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Résumé
Le graphe des Laplaciens a été largement utilisé dans la réduction dimensionnelle méthodes,

méthodes de regroupement et méthodes d’apprentissage semi-supervisé depuis les années 2000.
Les candidatures de ces méthodes sont énormes comme im- recherche d’âge, séparation de la
parole, et la prédiction de la fonction des protéines tion. Comment- jamais, dans de nombreuses
applications du monde réel, représentant l’ensemble de données sous forme de graphique n’est
pas complet. Com-relation plex comme par paire conduira à la perte d’informations. Le naturel
moyen de surmonter la perte d’informations est de représenter l’ensemble de données comme
l’hy- pergraphe. Dans cette thèse, la dimension méthodes de réduction fonctionnelle, cluste-
ring méthodes et méthodes de classification pour la structure de données hypergraphiques être
développé. Ce travail comprend la méthode classique d’apprentissage automatique ods et l’ap-
prentissage profond moderne méthodes de structure de données hypergraphiques ture.

Mots clés : graphe, hypergraphe, laplacien, méthode d’apprentissage semi-supervisé, clustering,
plongements, réseau de neurones.
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Abstract
The graph Laplacians has been widely used in dimensional reduction methods, clustering me-

thods, and semi-supervised learning methods (i.e., Laplacian Eigenmaps, spectral clustering, and
graph-based semi-supervised learning) since 2000s (i.e., the classical machine learning method).
The applications of these methods are huge such as image retrieval (Laplacian Eigenmaps),
speech separation (spectral clustering), and protein function prediction (graph Laplacian based
semi-supervised learning method). However, in many real-world applications, representing the
dataset as the graph is not complete. Approximating complex relationship as pairwise will lead
to the loss of information. The natural way overcoming the information loss is to represent the
dataset as the hypergraph. In this thesis, the dimensional reduction methods, clustering me-
thods, and classification methods for hypergraph data structure (i.e., utilizing the hypergraph
Laplacian) will be developed. This work includes the classic machine learning methods and the
modern deep learning methods for hypergraph data structure.

Keywords : graph, hypergraph, Laplacian, semi-supervised learning method, clustering, em-
beddings, neural network.
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Chapter 1

Introduction

1.1 Why do we need to employ the hypergraph data struc-
ture?

In the past, the relational dataset was modeled as the high dimensional samples. In the
vector space, the correlations among data points were defined as the distance function or the
similarity function. However, modelling the samples with relationships would be more natural
than modelling them as the high dimensional vectors. In the other words, the relationships
are basically the subsets of samples and the correlations among samples are the intersections
among the subsets. In this thesis, we will mainly discuss two types of relationships which
are the pairwise relationship and the co-occurrence relationships. A pairwise relationship
can also be called a binary relationship. In the other words, it contains just two samples. In
the other hands, the co-occurrence relationship is the extension of the pairwise relationship.
In the other words, the co-occurrence relationship can contain any number of samples that
have co-occurred.

Given a relational dataset, the pairwise relationships among objects/entities/samples in
this dataset can be represented as the weighted graph. Then, the un-supervised learning
techniques such as representational learning methods/dimensional reduction methods and
clustering methods and the semi-supervised learning techniques can be applied to this graph.
These techniques (the un-supervised learning techniques and the semi-supervised learning
techniques) can be formulated as the operations on this graph. The fundamental matrices
used in these techniques are the adjacency matrix of the graph and/or the Laplacian matrix of
the graph [1, 2].
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However, assuming the pairwise relationships among the objects/entities/samples in
this graph representation is not complete. Let’s consider the case that we would like to
partition/segment a set of articles into different topics (i.e., clustering problem) [3, 4].

Initially, we employ the graph data structure to represent this dataset. The vertices of the
graph are the articles. Two articles are connected by an edge (i.e., the relationship) if there is
at least one author in common. Finally, we can apply spectral clustering technique [5, 6] to
this graph to partition/segment the vertices into groups/clusters.

Obviously, we easily see that in this graph data structure, we ignore the information
whether one specific author is the author of three or more articles (i.e., the co-occurrence
relationship or high order relationship).

This will lead to the loss of information. In the other words, this will lead to the low
performance (i.e., the low accuracy) of the clustering technique.

In order to overcome this difficulty, [3, 4] try to employ the hypergraph data structure to
represent for the above relational dataset. In details, in this hypergraph data structure, the
articles are the vertices and the authors are the hyper-edges. This hyper-edge can connect
more than two vertices (i.e., articles).

Please note that the simplicial complex is the uniform hypergraph which is one
specific type of hypergraph. The uniform hypergraph is the hypergraph where all
hyperedges have the same cardinality. However, in this thesis, we mainly discuss about
the general hypergraph.

The following figure 1.1 shows the example of the hypergraph.

Fig. 1.1 Hypergraph example with 8 vertices and 3 hyper-edges [3]

There are a lot of ways to re-present for this hypergraph data structure: as the incidence
matrix (used in my thesis and in [3]) or as the tensor [7, 8]. From [1], we recognize that the
outcome of the hypergraph-based clustering technique is quite promising. Its performance is
better than the performance of the spectral clustering technique (for graph).
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Last but not least, this hypergraph data structure is very useful when it is employed to
model social networks (the hyper-edges are group chats in social networks) or circuits (the
hyper-edges are electrical components), etc.

1.2 Scientific challenges and contributions

Basically, in this thesis, I will develop the novel methods (i.e., novelty property) to solve
various machine learning/deep learning problems for hypergraph data structure.

To the best of my knowledge, there are just four main problems in machine learning/deep
learning research field such as:

- Representational learning/Dimensional reduction/. . .

- Clustering

- Classification

- Link prediction/Recommendation system/. . .

The fundamental matrices used in the techniques solving these four main machine
learning/deep learning problems (for hypergraph data structure) are the incidence matrix of
the hypergraph and/or the Laplacian matrix of the hypergraph [3, 4].

In details, from 2000 to 2010, computer scientists such as Mikhail Belkin, Ulrike Von
Luxburg, and Dengyong Zhou had special interest in employing graph Laplacian in dimen-
sional reduction methods [9, 10], clustering methods [11, 12], and semi-supervised learning
methods (i.e., graph-based classification methods) [13, 14]. Our objective is to extend their
works.

In 2007, Ulrike von Luxburg has shown clearly that there are three main types of graph
Laplacians [11] which are:

- Un-normalized graph Laplacian

- Random walk graph Laplacian

- Symmetric normalized graph Laplacian

In order to solve the dimensional reduction problem for graph data structure, in 2002,
Mikhail Belkin and Partha Niyogi introduced a theoretical framework for Laplacian Eigen-
maps (i.e., dimensional reduction method) [9]. Unlike Principal Component Analysis (PCA),
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Laplacian Eigenmaps can preserve the local structure of the data points/samples after the
mapping [9]. This is the very strong argument of Laplacian Eigenmaps. However, the
authors of Laplacian Eigenmaps methods (i.e., Mikhail Belkin and Partha Niyogi) did not
point out their Eigenmaps is the random walk normalized Laplacian Eigenmaps or symmetric
normalized Laplacian Eigenmaps when they try to solve the generalized eigenvalue problem

Ly = λDy (1.1)

where L is un-normalized graph Laplacian matrix and D is the degree matrix. In particular,
there exist two ways to solve this generalized eigenvalue problem and this fact will lead to
two completely different Eigenmaps. To the best of my knowledge, no one have pointed out
this fact. Moreover, the un-normalized Laplacian Eigenmaps has not been investigated
up to now.

In order to solve the clustering problem for graph data structure, computer scientists
normally employed the adjacency matrix of the graph and the graph Laplacian. In 1972,
Donath and Hoffman initially suggested using the eigenvectors of adjacency matrices of
graphs to find partitions/clusters/groups [15]. In 1973, Fiedler linked the second smallest
eigenvalue of the Laplacian of the graph with its connectivity and proposed partitioning
by splitting vertices according to their value in the corresponding eigenvector [16]. The
Laplacian of the graph used by Fiedler is in fact the un-normalized or combinatorial graph
Laplacian. In the other words, the spectral clustering method used by Fiedler is the un-
normalized spectral clustering. Next, in 1992, Lars Hagen and Andrew Kahng applied un-
normalized spectral clustering to circuit partitioning problem and justify the un-normalized
spectral clustering method by using the graph cut point of view [17]. In 2000, Shi and
Malik developed the random walk spectral clustering method and applied this method to
image segmentation problem [18]. In 2001, Ng, Jordan, and Weiss developed the symmetric
normalized spectral clustering method [12]. Finally, in 2007, Ulrike von Luxburg provided
the complete review of spectral clustering methods in [11]. She justified all the spectral
clustering methods by using the graph cut point of view and also provided the complete
review of the multiway spectral clustering methods.

The advantage of this spectral clustering method is that it is easy to implement and
it can be solved efficiently. First, the first phase of the spectral clustering method is to
apply the Laplacian Eigenmaps algorithm to the dataset in order to reduce the dimensions
of the dataset. Finally, the common k-means clustering algorithm will be applied to this
“transformed” dataset.

In order to solve the graph-based classification problem (i.e., graph based semi-supervised
learning problem), computer scientists employed the graph Laplacian. In details, in 2002,
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Xiaojin Zhu et al. developed the random walk graph Laplacian based semi-supervised
learning method and applied this method to various classical applications such as digit
recognition [13]. In 2004, Dengyong Zhou et al. developed the symmetric normalized
graph Laplacian based semi-supervised learning method and applied this method to various
classical applications such as digit recognition and text classification [14]. In 2005 and
2009, Koji Tsuda et al. developed the un-normalized graph Laplacian based semi-supervised
learning method and applied this method successfully to the practical bioinformatics problem
which is the protein function prediction problem [19, 20].

In [21, 22], the symmetric normalized graph p-Laplacian based semi-supervised learning
method has been developed by Dengyong Zhou but has not been applied to any practical
applications. To the best of my knowledge, the un-normalized graph p-Laplacian based semi-
supervised learning method has not yet been developed and obviously has not been applied
to any practical applications. This method is worth investigated because of its difficulty and
its close connection to partial differential equation on graph research area.

However, in many real-world applications, representing the set of objects and their
relationships as graph data structure is not complete. Approximating complex relationship
as pairwise relationship will lead to the loss of information and the low performance of the
clustering and the classification methods. Thus, in this thesis, we will try to develop the
dimensional reduction methods, the clustering methods, and the semi-supervised learning
methods for the hypergraph data structure. Hypergraph is the generalization of the graph. In
details, in graph, the edge can connect two vertices of the graph only. However, in hypergraph,
edge or hyper-edge can connect more than two vertices of the hypergraph. Similar to graph,
we will define three main hypergraph Laplacians which are:

- Un-normalized hypergraph Laplacian

- Random walk hypergraph Laplacian

- Symmetric normalized hypergraph Laplacian

In 2005, Dengyong Zhou et al. have developed the symmetric normalized hypergraph
Laplacian Eigenmaps algorithm, the symmetric normalized hypergraph spectral cluster-
ing, and the symmetric normalized hypergraph Laplacian based semi-supervised learning
algorithm [3].

Inspired from Dengyong Zhou’s work, in this thesis, we will develop the un-normalized
hypergraph Laplacian Eigenmaps algorithm. Then, we will develop the un-normalized
hypergraph Laplacian based semi-supervised learning algorithm.
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Moreover, in the developed un-normalized hypergraph Laplacian Eigenmaps algo-
rithm, the weights of all hyper-edges are assumed to be equal to 1. This is not true at all
in practical applications. In the other words, some hyper-edges may be more important
than other hyper-edges and thus will have the weights that are larger than the weights of
other hyper-edges. Thus, in this thesis, we will also develop the weighted un-normalized
hypergraph Laplacian Eigenmaps algorithm and the weighted un-normalized hyper-
graph Laplacian based semi-supervised learning algorithm. These novel techniques
will be applied to the zoo dataset available from UCI repository and the tiny version of
the 20 newsgroups dataset.

In [21], in 2005, Dengyong Zhou et al. have developed the symmetric normalized graph
p-Laplacian based semi-supervised learning methods but has not applied these methods
to any practical applications. Inspired from Dengyong Zhou’s work, in this thesis, the
un-normalized hypergraph p-Laplacian based semi-supervised learning methods will be
developed based on the un-normalized hypergraph p-Laplacian operators’ definitions
such as the curvature operator of hypergraph (i.e., the un-normalized hypergraph
1-Laplacian operator). Then, the un-normalized hypergraph p-Laplacian based semi-
supervised learning methods will be applied to the zoo dataset available from UCI
repository and the tiny version of the 20 newsgroups dataset.

To develop the hypergraph based neural network can be considered the very hard task
and this hypergraph based neural network has just been developed since 2019 [23].

However, most of hypergraph based neural networks were developed to solve:

- Classification problem (for example, text classification, image classification, etc.)
[24, 25].

to the best of my knowledge
In this thesis, I will develop novel hypergraph based neural networks (i.e., novel versions)

to solve three basic problems in machine learning/deep learning research field:

- Classification

- Representational learning/Dimensional reduction/. . .

- Clustering

There are various clustering techniques, available from Python sklearn package [26]
such as k-means [27], hierarchical clustering technique, affinity propagation, etc., that can
be employed to solve these clustering problems. However, please note that these techniques
can ONLY be applied to feature datasets.
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Moreover, there are other clustering techniques (i.e., belong to different class of cluster-
ing techniques) that can also be employed to solve the clustering problem but can ONLY
be applied to hypergraph datasets such as the symmetric normalized hypergraph spectral
clustering [3, 4], maximum modularity approach [28], etc.

The weakness of these two classes of clustering techniques is obviously that they can
ONLY be applied to one type of dataset. This will lead to the loss of information. Now,
let’s consider the case that we have both types of datasets such as the feature dataset and
the hypergraph dataset. Assume that the samples in both datasets are the same, how can we
apply the clustering technique to both datasets?

In this thesis, we will develop the novel clustering method that utilizes both the
feature dataset and the hypergraph dataset.

In details, initially, we will develop the Hypergraph Auto-Encoders method (i.e., the
dimensional reduction method). Then, the Hypergraph Auto-Encoders method will
be employed to transform both the hypergraph dataset and the feature dataset from
the high dimensional space to low dimensional space. Finally, the k-means clustering
technique will be applied to the transformed dataset. This novel clustering technique
will be called the hypergraph convolutional neural network-based clustering technique.

There are some main advantages of this novel clustering technique such as:

• The memory/space required to store the data is lowered. This will lead to the low space
complexity.

• The low space complexity will lead to less computational and training time of the
classification/clustering techniques (i.e., the low time complexity).

• The noises and the redundant features are removed from the feature dataset and the
hypergraph dataset. This will lead to the high performance of the clustering technique.

• Both feature dataset and network dataset are utilized. This will lead to no information
loss.

Last but not least, these clustering techniques are un-supervised learning techniques.
Hence, we do not need labeled datasets.

In recent years, deep convolution neural networks have gained much interests from data
scientists and have been utilized to solve many classification tasks such as image recognition
[29] and speech recognition [30], to name a few. In order to deal with irregular data structure,
graph convolution neural networks have been developed by a lot of data scientists such
as Thomas Kipf [31]. There are two classes of graph convolution neural network. The
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first class of graph convolution neural network is the spatial based approach. This spatial
based approach implements the convolution on the graph by accumulating information of
the neighbor nodes. The second class of graph convolution neural network is the spectral
based approach. This spectral based approach implements a variant of graph convolution
neural network based on different graph Laplacians. Easily, we recognize that the time
complexity of spectral based approach is much higher than the time complexity of spatial
based approach; however, the accuracy of the spectral based approach is higher than the
accuracy of the spatial based approach. In this graph data structure, we easily see that the
edge can connect only two vertices. In the other words, data scientists have concentrated
primarily on developing deep neural network method for the simple un-directed graph.

Inspired from the idea combining the PageRank algorithm with the graph convolu-
tion neural network in [32], in this thesis, we propose the novel version of hypergraph
neural network method combining the classic hypergraph based semi-supervised learn-
ing method [3, 4] with the hypergraph neural network method [23]. This novel
hypergraph neural network method then will be employed to solve the “noisy label
learning” problem.

In this graph data structure, we easily see that the edge not only can connect two
vertices but also carry no information about the direction. In order to overcome these two
information losses which are “the edge carry no information about the direction” and
“the edge can connect only two vertices” of the graph data structure which “can” affect
the performance of the “node clustering task” and/or the “node classification task”,
in this thesis, we employ the directed hypergraph data structure [4, 5] and develop
the deep neural network method based on this directed hypergraph data structure.
This method is called the spectral directed hypergraph neural network method. The
development of this directed hypergraph neural network is considered the very hard
task and is the novel work.

1.3 Organization of the thesis

This thesis will contain six chapters:

- Chapter 1: In this chapter, we present why we need hypergraph data structure. Then,
the scientific challenges and the contributions of the thesis are presented.

- Chapter 2: In this chapter, initially, we will introduce the definitions of the three
hypergraph Laplacians. Then, the un-normalized hypergraph Laplacian Eigenmaps
algorithm will be presented in detail. Next, we will present the weighted un-normalized
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hypergraph Laplacian Eigenmaps algorithm and the weighted un-normalized hyper-
graph Laplacian based semi-supervised learning algorithm. Finally, the experimental
results of the proposed algorithms in this chapter will be shown. Last but not least, these
proposed algorithms will be tested on the zoo dataset available from UCI repository
and the tiny version of the 20 newsgroups dataset.

- Chapter 3: In this chapter, we will introduce the definitions of the gradient and
divergence operators of hypergraph. Next, we will introduce the definition of Laplace
operator of hypergrap and its properties. Then, we will introduce the definition of
the curvature operator of hypergraph and its properties. Next, we will introduce the
definition of the p-Laplace operator of hypergraph and its properties. In the next
section, we will show how to derive the algorithm of the un-normalized hypergraph
p-Laplacian based semi-supervised learning method from regularization framework.
Finally, we will compare the accuracy performance measures of the un-normalized
hypergraph Laplacian based semi-supervised learning algorithm (i.e., the current state
of art method) and the un-normalized hypergraph p-Laplacian based semi-supervised
learning algorithms.

- Chapter 4: In this chapter, initially, we will define the clustering problem and will
present the novel graph/hypergraph convolutional neural network-based clustering
technique. Next, we will describe the two datasets that will be used in this chapter
which are the Citeseer dataset and the Cora dataset and will compare the performance
the hypergraph convolutional neural network based-clustering technique and the per-
formances of the graph convolutional neural network based-clustering technique, the
k-means clustering technique and the spectral clustering technique testing on these two
Citeseer and Cora datasets.

- Chapter 5: In this chapter, we will introduce the novel version of hypergraph neural
network method which is the combination of the classic hypergraph based semi-
supervised learning method with the hypergraph neural network method. Next, we
will describe the datasets which will be used in this chapter (i.e., the MNIST image
dataset, the USPS image dataset, and the FASHION-MNIST image dataset) and will
present the experimental results.

- Chapter 6: In this chapter, initially, we will present the preliminary notations and
definitions. Next, we will introduce the novel directed hypergraph semi-supervised
learning method. Then, the directed hypergraph neural network will be presented.



10 Introduction

Finally, we will describe the datasets that will be used in this chapter (i.e., the Cora
dataset and the Citeseer dataset) and will present the experimental results.

- Chapter 7: Conclusion



References

[1] R. Merris, “Laplacian matrices of graphs: a survey,” Linear algebra and its applications,
vol. 197, pp. 143–176, 1994.

[2] D. A. Spielman, “Algorithms, graph theory, and linear equations in laplacian matrices,”
in Proceedings of the International Congress of Mathematicians 2010 (ICM 2010)
(In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures,
pp. 2698–2722, World Scientific, 2010.

[3] D. Zhou, J. Huang, and B. Schölkopf, “Learning with hypergraphs: Clustering, classifi-
cation, and embedding,” Advances in neural information processing systems, vol. 19,
pp. 1601–1608, 2006.

[4] D. Zhou, J. Huang, and B. Schölkopf, “Beyond pairwise classification and clustering
using hypergraphs,” 2005.

[5] J. Liu and J. Han, “Spectral clustering,” in Data Clustering, pp. 177–200, Chapman
and Hall/CRC, 2018.

[6] D. Verma and M. Meila, “A comparison of spectral clustering algorithms,” University
of Washington Tech Rep UWCSE030501, vol. 1, pp. 1–18, 2003.

[7] X. Ouvrard, J.-M. L. Goff, and S. Marchand-Maillet, “Adjacency and tensor rep-
resentation in general hypergraphs part 1: e-adjacency tensor uniformisation using
homogeneous polynomials,” arXiv preprint arXiv:1712.08189, 2017.

[8] X. Ouvrard, J.-M. L. Goff, and S. Marchand-Maillet, “Adjacency and tensor represen-
tation in general hypergraphs. part 2: Multisets, hb-graphs and related e-adjacency
tensors,” arXiv preprint arXiv:1805.11952, 2018.

[9] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data
representation,” Neural computation, vol. 15, no. 6, pp. 1373–1396, 2003.



12 References

[10] M. Belkin and P. Niyogi, “Convergence of laplacian eigenmaps,” Advances in Neural
Information Processing Systems, vol. 19, p. 129, 2007.

[11] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17,
no. 4, pp. 395–416, 2007.

[12] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,”
in Advances in neural information processing systems, pp. 849–856, 2002.

[13] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data with label
propagation,” 2002.

[14] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with local and
global consistency,” in Advances in neural information processing systems, pp. 321–328,
2004.

[15] W. E. Donath and A. J. Hoffman, “Algorithms for partitioning of graphs and computer
logic based on eigenvectors of connection matrices,” IBM Technical Disclosure Bulletin,
vol. 15, no. 3, pp. 938–944, 1972.

[16] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak mathematical journal,
vol. 23, no. 2, pp. 298–305, 1973.

[17] L. Hagen and A. B. Kahng, “New spectral methods for ratio cut partitioning and
clustering,” IEEE transactions on computer-aided design of integrated circuits and
systems, vol. 11, no. 9, pp. 1074–1085, 1992.

[18] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on
pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[19] K. Tsuda, H. Shin, and B. Schölkopf, “Fast protein classification with multiple net-
works,” Bioinformatics, vol. 21, no. suppl_2, pp. ii59–ii65, 2005.

[20] H. Shin, K. Tsuda, and B. Schölkopf, “Protein functional class prediction with a
combined graph,” Expert Systems with Applications, vol. 36, no. 2, pp. 3284–3292,
2009.

[21] D. Zhou and B. Schölkopf, “Regularization on discrete spaces,” in Joint Pattern Recog-
nition Symposium, pp. 361–368, Springer, 2005.

[22] D. Zhou and B. Schölkopf, “Discrete regularization.,” 2006.



References 13

[23] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural networks,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3558–3565,
2019.

[24] K. Ding, J. Wang, J. Li, D. Li, and H. Liu, “Be more with less: Hypergraph attention
networks for inductive text classification,” arXiv preprint arXiv:2011.00387, 2020.

[25] M. Liao, J. Duan, R. Zhang, X. Zhou, X. Wu, X. Wang, and J. Hu, “A hypergraph-
embedded convolutional neural network for ice crystal particle habit classification,”
INTELLIGENT AUTOMATION AND SOFT COMPUTING, vol. 29, no. 3, pp. 787–801,
2021.

[26] “2.3. clustering — scikit-learn 1.0.1 documentation.” https://scikit-learn.org/stable/
modules/clustering.html.

[27] L. H. Tran and L. H. Tran, “Mobility patterns based clustering: A novel approach,”
International Journal of Machine Learning and Computing, vol. 8, no. 4, 2018.

[28] D. Combe, C. Largeron, M. Géry, and E. Egyed-Zsigmond, “I-louvain: An attributed
graph clustering method,” in International Symposium on Intelligent Data Analysis,
pp. 181–192, Springer, 2015.

[29] B. B. Traore, B. Kamsu-Foguem, and F. Tangara, “Deep convolution neural network
for image recognition,” Ecological Informatics, vol. 48, pp. 257–268, 2018.

[30] Y. Qian and P. C. Woodland, “Very deep convolutional neural networks for robust
speech recognition,” in 2016 IEEE Spoken Language Technology Workshop (SLT),
pp. 481–488, IEEE, 2016.

[31] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

[32] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph neural
networks meet personalized pagerank,” arXiv preprint arXiv:1810.05997, 2018.

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html




Chapter 2

Weighted Un-Normalized Hypergraph
Laplacian Eigenmaps

2.1 Introduction

Recently, our capability to collect and store data has far exceeded our capability to analyze
it. In problems such as face recognition and biological network inference problem using
gene expression data, we are given a large dataset in which each observation contains a large
number of variables. This number of variables is called the dimension of each observation.
In this given setting, the data lies in a high-dimensional space. For example, the 256*256
image has 65536 dimensions if we treat each pixel as one variable/feature/attribute. It’s
hard for human beings to visualize and understand these high dimensional data because
of limited computing resources. Moreover, it turns out that not all variables are needed
for understanding the primary phenomenon. In the other words, there is a high degree of
redundancy in the data they represent. Hence, the structure and the content of the data may
be captured by a lesser set of variables. There are also may be too much noise in the data.
Hence there is a need to reduce the dimensionality of the data (i.e., reduce the noise of the
data) before we apply the clustering (i.e., un-supervised learning) methods and classification
(i.e., semi-supervised learning and supervised learning) methods to the dataset. In the other
words, we can build the more effective data analysis tools. Those are why we need to develop
the dimensional reduction methods.

In our literature review, many dimensional reduction methods have been successfully
developed and applied to various applications such as speech recognition, face recognition,
and biological network inference problem using gene expression data, to name a few. To
the best of my knowledge, there are two classes of dimensional reduction methods which
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are the linear and the non-linear techniques [1]. Linear dimensional reduction methods
assume that the data lies on or close to linear subspace of the high-dimensional ambient
space. Linear dimensional reduction methods have been developed and used for a long
time. For example, Principal Component Analysis (i.e., PCA) was developed in 1901 and
is still the most widely used dimensional reduction methods nowadays. For instance, the
PCA technique is employed in and successfully applied to speech recognition research field
[2], face recognition research field [3], and biological network inference research field [4].
In the other hand, non-linear dimensional reduction methods make no assumption about
the linearity and are designed to recognize complex non-linear manifolds as well as linear
ones. Recently, many researchers have focused on developing various non-linear dimensional
reduction methods such as Kernel PCA [5], Isomap [6], Local Linear Embedding [7], and
Laplacian Eigenmaps [8].

However, in many real-world applications, representing the dataset as un-directed graph,
used in Laplacian Eigenmaps and Local Linear Embedding methods, is not complete. Ap-
proximating complex relationship as pairwise will lead to the loss of information. Let us
consider classifying a set of genes into different gene functions. From [9], we may construct
an un-directed graph in which the vertices represent the genes and two genes are connected
by an edge if these two genes show a similar pattern of expression (i.e., the gene expression
data is used as the datasets in [9]). Any two genes connected by an edge tend to have similar
functions. However, assuming the pairwise relationship between genes is not complete, the
information a group of genes that show very similar patterns of expression and tend to have
similar functions [10] (i.e., the functional modules) is missed. The natural way overcoming
the information loss is to represent the gene expression data as the hypergraph [10]. A
hypergraph is a graph in which an edge (i.e., a hyper-edge) can connect more than two
vertices. However, representing the dataset as the hypergraph will not lead to the perfection.
The number of hyper-edges may be large; hence this will lead to high time complexity
of the clustering methods or the classification methods when we try to apply the cluster-
ing/classification methods to this hypergraph dataset. Thus, there exists a need to develop
the dimensional reduction methods for the hypergraph datasets. In [11, 12], the symmetric
normalized hypergraph Laplacian Eigenmaps has been developed and successfully applied to
zoo dataset. To the best of my knowledge, the random walk and un-normalized hypergraph
Laplacian Eigenmaps have not yet been developed and applied to any practical applications.
In this chapter, we will develop the un-normalized hypergraph Laplacian Eigenmaps and
apply this method combined with kernel ridge regression method to the zoo dataset available
from UCI repository and the tiny version of the 20 newsgroups dataset.
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Moreover, in the developed un-normalized hypergraph Laplacian Eigenmaps algorithm,
we assume that the weights of all hyper-edges are equal to 1. This is not true at all in practical
applications. In the other words, some hyper-edges may be more important than other hyper-
edges and thus will have the weights that are larger than the weights of other hyper-edges.
Thus, in this chapter, we will also develop the weighted un-normalized hypergraph Laplacian
Eigenmaps and apply this method, combined with kernel ridge regression method, to the zoo
dataset available from UCI repository and the tiny version of the 20 newsgroups dataset.

We will organize this chapter as follows: Section 2.2 will introduce the definitions of
the three hypergraph Laplacians. Section 2.3 will present the un-normalized hypergraph
Laplacian Eigenmaps algorithm in detail. Section 2.4 will present the weighted un-normalized
hypergraph Laplacian Eigenmaps algorithm in detail. Section 2.5 will show the experimental
results of the un-normalized hypergraph Laplacian Eigenmaps algorithm and the weighted
un-normalized hypergraph Laplacian Eigenmaps algorithm combined with the kernel ridge
regression method applied to the zoo dataset available from UCI repository and the tiny
version of the 20 newsgroups dataset. Section 2.6 will conclude this chapter and the future
direction of researches will be discussed.

2.2 Preliminary notations and definitions

Given a hypergraph G = (V,E), where V is the set of vertices and E is the set of hyper-edges.
Each hyper-edge e ∈ E is the subset of V. Please note that the cardinality of e is greater
than or equal two. In the other words, |e|≥ 2, for every e ∈ E. Let w(e) be the weight of
the hyper-edge e. Then W will be the R|E|∗|E| diagonal matrix containing the weights of all
hyper-edges in its diagonal entries.

The incidence matrix H of G is a R|V |∗|E| matrix that can be defined as follows

h(v,e) =

1 i f vertex v belongs to hyperedge e

0 otherwise
(2.1)

From the above definition, we can define the degree of vertex v and the degree of
hyper-edge e as follows

d (v) = ∑
e∈E

w(e)∗h(v,e) (2.2)

d (e) = ∑
v∈V

h(v,e) (2.3)
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Let Dv and De be two diagonal matrices containing the degrees of vertices and the degrees
of hyper-edges in their diagonal entries respectively. Please note that Dv is the R|V |∗|V | matrix
and De is the R|E|∗|E| matrix.

Please note that, we assume that the weight of each hyper-edge is 1.
The un-normalized hypergraph Laplacian [10,11,12] is defined as follows

L = Dv−HWD−1
e HT (2.4)

The symmetric normalized hypergraph Laplacian [11,12] is defined as follows

Lsym = I−D
− 1

2
v HWD−1

e HT D
− 1

2
v (2.5)

The random walk hypergraph Laplacian [10,11,12] is defined as follows

Lrw = I−D−1
v HWD−1

e HT (2.6)

2.3 Un-normalized hypergraph Laplacian Eigenmaps algo-
rithm

Suppose that we are given the hypergraph. In the other words, we know the topology of the
hypergraph. What we want to do is to transform each node of the hypergraph to a numerical
vector utilizing the topology of the hypergraph. The un-normalized hypergraph Laplacian
Eigenmaps algorithm will exactly map each node of the hypergraph to numerical vector.

Un-normalized hypergraph Laplacian Eigenmaps algorithm

In this part, we will give the brief overview of the un-normalized hypergraph Laplacian
Eigenmaps algorithm. The outline of this algorithm is as follows

1. Construct Dv and De from the incidence matrix H of G

2. Compute the un-normalized hypergraph Laplacian L = Dv−HWD−1
e HT

3. Compute all eigenvalues and eigenvectors of L and sort all eigenvalues and their corre-
sponding eigenvector in ascending order. Pick the first k eigenvectors v2,v3, . . . ,vk+1

of L in the sorted list. k can be determined in the following two ways:

(a) k is the number such that λk+2
λk+1

is largest for all 2≤ k ≤ |V |

(b) k is the number such that λk+2−λk+1 is largest for all 2≤ k ≤ |V |
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4. Let U ∈ R|V |∗k be the matrix containing the vectors v2,v3, . . . ,vk+1 as columns and U
is the final result

2.4 Weighted un-normalized hypergraph Laplacian Eigen-
maps algorithm

In the above un-normalized hypergraph Laplacian Eigenmaps algorithm, we assume that the
weights of all hyper-edges are equal to 1. This is not true at all in practical applications. In
the other words, some hyper-edges may be more important than other hyper-edges and thus
will have the weights that are larger than the weights of other hyper-edges.

Hence in order to assign weights to hyper-edges of the hypergraph, to transform the nodes
of the hypergraph to numerical vectors, and to improve the accuracy of the classification
algorithms of hypergraphs, we would like to solve the following minimization problems

argmin f ,w
1
2 ∑

e∈E
∑

{u,v}⊆E

w(e)
d (e)

( f (u)− f (v))2 +α|| f − y||2 +β ||w||2 such that 1T
|E|w = 1

(2.7)
Please note that w is the vector containing the weights of all the hyper-edges of the

hypergraph, f ∈ R|V | is the final ranking vector (i.e., the output vector) that is used for the
classification of the nodes of the hypergraph with some threshold value.

Moreover, we know that

1
2 ∑

e∈E
∑

{u,v}⊆E

w(e)
d (e)

( f (u)− f (v))2 = f T L f (2.8)

The proof of (2.8) can be found in [10].
Thus, we need to solve the following optimization problem

argmin f ,w f T L f +α|| f − y||2 +β ||w||2 such that 1T
|E|w = 1 (2.9)

With a fixed w, we can optimize f like the following

argmin f f T L f +α|| f − y||2 = argmin f f T L f +α ( f − y)T ( f − y))

In the other words, we need to solve
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∂ ( f T L f +α ( f − y)T ( f − y))
∂ f

= 0

This will lead to

L f +α ( f − y) = 0

(L+αI) f = αy

Hence the solution f ∗ of the above equations is

f ∗ = α(L+αI)−1y

With a fixed f, we can optimize w like the following

argminw f T L f +β ||w||2 such that 1T
|E|w = 1

The Lagrangian function of the above optimization problem is

δ (w,γ) = f T L f +βwT w+ γ(1T
|E|w−1)

= f T (Dv−HWD−1
e HT) f +βwT w+ γ(1T

|E|w−1)

Next, we need to solve

∂ ( f T (Dv−HWD−1
e HT) f )

∂wi
+2βwi + γ = 0

This will lead to
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wi =
1

2β
[−

∂
(

f T (Dv−HWD−1
e HT) f

)
∂wi

− γ]

Moreover, we know that

1T
|E|w = 1

In the other words, we have

∑
i

1
2β

[
−

∂
(

f T (Dv−HWD−1
e HT) f

)
∂wi

− γ

]
= 1

1
2β

∑
i

[
−

∂
(

f T (Dv−HWD−1
e HT) f

)
∂wi

− γ

]
= 1

2β = ∑
i
(−

∂
(

f T (Dv−HWD−1
e HT) f

)
∂wi

)−|E| γ

γ =
1
|E|

[∑
i
(−

∂
(

f T (Dv−HWD−1
e HT) f

)
∂wi

)−2β ]

In general, we have

γ =
1
|E|

[∑
i
(−

∂
(

f T (Dv−HWD−1
e HT) f

)
∂wi

)−2β ]

wi =
1

2β
[−

∂
(

f T (Dv−HWD−1
e HT) f

)
∂wi

− γ]

Now, we need to compute
∂( f T(Dv−HWD−1

e HT) f)
∂wi

.
We have
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∂
(

f T (Dv−HWD−1
e HT) f

)
∂wi

= f T ∂ (Dv)

∂wi
f − f T H

∂W
∂wi

D−1
e HT f

= f T (diag(H (:, i))−D−1
e (i, i)H (:, i)H (:, i)T ) f

Thus, finally, we have that

γ =
1
|E|

[∑
i
(− f T (diag(H (:, i))−D−1

e (i, i)H (:, i)H (:, i)T ) f )−2β ] (2.10)

wi =
1

2β
[− f T (diag(H (:, i))−D−1

e (i, i)H (:, i)H (:, i)T ) f − γ] (2.11)

Weighted un-normalized hypergraph Laplacian Eigenmap algorithm

In this part, we will give the brief overview of the weighted un-normalized hypergraph
Laplacian Eigenmaps algorithm. The outline of this algorithm is as follows

1. Construct Dv and De from the incidence matrix H and matrix W of G (initially, W is
the identity matrix)

2. Compute the un-normalized hypergraph Laplacian L = Dv−HWD−1
e HT

3. Compute f = α(L+αI)−1y

4. Compute the weight matrix W

γ =
1
|E|

[∑
i
(− f T (diag(H (:, i))−D−1

e (i, i)H (:, i)H (:, i)T ) f )−2β ]

wi =
1

2β
[− f T (diag(H (:, i))−D−1

e (i, i)H (:, i)H (:, i)T ) f − γ]

5. Update the matrix Dv and W

6. Repeat step 2-step 5 until convergence and get the final ranking vector f .

7. Compute all eigenvalues and eigenvectors of the “updated” L and sort all eigenvalues
and their corresponding eigenvector in ascending order. Pick the first k eigenvectors
v2,v3, . . . ,vk+1 of L in the sorted list. k can be determined in the following two ways:
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(a) k is the number such that λk+2
λk+1

is largest for all 2≤ k ≤ |V |

(b) k is the number such that λk+2−λk+1 is largest for all 2≤ k ≤ |V |

8. Let U ∈ R|V |∗k be the matrix containing the vectors v2,v3, . . . ,vk+1 as columns and U
is the final result

Clearly, from the above algorithm, we recognize that the weighted un-normalized
hyper-graph Laplacian Eigenmaps algorithm contains the weighted hyper-graph based semi-
supervised learning method starting from step 1 to step 6.

2.5 Experiments and Results

In this chapter, we used the zoo data set and the tiny version of 20 newsgroups dataset which
can be obtained from UCI repository and from http://www.cs.nyu.edu/~roweis/data.html
respectively.

The zoo data set contains 101 animals with 17 attributes. The attributes include hair,
feathers, eggs, milk, etc. The animals have been classified into 7 different classes. In this
dataset, each attribute is the hyper-edge.

The tiny version of the 20 newsgroups dataset contains the binary occurrence data for
100 words across 16242 postings. However, we just choose small subset of this tiny dataset
containing 4000 postings in order to test our algorithms. In this dataset, each word is the
hyper-edge.

In this section, we experiment with the above proposed un-normalized hypergraph Lapla-
cian Eigenmaps and the weighted un-normalized hypergraph Laplacian Eigenmaps combined
with the kernel ridge regression method [13], the hyper-graph based semi-supervised learn-
ing method [10–12], and the weighted hyper-graph based semi-supervised learning method
applied directly to the zoo dataset and the tiny version of 20 newsgroups dataset in terms of
accuracy performance measure. The accuracy performance measure Q is given as follows

Q =
True Positive+True Negative

True Positive+True Negative+False Positive+False Negative

All experiments were implemented in Matlab 6.5 on virtual machine. The accuracy
performance measures of the four above proposed methods are given in the following table
2.1 and table 2.2.

The following figure 2.1 shows the accuracies of the four proposed methods which
are the un-normalized hypergraph Laplacian Eigenmaps and the weighted un-normalized

http://www.cs.nyu.edu/~roweis/data.html
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Table 2.1 Accuracies of the four proposed methods which are the un-normalized hypergraph
Laplacian Eigenmaps and the weighted un-normalized hypergraph Laplacian Eigenmaps
combined with the kernel ridge regression method, the hyper-graph based semi-supervised
learning method, and the weighted hyper-graph based semi-supervised learning method for
the zoo dataset

Accuracy (%)

Un-normalized hy-
pergraph Laplacian
Eigenmaps + Ker-
nel ridge regres-
sion method

Weighted un-
normalized
hypergraph Lapla-
cian Eigenmaps
+ Kernel ridge
regression method

Hyper-graph based
semi-supervised
learning method

Weighted hyper-
graph based
semi-supervised
learning method

95.77 95.77 90.48 98.64

Table 2.2 Accuracies of the four proposed methods which are the un-normalized hypergraph
Laplacian Eigenmaps and the weighted un-normalized hypergraph Laplacian Eigenmaps
combined with the kernel ridge regression method, the hyper-graph based semi-supervised
learning method, and the weighted hyper-graph based semi-supervised learning method for
the 20 newsgroups dataset

Accuracy (%)

Un-normalized hy-
pergraph Laplacian
Eigenmaps + Ker-
nel ridge regres-
sion method

Weighted un-
normalized
hypergraph Lapla-
cian Eigenmaps
+ Kernel ridge
regression method

Hyper-graph based
semi-supervised
learning method

Weighted hyper-
graph based
semi-supervised
learning method

86.92 85.50 86.05 87.18
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hypergraph Laplacian Eigenmaps combined with the kernel ridge regression method, the
hyper-graph based semi-supervised learning method, and the weighted hyper-graph based
semi-supervised learning method for the zoo dataset:

Fig. 2.1 The accuracies of the un-normalized hypergraph Laplacian Eigenmaps and the
weighted un-normalized hypergraph Laplacian Eigenmaps combined with the kernel ridge
regression method, the hyper-graph based semi-supervised learning method, and the weighted
hyper-graph based semi-supervised learning method for the zoo dataset

The following figure 2.2 shows the accuracies of the four proposed methods which
are the un-normalized hypergraph Laplacian Eigenmaps and the weighted un-normalized
hypergraph Laplacian Eigenmaps combined with the kernel ridge regression method, the
hyper-graph based semi-supervised learning method, and the weighted hyper-graph based
semi-supervised learning method for the 20 newsgroups dataset:

From the above figures, we easily recognized that the weighted hyper-graph semi-
supervised learning method achieves the highest accuracy performance measures since
the solution vector of the weighted hyper-graph semi-supervised learning method is directly
obtained from the optimization problem (2.7) which is used to maximize the accuracy of the
hypergraph semi-supervised learning method. In the other hands, the weighted un-normalized
hypergraph Laplacian Eigenmaps do not always perform better the un-normalized hypergraph



26 Weighted Un-Normalized Hypergraph Laplacian Eigenmaps

Fig. 2.2 The accuracies of the un-normalized hypergraph Laplacian Eigenmaps and the
weighted un-normalized hypergraph Laplacian Eigenmaps combined with the kernel ridge
regression method, the hyper-graph based semi-supervised learning method, and the weighted
hyper-graph based semi-supervised learning method for the 20 newsgroups dataset

Laplacian Eigenmaps algorithm since these two algorithms are combined with the kernel
ridge regression algorithm, which is not the best supervised classification algorithm (espe-
cially for the feature vectors which are results of the weighted un-normalized hypergraph
Laplacian Eigenmaps and un-normalized hypergraph Laplacian Eigenmaps) for the scope of
this chapter.

2.6 Conclusions

In this chapter, we have proposed the detailed algorithms of the un-normalized hypergraph
Laplacian Eigenmaps, the weighted un-normalized hypergraph Laplacian Eigenmaps ap-
plying to the zoo dataset and the tiny version of 20 newsgroups dataset. Interestingly,
experiments show that the weighted un-normalized hypergraph Laplacian Eigenmaps algo-
rithm do not always perform better the un-normalized hypergraph Laplacian Eigenmaps
algorithm. However, the weighted hypergraph semi-supervised learning method do always
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perform better than the un-normalized hypergraph Laplacian Eigenmaps combined with the
kernel ridge regression method, the weighted un-normalized hypergraph Laplacian Eigen-
maps combined with the kernel ridge regression method, and the hypergraph semi-supervised
learning method.

In the future, the un-normalized hypergraph Laplacian Eigenmaps, the weighted un-
normalized hypergraph Laplacian Eigenmaps, and the weighted hypergraph semi-supervised
learning method will be applied to larger hypergraphs such as web hypergraph (to detect
spam or not) and will be implemented in Python and MapReduce.

To the best of my knowledge, the un-normalized hypergraph p-Laplacian Eigenmap has
not yet been developed. This method is worth investigated because of its difficult nature and
its close connection to partial differential equation on hypergraph field.
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Chapter 3

Un-Normalized Hypergraph P-Laplacian
Based Semi-Supervised Learning
Methods

3.1 Introduction

To classify the samples is the important problem in machine learning research area. Iden-
tifying the class of samples by human effort is very expensive and hard. Hence a lot of
computational methods have been proposed to infer the classes of the samples.

To predict the class of the sample, machine learning methods such as the k-nearest
neighbors [1, 2], Artificial Neural Networks [3, 4], Support Vector Machine [5, 6], the
un-normalized graph Laplacian based semi-supervised learning method [7–13], or the
symmetric normalized and random walk graph Laplacian based semi-supervised learning
methods [14, 15] can be employed infer the classes of un-labeled samples. While the
k-nearest neighbors, the Artificial Neural Networks, and the Support Vector Machine are
supervised learning methods, the un-normalized, random walk, and symmetric normalized
graph Laplacian based semi-supervised learning methods are graph based semi-supervised
learning methods.

The un-normalized, symmetric normalized, and random walk graph Laplacian based
semi-supervised learning methods are developed based on the assumption that the labels of
two adjacent samples in the network are likely to be the same [7, 8, 14, 15, 9]. Hence this
assumption can be interpreted as pair of samples showing a similar pattern and thus sharing
edge in the network tends to have similar classes/labels.
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In detail, in 2002, Xiaojin Zhu et al. developed the random walk graph Laplacian based
semi-supervised learning method and applied this method to various classical applications
such as digit recognition [14]. In 2004, Dengyong Zhou et al. developed the symmetric
normalized graph Laplacian based semi-supervised learning method and applied this method
to various classical applications such as digit recognition and text classification [15]. In
2005 and 2009, Koji Tsuda et al. developed the un-normalized graph Laplacian based
semi-supervised learning method and applied this method successfully to the practical
bio-informatics problem which is the protein function prediction problem.

In [16–19], the tabular dataset is employed for classification problem. However, assuming
the pairwise relationship between samples/feature vectors is not complete; the information
a group of samples that shows very similar pattern and tends to have similar classes/labels
[16–19] is missed. The natural way overcoming the information loss of the above assumption
is to represent the tabular dataset as the hypergraph [16–19]. A hypergraph is a graph
in which an edge (i.e., a hyper-edge) can connect more than two vertices. In [16, 17],
Dengyong Zhou et al. developed the symmetric normalized hypergraph Laplacian based semi-
supervised learning method and successfully applied this method to various applications such
as digit recognition and text classification. In [18, 19], the un-normalized and random walk
hypergraph Laplacian based semi-supervised learning methods, which are the two variants of
the method developed by Dengyong Zhou, have been developed and successfully applied to
protein function prediction and speech recognition problems by Loc Tran in 2014. In general,
these three hypergraph Laplacian based semi-supervised learning methods successfully
outperform the un-normalized, symmetric normalized, and random walk graph Laplacian
based semi-supervised learning methods in classification problem and are completely studied.

To the best of our knowledge, the un-normalized hypergraph p-Laplacian based semi-
supervised learning methods have not yet been developed and obviously have not been
applied to any practical applications. This method is worth investigated because its nature is
difficult and because of its close connection to partial differential equation on hypergraph field.
Specifically, in this chapter, the un-normalized hypergraph p-Laplacian based semi-supervised
learning methods will be developed based on the un-normalized hypergraph p-Laplacian
operator definition such as the curvature operator of hypergraph (i.e., the un-normalized
hypergraph 1-Laplacian operator). Then these un-normalized hypergraph p-Laplacian based
semi-supervised learning methods will be applied to the zoo dataset and the tiny version of
20 newsgroups dataset. Please note that the un-normalized hypergraph p-Laplacian based
semi-supervised learning method is the generalization of the un-normalized hypergraph
Laplacian based semi-supervised learning method.
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We will organize the chapter as follows: Section 3.2 will introduce the preliminary
notations and definitions used in this chapter. Section 3.3 will introduce the definitions
of the gradient and divergence operators of hypergraph. Section 3.4 will introduce the
definition of Laplace operator of hypergraph and its properties. Section 3.5 will introduce
the definition of the curvature operator of hypergraph and its properties. Section 3.6 will
introduce the definition of the p-Laplace operator of hypergraph and its properties. Section
3.7 will show how to derive the algorithm of the un-normalized hypergraph p-Laplacian
based semi-supervised learning method from regularization framework. In section 3.8, we
will compare the accuracy performance measures of the un-normalized hypergraph Laplacian
based semi-supervised learning algorithm (i.e., the current state of art method) and the
un-normalized hypergraph p-Laplacian based semi-supervised learning algorithms. Section
3.9 will conclude this chapter and the future direction of researches utilizing discrete operator
of hypergraph will be discussed.

3.2 Preliminary notations and definitions

Given a hypergraph G = (V,E), where V is the set of vertices and E is the set of hyper-edges.
Each hyper-edge e ∈ E is the subset of V . Please note that the cardinality of e is greater
than or equal two. In the other words, |e|≥ 2, for every e ∈ E. Let w(e) be the weight of
the hyper-edge e. Then W will be the R|E|∗|E| diagonal matrix containing the weights of all
hyper-edges in its diagonal entries.

The incidence matrix H of G is a R|V |∗|E| matrix that can be defined as follows

h(v,e) =

1, if vertex v belongs to hyperedge e

0, otherwise
(3.1)

From the above definition, we can define the degree of vertex v and the degree of
hyper-edge e as follows

d (v) = ∑
e∈E

w(e)∗h(v,e) (3.2)

d (e) = ∑
v∈V

h(v,e) (3.3)

Let Dv and De be two diagonal matrices containing the degrees of vertices and the degrees
of hyper-edges in their diagonal entries respectively. Please note that Dv is the R|V |∗|V | matrix
and De is the R|E|∗|E| matrix.
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Please note that, we assume that the weight of each hyper-edge is 1.
The inner product on the function space RV is

< f ,g >V = ∑
u∈V

fugu (3.4)

Also define an inner product on the space of functions RE on the edges

< F,G >E = ∑
e

∑
(u,v)⊂e

FuvGuv (3.5)

Here let H (V ) = (RV ,< ., . >V ) and H (E) = (RE ,< ., . >E) be the Hilbert space real-
valued functions defined on the vertices of the hypergraph G and the Hilbert space of
real-valued functions defined in the edges of G respectively.

3.3 Gradient and Divergence Operators

We define the gradient operator d : H (V )→ H(E) to be (for each hyper-edge e)

(d f )uv =

√
w(e)
d (e)

h(u,e)h(v,e)( fv− fu) (3.6)

where f : V → R be a function of H(V ).
We define the divergence operator div : H (E)→ H(V ) to be

< d f ,F >H(E) =< f ,−divF >H(V ) (3.7)

where f ∈ H (V ) ,F ∈ H(E)
Next, we need to prove that

(divF)v = ∑
e∈E

∑
u

√
w(e)
d (e)

h(u,e)h(v,e)(Fvu−Fuv)

Proof:

< d f ,F >= ∑
e

∑
(u,v)⊂e

d f uvFuv
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= ∑
e

∑
(u,v)⊂e

√
w(e)
d (e)

h(u,e)h(v,e) fvFuv−∑
e

∑
(u,v)⊂e

√
w(e)
d (e)

h(u,e)h(v,e) fuFuv

= ∑
k∈V

∑
e

∑
u

√
w(e)
d (e)

h(u,e)h(k,e) fkFuk−∑
k∈V

∑
e

∑
v

√
w(e)
d (e)

h(k,e)h(v,e) fkFkv

= ∑
k∈V

∑
e

∑
u

√
w(e)
d (e)

h(u,e)h(k,e) fkFuk−∑
k∈V

∑
e

∑
u

√
w(e)
d (e)

h(k,e)h(u,e) fkFku

= ∑
k∈V

fk ∑
e∈E

∑
u

√
w(e)
d (e)

h(u,e)h(k,e)(Fuk−Fku)

Thus, we have

(divF)v = ∑
e∈E

∑
u

√
w(e)
d (e)

h(u,e)h(v,e)(Fvu−Fuv) (3.8)

3.4 Laplace operator

We define the Laplace operator ∆ : H (V )→ H(V ) to be

∆ f =−1
2

div(d f ) (3.9)

Next, we compute

(∆ f )v =
1
2 ∑

e∈E
∑
u

√
w(e)
d (e)

h(u,e)h(v,e)(d f uv−d f vu)

=
1
2 ∑

e∈E
∑
u

√
w(e)
d (e)

h(u,e)h(v,e)(

√
w(e)
d (e)

h(u,e)h(v,e)( fv− fu)−

√
w(e)
d (e)

h(u,e)h(v,e)( fu− fv))



36 Un-Normalized Hypergraph P-Laplacian Based Semi-Supervised Learning Methods

= ∑
e∈E

∑
u

w(e)
d (e)

h(u,e)h(v,e)( fv− fu)

= ∑
e∈E

∑
u

w(e)
d (e)

h(u,e)h(v,e) fv−∑
e∈E

∑
u

w(e)
d (e)

h(u,e)h(v,e) fu

= fv ∑
e∈E

w(e)
d (e)

h(v,e)∑
u

h(u,e)−∑
e∈E

∑
u

w(e)
d (e)

h(u,e)h(v,e) fu

= fv ∑
e∈E

w(e)
d (e)

h(v,e)d(e)−∑
e∈E

∑
u

w(e)
d (e)

h(u,e)h(v,e) fu

= fv ∑
e∈E

w(e)h(v,e)−∑
e∈E

∑
u

w(e)
d (e)

h(u,e)h(v,e) fu

= fvd(v)−∑
e∈E

∑
u

w(e)
d (e)

h(u,e)h(v,e) fu

Thus, we have

(∆ f )v = fvd(v)−∑
e∈E

∑
u

w(e)
d (e)

h(u,e)h(v,e) fu (3.10)

The hypergraph Laplacian is a linear operator. Furthermore, the hypergraph Laplacian is
self-adjoint and positive semi-definite.

Let S2 ( f ) = 1
2 ∑i||di f ||2, we have the following theorem 1

Theorem 1:

D f S2 = ∆ f (3.11)

3.5 Curvature operator

We define the curvature operator κ : H (V )→ H(V ) to be
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κ f =−1
2

div(
d f
||d f ||

) (3.12)

Next, we compute

(κ f )v =
1
2 ∑

e∈E
∑
u

√
w(e)
d (e)

h(u,e)h(v,e)((
d f
||d f ||

)
uv
− (

d f
||d f ||

)
vu
)

=
1
2 ∑

e∈E
∑

√
w(e)
d (e)

h(u,e)h(v,e)(
1

||du f ||

√
w(e)
d (e)

h(u,e)h(v,e)( fv− fu)

− 1
||dv f ||

√
w(e)
d (e)

h(u,e)h(v,e)( fu− fv))

=
1
2 ∑

e∈E
∑
u

w(e)
d (e)

h(u,e)h(v,e)(
1

||du f ||
+

1
||dv f ||

)( fv− fu)

Thus, we have

(κ f )v =
1
2 ∑

e∈E
∑
u

w(e)
d (e)

h(u,e)h(v,e)(
1

||du f ||
+

1
||dv f ||

)( fv− fu) (3.13)

From the above formula, we have

du f = ((d f )uv : (u,v)⊂ e,∀e)T (3.14)

The local variation of f at u is defined to be

||du f ||=
√

∑
e

∑
(u,v)⊂e

(d f )2
uv =

√√√√∑
e

∑
(u,v)⊂e

w(e)
d (e)

h(u,e)h(v,e)( fv− fu)
2 (3.15)

To avoid the zero denominators in (3.13), the local variation of f at u is defined to be

||du f ||=
√

∑
e

∑
(u,v)⊂e

(d f )2
uv + ε (3.16)

where ε = 10−10.
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The hypergraph curvature is a non-linear operator.
Let S1 ( f ) = ∑u||du f ||, we have the following theorem 2
Theorem 2:

D f S1 = κ f (3.17)

3.6 p-Laplace operator

We define the p-Laplace operator ∆p : H (V )→ H(V ) to be

∆p f =−1
2

div(||d f ||p−2d f ) (3.18)

Clearly, ∆1 = κ and ∆2 = ∆. Next, we compute

(∆p f )v ==
1
2 ∑

e∈E
∑
u

√
w(e)
d (e)

h(u,e)h(v,e)(||d f ||p−2d fuv−||d f ||p−2d fvu)

=
1
2 ∑

e∈E
∑
u

√
w(e)
d (e)

h(u,e)h(v,e)(||du f ||p−2

√
w(e)
d (e)

h(u,e)h(v,e)( fv− fu)

−||dv f ||p−2

√
w(e)
d (e)

h(u,e)h(v,e)( fu− fv))

1
2 ∑

e∈E
∑
u

w(e)
d (e)

h(u,e)h(v,e)(||du f ||p−2+||dv f ||p−2)( fv− fu)

Thus, we have

(∆p f )v =
1
2 ∑

e∈E
∑
u

w(e)
d (e)

h(u,e)h(v,e)(||du f ||p−2+||dv f ||p−2)( fv− fu) (3.19)

Let Sp ( f ) = 1
p ∑i||di f ||p, we have the following theorem 3

Theorem 3:
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D f Sp = ∆p f (3.20)

3.7 Discrete regularization on hypergraphs and classifica-
tion problems

Given a hypergraph G = (V,E), where V is the set of vertices and E is the set of hyper-edges.
Each hyper-edge e ∈ E is the subset of V . Let y denote the initial function in H(V ). yi can be
defined as follows

yi =


1, if sample i belongs to the class

−1, if sample i does not belong to the class

0, otherwise

Our goal is to look for an estimated function f in H(V ) such that f is not only smooth on
G but also close enough to an initial function y. Then each sample i is classified as sign( fi).
This concept can be formulated as the following optimization problem

argmin f∈H(V )Sp ( f )+
µ

2
|| f − y||2 (3.21)

The first term in (3.21) is the smoothness term. The second term is the fitting term. A
positive parameter µ captures the trade-off between these two competing terms.

3.7.1 2-smoothness

When p = 2, the optimization problem (3.21) is

argmin f∈H(V )
1
2 ∑

i
||di f ||2+µ

2
|| f − y||2 (3.22)

By theorem 1, we have
Theorem 4: The solution of (3.22) satisfies

∆ f +µ( f − y) = 0 (3.23)

Since ∆ is a linear operator, the closed form solution of (3.23) is
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f = µ(∆+µI)−1y (3.24)

Where I is the identity operator and ∆ = Dv−HWD−1
e HT . (3.24) is the algorithm

proposed by [18, 19].

3.7.2 1-smoothness

When p = 1, the optimization problem (3.21) is

argmin f∈H(V )∑
i
||di f ||+µ

2
|| f − y||2 (3.25)

By theorem 2, we have
Theorem 5: The solution of (3.25) satisfies

κ f +µ ( f − y) = 0 (3.26)

The curvature κ is a non-linear operator; hence we do not have the closed form solution
of equation (3.25). Thus, we have to construct iterative algorithm to obtain the solution.
From (3.26), we have

1
2 ∑

e∈E
∑
u

w(e)
d (e)

h(u,e)h(v,e)(
1

||du f ||
+

1
||dv f ||

)( fv− fu)+µ ( fv− yv) = 0 (3.27)

Define the function m : E→ R by

muv =
1
2 ∑

e∈E

w(e)
d (e)

h(u,e)h(v,e)(
1

||du f ||
+

1
||dv f ||

) (3.28)

Then equation (3.27) which is

∑
u

muv( fv− fu)+µ ( fv− yv) = 0

can be transformed into

(∑
u

muv +µ) fv = ∑
u

muv fu +µyv (3.29)

Define the function p : E→ R by
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puv =

 muv
∑u muv+µ

, if u ̸= v
µ

∑u muv+µ
, if u = v

(3.30)

Then

fv = ∑
u

puv fu+pvvyv (3.31)

Thus, we can consider the iteration

f (t+1)
v = ∑

u
p(t)uv f (t)u + p(t)vv yv,∀v ∈V

to obtain the solution of (3.25).

3.7.3 p-smoothness

For any number p, the optimization problem (3.21) is

argmin f∈H(V )
1
p ∑

i
||di f ||p+µ

2
|| f − y||2 (3.32)

By theorem 3, we have
Theorem 6: The solution of (3.32) satisfies

∆p f +µ ( f − y) = 0 (3.33)

The p−Laplace operator is a non-linear operator; hence we do not have the closed form
solution of equation (3.33). Thus, we have to construct iterative algorithm to obtain the
solution. From (3.33), we have

1
2 ∑

e∈E
∑
u

w(e)
d (e)

h(u,e)h(v,e)(||du f ||p−2+||dv f ||p−2)( fv− fu)+µ ( fv− yv) = 0

Define the function m : E→ R by

muv =
1
2 ∑

e∈E
∑
u

w(e)
d (e)

h(u,e)h(v,e)(||du f ||p−2+||dv f ||p−2)
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Then equation (3.32) which is

∑
u

muv( fv− fu)+µ ( fv− yv) = 0

can be transformed into

(∑
u

muv +µ) fv = ∑
u

muv fu +µyv (3.34)

Define the function p : E→ R by

puv =

 muv
∑u muv+µ

, if u ̸= v
µ

∑u muv+µ
, if u = v

(3.35)

Then

fv = ∑
u

puv fu+pvvyv (3.36)

Thus, we can consider the iteration

f (t+1)
v = ∑

u
p(t)uv f (t)u + p(t)vv yv,∀v ∈V (3.37)

to obtain the solution of (3.32).

3.8 Experiments and results

Datasets

In this chapter, we used the zoo dataset and the tiny version of 20 newsgroups dataset
which can be obtained from UCI repository and from http://www.cs.nyu.edu/~roweis/data.
html respectively.

The zoo data set contains 101 animals with 17 attributes. The attributes include hair,
feathers, eggs, milk, etc. The animals have been classified into 7 different classes. In this
dataset, each attribute is the hyper-edge.

The tiny version of the 20 newsgroups dataset contains the binary occurrence data for
100 words across 16242 postings. However, we just choose small subset of this tiny dataset
containing 200 postings in order to test our algorithms. In this dataset, each word is the
hyper-edge.

http://www.cs.nyu.edu/~roweis/data.html
http://www.cs.nyu.edu/~roweis/data.html
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Thus, these two datasets are themselves the hypergraphs and we don’t need to preprocess
these two datasets. These two input datasets are very similar to the following figure 3.1 of
[16, 17].

Fig. 3.1 Hypergraph example with 8 vertices and 3 hyper-edges [12,13]

Experiments and Results

In this section, we experiment with the above proposed un-normalized hypergraph p-
Laplacian based semi-supervised learning methods with p= 3,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4.0
and the current state of the art method (i.e. the un-normalized hypergraph Laplacian based
semi-supervised learning method p = 2) applied directly to the zoo dataset and the tiny
version of 20 newsgroups dataset in terms of accuracy performance measure. The accuracy
performance measure Q is given as follows

Q =
True Positive+True Negative

True Positive+True Negative+False Positive+False Negative

All experiments were implemented in MATLAB 6.5 on virtual machine. The accuracy
performance measures of the above proposed methods are given in the following table 3.1
and table 3.2.

The following figure 3.2 shows the accuracies of the un-normalized hypergraph p-
Laplacian based semi-supervised learning methods and the current state of the art hypergraph
Laplacian based semi-supervised learning method p = 2 for the zoo dataset:

The following figure 3.3 shows the accuracies of the un-normalized hypergraph p-
Laplacian based semi-supervised learning methods and the current state of the art hypergraph
Laplacian based semi-supervised learning method p = 2 for the tiny version of the 20
newsgroups dataset:
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Table 3.1 Accuracies of the un-normalized hypergraph p-Laplacian based semi-supervised
learning methods and the current state of the art hypergraph Laplacian based semi-supervised
learning method p = 2 for the zoo dataset

p values Accuracy performance measures (%)
2 85.71
3 88.80

3.1 90.48
3.2 91.04
3.3 91.60
3.4 92.16
3.5 92.44
3.6 92.44
3.7 92.16
3.8 90.20
3.9 89.64
4.0 88.52

Table 3.2 Accuracies of the un-normalized hypergraph p-Laplacian based semi-supervised
learning methods and the current state of the art hypergraph Laplacian based semi-supervised
learning method p=2 for the tiny version of 20 newsgroups dataset

p values Accuracy performance measures (%)
2 75.50
3 78.25

3.1 80.00
3.2 81.25
3.3 81.75
3.4 82.25
3.5 82.00
3.6 82.50
3.7 83.50
3.8 83.75
3.9 82.75
4.0 82.75
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Fig. 3.2 The accuracies of the un-normalized hypergraph p-Laplacian based semi-supervised
learning methods and the current state of the art hypergraph Laplacian based semi-supervised
learning method p=2 for the zoo dataset

From the above tables, we easily recognized that the un-normalized hypergraph p-
Laplacian based semi-supervised learning methods outperform the current state of art method.
The results from the above tables show that the un-normalized hypergraph p-Laplacian based
semi-supervised learning methods are at least as good as the current state of the art method
(p = 2) but often lead to significant better classification accuracy performance measures.

3.9 Conclusions

In this chapter, we have proposed the detailed algorithms of the un-normalized hypergraph
p-Laplacian based semi-supervised learning methods applied to the zoo dataset and the tiny
version of 20 newsgroups dataset. Interestingly, experiments show that the un-normalized
hypergraph p-Laplacian based semi-supervised learning methods are at least as good as the
un-normalized hypergraph Laplacian based semi-supervised learning method (the current
state of the art method p = 2) but often lead to significant better classification accuracy
performance measures.

To the best of our knowledge, the un-normalized hypergraph p-Laplacian Eigenmaps and
the un-normalized hypergraph p-Laplacian clustering methods have not yet been developed.
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Fig. 3.3 The accuracies of the un-normalized hypergraph p-Laplacian based semi-supervised
learning methods and the current state of the art hypergraph Laplacian based semi-supervised
learning method p=2 for the tiny version of the 20 newsgroups dataset

These methods are worth investigated because of their difficult nature and their close con-
nection to partial differential equation on hypergraph field. In the future, we will develop
the un-normalized hypergraph p-Laplacian Eigenmaps and the un-normalized hypergraph
p-Laplacian clustering methods by constructing the hypergraph p-Laplacian matrix.Then
from this hypergraph p-Laplacian matrix, we can also construct another version of the
un-normalized hypergraph p-Laplacian based semi-supervised learning methods.
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Chapter 4

Hypergraph Convolutional Neural
Network Based Clustering Technique

4.1 Introduction

Clustering is the very important problem in machine learning and deep learning research
areas. It’s a technique that separates data points/samples into groups/clusters such that data
points/samples are more similar to other data points/samples in the same groups/clusters
than those in the other groups/clusters. Its applications are huge such as mobility pattern
clustering [1], text clustering [2–5], customer segmentation [6–9], etc.

Let’s discuss deeply about the motivations of one specific clustering problem which is
the text clustering problem of our company. In details, in this clustering problem, we would
like to partition Facebook users into their appropriate groups/clusters (i.e., depending on the
contents that they are talking about). For example, there are groups of Facebook users talking
about games, there are groups of Facebook users talking about music, there are groups of
Facebook users talking about religions, etc.

The applications of this text clustering problem are huge such as:

• Our influencers/streamers can create the “appropriate” contents for their fans/users.

• This text clustering problem will lead to the implementation of the recommenda-
tion/matching systems (for example, fans/influencers, fans/contents, etc.). We can
employ the bi-partite graph to implement these recommendation/matching systems (i.e.
bi-partite graph matching problem).
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• FAKE fans detection or anomaly/abnormal detection: for example, the fans/users
belong to the group game, but they do not comment/feedback appropriately (i.e. they
always talk about music), . . .

• etc.

There are various clustering techniques, available from Python sklearn package [10]
such as k-means [1], hierarchical clustering technique, affinity propagation, etc., that can be
employed to solve these clustering problems. However, please note that these techniques can
ONLY be applied to feature datasets.

However, in this chapter, we will just employ k-means clustering technique as the
“vanilla” or baseline technique because of three main reasons:

• It’s very simple to implement.

• It scales to large datasets.

• It guarantees to converge to final solutions.

Moreover, there are other clustering techniques (i.e. belong to different class of clustering
techniques) that can also be employed to solve the clustering problem but can ONLY be
applied to network datasets such as spectral clustering [1, 11–13], maximum modularity
approach [14–20], etc.

The weakness of these two classes of clustering techniques is obviously that they can
ONLY be applied to one type of dataset. This will lead to the loss of information. Now,
let’s consider the case that we have both types of datasets such as the feature dataset and the
network dataset. Assume that the samples in both datasets are the same, how can we apply
the clustering technique to both datasets?

In this chapter, we will develop the novel clustering method that utilize both the feature
dataset and the network dataset.

In details, initially, we will employ the Graph Auto-Encoders proposed by Thomas
Kipf [21–25] to transform both the network dataset and the feature dataset from the high
dimensional space to low dimensional space. Finally, the k-means clustering technique will
be applied to the transformed dataset. This novel clustering technique will be called the
graph convolutional neural network based clustering technique.

There are some main advantages of this novel clustering technique such as:

• The memory/space required to store the data is lowered. This will lead to the low space
complexity.
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• The low space complexity will lead to less computational and training time of the
classification/clustering techniques (i.e. the low time complexity).

• The noises and the redundant features are removed in the feature dataset and the
network dataset. This will lead to the high performance of the clustering technique.
This claim will be shown in the Experiments and Results section

• Both feature dataset and network dataset are utilized. This will lead to no information
loss. However, there is one weakness associated with the graph convolutional neural
network based clustering technique.

In other words, assuming the pairwise relationships among the objects/entities/samples
in this graph representation is not complete. Let’s consider the case that we would like to
partition/segment a set of articles into different topics [26, 27].

Initially, we employ the graph data structure to represent this dataset. The vertices of the
graph are the articles. Two articles are connected by an edge (i.e., the pairwise relationship)
if there is at least one author in common. Finally, we can apply clustering technique to this
graph to partition/segment the vertices into groups/clusters.

Obviously, we easily see that, in this graph data structure, we ignore the information
whether one specific author is the author of three or more articles (i.e., the co-occurrence
relationship or the high order relationship).

This will lead to the loss of information. In other words, this will lead to the low
performance (i.e., the low accuracy) of the clustering technique.

In order to overcome this difficulty, we try to employ the hypergraph data structure to
represent for the above relational dataset. In details, in this hypergraph data structure, the
articles are the vertices and the authors are the hyper-edges. This hyper-edge can connect
more than two vertices (i.e., articles). Please note that if the feature dataset is only given, we
need to construct the hypergraph from the feature dataset. We will discuss more about how
to construct the hypergraph from the feature vectors in section 4.3.

In details, initially, we will develop the Hypergraph Auto-Encoders to transform both
the hypergraph dataset (i.e., constructed from the feature dataset) and the feature dataset
from the high dimensional space to low dimensional space. Finally, the k-means clustering
technique will be applied to the transformed dataset. This novel clustering technique will be
called the hypergraph convolutional neural network based clustering technique.

Last but not least, please note that these clustering techniques are un-supervised learning
techniques. Hence, in this chapter, we do not need labeled datasets.

We will organize the chapter as follow: Section 4.2 will define the problem and will
present the novel graph convolutional neural network based clustering technique. Section 4.3
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will present the novel hypergraph convolutional neural network based clustering technique.
Section 4.4 will describe the two datasets that will be used in this chapter which are the
Citeseer dataset and the Cora dataset. Then, section 4.5 will compare the performance the
hypergraph convolutional neural network based clustering technique and the performances
of the graph convolutional neural network based clustering technique, the k-means clustering
technique, and the spectral clustering technique testing on these two Citeseer and Cora
datasets. Section 4.6 will conclude this chapter and the future directions of researches will
be discussed.

4.2 Graph convolutional neural network based clustering
technique

4.2.1 Problem formulation

Suppose that we are given a set of samples x1,x2, . . . ,xn where n is the total number of
samples and the pre-defined number of clusters k.

In details, we are given the adjacency matrix A ∈ Rn∗n where

Ai j =

1, if vertex i is connected to vertex j

0, otherwise

Our objective is to output the clusters/groups A1,A2, . . . ,Ak where
Ai = { j|1≤ j ≤ n and j belongs to cluster i}.

4.2.2 Adjacency matrix is not provided

Suppose that we are given the feature matrix X ∈ Rn∗L1 but not the adjacency matrix A∈ Rn∗n.

In this case, we can construct the similarity graph from these feature vectors by using the
k-nearest neighbor graph.

In other words, sample i is connected with sample j by an edge (no direction: un-directed
graph) if sample i is among the k nearest neighbors of sample j or sample j is among the k
nearest neighbor of sample i.

We will discuss more about how to construct the similarity graph from the feature vectors
in section 4. Finally, we obtain the adjacency matrix A representing for the similarity graph.
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Ai j =

1, if sample i is connected to sample j

0, if sample i is not connected to sample j

Please note that this phase is required for spectral clustering technique and graph convo-
lutional neural network based clustering techniques if only the feature matrix is provided.

4.2.3 Graph convolutional neural network based clustering technique

Currently, we have the set of feature vectors x1,x2, . . . ,xn and the adjacency matrix A repre-
senting the relationships among the samples in the dataset.

Please note that xi ∈ R1∗L1 , 1≤ i≤ n and A ∈ Rn∗n.
Let Â = A+ I, where I is the identity matrix.
Let D̂ be the diagonal degree matrix of Â. In other words,D̂ii = ∑ j Âi j.

The final output (i.e. the embedding matrix) Z of the graph convolutional neural network
can be defined as follows

Z = D̂−
1
2 ÂD̂−

1
2 ReLU

(
D̂−

1
2 ÂD̂−

1
2 Xθ1

)
θ2

Please note that X is the input feature matrix and X ∈ Rn∗L1 . θ1 ∈ RL1∗L2and θ2 ∈ RL2∗D

are two parameter matrices that are needed to be learned during the training process.
Please note that D is the dimensions of the embedding matrix Z.
Next, we need to reconstruct the adjacency matrix A from Z. We will obtain the recon-

struction A′ representing the similarity graph by using the following formula

A′ = sigmoid(ZZT )

ReLU operation can also be called Rectified Linear Unit. It is defined as follow

ReLU (x) = max(0,x)

A sigmoid function can be defined as follow
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sigmoid (x) =
1

1+ e−x

For this graph auto-encoder model, we need to evaluate the cross-entropy error over all
samples in the dataset:

L =− 1
n2

n

∑
i=1

n

∑
j=1

Ai j ln
(
sigmoid

(
zizT

j
))

+(1−Ai j) ln
(
1− sigmoid

(
zizT

j
))

Please note that zi is the row i vector of the embedding matrix Z and zi ∈ R1∗D.
The two parameter matrices θ1 ∈ RL1∗L2 and θ2 ∈ RL2∗D are trained by using the gradient

descent method.
Finally, partition the samples (zi)i=1,...,n in R1∗D with the k-means algorithm into k

clusters/groups.

4.2.4 Discussions about graph convolutional neural network based clus-
tering technique

From the above section 4.2.3, unlike other clustering techniques such as k-means, we easily
see that this proposed clustering technique (i.e., the graph convolutional neural network
based clustering technique) utilizes both the feature dataset and the network dataset. This
is the very strong argument of this proposed technique. Since no information are lost, the
performance of this novel clustering technique is expected to be higher than the performances
of the other classic clustering techniques such as k-means. This claim will be shown in the
Experiments and Results section. However, there is one major weakness of this proposed
clustering technique. When new samples arrive, we cannot predict which clusters these
samples belong to (unlike k-means clustering technique). In other words, we have to update
the adjacency matrix, we have to re-train our graph auto-encoder, etc. Thus, this technique
can only be considered as the offline clustering technique although its performance is a lot
higher than the performance of the other online clustering techniques.
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4.3 Hypergraph convolutional neural network based clus-
tering technique

4.3.1 Problem formulation

Suppose that we are given a set of samples x1,x2, . . . ,xn where n is the total number of
samples and the pre-defined number of clusters k.

In details, we are given the incidence matrix H ∈ Rn∗n where

Hi j =

1, if vertex i belongs to hyperedge j

0, otherwise

and the feature matrix X ∈ Rn∗L1 where L1 is the dimensions of the feature vectors.
Our objective is to output the clusters/groups A1,A2, . . . ,Ak where

Ai = { j|1≤ j ≤ n and j belongs to cluster i}.

4.3.2 Incidence matrix of the hypergraph is not provided

Suppose that we are given the feature matrix X ∈ Rn∗L1 but not the incidence matrix H ∈ Rn∗n.

In this case, we can construct the incidence matrix H from these feature vectors by using
the k-nearest neighbor graph.

In other words, sample i belongs to hyperedge j if sample i is among the k nearest
neighbors of sample j or sample j is among the k nearest neighbor of sample i. In this
chapter, k is set to be 5.

Finally, we obtain the incidence matrix H representing for the hypergraph

Hi j =

1, if sample i is connected to sample j

0, if sample i is not connected to sample j

Please note that this phase is required for hypergraph convolutional neural network based
clustering techniques if only the feature matrix is provided.
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4.3.3 Hypergraph convolutional neural network based clustering tech-
nique

Currently, we have the set of feature vectors x1,x2, . . . ,xn and the incidence matrix H of the
hypergraph.

Please note that xi ∈ R1∗L1, 1≤ i≤ n and H ∈ Rn∗n.
Let w(e) be the weight of the hyper-edge e. Then W will be the Rn∗n diagonal matrix

containing the weights of all hyper-edges in its diagonal entries.
From the incidence matrix H and the weight matrix W , we can define the degree of vertex

v and the degree of hyper-edge e as follows

d (v) = ∑
e∈E

w(e)∗h(v,e)

d (e) = ∑
v∈V

h(v,e)

Let Dv and De be two diagonal matrices containing the degrees of vertices and the degrees
of hyper-edges in their diagonal entries respectively. Please note that Dv is the Rn∗n matrix
and De is the Rn∗n matrix.

The final output (i.e., the embedding matrix) Z of the hypergraph convolutional neural
network can be defined as follows

Z = D
− 1

2
v HWD−1

e HT D
− 1

2
v ReLU

(
D
− 1

2
v HWD−1

e HT D
− 1

2
v Xθ1

)
θ2

Please note that X is the input feature matrix and X ∈ Rn∗L1 .
θ1 ∈ RL1∗L2 and θ2 ∈ RL2∗D are two parameter matrices that are needed to be learned

during the training process.
Please note that D is the dimensions of the embedding matrix Z.
Next, we need to reconstruct the incidence matrix H from Z. We will obtain the recon-

struction H′ representing the hypergraph by using the following formula

H ′ = sigmoid(ZZT )
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ReLU operation can also be called Rectified Linear Unit. It is defined as follow

ReLU (x) = max(0,x)

A sigmoid function can be defined as follow

sigmoid (x) =
1

1+ e−x

For this hypergraph auto-encoder model, we need to evaluate the cross-entropy error over
all samples in the dataset:

L =− 1
n2

n

∑
i=1

n

∑
j=1

Hi j ln
(
sigmoid

(
zizT

j
))

+(1−Hi j) ln
(
1− sigmoid

(
zizT

j
))

Please note that zi is the row i vector of the embedding matrix Z and zi ∈ R1∗D.
The two parameter matrices θ1 ∈ RL1∗L2 and θ2 ∈ RL2∗D are trained by using the gradient

descent method.
Finally, partition the samples (zi)i=1,...,n in R1∗D with the k-means algorithm into k

clusters/groups.

4.3.4 Discussions about hypergraph convolutional neural network based
clustering technique

From the above section 4.3.3, unlike the graph convolutional neural network based clustering
techniques, instead of employing the pairwise relationships among objects/entities/samples,
we easily see that this hypergraph convolutional neural network based clustering technique
employs the high order relationship among objects/entities/samples. This will lead to no
loss of information. Hence the performance of this hypergraph convolutional neural network
based clustering technique is expected to be higher than the performance of the graph
convolutional neural network based clustering technique. This claim will be shown in the
Experiments and Results section. However, like the graph convolutional neural network
based clustering technique, this hypergraph convolutional neural network based clustering
technique is the offline clustering technique. In other words, when new samples arrive, we
have to update the incidence matrix of the hypergraph, we have to re-train our hypergraph
auto-encoder, etc.
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4.4 Experiments and Results

4.4.1 Dataset descriptions

In this chapter, we will use two datasets which are the Citeseer dataset and the Cora dataset
to test our novel clustering technique (i.e. the graph convolutional neural network based
clustering technique).

Cora: This dataset consists of 2,708 scientific publications classified into one of seven
classes which are Case_Based, Genetic_Algorithms, Neural_Networks, Probabilistic_Methods,
Reinforce_Learning, Rule_Learning, and Theory. The citation network consists of 5,429
links. In other words, this Cora citation network contains 2,708 nodes (i.e., scientific publica-
tions) and 5,429 edges (i.e., citation links). Each publication in this Cora dataset is described
by a 0/1-valued word vector indicating the absence/presence of the corresponding word from
the dictionary. The dictionary contains 1,433 unique words. In other words, we have the
R2708∗1433 feature matrix.

Citeseer: This dataset consists of 3,312 scientific publications classified into one of six
classes which are Agents, AI, DB, IR, ML, and HCI. The citation network consists of 4,732
links. In other words, this Citeseer citation network contains 3,312 nodes (i.e., scientific
publications) and 4,732 edges (i.e., citation links). Each publication in the Citeseer dataset is
described by a 0/1-valued word vector indicating the absence/presence of the corresponding
word from the dictionary. The dictionary contains 3,703 unique words. In other words, we
have the R3312∗3703 feature matrix.

Please note that in the case that the adjacency matrices are not given, we need to
construct the similarity graph from the feature vectors of the datasets like the following ways:

• The ε-neighborhood graph: Connect all the samples whose pairwise distances are
smaller than ε .

• k-nearest neighbor graph: Sample i is connected with sample j by an edge (no direction:
un-directed graph) if sample i is among the k nearest neighbors of sample j or sample
j is among the k nearest neighbor of sample i.

• The fully connected graph: All samples are connected.

In this chapter, the k-nearest neighbor graph is employed to construct the similarity graph
from the feature vectors of the Cora dataset and the Citeseer dataset. Please note that k is
chosen to be 5.

Last but not least, the way showing how to construct the hypergraph (i.e., the incidence
matrix H) from the feature vectors are discussed in detailed in section 4.3.
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Please note that D, the dimensions of the embedding matrix Z, is set to be 16.

4.4.2 Experimental results

In this section, we will try to compare the performance of the hypergraph convolutional neural
network based clustering technique with the performances of the graph convolutional neural
network based clustering technique, the k-means clustering technique, the spectral clustering
technique for feature datasets, the spectral clustering technique for network datasets. We test
our models (Python code) on Google Colab with NVIDIA Tesla K80 GPU and 12 GB RAM.

There are three performances of clustering techniques that we are going to employ in this
chapter which are:

• Silhouette coefficient.

• Davies-Bouldin score.

• Calinski-Harabasz score.

The Silhouette coefficient is defined for each sample and is composed of two score:

• a: The mean distance between the sample and all other points/samples in the same
groups/clusters.

• b: The mean distance between the sample and all other points/samples in the next
nearest cluster.

Then the Silhouette coefficient s for a single sample can be computed as follow

s =
b−a

max(a,b)

The Silhouette coefficient of the dataset is the mean of the Silhouette coefficient for all
samples.

From the above formula, we easily recognize that the higher the Silhouette coefficient,
the better the clustering results.

The Davies-Bouldin score is defined as the average similarity measure of each cluster
with its most similar cluster, where similarity is the ratio of within-cluster distances to
between-cluster distances. Thus, clusters which are farther apart and less dispersed will result
in a better score.
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Table 4.1 Citeseer dataset: Comparison of graph convolutional neural network based cluster-
ing technique with the k-means clustering technique, the spectral clustering technique for
feature vectors, the spectral clustering technique for adjacency matrix.

Silhouette
coefficient

Davies-Bouldin
score

Calinski-Harabasz
score

The hypergraph
convolutional

neural network
based clustering

technique

0.5034 0.4786 40369.4615

The graph
convolutional

neural network
based clustering

technique

0.1203 2.0923 231.2733

The k-means
clustering
technique

0.0007 7.3090 15.2688

The spectral
clustering

technique for
feature vectors

0.0047 5.9004 4.1290

The spectral
clustering

technique for
adjacency matrix

-0.0081 14.8230 2.1392

The minimum score is zero. From the above definition, we easily see that the lower the
Davies-Bouldin score, the better the clustering results.

The Calinski-Harabasz score is also known as the Variance Ratio Criterion. This score
is defined as the ratio of the sum of between-clusters dispersion and of inter-cluster
dispersion for all clusters. From the definition, we easily see that the higher the Calinski-
Harabasz score, the better the clustering results.

For the Citeseer dataset, the performances of the graph convolutional neural network
based clustering technique, the k-means clustering technique, the spectral clustering technique
for feature vectors, the spectral clustering technique for adjacency matrix are given in the
following table 4.1:

For the Cora dataset, the performances of the graph convolutional neural network based
clustering technique, the k-means clustering technique, the spectral clustering technique
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Table 4.2 Citeseer dataset: Comparison of graph convolutional neural network based cluster-
ing technique with the k-means clustering technique, the spectral clustering technique for
feature vectors, the spectral clustering technique for adjacency matrix.

Silhouette
coefficient

Davies-Bouldin
score

Calinski-Harabasz
score

The hypergraph
convolutional

neural network
based clustering

technique

0.3349 1.0471 1288.7860

The graph
convolutional

neural network
based clustering

technique

0.1963 1.7312 322.3034

The k-means
clustering
technique

0.0149 5.5878 21.5432

The spectral
clustering

technique for
feature vectors

-0.0196 6.6584 20.4136

The spectral
clustering

technique for
adjacency matrix

-0.0465 8.9685 2.0282

for feature vectors, the spectral clustering technique for adjacency matrix are given in the
following table 4.2:

4.4.3 Discussions

From the above table 4.1 and table 4.2, we easily recognize that the graph convolutional
neural network based clustering technique is significantly better than the k-means cluster-
ing technique, the spectral clustering technique for feature vectors, the spectral clustering
technique for adjacency matrix since graph convolutional neural network based clustering
technique utilize both the information from the feature vectors and the adjacency matrix of
the dataset and noises and redundant features in the dataset (i.e., both in the feature vectors
and the adjacency matrix) are removed.
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Moreover, the hypergraph convolutional neural network based clustering technique is
better than the graph convolutional neural network based clustering technique since the hyper-
graph data structure employs the high order relationships among the samples/entities/objects.
This will lead to no loss of information.

However, when new samples arrive, for the (hyper)-graph convolutional neural network
based clustering techniques, we cannot predict which clusters these samples belong to. In
other words, we have to update the adjacency matrix or the incidence matrix, re-train our
(hyper)-graph auto-encoder, re-compute the embedding matrix, and apply k-means clustering
technique to this embedding matrix again to get the final clustering result. Hence the (hyper)-
graph convolutional neural network based clustering technique can only be considered as the
offline clustering technique.

Last but not least, please note that when new samples/data points arrive, we need to
re-train our model. For industrial projects, this novel model can be updated/re-trained twice
per month or once per month.

4.5 Conclusions

In this chapter, our contributions are four folds:

• Develop the novel graph convolutional neural network based clustering technique.

• Develop the novel hypergraph convolutional neural network based clustering technique.

• Apply these novel clustering techniques to two Citeseer and Cora datasets.

• Compare the performance of the hypergraph convolutional neural network based
clustering technique with the performances of the graph convolutional neural network
based clustering technique, the k-means clustering technique, the spectral clustering
technique for feature vectors, the spectral clustering technique for adjacency matrix.

In this chapter, we propose and employ the (hyper)-graph convolutional neural network
based clustering technique to solve the clustering problem. To the best of our knowledge,
this work is not complete. There are various types of (hyper)-graph convolutional neural
networks. In the future, we will employ the (hyper)-graph convolutional neural network
with/without attention [28, 29] to solve this clustering problem.
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Chapter 5

Noise-Robust Classification System With
Hypergraph Neural Network

5.1 Introduction

During the last decade, the deep convolution neural network can be considered the current
state of the art method for various classification tasks such as image recognition [1], speech
recognition [2], to name a few. Recently, to deal with irregular data structures, data scientists
have gained much interests in graph convolution neural network method such as [3]. In this
method, the pairwise relationships between objects (samples) are used. In the other words, in
this graph data structure, the edge of the graph can connect only two vertices. Easily, we see
that assuming the pairwise relationship between objects (samples) is not complete. Moreover,
to the best of our knowledge, based on our literature review work, the graph convolution
neural network has not yet been applied to solve the noisy label learning problem. This is
considered the very “hard” and very important problem. In the other words, it’s very easy to
make error(s) when data annotator labels data.

To overcome the information loss of the “pairwise relationship between objects” assump-
tion of graph data structure, [4, 5] have recently proposed the hypergraph neural network
approach. In this hypergraph data structure, an edge (hyperedge) can connect more than two
vertices. In the other words, the hyperedge is the subset of the set of vertices of the hyper-
graph. Recently, this hypergraph neural network method has just been employed to solve
classification tasks [4, 5] and outperforms the graph neural network and can be considered
the current state of the art method of semi-supervised learning approach. Obviously, this
method has also not been utilized to solve the noisy label learning problem, to the best of our
knowledge.
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Inspired from the idea combining the PageRank algorithm with the graph convolution
neural network in [6], in this chapter, we propose the novel version of hypergraph neural
network method combining the classic hypergraph based semi-supervised learning method
[7, 8] with the hypergraph neural network method [4, 5].

In this chapter, our contributions are three-folds:

- in order to reduce the runtime constructing the graph and the hypergraph from the
image datasets, we apply the dimensional reduction technique PCA to the image
datasets.

- propose the novel version of hypergraph neural network method combining the classic
hypergraph based semi-supervised learning method with the hypergraph neural network
method

- compare the accuracy performance measures of the classic graph based semi-supervised
learning problem, the classic hypergraph based semi-supervised learning problem,
the graph neural network method, the hypergraph neural network method, and our
proposed hypergraph neural network method when we apply these five methods to
solve the noisy label learning problem.

We will organize the chapter as follows: Section 5.2 will discuss the related work. Section
5.3 will introduce the novel version of hypergraph neural network method. Section 5.4 will
describe the datasets and present the experimental results. Section 5.5 will conclude this
chapter and the future direction of researches will be discussed.

5.2 Related work

Learning with label noise gains much interests since label noise may lead to many undesirable
concerns such as the decrease in learning performance. The current studies associated to this
problem can be assembled into three main groups [9]:

- Robust model approach

- Data filtering approach

- Inherently noise-tolerant learning approach
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5.2.1 Robust model approach

This approach empirically studies the robustness property of various classical classification
algorithms such as Naïve Bayes probabilistic classifier, C4.5 decision tree, the SMO support
vector machine [9], to name a few. Experimental results show that the Naïve Bayes
probabilistic classifier and the random forest ensemble classifier are the most robust classical
classification systems against noise label [9].

However, the weakness of these classical classification is very clear. First, this approach
is inactive. Instead of refining and changing the classical classification algorithms, they only
explore the robustness property of commonly used classification systems. Second, the most
robust classification system is effective only when the percentage of label noise is minor. The
performance of the most robust classification system drops significantly when the percentage
of label noise is huge.

Recently, the deep neural networks (i.e., the modern classification systems) have been
established and well developed. For example, the deep convolution neural network can be
considered the current state of the art and the best classification system for image recognition
problem [1]. However, [10–12] showed that a deep neural network with huge enough
capacity can memorize the training set labels even when they are randomly made. Hence,
they are mostly vulnerable to the label noise. Similar to classical classification systems, label
noise can cause overfitting and significantly drop the deep neural networks’ performance.

However, [12] observed that when the learning rate is high, deep neural networks may
preserve quite extraordinary accuracy. In the other words, the influence of the label noise is
not important. This observation was employed in [12] to preserve an approximation of the
labels using the running average of deep neural network’s forecasts with a high learning rate.
These approximations then can be utilized as the control (or supervision) signals to train the
deep neural network.

Inspired by the work of [10–12] and [13, 3, 4, 6], in this chapter, we will develop the
graph and hypergraph convolution neural network methods and apply these methods to solve
the “noisy label learning” problem (using the image datasets such as MNIST, USPS, and
FASHION MNIST). To the best of our knowledge, this work has not been investigated and
developed.

5.2.2 Data Filtering Approach

In this approach, the samples with noisy labels are distinguished and fixed before the training
process. The ruined labels can be merely eliminated or relabeled at the very beginning.
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One idea is to employ the forecasts from the classification system (for e.g., the SVM
system) to detect mislabeled samples. The class of these methods is called the classification
filtering system. However, filtering all the samples that are misclassified by the classification
filtering system is too inflexible and risky since the classification filtering system learned
from data with noisy labels might not always be accurate.

k−nn classification systems is related to another class of methods. k−nn classification
systems are shown that they are very vulnerable to label noise. Hence some k−nn methods
target at improving or changing the rules of k−nn algorithms to recognize noisy labels and
then eliminate or relabel the associated samples. However, the methods associated to this
class are heuristics and might not be efficient close the classification boundary. Moreover,
the choice of k (i.e., the number of neighbors) might affect the performance of these methods
considerably.

Some data filtering methods depend on some thresholds. These methods compute the
score for each sample by using some measures and eliminate the samples that are above the
definite threshold. Obviously, these methods are similar to outlier or anomaly or abnormal
detection methods which are very hard to solve. Moreover, it’s very difficult to differentiate
the accurate exemptions from the mislabeled samples.

Last but not least, for the data filtering approach, this approach tends to eliminate a large
amount of samples, which may contain key information for classification. Easily, we can also
recognize that we can employ the forecasts from deep neural networks to detect mislabeled
samples.

5.2.3 Inherently noise-tolerant learning approach

In this approach, there are two ways to attack the “noisy label learning problem”:

- First, this way will model the noisy label before or during the training phase to take the
noisy label into attention. This model holds the information of the noise and can be
inserted into the classification system [14–18]. However, in order to build the model
for noisy label, these methods require supplementary parameters, that might increase
the time complexity and the model complexity. We know that high model complexity
occasionally leads to over-fitting.

- Second, this way proposes the robust loss function for the noise-tolerant model. For
example, [19] explored the robustness of various loss functions such as mean squared
loss, mean absolute loss, and cross-entropy loss. [20] combined the benefits of the
mean absolute loss and the cross-entropy loss to attain the improved loss function.
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5.3 Hypergraph Neural Network

5.3.1 Problem Formulations

In this chapter, we would like to solve the “noisy label learning” problem [10, 21]. This
problem can also be called the “label distribution learning” problem [22], to name a few.

In this problem, let Xtrain = x1,x2, . . . ,xl be the training set, where xi ∈ Rm.xi can also
be called the feature vector i or instance i or sample i of the training set with 1 ≤ i ≤ l.
LetYL = y1,y2, . . . ,yC be the complete set of labels where C is the number of classes in the
dataset.

For each sample xi, there is a label distribution d = dy1
xi ,d

y2
xi , . . . ,d

yC
xi ∈ RC. Please note

that dyc
xi is the probability that the sample xi belongs to the class c.

From the above definition, we know that 0≤ dyc
xi ≤ 1 and ∑c dyc

xi = 1.
The objective of the noisy label learning problem is to learn a mapping function g : x→ d

between the sample x and its corresponding label distribution function d.
In the other words, the goal of noisy label learning is to learn the conditional probability

mass function p(y|x), where y ∈ YL, x ∈ Xtrain.
Assume that p(y|x) is the parametric model p(y|x,θ), where θ is the parameter vector.

Given the training set Xtrain, we need to find (i.e., solve for) θ that can generate the distribution
similar to d [23].

5.3.2 Preliminary notations and definitions

Given a hypergraph G = (V,E), where V is the set of vertices and E is the set of hyper-edges.
Each hyper-edge e ∈ E is the subset of V . Please note that the cardinality of e is greater
than or equal two. In the other words, |e|≥ 2, for every e ∈ E. Let w(e) be the weight of
the hyper-edge e. Then W will be the R|E|∗|E| diagonal matrix containing the weights of all
hyper-edges in its diagonal entries.

The incidence matrix H of G is a R|V |∗|E| matrix that can be defined as follows

h(v,e) =

1, if vertex v belongs to hyperedge e

0, otherwise
(5.1)

The example of the hypergraphs is illustrated in Figure 5.1.
The incidence matrix H of the hypergraph in the above Figure 5.1 can be expressed as

follows
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Fig. 5.1 Hypergraph examples with 13 vertices and 4 hyperedges.

H =



0 0 1 0
1 0 0 1
1 0 0 0
1 0 0 1
1 1 0 0
0 1 0 0
0 1 0 0
0 0 1 1
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1


From the above definition, we can define the degree of vertex v and the degree of

hyper-edge e as follows

d (v) = ∑
e∈E

w(e)∗h(v,e) (5.2)
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d (e) = ∑
v∈V

h(v,e) (5.3)

Let Dv and De be two diagonal matrices containing the degrees of vertices and the degrees
of hyper-edges in their diagonal entries respectively. Please note that Dv is the R|V |∗|V | matrix
and De is the R|E|∗|E| matrix.

From the above definitions, [7, 8] define the symmetric normalized hypergraph Laplacian
as follows

Lsym = I−D
− 1

2
v HWD−1

e HT D
− 1

2
v (5.4)

Moreover, [7, 8] define the random walk hypergraph Laplacian as follows

Lrw = I−D−1
v HWD−1

e HT (5.5)

Please note that the two terms D
− 1

2
v HWD−1

e HT D
− 1

2
v and D−1

v HWD−1
e HT in the symmet-

ric normalized hypergraph Laplacian and the random walk hypergraph Laplacian respectively
will be used in our proposed hypergraph neural network method.

5.3.3 Hypergraph based semi-supervised learning problem

Given a set of images x1, . . . ,xl,xl+1, . . . ,xl+u where n = |V |= l +u is the total number of
images (i.e., vertices) in the hypergraph G = (V,E).

The method constructing the incidence matrix H from the image dataset will be specified
clearly in the Experiments and Results section.

Define C be the number of classes. Please note that x1, . . . ,xl is the set of all labeled
points and xl+1, . . . ,xl+u is the set of all un-labeled points.

Let Y ∈ R|V |∗C the initial label matrix for n images in the hypergraph G be defined as
follows

Yi j =


1, if xi ∈ class j and 1≤ i≤ l

−1, if xi /∈ class j and 1≤ i≤ l

0, if l +1≤ i≤ n

(5.6)

Let the matrix F ∈R|V |∗C be the estimated label matrix for the set of images x1, . . . ,xl,xl+1, . . . ,xl+u,
where the point xi is labeled as sign(Fi j) for each class j(1≤ j ≤C)

Our objective is to predict the labels of the un-labeled points xl+1, . . . ,xl+u. In the other
words, we need to compute the final solution matrix F .
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From [7, 8], the closed form solution of the hypergraph based semi-supervised learning
method can be computed as follows

F = (1−α)(I−αD
− 1

2
v HWD−1

e HT D
− 1

2
v )

−1
Y (5.7)

where α is the parameter.

5.3.4 Hypergraph neural network

From [3, 4, 6], the output of the hypergraph neural network can be defined and computed as
follows

Z = so f tmax(D
− 1

2
v HWD−1

e HT D
− 1

2
v ReLU(D

− 1
2

v HWD−1
e HT D

− 1
2

v Xθ
1)θ 2) (5.8)

or

Z = so f tmax(D−1
v HWD−1

e HT ReLU(D−1
v HWD−1

e HT Xθ
1)θ 2) (5.9)

Please note that X ∈ Rn∗L1 is the feature matrix (i.e., the image dataset). θ 1 ∈ RL1∗L2

and θ 2 ∈ RL2∗C are two parameter matrices that are needed to be learned during the training
process.

5.3.5 Our proposed hypergraph neural network

Inspired by the work in [6] for graph neural network, we try to apply this work (idea) to
develop our novel version for hypergraph neural network method.

In this novel version, we initially compute the final solution matrix F of the classic
hypergraph based semi-supervised learning method as in equation (5.7)

F = (1−α)(I−αD
− 1

2
v HWD−1

e HT D
− 1

2
v )

−1
Y

In this first step, we overcome the difficulty which is “only neighbors in the two-hop
neighborhood are considered” of the graph neural network method and hypergraph neural
network method [3, 4, 6]. The time complexity of this computation is still low since we
employ the sparse matrix computation techniques, for examples, the conjugate gradient
method, to solve the above sparse linear system of equations.

Finally, we compute the final output Z of the hypergraph neural network as in equation
(5.8) with the input feature matrix X replaced by F .
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Z = so f tmax(D
− 1

2
v HWD−1

e HT D
− 1

2
v ReLU(D

− 1
2

v HWD−1
e HT D

− 1
2

v Fθ
1)θ 2)

Simply speaking, our novel method is the combination of the classic hypergraph based
semi-supervised learning method and the hypergraph neural network method.

The two main differences of our proposed method with the method proposed in [6] are:

- Initially, the input feature matrix X does not need to go through a neural network.

- At our final step, we compute the output Z of hypergraph neural network similar to the
formula proposed by [3]. Please note that [3] proposed the formula to compute the
output of the graph neural network. In the other words, in the method proposed in [6],
the final solution matrix F of the hypergraph based semi-supervised learning method
is just needed to go through only one layer of the neural network which is the softmax
layer.

5.4 Experimental Results

In this section, we will apply the classic graph based semi-supervised learning method [24],
the classic hypergraph based semi-supervised learning method, graph neural network method,
hypergraph neural network method, and our proposed hypergraph neural network method to
solve the noisy label learning problem. In the other words, we will test the noise robustness
of these five methods. The three image datasets that we will use in the experiments are the
MNIST dataset, the USPS dataset, and the FASION MNIST dataset.

5.4.1 Datasets

MNIST: This image dataset is the dataset containing the handwritten images from ‘0’ to
‘9’. There are 70,000 images in the dataset. There are 60,000 images in the training set and
10,000 images in the testing set. Obviously, the number of classes in this MNIST image
dataset is 10. Each image in the dataset is the 28-by-28 matrix (gray scale image). Our first
task in the preprocessing step is to convert this gray scale image to 1-by-784 vector. We
achieve this task by concatenating every row of the gray scale image to a “long” row vector.
In the other words, we have the R70,000∗784 feature matrix.

USPS: This image dataset is also the handwritten image dataset from ‘0’ to ‘9’. However,
in this dataset, there are just 9,298 images in the dataset. There are 7,291 images in the
training set and 2,007 images in the testing set. The number of classes in this USPS dataset
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is 10. Each image in the dataset is the 16-by-16 matrix (gray scale image). We concatenate
every row of the gray scale image (in this USPS dataset) to the 1-by-256 “long” row vector.
Thus, finally, we have the R9,298∗256 feature matrix.

FASHION MNSIT: This image dataset is the dataset containing images of shoes, clothes,
caps, etc. There are 70,000 images in the dataset. There 60,000 images in the training set
and 10,000 images in the testing set. The number of classes in this FASHION MNIST image
dataset is 10. Each image in the dataset is the 28-by-28 matrix (gray scale image). We
concatenate every row of the gray scale image to the 1-by-784 “long” row vector. In the
other words, we have the R70,000∗784 feature matrix. This FASHION MNIST image dataset
is considered the hardest image dataset to test in our experiments.

5.4.2 Experiments and Results

In order to reduce the noise and redundant features in the input feature matrices and in order
to reduce the time constructing the graphs and hypergraphs from the three image datasets, we
apply the dimensional reduction PCA technique to the three input feature matrices. Finally,
the MNIST dataset is transformed to the R70,000∗50 matrix. The USPS dataset is transformed
to R9,298∗50 matrix. The FASHION MNIST dataset is transformed to R70,000∗300 matrix.

The way constructing the graphs from the three image datasets can be found in [24, 25].
Next, we will discuss how to construct the incidence matrix H of the hypergraphs from the
three image datasets. Please note that the number of hyperedges in the hypergraph is equal
to the number of images in the dataset [26]. The image i belongs to hyperedge j if image i
is among the k-nearest neighbor of image j or image j is among the k-nearest neighbor of
image i. In this chapter, k is chosen to be 5.

Finally, from the computed H, we can compute the two terms D
− 1

2
v HWD−1

e HT D
− 1

2
v and

D−1
v HWD−1

e HT in the symmetric normalized hypergraph Laplacian and the random walk
hypergraph Laplacian used in the classic hypergraph based semi-supervised learning method,
the hypergraph neural network method, and our proposed hypergraph neural network method.

The two main differences of our methods with other semi-supervised learning methods
[27, 28] solving the image classification problem with noisy labels are:

- Other semi-supervised learning methods just used the subsets of the MNIST and the
USPS datasets. For example, in [27], the authors just used 10,000 images from MNIST
to evaluate their methods. In the other hand, our methods use the complete MNIST,
USPS, and FASHION MNIST image datasets.

- Our methods apply directly the PCA technique to the feature matrices of the three
image datasets in order to reduce the time constructing the graphs and the hypergraphs
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Table 5.1 MNIST dataset: Comparison of our five methods with various noise levels. The
classification accuracy (%) is reported

Noise level 0% 15% 30% 45%
Graph based

semi-supervised
learning

97.70 93.33 80.94 57.45

Hypergraph based
semi-supervised

learning
97.65 97.56 97.54 84.49

Graph neural
network

97.39 97.31 97.11 86.15

Hypergraph neural
network (current
state of the art

semi-supervised
learning method)

97.52 97.40 97.34 87.07

Proposed
hypergraph neural

network
97.72 97.69 97.30 91.65

of the three image datasets. To the best of our knowledge, this work has not been
done before. The experimental results show that if we do not apply the PCA technique
to the feature matrices of the three image dataset, the hypergraph neural network
significantly outperforms the graph neural network. If we apply the PCA technique to
the feature matrices of the three image datasets, the hypergraph neural network method
does not significantly outperform the graph neural network method; however, both the
hypergraph neural network and the graph neural network with PCA are better than the
graph and hypergraph neural network without using PCA technique. These claims will
be clarified in Table 5.1, 5.2, 5.3, 5.4

In general, in this chapter, what we want to achieve is clear: we would like to prove that
the hypergraph neural networks (the current state of the art semi-supervised learning method
and our proposed method) are at least as good as the graph neural network but sometimes
lead to better accuracy performance measures. We run our five methods (Python code) on
Google Colab with NVIDIA Tesla K80 GPU and 12 GB RAM. The following tables 5.1
(figure 5.2), 5.2 (figure 5.3), 5.3 (figure 5.4), and 5.4 show the experimental results of our
five methods.

From the above three tables, we easily recognize initially and directly that when the noise
level increases, our proposed hypergraph neural network outperforms the other methods.
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Table 5.2 USPS dataset: Comparison of our five methods with various noise levels. The
classification accuracy (%) is reported

Noise level 0% 15% 30% 45%
Graph based

semi-supervised
learning

95.06 94.96 92.82 66.26

Hypergraph based
semi-supervised

learning
95.06 94.91 94.71 74.58

Graph neural
network

94.66 94.42 93.12 70.00

Hypergraph neural
network (current
state of the art

semi-supervised
learning method)

94.76 94.71 93.82 74.48

Proposed
hypergraph neural

network
95.06 94.81 94.37 82.51

Table 5.3 FASHION MNIST dataset: Comparison of our five methods with various noise
levels. The classification accuracy (%) is reported

Noise level 0% 15% 30% 45%
Graph based

semi-supervised
learning

86.13 85.75 84.02 63.61

Hypergraph based
semi-supervised

learning
84.88 84.69 83.43 69.29

Graph neural
network

86.76 86.35 85.17 67.79

Hypergraph neural
network (current
state of the art

semi-supervised
learning method)

86.41 86.30 85.47 70.09

Proposed
hypergraph neural

network
86.14 85.91 85.02 75.89
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Fig. 5.2 MNIST dataset: Comparison of our five methods with various noise levels.

Table 5.4 FASHION MNIST dataset: Comparison of the hypergraph neural network method
(the current state of art semi-supervised learning method) and the graph neural network
method

Noise level 0%
Graph neural network (without PCA) 79.98

Hypergraph neural network (without PCA) 85.09
Graph neural network (with PCA) 86.76

Hypergraph neural network (with PCA) 86.41

Second, from the experimental results, we see that the hypergraph neural network methods
(both the current state of the art semi-supervised learning method and our proposed method)
are at least as good as the graph neural network proposed by Thomas Kipf but sometimes
lead to better accuracy performance measures. Finally, we can also easily see that the classic
graph based semi-supervised learning method performs worst when the noise level increases.

Last but not least, in the FASHION MNIST dataset, we would like to show that if we do
not apply the PCA technique to the feature matrix of the FASHION MNIST image dataset,
the hypergraph neural network significantly outperforms the graph neural network. This
claim is shown in the following table 5.4.
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Fig. 5.3 USPS dataset: Comparison of our five methods with various noise levels.

5.5 Conclusions

In this chapter, we have proposed the novel hypergraph neural network method. Our contri-
butions are:

- reduce the time constructing the graph and the hypergraph by initially applying the
PCA technique to the image dataset.

- our novel hypergraph neural network method is in fact the combination of the classic
hypergraph based semi-supervised learning method and the hypergraph neural network
proposed by [4] (i.e., the current state of the art semi-supervised learning method).

The experimental results show that our proposed hypergraph neural network outperforms
other semi-supervised learning methods as the noise level in the training set increases. In the
other words, our proposed approach is quite robust to noise labels to some extent. Moreover,
the hypergraph neural networks (the current state of the art method of semi-supervised
learning approach and our proposed method) are at least as good as the graph neural network
proposed by Thomas Kipf, but sometimes lead to better accuracies.

Last but not least, in the future work, we will combine the hypergraph p-Laplacian based
semi-supervised learning method with the current state of the art semi-supervised learning
method (i.e., the hypergraph neural network proposed by [4]) to form a novel hypergraph
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Fig. 5.4 FASHION MNIST dataset: Comparison of our five methods with various noise
levels.

neural network method. Finally, we can apply this novel method to various classification
tasks such as protein function prediction, cancer classification, and speech recognition, to
name a few.
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Chapter 6

Directed Hypergraph Neural Network

6.1 Introduction

In recent years, deep convolution neural networks have gained much interests from data
scientists and have utilized to solve many classification tasks such as image recognition [1]
and speech recognition [2], to name a few. In order to deal with irregular data structure, graph
convolution neural networks have been developed by a lot of data scientists such as Thomas
Kipf [3]. There are two classes of graph convolution neural network. The first class of
graph convolution neural network is the spatial based approach. This spatial based approach
implements the convolution on the graph by accumulating information of the neighbor nodes.
The second class of graph convolution neural network is the spectral based approach. This
spectral based approach implements a variant of graph convolution neural network based
on different graph Laplacians. Easily, we recognize that the time complexity of spectral
based approach is much higher than the time complexity of spatial based approach; however,
the accuracy of the spectral based approach is higher than the accuracy of the spatial based
approach. In this graph data structure, we easily see that the edge carries no information
about the direction. Moreover, in this graph data structure, the edge can connect only two
vertices. In the other words, data scientists have concentrated primarily on developing deep
neural network method for un-directed graph.

In order to overcome these two information losses which are “the edge carry no infor-
mation about the direction” and “the edge can connect only two vertices” of the graph data
structure which “can” affect the performance of the “node clustering task” or the “node
classification task”, we employ the directed hypergraph data structure [4, 5] and develop the
deep neural network method based on this directed hypergraph data structure. This method
is called the spectral directed hypergraph neural network method. The development of this
directed hypergraph neural network is considered the very hard task and the novel work.
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First, we need to define the transition probability matrix of the random walk on the directed
hypergraph. Then, we need to compute the PageRank vector of the directed hypergraph.
Finally, we can compute the directed hypergraph Laplacian. From the directed hypergraph
Laplacian, we can start developing the spectral directed hypergraph neural network and apply
this novel method to solve the classification task. The two citation datasets that are used in
the classification task are the Cora and the Citeseer datasets. To the best of our knowledge,
this research work has not been developed before.

In this chapter, our contributions are three folds:

- Develop the novel directed hypergraph semi-supervised learning method.

- Develop the novel directed hypergraph neural network.

- The accuracies of the classic directed graph semi-supervised learning method (which is
the baseline method), the novel directed hypergraph semi-supervised learning method,
the novel directed hypergraph neural network are computed and compared.

We will organize the chapter as follows: Section 6.2 will present the preliminary notations
and definitions. Section 6.3 will introduce the novel directed hypergraph semi-supervised
learning method. Section 6.4 will present the directed hypergraph neural network. Section
6.5 will describe the datasets and present the experimental results. Section 6.6 will conclude
this chapter and the future direction of researches will be discussed.

6.2 Preliminary notations and definitions

Given the directed hypergraph H = (V,E) where V is the set of vertices and E is the set
of hyper-arcs. Each hyper-arc e ∈ E is written as e = (eTail,eHead). The vertices of e are
denoted by e = eTail ∪ eHead.eTail is called the tail of the hyper-arc e and eHead is called the
head of the hyper-arc e. Please note that eTail ̸= /0, eHead ̸= /0, eTail ∩ eHead = /0.

The directed hypergraph H = (V,E) can be represented by two incidence matrices HTail

and HHead .
These two incidence matrices HTail and HHead can be defined as follows

hTail
(

v,eTail
)
=

1, if v ∈ eHead

0, otherwise
(6.1)

hHead
(

v,eHead
)
=

1, if v ∈ eHead

0, otherwise
(6.2)
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The example of the directed hypergraph is illustrated in Figure 6.1:

Fig. 6.1 Directed hypergraph example with 12 vertices and 5 hyper-arcs [4].

Let w(e) be the weight of the hyper-arc e. Let W be the diagonal matrix containing the
weights of hyper-arcs in its diagonal entries.

From the above definitions, we can define the tail and head degrees of the vertex v and
the tail and head degrees of the hyper-arc e as follows

dTail (v) = ∑
e∈E

w(e)hTail
(

v,eTail
)

(6.3)

dHead (v) = ∑
e∈E

w(e)hHead
(

v,eHead
)

(6.4)

dTail (e) = ∑
v∈V

hTail
(

v,eTail
)

(6.5)

dHead (e) = ∑
v∈V

hHead
(

v,eHead
)

(6.6)

Let DTail
v ,DHead

v ,DTail
e , and DHead

e be four diagonal matrices containing the tail and head
degrees of vertices and the tail and head degrees of hyper-arcs in their diagonal entries
respectively. Please note that DHead

v and DTail
v are the R|V |∗|V | matrices and DHead

e and DTail
e

are the R|E|∗|E| matrices.
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From [6], we know that the transition probability of the random walk on directed
hypergraph can be defined as follows

p(u,v) = ∑
e∈E

w(e)
hTail(u,eTail)

dTail(u)
hHead(v,eHead)

dHead(e)
(6.7)

From the above definition, the transition probability matrix P of the random walk on the
directed hypergraph can be defined in the matrix form as follows

P = DTail
v
−1

HTailWDHead
e

−1
HHeadT

(6.8)

The PageRank vector π of the directed hypergraph is the solution of the following
equation

π
T = π

T P (6.9)

Moreover, we know that the above equation can easily be solved by the Power method.
Next, we give two novel definitions of the directed hypergraph Laplacian which are un-

normalized directed hypergraph Laplacian and symmetric normalized directed hypergraph
Laplacian.

Let S be the diagonal matrix containing all elements of PageRank vector π of the directed
hypergraph in its diagonal entries.

The un-normalized directed hypergraph Laplacian can be defined as follows

L = S− SDTail
v
−1HTailWDHead

e
−1HHeadT

+(DTail
v
−1HTailWDHead

e
−1HHeadT

)
T

S
2

(6.10)

The symmetric normalized directed hypergraph Laplacian can be defined as follows

Lsym = I− S
1
2 DTail

v
−1HTailWDHead

e
−1HHeadT S−

1
2 +S−

1
2 (DTail

v
−1HTailWDHead

e
−1HHeadT

)
T

S
1
2

2
(6.11)

From these two above definitions, we can develop the directed hypergraph Laplacian
based semi-supervised learning algorithms and the directed hypergraph neural network.
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6.3 Directed hypergraph semi-supervised learning

Given a set of samples x1, . . . ,xl,xl+1, . . . ,xl+u where n = |V |= l +u is the total number of
samples (i.e., vertices) in the directed hypergraph H = (V,E).

The method constructing the incidence matrix HTail and HHead from the datsets will be
specified clearly in the Experiments and Results section (i.e., Section 6.5).

Define C be the number of classes. Please note that x1, . . . ,xl is the set of all labeled
points and xl+1, . . . ,xl+u is the set of all un-labeled points.

Let Y ∈ R|V |∗C the initial label matrix for n samples in the directed hypergraph H be
defined as follows

Yi j =


1, if xi ∈ class j and 1≤ i≤ l

−1, if xi /∈ class j and 1≤ i≤ l

0, if l +1≤ i≤ n

(6.12)

Let the matrix F ∈R|V |∗C be the estimated label matrix for the set of samples x1, . . . ,xl,xl+1, . . . ,xl+u,
where the point xi is labeled as sign(Fi j) for each class j(1≤ j ≤C)

Our objective is to predict the labels of the un-labeled points xl+1, . . . ,xl+u. In the other
words, we need to compute the final solution matrix F .

In short, we would like to solve the following optimization problem

E ( f )=
1
2 ∑
(u,v)⊆E

π (u) ∑
e∈E

w(e)
hTail (u,eTail)

dTail (u)
hHead (v,eHead)

dHead (e)
(

f (u)√
π (u)

− f (v)√
π (v)

)
2

+µ|| f−y||2

(6.13)
We know that

1
2 ∑
(u,v)⊆E

π (u) ∑
e∈E

w(e)
hTail (u,eTail)

dTail (u)
hHead (v,eHead)

dHead (e)
(

f (u)√
π (u)

− f (v)√
π (v)

)
2

=
1
2 ∑

e∈E

1
2 ∑

v∈V
{∑

u→v
π (u)w(e)

hTail (u,eTail)
dTail (u)

hHead (v,eHead)
dHead (e)

(
f (u)√
π (u)

− f (v)√
π (v)

)2

+∑u←v π (v)w(e)
hTail(v,eTail)

dTail(v)
hHead(u,eHead)

dHead(e)

(
f (v)√
π(v)
− f (u)√

π(u)

)2

}
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=
1
2 ∑

e∈E
{1

2 ∑
v∈V
{∑

u→v
w(e)

hTail (u,eTail)
dTail (u)

hHead (v,eHead)
dHead (e)

f 2 (u)

+ ∑
u→v

w(e)
hTail (u,eTail)

dTail (u)
hHead (v,eHead)

dHead (e)
π (u)
π (v)

f 2 (v)

−2 ∑
u→v

π (u)w(e)
hTail (u,eTail)

dTail (u)
hHead (v,eHead)

dHead (e)
1√

π (u)
√

π (v)
f (u) f (v)}

+
1
2 ∑

v∈V
{∑

u←v
w(e)

hTail (v,eTail)
dTail (v)

hHead (u,eHead)
dHead (e)

f 2 (v)

+ ∑
u←v

w(e)
hTail (v,eTail)

dTail (v)
hHead (u,eHead)

dHead (e)
π (v)
π (u)

f 2 (u)

−2 ∑
u→v

π (v)w(e)
hTail (v,eTail)

dTail (v)
hHead (u,eHead)

dHead (e)
1√

π (u)
√

π (v)
f (u) f (v)}}

Moreover, we know that
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∑
e∈E

∑
(u,v)⊆e

w(e)
hTail (u,eTail)

dTail (u)
hHead (v,eHead)

dHead (e)
f 2 (u)

= ∑
u∈V

∑
v←u

∑
e∈E

w(e)
hTail (u,eTail)

dTail (u)
hHead (v,eHead)

dHead (e)
f 2 (u)

= ∑
u∈V

( ∑
v←u

p(u,v)) f 2 (u) = ∑
u∈V

f 2 (u) = ∑
v∈V

f 2 (v)

∑
e∈E

∑
(u,v)⊆e

w(e)
hTail (u,eTail)

dTail (u)
hHead (v,eHead)

dHead (e)
π (u)
π (v)

f 2(v)

= ∑
v∈V

∑
u→v

∑
e∈E

w(e)
hTail (u,eTail)

dTail (u)
hHead (v,eHead)

dHead (e)
π (u)
π (v)

f 2 (v)

= ∑
v∈V

(
∑

u→v

p(u,v)π (u)
π (v)

)
f 2 (v) = ∑

v∈V
f 2 (v)

∑
e∈E

∑
(u,v)⊆e

π (u)w(e)
hTail (u,eTail)

dTail (u)
hHead (v,eHead)

dHead (e)
1√

π (u)
√

π (v)
f (u) f (v)

= ∑
v∈V

∑
u→v

∑
e∈E

w(e)
hTail (u,eTail)

dTail (u)
hHead (v,eHead)

dHead (e)

√
π (u)√
π (v)

f (u) f (v)
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∑
e∈E

∑
(v,u)⊆e

w(e)
hTail (v,eTail)

dTail (v)
hHead (u,eHead)

dHead (e)
f 2 (v)

= ∑
v∈V

∑
u←v

∑
e∈E

w(e)
hTail (v,eTail)

dTail (v)
hHead (u,eHead)

dHead (e)
f 2 (v)

= ∑
v∈V

( ∑
u←v

p(v,u)) f 2 (v) = ∑
v∈V

f 2 (v)

∑
e∈E

∑
(v,u)⊆e

w(e)
hTail (v,eTail)

dTail (v)
hHead (u,eHead)

dHead (e)
π (v)
π (u)

f 2(u)

= ∑
u∈V

∑
v→u

∑
e∈E

w(e)
hTail (v,eTail)

dTail (v)
hHead (u,eHead)

dHead (e)
π (v)
π (u)

f 2 (u)

= ∑
u∈V

(
∑

v→u

p(v,u)π (v)
π (u)

)
f 2 (u) = ∑

v∈V
f 2 (v)

∑
e∈E

∑
(v,u)⊆e

π (v)w(e)
hTail (v,eTail)

dTail (v)
hHead (u,eHead)

dHead (e)
1√

π (u)
√

π (v)
f (u) f (v)

= ∑
v∈V

∑
u←v

∑
e∈E

w(e)
hTail (v,eTail)

dTail (v)
hHead (u,eHead)

dHead (e)

√
π (v)√
π (u)

f (u) f (v)

Thus, we can conclude that
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1
2 ∑
(u,v)⊆E

π (u) ∑
e∈E

w(e)
hTail (u,eTail)

dTail (u)
hHead (v,eHead)

dHead (e)
(

f (u)√
π (u)

− f (v)√
π (v)

)
2

= ∑
v∈V

f 2 (v)− 1
2
( ∑

u→v
∑
e∈E

w(e)
hTail (u,eTail)

dTail (u)
hHead (v,eHead)

dHead (e)

√
π (u)√
π (v)

f (u) f (v)

+ ∑
u←v

∑
e∈E

w(e)
hTail (v,eTail)

dTail (v)
hHead (u,eHead)

dHead (e)

√
π (v)√
π (u)

f (u) f (v))

Finally, in general, the closed form solution of the directed hypergraph based semi-
supervised learning method can be computed as follows

F = (1−α)(I−α

S1/2DTail−1

v HTailWDHead−1

e HHeadT
S−1/2 +S−1/2(DTail−1

v HTailWDHead−1

e HHeadT
)T S1/2

2
)−1Y

(6.14)

where α is the parameter.

6.4 Directed hypergraph neural network

Let

T =
S1/2DTail−1

v HTailWDHead−1

e HHeadT
S−1/2 +S−1/2(DTail−1

v HTailWDHead−1

e HHeadT
)T S1/2

2
(6.15)

From [3, 7, 8], the output of the directed hypergraph neural network can be defined and
computed as follows

Z = so f tmax(T ReLU(T Xθ
1)θ 2) (6.16)

Please note that X ∈ Rn∗L1 is the feature matrix (i.e., the image dataset). θ 1 ∈ RL1∗L2

and θ 2 ∈ RL2∗C are two parameter matrices that are needed to be learned during the training
process.
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We can easily recognize that instead of adding a self-loop to each node in renormalization
phase as in [3], we directly use the term
S1/2DTail−1

v HTailWDHead−1
e HHeadT

S−1/2+S−1/2(DTail−1
v HTailWDHead−1

e HHeadT
)T S1/2

2 (i.e. T ) in the directed
hypergraph Laplacian to compute the output Z of the directed hypergraph neural network.
Obviously, we see that T has the eigenvalues in the range [−1,1].

6.5 Experiments and Results

In this section, we will apply the classic directed graph based semi-supervised learning
method [9], the novel directed hypergraph based semi-supervised learning method, the novel
directed hypergraph neural network method to solve the classification problem. The two
citation datasets that we will use in the experiments are the Cora dataset and the Citeseer
dataset [10].

6.5.1 Datasets

Cora: This dataset consists of 2,708 scientific publications classified into one of seven classes
which are Case_Based, Genetic_Algorithms, Neural_Networks, Probabilistic_Methods,
Reinforce_Learning, Rule_Learning, Theory. The citation network consists of 5,429 links. In
the other words, this Cora citation network contains 2,708 nodes (i.e., scientific publications)
and 5,429 edges (i.e., citation links). For training, we use 20 samples per class. In the other
words, there are 140 samples in the training set. Each publication in this Cora dataset is
described by a 0/1-valued word vector indicating the absence/presence of the corresponding
word from the dictionary. The dictionary contains 1,433 unique words. In the other words,
we have the R2,708∗1,433 feature matrix.

Citeseer: This dataset consists of 3,312 scientific publications classified into one of six
classes which are Agents, AI, DB, IR, ML, and HCI. The citation network consists of 4,732
links. In the other words, this citeseer citation network contains 3,312 nodes (i.e., scientific
publications) and 4,732 edges (i.e., citation links). For training, we use 70 samples per
class. In the other words, there are 420 samples in the training set. Each publication in the
citeseer dataset is described by a 0/1-valued word vector indicating the absence/presence of
the corresponding word from the dictionary. The dictionary contains 3,703 unique words. In
the other words, we have the R3,312∗3,703 feature matrix.
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6.5.2 Experiments and Results

In this section, initially, we will show how to construct the directed graph from the citation
network. If there is a link from node i to node j, we will construct a link from node j to
node i. In the other words, there are two links (with directions) between the cited scientific
publication and the citing publication. Not only the cited scientific publication influences the
citing publication, but the citing scientific publication also influences the cited publication.

Next, we will discuss how to construct a directed hypergraph. First, please note that the
number of hyper-arcs in the hypergraph is equal to the number of scientific publications in
the dataset. There are two classes of directed hypergraph that we will construct (from the
directed graph describing above) in this chapter. The first class is the F-directed hypergraph.
The F-directed hypergraph is the directed hypergraph whose hyperarcs are F-arcs. The
F-arc is the hyper-arc whose the tail has only one node. The second class is the B-directed
hypergraph. The B-directed hypergraph is the directed hypergraph whose hyperarcs are
B-arcs. The B-arc is the hyper-arc whose the head has only one node. After constructing the
F-directed hypergraph or the B-directed hypergraph, we will construct the two incidence
matrices HTail and HHead of the directed hypergraph. From the computed HTail and HHead ,
we can compute the term
S1/2DTail−1

v HTailWDHead−1
e HHeadT

S−1/2+S−1/2(DTail−1
v HTailWDHead−1

e HHeadT
)T S1/2

2 in the symmetric nor-
malized directed hypergraph Laplacian that will be used in the novel directed hypergraph
based semi-supervised learning method and the novel directed hypergraph neural network
method.

The example of the B-arc and F-arc are illustrated in Figure 6.2:

Fig. 6.2 B-arc (a) and F-arc (b) examples [4].

We run our six methods which are the classic directed graph based semi-supervised
learning method, the novel F-directed hypergraph based semi-supervised learning method,
the B-directed hypergraph based semi-supervised learning method, the directed graph neural
network method, the F-directed hypergraph neural network method, the B-directed hyper-
graph neural network method (Python code) on Google Colab with NVIDIA Tesla K80 GPU
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Table 6.1 Cora dataset: Comparison of our six methods. The classification accuracy (%) is
reported

Methods Accuracy (%)
Directed graph

based
semi-supervised

learning

67.25

F-directed
hypergraph based
semi-supervised

learning

67.25

B-directed
hypergraph based
semi-supervised
learning method

67.25

Directed graph
neural network

method
81.42

F-directed
hypergraph

neural network
method

81.93

B-directed
hypergraph

neural network
method

81.85

and 12 GB RAM. The following table 6.1 (figure 6.3) and table 6.2 (figure 6.4) show the
experimental results of our six methods.

From the above tables and figures, we easilly see that the directed graph neural network
method and the directed hypergraph neural network method significantly are better than the
classic directed graph semi-supervised learning method and the novel directed hypergraph
semi-supervised learning method. Moreover, the F-directed hypergraph neural network
method and the B-directed hypergraph neural network method are slightly better than the
directed graph neural network method. In general, for these two Cora dataset and Citeseer
dataset, the F-directed hypergraph neural network method reaches the highest accuracy
performance measures.

Last but not least, interestingly, the novel directed hypergraph based semi-supervised
learning method does not outperform the classic directed graph based semi-supervised
learning method. We think that the way constructing the directed hypergraph from the
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Table 6.2 Cora dataset: Comparison of our six methods. The classification accuracy (%) is
reported

Methods Accuracy (%)
Directed graph

based
semi-supervised

learning

48.23

F-directed
hypergraph based
semi-supervised

learning

48.23

B-directed
hypergraph based
semi-supervised
learning method

48.23

Directed graph
neural network

method
69.84

F-directed
hypergraph

neural network
method

70.53

B-directed
hypergraph

neural network
method

70.43
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Fig. 6.3 Cora dataset: Comparison of our six methods

directed graph is not good enough. In the future, we will investigate more carefully how to
construct the directed hypergraph from the directed graph.

6.6 Conclusions

In this chapter, we have successfully developed the novel directed hypergraph based semi-
supervised learning method and the novel directed hypergraph neural network method.
Experimental results show that the directed hypergraph neural network method signifi-
cantly outperforms the novel directed hypergraph based semi-supervised learning method.
Moreover, the F-directed hypergraph neural network method achieves the highest accu-
racy performance measures for the two datasets: Cora and Citeseer among other directed
(hyper)-graph based methods.

Last but not least, in the future work, we will combine the directed hypergraph p-
Laplacian based semi-supervised learning method with the directed hypergraph neural
network to construct a novel directed hypergraph neural network method. Finally, we can
apply this novel method to various datasets such Cora, Citeseer, and PubMed, to name a few.
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Fig. 6.4 Citeseer dataset: Comparison of our six methods
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Chapter 7

Conclusions

In 2007, Ulrike von Luxburg has shown (in detail) that there are three main types of graph
Laplacians which are:

• Un-normalized graph Laplacian

• Random walk graph Laplacian

• Symmetric normalized graph Laplacian

This leads to three spectral clustering algorithms that have proposed clearly in Ulrike von
Luxburg’s paper.

Hypergraph is the generalization of the graph. Similar to graph, we define three main
types of hypergraph Laplacians (in chapter 1) which are:

• Un-normalized hypergraph Laplacian

• Random walk hypergraph Laplacian

• Symmetric normalized hypergraph Laplacian

In chapter 2, we proposed the detailed algorithms of the un-normalized hypergraph Lapla-
cian Eigenmaps, the weighted un-normalized hypergraph Laplacian Eigenmaps applying to
the zoo dataset and the tiny version of 20 newsgroups dataset. Interestingly, experiments
show that the weighted un-normalized hypergraph Laplacian Eigenmaps algorithm is at least
as good as the un-normalized hypergraph Laplacian Eigenmaps algorithm but sometimes
leads to better accuracy performance.

In chapter 3, we proposed the detailed algorithms of the un-normalized hypergraph
p-Laplacian based semi-supervised learning methods applied to the zoo dataset and the tiny
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version of 20 newsgroups dataset. Interestingly, experiments show that the un-normalized
hypergraph p-Laplacian based semi-supervised learning methods are at least as good as the
un-normalized hypergraph Laplacian based semi-supervised learning method (the current
state of the art method p = 2) but often lead to significant better classification accuracy
performance measures.

In chapter 4, our contributions are four folds:

• Develop the novel graph convolutional neural network based clustering technique.

• Develop the novel hypergraph convolutional neural network based clustering technique.

• Apply these novel clustering techniques to two Citeseer and Cora datasets.

• Compare the performance of the hypergraph convolutional neural network based
clustering technique with the performances of the graph convolutional neural network
based clustering technique, the k-means clustering technique, the spectral clustering
technique for feature vectors, the spectral clustering technique for adjacency matrix.

In this chapter, we proposed the (hyper)-graph convolutional neural network based
clustering technique to solve the clustering problem. The graph convolutional neural network
based clustering technique is significantly better than the k-means clustering technique,
the spectral clustering technique for feature vectors, the spectral clustering technique for
adjacency matrix since graph convolutional neural network based clustering technique
utilize both the information from the feature vectors and the adjacency matrix of the dataset
and noises and redundant features in the dataset (i.e., both in the feature vectors and the
adjacency matrix) are removed. Moreover, the hypergraph convolutional neural network
based clustering technique is better than the graph convolutional neural network based
clustering technique since the hypergraph data structure employs the high order relationships
among the samples/entities/objects. This will lead to no loss of information.

In chapter 5, we proposed the novel hypergraph neural network method. Our contributions
are:

• reduce the time constructing the graph and the hypergraph by initially applying the
PCA technique to the image dataset.

• our novel hypergraph neural network method is in fact the combination of the classic
hypergraph based semi-supervised learning method and the hypergraph neural network
proposed by Yifan Feng (i.e., the current state of the art semi-supervised learning
method).
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The experimental results show that our proposed hypergraph neural network outperforms
other semi-supervised learning methods as the noise level in the training set increases. In the
other words, our proposed approach is quite robust to noise labels to some extent. Moreover,
the hypergraph neural networks (the current state of the art method of semi-supervised
learning approach and our proposed method) are at least as good as the graph neural network
proposed by Thomas Kipf, but sometimes lead to better accuracies.

In chapter 6, we have successfully developed the novel directed hypergraph based semi-
supervised learning method and the novel directed hypergraph neural network method.
Experimental results show that the directed hypergraph neural network method signifi-
cantly outperforms the novel directed hypergraph based semi-supervised learning method.
Moreover, the F-directed hypergraph neural network method achieves the highest accu-
racy performance measures for the two datasets: Cora and Citeseer among other directed
(hyper)-graph based methods.

In general, in this thesis, I developed the novel methods (i.e., novelty property) to solve
various machine learning/deep learning problems for hypergraph and directed hypergraph
data structure.

In specific, we solved three main problems in machine learning/deep learning research
field such as:

- Representational learning/Dimensional reduction/. . .

- Clustering

- Classification
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