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Chapter 1

Introduction

1.1 Speciation: from concept to models and empirical ev-

idences

1.1.1 The Species concept

In 1859, in his book �On the Origin of Species�, Charles Darwin (Darwin 1859) concluded

about species de�nition with this: �In short, we shall have to treat species in the same man-

ner as those naturalists treat genera, who admit that genera are merely arti�cial combinations

made for convenience. This may not be a cheering prospect, but we shall at least be freed from

the vain search for the undiscovered and undiscoverable essence of the term species� (Darwin

1859). Nowadays, species is recognized as the fundamental unit of biology and is de�ned as

a group of organisms that can successfully interbreed and produce fertile o�spring; it follows

from this de�nition that organisms that form two di�erent species can not interbreed i.e. they

are reproductively-isolated (Dobzhansky 1937; Mayr 1942). For non-specialist scientists and

the general public, a simpli�ed representation of natural variation made of discrete categories

is appreciated (Galtier 2019). Such simpli�cation is also useful in macroecology or conserva-

tion biology for the study of the e�ects of climate changes on biodiversity which relies on our

ability to count species, monitor their diversity and track their evolution. However, delineating

species is a di�cult task as it means clustering living organisms into discontinuous categories

(i.e species) despite the fact that they cover a continuous gradient of reproductive isolation (RI).

Indeed, intermediate individuals are frequently observed, and in many analyses, the number

and nature of categories depend on arbitrary thresholds or parameters such as the reproduc-

tive isolation threshold above which population should be considered as species (Galtier 2019)

Furthermore, reproductive isolation is often hard or impossible to test (e.g between extinct

species).

To address the challenges associated with delineating species, De Queiroz (2007) proposes

to separate the species conceptualisation from the operational delineation of species. Using

this framework, species concept is de�ned as mentioned previously and species delineation is

based on multiple criteria (e.g ecological di�erentiation, genotypic cluster, etc. . . ) depending

15



on their availability and operationality for the considered taxon. If a population of organisms

satis�es all the criteria, then it can be considered as a species. Conversely, if it fails to meet

the relevant criteria, it is not considered a species. He also introduces the concept of the �gray

zone�, con�rmed empirically by extensive comparisons across species (Roux et al. 2016). The

gray zone represents a transitory stage between the status of population and the status of

species. In this zone, species/populations meet certain criteria but not all of them. This zone

is particularly relevant to understand the evolutionary forces governing reproductive isolation

and, over time, the process of speciation.

1.1.2 Forms of Reproductive isolation

As explained above, the notion of RI is central to understanding species de�nition and thus

speciation. A recent survey of 231 researchers studying speciation indicates divergence of opin-

ions on the de�nition of RI (Westram et al. 2022). From this survey, two primary perspectives

on RI emerge: RI is either considered as a reduction in hybrid production and/or �tness or as a

reduction of gene �ow. Importantly, these two views of RI are not mutually exclusive: decreas-

ing hybrid production or �tness diminishes gene �ow. But the decision to adopt one de�nition

over the other a�ects the empirical measurement of RI in practice. In this thesis, I considered

RI from a genomic perspective, and therefore used RI as a quantitative measure of the e�ect of

genetic di�erences on gene �ow (Westram et al. 2022). Genetic variations that reduce gene �ow

include any genetic di�erence in�uencing organisms-level traits that limit gene �ow between

populations. Conceptually RI is characterized by its e�ect on the e�ective migration rate, me,

which represents the rate of gene �ow between populations. It is worth distinguishing me from

migration rate m: m quanti�es the exchange of individuals between populations without con-

sidering their e�ect on the evolution of the genetic composition of the population whereas me

quanti�es their genetic in�ow. In other words, me is the migration rate that results in the same

change in allele frequencies as observed in an ideal population where all migrants would con-

tribute equally to gene �ow (Barton and Bengtsson 1986). Selection for migrants can increase

gene �ow (me/m > 1, the e�ective migration rate is larger than the actual migration rate) as

in the case of adaptive introgression. On the contrary, selection against migrants can decrease

gene �ow ( me/m < 1, the e�ective migration rate is smaller than the actual migration rate) as

in the case of a genetic barrier. The ratio me/m also called the gene �ow factor is a measure of

the penetrability of a genetic barrier (Bengtsson 1985), and its inverse de�nes the strength of

a genetic barrier (Barton and Bengtsson 1986). In the following, I describe di�erent categories

and mechanisms of RI.

Prezygotic isolation

Prezygotic isolation encompasses a spectrum of mechanisms in�uencing the likelihood of zygote

formation. Here, I describe the main types of prezygotic RI and illustrate them with a biological

example.
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A straightforward condition that prevents zygote formation is when the two potential par-

ents cannot meet because they live in di�erent habitats, which can result from local adaptation

to distinct ecological conditions. For example, premating isolation between stickleback eco-

morphs arose as a simple by-product of divergent natural selection on traits such as prey

(Rundle et al. 2000). One ecomorph (Benthic) lives in the littoral zone of coastal lakes in

Canada and feed on invertebrates, the other (Limnetic) feeds on plankton in open water of the

same lakes. Both ecomorphs derived from marine stickleback �shes that invaded the lakes after

the post-Pleistocene period. The ecological prezygotic reproductive isolation between Benthic

and Limnetic ecomorphs independently occurred on multiple lakes leading to the emergence of

both ecotypes in multiple lakes (Rundle et al. 2000).

Other than RI through habitat, temporal RI can limit interactions between two potential

parents. This temporal isolation can occur because of di�erences in life-history traits, or even

daily behaviors. For example, RI between two wild species of rice (Oryza nivara the daughter

species derived fromO. ru�pogon) is linked to �owering time di�erences withO. nivara �owering

around 80 days before O. ru�pogon. Hence, despite no decline in hybrid viability and fertility,

RI is maintained by temporal isolation (Xu et al. 2020).

In the context of populations coexisting in the same geographic area and breeding simul-

taneously, reproductive prezygotic isolation can still arise even among populations. Variations

in mating preferences is one of the primary mechanisms that triggers RI in such conditions.

Mating preferences rely on various traits such as body size but also visual, olfactory or auditory

signals. During the last glaciation period, crow (Corvus) populations underwent geographical

isolation, resulting in the accumulation of divergence and the emergence of incipient species

exhibiting distinct feather color patterns. Even with repeated secondary contacts, RI has per-

sisted. In the central European contact zone, a speci�c region in chromosome 18 experiences

robust divergent selection and harbors genes implicated in the feather color pathway, as well as

color pattern recognition (Poelstra et al. 2014; Vijay et al. 2016). Collectively, these genes in-

�uence mate choice creating mate preference towards individuals that present the same feather

pattern - also called assortative mating, as con�rmed by hybrid analysis (Knief et al. 2019;

Metzler et al. 2021). In plant species that rely on pollinators to mate, pollinators can act

as agents of divergent selection on �oral traits. The evolution of these traits is triggered by

variations in pollinator distribution, and plant adaptation to the locally most e�cient/frequent

ones. Mimulus aurantiacus (monkey �ower) is a good example of such an RI based on pollinator

preferences. In Southern California, two ecotypes of M. aurantiacus are parapatric, evolving in

distinct environmental niches, with a contact zone facilitating migration between populations.

The primary di�erence between these ecotypes lies in �ower color. This color disparity is at-

tributed to di�erences in the abundance of pollinators in the respective environments. In the

eastern region, hummingbirds, more receptive to red �owers, are the pollinators of monkey�ow-

ers. Conversely, in the western region, hawkmoths prefer yellow �owers. Incipient species of M.

aurantiacus have evolved based on the composition of pollinators in their environment through

a gene called MaMyb2, regulating the amount of anthocyanin in the petal and, consequently,
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the red coloration of the petal (Streisfeld et al. 2013). Di�erent variants of MaMyb2 are closely

associated with �ower color, resulting in prezygotic isolation by attracting distinct pollinators

and thereby reducing the likelihood of hybrid formation. It's important to note that the isola-

tion based on �ower color is only partial and no signi�cant intrinsic postzygotic isolation has

been reported (Sobel and Streisfeld 2015).

Finally physiological isolation can also cause structural or chemical barriers that keep species

isolated from one another. For example, maize underwent domestication approximately 9000

years ago. Within certain regions of Mexico, coexistence of cultivated maize and annual

teosintes, the wild relatives of maize, demonstrates close proximity in growth and synchronized

�owering. Despite this proximity, the occurrence of hybrids between them is infrequent. Cru-

cially, a pivotal gene for speciation, Tcb1, impedes the fertilization process of female teosinte

plants by maize pollen through restriction of pollen tube growth within the teosinte pistils

(Evans and Kermicle 2001; Lu et al. 2019). This cross-incompatibility is unilateral. That is, in

reciprocal circumstances, teosinte pollen exhibits the capacity to fertilize maize, albeit with a

slight disadvantage when under direct competition with maize pollen (Lu et al. 2019).

Postzygotic isolation

In the face of gene �ow, RI may also occur through postzygotic isolation that diminishes the

viability or fertility of the resulting hybrids. As an example, in the Drosophila melanogaster

and D. virilis groups � two closely related species � divergence in gonadal proteins, partic-

ularly male-reproductive-tract proteins, is closely associated with sterility of F1 hybrid males

(Coyne and Orr 1989). Continuing with D. melanogaster and viridis, Turissini et al. (2017)

showed a reduction in ability to locate food in F1 hybrids, consequently reducing hybrid �t-

ness. Reduction of the ability to locate food relies on the disruption of neural circuitry used

to detect olfactory cues and is negatively correlated with parental divergence (Turissini et al.

2017). Finally, RI can be total and immediate through karyotype incompatibilities such as in

the case of alterations of the ploidy level. This mechanism has played a critical role in plant

diversi�cation, as approximately 35% of species within vascular plant genera have undergone

such polyploidization (Wood et al. 2009). Indeed, the doubling of the number of chromosomes

in a single generation triggers an immediate reproductive isolation. Speci�cally, when a diploid

individual (2n) mates with a recently polyploidized individual (2*2n = 4n), the gametes of the

4n individuals carry twice the chromosomal content of the 2n, often preventing the formation

of a viable zygote.

Between pre- and post-zygotic mechanisms: the case of segregation distorters

Segregation distorters (SDs) are genomic elements that induce a distortion in Mendelian segre-

gation, resulting in the preferential transmission of SD alleles in the progeny of an heterozygote,

a phenomenon referred to as meiotic drive. As a result, SDs are overrepresented in viable ga-

metes, ultimately leading to �xation of SDs in the population. Although selected for at the

gametic level, such drivers can a�ect fertility, generating the selection of suppressors. In plants,
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a classical example is the case of cytoplasmic male sterility (CMS) mutations that increase

their transmission by favoring the female over the male transmission pathway, often balanced

by nuclear mutations restoring male fertility (Postel and Touzet 2020). Geographically isolated

populations, however, may evolve distinct pairs of segregation distorter/restorer, which can

generate incompatibilities upon hybridization and constitute a source of reproductive isolation

(Orr and Presgraves 2000; Postel and Touzet 2020). For instance, the allele S1 from African

rice (O. glaberrima) causes selective abortion of male and female gametes carrying its allelic

alternative from Asian rice (O. sativa) in a heterozygous individual, resulting in reproductive

isolation (Koide et al. 2008). Teosinte mexicana (Zea mays ssp. mexicana), contains a complex

genetic toxin-antidote system encompassing multiple loci (Tpd1, the Teosinte Pollen Drive,Tdr1

the responder gene as well as Dcl2 Dicer like-2 and Tpd2 ) that contributes to postzygotic hy-

brid incompatibility between maize and teosintes by aborting pollen in hybrids (Berube et al.

2023).

Intrinsic and extrinsic RI origin

Beyond the classi�cation based on zygote formation, RI can be categorized by its origin, as

either intrinsic or extrinsic. Intrinsic RI is independent of environmental in�uences, whereas

extrinsic RI depends on the interplay between the genome and the environment (genotype-

environment interaction). For example, in maize and teosinte, the rejection of maize pollen

by teosinte females is una�ected by environmental conditions (Lu et al. 2019). In contrast,

in closely related populations of the threespine stickleback �sh (Gasterosteus aculeatus) living

in either the Japanese or the Paci�c ocean, divergence in body size, driven by adaptation to

dissimilar salinity levels, predator presence, and food availability, in�uences in turn mate choice

but also reduces hybrid �tness in these distinct environments, thus substantiating extrinsic RI

(Kume et al. 2010).

1.1.3 Models for the emergence of reproductive isolation

In the previous section, I explained how reproductive isolation manifested. However, to under-

stand speciation, it is essential to grasp the process through which this isolation develops. In

other words, how an allele, as seen in Drosophila, can emerge and spread, even when it causes

a signi�cant reduction in feeding capabilities in heterozygous individuals (hybrids), thereby

substantially decreasing their chances of reproducing. Several decades of scienti�c research

have been dedicated to addressing this question of the establishment and maintenance of RI.

Beyond comprehending the mechanism of the formation and preservation of this isolation, theo-

retical models also enable the formulation of testable hypotheses. These hypotheses then guide

empirical research, providing a systematic approach to explore and understand the underly-

ing mechanisms of evolution and speciation. In this section, I synthesize the main models of

speciation that explain the establishment and maintenance of RI.
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Figure 1.1: Representation of genotype evolution through divergence history and their respec-
tive �tness landscape for the underdominance model (A & B) and BDMI model (C & D). Red
cross in A & C indicates genotype of reduced �tness (relatively to other genotypes). In C,
only one of the fourth incompatible genotypes (as represented in D) is represented. Figure (D)
comes from (Cutter 2012).
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The problem of crossing �tness valleys

As a �rst basic model, let's consider two populations, denoted as P1 and P2, deriving from

an ancestral common population PA. Let us focus on a speci�c locus, where every individual

in both populations, P1 and P2, exhibits the genotype aa. To introduce RI, we introduce an

additional allele, A, such that homozygosity for A confers the same �tness as aa (wAA = waa =

1), whereas heterozygosity (Aa) results in reduced �tness (wAa = 1−s), with s representing the

selection coe�cient. In such a model, called underdominance, reproduction between AA and

aa individuals produces Aa heterozygotes with lower �tness, hence generating RI (see Figure

1.1 B). This reduction in �tness for heterozygotes creates what is commonly referred to as a

"�tness valley". Assuming that one population �xes AA genotype and the other population

�xes aa genotype, the RI would be maintained. The problem with this �paradoxical� situation

is that it implies that one population should have evolved from the aa to the AA genotype (or

the other way around), such that one population must have crossed the ��tness valley� (through

the genotype Aa), which is unlikely under many conditions (except if drift or sel�ng are strong

enough to overwhelm selection against heterozygotes, Gavrilets (2003); Charlesworth (1992)).

It is noteworthy that the introduction of gene �ow between populations P1 and P2 does not

alter the scenario. Given that the genotype aa is ubiquitous in both populations, the e�ect of

gene �ow simply ampli�es the quantity of alleles accessible within each population.

The BDMI model

Bateson, then later Dobzhansky and Muller each proposed an alternative model (the so-called

BDMI for Bateson-Dobzhansky-Muller Incompatibility) that resolved the problem of crossing

�tness valleys by considering a two-locus and two-alleles model (Orr 1996). Initially, every

individual in populations P1 and P2 carries the ancestral genotype at both loci noted aabb.

The derived alleles, A and B, are incompatible with each other, reducing �tness of individuals

carrying both of them. Yet, A and B are not incompatible with the ancestral background. If

one population �xes the A allele, which is possible as the A allele in a bb background has no

negative �tness e�ect, and the other population �xes the B allele, crosses between individuals

of these two evolved populations will put together the incompatible A and B alleles, generating

low-�tness hybrids. So, the major result of this model is that RI can take place without requiring

crossing any �tness valley. Note that, for simplicity, the BDMI model as presented here involves

negative epistasis between two loci, but this model can be generalized to more than two loci.

Since then, the BDMI theory has been con�rmed multiple times through various empirical

example. For example, in the case of Arabidopsis thaliana, two strains were identi�ed, Uk1 and

Uk3, which, when hybridized, manifest a hybrid necrosis phenotype characterized by severely

stunted growth and reduced seed production (see Figure 1.2A from Bomblies et al. (2007)).

The authors identi�ed two distinct loci, DM1 and DM2, situated on di�erent chromosomes

(see Figure 1.2B). Hybrid necrosis akin to that observed in F1 hybrids occurs only when both

the DM1 allele from Uk1 and the DM2 allele from Uk3 are found in the same genotype. The

authors validated this fact by introgressing incompatible alleles into another strain (Cor-0 ).
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Figure 1.2: BDMI system in A. thaliana between Uk-1 and Uk-3 strains producing a hybrid
necrosis phenotype A) Two regions (DM1& 2) where identi�ed as associated with F1-like phe-
notype by doing a QTL mapping represented in B). Figures come from Bomblies et al. (2007).
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This validation aligns with the hypothesis of BDMI, wherein epistatic interactions between

alleles from two distinct loci, though non-harmful in their original genetic contexts, trigger

hybrid necrosis involving an auto-immune response in F1 hybrids, here produced from distinct

strains within a species.

Model of ecological speciation

In the initial model described, assuming one locus with two alleles, we neglected the in�uence

of the environment on populations. Let's revisit this model by incorporating local selection

and, consequently, local adaptation to the environment. In this re�ned model, we begin with a

population of diploid individuals, each carrying the genotype aa, a genotype selected in their

respective environment named E1. Subsequently, a portion of this population migrates to a

di�erent ecological niche, E2, where the allele A is advantageous and the allele a is disadvan-

tageous ). Over successive generations and due to mutation, the population in environment

E2 becomes �xed for the allele A, resulting in the entire population carrying the genotype

AA. Upon hybridization between populations, the hybrids possess the genotype Aa, which

is not favored in either environment. Consequently, the hybrids experience reduced �tness in

the parental environments. For example, under conditions intermediate between the two envi-

ronments, the Aa genotype may have the highest �tness. Thus, local adaptation can initially

trigger RI, which is called ecological speciation � where speciation is a by-product of selection

against migrants in a heterogeneous environment context � but is not su�cient to generate full

and permanent RI.

Model of speciation under gene �ow

Gene �ow plays a pivotal role in the evolution of RI, it tends to erode RI by reducing the genetic

disparities between divergent lineages. Through BDMI, speciation can happen as a by-product

of neutral divergence without the need of selection. However, under fully neutral conditions,

even a tiny amount of gene �ow, as encountered under parapatric scenarios, may prevent the

establishment of BDMI or by collapsing previously established BDMI into a single genotype,

and so suppressing RI (Lindtke and Buerkle 2015; Bank et al. 2012). Two main mechanisms

can drive the evolution of BDMI despite gene �ow: �rst, exogenous selection favoring local

alleles at least at one locus is required, that is selection against migrants must act in addition

to selection against hybrids. Then, genetic linkage between the two interacting loci facilitate

the establishment and maintenance of BDMI (Bank et al. 2012).

Apart from BDMI, speciation under gene �ow involves the same key mechanism to maintain

RI. Indeed, for maintenance of RI by local adaptation, the strength of selection (s) must over-

come the rate of e�ective migration (me), ensuring that selection maintains local adaptation

(Yeaman and Otto 2011). Also, selection against migrants is more e�ective if incompatibil-

ity loci are tightly linked to local adaptation loci, so selection tends to select closely linked

architecture, strongly enhancing RI (Flaxman et al. 2013). Ecological speciation of the wild-

�ower Mimulus guttatus inhabiting regions near copper mines, is a striking case involving both
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Figure 1.3: FST landscape at Tol1 marker and linked marker Nec1 along LG9 chromosome.
Figure from Wright et al. (2013)
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mechanisms previously mentioned. These mines o�er a highly selective habitat due to poor

nutrient availability and elevated heavy-metal levels, resulting in a highly oxidizing environ-

ment. M. guttatus, showing a remarkable copper tolerance, has colonized multiple copper mines

(copper mine populations are called copperopolis). The genetic control of copper tolerance is

associated with a locus known as Tol1. The copper-tolerant allele is nearly �xed in all cop-

peropolis populations but occurs at a very low frequency in o�-mine populations situated 40

km away from the copper mines. Hybridization between copperopolis and o�-mine populations

leads to a hybrid necrosis phenotype, signifying RI. Wright et al. (2013) established that Tol1

experiences strong divergent selection, with the copper-tolerant allele being highly favored in

the copperopolis population but disfavored in the o�-mine population. While this constitutes

a low-intensity extrinsic postzygotic barrier locus alone, it is insu�cient for causing hybrid

necrosis. Additionally, Wright et al. (2013) identi�ed the closely linked locus Nec1, which, in

conjunction with Tol1, induces hybrid necrosis between copperopolis and o�-mine populations.

The likely scenario is that with the invasion of the copper mine, wild�owers were subjected to

high selection pressure leading to a localized selective hard sweep at Tol1 loci. This, coupled

with linked selection, resulted in the hitchhiking of the Nec1 incompatible allele, forming a

copperopolis haplotype that couple both a copper tolerance allele and an incompatible Nec1

allele with o�-mine variants (Figure 1.3), subsequently yielding a strong postzygotic barrier.

This example emphasizes the importance of considering recombination, as it can transform a

low-intensity barrier locus into a highly e�ective one. In some cases, tight linkage between loci

in unecessary as a single �magic� locus may provide local adaptation and RI (Servedio et al.

2011). This is the case for the MaMyb2 involved in RI between Mimulus aurantiacus ecotypes

as detailed above in 1.1.2 (Streisfeld et al. 2013; Sobel and Streisfeld 2015).

1.1.4 How reproductive isolation evolves across genome and time

The previous example of Mimulus serves as an illustration of partial isolation, which results in

a decrease in the number of hybrids, but hybridization can continue as long as hybrid �tness

is not zero. To achieve full speciation, which means hybrids must be sterile or non viable,

increased selection against migrants or recruitment of additional divergent loci may happen.

How, where and when these new loci are recruited and how do they evolve? In this section,

I describe the continuous process of the genomic accumulation of RI, with a distinction made

between processes in�uenced by gene �ow and those that are not.

Genomic patterns of RI

At the beginning of the speciation process, population divergence takes place at a small number

of loci responsible for divergence. In the presence of gene �ow, progress toward speciation is

rapidly eroded. Under such conditions barrier loci must be selected at a strength counteract-

ing migration. Establishment of haplotypes bearing locally adapted alleles and isolation loci

(Schilling et al. 2018) confers a drastic advantage as it enables adaptive divergence and spe-

ciation even under elevated migration rates (Schluter and Rieseberg 2022). This may happen
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either via linked selection where multiple genes may hitchhike around the initial barrier loci,

or via selection of recombination suppressors. In both cases, clustering of genes translates into

a broad genomic signal, referred to as �genomic islands of divergence�. In neotropical but-

ter�ies of the Heliconius genus, assortative mating patterns correlate with a genomic region

close to Optix, which is a crucial locus in�uencing their unique color patterns (Merrill et al.

2019). Likewise, for stickleback �sh, divergent mate preferences have been identi�ed to have

originated from the same set of genomic regions that regulate body size, shape, and ecological

niche utilization (Bay et al. 2017). Inversions contribute to the accumulation of divergent hap-

lotypes by generating large genomic regions of suppressed recombination as in sun�owers where

large haplotype blocks (1-100 Mbp in size) confer prezygotic isolation through traits involved

in abiotic factors and life-history traits (Todesco et al. 2020).

Time courses of reproductive isolation

The gradual nature of speciation has been observed in multiple pairs of species showing a cor-

relation between RI and genetic divergence (Coyne and Orr 1989; Presgraves 2002). One of the

most comprehensive studies was conducted by Roux et al. (2016). They utilized genomic data

and an Approximate Bayesian Computation framework to estimate the probability of ongoing

gene �ow (Pgeneflow) for 61 independent pairs of diverging taxa across the animal kingdom.

They found that at intermediate levels of divergence (0.5% to 2%), there is a noticeable de-

crease in Pgeneflow until speciation is completed (Pgeneflow = 0). Those intermediate levels of

divergence which correspond to the gray zone of speciation are characterized by patterns of

genomic heterogeneity of gene �ow where most genomic regions are permeable to gene �ow

while a few have established barriers. Furthermore, with the same approach a recent study

demonstrated that RI (and so the gray zone) appears at divergence level lower in plants than

in animals (Monnet et al. 2023).

From this observation comes the question: at what rate does RI builds up? In his theoretical

work, Orr (1995) concluded that postzygotic RI is expected to increase at a faster-than-linear

rate, i.e. as "snowball" process. This result is obtained when considering BDMI as the sole

source of RI and assuming the cumulative e�ect of BDMI on RI where the number of potential

incompatible combinations increases faster than the number loci involved in epistatic interac-

tions. The �snowball� nature of RI process across time is still debated, with some studies that

failed �nding evidence (Presgraves 2002; Stelkens et al. 2010; Price and Bouvier 2002), and

others supporting the theory as in Drosophila (Matute et al. 2010) and in Solanum (Moyle and

Nakazato 2010) species.

1.2 The challenge of detecting barrier loci in silico

A central objective in speciation research is to understand the genetic and genomic mechanisms

at work in the emergence and maintenance of RI. To do so, one needs to identify gene �ow

barrier loci and to compare the results from multiple pairs of diverging lineages to capture
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Figure 1.4: SNP data presented in the form of a gene tree (left) and sequence alignment on
the sequence of reference (right) between two populations of 4 (subpop A) and 3 (subpop B)
haplotypes. For each metric, the part of the divergence covered by the statistics is represented
by bars (left) and the calculated values (right).

the sequential events that contribute to the establishment and maintenance of reproductive

barriers. Traditionally, barrier detection relied on Quantitative Trait Locus (QTL) analyses and

functional assessments. However, the advancement of genome-wide population genetics data has

paved the way for genome-scan approaches that are cheaper and easier to undertake, allowing to

study a much broader spectrum of populations/species pairs. To e�ectively investigate genetic

determinants of RI through genome-wide population data, it is crucial to possess theoretical

expectations regarding the genomic signatures of barrier loci, enabling their detection. In this

section, I review: i) the theoretical expectations pertaining to the signatures of barrier loci under

various conditions, ii) the confounding e�ects that can impact the detection of barrier loci, and

iii) the main methods employed for their detection, along with the principles underpinning

these methodologies.

1.2.1 Genomic signatures of barrier loci

Population genetics data

Population genetics uses genetic polymorphism data which comprises speci�c genomic loca-

tions where individuals within a population exhibit variations. Generating these data often

involves re-sequencing the genomes of individuals from a population - but older datasets are

generally restricted to exploration of a subset of genomic regions. Subsequently, each indi-
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vidual's genome is mapped onto a reference genome (as illustrated in Figure 1.4). The dis-

crepancies between any individual's genome and the reference are recorded as variants. One

prominent form of variant frequently utilized is Single Nucleotide Polymorphisms (SNPs) cor-

responding to point mutations. SNPs are comparatively easier to identify than, for exam-

ple, structural variants such as inversions or deletions, and they exhibit a higher density

along the genomes than any other types of markers (ex: insertion, deletion, small inver-

sion). They are therefore extremely informative to study polymorphism genomic landscapes.

Box genomic metrics

I present in this box how to compute genomic metrics from population genetics data using

examples from Figure 1.4.

� Diversity with π (Tajima 1989): in Figure 1.4, at position 9 in the sequence, one

individual from the subpopulation A, is mutated (A->T). By doing all possible com-

parisons between all haplotypes from subpopulation A (there are six possible compar-

isons), three di�erences are shown. So, at the SNP, position 9, the diversity is of

πSNP = 3/6 = 0.5. Repeating the process at each locus, the diversity of the locus is

πlocus = (3 + 4 + 3)/6 = 1.667, and the average diversity per-site in this sequence is

π = (3 + 4 + 3)/(L ∗ 6) = 10/(20 ∗ 6) = 0.083, with L the length of the sequence

� Divergence with Dxy (Nei and Li 1979a): in Figure 1.4, population A consists of

four individuals and population B consists of three individuals, resulting in a total of

12 comparisons. At position 2, population A has completely �xed a mutation (T->G),

leading to complete divergence at this locus. Consequently, the 12 comparisons yield a

Dxy value of 12/12 = 1 at position 2. The average Dxy of a sequence is the cumulative

sum of di�erences averaged over the total number of comparisons (number of positions x

number of comparisons).

� Di�erentiation with FST (Hudson et al. 1992): FST is computed based on two elements:

πwithin and πbetween. First, πwithin is the average sequence diversity (πlocus) within sub

populations. So here in Figure 1.4, πwithin = (πlocusA + πlocusB)/2 = ((10/6) + (4/3))/2 =

1.5. Then we compute πbetween, which is the diversity across all sequences in the entire

population, which make 21 possible comparison, so πbetween = 50/21 = 2.38 which make

an FST = 1− (1.5/2.38) = 0.37.

Measure of Genomic diversity

Molecular genetic variation depends on the product of mutation rate (µ) and e�ective popula-

tion size (Ne), θ = 4 ∗Ne ∗ µ (for diploids). Empirically, expected molecular genetic variation

(genetic diversity) can be estimated at the scale of a loci by Watterson's theta (θW ) (Watterson

1975a) which is calculated as: θW = S/a, where S is the the number of polymorphic sites

among n sequence and a is equal to a =
∑n−1

i=1
1
i
. Classically θW is expressed in per-site unit, so
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θW = S/(a ∗ L) where L is the length of the sequence. Alternatively, Nei's π, which measures

the nucleotide diversity, is computed as the number of di�erences between all pairs of sequences,

divided by the total number of pairs (Nei and Li 1979b). Nei's π is also usually expressed in

per-site units. Both statistics are used to quantify the diversity inside a population, which can

vary along chromosomes as a function of me but also of other factors (see below).

Measures of di�erentiation and divergence

Divergence and di�erentiation are two ways to quantify how much two populations di�er. Dif-

ferentiation measures the disparity in allele frequencies between the populations. Divergence

measures the accumulation of genetic di�erence between populations since their split from a

common ancestor. A quantitative measure of absolute divergence known Dxy or Nei's D (Nei

and Li 1979b) is obtained by counting, at the scale of a SNP, the number of di�erences between

population sequences divided by the total number of comparisons made (see Box Genomic

metrics). By excluding all comparisons between sequences of the same population Dxy has the

advantage of being independent from the population polymorphism in contrast with relative

measure of divergence. However, it is a�ected by the level of ancestral polymorphism present

before the split of the daughter populations and the substitution rate (Cruickshank and Hahn

2014). In order to subtract the former from Dxy which facilitates comparisons across biological

models, the net divergence (Da) uses the average of within-population diversity (π) found in

the two daughter populations as a proxy of the ancestral polymorphism. is therefore a mea-

sure of divergence that aims at quantifying di�erences that have accumulated since divergence.

Interestingly, Roux et al. (2016) found that Da was the best predictor of the probability of

ongoing migration between two populations/species, with a value of Da around 0.01 charac-

terizing the gray zone of speciation. FST quanti�es the di�erentiation and so the disparity in

allele frequencies between populations. It's computed as follows: FST = 1 − HS

HT
, with HS the

average expected heterozygosity across subpopulations (H = 2pq with p the frequence of the

�rst allele and q = 1 − p, the frequency of the second allele assuming a bi-allel site). HT is

expected heterozygosity for the entire metapopulation. Another way to compute FST provided

by Hudson et al. (1992), replaces the expected heterozygosity by nucleotide polymorphism as

follows: FST = 1 − πwithin

πbetween
, with πwithin being the average diversity within populations and

πbetween, the expected nucleotide diversity of sequences sampled between two di�erent popu-

lations. Note that, just like Da, FST is strongly a�ected by within-population diversity and

therefore is a relative measure of di�erentiation. Another way to selectively capture divergence

signals (excluding diversity) is Df , which accounts only for sites where the di�erence is �xed

(Wakeley and Hey 1997).

Expected diversity, divergence and di�erentiation around barrier loci

Barrier loci are expected to generate RI, thereby diminishing gene �ow at the locus level

between populations. In the absence of gene �ow, barrier loci do not exert a local in�uence on

evolutionary divergence, as geographical isolation already hinders gene �ow across the entire
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genome. In the presence of gene �ow, barrier loci contribute to shaping the di�erentiation and

the divergence landscape by obstructing gene �ow in their vicinity, causing genetic sequences

to evolve separately between populations at these loci. Due to this independent evolution,

independent mutations arise over time, and local adaptation may further favor speci�c alleles

resulting in increased divergence and di�erentiation (Hejase et al. 2020; Sakamoto and Innan

2019). So, barrier loci are predicted to induce an escalation in net divergence and potentially

an increase in Dxy (Figure 1.8). However, as Dxy also depends on local diversity, this increase

may be masked by local variations in diversity. In the presence of gene �ow, the diversity of

each population can be enriched by migrants. Conversely, barrier loci, which do not experience

the e�ects of gene �ow, tend to exhibit lower diversity compared to the remainder of the

genome (Figure 1.8). This reduction in diversity is often further accentuated by strong local

selection. To summarize, the genetic landscape surrounding barrier loci that have existed for

a "su�ciently long time" (the term is deliberately imprecise, as the time required depends on

many conditions) is predicted to show higher levels of divergence (primarily net divergence)

and di�erentiation compared to the rest of the genome.

Hence over time, the contrast between the genomic landscape at barrier loci and the rest

of the genome intensi�es, resulting in the emergence of regions often referred to as "islands

of speciation." The metaphorical concept of islands regards the rest of the genome as the sea

level. Depending on the metric used, they may also be refered to as "islands of di�erentiation"

(typically for islands identi�ed through FST ) or "islands of divergence". As time increases, an

island of divergence emerges (see Figure 1.5), producing the expected patterns for divergence

and diversity landscapes.

1.2.2 Factors a�ecting barrier detection from genomic data

As presented above, barrier loci should leave detectable genomic signatures. Unfortunately,

other processes can generate similar confounding signatures. Among factors a�ecting detection,

we can distinguish two groups: one acting at the local level, which partially mimics the genomic

pattern of barrier loci, and another at the whole-genome level, which decreases the di�erence

between barrier loci and the rest of the genome reducing detection power.

Confounding factors and power detection

I described in the previous part the expected landscape around gene �ow barrier through

diversity, divergence and di�erentiation metrics. Taken separately, there is a large variety

of processes that can produce a similar landscape than gene �ow barrier and so false positives

(Figure 1.6) during detection. FST measures allele frequency di�erences, which can be produced

by barrier to gene �ow but also selection. For example, balancing selection (Figure 1.6B or

local adaptation are processes whereby positive selection drives an adaptive allele in a given

population to high frequency which leads to an elevated FST although e�ective migration is

not a�ected (Figure 1.6 C). Selection sweeps are an extreme form of such positive selection,

producing a nearly �xation of a new arisen selected allele and consequently a reduction of
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Figure 1.5: Evolution of a barrier locus in a simple two-populations model with high migration
between them. (A) A locally adaptive de novo mutation arises in subpopulation I at position
0. A typical pattern of polymorphism is shown on the left. The star is the locally adaptive
mutation, and gray circles are neutral polymorphism in the surrounding region. The right
panel shows the spatial distributions of nucleotide diversity obtained via simulations. π1 & π2

describe the within-population local diversity, and πb is another notation forDxy which measures
the divergence between populations 1 and 2. The simulations considers two populations with
2 ∗ N1 = 2 ∗ N2 = 2000 between which symmetric migration is allowed at rate 4 ∗ N1 ∗ m =
4∗N2∗m = 5. They assume selection intensity s1 = 0.2 ; s2 = −0.2 The entire simulated region
is 400 kb assuming a population-recombination rate of ρ = 0.001 per site. From Sakamoto and
Innan (2019)
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Figure 1.6: Expected patterns of genomic islands of divergence under di�erent models. (A)
Model 1: variation in recent gene �ow. Gene �ow is restricted at island regions, and homoge-
nized the rest of the genome. (B) Model 2: ancient balanced polymorphism. Highly diverged
haplotypes present before speciation form genomic islands due to lineage sorting. (C) Model
3: recent selection without gene �ow. In allopatric speciation, selection forms the genomic
island at adaptive loci. (D) Model 4: ongoing background selection and/or recurrent selective
sweep. Recurrent selection accumulates divergence at genomic regions of low recombination.
Recurrent selective sweep causes a similar pattern of divergence. Figure from Han et al. (2017)
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the diversity at the considered locus as well as a marked increase in FST (B. Charlesworth

1998; Martin et al. 2015). Negative selection against deleterious alleles (also called background

selection) cause similar patterns. In both positive and negative selection, low recombination

regions enhance linked selection, that is selection at loci in linkage with the target locus creating

extended genomic patterns of selection. In fact, the extent of the genome around loci a�ected

by linked selection directly depends on the balance between local recombination rate and the

strength of selection. (Figure 1.6 D). Dxy theoretically measures the absolute divergence with

E[Dxy] = 2T +4Neµ (Nei and Li 1979b), with µ the mutation rate, Ne the e�ective population

size of the ancestral population and T the time of divergence. If T is extremely low, E[Dxy] ≈
4Neµ = θ. So using only Dxy, without considering θ, may lead to interpret regions as divergence

outliers where they are just highly diverse, as for regions under balancing selection (Figure 1.6

B).

Because of these multiple confounding factors, it is highly recommended to combine several

genomic statistics to mitigate misinterpretation. For example, (Han et al. 2017) propose to

combine FST and Dxy to di�erentiate gene �ow barriers from regions under positive or negative

selection, as the latter a�ect di�erentiation without generating an excess of divergence (Fig 1.6

from Han et al. (2017). M. I. Tenaillon et al. (2023) provided a more complete view considering

Dxy, FST and π. They illustrate that the anticipated genomic signature concerning FST for

a barrier loci is identical to that for a selective sweep and a region a�ected by background

selection. However, if Dxy and π are examined in addition to FST to investigate the genomic

landscape, the genomic signatures of the three scenarios become distinguishable (Figure 1.8).

Factors limiting power detection

Detection of barrier loci relies on contrasting the genomic landscape of these loci (island level)

with the remainder of the genome (sea level). Under certain conditions, the di�erence of level

between �island� and �sea� is reduced, which drastically a�ects the detection power. This can

happen for instance in the case of two populations that diverged in parapatry with very limited

gene �ow between them (e.g selfers, see below). Another crucial factor to consider is the time

of population split, denoted as Tsplit. Assuming a constant gene �ow through time, a gene �ow

barrier will accumulate more population-speci�c mutations (and so divergence) than the rest

of the genome due to the homogenizing e�ect of migration. But at very low Tsplit, barriers

primarily exhibit ancestral polymorphism, indistinguishable from alleles shared by migration

in the rest of the genome. We expect the barrier signal to increase with Tsplit (Ravinet et al.

2017; Sakamoto and Innan 2019). The e�ective population size also signi�cantly impacts this

dynamic by increasing the amount of mutations and the time required to generate a divergence

signal. To account for this, Tsplit is generally expressed in 2Ne units

The mating system exerts a profound in�uence on gene �ow, recombination, selection and

so on the genomic landscape of barrier loci (Burgarella and Glémin 2017). The mating system

can vary from obligate outcrossing to full sel�ng where individuals reproduce with themselves.

Sel�ng reduces e�ective population size due to correlation in gamete sampling and due to re-
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current bottlenecks as they often experience extinction-recolonization. Sel�ng also drastically

reduces e�ective recombination, as both haplotypes available for recombination are identi-

cal, precluding the formation of novel genetic combinations (reviewed in Burgarella & Glémin,

2017). Linked selection is thus expected to be more prevalent in sel�ng than outcrossing species.

These processes jointly contribute to strongly reducing genetic diversity in sel�ng compared to

outcrossing species. Finally, sel�ng also signi�cantly diminishes e�ective gene �ow between

populations (Burgarella and Glémin 2017). Consequently, divergence and di�erentiation level

between barrier and the rest of the genome in selfers is strongly reduced compared with out-

crossers. Overall, this makes most genomic scan approaches, including detection of barrier loci

but also selection, less powerful in sel�ng than in outcrossing species.

1.2.3 Current genomic-based methods to detect barrier loci

A variety of approaches propose to detect barriers to gene �ow from genome-wide patterns

exists. They can be categorized into two groups (Tenaillon and Ti�n, 2008): i) data-driven

methods involve empirically constructing null distributions from one or multiple statistics ob-

tained from genome scans and rely on arbitrary thresholds to detect outliers; ii) model-based

methods involve inferring a demographic model (either beforehand or simultaneously) to estab-

lish a null model, followed by the identi�cation of outliers corresponding to barrier loci based

on this model. Demography is incorporated to mitigate confounding e�ects.

Data-driven methods: empirical genome scans

Genome scans consist of measuring genomic features through summary statistics across the

whole genome usually computed from sliding-windows. The resulting distributions can then

be used to de�ne outliers - loci for which values exceed a certain threshold set by the user.

The most commonly used summary statistics is the FST (78% of studies analyzed uses FST

to detect gene �ow barrier through genome scans) according to a survey done by Wolf &

Ellergren (2017). FST scans have inherent limitations, notably in their ability to distinguish

between local reduction in e�ective population size (Ne) and reduction in gene �ow (me) (B.

Charlesworth 1998; Cruickshank and Hahn 2014; Ravinet et al. 2017). That is why, local FST

is sometimes normalized by the local level of FST from closely related species pairs to the target

species (Vijay et al. 2016). Because barrier loci generate a complex signal of di�erentiation,

divergence and diversity, some studies use a combination of summary statistics to perform a

stringent detection and avoid as much as possible confounding e�ects (Hejase et al. 2020; Han

et al. 2017). Yet, relying on a combination of signals encounters common limitations with

FST genome-scans. Because thresholds are speci�c to a given dataset, the results are hardly

comparable across studies and biological systems. In addition, the use of empirical threshold

precludes any conclusion about the actual number of barriers (i.e. a 5% threshold will provide

5% of barrier loci/windows among all loci). For these reasons, model-based approaches are

preferred but are also much more challenging to implement.
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Model-based methods

Model-based methods aim at modeling scenarios of population divergence - from one ancestral

population splitting in two daughter populations - as well as their demography and possible

gene �ow between them. Four scenarios of divergence are classically considered: Strict isolation

(SI) where divergence occurs under complete allopatry; isolation with migration (IM) where

divergence occurs under constant gene �ow since the time of split (Tsplit); secondary Contact

(SC) where a period of divergence without gene �ow is followed by gene �ow at a time TSC until

present; ancestral migratory model (AM) where an initial period of divergence with gene �ow,

ending at TAM , is followed by complete isolation until present. These four models are coupled

with estimates of population-speci�c demographic parameters, sometimes also encompassing

events such as population expansion or population bottleneck. In this part I describe how

these models are used under i) likelihood ii) approximate bayesian computation approach.

Methods based on likelihood:

Likelihood methods provide a statistical framework for estimating parameters describing the

genetic data and for assessing the likelihood of the data under di�erent hypotheses, including

the presence or absence of barriers under a comprehensive divergence model. For a given

divergence model M with a parameter set θ, the likelihood represents the probability (P ) of

the observed data given these parameters, denoted as PM(Data|θ). So the likelihood approach

involves maximizing the likelihood function to �nd the parameter values that make the observed

data most probable. This can be achieved for simple demographic models as proposed in

gIMble (Laetsch et al. 2023). gIMble operates under the hypothesis that divergence follows an

IM (isolation with migration) model for parameter estimation. Rather than co-estimating all

parameters of the IM model in each sliding-window, gIMble �rst infers the best-�tting global IM

history, assuming single constant Ne and me across the genome. Subsequently, in a second step,

local variations in Ne and me parameters are co-estimated in sliding windows. While likelihood

approaches are extensively utilized, this process usually requires solving optimization problems,

and the complexity of these problems can vary depending on the structure of the likelihood

function and the number of parameters. An additional limitation is that, in models with a

large number of parameters such as SC, the likelihood function may be too complex to solve

analytically.

Method based of Approximate Bayesian Computation:

For complex models, likelihood functions can be impossible to implement and Approximate

Bayesian Computation (ABC) methods o�er an interesting alternative. The concept of ABC

traces back to the rejection algorithm, a fundamental technique for generating samples from a

probability distribution (Csilléry et al. 2010). The basic rejection algorithm entails simulating

numerous datasets under a presumed evolutionary scenario. The parameters of this scenario

are not deterministically chosen but are rather sampled from a prior probability distribution.

Simulated data are next generated using parameter values and further condensed into sum-
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mary statistics. Subsequently, the sampled prior values are accepted or rejected based on the

disparity between the simulated summary statistics and the observed ones. The samples of

accepted values approximate the full posterior distributions of parameters as they encapsulate

the parameter values that best �t the data (Csilléry et al. 2010). Inference can also be achieved

by replacing summary statistics through local linear or non-linear regression of simulated pa-

rameter values on simulated summary statistics (Beaumont et al. 2002). There are two pivotal

factors that signi�cantly impact ABC results: i) the quality of the models if the values of the

parameters fall outside the range of the observed dataset, the resulting ABC outcomes may

be of suboptimal quality; ii) the selection of appropriate summary statistics (Beaumont 2010).

Recent advances, in particular the use of machine learning, have led to improvements in ABC

methods, notably through the utilization of random forests as implemented in the abcrf package

(Pudlo et al. 2016; Raynal et al. 2019). Random forests enable ABC to be a calibration-free

problem � calibration refers to the process of choosing the most informative summary statistic

and rejecting the misleading ones � and signi�cantly reduce the number of simulations required

to obtain robust estimates. Building upon abcrf, a tool named DILS has been developed to

infer demography and detect barrier loci (Fraisse et al. 2021). DILS operates in two distinct

steps. Initially, it infers the global demographic model from a pool of 14 models, considering

not only classic demographic model parameters but also genome-wide heterogeneity in Ne (ef-

fective population size) and me (migration rate). Incorporating such heterogeneity has been

demonstrated to enhance model inference (Roux et al. 2014). Subsequently, conditional on the

best-�tting model, DILS infers the local best model at the locus scale, distinguishing between

barrier and non-barrier loci models. However, its reliance on the �rst step of best-�tting model

selection makes it challenging to compare results across species. The best-�tting model indeed

conditions barrier detection and may vary across species.

1.3 Crop domestication as a step towards reproductive iso-

lation

My PhD project was primarily motivated by the understanding of the mechanisms involved

in the early set-up of barrier loci. The challenges here were double: I aimed to design a tool

that e�ciently detected barrier loci in highly challenging conditions (recent time splits, sel�ng

species) but that also allowed cross-species comparisons to gain insights into general mecha-

nisms. Within this framework, the biological models provided by crops and their wild relatives

appeared to be particularly relevant, furnishing ideal empirical datasets to investigate questions

related to RI. The upcoming section, co-authored and recently published in the American Jour-

nal of Botany, provides a concise explanation for this choice, outlining the anticipated bene�ts

of these models in addressing key questions on RI while advocating for the development of new

detection tools (M. I. Tenaillon et al. 2023).
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1.3.1 Background

Speciation, Darwin's mystery of mysteries, is a continuous process that results in genomic

divergence accompanied by the gradual increment of reproductive barriers between lineages.

Since the beginning of research on the genetics of speciation, several questions have emerged

such as: What are the genetic bases of incompatibilities? How many loci are necessary to

prevent hybridization and how are they distributed along genomes? Can speciation occur

despite gene �ow and how common is ecological speciation? Early stages of divergence are

key to understanding the ecology and genetics of speciation, and semi-isolated species where

hybrids can still be produced are particularly relevant. Here we argue that the recent divergence

between wild and domesticated lineages is an excellent model to capture the very-�rst steps of

reproductive barriers formation, and will bring novel insights into the speciation process.

1.3.2 Why is domestication a good model to study speciation?

Domestication is the process of divergent selection between wild forms undergoing natural selec-

tion in their habitats, and domesticates evolving under combined natural and human-mediated

selection. It has been increasingly recognized that evolution of domesticated species shows

many similarities with evolution in the wild: it results primarily from changing environmental

conditions and involves unconscious selection under a protracted process (Purugganan 2019)

with selection intensities of the same magnitude or even smaller (Yang et al. 2019). Thus,

domestication has been considered as a choice example to study adaptation. Here, we argue

that it also o�ers an excellent opportunity to catch the very-�rst processes at work in ecological

speciation, where adaptive divergence between nascent lineages triggers the onset of reproduc-

tive isolation (RI). Allele di�erentiation resulting from divergent selection can be measured by

FST . FST between wild and domestic pairs range between 0.05 in sweet cherry and 0.51 in

Tomato (Appendix S1, and references herein; see Supplemental Data with this article), which

cover a wide range of divergence within a �grey zone of speciation� in which barriers to gene

�ow exist but are not complete (Roux et al. 2016). Interestingly, within this continuum, self-

fertilizing taxa display greater genetic di�erentiation than outcrossers (Figure 1.7). As mating

systems are predicted to a�ect the speciation process, domestication also o�ers the opportu-

nity to address this question (Marie-Orleach et al. 2022). In contrast, life span seems to have

no signi�cant e�ect on divergence (Figure 1.7), although annuals and perennials experience

contrasted domestication dynamics in many respects (Gaut et al. 2015).

The existence of reproductive barriers between wild and domesticated plants has been re-

peatedly documented. Despite the occurrence of wild-cultivated gene �ow, the establishment of

wild alleles into domesticated populations and reciprocally � introgressions � is rare (Ellstrand

et al. 2013). Perhaps the best documented examples come from maize, where the introgres-

sion from the mexicana teosinte subspecies has contributed to highland adaptation of maize

landraces (Calfee et al. 2021); and conversely, introgression from locally-adapted maize has con-

tributed to teosinte adaptation in Europe (Le Corre et al. 2020). Interestingly, introgressions in
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Figure 1.7: The grey zone of speciation as de�ned by Roux et al. (2016) encompasses the
range of allele di�erentiation between wild and domestic forms across 27 plant species. Upper
panel: Data illustrating the grey zone of speciation are taken from (Roux et al. 2016). FST

values (x-axis) were computed for 61 pairs of animal populations/species across sequenced loci
(natural divergence/speciation). The posterior probability of ongoing migration (y-axis) for
a given pair re�ects the capacity of demographic models that allow for ongoing exchange of
migrants between diverging lineages to predict the observed data compared to models where
gene �ow has stopped. The light grey rectangle spans the range of FST values in which both
currently isolated and currently connected pairs are found, and therefore de�nes the co-called
grey zone of speciation. Lower panel: Black dots along the x-axis correspond to FST values
obtained for 27 wild/domestic plant species. FST values for plant species were used to compute
boxplots for annual (/biannual) species and perennial species. Boxplots are colored according
to mating system.
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the two directions are removed by selection around domestication genes (Le Corre et al. 2020;

Calfee et al. 2021). This points to a prominent role of pre- and post-zygotic genetic barriers

in the divergence of wild and domesticated lineages, and some genes involved in reproductive

barriers have been identi�ed such as the Tcb1 locus in maize that governs pollen rejection by

teosinte (Lu et al. 2019).

Whether partial isolation between wild and domesticated forms will ultimately result in full

speciation is unknown. But clearly, partial RI does occur and has contributed to the mainte-

nance of the distinct features between wild and domesticated forms, the so-called domestication

syndrome. RI therefore stands as a major component of the domestication syndrome, but has

been so far largely ignored (Dempewolf et al. 2012). It is even possible that reinforcement

played a role in the establishment of the domestication syndrome, which involves the evolution

of stronger RI due to the costs associated with producing low-�tness hybrids (Rushworth et al.

2022).

1.3.3 The genetic bases of reproductive isolation

The establishment of reproductive barriers can occur through various mechanisms. Selection

leading to the �xation of advantageous alleles in di�erent environments, resulting in local

adaptation, can cause hybrid o�spring to have lower �tness in parental environments, which

strengthens isolation as populations adapt to di�ering conditions. This process may contribute

to RI between wild and domesticated forms, and some crops may already be considered as

independently evolving lineage once human-mediated cessation of gene �ow is complete. Loci

involved in such adaptation, those governing domestication traits, display a high degree of

di�erentiation between wild and domesticated forms as well as a pattern of positive selection

within forms compared with neutral loci (Figure 1.8). They contribute to limiting e�ective

gene �ow at nearby loci, leading to the progressive buildup of the so-called genomic islands of

divergence (Wolf and Ellegren 2017).

RI may also be promoted by the buildup of intrinsic barriers from the di�erential �xation

of alleles that are incompatible at two or more interacting loci (Bateson-Dobzhansky-Muller

Incompatibilities � BDMIs). Such BDMIs can evolve as a by-product of local adaptation to

contrasting environments or through non-adaptative processes (Wolf and Ellegren 2017). If

selection favors distinct mutational steps at several loci in each population, deleterious side

e�ect interactions may arise when brought together in hybrids. These interactions may in turn

provoke detrimental symptoms and/or Transmission Ratio Distortions (TRDs) at F2 generation

for recessive alleles, contributing to intrinsic post-zygotic isolation.

In domesticated forms, the accumulation of deleterious mutations through domestication

bottlenecks and linked selection may have accelerated the evolution of BDMIs between wild

and domesticated forms. The loci underlying BDMIs should display genomic �ngerprints that

can be similar to those left by selection for habitat adaptation in domestic or wild populations

(Figure 2). However, in the absence of intra-form selection, we expect increased divergence

between forms while the level of polymorphism is not a�ected by the cessation of gene �ow
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Figure 1.8: Theoretical expectations of summary statistics under divergence with gene �ow
in wild and domestic populations. Patterns of allele di�erentiation (FST ), divergence (Dxy)
and diversity within the domesticated populations (π) are displayed along the chromosome
around three loci (black arrows) evolving under distinct scenarios: selective sweep at a locus
involved in environmental adaptation and/or governing a domestication trait (domestication
locus), neutrality (neutral locus), gene �ow arrest at a locus that contributes to RI between
populations (barrier locus). Representative genealogies of eight individuals from two divergent
populations, a domestic population 1 and a wild population 2 are displayed (adapted from
Hejase et al. (2020)). At a neutral locus and under continuous gene �ow (light grey vertical
bar), no allelic di�erentiation (FST = 0) is observed between populations that behave as a single
population. Allelic di�erentiation (FST > 0) can be initiated either because the time to the
most recent common ancestor � TMRCAs are represented by black circles for population 1 and 2
� is reduced by a selective sweep (light orange rectangle) in one of the two populations, in this
case the domestic population 1; or because the time to the �rst cross-coalescence between the
populations (diamond) is increased by selection against gene �ow (barrier locus, solid vertical
bar). Note that in all graphs, the TMRCA of the population 2 is also the TMRCA of wild and
domestic populations.
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(Figure 1.8). This illustrates how the use of di�erent statistics helps to clarify the mechanisms at

work in RI (Cruickshank and Hahn 2014). There is of course a continuum of scenarios between

those presented above: the barrier loci that limit gene �ow between wild and domesticates can

be directly targeted by selection within one of the two forms.

A particular kind of negative epistatic interaction can emerge as a by-product of coevolu-

tion between nuclear and cytoplasmic genomes. If di�erent combinations have coevolved in

divergent lineages, this may result in organelle dysfunction and hybrid breakdown when inter-

lineage crosses occur (Burton et al. 2013). Such negative cytonuclear con�icts often result in

asymmetrical reproductive barriers, which can be revealed by reciprocal crosses between wild

and domesticated lineages as observed in Citrus (Wang and al 2022).

Finally, reproductive barriers may result from parental con�icts generating allelic dosage

perturbations. If species have evolved contrasting levels of parental con�icts, it can translate

into paternal or maternal excess of gene expression in a hybrid context (Florez-Rueda et al.

2016). As evidenced by transcriptomic comparisons of wild and domestic forms (e.g., common

bean, Bellucci et al. (2014); tomato, Sauvage et al. (2017)) and simulations (Burban et al.

2022), domestication led to a profound reorchestration of coexpression networks, which can

then cause disruptions in allelic dosage between wild and domestic forms resulting in �tness

decline in wild x domesticated crosses.

1.3.4 Hypotheses testing & challenges

Do the number of generations since domestication correlate with hybrid defects? Does the

mutation load depend on the domestication history and the strength of RI? Do �stronger� do-

mestication syndromes and/or higher genome-wide neutral divergence and/or extent of islands

of di�erentiation induce stronger isolation? Answering these questions will bring unique in-

sights into the very-�rst steps of reproductive barriers formation, but detecting barrier genes

is a daunting task. Divergent selection and BDMIs among loci create patterns of strong allelic

di�erentiation relative to the genomic background (Figure 1.8) that together with linked loci,

form genomic islands of di�erentiation. Their detection requires overcoming confounding e�ects

such as local variation in recombination rates and e�ective population size (Wolf and Ellegren

2017). At the species level, parameters such as mating system, intensity of domestication and

changes in e�ective population size (e.g., due to domestication bottlenecks) determine the ex-

tent of selection, genetic drift and linkage disequilibrium, and in turn the expected size and

depth of islands of di�erentiation. Ultimately, interpretations of genomic di�erentiation pat-

terns need to be guided by modelling in order to properly estimate the fraction of the genome

recalcitrant to gene �ow and identify the corresponding regions, which can then be combined

to experimental results.
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1.3.5 Conclusion

The alterations of habitats due to human activities are precious laboratories to explore the

mechanisms involved in adaptive divergence and the initial phases of speciation (Thompson

et al. 2018; Touchard et al. 2023). The establishment of RI between wild and domestic forms

is a crucial aspect of domestication that has received little attention. In addition to providing

basic information about the processes at work in the early stages of speciation, testing for

cross-compatibility between cultivated plants and their wild relatives and detecting the under-

lying barrier loci are essential for overcoming them. Crops wild relatives have faced continuous

environmental challenges in their natural environment and often exhibit greater genetic diver-

sity than their domesticated relatives, so they are a valuable reservoir of adaptive alleles that

transferred to crops could help mitigate their vulnerability.

1.4 Thesis objectives

Understanding the genetic mechanisms underlying reproductive isolation is a primary objective

in speciation research. Analyzing diverging populations is a common approach, but capturing

the sequence of events that lead to reproductive barriers remains challenging. One promising

avenue involves comparing populations at varying levels of temporal and/or spatial divergence,

including recently diverged ones. Achieving this necessitates a comparative framework capable

of detecting gene �ow barriers at di�erent evolutionary stages across diverse biological systems,

regardless of their demographic history. The introduced method, RIDGE (Reproductive Iso-

lation Detection using Genomic Polymorphisms), aims to address this need. The �rst chapter

of the thesis - accepted manuscript - consists of a description of RIDGE and an evaluation of

its performance in detecting gene �ow barriers both by simulations and on empirical datasets

from crow species. The second chapter is more technical and provides a detailed manual for

RIDGE while supporting the choices that have been made following extensive trials and im-

provements made to the pipeline - the manual and code are open source and available online

at https://github.com/EwenBurban/RIDGE.git The third chapter presents contrasted appli-

cation of RIDGE on domesticated crops, encompassing a range of biological contexts, mating

systems, and divergence histories, leading to change in RIDGE performances in barrier detec-

tion. This chapter explains how to evaluate the results and eventually how to improve them.
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Chapter 2

RIDGE, a tool tailored to detect gene

�ow barriers across species pairs

This chapter consists of our recently accepted article in Molecular Ecology Resources, which

describes RIDGE and evaluates its performance at detecting gene �ow barriers by simulation

and on empirical datasets. See Appendix A for additional �gures and tables.

Ewen Burban, Maud I. Tenaillon, Sylvain Glémin

2.1 Abstract

Characterizing the processes underlying reproductive isolation between diverging lineages is cen-

tral to understanding speciation. Here, we present RIDGE � Reproductive Isolation Detection

using Genomic polymorphisms � a tool tailored for quantifying gene �ow barrier proportion and

identifying the relevant genomic regions. RIDGE relies on an Approximate Bayesian Computa-

tion with a model-averaging approach to accommodate diverse scenarios of lineage divergence.

It captures heterogeneity in e�ective migration rate along the genome while accounting for

variation in linked selection and recombination. The barrier detection test relies on numerous

summary statistics to compute a Bayes factor, o�ering a robust statistical framework that facil-

itates cross-species comparisons. Simulations revealed RIDGE's e�ciency in capturing signals

of ongoing migration. Model averaging proved particularly valuable in scenarios of high model

uncertainty where no migration or migration homogeneity can be wrongly assumed, typically

for recent divergence times < 0.1 2Ne generations. Applying RIDGE to four published crow

datasets, we �rst validated our tool by identifying a well-known large genomic region associated

with mate choice patterns. Second, while we identi�ed a signi�cant overlap of outlier loci using

RIDGE and traditional genomic scans, a substantial portion of previously identi�ed outliers

might be false positives. The utilization of RIDGE for outlier detection accommodates a diver-

sity of demographic scenarios, and relies signi�cantly on allele di�erentiation, relative measures

of divergence, and the count of shared polymorphisms and �xed di�erences. Our analyses also
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highlight the value of incorporating multiple summary statistics including our newly developed

outlier one that can be useful in challenging conditions.

Keywords: Speciation; Reproductive isolation; gene �ow barrier detection; approximate

bayesian computation; Hybrid zones; Crows.

2.2 Introduction

The process of speciation involves a gradual and divergent evolution of populations, passing

through conditions of semi-isolated species, named the �grey zone of speciation� (De Queiroz

2007; Roux et al. 2016), until complete genetic isolation is achieved resulting in the formation

of distinct species (Wu 2001). Population divergence can occur through various scenarios,

ranging from the complete absence of genetic exchanges, known as allopatric speciation (e.g.,

due to geographical barriers between populations), to almost unrestricted genetic exchanges in

sympatric speciation. These extreme scenarios are not mutually exclusive, as genetic exchanges

can reoccur after a period of allopatric divergence followed by secondary contacts (Schluter

2001). Regardless of the scenario, the question of how reproductive isolation is established

between divergent populations is central to understanding speciation. This involves comparing

the proportion and identity of the relevant genomic regions across biological systems (Delmore

et al. 2018; Fraisse et al. 2021; Schluter 2001).

Extensive exploration of the genomic bases of speciation have been conducted, in particular

in the case of ecological speciation where environmental disparities among populations drive

both phenotypic divergence and reproductive isolation (Rundle and Nosil 2005; Schluter 2000;

Shafer and Wolf 2013). A recurrently observed pattern is that pre-mating reproductive isolation

is facilitated by the physical linkage between genes that govern reproductive isolation and those

responsible for divergent traits, which can potentially result from adaptation to contrasted

environmental conditions. The gradual establishment of linkage disequilibrium between these

genes can then lead to the progressive arrest of gene �ow during the speciation process (Schluter

and Rieseberg 2022).

For example, in stickleback �sh, divergent mate preferences have been mapped to the same

set of genomic regions controlling body size, shape, and ecological niche utilization (Bay et al.

2017). Another striking example concerns the genomic determinants of mate selection based

on feather color patterns in carrion and hooded crows (Metzler et al. 2021; Poelstra et al.

2014). Speci�cally, genes encoding feather pigmentation and genes responsible for perceiving

color patterns have been identi�ed within the same 1.95 Mb region of chromosome 18. This

region displays signi�cant genetic di�erentiation between carrion and hooded crows. Similarly,

in the neotropical butter�ies Heliconius cydno and melopomene, assortative mating patterns

correlate with a genomic region proximate to optix, a crucial locus in�uencing distinct wing color

patterns between these species (Merrill et al. 2019). Note that, inversions can help build linkage

disequilibrium by generating large genomic regions of suppressed recombination, maintaining
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combinations of co-adapted alleles encoding ecologically relevant traits. For example, in three

species of wild sun�owers, 37 large non-recombining haplotype blocks (1-100 Mbp in size)

contribute to strong prezygotic isolation between ecotypes through multiple traits such as soil,

climate, and �owering characteristics (Todesco et al. 2020).

Another key genetic mechanism involved in speciation is the epistatic interaction between

genes that produce deleterious phenotypes in hybridization, also known asBateson-Dobzhansky-

Muller Incompatibility (BDMI) (Gavrilets 2003). Across Arabidopsis thaliana strains, epistatic

interactions between alleles from two loci located on separate chromosomes, resulted in an

autoimmune-like responses in F1 hybrids (Bomblies et al. 2007). A more recent example in ver-

tebrates concerns the Swordtail �sh species, Xiphophorus birchmanni and X. malinche, where

interaction between two genes generates a malignant melanoma in hybrids associated with

strong viability selection (Powell et al. 2020).

As population-wide genomic data increase, genome-scan approaches enable a more system-

atic search of the genetic factors behind reproductive isolation. One popular approach relies

on the search for genomic islands of elevated di�erentiation compared with the genomic back-

ground, typically through FST scans (Wolf and Ellegren 2017). However, it is now widely

recognized that processes other than selection against gene �ow can generate such islands. For

example, selective sweeps and background selection against deleterious alleles both decrease

genetic diversity at linked sites especially in low recombination regions (B. Charlesworth et al.

1993; Charlesworth and Jensen 2021; Kaplan et al. 1989). Because gene �ow barriers are more

likely to occur in functional regions, they are also more a�ected by those forms of selection,

further complicating the distinction of gene �ow reduction (Ravinet et al. 2017). Demography,

which a�ects the entirety of the genome, is also key to account for barrier detection because

barrier loci are harder to identify when the time split is recent and/or the migration rate is

low (Sakamoto and Innan 2019). Yet, recent splits of partially isolated taxa are of paramount

interest in speciation research as they allow access to the key determinants of reproductive iso-

lation while avoiding the confusion with other di�erences accumulated since speciation (M. I.

Tenaillon et al. 2023).

Linked selection (at least some forms of) can be approximated by a local reduction in ef-

fective population size (Cruickshank and Hahn 2014; Ravinet et al. 2017; Sakamoto and Innan

2019) and several methods have proposed to decouple its e�ect from the heterogeneity in e�ec-

tive migration rate to detect gene �ow barrier on genomic polymorphism patterns (Fraisse et al.

2021; Laetsch et al. 2023; Sethuraman et al. 2019; Sousa et al. 2013). These methods relax the

assumption that all loci share the same demography. Some of them use likelihood methods to

directly estimate and decouple the e�ects of di�erential introgression and demography across

genomic loci (Laetsch et al. 2023; Sethuraman et al. 2019; Sousa et al. 2013). However, they

make speci�c assumptions about demography. For example, gIMble simulates population diver-

gence under isolation with migration (IM) only, thereby considering no variation in migration

rate through time (Laetsch et al. 2023). DILS proposes a more �exible approximate Bayesian

computation (ABC) approach relying four demographic models that include migration rate
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variation through time while accounting for genomic heterogeneity in e�ective population size

Ne (to mimic linked selection) and in e�ective migration me (to mimic gene �ow barriers). This

account of genomic heterogeneity has been shown to enhance the quality of model inferences

(Roux et al. 2014). Second, the method infers the migration model at the locus scale � arrest

of migration vs migration similar to the genome-wide level �, conditioned on the chosen model

(Fraisse et al. 2021). Although e�ective in detecting gene �ow barrier, this reliance on the

initial model choice restricts comparability among species pairs.

Overall, an adequate method to identify potential reproductive isolation barriers would re-

quire a cross-species comparative framework that takes genomic heterogeneity into account,

while making analysis comparable despite di�erences in demographic histories. Here, we pro-

pose an innovative method to identify gene �ow barrier loci satisfying these requirements and

that also quanti�es the con�dence in locus detection. We used an ABC-based model aver-

aging approach that accounts for di�erent modalities of divergence between pairs of popula-

tions/taxons. We considered both heterogeneity in Ne along the genome, by modeling the

mosaic e�ect of linked selection as in the DILS program (Fraisse et al. 2021), and heterogeneity

in recombination, by including an option for the user to provide a recombination map. In addi-

tion, we relied on a number of classic summary statistics but also incorporated new ones, related

to outlier detection, which improved the inferences of barrier loci. Finally, the method provides

Bayes factors associated with barrier detection, which facilitate cross-species comparisons.

2.3 Material and Methods

2.3.1 RIDGE pipeline

RIDGE utilizes ABC based on random forest (RF) to detect barrier loci between two diverging

populations in the line of the framework proposed in DILS (Fraisse et al. 2021). The observed

data consist of a set of loci sequenced on several individuals of the two populations. The gen-

eral principle of RIDGE is as follows: �rst, we simulate 14 demographic x genomic models to

produce a reference table. This table serves to train one RF per parameter that generates corre-

sponding estimate of each parameter in addition to providing weights for each model according

to their �t to the target (observed) dataset. Second, we construct a hypermodel where the pos-

terior distribution of each parameter is obtained as the weighted average over the 14 models.

Finally, we use this hypermodel to produce datasets for control loci (thereafter non-barrier)

and barrier loci that have undergone no gene �ow during divergence. Simulated datasets are

employed to train a second RF model that subsequently calculates posterior probabilities and

associated Bayes factors for categorizing each locus as barrier or non-barrier. RIDGE was exe-

cuted using Snakemake (v7.7.0) with Singularity as the container manager. Data visualization

was conducted using R v 4.1.2 (R Core Team 2021) and involved the utilization of the following

packages: ggpubr (Kassambara 2020), scales (Wickham 2018), FactoMineR (Le et al. 2008),

factoextra (Kassambara and Mundt 2017) and latex2exp (Meschiari 2023).
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ABC Summary statistics

ABC inferences rely on summary statistics that are computed either at the locus-level or across

loci i.e. genome-wide distributions of summary statistics and correlations among loci, and either

within- or between- populations. For a given observed dataset, the number of loci used for con-

struction of the hypermodel is set by the user. To reduce computation time for large datasets, a

subset of loci can be randomly sampled to represent the whole genome (by default, we used 1000

loci). For each locus, RIDGE computes the following within population statistics: the number

of Single Nucleotide Polymorphisms - SNPs (S), π (Nei and Li 1979b), Watterson θ (Watterson

1975b), as well as Tajima's D (Tajima 1989). As measures of population di�erentiation be-

tween populations, RIDGE computes FST (Bhatia et al. 2013; Hudson et al. 1992), the absolute

(Dxy) and the net (Da) divergence (Nei and Li 1979b), the summary of the joint Site Frequency

Spectrum (jSFS) (Wakeley and Hey 1997) with ss (the proportion of shared polymorphisms

between populations), sf (the proportion of �xed di�erences between populations), sxA and sxB

(the proportion of exclusive polymorphisms to each population). Across loci, RIDGE computes

the mean, the median and the standard deviation for each summary statistic described above.

In addition, RIDGE computes the Pearson correlation coe�cient between Dxy and FST and

between Da and FST . Regarding speci�c jSFS status, RIDGE determines the number of loci

that contains both shared polymorphisms (ss > 0) and �xed di�erences (sf > 0) between pop-

ulations, ss+sf+ and following the same rational ss+sf−, ss−sf+, ss−sf−. These statistics are

commonly used in ABC to simplify the jSFS while keeping the most relevant information (e.g.

in DILS, (Fraisse et al. 2021)). To obtain better insights into the proportion of barriers, we

introduced new statistics: the proportion of outlier loci, de�ned as the proportion of loci that

exceeds certain thresholds for FST , Dxy, sf , Da and ss while falling below certain thresholds

for π and θ. The thresholds are determined using Tukey's fences: tmin = Q1 − 1.5 ∗ (Q3 −Q1)

and tmax = Q3 + 1.5 ∗ (Q3 −Q1), for the lower and upper thresholds respectively, where Q1 is

quantile at 25% and Q3 the quantile at 75% (Tukey 1977). All summary statistics are computed

using the python packages scikit-allel (Miles et al. 2021) and numpy (Harris et al. 2020).

Coalescence simulations

We simulated the evolution of neutral loci (1000 by default) under 14 demographic x genomic

models using the scrm simulator (Staab et al. 2015), an e�cient ms-like program (Hudson

2002). We stored corresponding simulation parameters as well as all summary statistics in the

reference table.

Demographic models RIDGE simulates the split of a single ancestral population of e�ective

sizeNa, in two daughter populations of sizeN1 andN2 at time Tsplit. Four di�erent demographic

models are considered as in DILS (Fraisse et al. 2021) (Figure 2.1: Demographic and genomic

models): (1) strict isolation with no migration (SI), (2) isolation with constant migration rate

since (IM), (3) secondary contact with no migration after the split until a secondary contact

at time occurs (SC), and (4) ancestral migration with migration occurring initially and ceasing
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Figure 2.1: Demographic models implemented in RIDGE. The hypermodel combines all four
demographic models considered: Strict Isolation (SI), Ancestral Migration (AM), Secondary
contacts (SC) and Isolation-Migration (IM) plus genomic models. In the hypermodel, an ances-
tral population of e�ective size Na split at Tsplit in two populations of e�ective size N1 and N2.
At TAM ancestral migration ceases, and it restarts at the time of secondary contact, TSC . manc

and mcur denote the ancestral and current migration rates between populations, respectively.
To �t in the hypermodel, each of the four demographic models adopt speci�c values for four of
the parameters as indicated below each graph. For example, under SI, TAM is set to Tsplit as
there is no ancestral migration, and TSC is set to 0 as there is no secondary contact, and so are
manc and mcur. Note that under IM, in order to model uninterrupted gene �ow, we considered
TAM = TSC = K ∗ Tsplit where K is a random value drawn from a uniform distribution in
[0, 1]. These demographic models are then combined with four genomic models: homogenous
or heterogenous Ne (1N , 2N) and homogeneous and heterogenous m (1m, 2m). For the SI
model there are only two possible genomic models (1N or 2N) because there is no migration.
This yields 14 models in total.
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after time (AM). Migration rate m is assumed to be symmetrical between the two populations.

Genomic models In addition to modeling demography, RIDGE also incorporates hetero-

geneity in e�ective population size along the genome generated by linked selection, and het-

erogeneity in e�ective migration generated by selection against migrants at barrier loci. Thus,

demographic models are combined with two e�ective population size modalities (homo-N vs

hetero-N) and with two migration rate modalities (homo-m vs hetero-m), so that four genomic

models are considered, except for the SI model where there is no migration and only two ge-

nomic models (homo-N and hetero-N). This gives 14 demographic x genomic models. For

simplicity, genomic models are named using a combination of 1N (homo-N), 2N (hetero-N),

1m (homo-m), 2m (hetero-m). While in the 1N modality all loci display the same e�ective

population size genome-wide, heterogeneity of e�ective population size under 2N , is modeled

by a rescaled Beta distribution. E�ective size at locus i is given by:

Ni = N̄ .
α + β

α
.B(α, β) (2.1)

where B(α, β) is a Beta distribution with parameter α and β and N̄ is the mean e�ective

population size across the genome. In other words, under 2N and for a given locus, three

independent values are sampled from the same B(α, β) distribution albeit distinct N̄ are used

in equation 2.1 so that there is no covariation of the e�ective population size across popula-

tions. For migration (m), the genome-wide heterogeneity in e�ective migration is modeled by a

Bernouilli distribution where a proportion Q of loci displays m = 0 and a proportion 1−Q loci

displays m > 0, m designating either the current migration (mcur) or the ancestral migration

(manc). Likewise, we referred to the proportion of barriers under current (Qcur) and ancestral

(Qanc) migration. It is important to note that coalescent simulations use the scaled parameter

M = 4∗Ne ∗m, and M (rather than m) is the standard way to report migration rate. Variable

M across the genome can thus be due to variation in Ne alone, m alone or both. For example,

in hetero-N and homo-m models, M is variable across the genome but its variation parallels

variation in Ne. This approach di�ers from the one implemented in DILS where Ne can be

variable but M �xed, which implicitly implies that m is proportional to 1/4Ne and can thus

over-detect heterogeneity in m. Also note that under 2N2m models, variations in Ne and m

are assumed to be independent. RIDGE assumes that all loci are independent and experience

a genome-wide homogeneous mutation rate (µ, set by the user) and recombination rate (r, set

by the user) unless a recombination map is provided, in which case locus-speci�c recombination

rates are given by the recombination map.

Generation of the reference table

RIDGE explores 14 demographic x genomic models of divergence using a hypermodel that inte-

grates them all. This model contains 12 parameters, eight demographic parameters (Na,N1,N2,

Tsplit,TAM ,TSC ,mcur,manc) as described in Figure 2.1, and four genomic parameters (α, β,Qanc, Qcur).
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Regarding the demographic parameters, population sizes (Na, N1, N2) and times (Tsplit, TAM , TSC)

are sampled in uniform distributions with boundaries speci�ed by the user. Migration rates

are drawn from a truncated log-uniform distribution, with the boundary also speci�ed by the

user. We used log-normal instead of uniform distributions as migration a�ects most statistics

in a non-linear, multiplicative way. Preliminary simulations showed that it improved the per-

formance of migration estimation. Note that depending on the considered demographic model,

some of the parameters are set to 0 (Table A.1, Figure 2.1). For example, under SI, only four

demographic parameters are estimated (Table A.1). Regarding the genomic parameters, pa-

rameters of the Beta distribution and the Q parameter, are sampled in a uniform distribution

where α, β ∈ [0, 10] and Qanc, Qcur ∈ [0, Qmax]. Qmax is the maximal proportion of the genome

under gene �ow barrier set by the user. RIDGE produces the reference table from a set of

simulations with parameters sampled from these prior distributions.

Point estimates and goodness-of-�t of posteriors

RIDGE utilizes the reference table for training a regression RF model (Raynal et al. 2019).

This model produces point estimates for the predicted values of each parameter and assigns

weights to simulations based on their proximity to the real data using the regAbcrf function.

The weight for each simulation is calculated as the mean of the weights across all parameters.

Subsequently, a set of simulations (and their corresponding parameter values) are subsampled

in proportion of these average weights to represent a set of simulations that better match the

observed data. This subsample of the reference table is referred to as the posterior table. Note

that subsampling of parameters according to the averaged weights over simulations e�ectively

account for the non-independence of parameters. We evaluated the goodness of �t of the poste-

rior distributions using an enhanced version of the g�t function of the abc packages (Csillery et

al. 2012), which employs a goodness-of-�t statistics approach described in Lemaire et al. (2016)

and summarized here. To assess the goodness-of-�t of the posterior Gpost, we followed these

steps: �rst, summary statistics (in both observed dataset and posterior table) are normalized

by their mean absolute deviation determined from the posteriors table. Then, we computed

the Euclidean distance between each summary statistics computed from the observed dataset

and those computed from each η simulation contained in the posterior table. Together it form

a vector of Euclidean distances d1. . . dη on which we computed the average, denoted Dpost. To

derive the null distribution of Gpost, we considered a dataset randomly sampled in the posterior

table as �observed� and discarded from subsequent analyzes. The remaining η − 1 datasets of

the reference table were used to compute D′
post, the average Euclidean distance between the

posterior table and the �observed� dataset. Repeated as such Z times, we obtained a vector of

D1
post

′...DZ
post

′. Then we computed Gpost as the proportion of values for which D′
post > Dpost

Detection of barrier loci

Each set of parameters of the posterior table is used to generate two sets of individual-locus

simulations, one set for non-barrier loci (m equals to the value of the posterior table) and one
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set for barrier loci (m set to 0), with two corresponding per-locus reference tables. The RF

algorithm (abcrf package) was trained on these per-locus reference tables to predict the most

probable status of each locus, either barrier (model x1) or non-barrier (model x2). Since there

are only two models, the posterior probabilities satis�ed: P [X1] = 1 − P [X2] so that we were

able to compute a Bayes Factor (BF) for each locus i, denoted as BFi:

BFi = E

[
1−Q

Q

]
.

(
P [X1]

1− P [X1]

)
(2.2)

Here, E[] represent the average of 1 − Q̂ and Q̂ over the posterior distribution obtained from

the hypermodel. Q can be zero in the empirical distribution, so the ratio unde�ned. Instead of

removing zero values that makes the BF highly stochastic from one simulation to another, we

used the following approximation (based on the Taylor expansion of the expectation of a ratio

of random variables):

BFi =

(
E[1−Q]

E[Q]
+

V [Q]

E[Q]3

)
.

(
P [X1]

1− P [X1]

)
(2.3)

2.3.2 Evaluation of RIDGE performance on pseudo-observed datasets

We evaluated RIDGE performance on pseudo-observed datasets (i.e., simulated datasets con-

sidered as �observed� data and compared with simulation outputs to validate the accuracy and

reliability of the simulation models). As a �rst step, we evaluated the ability of RIDGE to

correctly infer demographic x genomic models. We next used the pseudo-observed datasets to

evaluate the accuracy of RIDGE in estimating the proportion of barrier loci, and detecting their

locations throughout the genome. SI model where all loci should be detected as barriers was

used as a positive control. We simulated pseudo-observed datasets under the four demographic

models and under both 2N2m and 2N1m genomic models (only 2N for SI). For simplicity, we

�xed Na = N1 = N2 = 50000 individuals. The time of the secondary contact (TSC) was set to

0.2 ∗ Tsplit and the time of arrest of ancestral migration (TAM) was set to 0.7 ∗ Tsplit. We used

a range of parameter values (Table A.2) for divergence (from 1000 to 2 million generations,

i.e., from 0.1 to 20 in 2Ne generation unit), for migration (mean M = 4Nem = 1 and 10), and

barrier loci proportion (Q = 1%, 5% or 10%). We set the mutation rate to µ = 1.10−8 and

the recombination rate to r = 1.10−7 so that their ratio was 10. In total, we simulated 15

000 datasets using the scrm coalescent simulator (Staab et al. 2015). Each multilocus dataset

contained 1000 loci of 10kb each, and we performed 100 replicates per scenario. To evaluate

the inference of demographic x genomic models, we calculated the goodness-of-�t of the esti-

mated model and determined the contribution of each model to the estimation of posteriors

obtained from pseudo-data sets. Contributions were evaluated through four criteria: (i) the

average weight of the simulated demographic (among the four) model called here the �correct�

model, (ii) the average weight of 2m models, (iii) the average weight of 2N models, and (iv) the

average weight of models displaying current migration. We also compared the point estimates

obtained from simulations with the input parameter values. Next, we assessed our ability to
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detect barrier loci using the Area Under the Curve (AUC) of the Receiver Operating Charac-

teristic (ROC) curve. The ROC curve relates the false positive rate (FPR) to the true positive

rate (TPR) and provides insights into the discriminant power of a method. The AUC of the

ROC ranges from 0 to 1. An AUC of 0.5 indicates that FPR and TPR are equal irrespective

of the threshold, which implies a random classi�cation of loci into barrier and non-barrier loci

while an AUC of 1 indicates perfect classi�cation. Additionally, we computed the precision as

the number of true positives (TP) divided by the sum of true positives and false positives (TP

+ FP).

2.3.3 Application to experimental data on crow hybrid zones

To assess the performance of RIDGE on experimental data, we focused on two published

datasets produced by Poelstra et al. (2014) and Vijay et al. (2016). All sequencing data

from crows were extracted from NCBI database under project number PRJNA192205 and

the reference genome used to map them is GCF_000738735.1. In the �rst one, a comparison

was made between 30 individuals of Corvus corone (carrion crows) populations from Spain

and Germany, and 30 individuals of the C. cornix (hooded crows) population from Poland

and Sweden. In the second one, three crow contact zones, among which two well-characterized

hybrid zones, with similar divergent times around 80 000 generations are described, from

the most recently-diverged pair C. corone - C. cornix (RX), to the most anciently-diverged C.

cornix - C. orientalis (XO) and C. orientalis - C. pectoralis (OP) pairs (Vijay et al. 2016). This

dataset consisted of 124 sequenced individuals. The number of individuals sampled varied for

each pair (RX: 15-14 individuals; XO: 6-6 individuals; OP: 5-3 individuals). All alignments were

done on a reference genome (NCBI assembly: GCF_000738735.1) consisting of 1299 sca�olds

resulted in the detection of 16,064,921 common SNPs with an average density of 15 SNPs per

kilobase. Previous genome-wide scans across the three pairs identi�ed a number of candidate

loci potentially involved in population/species divergence (Vijay et al. 2016). Two metrics

were employed in those scans: (i) a Z-transformed FST computed on 50 kb non-overlapping

windows between population/species pairs and normalized by the local level of Z-transformed

FST from allopatric pairs, denoted as FST
′, (ii) an unsupervised genome-wide recognition of

local relationship pattern using Hidden Markov Model and a Self Organising Map (HMM-

SOM) method implemented in Saguaro (Zamani et al. 2013) to identify local phylogenetic

relationships based on matrices of pairwise distance measures, across each of the target hybrid

zones. Here, we applied RIDGE on 50 kb non-overlapping windows considering a mutation rate

of 3.10−9 for both datasets as is Poelstra et al. (2014) and Vijay et al. (2016). We therefore

focused on sca�olds longer than 50 kb, which accounted for 9% of the total sca�olds but

represented 98% of the genome, corresponding to 20,975 windows. Prior bounds are given in

Table A.3, and were determined based on the observed datasets and results of analysis from

Vijay et al. (2016). First, we compared Bayes factor outliers (BF > 50) from RIDGE results

with outlier loci detected in Poelstra et al. (2014) to assess the ability of RIDGE to correctly

detect barrier loci. Secondarily, we analyzed RIDGE results produced on three species pairs
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on a lager dataset (Vijay et al. 2016) to understand how BF correlate with summary statistics

and which summary statistics are able to discriminate outlier loci (BF > 50).

2.4 Results

2.4.1 Demographic inferences

The RIDGE's ability to infer demographic parameters, measured by the goodness of �t of pos-

teriors (Gpost), far exceeded the rejection threshold of 5% and was stable across all models and

conditions tested in pseudo-observed datasets (Figure 2.2 & A.1). However, the model's contri-

bution to the estimation of the demographic and genomic parameters varied across conditions.

The percentage of simulations correctly attributed to the correct model increased with the time

split (Tsplit) (reaching over 51% for IM, 51% for SI, 60% for AM and up to 84% for SC) (Figure

2.3). Consistently, we observed that the more recent the time split, the more balanced the

contribution of di�erent demographic models, and the greater the uncertainty surrounding the

designation of a model (Figure 2.3 and A.2). For recent time splits, the choice of model is

thus arbitrary, highlighting the increased utility of the model averaging approach under these

conditions. Next, we investigated in greater details the consequences of model misspeci�cation.

We trained RIDGE using a reference table generated under IM 2N2m and then applied it to

pseudo-observed data created under both SC and AM 2N2m utilizing IM 2N2m (the �correct�

model�) as a control. Our results revealed a signi�cant impact of model misspeci�cation on

Gpost for Tsplit = 1.106 (Figure A.3A). More importantly, the AUC fell below 0.5 and exhibited

a sharp decrease for oldest when AM model was chosen (Figure A.3B). This underscores that,

while IM and SC displayed similar outputs, opting for the AM model drastically increases the

false positive rate.

The percentage of simulations correctly detecting the presence or absence of ongoing mi-

gration increased with (97.6% and 98.4% at 106 generation for IM and SC against 5.3% for

AM, Figure 2.3). Heterogeneous migration (2m) was better captured under ongoing rather

than ancestral migration but even under the most favorable conditions, 25% of the simula-

tions exhibited consistent patterns of homogeneous migration where barriers were undetectable

(Figure 2.3). This once again emphasizes the enhanced value of employing the model averaging

approach. The detection of the heterogeneity in population size (2N) varied little across Tsplit

but tended to be more e�ectively detected under recent Tsplit, irrespective of the demographic

model (Figure 2.3). Overall, these results indicated that while the correct demographic model

was accurately inferred only under speci�c conditions, the occurrence of current migration was

generally well captured.

We also examined the speci�c point estimates associated with each parameter. The accu-

racy of T̂split estimation was only slightly a�ected by the proportion of barriers and migration

rate, closely approximating the simulated value irrespective of the demographic model (Figure

S4). Similar patterns were observed for T̂AM and T̂SC albeit TSC tended to be slightly overesti-

mated (Figure A.5). As increased, estimates of current population sizes N̂1 and N̂2 improved,
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Figure 2.3: Demographic x genomic model weights in posteriors across time splits. Weight
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55



AM IM SC

0.1
(1.10⁴)

1
(1.10⁵)

2
(2.10⁵)

10
(1.10⁶)

0.1
(1.10⁴)

1
(1.10⁵)

2
(2.10⁵)

10
(1.10⁶)

0.1
(1.10⁴)

1
(1.10⁵)

2
(2.10⁵)

10
(1.10⁶)

0.000

0.025

0.050

0.075

0.100

0.125

Tsplit in 2Ne generations (in generations)

Q
 (

e
s

ti
m

a
te

d
)

Q (true) 0 0.01 0.05 0.1
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deviation as error bars. Results overall conditions explored are represented in Figure A.8.

approaching simulated values when Tsplit reached 1.105 generations (Figure A.6). Estimates of

past population size N̂a is theoretically possible if TMRCA ≤ 4Ne in each diverging population

(with TMRCA the coalescent time of the Most Recent Common Ancestor). When Tsplit >> 4Ne

most sequences are expected to coalesce before TMRCA so that less signal is available for N̂a

inference. In our case, TMRCA ≈ 4Ne = 2.105 generations, and N̂a deteriorated beyond this

value, converging towards the prior mean (Figure A.6). Current migration estimates (M̂cur)

were more reliable than ancestral migration ones (M̂anc). The proportion of barriers had mini-

mal impact on M̂anc, under SC and IM models (Figure A.7). Deeper Tsplit resulted in greater

migration signal and therefore improved the accuracy of M̂cur (Figure A.7 & Figure A.8 left).

In contrast, Tsplit had no clear e�ect on M̂anc (Figure A.8 & A.9).

2.4.2 Inferences of barrier proportion

The barrier proportion estimate,Q̂, plays a crucial role in the computation of Bayes factors (Eq

2.2) and the detection of barrier loci. We obtained reliable estimates of the barrier proportion,

Q̂, when there was current migration (IM and SC models) and when Tsplit exceeded 1.105

generations (Figure 2.4 & A.10). For more recent Tsplit (< 0.2 2Ne generations, approximately),

Q̂ was not properly estimated and converged to the prior mean, indicating that RIDGE lacks

power to discriminate between barrier and non-barrier loci. Irrespective of the conditions, Q̂

was unreliable under ancestral migration (AM model), except for both high migration rate and

divergence time. Under the SI model, for which the proportion of barriers has no signi�cance,

the estimates corresponded to the prior mean. The Q parameter had a minimal impact on the
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e�ective migration rate as shown in Figure A.8 and, reciprocally M had little impact on Q̂

(Figure S10), so that was expected to exhibit a weak correlation with the genome-wide level of

genetic di�erentiation/divergence between populations, as measured by statistics such as FST ,

Da, and Dxy. We therefore introduced additional summary statistics based on the proportions

of outliers for FST , Da, Dxy, sf , ss and π. To assess the usefulness of these new statistics,

we compared Q̂ estimated with or without them. Overall, outlier statistics reduced estimation

errors by 8.4%. They were particularly e�ective in improving Q̂ under challenging conditions

for barrier proportion estimation, such as when migration was low (M ≤ 1) and the proportion

of barriers was small Q ≤ 1% (Figure A.11). The impact of outlier statistics varied across

models and Tsplit values (Table A.4). At Tsplit = 1.104, results remained di�cult to interpret

with variation in the signs of correlations. For Tsplit > 1.104, under the AM model Da outliers

positively correlated with Q̂ (pearson r > 0.51), while under the IM and SC models both sf

and ss outliers exhibited a positive correlation with (r > 0.88). At Tsplit = 1.106, Q̂ additionally

correlated with Dxy for all models (Table A.4).

2.4.3 Detection of barrier loci

The parameter Tsplit plays a crucial role in detecting gene �ow barriers. This is because the

contrast between gene �ow barriers and the rest of the genome increases with Tsplit as illustrated

in Figure 2.5A. As increased, the overlap between the space of summary statistics occupied

by barrier and non-barrier loci decreased resulting in a more pronounced shift between the

corresponding BF distributions (Figure 2.5A & B). A consistent signal was observed on posterior

probability distributions where under IM, a single mode was detected for the most recent Tsplit =

1.104 while two modes corresponding to barrier and non-barrier loci emerged for older time

splits (Figure A.12). Note that, as expected, the SI model produce a single mode distribution

irrespective of Tsplit where all loci become barriers as Tsplit increases (Figure A.12). To quantify

the discriminant power of RIDGE, we used the area under the curve (AUC) of the receiver

operating characteristic (ROC), as depicted in Figure 2.5C. When was low, the AUC remained

close to 0.5, indicating no power to detect barriers. This was con�rmed by similar distributions

of posterior probabilities under SI and IM for Tsplit = 1.104 (Figure A.12). Our results on

pseudo-observed data demonstrated that both the ability to detect barriers (measured by the

AUC of the ROC) and the precision in barrier detection (measured by the PV/P ratio) increased

with Tsplit (Figure 2.6). Moreover, barriers were more e�ciently detected and at lower Tsplit

under current (IM and SC models) than ancestral gene �ow (AM model) as shown in Figure

A.10 & A.11. Noteworthy, the AUC never dropped below 0.5, indicating that RIDGE did not

generate an excess of false positives (Figure A.13 & A.14).

2.4.4 Detection of barrier loci on crow datasets

Poelstra et al. (2014) identi�ed a highly divergent region on sca�old 78 and 60, which contained

multiple genes identi�ed through genomic scan, functional analysis, and di�erential expression.
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Figure 2.5: Impact of the divergence time on the overlap between barrier and non-barrier
loci. Overlap revealed by a principal component analysis (PCA) computed on all 14 summary
statistics (A), the log of the bayes factor (BF) produced by RIDGE (B) and the area under the
ROC curve (AUC) of the bayes factor (C). The greater the AUC the higher the discriminant
power is. A single pseudo-observed dataset was used for each of the three values of Tsplit Datasets
were simulated under an IM 2N2m model, with the following parameters: 4Nem = 10 and
Q = 10%.
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These genes are involved in the melanogenesis pathway and visual perception. This region

was thus considered by the author as a "speciation island" allowing for the maintenance of

phenotypic di�erences between crows based on color phenotypes and color-assortative mate

choice. We ran RIDGE on the same dataset using the same window size as in Poelstra et

al. (2014). Our analysis successfully �tted the observed data, with a goodness of �t indicated

by Gpost = 0.29. The estimated value of T̂split in 2Ne generation is T̂split/2N̂e = 0.25 (Table

A.5), indicating that we were within a favorable range for RIDGE to e�ectively detect gene

�ow barriers. The distribution of Bayes Factors (BF) was clearly bimodal with a distinct group

of outliers (BF > 50), which accounted for 0.13% of the genome (Figure 2.7B). Interestingly,

among these outlier loci, four genes (CACNG1, CACNG4, PRKCA, and RSG9) were also

found by Poelstra et al. (2014) and located on sca�old 78 (Figure 2.7C). The probability of

detecting the same four genes just by chance was low (p = 2.04.10−6).We next applied RIDGE

on a genome-wide dataset produced for three pairs of Corvus species that form hybrid zones

(pair RX: C. corone - C. cornix; pair XO: C. cornix - C. orientalis; pair OP: C. orientalis - C.

pectoralis) where current gene �ow is detected (Vijay et al. 2016). For a single pair of crow

species, the program took approximately 1 883 000 seconds of CPU runtime on four CPUs

running at a minimum of 2.5GHz. Therefore, in real-time, it took around 36 hours for the

whole dataset on a cluster of 280 CPUs, which takes into account server latencies, job queues,

and CPU availability. The goodness-of-�t of the demographic parameters inferred by RIDGE

was similar across all three pairs (RX: 0.33; XO: 0.21; OP: 0.26). The ratio of T̂split/2N̂e = 0.25

was approximately 0.3 for all three pairs (RX: 0.28; XO: 0.27; OP: 0.31; Table A.5), suggesting
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Figure 2.7: Results of the analysis conducted using RIDGE on the crow hybrid zone between
carrion and hooded crows. PCA computed on summary statistics obtained from 50kb-windows
along genomes with axes 1 and 2 (only 4 of 14 summary statistics are represented), where
each datapoints (windows) are colored according to the values of Bayes factors (A). Blues
diamonds represent loci detected in Poelstra et al. (2014), yellow diamonds indicate loci detected
by RIDGE that exceeded the population-speci�c Bayes factor threshold, and red diamonds
represent loci detected both in Poelstra et al. (2014) and RIDGE. Distribution of Bayes factors
across the genome (B). Genomic landscape of sca�old 78 and 60 through bayes factor, FST ,
shared polymorphism (ss) and diversity (π) (C). Data are fromPoelstra et al. (2014)
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a comfort zone for RIDGE to detect gene �ow barriers in all three datasets.

PCA analyses colored by BF show a main group of outliers (characterized by elevated FST

and/or Da and/or reduced level of diversity in all four pairs Figure 2.7A & 2.8 & A.15). Those

signals were consistent with some theoretical expectations for gene �ow barriers (i.e., increased

Da, sf , FST , and reduced ss and diversity), but almost no relationship with Dxy. In each pair,

we identi�ed a subset of loci with elevated Bayes factors (BF > 50) clearly separated from

the genome-wide distribution (Figure 2.8C). These subsets detected on a per-locus basis (RX:

0.12%; XO: 0.02%; OP: 0.17%), represented smaller proportions than the expected proportion

estimated in the general model, Q̂ (RX: 4.9%; XO: 4.8%; OP: 4.7%) but still fell within the

credibility intervals (Figure 2.8B & A.5).

We found signi�cant overlap between our outliers and those of Vijay et al. (2016) for the

RX and OP pairs (69% and 28%, respectively, Figure 2.8A & B). For XO, we only detected

four candidates, which makes the comparison di�cult with Vijay et al. (2016) although using

a less stringent BF > 10, the overlap was signi�cant (p = 0.007). The BF revealed various

correlation patterns among the three pairs, with FST and Da being consistently strongly pos-

itively correlated with BF and ss being consistently negatively correlated with BF but to a

lesser extent (Figure 2.9).

2.5 Discussion

A key goal of speciation research is to elucidate the genetic mechanisms behind reproductive

isolation. Although diverging populations have been analyzed in many studies, a challenging

aspect remains the ability to capture the sequence of events that lead to the establishment

of reproductive barriers. To answer this question, one approach is to compare populations

that exhibit varying degrees of temporal and/or spatial divergence, including recently diverged

ones. This requires the use of a comparative framework capable of detecting barriers to gene

�ow at both early and ancient stages across diverse biological systems, independently of their

demographic history. In this context, we introduce RIDGE, a tool designed to facilitate this

task.

2.5.1 RIDGE o�ers a comparative framework where current migra-

tion is well captured

Currently, two methods explicitly model heterogeneity in the e�ective migration rate across

the genome. Both tools utilize variations in e�ective population size to approximate selective

e�ects along the genome. DILS (Fraisse et al. 2021) uses an ABC framework under four demo-

graphic models of divergence (SI, IM, SC, AM) to assess alternative models of e�ective migra-

tion's homogeneity/heterogeneity and provides corresponding genome-wide estimates. While

not primarily designed to perform barrier detection, DILS can still provide valuable insights

on potential barrier loci, conditioned on the selected demographic model (Fraisse et al. 2021).

There are however two main limits to this approach. Firstly, selecting a model can be rather
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Figure 2.8: Barrier loci detection by RIDGE on three crow hybrid zones. PCA computed on
summary statistics obtained from 50kb-windows along genomes with axes 1 and 2 (A) and
1 and 3 (B) displayed. Datapoints (windows) are colored according to the values of Bayes
factors. Blue diamonds represent loci detected in Vijay et al. (2016), yellow diamonds indicate
loci detected by RIDGE that exceeded the population-speci�c Bayes factor threshold, and red
diamonds represent loci detected both in Vijay et al. (2016) and RIDGE. Distribution of Bayes
factor values for each species pair (C). The histogram inside the �gure shows the Bayes factor
distribution of detected loci, which are the loci exceeding the population-speci�c Bayes factor
threshold indicated by the violet dashed line. Black dashed line indicate the Bayes factor
threshold based on the estimated barrier proportion Q̂. Data are from Vijay et al. (2016).
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arbitrary when two models explain the data equally well, which is often the case when diver-

gence is shallow between populations (as shown in Fraisse et al. (2021) and con�rmed here,

Figure 2.3 and A.2); and model misspeci�cation can have strong consequences on the rate

of false positives (Figure A.3). Secondly, the use of potentially di�erent demographic models

complicates comparison across species pairs. gIMble (Laetsch et al. 2023) relies on composite

likelihood to identify windows of unexpected level of e�ective migration along the genome. It

�rst computes a general homogeneous model (homo-N , homo-m) and then �ts a model for each

window yielding local estimate of Ne and m. Then it uses a parametric bootstrap approach to

assess the statistical signi�cance of a putative barrier. However, because it relies on likelihood

computation, gIMBle is less �exible than ABC methods and can only handle the IM model,

while secondary contacts may be rather frequent in nature (ex: (Leroy et al. 2020; Roux et al.

2016; Camille Roux et al. 2013; Vijay et al. 2016)).

RIDGE builds on DILS, o�ering a high degree of model �exibility, while proposing a compar-

ative framework. In order to do so, RIDGE employs a model averaging approach by assigning

weights to each demographic x genomic model without directing the user's choice towards a

single model. In addition, model averaging is also useful in reducing the uncertainty on pa-

rameter estimation when individual models present high variance (Dormann et al. 2018). Our

results show that model averaging is especially relevant when data o�ers little discriminant

power. For example, when Tsplit is low, the discriminatory power of summary statistics is re-

duced, resulting in similar assignation to all models (Figure 2.3). Opting for the best scenario

under such conditions might be misleading. For example, at Tsplit = 0.1 ∗ 2Ne, when current

migration is simulated (IM or SC models), it is detected in only 60% of the cases (Figure

2.3), thus potentially leading to the selection of the SI or AM models, thereby impeding the

estimation of gene �ow barriers. In contrast, the model averaging approach always provides an

estimate of the proportion of gene �ow barrier with a credibility interval, which can be large

and include 0 when the statistical power is low. RIDGE thus allows for formal comparison of

any datasets despite di�erences in demographic history and/or statistical power.

In addition, compared to DILS, RIDGE makes another improvement in the way heterogene-

ity of migration is modeled. DILS models separately the heterogeneity in Ne and M = 4Nem,

which can lead to unrealistic scenarios where m is inversely proportional to Ne (when Ne is

heterogeneous and M constant), which should in�ate the detection of heterogeneity in migra-

tion rate. To illustrate it, we ran a modi�ed version of RIDGE on the crow datasets where

migration is modeled as in DILS (constant or variable M instead of m, independently of Ne).

Employing the DILS-like version resulted in the detection of numerous additional putative bar-

riers, some of which were challenging to interpret (e.g., high diversity and relatively low FST ).

Moreover, the correlations between Bayes factors (BF) and summary statistics varied across

datasets, lacking a clear interpretation for the RX and XO pairs.

A direct consequence of using a demographic x genomic hypermodel is that RIDGE is not

intended for precise estimation of a demographic model and its underlying parameters but

rather to address demography as a confounding factor in the detection of gene �ow barriers.
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High and stable values of goodness of �t across models and conditions indicate that we achieved

this goal (Figure 2.2 & A.1) and more moderately for complex/real scenario as for crow datasets

(Table A.5) where the goodness-of-�t is lower (Gpost 0.9 for simulated datasets,Gpost 0.25 for

crow datasets). However, as expected, the accuracy of parameter estimation largely depends

on the divergence time (Figure A.6-A.9). Similar to DILS (Fraisse et al. 2021), the correct

model's contribution to parameter estimation and the detection of ongoing migration increases

with divergence time (Figure 2.3). Overall, current migration is well captured, both in model

weights and in parameter estimation (Figure 2.3, Figure A.7).

This is well illustrated with the analysis of the crow datasets. After the ice cap had retreated

in Europe around 10,000 years ago (≈ 2000 crow generation), the ancestors of remnant carrion

(C. corone) and hooded crow (C. cornix ) populations met in a secondary contact in Central

Europe, forming a narrow and stable hybrid zone (Knief et al. 2019; Metzler et al. 2021;

Poelstra et al. 2014). Based on the sampling by Poelstra et al. (2014), which covers a wide

geographic area away from the central European hybrid zone, RIDGE favored the correct

scenario, especially the occurrence of ongoing migration (model weight for SC = 45% and

IM=44%) (Table A.6). Similar results were obtained for the RX hybrid zone with IM at 43%

and SC at 39%. Overall, in all four datasets the current status of migration has been correctly

captured with ongoing migration accounting for the majority of the model weight (RX: 82% ;

XO: 84%; OP: 91%; (Poelstra et al. 2014): 89%).

2.5.2 Informative summary statistics are context-dependent

One drawback of the ABC approach is that parameter inference relies on summary statistics

to capture the genomic signal. Historically, FST , a measure of relative divergence, has been the

most widely used statistic in genome scans (Wolf and Ellegren 2017). To avoid the confounding

e�ect of reduced diversity in either of the compared populations due to other causes than

barrier to migration (Cruickshank and Hahn 2014; Ravinet et al. 2017), it is now common

practice to combine it to absolute measure of divergence (Dxy) to other related statistics such

as net divergence (Da) or the number of �xed di�erences (sf) (Han et al. 2017; Hejase et al.

2020). Here, we devised a new set of summary statistics based on outlier detection, and proved

them to be useful for estimating barrier proportions. The reasoning was that loci showing local

increase in divergence (measured by FST , Dxy, Da, sf , ss) and decrease in diversity would

generate outliers in the genome wide divergence and diversity distributions. Our results show

that outlier statistics mostly contribute to Q̂ under moderate gene �ow (M = 1), and mainly for

low level of barrier proportion (Q < 0.1) (Figure A.11) where estimation of barrier proportion

may be challenging.

Interestingly, the set of summary statistics that e�ectively capture the signal of barrier loci

slightly di�ered among datasets, as illustrated with the three pairs of crows (Figure 2.9). For

the three pairs, FST and Da strongly correlated with BF and contributed the most to barrier

detection, in agreement with theoretical predictions (Cruickshank and Hahn 2014). Quite

unexpectedly, however, Dxy did correlate with BF and did not contribute to barrier detection.
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A possible explanation is that, at low divergence, variations inDxy mainly re�ect local variations

in Ne (as con�rmed by the strong positive association with π in the PCA, Figure A.15) while

the main signal of variation in migration rate is already captured by Da. Other statistics also

correlated with BF but at lower and variable levels in the three datasets, and, similarly outliers

correlated di�erently to the PCA axes (Figure 2.8 and A.15). These di�erence in genomic

signatures may re�ect the di�erence in the environment in which incipient crow species evolved,

but also the di�erence in the geographical area covered by the hybrid zone (Vijay et al. 2016).

These examples illustrate that considering a few statistics in the detection of barrier loci

can be misleading as signatures can be complex and context-dependent. It thus advocates

for the use of a more inclusive approach as implemented in the BF derived from the random-

forest-based ABC approach of RIDGE. One contribution of the Random Forest (RF) is to

reduce the curse of dimensionality (Bellman and Kalaba 1959), which improves accuracy and

computation time, RF also makes ABC a calibration-free problem by automating the inclusion

of summary statistics (Raynal et al. 2019). In return, a possible drawback is that RF results

are less interpretable due to their complex nature. Indeed, even if the abcrf package provides

a way to understand the contribution of variables to parameters estimations, it still remains

di�cult to interpret the RF decision for a speci�c locus.

2.5.3 Detection of barrier loci using RIDGE

We validated the ability of RIDGE to detect gene �ow barriers on empirical datasets from

Poelstra et al. (2014) and Vijay et al. (2016). In particular, we clearly detected the large

and well-established region of sca�old 78 on chromosome 18. It contains major loci that are

involved in mate choice patterns between C.corone and C.cornix (RX) (Knief et al. 2019;

Metzler et al. 2021; Poelstra et al. 2014). The study by Vijay et al. (2016) was conducted on

three species pairs that had similar demographic histories. For all three pairs of populations,

we identi�ed a portion of loci exhibiting elevated BF. For the RX and OP pairs, we found

less loci than previously detected by Vijay et al. (2016) but a signi�cant overlap between the

two set of genes. Using a rather stringent threshold of BF > 50, 69% (for RX) and 28%

(for OP) of the loci that RIDGE detected were also identi�ed by Vijay et al. (2016). For

the three pairs, Vijay et al. (2016) detected (many) more loci than RIDGE. On average these

additional loci, not detected by RIDGE, displayed low diversity without distinctive divergence

patterns. This observation can be attributed to the confounding e�ect of the heterogeneity

in Ne, not explicitly accounted for in Vijay et al. (2016) and which is a classic pitfall of FST

scan approaches (Cruickshank and Hahn 2014). The fact that RIDGE detected only a limited

number of loci displaying such a pattern implies that it e�ectively circumvents this problem.

For the XO pair, its wide spatial range � three to seven times wider than the hybrid zone

of RX pair � leads to a reduction in selection strength as documented in Vijay et al. (2016),

and consequently, candidate regions in our results exhibit shallow divergence patterns (Figure

2.8). Furthermore, since low signal can increase noise in detection results, we did not detect

any direct overlap between the candidate XO gene from Vijay et al. (2016) and our results.
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However, when examining the regions surrounding the candidate gene, we observed common

regions such as the gene LRP5, which was consistently present in XO and OP pairs in Vijay

and was consistently located at a distance of 50 kb from an outlier locus in our results.

2.5.4 Bene�ts of RIDGE and Guidelines for it uses

RIDGE relies on an ABC approach that o�ers a lot of �exibility, enabling it to explore ge-

nomic heterogeneity and to incorporate customized summary statistics. We have also devised

a method for generating multidimensional parameter estimates, extending beyond the initial

single-parameter focus of abcrf (Raynal et al. 2019). This improvement enables RIDGE to

deal e�ectively with parameter interdependencies and increase the precision of parameter es-

timations. Another improvement introduced by RIDGE is the incorporation of Bayes factors,

facilitating result comparisons. In addition, RIDGE explicitly models variation in the migra-

tion rate, m rather than the population-scaled migration rate (4Nem) as in DILS (Fraisse et al.

2021) which results is a much more stringent detection of barrier loci. Our interpretation is

that by �xing both Ne and 4Nem as in DILS, the heterogeneity of migration, m, tends to be

too frequently inferred because it allows reconciling the observed patterns for di�erent statis-

tics. One limitation of RIDGE is the need to de�ne a priori the size of windows, an arbitrary

choice that can pose problems in cross-species comparisons. One possible improvement would

be to de�ne windows size based on the genetic instead of the physical distance when a genetic

map is available. Alternatively, one could use criteria based on local topologies to segment

the genome into windows, as implemented in Saguaro, which relies on a Hidden Markov Chain

model coupled with unsupervised pattern recognition and classi�cation algorithms (Zamani et

al. 2013).

The simulated datasets we explored gave us guidelines for the conditions where RIDGE can

provide useful and accurate results. We suggest to use datasets with SNP density higher than

0.1%, such as in crows and simulated datasets, where the SNP density was around 1%. We

also advise to use a minimum of three samples per population. The goodness-of-�t statistics

enables users to check the quality of inferences made. If Gpost < 5%, the user should verify the

prior bounds. The guidelines for interpreting and thresholding BF depend on the user's goals.

If RIDGE is used solely to discover new candidate genes involved in gene �ow barriers for a

speci�c population pair, we recommend using a customized threshold that optimally captures

Bayes factor outliers. For the purpose of comparison, it is recommended to use a standard

threshold for all datasets, for example BF > 50 or 100, or to keep the number of outlier

loci corresponding to the proportion of barriers estimated in the �rst step of RIDGE (Q̂). In

addition, it also important to consider the whole distribution of BF (or posterior probability)

to help interpreting the results. For example, under the SI model (with su�cient divergence)

all loci or a large proportion of loci appear as barrier but the global distribution is unimodal

in sharp contrast with an IM model with barriers, which presents a clear bimodal distribution

(Figure A.12).

Crucially, genomic data alone cannot provide conclusive evidence of barrier loci and so
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RIDGE results should be coupled with other analysis such as functional analysis (Ravinet et

al. 2017). It is worth noting that window length (default set to 10 kb) can signi�cantly a�ect the

results of RIDGE. It should be determined according to the extent of linkage disequilibrium as

well as the level of diversity, since it determines the amount of polymorphism and consequently

a�ects the strength of the signal.

As is the case with all ABC approaches, the quality of the priors given by the user a�ects

the results obtained using RIDGE. A Tsplit of 0.1 2Ne generations (10,000 generations in our

simulations) appears to be a lower bound for both demography (Figure 2.4 & 2.5) and bar-

rier inferences (Figure 2.6), below which RIDGE fails to capture informative signals. RIDGE

can detect gene �ow barriers on both simulated (Figure 2.6) and empirical data (Figure 2.7),

starting at 0.1 2Ne generation, which represents a very low level of divergence. For context,

DILS correctly inferred a gene �ow barrier when Tsplit > 0.5 2Ne generations, while gIMble

only demonstrated its e�ectiveness on one pair of Heliconius species that diverged 4.5 million

generations ago, estimated to represent 0.49 2Ne generations (Martin et al. 2015).

Comparative approaches have been useful in understanding the genomic basis involved in

the process of reproductive isolation (e.g. Roux et al. (2016)) and they will continue to play an

important role in speciation research. By its �exibility and its comparative framework, RIDGE

should become a useful tool to follow this direction.
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Chapter 3

Approach method

This chapter outlines the technical and conceptual enhancements integrated into DILS to trans-

form it into RIDGE. Technical intricacies of RIDGE are then discussed, providing a comprehen-

sive description of each input �le within the pipeline, explaining script functions, and examining

resulting �les. As an illustration, I applied RIDGE to the example dataset provided with the

code, explaining the step-by-step procedure.

3.1 From DILS to RIDGE

As mentioned before, RIDGE was developed using DILS (Fraisse et al. 2021) as base code. At

the beginning of the project, RIDGE was supposed to be a slightly modi�ed version of DILS

devoted to the detection of barriers. Modi�cation after modi�cation, the whole code has been

rewritten to incorporate all necessary features and to allow robust and reliable barrier detection.

In this part, I present the major changes that I added to RIDGE during the development, the

conceptual reasons that motivated these changes and their e�ects on the results. In the end, I

present how RIDGE works.

3.1.1 Reducing the simulation time

Simulation time represents roughly 80% to 90% of the runtime of RIDGE. So even if runtime is

not the �rst priority in my work, having a pipeline that takes a reasonably low amount of time to

run allowed me to test a wider range of conditions and features. DILS uses a derived version of

the program ms (Hudson 2002), called msnsam (Ross-Ibarra et al. 2008), which allows the use

of a vector of values rather than a single value for a parameter, generating multiple simulations

with di�erent parameter values. This property of msnsam allows DILS to simulate a dataset

with genomic heterogeneity without calling the program for each individual locus in the dataset,

reducing the complexity of the code. The runtime performances of msnsam are the same as ms.

One major limitation of ms and msnsam is that they become very slow when the ratio of ρ/θ

becomes high. For context, one single run of RIDGE implies simulating 14 scenarios * 10 000

replicates * 1 000 loci, which makes 141 million independent loci. In the literature, there are

two candidate coalescent simulation programs that can replace ms using the same syntax and
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Figure 3.1: Run time in seconds to simulate 1.105 locus of 1kb with a �xed value of θ = 20. Only
2 haploid individuals per locus are generated. Benchmark runs were done with a processor at
2.5 GHz. Command used for scrm is scrm 2 100000 -t 20 -r {set value} 1000 -l 100r

; command used for ms is ms 2 100000 -t 20 -r {set value} 1000 and msprime com-
mand used is mspms 2 100000 -t 20 �recombination-rate {set value} �length 1000,
using following recombination rate value: 0, 2, 20, 200, 1000, 2000, 10000, 20000.
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provide better performance: scrm (Staab et al. 2015) and msprime (Baumdicker et al. 2022).

scrm is a program that aims speci�cally to simulate faster using approximate coalescence for

recombination. msprime is an e�cient coalescent simulator using tree sequence data structure.

In real data, the ratio ρ/θ can vary a lot and go up to 1000. In such conditions, simulation

times of msnsam and ms become very high. To illustrate this problem, I simulated 2 haploid

individuals for 1.105 loci of 1kb with a �xed theta value of 20 and varying values of ρ/θ, ranging

from 0 to 1000. For simulations, I used ms program, msprime, and scrm with the recombination

approximation parameter set to "100r" (this is the recommended value by the authors to gain in

runtime without generating too much deviation from ms). The results show that at low values

of ρ/θ (<50), the di�erence between among programs is negligible, but when ρ/θ increases,

scrm and msprime are 2 to 4 times faster than ms (Figure 3.1). For example, assuming a value

of ρ/θ = 500, to run a single simulation, scrm takes 0.14 s and ms takes 0.532 s for loci of 1kb

size. Under the same condition, if running RIDGE on 70 cores, it would take about 3 days with

scrm or msprime, whereas with ms it would take about 12 days.

The challenge was to implement genomic heterogeneity using scrm or msprime. Because

both programs do not o�er the possibility to input a vector of n locus at once, we have to

call the program for each locus. But there is a crucial di�erence between scrm and msprime.

msprime is encoded in Python whereas scrm is in C++. This di�erence is noticeable when we

call the program multiple times. In the previous example, I only called the program once and

asked it to generate 1.105 locus under the same conditions. To illustrate the di�erence, I called

scrm and msprime 100 times to generate the sequence of one locus for two haploid individuals

each time with a θ of 20. The run time for 100 loci of msprime is 23,846 s, whereas it's 0.189

s for scrm. In conclusion, for the case of RIDGE, I chose to use scrm with the recombination

approximation parameter set to "100r".

3.1.2 The log uniform distribution of migration parameter in priors

During di�erent tests, it appeared that our results delivered poorl estimates "low" values of

migration (M < 1) (Figure 3.2 method uniform), an observation also made with DILS (see

Figure 5E from Fraisse et al. (2021)). Because we set a uniform prior covering three orders of

magnitude for M ∈ [0.1; 50], random draws values predominantly cover values between M = 10

and M = 50. Hence, the random forest algorithm was primarly trained under conditions where

M < 10 was rare. The e�ect of migration on FST (Fig 3.3) is nonlinear, which argues for the

use of a higher prior density toward small rather than elevated values of M . To address this

problem, a log-uniform distribution is used (see Fig 3.2) in RIDGE.

3.1.3 Model averaging & joint parameter estimates powered by ran-

dom forest

To perform parameter estimates, DILS chooses the model that best �ts the data and then esti-

mates the parameters of the best model. The detection of gene �ow barriers is contingent upon
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Figure 3.2: Performance of migrant rate M (M = 4 ∗ Ne ∗ m) parameter estimate, using a
uniform or a log uniform distribution to generate priors. Plain lines represent the loess (locally
estimated scatterplot smoothing). The dashed line represents x = y. Under each condition 10
000 pseudo-observed dataset under IM_2N_2m model are simulated using random parameter
values distributed between bounds M ∈ [0.1; 50]. Parameter estimation was done with the
�predict� function on regAbcrf (from abcrf R packages) using 1000 trees. X and Y axes are in
log scale.

Figure 3.3: Evolution of FST with the migration rate, assuming that E[FST ] = 1/(1 +M)

this step, as the search for barriers occurs only when the best-�tting model includes migration

heterogeneity. This is a major limitation for comparative studies. RIDGE instead uses model
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Figure 3.4: Goodness of �t of posterior (A) and AUC of ROC curve of barrier detection (B),
generated using model averaging (plain lines) or generated forcing RIDGE to allocate a model
weight of 100% to IM_2N_2m model (dotted lines, called �wrong� in legend) under each Tsplit

condition. Dataset was simulated with M = 10 and Q = 0.1.

averaging to avoid the best-model choice step. DILS estimatse demographic parameters sepa-

rately using a machine learning algorithm (regAbcrf from abcrf R package ; Pudlo et al. (2016),

and nnet R package ; Venables and Ripley (2002)), but parameters are highly correlated and

accounting for these correlations may greatly improve parameter estimations. To solve this

problem, RIDGE estimates jointly all parameters. These two improvements are detailed below.

Model averaging

Classic model averaging methods relie on models' weight. To obtain model weight, our �rst

idea was to use the proportion of trees votes for each model as a proxy to model weight. But

using tree votes, mean implicitly that each tree has the same weight, which is wrong. Indeed,

in a random forest, some trees are less informative than others, as they are more or less able

to classify data. Giving the same weight to each tree adds noise to the signal and reduces

discriminant power. Instead of inferring model weight, RIDGE uses all simulated datasets to

build a hypermodel that accounts for all possible scenarios, allowing the RF to directly estimate

hypermodel parameters, and implicitly weighting models. The model weight can be quanti�ed

as the proportion of simulations from a speci�c model within the posteriors. The signi�cance

of model averaging was demonstrated by comparing the results obtained through averaging

with those obtained by forcing RIDGE to allocate 100% of model weight into a single model

(IM_2N_2m). For small Tsplit values, model averaging is relevant because it is di�cult to

choose the correct model (see Figure A.2). For large Tsplit values, model averaging prevents

a reduction in goodness of �t and barrier detection power due to errors in model selection.

The goodness of �t of posterior was reduced, and the barrier detection ability for the dataset

simulated under SC and AM demographic models at high split time (Tsplit > 1T/2Ne) was also
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Figure 3.5: Distribution of Bayes factors simulating migration using M (DILS like method) or
m.

reduced (Figure 3.4).

Joint parameter estimates

Parameters in demographic models are extremely correlated. For example, to estimate Tsplit

from divergence D, where D = 2 ∗ Tsplit + 4Neµ, one must take the population size Ne into

account (assuming a constant mutation rate, µ). Ideally, one would like to infer the correla-

tion between parameters in the observed dataset and then, from parameter speci�c posterior

distribution, to create a joint distribution in which one could sample posterior parameter val-

ues. In theory the CovRegAbcrf (Raynal et al. 2019) should allow us to estimate covariance

between parameters in a dataset, but our test was not satisfying. So RIDGE uses a di�erent

method based on the weights attributed by the random forest. When the regAbcrf (Raynal

et al. 2019) function performs a prediction, it attributes a weight to each simulated dataset

of the reference table, and the prediction of a given parameter is the weighted mean of the

reference table parameter values. The higher the weight value, the greater the contribution

of the simulated parameter values to the parameter estimation RIDGE computes the average

weight across all parameters - joint weights - for each dataset from the reference table, and

uses it to sub-sample parameters sets in the reference table to generate posterior parameters.

RIDGE therefore implicitly accounts for the non-independence of parameters.

3.1.4 Migration rate versus e�ective number of migrants

There are two common ways to use migration rate: (i) the number of e�ective migrants at

each generation, denoted as M , where M = 4 ∗ Ne ∗m, and (ii) the migration rate, m. DILS

(Fraisse et al. 2021) simulates migration by modulating M = 4 ∗ Ne ∗ m rather than m, so
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Figure 3.6: Comparison of correlations of BF with the summary statistics of crow dataset
presented in Vijay et al. (2016) simulating migration using m (left) or M (DILS-like method,
right). Circle size represents the absolute value of correlation and coloration the value of
correlation.

that m is automatically adjusted along the genome to achieve a given M value according to

Ne. Hence, in the case of hetero-Ne and homo-m, variation in Ne along the genome therefore

automatically translates into variation in M and we expect hetero-Ne hetero-M models to be

often wrongly infered. This causes a bias toward barrier detection. In RIDGE, we decided

to simulate migration through m, which appears more biologically realistic. M can thus vary

along the genome because of variations in Ne, in m, or both. As we expected, this change

reduced the number of barrier loci detected in some cases. For example, taking the 'corone -

cornix ' pair (RX) examined in the crow dataset (see 2.4), the number of loci exhibiting a BF

> 50 was reduced from 958 to 26 loci (see Figure 3.5). Examination of the correlation between

summary statistics and Bayes factors, using either m or M to model migration, reveal results

more consistent with our expectations with the former. In particular, the summary statistics

that are the most correlated with Bayes factors are those linked to divergence, such as Dxy, Da,

ss, and sf . In contrast, the use of M displays a pattern with contrasted correlations not easily

interpretable and, in some cases, with no summary statistics involved in barrier detection (see

Figure 3.6). Further data analyzes reveal that the loci identi�ed as barriers using M (referred

as "M") in the "corone - cornix" dataset exhibit a pattern similar to the rest of the genome,

unlike loci that are consistently identi�ed as barriers using both methods (referred as "m", see

Figure 3.7). This means that the "M" loci are likely false positives resulting from the M -based

approach. Therefore, we chose to implement the simulations of migration using m rather than

M .
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Figure 3.8: Distribution of the number of per-window SNPs for barrier and non-barrier loci in
the maize dataset detected using the �hetero θ� option. The dashed line distinguishes low and
high SNP density barrier loci

3.1.5 Taking heterogeneity of data quality or mutation rate into ac-

count

DILS assumes a uniform mutation rate and recombination rate across the entire genome. Ini-

tially, RIDGE only took into account the heterogeneity of the recombination landscape. How-

ever, in certain analyses, such as the one presented in the next chapter using a maize dataset

(refer to chapter 4 for more detailed results), it was observed that 24% of the genome was cate-

gorized as barriers. Upon closer examination of the results, it became apparent that among the

loci classi�ed as barriers, the majority were devoid of polymorphisms. This could be attributed

either as a mutation cold spot or inadequate coverage of the region linked to mapping issues.

Since the RF is trained based on anticipated diversity derived from simulated loci, which in-

adequately represents regions with a limited number of polymorphisms, it struggles to handle

this data scarcity e�ectively. Consequently, the existence of only a few polymorphisms, some

being unique to a particular population, is perceived as a barrier, when, in fact, these regions

should be recognized as missing data. Rather than opting for the complex task of identifying

and excluding such regions from analyses, we chose to enhance the training of the RF by relying

on the distribution of θW which is directly linked to S, the number of polymorphic sites. This

"hetero θ" option notably improved the quality of barrier detection. It should be particularly

relevant for low-depth data and/or complex genomes where mapping can be challenging and/or

genomes of poor-quality assembly. In the case of corone species, we found no clear impact of

this option because the genome was assembled in sca�olds with an average coverage of 12.5X

and we chose to retain only the sca�old exceeding 50kb.

In the maize example (described in chapter 4), in contrast, there was a marked di�erence
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when considering expected diversity and observed distribution of θW (referred to as "hetero

θ"). Without relying on heteroθ to train the RF, 24% of the genome was deemed a barrier

(where a locus was considered as barrier with a post.prob>0.5). Using PCA, the loci identi�ed

as barriers were visually divided into two groups with a threshold of 500 SNPs per window

(see Figure 3.10A & 3.8): one group encompassing regions with low per-window SNP density

with the majority peaking below 100 SNPs and one above 500 SNPs (see Figure 3.8). The

former exhibited patterns of depleted levels of diversity for both populations A (teosinte) and B

(maize), and no sign of divergence and di�erentiation between populations, signals yet expected

for barrier loci which markedly contrast with high-density SNP windows (Figure 3.9). Note

that the levels of diversity, di�erentiation and divergence of this �rst group fall below the level

observed for non-barrier loci (Figure 3.9). In contrast, the group containing SNP density above

500 displayed levels of diversity, di�erentiation and divergence signi�cantly higher than the

non-barrier loci. With the inclusion of "hetero θ", we observe a drastic decrease of the number

of barrier loci representing 1.7% of the genome (instead of 24%). Noteworthy, barrier loci

exhibited patterns of summary statistics consistent with "high-density loci" in Figure 3.9. This

pattern included a global increase in divergence and di�erentiation albeit a diversity of pro�les

(Figure 3.10C).

3.2 User manual

This manual is intended to guide users through the installation and use of RIDGE by describing

each script function and the resulting �les in detail. The following notations help clarifying the

nature of the di�erent elements in the pipeline in this section :

� Gray highlighted text stands for input parameters of RIDGE that are used in con-

�g.yaml �le (see Input �les section).

� Italic bold text stands for �les or programs needed in RIDGE.

� Italic bold highlighted text stands for RIDGE scripts �les.

3.2.1 RIDGE v1

RIDGE takes as input a vcf �le containing sequences of individuals from two populations,

accompanied by accessory �les providing complementary information. From this, RIDGE �rst

uses Approximate Bayesian Computation (ABC) to infer demographic data by simulating 14

demographic x genomic models to produce a reference table. This table serves to train a

random forest (RF) that generates weights and parameter estimates for each model according

to their �t to the target (observed) dataset. Second, RIDGE constructs a hypermodel where the

posterior distribution of each parameter is obtained as the weighted average over the 14 models.

Finally, it uses this hypermodel to simulate one set of control loci (thereafter non-barrier) and

one set of barrier loci that have undergone no gene �ow during divergence. Simulated datasets
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generated for barrier and non-barrier loci are used to train a second RF that generates posterior

probabilities and associated Bayes factors for each locus to belong to the barrier or non-barrier

category.

3.2.2 Installation

Requirements

RIDGE uses the Snakemake work�ow management system as well as Singularity containers.

First ensure that Singularity and Snakemake (v 7.7.0) are installed on the machine where

RIDGE will run. If it's not the case, contact the admin system in case of a cluster instal-

lation; otherwise, follow the installation instructions: https://snakemake.readthedocs.io/

en/stable/getting_started/installation.html (pip installation is recommended)

Get the code

Download the code (v1.0, which is the version use in Burban et al. (2023)) with the following

command

git clone -b v1.0 https://github.com/EwenBurban/RIDGE.git

cd RIDGE

Install containers

After completing this step, you will be provided with a list of .sif �les in the container folder,

including python.sif, R.sif, R_visual.sif and scrm_py.sif.

cluster installation To install RIDGE on a cluster, create a free account on https://sylabs.io

and then go to https://cloud.sylabs.io/tokens to create an authentication token. Afterwards,

input the command below and paste your token.

singularity remote login

Go into the RIDGE folder and launch container creation using the following command.

cd <path to RIDGE> bash cluster_configure.sh

This process installs all required programs and their dependencies within the container folder.

local installation If you install RIDGE on a local machine, simply execute the following

command:

bash configure.sh
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Set-up con�g folder

The con�guration folder must contain at least one �le (con�g.sh) that can tailor the behavior

of RIDGE to �t your speci�c installation. As it is not included in the git clone, you will

need to create the folder �rst. The content of this folder is called as the launch of RIDGE by

RIDGE.sh .

cd <path to RIDGE>

mkdir config

cd config

touch launch_param.sh

launch_param.sh This �le regulates the number of jobs that snakemake will attempt to

execute simultaneously and monitors snakemake. So open and then edit it using the following

instruction and example:

Example of �le :

module load snakemake singularity

mode='cluster'

ntask_load=140

ID=ridge_project

� The beginning of the �le involves calling Snakemake and Singularity, which is essential

in case these programs are not available by default in your working environment � often

the case while using clusters. The command to call them is highly dependent on your

installation, so do not take into account the command used in the example �le. If you

place Snakemake and Singularity within a Conda environment, this is the location to

invoke the Conda environment `conda activate <name of your env>.

� mode option de�nes the behavior of Snakemake. If the mode is set to 'cluster', then

RIDGE will initiate jobs using SLURM. Afterwards, the cluster.json �le must be com-

pleted (further information regarding this �le is provided below). For 'local' mode, Snake-

make will start jobs automatically. This mode is recommended for local installations or

clusters that do not employ SLURM job managers.

� ntask_load option allows you to de�ne the number of jobs that Snakemake will try to

launch.

� ID option is speci�c to mode='cluster', as it de�nes the name of the user who starts the

job. This only applies to the SLURM structure, and is commonly your user name. If

mode is set to `local', this line can be removed.
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cluster.json This document outlines the resources available to each job and enables you

to �ne-tune and optimize RIDGE for your speci�c cluster. Further information regarding

cluster con�guration can be found in the cluster con�guration section of https://snakemake.

readthedocs.io/en/stable/snakefiles/configuration.html. An example is also available

at template/cluster.json. Input �les To launch RIDGE, you need to provide at least four �les

in your work folder (i.e the folder where RIDGE will work and generate output). So, your work

folder must follow the following con�guration before any launch:

work_dir/

vcf_�le

contig_data.txt

pop�le.csv

con�g.yaml

rec_rate_map (optional

3.2.3 Input �le

Vcf �le

In the actual version, RIDGE only takes as genomic polymorphism data a vcf �le (vcf �le format

>= 4.0). RIDGE can manage haploid and diploid data. The vcf �le must contain only biallelic

sites. See https://en.wikipedia.org/wiki/Variant_Call_Format for detailed information

on the �le format

Con�g.yaml �le

The con�g �le contains all the data to start RIDGE. Note, that in this �le, the priors used in the

ABC process are de�ned, and so, an incorrect speci�cation of the hyperpriors can drastically

a�ect the performances and results of RIDGE The �elds of the con�g �le are the followings:

� config_yaml: the name of the con�g.yaml �le that you are actually �lling. (Note

that you do not need to give the absolute path, but only the �lename, otherwise it will

stop)

� vcf_file: the name of vcf �le (only �lename expected)

� contig_data: the name of the contig data �le (only �lename expected)

� rec_rate_map: the name of the recombination map (only �lename expected or NA if

no map)

� popfile: the name of the pop�le (only �lename expected)

� nameA and nameB: name of one of the two populations. The names must be the same

as used in pop�le
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� container_path: the absolute path to the container folder, which contain all the

Singularity container, and so all programs

� ploidy: the level of ploidy of the dataset. 1 is for haploid, 2 is for diploid

� ligthMode: Activate the ligthMode, which is a fastest but less precise version of RIDGE

� work_dir: absolute path to the work folder

� nLoci: number of loci sampled, used to avoid unnecessary computational time. If nLoci

is set to -1, all the genome will be used in the process (it may slow down the process

by 10 to 100 times, depending on the size of the dataset). Note that a total number of

loci around 1000 loci is a good trade-o� between genome representation and computation

time limitations

� window_size: size of each locus in bp Choose the value according to the SNP density

in your data.

� homo_rec: If True, recombination rate is considered homogeneous along the genome, if

False,it uses the recombination map provided with rec_rate_map

� homo_rec_rate: recombination rate value along the genome (used only if homo_rec=True)

� mu: mutation rate (assumed constant along the genome) per pb. Note that mu is needed

for prior bound suggestion even if hetero_theta=True.

� Nref: Population size of reference (in number of individuals) used to rescale all values

in coalescent units.

� N_min & N_max: minimum and maximum population size (in number of individuals).

It is highly recommended to set the value on the basis of the real diversity value in the vcf

rather than expected value from the literature (to have a good estimation you can launch

RIDGE in scan mode and follow suggestion from prior_bound_suggestion.txt).

� M_min & M_max: minimum and maximum migration rate (in 4 ∗ Nref ∗m unit). By

default, M_min=0.1 and M_max=50

� Tsplit_min & Tsplit_max: minimum and maximum time of split of the ancestral

population in generations !!! Note that it is highly recommended to set the value on

the basis of the real data in the vcf rather than expected value from the literature (to

have a good estimation you can launch RIDGE in scan mode and follow suggestions from

prior_bound_suggestion.txt).

� Pbarrier_max: maximum proportion of the genome under barrier to gene �ow. By

default, Pbarrier_max=0.2 (i.e. 20% of loci are considered as barriers).
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� hetero_theta: Activate/Deactivate (True/False) hetero θ option. If True, RIDGE

ignores mu to set an expected level of diversity and rather uses θ computed on the

observed number of SNPs using Watterson θ estimator: θW = S/a.

Example of �le:

M_max: 50

M_min: 0.1

N_max: 200000

N_min: 10000

Nref: 50000

Tsplit_max: 20000

Tsplit_min: 1000

Pbarrier_max: 0.2

config_yaml: config.yaml

container_path: /home/RIDGE/container

contig_data: contig_data.txt

lightMode: False

mu: 1e-8

nameA: wild

nameB: dom

popfile: popfile.csv

rec_rate_map: rho_map.txt

work_dir: /home/example_ridge

window_size: 50000

ploidy: 1

vcf_file: vcf_file.vcf

homo_rec: False

homo_rec_rate: NA

hetero_theta: True

nLoci: 1000

Pop�le

This �le lists the individuals from each population in csv format (with ',' as separator). The

name of each population must be in the header. The pop�le must contain at least two popula-

tions (so two columns) and each list must be of the same length as the others. If the populations

are not of equal length, you can �ll the missing individuals with NA.

Example of �le:

wild,dom
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W1,Dx1

W3,Dx10

W5,NA

W7,Dx11

Contig data �le

A �le containing the length of each chromosome/contig and their associated names and order.

� contig_name: is the name of the chromosome/contig in the vcf �le

� contig_length: the length in bp of the chromosome/contig

� index: the index in the order of contigs

Example of �le:

contig_name contig_length index

Chr1 43270923 1

Chr2 35937250 2

Chr3 36413819 3

Chr4 35502694 4

Chr5 29958434 5

Chr6 31248787 6

Chr7 29697621 7

Chr8 28443022 8

Chr9 23012720 9

Recombination rate data

RIDGE uses either a recombination map or a constant recombination rate to work. If you

choose to use a constant recombination rate, you must set homo_rec to True in the con-

�g.yaml �le and �ll the �eld homo_rec_rate with the mean recombination rate estimated

for your dataset. Otherwise, you need to �ll the �eld rec_rate_map with the name of your

recombination map and place it in the work folder. Note that the recombination rate r must

be the number of recombination rate per bases and per generation and the recombination map

uses the tabulation as a separator.

� chr: the index of the contig (see contig �le)

� start and stop: the beginning and ending in bp of the window

� r: the recombination rate inside the window in bp
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Example of �le :

chr start end r

9 21800000.0 21900000.0 7.170443918444081e-07

9 21900000.0 22000000.0 6.771961140602021e-07

9 22000000.0 22100000.0 6.44356192372138e-07

9 22100000.0 22200000.0 6.08745943319314e-07

9 22200000.0 22300000.0 5.709059200375581e-07

3.2.4 Usage

Gather all necessary information

Before any launch you must �ll and provide all mandatory input �les. See section 3.2.3 for

details.

Scan launch

To correctly �ll your con�g �les you will need a measure of the diversity and divergence. Under

"scan" mode, you are not obliged to set up values for the prior bounds ( N_min, N_max,

N_ref, Tsplit_min, Tsplit_max, M_min, M_max, Pbarrier_max), but for "all"

mode � which run RIDGE analysis � they are mandatory. You can choose to use your own prior

bouds or to use on estimation done by RIDGE. If you choose to use your own prior, see section

3.2.6 to validate the quality of you prior, otherwise read the following part to generate prior

suggestion. For M_min ; M_max and Pbarrier default values are suggested ( M_min=0.1,

M_max=50 and Pbarrier_max=0.2). Next you have to launch RIDGE in scan mode with

the following command

bash <path to RIDGE>/RIDGE.sh <work_dir>/config.yaml scan

RIDGE will generate a �le called prior_bound_suggestion.txt . It is highly recommended

to de�ne prior bounds based on this �le, as the values are calculated from the raw data. The

procedure for validating prior bounds is explained in section 3.2.6.

Complete launch

Once N_min, N_max, N_ref, Tsplit_min, Tsplit_max, M_min, M_max, Pbar-

rier_max are correctly set, relaunch RIDGE, but this time with the whole process, without

forgetting to delete modelComp/ folder:

rm -r <work_dir>/modelComp <work_dir>/gof_prior.txt <work_dir>/QC_plot

bash <path to RIDGE>/RIDGE.sh <work_dir>/config.yaml all
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Figure 3.11: Graphical representation of RIDGE pipeline
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3.2.5 RIDGE Pipeline

RIDGE relies on ABC for detecting gene �ow barriers by incorporating the e�ect of demography.

Firstly, RIDGE infers the parameters of a hyper demographic x genomic model; secondly, it

infers the probability of each locus to be a barrier. Each step of the pipeline is detailed below

in the order of execution and represented in Fig 3.11.

Genome splitting and scanning

Initially, RIDGE takes the chromosome size information from the contig_data.txt �le and

combines it with the window_size parameter provided in con�g.yaml . The script gen-
erate_genome_segmentation.R then divides the genome into non-overlapping windows

of window_size base pairs. The genome segmentation is stored in the �le

genome_segmentation.txt . This �le is then used by vcf2abc.py to determine the bound-

aries of each locus, accompanied by pop�le.csv which indicates the sample composition of each

population, to calculate summary statistics on the vcf �le. The computation method used for

summary statistics is given in chapter 2. The summary statistics for each locus are stored in

the �le ABCstat_locus.txt .

Locus data gathering, subsampling and average summary statistics

The script generate_locus_datafile.R creates the locus_data�le �le containing the

data needed to simulate loci in further steps. The data needed to simulate a locus are:

� The number of haploid samples from each population, for which we multiply the number

of samples from the population by the ploidy level. To get this information, gener-
ate_locus_datafile.R uses pop�le.csv combined with population names ( nameA

and nameB) and ploidy level from the con�g.yaml �le.

� The total number of haploid samples, which is the sum of both population sizes multiplied

by their ploidy level.

� The recombination rate within the locus is calculated as follows: ρ = 4∗Nref ∗r∗L, where
Nref is the reference population size, L is the window_size de�ned in con�g.yaml ,

and r is the expected number of recombinations on the locus per generation and per

individual. There are two ways to provide r to RIDGE. The �rst is to use a �xed

value across the genome by setting homo_rec to 'True' and specifying the value of r

through the homo_rec_rate option. The second is to provide a recombination map

by setting homo_rec to 'False' and declaring the path �le to the recombination map in

rec_rate_map.

� θ represents the expected diversity. RIDGE o�ers two ways to compute it: 1) Using a

�xed mutation rate across the genome (µ), by setting hetero_theta to 'False' and

specifying the mu value in the con�g.yaml �le and computing θ = 4 ∗Nref ∗ µ ∗ L. 2)
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Obtaining it from the observed amount of SNPs using θW = S/a (see 1.2.1 for details on

measuring genomic diversity). This option allows for the consideration of heterogeneity

in mutation rates across the genome and/or variations in data coverage (refer to section

3.1.5 for the rationale behind this option).

For each locus, we obtain the necessary information for simulations. Then, we randomly se-

lect nLoci loci across the genome without replacement. This reduces computation time and

avoids unnecessary simulations for demographic model inference, which accounts for 80% of the

RIDGE running time. For optimal results, we recommend using nLoci=1000. Locus data is

stored in the locus_data�le , and the genomic boundaries of the nLoci loci are stored in

bed_global_dataset.txt . The program vcf2abc.py uses bed_global_dataset.txt , vcf

�le , and pop�le.csv to compute the average summary statistics across nLoci loci stored in

ABCstat_global.txt (see 2.3.1 for summary statistics computation method).

Generating priors and simulated datasets

The script submit_priorgen_newsim.py generates prior simulation parameters using the

method explained in 2.3.1. The parameters are stored in

modelComp/{N}_{I}/prior�le.txt (where N is the model name and I is the number of

replicates) and in a scrm compatible command format. After generating the prior parameters,

simulations are run from them using scrm (Staab et al. 2015). The results of these simulations

are then piped directly into scrm_calc.py , which transforms the simulation results into

summary statistics using the same method explained in 2.3.1. The results of scrm_calc.py
are stored in modelComp/{N}_{I}/ABCstat_global.txt .

Inferring average demographic history

The modelComp folder contains the �reference table� � a table containing the parameter for

simulations and the summary statistics � on which a RF is trained to infer each parameter.

Each model among the 14 demographic x genomic models, has a di�erent number of parameters.

So at �rst estimate_posterior_and_mw.R, put each model under the �hypermodel� � a

model that uses all parameters, all models combined � by �lling missing parameters (see Table

A.1). Then, for each of the 12 parameters of the hypermodel, a regression RF (regAbcrf from

abcrf R packages Raynal et al. (2019)) is trained. It predicts from summary statistics of the

observed dataset (stored in ABCstat_global.txt), the parameters values. Joint posteriors

and model weights are generated following the procedure explained in 2.3.1 and stored in

posterior.txt and model_weight.txt . The summary statistics of posterior.txt are stored

in sim_posterior/ABCstat_global.txt .

Estimating the goodness of �t of prior and posterior parameters

The goodness of �t of the posterior distributions (from sim_posterior/ABCstat_global.txt)

and prior (from modelComp/{N}_{I}/ABCstat_global.txt) are evaluated using an en-
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hanced version of the g�t function of the abc packages (Csillery et al. 2012) coded in gof_estimate.R,
which uses a goodness-of-�t statistical approach described in 2.3.1. The results of the posterior

and prior goodness of �t are stored in gof_posterior.txt and gof_prior.txt , respectively.

Simulating locus reference table and Detecting barrier

The posterior.txt �le, containing posterior parameters, undergoes transformation into sim-

ulation parameters, with half of simulation migration set to m = 0 and the second half

m > 0 using the submit_priorgen_locus.py script and is subsequently stored in

sim_locus/prior�le_locus.txt . In contrast to the previous simulation step, where only

average information across nLoci were retained, this iteration preserves information at the

locus scale. Similar to the submit_priorgen_newsim.py procedure, simulation pa-

rameters are formatted in scrm command style and executed using scrm. The resulting

simulations are then immediately transformed into summary statistics through the utiliza-

tion of scrm_calc.py . This time, summary statistics at the locus level are stored in

sim_locus/ABCstat_locus.txt . Combining sim_locus/prior�le_locus.txt and

sim_locus/ABCstat_locus.txt forms the "locus scale reference table", on which the RF

algorithm abcrf (from the abcrf package Raynal et al. (2019)) is trained to classify barriers

(m = 0) and non-barriers (m > 0). Subsequently, using summary statistics for each locus

from ABCstat_locus.txt , the RF classi�es each locus into the barrier or non-barrier class.

From the RF outcomes, Bayes factors are computed (refer to 2.3.1 for details on bayes fac-

tor computation). The Bayes factors and corresponding summary statistics for each locus are

stored in Pbarrier.txt . Variable importance for each variable, following the Random For-

est model, is stored in variable_importance_barrier.txt . Additionally, the confusion ma-

trix, as de�ned in the Random Forest context, is stored in confusion_matrix_barrier.txt .

Finally, the average barrier proportion and resulting barrier/non-barrier ratios are stored in

barrier_proportion_and_ratio.txt .

3.2.6 Example of usage of RIDGE and recommendations

The RIDGE code comes with a small test dataset in the example/ folder. In this part, I

describe step-by-step the process of using RIDGE on a dataset and how to interpret RIDGE's

outputs. The dataset is a subset of the published dataset in Poelstra et al. (2014) and Vijay

et al. (2016), stored at NCBI under PRJNA192205, containing 9 out of 1300 sca�olds, where

SNPs were called on the following reference genome GCF_000738735.1 (available at NCBI).

This subsample focuses on the 9 sca�olds where genes of interest were found in Poelstra et

al. (2014). The individuals used are the same as in Poelstra et al. (2014). The example folder

contains :

� An archive name test_dataset.vcf.tar.gz

� A preset contig_data.txt
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� A preset pop�le.csv

� A list of the genes of interest detected in Poelstra et al. (2014) and their positions

Setup

Prepare �les : First, go in the example folder and decompress the vcf �le:

cd example

tar -xvzf test_dataset.vcf.tar.gz

Then, create the �le con�g.yaml , by taking the template from template folder:

cp ../template/RIDGE_template.yaml config.yaml

Adapt the content from con�g.yaml to your installation (follow instruction from 3.2.3). To

correctly �ll your con�g �les you will need a measure of the diversity and divergence. At

�rst, you are not obliged to set up values for the prior bounds ( N_min, N_max, N_ref,

Tsplit_min, Tsplit_max, M_min, M_max, Pbarrier_max), but in the end they

are mandatory. Here, leave all parameters empty exept for M_min, M_max and Pbar-

rier to �ll with the following value : M_min=0.1, M_max=50 and Pbarrier_max=0.2.

Scan genome & setup prior bounds

Launch RIDGE in scan mode,

bash <path to RIDGE>/RIDGE.sh <work_dir>/config.yaml scan

The genome will be scanned and summary statistics will be generated for each window.

RIDGE also suggest prior bounds based on statistics (available in

prior_bound_suggestion.txt). It is advisable to utilize these values as they are scaled to

the mu value provided in the con�g.yaml �le. In the event of any changes to the mu values,

rerun or re-adjust other values.

Test prior bounds

!!! Inference power of RIDGE depends on the quality of priors. So, pay attention to prior

bounds. In the following steps, it explains how to measure the quality of prior bounds !!!

To test prior bounds, launch RIDGE in test mode using the following command:

bash <path to RIDGE>/RIDGE.sh <work_dir>/config.yaml test

This way, only 1% of the simulation in modelComp folder are launched, then the good-

ness of �t of prior is evaluated in gof_prior.txt and QC_plot/QC_prior_acp.pdf and

QC_plot/QC_prior_density.pdf . To demonstrate the signi�cance of selecting a suitable

prior bound, I executed the RIDGE in test mode with a "good" and a "bad" choice of priors.
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parameter "Good" prior bounds "Bad" prior bounds
N_min 42500 140500
N_max 147500 300500

Tsplit_min 5000 100000
Tsplit_max 120000 120000
M_min 0.1 0.1
M_max 50 50

Pbarrier_max 0.2 0.2

Table 3.1: Values of prior bound for "good" (generated based on
prior_bound_suggestion.txt) and "bad" (value choosen arbitrary) prior bounds

Figure 3.12: Distribution of Summary Statistics from Simulation Generated Within Prior
Bounds. "Obs" represents the observed dataset value for the summary statistic, while "Prior"
denotes the distribution of summary statistics generated from simulations within the speci-
�ed prior bounds. The "Good" choice of prior is deemed favorable, as the observed value is
contained within 95% CI values of the prior distribution. Conversely, the "Bad" choice shows
observed values falling in the distribution tail or outside the bounds of the prior distribution.
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For the "good" choice, I used the value suggested in the prior_bound_suggestion.txt �le,

while for the "bad" choice, I chose a version biased towards higher values.

In the "bad" prior bound choice, the observed values fall outside the distribution range for

piA_avg, piB_avg, and divAB_avg statistics (respectively the π of population A and B and

the Dxy between both populations). This shows that the prior bounds do not include the true

observed value, contrary to "good" prior bound choice (see Figure 3.12). It is necessary to

evaluate the quality of prior bounds by examining the prior density in

QC_plot/QC_prior_density.pdf before running the entire RIDGE. Additionally, users

may evaluate the quality through PCA on summary statistics (accessible at

QC_plot/QC_prior_acp.pdf ), but this method is less sensitive and less informative. With

this visual approach, the prior must include the observations to validate the prior. Finally, the

goodness of �t (GOF) test can be used, but it is only reliable if the threshold is set at 5%,

indicating a "bad" prior estimation. If the observations demonstrate a poor quality of prior

bounds, follow these steps:

cd <work_dir>

rm -r modelComp/ QC_plot/ gof_prior.txt

And then test relaunch RIDGE until you achieve satisfactory prior bounds. It is recom-

mended to use large prior bounds as there is little cost associated with doing so. !!! For N and

Tsplit, avoid having more than two orders of magnitude between your min and max bounds.

!!!

Analyze outputs

To launch RIDGE use the following command :

bash <path to RIDGE>/RIDGE.sh <work_dir>/config.yaml all

Depending on the lightMode option, the runtime is around 470000 s for lightMode=True

and 1883000 s for lightMode=False (assuming that you run RIDGE on 4 cores running

at least at 2.5GHz) for a dataset with a ρ/θ=20 with nLoci=1000 and window_size.

Run-time can be multiply by 3-4 for high ρ/θ (e.g.ρ/θ=500).

Check the quality of demographic infereneces

To evaluate the quality of demographic inferences, there are two levels of veri�cation:

� Agnostic Level: At this level, the assessment involves con�rming that the posterior aligns

more closely with the observed dataset than the prior.

� Documented Level: This level involves checking whether the parameter values are con-

sistent with established knowledge. The second level is optional and relies on the user's

familiarity with the dataset.
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Figure 3.13: Distribution of Summary Statistics for Prior and Posterior Simulations. "Obs"
represents the observed dataset value for the summary statistic, "Prior" denotes the distribution
of summary statistics generated from simulations based on the prior, and "Post" illustrates the
distribution of summary statistics from simulations of the posterior.

95



Figure 3.14: Model weight of each 14 model corrected by the uniform distribution model weight

For the �rst level of checking, we use visual observation of posterior distributions (available

in QC_plot/QC_posterior_density.pdf and QC_plot/QC_posterior_acp.pdf ) and

evolution of goodness of �t between gof_prior.txt and gof_posterior.txt . We expect pos-

terior distributions to be more centered on the obs dataset and the distribution less wide than

for priors (as observable Fig 3.13). Furthermore, the goodness of �t should increase between

prior and posterior. In our example the goodness of �t slightly increased from 0.26 (for prior)

to 0.31 (for posterior).

The second level of veri�cation relies on pre-existing knowledge. For this dataset, Tsplit is

anticipated to be approximately 80,000 generations (Poelstra et al. 2014; Vijay et al. 2016),

with an e�ective population size ranging between 100,000 and 300,000 individuals. The de-

mographic model is expected to align with a secondary contact model. Results, available at

model_weight.txt and visual_model_weight.pdf , indicate a predominant contribution of

the IM_2M_2N and SC_2M_2N models to the estimation of demographic history, which is

consistent with existing data. Indeed, both models (IM & SC) involve ongoing migration and

exhibit heterogeneity in both migration (2M) and e�ective population size (2N)(see Figure

3.14). The estimated value (available at posterior.txt and visual_posterior.pdf ) of Tsplit

closely matches the expected value (average Tsplit = 73414 generations), and the population size

falls within the anticipated interval (≈ 100, 000 for N1, N2, and Na)(see Figure 3.15). The mi-

gration rate is higher for current migration (Mcur) than ancestral migration (Manc), suggesting

an increase in migration over time, even if the estimated model is not optimal.

Detecting barrier to gene �ow

In this section, I distinguish between 1) detecting barriers to gene �ow for a speci�c dataset

without a comparative framework and 2) detecting barriers to gene �ow across multiple datasets

with the goal of comparing results between datasets. This di�erence is crucial as it a�ects how
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Figure 3.15: Distribution of parameter posterior values for N1, N2, Na, Tsplit, TSC , TAM , Mcur,
and Manc. Dashed lines represent the mean value of priors, and the red line represents the
mean value of posterior.

Allocation\true status barrier non-barrier class.error
barrier 95695 1464 0.0150

non-barrier 1285 101407 0.0125

Table 3.2: Confusion matrix produced for the example case

the user should utilize the di�erent outputs.

Quality of barrier detection

Test of barrier detection quality relies on two elements: i) the confusion matrix of the random

forest and ii) the distribution of variable importance of the random forest. In our example, the

obtained confusion matrix (available in confusion_matrix_barrier.txt) shows the distribu-

tion of allocation of simulated loci used to train the random forest. It demonstrates the ability

of the RF to accurately classify the simulated loci. Here, 95695 loci simulated as barriers have

been classi�ed as barrier and 1464 as non-barrier, corresponding to an error of 1.5% (see Table

3.2). The higher the class error, the lower the con�dence in the results. A high degree of class

error (class.error=0.5) indicates that the Random Forest (RF) is unable to distinguish between

barrier and non-barrier loci.

Furthermore, the variable importance, available at variable_importance_barrier.txt ,

provides insights into which variables enable the RF to distinguish between barrier and non-

barrier classes. Variable importance is calculated by considering how much each feature con-

tributes to di�erentiate barrier from non-barrier classes across all the trees. Higher importance
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Figure 3.16: Relative importance associated with each summary statistic during the random
forest building for the example case.

values indicate more in�uential features. The expectation was that some summary statistics

such as ss, FST , netDivAB (=Da), and sf would be important for barrier barrier detection.

Our results are consistant with this prediction (see Fig 3.16). A pattern where all variables have

the same importance reduces con�dence in the results, as the RF is then unable to prioritize

speci�c summary statistics to detect barrier loci.

Detecting barrier for a focal dataset

RIDGE provides a posterior probability (post.prob) for each locus to quantify the probability

of it being a barrier, which is accessible through Pbarrier.txt . Loci with a post.prob > 0.5

have a high chance of being a barrier. By nature post.prob are not comparable from one dataset

to another, as they are conditionated to demographic model. So, if there is only one dataset

post.prob could be used. We suggest setting a threshold of at least post.prob > 0.5, and even

stricter if necessary. In the example presented in Figure 3.17, a threshold of 0.5 e�ectively

distinguishes the two observable groups of loci in the distribution.

Detecting barrier across multiple dataset

RIDGE provides, for each locus, a posterior probability and the Bayes Factor (BF) (refer to

section 2.3.1 for details). By default, a BF is interpreted as follows: BF=10 means that the

locus has 10 times more chance to be a barrier than a non-barrier, given Q. A BF=100 indicates

a very high probability that the locus is a barrier. Compared to post.prob, BF is comparable

from one dataset to another and allow the user to compare multiple datasets. To compare

multiple datasets, the user must choose a threshold in BF value that is applied consistently

across all datasets. A BF value of 100 is a relevant starting point, but it may not be suitable

for all datasets. Indeed, depending on the datasets, there might be signi�cant variations in the
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Figure 3.17: Distribution of posterior probability of barriers across the genome of the example
data. The threshold for post.prob is set to 0.5 with a red line.

scales of BF (e.g., one dataset may range BF values between 0 and 100, while another ranges

between 0 and 3000). This variability can occur when a dataset has a low Tsplit, causing BF to

be biased toward high values. In such cases, we recommend using the "BF_approxQ" column

in Pbarrier.txt , as the approximation is more reliable under these circumstances (see 2.3.1 for

details).
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Chapter 4

Application on empirical dataset

Chapter 2 demonstrates the performance of RIDGE through simulated and crow datasets that

diverged approximately 90,000 years ago. This chapter tests RIDGE under low divergence times

by applying it to domesticated systems, including maize and foxtail millet that underwent

recent human-mediated selection. Both systems diverged from their respective most direct

wild relative (�ancestor�) around 9000 years ago. However, they have di�erent mating systems;

maize is an outcrosser while foxtail millet is a selfer. This chapter aims at examining RIDGE's

ability to detect barriers even at very low divergence times and provide insights to the following

questions: can we compare the results between these two di�erent biological systems? What

does RIDGE detect as a barrier? What is the e�ect of the mating system on RIDGE results?

What additional information would be relevant to improve our understanding of the results?

Preliminary analyses of this work were conducted during the M2 internship of Augustin Desprez

in 2022 (for foxtail millet) and M1 internship of Clementine Tocco also in 2022 (for maize), both

of whom I co-supervised with Maud Tenaillon. I worked more recently in close collaboration

with a PhD student, Arthur Wojcik, who was recruited on the project to continue my work and

apply RIDGE to multiple wild/domestic systems. I contributed to train him on implementing

RIDGE to various datasets. See Appendix B for additional �gures and tables.

4.1 Data generation

For both systems, 20 wild and 20 cultivated individuals were sampled and their genome se-

quenced with Illumina. Stella Huynh of IRD Montpellier conducted data cleaning, alignment,

and SNP detection analyses using the following pipeline (note that steps are the same for both

species): First, reads were cleaned using cutadapt (Martin 2011) separately for R1 and R2

(respectively "forward" and "reverse" reads), and �ltered to keep only pairs of reads. Second,

mapping was performed on the reference genome using bwa-mem2 v2.2.1 with default parame-

ters (Li et al. 2009). Finally, SNP calling was done using GATK4 (McKenna et al. 2010). The

GATK HaplotypeCaller, genomicsDBImport, and GenotypeGVCFs tools were applied to each

chromosome individually. Subsequently, SNP �ltering was performed using GATK4 Variant-

Filtration and SelectVariants, also on a per-chromosome basis. During this step, we applied
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the following �lters at each SNP: a coverage depth (DP) above 2.5 times the number of in-

dividuals for sel�ng species, and 5 times the number of individuals for outcrossers; a quality

(QUAL) above 30 for selfers and 60 for outcrossers. Finally, all chromosomes were combined

using bcftools concat (Danecek et al. 2021) and �ltered based on the depth of coverage per

site and per individual. For allogamous individuals, the depth of coverage must be superior to

5X, while for autogamous individuals, it must be superior to 3X. Additionally, all SNPs with

more than 10% missing data across all individuals were �ltered out. In addition, we phased

the obtained data using Shapit2 (Delaneau et al. 2008) and, for sel�ng species, we haploidized

data using a custom script. Then, I extracted a single haplotype per individual for future

comparison between allogamous and autogamous species. It is worth noting that diversity can

be up to twice as high in a heterozygous individual as in a homozygous one, leading to a strong

comparison bias between cross-pollinating species, such as maize, and self-pollinating species,

such as millet. However, for a species that is over 90% homozygous, such as millet (P. Huang

et al. 2014; Jia et al. 2013), this phasing/haploidization step has little impact on the results.

4.2 Maize

4.2.1 History of maize and demographic context

Maize is an emblematic plant of Mesoamerican culture and is the species that has historically

served as a model for domestication studies. Molecular and archaeological data indicate that

maize was domesticated from an annual grass of the teosinte subspecies Zea mays ssp. parvig-

lumis (thereafter parviglumis) around 9,000 years ago (Matsuoka et al; 2002). The cradle of

its domestication is thought to be located in south western Mexico, in the plains of the fertile

Balsas river basin. Unlike most species, cultivated maize (Zea mays ssp. mays) is quite distinct

from parviglumis, and its origin has long remained a mystery. Several key characters di�er-

entiate the two forms (Beadle, 19395): (1) teosinte has long, elongated branches terminating

in a male in�orescence; in maize, the lateral branches are very short and terminate in female

in�orescences (cobs); (2) teosinte has numerous tillers, whereas most maize has a single tiller;

(3) maize cobs have more rows and grains than teosinte cobs; (4) teosinte cups have abscission

layers at their base, enabling the kernels to separate at maturity and disperse, whereas in maize,

abscission layers are absent and the cob retains its integrity at maturity; (5) in teosinte, the

kernels are covered by glumes that harden at maturity, making the kernel di�cult to access; in

maize, the kernels are naked and therefore tender at maturity (J. Doebley 1992).

At the genomic level, domestication has led to a reduction in the overall diversity of do-

mesticated forms compared with wild forms. This reduction, estimated at nearly 40% in maize

(Wright et al. 2005), is due on the one hand to a demographic e�ect, since domesticated forms

have been selected from a reduced number of wild individuals (bottleneck), and, on the other

hand, to intense selection that led to the �xation of "domesticated" alleles, also reducing diver-

sity at neighboring neutral loci through genetic hitchhiking. To date, 11 domestication genes

have been described in maize (Table B.1). In addition to these genes, many other regions have
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been detected. In fact, around 2-4% of the coding genome is thought to have contributed to

domestication (S. I. Wright et al. 2005). Maize has a fairly large genome, of 2.3 gigabases

divided into 20 chromosomes (2n = 20) (Schnable et al. 2009). It is a highly repetitive genome

of which around 85% consists of transposable elements and genome size can vary from line to

line (Diez et al. 2013). The Zea mays species complex comprises another annual subspecies

than parviglumis, a teosinte called Zea mays ssp. mexicana (therefafter mexicana). Both grow

in Mexico, but in di�erent conditions of temperature, humidity and altitude. Mexicana grows

mainly at high altitude (1600-2700 m) in the relatively dry regions of central Mexico. Parvig-

lumis, in contrast is adapted to the warmer, wetter low to medium altitudes of southwestern

Mexico (below 1,800 m)(M. B. Hu�ord et al. 2012). The genetic di�erentiation of mexicana

from the lowland parviglumis was in�uenced by its adaptation to low temperatures and soils

with low phosphorus content in highland environment (Aguirre-Liguori et al. 2019a).

Gene �ow between Zea subspecies occurs naturally, due to their geographical proximity.

There is ample evidence suggesting that the adaptation of maize from low altitudes to high

plateaus was facilitated by introgression of alleles belonging to the mexicana subspecies (Hu�ord

et al. 2013). Gene �ow also exists between parviglumis and mexicana (Aguirre-Liguori et

al. 2019a). Finally, gene �ow from cultivated maize to the European teosinte of mexicana

ancestry has contributed to the adaptation of the latter, facilitating its establishment as a

weed. European teosinte has indeed acquired an early-�owering allele from maize as well as

herbicide resistance allele (Le Corre et al. 2020). So, although domesticated maize is the result

of domestication of individuals from the parviglumis subspecies, it is also the product of intense

gene �ow from mexicana (Yang et al. 2023).

These introgressions are sometimes bene�cial (adaptation to the altitude of cultivated

maize), but can also be counter-selected (hybrid depression). Unlike parviglumis, experiments

involving hand-crossing reveal that mexicana and maize demonstrate genetically rooted cross-

incompatibility (Kermicle 1997; Baltazar et al. 2005). In line with those results, natural hy-

bridization rate between maize and parviglumis was estimated at 100% - based on a single

parviglumis population, while for mexicana, it was �1%. The low rate of natural hybridiza-

tion with mexicana can also be partially explained by short silks, short-lived pollen and earlier

�owering in mexicana compared to maize (Baltazar et al. 2005; Rodriguez et al. 2006).

4.2.2 Maize genes involve in RI

Three distinct post-meiotic and pre-zygotic loci, Ga1, Ga2 and Tcb1, have all been identi�ed as

barriers between maize and mexicana (M. M. S. Evans and J. L. Kermicle 2001; Chen et al. 2022;

Wang et al. 2022). Those are characterized as unilateral cross incompatibilities as they prevent

mexicana to be pollinated by maize while maize can be freely pollinated by mexicana. All of

these loci consist of both a female and a male determinant, associated with di�erent genes. The

female determinant is expressed in silks and inhibits pollen germination. The male determinant

is expressed in pollen and is able to overcome the inhibition of the female determinant. The Ga1

locus encompasses two genes responsible for regulating cross-incompatibility. ZmPme3 codes
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for a pectin methylesterase (PME) expressed in silks (Moran et al. 2017; Wang et al. 2022;

Zhang et al. 2023) that hinders pollen tube growth, hindering pollination by maize varieties

lacking a functional version of the second gene at the Ga1 locus. The second gene, named

ZmGa1P (Zhang et al. 2018), also encodes a PME. Expressed in pollen, this gene enables

pollen carrying it to overcome the cross-pollination barrier imposed by ZmPme3. In addition

to the initially reported single ZmGa1P gene, several extra tandem repeated sequences and full-

length duplicates of ZmGa1P form the male function (Wang et al. 2022; Zhang et al. 2023).

Three haplotypes of the Ga1 locus have been delineated based on the functionality of these

two genes. For example, Ga1-S carries functional ZmPme3 and ZmGa1P, while ga1 carries

neither. Ga1-M possesses a functional ZmGa1P but lacks a functional ZmPme3 (Lu et al.

2020). Consequently, three natural haplotypes can be identi�ed. The S haplotype possesses

both active male and female determinant alleles, the M haplotype only has the male determinant

allele, and the wild haplotype lacks both active determinant alleles. S haplotypes can pollinate

all other haplotypes but can only be pollinated by other S or M haplotypes. M haplotypes

are capable of pollinating all haplotypes, but they are also susceptible to pollination by the

wild haplotype. The wild haplotype can be pollinated by all others but cannot pollinate the

S haplotype. Consequently, the M haplotype exists as an intermediate haplotype between a

complete barrier and the absence of a barrier.

Note that S haplotypes are also present in some populations of parviglumis. Maize predom-

inantly comprises wild haplotypes, with only a limited presence of M haplotypes in sympatric

areas (M. M. S. Evans and J. L. Kermicle 2001; Chen et al. 2022; Wang et al. 2022) but also

of S as in popcorn varieties (Bapat et al. 2023).

Two other unidirectional cross-incompatibility systems known as Ga2 and Tcb1 are func-

tionally analogous but incompatible with Ga1 and are located at di�erent genetic loci. The

Ga2 locus has been mapped to chromosome 5 (Chen et al. 2022). The Tcb1 locus is located

approximately 44 cM away from the Ga1 locus (M. M. S. Evans and J. L. Kermicle 2001). Y.

Lu et al. (2019) described the female function gene of the Tcb1 locus, Tcb1-f, which encodes a

PME protein slightly di�ering from ZmPme3, and the male function is also a PME gene (Zhang

et al. 2023).

Another barrier genetic system between maize and mexicana, named TPD for Teosinte

Pollen Drive, has been described, has a post-meiotic post-zygotic barrier a�ecting hybrids

�tness (Berube et al. 2023). TPD is a male meiotic driver that manipulates transmission using

a poison-antidote system. Although it operates in a similar fashion to a Bateson-Dobzhansky-

Muller interactions, it is a special case as backcrossing hybrids into the teosinte background

results in signi�cant to complete pollen abortion in the progeny no matter the number of

generations. This barrier locus also acts as a one-way barrier, a�ecting only progeny in the

teosinte background and allowing gene �ow from teosinte to maize, but not the other way.

The TPD system relies on the interaction between three loci: Tpd1, dcl2T, and Tpd2.

Tpd1 produces abundant 22nt long hp-siRNAs, which disrupt the functioning of Tdr1, a lipase

necessary for pollen grain development encoding locus. Tpd2 and dcl2T both act as partial
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Figure 4.1: geographical origins of maize (yellow) and teosinte (green) varieties studied (source:
GoogleMyMaps)

antidotes, repressing secondary processing of siRNAs and restoring viability and fertility. An

original aspect of this system is that while Tpd1 and dcl2T are both on chromosome 5, Tpd2

is located on chromosome 6, resulting in the abortion of 3/4 of tetrad in hybrids.

4.2.3 Genomic material

We used a sample of 20 wild individuals of parviglumis subspecies. These individuals were se-

lected from 19 di�erent populations of the same genetic group (G1, Aguirre-Liguori et al. (2019)).

Two individuals were obtained from the Paso Morelos population, which exhibits a relatively

high level of diversity but also some inbreeding (with FIS value close to 0.2). The 20 domesti-

cated individuals of lowland maize were selected from 20 traditional varieties grown at altitudes

below 1800m to ensure genetic proximity to parviglumis. The sampling strategy aimed to min-

imize intra-form genetic structure and distance from the center of domestication (Figure 4.1).

By studying traditional varieties, we avoided as much as possible modern varietal selection,

which often diversi�es due to the diversity of uses and food preferences, and instead focus

primarily on the selection of domestication traits.

Sequence alignment was performed on the maize B73 reference sequence (Zm-B73-REFERENCE-

NAM-5.0 Hu�ord et al. (2021). The sequencing depth for our data was between 10X and 15X

for all individuals. In total, 266 278 466 SNP were detected and only 18 359 214 SNP passed
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Figure 4.2: PCA performed on all �ltered SNPs in maize dataset

Figure 4.3: Genetic structure for 2 groups (K=2). This grouping received the lowest cross-
validation (cv) (best K value).
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all �lters (which represent 6.89% of all detected SNPs). Note there is a di�erence in raw di-

versity between our rawdata and and data from Beissinger et al. (2016). This di�erence might

be due to sampling di�erences as well as SNP calling �lter strength (Table B.2). Principal

component analysis (PCA) of the SNP set demonstrates a clear di�erentiation between the

wild and domestic forms on axis 1, which explains 10.36% of the variation (see Figure 4.2), but

little structure within wild genetic pools (MzW8 & 20 are genetically isolated from the rest of

wild individuals) and no structure in the domestic genetic pools As expected, the domesticated

individuals are much more clustered on the PCA than the wild individuals (Figure 4.2). which

indicated greater genetic diversity in teosintes than in maize. An analysis using the Admixture

software resulted in an optimal categorization of two genetic groups (K=2). The individuals

are grouped by their wild or domestic form. Figure 4.3 shows that the observed structuring is

mainly due to domestication.

4.2.4 Application of RIDGE on maize dataset

By applying RIDGE to our maize/parviglumis dataset, we expected the models with recent

gene �ow (in particular the IM model) to receive the highest weight and we also expected

to detect few genetic barriers. As haplotype S, that is responsible for incompatibilities with

maize, is rarer in parviglumis than in mexicana (Wang et al. 2022), we were unsure to detect

Tcb1/Ga1 and Ga2 in our data. Finally, the maize dataset provided an opportunity to test

whether RIDGE would detect domestication genes (see Table B.1), which underwent strong

selective sweep in the domestic form, as barriers. It is indeed unclear whether such genes that

have most likely acted as postzygotic barriers where hybrids are counterselected in the two

environments - the �eld and the natural environment - are detected since the expected signal

di�ers at least partly from barrier loci which do not necessarily display intra-form selection

(M. I. Tenaillon et al. 2023). We set prior bounds based on real data and literature information

as follows: Ne [1,000; 150,000], M [0.1; 50], Tsplit [1,000; 50,000], Pbarrier_max=0.2, and Nref

= 75,000 using a window size of 50kb. We �rst ran RIDGE, taking into account heterogeneity

of diversity (with 'hetero θ' set to True) and heterogeneity of recombination (with 'homo_rec'

set to False). The recombination map for maize cM was created using the genetic map of the

B73 maize model (Brazier and Glémin 2022).

Demographic inferences

As expected, the most favored demographic model is the IM model, which incorporates hetero-

m and hetero-Ne, and the models under ongoing migration represent 90%.Note that the IM

model that includes heterogeneity in migration (2M) concentrates 37% of the model weights �

IM_2M_2N=16% and IM_2M_1N=21% �, which is consistent with the existence of bar-

riers between maize and parviglumis. The posterior summary statistics �t the data well

(Gpost = 0.567). Hence, the goodness of �t for each summary statistic shows that the pos-

terior distributions are more concentrated around the observed dataset than the prior (Figure

B.3). The ratio of the population size are close to previous estimates of the diversity loss of 40%

107



−0.05

0.00

0.05

0.10

0.15

AM_1
M_1

N

AM_1
M_2

N

AM_2
M_1

N

AM_2
M_2

N

IM
_1

M_1
N

IM
_1

M_2
N

IM
_2

M_1
N

IM
_2

M_2
N

SC_1
M_1

N

SC_1
M_2

N

SC_2
M_1

N

SC_2
M_2

N
SI_1

N
SI_2

N

model

m
od

el
 w

ei
gh

t

Figure 4.4: Distribution of model weight in maize. Model weight here are calculated as the
di�erence between model weight estimated and an uniform distribution of model weigth.

associated with the domestication bottleneck (S. I. Wright et al. 2005). The point estimate for

Ne in teosintes is 88,844 [7904; 144342] while that for maize is 52,648 [6642 ; 134544] (see Figure

B.4). The estimated Tsplit is 32,902 [8073 ; 48582] generations (Figure B.4), which although

two large for domestication given the archeological records (Piperno et al. 2009), is within the

same order of magnitude.

Barrier detection

Posterior probability (post.prob) of barrier model quantify the probability of a loci �t the bar-

rier model, knowing the error rate of the RF. Bayes factor is a rescaled post.prob, by taking

into account the expected abundances provided through Q from the estimated demographic

model. The distribution of posterior probability and Bayes factor are bimodal. The threshold

of post.prob=0.5 (corresponding here to BF=30) divides the distribution into two modes, rep-

resenting 98.3% and 1.7% of the genome, respectively (see Figure 4.5) for an estimated barrier

proportion of Q=7% [0% ; 18%] in posterior (Figure B.4). The estimated false discovery rate

by the RF is 12%. When visualizing the barrier signature (Figure B.2 BF>30) based on sum-

mary statistics using PCA, it does not appear to speci�cally correlate with one axis. However,

the barrier loci signature appears to be homogeneous as they are grouped in the same place

across the �rst three axes of the PCA (Fig B.2 BF>30). Loci identi�ed as barriers using a

BF>30 exhibit an increase in divergence, which is notably more pronounced for Da than Dxy,

as well as for FST . Loci also display strong decrease in ss and an increase in sf compared to

the rest of the genome (Figure 4.6). Not all summary statistics contribute equally to barrier

detection. The summary statistics that contribute the most to barrier detection, in decreasing

order, are ss, FST , sXB, sxA, and Da(see Figure 4.7). Among the barriers detected with the
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Figure 4.5: Distribution of Bayes factor (left) and barrier model posterior probability
(post.prob)(right) for the maize dataset. For BF, BF=30 and BF=100 are represented by
the dashed line, and for post.prob, post.prob=0.5 is also represented.
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Figure 4.7: Relative contribution of each summary statistic to barrier detection

BF>30 threshold, Ga2 (BF=277) and a domestication gene named Bt2 (BF=110) were iden-

ti�ed (Figure 4.8). We also tested for the presence of gene barrier in �owering genes (listed in

M. Tenaillon et al. (2019)), as �owering genes are potential candidates for RI through temporal

isolation. We did not �nd any �owering gene exceeding BF=30 (the average value in �owering

gene regions is around 4)

Are domestication genes detected as barriers to gene �ow?

During the process of domestication, domestication loci are strongly selected, leaving a selec-

tive sweep footprint that can be detected. Our results show that a single locus, known in

the literature as a domestication gene named Bt2 in maize, is detected as a barrier (with a

BF=110.03) among all loci known in maize (see Table B.1). Domestication genes exhibit a

genomic pattern that shows an increase in di�erentiation, a speci�c reduction of diversity in

maize population, and a slight increase in divergence. This pattern di�ers from barrier loci

mainly on ss and sf (Figure 4.6), resulting in a lower Bayes factor (except Bt2 ), the average

BF is 4.34 for domestication loci) than for barrier loci. Hence our results indicate that RIDGE

is capable of di�erentiating barrier from domestication loci.

4.3 Foxtail millet

4.3.1 Domestication of the foxtail millet

Foxtail millet (Setaria italica) was �rst domesticated in China from Setaria viridis and then

became a cultivated grain throughout Eurasia (Diao and Jia 2017). The oldest foxtail millet

grains found to date were recovered from the Donghulin site in Beijing and date from 11,000 to
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Figure 4.9: Genetic structure for 2 groups (K=2). This result has the lowest cross-validation
(cv) (better clustering).

9,000 years ago (Jia et al. 2013). Grain has also been found at the Zhangmatun site in Shandong

province, dating from 9,000 to 8,500 years ago (W. Wu et al. 2014). To this day, foxtail millet

remains a major crop in the arid and semi-arid regions of China and India. At the molecular

level, foxtail millet has experienced a loss of approximately 55% of its wild genetic diversity

(wild θ = 0.0059, domestic θ = 0.0027) (Wang et al. 2010). This reduction in diversity is

attributed, in part, to a population bottleneck with an intensity parameter k = Tb/Nb = 0.6095

(Tb the duration of the bottleneck and Nb the e�ective population size during the bottleneck)

that occurred at the onset of the domestication event (Wang et al. 2010).

Its genome is small (490 Mb), making it an interesting genomic model among the Poaceae.

The self-fertilization rate of Setaria viridis, has been estimated at 96% on the basis of SNP

data and 90% on the basis of microsatellite data, compared with 98% for the domestic form

based on microsatellite data (Jia et al. 2013; P. Huang et al. 2014).

As with other species, the introgression of domestic alleles into wild forms has contributed

to the emergence of weeds with morphological similarities to foxtail millet. Hence the trait

conferring great height in the domestic form was transferred to the wild form, which likely

conferred a competitive advantage in natural environments, producing an invasive weed, the

giant green foxtail (S. viridis var. major) frequently found around cultivated plots (Pohl 1951;

Pohl 1966; Rominger 1962; Darmency et al. 1987a). Foxtail millet thus o�ers an example of a

wild-weed-cultivated complex (Rao et al. 1987), where partial introgression between cultivated

and wild forms may be advantageous for wild forms (Darmency et al. 1987a). In addition to

the domestication traits common among the Poaceae, wild foxtail millet displays chloroplastic

resistances to herbicides that do not originate from the domestic compartment. These resis-

tances have been exploited in recent millet breeding. The atrazine-resistant F1 cross-platform

hybrids tested by Darmency et al. (2006) show lower yields than the cultivated form. However,

the yield loss can be o�set by e�ective weed control in the presence of weeds. According to

Darmency et al. (2017), this is the only known use of wild millet diversity for breeding culti-

vated millets. These results show that reproductive barriers do not prevent gene �ow between

wild and domesticated forms in millet, but do lead to hybrid depression.
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4.3.2 Genomic material

A sample of 14 wild individuals (Setaria viridis) from 14 populations and 18 domestic individu-

als (Setaria italica) from 18 traditional varieties was taken. Sampling was designed to minimize

intra-form genetic structure and distance from the center of domestication. The aim was to

avoid confounding demographic e�ects. Just like for maize, by studying traditional varieties,

we aimed at avoiding the counfounding e�ects of modern breeding.

Sequences were aligned to the foxtail millet reference sequence published in J. Wang et

al. (2021) and treated using the method pipeline of Stella Hyung (see 4.1). The target sequenc-

ing depth for our data was 10X, and it ended up being between 5X and 15X, depending on

the genotype. In results, from the initial 34 404 192 SNPs, 9 368 787 SNPs passed the �lter

(which represented 27.2% of the initially called SNPs). Principal component analysis (PCA)

of the SNP set shows a clear di�erentiation between the wild and domestic form on axis 1 and

2 combined, which explains respectively 22.12% and 9.69%of the variation (Figure 4.10). Note

that both axes rescaled population structure within our wild sample with FxW12, 13, 14 and

7 forming an independent group. Analysis using Admixture software (Alexander et al. 2009)

resulted in an optimal categorization for two genetic groups (K=2). Individuals are grouped

by wild or domestic form. As in maize, this result (Figure 4.9) is consistent with a structuring

mainly explained by domestication.

4.3.3 Application of RIDGE on foxtail millet dataset

As for maize, there is evidence of repeated gene �ow between S. italica and S. viridis, making

the IM model the most likely. The primary distinction between maize and foxtail millet is their

mating system. This may result in less contrast between barrier and non-barrier due to reduced

gene �ow, and more false positives as sel�ng breaks numerous assumptions made by coalescent

simulation, such as panmictic reproduction and absence of linkage disequilibrium between loci.

We established prior bounds based on real data and literature information. Ne [4,250; 152,000],

M [0.1; 50], Tsplit [1,000; 80,000], Pbarrier_max=0.2, and Nref = 63,500, with a window size

of 50kb. We ran RIDGE while taking into account heterogeneity (with 'hetero θ' set to True)

and recombination (with 'homo_rec' set to False). The foxtail recombination map used in this

study was obtained from Brazier and Glémin (2022).

Demographic infereneces

As for maize, the goodness of �t increased between prior and posterior ( Gprior = 0.147;Gpost =

0.481), and the posterior distribution of the summary statistic �ts the observed data set better

than the prior (Figure B.8). The dominant models receiving most weight are the IM and SC

models with heterogeneous migration rates and the Ne (IM_2M_2N: 23% and SC_2M_2N:

15%)(see Figure 4.11), which together represent 38% of model weight. Furthermore, the IM

and SC models represent 90% of the model weight, advocating for the presence of ongoing

migration. This is in agrement with studies demostrating introgression and partial barriers
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Figure 4.11: Distribution of model weight in foxtail millet. Model weight here are calculated as
the di�erence between model weight estimated and an uniform distribution of model weigth.

between wild and cultivated forms (Pohl 1951; Pohl 1966; Rominger 1962; Darmency et al.

1987a).Based on the parameter, the estimated loss of diversity is 26%. The e�ective population

size is estimated to be 70,709 individuals for the wild gene pool and 52,050 individuals for

the domesticated gene pool. These values are lower than the observed loss of 55% in Wang

et al. (2010) (see Figure B.5).

Barrier detection

As for maize, the posterior distribution and thus the BF distribution follows a bimodal distribu-

tion, which is split in half at post.prob=0.5, corresponding to BF=16 (Fig 4.12).The estimated

false discovery rate by RF is 7.2%, which is of the same order as for maize (12%). In contrast

to maize, foxtail millet has a higher percentage of its genome classi�ed as a barrier (15.5% com-

pared to 1.7% of maize using post.prob=0.5 threshold), for an estimated barrier proportion of

8% in posteriors (Fig 4.12). When using a common BF threshold of 30, which is the threshold

used for maize, the barrier proportion decreased to 10%. In terms of megabases (Mb), both

maize and foxtail millet have a similar amount of genome detected as a barrier when using a

BF threshold of 30 (44.2Mb for maize and 49Mb for foxtail millet). To visualize barriers, we

conducted a PCA analysis and found that at BF>16, two groups are observable (Figure B.6).

This suggests that the barrier detected (BF>16) may have two di�erent genomic signatures.

Notably, at BF>30, the barrier forms one homogeneous group. Such loci exhibit an increase in

divergence (more pronounced for Da than Dxy) and in di�erentiation summary statistics. They

also show a strong decrease in ss and an increase in sf compared to the rest of the genome

(Figure 4.14). Additionally, the distribution of summary statistic importance is similar to that

of maize, except that sf plays a more signi�cant role in barrier detection than in maize (Figure
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Figure 4.12: Distribution of Bayes factor (left) and barrier model posterior probability
(post.prob)(right) for the foxtail millet dataset. For BF, BF=16 and BF=100 are represented
by the dashed line, and for post.prob, post.prob=0.5 is also represented.
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Figure 4.13: relative importance associated with each statistics during the random forest build-
ing for the foxtail millet dataset.
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4.13 & 4.7).

E�ect of mating system on RIDGE results

As previously stated, comparing foxtail millet and maize provides an opportunity to observe

how the mating system can a�ect results. Both species diverged from their respective wild

relatives 9000 years ago and belong to the Poaceae family. We observe a higher proportion of

the genome involved in reproductive isolation in foxtail millet than in maize, but it represents

the same amount of megabases. The genomic signature of the barrier is nearly the same, except

for sf , which was more involved in barrier detection in foxtail millet. The stronger contribution

of sf may be due to reduced gene �ow and/or Ne resulting from sel�ng, which induces more

�xed di�erences (sf). As �xed di�erences are more abundant, sf is more sensitive for barrier

detection. In maize, the average sf is 0, while in foxtail millet, sf was 0.002 (see Fig 4.15F).

Similarly, we observed a higher mean of Da, Dxy, and FST . Finally, the landscape in terms

of Bayes factor and posterior probability is �atter in foxtail millet than in maize (see Figure

4.15A&B). This indicates that in foxtail millet, barriers are more challenging to di�erentiate

from non-barriers than in maize. Interestingly, the landscape of FST and Da around the barrier

is more elevated from the sea level for foxtail millet than for maize.

4.4 Discussion

Both datasets are primarily genetically structured by the di�erentiation between wild and

domestic gene pools. However, it appears that the wild gene poll in foxtail millet still exhibits

genetic structure despite e�orts to avoid it during genetic sampling. In future work, re-analyzing

foxtail millet dataset after removing the outliers hrom the wild gene pool should be done to

test if our current observations are a�ected by wild group population structure.

The dataset, for maize and foxtail millet, because of their recent divergence from their wild

relatives, presents more challenging conditions than the crow dataset. Barrier detection using

a BF=30 threshold showed nearly identical genomic patterns for barriers in both cases, with

the same amount of Mb detected as a barrier (44.2Mb for maize and 49Mb for foxtail millet),

despite the maize genome being �ve times larger than the foxtail millet genome.

Interestingly, all loci known to be barriers between maize and teosinte are from the maize-

mexicana interaction. Maize is known to hybridize easily with parviglumis, which may result in

fewer RI loci. Our wild population consists solely of parviglumis individuals. Nevertheless, we

observe a large region of RI at the position of Ga2 (Figure 4.8), indicating that even between

maize and parviglumis, Ga2 acts as a barrier. As for the other gene, it exhibits a BF level of

around 10 for Ga1/Tcb1. Furthermore, one domestication gene, Bt2, has been detected as a

barrier (with a BF=110), showing that domestication can play a role in reproductive isolation,

even though it is an exception among the 11 well-described domestication genes in maize that

express a very low BF (BF 4). Domestication is a form of strong local adaptation that could

indirectly lead to reproductive isolation (RI). Our results suggest that, with the exception of
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one gene, domestication genes are not involved in RI. We also tested for the presence of gene

barriers in �owering genes as they are potential candidates for reproductive isolation through

temporal isolation. Our results did not �nd any �owering genes exceeding BF=30 (the average

value in �owering gene regions is the same as the average mean of the genome).

Overall, sel�ng appears to a�ect the results when examining demographic inferences and

genomic patterns of barriers. For instance, barriers detected in foxtail millet with a Bayes

Factor of 16 represent 15%, which is signi�cantly higher than in maize. Additionally, these

barriers are separated into two groups using PCA (Figure B.6). This result could potentially

be explained by lower gene �ow and higher linkage disequilibrium in sel�ng generating more

gene �ow barrier, or by the fact that sel�ng breaks many assumptions made during simulations,

consequently leading to potential false positives. The contrast between island and sea level

in Bayes Factor is lower for foxtail millet than for maize (Figure 4.15). This could be due

to the global reduction in gene �ow induced by sel�ng coupled with a reduction in e�ective

recombination. However, if this were the case,the BF distribution should not show a clear

bimodality and the BF landscape should be �atter. Alternatively, the lower contrast could be

explained by a lack of statistical power. The results are more di�cult to interpret than those

for maize due to the e�ect of sel�ng on both biological and statistical aspects.
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Chapter 5

General Conclusion & Perspectives

The primary objective of this thesis was to develop a method for detecting barriers to gene

�ow that could be applied across diverse biological systems. I built on an existing tool, DILS

(Fraïsse and al 2021), and modi�ed and extended it to enable comparative analysis across

multiple contexts. Firstly, I improved the method by implementing a model averaging instead of

a best-model approach. This modi�cation enabled RIDGE to accurately estimate demographic

models across a broad range of conditions, both in simulated and empirical datasets, making

comparisons possible among datasets even when the best models di�er. Secondly, I re�ned the

estimation of parameters related to the proportion of barriers to gene �ow within genomes,

through the introduction of new metrics of outliers of divergence, di�erentiation, and diversity.

In particular, it improved estimation under challenging conditions such as low divergence time

and/or low migration rates.

Finally, RIDGE is able to detect barrier on simulated dataset even at very low time of

divergence (Tsplit < 0.2Ne), but also in real dataset as seen for crows (for recent divergence

time) and maize (very recent) for which we successfully detected well identi�ed barrier loci

from literature (RSG9, LRP5, PRKCA and CACNG1&4 for crows and Ga2 for maize). As

observed in the case of foxtail millet, sel�ng mating system seems to reduces RIDGE's ability

to distinguish barriers.

5.1 What have we learnt with RIDGE and where should

we go?

In all tests conducted with RIDGE, it appears that ss, FST , and Da are the three main contrib-

utors to barrier detection. However, the contribution of each varies depending on demographic

history and mating system. Additionally, sf may also be involved (as in the case of foxtail

millet) for the same reasons. Interestingly, across all empirical datasets tested, net divergence

(Da) emerged as a more informative metric than Dxy. Unlike the expected pattern of increas-

ing Dxy with decreasing gene �ow (as shown in Figure 1.8), Dxy followed diversity trends at

low divergence times, making Dxy unable to discriminate barriers from the rest. In contrast,

Da accurately measured divergence. This observation contrasts with the point of view of T.
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Cruickshank and M. Hahn (2014), who strongly advocate for the use of Dxy rather than FST .

At lower levels of divergence, such as those observed in crows, maize, and foxtail millet, Dxy is

primarily in�uenced by the internal diversity of the population. However, at higher Tsplit val-

ues, this is not the case and Dxy should contribute more to barrier detection for more anciently

diverged systems. Therefore, there is probably no universal pattern for gene �ow barriers as it

depends on multiple factors, which make crucial the use of multiple summary statistics.

The genomic pattern used to detect barriers may be in�uenced by some simulation choices,

as illustrated with the heterogeneity in migration. The migrant rate (M = 4 ∗Ne ∗m) can be

a�ected by local reductions in diversity (Ne) and in gene �ow (me). Modeling heterogeneity

of migration through M rather than m (as in Fraïsse and al (2021)), resulted in false positive

detection, as some loci with a strong reduction in Ne (which induces a reduction in M) were

also detected as barrier (refer to chapter 2 ). Another questionable aspect of the simulations,

which is common to DILS and RIDGE is the method of simulating linked selection at the locus

level (hetero-N models). For a given locus, three independent values are sampled from the

same beta distribution (albeit with distinct mean) so that there is no covariation in e�ective

population size across populations. Alternatively, Na values could be sampled and then rescale

to give values for N1 and N2 using Na/N1 and Na/N2 ratio ensuring complete correlation

between population size at a given loci. The reality is probably somewhere in between these two

solutions. Selective sweeps may occur independently across the genome in di�erent populations

making local Ne uncorrelated but for regions with low recombination, local population sizes

may be highly correlated. More realistic models of linked selection could be investigated in the

future.

The sliding window approach with �xed size is also questionable when it comes to linked

selection. Since loci are simulated completely independently, it assumes that there is no linked

selection between windows. This assumption may be more challenging in autogamous systems,

where the extent of linked LD is much larger due to ine�cient recombination (Burgarella and

Glémin 2017). One way to deal with the sliding window size problem is to allow the window size

to vary across the genome, without using an arbitrary value. For example, one could segment

the genome based on the local phylogeny (Zamani et al. 2013). This will generate windows

with a homogeneous signal, capturing the local signal and thus avoiding the problem of varying

LD across the genome. Also, in the early stages of speciation, the signal may be concentrated

in small regions, potentially smaller than the window size. Conversely, in later stages, RI is

expected to generate larger patterns, larger than the window size. In both cases, the RI signal

is a�ected by the window size, and a method such as the one suggested above could improve

barrier detection during the early and late stages of speciation.

5.2 Perspectives of RIDGE usages for speciation research

RIDGE successfully detects intrinsic reproductive isolation without distinguishing between pre-

and postzygotic barriers, at low and high time of divergence. Its ability to produce comparable

122



results across di�erent contexts, at low as at higher divergence degree, paves the way for

gathering new insights for various questions, as discussed below.

5.2.1 What are the genomic patterns of reproductive isolation during

speciation?

During the early stages of divergence, reproductive isolation may be limited to a small number

of genes (Wu 2001). As reproductive isolation becomes complete, it is expected to progress

from a genetic mosaic pattern to genome-wide divergence (Feder et al. 2012; Wu 2001). The

recombination landscape around loci responsible for reproductive isolation, particularly for

recombination suppressors such as inversions, has been extensively described. Genes that con-

tribute to pre- and postzygotic isolation tend to map to inversions that distinguish species of

sun�owers (Todesco et al. 2020), stickleback �sh (Bay et al. 2017), and Heliconius (Merrill

et al. 2019). To detect reproductive isolation in a comparative context, RIDGE could be used

on multiple species pairs encompassing a large spectrum of divergence to address the following

question: is there a correlation between local barrier richness and recombination? Are regions

of inversion enriched in gene �ow barrier? Also, does barrier region size increase with diver-

gence and linkage disequilibrium as presented in Wu (2001) and Feder et al. (2012)? Using

the same comparative approach we could measure the evolution of the barrier proportion with

divergence, and test if the barrier proportion correlates with RI (measured for example through

crossing experiment and hybrid phenotyping).

5.2.2 Testing the snowball theory

In 1995, Orr published a paper aimed at describing the evolution of hybrid incompatibilities

over time. The study demonstrated that when using BDM incompatibilities, the number of in-

compatibilities grows faster than linearly with time. Speci�cally, Orr and Turelli (2001) demon-

strated that it grows as the square of the divergence time. Several attempts have been made to

detect the snowball e�ect by measuring the evolution of RI between lineages at di�erent times

of divergence. However, these attempts have failed to �nd evidence of the snowball e�ect and

instead found a linear increase (Presgraves 2002; Stelkens et al. 2010; Price and Bouvier 2002).

Nevertheless, testing for the snowball e�ect requires information on the number of BDMIs con-

tributing to reproductive isolation, rather than the e�ect on RI. Moyle and Nakazato (2010) and

Matute et al. (2010) successfully demonstrated a snowball e�ect in Solanum and Drosophila

species, respectively, using this approach. However, this method is expensive as it requires

producing numerous hybrids between multiple lineages. Consequently, testing the snowball

theory on a broader range of species is extremely time-consuming and costly. In this context,

RIDGE may o�er a way to test the theory using only genomic data. This way we could count

the number of loci involved in BDMI and see if they accumulate faster than the linear rate.

However, the limitation of this approach is that RIDGE is unable to distinguish between loci

involved in hybrid incompatibility among loci considered as gene �ow barriers.
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5.2.3 What is the nature of speciation genes?

Speciation genes are genes that actively contribute to RI. They can be associated with any

form of pre- or post-zygotic isolation. One of the aims of speciation research is to understand

the nature of speciation genes or speciation gene networks. For example, do all bird species

that rely on feather color patterns for mate choices have genes involved in feather color pattern

and color recognition, like RSG9 and LRP5 in crows (Poelstra et al. 2014; Vijay et al. 2016)?

Do plants that rely on pollination to reproduce speciate through genes that a�ect �ower and

�owering time, as seen in Mimulus aurantiacus with MaMyb2 (Streisfeld et al. 2013)? To

answer this question, functional analysis is mandatory to identify the degree of contribution

of a gene to reproductive isolation. However, RIDGE o�ers a way to detect candidate regions

that act as gene �ow barriers, with a quanti�cation of their probability to be a barrier, allowing

further functional study to focus only on a subset of genes, reducing the cost and the time

needed for this type of study.
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Table A.1: Demographic parameters used under four demographic models (SI: Strict Isolation,
IM: Isolation Migration, SC: Secondary Contact, AM: Ancestral Migration) and four Genomic
model (1M, 2M, 1N, 2N). Parameters are either estimated (empty �eld) or �xed to a value
de�ned as indicated - either 0 or the value of another parameter. Note that for a single
simulation, K value is drawn in U ∈ [0, 1] only once, so it means that TSC = TAM = K ∗ Tsplit

Table A.2: Parameter values used in the simulations of pseudo-observed datasets. Note that for
the strict isolation model, only Tsplit varies. The number of loci in a pseudo-observed dataset
is 1000 loci of 10 kb each. The mutation rate was set to 1.10−8 and the recombination rate
to 1.10−7 event/generation/bp. Populations size N1 = N2 = Na = 5.104 individuals. From
each daughter's populations, 20 haploid samples are produced. Each condition is repeated 100
times. To run RIDGE on each pseudo-observed dataset, prior were de�ned as follows: Tsplit and
Ne prior distribution is bounded by one order below and above the true value (e.g, for 1.105

the distribution is bounded between 1.104 and 1.106). The M prior distribution is bounded
between 0.1 and 50 4N.m, and the Q prior distribution is bounded between 0 and 0.2.

Parameter Parameter value
Tsplit 1.104, 1.105, 2.105, 1.106, 2.106

mcur and manc 1, 10
Qcur and Qanc 0.01, 0.05, 0.1
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Figure A.1: Evolution of the goodness-of-�t of the posteriors as a function of Tsplit, migration
(M ) and barrier proportion ( Q ), for four demographic models. The gray zone represents the
rejection zone, in which inferred models are discarded. Average values over 100 replicates with
error bars (standard deviation) are presented. Pseudo-observed datasets were simulated under
2N2m and 2N1m models.

Table A.3: Prior bound used to run RIDGE over all crow population pairs
Parameter Parameter bound (min-max)

Tsplit 10 000 - 150 000
Ne 30 000 - 250 000
M 0.1 - 50
Q 0 - 0.2
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Figure A.2: Demographic model weights in posteriors across time splits. The simulated demo-
graphic model is indicated above each plot in grey and the proportion of model predictions are
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Table A.4: Pearson correlation (r) between estimated proportion of barrier Q and outlier statis-
tics under three demographic models with di�erent Time of split. Simulations were ran under
2N2m model with M = 10 and Q = 0. Values of r >0.5 are shown in bold, NA indicates that
correlation could not be computed.
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Table A.5: Estimated demographic and genomic parameters for each pair of crow species from
Vijay et al. (2016) and Poelstra et al. (2014) (=Poelstra comp). For each parameter, the
mean is presented with a credibility interval [5%;95%]. Note that time are expressed in crow
generations, migration in 4Nem units and population size in number of individuals.
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Figure A.5: Estimated Time of secondary contact (T̂SC) and time of last migratory contact
(T̂AM) as a function of simulated time split (Tsplit), migration (M) and barrier proportion (Q)
for respectively SC and AM demographic model. Average values over 100 replicates with error
bars (standard deviation) are presented. Pseudo-observed data were simulated under 2N2m.
The dashed line represents the reference (simulated=estimated).

Demographic model weight AM IM SC SI
RX 0.13 0.43 0.39 0.04
OP 0.07 0.45 0.46 0.03
XO 0.11 0.45 0.39 0.04

Poelstra comp 0.08 0.44 0.45 0.03

Table A.6: Weight of each demographic model in posteriors for each pair of crow species from
Vijay et al. (2016) and Poelstra et al. (2014) (=Poelstra comp).
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Figure A.6: Estimated population size (past with N̂A and current with N̂1 and N̂2) under fours
demographics models. Average values over 100 replicates with error bars (standard deviation)
are presented. The plain line represents the value used in the simulation (Ne=50 000), and the
dashed line represents the mean value of priors (Ne=252 500). Simulated data were obtained
under 2N2m.
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Figure A.7: Current migration rate (M̂cur) estimation accuracy under IM and SC models under
2N2m. Average values over 100 replicates with error bars (standard deviation) are presented.
The plain black line represents the true value ( Mcur = 1 and 10) used to generate the pseudo-
observed datasets and the dashed line represents the mean of priors Mcur = 4.58
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Figure A.8: Ancestral migration rate (M̂anc) estimation accuracy for AM model under
2N2m.Average values over 100 replicates with error bars (standard deviation) are presented.
The plain black line represents the true value ( Manc = 1 and 10) used to generate the pseudo-
observed datasets and the dashed line represents the mean of priors Manc = 2.29.
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Figure A.9: Current (left) and Ancestral (right) migration rate estimation accuracy under SI
model. Average values over 100 replicates with error bars (standard deviation) are presented.
The plain black line represents the true value (Mcur = Manc = 0) used to generate the pseudo-
observed datasets and the dashed line represents the mean of priors Mcur = 4.58 (left) and
Manc = 2.29 (right).
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Figure A.10: Barrier proportion estimates (Q̂) as a function of divergence time under four
demographic models. Average values over 100 replicates with error bars (standard deviation)
are presented and the plain black line represents the mean of priors Q = 4.2% Dashed lines
represent references values corresponding to each barrier proportion conditions.

147



AM IM SC SI

M
 =

 0
M

 =
 1

M
 =

 1
0

0.1
(1.10⁴)

1
(1.10⁵)

10
(1.10⁶)

0.1
(1.10⁴)

1
(1.10⁵)

10
(1.10⁶)

0.1
(1.10⁴)

1
(1.10⁵)

10
(1.10⁶)

0.1
(1.10⁴)

1
(1.10⁵)

10
(1.10⁶)

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

Tsplit in 2Ne generations (in generations)

Q
 (

e
s

ti
m

a
te

d
)

Q (true)

0

0 no outlier

0.01

0.01 no outlier

0.05

0.05 no outlier

0.1

0.1 no outlier
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Figure A.13: Discriminant power measured through the AUC of ROC as a function of divergence
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Figure A.14: Precision of barrier loci identi�cation as a function of divergence time Tsplit,
migration M , model and the proportion of barrier Q. Precision, which is the ratio of the
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Figure A.15: PCA computed on summary statistics obtained from 50kb-windows along genomes
with axes 1 and 2 (A) and 1 and 3 (B) and 2 and 3 (C) displayed. Datapoints (windows) are
colored according to the values of Bayes factors. Data are from Vijay et al. (2016)
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Table B.1: List of domestication genes (dom) and genes involve in RI known in maize, with
their names and position.
Function name chr Start pos End pos reference
dom Tb1 1 272330844 272332595 Studer and J. F. Doebley (2011)
dom Tga1 4 46648115 46652648 Wang et al, 2015
dom Zagl1 1 4932462 4948248 Wills et al, 2018
dom ZmSh1-5.1/5.2 5 16842725 16849077 Lin et al, 2012
dom Gt1 1 23433586 23435122 Wills et al, 2018
dom Ba1 3 188190176 188191189 Gallavotti et al, 2004
dom Bt2 4 61578520 61584597 Whitt et al, 2002
dom Ra1 7 114958643 114959358 Simon and Vollbrecht, 2010
dom Su1 4 43429928 43438749 Whitt et al, 2002
dom Z�2 2 13161522 13164487 Bomblies et al, 2006
dom ZmSh1-1 1 230589293 230594150 Lin et al, 2012
RI Ga2 5 151000000 153500000 Chen et al., 2022
RI Ga1/Tcb1 4 8530000 10230000 Evans & Kermicle, 2001; Lu et al.2019

Table B.2: Distribution of summary statistics values compared to observed values in maize
(B)/teosinte (A) data, with IC representing quantile at 5% and 95% of the distribution. In
addition, value from literature are provided.

obs literature
SNP/window 4.3e+02 [ 2.4e+01 ; 1.2e+03 ]

πA 1.2e-03 [ 5.0e-05 ; 3.2e-03 ] 0.0115 (Beissinger et al. 2016)
πB 8.6e-04 [ 4.0e-05 ; 2.3e-03 ] 0.00691 (Beissinger et al. 2016)
Dxy 1.2e-03 [ 5.0e-05 ; 3.1e-03 ]
Da 1.5e-04 [ 0.0e+00 ; 5.8e-04 ]

Dtaj A -1.1e+00 [ -1.9e+00 ; -2.2e-01 ]
Dtaj B -6.3e-01 [ -1.9e+00 ; 6.7e-01 ]
FST 1.0e-01 [ 1.5e-02 ; 2.8e-01 ] 0.11 (M. Hu�ord et al. 2012)

Table B.3: Distribution of prior and posterior summary statistics values compared to observed
values in S. italica (B)/S. viridis (A) data, with IC representing quantile at 5% and 95% of the
distribution. In addition, values from the literature are provided.

obs literature
SNP/window 1.2e+03 [ 2.1e+02 ; 1.7e+03 ]

πA 3.1e-03 [ 5.9e-04 ; 4.9e-03 ] 0.0059 (Wang et al. 2010)
πB 1.3e-03 [ 1.7e-04 ; 3.2e-03 ] 0.0027 (Wang et al. 2010)
Dxy 3.0e-03 [ 5.8e-04 ; 4.9e-03 ]
Da 8.0e-04 [ 2.0e-05 ; 2.1e-03 ]

Dtaj A -7.2e-01 [ -1.5e+00 ; 4.9e-02 ]
Dtaj B -1.1e+00 [ -2.5e+00 ; 9.1e-01 ]
FST 2.0e-01 [ -4.1e-02 ; 5.0e-01 ] 0.15 (Wang et al. 2010)
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Figure B.1: Distribution of summary statistics values for maize loci in function of their loci
type. Domestication genes from Table B.1 are represented by red diamonds. Barrier loci are
loci showing a barrier model posterior probability > 0.5 and so a BF>30.
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Figure B.2: PCA computed from summary statistics of maize loci colored by log of their Bayes
factor. All loci (�rst row),with BF>30 (middle row) and BF>100 (last row). Three axes are
represented and together explain 76.4% of the variance.
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Figure B.3: Distribution of prior and posterior summary statistics values compared to observed
values in maize (B)/teosinte (A) data (red line).
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Figure B.4: Distribution of parameter posterior values for N1, N2, Na, Tsplit, Mcur, and Manc

and Q. Dashed lines represent the mean value of priors, and the red line represents the mean
value of posterior.
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Figure B.5: Distribution of parameter posterior values for N1, N2, Na, Tsplit, Mcur, and Manc

and Q. Dashed lines represent the mean value of priors, and the red line represents the mean
value of posterior.
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Figure B.6: PCA computed from summary statistics of foxtail millet loci colored by log of their
Bayes factor. All loci (�rst row),with BF>30 (middle row) and BF>100 (last row). Three axes
are represented and together explain 76.5% of the variance.
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Figure B.7: Distribution of summary statistics values for foxtail millet loci in function of their
BF level.
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Figure B.8: Distribution of prior and posterior summary statistics values compared to observed
values in S.italica (B)/S.viridis (A) data (red line).
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Appendix C

Extended abstract (in french)

Les processus qui sous-tendent l'isolement reproductif entre des lignées divergentes sont es-

sentiels pour comprendre la spéciation. Au fur et à mesure de leur évolution, les populations

développent progressivement un isolement reproductif (IR). L'IR est dé�ni comme une réduc-

tion de la production d'hybrides et/ou de l'aptitude à la reproduction ou comme une réduction

du �ux génétique. Dans cette thèse, j'ai étudié l'IR d'un point de vue génomique et j'ai donc

utilisé l'IR comme mesure quantitative de l'e�et des divergences génétiques sur le �ux de gènes

(Westram et al. 2022). Les mécanismes d'IR sont classiquement classés en prézygotiques et

post-zygotiques. L'isolement prézygotique englobe un éventail de mécanismes in�uençant la

probabilité de formation d'un zygote, comme l'isolement écologique, qui se produit lorsque

les deux parents potentiels ne peuvent pas se rencontrer parce qu'ils vivent dans des habitats

di�érents, ce qui peut résulter d'une adaptation locale à des conditions écologiques distinctes.

L'isolement post-zygotique diminue la viabilité ou la fertilité des hybrides qui en résultent.

Par exemple, dans les groupes Drosophila melanogaster et D. virilis - deux espèces étroitement

apparentées - la divergence des protéines gonadiques, en particulier des protéines du tractus

reproducteur mâle, est étroitement associée à la stérilité des mâles hybrides F1 (Coyne et Orr

1989).

En dehors de ces deux types, les distordeurs de ségrégation (SD) sont des éléments génomiques

qui induisent une distorsion de la ségrégation mendélienne, entraînant la transmission préféren-

tielle des allèles SD dans la descendance d'un hétérozygote, un phénomène appelé entraînement

méiotique. En conséquence, les SD sont surreprésentés dans les gamètes viables, ce qui con-

duit �nalement à la �xation des SD dans la population. Au-delà de la classi�cation basée

sur la formation du zygote, l'IR peut être classé en fonction de son origine, soit intrinsèque,

soit extrinsèque. intrinsèque ou extrinsèque. L'IR intrinsèque est indépendant des in�uences

environnementales, tandis que l'IR extrinsèque dépend de l'interaction entre les deux. l'IR

extrinsèque dépend de l'interaction entre le génome et l'environnement (interaction génotype-

environnement). environnement).

Pour comprendre la spéciation, il est essentiel de saisir le processus par lequel cet isole-

ment se développe. En d'autres termes, comment un allèle, comme chez la drosophile, peut

émerger et se propager, même s'il entraîne une réduction signi�cative des capacités alimentaires
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des individus hétérozygotes (hybrides), diminuant ainsi substantiellement leurs chances de se

reproduire. Plusieurs décennies de recherche scienti�que ont été consacrées à la question de

l'établissement et du maintien de l'IR. Au-delà de la compréhension du mécanisme de formation

et de préservation de cet isolement, les modèles théoriques permettent également de formuler des

hypothèses testables. Ces hypothèses guident ensuite la recherche empirique, fournissant une

approche systématique pour explorer et comprendre les mécanismes sous-jacents de l'évolution

et de la spéciation. Bateson, puis Dobzhansky et Muller ont chacun proposé un modèle alter-

natif (appelé BDMI pour Bateson-Dobzhansky-Muller Incompatibility) qui résout le problème

du franchissement des vallées d'aptitude (il s'agit de la situation paradoxale où la réduction

de l'aptitude des hétérozygotes est nécessaire pour établir l'IR, mais en même temps, la ré-

duction de l'aptitude des hétérozygotes empêche la population de diverger car les hybrides ne

pourraient pas survivre) en considérant un modèle à deux locus et à deux allèles (Orr 1996). Il

utilise une interaction d'épistasie négative à deux locus pour permettre l'émergence de l'IR sans

croiser la vallée de l'aptitude. Un autre modèle courant utilise l'adaptation locale entre deux

niches/environnements pour déclencher l'IR (appelé spéciation écologique) et/ou maintenir l'IR

en sélectionnant des hybrides qui ne s'adaptent à aucun environnement.

La spéciation est un processus dynamique qui s'étend dans le temps et dans le génome.

Au début du processus de spéciation, la divergence des populations se produit au niveau d'un

petit nombre de loci responsables de la divergence. de loci responsables de la divergence. En

présence d'un �ux génétique, les progrès vers la spéciation sont rapidement érodés. Dans ces

conditions, les loci barrières doivent être sélectionnés à une force qui contrecarre la migration.

L'établissement d'haplotypes portant des allèles adaptés localement et des loci d'isolement

(Schilling et al. 2018) confère un avantage considérable, car il permet la divergence adaptative

et la spéciation même en présence de taux de migration élevés (Schluter et Rieseberg 2022).

Cela peut se produire soit par le biais de la sélection liée, où plusieurs gènes peuvent faire de

l'auto-stop autour des loci de la barrière initiale, soit par le biais de la sélection des suppresseurs

de recombinaison. Dans les deux cas, le regroupement des gènes se traduit par un large signal

génomique, appelé � îlots génomiques de divergence �.

La nature graduelle de la spéciation a été observée dans de nombreuses paires d'espèces

montrant une corrélation entre l'IR et la divergence génétique (Coyne et Orr 1989 ; Presgraves

2002 ; Roux 2016). De cette observation découle la question suivante : à quelle vitesse l'IR

s'accumule-t-il ? Dans ses travaux théoriques théorique, Orr (1995) a conclu que l'IR postzygo-

tique devrait augmenter à un rythme plus rapide que la ligne, c'est-à-dire comme un processus

� boule de neige �. La nature � boule de neige � du processus d'IR dans le temps est toujours

débattue, certaines études n'ayant pas apporté de preuves de �nancement (Presgraves 2002).

n'ont pas apporté de preuves de �nancement (Presgraves 2002 ; Stelkens et al. 2010 ; Price

et Bouvier 2002), tandis que d'autres d'autres soutiennent la théorie comme chez la drosophile

(Matute et al. 2010) et chez les espèces Solanum (Moyle et Nakazato 2010).

Un objectif central de la recherche sur la spéciation est de comprendre les mécanismes géné-

tiques et génomiques à l'÷uvre dans l'émergence et le maintien de l'IR. Pour ce faire, il faut
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identi�er les locus de barrière de �ux génétique et comparer les résultats de plusieurs paires de

lignées divergentes a�n de saisir les événements séquentiels qui contribuent à l'établissement

et au maintien des barrières reproductives. Traditionnellement, la détection des barrières re-

pose sur des analyses de locus de traits quantitatifs (QTL) et des évaluations fonctionnelles.

Toutefois, les progrès des données génétiques sur l'ensemble des populations ont ouvert la voie

à des approches de balayage du génome moins coûteuses et plus faciles à mettre en ÷uvre,

qui permettent d'étudier un spectre beaucoup plus large de populations/paires d'espèces. Pour

étudier e�cacement les déterminants génétiques de l'IR à l'aide de données de population à

l'échelle du génome, il est essentiel de disposer d'attentes théoriques concernant les signatures

génomiques des loci barrières, ce qui permet de les détecter.

On s'attend à ce que les loci barrières génèrent des RI, diminuant ainsi le �ux de gènes

au niveau du locus entre les populations. En l'absence de �ux génétique, les loci barrières

n'exercent pas d'in�uence locale sur la divergence évolutive, car l'isolement géographique en-

trave déjà le �ux génétique sur l'ensemble du génome. En présence d'un �ux de gènes, les

loci barrières contribuent à façonner le paysage de la di�érenciation et de la divergence en

faisant obstacle au �ux de gènes dans leur voisinage, ce qui entraîne une évolution distincte des

séquences génétiques entre les populations au niveau de ces loci. En raison de cette évolution

indépendante, des mutations indépendantes apparaissent au �l du temps, et l'adaptation locale

peut favoriser davantage des allèles spéci�ques, ce qui entraîne une divergence et une di�éren-

ciation accrues (Hejase et al. 2020 ; Sakamoto et Innan 2019). On prévoit donc que les loci

barrières induisent une escalade de la divergence nette et potentiellement une augmentation de

Dxy . Cependant, comme la Dxy dépend également de la diversité locale, cette augmentation

peut être masquée par des variations locales de la diversité. En présence d'un �ux génétique,

la diversité de chaque population peut être enrichie par les migrants. Inversement, les loci bar-

rières, qui ne subissent pas les e�ets du �ux génétique, ont tendance à présenter une diversité

plus faible que le reste du génome.

Malheureusement, d'autres processus peuvent générer des signatures confondantes simi-

laires. Parmi les facteurs a�ectant la détection, nous pouvons distinguer deux groupes : l'un

agissant au niveau local, qui imite partiellement le modèle génomique des loci de barrière

(comme la réduction locale de la taille de la population), et l'autre au niveau du génome entier

(comme un temps de divergence récent), qui diminue la di�érence entre les loci de barrière et le

reste du génome, réduisant ainsi la puissance de détection. Il existe une variété d'approches pro-

posant de détecter les barrières au �ux génétique à partir des modèles génomiques à l'échelle

du génome. Elles peuvent être classées en deux groupes (Tenaillon et Ti�n, 2008) : i) les

méthodes basées sur les données impliquent la construction empirique de distributions nulles à

partir d'une ou plusieurs statistiques obtenues à partir de scans génomiques et reposent sur des

seuils arbitraires pour détecter les valeurs aberrantes ; ii) les méthodes basées sur des modèles

impliquent l'inférence d'un modèle démographique (soit au préalable, soit simultanément) pour

établir un modèle nul, suivi de l'identi�cation des valeurs aberrantes correspondant aux loci

de barrière en fonction de ce modèle. La démographie est incorporée pour atténuer les e�ets
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confondants.

Comprendre les mécanismes génétiques sous-jacents à l'isolement reproductif est un objec-

tif principal de la recherche sur la spéciation. L'analyse des populations divergentes est une

approche courante, mais capturer la séquence des événements qui mènent aux barrières repro-

ductives reste un dé�. Une avenue prometteuse consiste à comparer des populations à di�érents

niveaux de divergence temporelle et/ou spatiale, y compris celles récemment divergentes. Pour

y parvenir, il est nécessaire de disposer d'un cadre comparatif capable de détecter les barrières

au �ux génétique à di�érents stades évolutifs à travers divers systèmes biologiques, indépendam-

ment de leur histoire démographique. La méthode introduite, RIDGE (Détection de l'Isolement

Reproductif utilisant les Polymorphismes Génomiques), vise à répondre à ce besoin.

RIDGE prend en entrée un �chier vcf contenant les séquences d'individus provenant de deux

populations, accompagné de �chiers accessoires fournissant des informations complémentaires.

À partir de cela, RIDGE utilise d'abord la méthode de l'Approximate Bayesian Computation

(ABC) pour inférer des données démographiques en simulant 14 modèles démographiques x

génomiques a�n de produire une table de référence. Cette table sert à entraîner une forêt

aléatoire (Random Forest, RF) qui génère des poids et des estimations de paramètres pour

chaque modèle en fonction de leur adéquation avec l'ensemble de données cible (observé).

Ensuite, RIDGE construit un hypermodèle où la distribution postérieure de chaque paramètre

est obtenue comme la moyenne pondérée sur les 14 modèles. En�n, il utilise cet hypermodèle

pour simuler un ensemble de loci de contrôle (ci-après non-barrière) et un ensemble de loci de

barrière qui n'ont subi aucun �ux génétique pendant la divergence. Les ensembles de données

simulés pour les loci de barrière et non-barrière sont utilisés pour entraîner une seconde forêt

aléatoire qui génère des probabilités postérieures et des facteurs de Bayes associés pour chaque

locus a�n de déterminer s'il appartient à la catégorie des loci de barrière ou de non-barrière.

RIDGE repose sur une approche ABC qui o�re une grande �exibilité, lui permettant

d'explorer l'hétérogénéité génomique et d'incorporer des statistiques récapitulatives personnal-

isées. Nous avons également conçu une méthode pour générer des estimations de paramètres

multidimensionnelles, dépassant le focus initial sur un seul paramètre de abcrf (Raynal et al.

2019). Cette amélioration permet à RIDGE de gérer e�cacement les interdépendances entre

les paramètres et d'augmenter la précision des estimations de paramètres.

Une autre amélioration introduite par RIDGE est l'incorporation des facteurs de Bayes,

facilitant la comparaison des résultats. De plus, RIDGE modélise explicitement la variation

du taux de migration, m, plutôt que le taux de migration à l'échelle de la population (4Ne m)

comme dans DILS (Fraisse et al. 2021), ce qui aboutit à une détection beaucoup plus stricte

des loci de barrière. Nous interprétons que, en �xant à la fois Ne et 4Ne m comme dans DILS,

l'hétérogénéité de la migration, m, tend à être trop fréquemment inférée car cela permet de

concilier les modèles observés pour di�érentes statistiques.

Une limitation de RIDGE est la nécessité de dé�nir a priori la taille des fenêtres, un choix

arbitraire qui peut poser des problèmes dans les comparaisons entre espèces. Une amélioration

possible serait de dé�nir la taille des fenêtres en fonction de la distance génétique plutôt que
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de la distance physique lorsqu'une carte génétique est disponible. Alternativement, on pourrait

utiliser des critères basés sur des topologies locales pour segmenter le génome en fenêtres,

comme implémenté dans Saguaro, qui repose sur un modèle de chaîne de Markov cachée couplé

à des algorithmes de reconnaissance et de classi�cation de motifs non supervisés (Zamani et al.

2013). Nous avons testé RIDGE d'abord sur un ensemble de données simulées pour mesurer les

performances de cet outil sous divers scénarios. Ensuite, nous l'avons appliqué à un ensemble

de données empiriques, en commençant par un ensemble de données de corbeaux (provenant de

Poelstra 2014 et Vijay 2016) pour lequel une barrière est bien décrite et la biologie sous-jacente

bien connue.

Les ensembles de données simulées que nous avons explorés nous ont fourni des lignes direc-

trices pour les conditions où RIDGE peut fournir des résultats utiles et précis. Nous suggérons

d'utiliser des ensembles de données avec une densité de SNP supérieure à 0,1 %, comme dans les

corbeaux et les ensembles de données simulées, où la densité de SNP était d'environ 1 %. Nous

conseillons également d'utiliser un minimum de trois échantillons par population. Les statis-

tiques de bonté d'ajustement permettent aux utilisateurs de véri�er la qualité des inférences

e�ectuées. Si Gpost < 5 %, l'utilisateur doit véri�er les bornes des prioris. Les lignes directri-

ces pour interpréter et dé�nir les seuils des facteurs de Bayes (BF) dépendent des objectifs de

l'utilisateur.

Si RIDGE est utilisé uniquement pour découvrir de nouveaux gènes candidats impliqués

dans les barrières au �ux génétique pour une paire de populations spéci�que, nous recomman-

dons d'utiliser un seuil personnalisé qui capture de manière optimale les valeurs aberrantes du

facteur de Bayes. À des �ns de comparaison, il est recommandé d'utiliser un facteur de Bayes

standard BF > 50 ou 100, ou de conserver le nombre de loci aberrants correspondant à la

proportion de barrières estimée dans la première étape de RIDGE (Q̂). Il est également impor-

tant de considérer la distribution globale du facteur de Bayes (ou de la probabilité postérieure)

pour aider à interpréter les résultats. Par exemple, sous le modèle SI (avec une divergence

su�sante), tous les loci ou une grande proportion de loci apparaissent comme des barrières,

mais la distribution globale est unimodale, ce qui contraste nettement avec un modèle IM avec

des barrières, qui présente une distribution clairement bimodale (Figure A.12).

Il est crucial de noter que les données génomiques seules ne peuvent fournir des preuves

concluantes des loci de barrière et que les résultats de RIDGE doivent être couplés à d'autres

analyses telles que l'analyse fonctionnelle (Ravinet et al. 2017). Il est important de noter

que la longueur de la fenêtre (par défaut réglée à 10 kb) peut a�ecter de manière signi�cative

les résultats de RIDGE. Elle doit être déterminée en fonction de l'étendue du déséquilibre de

liaison ainsi que du niveau de diversité, car elle détermine la quantité de polymorphisme et

a�ecte donc la force du signal.

Comme pour toutes les approches ABC, la qualité des priors fournis par l'utilisateur a�ecte

les résultats obtenus avec RIDGE. Un Tsplit de 0.1 2Ne générations (10 000 générations dans

nos simulations) semble être une limite inférieure pour à la fois les inférences démographiques

(Figures 2.4 et 2.5) et les inférences de barrière (Figure 2.6), en dessous de laquelle RIDGE ne
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parvient pas à capturer des signaux informatifs. RIDGE peut détecter des barrières au �ux

génétique sur des données simulées (Figure 2.6) et empiriques (Figure 2.7), à partir de 0.1 2Ne

génération, ce qui représente un très faible niveau de divergence. Pour contextualiser, DILS a

correctement inféré une barrière au �ux génétique lorsque Tsplit > 0.5 2Ne générations, tandis

que gIMble n'a démontré son e�cacité que sur une paire d'espèces d'Heliconius qui ont divergé

il y a 4.5 millions de générations, estimé à représenter 0.49 2Ne générations (Martin et al. 2015).

Les approches comparatives ont été utiles pour comprendre les bases génomiques impliquées

dans le processus d'isolement reproductif (par exemple, Roux et al. (2016)) et continueront

de jouer un rôle important dans la recherche sur la spéciation. Par sa �exibilité et son cadre

comparatif, RIDGE devrait devenir un outil utile pour suivre cette direction. En�n, j'ai testé

RIDGE sous des temps de divergence faibles en l'appliquant à des systèmes domestiqués, y

compris le maïs et le millet , qui ont subi une sélection récente médiée par l'homme. Les deux

systèmes ont divergé de leur parent sauvage le plus direct ("ancêtre") il y a environ 9000 ans.

Cependant, ils ont des systèmes de reproduction di�érents ; le maïs est allogame tandis que le

millet est autogame.

Les deux ensembles de données sont principalement structurés génétiquement par la dif-

férenciation entre les pools géniques sauvages et domestiques. Cependant, il semble que le pool

génique sauvage du millet présente encore une structure génétique malgré les e�orts pour l'éviter

lors de l'échantillonnage génétique. Dans les travaux futurs, il faudra ré-analyser l'ensemble de

données du millet après avoir éliminé les valeurs aberrantes du pool génique sauvage a�n de

véri�er si nos observations actuelles sont a�ectées par la structure de la population sauvage.

Les ensembles de données pour le maïs et le millet , en raison de leur divergence récente

de leurs parents sauvages, présentent des conditions plus di�ciles que l'ensemble de données

des corbeaux. La détection de barrières en utilisant un seuil BF = 30 a montré des modèles

génomiques presque identiques pour les barrières dans les deux cas, avec la même quantité de

Mb détectée comme barrière (44,2 Mb pour le maïs et 49 Mb pour le millet ), bien que le

génome du maïs soit cinq fois plus grand que celui du millet .

Fait intéressant, tous les loci connus comme barrières entre le maïs et la téosinte proviennent

de l'interaction maïs-mexicana. Le maïs est connu pour s'hybrider facilement avec parviglumis,

ce qui peut entraîner moins de loci d'isolement reproductif (IR). Notre population sauvage se

compose uniquement d'individus parviglumis. Néanmoins, nous observons une grande région

d'IR à la position de Ga2 (Figure 4.8), indiquant que même entre le maïs et parviglumis, Ga2

agit comme une barrière. Quant à l'autre gène, il présente un niveau de BF d'environ 10 pour

Ga1/Tcb1. De plus, un gène de domestication, Bt2, a été détecté comme une barrière (avec

un BF = 110), montrant que la domestication peut jouer un rôle dans l'isolement reproductif,

bien que ce soit une exception parmi les 11 gènes de domestication bien décrits chez le maïs qui

expriment un BF très faible (BF 4). La domestication est une forme d'adaptation locale forte

qui pourrait indirectement mener à l'isolement reproductif (IR). Nos résultats suggèrent qu'à

l'exception d'un gène, les gènes de domestication ne sont pas impliqués dans l'IR. Nous avons

également testé la présence de barrières génétiques dans les gènes de �oraison, car ils sont des
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candidats potentiels pour l'isolement reproductif par isolation temporelle. Nos résultats n'ont

trouvé aucun gène de �oraison dépassant BF = 30 (la valeur moyenne dans les régions des gènes

de �oraison est la même que la moyenne du génome).

Dans l'ensemble, l'autofécondation semble a�ecter les résultats lors de l'examen des in-

férences démographiques et des modèles génomiques de barrières. Par exemple, les barrières

détectées dans le millet avec un facteur de Bayes de 16 représentent 15 %, ce qui est nettement

plus élevé que dans le maïs. De plus, ces barrières sont séparées en deux groupes en utilisant

l'ACP (Figure B.6). Ce résultat pourrait potentiellement s'expliquer par un �ux génétique plus

faible et un déséquilibre de liaison plus élevé dans l'autofécondation générant plus de barrières

au �ux génétique, ou par le fait que l'autofécondation viole de nombreuses hypothèses faites lors

des simulations, entraînant ainsi des faux positifs potentiels. Le contraste entre l'île et le niveau

de la mer dans le facteur de Bayes est plus faible pour le millet que pour le maïs (Figure 4.15).

Cela pourrait être dû à la réduction globale du �ux génétique induite par l'autofécondation

couplée à une réduction de la recombinaison e�ective. Cependant, si tel était le cas, la distribu-

tion du BF ne devrait pas montrer une bimodalité claire et le paysage du BF devrait être plus

plat. Alternativement, le contraste plus faible pourrait s'expliquer par un manque de puissance

statistique. Les résultats sont plus di�ciles à interpréter que ceux du maïs en raison de l'e�et

de l'autofécondation sur les aspects biologiques et statistiques.

L'objectif principal de cette thèse était de développer une méthode pour détecter les barrières

au �ux génétique pouvant être appliquée à divers systèmes biologiques. Je me suis basé sur un

outil existant, DILS (Fraïsse et al. 2021), et je l'ai modi�é et étendu pour permettre une analyse

comparative dans plusieurs contextes. Tout d'abord, j'ai amélioré la méthode en implémentant

une moyenne des modèles au lieu d'une approche par le meilleur modèle. Cette modi�cation a

permis à RIDGE d'estimer avec précision les modèles démographiques dans une large gamme de

conditions, à la fois sur des ensembles de données simulées et empiriques, rendant possibles les

comparaisons entre ensembles de données même lorsque les meilleurs modèles di�èrent. Ensuite,

j'ai a�né l'estimation des paramètres liés à la proportion de barrières au �ux génétique dans les

génomes, en introduisant de nouvelles métriques pour les valeurs aberrantes de divergence, de

di�érenciation et de diversité. En particulier, cela a amélioré l'estimation dans des conditions

di�ciles telles que des temps de divergence faibles et/ou des taux de migration faibles.

En�n, RIDGE est capable de détecter des barrières sur des ensembles de données simulées

même à des temps de divergence très faibles (Tsplit < 0.2Ne), mais aussi sur des ensembles

de données réels comme observé pour les corbeaux (pour un temps de divergence récent) et le

maïs (très récent) pour lesquels nous avons réussi à détecter des loci de barrière bien identi�és

dans la littérature (RSG9, LRP5, PRKCA et CACNG1&4 pour les corbeaux et Ga2 pour le

maïs). Comme observé dans le cas du millet , le système de reproduction par autofécondation

semble réduire la capacité de RIDGE à distinguer les barrières.
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Titre : Approche génomique de la détection des barrières au flux de gènes

Mots clés : spéciation, barrières au flux de gènes, ABC, machine learning

Résumé : La caractérisation des mécanismes qui
sous-tendent l'isolement reproductif  entre des lignées
divergentes  est  essentielle  pour  comprendre  le
processus de spéciation.  Au cours de leur évolution,
les  populations  développent  progressivement  un
isolement reproductif  (IR) en passant par des étapes
intermédiaires,  souvent  appelées  "zone  grise  de  la
spéciation".  L'établissement  de  l'IR  se  manifeste  par
l'apparition  de  régions  génomiques  qui  agissent
comme des barrières réduisant le flux de gènes local
par  rapport  au  reste  du  génome.  Les  approches  de
génomique  des  populations  impliquent  donc
l'identification  de  locus  avec  des  signatures
spécifiques,  différentes  du  reste  du  génome.
Cependant,  d'autres  processus  peuvent  créer  des
signatures  similaires,  ce  qui  fait  de  la  détection  des
barrières  une  tâche  difficile.  Dans  ma  thèse,  j'ai
développé  un  nouvel  outil,  RIDGE  -  Reproductive
Isolation Detection using Genomic Polymorphisms – un
nouvel outil libre et portable adapté en particulier aux
approches comparatives. RIDGE utilise une approche
ABC  (Approximate  Bayesian  Computation)  et  de
“model averaging” basée sur des “random forest” pour
prendre  en  compte  divers  scénarios  de  divergence
entre  lignées.  Il  prend  en  compte  l'hétérogénéité  du
taux de migration,  de la sélection en liaison et  de la
recombinaison  le  long  du  génome,  estimant  la
proportion de barrières et effectuant des tests par locus
pour détecter les barrières au flux génique.

Des  simulations  et  des  analyses  de  jeux  de
données  publiés  sur  des  paires  d'espèces  de
corbeaux  indiquent  que  RIDGE est  efficace  pour
détecter la migration en cours et identifier les locus
barrières,  même  pour  des  temps  de  divergence
récents.  De  plus,  la  contribution  des  statistiques
résumées varie en fonction du jeux de données, ce
qui  met  en  évidence  la  complexité  des  signaux
génomiques des barrières et l’intérêt de combiner
plusieurs  statistiques  résumées.  Par  la  suite,  j'ai
appliqué  RIDGE  à  des  paires  de  populations
sauvages/domestiques  :  le  maïs  (allogame)  et  le
millet (autogame), les deux ayant été domestiquées
il y a environ 9 000 ans. Des flux de gènes entre les
formes  ont  été  documentés  dans  ces  deux
systèmes. Les modèles avec migration continue au
cours du temps et hétérogène le long du génome
sont  clairement  ressortis  comme  dominants.
RIDGE  a  également  démontré  sa  capacité  à
distinguer  les  locus  barrière  des  locus  de
domestication (qui ont subi des balayages sélectifs
au sein des formes domestiques). Les perspectives
de ce travail comprennent l'application de RIDGE à
de multiples paires population/espèce englobant un
large spectre de divergence afin de déterminer les
bases  génomiques  de  l’IR  au  cours  de  la
spéciation, de tester la théorie de «l’effet boule de
neige” formulée par Orr en 1995 ou de déterminer
la nature des gènes de spéciation.

Title : Genomic Approach to Detecting Barriers to Gene Flow

Keywords : speciation, gene flow barrier, ABC, machine learning 

Abstract  : Characterizing  the  mechanisms  that
underlie  reproductive  isolation  between  diverging
lineages  is  central  in  understanding  the  speciation
process. As populations evolve, they gradually develop
reproductive  isolation  (RI)  by  passing  through
intermediate steps, often referred to as the "gray zone
of  speciation".  This  isolation  is  marked  by  the
emergence of  genomic  regions  acting  as  barriers  to
local gene flow, distinct from the rest of the genome.
Detecting these barrier loci involves identifying outlier
loci with specific signatures. However, other processes
can create  similar  patterns,  which  challenges  barrier
loci  detection.  In  my thesis,  I  developed a new tool,
RIDGE  -  Reproductive  Isolation  Detection  using
Genomic  Polymorphisms,  a  novel  free  and  portable
tool  tailored  for  this  purpose  in  a  comparative
framework.  RIDGE utilizes  an  Approximate  Bayesian
Computation  model-averaging  approach  based  on  a
random forest  to  accommodate  diverse  scenarios  of
lineage  divergence.  It  considers  heterogeneity  in
migration  rate,  linked  selection,  and  recombination,
estimates barrier proportion and conducts locus-scale
tests for gene flow barriers.

Simulations and analyses of published datasets in crow
species pairs demonstrate RIDGE's efficacy in detecting
ongoing  migration  and  identifying  barrier  loci,  even  for
recent divergence times. Furthermore, the contribution of
summary  statistics  varies  depending  on  the  dataset,
highlighting the complexity of gene flow barrier genomic
signals  and the interest  of  combining  several  statistics.
Subsequently, I applied RIDGE to wild/domestic pairs in
maize (an outcrosser),  and foxtail  millet  (a selfer),  both
domesticated  around  9,000  years  ago.  Gene  flow
between forms has been reported in these two systems.
Consistently,  models  with  ongoing  migration  and
heterogeneity  in  migration  rate  were  clearly  dominant
over other models. RIDGE also demonstrated its ability to
distinguish  between  barrier  loci  and  domestication  loci
(that  experienced selective sweeps  within  the domestic
forms).  The  perspectives  of  this  work  include  applying
RIDGE  to  multiple  population/species  pairs
encompassing  a  large  spectrum  of  divergence  to
determine the genomic pattern of RI during speciation, to
test the snowball theory formulated by Orr in 1995 or to
determine the nature of speciation genes.
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