes of symmetric Toeplitz matrices.

Building upon the foundation of random processes and stationarity, the next step is to introduce
fundamental concepts that enable the control of deviations in dependent quantities. These concepts
include adapted sequences, martingale differences, and Azuma-Hoeffding inequalities. A random pro-
cess is said to be adapted if, informally, the information about its value at a given time step ¢ is only
accessible for the first time at that same time step t. An adapted process is also referred to as a non-
anticipating process.
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Definition 1.1.11 (Adapted process) Let (2, A, P) be a probability space and I < N. For alli € I, let
Fi be a sub-o-algebra of A such that for all (i,5) € I?, ifi < j then F; C F;. Let (X;)icr be a random
process on ) with values in the measurable space (E,=). We say that the process (X;);c; is adapted
to the filtration (F;);cy if for alli € I, X; is (F;, =) measurable.

In addition to adapted processes, the notion of martingale difference sequences (MDS) plays a
crucial role in the understanding of dependent quantities. Indeed, in most limit theorems, the assumption
of independence can be relaxed with the assumption of MDS which requires weaker restrictions on the
dependence structure. Informally, a random process is said to be a MDS if, conditionally on the values
taken by the process up to the time step ¢t — 1, the expected value of X; is null.

Definition 1.1.12 (Martingale difference) The process (X;).cn adapted to the filtration (F;)ien IS @
martingale difference if for all i € N,

E[|X:]] < oo, andE[X;yi1|F]=0.

Finally, we present the main tool for controlling the deviation of the empirical mean of dependent
quantities.

Lemma 1.1.19 (Azuma-Hoeftding’s inequality, Corollary 2.20 in [131]) Let (X;);c[,) adapted to the
filtration (F;);cn) be a martingale difference and assume there are constants {(a;, b;)} such that
each X; belongs to [a;, b;] almost surely. Then, for all e > 0, we have

1€[n]

- 2n2e?
P HX"| > e] < 2exp ( Z?:l(bi — ai)2> .

Lemma[i.1.19)is a generalization of Lemmal({.1.8]for non independent random variables. To conclude,
we mention that it is possible to control random processes in a more general framework. Especially,
there is a large body of literature on controlling the supremum of a random process. First, we give some
results on Gaussian processes. Indeed, the study of the supremum of a collection of Gaussian random
variables is of fundamental importance. In such cases, certain comparison inequalities are helpful in
reducing the problem at hand to the same problem for a simpler correlation matrix. Slepian’s lemma
states that for two Gaussian processes with the same variances, the one with larger intrinsic distances
has stochastically larger maximum. Similarly, Sudakov-Fernique inequality ensures that for two Gaus-
sian processes, the one with larger intrinsic distances has larger expected maximum. For subGaussian
processes, Dudley’s inequality provides an upper bound on the supremum of a random process with
subGaussian increments in terms of covering numbers of T, the set used for indexing the random
process. Talagrand’s comparison inequality ensures that any subGaussian process is bounded by a
Gaussian process. For more general processes, the study of the supremum of empirical processes has
benefited greatly from the work of Talagrand and the famous result presented in [123], Theorem 1.4.
Readers interested in these concepts, which go beyond the scope of this thesis, will benefit from rea-
ding the following works : [130] for an introduction to the chaining method and [92] for a more general
overview.

1.1.5 Time series analysis

Time series analysis is a fundamental area of study within statistics and data science, focusing
on understanding and modelling sequential data points indexed by time. This field plays a crucial role



16 CHAPITRE 1. INTRODUCTION

in various disciplines, including economics, finance, engineering, epidemiology, and climate science,
among others. The overarching goal of time series analysis is to extract meaningful insights, identify
patterns, and make informed forecasts based on historical observations. We introduce the analysis of
vector-valued time series and matrix-valued time series. In the same spirit as the section we focus
the presentation on linear prediction models. In particular, we seek to understand how the sequential
dependence of the data impacts the performance of the estimators previously introduced.

Vector-valued time series

A general approach to time series modelling consists into plotting the series and examining the
main features of the graph, checking in particular whether there is a trend, a seasonal component, any
apparent sharp changes in behaviour or any outlying observations. In a trend-stationary process, the
first objective will be to remove the trend in order to model the stationary process. Several methods exist
for removing the trend such as a least squares estimation of the trend, a smoothing by means of moving
average, or the differencing method. If the process exhibits both a trend and a seasonal component,
they can both be removed by the small trend method, the moving average estimation method or the
differencing method, see [31] for more details. We then assume to have observations coming from a
stationary process. Indeed stationarity simplifies the analysis of time series data. When a process is
stationary, its statistical properties (such as mean, variance, and autocovariance) remain constant over
time. It also enables the use of time-invariant models, where the parameters of the model do not change
over time.

The analysis of univariate time series benefits from an extensive list of references, see [31], [71], [62]
and [31] for great introductions. However, situations may arise where the values of interest depend not
only on past values but also on other variables. Therefore, it becomes necessary to consider additional
variables into the forecasting model to leverage more information. This is not allowed by the standard
univariate time series theory and motivates the consideration of vector-valued random processes X;.
The primary objective is to develop effective forecasting methods. We focus on linear models.

Given the d-dimensional vector-valued observations z,...,z,, realizations of the p-dimensional
random vectors X1, ..., X,, the objective is to provide a forecast for the period p + 1. A standard linear
model is the following one :

p
Xt = ZAZ*Xt—'L + €.

=1

where for all i € [1,p], A¥ € R¥*? and ¢, € R? is a zero-mean stochastic process with constant variance.
However, even if ¢, is independent of X4, it is not independent of X;,; anymore. Thus, a careful investi-
gation is needed to derive well performing estimators. If the dataset contains T' € N* observations, the
model can be rewritten as follows :

Y = A*Z+E,
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where
Y= (X, Xps1 - Xp) e RIT—ph
A = (A1 Ay -+ Ay) e R
Xpo1 Xp o0 Xpog
X1 X - Xroy
E:= (e €1 - €r)€ RAX(T—p+1)

In the time series literature, this model is referenced as the vector autoregressive model of order p.

Definition 1.1.13 (Vector autoregressive process of order p : VAR(p)) A discrete-time d-dimensional
vector-valued stochastic process { X, }.en is defined as a vector autoregressive process of order p if it
can be written, foranyt € [p+1,00[, as :

P
Xy = Z Ai X i + €,
i—1

where (A;)icp1,p) IS @ set of d x d matrices corresponding to the parameters of the model, and {¢;} is a
serially uncorrelated, zero-mean stochastic process with covariance matrix o*1,.

Similar to the univariate autoregressive model, the vector autoregressive model is stationary when
the effects of shocks dissipate over time. This condition holds true if all the eigenvalues of the companion-
form matrix are less than one in absolute value.

Definition 1.1.14 (Companion-form matrix of VVAR(p) model) The companion-form matrix of the VAR(p)
model from definition is the following matrix :

Ay Ay o Ay A
I; 04 --- 04 04
=0 1Ig -+ 04 Og
O¢ O0q - Iz 04

The usual main objectives are to estimate the transition matrices (A;);c[1,,) and the order of the mo-
del p. Notice that the structure of the matrices (4;);c[1 ) Provides insight into the temporal relationships
amongst the time series. In addition, the number of parameters to be estimated in a V AR(p) model
with fixed given p is pd?. In the low-dimensional regime, that is 7' > pd?, the estimation is carried out
by reformulating the problem as a multivariate regression as in (1.), see [99]. This setting has been
extensively studied in the literature. In addition to previous references, see [73], [113] and [126] for an
overview. In the high-dimensional regime, that is 7" < pd?, the VAR model is ill-posed : it suffers from
the over-parametrization issue. Hence the estimation is carried out by assuming sparse structures on
the transition matrices and adding a regularisation into the optimisation problem. However, Lasso type
estimators cannot be used without considering the temporal dependence, as shown in [120]. Hence a
careful control is needed on how the dependency affects the rate of estimation.
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A popular approach is the low-rank VAR model, introduced in [128]. The rank-penalized least
squares estimator, introduced in is then leveraged by [1] in this low-rank VAR context. More re-
cently, [135] proposed a method for estimating the transition matrix using the constrained Yule-Walker
equations and demonstrated its optimality under the 8-mixing dependency condition. Another approach
is to assume entry-wise sparsity on the transition matrices, leading to L, regularised least squares es-
timation. Authors in [139] provided guarantees for this estimator that hold even when there is temporal
dependence in data. Previously, [16] examined Gaussian Vector Autoregressive models with finite lag
and introduced a measure of stability based on the spectral density. The spectral density is defined as
the Fourier transform of the autocovariance function of the time series. A subset selection method is
proposed for vector autoregressive processes in [78]. Moreover, [15] examined a combination of low-
rank and entry-wise sparsity structure on these transition matrices. Finally, these procedures assume
a universal lag order applying to all components which constrains the relationship between the compo-
nents. Providing an adaptive estimation with different lag structures is at the core of current research.
This problem is especially tackled in [105].

Another approach for modelling high-dimensional multivariate time series is to use factor models. If
we are interested in the linear dynamic structure of the d dimensional vector-valued process {X;}, we
assume the existence of a static part i.e. the serially uncorrelated, zero-mean stochastic process {¢;}
and a dynamic component with an unknown low-dimensional structure, denoted B*Z; where B* € R4*"
is fixed and {Z,} is a latent » dimensional vector-valued process with r» < d. This leads to the following
factor model :

Xt = B*Zt + €.

In this setting, {Z,} is unobserved and thus called the factor process. In addition, the serial dependency
in the process {X;} is only driven by the dynamic low-dimensional part B*Z,. The objective in this
context is to derive an estimator of the fixed parameter B*, of the factor process {Z;} altogether with
an estimator of the dimension r of the factor process. This type of model is well studied in the literature,
see e.g. [91], [61] and [11]. In addition, matrix factorisation techniques are recently being studied to
model vector-valued time series, see [2] and [3].

Finally, we mention the change-point theory in VAR models. Change points refer to sudden or abrupt
shifts in time series data, which can signify transitions between different states. Detecting these change
points is valuable for modelling and predicting time series. Especially, the previously mentioned mo-
dels are based on the stationarity assumption of the processes at hand. However, this assumption is
broken when the data exhibits structural breaks. Detecting such breaks efficiently heavily depends on
understanding the underlying mechanism of the temporal evolution of the data. In a low-rank piecewise
stationary VAR model, [56] developed a test of presence of a change-point in the transition matrix with
minimax guarantees. For piecewise stationary VAR models, [12] presents a R-package that implements
two classes of algorithms to detect multiple change points and [134] proposed a dynamic programming
algorithm consistently localizing change points even as the dimensionality, the sparsity of the coeffi-
cient matrices, the temporal spacing between two consecutive change points, and the magnitude of the
difference of two consecutive coefficient matrices are allowed to vary with the sample size. For global
reviews on the topic, see [145], [109] and [13].

Matrix-valued time series

As detailed above, multivariate time series analysis represents a foundational area within the dis-
cipline of time series analysis. This multivariate framework not only unveils the temporal dynamics of



1.1. A NON-ASYMPTOTIC VIEWPOINT 19

the time series but also delves into the relationships among a group of time series, leveraging the avai-
lable information more comprehensively. While it has been traditional to treat multiple observations as a
vector, the relationships among the time series often exhibit additional structure, leading to the concept
of matrix-valued time series, introduced by [132]. For example, consider meteorological data where at
each time step t, one collects several weather information such as air humidity, wind speed, rainfall level
and temperature in five different cities. This leads to a collection of matrices (X;), with 4 rows and 5
columns. In this context, the matrix structure of the data is extremely important. The variables within the
same column (representing the meteorological parameter) often exhibit stronger inter-relationships, as
do the variables within the same row (related to the same location). Therefore, it is essential to analyze
the entire group of variables while fully preserving and leveraging its matrix structure. However, while
matrix-valued data are well studied under an independence assumption, see e.g. [70], [87], [144] and
[125], the impact of the dependence structure is still not well understood. To present the problem, we
adopt the same framework as the one previously introduced.

Given the d x k matrix-valued observations z, ..., z,, realizations of the random d x k matrices
Xi,...,X,, the objective remains to provide a forecast for the period p + 1. A standard linear model is
the following one :

p
Xt = ZA;kXt*ZBZ* + €t.
=1

where for all i € [1,p], A7 € R4 Br € R** and ¢, € R¥* is a serially uncorrelated, zero-mean
stochastic process with constant variance. Note that an identifiability problem occurs in this model as
for any o € R, the pairs (A}, Bf) and (a A}, o~ 1 By) lead to the same model. A common practice would
be to require for all i € [1,p], || A = 1. However this requirement wouldn’t be sufficient as taking
o = —1 would still lead to the same model and satisfy this requirement. The additional requirement that
for all i € [1,p], Tr(B;) solves the issue. This leads to the matrix autoregressive model of order p.

Definition 1.1.15 (Matrix autoregressive process of order p : M AR(p)) A discrete-time d x k matrix-
valued stochastic process { X, }.en is defined as a matrix autoregressive process of order p if it can be
written, forany t € [p+ 1,00[, as :

p
Xe=) AiXeiB} +e,
=1
where (A7)ic1p) IS @ set of d x d matrices satisfying || Aj||r = 1, (B} )icp1,p) iS @ set of k x k matrices
satisfying Tr(B}) > 0 and {e;} is a serially uncorrelated, zero-mean matrix-valued stochastic process
with covariance matrix o1 ;,.

«««< HEAD One notices that the M AR(p) model can be vectorized. Consider {X;} following the
MAR(p) from definition then it satisfies for all ¢ € [p + 1, 0o[ ======= One notices that the
M AR(p) model can be vectorized. Consider { X} following the A/ AR(p) from Definition then it
satisfies for all t € [[p + 1, oo[ »»»> 0ec5dd4 (Intro)

p
vec(Xy) = Y (B; @ Af)vec(X;_;) + vec(e;_;),
=1

where ® denotes the matrix Kronecker product and vec the vectorization of a matrix by stacking its
columns. Hence one can define the matrices ®; := B} ® A} and assume that vec(X;) follows a VAR(p)
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model. However, the matrices ®; present a special structure that is not leveraged in the standard
V AR(p) estimation procedures. Thus the initial matrix structure of the problem would be lost.

Matrix-variate time series models have garnered increasing attention within the research commu-
nity, evidenced by recent publications on this emerging topic. In [47], the M AR(1) model was studied
under an asymptotic framework, focusing on probabilistic properties and establishing conditions on Aj
and Bj for model stationarity. Estimators were defined, and their asymptotic properties were rigorously
demonstrated. Building on this, [141] introduced an estimation procedure based on alternating least
squares tailored for low-rank assumptions on matrices A} and Bj, providing further insights into the
derived estimators’ asymptotic behaviors. These foundational works were extended to tensor scena-
rios in [96], maintaining autoregression of order 1 through an alternating least squares approach and
continuing to offer asymptotic guarantees. They also propose to determine the autoregressive order
with an information criterion based procedure. In the context where T' > p, [77] introduces a compre-
hensive examination of a generalized rank-R autoregressive model of order p. Their approach involves
vectorizing the problem, and their estimation procedure hinges on constrained maximum likelihood, as-
suming a Gaussian distribution for the vectorized noise matrix. Sparsity in the coefficients is explored in
[75] by introducing spatial neighborhoods. The factor model approach is also gaining traction to study
matrix-variate time series, see [136], [72] and [45].

1.2 Problems and contributions

In this section we present the statistical problems studied in the core chapters of the thesis. We
first detail the hypothesis testing problem, which is central to the understanding of Chapter[2] We then
explore the regression problem and especially the multivariate linear regression for which Chapter
provides an extension. Then we present the topic model problem, for which a dynamic extension is
studied in Chapters [4and

1.2.1 Hypothesis Testing : deciding where lives a covariance matrix

In all fields, from scientific experimentation to everyday life, we are required to make decisions
about risky activities based on the results of experiments or observations of phenomena in an uncertain
context. The decision problem consists of deciding, on the basis of observations, between a hypothesis
known as the null hypothesis, denoted Hj, and another hypothesis known as the alternative hypothesis,
denoted H;. A hypothesis test is therefore a decision-making procedure used to determine whether or
not the null hypothesis can be rejected in favour of the alternative hypothesis given the observed data.
We assume that the observations are realizations of the random variables (X, ..., X,,) taking values
in (E,€&).

Definition 1.2.1 (Test procedure) A test A, is a measurable function of the observations taking its
values in {0,1} :
A, : E" = {0,1}.

A, then separates the set of possible outcomes of some random event in two contiguous sets, Hj is
rejected whenever A,, = 1 and not rejected whenever A,, = 0.

We consider in Chapter [2|the observation of n i.i.d random vectors (X1, ..., X)) defined on R? with
a common covariance matrix ¥ € S, where S represents the set of symmetric positive definite
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matrices of size p x p. The considered testing problem is :
H()tE:{Ip}, vs. Hy :EEJTP,

where F, C SJ* is a set of sparse Toeplitz matrices. We consider two different alternative hypotheses,
either there exists a number s of covariance elements that are significantly positive (the one-sided
alternative 7, = F,(s,S,0)) or significantly different from zero i.e. (the two-sided alternative 7, =
F(s,S,0)). The alternative classes are presented in Definition [2.2.1]

In a decision problem, two types of error are possible. A type | error occurs when we decide that
H, is true, i.e. observing A,, = 1, when Hj is actually true. A type Il error occurs when we fail to reject
Hy, i.e. observing A,, = 0, when H; is true. The consequences of these two errors can be of varying
degrees of importance. Every decision has thus a probability of being right and a probability of being
wrong. The type | error probability, in words the worst "chance" of falsely rejecting the null hypothesis, is
denoted a and is called the significance level of the test. The type Il error probability, in words the worst
"chance" of failing to reject the null hypothesis, is denoted 1 — 3. Thus g is the probability of correctly
rejecting the null hypothesis and is called the power of the test.

Definition 1.2.2 (Type | and type Il errors) Consider the testing procedure A, for the testing problem
Hy: X =1,, vs. Hy : ¥ € F,. Then the type | error probability of A,, is defined as :

= P[p (An = 1) .
Similarly, the type Il error probability of A,, is defined as :

1—p:= sup Py (A, =0).
SEF,

To define a test procedure, the ideal would obviously be to find one that minimises both risks of error
at the same time. Unfortunately, one can show that they vary in opposite directions, i.e. any procedure
that decreases « will generally increase 1 — 8 and vice versa. Thus there are essentially two ways to
define an optimal testing procedure. The first one is the Neyman-Pearson’s optimal testing procedure.
In this setting, we will consider that one of the two errors is more important than the other, and try to
avoid this error. Usually we choose Hy and H; so that the error we are trying to avoid is the type |
error. Notice that the ideal test would then almost surely never wrongly reject Hy. However, in usual
cases, the only test having o = 0 is the trivial test A,, = 0. Thus we need to let the other error to occur.
For example, in the case of a trial, we generally do everything we can to avoid convicting an innocent
person, even if it means taking the risk of acquitting a guilty person. Mathematically, we fix a value for
the level a € [0, 1]. The more serious the consequence of the type | error, the smaller a will be. However,
for the same decision problem, several tests with a type | error probability smaller than « may exist. In
this case, the best of these tests is the one that minimises the probability of the type Il error, i.e. the one
that maximises the power 5 among the tests with a level being at most a.

Definition 1.2.3 (Neyman-Pearson’s optimal testing procedure) Let's A% denote the set of all tes-
ting procedures with level at most «.. Then the Neyman-Pearson optimal test, denoted Ay p, is a test of
level o which solves the following :

forall ¥ € ]:p, PE[ANP = 0} = Alenga Pg[A = 0].

If it exists, A p is called a uniformly most powerful test.
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Because the problem Ay p needs to solve does not always have a solution, the notion of optimality
defined by the Neyman-Pearson’s optimal testing procedure is not universal. Hence, there is a need for
a more general approach to finding an optimal testing procedure. As described previously, one can'’t
find a test both minimizing the level o and maximizing the power 5 as « and 1 — 3 evolve in opposite
directions. However, it is possible to minimize the sum of the type | and type Il error probabilities. Hence
an equal role is given to Hy and H;. This criterion is described as the minimax approach.

Definition 1.2.4 (Maximal testing risk) Let’s consider a testing procedure A and define R(A) its maxi-
mal testing risk :

R(A,Fp) :=Pr, (A=1)+ sup Py (A =0).
TEF,

Then a test is said to be minimax optimal if it minimises the maximal testing risk among all testing
procedures. Its maximal testing risk is then called the minimax testing risk.

Definition 1.2.5 (Minimax testing risk) The minimax testing risk is defined as

R'(F,) = inf R(A, ).

If it exists, the testing procedure achieving the minimax testing risk, denoted A,, is called a minimax
test.

Another important point to mention is that the null hypothesis class is a singleton, namely the identity
matrix. Hence the objective of the procedure is to determine whether or not it is possible to reject
with high probability the hypothesis that ¥ is the identity. In addition, we have chosen the alternative
hypothesis classes to be a subset of sparse Toeplitz matrices, 7, = F.(s,S,0) or F, = F(s,S,0).
Essentially, one can wonder why such a testing problem doesn’t take the more general following shape :

Hy:X =1, vs. H :%eSH\{I}

In this scenario, one notices that for any standard choice of distance on S,/ *, e.g. the distance derived
from the Frobenius norm, denoted as || ||, we have

inf I, =% ||, =0.
sesit\(n) F

Hence it is not possible to separate the null hypothesis from the alternative one. This leads to the
minimax testing risk being equal to one and thus the random guessing test becomes optimal. Hence,
in this goodness of fit testing problem, it is mandatory that the alternative hypothesis class is well

separated from the null hypothesis singleton. Thus for a fixed ¢ > 0, we need to define ]—“ZSE) such that

inf ||I, =% |p>e€
SeF

From the definition of our alternative classes we see that both F, (s, S,0) and F(s, S,0) are well se-
parated from the singleton {I,,}. Finally, the optimal choice of the separation radius ¢ is discussed in
the literature and can be defined as the minimax separation radius. This goes beyond the scope of
this thesis. However, interested readers may wish to consult [95] and [82] for more details on minimax
testing procedures.
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Chapter@: Covariance matrix testing and support recovery. We consider (X;),_; _, e Np(0, %)
where ¥ has a Toeplitz structure. We then denote o;_; the covariance Cov(X? X7)fori,j € {1,...,p}.
First, we test whether the covariance matrix X is the identity matrix I,, against the one-sided alterna-
tive 7. (s, S,0) or the two-sided alternative F(s,S,o), see Definition From an asymptotic point
of view, s can tend to infinity as p tends to infinity, thus a nonparametric model is allowed, that is the
number of parameters can increase. Such models have only been considered in nonparametric estima-
tion of the spectral density of stationary time series, see [89]. First we define ¢ 4 the linear functional of
the covariance matrix ¥ associated to the matrix A belonging to S, as ¢4 (X) := Tr(AX). The sample
covariance matrix is denoted X,,. Thus, the covariance element o;, j > 1, can be written as

1
2(p—J)
- a matrix that has 0 elements except on jth upper and lower diagonals. Similarly, the empirical estimator
of o; can be defined as 4, (%)

In the moderately sparse case, the sum of all S values will allow to test, whereas in the highly sparse
case a search over subsets of size s will be necessary. This is called a scan procedure and it is compu-
tationally fast for vectors. Note that, if the sparsity s is unknown a second search over different possible
values of s will produce an aggregated procedure, free of s. In the moderately sparse case with the
alternative hypothesis being F. (s, S, o), we consider for some threshold t%f* the test statistic AMS+
defined in (2.5). When the alternative hypothesis is F(s, S, o), we consider for some threshold t%]f the
test statistic AMS+ defined in (2.6). Upper bounds on their maximal testing risks are derived respecti-
vely in Theorem [2.3.1] and Theorem [2.3.2] In the highly sparse case, when the alternative hypothesis
is F (s, S,0), we consider for some threshold ¢)/> the test statistic A defined in (2.7). When the
alternative hypothesis is F (s, S, o), we consider for some threshold t%pS the test statistic AZ5+ defined
in (2:8). The tests A5+ and A'S successively try all possible sets C of s diagonals among the first S
diagonal values. If any of these tests decides to reject Hy, then A5+ also rejects Hy. Upper bounds
on their maximal testing risks are derived respectively in Theorem[2.3.3]and Theorem [2.3.4]

To bound from above the maximal testing risks of the stated procedures, we give a new variant of
concentration inequality for quadratic forms of large Gaussian vectors and these bounds are specified
for covariance matrices that are Toeplitz with few non-null diagonals in Theorem [2.2.2] These bounds
are specified for covariance matrices that are Toeplitz with few non-null diagonals in Corollary [2.2.4]

Theorem 2.2.2| The random variable ¢4 (%, — X) is centered and sub-exponential with parameters

<u2 - ﬂfﬂff; b= 2”%{”0@), for some arbitrary K in |0, 1[. Therefore, for any v > 0 :

0j = E[XTA;X] = Te(A;%) = ¢a, (%),  with [Aj] = 1(lk =€l =4)

||AY] | A% | oo u
P[SOA(E"_EDmaX{ﬁ n(1—i()’“ nK }]<6Xp<_4)'

Previous concentration inequalities were given for such functionals. The closest to our case is the
chi-square type concentration inequality in [121] for standardized Gaussian vectors and generalized
to sub-Gaussian vectors. Let us also mention [65] who gave a Bernstein inequality for the empirical
covariance element of a stationary centered Gaussian process and generalized it to locally stationary
Gaussian processes.

We also propose a method to identify diagonal elements o}, j = 1, ..., S, with non-null entries in %,
pinpointing where information may be lost in the modelling process. The objective is to properly select
non-null correlation coefficients. It can be defined a lag-selection problem as estimation of ,, a vector
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with entries n; = 1(|¢a,; (X)] > 0). The aim is to find a selector i with 7; = 1(|¢4, (X,) | > 7,) that
is consistent in the sense that the risk R“%(7), F) = Zle Es[|n; — n;|] stays bounded. We provide

in Theorem an explicit value of 7,, such that the risk R“%(%, F) remains bounded by a quantity
decreasing in S.

1.2.2 Regression framework

Regression analysis is a fundamental statistical method used to explore and quantify the relationship
between one or more independent variables (the predictors) and a dependent variable (the target). The
goal of regression analysis is to develop a predictive model that can estimate the value of the target
based on the values of the predictors. This problem is at the core of chapter 3]

We observe a dataset consisting of 7" C N* responses Y; and T' corresponding features X;. The
objective is to develop a model capable of predicting the response Y, based on a new feature X, ;.
We write our model as follows :

forallt € [T], Yi= f*(Xy)+ e,

where ¢; encompasses measurement errors and factors that cause Y to depend on more than just the
considered X. The true function f* is unknown, leading us to seek an appropriate f that accurately pre-
dicts Y values at new points X = x. A well-performing function f aids in identifying which components
of X are significant for explaining Y and which are not. During data collection, there may be instances
where numerous features share the same value, such as X; = X; = z with i # j. Despite this, we might
observe Y; # Y}, indicating that ¢; and ¢; represent irreducible errors in our model. Even with an optimal
function f, predicting Y; using f at each X; = x can still result in errors because f(z) represents only
one value among a distribution of potential Y; values. One approach is to consider that the function f*
evaluated on z outputs the average of the observed values Y; corresponding to X; = z. This leads to
model the regression function f* as f*(x) = E[Y|X = z]. The regression function f* is the optimal
predictor of Y with respect to the mean-squared error :

J* € argming E [(Y —g(X))? X = x} .
Furthermore, for any estimate f of f*, we have

(v — 7)) 1X =] = (F(@)  f@)) "+ Vi),

This shows that there is an irreducible error we can’t shrink, namely V(¢), even if we know the true
function f*. We are especially interested in linear models, that is when f* is a linear function. We refer
to this problem as the linear regression problem.

Vector-valued target

In the conventional regression framework, the target variables Y; are scalar. However, in various
applications, the objective is not to predict a scalar variable but rather a vector Y, € R™. We still
consider that the predictors are vector-valued, namely for ¢t € [1,7], X; € RP. As a consequence, the
regression function f*(z) = E[Y|X = z] takes arguments in RP and outputs values in R™. Without
additional assumption, f* can be estimated independently for each coordinate, leading to independent
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linear regressions with real-valued targets. Indeed, the linearity assumption on f allows to rewrite the
model as follows :

Y =XB*+E, (1.1)

where Y € RT*™ is the target matrix, X € RT*? is the predictor matrix and B* € RP*™ is the parameter
and E € RT>*™ is the noise matrix, usually assumed to have i.i.d. o2-subGaussian entries. One notices
that for any j € [1,m], the 5% column of Y, denoted [Y] ; only depends on the j* column [B*] ; of B*
and for any i € [[1,T7], the i*" row of Y, denoted [Y];,, only depends on the i** row [X];. of X. Hence we
can view this problem as p independent linear regression problems with real-valued targets :

forallj € [1,p], [Y],=X[B*],+[E];.

This problem is an instance of multi-task learning, which is heavily studied in the literature [107, [101],
5,119, 55] 9] [143]. Especially, an estimator of X B* can be derived by solving p ordinary least squares
problems. Let us denote X B the corresponding estimator. If E has independent o2-subGaussian en-
tries, we derive from the standard OLS analysis, see [115], the existence of a positive constant C' such

that :
1 N 2 pm
~E HXB—XB* < 2P
T [ F:| <O 7

This result proves that in the high dimensional setting, that is when T' < pm, the mean squared predic-
tion error of B doesn’t go to zero. Hence it is natural to ask if another estimator of B* can be derived
solving this problem. Unfortunately, Corollary 4.13 in [115] proves that the least squares estimator
achieves the minimax rate of estimation in the univariate Gaussian sequence model. This implies that
the least squares estimator is optimal among all estimators without any prior knowledge on the struc-
ture of B*. Since this bound is optimal, it might seem like there’s no hope to solve this high-dimensional
statistical problem.

Fortunately, it is often noted that high dimensional data exhibit inherent low complexity. When the
low-dimensional structures are well-defined, the analysis reverts to more conventional low-dimensional
statistics. However, high-dimensional data present challenges due to the unknown underlying low di-
mensional structures. Therefore, a fundamental task is to identify or approximate these structures. In
the multivariate regression setting, there often exist shared structures across coordinates that can be
exploited to improve the prediction bounds. For example, one can assume that the columns of B* share
the same sparsity pattern with only s non null entries. If each task is performed individually, this leads
to the group-lasso estimator B~ studied in [98]. In this setting, there exists a positive constant C' > 0
such that the mean squared prediction error of B~ becomes :

le [HXBGL _ XB*
T

F| — T '

We remind that the extra log factor appears because of the unknown support of the non null entries of
B*. Hence in the high dimensional regime under this sparsity structure assumption, the mean squared
prediction error is converging to zero as long as 7' > smlog(p). Moreover, we underline that this spar-
sity structure assumption mimics the standard univariate one, solved with the Lasso procedure and its
variant, see [124, 122, 114, [33| [19]. Fortunately, more complex structures can be captured in the multi-
variate regression setting. For example, if the columns of Y are correlated, one can assume a low-rank
structure on B*. This leads to the low-rank multivariate regression.
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A possible solution to this problem is to consider an estimator B, of B* that can be defined as the
solution of a rank penalized version of the ordinary least squares problem. Hence for any A > 0 we
consider :

By, € argming |Y — X B||% + Arg, (1.2)

where rp denotes the rank of B. A first question of interest is the selection of the hyperparameter
A > 0. This problem falls into the category of model selection and we refer the reader to |64 (100] for
comprehensive introductions. The first step to compute this estimator is to define the restricted rank
estimators, that is B(*) which minimizes ||Y — XBH% among matrices B of rank no larger than k.

Lemma 1.2.1 (Lemma 8.1 in [64]) Consider P := X (X'X )+X T the orthogonal projector onto the
rank(PY")

range of X where (X " X) " denotes the Moore-Penrose pseudo inverse of X T X. Denote Y. ojuzv]
=1

R k
the SVD of PY. Then X B*) can be defined as 3" o;(PY Ju;v;' .
i=1

When the rank of B* is unknown, the previous estimator can be computed for any value of r € N*,
leading to B*). The quality of this estimator is given in the following lemma.

Lemma 1.2.2 (Non asymptotic bound on the squared prediction error, Theorem 5 in [32]) Thereis
a positive constant C such that for any k € N*,

9 rank(X B*)
L <C z;l oi(XB*)* + k|| PE|3,
i=r

H XB® _ xB*

Note that this bound, which exhibit a bias-variance trade-off, holds almost surely but depends on
the largest singular valse of the projection of the noise matrix £ onto the range of X. One can derive
an upper bound not depending on E by controlling the spectrum of the random matrix PE and then
provide an upper bound holding true with high probability. The bounds thus derived will be more or less
tight depending on the assumptions one makes on the distribution of the noise matrix E. The following
lemma provides an example.

Lemma 1.2.3 (Mean squared error in the low-rank multivariate regression, Corollary 6 in [32]) Assume
that the noise matrix E has independent centered gaussian entries with variance 2. Then there is a
positive constant C such that for any r € N*,

rank(X B*)
> o XB)?+0%k(m+rx) |,

E [H xB® _ xB*
i=r+1

2
|<c
r

where rx denotes the rank of X.

Lemma shows that the mean squared error is bounded by an approximation error and a
stochastic term. The approximation error is decreasing in k£ and vanishes for k£ > rank(X B*). Moreover
the mean squared error satisfies for k£ > rank(X B*) :

le [HXB _ XB*
T

2
F T
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One can then notice that rank(B*) > rank(X B*) and that in a high-dimensional setting with very low
rank, rank(X B*)(m + rx) < pm. However, the value of rank(X B*) is unknown and thus the previously
stated oracle bound cannot be achieved. A data adaptive procedure is proposed in [32] both in the case
of known o2 and unknown o2, the parameter of the noise. Similar performances are achieved as in the
oracle case.

Hence, if the columns of the observed matrix Y are correlated and if we then assume that B* has
a low-rank structure, an estimator B, of B* can be derived with non-asymptotic guarantees. However,
if the rows of Y are correlated, the previously exposed model cannot capture it. This can happen when
the observed predictors and targets exhibit serial dependency. This problem is the core of chapter
To conclude, generalizing those results for higher order tensors is a matter of considerable interest
within the research community. We refer the reader to [97] and references therein for a comprehensive
introduction.

Chapter [3]: Two-sided matrix regression. In this chapter, we study a multivariate regression pro-
blem where both the columns and the rows of the target quantity Y are assumed to be correlated. We
observe the target matrix Y € R™*P and a design matrix X € R™*? related via the two-sided matrix
regression (2MR) model. This model involves two parameter matrices A* € R™*™ and B* € R?*P and
is expressed as

Y = A*XB*+ E.

The noise matrix E is assumed to have independent centered o—subGaussian entries. The objective is
to derive predictors A and B such that AX B stays close to the signal A*X B*, under low-rank assump-
tions on A* and B*.

While this model does not involve time-dependency, the non-asymptotic results obtained here can
enhance our understanding of matrix-valued autoregressive time series : Y; = A* X, B* + E, (see [47]).
The 2MR model also encompasses known models such as matrix regression and matrix factorization.
For instance, if n = m and A* is the identity matrix, the 2MR model reduces to the one-sided matrix
regression model Y = XB* + E (see [108], [32], [104]). Similarly, if m = ¢ and the design matrix X
is the identity matrix with rank m smaller than both » and p, the 2MR model becomes a factorization
model of the signal M* = A*B* observed with noise.

Another representation of the 2MR model is in the form of a vector regression model. By stacking
the columns of matrices Y, X and E into vec(Y'), vec(X) and vec(E), respectively, we obtain

vec(Y)T = vec(X)" - (4")T @ B* + vec(E)”,

where ® denotes the tensor product of two matrices. Under this formulation, we predict a row vector
of size np using a row vector of size mq (with the feature matrix having rank 1) via a parameter of size
(mgq) x (np). This approach is problematic unless the structure of A* and B* is trivial. It fails to account
for the matrix structure of the features and the matrices A* and B*, leading to suboptimal results.

The objective is to build explicit predictors (AT,BT) solutions to the squared Frobenius prediction
risk under maximal rank constraint, see (3.3). Theorem [3.2.] provides, for an equivalent problem (3.5),
explicit predictors Ay, and By, with a non-asymptotic upper bound on the prediction risk. We notice
especially that this bound can be decomposed as the sum of a bias term, which is the cause of the
choice of the rank r of the predictors, potentially lower than the rank of the matrices A* and B* and a
stochastic term. The analysis of this stochastic term mainly involves random matrix theory, see [129].
These predictors lead to derive A, and B, solution of the initial optimization problem (3.3). This result

is stated in Corollary
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However, in the optimization problem (3.3), the question of how to select r arises. We propose a
rank-adaptive procedure to answer it. We first select the rank 7 by solving a rank-penalized version
of the squared Frobenius minimization problem, (3.8). Then we consider the corresponding predictors
(Az, B;). The prediction risk of these predictors is studied in Theorem The rank selection proce-
dure is also proven to be consistent in Proposition However both these results are stated
under the condition that the subGaussian parameter ¢ of the noise matrix entries is known.

Finally, we propose a data-driven rank-adaptive procedure, allowing to select 7 and derive predictors
(flf, B,:). These predictors exhibit non asymptotic provable guarantees without requiring the true value
o being known. To do so we modify the penalized minimization problem by replacing the rank r
with 752, see (3.9), where

~2 1 A A 112
Or = anY — A X By ||
The performance of this prediction procedure is detailed in Theorem [3.2.7]

Finally, similar to the standard linear regression scenario where the BIC estimator is replaced
by its convex relaxed version, the Lasso estimator, we compare the prediction performance achie-
ved using a rank penalty against that obtained using a nuclear norm penalty, which serves as the
convex relaxation of the rank penalty. Specifically, we consider the nuclear norm penalized version of
the squared Frobenius prediction risk minimization, see (3.10). We provide solutions A and B to this
problem in Theorem [3.3.1] and derive a non asymptotic upper bound on the corresponding prediction
risk |A*X B* — AX B|%.

We conclude by noting that the two-sided matrix regression model suffers from identifiability draw-
backs. Indeed many couples of matrices (A, B) solve the equation M = AX B for a given matrix M. We
can only hope to identify matrices A and B under very restrictive conditions where X " X has full rank
and either the matrix A or the matrix B is assumed to have known singular values, e.g. like a projector
with singular values 1 or 0. Few other setups are known to be identifiable in the literature of factorisation
of matrices, e.g. non-negative matrix factorisation (NMF), see [54], NMF for topic models [84], [25], [86]
or covariance matrix factorization [57].

1.2.3 Topic Modeling

This section is devoted to the presentation of the topic modeling framework, which is at the core of
Chapters[4]and[5] Consider a corpus comprising n textual documents written in a language characteri-
sed by a dictionary of size p. To analyze and leverage the information conveyed in these n documents,
the primary goal is to derive a vector representation for this document set. This mathematical expres-
sion will enable the application of analytical tools to extract and scrutinise information more effectively.
Given the varying lengths of documents, a straightforward count of each word’s occurrence would not
be pertinent. Consequently, for each document the focus is shifted to the frequency of appearance for
individual words. Each document can thereby be represented as a point within the simplex in RP. This
implies that the whole corpus is depicted as a set of n points within the simplex. Importantly, the order
of the documents bears no significance in this context. Additionally, we assume that those n points are
not linearly independent but span a subspace of RP with dimension K < min(n, p). Interpreted as the
number of topics discussed in the corpus, K plays a crucial role in capturing the underlying structure.
The principal aim is to find an embedding of these n points within the lower-dimensional space RX.
Consequently, the task is to identify a mapping from RP to RX such that the initial » points in RP can be
effectively embedded in RX through this mapping.
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In a more formal context, each document j € [n] is modeled as a collection of N; words drawn from
a dictionary of size p. Each document follows a discrete distribution 77 on the simplex of RP. For each
document j € [n], the p-dimensional vector Y; of word frequencies is observed and assumed to follow
a multinomial distribution centered on =7 :

N;Y j ~ Multinomial, (N;, 7). (1.3)

However, in real world examples, only few different topics are discussed in huge corpora of documents.
This leads to assuming that the word-document probability matrix IT* = (n7,..., 7)) € RP*" is of rank
K < min(n,p), the number of topics, and can be factorized as :

" = A*W™, (1.4)

where A* € RP*K is the word-topic probability matrix and W* € RE*" is the topic-document probability
matrix.

This framework assumes that the probability of occurrence of word i € [p] in a document discussing
topic k € [K] is independent of the document itself. Specifically, the probability vector 7 of document 3,
referred to as the word-document probability vector, is a convex combination of K word-topic probability
vectors with weights corresponding to the allocation of K topics. From a probabilistic standpoint, this
can be expressed with the total probability formula, as :

K
P(word i|document j) = Z P(word i|topic k)P (topic k|document j),
k=1

The primary objective within the traditional topic model framework is to recover A* and/or W* based on
the observations Y; ...,Y,, with or without a known fixed number of topics K. The estimation of ma-
trices A* and W* serves distinct purposes. Indeed, the estimation of matrix A* discerns the distribution
of words in the dictionary given some topic, while the estimation of W* reveals the distribution of topics
given some document.

It is noteworthy that without noise, i.e., the matrix IT* being observed, the recovery of A* and W*
becomes an instance of non-negative matrix factorization. The non-negative matrix factorization (NMF)
problem has been extensively studied, with algorithms attracting attention due to their ability to ge-
nerate factors with non-negative constraints, enhancing interpretability. Commonly, NMF is formulated
as the minimization of a regularized cost function [94, [93, [112], presenting non-convex optimization
challenges, especially in scenarios where numerous words are absent in a single document (N < p).
The main limitation of NMF is that solving the exact NMF problem, i.e., assuming a known rank K of
II* € RPX™ and retrieving matrices A* € RP*K and W* € REX" such that A*W* = II*, without any
additional assumption, is NP-hard, see [127]. This result implies the necessity of additional assump-
tions to ensure the existence of fast-running algorithms capable of estimating A* and/or W*. Moreover,
NMF algorithms face an identifiability issue. It is conceivable to find different non-negative matrices
(A3, W) € RPXE x REXn and (A3, Wy) € RP*E x REX7 sych that AWy = A5W;. Additional assump-
tions are required to ensure the uniqueness of the representation. The first such assumption is the
separability assumption and was initially introduced by [54]. It ensures the uniqueness of NMF. This
assumption was later incorporated into the topic model framework by [8], with the interpretation that,
for each topic, there exist certain words that exclusively occur in that specific topic. These words are
referred to as anchor words. The anchor word assumption has subsequently been adopted in most
literature on topic models.
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Assumption 1 (Anchor word assumption) For each topic k € [K]|, there exists at least one word j
such that [A*];, > 0 and [A*];; =0 forl € [K]\{k}.

Model assumes that both the matrix of word-topic and the matrix of topic-document are static.
In addition it assumes that the documents are exchangeable within the collection. Indeed the model
remains the same under a permutation of the columns of the observed matrix Y.

Recent works address the algorithmic aspects and give inference results in the problem of estima-
ting the matrix A* in a static framework under the anchor words assumption. For example authors in
[84] propose an estimator A achieving minimax rates for dense A*, i.e. not sparse, with a known, fixed
K. The procedure of [84] performs an SVD on a normalized version of the matrix Y followed by an ex-
haustive search over a p-dimensional simplex. For unknown K and dense A*, authors in [24] consider
Ak, provably achieving the minimax optimal rates in this setting. The procedure of [24] starts by reco-
vering the anchor words and then derive an estimator from a scaled version of YY T. Sparse A* with
unknown K is tackled by [25], proposing a minimax optimal estimation procedure Asparse of A*. The
procedure of [25] mainly focuses on the estimation of the portion of A* corresponding to non-anchor
words. To adapt to the sparsity of A*, their algorithm also requires the solution of a quadratic program
for each non-anchor row. Recently, several papers have also studied the problem of estimating a static
W* under various assumptions. When A* is known, and W* is assumed to be sparse, [23] suggests
a Maximum-Likelihood Estimator (MLE) for W*. Their analysis proved that the MLE is both minimax
optimal and adaptive to the unknown sparsity in a large class of sparse topic distributions. When A* is
unknown, [23] estimates W* by optimizing the likelihood function corresponding to a plug in estimator A
of A*. Hence the estimation error of W* in their procedure depends on how well A estimates A*. When
both A* and W* are unknown with a sparsity assumption on the columns of W* with K allowed to be
large, [140] proposes computationally efficient procedures for estimating both matrices. In addition, it is
possible to directly estimate W* by assuming additional structure. Hence [86] assumes another version
of the anchor word assumption, named anchor document. This assumption means that for each topic,
there is a document only discussing this topic. Their procedure, called Successive Projection Overlap-
ping Clustering (SPOC) is inspired by the Successive Projection Algorithm (SPA). The idea is to start
with the singular value decomposition (SVD) of the matrix Y, and launch an iterative procedure that, at
each step, chooses the maximum norm row of the matrix composed of singular vectors. Then it projects
on the linear subspace orthogonal to the selected row.

Chapter [4] : Dynamic Expected Topic Model In this chapter, we assume that batches of n docu-
ments are collected in T" steps over time. The aim is to consider the temporal aspect in the collection
of documents and to reflect the dynamic evolution of the topics discussed in the corpora. We assume
that the topic-document probability matrix W* follows a simplex-valued autoregressive model of order
one. Hence the matrix Wh7T .= (Wl, e WT) is now considered random. Specifically, at each time
step ¢, the distribution of topics given a document is a linear combination of the previous distribution
and a Dirichlet-distributed noise, which drives the temporal evolution of the topics. More specifically we
consider that for all ¢t € [T — 1] :

Wt+1:(1—c*)-wt—{—c*~At

where ¢* € (0,1), and each A’ is a noise matrix of size K x n such that the columns are independently
and identically drawn from a Dirichlet D(6*) distribution having parameter ¢* € RE. We denote « the L;
norm of #* and #* its L,-normalization. The objective of this chapter is to estimate the parameters of
this autoregressive model, i.e. ¢*, 6* and «, under the assumption that the word-document probability
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matrix IT? := (II,, ..., II7) is available. We call this framework the oracle case. We begin by studying
the spectral properties of the empirical covariance matrix 7 = L (W) (WI:T)T. Specifically in
Theorem [4.3.3|we provide a control on its smallest eigenvalue and show that it is bounded from above
and below by quantities depending on ¢*, o and #* with high probability. In Proposition we control
its largest eigenvalue by bounding it from above and below almost surely with quantities depending
exclusively on K. These results legitimise a strong assumption we are making on the spectrum of this
matrix. Following the work in [84], we present an SVD-based algorithmic procedure that recovers exactly
the word-topic probability matrix A*. Projecting the word-document probability matrix II*” on A* allows
to recover exactly the topic-document probability matrix W 7. Then, we estimate the parameters 6*,
¢* and « with the estimators defined respectively in (4.8), and (4.11). Non asymptotic bounds on
their estimation error are derived respectively in Theorem Theorem [4.4.2]and Theorem In
particular, we prove that there exist absolute constants C, C2 > 0 such that :

log(nT)
nT - nT

P | max{]|f — 6%||a, |(T—¢) — (1 — &), |& — a*|} < Ci -

Note that the dimension of the vector 6*, which is the number K of topics.

Chapter [5 : Dynamic Topic Model In this chapter, we consider the same setting as in Chapter [4]
without the word-document probability matrix II'" being available anymore. We assume to only have
access to the word-document frequency matrix Y. Then, we first define the empirical versions of
the quantities involved in the previously exposed procedure recovering A*. This empirical adapted pro-
cedure leads to an estimator A of A*. We provide a careful study of this estimation procedure. More
precisely, we give explicit upper bounds up to log factors and their dependence on all dimensions of
appearing matrices. Then we project the word-document frequency matrix Y7 onto the estimated
word-topic matrix A. This leads to an estimated topic-document W7 The estimators of the autore-
gressive parameters, introduced in Chapter 4, are adapted to this setting. Non asymptotic bounds on
their estimation errors are derived respectively in Theorem[5.4.7] Theorem[5.4.2land Theorem[5.4.3] In
particular, we prove that there exist absolute constants ¢y, Cy > 0 and a, b > 0 such that :

log(nT) log(nT)
nT +\/ N )

> &2
- nT

P |max{[[§ —6"[2, |1 —¢) = (1 = )], |a — ']} < C1 - K" <\/

This shows the additive contributions to the convergence rates of the Dirichlet noise driving the pro-
bability of topics given documents and the multinomial model of word-counts. Moreover, for very long
documents, that is when N > nT', the convergence rates are only driven by the Dirichlet noise up to
multiplicative terms in the number of topics K and the size of the vocabulary p.

1.3 List of publications
The core chapters of this thesis are based on the following manuscripts :
— Chapter |2, [21] : "Fast nonasymptotic testing and support recovery for large sparse Toeplitz

covariance matrices" (2022) , Nayel Bettache, Cristina Butucea and Marianne Sorba.
Journal of Multivariate Analysis.
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— Chapter[3] [20] : "Two-sided matrix regression” (2023), Nayel Bettache and Cristina Butucea.
arXiv :2303.04694, Electronic Journal of Statistics, tentatively accepted,

— Chapter[4 and Chapter [5]: "Dynamic Topic Model" (2024), Nayel Bettache, Cristina Butucea and
Tracy Ke,
under preparation.



Chapitre 2

Covariance matrix testing and support
recovery

2.1 Introduction

Covariance matrices of high-dimensional vectors appear in machine learning, signal processing and
statistical procedures. In these fields, e.g., in the test-phase of an algorithm or in the validation step of
a statistical model, the quality of the residuals (the difference between the observed and the predicted
values) is a good indicator of the good performance of the procedure. More precisely, the closer the
residuals are to a white noise distribution, the less information was lost by the predictor or the model at
hand. It is therefore natural to look for very weak, sparse information in the covariance matrix of such
residuals.

Goodness-of-fit tests are designed to assess whether the underlying (unknown) covariance matrix
of high-dimensional vectors is the identity (which defines the null hypothesis), or it is far from it with
respect to some distance (the alternative hypothesis). The separation radius is a measure of how far
the covariance matrix needs to be from the identity matrix in order to be able to distinguish it given
the observations. Another important information is to recover the support of the covariance matrix,
i.e., the set where the non-null values can be found. As in high-dimensional regression, this support
is used to reduce dimension of the problem, produce unbiased estimators of the non-null entries and
so on. A selector is a vector with coordinates taking value 1 when the covariance value is non-null,
respectively 0 when it is null. The quality of a selector is appreciated with the Hamming loss, which
counts the number of miss-classified coordinates. Our main interests are both testing the covariance
matrix and recovering the support of significant covariance elements under the alternative hypothesis
of weak sparse covariance values.

The p-dimensional observations X, ..., X,, are considered independent with Gaussian probabi-
lity distribution A\,(0,%) where ¥ = [oy;]1<i,5, belongs to the set S, of positive definite symmetric
matrices. Let us denote by X a generic vector with the same Gaussian A,,(0, X) distribution.

More particularly, when the vector X is issued from a stationary process, its covariance matrix X
has a Toeplitz structure, that is its diagonal elements are all constant and denoted by

0ij = Cov(X*, X7) =: Oli—jls  4J €{L,...,p}.

As mentioned in [46], stationary time series are used as approximations of geometrically ergodic
time series (whose transition probabilities converge exponentially fast to the stationary distribution). The

33



34 CHAPITRE 2. COVARIANCE MATRIX TESTING AND SUPPORT RECOVERY

information on the Toeplitz matrix is fully contained in the vector (og, o1, . .., 0p—1) Of its diagonal values.
More generally, any covariance matrix can be similarly studied by looking at the energy of each diagonal
of the covariance matrix, that is its Euclidean norm oy, = ||(01 441, .-, 0p—kp)||2- Here, our efforts are
devoted to quantifying the benefits of the Toeplitz structure in terms of rates for testing and for support
recovery. Indeed, the Toeplitz structure helps improving the rates for testing and lag selection when the
dimension p grows, and we do not have here a curse but a blessing of dimensionality. All methods are
evaluated for all possible values of p less than or greater than n, without restriction.

In this paper is given a new variant of concentration inequality for quadratic forms of large Gaus-
sian vectors and these bounds are specified for covariance matrices that are Toeplitz with few non-null
diagonals. We show non-asymptotic separation rates for testing large sparse Toeplitz covariance ma-
trices which are remarkably fast due to the structure of the matrix. The aim is to test here whether
the covariance matrix is the identity matrix I,, or there exists a number s of covariance elements among
a1, ...,0p—1 that are significantly positive (one-sided alternative), respectively significantly different from
zero (two-sided alternative). The test procedure combines a sum and a scan procedure in order to de-
tect small (relatively) numerous non-null entries and very few but sufficiently large entries, respectively.
This is analogous to but more general than the detection of sparse Gaussian means [53, 80, [81] where
observations have the same variance, whereas our model is heteroscedastic.

Moreover, we propose a selector of the diagonals with non-null entries - a lag selector, which is
constructed by universal thresholding of some linear estimators. Fast non asymptotic bounds are provi-
ded for the expected value of its loss.

Experimental results show the excellent behaviour of these procedures with small values of n (non-
asymptotic character of our results) and large values of p. Indeed, by exploiting the Toeplitz structure,
the matrix size p does not act as a nuisance parameter anymore, but diminishes the convergence rates.
All test procedures and the lag-selector are computationally trivial to implement. Note that the scan
procedure is performed on a vector as well and it is therefore computationally fast, in contrast with the
scan procedure of matrices, see e.g. [6, 34].

High-dimensional statistics is the major research topic nowadays as attest many recent international
events and numerous collections of papers such as [66, 4, [111]. The study of the covariance operator is
very often at the core of functional data analysis. Our manuscript contributes in that sense and it makes
a first step towards dynamic modelling of time series in the sense that the dimension p may grow when
the sample size n increases and, moreover, the sparsity parameter s may evolve with p and n. This may
happen within the framework of stationary time series when the sequence of auto-correlations is sparse
but infinite : depending on p and n the noise level in the model is more or less important and therefore,
s can be viewed as the number of sufficiently significant correlations (above the corresponding noise
leve) that obviously increases with the accuracy (that is when p and n increase).

Previously, Cai and Ma [43] considered the same goodness-of-fit test with alternative characterized
by covariance values that belong to an L, ball of fixed radius. Tests for sparse covariance matrices
were given by Arias-Castro, Bubeck and Lugosi [7, |6]. They considered alternative covariance matrices
having at most s significant values and also the structured alternative of a clique of size s producing a
small submatrix of significant values. Our testing rates are faster, but they are difficult to compare as
the Toeplitz structure does not allow for the block or the clique sparsity structure in their paper. Butucea
and Zgheib [35, I36] considered the test problem with alternatives that generalize the Ly-ball in [43] to
dense ellipsoids for both Toeplitz and not necessarily Toeplitz covariance matrices, respectively. More
precisely, it was assumed that o, decreased slowly as a polynomial (Sobolev ellipsoids) or faster, as an
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exponential of k. The test procedure involved an optimal banding parameter - specific for testing and
different from the optimal parameter for estimation of the matrix. It was thus noticed that the minimax
rates for goodness-of-fit testing of large covariance matrices are faster for Toeplitz matrices than for non
Toeplitz ones, and that they are faster for testing than for estimation of the covariance matrix. In this
paper, an alternative class is considered where at most s significant values appear sparsely.

Cai and Liu [41] and Cai, Liu and Xia [42] considered the problem of support recovery in the sense
that the estimated set C,, is different from the true set C with probability tending to 0. To the best of our
knowledge, no quantitative rates were given for support recovery in the covariance matrix setup. In the
context of Toeplitz covariance matrices, we call this problem lag-selection.

Our bounds for testing and lag selection are non-asymptotic, thus n can be equal to 1 when one
cannot observe repeated measurements. However, an important remark is that the rates are faster
when the significant covariance values have lags in the recent past : k£ < .5, for some S < p. Indeed, the
rates depend on p — S. From an asymptotic point of view, s can tend to infinity as p tends to infinity, thus
a nonparametric model is allowed (in the sense that the number of parameters increases). Such models
have only been considered in nonparametric estimation of the spectral density of stationary time series,
see Kreiss, Paparoditis and Politis [89] who uses thresholded empirical covariance coefficients.

2.2 Linear functionals of the covariance matrix

We define ¢ 4 the linear functional of the covariance matrix > associated to the matrix A belonging
to S, (the set of symmetric p x p matrices) as p4(X) = Tr(AX).

Recall that Tr(A?) is also denoted by ||A||%, the squared Frobenius norm, for any A in S,. The
largest eigenvalue of the matrix A is denoted by || A|| .-

Recall that a centered real-valued random variable 7 is sub-exponential with positive parameters
(v2,b) if

v2t? 1
E[exp(tZ)] < exp (2) , )t < b 2.1)

The sample covariance matrix is denoted
1 n
o =~ ; XpXFE.

The next theorem states that for X1, ..., X,, independent multivariate Gaussian NV, (0, ) vectors, the
random variable Z = ¢ 4(3, — X), for Ain S,, is sub-exponential with explicit values for the parameters
(v2,b). We recall the Bernstein inequality that holds for sub-exponential random variables [131].
Proposition 2.2.1 If Z is a sub-exponential random variables with parameters (v2,b), then

exp(—dz), i 0<t<Y,
. 2
exp (L), ift>2

P[Zzt]g{

Equivalently, for t,, = max(v\/u,bu), Z satisfies :

P[Z > t,] < exp (—7) . u>0.
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Thus, a concentration inequality for the plug-in estimator ¢ 4(%,,) of p4(X) follows immediately.

Theorem 2.2.2 The random variable ¢ (%, — X) (respectively pa(X — %,,)) is centered and sub-
exponential with parameters ( = 2”(;‘2% b= 2”?5("“) for some arbitrary K in |0, 1]. Therefore :
Plpa (Bn— %) 2 ] <exp (—5), u>0, (2.2)

i, = s { V-2 o 25 |

Previous concentration inequalities were given for such functionals. The closest to our case is the
chi-square type concentration inequality in Spokoiny and Zhilova [121] for standardized Gaussian vec-
tors and generalized to sub-Gaussian vectors. They generalized Hsu, Kakade and Zhang [74] who
assumed finite exponential moments of any order for the vector X. Let us also mention Giurcanu and
Spokoiny [65] who gave a Bernstein inequality for the empirical covariance element of a stationary
centered Gaussian process and generalized it to locally stationary Gaussian processes.

Let us also mention the Hanson-Wright inequality which is stated for more general sub-Gaussian
vectors but having independent components i.e. a diagonal covariance matrix (see Rudelson and Ver-
shynin [118] and its improvement under Bernstein condition on moments by Bellec [18]).

The concentration inequality is the main tool in the applications considered hereafter to study
stationary time series. In this context, Xi,..., X, are assumed to be repeated, independent obser-
vations of length p of an underlying stationary process X = {X!,..., X?}. Note that our results are
non-asymptotic, thus n can be equal to 1. Without loss of generality, the process is assumed to be
centered. The covariance matrix of a stationary process is a Toeplitz covariance matrix. Let’'s denote
o; = Cov(X', X*7) for arbitrary integer number i. Let us denote by 7, the set of p x p Toeplitz matrices
and by |.A| the cardinal of a set A.

Definition 2.2.1 F. (s, S,0) is defined, for o > 0 real number and s < S integer numbers between 1
and p — 1, as the set of sparse Toeplitz covariance matrices 3. such that there are s significantly positive
covariance elements with lags no larger than S :

. >
Fi(s,S8,0) = {E €S8, NT,and there existsC C {1,...,5}, |C| =s, Vj € {1,p—1}, Zﬂ - g >0,
73— Y
Similarly, the two-sided set F (s, S, o) is defined :
4t . . loj| >0 >0,
F(s,8,0) = ¢XeS, " NT,and there existsC C {1,...,S}, |C| =5, Vj € {l,p—1}, 03] = 0
71— Y

Let us apply Theorem [2.2.2] hto several choices of the matrices A. Flrst the covariance element o,
j > 1, can be written as o; = E[XTA; X] = Tr(A;X), with [4;] 2(p 7 I(|k — ¢] = j) - a matrix that

has 0 elements except on jth upper and lower diagonals. Note that the notation A; is used instead of
Ayjy- The empirical estimator of o; is

_! > XTA X = Tr(A;5,).
k=1

jec,
j¢c

jecd,
j¢c

b
b
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Remark 2.2.1 It is useful to note that our results can be generalized to time series that are "nearly”
stationary, by considering

1 p
g; =Tr(A;3,) = , Ti k-
! ! 2(p — ) z’,kl,zizldj
In this case, slightly different sets of sparse covariance matrices are considered : Fi(s,S,0) and
F(s,S,0), not necessarily Toeplitz matrices with s diagonal average values a; of the first S being signifi-
cant. By taking into consideration that all studied methods in the sequel for testing and lag selection are
exclusively based on the concentration of the mean empirical correlations around their expected values
7;, the following results remain valid provided that || A%|| and || AX||~ are controlled.

Let W C {1,...,5} be a setof w values between 1 and S. 3_,;, A; is denoted by Ay and >,y 05 =
>_jew Tr(A;X) can then be written Tr(Aw X). This allows to estimate .y, o; by a plug-in estimator,
Tr(AwX,).

Next Proposition gives properties of the matrix Ay .
Proposition 2.2.3 LetW C {1,...,5} containw elements and Aw =3 _,cy A;. Then :

1 [ Awlleo < 5% 14wl < 525
2. For any covariance matrix %> belonging to F(s, S, o),

K@stl)
— ’ - . 1 WC{l B*l}
A <Oﬂ, Aw 22<U (p—9) Wlth/C:{ ) =15 D) )
14w Elloo < 007527, 14w BllE < op- vt w1, 5 WcC{§,....p—1}.

The next Corollary specifies the concentration inequality in Theorem using the bounds in Propo-
sition

Corollary 2.2.4 Let X,...,X,, be iid, N,(0,,%), ¥ belonging to F.(s,S,o) or F(s,S,0) and W C
{1,...,S} with S < & having w elements. Then, for some arbitrary K in]0, 1|,

u
Prloay (En — 1) > 00-t] <exp (_Z) , u>0, (2.3)

t:m‘“‘x{\/mim Wufi s>’%n<zfi s>}'

Moreover, for any ¥ in F(s, S, 0),

where

~ u
Psloa, (Bn— %) > 0 - 1] < exp (_Z) L u>0, (2.4)

2s+1 wu 2s+1
1-K)\|n(p—29)’ Knp S)

Similar inequalities hold for ¢4, (£, —I,)| and |¢a,, (X, — %) | with the exponential term being
multiplied by a factor two respectively in and (2.4).

If W = {1,...,S}, itis enough to replace w by S in the previous results. However, if W = {j} for
some j < S, the previous results are still true with w replaced by 1.

From now on, we assume that S < £ such that £ = 1 in the previous proposition. Indeed, in the
context of time series, it is natural to look for significant correlations in the recent past.

where forw =1,

St
||

and forw > 1,t = (2s + 1)t.
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2.3 Non-parametric testing for stationary time series

From now on is assumed for simplicity that oy = 1, thus dealing with correlation matrices only. The
one-sided test problem is
H():Z:Ip, VS. H1:E€f+(S,S,J).

The following two-sided test problem will also be discussed as a generalization :

H():E:Ip VS. leﬁe]-"(s,S,a).

Recall that a test procedure A, is a binary valued random variable A,, : (R?)®" — {0,1}. It separates
the set of possible outcomes of some random event in two contiguous sets, Hy is rejected whenever
A, =1 and not rejected whenever A,, = 0. The maximal testing risk is defined as

R(Ap, Fy) = Plp(An =1) + sup Pyg(A, =0),
YeFq

that is the sum of the type | and the maximal type Il error probabilities over the set in the alternative
hypothesis. A separation rate is the least possible value for & > 0 such that the maximal testing risk
stays below some prescribed value.

We proceed by considering successively two measures of the separation between I, and X under
the alternative hypothesis H;. The sets W = {1,...,S}, W = C, and an arbitrary subset of {1,...,S5}
with s elements are successively chosen. For testing over F (s, S, o), consider

Tr(A;. Tr(AcY).
r(A1s), e B r(AcY)

Correspondingly, over F(s, S, o) are considered

S S
Sloyl =S 4D, max S [Te(4,3)]
j=1 1

| =
Jj= - jec

By analogy to the vector case, moderately sparse and highly sparse covariance structures are dis-
tinguished. In the first case, the sum of all S values will allow to test, whereas in the latter a search over
subsets of size s will be necessary. This is called a scan procedure and it is computationally fast for
vectors. Note that, if the sparsity s is unknown a second search over different possible values of s will
produce an aggregated procedure, free of s.

2.3.1 Moderately sparse covariance structure

When the alternative hypothesis is 7. (s, S, o), we consider for some threshold t325+ the test statistic

A =1 (Pa15(En = Ip) = t%ﬁ%) . (2.5)
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Theorem 2.3.1 The test AMS+ defined in (2.5), with

- S 2u - S
t,]‘fer:max{ Y Y }, u > 0,

n(p—S) n(p—9)

is such that if ¢ > 26+ M S+
u
R(ARF, Fy) < 2exp (—1) ‘

When the alternative set of hypothesis is F (s, S, o), we consider for some threshold t%f the test statistic

S
AVS 1 (z on (S0 )] > t%,?) | 26)
=1

Theorem 2.3.2 The test AMS defined in (2.6), with

4ulog(S) 8ulog(s)
tﬁ/[S:Smax , ,  u>1,
" { n(p—5) n(p->5)

: : MS 4(u—1)(2s+1)log(S) 8(u—1)(2s+1)log(S)
is such that if o > t;°> 4+ max { \/ ) , ) }

R(ANS, F) < dexp (—(u—1)log(9)) .

2.3.2 Highly sparse covariance structure

Let us consider now for some threshold t,’j{;f* the test statistic

AHS+ — 1 Y, — I >tHS+ ) 57
" CCi1, 8} #C=s (e p) 2ty ) (2.7)

The test A5+ successively tries all possible sets C of s diagonals among the first S diagonal values.
If any of these tests decides to reject Hy, then AZ5* also rejects Hy, otherwise A5+ accepts the null
hypothesis Hy.

Theorem 2.3.3 The test A5+ defined in (2.7), with

4u - slog (S) 8u - slog (S)
HS+ __ s s
[ max{ np—29) * np—38) , u>1,

. : 1 HS+ u-s 2u-s
is such that ifo > < (tn,p + (25 + 1) max {, | 7 -5)° n(p—9) })

R(AHSt FHy < exp (—(u ~1)log <f>> + exp (—%) :
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When the alternative set of hypotheses is F (s, S, o), we consider for some threshold tﬁg > ( the test
statistic

L - (Z@A (Sn — 1) >tf§). (2.8)

Theorem 2.3.4 The test A5 defined in (2.8), with

tHS 4ulog( ( )) 8u10g< ( ))

= smax , u>1,

n(p —S) n(p — S)

n(p—S) ’ n(p—S5)

R(AHS F) < dexp {—(u— 1)log <s<§>>} .

Remark 2.3.1 When the separation is measured by max¢ ) jec 0j, its estimator is known as the scan
statistic. Note that the computations are not very involved. Indeed, after computing & = ¢4, (X,
I),....&s = ¢a4(EXn —I,), these values are sorted in decreasing order : §1) 2 &@2) = -+ = §s), and then

S S
is such that if o > t5 + max {\/ 4(u—1) log(s(2s+1)(5)) 8(u—1)log(s(2s+1)(7)) }

(X, — I, = ..
Cg{lv'r"ng)}c,#czs ]% P4, ( p) 6(1) + + é(s)

Similar calculations hold for maxc ;¢ |0 and [{]1) > [€]2) = -+ > [€](s). The Toeplitz structure is
thus exploited which reduces the matrix structure to a vector and makes the scan statistic computationally
efficient.

Remark 2.3.2 Note that the previous tests must be aggregated over a set of possible values for s in
order to be free of the sparsity s : A5 = max, A5 will reject wherever at least one test rejects.

Remark 2.3.3 If S =< log(p), giving p— S =< p, the series has short memory. Then t%SJF = +/log(p)/(np)

which gives a test rate smaller than \/log(p)/ (np), and with Stirling’s approximation, t£5+ = \/ log (log(p) ) /(np)

giving the following bound for the testing rate 1/ '281°s()/s) log \/ 75 Thus AIS* detects smaller values
of o than AMS* when s < log(p), hence our choice to name the procedures MS and HS respectively.

Remark 2.3.4 If the stationary time series has longer memory, for example S = p/2 — 1, this gives

p—S=p/2+1and ;%5 = 1. Inthis case, t;,°* < 1/\/nando > 1//n, while t}l>+ = s\/%h [
Again, if s/p — 0, the test AIIS* detects smaller values of o then AMS+. However, if s = S < L, itis
sufficient to use only AMS+.
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TABLE 2.1 — The four test statistics to test Hy : ¥ = I, vs. Hy : ¥ € F4(s,S,0) (MS* and HS™) or
H,:¥ € F(s,5,0) (MS and HS). Are presented the threshold values t,, ,, and the lower bounds o on
o, conditions under which a small upper bound R,,., on the maximal testing risk is guaranteed. The
threshold ¢, , is the smallest value of the test statistic for which the null hypothesis is rejected. The og
value is the smallest non null entry of ¥ under the alternative hypothesis that can be tested and R,,.qx
is the upper bound of the sum of the type | and the maximal type Il error probabilities.

Test Expression Threshold
AMS+ 1 (pas(Bn — L) > )15 it = ma {0 [t Core |
s lo; s lo; ‘5
AHS* maxecqr,..sypoms L (pac(Sn— L) = H5S%) 45t = max{ 0y 2l ¢, 2ee () }
) log(S lo,
AMS 1(Z o, (S = )] = £415) 15 = Cmax {C1y/ 8, 0y 255
! $ It
Ags maxec{1,...,5},#C=s 1 (Zjec |90Aj X, — Ip)| > th,g) tgi = smax {Cl (;g((pi;)) ,Co (:f‘(p <S)) }
Test oo ana:c
ARrSt ot by 2exp (—§)
AHS+ Ly 2l gy {Cl, /=gy C2 n(ps—S)} exp ( (u—1)log (%)) +exp (—%)
AMS t 4+ max {Cf (25:;(2 1(;%(3) ,C3 (232(271(;%(5) } 4exp (—(u— 1)log(S))
AFS 14 {o; os(sD(3)) o ot () } dexp [~ 1)1og (5(5))]

Table 2.1] summarizes our results where C1, Co, C{ and C3 denote constants depending only on w.

A detailed numerical study is included in the Supplementary material, containing an example of
a sparse M A(|p/4|) series with increasing p. The graphs of the power function are also provided,
Ex(A, = 1), for different values of ¥, for the tests AMS and AXS. The plots represent the power of
the tests by the measure of separation, namely Zle o; for the one sided tests, and Zle |o;| for the
two-sided tests. To generate the plots, 5000 samples were generated under the alternative hypothesis
and the mean value of the power of the tests is then plotted. The « value will always be 0.1. The plots
show very steep power functions, that indicate a narrow band where the decision is hard to make. The
power goes from small values near a = 10% to high values close to 1 in a fast increasing way. There
are little differences in the behaviour of moderately and highly sparse tests.

An improvement is noted as p grows (the tests detect matrices closer to the identity), in agreement
with theoretical rates that first indicated that p is not a nuisance parameter here. The plots also show
that for p smaller than, equal to or bigger than n, the tests behave similarly as the measure of sepa-
ration increase. However, it can be noticed that the performances are better in high dimension. This
is in agreement with our theoretical rates and indicates that p is not a nuisance parameter. The test
procedures are not only robust but also more efficient in high dimension. It can also be noticed that
the two-sided tests benefit more from the high-dimension than their one-sided versions. The impact,
with fixed value of the separation measure, of the number of non null entries in the covariance ma-
trix as well as the impact of their location on the test performances are also studied. The simulations
show that the tests are sensitive neither to the number of non null entries nor to their location. Finally
the comparison between the moderately and the highly sparse procedures is also provided. When the
sparsity of the covariance matrix is known, the simulations show that the highly sparse procedure has a
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better detection power than its moderately counter part. It can also be noticed that this outperformance
is emphasized when the value of the non null entries increase. When the sparsity level is unknown, an
aggregation of the highly sparse procedure with different s values can be compared to the moderately
sparse procedure. The simulations prove in this context again that the highly sparse procedure is more
efficient.

2.4 Lag-selection for stationary time-series

The objective here is to properly select non-null correlation coefficients. It can be defined a (two-
sided) lag-selection problem as estimation of ;, a vector with entries n; = 1(|p4, (¥)| > 0). The aim is
to find a selector i with 77; = 1(|¢ 4, (¥) | > 7) that is consistent in the sense that the risk

s
RY(5, F) = Exllf; — nyl]
j=1

stays bounded (is small). The Hamming loss counts the number of miss-classified elements.

Theorem 2.4.1 IfX belongs to F(s, S, o), with o > 21, the selector i with

Tp = Max { <\/log(s) + /log(S — s)) un?;—i__;), 2ulog(s(S — s))m} , u> 1,

is such that

Rus(i, F) < 2exp (—(u - 1)10%1(3)) +2exp <—(u - 1)10?4(?3)) .

Remark 2.4.1 If the only class considered is F', with ¢ > 27,, a one-sided selection is defined by
77;-' =1(p4, (X) > 0) and 7;7 = 1(¢4, (E,) > ) can be considered. Then

Rus(i, 7)< exp (0= 15D ) e (- ) EEEY).

4 4

Take for example S = £ —1, and assume that s /p = p~ P for some 3 in (0,1). This implies that log(S—s) ~
(1 — pB)log(p) and the asymptotic value of 7,, as p tends to infinity is

o (14 /T B [2u22®) oy

npf ’

Fig. [2.1] shows the good behaviour of our lag selector under ¥ € F(s, S, o) hypothesis. The Hamming
loss between n and 7, averaged over 1000 repetitions, is plotted as a function of n, for numerous values
of p with S = /p. In red is plotted the Hamming loss between » and 7 for p = 10, in blue for p = 100,
in magenta for p = 500 and in green for p = 1000. The fast decrease to 0 of the Hamming loss can
be noted for both s = S — 1 in Fig. (@) and s = (S — 1)/2 in Fig. (b), despite the small values
of ¢ < 7, to detect. It can also be noticed that the higher is the value of p, the higher the Hamming
loss tends to be. This can be explained by the increase of non null values induced by the increase of p.
Mechanically, the bigger is the number of non null values, the higher the Hamming loss is susceptible
to be.
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(a) s=S5-1

FIGURE 2.1 — Hamming-loss of the lag selector as a function of n, for numerous values of p with S = /p.
The Hamming-loss is plotted for s =S — 1 in (a) and for s = (S — 1)/2 in (b)

2.5 Proofs

Proof of Theorem The following lemma is useful to prove this theorem. A more general state-
ment involving an arbitrary constant K in (0,1) is proved. It is sufficient to take K = 1/2 to deduce the
theorem.

Lemma 2.5.1 LetY € S and »/2 be its square root. Let A € S, and M = X'/ A¥Y/2. Then, for an
arbitrary K €0, 1], the matrix I,, — t M is invertible and

2] A3 |3 K
det ((I, —tM)) ™ < exp <tTr(AZ) + HHF) .t <

2(1 - K) |AX |0

Proof of Lemma[2.5.1] Let \i,..., ), be the real eigenvalues of the symmetric matrix M associated to
the eigenvectors z1, ..., x,. Then for an arbitrary K €]0, 1], for all [¢| < ﬁ, 1 —tAy,...,1 —t), are
the strictly positive eigenvalues of the matrix I, — tM associated to the eigenvectors z1, .., z,. Then

~ (tAn)’ } = exp {tTr(AZ) + i t2X\2

k=1

2~ A
tTr(AY) + 2217% .

p
det (I, —tM)~ —exp{ Zlogl—t)\k }—exp{z

k=1

D 1242 0
t“ )\ .
det (I, — tM)~ 1<exp{tTr (AD)+> =k <§ o }
k=1

=0

i
S| =

1=0

By using the fact that || AX|[% = || M||% = >_h_, A7 and that || AX|| = ||M]|sc = maxy, [/, it comes :

t2||AX))3
det (I, —tM)™* < exp (tTr(AZ‘) + I ||F>

21 - K)

which ends the proof. m

5
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Let us note that if X ~ A(0,, ), then ¥ = %-12X ~ N (0,, I,)). For all |t] < 55— there is :

E [exp (toa (S — 2))] = E |exp <2 (XTAx)ﬂ " exp(—tTH(AD))

—E |exp <t (YTET1/2A21/2Y>)] exp(—{Tr(AY))
n

—E _exp <:l (YTMY)Hnexp(—tTr(AE)) =

Now, the probability density of Y is used to calculate explicitly

T := exp(—tTr(AY)) ((;ﬂ)pﬂ / . /exp (;YTMY — ;YTY) dyi . .. dyp>n
= exp(—tTr(AY)) (( )p/2/ /exp <_YT (I, — —) )Y> dyl...dyp>n

— exp(—tTr(AY) (det <1p _ tiM>>_n/2 .

2|A%[|% .
n(l1-K) -

By applying Lemma2.5.1|with % =

2 2 2 2 242
Eexp (tpa (Xn — X))] < exp(—tTr(AX)) exp <tTr(AE) + M) = exp <W) = exp (V;> :
|
Proof of Proposition[2.2.3] First, to bound the operator norm of the matrix Ay, the Gershgorin’s circle
theorem is used. Let M = (m; )i1<ij<p b€ @ p x p matrix. Then, all eigenvalues of the matrix M lie
within at least one of the Gershgorin discs D(m;, Z#i Imijl).
Gershgorin’s circle theorem applied to the matrix Ay gives :

1 w
Aw||oo = A D 0,2 —— | = AW £ ——.
[ Aw|| ml?X| Kl € ( 22(19])) [ Aw|| p—3
JjEW
To bound the squared Frobenius norm, sum all the squared elements of Ay, which gives :

1 w
lwlf =2 3 2= =3 SmeE

ik p—17)

Then to bound the operator norm of the matrix Ay X for some X in F(s,S,0), use the Cauchy-
Schwarz inequality together with Gershgorin’s circle theorem :

2s+ 1w
1AW Slloo < || Aw] ool [l oo < ao<ps>

To bound the squared Frobenius norm of the matrix Ay % the following lemma will be used.
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Lemma 2.5.2 Let M and N be two p x p symmetric matrices. Then || M N||% = Tr(M?N?) and

2 2 2 _ 2 2
IMN|l < max AN = |IM]I[[N[7

Proof of Lemma[2.5.2, First, |[MN||2 = Te(MNNTMT) = Tr(M2N?), with M? and N? symmetric

and positive semi-definite matrices (M? > 0, N? > 0). Recall that, if A < B (in the sense that

B — A > 0), then Tr(AC) < Tr(BC), for any C > 0. Here, M? < Aoz (M?)I, < A2, (M)I, and this

gives Tr(M2N?) < A2, (M)Tr(N?). m

If w > 1, using Lemma2.5.2lon M = ¥ and N = Ay, it follows

25 +1)

AwY|% <A IR (7.

14w ElIE < [ Aw|IF]1 2115 T

If w=1and W = {j}, using Lemma2.5.2/on M? = ¥ and N? = £!/2425}/2, then
14,517 = Te(AFS) < ||4;52|IRZV2)1% < o0(2s + DA

It suffices to prove that || A;%1/2|2, = Tr(A3%) < ao(—’CS) so that the proof can be finished, namely that
14,5013 < 03%CED et B; = A2 = (b],))1<k.<p. For every 1 < k,1 <p,

yo— Zp:aj o Zp:aj g zp: Olk—if=jOlt—il=j .
ol = k%l = k—i| Yi—i| = ip—jp2
i=1 =1

i=1

ifk=1,0,, =19 0, j=5 p—j<k<j
W, otherwise.

if k& # 1, for 6|,_;|—j6)1—i—; to be non-null requires :

k—i=j, l—i=—j k—1=2j i="5 [k =1 = 2j,
{l—z‘=y¢ k—i=—j, ‘:){l—k—zy', i=kl, o
e J<8 k=1=2j

0, otherwise.

Summing up the results gives us

P[P
14,5123 = Tr(A7%) Z (Zb zUzm> <00y, (mez> —UOmem+UOmez

Therefore, by, ; =

m=1 m=1 \i=1 m#i
2(p=5)+2(p=2j) PP 1 P
Ap—g)* I<2 < (r—7)’ J <3
< 0o 2(p—j) . 00 1 th .
=2 otherwise. sp—;  otherwise.
This means that
K(2s+1) 1, Wc{l,...,b-1}
A2 < 0025 + 1)|| 4,223 < g2 28T 1) IC:{ ; c{1,...,2 -1},
14303 < 00(2s + 1) I =9 B WL
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Proof of Theorem It is known from Corollary that the type | error probability is such that

u

and that, for any X in 7, (s, S,0), there is
MS+ U
Pulpas (En—%) > 1+ 25)tn,p | <exp <_Z> , u>0.

The type Il error probability can be bounded under the assumption that o > (s+1)tM5+ :

Ps [0a15(Sn = L) < thy 7] = Ps [0a,15(Zn = 2) S a7 — 0a,4(8)]
= Py [QDALS (E — En) > QA S(E) - tMS+] <Py [@Al S(E by ) 2 80 — t%}?""]
<Ps s (8- 2 s + DG < () w0
Finally :
u
R F) = Py (s (= ) 2 657+ sup Palpars(n —h) <857 < 200 ().
S

]
Proof of Theorem Similarly to the proof of Theorem [2.3.1] Corollary is used to bound the
type | error probability

S S tMS tMS
D 1pai(Sn = )l Ztan] <Py, [U {ISOA (X0 —Ip)| = Tgp H <ZP1 [I@A (Xn = Ip)| = Sp]

=1 i=1

4log(S) wu 4log(S
= P (2p, — 1) > / 1/
Z I [WA ) max{ 20 -K)\/ n(p— 5’ Knp S) }

< Z2exp (—ulog S) =2exp (—(u—1)logS).

=1

To bound the type Il error probability, a condition on o is used :

S S
P [Zm@n—ld) St%ﬁ] <Py [ﬂ{m@n—m)r <ty ] < sup Py o, (Sn = Ip)| < t317]
=1 =1

< sup Ps U@A (Bn =) > |pa, (X - I)\—t ]< sup Ps, UQOA (2, —E)|>a—t%§]

1<i<S
o4 (B — 5)| > max{\/z(u_ 1 \/4logS(2s+ 1)7 (u—1)4log S(2s + 1)}

< sup Py
1<i<S

1-K) n(p—5) K n(p—c)

<2exp(—(u—1)log9).

This finally gives :
R(AMS F)y < dexp(—(u—1)logS).
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Proof of Theorem The type | error probability is bounded by

Py [AFST = 1] < > P1, [pac (S — Ip) > t5F]
CC{1,..,S}#C=s

< 5 e (o (%)) —ew (- s (%))

CC{1,...,S} #C=s

while the type Il error probability is, for an arbitrary set C C {1, ..., S} containing s values, bounded by

Pu[AfST =0 =  sup Py N {loac(Tn — L)l < 57}

YeF+(s,S,p,0) CC{l,...,S},#C=s

< sup Ps [0ac(Bn —2) + 0ac (X — 1) < t{z{,gﬂ
ZEF+(S,S,p,U)

= sup Py[pa(S—5n) > ga (8) — 5]
DeF*(s,5,p,0)

< sup Py [pa, (82— 5p) > so — )5 ]
YeFt(s,S,p,0) 7

Under the condition

_ HS+ S u s uw_ s
50—ty " > (25+1)max{\/2(1 —K)\/n(p—S)’ K n(p—5)
and Corollary [2.2.4] it comes :

u
PSIAIST 0] < sup  Pspac(S- %) > 4] <exp(-1).
SEFt(s,5,p,0) 4

n
Proof of Theorem The proof is similar to the proof of Theorem The type I probability error

is bounded by

tHS
PLIA =11< ) Pzp[Z|goAi<zn—Ip>|>t£{§ < prp[s%<zn—fp>r>’;”]

CC{l,..,S} #C=s ieC CC{1,...,S} #C=s ieC

= o o e e (o)) 2o [ () )

CC{l1,...,S},#C=s icC
The type Il probability is bounded by

Po[AHS = 0] = Py, [cc max > e, (S — 1)) < ﬁ;{g] <Py N () {lpa, (S —1d)| < /7
L Sh#C=s Tz CC{1,...,S},#C=sicC

S
< sup sup Py [|@Ai(2n—2)|20—tfﬂ < 2exp [—(u—l)log <s< >>] :
CC{1,...,S},#C=s ieC ’ S
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Proof of Theorem Using Theorem and Proposition[2.2.3] we have :

S
RLS(ﬁa}-—F) :Z (775 = mj] ZEE 7 — ;] Z Ex[lnj — ] ZEE 7 — 1] + Z Ex[l7;l]
Jj=1 jeC JjgC,3<S jec Jj¢C,j<S
=Y Pxllea, ()| <ml+ D Prlloa; (Ba)| > 7
Jjec J¢C,J<S
<D Pslloa; (Bn =) > 04, () =l + D Psllea, (En—2)|> 7
jec j¢C.i<s
< Z Pslloa, (Bn —%) | >0 —m] + Z Pslloa, (En —3) | > 7]
jec J¢C.j<s
< Z Ps [|§0Aj (2, -%)| > max{\/Zu log(s)w, 2u log(s)HAjEHOOH
vn n
jec
A;3|oo
+ Z Ps [“PA (2, —Y) >max{\/2ulog H J og(S—s)H]‘}]
Jj¢C,j<S "
<Z2e p( ulog(s > Z 56 (_ulog(f—s))
jec j¢C.i<S
<2exp (—(u — 1)10%1(8)) + 2exp <—(u — 1)log(i—s)> .

2.6 Supplementary material

Numerical results related to the presented procedures are available in the supplementary material.
They show the good behaviour of the procedures, especially in high dimension, which is in agreement
with the theoretical guarantees of the procedures given here. It can be noticed that the higher the value
of p, the more efficient the tests are. Indeed, the dimension of the vectors is not a nuisance parameter
in this setup. The tests are also robust both to the number of non null entries and to their locations in the
covariance matrix. The moderately and highly sparse tests present the same behaviours but an in-depth
study shows that the highly sparse procedure behaves better compared to the moderately sparse one
in the case of sparser covariance matrices. Moreover the highly sparse test procedure which requires
the number of non null entries as an input has a better detection power when this value is known. When
the number of non null entries is unknown, a grid-search aggregated procedure is implemented. In such
cases the highly sparse test procedure presents similar performances to those of the moderately sparse
test procedure.

In order to illustrate a setup where our procedures are of particular interest, we build a moving
average stationary process having non-zero coefficients only for even lags and up to p/4. Thus the
covariance matrix belongs to the considered set of sparse covariance matrices and the entries depend
on the parameter ¢ of our MA process. The moderately sparse procedure is applied to this process
and the results show how the power of the test procedure increases when the parameter ¢ and the
dimension p increase for fixed sample sizes n of 50 and 500, respectively. We conclude our numerical
results for synthetic data with a comparison of the presented test procedures to previously existing
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ones. The results show that on the set of considered covariance matrices the presented procedures
have a better detection power for smaller values of the covariance values than the previously existing
ones.

The last section of the supplementary material is focused on a real data set, namely meteorological
data available at http://berkeleyearth.org/data/. An in-depth study of the data is provided to show
that the test procedures detect the significant values in the covariance matrices of the processes from
which are issued the data.

2.6.1 Power curves of the test procedures

Several examples are included to illustrate the numerical behavior of our test procedures. First are
presented the powers of the AMS and AZ5 tests. Then is highlighted why the plots will be drawn with a
logarithmic scale. The power of the following four test procedures are estimated : AMS+, AMS  AHS+
A5 1o test the null hypothesis ¥ = 1.

The numbers of non-null entries s and the non-null entries support C C {1, ..., S} are chosen to be

s=(S-1)/2, S=p.

The location of the non zero entries is randomly chosen. The common value of non-null entries
are defined as growing fractions of o. The threshold of the test procedure is defined as t = ¢, the
empirical (1 — «)-quantile of the test statistic under the null hypothesis. In order to determine its value
empirically, 5000 repeated samples were generated under the null hypothesis. The plots represent the

s s
power of the tests by the measure of separation, namely ) o; for the one sided tests, and ) |o;| for
=1 =1
the two-sided tests. ’ ’

To generate the plots, we sample 5000 times under the alternative hypothesis and plot the mean
value of the power of the tests. The « value will always be 0.1.

Figl2.2] and Fig[2.3) show the power for different values of p and n as function of respectively
Zle loj| and > _,cc o] - in a logarithmic scale that allow to better read this graphics. The plots show
very steep power functions, that indicate a narrow band where the decision is hard to make. The power
goes from small values near a = 10% to high values close to 1 in a fast increasing way. There are little
differences in the behaviour of moderately and highly sparse tests.

Figl2.4] shows that the logarithmic scale should be preferred as it helps to better understand the
behaviour of the test procedure when the measure of separation increases. The power of the AMS+
test procedure is now represented as a function of the measure of separation for numerous values of n
and p. The best power function goes the fastest from low values above a = 0.1 to high values close to
1. The change happens around the theoretical value of the separation rate.

Fig shows that for p smaller than, equal to or bigger than n, the AM5* test presents similar
behaviour as the measure of separation increases. However, it can be noticed that the performances
are better in high dimension, that is the power curves are shifted to the left. This is in agreement with
our theoretical rates and indicates that p is not a nuisance parameter. The A5+ test is not only robust
but also more efficient in high dimension.

Let us consider the two-sided A5 test and plot its estimated power curve.

Fig[2.6] shows that the AMS test shows a similar behaviour as the A5 test. However, the two-
sided test efficiency benefits more from the high-dimension p than the one-sided version, in the sense
that the curves shift more to the left, towards the small values of the measure of separation when p is
large. Let us consider the AZ5+ test.
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(©) n = 1000

FIGURE 2.2 — Power of the AM¥ test by the sum of the S = ,/p entries of the covariance matrix in

absolute value. The power is plotted as function of Zle |o;| for different values of n in (a), (b), (c) and
different values of p in red, blue, magenta, green.

Fig[2.7] shows that the A5+ test behaves similarly to the AMS+ and AMS tests. Finally, the two-
sided H S test is considered.

Fig shows that the AZS tests also behaves as the previous ones. It can be noticed that the
higher the value of p, the better the tests behave. The high dimension improves the efficiency of the
tests. It can also be underlined that the power of the tests increase rapidly around -3 on the logarithmic
scale of the measure of separation.

2.6.2 Effect of non null entries

In the previous Section are plotted numerical simulations of the four tests presented in the paper.
However we want to understand in more details the impact of the different choices that can be made
in this procedures namely : the impact of the number of non null entries s, the impact of the location of
non-null entries (close to the main diagonal or far from it).

In this sub-section the focus is put on the AM5+ test as its behaviour can be extrapolated to the other
three tests. The underlying covariance matrix belongs to the class F (s, S, o), for some s € {1,...,S}.

First, is studied the impact of the number of non null entries. For all the previous graphs s was fixed
and set to (S — 1)/2. The objective is to observe how the value of s impacts the behaviour of the test.
For this purpose are plotted side by side the AM5* test with s = S —1and s = (S — 1)/2 for n = 100
and different values of p (10, 20 and 50).

Fig. shows that the number of non null entries has no major impact on the power of the test
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(b) n = 500

(©) n = 1000

FIGURE 2.3 — Power of the A5 test by the sum of the s = (S — 1)/2 entries of the covariance matrix
in absolute value, with S = /p. The power is plotted as function of } . . |o;| for different values of n in
(a), (b), (c) and different values of p in red, blue, magenta, green.
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Sum of non-null enrries (lag scale) Sum of non-null entries

(a) Logarithmic scale (b) Identity scale

FIGURE 2.4 — Power of the AM5* test by the sum of the entries of the covariance matrix in absolute
value, on a logarithmic scale in (a) and identity scale in (b).

procedure AMS+,

Second, the impact of the randomness in the location of the non null entries is measured. In all
previous graphs the non null entries were randomly located. The objective is to observe how the location
of the non null entries impacts the behaviour of the test. To this end is plotted the power function
of AMS* test with s = (S —1)/2 for n = 100 and different values of p. The non null entries are :
(a) randomly located, (b) located next to the main diagonal. The plot (c) shows simultaneously the
power functions of AM5* test for p = 10 and n = 100, but with non null entries randomly chosen i.e
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(c) n = 1000

FIGURE 2.5 — Power of the AM5* test by the sum of the entries of the covariance matrix in absolute
value, for different values of p in red, blue, magenta, green and different values of n in (a), (b), (c).

—m- p-so
-a- p=100
—+- p—soo

R e

(c) n = 1000

FIGURE 2.6 — Power of the AMS test by the sum of the entries of the covariance matrix in absolute
value, for different values of p in red, blue, magenta, green and different values of n in (a), (b), (c).
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FIGURE 2.7 — Power of the A5+ test by the sum of the entries of the covariance matrix in absolute
value, for different values of p in red, blue, magenta, green and different values of n in (a), (b), (c).

(c) n = 1000

FIGURE 2.8 — Power of the AZ¥ test by the sum of the entries of the covariance matrix in absolute
value, for different values of p in red, blue, magenta, green and different values of n in (a), (b), (c).
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(@s=5-1

FIGURE 2.9 — Impact of the number of non null entries in the covariance matrix entries on the power of
AMSt,

C c{1,...,5} with |C| = s (red), fixed next to the main diagonal i.e C = {1,..., s} (blue) and fixed on
the last values of the supporti.e C = {S —s,...,S} (magenta).

------

------
----

7 e

(c) On the same graph
FIGURE 2.10 — Impact of the position of the non null entries in the covariance matrix on the power of
A%SJr

Fig. shows that the location of the non null entries has no impact on the AM5* test perfor-
mances. In conclusion, the tests are sensitive neither to the number of non null entries nor to their

location.
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2.6.3 Comparison between AY5 and A5

The four test procedures AM 5+ AMS AHS+ and AHS present very similar behaviour of their power
curves. However, for high sparsity levels of the covariance matrix AZ5+ and AZS were designed to be
more efficient than respectively AMS*+ and AMS. The objective is to observe the difference in their
behaviours under such high sparsity levels assumption. In this sub-section our study is illustrated on
the two-sided AMS and A5 tests only, as they are analogous to their one-sided versions.

In order to observe the difference in the impact of sparsity on these two tests the power curves by
the number of non null entries s are plotted. The parameters are set as follows n = 100, p = 100 and
S = ,/p = 10. The plot is repeated for the non null entries common value to be o = t,, , /100 ~ 0.01473
and o = t,, /50 ~ 0.02945. As the A9 test requires a value for s the true value is given in Figl2.11]

tn,p, _ tn,p,
(a) o = "5 (b) o= 5%

FIGURE 2.11 — Power of AMS in red and A5 in blue by the number s, known by the procedures, of
non null entries. The powers are plotted for different values of the separation rate o in (a) and (b).

Figshows that indeed the A7S test procedure with known sparsity s has better detection power
than AMS for higher sparsity, as it was expected. It can also be noticed that larger significant values of
the non-null correlations improve even more the power A%< over AMS,

Now a new A5 procedure that is free of knowledge of s is built by aggregating several procedures
AHS(s) for different values of s. This new procedure is then compared to AMS. Consider a grid of
plausible values of s from 1 to S, build all AZ9(s) and decide according to

HS _ HS
Ay, —InSaXAn ,

that is reject whenever at least one of the tests rejected and accept otherwise.

Let us confront the aggregated high-sparsity test and the moderate-sparsity test procedures. The
two test procedures have been run in the same setup n = 100, p = 100 and S = ,/p = 10. The true
values of s are being setto s = 4 and s = 7, respectively. The power curves of the two procedures are
plotted by the measure of separation on a log-scale. The latter is rising because of growing values of o.

In both cases, the grid of plausible sparsity levels has been fixed to two values : 2 and 10, which
means that

AZIS = maX{AgS(Q), Aﬁls(m)}
even though the true underlying sparsity value is not on the grid. This does not seem to be a drawback.

In Fig it appears that even with unknown value of s the AXS test procedure performs better
than AMS_ It can be noticed that the curves show larger differences for lower values of the measure of
separation.
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(@) s =4 by s=7
FIGURE 2.12 — Power of A9 in red and A9 in blue by the sum of non null entries of the covariance
matrix in absolute value. The powers are plotted for different values of s, unknown by the procedures,
in (a) and (b).

In conclusion, the theoretical improvements of highly-sparse over moderately sparse procedures
show up in the very extreme cases where the underlying signal is very close to white noise either
because of very weak correlations or of very few non-null values.

2.6.4 A moderately sparse high-dimensional )/ A series

Let us construct a stationary process belonging to our set of sparse covariance matrices. Consider
the stationary process X, defined by the following moving average (M A) model :

1%

Xy = Z ¢er—i

=0
with {e: }+en @ Gaussian white noise and |¢| < 1. The auto-covariance function of this series is

0, if h odd, or h > %,

Cov(Xyip, Xi) = { ¢ 5 (W) , otherwise.

In this example, the p-dimensional Gaussian vector X = (X4, ..., X;4,) has a covariance matrix belon-
ging to the class F(s, S, o) with s > & — 1 tending to infinity with p, S < £ and

C1e [ olB] = p2(15+1)
o=¢ 3L%) ( T ¢2 .

The power of the AMS test is plotted on the y-axis and the value of ¢ < 1 on the z-axis.

Fig[2.13|shows the power of the A5 test for this example for various values of p. It can be seen that
the AM>S test performs better when the value of p increases showing again that higher the dimension
better information on the underlying model. It can be pointed out that for p < 8 the M A(|p/4]) is a white
noise. It explains why the power of the AMS test stays constantly low when p < 8.
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(@) n = 500 (b) n =50
FIGURE 2.13 — Power of AMS test for the M A(|p/4]) for n = 500 in (a), n = 50 in (b) and for p = 4 in
red, p = 10 in blue, p = 20 in magenta, p = 50 in green, p = 100 in cyan. The horizontal axis represents
the value of ¢ and the vertical axis represents the power of AMS.

2.6.5 Comparison to other test procedures

Our two-sided test procedures are compared with the ones presented in [122] and [60] that are
implemented here. In order to calculate these testAstatistics, is first denoted by «y, the k-th moment of
the spectral distribution of ¥, o, = I%Tr(E’“) and by 3 the k-th moment of the spectral distribution of ¥,,,
B = LTr(zh).

The authors propose to estimate the «;, i € {1,2,3,4} using

&1 = f, G = %(12) : (32 - Bﬂ%) a3 = ’Yﬁig) : (53 - 3%3251 + 2(%%%)

. 2n24+3n—6p 5 1002 +12n,p o5 29 52 +6n 54
— 42 e i il i Bt B
da =l (B - a2y - 2T IR g OB Pyt - SR (2
VO "—2 NOm n’
" (n—1)(n+2) ™" (n—=1)(n—=2)(n+2)(n+4)’
@ _ n®(n? +n+2)

o= m+1)(n+2)(n+4)(n+6)(n—1)(n—2)(n—3)

Using these estimators [122] proposed the test statistic 7%,; and [60] proposed two test statistics 7'
and Ty, defined as follows :
n

Qg — 200 + 1),
8(02+12c—|—8)( )

n
Tori = 5(072—2071-1-1), Ty = (Gg —4é3 + 661 + 1), Ty =

C\f

where ¢ = lim £, as n and p tend to infinity, is supposed finite and positive.

Additional assumptlons are needed.

Assumption 1 : There exists (w; ;); j>1 random variables with E[w;;] = 0, E[w},] = 1 and E[w},] < oo
and for all p, n, W = (w; ;)1<i<p,1<j<n SUch that the observed vector X; can be represented as X; =
E,:UQW,J-.

Assumption 2 : The spectral distribution of ¥,, weakly converges to a probability distribution when
p — oo and the sequence of spectral norms (||X,||) is uniformly bounded.

Under Hy : ¥ = I, and assumptions (1) and (2) there are T,,; — N(0,1), Ty1 — N(0,1) and
ng — N(O, 1).
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Is then plotted the histogram of the defined test statistics under Hy : ¥ = I, in Fig and Hy : ¥ €

4(u—1) log(s(25+1)(f)) 8(u—1) log(s(?s-{—l)(’j))

F(s,S,0),withn =200,p=20,S=,/p,s =S—-1lando = tﬁ{g+max{\/

in Fig2.15)
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FIGURE 2.14 — Histograms of T,; in (a), T}, in (b) and T, in (c) under Hy : 3 = I, for n = 200, p = 20,
S =,/p, s =S — 1. On the horizontal axis are represented the values taken by the statistic and on the
vertical axis the number of times each value has been taken.
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FIGURE 2.15 — Histograms of T,; in (a), T in (b) and T, in (c) under H; : ¥ € F(s, S, 0) for n = 200,
p=20,S=,/p, s =S5 — 1. On the horizontal axis are represented the values taken by the statistic and
on the vertical axis the number of times each value has been taken.

In Fig@ are reproduced the powers of the tests associated to Ts,;, 71 and T2 showing their
powers for different values of p, with n = 200, as function of 3. . |o;| on a logarithmic scale. To plot
those powers the same steps are followed as for the powers of AMS and AX tests. The 0.1-quantile
of the three tests statistics under the null hypothesis are defined by Monte-Carlo simulation with 5000
samples. Then the value of the non null entries in the alternative hypothesis are gradually increased and
it is checked if the test statistics are higher than the defined 0.1-quantile bound. The x-axis represent
the sum of non null entries in a logarithmic scale. Under the alternative hypothesis, the covariance
matrix is Toeplitz with constant entries on the s = L\/ﬁj first diagonals equal to o as defined above.

In Fig[2.17]is plotted the graph for A2'S and A with the exact same parameters in order to provide
a fair comparison.

In Fig[2.18 are simultaneously plotted the 5 tests in low dimension as well as in high dimension,
respectively.

When comparing Fig[2.16| and Figl2.17]it can be seen that AMS and A5 powers are better than
those of Ty, T¢1 and Ty, ones. The AYMS and A7 tests are more sensitive to the non null entries in

n(p—>9) ’ n(p—>5)

}

)
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() Ty

FIGURE 2.16 — Power of the tests associated with T,;, T and T}, for p = 10 in red, p = 50 in blue,
p = 100 in magenta, p = 500 in green and n = 200. The powers are plotted as function of >, [o;| on
a logarithmic scale. The horizontal axis represents the sum of entries in absolute value and the vertical

axis represents the value of the power.

1
Sum of non-null entries (log scale) Sum of non-ny a scale)

(@) AY'® (b) AT®
FIGURE 2.17 — Power of AMS and AZS for p = 10 in red, p = 50 in blue, p = 100 in magenta, p = 500
in green and n = 200. The powers are plotted as function of >_. . |o;| on a logarithmic scale. The
horizontal axis represents the sum of entries in absolute value and the vertical axis represents the

value of the power.
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Sum of non-null entries (log scale) Sum of nen-null entries (log scale)

(@) n=20andp =10 (b) n=20and p =50
FIGURE 2.18 — Power of AMS, AZS T, Ty and Ty, for n = 20 and p = 10 in (a), p = 50 in (b). The
powers are plotted as function of 3, . [o;| on a logarithmic scale. The horizontal axis represents the
sum of entries in absolute value and the vertical axis represents the value of the power.

the sparse Toeplitz covariance matrix. This is confirmed by the Fig

Are now compared our two-sided test procedures to the test procedure associated with the statis-
tic V,,, presented in [110] that takes advantage of the sparsity assumption. The authors proposed a
generalisation of the V,, = p~!Tr ((En — In)z) test statistic previously proposed by [83] and [102]. The
generalization is V}, ,, that bands the empirical covariance matrix to its first £ diagonals and adds the
necessary corrections.

The following assumptions are needed.

Assumption 1 : ¥ € ¢ ¥ :max ), |0y, <Cky®Vkog >0, 0<en < Apin(X) < Anaa(X) < 1/60}
T fi—j|>ko
for some constants ¢y, C' and « which are unrelated to p.

Assumption 2 : Data X1, ..., X,, are independent and identically distributed p-dimensional random
vectors such that X; = I'Z; where I" € RPX™ is a constant loading matrix such that p < m and I'T” = &
and Z; are independent and identically p-dimensional random vectors with zero mean and identity
covariance.

Then E(Vo i) = p ' Tr ((Br(¥) — 1,)?) and V(V,, ) = p~2ov;,,, (14 o(1)) with oy, , defined in [110].
Finally under Assumptions 1 and 2, it is proven that p - a;nl_k% Vo — N(0,1).

In order to limit the computation cost of this simulation the study only focuses on V;, ;, and it is chosen
to not estimate oy, ,. We choose n = 10 and define the 0.1-quantile of V,, , under the null hypothesis
with only 50 samples. Then the non null entries of ¥ are gradually increased under the alternative
hypothesis for different values of p. The power of the test procedure based on V;, ., named Ty, ,, is then
plotted here under. To provide a fair comparison the powers of AMS and A5 tests are also plotted
under the same environment. The z-axis is the sum of non null entries in a logarithmic scale. To provide
a fair comparison again let's choose £ = S meaning only non null entries inside the lag support are
being looked for.

Fig shows that the V,, ;. procedure is performing well to detect non null entries inside the lag
support. It can also be observed that the dimension is improving the performance of the V,, ,, procedure.
However our two-sided test procedures are more sensitive as they detect smaller non-null entries than
the V,, , procedure.
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Sum of non-null
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FIGURE 2.19 — Power of Ty, ,, A} and A}'® for different values of p and n as function of Y- . |o;| on
a logarithmic scale.

2.6.6 Application to real data

This section proves that the procedures previously presented can be successfully applied on real
data. The test procedures are applied on meteorological data available at http://berkeleyearth.
org/data/and since they reject the null hypothesis, the lag-selection procedure is also applied. The
considered dataset gives the monthly average temperature available in 100 cities since February 1847.
Only the four cities with the smallest number of missing values are kept, namely Mexico, New-York,
Santo-Domingo, Toronto. The monthly data are then averaged by year in order to avoid seasonality.

JW,\M/\,V“WMWMW

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

FIGURE 2.20 — Yearly average temperature over time of Mexico, New-York, Santo Domingo and Toronto
since 1847.


http://berkeleyearth.org/data/
http://berkeleyearth.org/data/
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An augmented Dickey-Fuller Test is performed to verify whether the time series are stationary or
not. The null hypothesis of the test is that the time series can be represented by a unit root, that it is not
stationary. The alternative hypothesis is that the time series is stationary. The test is interpreted using
its p-value. If the p-value is below the 5% threshold suggests that the null hypothesis has to be rejected
and then the time series is assumed to be stationary. If the p-value is above the 5% threshold then the
null hypothesis cannot be rejected and the time series is assumed to not be stationary.

TABLE 2.2 — P-value of the augmented Dickey-Fuller Test on yearly average temperatures. The series
is not stationary if the p-value is above the 5% threshold.

City Mexico New-York Santo-Domingo Toronto
p-value 0.583765 0.933036 0.776110 0.952561
Conclusion Non Stationary Non Stationary Non Stationary  Non Stationary

Table [2.2] shows that the time series are not stationary. The first difference method is used to make
the time series stationary.

1870 1895 1920 1945 1970 1395
a

FIGURE 2.21 — Time series after first difference method applied.

Fig. shows that after applying the first difference method time series look stationary. The Aug-
mented Dickey-Fuller Test is applied again to verify whether the time series are now indeed stationary
or still not.

TABLE 2.3 — P-value of the augmented Dickey-Fuller Test on first difference yearly averaged tempera-
tures. The series is not stationary if the p-value is above the 5% threshold.

City Mexico New-York Santo-Domingo Toronto
p-value  2.680904e-11 2.529196e-09 1.163820e-15 8.470041e-10
Conclusion Stationary Stationary Stationary Stationary

Table [2.3|confirms that the time series are stationary after applying the first difference method. We
now want to check if the time series are normally distributed.

Fig. [2.22) shows histograms that do not contradict normality of the distributions. To ensure the nor-
mality of the time series the Shapiro-Wilk test is performed as well as the D’Agostino’s K-squared test.
Both tests are interpreted using their p-values. A p-value below the 5% threshold suggests the null
hypothesis has to be rejected and that the data can be assumed not to be drawn from a gaussian
distribution.
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FIGURE 2.22 — Histograms of the temperatures after first difference applied.

TABLE 2.4 — Shapiro-Wilk and D’Agostino’s K-squared tests on first difference yearly averaged tempe-
ratures. We reject the normal distribution hypothesis when the p-value is below the 5% threshold.

City Mexico New-York Santo-Domingo Toronto

Shapiro-Wilk p-value 0.773 0.273 0.458 0.409
D’Agostino’s K-squared p-value  0.748 0.508 0.493 0.288
Conclusion Normal  Normal Normal Normal

Table [2.4] confirms the normality of the time series. Before applying our procedure the autocorrela-
tions of the four time series are plotted. This will give some additional informations on the structure of
the time series.

Autocorrelation of Mexico Time Serie Autocorrelation of New-Yerk Time Serie Autacorrelation of Santo-Domingo Time Serie Autocorrelation of Toronte Time Serie

! r- 1t l s 1 Tlll I'..r - e l | T !lr ! " Z: L ._l 1, o I, ot ]I f

9 I Y SR A S A L
w | ¥ S

(a) Mexico (b) New-York (c) Santo-Domingo (d) Toronto

FIGURE 2.23 — Autocorrelation plots of the first difference yearly averaged temperature time series.

The p-dimensional vectors X; = (z;—;)1<i<p are now created. The value of p is set to be 10, namely
p = 10. To ensure lack of significant correlations between the vectors (X;), we separate them by the
largest non null autocorrelation. The largest non null autocorrelation is considered to be 1 for Mexico,
9 for New-York, 2 for Santo-Domingo and 1 for Toronto. As an example, the Mexico time series will be
X{\/[eazico — (‘,E{Weacico’ xé%exico’ o 7m%exico) and Xé\/[exico — (ﬁ%em‘co’ xi\gem‘co x%ewico)_

Our procedures can no be applied. The AMS and A5 tests can be performed to verify if the p-
dimensional vectors X; = (x;—;)1<i<p are issued from a \V,,(0, I,,) (null hypothesis) or N,,(0, X) for some
Y e F(s, S o).

Table [2.5) shows that according to the AMS and AXS tests, the vectors X; are not issued from

g ey
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TABLE 2.5 — AMS and A5 tests on first difference yearly averaged temperatures to test Hy : X; ~
Np(0,1,) vs Hy : Xy ~ N,(0,X). In the table are presented the accepted hypothesis for each test
executed on each city.

City Mexico New-York Santo-Domingo Toronto
AMS Test  N,(0,%)  Np(0,%) N,(0,%) N,(0,%)
AHS Test  N,(0,%)  N,(0,%) N,(0,%) N,(0,%)

N,(0,1,) but from a N,(0,X) with ¥ € F(s,S,0). This demonstrates that our procedure detect the
significant correlations in the true underlying covariance matrix X.

The support of the non null entries is then recovered by using the lag-selection procedure exposed
in Section 4. 7,, is set to be the 0.75-quantile of [¢4; (X,,) | where X, is the empirical covariance matrix
of vectors generated from a (0, I,,). The results are reported in Table [2.6]

TABLE 2.6 — Support of non null entries recovered by the lag selection procedure.

City Mexico New-York Santo-Domingo Toronto
Support {1} {1,6,7,9} {2} {1}

Those results are consistent with the autocorrelations plotted in Fig[2.23] It can be seen that the
Mexico time series presents only a non null autocorrelation at lag 1. For the New-York time series the
lag 1 is non null as well as the lags 8 and 9. The procedure selects lags 1, 6, 7 and 9 and is not as
efficient for this time series as for the others, but that can be explained by the very small number of
vectors (n = 8) that are available within this series. For the Santo-Domingo time series the lags 1 and
2 are non null with the second being larger than the first. The procedure only selects the second one.
Finally for the Toronto time series it can be seen that only the first lag is significantly non null and it is the
only one selected by the procedure. The non null lags in the autocorrelation plots are thus consistent
with the ones selected by our procedure.



Chapitre 3

Two-sided Matrix Regression

3.1 Introduction

Supervised learning is often performed on large data bases. Matrix regression assumes that the
data Y can be well explained by a set of features given by the columns of the matrix X and linear
combinations of these columns. It is often the case in real-life that the rows of Y can be explained by
linear combinations of the rows of X.

For example, economic data store economic indicators as column features and countries as rows.
Such a matrix is usually explained by a smaller matrix roughly containing a smaller number of countries
(representatives of groups of geographically or economically close countries) and a few economic fea-
tures or some factors produced out of all these indicators. We would like to predict a larger number of
indicators for a larger number of countries, i.e. Y a n x p matrix, using the features X a m x ¢ matrix.
Recommendation systems want to predict the opinion of n clients concerning p items. We can use pu-
blicly available data on a number m of different groups of clients and their affinity to a number ¢ of large
categories of items in order to predict by evaluating the client’s correlation to the prescribed groups in
the population and the item’s weight in its category. We may include a multiple-label situation where the
items belonging to a main category are also related to other categories.

Other examples can be given for meteorological data, medical or pharmaceutical data and so on.

Model. We observe the matrix Y € R™*P and a design matrix X € R™*? related via the two-sided
matrix regression (2MR) model involving two parameter matrices A* € R"*™ and B* € R?*P :

Y = A*XB* + E, (3.1)

where the noise matrix E is assumed to have independent centered o —sub-Gaussian entries.

The 2MR model encompasses known models like, e.g. matrix regression and matrix factorisation.

Indeed, if n = m and A* is the identity, the matrix model becomes the (one-sided) matrix regression
(MR) model Y = X B* + E, see [108], [32], [104].
Assume now that m = ¢ and that the design matrix X is the identity matrix of rank m smaller than both
n and p. Our model becomes a factorisation model of the signal M* = A* B* observed with noise. The
idea is to recover a low-rank structure generating the observed data. In [85] the authors have considered
structured factorisation of the signal under assumptions that the rows of A* and the columns of B* have
a common sparsity parameter and X, which they do not observe, has a much smaller dimension than
Y.

65
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The 2MR model (3.1) is strongly related to other models, but we argue that it cannot be reduced to
these other models of a different nature. Indeed, note that the entry Y;; of the matrix Y can be written

}/ij = TI'(X : BZA::) + Eij7

for any i in [n], where [n] = {1,...,n}, and for any j in [p]. Thus every entry Y;; brings information
through the same design matrix X on the rank 1 matrix B*; A7 . This is unlike the trace-regression
model or the more general matrix completion studied by [116] [88] where a different design matrix
brings information on the parameter matrix B* A*.

Another way of writing model is in the form of vector regression model, by stacking the columns of
matrices Y, X and E into vec(Y'), vec(X) and vec(E), respectively, to get

vec(Y)" =vee(X)T - AT @ B +vec(E) T, (3.2)

where ® denotes the tensor product of two matrices. Under this relation, we predict a row vector of size
np using a row vector of size mgq (the matrix of features has rank 1) via a parameter of size (mq) x (np)
which cannot go well unless the structure of A* and B* is trivial. This approach cannot take into account
the matrix structure of the features, of the matrices A*, B*, and it gives poor results on that account.

This model has been introduced in time series by [48] as the auto-regressive matrix-valued model
of order 1, MAR(1), Y; = A*Y,_1 B* + E, observed at times ¢ in [T]. In this case A* and B* are squared
matrices with spectral radii strictly less than 1 in order to ensure stability of the time series (X; is thus
stationary and causal). The authors propose three estimation methods : first, they use the vector form
analogous to (3-2), stack the T lines of vec(Y;)" and they use the nearest Kronecker product (NKP)
problem to give estimators of A* and B* out of the global least squares estimator of A*" ® B*; then,
their next method minimizes the least squares over A and B

T
.1 2
%%1 T ;1 1Y — AY: 1 B[,

by a sequential procedure minimizing over A for fixed given B, then over B for fixed A, and iterating;
finally, they give an MLE procedure over A and B under a particular structure of the covariance matrix
of E and proceed also sequentially. Theoretical results state the asymptotic normality as T' tends to
infinity, for fixed dimensions. However, the first procedure is cumbersome as the estimated matrix is
very large, while the other two procedures are based on non-convex minimization without theoretical
guarantees as to the limit points of the algorithm.

Least squares and MLE estimators with AIC and BIC penalties have been numerically studied by [76]
of a more general time series model

L
Yo=Y AYeiBe+E, t=1,...T,
=1

which is treated as Y; = A* X; B* + E, where X, is the block diagonal matrix containing the L—past ob-
served matrices Y;_1,...,Y;_ and A* = (Ay,...,Az) and B* = (B],...,B])" are the concatenated
matrices in the previous equation.
Thus, our paper is motivated by the need to deal with high-dimensional data and finite (non-asymptotic)
time (say 7' = 1) in order to provide theoretical guarantees for prediction.

Contributions. We show in Section that by using the SVD of matrices ¥ = UyZyVYT and
X = UxEx VL, the least squares procedure can be reduced to fitting predictors of the form 4¢3 x By
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to the diagonal matrix Xy with explicit relations between Ay, By and A, B. There is a natural choice of
predictors of Ay and of By under diagonal form. We study these predictors for given ranks r and that
we transform back into the original space of Y without loss of prediction rate. Then we give a data-
dependent rank selector and show that the predictors associated to it attain optimal bounds. We give
sufficient conditions so that the rank selector is consistent. Finally, we slightly modify the procedure to
be free of the parameter o of the noise and show new upper bounds in this case. In Section we
study the nuclear norm penalized least squares and show it attains the optimal bounds too. All proofs
are in a dedicated section in the Appendix. Finally, we illustrate in Section[3.4]via numerical simulations
the excellent prediction results of these fast running, explicit predictors.

Notations. For any matrix M of size n x m and rank r,;, we denote its singular value decomposition
(SVD) by M = UMEMVA;, where U, belongs to O, - the set of orthogonal matrices of size n x n, Vi,
belongs to O,,, and X = Diagpm(ok(M), 1 < k < ryr). Note that o1 (M), ..., 0., (M) are the positive
singular values of M listed in decreasing order, and the n x m diagonal matrix Diagy m(or(M), 1 <

n/Am
k < ryr) has diagonal entries in the list and 0 elsewhere. Furthermore, denote | M||% = 3 o (M)?
k=1

q
its Frobenius norm, HMH%2 0 = > o(M)? its Ky-Fan (2, ¢) norm, ||M||,, = o1(M) its operator norm,
' k=1

nAm
M|l = 3 op(M) its nuclear norm, MT its Moore-Penrose inverse, ) its rank and M7 its transpose.
k=1
For any matrices M; and M, in R"*™, (M, Ms) r denotes the canonical scalar product, i.e. (M, M) p =
Tr(M{ M,). For any r € [ry], we denote [M], the best rankr approximation of M for the Frobenius

norm. In the model (3.1), let us denote by r* the rank of A* X B*.

3.2 Rank penalized learning

In this section we propose rank adaptive predictors and provide theoretical guarantees for their
error. First we give explicit predictors under the assumption that the ranks of the parameter matrices
are known, then a selection procedure will allow to provide a data-dependent rank selector and the
associated rank-adaptive predictor. Even though we follow classical results for rank penalized (one-
sided) matrix regression, e.g. [32], [63] and [26], we give details for the fixed rank two-sided matrix
regression which is novel to the best of our knowledge. Surprisingly, explicit predictors can be proposed
despite the identifiability issues of this model. Only after this, we proceed to rank selection and rank-
adaptive learning.

3.2.1 Prediction for given ranks

Let » belong to [n A p A x]. Let us build explicit predictors (A,, B,) solutions to the non-convex

minimization problem

i Y — AXB|%. :
min || I (3-3)
rank AArank B<r

Notice that the rank constraints on A and B use the same value r. Indeed the objective is to build
a predictor for the signal A*X B* which satisfies rank(A*X B*) < min (r+,7x,7p+). In the steps of the
proof of our results, we see that the upper bound of the risk depends on the ranks of A* and of B* only
through their least value and no information can be recovered on the largest rank of the two. Hence it
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makes sense to look for A and B sharing the same rank as a dimension reduction technique without
any impact on the final results.
The model can be rewritten using the SVD of the observed matrix Y and of the design matrix
X as
Ey:AS-Ex-BS—I—Eo, (34)

where A = ULA*Uy, By = VEB*Vy and Ey := UL - E - Vy. In the particular case where E has
independent entries with distribution A/(0,c?) than so does E,, see Lemma Now, ¥y and Xy
are diagonal matrices, not necessarily squared, not necessarily full rank. Given the invariance of the
Frobenius norm by left or right multiplication with orthogonal matrices, we get that for any matrices
A € R™*™ and B € R?*P we have

IY — AXB|% = ||y — AoZx Boll#,

where Aq = UL AUx and B, = V, BV are obtained via analogous transformations to those relating
the true underlying parameters.

Obviously, matrices A and Ay have the same rank, and the same holds for B and By. Therefore,
solving is equivalent to solving for Ao, and By, solutions of

min HEY - AQEXBOH%. (35)
Ao,Bo:
rank AgArank Bo<r

Theorem 3.2.1 Let us define forr € [n Ap A rx]
Agy, = Diagnm(op(Y), 1 <k <rAry) and By, = Diag,,(ox(X)™1, 1<k <7). (3.6)

Then, (Ay,, Bo,) belong to the set of solutions of problem (3.5) and the predictor Ay, Y x By, satisfies
for an absolute constant C > 0 and for any t > 0, the oracle inequality

|AsSx By — Ao, Sx Boy||% < 9 b [ AGEXBG - AoYx Bol|%
rank Ag/(i;argl'( Bo<r
+24Co?(1 4 t)? - r(n + p),

with probability larger than 1 — 2 exp(—t*(v/n + /p)?).
Next, from the explicit solutions (Ag,, By, ) of we deduce explicit solutions of (3.3).
Corollary 3.2.2 Let us define forr € [n A p A rx]
A, =UyAg, UL and B, = Vx By V4L, (3.7)

with Ay, and By, defined in (3:6). Then (A,, B,) are solution to the problem (3.3) and the predictor
A, X B, satisfies for an absolute constant C > 0 and for any t > 0, the oracle inequality

A*XB* — A4, XB,||% <9 inf A*XB* — AXB||% + 24Co%(1 + t)® - r(n + p),
F AB: F
rank A/\;aﬁk B<r

with probability larger than 1 — 2 exp(—t*(v/n + /p)?).
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The proofs of Theorem and of Corollary can be found in Section In the proofs we explicit
the bias in terms of the unknown matrix parameters :

r¥*

i * * _ 2 _ * *\2 )
it |A*XB* — AXB|[3 = Y op(A*XB*)? - 1,cp.
rank AArank B<r k=r+1

Note that our choice for the couple of predictors (Ay,, By, ) is not unique and we can easily derive
families of solutions to the problem (3.5). Each family of solutions can be turned into a solution to the

problem (3:3). Indeed, consider (aAg,, — By, ) with arbitrary o > 0. Alternatively, let \; for all i < m A g
(6
be arbitrary positive numbers, then

(Ao Diagmm(M, - -, Amag), Diagaq(A\T, ..., Amhg) Boy)

» 'm/Ag

give the same prediction. Let us see that the same transformations applied to the parameter matrices
A} and By also lead to the same signal matrix Aj¥ x Bj. Indeed, the model is non-identifiable and so,
without further strong assumptions, we can only hope to learn the global signal, and not the parameters
of the model.

Alternative predictors. Let us define a second couple of predictors (A, B,) producing exactly the
same prediction as (A,, B,) with the same theoretical properties, but having the advantage that A is full
rank and does not depend on r. Define
or(Y)

Ay = I,,» and By, = Diagqp <
o

—— 1 <Ek<rAr
k(X) Y)

where I, ,, denotes the identity matrix of dimension n x m, whereas By, has rank r A ry. Using the
analogous transformations we obtain

A=Uyl,,U¥ and B, =VxB, V.
It is easy to see that Theorem is valid for Ay and By,, and that Corollary is valid for A and
B,.
3.2.2 Rank-adaptive prediction

In this section, we propose rank-adaptive predictors (A;, B;) which are selected from the family
{(A,,B;) : v € [n ApArx]} by a model selection procedure analogous to that of [32]. Let us first define,
for a generic matrix M and any A > 0, the A—rank of M as

rank M
TM()\) =1 V Z 10’]g(M)22)\'
k=1

For given A > 0, let

7:=arg min Y — A, XB,|% + Arb. (3.8)
r€[nApArx] F
defined in (3.8). The next Theo-

Consider the predictors introduced in (3.7) for the data-driven rank  as
rem extends the oracle inequality to the rank-adaptive predictors (A;, B;) associated to the estimated
rank 7 and to some A > 0 large enough.
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Theorem 3.2.3 The rank-adaptive predictors (A;, B:) associated to + in (3.8) and to \ such that, for
some absolute constant C > 0 and for any t > 0, A > 4C(1 + t)%202(n + p), satisfy the oracle inequality

A*XB* — AA;,XB% 2 < min 9 or(A* X B*)?. Locps +6AT
F
re[nApArx| i

with probability larger than 1 — 2 exp(—t*(v/n + /p)?).
Note that the minimum on the right-hand side of the previous display is always smaller than the value
at r = r*, giving under the assumptions of Theorem that

|A*XB* — A; X Bi||% < 6r* ),

with probability larger than 1 — 2 exp(—t*(v/n + /p)?).

The bounds of order r*(n + p) attained by our procedure are analogous to those for the low-rank matrix
regression models in [116] and [63]. Indeed, the 2MR model is more difficult than the MR model, (i.e.
one of the matrices is known) and we will suppose known the matrix with larger rank in order to achieve
the correct lower bounds. Thus the lower bounds for prediction in the low-rank MR model will be valid
for our model.

3.2.3 Consistent rank selection

We study the consistency of the rank selector 7 in (3.8) and see when it recovers the true rank r*
with high probability. First, we show that, for properly chosen ), the data-driven rank + is actually the
unique solution and coincides with the A—rank of Y, 7 = ry ().

Proposition 3.2.4 If \ > o,,.(Y)?, there is a unique solution 7 to the optimisation problem in (3.8) and
it is actually the A\—rank of Y, i.e. 7 = ry ().

Next, we prove that 7 recovers with high probability the A\—rank of A*X B*.
Proposition 3.2.5 Let A\ > 0 and denote by r*(\) the A—rank of A* X B* . If for some constant c in (0,1),
o) (A*XB*)? > (14 ¢)?X and 0,+ (311 (A* X B*)? < (1 — ¢)?A, then
P(7 =1*(\)) > P(| E||2, < ¢*)).
In particular, if X > 2C(n + p)o?(1 + t)%/c* for some absolute constant C > 0 and for any t > 0, then
# = r*(\) with probability larger than 1 — 2 exp(—t*(v/n + /p)?).

Finally, remember that the fact that »*(\) coincides with the true underlying rank r* is equivalent to
having o,.«(A*X B*)?2 > X > 0. The rank selector will then coincide with »* if \ also satisfies o1 (E)? <
c?), for some absolute constant ¢ > 0. It is therefore necessary that a signal-to-noise ratio, given
here by o, (A*X B*)? /o1 (E)? be significant in order to have the true underlying rank selected by #. By
combining this with the previous Propositions we get the following.

Proposition 3.2.6 Let \ > 0. If for some constant c in (0,1), o« (A*X B*)? > (1 + ¢)?), then
P(7 =) 2 P(||E|Z, < ¢*A).

In particular, if X > 2C(n + p)o?(1 + t)%/c* for some absolute constant C > 0 and for any t > 0, then
# = r* with probability larger than 1 — 2 exp(—t*(v/n + /p)?).
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3.2.4 Data-driven rank-adaptive prediction

The rank selector 7 in is used for building consistent predictors as detailed in Theorem [3.2.3|
provided that the condition A > 4C(1 + t)?02(n + p) is satisfied. However the noise parameter o is
not known in general settings. Thus a data dependent rank selector is needed for building consistent
predictors in those cases. Motivated by the previous case where o2 was supposed known, we proceed
as follows. First, we change the penalty to \ - 752 with

~ 1 a—
oy = %HY — A X B3

Note that in the particular case of Gaussian noise 2 estimates the variance o of the noise. Next, given
a largest possible value for the true rank r,,.. < n A p A rx, we define the data-driven rank selector

7:=arg min {|]Y—ATXET||%+A~r33}. (3.9)

T‘G["’maw

Finally, we use the predictors (A, Br). The next theorem extends the upper bounds of Theorem m
to these data-driven rank-adaptive predictors.

Theorem 3.2.7 The data-driven rank-adaptive predictors (A, B;) associated to 7 in (3.9) with ryax <
nApArx,andto\ = (1+e)np/(rmes V ry) for some e > 0, satisfy for some absolute constant C' > 0
and for any t > 0 the oracle inequality

|A*XB* — A-XB;||2 < min {QHA*XB* —AXB %+ 6(1+e) TUM(A*XB*)Q}

re 7"maa:]
+12C(2+¢e)(1 +1)* - 0* T mas(n + p),
with probability larger than 1 — 2 exp(—t*(v/n + /p)?).
Apply the Corollary 3.2.2} to get under the assumptions of Theorem that

T’E[T"Law AvB:
raArg<r

|A*XB* — A; X B;||% < min } {92 inf ||A*XB* — A, XB,||%+6(1+¢)- rorH(A*XB*)z}

+12(20 + )C(1 + )2 - 0% maz(n + ),

with probability larger than 1 — 2 exp(—t*(v/n + /p)?).
Note that the minimum on the right-hand side of the previous display is always smaller than its value
at r = r* if r,,4, is larger than r*, giving under the assumptions of Theorem that

|A*XB* — A; X By||% < 12(20 4 &)C(1 + )2 - 0%rmaz(n + p).

In order to compare to the previous results, note that the upper bound derived from Theorem for
the value » = r* and the least value A = 4C(1 + t)?0?(n + p) gives the very similar bound

|A*XB* — A; X B;||% < 24C(1 +t)% - or* (n + p).

From a computational point of view, it is preferable to change 5?2 in some cases. For example, we
use in our numerical simulations

1 . .
~2 2
o, = Y - A.XB
r np—(m/\q)rxH " THF

whenn > m, p > gand thus np > (mAq)rx. Itis straightforward to prove the analogue of Theorem(3.2.7|
by considering A = (1 +¢)(np — (m A @Q)rx)/(Pmaz V Ty ).
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3.3 Nuclear norm penalized learning

Nuclear norm penalized least squares is known to exhibit good properties, see [10] or [103]. Hence
it may show advantages over rank-penalized methods. Let us define the nuclear norm penalized (NNP)
optimisation problem

rgigHY—AXBH%HA- |AX B, (3.10)

for some X > 0. The objective of the optimization problem is non-jointly convex in A and B. Note that
in matrix regression (when A* is the identity matrix) the nuclear norm of X B has been used , see [88],
or other adaptive forms depending on the feature matrix X, [90]. However, we exhibit explicit predictors
belonging to the set of solutions of this problem and show an oracle inequality they satisfy.

Theorem 3.3.1 The predictors (A, B) defined by

W,lgkgwAm>VJ (3.11)

are solutions to the problem in (3.10). Moreover, if X is such that, for some absolute constant C > 0 and
foranyt > 0, A > 2C(1 + t)?0%(n + p), they satisfy the oracle inequality

A=Uyl, Uy and B =Vy - Diag,, <

,r*

A*XB* — AXB|%2 <9 min ou(A*XB*)? - 1y + 16M7 3,

F
re[nApArx] P

with probability larger than 1 — 2 exp(—t*(v/n + /p)?).

The proof can be found in Section

Remark. Another approach could be to consider the model under the vectorized form and
solve the problem
min [vee(Y)T —wvee(X)" - AT @ B|j3 +2)\|AT @ B|s,
for some A\ > 0. Recall that AT ® B denotes the tensor product of matrices A" and B and that we
can write |AT ® B||. = >k j>19k(A)oj(B). However, the features are 1-dimensional and we loose the
structured information contained in the original matrix X. This approach could make more sense in
the case of repeated observation (Y;, X;) for ¢ in [T], by stacking the rows vec(Y;)" and vec(X,") into
matrices Y and X, respectively, and do a classical matrix regression. Even so, the usual assumptions
on the feature matrix X in order to achieve good prediction are not reasonable in this context as they
are not much related to the original matrix data sets X;, ¢ in [T].

Remark (Sufficient conditions for identifiability) We have indicated at several times that many
couples of matrices (A, B) solve the equation M = AX B for a given matrix M. Given the SVD of the
matrix M, we may reduce the dimensionality of the problem by choosing the solution (A, B) given by
A =UpnAoUy and B = Vx BV, with Ay and B, diagonal matrices such that

Uk(A)Uk(X)Uk(B):Uk(M), forallk <rx Arq Arp.

Thus, even under diagonal forms we can only identify the product of respective singular values of A and
B. We can only hope to identify matrices A and B under very restrictive conditions where X " X has
full rank and either the matrix A or the matrix B is assumed to have known singular values, e.g. like a
projector with singular values 1 or 0. Few other setups are known to be identifiable in the literature of
factorisation of matrices, e.g. non-negative matrix factorisation (NMF), see [54], NMF for topic models
[84], [25], [86] or covariance matrix factorization [57].
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FIGURE 3.1 — Evolution of the risk in function of r for different values of o

| A* X B*|[7,

3.4 Numerical Results

Let us set the dimensions of the observed matrix Y to be n = 100 and p = 300, the dimensions of the
design matrix X to be m = 50 and ¢ = 60. We randomly generate three matrices : A*, B*, and X, with
independent random gaussian entries with mean 0 and variance 1. These matrices are then projected
onto the best low-rank matrix approximation, with the matrix A* having a rank r% = 16, the matrix B*
having a rank r3 = 12, and the matrix X having a rank rx = 25. The signal matrix is defined as A* X B*
and shows a rank of 12 in all experiments. We also define various settings for the variance o2 of the
Gaussian noise E so that the signal-to-noise ratio SN R := o,+(A*X B*)? /o1 (E)? varies approximately
in the range [0.5, 2].

Figure illustrates the prediction performances of the predictor A, X B,, defined in (3.7), for dif-
ferent values of r. For o < 8 giving the SN R approximately above the value 1, the prediction risk
decreases when the rank increases while remaining bounded from above by 12 and then increases
with the rank when the rank is above 12. For ¢ > 8 giving the SN R below the value 1, the prediction risk
decreases when the rank increases while remaining bounded from above by 11 and then increases with
the rank when the rank is above 11. It highlights that the best predictor is achieved when r» = r* = 12 for
small noise variance levels (i.e. o < 8) and when r = 11 for strong noise variance levels (i.e. o > 8). This
shows that there is a strong overfitting phenomenon in the case of strong noise and that it is therefore
better to slightly underestimate the rank in these situations.

Figure represents the predicted 7, defined in (3.8), for various values of \. Independently of
the noise variance level, for small values of A the estimated 7 is maximal and there is # = rx =
25. This illustrates the previously exposed overfitting phenomenon, that is the higher the rank r, the
lower the error ||V — A, X B,|%. As \ increases the penalty on the rank r becomes more important
in the minimization procedure and # decreases. However, for moderate values of \ (i.e. approximately
log(\) < 5) the smaller the noise variance level o, the faster 7 decreases. Ultimately, for large values of
A (i.e. approximately log(\) > 5) the rate of decay of 7 as a function of A no longer depends on o.

The numerical value of X is an important issue. We exhibit explicit (fast to calculate) procedures for
the choice of this tuning parameter. In the case of known noise variance, the rule of thumb suggested
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FIGURE 3.2 — Evolution of the estimated 7 as a function of log(\) for different values of o

by [27] indicates to choose
o) =2C(n+ p)o?(1 +t)?

in Theorem [8.2.3|with ¢ = 0, and C' = 2. The two solid vertical lines represent A(4.5) (blue) and A(10)
(green). With these choices of the tuning parameter we get successful estimators of the underlying rank
of the signal # ~ 12 = r*. We underline that in the small noise regime the rank is slightly overestimated
and in the strong noise regime it is slightly underestimated. This behaviour perfectly matches the results
drawn from Figure [3.1] showing that overestimating the rank in small noise regime does not impact the
performances and slightly underestimating it in strong noise regime improves the performances.

However, in real world applications the noise has unknown variance. This raises the question of
how to choose a data-driven X in this case, without deteriorating the prediction. This situation is more
challenging as it first requires an estimator of o2 before using the previously exposed rule of thumb.
We choose the initial value of r equal to rx A n A p and propose the r-dependent estimator 52 :=
H}/ _’fir)(léru%
np — (m A q)rx
parameter we produce the rank estimator 7. This procedure takes r as an argument and returns A(c,)
and 7. However, when r is substantially larger than r*, A, X B, is overfitting Y and performing this
procedure once will not lead to a satisfying output 7. Hence we iterate while 7 < r. We note A\(7) and
7 the final outputs of the procedure. The two dashed vertical lines represent A\(c7) when o = 4.5 (cyan)
and o = 10 (magenta). The proposed procedure exhibits great numerical properties.

Finally, numerical simulations generated in the same context, with different values for the true un-
derlying ranks, show similar excellent prediction bounds, combined with correct rank selection. To-
gether with the current case where min(r,rx,r5) = 7}, we have explored successfully the cases
min(r¥, rx,ry) =, min(r’, rx,r5) = rx and min(r’, rx,r5) =1 =rx =15.

. It allows to compute the previously defined \(a,) and using this data-driven tuning

3.5 Proofs

Basic facts For any matrix M € R™™, || M||? < ry||M|/%. In addition, for any matrices M; and M,
in R™*™ the following inequalities hold (M1, Ms)p < || Mi|]+||Mz|lop and | M1+ Ma| | p < ||Mi||p+ || Mz||F-
Furthermore, if we set a = rank M; A rank Mj then (My, M) < [ Mil|(2,0)[[M2]|(2,a)-
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Lemma 3.5.1 Let E be a n x p random matrix whose entries are independent and having Gaussian
distribution N'(0,02). If U and V' belong to O,, and O,, respectively, then E, := U " EV has independent
entries with Gaussian distribution N'(0, 72).

Proof of Lemma(3.5.1] Note that we can vectorize the matrix E, and get that
vec(Eg) = (VI @U") - vee(E),

where vec(E) is a Gaussian vector of dimension np, centered, with variance o*1,,,. Moreover, the tensor
product V' @ UT belongs to O,,,, thus vec(Ej) is still a Gaussian vector with distribution N, (0, 021,,,).
|

Recall that, for an arbitrary matrix M, we denote Uy, )V, its SVD.

Lemma 3.5.2 If M* is an x p matrix of rank r*, than for any r < n A p, we have

r*

. - * (|12 — Z *\2
M:ralnrll(fM<r ”M M ||F Jk(M ) 1T<r*7
N k=r+1

and the infimum is attained by the projection [M*], of M* on the space of n x p matrices with rank r
given by the matrix

[M*], = Uppe - Diagn p(o1(M*), ..., oppes (M*)) - Vi
3.5.1 Proof of Theorem 3.2

Letr € [n ApArx] and (AOT, Bo,) defined in (3.6). Let us denote here M = A;XxBj and My =
Ay, Xx By, By construction, M is the projection [Xy], of ¥y onto the set of matrices with rank less
than or equal to r, in the sense of Lemma[3.5.2] Therefore,

ISy — MollF < 12y — Mg 1%
We recall that in our model Xy = M + Ey which leads to
|Mg — Mo + Eol[3 < || Mg — [Mg]r + Eol[3-
We expand the squares and arrange terms to get
1Mg — Mol % < | Mg — [Mg] |1 + 2(Mo — [Mg]y, Eo) s
Now, since rank(Mjp) = r and rank([M],) < r, we get that rank (Mo — [M(],) < 2r. This inequality gives

145 — Wtolly < 1M45 = (M3 + 20 Bl ey - ¥ — (Mg o
< 1M~ (ML + 20 Bl a2y - 1680 — (MG, e
< ||M; — [ ]HF+2HE0H22T (180 ~ Mg 1w+ 1MG — (Mgl )

We apply the inequality 2zy < ax? + o~ 'y? with 2,y > 0 and o > 0. We obtain, for real numbers o > 1
and 5 > 0,

(L—a™")- MG = Noll < (14 B87Y) - |M5 — M1, + (a4 B) - | EollPy -
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Let us use that HEOH%MT) < 2r-||Eyl|2, and Lemma to further get

14671 . . a+
Ot M M

My — M,
H 0o OHF 1—a— M :rank M <r 1-—

r - 2| BollZ,- (3.12)
Noticing that for any matrices Ay, By havmg rank less than or equal to r, rank(AgXxBy) < ra, ATx A
rp, < 1, we deduce that

M5 — M%< Mg - AoEx Bol2.

rank Ag /\rank Bo<r

M: rank M<r

Indeed, the second inf is taken over a possibly smaller family of matrices. We actually show that equa-
lity holds in the previous display. Indeed, by Lemma we have that inf /. ank < | Mg — M|)% =
S i1 Ok(Mg)? - 1,4+, where r* = rank(DM). Recall that M = AjXx Bj is a product of diagonal ma-
trices, giving that r* = min(rx, ras, 7p;) and oy (Mg) = ox(Af)or(X)ow(Bg) - 1r<r~. Thus, the particular
choice

Aoy = Diagn,m(al (AS), e 7UTATA8 (AS)) and By, := Diagqp(o'l (Bf]k)a cee 7UTATBS (BS))
solves exactly the problem giving M = Ao, X x Bo,. Finally,

inf Mg — M|% = inf Mg — AgXx Byl|%. 3.13
) 17 Jnf Mg — AoXxBoll (3.13)
rank AgArank Bo<r
Plugging this into (3.12) and considering the particular choice a« = 3/2 and 5 = 1/2 give the theo-
rem:
| A58 B — Aoy SxBo, |7 <9 inf (146Zx By — Aox Boll3) + 12r|| Eol12,

0,50:
rank AgArank Bo<r

The last step is the high-probability bound on || Eo||,,- Recall that Ey = Uy EVy with Uy in O,, and
Vy in O, and therefore Ey and E have the same singular values. Therefore ||E||o, = || Eo||op- The noise
matrix £ has independent, centered, o—sub-Gaussian entries and its spectral norm verifies (see [130])
for some absolute constant C' > 0

P(IIE|2, <2C0%- (1+6)%(n+p)) >1— 2"V VP* forany t > 0. (3.14)
Moreover, E [|| E||op) < VCo(v/n + /D).

3.5.2 Proof of Corollary [3.2.2]

Recall the notation Mg = A;Sx B and My = AOTZXB}OT with Ay, and By, given by (3.6) and let
us denote M* = A*XB* and M = A, XB, with A, and B, given by (3.7). Notice that the Frobenius
norm and the rank are invariant under left or right multiplication by orthogonal matrices. Therefore, we
follow the lines of the proof of Theorem and see that |[Y — M||% = ||y — Myl||% and rank M* =
rank Mg = r*. Also, M is the projection [Y], of Y on the space of matrices with rank less than or equal
to r. Finally, the equality can be pushed forward

inf M- MIF= MG - ASxBolh— it M- AXB|}

M:rank M <r ,B:
rank Ao/\rank Bo<r rank AArank B<r

Indeed, we have one-to-one transformations of Ay, By into A, B, respectively, and equality of the Fro-
benius norms. This finishes the proof.
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3.5.3 Proof of Theorem [3.2.3
By definition of 7 = 7#(\), we have that, for all » € [n A p A rx],
1Y — A; X Bi||2 4+ M < |Y — A, X B, |% + Ar-.

Since A, X B, is the projection [Y], of Y on the space of matrices M with rank M < r, we get that for
all matrices A and B such that rank A Arank B < r

|V — A, XB,|} < |[Y — AXB]3.
Indeed, rank(AX B) < r and Pythagora’s theorem gives the former inequality. We deduce that
Y — A; X B;||% 4+ M < |Y — AXB||% + Mr-
Next, replace Y = A* X B* + E, expand the squares and rearrange terms to get

|A*XB* — A; X B;||% < |A*XB* — AXB||% + \(r — 7)
+ 2(E, A; X B; — AXB).

Let us denote by M (#) = A; X By, M(r) = AX B and see that rank(M (#) — M(r)) < # + r. We have

(E,A;XB; — AXB) < ||E|lop - || M(7) = M(r)]|«
< || Ellop - V7 +r||M(7) — M(r)||
< |[Ellop - V7 +r([|M* = M(#)||p + [M* = M(r)|F).
Then, using twice the inequality 2zy < az? 4+ o~ 'y? with 2,y > 0 and a > 0, we obtain for arbitrary real
numbersa > 1,5 >0:
(1—a™HIM* = M#)|3 < (L+B7HIM* = M(r)||F
+(a+ BBl (r +7) + A(r — 7).

Consequently, if (o + B)[| E[|2, < A :
(1= a HIM* = M7 < 1+ 57YIM* = M(r)||F + 2)r,

forall »in [n Ap Arx] and all M(r) = AX B with rank A A rank B < r. We get the result by replacing
again o« = 3/2 and g = 1/2. Then we use that

r*

3 * * 2 _ * *\2
min |A*XB* — AXB|[z = Y ox(A"XB")
rank AArank B<r k=r+1

and the high-probability bounds in (3.14).
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3.5.4 Proofs of results in Section[3.2.3

Proof of Proposition For any r in [n A p A rx], we have that A XB, = [Y], is the projection of
Y on the space of matrices having rank smaller than or equal to . Now, write
F(r):=|Y — AXB,|% + \r

Ty

= Z or(Y)2 - 1ocpy + A1
k=r+1
ry

= ) (or(¥)? = A) - Lycry + Ary,
k=r+1

It is easy to see that I as a function of r has a unique minimum at ry (\) if A > o, (Y)?, but is minimal
and constant for r = ry,...,(n Ap Arx) whenever A < o,.,.(Y)?. m
Proof of Proposition By definition of #, we have &k >  if and only if A > o4(Y)? and k < # if and
only if A < o341(Y)2. In our model Y = A*X B* + E, the Weyl inequality gives |o1,(A* X B*) — o1, (Y)| <
o1(E) for all k. The events on 7 can be written in terms of o, (E) = | E||,, as follows. We have

{k>#} implies X\ > (ox(A*XB*) —01(E))?,

{k<#} implies X< (opy1(A*XB*) 4+ 01(E))>
Thus {7 # k} implies either o1(E) > o4(A*XB*) — VA or 01(E) > VA — o341 (A* X B*). Let us take
k = r*()\). Then the assumption that o,.(,)(A*XB*) > (1 + ¢)V/A gives that o1(E) > ¢v/A and the
assumption that o,.+(5)+1(A* X B*) < (1 — ¢)V/A gives also that o1(E) > cv/A. Thus,

P(’F 7& 7"*()\)) <P (Ul(E) > C\/X) .
The proof is finished using the inequality (3.14). =

3.5.5 Proof of Theorem

The optimization problem (3.9) can be written, after replacing 52, as follows

PR A
Fearg min Y — A.XB,|2 (1 n r) .
TE|"maz np

We denote by M = A-XB;, M, = A,XB, and M* = A*X B*. With this notation it follows that, for

TSTmaxy
_ AT ~ AT
Y -M|Z {1+ )<Y =M% (1+Z).
H ||F( +np) < HF( +np)

Developing the squares and using the equality Y = M* + FE, we get

- — S Ar . AP .
1M — M7 < |M —Mr\|%+2<E7M—Mr>F+%IIY—MTII%—;pl!Y—M!\%-

We now use the upper bound (E, M — M,)r < ||E|l,p||M — M,]|. and the definition of M and M, to
derive

* _ 1 Y - - Ar A7
IM* = M|[F < | M* = My||F + 2[ Ellopl| M — M|l + o Y oY) - o > oY)
k>r k>
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Let us note that we use o(Y) = 0 in case k > ry. We recall that || M — M,||, < vr+7 - |M — M,| ¢
and further obtain

| = B < M = B+ 20 Blop/7 7 (IM* = M5+ | M = 3 )

LA D on(Y)? - 2; > oY)

k>r k>T

Using twice the inequality 2ab < aa® + a~1b? for a, b > 0, with a > 1 first and with 5 > 0 second, we get

(L—a HIM* = M|} < (148 HIM* = M|[E + (a+ B)IE|2,(r +7)

Ar AT
+ 2N o (V)2 = 22N on(Y)2 3.15
np%; k(Y) np; k(Y) (3.15)

We now distinguish the two cases : r < 7 and r > 7. In the first case, namely » < 7, we bound from
above as follows :

Ar Y s A a ) ) )
= oY) - =D oY) = = <7" Y oY)+ (=) on(Y)
P P "\ S E>F
A
< Zr(F =)o (Y)?
np
2Ar
< = . M* 2 E 2
S (7 = r)(or1 (M7)" + | E[|5,)
2Ar % 2)\7"ma:r; _
< Tprmaxar-‘rl(M )2 + 7(T - T)HEngv

np

where we used Weyl inequality o, 1(Y) < 0,11 (M*)+|| E||op leading to 0,41 (Y)? < 2||E|2,420,11 (M*)2.
We plug this into (3.15) to get

_ " — _ N 2\
(1 —a HM* = M|% < (14 57H[M* = M, [[3 + nzaxmrﬂ(M*V
2Ar
2 mazx
+THEHop<a+B_ Tp)
2A\ T maz

B (0 + § + e,

for all r < 7 belonging to [ry,qz]. Thus, for A such that %‘ZVW) = (14 ¢)(a + B3) for some e > 0 we
get

(1= a7 IM* = < min {1+ 87|20 = 30 + (14 &)+ Byrona (017

+(2+ )@+ B)rmasl| Bl
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We now focus on the second case, namely r > 7. We observe that in this case,

Ar or(Y)? — AT D oY) = A ((7’ =) oY) =T Y ak(y)2>

P =z np k>r k=7+1
Ar —7)

np

21 N
< ry o (MF)? +
np

< (ry = r)o1(Y)?

2A(r —7)
np

(ry Vv Tmam)HEnga

by a similar reasoning in the previous case. We plug this into (3.15) to get

2\ Tmaz VTY

(L—a H|M* = M|} < (1+87H|M" = M7+ ropea (M)

2N\ Tomaz VTY
np

2N Tonaz V' TY
np

+r|E|2, (o + B+ )

+ 7| B3, + 8 — )-

With the same choice of A such that ””';1% = (1+4¢)(a+ pB) for some ¢ > 0 we get also in this case
that

A—a M =M} < min {4+ B7)IM = MG+ (L +e)a+ Bror (M)}

STmax

+(2+ &) (@ + B)rmaa|| El5p-

Taking o = 3/2 and 5 = 1/2 and combining both cases leads to the following result
|0 = N3 < min {OIM* = NEF +6(1+ €) - 1op41 (M)} +6(2+ €) - Ty | B

op?
7’6[7’maac

where we choose A such that A - 7,4, V 7y = (1 + €)np for some € > 0. We conclude by using the

inequality (3.14).

3.5.6 Proof of Theorem[3.3.1]

We proceed by solving the problem in two steps for solving the optimization problem (3.10) which
can be equivalently written as

min  min ||Y — M||% + 2\ - || M|+,
A,B M
M=AXB
for A > 0. The solution to the problem in M is explicit and it is known to be obtained from Y by soft-
thresholding of its eigenvalues : M = Uy Diag, ,((0x(Y) — \)4+)V;', where we used the SVD of Y :
Uy Xy V4! . Next, we project M on the space of matrices AX B for A and B in Frobenius norm. It is easy
to check that our choice of A, B are exact solutions, thatis M = AXB.

Similarly to the proof of Theorem[3.2.3] by applying the definition of M, expanding the squares and
rearranging terms we get for all M :

1M — M*|[7 < | M* =M% +2(E, M — M) + 2X\(| M| — || M]].)
< |M* = MI|E +2VA(IM — M+ | ]| — [IM]]),
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under the event that HEHOP < \. We use the decomposability of the nuclear norm of matrices as in [32],
to find My and M, such that M = My + My, |M|s = || M|« + || Mz||+ and | M — M|, = ||M; — M|+ +
|| M2||. Moreover, rank(M;) < 2rank(M). This implies

1M — M7 < | M* =M% + 4V My — M|,

< |M* = M||% + 4V A\/3rank(M 'HMI — M||p
< || M* — M||% 4+ 4VA\/3rank(M) - (|[M — M*||p + ||[M — M*| ).

We obtain for arbitrary real numbers « > 1 and g > 0, for all M,
(1—a DM - M*|F < (1+87Y|IM* = M3 + 4(c+ B)A - 6rank(M).
For the particular values o« = 3/2 and 5 = 1/2, we get
|22 = M| < min {9]|M* — M]3 + 144 - rank(M) }

= re[nApArx] | Mirank M=r

<9 min { min HM*—MH%H()’A-r}.

Recall that mins.cank pr=r || M* — M||% = Z;;:TH ox(M*)?-1,.,- to get the final result.
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3.6 Auxiliary results

Algorithm 1 Data-driven procedure for selecting 7 and A
Input : data X, Y
Require : np > (m A q)rx >0
Define : 52 — I = Ar X By}
"omp—(mAQrx
Define : \(0) := 4(n + p)o?
Define : 7 := argmin, ¢ j,npnr ] (HY — A XB |3+ ) T‘)
Initialize : r <~ rx An Ap, T < 752
while 7 < r do
TT
T ’Ig)\(gg)
end while
Output : 7, \(52)




Chapitre 4

Dynamic Expected Topic Models

4.1 Introduction

Topic modeling is a widely used statistical technique that has gained significant attention in the field
of natural language processing (NLP) and text mining. It provides a valuable framework for uncovering
latent thematic structures within large collections of textual data. The fundamental goal of topic mode-
ling is to automatically discover underlying topics or themes that are present in a corpus of documents,
without any prior knowledge or manual annotation. Topic models have found applications in various do-
mains, including biology, collaborative filtering, population genetics, social networks and image analysis.
These models provide researchers with a means to effectively organize, condense, and scrutinize tex-
tual data, facilitating a deeper understanding of the inherent semantic organization within documents.
For instance, by employing topic modeling techniques, one can uncover thematic patterns in large cor-
pora. This allows to discern topics present in a collection of documents and explore how they relate to
each other, thereby extracting valuable insights about the underlying content and structure.

Notations : In addition to the notation introduced at the beginning of this manuscript, we add some
specific notations for the following two chapters. For any matrix M of size n x m and rank r;;, we
denote M its transpose and for all i € [n] and for all j € [m], [M];; denotes the entry of M in the i‘"
row and ;% column, [M]; its i*" row and [M]; its j** column. We denote M = Uy%, V) its singular
value decomposition (SVD) where Uy, belongs to R"™*"™ and satisfies U,,Uys = I,,,, Vs belongs to
to R™*™™ and satisfies V[V = I,.,,. X is a diagonal matrix containing the non null singular values
o1(M),...,or,, (M) of M listed in decreasing order and null entries elsewhere. We denote oyin (M) :=
Trar (M) the smallest singular value of M. For k < min(n,m) we define Uﬁlj)Z&'}) (ngf))T the k-SVD of
M where U belongs to R™* and satisfies (U](\]j))T UM = 1, VP belongs to to R™<* and satisfies

(Vjﬁf)) v = 1, and
s .= diag(oi (M), 1 <i < k) € Dy(R%) it &k <ray,
s .= diag(o1 (M), .. ., 00y, (M),0,...,0) € De(R%) if k> ry.
For any diagonalizable matrix @ € R"*", we denote A\ (Q), ..., A\, (Q) the eigenvalues of @ listed in

decreasing order. We denote \,in(Q) the smallest non zero eigenvalue of Q. For any set £ and any
integer p we denote D, (E) the set of diagonal matrices of size p with entries in E. For any matrix M,
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we denote M, the matrix obtained by setting all negative entries in M to 0. We denote by ®,,,, (M)
the matrix obtained by normalizing each row of M to have a unit L;-norm and, analogously, ®.,;(M) is
the matrix obtained by normalizing each column of M to have a unit L;-norm. Random quantities are
written in bold, except for the estimators which are marked with a hat.

4.2 Dynamic topic model framework

In this study, we assume that n textual documents are observed successively in time, and that the
topics distribution given a document follows a stationary time series whereas the distribution of words
given a topic remains the same. This is akin to the regular intervals at which daily newspapers publish.
Rather than treating this collection of documents independently of their publication date, our objective
is to develop a model capable of capturing the temporal evolution inherent in the successive corpora.

In our study, we make the assumption that the number of topics discussed remains constant over
time. Additionally, we assert that the word-topic probability matrix A*, remains static over time. This
assumption is grounded in the interpretation of the columns of matrix A* as the distribution of each
topic across the vocabulary. It is asserting that the same words distribution is systematically used to
discuss a given topic.

More precisely, the collection process unfolds in 1" steps, where at each time step ¢ € [T, a fixed
number n of documents is collected. In this context, the j'* document at step ¢t comprises N; words.
As we exclusively focus on the frequencies of each word, for simplicity and without loss of generality,
we presume uniformity in the word count, i.e., Nj'? = N for all j and t. The overall number of documents
collected throughout the entire procedure is nT. The model of interest becomes, for all ¢ in [T] and
jen]:

NY/|W} ~ Multinomial, (N, IT'), (4.1)

where for all columns j, the vectors (Y§)t are assumed to be conditionally independent given (W?)t.
We also assume that for all time step ¢, the vectors (Wﬁ)j are independent. We still assume that the
word-document probability matrix IT* = (xt,..., %), can be factorized as follows :

' = A*W',  telT]. (4.2)

We remind that the topic-document probability matrix at the step ¢, namely W which belongs to R%*"
is now a random matrix following a simplex-valued autoregressive model and that the anchor word
assumption on the word-topic probability matrix A*, which belongs to RP*X | is still made :

Assumption 2 (Anchor word assumption) For each topic k € [K|, there exists at least one word j
such that [A*];, > 0 and [A*];; = 0 for | € [K]\{k}.

Let us denote the concatenated matrices by
whl = (w!, ..., w') and by I*" = (I1',...,11") ,
which belong respectively to RE*("T) and to RP* (") respectively. The model (4.2) can be re-written as

Hl:T — A*WLT.
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Let us consider an autoregressive model of order 1 for the matrices (Wt)tem. However, at each time
step ¢, it is crucial to emphasize that each column W§ is structured as a probability vector, meaning it
consists of non-negative entries that sum up to one. Moreover, an insightful observation underlies our
modeling approach : a topic that enjoys high popularity at time ¢ is anticipated to sustain its prevalence at
time t+ 1. Given these considerations, we define the autoregressive model with the following constraints
forallt e [T —1]:

WL = (1—¢") - Wi4 - A (4.3)

where ¢* € (0,1), and each A’ is a noise matrix of size K x n such that the columns are independently
and identically drawn from a Dirichlet D(¢*) distribution having parameter §* € REX. The primary focus
of this study is to estimate the parameters associated with this dynamic evolution and to establish
non-asymptotic rates of convergence.

Model encapsulates the notion that at time ¢ + 1, W?H serves as a barycenter between W
and a noise vector A§- drawn from D(6*). As a consequence of this formulation, Wg.“ is a probability
vector for all j € [n].

We then assume that the value ¢* is included in a closed subset of (0, 1). Therefore, ¢* is mixing the
contribution of the present value W' in trade-off with that of the noise in order to get the future value
Witlin (@3). It is thus natural to exclude that ¢* gets too close to either 1 (no influence of the current
value, only noise) or 0 (no time evolution, static model).

Assumption 3 There exist two real values c and ¢ in (0, 1) such that the parameter c* satisfies :
c<c <e

Recall that a K —dimensional vector distributed according to the Dirichlet distribution D(6*) lives on
the simplex of dimension K and has expected value and variance given by

6* and ¥ := %(0%) = a—li—l (diag(d") — - (8")7) , (4.4)

respectively, where we denote by « := ||#*||; > 0 and by 6* := 6*/a which belongs to the simplex
S(x—1)- We denote by diag(6*) the K x K diagonal matrix with values 6*(k) on its diagonal.

The third assumption is focused on giving a lower bound to the variance of the Dirichlet distribution
from which the noise matrices (At)tem are drawn. Let us note that for any parameter 6*, the Trace of

¥(6*) can be expressed and bounded from above by one as follows :

— 1A*112
Ty = 100 o

Assumption 4 There exist real values 0 < 6 < 1 and 0 < m < 1 such that the parameter 6* satisfies :

min 6*(k) >0 and m < THZ(6*)) < 1.
ke[K]

This assumption prevents Tr(X(6*)) to be too close to 0. Implicitly, this gives on the one hand that
a = ||6*|; cannot tend to infinity and stays bounded by some constant A(m) < oo and on the other
hand that ||6*||» does not get too close to 1. The latter can happen only when §* gets close to a corner
of the simplex, where the euclidean and the L; norms are both equal to 1.
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Finally, Assumption [5| states that we start our study when the stationary regime is already reached
and thus avoid any transitional regime. We also assume that the initial vectors (le)] are random with
a continuous distribution and that their first and second moments are compatible with the stationary
regime.

Assumption 5 (Stationary regime) We assume that the initial vectors W}, j = 1,...,n are inde-
pendent and identically distributed following the continuous stationary distribution.

Hence for all j € [n], W} is almost surely in the simplex Sx_; and

DY
2—c*
Combining equations (4.2) and (4.3) leads to the following dynamic expected topic model (DETM).

E[W!] =6"andV [W]] =

Definition 4.2.1 (Dynamic Expected Topic Model) We refer to the Dynamic Expected Topic Model
(DETM) described by the following equation :

t+1 * t * Ak t
I = (1 )T + ¢ A* - AL (4.5)

where we observe II; for t € [T, j € [n], satisfying II' = A*W* with W* given by the AR(1) model
(4.3). We assume that Assumptions|3,[3,[4, and[5 are met.

Notice that (4.5) is a simplex-valued autoregressive model of order one and can be further developed

as
t—1

Ht — (1 o C*)t—lA*Wl +C* Z(l o C*)t_l_sA*As.
s=1

Our first objective will be to estimate the parameters ¢*, * and « in the DETM. However, the DETM
is an oracle case where the word-document probability vectors H§- are available. The real case where
only the word-document frequency vectors Y§ are available will be considered in the next chapter.

The primary goal of this work is to grasp the temporal dynamics embedded in textual data. We intro-
duce a model designed to accommodate the evolution and shifting of topics across discrete time per-
iods. Indeed, themes within textual data often exhibit temporal variations. For instance, during election
periods, news articles may emphasize different topics compared to periods of economic downturns.
By integrating temporal information, our objective is to facilitate the discovery of how topics evolve,
emerge, or diminish over time, thereby offering valuable insights into the dynamic nature of textual data.
The question of modeling dynamic components in the topic model framework has been first treated by
[28]. They introduced Dynamic Topic Model (DTM) as a solution to the limitations of Latent Dirichlet
Allocation (LDA) when modeling topics across a series of documents. Numerous papers followed this
initial work, mainly using variational approximate inference algorithms [137, [133| [138| 52]. However,
these estimation procedures lack statistical guarantees.

In this chapter we assume that we have access to the word-document probability matrix IT*". This
is equivalent to assuming that we observe the word-document frequency matrix Y*7 := (v1, ... v7T)
where each document has an infinite number of words, i.e. N = +oco in (4.1). The randomness here
is only due to the time series describing the distribution of topics in the document at time ¢. Hence,
our attention is focused on the DETM. The goal of this chapter is to recover the data W' following
the AR(1) model (4.3), and then to estimate the underlying parameters of this model, by giving non-
asymptotic high-probability bounds.
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4.3 Recovery of the word-topic matrix

In this subsection, we follow the work by [84] and recall the procedure to recover the static deter-
ministic word-topic matrix A* given II'*7" under their assumptions. Then, we project IT*? on the linear
space spanned by the columns of A* and retrieve W . Finally, we show that under the AR(1) model
(4.3), assumptions on W are valid with high probability.

Definition 4.3.1 We define H := diag(hi,...,h,) € D,(R%.), where fori € [p|, h; := ||A} |1 sums the
frequencies of each word across all topics. Define the topic-topic overlapping matrix ¥, € REXK as
follows

Sai= (AT H A%

The quantities A1, ..., h, reflect the variability in the frequency of occurrence of each word. The matrix
3 4 measures the affinity of topics using the same words. The authors in [84] require that the frequencies
of the words considered in the vocabulary stay bounded from below by some positive constant. This
condition aligns with the prevalent pre-processing practice of eliminating exceedingly low-frequency
words or aggregating them into a pseudo-word. In addition, we underline that extreme heterogeneity
remains allowed.

Assumption 6 (Minimal word frequency) We assume that for some constant ¢; € (0, 1),

Injn hi = hmin > c1—.
v p

Definition 4.3.2 Define the topic-topic concurrence matrix $i:I' € REXK as follows

1T . 1 1.T 1.7\ T
Sw ._ﬁ(w ) (W) .
The matrix ¥i:" captures the affinity of topics to be covered together in the same document.

The following assumption coupled with Assumption ensure the identifiability of A* and W1, We
recall that by design, the topic model assumes that the matrix II*? ¢ RP*"T is of rank K and thus
can be written as the product of maximal rank matrices A* € RP*K and W7 e RE*"T Hence A*
and W' are of rank K when K < p A (nT) which implies that >4 and Z§ are also of rank K.
The following assumption allows to control the smallest eigenvalue of both matrices. We also consider
M, = (nT)"'diag (TI""1,1) € Dy(RY).

Assumption 7 We assume 0* is a vector with positive entries and that for some constants ¢, > 0 and
c3 >0,

Ak (X4) > ¢o and nglln (X4l > co, )\K(E%;VT) > ¢, a.s.,
gl > ‘/\I(ZW ([A*]TM*—lA*)) — Ap(BET <[A*]TM;1A*>)‘ >3, as.

The matrix A* is fixed and thus the assumptions on ¥4 are mild. The assumption on the smallest
singular value of ©} can be relaxed as it holds true with high probability as shown in Theorem
Finally, we justify the last assumption using Perron-Frobenius theorem, see Lemma Note that
S ([A*]" M1 A%)) is a K x K symmetric matrix with entries in [0,1] a.s. because both £}/ and



88 CHAPITRE 4. DYNAMIC EXPECTED TOPIC MODELS

[A*]T M1 A* are. We need to prove that the entries of S} ([4*]T M 'A*)) are positive. Let us re-
write the matrix SLT ([A*]T M1 A*) as SLT ([A*]TH-1A%) + 53T ([4%]T (M ' — H™1) A*). Proposi-
tion gives that M ' — H~! is a diagonal matrix with almost surely non-negative entries. Moreover
assumptions on ¥4 ensure that the entries of [4*]T H~! A* are bounded from below by c». Finally this
proves that the K x K matrix Si7 ([A*]T M, ' A*) is a square matrix with positive entries almost surely.
Conditionally on W T, Perron—Frobenius theorem gives that =47 ([A*]T M ' A*) has a unique positive
largest eigenvalue which is also its operator norm. We deduce that conditionally on W', the following
inequality holds almost surely

(S (14T M1 A7) = xR (147 M1 A7) > 0.
Moreover, Proposition allows to get a milder assumption if one accepts c3 to depend on K.

Proposition 4.3.1 The entries of £ 4 are in [0,1] and the entries of ©};" are almost surely in [0,1]. In
addition their spectral norm satisfies :
1

Vi <MEENH <VK  as, \/% <A (24) < VK.

Proof. By definition of £i:" and ¥4 we get immediately that their coefficients are positive and bounded
from above by one a.s.. In addition Lemma/5.6.8|ensures the bounds on the spectral norm of those two
matrices. m
Under these assumptions, we recover exactly A* following the steps below. We remind that in the
DETM setting, the matrix IT'* is accessible and thus all the random quantities introduced in the proce-
dure are available.
1. Pre-SVD normalization : Consider M, = (nT)~'diag (II*"1,7) € D,(R% ). Then derive II, :=
M ;Y117 This multiplication mimics the pre-SVD normalization to be used in the real case.
The matrix M, addresses word frequency heterogeneity in real corpora in order to boost the
signal-to-noise ratio in SVD. In the DETM, pre-SVD normalization is optional and the procedure
exhibits the same performance for any choice of M, among diagonal matrices of dimension p
with positive entries.

2. SVD : Compute the Singular Value Decomposition of IT, € RP*"T" which satisfies rank(IL,) = K
a.s.:
IL :=UXV'.

Let [U]1,...,[U].x be the column vectors of U € RP*X and notice that Perron-Frobenius’s theo-
rem, Lemma|5.6.9] guarantees that [U] ; does not possess any null entry a.s. . The SVD creates
a low dimensional word embedding into R but these vectors do not directly lead to the recovery
of A*.

3. Post-SVD normalization : Compute R € RP*(K—1) defined as follows, fori € [p] and k € [K — 1] :

Ulik+1)
Ry = —oot )
[R]ik Ul
This post-SVD normalization yields normalized vectors [R], , ..., [R],., the row vectors of R. Pro-

position [5.2.14| ensures that there exist ny,...,n)x € R(E-1 such that the row vectors of R are
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located in G,, ¢ RUE~1) defined as follows :

K K
G,,7 = {x;a}:Zaknk, V]CG[K], ap >0 Zakzl}'
k=1

k=1
The vertices iy, ..., ng of Gy, are determined in the following step.

4. Vertex Hunting : The vertices 1, ..., nx of Gy, are recovered by computing the convex hull of the
point cloud [R]; ,. .., [R],.. Subsequently we define the matrix A € RP*X by solving the following
system, for all i € [p],

K

[Rli. =Y [Alan

k=

1

SAlk=1, [Alx>0, kelK].
k=1

5. Word-topic matrix estimation : Define the matrix I' := Mi/zdiag([U]_l)A. Normalize each column
of T" by its L; norm. The resulting matrix is A which is almost surely equal to A*, as stated in

Theorem [4.3.2

Finally, in the DETM setting, the matrix A, estimator of A*, can be represented as

A= @y (MY diag([U].1)®rou (A1) (4.6)

Theorem 4.3.2 In the DETM setting, the matrices A and A* are equal almost surely.

Proof. See Lemma 2.1,2.2and 2.3in [84]. m
It is important to highlight that under our assumptions, the matrix (A*) T (A*) becomes full rank, faci-
litating the precise reconstruction of the matrix W7 through regression of IT''" onto A*. Specifically,
WL can be recovered as : .
Wl:T — [(A*)T(A*)} (A*)THI:T.

Let us recall that here, we assume that the matrix W' is issued by an AR(1) model and thus 237
is random. We show that its smallest eigenvalue is bounded away from 0 with high probability in Theo-
rem [4.3.3] Then we prove in Proposition [4.3.4] that each topic is well-represented across documents.
We demonstrate in Proposition that the covariance matrix of each W, namely %(6*), is singular.
This explains why we focus on the second order moment matrix and its empirical version, the topic-topic
concurrence matrix X4 Then we control the spectral norms of £i;7" and X 4 in Proposition m

Theorem 4.3.3 Consider the DETM under Assumptions@ @ Hand @Denote 0y > 01y > .. > 07y
C

2—c)(a+1)
C > 0 and for any e > 0, we have, with probability at least 1 — T exp(—e),

1T e € + log(K) ’Yézkl) +(1=7) e+ log(K)
A (EI:T) > é* _ €+ 10g(K) \/Pyé)(kl) + (1 - 7) €+ log(K)
K\&w ) Z VW k) — max C " ; C .

the components of 0* € RX in increasing order and~ := . Then, for an absolute constant
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In particular, under the assumptions of the previous theorem we get for ¢ = log(nT') that, with probability
1

atleast1 — —,
n

log(nTK) (’75(1) +(1- 7)) log(nTK)

nC T nC ’
) _ log(nTK) ’)/é(l) + (1 — ’}/) 10 nTK
(W) = 10, — max J Qw » s )

Proof. See Proof in Subsection [ )

Under Assumption (3| and |4}, ensuring that GE*K) > 6 > 0 and leading to o < A(m), we get that

- c-0

1) 2 (Am) + )7
with high probability, which is a relaxed version of the a.s. constraint in Assumption

It is important to note that Theorem [4.3.3guarantees that each topic is well-represented across do-
cuments. Indeed, this implies a uniform lower bound on the frequency of each topic as shown in the next
proposition. We reiterate the probabilistic interpretation of the matrix W7 : for all (j,t,k) € [n] x [T] x
(K], W?(k) is the probability to observe the topic k& given the document j at time ¢, P(topic k| document j, step t).

Thus, for n large enough, we can find ¢; > 0 such that )\K(E%;VT) > ¢y

n T
Then for all k € K, > > Wih(k) > A (Sy)) almost surely.

, 1
tion —
n’l j=1t=1

ProEf)sition 4.3.4 (Topic distribution among documents) Consider the model (4.3) under assump-
Proof. See Proof in Subsection m

In addition we highlight that the variance %(6*) = V [W] is singular. Thus we work with the second
order moment matrix E [W’(W%)T].

Proposition 4.3.5 (X(0*) is singular) For any 6* € R, $(6*) := L, <diag(§*) — 6" (5*)T) c REXK
is singular, where o := ||6*||; > 0 and 6* := 0*/a.

Proof. It is sufficient to note that 1 /v/K, the K—dimensional vector with entries equal to 1/v/K, is an
eigenvector of 3(6*) associated to the eigenvalue 0. Therefore, the rank of this matrix is at most K — 1
and the matrix is singular. m

Following the recovery of W7 the subsequent section outlines a detailed procedure to estimate
the key parameters of interest, ¢*, #* and «.. More specifically, we leverage the recovery of W' using
to derive estimators for ¢, §, and &. However, it's worth noting that an equivalent procedure can
also be applied. By utilizing the availability of TI**” and directly using (4.5), one can estimate the key
parameters. Although ¢ can be readily derived using this equation, estimating # and « still requires
recovering A* and the projection of an estimated A7 onto the span of A*. Our approach here involves
the projection of IT*” onto the span of A*, followed by the estimation of all scalar parameters. Therefore,
in this context, both approaches yield similar results, and our approach offers theoretical results that are
easier to derive.

As mentioned in [86], it may appear possible to apply the results on the recovery of the matrix A*
to the recovery of W1 by merely transposing equation and interchanging the roles of these two
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matrices. However, such an inference is not possible due to the inherent disparity between the resulting
models. In fact, the independence assumption among the columns of IT', stated in assumption 5, does
not hold after transposition. In addition, the row-wise summation of matrices A*, W7 and IT*? does
not yield unity, leading to the need of a distinct statistical treatment. This discrepancy underscores the
need for a nuanced analysis, recognizing that the implications and statistical properties of estimating A*
differ substantially from those associated with recovering W', This justifies our prioritization of initially
recovering A* and subsequently leveraging A* to infer W' | A direct focus on W1 would require
an additional set of assumptions, surpassing the scope of this study. Therefore, our focus remains on
describing the methodology for recovering A* and subsequently utilizing it to infer W7,

4.4 Estimation of the autoregressive model

In this section, we present non-asymptotic rates of convergence in the case where the matrix W7
is observed. This scenario arises in the DETM, once A* is recovered and IT'7 is regressed on A*.
We observe that model can be alternatively expressed as a collection of n independent vector
autoregressive processes of order 1, denoted VAR(1), as follows, where (¢, 5) € [T — 1] x [n],

t+1 * t * )k * t N*
W = (1= YW 0+ o (A5 = 07). (4.7)
Assumption [5] asserts that our analysis commences after the system has entered a stationary re-

gime, bypassing any transitional phase. Additionally, we assume that the initial vectors (W]l)] are sto-

chastic, and their first and second moments align with the characteristics of the stationary regime.
To estimate the parameters of model (4.3), we adopt the method of moments. We define 6 as the

empirical mean of the observed <w§-+1) :
gt

n T-—1

R 1 .
6= mzzwj. (4.8)

7j=1t=1

We estimate 1 — ¢* by the normalized sum of scalar products between the centered consecutive vectors
w§+1 —wtand wh —w:

1 T—1 n
where wt! := ——— Hloandw = —— t_
T amen A s M oy A A

Finally, using the variance of the stationary sequence w§ and the explicit expression of the matrix X,
we see that : .
¢ 163
2—c* a+1
Thus, we plug-in estimators 6, ¢ and the empirical variance to get

Tr(V(wl)) =

: (4.10)

2
9 -

lwj — ]

J
1

~ 1— A2 T—1 n

1
Y = -1 h =
G=5——y , Where V n(T—l);j
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Next we give the convergence rates of these three estimators. It is worth emphasizing that the
convergence rates of these estimators are independent of the dimension K.

Theorem 4.4.1 (Estimation of §*) In the DETM, under the Assumptions @ and @, the estimator 0

2
defined in (4.8) is such that forT > 2 + = andany0 <e <, /nm2 f 0/2 :

e+ 1 1
2§\/n(T—1) <c\/T1+1>’ (4.12)

with probability larger than 1 — 2 exp (—¢*/4).

~ ~

60— 0"

Proof. See Proof in Subsection ]
Theorem 4.4.2 (Estimation of ¢*) In the DETM, under the Assumptions [3, [4 and [5, the estimator

—

(1 — ¢) defined in (4.9) is such that for n and T large enough, for all0 < € < ,/ nm%_g /2

— Cy-e 1 Cs (€2 +1)
l—¢)—(1-c")| < + +1) ——, 4.13
(=0 - (-l < A~ EE (= +1) o (@.13)
44
with probability larger than 1 — 15 exp(—e?/4) where C; := P and Cy := %

Proof. See Proof in Subsection m

Theorem 4.4.3 (Estimation of «) In the DETM, under the Assumptions (3, [4 and [5, the estimator &
defined in (4.11) is such that for n and T large enough, for all 0 < ¢ <, /nmffg /2

N Cs-e ( 1 > Cyi(e+1)  Cs(e2+1)
d—a*| < + + : 4.14
| < n(T—1) \evT -1 n(T-1) n(T-1) @19
; ” 176 (1 +©) z 16(A(m)+1
with probability larger than 1 — 17 exp (—€?/4) where Cs := —ar T Cy = gm(82—E) + 28 ém) ) and

~32(1+9) -

Cs = , and A(m) is defined after the Assumption .

2m?
Proof. See Proof in Subsection[4.5.5 m

It's worth mentioning that an alternative model could involve assigning distinct parameters 67 to the
n columns of the noise matrices A'. In this scenario, we forfeit the benefit of multiple vectors sha-
ring a common parameter. Nevertheless, our results remain valid for estimating the n parameters 67

when n = 1. In particular we may have n different estimators éj showing a convergence rate of order
(@) (1/\/T — 1). Such a model is useful for capturing the distinct ways in which newspapers address
current affairs, exhibiting unique preferences and avoidances. By considering different 67, we enable
newspapers to have distinct stationary distributions, reflecting differences in their treatment of informa-
tion. This flexibility allows us to capture variations in information dissemination among different news-
papers. Another possible extension is to consider a matrix distribution on the noise, which would make
it possible to lift the hypothesis of independence between newspapers and to consider that journalists
influence each other in the processing of information. This model goes beyond the scope of this paper
and is left for future works.
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4.5 Proofs

4.5.1 Proof of Theorem{4.3.3
Proof of Theorem First, we recall that
1 i L —
T <~ \n ’

where W' := [W1,..., W] is a matrix of size K x n. However, the matrices [W"],c[7 are not inde-
pendent. By Lemma[5.6.2] we have that

>ZAK< wiwh)T )

Next, we see that, for each ¢ € [T], W' has independent columns [W*] ¢, which are random probability
< ||[W||, < 1. Let us denote by

il
O:—E [W§. (W§.)T}

the common second order moment matrix of the vectors (W?)j .- By Proposition we see that

Q = ~diag(6*) + (1 — +) 6" (é*)T

By assumption, 6* has positive entries and thus diag(6*) € D (R?.) is full rank with positive coefficient :
1 —~ > 0. Elementary linear algebra results, see [67], give that :

ik < Ak () <A07,_yy and A0 < A () <A6f) + (1—7).

The Weyl’s inequality, see Lemma|1.1.13] provides, for all ¢ € [T], almost surely :

1
Ak (2) + gwt(Wt)T -

1
> \i (iwt(Wt)T) > \g (Q) — Hnwt(wf)T -Q
op

op

Finally, we apply Lemma|1.1.18|with x = 1 to get that for all ¢ € [T] and for all ¢ > 0, with probability at

least 1 — exp (—€?),
2 2
< max \/e —Hog(K)\/)\l (Q)je + log(K) |
C n nC

where C' > 0 is an absolute constant. We conclude, using a union bound in ¢ € [T], the upper bounds
on A\ (£2) and Ak (£2) and the lower bound on Ax (2).
u

th(Wt)T -0
n

op
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4.5.2 Proof of Proposition

Proof of Proposition Let us consider the model (4.3) under Assumption [5|. Under this setting,
for all k € [K] and for all (j,t) € [n] x [T], W (k) < 1 almost surely. This implies almost surely that

n T

n T
S W 2 Y S W = [,

Jj=1t=1 j=1t=1

However, 33;7 is positive definite under Assumption |7, Moreover, diagonal entries of a positive definite
matrix cannot be smaller than the smallest eigenvalue. Indeed by definition

A3 := min 2"8H .
[lzll2=1
Fixing k € [K] and considering = = e;, where (ey, .. ., ex) is the canonical basis of R¥ leads to ||z|[ = 1

and (X3 z,z) = [Sy/ |, This proves that almost surely we have

n T
S WH) = AR,

j=1t=1

4.5.3 Proof of Theorem

Proof of Theorem We use repeatedly the equation of our model to get that, for any integer ¢t > 2
and any j > 1, we have :

wh — 0 = (1—¢)(w

-1 * * t—1 )*
i 0 ) (AT —07)

t
J
t—1

:u_aw*aﬁ—éﬂ+a§:u—af**Q@—ﬂﬂ. (4.15)

s=1

We plug this in the estimator to get :

1 n T-1
%) % __ t 0%
-0 = g (w' — %)
7j=1t=1
1 n T-1
- S5 (1) (wh - )
n(T —1) e
o n T-1t-1 _
+ Z Z (1 C*)t—l—s As 0*
(T —1) j=1 t=2 s=1 ( )
I e o I e VRS
(T —-1)n Z(wj —9)
7j=1
o n T—2 T—1
1 x\t—1—s AS N*
+n(T—1)Z (1=¢) (3 9)
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Finally, we get :

A e el B R I— (=)t
b0 = c*(‘(T—l)) LJZ“J‘QIJFZ <n(T—)1) ;(Aﬂ'_M'

We apply a vector-Bernstein inequality (see Lemma|5.6.1) successively to each term above.

On the one hand, Assumption |5 ensures that (wjl — 5*). . are centered and independent. In
JjEn
<

2

addition, (w]l) ~are in the simplex as well as #*. This implies that for all j € [n], ijl — "
JEN

-

=2 almost surely. Let us define V; := > E [Hw} — 6
j=1

2
2] and note that V; < 4n. More

precisely, Assumption 5| gives that :

n K

Vi E [(@(k) . é*(k))2]

=1 k=1

=n-Tr (V(wjl)) =n-

<

c*

2—c*

Tr(X) <n.
Therefore, by Lemma5.6.1}, we get that for all € € (0, /V4/2) we have :

< (6+1)\/‘71< 6—{-1’
- n - Vn

2

(4.16)

1 . 1 N*
=~ w0
j=1

4
On the other hand, let us denote by a; := {1 —(1- c*)T’l’t}, and see that (at ‘ <A§ — é*))t _
6 —

are independent vectors, centered, uniformly bounded from above in Euclidean norm and have variance
bounded from above by 1 :

2
with probability larger than 1 — exp <—€>.

E Hl (- c*)T_l_t} (A§. - é*)} —0,
|[1-a=er] (ag-0)
E [H 1- (- ey (a5 -0)

‘ <2, a.s.
2

2
‘2] — a2 THE) < 1.

Note that the last inequality is due to the Assumption 4] Let us denote by

n T-2

Vo= ) E [H 1--e) ] (ar-d)

j=1 t=1

N

—2

2
‘2} =n-Tr(X)- at2

t=1
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and note that Vo < n(T — 1). Lemma5.6.1|finally proves that for all € € (0, /13/2),

n T-2

n(Tl_l)Z a (A5 - 0")

j=1t=1

(e VT
- n(T-1)

2
(e+1)

= V(T =1)
< <6(;1—)1)’ (4.17)

2
with probability larger than 1 — exp (—Z)

Let us define V. := min (Vi; V3) and for € € (0, /V./2) we get using a union bound and inequalities

(4.16) and (4.17) that :

1— (11—t 1
9 < (C*\/H(T—l) + n(T1)> (6+1)

me(;l—n <cﬂ}— T 1> |

2
with probability larger than 1 —2 exp (—64). We conclude by giving a lower bound on V, using Assump-

tions [3], [4] and [5] We first bound from below V; and V5 as follows :

C*

Vlzn-Tr(V(w%)):n

>
2_C*Tr(Z]) >n .

m,

T-1 9
Vo=n-Tr(V[A) Y (1-a-e))

_ 1—(1—e)T1  1—(1—¢9)2T-D
_n'Tr(2)<(T_1)_2 Sy s )

2 . 2
We conclude that V, > nm min <2 < , T —1— ) In particular, for T > 2 4+ —,
—cC c [

C
Vi > nm—
2—c
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4.5.4 Proof of Theorem
T—-1 n
Proof of Theorem 4.4.2, We denote A := _ 1 > Al and see that
(T-1) 3 j=1
T—1 n - - _ ~ ~
> <A§-—0*; w§—9*>—n(T—1)<A—9*;w—0*>
-0 -(1-¢) == —
% 2 [ -7
t=1 j=1
We note that w*! = (1 — ¢*)w + ¢*A. This implies the following :
<w§+1 —wtl; w§- - E> =(1-¢") Hw§ —@H; +c* <A§ — A w§~ —w).
Thus,
T-1 n
> <A§—A, wzi—w>
(l—c):(l—c*)+c*t:1j,;_ln 5
=
t=1 ]gl ‘ / 2
By expansion of the numerator above and using the bilinearity of the scalar product, we get :
T—1 ) - ) )
S (a - (B-) il (w-0))
B (4.18)

We then bound from above with high probability the first term of the right-hand side of the equation
(4.18) :

<A§- — 0% w§ - §*> )

T-1 n
<At —0%; w§ - «9*> = Z(l )l <At- 0%; wjl- - é*>
t=1 j=1 t=1 j=1
T-1 n t-1
+e SIS (- ey (AL - 0 A - )
t=2 j=1 s=1
T-1 n T—-1 n
=> > Zi+ X!
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where we denote by Z;f and X} the real-valued random variables defined as follows

Zt:=(1— ")t <A§ — 6% wjl- — §*> ,

X; =c" Z(l — )ttt <A§ — 0% A% — é*>
s=1
t—1
= ¢*(1 - )t <A§. 6> (1) (Aj - 9)> .
s=1

We first notice that the (Z}),, are centered i.e. E [Zﬂ = 0, and uniformly bounded. Indeed, for all (j, ),
Cauchy-Schwarz inequality ensures that

12! < (1—0*)t—1HA;—9”* j-0|, <4 as.

Moreover, they are independent conditionally on (w ) Thus Hoeffdlng s concentration inequality, Lemma-
ensures that for any ¢ > 0, conditionally on (w ) ,

n

T-1 2[
TIPS
t=1 j=1

S VRT-D°

(4.19)

2
with probability larger than 1 — 2 exp _EZ . Since this bound is free of the (w})j it remains unchanged

after integrating with respect to the stationary distribution of these r.v..
Similarly, the real-valued random variables (X;?)j,t are uniformly bounded. Indeed for all (j,¢), we
have almost surely that :

Xt< t1 1_ —s é* HAt_é*
Xl < Z ¢ NS
§4~(1—(1—c) <4 as.
However, for each j = 1,...,n, the (X}?)t are dependent random variables that form a martingale

difference. Indeed, A’ is independent of (A%),.;. We denote f;?*l =0 (A},...,A§*1> the natural
filtration of the random process (A?)t. This ensures that for all ¢,
E[X}] =0,
E[X}|F'1=0 as,
E[Xi<4(1-(1-c)"") <4
Hence, for all j € [n], the adapted sequence ({X;?,]-";‘l}) . is a martingale difference, see Defi-

te[T—
nition[1.1.12, Azuma-Hoeffding’s inequality, see Lemma|1.1.19} ensures that for all ; € [n] and for any
€e>0:

4e 4e
—1\/T—2 VT =1’

i
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62

with probability larger than 1 — 2 exp (—2>. We also deduce that for all ¢ > 0,
P <

(T - 1)
>e| <2 R S
> 6) < 2exp ( 39 )
Lemma shows that the random variables X; := 1/(T — 1) Y1 Xiforj =1,...,n are v*-

62 . 2 16
< 2exp <_%12> with o* = ——.
. . 12 . .
subGaussian with v? = 802 = T—81. As the (X;); are independent, the more general Hoeffding’s

T-1

1
=125

t=2

T-1

inequality for independent sub-Gaussian random variables, Lemma|1.1.7} ensures that for all e > 0,

X;| < _ 8%
n(T —1)

(4.20)

n

j=1

2

£
4

with probability larger than 1 — 2 exp (—
p (1
n

from which (4.20) follows. Putting together (4.19) and (4.20) we get, for any ¢ > 0,

). Indeed Hoeffding’s inequality, Lemma|1.1.7|ensures that

ne?
> e) < 2exp (—22>
v

n(T — 1)e?
256 ’

pIRE

J

< 2exp (—

- (84+2v2)e _ e

T (T -1) " \/n(T-1)

(4.21)

n(Tl_l)ZZ@%é*% w§—9*>

2
with probability larger than 1 — 4 exp (—64

We now bound from above with high probability the second term of the right-hand side of the equa-

tion (4.18), namely :
<Z—é*; @—é*>.

First, recall for convenience that @ = § and Theorem 4.4.1|ensures that for any 0 < e < , /nmy=. /2 :

A~

0 — 0

< e+1 ( 1 +1>
2 /n(T-1) \evT -1 ’

2
with probability larger than 1 — 2 exp (—1) see (4.12).
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In addition, the vectors (A! — o*

) are centered and satisfy for any j € [n] and any ¢t € [T — 1],
-0, < s -

) < 2 a.s.. Hence we define

n T-1
%;:ZZE{]]A;_é*

j=1 t=1

z] = n(T — 1)TH(E),

which verifies mn(T—1) < V3 < n(T'—1). Thus, Lemmal5.6.1|gives that for any € € (0, vm/2-\/n(T — 1)),

HA—é* (e+1)

, S T—l)’ (4.22)

2
with probability larger than 1 — exp <—E4>. Indeed vector Bernstein’s inequality ensures that for all
n T-1

e € (0,vV3/2),
d)>IERE <on(-5).

j=1t=1
which implies (4.22). By Cauchy-Schwarz,

> (e+1)V/ V3

2

<Z—é*; w—é*> < HA—

’é—e*
2

.
The bounds in (4.12) and (4.22) combined with a union bound give, for any € € (0,

‘<Z—9~*; E—é*>

62

an%Q/Q),

(e+1) < 1 )
< 1 4.23
<vr—n =) (4.23)
with probability larger than 1 — 3 exp

The final step is to bound from below with high probability the empirical variance

T—1 n

w2 2w =l (4.24)

tljl

Note that we can write using the stationarity of (w§)t forall j :

T-1 n _ 9
R R
t=1 j=1 2
0 ’
B {le 2
T-1 n 2 ~ 9
Z (Hw E[H@-W D— o~ .
2 2
t=1 j=1
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2

il
T-1 n

i (ng s
t=1 j=1

Recall that Uy = 55+ —Tr(%) > %gm and that we use (4.12) to bound from above Us with high
probability. Hence U; — Us is bounded from below with high probability. Next notice that

Let us define

U, = [le -6

2 t )
oo

N J)

o* —@H )
2

Us:

V=U +Uy;—Us>U —Us— |Us.

The last step is thus to give a high probability bound from above for Us. Recall that (4.19) is giving that
wh— 0 = (1— )M wh = 6%) + ¢ (1 — ¢)!TIFER for all t > 2, where EF = Ak — % is the
centered, bounded, noise random variable. Thus we can decompose U in the following terms

T-1 n
o - ()22<> (I -1 )
2 T-1 n ? = i
zz( |[Eo-era] )
9 2

t=2 j=1 k=1
t—1

T-1 n
+ _1 ZZ 1—C t— 1 5*72(1_6*)t717kE]’?>

=2 j—1 k=1
< Ty +1Ty+1T3, say.

—E [ijl — 6

_l’_

Z tlkEk

k=1

We bound successively these last three terms in absolute values. First,

1 - 1 n* 2 1 0% 2

EZ <ij -0 z_E {ij —0 2})
7j=1

2
2) are almost surely bounded in [0,4] and inde-
Jj€ln]

1 (1 _ C*)Q(T—l)
c2—=c)(T-1)

Ty =

Remark that the random variables <ijl —

pendent. Applying Hoeffding’s inequality for bounded random variables, see Lemma|1.1.8} leads to :
1 . 1 N* 1 N* 2
3 (s - - [l -7

2
with probability larger than 1 — 2 exp ( 4) Hence this leads to

V2e
< i

1— (1 _ C*)Z(Tfl) . \/56
2-e)(T=-1) Vn’

|Ty| < (4.25)
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2
with probability larger than 1 — 2 exp (—1)

Next, we write Ty := L 3 | (@(E}, L ETY —E®(EL,... ,Ef*1)>, where for all j € [n],

®:By(2)T7 — Ry

(C*)2 T—1||t—1
1 T—1\ .__ § «\t—1—k pk
t=2 ||k=1 2

We show that @ is a function with bounded differences in each argument. More precisely, for an arbitrary
¢from 1to T — 1 and any x and 2’ having euclidean norm not larger than 2, we have :

1 -1 41 T-1 1 0—1 1 b+l T-1
®(EL,... B o, B BT (Bl BN B BT
w2 T-1
= S (- e - 1)
= 71 c xl|5 — ||7']|5
t=0+1
t—1
+2(1_C*)t—1—€<x_x/; Z (1 c*)t—l—kEjk:>
k=1,k¢
2 T—1
< ,I(jc_)l Z (4<1 c*)Z(tflff)
t=+1
-1
+2(1 = )l — a2 - Y (1~ C*)”k\Ef!h)
k=1
(c*)?2 41 — (1 — ¢*)2(T—t-1) 6 T-1 ) 1= (1 =)t
< L e A
- -1 c*(2—c*) * Z( <) c*
t=+1
4c* 16 20
< +

< )
T—1 T-1""T-1
Thus, we deduce using McDiarmid’s inequality, see Lemmaf|1.1.11] that for all e > 0 and for any j in [n] :

10e
1 -1 1 T—1
[®(E,.... Bj ) —ER(E),... . Bj )| < e,

with probability larger than 1 — 2exp(—e?/2). Lemma thus proves that the random variables
800
1 T-1y _ 1 T-1 2_ i ith 72 —
<<I>(Ej, B T) —EQ(E;,... B ))je[n] are o°-subGaussian with o T—1
Using the independence with respect to ;7 and Hoeffding inequality for sub-Gaussian random va-
riables, see Lemma|[1.1.7] we get :
20¢

To| € ———,
n(T —1)

(4.26)

with probability larger than 1 — 2 exp(—e2/4), for all € > 0.
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Finally, for 75 we use the Hoeffding inequality conditionnaly on (wjl-)j. Indeed,

N
I

n -1t

2c*

L= T

(]

(1 - C*)Q(t—l)—k<wjl o é*,EJk>
1

I
[N}

._.

>~
S
-

1

[
3 |l
~

2c* -
_ 1— c*)Q(tfl)fk<w1. . 0*,Ek>
(T —1) 1 t=k 1( ’ ’

=
Il
+

<.

s |

~

— =
Il

2 *
= 7n(T—1),1 (I—-¢")

k]- _ (1 _ C*)Q(T—l—k‘)

1 0 k
5 o (w; — 0%, EY).

<

i
i
I

Conditionally on (w]l)j the random variables (UJ’-“)j,k are independent, centered and bounded :

k:]- . (1 . C*)Z(T—l—k)
2—c*

UF|:=|(1-¢ w! — 6", E¥)| <4, as..
j j j

By Hoeffding’s inequality, see Lemma(1.1.8| we get that

1 2¢2n(T — 1)
P(n(Tl) >€) SQQXP<_ 64 )

This immediately leads to
4+/2¢

n(T—1)

with probability larger than 1 — 2exp(—¢2/4). Putting together (4.25), (4.26) and (@.27), we get for all
e >0,

n T-1

Z Z (UJk o EUf)

j=1 k=1

T3] < (4.27)

Us| < [Th| 4 [T2| + | T3]
1—(1—¢)xT-1) _ V2e 20¢ 4/2¢
SR T 1) Vi @D e =1
1 V2e (20 +4v2) €

< . + 4.28
ST Vi am—n (4.28)
with probability larger than 1 — 6 exp(—¢2/4). This leads to, forall 0 < € < , /nm%_g/2
V = [Ui] = |Us| — |Ud|
2 44/2
VZmQ— e+1 < 1 1) - V2 _(O—i-\f)e
2—c n(T-1)\evT -1 cy/n(T —1) n(T —1)
1 2 1 21 + 42 1
> S (14 V2) el (2144V2) et L am (4.29)
2—c  o/n(T-1) n(T —1) 4

for n and T' large enough, with probability larger than 1 — 6 exp(—¢2/4). Large enough means we need

2(1++v2)e+2 2(21 + 4/2)e + 2
mT — 1 (2-¢)+ e (2—¢) < /n(T—1).
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And thus, as long as T > 2, it is sufficient to have

2(1+V2)e+2 2(21 4+ 4v/2)e + 2
5 (2—c)+
mc mc

We conclude using (4.21), (4.23) and (4.29) that, for n and T satisfying (4.30), for all 0 < ¢ <

\/nms=/2,

(2—c) <+/n(T-1). (4.30)

_— . 1 | (e+1)2 1 11e
T—c—(1-¢) < Vo lw@ -1 <1+C %T—1>+\/m ,
4 (e+1)? 1
= ema/n(T —1 Het n(T —1) <1+C T—1>]’
4 2(e +1) 1
e/ -1 | -1 <1+Wﬂ_1>]’

with probability larger than 1 — 15exp(—¢2/4), see (4.13). =

4.5.5 Proof of Theorem
Proof of Theorem Using (@.70) and (@.24) we get new expressions for a* := ||6*||; and & :

¢ 16713

T e TVl
N e 1 e 2

We decompose this difference and bound from above as follows :

A _ 1A112 * _ 1A112
D N ) e
2—¢ )% 2 —c* )%
n c 1—013 11673
2 —c* % 2 —c* %
n c 1-167|3 1 6%13
2 —c¢* % 2= Tr(V(wh)) |

Then we bound from above the three following quantities :

C c*

2—¢ 2—¢*
We first bound from above Q) :

Q1 =

- Q=101 — 1673 and Qa = |V - Tr(V(w)) .

¢ c* 1 1 1
o — ok * o < ¥\ A _ ¥
3= 3o e| 2ot <2—é 2—c*>’_(1+6) &=l
4(1+7) N 2(e2 4+ 1) < 1 >
cmy/n(T — 1) n(T —1) T -1/
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with probability larger than 1 — 15 exp(—e?/4), see Theorem[4.4.2
We next bound from above Q- :

1013 16*13| = |0 — %6+ ) lo-é

)

2

< Hé+é*

2

e+1 < 1 N 1)

n(T—1) \evT —1

with probability larger than 1 — 2exp (—€2/4), see Theorem [4.4.1]
Recalling @ := 6, we then bound from above Q3

1

AN t —2 t  px
|V = Tr(V(w)))| = n(T = 1) %:ij -, —%:ij — 7,

é*

)

=y P ) e (-

< 2|[wll, -

)

i~ + 1wl -

)

2

< 2/|6)2 -

0 =8|+ 16— - (1912 + 16°)12)
< 16— 61ls - (31612 + 1192
< 4]0 - 6|l

\/ne+1 <c\/T1—1+1>

with probability larger than 1—2exp (—¢*/4), see Theorem[4.4.1] Notice that the high probability bounds
on Q2 and Q3 are based on the same event, realised with high probability.

Those three bounds together with (4.29) allow to bound from above the distance between & and o*
from above :

A[12 2
6 ot = & .1— 92_ o .1— )
2-¢ % 2—cr Tr(V(wh))|’
Al [ 1
Q2 +«
V(2—c)+ 1% Qs
16(1+E)

2(e + 1) 1
= 2m? n(T—l). et n(T —1) <1+c\/T—1>]

8¢ e+1 < 1 +1)
cm (2 -7) \/n /T -1
16(1

(I+a) e+1 < 1 +1> ’
cm \/n VT —1

with probability larger than 1 — 17exp (—€?/4). =
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Chapitre 5

Dynamic topic model

5.1 Introduction

We consider the same framework as the one exposed in Chapter[4] In this new chapter, we shift our
attention to the estimation of parameters in the dynamic topic model, presented in definition In
this scenario, we make the assumption that both the matrix W' and the matrix IT*? are not directly
accessible. We use the same notation as in Chapter 4

Definition 5.1.1 (Dynamic Topic Model) We call Dynamic Topic Model (DTM) the model summarized
by the following equations, where t € [T, j € [n] and ¢* € (c,©) and satisfying assumptions|3, [3, [4 and

NY'|W’ ~ Multinomial, (N, A*W?)
Withi=(1-c) Wi+ A, tel -1,
¢ Lid *
AL X D(0).

The definition entails many properties for the matrix process at hand. Indeed, the columns of the matrix
W are assumed independent and having the stationary distribution by Assumption |5/ and the noise
vectors are i.i.d. imply that column vectors of W are independent and have the stationary distribution
at any time ¢ € [T]. Also, Y},..., Y are independent given W, ..., W . This is summarized in the
following Proposition.

Proposition 5.1.1 (DTM attributes) The Dynamic Topic Model satisfies the following :

C*

E[W!]:=6" and V[W!']:= S

2(9*)7

Our only available information is the word-document frequencies Y %7'. The conditional distribution
of the j** column at time step ¢ in this matrix, given WT follows a multinomial distribution with an
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expectation of A*W§. For simplicity, it is presumed that all documents share the same word count,
denoted as N. We still assume that the previously stated assumptions are holding true. The subsequent
proposition outlines the first and second moments, as well as the conditional moments of Y7 given
Wl:T_

Proposition 5.1.2 /n the model (4.1) under the constraints defined in (4.2)) and (4.3), we have, for all t
in[T—1] and j € [n],

E[ngwg.} = A*W§.

VYW = N7 (diag(A* W) — (A W) T (A W)
E[Y}] = A*0",
VY] = NE[(diag( A" W) — (A" W)T (AW )] + AVIW AT,

5.2 Estimation of the word-topic matrix A*

The estimation procedure of A* uses the recovery procedure presented in Chapter [4] applied to the
matrix of empirical frequencies Y7 instead of the true underlying II'. Hence, in this case, all the
previously introduced random quantities will be replaced by there empirical versions. First, M, € RP*P
defined as M, := (nT)~'diag (A*W'T1,7) € RP*P is replaced by a data driven M as follows

M := (nT) 'diag (Y'"1,1) € RP*.

Similarly II, := M, /*I1"7 is replaced by I := M ~1/2Y T € RP*nT and R := [diag([U].1)]"}[[U].2,.. ., [U] k] €
RP*(K—1) jg replaced by its empirical version R where [(7]_1, e [U].K are the first K left singular vectors
of II. We recall that for all i € [p], the quantity h; denotes the L; norm of the i row of A*. In this pro-
cedure, we need to control the noise introduced by replacing the population quantities by their sample
estimates. We update the procedure with the following steps :

— Pre-SVD Normalization : Consider M := (nT)"'diag (Y*"1,r) € D,(R%) and derive II :=

M*l/QYl:T e RanT_
— SVD Computation : 11 is not guaranteed to have rank K, so we compute the K-SVD of II e

RanT .
et T (B () (1) T
oSV =8y (Vﬁ ) .
Let []1,...,[U].x be the column vectors of U € RP*K,

— Post-SVD Normalization : Compute R € RP*(K—1) defined as follows, for i € [p] and k € [K — 1] :

) 0l;
Ry = [ ]A(k+1) .
[Ua
This post-SVD normalization yields normalized vectors [R]y., ..., [R],., the row vectors of k.
— Vertex Hunting : We run the vertex hunting procedure as in the DETM on the estimated [R]; , ..., [R],..

It outputs estimated vertices 71, ..., 7x € RE~L. Further, we obtain A € RPXK suych that for all
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[Alsx = 1 and for all i € [p],

M=

i € [p],

k=1

A K ~
[R]i. =) [Aiwn-

— Topic Matrix Estimation : Normalize each column of the matrix A'/2diag([U].1)®,ouw ([Lr) to

derive an estimator A of the word-topic matrix A*.
Finally, in this setting, the matrix A can be represented as

A= @ (N1"2diag([0).) @500 (A+) ) (5.1)

Our primary objective remains to derive estimators of the autoregressive parameters, namely c*,
6*, and a. To accomplish this, we follow the approach outlined in Chapter using a projection of
the observed Y7 onto A to derive a data-driven version W of W7, We then adapt the previously
introduced estimators to this 1/7. However, in order to establish non-asymptotic convergence rates for the
estimators ¢, 6, and &, theoretical guarantees on the deviation of A from A* are necessary. Specifically,
we need to analyze how M deviates from M., how [U] 1, ..., [U].x deviate from [U]4,...,[U].x, and
finally, how the vertex hunting algorithm behaves with noisy entries. We adapt the theoretical analysis of
[84] to our setting with random matrices and further improve their results by providing explicit constants
and probability control.
We first consider a vertex hunting procedure that satisfies specific assumptions.

Assumption 8 (Vertex Hunting procedure) When the vertex hunting algorithm is given the noisy point
cloud [R)y., ..., [R]p_, the algorithm outputs 11, . ..,k such that, up to a permutation and for a constant
CV g >0,

a.s..

- <C H R| -
max [l = mll; < Cvermax H

Deviation of M from M.,

In this subsection we study the deviation of M from M., in the Dynamic Topic Model framework, see

Definition

Proposition 5.2.1 (Estimation error of M .) For all i € [p], for any ¢ > 0, with probability at least
1 — 2exp (—€*), we have
min(2, h;)

M — [M.Jii
‘[ ) MJi| < NnT

2e

Proof. See Proof in Subsection m

Remark 5.2.1 Proposition improves the result presented in Lemma E.1 in [84]. Specifically, by
setting €2 = 5log(nT), it establishes that for all i € [p], with probability at least 1 — 2(nT)~°, we have

5hi log(nT)

NnT
Notably, unlike Lemma E.1 in [84], Proposition[5.2.1 does not require any assumption on the asymptotic
behavior of NnThyin/ log(nT), the probability of the stated event is controlled non-asymptotically, and
the constants are explicitly provided.
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Corollary 5.2.2 (Estimation error of M.,) For any ¢ > 0, with probability at least 1 — 2p exp (—€?), we

have
P

< .
v/ NnT max(h;/2,1)

max hi_l/Q [M]“ - [M*]n
i€(p]
Proof. See Proof in Subsection ]
Next, we control for i € [p] and k € [K], the norm of the scalar products [Z¥7]] [W 1], where
Zl:T — Yl:T . A*wl:T.

Proposition 5.2.3 (Concentration of cross products) For alli € [p] and for all k € [K], for any ¢ > 0,
with probability at least 1 — 2 exp(—€?), we have

177 T 1.T min(27 hi)nT
12T W) | < 26| FS 20
Proof. See Proof in Subsection [

Remark 5.2.2 Proposition improves the first result presented in Lemma E.2 in [84]. Specifically,
by setting 2 = 3log(nT), it establishes that for all i € [p], with probability at least 1 — 2(nT)~°, we have

5hilog(nT)nT
—N
Notably, unlike Lemma E.2 in [84], Proposition[5.2.3 does not require any assumption on the asymptotic

behavior of NnThp,in/ log(nT'), the probability of the stated event is controlled non-asymptotically, and
the constants are explicitly provided.

12T W T | < 2

Corollary 5.2.4 (Concentration of cross products) For all k € [K], for any e > 0, with probability at
least1 — 2pexp (—€?), we have

max h; /2 [ZLT]ZT_[WLT]k_’ <2
1€[p]
Proof. See Proof in Subsection m

The following corollary gives for all & € [K], an upper bound on the norm of the vectors HM;WZLT[WI:T];@. H2

Corollary 5.2.5 Consider the Dynamic Topic Model, see definition|5.1.1. Then, for all ¢ > 0 with proba-
bility at least 1 — 2pK exp(—¢?), we have, for all k € [K],

max || M2 ZI T W) | < 2 Ly
ke[K] 2 coN

Proof. See Proof in Subsection m

Remark 5.2.3 Corollary[5.2.5 improves the second result presented in Lemma E.2 in [84]. Specifically,
by setting €2 = 5log(nT), it establishes that with probability at least 1 — 2pK (nT)~>, we have

5pnT log(nT)

max HM;I/QZLT[WLT],C,H <2 .
2 CQN

ke[K]
Notably, unlike Lemma E.2 in [84], Proposition[5.2.3 does not require any assumption on the asymptotic
behavior of NnThpin/ log(nT), the probability of the stated event is controlled non-asymptotically, and
the constants are explicitly provided.
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We now state a proposition which controls the deviation of the entries of the matrix [Z¥1]T[Z7]
from its expectation.

Proposition 5.2.6 For the absolute constant ¢ > 0 introduced in Lemma for any ¢ > 0, with
probability at least 1 — 4 exp (2 log(p) — min <e2; vV che)) we have

. [leT];'[leT]m. —E [[leT];I.'[leT]m.] _ 576 - e ' ev/nT
(i,m)€[p]? h; - hm 10g(2)\/6 Nmax(hmm/Q, 1) '

Proof. See Proof in Subsection5.5.3] m

Remark 5.2.4 Proposition[5.2.6 improves the results presented in Lemmas E.3 and E.4 in [84]. Specifi-
cally, by setting €2 = 5log(nT), it establishes that for all (i, m) € [p]?, with probability at least 1 —4(nT)~>
. 5log(nT)
ifc > ——~=

, we have
nT

(2" 12 . — E[[2")]12™ ] ]| _ 576-e  \/5log(nT)nT
N = log(2)v/e N

Notably, unlike Lemmas E.3 and E.4 in [84], Proposition does not require any assumption on
the asymptotic behavior of log(nT'), the probability of the stated event is controlled non-asymptotically.
Finally, the upper bound in Proposition[5.2.6 does not contain additional terms in contrast to the ones
in [84], which represents an improvement.

Finally we derive deviation bounds for the matrix
]\4;1/2 <ZI:T(Z1:T)T _E [ZLT(ZLT)TD M;1/2'

Proposition 5.2.7 For the absolute constant ¢ > 0 introduced in Lemma for any ¢ > 0, with
probability at least 1 — 2 exp (p log(9) — min <e2, venT e)), we have

976 - e vnTe
calog(2) Ny/cmax(hmin/2,1)"

HM*—1/2 (leT(Zl:T)T _E [ZLT(ZLT)TD M*—1/2Hop <

Proof. See Proof in Subsection n

Remark 5.2.5 Proposition improves the result presented in Lemmas E.5 and E.6 in [84]. Spe-
cifically, by setting €2 = plog(9) + 5log(nT), it establishes that with probability at least 1 — 2(nT)~> if
. plog(9) + 5log(nT)

we have
nT

2304 /5nT (plog(9) + 5log(nT))
(&) Nﬁ '

Notably, unlike Lemmas E.5 and E.6 in [84], Proposition[5.2.1|does not require any assumption on either
the asymptotic behavior of log(nT + N) or the asymptotic behaviour of p. Moreover, the probability of
the stated event is controlled non-asymptotically. Finally, the upper bound in Proposition[5.2.6 does not
contain additional terms in contrast to the ones in [84], which represents an improvement.

||M>k_1/2 (ZI:T(ZI:T)T _E [ZLT(ZLT)TD M*—1/2||Op <
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Deviation of the estimated singular space from the true

In this subsection, we consider the Dynamic Topic Model framework, see Definition [5.1.1]and give
deviation bounds for the estimated left-singular vectors with respect to the true ones in the factorization
procedure. More precisely, the vectors [U] k, ..., [U].x (respectively [U]1,...,[U] k) are the singular
vectors of M, /2 A*WET (respectively M—/2Y :T). We define two symmetric matrices of size p x p as
follows,

nT

]TM—l/Q_ Flpv G, = (1 o ]1[) M*—l/QA*leT [A*WLT]TM*_I/2, (52)

é — M—l/ZYl:T [YIIT
We also consider the following K x K matrices :
d:=ATMA, @ = (4T MTA (5.3)

We then consider the eigenvalues [\ (G.), ..., Amin(G5)] of G, and [M\(G), ..., Amin(G)] of G. We no-
tice that Theorem [4.3.3| ensures that rank G, = K almost surely and thus A\,i, (G.) > 0 almost surely.
In addition we notice that G, = IL,II] and G = IIII". Hence [U] 1, ..., [U].x are the eigenvectors of G
and [U] k, ..., U] i are the eigenvectors of G..

Proposition 5.2.8 Consider the Assumption[7} Then the following inequality holds almost surely for all
i € [,

cohi < A (S )hi < [MLJii < hs.
Proof. See Proof in Subsection5.5.5 =

Proposition 5.2.9 Consider the matrix G, in (5.2) and Assumption[7, Then rank(G.) = K and its
eigenvalues satisfy almost surely the following inequalities,

1\ nTK 1 1
(1 — N> o > Al(G*) and )\K(G*) > (1 — N) ’IZTC% and )\1(G*) > <1 — N) nTcs + )\Q(G*)

Proof. See Proof in Subsection5.5.6] m

Remark 5.2.6 Proposition[5.2.9 extends the first result presented in Lemma F.2 in [84]. Notably, Pro-
position does not require any assumption on either the asymptotic behavior of log?(nT) or the
asymptotic behaviour of plog(nT'). Moreover, the constants are explicitly provided.

Proposition 5.2.10 Consider the Assumption @ We denote [U] k, ..., [U] k the eigenvectors of G.
andU = [[U] k,...,[U).x] € RP*K. Then for all i € [p], we have almost surely,

VEKh;
HUi.HQ < I el
A (BW)
Proof. See Proof in Subsection n
Remark 5.2.7 Proposition [5.2.70 improves the result presented in Lemma F.3 in [84]. Notably, Pro-

position does not require any assumption on either the asymptotic behavior of log?(nT) or the
asymptotic behaviour of plog(nT'). Moreover, the constants are explicitly provided.
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Theorem 5.2.11 Consider the Assumptions|6 and[7, Then for N, n and T large enough, for all i € [p]
and for any ey, €2, €3, €4 > 0, with probability at least 1 — 2p exp(—e3) — 2K exp(—e3) — 2pK exp(—€3) —
4p exp ( min (64, Ve Te4)), the quantity h;l/ 2 e] (G — G*) , is bounded from above by

T K vK v K 288 -
2 [TI0 N (2 VP K g VI s tevilia 288 | VP
N Co log(2)y/c cav/Neil K

NcieoK c5 C34/C1
where ¢ is an absolute constant appearing in Lemma|[1.17.70 In addition, N, n and T large enough
means :

16 32 9K?
NnTZe%max(Q; — h3 >

=5 hmin min

Proof. See Proof in Subsection5.5.8| m

Remark 5.2.8 We set ¢ = = log(nTp), €5 = log(nTK) and €5 = log(nTpK) and we assume
., log(nTp)

. We notice that for N, n and T large enough the sample size conditions of Theorem|5.2.11

n

is fulfilled : 2
1 2 K

NnT > log(nTp) max (26, 32 ; ghg )

) hmin min

Then, there exists x, a positive constant only depending on K such that for all i € [p|, with probability at

T/~ nT'plog(nTp) P
T(G—G.)|| <y L2228 (2 ,
€i (G G)2_X N Vv L

This convergence rate matches with the one stated in Lemma F.4 in [84].

10
least1l — — :
nT

12

Theorem 5.2.12 Consider the Assumptions|6 and[7, Then for N, n and T large enough, for all i € [p]
and forany e, e3, €4 > 0, with probability at least 1—2p exp (—e%) —2pK exp (—e%) —2-9P exp <— min (ei, vV ch64) ) ,

the quantity H <G - G*) is bounded from above by

op

4e1/nT'p n 8es K+/nT'p 464\/TLT 288 - e n 2461\/nTpK2
Neo/Nel K coV' N N o log(2)+/c AVN

where c is an absolute constant appearing in Lemma In addition, N, n and T large enough

means :
16p? 4pK>

1 '3
;e K s

NnT > e%max(

Proof. See Proof in Subsection5.5.9] m

Remark 5.2.9 We set ¢ = log(nTp), € = log(nTpK) and €5 = log(nT) + plog(9) and we assume
> log(nT') + plog(9)

. We notice that for N, n and T large enough the sample size conditions of
Theorem[5.2.12 ﬂ is fulfilled :

16p? 4 K
NnT > log(nTp) max ( p_ P ) .

3
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Then, there exists x, a positive constant only depending on K such that, with probability at least 1— v :

CRED

This convergence rate matches with the one stated in Lemma F.5 in [84).

nI'plog(nT
<X N( )
op

We now derive a large-deviation bound for singular vectors. We recall that U= [[[7},1, A [U]_K]

contains the first K left singular vectors of the noisy quantity II. Their population counterparts are deno-
ted respectively U and II,. For any matrix M we denote [M];. the i*" row of M.

Theorem 5.2.13 Consider Assumptions@and[?} Then there exists a matrix ) = diag(w, Qa.x) € REXK
where w € {—1,1} and Qq.;x € RE-DXK=1) js an orthogonal matrix such that for N, n and T large
enough, for any ei, eo, €3, €4 > 0 satisfying

3 min (03, C%)

2\/p 576e 4K? )
12VK | —— +2K/p+ +
( N VP log(2)VNe ¢ VP

for all i € [p] and with probability at least 1 — 2pexp(—e?) — 2K exp(—e3) — 2pK exp(—e3) — 2 - (2p +
9P) exp (— min (ei, vV ch@;)) we have

max(eq, €2, €3,€4) < VnT

hip

HQ[U]i. - [Ul.. WT(N =2

9 S Ctot(l% N) ma’X(Ela €2, €3, 64)

where

A0K3/? K +2+\/2K/c; + 2K2¢; " + 2880(cpN) /2 4 N1 VP Kp
(. N) < 242K —
Crot(p, N) <—— ( 2)< - +2+ fer+ 57 K+ N

c5 min (c3, ¢35

Moreover, N, n and T large enough means :

NuT > & max <36K 64p 16 32 9K2>

30 4 " i’ & 3
c; a1 K c5hmin hmm

Proof. See Proof in Subsection n "
. . K Kp
We note that the dependency of Ci:(p, IV) is of the order of magnitude of - ) ( + K2>

4 2
Co Min (03, c5 alN

Remark 5.2.10 We set €2 = log(nTp), €3 = log(nTK), €3 = log(nTpK) and 5 = log(nT) + log(2p +
1 T
9P) < log(nT) + p once p > 2 and we assume ¢ > M. We notice that for N, n and T large

nT
enough the sample size conditions of Theorem are fulfilled :

nT > ¢ - (log(nT) +p) (VP + 1),
36K 64p 16 32 9K? )

3 ’

NnT >1 T D
nT = log(nTp) max( cs 6201K Cthm c% c§h3.
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for any positive constant i) only depending on K. Then, there exists x, a positive constant only depen-
ding on K such that for all i € [p], with probability at least 1 — % :

R (4 R)

This convergence rate matches with the one stated in Theorem 3.1 in [84].

oo - @

Proposition 5.2.14 (Rows of R Lie in a Simplex) There exist K vectors of RE~Y denotedn, ..., nx
such that the matrix R € RP*(K=1) defined in the Post-SVD Normalization step in Chapter has its rows
embedded in G,, where

K
Gy = {xERKl x—Zaknk,Vke ], a. >0, Zak—l}

k=1

Furthermore, we denote N := [n,...,ng] € REX(E-1),
Proof. See proof in Subsection|5.5.11| m

Theorem 5.2.15 Consider the Assumptions @ and|:7l Consider the matrices R and R defined in the

Post-SVD Normalization step. Then, for N, n. and T large enough, for any e, 2, €3, ¢4 > 0 satisfying
c% min (03, c%)

2,/p 576e 4K? )
12VK | == +2K,/p+ +
( N VP e ovNe T VP

for all i € [p], with probability at least 1 — 2pexp(—e3) — 2K exp(—e3) — 2pK exp(—€3) — 2 - (2p +
9P) exp <— min (ei, \/che4)), there exists Q. € RE-DX(E=1) " an orthogonal matrix, such that

< <2Ctot(pa N)max(e1, €2, €3, €4) p*? ) <2+ P >»

0102/21( nT'(N —2) el K

max(€, €9, €3,€4) < VnT

I

o [, -1,

2

with Cio¢(p, N) defined in Theorem Moreover, N, n and T' large enough means :

3

) and (N—2)nT > Cio(p, N)? max(ey, €g, €3, 64)26361%[(2-

36K 64p 16 _32 9K?

30 AL 2p . 20 313
3 daK Ghmin & Sh3

Proof. See proof in Subsection|5.5.12| m

NnT > e%max(

Remark 5.2.11 We set 2 = log(nTp), €3 = log(nTK), €3 = log(nTpK) and €3 = log(nT) + log(2p +
97) < log(nT) + p once p > 2. We notice that for N, n and T large enough the sample size conditions
of Theorem(5.2.13 are fulfilled :

nT > - (log(nT) +p) (v/p + 1),
(N = 2)nT > - p? (log(nT) + p) (% + 1) ,
36K  64p 16 32 9K? >

NnT > -log(nT a ; ; D5 e —
nT 2 ¢ -log(nTp)m X< cg c%clK cghmin cg c§h3

min
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for any positive constant i) only depending on K. Then, there exists x, a positive constant only depen-

ding on K such that for all i € [p], with probability at least 1 — T

plog(nT) + p? D
< pASEARLIE S — .
o =P\ (v —2) Ly )+p)
This convergence rate matches with the one stated in Theorem 3.2 in [84)].

Theorem 5.2.16 Consider the Assumptions@ and|:7l Let A be the estimator of A* defined in (5.1). Let
Dy be the set of matrices Q = diag(w, Qa.xc) € REXK where w € {—1,1} and Qy.jc € RE-DX(E-1) g
an orthogonal matrix. Then, for N, n. and T large enough, for any i, 2, €3, ¢4 > 0 satisfying

HQ2:K [R} - [R]z

7.

3 min (03, c%)

2\/D 576e 4K*> )
12VK | == +2K/p+ +
( N P eovNe T VP

9

max(eg, €2, €3,€4) < VnT

for all i € [p], with probability at least 1 — 2p* exp(—e?) — 2pK exp(—e3) — 2p?K exp(—e3) — 2p - (2p +

9P) exp (— min (ei, 4 chq)) and up to a permutation of columns of A we have

H i "l < Ay
i ( hi ) = Calp Nmaxt€octan Ly =) TV UNaT

Moreover, N, n and T large enough imply that :
36K 4K 4p  64p 16 32 9K? )
NnT > €2 max <; —; : : .22 7
= 3 C% aK C%ClK cghmin c% C%h?nin

€2
p 8pK'/2  8pK? 2WEKe
+ maXIIfL"IIQ +— ;
2

13/2 15/2
C1Cy / C1Cy /

1 2
* < + el K

4
NnT > —7— | Cror(p; N) max(€)iea) /P

Cy (1

1 4K2C2 » \°
2 2 .3 : VH
(N = 2)nT = Ciot(p, N)” max(€;);cpyp” max (cgc%KT 2 ( ngK) .

In addition Ci.(p, N) is bounded from above in Theorem and the quantities C4(p, N) and

Cg(p, N) are defined as follows :

44/2 p 8pK1/2  8pK? 8v2K
Ca(ps N) == Ciot(p, N) 77— |1+ <2 + ) + max||:c|] , Cpi=—r—
(63/201) cyer K 01053/2 c1Cy e ? cél/ch
Proof. See proof in Subsection|5.5.13 m
K5/2 2 Kp
We note that the dependency of C4(p, N) is of the order of magnitude of —;— ( + KQ)
¢3¢} min (03, 02) alN

Remark 5.2.12 We sete? = 2log(nTp), €5 = log(nTpK), €3 = 2log(nTpK) and e; = log(nT)+log(2p*+
p9P) < log(nT)+ p once p > 34. We notice that for N, n and T' large enough the sample size conditions
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of Theorem[5.2.16 are fulfilled :

nT > - (log(nT) +p) (V5 + 1),
(N =2nT = ¢ p* log(nT) +p) (£ +1) (1 +p)*

36K 4K 4p  6dp 16 32 9K2>

30 T2 ! y o 27 3
s 5 cakK cea K cshmin hmm

NnT > 1) - log(nTp) max (

VR 2 - Vplognt) +5) ({2 +1) (1 ol ).

for any positive constant i) only depending on K. Then, there exists x, a positive constant only depen-
, . .. 8
ding on K such that with probability at least 1 — T :

H log(nT) + p* [p
1| < prog\nl) TP (4 21 1 _
Illéf[iz,)x ( hz ) <X WT(N —2) pl{l+ N (1+p)( +géag}§”$H2)

This convergence rate matches with the one stated in Lemma G.1 in [84].

Theorem 5.2.17 Consider the Assumptions @ E] and @ Let A be the estimator of A* defined in (5.7).
Then, under the same conditions and with the same notations as in Theorem we have

D n KCp
6 )
nT(N—=2) " '/NnT

*

g KCa(p, N) max(€; )i

with probability at least 1—2p* exp(—e?)—2pK exp(—e3)—2p* K exp(—e3)—2p-(2p+9P) exp <— min (ei; vV C?’LT€4) ) .
Proof. See proof in Subsection|5.5.14| m

Remark 5.2.13 We set¢? = 2log(nTp), €2 = log(nTpK), €3 = 2log(nTpK) and €2 = log(nT)+log(2p*+
p9P) < log(nT)+ p once p > 34. We notice that for N, n and T large enough the sample size conditions
of Theorem are fulfilled, see the remark under Theorem Then, there exists x, a positive

n

p oo (n 2
> DAL (1 2 ) (14 )+ o)
1=1 n

This convergence rate matches with the one stated in Theorem 3.3 in [84)].

Al -

5.3 Estimation of the topic-document matrix

This section is devoted to giving a proxy random matrix WLT of the unobserved W1, once an
estimator A of A* is derived, see Section First, let us denote

o= (A M 1A* and d:=ATM A
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Notice that for all j € [n] and for all ¢ € [T,
W§ _ ((A*)TM*—lA*) -t ((A*)TM;ll—I;) ’
— (@) ((A*)TM*—ll—I;) '
This motivates to define for all j € [n] and for all ¢ € [T,
W= (ATNA) T (ATA ).
= (8) - (ATar 1y,
However, each W§ lies in the K dimensional simplex non-negative entries and unit L; nhorm. Hence we

derive for all j € [n] and for all t € [T] the estimator W} by setting negative entries of W; to zero and
normalizing it to have a unit L; norm.

Theorem 5.3.1 Foreveryt € [T'] and for every j € [n], for N, n and T large enough, for any (e;);c5 €
(R*)? satisfying

3 min (63, C%)

2,/p 576 AK? )
12VK | = +2K\/p+ +
< N VP log(2)VNe ¢ VP

with probability at least 1—2p? exp(—e3)—2pK exp(—e3)—2Kp? exp(—e3)—2p-(2p+9P) exp (— min (ei; V che4> ) -
2K exp(—€2), we have :

max(e€1, €, €3,€4) < VnT

)

HWY?_Wt.H <V1(P, N) maX(eg)seM] Voe€s v3€1
J T — nT(N —2) VN  V/NnT'

2 2K32(2/K +1 42 K32
where vi(p,N) := 32K"/2,/p [Ca(p,N)\/p + Cg] JCFCQ + (C[jL ) , U2 \fc2 nd
2 2 2
16K3 .
v3 == ——. Moreover, N, n and T large enough imply that :
€
36K 4K 4p  64p 16 32 32 9K?
NnT > 2 . . . .o0e.
ni=ea max( a A 27 oK’ e K’ (:2hmm7 2h2. 7 3’ hf’nm)7
4 p 8pK'/?2  8pK? 2V Ke;
NnT > Ctot(p, N) max(€;);cia/P |1 + (2 + ) + max HwH + ;
Cg/gcl [ €[] o K 01653/2 crel 52 5 2 Cs
nT(N —2) > 8K*? max()ici [Calp, N)V/p + Cp] v/,
. 1 4K2C? P 2
2 2 3 : VH
(N = 2)nT = Ciot(p, N)” max(€;)jcpyp” max <C§C%K2, 2 (2 + cgclK) ,
K, \/ 16K5¢/c} + 32 [2VK + 1] max(€2),ep K7/ [Calp, N)y/p + Ci) /b
nT(N —2) > > + .

c5 Cc2
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Proof. See proof in Subsection|5.5.15 m
3K K
We note that the dependency of v (p, N) is of the order of magnitude of P ( Py K2>

C%IC‘I’ min (05, C%)

and the sample size condition can be restated, in order of magnitude, as :
5/2K5/2 Kp K4p3 \/K»p

NnT > \/ K?|, nT(N-2)> 2 +K?%).
nt = c%lc‘f mln(c;g,c%) ( aN + nT( ) 2 max(e] )26[4] 02103 min (cd,cg) caN

Remark 5.3.1 We set ¢ = 2log(nTp), €5 = log(nTpK), €5 = 2log(nTpK), €2 = log(nTK) and 3 =
log(nT) + log(2p? + p9?) < log(nT) + p once p > 34. We notice that for N, n and T large enough the

sample size conditions of Theorem|5.3.1| are fulfilled. Then, with probability at least 1 — niT’ in order of
magnitude thereis :

H PP KS(log(nT) + p) ( Kp +K2) K?’/?«/log nTK) \/log (nTp)
N N .

_c c‘;’mln(c;),,cg)nTN 2 N NnT

5.4 Estimation of the underlying parameters of the autoregressive mo-
del

This subsection is devoted to the estimation of the parameters of the autoregressive model
once an estimator W7 of the realization W7 of W' is defined, as in the previous subsection.
Similarly as in Chapter |4, we define the estimators of 6%, ¢* and « via the method of moments. We
define 6 as the empirical mean of the estimated (W})jt
n T-1

W, (5.4)
] 1 t=1

We estimate 1 — ¢* by the normalized sum of scalar products between the centered consecutive vectors
W — Wt and Wi — W

T-1 n " B —
> <W;+1 WL W W>
— t=1 j=1
(1 - C) = ’ T_l n R _ ) (5'5)
> [t~
=1 j=1
S— 1 1
where W+l .= — — W“rl and W := Wt = 0.
n(T 1) tzl ]21 T 1) tzl JZ

Finally, using the variance of the stationary sequence W§ and the explicit expression of the matrix
3, we see that :

110

VW) = 5% +1
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Thus, we plug-in estimators 6, ¢ and the empirical variance to get

X 2—¢ =
T nT_lzZTr (Wi —W)T). (5.6)

Next we give the convergence rates of these three estimators.

Theorem 5.4.1 (Estimation of 6*) In the DTM model, under the Assumptions 2,3, [4 and |, the esti-
mator ¢ defined in (5.4) is such that for N, n and T large enough, for every (¢;);cq) € (R%)® satisfying

C
< —— /2 and
€6 nm2_§/

c% min (03, c%)

max(e€, €, €3,€4) < VnT

2\/p 576e 4K? )’
12VK | Y= 42K /p + +
( N VP log(2)VNe ¢ VP
we have
i 1 4v2K3/? 16K°
“n(T /T —1 3V N SV NnT
32 maX(es)s€[4]K "2 /5 [Ca(p,N)/P+ CB] 2K3/2(2VK + 1)
+ 5 (24 c2) + 5
csnT(N —2) 3

with probability larger than 1—2p? exp(—e2)—2pK exp(—e3)—2K p? exp(—e3)—2p-(2p+9P) exp (— min <e4, Ve T€4>) —
2K exp(—e?) — 2 exp (—€2/4). Moreover the condition on N, n and T is similar to the one stated in Theo-

rem[5.3.1

Proof. Let us denote 6 the empirical mean of the unobserved W§ Then use the triangle inequality to
get:

0 — 0 0 —

ﬂ +‘é—@

2~ ‘2 2’

The quantity Hé — 0"

, is bounded from above in Theorem}4.4.1|and the L;-L» inequality combined with

PO 1
the triangle inequality ensure that the quantity HQ — 9H2 is bounded from above by n— H (Wt Wt) H1
Jj=1t=1
We conclude using Theorem[5.3.7] =

Remark 5.4.1 We set €3 = 2log(nTp), €3 = log(nTpK), €5 = 2log(nTpK), ¢ = log(nTK), ¢] =
log(nT) + log(2p? + p9P) < log(nT) + p once p > 34 and €2 = 4log(nT). Then, for N, n and T large

enough with probability at least 1 — T in order of magnitude there is :
n

=

< log(nT) < n 1) S K |Klog(nTK) +/log(nTp)K3
S mr y\evr—1 ) T EV T 5T

[log(nT) + p]K%p? <\/CII(7]Z\?7+ K2>

2
+ c2+ —5|.
333 min (c3,c3) nT(N — 2) [ 2 3 ]
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This rate of convergence can be compared to the one obtained in Theorem[4.4.1| In the oracle DETM,
log(nT)
n(T —1)
DTM, fixing the number of topics K and the vocabulary size p, the rate of convergence is of order

(@) ( 1(22 (nT) +14/ log (nT) > with probability at least 1 — n— Hence the probability control is weaker
log(nT)
N

underline that the other terms come from the estimation error of A*.

. . .. 2 .
the convergence rate is of order © ( ) with probability at least 1 — T In the realistic

by a constant factor in the DTM and an exira term appears due to the multinomial noise. We

Theorem 5.4.2 (Estimation of ¢*) In the DTM, under the Assumptions 3, [3, [4 and [5, the estimator
(1 —c) defined in (2.9) is such that for n and T large enough, for any (e;);c7 € (R%)7 satisfying

max(eg, €7) < nm%/Q and
—c
c3 min (03, C%)

2/D 576e 4K? )
12VK | = +2K/p+ +
( N VP log(Z)\/Z\Tc c2 VP

max(€p, €2, €3,€4) < VnT

we have
— . 64(1 —c*) [ vi(p,N) max(e?)sem V2€s5 v3€1
—c)—(1— <
(A=) —(A=c) < cm < nT(N — 2) TN T UNeT
« 2
8* | (e7+1) <1+ 1 ) N 1le;
cm | n(T —1) /T —1 n(T —1)

with probability larger than 1 —2n(T — 1)p? exp(—€2) —2n(T — 1)pK exp(—e3) —2n(T — 1)Kp exp(—€3) —
2n(T — 1)p - (2p + 9P) exp (— min (ei, \/che4>> —2n(T — 1)K exp(—€2) — 2n(T — 1) exp (—€3/4) —
13 exp(—e% /4). Moreover, N, n and T large enough means :

<V1(P7N)max(€§)se[4] Lt wa ><27

nT(N —2) VN /NnT
where v1(p, N), vo and vs are defined in Theorem|5.3.1|.
Proof. See proof in Subsection|5.5.16| m

Remark 5.4.2 We set ¢ = 2log(nTp), e3 = 2log(nTpK), 63 = 2log(nTpK), 65 = 2log(nTK), €5 =
2log(nT) + 2log(2p? + p9P) < 2log(nT) + 2p once p > 34, €2 = 8log(nT) and 2 = 4log(nT). Then, for

, . 25 . ) .
N, n and T large enough with probability at least1 — T in order of magnitude there is :
n

T=0) - (1 <= p*K°(log(nT) + p) Kp | o), Vi TE)K2G K9 \/log(nTp)
oam NnTc3'e3 min (03,c2) aN VN SVNnT

C*

log(nT) <1+ 1 >+ log(nT)

em | n(T —1) VT —1 n(T —1)



122 CHAPITRE 5. DYNAMIC TOPIC MODEL

This rate of convergence can be compared to the one obtained in Theorem[4.4.2 In the oracle case, the
log(nT)

nvergence rate is of order O —
convergence rate is of orde <n(T—1)

) with probability at least 1 — ;—; In the real case, fixing the

, . . 1 T 1
number of topics K and the vocabulary size p, the rate of convergence is of order O ( og(n Og )

, . 2 . .
with probability at least 1 — —; Again, we see that for a probability control of the same order, an extra
n

log(nT")
term | ——
N

appearing the upper bounds due to the multinomial noise.

Theorem 5 4 3 (Estimation of o) In the DTM, under the Assumptions|3, (3, [4 and[5, the estimator &
ef/ned in is such that for n and T large enough, for any (e;);c[7 € (R%)" satisfying max(es, €7) <

/2 and

3 min (03, C%)

2\/p 576e 4K? )
12VK | —— +2K/p+ +
( N VP log(2)VNe ¢ VP

max(ey, €2, €3,€4) < VnT

we have :
256(1 — c¢*)2 (v ,Nmaxegs
64— a*] < (2 26 ) 1(p, N) (€5)sepa] Lo wa
cm nT(N —2) cmV/N nT
32¢* (1 —c*) | (er +1)? <1 N 1 > 1167
c?m? n(T —1) /T —1 \/n
4 * 2 1 1 K3/2 32K
¢ (66+ ) < +1) 658\[ + €
em ( V(T /T —1 c2VN SV NnT
N 256¢* max(es)se[4]K7/2\/ﬁ [Calp, N)y/p+ CB] @+ )t 2K3/2(2K 4 1)
C
ciem (2 — ¢*)nT(N —2) 2 c3

14 A(m) 16(eg + 1) ( - 1) 32v/2K3/? N 128K3
€ €
cm \/n /T —1 ° c%\/N 1cg\/NnT
1 4 A(m) 256 max(e s)sG[4]K "2 /p [Calp,N)\/P + Cp] 2K32(2VK +1)
+ 2 (2 + C2) + 2 9
cm csnT(N —2) 3

with probability larger than 1 —2n(T — 1)p? exp(—¢€7) — 2n(T — 1)pK exp(—e3) —2n(T — 1) Kp* exp(—€3) —
2n(T — 1)p - (2p + 9P) exp (— min (ei, \/CTLT€4>) —2n(T — 1)K exp(—€2) — 2n(T — 1) exp (—€3/4) —
19exp(—€2/4).

Proof. See proof in Subsection|5.5.17| m

Remark 5.4.3 We set ¢2 = 2log(nTp), €3 = 2log(nTpK), € 3 = 2log(nTpK), 65 = 2log(nTK), €3 =
2log(nT) + 2log(2p? + p9P) < 2log(nT) + 2p once p > 34, €2 = 8log(nT) and 2 = 4log(nT). Then, for
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. - 1. . .
N, n and T large enough with probability at least1 — S—T in order of magnitude there is :

x 1—¢)2 3/2 K3
cm

K
s \/log(nTK)Cgm Vlog(nT'p)— ENAT
+A(m)+ c* log(nT) ( 1 +1>

em o\ /n(T /T —1
c*(1—c*) | log(nT) 1 log(nT)
T TEm -y <1 T 1 1> n(T — 1)
oe(n 6,3 Kp 2
n <(1—C)2 L P(A@m) +¢) [CQ+K2]> (log(nT) + p)K°p ( N TE )
cm? csem 3 c3lc? min (03, 02) T(N —2)

This rate of convergence can be compared to the one obtained in Theorem[4.4.3. In the oracle DETM,
log(nT) with probability at least 1 — H. In the realistic
n(T —1) nT

DTM, fixing the number of topics K and the vocabulary size p, the rate of convergence is of order

1 T 1 T)
(@) ( og(n +14/ Og " ) with probability at least 1 — n— Hence the same probability of control

n(T —
log(nT)
N

the convergence rate is of order ©

up to a constant factor, an extra term appears due to the multinomial noise.

In conclusion, the convergence rates obtained in the dynamic topic model show an additive behavior
of the noise contained at different levels in the model. The bounds are driven by the Dirichlet noise
driving the probability of topics given documents and by the noise in the multinomial model of word-
counts. In particular, for very long documents, that is when N > nT, the convergence rates are only
driven by the Dirichlet noise in the autoregressive model.

5.5 Proofs

5.5.1 Proof of Proposition [5.2.1]and its Corollary

Proof of Proposition We start by reminding M, := (nT) 'diag (A*W*T1,7) and M :=
K

(nT)~*diag (Y '"1,7). Thus the two following equations hold where A*W(i) := > A5 W'(k) € R,
k=1

n T
T DD (Y6 - AWEE) |, i€ [p]

j=1t=1

op ze[p

[I0L]i; = [M.Jis| = (n

.- ], -
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Let us fix ¢ € [p] and consider any u > 0. The tail of ‘[M}ii — [M ]y

can be defined through its conditio-
nal distribution given W7 as follows,

PQthM% UNWM]

) =Ew [P (‘[M]u — [M ]| >

In addition, the variables (Y (i) — A*W?(z‘))jt are real-valued and independent conditionally on W7,
From the definition of the multinomial distribution, they can be expressed, conditionally on W' for all
(t,4,1) € [T] x [n] x [p], as,

1 N

Yi(0) - AW = 5 > (@) — ElQ50)]). (5.7)
=1

where for all [ € [N] and for all (¢, j) € [T] x [n], t’l|W§’ ~ Multinomial,, (1,A*W§) and
T N
P(th--w Q2 QT )I(W ..., gg@ PQt W Then the following equalities hold for all (¢, j,4,1) €
[T] x [n] x [p] x [N],
E [Q4() — E[Q5@W] =0 a.s.,
P [|Q%(1) —E[Q4(D)]] > 2WT] =0 as.,

K
V [Q% (i) — E[Q5,(1)] W] = ZA (1—2A&W§<k>)
k=1

= A*W;( ) (1 - A*W;(_z)) a.s.

n T
Hence applying Hoeffding’s inequality, Lemmal1.1.8| conditionally on W'Z'to 3° 3° 3° ( ;l(i) —E| ;l( )])
j=1t=11=1

~+
~

gives, for all € > 0,

. . NnTe?
P (|11 - 1| > 7] < 26 (— ”86)

p { > e} < %Ew [exp (- N”gez)] .

The last inequality proves that, for all i € [p], with probability at least 1 — exp(—¢?) we have

~

8

For the second part of the proof, we adapt the proof of Hoeffding’s lemma as follows to control
the moment generating function of Q?l(i). It will allow to control the deviation of [M];; — [M.]; with
the conditional variance of Q?l(z’). We first consider, for all (j,¢,1,i) € [n] x [T] x [N] x [p] an identical
and independent copy of Q}l(z’), conditionally on W7 that we name R}l(z’). We name this step the
symmetrisation. We then consider their conditionally centered version, namely Qi (i)" = Qz.l(i) —
E[Q}, ()W) and Ry, (i) = R, (i) — E[R},(4)|W'"]. We first notice that the following equality holds
forall A € R,

Eq [exp (AQJu (1)) W] = Eq [exp (AQJu () — XER [R}L(0)] ) W],
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where E( (respectively Er) denotes the conditional expectation taken w.r.t the distribution of let(i)T
(respectively Rﬂt(z’)T). Then applying conditional Jensen’s inequality provides, for all A € R,

Eq [exp (@) W] < Equr [exp (AQu(0) — ARG()) W]

We notice that the random variable ( ) — R]Tlt( i) is symmetric and centered conditionally on W7,
Indeed the random variables Q J;, (i) — RT

(1) and R]Tlt( i) — ]lt( i) share the same distribution conditio-

nally on W7 This proves that for all k& € N, if k is odd we get Eq g [(Qﬂt( ) — R]th( )) |W1¢T] =0
almost surely. Indeed for all k£ € N such that & is odd we get

o | (Quld) - 7)W= Eque | (R0 - Qluto) w17,

We also note that conditionally on W', the variable Q ,, (i) — R}, (i) are bounded almost surely in [-4,
4]. Taylor's theorem ensures that for all A € R, for all x € [—4, 4], there exists v € [min(0, z); max(0, x)]

such that

N2 n A323 exp(\y)

2 6
If = is positive, then 3 is positive and v < x. We get 23 exp(\y) < 23 exp(\z). If 2 is negative, then 23 is
negative and v > z. We get 22 exp(\y) < 23 exp()\z). Finally this leads to

exp(Ax) =1+ Az +

222 N A323 exp(Ax)
2 6 ’
N222 A3 exp(4))

<14+A .
_+m+2+ 6

Finally this leads to the following inequality which holds almost surely,

exp(Ax) =1+ Az +

Eq [exp (AQJu(0) W] < 1+ AEqur [(@7(0) — Rj ()W
+ X [(Q) - B )W)
XN, (QRuth) — Rl W] .

The conditional symmetry of Q]lt( i) — R (i) around zero ensures that its conditional odd moments are

]lt
almost surely null and we get,

Eo [exp (AQL (D) W] < 1+ 2V p [(@ul0) — R ()IW)].

By independence and identical conditional distributions of Q (i) and R

(1) we have

Eq [exp (AQu()) W] <14+ 0%Vg [QUuIW!T]
<1+ NAWEG) (1 - A WD)

We notice that for all i € [p] and for all £ € [K] the quantity A}, is bounded from above by 1. In
addition the random vector W is non negative and sum to one almost surely. Hence for all i  [p] the
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quantity A*W(i) :=

all (j,

t) € [n] x
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K
> Az W'(k) is bounded from above by 1. This leads to, for all i € [p] and for
k=1

(T], A*WS (i) (1 AW (i) = z AL WL(E) (1 - A Wh(R)) < z A5, := Iy almost

surely. Hence, using the inequality exp(s) > 1+ s for all s € R, we finally have, aImost surely, and for all
A€ER,

Eq [exp (AQJ (1)) IW'T] < 1+ A%,
< exp ()\2hi) .

This ensures the following bound which holds for all A > 0 and for all ¢ > 0,

|

Choosing A :=

Z Qgtl

7t

) > thT] =P leXp (AZQM ) > exp (At) WLT] :

7t

< exp(—At)E |:exp ()\ZQM ) WliT] , by Markov’s inequality
7t
<exp(-At) [[E {exp (AQL(z’)) |W1:T} , by conditional independence
Gt
< exp(—At) H exp (AZhi) ,
Gt
< exp(—At) exp (NnT/\th) .

and taking the conditional expectation w.r.t W leads to, for all € > 0,

Z thl

7t

|

t2

Finally, for all i € [p] and for all € > 0, it comes

P H[M]n — [M.Jii NnT62> :

4h;

<€} >1—2exp<—

We finally get for all ¢ > 0, with probability at least 1 — 2 exp(—¢2),

(5.9)

We conclude by combining (5.8) and (5.9). =
Proof of Corollary 5.2.2, We consider Proposition which leads to the following inequalities,
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holding for all i € [p],

o N 1 NnTh;e?
P A Y2 [N — (M <2 AT

hi M = [MLJa| > e] < 200 | —mie 5

ro_ N 1 NnTe?
P [ V2| (M) — (ML <2 -

o (Ml = M| > ef < 2exp | e Ty

Mo - 7 NnT i/2,1)€

Plh; 2 [Mii — [Mii| > €| <2exp (— n maxih/ e )

This provides, for all ¢ > 0,

2€
v/ NnT max(h;/2,1)

(2

i [h'_l/z [M]“ — [M.Ji| >

] < 2exp (—€?).

Using a union bound leads to the stated result. m

5.5.2 Proof of Proposition[5.2.3/and its Corollaries

Proof of Proposition [5.2.3L We define, for (j,1,t) € [n] x [N] x [T], the random variables Qﬁ.l similarly
as in (5.7). This leads, for all (i, k) € [p] x [K], to

[ZIT] WIT _ZZZt Wt

NnT;;;nT ) — EIQL(0)]) Wk),
1 n T N
=5 20 > (@) — Q5 () Wh(k).
j=1t=11=1

Let us remind that for all (j,¢,k) € [n] x [T] x [K], |W§-(l<:)| < 1 almost surely. This implies the
following equalities for all (¢, j,4,1) € [T] x [n] x [p] x [IV],
E [(Q4(1) — E[Q%5 (1) Wi (R)W'T] =0 a.s.,
P [[(Q%:(4) — E[Q% (1)) Wh(k)| > 2lW ] =0 a.s,
V[(Q% (1) — E[Q%(i)]) W§(l<:)]yW1:T] = AWE(i) (1 - AWE0)) Wh(k)?  a.s..
Applying Hoeffding’s inequality, Lemma[1.1.8} conditionally on W7 to
ZZZ ' j1(0]) W5(k)
=1 t=1 I=1

gives, for all e > 0, for all (i, k) € [p] x [K],

. ) . Ne?
PH[zl-T]ZT[Wl-T]k_\ > W] <26 (22 as,
&nT

P 2w > < 28w [on (-5 ) |
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The last inequality proves that, for all i € [p], for all £ € [K] and for all ¢ > 0, with probability at least
1 — exp(—€?) we have,
8nT
N
For the second part of the proof, we adapt the proof of Hoeffding’s lemma as follows to control the
moment generating function of Qt (')Wt( ) for all i € [p] and for all £ € [K]. It will allow to control
the deviation of [ZT]] [W 1], with the conditional variance of Qt (7). We follow the same technical
steps as in the proof of Proposition [5.2.1] Namely we consider the symmetrisation step, then we ap-

ply conditional Jensen’s inequality, we notice that the random variables W' (k) ( ]lt( i) — R]Tlt( )) are

‘[ZLT}I[WI‘T]k.\ < e. (5.10)

symmetric and centered conditionally on W7 and that the variables W (k) < jlt( i) — RjTlt( )> are

bounded almost surely in [-4, 4]. Then we use Taylor's theorem and notice that the conditional sym-
metry of Qﬂt( i) — RjTlt( i) around zero ensures that its conditional odd moments are almost surely null.

In addition Wt(k) is almost surely bounded from above by one. We finally use the independence and
identical conditional distributions of @ J;, (i) and R}, (4) to get forall A > 0 :

Eo [exp (ij.(k;) T )) |W1T} < exp (A2h;).

This then ensures forall A >0andall ¢t > 0 :

[Z Wt jtl ) > t|jWk T] < exp(—At) exp (NnT)\2hi) )
Jyt,l

Choosing A := and taking the conditional expectation w.r.t W7 leads to, for all ¢ > 0,

t
2NnTh;

2
{ <]>12€Xp(41vfm>-

Finally, for all i € [p], for all k € [K] and for all € > 0, it comes

e - (250

We finally get for all € > 0, for all i € [p] and for all k& € [K], with probability at least 1 — 2 exp(—¢2),

Z Wt Jtl

Jitsl

477,Thi
€

‘[ZlT] W), ‘ >

(5.11)
Combining (5.10) and (5.11) gives the stated result. m

Proof of Corollary We consider Proposition which leads to the following inequalities,

holding for all i € [p], for all k£ € [K] and for all € > 0,

(1 =1/2 | 1T T (yp/ 1T | Nhse*
: YA W <2 T oo 1
Plh TZ ] W k| > €] < eXp( 4nTmin(2,hi)>7

[ =1/2 | [ 1T T (ya7 1T ] _ Né
P|h, [Z5], [WH k| > €| <2exp
L " ' 1= 4nT min(2/h;,1) )’

2

N max(h;/2,1)e
4nT '

1

P _h»_l/Q [Zl:T]I[WLT]k. > 6- < 2exp <_
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This leads to, for all i € [p], for all k£ € [K] and for all ¢ > 0,

p [h 1/2 )[21 an [WLT]k.‘ > 6\/}\@;{?}%] < 2exp (—€).

Using a union bound leads to the stated result. =
Proof of Corollary|5.2.5. We start by recalling that, for all k£ € [K], the quantity HM;1/2Z1:T[W1:T],€_ H
can be expressed as follows,

2

p 2
HM—1/2Z1T W), H Z ‘ZlT 1T W), ’

Moreover for all i € [p], the following inequalities hold,

j=1t=1 k=1 k=1

1 n T K K 1 n T K
[MLJii = —= > 3 Y AGWG(R) = A5 | == D > Wik |
j k=1

In addition, as is proved in Proposition we have for all k € [K], [Sy/],, > Ax (33 ). This result
ensures that for all ¢ € [p],

[M.)ii > A (Sq/ ZAW
> Ak (SW) - hi-
Hence this leads to, for all k& € [K],

2

Y

2 P 1
M:I/QZLT Wl:T H < Zl:T T Wl:T
p

< ——maxh; ' |[Z"T]] (W7
S SeunTy ek ‘[ Il J.

’2
Finally, using the result of Corollary gives, for all e > 0 and for all k£ € [K], with probability at least
1 — 2pexp(—€?),

HM;l/QZLT[WLT]k H2<62 4dpnT '
‘12 )\K(E%)N



130 CHAPITRE 5. DYNAMIC TOPIC MODEL

5.5.3 Proof of Proposition

Proof of Proposition We start by fixing (i,m) € [p]?> and we remind that the diagonal matrix
H € RP*? js defined as H := diag (h1,...,hy,) where for all s € [p], hs := ||As.||1. We also remind that
A € RP*K and A, € RE. In addition we have the following developments,

212" = 30> 22,

. n T
(2" (2 ], _ 3 Zi; Zﬁw
vV h‘Z h‘ le t=1 \/E \% m

The Parallelogram law then ensures that

22 . _ SN~ (2 P 2y ez
a-tn (i) (R SER)

For all s € [p] we denote e, the standard basis vector of R? of order s, i.e. the vector with all coordinates

equal to zero except the s coordinate which equals one. We then define ¢ := eﬂrTem and e, =

€; —
2

™ and we derive the following equality,

27 eSS ()T 2) -5 ()T e z)

vom j=1t=1 j=1t=1
Finally we get
LI Tr71:T _ LT 1711 n T n T
12 7] 12 ) —E[[Z277]] (27 )] _ 3 <[€:;71]T 2. Z;)z -y Y E [( HV2. 7t
hi- hom j=1t=1 j=1t=1
n T n T 9
S ([ ETR Zt) +> 3 E [( Ttz ] .
j=1t=1 Jj=lt=1

We start by deriving an upper bound for the first term :

n n

T
A= ZZ( H-1/2 . Zt) ZZE[< H-1/2 . Zt)]
7j=11t=1 7j=1t=1
We define here again the random variables (Q;) for (j,1,t) € [p] x [N] x [T] as in (6.7). It allows to
express, for all (j,1,t) € [p] x [N] x [T], the random variables [e;tn]T - H~'/%. 7! as follows,
1
t=

THTV2 QY —E[QLWT])  aus.

WE
=

=1
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We recall that conditionally on W7

AW (i AWt (m
[e),] " - H™V/? - diag(AW?) - H-V/2 . [¢; \/\F \/F <1

because we have almost surely, AW?(z’) < h; and AW§(m) < hn,. Hence, given the definition of
( ﬂ> y the following equalities hold almost surely for (j,1,t) € [p] x [N] x [T],
Jilst

Vv [[E;;@]T'H_I/Q ) ( to_ E[ ;l’WI:T]) ‘WLT} < [E;;n]T 2. diag(AW?) g2 [€,+ ] <1,

jl im] =

[G;L]T,H—l/l( ;l [ |W1T])‘ \/1; \/17< \/hzmim

Hence applying Hoeffding’s inequality, for bounded random variables, Lemma [1.1.8] conditionally on
wiT to Z [ ] CHY2. ( R —E[ §Z|W1:TD and taking the conditional expectation w.r.t W1

gives, for aII (], t) € [n] x [T}, for all s > 0,

i
On the other hand we adapt the proof of Hoeffding’s lemma as follows to control the moment generating
function of [¢f: |- H~1/2. (Q% (i) —E[Qf, /W TT). It will allow to control the deviation of [e;&]T-H—l/?-Z}?
with the conditional variance of Qt We first consider, for all (j,¢,1,7) € [n] x [T] x [N] x [p] an iden-
tical and independent copy of Q° condltlonally on WHT | that we name Rtl We then consider their

(5.12)

)
[e;n]—r CHV/2. Z]t‘ > s|W1:T} < 2exp (_th8m<9> :

Jjb

conditionally centered version, namely Q;, = [Qzl\Wl 7] and Rﬂt Rl — E[R |WT]. We first
notice that the following equality holds for all A € R, Eo [eXp ()\ [ef - H-V/2. szt) \Wl’T} is equal to
Eo [eXp ()\ e ] CH2. ( [R]Tlt}» ]WLT} where E (respectively Er) denotes the condi-

tional expectation taken w.r.t the distribution of Q;t (respectively RjTlt). Then applying conditional Jen-
sen’s inequality provides, for all A € R,

o [exp (A ef,) T 12 QL) W] < Eque [exp (Mt T V2 (@ — 13,)) W]

We notice that the random variables [e/;] " - H~1/2. ( it R]Tlt> are symmetric and centered condi-
tionally on W'”. Indeed the random variables [e;;]" - H~1/2 . ( it RjTlt> and [¢f ] - H-Y/2.
( it Qﬂt> share the same distribution conditionally on W' This proves that for all k € N, if k is odd

we get Eg r {([ P HU2. ( e — ﬂt>> Wt T} = 0 almost surely. We also note that conditio-

nally on W the variables [e;" | T.H—1/2-< e RjTlt) are bounded almost surely in [—4/v/Fmin, 4/v/Fmin -

Taylor’s theorem ensures that for all A € R, forall € [—4/v/hmin, 4/v/hmin], there exists v € [min(0, x); max(0, z)]
such that

22 n A323 exp(\y)

exp(Azx) =1+ Az + 5 5
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If = is positive, then 23 is positive and v < z. We get 23 exp(\y) < 2% exp(\z). If = is negative, then 23 is
negative and v > z. We get 23 exp(\y) < 23 exp(Ax). Finally this leads to

22 . A3z3 exp(Az)

exp(Ar) =1+ Az +

2 6 ’
2.2 3,3
Sl—i—x\x—l—A; Az e;(p(ll)\).

Finally this leads to the following inequality which holds almost surely,
T - : T '
Eo [exp (M, ] T HV2 QL) W] < 14 g [[6,] T BV (@ — RI)IWHT]
A2 T 2 .
+ o | ([T H2 (@G- R ™) W]

A3 exp (4 T _ 3 .
+ ()‘()EQ’R [({6%] L2 ( jTlt 7R]Tlt)> |W1.T:| .

The conditional symmetry of QjTlt - RjTlt around zero ensures that its conditional odd moments are
almost surely null and we get,

: A2 . :
o oo (el ] 2 QR) W] < 1 Vo[ HR (@ - mIWT

m
By independence and identical conditional distributions of Q j;, and R, we have

B [oxp (Meba] T 72 Q) W] <14 0%g [[dl] T HVE- QLW

m

<1+ M2

This ensures the following equalities which hold almost surely for all A € R and for all ¢ > 0,

P [Z [e;rnf g2 ]Ttl > t|W1:T] =P [exp <>\Z [G;;n]T Y2 ]'th(i)> > exp (A1) |W1:T] ’
l

< exp(—At)E [exp (AZ [Eztn]T Y2, QJTﬂ) ‘leT] 7
]
< exp(—At) H E [exp ()\ [e;n]T g2 QJTH) ‘leT:| 7
1

< exp(—At) Hexp ()\2) ,
l

< exp(—At) exp (N)\2) .

Choosing A := IN and taking the conditional expectation w.r.t W' leads to, for all ¢ > 0, for all j € [n]

and for all t € [T]
2
P [Z [GL]T-H—U?.Q;, < t] >1—2exp <_4tN> _

l
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Finally, for all j € [n], for all t € [T] and for all ¢ > 0, it comes

P
We finally get for all € > 0, with probability at least 1 — 2 exp(—¢2),
2
VN’
Combining (5.72) and (5.13) leads to, for all ¢ > 0, with probability at least 1 — 2 exp(—¢2),

N2
[GL]T.H—I/IZ;’ < 6] >1—2exp <_4€> )

(5.13)

m

] HTV2 21| <

[+ T —1/2 ot 2 min(v/2hmin, 1)e
&) -HTY?ZY < :
vN

Equivalently, this says that for all ¢ > 0,

g

This proves that the variables ([e;n]T - H™Y/2 . Z!) are SubGaussian. We recall that the SubGaussian
norm of a SubGaussian random variable X is defined as

. X?
11, = inf {& | 57| <2}

Hence for all (j,t) € [n] x [T], the SubGaussian norm of [ejm]T - H7Y? . 7! satisfies || [ejm]T CHY?.
e

VA <12
]H¢2 = \/N max(hmin/Q, 1) 1Og(2)

N max(hmin/2, 1)62>
1 :

[e;';n]—r -H_1/2-Z§‘ < e} >1—2exp (—

. Indeed, Proposition 2.5.2 in [130] proves that for a random

2

variable X satisfying, for all s > 0, P[|X| > s] < 2exp <Ks2> where K; > 0 is a constant then

1
X? , 9 4 .
< 2. This proves the stated result for K; = . In addition we
<6K1 e/ log(2))

~ Nmax(hpin/2,1)
immediately get that ([Q%]T - H='/%. Z1)? is SubExponential, see Lemma 2.7.6 in [130]. We recall that
the SubExponential norm of a SubExponential random variable X is defined as

X
10, = int {e |21 <2},

This Lemma also ensures that its Subexponential norm satisfies ||([e;',,] Tz Z gy = ||([e;;n]T :
H=Y2. 71)|2,. Moreover, recalling that a norm is a convex function and using Jensen’s inequality

provides that its SubExponential norm also satisfies the centering property H([e;;nf CHY2. Z)? -

288 - e
E[ fT.H—l/Q.Zﬂ} <ol et 1T . g-12. 712 <
([Ezm] ]) ||¢1 — || [Ezm] ]HwQ — Nmax hmin/27 1) 10g(2>
stein’s inequality for SubExponential random variables, Lemma|1.1.10} conditionally on W' |eads to,

for all s > 0 and for an absolute constant ¢ > 0,

P |:ii {([E%]T.H—I/Q.Z;)Q _E [([ezn]T'H—l/Q.th‘)QH

j=1t=1

:= ~. Using Bern-

> nTszZT]
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2

2 .
being bounded from above by 2 exp (—ch min <52, S>> where v := 88 ¢
2y N max(

. Th
T2, 1) log(2)” O

cn’'s

let us fix s > 0 and define ¢ = . This provides that for all ¢ > 0,

|

is bounded from above by 2 exp (— min (eQ; \/che)). Taking on both sides the expectation w.r.t W1
leads to, for all € > 0,

n

1t=1 \ﬁ

J

EZBFLT-H]”-%PEBF%T'H]”-49H>””%TwﬂT]

4] < 288 -e evnT
log(2)y/c N max(hyin/2,1)’

with probability at least 1 — 2 exp (— min (62; che)).

n T 2
We now derive an upper bound for the second term B := > > E [([ei‘m]T CH2. Zj) } -
j=1t=1

n 2
> ([e.‘ ]T CH-1/2. Z]t) . The exact same proof hold as we can again express, for all (j,1,t) €

p] x [N] x [T], the random variables [ei‘m]T - H™1/2. 7! as follows,

N

_ _ 1 _ _ .

) HT 2= S (T Q- E QW) s
=1

It follows similarly that, for all e > 0, with probability at least 1 — 2 exp (— min <e2; \/che)) we have

288 -e evnT
log(2)y/c N max(hmin/2,1)

|B| <

Finally, for all ¢ > 0, for all (i,m) € [p]?, with probability at least 1 — 4 exp (— min (eQ; \/che)), we have

(2" (2 ) —E[[2"]] (2" ]
hi - o

bounded from above by
576 - e ' evnT
log(2)y/c N max(hmin/2,1)"

We conclude by controlling the probability that this event holds simultaneously for all (i,m) € [p). =

5.5.4 Proof of Proposition
Proof of Proposition We start by recalling that, for all i € [p],

n K K n
[M.]j; == nLT Z Z Z[A*]ikwé(k) = Z[A*]ik (an Z Z W;(k:)) .

j=1t=1
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Hence under Assumption [7]we have, for all ; € [p], almost surely
[M.j; > Ak (S ).
By considering H := diag(hi, ..., hy) follows
1M HYR ) < M (B 7V,
This implies the following results,
HM*—W (Zl:T(Zl:T)T _E [ZLT(ZLT)TD M*_I/Q\\,

:HM;1/2H1/2HHH71/2 (Zl:T(Zl:T)T _E [ZLT(ZLT)TD H71/2HHH1/2M;1/2H’

D (SEDY= g2 (ZI:T(ZI:T)T _E [ZLT(ZLT)TD a2,
We denote, for all e > 0, N, an e-net of the Euclidean Sphere of R? and N (S,_1, €) the smallest possible

cardinality of an e-net of S,_;, called the covering number. For any ¢ > 0, Corollary 4.2.13 in [130]
ensures that

2 p
N(Sp—1,€) < <1+6) .

In addition Lemma 4.4.1 together with Exercise 4.4.3 in [130] ensure that for any ¢ € (0,1/2) and any
symmetric matrix A € RP*P,

I|A] < ‘xTAx’ .

1~ 2¢ en.
We fix e = 1/4 and consider an e-net N, which satisfies V' (S,—1,¢) < 97. The following inequality then
holds,

HH—1/2 (leT(leT)T _E [ZLT(ZLT)TD H—1/2||

<2 sup |oTH/? <Z1:T(Z1:T)T _E [ZLT(ZLT)TD H’l/%‘ '
z€Ne

In addition, for any x € S,_1,

s T2 (ZI:T(ZI:T)T _E [ZLT(ZLT)TD H-1/2,

n T 9 9
-y { («TH22)) —E [(zTHUQZ;) ] } .
j=1 t=1
We fix z € S,_1 and we define here again the random variables (Qél) for (j,1,t) € [p] x [N] x [T]

as in (6.7). It allows to express, for all (j,1,t) € [p] x [N] x [T}, the random variables =" - H~/2 . Z! as
follows,

N
xT~H_1/2-Z;:%ZmT-H_1/2~( L —E[QLWT])  as..
=1
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n T

2 n T 2
We want to derive an upper bound for the quantity C := >~ (xT CHY2. Z;t) - Y E [(az—r CHY2. Z;f) }

j=1t=1 j=1t=1
We recall that conditionally on W7,

e H V2. diag(AW!) - H V2. o < |23 <1 as.,
because we have almost surely, AW§-(1’) < h; and AW;(m) < hn,. Hence, given the definition of

( ;l) . the following equalities hold almost surely for (j, 1,) € [p] x [N] x [T
]7 b

i [xT L2 ( 21 —E] ;l‘leT]) ‘leT} <1,

’xT'H—l/z( §Z_E[ ;l’WLTD‘S

hmin
Hence applying Hoeffding’s inequality, for bounded random variables, Lemma [1.1.8} conditionally
. 1 . . i, . .
on W7 to N Szl H2. (Q?l ~E [ §Z\W1~TD and taking the conditional expectation w.r.t W1
=1

gives, for all (4,t) € [n] x [T, for all s > 0,

(5.14)

. N hin 2
P HxT CHV2. Z;‘ > 8|W1'T] < 2exp <—S> .

8

On the other hand we adapt the proof of Hoeffding’s lemma as follows to control the moment genera-
ting function of =™ - H~1/2. (Q¥, (i) — E[Q},[W""]). It will allow to control the deviation of =T - H~1/2. Z!
with the conditional variance of QY. We first consider, for all (j,t,1,4) € [n] x [T] x [N] x [p] an iden-
tical and independent copy of Qg.l, conditionally on W7 that we name R}l. We then consider their
conditionally centered version, namely Q,, = Q% — E[Q},|W'7] and R}, = R!, — E[R},|W""]. We
first notice that the following equality holds for all A € R, Eq [exp ()\a:T CHY2. ;t> |W1:T} is equal to
Eq [exp ()\xT CHY2. ( jTlt —Egr [R]Tlt
expectation taken w.r.t the distribution of Q;rlt (respectively RjTlt). Then applying conditional Jensen’s
inequality provides, for all A € R,

D) ]WlZT} where E(, (respectively Er) denotes the conditional

Eq [oxp (N H V2 QL) W] < Equn [exp (N V2 (Qfy - L)) W]

T_RT

We notice that the random variables = - H~1/2 . ( it jlt) are symmetric and centered conditio-

nally on W7 Indeed the random variables =" - H—1/2. ( e R;.Et) and z" - H~1/2. (R]Tlt - ]Tlt>
share the same distribution conditionally on W', This proves that for all k& € N, if k is odd we get

k
Eo.r [(:J CHY2. < T — R;’Et)) WliT} = 0 almost surely. We also note that conditionally on W7,

the variables =" - H~1/2. ( = Rﬁt> are bounded almost surely in [—4/v/hmin, 4/v/hmin). Taylor's theo-

rem ensures that for all A € R, for all y € [—4/v/hmin, 4/V hmin), there exists v € [min(0, y); max(0, y)]

such that - 5
A A A
exp(Az) =1+ Ay + 2y + 24 e:gp( 7)
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If y is positive, then > is positive and v < 5. We get % exp(\y) < 32 exp()\y). If y is negative, then 32 is

negative and v > y. We get y3 exp(\y) < 3 exp(\y). Finally this leads to

A2 2 )\3 3 A
exp(Ay) = 1+ Az + 24 4 A7 el v

2 6
)\2 2 )\3 3 4\
<14 23/ N yegp( ).

Finally this leads to the following inequality which holds almost surely,

Eo [exp (/\:rT CHV?. Q]Tlt) \WLT} <1+ Eon [H CHV2 Q) - R]Tlt)\wlﬂ

)\2

6

The conditional symmetry of Q
almost surely null and we get,

Jlt J

: A2 :
Eg [exp (Agﬁ CHU2. Q;t> |W1-T} <1+ 5 Vor [;J CHY? Q) - R;;t)\Wl'T} .
By independence and identical conditional distributions of Q j;, and R, we have

oo (712 1) ] < 1 [+ ]

<14\

This ensures the following equalities which hold almost surely for all A € R and for all ¢ > 0,

P [Z :L'T . H_1/2 . Q;:fl > t|w1:T] =P [exp <)\Z$T . H—I/Q . jtl(i)> > exp ()\t) ’WI:T] ’
L !

< exp(—At)E [exp ()\ZxT CHY? . QjTﬂ) Wl:T] 7
1

< exp(—\t) H E [exp ()\xT CHHE Qjth> ‘Wl:T] ;
I

< exp(—At) Hexp ()\2) ,
l

< exp(—At) exp (N)\2) .

2 .
+ ?EQ,R [(wT CHY?. (Qszt _ let)T) ‘Wl.T:|

A3 exp (4 _ 3 :
+ AEQ,R |:(xTH 1/2 ( ;t _ ngt)> Wl.T} ‘

1. — Rl around zero ensures that its conditional odd moments are

Choosing A := IN and taking the conditional expectation w.r.t W leads to, for all ¢ > 0, for all j € [n]

and for all ¢t € [T

<t

|

D ol HTQy
l

t2

Z 1 —2eXp <—4]\7

).
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Finally, for all j € [n], for all t € [T] and for all € > 0, it comes

N2
P Ha:T~H71/2‘Z§‘ <e] >1—2exp (—;)

We finally get for all € > 0, with probability at least 1 — 2 exp(—¢2),

)xT CHY? 7Y < j% (5.15)

Combining (5.74) and (5.15) leads to, for all € > 0, with probability at least 1 — 2 exp(—¢?),

2min(v/2hmin, 1)e
VN '

’xT'H_l/Q-Z;’ <

Equivalently, this says that for all ¢ > 0,

: 2
P HxT-H_1/2 . Z;’ < e} >1—2exp <_Nmax(hmm/2, Le ) .

4

This proves that the variables (= - H~1/2. Z}) are SubGaussian. We recall that the SubGaussian norm
of a SubGaussian random variable X is defined as

. X2
11, =t {E || <2

Hence for all (j,t) € [n] x [T], the SubGaussian norm of =" - H~'/2 . 7! satisfies |27 - H~'/%.
e

Z|p, < 12

illve = \/ N max(hmin/2, 1) log(2)

. Indeed, Proposition 2.5.2 in [130] proves that for a random

2

variable X satisfying, for all s > 0, P[|X| > s] < 2exp (Ié) where K; > 0 is a constant then
1

X2 , 4 ”
5| < 2. This proves the stated result for K7 = . In addition we
<6K1 oy log(2))

N max(hmin/2,1)
immediately get that (=7 - H~'/%. Z!)? is SubExponential, see Lemma 2.7.6 in [130]. This Lemma also
ensures that its Subexponential norm satisfies (=" - H~'/2- Z1)?|, = ||(«" - H™'/2- Z})||3,. Moreover,
recalling that a norm is a convex function and using Jensen’s inequality provides that its SubExpo-
nential norm also satisfies the centering property ||(z" - H™Y/? . Z1)? — E (=T - H~/2. Zj-)?} gy <
288 - e

ZH2. <

v = N max(hmin/2, 1) log(2)
random variables, Lemma [1.1.10} conditionally on WET |eads to, for all s > 0 and for an absolute

constant ¢ > 0,
LT (8% s
>nTs|W | <2exp | —enTmin | —;— ) |,
e

|

2|z’ H/2. := ~. Using Bernstein’s inequality for SubExponential

n

>0 [(:ﬂ CHV2.Zh? _E [(l,'l' U2 Z;;)gﬂ
i=1

t=1
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288 - ¢ Considering ¢ > 0, choosing s e
. € , =
N max(hmin/2, 1) log(2) 9 9 vVenT
the expectation w.r.t W' leads to

where v :=

and taking on both sides

288 -e vnTe
log(2) Ny/cmax(hmin/2,1)’

ICl <

with probability at least 1 — 2 exp (— min (eZ, \/che)). Using a union bound over the e-net we get that
with probability at least 1 — 2 exp <p log(9) — min (62, V che)) we have

%”H_l/Q (Zl;T(leT)T _E [leT(leT)T]> H—1/2H

<288 -e vnTe
log(2) Ny/cmax(hmin/2,1)

5.5.5 Proof of Proposition 5.2.8]
Proof of Proposition Forall i € [p], we have

Moreover Proposition ensures that almost surely,
1 " t 1.T
— SN Wh(k) = Ak (SH).
j=1t=1

The stated results follows. =

5.5.6 Proof of Proposition

Proof of Proposition 5.2.9L We start by recalling that the matrices M, and H are diagonal and thus
. . 1 _ . .
commute. Then we re-write the matrix G as follows, G, = <1 — N) HY2MVPHA2 A W T [A*V[/'1~T]T H~Y/
Hence, for any matrix A, denoting Anin (1) its smallest non-zero eigenvalue, we have
Amin(G) > <1 _ ]1[) Ammin <H1/2M;1/2) Ain (H—l/QA*leT [A*Wl;T]TH—l/Q) Ammin (M*—1/2H1/2> '

However M, and H being diagonal, we obtain almost surely

/\min(G*> > <1 — ]b) Amin (M*_lH) Amin (H_l/QA*leT [A*leT]TH—l/Q) )
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Moreover Proposition ensures that Ay (M 'H) > 1 almost surely. Hence we get almost surely
that

Anin(G) > <1 - ;f) Aunin (0) |

for & = H-2A*W'T [A*W'T]" H-1/2 In addition, Theorem |4.3.3) proves that W7 [W'7|T ¢
REXK is symmetric positive definite with high probability. In addition H—1/24* ¢ RP*K satisfies rank(H ~1/2A*) =
K. Using lemma and assumption [6] we get the following inequalities holding true almost surely,

Amin(G) > <1 _ ;]) Amin ([A*]TH*A*) Amin (WliT[WlﬁTm :

1 .
> <1 - N> nTAk(Sa) Ak (SW),
>(1— 1 nTAg(ZH1)? > (1 - 1 nTc3.
= N W= N 2

To bound from above almost surely the largest singular value of G, we recall that for any matrices U
and V we have A\ (UV) = A\ (VU). In addition the spectral norm is sub-multiplicative and by defining

Q= H'2M;Y? we get almost surely
1
M (GL) < <1 — N) M(P)A(Q7Q).

However the following equalities hold true almost surely : \(QQ7) = \(Q'Q) = \(M1H) <
1 1

A (S8 ~ e
Similarly there is almost surely A (¥) < Ay ([A*]TH1A%) A (WHT W), Finally this leads,
under assumption [7]to, almost surely,

M (Gy) < (1 — ;[) T;TAl(zA)Al(zlvf;F).

We conclude using Proposition [4.3.1]
, . . 1 .
To prove the last inequality, we start by noting that G, and <1 — N) nTYET ([A*]TM*—lA*) share
almost surely the same eigenvalues. Thus

A(GL) — M(Gy) = <1 - z1v> nT [Al(E%;VT ([A*]TM;lA*)) W (z%;f ([A*]TMjA*)ﬂ
Assumption |/|ensures that
M (AT M A7) = da(SHF (1477 M A7) > s

Finally this leads to the following inequality holding true almost surely, for all £ > 2,

<1 _ le) nTes + Mo(Gh) < M (GL).
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5.5.7 Proof of Proposition

Proof of Proposition We start by proving that there exists a non singular matrix B ¢ RE*X
such that almost surely there are

-1
(BBT> — [A*]TM*_IA*,
U=M,"?A"B.
We recall that the matrix I1, := MZI/QHLT is almost surely of rank K and its SVD is defined as

I1. = UXV. Hence by definiton U'U = VVT = Ix and ¥ is diagonal and invertible. Hence the
following equalities hold almost surely,

U=UzvV)V's
=ILV'y !,
_ M;1/2A*W1:TVT271‘
Defining B := WXTVTx~1 proves that U = M, "/*A* B almost surely. In addition UT M, /?4*B =
U'TU = I almost surely and thus B is uniquely defined and almost surely non-singular. Finally UTU =

BT[A*]TM'A*B = Iy almost surely. Hence BB' = BB'[A*]" M 1A*BB" almost surely. This
proves the stated results and thus for each i € [p] we have almost surely

U; = [M.,'/*); BA;

Proposition [5.2.8| ensures that almost surely we have

min

(M. VM i

= A (ATTHT AT By

* —1/2 * — * *
U < 1BllollA s i (AT METAY) 147

min

B VM i
< Ak (ZE)~12h, < Vhi
g SET) b, ~ Ak (ZW)

Finally we get

vV Kh;

5.5.8 Proof of Theorem[5.2.11]

Theorem 5.5.1 Consider the Dynamic Topic Model, see definition [5.1.1 and assumptions [f and [/
Then for alli € [p] and for all 1, €2, €3, ¢4 > 0, with probability at least 1 — 2p exp(—e?) — 2K exp(—e3) —
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2pK exp(—e3)—4pexp (— min (ei; \/ﬁq)), the quantityh;l/Q HeiT (G — G*)
by

, is bounded from above

_ €1 maxé;
0 nTp b P 1 €3+ €2 K/Cl ' Ze[p] &
WN NakE T\ Y hpNaT
\/ NnThmn[1
Tp 288. N/ €1 ax s [nTp -
n p e D 1€(p
+ 2¢ 1+ + 26 K ( >
4 log( )\[ WCQ N’I?,T ! NnThmm

nTp VK 2¢1 —3/2
— ) — ———— .
N \/cico VNI hpin

+ 2¢1

where c is an absolute constant appearing in Lemma and for all'i € [p],

o min(2, h;) o ~3/2 — :
Aj = eohy = 20\ T 6= (Ai hi; min (2, hz)> .

Remark 5.5.1 Theorem improves the result presented in Lemma F.4 in [84]. Specifically, by set-
ting

& = log(p) + 5log(nT), & = log(K) +5log(nT), €} = log(pK) + 5 log(nT),
ei = log(p) + 5log(nT),

. . . 1 51 T
it establishes that with probability at least 1 — 10(nT)~° ifc > 08(p) + 5 log(nT)

T and with probability at
log(p) + 5log(nT)
nT

least1—2exp <—\/ch (log(p) + 5log(nT))) —6(nT) S ifc< we have, for alli € [p],
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2| (o)

‘2 bounded from above by

-1
1 T8 ¥ gy ( B \/p<10g<p>+5log<nT>>>
N Nk |7 o KNnT

ma;
nTp \/log(pK) + 5log(nT) + /K (log(K) + 5log(nT))/c1 <1 . €1 zd;f@)

N 261 vVNnT
1 =L
2 2 \| NnThom NnThmm
€1 max§;

+2\/nTp(log(p) +5log(nT’)) 288-e VP (1 n i€[p] )

+2

N log(2)v/e VNciKes VNnT

-2
nTp(log(p) + 5log(nT)) p(log(p) + 5log(nT))
+2K \/ N (02 - 2\/ o KNnT )

—3/2
1 2P TRo80) 5 1og0T)) VE ( ., \/paog(p) +5 log<nT>>) |
N 4/ C1C2 C1 KNnT

Notably, unlike Lemma F.4 in [84], Theorem|[5.5. 1] does not require any assumption on either the number
nT of documents or the size of the number of words per documents N compared to the vocabulary size
p. Moreover, the probability of the stated event is controlled non-asymptotically, and the constants are
explicitly provided. Focusing on the asymptotic behaviour of this upper bound we have, when nT goes
to infinity and assuming K, p, N remain fixed, for all i € [p], with probability at least 1 — 0,70 ((nT)™?),

ht2 el (G —~ G*) , bounded from above by
/D P nT'plog(nT)
((11 +CQ+C,/N+C4 — N
where
10 2880 - e
Ci = Co =101+ /K (O P t—
YT aKey' 2 (1+ /e, Cs log(2)cav/e1 K’
10K 10VK
Ci=—"5+5—.
Ve

It is finally noteworthy to state that with probability at least 1 — 0,700 ((nT')™?), for all i € [p], the
following inequality is asymptotically holding true,

lel (G- G.) I nTplog(nT)
< CO(1+ N-Y21/2 ¢ N—1,1/2 plog
Vi U NN T

where C' = 2max(Cy, Cq, Cs, Cy). This improves the result presented under an asymptotic framework in
Lemma F.4 in [84)].
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Proof of Theorem We start by considering the matrix 27 := YT — A*WT and we recall that

| | i . T ot T T 1N 1o e _
7 = AW andthat G—G. = M- V2y BT (Y T) T a2 2 g - <1 - N) M () v,

Hence according to model (4.1) under the constraints defined in (4.2) and (4.3), the conditional distri-
bution of Z'T given W7 allows to derive its conditional covariance matrix as follows. First notice that

for each j € [n] and for all ¢ € [T], Z! € R and V [Z;|W§] - % [diag(A* W) — (AW (AW T].
Hence we derive the following equalities,

n T
E [ZLT(ZLT)T‘WLT] — %ZZ [dlag(A*WE) - (A*Wé)(A*Wg)T} 7

j=1t=1

_ i _ 1:T 1:T\T
-5 [M* () (7)) ] .
We then rewrite the matrix G — G, as a sum of quantities which we can control. We define

Ry = %M—w (M. — 21 212,

Ry := N~/2 (HI:T(ZI:T)T i Zl:T(leT)T) M2,
Ry = N1/2 (ZI:T(ZI:T)T _E [ZLT(ZLT)TD ]\Z/’l/Q,

We recall that the matrices M and M., are diagonal. Hence one can verify that these quantities can be

expanded as follows,
nT - nT
Ri=—M"'M,—-—I
TN NP

Ry = M71/2 (leT(leT)T _ Hl:T(Hl:T)T + Yl:T(ﬂl:T)T _ Hl:T(leT)T) Mfl/Q’
Ry = Ar-L/2 (Yl:T(Yl:T)T _ HI:T(YI:T)T - YI:T(HI:T)T 1 HI:T(Hl:T)T> N2
nT -~

1 - . .
_ WM_IM* i NM—1/2H1.T(H1.T)TM—1/2’

R, = <1 - ]i]) <M71/2H1:T(H1:T)TM71/2 _ M:1/2H1:T(H1:T)TM*_1/2> .

Hence it is easy to verify that G — G. = 3. R,. We consider (ei, ..., e,) the canonical basis of RP. This

4
s=1

gives that for all i € [p],

4
lef (G = Ga)lla <D llef Rsllo.
s=1

We now aim to bound each ||e;” R||» with high probability. We start with R;. For all i € [p] we have
nT

lef Rill2 = [Ralii = N
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Proposition ensures that for all i € [p], for all ¢ > 0 with probability at least 1 — 2exp (—¢€?), we

have
min(2, h;)
NnT

Moreover Proposition gives that almost surely for all i € [p],

‘[M}u — [M.ii| < 2¢

A (4 ) hi < [MJii < .

Hence we obtain that with probability at least 1 — 2exp (—¢7) we have, for all i € [p],

~ min(2, h;)
Mli; > [M.Jii — 261\ —=
Mii > (M) = 2e0\) =
| (2, )
SETVR 9 min(2, h; .
> A (Bw )hi = 2e\| =g p

This leads to, for all i € [p], with probability at least 1 — 2 exp (—¢7),

2nTe; \/min(2, h;)

—1
| in(2, h)
TRill, < A (ST Yy — 26y A2 )
lei Ballz = — TNeT (K( w) e\ T ,
-1
2¢1/nT min(2, h;) LT min(2, h;)
= N2 A\ AW R =20\ g )
—1
261 nThz- 1.7 hi
—1
261\/nThZ' 1:T 1
< TNsRp, '<AK(ZW)_2€ NnTh; )
-1
< 2e,vnT Ak (SET) — 2¢ 1
=~ NNk, w hiNnT

K
We now consider R, and we note that IT"? := A*WHT = S [A%] ([WLT],C_)T. Hence we get
k=1

Ry — i <J\Z/1/2[A*],k (M71/2Z1:T[W1;T]k.>—r N2 ZET W), (MW[A*]JC)T) .

k=1

From this result we derive that for all i € [p], we have
llef Rallz <> (A i [M V2]l | M2 ZH T W T, |

_l’_

M= 11

1257 W T L 2030 | M Y2 [A e

e
Il
—
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First Proposition [5.2.3|ensures that for all i € [p] and for all k € [K], for all e > 0 with probability at least
1 — 2exp(—e3) we have
hmT

N
Moreover Corollary ensures that for all for all e > 0 and for all £ € [K], with probability at least
1 — 2pexp(—€3), we have

‘[ZIIT}I[WLT]]C.‘ < 262

pnT

M*—I/QZLTWLT H <9 _ pnt
H WDk, = 2es NAx(SET)

In addition >4, [A*];x = h; and we recall that for all i € [p], and for all ¢; > 0 with probability at least
1 —2exp(—€}),
n2 )
—1/2). L InL=, i
[M ]ZZ < ([M*}u 2¢1 NnT ) .
We also recall that for all 7 € [p], Proposition [5.2.8| ensures that
M (SVD) Ry < [ML)is < hy.

Furthermore, the function = — 2~'/2 is convex and Lemma ensures that for all (z,y) € R? such
that > y, we have

()2 < g ey

In addition we recall the previously proved result, that for all € [p] and for all ¢; > 0 with probability at
least 1 — 2 exp(—¢3),

[M];; > ([M*}m —2¢ w> : (5.16)

This provides especially with probability at least 1 — 2 exp(—e¢?),

: - —3/2
~ 12y —1/2 min(2, h;) o min(2, h;)
[M ]Zl < [M* ]ZZ + 61 N’]’LT [M*]r“ 261 NnT .

Hence we get that for all i € [p], with probability at least 1 — 2 exp(—¢?),

p - —3/2
172 ML < 2RI (e min(2, hi)
[M ]ZZ[M* ]u <1+ [M* ]2261 NnT [ *]u €1 NnT 5

-3/2
min(2, h; . min(2, h;
<14+ +vVhe NoT ) ()\K(E%/i;)hi—%l ]V(TLT)>

Moreover ||M~12M 3|, = max ([M—l/Q]ii[Mi/Q]ﬁ) which leads to, with probability at least 1 —
1€
2p exp(—e€?),

, - —3/2
122 o : min(2, h;) LTy, min(2, h;)
| M M/ |op <14 Izgﬁff (\/ hie1 —NnT A (Zy Jhi — 2¢; —NnT .
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In addition we have, for all k € [K],

1M AT 3 = S M PR A,

=1
P

<Y Ak (SWH) T AN
=1

Hence we deduce from the definition of the quantities h; and by recalling that A* € R’fK has columns
summing to one the following inequality,

K »p
ZHM‘”A* aszz (SUH) " h AN,
k=1 i=1

Then Cauchy-Schwarz inequality ensures that

K 2 K
SOIMI A | < B M < T
% k|2 = * kll2 = )\K(E%):[;).

k=1 k=1
For notation simplicity, we denote, for all i € [p],

min(2, h;)
NnT

& = ( A2 /b, min(2, h; ))
We have especially established with (5.16) that for all i € [p], [M~/2];; < A;W with probability at least

1 — 2exp(—¢3). The previously proved results provide, for all 1, e2,e3 > 0 and with probability at least
1 — 2pexp(—€}) — 2K exp(—e3) — 2pK exp(—¢3),

lef Rall2 < hiA; vz, (1 —l—max (fel min(2, s )A 3/2)) - 2¢3 pn

A, = Mg (SHDh; — 26

NnT Nk (ZED)

(2 _ K
+ 2¢€9 hn A, 172 1 4+ max \/761 min h)A 3/2 —
i€l NnT Ak (SHE)

Hence, for all €1, €2, €3 > 0 and with probability at least 1 —2p exp(—€3) —2K exp(—e3) —2pK exp(—e3),

€1 max¢§;
el Rollp <272 [ "L 1+11€[’”§ [iesy/p + Kea/i)
Nk (ZEF) VNnT

9 : (2 A ) —1/2 T €1 m?p}](gz

€1 minfz, n; n 1€

<2(1- — 1+ —=E | |eVhip + Keo| .
= ( A(SED R V' NaT ) N \ T N [63 Pt 62}
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We now consider Rs := M~1/2 (Z¥T(z¥T)T — E[Z"T(Z"T)T]) M~'/2. Hence the following results
come, holding for all i € [p],

[R?)]zzs’

M*@

lei" Rs |13 =

Vo)
Il
—_

(12" (2"7). - E[[2"7)] [27).))°
[M];:[ M) s ’
((z"")][2""). —E[[Z2""]][Z2"7).])
(M35 M) 55 [M ] 3i[M 4] s

I
M%

@
Il
-

2 [M*]n {M*]ss

)

I
M’U

@
Il
—_

Z"1)] [Z"7), - E[[Z27)] [2"7.))°

[ *]u[M*]ss 7

(v (e,

I
M“@

I
—

S

P LT T 71T LTYT 71T 1\2
< rengs s 1212 [kﬁ]jl&z*]ssh'[z )"

s=1

Moreover, Proposition [5.2.6] ensures that for all (i,s) € [p]?, for all e, > 0, with probability at least
1—4exp (— min (ei; \/che4)) and for an absolute constant ¢ > 0, we have

576 - e €4V h; - hsvnT
log(2)y/c N max(hpin/2,1)

127 (2"7),. — E [[27)] (2], ]

Furthermore, we proved that for all ¢; > 0, with probability at least 1 — 2p exp(—e%),

) 61:2?5(&
MYVEAMYR < 14 22|
H H p —= \/W

In addition, Proposition ensures that for all i € [p],
[M.)ii > Ak (S )hi

Hence, for all i € [p], for all €1,¢e4 > 0, with probability at least 1 — 4pexp (f min <EZ; \/CTLTE4>) -
2p exp(—e?) and for an absolute constant ¢ > 0 we have

A 4 9
lef Rs|2 < [ 1+ BTN e [ 576-e eavnT
sl = VNaT | P \log@ve Nag(SED) max(hmn/2,1) )

Thus, for all i € [p], for all e;,e4 > 0, with probability at least 1 — 4pexp (— min (eﬁ;\/chq)) —
2p exp(—e?) and for an absolute constant ¢ > 0 we have

N\ 2
lej Ralla < [ 1+ e o760 ¢ Cav/ntp
e. . . .
Pl = INaT | log(2)ve  NAg(SET) max(huin/2, 1)
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We now consider R, := <1 — ]1[) (M*WHLT(1'[1:T)T]\ZI'*1/2 - M;l/QHLT(HLT)TMfm) . Moreo-
ver, YT .= Axwil = f} [A*], [WET] . Hence we can re-write R, as follows,
2 AT I
1 ~ 71/2 K * 1:T T i * 1:T T T2 *1/2
R4—(1—N>M Z[A].k[w']k_(Z[A].l[W']l.) M
k=1 1=1
1 K K
(1) M T S W)
k=1 1=1
1 A_l/gK = * itvull 1T w1 T 1/2
= (1 ) S AT W (W, A
k=1 1=1
1 —1/2 L& % 1T T LT AT ar—1/2
(1 ) M S A W (T, ]
k=1 1=1
1 e~ il LT r—1/2 1 g% T y—1/2
:(1—N);lzl<[wwk.[w~mM (A" [A']} 21
K
(1) X (g ) v e
_ (4 1\ LK wiTT " twl Ty Y a2 1491 1497 (nrv2 — ppot?
= (1) X (I ) )
1) o= 1:T LT 1/2 —1/2 * * —1/2
# (1 5) X (W) ) (S ) L ]

£
Il
—
—
Il
—_

This leads to, for all i € [p],

o Rall <o [N 3™ 1, 30 (50 b ) |
k=1 =1

[ )3

k=11=1

2

s ([1m2]

|2

i 2

First we already proved that for all i € [p],

M.].. > A\ (S5,
1 %%

Proposition [5.2.1]ensures that for all i € [p], for all ; > 0, with probability at least 1 — 2 exp(—

[M]ii — [M]s min(2, i)

NnT
This proves that for all i € [p], for all e; > 0, with probability at least 1 — 2 exp(—e?),

< 2€1

min(2, h;)

[M} > A (SR )by — 2617/ =

€t),
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Using the mean value theorem we get that for all ¢ € [p], for all ¢; > 0, with probability at least 1 —
2exp(—€3),

(M2, — [M*_l/z]n'

-3/2
min(2, h;) min(2, h;)
NnT NnT

< 2¢; ()\K(Zﬁ,T)hi — 2

—3/2
2 . in(2/h;, 1

< =
~ hiVNnT NnTh;
= hV/NaT "W/ NaTh '

K
Hence, reminding that by definition, for all i € [p] we have h; = ) [A*],, leads to, for all | € [K], for all

€1 > 0, with probability at least 1 — 2p exp(—¢?),

[ = a2y ey < |30 (2 (et - 22 ) g
* o = | & \ /N \"Y T /N, il )
- 1/2
2¢1 LT 2¢€1 ) SPIEL e
= A - WA
N \/W < K( W) \/Whmln ;( i [ ]zl) s
< 261\/13 <)\ ( 1:T)_261>_3/2
S VNaT Y N i

Moreover we also proved the following inequality

K

_ . K
STIM Al €
=1 Ak (Z3F)

These inequalities lead to, for all i € [p], for all ¢ > 0, with probability at least 1 — 2pK exp (—¢€}),

261nThiK\/f9 1T 261 -3/2
llef Rall2 < 75 (AW ) —
/NPT 1T min(2, h;) / N o
n

L 2anThiK 1 (A (shr)_ 2 >‘3/2
Pt o ) )

Finally, for all i € [p], for all €; > 0, with probability at least 1 — 2pK exp (—e

hinT'p .
T v 1.T
" Rylle < 261K A (X
el Ralls < 2 (Awleht) - NnThﬂﬂ)
2€1K\/TLT 1:T
— [ Ak (Z§
" ( K( W) NnThmm

Nk (ZH5)
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We combine all the previously obtained results and get that, for all i € [p] and for all €1, €2, €3,€4 > 0,
with probability at least 1 — 2pexp(—¢?) — 2K exp(—€3) — 2pK exp(—€3) — 4pexp ( min (64, Ven Te4>)

2e1v/nT : T\ '
IeF (G = Gl < 30 - (w2 — 20y

9 (2 T —1/2 T elmaxgl
+2<1_)\ (61 mln(> z)) 717) 1+Lp] [63«/ +K62:|

& (SUT)hy NnT Nk (EZ5F)? VNnT
. fliﬁﬁﬁf’ 576 - e e/ TP
log(2)ve Nk (Z5F) max(hmin/2,1)
h; nTp 2¢€1 -2
261 K A
o ( K NnThmln)
4 2aKvnl 2¢1 K/nT <)\ E 2€1 ) —3/2
N)\K EIT K \/ NnThmm '

We then divide by v/h; and remind that for all i € [p], h; > huin, to get under the same conditions,

-1
1/2 _ < 2avnT LTy g0 1
el (O QM_M;ffMﬁw)%MMWM
6sf + Khyiy e N %ﬁa}f&
2 / Nk ( ElT
1= )\K ZlT NnThrnln

i ama&\ T esh /> /T
VNnT “log(2)4/c Nk (Z5EF) max(hmin/2,1)

-2
261
+2 K\/ A (SET) - >
“ < x VN T homn

2€1K\/n <)\ (ElT) 261 >_3/2
K s —— .
\/thln)\K(Z%/(;) NnThmin

AssumptlonH stating that A, > 617, ensures the following inequality, holding true under the same
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conditions as previously stated,

—1
_ A 2e1pvnT . / 1
h.1/2 €TG—G* <-</\ NLTY _ 9¢ >
i H i ( )H2 = NClK\/N K( W) 1 hmin NN T
63f+62 KP/C1
+ 2
Nk ( EIT
1-— 1/
Ax( EIT NnThmm

n (1 " “ lgéz[%p}}( &) 576 - e eapvnT

VNaT | log(2)ye Ng(SED)Va K
nTp 261 —2
26K A (BB - —=L
e N < K( ) \/NnThmin>

_l’_

vV N nThmin

Ncl/\K(E%/i;)

Finally we have, for all s € [p], hs < K and

hsmin(2, h)

3/2
min(2, hy)
NnT

s ==
<)\K(E%)hs — 2e

V2K

3/2°
A(ZET) —2¢, [P /
w NnTe1 K

Moreover c is an absolute constant appearing in Lemma(1.1.10, =

Proof of Theorem(5.2.11| Use the result stated in Theorem|5.5.1|and notice that NnT > €% max (

ensures NnT > €3 max; 2. m

5.5.9 Proof of Theorem[5.2.12

2e1v/KnTp ()\K(ELT) B 2¢; >3/2

€1 max§&;
ZG[p]

)

16

32

9K2

2
)

hmin

Theorem 5.5.2 Consider the Dynamic Topic Model, see definition and assumptions [f and [/}

Then for all i € [p] and for all €1, €3, e4 > 0, with probability at least 1 — 2pexp (—€}) — 2pK exp (—

€) -

)

27
1)

03 h3.

min

)
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2. 9P exp (— min (ei, \/ﬁq) ) the quantity H (G — G*) is bounded from above by

op

2e14/nTp (1 2¢1.,/p >_1 N 4e3K+/nTp 149 P (c 5 D )2
— |l - — —_— €1y — 2614
NesyNe K co/NnTe K v/ N "W NnTe K \7 7 NaTe K
2esv/nT 288 -2

pravind  288c (o0 P (9, P
N colog(2)4/c NnTe K NnTe K

+4€1\/TLTpK2 146 VK 1 2€1,/D —3/2

2V N P 3/2 covV/NnTc K ’
2NnT Cy — 261 m
nTcy

where c is an absolute constant appearing in Lemma

Remark 5.5.2 Theorem|[5.5.3 improves the result presented in Lemma F.5 in [84]. Specifically, by set-
ting

2 =log(p) + 5log(nT), € =1log(pK) + 5log(nT), €1 = plog(9)+ 5log(nT),

plog(9) + 5log(nT’)

and with probabi-

nT
plog(9) + 5log(nT)
nT

it establishes that with probability at least 1 — 6(nT)~> if ¢ >

we have

lity at least 1 — 2 exp (—\/ch (plog(9) + 510g(nT))> —4(nT) P fe <
fo-e.

bounded from above by
op

2y/nTp (log(p) +5log(nT)) (1 ~ 2¢/p(log(p) + 510g(nT))> -1
Nceov/ N K covVINnTe K

)
| 4K /T (10g(pK) + 51og(nT)) | (HQ \/p<log<p>+5log<ncr>> ( ., \/p<10g<p>+510g<nT>>> )
oV N NnTe K 2 NnTci K

-2
+2\/nT (plog(9) + 5log(nT))  288e — (1 N 2\/]9 (log(p) + 5log(nT)) (02 B 2\/]9 (log(p) + 5 log(nT))) )

N co log(2) NnTe1 K NnTce K

n 44/nTp (log(p) + 5log(nT)) K> 14 VK (log(p) + 5log(nT))/vV2NnT
AN (-2 NECOE: 510g<nT>>>3/ 2

NnTc K

~3/2
(y_ 2V/p(og(p) +5log(nT))
covVINnTe K )
Notably, unlike Lemma F.5 in [84], Theorem|[5.5.2 does not require any assumption on either the number

nT of documents or the size of the number of words per documents N compared to the vocabulary size
p. Moreover, the probability of the stated event is controlled non-asymptotically, and the constants are
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explicitly provided. Focusing on the asymptotic behaviour of this upper bound we have, when nT goes
to infinity and assuming K, p, N remain fixed, with probability at least 1 — o, ((nT)73), |G — G

op

bounded from above by

|nTplog(nT) 1 InTplog(nT) nTlog(nT) |1 InTplog(nT)
Ch N N—i—CQ N +C5 N N—|—C4 N )

where )
10 20K 2880 - e 20K

C = 9 C == 9 C = T~ ~ C = —.
' verKeo ? c2 ’ log(2)c2v/c ! e

It is finally noteworthy to state that with probability at least 1 — 0,10 ((nT)~3) the following inequality
is asymptotically holding true,

nT'plog(nT)

G = Gullop < C(1+ N7V2p 112 4 N1y [

where C' = 2max(C4, Cq, C3, Cy). This improves the result presented under an asymptotic framework in
Lemma F.5 in [84).

Proof of Theorem [5.5.2 We follow the proof structure of Theorem and will use the same nota-
tions. Especially, for all i € [p],

min(2, h;)
NnT

&= (A7 Vhimin2, 1) )

A; = A\ (ZED Ry — 26

. 4
We remind that G — G, = ) R, which leads to

s=1

4
(G = G)llop < Y | Bsllop-

s=1

We now aim to bound each || R;||,, with high probability. We start with R, which is diagonal. Hence we
get, for all ¢; > 0, with probability at least 1 — 2pexp (—¢}),

—1
2e1vV/nT : 1
R - TR < VT )\ ELT _2 \/7 .
1R lop fl%%f](”@ 1H2—Nm (K( w) =2 ST

We now consider Ry and notice that

Y

K
HRQHOP < 2 Z HMfl/Q[A*]kHQ HM*l/QZI:T[leT]k.’ ,
k=1

K
< QHMfl/ZMi/?ng Z HM*_l/Z[A*]k’L HM:1/2Z1:T[W1:T]]€.H2 .
k=1
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CV2 1T T ( ,for all k € [K], we get that

Hence, using the previously derived upper bound on

for all e3 > 0, with probability at least 1 — 2p exp(—

el < e e ([0 \/E > a4,
nT'p

<4 MﬁlzzM*ii V NS

where the second inequality is due to the following result,

K

_ K
STIM AT 4l <
k=1 Ak (Z3)

Reminding that the function = — z~! is convex, Lemma guarantees that for all (z,y) € R?,
(-t <ah (2 —y) Py
In addition we recall that for all i € [p], for all ¢; > Owith probability at least 1 — 2 exp(—e¢?),

min(2, hl)>

[M;; > ([M*Lz —26e; N T

This provides especially with probability at least 1 — 2 exp(—¢2),

—2
Sy “1q min(2, h;) o min(2, h;)
[M ]u < [M* ]7,7, + 2¢; NnT [M*]u 2¢; NnT

Hence we get that for all i € [p], with probability at least 1 — 2 exp(—¢?),

-2
A in(2, h;) min(2, h;)
MM < 1+ [M.]i2 min(2, 1;) M. i — —

-2
<1+ 2her4/ NnT (AK(ZW Vh; — 2¢; N T ,
1 T\ °
<142 nETy )
=t Nt (AK( w) 2 NnThi>

Finally using an union bound to control the max and the inequalities h; > hpin > az holding for all
P

i € [p], leads to, for all €1, e3 > 0 and with probability at least 1 — 2pexp(—e?) — 2pK exp(—e3),

-2
des K nT'p 1 LT 1
0 \/ 142 A (ZHD) =2 ,
IR2llop < Ac(SED VN ( 2N NaTh, K(Ew) N NnTh;
4es K+/nT . -2
< ZGBVIID (o0 [P (kS8 —2a, /2 ) ).
A (ZENVN NnTco K NnTco K
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We now consider Rs. Following the definition of R3, we have

| Rsllop < M~1/? (ZI:T(Zl:T)T —E [ZlIT(thT)T}> N2

Op’
N2l —1/2 <Z1:T(Z1:T)T _E [leT(leT)T]> M2 12 pr-1/2
op

IN

9
op

IN

)

N 2
M2 pgl/?
o op

;1/2 <Z1;T(Z1;T)T _E [ZLT(ZLT)TD M;l/Q

MM,

IN

M;1/2 (Zl:T(leT)T " E [ZLT(ZLT)TD M;l/Q

op op

Hence with probability at least 1 — 2p exp(—¢?), we have || Rs||,, bounded from above by

—2
1 . 1 _ . . ) ) _
(120 s (w2 i) ) s (2707 e [

Moreover, Proposition|5.2.7|ensures that for all 4, > 0, with probability at least 1—2 exp (p log(9) — min <e4, Ve Tq))
where ¢ > 0 is an absolute constant, we have

M —1/2 (ZI:T(ZliT)—r —E [ZLT(ZLT)TD M_1/2H0p

- 576 - e VnTey
Ak (ZHDN) log(2) Ny/emax(hmin/2,1)

Op.

Finally, for all €1, ¢4 > 0, with probability at least 1 — 2 exp (p log(9) — min (ei, \/CTLT€4>> —2pexp (—€}),
we have

-2
576 - e VnTey F LT 1
op < : 1+ 261y | Ax(SHF) -2 :
Hisllor = SR 08 @IVe N a2 1>< TN N, < wCw) =29\ N,

We now consider R, := (1 — % : (M—1/2H1:T(H1:T)TM—1/2 — M;1/2H1:T(H1:T)TM;1/2) . As de-

tailed in the proof of Theorem[5.5.1, R, can be written as follows,

Ry = (1 _ > ZZ( WlT Wl T] ) N2 [A*], [A*]I <M71/2 _ M*—1/2)

k=1 1=1
(1 _ > ;;( W1T Wl T] ) <M*1/2 _M*—1/2) 4%, [A*] MIY2,

Hence we get that

e % LERY W I N N Oy It |
k=11=1
33 (A

k=11=1
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The proof of Theorem provides the following results. For all [ € [K], for all ¢ > 0, with probability
at least 1 — 2pexp(—¢3), we have

0o - aaz ), = ol (- i)

In addition, we have

K / K
STIMI A k) € ———.
k=1 VAR (EG)

Furthermore, we proved that with probability at least 1 — 2p exp(—¢3),

) €1 rré%;}(&
MR MY < 1 — 22 .
H H p —= \/W

Hence we deduce that with probability at least 1 — 2pexp (—€%), we have

€1 max¢&; s
| Rallop < | 2+ : i<lpl S 2eyp <)\K(21:T) - 7261 ) v
o= VNnT \/)\K(Z%/VT) VNnT w vV NnT hypin

Finally we have, for all s € [p], hs < K and

hs min(2, hs)

§s 1= : 3/2
min(2, hs)>

()\K(E{;f)hs ~ 2

V2K

3/2°
. P
(AK (W) - 21y NnTclK)

We combine all the previously proved results and get the stated inequality. =

Proof of Theorem [5.2.12] We use the result stated in Theorem and the given bound on the
sample size NnT to get the result. m

NnT

5.5.10 Proof of Theorem5.2.13|

Theorem 5.5.3 Consider the Dynamic Topic Model, see definition and assumptions [g and [7}
For all | € [5], the quantities C;(K,p, N,n,T, W huin,€), defined here under, converge towards a
fixed constant when either N, n or T' goes to infinity. Under this setup, there exists a matrix Q0 =
diag(w, Q.x) € REXE where w € {—1,1} and Qo) € RE-DX(K=1) s an orthogonal matrix such that
for all i € [p| and for all « > 0 satisfying

: ) ZI:T
a < )\K(E%)mln (C37)\K( A))‘K( W))

<1,
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for all 1, €2, €3, €4 > 0 satisfying
(1-1/N)vn AK(EA)AK@l:T)
( 1v/P

max(€q, €2, €3,€4) <

v rowm)
with probability at least 1—2p exp(—e3)—2K exp(—e2)—2pK exp(—e3)—2-(2p+9P) exp (— min <64, Ven T€4))
the quantity HQ[U]Z-, — U,

, is bounded from above by

Ciot(p, N) max(er, €2, €3, €1) Khip
o 1,€2,€3,€¢4 ’I’LT(N—2)’
where
Cr | Oy Cs Cy Ciy/p Cs 32 VK
Ciot(p, N) := —_—t =+ —== +—+C+ + +C + ,
t t(p ) (CQN CQF 5 NClK \/T 1 \/@
Dy D3 + D4(K)\/ﬁ P
=D(K Ds(K)y [ —.
with Dy (K) = 22 Gt o e +03/2\ﬁ Dyi= & Dy 9D(K) G , D5(K) =
! . C% Co 1 1/ C1C2 2 Co 3 ()] 4 1K .
C iy .
\/iK converge towards constants when NnT' grows. The quantities (C)),c|5 are defined as follows,
1
(o~ i)
Cl =\ C2 — )
NnTc1 K
=B (1 p0e /—P (e 2 -
2 co ¢ NnTc K @ ¢ NnTclK
288 - e
C3:=————— - [1+2
377 log(2)/e ( TN NnTa kK T 1K NnTclK
2K2 K 2 —3/2
04 = 3 1+€1 \/7 3/2 (1 Elf ) 9
c5 oweT [, — 261 covVNnTc K
AT NnTclK
o 14+ VKo H“E“ax@
° \/NnT

1 261 1
C —
2 Ak (SED) N NaT ho,

with &; defined in Theorem

Remark 5.5.3 Theorem improves the result presented in Theorem 3.1 in [84]. Specifically, by
setting

€ =log(p) + 5log(nT), € =log(K) +5log(nT), € = log(pK) + 5log(nT),
€5 = log(2p + 9P) + 5log(nT),
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log(2p + 97) + 5log(nT’)

it establishes that with probability at least1—8(nT)~° ifc > T and with probability
P
at least 1 — 2exp (—\/ch (log(2p + 97) + 5log(nT))) —6(nT)™° ifc < log(2p + 92; 5 log(nT) we
havewe have for alli € [p], ||Q[U);. — [U]s. , bounded from above by
204/log(2p + 9P) + 5log(nT) [NKhip ( C1  Cy N Cs N Cy
a(N — 1) g (3 a)ce nT Nea  ¢a /pNea )’
20+/log(2 9P) + 51 T) |[NKh; C C K
4 /log(2p + 97) + 5log(nT) P 1\/15+C5+ 3 /g+012+0f/2f '
a(N — 1)Ag(X4)co nT N K Ve KN \/c1ea

Notably, unlike Theorem 3.1 in [84], Theorem [5.5.3 does not require any assumption on either the
number nT of documents or the value of log(nT) compared to min(N,p) or the asymptotic beha-

(nT)

. 1 - , .
viour of P08\ Moreover, the probability of the stated event is controlled non-asymptotically, and

n
the constants are explicitly provided. It is finally noteworthy to state that with probability at least 1 —
onT—oo ((nT)™3) the following inequality is asymptotically holding true,

- 1 P p hiplog(nT)
R . < I =
HQ[UL' Ul , =¢ <1 TNt N T N> NnT
20K/5 379 i
where C = 2——————— max(C1, (2, C3,Cy) /2. This improves the result presented under an asymp-
aci kg (X4)cs

totic framework in Theorem 3.1 in [84)].

Proof of Theorem We first recall that for any vector v € R, for all j € [d], v(j) denotes the
j' entry of v. We then define Us.x = [ﬂ% ey [U].K} and Us.i its population counterpart. We recall

~

that U = [[U],l, o [U].K} contains the first K left singular vectors of the noisy quantity II. Their po-

pulation counterparts are denoted respectively U and II.. Then for any matrix Q@ = (w,Q9.x), Where
w e {+1,—1} and Q. € RE-Dx(E-1) js orthogonal, we have

0. - .

< [l011(0) = [U110)| + [ Q2 [Oacl. = [Vl

2
Proposition [5.2.9| proves that

1 A (B (2D 1 :

In addition, proposition also ensures that
1
IGully = (1 57 ) T + o (o)

In addition, Theorem states that for all €, €3, e, > 0, with probability at least 1 — 2pexp (—€3) —
2pK exp (—e%) —2-9Pexp (— min (ei, \/ch64>),

A 2e1y/nT’ 2e3/nT’ 2e4vnT 2e1v/nT’

H(G_G*) AVIED o 4 Z8VIVD o | ZAVRZ o ZAVIED

< 2+

- NYN ' JUN N VN

'047
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where for all [ € [4], the quantities C;(K, p, N,n, T, W, hnin, €) converge towards a fixed constant when
either N,norT goes to infinity while the other quantities remain fixed. Let us denote A the quantity

\f

and {>\2 (G *) .-, A\min (G«)}. The gap between two eigenvalues lying in two different groups is at least

p} Consider two groups for the eigenvalues of G., namely : {\; (G.)}

(1 — ]17) nT'cs as proved in proposition [5.2.9, Next consider « € R.. Proposition |5.2.9|ensures that if

1:T
a < AK(EW)?T :
A(Za)A(E5)

then X (G.) — X2 (G.) > a|Gill,,

In addition if s
A (BEEV2 A (2
< MCw) Kf,T“)<1, then  Amin (Gi) > o |Gy,
)\1(2A))\1(EW )
Hence if

min (63, )\K(EA)/\K(E%/:‘?))

a < Ak (ZHD <1 then min{\ (G.) = A2 (Gi), Amin (G4)} > a||Gall,,

Moreover, if

1

— 1:T
(= YNWVITAREAAEW) o o /e ey en)A < & (1T (S Ak (2]

6A N
which leads to, with probability at least 1—2p exp (—e%) —2pK exp ( € ) 2-9P exp (— min (ei, V che4)>,

(¢-al,

Finally, conditions required to apply Lemma are fulfilled. Applying this Lemma with respectively
s=k=1ands =2, k=K gives the existence of w € {+1, -1} and Q.5 € RE-1D*(E-1) grthogonal

such that,
[w01:6) - w140 | < QHG » (-], 7 (a-a),).
zgaHG lop (H(G G) e?(é—G*) 2>'
( ) 2)’

In addition, Proposition 5.2.70] ensures that under the same conditions,
( ) 2> ’

a||G = (H(G G.)
a||G = (H(G G.)
Theorem [5.5.1| states that for all i € [p] and for all €1, €9,€3,¢4 > 0, with probability at least 1 —
2p exp(—€?)—2K exp(—e3)—2pK exp(—e3)—4p exp (— min <6?1; \/che4>) , the quantity h;1/2 eiT (@ — G*)
is bounded from above by

/nTp /D
2 N l:Cl 1% + 02(62 -+ 63) + 0364 N + 04/161 + Céel]

max(e1, €3,€4) < @

ﬁ

a
< g HG*”op

Ui 1l

HQQ;K[[AJQ:K]L — [Ua.x)i.

Ui Ml

Jeton:6) o) |

op Mg ( ZlT

HﬁzzK[UzzK]i. — [Ua:k]i. ,

op )\K(Zl :T

.

/),
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where for all [ € [5], the quantities C}(K, p, N,n, T, W, hyin, €) converge towards a fixed constant when
. [C]
either N, n or T goes to infinity. Let us denote B the quantity /P +Cy+ Cf L C+ Cg] . Then

N N
Theorems [6.5.7] and [5.5.2] provide, under the conditions on ¢y, €2, €3, ¢4 and « previously stated, with

probability at least 1—2p exp(—e?) —2K exp(—e3) —2pK exp(—eZ)—2-(2p+9) exp (— min (62; V ch64>),
~ . . 10 max(el, €2, €3, 64) nTKhi KhinTp
U1(6) — [U < Aty 2H PR
ot - w16 | = == (AK@%\/N VN

SlomaX(61,62,63,64) anhz A+ /KhinTpB '
2 aHG*Hop )\K(Z%/V)\/N N

”QQ:K[02:K]i. — [Ua:k]i.

This provides
oy, - .|, < 2oy ) [KhnTp (e +2)
2 aHG*HOp N \/ﬁ)\K(EW)

Using the lower bound on ||G.||,,, provided by Proposition gives
< 20 max(eq, €2, €3, €4) INKh;p A N B)
2 a(N — 1))\[((214))\}((2%;‘;) n1 \/ﬁAK(E%) '

- vN 1
Th nclusion com n n < .
e conclusion comes by notici gN—l—‘/N—2+1/N [

Proof of Theorem Consider the statement of Theorem [5.5.3] and notice that

36K 64
NnT > e% max T 1 d ;5
cs 1K cshmin

| - w1

; Max;e] 53) ensures :

2
02102(7266_\%§ C4§42; Cg,ﬁi(l—l- K/Cl).
In addition, 1 — 1/N < 0.5 and we have almost surely
VE > Mg(Z4) 2 2, VK > Mg (ZH) > e,
VE > M(24) > K2 VE >\ EE) > K12
min (C3,c§)
K

C1 <2/cg; Oy <2K/co; O3 <

This allows to consider a. = ¢ which implies the stated bound on max;c[4 ¢; and the value

. . I 3K . 2 .
of Ciot(p, N). Finally notice that by definition, max;epp & < 3232 if NnT > 6%3—2 Thus under this
Co min €2
. 9K?
Cond|t|on, maxie[p] 512 S W |
2" min

5.5.11 Proof of Proposition

Proof of Proposition In the proof outlined in Proposition [5.2.10}, it has been established that
there exists a non singular matrix B € R®*X such that almost surely the following relationships hold :

-1
(BBT) — [A*]TMglA*,
U=M,"’A"B.
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For all k € [K] and for all I € [K — 1], we introduce the matrix N € REK*(K-1) with elements defined as
follows :
[Blis1)

[B]/cl
This allows us to express the matrix B in terms of N as B = diag ([B] ;) [1x,N]. By employing these
results, we arrive at the following expression for R € RP*(K=1)

[Nl =

[1,, R] = diag(u) ' M, "/? A*diag ([B] ,) [1x, N] .

Furthermore, following Lemma D.2 in [84] we demonstrate that the first column of B, denoted [B] |, is
an eigenvector of 217 (A*) T M, ' A*. Indeed Let us denote oy (IL.), ..., ok (IL.) the singular values of
IT,. By the definition of the singular values and recalling that IT, has nonnegative entries, we have, for
all k € [K],

IL, (L) " uy, = oy (TL)% uy.

Combining that I, := M; ?A*WT and U = M /> A*B leads to
(M Paw T (W) T (AT M) MR AT[B) = oy (TL)? M P40 (B,

Left multiplying both sides by ((A*)TM;1A*) ™" ((A*)TM;” 2) ensures that

Wl:T (leT)T (A*)T M;lA* [B]k = o}, (H*)2 [B]k )
Recall that SL7 = (nT)'WET (WET) " finally gives, for all k € [K],

SW (A MAY[B] ), = (nT) oy (IL)* [B] .

By applying Perron Frobenius theorem and establishing that “47(A*)T M1 A* is a strictly positive
matrix we conclude that the entries of [B] , have the same sign. In addition, we have for all i € [p],

[U]1(7) = [MQI/Q] [A*], [B] . Given that the entries of A* are nonnegative by design, and all entries

of [B] , are either all positive or all negative, it follows that the entries of u; are either all positive or all
negative. Notably U and B are defined up to a sign flip, allowing us to choose U in a manner that u;
becomes a positive vector. Finally M, is a diagonal matrix with positive entries, establishing that the
rows of R are convex combinations of the rows of N. m

5.5.12 Proof of Theorem[5.2.15|

Theorem 5.5.4 Consider the Dynamic Topic Model, see definition and assumptions [f and [/
Consider the matrices R and R defined in the Post-SVD Normalization step. Then, for all i € [p], for all

a > 0 such that '
min (c3, Ax (34)c2)

AL(Za)M (ZHF)

OéSCQ <]-7

for all €1, €2, €3, €4 > 0 such that
(1 =1/N)VnTAk(X4)co

Ci\/p Cs )
6 +Cay/p+ —=+C
< N 2\/13 \/N 4\/13

max (€1, €2, €3, €4) <
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with probability at least 1—2p exp(—e3)—2K exp(—e3)—2pK exp(—e3)—2-(2p+9P) exp (— min (ei; V CTlT€4) ) ,
there exists Qy.;r € RE-VX(K=1) " an orthogonal matrix, such that

S

o [A], 1, = 2| (VA

7.

24 ,
(2 1,

where

-1
. p p
min |B <—7——, max < =,
(ke[K][ ]’“1> ~ K w2t el G K

_ Ciot(p, N) Khip
- maX(617 €2, €3, 64)

Z —_
« nT(N —2)’

with Cio(p, N') defined in Theorem|5.5.3

Remark 5.5.4 Theorem improves the result presented in Theorem 3.2 in [84]. Specifically, by
setting

2 =log(p) + 5log(nT), €2 =log(K)+5log(nT), €3 =log(pK)+ 5log(nT),

€7 = log(2p + 9P) + 5log(nT),

Y4
log(2p + 9 Tz; 5108(nT) - ool with probabilty

log(2p + 9P) + 5log(nT)
nT

it establishes that with probability at least1—8(nT)~° ifc >

we have

atleast1—2exp <—\/ch (log(2p + 97) + 510g(nT))) —6(nT)~° ifc <

for alli € [p], ||Q9.x {R} — [R]; , bounded from above by
-1 -2
Z h; min ||B A h; min |[B],{| — Z 2
(Vi i Bl) -+ 2 (Vs i (B0~ 2) | (2+ s e 1 )

where Z is bounded from above by

20\/10g(2p + gp) + 5log(nT) NKh;p < 1 Cy Cs C4>

a(N —1)c3 nT Neo + ey * VpNesy * E
20+/log(2p + 97) + 5log(nT) |NKh; C C / VK
+ \/g(P ) . g(nT) p 1\/13_1_05+ 3 E—l—C%—i—Cf/z _
a(N —1)c; nT N K vVaK\V N /162

Notably, unlike Theorem 3.2 in [84], Theorem does not require any assumption on either the
number nT of documents or the value of log(nT) compared to min(N,p) or the asymptotic beha-

. | T - , .
viour of p?\fg:l). Moreover, the probability of the stated event is controlled non-asymptotically, and
the constants are explicitly provided. It is finally noteworthy to state that with probability at least 1 —

onT—oo ((nT)™3) the following inequality is asymptotically holding true,

1
2§0p<1++\/ﬁ_|_ p) M

HQQ:K [R]- ~ B, N N N NnT

20v/5 p
where C = 2— 1 - (2 + 5K> max(C1, Cz, O3, Ca)*/.

2 cse
QcCycy 261
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Proof of Theorem[5.5.4, First, examine the matrix 2 as defined in Theorem Itis worth noting that
the normalized eigenvectors are unique only up to a sign. Consequently, u; and [U]; can be selected
in a manner that sets their first coordinate to be positive, thus fixing w = 1. Recall that for all i € [p],

) -6,

1.

This provides, for all i € [p],

oo 8], - 5,

1.

=

on the other yields :
Wh@*Wh—Wh@*@ﬂﬂ.—M)
T

Bringing the terms to a common denominator and applying the previously mentioned inequalities results

in:
H<7 :zgé?>Wh—Wh®1@ﬂﬂi_MJ

‘K 1% im)Qﬁ)‘Wh@lﬁﬂﬂi—mJ

Factoring by [U].1(i) on one side and by [U].

7.

o], -

], -

The triangle inequality ultimately guarantees the following inequality :

< |17 (| [0], WL || + @+ ELL) 0.6 - .6))

Jowr [#], - 1m,

2.

2

Additionally, for all i € [p], the quantity ‘[U]l(z’) - [U],l(i)‘ is upper-bounded by ‘Q[U]i, — s
ensures that

. This
2

[ [R], — 1) e+ IIRLL)

Moreover, Theorem ensures that for all i € [p], for all & > 0 such that

< ‘[ﬁ]_l(i)ﬂ HQ [U} - [v);

2

o < Ak (SO (B a) Ak (B
- Al(EA))\l(E%;‘;‘F)

<1,

and for all €1, €9, €3, €4 > 0 such that

(1 - 1/N)FAK(ZA)AK(21'T)
( VP

max(ey, €2, €3,€1) <

7)

\/>
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with probability at least 1—2p exp(—e3)—2K exp(—e3)—2pK exp(—e35)—2-(2p+9P) exp (— min (ei; V chq))
the quantity HQ[U]Z; — UL,

, is bounded from above by

20 max(eq, €2, €3, €4) \/W( 4 N Cs N Cy . C, >
o(N = DA (E0A RV 0T ANAR) - Ac(SW) - VENARSH)  Ak(S3) )

20max(€1,62,63,64) NKh;p Cl\/]3 Cs p 2 3/2 \/E
T +Cs + —+Cl+01 —_— | .
a(N— 1))\K(2A)/\K(EW) nT NclK \/ClK N /Cl)\K(E%)

_|_

Moreover, the matrix R is constructed in such a way that for all i € [p], the [R], € R5~1 lies in G,,.
Thus, for all i € [p], |[R]; [, < maxyex) |7k, We proceed to bound maxye () |1 ||, from above using

a non-random constant. To this end, we recall that the following statement is established as part of the
proof of Proposition|5.2.10|: there exists a non-singular matrix B € RX*X such that almost surely there
are

—1
(BBT> — [A*]TM*—IA*’
U=M,"4"B.

Then, observe that B is non-singular, which establishes that [1;, N] is also non-singular. Indeed, B =
diag ([B] ) [1k, N], as demonstrated in the proof of Proposition [5.2.14] Furthermore, for all k£ € [K],

(;k) = [1t, N] " ey,

where ¢, is the k" canonical vector of RX. We define P = [1,, N]' leading to, for all k € [K],
an||2 < HPHop'
Recalling that P = diag ([B] ;) ' B leadsto PP =diag ([B],)”' BB diag ([B] ) '. The submultipli-
cativity of the operator norm guarantees that
1/2 1/2
<

op

)

Il < || PPT

et 5T

op

where [B];' denotes the vector whose entries are the inverses of the entries of [B] ;. We first control
|BB'|,,- Proposition states that for all i € [p],

A (SW )hi < [MJi; < .

Hence (A*)T (M;1 — H™') A* is a positive semi-definite symmetric matrix. It follows that the smal-
lest eigenvalue of (A*)T M 'A* is above the smallest eigenvalue of (A*)TH-'1A* := ¥ 4. Similarly
(AT (Mg (ZHEHTH — M ') A* is a positive semi-definite symmetric matrix. It follows that the hi-
ghest eigenvalue of (4*)T M, 'A* is below the highest eigenvalue of g (Z%i7) "2 4. Under the As-
sumption the smallest eigenvalue of ¥ 4 is bounded from below by Ax (X37). In addition, the columns
of A are probability vectors which guarantees that the highest eigenvalue of 3 4 is bounded from above
by 1. Finally we have

M) (M) 20 (AT M) 34



166 CHAPITRE 5. DYNAMIC TOPIC MODEL

-1

Using that (BB') = [A4*]T M, ' A* finally provides

Ak (SET) < Amin <BBT) <\ (BBT> < Ag (L)1

In the proof of Proposition|5.2.14|it has been demonstrated that the entries of [B] ; have the same sign,
which can be chosen to be positive. Subsequently, [B]j1 is bounded from above by the inverse of

the minimum value of the first column of B, denoted as (minke[K] [B]kl)_l. This yields the inequality :

1/2 -1
< T < : 1:T —1/2'
Imell, < |[PPT < (krg[g;] [Bm) Ak(SHF)

Finally, as mentionned in the proof of Proposition 5.2.14] [B], is an eigenvector of SLT(A*) T Mt A
associated with the eigenvalue (nT)~'o; (IL.)?. Therefore, for all k € [K], we have

K
[B),y = nToy (TL) 72 Y [le (AHT M 1A*Ll B),, .
=1

However, for all (k,1) € [K]?, the entry [S3iF (4*)T M1 A*],, can be expanded as follows :

[E%/:‘;“(A*)TM*—IA*} i [ A%) M IA*]

l
r=1 "

Under Assumption [7| the entries of ¥4 := [A*]T H~1A* are bounded from below by Ak (X37). In ad-
dition, the entries of M, are bounded from below by the ones of Ak (X17)H. Hence the entries of
(A*)T M A* are bounded from below by A (24:1)2. This guarantees that

K

> Ak (5w )2 ) [BW ,

r=1

WM

Moreover, as proven in Proposition4.3.4] diagonal entries of a positive definite matrix cannot be smaller
than the smallest eigenvalue and Assumption [7|states that Ak (X3;7), the smallest eigenvalue of Z41 is
positive. This provides

SEEAYTMIA] 2 (SR (z =4),, + (W] ) ,

kl
r#k

Finally, this leads to, for all k£ € [K],

K
(nT) ‘o1 (TL.)? [B];,, > Ak (S )? Z (Bl -
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K
However, entries of [B] | are positive and thus ) [B],, = || [B] ||, . The Li-L inequality then ensures
=1

(nT) o1 (IL)* [Blyy = Ak (Z3@)* || [B] 4l -

K K
Finally, notice that || [B] ;|5 = 5. [BI;,. Moreover, forall (I, m) € [K]>, we have [B"B], = Y [B],, [Bl;,.-
k=1

Hence we have

| Bl.I3=B"B| .

Recalling that diagonal entries of a positive definite matrix cannot be smaller than the smallest eigen-
value and that eigenvalues of a matrix and its transpose are equal ensures that

T . T _ . T
[B B]ll > Amin (B B) = Amin (BB ) .
With the result previously demonstrated, this provides
I [B.1ll5 = A (S3F)-
Finally, we have for all k € [K],
(Bl > nTAg(Sw )" %01 (TL) 72,
which leads to .
(min 1Bl ) < 07) A (S5 7%, (L2,
ke[K]

finally providing for all k£ € [K],

Inelly < (0T) " ot (TL)* Axe (S5 )~

However, II, is a random matrix, making o, (IL,) itself a random variable. To control this quantity, we
invoke the submultiplicativity of the operator norm. This leads to the following sequence of inequalities :

o1 (IL,) = oy <M§1/2A*W1:T) ’

IN

o1 (M*—I/Q) o1 (A*Wl:T) 7

)\K(Z%}:‘ZW)—I/Q},L_I/QO_I (A*WltT) 7

IN

b * 1:T
< ) AW .
= /\K(leT)Cl Kgl ( )

According to Definition[5.6.1, A* and W' are left stochastic matrices. By Lemma [5.6.7] their product

A*WET remains left stochastic. Subsequently, Lemma guarantees that || A*W 7| = 1 almost

surely and the following bounds on the spectrum of A*W ! € RP*"T hold true almost surely :

\/z <oy (A*WLT) <VnT.
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Combining these results yields a non-random upper bound on o; (IL,) :

nT'p
Im)) <,/ ————.
71 (L) < \ Ak (B3 el K

This outcome establishes a non-random upper bound on (minye k) (Bl )
Next, the equality U = M "> 4*B also ensures that for all i € [p] and for all & € [K], ux(i) =
[M*][il/2 [A*], [B] ;. Hence, the following inequality holds true :

-1

)10 2 ML Ay win (1Bl

Proposition ensures that for all i € [p],
A (3 )hi < [MJis < hs.

In addition, for all i € [p], ||[A*], ||, = hs. This leads to, for all i € [p],

[U).4(D)] = v/hi min [[B]y] -

ke[K]

A~

Finally, for all i € [p], we have [U] 1(i) > [U].1(i)—
previously stated that

~

[U].1(i) — [U].1(¢)| . This provides, under the conditions

[011) 2 v/ i (B,

_ 20 max(el, €92, €3, 64) NKhip ( Cl + CQ 4 03 + C4 >
a(N = DAk (B)Ac (B ) Vo nT \NA(S5) - Ax(Ci)  VENAKER)  Ax(Ew))/

20 max(eq, €2, €3, €4) NKhip [ Ci1\/p Cs P 9 3/2 VK
— T + Cs + —+Ci+ 0] —/—m—m] .
o(N — DA BENOV 0T | NeK Jak VN e ()

Finally, Lemma5.6.5|ensures that for all (z,y) € R? such that = > y we have

(z—y)t<aly(z—y) 2

Let us define the quantity A as follows,
_ QOmaX(61,€2,€3,64) NKhip ( Cl + 02 i 03 + 04 >
TV - DA EDAERD VT AN T AR T VN AR T AR )
/ v [ C / K
n 20maX(61,€2,63,€4)1.T NKh;p 1P Lo Cs P o 013/2 VK '
a(N — 1>>\K(2A))\K(EW ) nT NClK \/ClK N /Cl)\K(Z%;:[;)
Hence this provides

01| < (Vs i [Bw)_l 4 (Vs i 1B, - A)

ke[K]
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Combining these results leads to

oz [A], - 1 |, < @120 2 [0, - 01 [, (2+ pum b 1)
<a| (VA gmip 131l) 4 (Vi 8- 4) | (2 s e 1)

The previously demonstrated inequalities provide the stated result, namely

o 8], -1,

1.

|, <A (V20T) o (L) M (SR T7) (24 (n7) o (IL) e (B ~)
-2
(Vi i Bl =) (2 0o O A ) ).

Using the non-random upper bound on o; (I1,) leads to :

w Rl —IRl. || < —1/2_ P 1T\—9/2 b LT\—5
|oer |B], - 1R) |, <4 (hz M) ) <2 LR (SR
-2
2 . _ b 1:T\—5
+ A <\/h7k12[1}3] [B],.,| A> (2 + ClK/\K(EW) > .

||
Proof of Theorem The same results gs the ones stated in Theorem [5.2.13| hold. In addition,

(N —2)nT > Cior(p, N)? max(eq, €2, €3, €4)? ensures

_Pr
9.2 (2
cyci K

h; min |[B — 7Z > +/h; min |[B 2.
\/>kfg[1if(1]|[ ]m‘ Z kfg[lff(l]’[ ]kl/‘

Thus the stated result holds by derivation of the bounds stated in Theorem [

5.5.13 Proof of Theorem

Theorem 5.5.5 Consider the Dynamic Topic Model, see definition and assumptions|g and[7 Let
A be the estimator of A* defined in (6.). Let Dy be the set of matrices 2 = diag(w, Qa.ic) € REXK
where w € {—1,1} and Qy.x € RE-D*K-1) js an orthogonal matrix. Let us denote

O, == maxh; "/ ‘[M]ii — M)
i€(p)

Oy := min max h;1/2 H‘I’[U]z — [Ul..
VeDg i€lp]

)

.
Then, up to a permutation of columns of A we have

| (e - (4
IZE%J}]( hi

L <2~ ,
<cg/clK—/{)
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where

2

K ng 14 @1\/7 2 maX;e(p) H Qo [RL —[R];
€2 01K<

2 _ ke HQ Rl — IRl
N vH max 2K[L [R];

QCVHmaXH QQK[R} _ IR,

2.
7.

I.)

2

7/2 :
—i—KCT 1+@1”cpK " Sl HéagXquz
2 1 2 _ ‘ zCYn

(S - xcvmma| ax 7] -1
+K1/1+®11/ @2
K3/2
@17
Cc2

Proof of Theorem For notation simplicity we omit the permutation o € Sk in the defintion of ©s.
From the definitions of ©, ©, and O3 there exists w € {1, +1} and Qy.x € RE-1*(E=1) an orthogonal
matrix such that for all (i, k) € [p] x [K],

< ®1hi7

9 S 62\/}71')

O3 = [|Qa2: 5k — M| -

‘[M]ii — [M ]

|01 - W

In addition, Perron-Frobenius’s theorem guarantees that «; does not possess any null entry and the
proof of Theorem [5.5.4{ contains the following inequality holding true for all i € [p] :

[UL1(D)] = Vs min [[Bly,]

ke[K]
where B € RE* X is the non-singular matrix satisfying :
-1
(BBT) — [A*]TMglA*,
U=M,""A"B

Moreover |w[U].1(i) — [U],l(i)‘ is upper-bounded by ‘Q[ﬁ]i, — [ULs.

) which is itself bounded from above

p A
by ©21/h;. Note that fixing w = 1 ensures that Y~ w[U].1(:) > 0. In addition, if N, n and/or T is sufficiently
i=1
large such that ©2 < mingc k) |[B],| then for all 7 € [p] we have [U7].1(i) > 0. Next, Theorem m
ensures that

A" = Neoi (Mi/zdiag(ul)Pround (f\>) -

Let us recall that A = [X\;,...,),]T € RP*X is defined as solving the following linear system for all

i€lp]:
(1 1);_(1)
mo... )" ri) "
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( 1 1 );\A_< 1 >
Do ... Qarix) " \Qaxti)’

For any matrix )/ we denote M its Moore-Penrose inverse. Then consider T := <Q ! A 0 177 ) €
2K .- 2:KTIK

REXK If rank (TK) = K — 1, then theere is one vector 7; which is a linear combination of the vectors

This implies

(k) .1~ Let e be a vector completing (7)), in @ basis of RX. For any € > 0, we define #f as i + eex
and for k # [, ;, = nx. Hence, (1;,), is a basis of RX and Assumption |8 remains true. Indeed for all
ke [K]\{l}
1% = el = [ e — el
and
100 =mlla < | —mlly + €llex —mlly -
Then for e > 0 small enough we have

max || Qo7 — Ml < Cvi max H Qo i {R} = [R];
i€[p i.

ke([K] 1o

The same holds by induction if rank (TK) < K — 1. For the remainder of the proof, e > 0 is chosen

so that the previously stated condition is satisfied and 7 and 7 are used interchangeably. Hence Tk
can be assumed to be invertible and for all i € [p], A; is defined as follows :

s e 1
A =T (Qz;Kﬂ' ‘

A= (1, 0B (T7)

It follows that

where [1,,,(22:;(1%} = Qy.x[diag([U].1)]~*U. Similarly, the population counterparts satisfy the following
equality holding true for all i € [p] :
ot (1
().

1 ... 1 > e REXK 1t follows that

whereTK:(
m ... MK

T
A =[1,,R] (T}) e REXK
where [1,, R] = [diag(u1)]~*U. This implies that
[1,, R] = [diag(uy)] "' M, /> 4*B.

Let us define N € RE*(E-1) a5 follows :

Bli(s+1)

V(kj, 5) € [K] X [K_ 1]7 [N]ks = [B]kl
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This ensures that B = diag([B].1)[1x, IN] and thus we have
(15, R] = [diag(u)] 1 M /> A*diag([B] 1)[1x, N].
This equality can be equivalently written as
1, = [diag(uy)] "' M/ A*diag([B] 1) 1x,
R = [diag(u1)] "M "/? A*diag([B].1)N.
This ensures that the rows of R are convex combinations of the rows of NV and thus we have
Vk € [K], g := [N]i. € RED,

This implies that T = [1x, N] = diag([B].1)~'B. Moreover, B is non-singular. In the proof of Propo-
sition [5.2.14|is proven that [B] ; has positive entries and thus diag([B].1)[1x, N] is non singular. This
proves that T is non singular and thus T}( = T,'. Globally, it implies that for all i € [p],

A'_ o A1 1 . &1 1 ~—1 1 _ —1 1
Ni— i =Tg (QM?% T (), )+ Tt L)~ T ()

From this expansion is deduced that for all i € [p],

~

op

< |7t
2‘” K

‘ Qa:x [R] - [R]z

7.

+ HT};l — Tt
2

op

In addition, 7' can be expressed as diag([B]1)(B")'. Recalling that for any matrix A € R™*™ we
have [|A]2, = HAATHOp = HATAHOP it comes :

-1
I 12, = | (i)

-1
= |z (%)

— |[diag((Bl.)(BT)™" B'diag((B].1
op

op op

Hence by definition of (BB')~! we have

|75 |2, = |diag((B] 1) (BBT) ' diag((B] 1)

= || diag(1B].1)[4"] M 4" diag([B] .

Op.

Finally, the operator norm being submultiplicative, the following inequality holds true :

| |12, < | diag([B].) I1%,

)[A*]TM*AA*

op

Proposition [5.2.8]then ensures that

H (AT Mt A

< Ain (SHF) 7 |14 H A

op op

By definition of the matrix H presented in Assumption |/, we have

H [A*]TH—lA*

op  k€[K] =1
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In addition, for all i € [p] and for all k € K], we have h; '[A*];, = M < 1. Hence
1
K
ATHTAY|| < A*y =
H[ ] OP_;Q%;;[ Ju

Moreover, the proof of Theorem [5.5.4| contains the following inequality :

Ak (SET) < Amin (BBT) <\ (BBT) < Ag (L)1

K K
Noticing that || [B] ;|| = >_ [B]}, and that, for all (1,m) € [K]?, we have [BTB], = 3 [B],, [Bl;,
=1

leads to :
| Bl.1; = |B"B|

Recalling that diagonal entries of a positive definite matrix cannot be above the biggest eigenvalue and
that eigenvalues of a matrix and its transpose are equal ensures that

11"

[BTBLI <\ (BTB) = A1 (BBT) .

Then it comes :

This ensures

Finally
T < I()\K(El‘T)‘2
K llop = W

Lemma |[5.6.8|ensures that for any matrix M € R™*™,

1
s My < M, < Vil and HMnlfgl[ax]Z\ i
Hence
HTK—TK <VEK HTK Tx H - maXZHTK TK} ‘
op le[K]

K |r.
Moreover, for all [ € [K], we have ’ [TK - TK} kl‘ < || Q2.5 — m||,- Recalling that for any = € R? we

have ||z||, < v/d ||z]|, which leads

HTK - Tk

< \/E\/ﬁ{él% | Qo.xm — mills -

op

Assumption [8|then ensures that

< KCvypy max H 05% [RL - [R];

op 12
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Next, notice that
&1 -1
|7t - 7%

= HT};l (TK - TK> Te!
op op

The operator norm being submultiplicative, we get :

7 -t |, = |5, e = 2], W
op op op
Hence we have
Tt =Tt || < K32A (26D " max || Qo — il HTI?I H :
op le[K] op

. For any matrix M € REXK for all k € [K], ox(M) define the
op
k' largest singular value of M and A\, (MM ") define the k' largest eigenvalue of MM T which is

The last step is to control HT}}l

N ~ -1
symmetric. First note that HT}}1 = Omin (TK) . Weyl’s inequality, see Lemma|1.1.13] ensures that

op

Omin (TK> > Omin (TK) — Omax (TK - TK) .
Moreover, T = B 'diag ([B].1)"" and Lemma ensures that

7 (Tic) > min ((1Bli) ") 7in(B).

By definition of singular values and using a previously stated result, for all k£ € [K],
or (B)2 =\ (BBT) > A\ (SED).

In addition, entries of [B] ; being positive, we have

uin ((Bla) ) = IBL]-

Moreover there are
I[B]11lo < IB]1ll, < VKB4l

and
I[B]1ll5 < Ak (S3) "
Hence
1Bl < VEA(S3) ™2
Thus,
1 Ak (E3)
> =W
Finally,
El:T
Omin (TK> > )\K( W)
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Hence we derive :
Ak (Zw)

VK

Assumption then ensures that max;c (k1 || Qo.xm — mill, < Cvi mz{u}c H Qo.x {R} - [R]; H . Hence
i€[p 7. 12

omin (i) = — K max | Qauscie —

oo (i) 2 255 v | e (7]~ (.,

Hence we have

11, = (5 - | o [A], -1a0],)

Finally,

K3/ZC’VHmaXH Qo. i [R] — [R]; H
|75 -1, < :

A (B85 <)\K\(/ZE1T)

From these results is deduced that for all i € [p],

v o [e], -]}

H S - A H Sk [RL - [R]ZVHQ

iz(&@%ﬁ
VK
K| ou ], -0

| 0an 7], -1,

)\K(El T) ] H2

VK

+
)\K(Zﬁ;) < — KCvy maXH Oo. i [ ] H >

Moreover, (5.1) ensures that A = /\/ . Ml/leag([U],l)Pmund (A)) Let us denote A = P,ound (A) €

max(z(s),0). Thus the following mequalmes hoId true for all i € [p] and are deduced using the triangle
inequality and the definition of ; :
X)) o=
(),

H S\i—)\iHlﬁ '5\1’_(5\1‘>+ 1 X
< '5\1— 5\1H<;\Z>+ ’ (Xi)+_)\i ;

1
e,

RﬁXK. Hence for all i € where for any vector 2 € R, for all s € [d], (z)4(s) =

+

+
1

(5\1‘) T Ai

1

.

1 1
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By definition [[A;]l, = H)\Hl — 1. This implies that |1 — H(A)+ - ’HMl . '(A)+ . Using the
reverse triangle inequality leads to ' '
J3-ad, 2] (), -
Moreover, the entries of \; are non negative which gives
H Ai - AiH1 <2 H A= )\in
Finally, using the L;-L, inequality provides
| 3=, < 2vE | A=,
Hence we have
: 2| o [B], - 1AL,
5, g
(08— v | e [ .-ml )
2K CVHmaXH QQK|: } H
+ (B 5 -
) (M) i | e [], - 171 ) 2

The last step is to control ||[R]; ||,. Proposition(5.2.14{ensures that [R]; is in the convex hull of 7y, . . ., NK
and thus [|[R]; ||, < max |z||,- Theorem|5.5.4/then concludes to control H i — A H
: TEYy

Next, consider the step of estimating A* := A*diag([B].1) = Ml/zdlag([ Ul1)A € RP*E with
A := M'diag([U].1)A € RP*K.
For all i € [p], using the triangle inequality leads to the following inequality :

| (A - 18|, = | B0 0x - MaFoa@A]|

First notice that
0126 = [01a(0)] < ||Q001. - 1|, < /6.

1

= | 20116 (% = ) + (132101460 = ML 010@) A

< D201 | %= ), + |11 ”Qmﬂ>[1@0 + (U116 (9132 = ML) n|
< W21 | A= A+ |B0) | ©146) - 12 @) 1xl,

UL @2 = ML I
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Moreover, the equality U = M ?A*B also ensures that for all i € [p] and for all k € [K], ui(i) =
[M*];.l/2 [A*], [B] .. Hence, the following inequality holds true :

0720 < [ML 2 114, 1B -

Let us remind that for all i € [p], h; = ||[A*]; |l,, [I[B] ]l is bounded from above by v Kk (L) =1/
and Proposition [5.2.8ensures that for all i € [p],

Ak (B3 hi < [MJii < hy.

We deduce that for all i € [p],
[U]13))] < Vi KAk (5D~

Moreover, this leads to the following inequality holding true for all i € [p],

[U}.1<i)] < (\/E)\K(E%fVTV1 +92) Vhi.

In addition , for all i € [p],

~

[M]i — [M.Ji| < b6

Proposition then ensures that for all i € [p],
[Mii < h; + h;/2®1-
As a result,

| (i - a7

<y/hi+ 1201 hi K A (SET) ! H M= A
+\/ B + B 2010204 | Nl

+ VI KA (53D 200 |,

1

Assumption [6| combined with the definition of A; ensuring that for all i € [p], || Ai||, = 1 provides

D 1:T\—1 || ¥
< h. o\
1_hm/1+91,/CIK\/K)\K(EW) H)\ A\
thi 140, /Lo,

ClK

+ hz\/E)\K(Z%)_l@l

| (A - 14

1

Finally, consider the step of estimating A* € RP*X | which is equal to NV, (Mi/Zdiag(ul)Pmund (A))
according to Theorem[4.3.2] with

A= Noot (N1"/2diag([0].1)Prownd (1) ) = Neot (4) -
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Notice that A is the matrix obtained from renormalizing each column of A and by definition 4* =
A*diag([B].1)~!. It follows that for all k£ € [K], for all i € [p],

4, = [ AL

[A*]ik = [A ] [B]kl

Hence, for all k € [K], for all i € [p],

P ALl
Al = L - ™

Moreover, for all £ € [K], || [A*] ,|l; = 1 which ensures that || [A*] . |l, = [Blx1. Then the following
inequalities hold true for all k& € [K],

ALl - 1= ! Il H—H *kHlv

Then, applying the previously proved inequality on H [A} - [A*]"~H1 holding true for all i € [p] and

K
using that > h; = K leads to, for all k& € [K],
i=1

1111, =] <m0 oy [ty = o ey 00y

+ K3/2)\K(Zl T) 1@1'

It can then be deduced that for all k& € [K],

1AL, 2 e =[] A], ], - 2]

Moreover, in the proof of Theorem [5.5.4]is proven the following inequalities holding true almost surely
andforall k € [K] :

(Bl = nTAx (S4) 201 (IL) 72,

nTp
II,) < .
o1(IL) < A (DL )er K

These ensure that for all k£ € [K],
(Bl = )‘K(Z%&;)gﬂcl-K
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[, 2z~ o Roawestin g i 3,
— K41+ @1\/0171(@2 — KS/Q/\K(Z%?)A@L
Let us define

= K3/2 1 L)\ ElZT -1 5\1 _ )\Z K.l L K3/2)\ EI:T -1 )
K +@“/c1K K(Cw) Ifé%ffH H1+ + 6 ClK92+ k(Zw ) 61

These results lead to, for all i € [p],

Hence

4], =], = i =) | ? A%,
+ () ek =) | legf;za\HH |, =11 |

Using that for all i € [p], ||[A*]; ||, = hs brings

L4, ~], = i =) | [4], -]

+ (et et =) s | [4], ], - (B |

Finally, noticing that for all i € [p], H [A} L [A*]Z..H1 < kh; K~ ensure that for all i € [p],
4], - ], < (et ) o
+ (AK(E%;VT)QQQK — K,>7 hik,

<2 (AK(E%}VT)E’/ZQK - m) hik.

Using the upper bound derived on H i — )\H for all i € [p] leads to

2 2 max;e(y H QQK[ } H
ESJE%VT) 1+@1\/CITK<)\K(21T) - H)

i KC’VHmaXH QQK|: }

20y g max | Qo.x |R| —[R],
+7K7/2 1+6, P e H i { L | ]l.HQ max || z||
A (ThT)2 oK <AK(2§§) R 2

- ko] e[, -m])
+ Km%

K3/2
———01.
+>\K(E%}VT) 1
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The conclusion follows. m
Proof of Theorem Proposition demonstrates that with probability 1 —2p exp(—¢3) we have

0, < 2€1 < 2€1 .
VNnT max(h;/2,1) ~— VNnT

4 2
ce—llg then ©, CLK < 1. Theorem|5.2.13|ensures that under the stated conditions on max(e;)
1 1

and N, n and T we have with probability at least 1 — 2p* exp(—¢?) — 2pK exp(—e3) — 2p*K exp(—€3) —

2p - (2p + 9P) exp (f min (ei; vV che4)> :

O2 < Ciot(p, N) max(e1, €2, €3, €4) m

Theorem [5.2.15|guarantees that under the stated conditions on max(e;) and N, n and T' we have with
probability at least 1—2p? exp(—e2)—2pK exp(—e3)—2p? K exp(—e3)—2p-(2p+9P) exp (— min (ei; vV chq)) :

' < 2Ct0t (p7 N) maX<617 €2, €3, 64) p3/2 <2 + p )
2 clcg/QK nT(N — 2) csaK )

If NnT >

2 2 34K20x2/H p 2
Moreover, (N — 2)nT > Ciot(p, N)*(e1, €2, €3, €4)"p° ——5—+ | 2+ —= % ensures

c5 cyel
KCyvpg Igéa[écHQg;K [RL — [R]; , < 2\0/27{.

Then the quantity « introduced in Proposition [5.5.5|is bounded from above as follows :

P P 8pK1/2  8pK? 4K3/2¢
<2K Cior(p, N i — 1+ (2 /s
& 2K Crarlp, N) max{ci)iet nT(N —2) " ( i 0301K> <01053/2 ! crey? 220 lello 1+ coV/NnT
In addition, if
8pK1/2  8pK? 20WVKe
VNnT > ——— | Cior(p, N) max(€;); D 1+<2+ P > + max ||z + )
> 03/201 tot (D, V) (€i)ie[)v/P Gek 61053/2 clc§5/2 max [E1P o

we have cg/2c1K - K> 03/%11(/2. This concludes. m

5.5.14 Proof of Theorem

Theorem 5.5.6 Consider the Dynamic Topic Model, see definition and assumptions 6, [7] and[8
Let A be the estimator of A* defined in (5.1). Then for all €1, ¢, €3,¢e4 > 0 satisfying the conditions of
Theorem with probability at least 1 — 2p? exp(—e3) — 2pK exp(—e3) — 2Kp? exp(—€2) — 2p - (2p +
9P) exp <— min (ei; vV ch64) ) , we have

Zp: i), - (4|, <2k :
=1

1 (cg/2clK — Ii) ’
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2e14/2

with r is defined in Proposition |5.5.5. In addition, ©; is bounded from above by \/%, O2 is
nicy

bounded from above by Z, defined in Theorem |5.5.4, and max;cp, HQQ: K {R} - —[R]; ) is bounded

from above by
p3 /2

Z | +
S A cs )2

)
2 (/i pin 1Bl - 2)

(“c%iff)'
1).
1)_

Then, Corollary ensures that for all ¢; > 0, with probability at least 1 — 2pexp (—¢}), we have

Proof of Theorem Firstly, notice that
p A
> |
i=1

f( )%( :
K

Using the equality Z h; = Z > [A*]i = K leads to

i=1k=1
H /1 — [A%]..
< K max I

> |t - a1

1€[p]

_ 2\/561
h 1/2 ‘ M, il < —/—.
ietp] - IMuaf <
Using Assumption @ leads to, for all e; > 0, with probability at least 1 — 2pexp (—¢3),
1 2€1/2p
0, := hot [M)i — [MLi| < ———2.
! ?é%z}]{ ¢ ‘[ ] M ] VNnTc K

Let us consider
min (63, )\K(ZA))\K(E%;VT))

o= A Ew ) O )

<1

Then consider €1, €2, €3, €4 > 0 satisfying
(1 — 1/N)VnT Ak (Za) A (ZH])
Civ/p Cs
+Co/p+ —=+C
( vy TP )

max(€q, €2, €3,€4) <

Theorem ensures that with probability at least 1 — 2p? exp(—¢3) — 2pK exp(—e3) — 2K p? exp(—€3) —
2p- (2p+ 9p) exp (— min (64, Ven Te4>>

O2 := min maxh, ~1/2 H\If — [Ul..
VeDk i€lp]

2
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is bounded from above by
20max(€1,62,63,64) NKhZ‘p ( Cl + CQ + Cg + C4 >
a(N = DA (ED)A(EH) Vo nT ANA(ZR) - Ac(BW) - VENAR(EW)  Ac(Ey) )

2 NKh; C C K
o Wmexlen e en ) ) Y ICRS ,/£+012+Cf’/2—f .
OJ(N — 1)>\K(EA)/\K(EW ) nT NClK vV ClK N /ClAK(Eﬁ;)
We denote Q = diag (w, 2.x) the matrix which attains the minimum.

Theorem and Assumption [6| finally provide, with the same lower bound on the probability, the
following upper bound on max;c HQZK [R} —[R], ’

’L.2

. 3/2 -2
HQ2:K [RL —[R]; , =7 )\K(z%;VT])OW?c‘z’/QKW 2z <\/h7k12[1£] Bleal = Z) <2 - /W(E%;VPTPM(> ’
where
(min [B]k1> B < -p ‘
ke[K] Ak (B3 )21 K
and

L QOmaX(61,€2,63,64) NKhip ( 01 + 02 i 03 + 04 >
TalN D EEEN Y 0T \NEH) T AR T VENAKER) T AR

/ i [ C / K
N 20 max(e, €2, €3, 64)1.T NKh;p 1P Lokt Cs P o2 4 Cf/g VK .
|

Proof of Theorem
1 )

As detailed in the proof of Theorem [5.5.6]
Theorem 5.5.7 (Estimation of the realizations WJ’?) For every t € [T] and for every j € [n], for every
(ei)ics) € (R})® satisfying the conditions of Theorem|[5.5.3, with probability at least 1 — 2p? exp(—e}) —
2pK exp(—e€3)—2Kp? exp(—e3)—2p-(2p+9P) exp <— min (64215 \/che4)) —2K exp(—€2), we have HW; — W§H1
bounded from above by :

z‘zp; H[A]i' B [A*]i')‘l < K max (H Al ;Li[A*]z'.

i€[p]

We then use Theorem[5.2.16/to conclude. m

5.5.15 Proof of Theorem5.3.1]

|-

@*

op

2K3/2 max(e ) [4] 2 K’ygﬁ P max (Mh?’/?) + €5 \/5 +
s)se . %
b — &* > (cg/zclK - 73&) nT(N —2) ielp] \ (cohi — &)° VN

(-

op

2
5]
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with

O1 = maxh; ! |[MM]i; — [M.Js|, €2 = min maxh;"/? |w@), - ;) .
1€[p] VeDg iclp] 2
K CVHK5/2 9/2 3/2 p
Y0 = <C2 + —a HéangiﬂHz C o= PEPKY? = BaK, 3= 146, WK
Ctot(pa ) Khlp min(27hi)
7 = Sttt ) _Ahp
a max(el, €2, €3, 64) 5 €1 NnT
2K73/<c 1 p
Ay := max(ey, €2, €3, 64) = 2610 (| s
02 clK _ n ct KNnT
20 Cy Co Cs
Ciot(p, N) := — +C
tt(p ) )\K(EA)CQ (CQN t, T CQ\/])W + + >
20 C C
N 1P LG +C1 +03/2 VK ’
)\K(ZA)CQ NClK \/Cl \/@
/@::K3/2,/1+@11/ )\K(E - mzﬁp)]c‘~z \/ ,/ @ + K32\ (D) 1o,
1€
R €2, €3, 2K7/2 2K3/2

|o-2| <[a+anvE+ 1} max{er, . e, 1) 2K 7oy o

op

+ .
co(1 — Ag) (cg/2clK — /{) nT(N —2) c3(1 — Ag)VNnT

where o, C1,C5,C3,Cy, Cs are defined in Theorem and ©1, ©, and « are defined in Proposi-
tion[5.5.5

Proof of Theorem By definition, for all j € [n] and for all t € [T], we have

~ A A N —1 JUSEEN -1

Wt = (ATM*A) : (ATM*Y;) and W' — ((A*)TMglA*) : ((A*)TM,:ln;) .
Using the triangle inequality leads to

TM—U}) o ((A*)TM;W;)

1
) ((A*)TM*_ll—I?)

1

(AT MmT 1A*> ! ((A*)TM*—IH;)

1

Let us recall that for any matrix M € R?*", the maximum absolute column sum of M is defined as the

: . M q
matrix norm of M induced by the vector Ly norm : || M|, := sup,_, ” T ﬁ”l = maX;c[,) ) )[M]ij - The
Ty i=1




184 CHAPITRE 5. DYNAMIC TOPIC MODEL
matrix L;-norm being an operator norm we derive the following inequality :
-1
- AT oA 1
s - wil, < (47r4)

1
n H (aTr4) "

B i IR
+H(ATM 1,4) —((A )TM*1A> 1

(410713 = (")

(vavs) - (o ar )|

(wyam)]

Let us recall that we denote ®* := (A*)T M7 'A* and & := AT M ' A. We start by bounding from above
H (@)~ — (<I>*)—1H1 | ((A*)T M 'TI0S) ||, . The focus is firstly set on bounding from above || ((A*) " M 'ITY) ||, .
Proposition [5.2.8ensures that for all i € [p],

cohi < [M )i < h;.

It follows that (A*)" (M ;' — H™') A* and (4*)" (Ax(S4F)*H-! — M, ') A* are two positive semi-
definite matrices almost surely. In addition (A*) "M 1A%, (A*)TH-1A* and (A*)TAx(ZHF)TH-1A*
are symmetric with real entries and are thus diagonalizable. We deduce the following bounds on the
spectrum of ®&* holding almost surely,

Ak (B7) > A ((A*)TH—lA*) = Ak (Za),
A(®F) < N ((A*)TAK(E%)*H*A*) — A (SED) "I (2).

Lemma|5.6.8 ensures that \; (X 4) < \FHEA |- Moreover,

P K
12 1 = s > Bl = i 3 95 4 [, 4°,. However, for all i €[5, 3° [4°], = I =
=1 =1

[H]i;. Hence |4 ||, = m%?] Z[ 1 = Ign%H[A*]k |, = 1 and then \;(X4) < VK. In addition,
i=1 S
Assumption [7|ensures that Ak ($4) > co. It can then be deduced the following inequalities

~

>\K (‘I)*) > o and A1 (‘b*) < \/?(22_1.
Then, from the definition of IT*? we deduce
*\ T — *
| ((nTarm) | = @ w],.
By definition of the matrix norm induced by the vector L; norm :

| ()] <t wiil

Lemma [5.6.8 ensures that || ®*||, < vK\; (®*). Forall j € [n] and for all ¢ € [T], W is almost surely
in the simplex Sk 1. Hence, the following inequality holds almost surely

| (arraaz ), < e
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A\ —1 ~
Next, the objective is to bound from above (@) — (<I>*)_1 . First, let us expand the quantity H b — Pp* ,
1
as follows
K | p N 2
T [Alir[Ala _ [A"]ir[A™a
v fl%ﬁ{l 20, T |

[Mii — [M i

K p
* B {ZZ & i, } |

Then, consider €1, €9, €3,¢4 > 0 satisfying the conditions of Theorem Proposition and
Proposition provide that, with probability at least 1—2p? exp(—e?) —2pK exp(—e3)—2Kp? exp(—e€3)—
2p- (2p + 9P) exp (— min (ei; V CTLT64>), we have for all i € [p],

. 2Ky3k Kh;p
Ai - A* 7 < hl » €2, ) . )
[ 1A = 4 S hamesen, &, €0) (o Tn oo\ W (v - 2
. min(2, h;)
Mlii — [MJii| < 2a\| — 7>
(1) = [M.Ja| < 200\ =00
where
p3/2 ) g p
2’YOCt0t(p; N) " + Z (\/ hz mlHkE[K] ’[B]k1| — Z) <2 + 72)
fs LT 3/2
Ak (Zw ) p : -2 ( p >
a| —=+> - KCyyZ |— + Z (vh; min B -7 24+ —
( W) vz |2+ 2 (Vemineg Bl - 2) ’
n Ciot(p, N) N 2612
o max(€1, €2, €3, 64)73)\K(Ea;1)\/hiclK'

Applying the reverse triangle inequality also leads, with the same upper bound on the probability, to, for
all i € [p],

2Ky3k Kh;p

Az‘ <||[A* i 7 » €2, €3, ’
(12 e Jilly +hemax(en, e &, €0) 70 T rsme )\ itV - 2)
Hence
A 2K’}/3/€ Kth
M < R ’
[z [ Sh (1 Fmax{en, €6, 64 IR0 K~ ) \| WT(N —2)

Similarly, with the same upper bound on the probability, we have for all i € [p],

[M]s > [M.]si — 26 i

NnT"
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Proposition and Assumption [6|then ensure that with the same upper bound on the probability, for
alli € [p],

hi
NnT’

. 1
> h; (AK(E%/VT) — 261 hNnT) :

From these results, the following inequalities are holding true with the same upper bound on the
probability :

|

[M]ii > Mg (ZH)hi — 261

0 N P Y 775 T [T VS
1§Z : [M];; 1+; [M];

@_@* 1

; p_ hi||[A] — A 1
= Z hidk (SED) (1 — Ag) — hdi (S (1 — Ag)

BNy s Y
—[( AUVt ];mzwl—@+ZAK<E%VT>2<1—A2>‘

i=1

Using the bounds on H[A]i, —[A7; |, and ‘[J\Zl]ii — [M.,]ii|, holding true for all i € [p], leads to, with pro-

bability at least 1—2p? exp(—e?)—2pK exp(—e3)—2Kp? exp(—e3) —2p-(2p+9P) exp (— min (ei; vV ch64)> :

A

o — | <
1

P 3/2
h; 2Ky3k/ K
[(1 + Ar) max /hg + 1] E i max(ﬁgl/a;% €3, €4)2K 36/ Kp
sel im1 c2(1 — Ag) <02 a K — n) nT(N —2)

—I—Zp: 2h; i€1
P cg 1—A9)VN NnT’

< [(1 + Aj) max \/fTs + l] max(er, €2, €3, €4)2KnsrV K Z hg/2
2(1— As) (CQ/ oK — n) nT(N 2)

(1—A2 \/ TLTZh

Then, using that Z h; = K leads to mzﬁg}ch < K. Hence we deduce m?pr < v/K. Then, we deduce
i=1 s€ s€
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p p
that > hf/g < <max f) ST h; < K3/2. 1t follows that with probability at least 1 — 2p? exp(—e?) —
=1

s€p] i=1
2pK exp(—e2) — 2Kp? exp(—€2) — 2p - (2p + 9P) exp (— min (ei, \/C’I?,T€4)> :

{(1 +A)VE + 1] max(er, €2, €3, €4)2K 050/ 2K e

Hi) - 1 = ca(1 — Ay) <c2/ aK— H) nT(N — 2) ! c3(1 = Ag)V/NnT

Next, we notice that Lemma5.6.8|ensures :

| @) =@ <f] @7 - @) .
<q> e
gﬁ] <<i>)—1 [(@=2)] 1@,

Next, we notice that Weyl's inequality, Lemma[1.7.13] ensures that

) (o)

< Ak(®) <A (@) + | (- @)

op op

Hence we deduce that for N, n or T sufficiently large, Ax (®*) — H (i) - @*) > 0andthen:

op

-1
op>

), (vt = (@=2)] ) e,
=@ = VR (5w (et - - e ) e,
)

W(@_M@_ygw)l@a

'(ATM—lA)l (AT MYE) — ((A%)T M)
1

The DTM model, see Definition|5.1.1|ensures that for every k € [K], the variables ((M;l[A*]k)T (Y-

| (@)

— (@) < <AK<<I>*> ~||(&- @)

Finally this provides :

(@)~ = (@)Y <VK <<i> s

(@)~ — (@) <VE (<i> s

The second step consists of bounding H1

are real-valued and independent conditionally on W' From the definition of the multinomial distribu-
tion, they can be expressed, conditionally on W™ for all (k,t,) € [K] x [T] x [n], as,

N
(M) (v ) = - S0 (M AT (@Y - ERQL)) (5.17)
=1

t
Hj))j,’t
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where foralll € [N]and forall (t,j) € [T]x[n], Q%|W} ~ Multinomial, (1,II) andP g1 o1 02 o7y w

g1 8NN j

é (%) Pt jw- Then the following equalities hold for all (k. ¢, j,1) € [K] x [T] x [n] x [N],
=1i=1 907
E (M1 [A78) " (@4~ EQU) W] =0 aus.,
P |20 " (@)~ ElQUD| > MM A L W] =0 as.

Then notice that for every k € [K], | M [A%] ||, = max;ep[(M*)~"]::[A*];%. Thus Proposition 5.2.8
and the definition of k; in Assumption 6] ensure that for every k € [K] :

[MA g [ S e

Hence applying Hoeffding’s inequality, Lemma [1.1.8] for every k € [K] conditionally on W7, to
(M1[A%)4) " (Yh(i) — TIL(3)) gives, for all € > 0,

2 2
P H(MII[A*].k)T (Y; - H;)‘ > 6|W1:T} < 2exp <N0226 > a.s.,

P[0T 5 - > < 2w e (555

We conclude that for all k& € [K], for all ¢ > 0, with probability 1 — 2 exp(—¢?),
(MV[AT]) T (Y] —T0Y) < V2N~ 25,
Using a union bound provides, for all ¢ > 0, with probability 1 — 2K exp(—¢?),
anTaet vy - ) | < VERN R e
Then, note that Lemma5.6.8|ensures :

=[[#= ], < v
1

H (aTar14)

1

Thus we deduce

@) .

This finally allows to bound H(cp) H (A5 T MY — ((A%)T M)
1

= VK ()\K(cI)*) _ H(@ - <1>*)

Iy

The third and final step consists of bounding

(8) | (A ve) = @i | The

quantity H (@) - 1

.....

is already as detailed here above. Thus it remains to control H (AT]\ZF1 — (A*)TM;I) Y’ H g
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We get, for all t € [T'] and j € [n], the following results by computation :

K p ~ N
J(amaa a2 - 50|
p K ~
tis [A]lk . [A*]zk:
- LZ;YJ'(Z) ielp <,; W), ML )

[A"]ik

(Al
[M];;  [M]ii

>

k=1

< max
i€[p] (

p
where we use that the columns of Y17 are L; normalized by definition, providing > Y§-(z’) = 1. In

1=1
addition, Proposition|5.2.1|ensures that for all i € [p], for all e; > 0 with probability at least 1—2 exp (—¢}),
we have
~ min(2, h;)
Mlii — [M.ii| < 2e1\| — 7
7] — [MLJa| < 204/ G

Moreover Proposition gives that almost surely for all i € [p],

i 2 hz 2 1 | 71 :
n

Cghl‘ — 261
Hence we obtain that with probability at least 1 — 2exp (—€%) we have, for all i € [p],

min(2, h;)
NnT

min(2, h;)

NnT
2 h)\ (2, h) | &
min ; min i
< h; — 2 i Sk 74 hi + 2 —— ) ) ,
=T ((CQ W NaT ) ( TN T AT ); )

-2
min(2, h;) min(2, h;)
< i — 20\ — it 20\ — 7
=T ((CQh W " NaT ) <h TN T T ’

Finally, we recall that for all €1, ez, €3, €4 > 0, with probability at least 1 — 2p? exp(—¢2) — 2pK exp(—¢3) —
2Kp? exp(—€3) — 2p- (2p + 9P) exp (— min (ei; \/ch€4)>, we have for all i € [p],

coh; — 261 < [M]” < h; + 2¢;

Thus with probability at least 1 — 2 exp (—¢€}) :

(M) [ Al — [M]u [A*]ik

M=

sz, <

k=1

2Ky3k Khip

H [A]z — [A"]s. (cg/%l}( - K) WT(N —2)

. < h; max(eq, €2, €3, €4)



190 CHAPITRE 5. DYNAMIC TOPIC MODEL

Hence, with probability at least 1—2p? exp(—e?) —2pK exp(—e3)—2Kp? exp(—e€3)—2p-(2p+9P) exp (— min (ei; V chq)) ,
we have H (ATM—l — (A*)TM*‘l) Y;H1 bounded from above by

NnT

By + 26, min(2, h;)
ma ( ) 2K3/2fy3f§ D e NnT h3/2
X\€s)se[4] 9/2 nT(N—2) - X 51
- ic[p] i .
<02 aK /<c> (Cth 9, min(2, h,))

Finally, for all j € [n] and t € [T, for every (e;);c5 € (R%)®, with probability at least 1 — 2p? exp(—e) —
2pK exp(—e3)—2Kp? exp(—e€3)—2p-(2p+9P) exp (— min (ei; \/CTZT€4>) —2K exp(—¢?), we have HW; — W;Hl
bounded from above by :

K3/2

(- |(o- o)

[

_|_
4o o)

« 2V K3k p N (hi + &) 3/2) V2
) {ma (6‘*)56[‘”(9/2011(_@ e o D R

op

op

)
op>

min(2, h;)
h ii=2 — P*) >
where & €1 NoT Ak (®*) > co and
R max(eq, €2, €3, €4)2K /235 2K3/2
b-o'| <|0+anVK+1] X o 12K Tarvp . EE—
P ca(1 — Ay) (02 aK — /<a> nT(N —2) (1 —A2)VNnT

The final part of the proof is to bound HWJlt - WjHl. By definition, VV} is defined by setting negative

entries of I/T/j? to zero and normalizing it to have a unit L; norm. We start by defining VVW the vector
t
obtained by setting the negative entries of W to zero. Then W! =

. Then using the triangle

’ Hthll
inequality and the definition of W? we deduce the following :
o <l o -
|wi =, < lwg =g, + s =g
< ||wt-wt !
< |[wj - will, + R
VAR

We recall that ||}, = 1 and we use the reverse triangle inequality to get :

|we =t < lwy =, + v - 1,
< [[wy = Wil + [IWjlh = 117
<2|[wj -

j”l'
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Finally, notice that both WJ'? and W]'? have non negative entries. Thus we have :

wi-will, < | Wi -wi -

This finally leads to
It t 1t t
75—, <2 Wi -wil].

Proof of Theorem As detailed in the proof of Theorem [5.2.16, under the stated conditions on
NnT, with probability at least

1—-2p? exp(—€2)—2pK exp(—€3) —2Kp? exp(—e3) —2p- (2p+9P) exp <— min (6?1; V che4>> —2K exp(—€?),
we have y3 < 2 and

k <2KCiot(p, N) max(ei)ie[4]

8pK1/2  8pK? 4K3/2
1+<2+ b )(p + 2 ma L
n

Be K 13/2 010;5/2 ze cov/Nn

S
nT(N —2) cres

N~

Under the stated conditions on NnT we also have cg/2clK — K > cg/2c1K/2, as detailed in the proof

of Theorem |5.2.16, Moreover, NnT > 464p > 16p2
cse1 K aKe
constants C4(p, N) and Cp defined in Theorem m and notice that the previously stated bound
ensures - < L mciciy [Calp, N)/p+ CB]

03/261 o TLT(N — 2) ’ '
Thus if nT(N — 2) > 8K3/? max(e?);ciq [Ca(p, N)y/p + Cp] /b We have A; < 1. This leads to, under
these conditions,

ensures (1 — As)~! < 2. Next, consider the

. max(es)s€[4]K5/2 K D 4K3/%¢,
- <16 [2VK+1} + .
°p €2 cg/zcl nT(N —2)  cV/Nn
Thus we get
. max(62)86[4}K7/2\/]3 4K3/2%¢
d—a| <16 [2\/K 1} s Ca(p, N Cpl + -~ €L
H op + CQTLT(N — 2) [ A(p )\/]3 + B] + C% N T

< ¢9/2. Let us denote X := /nT(N — 2). Then

We look for a condition on NnT ensuring H<I> — P
op

d —®*|| < cy/2is ensured if

op

max(e2) e K% \/p 4K3/2%¢
16 [2\/E+1:| C2X2 [CA(paN)\/];‘i’CB}‘{‘C%T <

Thus we get a second degree polynomial inequality. The condition is then ensured if

e \/ 16556/} + 32 [2VK + 1] max(€2)oeg K7/ [Calp, N)y/p + Ci] /b
+ .
2

nT(N —2)>
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Under this condition we get with the stated probability that HW} - W§H1 is bounded from above by :

4K3/? max(c,) 4V K3k s < (hi +&) h3/2> te V2
s)s i 5
¢ W8Pk VTN =2) wepl \(eahi — &) VNey
4K3/? max(€2) e K% \/P AK3/%¢
—_— 2vK +1 C N C _—
+ C% [ [ * ] CQ’I’LT(N — 2) [ A(p’ )\/]3—"_ B] + C%\/NTLT
. ) min(2, h
Next notice that for all i € [p], & = 2¢; ,/ Hence NnT > ensures for all
cohmin _ cohy aic

ic[pl &<

5 < T’ Thus under this condition and using that for all i € [p], hi < K leads to

. ( (h; + &) 2h§/2> < K3/22 to
iclp] \ (c2hi — &) Co

Finally, under the stated conditions,

i -wh| < LK [maX(Es)sew 4;//?{7;? nT(z\]; - 2)K3/22 ;02 e \/\%iczl
I ol R T e i ]
§4I;3/2 [max EQ)SeM];{j\jf) [Calp, N)vp + Cp] e \/\%Z]
G [ fovR ] BB

4\/2K3/2 N 16 K3
avenmm AT
=0 c%x/ﬁ 1cg\/NnT

N 32 max(e2) e K7/2/p [Calp, N)\/D+ CB] @4 )t 2K32(2VK + 1)
c3nT(N — 2) 2 3

5.5.16 Proof of Theorem5.4.2

T-1 n . _ —
Proof of Theorem|5.4.2, On the one hand, we need to bound from above the quantity >~ >° <Wj+1 — WL W} — W>

i=1 j=1

First, we notice that for all j € [n], for all ¢t € [T — 1], we have :

<W;+1 — W W —W> - <VV;+1 — W W W W 3 W W4 W —W+W—W>.
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Using the bilinearity of the scalar product, we get that <W;+1 — Wt Wi — W> is equal to

(W — WS W= W) + (W = W W= W) + (WH = Wt W — W)
O = W W T+ (W - WL W =T )|+ (- W W - T

+<W;+1 - W;H; W — W} + <VV]’~5Jrl WAL W — W) + (WH — W+, W — W}
In addition, the proof of Theorem [4.4.2] contains the following equality :
(WL =W WE—W) = (1= ) W) = W[+ e (A - & W)= TW).
Moreover we notice that for all j € [n], forall t € [T" — 1],

;-

2 . 2 o e =2
= o

+2 (W) = WEW] = W)+ 2 (W - WEW - W) +2(W] - W, W - ).

~

At A

2 —
) {(1 —c)—(1- c*)} is equal to

ence ————
n(T-1) =31 /5

T-1 n
1 [ 73rt+1 t+1. yist t t+1 T Gt . — .
n(T —1) ;Zl _(Wj -W W —Wj>+<Wj — WL W —VVj>+<WH—W+1, W _Wj>]
-1 j=
T-1 n
1 . . B - B
—I-n(Ti_l)ZZ (W;Jrl _th+1; th—W)—i—c <A§—A; W;—W>_|_<W+1 WL W;—W)]
t=1 j=1
T-1 n
1 - I L L
+mZZ (W;H _W;?+1; W—W)+<W;+1 —WHL W= W) + (W — W+, W—W)}
t=1 j=1
T-1 n
1—c* o /|2 =2 37t t it T - e =
n(T—l);z; [ =g, |77 = W 2 (0 = W =) 2 (0 - W W)
1=t
1o 2 _
= o [lwt —w.w — W],
i 2 2t (W)
. . 1 T—1 n . 12— . .
Cauchy-Schwarz inequality ensures that W =1) tzl Zl W;-w , ‘(1 —c¢)— (1 —c")| is boun-
=1 =




194 CHAPITRE 5. DYNAMIC TOPIC MODEL

ded from above by

T-1 n

vy 2o 2o e = o = i o[ g g - w)
t=1 j=1
T—1 n
1 [lyit+1 e+l t T * t ANt T Hﬁ_AHH 7
) 2 o W W, I =, e (S = s w7
T—-1 n
: Wyt = w = ] et = ] = e - |
+n(T_1)t:1;_Wj wet| W= ||t =W =+ i
O ) L3 L N 2 N S 2
n(T —1) £ ||| Jl|g 1M 2 J AP 9 J 2 ol

Theorem [5.3.1] combined with the triangle inequality and the L;-L, inequality provide upper bounds,
converging towards zero, on the quantities HW]’?“ — Wit )2, ‘ VV; - W}Hz, W — WH2 and HW+1 — Wt H
with high probability. In addition, notice that the quantities ’ W} - WH2 and HW}“ — W+1H2 are boun-

ded from above by one almost surely. Let us consider (e;);cis) € (R%)° satisfying the conditions of
Theorem [5.3.1|and assume the conditions on the sample size satisfied. Then using a union bound we
get that

2

n T-1
a2 2o [ = wi (ovs —wa], =91, + =]
”(T—l)z;tzl ||t —w 2( Wi=wi| +wf =W, + W - W 2)}
1 n T-1 _
WL _ t_ W
P 2 2 VT |, 15 =771
1 n T-1 _ _
7 11 t+1 1 1_ yi/+1
s S [, (-] -7 )
1 n T-1 _
vt _ it t+1 1 T_ 1+l
+n(T—1) j;tl L W; WJHz (HWJ wr H2+ HW+ wr H2>}
21— ¢*) o= = | — —
it T4 |- C_w |l =
=1y 2o 2 (195 =Wl 0 = W [ = 9, s = w3 7 - ).

is bounded from above by

) V1(p,N)maX(6§)se[4]+V265+ V3€l
nT(N —2) VN ' VNnT

v (p, max 6? s€ Vo€ 3€
: ((3—0*) v :L\Q(N _(2)) g +(3—c*)ﬁ+ (38— +2(2—c*)>

with probability larger than 1 —2n (T — 1)p? exp(—e€3) — 2n(T — 1)pK exp(—e3) — 2n(T — 1) Kp* exp(—€3) —
2n(T — 1)p - (2p + 9P) exp (— min (ei; V che4>> —2n(T — 1)K exp(—€2) — 2n(T — 1) exp (—€3/4). In
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addition, c*

<A§- —A; W)~ W>‘ is controlled in the proof of Theorem |4.4.
we get that for n and T satisfying (4.30), for all 0 < e7 < /nmg=, /2

t s 1 (e7 + 1)2 <1 . ) L e
n(T —1) VT —1 n(T —1)
with probability larger than 1 — 7 exp(—¢2/4). Finally, under the stated conditions,

1 oo )
oy 5 m - wa=e o

) v1(p, N) max(€2) ey Lt wa
ZWT(N=2) N VNnT

\S)

. Using (4.21) and (4.23)

A WE-W)

t:l

the quantity is bounded from above by

. v1(p, N)max(e?) ey vaes o U3€1 .
.((3—0) WT(N —2) +(3_C)\/N+(3 )W+2(2_6)>

(e7 +1)2 1 1ley
n(T —1) <1+cm)+ n(T —1)
with probability larger than 1 —2n(T —1)p? exp(—€2) — 2n(T — 1)pK exp(—e3) — 2n(T — 1) Kp? exp(—€3) —
2n(T — 1)p - (2p + 9P) exp <— min (64, \/C?’LT64)) —2n(T — 1)K exp(—€2) — 2n(T — 1)exp (—€2/4) —
7exp(—e2/4).

+c*

—112
—WH . We recall that for
=1 j=1 2
alljen],forallt e [T —1]:

—12 _
W = w7

S, Qs =1, [ =) =2 s =, [ .

Using Theorem and the (e;);¢[7 previously introduced we get that, under the stated conditions,

n(T —1) p

B vi(p N)max( )56[4] V€5 V3€l
2( nT(N — 2) +\/N+\/W>

' V1<p,N)maX(6g)sE[4]+V2€5+ e,
nT(N — 2) VN ' V/NnT

with probability larger than 1 —2n(T —1)p? exp(—€2) — 2n(T — 1)pK exp(—e3) — 2n(T — 1) Kp? exp(—€3) —
2n(T—1)p-(2p+9P) exp (— min (6?1, V chq)) —2n(T—1)K exp(—e2)—2n(T—1) exp (—€2/4). Moreover,
the proof of Theorem 4.4.2| contains the following inequality holding true for all 0 < e7 < , /nmﬁﬁ :

n T—

1
n(T —1) ;

=1 t=

! — 1++v2 +1 21 +4v2 1
H”;_ W H;Zm = (L+v2)er - ( v2)ert > <
1

2—c¢  c/n(T—1) n(T-1 47
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for n and T large enough, see the proof of Theorem [4.4.2] with probability larger than 1 — 6 exp(—e2/4).
Thus we get that for n and T large enough, with probability larger than 1 —2n (T —1)p? exp(—€?) —2n(T —

1)pK exp(—€3) — 2n(T — 1)Kp? exp(—€2) — 2n(T — 1)p - (2p + 97) exp (— min (6?1; V chq)) —2n(T —
1)K exp(—€?) — 2n(T — 1) exp (—€3/4) — 6exp(—€2/4)

1 T—1 n 2 cm

.y v1(p, N) max(€3) sy Lt wa
nT(N — 2) VN = V/NnT

_ Vl(p7N)maX(€§)se[4}+V265+ e o)
nT(N —2) VN  /NnT

We then combine both results and assume that vV, n and T are large enough to ensure

2<y1(p,N)max(e§)se[4} vaes | Vsl )(Vl(va)max(eg)se[zx] s 136l 2>§cm'

nT(N —2) VN VNaT WI(N=2) VN VNaT )58

Finally, we also assume that

2
vi(p,N) max(eg)sew V€5 V3€] vi(p, N) max(eg)sem V€5 V3€y
3— + + < 2(2— + + .
(3=¢) ( WT(N = 2) VN T ) SHEO nT(N —2) VN VNn

It is then sufficient to state that

(Vl(p7N)maX(€g)sE[4} +V2€5+ V3€1 )SZ

nT(N —2) VN +/Nn

This concludes. =

5.5.17 Proof of Theorem 5.4.3
Proof of Theorem Following the proof of Theorem [4.4.3] we get :

A ¢ 1—0]3 1 6)3
_ < _
e N P Y 29— Y
n 103 & 1- 1613
92— Y 29—V
n ¢ 1—16%3 A 16%13
2—c* Y 2—cTr(V(WY) |

Then we bound from above the three following quantities :

C Qui= (1613~ 10*13] and Qs i= |V — Tr(V(W))].

2—¢ 2-—c*
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We first bound from above @ :

~ * * 1 1 * ~ *
'2_6(0—0)4-0 (2—6 2_C*>'§(1+C)'|C—C |

Using Theorem 5.4.2, we have, for every (¢;);c(; € (R% )" satisfying max(es, €7) < nmi/Q and

¢ c*
2—¢ 2-—c*

3 min (03, cg)

2 576 IK? N
12VE <\/]3 +2K /p+ SE—— \/13>

max (€1, €2, €3,€4) < VnT

N log(2)VNe ¢

’ ¢ c* < 41 — c* ) max(e 2)36[4] vecs Vsl
2—¢ 2—c* |~ -2) W VNnT
]_ — c*) 67 + ]_) 11ley

1
1+ +
n(T )( C\/T—1> n(T —1)
with probability larger than 1 —2n (T — 1)p? exp(—€3) — 2n(T — 1)pK exp(—€3) — 2n(T 1)Kp? exp(—€3) —
2n(T — 1)p - (2p + 9P) exp <f min (EZ, \/CTLT€4)) —2n(T — 1)K exp(—€2) — 2n(T — 1)exp (—€3/4) —
13 exp(—€2/4). We next bound from above Q- :

1613 = 16°18] = (6 — %30 + )| < 4-a

§2Hé—é*
2

2 2’

Using Theorem[5.4.1|we get :

2(e + 1) ( 1 ) 8V2K3/2 32K3
+1 €5 + €1

V(T —1) \evVT -1 c3VN SV NnT

64max(€) [4]K7/2f[ A(p,N)\/]?"FCB]
* EnT(N — 2)

1613 = 16715 <

2K32(2VK + 1
(2 + CQ) + ( 5 )

)

)

with probability larger than
1-2p? exp(—€3)—2pK exp(—e3)—2Kp? exp(—e3) —2p-(2p+9P) exp (— min <e?1; Wq)) —2K exp(—e€?)—
2exp (—€3/4).

Recalling T := 6, we then bound from above Q3

1

vV —Tr(V(Wh))| = WT D)

- |ws -4,

)

- Z<Wt g~ W) n(r 1) <Hw|¢§_\5*

<], 7],

)

< 2| W], - | 6"

— ||+ W =) (||W|rz+ue*u)

- WH2 42 W — 6.
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—_

Notice that the quantity |[W —6*||, is bounded by Theorem|4.4.
by Theorem[5.4.1] This leads to

and the quantity

0% — WHQ is bounded

4(eg + 1) < 1 ) SV2K3/? 32K
Y —Tr(V(W))| < +1)+ +
| VW)l S/ —1) \evT -1 “TayN " &VNaT
64 max(e2) e K72 /p [Ca(p, N)/p+ C 2K3/2(2VK + 1
N x(€3)se4) VD [ A(p, N)\/P B] (24 ) + ( +1)

cinT(N — 2) 3

)

with probability larger than 1—2p? exp(—e7)—2pK exp(—e3)—2Kp? exp(—e3)—2p-(2p+9P) exp (— min (eﬁ; vV ch64) ) -
2K exp(—€2) — 2exp (—€2/4). Next, we remind that (4.29) ensures the following :

c e+l 1 V2 (2044V2)
VZm?—g \/n(T—l)<C\/T—1+1 ey/n(T - 1) n(T—1)
S c _(1+\/§)67+1_(21+4\/§)67+1>@
=M T e — 1) T -1 =~ 4

for n and T large enough, with probability larger than 1 — 6 exp(—€2/4). Large enough means we need

2(1+ﬂ)e7+2(2_Q)+2(21+4\/§)e7+2

me2VT — 1 me (2—¢) </n(T —1).
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Finally, it is possible to bound from above the distance between & and «* from above :

2 2

|& — of| = ¢ .1_H92_ ¢’ .1_ 2
T 2-¢ v 2—ct T(V(WY) |’
= % V(2—c*) y ¥
~|12
- 1 He R T
=<l Ty VEe—c) v ¥
<256(1 — c*)2 vi(p, N) maX(Eg)se[4} V2€s5 n v3€
- 2m? nT(N —2) cmvV N nT
32¢* (1 —c*) | (e7 +1)? (1 N 1 > N 1ler
c2m? n(T —1) /T -1 n(T —1)
4c* 2 1 1 8v/2K3/2 32K3
+—° (66+ ) < +1>+65\[ +e
cm (2 — ¢¥) V(T VT —1 c3VN 3V NnT

ciem (2 — ¢*)nT(N —2) 2

256¢* max(e2), K7/2 Calp,N)/p+C 2K32(2VK + 1
. x(€2) ep \/13[ A(p,N)\/p + Cs] [(2+02)+ (Cf+ )
2
14 o* 16(eg + 1) ( - ) 32v/2K3/? 128 K3
€5
) \c¢

+e€
em /n(T —1) \evT —1 SVN ' &VNnal
1+ o 256 max(e2) e K7/%/p [Ca(p, N)/p + Cp] 2K3/2(2K 4 1)
+ 3 (2 + 62) + P )
cm esnT'(N —2) c5

with probability larger than 1 —2n (T — 1)p? exp(—€3) — 2n(T — 1)pK exp(—e3) — 2n(T — 1) Kp* exp(—€3) —
2n(T — 1)p - (2p + 9P) exp <f min (EZ, \/CTLT€4)) —2n(T — 1)K exp(—€2) — 2n(T — 1)exp (—€3/4) —
19exp(—€2/4). m

5.6 Auxiliary results

Lemma 5.6.1 (Vector Bernstein Inequality) Let X1, ..., X,, be independent vector-valued centered

random variables with common dimension K. Let N := andV := > E [IIXng} . Then, for any
2 =1

0 <€ < V/max;ep, (|| Xill2) -

P[N>e+f]<exp<4;)

This implies for any 0 < e < V'V / max;e (|| Xi]|2) :

P [N > (e + 1)\/ﬂ < exp (-f) .
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Proof. The proof of this theorem is given in Lemma 12 in [69]. m

Lemma 5.6.2 (Smallest eigenvalue of the sum of Hermitian matrices) Consider A and B two full
rank Hermitian matrices in RE>*X Then

Ak (A+ B) > Ak (A) + Ak (B)

Proof. Matrices A and B are Hermitian and the spectral theorem ensures that they are both diagonalizable
and that their eigenvalues are real valued. We denote (A1(A),...,Ax(4)) and (A1 (B),...,Ax(B)) the
eigenvalues of A and of B, respectively.

We have, for all z € RE,

((A+ B)a,z) = (Az,z) + (Bx,z) > Ak (A) + Ak (B)) - [l2]]3.

Finally, we note that A+ B is also a Hermitian matrix and if we replace = by the eigenvector x,i, (A+B) of
A+ B associated to the smallest eigenvalue A i (A+B), we getthat (A + B)zmin(A + B), Zmin(A + B)) =
Ak (A + B). This finishes the proof. m For a given diagonalizable matrix M such that rank(M) = r, the
smallest non-zero eigenvalue of M, \.(M), is defined by

(x, Mx)

A(M)= min D0
M) = i TP

Lemma 5.6.3 Consider p > K two integers, a matrix A € RP*X such that rank(A) = k < K and a
symmetric positive definite matrix B € RX*X_ Then we have

Ae(ABAT) > Mg (B)A: (AT A).

Proof. First, we have Im(AT) C RE. Hence, B being symmetric, B is diagonalizable by the spectral
theorem, and B being positive definite, B has positive eigenvalues. Thus, by the variational characteri-
sation of the eigenvalues, we have :

. (z, Bx) . (z, Bz) . <ATy,BATy>
Mg (B) = L < = ~ -7
KB =0 TalP = ety TA7 ST ATy
The matrix ABA" is also symmetric and the spectral theorem ensures that it is diagonalizable. However,
ABAT € RP*P and rank(ABAT) = k < K. Hence the variational characterisation of the eigenvalues
ensures that :

A (ABAT) — min M
" z€RP; HacH2
z¢Ker(ABAT)
Moreover, Ker(AT) ¢ Ker(ABAT). Hence
ABAT
A\(ABAT) > min u
b T

xgKer(AT)
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Then we can bound from below the smallest eigenvalue of ABA as follows,

Alz, BAT
M(ABAT) > min M
2ER?; |z
zgKer(AT)
_ (AT2,BATz) (ATz,ATz)
> min T2 2
2ER?; A" ]| |
z¢ Ker( AT
- ATx BAT:C> (x AAT:L'>
= AT Ek
z¢Ker( AT
AAT
>  min (< 2>) - min <<$’2x>> > 0.
zelm(AT) \ |2l wGRP;T) |

¢ Ker(A

To conclude, notice that Ker(A") = Ker(AAT). Indeed, Ker(AT) ¢ Ker(AAT). Moreover, for all
v e Ker(AAT) we have :

2
v AATY = HATUH2 =0.

Hence Ker(AAT) c Ker(AT). We deduce from this equality :

T T
min (A4 DN (A4 DN T,
zERP; ||| TER?; || ]|?
¢ Ker( ¢ Ker(AA")

Finally, AAT and AT A have the same non-zero eigenvalues and thus \,(AAT) = A\, (AT A).
m

Lemma 5.6.4 (Smallest singular value of a product) Suppose A € R"*™ and B € R™*P. We denote
omin(A4) and owin (B) the smallest singular value of A and B, respectively. Then,

Umin(AB) > Urnin(A)Umin(B)-
Proof. By definition of the smallest eigenvalue, see Theorem C.3 in [64],

|ABz]l,
zerr\[0} ||z,

Omin(AB) =

Then the following inequalities are easily deduced

e am = w 1ABEl B,
i zeRo\{0} [ Bzlly |lzlly
1Ayll, . |IBzll,

mi
~yerm\{0} lylly werr\{o} [lzlly
> Umln(A)Umln(B)'



202 CHAPITRE 5. DYNAMIC TOPIC MODEL

Lemma 5.6.5 ( First order characterization of convex functions) Suppose f is a differentiable convex
function from an open domain of R to R. Then for all (x,y) in the domain of f we have

fy) = (@) + V@) (y - ).
Proof. The proof can be found in section 3.1.3 of [30] =

Lemma 5.6.6 (A row-wise perturbation bound for eigenvector) Let Gy and G be p x p symmetric
matrices with rank (Go) = K. Write Y = G — Go = [y1,y2,....yp). For1 <k < K, let §) and &, be the
respective k-th largest eigenvalue of Gy and G, and let u, and u;, be the respective k-th eigenvector of
Go and G. Fix1 < s <k < K. For some c € (0,1), suppose (by default, ifs = 1,6 | — 6% = cc0 )

»Vs—1
win {02, 32,00~ 01, min |67} = el V1] < (e/3) ol

Write Uy = [u2,ul,q,...,u)] U = [us, uss1, ..., up] @and U = [u), ul, ..., ul]. There exists an ortho-
gonal matrix O such that

e} (U0 — Up)]|| < 1Y HeUOH+xFHyZH) forall1 <i < p.

HG | (
Proof. See Lemma F.1in [84]. m

Definition 5.6.1 (Left stochastic matrices) A real-valued matrix M of size n x m is said to be left
stochastic if all its columns consist of non-negative entries and form probability vectors. Namely, for all

j € [m],

v

Vi € [n], [M],; >0, and Zn:[M

Lemma 5.6.7 (Stability of the set of left stochastic matrices) Let M, € R"*™ and M, € R™*P pe
two left stochastic matrices. Then MM, is a left stochastic matrix.

Proof. Consider M; M, € R"*P. Then for all (i, j) € [n] x [p] we have
m
(M M), Z [Mi],, [Ma]y,
k=1

Hence for all (i, j) € [n] x [p], [M1M],; > 0. Additionally, since M; and M are left stochastic matrices,
for all j € [p],

n n

m m
D MMl =3 > My Mol = ) [M:
i=1

i=1 k=1 k=1
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Lemma 5.6.8 (Spectral norm inequalities) Let M € R"*™. Then, its 1-norm and co-norm satisfy :

n

8]}, = max 3~ |[1],

j€lm] =

m
and  |M,, = max 3 |[M]; |
j=1

Finally, the following inequalities are verified :

1 1
\ o Ml < o1 (M) < Vi |[M]l, and \/;HMlll < o1 (M) < v/m|M], .
Proof. See section 2.3.2 in [68] =

Lemma 5.6.9 (Perron-Frobenius theorem) Let M € R™ ™ be a symmetric matrix such that for all
(i,7) € [n]?, [M];; > 0. Then the largest eigenvalue of M, \i(M) is positive and is non degenerate,
meaning it is a simple root of the characteristic polynomial or equivalently that its associated eigenspace
is one dimensional. In addition there exists a corresponding eigenvector with positive entries. Moreover,
other eigenvalues satisfy :

Vk e [n\{1}, A (M) > [A(M)].

Proof. See [106]. =
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Chapitre 6

Introduction en francais

La motivation principale de ce manuscrit est d’approfondir notre compréhension des phénoménes
comportant une composante temporelle. La plupart des algorithmes d’apprentissage automatique et
des modeles statistiqgues en grande dimension sont largement étudiés sous des hypothéses d’'indépen-
dance des observations. En effet, il existe moins d’outils, et ceux-ci sont techniguement plus exigeants,
pour la concentration des mesures dans ce contexte. Cela rend le contr6le non asymptotique des dévia-
tions plus difficile dans ce cadre ou la dépendance entre les observations est considérée. Trés souvent,
une évolution temporelle est évidente dans le modéle sous-jacent, mais n’est pas toujours prise en
compte dans les méthodes proposées et dans les résultats d’'inférence.

Cette thése explore divers problemes d’inférence non paramétrique et d’inférence en grande dimen-
sion. En particulier, nous étudions des tests d’hypothéses sur des matrices de covariance et I'estimation
de leur support, la prédiction bilatérale en régression matricielle et I'estimation de topiques-modéles dy-
namiques combinant la factorisation matricielle et un processus autorégressif. Bien qu’ils partagent une
motivation commune, les chapitres présentés dans cette these peuvent étre lus et compris séparément
car ils se concentrent sur des problémes spécifiques et indépendants.

Evaluer la qualité des algorithmes de prévision est crucial dans diverses applications allant des
phénoménes naturels comme les modéles météorologiques et les événements sismiques aux variables
économiques telles que la prédiction du prix des actions ou de la demande future en énergie. Un indi-
cateur clé de la performance des algorithmes de prédiction est la qualité des résidus, représentant la
différence entre les valeurs observées et celles prédites. Ainsi, plus les résidus se rapprochent d’une
distribution de bruit blanc, plus le modeéle est performant. Dans le chapitre |2, nous étudions les pro-
blémes de test et d’estimation de support d’'une matrice de covariance en grande dimension issue d’'une
série temporelle stationnaire. Plus précisément, nous considérons X1, ..., X,, des vecteurs gaussiens
indépendants de dimension p avec une matrice de covariance X. Lorsque les vecteurs X; proviennent
d’un processus stationnaire, la matrice de covariance ¥ a une structure de Toeplitz, c’est-a-dire que ses
éléments diagonaux sont tous constants. Comme mentionné dans [46], les séries temporelles station-
naires sont utilisées comme approximations des séries temporelles géométriquement ergodiques. Ce
contexte est motivé par 'observation suivante : étant donné une série temporelle de longueur T avec
T > p, il est possible de considérer des vecteurs de longueur p suffisamment éloignés pour supposer
gu’ils sont des vecteurs indépendants de dimension p. Le but est alors de tester si la distribution est
proche d’un bruit blanc. Pour ce faire, nous testons si la matrice de covariance ¥ est la matrice identité
I, ou s’il existe un nombre s d'éléements de covariance qui sont significativement positifs ou signifi-
cativement différents de zéro. Nous fournissons des procédures de test avec des bornes supérieures

205
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non asymptotiques sur les risques de test maximaux pour des structures de covariance modérément
parcimonieuses et grandement parcimonieuses. Si le test est rejeté, il est intéressant de retrouver les
entrées non nulles dans ¥, indiquant ou l'information peut étre perdue dans le processus de modéli-
sation. Nous définissons ensuite une procédure de sélection de ce support et fournissons une borne
supérieure non asymptotique sur son risque.

Ensuite, nous introduisons un nouveau modéle de régression matricielle ou les corrélations dans la
matrice de sortie sont expliquées par deux paramétres matriciels qui multiplient la matrice de prédic-
tion respectivement par la gauche et la droite. Nous supposons que la matrice de bruit a des entrées
o2-sous gaussiennes indépendantes. Ce modeéle général de régression matricielle est largement non
identifiable sans hypothése supplémentaire forte. Ainsi seuls des résultats de prédiction sont fournis.
Les prédicteurs sont d’abord définis comme solutions d’un probléme de minimisation du risque de pré-
diction pour la norme de Frobenius au carré sous une contrainte de rang maximal fixe. En utilisant la
décomposition en valeurs singulieres (SVD) de la matrices cible et de la matrice de prédiction, nous
fournissons des solutions a ce probléme d’optimisation ainsi qu’une borne supérieure non asympto-
tique sur le risque de prédiction. Nous montrons que cette borne supérieure peut étre décomposée en
une somme d’'un terme de biais et d’un terme stochastique. Nous dérivons ensuite une procédure de
sélection de modeéle pour estimer le vrai rang commun des matrices de parametres, d’abord sous I'hy-
pothése que le parameétre de bruit o est disponible. Nous examinons la performance non asymptotique
de cette procédure et nous adaptons le probléme de minimisation initial en fixant la contrainte de rang
maximal a ce rang estimé. Cela conduit a de nouveaux prédicteurs adaptatifs au rang. Nous fournis-
sons a nouveau une borne supérieure non asymptotique sur le risque de prédiction adaptatif au rang
dans ce cadre de sélection de modele. Ensuite, nous adaptons la procédure pour la rendre adaptative
au rang et indépendante du parameétre de bruit 0. Nous fournissons a nouveau une borne supérieure
non asymptotique sur son risque de prédiction. Enfin, nous reconsidérons le probleme de minimisation
initial en étudiant la relaxation convexe de la pénalisation par le rang. Nous fournissons des solutions
explicites a ce probleme et a nouveau une borne non asymptotique sur le risque de prédiction. Des
résultats numériques sont fournis pour illustrer les résultats théoriques.

Enfin, nous considérons les topiques-modéles. Nous supposons que nous recueillons un lot de do-
cuments et avons accés aux fréquences de chague mot du vocabulaire pour chaque document. Les
colonnes de cette matrice de fréquence mot-document Y sont modélisées comme des réalisations de
distributions multinomiales centrées sur des vecteurs de probabilité mot-document. Dans des exemples
réels, peu de sujets différents sont abordés dans les corpus de documents. Cela suggére que la ma-
trice de probabilité mot-document II présente une structure de faible rang. Lobjectif est de factoriser
cette matrice de probabilité mot-document II par le produit d’'une matrice de probabilité mot-sujet A
et d’'une matrice de probabilité sujet-document W, c’est-a-dire I = AW. Dans ce contexte, ces trois
matrices II, A et W sont toutes stochastiques a gauche, c’est-a-dire que leurs entrées sont positives et
que leurs colonnes somment a un. Sous des hypotheses précises, que nous supposons, I'identifiabilité
de A et W peut étre établie. Nous rappelons également 'algorithme de [84] qui permet de retrouver les
termes de cette factorisation. Dans cette thése, nous supposons une temporalité dans la collecte de
documents et modélisons I'évolution dans le temps de la matrice de probabilité sujet-document W par
un processus autorégressif stationnaire. Ainsi la matrice W devient dans ce contexte une matrice aléa-
toire dépendant du temps W ;. Plus précisément, a chaque étape temporelle ¢, la distribution des sujets
donnés un document est une combinaison linéaire de la distribution précédente et d’'un bruit suivant
une distribution de Dirichlet, qui dirige I'évolution temporelle des topiques. Nous supposons en particu-
lier que les parameétres de bruit sont inconnus, c’est-a-dire le parametre de la distribution de Dirichlet.
Une attention particuliére est accordée a garantir que ce modéle autorégressif conserve la propriété
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que les colonnes de la matrice de probabilité sujet-document somment a un. Nous étudions d’abord
un cas oracle ou la matrice de probabilité mot-document (I1y,...,II7) est disponible. Nous fournis-
sons d’abord des bornes non asymptotiques sur le spectre de la matrice de covariance empirique de
(Wq,...,Wr). Nous adaptons ensuite I'algorithme de [84] pour récupérer la matrice de probabilité
mot-sujet A. Cela permet de récupérer (W, ..., W) par projection. Nous proposons ensuite des es-
timateurs des parameétres autorégressifs conduisant I'évolution de W;. Nous fournissons des bornes
supérieures non asymptotiques sur les risques d’estimation. Ensuite, nous adaptons cette procédure
au cas réel ou seule la matrice compléte de fréquence mot-document (Y4,...,Y 1) est disponible.
Dans la procédure d’estimation de A, nous donnons des bornes supérieures plus explicites que [84]
jusqu’aux facteurs log. Nous fournissons également la dépendance sur toutes les dimensions des ma-
trices apparaissant. Enfin, nous montrons que le bruit d0 a la distribution multinomiale des décomptes
de mots et le bruit Dirichlet de la distribution stationnaire des sujets donnés les documents publiés dans
le temps s’ajoutent dans les vitesses d’estimation finales des parameétres autorégressifs. En particulier,
lorsque le nombre de mots par document augmente, c’est-a-dire lorsque le bruit multinomial diminue,
nous retrouvons les vitesses oracles.

Historiquement, 'analyse des séries temporelles est généralement effectuée dans un cadre asymp-
totique. Lanalyse asymptotique des séries temporelles a valeurs réelles et vectorielles est bien com-
prise depuis la publication de [71], [62], [99] et [31]. Il s’agit toujours d’'un domaine de recherche actif
tant d’un point de vue théorique, [79, 50, 91,117, 51} 59] que comme outil pour I'étude des propriétés
des algorithmes, [142].

Récemment, I'étude des séries temporelles a valeurs matricielles et plus globalement des séries
temporelles a valeurs tensorielles a émergé. Les études sont encore principalement menées dans un
cadre asymptotique, [47, 49, |44, 96]. Cependant, I'analyse non asymptotique des séries temporelles
gagne en importance, [16, [15, 58, [135]. Cette thése s’inscrit dans cette dynamique de recherche et
tous les problemes étudiés sont conduits dans un cadre non asymptotique. En abordant ces défis et en
explorant des méthodologies innovantes dans chaque chapitre, cette thése contribue a 'avancement
de la théorie statistique dans I'analyse des données a valeurs vectorielles et matricielles dans des
contextes de grande dimension.

La premiére partie de l'introduction sert de présentation exhaustive des outils techniques néces-
saires a la compréhension des principaux chapitres de cette thése. Ensuite, dans la deuxiéme partie,
nous présentons les configurations et les détails des résultats.

Problemes étudiés et contributions

Cette section est consacrée a la présentation des problémes statistiques étudiés dans les principaux
chapitres de la these. Nous détaillons d’abord le probléme des tests d’hypothése, qui est essentiel a
la compréhension du chapitre 2. Nous explorons ensuite le probléme de la régression et en particulier
la régression linéaire multivariée pour laquelle le chapitre [3| fournit une extension. Nous présentons
ensuite le probléme du modéle thématique, pour lequel une extension dynamique est étudiée dans les
chapitres [4] et 5|
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Test d’hypothése : décider ou se trouve une matrice de covariance

Dans tous les domaines, de I'expérimentation scientifique a la vie quotidienne, nous sommes ame-
nés a prendre des décisions sur des activités risquées a partir de résultats d’expériences ou d’obser-
vations de phénoménes dans un contexte incertain. Le probléme de décision consiste a trancher, sur
la base d’observations, entre une hypothése dite nulle, notée Hj, et une autre hypothése dite alterna-
tive, notée H;. Un test d’hypothése est donc une procédure de décision permettant de déterminer si
I'hypothése nulle peut étre rejetée en faveur de I'’hypothése alternative compte tenu des données obser-
vees. Nous supposons que les observations sont des réalisations des variables aléatoires (X1,..., X,,)
prenant des valeurs dans (E, £).

Definition 6.0.1 (Procédure de test) Un test A,, est une fonction mesurable des observations prenant
ses valeurs dans {0,1} :
A, : E" — {0,1}.

A, sépare alors 'ensemble des résultats possibles d’'un événement aléatoire en deux ensembles conti-
gus, Hy est rejeté chaque fois que A,, = 1 et n’est pas rejeté chaque fois que A,, = 0.

Nous considérons dans le chapitre [2] 'observation de n vecteurs aléatoires i.i. d vecteurs aléatoires
(X1,...,X,) définis sur R” avec une matrice de covariance commune ¥ € S,*, ou S représente
'ensemble des matrices symétriques définies positives de taille p x p. Le probleme de test considére
est le suivant

H():E:{Ip}, vs. Hy ZEGIP,

ou F, C S+ est un ensemble de matrices de Toeplitz éparses. Nous considérons deux hypothéses
alternatives différentes : soit il existe un nombre s d’éléments de covariance qui sont significativement
positifs ('alternative unilatérale 7, = F. (s, S, 0)) ou significativement différents de zéro i.e. (Ialter-
native bilatérale 7, = F, (s, S,0)). (alternative bilatérale 7, = F(s, S,0)). Les classes d’hypothése
d’alternative sont présentées dans la Définition [2.2.1]

Dans un probleme de décision, deux types d’erreur sont possibles. Une erreur de type | se produit
lorsque nous décidons que H; est vrai, i.e. observant A,, = 1, alors que Hj est en fait vrai. Une erreur
de type Il se produit lorsque nous ne parvenons pas a rejeter Hy, i.e. observant A,, = 0, alors que
H, est vrai. Les conséquences de ces deux erreurs peuvent étre plus ou moins importantes. Chaque
décision a donc une probabilité d’étre juste et une probabilité d’étre fausse. La probabilité d’erreur de
type |, c’est-a-dire la pire "chance" de rejeter a tort I'hypothése nulle, est notée « et est appelée niveau
de signification du test. La probabilité d’erreur de type Il, c’est-a-dire la pire "chance" de ne pas rejeter
I'hypothése nulle, est notée 1 — 5. Ainsi, 3 est la probabilité de rejeter correctement I'hypothése nulle et
est appelée la puissance du test.

Definition 6.0.2 (Erreurs de type | et de type Il) Considérons la procédure de test A,, pour le pro-
bléeme de test Hy : ¥ = I, vs. Hy : ¥ € F,. La probabilité d’erreur de type | de A,, est alors définie
comme suit :

= P[p (An = 1) .

De méme, la probabilité d’erreur de type Il de A,, est définie comme suit :

1—p:= sup Py (A, =0).
SeF,
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Pour définir une procédure de test, I'idéal serait évidemment de trouver celle qui minimise les deux
risques d’erreur en méme temps. Malheureusement, on peut montrer qu’ils varient dans des directions
opposées, i.e. toute procédure qui diminue « augmentera généralement 1—/ et vice versa. Il existe donc
essentiellement deux fagons de définir une procédure de test optimale. La premiére est la procédure
de test optimale de Neyman-Pearson. Dans ce cadre, nous considérons que I'une des deux erreurs est
plus importante que I'autre et nous essayons d’éviter cette erreur. En général, nous choisissons H et
H, de maniere a ce que l'erreur que nous essayons d’éviter soit I'erreur de type |. Remarquez que le
test idéal ne rejetterait alors presque jamais a tort Hy,. Cependant, dans les cas habituels, le seul test
ayant a = 0 est le test trivial A,, = 0. Nous devons donc laisser I'autre erreur se produire. Par exemple,
dans le cas d’'un proces, nous faisons généralement tout notre possible pour éviter de condamner un
innocent, méme si cela implique de prendre le risque d’acquitter un coupable. Mathématiquement, on
fixe une valeur pour le niveau o € [0,1]. Plus les conséquences de l'erreur de type | sont graves,
plus « sera petit. Toutefois, pour le méme probléme de décision, il peut exister plusieurs tests dont
la probabilité d’erreur de type | est inférieure a a. Dans ce cas, le meilleur de ces tests est celui qui
minimise la probabilité de I'erreur de type Il, i.e. celui qui maximise la puissance g parmi les tests dont
le niveau est au plus «.

Definition 6.0.3 (Procédure de test optimale de Neyman-Pearson) Désignons par A* I'ensemble de
toutes les procédures de test dont le niveau est au plus égal a o.. Le test optimal de Neyman-Pearson,
noté Anp, est alors un test de niveau o qui résout la question suivante :

VY e .Fp, PE[ANP = 0] = Aienia Pz[A = O]

S'il existe, A p est appelé test uniformément le plus puissant.

Comme le probléme que A p doit résoudre n’a pas toujours de solution, la notion d’optimalité dé-
finie par la procédure de test optimal de Neyman-Pearson n’est pas universelle. Il est donc nécessaire
d’adopter une approche plus générale pour trouver une procédure de test optimale. Comme décrit pré-
cédemment, il n’est pas possible de trouver un test qui minimise le niveau a et maximise la puissance
B car a et 1 — 3 évoluent dans des directions opposées. Cependant, il est possible de minimiser la
somme des probabilités d’erreur de type | et de type Il. Un réle égal est donc accordé a H et H;. Ce
critére est décrit comme I'approche minimax.

Definition 6.0.4 (Risque de test maximal) Considérons une procédure de test A et définissons R(A)
son risque de test maximal :

R(A,Fp) :=Pr, (A=1) + sup Pg (A =0).
SeF,

On dit alors qu’un test est optimal minimax s'il minimise le risque de test maximal parmi toutes les
procédures de test. Son risque de test maximal est alors appelé risque de test minimax.

Definition 6.0.5 (Risque de test minimax) Le risque de test minimax est défini comme suit
R*(Fp) = iIAlf R(A, Fp).

Si elle existe, la procédure de test qui permet d’obtenir le risque de test minimax, noté A, est appelée
test minimax.
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Un autre point important a mentionner est que la classe d’hypothése nulle est un singleton, a savoir
la matrice d’identité. Lobjectif de la procédure est donc de déterminer s’il est possible ou non de rejeter
avec une forte probabilité I'hypothése selon laquelle 3 est la matrice identité. En outre, nous avons
choisi comme classes d’hypothéses alternatives un sous-ensemble de matrices de Toeplitz peu denses,
Fp = Fi(s,5,0) ou Fp, = F(s,S,0). Essentiellement, on peut se demander pourquoi un tel probléme
de test ne prend pas la forme plus générale suivante :

Hy:X =1, vs H:%eS\{I}.

Dans ce scénario, on remarque que pour tout choix standard de distance sur SI;“F, i.e. la distance
dérivée de la norme de Frobenius, dénotée par || |7, on a

inf L,—%|,=0.
sesihy 7 T

Il n’est donc pas possible de séparer I'hypothése nulle de I'hypothése alternative. Le risque de test
minimax est donc égal a un et le test de supposition aléatoire devient optimal. Par conséquent, dans
ce probléme de test d’adéquation, il est obligatoire que la classe d’hypothéses alternatives soit bien
séparée du singleton d’hypothéses nulles. Ainsi, pour un ¢ > 0 fixé, nous devons définir }"155) de telle
sorte que

inf ||[I, =% |p>e€
seF
La définition de nos classes alternatives montre que F4 (s, S,0) et F(s,S,o) sont bien séparés du
singleton {I,}. Enfin, le choix optimal du rayon de séparation ¢ est discuté dans la littérature et peut
étre défini comme le rayon de séparation minimax. Cela dépasse le cadre de cette thése. Cependant,
les lecteurs intéressés peuvent consulter [95] et [82] pour plus de détails sur les procédures de test
minimax.

Chapter [2) : Test de la matrice de covariance et récupération du support . Nous considérons
(Xi)iz1,..m e »(0,%) ou ¥ a une structure de Toeplitz. Nous notons ensuite o;,_; la covariance
Cov(X*, X7) pour i,j € {1,...,p}. Tout d’abord, nous testons si la matrice de covariance X est la
matrice identité I, par rapport a I'alternative unilatérale 7 (s, S, o) ou l'alternative bilatérale F(s, S, o),
voir Definition[2.2.1] D’un point de vue asymptotique, s peut tendre vers l'infini lorsque p tend vers I'infini,
ce qui autorise un modele non paramétrique, c’est-a-dire que le nombre de paramétres peut augmenter.
De tels modéles n'ont été considérés que dans I'estimation non paramétrique de la densité spectrale
de séries temporelles stationnaires, voir [89]. Nous définissons tout d’abord ¢ 4 la fonctionnelle linéaire
de la matrice de covariance ¥ associée a la matrice A appartenant a S, comme ¢ 4(X) := Tr(AX). La
matrice de covariance de I'échantillon est notée X,,. Ainsi, I'élément de covariance o5, j > 1, peut étre
écrit comme suit

1
2(p — J)
ou A; est une matrice qui a 0 pour élément sauf sur les jeme diagonales supérieure et inférieure. De
méme, I'estimateur empirique de o; peut étre défini comme 4, (%,).

Dans le cas modérément clairsemé, la somme de toutes les valeurs de S permettra d’effectuer
le test, alors que dans le cas trés clairsemé, une recherche sur des sous-ensembles de taille s sera

nécessaire. C’est ce qu’on appelle une procédure de balayage, qui est trés rapide pour les vecteurs.
Il convient de noter que, si la densité s est inconnue, une deuxiéme recherche sur différentes valeurs

0j =E[XTA;X] = Tr(A;%) = 04,(Z), avec [Aj] = 1k — £ = 5);
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possibles de s produira une procédure agrégée, exempte de s. Dans le cas modérément clairsemé ou
'hypothése alternative est F, (s, S, o), nous considérons pour un certain seuil t{fﬂf* la statistique de
test AMS* définie dans (2.5). Lorsque I'hypothése alternative est F(s, S, o), nous considérons pour
un certain seuil t,]ffl;g la statistique de test AM5* définie dans (2.6). Les bornes supérieures de leurs
risques de test maximaux sont dérivées respectivement dans le Théoreme |2.3.1|et le Théoreme |2.3.1
Dans le cas tres peu dense, lorsque I'hypothése alternative est 7, (s, S, o), hous considérons pour un
certain seuil tﬁﬁf* la statistique de test AZS* définie dans (2.7). Lorsque I'nypothése alternative est
F(s,S,0), nous considérons pour un certain seuil t%f la statistique de test AZ5F définie dans (2.8).
Les tests A5+ et AITS essaient successivement tous les ensembles possibles C de s diagonales parmi
les premiéres S. Si 'un de ces tests décide de rejeter Hy, alors A5+ rejette également Hy. Les bornes
supérieures de leurs risques maximaux de test sont dérivées respectivement dans le Théoréme
et le Théoréme

Pour limiter par le haut les risques de test maximaux des procédures mentionnées, nous donnons
une nouvelle variante de l'inégalité de concentration pour les formes quadratiques des grands vecteurs
gaussiens et ces limites sont spécifiées pour les matrices de covariance qui sont Toeplitz avec peu
de diagonales non nulles dans le Théoréme Ces bornes sont spécifiées pour les matrices de
covariance qui sont des Toeplitz avec quelques diagonales non nulles dans le Corollaire [2.2.4

Théoreme en francais La variable aléatoire ¢ 4(%,, — ) est centrée et sous-exponentielle
avec des paramétres

2
( 2 _ i‘l’f}g b= 2”%{”%), pour un K arbitraire dans ]0, 1]. Par conséquent, pour tout u > 0 :

Al [[A%]]o u
PlpaZn = 3) 2 max{\/ﬂ n(1 —K)’u nkK }] < exp <_Z) ’

Des inégalités de concentration ont déja été données pour de telles fonctionnelles. La plus proche
de notre cas est I'inégalité de concentration de type chi-carré dans [121] pour les vecteurs gaussiens
standardisés et généralisée aux vecteurs sous-gaussiens. Mentionnons également [65] qui a donné
une inégalité de Bernstein pour I'élément de covariance empirique d’'un processus gaussien centré
stationnaire et I'a généralisée aux processus gaussiens localement stationnaires.

Nous proposons également une méthode pour identifier les éléments diagonaux ¢;, j = 1,...,5,
avec des entrées non nulles dans o, en indiquant ou I'information peut étre perdue dans le processus
de modélisation. Lobjectif est de sélectionner correctement les coefficients de corrélation non nuls. On
peut définir un probleme de sélection de retard comme I'estimation de 7, un vecteur avec des entrées
n; = 1(|lea,; (X)] > 0). Lobjectif est de trouver un sélecteur 77 avec 7; = 1(|pa, (Xn)| > 7,) qui soit
cohérent au sens ou le risque R“%(7), F) = 25:1 Ex(|n; — n;|] stays bounded. Nous fournissons dans
le Théoréme une valeur explicite de 7, telle que le risque RS (7}, F) reste limité par une quantité
décroissante en S.

Regression multivariée

Lanalyse de régression est une méthode statistique fondamentale utilisée pour explorer et quantifier
la relation entre une ou plusieurs variables indépendantes (les prédicteurs) et une variable dépendante
(la cible). Lobjectif de I'analyse de régression est de développer un modeéle prédictif capable d’estimer
la valeur de la cible en fonction des valeurs des variables prédictives. Ce probleme est au coeur du
chapitre 3
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Nous observons un ensemble de données composé de T' C N* réponses Y; et T' caractéristiques
correspondantes X;. Lobjectif est de développer un modéle capable de prédire la réponse Yy sur la
base d’une nouvelle caractéristique X1 1. Nous écrivons notre modéle comme suit :

Vte [T], Y= f"(Xy)+e,

ou ¢; englobe les erreurs de mesure et les facteurs qui font que Y dépend d’autres facteurs que le seul
X considéré. La véritable fonction f* est inconnue, ce qui nous ameéne a rechercher une fonction f
appropriée qui prédit avec précision les valeurs Y aux nouveaux points X = z. Une fonction f perfor-
mante permet d’identifier les composantes de X qui sont significatives pour expliquer Y et celles qui
ne le sont pas. Au cours de la collecte des données, il peut arriver que de nombreuses caractéristiques
partagent la méme valeur, par exemple X; = X; = x avec i # j. Malgré cela, nous pouvons observer
Y; # Y, ce qui indique que ¢; et ¢; représentent des erreurs irréductibles dans notre modele. Méme
avec une fonction optimale f, prédire Y; en utilisant f a chaque X; = x peut toujours donner lieu a
des erreurs car f(z) ne représente qu’une valeur parmi une distribution de valeurs potentielles de Y;.
Une approche consiste a considérer que la fonction f* évaluée sur z produit la moyenne des valeurs
observées Y; correspondant a X; = x. Cela conduit a modéliser la fonction de régression f* comme
f*(x) = E[Y|X = z]. La fonction de régression f* est le prédicteur optimal de Y en ce qui concerne
I'erreur quadratique moyenne :

f* € argming E [(Y —g(X))?|X = x} .
De plus, pour toute estimation f de f*, on a

El(y — F(X)) X = o] = (") — (@) + V().

Cela montre gqu’il existe une erreur irréductible que nous ne pouvons pas réduire, a savoir V(e), méme
si nous connaissons la vraie fonction f*. Nous sommes particulierement intéressés par les modéles
linéaires, c’est-a-dire lorsque f* est une fonction linéaire. Nous appelons ce probléeme le probléme de
la régression linéaire.

Cible a valeur vectorielle

Dans le cadre de la régression conventionnelle, les variables cibles Y; sont scalaires. Cependant,
dans diverses applications, I'objectif n’est pas de prédire une variable scalaire mais plutoét un vecteur
Yri1 € R™. Nous considérons toujours que les prédicteurs sont a valeur vectorielle, a savoir pour
t € [1,T], X; € RP. Par conséquent, la fonction de régression f*(z) = E[Y|X = z] prend des argu-
ments dans RP et produit des valeurs dans R™. Sans hypothése supplémentaire, f* peut étre estimé
indépendamment pour chaque coordonnée, ce qui conduit a des régressions linéaires indépendantes
avec des cibles a valeur réelle. En effet, I'hypothése de linéarité sur f permet de réécrire le modéle
comme suit :

Y = XB*+ F, (6.1)

ol Y € RT*™ est la matrice cible, X € RT*P est la matrice prédicteur et B* € RP*™ est le paramétre
et E ¢ RT*™ est la matrice de bruit, généralement supposée avoir i.i.d. o2-sousGaussiennes. On
remarque que pour tout j € [1,m], la j*™¢ colonne de Y, dénotée [Y]; ne dépend que de la jeme
colonne [B*]; de B* et pour tout i € [1,7], la i ligne de Y, notée [Y];, ne dépend que de la
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i"“m¢ ligne [X];. de X. Nous pouvons donc considérer ce probléme comme p problémes de régression
linéaire indépendants avec des cibles a valeurs réelles :

viel,p], [Y];=X[B"],+[E];.

Ce probleéme est une instance de I'apprentissage multitache, qui est fortement étudié dans la littérature
[107, 101} 5, 119, 55| 9, [143]. En particulier, un estimateur de X B* peut étre dérivé en résolvant p
problémes de moindres carrés ordinaires. Notons X B I'estimateur correspondant. Si E a des entrées
indépendantes o2-sous-Gaussiennes, on déduit de I'analyse standard des MCO, voir [115], I'existence
d’'une constante positive C telle que :

le [HXB _ XB*
T

2 pm
< Co?Z=,
F:l =~

Ce résultat prouve que dans un cadre de grande dimension, c’est-a-dire lorsque T' < pm, l'erreur
quadratique moyenne de prédiction de B n’est pas nulle. Il est donc naturel de se demander si un
autre estimateur de B* peut étre dérivé pour résoudre ce probléme. Malheureusement, le corollaire
4.13 de [115] prouve que I'estimateur des moindres carrés atteint la vitesse d’estimation minimax dans
le modéle de séquence gaussienne univariée. Cela implique que I'estimateur des moindres carrés est
optimal parmi tous les estimateurs sans aucune connaissance préalable sur la structure de B*. Puisque
cette borne est optimale, on pourrait penser qu’il n’y a aucun espoir de résoudre ce probléme statistique
de grande dimension.

Heureusement, on constate souvent que les données a grande dimension présentent une faible
complexité inhérente. Lorsque les structures de basse dimension sont bien définies, I'analyse revient
a des statistiques de basse dimension plus conventionnelles. Toutefois, les données a grande dimen-
sion posent des problemes en raison des structures sous-jacentes inconnues a basse dimension. Par
conséquent, une tache fondamentale consiste a identifier ou a approximer ces structures. Dans le
cadre de la régression multivariée, il existe souvent des structures partagées entre les coordonnées
qui peuvent étre exploitées pour améliorer les limites de prédiction. Par exemple, on peut supposer
que les colonnes de B* partagent le méme modeéle de rareté avec seulement s entrées non nulles. Si
chaque tache est exécutée individuellement, on obtient I'estimateur de groupe-lasso B¢~ étudié dans
[98]. Dans ce cadre, il existe une constante positive C' > 0 telle que I'erreur quadratique moyenne de
prédiction de BGL devient :

T

Nous rappelons que le facteur logarithmique supplémentaire apparait en raison du support inconnu
des entrées non nulles de B*. Par conséquent, dans le régime de grande dimension sous cette hypo-
thése de structure de sparsité, I'erreur quadratique moyenne de prédiction converge vers zéro tant que
T > smlog(p). En outre, nous soulignons que cette hypothése de structure de rareté imite la struc-
ture univariée standard, résolue avec la procédure Lasso et sa variante, voir [124, 22, (114, 33| [19].
Heureusement, des structures plus complexes peuvent étre capturées dans le cadre de la régression
multivariée. Par exemple, si les colonnes de Y sont corrélées, on peut supposer une structure de faible
rang sur B*. Cela conduit a la régression multivariée de rang faible.

Une solution possible & ce probléme est de considérer un estimateur B, de B* qui peut étre défini
comme la solution d’'une version pénalisée par le rang du probléme des moindres carrés ordinaires.
Ainsi, pour tout A > 0, nous considérons :

By € argming |Y — X B||7. + Arp, (6.2)

le [HXBGL _ XB* 2] < 25 log(p)
T F|— ’
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ou rp représente le rang de B. Une premiere question d’intérét est la sélection de I'’hyperparameétre
A > 0. Ce probleme reléve de la catégorie de la sélection de modéles et nous renvoyons le lecteur a
[64, [100] pour des introductions complétes. La premiére étape du calcul de cet estimateur consiste a
définir les estimateurs de rangs restreints, c’est-a-dire B*) qui minimise ||y — XBH% parmi les matrices
B de rang inférieur ou égal a k.

Lemme 6.0.1 (lemme 8.1 dans [64]) Considérons P := X (XX )" XT le projecteur orthogonal sur
rank(PY)

Iintervalle de X ot (X X) " désigne le pseudo-inverse de Moore-Penrose de X T X. Dénote > ajuv;
=1

. k
la SVD de PY . Alors X B®*) peut étre défini comme " o;(PY )uv, .
=1

Lorsque le rang de B* est inconnu, I'estimateur précédent peut étre calculé pour toute valeur de
rdansN*, ce qui conduit & B®). La qualité de cet estimateur est donnée dans le lemme suivant.

Lemme 6.0.2 (Limite non asymptotique de I'erreur quadratique de prédiction, Théoréme 5 dans [32])
Il existe une constante positive C telle que pour tout kdansN*,

9 rank(X B*)
L<C -;1 oi(XB*)* + k| PE|3,
1=r

H XB® — xB*

Notons que cette limite, qui présente un compromis biais-variance, tient presque sirement mais
dépend de la plus grande valeur singuliére de la projection de la matrice de bruit E sur I'étendue de X.
On peut dériver une borne supérieure ne dépendant pas de E en contrélant le spectre de la matrice
aléatoire PF, puis fournir une borne supérieure vraie avec une probabilité élevée. Les bornes ainsi
dérivées seront plus ou moins étroites selon les hypothéses que I'on fait sur la distribution de la matrice
de bruit E. Le lemme suivant en donne un exemple.

Lemme 6.0.3 (Erreur quadratique moyenne en régression multivariée de rang faible, corollaire 6 dans [32])
Supposons que la matrice de bruit E ait des entrées gaussiennes centrées indépendantes avec une
variance o?. Il existe alors une constante positive C telle que pour tout r € N*,

9 rank(X B*)
F]g(} ';1 0i(XB*)? + o*k(m +rx) |,

E {H XB® _ xB*

ou rx représente le rang de X.

Le Lemme montre que I'erreur quadratique moyenne est limitée par une erreur d’approxi-
mation et un terme stochastique. Lerreur d’approximation est décroissante en k et disparait pour
k > rank(X B*). De plus, I'erreur quadratique moyenne satisfait pour £ > rank(X B*) :

k(m—i—rX).

1 . 2
“E [HXB ~ XB* ] < Co?
T F
On peut alors remarquer que rank(B*) > rank(X B*) et que dans un cadre a grande dimension avec
un rang tres faible, rank(X B*)(m + rx) < pm. Cependant, la valeur de rank(X B*) est inconnue et la
limite oracle précédemment énoncée ne peut donc pas étre atteinte. Une procédure d’adaptation des
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données est proposée dans [32] & la fois dans le cas d’un o2 connu et d’'un ¢? inconnu, le paramétre
du bruit. Les performances obtenues sont similaires a celles obtenues dans le cas de l'oracle.

Par conséquent, si les colonnes de la matrice observée Y sont corrélées et si nous supposons que
B* a une structure de faible rang, un estimateur B, de B* peut étre dérivé avec des garanties non
asymptotiques. Cependant, si les lignes de Y sont corrélées, le modéle exposé précédemment ne peut
pas le capturer. Cela peut se produire lorsque les prédicteurs et les cibles observés présentent une
dépendance sérielle. Ce probleme est au coeur du chapitre [3| En conclusion, la généralisation de ces
résultats a des tenseurs d’ordre supérieur suscite un intérét considérable au sein de la communauté
des chercheurs. Nous renvoyons le lecteur a [97] et aux références qui y figurent pour une introduction
compléte.

Chapter [3]: Régression matricielle bilatérale.

Dans ce chapitre, nous étudions un probléme de régression multivariée dans lequel les colonnes
et les lignes de la quantité cible Y sont supposées étre corrélées. Nous observons la matrice cible
Y € R™*P et une matrice de prédiction X € R™*1 liées par le modeéle de régression matricielle bilatérale
(2MR). Ce modéle implique deux matrices de parametres A* € R™*™ et B* € R?*P et s’exprime comme
suit

Y =A*XB*+ E.

La matrice de bruit E est supposée avoir des entrées indépendantes centrées o—sousGaussiennes.
Lobjectif est de dériver des prédicteurs A et B tels que AX B reste proche du signal A*X B*, sous des
hypothéses de faible rang sur A* et B*.

Bien que ce modéle n’implique pas de dépendance temporelle, les résultats non asymptotiques
obtenus ici peuvent améliorer notre compréhension des séries temporelles autorégressives a valeur
matricielle : Y; = A* X, B* + E; (voir [47]). Le modéle 2MR englobe également des modéles connus tels
que la régression matricielle et la factorisation matricielle. Par exemple, si n = m et A* est la matrice
identité, le modele 2MR se réduit au modéle de régression matricielle unilatérale Y = X B* + E (voir
[108], [32], [104]). De méme, si m = ¢ et que la matrice de prédiction X est la matrice identité de rang
m inférieur a la fois a n et a p, le modeéle 2MR devient un modeéle de factorisation du signal M* = A*B*
observeé avec du bruit.

Une autre représentation du modele 2MR se présente sous la forme d’un vector regression model.
En empilant les colonnes des matrices Y, X et F dans vec(Y'), vec(X) et vec(E), respectivement, on
obtient

vec(Y)" =vec(X)T - (4%)T @ B* + vec(E)",

ou ® représente le produit tensoriel de deux matrices. Selon cette formulation, nous prédisons un vec-
teur de lignes de taille np en utilisant un vecteur de lignes de taille mq (la matrice de caractéristiques
étant de rang 1) par I'intermédiaire d’'un paramétre de taille (mgq) x (np). Cette approche est problé-
matique a moins que la structure de A* et B* ne soit triviale. Elle ne tient pas compte de la structure
matricielle des caractéristiques et des matrices A* et B*, ce qui conduit a des résultats sous-optimaux.
Lobjectif est de construire des prédicteurs explicites (Ar, B,.) solutions au risque de prédiction de Fro-
benius au carré sous contrainte de rang maximal, voir (3.3).

Le théoreme fournit, pour un probleme équivalent (3.5), des prédicteurs explicites Ay, et By,
avec une borne supérieure non asymptotique sur le risque de prédiction. Nous remarquons en parti-
culier que cette borne peut étre décomposée comme la somme d’un terme de biais, qui est la cause
du choix du rang r des prédicteurs, potentiellement inférieur au rang des matrices A* et B* et d’'un
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terme stochastique. Lanalyse de ce terme stochastique fait principalement appel a la théorie des ma-
trices aléatoires, voir [129]. Ces prédicteurs permettent de dériver A, et B, la solution du probléme
d’optimisation initial (3.3). Ce résultat est énoncé dans le Corollaire [3.2.2]

Cependant, dans le probleme d’optimisation (3.3), la question de la sélection de r se pose. Nous
proposons une procédure adaptative au rang pour y répondre. Nous sélectionnons d’abord le rang
7 en résolvant une version pénalisée par le rang du probléme de minimisation du carré de Frobenius,
(3.8). Nous considérons ensuite les prédicteurs correspondants (A;, B;). Le risque de prédiction de ces
prédicteurs est étudié dans le Théoreme La cohérence de la procédure de sélection des rangs
est également démontrée dans la Proposition Toutefois, ces deux résultats sont énoncés a
la condition que le paramétre sous-gaussien o des entrées de la matrice de bruit soit connu.

Enfin, nous proposons une procédure adaptative aux rangs guidée par les données, qui permet
de sélectionner 7 et de dériver des prédicteurs (A, B;). Ces prédicteurs présentent des garanties
prouvables non asymptotiques sans que la vraie valeur o soit connue. Pour ce faire, nous modifions le
probléme de minimisation pénalisé en remplagant le rang r par 752, voir (3.9), ou

~ 1 P
‘73 = ;p”y - ATXBTH2F-

Les performances de cette procédure de prédiction sont détaillées dans le théoreme

Enfin, comme dans le cas de la régression linéaire standard ou I'estimateur BIC est remplacé par
sa version relachée convexe, I'estimateur Lasso, nous comparons les performances de prédiction ob-
tenues a l'aide d’'une pénalité de rang a celles obtenues a l'aide d’'une pénalité de norme nucléaire,
qui sert de relachement convexe de la pénalité de rang. Plus précisément, nous considérons la version
pénalisée par la norme nucléaire de la minimisation du risque de prédiction de Frobenius au carré, voir
(3-70). Nous fournissons des solutions A et B a ce probléme dans le Théoréme [3.3.1] et dérivons une
borne supérieure non asymptotique sur le risque de prédiction correspondant || A* X B* — AX B||%.

Nous concluons en notant que le modéle de régression matricielle bilatérale souffre d’inconvénients
lies a l'identifiabilité. En effet, de nombreux couples de matrices (A, B) résolvent 'équation M = AXB
pour une matrice M donnée.

Nous ne pouvons espérer identifier les matrices A et B que dans des conditions tres restrictives ou
X T X est de plein rang et ou la matrice A ou la matrice B est supposée avoir des valeurs singuliéres
connues, e.g. comme un projecteur avec des valeurs singulieres 1 ou 0. Peu d’autres configurations
sont connues pour étre identifiables dans la littérature de la factorisation des matrices, e.g. la factorisa-
tion des matrices non négatives (NMF), voir [54], NMF pour les topiques-modeles [84], [25], [86] ou la
factorisation des matrices de covariance [57].

Topiques-Modeles

Cette section est consacrée a la présentation du cadre de modélisation thématique, qui est au coeur
des chapitres [4]et[5] Considérons un corpus comprenant n documents textuels écrits dans une langue
caractérisée par un dictionnaire de taille p. Pour analyser et exploiter I'information véhiculée dans ces
n documents, I'objectif principal est de dériver une représentation vectorielle pour cet ensemble de do-
cuments. Cette expression mathématique permettra d’appliquer des outils analytiques afin d’extraire et
d’examiner les informations plus efficacement. Compte tenu de la longueur variable des documents, un
simple comptage de I'occurrence de chaque mot ne serait pas pertinent. Par conséquent, pour chaque
document, I'accent est mis sur la fréquence d’apparition des mots individuels. Chaque document peut
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ainsi étre représenté comme un point dans le simplexe de RP. Cela implique que I'ensemble du cor-
pus est représenté comme un ensemble de n points a I'intérieur du simplexe. Il est important de noter
que l'ordre des documents n’a pas d’importance dans ce contexte. En outre, nous supposons que ces
n points ne sont pas linéairement indépendants mais couvrent un sous-espace de R de dimension
K < min(n,p). Interprété comme le nombre de sujets discutés dans le corpus, K joue un réle crucial
dans la capture de la structure sous-jacente. Lobjectif principal est de trouver un encastrement de ces
n points dans I'espace de dimension inférieure RX. Par conséquent, il s’agit d’identifier une correspon-
dance entre R? et RX de telle sorte que les n points initiaux de RP puissent étre effectivement intégrés
dans R¥ par le biais de cette correspondance.

Dans un contexte plus formel, chaque document jdans[n] est modélisé comme une collection de
N; mots tirés d’un dictionnaire de taille p. Chaque document suit une distribution discréte T sur le
simplexe de RP. Pour chaque document j € [n], le vecteur de dimension p Y; des fréquences de mots
est observe et supposeé suivre une distribution multinomiale centrée sur 7 :

N;Y j ~ Multinomial, (N;, 7). (6.3)

Cependant, dans les exemples réels, seuls quelques sujets différents sont abordés dans d’énormes
corpus de documents. Cela conduit a supposer que la matrice de probabilité mot-document IT* =
(r7,...,m;) € RP*™ est de rang K < min(n,p), le nombre de sujets, et peut étre factorisée comme
suit :

II* = A*W*, (6.4)

ol A* € RP*K est la matrice de probabilité mot-sujet et W* € RE*" est la matrice de probabilité
sujet-document.

Ce cadre suppose que la probabilité d’occurrence du mot idans[p] dans un document traitant du
sujet kdans[K] est indépendante du document lui-méme. Plus précisément, le vecteur de probabilité
77 du document j, appelé vecteur de probabilité mot-document, est une combinaison convexe de K
vecteurs de probabilité mot-sujet avec des poids correspondant a I'attribution de K sujets. D’'un point
de vue probabiliste, cela peut étre exprimé par la formule de la probabilité totale, comme suit :

K
P(mot i|document j) = > _ P(mot i|sujet k)P(sujet k|document j),
k=1

Lobjectif principal dans le cadre du modéle thématique traditionnel est de récupérer A* et/ou W* sur
la base des observations Y ..., Y, avec ou sans un nombre fixe connu de sujets K. Lestimation des
matrices A* et W* répond a des objectifs distincts. En effet, I'estimation de la matrice A* permet de
discerner la distribution des mots dans le dictionnaire pour un sujet donné, tandis que I'estimation de
la matrice W* révéle la distribution des sujets pour un document donné.

Il convient de noter qu’en I'absence de bruit, c’est-a-dire lorsque la matrice IT* est observée, la
récupération de A* et W* devient un cas de factorisation de matrices non négatives. Le probléme de
la factorisation de matrices non négatives (NMF) a été largement étudié, les algorithmes attirant I'at-
tention en raison de leur capacité a générer des facteurs avec des contraintes non négatives, ce qui
améliore l'interprétabilite. Généralement, la NMF est formulée comme la minimisation d’'une fonction
de colt régularisée [94, 93, [112], présentant des défis d’optimisation non convexe, en particulier dans
les scénarios ou de nombreux mots sont absents dans un seul document (N < p). La principale li-
mitation de la NMF est que la résolution du probleme exact de la NMF, c’est-a-dire, en supposant un
rang connu K de IT*RP*™ et en récupérant les matrices A*RP*K et W*RE*™ telles que A*W* = II*,
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sans aucune hypothése supplémentaire, est NP-hard, voir [127]. Ce résultat implique la nécessité d’hy-
pothéses supplémentaires pour garantir I'existence d’algorithmes rapides capables d’estimer A* et/ou
W*. De plus, les algorithmes NMF sont confrontés a un probléme d’identifiabilité. Il est concevable
de trouver différentes matrices non négatives (A}, W;) € RPXE x REXn et (A5 W) € RP*E x RExn
tel que ATW; = A3W5. Des hypothéses supplémentaires sont nécessaires pour garantir 'unicité de
la représentation. La premiere de ces hypothéses est 'hypothése de séparabilité et a été initialement
introduite par [54]. Elle garantit 'unicité de la NMF. Cette hypothése a ensuite été incorporée dans
le cadre du modeéle thématique par [8], avec l'interprétation que, pour chaque théme, il existe cer-
tains mots qui se produisent exclusivement dans ce theme spécifique. Ces mots sont appelés "mots
d’ancrage". Lhypothése mot d’ancrage a ensuite été adoptée dans la plupart des publications sur les
modeéles thématiques.

Assumption 9 (Anchor word assumption) Pour chaque sujet k € [K], il existe au moins un mot j tel
que [A*], > 0 et [A*];; = 0 pourl € [K]\{k}.

Le modéle suppose que la matrice mot-sujet et la matrice sujet-document sont statiques. En outre,
il suppose que les documents sont échangeables au sein de la collection. En effet, le modéle reste le
méme en cas de permutation des colonnes de la matrice observée Y.

Des travaux récents abordent les aspects algorithmiques et donnent des résultats d’inférence sur
le probléme de I'estimation de la matrice A* dans un cadre statique sous I'hypothése mots d’ancrage.
Par exemple, les auteurs de [84] proposent un estimateur A atteignant les vitesses minimax pour A*
dense, i.e. non parcimonieuse, avec un K fixe et connu. La procédure de [84] effectue une SVD sur une
version normalisée de la matrice Y suivie d’'une recherche exhaustive sur un simplexe de dimension p.
Pour K inconnu et A* dense, les auteurs de [24] considérent A, atteignant les vitesses optimales mi-
nimax dans ce cadre. La procédure de [24] commence par la récupération des mots d’ancrage et dérive
ensuite un estimateur & partir d’une version normalisée de YY . Les auteurs de[25] étudient I'estima-
tion de A* sous I'hypothése de parcimonie avec K inconnu, en proposant une procédure d’estimation
optimale minimax Aspme de A*. La procédure de [25] se concentre principalement sur I'estimation de
la partie de A* correspondant aux mots non ancrés. Pour s’adapter a la parcimonie de A*, leur algo-
rithme nécessite également la résolution d’'un programme quadratique pour chaque ligne non ancrée.
Récemment, plusieurs articles ont également étudié le probléme de I'estimation de la matrice W* sta-
tique sous différentes hypothéses. Lorsque A* est connue et que W* est supposée parcimonieuse, [23]
propose un estimateur du maximum de vraisemblance (MLE) pour W*. Leur analyse a prouvé que le
MLE est a la fois minimax optimal et adaptatif a la parcimonie. Lorsque A* est inconnue, [23] estime
W* en optimisant la fonction de vraisemblance correspondant & un estimateur plug-in A de A*. Par
conséquent, I'erreur d’estimation de W* dans leur procédure dépend de la qualité de I'estimation de
A* par A. Lorsque A* et W* sont tous deux inconnues et que les colonnes de TW* sont supposées
peu nombreuses, K pouvant étre grand, [140] propose des procédures computationellement efficaces
pour estimer ces deux matrices. En outre, il est possible d’estimer directement W* en supposant une
structure supplémentaire. Ainsi, [86] suppose une autre version de I'’hypothése mot d’ancrage, appe-
Iée document d’ancrage. Cette hypothése signifie que pour chaque sujet, il existe un document qui ne
traite que de ce sujet. Leur procédure, appelée Successive Projection Overlapping Clustering (SPOC),
s’inspire de 'algorithme de projection successive (SPA). Lidée est de commencer par la décomposition
en valeurs singuliéres (SVD) de la matrice Y, et de lancer une procédure itérative qui, a chaque étape,
choisit la ligne de norme maximale de la matrice composée de vecteurs singuliers. Elle projette ensuite
sur le sous-espace linéaire orthogonal a la ligne sélectionnée.
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Chapitre [4) : Topiques-modeéles dynamique : cas oracle Dans ce chapitre, nous supposons que
des lots de n documents sont collectés en T étapes dans le temps. Lobjectif est de prendre en compte
I'aspect temporel de la collecte de documents et de refléter I'évolution dynamique des thémes abor-
dés dans les corpus. Nous supposons que la matrice de probabilité sujet-document W* suit un modéle
autorégressif simplex-valué d’ordre un. Par conséquent, la matrice W7 .= (Wt ..., WT) est mainte-
nant considérée comme aléatoire. Plus précisément, a chaque pas de temps ¢, la distribution des sujets
donnés par un document est une combinaison linéaire de la distribution précédente et d’'un bruit distri-
bué par Dirichlet, qui détermine I'évolution temporelle des sujets. Plus précisément, nous considérons
que pour toutt € [T — 1] :

Wt+1:(1—c*)-Wt—|—c*-At

ol ¢* € (0,1), et chaque A! est une matrice de bruit de taille K x n telle que les colonnes sont
indépendamment et identiquement tirées d’'une distribution de Dirichlet D(6*) ayant pour parametre
o* € Rf. Lobjectif de ce chapitre est d’estimer les paramétres de ce modele autorégressif en supposant
que la matrice de probabilité mot-document IT"T := (ITy,... II7) est disponible. Nous appelons ce
cadre le cas de l'oracle. Nous commencgons par étudier les propriétés spectrales de la matrice de
covariance empirique 7 := L (WT) (WiT) ",

En particulier, dans le Théoreme[4.3.3] nous fournissons un contréle sur sa plus petite valeur propre
et montrons qu’elle est bornée par des quantités dépendant de ¢*, « et §* avec une grande probabilité.
Dans la Proposition [4.3.1 nous contrélons sa plus grande valeur propre en la bornant presque slre-
ment par des quantités dépendant exclusivement de K. Ces résultats l1égitiment une hypothése forte
que nous faisons sur le spectre de cette matrice. A la suite du travail effectué dans [84], nous présen-
tons une procédure algorithmique basée sur la SVD qui récupére exactement la matrice de probabilité
mot-sujet A*. La projection de la matrice de probabilité mot-document II*7 sur A* permet de récupé-
rer exactement la matrice de probabilité sujet-document W', Nous estimons ensuite les paramétres
0%, c* et o avec les estimateurs définis respectivement dans (4.8), et (4.11). Des bornes non
asymptotiques sur leurs erreurs d’estimation sont dérivées respectivement dans le Théoréme [4.4.1] le
Théoreme et le Théoreme En particulier, nous prouvons qu'il existe des constantes abso-
lues C, Cy > 0 telles que :

log(nT)

s &

P |max{[|d — 6*2,|(1 —c) — (1 — *)|,|a — a*|} < C} - > T

En particulier, la dimension du vecteur 6*, qui est le nombre K de sujets, n'apparait pas dans ces
bornes grace aux propriétés du bruit de Dirichlet.

Chapitre [5| : Topique-modeéles dynamiques : cas réel Dans ce chapitre, nous considérons le
méme cadre que dans le chapitresans que la matrice de probabilité mot-document 17 ne soit plus
disponible. Nous supposons que nous n’avons accés qu’a la matrice de fréquence mot-document Y17,
Ensuite, nous définissons d’abord les versions empiriques des quantités impliquées dans la procédure
exposée précédemment, en récupérant A*. Cette procédure empirique adaptée conduit a un estimateur
A de A*. Nous présentons une étude minutieuse de cette procédure d’estimation. Plus précisément,
nous donnons des bornes supérieures explicites jusqu’a des facteurs logarithmiques et leur dépen-
dance a I'égard de toutes les dimensions des matrices d’apparition. Nous projetons ensuite la matrice
de fréquence mot-document Y7 sur la matrice mot-sujet estimée A. Il en résulte une matrice sujet-
document estimée W17, Les estimateurs des paramétres autorégressifs, introduits dans le chapitre
sont adaptés a ce cadre. Des bornes non asymptotiques sur leur erreur d’estimation sont dérivées res-
pectivement dans Theoreme [5.4.1] Theoreme [5.4.2] et Theoreme [5.4.3] En particulier, nous prouvons
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que pour chaque estimateur, il existe des constantes absolues C1, Co > 0 et a, b > 0 telles que :

P | mac{|0 — 6. 1(T—0) — (1 = )] la— a”[} < Gy - K7 (J loe(nT) log](;”))

Par conséquent, les taux de convergence obtenus dans le cas réel montrent des contributions additives
du bruit Dirichlet, qui détermine la probabilité des sujets pour des documents donnés, et du modele
multinomial des nombres de mots. De plus, pour les documents trés longs, c’est-a-dire lorsque N >
nT, les taux de convergence ne sont influencés par le bruit de Dirichlet que par des termes multiplicatifs
du nombre de sujets K et de la taille du vocabulaire p.

-2
- nT
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