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Résumé

La performance des modèles d’apprentissage profond s’appuie aujourd’hui con-
jointement sur deux passages à l’échelle : une augmentation de la quantité des
données d’entraînement d’une part, et une augmentation de la taille des modèles
d’autre part. Ces deux passages à l’échelle sont en revanche coûteux. La con-
stitution d’une grande base de données peut demander des efforts considérables
en termes de prétraitement et d’annotations, tandis que le déploiement de mo-
dèles surparamétrés devient complexe lorsque les ressources computationnelles
sont limitées. Ainsi, cette thèse s’intéresse aux enjeux de frugalité en données et
d’efficacité en ressources de calcul dans l’apprentissage profond.

Premièrement, nous étudions l’apprentissage auto-supervisé, une approche
prometteuse en vision par ordinateur qui ne nécessite pas d’annotations des don-
nées pour l’apprentissage de représentations. En particulier, nous proposons
d’unifier plusieurs fonctions objectives auto-supervisées dans un cadre de no-
yaux invariants par rotation, ce qui ouvre des perspectives en termes de réduc-
tion de coût de calcul de ces fonctions objectives.

Deuxièmement, étant donné que l’opération prédominante des réseaux de
neurones profonds est la multiplication matricielle, nous nous penchons sur la
construction d’algorithmes rapides qui permettent d’effectuer la multiplication
matrice-vecteur avec une complexité presque linéaire. Plus spécifiquement, nous
étudions le problème de factorisation creuse de matrices sous la contrainte de
parcimonie dite "butterfly", une structure commune à plusieurs transformées rapi-
des comme la transformée de Fourier discrète. La thèse établit des nouvelles
garanties théoriques sur l’algorithme de factorisation butterfly, notamment sur
l’identifiabilité des facteurs creux et sur la quasi-optimalité de l’algorithme de
factorisation. Nous nous penchons également sur le problème de factorisation
butterfly à permutation inconnue des lignes et des colonnes, afin de rendre le
modèle de factorisation plus flexible que celui où les supports des facteurs creux
sont connus et fixés à l’avance. Enfin, nous explorons l’efficacité des implémenta-
tions GPU de la multiplication matricielle avec parcimonie butterfly, dans le but
d’accélérer réellement des réseaux de neurones parcimonieux.
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Abstract

The performance of deep learning models today relies jointly on two scaling con-
siderations: an increase in the amount of training data, and an increase in the
model size. However, both of these scaling strategies are costly. Building a large
database can require significant efforts in terms of preprocessing and annotations,
while deploying overparameterized models becomes complex when computa-
tional resources are limited. Thus, this thesis focuses on the challenges of data
frugality and computational resource efficiency in deep learning.

First, we study self-supervised learning, a promising approach in computer
vision that does not require data annotations for learning representations. In par-
ticular, we propose a unification of several self-supervised objective functions un-
der a framework based on rotation-invariant kernels, which opens up prospects
to reduce the computational cost of these objective functions.

Second, given that matrix multiplication is the predominant operation in deep
neural networks, we focus on the construction of fast algorithms that enable
matrix-vector multiplication with nearly linear complexity. More specifically, we
examine the problem of sparse matrix factorization under the constraint of the
so-called butterfly sparsity, a structure common to several fast transforms like the
discrete Fourier transform. The thesis establishes new theoretical guarantees for
butterfly factorization algorithms, particularly on the identifiability of the butter-
fly sparse matrix factorization and the quasi-optimality of the butterfly decom-
position algorithm. We also address the problem of approximating a matrix via a
butterfly factorization up to some unknown row and column permutations, in or-
der to make the factorization model more flexible than the one where the sparsity
patterns of the sparse factors are known and fixed in advance. Finally, we explore
the efficiency of GPU implementations for butterfly sparse matrix multiplication,
with the goal of truly accelerating sparse neural networks.
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Notations

We list some notations commonly used throughout the thesis.

Notations for matrices, submatrices, entries. Matrices and vectors are in bold
letters. X[i, :] and X[:, j] are the i-th row and the j-th column of X, respectively.
X[i, j] is the entry of X at the i-th row and j-th column. X[I, :] and X[:, J] are the
submatrices of X restricted to a subset of row indices I and a subset of column
indices J, respectively. X[I, J] is the submatrix of X restricted to both I and J. We
extend these notations to multidimensional arrays (tensors).

Support of a matrix or a vector. The support of a matrix M ∈ Cm×n is the set
supp(M) := {(i, j) ∈ JmK × JnK |M[i, j] ̸= 0}. By abuse of notation, for any
B ∈ {0, 1}m×n, we will sometimes write supp(M) ⊆ S instead of supp(M) ⊆
supp(S).

Concatenation of matrices. The column-wise concatenation of a family of ma-
trices {Mk}k having the same number of rows is denoted(

· · · Mk · · ·
)

k .

The row-wise concatenation of a family of matrices {Mk}k having the same num-
ber of columns is denoted 

...
Mk

...


k

.

The block-diagonal matrix with diagonal blocks {Mk}k is denoted
. . . 0

Mk

0 . . .


k

.
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Notations

For families of matrices {Mk}k and {Nk}k of adequate sizes, we have:

(
· · · MkNk · · ·

)
k =

(
· · · Mk · · ·

)
k


. . . 0

Nk

0 . . .


k

, (1)

or


...

MkNk
...


k

=


. . . 0

Mk

0 . . .


k


...

Nk
...


k

. (2)
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Notations / abbreviations

A× B Cartesian product between set A and B
B\A Set difference of B and A
A ∩ B Intersection of sets
A ∪ B Union of sets
|A| Cardinality of the set A
R Set of real numbers
C Set of complex numbers
N Set of integers
N∗ Set of positive integers
JLK Integer set {1, . . . , L}
Ja, bK Integer set {a, . . . , b}
[a, b] Real interval with a, b ∈ R

|x| Absolute value of x ∈ C

∥ · ∥p ℓp-norm for a vector
∥ · ∥F Frobenius norm
⌈·⌉ Ceiling function
⌊·⌋ Floor function
◦ Function composition
f ∼ g Asymptotic equivalence between two functions
(X, Y) ∼ (X̄, Ȳ) Equivalent pairs of matrices, see Definition 6.3
⊙ Hadamard product
⊗ Kronecker product
X⊤ Matrix transpose
X∗ Matrix conjugate transpose
0m×n m× n matrix full of zeros
1m×n m× n matrix full of ones
Ia Identity matrix of size a
j Imaginary unit
a ≡ b mod c Integers a, b are congruent modulo c(

n
k

)
Binomial coefficients

K ∗ X Convolution as in (4.5)
E Expectation of random variable
x ∼ P Random variable with probability distribution P

N (0, 1) Standard normal distribution
i.i.d. Independent and identically distributed
resp. Respectively
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Chapter 1
Introduction

The information revolution that we have been witnessing over the last decades
is likely one of the most significant reorganizations of our societies in history
[144]. At the heart of this revolution are digital technologies, which have radi-
cally changed our ways of processing, storing, and communicating information.
Today, massive amount of data are automatically processed using machine learn-
ing algorithms, with computers that are able now to perform billions of opera-
tions per second. These algorithms are based on the paradigm of learning from
data, which bypasses the complexity of formally describing the knowledge of the
world and the set of logical rules for inference, as proposed in the knowledge-
based approach in the early days of artificial intelligence [279]. In machine learn-
ing algorithms, such a complexity is rather handled using a statistical approach,
where a model acquires knowledge about the world by extracting important pat-
terns from a so-called training dataset, in order to make predictions and decisions
that generalize well on unseen data during inference [27, 160].

The performance of these algorithms then heavily depends on the represen-
tations of the data they are given [22]. Indeed, well-designed features allow the
model to learn the underlying patterns in the data more effectively, leading to
better predictions and decisions. In order to avoid the complexity of manually
designing the right features for a specific learning task, deep learning algorithms
choose to rely on representations that are themselves learned from data, by express-
ing them in terms of “other, simpler representations” [134]. Such a hierarchy of
concepts is typically modeled by deep neural networks, which are mathematical
models originally introduced in the framework of connectionism to study infor-
mation processing in biological systems [263].

It turns out that that increasing both the amount of high-quality data and the size of
the model yields more effective representations learned by the deep neural network from
the dataset. Data quality refers to how well the data are annotated, curated, well-
processed, so that the predictions of a model trained on these data are expected
to be accurate. The size of a model can be roughly quantified by the number of
its parameters, which is typically characteristic of the expressiveness of the model.
Hence, with growing computation capabilities becoming available over the years,
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the community has been witnessing the scaling up of the training dataset and
the model capacity in deep learning algorithms, resulting in their increasing per-
formance across various learning tasks. In other words, the recipe for success
in deep learning has been: training with more data, if possible of good quality, with
larger models, and with more computation. However, this logic pushed to the ex-
treme comes with important challenges, concerning, on the one hand, the cost of
collecting a massive amount of high-quality data relevant for the algorithm and
the learning task, especially when representation learning requires data labeling,
and, on the other hand, the computational cost for deploying large-scale neural
networks, notably when computational resources are limited.

Overview of the thesis. This thesis focuses on the issue of reducing the depen-
dence on data annotations for learning representations in vision tasks, and on the
issue of reducing the computational cost of deep neural networks. The challenge
is to achieve data (annotation) frugality, and computational efficiency, in the con-
text of large-scale deep learning. For data frugality, we will study self-supervised
learning, a promising approach for learning visual representations without any
annotation. For computational efficiency, given that the predominant operation
of deep neural networks is matrix multiplication, we will focus on the construc-
tion of fast algorithms that accelerate matrix-vector multiplication. In particular,
we will study fast algorithms associated with some specific sparse matrix factor-
izations called butterfly factorizations.

Content of the chapter. Section 1.1 will start by further detailing how the in-
crease of dataset and model size led to the increase of performance in deep learn-
ing models. We will then motivate the thesis by describing the costs of large scale
deep learning, and some challenges that the community is facing with respect to
self-supervised learning in vision (Section 1.2) and butterfly factorization for neu-
ral network compression (Section 1.3). Finally, Section 1.4 presents an overview
of the research direction explored in this thesis to address these challenges.

1.1 More data, bigger models, more computation for
better performance

Let us first come back on the main reasons that led to our study on data frugality
and computational efficiency in deep learning.

The ImageNet database: a large collection of high-quality data. One of the key
turning points in the development of deep learning algorithms is the creation of
the ImageNet database [78]. This dataset is a vast and diverse collection of im-
ages from the Internet, carefully annotated with a hierarchy of concepts, whose
quality has been controlled by human annotators through crowd-sourcing. The
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1.1. More data, bigger models, more computation for better performance

scale of such a high-quality database had never been reached before its release.
Such an effort in data collection has made the resurgence of deep learning algo-
rithms possible in the field: these algorithms were explored in early pioneering
works [219,314], but they were not truly successful at that time due to insufficient
computational power to scale the dataset and model size effectively. In 2012, with
the use of Graphical Processing Units (GPUs) for hardware efficiency, a deep con-
volutional neural network with 60 million parameters was able to outperform
other approaches for ImageNet classification [203]. This moment marked an ac-
celeration of the scaling of dataset and model size, in the quest for better perfor-
mance in various learning tasks.

Neural scaling laws. Neural network models can scale in different manners
[334, 376], for instance in depth [163, 323, 332] or in width1 [173, 374], which re-
sults in an increasing number of parameters2. Mathematically, increasing depth
or width enhances the model capacity, which is the ability of the neural net-
work to well approximate functions from certain function classes [97, 303]. The
combination of a bigger model with a larger training dataset yields better per-
formance on the given learning task [329], as empirically quantified with neural
scaling laws [168, 376]. These are studied across several orders of magnitude of
dataset sizes, using large-scale databases like ImageNet [78] or JFT [329], which
has nearly 3 billion annotated images, and across various orders of magnitude
of the number of parameters, up to billions of parameters [376]. Typically, it is
possible to use a power law to relate the performance of a neural network, mea-
sured in terms of its generalization error, to the dataset volume and the model
size [168]. Importantly, the performance increase of deep neural networks can-
not be obtained solely by scaling either the dataset volume or the model size: it
is necessary to scale them both simultaneously. These scaling laws are empirically
observed no matter which model architecture is used [21, 334, 336, 376], and they
appear across various learning tasks, from language modeling [193], machine
translation, speech recognition [168], multimodal image-text tasks [59], image
generation, image modeling, video modeling, and mathematical problem solv-
ing [166].

The effectiveness of overparameterized neural networks. The term "overpa-
rameterization" generally refers to a model that has much more parameters than
the number of training samples [6]. At this point, we want to point out that it is
not trivial to explain why large-scale deep learning works well in practice. First,

1A deep neural network realizes a mathematical function that is essentially the composition of
several affine transformations and non-linear activation functions. The depth refers to the number
of layers in the network, i.e., the number of affine transformations involved in the composition.
The width refers to the number of neurons or the number of channels at each hidden layer, which
corresponds to the output dimension of the corresponding affine transformation.

2The number of parameters in a neural network usually corresponds to the number of edges
in the graph describing the architecture of the neural network.
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optimizing the parameters of a large neural network during training is generally
regarded as a difficult problem, because it is a large-scale non-convex optimiza-
tion problem [135]. But in practice, provided that the network is properly ini-
tialized, and that instability issues during optimization are properly handled3, it
is possible to reach low training error with stochastic gradient descent. Second,
the empirical behavior of overparameterized neural networks challenges previ-
ous approaches for understanding generalization in machine learning. Tradition-
ally, the classical bias-variance trade-off [160] suggests that overparameterization
should lead to poor generalization, but this does not happen to deep neural net-
works as observed experimentally in neural scaling laws. This calls for new tools
to grasp the generalization capabilities of these overparameterized neural net-
works [2, 19, 39, 69, 122]. In any case, experiments show that overparameterized
deep neural networks are able to learn representations that are powerful enough
to make accurate predictions on a considered task, provided that the training
dataset is sufficiently large.

Transferring the representations learned at large scale. It happens that these
learned representations trained at large scale can be meaningful enough to be
transferred to other learning tasks that share some similarity to the original learn-
ing task, in the sense that it is somehow possible to exploit certain prior knowl-
edge learned during the original task for a more efficient resolution of new tasks,
using less computation and fewer data samples specific to these new tasks. For
instance, the visual representations learned by supervised image classification on
ImageNet have led to successful transfers to object detection and image segmen-
tation [48, 127, 311]. In this paradigm of transfer learning [293, 378], the pipeline is
composed of two steps: the pretraining where the deep neural network is op-
timized to solve a certain learning task, called the upstream task or the pretext
task; and the transfer where the representations learned during the upstream task
are leveraged in some other learning tasks of interest, called downstream tasks.
Concretely, the model’s parameters optimized during pretraining are directly
reused for (hopefully) better initialization in the downstream task, compared
to an initialization from scratch that ignores the pretraining. Importantly, even
though the scaling laws for downstream and upstream performance may be dif-
ferent [1, 167, 338], it is observed, overall, that downstream performance ben-
efits from the scaling up of the pretraining dataset size and the model capac-
ity [200, 334, 376]. This further motivates the global trend of large-scale deep
learning for better downstream performance, under the paradigm of so-called
foundation models [31].

3Using for instance residual connections [163] to mitigate vanishing or exploding gradients
[23].
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1.2 Learning visual representations without labels

Pretraining on a supervised upstream task demonstrates strong results for visual
transfer learning [200], but it requires a large amount of high-quality labeled im-
ages. Yet, collecting annotations becomes infeasible at large scale, because it is
expensive in general. Labeling data requires human labor, and is typically per-
formed via crowd-sourcing [201]. Some data present some form of ambiguities,
which means that different persons can label the same data in different ways, re-
sulting in noisy labeling. Consequently, ensuring the quality of the annotation
might require several rounds of reviews and corrections. Some data require ex-
pert knowledge to annotate, as in medical images [396]. Annotation can be also
tedious and time consuming when it is complex, for instance in datasets for ob-
ject detection or image segmentation. As an example, the average time taken to
label a single image of urban scene in the Cityscape dataset is 90 minutes [66].
Overall, the cost of labeling in large-scale settings calls for alternative approaches
to representation learning that are less dependent on data annotation.

1.2.1 Motivations for self-supervised learning

In self-supervised learning, the goal is to design a certain pretext task that does not
require any form of annotation, with the hope that the learned image representa-
tions are useful enough for several downstream tasks, both at image level like
image classification, or at pixel level like image segmentation (see Chapter 2).
This contrasts with other forms of pretraining where the pretext task relies on
a certain degree of supervision, like supervised representation learning where
all image are annotated with class labels4, semi-supervised learning [292] where
only a fraction of data is labeled, or weakly-supervised learning where, e.g., im-
ages are annotated with some text captions5 [307]. Self-supervised learning has
been successful in natural language processing (NLP). For instance, BERT [83]
is trained to predict missing words in a sentence given its surrounding context,
and this masked language modeling task has been able to harness a large corpus
of non-annotated text to obtain powerful representations. This success in NLP
has encouraged researchers in computer vision to adopt self-supervised learning
strategies for learning visual representations.

Besides avoiding the cost of annotation or the cost of collecting aligned text-
image datasets, self-supervised learning has the benefit of avoiding learning rep-
resentations with text bias, because annotations can be noisy due to ambiguities
that can happen during labeling. Moreover, introducing text supervision could
limit “the information that can be retained about the image, since captions only
approximate the rich information in images, and complex pixel-level informa-

4A class corresponds to a category, and in the supervised setting, we consider that there is a
finite number of classes for a given learning task.

5Text captions correspond to a short description in natural language that summarizes the se-
mantic content of the image, and are more flexible than class labels for the annotation.
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tion may not surface with this supervision” [291]. Under this hypothesis, it is
therefore preferable to only rely on visual data as in self-supervised learning,
in order to learn stronger image representations that are more suited to visual
downstream tasks, like image classification, object detection, object localization,
semantic segmentation, depth estimation, video understanding, etc.

Overall, recent works on self-supervised learning in the past years have shown
promising results, as their downstream performance can match or even surpass
supervised representation learning. Yet, there are still many challenges to be ad-
dressed, and we present some of them related to this thesis.

1.2.2 Some challenges in self-supervised learning

When annotations are not available during pretraining, it is necessary to use some
prior knowledge about visual data to design a pretext task. The idea is to guide
the learning process by relying on some sort of regularity assumption about the
structure of an image. Such a regularity means, for instance, that it is sometimes
possible to predict a missing part of an image from the other parts of the image, or
that the semantic of an image is invariant under some deformations of the image,
like a horizontal flip of the image or a small change of colors.

Avoiding shortcuts during pretraining. The incorporation of such prior knowl-
edge into the pretext task is then translated into an objective function that is min-
imized by the network during pretraining. However, the designed optimization
problem should be sufficiently well-posed in order to avoid the model learning
a so-called shortcut solution, which indeed minimizes the objective function, but
yields ineffective representations for the resolution of downstream tasks, because
too much information about the underlying patterns in the data is lost during
pretraining. For instance, in the pretext task where representations are learned to
be invariant to some small image transformations (cropping, blurring, color jit-
tering, etc.) via the minimization of their distances in the latent space, we want to
avoid the trivial solution where the network learns a constant representation that
is independent of the input image. More generally, we want to avoid a dimensional
collapse [177, 190] where the information encoded in the different components of
the learned representations is redundant.

Lack of unification in self-supervised learning methods. As it will be described
in Chapter 2, there are a lot of possible ways to incorporate different prior knowl-
edge into different pretext tasks, which led to the design of many self-supervised
learning methods in recent years. Yet, the field is currently lacking a unified the-
oretical view of self-supervised learning, which makes it difficult to explain why
representations learned in a self-supervised manner generalize well on down-
stream tasks [13]. For instance, many works proposed different ways to avoid
the collapse issue mentioned above by adding different forms of regularization
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during pretraining in order to avoid ill-posedness, but we still lack a unified view
of these different forms of regularization.

Computational costs. Being free of annotation does not prevent self-supervised
learning methods from being computationally intensive, because they also rely
on large-scale (unlabeled) datasets and large models to obtain better downstream
performance [138, 291]. Some pretraining losses, such as contrastive loss [290],
are based on pairwise comparison in a batch of image representations, which
can be costly in terms of memory if the batch size is large. Similarly, some pre-
training losses based on the empirical covariance matrix of a batch of representa-
tions [15] can be costly if the dimension of the representations is large. Overall,
self-supervised learning methods are computationally heavy, and this calls for
better efficiency of these methods.

1.3 Computational efficiency of deep neural networks

In general (not only in self-supervised learning), training and deploying neural
networks at large scale is not feasible without an appropriate amount of compu-
tational resources.

1.3.1 The computational cost of large-scale deep learning

When processing a single data sample, computing the output values of the net-
work, during the so-called forward pass, requires a number of operations that is
proportional to the number of parameters in the model6, and computing gra-
dients by the backpropagation algorithm for optimizing the model’s parame-
ters during the so-called backward pass also requires the same amount of oper-
ations. Then, this amount of computation is multiplied by the total number of
data samples being processed during training or inference. Given the increase of
model size and dataset volume, the amount of computation required for train-
ing the largest deep learning models doubled every 3.4 months between 2012
and 2018 [9]. Handling this exponential growth requires large computing infras-
tructures like cloud computing, through massively parallelizing computation on
dedicated hardware such as GPUs or Tensor Processing Units, whose energy con-
sumption per unit can reach up to 700 W, for instance, for the peak power of one
NVIDIA H100 GPU. Yet, with the current level of parallelization and hardware
performance that we can achieve today, training deep learning algorithms still
takes several weeks, up to several months, to achieve.

6More precisely, when the neural networks involve certain types of layers, the number of op-
erations also scales with the dimension of the considered data. For instance, the number of oper-
ations increases with the image resolution in convolution layers, or with the number of tokens in
the sequence in attention layers [345].
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Energy footprint of deep learning. Overall, such an amount of computation
leads to important energy consumption and carbon emission [300, 320, 328]. To
give an order of magnitude, the 176 billion parameter language model BLOOM
was trained on 1.6 terabytes of data during 118 days, using 1,082,990 GPU hours
of computation performed on NVIDIA A100 GPUs, resulting in a total energy
consumption of 433,196 kWh with an estimated carbon emission of 57 gCO2eq/kWh
[255], which corresponds to a total carbon emission of 24.7 tCO2eq. The con-
sumption is even larger when multiple experiments are required to achieve highly
capable models. For instance, the total carbon emission can reach 284 tCO2eq for
training a Transformer big model (213 million parameters) [345] with neural ar-
chitecture search [328]. Yet, even more computation in deep learning algorithm is
dedicated to the inference phase [81]: it is estimated that the total energy required
by deep learning algorithms in the industry is split into 10% for training and 90%
for inference [300]. Following this trend in energy consumption demand, it is
estimated that, by 2027, servers dedicated to deep learning algorithms could con-
sume levels of electricity similar to those of an entire country, such as Argentina,
equivalent to around 0.5% of the world’s electricity use [76]. Clearly, these trends
question the sustainability of deploying large-scale deep learning.

The need for frugality in embedded systems. Reducing the computational foot-
print of deep learning algorithms is not only important on the server side, but it
is crucial when it comes to deploy them on embedded systems for real-time ap-
plications, such as on smartphones, drones or vehicles. In some critical scenarios,
relying on cloud computing for deep neural network inference on edge devices
is not possible, due to issues on communication latency or user’s data privacy.
This calls for on-device computing, which forbids the deployment of cumber-
some large-scale models due to limitations of memory storage, computational
power and battery on embedded devices [56, 272]. In this context, it is important
to design lightweight neural networks with good performance-efficiency trade-
off that fit the constraints on computational resources, to allow real-time inference
on the considered hardware.

1.3.2 Parameter redundancy in deep neural networks

It turns out that the parameters in trained overparameterized models present a
certain form of redundancy that we can exploit to compress the model, in the sense
that it is possible to reduce empirically the number of parameters in the trained
model with minimal degradation of its performance. Parameters can be redun-
dant when they possess a sparse structure, meaning that a non-negligeable frac-
tion of its parameters can be pruned, i.e., set to zero, so that some operations can
be skipped in theory during the forward pass of the network. For instance, it has
been shown that 50% of the parameters in the OPT-175B large language model
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can be pruned without increasing the perplexity7 of the model [112]. Parameters
can also be redundant in the sense that they admit a low-rank structure, which
means that the complexity of the model can be reduced via low-rank decomposi-
tions of certain weight matrices or weight tensors in the network. For example, in
some cases, it has been shown that 95% of a neural network can be predicted by
the remaining parameters, in the sense of a certain low-rank decomposition [79].

Benefits of reducing the number of parameters. In general, reducing the num-
ber of parameters leads to better computational efficiency, because the forward
pass would typically require a smaller number of operations to compute. Hence,
when the sparse operations are properly implemented, this can lead to time ac-
celeration during training or inference, possibly with less memory footprint or
energy consumption. Besides these benefits, it has also been hypothesized that
reducing the number of parameters in a model can improve model generaliza-
tion, out-of-distribution detection, data-efficiency, or robustness to adversarial
and privacy attacks (see Chapter 4).

Unstructured vs. structured sparsity. Many pruning methods introduce spar-
sity in neural networks in an unstructured manner: the weight matrices at differ-
ent layers of the neural network have a few nonzero entries, but their supports
(i.e., the set of indices corresponding to nonzero entries) are not constrained to
follow a specific structure. In some learning tasks, this can yield an impressive
compression rate, where the number of parameters can be reduced by up to a
factor of 10 or 100, without a significant loss of performance compared to the un-
pruned network [172]. But when a structure is lacking, implementing efficiently
the corresponding sparse matrix multiplication can be challenging on some hard-
ware, like on GPUs. This motivates a more structured form of sparsity for neural
network compression and the development of efficient implementations that can
leverage such a structure for faster sparse matrix multiplication.

Choosing the right model for decomposition. Compression by low-rank ma-
trix decomposition can avoid the difficulty of implementing sparse matrix multi-
plication, since it results in smaller dense matrices that are more uniformly com-
patible with various hardware types. However, not all weight matrices in deep
neural networks have a clear low-rank structure, such as in some weight matrices
in the BERT model [83] where the singular values do not decay fast enough8 [49],
meaning that low-rank compression would not work in this case. In general, the
choice of the right model for matrix decomposition is related to the nature of the
redundancy in the considered matrix to compress. When low-rank decomposi-

7Perplexity measures how well a language model predicts text; lower values mean the model
is more accurate.

8For instance, the sum of 50% of the singular values in a given weight matrix of the BERT
model only accounts for 60% of the sum of all singular values [49].
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(a) Sπ1 (b) Sπ2 (c) Sπ3 (d) Sπ4

Figure 1.1: Square dyadic butterfly supports as defined in (1.1) for the size n = 16. Zero
entries (white) vs. entries that are allowed to be nonzero (colored).

tion is not suited, what are the possible alternative decomposition models to use
for compressing weight matrices in overparameterized neural networks?

1.3.3 Butterfly factorization in neural network compression

Recent works in deep learning have been interested in a specific matrix decom-
position called butterfly factorization. It corresponds to a multi-layer sparse matrix
factorization inspired from the fast Fourier transform, which enables fast matrix-
vector multiplication in quasi-linear complexity. To illustrate this, let us give one
example of a butterfly factorization.

Definition. For a matrix A of size n × n where n := 2L with a certain integer
L, the so-called square dyadic butterfly factorization corresponds to a multi-layer
matrix factorization of the form

A = X1X2 . . . XL,

for some sparse factors X1, . . . , XL of size n× n such that

∀ℓ ∈ JLK, supp(Xℓ) ⊆ supp (Sπℓ
) , Sπℓ

:= I2ℓ−1 ⊗ 12×2 ⊗ I2L−ℓ , (1.1)

Up to certain row or column permutations, this decomposition model can typ-
ically express matrices associated with many commonly used fast transforms,
such as the discrete Fourier transform, the discrete cosine transform, the discrete
sine transform and the Hadamard transform. In fact, the support constraints
(1.1) on the factors X1, . . . , XL, illustrated in Figure 1.1, lead to a multi-layer ma-
trix factorization that mimics the radix-2 fast Fourier transform algorithm (see
Chapter 3). Consequently, such a butterfly factorization enables fast O(n log n)
matrix-vector multiplication by A, because there are L = log2 n sparse factors in
the decomposition, where each of them has 2n nonzero entries. Importantly, the
supports of the butterfly factors have a specific structure that can be interesting to
enable efficient implementations for sparse matrix multiplication.
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Applications to deep neural network compression. In practice, butterfly fac-
torizations have been used in some deep learning applications. In line with re-
cent works [72, 74, 75, 241], several variants of butterfly factorization are used to
construct a generic representation for structured matrices that is not only expres-
sive, but also differentiable and thus compatible with machine learning pipelines
involving gradient-based optimization of parameters given training samples. For
instance:

• The square dyadic butterfly factorization was used to replace hand-crafted
structures in speech processing models or channel shuffling in certain con-
volutional neural networks, or to learn a latent permutation [75].

• The Monarch butterfly factorization [72] of some weight matrices in trans-
formers for vision or language tasks can reduce their number of parameters
with a certain drop of accuracy.

• Deformable butterfly factorizations in [241] of kernel weights in convolu-
tional layers (see Section 4.5 for more details), for vision tasks, can reduce
the number of the model’s parameters, with a certain performance drop
compared to the original convolutional neural network.

• Block butterfly factorizations [71] are used for parameter-efficient finetun-
ing of pretrained large vision transformers, large language models, and
text-to-image diffusion models [248].

1.3.4 Some challenges related to butterfly factorization

Even though these previous works show promising empirical results about neu-
ral network compression via butterfly factorization, this thesis proposes to take
a step back by raising some fundamental questions regarding butterfly factoriza-
tion and their usage for neural network compression.

Lack of baselines for assessing the performance of butterfly networks trained
from scratch. One way to obtain a butterfly sparse neural network is to train
it from scratch, by directly parameterizing certain weight matrices to admit a
butterfly factorization X1 . . . XL, where each sparse factor Xℓ for ℓ ∈ JLK is con-
strained to satisfy a prescribed support constraint, e.g., like the one given in (1.1).
Generally, such a butterfly sparse neural network has fewer parameters, but it
comes with a certain drop in performance compared to the dense neural net-
work. Yet, besides not providing practical guidelines on how to select the lay-
ers for replacing a dense weight matrix with butterfly parameterization, previous
works [72,241] did not document how the obtained performance-efficiency trade-
off via butterfly factorization compares with other forms of parameter reductions,
like pruning methods at initialization, or methods enforcing a low-rank parame-
terization on the weight matrices during training.

15



Chapter 1. Introduction

Considering permutation symmetries during decomposition. Another way to
obtain a butterfly sparse neural network is to first train a dense neural network,
and then decompose weight matrices at different layers of the trained network
via butterfly factorization. This has the benefit of not training a butterfly sparse
neural network from scratch. However, it is important to note that there exist
permutation symmetries in the parameterization of neural networks, in the sense
that neurons at the same layer can be shuffled without changing the function real-
ized by the network. Therefore, in general, these permutation symmetries need to
be taken into account when decomposing pretrained weight matrices via butter-
fly factorization. Yet, previous works [72, 241] ignored these symmetries, which
can potentially lead to a large approximation error during the decomposition via
butterfly factorization.

Lack of analytical description for butterfly factorization. In the context of neu-
ral network compression, all variations of butterfly factorization introduced in
the previous works are of the form X1 . . . XL for L ≥ 2, where the factors satisfy
some prescribed fixed-support constraints [71, 72, 74, 241]. However, these works
do not characterize analytically the set of matrices admitting a sparse factoriza-
tion with the considered prescribed sparsity supports. This prevents us from un-
derstanding whether or not a given weight matrix obtained after training satisfy
the conditions to be well approximated by such a butterfly factorization.

Provable decomposition algorithms for butterfly factorization. The current lit-
erature is also lacking provable algorithms to approximate a given matrix by a
product of butterfly factors satisfying the prescribed support constraints, like the
one in (1.1). In general, deep matrix factorization with sparsity constraints is a
difficult problem. Previous work proposed to use gradient-based methods or al-
ternative least squares to perform decomposition via butterfly factorization with
fixed-support constraints [74, 241], but these methods have no guarantees of suc-
cess.

Implementing butterfly sparse matrix multiplication. Finally, previous meth-
ods show that they can reduce the number of parameters in neural networks via
butterfly factorization, but there have been little numerical reports on the time
efficiency of butterfly sparse neural networks, especially for GPU implementa-
tions. How can we efficiently implement butterfly sparse matrix multiplication
in order to achieve time acceleration?

1.4 Contributions and outline of the thesis

The global objective of the thesis is to provide some answers to the questions
raised by the challenges described in Sections 1.2.2 and 1.3.4, related to self-
supervised learning for visual representations and butterfly factorization.
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1.4.1 Overview of the literature review

The first part of the thesis (Chapters 2 to 4) is devoted to a literature review.

Chapter 2. In order to contextualize our contributions in self-supervised learn-
ing, we provide an overview of the different approaches to self-supervision. In
particular, we will describe the different ways to introduce a form of regulariza-
tion to avoid collapse when the pretext task is to learn representations that are
invariant to some image transformations.

Chapter 3. To contextualize our work on butterfly factorization, we give an
overview of fast algorithms for rapidly evaluating certain linear operators in
scientific computing and numerical analysis. Indeed, butterfly factorization has
been studied to enable fast matrix-vector multiplication in kernel matrices associ-
ated with special function transforms, or integral transforms such as the Fourier
integral operator. It is therefore important to describe these previous works in
order to better position our contributions.

Chapter 4. We provide an overview of the different methods for removing pa-
rameter redundancy in neural networks, such as methods related to pruning or
low-rank decomposition. We will in particular detail the different usage of but-
terfly factorization for deep learning applications.

1.4.2 Overview of the contributions

In the second part, Chapter 5 presents our contribution in self-supervised learn-
ing, and Chapters 6 to 9 detail our contributions on butterfly factorization.

Self-supervised learning for image representations

Questions related to self-supervised learning are:

1. How can we unify different regularization methods to avoid learning a
shortcut solution, when the pretext task is to learn representations to be
invariant to some specific image transformations?

2. To what extent can we reduce the computational cost of self-supervised
learning methods? In particular, is it possible to reduce the computational
complexity of the self-supervised pretraining objective function?

We propose to address these questions using a framework based on positive-
definite kernels.
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Chapter 5. We introduce a regularization loss based on kernel mean embed-
dings with rotation-invariant kernels on the hypersphere, also known as dot-
product kernels. Besides being competitive with the state of the art, the method
reduces time and memory complexity for self-supervised training, making it im-
plementable for very large embedding dimensions on existing devices and more
easily adjustable than previous methods to settings with limited resources. The
considered pretext task is to learn representations to be invariant to some pre-
defined image transformations, while avoiding a degenerate solution by regu-
larizing the embedding distribution. Our particular contribution is to propose
a loss family promoting the embedding distribution to be close to the uniform
distribution on the hypersphere, with respect to the maximum mean discrepancy
pseudometric. We demonstrate that this family encompasses several regularizers
of former methods, including uniformity-based and information-maximization
methods, which are variants of our flexible regularization loss with different ker-
nels. Beyond its practical consequences for state-of-the-art self-supervised learn-
ing with limited resources, the proposed generic regularization approach opens
perspectives to leverage more widely the literature on kernel methods in order
to improve self-supervised learning methods. This work is a collaboration with
Gilles Puy, Elisa Riccietti, Patrick Pérez and Rémi Gribonval.

Butterfly factorization

We first propose a mathematical definition of butterfly factorization that unifies
all the different variants introduced for deep learning applications [71,72,74,113,
241, 342]. Generally, we say that a matrix admits a butterfly factorization if it can
be written in the form X1X2 . . . XL for a certain number L ≥ 2 of sparse factors Xℓ

satisfying some fixed-support constraints:

∀ℓ ∈ JLK, supp(Xℓ) ⊆ supp(Sπℓ
), Sπℓ

:= Iaℓ ⊗ 1bℓ×cℓ ⊗ Idℓ , (1.2)

where πℓ := (aℓ, bℓ, cℓ, dℓ) is a tuple of four integers for each ℓ ∈ JLK. For in-
stance, this general definition includes the square dyadic butterfly factorization
defined by the sparsity constraints (1.1). Based on this definition, we would like
to provide some answers to the following questions:

1. Can we provide an analytical characterization of this definition of butterfly
factorization? What conditions a matrix should satisfy in order to be well-
approximated by such a butterfly factorization?

2. How can we approximate a matrix by a product of butterfly factors satisfy-
ing the prescribed support constraints (1.2)? Does the corresponding min-
imization problem always admit a minimizer? Can we design a tractable
decomposition algorithm with guarantees on the approximation error?

3. How can we decompose a matrix via butterfly factorization up to some un-
known row and column permutations?
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Figure 1.2: The general sparsity pattern of a butterfly factor, under the proposed frame-
work that unifies all the different variants of butterfly factorization previously introduced
for compressing deep neural networks.

4. How can we efficiently implement butterfly sparse matrix multiplication
on GPUs? How does such an implementation specialized to the butterfly
sparsity (1.2) compare to other generic implementations for dense or sparse
matrix multiplication?

Chapter 6. In order to analyze the first two questions, we start by studying
the specific case of the square dyadic butterfly factorization introduced above.
Studying this specific case will illustrate the important ideas that will be reused
to tackle the more general case. Our analysis is based on the investigation of the
essential uniqueness of the square dyadic butterfly factorization, i.e., uniqueness
up to unavoidable scaling ambiguities. We prove that any n × n matrix having
the square dyadic butterfly structure admits an essentially unique factorization
into L butterfly factors (where n = 2L), and that the factors can be recovered by
a hierarchical factorization method, which consists in recursively factorizing the
considered matrix into two factors. This hierarchical identifiability property relies
on a simple identifiability condition in the two-layer and fixed-support setting.
This approach contrasts with existing ones that fit the product of butterfly factors
to a given matrix via gradient descent. The proposed method can be applied in
particular to retrieve the square dyadic butterfly factorization of the Hadamard
or the discrete Fourier transform matrices of size n = 2L. Computing such factor-
izations costs O(n2) which is of the order of dense matrix-vector multiplication,
while the obtained factorizations enable fastO(n log n) matrix-vector multiplica-
tions. This work is a collaboration with Quoc-Tung Le, Elisa Riccietti and Rémi
Gribonval.

Chapter 7. We then extend the results obtained for the square dyadic butterfly
factorization to the general case. We investigate the problem of approximating a
matrix by a product of sparse and structured factors following the fixed-support
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constraints (1.2). Among these sequences of supports, we identify those that en-
sure the existence of an optimum in the corresponding factorization problem,
thanks to a new property called chainability. For those supports, we propose
an extension of the hierarchical algorithm introduced in the previous chapter.
This new algorithm yields an approximate solution to the butterfly factorization
problem supported by stronger theoretical guarantees than existing factorization
methods. Specifically, we show that the ratio of the approximation error by the
minimum value is bounded by a constant, independent of the target matrix. As a
consequence of our analysis, we are able to give an analytical characterization of a
butterfly factorization satisfying the fixed-support constraints (1.2). This charac-
terization takes the form of a so-called complementary low-rank property, which was
previously introduced for the decomposition of some kernel matrices in numer-
ical analysis via butterfly factorization. This work is a collaboration with Quoc-
Tung Le, Elisa Riccietti and Rémi Gribonval.

Chapter 8. The characterization by the complementary low-rank property will
be particularly useful to tackle the third question. We address the more challeng-
ing problem of approximating a given matrix A by a product of butterfly factors
X1, . . . , XL, up to some unknown column and row permutations P, Q, i.e., we
look for an approximation A ≈ Q⊤X1 . . . XLP. We will see that, by the comple-
mentary low-rank characterization of the butterfly factorization, a matrix of the
form Â := Q⊤X1 . . . XLP admits several partitions of the matrix indices for which
the submatrices of Â restricted to each element of these partitions are of low-rank.
Therefore, our approach for butterfly factorization with unknown permutations
is to find partitions of A into submatrices that can be well approximated by low-
rank matrices, using a heuristic based on alternating subspace clustering. This
work is a collaboration with Gilles Puy, Elisa Riccietti, Patrick Pérez and Rémi
Gribonval.

Chapter 9. For the fourth question, we first assess the state of existing sparse
matrix multiplication implementations on GPU for the butterfly sparse matrix
multiplication. This is achieved through a comprehensive benchmark, which can
be easily modified to add a new implementation. Its goal is to provide a sim-
ple tool for users to select the optimal implementation based on their settings.
In this first assessment of existing algorithms, we observe that previous imple-
mentations perform some permutation operations that necessitate costly memory
transfers across different levels of the GPU memory. Our contribution is to pro-
pose a novel memory transfer design, reducing the number of inter-level transfers
by a factor of three. This is achieved with a new CUDA kernel, as it allows for
managing GPU memory at different levels. The proposed implementation im-
proves over previous ones in most of the tested cases in float-precision, with a
speed-up factor up to ×1.2. This work is a collaboration with Antoine Gonon,
Pascal Carrivain and Quoc-Tung Le.
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1.4.3 Publications and code diffusion

The material of this manuscript is based on the following published papers co-
written during the thesis:

• Quoc-Tung Le*, Léon Zheng*, Elisa Riccietti, Rémi Gribonval. Fast learning
of fast transforms, with guarantee. Published at IEEE International Conference
on Acoustics, Speech and Signal Processing, 2022 [213]. *Equal contribution.
Source code has been diffused [385].

• Léon Zheng, Elisa Riccietti, Rémi Gribonval. Efficient identification of but-
terfly sparse matrix factorizations. Published at SIAM Journal on Mathematics
of Data Science, 2023 [392]. Source code has been diffused [391].

• Léon Zheng, Gilles Puy, Elisa Riccietti, Patrick Pérez, Rémi Gribonval. Self-
supervised learning with rotation-invariant kernels. Published at Interna-
tional Conference of Learning Representations, 2023 [388]. Source code has been
diffused [387].

• Léon Zheng, Gilles Puy, Elisa Riccietti, Patrick Pérez, Rémi Gribonval. But-
terfly factorization by algorithmic identification of rank-one blocks. Pub-
lished at Colloque Francophone de Traitement du Signal et des Images, 2023 [386].
Source code has been diffused [389].

It is also based on two papers under preparation:

• Antoine Gonon*, Léon Zheng*, Pascal Carrivain*, Quoc-Tung Le. Make
Inference Faster: Efficient GPU Memory Management for Butterfly Sparse
Matrix Multiplication. Preprint, under review [132]. *Equal contribution.

• Quoc-Tung Le*, Léon Zheng*, Elisa Riccietti, Rémi Gribonval. Butterfly
factorization with error guarantees. Paper under preparation for submission.
*Equal contribution.

The following paper co-written during the thesis will not be discussed in the
manuscript:

• Antoine Gonon*, Léon Zheng*, Clément Lalanne, Quoc-Tung Le, Guillaume
Lauga, Can Pouliquen. Sparsity in neural networks can improve their pri-
vacy. Published at Colloque Francophone de Traitement du Signal et des Images,
2023 [133]. *Equal contribution.
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Chapter 2
Self-supervised learning for image
representations

Scaling the size of the dataset during pretraining is a key ingredient for learning
powerful representations that transfer well to various downstream tasks [200].
However, building up such a large dataset is costly when the pretraining method
requires considerable effort in terms of annotation. This chapter gives an overview
of self-supervised learning, a promising approach that does not require any im-
age annotations for learning visual representations.

2.1 Introduction

In self-supervised learning methods, we design a certain learning task, called the
pretext task, that does not require any data annotation, so that a neural network
trained on this task learns to produce useful generic representations. The quality
of these representations is then evaluated not by their performance on the pre-
text task, but by their performance on several other downstream tasks of interest.
Typical visual downstream tasks are image classification, semantic segmentation,
object detection, etc. In general, these downstream tasks are supervised, but only
a small amount of labeled data is available for training. Hence, the learned repre-
sentations during pretraining should be powerful enough in order to effectively
address these downstream tasks, even when annotated training data are scarce,
and they should also be generic enough so that they can be transferred in many
different downstream tasks. For that, one way to design a pretext task is, for in-
stance, to assume that some parts of the input data is not observable from the
model, so that the model learns to predict these missing parts from the remaining
observable parts of the data. In this sense, the data itself provides the supervision
signal during the training of the neural network.

This chapter is partly inspired by Céline Hudelot’s lecture at the 16th Summer School of
Peyresq: https://gretsi.fr/peyresq22/.
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Chapter 2. Self-supervised learning for image representations

Content of the chapter. We present three main families of self-supervised learn-
ing methods, namely, methods based on the prediction of image transformation
(Section 2.2), invariance-based methods (Section 2.3) and generative methods
(Section 2.4). We only focus on methods designed for image datasets: methods
based on video datasets or multimodal methods are not covered by this chapter.

2.2 Methods based on the prediction of image trans-
formations

Many methods [3, 85, 125, 275, 281, 282, 379] design a pretext task where the goal
is to learn a model that takes a transformed image as input, and predicts which
transformation was applied to the original image. The assumption of these meth-
ods is that predicting accurately the transformations requires to learn high-level
semantic features. When the applied transformation belongs to a predefined pa-
rameterized set of transformations, the pretext task can be cast into a supervised
learning problem, where transformed images are labeled by the parameter of the
applied transformation. Let us give some examples of such pretext tasks, by con-
sidering some geometric or spatial transformations of the image.

Predicting rotations. In [125], the pretext task is to predict image rotation, from
the observation of a rotated image. Concretely, for each unlabeled image x in the
training set, the method generates four images obtained by the rotation of x with
four angles 0◦, 90◦, 180◦ and 270◦. Each of these rotated images is then labeled by
its rotation angle with respect to the original image x. This defines a classification
task on this augmented dataset with four classes, and a deep neural network can
be trained to solve this task in a supervised manner.

Predicting relative positions. In [85, 281], the pretext task is to predict the rela-
tive positions between image patches of a given image. In [85], we construct pairs
of image patches where the first one is sampled at a random position in a given
image, and the second one is sampled randomly from one of the eight possible
neighboring locations around the first patch. Then, the model takes such a pair
of patches as input, and has to predict which of the eight spatial configurations
corresponds to their relative position. This yields a classification task with eight
classes that can be solved in a supervised manner.

An alternative pretext task is to solve a jigsaw puzzle [281]. Given an image
partitioned into disjoint image patches, we shuffle the positions of the patches
according to a certain permutation from a predefined finite set of permutations,
and the model learns to predict from the shuffled patches which of these permu-
tations was applied. This again yields a supervised learning task.
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2.3. Invariance-based methods

Figure 2.1: Different image transformations applied to the original image. From left to
right: original image, color jitter (second and third image), grayscale, Gaussian blur, ran-
dom cropping (sixth and seventh image). Images are from the documentation of PyTorch.

Learning equivariant representations. In order to solve the pretext task in the
previous examples, the representation of a transformed image must capture some
information about the transformation itself, in order to predict which transfor-
mation was applied to the original image. Therefore, the learned representation
varies with the applied transformation, which contrasts with invariance-based
methods presented below where learned representations are invariant to some
transformations [267]. Variations of image representations with respect to image
transformations is related to the mathematical notion of equivariance [223]. For-
mally, an encoder function f : X 7→ Z that maps an image to its representation
is equivariant with respect to a group G if f (TXg (x)) = TZg ( f (x)) for any x ∈ X
and g ∈ G, where (g, x) 7→ TXg (x) and (g, z) 7→ TZg (z) are two (left) group ac-
tions of G on the image space X and the latent space Z . However, solving the
pretext tasks mentioned in the previous examples does not necessarily yield a
truly equivariant encoder function in this mathematical sense. This is because
solving the corresponding classification tasks does not guarantee the existence
or not of a mapping between the representation of a transformed image and the
one of the original image. In order to learn truly equivariant representations, it is
necessary to consider an alternative pretext task where a predictor module has to
learn such a mapping in the latent space during pretraining, as proposed recently
in [82, 121, 296].

2.3 Invariance-based methods

In another main family of self-supervised learning methods, representations are
learned to be invariant to some image transformations [267]. The underlying
assumption of these methods is that high-level semantic features of an image
should not depend on some specific image transformation. For instance, flipping
horizontally an image containing a certain object should not change the class of
this object, so the representation of an image should be invariant to image flip-
ping. Other examples of image transformations used for invariance-based meth-
ods are illustrated in Figure 2.1.

The mathematical notion of invariance with respect to a group G is the specific
case of equivariance where the encoder f : X → Z satisfies f (TXg (x)) = f (x) for
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any x ∈ X and g ∈ G. Therefore, the objective function in invariance-based meth-
ods includes an invariance criterion which takes low values for a given g ∈ G
if, and only if, f (TXg (x)) is close to f (x). The minimization of this invariance
criterion is then combined with a certain regularization technique that avoids
learning a shortcut solution, where all the learned representations are constant
and independent from the input image. Various invariance-based methods of the
literature differ fundamentally in the way they enforce such a regularization to
avoid collapse solutions. We now review three main strategies of regularization
in invariance-based methods: contrastive methods, information-maximization
methods and self-distillation methods.

2.3.1 Contrastive methods

In contrastive methods, collapse is avoided using a so-called contrastive loss. By
construction, minimizing such a loss encourages the representations of two se-
mantically similar images to be close together in the latent space, while pushing
apart representations corresponding to dissimilar images. In the terminology of
contrastive losses, pairs of images that are supposed to be similar are called pos-
itive, while pairs of dissimilar images are called negative. Therefore, to learn rep-
resentations invariant to a predefined set of image transformations {T Xg }g∈G, a
positive pair in the contrastive loss corresponds to a pair of transformed images
obtained from two random transformations sampled from T of the same original
image, while negative pairs are obtained by randomly sampling distinct images
in the dataset.

Early contrastive losses. Contrastive losses were initially introduced for labeled
images [38, 60, 152], where a positive pair corresponds to images from the same
class, while a negative pair corresponds to images from different classes. Given
a pair of images (x, x′) and an encoder function f : X 7→ Z , the contrastive loss
in [60] is defined as

ℓcont(x, x′) =

{
∥ f (x)− f (x′)∥2 if (x, x′) is a positive pair
max(0, m− ∥ f (x)− f (x′)∥2) otherwise,

where m > 0 is a certain margin parameter. Similarly, the triplet loss [47,319,355]
is defined for three images (x, x+, x−) as:

ℓtriplet(x, x+, x−) = max
(
0, ∥ f (x)− f (x+)∥2 − ∥ f (x)− f (x−)∥2 + m

)
,

where (x, x+) is a positive pair and (x, x−) is a negative pair. This triplet loss was
then extended to a multiclass n-pair loss [326], to overcome slow convergence is-
sues of the triplet loss, and its requirement for expensive data sampling methods
to provide non-trivial triplet of images for faster training.
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Noise contrastive estimation in instance discrimination. The multiclass n-pair
loss [326] turns out to be equivalent to the contrastive loss derived from the noise
contrastive estimation [148] in the instance discrimination approach for representa-
tion learning [88,358]. In this approach, the paradigm of learning representations
invariant to image transformations is implemented by a classification problem at
the instance level, where the number of classes k is equal to the size of the dataset.
Each class contains only transformed images coming from the same original im-
age in the dataset, and the model learns to predict the class of an augmented
image, either using a parametric [88] or a non-parametric [358] classifier. A para-
metric classifier models the probability that an image x belongs to the class i ∈ JkK
as:

Pparam(i|x) = exp( f (x)⊤wi)

∑k
j=1 exp( f (x)⊤wj)

, (2.1)

where wi is a learned weight vector. In a non-parametric classifier [358], the
weight vector wi is dropped and replaced simply by f (xi), so that the probability
becomes:

Pnon-param(i|x) =
exp

(
f (x)⊤ f (xi)/τ

)
∑k

j=1 exp
(

f (x)⊤ f (xj)/τ
) , (2.2)

where the representations f (x) are assumed to be ℓ2-normalized for any x, and
τ > 0 is a temperature parameter controlling the entropy of the distribution.
However, instance-level classification becomes computationally heavy when the
number of instances is very large, such as in the ImageNet-1k dataset [78] which
contains 1.2 million images. To address this issue, the full softmax can be approx-
imated using the noise contrastive estimator [148], as proposed in [358]. Consid-
ering a batch of ℓ2-normalized representations (z, z+, z−1 , . . . , z−n−1), where (z, z+)
is a positive pair and (z, z−i ) is a negative pair for each i ∈ Jn− 1K, the noise con-
trastive estimator loss, also called the InfoNCE loss [51, 162, 290, 358], is defined
as:

ℓNCE(z, z+, {z−i }
n−1
i=1 ) = − log

exp
(
z⊤z+/τ

)
exp

(
z⊤z+/τ

)
+ ∑n−1

i=1 exp
(
z⊤z−/τ

) .

Note that encoding images into ℓ2-normalized representations helps to stabilize
training [249, 298, 319].

Influence of negative pairs. It is overall observed that the downstream per-
formance of contrastive methods increases with the number of negative samples
used in the InfoNCE loss [50,162]. This justifies the use of large batch sizes in Sim-
CLR [51], up to 8192, where the contrastive pairs are directly constructed from the
transformed images in the current batch. To handle a larger number of negative
samples, MoCo [162] proposes to use a dynamic dictionary with a queue that
stores up to 65536 image representations computed in previous batches from a
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moving-average encoder. Instead of sampling negative pairs of representations at
random, contrastive learning methods can be further improved using hard neg-
ative mining [43, 63, 184, 192, 357], where the negative pairs are selected in such a
way that their representations are close to each other in the latent space, in order
to improve convergence during pretraining. Overall, contrastive methods can be
computationally heavy due to their dependence on a large number of negative
samples.

Asymptotic behavior with infinite negative samples. In the limit of infinite
negative samples, it can be shown that the contrastive loss behaves asymptoti-
cally like a weighted sum between the invariance criterion and a certain unifor-
mity term [354]. Indeed, assume that images are sampled from a data distribution
pdata(·) over X , and positive pairs are sampled from ppos(·, ·) over X × X , such
that ppos is symmetric1 and the marginal distribution of ppos(·, ·) matches2 pdata.
Denoting Sq−1 the unit hypersphere in ℓ2-norm of the Euclidean space of dimen-
sion q, the expectation of the InfoNCE loss with an encoder f : X → Sq−1, n
negative samples and a temperature parameter τ is:

LNCE( f , τ, n) = E (x,x+)∼ppos

{x−i }
n
i=1∼pdata

[
ℓNCE

(
f (x), f (x+), { f (x−i )}

n
i=1
)]

,

where {x−i }
n
i=1 are i.i.d. samples from pdata. By [354, Theorem 1], as the number

of negative samples n tends to infinity, this expectation converges to:

lim
n→∞

[Lc( f , τ, n)− log n] =−1
τ

E(x,x+)∼ppos

[
f (x)⊤ f (x+)

]
︸ ︷︷ ︸

invariance criterion

+ Ex∼pdata

[
log Ex−∼pdata

[
exp

(
f (x−)⊤ f (x)/τ

)]]
︸ ︷︷ ︸

uniformity term

.

Minimizing the invariance criterion encourages the representations of the posi-
tive pairs to be close on the hypersphere, while minimizing the uniformity term
encourages the distribution of f (x) when x ∼ pdata to be close to the uniform
distribution on the hypersphere. This uniformity term can be interpreted as a
regularization loss on the representation distribution that explicitly avoids col-
lapse. In a similar spirit, Chapter 5 designs a generic regularization loss that
encourages the representation distribution to be close to the uniform distribution
on the hypersphere, in the sense of the maximum mean discrepancy associated
with rotation-invariant kernels.

1∀x, x+ ∈ X , ppos(x, x+) = ppos(x+, x)
2∀x ∈ X ,

∫
ppos(x, x+)dx+ = pdata(x)
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2.3. Invariance-based methods

2.3.2 Information-maximization methods

As an alternative to contrastive losses, information-maximization methods seek
to prevent collapse without relying on negative samples, by decorrelating the
components in the learned representation. This is achieved by encouraging the
covariance matrix of f (x) with x ∼ pdata, or the cross-correlation matrix of the
pair ( f (x), f (x+)) with (x, x+) ∼ ppos, to be close to a diagonal matrix [15, 101,
375].

Feature decorrelation via cross-correlation. For a given batch of representa-
tions {(zi, z+i )}

n
i=1 encoded from positive pairs of images (xi, x+i ) ∼ ppos with

an encoder f : X → Rq, the empirical cross-correlation matrix is defined as

∀(k, l) ∈ JqK2, C[k, l] =
∑n

i=1 zi[k]z+i [l]√
∑n

i=1(zi[k])2
√

∑n
i=1(z

+
i [l])

2
, (2.3)

where we assume that ∑n
i=1 zi = ∑n

i=1 z+i = 0 for simplicity. In Barlow twins
[375], learning invariant representations while encouraging feature decorrelation
can be achieved by minimizing the loss

ℓbt({(zi, z+i )}
n
i=1) =

q

∑
k=1

(1− C[k, k])2

︸ ︷︷ ︸
invariance criterion

+ λ
q

∑
k=1

q

∑
l=1
l ̸=k

C[k, l]2

︸ ︷︷ ︸
redundancy reduction term

, (2.4)

where λ > 0 is a constant trading-off the importance of the two terms in the
weighted sum.

Feature decorrelation via covariance. Instead of regularizing the cross-correlation
matrix, W-MSE [101] performs feature decorrelation by applying a whitening
transform to the current batch of learned representations, so that the whitened
representations are centered and have an empirical covariance matrix equal to
the identity matrix. Then, W-MSE minimizes the ℓ2-distance between positive
whitened representations. Alternatively, VICReg [15] (presented in more details
in Chapter 5) does not perform explicitly a whitening operation, but minimizes
a weighted sum between the invariance criterion and a covariance regularization
term that encourages off-diagonal entries of the empirical covariance matrix of a
batch of representations {zi}n

i=1 to be close to zero.

Influence of large dimensions. In information-maximization methods, it is over-
all observed that the downstream performance increases with the dimension q of
the representations [15, 375]. However, the complexity for computing the covari-
ance or the cross-correlation matrix is quadratic with respect to q, so they become
computationally heavy when q is large. We will show in Chapter 5 that this com-
putational cost can be reduced using a generic kernel regularization loss.
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Chapter 2. Self-supervised learning for image representations

Relation with contrastive methods. Under some mild assumption, information-
maximization methods such as VICReg [15] and contrastive methods such as
SimCLR [50] are shown to be equivalent [120], in the sense that they actually
minimize a similar regularization loss during pretraining. Indeed, in the frame-
work of [120], given a batch of n representations Z ∈ Rq×n, a method is said to be
sample-contrastive (such as SimCLR) if it is minimizes the contrastive criterion
Lc = ∥Z⊤Z − Z⊤Z ⊙ In∥2

F, where ⊙ is the Hadamard product. It is said to be
dimension-contrastive (such as VICReg) if it minimizes the non-contrastive cri-
terion Lnc = ∥ZZ⊤ − ZZ⊤ ⊙ Iq∥2

F. Based on the fact that ∥Z⊤Z∥2
F = ∥ZZ⊤∥2

F,
f [120, Theorem 3.3] claims that

Lnc +
q

∑
k=1
∥Z[k, :]∥4

2 = Lc +
n

∑
i=1
∥Z[:, i]∥4

2,

meaning that the two regularization losses are equivalent up to row and column
normalization of the representation matrix Z. In Chapter 5, in the continuity of
uniformity-based methods such as [354], we rather propose a unification of con-
trastive and information-maximization methods under a generic kernel regular-
ization loss.

2.3.3 Self-distillation methods

Both contrastive and information-maximization methods avoid collapse while
learning invariant representations by minimizing a regularization loss during
pretraining. In contrast, self-distillation methods avoid collapse without an ex-
plicit regularization loss, using a teacher-student architecture inspired from knowl-
edge distillation [169]. In this architecture, a positive pair of images (x, x+) is en-
coded into two representations ( fξ(x), fθ(x+)) where fξ : X → Z and fθ : X →
Z are called respectively the teacher and student encoders, parameterized by ξ
and θ. Then, the model learns to predict the representation fξ(x) from the ob-
servation of fθ(x+). Various architectural tricks are then used to avoid collapse
during self-distillation.

Architectural tricks. In BYOL [143], the teacher representation is predicted from
the student representation using a predictor module pγ : Z → Z parameterized
by γ that is learned to minimize the distance ∥(pγ ◦ fθ)(x+) − fξ(x)∥2 during
training. To avoid collapse, only the parameters γ and θ in the student branch
are updated by gradient-descent, and the teacher parameter ξ is updated by an
exponential moving average of the student parameter θ, following the update
ξ ← τξ + (1− τθ) for a given fixed momentum parameter 0 < τ < 1. Some
works also studied whether or not the batch normalization layers in the encoder
plays a role in avoiding collapse during pretraining [313, 339].

In SimSiam [143], it is shown that the predictor module and the stop-gradient
mechanism for the teacher encoder are sufficient to avoid collapse. The authors
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2.3. Invariance-based methods

show that the exponential moving average for the update of the teacher is not
necessary, because it is sufficient to set the teacher’s parameter ξ to be equal to
the student’s parameter θ during pretraining.

In DINO [143], instead of using a predictor module, the model learns to min-
imize the cross-entropy loss between the representations of the student and the
teacher encoder, using a temperature softmax. To avoid collapse, a centering op-
eration is applied for each batch of teacher representations so that its empirical
mean is zero, and a stop-gradient operator is also used on the teacher encoder so
that gradients only propagate through the student encoder. The teacher parame-
ters are updated with an exponential moving average of the student parameters.

Regularization effects on the learned representations. In order to understand
which architectural tricks are sufficient or necessary to avoid collapse, some theo-
retical works [154, 339] proposed to analyze the training dynamics of the learned
representations, under some technical assumptions where the predictor mod-
ule is assumed to be linear, and the network is assumed to be a deep linear
network (i.e., a multilayer perceptron without bias and with identity activation
function) with Gaussian i.i.d. inputs. They show that the predictor module and
the stop-gradient mechanism play an important role in avoiding collapse, since
they induce an implicit regularization on the variance of the learned represen-
tations. This draws connection with information-maximization methods such as
VICReg [15] that minimizes a regularization loss based on feature decorrelation.

2.3.4 Role of image transformations

We end this section by discussing the role of image transformations in invariance-
based methods. The success of these methods relies entirely on the good choice
of data augmentations [50]. Indeed, a representation invariant to a specific image
transformation can be more or less effective depending on the nature of the con-
sidered downstream task [32, 100]: some invariances can be beneficial because
they help preserving the semantic information of the image, while others may
be harmful because they remove necessary information for making good predic-
tions in the downstream task. For instance, invariance to rotation may be benefi-
cial for view-independent aerial image recognition [359], but invariance to color
jittering can be harmful for flower classification where color information is im-
portant for accurate predictions [221]. In general, in order to learn more general
purpose representations, it is important to determine whether the learned rep-
resentation should be invariant or equivariant to a given image transformation.
This has motivated several works [70,82,121,359,363] to explore the combination
of equivariance-based (Section 2.2) and invariance-based methods.
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2.4 Generative methods

Generative methods form an alternative family of self-supervised methods that
rely less on image transformations. The pretext task is to mask a portion of the
image, and to learn a model able to generate this missing part from the remaining
observable part of the signal (possibly only in a latent space [291, 395], not nec-
essarily at raw signal level [161, 299, 364]). The underlying assumption of such a
pretext task is that the model needs to learn high-level semantic features in order
to be able to reconstruct the missing part of the image. This paradigm is mainly
inspired from representation learning via denoising auto-encoders [349], which
are a class of autoencoders [170] that corrupt an input signal and learn to recon-
struct the original uncorrupted signal.

Earlier attempts. The generative paradigm for self-supervision has been imple-
mented in earlier methods [299, 380], where the model learns to recover the color
of a grayscale image [380], or to inpaint a masked portion at the center of an im-
age [299]. The task of recovering masked image patches is called masked image
modeling, by analogy with the paradigm of masked language modeling in NLP [83].
However, the initial approach to masked image modeling [299] has not achieved
a level of success comparable to that of methods in NLP [83].

Difference between vision and language. This difference of performance be-
tween vision [299] and language [83] may be explained by the following hypothe-
ses [161]:

1. The model architecture is not the same. The vision model in [299] is a convo-
lutional neural network, while the language model in [83] is a transformer.

2. The number of possible values for the output of the autoencoder’s decoder
is significantly larger in vision than in language. Decoders in vision recon-
struct image patches that contain many pixels, whereas decoders in lan-
guage reconstruct word tokens that can take only a small number of values
predefined by a vocabulary.

3. Information density is different between language and vision. Images present
heavy spatial redundancy, meaning that pixel-level information of neigh-
boring patches may be sufficient to reconstruct a missing patch. Therefore,
learning a vision model to reconstruct a small proportion of an image may
not be sufficient to learn representations able to capture high-level seman-
tics.

Modern methods for masked image modeling. Based on this analysis, recent
methods for masked image modeling [14, 161, 364] proposed some important
modifications to achieve competitive results:
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1. They adopt the vision transformer architecture [87].

2. During decoding, raw pixel prediction can be replaced by the prediction of
discrete visual tokens as in [14], which are extracted by the encoder of a
discrete variational autoencoder [309].

3. A more aggressive masking strategy is proposed in [161,364], where a large
proportion of patches, up to 75% in [161], is masked at random, so that the
model is forced to capture high-level semantic features in order to recon-
struct the masked patches.

2.5 Conclusion

In this chapter, we provided an overview of the recent advances in self-supervised
learning methods, by distinguishing three families of methods: methods based
on the prediction of image transformations, invariance-based methods, and gen-
erative methods. We notably describe the different ways to avoid collapse in
invariance-based methods, either via a contrastive loss, the maximization of sta-
tistical information, or self-distillation. These are the main strategies to regular-
ize the distribution of the learned representations. In Chapter 5, we will focus on
invariance-based methods, and present a generic framework to unify certain ex-
isting regularization losses, based on a kernel framework using rotation-invariant
kernels.
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Chapter 3
Fast algorithms associated with
butterfly factorization

Algorithms for the rapid evaluation of linear operators are important tools in
many domains like scientific computing, signal processing, and machine learn-
ing. In such applications, where a very large number of parameters is involved,
the direct computation of the matrix-vector multiplication hardly scales due to
its quadratic complexity in the matrix size. This chapter reviews existing works
that rely on some analytical or algebraic assumptions on the considered matrix in
order to approximate its matrix-vector multiplication with a subquadratic com-
plexity. We will focus more particularly on fast algorithms associated with the
butterfly factorization.

3.1 Introduction

Matrix-vector multiplication is at the heart of a wide range of mathematical prob-
lems. Given a matrix A ∈ Cm×n, it is the operation that maps a vector x ∈ Cn to
y := Ax ∈ Cm, defined as:

∀i ∈ JmK, y[i] :=
n

∑
j=1

A[i, j]x[j]. (3.1)

The direct computation requires at leastO(nm) operations, which corresponds to
the number of parameters describing the matrix A. This becomes prohibitive in
large-scale settings, e.g., where the magnitude of m and n can be up of the order
106 or 107. Let us give some examples of such large-scale problems.

Example 3.1 (Linear transformation in signal processing). The matrix multiplica-
tion y = Ax corresponds to a linear transformation of a discretized signal x that repre-

A part of this chapter takes inspiration from an oral presentation given by Samual Potter at
the 2023 SIAM Conference on Computational Science and Engineering.
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sents the sampling of a given continuous signal. An example of such a linear operation is
the discrete Fourier transform.

Example 3.2 (Discretization of partial differential equations). Under the variational
formulation of partial differential equations, the finite element method uses a mesh to dis-
cretize the space domain so that solving numerically a given boundary value problem
reduces to the resolution of a given linear system involving a stiffness matrix A ∈ Rn×n.
The obtained numerical solution approximates the real solution, with an error that ap-
proaches zero as n tends to ∞.

Example 3.3 (n-body problem). Given a kernel operator (x, y) 7→ k(x, y) ∈ R that
quantifies the interaction between pairs of particles, evaluating all pairwise interactions
in a system of n particles implies a multiplication by a matrix A ∈ Rn×n, which is a
discretization of this kernel operator.

Example 3.4 (Integral transform). An integral transform K of a square integrable
function f : [a, b] → C, associated with a kernel operator k : [a, b] × [c, d] → C,
is defined as the function (K f )(y) =

∫ b
a k(y, x) f (x)dx. This integral transform can

be evaluated numerically using a quadrature rule, where (K f )(y) is approximated by
∑n

j=1 wjk(y, xj) f (xj) with well-chosen nodes x1, . . . , xn and weights w1, . . . , wn. The
evaluation of this approximation at several points y1, . . . , ym is therefore a matrix-vector
multiplication with a kernel matrix A ∈ Cm×n. An example of such an integral trans-
form is the Fourier integral operator, which typically occurs in the resolution of wave
equations like in inverse scattering problems.

Example 3.5 (Special function transform). Given an orthogonal basis of functions
φ1, φ2, φ3, . . . that are square integrable on some interval [a, b], the task of comput-
ing scalars β1, . . . , βn such that the truncation g : x 7→ ∑n

j=1 β j φj(x) interpolates
a given square integrable function f at some nodes x1, . . . , xn ∈ [a, b] can be formu-
lated as a matrix-vector multiplication with a matrix of size n × n, given by β j =
∑n

i=1 wi φj(xi) f (xi) for j ∈ JnK and some scalars w1, . . . , wn. Examples of such a trans-
form associated with classical special functions include the Fourier-Bessel (Hankel) trans-
forms, orthogonal polynomial transforms, etc.

In the quest to reduce the complexity of matrix multiplication, when the con-
sidered matrix satisfies some specific algebraic or analytical assumptions typi-
cally encountered in the previous examples, it is possible to design fast algorithms
for applying the corresponding linear operator in quasi-linear or linear complexity.
This chapter will review two types of fast algorithms:

• Fast algorithms associated with structured matrices: these algorithms al-
lows an exact rapid evaluation of the considered matrix, by leveraging some
algebraic features of its entries. One example is the Cooley-Tuckey algo-
rithm [65] for the discrete Fourier transform (DFT).

• Analysis-based1 fast algorithms: these algorithms do not evaluate exactly
the matrix-vector multiplication, but provide an approximate evaluation up

1The terminology "analysis-based" is borrowed from [288].
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to some approximation error. The considered matrix is usually the discreti-
sation of a certain kernel operator, which has a certain analytical assump-
tion that takes the form of a certain low-rank property for the correspond-
ing kernel matrix. One example of analysis-based fast transforms is the fast
multipole method [140].

Butterfly factorization. Among the different assumptions enabling an approx-
imate rapid evaluation of matrix-vector multiplication, previous work has iden-
tified the class of butterfly matrices [40, 266, 288] that typically satisfy a certain
low-rank property, named the complementary low-rank property [234]. Under this
assumption, the target matrix A, of size n× n, possesses specific submatrices that
are numerically low-rank. Consequently, A can be compressed through succes-
sive hierarchical low-rank approximations of these submatrices, in the sense that
it can be approximated by a sparse factorization:

Â = X1 . . . XL,

with L = O(log n) factors. Each factor Xℓ has at most O(n) nonzero entries for
each ℓ ∈ JLK. This sparse factorization, called in general butterfly factorization,
would then yield a fast algorithm for the approximate evaluation of the matrix-
vector multiplication by A, in O(n log n) complexity. Algorithms for the con-
struction of such sparse factors are called butterfly algorithms [265, 266, 288, 289]
in the literature, and have been applied to many operators appearing in scien-
tific computing problems, like kernel matrices associated with special function
transforms (e.g., Fourier-Bessel transform, orthogonal polynomial transforms or
spherical harmonic transforms in Example 3.5) [288,289,341,369], time-harmonic
scattering operators in electromagnetics [146,251,265,266], or Fourier integral op-
erators [40, 77, 235] (Example 3.4).

Contents of the chapter. The goal of this chapter is to explain the nature of
butterfly algorithms in order to better position our contributions in Chapters 6
to 8. As we will see, in contrast to fast algorithms associated with structured
matrices [294] that are presented in Section 3.2, butterfly algorithms are analysis-
based fast algorithms, as is the case with the fast multipole method [140], pre-
sented in Section 3.3 and revisited with the framework of H-matrices and H2-
matrices [149–151]. In Section 3.4, we will formally introduce the low-rank prop-
erty leveraged by butterfly algorithms to enable rapid matrix-vector multiplica-
tion, and we will detail some examples of kernel operators that satisfy such a
property. Section 3.5 describes how the butterfly algorithm constructs a butter-
fly factorization that approximates a matrix satisfying this low-rank property. In
particular, we will see that the fast algorithm associated with butterfly factoriza-
tion mimics the fast Fourier transform. The detailed description of the classical
butterfly algorithm will allow a precise comparison with the variants proposed in
this thesis. Section 3.6 concludes with some important variations of the butterfly
algorithms.
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3.2 Fast algorithms for structured matrices: the exam-
ple of the FFT

Probably one of the most famous fast algorithms is the fast Fourier transform (FFT),
which allows us to compute the discrete Fourier transform in quasi-linear complex-
ity. As opposed to analysis-based fast algorithms, the FFT is an exact rapid eval-
uation of the corresponding linear operator. For that, it typically relies on some
specific algebraic features of the DFT matrix, as we detail with the Cooley-Tukey
FFT in the next section. In particular, this leads to an exact factorization of the
DFT matrix of size n× n into O(log n) sparse factors with O(n) nonzero entries.

3.2.1 The Cooley-Tukey fast Fourier transform

The goal of the Cooley-Tukey [65] is to compute the DFT defined as follows.

Definition 3.1 (Discrete Fourier transform). The DFT of a given sequence
(x0, . . . , xn−1) is defined as the sequence (X0, . . . , Xn−1) := DFTn(x0, . . . , xn−1)
given by

∀k ∈ J0, n− 1K, Xk :=
n−1

∑
i=0

xiω
ki
n ,

where ωn := e−j 2π
n denotes the primary n-th complex root of unity for a given integer

n.

The main idea is to use a divide-and-conquer strategy that recursively breaks
the computation of the DFT of size n× n into several computations of the DFT at
smaller length, assuming that n is composite. This is possible by leveraging some
symmetry and periodicity structure of the kernel (k, i) 7→ ω

(k−1)(i−1)
n for i, k ∈N.

The presentation of this paragraph is based on [89]. Let n1, n2 be two integers
such that n = n1n2. The Cooley-Tukey FFT [65] considers a partition of J0, n− 1K
into n1 subsets of n2 integers that are equally spaced by a distance n1:

∀i1 ∈ J0, n1 − 1K, Ui1 := {i1 + i2n1}i2∈J0,n2−1K,

so that the sum in (3.1) can be written as:

∀k ∈ J0, n− 1K, Xk =
n1−1

∑
i1=0

n2−1

∑
i2=0

xi1+i2n1ω
k(i1+i2n1)
n

=
n1−1

∑
i1=0

ωki1
n

n2−1

∑
i2=0

xi1+i2n1ωki2n1
n

=
n1−1

∑
i1=0

ωki1
n

n2−1

∑
i2=0

xi1+i2n1ωki2
n2︸ ︷︷ ︸

:=Yi1,k

,

(3.2)
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where the last equality comes from the fact that

∀i ∈N, ωin1
n = ej 2π

n n1i = ej 2π
n2

i
= ωi

n2
. (3.3)

This means that {Yi1,k}i1,k in (3.2) correspond to the outputs of n1 DFTs of length
n2: indeed, on the one hand, since ωn2 is an n2-th root of unity, we have

∀k ∈ Jn− 1K, Yi1,k = Yi1,k2 where k2 ≡ k mod n2, (3.4)

and on the other hand, we remark by Definition 3.1 that

∀i1 ∈ J0, n1 − 1K, (Yi1,k2)
n2−1
k2=0 = DFTn2(xi1 , xi1+n1 , . . . , xi1+(n2−1)n1

). (3.5)

Define
Ỹi1,k2 := ωk2i1Yi1,k2 , ∀(i1, k2) ∈ J0, n1 − 1K× J0, n2 − 1K. (3.6)

Writing the Euclidean division of k ∈ Jn − 1K as k = k1n2 + k2, the expression
(3.2) becomes

∀(k1, k2) ∈ J0, n1 − 1K× J0, n2 − 1K, Xk1n2+k2 =
n1−1

∑
i1=0

ω
(k1n2+k2)i1
n Yi1,k1n2+k2

=
n1−1

∑
i1=0

ωk1n2i1
n ωk2i1

n Yi1,k2︸ ︷︷ ︸
=Ỹi1,k2

=
n1−1

∑
i1=0

ωk1i1
n1 Ỹi1,k2 ,

(3.7)

where, again, the last equality comes from the fact that

ωk1n2i1
n = e−j 2π

n n2i1 = e−j 2π
n1

i1 = ωk1i1
n1 . (3.8)

In other words, the expression (3.7) corresponds to n2 DFTs of length n1, because
by Definition 3.1:

∀k2 ∈ Jn2 − 1K, (Xk1n2+k2)
n1−1
k1=0 = DFTn1(Ỹ0,k2 , Ỹ1,k2 , . . . , Ỹn1−1,k2). (3.9)

Summary. The divide-and-conquer strategy in the Cooley-Tukey FFT of
length n = n1n2 is composed of three steps:

1. compute n1 DFTs of length n2 as in (3.5);

2. perform n1n2 = n multiplications as in (3.6);

3. compute n2 DFTs of length n1 as in (3.9).

Therefore, in general, the total number of multiplications in the three steps is
n1n2

2 + n+ n2n2
1 = n(n2 + 1+ n1), which is smaller than the quadratic complexity

n2 if n1, n2 > 2. If n1 or n2 are also composite, then this step can be repeated recur-
sively to further reduce the complexity, as in the radix-2 FFT algorithm presented
below.

Remark 3.1. Note that there exist other FFT algorithms when n is prime [306].
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3.2.2 Radix-2 FFT algorithm

Assume that n is a power of two. Then, applying recursively the Cooley-Tukey
FFT by choosing n1 = 2 and n2 = n/2 yields the so-called radix-2 algorithm. In
this case, the expression (3.7) becomes:

∀k ∈ J0, n/2− 1K, Xk = Y0,k + ωk
nY1,k,

X n
2+k = Y0,k −ωk

nY1,k,
(3.10)

where

(Y0,k)
n/2−1
k=0 := DFTn/2(x0, x2, . . . , xn−2),

(Y1,k)
n/2−1
k=0 := DFTn/2(x1, x3, . . . , xn−1).

Let us rewrite (3.10) in a matrix format.

Definition 3.2 (DFT matrix). We denote the DFT matrix of size n× n as

Fn :=
(

ω
(k−1)(i−1)
n

)
(k,i)∈JnK2

=


1 1 1 . . . 1
1 ωn ω2

n . . . ωn−1
n

1 ω2
n ω4

n . . . ω
2(n−1)
n

...
...

...
...

1 ωn−1
n ω

2(n−1)
n . . . ω

(n−1)(n−1)
n

 .

For any even integer n, denote Pn the permutation matrix of size n that sorts
the even then the odd indices, in the convention that the first index of a sequence
is zero, i.e., it permutes (x0, x1, . . . , xn−2, xn−1) to (x0, x2, ..., xn−2, x1, x3, . . . , xn−1).
Then, by (3.10):

∀x ∈ Cn, Fnx =

(
In/2 Wn/2
In/2 −Wn/2

)
︸ ︷︷ ︸

:=Bn

(
Fn/2 0n/2
0n/2 Fn/2

)
Pnx, (3.11)

where Wn/2 is the diagonal matrix with diagonal entries (ωk
n)

n/2−1
k=0 . Unrolling

recursively this factorization yields:

Fn = Bn

(
Fn/2 0

0 Fn/2

)
Pn

= Bn

(
Bn/2 0

0 Bn/2

)
Fn/4 0 0 0

0 Fn/4 0 0
0 0 Fn/4 0
0 0 0 Fn/4

(Pn/2 0
0 Pn/2

)
Pn

= . . .
= (I1 ⊗ Bn)(I2 ⊗ Bn/2)(I4 ⊗ Bn/4) . . . (In/2 ⊗ B2)Qn

(3.12)
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where ⊗ is the Kronecker product, and Qn is the so-called bit-reversal permuta-
tion matrix defined as

Qn := (In/2 ⊗ P2)(In/4 ⊗ P4) . . . (I2 ⊗ Pn/2)Pn. (3.13)

Lemma 3.1. Denoting L := log2(n) ∈ N, the sparsity patterns on each of the
obtained sparse factors Xℓ := I2ℓ−1 ⊗ B2L−ℓ+1 in (3.12) can be written as a Kronecker
product:

∀ℓ ∈ JLK, supp(Xℓ) ⊆ supp(I2ℓ−1 ⊗ 12×2 ⊗ I2L−ℓ). (3.14)

In other words, up to the bit-reversal permutation of its column defined in (3.13), the
DFT matrix of size n × n with n = 2L admits exactly the square dyadic butterfly
factorization, as defined in (1.1).

Proof. By (3.11), we have supp(B2L−ℓ+1) ⊆ supp(12×2 ⊗ I2L−ℓ) for each ℓ ∈ JLK.

Remark 3.2. Another way to visualize the radix-2 FFT is to construct a corresponding
directed acyclic graph (DAG) that shows the multiplication and the addition operations
for computing the DFT. A directed graph G is defined by a set of vertices V and edges
E ⊆ {(x, y) ∈ V2 | x ̸= y}. A directed acyclic graph is a directed graph that does not
admit a path2 for which the starting vertex and the ending vertex is the same. An input
vertex is a vertex u for which (x, u) /∈ E for any x ∈ V . An output vertex is a vertex
v for which (v, y) /∈ E for any y ∈ V . A DAG with m input vertices and n output
vertices, associated with a weight function λ : E → C, can describe a linear operator
Cm 7→ Cn as follows. Given some input values α(u) ∈ C for each input vertex u, we
compute recursively the values α(y) for any non-input vertices y as:

α(y) := ∑
x∈V , (x,y)∈E

α(x)λ(x, y). (3.15)

Then, the outputs of the corresponding linear operator are the values α(v) for output
vertices v. In the case of the DFT of size n = 8, the DAG corresponding to the radix-2
FFT is described in Figure 3.1.

Conclusion. The DFT matrix of size n × n with n := 2L admits exactly a
sparse matrix factorization into L = log2(n) factors, where each of them has
exactly two nonzero entries per row and per column. In particular, this yields
the theoretical complexity of the fast Fourier transform in O(n log n). The
FFT algorithms are based on some algebraic features of the DFT matrix, in the
sense that we used Equations (3.3), (3.4) and (3.8) based on the periodicity of
(k, i) 7→ ω

(k−1)(i−1)
n .

2A path of length k is defined as a finite sequence of edges {(xi, yi)}k
i=1 for which yi = xi+1 for

any i ∈ JkK. The starting vertex is x1 and the ending vertex is yk.
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Figure 3.1: DAG associated with the radix-2 FFT for the DFT of size n = 8.

3.2.3 A unifying framework for structured matrices

It turns out that, under the displacement rank framework [191], the DFT matrix
belongs to a more general family of structured matrices that covers the following
classes of matrices widely used in many contexts.

• Toeplitz matrices: they are of the form (ti−j)(i,j)∈JnK2 for some parameters
t−n+1, t−n+2, . . . , tn−1, i.e., they have constant values on their diagonal. This
structure corresponds to the property of shift-invariance that can appear for
instance in some physical problems.

• Hankel matrices: they are of the form (hi+j−2)(i,j)∈JnK2 for some parame-
ters h0, h1, . . . , h2n−2, i.e., they have constant values on their anti-diagonal.
Together with Toeplitz matrices, they are related to the one-dimensional
discrete convolution operation.

• Vandermonde matrices: they are of the form (xj−1
i )(i,j)∈JmK×JnK for some

parameters x1, . . . , xm, i.e., there is a geometric progression of the entries in
each row. They appear in polynomial interpolation problems. The discrete
Fourier transform (DFT) is a Vandermonde matrix of size n× n associated
with the n-th complex roots of unity.

• Cauchy matrices: they are of the form
(

1
xi−yj

)
(i,j)∈JmK×JnK

for some param-

eters x1, . . . , xm and y1, . . . , yn. They appear in rational interpolation prob-
lems.

These matrices of size m× n are characterized by the fact that they can be de-
scribed using far fewer than mn parameters, although they are not sparse matri-
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ces in the sense that they admit only a small number of nonzero entries. More pre-
cisely, under the displacement rank framework, we say that a matrix is structured
in the sense that it can be mapped to a low-rank matrix, called a generator, using
a certain linear displacement operator L, and recovered easily from their image by
L [191, 287, 294, 295]. Then, linear algebra operations can be performed rapidly
by operating on the generator. In particular, by leveraging such a structure, it
is possible to design fast algorithms for the exact matrix-vector multiplication in
O(n log n) with a Toeplitz or Hankel matrix, and O(n log2 n) with Vandermonde
or Cauchy matrices [130, 294]. The description of these fast algorithms is beyond
the scope of this chapter and we refer the reader to [294] for more details.

3.3 An introduction to analysis-based fast transforms

Is it still possible to build a fast algorithm in the case where we do not know
that the matrix admits some algebraic structure as described in the previous
section? In this section, we will review some analysis-based fast transforms for a
rapid approximate evaluation of matrix-vector multiplication. The matrix is as-
sumed to have the form A = (k(xi, yj))(i,j)∈JmK×JnK for a known kernel operator
k : X × Y → R evaluated at some parameters {xi}m

i=1 ⊆ X and {yj}n
j=1 ⊆ Y .

This is the case of Examples 3.2 to 3.5. We will start by presenting the fast mul-
tipole method [140], before showing its relationship to H-matrices [149] and H2-
matrices [151]. The key idea is to use a smoothness property of the kernel opera-
tor that translates into a low-rank property for the corresponding kernel matrix,
which can then be leveraged to rapidly approximate the matrix-vector multipli-
cation.

3.3.1 An overview of the fast multipole method

The following presentation is based on [18, 260]. Consider a set of locations
{xi}n

i=1 ⊆ R in a one-dimensional space3 verifying x1 < x2 < . . . < xn for n
electrical charges associated with source strength q := (qi)

n
i=1 ∈ Rn. The evalua-

tion of the potentials u := (ui)
n
i=1 ∈ Cn at the locations x1, . . . , xn is given by:

u = Aq with A[i, j] := − log(xi − xj) ∀(i, j) ∈ JnK2, (3.16)

where we use the complex logarithm by convenience. The real potentials are then
obtained by taking the real part of u. This is exactly the scenario of Example 3.3.
The fast multipole method (FMM) [140] is a fast algorithm to approximate (3.16)
in O(n) operations instead of O(n2).

3The method is applicable to both two-dimensional and three-dimensional spaces, but we
present it in the one-dimensional case for ease of presentation.
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Separable expansion and rank deficiency on well-separated domains. The FMM
is an analysis-based fast transform in the sense that it exploits some smoothness
property of the kernel (x, y) 7→ − log(x − y) allowing a separable expansion, as
we detail now. Suppose that x belongs to a target interval Ωτ ⊆ R and y to a
source interval Ωσ ⊆ R. Denoting cσ, cτ the centers of Ωσ, Ωτ, we have:

− log(x− y) = − log(x− cσ)− log
(

1− y− cσ

x− cσ

)
= − log(x− cσ) +

∞

∑
p=1

1
p

(
y− cσ

x− cσ

)p
,

(3.17)

provided that |y− cσ| < |x− cσ|. This condition is verified if we assume that the
intervals Ωσ and Ωτ are well-separated, e.g., in the sense that there exists 0 < η ≤ 1
such that

η dist(Ωτ, Ωσ) ≥ rτ + rσ, (3.18)

where dist(Ωτ, Ωσ) := minx∈Ωτ ,y∈Ωσ
|x − y|, rτ := maxx∈Ωτ

|x − cτ| and rσ :=
maxy∈Ωσ

|y− cσ|. Indeed, under this condition, we have |x− cσ| ≥ dist(Ωτ, Ωσ) ≥
η dist(Ωτ, Ωσ) ≥ rτ + rσ > rσ ≥ |y− cσ|, since rτ > 0 because the interval Ωτ is
not reduced to a singleton.

The separable expansion (3.17) tells that, up to a given error ϵ > 0, the kernel
(x, y) 7→ − log(x− y) can be approximated by a truncation of order r− 1:

∀(x, y) ∈ Ωτ ×Ωσ, − log(x− y) ≈
r−1

∑
p=0

Bp(x)Cp(y), (3.19)

where B0(x) := − log(x − cσ), C0(x) = 1, Bp(x) = (x − cσ)−p and Cp(x) =
1
p (y− cσ)p for p ∈ Jr− 1K. The truncation error is roughly 1

r (|y− cσ|/|x− cσ|)r,
which indeed decreases as the separation between the domains increases. Denote
now the index subsets Iσ, Iτ of JnK defined as:

i ∈ Iσ ⇐⇒ xi ∈ Ωσ, and i ∈ Iτ ⇐⇒ xi ∈ Ωτ. (3.20)

Under assumption (3.18), by (3.19), the submatrix A[Iτ, Iσ] admits a rank-r approx-
imation

A[Iτ, Iσ] ≈ BτC⊤σ , (3.21)

where Bτ, Cσ are matrices with r columns (Bp(xi))i∈Iτ
, (Cp(xi))i∈Iσ

, respectively,
for p ∈ J0, r− 1K. This means that matrix-vector multiplication by A[Iτ, Iσ] can be
approximated withO(r(|Iτ|+ |Iσ|)) operations, which is cheaper thanO(|Iτ| |Iσ|)
if r is much smaller than |Iτ|, |Iσ|.

The general idea of the FMM. Going back to the approximation of (3.16), the
main idea of the FMM is to partition the interval Ω := [mini∈JnK xi, maxi∈JnK xi]
containing all the particles {xi}n

i=1 into several disjoint subintervals, in such a
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way that we can evaluate the interactions between well-separated domains Ωτ,
Ωσ (far-field interactions) using a low-rank approximation of the submatrix A[Iτ, Iσ],
and use direct evaluation only for points that are close (near-field interactions).
Equivalently, since we assume that x1 < x2 < . . . < xn, the FMM exploits the rank
deficiencies in off-diagonal blocks of A in order to rapidly approximate (3.16).

To achieve the complexity in O(n) operations, the FMM further considers a
multi-level strategy. The domain Ω is partitioned hierarchically using a notion of
cluster-tree [150] (more details are given below), that allows us to consider differ-
ent scales of interaction distance when evaluating far-field interactions, so that
we can reuse computations across different levels.

3.3.2 Introducing the framework of hierarchical matrices

First, let us now detail this multi-level strategy under the framework of hierar-
chical matrices, also called H-matrices [149], in order to explain how to reduce the
complexity for approximating (3.16). This leads to an approximation in quasi-
linear complexity. Then, we will see afterward how to obtain a linear complexity
using the framework of H2-matrices [151] that builds upon H-matrices. The fol-
lowing presentation is based on [107, 330].

Hierarchical splitting of the domain. For simpler presentation, we assume the
locations x1, . . . , xn are uniformly spread in the interval Ω. We split the interval Ω
into two disjoint subintervals of the same length Ωleft and Ωright with Ω = Ωleft ∪
Ωright. We repeat recursively this binary splitting on Ωleft and Ωright respectively,
until the number of particles per subintervals is smaller than a certain threshold
ν. This yields a hierarchical splitting of the domain Ω with L := ⌈log2(n/ν)⌉
levels, where there are 2ℓ subintervals denoted {Ω(ℓ)

i }
2ℓ
i=1 at each level ℓ ∈ JLK

forming a partition of Ω. Then, this hierarchical partitioning of the domain leads
to a hierarchical partitioning of the indices, defined by the notion of cluster tree
for the set of indices JnK.

Definition 3.3 (Cluster tree [150]). A cluster tree T of a set of indices JnK with depth
L is a tree where:

• nodes of the tree are subsets of JnK;

• the root is JnK;

• each non-leaf node has non-empty children that form a partition of their parent;

• the only leaves are at level L.

We fix the convention that the root nodes are at level 0. The set of nodes in the same
level ℓ of T is denoted T(ℓ).

47



Chapter 3. Fast algorithms associated with butterfly factorization

Figure 3.2: Illustration of a hierarchical splitting of an interval Ω ⊆ R containing particles
x1 < . . . < xn with n = 24. We show below the corresponding cluster tree of JnK.

Remark 3.3. Note that this definition is general and it is not restricted to binary trees
only.

The binary splitting of the domain Ω leads to a binary cluster tree TΩ, i.e., each
non-leaf node has exactly two children. Since we assume that the particles are
uniformly spread in Ω, each node in TΩ(ℓ) at level ℓ ∈ JLK is of the form

I(ℓ)k :=
{

i ∈ JnK | xk ∈ Ω(ℓ)
k

}
, |I(ℓ)k | ≤

n
2ℓ

, (3.22)

for a certain k ∈ J2ℓK. See Figure 3.2 for an illustration. Note that by definition,TΩ(ℓ)
forms a partition of the root JnK. More precisely, the cluster tree defines a hierar-
chy of partitions of JnK, in the following sense.

Definition 3.4 (Finer and coarser partitions [150, Definition 1.11]). Consider two
partitions P and P̃ of JnK. We say that P is finer than P̃ (or P̃ is coarser than P) if
for all I ∈ P there exists Ĩ ∈ P̃ such that I ⊆ Ĩ.

Matrix partition. At each level ℓ ∈ JLK, since TΩ(ℓ) is a partition of JnK, the
family

TΩ2(ℓ) := {R× C | R, C ∈ TΩ(ℓ)} (3.23)

defines a partition of the matrix indices JnK× JnK into index blocks. Such a parti-
tion is called a block partition, and more precisely a product block partition. These
concepts are illustrated in Figure 3.3.
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(a) Index block (b) Product block partition

Figure 3.3: Illustration of an index block and a product block partition, for a size m× n.

Definition 3.5 (Index block). An index block (or briefly a block) B to approximate
a matrix size m× n is a subset R× C where R ⊆ JmK is a subset of row indices and
C ⊆ JnK is a subset of column indices.

Definition 3.6 (Block partition). A family of blocks P := {Bk}K
k=1 forms a block

partition of JmK× JnK if the blocks of the family are pairwise disjoint, and the union⋃K
k=1 Bk is equal to JmK× JnK.

Example 3.6 (Product block partition). The product block partition associated with
a partition Prow of JmK and a partition Pcol of JnK is the block partition P := {R×C | R ∈
Prow, C ∈ Pcol} of JmK× JnK.

Admissible blocks. Two intervals Ω(ℓ)
k , Ω(ℓ)

k′ for k, k′ ∈ J2ℓK at a certain level ℓ ∈
JLK are well-separated in the sense of (3.18) if, and only if, they do not overlap4.
In this case, due to the smoothness property of the kernel (x, y) 7→ − log(x− y),
the submatrix A[I(ℓ)k , I(ℓ)k′ ] can be well-approximated by a low-rank matrix, and

we will say that the index block I(ℓ)k × I(ℓ)k′ is admissible. In our case, assuming that

the intervals Ω(ℓ)
1 , . . . , Ω(ℓ)

2ℓ are such that their centers are ordered with increasing
values in R, we have, as illustrated in Figure 3.4:

∀k, k′ ∈ J2ℓK, I(ℓ)k × I(ℓ)k′ is admissible ⇐⇒ |k− k′| > 1. (3.24)
4Indeed, Ω(ℓ)

k , Ω(ℓ)
k′ are not well-separated if they are the same, or if they are neighbors in

the sense that they touch each other. But otherwise, they are well-separated because in this case
the distance between Ω(ℓ)

k , Ω(ℓ)
k′ is at least (max Ω −min Ω)/2ℓ, by construction of the binary

hierarchical splitting of Ω.
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Figure 3.4: Illustration of admissible blocks from the example given in Figure 3.5. In this
example, I(3)4 × I(3)k′ is admissible for k′ ∈ {1, 2, 6, 7, 8}.

Splitting into admissible blocks. Let us now construct a specific block partition
of JnK× JnK (Definition 3.6) that contains a minimal number of admissible blocks
[150, Proposition 5.33]. We define

P := MINIMAL_ADMISSIBLE_PARTITION(JnK× JnK, TΩ), (3.25)

P+ := {B ∈ P | B is admissible}, (3.26)

using the procedure described in Algorithm 3.1. The main idea is to partition each
index block into admissible and non-admissible blocks, and recursively repeat the
procedure only on the non-admissible blocks until we reach the last level of the
cluster tree. By (3.24), one can check that P ∩ TΩ2(ℓ) = ∅ for ℓ ∈ {0, 1}. We can
then perform a hierarchical splitting of the kernel matrix A in (3.16) as follows:

A =
L

∑
ℓ=2

Aℓ + NL, (3.27)

where Aℓ for ℓ ∈ J2, LK is defined as the following block matrix:

∀R× C ∈ TΩ2(ℓ), Aℓ[R, C] =

{
A[R, C] if R× C ∈ P+

0 otherwise
, (3.28)

and NL := A− ∑L
ℓ=2 Aℓ. In other words, Aℓ contains the submatrices of A cor-

responding to admissible blocks at level ℓ in the hierarchical splitting, and NL
contains the submatrices of A corresponding to non-admissible blocks in P.

Approximation by a hierarchical matrix. As per (3.21), Aℓ[R, C] with R× C ∈
P+ ∩ TΩ2(ℓ) can be well-approximated by a rank-r matrix:

Aℓ[R, C] ≈ Â(ℓ)
R,C, rank

(
Â(ℓ)

R,C

)
≤ r. (3.29)

Define the block matrix Âℓ as:

∀R× C ∈ TΩ2(ℓ), Âℓ[R, C] =

{
Â(ℓ)

R,C if R× C ∈ P+

0 otherwise
. (3.30)
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Figure 3.5: Illustration of the minimal admissible partition for the example given in Fig-
ure 3.5, and illustration of the support of Aℓ for ℓ ∈ J2, LK and NL, in the case L = 3.
Index blocks corresponding to nonzero submatrices are in gray, and those corresponding
to zero submatrices are in white.

Algorithm 3.1 Minimal admissible partition [150, (5.44)].

1: procedure MINIMAL_ADMISSIBLE_PARTITION(R× C, cluster tree T)
2: Assume that R and C are nodes of T at a same level
3: if R× C is admissible or if R, C are leaves in T then
4: return {R× C}
5: else
6: P← ∅
7: for R′, C′ children of R, C in T do
8: P← P ∪ MINIMAL_ADMISSIBLE_PARTITION(R′ × C′, T)
9: end for

10: return P
11: end if
12: end procedure

Therefore:

A ≈ Â :=
L

∑
ℓ=2

Âℓ + NL. (3.31)

The matrix Â in the right-hand side of the equation is precisely what is called in
the literature a hierarchical matrix [149, 150], associated with the block partition P
defined in (3.25), the admissibility condition (3.24) and the rank parameter r. It is
a matrix with low-rank submatrices at index blocks P+.

Matrix-vector multiplication by a hierarchical matrix. The operation x 7→ Ax
is then approximated by x 7→ Âx, which can be evaluated in O(n log n) opera-
tions. Indeed, the computation breaks down to:

Âx =
L

∑
ℓ=2

Âℓx︸ ︷︷ ︸
far-field interactions

+ NLx︸︷︷︸
near-field interactions

. (3.32)
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For ℓ ∈ J2, LK, the multiplication Âℓ[R, C]x[C] for R× C ∈ P+ ∩ TΩ2(ℓ) requires
r(|R|+ |C|) operations. By (3.22), it requires at most 2rn/2ℓ. But by (3.24), one
can check that the cardinality of P+ ∩ TΩ2(ℓ) is bounded by γ2ℓ with γ = 3.
Therefore, the far-field evaluation Âℓx requires at most (γ2ℓ)(2rn/2ℓ) = 2rγn
operations. Similarly, by (3.24), the only non-admissible blocks in P are blocks in
TΩ2(L), and there are at most γ2L non-admissible blocks with γ = 3. Therefore,
the near-field evaluation NLx requires at most (γ2L)(n/2L)2 = γn2/2L ≤ γνn by
definition of L := ⌈log2(n/ν)⌉. In conclusion, the total number of operations for
Âx is at most

(L− 1)(2rγn) + γνn = O(n log n), (3.33)

where γ, r and ν are assumed to be constant.

3.3.3 Revisiting the FMM withH2-matrices

The FMM, however, requires only O(n) operations for approximating (3.16), in-
stead of O(n log n). This can be interpreted by the fact that A in (3.16) turns out
to be well-approximated by a so-called H2-matrix [151]. The H2-matrices form a
subclass of uniform H-matrices, which itself is a subclass of H-matrices. We now
explain what it means for A to be well-approximated by a uniformH-matrix and
anH2-matrix.

Approximation by a uniform H-matrix. At level ℓ ∈ J2, LK, it can be shown
[260, (14)] that there exist row bases UR ∈ C|R|×r for each R ∈ TΩ(ℓ) and col-
umn bases VC ∈ C|C|×r for each C ∈ TΩ(ℓ) such that the rank-r matrix Â(ℓ)

R,C
approximating A[R, C] for R× C ∈ TΩ2(ℓ) ∩ P+ in (3.29) can be chosen as:

Â(ℓ)
R,C := URBR,CV⊤C , for a certain BR,C ∈ Cr×r. (3.34)

Note that this is stronger than merely applying SVD to each index block R× C ∈
TΩ2(ℓ) ∩ P+ for ℓ ∈ J2, LK. Then, the obtained approximation Â := ∑L

ℓ=2 Âℓ + NL
is what is called a uniform H-matrix [151]. The row and column bases spanning
the low-rank off-diagonal submatrices of Â are shared across different admissible
blocks, with the hope of reducing the computational work when multiplying by
Â. However, this still requires a total of O(n log n) operations [151].

Approximation by anH2-matrix. To further reduce the computational work, it
turns out [260, Equations (15), (16)] that the row bases {UR | R ∈ TΩ(ℓ)} and the
column bases {VC |C ∈ TΩ(ℓ)} at each level ℓ ∈ J2, LK can be chosen in such a
way that they satisfy the following so-called consistency condition [151]:

1. for any non-leaf node R of TΩ with children R1, R2,

∀i ∈ {1, 2}, ∃TRi,R ∈ Cr×r, UR[Ri, :] = URi TRi,R; (3.35)
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2. for any non-leaf node C of TΩ with children C1, C2,

∀i ∈ {1, 2}, ∃TCi,C ∈ Cr×r, VC[Ci, :] = VCi TCi,C. (3.36)

The obtained approximation Â := ∑L
ℓ=2 Âℓ+NL is then called anH2-matrix [151].

The row and column bases spanning submatrices of Â corresponding to admis-
sible blocks are nested across the different levels of the hierarchy, in the sense of
(3.35) and (3.35), so that data can be reused to reduce the computational work.
The multiplication algorithm by an H2-matrix [151] coincides in fact with the
idea of the FMM [140, 260], and has a complexity in O(n). As we will see below,
nested bases are also used in butterfly algorithms but in a different manner.

3.4 The low-rank property in the butterfly algorithm

Butterfly algorithms form an alternative class of analysis-based fast-transforms that
rely on another form of smoothness property than the FMM. Typically, the con-
sidered kernel operator leads to a kernel matrix of size n × n for which the nu-
merical rank of any p× q contiguous submatrix is proportional to pq/n [40, 288, 289].
This contrasts with H-matrices, for which only the off-diagonal submatrices are
rank-deficient. In this section, we start by listing some kernel operators associ-
ated with such a low-rank property, such as the kernel in the Fourier transform.
Then, we will see that these kernel matrices satisfy in fact the so-called comple-
mentary low-rank property for some specific cluster trees [234], which is the central
property in the butterfly algorithm.

3.4.1 When the rank of a submatrix scales with its area

It turns out that the DFT matrix obeys the following special low-rank property
[16, 92, 288, 398].

Theorem 3.1 (Rank of submatrices in the DFT matrix [288]). Let 0 < ϵ < 0.1
and n be an integer. Then, for any p, q ∈ JnK such that pq/n > 10/π, the submatrix
of the DFT matrix of size n × n restricted to its first p rows and q columns can be
well approximated up to precision ϵ by a low-rank matrix of rank C(ϵ) pq

n , where
C(ϵ) := π(1 + α10−2/3)3 and α = 3−1/3

2 log2/3(1/ϵ).

Remark 3.4. This theorem is true even if n is a prime integer.

Note that any contiguous p× q submatrix of the DFT matrix of size n× n is
proportional to the one containing the first p rows and q columns of the DFT
matrix, so they have the same rank. In other words, provided that pq/n is suffi-
ciently large, the numerical ranks of all contiguous p× q submatrices of the DFT
matrix are roughly the same and proportional to pq/n. This low-rank property
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of the DFT matrix comes from the fact that the kernel (ρ, τ) 7→ ejρτ admits the
following separable expansion.

Lemma 3.2 (From [288, Lemma 3.2]). Denoting {Jn}n the Bessel function of the
first kind and {Tn}n the Chebyshev polynomials of the first kind, we have:

∀(ρ, τ) ∈ R× [−1, 1], ejρτ = J0(ρ) +
∞

∑
n=1

2jn Jn(ρ)Tn(τ). (3.37)

The proof of Theorem 3.1 relies on some rescaling of the complex exponential
in order to leverage the expansion of Lemma 3.2, as we now detail.

Proof of Theorem 3.1. The entries of the submatrix restricted to the first p rows and
q columns in the DFT matrix of size n are given by:

∀(k, i) ∈ JpK× JqK, e−j 2π
n (k−1)(i−1) = ejωkti ,

where ωk := (k − 1) ∈ [0, p] and ti := −2π
n (i − 1) ∈ [−2πq/n, 0]. Consider

ω̃k := ωk
p ∈ [0, 1] and t̃i := 1 + n

πq ti ∈ [−1, 1]. Then:

ejωkti = ejpω̃k
πq
n (t̃i−1) = e−jcω̃k ejcω̃k t̃i , with c := π

pq
n

. (3.38)

By Lemma 3.2:

ejωkti = e−jcω̃k

(
J0(cω̃k) +

∞

∑
n=1

2jn Jn(cω̃k)Tn(t̃i)

)
. (3.39)

This means that the submatrix (ejωkti)(k,i)∈JpK×JqK can be approximated by a rank-r
matrix, when truncating the series in (3.38) at order r− 1. The truncation error is
roughly: ∣∣∣e−jpω̃k2jr Jr(cω̃k)Tr(t̃i)

∣∣∣ ≤ 2 |Jr(cω̃k)| . (3.40)

By assumption, c > 10, and by construction, 0 ≤ ω̃k ≤ 1 for any k ∈ JpK. Apply-
ing [288, Lemma 2.6] yields:

r ≥ (c1/3 + αc−1/3)3 =⇒ ∀k ∈ JpK, |Jr(cω̃k)| ≤ ϵ. (3.41)

Since (c1/3 + αc−1/3)3 = c(1 + αc−2/3)3 ≤ c(1 + α10−2/3)3 = C(ϵ) pq
n , it is suffi-

cient to consider r ≥ C(ϵ) pq
n in order to obtain |Jr(cω̃k)| ≤ ϵ for any k ∈ JpK. In

conclusion, the numerical rank up to precision roughly ϵ of (ejωkti)(k,i)∈JpK×JqK is
C(ϵ) pq

n .

It has been shown that several other kernel matrices satisfy a similar low-rank
property as in Theorem 3.1, like:
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3.4. The low-rank property in the butterfly algorithm

• the kernel matrix of (x, t) 7→ xJm(xt) associated with the Fourier-Bessel
transform for an integer m [289], where Jm denotes the Bessel function of
order m;

• or the kernel matrix of (x, p) 7→ e2πjnΨ(x,p) associated with the Fourier inte-
gral operator [40], where Ψ is some smooth function.

3.4.2 The complementary low-rank property

Consider a matrix A of size n× n for which any contiguous p× q submatrix have
the same numerical rank C(ϵ)pq/n up to precision ϵ for some given C(·). Under
the framework of [234], it also satisfies the complementary low-rank property in the
following sense.

Definition 3.7 (Classical complementary low-rank matrix [234]). Consider two
cluster trees (Definition 3.3) Trow, Tcol with the same depth L ≥ 1. A matrix A
satisfies the complementary low-rank property for (Trow, Tcol) if the numerical
rank of A[R, C] is low for all (R, C) ∈ ⋃L

ℓ=1 Trow(ℓ)× Tcol(L− ℓ+ 1).

Remark 3.5. This definition does not necessarily assume that the cluster trees Trow,
Tcol are dyadic or quadtrees, as it was assumed in [234, 236]. In this definition, a low
numerical rank means that the submatrix can be approximated up to a certain precision
error ϵ > 0 by a rank-r matrix, where r is small with respect to the size of the matrix.

Indeed, consider for instance a binary cluster tree T (Definition 3.3) on the
set of indices JnK of depth L := ⌈log2(n/ν)⌉ for an integer ν, such that the two
children of a non-leaf node are subsets contain consecutive integers and have
roughly the same cardinality5. By construction, the cardinality of each node at
level ℓ is roughly n/2ℓ. Hence, the area of any (R, C) ∈ T(ℓ)× T(L− ℓ+ 1) is

|R| |C|
n

≈ 1
n

n
2ℓ

n
2L−ℓ+1 =

n
2L+1 ≤

ν

2
. (3.42)

This means that the numerical rank of A[R, C] is at most C(ϵ)ν/2. In other words,
A satisfies the complementary low-rank property for the rank C(ϵ)ν/2 and the
cluster trees Trow = T and Tcol = T.

Remark 3.6. Definition 3.7 is more general than the definition of the complementary low-
rank originally given in [234] or [236], as it does not assume the cluster trees Trow, Tcol

to be dyadic or quadtrees.

In the next section, we explain how the butterfly algorithm leverages this com-
plementary low-rank property in order to construct a butterfly factorization to
enable rapid matrix-vector multiplication.

5More precisely, we require that the cardinality of a child I of a parent node Ĩ is at most ⌈ Ĩ/2⌉.
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3.5 Description of the classical butterfly algorithm

Constructing a fast algorithm for approximate matrix-vector multiplication asso-
ciated with butterfly factorization involves two steps.

1. The precomputation step: we compress an n × n matrix A by building
an approximation Â with a small approximation error ∥A− Â∥, such that
Â admits a factorization into several sparse factors X1, . . . , XL with L =
O(log n). This precomputation step presumes that the target matrix A sat-
isfies the complementary low-rank property (Definition 3.7), and follows a
procedure, called butterfly algorithm, that returns the sparse factors X1, . . . , XL
that we want.

2. The application step: it uses the precomputed X1, . . . , XL in order to ap-
proximate the matrix-vector multiplication x 7→ Ax, by performing succes-
sive matrix multiplication by the sparse factor Xℓ for ℓ ∈ JLK.

Some assumptions for easier presentation. To simplify the description of the
butterfly algorithm, let us assume that the target matrix A is a square matrix
of size n × n, and satisfies the complementary low-rank property for two clus-
ter trees Trow and Tcol of depth L := ⌊log2(n/ν)⌋ for a certain constant ν much
smaller than n. We also assume for simplicity that the two trees are dyadic, in the
sense that each non-leaf node has exactly two children. Moreover, up to some
row and column permutations of A, we can assume without loss of generality
that the indices in the left child of a given non-leaf node are smaller than the
one of the right child, or vice versa. We assume a noiseless setting: there ex-
ists a certain integer r such that the rank of A[R, C] is at most r for all (R, C) ∈⋃L

ℓ=1 Trow(ℓ)× Tcol(L− ℓ+ 1). Finally, we introduce the following notation:

∀ℓ ∈ JLK, Prow
ℓ := Trow(ℓ), Pcol

ℓ := Tcol(ℓ). (3.43)

General idea. Essentially, the butterfly algorithm leverages the complementary
low-rank property to build low-rank approximations of submatrices in the target
matrix A in a hierarchical way. The column and row bases spanning these low-
rank submatrices are nested across different levels of the hierarchy, in a way that
is reminiscent of (3.35) and (3.36). First, we explain how these nested bases are
constructed. Then, we explain how we use these nested bases to build a butterfly
factorization approximating the target matrix.

3.5.1 Construction of low-rank approximations

The construction of the bases is performed in an inductive manner with L steps
in total [289].
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3.5. Description of the classical butterfly algorithm

Step ℓ = 1. By the exact complementary low-rank property, for each (R, C) ∈
Prow

1 × Prow
L , the rank of the submatrix A[R, C] is at most r. This means that there

exist a row basis VR,C ∈ C|C|×r and a column basis UR,C ∈ C|R|×r with r columns
such that

A[R, C] = UR,CVR,C
∗, range(UR,C) ⊆ range(A[R, C]). (3.44)

One possible choice is to compute the truncated singular value decomposition
(SVD) at order r as A[R, C] = UDV∗, and set VR,C := V, UR,C := A[R, C]VR,C.

Step ℓ ∈ J2, LK. Suppose that we have constructed bases UR,C ∈ C|R|×r for each
(R, C) ∈ Prow

ℓ−1 × Pcol
L−ℓ+2 such that range(UR,C) ⊆ range(A[R, C]). Let us explain

how we construct new bases UR,C ∈ C|R|×r for (R, C) ∈ Prow
ℓ × Pcol

L−ℓ+1 such
that range(UR,C) ⊆ range(A[R, C]), with some corresponding row bases VR,C ∈
C2r×r.

Let (R, C) ∈ Prow
ℓ−1 × Pcol

L−ℓ+1. Since the trees Trow, Tcol of depth L are assumed
to be dyadic, R and C both have two children, denoted R1, R2 ∈ Prow

ℓ for R and
C1, C2 ∈ Pcol

L−ℓ+2 for C.

(
UR,C1 UR,C2

)
=

(
UR,C1 [R1, :] UR,C2 [R1, :]
UR,C1 [R2, :] UR,C2 [R2, :]

)
∈ C|R|×2r, (3.45)

where the left-hand side is a concatenation of two matrices, and the right-hand
side is a block matrix with four blocks.

But for j ∈ {1, 2}, since (R, Cj) ∈ Prow
ℓ−1 × Pcol

L−ℓ+2, we have, by assumption,
range(UR,Cj) ⊆ range(A[R, Cj]). A fortiori, since Ri ⊆ R for i ∈ {1, 2}, we have
range(UR,Cj [Ri, :]) ⊆ range(A[Ri, Cj]). Therefore:

range(
(
UR,C1 [Ri, :] UR,C2 [Ri, :]

)
) ⊆ range(A[Ri, C]), (3.46)

because C = C1 ∪ C2. By definition of the complementary low-rank property,
since (Ri, C) ∈ Prow

ℓ × Pcol
L−ℓ+1, the submatrix A[Ri, C] is of rank at most r. Con-

sequently, the rank of
(
UR,C1 [Ri, :] UR,C2 [Ri, :]

)
∈ C|Ri|×2r is also smaller than r,

so there exist a row basis VRi,C ∈ C2r×r and a column basis URi,C ∈ C|Ri|×r with r
columns such that

(
UR,C1 [Ri, :] UR,C2 [Ri, :]

)
= URi,CVRi,C

∗,
with range(URi,C) ⊆ range(A[Ri, C]).

(3.47)
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Chapter 3. Fast algorithms associated with butterfly factorization

In conclusion, we obtain the crucial step in the butterfly algorithm:

∀(R, C) ∈ Prow
ℓ−1 × Pcol

L−ℓ+1,
(
UR,C1 UR,C2

)
=

(
UR1,CVR1,C

∗

UR2,CVR2,C
∗

)
, (3.48)

where R1, R2 are the children of R, and C1, C2 are the children of C. In other
words, the considered bases are nested, in the sense that the restriction of the
two bases UR,C1 , UR,C2 on the rows Ri are expressed with a shared basis URi,C,
for each i ∈ {1, 2}.

This ends the inductive construction of the column bases UR,C for all (R, C) ∈
Prow
ℓ × Pcol

L−ℓ+1 and all ℓ ∈ JLK, with the corresponding row bases VR,C.

3.5.2 Construction of the butterfly factorization

We now explain how these bases can be used to construct a sparse factorization
of the target matrix A, yielding the so-called butterfly factorization of A. At step
ℓ = 1, we construct two sparse factors X1, Y1 such that A = X1Y1. Then, for
ℓ > 1, we construct Xℓ, Yℓ such that Xℓ−1 = XℓYℓ. Unrolling recursively the
constructions gives:

A = X1Y1

= X2Y2Y1

= . . .
= XLYL . . . Y1.

Let us now explain how we build these sparse factors from the constructed bases
UR,C and VR,C above, with (R, C) ∈ Prow

ℓ × Pcol
L−ℓ+1 for ℓ ∈ JLK. This part is

technical and can be skipped on a first reading.

Step ℓ = 1. Define for each R ∈ Prow
1 :

UR,Pcol
L

:=
(
· · · UR,C · · ·

)
C∈Pcol

L
,

VR,Pcol
L

:=


. . . 0

VR,C
∗

0 . . .


C∈Pcol

L

.
(3.49)
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3.5. Description of the classical butterfly algorithm

Then, the matrix A is equal to
...(

· · · A[R, C] · · ·
)

C∈Pcol
L

...


R∈Prow

1

(3.44)
=


...(

· · · UR,CVR,C
∗ · · ·

)
C∈Pcol

L
...


R∈Prow

1

(1)+(3.49)
=


...

UR,Pcol
L

VR,Pcol
L

...


R∈Prow

1

(2)
= X1Y1,

where we defined

X1 :=


. . . 0

UR,Pcol
L

0 . . .


R∈Prow

1

, Y1 :=


...

VR,Pcol
L

...


R∈Prow

1

. (3.50)

Step ℓ ∈ J2, LK. Suppose that we have constructed Xℓ−1 of the form

Xℓ−1 =


. . . 0

UR,Pcol
L−ℓ+2

0 . . .


R∈Prow

ℓ−1

, (3.51)

where we defined for R ∈ Prow
ℓ−1 :

UR,Pcol
L−ℓ+2

:=
(
· · · UR,C · · ·

)
C∈Pcol

L−ℓ+2
. (3.52)

Let R ∈ Prow
ℓ−1 , and denote R1, R2 the two children of R in the dyadic tree Trow,

so that R = R1 ∪ R2. Then, without loss of generality, we can rewrite UR,Pcol
L−ℓ+2

as:

UR,Pcol
L−ℓ+2

=
(
· · ·

(
UR,C1 UR,C2

)
· · ·
)

C=C1∪C2, C∈Pcol
L−ℓ+1

, (3.53)

where C1, C2 are the two children of C ∈ Pcol
L−ℓ+1. Define for i ∈ {1, 2}:

URi,Pcol
L−ℓ+1

:=
(
· · · URi,C · · ·

)
C∈Pcol

L−ℓ+1
,

VRi,Pcol
L−ℓ+1

:=


. . . 0

VRi,C
∗

0 . . .


C∈Pcol

L−ℓ+1

.
(3.54)
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Using the key step of the butterfly algorithm (3.48), we have:

UR,Pcol
L−ℓ+2

(3.48)
=

(
· · ·

(
UR1,CVR1,C

∗

UR2,CVR2,C
∗

)
· · ·
)

C∈Pcol
L−ℓ+1

=

((
· · · UR1,CVR1,C

∗ · · ·
)

C∈Pcol
L−ℓ+1(

· · · UR2,CVR2,C
∗ · · ·

)
C∈Pcol

L−ℓ+1

)
(1)+(3.54)

=

(
UR1,Pcol

L−ℓ+1
VR1,Pcol

L−ℓ+1

UR2,Pcol
L−ℓ+1

VR2,Pcol
L−ℓ+1

)
(2)
=

(
UR1,Pcol

L−ℓ+1
0

0 UR2,Pcol
L−ℓ+1

)(
VR1,Pcol

L−ℓ+1

VR2,Pcol
L−ℓ+1

)
,

(3.55)

In conclusion:

Xℓ−1
(3.51)
=


. . . 0

UR,Pcol
L−ℓ+2

0 . . .


R∈Prow

ℓ−1

(3.55)
= XℓYℓ,

where we defined

Xℓ :=


. . . 0(

UR1,Pcol
L−ℓ+1

0
0 UR2,Pcol

L−ℓ+1

)
0 . . .


R=R1∪R2

R∈Prow
ℓ−1

,

Yℓ :=


. . . 0(

VR1,Pcol
L−ℓ+1

VR2,Pcol
L−ℓ+1

)
0 . . .


R=R1∪R2

R∈Prow
ℓ−1

.

(3.56)

We indeed have:

Xℓ =


. . . 0

UR,Pcol
L−ℓ+1

0 . . .


R∈Prow

ℓ

, (3.57)

with
∀R ∈ Prow

ℓ , UR,Pcol
L−ℓ+1

=
(
· · · UR,C · · ·

)
C∈Pcol

L−ℓ+1
. (3.58)

Therefore, by induction, we obtain the butterfly factorization

A = XLYL . . . Y1. (3.59)
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3.5. Description of the classical butterfly algorithm

3.5.3 Complexity analysis

The time complexity for the precomputation step (construction of the sparse
factors) isO(n2), while the time for the application step (multiplication by the
product of sparse factors) is O(n log n).

We detail how we derive these complexity bounds.

Application step. Since A = XLYL . . . Y1, the multiplication x 7→ Ax can be
computed by successive multiplication by x 7→ Yℓx for ℓ = 1, . . . , L, and x 7→ XLx.
Therefore, the time complexity is the sum of the nonzero entries in the factors
(Yℓ)

L
ℓ=1 and XL.

• Number of nonzero entries in XL: for each (R, C) ∈ Prow
L × Pcol

1 , the basis
UR,C is of size |R| × r, so by (3.54) and (3.57), the number of nonzero entries
in XL is at most

∑
R∈Prow

L

∑
C∈Pcol

1

|R| r = |Pcol
1 |nr = 2nr,

since Prow
L is a partition of JnK by construction, and there are two nodes at

the first level of the binary cluster tree Tcol so |Pcol
1 | = 2.

• Number of nonzero entries in Y1: for each (R, C) ∈ Prow
1 × Prow

L , the matrix
VR,C is of size |C| × r, so by (3.50) and (3.49), the number of nonzero entries
in Y1 is at most

∑
R∈Prow

1

∑
C∈Pcol

L

|C| r = |Prow
1 |nr = 2nr,

because Pcol
L is a partition of JnK by construction, and there are two nodes at

the first level of the binary cluster tree Trow so |Prow
1 | = 2.

• Number of nonzero entries in Yℓ with ℓ ∈ J2, LK: for each (R, C) ∈ Prow
ℓ−1 ×

Pcol
L−ℓ+1, for each i ∈ {1, 2}, the matrix VRi,C is of size 2r × r. Moreover,

since Trow and Tcol are binary trees, we have |Prow
ℓ−1 | = 2ℓ−1 and |Pcol

L−ℓ+1| =
2L−ℓ+1. By (3.56) and (3.54), the number of nonzero entries in Yℓ is at most

∑
R∈Prow

ℓ−1

∑
C∈Pcol

L−ℓ+1

2

∑
i=1

2r2 = 4r2|Prow
ℓ−1 ||P

col
L−ℓ+1|

= 4r2(2ℓ−1)(2L−ℓ+1)

= 4r22L

≤ 4r2 n
ν

,

by definition of L := ⌊log2(n/ν)⌋.
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In conclusion, assuming that r, ν are constants, the time complexity for the appli-
cation step is bounded by

2nr + 2nr +
L

∑
ℓ=2

4r2 n
ν
= O(n log n). (3.60)

Precomputation step. We now analyze the complexity for building the bases
UR,C for all (R, C) ∈ Prow

ℓ × Pcol
L−ℓ+1 and ℓ ∈ JLK, with the corresponding row bases

VR,C. For that, we assume that the complexity of computing the rank-revealing
factorization of a p× q matrix of rank at most r is O(rpq), using, e.g., the partial
SVD at order r [153].

• At step ℓ = 1, (3.44) performs a rank-revealing factorization at order r on a
matrix of size |R| × |C| for each (R, C) ∈ Prow

1 × Pcol
L , so the total cost is

∑
R∈Prow

1

∑
C∈Pcol

L

r |R| |C| = rn2, (3.61)

since both Prow
1 and Pcol

L are partitions of JnK.

• At step ℓ ∈ J2, LK, (3.47) performs a rank-revealing factorization at order r
on a matrix of size |Ri| × 2r for each (R, C) ∈ Prow

ℓ−1 × Pcol
L−ℓ+1, where R1, R2

are the children of R, so the total cost is

∑
R∈Prow

ℓ−1

∑
C∈Pcol

L−ℓ+1

2

∑
i=1

r |Ri| 2r = 2r2n |Pcol
L−ℓ+1|, (3.62)

because |R1|+ |R2| = |R| and Prow
ℓ−1 forms a partition of JnK.

Therefore, recalling that |Pcol
ℓ | = 2ℓ for any ℓ ∈ JLK because Tcol is a binary

cluster tree, summing all the costs yields a complexity of the order of

rn2 + 2r2n
L

∑
ℓ=2
|Pcol

L−ℓ+1| = rn2 + 2r2n
L

∑
ℓ=2

2L−ℓ+1

= rn2 + 2r2n(2L − 1)

≤ rn2 + 2r2n(
n
ν
− 1) = O(n2),

assuming that r, ν are constants.

3.5.4 Discussion about the initial assumptions

We now discuss the initial assumptions that we made at the beginning of the
section for easier presentation of the butterfly algorithm.
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Beyond square matrices and binary cluster trees. Obviously the butterfly al-
gorithm can be extended to the case where the target matrix is rectangular, and
satisfies the complementary low-rank property for cluster trees that are not bi-
nary. For instance, when the kernel operator is defined on a two-dimensional or
a three-dimensional space (e.g., the kernel in the Fourier integral operator), the
hierarchical partitioning of the space and frequency domain leads to a quadtree
or an octree [40, 235, 236].

Noiseless setting. We assumed that the rank of A[R, C] is at most r for each
(R, C) ∈ ⋃L

ℓ=1 Trow(ℓ)×Tcol(L− ℓ+ 1) . This led to an exact factorization in (3.44)
and (3.47), meaning that A admits exactly a butterfly factorization (3.59). In the
noisy setting where A[R, C] is well-approximated by a rank-r matrix up to a cer-
tain precision ϵ, we can still apply the butterfly algorithm, but the matrix A is not
guaranteed anymore to be equal to the butterfly factorization XLYL . . . Y1 where
sparse factors are defined in (3.50), (3.56) and (3.57). As detailed in Chapter 7, the
current literature provides little guarantees on the corresponding approximation
error, and one of the contribution of this thesis is to bridge this gap.

Adaptive rank. Finally, instead of assuming that the numerical rank up to preci-
sion ϵ of A[R, C] is bounded by the same quantity r for all (R, C) ∈ ⋃L

ℓ=1 Trow(ℓ)×
Tcol(L− ℓ+ 1), we can extend the presented butterfly algorithm to the case where
the rank can be different for each submatrices, as mentioned in [289] for instance.

3.5.5 The butterfly factorization mimics the FFT

As originally remarked in [265,266], the fast algorithm obtained with the butterfly
factorization (3.59) corresponds to a DAG that resembles the one of the radix-2
FFT given in Figure 3.1, see, e.g., the illustration given in [265, Figure 3]. This can
be interpreted by the fact that the sparsity patterns of the sparse factors in (3.59)
are somehow similar to those obtained in the factorization of the DFT presented
in Section 3.2.2, as we now explain.

Sparsity patterns for general ν and r. Consider that we obtained (3.59) in the
case where we choose n = 2L−1ν for some constant ν, with cluster trees Trow, Tcol

of depth L constructed in such a way that

∀ℓ ∈ JLK, Prow
ℓ = Pcol

ℓ =
{

J(k− 1)n/2ℓ−1 + 1, kn/2ℓ−1K | k ∈ J2ℓ−1K
}

.

In particular, this means that |Prow
ℓ | = |Prow

ℓ | = 2ℓ−1 for ℓ ∈ JLK. Given the def-
initions (3.50), (3.56) and (3.57), this means that the sparse factors XL, YL, . . . , Y1
satisfy:

∀ℓ ∈ J2, LK, supp(Yℓ) ⊆ supp(I|Prow
ℓ−1 | ⊗ 12×1 ⊗ I|Pcol

L−ℓ+1|
⊗ 1r×2r)

= supp(I2ℓ−2 ⊗ 12×1 ⊗ I2L−ℓ ⊗ 1r×2r),
(3.63)
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and

supp(Y1) ⊆ supp(I|Pcol
L |
⊗ 1r× n

|Pcol
L |

) = supp(I2L−1 ⊗ 1r×ν), (3.64)

supp(XL) ⊆ supp(I|Prow
L | ⊗ 1 n

|Prow
L |×r) = supp(I2L−1 ⊗ 1ν×r). (3.65)

Sparsity patterns for ν = 1 and r = 1. When ν = 1 and r = 1, the matrices Y1
and XL are diagonal, and the sparsity patterns of {Yℓ}L

ℓ=2 becomes:

∀ℓ ∈ J2, LK, supp(Yℓ) ⊆ supp(I2ℓ−2 ⊗ 12×1 ⊗ I2L−ℓ ⊗ 11×2). (3.66)

Therefore, one can verify that the factorization YLYL−1 . . . Y2 with L− 1 = log2(n)
factors of size n× n is equivalent to the square dyadic butterfly factorization in-
troduced in Lemma 3.1. Indeed, up to some permutation ambiguities, the fac-
torization YLYL−1 . . . Y2 admits L − 1 = log2(n) sparse factors that satisfy the
support constraints in (3.14) in Lemma 3.1. In order words, the DAG associated
with the linear operator x 7→ YLYL−1 . . . Y2x is equivalent to the DAG associated
with the radix-2 FFT illustrated in Figure 3.1.

3.6 Variations of the butterfly algorithm

Before finishing this chapter, we present some important variations of the butter-
fly algorithm presented in Section 3.5.

Different factorization orders. There are several variants of the butterfly al-
gorithm that differ by the hierarchical order under which the low-rank approx-
imations are constructed for compressing the target matrix. The butterfly al-
gorithm presented in Section 3.5 is the so-called rowwise butterfly factorization
[40, 250, 288]. It corresponds to the hierarchical order where we start by com-
pressing the matrices A[R, C] for (R, C) ∈ Trow(L) × Tcol(1), and we construct
the bases for the other levels by traversing Trow from bottom to top, and Tcol

from top to bottom. Other hierarchical orders exist, such as the columnwise but-
terfly factorization [250], where we start by compressing A[R, C] for (R, C) ∈
Trow(1)× Tcol(L), and we traverse Trow from top to bottom, Tcol from bottom to
top in order to construct the bases at other levels. Finally, there exists the hybrid
approach (or middle-out butterfly factorization), where we start by compressing
A[R, C] for (R, C) ∈ Trow(L/2) × Tcol(L/2), and traverse the cluster trees from
the middle level L/2 to both the root level and the leaves level, in order to com-
plete the construction of the other bases [234, 250].

In the next chapters of the thesis (Chapters 6 and 7), we will introduce a notion
of factor-bracketing tree that describes the various hierarchical order for approach-
ing a target matrix by a butterfly factorization. In particular, we will introduce a
factorization algorithm that works for any factor-bracketing tree.
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Choices for the compression of rank deficient matrices. Earlier butterfly algo-
rithms [265,266,288,289] proposed to use interpolative decomposition [57,145,261] to
build the low-rank approximations in (3.44) and (3.47). The interpolative decom-
position approximates a matrix M ∈ Cp×q by BP where the columns of B ∈ Cp×r

constitute a subset of the columns of M, and the norm of P ∈ Cr×q is not too
large. Computing the interpolative decomposition is stable and requires O(rpq)
operations and O(pq) memory, which leads to the quadratic complexity of the
butterfly algorithm analyzed in Section 3.5.3.

Other choices for low-rank approximations are possible, such as the partial
QR decomposition or the partial SVD, which also require O(rpq) operations [145,
153]. The latter is guaranteed to provide the best low-rank approximation in the
Frobenius norm, according to the Eckart–Young–Mirsky theorem.

Last but not least, to achieve further acceleration to compress a rank deficient
matrix M, we can use randomized techniques such as randomized SVD [153], as
proposed in [234]. The main idea is to draw a random Gaussian matrix W ∈
Cq×(r+k) with an oversampling parameter k (e.g., k = 5), in order to construct
Y := MW ∈ Cp×(r+k) for which the range approximates the one of M, while
having less columns than M if we assume r + k < q. This allows to construct Q ∈
Cp×(r+k) whose columns form an orthonormal basis of the range of Y, in a cheaper
way than constructing directly an orthonormal basis of the range of M. Then, we
obtain the approximate partial SVD of M ≈ UDV∗ by forming B := Q∗M ∈
C(r+k)×q, computing the partial SVD of this smaller matrix: B = ŨDV∗, and
setting U := QŨ ∈ Cp×r. This leads to a complexity of O(pq log(r) + (p + q)r2)
in general, with guarantees on the approximation error [153].

Improving the complexity of the butterfly algorithm. In general, without fur-
ther assumption, the complexity of the butterfly algorithm to approximate a ma-
trix A of size n × n satisfying the complementary low-rank property is O(n2).
However, with some additional assumptions on A, it is possible to approximate
A by a butterfly factorization with a subquadratic complexity.

First, for certain specific kernels, such as the one in Fourier integral operators,
we can use some specific analytic techniques [40,233] to provide a faster butterfly
algorithm in O(n log n). This relies on the fact that the considered kernel, re-
stricted to some domains, can be well approximated by Lagrange interpolation
on the Chebyshev grid [40, Theorem 3.3].

Second, for more general kernels, it is possible to use randomized techniques
to obtain a butterfly algorithm inO(n3/2 log n) [234,250]. These randomized tech-
niques can be used if we assume that we can evaluate each entry of the kernel
matrix in O(1) operations, or if we assume that the operator (and its adjoint) can
be applied to arbitrary vectors in O(n log n) complexity.
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3.7 Conclusion

In this chapter we saw that the butterfly algorithm is an analysis-based fast trans-
form that enables approximate rapid evaluation of a linear operator for which the
associated matrix satisfies a special low-rank property, called the complementary
low-rank property. The fast algorithm is obtained in two steps: the precomputa-
tion steps that exploits this low-rank property to approximate the target matrix
by a product of sparse factors, and the application step which mimics the FFT.
As mentioned during this chapter, we identify some limitations of the previous
work concerning their restriction to some specific hierarchical order for building
the sparse factors, and their lack of error guarantees for the approximation of the
target matrix by a butterfly factorization in the noisy setting. These limitations
will be addressed in Chapters 6 and 7.
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Chapter 4
Neural network compression via
sparsity and matrix factorization

Modern deep learning models require more and more computational resources
to train and deploy, due to their increasing size. This calls for better efficiency of
these models to reduce their computational cost and memory footprint during
the training and inference stage. This chapter provides an overview of different
techniques for reducing the number of parameters in large redundant models.

4.1 Introduction

In general, deep learning algorithms can be made more efficient either by improv-
ing optimization algorithms during the training phase, reducing the volume of
training data through data pruning or data compression, or developing compu-
tationally more efficient models. Generally speaking, efficiency can be achieved
either by:

• Designing smaller model architectures that are well-adapted to a specific
dataset, using for instance neural architecture search [98];

• Distilling the knowledge of a pretrained large model into a smaller one that
realizes a similar function when restricted to inputs sampled from a certain
data distribution [136];

• Improving the efficiency of certain specific operations, such as reducing the
cost of the attention mechanism in transformers [337];

• Quantizing the values of the parameters [147, 239];

• Skipping some computations during the forward or the backward pass of
a model, e.g., using conditional computation such as in sparse mixture-of-
experts [106];
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Chapter 4. Neural network compression via sparsity and matrix factorization

• Reducing the effective number of parameters in the model without chang-
ing its architecture.

This chapter will focus on the last type of neural network compression, which
revolves around the idea that large models admit some form of parameter redun-
dancy that can be removed without significant loss of performance on some learn-
ing task, either after training or during training. For instance, when some param-
eters are not important with respect to a certain criteria, they can be pruned out,
i.e., set to zero, in order to skip their associated operations during the forward or
the backward pass of the model. This process is known as sparsification. Alterna-
tively, parameter redundancy can be removed by decomposition of certain weight
matrices or weight tensors, using for instance low-rank decomposition or sparse
matrix factorization such as butterfly factorization.

Content of the chapter. Section 4.2 starts by summarizing the potential benefits
of removing redundant parameters in the model. Then, we present different tech-
niques to remove redundant parameters, either via sparsification (Section 4.3),
low-rank decomposition (Section 4.4) or butterfly factorization (Section 4.5).

4.2 Benefits of reducing the number of parameters

We expect the following benefits when compressing a neural network by reduc-
ing its number of parameters.

Reduced computational cost and memory footprint. When sparse operations
are properly implemented for a given hardware, reducing the number of param-
eters in a model can potentially lead to time acceleration of its forward and back-
ward pass, and it can also yield a smaller memory footprint during computa-
tion [172].

Reduced communication time. Federated learning is a paradigm where a shared
model is trained on decentralized data, so that the privacy of local data on dif-
ferent devices is preserved during training. However, updating the parameters
of the shared model requires communication between the devices, which can
become costly when the number of parameters is large. Communication time
can be reduced by promoting sparsity in the model because of its reduced stor-
age [26, 46, 286]. It is also expected to see a reduction of communication time in
standard multi-GPU training with data parallelism.

Improved generalization. While the reduction of the number of parameters is
mainly motivated today by the need for efficiency in deep learning models, its
original introduction aimed at reducing the model’s capacity in order to prevent
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overfitting [220]. However, as discussed in Chapter 1, overparameterized neu-
ral networks tend to generalize well in practice, which suggests that reducing the
number of parameters in the model does not necessarily lead to better generaliza-
tion. Yet, recent methods show that sparsifying a model via iterative magnitude
pruning (see Section 4.3) can sometimes lead to better test accuracy compared to
the dense model [109]. Some works propose to explain such an improved gener-
alization not by its number of parameters, but rather by interpreting the pruning
mechanism as a form of noise-injection regularization [17]. Nonetheless, under-
standing the generalization properties of deep neural networks remains an area
of ongoing research.

Improved out-of-distribution detection. Given a model trained on a certain
dataset, the task of out-of-distribution detection is to classify whether or not a
given input data is sampled from the data distribution of this training set [367].
Such a detection can be improved by pruning certain weights in the model, as
shown in [331]

Improved adversarial training. In order to avoid vulnerability to adversarial
attacks, deep neural networks can be trained in an adversarial manner, using for
instance min-max robust optimization. However, such an adversarial training
might incur severe robust generalization gap, and it might require more data
to train [312, 317]. One way to address these issues in adversarial training is to
promote sparsity in the model, as proposed in [54].

Improved robustness to privacy attacks. A trained model presents some pri-
vacy risk if, assuming only a black-box access to the model, it is possible to predict
whether a given input data belongs to the training set of the model [176]. Some
recent works studied whether or not promoting sparsity in the model can increase
the robustness of the model to such membership inference attacks [133, 373].

Improved data efficiency. Recent works show that promoting sparsity in the
model via iterative magnitude pruning yields better data-efficiency, in the sense
that they perform better than the dense model in low-data regimes [53, 344].

Improved transferability. In [183], it is shown that pretraining a sparse vision
model on ImageNet-1k [78] in a supervised manner can sometimes yield better
downstream performance than the dense model.

4.3 Model compression via sparsification

One major paradigm to remove parameter redundancy in a model is to promote
sparsity via pruning. The goal is to set a certain number of parameters to zero,
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Chapter 4. Neural network compression via sparsity and matrix factorization

while avoiding as much as possible a drop of performance, e.g., measured as the
model’s accuracy on a test set. This can be formulated as the minimization of
the empirical risk under some sparsity constraints1: for instance, in the context
of supervised learning, for a given labeled dataset {(xi, yi)}n

i=1 ⊆ X × Y , a deep
network fθ : X → Y parameterized by θ ∈ Rd, a loss function ℓ : Y ×Y → R and
a given budget p ∈ N, the general problem of training a sparse neural network
can be defined as:

inf
θ∈R

1
n

n

∑
i=1

ℓ( fθ(xi), yi) such that ∥θ∥0 ≤ d. (4.1)

Solving this problem requires to select an appropriate support for θ (also called a
mask in the literature), i.e., the set of indices corresponding to nonzero parame-
ters, and to optimize the parameters of the selected support, with respect to the
training objective function.

Promoting sparsity in deep neural networks is difficult. While sparse linear
recovery is quite well studied [108], promoting sparsity into deep or multilin-
ear models is considerably more challenging. Identifying an appropriate sup-
port among all the possible choices is a difficult combinatorial problem, and even
when such a support is known and fixed, optimizing the parameters of the se-
lected support can be challenging in general. For instance, the existence of a
minimizer in the optimization problem of training a deep ReLU network with
sparsity constraints is not always guaranteed in general [211]. More fundamen-
tally, deep matrix factorization with sparsity constraints, which is equivalent to
training a sparse deep linear network2, is difficult in general, even when the sup-
ports of the sparse factors are known and fixed in advance [212].

Heuristic algorithms for sparse neural networks. Despite the lack of theoreti-
cal understanding, there exist many heuristic algorithms for training sparse neu-
ral networks [172] that perform well in practice. Experimentally, promoting spar-
sity in a large model performs better than the baseline where we train a smaller
dense network with the same number of parameters [102, 238, 245, 397]. In some
situations, it can even match the performance of the original large dense model
[109, 110]. For the rest of this section, we review some of these algorithms, which
can be categorized into several families, depending on their training schedule to
promote sparsity, and on their pruning criterion to select an appropriate support.
We also discuss the importance of different forms of structured sparsity, as well as
the importance of the evaluation benchmark for comparing methods.
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Figure 4.1: Overview of sparsification schedules from [172]. The graph represents the
neural network model, where the values of its parameters are indicated by different col-
ors of the edges. Pruning a parameter corresponds to removing the associated edge in
the graph.

4.3.1 Sparse deep learning schedules

The general training schedule for promoting sparsity in a neural network in-
cludes the following steps summarized in Figure 4.1:

1. Choose an initial support before training, either independently from the
data, such as using a random mask [245], or according to a certain criterion
that may depend on the training dataset [222, 352].

2. Initialize the parameters for the selected support in a certain way, for in-
stance at random or using some pretrained weights.

3. Optimize the parameters on the selected support for a certain number of
iterations. The pruned parameters (i.e., parameters not in the selected sup-
port) are not optimized during this phase and their values remain at zero.

4. Remove or add indices in the support, according to a certain criterion. This
step is referred to as the pruning or the regrowth step. Pruning promotes
sparsity in the model, while regrowth enables some flexibility in the training
where previously pruned parameters can be reconsidered if they become
relevant according to the predefined criterion [268].

5. Optionally, repeat steps 2, 3, 4 for a certain number of times. The parameters
in the new support are either initialized from their values of the previous
support after pruning or regrowth, or reset to their values at a certain time
of the training, according to the so-called rewinding procedure [109,110]. For
instance, they can either be reset to their initial values at the first initializa-
tion before training [109], or at their values obtained after a certain number
of training iterations since the beginning of the training [109].

6. Retrain the parameters in the final support until convergence. Again, the
initial values of the parameters in this step can be either the ones after the

1Note that there is an alternative formulation discussed in Section 4.3.3.
2More precisely, it is equivalent to training a sparse multilayer perceptron without bias and

the activation function being the identity function.
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previous pruning step or after rewinding. This final retraining step is usu-
ally necessary to improve the model’s accuracy [155].

Then, different methods for training sparse neural networks differ on their spe-
cific training scheduling.

Dense-to-sparse schedules. The train-then-sparsify schedule (also called one-shot
pruning) [224] starts with a dense network at step 1, train the dense network dur-
ing a certain number of iterations at step 3, prune out some parameters at step 4,
and does not repeat step 2, 3, 4. This schedule can be effective if the primary goal
is to reduce inference cost, but it comes at the cost of requiring a dense training
phase which can be costly when the model is large. As detailed in Section 4.3.3
below, it is eventually possible to design a training loss for promoting sparsity
(but with no guarantees of success) during the dense training step. The iterative-
sparsification schedule [109, 155, 271] is the same as the previous schedule, but it
repeats steps 2, 3, 4 several times, and step 4 always performs pruning. This pro-
motes sparsity gradually, by pruning out only a small fraction of parameters at
each repetition of step 4. Choosing the right amount of parameters to prune each
time and the right number of repetitions of step 4 is critical for methods using
this schedule [189].

Sparse-to-sparse schedules. In sparse-to-sparse dynamic schedules [20, 102, 186,
268,273], the model is initialized with a sparse structure at step 1, and both prun-
ing and regrowth are allowed in step 4. Compared to the two previous sched-
ules, it does not require to train a dense network which can be prohibitive when
computational resources are limited [268]. Finally, the sparse-to-sparse static sched-
ule [222, 245, 335, 352] starts with an initial sparse structure in step 1, and never
updates the support, i.e., it skips step 4. Since the support is fixed during the
whole training, it requires in general a good choice of the prescribed support at
initialization.

4.3.2 Criteria for selecting the support

We now discuss the different ways to select a support, either at initialization (step
2) or during pruning (step 4).

Magnitude pruning. Magnitude pruning [116,155,186,224] is a data-free prun-
ing criterion where the selected support given the current parameter θ ∈ Rd of
the neural network is defined as

s(θ) := {i ∈ JdK, |θ[i]| ≤ C}, (4.2)

where C > 0 is a certain threshold parameter. Note that this pruning criterion is
not invariant to some rescaling symmetries [280] of the parameterization of the
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neural network3. In other words, depending on the chosen rescaling-equivalent
parameterization, magnitude pruning can lead to potentially different selected
support. Nevertheless, this pruning criterion is quite effective in practice. For
instance, in the empirical demonstration of the so-called lottery ticket hypothe-
sis [109], using magnitude pruning in the iterative sparsification schedule com-
bined with rewinding, which is the procedure called iterative magnitude pruning,
can provide a sparse neural network able to match the performance of the dense
network4.

Criteria based on Taylor expansion of the objective function. In order to in-
corporate some information about the input data, we can design pruning criteria
based on the Taylor expansion of the objective function. Consider that the pa-
rameters θ ∈ Rd of a neural network fθ are trained to minimize L : Rd → R.
Pruning some weights by setting θ ← θ ⊙ (1d − s) with some s ∈ {0, 1}d is then
equivalent to adding the perturbation δθ := −θ⊙ s to θ. By the Taylor expansion
of L around θ, we have:

L(θ + δθ)−L(θ) ≈ ∇L(θ)⊤δθ +
1
2

δθ⊤H(θ)δθ := δL, (4.3)

where ∇L(θ) and H(θ) are the gradient and the Hessian matrix of L at θ. The
importance (or the saliency) of a parameter θ[i] for i ∈ JdK can then be mea-
sured as the approximate variation |δL| of the objective function, when s is the
i-th element of the standard basis5 of Rd. Criteria based only on first-order in-
formation, i.e., the gradient term in (4.3), can be useful for pruning before train-
ing or during training, but not after training to convergence where the gradient
of the objective function is supposed to be close to zero [222, 270, 316]. After
convergence, one might instead consider criteria based on second-order informa-
tion [86, 159, 220, 324], i.e., the term with the Hessian matrix in (4.3). In this case,
since the computational cost of the Hessian matrix is quadratic with respect to
the number of parameters, it is necessary to approximate it when the number of
parameters is very large, for more efficient numerical methods.

Pruning independent from data and parameters. Support selection without
any information about the parameters and the input data is an important baseline

3To illustrate this, consider a ReLU network with one hidden layer, with N0 input neurons, N1
neurons in the hidden layer, and N2 output neurons. Then, the family of functions realized by this
network is the set of functions fθ : RN0 → RN2 defined by x 7→ W2σ(W1x + b1), parameterized
by θ = (W1, W2, b1) ∈ RN1×N0 ×RN2×N1 ×RN1 . By positive homogeneity of the ReLU function,
for a given parameter θ = (W1, W2, b1), we have fθ = fθ′ for any θ′ of the form (λW1, 1

λ W2, λb1)
with λ > 0. Therefore, there exists λ > 0 such that s(θ) ̸= s(θ′), due to this rescaling symmetry.

4More precisely, the lottery ticket hypothesis states that “a randomly-initialized, dense neural
network contains a subnetwork that is initialized such that, when trained in isolation, it can match
the test accuracy of the original network after training for at most the same number of iterations”
[109].

5The standard basis of Rd is the set of vectors, whose components are all zero, except one that
equals 1.
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to consider in order to evaluate the effectiveness of the above criterion. The most
basic support selection is by uniform random pruning [116,245,397], where the sup-
port is selected uniformly among all the possible supports satisfying a desired
global or layerwise sparsity ratio. More elaborated random pruning methods
can take into account the topology of the graph representing the neural network.
For instance, random Erdős-Rényi pruning can be applied to multilayer percep-
trons [268] or convolutional neural networks [102]. In such random topologies,
larger layers are allocated with higher sparsity than smaller layers.

4.3.3 Training with a sparsity-promoting loss

An alternative problem formulation to (4.1) is to consider a regularization loss
R : Rd → R, in the hope that its minimization promotes sparsity in the network.
The problem is then formulated as:

inf
θ

1
n

n

∑
i=1

ℓ( fθ(xi), yi) + λR(θ), (4.4)

where λ is some hyperparameter controlling the tradeoff between the data-fitting
term and the regularization term. A natural regularization loss is R(θ) = ∥θ∥0,
but this would lead to a difficult optimization problem due to its discrete nature6.
The regularization by the ℓ0-norm can be relaxed either by considering some dif-
ferentiable gating variables [254], or by adopting its tightest convex relaxation us-
ing the ℓ1-norm [207, 243]. However, as opposed to sparse linear recovery where
basis pursuit has some guarantees of success [108], the regularization by ℓ1-norm
is not guaranteed to promote sparsity in deep neural networks. In fact, even ℓ1-
regularization in bilinear models such as in blind deconvolution (which is equiv-
alent to training a linear convolutional neural network with two layers) can be
ill-posed, in the sense that the minimizer of the regularized problem is a trivial
solution [24].

4.3.4 From unstructured to structured sparsity

We now discuss the different forms of sparsity patterns that can be obtained from
the previous algorithm, and their importance when time acceleration of sparse
neural networks matters.

Unstructured pruning. The most general form of sparsity is unstructured, in the
sense that the support of the sparse parameter θ ∈ Rd does not satisfy any ad-
ditional constraint, apart from the one that it should achieve a certain desired
sparsity ratio. This usually reduces the number of operations required to per-
form a forward or backward pass of the neural network. For instance, for a given
sparse linear layer parameterized by a weight matrix W ∈ RM×N, the number of

6In particular, sparse linear recovery is shown to be NP-hard in general [108].
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multiplication operations required to compute the output Wx for a given x ∈ RN

is ∥W∥0 instead of MN. Yet, without further assumption about the structure of
supp(W), implementations for sparse matrix multiplication on certain types of
hardware might not be able to achieve a time acceleration compared to dense im-
plementations. This is typically the case for GPUs implementations, as illustrated
in Chapter 9.

Structured pruning. Introducing a form of regularity in the sparsity pattern can
therefore potentially lead to faster implementations of the corresponding sparse
matrix multiplication, depending on the considered hardware. In general, struc-
tured pruning includes:

• Neuron pruning: for a linear layer, this corresponds to setting a whole row
or a whole column of entries to zero in the weight matrix [188, 206].

• Filters / channels pruning: for a convolutional layer, this corresponds to
pruning out a whole filter associated with one input channel and one output
channel [164, 224].

• Block-sparse weights: a matrix is block sparse if it is a block matrix with
equal blocksize and with few nonzero blocks. There exist efficient GPU ker-
nels that can leverage this structure for sparse matrix multiplication [139].

• N:M sparsity structure: a weight matrix or a weight tensor satisfies the
N:M structure if only N entries are nonzero for every M contiguous entries
in memory [112, 178, 393]. For instance, the 4:2 structure can be leveraged
by modern GPUs such as the NVIDIA A100 GPUs for faster sparse matrix
multiplication.

To promote structured sparsity, it is necessary to adapt the pruning criteria or
the regularization losses presented above that were originally designed to pro-
mote unstructured sparsity. In general, the performance of neural networks com-
pressed by structured sparsity is usually slightly worse compared to that ob-
tained with unstructured sparsity, due to the additional constraints on the sup-
port [172].

4.3.5 On the importance of rigorous experiments

Many algorithms have been proposed for promoting sparsity in neural networks,
and experiments indeed show that they can reach a similar performance to dense
networks, on some specific experimental settings [172]. However, as we now dis-
cuss, it is not always clear which sparsity methods provide the best performance-
efficiency tradeoff, due to a lack of fair comparison between them. Moreover,
recent works have identified more challenging evaluation benchmarks where the
majority of these sparsity methods do not reach the performance levels of dense
networks.
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Fairness of comparison. It is reported [28, 353] that the current literature lacks
a rigorous and solid numerical comparison between different sparsity methods,
in a fair and controlled experimental setting. For example, hyperparameters are
not always properly tuned when comparing different methods, particularly the
learning rate scheduling in the retraining phase (step 6 in Section 4.3.1). Yet, this
tuning is crucial for the final performance of the sparse model, as shown in [209].

Importance of comparison to baselines. In particular, proper comparison to
baseline methods is important to evaluate the real effectiveness of the proposed
methods. For instance, when using a specific weight initialization such as rewind-
ing, it is necessary to compare it with random initialization, which is not always
properly done as pointed out by [68, 252]. Similarly, when the proposed method
elaborates a specific criteria to select a support, it is necessary to compare it with
random pruning at initialization, which turns out to be a strong baseline, as re-
cently demonstrated in [245]. In particular, it is shown in [245] that as “the orig-
inal dense networks grow wider and deeper, the performance of training a ran-
domly pruned sparse network will quickly grow to match that of its dense equiv-
alent, even at high sparsity ratios”.

Issues with current benchmarks. The current literature is currently lacking an
evaluation of sparsity methods on more diverse and challenging tasks than tradi-
tional ones. Indeed, most of the research papers (79 out of 100 according to [246])
only evaluated their methods on a single or a few tasks, mostly solely on image
classification (MNIST [219], CIFAR-10/100 [202], ImageNet [78]) and sometimes
on NLP tasks (GLUE [351]). In [246], a new benchmark is proposed with more dif-
ficult tasks such as commonsense reasoning, arithmetic reasoning, protein ther-
mostability prediction and multilingual translation. It turns out that many state-
of-the-art sparsity methods fails to match the performance of dense networks in
this new benchmark, even in the case where only 5% of the model’s parameters
are pruned out.

4.4 Model compression via low-rank decomposition

Another main paradigm to remove parameter redundancy in a model is to use
low-rank matrices or tensors to parameterize the weights of certain layers in the
model. Recall that a matrix W ∈ RM×N admits a low-rank decomposition with
rank R ≤ min(M, N) if it can be written as the product UV for two matrices
(U, V) ∈ RM×R × RR×N. This means that the number of operations required
to compute the matrix-vector multiplication is R(M + N) instead of MN. As
detailed below, there exist several ways to extend the low-rank decomposition to
tensors of higher orders. Overall, the whole pipeline for model compression by
low-rank decomposition can be decomposed in the following steps:
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1. We first train a dense network, and apply a decomposition algorithm to
approximate some of the obtained weight matrices or tensors with a low-
rank decomposition, under some rank constraints that control a tradeoff
between the compression rate and the approximation error.

2. The obtained decomposition yields an initialization for the compressed net-
work where the considered weight matrices and tensors are parameterized
as low-rank ones. The parameters in the decomposition are then optimized
in a final retraining step. For instance, when a weight matrix W is replaced
with UV in the objective function, one trains the compressed network by
directly optimizing the parameters U, V using derivatives of the objective
function with respect to U, V, respectively. This retraining step is usually
important to recover from the drop of performance due to approximation
errors in the decomposition step.

This train-then-decompose schedule [80,185,196,218,333] is analogous to the train-
then-sparsify schedule in Section 4.3.1. An alternative is to consider the train-
from-scratch schedule, analogous to the sparse-to-sparse static schedule in Sec-
tion 4.3.1, such as in [181, 333], where one ignores the dense training step, ran-
domly initializes the parameters in the compressed network, and optimizes them
by gradient descent. In this case, the ranks in the low-rank parameterization are
assumed to be known and fixed before training. Note that an appropriate initial-
ization is crucial when training from scratch [181, 195].

4.4.1 Low-rank decomposition in convolutional layers

Neural network compression via low-rank decomposition was initially studied
for convolutional neural networks [79], where most of the operations are per-
formed by convolutional layers. The original motivation for such a compression
is that the values of the output feature by a convolutional layer tend to be redun-
dant, due to the smoothness of natural images where the value of each pixel is
likely to be similar to a weighted average of its neighbors. Several works showed
that it is actually possible to compress convolutional neural networks via ten-
sor decomposition, with a small drop of performance compared to the dense
network, while enabling time acceleration and reduced energy consumption at
inference, e.g., on mobile devices [196].

We give an overview of the different methods by considering the compres-
sion of a 2D-convolutional layer with C input channels, N output channels, fil-
ters of spatial size D × D. For simplicity, we assume no zero padding and a
stride equal to one. This layer is parameterized by a 4D-tensor K ∈ RN×C×D×D,
and it maps an input tensor U ∈ RC×X×Y to an output tensor V := K ∗ X ∈
RN×(X−D+1)×(Y−D+1) defined as:

∀(n, x, y), V[n, x, y] =
C

∑
c=1

D

∑
i=1

D

∑
j=1

K[n, c, i, j]U[c, x− 1 + i, y− 1 + j]. (4.5)
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CP-decomposition. The kernel weight tensor can be compressed using the CP-
decomposition, based on the idea of separation of variables [199]. We say that K
admits such a decomposition with rank R if

∀(n, c, i, j), K[n, c, i, j] =
R

∑
r=1

K1[n, r]K2[c, r]K3[i, r]K4[j, r], (4.6)

for some matrices K1 ∈ RN×R, K2 ∈ RC×R, and K3, K4 ∈ RD×R. With such a
decomposition, the original convolutional layer is then equivalent to applying a
sequence of four one-dimensional convolutions with smaller kernels, where each
of them operates on separate variables. This model is typically used in [218]
for compressing convolutional layers. Instead of separating all the variables,
other works consider a less restrictive decomposition where only the spatial di-
mensions [185, 333] or only the channel dimensions [80] are separated. Since
there is no algorithm for computing the best approximation of a tensor by a CP-
decomposition [199] in general, we can only use heuristics to compute an approx-
imate solution, such as linear least square as in [218] or the strategy of greedily
finding a best rank-one approximation of the residual [80]. Note however that,
when separating only the spatial variables, the optimal decomposition can be
computed using singular value decomposition, as remarked in [333].

Tucker decomposition. An alternative tensor decomposition model is the Tucker
decomposition [199] with rank (R1, R2, R3, R4), which takes the form:

K[n, c, i, j] =
R1

∑
r1=1

R2

∑
r2=1

R3

∑
r3=1

R4

∑
r4=1

C[r1, r2, r3, r4]U1[n, r1]U2[c, r2]U3[i, r3]U4[j, r4],

(4.7)
for some C ∈ RR1×R2×R3×R4 , and U1 ∈ RN×R1 , U2 ∈ RC×R2 , U3 ∈ RD×R3 ,
U4 ∈ RD×R4 . In [196], kernel weights in convolutional layers are approximated
by a less restrictive decomposition that takes the form:

K[n, c, i, j] =
R1

∑
r1=1

R2

∑
r2=1

C̃[r1, r2, i, j] Ũ1[n, r1]Ũ2[c, r2], (4.8)

for some C̃ ∈ RR1×R2×D×D, Ũ1 ∈ RN×R1 and Ũ2 ∈ RC×R2 . With such a decom-
position, computing the output of the convolutional layer is then equivalent to
apply sequentially a 1× 1 convolution, a D× D convolution and a 1× 1 convo-
lution [196].

Regularization loss. In the train-then-decompose schedule, it is possible to add
a regularization loss based on the nuclear norm during the dense training phase,
as in [8, 180, 365]. The role of such a regularization is to promote a certain low-
rank structure during the dense training, so that we can expect a small error when
approximating the obtained weight tensors after training by low-rank ones.
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4.4. Model compression via low-rank decomposition

Variations of the decomposition model. When the kernel weight tensor admits
a low-rank tensor decomposition, the original convolutional layer can be replaced
by a sequence of several convolutional layers. The decomposition model in [383]
adds a non-linear activation function, such as the ReLU activation, in-between
each of these convolutional layers, in order to obtain a non-linear approximation
of the convolutional layer. An alternative decomposition model is to consider
the sparse low-rank model [372], where the weight tensor is approximated by the
sum of a low-rank tensor and a sparse tensor.

4.4.2 Low-rank decomposition in fully-connected layers

In general, as opposed to weight tensors of convolutional layers obtained after
training, the weight matrices of fully-connected layers in neural networks do not
always admit a low-rank structure. Yet, in some cases, it is still possible to use the
idea of low-rank decomposition to compress fully-connected layers, as we now
discuss.

Data-aware low-rank decomposition. In [49,371], it is observed that the weight
matrices in pretrained transformers (such as BERT [83] in language or DeiT [340]
in vision) do not admit a low-rank structure, in the sense that their singular values
do not decay very fast. However, it is observed experimentally that the interme-
diate features computed after each linear layer of the transformer7 lie in a low-
dimensional subspace. Therefore, given a pretrained weight matrix W ∈ RM×N

and a given batch of well-chosen calibration data X ∈ RN×K of batch size K, the
data-aware low-rank decomposition problem with rank R proposed in [49] is

min
M∈RN×N

∥WX−WMX∥F, such that rank(M) ≤ R. (4.9)

This problem can be solved using SVD [49, Theorem 1]. After decomposition, we
obtain M = UV for some U ∈ RN×R and V ∈ RR×N, and we can replace W by
ŨV where Ũ = WU ∈ RM×R, to initialize the compressed fully-connected layer.

Variants of decomposition model. The low-rank decomposition model for ap-
proximating weight matrices in transformers can be made more flexible using
other variants such as the sparse low-rank model [237] and the weighted low-
rank factorization [174] to achieve more efficient decomposition.

Low-rank adaptation for transfer learning. In the context of transfer learning,
when adapting or finetuning a certain dense pretrained backbone on a given
downstream task, the weight matrix W ∈ RM×N for a given fully-connected layer
can be parameterized as

W = W0 + UV, (4.10)
7more precisely, either after the key, query, value linear projections in the multihead attention

module, or at the hidden layer or the output layer of the feed-forward network module
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where W0 ∈ RM×N is the weight matrix obtained after pretraining that is kept
frozen, and U ∈ RM×R, V ∈ RR×N are the learnable parameters during trans-
fer. In such a low-rank adaptation [175], the matrix W is not low-rank, so the
computation of the forward pass for the corresponding linear layer requires MN
operations, but since gradients are computed with respect to U, V and not to W0,
the backward pass associated with this linear requires only R(M+ N) operations.
This is a form of parameter-efficient finetuning, especially useful and popular for
large language models.

4.5 Model compression via butterfly factorization

Butterfly factorization was initially introduced in the context of numerical anal-
ysis to construct fast algorithms for the rapid evaluation of scattering opera-
tors [265], special function transforms [289] or Fourier integral operators [40],
as discussed in Chapter 3. Some recent works [5, 71, 72, 74, 75, 241, 342] proposed
to use an alternative definition of butterfly factorization for neural network com-
pression. As introduced in Chapter 1, butterfly factorization in the context of
deep learning refers to a sparse matrix factorization X1 . . . XL with L ≥ 2 fac-
tors, satisfying some specific fixed-support constraint. These supports have a spe-
cific structure that can be potentially used for efficient implementations of the
corresponding sparse matrix multiplication (see Chapters 9 and 10 for more de-
tails). By analogy with the model compression via low-rank matrices, a neural
network compressed via butterfly factorization can either be trained with a train-
then-decompose schedule, or with a train-from-scratch schedule. We now detail the
different variants of butterfly factorization used for deep neural networks.

4.5.1 Square dyadic butterfly factorization

Recall that the square dyadic butterfly factorization is defined as a factorization
X1 . . . XL with L ≥ 2 factors X1, . . . , XL of size n × n (with n := 2L) satisfying
the sparsity constraint (1.1). In [74, 75], the motivation for this factorization in
deep learning applications is to avoid manually designing what structured linear
maps (like the DFT, the Hadamard matrix, etc.) to use in a given neural network
architecture for a given learning task, which was previously the case in [58, 84,
269, 384]. Instead, it is suggested in [74, 75] to use a generic representation for
structured matrices based on the square dyadic butterfly factorization, that is not
only expressive, but also differentiable so that the parameters can be updated via
gradient descent.

Kaleidoscope representation. Let us illustrate the expressivity of the square
dyadic butterfly structure using the so-called kaleidoscope matrix representa-
tion [75]. Define B as the class of matrices that admit an exact square dyadic
butterfly factorization; BB∗ as the class of matrices of the form M1M2

∗, with
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M1, M2 ∈ B, and where ∗ denotes the conjugate transpose; (BB∗)W as the class
of matrices of the form M1 . . . MW with Mw ∈ BB∗ for w = 1, . . . , W. Then, the
following structured linear maps have an associated matrix in (BB∗)W with a
small W, resulting in a representation of the linear transform with nearly-optimal
memory and time complexity [75].

• Classical fast linear transforms: this includes the DFT, the discrete cosine
transform, the discrete sine transform and the Hadamard transform. For
instance, the Hadamard matrix H of dimension a power of two is in B, and
the DFT matrix F is in (BB∗)2, because it can be written as F = BP where
B ∈ B ⊂ BB∗ and P is the bit-reversal matrix, which is shown to be also in
BB∗.

• Circulant matrices, which are associated with convolutions: any circulant
matrix C can be expressed as C = F−1DF where D is a diagonal matrix
by [294, Theorem 2.6.4], and C ∈ (BB∗)4, since the DFT matrix F as well as
its inverse F−1 = F∗, and their scaled versions DF, F−1D are all in (BB∗)2.
In fact a tighter analysis can show that any circulant matrix C is in BB∗ [75,
Lemma J.5].

• Toeplitz matrices: for any Toeplitz matrix T of size N × N, there exists a
circulant matrix of size 2N × 2N such that T = RCR∗ with C a circulant
matrix of size 2N × 2N and R := [ IN 0N ] ∈ RN×2N a reduced identity ma-
trix. Moreover, any matrix M of size N × N can be expressed as a product
M := T1T2 . . . T2N+5 of (at most) 2N + 5 Toeplitz matrices [368], hence can
be written as RNR∗ with N ∈ (BB∗)2N+5. Indeed, writing Ti = RCiR∗

with Ci ∈ BB∗ a circulant matrix of size 2N × 2N, we have M := RNR∗

with N := C1(R∗R)C2 . . . (R∗R)C2N+5 ∈ (BB∗)2N+5, as (R∗R)Ci ∈ BB∗
for each i due to the fact that (R∗R) is simply a diagonal matrix.

• Fastfood transform [210]: the matrix V = 1
σ
√

N
SHGPHB, with S, G, B some

diagonal matrices, P a permutation matrix and H the Hadamard matrix, is
used for fast approximation of the Gaussian kernel of scale σ. Since H ∈
B ⊆ BB∗ and P ∈ BB∗, we get V ∈ (BB∗)3, but it is also possible to show
that V ∈ (BB∗)2 [75, Lemma J.7].

Applications of the square dyadic butterfly factorization. In practice, repre-
sentations based on the square dyadic butterfly factorization can be used to re-
place hand-crafted structures in speech processing models or channel shuffling in
certain convolutional neural networks [382], or to learn a latent permutation [75].
It can also be used for efficient channel fusion to replace pointwise convolu-
tion [342], or to compress some linear layers using truncated butterfly matri-
ces [5].
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4.5.2 Other variants of the butterfly factorization

Other variants of butterfly factorization have been proposed to compress layers
in neural network, such as the Monarch factorization [72], the block butterfly
factorization [71, 248], or the deformable butterfly factorization [241]. However,
the current literature lacks a unifying mathematical description of these differ-
ent variants. In Chapter 7, we introduce a general framework to study them by
considering general sparsity patterns of the form (1.2). Therefore, the detailed
description of the sparsity patterns in these variants is deferred to Chapter 7. For
now, we describe their applications for the compression of deep learning models.

Compression of fully-connected layers. One application of the Monarch fac-
torization [72] is to train from scratch a compressed transformer architecture in a
vision or a language task, where weight matrices in the attention and the feed-
forward network modules are replaced by a matrix admitting a Monarch factor-
ization. However, as discussed in Chapter 10, the experiments in [72] do not
compare the obtained performance with the low-rank baseline.

Compression of convolutional layers. In the context of image classification, de-
formable butterfly factorization [241] can be used to compress 2D-convolutional
layers in the following way. Given a kernel weight tensor K ∈ RN×C×D×D and
an input tensor U ∈ RC×X×Y, the entries of the output tensor V = K ∗ U as de-
fined in (4.5) can be computed equivalently by the matrix product Ṽ = K̃Ũ ∈
RN×(X−D+1)(Y−D+1), where K̃ ∈ RN×D2C is a matrix obtained by reshaping K in
a certain way, and Ũ ∈ RD2C×(X−D+1)(Y−D+1) is a matrix generated from U using
the im2col command [187]. Then, in [241], the number of parameters in a convo-
lutional layer is reduced by replacing K̃ with a product of deformable butterfly
factors X1 . . . XL. The output V is then computed as follows:

1. generate Ũ from U using the im2col command;

2. compute Ṽ = X1 . . . XLŨ;

3. reshape the matrix Ṽ in a certain way to obtain the output tensor V.

As detailed in Chapter 9, even though this procedure can reduce the number of
parameters with a small drop of performance compared to the dense network, it
does not necessarily yield time acceleration, unless there is a proper implementa-
tion for the generation of Ũ from U.

Orthogonal parameter-efficient finetuning. Block butterfly factorization [71]
can be used in the context of orthogonal parameter-efficient finetuning in trans-
fer learning [248], for various language and vision downstream tasks. In contrast
to the parameterization (4.10) where the pretrained matrix W0 ∈ RM×N is per-
turbed additively by a low-rank matrix, the weight matrix W ∈ RM×N of a given
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linear layer during the transfer can be parameterized as a multiplicative pertur-
bation of W0, in the sense that W = QW0 where Q ∈ RM×M is a learnable
parameter during training, and W0 is frozen. In orthogonal finetuning [305], the
matrix Q is constrained to be orthogonal, and to achieve parameter efficiency, it
can be parameterized by a block butterfly factorization X1 . . . XL, with the addi-
tional constraint that each factor Xℓ for ℓ ∈ JLK is orthogonal, as proposed in [248].
Note that the idea of constructing an orthogonal matrix with butterfly matrices
was previously used in [297] for preconditioning in Gaussian elimination, and
in [276] for quadrature rules on the hypersphere.

Butterfly factorization after dense pretraining. In [72, 241], instead of training
a butterfly compressed neural network from scratch, it is possible to consider
a train-then-decompose schedule, where dense pretrained weights are decom-
posed as a product of butterfly factors (following either a Monarch factoriza-
tion [72] or a deformable butterfly factorization [241]), in order to initialize the
parameters of the butterfly compressed network. However, the decomposition
algorithm used in [241] is based on alternative least squares and does not have
guarantee of success. More importantly, the decomposition models in [72,241] do
not take into account permutation symmetries of the parameterization of a neu-
ral network, which can yield high approximation error in practice (see Chapter 10
for more details).

4.6 Conclusion

In this chapter, we gave an overview of different techniques for removing param-
eter redundancy in neural networks, either via sparsity, low-rank decomposition
or butterfly factorization. Butterfly factorization can be interesting for neural net-
work compression due to its expressivity as a generic representation of structure
linear maps. Moreover, the butterfly sparse factors have a structured sparsity pat-
tern that can potentially lead to an efficient implementation of the corresponding
sparse matrix multiplication. However, we currently observe four main limita-
tions in the current studies.

1. Previous works that introduced the square dyadic butterfly factorization
[74, 75], the Monarch factorization [72], the deformable butterfly factoriza-
tion [241] or the block butterfly factorization [71] did not characterize ana-
lytically the set of matrices that can be well-approximate by such a factor-
ization. This prevents us from understanding whether or not a pretrained
matrix can be well-decomposed by the butterfly factorizations, in the train-
then-decompose schedule. Moreover, except for the Monarch factorization,
previous work did not propose a decomposition algorithm with guarantees
of success.

2. The decomposition models in all previous work did not consider permuta-
tion symmetries in the parameterization of neural networks.
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3. There are few numerical reports about the current time efficiency of GPU
implementations for butterfly sparse matrix multiplication (see Chapter 9
for more details).

4. Previous works did not provide a low-rank baseline when training from
scratch a neural network compressed by butterfly factorization (see Chap-
ter 10 for more details).

These limitations will motivate our study in Chapters 6 to 9.

84



Part II

Contributions

85





Chapter 5
Self-supervised learning with
rotation-invariant kernels

This chapter presents our contribution related to self-supervised learning for vi-
sual representations. We propose a novel kernel framework for analyzing pre-
vious existing self-supervised learning methods, which opens perspective for re-
ducing their computational complexity.

5.1 Introduction

Self-supervised learning is a promising approach for learning visual representa-
tions: recent methods [44, 124, 143, 162] reach the performance of supervised pre-
training in terms of quality for transfer learning in many downstream tasks, like
classification, object detection, semantic segmentation, etc. These methods rely
on some prior knowledge on images: the semantic of an image is invariant [267] to
some small transformations of the image, such as cropping, blurring, color jitter-
ing, etc. One way to design an objective function that encodes such an invariance
property is to enforce two different augmentations of the same image to have a
similar representation (or embedding) when they are encoded by the neural net-
work. However, the main issue with this kind of objective function is to avoid
an undesirable loss of information [177, 190] where, e.g., the network learns to
represent all images by the same constant representation. Hence, one of the main
challenges in self-supervised learning is to propose an efficient way to regularize
the embedding distribution in order to avoid such a collapse.

Introducing a generic regularization loss. Our contribution is to propose a
generic regularization loss promoting the embedding distribution to be close to
the uniform distribution on the hypersphere, with respect to the maximum mean

The material of this chapter is based on [388], in collaboration with Gilles Puy, Elisa Riccietti,
Patrick Pérez and Rémi Gribonval.
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Figure 5.1: Self-supervised learning with rotation-invariant kernels. The invariance
criterion minimizes the ℓ2-distance between two normalized embeddings {zi

(v)}v=1,2 of
two views of the same image xi encoded by the backbone fθ and the projection head gw.
To avoid collapse, the embedding distribution is regularized to be close to the uniform
distribution on the hypersphere, in the sense of the MMD associated with a rotation-
invariant kernel K(u, v) = φ(u⊤v) defined on the hypersphere; Φ denotes the feature
map associated to this kernel.

discrepancy (MMD). The MMD is a probability divergence based on the notion
of embedding probabilities in a reproducing kernel Hilbert space (RKHS), using
the so-called kernel mean embedding mapping. Inspired by high-dimensional
statistical tests for uniformity that are rotation-invariant [118], we choose to em-
bed probability distributions using rotation-invariant kernels on the hypersphere,
also known as dot-product kernels, i.e., kernels for which the evaluation for two
vectors depends only on their inner product [325]. This chapter shows that such
an approach leads to important theoretical and practical consequences for self-
supervised learning.

Unification under a kernel framework. We demonstrate that our regulariza-
tion loss family parameterized by such rotation-invariant kernels encompasses
several regularizers of former methods. As illustrated in Table 5.1, they are vari-
ants of our generic loss with different kernels:
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Table 5.1: Correspondence between kernel choices K(·, ·) in our generic regularization
loss and regularizers of former methods.

K(u, v) Method

(uv⊤)2 Contrastive
e−t∥u−v∥2

2 AUH
C− ∥u− v∥2s−q+1

2 PointContrast

b1uv⊤ + b2
q(uv⊤)2−1

q−1 Analogous to VICReg (cf. Section 5.3.3)

• the quadratic kernel yields the general sample-contrastive criterion of [120]
that englobes many contrastive learning methods like [156], cf. Appendix A.1.2;

• the radial basis function (RBF) kernel yields the uniformity loss of Align-
ment & Uniformity on the Hypersphere (AUH) [354];

• the generalized distance kernel (cf. Example 2) yields one of the regulariza-
tions used in PointContrast [362];

• and a linear combination of the linear kernel and the quadratic kernel yields
a regularizer that promotes the covariance matrix of the embedding distri-
bution to be proportional to the identity matrix, similarly to information-
maximization methods like VICReg [15].

In other words, these former methods turn out to be particular ways of mini-
mizing the MMD between the embedding distribution and the uniform distri-
bution on the hypersphere during training, with various specific kernel choices.
The proposed generic regularization approach opens perspectives to leverage
more widely the literature on kernel methods in order to improve self-supervised
learning.

Identifying a new competitive kernel. Numerically, we show in a rigorous
experimental setting with a separate validation set for hyperparameter tuning
that our method yields fully competitive results compared to the state of the art,
when choosing truncated kernels of the form K(u, v) = ∑L

ℓ=0 bℓPℓ(q; u⊤v), with
L ∈ {2, 3}, bℓ ≥ 0 for ℓ ∈ {0, . . . , L}, where Pℓ(q; ·) denotes the Legendre poly-
nomial of order ℓ, dimension q. To our knowledge, this kernel choice has not
been considered in previous self-supervision methods. Therefore, we introduce
SFRIK (SelF-supervised learning with Rotation-Invariant Kernels, pronounced
like “spheric”), which regularizes the embedding distribution to be close to the
uniform distribution with respect to the MMD associated with such a truncated
kernel, as summarized in Figure 5.1.
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Reducing pretraining complexity. Importantly, our method significantly reduces
time and memory complexity for self-supervised training compared to information-
maximization methods. Due to the kernel trick, the complexity of SFRIK’s loss is
quadratic in the batch size and linear in the embedding dimension, instead of be-
ing quadratic as in VICReg. In practice, SFRIK’s pretraining time is up to 19%
faster than VICReg for an embedding dimension of 16384, and it can scale at di-
mension 32768, as opposed to VICReg whose memory requirement is too large at
this dimension for a machine with 8 GPUs and 32GB of memory per GPU. Hence
our work opens perspectives in self-supervised learning on embedded devices
with limited memory like in [360].

Summary. We summarize our contributions are as follows:

1. We introduce a generic regularization loss based on kernel mean embed-
dings with rotation-invariant kernels on the hypersphere for self-supervised
learning of image representations.

2. We show that our loss family encompasses several previous self-supervised
learning methods, like uniformity-based and information-maximization meth-
ods.

3. We numerically show that SFRIK significantly reduces time and memory
complexity for self-supervised training, while remaining fully competitive
with the state of the art.

5.2 Related work

Instance discrimination methods typically rely on a contrastive loss that behaves
asymptotically like an invariance term and uniformity loss on the hypersphere in
the limit of infinite samples. Our contribution is to formalize and generalize exist-
ing uniformity-based methods by using kernel mean embeddings. To the best of
our knowledge, the proposed kernel framework establishes the first connection
between uniformity-based methods and information-maximization methods like
VICReg.

Instance discrimination. One way of learning image representations that are
invariant to predefined image transformations [267] is to rely on an instance clas-
sification approach [358]. Typically, contrastive learning [50, 51, 162, 165, 171, 290]
discriminates instances within a batch of sampled images using the noise con-
trastive estimator [148], by attracting embeddings of transformed images coming
from the same image instance, and repulsing embeddings coming from different
image instances. In practice, this estimator needs a large number of image repre-
sentations in order to achieve good results, which requires a large batch size like
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SimCLR [50] or a memory bank [162,358]. In the limit of infinite samples, the con-
trastive loss is shown to behave asymptotically like the alignment and uniformity
loss of AUH.

Uniformity on the hypersphere. Existing uniformity-based methods avoid col-
lapse by regularizing the embedding distribution to be somehow close to the uni-
form distribution on the hypersphere, which has a high entropy. [30] performs
this kind of regularization by aligning the learned representations on a fixed
number of vectors sampled uniformly at random on the hypersphere. AUH max-
imizes the average pairwise distance between embeddings using an RBF kernel,
in the spirit of energy minimization methods that address the problem of scatter-
ing points evenly on the hypersphere [34, 157, 247]. Although alternative high-
entropy prior distributions (e.g., the uniform distribution on the hypercube) can
be used for regularization [52], encoding images into ℓ2-normalized representa-
tions helps to stabilize training [249, 298, 319].

Kernel mean embedding. As a contribution, our generic loss formalizes and
generalizes these previous uniformity losses, by relying on kernel mean embed-
dings (cf. Appendix A.1.1) to measure the distance between probability distribu-
tions on high-dimensional spaces, using the MMD pseudometric [37,91,141,232]
with rotation-invariant kernels on the hypersphere [90, 256, 302, 325]. These tools
are adapted for high-dimensional problems on the hypersphere whose geometry
is different from the one in small dimension, as illustrated by [118]: many statis-
tical tests for uniformity on the hypersphere, i.e., tests for rejecting the null hy-
pothesis where a batch of normalized vectors is sampled from the uniform distri-
bution on the hypersphere, are in fact precisely estimators of the MMD between
the embedding distribution and the uniform distribution, for different kernels.
Our kernel method for self-supervision is complementary to [231], in which the
dependency between image instances and their embedding is maximized with
respect to the Hilbert-Schmidt independence criterion (cf. Appendix A.1.3).

Information maximization. Our generic regularization approach has the bene-
fit of connecting uniformity-based and information-maximization methods [15, 101,
375]. The latter are alternatives to distillation methods [45,55,123,124,143] where
a student network learns to predict the representations of a teacher network.
In such methods, using various architecture tricks (like prediction head, stop-
gradient, momentum encoder, batch normalization or centering) is shown em-
pirically to be sufficient to avoid collapse without instance discrimination, even
though it is not fully understood how these multiple factors induce a regular-
ization during training [313, 339]. Instead of using these tricks, information-
maximization methods use a Siamese architecture and avoid collapse by maxi-
mizing the statistical information of a batch of embeddings, using a whitening
operation [101], or an explicit regularization term making the covariance [15] or
the cross-correlation [375] matrix close to a scaled identity matrix. This chapter
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shows that our generic regularization loss with an appropriate kernel also pro-
motes the covariance matrix of the embedding distribution to be proportional
to the identity matrix. But in contrast to VICReg which explicitly computes the
covariance matrix, our method uses the kernel trick to significantly reduce com-
plexity at large embedding dimensions.

5.3 Method description

Given an unlabeled dataset of images xi ∼ P, i ∈ JNK for an integer N, sam-
pled independently from a data distribution P, the goal is to learn a backbone
network fθ parameterized by θ (e.g., a convolutional neural network) such that
any new image x ∼ P is encoded by a good representation fθ(x) whose quality is
evaluated in several downstream tasks (see Section 5.4).

5.3.1 Invariance and uniformity for self-supervision

Our self-supervised learning method (see Figure 5.1) follows the principle of the
recent methods like SimCLR or VICReg. During self-supervised training, each
image xi is augmented using two different random transformations t(1) and t(2)

sampled from a distribution T , which yields two views xi
(1) := t(1)(xi) and

xi
(2) := t(2)(xi) of the image xi. Two representations zi

(v) (v = 1, 2) are obtained
by encoding each xi

(v) with the backbone fθ and ℓ2-normalizing the resulting fea-
ture vector. For a given subset of indices I ⊆ JNK, we write ZI

(v) := {zi
(v)}i∈I .

The backbone fθ is trained by minimizing the total objective function:

L = Et(1),t(2)∼T EI⊆JNK ℓ(ZI
(1), ZI

(2)), (5.1)

where batches I are drawn at random with a prescribed batch size, and the loss ℓ
is a weighted sum involving an alignment term ℓa and a uniformity term ℓu, in the
spirit of AUH:

ℓ(ZI
(1), ZI

(2)) := λ ℓa(ZI
(1), ZI

(2)) +
1
2
(ℓu(ZI

(1)) + ℓu(ZI
(2))) ; (5.2)

λ > 0 is a hyperparameter that tunes the balance between the two terms. The
loss ℓa enforces the invariance property of the model, and is defined for a batch
I ⊆ JNK of cardinality |I| as:

ℓa(ZI
(1), ZI

(2)) :=
1
|I|∑i∈I

∥∥zi
(1) − zi

(2)∥∥2
2. (5.3)

Our main contribution is in the choice of the uniformity term ℓu, detailed in
the rest of the section. Note that instead of applying the loss (5.2) to the output
of fθ (called image representation), we add a projection head gw (a multi-layer per-
ceptron) parameterized by w to the output of fθ and apply (5.2) at the output of

92



5.3. Method description

gw (called image embedding). This common practice [44, 143] improves the perfor-
mance in the downstream tasks. Therefore, denoting Sq−1 the unit hypersphere
in Rq, the image embedding actually reads

zi
(v) :=

(gw ◦ fθ)(xi
(v))∥∥(gw ◦ fθ)(xi
(v))
∥∥

2

∈ Sq−1.

Both gw and fθ are jointly trained without supervision by minimizing (5.1) using
a stochastic mini-batch algorithm. After training, gw is discarded and only fθ is
kept for the downstream tasks.

5.3.2 Uniformity loss via MMD minimization

We continue by explaining our generic kernel formulation of ℓu using the MMD
pseudometric and rotation-invariant kernels. Then we provide examples of such
kernels and describe our kernel choice.

MMD pseudometric and rotation-invariant kernels

Our uniformity loss relies on a divergence in the space of probability distributions
based on a positive definite kernel K defined on some space X . Denoting H
the corresponding RKHS with norm ∥ · ∥H, the MMD between two probability
distributions Q1, Q2 on X can be expressed as the distance in ∥ · ∥H between their
kernel mean embeddings [33, 274]:

MMD(Q1, Q2) =

∥∥∥∥∫X K(u, ·)dQ1(u)−
∫
X
K(u, ·)dQ2(u)

∥∥∥∥
H

. (5.4)

We propose to use this pseudometric1 to measure the distance between the prob-
ability distribution of the embeddings zi

(v) (v = 1, 2) and the uniform probabil-
ity distribution on the hypersphere Sq−1 defined by U := σq−1/

∣∣Sq−1
∣∣, where

σq−1 denotes the normalized Hausdorff surface measure on Sq−1, and
∣∣Sq−1

∣∣ :=∫
Sq−1 dσq−1 = 2π

q
2 /Γ( q

2) is the surface area of Sq−1, with Γ denoting the Gamma
function. Intuitively, a good choice of kernel for measuring the distance (5.4)
should distinguish any probability distribution from the uniform distribution.
Inspired by statistical tests for uniformity that are rotation-invariant [118], we
propose to use rotation-invariant kernels on X := Sq−1 of the form K(u, v) :=
φ(u⊤v) with φ a continuous function defined on the interval [−1, 1] [325]. The
following theorem characterizes the form of function φ that ensures positive def-
initeness of K, and thus that (5.4) is a valid pseudometric.

1In general, the MMD is only a pseudometric. It is a metric if, and only if, the considered
kernel is characteristic [115].
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Chapter 5. Self-supervised learning with rotation-invariant kernels

Theorem 5.1 (from [318, Theorem 1]). The kernel K(u, v) := φ(u⊤v) on X :=
Sq−1 with φ continuous is positive definite if, and only if, the function φ admits an
expansion:

φ(t) =
+∞

∑
ℓ=0

bℓPℓ(q; t), with bℓ ≥ 0, (5.5)

where

Pℓ(q; t) := ℓ! Γ
(

q− 1
2

) ⌊ ℓ2 ⌋
∑
k=0

(
−1

4

)k (1− t2)ktℓ−2k

k! (ℓ− 2k)! Γ(k + q−1
2 )

is the Legendre (or Gegenbauer) polynomial of degree ℓ in dimension q [277, (2.32)].

As we are interested in measuring the distance between the embedding dis-
tribution and the uniform distribution on the hypersphere U, we compute the
kernel mean embedding of U for a kernel satisfying the condition of Theorem 5.1
using the following known result used, e.g., implicitly in [36]. As we could not
locate a formal proof, we provide one in Appendix A.2.1.

Lemma 5.1. Let K(u, v) := φ(u⊤v) be a rotation-invariant kernel on X := Sq−1

where φ admits the expansion (5.5). Then:

• The kernel mean embedding of the uniform distribution U on Sq−1 is constant:∫
Sq−1
K(u, v) dU(u) = b0 ∈ R, ∀v ∈ Sq−1.

• The kernel mean embedding of any probability distribution Q defined on the
hypersphere satisfies:∫

Sq−1
K(u, ·) dQ(u) = b0 +

∫
Sq−1
K̃(u, ·) dQ(u),

where K̃(u, v) := φ̃(u⊤v) for any u, v ∈ Sq−1 with φ̃ := ∑+∞
ℓ=1 bℓPℓ(q; ·).

Using Lemma 5.1 in (5.4) yields

MMD(Q, U) =

∥∥∥∥∫Sq−1
K̃(u, ·)dQ(u)

∥∥∥∥
H

for any probability distribution Q on Sq−1. Then, by the reproducing property
in the RKHS H, the squared MMD satisfies, for any rotation-invariant kernel K
verifying the condition of Theorem 5.1:

MMD2(Q, U) = Ez,z′∼Q

[
K̃
(
z, z′

)]
, with z, z′ i.i.d. (5.6)
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Estimator of the squared MMD and kernel choices

The proposed uniformity loss ℓu for self-supervision is a biased estimator [141] of
MMD2(Q, U) in (5.6). Given a batch ZI := {zi}i∈I sampled from Q, our unifor-
mity loss is:

ℓu(ZI) = M̂MD
2
(Q, U; {ZI}) :=

1
|I|2 ∑

i∈I
∑
i′∈I
K̃(zi, zi′) =

1
|I|2 ∑

i∈I
∑
i′∈I

φ̃(z⊤i zi′).

(5.7)
In our framework, any rotation-invariant kernel satisfying the condition of The-
orem 5.1 can be used to compute (5.7) and train a self-supervised model by min-
imizing (5.1). The uniformity term (5.7) can be interpreted as an energy func-
tional [36]: minimizing the average pairwise energy quantified by K̃ tends to
scatter evenly the embeddings on the hypersphere. We now give examples of
kernels that can be used for this uniformity term. This illustrates that our frame-
work offers a unification of several strategies for self-supervision.

Example 5.1 (RBF kernel). UsingK(u, v) = e−t∥u−v∥2
2 (with t > 0) in the uniformity

term ℓu (5.7) yields the regularization term from AUH, with the only difference that
AUH uses the logarithm of the energy functional as their uniformity loss.

Example 5.2 (Generalized distance kernel). It is defined as K(u, v) := C − ∥u −
v∥2s−q+1

2 with q−1
2 < s < q+1

2 and C > 0 sufficiently large [36]. A variation of this ker-
nel choice is, e.g., used in the hard-contrastive loss of PointContrast for self-supervision
on point clouds.

Example 5.3 (Truncations of the Laplace-Fourier series). A truncated kernel up to
order L [36] is a kernel K(u, v) = ∑L

ℓ=0 bℓPℓ(q; u⊤v), with bℓ ≥ 0 for ℓ = 0, . . . , L. It
admits a closed-form expression given by the definition of Legendre polynomials Pℓ(q, ·)
in Theorem 5.1, e.g., P1(q, t) = t, P2(q, t) = qt2−1

q−1 , P3(q, t) = (q+2)t3−3t
q−1 . We ex-

plore numerically this kernel choice in Section 5.4, since it has never been considered in
previous self-supervision methods.

The expansion of φ in Legendre polynomials (5.5) for the RBF (Example 1) and
the generalized distance kernel (Example 2) verifies bℓ > 0 for each integer ℓ (see
Appendix A.2.2). By [264, Theorem 10], this is a necessary and sufficient condi-
tion for a rotation-invariant kernel to be universal, and universality is a sufficient
condition for injectivity of the corresponding kernel mean embedding mapping,
i.e., the kernel is characteristic [114]. The benefit of this property is to guarantee
that the uniform distribution U is the unique solution to the minimization prob-
lem:

min
{

MMD(Q, U) | Q is a probability distribution on Sq−1
}

.

In contrast, the truncated rotation-invariant kernel up to an order L (Example 3)
is not universal. Yet, our experiments in Section 5.4 show that truncated kernels
up to order L ∈ {2, 3} provide better results than, e.g., AUH whose uniformity
loss is based on the RBF kernel.
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Chapter 5. Self-supervised learning with rotation-invariant kernels

Summary. The uniformity loss in our method, called SFRIK, corresponds to
(5.7) with a truncated kernel up to order L = 3 and satisfies:

ℓu({zi}i∈I) =
1
|I|2 ∑

i∈I
∑
i′∈I

(
b1z⊤i zi′ + b2

q(z⊤i zi′)
2 − 1

q− 1
+ b3

(q + 2)(z⊤i zi′)
3 − 3z⊤i zi′

q− 1

)
,

(5.8)
where bℓ ≥ 0, ℓ ∈ J3K, are hyperparameters, and q is the dimension of the image
embedding zi.

5.3.3 Connection with information-maximization methods

We now show that an appropriate kernel in the proposed uniformity term (5.7)
leads to a regularizer that maximizes a statistical measure of information analog
to the one used in VICReg. To the best of our knowledge, this is the first connec-
tion made between uniformity-based and information-maximization methods.

Reminders on VICReg. The regularization loss of VICReg is a weighted sum
between two terms:

v(ZI) :=
1
q

q

∑
j=1

max
(

0, γ−
√

Var(ZI)[j] + ε

)
,

c(ZI) :=
1
q ∑

1≤j ̸=j′≤q
[C(ZI)]

2
j,j′ ,

(5.9)

for a batch of image embeddings ZI := {zi}i∈I , where z[j] denotes the j-th coor-
dinate of a (random) vector z and ε is a fixed small scalar. The variance term v(ZI)
enforces the empirical variance Var(ZI)[j] := 1

|I|−1 ∑i∈I(zi[j]− z[j])2 in each co-

ordinate j ∈ JqK to be above a certain threshold γ2 > 0, where z here is the
empirical mean of ZI . The covariance term c(ZI) enforces the non-diagonal entries
of the empirical covariance matrix C(ZI) := 1

|I|−1 ∑i∈I(zi− z)(zi− z)⊤ to be zero.

Connection between SFRIK and VICReg. We claim that minimizing MMD2(Q, U)
associated with a rotation-invariant kernel promotes the covariance matrix of Q

to be proportional to the identity matrix, in the following sense.

Proposition 5.1. Consider a kernel admitting an expansion K̃(u, v) =
∑∞

ℓ=1 bℓPℓ(q; u⊤v) with b1, b2 > 0 and bℓ ≥ 0 for any ℓ ≥ 3. Then, for any proba-
bility distribution Q defined on Sq−1:

MMD(Q, U) = 0 =⇒ Ez∼Q[z] = 0 and Ez∼Q[zz⊤] =
1
q

Iq

=⇒ Ez∼Q

[
(z−E[z])(z−E[z])⊤

]
=

1
q

Iq.
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In other words, the regularization both in VICReg and SFRIK induces the em-
bedding distribution to have a covariance matrix with zero non-diagonal entries.
The diagonal entries of the covariance matrix are encouraged to be equal to 1/q
in SFRIK, and greater than γ2 in VICReg (we recall that the image embeddings
{zi}i∈I are not ℓ2-normalized in VICReg). However, one difference in terms of
regularization behavior is that SFRIK encourages the expectation of the embed-
ding distribution to be zero. This is not the case for VICReg, cf. (5.9).

Proof of Proposition 5.1. Let us consider for simplicity a truncated kernel K̃(u, v) =
∑L

ℓ=1 bℓPℓ(q; u⊤v) of order L = 2, and assume b1, b2 > 0. The reasoning is similar
for the general case where the kernel is not truncated, and the complete proof is
deferred to Appendix A.2.3.

By the addition theorem [277, Theorem 2, §1], there exists a feature map Φ :
Sq−1 → Rm involving an orthonormal basis of spherical harmonics (homogeneous
harmonic polynomials restricted to the hypersphere) of order 1 and 2 such that
Φ(u)⊤Φ(v) = K̃(u, v). Hence, the kernel mean embedding of a distribution
in the associated RKHS contains its first and second-order moments (see Ap-
pendix A.2.3). Therefore, denoting N(q, ℓ) the dimension of the space of spher-
ical harmonics of order ℓ, dimension q, and defining Φℓ : Sq−1 → RN(q,ℓ), z 7→
(Yℓ,k(z))

N(q,ℓ)
k=1 for ℓ ∈ {1, 2} with

{Y1,k}
N(q,1)
k=1 := {u 7→ u[j] | j ∈ JqK} ,

{Y2,k}
N(q,2)
k=1 :=

{
u 7→ u[j]u[j′] | 1 ≤ j < j′ ≤ q

}
∪
{

u 7→ (u[j])2 − 1
q
| j ∈ J2, qK

}
,

(5.10)

it is possible to show (see Appendix A.2.3) that the squared MMD (5.6) can be
written as

MMD2(Q, U) = a1 ∥M1Ez∼Q[Φ1(z)]∥2
2 + a2 ∥M2Ez∼Q[Φ2(z)]∥2

2 , (5.11)

where aℓ := bℓ|Sq−1|/N(q, ℓ) for ℓ ∈ {1, 2}, and M1, M2 are two lower triangu-
lar matrices with nonzero diagonal entries. Since b1, b2 > 0, MMD2(Q, U) = 0
implies that

Ez∼Q[z] = 0, Ez∼Q[zz⊤] =
1
q

Iq,

meaning that

E[(z−E[z])(z−E[z])⊤] = E[zz⊤]−E[z]E[z]⊤ =
1
q

Iq.
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Complexity. The memory and computational complexities for computing the
uniformity term (5.8) in SFRIK are O(|I|2) and O(q|I|2) respectively, as opposed
to O(q2) and O(q2|I|) for the variance and covariance terms (5.9) in VICReg.
In the setting where SFRIK and VICReg work best, i.e., larger dimension q and
smaller batch size |I|, SFRIK has the lowest time and memory complexities. This
computational advantage is due to the kernel trick and it is illustrated in Sec-
tion 5.4.

5.4 Experiments

We first demonstrate numerically that the regularization loss (5.8) of SFRIK out-
performs existing alternatives, in a rigorous experimental setting with a subset of
ImageNet-1k [78] for pretraining and a separate validation set for hyperparame-
ter tuning. Then, we pretrain a ResNet-50 backbone [163] with SFRIK on the full
ImageNet-1k dataset and show competitive results compared to the state of the
art, with significant computational benefits during pretraining. In the interest of
reproducible research, we provide our code and our pretrained ResNet-50 back-
bones with SFRIK on ImageNet-1k at https://github.com/valeoai/sfrik [387].

5.4.1 Experimental setting

The backbone fθ is either ResNet-18 or ResNet-50, depending on the experiment.
Following [375], the projection head gw is a three-layer MLP made of two hidden
layers with ReLU activation and batch normalization [182], and a linear output
layer. Unless otherwise specified, the size (number of neurons) of the two hid-
den layers is the same as the one, denoted q, of the output layer and the default
value is q = 8192. The augmentations used for transforming images into views
are the same as the ones used in VICReg. The backbone and the projection head
are trained with a LARS optimizer [370]. The weight decay is fixed at 10−6. The
learning rate scheduling starts with 10 warm-up epochs [137] with a linear in-
crease from 0 to initial_lr = base_lr ∗ bs/256, where base_lr is called the base
learning rate [137] and bs is the batch size, followed by a cosine decay [253] with
a final learning rate 1000 times smaller than initial_lr. For pretraining, we con-
sider a 20% subset of ImageNet-1k (denoted by IN20%), like in [124], and 100%
of ImageNet-1k (denoted by IN100%). In IN20%, we keep all the 1000 classes but
only 260 images per class. More details are detailed in Appendix A.3.

5.4.2 Results for ResNet-18 pretrained on IN20%

Many existing self-supervision methods are based on the Siamese architecture
and have the same form of training loss λℓa(ZI

(1), ZI
(2)) + µℓr(ZI

(1), ZI
(2)). This

is the case of SimCLR, AUH and VICReg, for which Appendix A.1.4 gives the

98

https://github.com/valeoai/sfrik


5.4. Experiments

expression of the regularization loss ℓr. For SFRIK, following (5.2), we have µ =

0.5 and ℓr(ZI
(1), ZI

(2)) = ℓu(ZI
(1)) + ℓu(ZI

(2)) with ℓu given by (5.8).

Protocol. To isolate the impact of ℓr on the quality of the learned representa-
tions, we (re)implement all these four methods in the setting of Section 5.4.1, to
get rid of the influence of other design choices, like image augmentations or pro-
jection head architecture. We fix the batch size at 2048, and tune the base learning
rate and hyperparameters specific to each method’s loss. We also compare dif-
ferent embedding dimension q ∈ {1024, 2048, 4096, 8192}. In order to perform an
extensive hyperparameter tuning by grid search of each method for fair compar-
isons, we choose a smaller backbone and a reduced dataset for pretraining, i.e.,
we pretrain a ResNet-18 on IN20% for 100 epochs with all methods.

Number of hyperparameters. Note that in total SFRIK with L = 2 has as many
hyperparameters to tune as AUH or VICReg, and SFRIK with L = 3 has a single
additional hyperparameter.

Rigorous hyperparameter tuning. In contrast to the common practice in the
literature where hyperparameters are directly selected on the labeled evaluation
dataset, we choose to tune hyperparameters on a separate labeled validation set that
consists of another 20% subset of the ImageNet-1k train set2. We select the hy-
perparameters that yield the highest top-1 accuracy obtained by weighted kNN-
classification (k = 20) [358] on this validation set, and we finally report the eval-
uation results by linear probing on the usual ImageNet-1k validation set, which
is never seen during hyperparameter tuning. Because the hyperparameter tun-
ing with kNN-classification requires labels for the validation set, the method is
not fully unsupervised, even though it does not require labels during pretraining
when fixing some given hyperparameters. A protocol without requiring any an-
notation for hyperparameter tuning (e.g., in the spirit of [119]) can be envisioned
in a future work.

Results for linear probing on IN20%. Table 5.2 shows that SFRIK at optimal
truncation order L = 3 outperforms SimCLR, AUH and VICReg by at least 0.7
points at q = 8192, for linear probing trained on IN20% with labels. The gain in
top-1 accuracy by linear probing between SFRIK at L = 1 and L = 2 is important,
but is smaller between L = 2 and L = 3. This suggests that L > 3 is likely to
marginally improve performance, while requiring more hyperparameter tuning,
which is why we did not explore L > 3. We also remark that all methods ben-
efit from an increase in embedding dimension q, including SimCLR which was
originally introduced with a smaller dimension.

2See Appendix A.4.1 for the experimental results that we would obtain if we directly tune
the hyperparameters on the labeled evaluation dataset. The obtained top-1 accuracy would be
slightly overestimated, but the ranking between methods does not change.
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Table 5.2: Linear probing on IN20% (top-1 accuracy) at different embedding dimensions
q. All methods were pretrained on IN20% with a ResNet-18 for 100 epochs. We tuned
all hyperparameters specific to each method and the learning rate. Symbol † indicates
models that we retrained ourselves.

SimCLR† AUH† VICReg† SFRIK

L = 1 L = 2 L = 3

q = 1024 45.2 45.3 40.6 - 45.2 -
q = 2048 45.8 45.9 44.0 - 45.9 -
q = 4096 46.0 46.7 44.9 - 46.9 -
q = 8192 46.1 46.8 46.0 27.7 47.0 47.5

Table 5.3: Linear classification on Places205 and VOC2007 (accuracy and mean average
precision). All methods were pretrained on IN20% with a ResNet-18 for 100 epochs. We
tuned all hyperparameters specific to each pretraining method and the learning rate. The
symbol † indicates models that we retrained ourselves.

Linear classification

Method Places205 VOC07
Top-1 Top-5 mAP

VICReg† (q = 8192) 41.6 71.7 73.3
AUH† (q = 8192) 42.3 72.8 73.6
SFRIK (L = 3, q = 8192) 42.7 72.9 74.1

Results for transfer learning to Places205 and VOC2007. We also evaluate the
quality of the representations learned on other downstream tasks, such as image
classification on Places205 [394] (dataset with scene-centric images), or predict-
ing the presence of a class in a given image in VOC2007 [103] (dataset with sev-
eral objects in the image). Table 5.3 provides extra results for linear probing on
Places205 [394] and linear SVM on VOC2007 [103] that further support our find-
ings: SFRIK outperforms AUH while having the same pretraining complexity,
and is fully competitive compared to VICReg with a reduced pretraining com-
plexity.

Ablation on the kernel choice. Table 5.4 confirms empirically that a truncated
kernel is better than the RBF3 or the generalized distance kernel for the uniformity
term (5.7). During tuning we observed that the truncated kernel performs well
when the weights b2, b3 in (5.8) are larger than b1, e.g., (b1, b2, b3) = (1, 40, 40) for
q = 8192. This contrasts with the RBF and the generalized distance kernel for

3The performance gap between AUH and the RBF kernel is only due to the presence of the
logarithm in AUH (cf. Example 1). Future work could clarify the role of this logarithm for regu-
larization in self-supervision.
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Table 5.4: Impact of kernel choice in the uniformity term (5.7). Linear probing on IN20%
of ResNet-18 pretrained on IN20% for 100 epochs, at q = 8192.

Kernel Top-1 acc.

RBF 41.3
Generalized distance 27.8
Truncated, L = 3, cf. (5.8) 47.5

which the weights bℓ decay polynomially with respect to ℓ (see Appendix A.2.2).
This suggests that it is important to focus more on order 2, 3 than on order 1 in
the Legendre expansion (5.5).

5.4.3 Results for ResNet-50 pretrained on IN100%

Protocol. We pretrain a ResNet-50 on IN100% with SFRIK under the setting of
Section 5.4.1, with a batch size of 2048. We study the impact of a larger embedding
dimension in SFRIK by considering a projection head with two hidden layers
of size 8192, and an output layer of size q ∈ {8192, 16384, 32768}. Truncation
order is either L = 2 or L = 3. For comparison, we also pretrain a ResNet-50
with VICReg under the same setting with q = 8192. Similarly to the original
paper [15], the alignment, variance and covariance weights are respectively 25,
25, 1, and the base learning rate is 0.2 for VICReg. All pretrained backbones
are evaluated by: linear probing on IN100%; linear classification on Places205
and VOC2007 in order to measure how the learned representations generalize
to an unseen dataset; and semi-supervised learning with few labels of IN100%
(backbones are fine-tuned for classification using 1% or 10% of labeled images).

Computational complexity. We show under this protocol that SFRIK’s time and
memory complexity during pretraining is significantly smaller than the one of
VICReg for large dimensions. This allows us to scale SFRIK at dimension 16384
and even to 32768 for better results on downstream tasks.4 We measure the peak
memory per GPU during pretraining on IN100% with a batch size of 2048 and
the pretraining wall time of both methods on a 8× AMD Radeon Instinct MI50
32GB:

• at q = 8192, SFRIK is 8% faster than VICReg and needs 3% less memory per
GPU;

• at q = 16384, SFRIK is 19% faster than VICReg and needs 8% less memory
per GPU;

4We recall that the time and memory complexity is identical for all methods on downstream
tasks.
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Table 5.5: Linear classification on IN100%, Places205, VOC2007, and semi-supervised
learning with few labels of IN100% (top-k accuracy or mean average precision). Meth-
ods are pretrained on IN100% with ResNet-50. We only include methods relying on a
Siamese architecture with image augmentations limited to two views (obtained by apply-
ing transformations randomly sampled in a set T ). The scores of methods marked with
∗ are from [55]. The score of VICReg† was obtained by retraining the model ourselves.
For each downstream task, we highlight in bold the best score among all backbones pre-
trained on 200 epochs.

Linear classification Semi-supervised

Method Epochs IN100% Places205 VOC07 1% labels 10% labels
Top-1 Top-5 Top-1 Top-5 mAP Top-1 Top-5 Top-1 Top-5

SimCLR∗ [50] 200 68.3 - - - - - - - -
SwAV∗ [44] (no multi-crop) 200 69.1 - - - - - - - -
SimSiam [55] 200 70.0 - - - - - - - -
VICReg† [15] (q = 8192) 200 70.0 89.3 54.1 83.4 84.9 49.4 75.1 65.9 87.2
SFRIK (L = 2, q = 8192) 200 70.1 89.3 53.8 83.0 85.1 46.6 73.3 65.7 87.3
SFRIK (L = 3, q = 8192) 200 70.2 89.6 54.5 83.9 84.6 46.9 73.6 66.0 87.7
SFRIK (L = 2, q = 16384) 200 70.3 89.6 54.3 83.4 85.2 46.0 73.0 65.3 87.2
SFRIK (L = 2, q = 32768) 200 70.3 89.6 54.1 83.0 85.0 46.1 73.0 65.4 87.3
SFRIK (L = 3, q = 32768) 200 70.3 89.7 54.4 83.2 85.1 46.6 73.0 65.8 87.5

SFRIK (L = 2, q = 8192) 400 70.8 89.9 54.4 83.5 85.7 47.8 74.3 66.4 88.0

Table 5.6: Peak memory per GPU during pretraining of ResNet-50 on IN100% at embed-
ding dimension q = 32768.

Batch size VICReg SFRIK (ratio)

256 22.5GB 10.3GB (2.2)
512 25.4GB 13.1GB (1.9)
1024 31.1GB 18.8GB (1.7)

• at q = 32768, SFRIK is still 2% faster than VICReg run in the lower dimen-
sion 16384. It only requires 30.9GB per GPU while VICReg at q = 32768
needs more than the available memory. Table 5.6 emphasizes this memory
advantage at reduced batch sizes.

Results. Table 5.5 compares methods that have the same Siamese architecture
and use the same image augmentations described in our protocol. For complete-
ness, this table is completed in Appendix A.4.2 by evaluation results of other ex-
isting methods such as BYOL [143], OBoW [123] and SwAV with multi-crop [44],
which are not comparable to the methods of Table 5.5 as they use a teacher-
student architecture with momentum encoder and/or image augmentations with
multi-scale cropping, and are beyond the setting of a Siamese architecture with
only two views. Incorporating such designs in SFRIK is possible, and is left as a
future work.

Table 5.5 demonstrates the competitiveness of SFRIK: it has the best accuracy
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for linear probing on IN100% among SimCLR, SwAV with no multi-crop, Sim-
Siam and VICReg, and it performs better than VICReg for linear classification
on Places205, VOC2007, and semi-supervised-learning with 10% of labels. We
observe that SFRIK and VICReg offer a different trade-off between performance
on linear probing on IN100% and performance on semi-supervised learning with
1% of labels. But as shown in Appendix A.4.2, other methods like BYOL and
SwAV with multi-crop similarly have a performance drop compared to VICReg
on semi-supervised learning with 1% of labels, even though they perform bet-
ter on linear probing. Future work will therefore involve understanding what
specific ingredients of VICReg make it more robust for semi-supervised learning
with few labels. Ideally we could combine these ingredients with our generic
kernel framework to design an improved version of SFRIK that can still benefit
from its computational advantages over VICReg.

5.5 Conclusion

We proposed a regularization loss family based on the MMD and rotation-invariant
kernels. We demonstrated that several regularizers of former methods are indeed
variants of our flexible loss with different kernels. This generic regularization ap-
proach allowed us to leverage degrees of freedom in rotation-invariant kernel
design to improve self-supervision methods. In practice, using a truncated ker-
nel, we derived from the proposed framework a fully competitive self-supervised
pretraining method, SFRIK, which significantly reduces time and memory com-
plexity during pretraining compared to information-maximization methods. We
discuss several perspectives of this work.

Extension to unnormalized embeddings. The proposed generic regularization
loss is based on rotation-invariant kernels defined on the hypersphere. One can
wonder how to extend this framework to kernels defined in Euclidean space,
so that it can cover self-supervised learning methods that do not normalize the
embeddings, such as VICReg.

Kernel approximation. In the scenario where it is required to scale the batch
size (e.g., up to 32768) for improving the performance of a self-supervised learn-
ing method, computing the pretraining loss function becomes costly if its com-
plexity is quadratic with respect to the batch size. In such a scenario, one promis-
ing perspective is to combine the proposed kernel approach for self-supervision
with kernel approximation techniques such as Nyström method or random fea-
ture expansions [256, 302, 308], in order to further enhance the ability to perform
self-supervised training with limited computational resources.

Insights on the regularization in self-supervision. The question of choosing an
adequate regularizer that avoids collapse [190] during self-supervision is still an
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open question in the literature. This work unifies several previous self-supervision
methods under the proposed generic kernel loss for regularization. Therefore one
possible research direction is to design a good regularizer for self-supervision
by identifying a good kernel choice under this kernel framework. A theoretical
analysis could start with a simple backbone model (linear layer, multi-layer per-
ceptron). In other words, one promising perspective is to study self-supervision
under this new unified kernel point of view, in order to provide novel insights
about the behavior of self-supervision algorithms.

Next chapters of the thesis. As the size of the dataset increases [291], further re-
ducing the computational cost of pretraining requires a reduction of the complex-
ity for the forward pass of the backbone. As a complementary research direction
to self-supervised learning, the next chapters of the thesis focus on the reduction
of the complexity for matrix multiplication, which is the main operation in neural
networks.
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Chapter 6
Square dyadic butterfly factorization:
identifiability and decomposition
algorithm

One of the contributions of this thesis is to provide theoretical guarantees to de-
composition algorithms associated with butterfly factorization, i.e., the problem
of approximating a certain matrix by a product of butterfly factors that satisfy a
specific sparsity constraint. In order to better illustrate the nature of our results,
this chapter starts by studying the specific of square dyadic butterfly factorization.
In particular, we will focus on the noiseless setting, where the target matrix is as-
sumed to admit such an exact butterfly factorization. The results of this chapter
will be then generalized in Chapter 7 to more general butterfly factorization, and
to the noisy setting.

6.1 Introduction

The generic sparse matrix factorization problem with L ≥ 2 factors is formulated as
follows: given a target matrix A, solve

min
X1,...,XL

∥A− X1X2 . . . XL∥F, such that Xℓ is sparse for each ℓ ∈ JLK. (6.1)

This problem is mainly motivated by the need for a rapid evaluation of the matrix
multiplication by A, typically in a large-scale setting where the direct computa-
tion of the matrix multiplication hardly scales due to its quadratic complexity
with respect to the matrix size. There are typically two kinds of sparsity con-
straints:

1. Classical sparsity constraints: they are encoded by a family of allowed sup-
ports that force the factors to have some prescribed sparsity patterns, like

The material of this chapter is based on [213, 392], in collaboration with Quoc-Tung Le, Elisa
Riccietti and Rémi Gribonval.
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k-sparsity by row and/or column (i.e., each factor has at most k nonzero
entries per row and/or column).

2. Fixed-support constraints: the supports (i.e., the set of indices correspond-
ing to nonzero entries in a matrix) are known a priori and each factor Xℓ is
constrained to have a support included in a given prescribed support Sℓ,
ℓ = 1, . . . , L. Note that classical sparsity constraints mentioned above can
be written as a finite union of such fixed-supports constraints.

Sparse matrix factorization is difficult in general. Problem (6.1) is known to be
difficult in general, but even specific instances have been shown to be NP-hard.
On the one hand, Problem (6.1) with classical sparsity constraints and L = 2
factors is the sparse coding problem [93, 108], when the dictionary X1 is known
and the factor X2 is constrained to be k-sparse by column. This specific problem
is shown to be NP-hard in [108, Theorem 2.17]. On the other hand, even in the
case with L = 2 factors and fixed-support constraints, Problem (6.1) has been
recently shown to be NP-hard, without further assumptions on the prescribed
fixed supports [212].

Decomposition via square dyadic butterfly factorization. This chapter shows
that the particular choice of fixed-support constraint corresponding to the square
dyadic butterfly factorization makes Problem (6.1) both well-posed and tractable, in
the sense that Problem (6.1) in the noiseless setting admits a unique1 solution that
can be computed with an algorithm of polynomial complexity. Let us recall the
definition of these fixed-support constraints.

Definition 6.1 (Square dyadic butterfly supports). The square dyadic butterfly
supports of size n = 2L are Sβ := (Sπ1 , . . . , SπL) ∈ ({0, 1}n×n)L defined by:

Sπℓ
:= I2ℓ−1 ⊗ 12×2 ⊗ I2L−ℓ , 1 ≤ ℓ ≤ L. (6.2)

Definition 6.2 (Square dyadic butterfly matrix). A matrix A of size n = 2L

is a square dyadic butterfly matrix if it can be factorized exactly into L factors
(X1, . . . , XL) that have a support included in the square dyadic butterfly supports
Sβ := (Sπ1 , . . . , SπL), in the sense that:

A = X1 . . . XL, with (X1, . . . , XL) ∈ Σπ1 × . . .× ΣπL .

For this chapter we define:

Σβ := Σπ1 × . . .× ΣπL , with Σπℓ := ΣSπℓ ∀ℓ ∈ JLK. (6.3)

1up to unavoidable scaling ambiguities.
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Remark 6.1. The notations β, π, Σπ, Σβ will be used in Chapter 7 in a more general
context (cf. Definitions 7.2 and 7.3).

As illustrated in Figure 1.1 for the case with L = 4 factors, this fixed-support
constraint enforces the factors Xℓ ∈ Cn×n (n = 2L, ℓ ∈ JLK) to have at most two
nonzero entries per row and per column, with a structured sparsity pattern, in the
sense that in the sense that their support can be written as a Kronecker product.
Note that, up to some proper row and column permutations, each factor is block-
diagonal with 2× 2 dense submatrices.

Motivation for square dyadic butterfly factorization. As detailed in Section 4.5,
the square dyadic butterfly structure is interesting for machine learning and sig-
nal processing applications mainly for two reasons. First, finding the butterfly
factors Xℓ (ℓ ∈ JLK) from the product A := X1 . . . XL enables fast O(n log n)
matrix-vector multiplication by A. Indeed, there are L = log2(n) butterfly fac-
tors and the complexity of matrix-vector multiplication by each butterfly factor
Xℓ (ℓ ∈ JLK) is O(n), since Xℓ has at most 2n nonzero entries. Second, the square
dyadic butterfly factorization can be used to construct a generic expressive rep-
resentation for structured linear maps, in the sense that the matrices associated
with many structured matrices (such as the DFT or the Hadamard matrix) admit
exactly such a factorization.

Limits of first-order optimization methods. Previous methods [74] to address
Problem (6.1) with the constraints Xℓ ∈ Σπℓ for each ℓ ∈ JLK are based on first-
order optimization. However, since this problem is not convex, the previous
methods lack theoretical guarantees for finding the optimal solution, and their
performance is heavily dependent on initialization and hyperparameter tuning.

Contributions. This chapter shows that every tuple of factors (X1, . . . , XL) sat-
isfying the square dyadic butterfly constraint can be reconstructed with guarantee
by a polynomial algorithm from A := X1 . . . XL (see Algorithm 6.1). This algorithm
is associated with our identifiability results (see Theorem 6.1), which claims that
the factorization A := X1 . . . XL for any X1, . . . , XL satisfying the square dyadic
butterfly constraint is essentially unique up to natural scaling ambiguities. The al-
gorithm is inspired from previous butterfly algorithms [40,266,289], and is based
on a hierarchical approach [216] in which the target matrix is iteratively factorized
into two factors, until the desired number of sparse factors L is obtained. These
successive two-layer factorizations rely on a non-trivial application of the singu-
lar value decomposition (SVD) to compute best rank-one approximations of specific
submatrices, instead of iterative gradient descent steps. The total complexity of
the hierarchical algorithm isO(n2) where n is the size of A. This is of the same or-
der of magnitude as the complexity of matrix-vector multiplication, and needs to
be performed only once to enable O(n log n) matrix-vector multiplications with
the resulting factored representation of A.
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Novelty compared to previous butterfly algorithms. The proposed hierarchical
algorithm (Algorithm 6.1) is parameterized by a flexible so-called factor-bracketing
binary tree (cf. Definition 6.4 below) somehow describing the bracketing of factors
associated with their product. This tree defines the order in which the succes-
sive two-layers matrix factorizations are performed in the hierarchical approach.
Previous butterfly algorithms [250] only consider some specific choices factor-
bracketing tree to approximate the target matrix, while the proposed hierarchical
algorithm works for any factor-bracketing tree for the square dyadic butterfly fac-
torization. This allows us to identify a new balanced factor-bracketing tree that
has never been used previously, and has the benefit of allowing a parallelization
of the two-layer matrix factorization steps in the hierarchical approach for further
acceleration of the hierarchical algorithm.

Summary. The main contributions of this chapter are the following ones:

1. We show in Theorem 6.1 that enforcing the square dyadic butterfly structure
on the L sparse factors is sufficient to ensure a hierarchical identifiability prop-
erty, meaning that we can recover (up to natural scaling ambiguities) sparse
factors (Xℓ)

L
ℓ=1 from A := X1 . . . XL, using a new hierarchical factorization

algorithm described in Algorithm 6.1.

2. We introduce the notion of factor-bracketing bracketing tree and shows that
the new hierarchical algorithm can recover successfully the butterfly factors
using any hierarchical order.

3. We show that this algorithm has a time complexity of onlyO(n2) where n is
the size of A, which is of the order of a few dense matrix-vector multiplica-
tions, while the obtained factorizations enable fastO(n log n) matrix-vector
multiplications.

4. We illustrate this complexity by implementing2 Algorithm 6.1 using trun-
cated SVDs. We show numerically that the hierarchical algorithm outper-
forms gradient-based methods for square dyadic butterfly factorization.

Outline. Section 6.2 analyzes identifiability in the two-layer setting with fixed-
support constraint. Section 6.3 describes how the butterfly structure can ensure
the hierarchical identifiability of the sparse factors from their product. Section 6.4
discusses related work, and clarifies the difference of the new proposed hierar-
chical algorithm with previous butterfly algorithms. Section 6.5 presents some
numerical experiments about the recovery of the sparse butterfly factors from
their product; Section 6.6 discusses perspectives of this work. Appendix B gath-
ers technical proofs.

2Implementation available in the FAµST 3.25 toolbox (https://faust.inria.fr/).
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6.2. Identifiability in two-layer sparse matrix factorization

6.2 Identifiability in two-layer sparse matrix factor-
ization

In order to show hierarchical identifiability results, we first analyze identifiability
in two-layer sparse matrix factorization. Given a matrix A ∈ Cm×n, and a subset of
pairs of factors Σ ⊆ Cm×k ×Cn×k, the so-called exact matrix factorization problem
with two factors of A in Σ is:

find if possible (X, Y) ∈ Σ such that A = XY⊤. (6.4)

Uniqueness properties are studied in the exact setting, hence for the rest of the
section, we assume that A admits such an exact factorization.

We are interested in the particular problem variation where the constraint set
Σ encodes some chosen sparsity patterns for the factorization. For a given binary
matrix S ∈ {0, 1}m×k associated with a sparsity pattern, denote

ΣS := {M ∈ Cm×k | supp(M) ⊆ supp(S)}, (6.5)

which is the set of matrices with a support included in S.

Remark 6.2. By abuse of notation, throughout the thesis, the fixed-support constraint
supp(M) ⊆ supp(S) will sometimes simply be written as supp(M) ⊆ S.

A pair of sparsity patterns is written S := (Sleft, Sright), where Sleft and Sright
are the left and right sparsity patterns respectively, also referred to as a left and
a right (allowed) support. Given any pair of allowed supports represented by
binary matrices S := (Sleft, Sright) ∈ {0, 1}m×k × {0, 1}n×k, the set

ΣS := ΣSleft × ΣSright ⊆ Cm×k ×Cn×k (6.6)

is a linear subspace. Since the support of a matrix is unchanged under arbitrary
rescaling of its columns, ΣS is invariant by column scaling for any pair of supports
S. Uniqueness of a solution to (6.4) with such sparsity constraints will always be
considered up to unavoidable scaling ambiguities. Using the terminology from
the tensor decomposition literature [204], such a uniqueness property will be re-
ferred to as essential uniqueness.

Definition 6.3 (Essential uniqueness of a two-layer factorization in Σ). Let Σ
be a set of pairs of factors, and A be a matrix admitting a factorization A := XY⊤

such that (X, Y) ∈ Σ. This factorization is essentially unique in Σ, if any solution
(X̄, Ȳ) to (6.4) with A and Σ is equivalent to (X, Y), written (X̄, Ȳ) ∼ (X, Y), in the
sense that there is an invertible diagonal matrix D such that (X̄, Ȳ) =

(
XD, YD−1).

Remark 6.3. Another definition of essential uniqueness [204] involves permutation am-
biguity in addition to scaling ambiguity. Nevertheless, we only consider scaling ambigu-
ity in our definition of essential uniqueness, because all the fixed-support constraints ΣS
considered in this chapter remove this permutation ambiguity, as detailed in Remark 6.5
below.
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For any set Σ of pairs of factors, the set of all pairs (X, Y) ∈ Σ such that the
factorization A := XY⊤ is essentially unique in Σ is denoted U (Σ). In other
words, we define:

U (Σ) :=
{
(X, Y) ∈ Σ | ∀(X̄, Ȳ) ∈ Σ, X̄Ȳ⊤ = XY⊤ =⇒ (X̄, Ȳ) ∼ (X, Y)

}
. (6.7)

To characterize U (ΣS) for ΣS defined as in (6.6) with S any pair of supports, we
first establish a non-degeneration property, i.e., a necessary condition for identi-
fiability, involving the so-called column support. The column support, denoted
colsupp(M), is the subset of indices i ∈ JnK such that the i-th column of M is
nonzero. Define the set of pairs of factors with identical, resp. maximal, column
supports in ΣS as

ICS := {(X, Y) ∈ ΣS | colsupp(X) = colsupp(Y)}, (6.8)

MCS := {(X, Y) ∈ ΣS | colsupp(X) = colsupp(Sleft) and
colsupp(Y) = colsupp(Sright)}. (6.9)

Lemma 6.1. For any pair of supports S, we have: U (ΣS) ⊆ ICS ∩ MCS.

Remark 6.4. If colsupp(Sleft) ̸= colsupp(Sright), then the set U (ΣS) is empty.

In other words, if the factorization A := XY⊤ is essentially unique in ΣS,
then the left and right supports must have the same column support, and X, Y
do not have a zero column inside this column support. The proof is deferred to
Appendix B.1.

As the product XY⊤ is the sum of rank-one matrices ∑k
i=1 X[:, i]Y[:, i]⊤, the

lifting procedure [61, 212, 258] suggests to represent the pair (X, Y) by its k-tuple
of so-called rank-one contributions

φ(X, Y) :=
(

X[:, i]Y[:, i]⊤
)k

i=1
∈ (Cm×n)k. (6.10)

Indeed, one can identify, up to scaling ambiguities, the columns X[:, i], Y[:, i] from
their outer product C i := X[:, i]Y[:, i]⊤ (1 ≤ i ≤ k), as long as the rank-one contri-
bution C i is not zero.

Lemma 6.2 (Reformulation of [214, Chapter 7, Lemma 1]). Consider C the outer
product of two vectors a, b. If C = 0, then a = 0 or b = 0. If C ̸= 0, then a, b are
nonzero, and for any (a′, b′) such that a′b′⊤ = C , there exists a scalar λ ̸= 0 such
that a′ = λa and b′ = 1

λ b.

With this lifting approach, each support constraint S = (Sleft, Sright) is rep-
resented by the k-tuple of rank-one support constraints S = φ(Sleft, Sright) =
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(S i)
k
i=1. Thus, if (X, Y) ∈ ΣS ⊆ Cm×k ×Cn×k, then the k-tuple of rank-one matri-

ces φ(X, Y) ∈ (Cm×n)k belongs to the set:

ΓS :=
{
(C i)

k
i=1 | ∀i ∈ JkK, rank(C i) ≤ 1, supp(C i) ⊆ S i

}
⊆ (Cm×n)k. (6.11)

As explained in the general framework of [61] established to analyze identi-
fiability in bilinear inverse problems, the main advantage of this approach is to
remove the inherent scaling ambiguity, while preserving a one-to-one correspon-
dence between a pair of factors (X, Y) and its rank-one contributions representa-
tion φ(X, Y). Our work specializes this general framework to matrix factorization
problem with two factors and support constraints. Details about the lifting pro-
cedure for fixed-support two-layer matrix factorization are in Appendix B.2.

From this lifting procedure, we show that it is possible to derive a simple
necessary and sufficient condition for identifiability. Despite its simplicity, this
condition is the key to derive identifiability results in square dyadic butterfly
factorization using a hierarchical approach (cf. Lemma 6.5 below). The proof is
deferred to Appendix B.3. More conditions on fixed-support identifiability are
given in [214, 390].

Proposition 6.1. Assuming colsupp(Sleft) = colsupp(Sright) (which is natural by
Remark 6.4), U (ΣS) = ICS ∩ MCS if, and only if, the tuple φ(S) = (S i)

k
i=1 has

disjoint rank-one supports, i.e., supp(S i) ∩ supp(S j) = ∅ for every i ̸= j.

Remark 6.5. Following Remark 6.3, the assumption that φ(S) has disjoint rank-one
supports is sufficient to remove any potential permutation ambiguity in the factoriza-
tion A := XY⊤ in Σ for any (X, Y) ∈ ICS ∩ MCS, in the sense that: for any (X, Y) ∈
ICS ∩ MCS, any invertible diagonal matrix D and any permutation matrix P such that
(XDP, YD−1P) ∈ ΣS, P is necessarily the identity matrix. This is true because other-
wise, denoting (S i)

k
i=1 := φ(S), (C i)

k
i=1 := φ(X, Y) and noticing that φ(XDP, YD−1P)

is equal to (C i)
k
i=1 up to a permutation on the index i, there would exist two indices j ̸= j′

such that supp(C j) ⊆ supp(S j) and supp(C j) ⊆ supp(S j′) with supp(C j) ̸= ∅
(because (X, Y) ∈ ICS ∩ MCS), which would contradict supp(S j) ∩ supp(S j′) = ∅.

6.3 Hierarchical identifiability of square dyadic but-
terfly factors

The main contribution of the chapter is to establish some identifiability results
in the multi-layer sparse matrix factorization when the sparse factors are con-
strained to have the square dyadic butterfly supports (Definition 6.1). The so-
called square dyadic butterfly sparse matrix factorization problem is the following
special instance of (6.1):

min
X1,...,XL

∥A− X1 . . . XL∥F, such that (X1, . . . , XL) ∈ Σβ, (6.12)
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(a) Sπ1∗π2∗π3 (b) Sπ1∗π2 (c) Sπ2∗π3 (d) Sπ3∗π4

Figure 6.1: Examples of supports Sπr∗...∗πt defined by (6.14) (1 ≤ r ≤ t ≤ 4) of size n× n
with n = 16. Nonzero entries are in color, and zero entries are in white.

with Σβ defined as in (6.3).

Remark 6.6. As shown in [212, Remark A.1], there exists a support constraint S =

(Sleft, Sright) and a matrix A such that: (a) A cannot be written exactly as A = XY⊤

for any (X, Y) ∈ ΣS; (b) A can be approximated arbitrarily well by such a product, i.e.,
0 = inf(X,Y)∈ΣS ∥A− XY⊤∥F. This corresponds to a lack of closure of the set {XY⊤ :
(X, Y) ∈ ΣS} for general S. Fortunately this pathological behavior does not happen here
because of the specific choice of the support constraint Σβ corresponding to the square
dyadic butterfly factorization: we will show that an optimum for Problem (6.12) always
exists for any target matrix A, as it will be discussed in Chapter 7 with more details
(cf. Corollary 7.3).

Due to the structure of the sparsity patterns in the square dyadic butterfly
factorization, we can show that, for any (X1, . . . , XL) ∈ Σβ, the partial product of
any consecutive factors Xr . . . Xt (1 ≤ r ≤ t ≤ L) have a very precise structure
encoded by the support Sπr∗...∗πt as detailed in the following lemma.

Lemma 6.3. Let Sβ := (Sπ1 , . . . , SπL) be the square dyadic butterfly supports of size
n = 2L. Then, for (Xℓ)

L
ℓ=1 ∈ Σβ, for any 1 ≤ r ≤ t ≤ L:

supp(Xr . . . Xt) ⊆ supp(Sπr∗...∗πt), (6.13)

where Sπr∗...∗πt := I2r−1 ⊗ 12t−r+1×2t−r+1 ⊗ I2L−t ∈ {0, 1}n×n. (6.14)

Remark 6.7. The proof of the lemma is deferred to Chapter 7, because it is a special case
of a more general result (cf. Proposition 7.1). The notation ∗ will be used for a precise
meaning in this more general context. Intuitively, viewing matrix supports as binary
matrices, one can verify that Sπr∗...∗πt = Sπr . . . Sπt for 1 ≤ r ≤ t ≤ L. Figure 6.1
illustrates this structure on some examples of size n = 16.

Importantly, this lemma allows for a hierarchical approach to address Problem
(6.12), as we now explain.
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6.3.1 Hierarchical matrix factorization method

Assume that the target matrix A in Problem (6.12) admits exactly a square dyadic
butterfly factorization, i.e., A = X1 . . . XL for some (Xℓ)

L
ℓ=1 ∈ Σβ. The goal is

to recover, up to some unavoidable scaling ambiguities, each butterfly factor Xℓ

for ℓ ∈ JLK, only from the observation of A. We will show that it is possible via
a hierarchical approach [216]: instead of directly optimizing Problem (6.12) over
the L factors, the hierarchical matrix factorization method is a heuristic approach
that performs successive two-layer matrix factorizations, until L sparse factors are
obtained. Let us illustrate this approach in the following inductive procedure.

Step ℓ = 1: Recover (up to scaling ambiguities) the factors (X1, X2 . . . XL) by solv-
ing the minimization problem

min
X,Y
∥A− XY∥F such that

{
supp(X) ⊆ Sπ1

supp(Y) ⊆ Sπ2∗...∗πL

. (6.15)

Step ℓ ∈ {2, . . . , L− 1}: Assuming that we have recovered (up to scaling ambi-
guities) the partial product Xℓ . . . XL from the previous step, recover (up to
scaling ambiguities) the factors (Xℓ, Xℓ+1 . . . XL) by solving the minimiza-
tion problem

min
X,Y
∥Xℓ . . . XL − XY∥F such that

{
supp(X) ⊆ Sπℓ

supp(Y) ⊆ Sπℓ+1∗...∗πL

. (6.16)

The choice of the support constraints on (X, Y) in the optimization problems
(6.15) and (6.16) is motivated by Lemma 6.3, because it is assumed that (Xℓ)

L
ℓ=1 ∈

Σβ. If the recovery at each step ℓ ∈ JL − 1K is successful, then the hierarchi-
cal strategy indeed recovers the factors (Xℓ)

L
ℓ=1 (up to scaling ambiguities) from

the observation of A. We will show in the following that the recovery is indeed
successful at each step ℓ ∈ JL− 1K, by applying identifiability results from Sec-
tion 6.2.

Generalization to arbitrary hierarchical order. In the previous paragraph, the
recovery of the butterfly factors (Xℓ)

L
ℓ=1 in a hierarchical manner was performed

in the left-to-right order, in the sense that it recovers sequentially the pair of factors
(Xℓ, Xℓ+1 . . . XL) for ℓ = 1, . . . , L− 1. But the the hierarchical factorization method
can be generalized to other factorization orders: for instance, in the case of four
factors X1, . . . , X4 of size 16× 16, one can instead factorize A := X1X2X3X4 into
X1X2 and X3X4 at the first level, then X1X2 into X1, X2, and finally X3X4 into X3, X4.
Let us formally introduce a tree structure that describes the factorization order in
the hierarchical method.
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(a) Arbitrary (b) Balanced (c) Symmetric (d) Unbalanced

Figure 6.2: Four possible factor-bracketing binary trees of JLK, L = 8, that can serve as
input to Algorithm 6.1. NB: the algorithm is applicable to any number of factors L (not
only L = 8).

Definition 6.4 (Factor-bracketing binary tree). A factor-bracketing binary tree
of Jr, tK, with 1 ≤ r ≤ t, is a binary tree, where nodes are non-empty subsets of Jr, tK,
that satisfies the following axioms:

1. each node is a subset of consecutive indices in Jr, tK;

2. the root is the set Jr, tK;

3. a node is a singleton if, and only if, it is a leaf;

4. for each non-leaf node, the left and right children form a partition of their parent,
in such a way that the indices of the left child are smaller than those in the right
child.

Such a tree has t− r non-leaf nodes.

Examples of factor-bracketing binary trees are illustrated in Figure 6.2. As we
will see, the proposed hierarchical algorithm works with any factor-bracketing
tree.

Description of the hierarchical algorithm (Algorithm 6.1). Given as inputs a
factor-bracketing binary tree T of JLK and any target matrix A, Algorithm 6.1
visits the nodes of T in a breadth-first search order, starting by the root node.
At each non-leaf node Jr, tK ⊆ JLK characterized by its so-called splitting index
s, which is the maximum value of its left child, Algorithm 6.2 approximates an
intermediate matrix MJr,tK by a product MJr,sKMJs+1,tK, where the left and right
factor satisfy the support constraints encoded by S := (Sπr∗...∗πs , Sπs+1∗...∗πt

⊤),
cf. line 7 of Algorithm 6.2. The procedure for computing these two factors is
described in Algorithm 6.3, and is proved to be optimal in [212] in the sense that
∥MJr,tK − XY⊤∥2

F is minimized among all X, Y satisfying the support constraints
S. In essence, denoting (S i)

n
i=1 := φ(S), the procedure consists of successive best
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Algorithm 6.1 Hierarchical algorithm for square dyadic butterfly factorization,
size n = 2L.
Require: A ∈ Cn×n, T factor-bracketing tree of JLK
Ensure: (Xℓ)

L
ℓ=1 ∈ Σβ (cf. Definition 6.2)

1: (Xℓ)
L
ℓ=1 ← Algorithm 6.2(A, T )

2: return (Xℓ)
L
ℓ=1

Algorithm 6.2 Hierarchical step for indices 1 ≤ r ≤ t ≤ L in the square dyadic
butterfly factorization of size n = 2L.

Require: MJr,tK ∈ Cn×n, factor-bracketing tree TJr,tK of {r, . . . , t}
Ensure: (X̄r, . . . , X̄t) ∈ Σπr × · · · × Σπt

1: if r = t then
2: return

(
MJr,tK

)
3: end if
4: s←maximum value in the left child of the root of TJr,tK
5: TJr,sK, TJs+1,tK ← left and right subtrees of the root of TJr,tK
6: Sπr∗...∗πs , Sπs+1∗...∗πt ← supports defined by (6.14)

7: MJr,sK, MJs+1,tK
⊤ ← Algorithm 6.3

(
MJr,tK, Sπr∗...∗πs , Sπs+1∗...∗πt

⊤
)

8: (X̄r, . . . , X̄s)← Algorithm 6.2
(
MJr,sK, TJr,sK

)
9: (X̄s+1, . . . , X̄t)← Algorithm 6.2

(
MJs+1,tK, TJs+1,tK

)
10: return (X̄r, . . . , X̄s, X̄s+1, . . . , X̄t)

rank-one approximations (in the Frobenius norm) of submatrices MJr,tK ⊙ S i for
each i ∈ JnK (line 3 of Algorithm 6.3), which can be computed for instance via a
truncated SVD.

Moreover, we will show that S satisfies the condition of Proposition 6.1, mean-
ing that if the intermediate matrix MJr,tK is exactly the product of two factors sat-
isfying the support constraint S, then these two factors are essentially unique, and
are recovered by Algorithm 6.3 because of its optimality for the corresponding
minimization problem.3 The hierarchical procedure is then repeated recursively
on MJr,sK and MJs+1,tK, with their respective trees.

Remark 6.8. One can exploit Algorithm 6.1 beyond the exact setting to approximate
any matrix A of size 2L by a matrix having the square dyadic butterfly structure. The
procedure in Algorithm 6.3 for two-layer fixed-support matrix factorization is optimal
for the corresponding minimization problem [212]. But since this procedure is used in a
recursive greedy fashion in Algorithm 6.1, global optimality of the resulting multi-layer
factorization is not necessarily guaranteed. The stability of the hierarchical algorithm
beyond exact recovery is studied in Chapter 7.

3More precisely, we assume MJr,tK ∈ ICS ∩ MCS.
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Algorithm 6.3 Fixed-support matrix factorization under assumptions of Proposi-
tion 6.1 [212, Algorithm 3.1].

Require: A ∈ Cm×n, Sleft ∈ {0, 1}m×k, Sright ∈ {0, 1}n×k

Ensure: (X, Y) ∈ ΣSleft × ΣSright

1: (S i)
n
i=1 ← φ

(
Sleft, Sright

)
as in (6.10) ▷ pairwise disjoint by assumption

2: for i ∈ JkK do
3: (x̂i, ŷi)← arg minxi,yi

{
∥A⊙ S i − xiyi

⊤∥F, | supp(xiyi
⊤) ⊆ S i

}
4: end for
5: X← (x̂1, . . . , x̂r) ∈ Cm×k

6: Y← (ŷ1, . . . , ŷr) ∈ Cn×k

7: return (X, Y)

6.3.2 Uniqueness of the square dyadic butterfly factorization

As the main contribution of the chapter, we now show that the exact factorization
A = X1 . . . XL into L factors constrained to the square dyadic butterfly supports
is essentially unique, and that these factors can be recovered by Algorithm 6.1.
Let us first generalize Definition 6.3 to the multi-layer case with L ≥ 3.

Definition 6.5 (Essential uniqueness of a multi-layer factorization in Σ). Con-
sider integers n0, . . . , nL, a set Σ ⊆ Cn0×n1 × . . .×CnL−1×nL of L-tuples of factors,
and a matrix A admitting a factorization A := X1 . . . XL such that (Xℓ)

L
ℓ=1 ∈ Σ.

We say that this factorization is essentially unique in Σ, if any (X̄1, . . . , X̄L) ∈ Σ
such that X̄1 . . . X̄L = A is equivalent to (X1, . . . , XL), written (Xℓ)

L
ℓ=1 ∼ (X̄ℓ)

L
ℓ=1,

in the sense that there exist invertible diagonal matrices D1, . . . , DL−1 such that
X̄ℓ = Dℓ−1

−1XℓDℓ for all ℓ ∈ JLK, with the convention that D0 and DL are identity
matrices.

Theorem 6.1 (Essential uniqueness of square dyadic butterfly factorization).
Consider Sβ the square dyadic butterfly supports of size n = 2L and (X1, . . . , XL) ∈
Σβ. Assume that Xℓ does not have a zero column for 1 ≤ ℓ ≤ L− 1, and not a zero
row for 2 ≤ ℓ ≤ L.
Then, the factorization A := X1 . . . XL is essentially unique in Σβ. These factors
can be recovered from A, up to scaling ambiguities only, using Algorithm 6.1 with
inputs (A, T ), where T is any factor-bracketing tree of JLK.

In other words, Algorithm 6.1 is endowed with exact recovery guarantees. In
particular, Theorem 6.1 can be applied to show identifiability of the square dyadic
butterfly factorization of the DFT matrix as suggested in [214, Chapter 7], but also
the one of the Hadamard matrix. In both cases, the butterfly factors of the DFT
or the Hadamard matrix can be recovered up to scaling ambiguities via Algo-
rithm 6.1 with any factor-bracketing binary tree of JLK as input. Before proving
Theorem 6.1, we show that Algorithm 6.1 has controlled complexity bounds.

116



6.3. Hierarchical identifiability of square dyadic butterfly factors

6.3.3 Complexity bounds

Existing algorithms for square dyadic butterfly factorization [74, 216] are based
on gradient descent, and as such they require to tune several criteria such as the
learning rate or the stopping criteria. In contrast, Algorithm 6.1 has a bounded
complexity as it essentially consists in a controlled number of truncated SVDs to
compute rank-one approximations of submatrices. While the full SVD of a matrix
of size m× n would require O(mn min(m, n)) flops, partial SVD with numerical
rank k requires only O(kmn) flops (see e.g. [153] and references therein). Hence,
in our complexity analysis of Algorithm 6.1, the theoretical complexity of com-
puting the best rank-one approximation of a matrix of size m× n will be O(mn).
Below we estimate and compare the complexity for two types of factor-bracketing
binary trees.

Unbalanced tree (left-to-right or right-to-left). First we consider running Algo-
rithm 6.1 with a matrix A of size n× n, n = 2L (L ≥ 2), and the left-to-right unbal-
anced factor-bracketing binary tree T of JLK (defined as the factor-bracketing bi-
nary tree where the left child of each non-leaf node is a singleton, see Figure 6.2d)
as inputs. There are in total L − 1 non-leaf nodes in this tree. At the non-leaf
node of level ℓ ∈ {0, . . . , L − 2}, the algorithm computes the best rank-one ap-
proximation of n submatrices of size 2× n/2ℓ+1, which yields a cost of the order
of n × (2 × n/2ℓ+1) = n2/2ℓ. Hence, the total cost of Algorithm 6.1 with the
unbalanced factor-bracketing binary tree is of the order of:

L−2

∑
ℓ=0

n2

2ℓ
= 2

(
1− 2−L+1

)
n2 = 2

(
1− 2

n

)
n2 = O(n2).

Similarly, the complexity is O(n2) when best rank-one approximations are com-
puted with full SVDs (see Appendix B.4). The complexity bounds are the same
for the analog right-to-left unbalanced tree.

Balanced tree. Consider now Algorithm 6.1 with an n × n matrix A, n = 2L

where L is also a power of 2, and the balanced factor-bracketing binary tree T
of JLK (i.e., all children of each non-leaf node have the same cardinality, see Fig-
ure 6.2b). At each non-leaf node of level ℓ ∈ {0, . . . , log2(L)− 1}, the best rank-
one approximation of n square submatrices of size

√
n1/2ℓ is computed, at a cost

of the order of n× (
√

n1/2ℓ ×
√

n1/2ℓ) = n× n1/2ℓ . At each level ℓ ∈ J0, log2(L)−
1K, there are 2ℓ nodes. As 2ℓ ≤ L/2 = log2(n)/2, the total cost of Algorithm 6.1 is
of the order of:

log2(L)−1

∑
ℓ=0

2ℓn× n1/2ℓ = n2 +
log2(L)−1

∑
ℓ=1

2ℓn1+1/2ℓ

≤ n2 +
log2(log2(n))−1

∑
ℓ

log2(n)
2

n3/2 = O(n2).
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This contrasts with the complexityO(n5/2) when using full SVDs, see Appendix B.4
for more details.

Discussion. The complexity of Algorithm 6.1 is of the same order of magnitude
as that of matrix-vector multiplications of size n × n, which is O(n2). Assume
that we want to compute the product AB, where A, B are of size n × n, and A
admits the butterfly structure. The naive computation requires O(n3). But the
data-sparse representation of A as a product of butterfly factors can be recov-
ered by Algorithm 6.1 in O(n2), in order to enable fast O(n log n) matrix-vector
multiplication [74]. In other words, this method allows a computation of AB in
O(n2 log n) complexity only, instead of O(n3).

This quadratic complexity is the typical complexity of previous butterfly algo-
rithms [289], without considering any randomized algorithm for low-rank approxi-
mation [99, 153] as proposed in [234]. See Section 3.6 for more details.

Finally, it is possible to implement Algorithm 6.1 in a distributed fashion. In-
deed, the computation of the best rank-one approximation of each submatrix at
line 3 of Algorithm 6.3 can be performed in parallel: in the setting with T threads,
each thread computes the best rank-one approximation of ⌊n/T⌋ submatrices.
Moreover, when running Algorithm 6.1 with a balanced factor-bracketing binary
tree, the implementation can be further parallelized, since the factorization at
each node of the same level can be performed by independent threads.

6.3.4 Proof of uniqueness (Theorem 6.1)

This subsection is dedicated to the proof of Theorem 6.1. It is technical and the
reader can skip this part on a first reading. In order to prove Theorem 6.1, con-
sider (X1, . . . , XL) ∈ Σβ satisfying the square dyadic butterfly constraint. These
factors are assumed to verify the assumption of Theorem 6.1. For any 1 ≤ r ≤
t ≤ L, denote XJr,tK := Xr . . . Xt, and A := XJ1,LK = X1 . . . XL. Fix any factor-
bracketing binary tree T of JLK. Given A and T as the inputs of Algorithm 6.1,
we write MJr,tK the intermediate matrix obtained at each node Jr, tK of T from the
hierarchical factorization procedure. The proof is now separated into two steps.

1. We prove that Algorithm 6.1 recovers the butterfly factors (X1, . . . , XL) from
A, up to scaling ambiguities.

2. We prove that the butterfly factorization A = X1 . . . XL is indeed essentially
unique in the sense of Definition 6.5.

(1) The algorithm recovers the butterfly factors

Overview. The proof of the first part consists in conducting an induction over
the non-leaf nodes N1, . . . , NL−1 of the tree, ordered in a breadth-first-search or-
der. The general idea is to show that Algorithm 6.1 reconstructs recursively from
A the partial products XJr,tK up to scaling ambiguities at each node Jr, tK of the
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tree T . To that end, we need to prove a crucial lemma (Lemma 6.4) that essen-
tially reduces the analysis of the multi-layer factorization to the case with only
two factors. Then, the proof of Lemma 6.4 itself relies on two key ingredients
about optimality (Proposition 6.2) and essential uniqueness (Proposition 6.3) of the
considered two-layer factorization problem.

For each v ∈ JL− 1K, denote rv, tv the minimum and maximum index of node
Nv = Jrv, tvK, and sv as the “splitting” index of node Nv, which is the maximum
value of its left child. In the proof we will use the following consequence of the
breadth-first-search order.

Remark 6.9. For any u ∈ {2, . . . , L − 1}, the node Nu = Jru, tuK is a child of some
node Nv = Jrv, svK∪ Jsv + 1, . . . , tvK with v ∈ Ju− 1K. If Nu is the left child of Nv, then
(ru, tu) = (rv, sv). If Nu is the right child of Nv, then (ru, tu) = (sv + 1, tv).

Proof by induction. Define for any V ∈ JL− 1K, the assertion PV : “there exist
invertible diagonal matrices Ds1 , . . . , DsV such that, for each v ∈ JVK, we have:
MJrv,svK = Drv−1

−1XJrv,svKDsv and MJsv+1,tvK = Dsv
−1XJsv+1,tvKDtv”, with the con-

vention4 D0 = DL = In.
The principle of the proof is to show PV by induction for all V ∈ JL − 1K. In

particular, proving PL−1 yields our claim, as we now explain. Indeed, any leaf
node {ℓ} is either a left child or a right child of a non-leaf node Nv = {rv, . . . , tv}
with v ∈ JL− 1K. In the case of a left child, {ℓ} = {rv, . . . , sv} hence ℓ = rv = sv,
and in the other case {ℓ} = {sv + 1, . . . , tv} hence ℓ = sv + 1 = tv. In both
cases assertion PL−1 implies that MJℓ,ℓK = Dℓ−1

−1XJℓ,ℓKDℓ = Dℓ−1
−1XℓDℓ, hence

(MJℓ,ℓK)
L
ℓ=1 ∼ (Xℓ)

L
ℓ=1, meaning that the algorithm recovers the butterfly factors

up to scaling ambiguities only.

Crucial lemma. The following lemma is central in the proof by induction.

Lemma 6.4. Under the assumptions of Theorem 6.1, consider V ∈ JL− 1K and as-
sume that there are invertible diagonal matrices DrV−1 and DtV such that MJrV ,tVK =

DrV−1
−1XJrV ,tVKDtV .

Then the pair (MJrV ,sVK, MJsV+1,tVK
⊤) computed at line 7 of Algorithm 6.2 such that

the product MJrV ,sVKMJsV+1,tVK approximates MJrV ,tVK is equal (up to scaling ambi-
guities) to the pair (X̄, Ȳ) where

X̄ := DrV−1
−1XJrV ,sVK, Ȳ⊤ := XJsV+1,tVKDtV .

4Remark that for any v ∈ JVK the node Nv = {rv, . . . , tv} is either the root node (when v = 1)
or a child of a node nw with w < v. In the latter case, by Remark 6.9, either (rv, tv) = (rw, sw), or
(rv, tv) = (sw + 1, tw), with w ∈ Jv− 1K ⊆ JVK. In other words, rv − 1, sv, tv ∈ {0, s1, . . . , sV , L} for
all v ∈ JVK, meaning that the diagonal matrices Drv−1, Dsv and Dtv used in the definition of PV
above are well defined.
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Indeed, since MJr1,t1K = A = XJr1,t1K and since Dr1−1 = Dt1 = In (recall that
r1 = 1 and t1 = L), this lemma applied to V = 1 shows that P1 is true. This starts
the induction, and we now show that the lemma can similarly be used to proceed
to the induction. Assume that PV−1 is true where V ∈ J2, L − 1K and consider
Ds1 , . . . , DsV−1 the corresponding invertible diagonal matrices. By Remark 6.9, the
parent of node NV is necessarily some node Nv with v ∈ JV − 1K and, depending
on whether NV is a left or right child of Nv, we have either NV = Jrv, svK or
NV = Jsv + 1, tvK. Without loss of generality assume the former (the proof is
similar if we suppose the latter) so that (rV , tV) = (rv, sv). Since PV−1 is true
we have that MJrV ,tVK = MJrv,svK = Drv−1

−1XJrv,svKDsv = DrV−1
−1XJrV ,tVKDtV . By

Lemma 6.4, there exists an invertible diagonal matrix DsV such that MJrV ,sVK =

DrV−1
−1XJrV ,sVKDsV and MJsV+1,tVK = DsV

−1XJsV+1,tVKDtV , which proves PV .

Proving the crucial lemma. We now focus on the proof of Lemma 6.4. It relies
on two key ingredients formulated in Proposition 6.2 and Proposition 6.3 below.
They are both derived from the following property of the square dyadic butterfly
supports, proved in Appendix B.5.

Lemma 6.5. Given 1 ≤ r ≤ s < t ≤ L, denoting Sleft := Sπr∗...∗πs and Sright :=
Sπs+1∗...∗πt

⊤ where we recall (6.14), the tuple of rank-one supports φ
(
Sleft, Sright

)
has

disjoint rank-one supports.

The first consequence of this property is the following optimality result.

Proposition 6.2 (Application of [212, Theorem 3.3]). Denote
S := (Sπr∗...∗πs , Sπs+1∗...∗πt

⊤). For arbitrary matrix M, the procedure
PAIRWISEDISJOINTFSMF(M, Sπr∗...∗πs , Sπs+1∗...∗πt

⊤) described in Algo-
rithm 6.3 computes in polynomial time a pair of factors solving the problem:
min(X,Y)∈ΣS ∥M− XY⊤∥F.

The second consequence is that it allows a characterization of the set U (ΣS)

when S := (Sπr∗...∗πs , Sπs+1∗...∗πt
⊤).

Lemma 6.6. Denote S = (Sleft, Sright) := (Sπr∗...∗πs , Sπs+1∗...∗πt
⊤). We have

U
(

ΣS
)
=
{
(X, Y) ∈ ΣS | colsupp(X) = colsupp(Y) = JnK

}
.

Proof. By Proposition 6.1, U
(
ΣS) = ICS ∩ MCS. Since

colsupp(Sleft) = colsupp(Sright) = JnK,

by definition of ICS and MCS, cf. (6.8)-(6.9), we have (X, Y) ∈ ICS ∩ MCS if, and only
if, colsupp(X) = colsupp(Y) = JnK.
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Recall that the factors (X1, . . . , XL) verify the assumption of Theorem 6.1, i.e.,
Xℓ does not have a zero column for 1 ≤ ℓ ≤ L− 1, and not a zero row for 2 ≤ ℓ ≤
L. As claimed in the following lemma proved in Appendix B.6, this assumption
is in fact a necessary and sufficient condition to ensure that each pair of partial
products (XJr,sK, XJs+1,tK

⊤) with 1 ≤ r ≤ s < t ≤ L is non-degenerate (in the sense
that the left and right factor do not have a zero column).

Lemma 6.7. Let Sβ be the square dyadic butterfly supports of size n = 2L, and
(X1, . . . , XL) ∈ Σβ. The following are equivalent:

1. for each 1 ≤ r ≤ s < t ≤ L, XJr,sK := Xr . . . Xs does not have a zero column,
and XJs+1,tK := Xℓ+1 . . . Xt does not have a zero row;

2. Xℓ does not have a zero column for 1 ≤ ℓ ≤ L − 1, and not a zero row for
2 ≤ ℓ ≤ L.

Consequently, we obtain the second key ingredient for the proof of Lemma 6.4.

Proposition 6.3. Assume that (X1, . . . , XL) ∈ Σβ verifies the hypothesis of The-
orem 6.1. Let 1 ≤ r ≤ s < t ≤ L. Denote S := (Sπr∗...∗πs , Sπs+1∗...∗πt

⊤).
Then, for any invertible diagonal matrices D, D̄, denoting X̄ := D−1XJr,sK and

Ȳ := (XJs+1,tKD̄)⊤, the factorization D−1XJr,tKD̄ = X̄Ȳ⊤ into two factors (X̄, Ȳ)
is essentially unique in ΣS.

Proof. By Lemma 6.3, (XJr,sK, XJs+1,tK
⊤) ∈ ΣS. By Lemma 6.7 and the assump-

tion on the factors Xℓ (ℓ ∈ JLK), the matrices XJr,sK and XJs+1,tK
⊤ do not have

a zero column. The same is true for D−1XJr,sK and D̄XJs+1,tK
⊤, as the multipli-

cation of a matrix by D−1 or D̄ does not change its support. By Lemma 6.6,
(D−1XJr,sK, D̄XJs+1,tK

⊤) ∈ U (ΣS).

We now have all the ingredients to prove the crucial Lemma 6.4, which ends
the inductive proof of the first part of Theorem 6.1 showing that Algorithm 6.1 re-
covers the butterfly factors (Xℓ)

L
ℓ=1 from A = X1 . . . XL, up to scaling ambiguities.

Proof of Lemma 6.4. Since XJrV ,tVK = XJrV ,sVKXJsV+1,tVK, we can factorize the matrix

MJrV ,tVK = DrV−1
−1XJrV ,tVKDtV as MJrV ,tVK = X̄Ȳ⊤, with X̄ := DrV−1

−1XJrV ,sVK,
Ȳ := (XJsV+1,tVKDtV )

⊤. By Lemma 6.3, (X̄, Ȳ) ∈ ΣS where

S := (SπrV ∗...∗πsV
, SπsV+1∗...∗πtV

⊤).

By Proposition 6.2, the factors (MJrV ,sVK, MJsV+1,tVK
⊤) ∈ ΣS computed at line 7

of Algorithm 6.2 minimize the optimization problem: min(X,Y)∈ΣS ∥MJrV ,tVK −
XY⊤∥F. Since MJrV ,tVK = X̄Ȳ⊤ with (X̄, Ȳ) ∈ ΣS, this minimum is zero hence
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the computed pair satisfies MJrV ,tVK = MJrV ,sVKMJsV+1,tVK. By Proposition 6.3,

the factorization MJrV ,tVK = X̄Ȳ⊤ into two factors is essentially unique in ΣS, so
(MJrV ,sVK, MJsV+1,tVK

⊤) ∼ (X̄, Ȳ).

(2) The factorization is essentially unique

We now show that the factorization A = X1 . . . XL is essentially unique in Σβ (Def-
inition 6.5). To that end, consider the factors (MJℓ,ℓK)

L
ℓ=1 computed using Algo-

rithm 6.1 with A as input, as well as arbitrary factors (X̄ℓ)
L
ℓ=1 ∈ Σβ such that

X̄1 . . . X̄L = A. We will show that (X̄ℓ)
L
ℓ=1 verifies the assumptions of Theo-

rem 6.1: this will imply that (MJℓ,ℓK)
L
ℓ=1 is rescaling-equivalent both to (Xℓ)

L
ℓ=1

and to (X̄ℓ)
L
ℓ=1, hence, by transitivity, (Xℓ)

L
ℓ=1 ∼ (X̄ℓ)

L
ℓ=1 as claimed.

Denote X̄Jr,tK := X̄r . . . X̄t for any 1 ≤ r ≤ t ≤ L. For any ℓ ∈ JL− 1K, we have

XJ1,ℓKXJℓ+1,LK = A = X̄J1,ℓKX̄Jℓ+1,LK. By Lemma 6.3, (X̄J1,ℓK, X̄Jℓ+1,LK
⊤
) ∈ ΣS where

S := (Sπ1∗...∗πℓ
, Sπℓ+1∗...∗πL

⊤). Besides, by assumption and by Lemma 6.7, XJ1,ℓK

and XJℓ+1,LK
⊤ do not have a zero column, so by Lemma 6.6, (XJ1,ℓK, XJℓ+1,LK

⊤) ∈
U (ΣS). By definition of the set U (ΣS), (X̄J1,ℓK, X̄Jℓ+1,LK

⊤
) ∼ (XJ1,ℓK, XJℓ+1,LK

⊤).
Since XJ1,ℓK and XJℓ+1,LK

⊤ do not have a zero column, this implies that X̄J1,ℓK and

X̄Jℓ+1,LK
⊤ also do not have a zero column. Consequently, X̄ℓ does not have a zero

column (otherwise X̄J1,ℓK would have a zero column) and similarly X̄ℓ+1 does not
have a zero row. As this holds for any ℓ ∈ JL− 1K, (X̄ℓ)

L
ℓ=1 verifies the assumption

of Theorem 6.1. This ends the proof of Theorem 6.1.

6.4 Related work

We now discuss the positioning of the proposed hierarchical algorithm with re-
spect to previous butterfly algorithms. We also review some existing work on
identifiability in multilinear inverse problems.

Similarities with previous butterfly algorithms. The proposed hierarchical al-
gorithm (Algorithm 6.1) that comes with the identifiability result (Theorem 6.1)
can be seen as a variant of butterfly algorithms [40, 234, 266, 289] detailed in Chap-
ter 3, because of the following correspondences:

1. The best rank-one approximations performed each step of the hierarchical
algorithm (Algorithm 6.1) corresponds to the core step of the butterfly al-
gorithm described in Section 3.5.1 that computes column bases {UR,C}R,C
and row bases {VR,C}R,C in order to approximate a family of some specific
submatrices by UR,CVR,C

⊤ for each subset of row and columns indices R, C.

2. The best rank-one approximations of the hierarchical algorithm are repeated
recursively on the left and right factors obtained after each two-layer sparse
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matrix factorization (cf. Algorithm 6.1), which corresponds, e.g., to the in-
duction step of the butterfly algorithm that continues to perform low-rank
approximation on some specific concatenation of column bases

(
UR,C1 UR,C2

)
,

as described in Section 3.5.1.

One the one hand, previous butterfly algorithms [40,234,266,289] decompose
the target matrix assuming that it satisfies the complementary low-rank prop-
erty [234], as shown in Section 3.5. One the other hand, the proposed hierarchical
algorithm (Algorithm 6.1) assumes that the target matrix admits a sparse factoriza-
tion with some specific fixed-support constraints on the sparse factors, as illustrated in
Figure 1.1. As detailed in Chapter 7, these two assumptions are in fact equivalent
(cf. Corollary 7.2), which explains the similarity of the hierarchical algorithm (Al-
gorithm 6.1) to previous butterfly algorithms [234]. However, this characteriza-
tion is not straightforward, and to the best of our knowledge, such an equivalence
has never been formally stated. Therefore, we will give a formal characterization
of butterfly matrices using the complementary low-rank property in Chapter 7.

Novelties compared to previous butterfly algorithms. Yet, the proposed hier-
archical algorithm (Algorithm 6.1) for square dyadic butterfly factorization pos-
sesses several novelties compared to previous butterfly algorithms [234]. First,
the hierarchical algorithm comes with exact recovery guarantees for identifying the
sparse butterfly factors from their product, which allows us to prove essential
uniqueness of the square dyadic butterfly factorization (Theorem 6.1). Second,
the hierarchical algorithm (Algorithm 6.1) works for any factor-bracketing trees.
This generalizes existing butterfly algorithms [234,250] that only consider specific
hierarchical orders:

• The hierarchical order in the so-called rowwise butterfly factorization [40,
266, 289, 341] corresponds to the right-to-left factor-bracketing tree (defined
as the binary tree where the right child of each non-leaf node is a singleton).

• The so-called columnwise butterfly factorization [250] corresponds to the
analog left-to-right factor-bracketing tree (each left child is a singleton, which
corresponds to the unbalanced tree illustrated in Figure 6.2d).

• The hybrid butterfly factorization [234, 250] corresponds to the symmetric
factor-bracketing tree, which is the tree T illustrated in Figure 6.2c and de-
fined for an even integer L as follows: (a) the children of the root node are
J1, L/2K and JL/2+ 1, LK; (b) in the left (resp. right) subtree of the root of T ,
every right (resp. left) child of a non-leaf node is a singleton.

To the best of our knowledge, the balanced factor-bracketing tree (Figure 6.2b),
defined for an integer L that is a power of two and constructed recursively in
such a way that the children of the same parent have the same cardinal, has never
been proposed in previous butterfly algorithms. Such a hierarchical order allows
a parallelization of the proposed hierarchical algorithm.
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Identifiability in multilinear inverse problems. The construction of the hier-
archical algoritm (Algorithm 6.1) is based on an analysis of identifiability, i.e., es-
sential uniqueness, in square dyadic butterfly factorization. Many identifiability
results in multilinear inverse problems are derived from the so-called lifting pro-
cedure [61, 62, 230, 258, 259]. This procedure was originally used in the PhaseLift
method [41,42,226] to address the phase retrieval problem. Other bilinear inverse
problems, like blind-deconvolution [4,12,61,194,228–230] or self-calibration [242],
have also been addressed using the lifting procedure. A general framework to an-
alyze identifiability for any bilinear inverse problem has been given in [61]. Fol-
lowing the work from [214, Chapter 7], our analysis of identifiability in the case
with L = 2 factors is a specialization of this general lifting procedure to the ma-
trix factorization problem with support constraints. Identifiability results for L ≥ 3
are more challenging as the usual lifting procedure from bilinear inverse prob-
lems cannot be directly leveraged. This multi-layer setting requires extending
this procedure using a so-called tensorial lifting [257–259]. However, due to this
multi-layer structure, conditions obtained via tensorial lifting might be difficult
to verify in practice, although stable recovery conditions for convolutional linear
networks have been derived [257, 259]. In contrast, our work proves identifiabil-
ity results in matrix factorization with L ≥ 3 factors without using tensorial lifting,
using a hierarchical approach that reduces the analysis with multiple factors to
the case with only two factors.

6.5 Experiments

We now demonstrate empirically the advantages of the proposed hierarchical fac-
torization (Algorithm 6.1). All methods are implemented in Python and available
in open source for reproducible research [385, 391]. An implementation of the al-
gorithm in C++ via Python and Matlab wrappers is also provided by the FAµST
3.25 toolbox at https://faust.inria.fr/.

6.5.1 Outperforming iterative optimization methods

In [74], an iterative optimization technique is introduced to approximate a matrix by
a product BP, where B is a square dyadic butterfly matrix and P is a permutation
matrix that belongs to a subset P of eight pre-chosen permutation matrices, that
typically includes the bit-reversal permutation matrix (cf. Section 3.2.2). In other
words, given a target matrix A, the considered optimization problem is

min
(Xℓ)

L
ℓ=1∈Σβ ,P∈P

∥A− X1 . . . XLP∥F. (6.17)

This so-called BP-model [74] for addressing Problem (6.17) covers the DFT matrix
and the Hadamard matrix, in the sense that the approximation error is null when
A is one of these two matrices. The method from [74] consists of two steps:
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Figure 6.3: Approximation error (in Frobenius norm) of the DFT matrix of size 512 with
9 factors: iterative method [74] vs. hierarchical method (Algorithm 6.1). Cumulated run-
ning times at each iteration are shown for the former, total running time for the latter.

1. We optimize with Adam [197] over (Xℓ)
L
ℓ=1 ∈ Σβ and P̃ that is a relaxed,

continuous parameterization of P . After a fixed number of several itera-
tions, we select a permutation P ∈ P based on the values of P̃. The op-
timization is re-run several times with different random initializations if it
fails to find a good permutation P ∈ P .

2. The selected P ∈ P is kept fixed and the LBFGS algorithm [244] is employed
to optimize only the butterfly factors (Xℓ)

L
ℓ=1 ∈ Σβ on several iterations.

Protocol. As an alternative, we apply the proposed hierarchical factorization
method (Algorithm 6.1) to AP⊤ by fixing each of these eight permutations P ∈ P ,
since ∥A− BP∥2

F = ∥AP⊤ − B∥2
F if P is a permutation matrix. Then, we choose

the one with the lowest error. In comparison to [74], this leads to a factorization
method that is free of hyperparameter tuning (learning rate, stopping criteria,
etc.). We compare it to the iterative method [74] described above under the same
setting as in [74]: Adam is run with 50 iterations5, and LBFGS is run with 20
iterations. The target matrix A is either the DFT matrix of size n× n with n = 2L

or a noisy version of it. We approximate A by a product of L butterfly factors.

Results. For the noiseless DFT matrix, Figure 6.3 shows that the hierarchical
approach, whether balanced or unbalanced, gives both better precision and much
shorter running time, with gains of several orders of magnitude. Similar results
were obtained with the Hadamard matrix (not shown here).

We also compare the robustness of the approaches to noise. For the noisy DFT
matrix, Figure 6.4 shows the instability of the iterative method [74], as it can give
poor approximation of the noisy DFT matrix over several factorization experi-
ments. In contrast, the proposed method is not only faster, but also finds more

5We found out that performing more than 50 iterations yields similar precision.
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Figure 6.4: Approximation error (in Frobenius norm) of a noisy DFT matrix of size 2L:
iterative method [74] vs. hierarchical method (Algorithm 6.1). The added noise matrix
has i.i.d. complex centered Gaussian entries with variance σ2 = 0.005 for both the real
and imaginary part. Markers show the average running time and approximation error.
Error bars (almost invisible for the hierarchical methods) show the extreme values over
10 different realizations of the noise matrix. Horizontal dashed lines show the average of
noise matrix norms.

reliably a good approximation of the noisy DFT matrix, with an approximation
error of the same order of magnitude as the norm of the noise matrix. This is true
for both the balanced and the unbalanced trees. These empirical observations
suggest that Algorithm 6.1 has a certain stability with respect to noise. We will
study guarantees on approximation error of the hiearchical algorithm in Chap-
ter 7.

6.5.2 Benchmarking SVD solvers in the hierarchical algorithm

The theoretical complexity of the hierarchical algorithm (Algorithm 6.1) is O(n2)
for a target matrix of size n× n, and the hierarchical method is shown empirically
to be faster than gradient-based optimization [74] in the previous paragraph. We
now study the scaling laws of Algorithm 6.1 with respect to the size n. We will
show that it is important to use an appropriate implementation of SVD in order
to achieve a fast implementation.

Protocol. We implement Algorithm 6.1 in Python using the Scipy 1.8.0 pack-
age to compute the SVD for the best rank-one approximation. We measure the
running time of our implementation of Algorithm 6.1 to approximate A = H +
σW as a product of L butterfly factors, where H is the Hadamard matrix of size
n = 2L with L ∈ {2, . . . , 15}, W is a random matrix with i.i.d. standard Gaussian
entries (zero mean and variance equal to 1), and σ = 0.01. We use different SVD
solvers in our experiments, among: LAPACK, ARPACK, PROPACK, LOBPCG.
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101 102

n

10 5

10 4

10 3

10 2

10 1

100

101

ru
nn

in
g 

tim
e 

(s
)

propack (partial, k=1)
lobpcg (partial, k=1)
arpack (partial, k=1)
lapack (full SVD)

(c) SVD for matrices of size 2× n2/2
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Figure 6.5: Comparing different solvers - running time of our implementation of Algo-
rithm 6.1. For a given matrix size, each factorization (resp. SVD) is repeated 3 (resp. 10)
times in order to plot the mean running time with a vertical error bar showing the stan-
dard deviation.

The first one performs a full SVD before truncating it, while the last ones perform
partial SVD at a given order k (k = 1 in our case). Experiments are run on an
Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz.

Comparing different solvers. We compare the running time of Algorithm 6.1
implemented with different SVD solvers. In Figure 6.5a, the unbalanced hierar-
chical factorization is faster with LAPACK for n ≤ 1024, while the other solvers
are faster for n ≥ 1024. In Figure 6.5b, the balanced hierarchical factorization is
faster with LAPACK for n ≤ 4096, and all the solvers have a similar running time
for n ≥ 4096. The difference in running time can be empirically explained by
our benchmark of these SVD solvers on a rectangular matrix (size 2× n2/2) in
Figure 6.5c, and on a square matrix (size n× n) in Figure 6.5d. These matrix sizes
correspond to the size of submatrices on which an SVD is performed in the hier-
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(a) Small matrix size n× n (b) Large matrix size n× n

Figure 6.6: Comparing balanced and unbalanced trees - running time of our implementa-
tion of Algorithm 6.1, in logarithmic scale. For better visualization a least-square regres-
sion is performed for each set of measurements, and we report the estimated slope a of
the regression line Y = aX + b. For slope comparison, we measure the running time for
matrix-vector multiplication, computed with numpy.matmul method from Numpy 1.22.3.

archical algorithm. We indeed observe that the full SVD with LAPACK is faster
than partial SVDs with ARPACK, PROPACK, LOBPCG for lower matrix size.

Comparing balanced and unbalanced tree. We now compare the running time
of the hierarchical factorization algorithm with the unbalanced and balanced tree.
In Figure 6.6a, the comparison is performed in a setting with small matrix size
with n ≤ 1024, using LAPACK to compute full SVDs. Hierarchical factorization
is slightly faster with a balanced tree compared to an unbalanced tree. In Fig-
ure 6.6b, the comparison is performed in a setting with large matrix size with
n ≥ 1024. When using ARPACK, the running time for hierarchical factoriza-
tion is the same for both trees. This is coherent with our analysis of complexity
bounds for Algorithm 6.1, which is O(n2) for both trees. For completeness Fig-
ure 6.6b also compares the running time of hierarchical factorization with the one
of matrix-vector multiplication for a matrix of size n× n, whose complexity is also
O(n2). Finally we see in Figure 6.6b that using an unbalanced tree with LAPACK
for large matrix size is not optimal.

6.6 Conclusion

We established hierarchical identifiability in the square dyadic butterfly factoriza-
tion. We proved that the butterfly factors (Xℓ)

L
ℓ=1 in the product A := X1 . . . XL of

size n× n with n := 2L can be recovered up to scaling ambiguities from the obser-
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vation of A, with a hierarchical factorization method described by Algorithm 6.1
that is endowed with exact recovery guarantees, and has controlled time complexity
of O(n2). This chapter opens different perspectives.

Stability results. Our experiments suggests that the hierarchical algorithm (Al-
gorithm 6.1) admit some form of stability or with respect to additive noise on the
target matrix. In particular, it would be interesting to determine if the stability
of the algorithm to noise is also similar for different factor-bracketing trees (e.g.,
unbalanced vs. balanced tree). Studying the approximation error of the hierar-
chical algorithm is a natural continuation of this chapte, which is done in Chap-
ter 7. More specifically, we will construct an new hierarchical algorithm (cf. Al-
gorithm 7.5) that outputs butterfly factors (X̂ℓ)

L
ℓ=1 ∈ Σβ that are guaranteed to

satisfy the bound:

∥A− X̂1 . . . X̂L∥F ≤ Cβ min
(Xℓ)

L
ℓ=1∈Σβ

∥A− X̂1 . . . X̂L∥F, (6.18)

where A is any target matrix of size n× n with n := 2L, and Cβ ≥ 1 is a constant
that only depends on L. This implies that new hierarchical algorithm is optimal
when the target A is assumed to admit exactly a square dyadic butterfly factor-
ization (noiseless setting). The result about essential uniqueness (Theorem 6.1) is
complementary to this stability result: it also shows that the optimal butterfly
factors (X̂ℓ)

L
ℓ=1 ∈ Σβ in the noiseless setting are essentially unique.

Implementation of the hierarchical algorithm. Our benchmark of SVD solvers
in Figures 6.5c and 6.5d suggests that our implementation of the hierarchical al-
gorithm can be further improved by choosing the optimal SVD solver depending
on the block’s dimension. One could also envision randomized algorithms for
fast low-rank approximation [99, 153] in the spirit of [234].

Identifiability of sparse matrix factorization with L = 2 factors. Our analysis
of identifiability using the hierarchical approach relies on identifiability results in
the case with L = 2 factors. This motivates further explorations of identifiability
conditions in this setting. Our work focuses on fixed-support constraints, and
we considered in Proposition 6.1 the case of disjoint rank-one supports. More
relaxed conditions can be envisioned, such as supports satisfying the so-called
complete equivalence class condition introduced in [212]. Beyond the fixed-support
setting, one can also explore essential uniqueness by considering a family of spar-
sity patterns like in [390]. One can then use results from matrix completion liter-
ature [67, 94, 198] to establish more elaborate conditions for identifiability in the
case with two factors.
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Chapter 7
Butterfly factorization with guarantees
on approximation error

This chapter extends the results of Chapter 6, by proving new theoretical guarantees
for decomposition algorithms associated with butterfly factorization, beyond the
specific case of the square dyadic butterfly factorization and the noiseless setting.

7.1 Introduction

In Chapter 3, we saw that many matrices appearing in scientific computing prob-
lems, like kernel matrices associated with special function transforms [288,369] or
Fourier integral operators [40,77,235], satisfy a certain low-rank property, named
the complementary low-rank property [234]: it has been shown that if specific sub-
matrices of a target matrix A of size n× n are numerically low-rank, then A can
be compressed by successive hierarchical low-rank approximations of these sub-
matrices, in the sense that it can be approximated by a sparse factorization

Â = X1 . . . XL

with L = O(log n) factors Xℓ having at most O(n) nonzero entries for each ℓ ∈
JLK := {1, . . . , L}. This sparse factorization, called in general butterfly factorization,
would then yield a fast algorithm for the approximate evaluation of the matrix-
vector multiplication by A, in O(n log n) complexity.

As detailed in Section 4.5, an alternative definition of the butterfly factoriza-
tion, typically used in deep learning applications, refers to a sparse matrix factor-
ization with specific constraints on the sparse factors. According to [72,74,75,213,
241, 392], a matrix A admits a certain butterfly factorization if, up to some row
and column permutations, it can be factorized into a certain number of factors

The material of this chapter is based on an on-going work, in collaboration with Quoc-Tung
Le, Elisa Riccietti and Rémi Gribonval.
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X1, . . . , XL for a prescribed number L ≥ 2, such that each factor Xℓ for ℓ ∈ JLK sat-
isfies a certain fixed-support constraint, i.e., the support of Xℓ, denoted supp(Xℓ),
is included in the support of a prescribed binary matrix Sℓ. The different existing
butterfly factorizations only vary by their number of factors L, and their choice
of binary matrices S1, . . . , SL. Let us recall some examples of such factorizations.

1. Square dyadic butterfly factorization [74, 75, 213, 392]. Recall that this was
defined in Definition 6.2, for matrices of size n × n where n is a power of
two. The number of factors is L := log2 n. For ℓ ∈ JLK, the factor Xℓ is of
size n× n, and satisfies the support constraint supp(Xℓ) ⊆ supp(Sℓ), where

∀ℓ ∈ JLK, Sℓ := I2ℓ−1 ⊗ 12×2 ⊗ In/2ℓ .

2. Monarch factorization [72]. A Monarch factorization parameterized by two
integers p, q decomposes a matrix A of size m× n into L := 2 factors X1, X2
such that supp(Xℓ) ⊆ supp(Sℓ) for ℓ = 1, 2 where

S1 := 1p×q ⊗ I m
p

, S2 := Iq ⊗ 1 m
p×

n
q
.

Here, we assume that p, q divides m, n respectively. The DFT matrix of size
n × n admits such a factorization for p = q, up to a column permutation.
Indeed, according to the Cooley-Tukey algorithm, computing the discrete
Fourier transform of size n is equivalent to performing p discrete Fourier
transforms of size n/p first, and then n/p discrete Fourier transforms of
size p, see, e.g., equations (14) and (21) in [89].

3. Deformable butterfly factorization [241]. Previous conventional butterfly
factorizations can be generalized as follows. Given an integer L ≥ 2, a
matrix A admits a deformable butterfly factorization parameterized by a
list of tuples (pℓ, qℓ, rℓ, sℓ, tℓ)L

ℓ=1 if A = X1 . . . XL where each factor Xℓ for
ℓ ∈ JLK is of size pℓ × qℓ and has a support included in supp(Sℓ), defined
as:

∀ℓ ∈ JLK, Sℓ := I pℓ
rℓtℓ
⊗ 1rℓ×sℓ ⊗ Itℓ .

Here, it is assumed that pℓ
rℓtℓ

= qℓ
sℓtℓ

is an integer, for each ℓ ∈ JLK.

In all these examples the fixed-support constraint on each butterfly factor
X takes the form supp(X) ⊆ supp(Ia ⊗ 1b×c ⊗ Id) for some integer parameters
(a, b, c, d). Figure 7.1 illustrates the sparsity pattern Sπ := Ia ⊗ 1b×c ⊗ Id of a but-
terfly factor associated with the tuple π = (a, b, c, d), that we call a pattern. One
of the main benefits of choosing such fixed-support constraints instead of an arbi-
trary sparse support is its block structure that could enable efficient implementation
on specific hardware like Intelligence Processing Unit (IPU) [321] or GPU [72,74],
with practical speed-up for matrix multiplication. See Chapter 9 for a discussion
about GPU implementations for butterfly sparse matrix multiplication.
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Figure 7.1: Illustration of the support of a butterfly factor with pattern π = (a, b, c, d).
The yellow squares indicate the indices belonging to the support. The sub-figures (1), (2),
(3) illustrate respectively the concepts of factor, block and sub-block .

Problem formulation. This chapter focuses on the problem of approximating a
target matrix A by a product of butterfly factors associated with a given architec-
ture β = (πℓ)

L
ℓ=1:

Eβ(A) := inf
(Xℓ)

L
ℓ=1

∥A− X1 . . . XL∥2
F = inf

B
∥A− B∥2

F, (7.1)

where B is a butterfly matrix and each Xℓ is a butterfly factor with sparsity pat-
tern prescribed by πℓ, and ∥ · ∥F is the Frobenius norm. We will call these fac-
tors "deformable butterfly factors" because the description of the prescribed sup-
ports above is equivalent to that of [241]. Several methods have been proposed
to address this butterfly factorization problem, but we argue that they either lack
guarantees of success, or only have partial guarantees. We fix this issue here by
introducing a new hierarchical algorithm endowed with theoretical guarantees.

Contributions. More precisely, the main contributions of this chapter are:

1. To introduce a formal mathematical description of the "deformable butterfly
factors" introduced in [241]. While we owe [241] the original idea of extend-
ing previous butterfly factorizations, the mathematical formulation of the
prescribed supports as Kronecker products is a novelty that allows a the-
oretical study of the corresponding butterfly factorization, as done in this
chapter. Moreover, our parameterization uses 4 parameters and removes
the redundancy in the original 5-parameter description of deformable but-
terfly factors of [241]. Table 7.1 summarizes the main characteristics of ex-
isting butterfly architectures covered by our framework.

2. To define the chainability of an architecture β (Definition 7.5), and to prove
that Problem (7.1) admits an optimum when β is chainable (Corollary 7.3).
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Table 7.1: Existing architectures β in the literature. (†) Note that [241] did not explicitly
state constraints on (aℓ, bℓ, cℓ, dℓ)L

ℓ=1 for deformable butterfly factorization, because they
use an alternative description of the sparsity patterns of the butterfly factors. In fact, they
only consider variants of butterfly factorization corresponding to chainable architectures
(cf. Definition 7.5 below) with q(β) = (1, . . . , 1).

Architectures Size |β| Values of β = (πℓ)ℓ Chainable?

Low-rank matrix m× n 2 (1, m, r, 1), (1, r, n, 1) Yes

Square dyadic butterfly [74] 2L × 2L L (2ℓ−1, 2, 2, 2L−ℓ)L
ℓ=1 Yes

Monarch [72] m× n 2 (1, p, q, m/p), (q, m/p, n/q, 1) Yes

Deformable butterfly(†) [241] m× n L (aℓ, bℓ, cℓ, dℓ)L
ℓ=1 Yes

Kaleidoscope [75] 2L × 2L 2L πℓ =

{
(2ℓ−1, 2, 2, 2L−ℓ) if ℓ ≤ L
(22L−ℓ, 2, 2, 2ℓ−L−1) if ℓ > L

No

3. To characterize analytically the set of butterfly matrices with architecture β,

Bβ := {X1 . . . XL | supp(Xℓ) ⊆ supp(Sπℓ
) ℓ ∈ JLK} , (7.2)

for a chainable β, in terms of low-rank properties of certain submatrices of
A (Corollary 7.2) which are equivalent to a generalization of the comple-
mentary low-rank property (Corollary C.2).

4. To define the redundancy of a chainable architecture (cf. Definition 7.6). In-
tuitively, a chainable architecture β is redundant if one can replace it with
a "compressed" (non-redundant) one β′ such that Bβ = Bβ′ (cf. Proposi-
tion 7.2). Thus, from the acceleration of linear operators viewpoint, redun-
dant architectures have no practical interest.

5. To propose a new hierarchical algorithm (Algorithm 7.5) able to provide an
approximate solution to Problem (7.1) for non-redundant chainable architec-
tures. Compared to previous similar algorithms, this algorithm introduces
a new orthogonalization step which is key to obtain approximation guaran-
tees. The algorithm can be readily extended to redundant chainable archi-
tectures, under the same theoretical guarantee (see Algorithm 7.7).

6. To prove that, for chainable β, Algorithm 7.5 outputs butterfly factors (X̂ℓ)
L
ℓ=1

such that

∥A− X̂1 . . . X̂L∥F ≤ Cβ · inf
(Xℓ)

L
ℓ=1

∥A− X1 . . . XL∥F, (7.3)

where Cβ ≥ 1 depends only on β (Corollary 7.1), see Table 7.2 for examples.
To the best of our knowledge, this is the first time such a near-optimality
bound is established for a butterfly approximation algorithm.
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Table 7.2: The approximation ratio Cβ (see Equation (7.3)) of Algorithm 7.5 with a selec-
tion of chainable architectures β from Table 7.1.

Parameterization Size |β| Cβ in (7.17) - Corollary 7.1 Cβ in (7.18) - Corollary 7.1

Low rank matrix m× n 2 1 1

Monarch [72] m× n 2 1 1

Square dyadic
butterfly [74] n× n log n n/2− 1 = O(n)

√
2

3

√
nlog 3 − 1 = O(n0.7925)

Outline. Section 7.2 discusses related work. Section 7.3 introduces some pre-
liminaries on two-factor matrix factorization with fixed-support constraints. This
is also where we setup our general notations. Section 7.4 formalizes the defini-
tion of deformable butterfly factorization associated with β, and introduces the
chainability and non-redundancy conditions for an architecture β, that will be at the
core of the proof of error guarantees on our proposed hierarchical algorithm. Sec-
tion 7.5 extends an existing hierarchical algorithm, currently expressed only for
dyadic butterfly factorization, to any chainable β. For non-redundant chainable
β, Section 7.6 introduces novel orthonormalization operations in the proposed
hierarchical algorithm. This allows to establish in Section 7.7 our main results on
the control of the approximation error and the low-rank characterization of but-
terfly matrices associated with chainable β. Section 7.8 proposes some numeri-
cal experiments about the proposed hierarchical algorithm. The most technical
proofs are deferred to Appendix C.

7.2 Related work

Several methods have been proposed to address the butterfly factorization prob-
lem (7.1), but we argue that they either lack guarantees of success, or only have
partial guarantees.

First-order methods. Optimization methods based on gradient descent [74] or
alternating least squares [241] are not suitable for Problem (7.1) and lack guar-
antees of success, because of the non-convexity of the objective function. In fact,
the problem of approximating a given matrix by the product of factors with fixed-
support constraints, as it is the case for (7.1), is generally NP-hard and might even
lead to numerical instability even for L = 2 factors, as shown in [212]. In contrast,
we show that the minimum of (7.1) always exist for chainable β.

Butterfly algorithms and the complementary low-rank property. This para-
graph summarizes some material from Chapter 3 related to butterfly factoriza-
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tion. Butterfly algorithms [40, 234, 235, 250, 265, 266, 288] look for an approxi-
mation of a target matrix A by a sparse factorization Â = X1 . . . XL, assuming
that A satisfies the so-called complementary low-rank property, formally introduced
in [234]. This low-rank property assumes that the rank of certain submatrices
of A restricted to some specific blocks is numerically low and that these blocks
satisfy some conditions described by a hierarchical partitioning of the row and
column indices, using the notion of cluster tree [150]. Then, the butterfly algo-
rithm leverages this low-rank property to approximate the target matrix by a
data-sparse representation, by performing successive low-rank approximation of
specific submatrices. The literature in numerical analysis describes many linear
operators associated with matrices satisfying the complementary low-rank prop-
erty, such as kernel matrices encountered in electromagnetic or acoustic scatter-
ing problems [146,265,266], special function transforms [289], spherical harmonic
transforms [341] or Fourier integral operators [40, 233, 235, 236, 369].

The formal definition of the complementary low-rank property currently given
in the literature only considers cluster trees that are dyadic [234] or quadtrees
[236]. In this work, we give a more general definition of the complementary low-
rank property that considers arbitrary cluster trees. To the best of our knowledge,
this allows us to give the first formal characterization of the set of matrices ad-
mitting a (deformable) butterfly factorization associated with an architecture β,
as defined in (7.2), using this extended definition of the complementary low-rank
property. In particular, this shows that the definition in (7.2) is more general than
the previous definitions of the complementary low-rank property that were re-
stricted to dyadic trees or quadtrees [234, 236].

Existing error bounds for butterfly algorithms. Several existing butterfly algo-
rithms [40, 234, 235, 288] are guaranteed to provide an approximation error ∥A−
Â∥F equal to zero, when A satisfies exactly the complementary low-rank prop-
erty, i.e., the best low-rank approximation errors of the submatrices described by
the property are exactly zero [234, 288]. However, when these submatrices are
only approximately low-rank (with a positive best low-rank approximation er-
ror), existing butterfly factorization algorithms are not guaranteed to provide an
approximation Â with the best approximation error. To the best of our knowledge,
the only existing error bound in the literature [250] is based on a butterfly algo-
rithm that performs successive low-rank approximation of blocks M, and takes
the form

∥A− Â∥2
F ≤ Cnϵ2

0∥A∥2
F, with Cn = O(log n), (7.4)

where A is an n×n matrix and ϵ0 is the maximum relative error ∥M− M̂∥F/∥M∥F
across all blocks M on which the algorithm performs low-rank approximation,
with M̂ a best low-rank approximation of M. Even though the constant Cn in the
error bound grows slowly with respect to the matrix size n, the bound (7.4) is not
satisfying for the following reasons: (i) the quantity ϵ0 can only be determined
algorithmically after applying the butterfly algorithm on the target matrix A; (ii)
it does not compare the approximation error ∥A− Â∥2

F to the best approximation
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L R U1 U2 U3

Figure 7.2: An example of support constraints (L, R) and the supports of the correspond-
ing rank-one contributions. Colored parts indicate indices inside the support constraints
L, R and Ui for i ∈ J3K. {1, 2} and {3} are the two equivalence classes (Definition 7.1).

error, that is, the minimal error ∥A − A∗∥F with A∗ satisfying exactly the com-
plementary low-rank property. In this chapter, we propose the first error bound
for butterfly factorization that compares the approximation error to the minimal
approximation error, cf. (7.3). We compare our new error bound to (7.4) in Sec-
tion 7.7.2.

7.3 Two-factor, fixed-support matrix factorization

Following the hierarchical approach of Chapter 6, our analysis of the butterfly
factorization problem (7.1) with multiple factors in general (L ≥ 2) relies on the
analysis of the simplest setting with only L = 2 factors. This setting is studied
in [212]. We recall some important results that will be used in the rest of the
chapter.

Given two binary matrices L, R, the problem of fixed-support matrix factoriza-
tion (FSMF) with two factors is formulated as:

inf
(X,Y)

∥A− XY∥2
F, with supp(X) ⊆ L, supp(Y) ⊆ R. (7.5)

While Problem (7.5) is NP-hard1 in general [212, Theorem 2.4], it becomes tractable
under certain conditions on (L, R). To describe one of these conditions, we rely
on the lifting procedure introduced in Section 6.2. For two binary matrices L ∈
{0, 1}m×r, R ∈ {0, 1}r×n, denote (Ui)

r
i=1 the corresponding rank-one contribution

supports (see for Figure 7.2 for an illustration), defined as:

(Ui)
r
i=1 := φ(L, R) := (L[:, i]R[i, :])r

i=1, (7.6)

where φ denotes the lifting operator defined in (6.10).

Remark 7.1. The binary matrix L[:, i]R[i, :] for i ∈ JrK encodes the support constraint
of X[:, i]Y[i, :] for each (X, Y) such that supp(X) ⊆ L, supp(Y) ⊆ R.

1and does not always admit an optimum: the infimum may not be achieved [212, Remark A.1].
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The rank-one supports (Ui)
r
i=1 defines an equivalence relation and its induced

equivalence classes on the set of column indices JrK, as illustrated in Figure 7.2.

Definition 7.1 (Equivalence classes of rank-one supports, representative
rank-one supports [212]). Given L ∈ {0, 1}m×r, R ∈ {0, 1}r×n, denoting
(Ui)

r
i=1=φ(L, R), define an equivalence relation on JrK as:

i ∼ j ⇐⇒ Ui = Uj.

This yields a partition of JrK into equivalence classes, denoted P(L, R). For each
P ∈ P(L, R), denote UP a representative rank-one support, RP ⊆ JmK and CP ⊆ JnK
the supports of rows and columns in UP, respectively, i.e., supp(UP) = RP × CP,
and denote |P| the cardinal of the equivalence class P.

We now recall a sufficient condition on (L, R) for which corresponding in-
stances of Problem (7.5) can be solved in polynomial time via Algorithm 7.1.

Theorem 7.1 (Tractable support constraints of Problem (7.5) [212, Theorem
3.3]). If all elements of φ(L, R) are pairwise disjoint or identical, then Algorithm 7.1
yields an optimal solution of Problem (7.5). In addition, the infimum of Problem (7.5)
is given by:

inf
supp(X)⊆L,supp(Y)⊆R

∥A− XY∥2
F = ∑

P∈P(L,R)

min
B,rank(B)≤|P|

∥A[RP, CP]− B∥2
F + c,

(7.7)
where c := ∑

(i,j)/∈supp(LR)

A[i, j]2 is a constant depending only on (A, L, R).a

aNote that LR is a product of two binary matrices.

The equation (7.7) was not proved in [212], so we provide a complete proof of
Theorem 7.1 in Appendix C.1. The main idea is the following.

Sketch of proof. For (X, Y) such that supp(X) ⊆ L and supp(Y) ⊆ R:

∥A− XY∥2
F = ∑

P∈P(L,R)

∥A[RP, CP]− X[RP, P]Y[P, CP]∥2
F + c, (7.8)

because φ(L, R) are pairwise disjoint or identical, by assumption. Thus, minimiz-
ing the left-hand-side is equivalent to minimize each summand in the right-hand
side, which is equivalent to finding the best rank-|P| approximation of the matrix
A[RP, CP] for each P ∈ P(L, R).

Remark 7.2. Best low-rank approximation in line 3 of Algorithm 7.1 can be computed
via truncated SVD. Note that the definition of Ĥ, K̂ in this line is not unique, because,
for instance, the product ĤK̂ is invariant to some rescaling of columns and rows.
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7.4. Deformable butterfly factorization

Algorithm 7.1 Two-factor fixed-support matrix factorization, under conditions of
Theorem 7.1
Require: A ∈ Cm×n, L ∈ {0, 1}m×r, R ∈ {0, 1}r×n

Ensure: (X, Y) ∈ Cm×r ×Cr×n such that supp(X) ⊆ L, supp(Y) ⊆ R
1: (X, Y)← (0m×r, 0r×n)
2: for P ∈ P(L, R) do
3: (X[RP, P], Y[P, CP])←

(
Ĥ, K̂

)
∈ arg min

H∈C|RP |×|P|

K∈C|P|×|CP |

∥A[RP, CP]−HK∥F

4: end for
5: return (X, Y)

7.4 Deformable butterfly factorization

This section presents a mathematical formulation of the deformable butterfly fac-
torization [241] associated with a sequence of patterns β := (πℓ)

L
ℓ=1 called an ar-

chitecture. We then introduce the notions of chainability and non-redundancy of an
architecture, that are crucial conditions for constructing a hierarchical algorithm
for Problem (7.1) with error guarantees.

7.4.1 A mathematical formulation for (deformable) butterfly fac-
tors

Many butterfly factorizations [72,74,75,213,241,392] take the form A = X1 . . . XL
with supp(Xℓ) ⊆ Iaℓ⊗ 1bℓ×cℓ⊗ Idℓ for ℓ ∈ JLK, for some parameters (aℓ, bℓ, cℓ, dℓ)L

ℓ=1,
cf. Section 7.1. We therefore introduce the following definition.

Definition 7.2 (Butterfly factors and their sparsity patterns). For a, b, c, d ∈ N,
a (deformable) butterfly factor of pattern π := (a, b, c, d) (or π-factor) is a matrix
in Rm×n or Cm×n, where m := abd, n := acd, such that its support is included in
Sπ := Ia ⊗ 1b×c ⊗ Id ∈ {0, 1}m×n. The tuple π will be called an elementary de-
formable butterfly pattern, or simply a pattern. The set of all π-factors is denoted
by Σπ.

Figure 7.1 illustrates the support of a π-factor, for a given pattern π = (a, b, c, d).
A π-factor matrix is block diagonal with a blocks in total. By definition, each
block in the diagonal has support included in 1b×c ⊗ Id. Thus, each block is a
block matrix of size b× c, where each sub-block is a diagonal matrix of size d× d.

Example 7.1. The following matrices are π-factors for certain choices of π.

1. Dense matrix: Any matrix of size m× n is a (1, m, n, 1)-factor.

2. Diagonal matrix: Any diagonal matrix of size m×m is either a (m, 1, 1, 1)-factor
or (1, 1, 1, m)-factor.
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3. Factors in a square dyadic butterfly factorization [74, 75, 213, 392]: the pat-
tern of the ℓ-th factor is πℓ = (2ℓ−1, 2, 2, 2L−ℓ) for ℓ ∈ JLK.

4. Factors in a Monarch factorization [72]: the patterns of the two factors are
π1 = (1, p, q, m/p), π2 = (q, m/p, n/q, 1) for p, q such that p | m and q | n.

Lemma 7.1 (Sparsity level of a π-factor). For π = (a, b, c, d), the number of
nonzero entries of a π-factor of size m× n is at most ∥π∥0 := abcd = mc = nb.

Proof. The cardinal of supp(Ia ⊗ 1b×c ⊗ Id) is abcd = mc = nb = mn
ad .

A π-factor is sparse if it has few nonzero entries compared to its size, i.e., if
∥π∥0 ≪ mn, or equivalently if ad ≫ O(1). Given a number of factors L ≥ 1, a
sequence of patterns β := (πℓ)

L
ℓ=1 parameterizes the set

Σβ := Σπ1 × . . .× ΣπL (7.9)

of L-tuples of πℓ-factors, ℓ = 1, . . . , L. Since we are interested in matrix products
X1 . . . XL for (Xℓ)

L
ℓ=1 ∈ Σβ, we will only consider sequences of patterns β such

that the size of Xℓ ∈ Σπℓ and Xℓ+1 ∈ Σπℓ+1 are compatible for computing the
matrix product XℓXℓ+1, for each ℓ ∈ JL− 1K. In other words, we require that the
sequence of patterns β satisfies:

∀ℓ ∈ JL− 1K, aℓcℓdℓ︸ ︷︷ ︸
nℓ

= aℓ+1bℓ+1dℓ+1︸ ︷︷ ︸
mℓ+1

. (7.10)

Therefore, under assumption (7.10), a sequence β can describe a factorization
of the type A = X1 . . . XL such that (Xℓ)

L
ℓ=1 ∈ Σβ. We introduce the following

terminology for such a sequence.

Definition 7.3 (Butterfly architecture). A sequence of patterns β := (πℓ)
L
ℓ=1 is

called a (deformable) butterfly architecture, or simply an architecture, when
it satisfies (7.10). By analogy with deep networks, the number of factors is called
the depth of the chain and denoted by |β| := L and, using the notation ∥π∥0 from
Lemma 7.1, the number of parameters is denoted by

∥β∥0 :=
L

∑
ℓ=1
∥πℓ∥0.

For any architecture β, Bβ is the set of (deformable) butterfly matrices associ-
ated with β, as defined in (7.2). We also say that any A ∈ Bβ admits an exact
(deformable) butterfly factorization associated with the architecture β. Table 7.1 de-
scribes existing architectures fitting our framework.

The rest of this section introduces two important properties of an architecture
β:
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• Chainability will be shown (Corollary 7.3) to ensure the existence of an opti-
mum in (7.1), so that we can replace "inf" by “min” in (7.1). We also show
that for chainable architecture one can exploit a hierarchical algorithm (Al-
gorithm 7.3), which extends an algorithm from [213, 386]) to compute an
approximate solution to Problem (7.1) for any chainable architecture.

• Non-redundancy is an additional property satisfied by some chainable archi-
tectures β, that allows to insert orthonormalization steps in the hierarchical
algorithm, in order to control the approximation error for Problem (7.1) in
the sense of (7.3). Non-redundancy plays the role of an intermediate tool
to design and analyze our algorithms. However, it should not be treated
as an additional hypothesis, because we do propose a factorization method
(cf. Algorithm 7.7), endowed with error guarantees, for any chainable archi-
tecture, whether redundant or not.

Both conditions are first defined for the most basic architectures β of depth |β| =
2, before being generalized to architectures β of arbitrary depth L ≥ 2.

7.4.2 Chainability

We start by defining this condition in the case of architectures of depth L = 2.
This definition is primarily introduced to ensure a key "stability" property given
next in Proposition 7.1, which will have many nice consequences.

Definition 7.4 (Chainable pair of patterns, operator ∗ on patterns). Two pat-
terns π1 := (a1, b1, c1, d1) and π2 := (a2, b2, c2, d2) are chainable if:

1. a1c1
a2

= b2d2
d1

and this quantity, denoted q(π1, π2), is an integer;

2. a1 | a2 and d2 | d1.

We also say that the pair (π1, π2) is chainable. We define the operator ∗ on the set of
chainable pairs of patterns as follows: if (π1, π2) is chainable, then

π1 ∗ π2 :=
(

a1,
b1d1

d2
,

a2c2

a1
, d2

)
∈N4. (7.11)

Note that assumption 2. in Definition 7.4 is indeed that a1 divides a2 (and d2
divides d1), even though the definition of q(π1, π2) involves the quotient a1/a2
(resp. d2/d1).

Remark 7.3. The order (π1, π2) in the definition matters, i.e., this property is not sym-
metric: the chainability of (π1, π2) does not imply that of (π2, π1). Moreover, by the
first condition of Definition 7.4, a chainable pair is indeed an architecture in the sense of
Definition 7.3.
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Definition 7.4 comes with the following two key propositions.

Proposition 7.1. If (π1, π2) is chainable, then:

Sπ1Sπ2 = q(π1, π2)Sπ1∗π2 . (7.12)

The proof is deferred to Appendix C.2.1. The equality (7.12) was proved in
[392, Lemma 3.4] for the choice π1 = (2ℓ−1, 2, 2, 2L−ℓ) and π2 = (2ℓ, 2, 2, 2L−ℓ−1),
for any integer L ≥ 2 and ℓ ∈ JL− 1K. Proposition 7.1 extends (7.12) to all chain-
able pairs (π1, π2).

Chainability and Definition 7.2 imply that ∀(X1, X2) ∈ Σπ1 × Σπ2 , X1X2 ∈
Σ(π1∗π2), i.e., a product of butterfly factors with chainable patterns (π1, π2) is still
a butterfly factor, with pattern π1 ∗ π2. We can characterize the set {X1X2 |Xi ∈
Σπi , i ∈ J2K}more precisely as follows. The proof is deferred to Appendix C.2.2.

Lemma 7.2. If β := (π1, π2) is chainable then (with the notations of Definition 7.1)
for each P ∈ P(Sπ1 , Sπ2) we have |P| = q(π1, π2), |RP| = b1 and |CP| = c2 (with
πi = (ai, bi, ci, di)). Moreover, with Aβ the set of matrices of the size of matrices in
Bβ such that rank

(
A[RP, CP]

)
≤ q(π1, π2) for each P ∈ P(Sπ1 , Sπ2), we have

Bβ = Σπ1∗π2 ∩Aβ. (7.13)

Lemma 7.3 (Associativity of ∗). If (π1, π2) and (π2, π3) are chainable, then

1. (π1, π2 ∗ π3) and (π1 ∗ π2, π3) are chainable;

2. q(π1, π2 ∗ π3) = q(π1, π2) and q(π1 ∗ π2, π3) = q(π2, π3);

3. π1 ∗ (π2 ∗ π3) = (π1 ∗ π2) ∗ π3.

The proof of Lemma 7.3 is deferred to Appendix C.2.3. We can now extend
the definition of chainability to a general architecture β of arbitrary depth L ≥ 1.

Definition 7.5 (Chainable architecture). An architecture β := (πℓ)
L
ℓ=1, L ≥ 2,

is chainable if πℓ and πℓ+1 are chainable for each ℓ ∈ JL− 1K in the sense of Defi-
nition 7.4. We then denote q(β) = (q(πℓ, πℓ+1))

L−1
ℓ=1 ∈ NL−1. By convention any

architecture of depth L = 1 is also chainable.

Example 7.2. One can check that the square dyadic butterfly architecture (resp. the
Monarch architecture), cf Example 7.1, are chainable, with q(β) = (1, . . . , 1) (resp.
q(β) = (1)). They are particular cases of the 5-parameter deformable butterfly architec-
ture of [241], which is chainable with q(β) = (1, . . . , 1). In contrast, the Kaleidoscope
architecture of depth 2L with L ≥ 2 of Table 7.1 is not chainable, because for ℓ = L + 1
we have πℓ = (2L−1, 2, 2, 1), πℓ+1 = (2L−2, 2, 2, 2), and this pair is not chainable since
2L−1 does not divide 2L−2.
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We state in the following some useful properties of chainable architectures.

Lemma 7.4. If β = (πℓ)
L
ℓ=1 with L ≥ 2 is chainable then Bβ ⊆ Σ(π1∗...∗πL), with

π1 ∗ . . . ∗ πL =

(
a1,

b1d1

dL
,

aLcL

a1
, dL

)
. (7.14)

Partial proof. The result Bβ ⊆ Σ(π1∗...∗πL) follows from an induction on |β| where
the base case (L = 2) is given by Lemma 7.2. We prove (7.14) in Appendix C.2.4.

Remark 7.4. As a consequence of this lemma, if the first pattern π1 of a chainable archi-
tecture β satisfies a1 > 1 then all matrices in Bβ have a support included in Sπ1∗...∗πL ,
which has zeroes outside its main block diagonal structure (see Figure 7.1). A similar
remark holds when dL > 1, and in both cases we conclude that Bβ does not contain any
dense matrix where all entries are nonzero. In contrast, when a1 = dL = 1, it is known
for specific architectures that some dense matrices do belong to Bβ. This is notably the
case when β is the square dyadic butterfly architecture or the Monarch architecture (see
Example 7.1): then we have π1 ∗ . . . ∗ πL = (a1, m, n, dL) = (1, m, n, 1) for some inte-
gers m, n, and indeed the Hadamard (or the DFT matrix, up to bit-reversal permutation
of its columns, cf. [74]) is a dense matrix belonging to Bβ.

Next we state an essential property of chainable architectures. It builds on and
extends Lemma 7.3, and corresponds to a form of stability under pattern multipli-
cation that will serve as a cornerstone to support the introduction of hierarchical
algorithms.

Lemma 7.5. If β = (πℓ)
L
ℓ=1 is chainable then for each 1 ≤ r ≤ s < t ≤ L, the

patterns (πr ∗ . . . ∗ πs) and (πs+1 ∗ . . . ∗ πt) are well-defined and chainable with
q(πr ∗ . . . ∗ πs, πs+1 ∗ . . . ∗ πt) = q(πs, πs+1).

The proof is deferred to Appendix C.2.5.

7.4.3 Non-redundancy

A first version of our proposed hierarchical factorization algorithm (expressed re-
cursively as Algorithm 7.3 in Algorithm 7.3, or non-recursively as Algorithm 7.4
in Section 7.6) will be applicable to any chainable architecture β. However, es-
tablishing approximation guarantees of the type (7.3) will require a variant of
this algorithm (Algorithm 7.5) involving certain orthonormalization steps, which
are only well-defined if the architecture β satisfies an additional non-redundancy
condition. Fortunately, any redundant architecture β can be transformed (Propo-
sition 7.2) into an expressively equivalent architecture β′ (i.e., Bβ′ = Bβ) with
reduced number of parameters (∥β′∥0 ≤ ∥β′∥0) thanks to Algorithm 7.2 below.
This will be instrumental in introducing the proving approximation guarantees
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of the final hierarchical algorithm Algorithm 7.5 applicable to any (redundant or
not) chainable architecture.

To define redundancy of an architecture we begin by considering elementary
pairs.

Definition 7.6 (Redundant architecture). A chainable pair of patterns π1 =
(a1, b1, c1, d1) and π2 = (a2, b2, c2, d2) is redundant if q(π1, π2) ≥ min(b1, c2)
(i.e., if a1c1 ≥ a2c2 or b2d2 ≥ b1d1). A chainable architecture β = (πℓ)

L
ℓ=1,

L = |β| ≥ 1 is redundant if there exists ℓ ∈ JL − 1K such that (πℓ, πℓ+1) is
redundant. Observe that by definition, any chainable architecture with |β| = 1 is
non-redundant.

Lemma 7.6. If β = (πℓ)
L
ℓ=1 is chainable and non-redundant then, for any 1 ≤ r ≤

s < t ≤ L, the pair (πr ∗ . . . ∗ πs, πs+1 ∗ . . . ∗ πt) is chainable and non-redundant.

The proof is deferred to Appendix C.2.6.

Example 7.3. The architecture β := (π1, π2) := ((1, m, r, 1), (1, r, n, 1)) is chainable,
with q(π1, π2) = r. The set Bβ is the set of m× n matrices of rank at most r. (π1, π2) is
redundant if r ≥ min(m, n). We observe that on this example redundancy corresponds
to the case where Bβ is the set of all m× n matrices.

A (chainable and) redundant architecture is as expressive as a smaller chain-
able architecture with less parameters. This is first proved for pairs.

Lemma 7.7. Consider a chainable pair β = (π1, π2). If β is redundant, then the
single-factor architecture β′ = (π1 ∗ π2) satisties:

1. Bβ = Σπ1∗π2 = Bβ′ .

2. ∥β′∥0 = ∥π1 ∗ π2∥0 < ∥π1∥0 + ∥π2∥0 = ∥β∥0.

Proof. By Lemma 7.2 we have Bβ = Σπ1∗π2 ∩ Aβ and |RP| = b1, |CP| = c2 for
each P ∈ P(Sπ1 , Sπ2). This first claim follows from the fact thatAβ is the set of all
matrices of appropriate size: indeed for any such matrix A, the block A[RP, CP] is
of size b1× c2 hence its rank is at most min(b1, c2) which is smaller than q(π1, π2)
since β is redundant. By definition of Aβ this shows that A ∈ Aβ. For the
second claim, by Definition 7.3 of ∥β∥0, ∥β′∥0 we only need to prove the strict
inequality. Since (π1, π2) is (chainable and) redundant, we have either a1c1 ≥ a2c2
or b2d2 ≥ b1d1, hence by Lemma 7.1 and Equation (7.11) we obtain ∥π1 ∗ π2∥0 =
a2c2b1d1 < a1c1b1d1 + a2c2b2d2 = ∥π1∥0 + ∥π2∥0.

Lemma 7.7 serves as a basis to define Algorithm 7.2, which replaces any chain-
able (and possibly redundant) architecture by a "smaller" non-redundant one.
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Algorithm 7.2 Architecture redundancy removal algorithm

Require: A chainable β = (πℓ)
L
ℓ=1

Ensure: A chainable and non-redundant β′ = (π′ℓ)
L′
ℓ=1 (1 ≤ L′ ≤ L)

1: β′ ← β.
2: while β′ is redundant (cf. Definition 7.6) do
3: (π′ℓ)

L′
ℓ=1 ← β′

4: ℓ← an integer ℓ such that (π′ℓ, π′ℓ+1) is redundant (cf. Definition 7.6)
5: β′ ← (π′1, . . . , π′ℓ−1, π′ℓ ∗ π′ℓ+1, π′ℓ+2, . . . , π′L′)
6: end while
7: return β′

Proposition 7.2. For any chainable architecture β = (πℓ)
L
ℓ=1, Algorithm 7.2 stops

in finitely many iterations and returns an architecture β′ such that:

1. β′ is chainable and non-redundant, and either a single factor architecture
β′ = (π1 ∗ . . . ∗ πL), or a multi-factor one β′ = (π1 ∗ . . . ∗ πℓ1 , πℓ1+1 ∗
. . . ∗ πℓ2 , . . . , πℓp+1 ∗ . . . ∗ πL) for some indices 1 ≤ ℓ1 < . . . < ℓp < L with
p ∈ J1, L− 1K;

2. Bβ′ = Bβ;

3. ∥β′∥0 ≤ ∥β∥0.

Proof. Algorithm 7.2 terminates since |β′| decreases at each iteration. At each
iteration, the updated β′ is obtained by replacing a chainable redundant pair
(π′ℓ, π′ℓ+1) by a single pattern (π′ℓ ∗ π′ℓ+1). The architecture β′ remains chainable
by Lemma 7.5 and by chainability of β, hence the algorithm can continue with
no error. Due to the condition of the "while" loop, the returned β′ is either non-
redundant with |β′| > 1, or |β′| = 1 in which case it is in fact also non-redundant
by Definition 7.6. This yields the first condition (a formal proof of the final form
of β′ can be done by an easy but tedious induction left to the reader). Moreover, a
straightforward consequence of Lemma 7.7 is that the update of β′ in line 5 does
not change Bβ′ , and it strictly decreases ∥β′∥0 if the condition of the "while" loop
is met at least once (otherwise the algorithm outputs β′ = β). This yields the two
other properties.

In particular, Algorithm 7.2 applied to a redundant architecture β in Exam-
ple 7.3 returns β′ = ((1, m, r, 1) ∗ (1, r, n, 1)) = ((1, m, n, 1)).

7.5 Hierarchical algorithm for chainable architectures

We show how Algorithm 6.1, initially introduced for specific (square dyadic) ar-
chitectures in Chapter 6 can be directly extended to the case where β is any chain-
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able architecture. The case where L = |β| = 1 is trivial since Problem (7.1) is then
simply solved by setting X1 to be a copy of A where all entries off the prescribed
support are set to zero. We thus focus on L ≥ 2 and start with β of depth L = 2
before considering arbitrary L ≥ 2.

7.5.1 Case with L = 2 factors

Problem (7.1) with an architecture β = (π1, π2) is simply an instance of Problem
(7.5) with (L, R) = (Sπ1 , Sπ2).

Lemma 7.8. The conditions in Theorem 7.1 are verified by the pair of supports
(L, R) = (Sπ1 , Sπ2) for any (not necessarily chainable) architecture (π1, π2).
Consequently, for any architecture β of depth |β| = 2, Algorithm 7.1 returns an
optimal solution to the corresponding instance of Problem (7.1).

Proof. In general, for any pattern π, by Definition 7.2, the column supports {Sπ[:
, j]}j and the row supports {Sπ[i, :]}i are pairwise disjoint or identical, respec-
tively. A fortiori, any pair of elements in the tuple φ(Sπ1 , Sπ2) is either identical
(if their corresponding column and row supports coincide) or disjoint.

7.5.2 Case with L ≥ 2 factors

Consider now Problem (7.1) associated with a chainable architecture β of depth
L := |β| ≥ 2, and a given target matrix A. A first proposition of hierarchical
algorithm, introduced in Algorithm 7.3, is a direct adaptation to our framework
of Algorithm 6.1. It computes an approximate solution by performing successive
two-factor matrix factorization in a certain hierarchical order that is described by
a factor-bracketing tree (Definition 6.4). Further refinements of the algorithm will
later be added to obtain approximation guarantees.

Before exposing the limitations of Algorithm 7.3 and proposing fixes, let us
briefly explain how it works with a focus on its main step in line 7. Consider
any factor-bracketing tree T . Algorithm 7.3 computes a matrix XJr,tK ∈ Σπr∗...∗πt

for each node Jr, tK in a recursive manner. πr ∗ . . . ∗ πt is well-defined for any
1 ≤ r ≤ t ≤ L because β is chainable. At the root node, we set XJ1,LK := A.
At each non-leaf node Jr, tK whose matrix XJr,tK is already computed during the
hierarchical procedure, and with children Jr, sK and Js+ 1, tK, at line 7 we compute
(XJr,sK, XJs+1,tK) ∈ Σπr∗...∗πs × Σπs+1∗...∗πt that is solution to the following instance
of the Fixed Support Matrix Factorization Problem (7.5):

Minimize ∥XJr,tK − XJr,sKXJs+1,tK∥F

Subject to supp(XJr,sK) ⊆ Sπr∗...∗πs ,

supp(XJs+1,tK) ⊆ Sπs+1∗...∗πt .

(7.15)

Indeed, by Lemma 7.8, Problem (7.15) is solved by Algorithm 7.1, which yields
line 7 in Algorithm 7.3. After computing (XJr,sK, XJs+1,tK), we repeat recursively
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Algorithm 7.3 Hierarchical algorithm (recursive version)

Require: A ∈ Cm×n, chainable β = (πℓ)
L
ℓ=1, factor-bracketing tree T

Ensure: factors ∈ Σβ

1: if L = 1 then
2: return (A⊙ Sπ1)
3: end if
4: J1, sK, Js + 1, LK← two children of the root J1, LK of T
5: (Tleft, Tright)← the corresponding left and right subtrees of T
6: (πleft, πright)← (π1 ∗ . . . ∗ πs, πs+1 ∗ . . . ∗ πL)

7:
(
XJ1,sK, XJs+1,LK

)
← Algorithm 7.1

(
A, Sπleft , Sπright

)
8: left_factors← Algorithm 7.3

(
XJ1,sK, (π1, . . . , πs), Tleft

)
9: right_factors← Algorithm 7.3

(
XJs+1,LK, (πs+1, . . . , πL), Tright

)
10: factors← left_factors∪ right_factors
11: return factors

the procedure on these two matrices independently, as per lines 8 and 9, until we
obtain the butterfly factors (XJℓ,ℓK)

L
ℓ=1 ∈ Σβ that yield an approximation Â :=

XJ1,1K . . . XJL,LK ∈ Bβ of A. In conclusion, Algorithm 7.3 is a greedy algorithm that
seeks the optimal solution at each two-factor matrix factorization problem during
the hierarchical procedure.

7.5.3 Algorithm 7.3 does not satisfy the theoretical guarantee (7.3)

However, the control of the approximation error in the form of (7.3) for Algo-
rithm 7.3 in its current form is impossible, as illustrated in the following example.

Example 7.4. Consider β = (π1, π2, π3) =
(
(2ℓ−1, 2, 2, 23−ℓ)

)3
ℓ=1, which is the square

dyadic architecture of depth L = 3. Define A := (DSπ1)Sπ2Sπ3 where D is the diagonal
matrix with diagonal entries (0, 1, 1, 1, 0, 1, 1, 1). Hence, A ∈ Bβ, meaning that any
algorithm with a theoretical guarantee (7.3) must output butterfly factors whose product
is exactly A. However, we claim that this is not the case of Algorithm 7.3 with the so-
called left-to-right factor-bracketing tree of J1, 3K (defined as the tree where each left child
is a singleton). To see why, let us apply this algorithm to A.

1. In the first step, the hierarchical algorithm applies Algorithm 7.1 with the inputs
(A, Sπ1 , Sπ2∗π3), and returns (XJ1,1K, XJ2,3K) ∈ Σπ1 × Σπ2∗π3 .

2. At the second step (which is the last one), Algorithm 7.1 is applied to the input
(XJ2,3K, Sπ2 , Sπ3), and returns (XJ2,2K, XJ3,3K) ∈ Σπ2 × Σπ3 .

By construction, the first and the fifth row of A are null, so the first step can return
many possible optimal solutions (XJ1,1K, XJ2,3K) for the considered instance of Problem
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(7.5), such as XJ1,1K := DSπ1 and

XJ2,3K =

(
B 04×4

04×4 B

)
with B =


α β γ δ
1 1 1 1
1 1 1 1
1 1 1 1

 ,

where the scalars α, β, γ, δ can be arbitrary. Then, with the choice (α, β, γ, δ) = (1, 2, 3, 4),
one can check that the second step of the procedure will always output XJ2,2K and XJ3,3K
such that XJ2,2KXJ3,3K ̸= XJ2,3K and XJ1,1KXJ2,2KXJ3,3K ̸= A. In conclusion, this example2

shows that the output of Algorithm 7.3 cannot satisfy the theoretical guarantee (7.3).

The inability to establish an error bound as in (7.3) for Algorithm 7.3 is due
to the ambiguity for the choice of optimal factors (XJ1,sK, XJs+1,LK) returned by Al-
gorithm 7.1 called at line 7 in Algorithm 7.3, cf. Remark 7.2. At each iteration,
there are multiple optimal pairs of factors, and the choice at line 7 impacts subse-
quent factorizations in the recursive procedure. To guarantee an error bound of
the type (7.3), Section 7.6 proposes a revision of Algorithm 7.3, where, among all
the possible choices, the modified algorithm selects specific input matrices at lines
8 and 9.

7.6 Hierarchical algorithm with error guarantees

We now propose a modification of Algorithm 7.3 using orthonormalization oper-
ations that are novel in the context of butterfly factorization. It is based on an
unrolled version of Algorithm 7.3 and will be endowed with error guarantees
stated and proved in the next section.

7.6.1 A non-recursive version for Algorithm 7.3

The factor-bracketing tree T in Algorithm 7.3 describes in which order the succes-
sive L − 1 two-factor matrix factorization steps are performed, where L := |β|.
An equivalent way to describe this hierarchical order is to store a permutation
σ := (σℓ)

L−1
ℓ=1 of JL − 1K, by saving each splitting index s ∈ JL − 1K that corre-

sponds to the maximum integer in the left child Jr, sK of each non-leaf node Jr, tK
of T (cf. Definition 6.4). We can then reformulate the recursive Algorithm 7.3 as a
non-recursive version of the algorithm as in Algorithm 7.4. These two algorithms
are equivalent when T and σ match, and the non-recursive version will ease the
incorporation of orthogonalization operations.

2At first sight, this seems to contradict the so-called exact recovery property in the case of
square dyadic butterfly factorization from Theorem 6.1. This is not the case, since the state-
ment of these exact recovery results includes a technical assumption excluding matrices with
zero columns/rows, which is not satisfied by A here.
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Algorithm 7.4 Hierarchical algorithm (non-recursive version)

Require: A ∈ Cm×n, chainable β = (πℓ)
L
ℓ=1, permutation (σℓ)

L−1
ℓ=1 of JL− 1K

Ensure: factors ∈ Σβ

1: if L = 1 then
2: return (A⊙ Sπ1)
3: end if
4: partition← (P1) where we denote P1 = J1, LK
5: factors← (A)
6: for J = 1, . . . , L− 1 do
7: (Pj)

J
j=1 ← partition

8: (XPj)
J
j=1 ← factors

9: j← the unique j ∈ JJK such that Pj := Jr, tK ∋ s := σJ
10: (πleft, πright)← (πr ∗ . . . ∗ πs, πs+1 ∗ . . . ∗ πt)

11: (XJr,sK, XJs+1,tK)← Algorithm 7.1
(

XPj , Sπleft , Sπright

)
12: partition←

(
P1, . . . , Pj−1, Jr, sK, Js + 1, tK, Pj+1, . . . , PJ

)
13: factors←

(
XP1 , . . . , XPj−1 , XJr,sK, XJs+1,tK, XPj+1 , . . . , XPJ

)
14: end for
15: return factors

7.6.2 Hierarchical algorithms with orthonormalization steps

Being equivalent to Algorithm 7.3, the non-recursive version Algorithm 7.4 still
suffers from the pitfall highlighted in Example 7.4 regarding error guarantees.
Algorithm 7.5 improves it by introducing additional operations (lines 10-15, per-
formed using Algorithm 7.6), called orthonormalization operations, that are only
well-defined if we restrict to a non-redundant chainable architecture β. Combining
this modification with redundancy removal (Algorithm 7.2) yields Algorithm 7.7.
It applies to any chainable architecture and will be shown in Section 7.7 to satisfy
the desired approximation guarantees.

Orthonormalization operations under the non-redundancy assumption. The
goal of the orthonormalization operations (lines 10-15 of Algorithm 7.5) is to
rescale the butterfly factors (XPk)

J
k=1 without changing their product, in order

to make a specific choice of XJr,tK given as input to Algorithm 7.1 at line 17 during
subsequence steps of the algorithm, while constructing factors XPk for all k ∈ JJK
such that k ̸= j that are orthonormal in a certain sense detailed in Appendix C.3.
Let us highlight that orthonormalization operations are indeed well-defined un-
der the non-redundancy assumption. First, in Algorithm 7.6, the input pair of
patterns (π1, π2) is assumed to be chainable and non-redundant. By Lemma 7.2
and Definition 7.6, we have |RP| ≤ |P| and |CP| ≤ |P|, which makes the opera-
tions at lines 10 and 5 in Algorithm 7.6 well-defined. Second, in Algorithm 7.5, the
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Algorithm 7.5 Hierarchical algorithm with orthonormalization operations for
non-redundant chainable architecture
Require: A ∈ Cm×n, non-redundant, chainable β = (πℓ)

L
ℓ=1, permutation

(σℓ)
L−1
ℓ=1 of JL− 1K

Ensure: factors ∈ Σβ

1: if L = 1 then
2: return (A⊙ Sπ1)
3: end if
4: partition← (P1) where we denote P1 = JL− 1K
5: factors← (A)
6: for J = 1, . . . , L− 1 do
7: (Pj)

J
j=1 ← partition

8: (XPj)
J
j=1 ← factors

9: j← the unique j ∈ JJK such that Pj := Jr, tK ∋ s := σJ
10: for k = 1, . . . , j− 1 do ▷ Begin orthonormalization
11: (XPk , XPk+1)← Algorithm 7.6

(
πPk , πPk+1 , XPk , XPk+1 , column

)
12: end for
13: for k = J, . . . , j + 1 do
14: (XPk−1 , XPk)← Algorithm 7.6

(
πPk−1 , πPk , XPk−1 , XPk , row

)
15: end for ▷ End orthonormalization
16: (πleft, πright)← (πr ∗ . . . ∗ πs, πs+1 ∗ . . . ∗ πt)

17: (XJr,sK, XJs+1,tK)← Algorithm 7.1
(

XPj , Sπleft , Sπright

)
18: partition←

(
P1, . . . , Pj−1, Jr, sK, Js + 1, tK, Pj+1, . . . , PJ

)
19: factors←

(
XP1 , . . . , XPj−1 , XJr,sK, XJs+1,tK, XPj+1 , . . . , XPJ

)
20: end for
21: return factors

architecture β is assumed to be non-redundant. By Lemma 7.6, this means that
the pair (πPk , πPk+1) at line 11 or the pair (πPk−1 , πPk) at line 14 are chainable and
non-redundant. This makes the call to Algorithm 7.6 at these lines well-defined.

Dealing with redundant architectures. When the architecture β is redundant,
Algorithm 7.7 provides a flexible method to construct an approximate solution
for Problem (7.1). It applies Algorithm 7.5 with a non-redundant architecture β′

(cf. Line 1 - Algorithm 7.7) that is expressively equivalent to β (i.e, Bβ′ = Bβ) as
input. This yields an approximation A ≈ ∏L′

ℓ=1 X′ℓ with L′ := |β′| and (Xℓ′)
L′
ℓ′=1 ∈

Σβ′ . Then, it is possible to show that we can construct (Xℓ)
L
ℓ=1 ∈ Σβ such that

∏L′
ℓ=1 X′ℓ = ∏L

ℓ=1 Xℓ. Indeed, by Lemma 7.7, for any redundant pair of patterns
(π, π̃), Algorithm 7.1 with inputs A ∈ Σπ∗π̃ and the support constraints (Sπ, Sπ̃)
returns (X, Y) ∈ Σπ × Σπ̃ such that XY = A. In conclusion, this yields auto-
matically an approximation A ≈ ∏L

ℓ=1 Xℓ with the same approximation error as
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Algorithm 7.6 Column/row-orthonormalization

Require: Non-redundant (π1, π2), X ∈ Σπ1 , Y ∈ Σπ2 , u ∈ {column, row}
Ensure: (X̃, Ỹ) ∈ Σπ1 × Σπ2 such that X̃Ỹ = XY

1: (X̃, Ỹ)← (0, 0)
2: for P ∈ P(Sπ1 , Sπ2) do
3: if u is column then
4: (Q, R)← QR-decomposition of X[RP, P]
5: X̃[RP, P]← Q
6: Ỹ[P, CP]← RY[P, CP]
7: else if u is row then
8: (Q, R)← QR-decomposition of Y[P, CP]

⊤

9: X̃[RP, P]← X[RP, P]R⊤

10: Ỹ[P, CP]← Q⊤

11: end if
12: end for
13: return (X̃, Ỹ)

Algorithm 7.7 Generic factorization method for all chainable architectures

Require: A ∈ Cm×n, chainable β = (πℓ)
L
ℓ=1

Ensure: (Xℓ)
L
ℓ=1 ∈ Σβ

1: β′ ← Algorithm 7.2(β) ▷ Remove redundancy of β
2: L′ ← |β′|
3: Pick σ′ a permutation of JL′ − 1K
4: (X′ℓ)

L′
ℓ=1 ← Algorithm 7.5(A, β′, σ′)

5: Construct (Xℓ)
L
ℓ=1 ∈ Σβ such that X1 . . . XL = X′1 . . . X′L′ , e.g., via successive

applications of Algorithm 7.1
6: return (Xℓ)

L
ℓ=1

∏L′
ℓ=1 X′ℓ. Therefore, the following section only discusses the theoretical guaran-

tees of Algorithm 7.5 for non-redundant chainable architectures, since they will
automatically provide guarantees to Algorithm 7.7.

7.6.3 Complexity analysis

It is not hard to see that all versions of the hierarchical algorithms (Algorithms 7.3
to 7.5 and 7.7) have polynomial complexity with respect to the sizes of the butter-
fly factors and the target matrix, since they only perform a polynomial number of
standard matrix operations such as matrix multiplication, QR and SVD decom-
positions.
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Theorem 7.2 (Complexity analysis). Consider a chainable architecture β =
(πℓ)

L
ℓ=1 and a target matrix A of size m× n. Define Mβ := maxℓ∈JLK aℓcℓ,

Nβ = maxℓ∈JLK bℓdℓ. Denote ∥q(β)∥1, ∥q(β)∥∞ the ℓ1 and ℓ∞ norm of the vec-
tor q(β), cf. Definition 7.5. Then, the complexity is bounded by:

• O(∥q(β)∥1MβNβ) for Algorithms 7.3 and 7.4 in general, and
O(∥q(β)∥1mn) when β is not redundant;

• O
(
(∥q(β)∥1 + |β|2∥q(β)∥∞)mn

)
for Algorithm 7.5 when β is not redun-

dant;

• O
(
(∥q(β)∥1 + |β|2∥q(β)∥∞)mn + ∥q(β)∥1MβNβ

)
for Algorithm 7.7.

The proof of Theorem 7.2 is in Appendix C.4. The complexity bounds in The-
orem 7.2 are generic for any matrix size m, n, chainable β and factor-bracketing
tree T (or equivalent permutation σ). They can be improved for specific β. For
example, in the case of the square dyadic butterfly, [213, 392] showed that the
complexity of Algorithm 7.3 is O(n2) where n = 2L instead of O(∥q(β)∥1n2) =
O(n2 log n). This is optimal in the sense that it already matches the space com-
plexity of the target matrix.

7.7 Guarantees on approximation error

One of the main contributions of this chapter is to show that Algorithm 7.5 out-
puts an approximation solution to Problem (7.1) that satisfies an error bound of
the type (7.3).

7.7.1 Main results

Our error bounds are based on the following relaxed problem.

Definition 7.7 (First level factorization). Given a chainable β := (πℓ)
L
ℓ=1 with

L ≥ 2, we define for each splitting index s ∈ JL− 1K the two-factor "split" architec-
ture:

βs := (π1 ∗ . . . ∗ πs, πs+1 ∗ . . . ∗ πL).

When L = 2 we have β1 = β. For any target matrix A we consider the problem

Eβs(A) := min
(X,Y)∈Σβs

∥A− XY∥F = min
B∈Bβs

∥A− B∥F. (7.16)

The following two theorems are the central theoretical results of this chapter.
The first one bounds the approximation error of Algorithm 7.5 in the general case
where σ can be any permutation. The second one is a tighter bound specific to
the case where σ is the identity permutation.
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Theorem 7.3 (Approximation error, arbitrary permutation σ, Algorithm 7.5).
Let β be a non-redundant chainable architecture of depth L ≥ 2. For any target
matrix A and permutation σ of JL − 1K with L = |β|, Algorithm 7.5 with inputs
(A, β, σ) returns butterfly factors (Xℓ)

L
ℓ=1 ∈ Σβ such that

∥A− X1 . . . XL∥F ≤
L−1

∑
k=1

2L−1−kEβσk (A).

Theorem 7.4 (Approximation error, identity permutation σ, Algorithm 7.5).
Under the same assumptions and notations of Theorem 7.3, Algorithm 7.5 with inputs
(A, β, σ) where σ = (1, . . . , L − 1) is the identity permutation returns butterfly
factors (Xℓ)

L
ℓ=1 ∈ Σβ such that:

∥A− X1 . . . XL∥2
F ≤ 3L−2Eβ1(A)2 + 2

L−1

∑
k=2

3L−1−kEβk(A)2.

For L = 2 both results yield ∥A − X1X2∥F ≤ Eβ(A), i.e. the algorithm is
optimal.

Before proving these theorems in Section 7.7.5 we state and prove their main
consequences: the quasi-optimality of Algorithm 7.5, and a "complementary low-
rank" characterization of butterfly matrices.

7.7.2 Quasi-optimality of Algorithm 7.5

A consequence of the theorems is that butterfly factors obtained via Algorithm 7.5
satisfy an error bound (7.3).

Corollary 7.1 (Quasi-optimality of Algorithm 7.5). Let β be any chainable ar-
chitecture of arbitrary depth L := |β| ≥ 1. For any target matrix A, the outputs
(Xℓ)

L
ℓ=1 of Algorithm 7.5 with inputs (A, β, σ) for arbitrary permutation σ satisfy:

∥A− X1 . . . XL∥F ≤ (2max(L−1,1) − 1)Eβ(A). (7.17)

When σ is the identity permutation, the outputs also satisfy the finer bound:

∥A− X1 . . . XL∥F ≤
√

2× 3max(L−2,0) − 1 Eβ(A). (7.18)

For L ∈ {1, 2} the output of Algorithm 7.5 is thus indeed optimal.
As opposed to (7.4), the error bounds in this corollary compare the approxi-

mation error to the minimal possible error. Table 7.2 summarizes the consequences
of Corollary 7.1 for some standard examples of chainable β. It is worth emphasiz-
ing that although the constant Cβ is exponential with respect to L = |β|, it is linear
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or even sublinear with respect to the size of the target matrix in most practical
cases.

The proof of Corollary 7.1 is based on the following lemma. First, we use the
fact that the errors in (7.16) lower bound the error of (7.3), by Definition 7.7.

Lemma 7.9. If the architecture β of depth L := |β| is chainable then

∀s ∈ JL− 1K, Bβ ⊆ Bβs . (7.19)

Consequently, for any matrix A the quantity Eβ(A) defined in (7.1) satisfies:

Eβ(A) ≥ max
1≤s≤L−1

Eβs(A). (7.20)

Proof. If B ∈ Bβ, then there exist (Xℓ)
L
ℓ=1 ∈ Σβ such that B = X1 . . . XL. By

Lemma 7.4, X1 . . . Xs ∈ Σ(π1∗...πs) and Xs+1 . . . XL ∈ Σ(πs+1∗...∗πL) for any s ∈ JL−
1K.

Proof of Corollary 7.1. We start by proving (7.17). We consider two possibilities for
the depth L := |β| of the non-redundant, chainable architecture β:

• If L = 1: we have β = {π} for some pattern π. The projection of A onto
Σπ is simply A ⊙ Sπ ∈ Σπ, which is exactly the output computed by the
algorithm. Hence the obtained factor X1 satisfies ∥A− X1∥F = Eβ(A).

• If L ≥ 2: using Lemma 7.9, Theorem 7.3, and the fact that ∑L−1
k=1 2L−1−k =

∑L−2
k=0 2k = 2L−1 − 1, we have: ∥A− X1 . . . XL∥F ≤ (2L−1 − 1)Eβ(A).

In both cases, we have ∥A − X1 . . . XL∥F ≤ (2max(L−1,1) − 1)Eβ(A). The proof
for (7.18) is similar, the only difference being that we use the equality: 3L−2 +
2 ∑L−1

k=2 3L−1−k = 2× 3L−2 − 1.

Remark 7.5. Because the generic factorization method - Algorithm 7.7 - uses Algo-
rithm 7.5, it inherits naturally the bounds (7.17) and (7.18), depending on the choice
of σ′ chosen in Line 3 of Algorithm 7.7. In fact, the bounds in Corollary 7.1 for a redun-
dant architecture can be even tighter since the depth L′ of its non-redundant counterpart
(β′ - output of Algorithm 7.2) is strictly smaller than L.

7.7.3 Complementary low-rank characterization of butterfly ma-
trices

Another important consequence of Theorem 7.3 is a characterization of matrices
admitting an exact butterfly factorization associated with a chainable β. This
allows (when β is chainable) to verify whether or not a given matrix A admits a
butterfly factorization associated with β, by checking the rank of a polynomial
number of specific submatrices of A. This is feasible using SVDs, and contrasts
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with the synthesis definition of Bβ given by (7.2), which is a priori harder to verify
since it requires checking the existence of an exact factorization of A.

Definition 7.8 (Generalized complementary low-rank property). A matrix A
satisfies the generalized complementary-low rank property associated with a
chainable architecture β := (πℓ)

L
ℓ=1 if, denoting Sr,t := Sπr∗...∗πt for 1 ≤ r ≤ t ≤ L,

it satisfies:

1. supp(A) ⊆ S1,L;

2. rank(A[RP, CP]) ≤ q(πℓ, πℓ+1) for each P ∈ P(S1,ℓ, Sℓ+1,L) and ℓ ∈ JL−
1K (with the notations of Definition 7.1, Definition 7.4).

We show in Corollary C.2 of Appendix C.6 that this generalized definition
indeed coincides with the classical definition of a complementary low-rank prop-
erty (Definition 3.7) from the literature [234], for every architecture β with pat-
terns such that a1 = dL = 1, i.e., architectures such that Bβ contains some dense
matrices, see Remark 7.4. The following results show that a matrix admits an
exact butterfly factorization associated with β if, and only if, it satisfies the asso-
ciated generalized complementary low-rank property.

Corollary 7.2 (Characterization of Bβ for chainable β). If β := (πℓ)
L
ℓ=1 is chain-

able with L ≥ 2 then, with the notations of Definition 7.7 and Lemma 7.2:

Bβ =
L−1⋂
ℓ=1

Bβℓ = Σ(π1∗...∗πL) ∩
L−1⋂
ℓ=1

Aβℓ . (7.21)

Proof. The second equality in (7.21) is a reformulation based on Lemma 7.2, so
it only remains to prove the first equality. The inclusion Bβ ⊆ ⋂L−1

ℓ=1 B
βℓ is a

consequence of Lemma 7.9. We now prove the other inclusion.
First consider the case of a non-redundant β. If A ∈ ⋂L−1

ℓ=1 B
βℓ , then Eβℓ(A) =

0 for each ℓ ∈ JL − 1K by Definition 7.7. By Theorem 7.3, Algorithm 7.5 with
inputs (A, β, σ) for arbitrary permutation σ returns (Xℓ)

L
ℓ=1 ∈ Σβ such that ∥A−

X1 . . . XL∥F = 0, thus A = X1 . . . XL ∈ Bβ. This proves
⋂L−1
ℓ=1 B

βℓ ⊆ Bβ.
For redundant β, consider β′ returned by Algorithm 7.2 with input β. By

Proposition 7.2: Bβ′ = Bβ. Moreover, by the same proposition, β′ is of the form
(π1 ∗ . . . ∗ πℓ1 , πℓ1+1 ∗ . . . ∗ πℓ2 , . . . , πℓp+1 ∗ . . . ∗ πL) for some indices 1 ≤ ℓ1 <

. . . < ℓp < L with p ∈ JL − 1K. Therefore, for any s′ ∈ JL′ − 1K, there exists
s ∈ JL− 1K such that βs = β′s′ , by associativity of the operator ∗ (Lemma 7.3).
Thus,

L−1⋂
ℓ=1

Bβℓ ⊆
L′−1⋂
ℓ′=1

Bβ′ℓ′ = Bβ′ = Bβ
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where in the first equality we used the result proved above for non-redundant
β′.

7.7.4 Existence of an optimum

Corollary 7.2 also allows to prove the existence of optimal solutions for Problem
(7.1) when β is chainable.

Corollary 7.3 (Existence of optimum in butterfly approximation). If β is chain-
able then, for any target matrix A, Problem (7.1) admits a minimizer.

Proof. The set of matrices of rank smaller than a fixed constant is closed, and
closed sets are stable under finite intersection, so by the characterization of Bβ

from Corollary 7.2, the set Bβ is closed. Therefore, Problem (7.1), which is equiv-
alent to a projection problem on the closed set Bβ, always admits a minimizer.

The rest of the section is dedicated to the proofs of Theorems 7.3 and 7.4. Read-
ers more interested in numerical aspects of the proposed hierarchical algorithms
can directly jump to Section 7.8.

7.7.5 Proof of Theorems 7.3 and 7.4

Consider an iteration number J ∈ JL − 1K, and denote (Pk)
J
k=1 the partition ob-

tained after line 7 and (XPk)
J
k=1 the list factors obtained after the orthonormaliza-

tion operations in lines 10-15, at the J-th iteration of Algorithm 7.5. With j defined
in line 9 and Jr, tK := Pj, s := σJ , denote

X(J)
left := XP1 . . . XPj−1 , (7.22)

X(J)
right := XPj+1 . . . XPJ , (7.23)

with the convention that X(J)
left (resp. X(J)

right) is the identity matrix of size a1b1d1

if j = 1 (resp. aLcLdL if j = J). We also denote (XJr,sK, XJs+1,tK) the matrices

computed in line 17, BJ := X(J)
leftXJr,sKXJs+1,tKX

(J)
right and RJ := ∥A− BJ∥F.

Note that BJ is the product of butterfly factors in the list factors at the end of
the iteration J (line 19). In particular, BL−1 ∈ Bβ is the product of the butterfly
factors returned by the algorithm after L − 1 iterations. By convention we also
define B0 := A and R0 := 0.

When σ is an arbitrary permutation, we will prove below the following rela-
tionship between the residual errors RJ−1 and RJ :

∀J ∈ JL− 1K, RJ ≤ 2RJ−1 + EβσJ (A). (7.24)

By an immediate recursion this will yield the desired bound RL−1 := ∥A −
BL−1∥F ≤ ∑L−1

J=1 2L−1−JEβσJ (A) and therefore prove Theorem 7.3.
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When σ is the identity permutation, i.e., σJ = J for J ∈ JL− 1K, we will prove
the following inequality:

∀J ∈ J2, L− 1K, R2
J ≤ 3R2

J−1 + 2EβJ (A)2. (7.25)

Then, by definition, R1 = Eβ1(A), since σ1 = 1 (σ1 is the identity permutation). By
induction, this yields R2

L−1 ≤ 3L−2Eβ1(A)2 + 2 ∑L−1
k=2 3L−1−JEβJ (A)2, and proves

Theorem 7.4.
The rest of this section is dedicated to the proof of (7.24) and (7.25).

Proof of (7.24). Let J ∈ JL− 1K. By the triangle inequality we have

RJ = ∥A− BJ∥F ≤ ∥A− BJ−1∥+ ∥BJ−1 − BJ∥ =RJ−1 + ∥BJ−1 − BJ∥F. (7.26)

Moreover BJ−1 = X(J)
leftXJr,tKX

(J)
right: this holds by definition when J = 1, and for

J ≥ 2 this remains the case by construction of Algorithm 7.5. Indeed, the butterfly
factors in the list factors at the beginning of iteration J (line 8) are the same as
the ones in the list factors at the end of the previous iteration J− 1 (line 19), and
their product does not change after the orthonormalization operations of iteration
J, because (as formally proved in Lemma C.11 in Appendix C.3.3), each call to
Algorithm 7.6 in lines 11 and 14 of Algorithm 7.5 preserves the product of the
butterfly factors in the list factors.

As shown in Appendices C.3.4 and C.5.1, the following properties hold: for
any J ∈ JL− 1K, we have:

∥X(J)
left(XJr,tK − XJr,sKXJs+1,tK)X

(J)
right∥F = ∥XJr,tK − XJr,sKXJs+1,tK∥F, (7.27)

Eβs(X(J)
leftXJr,tKX

(J)
right) = ∥XJr,tK − XJr,sKXJs+1,tK∥F. (7.28)

Therefore, combining (7.27) and (7.28) with the definition of BJ , we obtain

∥BJ−1 − BJ∥F = ∥X(J)
left(XJr,tK − XJr,sKXJs+1,tK)X

(J)
right∥F

(7.27)
= ∥XJr,tK − XJr,sKXJs+1,tK∥F

(7.28)
= Eβs(BJ−1).

Let As be an optimal solution of the first level factorization for index s= σJ and
for the target matrix A (cf. Definition 7.7). In particular, As ∈ Bβs . Then, by
definition of Eβs(BJ−1):

∥BJ−1 − BJ∥F = Eβs(BJ−1) ≤ ∥BJ−1 −As∥F.

By the triangle inequality and by definition of As:

∥BJ−1 − BJ∥F ≤ ∥BJ−1 −As∥F

≤ ∥BJ−1 −A∥F + ∥A−As∥F = RJ−1 + Eβs(A).
(7.29)

Combining (7.26) and (7.29) yields (7.24), which ends the proof.
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Proof of (7.25). Suppose now that σ is the identity permutation. As proved in
Appendix C.5.2 using an orthogonality argument3, we have

∀J∈ JL− 1K, ∀p∈ JJ, L− 1K, ⟨BJ−1 − BJ , Bp⟩ = 0. (7.30)

Hence:

∀J ∈ JL− 1K, R2
J := ∥A− BJ∥2

F = ∥(B0 − B1) + . . . + (BJ−1 − BJ)∥2
F

=
J

∑
i=1
∥Bi−1 − Bi∥2

F + 2
J

∑
i=1

∑
i′>i
⟨Bi−1 − Bi, Bi′−1 − Bi′⟩

(7.30)
= ∥B0 − B1∥2

F + . . . + ∥BJ−1 − BJ∥2
F.

Since R0 := 0, the above implies that for each J ∈ JL− 1K.

R2
J = R2

J−1 + ∥BJ−1 − BJ∥2
F, (7.31)

which is tighter than the triangular inequality used in (7.26). By (7.29) and the
inequality (a + b)2 ≤ 2(a2 + b2), we obtain R2

J ≤ 3R2
J−1 + 2Eβs(A)2, as desired.

7.8 Numerical experiments

We now illustrate the empirical behaviour of the proposed hierarchical algorithm
for Problem (7.1). All methods are implemented in Python 3.9.7 using the PyTorch
2.2.1 package. Experiments are conducted on an Intel(R) Xeon(R) Gold 6338
CPU @ 2,00 GHz (32 cores, 125 GB RAM), in float-precision. Since all the target
matrices in the experiment are of real values, we implemented all algorithms with
real entries (instead of complex ones as in Algorithms 7.1 and 7.3 to 7.5).

7.8.1 Hierarchical algorithm vs. with existing methods

We consider Problem (7.1) associated with the square dyadic butterfly architec-
ture with L = 10 factors. The target matrix is the Hadamard matrix of size
1024× 1024. We compare the following methods.

• Hierarchical algorithm (Algorithm 7.4 and Algorithm 7.5): We use the per-
mutation σ = (5, 2, 1, 3, 4, 7, 6, 8, 9), which corresponds to a balanced factor-
bracketing tree as illustrated in Figure 6.2b. In line 3 of Algorithm 7.1,
the best low-rank approximation is computed via truncated SVD: follow-
ing [213], we compute the full4 SVD UDV⊤ of the submatrix A[RP, CP]

3This argument has been used in [250] to prove (7.4). We adapt their argument to our context
for the self-containedness of this chapter.

4One can further optimize the algorithm by running truncated SVD instead of full SVD, as
discussed in Section 6.5.2.
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Figure 7.3: Relative approximation errors defined as ∥A− Â∥F/∥A∥F vs. running time of
the different algorithms. The target matrix A is the Hadamard matrix of size 1024× 1024,
and Â is the computed approximation for Problem (7.1) associated with the square dyadic
butterfly architecture.

where the diagonal entries of D are the singular values in decreasing or-
der, and we set H = U[:, r]D1/2 and K = D1/2V[:, r]⊤ with r := J|P|K. Note
that we used Algorithm 7.5 instead of Algorithm 7.7 because we know that
the considered architecture β is not redundant5.

• Gradient-based method [74]: Using the parameterization B = X1 . . . XL for
a butterfly matrix B ∈ Bβ, this method uses (variants of) gradient descent
to optimize all nonzero entries Xℓ[i, j] for (i, j) ∈ supp(Sπℓ

) and ℓ ∈ JLK to
minimize (7.1). We use the protocol of [74]: we perform 100 iterations of
ADAM6 [197], followed by 20 iterations of L-BFGS [244]7.

• Alternating least squares [241]: At each iteration of this iterative algorithm,
we optimize the nonzero entries of a given factor Xℓ for some ℓ ∈ JLK while
fixing the others, by solving a linear regression problem.

Figure 7.3 shows that the different methods find an approximate solution
nearly up to machine precision8, but hierarchical algorithms are several orders
of magnitude faster than the gradient-based method [74] and ALS [241]. Algo-
rithm 7.4 is also faster than Algorithm 7.5 since it does not perform the additional
orthonormalization operations.

5With a redundant architecture β, we would have to use Algorithm 7.7, incurring an overhead
compared to Algorithm 7.5 due to line 5, but it should be negligeable according to Theorem 7.2.

6The learning rate is set as 0.1, and we choose (β1, β2) = (0.9, 0.999).
7L-BFGS terminates when the norm of the gradient is smaller than 10−7.
8Yet, hierarchical algorithms and gradient-based methods are more accurate than ALS by more

than one order of magnitude.
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Figure 7.4: Running time and the relative approximation errors vs. the matrix size n,
for Algorithm 7.4 (without orthonormalization) and Algorithm 7.5 (with orthonormal-
ization), for the instance of Problem (7.1) described in Section 7.8.2 with r = 4. We show
mean and standard deviation on the error bars over 10 repetitions of the experiment.

7.8.2 To orthonormalize or not to orthonormalize?

We now study in practice the impact of the orthonormalization operations in the
hierarchical algorithm, in terms of running time and approximation error, at dif-
ferent scales of the matrix size n× n with n ∈ {128, 256, . . . , 8192}. We consider
Problem (7.1) of size n× n associated with a chainable architecture β = (πℓ)

L
ℓ=1

defined as the unique chainable architecture of depth L = 4 that minimizes the
number of parameters ∥β∥0 under the constraint that:

• Each factor is of size (aℓbℓdℓ, aℓcℓdℓ) = (n, n)

• Bβ contains some dense matrices: π1 ∗ π2 ∗ π3 ∗ π4 = (1, n, n, 1);

• In the complementary low-rank characterization of Bβ, the rank constraint
on the submatrices is r ≥ 2, i.e., q(β) = (r, r, r). We do not choose r =
1 because otherwise, the orthonormalization operations are equivalent to
some rescaling.

The considered target matrix is A = Ã + ϵ ∥Ã∥F
∥E∥F

E, where Ã := X1X2X3X4, the
entries of Xℓ ∈ Σπℓ for ℓ ∈ J4K are i.i.d sampled from the uniform distribution
in the interval [0, 1], E is an i.i.d centered Gaussian matrix with the standard de-
viation 1, and ϵ ≥ 0 is the noise level fixed as ϵ = 0.1 in our experiment. The
permutation σ for the hierarchical algorithm is σ = (2, 1, 3), which corresponds
to the balanced factor-bracketing tree of J4K, defined as the binary tree where the
nodes of a same level have the same cardinal.

Figure 7.4a shows that the difference in running time between the hierarchical
algorithm with (Algorithm 7.4) and without (Algorithm 7.3) orthonormalization
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is negligible, in the regime of large matrix size n ≥ 512. This means that, asymp-
totically, the time of orthonormalization operations is not the bottleneck, which
is coherent with our complexity analysis given in Theorem 7.2.

In terms of the approximation error, Figure 7.4b shows that the hierarchical
algorithm with orthornormalization (Algorithm 7.4) returns a smaller (i.e., better)
approximation error. Moreover, the relative error with orthonormalization error
is always smaller than the relative noise level ϵ = 0.1 (cf. Appendix C.7 for other
values of ϵ), which is not the case of the hierarchical algorithm without orthonor-
malization (Algorithm 7.3). In conclusion, besides yielding error guarantees of
the form (7.3), the orthonormalization operations in our experiments also lead to
better approximation in practice.

7.8.3 Comparison of error bounds

We compare numerically the error bound (7.4) from [250] to the new error bound
from Theorem 7.39. We show that there exists some target matrices A for which
the bound (7.4) can be very large compared to the one of Theorem 7.4.

Protocol. Consider the square dyadic butterfly architecture β = (πℓ)
L
ℓ=1 =(

(2ℓ−1, 2, 2, 2L−ℓ)
)L
ℓ=1, which is indeed chainable, with q(β) = (1, . . . , 1). Define

the target matrix A = Ã + ϵ ∥Ã∥F
∥Ẽ∥F

in Problem (7.1) where

Ã = H⊙ (1n×n − S),

Ẽ = E⊙ S,

where H ∈ Bβ is the Hadamard matrix of size n × n with n = 2L, E is an
i.i.d. random Gaussian matrix of size n× n with the standard deviation 1. Here,
S ∈ {0, 1}n×n is defined as:

∀(i, j) ∈ JnK2, S[i, j] =

{
1 if (i, j) ∈ RP × CP

0 otherwise
, (7.32)

where we can choose any P ∈ P(Sπ1 , Sπ2∗...∗πL). In our experiment, we choose
RP × CP = {1, 1 + n/2} × J1, n/2K. We apply Algorithm 7.5 with one realization
of A and the identity permutation σ = id as inputs.

Results. We compare the error bound from Theorem 7.3 with the bound (7.4)
from [250] computed as

√
|β|ϵ0∥A∥F, see (7.4) for the definition of ϵ0. By design

of A, the numerical value of ϵ0 is expected to be large, because at the first-level
factorization, the submatrix A[RP, CP] cannot be well approximated by a rank-
one matrix in the procedure of Algorithm 7.1. In Figure 7.5, we observe that for a

9Note that the error bound from Corollary 7.1 cannot be evaluated numerically because we do
not know how to compute the minimal approximation error.
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Figure 7.5: Values of the error bounds vs. the noise level ϵ. We display the relative error,
i.e., we divide the value of the error bound by the norm of the target matrix A. The bound
in blue is the one from Theorem 7.3. The bound in orange is the one from (7.4).

sufficiently small noise level ϵ, the error bound from Theorem 7.3 is much smaller
than (7.4): even though the constant Cn = O(log n) in error bound (7.4) grows
slowly with respect to the matrix size n, this example shows that the bound (7.4)
is pessimistic since it is proportional to ϵ0∥A∥F.

7.9 Conclusion

We proposed a general definition of (deformable) butterfly architectures, together
with a hierarchical algorithm for the problem of (deformable) butterfly factoriza-
tion (7.1), endowed with new guarantees on the approximation error of the type
(7.3), under the condition that the associated architecture β satisfies a so-called
chainability condition. The proposed algorithm involves some novel orthonor-
malization operations in the context of butterfly factorization. We discuss some
perspectives of this work.

Tightness of the error bound. The constants Cβ in Corollary 7.1 grow exponen-
tially with the depth L = |β| of the architecture, but linearly with the matrix size
n as shown in Table 7.2. Note that the quasi-linear constant Cn in the existing
bound (7.4) is not comparable with the constants Cβ in Corollary 7.1, due to the
presence of ϵ0 in the bound (7.4), whereas the constants Cβ in Corollary 7.1 con-
trols the ratio between the approximation error and the minimal error. A natural
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question is whether the constants Cβ in Corollary 7.1 are tight for an error bound
of the type (7.3). If not, can the bounds for the proposed be algorithm be sharp-
ened by a refined theoretical analysis, or is there another algorithm that yields a
smaller constant Cβ in the error bound?

Randomized algorithms for low-rank approximation. Algorithms 7.3 to 7.5
need to access all the elements of the target matrix A ∈ Cm×n. Thus, the com-
plexity of all algorithms is at leastO(mn). This complexity, however, fails to scale
for large m, n (e.g., up to 106). Assuming that the target matrix admits a butterfly
factorization associated with β, i.e., A ∈ Bβ, is it possible to recover the butterfly
factors of A, with a faster algorithm, ideally of complexity O(∥β∥0)? Note that
this question was already considered in [233, 234] where randomized algorithms
for low-rank approximation [153,240] are leveraged in the context of butterfly fac-
torization. The question is therefore whether we can still prove some theoretical
guarantees of the form (7.3) for butterfly algorithms with such algorithms.

Algorithms beyond the chainability assumption. Although chainability is a
sufficient condition for which we can design an algorithm with guarantees on the
approximation error, it is natural to ask whether it is also a necessary condition.
There exist, in fact, non-chainable architectures for which we can still build an
algorithm yielding an error bound (7.3). For instance, this is the case of arbitrary
architectures of depth L = 2 (see Lemma 7.8), or architectures that satisfy a trans-
posed version of Definition 7.5, as detailed in Appendix C.8. Therefore, chainabil-
ity in the sense of Definition 7.5 is not necessary for theoretical guarantees of the
form (7.3). However, we conjecture that it is necessary to either consider the defini-
tion of chainability in the sense of Definition 7.5, or the transpose version of it, in
order to preserve the axioms of stability by matrix multiplication (Proposition 7.1)
and associativity (Lemma 7.3), which are at the core for our proofs in Section 7.7.
In other words, to find a more general condition on β, we need to develop a new
proof technique that does not rely on either property. These new techniques, if
possible, might allow us to deal with architectures that are neither chainable nor
transposed-chainable, such as the Kaleidoscope architecture (cf. Table 7.1).

163





Chapter 8
Butterfly factorization by algorithmic
identification of rank-one submatrices

The previous chapter proposed a quasi-optimal hierarchical algorithm to con-
struct a fast algorithm for an approximate rapid evaluation of the considered
matrix, provided that it approximately admits a butterfly factorization associated
with some structured fixed-support constraints encoded by an architecture β. How-
ever, in general, matrices associated with commonly used fast transforms, such as
the DFT matrix, admit such a butterfly factorization up to some specific row or col-
umn permutations. When these permutations are not known, it becomes necessary
to approach the problem of butterfly factorization by considering such permuta-
tions as part of the optimization problem. This chapter proposes a heuristic to
address this more general problem, without any analytical assumption on the en-
tries of the target matrix, for the case of square dyadic butterfly factorizations.

8.1 Introduction

Finding a fast algorithm associated with butterfly factorization when row and
column permutations are not known is formalized as the following minimization
problem:

inf
(Xℓ)

L
ℓ=1,P,Q

∥A−Q⊤X1 . . . XLP∥F, (8.1)

where P, Q are permutation matrices. Chapters 6 and 7 focused on instances of
Problem (8.1) where, recalling (7.9), the sparse factors satisfy the fixed-support
constraint (Xℓ)

L
ℓ=1 ∈ Σβ, but with fixed and known permutations P, Q. For such

instances, we showed in Chapter 7 that there is an efficient hierarchical algorithm
(Algorithm 7.5) that finds quasi-optimal butterfly factors (Xℓ)

L
ℓ=1 with guaran-

tees on the approximation error (Corollary 7.1), provided that the architecture β

The material of this chapter is based on [386], in collaboration with Gilles Puy, Elisa Riccietti,
Patrick Pérez and Rémi Gribonval.
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submatrices

Figure 8.1: Histogram of relative errors when solving Problem (8.1) corresponding to
the square dyadic butterfly factorization (Chapter 6) with unknown permutations, by
exhaustive search on all possible pairs of row and column permutations, as explained in
Section 8.3. The target matrix is of size 8× 8, and is assumed to admit exactly a square
dyadic butterfly factorization up to some unknown row and column permutations. As
indicated by the red circle, only one pair of row and column permutation yields a zero
error, out of all the possible permutations.

describing the sparsity patterns of the butterfly factors satisfies the chainability
condition (Definition 7.5).

But when the permutations P, Q are not known, Problem (8.1) is conjectured to
be difficult. On the one hand, if we enumerate all possible permutations to solve
Problem (8.1) with fixed permutations, we numerically find that only a small pro-
portion of permutations yields a small approximation error, as illustrated in Fig-
ure 8.1. This illustrates the necessity of identifying the appropriate permutations
in order to solve Problem (8.1). But on the other hand, searching exhaustively for
all permutations is not tractable, even if we take into account certain permutation
equivalences with respect to Problem (8.1), as discussed in Section 8.2 below.

Motivation for considering the problem with unknown permutations. Some
matrices associated with commonly used fast transforms, such as the DFT matrix,
does not admit exactly a butterfly factorization X1 . . . XL under the fixed-support
constraint (Xℓ)

L
ℓ=1 ∈ Σβ, for a given architecture β of length L, but it admits a

factorization Q⊤X1 . . . XLP with (Xℓ)
L
ℓ=1 ∈ Σβ for some row and column permu-

tations P, Q. We illustrate this in the example of the DFT matrix as follows.
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Lemma 8.1. Denote A the DFT matrix of size n × n where n := 2L, and β :=
(πℓ)

L
ℓ=1 := ((2ℓ−1, 2, 2, 2L−ℓ))L

ℓ=1 the square dyadic butterfly architecture of length
L. Denote P the bit-reversal permutation matrix (cf. Section 3.2.2). Then: A /∈ Bβ,
but AP ∈ Bβ, where we recall that the notation Bβ is defined in (7.2).

Proof. The proof of AP ∈ Bβ is already given in Section 3.2.2. The proof of A /∈
Bβ is deferred to Section 8.2.1 below.

When the target matrix A admits a butterfly factorization associated with an
architecture β up to some row and column permutations, addressing directly
the problem minB∈Bβ ∥A− B∥F without taking into account these permutations
can lead to an arbitrarily high approximation error, as illustrated in Figure 8.1,
whereas the infimum value for such a matrix A is null in Problem (8.1). More
generally, when A cannot be well approximated by X1 . . . XL with (Xℓ)

L
ℓ=1 ∈ Σβ,

considering row and column permutations can offer more flexibility to the factor-
ization model, which can lead to a better approximation of the target matrix by a
product of sparse factors. This explains why we want to study Problem (8.1) in
this chapter.

Considered approach: partition the matrix into low-rank submatrices. In or-
der to find the optimal permutations in Problem (8.1), we can rely on the fact that
a matrix admitting a butterfly factorization satisfies the complementary low-rank
property [234] (Definition 3.7), that is, there are index blocks (Definition 3.5) that
define several partitions of the matrix indices for which the rank of the subma-
trices at each of these blocks is low (see Corollary 7.2 from Chapter 7). It is then
sufficient to identify these partitions in order to address Problem (8.1). Identify-
ing the index blocks for which the rank of the submatrices is low can be done
analytically when the matrix entries are expressed by a smooth kernel operator
(x, ω) 7→ K(x, ω) evaluated on some parameters {xi}n

i=1, {ωj}n
j=1. For instance,

this is the case of matrices associated with certain integral operators [40] or spe-
cial function transforms [289] (see Section 3.4.2 for more details). However, when
the considered target matrix does not have an analytic form, or when it is not ac-
cessible, the literature does not, to the best of our knowledge, propose a method
for identifying these partitions.

Contribution. We therefore propose a heuristic based on alternating spectral
clustering of rows and columns, in order to identify partitions of the target matrix
into low-rank submatrices without relying on analytical assumptions. In terms of
applications, this heuristic enables us to algorithmically verify if a linear operator
(for which a fast algorithm is not known) satisfies the complementary low-rank
property, so that it allows an appropriate approximation of the associated matrix
by a product of butterfly factors. This chapter introduces this heuristic for the
specific case of square dyadic butterfly factorization. Generalization of the method
to any chainable architectures (Definition 7.5) is left to future work.

167



Chapter 8. Butterfly factorization by algorithmic identification of rank-one
submatrices

Outline. Section 8.2 recalls the low-rank property of butterfly matrices used to
identify optimal permutations in the proposed heuristic. Section 8.3 numerically
shows the necessity of identifying these permutations. This motivates our heuris-
tic explained in Section 8.4, and studied experimentally in Section 8.5. Related
work and perspectives are discussed in Sections 8.6 and 8.7.

8.2 Problem formulation

In this chapter, using the framework of Chapter 7, β denotes the architecture
(cf. Definition 7.3) associated with the square dyadic butterfly factorization of length
L ≥ 2, defined as:

β := (πℓ)
L
ℓ=1, πℓ := (2ℓ−1, 2, 2, 2L−ℓ) ∀ℓ ∈ JLK. (8.2)

We recall the following notations from the previous chapter: for any sparsity
pattern π = (a, b, c, d), we denote Sπ := Ia ⊗ 1b×c ⊗ Id, and Σπ is defined in
Definition 7.2; the set Σβ and Bβ are defined in (7.2) and (7.9); the operator ∗ for a
chainable pair of patterns is defined in Definition 7.4, which is associative in the
sense of Lemma 7.3.

In order to apply the results from Chapter 7, we claim the following result.

Lemma 8.2. The square dyadic butterfly architecture β is a non-redundant chainable
architecture (cf. Definitions 7.5 and 7.6), with q(β) = (1, . . . , 1).

Proof. Denote (aℓ, bℓ, cℓ, dℓ) := (2ℓ−1, 2, 2, 2L−ℓ) for any ℓ ∈ JLK. Let ℓ ∈ JL− 1K.
By Definition 7.4, (πℓ, πℓ+1) is chainable because aℓcℓ/aℓ+1 = 1 = bℓ+1dℓ+1/dℓ
and aℓ+1/aℓ = 2, dℓ/dℓ+1 = 2. Moreover, it is not redundant by Definition 7.6,
because q(πℓ, πℓ+1) = 1 < 2 = min(bℓ, cℓ+1).

The problem that we address in this chapter is Problem (8.1) under the con-
straint (Xℓ)

L
ℓ=1 ∈ Σβ, with unknown permutations P, Q, and without any as-

sumption on the target matrix A. The rest of this section explains our approach,
which relies on the low-rank characterization of square dyadic butterfly matrices
based on the results of Chapter 7.

8.2.1 Low-rank property of square dyadic butterfly matrices

Butterfly matrices associated with a chainable architecture are characterized in
Corollary 7.2, by bounding the rank of a polynomial number of their submatrices
at specific index blocks. We apply these results to the case of the square dyadic
butterfly architecture.
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Lemma 8.3. For the square dyadic architecture β, we have Bβ =
⋂L−1
ℓ=1 B

βℓ , where
we recall the notation introduced in Definition 7.7:

∀ℓ ∈ JL− 1K, Bβℓ := {XY | (X, Y) ∈ Σπ1∗...∗πℓ × Σπℓ+1∗...∗πL}.

Proof. This is an application of Corollary 7.2 since the architecture β is chainable
by Lemma 8.2.

Lemma 8.4. With the same notations as in Lemma 8.3, for any ℓ ∈ JL− 1K:

A ∈ Bβℓ ⇐⇒ rank(A[R, C]) ≤ 1 ∀(R, C) ∈ Prow
L−ℓ × Pcol

ℓ ,

where, recalling the notation from Definition 7.1:

Prow
L−ℓ := {RP | P ∈ P(Sπ1∗...∗πℓ

, Sπℓ+1∗...∗πL)}

=
{
{i + (k− 1)2L−ℓ}k∈J2ℓK | i ∈ J2L−ℓK

}
,

Pcol
ℓ := {CP | P ∈ P(Sπ1∗...∗πℓ

, Sπℓ+1∗...∗πL)}

=
{
{(i− 1)2L−ℓ + k}k∈J2L−ℓK | i ∈ J2ℓK

}
.

(8.3)

Proof. This lemma is an application of Lemma 7.2, because (π1 ∗ · · · ∗ πℓ, πℓ+1 ∗
. . . ∗ πL) is chainable for any ℓ ∈ JL− 1K, by chainability of β and by Lemma 7.5.
It remains to prove the explicit formula for the partitions Prow

L−ℓ and Pcol
ℓ . By

Lemma 7.4 and by definition of β, we have for any ℓ ∈ JL− 1K: π1 ∗ . . . ∗ πℓ =(
1, 2ℓ, 2ℓ, 2L−ℓ), and πℓ+1 ∗ . . . ∗ πL =

(
2ℓ, 2L−ℓ, 2L−ℓ, 1

)
. Then, to prove (8.3), one

can use the definition Sπ = Ia ⊗ 1b×c ⊗ Id for any pattern π = (a, b, c, d), and the
fact that, for any P ∈ P(Sπ1∗...∗πℓ

, Sπℓ+1∗...∗πL), we have RP = supp(Sπ1∗...∗πℓ
[:, i]),

CP = supp(Sπℓ+1∗...∗πL [i, :]) for any i ∈ P, by Definition 7.1.

By Proposition C.1, Prow
ℓ+1 and Pcol

ℓ+1 defined in Lemma 8.4 are partitions of JnK
that are finer (Definition 3.4) than Prow

ℓ and Pcol
ℓ , respectively, for ℓ ∈ JL − 2K.

This defines two corresponding cluster trees (Definition 3.3), denoted Trow
β , Tcol

β ,
of depth L − 1 and with root node JnK, for which the ℓ-th level corresponds to
Prow
ℓ and Pcol

ℓ , respectively, for ℓ ∈ JL− 1K.

Remark 8.1. One can show, using Lemma 8.4, that Trow
β , Tcol

β for the square dyadic
butterfly architecture β satisfies the following conditions:

• Trow
β , Tcol

β are dyadic, i.e., each non-leaf node has exactly two children;

• the left and right child of each node {a1, a2, . . . , an/2ℓ} of Trow
β at level ℓ ∈ J0, L−

1K (a1 < . . . < an/2ℓ) are {a1, a3, . . . , an/2ℓ−1} and {a2, a4, . . . , an/2ℓ};

• the left and right child of each node {b1, b2, . . . , bn/2ℓ} of Tcol
β at level ℓ ∈ J0, L− 1K

(b1 < . . . < bn/2ℓ) are {b1, b2, . . . , bn/2ℓ+1} and {bn/2ℓ+1+1, bn/2ℓ+1+2, . . . , bn/2ℓ}.
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Figure 8.2: Illustration of the cluster trees Trow
β , Tcol

β for which a square dyadic butterfly
matrix A ∈ Bβ of size 16× 16 satisfies the complementary low-rank property.

We illustrate these trees in Figure 8.2.

This two cluster trees yield the complementary low-rank characterization of a
square dyadic butterfly matrix.

Proposition 8.1. Let n := 2L, and consider the square dyadic architecture β of length
L ≥ 2. Then, for any A ∈ Cn×n, A ∈ Bβ, if, and only if, A satisfies exactly the com-
plementary low-rank property for (Trow

β , Tcol
β ) with rank-one submatrices (cf. Defini-

tion 3.7), where Trow
β , Tcol

β are the cluster trees defined in Proposition C.1, and de-
scribed in Remark 8.1.

Proof. This is a direct application of Corollary C.2 because β satisfies the condi-
tions of Corollary C.2 by Lemma 8.2.

Proof of Lemma 8.1. Before continuing, we can use these results to prove that
A /∈ Bβ when A is the DFT matrix of size n× n, as claimed in Lemma 8.1.

Proof. By definition, the entries of A at index k, l ∈ JnK is (e−i 2π
n )(k−1)(l−1), so(

A[1, 1] A[1, 2]
A[1 + n/2, 1] A[1 + n/2, 2]

)
=

(
1 1
1 −1

)
.

The rank of this submatrix is 2. But R := {1, 1 + n/2} ∈ Prow
L−1 as defined in

Lemma 8.4, and {1, 2} ⊆ C := J1, n/2K ∈ Pcol
1 . This means that the rank of

A[R, C] is at least 2. By Lemma 8.4, A /∈ Bβ1 , and by Lemma 8.3, A /∈ Bβ.

8.2.2 Approach to recover unknown permutations

In the following, when the permutation matrices P, Q are fixed, we choose to ap-
ply Algorithm 6.1 introduced in Chapter 6, with input matrix QAP⊤, in order to
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find an approximate solution to Problem (8.1). Denoting (X̂1, . . . , X̂L) the outputs
of Algorithm 6.1 with input matrix QAP⊤, the corresponding approximation er-
ror is

Êβ(QAP⊤) := ∥QAP− X̂1 . . . X̂L∥F = ∥A−Q⊤X̂1 . . . X̂LP∥F,

because permutation matrices are orthonormal and they preserve the Frobenius
norm. However, the difficult case is when the permutations are not known.

We now explain our approach based on the complementary low-rank charac-
terization of a square dyadic butterfly matrix to address this difficult case. For
that, let us introduce the following notations.

• For any cluster tree T whose root is JnK, and for any permutation σ : JnK→
JnK, we define the cluster tree σ(T) obtained by permuting the indices of
each node in T according to σ.

• For any permutation matrix P of size n× n, we denote σP its corresponding
permutation in JnK.

• For any cluster tree Trow of row indices in JnK, there are several permutation
matrices Q for which σQ(Trow

β ) = Trow. This defines equivalence classes of
row permutations [QTrow ].

• Similarly, for any given cluster tree Tcol, two column permutations P1, P2
are in the same equivalence class [PTcol ] if, and only if, σP1(T

col
β ) = σP2(T

col
β ) =

Tcol.

Suppose that the target matrix in Problem (8.1) is of the form A := Q⊤ÃP,
where Ã ∈ Bβ and P, Q are two unknown arbitrary permutation matrices. By
Proposition 8.1, Ã satisfies the complementary low-rank property for the trees
(Trow

β , Tcol
β ). Hence, the target matrix A = Q⊤ÃP also satisfies this property,

but for the trees Trow := σQ(Trow
β ) and Tcol := σP(Tcol

β ). If we can reconstruct
(Trow, Tcol) from the observation of A, then Problem (8.1) can be solved by choos-
ing any pair (P̂, Q̂) ∈ [PTcol ] × [QTrow ] and applying Algorithm 6.1 to the ma-
trix Q̂AP̂⊤. Indeed, such a choice is sufficient to guarantee that Q̂AP̂⊤ satisfies
the complementary low-rank property for Trow

β and Tcol
β , hence, Q̂AP̂⊤ ∈ Bβ by

Proposition 8.1. This is because the matrices P̂⊤ and Q̂⊤ are associated with the
inverse permutations σ−1

P , σ−1
Q , and by definition of the introduced equivalence

classes, we have σ−1
P (Tcol) = Tcol

β and σ−1
Q (Trow) = Trow

β .
In conclusion, in order to solve Problem (8.1), it is sufficient to identify the

trees Trow and Tcol for which the target matrix satisfies the complementary low-
rank property. By Lemma 8.3, Lemma 8.4 and Proposition 8.1, this reduces to
identifying partitions of A into rank-one submatrices.
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8.3 Necessity of recovering the partitions

We now show empirically that identifying the cluster trees (Trow, Tcol) for which
A := Q⊤ÃP (Ã ∈ Bβ) satisfies the complementary low-rank property is in fact
necessary to solve Problem (8.1).

Protocol. Consider a matrix Ã ∈ Bβ that admits a square dyadic butterfly fac-
torization, with butterfly factors having nonzero entries drawn i.i.d. from the
standard normal distribution. Then, for each possible pair (T̃row, T̃col) of dyadic
cluster trees of depth L− 1 that we enumerate, we fix an arbitrary pair (P̃, Q̃) ∈
[PT̃col ] × [QT̃row ], and compute an approximate solution to Problem (8.1) via Al-
gorithm 6.1 applied to Q̃AP̃⊤, yielding an approximation error Êβ(Q̃AP̃⊤) for
Problem (8.1). The goal is to check whether the only trees yielding a small ap-
proximation error for the target matrix A := Q⊤ÃP are Trow := σQ(Trow

β ) and
Tcol := σP(Tcol

β ). For illustrative purposes, we consider in our experiment the
case n = 8, which gives 315 possible cluster trees for the enumeration of T̃row

and T̃col.

Remark 8.2. A count of the number of trees shows that this experiment is not tractable
for a large size n, which is why we consider n = 8. The number un of possible dyadic
cluster trees of depth L− 1 with L := log2(n) for a same root of cardinal n satisfies the
recurrence relation un = 1

2(
n

n/2)(u n
2
)2 with u2 = 1, since there are 1

2(
n

n/2) possible ways
to choose values for the two children of the root node, and the left and right subtrees of the
root node are, by definition, dyadic cluster trees of depth L− 2 whose root is of cardinal
n/2.

Results. In Figure 8.1, the exhaustive search on all pairs (T̃row, T̃col) of dyadic
trees shows that the error Êβ(Q̃AP̃⊤) is null only for one pair of trees, and that
the other pairs fail to solve Problem (8.1), in the sense that there corresponding
approximation error is positive. In other words, this illustrates empirically that,
in order to solve Problem (8.1), it is necessary to identify the appropriate trees
Trow and Tcol for which the target matrix satisfies the complementary low-rank
property. The formal proof of such a necessity for arbitrary size of matrices is left
to future work.

8.4 Alternating spectral clustering

This section introduces Algorithm 8.2 based on alternating spectral clustering to
identify the trees Trow := σQ(Trow

β ) and Tcol := σP(Tcol
β ) for which the matrix

A := Q⊤ÃP (Ã ∈ Bβ) satisfies the complementary low-rank property. To de-
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scribe our approach for Problem (8.1), we start by studying the problem

min
M∈Bβℓ ,P,Q

∥A−Q⊤MP∥2
F, (8.4)

for each ℓ ∈ JL − 1K, since Bβ =
⋂L−1
ℓ=1 B

βℓ by Lemma 8.3. By Lemma 8.4, this
problem is equivalent to

min
{Ri}n/2ℓ

i=1 ,{Cj}2ℓ
j=1

n/2ℓ

∑
i=1

2ℓ

∑
j=1

min
x,y
∥A[Ri, Cj]− xy∗∥2

F, (8.5)

where {Ri}n/2ℓ
i=1 , {Cj}2ℓ

j=1 are row and column partitions into subsets of equal car-
dinal, and minx,y ∥A[R, C] − xy∗∥2

F is the best rank-one approximation error of
A[R, C]. The symbol ∗ denotes the conjugate transpose of a matrix. Such a prob-
lem can be seen as a kind of biclustering problem, in the sense that we want to
cluster rows and columns of the matrix A simultaneously. Related work to this
problem is further discussed in Section 8.6 below.

Row clustering. For an alternating optimization to work, it is necessary to be
able to address the subproblem (8.5) when one of the two partitions is known.
Therefore, without loss of generality, let us minimize find a row partition {Ri}n/2ℓ

i=1

that minimizes (8.5) when fixing a given column partition {Cj}2ℓ
j=1.

To achieve this, we draw inspiration from methods based on spectral clustering
for subspace clustering [348]. Define the graph Gj for j ∈ J2ℓK as follows:

• the n nodes of the graph Gj are the n rows of A restricted to the columns Cj,
denoted {A[k, Cj]}n

k=1;

• the weights of the edges of Gj are given by the similarity matrix Wj ∈ Rn×n

defined by

Wj[k, k′] :=

∣∣∣∣∣
(

A[k, Cj]

∥A[k, Cj]∥2

)∗(
A[k′, Cj]

∥A[k′, Cj]∥2

)∣∣∣∣∣
α

∈ [0, 1] ∀k, k′ ∈ JnK, (8.6)

with a parameter α > 0 controlling the contrast between weights. In other
words, each weight is the cosine similarity raised to the power α.

Intuitively, a group of rows restricted to columns Cj is interconnected by high-
value weights in the graph Gj when the corresponding rows are correlated, which
is the case when they form a rank-one submatrix. Conversely, two uncorrelated
rows should be connected by an edge with a low-value weight. Thus, by solving
a minimal cut problem on the graph G with similarity matrix W := ∑2ℓ

j=1 Wj, the
resulting clustering of nodes should yield a row clustering with small error in the
subproblem (8.5).
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Algorithm 8.1 Alternating spectral clustering for the subproblem (8.5) for a given
ℓ ∈ JL− 1K, during Niter iterations.

Require: A, ℓ, α > 0, random seed
1: {Cj}2ℓ

j=1 ← random partition of JnK according to seed
2: for k = 1, . . . , Niter do
3: {Ri}n/2ℓ

i=1 ← row clustering by fixing {Cj}ℓj=1 with parameter α

4: {Cj}2ℓ
j=1 ← column clustering by fixing {Ri}n/2ℓ

i=1 with paramater α

5: end for
6: Eℓ ← ∑i,j minx,y ∥A[Ri, Cj]− xy∗∥2

F

7: return Eℓ, {Ri}n/2ℓ
i=1 , {Cj}2ℓ

j=1

Concretely, a spectral clustering [350] of the graph G with a similarity matrix
W is performed by computing the eigenvector decomposition of the unnormal-
ized graph Laplacian matrix L := D−W, where D is the degree matrix whose
diagonal entries are W(1 . . . 1)⊤. To ensure that row clusters are of the same car-
dinal, the k-means clustering step on the spectral embeddings is implemented
according to the method from [35].

Alternating optimization. When the column partition is no longer fixed, Al-
gorithm 8.1 proposes to address the subproblem (8.5) via alternating clustering.
A column partition is randomly initialized, and at each iteration, we perform
a spectral clustering of the rows by fixing the column partition of the previous
iteration. Then, vice versa, we swap the role of the rows and the columns. Algo-
rithm 8.1 does not admit guarantees of success, and may require several random
initializations of the initial column partition in order to provide a solution with
small error.

Final heuristic for Problem (8.1). Going back to Problem (8.1) for a target matrix
A := Q⊤ÃP (Ã ∈ Bβ), the proposed heuristic described in Algorithm 8.2 applies
Algorithm 8.1 to return a solution to each subproblem (8.5) for ℓ ∈ JL− 1K. If each
subproblem (8.5) is solved correctly (yielding a null error), and if the identified
partitions form valid cluster trees (Trow, Tcol), in the sense that they satisfy the
axioms of a cluster tree (cf. Definition 3.3), then, by construction, A satisfies the
complementary low-rank property for (Trow, Tcol). We then solve Problem (8.1)
via Algorithm 6.1 with input Q̂AP̂⊤, by fixing (P̂, Q̂) ∈ [PTcol ]× [QTrow ].

Complexity. The complexity of spectral clustering is O(n3) in general when
there are n elements to cluster. Therefore, the complexity of Algorithms 8.1 and 8.2
is at least O(n3).
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Algorithm 8.2 Heuristic for Problem (8.1) via the identification of Trow, Tcol.

Require: A, {αk}K
k=1, {seedm}M

m=1, T
1: for ℓ = 1, . . . , L− 1 do
2: for k = 1, . . . , K, m = 1, . . . , M do
3: Ek,m, Prow

k,m , Pcol
k,m ← Algorithm 8.1 (A, ℓ, αk, seedm)

4: end for
5: (k̃, m̃)← arg min{Ek,m}k,m

6: {R(ℓ)
i }i, {C

(ℓ)
j }j ← Prow

k̃,m̃
, Pcol

k̃,m̃
7: end for
8: Verify that {R(ℓ)

i }i for ℓ ∈ JL− 1K form a valid cluster tree Trow

9: Verify that {C(ℓ)
j }j for ℓ ∈ JL− 1K form a valid cluster tree Tcol

10: if one of the two trees is not valid then
11: return failure
12: else
13: (P̂, Q̂)← any pair of permutations in [PTcol ]× [QTrow ]

14: (X̂ℓ)
L
ℓ=1 ← Algorithm 6.1

(
Q̂AP̂⊤, T

)
15: return success, P̂, Q̂, (X̂ℓ)

L
ℓ=1

16: end if

8.5 Experiments

We evaluate the empirical performance of the proposed heuristic (Algorithm 8.2)
for approximating the target matrix

A := Q⊤ÃP + ϵ(∥Ã∥F/∥N∥F),

where P, Q are random permutation matrices, N is a random matrix with i.i.d. en-
tries following a standard normal distribution, ϵ ≥ 0 controls the relative noise
level, and Ã corresponds to either a random orthogonal butterfly matrix defined
by [297], or the DFT matrix. We apply Algorithm 8.2 with M = 5 random
seeds and {αk}K

k=1 := {10p}p∈{−2,−1,0,1,2}, on 20 instances of the problem for each
ϵ ∈ {0, 0.01, 0.03, 0.1} and n ∈ {2L}L∈{2,...,7}. The success rate is computed as
the proportion of executions of Algorithm 8.2 returning success, out of the 20
instances. We do not consider n > 128, because Algorithm 8.2 has a cubic com-
plexity in n. Typically, an execution takes a few minutes for n = 64, and up to
half-an-hour for n = 128.

Results for random orthogonal butterfly matrix. When Ã is a random orthog-
onal butterfly matrix, for each considered noise levels ϵ and matrix size n, Al-
gorithm 8.2 has a success rate of 100 % out of 20 instances of the problem. This
means that, when repeated with a sufficient amount of α and random seeds, Al-
gorithm 8.1 can solve independently each subproblem (8.5) for ℓ ∈ JL − 1K, and
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Table 8.1: Success rate of Algorithm 8.2 on 20 problem instances with unknown permu-
tation.

Noise level ϵ 0 0.01 0.03 0.1

Random orthogonal butterfly (n = 128) 100 % 100 % 100 % 100 %
Discrete Fourier transform (n = 128) 100 % 95 % 90 % 50 %
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Figure 8.3: Performance of Algorithm 8.1 for each subproblem (8.5) with n = 50 iterations
and m = 5 random seeds for the initialization. The target matrix is a random orthogonal
butterfly matrix of size n = 128 (orange, full line), with noise level ϵ = 0.1. Error bars
show extrema, crosses indicate median values. Blue, dashed line: approximation error
when knowing the cluster trees (Trow, Tcol). Green, dotted line: minimal approximation
error out of 1000 random sampling of partitions, where we solve the subproblem (8.5)
while fixing the partitions.

the returned partitions on all subproblems form valid cluster trees Trow and Tcol.
Figure 8.3 illustrates the results of Algorithm 8.1 repeated with several values of
α and several random seeds: for each subproblem (8.5) for a given ℓ, there exists
at least one value of α for which alternating spectral clustering yields the same
error as the one that we would obtain if the partitioning was known in advance.
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Figure 8.4: Relative approximation error of Algorithm 8.2 divided by ϵ, for the ap-
proximation of a noisy permuted random orthogonal butterfly matrix with noise level
ϵ (crosses show average values, error bars show standard deviations).

When successful, Algorithm 8.2 returns the same approximation error as the
error Êβ(QAP⊤) that we would obtain if the permutations P, Q were fixed and
known. In the noiseless case, the relative error reaches machine precision. In the
noisy case, Figure 8.4 shows that the relative error is smaller than the relative
noise level ϵ.

Results for the DFT matrix. When Ã is the DFT matrix, Algorithm 8.2 also has
a success rate of 100 %, for any noise levels ϵ ∈ {0, 0.01, 0.03, 0.1} and n ≤ 64. For
n = 128, the success rate is 100 % for the noiseless case, but deteriorates in the
noisy case, as illustrated in Table 8.1. Future work could improve the robustness
of the method to noise.

8.6 Related work

The subproblem (8.5) is an instance of the more general problem where, given a
matrix A, we want to find a row partition Prow and a column partition Pcol that
minimize the sum over (R, C) ∈ Prow × Pcol of the best low-rank approximation
of A[R, C]. More precisely, given a number of row clusters p ∈ JmK, a number of
column clusters q ∈ JmK, some rank parameters R ∈Np×q and a matrix A of size
m× n, the problem is:

min
{Ri}

p
i=1,{Cj}

q
j=1

p

∑
i=1

q

∑
j=1

min
B,rank(B)≤R[i,j]

∥A[Ri, Cj]− B∥F, (8.7)
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where Prow := {Ri}
p
i=1 and Pcol := {Cj}

q
j=1 are partitions of JmK and JnK, respec-

tively1. To the best of our knowledge, we did not find studies on this general
problem formulation. However, we can relate this problem to three important
problems that are documented in the literature.

Subspace clustering. The problem of subspace clustering [347] is the instance
of the problem (8.7) where the number of row clusters is set as p = 1, i.e.,
Prow := {JmK}. In other words, this is the problem of fitting a union of q lin-
ear subspaces of dimension r1, . . . , rq for some rank parameters (rj)

q
j=1 to a set

of n points in an m-dimensional space. It is a generalization of the classical
principal component analysis where the points are assumed to be drawn from
a single subspace (which is the case q = 1). The problem is in general challeng-
ing, because it requires simultaneously looking for optimal assignments of the
points to different clusters, and for optimal linear subspaces that fit the points
in each cluster. A review of the different methods for this problem can be found
in [347,348]. Among them, some methods use spectral clustering algorithms [350]
on an affinity matrix of size n× n that measures the pairwise similarity between
the n points, in such a way that, ideally, the similarity is high between points in
the same group and low between points of different groups. Typically, this can be
done by fitting a local subspace to each point in a certain way, and measuring the
similarity between points by comparing their associated subspaces, e.g., using
their angle [95, 96, 129, 346, 366, 381]. The proposed affinity matrix in (8.6) follows
precisely this principle.

Multi-view subspace clustering. When the row partition Prow is still fixed in
the problem (8.7), but has p ≥ 2 clusters, the objective function becomes a sum of
p terms where each of them is a single-view subspace clustering problem, with
the constraint that the column partition Pcol := {Cj}

q
j=1 is shared across these p

problems. One can therefore adapt methods from single-view subspace cluster-
ing to the multi-view case, by making the clustering of the columns consistent
across the different views, using various kinds of regularization like in [117,205].
The proposed heuristic in Section 8.4 is a naive way to perform multi-view spec-
tral clustering, where we simply aggregate the affinity matrices of each view, and
perform spectral clustering on the sum of these affinity matrices. Future work
can integrate more sophisticated methods for multi-view subspace clustering in
the proposed alternating optimization heuristic.

Co-clustering. The co-clustering problem [158] can be formulated as follows:

min
C∈Cp,q,U∈{0,1}m×p,V∈{0,1}n×q

∥A−UCV⊤∥F,

1A problem variation is the one where we further add the constraint that the row and column
clusters are balanced, i.e., they are of the same cardinal.
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where the rows of U and V have exactly one entry equal to one. It can be seen
as the instance of the problem (8.7) where all the rank parameters {R[i, j]}i,j are
equal to one, and the matrix B in the term minB,rank(B)≤1 ∥A[Ri, Cj]− B∥F is con-
strained to be of the form λ1|Ri|×|Cj| for some scalar λ. This problem generalizes
the k-means problem in the sense that it considers simultaneous clustering of
the rows and the columns. The alternating optimization proposed in Section 8.4
takes inspiration from the alternating least square strategy proposed in [262] for
the co-clustering problem: it sequentially performs k-means to cluster rows after
fixing the column partition, and vice versa. Other recent methods based on opti-
mal transport [208,310] has been applied to the co-clustering problem. Extension
of these methods to the problem (8.7) is an interesting future research direction.

8.7 Conclusion

We have proposed a heuristic designed to identify the partitions of a matrix into
low-rank submatrices. This allows a square dyadic butterfly factorization with-
out requiring analytical assumptions about the target matrix. We now discuss
some perspectives.

Theoretical guarantees, hardness of the problem. On the one hand, experi-
ments in Section 8.5 show that the proposed heuristic works well when the target
matrix is assumed to admit a square dyadic butterfly factorization up to permu-
tations in the noiseless setting. We therefore ask whether the proposed heuristic
admits some kind of theoretical guarantees in the noiseless setting. Establishing
such guarantees can be based, for instance, on the existing guarantees for the
subspace clustering problem [96]. On the other hand, in complement to the pre-
vious question, one interesting future direction is to clarify whether the problems
(8.7), (8.5) or (8.1) are NP-hard, based on existing hardness results for the k-means
problem [7, 10, 304] or the subspace clustering problem [128].

Robustness, scalability issues. The current heuristic lacks some robustness to
noise, as shown in Section 8.5. Indeed, Algorithm 8.2 proposes to solve the differ-
ent subproblems (8.5) independently for ℓ ∈ JL− 1K. However, if the resolution of
one of the subproblems fails with Algorithm 8.1, then the heuristic might fail as
well to construct valid cluster trees. Therefore, the current method can be further
improved by addressing conjointly the different subproblems (8.5) for ℓ ∈ JL− 1K,
by enforcing the clusterings to be consistent across the different subproblems, in
such a way that they yield valid cluster trees. Moreover, the current heuristic
does not scale well due to its cubic complexity with respect to the matrix size.
The scalability can be improved for instance by considering existing methods for
large scale spectral clustering. Overcoming the robustness and scalability issues
of the proposed heuristic would eventually enable the search for butterfly factor-
ization of linear operators used in signal processing or machine learning, such
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as Fourier transforms on graphs [322] or neural network layers [72], in order to
accelerate their evaluation.
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Chapter 9
Efficiency of butterfly sparse matrix
multiplication on GPU: where do we
stand?

Accelerating the inference and training of deep neural networks is a major chal-
lenge, given their constantly growing resource requirements. At the very heart
of this challenge is the acceleration of matrix multiplication on GPUs, which is
one of the main operations in the forward and the backward pass of a deep neu-
ral network. One key approach that aims to address this challenge consists in
enforcing sparsity constraints on certain weight matrices in the model, in order
to achieve various trade-offs between performance and model complexity. This
chapter studies the efficiency in practice of GPU implementations for multiplying
by a sparse matrix that admits a butterfly structure, as described in the previ-
ous chapters. One of our contributions is to benchmark existing GPU implemen-
tations for butterfly sparse matrix multiplication, and improve them in certain
settings with a novel CUDA kernel.

9.1 Introduction

As detailed in Section 4.5, many works pointed out that replacing the weight
matrices W of neural networks by butterfly matrices W = B1 . . . BL with but-
terfly factors (Bℓ)

L
ℓ=1, and training the nonzero weights of each Bℓ by gradient

descent, leads to networks with much fewer parameters than their dense counter-
part, while having comparable accuracies on some learning tasks [71,72,241,342].

However, to the best of our knowledge, there are almost no reports of numer-
ical results concerning the time efficiency of these butterfly networks. The only re-
sults we could find are from [72], where some butterfly networks are reported to
be twice faster to train than their dense counterparts for image classification and

The material of this chapter is based on an on-going work in collaboration with Antoine
Gonon, Pascal Carrivain and Quoc-Tung Le.
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language modeling, and [113] that reports an acceleration of X 7→ W−1(K⊙WX)
where K is some dense weight matrix, ⊙ is the element-wise multiplication, and
W is the DFT matrix (which admits a butterfly factorization, cf. Section 3.2.2),
for dimensions of W larger than 4096. Our replication of the frameworks of the
literature (Appendix D.2) revealed that, contrary to expectations, current imple-
mentations consistently make the forward pass of butterfly networks slower than
dense counterparts in half-precision. This challenges previous assumptions about
their practical utility.

The most fundamental operation when multiplying by a butterfly matrix W =
B1 . . . BL is the multiplication by a single factor Bℓ. Under the framework of
Chapter 7, any butterfly factor B is associated with a sparsity pattern described
by a tuple π := (a, b, c, d) ∈ (N∗)4, and the case a = 1 or d = 1 are the most fun-
damental ones since having an efficient implementation for these cases would
translate into an efficient implementation for the general case, as detailed below.

Contributions. The main contributions of this work are:

1. To benchmark the efficiency of current GPU algorithms in PyTorch for the multi-
plication by a single butterfly factor, for a = 1 or d = 1.

2. To release a new open-source CUDA kernel that improves previous implementa-
tions in float-precision (typically ×1.2 faster when improving).

3. To find out that breaking the PyTorch convention by placing the batch size
in last dimension of the input PyTorch tensor rather than in first1 is a more favor-
able memory layout for sparse algorithms as it substantially accelerates both
the generic sparse algorithm of PyTorch and our new kernel, while it has no
impact on the dense algorithm.

Outline. Section 9.2 presents some preliminaries to study implementations of
butterfly matrix multiplication. Section 9.3 describes existing GPU implementa-
tions in PyTorch. Section 9.4 describes the new CUDA kernel. Section 9.5 bench-
marks existing GPU implementations on PyTorch, and our new kernel, for the
multiplication with a single butterfly factor. Section 9.6 illustrates how the gains
achieved by our new kernel translate at coarser granularity levels, when inserting
butterfly factors into a butterfly factorization, or into a vision transformer. Sec-
tion 9.7 discusses perspectives. Experimental details are deferred to Appendix D.

9.2 Preliminaries

We introduce in Chapter 7 a mathematical framework to describe the butterfly
supports in Definition 7.2. To the best of our knowledge, this framework cap-

1Many operations (fully-connected layers, convolutional layers, batch norm, attention module,
etc.) in PyTorch requires the batch size to be the first dimension of the input tensor.
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Figure 9.1: A π-butterfly factor with π = (a, b, c, d) is a block-diagonal matrix with a
diagonal blocks, each block itself is a block matrix composed by b× c diagonal matrices of
size d× d. In particular, each of the a diagonal blocks follows the sparsity pattern (1, b, c, d)
(case a = 1). Therefore, the multiplication in the general case (arbitrary a) can be reduced
to the case a = 1 by performing in parallel the a multiplications by each diagonal block.

tures all the variants of butterfly factorizations that have been empirically tested
for deep neural networks in the literature [71, 72, 74, 113, 241, 342], as detailed in
Table 7.1.

According to Definition 7.2 and as illustrated in Figure 1.1, a π-butterfly factor
is sparse and structured, in the sense that it has a support of the form Ia⊗ 1b×c⊗ Id
where π = (a, b, c, d). Indeed, in comparison to the dense matrix of the same size
abd × acd, the butterfly factor has at most abcd nonzero entries, which yields a
sparsity ratio abcd

a2bcd2 = 1
ad .

Butterfly matrices in neural networks. The typical application of butterfly ma-
trices we have in mind is to replace fully-connected layers in neural networks
in order to accelerate their inference. Our primary focus is on vision transform-
ers (ViTs) [87] as we find that the computational cost of fully-connected layers is
significant in such architectures: depending on the size of the ViT, from 30% to
60% of the total time in a forward pass is spent in fully-connected layers (see Ap-
pendix D.3 for details). We will not consider convolutional layers, as we did not
find the existing method for integrating butterfly factorization [241] satisfactory
(see Appendix D.4 for details).

Sparsity patterns (a, b, c, d) with a = 1 or d = 1 are foundational ones. This
chapter focuses on butterfly sparsity patterns (a, b, c, d) satisfying either a = 1 or
d = 1 for three reasons. First, a possible algorithm for the general case (a, b, c, d)
is to use a times in parallel a specialized implementation for a = 1 on each of
the a diagonal blocks with sparsity patterns (1, b, c, d), cf. Figure 9.1. Second, to
the best of our knowledge, the only algorithm specialized to a = 1 [72] is based
on an efficient implementation in the case d = 1. Last, the two cases a = 1 and
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d = 1 appear in every architecture β that are chainable (Definition 7.5) and for
which Σβ can express dense matrices2, which covers all the architectures used
in practice in neural networks [71, 72, 74, 113, 241, 342]. In particular, a = 1 or
d = 1 covers all such architectures of length L = 2, which is typically the length
of architectures used in [72, 113].

9.3 Existing PyTorch implementations for a = 1 or
d = 1

We now introduce the following baseline PyTorch implementations for the matrix
multiplication by a single butterfly factor:

1. the dense matrix multiplication algorithm (simply called dense) where the
sparse structure of the butterfly factor is not leveraged;

2. the generic sparse matrix multiplication algorithm (simply called sparse)
in PyTorch, which leverages the sparsity of the butterfly factor by storing it
in the CSR format, but that does not leverage its structure;

3. the butterfly matrix multiplication proposed in [72], called monarch, which
leverages both the sparsity and the structure of the butterfly factor.

In the following, the batch size is denoted by K, the input dimension is n and
the output dimension is m. Note that in the transformer architecture, the input
tensor is a three-dimensional array where the dimensions are the data batch size,
the number of tokens, and the embedding dimension. In the following, the batch
size K will be the "effective" batch size defined as the product of the data batch
size times the number of tokens. Therefore, the considered inputs will be a batch
of K vectors.

Batch-size-first vs. batch-size-last. Before detailing each of these algorithms,
we emphasize that each exists in two variants: batch-size-first and batch-size-last.
Consider the matrix multiplication Y = BX ∈ Rm×K where B ∈ Rm×n and X ∈
Rn×K. The two different settings batch-size-first and batch-size-last correspond to
two different memory layouts for the PyTorch tensors encoding the matrices X
and Y respectively:

• In batch-size-first, which is the default PyTorch convention, the PyTorch ten-
sors input_bsf and output_bsf are tensors of shape (K, n) and (K, m) re-
spectively, in such a way that the slices input_bsf[k] and output_bsf[k] for
0 ≤ k ≤ K − 1 contains the k-th column of X and Y. Entries of PyTorch
tensors are always saved in row-major order, i.e., the entries of the slices
input_bsf[k] or output_bsf[k] are stored next to each other in memory.

2i.e., denoting β = (πℓ)
L
ℓ=1, (π1 ∗ . . . ∗ πL) = (1, m, n, 1) for some integers m, n, cf. Lemma 7.4
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(a) input_bsf (b) input_bsl

Figure 9.2: Illustration of the memory layout in batch-size-first and batch-size-last for a
same input matrix X ∈ Rn×K, where n = 3 and K = 4 in the example. The array at the
bottom shows entries that are contiguous in memory when saved in the tensor input_bsf
or input_bsl. K is the batch size while n is the input dimension.

Consequently, each column of X or Y (that corresponds to each input/out-
put vector in the batch of vectors) are stored contiguously in memory in
their respective PyTorch tensor input_bsf or output_bsf.

• The opposite (non-standard) convention is called batch-size-last3. In this con-
vention, the matrices X and Y are stored in tensors input_bsl and output_bsl
of shape (n, K) and (m, K) respectively, where the slices input_bsl[i] for
0 ≤ i ≤ n− 1 or output_bsl[i] for 0 ≤ i ≤ m− 1 contains the i-th row of X
or Y. Again, since PyTorch tensors are in row-major order, each row of X or
Y (that corresponds to the vector containing the i-th coordinate of each in-
put/output vector in the batch) are stored contiguously in memory in their
respective PyTorch tensor input_bsl and output_bsl. See Figure 9.2 for an
illustration of the two different memory layouts.

We now detail the baseline algorithms for butterfly matrix multiplication.

dense and sparse. The default PyTorch implementation of a linear layer is in
batch-size-first: torch.nn.functional.linear(input_bsf, weight), with a ten-
sor weight of shape (m, n) saving B. This is the sparse algorithm when B is
stored in the CSR format, and the dense algorithm when B is stored in the usual
dense format. To the best of our knowledge, there is no default implementation
in batch-size-last for dense and sparse, because the default PyTorch convention
is batch-size-first. Therefore, for batch-size-last, we propose to use the implemen-
tation torch.matmul(weight, input_bsl) with weight of shape (m, n) saving B,
because we find out that it is the fastest among the different alternatives we tried
(cf. Appendix D.5).

monarch for block-diagonal matrix with dense sub-blocks (d = 1). A butter-
fly factor B ∈ Σπ with sparsity pattern π = (a, b, c, 1) is a block-diagonal matrix

3We introduce this terminology by analogy with the recent PyTorch optimization channels-last
that moves the channels dimension to the last position for input tensors of convolutional layers.
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with a dense blocks (Bi)
a
i=1 of size b× c, cf. Figure 9.1. This implies a straightfor-

ward algorithm for efficient matrix multiplication: perform in parallel the mul-
tiplications with the dense diagonal submatrices Bi using a dense multiplication
algorithm (see Appendix D.6 for a pseudo-code). The monarch algorithm [72] is
an efficient GPU implementation of this in batch-size-first, using the torch.bmm
(batched matrix multiplication) routine of PyTorch. We adapt their implementa-
tion to the batch-size-last setting.

monarch for block-diagonal matrix up to permutations (a = 1). A butterfly fac-
tor B ∈ Σπ with sparsity pattern π = (1, b, c, d) is block-diagonal up to certain row
and column permutations, with d dense submatrices (Bi)

d
i=1 of size b× c for the di-

agonal blocks after permutations. We detail these permutations in the following
lemma.

Lemma 9.1. For any integer b, c, d:

Pb,d
⊤(1b×c ⊗ Id)Pc,d = Id ⊗ 1b×c,

where Pp,q denotes the (p, q) perfect shuffle of r := pq [343] defined as:

Pp,q :=


Ir[{1 + qj}j∈J0,p−1K, :]
Ir[{2 + qj}j∈J0,p−1K, :]

...
Ir[{q + qj}j∈J0,p−1K, :]

 . (9.1)

Consequently, denoting π = (1, b, c, d) and π′ = (d, b, c, 1):

∀B ∈ Σπ, Pb,d
⊤BPc,d ∈ Σπ′ .

Proof. The first equality is a consequence of the general result given in [343],
which claims that the Kronecker product commutes up to some perfect shuf-
fle permutation matrices. The second equality comes simply from the fact that
supp(X) ⊆ supp(S) implies that supp(PXQ) ⊆ supp(PSQ) for any matrix X,
binary matrix S, and permutation matrices P, Q.

Therefore, the case a = 1 corresponds to the case d = 1 up to permutations, because

B = Pb,dB′Pc,d
⊤ with B′ := Pb,d

⊤BPc,d,

where B′ is a butterfly factor associated with π′ = (d, b, c, 1), i.e., it is a block-
diagonal matrix with dense blocks of size b × c (case a = 1). Hence, the multi-
plication X 7→ BX can be decomposed sequentially into three steps: X 7→ Pc,d

⊤X,
X 7→ B′X, and X 7→ Pb,dX. In batch-size-first, the monarch algorithm [72] imple-
ments the permutation operations X 7→ Pc,d

⊤X and X 7→ Pb,dX via tensor re-
shaping and transposition on the input tensor, and uses the same algorithm as in
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d = 1 for the operation X 7→ B′X (see Appendix D.6 for a pseudo-code). Note that
their implementation for the permutation operations on the input tensor involve
real memory rearrangements, and not simply a mere reindexing of matrix enu-
merators, meaning that they can have a non-negligible cost in practice. For the
batch-size-last setting, we adapt the implementation from [72] originally provided
only in batch-size-first.

9.4 New CUDA implementation

Let X ∈ Rn×K be the input matrix and B ∈ Σπ be a butterfly factor of size m× n
with sparsity pattern π = (a, b, c, d), where m = abd and n = acd. The goal is to
compute Y = BX ∈ Rm×K. We propose a new implementation called kernel, for
both cases a = 1 and d = 1.

Remark 9.1. When d = 1, the butterfly factor B is block-diagonal with dense sub-blocks
(Figure 9.1). Improving monarch in this scenario is challenging since it exclusively relies
on highly competitive NVIDIA routines for multiplying each dense sub-block. However,
in the case a = 1, the proposed implementation kernel aims at reducing the computation
time of the permutation operations involved in monarch discussed above.

For the case a = 1, consider a set I of rows in B sharing the same sparsity
pattern, i.e., the same set of indices corresponding to nonzero entries. Then, as
shown in Figure 9.3, there is a subset J of column indices for B such that the only
nonzero columns of B[I, :] are those indexed by J. Therefore, the restriction of the
output Y = BX to the rows indexed by I, denoted by Y[I, :], is equal to the multi-
plication of the dense submatrices B[I, J] and X[J, :]. The monarch algorithm calls
dense NVIDIA routines to perform B[I, J]X[J, :] for each different set I, but before
that, the dense submatrix X[J, :] is required to be stored contiguously in memory
in the input tensor, because the dense NVIDIA routines cannot be called from
PyTorch with non-contiguous entries. Therefore, monarch explicitly permutes the
entries in the input tensors by performing tensor reshaping and transposition to en-
sure that entries of X[J, :] are stored contiguously in memory (cf. Algorithm D.2).

Main design feature: kernel encodes permutations in the reading phase. In
total, monarch reads twice the entries of X[J, :] (once to perform the permutation
operations, and another time to perform the dense multiplication B[I, J]X[J, :]),
and writes them once (after permutations in order to make them contiguous in
memory). In contrast, kernel only reads the entries of X[J, :] once, and avoids
rewriting them. This is possible by implementing the butterfly matrix multipli-
cation in CUDA, but not in PyTorch. Once the entries of X[J, :] are loaded, they
remain in memory for the multiplication B[I, J]X[J, :]. In other words, the initial
reading is directly used to perform the multiplication with B[I, J].
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Figure 9.3: The figure depicts a butterfly factor with sparsity pattern π = (1, 4, 3, 3) (case
a = 1). Each set I of rows in B with the same sparsity pattern has only a subset J of nonzero
columns. Consequently, only the rows J of X should be considered for multiplication,
and computing the rows I of the output reduces to a dense multiplication: (BX)[I, :] =
B[I, J]X[J, :]. The proposed implementation kernel avoids read and write operations on
the entries of X[J, :] that were required in monarch in order to make them contiguous in
memory and call dense NVIDIA implementations.

In practice, kernel implements the classical tile matrix multiplication algo-
rithm4 [29,225,283–285], where each block of threads computes in parallel a single
tile of the output. However, for the specific case of a = 1, a non-standard selec-
tion of tiles is enforced: the tiles are chosen with non-consecutive rows to adapt to
the sparsity pattern of B. Each tile exclusively corresponds to rows of B with the
same sparsity pattern, evenly spaced by d in this context.

Despite not relying on NVIDIA routines for the dense multiplication part, the
current implementation of kernel proves to be the fastest in many cases in float-
precision, see Section 9.5 below. In half-precision, the results in Section 9.5 suggest
potential optimization opportunities. The open-source code release of kernel al-
lows a plug-and-play scenario, enabling users to experiment with their preferred
algorithms for the dense multiplication B[I, J]X[J, :] and see if it improves the
current implementation.

Batch-size-last is expected to be favorable when a = 1. The efficiency of read
and write operations relies on accessing adjacent elements in memory. Therefore,
an efficient implementation requires the entries of X[J, :] and Y[I, :] to be stored
contiguously in memory. In our situation (Figure 9.3), the subset I and J contains
non-consecutive integers. This means that efficient access to adjacent elements
in memory is only possible if the entries of each row of X and Y are adjacent in
memory. Therefore, batch-size-last is expected to be more favorable than batch-
size-first, for the multiplication by a butterfly factor when a = 1.

4The classical optimizations that are used in our implementation are detailed in Appendix D.7.
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Table 9.1: Percentage out of 300 cases where algo1 is faster than the algo2 (denoted by
algo1 < algo2), and the median acceleration factor in such cases (that is, the median
ratio time of algo2

time of algo1 ). FP32 denotes float-precision and FP16 denotes half-precision.

dense < sparse monarch < min
(

dense
sparse

)
Batch-size-first Batch-size-last Batch-size-first Batch-size-last

d = 1, fp16 100% (×114) 100% (×13.0) 74% (×8.2) 75% (×7.9)
a = 1, fp16 100% (×143) 100% (×13.2) 62% (×3.1) 60% (×4.1)

d = 1, fp32 88% (×7.0) 42% (×2.4) 90% (×12.6) 90% (×6.7)
a = 1, fp32 91% (×7.8) 43% (×2.5) 86% (×9.3) 86% (×4.5)

min
(

kernel
monarch

)
< min

(
dense
sparse

)
kernel < min

monarch
dense
sparse


Batch-size-first Batch-size-last Batch-size-first Batch-size-last

d = 1, fp16 78% (×7.6) 76% (×7.7) 4.2% (×1.07) 1.3% (×1.1)
a = 1, fp16 64% (×3.1) 64% (×4.0) 1.4% (×1.08) 21% (×1.2)

d = 1, fp32 96% (×11.3) 94% (×6.8) 37% (×1.2) 30% (×1.2)
a = 1, fp32 96% (×7.1) 94% (×6.1) 25% (×1.2) 85% (×1.3)

9.5 Benchmarking the multiplication by a single but-
terfly factor

Currently, and to the best of our knowledge, no GPU efficiency benchmark exists
for butterfly matrices, even at the most basic level of the multiplication with a
single butterfly factor. This section addresses this gap, and identifies situations
where the new kernel implementation is faster than previous implementations.

Protocol. The benchmark is run on nearly 600 sparsity patterns (a, b, c, d) ∈ A×
B× B× A satisfying (b = c or b = 4c or c = 4b) and (a = 1 or d = 1). We consider

A := {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128},
B := {48, 64, 96, 128, 192, 256, 384, 512, 768, 1024}.

This corresponds to dimensions of the butterfly factor B ∈ Rabd×acd that could
be used in ViTs. The sparsity patterns are divided into two categories: (x, b, c, 1)
(case d = 1) and (1, b, c, x) (case a = 1). The cases a = 1 and d = 1 are closely
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related, since the pattern (x, b, c, 1) corresponds to (1, b, c, x) up to permutations
by Lemma 9.1. Further details on the protocol are given in Appendix D.1.

Our benchmark shows four main results.

9.5.1 Batch-size-last substantially improves sparse and kernel,
but does not change monarch nor dense

Figure 9.4 shows that in float-precision, the implementation in batch-size-last is ap-
proximately ten times faster than the one in batch-size-first for sparse, and twice
faster for kernel in the case a = 1, while this has no impact on monarch nor
dense. The results are similar in half-precision (Appendix D.8). While we cannot
explain this acceleration for sparse since the code is not public, we explained in
Section 9.4 that this is expected for kernel due to a favorable memory layout of
the matrices in this case.

The acceleration of sparse in batch-size-last substantially improves in float-
precision the generic baseline min(dense, sparse) that considers the best out of the
generic dense and sparse algorithms. Indeed, the execution time of dense does
not change between batch-size-first and batch-size-last (Figure 9.4), while sparse
becomes faster than dense in batch-size-last, cf. dense < sparse in Table 9.1.

The acceleration of kernel in batch-size-last when a = 1 improves the situation
by becoming the fastest implementation in 20% and 60% additional cases in half-
precision and float-precision compared to batch-size-first, respectively, cf. kernel <
min(monarch, dense, sparse) in Table 9.1. See Figure 9.5 for an example of spar-
sity patterns where kernel improves over existing algorithms.

9.5.2 Implementations dedicated to butterfly are faster

The column min(kernel, monarch) < min(dense, sparse) in Table 9.1 shows
that algorithms specialized to butterfly sparsity (kernel and monarch), are most
of the time faster than generic ones (dense and sparse). For small matrix size,
kernel and monarch are slower than dense. As the matrix size increases, kernel
and monarch becomes faster than dense. This behaviour is illustrated in Fig-
ure 9.5 where we quantify the asymptotic behavior of the algorithms by fitting
a power law time = kxν as a function of x, benchmarking either on the pat-
terns (1, b, c, x) or (x, b, c, 1). We find experimentally that all the sparse algorithms
(sparse, monarch, kernel) scale asymptotically linearly with x, whereas the dense
algorithm scales quadratically with x, as expected by the theory5. The asymptotic
analysis also illustrates the benefit of a dedicated butterfly sparse implementation
compared to generic ones: kernel and monarch have a smaller proportional con-
stant k in the power law than sparse up to one order of magnitude (Figure 9.5).

5These theoretical complexities are justified by the fact that the butterfly factor of sparsity
pattern (1, b, c, x) or (x, b, c, 1) has bcx nonzero entries, and is of size bx× cx.
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Figure 9.4: Violinplot of the ratios time of batch-size-first
time of batch-size-last in 300 cases, for experiments in float-

precision with a = 1. We observe similar behavior for half-precision as detailed in Fig-
ure D.2.

9.5.3 monarch a = 1 is consistently slower than d = 1

The sparsity patterns (x, b, c, 1) (case d = 1) and (1, b, c, x) (case a = 1) correspond
to matrices of the same dimensions, with the same number of nonzeros. There-
fore, the theoretical complexity of the dense and sparse algorithm are the same for
these two tuples. In practice, we indeed observe that sparse and dense, that are
agnostic to the sparsity pattern (a, b, c, d), have the same execution times for such a
pair of tuples (Appendix D.9).

In contrast, we find the original implementation of monarch to be consis-
tently slower for a = 1 compared to d = 1: Figure 9.6a shows that monarch
for the tuple (1, b, c, x) (case a = 1) is typically ×1.5 and ×2.5 times slower, in
float-precision and half-precision respectively, compared to the tuple (x, b, c, 1) (case
d = 1). This gap between a = 1 and d = 1 can be interpreted as the cost for
the memory rearrangements induced by the permutations operations in the case
a = 1 for monarch (Section 9.2). Consequently, the proportion of tuples for which
monarch < min(sparse, dense) is smaller for a = 1 compared to d = 1, cf. Ta-
ble 9.1.

9.5.4 The kernel improves the case a = 1

For d = 1, monarch only relies on dense NVIDIA implementations, which makes
it very competitive and hard to improve. For a = 1, monarch performs memory
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arrangements of the entries in the input tensor in order to reduce the case a =
1 to the case d = 1. As explained in Section 9.4, kernel avoids such memory
operations.

Float-precision. In batch-size-first, the proposed kernel implementation already
improves 25% of the 300 tested cases a = 1 compared to all other algorithms (Ta-
ble 9.1). It gets substantially better in batch-size-last as it benefits from the mem-
ory layout of input tensor as explained in Section 9.4. This now makes it better
than all baselines in 85% of the same 300 cases where a = 1. Beyond enhanc-
ing scenarios where monarch already outperformed other implementations (see
Figure 9.5 for example), the improvements extend to cases where generic base-
lines min(dense, sparse) remained the superior choices, despite lacking special-
ization for butterfly sparsity. This can be seen in Table 9.1 by comparing columns
monarch < min(dense, sparse) vs. min(kernel, monarch) < min(dense, sparse),
where min(kernel, monarch) is faster than min(dense, sparse) in a broader range
of cases than monarch alone.

Half-precision. As shown in Table 9.1, kernel in half-precision is not (yet) able
to achieve the same acceleration observed in float-precision. First, replicating the
exact approach used in float-precision for half-precision is currently not possible, as
CUDA does not yet support vectorized four-by-four operations in half-precision:
we can only perform two-by-two operations using half2, whereas float4 is avail-
able for four-by-four operations in float-precision. Second, the dense algorithm
is very competitive in half-precision due to the use of highly optimized NVIDIA
routines for dense matrix multiplication such as TensorCores. This also makes
monarch very competitive in the case d = 1 since it only relies on the NVIDIA rou-
tines in this case (no additional permutations). Despite all that, we still manage to
improve 21% of the 300 tested cases for a = 1 for half-precision in the batch-size-last
setting, see kernel < min(monarch, dense, sparse) in Table 9.1.

9.6 Benchmarking at coarser granularities

This section verifies if the acceleration provided by the proposed kernel imple-
mentation for a single butterfly factor B is preserved at coarser granularities, when
a butterfly factor is inserted into a butterfly factorization W = B1 . . . BL (Sec-
tion 9.6.1), and when it is inserted into a neural network (Section 9.6.2).

9.6.1 Multiplication by a butterfly matrix

For a butterfly matrix W = B1 . . . BL, is it better to directly compute WX with
a dense implementation, by directly storing W as a dense matrix (ignoring the
sparse factorization), or is it better to sequentially perform the multiplication with
each factor using specialized sparse algorithms?
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Protocol. We focus on butterfly matrices W = B1B2 associated with an archi-
tecture (π1, π2) of length L = 2, where π1 is of the form (1, b, c, d) and π2 is of
the form (a, b, c, 1), and for which the values of π1 and π2 correspond to the ones
benchmarked in Section 9.5 (see Appendix D.10 for more details). The dimen-
sions of W are chosen to match the ones of weight matrices in ViTs (e.g., ViT-S/16,
B/16, L/16).

Results. In float-precision, Table 9.2 shows that kernel improves over the base-
line min(monarch, dense) in 72% of the 460 tested architectures in the batch-size-
last setting (typically ×1.16). For the batch-size-first setting, kernel still improves
over min(monarch, dense) in 27% of the 460 tested architectures (typically×1.10).

In half-precision, we did not find an architecture among the tested ones for
which kernel improves over both monarch and dense. This is somehow ex-
pected, because in the benchmark for a single butterfly factor (Section 9.5), even
though the kernel improves over all previous implementations on some patterns
in the case of a = 1, it does not improve in many cases when d = 1 (Table 9.1).

This motivates a hybrid approach (see Appendix D.10 for details) where the
sparse multiplication X 7→ B1B2X uses kernel for a = 1 (B1), and monarch for
d = 1 (B2). While this approach does not do better than kernel alone compared
to min(monarch, dense) in batch-size-first, it significantly improves in batch-size-
last with float-precision. Moreover, we find architectures in half-precision for which
hybrid is faster than both monarch and dense in batch-size-last. This is the case
for 33% architectures out of 24 for the size 1024× 4096 (typically ×1.08), and 21%
architectures out of 24 for the size 4096× 1024 (typically ×1.06).

9.6.2 Butterfly matrices in a neural network

Section 9.6.1 identified architectures for which the associated butterfly matrix
multiplication is accelerated with the kernel implementation, and for which the
sizes correspond to those encountered in weight matrices of ViT. So how do the
observed gains translate when inserting butterfly matrices in neural networks?

Protocol. We benchmark various components of a ViT-S/16 architecture: a lin-
ear layer with bias, an MLP with non-linear activation and/or normalization lay-
ers, a multi-head attention module, etc. As in [72], we replace by a butterfly
matrix the weight matrices of linear layers in feed-forward network modules,
and the projection matrices for keys, queries and values in multi-head attention
modules. We focus on float-precision, since the case of half-precision still requires
more optimization (Section 9.6.1), and we also focus on batch-size-first, since the
insertion of butterfly matrices in the batch-size-last setting would a priori require a
careful implementation of a ViT in batch-size-last6.

6As batch-size-first is the default convention of PyTorch, optimized implementations for the
rest of the operations present in neural networks are only available in this setting for the mo-
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Table 9.2: Percentage of butterfly architectures (π1, π2) for which the multiplication X 7→
B1B2X is faster with kernel than both monarch and dense. We consider between 24 and
90 different butterfly architectures for each size m× n of the product B1B2. In parenthesis
is the median acceleration factor ( min(time of dense,time of monarch)

time of kernel ) computed only in the cases
where kernel is faster than monarch and dense.

kernel < min(dense, monarch), in float-precision

m× n Batch-size-first Batch-size-last

384× 384 52% (×1.06) 60% (×1.20)
768× 768 21% (×1.09) 72% (×1.20)
1024× 1024 25% (×1.05) 63% (×1.16)

384× 1536 64% (×1.17) 85% (×1.25)
768× 3072 46% (×1.10) 73% (×1.21)
1024× 4096 38% (×1.14) 46% (×1.22)

1536× 384 4% (×1.03) 78% (×1.12)
3072× 768 0% (N/A) 72% (×1.11)
4096× 1024 0% (N/A) 67% (×1.05)

All sizes 27% (×1.10) 72% (×1.16)

Results. Table 9.3 shows the ranking (smaller is better): kernel < monarch <
dense over all the different submodules. This offers promising perspectives to
achieve similar accelerations in half-precision and in batch-size-last.

9.7 Conclusion

This work presented the first GPU benchmark for butterfly sparse matrix multi-
plication with sparsity patterns (a, b, c, d) satisfying a = 1 or d = 1. In such cases,
we also introduced a novel kernel that circumvents costly memory operations in
the fastest existing implementation for a = 1. The proposed kernel is especially
beneficial when deviating from PyTorch convention by placing the batch dimen-
sion in last. Such a convention also improves generic sparse algorithm with the
CSR format, without changing the time for the dense algorithm, which opens in-
teresting perspectives of adopting this convention to promote efficient sparse al-
gorithm on GPU. Our numerical results show that the proposed kernel improves
over all existing implementations in float-precision for various butterfly sparsity
patterns. We now discuss some perspectives of this work.

ment. It remains an open question whether similar optimizations can be extended to the batch-
size-last setting (this would probably require going at the CUDA-level, as discussed further in
Appendix D.11).
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Table 9.3: Acceleration of various subparts of a ViT-S/16 where weight matri-
ces are replaced by butterfly matrices associated with the following architectures:
(1, 192, 48, 2), (2, 48, 192, 1) for the size n × n, (1, 768, 192, 2), (6, 64, 64, 1) for the size
4n× n, (1, 768, 192, 2), (6, 64, 64, 1) for the size 4n× n.

Float-precision, batch-size-first
time of monarch

time of dense
time of kernel
time of dense

Linear n× n 0.82 0.50
Linear n× n + bias 0.97 0.66
Linear 4n× n 0.80 0.78
Linear 4n× n + bias 0.93 0.90
Linear n× 4n 0.91 0.58
Linear n× 4n + bias 0.94 0.61
Feed-forward network 0.91 0.77
Multi-head attention 0.87 0.79
Block 0.90 0.78
Butterfly ViT-S/16 0.89 0.78

Improvement for half-precision. It is an open question whether the case of
half-precision could be improved. As explained in Section 9.4, after the reading
phase, the proposed kernel implementation performs dense multiplication be-
tween submatrices B[I, J] and X[J, :] without relying on NVIDIA routines. Fu-
ture work can study whether using such routines into our kernel can improve
the performance in half-precision. Moreover, a future potential release of half4
which allows four-by-four vectorization operations in half-precision could further
improve the proposed kernel implementation that relies currently on half2 for
two-by-two vectorization operations.

Extension to arbitrary sparsity patterns. A natural extension is to study but-
terfly factors with arbitrary sparsity patterns, and not only to the case a = 1 or
d = 1. As explained in Section 9.2, by Definition 7.2, the general case for pat-
tern π = (a, b, c, d) with arbitrary a > 1 can be implemented by parallelizing
our implementation for the case a = 1 on the different diagonal blocks of pattern
(1, b, c, d), so future work can study how to extend our proposed implementation
to perform batch matrix multiplication with several butterfly matrices of pattern
(1, b, c, d).

Further exploration of batch-size-last. Future work can clarify whether other
PyTorch operations can be implemented in batch-size-last without loosing effi-
ciency compared to existing batch-size-first implementations. Our discussion in
Appendix D.11 shows promising perspectives towards this goal. This would
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typically allow to insert butterfly matrices in a deep neural network with various
PyTorch operations in the batch-size-last setting, which could lead to interesting
acceleration of neural network with butterfly matrices, given the observed im-
provement of the kernel implementation in our benchmark for the batch-size-last
setting (cf. Table 9.1). For further acceleration, one can also envision kernel fusion
to optimize the implementation of a linear linear with a butterfly weight matrix
and a bias, i.e., x 7→ Wx + b for a butterfly matrix W of size m × n and a bias
b ∈ Rm.

Comparaison to butterfly multiplication on other hardware. Finally, this work
offers a baseline for comparisons of butterfly implementations on other hard-
wares: CPU, Intelligence Processing Unit (IPU), FPGA, etc. The butterfly sparsity
is structured and efficient implementation on other hardwares can leverage this
known structured pattern, e.g., as studied in [321] for IPU.
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Chapter 10
Conclusion

This thesis studied challenges related to data annotation frugality and compu-
tational efficiency in deep learning. First, we studied representation learning
via self-supervision for image data, which does not require any annotation for
the images. Second, motivated by neural network compression, we studied but-
terfly sparse matrix factorization, which is a specific sparse matrix factorization
inspired from the fast Fourier transform that enables rapid matrix-vector mul-
tiplication. We summarize our contributions, discuss their broader impact, and
present some overall perspectives of this work.

10.1 Summary of the contributions

Self-supervised learning for visual representations. In Chapter 5, we proposed
a unification of several self-supervised objective functions under the framework
of rotation-invariant kernels (or dot-product kernels). In the pretext task where
the learned representations are invariant to some specific image transformations,
the loss of information due to collapse during pretraining can be avoided by
adding a generic regularization loss in the objective function. Assuming that em-
beddings are ℓ2-normalized, this proposed regularization minimizes an estima-
tor of the maximum mean discrepancy between the embedding distribution and
the uniform distribution on the hypersphere, associated with a certain rotation-
invariant kernels. Several methods (contrastive, uniformity-based, information-
maximization) can be unified under this framework: their objective function in-
cludes the minimization of this maximum mean discrepancy for different choices
of rotation-invariant kernel. Under this framework, the question of choosing a
good regularization for self-supervision can be reduced to the question of choos-
ing a good kernel. In practice, we identified a rotation-invariant kernel never
used before in self-supervised learning that yields competitive results, with re-
duced computational cost during pretraining compared to VICReg [15], due to
the kernel trick.
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Decomposition algorithms for butterfly factorization. We proposed new de-
composition algorithms for butterfly factorization in three problem variations.

In Chapter 6, given a matrix A of size n × n with n = 2L (L ≥ 2) that ad-
mits a square dyadic butterfly factorizations X1 . . . XL (Definition 6.2), we asked
whether the problem of recovering the butterfly factors X1, . . . , XL is well-posed
or not. We showed that these factors are indeed essentially unique, up to some
unavoidable scaling ambiguities, and we proposed a hierarchical factorization
algorithm that recovers these unique factors, with guarantees. The procedure is
to recover the partial products of these factors via successive two-layer matrix
factorizations, by applying truncated SVDs on some specific submatrices, until
all the factors are recovered. The algorithm has a time complexity bounded by
O(n2), and enables fast O(n log n) matrix-vector multiplication by A. Experi-
mentally, it outperforms gradient-based methods in terms of computation time
and precision of the approximation.

In Chapter 7, we considered the problem min(Xℓ)
L
ℓ=1
∥A − X1 . . . XL∥F where

the fixed-support constraints on the factors X1, . . . , XL are more general: each
factor has a support included in the one of Ia ⊗ 1b×c ⊗ Id for a certain π :=
(a, b, c, d) ∈ N4. In this context, a sequence of patterns β := (πℓ)

L
ℓ=1 describ-

ing the fixed-support constraints on the factors (Xℓ)
L
ℓ=1 is called a butterfly ar-

chitecture, and we identified a new condition on butterfly architectures, called
chainability, that covers many variants of the butterfly factorization used in deep
learning applications. Importantly, for any butterfly factorization problem asso-
ciated with a chainable architecture, we can construct an extension of the hier-
archical butterfly endowed with error guarantees: we proved that the ratio of the
approximation error by the best approximation error is bounded by a constant
independent of the target matrix. As a consequence, we derived an analytical
characterization of matrices admitting a butterfly factorization associated with
a chainable architecture, in terms of low-rank properties of certain submatrices
equivalent to a generalization of the complementary low-rank property.

In Chapter 8, we considered the problem min(Xℓ)
L
ℓ=1,P,Q ∥A−Q⊤X1 . . . XLP∥F

where X1, . . . , XL are butterfly factors associated with the square dyadic butterfly
architecture, and P, Q are unknown permutation matrices part of the optimiza-
tion problem. We empirically showed that it is necessary to recover the right pair
of permutations in order to solve the problem, in the sense that there is only one
pair (up to some equivalences) that yields a small approximation error among all
the possible pairs. For the identification of the optimal permutations, we relied
on the complementary low-rank characterization of butterfly matrices, and pro-
posed a heuristic based on alternating subspace clustering to identify row and
column partitions of the target matrix yielding low-rank submatrices. We evalu-
ated numerically the method for the butterfly decomposition of the DFT matrix
and random orthogonal butterfly matrices. This validation was effective up to a
specific matrix size, beyond which the method demonstrated reduced robustness
to noise and became computationally prohibitive due to its cubic time complexity.
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Implementing butterfly sparse matrix multiplication on GPU. In Chapter 9,
we provided the first benchmark of various GPU implementations of the sparse
matrix multiplication with the butterfly structure, in terms of time efficiency. Our
benchmark reveals that the previous implementation specialized to the butterfly
sparsity [72] involves some costly memory transfer operations for permuting el-
ements in the input tensor, which can take up to half of the total time for matrix
multiplication, in our experimental setting. We therefore proposed a new CUDA
implementation that avoids these costly memory transfers, via a better manage-
ment of the different levels of the GPU memory. In most of our tested cases, this
new implementation improves over all existing methods in float-precision (with
a ×1.2 speed-up), but not always in half-precision.

Discussion about perspectives. Short-term perspectives related to the different
contributions have been discussed at the conclusion of each corresponding chap-
ter. Therefore, the next sections discuss more general perspectives related to this
work.

10.2 Perspectives for self-supervised learning

In this section we comment about the general effectiveness of the pretext task
considered in Chapter 5 for self-supervised learning, in terms of its dependence
to the design of image transformations and to the tuning of the hyperparameters
in the pretraining loss. We then discuss the possibility of using the proposed
kernel framework to reduce the computational complexity of other pretraining
losses in the literature.

Dependence on the design of image transformations. In the pretext task stud-
ied in Chapter 5, the quality of the learned representations heavily depends on
the design of the image transformations that are applied to different views of the
same image. The transformations should be adapted to the structure of the im-
ages in the pretraining dataset, or reciprocally, the data should be well-curated
with respect to the considered image transformations that we apply during pre-
training. For instance, random image cropping applied on images with multiple
objects would not be appropriate, since there would be a risk that the represen-
tations of two different objects are learned to be similar in the latent space. To
address this issue, recent work proposed various strategies to correctly handle
image cropping in complex scenes with multiple objects [301,361]. Overall, future
work could further explore how to better design image transformations adapted
to images from real world settings, in order to enhance self-supervised learning
methods on large-scale uncurated dataset.

Tuning the coefficients of pretraining losses without supervision. The pre-
training objective functions discussed in Chapter 5 (SimCLR [50], AUH [354],
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VICReg [15] and the proposed method SFRIK) are parameterized by certain co-
efficients, which need to be tuned carefully as hyperparameters in order to yield
high-quality learned representations. In the experiments of Chapter 5, we follow
the main practice of the literature where the best coefficients for each pretraining
loss are chosen by evaluation on a labeled validation set, by kNN-classification
or linear probing for instance. In this case, the pipeline is not completely unsu-
pervised because it needs labels for hyperparameter tuning. In order to further
avoid the dependence on data annotations, which can be costly at large-scale as
discussed in Chapter 1, future work should compare the performance of different
self-supervised methods by tuning their respective hyperparameters in an unsu-
pervised manner, using for instance the rank criterion proposed in [119].

Reducing the computational costs of other pretraining losses. As discussed in
Section 5.5, on the perspectives of the introduced kernel framework that unifies
various regularization losses in self-supervision, future work could use kernel
approximation techniques to reduce the time and memory complexity to com-
pute the objective function, especially when the batch size is large. This approach
could also be applied to other pretraining losses in the literature, such as the pro-
posed sigmoid loss in language-image pretraining from [377]. This loss takes
the form of a double sum ∑i∈I ∑i′∈I Kt,b(xi, yj) for a certain kernel function Kt,b
parameterized by some scalar parameters t, b, and a batch of text and images em-
beddings {(xi, yi)}i∈I . The complexity for computing directly this double sum
is quadratic with respect to the batch size |I|, which is prohibitive at large batch
sizes like |I| = 32768 as in [377]. Note that [377] computes the double sum by
chunks, which allows them to consider large batch size, but still at the cost of ne-
cessitating large computational resources (SigLIP is trained during 5 days with 32
TPUv4 chips). In this context, one might wonder if it is possible to approximate
this loss function, using some kernel approximation techniques, to allow a linear
computational complexity with respect to the batch size.

10.3 Perspectives for butterfly factorization

Chapter 1 motivated our study on butterfly factorization for its potential impact
in deep neural network compression. Based on the insights of this thesis, we now
provide some partial answers to the question: to what extent can we compress
deep neural networks via butterfly factorization to achieve good performance-
efficiency trade-off, compared to other techniques for parameter reduction?

10.3.1 Performance of butterfly sparse neural networks trained
from scratch

Comparing previous works to important baselines. As mentioned in Section 1.3.4,
previous works that propose to train a butterfly sparse neural network from
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Table 10.1: Results of our reproduction of butterfly sparse neural networks of the liter-
ature. The accuracies correspond to the ImageNet validation set, after training on the
ImageNet training set using the experiment protocol of the original papers [72, 241]. The
time of a single forward pass is measured for a batch size of 128, in half-precision. We use
the implementation provided in each paper. We provide a new low-rank baseline that
was lacking in previous studies.

Parameters Accuracy Forward pass (ms)
Top-1 / Top-5

Simple ViT-S/16 [25]
Dense 21.9 M 75.5/92.0 14.2
Monarch [72] 9.6 M 73.2/91.1 23.3
Low-rank baseline (new) 9.6 M 73.6/91.2 13.0

Simple ViT-B/16 [25]
Dense 86.4 M 75.9/91.7 36
Monarch [72] 36.8 M 75.4/91.7 49.3
Low-rank baseline (new) 36.8 M 75.1/91.8 27.1

scratch [72, 241] did not compare the obtained performance to some important
baselines, such as using a low-rank parameterization of the weight matrices in-
stead of a butterfly parameterization. Therefore, in Table 10.1, we reproduce the
experiment from [72] and add a comparison to this low-rank baseline. We observe
that, on ImageNet classification with a vision transformer [87], the low-rank base-
line achieves a higher top-1 and top-5 accuracy than the butterfly sparse neural
network with the Monarch architecture [72] for the ViT-S/16, while they have the
same number of parameters. Similarly, it achieves a higher top-5 accuracy for the
ViT-B/16. Meanwhile, using the implementation for butterfly sparse multiplica-
tion from [72], the forward pass in half-precision of a butterfly sparse neural is
slower than the low-rank baseline and the dense network. In conclusion, we observe
that the current performance-efficiency achieved by a butterfly sparse neural net-
work trained from scratch as proposed in [72] is not satisfying.

Exploring various butterfly architectures and permutations. What are the hopes
to obtain a butterfly sparse neural network trained from scratch with better accu-
racy than the low-rank baseline?

First, thanks to the framework of Chapter 7, we now know that there exist
many choices of chainable architectures to compress a given weight matrix, so there
might exist one that yields better accuracy than the butterfly architectures pre-
viously used in the literature. But without a specific prior knowledge about the
considered learning task, selecting an architecture yielding good accuracy among
all the possible choices is not straightforward. One could use neural architecture
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search techniques to explore the different trade-offs of various butterfly architec-
tures, but this technique can be costly in terms of computational resources.

Second, in previous works [72], weight matrices are parameterized by a but-
terfly factorization X1 . . . XL associated to a certain architecture, with fixed row and
column permutations during training. A more flexible approach is to explore differ-
ent row and column permutations during training, by considering a parameteri-
zation Q⊤X1 . . . XLP with permutations P, Q part of the training parameters. But
in general, optimizing an objective function with respect to some permutations is
difficult, because of the discrete nature of the set of permutations. Note that the
exploration of different permutations in a butterfly sparse neural network during
training would be analogous to the exploration of different sparse supports in
dynamic pruning methods1 [268].

In conclusion, improving the performance of a butterfly sparse neural net-
work trained from scratch might necessitate the exploration of various butterfly
architectures and permutations. Unless there is a computationally efficient way
to do this exploration, the alternative way is to first train a dense network, and
then decompose certain weight matrices via butterfly factorization.

10.3.2 Decomposition of pretrained dense weight matrices

What are the chances that the pretrained weight matrices in a neural network can
be accurately approximated by a product of butterfly factors?

Failure of previous decomposition models. Previous methods [72,241] decom-
pose a pretrained weight matrix W by considering the problem min(Xℓ)

L
ℓ=1
∥W−

X1 . . . XL∥F, where X1, . . . , XL are associated with a certain butterfly architecture.
However, they did not compare the obtained approximation error to a low-rank
baseline. Therefore, we perform such a comparison for the first time in Table 10.2.
We follow the protocol from [72] where we decompose the weight matrices at sev-
eral layers of a ViT-B/16, pretrained on ImageNet-1k in a supervised manner, via
butterfly factorization associated with a Monarch architecture. We observe that
the obtained approximation error is larger than the best low-rank decomposition,
for a rank that yields the same compression rate in terms of number of parame-
ters after decomposition. This means that the decomposition model from [72] is
worse than the low-rank baseline. One possible explanation for this observation
is that permutation symmetries of neural networks2 were not taken into account

1In dynamic pruning methods, during training, some weights of the neural network can be
fixed to zero following a certain pruning criterion during a certain number of training iterations,
and reintroduced later as a trainable parameter if they become relevant according to a certain
regrowing criterion.

2Permutation symmetries refer to a reshuffling of the neurons in the same layer of a network.
For instance, considering a multilayer perceptron without bias, if Wℓ and Wℓ+1 are the weight
matrices of two consecutive layers, then setting Wℓ ← PWℓ and Wℓ+1 ← Wℓ+1P⊤ for any per-
mutation matrix P does not change the function realized by the network.
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Table 10.2: Relative approximation error of weight matrices after decomposition
via butterfly factorization, for a ViT-B/16 pretrained on ImageNet-1k in a super-
vised manner. For a weight matrix W of size m × n, we consider the problem
minX1,X2 ∥W − X1X2∥F where X1, X2 are butterfly factors associated with a chainable
architecture β. For Monarch butterfly factorization [72], the architecture is β =
((1, m/4, min(m, n)/4, 4), (4, min(m, n), n/4, 1)). For the low-rank decomposition, the ar-
chitecture is β = ((1, m, r, 1), (1, r, n, 1). We choose r = min(m, n)/4 in order to have the
same number of parameters for both architectures, which is (m + n)min(m, n)/4. The
relative error is the approximation error (in Frobenius norm) obtained by the hierarchical
algorithm from Chapter 7, divided by ∥W∥F. The considered weight matrices are those
of the feed-forward network (FFN) module and the multi-head attention module, at the
first and the last transformer block.

Relative approximation error
Monarch [72] Low-rank

First transformer block
First layer of FFN 0.564 0.413
Second layer of FFN 0.529 0.407
Query projection 0.036 0.003
Key projection 0.039 0.003
Value projection 0.506 0.364

Last transformer block
First layer of FFN 0.677 0.626
Second layer of FFN 0.670 0.597
Query projection 0.422 0.293
Key projection 0.446 0.297
Value projection 0.587 0.548

in the problem formulation for butterfly factorization, as we now detail.

Considering permutation symmetries in neural networks. According to the
analytical characterization of butterfly matrices provided in Chapter 7, a matrix
A can be written as a product of butterfly factors associated with a chainable
architecture β, i.e., A ∈ Bβ (Definition 7.5), if and only if, it satisfies the gener-
alized complementary low-rank property (Definition 7.8) associated with β. But
by definition, this complementary low-rank property is not stable by permutation
of rows and columns, in the sense that, in general, for a matrix A satisfying such a
complementary low-rank property, the permuted matrix Ã := Q̃⊤AP̃ for some
arbitrary permutation matrices P̃, Q̃ does not necessarily satisfy the same com-
plementary low-rank property. Therefore, due to permutation symmetries in the
parameterization of a neural network, in order to well approximate a weight ma-
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trix W at a certain layer by a product of butterfly factors associated with β, it is
necessary to consider the problem min(Xℓ)

L
ℓ=1,P,Q ∥W−Q⊤X1 . . . XLP∥F with un-

known permutations P, Q. Indeed, as opposed to min(Xℓ)
L
ℓ=1
∥W − X1 . . . XL∥F,

the value for min(Xℓ)
L
ℓ=1,P,Q ∥W −Q⊤X1 . . . XLP∥F does not change if we replace

W by W̃ := Q̃⊤WP̃ for arbitrary permutation matrices P̃, Q̃. This ensures that the
problem formulation for the decomposition does not depend on a specific param-
eterization of the neural network, and is the same for any permutation-equivalent
parameterizations.

To the best of our knowledge, the work in Chapter 8 provides the first method
to empirically address the butterfly factorization problem with unknown permu-
tations, without any analytical assumption on the entries of the target matrix, which
is typically the scenario when decomposing weight matrices of a given pretrained
neural network. However, the current limitations of the method (lack of robust-
ness to noise, issue with time complexity) makes it challenging to apply to weight
matrices in neural networks at the moment. Therefore, a better understanding of
the factorization problem with unknown permutations is necessary for further
consideration of its applications to neural network compression, and some re-
search directions were proposed in Section 8.7.

Decomposition restricted to some calibration data. An alternative problem
formulation is to restrict the decomposition problem to a specific batch of in-
put vectors. Given a target matrix A and an input matrix Y, the problem is to
minimize ∥AY−Q⊤X1 . . . XLPY∥F, where X1, . . . , XL are butterfly factors associ-
ated with an architecture β, and P, Q. Such an approach has been typically con-
sidered in other post-training compression methods, such as quantization meth-
ods [179,227,278], pruning methods [111,112,178] or low-rank compression meth-
ods [49].

10.3.3 Time-efficiency of butterfly sparse matrix multiplication

One of the main interests of the butterfly sparsity is its structure that takes the
form of a Kronecker product, which can potentially lead to efficient implementa-
tions for real-time acceleration of the matrix multiplication. To what extent is it
possible to obtain a competitive implementation for matrix multiplication using
the butterfly structure compared, for instance, to the low-rank structure or the
dense implementation?

Gap with the dense implementation in half-precision on GPUs. It is impor-
tant to note that general matrix multiply (GEMM) operations in half-precision
are highly optimized on modern GPUs, such as NVIDIA A100 GPUs with Ten-
sorCores. This makes the implementation of the matrix multiplication by a dense
matrix or a low-rank matrix highly competitive, since a low-rank matrix can be
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decomposed into two smaller dense matrices. Currently, the matrix multiplica-
tion by a butterfly matrix is, in general, slower than the multiplication by a low-
rank matrix with as many parameters in half-precision, as suggested in Table 10.1,
so there is a margin for improvement. In order to reduce this gap, our work in
Chapter 9 proposed a new implementation specific to the butterfly sparsity that
avoids costly memory transfer involved in the implementation from [72]. We
showed speedups upon previous implementations in float-precision, but not al-
ways in half-precision. Nevertheless, there might exist some opportunities for
further improvements of the proposed implementation in half-precision, as dis-
cussed in Section 9.7.

Implementation on specialized hardwares. In a frugal setting with limited com-
putational budget, one could be interested in the implementation of the butter-
fly sparse matrix multiplication on other more specialized hardware, such as
FPGAs or IPUs. We expect the implementation on such hardware to be effi-
cient in terms of computation time and energy consumption, as suggested by
recent works [104, 321] that implemented butterfly sparse matrix multiplication
for some specific butterfly architectures. For more flexibility, future work could
extend these implementations in order to consider arbitrary sparsity patterns
Ia ⊗ 1b×c ⊗ Id for general (a, b, c, d) ∈ N4, and compare them with the provided
benchmark for GPU implementations in Chapter 9.

10.3.4 Summary

To summarize, by revisiting some previous works [72, 241], we show for the first
time that the current performance-efficiency trade-off of butterfly sparse neural
networks achieved so far are not satisfying, notably by comparison to the low-
rank baseline. Nevertheless, the contributions of the thesis offer some new per-
spectives for improving this trade-off, for instance by taking into account un-
known permutations for butterfly factorization.

Butterfly factorization for other applications. As suggested in Section 8.7, the
decomposition algorithms for butterfly factorization developed in Chapters 6 to 8
could be applied to other applications than deep learning, like the construction
of fast algorithms for the graph Fourier transform [215, 217, 315, 322]. Indeed, the
graph Fourier transform can be seen as an extension of the DFT, in the sense that
the DFT is the graph Fourier transform associated with a specific graph adjacency
matrix. But as shown in Section 3.4, the DFT matrix satisfies the complementary
low-rank property that allows a decomposition via butterfly factorization. There-
fore, it is natural to ask whether the graph Fourier transform also satisfies a form
of complementary low-rank property, so that it can be well decomposed via but-
terfly factorization, in order to accelerate operations in graph signal processing.
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Appendix A
Appendices for Chapter 5

A.1 Extended related work

We further discuss some related works referenced in Chapter 5.

A.1.1 Reminders on kernel mean embeddings

The idea of kernel mean embedding is to encode a probability distribution in an
RKHSH. DenotingK : X ×X → R the reproducing kernel ofH defined on some
space X , the kernel mean embedding of a probability distribution Q defined on
X is

µQ :=
∫
X
K(u, ·)dQ(u) ∈ H. (A.1)

In other words, the kernel mean embedding mapping Q 7→ µQ transforms a
probability distribution into an element in H. As an application, this allows one
to quantify the divergence between probabilities using the norm ∥ · ∥H associated
withH. Given two probability distributions Q1, Q2 defined on X , one can indeed
quantify their divergence by

∥µQ1 − µQ2∥H =

∥∥∥∥∫X K(u, ·)dQ1(u)−
∫
X
K(u, ·)dQ2(u)

∥∥∥∥
H

,

which is precisely the MMD between Q1 and Q2 defined in (5.4). We refer the
reader to [274] for a complete survey on kernel mean embeddings.

A.1.2 Sample-contrastive criterion

Given a batch of embeddings ZI := {zi}i∈I (that are not necessarily normalized),
the general sample-constrative criterion of [120] is defined by:

ℓc(ZI) = ∑
i,i′∈I, i ̸=i′

(z⊤i zi′)
2.
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According to [120], this criterion is minimized in many contrastive learning meth-
ods like [156]. In the case where the embeddings are normalized, this sample-
contrastive criterion can be derived from the proposed generic uniformity loss ℓu
defined by (5.7) with the quadratic kernel K(u, v) = (u⊤v)2 where u, v ∈ Sq−1, as
claimed in Section 5.1. Indeed, since ∥zi∥2 = 1 for all i ∈ I:

ℓc(ZI) = ∑
i,i′∈I

(z⊤i zi′)
2 −∑

i∈I
(z⊤i zi)

2 = |I|2ℓu(ZI)− |I|,

where |I| is the batch size. Therefore, the sample-contrastive criterion in the nor-
malized case is an estimator of the MMD associated with the quadratic kernel
between the embedding distribution and the uniform distribution on the hyper-
sphere.

A.1.3 Kernel dependence maximization

We further explain the positioning of our work with respect to [231], which pro-
poses a self-supervised learning method based on kernel dependence maximization,
using the Hilbert-Schmidt Independence Criterion (HSIC) [142].

Hilbert-Schmidt independence criterion. This measures the dependence be-
tween two random variables X ∈ X and Y ∈ Y using two RKHS F on X with
kernel k and G on Y with kernel l, in order to capture nonlinear correlations. It is
defined as the squared MMD associated with the reproducing kernel of the ten-
sor product space F ⊗ G between the joint probability distribution PX,Y and the
product PXPY of marginal probability distributions:

HSIC(X, Y) := ∥µPX,Y − µPXPY∥
2
F⊗G ,

where Q 7→ µQ is the kernel mean embedding mapping defined by (A.1).

Kernel dependence maximization for self-supervision. The self-supervised learn-
ing loss in [231] is defined as:

LSSL-HSIC := −HSIC(Z, Y) + γ
√

HSIC(Z, Z),

where Z encodes embeddings of transformed images, and Y encodes image iden-
tity as the index of the original image (before transformation) in the training
dataset. By maximizing HSIC(Z, Y), the backbone learns image representations
that are invariant to image transformations. To avoid collapse, high-variance rep-
resentations are penalized by minimizing HSIC(Z, Z). This is similar to previous
information-maximization methods [15, 375], with the difference that they take
into account nonlinear correlations using kernels.
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Positioning. Although both our approach and the one in [231] view self-supervised
learning as a kernel method, we highlight here a main distinction between the two
works. Both approaches use the MMD, but they do not use it to measure the same
quantity. As explained above, [231] use the MMD to measure dependency be-
tween random variables (like Z and Y), while the regularization loss we propose
uses the MMD to measure the divergence between the embedding distribution
and the uniform distribution on the hypersphere. As explained in Sections 5.1
and 5.2, this kernel approach for self-supervised learning is new in the literature
and allows the unification of several previous self-supervised learning methods
as illustrated in Table 5.1.

Note that when the image identity Y is a one-hot encoding, [231] shows that

−HSIC(Z, Y) = C
(
−E(Z1,Z2)∼pos[k(Z1, Z2)] + EZ3EZ4 [k(Z3, Z4)]

)
, (A.2)

where C > 0 is a constant, (Z1, Z2) is a positive pair of embeddings, i.e., they
are embeddings of two transformations of the same original image, and (Z3, Z4)
is a pair of independent embeddings. In other words, HSIC(Z, Y) is propor-
tional to the sum of an alignment term −E(Z1,Z2)∼pos[k(Z, Z′)] and an energy
term EZ3EZ4 [k(Z3, Z4)], similarly to (5.3) combined with (5.7), which yields the
proposed loss (5.2). Our work shows that, if k(·, ·) is a rotation-invariant ker-
nel on the hypersphere, then the energy term EZ3EZ4 [k(Z3, Z4)] is precisely the
MMD between the embedding distribution and the uniform distribution on the
hypersphere, cf. (5.6). However there are two differences between the maximiza-
tion of HSIC(Z, Y) and the minimization of the proposed loss (5.2). First, the
alignment term and the energy term in (A.2) are quantified with the same kernel
k(·, ·), which is not the case in (5.2) where the alignment term is quantified by
the ℓ2-distance between embeddings (equivalent to the linear kernel when the
embeddings are normalized), and the uniformity term (5.7) is quantified by an-
other rotation-invariant kernel. Second, the loss (5.2) is a weighted sum between
the alignment loss (5.3) and the uniformity loss (5.7) controlled by the hyperpa-
rameter λ that tunes the balance between the two terms, which is not the case of
(A.2).

A.1.4 Regularization loss of SimCLR, AUH and VICReg

In SimCLR, AUH, and VICReg, each image xi in a batch {xi}i∈I is augmented
into two different views xi

(1) and xi
(2), which are encoded into two embeddings

zi
(1) and zi

(2). These embeddings are normalized in SimCLR, AUH, but not in
VICReg. This yields two batches of embeddings ZI

(v) := {zi
(v)}i∈I for v ∈ J2K.

The four methods share the same form of loss function:

ℓ(ZI
(1), ZI

(2)) := λ ℓa(ZI
(1), ZI

(2)) + µ ℓr(ZI
(1), ZI

(2)), (A.3)

for some scalars λ, µ > 0, where ℓa is the alignment loss defined by (5.3) (which is
the same for all the four methods), and ℓr is the regularization loss specific to each
method.
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SimCLR. The regularization loss in SimCLR is:

ℓr(ZI
(1), ZI

(2)) =
1

2|I|
2

∑
v=1

∑
i∈I

log

(
2

∑
v′=1

∑
i′∈I

1[(v,i) ̸=(v′,i′)] exp
(

zi
(v)⊤zi′

(v′)/τ

))
,

where τ > 0 is a hyperparameter of the method called the temperature, and
1[(v,i) ̸=(v′,i′)] is equal to 1 if (v, i) ̸= (v′, i′), and 0 otherwise. The scalars λ, µ are
fixed at λ = 1

τ and µ = 1.

Alignment & Uniformity. The regularization loss in AUH is:

ℓr(ZI
(1), ZI

(2)) =
1

2|I|2
2

∑
v=1

log

(
∑
i∈I

∑
i′∈I

exp(−t∥zi
(v) − zi′

(v)∥2
2)

)
,

where t > 0 is a hyperparameter called the scale of the RBF kernel. The scalar λ
is tuned as a hyperparameter and µ is fixed at µ = 1.

VICReg. As introduced in Section 3.3, the regularization loss in VICReg is:

ℓr(ZI
(1), ZI

(2)) =
1
2

[
v(ZI

(1)) + v(ZI
(2))
]
+

1
2µ

[
c(ZI

(1)) + c(ZI
(2))
]

,

where µ is the scalar from (A.3). Here, v(·) and c(·) are respectively the variance
and covariance terms defined by (5.9). Both λ and µ are tuned as hyperparame-
ters.

A.2 Theoretical results

We provide proofs and more details about the theoretical results in Chapter 5.

A.2.1 Proof of Lemma 5.1

Consider a rotation-invariant kernel K(u, v) defined on the hypersphere Sq−1

such that:

K(u, v) =
+∞

∑
ℓ=0

bℓPℓ(q; u⊤v), ∀u, v ∈ Sq−1,

with weights bℓ ≥ 0 and Pℓ(q; ·) the Legendre polynomial of order ℓ in dimension
q. The proof of Lemma 5.1 relies on an orthonormal system of spherical harmon-
ics. Let ⟨ f , g⟩(q) :=

∫
Sq−1 f gdσq−1 be the inner product in the space of continuous

functions defined on Sq−1 and, for each ℓ ∈ N, consider {Yℓ,k | k ∈ JN(q, ℓ)K}
an orthonormal basis of spherical harmonics of order ℓ in dimension q (homo-
geneous harmonic polynomials in q variables restricted to Sq−1, see e.g. [277]
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for more details), where N(q, ℓ) denotes the dimension of this space, which is
by [277, Exercise 6, §3]:

N(q, ℓ) =

{
q for ℓ = 1,
(2ℓ+q−2)(ℓ+q−3)!

ℓ! (q−2)! for ℓ ≥ 2.
(A.4)

By the addition theorem [277, Theorem 2, §1]:

N(q,ℓ)

∑
k=1

Yℓ,k(u)Yℓ,k(v) =
N(q, ℓ)∣∣Sq−1

∣∣ Pℓ(q; u⊤v), u, v ∈ Sq−1. (A.5)

Hence, the kernel K(u, v) can be rewritten as:

K(u, v) =
+∞

∑
ℓ=0

N(q,ℓ)

∑
k=1

bℓ|Sq−1|
N(q, ℓ)

Yℓ,k(u)Yℓ,k(v).

Since {Yℓ,k | ℓ ∈ N, k ∈ JN(q, ℓ)K} is an orthonormal system for the inner
product ⟨·, ·⟩(q), and since Y0,1 is constant on Sq−1, we have for any integer ℓ and
k ∈ JN(q, ℓ)K that:

∫
Sq−1

Yℓ,kdσq−1 =
1

Y0,1
⟨Yℓ,k, Y0,1⟩(q) =

{
1

Y0,1
if ℓ = 0, k = 1

0 otherwise
.

Moreover Y0,1 = 1/
√
|Sq−1|, because 1 = ⟨Y0,1, Y0,1⟩(q) =

∫
Sq−1 Y2

0,1dσq−1 =

Y2
0,1|Sq−1|. Therefore, the kernel mean embedding of the uniform distribution

on the hypersphere U := σq−1/|Sq−1| associated with the kernel K is:

∀v ∈ Sq−1,
∫
Sq−1
K(u, v)dU(u) =

∫
Sq−1

+∞

∑
ℓ=0

bℓPℓ(q; u⊤v)
dσq−1(u)
|Sq−1|

=
+∞

∑
ℓ=0

∫
Sq−1

N(q,ℓ)

∑
k=1

bℓ
N(q, ℓ)

Yℓ,k(u)Yℓ,k(v)dσq−1(u)

=
+∞

∑
ℓ=0

bℓ
N(q, ℓ)

N(q,ℓ)

∑
k=1

[∫
Sq−1

Yℓ,k(u)dσq−1(u)
]

Yℓ,k(v)

= b0
1

Y1,0
Y1,0 = b0,

where we inverted series and integral in the second equation using the dom-
inated convergence theorem: the series ∑+∞

ℓ=0 bℓPℓ(q; u⊤v) converges for every
u, v, and for any L, |∑L

ℓ=0 bℓPℓ(q; u⊤v)| ≤ ∑L
ℓ=0
∣∣bℓPℓ(q; u⊤v)

∣∣ ≤ ∑+∞
ℓ=0 bℓ =

∑+∞
ℓ=0 bℓPℓ(q; 1), because |Pℓ(q; ·)| ≤ 1 for all ℓ by [277, Lemma 2, §8], Pℓ(q; 1) = 1

for all ℓ by [277, §9], and ∑+∞
ℓ=0 bℓPℓ(q; 1) < +∞ is integrable on Sq−1. This yields

the first claim of Lemma 5.1.
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Consider now any probability distribution Q defined on the hypersphere. The
kernel mean embedding of Q is simply rewritten as:

∀v ∈ Sq−1,
∫
Sq−1
K(u, v)dQ(u)

=
∫
Sq−1

+∞

∑
ℓ=0

bℓPℓ(q; u⊤v)dQ(u)

=b0

∫
Sq−1

P0(q; u⊤v)dQ(u) +
∫
Sq−1

+∞

∑
ℓ=1

bℓPℓ(q; u⊤v)dQ(u)

=b0 +
∫
Sq−1
K̃(u, v)dQ(u),

because the Legendre polynomial of order 0 is the constant function equal to 1
(see the closed form expression of P0(q; ·) in Theorem 5.1 in the main text) and∫
Sq−1 dQ = 1. This ends the proof of Lemma 5.1.

A.2.2 Legendre expansion of rotation-invariant kernels

We show that the kernel weights bℓ in the Legendre expansion (5.5) of the RBF
kernel and the generalized distance kernel decay with a rate at least polynomial
with respect to ℓ.

RBF kernel. The RBF kernel is defined as:

KRBF(u, v) = e−σ∥u−v∥2
2 = e−2σ(1−u⊤v) for u, v ∈ Sq,

where σ > 0 is the scale of the RBF kernel. Denote φ(t) := e−2σ(1−t) for t ∈
[−1, 1]. Since the RBF kernel is positive definite and rotation-invariant, by Theo-
rem 5.1, there exist weights bℓ ≥ 0, ℓ ∈∈N, such that:

φ(t) = e−2σ(1−t) =
+∞

∑
ℓ=0

bℓPℓ(q; t) for t ∈ [−1, 1]. (A.6)

The Legendre polynomials Pℓ(q; ·) are orthogonal on the interval [−1, 1] with re-
spect to the weight function (1− t2)

q−3
2 , see e.g. [277]:

∫ 1

−1
Pn(q; t)Pm(q; t)(1− t2)

q−3
2 dt = 0 for m ̸= n.

Moreover, by [277, Exercise 3, §2]:

∫ 1

−1
(Pn(q; t))2(1− t2)

q−3
2 dt =

|Sq−1|
|Sq−2|

1
N(q, n)

for any n.
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We multiply (A.6) by Pℓ(q; t)(1− t2)
q−3

2 and integrate the equation on [−1, 1]:∫ 1

−1
φ(t)Pℓ(q; t)(1− t2)

q−3
2 dt =

∫ 1

−1

+∞

∑
n=0

bnPn(q; t)Pℓ(q; t)(1− t2)
q−3

2 dt

=
+∞

∑
n=0

bn

∫ 1

−1
Pn(q; t)Pℓ(q; t)(1− t2)

q−3
2 dt

= bℓ
|Sq−1|
|Sq−2|

1
N(q, ℓ)

,

where the inversion between series and integral is justified by the dominated con-
vergence theorem: the series ∑+∞

n=0 bnPn(q; t)Pℓ(q; t)(1− t2)
q−3

2 converges for every

t, and for any N, |∑N
n=0 bnPn(q; t)Pℓ(q; t)(1− t2)

q−3
2 | ≤ ∑+∞

n=0 bn(1− t2)
q−3

2 := g(t)
since |Pn(q; ·)| ≤ 1 for any n by [277, Lemma 2, §8], and g is integrable on [−1, 1]
because ∑+∞

n=0 bn < +∞. Hence:

bℓ = N(q, ℓ)
|Sq−2|
|Sq−1|

∫ 1

−1
φ(t)Pℓ(q; t)(1− t2)

q−3
2 dt.

By the Rodrigues rule [277, Exercise 1, §2], since φ has continuous derivatives of
all orders on [−1, 1], we have:

bℓ = N(q, ℓ)
|Sq−2|
|Sq−1|

Γ( q−1
2 )

2ℓΓ(ℓ+ q−1
2 )

∫ 1

−1
φ(ℓ)(t)(1− t2)ℓ+

q−3
2 dt, ℓ ∈N,

where φ(ℓ) is the ℓ-th derivative of φ, which is φ(ℓ)(t) = e−2σ(2σ)ℓe2σt. We now
show that the weights bℓ decay very fast with respect to ℓ. We bound the integral:∫ 1

−1
φ(ℓ)(t)(1− t2)ℓ+

q−3
2 dt =

∫ 1

−1
e−2σ(2σ)ℓe2σt(1− t2)ℓ+

q−3
2 dt ≤

∫ 1

−1
(2σ)ℓdt = 2(2σ)ℓ.

Hence:

bℓ ≤ 2N(q, ℓ)
|Sq−2|
|Sq−1|

Γ( q−1
2 )

2ℓΓ(ℓ+ q−1
2 )

(2σ)ℓ.

Denote (a)n := Γ(n + a)/Γ(a) the Pochhammer symbol defined for any integer
n and any scalar a. By the Stirling approximation of the Gamma function [327,
(25.15)], the asymptotic behavior of (a)n when n goes to infinity is:

(a)n ∼
√

2π

Γ(a)
e−nna+n−1/2 as n→ ∞.

Moreover, for a fixed dimension q, the asymptotic behavior of N(q, ℓ) defined by
(A.4) when ℓ goes to infinity is:

N(q, ℓ) ∼ 2
(q− 2)!

ℓq−2 as ℓ→ ∞.

Therefore, the asymptotic behavior of bℓ as ℓ goes to infinity is:

bℓ = O
(

σℓeℓℓq/2−1−ℓ
)

as ℓ→ +∞.
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Generalized distance kernel. For q−1
2 < s < q+1

2 , the generalized distance ker-
nel on the hypersphere Sq−1 is defined in [36, Section 5] as:

K(s)
gd (u, v) := 2Vq−1−2s(Sq−1)− ∥u− v∥2s−q+1

2 for u, v ∈ Sq−1,

where

Vq−1−2s(Sq−1) : =
∫
Sq−1

∫
Sq−1
∥u− v∥2s−q+1

2 dσq−1(u)dσq−1(v)

= 22s−1 Γ(q/2)Γ(s)√
πΓ((q− 1)/2 + s)

.

Following [36, Section 5], the Legendre expansion of the generalized distance ker-
nel K(s)

gd is:

K(s)
gd (u, v) = Vq−1−2s(Sq−1) +

+∞

∑
ℓ=1

α
(s)
ℓ N(q, ℓ)Pℓ(q; u⊤v), (A.7)

α
(s)
ℓ := −Vq−1−2s(Sq−1)

((q− 1)/2− s)ℓ
((q− 1)/2 + s)ℓ

, ℓ ≥ 1. (A.8)

The kernel weights indeed decay polynomially with respect to ℓ, because accord-
ing to [36, Section 5], the asymptotic behavior of the α

(s)
ℓ is:

α
(s)
ℓ ∼ 22s−1 Γ(q/2)Γ(s)√

πΓ((q− 1)/2− s)
ℓ−2s as ℓ→ +∞.

A.2.3 Proof of Proposition 5.1

Consider a rotation-invariant kernel K̃(u, v) := ∑+∞
ℓ=1 bℓPℓ(q; u⊤v) defined on

Sq−1 such that bℓ ≥ 0 for ℓ ∈ N∗, with b1, b2 > 0. To show the connection
between SFRIK and VICReg, we construct a high-dimensional feature map Φ :
Sq−1 → ℓ2(N), where ℓ2(N) denotes the space of square-summable sequences
with its canonical inner product ⟨·, ·⟩ℓ2 , such that ⟨Φ(u), Φ(v)⟩ℓ2 = K̃(u, v) for
any u, v ∈ Sq−1.

One way to construct such a feature map is to consider an orthonormal system
of spherical harmonics. For any integer ℓ, denote {Yℓ,k}

N(q,ℓ)
ℓ=1 an orthonormal basis

of spherical harmonics of order ℓ in dimension q. By the addition theorem [277,
Theorem 2, §1], cf. (A.5), the kernel K̃(u, v) admits the decomposition:

K̃(u, v) =
+∞

∑
ℓ=1

bℓPℓ(q; u⊤v) =
+∞

∑
ℓ=1

N(q,ℓ)

∑
k=1

bℓ|Sq−1|
N(q, ℓ)

Yℓ,k(u)Yℓ,k(v)

= ⟨Φ(u), Φ(v)⟩ℓ2 ,
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where

Φ :=

(√
bℓ|Sq−1|
N(q, ℓ)

Φℓ

)+∞

ℓ=1

with Φℓ :

{
Sq−1 → RN(q,ℓ)

u 7→ (Yℓ,k(u))
N(q,ℓ)
k=1

∀ℓ ∈N∗.

Then, the MMD in (5.6) between any probability distribution Q defined on the
hypersphere and the uniform distribution U on the hypersphere can be written
as the norm ∥ · ∥2 in ℓ2(N) of the generalized moment of Q with the mapping Φ:

MMD2(Q, U) = Ez,z′∼Q[K̃(z, z′)]
= Ez,z′∼Q[⟨Φ(z), Φ(z′)⟩ℓ2 ]

=
〈
Ez∼Q[Φ(z)], Ez′∼Q[Φ(z′)]

〉
ℓ2
= ∥Ez∼Q [Φ(z)]∥2

ℓ2

=
+∞

∑
ℓ=1

bℓ|Sq−1|
N(q, ℓ)

∥Ez∼Q [Φℓ(z)]∥2
2 .

(A.9)

We now explain how to construct explicitly an orthonormal basis of spherical
harmonics {Yℓ,k | ℓ ∈N∗, k ∈ JN(q, ℓ)K}, based on the following theorem.

Theorem A.1 (from [11, Theorem 5.25]). For any order ℓ ∈N and any dimension
q ≥ 3, the family

{Y′ℓ,k}
N(q,ℓ)
k=1 :=

{
u 7→ ∂α1

1 ∂α2
2 . . . ∂

αq
q ∥u∥

2−q
2 | α1 + α2 + . . . + αq = ℓ and α1 ≤ 1

}
(A.10)

is a (non-orthonormal) basis of the space of spherical harmonics of order ℓ in dimen-
sion q, where αj (j ∈ JqK) are nonnegative integers, and ∂

αj
j denotes the αj-th partial

derivative with respect to the j-th coordinate.

Typically, we construct the orthonormal basis {Yℓ,k}
N(q,ℓ)
k=1 by orthonormalizing

the basis {Y′ℓ,k}
N(q,ℓ)
k=1 of Theorem A.1 using, e.g., the Gram-Schmidt procedure. For

ℓ ∈N∗, denote:

Φ′ℓ : Sq−1 → RN(q,ℓ), u 7→ (Y′ℓ,k(u))
N(q,ℓ)
k=1 .

Then, for each ℓ ∈N∗, there exists a lower triangular matrix Mℓ such that:

Φℓ(u) = MℓΦ
′
ℓ(u), for all u ∈ Sq−1. (A.11)

Remark that it is possible to compute explicitly the entries of the matrices Mℓ

for ℓ ∈ N∗, because there exists a closed-form expression for the inner product
⟨Y′ℓ,k, Y′ℓ,k′⟩(q) for any ℓ, k, k′: indeed, the function Y′ℓ,k for any ℓ, k is a polynomial
defined on the hypersphere, and the integral of any monomial with respect to the
measure σq−1 on the hypersphere Sq−1 admits a closed-form expression given
by [356, Section 3].
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By injecting (A.11) in (A.9), we obtain:

MMD2(Q, U) =
+∞

∑
ℓ=1

bℓ|Sq−1|
N(q, ℓ)

∥∥MℓEz∼Q

[
Φ′ℓ(z)

]∥∥2
2 .

This yields the claim of Proposition 5.1 by remarking with Theorem A.1 that the
families

{Y′1,k}
N(q,1)
k=1 = {u 7→ u[j] | j ∈ JqK} ,

{Y′2,k}
N(q,2)
k=1 =

{
u 7→ u[j]u[j′] | 1 ≤ j < j′ ≤ q

}
∪
{

u 7→ (u[j])2 − 1
q
| j ∈ J2, qK

}
are bases of the space of spherical harmonics of order 1 and 2 in dimension q.

A.3 Experimental setting

In the interest of reproducible research, we give more details about the setting of
our experiments presented in Section 5.4.

A.3.1 IN20% dataset description

The datasets used in our experiments include a subset of 20% of ImageNet-1k as
in [124]. This reduced dataset, denoted IN20%, contains all the 1000 classes of
ImageNet-1k, but we keep only 260 images per class. The 260 images extracted
are the same as those extracted in the official implementation of OBoW (https:
//github.com/valeoai/obow). In Section 5.4.2, we also use another 20% subset of
the ImageNet-1k train set as a separate validation set for hyperparameter tuning
(see Appendix A.3.4 below). The construction of this validation set is based on
the code of OBoW.

A.3.2 Image augmentations

We follow the same image augmentation pipeline as in [15]. Our experiments
include the following image augmentations implemented by PyTorch using the
methods from torchvision.transforms:

• RandomResizedCrop(224, scale=(0.08, 1.0)): crop a random area of the
image between 8% and 100% of the total area, and resize it to an image of
size 224× 224;

• RandomHorizontalFlip(): flip horizontally an image;

• ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1):
randomly change brightness, contrast, saturation and hue of an image by
a factor randomly sampled in respectively [0.6, 1.4], [0.6, 1.4], [0.8, 1.2] and
[−0.1, 0.1].
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• RandomGrayscale(): convert an image into grayscale.

We also use image augmentations implemented by PIL, as in VICReg’s code
available at https://github.com/facebookresearch/vicreg:

• GaussianBlur(): blur an image using a Gaussian kernel with standard de-
viation uniformly sampled in [0.1, 2.0];

• Solarization(): invert all pixel values above a threshold, which is 130.

In our experiments, the first image view is obtained by composing the fol-
lowing random augmentations: random cropping resized to 224× 224, random
horizontal flip applied with probability 0.5, random color jittering applied with
probability 0.8, random grayscale conversion applied with probability 0.2, ran-
dom Gaussian blur applied with probability 0.1, and random solarization applied
with probability 0.2. The second view is obtained by composing the same random
augmentations as the first view, except that Gaussian blur is applied every time
(probability 1), and solarization is never applied (probability 0).

A.3.3 Evaluation protocol

We describe the downstream tasks on which self-supervision methods are evalu-
ated in our experiments of Section 5.4.

Linear probing on IN20% and IN100%. Following, e.g., [15], the weights of the
backbone (ResNet-18 or ResNet-50) are frozen and a linear layer followed by a
softmax on top of the backbone is trained in a supervised setting on a training
set. Then the model is evaluated on a test set. The training set is either IN20%
or IN100%, but with labels. The test set is the validation set of ImageNet-1k. The
linear layer is trained using an SGD optimizer with momentum parameter equal
to 0.9 during 100 epochs. We apply a weight decay of 10−6. The learning rate fol-
lows a cosine decay scheduling. The batch size is fixed at 256. Training images are
augmented by composing a random cropping of an area between 8% and 100%
of the total area resized to 224× 224, and a random horizontal flip of probability
0.5. Images at test time are resized to 256× 256, and cropped at the center with
a size 224× 224. The initial learning rate is tuned as a hyperparameter, and we
report the top-1 accuracy on the validation set of ImageNet-1k obtained after the
last training epoch, along with the corresponding top-5 accuracy. The code that
we use for linear probing on IN20% or IN100% is adapted from [15] available at
https://github.com/facebookresearch/vicreg.

Linear probing on Places205. We use the code of [124], available at https:
//github.com/valeoai/obow, for the evaluation by linear probing on Places205.
The weights of the backbone (ResNet-50) pretrained on IN100% are frozen and a
linear prediction layer is trained for the classification task on Places205. We note
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that a batch normalization layer with non-learnable scale and bias parameters is
added at the output of the backbone in [124]. The linear prediction layer is trained
with an SGD optimizer with a 0.9 momentum parameter during 28 epochs. The
weight decay is 10−4. The batch size is 256. The learning rate decreases by a factor
of 10 at epoch 10 and epoch 20. We use the same image augmentation pipeline for
training and testing as in linear probing on IN100%. The initial learning rate is
tuned as a hyperparameter, and we report the top-1 accuracy on the validation set
of Places205 obtained after the last training epoch, along with the corresponding
top-5 accuracy.

Linear classification on VOC2007. After pretraining a ResNet backbone, we
use the VISSL library [138] to extract features of VOC2007 images resized to 224×
224 by taking the output of the last average pooling layer of the pretrained ResNet
backbone. We then learn a linear SVM with LIBLINEAR [105] on top of these
features to predict the presence or the absence of a given class in the test images.
An average precision score is then computed for each class after a 3-fold cross-
validation, and we report the mean score over all classes as the mean average
precision (mAP).

Semi-supervised learning. After pretraining a ResNet backbone, we fine-tune
this backbone and the linear classifier on the ImageNet-1k classification task with
only 1% or 10% of the labeled data. The labeled images that are considered
in these subsets are the ones used in the official code of SimCLR available at
https://github.com/google-research/simclr. We use an SGD optimizer with
momentum parameter equal to 0.9 during 20 epochs, without weight decay. The
batch size is fixed at 256. The learning rates of the backbone and the linear clas-
sifier follow a cosine decay scheduling with different initial learning rates. These
initial learning rates are tuned as hyperparameters. We report the top-1 accuracy
on the validation set of ImageNet-1k obtained after the last training epoch, along
with the corresponding top-5 accuracy. We use the same image augmentation
pipeline for training and testing as in linear probing on IN100%. The code that
we use for semi-supervised learning with few labels of IN100% is the one of [15]
available at https://github.com/facebookresearch/vicreg.

Weighted kNN classification. We follow the usual protocol of [45, 358]. We
compute the normalized representations fθ(xi) of the images xi, i ∈ JNK, in the
training set. The label of an image xtest in the test set is predicted by a weighted
vote of its k nearest neighbors Nk in the representation space: the class c gets a
score of wc := ∑i∈Nk

exp( fθ(xi)
⊤ fθ(xtest)/0.07)1[ci=c] where fθ(xtest) is normal-

ized, ci is the class of xi, and 1[ci=c] is equal to 1 if ci = c, and 0 otherwise.
We report the kNN classification top-1 accuracy for k = 20. The image aug-
mentation pipeline for both training and testing is the following one: images
are resized to 256 × 256, and cropped at the center with a size 224 × 224. The
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code that we use for kNN classification is the one of [45] available at https:
//github.com/facebookresearch/dino.

A.3.4 Hyperparameters when pretraining on IN20%

We describe in detail our hyperparameter tuning protocol for the experiments in
Section 5.4.2 where the backbone is pretrained on IN20%.

Hyperparameter tuning on a separate validation set

For a rigorous tuning, it is important that the dataset used for the final evalu-
ation remains unseen during pretraining and hyperparameter tuning. For each
pretraining method, we pretrain on the IN20% training set (blue subset in Fig-
ure A.1) a backbone for each choice of hyperparameters. These backbones are
then evaluated by weighted kNN classification on a separate validation set, which
is another 20% subset of the ImageNet-1k train set (purple subset in Figure A.1),
and we select the hyperparameters yielding the highest top-1 accuracy on this
kNN evaluation. Then, we tune the learning rate for the linear probing evalua-
tion, again on our separate validation set (purple subset in Figure A.1). Finally,
we use the model trained with the best learning rate discovered for linear prob-
ing evaluation on the usual ImageNet-1k validation set (red subset in Figure A.1),
which has never been seen during hyperparameter tuning.

ImageNet 
train set

Train Validation

ImageNet 
validation set

Test

IN20% IN20%

Figure A.1: ImageNet-1k dataset split for hyperparameter tuning in experiments of Sec-
tion 5.4.2 on IN20%.

Hyperparameter values for linear probing on IN20%

We report the values of the optimal hyperparameters found after our hyperparame-
ter tuning on a separate validation set, for each pretraining experiment on IN20%
with a ResNet-18 presented in Section 5.4.2. These hyperparameters yield the
evaluation results reported in Section 5.4.2 for linear probing on the usual ImageNet-
1k validation set. We recall that the hyperparameters specific to each self-supervision
method were introduced in Appendix A.1.4.

SimCLR. For each embedding dimension, we fix the batch size at 2048, and
tune the temperature τ and the base learning rate base_lr for pretraining with
SimCLR. Then, we tune the initial learning rate lr_head for linear probing on
IN20%. The optimal hyperparameters are shown in Table A.1.
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Table A.1: Hyperparameter choice for SimCLR pretrained on IN20% with a ResNet-18
during 100 epochs, evaluated by linear probing on IN20%.

Dimension Temperature base_lr lr_head

q = 1024 0.15 1.0 0.2
q = 2048 0.15 1.0 0.2
q = 4096 0.15 1.0 0.2
q = 8192 0.15 0.8 0.2

AUH. For each embedding dimension, we fix the batch size at 2048, and tune
the alignment weight λ, the scale of the RBF kernel t, and the base learning rate
base_lr for pretraining with AUH. Then we tune the initial learning rate lr_head
for linear probing on IN20%. The optimal hyperparameters are shown in Table
A.2.

Table A.2: Hyperparameter choice for AUH pretrained on IN20% with a ResNet-18 dur-
ing 100 epochs, evaluated by linear probing on IN20%.

Dimension Alignment weight λ Scale t base_lr lr_head

q = 1024 400 2.5 1.0 10.0
q = 2048 1000 2.5 1.0 4.0
q = 4096 2000 2.5 1.0 1.0
q = 8192 3000 2.5 1.0 2.0

VICReg. For each embedding dimension, we fix the batch size at 2048, and
we tune the alignment weight λ, the variance weight µ, and the base learning
rate base_lr for pretraining with VICReg. Then, we tune the initial learning rate
lr_head for linear probing on IN20%. The optimal hyperparameters are shown in
Table A.3.

Table A.3: Hyperparameter choice for VICReg pretrained on IN20% with a ResNet-18
during 100 epochs, evaluated by linear probing on IN20%.

Dimension Alignment weight λ Variance weight µ base_lr lr_head

q = 1024 4 10 0.4 0.2
q = 2048 4 4 0.7 1.0
q = 4096 10 10 0.6 0.2
q = 8192 10 10 0.7 0.2

SFRIK, batch size 2048. For each embedding dimension, we fix the batch size at
2048, and tune the alignment weight λ in (5.2), the kernel weights bℓ (ℓ ∈ {2, 3})
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in (5.8), and the base learning rate base_lr for pretraining with SFRIK. Without
loss of generality, the first kernel weight b1 in (5.8) is fixed at b1 = 1. Then, we
tune the initial learning rate lr_head for linear probing on IN20%. The optimal
hyperparameters are shown in Table A.4.

Table A.4: Hyperparameter choice for SFRIK pretrained on IN20% with a ResNet-18
during 100 epochs, evaluated by linear probing on IN20%.

Order Dimension Alignment weight λ Kernel weights (b1, b2, b3) base_lr lr_head

L = 1 q = 8192 10000 (1, 0, 0) 0.4 10.0

L = 2 q = 1024 400 (1, 40, 0) 1.0 2.0
q = 2048 400 (1, 40, 0) 1.0 4.0
q = 4096 1000 (1, 40, 0) 1.0 4.0
q = 8192 2000 (1, 20, 0) 1.0 10.0

L = 3 q = 8192 4000 (1, 40, 40) 1.2 1.0

SFRIK, batch size 4096. We fix the dimension at q = 8192, and the batch size at
4096, and tune the alignment weight λ in (5.2), the kernel weights bℓ (ℓ ∈ {2, 3})
in (5.8), and the base learning rate base_lr for pretraining with SFRIK. Without
loss of generality, the first kernel weight b1 in (5.8) is fixed at b1 = 1. Then, we
tune the initial learning rate lr_head for linear probing on IN20%. The optimal
hyperparameters are: λ = 4000, (b1, b2, b3) = (1, 20, 0), base_lr = 0.8, lr_head =
1.0. This yields a top-1 accuracy of 46.3 for linear probing on IN20% (vs. 47.5
when the batch size is 2048), meaning that it is not necessary to use a batch size
larger than 2048 in SFRIK to obtain a better performance.

Hyperparameters for the transfer learning on Places205 and VOC2007

The values of hyperparameters for pretraining methods on IN20% are the same
as above. The learning rate for linear probing on Places205 is fixed at 0.01.

Hyperparameters for the ablation on the kernel choice

We detail the experimental setting of our ablation study on the kernel choice for
the generic uniformity term (5.7) in Table 5.4 of Section 5.4.2. We follow the pro-
tocol of Section 5.4.2, with an embedding dimension of q = 8192. The training
loss is λℓa(ZI

(1), ZI
(2)) + 0.5(ℓu(ZI

(1)) + ℓu(ZI
(2))), where ℓu is the loss (5.7) with

an RBF or a general distance kernel.

RBF kernel. The kernel isK(u, v) = e−t∥u−v∥2
2 . We fix the batch size at 2048, and

tune the alignment weight λ, the scale of the RBF kernel t, and the base learning
rate base_lr for pretraining. Then, we tune the initial learning rate lr_head for
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linear probing on IN20%. The optimal hyperparameters are: λ = 100, t = 2,
base_lr = 1.0, lr_head = 10.

Generalized distance kernel. The kernel is K(u, v) = C− ∥u− v∥p
2 , where we

fixed C = 0 because the value of this constant does not change the gradients
of the optimization problem, and p = 2 because we verified empirically that
choosing p < 2 yields poor results. We fix the batch size at 2048, and tune the
alignment weight λ, and the base learning rate base_lr for pretraining. Then, we
tune the initial learning rate lr_head for linear probing on IN20%. The optimal
hyperparameters are: λ = 10000, base_lr = 0.6, lr_head = 10.

A.3.5 Hyperparameters when pretraining on IN100%

Table A.5 reports the selected hyperparameters for pretraining ResNet-50 on IN100%
with SFRIK in Section 5.4.3.

Tuning protocol. Since hyperparameter tuning is costly on IN100%, we pretrain
several ResNet-50 for different values of kernel weights bℓ, alignment weight λ
and base learning rate base_lr, and pause the pretraining after 50 epochs. We
evaluate the obtained backbones on kNN classification (top-1 accuracy, k = 20),
and select the best performing backbones. Then we continue pretraining these se-
lected backbones until reaching epoch 200 or 400. Finally we select the hyperpa-
rameters that yield the highest top-1 accuracy for linear probing on IN100% after
200 or 400 epochs of pretraining. Because of the conclusions of Appendix A.4.1
below, our hyperparameter tuning follows the default practice in the literature on
self-supervised learning where hyperparameters are selected by measuring the
performance on the validation set of ImageNet-1k, which is the same set for the
final evaluation by linear probing. Note that we verified experimentally a poste-
riori that the hyperparameters obtained by our tuning protocol are similar to the
ones obtained from a tuning on a smaller dataset like STL-10 [64]. This means
that an alternative tuning protocol is to tune the hyperparameters on STL-10, and
generalize these hyperparameters to pretrain SFRIK on IN100%.

Table A.5: Hyperparameter choice for SFRIK pretrained on IN100% with a ResNet-50
during 200 or 400 epochs.

Dimension Order Epoch Alignment weight λ Kernel weights (b1, b2, b3) base_lr

q = 8192 L = 2 200 4000 (1, 20, 0) 0.4
L = 3 200 4000 (1, 40, 40) 0.4

q = 16384 L = 2 200 20000 (1, 40, 0) 0.4

q = 32768 L = 2 200 40000 (1, 40, 0) 0.4
L = 3 200 40000 (1, 40, 40) 0.4

q = 8192 L = 2 400 4000 (1, 20, 0) 0.4
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Values for hyperparameters. Tables A.6 and A.7 give the optimal hyperparam-
eters found for linear probing on IN100%, linear probing on Places205, and semi-
supervised learning with limited labels of IN100% when evaluating pretrained
ResNet-50 backbones with SFRIK and VICReg. The hyperparameters that are
tuned for evaluation are: the initial learning rate lr_head of the linear layer in
linear probing; and the initial learning rate lr_backbone and lr_head for respec-
tively the backbone and the linear layer in semi-supervised learning. The re-
ported hyperparameters in the two tables yield the evaluation results reported in
Section 5.4.3.

Table A.6: Hyperparameter tuning for linear probing on IN100% and Places205 for
SFRIK and VICReg pretrained on IN100% with a ResNet-50.

lr_head

Method Epochs IN100% Places205

VICReg† (q = 8192) 200 0.02 0.01
SFRIK (L = 2, q = 8192) 200 1.0 0.01
SFRIK (L = 3, q = 8192) 200 2.0 0.01
SFRIK (L = 2, q = 16384) 200 0.3 0.01
SFRIK (L = 2, q = 32768) 200 1.0 0.01
SFRIK (L = 3, q = 32768) 200 0.4 0.01

SFRIK (L = 2, q = 8192) 400 2.0 0.01

Table A.7: Hyperparameter tuning for semi-supervised learning for SFRIK and VICReg
pretrained on IN100% with a ResNet-50.

Semi-supervised, 1% labels Semi-supervised, 10% labels

Method Epochs lr_backbone lr_head lr_backbone lr_head

VICReg† (q = 8192) 200 0.02 0.2 0.2 0.04
SFRIK (L = 2, q = 8192) 200 0.004 1.6 0.02 0.4
SFRIK (L = 3, q = 8192) 200 0.002 1.0 0.01 0.2
SFRIK (L = 2, q = 16384) 200 0.004 1.4 0.04 0.2
SFRIK (L = 2, q = 32768) 200 0.004 1.0 0.04 0.1
SFRIK (L = 3, q = 32768) 200 0.004 1.0 0.02 0.1

SFRIK (L = 2, q = 8192) 400 0.004 1.4 0.02 0.2

A.3.6 Computational resources

Pretrainings of ResNet-18 on IN20% with a batch size of 2048 (respectively 4096)
are performed with 4 (respectively 8) NVIDIA Tesla V100 GPUs with 32GB of
memory each. Pretrainings of ResNet-50 on IN100% are performed with 8 NVIDIA
Tesla V100 GPUs with 32GB of memory each. The total amount of compute used
for this work is around 50000 GPU hours.
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A.3.7 Public resources

We acknowledge the use of the following public resources, during the course of
the experimental work of Chapter 5:

• VICReg official code [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

• DINO official code [45] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0

• OBoW official code [124] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0

• SwAV official code [44] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC 4.0

• SimCLR official code [50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Apache License 2.0

• VISSL code [138] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

• ImageNet-1k dataset [78] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Places 205 dataset [394] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Attribution CC BY

• VOC2007 dataset [103] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.4 Additional experimental results

We provide in this appendix other experimental results to complement Section 5.4.

A.4.1 Hyperparameter tuning without a separate validation set

A common practice in the self-supervised learning literature, e.g., [15, 50], is to
select the hyperparameters by measuring the performance on the validation set
of ImageNet-1k (red dataset in Figure A.1) instead of a separate validation dataset
(purple dataset in Figure A.1). In this paragraph, we verify whether this less
rigorous practice changes the conclusion of the experiments in Section 5.4.2.

In Table A.8, we report the evaluation of the different backbones pretrained
on IN20% after tuning each method directly on the validation set of ImageNet-1k,
which is the same dataset used for evaluation in linear probing. By comparison
with Table 5.2, which follows the more rigorous hyperparameter tuning protocol
described in Appendix A.3.4, we observe that although the absolute figures of
merit slightly vary if we use the less rigorous protocol instead of the more rigor-
ous one, the conclusion of the experiments in Section 5.4.2 does not change. This
gives an empirical justification to this common practice, which is why we adopt
this practice on the most costly experiments with pretraining on IN100%.
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Table A.8: Linear probing on IN20% (top-1 accuracy) at different embedding dimensions
q. All methods were pretrained on IN20% with a ResNet-18 for 100 epochs. Hyperpa-
rameters specific to each method and the learning rate are tuned on the same dataset as
the one used for evaluation in linear probing, which is less rigorous than tuning the hy-
perparameters on a separate validation set as described in Appendix A.3.4. Symbol †

indicates models that we retrained ourselves.

SimCLR† AUH† VICReg† SFRIK

L = 1 L = 2 L = 3

q = 1024 45.2 45.2 40.8 - 44.2 -
q = 2048 45.8 45.6 44.1 - 45.5 -
q = 4096 46.3 46.8 44.9 - 47.0 -
q = 8192 46.2 46.8 46.0 27.5 47.0 47.6

A.4.2 Other pretraining methods on IN100% with ResNet-50

In complement to Table 5.5, Table A.9 reports evaluation results for linear prob-
ing on IN100% and semi-supervised learning with few labels of IN100% of dif-
ferent ResNet-50 pretrained on IN100% with other state-of-the-art methods than
the ones presented in Table 5.5. As mentioned in Section 5.4.3, we observe that,
similarly to SFRIK, both BYOL and SwAV with multi-crop have a performance
drop compared to VICReg on semi-supervised learning with 1% of labels, even
though they perform better on linear probing on IN100%.

Table A.9: Linear probing on IN100%, semi-supervised learning with few labels of
IN100% (top-1 and top-5 accuracy). All methods have been pretrained on IN100% with
a ResNet-50 during the reported number of epochs.

Linear probing Semi-supervised

Method Epochs IN100% 1% labels 10% labels
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

SimCLR [50] 1000 68.3 89.0 48.3 75.5 65.6 87.8
OBoW [124] 200 73.8 - - 82.9 - 90.7
BYOL [143] 1000 74.3 91.6 53.2 78.4 68.8 89.0
SwAV (with multi-crop) [44] 800 75.3 - 53.9 78.5 70.2 89.9
Barlow Twins [375] 1000 73.2 91.0 55.0 79.2 69.7 89.3
VICReg [15] 1000 73.2 91.1 54.8 79.4 69.5 89.5
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Appendices for Chapter 6

B.1 Proof of Lemma 6.1

We begin with a simple lemma [126, Chapter 3].

Lemma B.1. Let Σ be any set of pairs of factors, and (X, Y) ∈ Σ. We have

(X, Y) ∈ U (Σ) ⇐⇒ (X, Y) ∈
⋂

Σ′⊆Σ
(X,Y)∈Σ′

U (Σ′).

Proof. Let (X, Y) ∈ U (Σ), and consider Σ′ ⊆ Σ such that (X, Y) ∈ Σ′, as well
as (X̄, Ȳ) ∈ Σ′ such that X̄Ȳ⊤ = XY⊤. Since Σ′ ⊆ Σ, we have (X̄, Ȳ) ∈ Σ, and
because (X, Y) ∈ U (Σ), (X̄, Ȳ) ∼ (X, Y). Moreover, (X, Y) ∈ Σ′, hence (X, Y) ∈
U (Σ′). This is true for every Σ′ ⊆ Σ, proving one implication. The converse is
true considering the case Σ′ := Σ.

Lemma 6.1 is then derived from the following trivial but crucial observation.

Lemma B.2. Let Σ be any set of pairs of factors, and X, Y, Ȳ such that
(X, Y), (X, Ȳ) ∈ Σ. If XY⊤ = XȲ⊤ and colsupp(Ȳ), colsupp(Y) do not
have the same cardinality, then (X, Y) ̸∼ (X, Ȳ) and hence (X, Y) /∈ U (Σ) and
(X, Ȳ) /∈ U (Σ). This is true in particular if there exists an index i ∈ JkK for which
X[:, i] = 0, Y[:, i] = 0, Ȳ[:, i] ̸= 0, and Y[:, j] = Ȳ[:, j] for all j ̸= i.

Proof of Lemma 6.1. We first show U (ΣS) ⊆ ICS by contraposition. Let (X, Y) ∈
ΣS, and suppose that colsupp(X) ̸= colsupp(Y). Up to matrix transposition,
we can suppose without loss of generality that colsupp(Y) is not a subset of
colsupp(X), so there is i ∈ JkK such that X[:, i] = 0 and Y[:, i] ̸= 0. Define Ȳ a
right factor such that Ȳ[:, i] = 0 and Ȳ[:, JkK\{i}] = Y[:, JkK\{i}]. By construc-
tion, supp(Ȳ) ⊆ supp(Y), so (X, Ȳ) ∈ ΣS. Applying Lemma B.2 to Σ = ΣS, we
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obtain (X, Y) /∈ U (ΣS). We now show U (ΣS) ⊆ MCS, also by contraposition. Let
(X, Y) /∈ MCS, and assume colsupp(X) ̸= colsupp(Sleft). The reasoning would
be symmetric if we supposed colsupp(Y) ̸= colsupp(Sright). By the previously
shown inclusion U (ΣS) ⊆ ICS, we also assume colsupp(X) = colsupp(Y) with-
out loss of generality. To conclude we treat three cases:

1. If colsupp(Sright) ̸⊆ colsupp(Sleft) then we can fix i ∈ JkK such that Sleft[:
, i] = 0 and Sright[:, i] ̸= 0. This means X[:, i] = Y[:, i] = 0. Setting Ȳ ∈ ΣSright

such that Ȳ[:, i] = Sright[:, i] and Ȳ[:, JkK\{i}] = Y[:, JkK\{i}], we build an
instance as in Lemma B.2 with Σ = ΣS, to show (X, Y) /∈ U (ΣS).

2. If colsupp(Sleft) ̸⊆ colsupp(Sright), then the same arguments yield (X, Y) /∈
U (ΣS).

3. There remains the case colsupp(Sleft) = colsupp(Sright). Since colsupp(X) ⊊
colsupp(Sleft), let us fix i ∈ colsupp(Sleft) such that X[:, i] = 0. Then,
Sleft[:, i] ̸= 0, Sright[:, i] ̸= 0, and X[:, i] = Y[:, i] = 0. Again, we construct
Ȳ ∈ ΣSright with Ȳ[:, i] = Sright[:, i], Ȳ[:, JkK\{i}] = Y[:, JkK\{i}], and we ob-
tain an instance as in Lemma B.2 with Σ = ΣS, showing that (X, Y) /∈ U (ΣS).

The following key proposition will be useful in the lifting approach presented
below.

Proposition B.1. For any pair of supports S, we have: U (ΣS) = U (ICS) ∩ MCS.

Proof. The direct inclusion is immediate by Lemmas 6.1 and B.1. For the inverse
inclusion, let (X∗, Y∗) ∈ U (ICS) ∩ MCS, and (X, Y) ∈ ΣS such that XY⊤ = X∗Y∗⊤.
The goal is to show (X, Y) ∼ (X∗, Y∗). Denote J = colsupp(X) ∩ colsupp(Y).
Define (X̄, Ȳ) ∈ ICS such that

(X̄[:, J], Ȳ[:, J]) = (X[:, J], Y[:, J]) and (X̄[:, JkK\J], Ȳ[:, JkK\J]) = (0, 0).

Since X̄Ȳ⊤ = XY⊤ = X∗Y∗⊤, and (X∗, Y∗) ∈ U (ICS), we have (X̄, Ȳ) ∼ (X∗, Y∗).
But colsupp(X∗) = colsupp(Sleft) and colsupp(Y∗) = colsupp(Sright), because
(X∗, Y∗) ∈ MCS. Hence, J = colsupp(X̄) = colsupp(X∗) = colsupp(Sleft) and
similarly J = colsupp(Sright). This necessarily yields X̄ = X and Ȳ = Y. In
conclusion, (X, Y) = (X̄, Ȳ) ∼ (X∗, Y∗).

B.2 Lifting procedure

We start by claiming two technical lemmas, whose proof is left to the reader.
Recall that ICS, MCS and ΓS are defined in (6.8), (6.9), and (6.11).
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Lemma B.3. Let S be any pair of supports satisfying colsupp(Sleft) =

colsupp(Sright), and denote S := φ(S). Then: (X, Y) ∈ ICS ∩ MCS ⇐⇒
φ(X, Y) ∈ MIS , where MIS denotes the set of tuples C ∈ ΓS with maximal index
supporta:

MIS := {C ∈ ΓS | ∀i ∈ JkK, C i = 0 =⇒ S i = 0}. (B.1)

aBy analogy with column support, the index support of C = (C i)
r
i=1 is the subset of indices

i ∈ JkK such that C i ̸= 0.

Lemma B.4. The application φ is invariant to column rescaling: φ(X, Y) = φ(X̄, Ȳ)
for any equivalent pair of factors (X, Y) ∼ (X̄, Ȳ). Moreover, the application φ re-
stricted to ICS, denoted φS : ICS → ΓS is surjective, and injective up to equiva-
lences, in the sense that (X, Y) ∼ (X̄, Ȳ) for any (X, Y), (X̄, Ȳ) ∈ ICS such that
φS(X, Y) = φS(X̄, Ȳ).

We now define the operator that sums the r matrices of a tuple C as

A : C = (C i)
r
i=1 7→

r

∑
i=1

C i.

This operator corresponds to a lifting operator in the terminology of [61]. For any
set Γ ⊆ (Cm×n)r of r-tuples of rank-one matrices, denote:

U (Γ) := {C ∈ Γ | ∀C ′ ∈ Γ, A(C) = A(C ′) =⇒ C = C ′}.

The previous lemmas lead to the following theorem characterizing essential unique-
ness of the factorization A := XY⊤ in ΣS as the identifiability of the rank-one
contributions φ(X, Y) from A with the constraint set ΓS .

Theorem B.1. For any pair of supports S such that colsupp(Sleft) =

colsupp(Sright), denoting S := φ(S), we have: (X, Y) ∈ U (ΣS) ⇐⇒ φ(X, Y) ∈
U (ΓS) ∩ MIS .

Proof. By Lemma B.4, one verifies that (X, Y) ∈ U (ICS) ⇐⇒ φ(X, Y) ∈ U (ΓS)
hence

(X, Y) ∈ U (ΣS)
Proposition B.1⇐⇒ (X, Y) ∈ U (ICS) ∩ MCS

Lemma B.4⇐⇒ φ(X, Y) ∈ U (ΓS) and (X, Y) ∈ ICS ∩ MCS

Lemma B.3⇐⇒ φ(X, Y) ∈ U (ΓS) ∩ MIS .
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Corollary B.1. For any pair of supports S such that colsupp(Sleft) =

colsupp(Sright), denoting S := φ(S), we have: U (ΣS) = ICS ∩ MCS ⇐⇒ MIS ⊆
U (ΓS).

Proof. Suppose MIS ⊆ U (ΓS). Let (X, Y) ∈ ICS ∩ MCS. By Lemma B.3, φ(X, Y) ∈
MIS , which implies by assumption that φ(X, Y) ∈ U (ΓS) ∩ MIS . By Theorem B.1,
(X, Y) ∈ U (ΣS). This shows ICS ∩ MCS ⊆ U (ΣS) and the converse inclusion holds
by Lemma 6.1.

Now suppose U (ΣS) = ICS ∩ MCS. Let C ∈ MIS . By Lemma B.4, there is
(X, Y) ∈ ICS such that φ(X, Y) = C. Let i ∈ colsupp(Sleft). By assumption,
i ∈ colsupp(Sright) hence S i ̸= 0. Since C ∈ MIS , we have X[:, i]Y[:, i]⊤ = C i ̸= 0,
which means that i ∈ colsupp(X). This is true for any i ∈ colsupp(Sleft), so
colsupp(X) = colsupp(Sleft). By definition of ICS, colsupp(X) = colsupp(Y),
and by assumption, colsupp(Sleft) = colsupp(Sright), hence (X, Y) ∈ MCS. Since
we supposed U (ΣS) = ICS ∩ MCS, we get (X, Y) ∈ U (ΣS). By Theorem B.1, C =
φ(X, Y) ∈ U (ΓS).

B.3 Proof of Proposition 6.1

Proof. By Corollary B.1, it is enough to show that MIS ⊆ U (ΓS) if, and only if,
S := φ(S) has disjoint rank-one supports.

Sufficiency is immediate: given C := (C i)
k
i=1 ∈ MIS and A := A(C), the entries

of C i (1 ≤ i ≤ k) can be directly identified from the submatrix A⊙ S i, because
the rank-one supports in the tuple S are pairwise disjoint.

For necessity, suppose there are i, i′ ∈ JkK, i ̸= i′ such that supp(S i)∩ supp(S i′) ̸=
∅. Let (p, q) be an index in this intersection. Denote E(p,q) ∈ Bn×m the canoni-
cal binary matrix full of zeros except a one at index (k, l). Observe that A(C) =
∑j∈JkK\{i,i′} S j = A(C̄), but C ̸= C̄ with C, C̄ ∈ MIS ⊆ ΓS defined as

∀j ∈ JkK, C j =


0 if S j = 0
E(p,q) if j = i
−E(p,q) if j = i′

S j otherwise

, C̄ j =


0 if S j = 0
2E(p,q) if j = i
−2E(p,q) if j = i′

S j otherwise

.

This shows C, C̄ ̸= U (ΓS), hence, MIS ̸⊆ U (ΓS), which ends the proof by contra-
position.

B.4 Complexity bounds of Algorithm 6.1 with full SVDs

Unbalanced tree. At the (unique) non-leaf node of level ℓ ∈ {0, . . . , L− 2}, the
algorithm computes the best rank-one approximation of n submatrices of size
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2× n/2ℓ+1. Using a full SVD costs of the order of 2× n/2ℓ+1 × 2 = 2× n/2ℓ,
hence the total cost (with unbalanced tree and full SVD) is

L−2

∑
ℓ=0

n× 2× n
2ℓ

= 4(1− 2−L+1)n2 = 4
(

1− 2
n

)
n2 = O(n2).

Balanced tree. At each of the 2ℓ non-leaf nodes of level ℓ ∈ {0, . . . , log2(L) −
1}, the best rank-one approximation of n square submatrices of size

√
n1/2ℓ is

computed: using a full SVD on each submatrix costs of the order of (
√

n1/2ℓ)3 =

n3/2ℓ+1
. Since 2ℓ ≤ L/2 = log2(n)/2 and n1+3/2ℓ+1 ≤ n1+3/4 = n7/4 for ℓ ≥ 1, the

total cost with balanced tree and full SVD is

log2(L)−1

∑
ℓ=0

2ℓ × n× n3/2ℓ+1
= n5/2 +

log2(L)−1

∑
ℓ=1

2ℓn1+3/2ℓ+1

≤ n5/2 +
log2(log2(n))−1

∑
ℓ=1

log2(n)
2

n7/4

= O(n5/2).

B.5 Proof of Lemma 6.5

Proof. Denote S := φ(Sπr∗...∗πs , Sπs+1∗...∗πt
⊤), and Ij := {(j− 1)n/2s + 1, . . . , jn/2s}

for j ∈ J2sK. The right support Sπs+1∗...∗πt
⊤, which is equal to Sπs+1∗...∗πt by

Lemma 6.3, is block diagonal with blocks 12t−s×2t−s ⊗ I2L−t of size n/2s × n/2s.
Hence, one the one hand, for i ∈ Ij and i′ ∈ Ij′ with j, j′ ∈ J2ℓK, j ̸= j′, the rank-
one supports S i and S i′ are disjoint. One the other hand, the columns supports
{supp((Sπr∗...∗πs)[:, i]), i ∈ Ij} are pairwise disjoint for each j ∈ J2ℓK, by defini-
tion of Sπr∗...∗πs . This means that for i, i′ ∈ Ij (j ∈ J2ℓK), the rank-one supports S i
and S i′ are also disjoint, when i ̸= i′. This ends the proof.

B.6 Proof of Lemma 6.7

Proof. (i)⇒ (ii): consider r, s, t such that the partial products are made of a single
factor. (ii) ⇒ (i): Given s ∈ JL− 1K, we show by backward induction that XJr,sK
has no zero column for each r ∈ JsK.

• By assumption, XJs,sK = Xs has no zero column.

• Let r ∈ J2, sK, and suppose that XJr,sK has no zero column. For i ∈ JnK,
the i-th column of XJr−1,sK = Xr−1XJr,sK is a linear combination of columns
{(Xr−1)[:, j] | j ∈ supp((XJr,sK)[:, i])}. By Lemma 6.6, the supports of the
rank-one contributions in φ(Xr−1, XJr,sK

⊤) are pairwise disjoint, hence the
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column supports {supp((Xr−1)[:, j]) | j ∈ supp((XJr,sK)[:, i])} are pairwise
disjoint. But supp((XJr,sK)[:, i]) is not empty as XJr,sK has no zero column.
As Xr−1 is also not empty, the i-th column of XJr−1,sK is non-zero, and this is
true for each i ∈ JnK, which ends the induction.

A similar induction shows that XJs+1,tK has no zero row for each 2 ≤ s + 1 ≤ t ≤
L.
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C.1 Proof for results in Section 7.3

This section is devoted to the proof of Theorem 7.1. To that end we first introduce
the following technical lemma.

Lemma C.1. Consider support constraints (L, R) satisfying the conditions of Theo-
rem 7.1. For any (X, Y) such that supp(X) ⊆ L, supp(Y) ⊆ R, we have:

∀P ∈ P(L, R), (XY)[RP, CP] = X[RP, P]Y[P, CP], (C.1)

where RP, CP are defined as in Definition 7.1.

Proof. For any pair of matrices (X, Y) ∈ Cm×r ×Cr×n:

XY =
r

∑
i=1

X[:, i]Y[i, :] = ∑
P∈P(L,R)

X[:, P]Y[P, :]. (C.2)

For any P, P̃ ∈ P(L, R) such that P ̸= P̃, UP and UP̃ are disjoint by assumption on
L, R. Since supp(X[:, P̃]Y[P̃, :]) ⊆ UP̃, we have (X[:, P̃]Y[P̃, :])[RP, CP] = 0. Hence,
by (C.2):

(XY)[RP, CP] = (X[:, P]Y[P, :])[RP, CP] = X[RP, P]Y[P, CP].

The following proof of Theorem 7.1 is mainly taken from [212], but we addi-
tionally compute the infimum value of Problem (7.5).

Proof for Theorem 7.1. In this proof, we use the simple shorthand P for P(L, R),
and we denote Σ := {(X, Y) | supp(X) ⊆ L, supp(Y) ⊆ R}. Recall that (Ui)

r
i=1 :=

φ(X, Y) where φ is the lifting operator defined in (6.10).
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Let (X, Y) ∈ Σ. Then, supp(X[:, P]Y[P, :]) ⊆ UP for any P ∈ P , hence
supp(XY) ⊆ ⋃P∈P UP, and (XY)⊙UP = 0 where we denote UP := (JmK× JnK) \
(
⋃

P∈P UP). Moreover, by assumption, UP and UP̃ are disjoint for any P, P̃ ∈ P
such that P ̸= P̃, so:

∥A− XY∥2
F =

(
∑

P∈P
∥(A− XY)⊙UP∥2

F

)
+ ∥(A− XY)⊙UP∥2

F

=

(
∑

P∈P
∥(A− XY)[RP, CP]∥2

F

)
+ ∥A⊙UP∥2

F

=

(
∑

P∈P
∥A[RP, CP]− (XY)[RP, CP]∥2

F

)
+ ∥A⊙UP∥2

F

(C.1)
=

(
∑

P∈P
∥A[RP, CP]− X[RP, P]Y[P, CP]∥2

F

)
+ ∥A⊙UP∥2

F.

(C.3)

SinceP is a partition, this implies that each terms in the sum ∑P∈P ∥A[RP, CP]−
X[RP, P]Y[P, CP]∥2 involves columns of X and rows of Y that are not involved in
other terms of the sum. Moreover, we remark that for any P ∈ P , the matrix
X[RP, P]Y[P, CP] is of rank at most |P|. In other words, minimizing the right-
hand-side of (C.3) with respect to (X, Y) ∈ Σ is equivalent to minimize each term
of the sum for P ∈ P , which is the problem of finding the best rank-|P| approxi-
mation of A[RP, CP]. This yields the claimed equation (7.7).

Remark C.1. We can go further and provide a closed-form expression for the value of the
infimum (7.7). In general, the distance between a matrix A to the set of matrices of rank
at most k is given by ∥A∥2

F − ∑k
j=1 σ2

j (A) where σj(·) is the jth largest eigenvalue of a
matrix. Injecting this expression in (7.7) yields:

inf
(X,Y)∈Σ

∥A− XY∥2
F =

(
∑

P∈P
min

B,rank(B)≤|P|
∥A[RP, CP]− B∥2

F

)
+ ∥A⊙UP∥2

F

= ∑
P∈P

(
∥A[RP, CP]∥2

F −
|P|

∑
j=1

σ2
j (A[RP, CP])

)
+ ∥A⊙UP∥2

F.

This gives the following closed-form expression:

inf
(X,Y)∈Σ

∥A− XY∥2
F = ∥A∥2

F − ∑
P∈P

|P|

∑
j=1

σ2
j (A[RP, CP]). (C.4)

C.2 Proof for results in Section 7.4

C.2.1 Proof of Proposition 7.1

Proof. Let q = q(π1, π2). By Definition 7.4, a1 | a2 and d2 | d1, so there are two
integers r, s such that a2 = ra1 and d1 = sd2. Since a1c1/a2 = b2d2/d1 = q by
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Definition 7.4, this yields c1 = a2q/a1 = qr, b2 = d1q/d2 = qs. Thus,

Sπ1Sπ2 =
(
Ia1 ⊗ 1b1×qr ⊗ Id1

) (
Ia2 ⊗ 1qs×c2 ⊗ Id2

)
=
(
Ia1 ⊗ 1b1×r ⊗ 11×q ⊗ Id1

) (
Ia2 ⊗ 1q×1 ⊗ 1s×c2 ⊗ Id2

)
=
[
(Ia1 ⊗ 1b1×r)⊗ 11×q ⊗ Id1

] [
Ia2 ⊗ 1q×1 ⊗ (1s×c2 ⊗ Id2)

]
(⋆)
=
(
Ia1 ⊗ 1b1×r

)
⊗
(
11×q1q×1

)
⊗
(
1s×c2 ⊗ Id2

)
=
(
Ia1 ⊗ 1b1×r

)
⊗ (q11×1)⊗

(
1s×c2 ⊗ Id2

)
= q

(
Ia1 ⊗ 1b1s×rc2 ⊗ Id2

)
= qSπ1∗π2

(
because

b1d1

d2
= b1s and

a2c2

c1
= rc2

)
.

We can use the equality (A⊗ C⊗ E)(B⊗D⊗ F) = (AB)⊗ (CD)⊗ (EF) in (⋆)
because, according to our conditions for chainability, the sizes of A, B, C, D, E, F
in (⋆) make the matrix products AB, CD and EF well-defined.

C.2.2 Proof of Lemma 7.2

The proof is based on Lemma 7.8 introduced in Section 7.5.

Proof. Let β := (π1, π2) be a pair of chainable patterns. A fortiori, by Lemma 7.8,
(Sπ1 , Sπ2) satisfies the condition of Theorem 7.1. Therefore, for any matrix A, we
have A ∈ Bβ if, and only if:

min
(X,Y)∈Σβ

∥A− XY∥2
F = 0

(7.7)⇐⇒ ∑
P∈P(Sπ1 ,Sπ2 )

min
B,rank(B)≤|P|

∥A[RP, CP]− B∥2
F + ∑

(i,j)/∈supp(Sπ1 Sπ2 )

A[i, j]2 = 0

(7.12)⇐⇒ ∑
P∈P(Sπ1 ,Sπ2 )

min
B,rank(B)≤|P|

∥A[RP, CP]− B∥2
F + ∑

(i,j)/∈supp(Sπ1∗π2 )

A[i, j]2 = 0

⇐⇒
{

rank(A[RP, CP]) ≤ |P|, ∀P ∈ P(Sπ1 , Sπ2)

A ∈ Σπ1∗π2
.

This proves (7.13). For any P ∈ P(Sπ1 , Sπ2), we have |RP| = b1, |CP| = c2, be-
cause by Definition 7.2, the support of any column in Sπ1 and any row in Sπ2 is
of cardinal b1 and c2, respectively. Moreover, we have: ∑P∈P(Sπ1 ,Sπ2 )

|P|UP =

∑Ui∈φ(Sπ1 ,Sπ2 )
Ui = Sπ1Sπ2 = Sπ1Sπ2 = qS(π1∗π2), where the first equality comes

from Definition 7.1, the second equality simply comes from the rank-one decom-
position of matrix multiplication, and the third equality comes from Proposi-
tion 7.1. This implies |P| = q for any P ∈ P(Sπ1 , Sπ2).
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C.2.3 Proof for Lemma 7.3

Proof. Denote πℓ = (aℓ, bℓ, cℓ, dℓ) for ℓ ∈ J3K. Let us show that π1 and π2 ∗ π3 are
chainable and q(π1, π2 ∗π3) = q(π1, π2). Since (π2, π3) is chainable, by definition
of ∗ (Definition 7.4), we have:

(ã, b̃, c̃, d̃) = π̃ := π2 ∗ π3 =

(
a2,

b2d2

d3
,

a3c3

a2
, d3

)
.

We then verify that (π1, π̃) satisfies the conditions of Definition 7.4:

1. By chainability of (π1, π2), we have q(π1, π2) := a1c1/a2 = b2d2/d1 ∈ N.
Therefore: a1c1/ã = a1c1/a2 = q(π1, π2) = b2d2/d1 = b̃d̃/d1 ∈ N. This
means that q(π1, π2 ∗ π3) = q(π1, π2).

2. By chainability of (π1, π2), we have a1 | a2. Since ã = a2 by definition, we
have a1 | ã.

3. By chainability of (π1, π2), we have d2 | d1, and by chainability of (π2, π3),
we have d3 | d2. Thus, d3 | d1, hence d̃ | d1 because d̃ = d3 by definition.

In conclusion, (π1, π2 ∗ π3) is chainable with q(π1, π2 ∗ π3) = q(π1, π2). Com-
puting π1 ∗ (π2 ∗ π3) explicitly by (7.11) gives π1 ∗ (π2 ∗ π3) =

(
a1, b1d1

d3
, a3c3

a1
, d3

)
.

Similarly, we can show that (π1 ∗ π2, π3) is also chainable with q(π1 ∗ π2, π3) =
q(π2, π3), and we can indeed verify that (π1 ∗ π2) ∗ π3 = π1 ∗ (π2 ∗ π3) using
(7.11).

C.2.4 Proof of Lemma 7.4

We give the explicit formula for (π1 ∗ . . . ∗ πL) in (7.14).

Proof. Let us show that π1 ∗ . . . ∗ πL =
(

a1, b1d1
dL

, aLcL
a1

, dL

)
, for each chainable β =

(πℓ)
L
ℓ=1 = (aℓ, bℓ, cℓ, dℓ)L

ℓ=1 of depth L ≥ 2. The proof is an induction on L ≥ 2.

• If L = 2, the result comes from (7.11).

• Let L ≥ 2, and assume that the statement holds for any chainable archi-
tecture of depth L. Consider a chainable architecture β := (πℓ)

L+1
ℓ=1 =

(aℓ, bℓ, cℓ, dℓ)L+1
ℓ=1 of depth L + 1. By the induction hypothesis, we have π1 ∗

. . . ∗ πL =
(

a1, b1d1
dL

, aLcL
a1

, dL

)
. Therefore,

π1 ∗ . . . ∗ πL ∗ πL+1 =

(
a1,

b1d1

dL
,

aLcL

a1
, dL

)
∗ (aL+1, bL+1, cL+1, dL+1)

=

(
a1,

b1d1dL

dLdL+1
,

aL+1cL+1

a1
, dL+1

)
=

(
a1,

b1d1

dL+1
,

aL+1cL+1

a1
, dL+1

)
.
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C.2.5 Proof for Lemma 7.5

Proof. By (7.14), we have:

(a, b, c, d) = π := πr ∗ . . . ∗ πs =

(
ar,

brdr

ds
,

ascs

ar
, ds

)
,

(a′, b′, c′, d′) = π′ := πs+1 ∗ . . . ∗ πt =

(
as+1,

bs+1ds+1

dt
,

atct

as+1
, dt

)
.

(C.5)

We show the chainability of (π, π′) by verifying the conditions of Definition 7.4:

1. By chainability of (πs, πs+1), q(πs, πs+1) = ascs/as+1 = bs+1ds+1/ds ∈ N.
This means that ac/a′ = ascs/as+1 = q(πs, πs+1) = bs+1ds+1/ds = b′d′/d
and q(π, π′) = q(πs, πs+1) ∈N.

2. By chainability of β, aℓ | aℓ+1 for all ℓ ∈ JL− 1K, so ar | as+1 because r ≤ s,
hence a | a′ because a = ar and a′ = as+1.

3. By chainability of β, dℓ+1 | dℓ for all ℓ ∈ JL− 1K, so dt | ds because s ≤ t,
hence d′ | d because d′ = dt and d = ds.

C.2.6 Proof for Lemma 7.6

Proof. The explicit formulas for (a, b, c, d) = π := πr ∗ . . . ∗ πs and (a′, b′, c′, d′) =
π′ := πs+1 ∗ . . . ∗ πt are given in (C.5). By Lemma 7.5, (π, π′) is chainable, with
q(π, π′) = q(πs, πs+1). To show the non-redundancy of (π, π′), it remains to
show q(π, π′) < min(b, c′). Let us show q(π, π′) < b. Because β is not re-
dundant, by Definition 7.6, we have q(πℓ, πℓ+1) < bℓ for any ℓ ∈ JL − 1K. But
q(πℓ, πℓ+1) = bℓ+1dℓ+1/dℓ by Definition 7.4. Therefore, bℓ+1dℓ+1 < bℓdℓ for
any ℓ ∈ JL − 1K. Thus, since r ≤ s, we have bs+1ds+1 < brdr. A fortiori,
bs+1ds+1

ds
< brdr

ds
. But by (C.5), brdr

ds
= b and bs+1ds+1

ds
= b′d′

d = q(π, π′). In con-

clusion, q(π, π′) = bs+1ds+1
ds

< brdr
ds

= b. A similar argument yields q(π, π′) < c′.
This ends the proof.

C.3 Details on the orthonormalization operations in
Section 7.6

The goal of this section is to clarify the nature of the orthonormalization oper-
ations introduced in Algorithm 7.5, which involve the procedure described in
Algorithm 7.6. We start by giving a formal definition of orthonormality for a π-
butterfly factor (Appendix C.3.1). Then we describe important properties of such
orthonormal butterfly factors (Appendix C.3.2), in order to explain the nature of
Algorithm 7.6 (Appendix C.3.3).
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C.3.1 Definition of orthonormal butterfly factors

In order to introduce a notion of orthonormality for π-butterfly factors, we start
by the following remark.

Lemma C.2. Let π := (a, b, c, d) be a pattern, and q be an integer. Assume that
there exist another pattern π′ such that (π, π′) is chainable with q(π, π′) = q. Then,
the partition P(Sπ, Sπ′) is the same for any π′ such that (π, π′) is chainable with
q(π, π′) = q. This partition does not depend on π′ and is equal to

{It,k}t,k :=
{
{k + (t− 1)dq + (j− 1)d}j∈JqK | (t, k) ∈ Jac/qK× JdK

}
. (C.6)

Remark C.2. If the pattern π′ is such that the pair (π, π′) is chainable with q(π, π′) =
q, then c/q ∈N, because q = q(π, π′) = ac/ã and a | ã.

Proof. We will prove that P(Sπ, Sπ̃) = {It,k}t,k for any pattern π̃ such that (π, π̃)
is chainable with q(π, π̃) = q. For this, we fix such a pattern π̃, and we claim
that it is sufficient to prove that, for any P ∈ P(Sπ, Sπ̃), there exists a unique
(k, t) ∈ JdK × Jca/qK such that P = Ik,t, because {It,k}t,k and P(Sπ, Sπ̃) have
the same cardinal: indeed, by Lemma 7.2, |P| = q for any P ∈ P(Sπ, Sπ̃), so
the cardinal of P(Sπ, Sπ̃) is acd/q (since there are acd columns in Sπ), which is
precisely the cardinal of the set (C.6).

Define the partition of JacdK into ac/q consecutive intervals of length dq as:

∀t ∈ Jac/qK, It := J(t− 1)dq + 1, tdqK.

By chainability of (π, π̃), we have acd = ãb̃d̃, ac/q = ã, and dq = b̃d̃. In
other words: {It}t∈Jac/qK = {(t − 1)b̃d̃ + 1, tb̃d̃}t∈JãK is a partition of Jãb̃d̃K into
ã consecutive intervals of length b̃d̃. Because of the block diagonal structure of
Sπ̃ = Iã ⊗ 1b̃×c̃ ⊗ Id̃, two rows Sπ̃[i, :] and Sπ̃[i′, :] cannot have the same sup-
port if the two indices i, i′ belong each to two different It, It′ for t ̸= t′. A for-
tiori, indices belonging to different It, It′ cannot be in the same equivalence class
P ∈ P(Sπ, Sπ̃), by Definition 7.1.

Then, for each t ∈ Jac/qK, the interval It of cardinal dq can be partitionned
into q subsets of integers equally spaced by a distance d as:

It = J(t− 1)dq + 1, tdqK =
⋃

k∈JdK

{k + (t− 1)dq + (j− 1)d}j∈JqK =
⋃

k∈JdK

It,k. (C.7)

For a given t ∈ Jac/qK, if i ∈ It,k and i′ ∈ It,k′ for some k ̸= k′, then (i mod d) =
k ̸= k′ = (i′ mod d) by construction. By the structure Sπ = Ia ⊗ 1b×c ⊗ Id,
this yields Sπ[:, i] ̸= Sπ[:, i′]. A fortiori, indices belonging to different It,k, It,k′ for
k ̸= k′ cannot be in the same equivalence class P ∈ P(Sπ, Sπ̃), by Definition 7.1.

In conclusion, this means that for any P ∈ P(Sπ, Sπ̃), there exist (t, k) ∈
Jac/qK× JdK such that P ⊆ It,k. But |P| = q = |It,k|, so P = It,k. We conclude
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the proof by remarking that such a pair (t, k) is unique, because {It,k}t,k forms a
partition of JacdK.

We can prove the following analogous result using the same argument.

Lemma C.3. Let π := (a, b, c, d) be a pattern, and q be an integer. Assume that
there exist another pattern π′ such that (π′, π) is chainable with q(π′, π) = q. Then,
the partition P(Sπ′ , Sπ) is the same for any π′ such that (π′, π) is chainable with
q(π′, π) = q.

Lemmas C.2 and C.3 lead to the following definition.

Definition C.1. Let π be a pattern, and q be an integer, define:

1. Pc(π, q) := P(Sπ, Sπ̃) for any pattern π̃ such that (π, π̃) is chainable with
q(π, π̃) = q if such a π̃ exists.

2. Pr(π, q) := P(Sπ̃, Sπ) for any pattern π̃ such that (π, π̃) is chainable with
q(π, π̃) = q if such a π̃ exists.

We can then define the notion of orthonoramlity for a butterfly factor as fol-
low.

Definition C.2 (q-column/row-orthonormal butterfly factor). Given an integer
q and a pattern π such that Pc(π, q) (resp. Pr(π, q)) is well-defined, a butterfly factor
A ∈ Σπ is q-column-orthonormal (resp. q-row-orthonormal) if the submatrix
A[:, P] is orthonormal by column (resp. A[P, :] is orthonormal by row) for each P ∈
Pc(π, q) (resp. P ∈ Pr(π, q)).

Remark C.3. Another equivalent definition of column or row orthonormality is to re-
quire A[RP, P] (resp. A[P, CP]) to be column (resp. row)-orthonormal1. Indeed, in the
case of column-orthonormality, the submatrix A[:, P] has the form: A[:, P] =

(
A[RP,P]

0

)
up to some row permutation. Thus, A[:, P] is column-orthonormal if, and only if, A[RP, P]
is column-orthonormal. The same reasoning holds in the case of row-orthonormality.

C.3.2 Properties of orthonormal butterfly factors

We introduce properties related to orthonormal butterfly factors.

Preservation of the inner product

Similarly to classical orthonormal matrices, orthonormal butterfly factors pre-
serve the inner product in the following sense.

1RP, CP are defined as in Definition 7.1
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Lemma C.4. Consider a chainable pair (π, π′). Then, for any X ∈ Σπ that is
q(π, π′)-column-orthonormal, and any Y1, Y2 ∈ Σπ′ :

⟨XY1, XY2⟩ = ⟨Y1, Y2⟩

where ⟨·, ·⟩ denotes the usual Frobenius inner product of two matrices.

Proof. By Lemma 7.8, for i ∈ {1, 2}, we have supp(XYi) ⊆ ∪P∈P(Sπ ,Sπ′ )
RP × CP

where {RP × CP}P are pairwise disjoint. Hence:

⟨XY1, XY2⟩ = ∑
P∈P(Sπ ,Sπ′ )

⟨(XY1)[RP, CP], (XY2)[RP, CP]⟩. (C.8)

Moreover, Sπ′ =
⋃

P∈P(Sπ ,Sπ′ )
P × CP and {P × CP}P are pairwise disjoint, be-

cause P(Sπ, Sπ′) is a partition. Hence:

⟨Y1, Y2⟩ = ∑
P∈P(Sπ ,Sπ′ )

⟨Y1[P, CP], Y2[P, CP]⟩. (C.9)

By Definition C.2 and Remark C.3, X[RP, P] is orthonormal by column for any
P ∈ P(Sπ, Sπ′), so:

⟨(XY1)[RP, CP],(XY2)[RP, CP]⟩
(C.1)
= ⟨X[RP, P]Y1[P, CP], X[RP, P]Y2[P, CP]⟩
=Tr(Y1[P, CP]

⊤X[RP, P]⊤X[RP, P]Y2[P, CP])

=Tr(Y1[P, CP]
⊤Y2[P, CP])

=⟨Y1[P, CP], Y2[P, CP]⟩,

(C.10)

where Tr denotes the trace operator. This yields:

⟨XY1, XY2⟩
(C.8)+(C.10)

= ∑
P∈P(Sπ ,Sπ′ )

⟨Y1[P, CP], Y2[P, CP]⟩
(C.9)
= ⟨Y1, Y2⟩,

which ends the proof.

We have a similar result to Lemma C.4, but for row-orthonormal butterfly
factors.

Lemma C.5. Consider a chainable pair (π′, π). Then, for any X1, X2 ∈ Σπ′ , and any
Y ∈ Σπ that is q(π′, π)-row-orthonormal, we have:

⟨XY1, XY2⟩ = ⟨Y1, Y2⟩.

The following lemmas are consequences of Lemma C.4 and Lemma C.5.
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Lemma C.6. Consider a chainable architecture β := (π1, π2, π3). Then, for any
X ∈ Σπ1 that is q(π1, π2)-column-orthonormal, any Y ∈ Σπ2 , and any Z ∈ Σπ3 that
is q(π2, π3)-row-orthonormal, we have:

⟨XY1Z, XY2Z⟩ = ⟨Y1, Y2⟩

Proof. By Lemma 7.2, YiZ ∈ Σπ2∗π3 for i ∈ {1, 2}, and by Lemma 7.3, (π1, π2 ∗
π3) is chainable with q(π1, π2 ∗ π3) = q(π1, π2). Therefore, by Lemma C.4:
⟨XY1Z, XY2Z⟩ = ⟨Y1Z, Y2Z⟩. Applying Lemma C.5 this time with π2 and π3
yields ⟨Y1Z, Y2Z⟩ = ⟨Y1, Y2⟩.

Lemma C.7. Under the same assumptions as Lemma C.6: ∥XYZ∥F = ∥Y∥F.

Proof. This is immediate by taking Y1 = Y2 = Y in Lemma C.6.

Stable under matrix multiplication

Similarly to classical orthonormal matrices, orthonormal butterfly factors also en-
joy a form of stability under matrix multiplication, in the following sense.

Lemma C.8. Consider a chainable pair (π1, π2).

1. If A1 ∈ Σπ1 is q(π1, π2)-column-orthonormal and A2 ∈ Σπ2 is q2-column-
orthonormal for some integer q2, then the product A1A2 ∈ Σπ1∗π2 is q2-
column-orthonormal.

2. If A1 ∈ Σπ1 is q1-row-orthonormal for some integer q1 and A2 ∈ Σπ2

is q(π1, π2)-row-orthonormal, then the product A1A2 ∈ Σπ1∗π2 is q1-row-
orthonormal.

The proof of Lemma C.8 needs the two following lemmas.

Lemma C.9. Let A ∈ Σπ be a q-column-orthonormal butterfly factor, with π :=
(a, b, c, d). For any subset of column indices of the form It = J(t− 1)dq + 1, tdqK for
t ∈ Jac/qK, the submatrix A[:, It] is a column-orthonormal matrix.

Proof. By Lemma C.2, Pc(π, q) = {It,k}t,k as defined in (C.6). Fix t ∈ JaK. As
stated in (C.7), It =

⋃
k∈JdK It,k, where {It,k}k are pairwise disjoint. Because of the

structure Sπ = Ia ⊗ 1b×c ⊗ Id, for any k, k′ ∈ JdK such that k ̸= k′ and i ∈ It,k,
i′ ∈ It,k′ , the column supports Sπ[:, i] and Sπ[:, i′] are pairwise disjoint. Therefore,
a fortiori, if i, i′ are two indices belonging to two different It,k, It,k′ for k ̸= k′,
then A[:, i] and A[:, i′] are orthogonal. And if i, i′ belong to the same It,k for a
given k, then A[:, i] and A[:, i′] are also orthogonal, and they are of unit norm,
since A[:, It,k] is an orthonormal matrix by column. Thus, A[:, It] is a column-
orthonormal matrix.
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Lemma C.10. Consider a pattern π2 and an integer q2 such that Pc(π2, q2) is well-
defined. Then, for any π1 such that (π1, π2) is chainable, Pc(π1 ∗ π2, q2) is also
well-defined and Pc(π2, q2) = Pc(π1 ∗ π2, q2).

Proof. Let us show that Pc(π1 ∗ π2, q2) is well-defined. Since Pc(π2, q2) is well-
defined, by Definition C.1, there exists a pattern π such that (π2, π) is chainable
with q(π2, π) = q2. In particular, this means that the architecture (π1, π2, π) is
chainable, and by Lemma 7.5, (π1 ∗ π2, π) is chainable with q(π1 ∗ π2) = q2. By
Definition C.1, Pc(π1 ∗ π2, q2) is well-defined. The equality Pc(π2, q2) = Pc(π1 ∗
π2, q2) can be verified using (C.6) in Lemma C.2 and (7.11) in Definition 7.4.

Proof for Lemma C.8. We will prove the claim for the column-orthonormal case.
The case with row-orthonormal factors can be dealt with similarly. Let P ∈
Pc(π1 ∗ π2, q2), and let us show that (A1A2)[:, P] is orthonormal by column. By
Lemma C.10 and Lemma C.2:

Pc(π1 ∗ π2, q2) = Pc(π2, q2)

=
{
{k + (t− 1)d2q2 + (j− 1)d2}j∈Jq2K | (t, k) ∈ Jd2K× Ja2c2/q2K

}
,

so there exists a pair (t, k) ∈ Jd2K× Ja2c2/q2K such that P = {{k + (t− 1)d2q2 +
(j− 1)d2}j∈Jq2K. Then, we remark that:

P ⊆ J(t− 1)d2q2 + 1, td2q2K ⊆ Juc2d2 + 1, (u + 1)c2d2K := Ju, (C.11)

where u is the quotient in the Euclidean division of t− 1 by c2/q2, with 0 ≤ u ≤
a2 − 1, because 0 ≤ t− 1 ≤ a2c2/q2 − 1. By the structure Sπ2 = Ia2 ⊗ 1b2×c2 ⊗ I,
this means that the support of each column of Sπ2 indexed by P ⊆ Ju is included
in Iu := Jub2d2 + 1, (u + 1)b2d2K. Therefore:

(A1A2)[:, P] = A1(A2[:, P]) = A1[:, Iu]A2[Iu, P]

On the one hand, the submatrix A2[Iu, P] is orthonormal by column since P ∈
Pc(π2, q2) and A2 is a q2-column-orthonormal butterfly factor. On the other hand,
by chainability of (π1, π2), denoting q1 = q(π1, π2), we have b2d2/d1 = q1,
and a2 = a1c1/q1. In other words, Iu = Jud1q1 + 1, (u + 1)d1q1K for any u ∈
J0, a1c1/q1 − 1K. By Lemma C.9, A1[:, Iu] is orthonormal by column. In conclu-
sion, (A1A2)[:, P] is orthonormal by column, because it is the product of two or-
thonormal matrices by column, which ends the proof.

C.3.3 Explanations for Algorithm 7.6

We are now ready to precisely describe the goal of Algorithm 7.6, in light of the
following lemma.
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Lemma C.11. Consider a non-redundant chainable pair (π1, π2), and (X1, X2) ∈
Σπ1 × Σπ2 . Denote q := q(π1, π2). Then:

• Algorithm 7.6 with input u = column returns (X̃1, X̃2) ∈ Σπ1 × Σπ2 such
that X̃1 is a q-column-orthonormal and X̃1X̃2 = X1X2;

• Algorithm 7.6 with input u = row returns (X̃1, X̃2) ∈ Σπ1 ×Σπ2 such that X̃2
is a q-row-orthonormal and X̃1X̃2 = X1X2.

Proof. We only prove the first point, as the second point can be addressed simi-
larly. For any (X̃1, X̃2) ∈ Σπ1 × Σπ2 , since supp(X1X2) and supp(X̃1X̃2) are both
included in

⋃
P∈P(Sπ1 ,Sπ2 )

RP × CP where {RP × CP}P are pairwise disjoint, we
have:

X1X2 = X̃1X̃2 ⇐⇒ ∀P ∈ P(Sπ1 , Sπ2), (X1X2)[RP, CP] = (X̃1X̃2)[RP, CP]

⇐⇒ ∀P ∈ P(Sπ1 , Sπ2), (X1X2)[RP, CP] = X̃1[RP, P]X̃2[P, CP],

where the second equivalence comes by Lemma C.1 and by chainability of (π1, π2).
Moreover, by Remark C.3, X̃1 ∈ Σπ1 is q-column-orthonormal if, and only if,
X̃1[RP, P] is orthonormal by column for each P ∈ Pc(π1, q) = P(Sπ1 , Sπ2).

The output (X̃1, X̃2) of Algorithm 7.6 is constructed by computing the QR-
decomposition of X[RP, P] = QR, and setting X̃[RP, P] = Q, Ỹ[P, CP] = RY2[P, CP],
which is possible because (π1, π2) is assumed to be non-redundant. Thus, X̃[RP, P]
is orthonormal by column by construction, and X̃[RP, P]Ỹ[P, CP] = QRY2[P, CP] =
X1[RP, P]Y2[P, CP] = (X1X2)[RP, CP]. This yields the claim of the lemma.

In other words, Algorithm 7.6 construct orthonormal submatrices. Recalling
the notations form Definition 7.1, if u = column, then the submatrices X̃[RP, P]
for P ∈ P(Sπ1 , Sπ2) in line 5 of Algorithm 7.6 become orthonormal by column.
Indeed, they are set to Q where (Q, R) is the QR-decomposition2 of submatri-
ces of X[RP, P]. The orthonormality by column of X̃[RP, P] is very important in
the proof of our error bound of Algorithm 7.5. Likewise, if u = row, then the
submatrices Ỹ[P, CP] for P ∈ P(Sπ1 , Sπ2) in line 14 become orthonormal by row.

C.3.4 Proof of (7.27)

We use Lemma C.11 and the following result.

2In this context, a QR-decomposition of a matrix A ∈ Cm×n, m ≥ n is a pair of matrices (Q, R)
in which Q ∈ Cm×n is orthonormal by column and Rn×n is an upper triangular matrix.
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Lemma C.12. For a given iteration J ∈ JL− 1K in Algorithm 7.5, recall the notation
X(J)

left and X(J)
right given at (7.22) and (7.23), and denote (r, t) as defined in line 9 in

Algorithm 7.5. Then:

1. X(J)
left ∈ Σπ1∗...∗πr−1 is q(πr−1, πr)-column-orthnormal;

2. X(J)
right ∈ Σπt+1∗...∗πL is q(πt, πt+1)-row-orthonormal.

Proof. Fix J ∈ JL− 1K. Denote (X̃Pk)
J
k=1 the factors before and after the orthnor-

malization operations (lines 10-15), with (Pk)
J
k=1 the elements in partition as

defined in line 4 and updated at line 7. Denote:

∀k ∈ JJK, πPk := πr′ ∗ . . . ∗ πt′ with (r′, t′) := (min Pk, max Pk). (C.12)

By Lemma C.11, after the first “for loop” (lines 10-12), due to the assignments
in line 11 of Algorithm 7.5, each butterfly factor XPk ∈ ΣπPk for k ∈ Jj − 1K
becomes q(πPk , πPk+1)-column-orthonormal. Consequently, by Lemma C.8, the

product X(J)
left = XP1 . . . XPj−1 ∈ ΣπP1∗...∗πPj−1 is q(πPj−1 , πPj)-column-orthonormal.

By Lemma 7.5 and by construction of (Pk)
J
k=1, we have πP1 ∗ . . . ∗ πPj−1 = π1 ∗

. . . ∗πr−1, and q(πPj−1 , πPj) = q(πr−1, πr), which yields the first claim. The second
claim is obtained similarly.

Proof of (7.27). Consider two cases:

1. if J = 1, then we are in the case where (r, t) = (1, L), so by convention
given after (7.22) and (7.23), X(1)

left and X(1)
right are both the identity matrices.

The equality holds trivially in this case.

2. If J > 1, by Lemma C.12, X(J)
left is q(πr−1, πr)-column-orthnormal and X(J)

right
is q(πt, πt+1)-row-orthonormal. By Lemma 7.5 and chainability of β =
(πℓ)

L
ℓ=1, (π1 ∗ . . . ∗πr−1, πr ∗ . . . ∗πt) is chainable with q(π1 ∗ . . . ∗πr−1, πr ∗

. . . ∗ πt) = q(πr−1, πr), and (πr ∗ . . . ∗ πt, πt+1 ∗ . . . ∗ πL) is chainable with
q(πr ∗ . . . ∗ πt, πt+1 ∗ . . . ∗ πL) = q(πt, πt+1). Moreover, by the construction
of Algorithm 7.5, both XJr,tK and XJr,sKXJs+1,tK belong to Σ(πr∗...∗πt) = Σ

πPj .
Therefore, the proof for this case can be concluded using Lemma C.7.

C.4 Complexity of hierarchical algorithms

This section is devoted to prove Theorem 7.2. We analyze the complexity of each
of the components involved in the proposed hierarchical algorithms.
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C.4. Complexity of hierarchical algorithms

C.4.1 Complexity of Algorithm 7.1

This algorithm essentially performs several low-rank approximations that are
typically computing using truncated SVD.

Lemma C.13. Consider (L, R) that satisfy the condition of Theorem 7.1. Then, for
any matrix A, the complexity of Algorithm 7.1 with inputs (A, L, R) is

O
(
∑P∈P(L,R)|P||RP||CP|

)
.

Remark C.4. In practice, best low-rank approximations in Algorithm 7.1 via truncated
SVDs can be computed in parallel. This can decrease the complexity up to

O(maxP∈P(L,R)|P||RP||CP|)

when parallelizing across |P(L, R)| processes.

Proof. The algorithm performs the best rank-|P| approximation of a submatrix of
size |RP| × |CP| for each P ∈ P(L, R) and the complexity of the truncated SVD at
order k for an m× n matrix is O(kmn) [153].

We apply this complexity analysis to the case where (L, R) are butterfly sup-
ports corresponding to a chainable pair of patterns.

Lemma C.14. For any chainable pair of patterns (π, π) with π = (a, b, c, d) and
π′ = (a′, b′, c′, d′), denoting q := q(π, π′), the complexity of Algorithm 7.1 with
inputs (A, Sπ, Sπ) is

C(π, π′) = O(qa′c′bd). (C.13)

Proof. By chainability of (π, π), we have q = ac/a′. By Lemmas 7.8 and C.13,
C(π, π′) = O

(
acd
q |P||RP||CP|

)
. By Lemma 7.2, C(π, π′) = O(acdbc′). Since

q = ac/a′ by Definition 7.4, C(π, π′) = O(qa′c′bd).

C.4.2 Complexity of Algorithms 7.3 and 7.4

These two algorithms are based on Algorithm 7.1.

Lemma C.15. Consider a non-redundant chainable architecture β and a matrix A
of size m × n. With the same notations as in Theorem 7.2, the complexity of Algo-
rithms 7.3 and 7.4 with inputs β, A and any factor-bracketing tree T is at most:

• O(∥q(β)∥1MβNβ) in the general case;

• O(∥q(β)∥1mn) if β is non-redundant.
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Proof. Since Algorithm 7.3 performs (L− 1) factorizations of the form of Problem
(7.15) using Algorithm 7.1, its complexity is equal to the sum of the complexity of
each of these (L− 1) factorizations.

Fix 1 ≤ r ≤ s < t ≤ L. By Lemma 7.5, qs := q(πr ∗ . . . ∗ πs, πs+1 ∗ . . . ∗ πt) =
q(πs, πs+1). By (7.14):

πr ∗ . . . ∗ πs =

(
ar,

brdr

ds
,

ascs

ar
, ds

)
,

πs+1 ∗ . . . ∗ πt =

(
as+1,

bs+1ds+1

dt
,

atct

as+1
, dt

)
.

Therefore, by Lemma C.14: C(πr ∗ . . . ∗πs, πs+1 ∗ . . . ∗πt) = O(qsatctbrdr), which
is upper bounded byO(qsMβNβ), by definition of Mβ, Nβ. Therefore, the overall
complexity of Algorithm 7.3/Algorithm 7.4 is upper bounded by:

L−1

∑
s=1

qsMβNβ = ∥q(β)∥1MβNβ. (C.14)

Moreover, if β is assumed to be non-redundant, then by Definition 7.6, we
have aℓcℓ < aℓ+1cℓ+1 and bℓdℓ > bℓ+1dℓ+1 for all ℓ ∈ JL− 1K, hence, a1c1 < . . . <
aLcL and b1d1 > . . . > bLdL. Consequently:

∀ℓ ∈ JL− 1K,

{
aℓcℓ < aLcL = n/dL ≤ n
bℓdℓ < b1d1 = m/a1 ≤ m

. (C.15)

Thus, we have: Mβ = maxℓ∈JLK aℓcℓ ≤ m. Similarly, Nβ ≤ n, which ends the
proof.

C.4.3 Complexity of Algorithm 7.6

We now analyze the complexity of the construction of orthonormal butterfly fac-
tors in Algorithm 7.6.

Lemma C.16. The complexity of Algorithm 7.6 with input (π1, π2, X, Y, u) for any
u ∈ {column, row} and any non-redundant chainable pair (π1, π2) is

O(q(π1, π2)(∥π1∥0 + ∥π2∥0)),

where we recall the notation from Lemma 7.1.

Proof. We only consider the case u = column, since the other case can be dealt
with similarly. Denote q = q(π1, π2) and πℓ = (aℓ, bℓ, cℓ, dℓ) for ℓ ∈ {1, 2}. At
each iteration of Algorithm 7.6:

• the complexity of line 4 is O(|RP||P|2) = O(b1q2), since the complexity
of QR-decomposition of a matrix of size m × n is O(min(m, n)mn) [131,
Section 5.2];
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• the complexity of line 5 is O(|RP||P|) = O(b1q);

• the complexity of line 6 is O(|P|2|CP|) = O(c2q2).

Overall, the complexity of each iteration isO(q2(b1 + c2)). Since there are a1c1d1/q =
a2b2d2/q equivalence classes, the over complexity is:

O
(

a1c1d1

q
q2b1 +

a2b2d2

q
q2c2

)
= O(q(a1b1c1d1 + a2b2c2d2))

= O(q(π1, π2)(∥π1∥0 + ∥π2∥0)).

C.4.4 Complexity of Algorithm 7.5

We prove the second point of Theorem 7.2.

Proof. Assume that β is not redundant. By Lemma C.16 and the inequality in
(C.15), the complexity for each call of Algorithm 7.6 in lines 11 and 14 of Algo-
rithm 7.5 is bounded by O(mn∥q(β)∥∞). At the J-th iteration for some J ∈ JL−
1K, there are at most (J− 1) calls of (7.6), so the total complexity for the orthonor-
malization operations accross all the |β|− 1 iterations is at mostO(|β|2mn∥q(β)∥∞).
Therefore, the complexity of Algorithm 7.5 is given by

O
(
(|β|2∥q(β)∥∞ + ∥q(β)∥1)mn

)
.

C.4.5 Complexity of Algorithm 7.7

Proof of the third point of Theorem 7.2. Denote β′ the output of Algorithm 7.2 with
input β. Compared to Algorithm 7.5, Algorithm 7.7 performs Algorithm 7.5 on
β′ (if |β′| > 1) and recovers original factors by using Algorithm 7.1.

If |β′| = 1, then we simply set X′1 = A⊙ Sπ1∗...∗πL . Thus, the complexity of
this step is at most O(mn). Otherwise, the complexity of Algorithm 7.5 applied
to β′ is given by:

O
(
(|β′|2∥q(β′)∥∞ + ∥q(β′)∥1)mn

)
.

Thanks to Proposition 7.2, we have: |β′| ≤ |β| and q(β′) is a sub-vector of q(β).
As a consequence, ∥q(β′)∥1 ≤ ∥q(β)∥1, ∥q(β′)∥∞ ≤ ∥q(β)∥∞. Thus,

(|β′|2∥q(β′)∥∞ + ∥q(β′)∥1)mn ≤ (|β|2∥q(β)∥∞ + ∥q(β)∥1)mn.

In both cases (|β′| = 1 and |β′| > 1), the complexity of finding (X′ℓ) is at most
O
(
(|β|2∥q(β)∥∞ + ∥q(β)∥1)mn

)
.
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To obtain the factors (Xℓ)
L
ℓ=1 from (X′ℓ)

L′
ℓ=1, we need to use Algorithm 7.1 on

support constraints of the form (Sπr∗...∗πs , Sπs+1∗...∗πt). This is exactly similar to
the analysis of Lemma C.15. Using the same argument, we can bound the com-
plexity of this step by: O(∥q(β)∥1MβNβ). The proof is concluded by taking the
sum of the two bounds.

C.5 Proof for results in Section 7.7

C.5.1 Proof for (7.28)

The proof is based on the following result.

Lemma C.17. Consider a non-redundant chainable architecture β := (πℓ)
L
ℓ=1, and

integers (r, s, t) such that 1 ≤ r ≤ s < t ≤ L. Denote X any butterfly factor
in Σπ1∗...∗πr−1 that is q(πr−1, πr)-column-orhtonormal if r > 1, otherwise X is the
identity matrix of size a1b1d1. Denote Z any butterfly factor in Σπt+1∗...∗πL that is
q(πt, πt+1)-column-orhtonormal if t < L, otherwise Z is the identity matrix of size
aLcLdL. Then, for any Y ∈ Σπr∗...∗πt :

Eβs(XYZ) = inf
Y1,Y2
{∥Y− Y1Y2∥F | (Y1, Y2) ∈ Σπr∗...πs × Σπs+1∗...∗πt}. (C.16)

Proof of (7.28). By Lemma C.12, X(J)
left ∈ Σπ1∗...∗πr−1 is q(πr−1, πr)-column-orthnormal,

and X(J)
right ∈ Σπt+1∗...∗πL is q(πt, πt+1)-row-orthonormal. There are two cases to

consider on the value of J ∈ JL− 1K:

• If J = 1, then (r, t) = (1, L), so X(1)
left, X(1)

right are simply identity matrices, and
the claim of the lemma is true by Definition 7.7.

• Otherwise, J > 1, and XJr,tK ∈ Σπr∗...∗πt . This means that we can apply

Lemma C.17 with (X, Y, Z) = (X(J)
left, XJr,tK, X(J)

right). This proves (7.28) by re-
marking that (XJl,sK, XJs+1,rK) are indeed an optimal solution to the problem
in the right-hand side of (C.16).

Before proving Lemma C.17, we need a technical result.

Corollary C.1. Consider a chainable pair of patterns (π, π̃). For any A ∈ Σπ that
is q(π, π̃)-column-orthonormal, the submatrix A[:, Tk] where Tk = supp(Sπ̃[:, k])
is an orthonormal matrix by column, for any column index k of Sπ̃.
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Proof. Denote π = (a, b, c, d) and π̃ = (ã, b̃, c̃, d̃). By the structure Sπ̃ = Iã ⊗
1b̃×c̃⊗ Id̃, one can verify that Tk is a subset of an interval It := J1+(t− 1)b̃d̃, tb̃d̃K =
J1 + (t− 1)dq, tdqK for a certain t ∈ JãK, where the equality b̃d̃ = dq comes from
the chainability of (π, π̃). By Lemma C.9, A[:, Ik] is an orthonormal matrix by
column, so A[:, Tk] is also orthonormal by column.

Proof for Lemma C.17. Denote Sr,t := Sπr∗...∗πt for any 1 ≤ r ≤ t ≤ L, and qs :=
q(πs, πs+1). Let us compute the left-hand side (LHS) and the right-hand side
(RHS) of (C.16) separately.

• LHS: By Lemma 7.8, Sπ1∗...πs and Sπ1∗...πs satisfy Theorem 7.1. Moreover,
by Lemma 7.5, q(π1 ∗ . . . ∗ πs, πs+1 ∗ . . . ∗ πL) = qs. Hence, by (C.4):

Eβs(XYZ)2 = ∥XYZ∥2
F︸ ︷︷ ︸

=∥Y∥2
F

− ∑
P∈P(S1,s,Ss+1,L)

qs

∑
k=1

σ2
k ((XYZ)[R1

P, C1
P])

where we denote R1
P := supp(S1,s[:, i]) and C1

P := supp(Ss+1,L[i, :]) for any
i ∈ P, and σk(·) is the k-th largest eigenvalue of a matrix. The equality
∥XYZ∥2

F = ∥Y∥2
F comes by orthonormality of the butterfly factor X, Z and

Lemma C.7.

• RHS: Similarly, inf{∥Y−Y1Y2∥F | (Y1, Y2) ∈ Σπr∗...πs ×Σπs+1∗...∗πt} is equal
to

∥Y∥2
F − ∑

P∈P(Sr,s,Ss+1,t)

qs

∑
k=1

σ2
k (Y[R

2
P, C2

P]),

where we denote R2
P := supp(Sr,s[:, i]), C2

P := supp(Ss+1,t[i, :]) for any i ∈
P.

We now remark that P(S1,s, Ss+1,L) = P(Sr,s, Ss+1,t) = Pc(πs, qs). Indeed, on
the one hand:

P(S1,s, Ss+1,L) = Pc(π1 ∗ . . . ∗ πs, q(π1 ∗ . . . ∗ πs, πs+1 ∗ . . . ∗ πL))

= Pc(π1 ∗ . . . ∗ πs, qs)

= Pc(πs, qs)

(C.17)

by Definition C.1, Lemma 7.5 and Lemma C.10. And on the other hand, we can
show similarly that P(Sl,s, Ss+1,r) = Pc(πs, qs).

Therefore, in order to finish the proof, it is sufficient to prove that the spec-
trum (the set of nonzero eigenvalues, including their multiplicities) of Y[R2

P, C2
P]

is identical to the one of (XYZ)[R1
P, C1

P], for each P ∈ Pc(πs, qs). By assumption,
supp(Y) ⊆ Sr,t =

⋃
P∈Pc(πs,qs) R2

P × C2
P where {R2

P × C2
P}P are pairwise disjoint.

Thus:
XYZ = ∑

P∈Pc(πs,qs)

X[:, R2
P]Y[R

2
P, C2

P]Z[C
2
P, :]. (C.18)
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Looking at the support of each term for P ∈ Pc(πs, qs) in the sum, we have:

supp(X[:, R2
P]Y[R2

P, C2
P]Z[C2

P, :])

⊆ supp(S1,r−1[:, R2
P] 1|R2

P|×|C2
P|

St+1,L[C2
P, :])

= supp(S1,r−1[:, R2
P] 1|R2

P|×1 11×|C2
P|

St+1,L[C2
P, :]).

Note that for any i ∈ P, we have S1,r−1[:, R2
P]1|R2

P|×1 = S1,r−1Sr,s[:, i] = S1,s[:, i]
and 11×|C2

P|
St+1,L[C2

P, :] = Ss+1,t[i, :]St+1,L = Ss+1,L[i, :]. Therefore:

supp(X[:, R2
P]Y[R

2
P, C2

P]Z[C
2
P, :]) ⊆ supp(S1,s[:, i]Ss+1,L[i, :]) = R1

P × C1
P.

As a consequence, the supports of the summands in the right-hand side of (C.18)
are pairwise disjoint. Thus, for any P ∈ Pc(πs, qs), the product X[:, R2

P]Y[R
2
P, C2

P]Z[C
2
P, :

] is equal to
(
(XYZ)[R1

P, C1
P] 0

0 0

)
up to some permutation of rows and columns.

This means that X[:, R2
P]Y[R

2
P, C2

P]Z[C
2
P, :] and (XYZ)[R1

P, C1
P] share the same spec-

trum.
But by Corollary C.1, X[:, R2

P] is orthonormal by column, because (π1 ∗ . . . ∗
πr−1, πr ∗ . . . ∗ πs) is chainable with q(π1 ∗ . . . ∗ πr−1, πr ∗ . . . ∗ πs) = q(πr−1, πr)
by Lemma 7.5, the butterfly factor X is assumed to be q(πr−1, πr)-column or-
thonormal, and R2

P = supp(Sr,s[i, :]) for some i ∈ P by definition. Similarly,
Z[C2

P, :] is orthonormal by row. In conclusion, Y[R2
P, C2

P] shares the same spec-
trum with X[:, R2

P]Y[R
2
P, C2

P]Z[C
2
P, :], which itself shares the same spectrum as the

submatrix (XYZ)[R1
P, C1

P]. This ends the proof.

C.5.2 Proof for (7.30)

Proof. For each J ∈ JL − 1K, we denote (XJJ,JK, XJJ+1,LK, XJJ,LK) the matrices at

line 17 of Algorithm 7.5, and reuse the notation X(J)
left as in (7.22). In particular,

this means that

∀J ∈ JL− 1K, PJ = X(J)
leftXJJ,JKXJJ+1,LK,

PJ−1 = X(J)
leftXJJ,LK.

(C.19)

When σ is the identity permutation, the values of partition at the J-th it-
eration (J ∈ JL − 1K) is {J1, 1K, J2, 2K, . . . , JJ, JK, JJ + 1, LK}. Denoting (X̂ℓ)

L
ℓ=1 the

output of Algorithm 7.5, we remark that the list factors obtained at the end of
the J-th iteration (cf. Line 13 - Algorithm 7.5) is a tuple of the form:

(X̂1, . . . , X̂J−1, XJJ,JK, XJJ+1,LK). (C.20)

Indeed, the value of the first J− 1 factors in the list factors are column-orthonormal
butterfly factors (Definition C.2), due to the orthonormalization operations at the

254



C.5. Proof for results in Section 7.7

J-th iteration. Therefore, their values during orthonormalization operations in
the next iterations J + 1, J + 2, . . . , L − 1 do not change anymore, which means
that they are equal to X̂1, . . . , X̂J−1.

Therefore, X(J)
left = ∏J−1

ℓ=1 X̂ℓ for any J ∈ JL− 1K. In particular, for any p > J, we

have X(t)
left = X(J)

leftX̂J . . . X̂t−1. Combining this with (C.19) yields

∀J ∈ JL− 1K, ∀p ≥ J, Pp = X(J)
left

(
p−1

∏
ℓ=J

X̂ℓ

)
XJp,pKXJp+1,LK. (C.21)

Fix J ∈ JL− 1K. Denote

BJ−1 := XJJ,LK,

BJ := XJJ,JKXJJ+1,LK,

Bp :=

(
p−1

∏
ℓ=J

Xℓ

)
XJp,pKX̂Jp+1,LK ∀p > J.

(C.22)

On the one hand, by Lemma C.12, X(J)
left ∈ Σ(π1∗...∗πJ−1) is q(πJ−1, πJ)-column-

orthonormal. On the other hand, considering P := P(SπJ , SπJ+1∗...∗πL), we have

supp(SπJ∗...∗πL) =
⋃

P∈P
RP × CP,

∀P, P′ ∈ P , (RP × CP) ∩ (RP′ × CP′) = ∅.
(C.23)

Hence, for any p ≥ J:

⟨BJ−1 − BJ , Bp⟩ = 0
(C.22)+(C.19)⇐⇒ ⟨X(J)

left(BJ−1 − BJ), X(J)
leftBp⟩ = 0

Lemma C.4⇐⇒ ⟨BJ−1 − BJ , Bp⟩ = 0
(C.23)⇐⇒ ∑

P∈P

〈(
BJ−1 − BJ

)
[RP, CP], Bp[RP, CP]

〉
= 0.

Therefore, for proving (7.30), it is sufficient to show:

⟨(BJ−1 − BJ)[RP, CP], Bp[RP, CP]⟩ = 0, ∀P ∈ P , p ≥ J. (C.24)

Let P ∈ P , and denote the (column) range of a matrix M by range(M). The
proof relies on the following two steps. First, for t > J, by (C.22), Bt = XJCt for
some Ct ∈ ΣπJ+1∗...∗πL . By Lemma C.1, Bt[RP, CP] = XJ [RP, P]Ct[P, CP]. Hence,
range(Bt[RP, CP]) ⊆ range(XJ [RP, P]). Similarly, we can show range(BJ [RP, CP]) ⊆
range(XJJ,JK[RP, P]). But range(XJJ,JK[RP, P]) = range(XJ [RP, P]) if and only if
rank(XJJ,JK[RP, P]) = |P|, because XJJ,JK is orthonormalized into XJ at the next
iteration J + 1 by design of Algorithm 7.6. Thus, we have:

∀p ≥ J, range(Bp[RP, CP]) ⊆ range(XJJ,JK[RP, P]). (C.25)
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provided that rank(XJJ,JK[RP, P]) = |P|.
Second, by definition of (XJJ,JK, XJJ+1,LK, XJJ,LK) at line 17 of Algorithm 7.5, the

product (XJJ,JKXJJ+1,LK)[RP, CP] = BJ [RP, CP] is the best rank-|P| approximation
of XJJ,LK[RP, CP] = BJ−1[RP, CP] (cf. line 3 in Algorithm 7.1). This means that the
range of the residual (BJ−1−BJ)[RP, CP] is orthogonal to the range of BJ [RP, CP],
which is equal to the range of XJJ,JK[RP, P], provided that the rank of BJ−1[RP, CP]
is at least |P|. In this case, we necessarily have rank(XJJ,JK[RP, P]) = |P|, so we
obtain (C.24) using (C.25). Otherwise, when the rank of BJ−1[RP, CP] is at most
|P| − 1, the residual (BJ−1 − BJ)[RP, CP] is null, so we still obtain (C.24). This
ends the proof.

C.6 On the generalization of the complementary low-
rank property

We show in this section that the generalized complementary low-rank property
associated with a chainable β given in Definition 7.8 coincides, under some as-
sumption on β, with the classical definition of the complementary low-rank prop-
erty given in Definition 3.7.

In the classical definition, a cluster tree (Definition 3.3)yields a hierarchical
partitioning of a given set of indices. Similarly, the following proposition shows
that, under some appropriate conditions, a chainable architecture β also yields
a hierarchical partitioning of the row and column indices, which leads to two
cluster trees.

Proposition C.1. Consider a chainable architecture β = (πℓ)
L
ℓ=1 where πℓ :=

(aℓ, bℓ, cℓ, dℓ) for ℓ ∈ JLK. Denoting Sr,t := Sπr∗...∗πt for any 1 ≤ r ≤ t ≤ L
and recalling the notation from Definition 7.1, define for all ℓ ∈ JL− 1K:

Prow
L−ℓ := {RI | I ∈ P(S1,ℓ, Sℓ+1,L)},
Pcol
ℓ := {CI | I ∈ P(S1,ℓ, Sℓ+1,L)}.

(C.26)

Assume that a1 = dL = 1. Then:

• {Prow
ℓ }

L−1
ℓ=1 and {Pcol

ℓ }
L−1
ℓ=1 are partitions of JmK and JnK, respectively;

• for each ℓ ∈ JL− 2K, Prow
ℓ+1 and Pcol

ℓ+1 are finer than Pcol
ℓ and Prow

ℓ , respectively.

Consequently, {Prow
ℓ }

L−1
ℓ=1 and {Pcol

ℓ }
L−1
ℓ=1 yield two cluster trees, denoted Trow

β and
Tcol

β , of depth L− 1 with root node JmK and JnK, respectively.

Remark C.5. For ℓ ∈ JL− 2K, we have πℓ+1 ∗ . . . ∗πL =
(

aℓ+1, bℓ+1dℓ+1, aLcL
aℓ+1

, 1
)

by
(7.14), since dL = 1 by assumption. Therefore, there are aℓ+1 nodes of cardinal aLcL

aℓ+1
at
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level ℓ in Tcol
β . Each of them have aℓ+2

aℓ+1
children, because aℓ+1 | aℓ+2 by chainability of

(πℓ+1, πℓ+2). Similarly, there are dℓ+1 nodes of cardinal b1d1
dℓ+1

at level ℓ in Trow
β . Each of

them have dℓ+1
dℓ

children.

Proof. We only do the proof for {Pcol
ℓ }

L−1
ℓ=1 , since the proof is similar for the row

partitions {Prow
ℓ }L−1

ℓ=1 . First, fix ℓ ∈ JL− 1K, and we show that Pcol
ℓ is a partition

of JnK for any ℓ ∈ JL − 1K, where n := aLcLdL by definition. By (7.14): πℓ+1 ∗
. . . ∗ πL =

(
aℓ+1, bℓ+1dℓ+1

dL
, aLcL

aℓ+1
, dL

)
=
(

aℓ+1, bℓ+1dℓ+1, aLcL
aℓ+1

, 1
)

since dL = 1 by
assumption. Therefore, by Definition 7.2:

Pcol
ℓ = {{k + (j− 1)c}c

k=1 | j ∈ Jaℓ+1K} with c :=
aLcL

aℓ+1
, (C.27)

which is indeed a partition of JnK since n = aLcL.
Second, let ℓ ∈ JL − 2K, and let us show that Pcol

ℓ+1 is finer than Pcol
ℓ . Since

(πℓ+1, πℓ+2) is chainable, aℓ+1 | aℓ+2. Denoting γ := aℓ+2/aℓ+1, by (C.27):

Pcol
ℓ+1 =

{{
k + (j− 1)

c
γ

} c
γ

k=1
| j ∈ Jγaℓ+1K

}
with c :=

aLcL

aℓ+1
. (C.28)

For j ∈ Jaℓ+1K:

{k + (j− 1)c}c
k=1 =

γ⋃
i=1

{
k + (i− 1)

c
γ
+ (j− 1)c

} c
γ

k=1

=
γj⋃

j′=γ(j−1)+1

{
k + (j′ − 1)

c
γ

} c
γ

k=1

(C.29)

with the change of variable j′ = γ(j − 1) + i for i ∈ JγK. By (C.27), (C.28) and
(C.29), we conclude that Pcol

ℓ+1 is finer than Pcol
ℓ .

Therefore, under the same assumptions of Proposition C.1, the general defi-
nition of the complementary low-rank property given in Definition 7.8 coincides
with the classical one given in Definition 3.7.

Corollary C.2. Under the same assumptions of Proposition C.1, for any matrix A,
the following are equivalent:

• A satisfies the generalized complementary low-rank property (Definition 3.7)
associated with β;

• A satisfies exactly the classical complementary low-rank property (Defini-
tion 3.7) for (Trow

β , Tcol
β ) defined in Proposition C.1, where the rank on the prod-

uct block partition associated with Trow
β (L− ℓ) and Tcol

β (ℓ) is q(πℓ, πℓ+1) for
ℓ ∈ JL− 1K.
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Proof. Since β is chainable, by assumption a1 = dL = 1 and (7.14), we have
π1 ∗ . . . ∗ πL = (1, m, n, 1). Therefore, by Definition 7.8, a matrix A satisfies
the general complementary low-rank property associated with β if, and only if,
rank(A[RP, CP]) ≤ q(πℓ, πℓ+1) for each P ∈ P(S1,ℓ, Sℓ+1,L) and ℓ ∈ JL− 1K. By
Proposition C.1, this is precisely a reformulation of the classical complementary
low-rank property for the trees (Trow

β , Tcol
β ), because by definition, P(S1,ℓ, Sℓ+1,L)

is the product block partition associated with Trow(L − ℓ) and Tcol(ℓ) for each
ℓ ∈ JL− 1K.

C.7 Additional experiments

In Figure 7.4b, we observed that the approximation error obtained by the hier-
archical algorithm with orthonormalization operations (Algorithm 7.5) is always
smaller than the noise level ϵ = 0.1, as opposed to the one obtained without
orthonormalization. In fact, we have the same observation for any values of
ϵ ∈ {0.01, 0.03, 0.1, 0.3}, as shown in Figure C.1.

C.8 Is chainability necessary for an error bound of
the form (7.3)?

Let us illustrate that the chainability condition is not necessary to obtain an error
bound of the form (7.3), by considering the notion of transpose-chainability. If X is
a π-factor where π = (a, b, c, d), then X⊤ is a π⊤-factor where π⊤ := (a, c, b, d).
Therefore, if it is possible to find an approximate solution with an error bound
of (7.3) to Problem (7.1) associated with β = (πℓ)

L
ℓ=1, then we can also obtain

an approximate solution with the same theoretical guarantee to Problem (7.1)
associated with β⊤ = (π⊤L , . . . , π⊤1 ). This is typically done by:

1. finding an approximate solution (X1, . . . , XL) ∈ Σβ to (7.1) for β and A⊤;

2. constructing (XL
⊤, . . . , X1

⊤) ∈ Σβ⊤ , since (X1 . . . XL)
⊤ = XL

⊤ . . . X1
⊤.

Since the error bound (7.3) is guaranteed for any chainable β, as shown in Corol-
lary 7.1, it is also guaranteed for any transpose-chainable architecture, defined as
an architecture β⊤ such that β is chainable. In general, a chainable architecture is
not transpose-chainable, and vice-versa, as shown in the following example:

Example C.1. The pair (π1, π2) = ((1, 2, 2, 2), (2, 2, 2, 1)) is chainable but not transpose-
chainable, and the pair (π2

⊤, π1
⊤) is transpose-chainable but not chainable.
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Figure C.1: Relative approximation errors vs. the matrix size n, for Algorithm 7.4 (with-
out orthonormalization) and Algorithm 7.5 (with orthonormalization), for the instance of
Problem (7.1) described in Section 7.8.2 with r = 4. We show mean and standard devia-
tion on the error bars over 10 repetitions of the experiment.
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Appendix D
Appendices for Chapter 9

D.1 Details on the experiments

All the experiments of Section 9.5 (Figure D.2, Figure 9.4, Table 9.1, Figure 9.6,
Figure D.3, Figure 9.5) are done on a single NVIDIA A100-PCIE-40GB GPU on an
Intel(R) Xeon(R) Silver 4215R CPU @ 3.20GHz with 377G of memory. The version
of pytorch and pytorch-cuda are 2.0.1 and 11.7.

Time measurements are done using the tool torch.utils.benchmark.Timer
from PyTorch. The medians are computed on at least 10 measurements of 10 runs.
All the interquartile range (IQR) are at least 3 times smaller than the median.

In all our experiments for matrix multiplication, we set the batch size to K =
128× 196 = 25088 for the input matrix X ∈ Rn×K, a choice typically aligned with
the ViT architecture, where this quantity corresponds to the number of tokens per
sequence (192) multiplied by the number of sequences in a batch of images (128).
When dealing with a batch of images in neural networks, we choose as batch size
K = 128. The nonzero entries of any butterfly factor B ∈ Rabd×acd with sparsity
pattern (a, b, c, d) are drawn i.i.d. uniformly in [− 1√

c , 1√
c ], as for the initialization

chosen for training in [72], while the entries of the inputs X ∈ Rn×K are drawn
i.i.d. according to a standard normal distribution N (0, 1).

D.2 Reproduction of butterfly sparse neural networks
found in the literature

Table D.1 shows the result of our reproduction of different setups of the litera-
ture [72, 241], for training a butterfly sparse ViT for ImageNet classification [78].
We observe that: (i) butterfly sparse neural networks indeed have accuracies com-
parable to their dense counterparts; and that (ii) in half-precision, the forward pass
is slower with butterfly matrices compared to its dense counterpart.
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Table D.1: Results of our reproduction of butterfly sparse neural networks of the liter-
ature. The accuracies correspond to the ImageNet validation set, after training on the
ImageNet training set using the experiment protocol of the original papers [25, 72, 241].
The time of a single forward pass is measured for a batch size of 128, in half-precision. We
use the implementation provided in each paper.

Parameters Accuracy Forward pass (ms)
Top-1 / Top-5

ResNet-50
Dense 25.6 M 76.2 / 93.0 27.1
DeBut [241] 13.4 M 74.2 / 92.1 101.7

Simple ViT-S/16 [25]
Dense 21.9 M 75.5/92.0 14.2
Monarch [72] 9.6 M 73.2/91.1 23.3

Simple ViT-B/16 [25]
Dense 86.4 M 75.9/91.7 36
Monarch [72] 36.8 M 75.4/91.7 49.3

D.3 Time spent in linear layers in vision transformers

Table D.2 shows that at least between 31% and 61% of the time spent on the
forward pass of a vision transformer is dedicated to the computation of fully-
connected layers. Note that this is only a lower bound since we only estimate the
time of fully-connected layers in the feed-forward network modules and we do
not include those in the multi-head attention module in our estimation. The de-
tails are given below.

Estimating the time for fully-connected layers in transformer. The transformer
architecture is composed of a sequence of transformer blocks, where each block
contains a multi-head attention module and a feed-forward network module. The
feed-forward network module is an MLP with one hidden layer, involving two
fully-connected layers. We propose the following methodology to estimate the
time spent on computing the output of these fully-connected layers during a for-
ward pass of the transformer architecture. We extract all the fully-connected lay-
ers appearing in feed-forward network modules of the considered transformer,
and stack them sequentially without the biases to obtain an MLP without activa-
tions between the layers. We measure the forward time of the obtained MLP, and
compare it to the total forward time of the transformer network. The forward
time of this MLP is our estimation of the time effectively spent on computing
fully-connected layers in the feed-forward network modules of the transformer.
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Table D.2: Median execution times (ms) of the forward pass in a ViT, and the forward
pass in an MLP containing only all the linear layers involved in the feed-forward network
modules of the ViT. The latter is reported with its ratio over the first. FP16 is half-precision,
FP32 is float-precision.

Architecture fp16 (s) fp32 (s)

Complete Linear in FFNs Complete Linear in FFNs

ViT-S/16 0.014 0.0046 (31%) 0.090 0.04 (46%)
ViT-B/16 0.036 0.015 (42%) 0.30 0.16 (54%)
ViT-L/16 0.11 0.050 (46%) 1.0 0.58 (58%)
ViT-H/14 0.31 0.16 (53%) 2.6 1.6 (61%)

Experimental settings. The architecture ViT-S/16 corresponds to the one in [376],
while the architecture ViT-B/16, ViT-L/16 and ViT-H/14 correspond to those
in [87]. Input images are of size 224× 224. In float-precision, the PyTorch imple-
mentation of ViT architecture are taken from https://github.com/lucidrains/
vit-pytorch/blob/main/vit_pytorch/simple_vit.py. In half-precision, the con-
sidered implementation of the transformer architecture uses FlashAttention [73]
to compute the scaled dot product attention1. The MLP containing only the
linear layers of the feed-forward modules in the transformer architecture is im-
plemented using torch.nn.Sequential and torch.nn.Linear. Experiments are
done on a single A100-40GB GPU on AMD EPYC 7742 64-Core Processor. Mea-
surements are done using the PyTorch tool torch.utils.benchmark.Timer for
benchmarking. The image batch size is set at 128.

Results. Table D.2 shows that, across various ViT sizes, the proportion of the
computation time solely dedicated to linear layers in feed-forward network mod-
ules varies between 31% and 53% in half-precision, and 46% and 61% in float-
precision. This proportion increases with the architecture size. In conclusion, there
is a non-negligeable part of the computation dedicated to fully-connected layers
during the forward pass of a ViT. Note that the time for the fully-connected layers
in the multi-head attention module are not taken into account in our measure-
ments, so our estimation is only a lower bound on the time effectively dedicated to
all fully-connected layers in transformer architectures.

1like in https://docs.nvidia.com/deeplearning/performance/
dl-performance-matrix-multiplication/index.html
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Table D.3: Median execution times (ms) of the unfolding operations for the convolutional
layers appearing in the last convolutional layers in a ResNet-50 architecture, which are
indicated by the name of the corresponding bottleneck block using the notations from the
original paper [163], and by their kernel size and their number of output channels. This
time is compared to the time of a complete forward pass of the convolutional layer using
the default PyTorch implementations.

Bottleneck name Kernel size, output channels Half-precision

torch.nn.Conv2d (ms) Unfolding (ms)

conv5_1
1× 1 kernel, 512 0.30 1.1
3× 3 kernel, 512 0.13 0.99
1× 1 kernel, 2048 0.17 0.65

conv5_2 or conv5_3
1× 1 kernel, 512 0.15 0.73
3× 3 kernel, 512 0.21 1.2
1× 1 kernel, 2048 0.17 0.65

Bottleneck name Kernel size, output channels Float-precision

torch.nn.Conv2d (ms) Unfolding (ms)

conv5_1
1× 1 kernel, 512 0.46 1.2
3× 3 kernel, 512 0.19 1.0
1× 1 kernel, 2048 0.28 0.67

conv5_2 or conv5_3
1× 1 kernel, 512 0.30 0.77
3× 3 kernel, 512 0.35 1.2
1× 1 kernel, 2048 0.28 0.67

D.4 Unfolding convolutional layers

This section explains why the current existing way to insert a butterfly factoriza-
tion in convolutional layers [241] is not satisfactory.

For a convolutional layer, there is no interest in imposing butterfly sparsity
on the matrix of a 2D-kernel K corresponding to a given pair of input and out-
put channels. Indeed, it is typically of very small dimension (7× 7 in ResNets).
Instead, [241] proposes to replace another matrix W which is deduced from the
2D-kernel matrices between each pair of input and output channels, by concate-
nations. The output of the convolutional layer can be computed in three steps:

(i) unfold the input X into X̃, involving data copy and reshaping operations;

(ii) computing the matrix multiplication Ỹ := WX̃, where W is constrained to
be a butterfly matrix;

(iii) folding Ỹ into Y, involving reshaping operations.
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Results. In practice, we find in Table D.3 that the single unfolding operation of step
(i), as currently implemented in [241], is already slower than the whole forward pass
of the convolutional layer when it is done in a standard way. Consequently, this
unfolding operation is a bottleneck that prevents this approach to accelerate a
convolutional layer using the butterfly structure. More details on the experimen-
tal settings are given below.

Experimental settings. The unfolding operation of step (i) is implemented us-
ing torch.nn.functional.unfold, as in the implementation provided by [241].
Table D.3 measures the time for these unfolding operations for the last convolu-
tional layers of a ResNet-50 architecture [163], as proposed in [241]. This time
is compared to the time for performing directly the computation of the convolu-
tional layer using the default implementation torch.nn.Conv2d. Experiments are
done on a single A100-40GB GPU on AMD EPYC 7742 64-Core Processor. The
image batch size is set at 128.

D.5 Sparse versus dense GPU matrix multiplication
algorithms on PyTorch

Figure D.1 compares different possible implementations in PyTorch for multiply-
ing Y = WX ∈ Rn×K for a sparse or dense matrix W ∈ Rn×n and an input matrix
X ∈ Rn×K. The Pytorch tensor weight saves the entries of W in row-major, and
the tensor weight_transpose saves the entries of W⊤ in row-major. The entries of
X are saved either in a tensor input_bsf of shape (K, n) in the batch-size-first set-
ting, or in a tensor input_bsl of shape (n, K) in the batch-size-last setting. Below
are the details of the experiments.

Choice for the matrices X and W. The matrix W has random values drawn
i.i.d. uniformly in [0, 1], and X has i.i.d. entries according to a standard normal
distributionN (0, 1). When W is taken to be sparse, the tensor weight is stored in
the CSR format (via W.to_csr()) after 95% of its coefficients have been set to zero
(with the location of these coefficients chosen uniformly at random). The matrix
dimension n is taken to be every power of two between 16 and 8192. The batch
size is set to K = 25088 = 128× 196.

Benchmarked implementations. The PyTorch implementations that are bench-
marked are:

• torch.matmul(weight, input_bsl), denoted as W@X in the legend of Fig-
ure D.1;

• torch.matmul(input_bsf,weight_transpose) denoted as X@W in the leg-
end of Figure D.1;
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• torch.matmul(input_bsf, torch.t(weight)) denoted as X@T⊤ in the leg-
end of Figure D.1;

• torch.matmul(weight, torch.t(input_bsf)) denoted as W@X⊤ in the leg-
end of Figure D.1;

• torch.nn.functional.linear(input_bsf, weight) denoted as F.linear(X, W)
in the legend of Figure D.1.

Details on the measurements. The experiments are done on a single A100-
40GB GPU and AMD EPYC 7742 64-Core Processor. Measurements are done in
half-precision and float-precision. The IQR are at least 100 times smaller than the
median times, and we report the medians.

Results.

(i) The fastest sparse algorithm is torch.matmul(weight,input_bsl), where
input_bsl is of shape (n, K). This is the only implementation that can-
not be used in a neural network on PyTorch. Indeed, most of the PyTorch
operations assumes that the batch dimensions of the input tensor are at
the first positions. This means that any multiplication coming after an-
other PyTorch operation will receive an input with the batch size as the
first dimension, which excludes the use of this implementation. The reason
why torch.matmul(weight,input_bsl) is the fastest sparse implementa-
tion may be because of memory layouts. We cannot be certain of anything
since the cuSparse routine is not public.

(ii) All the dense implementations have similar times of execution.

(iii) Both in half-precision and float-precision, the fastest sparse implementation is
one order of magnitude faster than the other implementations.

(iv) While the fastest sparse implementation is comparable to the dense imple-
mentations in float-precision, and even slightly better for n large enough, it
is one order slower than the dense implementation in half-precision. Once
again, the code is not public so we cannot know why for certain, but this
may be because the dense implementation leverages TensorCores in half-
precision while the sparse implementation cannot because of the sparse struc-
ture. TensorCores, only available in half-precision, is typically very efficient
when there are dense sub-blocks of size 16× 16.

D.6 Pseudo-code for monarch algorithm

Algorithm D.1 and Algorithm D.3 are pseudo-codes corresponding to the algo-
rithms in [72] in the cases a = 1 and d = 1, respectively, in the batch-size-first. Our
adaptation to batch-size-last is straightforward and is not detailed here.
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Figure D.1: The experiments are described in Appendix D.5. When W is taken to be
sparse, the legend indicates “sparse", and "dense" otherwise. The times in half-precision
(fp16) and float-precision (fp32) are reported on the top and bottom graph, respectively.

D.7 Details on the kernel implementation

The proposed implementation use vectorization as soon as an operation can be
vectorized. Concretely, the float4 and half2 vector types are used to mutualize
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Algorithm D.1 monarch algorithm for the multiplication by a π-butterfly factor
with π = (1, b, c, d) (case a = 1, in the batch-size-first setting)

Require: Tensor blocks of shape (d, b, c), tensor input_bsf of shape (K, cd)
Ensure: Tensor output_bsf of shape (K, bd)

output_bsf← Algorithm D.2 (c, d, input_bsf)
output_bsf← Algorithm D.3 (blocks, output_bsf)
output_bsf← Algorithm D.2 (b, d, input_bsf)
return output_bsf

Algorithm D.2 Perfect shuffle permutation Pp,q, cf. (9.1) in Lemma 9.1, in the
batch-size-first setting

Require: p ∈N∗, q ∈N∗, tensor of size (K, pq)
Ensure: Shuffled tensor of size (K, pq)

1: r ← pq
2: tensor← reshape tensor into size (K, p, q).
3: tensor← transpose tensor into size (K, q, p).
4: tensor← reshape tensor into size (K, r)
5: return tensor

read and write operations [29, 283–285]. An epilogue [283] is also implemented
to avoid writing in global memory in a disorganized way. Indeed, after having
accumulated the output in registers, each thread has specific rows and columns
of the output to write to global memory, and may finish its computation before
the others. To avoid that, the epilogue starts to write in the shared memory, in a
disorganized way, and then organize the writing from shared to global memory.
Another implemented optimization is double buffering [29, 225, 283, 284]: a thread
block is always both computing the output of a tile, and loading the next tile from
global to shared memory. This allows us to hide the latency of loading from the
global memory.

D.8 Execution times in batch-size-first versus batch-
size-last in half-precision.

Figure D.2 contains the boxplots of the ratios time of batch-size-first
time of batch-size-last in half-precision for

each algorithm studied in Section 9.5, complementing the information provided
in float-precision in Figure 9.4.

D.9 Asymmetry a = 1 versus d = 1

Figure D.3 shows that the sparse and dense algorithms have the same execution
times for sparsity patterns (x, b, c, 1) (case d = 1) and (1, b, c, x) (case a = 1). This
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Algorithm D.3 monarch algorithm for the multiplication by a π-butterfly factor
with π = (a, b, c, 1) (case d = 1, in the batch-size-first setting)

Require: Tensor blocks of shape (a, b, c), tensor input_bsf of shape (K, ac)
Ensure: Tensor output_bsf of shape (K, ab)

output_bsf← reshape input_bsf into size (a, K, c)
output_bsf← torch.bmm(output_bsf, blocks)
output_bsf← reshape output_bsf of size (a, K, b) into size (K, ab)
return output_bsf

is expected since these algorithms are agnostic to the sparsity pattern (a, b, c, d),
and going from the tuple (x, b, c, 1) to (1, b, c, x) preserves the dimension of the
matrices and the number of nonzeros. This constrasts with the implementations
specialized to butterfly sparsity, for which we observed an asymmetry between
a = 1 and d = 1 in Figure 9.6.

D.10 Benchmarking butterfly matrices (Section 9.6.1)

Details on the tested architectures. Denote Π the set of sparsity patterns π =
(a, b, c, d) for which the multiplication of an associated butterfly factor is bench-
marked in Section 9.5. For a given size m× n in Table 9.2, we benchmark all the
butterfly architectures (π1, π2) satisfying the three conditions:

1. π1, π2 ∈ Π,

2. π1 corresponds to a factor with output dimension equal to m, and π2 corre-
sponds to a factor with input dimension equal to n, and

3. the total number of nonzero in the sparsity pattern π1 and π2 does not ex-
ceed nm.

This yields 27 architectures for the size 384× 384, 54 architectures for the sizes
1536× 384 and 384× 1536, 71 architectures for the size 768× 768, 90 architectures
for the sizes 3072× 768 and 768× 3072, and 24 architectures for each of the sizes
1024× 1024, 4096× 1024 and 1024× 4096.

Side note: time for successive multiplications is the sum of individual times.
The sequential sparse algorithm (sequential) time is closely aligned with the
sum of times for each sparse factor. For monarch, the median ratio of the time
for sequential over the sum of the times for each factor is 0.91 (max 1.02) across
almost 2300 tested cases; for kernel, it is 1.01 (max 1.05).

Results for hydrib. Table D.4 reports the comparison of hybrid vs. the baselines
monarch and dense for the multiplication X 7→ B1B2X where we use kernel for
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Figure D.2: Boxplots of the ratios time of batch-size-first
time of batch-size-last in 600 cases in half-precision.

B1 (sparsity pattern with the case a = 1) and monarch for B2 (sparsity pattern
with the case d = 1).

D.11 Implementing batch-size-last for different Py-
Torch operations

To what extent PyTorch operations can be implemented in batch-size-last? For this
discussion, we consider the following PyTorch operations:

• GELU: torch.nn.GELU();

• Linear: torch.nn.Linear(in_features, out_features, bias=False);

• Linear + bias: torch.nn.Linear(in_features, out_features, bias=True);

• LayerNorm: torch.nn.LayerNorm(dim).

We compare the time of these operations in batch-size-first vs. batch-size-last.

GELU. This operation does not suppose any batch order so torch.nn.GELU()
can be used both to implement batch-size-first and batch-size-last.
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Table D.4: Percentage of butterfly architectures (π1, π2) for which the multiplication X 7→
B1B2X is faster with hybrid than both monarch and dense. We consider between 24 and
90 different butterfly architectures for each size m× n of the product B1B2. In parenthesis
is the median acceleration factor ( min(time of dense,time of monarch)

time of hybrid ) computed only in the cases
where hybrid is faster than monarch and dense.

hybrid < min(dense, monarch)

Float-precision Half-precision

m× n Batch-size-first Batch-size-last Batch-size-first Batch-size-last

384× 384 15% (×1.01) 52% (×1.13) 0% (N/A) 0% (N/A)
768× 768 13% (×1.01) 87% (×1.16) 0% (N/A) 0% (N/A)
1024× 1024 13% (×1.01) 92% (×1.14) 0% (N/A) 0% (N/A)

384× 1536 50% (×1.02) 91% (×1.12) 0% (N/A) 0% (N/A)
768× 3072 21% (×1.09) 99% (×1.07) 0% (N/A) 27% (×1.10)
1024× 4096 17% (×1.20) 100% (×1.11) 0% (N/A) 33% (×1.08)

1536× 384 0% (N/A) 87% (×1.11) 0% (N/A) 0% (N/A)
3072× 768 0% (N/A) 98% (×1.10) 0% (N/A) 0% (N/A)
4096× 1024 0% (N/A) 96% (×1.05) 0% (N/A) 21% (×1.06)

Linear. torch.nn.Linear supposes that the first dimensions of the input ten-
sor are the batch dimensions. We implement the batch-size-last variant by doing
torch.matmul(weight, input_bsl) with weight a tensor of shape (m, n) saving
the entries of W ∈ Rm×n, and input_bsl a tensor of shape (n, K) saving the en-
tries of X ∈ Rn×K for the forward pass. See Appendix D.5 for the reason behind
this choice of implementation.

Linear + bias. The default implementation torch.nn.Linear exclusively sup-
ports batch-size-first and employs a technique called kernel fusion, which combines
the matrix multiplication and bias addition into an optimized unified kernel.
This fusion aims to improve computational efficiency by minimizing memory
accesses and intermediate data transfers. While an analogous approach with ker-
nel fusion in batch-size-last was not explored, we propose an unfused version of
torch.nn.Linear. Concretely, torch.nn.functional.linear(input, weight, bias)
in PyTorch is replaced by torch.nn.functional.linear(input, weight) + bias.
this results in separate calls to two kernels, one for adding the bias and the other
for matrix multiplication, leading to an “unfused" approach. Achieving a fused
kernel would require delving into CUDA-level optimizations. We leave it open
for future works.

LayerNorm. The default implementation supposes that the first dimensions of
the input tensor are the batch dimensions, and has a dedicated CUDA kernel im-
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Half-precision Float-precision
Batch-size-first (ms) Batch-size-last (ms) Batch-size-first (ms) Batch-size-last (ms)

GELU 0.034 0.034 0.060 0.060
Linear 0.20 0.20 1.73 1.70
Linear + bias (default) 0.22 N/A 1.75 N/A
Linear + bias (unfused) 0.38 0.38 1.96 1.94
LayerNorm (default) 0.072 N/A 0.09 N/A
LayerNorm (custom) 0.25 0.25 0.34 0.34

Table D.5: Median execution times (ms) in float-precision or half-precision of different Py-
Torch operations in batch-size-first or batch-size-last.

plementation in batch-size-first, which is not available in batch-size-last. We did not
delve at the CUDA level to do an analog in batch-size-last. Instead, we directly im-
plemented an equivalent in PyTorch using torch.mean and torch.var. Since this
is expected to be less efficient than the CUDA implementation, we also compare
it to an analogous PyTorch implementation in batch-size-first (using torch.mean
and torch.var), that is called custom in Table D.5.

Details on the experiments. The experiments are done on a single A100-40GB
GPU on AMD EPYC 7742 64-Core Processor. Measurements are done in half-
precision and float-precision. The dimensions for the linear layer is 384× 384. Input
data X is a batch of 25088 vectors of size 384. The IQR are at least 100 times smaller
than the median times, and we report the medians.

Results. The results in Table D.5 demonstrate that the unfused linear layer with
bias, the linear layer without bias, and the GELU exhibit equivalent execution
times in both batch-size-first and batch-size-last. This is a proof of concept that
some operations could be performed with batch-size-last at no additional cost.

The default linear layer with bias (fused) is however faster than the fused
implementations. It is left open whether a fused kernel with the same execution
times could be written in batch-size-last.

While the custom version of LayerNorm remains invariant during the tran-
sition from batch-size-first to batch-size-last, it exhibits slower performance com-
pared to the original implementation. The question remains open as to whether
the original CUDA implementation can be directly modified without compromis-
ing efficiency.
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