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RÉSUMÉ

Cette thèse aborde le défi de l’évaluation des formules logiques candidates, avec un

accent particulier sur les axiomes, en combinant de manière synergique l’apprentissage

automatique et le raisonnement symbolique. Cette approche innovante facilite la

découverte automatique d’axiomes, principalement dans la phase d’évaluation des

axiomes candidats générés. La recherche vise à résoudre le problème de la validation

efficace et précise de ces candidats dans le contexte plus large de l’acquisition de

connaissances sur le Web sémantique.

Reconnaissant l’importance des heuristiques de génération existantes pour les ax-

iomes candidats, cette recherche se concentre sur l’avancement de la phase d’évaluation

de ces candidats. Notre approche consiste à utiliser ces candidats basés sur des heuris-

tiques, puis à évaluer leur compatibilité et leur cohérence avec les bases de connais-

sances existantes. Le processus d’évaluation, qui nécessite généralement beaucoup

de calculs, est révolutionné par le développement d’un modèle prédictif qui évalue

efficacement l’adéquation de ces axiomes en tant que substitut du raisonnement tra-

ditionnel. Ce modèle innovant réduit considérablement les exigences en matière de

calcul, en utilisant le raisonnement comme un "oracle" occasionnel pour classer les

axiomes complexes lorsque cela est nécessaire.

L’apprentissage actif joue un rôle essentiel dans ce cadre. Il permet à l’algorithme

d’apprentissage automatique de sélectionner des données spécifiques pour l’apprentissage,

améliorant ainsi son efficacité et sa précision avec un minimum de données étiquetées.

La thèse démontre cette approche dans le contexte du Web sémantique, où le raison-

neur joue le rôle d’"oracle" et où les nouveaux axiomes potentiels représentent des

données non étiquetées.

Cette recherche contribue de manière significative aux domaines du raisonnement

automatique et au-delà, en ouvrant de nouvelles possibilités dans des domaines tels
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que la bio-informatique et la preuve automatique de théorèmes. En mariant efficace-

ment l’apprentissage automatique et le raisonnement symbolique, ces travaux ouvrent

la voie à des processus de découverte de connaissances plus sophistiqués et autonomes,

annonçant un changement de paradigme dans la manière dont nous abordons et ex-

ploitons la vaste étendue de données sur le web sémantique.

Mots-clés

apprentissage automatique, raisonnement symbolique, axiomes, bottleneck de l’acquisition

des connaissances, Web sémantique, apprentissage actif, ontologies, processus heuris-

tiques, bases de connaissances, modèle prédictif, raisonnement computationnel, effi-

cacité des algorithmes, données étiquetées, raisonnement automatisé, démonstration

automatisée de théorèmes, découverte de connaissances.
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ABSTRACT

This thesis addresses the challenge of evaluating candidate logical formulas, with a

specific focus on axioms, by synergistically combining machine learning with symbolic

reasoning. This innovative approach facilitates the automatic discovery of axioms,

primarily in the evaluation phase of generated candidate axioms. The research aims to

solve the issue of efficiently and accurately validating these candidates in the broader

context of knowledge acquisition on the semantic Web.

Recognizing the importance of existing generation heuristics for candidate axioms,

this research focuses on advancing the evaluation phase of these candidates. Our ap-

proach involves utilizing these heuristic-based candidates and then evaluating their

compatibility and consistency with existing knowledge bases. The evaluation process,

which is typically computationally intensive, is revolutionized by developing a pre-

dictive model that effectively assesses the suitability of these axioms as a surrogate

for traditional reasoning. This innovative model significantly reduces computational

demands, employing reasoning as an occasional "oracle" to classify complex axioms

where necessary.

Active learning plays a pivotal role in this framework. It allows the machine

learning algorithm to select specific data for learning, thereby improving its efficiency

and accuracy with minimal labeled data. The thesis demonstrates this approach in

the context of the semantic Web, where the reasoner acts as the "oracle," and the

potential new axioms represent unlabeled data.

This research contributes significantly to the field of automated reasoning, and

beyond, opening up new possibilities in areas like bioinformatics and automated the-

orem proving. By effectively marrying machine learning with symbolic reasoning, this

work paves the way for more sophisticated and autonomous knowledge discovery pro-

cesses, heralding a paradigm shift in how we approach and leverage the vast expanse
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of data on the semantic Web.
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Chapter 1

INTRODUCTION

1.1 Navigating the Logic Labyrinth: Why Axioms Matter

The ever-increasing reliance on structured knowledge representations, such as

knowledge graphs and ontologies, has accentuated the need for automated evalua-

tion of logical formulas. These formulas, including a special class known as axioms,

define the rules, relationships, and constraints of a domain [204]. While substantial

strides have been made in the automated handling of such formulas, the task remains

predominantly manual and presents challenges in scalability, reliability, and efficiency

[172, 280, 165].

Evaluating logical formulas, to acquire knowledge, is fundamental to the fields of

robotics, artificial intelligence, formal logic, and knowledge representation [243, 135].

These evaluations are crucial in a variety of applications, ranging from automated the-

orem proving to database management [327, 169]. Despite its importance, the process

often lacks transparency and relies heavily on non scalable exhaustive computational

techniques or expert judgment [206, 87].

Among these logical formulas, axioms hold a unique position. They serve as

foundational elements in structured knowledge systems and often require a higher

degree of scrutiny and validation [339, 293]. Existing machine learning techniques for

formula evaluation have shown promise but often fall short in integrating semantic

understanding, which is particularly crucial for the nuanced evaluation of axioms

[284, 281].

As knowledge structures continue to find new applications and grow in complexity,
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the need for automated and scalable methods for formula evaluation, including ax-

ioms, becomes increasingly urgent [17, 206]. This thesis aims to address this pressing

need by employing active learning techniques for the discovery and evaluation of log-

ical formulas, with a special emphasis on axioms. Our approach seeks to contribute

to more robust, transparent, and adaptive systems.

1.2 Evaluating Logical Formulas Through Machine Learning

1.2.1 Problem Statement

In the realm of semantic Web and knowledge acquisition, the efficient evaluation

of candidate logical formulas, particularly axioms, remains a significant challenge.

Traditional approaches to validating these axioms often involve computationally in-

tensive reasoning processes, which can be impractical for large-scale knowledge bases.

The integration of machine learning with symbolic reasoning proposes a promising

avenue to revolutionize this process. This research seeks to address the bottleneck in

knowledge acquisition by developing a method to efficiently and accurately evaluate

candidate axioms using observed facts, thereby facilitating their automatic discovery.

1.2.2 Research Questions

The study is driven by the following key research questions:

1. How can machine learning be effectively integrated with symbolic reasoning to

improve the evaluation process of candidate logical formulas, especially axioms?

• This question explores the synergy between machine learning algorithms

and symbolic reasoning techniques to create a more efficient evaluation

process for axioms.

2



2. What role do observed facts play in the evaluation of candidate axioms, and how

can they be optimally utilized in this context?

• This question aims to understand the significance of observed facts in the

evaluation process and seeks to identify the best practices for their appli-

cation.

3. Can a predictive model be developed to assess the compatibility and consistency

of candidate axioms with existing knowledge bases, and how can this model re-

duce the computational demands of traditional reasoning?

• The focus here is on creating a predictive model that can accurately assess

candidate axioms, thereby reducing the reliance on computationally heavy

traditional reasoning methods.

4. How can we ensure the scalability of these models, especially when dealing with

large and complex knowledge representations?

• This question delves into optimizing machine learning models for scalabil-

ity, ensuring they effectively handle large and complex knowledge bases

without performance loss. The aim is to develop robust models that main-

tain efficiency and accuracy as the scale and intricacy of data increase.

5. How can active learning be employed to enhance the efficiency and accuracy of

the machine learning algorithm in the context of axiom evaluation?

• This question investigates the application of active learning strategies to

improve the machine learning algorithm, particularly in terms of efficiency

and accuracy in the evaluation of axioms.
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6. What are the implications of this research for the fields of automated reasoning,

natural language processing, bioinformatics, and automated theorem proving?

• This question seeks to explore the broader impact and potential applica-

tions of the research in various related fields.

The answers to these questions aim to contribute significantly to the field of knowledge

discovery, particularly in the semantic Web, by paving the way for more sophisticated

and autonomous axiom evaluation processes.

1.3 Contributions of this Thesis

This thesis is organized as follows; Chapter 2 provides a comprehensive overview

of all foundational elements used in this thesis. Chapter 3 presents the state of the

art on formula evaluation using machine learning techniques. Chapter 4 introduces

our novel propositional logic formula evaluating model that is built using our novel

model-theoretic similarity measure. Chapter 5 focuses on predicting the score of

atomic candidate OWL class axioms, while Chapter 6 extends this focus to predict-

ing the acceptability of these axioms. Chapter 7 introduces the concept of scalability,

offering a vector-space dimension-reduced approach for formula evaluation. Chap-

ter 8 presents an OWL Class Axiom Score Predictor that incorporates active learning

techniques and handles complex concepts. The final technical chapter, Chapter 9,

provides a novel and powerful model based on our model-theoretic similarity measure

and capable of dealing with complex axioms with the ability of being extended. Chap-

ter 10 concludes the thesis, summarizing the contributions and suggesting avenues for

future research.
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1.4 Published results

The results of this thesis were published or submitted in several international

venues:

• Ballout, A., da Costa Pereira, C., Tettamanzi, A.G.B.: Learning to classify

logical formulas based on their semantic similarity. In: Aydogan, R., Criado,

N., Lang, J., Sánchez-Anguix, V., Serramia, M. (eds.) PRIMA 2022: Principles

and Practice of Multi-Agent Systems - 24th International Conference, Valencia,

Spain, November 16-18, 2022, Proceedings. Lecture Notes in Computer Science,

vol. 13753, pp. 364–380. Springer (2022). doi: 10.1007/978-3-031-21203-1\_22

• Ballout, A., Tettamanzi, A.G.B., Da Costa Pereira, C.: Predicting the score of

atomic candidate OWL class axioms. In: 2022 IEEE/WIC/ACM International

Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-

IAT). pp. 72–79 (2022). doi: 10.1109/WI-IAT55865.2022.00020

• Ballout, A., da Costa Pereira, C., Tettamanzi, A.G.B.: Predicting the accept-

ability of atomic candidate OWL class axioms. In: 2023 IEEE/WIC Interna-

tional Conference on Web Intelligence and Intelligent Agent Technology (WI-

IAT). pp. 339–345 (2023). doi: 10.1109/WI-IAT59888.2023.00055

• Ballout, A., da Costa Pereira, C., Tettamanzi, A.: Scalable prediction of atomic

candidate OWL class axioms using a vector-space dimension reduced approach.

In: Proceedings of the 16th International Conference on Agents and Artificial

Intelligence - Volume 2: ICAART. pp. 347–357. INSTICC, SciTePress (2024).

doi: 10.5220/0012384200003636

• Ballout, A., da Costa Pereira, C., Tettamanzi, A.: OCASP OWL Class Axiom
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Chapter 2

BACKGROUND

The field of automated logical formula evaluation intersects multiple disciplines,

each contributing vital methods and perspectives that inform current approaches.

This chapter aims to provide a comprehensive overview of the key areas of knowledge

and techniques that underpin this interdisciplinary domain. We begin by exploring

the foundational concepts in knowledge representation, including Knowledge Graphs,

RDF, Ontologies, and OWL. Next, we delve into the logical frameworks that serve

as the basis for formula representation and evaluation, such as propositional and de-

scription logics. Vector space approaches, often used for comparing and evaluating

formulas, are discussed subsequently. The chapter also covers various formula gen-

eration methods, followed by traditional formula evaluation techniques. The use of

machine learning has recently emerged as a promising approach to formula evalua-

tion, offering the benefits of scalability and adaptability. We review general machine

learning techniques commonly used in the field. This overview serves as a prelude to

the challenges and contributions presented in the remainder of this thesis.

2.1 Knowledge Representation

Knowledge representation serves as core constituent of any intelligent system,

providing the foundational structures upon which complex reasoning tasks are per-

formed. Over the years, various frameworks and paradigms have been developed to

efficiently represent, store, and manipulate knowledge. This section aims to cover

some of the most widely-used knowledge representation schemes in the context of

automated formula evaluation.
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We begin by discussing Knowledge Graphs, a flexible and intuitive representation

model that has found applications in a wide range of domains from natural language

processing to search engines [9, 43, 321]. Following this, we delve into the Resource

Description Framework (RDF), a standard model for data interchange that has been

endorsed by the World Wide Web Consortium (W3C) [296, 272].

Ontologies represent another critical aspect of knowledge representation, often

serving as the backbone for complex knowledge-based systems. We examine the role

of ontologies in providing a shared and common understanding of a domain [271].

Finally, we explore the Web Ontology Language (OWL), a semantic markup language

for publishing and sharing ontologies on the World Wide Web [367, 366].

Each of these knowledge representation methods offers unique advantages and

limitations, especially when it comes to the evaluation of logical formulas. The sub-

sequent subsections provide a detailed examination of these paradigms, setting the

stage for their application in automated formula evaluation. Figure 2.1 represents the

components of this section and their interactions.

2.1.1 Knowledge Graphs and RDF

Knowledge Graphs (KGs) have emerged as a powerful tool for organizing and

utilizing information in a multitude of applications, ranging from enhancing search

engines to powering question-answering systems and product recommendation engines

[167, 174]. At their core, KGs represent facts in the form of triples, specifically

(subject, predicate, object). In this representation, the subject and object denote

entities from the real world, while the predicate serves as the relationship connecting

these entities.

The essence of a KG lies in its graph-based structure, where nodes represent

entities and edges represent relationships between them. This allows for a highly
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Figure 2.1: Detailed components and interactions of the Knowledge Representation

section.

Knowledge Graphs (KG)

RDF

Ontologies OWLSPARQL

Node Description

Knowledge Graphs (KG) Graphical representation of structured knowledge

RDF Resource Description Framewor a standard for web-based KGs

Ontologies Formal naming and definition of types, properties, and interrelationships

OWL Web ontology language based on Description Logic

SPARQL Query language for RDF

flexible and rich representation of complex interconnected data. Unlike traditional

databases, the relationships between nodes in a KG can vary, offering the capacity to

capture the nuanced interactions between entities [166].

The Resource Description Framework (RDF) [89] serves as one of the foundational

technologies for representing KGs on the web. It provides a standardized model for

data interchange and has been widely adopted for constructing KGs, especially in

the context of the Semantic Web. The Semantic Web itself is an extension of the

World Wide Web and aims to make data across the Web understandable and usable

by machines. It uses a variety of standards, including RDF, to achieve this goal [368].

Linked Data, a subset of KGs, offers a specific method for publishing structured
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data on the web, making it both human-readable and machine-readable [42]. One

of the core principles of Linked Data is that it should be freely accessible and non-

proprietary, thereby promoting open access to information. This philosophy aligns

well with the broader goals of the Semantic Web and has implications for how KGs

are used in various applications [3, 120, 294].

The ability of KGs to represent complex relationships in a structured yet flexible

manner makes them highly valuable for tasks that require a deep understanding of

entities and their interconnections. This includes, but is not limited to, natural

language processing [315], social network analysis [108], and, pertinent to this thesis,

the evaluation of logical formulas [30, 72, 181].

2.1.2 Ontologies and OWL

Ontologies serve as a cornerstone in the realm of knowledge representation, pro-

viding a formal framework for organizing and sharing domain knowledge [361]. Unlike

databases or Knowledge Graphs, ontologies go beyond merely storing data; they cap-

ture the semantics, or the "meaning," of the data. This is achieved by defining the

relationships, constraints, and rules for the entities within a particular domain [84].

An ontology typically consists of two main components: the TBox and the ABox.

The TBox (Terminological Box) contains the terminological data, defining the classes

and the relationships between them. It specifies the ontology’s schema, including

class hierarchies and property constraints [93, 304]. The ABox (Assertional Box), on

the other hand, contains the assertional data that populates the ontology. It consists

of instances of the classes defined in the TBox and specifies the relationships between

these instances [93, 304].

Together, the TBox and ABox allow ontologies to capture complex relationships

and rules, making them highly expressive and adaptable to various domains [369].
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They offer advanced features like class inheritance, property restrictions, and logical

reasoning, which are essential for tasks that require a deep understanding of entity

relationships and constraints, such as the automated evaluation of logical formulas

[207, 204].

The power of ontologies is perhaps best demonstrated through the Web Ontology

Language (OWL). OWL is a semantic markup language designed to represent rich

and complex knowledge about things, groups of things, and the relations between

them [94, 389]. It extends the foundational principles of RDF and builds upon them

to offer a more expressive framework, allowing for characteristics like data types,

classes, properties, and more [57].

Due to the evolving needs of complex applications and to address limitations in

the original OWL standard, OWL 2 was introduced [365]. OWL 2 provides several

enhancements over its predecessor, including new data types, property chain inclu-

sions, and richer expressivity features like keys and qualified cardinality restrictions

[366, 254]. These extensions make OWL 2 more adaptable to a wider range of prob-

lems and more efficient in terms of reasoning [298, 332].

Both OWL and OWL 2 offer various profiles tailored for different use-cases. For

example, OWL DL is optimized for reasoning, whereas OWL Lite aims for simpler

classifications and constraints. Similarly, OWL 2 has profiles like OWL 2 EL, which

is designed for ontologies with large numbers of properties and classes [195].

The integration of ontologies and OWL standards into knowledge systems provides

a robust framework for semantically rich knowledge representation. This is especially

valuable in scenarios requiring an in-depth understanding of complex entity relation-

ships, such as the evaluation of logical formulas [91]. Their role in capturing complex

semantics makes them indispensable tools in the research and development of auto-

mated formula evaluation methods.
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2.1.3 Querying with SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) serves as the standard

query language for querying RDF-based data stores, including Knowledge Graphs

and ontologies [372]. It provides the means to extract, manipulate, and modify data

within RDF triple stores, making it an indispensable tool in the realm of knowledge

representation and Semantic Web technologies [157, 317].

The language offers various forms of queries, such as ‘SELECT‘, ‘ASK‘, ‘DE-

SCRIBE‘, and ‘CONSTRUCT‘, each designed for specific types of data retrieval and

manipulation [157]. SPARQL also supports more advanced features like federation,

allowing for queries distributed over multiple data stores [8, 82, 121].

One of the significant advantages of SPARQL is its ability to perform semantic

queries. This means it can understand the underlying semantics defined in ontologies

and can execute complex queries that take into account the relationships, constraints,

and rules defined in the ontology. This capability is particularly useful for tasks like

automated logical formula evaluation, where understanding the semantic context can

be critical.

As RDF and OWL constructs are often used in the creation and representation

of Knowledge Graphs and ontologies, SPARQL serves as a natural fit for querying

these structures. Its flexibility and expressiveness make it an ideal choice for a wide

range of applications, from simple data retrieval to complex semantic reasoning tasks

[50, 60, 136, 147, 251, 385].

Alongside the core functionalities of SPARQL, the effectiveness of this query lan-

guage is further amplified through various SPARQL engines and endpoints. These

engines are specialized software systems designed to process SPARQL queries and

return results from RDF data stores. Some notable SPARQL engines include Apache
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Jena Fuseki, Virtuoso, and Blazegraph, each offering unique features and optimiza-

tions. Apache Jena Fuseki is renowned for its compliance with SPARQL standards

and ease of integration with Jena-based applications [19, 61]. Virtuoso, on the other

hand, is recognized for its high performance and scalability, particularly in dealing

with large datasets [115]. Blazegraph has gained attention for its high-speed query

processing, especially in graph analytics and network data [347, 351].

SPARQL endpoints play a crucial role in facilitating access to RDF data over

the web. These endpoints, essentially Web services, allow users to submit SPARQL

queries and retrieve results via standard HTTP requests. Public SPARQL endpoints

have become a valuable resource in the Semantic Web community. Examples include

DBpedia’s SPARQL endpoint, which provides access to a vast array of structured data

extracted from Wikipedia [214], and Wikidata Query Service, offering an extensive

query interface for Wikidata’s open knowledge base [364]. The Linked Open Data

cloud also hosts numerous SPARQL endpoints, enabling users to explore and interlink

a variety of datasets across different domains [46, 226].

These engines and endpoints exemplify the practical implementation of SPARQL

in diverse contexts. They not only serve as crucial tools for querying RDF data

but also demonstrate the adaptability and reach of SPARQL in handling web-based,

distributed, and large-scale datasets. Their continuous evolution and improvement

reflect the growing importance of SPARQL in the realm of data querying and the

Semantic Web.

In summary, SPARQL provides a robust framework for querying RDF-based

knowledge structures, supporting everything from basic data retrieval to advanced

semantic queries. Its role is crucial for any research or application that relies on intri-

cate querying of Knowledge Graphs, ontologies, or any RDF-based data structures,

including the field of automated formula evaluation [225].
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2.2 Formal Logic and Logical Formulas

Formal logic plays an instrumental role in the Computer Science and Artificial In-

telligence, offering a rigorous mathematical foundation for reasoning about truth and

falsehood [292]. While it originates from the philosophical study of reasoning and ar-

gumentation, formal logic has found extensive applications in modern computational

systems, including knowledge representation, database querying, and automated the-

orem proving [45, 378, 137, 250, 327]. It provides the building blocks for constructing

logical formulas, which are mathematical expressions that encapsulate specific state-

ments or conditions [227, 311, 112, 113, 323].

In the context of this research, understanding the nuances of formal logic is crucial,

as the primary focus revolves around the automated evaluation of logical formulas.

These formulas can range from simple propositional statements to more complex

quantified expressions, each with its own set of rules, syntax, and semantics. The

ability to accurately evaluate these formulas is at the core of various technologies

and applications, including but not limited to, knowledge graphs, ontologies, and

intelligent systems [77, 253, 327].

The following subsections will offer a detailed examination of various types of

formal logic systems, such as propositional logic, first-order logic, and description

logic. Table 2.1 provides an overview of Formal Logic Systems used in this thesis

including Extensions, Operators, and Sample Formulas. Special attention will be

given to OWL profiles, which are subsets of the OWL language optimized for specific

computational and reasoning tasks. We will also introduce Herbrand semantics, a

key concept in understanding the semantics of predicate logic, and its implications

for logical formula evaluation. Finally, the section will explore the critical role of

logical formulas and axioms in structured knowledge systems [338, 179, 118, 117].
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By the end of this section, the reader should have a robust understanding of the

various logical systems and how they relate to the task of automated formula evalua-

tion. This foundational knowledge will be pivotal for appreciating the challenges and

methods discussed in later chapters.

Logic System Extensions Operators Sample Formula

Propositional

Logic

N/A ∧,∨,¬ p ∧ ¬q

First-Order Logic N/A ∧,∨,¬,∀,∃ ∀x ∶ P (x) ∨ ¬Q(x)

Description Logic SHOIQ, SHOIN ¬,⊓,⊔,⊑,≡

,∀R.C,∃R.C, etc.

A ⊓ ∃R.B

OWL (Class Ax-

ioms)

OWL2 Object Properties,

Class Expressions,

etc.

Human ≡ Animal⊓

∃hasLegs.Two

Table 2.1: Overview of Formal Logic Systems used in this thesis including Extensions,

Operators, and Sample Formulas.

2.2.1 Propositional Logic

Propositional logic, also known as zeroth-order logic, forms the foundation upon

which more complex logical systems are built [297]. At its core, propositional logic

deals with propositions, which are statements that can be either true or false, but not

both. These propositions are manipulated using logical connectives such as ‘AND’ (∧),

‘OR’ (∨), ‘NOT’ (¬), ‘IMPLIES’ (→), and ‘EQUIVALENT’ (↔) to form compound

propositions or logical formulas [158].

One of the key merits of propositional logic is its simplicity. The syntax and
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semantics are straightforward, making it easier to implement automated reasoning

systems based on it [130]. However, the simplicity comes at a cost: propositional

logic is not expressive enough to capture more complex relationships between entities

or to represent statements that involve quantifiers, such as ‘for every’ or ‘there exists’

[386].

In automated formula evaluation, propositional logic often serves as a starting

point or a simplified model for testing algorithms and methods [158]. While it may

not capture the richness of the domain being modeled, it offers a computationally less

intensive way to evaluate the validity and soundness of logical formulas [354].

Despite its limitations, propositional logic provides the building blocks for higher-

order logics and specialized logical systems like description logic, thereby maintaining

its relevance in the study and application of formal logic [384].

2.2.2 First-Order Logic

First-Order Logic (FOL), often referred to as predicate logic or predicate calculus,

extends the capabilities of propositional logic by introducing quantifiers and predi-

cates [67, 309]. While propositional logic deals with atomic propositions that are

either true or false, FOL provides a means to express more complex relationships by

allowing quantification over variables and the use of predicates to represent properties

of or relationships between entities [160].

The primary symbols introduced in FOL are the universal quantifier ∀ (read as

"for all") and the existential quantifier ∃ (read as "there exists"). These quantifiers

allow for the expression of general statements like "for all humans, they are mortal"

or specific claims like "there exists a human who is a philosopher" [283].

Predicates, on the other hand, are statements whose truth value depends on their

arguments. For example, the predicate IsHuman(x) might be true if x is a human and
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false otherwise. By combining predicates with quantifiers, FOL can express intricate

statements about the world that are beyond the expressiveness of propositional logic

[141].

First-Order Logic is one of the most widely studied and used forms of logic in

computer science, artificial intelligence, and formal methods [53]. Its expressiveness

makes it suitable for a variety of tasks, from database querying and formal verification

to natural language processing and knowledge representation [230, 343, 232, 344, 375,

132].

However, the increased expressiveness of FOL comes with computational chal-

lenges. Certain problems in FOL, such as determining the validity of a formula,

are undecidable, and even those that are decidable can be computationally intensive

[39, 31, 183]. Despite these challenges, FOL remains a cornerstone in the realm of

formal logic and a crucial tool for researchers and practitioners aiming to model and

reason about the world in a rigorous manner [22, 205, 131, 362].

2.2.3 Description Logic and OWL Profiles

Description Logic (DL) is a family of formal knowledge representation languages,

tailored for expressing and reasoning about domain knowledge [26]. While grounded

in the principles of First-Order Logic (FOL), DL is designed with specific constructs

that ensure decidable reasoning over ontologies, making it particularly suitable for

applications where tractability is of utmost importance [217, 274, 357].

Over the years, DL has seen various extensions, each enhancing its expressive

power to cater to different modeling needs. For instance:

• ALC: This is the foundational DL, encompassing basic constructs like conjunc-

tion, negation, and universal quantification [24].
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• SHOIN : Building upon ALC, this extension introduces transitive roles, inverse

roles, and number restrictions, forming the basis for OWL DL [143].

• SHOIQ: A further enhancement of SHOIN , SHOIQ incorporates qualified

number restrictions [143].

The evolution of these DL extensions represents a careful balance between expres-

siveness and computational complexity. As we progress from basic variants like ALC

to more expressive ones such as SHOIQ, the reasoning tasks inherently become more

resource-intensive, demanding more sophisticated algorithms and tools [25].

The Web Ontology Language (OWL) and its refined version, OWL2, are deeply

rooted in DL, devised to encapsulate rich and intricate knowledge structures [196].

Both OWL variants offer distinct profiles, optimized for various reasoning tasks and

computational trade-offs. For instance, OWL2 introduces profiles like OWL 2 EL,

OWL 2 QL, and OWL 2 RL, each tailor-made for specific application scenarios and

performance considerations [191].

Together, DL and its extensions, in conjunction with OWL, remain instrumental

in modern knowledge representation, fostering robust and sophisticated modeling and

reasoning mechanisms for diverse domains [59, 235, 224, 56].

2.2.4 Model Theoretic Semantics

Model theoretic semantics, a branch of mathematical logic, offers a framework

for interpreting and understanding the meaning of logical formulas based on their

models [177, 307]. It is a cornerstone in the field of formal semantics, underpinning

the interpretation of languages, from natural languages to programming and logical

languages.

In model theoretic semantics, the meaning of a sentence or formula is determined
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by its truth-value in a model. A model, in this context, is a structured set that includes

a domain of individuals and an interpretation function that assigns meanings to the

symbols in the language. This approach allows for a rigorous and formal analysis of

the semantics of logical statements, enabling the evaluation of their truth or falsity

under various interpretations [15, 40].

Example: Consider the logical statement "All swans are white." In model the-

oretic semantics, this statement is evaluated in the context of a model that defines

what ’swans’ and ’white’ refer to, and what it means for a swan to be white. Different

models might lead to different evaluations of the statement’s truth-value, reflecting

the variability in interpretation inherent in language.

Model theoretic semantics is particularly relevant in the fields of computer sci-

ence and artificial intelligence, especially in logical formula evaluation. It provides a

systematic way to deal with the semantics of programming languages, enabling the

analysis of program correctness, and the design of language features. In artificial

intelligence, it aids in the interpretation of knowledge representations and the de-

velopment of reasoning algorithms that operate based on the meanings assigned to

symbols and constructs [312, 203, 162].

In conclusion, model theoretic semantics offers a powerful and versatile tool for

understanding and interpreting logical formulas across various domains. Its applica-

tion in the evaluation of logical formulas is of particular importance in this research,

providing a robust framework for dealing with the complexities and nuances inherent

in formal languages and systems [303, 193].

2.2.5 Herbrand Semantics

Herbrand Semantics, named after Jacques Herbrand, is a foundational concept in

the realm of predicate logic and automated theorem proving. This semantics provides
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a method to represent and reason about the models of predicate logic formulas with-

out delving into the intricacies of the underlying domain or universe as is the case

with tarksian semantics [289]. In essence, it reduces the complexity of reasoning in

predicate logic by constraining the universe to a set of terms derived from the formula

itself.

The central components of Herbrand Semantics are the Herbrand Universe and

the Herbrand Base [163]:

• Herbrand Universe (HU): This refers to the set of all ground terms that can

be formed using the function symbols and constants present in a given formula.

If the formula has no constants, a special constant is introduced to ensure a

non-empty universe.

• Herbrand Base (HB): Comprising the set of all possible ground atoms that

can be constructed using the predicates and terms from the Herbrand Universe,

the Herbrand Base represents the potential atomic sentences of the formula.

An essential property of Herbrand Semantics is that if a first-order formula has

a model, then it also has a Herbrand model, which is a model whose domain is the

Herbrand Universe of the formula [209, 247]. This property is pivotal for automated

theorem proving, as it allows for the transformation of first-order logic reasoning tasks

into propositional logic tasks, which are computationally more tractable.

In the broader context of formula evaluation and theorem proving, Herbrand Se-

mantics plays a pivotal role. By providing a mechanism to ground complex logical

formulas into a finite and more manageable set of terms and atoms, it facilitates more

efficient reasoning and proof search, especially in automated theorem proving systems

[111].

Herbrand Semantics, with its unique approach to modeling and reasoning, offers
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valuable insights and tools for researchers and practitioners aiming to tackle intricate

problems in formal logic, knowledge representation, and automated reasoning [314,

83].

2.2.6 Fuzzy Logic

Fuzzy logic, a form of many-valued logic, extends classical logic by introducing

the concept of partial truth — truth values between "completely true" and "com-

pletely false" [382]. It was developed by Lotfi Zadeh in the 1960s as a way to model

the uncertainty and vagueness inherent in human reasoning. Fuzzy logic provides a

mathematical framework for dealing with imprecise information, making it particu-

larly useful in fields where binary distinctions (true/false, yes/no) are not significant.

At its core, fuzzy logic is characterized by its use of fuzzy sets, which are classes

with a continuum of grades of membership. This contrasts with classical set theory,

where an element either belongs to a set or does not. In fuzzy set theory, member-

ship is expressed with a degree ranging from 0 to 1, allowing for a more nuanced

representation of concepts [186].

Example: Consider the concept of "tallness." In classical logic, a person might

be classified as either "tall" or "not tall." Fuzzy logic, however, allows for degrees of

tallness. A person might have a membership value of 0.8 in the set of "tall people,"

reflecting their relative height in a more flexible manner.

The methods of fuzzy logic involve the manipulation of these fuzzy sets and the

application of fuzzy operators (like AND, OR, NOT) that handle partial truth values.

Fuzzy logic systems often employ a set of rules (fuzzy if-then rules) to describe how

to process inputs and compute outputs, making them highly adaptable for various

applications [241, 88, 288].

In practical applications, fuzzy logic has been widely adopted in control systems,
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decision-making, pattern recognition, and artificial intelligence. For instance, it is

used in household appliances like washing machines and air conditioners to provide

more efficient and human-like control. In artificial intelligence, fuzzy logic enhances

the ability to make decisions based on vague or incomplete information, mimicking

human reasoning more closely [276, 329, 358]

In the context of logical formula evaluation, fuzzy logic offers a valuable approach

for handling uncertainty and ambiguity. It allows for the evaluation of formulas under

conditions where information is incomplete or imprecise, providing a more realistic

and flexible framework compared to traditional binary logic systems. This flexibility

is particularly useful in areas such as knowledge representation and natural language

processing, where the binary true/false paradigm is often too restrictive to capture

the subtleties of human language and thought [65, 81].

Overall, fuzzy logic provides an essential toolset for dealing with complexity and

uncertainty in various domains. Its ability to model degrees of truth and handle

imprecise information makes it a powerful approach in both theoretical and practi-

cal applications, offering significant advantages in fields ranging from engineering to

artificial intelligence [134].

2.2.7 Logical Formulas and Axioms

In the vast domain of formal logic and knowledge representation, logical formu-

las serve as the fundamental constructs that allow for the expression, modeling, and

reasoning of propositions, facts, and relationships [339, 340]. These formulas, repre-

sented in symbolic form, embody the core semantics and syntax of a logical system,

providing a formal mechanism to capture and deduce knowledge [252].

A logical formula typically consists of [158, 322]:

• Atoms: The basic units that represent propositional variables or predicate
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symbols applied to terms.

• Connectives: Symbols such as ∧ (AND), ∨ (OR), and ¬ (NOT) that allow for

the composition of complex formulas from simpler ones.

• Quantifiers: Symbols like ∀ (for all) and ∃ (there exists) which enable the

expression of general statements about a domain.

Building upon logical formulas, axioms hold a special place in formal systems.

Axioms are foundational formulas that are accepted as true without requiring proof

within the system [293]. They set the groundwork, serving as starting points upon

which other truths (theorems) can be derived using rules of inference. In essence,

axioms are the bedrock principles or assumptions of a logical system or theory [44].

Transitioning from traditional logical systems to the realm of ontology languages,

OWL (Web Ontology Language) introduces its own set of axioms tailored for knowl-

edge representation and reasoning in the Semantic Web [94, 389]. These OWL axioms

define classes, properties, and their interrelationships within a domain.

Focusing on OWL Class axioms, they serve as the building blocks of ontological

modeling [254]. An OWL Class axiom typically comprises:

• Class Expressions: Represent sets of individuals (entities) sharing common

characteristics. They can be atomic or complex, involving constructs like union,

intersection, and complement.

• Property Expressions: Describe the relationships between individuals or be-

tween individuals and data values. These can be object properties, data prop-

erties, or annotation properties.

• Constraints: Define conditions or restrictions on class or property expressions,

such as cardinality constraints, disjointness, and equivalence.
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The expressiveness of OWL, especially when modeling Class axioms, allows for

the capture of intricate domain knowledge, ranging from simple categorizations to

complex hierarchical relationships and constraints [110].

In the context of automated reasoning and formula evaluation, understanding

both traditional logical formulas and specialized constructs like OWL Class axioms

is indispensable. As this thesis delves into the realm of evaluating such formulas,

especially axioms, using machine learning techniques, a solid grasp of their intricacies,

semantics, and significance is crucial for appreciating the challenges and contributions

of the subsequent chapters.

2.3 Formula Generation Methods

In the domain of knowledge representation and reasoning, the task of generating

logical formulas plays a pivotal role in defining, constraining, and extending knowledge

bases and ontologies [184, 393]. As structured knowledge repositories grow in size

and complexity, the manual crafting of logical formulas becomes a daunting, if not

impossible, endeavor. This underscores the need for automated methods to generate

these formulas efficiently and accurately.

Automated formula generation not only accelerates the development of knowledge

bases but also aids in tasks like hypothesis testing, knowledge discovery, and ontology

enrichment [346, 246, 341]. Various methods, ranging from deterministic generative

techniques to probabilistic and evolutionary algorithms, have been proposed to tackle

this challenge [173, 285, 114, 244]. This section delves into the prominent methods

used for formula generation, highlighting their underlying principles, advantages, and

limitations. Figure 2.2 shows a simple overview of formula generation methods.
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Figure 2.2: Overview of formula generation methods.

2.3.1 Generative Methods

Generative methods serve as foundational techniques in the automated generation

of logical formulas. At their core, these methods rely on predefined rules, patterns,

or templates to produce formulas based on the existing knowledge within a domain

[194, 256]. By exploiting the inherent structure and semantics of the knowledge

base or ontology, generative methods can create formulas that are both syntactically

correct and semantically meaningful [256, 5].

The primary advantage of generative methods is their deterministic nature, en-

suring consistency and repeatability in the generated formulas [182]. However, their

deterministic approach can also be a limitation when exploring novel or unexpected

relationships within the knowledge domain. This is because they strictly adhere to the

predefined patterns and may not capture emerging patterns or anomalies [208, 335].

In practice, generative methods are often combined with other techniques, such as

probabilistic or evolutionary algorithms, to balance their deterministic nature with

the flexibility of more adaptive approaches [103].
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2.3.2 Random Combination

Random combination methods introduce an element of stochasticity in formula

generation. Instead of strictly adhering to predefined patterns, these methods ran-

domly combine elements from a set of logical symbols, entities, and predicates to form

potential formulas [185, 301]. The aim is to explore a vast space of possible formulas

that might not be immediately evident through deterministic methods.

While this approach offers a higher degree of exploratory freedom, it also poses

challenges. The sheer number of possible combinations can lead to a plethora of

formulas, many of which might be nonsensical or irrelevant to the domain [70, 301].

To counteract this, constraints or heuristics are often employed to guide the random

generation process, ensuring that the produced formulas adhere to certain desired

properties or characteristics [185].

Random combination methods are particularly useful in scenarios where the knowl-

edge domain is not well-defined, or when there is a need to discover unexpected rela-

tionships and rules. However, due to their stochastic nature, the results might vary

across different runs, necessitating further validation and refinement of the generated

formulas.

2.3.3 Evolutionary Methods

Evolutionary methods adopt principles from natural evolution, such as mutation,

crossover, and selection, to optimize and generate logical formulas [306]. Contrary

to systematic Level-wise Generate and Test approaches, Evolutionary methods are

heuristic and stochastic. They make use of the notions of mutation and crossover

to manipulate the complexity of formulas. The generated formulas undergo testing

at each level, ensuring that only relevant and valid formulas progress to the next
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level, thereby enabling a guided yet probabilistic exploration of the formula space

[342, 176, 64].

Grammatic Evolution (GE) stands out as a particularly intriguing form of genetic

programming. In GE, formulas are represented as linear genomes, which are then

mapped to production rules dictated by a specific grammar. This ensures that the

generated formulas maintain syntactic correctness and adhere to the structure of

the target logic system. One implementation of GE tailored for generating OWL

axioms is detailed in [268]. Here, OWL axioms are evolved by employing a two-stage

process: an initial generation phase followed by an evolutionary phase. Genomes

undergo mutation, crossover, and selection operations, driven by a fitness function

that evaluates the quality and relevance of the axioms.

The fitness scoring process, which evaluates the generated formulas, plays a piv-

otal role in guiding the evolutionary search towards more meaningful and accurate

constructs. Efficient and accurate formula evaluation can significantly expedite the

formula generation process. This is especially crucial in domains with vast search

spaces, where the computational cost of evaluating a large number of candidate so-

lutions can be prohibitive [146, 210, 374, 390].

Both Level-wise and GE approaches offer unique strengths. While Level-wise

provides a structured progression, GE’s flexible exploration of the solution space,

coupled with the significance of the fitness function, makes it particularly suited for

intricate domains [212, 268, 64]. The need for effective formula evaluation techniques,

as highlighted in GE’s fitness scoring process, underscores the importance of the

upcoming sections, which delve deeper into formula evaluation methods.
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2.4 Formula Evaluation Techniques

To streamline and enhance decision-making processes in various scientific and

engineering domains, we require the automated generation of logical formulas. Au-

tomatically generating logical formulas allows for dynamic systems adaptation, auto-

mated reasoning, and supports artificial intelligence systems in performing complex

tasks [291, 62]. Additionally, it addresses the scalability issues associated with manu-

ally crafting these formulas, making it possible to handle large datasets and complex

decision-making scenarios efficiently. Achieving this makes computational models that

can autonomously derive meaningful insights from vast amounts of data possible.

The automated generation of logical formulas, whether through evolutionary meth-

ods or other means, necessitates a robust evaluation mechanism to gauge their valid-

ity, relevance, and quality. Evaluating the quality of a formula is a multifaceted task,

encompassing various metrics and methods. While the syntactic correctness of a for-

mula can be easily verified, its semantic relevance, applicability, and utility within a

specific domain or context are more challenging to ascertain. This section delves into

various techniques employed to evaluate logical formulas, highlighting their strengths,

limitations, and applicability. At the end of the section, we provide a summarized

comparison of the different evaluation methods in Table 2.2.

2.4.1 Manual Expert Evaluation

Manual expert evaluation holds a pivotal position in the assessment of logical for-

mulas. Trusted for its accuracy, this method relies on domain experts to gauge the

quality, relevance, and validity of a formula within a specific context [261]. Experts

bring domain-specific knowledge, intuition, and experience that can significantly en-

hance the evaluation process.
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The process typically involves presenting the generated formulas to experts who

then assess them based on predefined criteria. These criteria may encompass the for-

mula’s syntactic correctness, semantic relevance, consistency with existing knowledge,

and potential utility in applications [295]. Moreover, experts can identify nuances and

subtleties in the formulas that might be overlooked by automated evaluation methods.

While manual expert evaluation offers unparalleled accuracy, it has its challenges.

The process can be time-consuming, especially when evaluating a vast number of

formulas. Subjectivity is another concern, as different experts might have varying

opinions on the same formula. Additionally, the limited availability of domain experts

can pose scalability challenges for extensive evaluations [229].

Nevertheless, manual expert evaluation serves as a valuable benchmark. It is often

used alongside automated methods to validate their results and provide insights into

areas of improvement [261, 295, 229]. In this thesis, manual expert evaluation serves

as the golden standard and ground truth against which methods are benchmarked.

This ensures the reliability of our developed techniques and provides a comprehensive

assessment framework. By comparing the outcomes of automated evaluations with

expert judgments, the thesis identifies discrepancies and refines the computational

models accordingly. This method enhances the validity of the research findings and

provides a solid foundation for future explorations.

2.4.2 Data-Driven Approaches

In the realm of logical formula evaluation, data-driven approaches primarily en-

compass methods rooted in statistics, probability, and measures of uncertainty or

possibility. These methods leverage empirical evidence, often in the form of instance

data, to make informed judgments about the validity or acceptability of a given for-

mula.
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Statistical Methods: Statistical techniques utilize data to infer the likelihood of a

formula being true. By analyzing the distribution and frequency of certain patterns or

occurrences in the data, these methods provide a quantitative measure of a formula’s

validity [260].

Probabilistic Methods: Probabilistic approaches go a step further, for example

in association rule mining probabilities are assigned to the truth values of formulas.

These probabilities are derived from the observed data, and they offer a measure

of the formula’s certainty or confidence. Such methods are particularly useful when

dealing with incomplete or noisy data, where absolute determinations are challenging

[1, 2, 124, 52].

Beyond confidence-based evaluations, probabilistic methods in logical formula

evaluation also include Bayesian inference and Markov models, which provide a frame-

work for incorporating uncertainty in predictive modeling. Bayesian methods, for

instance, update the probability estimate for a formula as more evidence becomes

available, allowing for dynamic adjustments based on new data [231].

Markov models, on the other hand, assess the likelihood of sequential or temporal

transitions between different logical states, making them ideal for analyzing time-

series data or scenarios where the system’s past state influences its future state.

These models can capture complex dependencies and sequences in data, offering a

nuanced view of the formula’s validity over time [58, 180].

Together, these probabilistic techniques enrich the toolkit for evaluating logical

formulas by providing robust mechanisms to handle uncertainty, learn from data, and

adapt to new information, thereby enhancing the predictive capabilities and appli-

cability of automated logical reasoning. These approaches are particularly powerful

in domains where data continuously evolve, such as in bioinformatics and financial
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forecasting.

Possibilistic Methods: Unlike probabilistic methods that deal with likelihood,

possibilistic approaches focus on degrees of possibility and necessity [383, 105]. One

key aspect of possibilistic methods is their ability to handle uncertainty in a different

way compared to probabilistic approaches [270]. They are particularly relevant when

the available data is imprecise or vague. While not as widely used as probabilistic

techniques, possibilistic methods provide a valuable alternative perspective in situa-

tions where the traditional probabilistic models may not be as effective or applicable

[270, 10, 63].

2.4.3 Probability-Based vs Possibility-Based Evaluation

The evaluation of logical formulas, especially in uncertain and complex domains,

often involves managing uncertainty. Two primary approaches to deal with this un-

certainty are probability-based and possibility-based methods.

Probability-Based Evaluation

Probability theory is a well-established mathematical framework for representing and

reasoning with uncertain information. In the context of formula evaluation:

• Probabilistic methods assign a probability value to the truth of a formula based

on prior information, evidence, or observed patterns [140].

• These methods often rely on Bayesian inference, likelihood ratios, and other

probabilistic techniques to update beliefs about the truth of a formula when

new evidence is available [308].

• The major advantage of probabilistic methods is their rigorous mathematical
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foundation, which allows for precise computations and inferences. However,

they require a well-defined probability distribution, which might not always be

available or easy to determine [155, 270, 348].

Possibility-Based Evaluation

Unlike probability theory, which quantifies uncertainty by assigning likelihoods to

events, possibility theory provides a framework for dealing with different forms of

uncertainty based on the concepts of possibility and necessity. Also, contrary to

probability theory, which quantifies the likelihood of events within a framework as-

suming the total probability of all possible outcomes is one, possibility theory focuses

on the plausibility of events given available information. This distinction makes it

suitable for the evaluation of logical formulas, where the truth of a statement may

not always be determined with probabilistic certainty due to incomplete or imprecise

information [105].

Mathematical Formulation Possibility and necessity are dual measures defined

on a universe of discourse X. For any event A ⊆ X, the possibility Π and necessity

N measures are defined as follows:

• Possibility Measure: The possibility measure is defined by:

Π(A) = sup
x∈A

π(x) (2.1)

where π ∶ X → [0,1] is a possibility distribution function. Π(A) quantifies the

extent to which the data available does not contradict the occurrence of A. It

ranges from 0 (completely impossible, given the data) to 1 (totally possible or

certain given the data).
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• Necessity Measure: The necessity measure is given by:

N(A) = 1 −Π(A) (2.2)

where A is the complement of A. N(A) quantifies the extent to which the data

available confirms the occurrence of A. It ranges from 0 (no confirmation) to 1

(fully confirmed).

Interpretation and Application In the context of evaluating logical formulas,

possibility measures can be particularly useful in situations where data about the

phenomena being modeled is incomplete or imprecise. For instance, in knowledge

representation systems where some relationships may not be fully understood or are

subject to change, possibility theory allows for a flexible and robust evaluation mech-

anism [349, 348].

Example: Consider a scenario in a semantic Web application where we are un-

certain if a particular resource should be classified under a specific category due to

vague definitions. Possibility theory can help evaluate the plausibility of different

classifications without requiring precise probability estimates for each classification.

Both probability-based and possibility-based methods are tailored to specific types

of uncertainty and data conditions. Choosing between them depends on the nature

of the data, the type of uncertainty involved, and the requirements of the task at

hand. For instance, possibility-based evaluation is particularly advantageous in sit-

uations requiring a flexible approach to imprecise information, whereas probability-

based methods might be preferred where events and their likelihoods are well-defined

and quantifiable.
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2.4.4 Tableaux Methods

Tableaux methods are a significant and influential approach in automated reason-

ing, especially in the field of logic and formula evaluation. Originating from proof

theory, these methods have been adapted and applied to a variety of logical systems,

including propositional, first-order, and description logics [28].

Fundamentals of Tableaux Methods: At its core, a tableau method is a form

of decision procedure used for determining the satisfiability of logical formulas. It

involves the construction of a tree-like structure called a tableau, where each branch

represents a possible world or interpretation under which the formula might be true.

The process systematically breaks down complex formulas into simpler components,

making it easier to assess their logical validity [95, 125].

Application in Automated Reasoning: In automated reasoning, tableaux

methods are particularly valued for their intuitive approach to formula evaluation.

They are often used in theorem proving and model checking, where they help in

verifying the correctness of logical statements or programs. Their step-by-step de-

composition makes them a practical tool for understanding the logical structure of

complex formulas [62, 305].

Advantages and Limitations: One of the key advantages of tableaux methods

is their ability to provide counter-examples in cases where a formula is not satisfiable.

This feature is particularly useful for debugging logical errors in formal specifications

[90]. However, these methods can be computationally intensive, especially for for-

mulas with a high degree of complexity or those in expressive logical systems. This

limitation can impact their scalability and efficiency in large-scale applications [20].

Comparison with Other Techniques: When compared to other formula evalu-

ation techniques, tableaux methods stand out for their rigorous and detailed analysis
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of logical constructs [96]. Unlike some probabilistic or data-driven approaches, they

do not rely on statistical models or external data. Instead, they provide a purely log-

ical evaluation based on the intrinsic properties of the formulas themselves. However,

this strength also contributes to their computational intensity, contrasting with more

scalable methods [28, 96].

2.4.5 Logical Reasoners

Logical reasoners are software tools that assist in processing and inferencing tasks

over logical representations such as ontologies. These tools play a crucial role in the

evaluation, validation, and discovery of logical formulas, especially in the context of

knowledge representation systems like OWL ontologies [27, 139].

Reasoners are capable of tackling a range of tasks, following are some of them:

• Consistency Checking: One of the primary functions of a logical reasoner is

to check the consistency of a set of axioms or an ontology. An ontology is con-

sidered consistent if there are no contradictions within its axioms. Consistency

checking ensures the reliability and soundness of the represented knowledge

[328, 381].

• Inference: Logical reasoners can derive new knowledge by inferring implicit

relationships or facts from the given explicit knowledge. This is especially valu-

able in knowledge bases where direct representation of every fact or relation is

infeasible [68, 192].

• Classification: Reasoners can classify or categorize entities based on their

properties and relationships. In the context of ontologies, this involves organiz-

ing classes in a hierarchy based on their defined and inferred subclass relation-

ships [178, 324, 216, 373].
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• Realization: Logical reasoners can determine the most specific classes that an

individual belongs to, given its properties and the ontology’s axioms [279, 363,

333].

Optimization: Over the years, optimizing the performance of logical reasoners

has been a significant research area. Given the complexity of some reasoning tasks,

especially with large and intricate ontologies, efficient algorithms and heuristics are

crucial [373, 171, 59, 14].

Popular logical reasoners include tools like HermiT, Pellet, and FaCT++. These

tools are widely used in the Semantic Web community and have been integral in

various applications ranging from ontology development to data integration [138,

334, 355].

The choice of a particular reasoner often depends on the specific requirements

of the task, the complexity of the ontology, and the desired reasoning capabilities.

While logical reasoners provide robust and reliable evaluation mechanisms, they are

computationally intensive, especially for large-scale or complex knowledge bases. This

underlines the need for alternative or complementary evaluation methods, especially

those that can leverage machine learning techniques for scalability and efficiency [333].

A comparison of different formula evaluation approaches is shown in Table 2.2.
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Approach Strengths Weaknesses

Manual Expert Evaluation
• High accuracy and precision

• Incorporates domain expertise

• Time-consuming

• Not scalable

• Subjective

Statistical Methods
• Scalable

• Empirical

• Can be automated

• Requires large datasets

• Might lack depth in understand-

ing

Probabilistic Methods
• Scalable

• Empirical

• Can handle uncertainty

• Requires probabilistic models

• Can be computationally inten-

sive

Possibilitic Methods
• Empirical

• Can handle uncertainty and

vagueness

• Requires specific models (e.g.,

fuzzy logic)

• Can be complex

Logical Reasoners
• Reliable and robust

• Comprehensive

• Widely accepted in the commu-

nity

• Computationally intensive

• Can be slow for large/complex

ontologies

Table 2.2: Comparison of Different Formula Evaluation Approaches.
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2.5 General Machine Learning Techniques

In this section, we delve into the realm of supervised machine learning, exploring

its various methods and how they contribute to the field of logical formula evaluation.

Machine learning, a pivotal aspect of modern computational research, offers a diverse

toolkit for understanding and processing complex data structures [188, 219].

We begin by discussing the foundational elements of machine learning: regression

and classification. These form the bedrock of many machine learning approaches,

providing a framework for making sense of data and drawing predictions [189, 190].

Our journey through machine learning methods then leads us to explore algo-

rithms like K-Nearest Neighbors (KNN), Random Forests, and Support Vector Ma-

chines. Each of these techniques brings unique strengths and applications, suitable

for different types of data and specific challenges [220, 148, 187, 223].

Equally important in machine learning is the process of feature ranking and selec-

tion, a crucial step in fine-tuning the model’s focus on the most informative aspects

of the data. This practice enhances model efficiency and accuracy [197, 201].

Further, we touch on the concept of active learning. This strategy is particularly

valuable in scenarios where data is limited or labeling is expensive, as it allows models

to actively query for new data, enhancing their learning efficiency [318].

By exploring these general machine learning techniques, we establish a founda-

tion for understanding their application and effectiveness in the evaluation of logical

formulas, a key focus of this thesis.

2.5.1 Regression and Classification

Regression and classification, as depicted in Figure 2.3, form the bedrock of su-

pervised learning techniques in machine learning, each addressing different types of
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Figure 2.3: Regression and Classification.

prediction problems [189, 190]. Regression is used for predicting a continuous out-

come, such as estimating the numerical score of a logical formula based on certain

features. It models the relationship between a dependent variable and one or more in-

dependent variables, using techniques like linear regression or more complex methods

like decision trees and neural networks [151, 218, 149].

Classification, in contrast, is about assigning labels to instances. For example,

in the context of logical formula evaluation, classification models could categorize

formulas as valid or invalid, or even classify them into different types based on their

structure or semantic properties. Common classification algorithms include logistic

regression, support vector machines, decision trees, and neural networks [222, 223,

218, 149].

Both regression and classification have found wide applications in various fields,

including finance, healthcare, and social sciences. In the realm of logical formula eval-

uation, these techniques can be particularly powerful. They can help automate the

process of assessing the validity, relevance, or quality of logical formulas, thereby aid-

ing in tasks like theorem proving, knowledge base completion, and semantic reasoning

[360, 11, 237].
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While regression and classification offer powerful tools for prediction, they are

not without challenges. Selecting the right model, tuning hyperparameters, and

avoiding overfitting are crucial steps in ensuring the effectiveness of these techniques.

Moreover, the quality and quantity of the training data significantly influence the

performance of these models, necessitating careful data preparation and preprocess-

ing [150, 198].

2.5.2 Machine Learning Algorithms

Machine learning algorithms have revolutionized the way we approach complex

computational tasks. In the context of evaluating logical formulas, these algorithms

can be leveraged to gain insights and make predictions that would otherwise be im-

practical or impossible with traditional methods. Here, we delve into some of the

widely used machine learning algorithms, such as K-Nearest Neighbors (KNN), Ran-

dom Forests, Support Vector Machines (SVM), and Neural Networks, and explore

their applications and nuances in the domain of logical formula evaluation. Fig-

ure 2.4 provides a simple visualization of these methods. While Table 2.3 at the end

of this subsection provides a comparison of these methods.
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(a) K-Nearest Neighbors (b) Random Forests

(c) Support Vector Machines (d) Neural Network

Figure 2.4: Overview of Machine Learning Algorithms

K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN), shown in Figure 2.4a, is a simple yet effective algorithm

widely used for classification and regression tasks [220]. It operates on the principle

of feature similarity, where the prediction for a new instance is made based on the

majority vote or average of the ’K’ closest training examples in the feature space.

KNN is particularly useful in scenarios where the decision boundary is irregular, as

it makes no assumptions about the underlying data distribution [356, 359].

In evaluating logical formulas, KNN can be employed to categorize formulas based

on their similarity to known valid or invalid formulas. This approach could be espe-

cially useful in systems where new samples are continually introduced, and a rapid,

approximate assessment is required [359, 277].
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Random Forests

Random Forests are an ensemble learning method, primarily used for classification

and regression [148]. They operate by constructing multiple decision trees, as shown

in Figure 2.4b, during training and outputting the class that is the mode of the

classes (classification) or mean prediction (regression) of the individual trees. Random

Forests are known for their robustness against overfitting, their ability to handle large

datasets with numerous input variables, as well as being potentially explainable [7].

In the realm of logical formula evaluation, Random Forests can be particularly

effective in handling complex and high-dimensional data, providing a more nuanced

understanding of the relationships between different formula components [330, 371,

316].

Support Vector Machines (SVM)

Support Vector Machines (SVM) are powerful supervised learning models used for

classification and regression tasks [223]. They are particularly known for their ability

to create optimal hyperplanes in a multidimensional space, which act as a decision

boundary between different classes. A simple demonstration of this is provided in

Figure 2.4c. SVMs are effective in high-dimensional spaces and are versatile in the

sense that they can be customized with different kernel functions to suit various types

of data [202].

In the evaluation of logical formulas, SVMs are a viable option due to their

exceptional handling of high-dimensional spaces and strong generalization capabil-

ities, which are essential for complex logical reasoning. Their kernel functions en-

able effective management of non-linear relationships, making them highly efficient

and accurate in processing intricate logical structures, even with limited training
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data [377, 376].

Neural Networks

Neural Networks, inspired by the structure and function of the human brain, are a set

of algorithms designed to recognize patterns and interpret sensory data through ma-

chine perception, labeling, and clustering [149]. They are particularly adept at han-

dling non-linear and complex relationships between inputs and outputs. Figure 2.4d

shows a typical structure of a fully connected neural network.

In the context of logical formula evaluation, Neural Networks can be trained to

recognize patterns and structures in formulas, potentially offering insights that go

beyond traditional evaluation methods. Their ability to adapt and learn from new

data makes them particularly suited for dynamic environments where formulas and

their interpretations may evolve over time [275, 287, 299].
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Algorithm Strengths Weaknesses Applications

K-Nearest

Neighbors

(KNN)

• Easy to implement

• Interpretable

• Non-parametric

• Slow on large datasets

• Sensitive to feature scaling

• Saves the entire dataset

• Classification

• Regression

Random Forests
• Robust to overfitting

• Handles high dimensionality

• Good performance on many

problems

• Might be interpreted

• Complex model

• Can be slow to train

• Classification

• Regression

Support Vector

Machines

(SVM)

• Effective in high-dimensional

spaces

• Versatile

• Requires careful tuning

• Not suitable for large datasets

• Classification

• Regression

Neural Networks
• Models nonlinear and complex

relationships

• Good for extremely large

datasets

• Adaptable

• Requires a lot of data

• Can be opaque (black box)

• Classification

• Regression

• Pattern

Recognition

Table 2.3: Comparison of Machine Learning Algorithms
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2.5.3 Feature Ranking and Selection

Feature ranking and selection play a crucial role in machine learning, especially

when dealing with high-dimensional data. These processes are distinct from, yet

sometimes intersect with, dimensionality reduction techniques. Dimensionality re-

duction typically involves transforming or combining features to reduce the total

number of variables. In contrast, feature ranking and selection aim to identify and

preserve the most informative features, without altering the original features them-

selves [201, 152, 200].

The primary goal of feature ranking and selection is to enhance a model’s perfor-

mance by eliminating irrelevant or redundant features, thereby improving accuracy,

reducing overfitting, and decreasing computational costs. These processes can also

enhance model interpretability by simplifying the model structure [197].

Feature selection methods are broadly classified into three categories: filter, wrap-

per, and embedded methods. Each category employs a different strategy for feature

evaluation and selection [197]. Figure 2.5 provides an overview of feature ranking and

selection methods.

Feature Ranking

and Selection

Filter

Methods

Wrapper

Methods

Embedded

Methods

Statistical

Measures

Correlation

Coefficients

Mutual

Information

Forward

Selection

Backward

Elimination

Recursive

Feature

Elimination

LASSO
Decision

Trees

Other

Methods

Figure 2.5: Overview of Feature Ranking and Selection Methods in Machine Learning.
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Filter Methods use statistical measures to assess the importance of features

and are generally independent of any machine learning algorithm [66]. Common

techniques under filter methods include:

• Correlation Coefficients : Measure the linear relationship between two variables.

Features with high correlation to the target variable but low inter-correlation

are preferred [41].

• Mutual Information Gain: Evaluates the reduction in uncertainty for one vari-

able given a known value of another variable. It is particularly useful in cap-

turing nonlinear relationships [41].

• ANOVA (Analysis of Variance): Assesses the difference in means among groups,

helping in identifying features that discriminate effectively between different

classes [273].

• Chi-Square Test : Used for categorical features, this test assesses the indepen-

dence of two distributions, helping to identify features that have a strong asso-

ciation with the target variable [245].

Wrapper Methods involve using a specific machine learning model to assess the

effectiveness of subsets of features. These methods search through the feature space

to find the subset that yields the best model performance, often utilizing techniques

like forward selection, backward elimination, and recursive feature elimination [66].

Embedded Methods integrate feature selection as a part of the model training

process. Methods like LASSO and decision tree algorithms inherently perform feature

selection during model fitting, identifying relevant features based on criteria specific

to each algorithm [66].
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Careful application of feature ranking and selection methods not only improves

model accuracy but also contributes to model interpretability and reduces compu-

tational costs. By eliminating redundant and irrelevant features, they make models

more efficient and scalable as well as easier to understand [201].

2.5.4 Active Learning

Active Learning is a specialized technique in machine learning that strategically

selects the most informative data points for training. It is particularly beneficial

in scenarios where labeled data is scarce or expensive to obtain. By focusing on the

most informative samples, Active Learning aims to maximize model performance with

minimal training data [318]. Figure 2.6 gives an overview of of the Active Learning

process showing its flow and components.

The process of Active Learning involves iteratively selecting samples from an un-

labeled dataset, querying an oracle (typically a human expert) for labels, and subse-

Active Learning Cycle

Model

Strategies

Uncertainty

Sampling

Query-by-

Committee

Dataset Oracle
Samples Querying

Labels

Update Model

Figure 2.6: Overview of the Active Learning Process
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quently updating the model with this new information. This iterative cycle is repeated

until a desired level of performance is achieved or resources are exhausted [318].

There are several strategies for selecting the most informative samples in Active

Learning, including:

• Uncertainty Sampling : This strategy selects samples for which the model has

the lowest confidence in its predictions. The intuition is that learning from

uncertain examples will provide the most significant knowledge gain for the

model [258].

• Query-by-Committee: In this approach, multiple models (the committee) are

trained on the same data, and samples are selected based on the disagreement

among the committee members. The rationale is that disagreement indicates

uncertainty or a lack of consensus, thus highlighting informative samples [320].

• Expected Model Change: This strategy chooses samples that, when labeled, are

expected to bring the most significant change to the current model, indicating

a high potential for learning [55].

• Expected Error Reduction: Here, the focus is on selecting samples that are

expected to most reduce the overall error of the model on the unlabeled data

[302, 259].

• Density-Weighted Methods : These methods consider not only the model’s un-

certainty but also the density of the samples in the feature space, aiming to

select representative samples from dense regions [345, 392, 391].

Active Learning has been successfully applied in various domains such as text

classification, image recognition, and medical diagnosis, where labeled data can be
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particularly costly to obtain. To fully harness the potential of Active Learning, several

key aspects need to be carefully managed. Firstly, it necessitates access to a reliable

oracle for accurate labeling. Secondly, given its iterative process, it can be com-

putationally demanding, requiring efficient resource management. Lastly, to avoid

bias and ensure the robustness of the learning model, the initial training set must

be thoughtfully curated to represent the overall data distribution comprehensively

[233, 262, 352].

In conclusion, Active Learning stands as a powerful tool in the machine learning

arsenal, capable of effectively addressing challenges associated with limited labeled

data. Its strategic data selection process can lead to significant improvements in

model performance, making it a valuable technique for data-efficient learning.

2.6 Vector Space Approaches

Vector space approaches represent a fundamental technique in the field of machine

learning and data analysis, particularly when handling high-dimensional data. These

approaches, encompassing both embeddings and a variety of similarity measures,

provide a means to convert complex data into a format that is more accessible and

interpretable for various algorithms. In the context of logical formula evaluation, these

vector space methods are instrumental in presenting and comparing the attributes of

formulas within a multidimensional framework.

Embeddings and similarity measures, the two main pillars of vector space ap-

proaches, play distinct yet complementary roles. Embeddings translate discrete en-

tities, such as words or logical formulas, into continuous vector spaces, maintaining

their semantic relationships and contextual nuances. Similarity measures, divided

into semantic and non-semantic categories, offer a way to gauge the closeness or dis-

tance between data points in these vector spaces. Semantic measures focus on the
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meaning and context, crucial for understanding the conceptual similarities between

logical formulas. Non-semantic measures, conversely, emphasize the structural or

syntactical aspects of the data.

Similarity matrices represent vector spaces where each matrix element character-

izes the degree of similarity between pairs of vectors. Each vector corresponds to a

data point, and the value of the similarity measure (like cosine similarity or Euclidean

distance) between any two data points is represented by the inner product of their

corresponding vectors. In this space, the geometric relationships between vectors can

be explored to understand the similarities and differences among the data points,

making it a powerful tool for clustering, nearest neighbor search, and other machine

learning applications.

This section will explore the vital role of vector space approaches in comprehend-

ing, processing, and utilizing complex data and structures across various domains.

Their application is crucial across domains where nuanced comprehension and ad-

vanced processing are key, enhancing our understanding beyond surface-level analy-

sis.

2.6.1 Embeddings

Embeddings are a powerful tool in machine learning, providing a way to represent

high-dimensional data, such as logical formulas, in a lower-dimensional vector space

[286]. This representation facilitates capturing the underlying semantic and syntactic

relationships in a more manageable and computationally efficient format. In the

context of logical formula evaluation, embeddings play a crucial role in transforming

complex logical structures into vectors that retain their intrinsic characteristics [164,

199, 248].

One common application of embeddings is seen in natural language processing
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(NLP), where words or phrases are converted into vectors. This concept can be

extended to logical formulas, where each formula is represented as a point in a multi-

dimensional space. The proximity of these points reflects the degree of similarity

or dissimilarity in their semantic content or structural form. Techniques such as

Word2Vec, GloVe, and BERT have demonstrated the effectiveness of embeddings in

NLP, and similar methods can be adapted for logical formulas [249, 282, 97].

The process of generating embeddings for logical formulas involves analyzing the

structure and content of the formulas, often using neural networks or other advanced

algorithms. These methods learn to capture the essential aspects of the formulas,

encoding them into a vector space where machine learning models can easily process

them. The choice of the embedding technique and the dimensions of the vector space

are critical decisions that can significantly impact the performance of subsequent

tasks, such as formula classification or similarity assessment [286].

Furthermore, embeddings can be enriched by incorporating domain knowledge or

contextual information, enhancing their ability to represent complex logical relation-

ships. This enriched representation is particularly beneficial in tasks requiring a deep

understanding of the logical formulas, such as automated reasoning or knowledge

extraction [86, 199, 248].

Overall, embeddings offer a transformative approach for handling logical formulas,

bridging the gap between the abstract nature of logic and the practical requirements of

computational models. They enable a more intuitive and efficient way to manipulate

and analyze logical structures, making them an indispensable tool in the field of

formula evaluation.
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2.6.2 Similarity Measures

In the domain of vector space approaches, similarity measures assume an impor-

tant role in quantifying the degree of resemblance between entities represented as

vectors. These measures are fundamental in tasks involving comparison, clustering,

and classification, especially when dealing with complex data like logical formulas. In

the context of logical formula evaluation, similarity measures can be utilized to com-

pare the semantic and structural aspects of formulas, aiding in tasks such as formula

clustering, retrieval, and even in the evaluation process itself [38, 156, 199].

The essence of a similarity measure lies in its ability to encapsulate the likeness

between two data points in a meaningful and quantifiable manner. This becomes

particularly challenging with logical formulas, as their comparison involves not only

the syntactic alignment but also the semantic congruence. As a result, the choice of

similarity measure is crucial and depends on the specific requirements of the task at

hand [12]. There are broadly two categories of similarity measures applicable in this

context:

1. Non-Semantic Measures: These measures quantify the likeness of entities

based on their structural or statistical properties without considering their

meaning [38].

2. Semantic Measures: These measures evaluate the relatedness of concepts by

understanding and interpreting their underlying meanings and contexts [156].

The following subsubsections will explore these categories in more detail, high-

lighting their applications, strengths, and limitations in the context of logical formula

evaluation and other related tasks.
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Non-Semantic Measures

Non-semantic similarity measures quantify the likeness between entities based on

structural, statistical, or geometric properties without considering the meaning or

context of the data. They are essential for tasks that require objective comparisons,

such as error detection, information retrieval, and data clustering, leveraging mathe-

matical computations like distances or angles [38].

Some commonly used non-semantic similarity measures include:

• Hamming Distance: Quantitative, comparing two strings of equal length by

counting the number of positions where the corresponding symbols differ.

• Levenshtein Distance: Calculates the minimum number of single-character

edits needed to change one string into another.

• String Matching Algorithm: Compares two strings to assess their similarity

or dissimilarity based on character-by-character comparison.

• Cosine Similarity: Measures the cosine of the angle between two vectors in a

vector space, applicable to any vectors, including those representing text.

• Jaccard Index: Compares the similarity and diversity of sample sets, calcu-

lating the ratio of the intersection to the union of the sets.

• Euclidean Distance: Calculates the straight-line distance between two points

(or vectors) in a multi-dimensional space.

While non-semantic measures can be highly efficient and straightforward in their

application, they often overlook the deeper, contextual meanings that might be in-

herent in logical formulas, which can be critical in certain domains or applications.

52



Interestingly, non-semantic measures like Cosine or Jaccard similarity are often

incorporated in the creation of semantic similarity measures when applied to vectors.

This demonstrates the utility of non-semantic measures in enriching the process of

evaluating semantic similarity by providing a quantitative basis for the comparison,

which is then contextualized within the semantic framework. Embeddings, for ex-

ample, can be used as a tool to create such vectors for pairwise comparison between

logical formulas. However, this embedding process is distinct from using the embed-

ded vectors to directly create the vector space. Instead, it serves as a step towards

creating a similarity matrix (vector space) between logical formulas, where the sim-

ilarity measures can be applied to assess semantic relatedness. Figure 2.7 gives an

example of these two processes and matrices.

Semantic Measures

Semantic measures in the context of logical formulas focus on assessing the meaning

and interpretative aspects of these formulas. Unlike approaches that only consider

structural or syntactic characteristics, semantic measures aim to understand the in-

herent relationships and logical implications within formulas. This understanding is

crucial when evaluating the similarity or relevance of logical formulas, especially in

domains where the semantic content holds more significance than the syntactic form

[156].

One of the primary challenges in implementing semantic measures is capturing the

essence of logical constructs in a way that accurately reflects their intended meaning.

This often involves sophisticated techniques that go beyond surface-level analysis,

requiring a deeper understanding of the domain and the logical constructs involved

[199].

Applications of semantic measures are diverse and include tasks such as:
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• Semantic clustering of formulas based on their underlying meaning.

• Retrieval of logically similar formulas from a large dataset.

• Semantic evaluation and ranking of formulas in tasks such as formula generation

or axiom discovery.

Examples of semantic similarity measures include:

• WordNet-based Similarity Measures [37]:

– Path Similarity – Measures the distance between two synsets (a collec-

tion of synonyms) in the hierarchy.

– Wu and Palmer Similarity (WUP) – Based on the depths of two

synsets and their least common subsumer (LCS).

– Leacock-Chodorow Similarity – Uses the shortest path between two

synsets, normalized by taxonomy depth.

• Latent Semantic Analysis (LSA) [221]: Analyzes relationships between

documents and terms to produce concepts related to them.

• Ontology-based Similarity Measures [211, 310]:

– Semantic relatedness using information content (IC): – Based on

the information content of the LCS.

– Jiang-Conrath Similarity (JC): – Considers both the LCS’s specificity

and the individual concepts’ information content.

In summary, semantic measures provide a nuanced and meaningful way to evaluate

logical formulas, making them indispensable in applications where understanding of

semantic content is paramount.
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Formula A B C

A ∧B 1 1 0

¬A ∧C 1 0 1

B ∨C 0 1 1

(a) Formula Embedding Vector Space

A ∧B ¬A ∧C B ∨C

A ∧B 1 Cos(1,2) Cos(1,3)

¬A ∧C Cos(1,2) 1 Cos(2,3)

B ∨C Cos(1,3) Cos(2,3) 1

(b) Formula Based Vector Space Using

Cosine Similarity of Vectors From 2.7a

Figure 2.7: Representation of Propositional Logic Formulas and Similarity Matrix

2.6.3 Similarity Matrices

The use of similarity matrices in machine learning offers a nuanced approach

to understanding and modeling complex relationships between data points. In the

context of logical formula evaluation, they play a pivotal role, especially within vector

space-based methods [142, 159, 239].

Definition and General Application:

• Defining Similarity Matrices : Similarity matrices, also known as proximity ma-

trices, are structured representations where each element quantifies the simi-

larity or distance between pairs of data points (e.g., logical formulas). These

matrices are essential in algorithms where the notion of "distance" or "similar-

ity" between samples is fundamental to the learning process [142].
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• Machine Learning Applications : In broader machine learning applications, simi-

larity matrices facilitate tasks like clustering, nearest neighbor searches, anomaly

detection, complex network analyses, and dimensionality reduction techniques

like t-SNE and PCA. They enable the models to capture patterns and relation-

ships not immediately apparent in raw data [109, 99, 159, 278].

Structure and Measures:

• Symmetry in Training : For training purposes, similarity matrices exhibit sym-

metry with rows and columns representing the same formulas. This symmetry

allows algorithms to understand intra-sample relationships, crucial for tasks

such as clustering or similarity-based classification [239]. The shape of this ma-

trix is a square as shown in Figure 2.8a, where each element Mij represents

a measure of the similarity or distance between the ith and jth data points.

Depending on the context, this measure can represent either a distance (with

smaller values indicating closer or more similar items) or a similarity score

(where larger values indicate greater similarity).

• Asymmetry in Testing and Prediction: During the testing and prediction phases,

the matrices are asymmetric as shown in Figure 2.8b. In these phases, these

matrices assist in comparing new formulas against a repository of evaluated

formulas, providing insights into their novelty, similarity, or potential score.

• Similarity Measures : The choice of similarity or distance measure (e.g., cosine

similarity, Jaccard index, Euclidean distance) significantly impacts predictions.

This choice depends on the nature of formulas, the desired model performance,

and the specific objectives of the evaluation task [38].

Challenges and Considerations:
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• Computational Complexity : The size of the matrix grows with the number of

data points (formulas), posing challenges in terms of computational and storage

requirements, especially in large-scale evaluations or instances where computing

the similarity is computationally intensive [380, 99, 239].

• Matrix Density and Sparsity : The decision between using sparse or dense ma-

trices affects both computational efficiency and the accuracy of outcomes, par-

ticularly when dealing with datasets where most data points are dissimilar

[107, 379].

• Scalability and Efficiency : Efficient handling of similarity matrices, especially

in the context of large datasets or complex formulas, remains a significant chal-

lenge, requiring sophisticated algorithms and often high-performance computing

resources [380, 99].

Conclusion: In conclusion, similarity matrices are a fundamental component in

the toolbox of machine learning. Their ability to encapsulate complex relationships

and facilitate various learning tasks makes them invaluable, though not without chal-

lenges related to scalability, computational demand, and the appropriateness of the

similarity measures used.

Train 1 Train 2 Train 3

Train 1 1 M1,2 M1,3

Train 2 M1,2 1 M2,3

Train 3 M1,3 M2,3 1

(a) Symmetric Matrix in Training

Train 1 Train 2 Train 3

Test 1 MTest1,T rain1 MTest1,T rain2 MTest1,T rain3

Test 2 MTest2,T rain1 MTest2,T rain2 MTest2,T rain3

(b) Asymmetric Matrix in Testing

Figure 2.8: Similarity Matrices in Different Phases
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In the next chapter, we discuss work related to this thesis as well as state of the

art approaches in evaluating OWL class axioms.

58



Chapter 3

RELATED WORK

In recent years, significant progress has been made in the field of OWL class axiom

evaluation. This chapter provides a comprehensive overview of these advancements,

beginning with a discussion on the performance measures and ontologies utilized

in evaluating and benchmarking innovative methods. We then showcase a variety

of approaches that have emerged at the forefront of this research area, including the

development and refinement of a possibilistic heuristic, the application of grammatical

evolution in axiom evaluation, and the examination of sophisticated machine learning

models. By presenting these developments and the tools used for their evaluation,

this chapter aims to offer a thorough understanding of the current state-of-the-art

in OWL class axiom evaluation, setting a foundation for future explorations and

enhancements in the field.

3.1 Ontologies and Evaluation Metrics

This section outlines two elements utilized in our research: the ontologies and

evaluation metrics. The ontologies discussed herein provide the datasets upon which

our evaluation and analysis is built. They range from general knowledge bases to

domain-specific structures. Additionally, we detail the metrics employed to assess the

performance of the proposed models. These components are needed to understand the

effectiveness of our approaches in enhancing semantic web technologies and ontology-

based applications.
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3.1.1 Ontologies Utilized in This Thesis

In this thesis, a variety of ontologies have been utilized to underpin the research

and experiments conducted. These ontologies, selected for their relevance to the spe-

cific domains and scenarios under investigation, serve as a fundamental component of

our framework. They range from comprehensive, widely-recognized knowledge bases

to more specialized, domain-specific ontologies. Each ontology has been chosen based

on its way of contruction (manual or automatic), size in terms of classes, and number

of axioms which are all pertinent to the research questions posed, demonstrating the

ability of our proposed models when handling different scenarios.

The NTNames Ontology

The NTNames (New Testament Names) Ontology represents a significant endeavor

in the domain of biblical studies, specifically focusing on the semantic knowledge base

of named entities within the New Testament. Comprising approximately 600 names,

it categorizes entities such as individuals (men, women), groups of people, locations,

and divine figures into a structured, interconnected web of information. This ontology

is particularly notable for its educational and research utility in theological studies,

offering a detailed and standardized representation of the complex relationships and

attributes found within New Testament narratives [48].

Ontology Statistics Table 3.1 below provides a quantitative overview of the NT-

Names Ontology, reflecting its scope and depth in representing New Testament enti-

ties.
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Metric Value

Number of Classes 47

Number of Triples 518

Number of Properties 38

Number of subClassOf axioms 278

Number of disjointWith axioms 10

Number of equivalentClass axioms 50

Table 3.1: NTNames Ontology Statistics.

This ontology delineates a structured approach to understanding the relationships

and attributes of individuals and locations mentioned in the New Testament, such

as familial ties, residence or origin, and religious beliefs. The ontology’s detailed

classification and its support for re-use in other contexts mark it as a pivotal resource

for both theological education and semantic web research within religious studies.

The Pizza Ontology

The Pizza Ontology, a hallmark in the domain of semantic web education, provides

a structured framework for representing pizza-related concepts, toppings, and bases

within an ontology. It is primarily used as an educational tool to demonstrate the

capabilities of the Protégé ontology editor and OWL (Web Ontology Language), illus-

trating the creation of class hierarchies, properties, and restrictions. This ontology is

pivotal for understanding the intricacies of ontology construction and reasoning [76].

Ontology Statistics Table 3.2 provides an overview of the Pizza Ontology’s scale

and scope, emphasizing its educational use and the number of classes it covers.
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Metric Value

Number of Classes 101

Number of Individuals 5

Number of Properties 8

Maximum depth 6

Number of subClassOf axioms 651

Number of disjointWith axioms 5

Number of equivalentClass axioms 101

Table 3.2: Pizza Ontology Statistics.

This table reflects the educational nature and design of the Pizza Ontology, high-

lighting its foundational role in teaching and understanding ontology concepts within

the Semantic Web field.

MatOnto

MatOnto is designed to serve the materials science domain, offering a structured

vocabulary for representing and linking data across this field. Its development sig-

nifies a step towards standardizing materials science data representation, facilitating

data sharing, and enabling interoperability between systems. With its comprehensive

coverage, MatOnto plays a crucial role in advancing materials science research and

development [74].

Ontology Statistics Table 3.3 provides a summary of MatOnto’s structure and

coverage.
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Metric Value

Number of Classes 848

Number of Individuals 131

Number of Properties 96

Maximum depth 10

Number of subClassOf axioms 853

Number of disjointWith axioms 158

Number of equivalentClass axioms 9

Table 3.3: MatOnto Ontology Statistics.

The diverse array of classes and intricate relationships outlined in the MatOnto

statistics reveal its sophisticated structure, designed to meticulously represent the ma-

terials science domain. Its detailed classification enable precise data interoperability

within this specialized field.

The DBpedia Ontology

The DBpedia ontology, at the core of the DBpedia knowledge base, crafted metic-

ulously to structure the wealth of information available on Wikipedia into a well-

organized, semantic web-compatible format. It represents a collaborative effort to

convert Wikipedia’s infobox data into a structured, universally accessible ontology,

encompassing a wide range of domains. This ontology is not only a product of auto-

mated extraction processes but also benefits from ongoing community contributions,

ensuring its continuous expansion and update to reflect the latest knowledge captured

in Wikipedia. It serves as a cross-domain semantic framework that significantly con-

tributes to the field of knowledge representation [92].
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Ontology Statistics Table 3.4 provides an overview of the DBpedia ontology’s

scale and scope, highlighting its extensive coverage and the breadth of concepts it

encompasses. The DBpedia version we used is 2015-04, we do so to maintain con-

sistency in our comparison with other work. The statistics provided include disjoint

axioms we added from the results of Nguyen’s work [263].

Metric Value

Number of Classes 768

Number of Facts (Triples) > 850 million

Number of Properties 2,861

Number of subClassOf axioms 4,300

Number of disjointWith axioms 581

Number of equivalentClass axioms 834

Table 3.4: DBpedia Ontology Statistics.

These statistics underscore the comprehensive nature of the DBpedia ontology,

demonstrating its wide applicability in semantic web and linked data projects. The

ongoing contributions from the community ensure its continuous growth and relevance

across various research and development endeavors.

The Gene Ontology

The Gene Ontology (GO) is an extensive framework designed to represent knowledge

across the biological domain comprehensively. It is structured around three core

aspects: Molecular Function, Cellular Component, and Biological Process. These

aspects capture the essence of gene products’ activities, the locations within the cell

where these activities occur, and the broader processes or programs accomplished by
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multiple molecular activities, respectively [21].

The GO is dynamic, aimed at representing the current state of biological under-

standing, and thus is regularly updated to reflect new scientific discoveries. These

updates are collaboratively managed by a team of ontology editors and the broader

scientific community, ensuring that GO remains a critical and up-to-date resource for

computational analysis in molecular biology and genetics research [6].

Ontology Statistics For a better understanding of the Gene Ontology, Table 3.5

offers a structured overview of its components. While specific numeric details are

dynamically updated and accessible through the GO’s official platform 1 , this table

underscores the ontology’s breadth in encapsulating gene functions across diverse

biological aspects. The statistics presented are unique for the version used in our

work which is 2022-10.

Metric Value

Number of GO Terms (Classes) 43,329

Number of Annotations (Triples) 7,694,564

Number of Gene Products 1,503,740

Number of Covered Species 5,257

Table 3.5: Gene Ontology Statistics.

GO stands as a cornerstone in bio-informatics, offering expansive insights into

gene functions and biological processes. The presented statistics highlight its breadth,

with over 42,000 terms, 7.6 million annotations, and data on more than 1.5 million

gene products across 5,387 species. This vast dataset underpins the GO’s utility in
1https://www.geneontology.org/stats.html
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facilitating comprehensive cross-species genetic and functional analyses, essential for

advancing our understanding of biological systems and disease mechanisms.

The Cell Ontology

The Cell Ontology (CL) is a prominent ontology within the OBO Foundry, dedicated

to the classification and description of biological cell types. Focused primarily on

animal cell types, CL plays a crucial role in enhancing interoperability among spe-

cialized ontologies, facilitating a comprehensive understanding of cell functions and

their locations. Its integration with other ontologies, such as the Uberon multi-species

anatomy ontology and the Gene Ontology, allows for detailed recording of cell location

and function, adhering to FAIR principles for scientific data management [98].

CL’s development is community-driven, with active engagement from editors and

contributors across multiple projects. This collaborative approach ensures that CL

remains relevant and up-to-date, supporting a wide array of applications. Notable

projects leveraging CL include the HuBMAP, Human Cell Atlas, Single Cell Expres-

sion Atlas, and ENCODE, among others. These applications highlight CL’s role in

annotating cell types and facilitating cellular reference mapping across diverse re-

search initiatives [129].

Ontology Statistics Table 3.6 offers a glimpse into Cell Ontology’s scale, reflecting

its utility in addressing the complex requirements of modern biological research and

bio-informatics applications.
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Metric Value

Number of Classes 16,163

Number of Individuals 18

Number of Properties 529

Table 3.6: Cell Ontology Statistics.

The Cell Ontology showcases a robust framework with over 16,000 classes, under-

scoring its depth in categorizing cell types. With a modest count of individuals and

a significant number of properties, it reflects a detailed, property-rich structure for

describing cell characteristics and relationships. This extensive compilation facilitates

comprehensive bio-informatics analyses, supporting diverse research applications from

basic science to clinical studies.

The Food Ontology

The Food Ontology (Foodon) is a comprehensive semantic framework designed to rep-

resent and integrate knowledge about food across various dimensions, from production

to consumption. It leverages the foundational structures of the LanguaL system, a

food classification scheme developed by the FDA, enriched with ontology technology

to ensure global interoperability and data integration. The ontology encapsulates a

wide range of food-related concepts, including raw ingredients, processing methods,

and product types, facilitating detailed and harmonized descriptions of food items. It

supports a broad array of applications, from enhancing food traceability and quality

control to promoting data sharing across international borders [102].

Ontology Statistics Table 3.7 below outlines the structural metrics of the Food

Ontology, demonstrating its extensive coverage of the food domain.
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Metric Value

Number of Classes 35,304

Number of Individuals 129

Number of Properties 435

Table 3.7: Food Ontology Statistics.

This ontology offers a rich and dynamic vocabulary that is crucial for addressing

the complexities of the global food system. By providing a detailed classification of

food products along with their properties and relationships, the Food Ontology serves

as a vital resource for researchers, industry stakeholders, and policymakers aiming to

advance food science, safety, and nutrition.

Summary

The ontologies discussed in this section, ranging from toy ontologies like the Pizza On-

tology to comprehensive ones like the Gene Ontology (GO), are integral for this work.

They provide a practical foundation for applying the axiom evaluation methods de-

veloped herein. Toy ontologies are utilized for preliminary testing and demonstrations

due to their simplicity and manageability, which are ideal for initial model tuning.

In contrast, complex ontologies like GO provide a realistic and challenging dataset

for evaluating the scalability and robustness of the active learning models developed,

which are essential for real-world applications of axiom discovery and validation in

semantic web environments.
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3.1.2 Evaluation Metrics

In this subsection, we will explore the evaluation metrics used for assessing the

performance and effectiveness of the methods developed throughout this PhD the-

sis. Evaluation metrics are indispensable tools that provide quantitative measures to

compare different models, algorithms, or techniques on a common ground [387]. By

carefully selecting and applying appropriate metrics, we can objectively determine

the strengths and weaknesses of our approaches. Some metrics are used in evaluating

different tasks, we give an example of how they are used in each.

Regression Metrics

Regression metrics are crucial for evaluating the performance of regression models,

which predict a continuous outcome. These metrics help in understanding how well

a model’s predictions match the actual data, highlighting the model’s accuracy and

efficiency [388].

Mean Squared Error (MSE) MSE assesses the average squared difference be-

tween the estimated values and the actual value [101].

MSE = 1

n

n

∑
i=1

(yi − ŷi)2

Root Mean Squared Error (RMSE) RMSE is the square root of the mean

squared error, offering a measure of the average error magnitude [388].

RMSE =
¿
ÁÁÀ 1

n

n

∑
i=1

(yi − ŷi)2

R-squared (R²) R², also known as the coefficient of determination, indicates the

proportion of the variance in the dependent variable that is predictable from the
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independent variable(s) [100].

R2 = 1 − ∑
n
i=1(yi − ŷi)2
∑ni=1(yi − ȳ)2

These metrics collectively provide a comprehensive assessment of a regression

model’s predictive performance, enabling researchers to gauge the model’s effective-

ness in capturing and explaining the variability in the data.

Binary Classification Metrics

Binary classification metrics evaluate the performance of models that categorize in-

stances into one of two groups. These metrics are essential for assessing the effec-

tiveness and reliability of classification algorithms in distinguishing between the two

possible outcomes [388].

Accuracy Accuracy measures the proportion of true results (both true positives

and true negatives) among the total number of cases examined [388]. For instance, if

a model correctly identifies 90 out of 100 instances, its accuracy is 0.9 or 90%.

Accuracy = TP + TN
TP + TN + FP + FN

where TP, TN, FP, and FN represent the numbers of true positives, true negatives,

false positives, and false negatives, respectively.

Precision Precision is the ratio of correctly predicted positive observations to the

total predicted positive observations [388]. If a model identifies 80 positives out of

100 instances, and 60 of these are correct, precision is 0.75.

Precision = TP

TP + FP
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Recall Recall (Sensitivity) is the ratio of correctly predicted positive observations

to all observations in the actual class [388]. If a model identifies 80 positives out of

100 instances, and 60 of these are correct, if there were 80 actual positives, recall is

0.75.

Recall = TP

TP + FN

F1 Score The F1 score is the harmonic mean of precision and recall, providing a

balance between the two. It is particularly useful when the cost of false positives and

false negatives is high [388]. For precision and recall both equal to 0.75, the F1 score

is also 0.75.

F1 Score = 2 ⋅ Precision ⋅Recall
Precision +Recall

Area Under the ROC Curve (AUC) The Area Under the Receiver Operating

Characteristic (ROC) Curve, or AUC, measures the ability of a binary classification

model to discriminate between positive and negative classes. An AUC of 1 indicates

perfect prediction, while an AUC of 0.5 suggests no discriminative power [388].

Confusion Matrix A confusion matrix is a table used to describe the performance

of a classification model on a set of test data for which the true values are known

[388]. It allows the visualization of the model’s predictions, including true positives,

true negatives, false positives, and false negatives. Table 3.8 depicts the composition

of a simple confusion matrix.

Matthews Correlation Coefficient (MCC) The Matthews correlation coeffi-

cient (MCC) is a measure of the quality of binary classifications [75]. It takes into

account true and false positives and negatives and is regarded as a balanced measure
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Actual

Positive Negative

Predicted
Positive TP FP

Negative FN TN

Table 3.8: Sample Confusion Matrix for Binary Classification.

which can be used even if the classes are of very different sizes. The MCC is calculated

as:

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

These metrics offer a comprehensive view of a binary classification model’s per-

formance, highlighting its strengths and areas for improvement.

Hits@K Metric Used for Ontology Completion Tasks

Hits@K assesses whether the relevant document appears in the top K search results.

It is a way to evaluate the model’s ability to rank relevant documents higher than

others [71].

For instance, if the relevant document appears within the top 5 results of a query,

Hits@5 for that query is 1 (success); otherwise, it is 0 (failure).

In ontology completion tasks, the Hits@K metric serves as a crucial measure for

assessing model performance in predicting the correct class of a head entity from a

set of candidates, against the tail entity’s class, considered as the ground truth. The

setup involves ranking each axiom in the testing set based on the model’s predicted

score, which reflects the likelihood of a candidate class being the correct class for the

head entity [70]. The Hits@K equation, tailored for this context, is represented as:
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Hits@K = 1

∣A∣ ∑a∈A
⊮(ranka ≤K)

where:

• ∣A∣ denotes the total number of axioms in the testing set,

• a represents an individual axiom under consideration,

• ranka is the ranking of the ground truth class (tail entity) among the ranked list

of candidate classes for the head entity, based on the model’s predicted score,

• ⊮ is the indicator function that returns 1 if the ground truth class is within the

top K ranked classes, and 0 otherwise.

This equation encapsulates the model’s efficiency in accurately predicting the class

of head entities, thereby directly influencing ontology completion’s effectiveness by

ensuring only the most relevant and likely class predictions are considered in the top

K ranks.

Mean Reciprocal Rank (MRR) Mean Reciprocal Rank is a metric used to eval-

uate the performance of a ranking algorithm. MRR calculates the average of the

reciprocal ranks of results for a sample of queries, with the rank being the position

of the first relevant entity. The higher the MRR, the better the model’s performance

[85].

Summary

The evaluation metrics discussed in this section are essential for validating the ef-

fectiveness and efficiency of the proposed axiom evaluation methods. For instance,
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metrics like F1-score are used for assessing the balance between precision and re-

call, particularly useful in optimizing the performance of classification models on

complex datasets. Meanwhile, computational time and memory usage metrics are

indispensable for evaluating the practicality of the machine learning models in han-

dling large-scale ontological data, ensuring that the developed solutions are not only

accurate but also scalable and efficient in resource-constrained environments.

3.2 Evolution of Possibilistic Heuristic in Ontology Enrichment

3.2.1 Initial Proposition: A Possibilistic Approach

The pioneering work in 2014 by Tettamanzi et al. introduced a groundbreaking

scoring heuristic for evaluating candidate axioms, marking a shift from the conven-

tional statistical inference methods to a framework based on possibility theory [349].

This heuristic was characterized by its innovative approach to assigning bipolar scores

to candidate axioms, encapsulating both a degree of possibility (Π) and a degree of

necessity (N).

Heuristic Foundations The heuristic’s foundation lays in treating each formula

that logically follows from an axiom as both a potential falsifier and a confirmation,

depending on the RDF data. The absence of counterexamples to a hypothesis in the

RDF repository implies that the hypothesis is completely possible (Π(ϕ) = 1), whereas

the presence of confirmations and absence of counterexamples increase the necessity

of the hypothesis, approaching a score of 1 [349]. The heuristic uniquely interpreted

a confirmation as a fact that not only satisfies an axiom but also favors it over its

contrary, aligning with Scheffler and Goodman’s selective confirmation theory [313].
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The Approach Method wise, the paper leveraged the model-theoretic semantics

of OWL 2, defining an interpretation domain (∆I) as the set of all resources oc-

curring in a given RDF store. This approach facilitated the axiom evaluation by

checking if the interpretation is a model of the axiom under consideration. This was

particularly relevant in the context of RDF stores, which are often incomplete and

noisy, necessitating the adoption of the open-world hypothesis. Thus, the heuristic

accounted for the possibility that an axiom might hold true even in the presence of a

few counterexamples [349].

Experimental Evaluation The experimental evaluation was conducted using the

DBpedia 3.9 dataset as the RDF fact repository. This involved downloading the

DBpedia dumps and performing tests of subsumption axioms. The evaluation on a

substantial dataset like DBpedia, consisting of over 800 million RDF triples, demon-

strated the heuristic’s applicability to ontology learning and knowledge-base vali-

dation. The heuristic was applied to subClassOf axioms within the DBpedia RDF

dataset. The experiment was significant not only for validating the heuristic’s ef-

fectiveness but also for highlighting its suitability for large-scale ontology evaluation

tasks [349].

Future Directions Despite its innovative approach, the heuristic faced critiques

about its subjective nature, given its foundation in possibility theory. Nevertheless,

the authors recognized this and suggested future work to extend the heuristic to a

broader set of axioms and include additional RDF datasets from the Linked Open

Data cloud, along with improvements in computational efficiency, particularly by

implementing a time-out on query evaluation to reduce the overhead of axiom testing

[349].
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3.2.2 Intermediate Developments: Dynamically Time-Capped Testing

The 2015 study by Tettamanzi et al. represented an important intermediate step

in the evolution of the possibilistic heuristic, introducing dynamically time-capped

testing of subClassOf axioms against RDF data to enrich schemas [350]. This devel-

opment was an important step in addressing the computational challenges associated

with the heuristic’s earlier iterations.

Axiom Scoring and Possibility Theory Building on the foundation laid in 2014,

the 2015 paper further refined the axiom scoring heuristic based on possibility theory.

The method centered on assigning a degree of possibility and necessity to a candidate

axiom, with a focus on the open-world assumption prevalent in linked data on the

Web. The heuristic was designed to overcome some limitations of scoring heuristics

based on statistical inference, particularly in handling the open-world assumption

[350].

Time-Capped Testing A significant contribution of this paper was the introduc-

tion of a method based on time capping to alleviate the computational burden of the

heuristic without sacrificing the precision of the scores. This approach was particu-

larly effective in testing subClassOf axioms against large RDF datasets like DBpedia,

where computing the possibilistic score could be computationally intensive [350].

Innovations The paper presented several innovations, including a detailed com-

putational framework for axiom scoring and scalable axiom scoring based on time

prediction. These innovations were instrumental in making the heuristic more prac-

tical for large-scale ontology learning and validation tasks. The approach involved

translating OWL 2 axioms into SPARQL queries, enabling the efficient testing of
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axioms against RDF data [350].

Experimental Evaluation The experimental evaluation conducted using the DB-

pedia dataset demonstrated the heuristic’s applicability and effectiveness. The dy-

namically time-capped approach led to a significant reduction in computation time,

showcasing the method’s practicality in handling large RDF datasets. This evalua-

tion was crucial in validating the heuristic’s improvements and setting the stage for

further refinements [350].

Future Directions The 2015 paper laid the groundwork for future advancements

in the possibilistic heuristic. It highlighted the need for further optimization to han-

dle the growing scale of RDF datasets and the complexity of OWL axioms. The

study pointed towards a more scalable and efficient approach to ontology learning

and validation, paving the way for the subsequent developments that were to come

in the 2017 iteration of the heuristic [350].

3.2.3 Refinement and Extension

In their 2017 paper, Tettamanzi et al. advanced the theory of the possibilistic

framework for OWL 2 axiom testing, refining the initial heuristic and extending its

application scope [348]. This version emphasized a more systematic and rigorous

approach to evaluating the credibility of OWL 2 axioms based on available evidence

in RDF datasets.

Conceptual Framework The core of the refinement was the introduction of the

notions of development, content, support, confirmation, and counterexample of an

axiom. These concepts were instrumental in defining the possibility and necessity of

an axiom, as well as its acceptance/rejection index, a combination of the two. This
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framework was then applied to test subClassOf axioms against the DBpedia RDF

dataset, showcasing the practical application of the refined heuristic [348].

Advancements A key advancement was the operationalization of the model-theoretic

semantics of OWL 2 axioms into corresponding first-order logic formulas. This trans-

formation was crucial for querying RDF datasets to test OWL 2 candidate axioms.

The process involved translating OWL 2 axioms into first-order logic based on the set-

theoretic formulas of the OWL direct semantics, thus providing a robust foundation

for the possibilistic framework [348].

Technical Implementation The transformation process involved a recursive def-

inition of a translation function, t(⋅;x, y), that took OWL 2 entity expressions or

axioms as arguments and translated them into first-order logic expressions. This

translation was aligned with the direct model-theoretic semantics of OWL 2 and al-

lowed for the systematic development of axioms with respect to an RDF dataset [348].

Examples included translating atomic concepts, relations, and complex expressions

like ∃R.C and ∀R.C into first-order logic.

Computational Efficiency Addressing computational efficiency, the paper dis-

cussed the implementation of time capping as a means to alleviate the computation

load of the possibilistic axiom scoring heuristic. This approach helped maintain the

precision of the scores while managing the computational resources more effectively,

especially in large-scale applications [348].

Future Directions The paper concluded with insights into future work, empha-

sizing the need for further refinement of the heuristic, exploring its applicability to

a wider range of OWL 2 axioms, and enhancing its computational efficiency. This
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direction was critical for making the heuristic more practical for large-scale ontology

learning and validation tasks.

3.2.4 Further Advancements: Enhanced Computational Efficiency

The 2022 paper marked a significant step forward in the evolution of the possi-

bilistic heuristic for ontology enrichment. In it, Felin et al. addressed the critical

challenge of computational efficiency in assessing OWL subClassOf axioms against

RDF data [123].

Optimization of Heuristic Assessment This paper introduced three major con-

tributions to enhance the efficiency of the possibilistic heuristic. Firstly, a multi-

threading system was implemented to parallelize the evaluation of axioms, signifi-

cantly reducing the overall computational time. Secondly, an extension of the orig-

inal heuristic was proposed to avoid redundant computation, addressing the com-

putational bottleneck identified in previous iterations. Thirdly, the optimization of

SPARQL query chunking was achieved by leveraging an extension of the SPARQL

1.1 Federated Query standard [123].

Impact on Computational Performance The optimizations brought forth in

this paper had a profound impact on computational performance. Experiments con-

ducted on the DBpedia 3.9 dataset, comprising over 463 million triples and 532 OWL

classes, demonstrated the efficacy of these improvements. The maximum computa-

tion time for axiom assessment was significantly reduced from approximately 71,699

minutes to just 489 minutes. Importantly, these optimizations did not compromise

the accuracy of the heuristic, as evidenced by the unchanged Acceptance/Rejection

Index (ARI) values for each axiom [123].
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Computational Efficiency Analysis A comparative analysis of the computation

times using the original heuristic versus the optimized approach showed that the aver-

age CPU time for evaluating an axiom was reduced from 578 minutes to 30 minutes.

This optimization was effective for approximately 82% of the tested candidate ax-

ioms, significantly reducing the computational burden and making the heuristic more

practical for large-scale applications [123].

Future Directions Looking forward, the authors proposed to extend these opti-

mizations to other types of OWL axioms and to generalize the optimization to com-

putational problems with SPARQL queries of a similar nature. This direction aims

to broaden the applicability of the heuristic and contribute further to the semantic

Web community [123].

3.2.5 Strengths and Weaknesses of the Possibilistic Heuristic

The possibilistic heuristic developed for evaluating OWL axioms against RDF data

exhibits several notable strengths and weaknesses, as revealed through its evolution

from 2014 to 2022.

Strengths

• Adaptability to the Open-World Assumption: The heuristic effectively

handles the open-world assumption inherent in RDF datasets, a crucial aspect

for semantic web applications.

• Bipolar Scoring System: The introduction of bipolar scores (possibility and

necessity) provides a nuanced way to evaluate axioms, moving beyond simplistic

binary evaluations.
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• Computational Efficiency: Subsequent improvements, particularly in 2022,

significantly enhanced the computational efficiency, making the heuristic more

viable for large-scale datasets.

• Scalability: The heuristic’s ability to work with extensive RDF datasets like

DBpedia demonstrates its scalability, an essential factor for practical semantic

web applications.

Weaknesses

• Subjectivity in Scoring: Relying on possibility theory introduces a level of

subjectivity, as the scoring is influenced by the presence or absence of evidence

rather than statistical probability.

• Initial Computational Demand: Earlier versions of the heuristic, particu-

larly the 2014 and 2015 iterations, faced challenges in computational demand,

making them less efficient for large datasets.

• Limited Axiom Scope: The primary focus on subClassOf axioms means

the heuristic might not be directly applicable to other types of axioms, like

DisjointWith, without further adaptation.

• Potential for False Negatives: The conservative nature of the heuristic,

especially in its earlier versions, could lead to false negatives, where valid axioms

might be rejected under certain conditions.

These strengths and weaknesses highlight the heuristic’s potential and the areas

where further research and development could be beneficial. The evolution of the

heuristic over the years has addressed several of its initial shortcomings, particu-
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larly in terms of computational efficiency, making it a more robust tool for ontology

enrichment and semantic web applications.

3.2.6 Conclusion

The progression of the possibilistic heuristic, as described in this section, forms

a solid foundation for this thesis by offering a sophisticated framework for under-

standing and enhancing ontology enrichment. This heuristic serves dual purposes in

this research: firstly, as a benchmark against which the efficiency of our proposed

methods is measured, and secondly, as the base scorer whose outputs are treated as

the ground truth during evaluations. A principal aim of our research is to develop

a model that replicates the heuristic’s scoring function with greater computational

efficiency. Achieving this would allow for the integration of our evaluation model

into larger ontology enrichment systems, thereby enhancing their performance and

scalability.

3.3 RDFMiner: An Evolutionary Approach for Axiom Mining in the Semantic Web

3.3.1 Initiating RDFMiner: Grammatical Evolution for Class Disjointness Axioms

The pioneering work by Nguyen and Tettamanzi present RDFMiner [264, 265],

a tool developed to enrich ontologies by automatically discovering OWL class dis-

jointness axioms from RDF data. This work represents a significant advancement in

ontology learning within the Semantic Web.

Innovative Method RDFMiner employs Grammatical Evolution (GE), an evolu-

tionary algorithm, to evolve complex class disjointness axioms. This approach allows

for iterative refinement of axioms, enhancing their quality and relevance.
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Theoretical Foundations The papers underscore the necessity for automatic ax-

iom generation in the Semantic Web, emphasizing the role of RDF and OWL in

ontology construction and the importance of axioms in ensuring data consistency

and enabling effective data reasoning.

Implementation and Evaluation RDFMiner’s implementation includes a Backus-

Naur Form (BNF) grammar for axiom generation and a genotype-to-phenotype map-

ping process. The paper demonstrates RDFMiner’s precision and coverage in com-

parison to a Gold Standard, validating its efficacy.

Possibilistic Axiom Scoring In RDFMiner, the scoring of axioms utilizes the

possibilistic heuristic detailed in Sec3.2, and expands upon the heuristic to deal with

disjointness axioms. The principle is that an axiom ϕ is considered completely possible

(i.e., its possibility measure Π(ϕ) equals 1) if there are no counterexamples to it in

the RDF repository. The content of an axiom ϕ, defined as a finite set of logical

consequences, is given by:

content(ϕ) = {ψ ∶ ϕ ⊧ ψ} (3.1)

The support of ϕ, denoted as support(ϕ), is the cardinality of content(ϕ). The

number of confirmations (statements satisfied by the RDF repository) and coun-

terexamples (statements falsified by the RDF repository) are also determined. The

possibilistic measures, possibility Π(ϕ) and necessity N(ϕ), of an axiom are defined

as:

Π(ϕ) = 1 −

¿
ÁÁÀ1 − (counterexamples(ϕ)

support(ϕ) )
2

(3.2)
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N(ϕ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
1 − ( confirmations(ϕ)

support(ϕ) )
2

if Π(ϕ) = 1

0 otherwise
(3.3)

The fitness of an axiom, which is a measure of its quality, is directly proportional to

its necessity and possibility. However, the fitness function used in RDFMiner focuses

on counterexamples only, as RDF datasets naturally provide counterexamples for

disjointness axioms. The generality of an axiom, a measure of how broadly applicable

it is, is defined as the cardinality of its support. The refined definition of the fitness

function is then given by:

f(ϕ) = support(ϕ) ⋅Π(ϕ) (3.4)

This fitness function, combining the generality of an axiom with its possibility

measure, is central to the evaluation process in RDFMiner, ensuring that the axioms

generated are both credible and broadly applicable.

BNF Grammar for Axiom Generation The papers outline the development

of a Backus-Naur Form (BNF) grammar crucial for RDFMiner’s axiom generation

process. This BNF grammar is divided into two main parts: static and dynamic.

Static Part The static part of the BNF grammar consists of production rules

defining the structure of axioms. These rules are loaded from a hand-crafted text

file and are fundamental in determining the kinds of axioms generated. The static

grammar is responsible for generating the syntactic structure of class disjointness

axioms.

Dynamic Part The dynamic part involves production rules for the primitives,

constructed automatically at runtime by querying the SPARQL endpoint of the RDF
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repository. This dynamic nature ensures that the grammar adapts to changes in the

RDF dataset without requiring manual updates.

An example of the grammar structure for generating class disjointness axioms is

as follows:

(r1) Axiom := ClassAxiom

(r2) ClassAxiom := DisjointClasses

(r3) DisjointClasses := ’DisjointClasses’ ’(’ ClassExpression ’ ’ ClassExpression ’)’

(r4) ClassExpression := Class | ObjectUnionOf | ObjectIntersectionOf

(r5) ObjectUnionOf := ’ObjectUnionOf’ ’(’ ClassExpression ’ ’ ClassExpression ’)’

(r6) ObjectIntersectionOf := ’ObjectIntersectionOf’ ’(’ ClassExpression ’ ’ ClassExpression ’)’

(r7) Class := [SPARQL query generated classes]

This BNF grammar facilitates the transformation of genotypes (integer strings)

into phenotypes (class disjointness axioms) through a mapping process. The pro-

duction rule for the primitive class is dynamically filled using SPARQL queries to

extract classes from the RDF dataset, ensuring that the grammar reflects the current

dataset’s contents.

Conclusion RDFMiner, with its GE-based approach, marks a significant milestone

in automating ontology enrichment, setting the stage for further advancements in the

automated generation of complex axioms in the Semantic Web.

3.3.2 Multi-Objective Evolutionary Approach in RDFMiner

In their work "A Multi-Objective Evolutionary Approach to Class Disjointness

Axiom Discovery," Nguyen and Tettamanzi introduce a significant advancement in

RDFMiner by incorporating a Multi-Objective Genetic Evolution (MOGE) approach
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[267].

Introduction of Multi-Objective Optimization This paper marks a shift in

RDFMiner’s development by introducing a multi-objective approach to the evalu-

ation of candidate axioms. The focus is on refining the evaluation framework to

simultaneously optimize two independent criteria: the credibility and generality of

axioms. Additionally, the paper introduces a novel measure, termed "similarity," en-

hancing the diversity of the axioms obtained. This approach ensures higher accuracy

and generality in the axioms mined from RDF datasets.

New Objective Functions The paper proposes new objective functions in the

multi-objective framework to evaluate the fitness of axioms. The fitness of an axiom

is determined based on three key measures: possibility, generality, and similarity.

The possibility and generality measures were introduced in Section 3.2, while the

similarity measure is a new addition, quantifying the uniqueness of an axiom within

the population. The objective functions used are:

Maximize f1 = Π(ϕ) ⋅
√
1 − s(ϕ)2 (3.5)

Maximize f2 = gϕ ⋅
√
1 − s(ϕ)2 (3.6)

where Π(ϕ) is the possibility measure, gϕ is the generality measure, and s(ϕ) is

the similarity measure of the axiom ϕ.

Similarity Measure The similarity measure s(ϕ) is introduced to quantify the

uniqueness of an axiom within the population. It is calculated as the average similarity

between the axiom ϕ and each axiom ai in the population, excluding ϕ itself. This is

expressed mathematically as:
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s(ϕ) = 1

n − 1

n

∑
i=1,ai≠ϕ

s(ϕ, ai) (3.7)

This measure ensures that the axioms generated are not only credible and general

but also diverse, enhancing the overall quality of the knowledge discovery process in

RDFMiner.

Implications of MOGE in RDFMiner Integrating MOGE into RDFMiner al-

lows for a more nuanced approach to axiom discovery, balancing multiple objectives to

produce a diverse and robust set of axioms. This advancement demonstrates the on-

going evolution of RDFMiner as a leading tool in semantic web research, particularly

in the automated discovery of complex and relevant axioms.

3.3.3 Mining Complex Class Expressions in RDFMiner

Nguyen and Tettamanzi go on to write "Grammatical Evolution to Mine OWL

Disjointness Axioms Involving Complex Concept Expressions" and "Using Grammar-

Based Genetic Programming for Mining Disjointness Axioms Involving Complex Class

Expressions" which extend RDFMiner’s capabilities in mining disjointness axioms

involving more complex class expressions [268, 266].

Extension of Axiom Discovery This work presents a significant extension in

the application of Grammatical Evolution (GE) within RDFMiner. The focus is on

mining axioms that incorporate the relational operators of existential quantification

(∃) and value restriction (∀). This advancement enables RDFMiner to handle a

broader range of complex class expressions, thereby enriching its capability to mine

from a variety of topics within the DBpedia dataset.
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Updated BNF Grammar for Complex Class Expression Mining Here, the

BNF grammar for RDFMiner is updated to generate well-formed OWL class disjoint-

ness axioms, especially focusing on complex class expressions involving existential

quantification and value restriction. The grammar is organized into static and dy-

namic parts:

• Static Part: The static part of the grammar defines the syntax for disjoint-

ness axioms, specifying axioms that involve complex expressions with relational

operators. These include:

DisjointClasses(C1 C2)

where C1 and C2 can be atomic or complex classes like

DisjointClasses(Building ObjectSomeValuesFrom(hasWings Animals))

The form of complex axioms is defined as ∃r.C or ∀r.C, where r is a property

and C is an atomic class. The static part of the grammar includes the following

rules:

(r1) Axiom := ClassAxiom

(r2) ClassAxiom := DisjointClasses

(r3) DisjointClasses := ’DisjointClasses’ ’(’ ClassExpression ’ ’ ClassExpression ’)’

(r4) ClassExpression := Class | ObjectSomeValuesFrom | ObjectAllValuesFrom

(r5) ObjectSomeValuesFrom := ’ObjectSomeValuesFrom’ ’(’ ObjectProperty ’ ’ Class ’)’

(r6) ObjectAllValuesFrom := ’ObjectAllValuesFrom’ ’(’ ObjectProperty ’ ’ Class ’)’

(r7) Class := [SPARQL query generated classes]

(r8) ObjectProperty := [SPARQL query generated object properties]

• Dynamic Part: The dynamic part contains production rules for low-level non-
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terminals, filled at runtime by querying the RDF dataset. The primitives in this

part are ‘Class‘ and ‘ObjectPropertyOf‘. The rules for these primitives are:

(r9) Class := dbo:Plant | dbo:FloweringPlant | dbo:WrittenWork

(r10) ObjectPropertyOf := dbprop:spouse | dbprop:artist

These rules are dynamically generated based on the actual contents of the RDF

dataset.

The updated grammar significantly enhances RDFMiner’s capability to mine com-

plex class expressions, enabling the extraction of more intricate and informative dis-

jointness axioms from RDF datasets.

3.3.4 Enhancing RDFMiner for Complex Class Subsumption Axioms

Felin et al. further advanced RDFMiner’s capabilities by focusing on mining

subsumption axioms involving complex class expressions [263]. This work signifies a

notable extension in RDFMiner’s functional scope, specifically targeting subsumption

axioms, which are vital for detailed and accurate ontology representations.

Integration of Complex Class Expressions The research introduces an ap-

proach to enrich subsumption axioms with complex class expressions, using relational

operators like existential quantification (∃) and universal quantification (∀). This en-

ables RDFMiner to process more intricate class structures, significantly enhancing

the detail and depth of the ontology learning process.

BNF Grammar for Complex Class Subsumption Axioms The BNF grammar

for generating complex class subsumption axioms in RDFMiner is constructed with
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the following static rules:

(r1) Axiom := ClassAxiom

(r2) ClassAxiom := subClassOf

(r3) subClassOf := ’subClassOf’ ’(’ classExpression ’ ’ classExpression ’)’

(r4) classExpression := ObjectSomeValuesFrom |

ObjectAllValuesFrom | ObjectIntersectionOf | Class

(r5) ObjectIntersectionOf := ’ObjectIntersectionOf’ ’(’ Class ’ ’ Class ’)’

(r6) ObjectSomeValuesFrom := ’ObjectSomeValuesFrom’ ’(’ ObjectPropertyOf ’ ’ Class ’)’

(r7) ObjectAllValuesFrom := ’ObjectAllValuesFrom’ ’(’ ObjectPropertyOf ’ ’ Class ’)’

Dynamic rules are also incorporated, retrieved via SPARQL queries for Classes and

ObjectPropertyOf from the RDF dataset.

Acceptance/Rejection Index (ARI) for Axiom Evaluation The fitness of ax-

ioms in RDFMiner is evaluated using the Acceptance/Rejection Index (ARI) from the

Possibilistic Heuristic described in Sec 3.2, which is calculated based on the possibility

and necessity measures. The ARI for an axiom ϕ is defined as:

ARI(ϕ) = N(ϕ) +Π(ϕ) − 1 (3.8)

where N(ϕ) is the necessity of the axiom, and Π(ϕ) is the possibility of the axiom.

The ARI value lies in the range of [−1,1], with higher values indicating a stronger

acceptance of the axiom and lower values indicating rejection.

Contribution to Semantic Web Ontology Learning This extension of RDFMiner

marks a significant contribution to the field of Semantic Web ontology learning, par-

ticularly in the automated discovery of complex and nuanced axioms. The integration
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of complex class expressions in subsumption axioms opens new avenues for detailed

and accurate ontology construction in the Semantic Web.

3.3.5 Conclusion

The enhancements made to RDFMiner, as discussed in this section, directly con-

tribute to the framework of this thesis. These enhancements enable RDFMiner to

handle more sophisticated axiom structures in addition to simple atomic ones. Both

are necessary for our research which focuses on semantically analysing axioms. By

utilizing RDFMiner’s capabilities, our thesis aims to develop more efficient and accu-

rate axiom evaluation techniques that can be applied to large-scale semantic datasets.

We utilize RDFMiner in our thesis in the phase of axiom generation, axioms which we

use to train and test our models. RDMiner uses the possibilistic heuristic detailed in

Section 3.2 to evaluate it’s generated axioms. The RDMiner framework encompasses

a real-world ontology learning system which we aim to enhance with our work by

substituting it’s current evaluation method with a much faster yet equally accurate

model.

3.4 Bridging Model-Theoretic Concepts and Practical Machine Learning

3.4.1 Fuzzy Implication and Modified Support Vector Clustering

In their work "Predicting the Possibilistic Score of OWL Axioms through Modified

Support Vector Clustering," Malchiodi and Tettamanzi propose a novel approach to

ontology learning [240]. This method centers on predicting the possibilistic score of

OWL axioms, crucial for ontology construction and maintenance.

Method Overview The authors present a method based on support vector clus-

tering, originally designed for inferring the membership functions of fuzzy sets. This
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technique is adeptly adapted for predicting the possibilistic score of candidate OWL

axioms. The possibilistic score is a measure of an axiom’s compatibility with the

recorded facts in a knowledge base, grounded in the principles of possibility theory.

Semantic Similarity Measure A pivotal aspect of this approach is the semantic

similarity measure between axioms, which is essential for the support vector clustering

model. The similarity measure, inspired by the Jaccard index, is defined as follows:

sim(ϕ,ψ) =min{Impl(ϕ,ψ), Impl(ψ,ϕ)} (3.9)

where ϕ and ψ are OWL axioms. The function Impl denotes a fuzzy implication

operator, and the similarity is expressed as the minimum of the implications of ϕ by

ψ and vice versa, encapsulating a logical conjunction.

Fuzzy Implication Operator The fuzzy implication operator is based on Her-

brand semantics:

Impl(ϕ,ψ) = ∥{I ∶ I ⊧ ¬ϕ ∨ ψ}∥∥Ω∥ (3.10)

where Ω is the universe set, and I represents interpretations. This definition requires

an approximation due to computational inefficiency in real-world datasets.

Practical Implementation For practical implementation, the focus is on sub-

sumption axioms of the form A ⊑ B, where A and B are OWL class expressions, and

their negations. The similarity measure is approximated by considering individuals

in the RDF dataset that confirm or contradict these axioms:

sim(A ⊑ B,C ⊑D) =min{∥[A] ∩ [B] ∪ [C] ∩ [D]∥∥[A] ∪ [B]∥ ,
∥[C] ∩ [D] ∪ [A] ∩ [B]∥

∥[C] ∪ [D]∥ } ,

(3.11)
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↓ ϕψ → C ⊑D C /⊑D

A ⊑ B ∥[A]∩[B]∪[C]∩[D]∥
∥[A]∪[B]∥

∥[A]∩[B]∪[C]∩[D]∥
∥[A]∪[B]∥

A /⊑ B ∥[A]∩[B]∪[C]∩[D]∥
∥[A]∪[B]∥

∥[A]∩[B]∪[C]∩[D]∥
∥[A]∪[B]∥

Table 3.9: Formulas for computing similarity between positive or negated subsump-

tion axioms [240].

where [A], [B], [C], and [D] denote the extensions of the class expressions in the

RDF dataset. This approximation, aligned with the Jaccard index, provides a com-

putationally feasible method for calculating similarity between axioms.

Given that in order to predict the ARI of subsumption axioms we will need to

compute similarities between positive or negated subsumption axioms, the formulas

to apply in all four cases, as summarized in Table 3.9, are:

The similarity between two candidate OWL axioms of the form A ⊑ B and C ⊑D

can be computed using SPARQL counting queries. For instance, the denominator

∥[A] ∪ [B]∥ may be computed by the following SPARQL query:

SELECT (count(DISTINCT ?x) AS ?n)

WHERE { { ?x a A . } UNION { ?x a B . } }

This query counts the distinct individuals that are instances of either class A or

B, effectively computing the union of their extensions in the dataset.

For computing the numerator ∥[A] ∩ [B] ∪ [C] ∩ [D]∥ of the similarity measure, a

SPARQL query can be utilized to count the distinct individuals that are instances of

both classes A and B or both classes C and D. This effectively computes the inter-

section of the extensions of these class expressions in the dataset. The corresponding

SPARQL query is as follows:

SELECT (count(DISTINCT ?x) AS ?n)
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WHERE { { Q([A]) . Q([B]) . }

UNION

{ Q([C]) . Q([D]) . } },

where Q([X]) is ?x a X for the positive case and Q([X]) is represented by

FILTER NOT EXISTS { ?x a X } for the negated case.

Possibilistic Axiom Scoring This work utilizes the Possibilistic Heuristic de-

tailed in Sec 3.2. The possibilistic score of an axiom is assessed using a machine

learning model trained on a dataset of axioms with precomputed possibilistic scores.

The training process involves predicting the possibility of a candidate axiom and its

negation, which then facilitates the estimation of the axiom’s ARI.

Modified Support Vector Clustering The model employed in the paper is based

on a modified version of support vector clustering. This technique, originally devel-

oped for learning the membership functions of fuzzy sets, is adapted for the specific

task of predicting the possibilistic score of candidate OWL axioms.

Support vector clustering is a method that typically operates by finding a sphere

in a high-dimensional space, which encloses the data points. In this modified version,

the support vector clustering is adapted to work with the similarity measure between

OWL axioms and to handle the specific characteristics of the possibilistic scores.

The modification lies in how the model interprets the possibilistic scores and axiom

similarities. Instead of directly clustering the axioms based on their semantic content,

the model uses the derived similarity measures (based on the semantic overlap of the

axioms) and the possibilistic scores to train a clustering model. This approach allows

the model to predict the possibilistic score of a new, unseen axiom based on its

similarity to already scored axioms.
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Conclusion This paper contributes significantly to ontology learning by propos-

ing a scalable and efficient method for evaluating OWL axioms. The integration

of machine learning with a semantically driven similarity measure offers a practical

alternative to direct possibilistic scoring. The approach emphasizes the importance

of adapting sophisticated theoretical models to practical applications, particularly in

managing large volumes of semantic web data.

3.4.2 Predicting Possibilistic Scores with Support Vector Regression

In the paper "Predicting the Possibilistic Score of OWL Axioms through Sup-

port Vector Regression" by Malchiodi et al. extend their previous work on ontology

learning, focusing this time on using support vector regression (SVR) for predicting

possibilistic scores of OWL axioms [238].

The Shift to Support Vector Regression The main novelty of this paper com-

pared to the previous one lies in the application of support vector regression (SVR).

Unlike the modified support vector clustering used previously, SVR provides a more

direct and simplified approach to axiom scoring, enhancing both efficiency and scal-

ability.

Experimentation and Results The authors conducted experiments with 722 sub-

ClassOf axioms and their negations, involving a total of 1444 formulas. These were

tested against the DBpedia dataset to compute similarity measures and the possibil-

ity of each formula. The experiments revealed that ridge regression, a variant of SVR,

showed better results than ε-insensitive regression in terms of root mean square error

(RMSE), median, and standard deviation of errors, both for acceptability and ARI

(Acceptance/Rejection Index) prediction. Notably, the training time for ridge re-
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gression was dramatically lower compared to the fuzzy-based system used previously,

highlighting the efficiency of the SVR approach.

Performance Comparison The results indicated that while the original fuzzy-

based approach outperformed the SVR method in terms of accuracy, the SVR method

was significantly faster. Specifically, the training and tuning of the fuzzy-based system

took eight hours, compared to just two minutes for the ridge regression, representing

a substantial reduction in computational time.

3.5 Syntactic VS Semantic Similarity Measures and Does Dimensionality

Reduction Matter?

In "Classifying Candidate Axioms via Dimensionality Reduction Techniques",

Malchiodi et al. explore the effectiveness of different similarity measures in classi-

fying OWL axioms [239].

Dimensionality Reduction Techniques Two key dimensionality reduction tech-

niques were employed:

1. Kernel-based Principal Component Analysis (PCA): This technique ap-

plies PCA to data nonlinearly mapped onto a higher-dimensional space, extract-

ing principal components to represent the data efficiently.

2. t-distributed Stochastic Neighbor Embedding (t-SNE): t-SNE mini-

mizes the Kullback-Leibler divergence between two distributions, one repre-

senting the similarities of data points in the high-dimensional space and the

other in the reduced space.

These techniques were crucial in mapping axioms into a lower-dimensional space

for effective application of machine learning algorithms for classification.
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Syntactic vs Semantic Similarity Measures The authors tested various simi-

larity measures, categorized into syntactic and semantic approaches:

• Syntactic Measures:

– Length-based Similarity (simlen): This measure compares the textual rep-

resentation length of two formulas. It is a basic measure, focusing only on

string lengths, and is not expected to capture meaningful semantic infor-

mation. However, it serves as a baseline for comparison.

simlen(ϕ1, ϕ2) = 1 −
∣#ϕ1 −#ϕ2∣

max{#ϕ1,#ϕ2}
(3.12)

– Hamming Similarity (simH): This measure is a bit more sophisticated

and considers the normalized Hamming distance between the textual rep-

resentations of formulas. It evaluates the fraction of positions where the

strings contain different characters, aligning them on the left and ignoring

extra characters in the longer string.

simH(ϕ1, ϕ2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

H(ϕ1, ϕ2), if sgn(ϕ1) = sgn(ϕ2)

1 −H(abs(ϕ1),abs(ϕ2)), otherwise
(3.13)

– Levenshtein Similarity (simedit): This measure utilizes the normalized

Levenshtein distance between strings, representing the smallest number

of atomic operations needed to transform one string into the other. It

captures more complex syntactical and some simple semantic similarities.

simedit(ϕ1, ϕ2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lev(ϕ1, ϕ2), if sgn(ϕ1) = sgn(ϕ2)

1 −Lev(abs(ϕ1),abs(ϕ2)), otherwise
(3.14)

• Semantic Measure:
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– Jaccard Similarity (simJ): This is the only measure among those tested

that takes into account the specific form of the formulas and their meaning

within a dataset. It is closer to a semantics-based approach and uses the

Jaccard similarity index formula [238, 239, 240]. It is the same measure

developed in the works introduced in Sec 3.4.

simJ(ϕ1, ϕ2) =
∥[A] ∩ [B] ∪ [C] ∩ [D]∥

∥[A] ∪ [B]∥ (3.15)

where ϕ1 is A ⊑ B and ϕ2 is C ⊑D.

Comparative Performance of Similarity Measures The study’s statistical

analysis revealed a significant disparity in performance between the syntactic and

semantic similarity measures. The semantic-based Jaccard similarity (simJ) consis-

tently outperformed the syntactic measures across various machine learning models

and dimensionality reduction techniques. This was evident in the superior cluster-

ing and classification accuracy achieved by simJ , regardless of the computational

approach used.

The statistical analysis involved a comparison using several machine learning mod-

els, including Random Forests (RF), Naive Bayes (NB), Linear Discriminant Analysis

(LDA), Multi-Layer Perceptron (MLP), and Support Vector Classifiers (SVC). These

models were tested across different dimensions, but in Table 3.10 we focused on d = 2

for PCA, as PCA generally outperformed t-SNE, and the number of dimensions (d)

showed minimal influence on results. Notably, the length-based similarity measure

(‘simlen‘) consistently yielded poor results and is thus excluded from the table.

Implications and Future Directions These findings suggest that semantic un-

derstanding plays a critical role in ontology learning and axiom classification. While

syntactic measures offer computational simplicity, they may lack depth in contexts
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Model simH simedit simJ

RF 0.67 0.67 0.83

NB 0.62 0.69 0.82

LDA 0.52 0.68 0.82

MLP 0.62 0.66 0.82

SVC 0.60 0.60 0.60

Table 3.10: Median test set accuracy of algorithms using PCA (d=2) with different

similarity measures [239].

requiring nuanced semantic analysis. The prominent performance of the Jaccard mea-

sure indicates the need for semantic-aware approaches in automated ontology learning

tools.

3.5.1 Conclusion

The exploration of merging model-theoretic concepts with practical machine learn-

ing techniques, inspires a core innovation in our thesis. These concepts are necessary

for developing a sophisticated, machine learning-based framework for axiom evalua-

tion that surpasses traditional methods in both efficiency and scalability while main-

taining accuracy. By predicting possibilistic scores using a machine learning model,

the approaches presented in this section offer a novel way to assess axiom validity

against existing knowledge bases. Although this work presents challenges, such as

suboptimal accuracy and slow similarity calculation processes, it demonstrates that

such approaches are achievable and provide viable alternatives to much slower tra-

ditional evaluators. In this thesis, we use this work to benchmark and gauge the

performance of our models as well as the effectiveness of our innovative similarity

measures.
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3.6 Ontological Embedding Techniques in Axiom Evaluation

The evaluation and representation of axioms within the domain of ontology have

advanced significantly through the application of embedding techniques. These tech-

niques, which transform complex, high-dimensional information into compact, lower-

dimensional, and semantically rich representations, have become pivotal in the realm

of semantic web and knowledge representation. This section delves into various state-

of-the-art embedding methods, as discussed in recent literature, highlighting their

unique approaches and contributions to axiom evaluation.

3.6.1 Onto2Vec

Method Overview Onto2Vec, as presented in the work "Onto2Vec: joint vector-

based representation of biological entities and their ontology-based annotations",

combines symbolic inference (automated reasoning) with statistical representation

learning to generate vector-based representations of ontology classes and biological

entities annotated with these classes [336]. This approach leverages the HermiT OWL

reasoner to infer new logical axioms (like equivalent class, subclass, and disjointness

axioms), thus enhancing the richness of the ontology’s semantic content.

Representation Learning using Word2Vec The core of Onto2Vec’s method is

the application of the skip-gram model from Word2Vec [249] to learn representations

of each class or property in an ontology. Given an ontology O, the deductive closure

O∗ is first computed, which includes both the axioms in O and the set of inferred

axioms. Every axiom in O∗ is treated as a sentence, forming a corpus, with the

vocabulary consisting of classes, relations, and keywords used in the OWL axioms.

The skip-gram model is then used to learn the representation of each word in the

corpus. Formally, given a sequence of training words ω1, ω2, . . . , ωT , the skip-gram
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model aims to maximize the average log likelihood:

1

T

T

∑
t=1

∑
−c≤j≤c,j≠0

log p(ωt+j ∣ωt) (3.16)

Here, c is the size of the training context, T is the size of the set of training words,

and ωi is the i-th training word in the sequence.

Similarity Measures in Onto2Vec In Onto2Vec, the primary similarity measure

employed is cosine similarity, which is crucial for evaluating relationships between en-

tities in the vector space. Cosine similarity quantifies the cosine of the angle between

two vectors, reflecting their degree of alignment. Given two vector representations v1

and v2, cosine similarity is defined as:

cosine_similarity(v1,v2) =
v1 ⋅ v2

∥v1∥∥v2∥
(3.17)

Here, v1 ⋅ v2 denotes the dot product of the two vectors, and ∥vi∥ is the norm

of vector vi. This measure effectively captures the degree of alignment between

two vectors, with a value of 1 indicating perfect alignment and -1 indicating perfect

opposition.

Additionally, for baseline comparison, the paper uses Resnik similarity, a well-

known semantic similarity measure in bioinformatics. It provides a standard against

which the effectiveness of Onto2Vec’s embeddings can be evaluated, particularly in

the context of predicting protein-protein interactions.

Applications and Evaluations Onto2Vec has been applied to the Gene Ontology

(GO), producing dense vector representations of proteins, GO classes, and the ax-

ioms that govern these classes. The method’s effectiveness is demonstrated through

applications in predicting protein-protein interactions and clustering protein families.
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Method AUC Value (Yeast) AUC Value (Human)

Resnik 0.7942 0.7891

Onto2Vec 0.7701 0.7614

Onto2Vec NoReasoner 0.7439 0.7385

Binary GO 0.6912 0.6712

Onto BMA 0.6741 0.6470

Onto AddVec 0.7139 0.7093

Onto2Vec LR 0.7959 0.7785

Onto2Vec SVM 0.8586 0.8621

Onto2Vec NN 0.8869 0.8931

Binary GO LR 0.7009 0.7785

Binary GO SVM 0.8253 0.8068

Binary GO NN 0.7662 0.7064

Table 3.11: AUC values of ROC curves for PPI prediction. The best AUC value

among all methods is shown in bold [336].

Table 3.11 shows an example of the performance of Onto2Vec when compared to a

baseline (Resnik) and using different configurations. In particular, Onto2Vec’s rep-

resentations have shown potential in significantly improving the accuracy of protein-

protein interaction predictions compared to traditional semantic similarity measures.

Conclusion Onto2Vec represents a significant advancement in the representation

of biological entities and ontology-based annotations. Its ability to encode both the

ontology structure and an entity’s annotations in a single representation offers a novel

approach to ontology-based machine learning applications in bioinformatics.
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3.6.2 OPA2Vec

Method Overview OPA2Vec (Ontologies Plus Annotations to Vectors), as de-

scribed in "OPA2Vec: combining formal and informal content of biomedical ontologies

to improve similarity-based prediction", progresses beyond Onto2Vec by integrating

both the formal logical content of ontologies (asserted and inferred logical axioms)

and the meta-data present as annotation axioms [337]. This approach enriches the

embedding process by including natural language descriptions, labels, and other an-

notations associated with ontology entities, thereby providing a more comprehensive

semantic representation.

Combining Formal and Informal Content The key innovation in OPA2Vec

lies in its ability to process and vectorize a mixture of formal ontology axioms and

informal, human-readable annotations. This is accomplished through the following

steps:

1. Generating sentences from OWL annotation axioms to form a corpus, thereby

translating both the formal and informal content into a format suitable for

vectorization.

2. Applying a Word2Vec model, pre-trained on PubMed abstracts, to this com-

bined corpus. This use of transfer learning allows OPA2Vec to leverage exist-

ing knowledge in biomedical literature for better encoding of natural language

phrases and statements.

Differences from Onto2Vec and Novel Contributions While Onto2Vec fo-

cuses on embedding the logical axioms of ontologies, OPA2Vec extends this by:

1. Incorporating the ontology’s meta-data, such as natural language annotations,
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thus capturing a broader semantic spectrum.

2. Utilizing transfer learning with a pre-trained Word2Vec model, which signifi-

cantly enhances the representation of natural language components within the

ontology.

3. Demonstrating improved performance in applications like protein-protein in-

teraction prediction and gene-disease association prediction, surpassing both

Onto2Vec and traditional semantic similarity measures.

Similarity Measures and Evaluations Similar to Onto2Vec, OPA2Vec uses co-

sine similarity for comparing vector representations. Additionally, OPA2Vec’s en-

riched embeddings are evaluated against traditional semantic similarity measures,

like Resnik similarity, showing its superior performance in predicting protein-protein

interactions and gene-disease associations. Tables 3.12 and 3.13 illustrate the perfor-

mance of OPA2Vec compared with Onto2Vec with different configurations.

Method AUC (Human) AUC (Yeast)

OPA2Vec (Labels) 0.7973 0.7973

OPA2Vec (Description) 0.8298 0.8298

OPA2Vec (Synonyms) 0.7769 0.7769

OPA2Vec (Creation Date) 0.7494 0.7494

OPA2Vec (Created By) 0.7697 0.7697

OPA2Vec (OBOnamespace) 0.7587 0.7587

Onto2Vec 0.7614 0.7614

Table 3.12: AUC values of ROC curves for PPI prediction for different annotation

properties in human and yeast datasets [337].
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Method AUC (Human) AUC (Mouse)

Onto2Vec 0.7841 0.8431

OPA2Vec (No Pre-training) 0.8104 0.8755

OPA2Vec 0.8379 0.9013

OPA2Vec (NN) 0.8676 0.9304

Resnik 0.8291 0.9041

Table 3.13: ROC curves and AUC values for gene-disease association prediction per-

formance of different methods for human and mouse datasets [337].

Conclusion OPA2Vec represents a considerable advancement in the field of ontol-

ogy embeddings by effectively combining formal ontology content with rich annota-

tion meta-data. Its approach provides a more nuanced understanding of biological

entities, illustrating the power of integrating structured and unstructured data in

ontology-based applications.

3.6.3 OWL2Vec*

Method Overview OWL2Vec*, as introduced in "Embedding OWL Ontologies

with OWL2Vec?" and detailed in "OWL2Vec*: Embedding of OWL Ontologies",

represents a significant evolution in the field of ontology embeddings [170, 70]. Unlike

its predecessors, Onto2Vec and OPA2Vec, which focus on embedding logical axioms

and annotation metadata, respectively, OWL2Vec* integrates three dimensions: the

graph structure of the ontology, the lexical information, and logical constructors. This

multifaceted approach allows OWL2Vec* to capture a broader and more nuanced

spectrum of ontology semantics.
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Figure 3.1: The overall framework of OWL2Vec*, illustrating the process from OWL

Ontology to RDF Graph transformation, corpus generation with structural, lexical,

and combined documents, and the subsequent embedding training using a language

model [70].

Enhanced Embedding Techniques The core innovation in OWL2Vec* lies in its

ability to extract and learn from a rich variety of data sources within an ontology:

1. Graph Structure: The approach includes not only the direct translation of

ontology axioms but also an exploration of the ontology’s graph-based structure,

offering a more comprehensive view of the relationships and hierarchies present

in the ontology.

2. Lexical Information: OWL2Vec* delves deeper into the lexical content of the

ontology, extracting and vectorizing natural language annotations, labels, and

comments, thus enriching the embeddings with human-readable context and
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providing higher dimensional vectors.

3. Logical Constructors: The inclusion of logical constructors in the embedding

process allows OWL2Vec* to account for the inherent logical complexity of

ontologies, a feature not fully explored in Onto2Vec or OPA2Vec.

OWL2Vec* Strategies and Ontology Projection OWL2Vec* employs a so-

phisticated framework to compute semantic embeddings from OWL 2 ontologies,

involving several interconnected strategies shown in Figure 3.1:

1. Ontology Projection (From OWL Ontology to RDF Graph): The on-

tology is projected into a graph form, where nodes represent concepts, and edges

are labeled with relations between these concepts. This projection is critical as

it translates complex OWL 2 axioms into a graph structure, making it easier

to navigate and analyze the ontology’s semantic relationships. For instance, a

triple ARoB in the graph is justified by one or more axioms entailed by the

ontology, semantically relating two concepts A and B via a property Ro [170].

2. Walk Strategy: Diverse strategies are applied to traverse the projected on-

tology graph. A modified RDF2Vec [300] approach with weighted edges is used

to highlight specific relationships. A node2vec [144] inspired strategy offers

scalability and flexibility, allowing for the biasing of walks to enhance semantic

similarities across different ontology structures. These strategies are essential

for generating varied and rich corpora that capture the ontology’s complexity

from different angles.

3. Corpus Creation: Using the walk strategies, corpora of sentences are created

that reflect the diverse paths through the ontology graph. The variety in walking
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strategies leads to different types of corpora, each offering unique insights into

the ontology’s structure and semantics.

4. Concept Embeddings: The resulting corpora are then used to generate con-

cept embeddings with distinct characteristics. Techniques like Word2Vec and

FastText are employed for this purpose. The choice of walking strategy and cor-

pus type directly influences the nature of these embeddings, allowing for tailored

representations that emphasize different semantic aspects of the ontology.

The implementation of these strategies in OWL2Vec* is specifically designed to

address the multifaceted nature of ontologies. The use of ontology projection sim-

plifies the complex structure of OWL 2 axioms for better navigability and analysis.

Diverse walking strategies increase the number and diversity of the generated cor-

pora, ensuring that the embeddings capture a wide range of semantic relationships

and structures inherent in the ontology. This comprehensive approach is vital for cre-

ating embeddings that accurately reflect the rich and varied semantics of ontologies.

Comparison with Onto2Vec and OPA2Vec OWL2Vec* advances beyond Onto2Vec

and OPA2Vec by:

• Merging structural, lexical, and logical elements into a cohesive embedding

framework, thereby providing a more holistic representation of ontologies.

• Demonstrating superior performance in tasks such as class membership and

subsumption prediction across various ontologies, including HeLis, FoodOn, and

GO.

• Offering enhanced versatility and adaptability to different ontological structures

and requirements, as evidenced by its empirical performance.

108



Technical Details and Performance Metrics OWL2Vec* showcases its effec-

tiveness through a range of performance metrics. For instance, in class membership

prediction and subsumption prediction tasks, OWL2Vec* significantly outperforms

both Onto2Vec and OPA2Vec, as well as other baseline methods. Specific perfor-

mance metrics, such as Mean Reciprocal Rank (MRR) and Hits@N, indicate the

superior accuracy of OWL2Vec* embeddings in capturing the complex semantics of

ontologies.

FoodOn GO

Method MRR Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10

RDF2Vec 0.078 0.053 0.097 0.119 0.043 0.017 0.057 0.087

TransE 0.029 0.011 0.044 0.065 0.015 0.005 0.018 0.030

TransR 0.072 0.044 0.093 0.130 0.048 0.016 0.076 0.113

EL Embedding 0.040 0.014 0.067 0.099 0.018 0.005 0.021 0.036

Onto2Vec 0.034 0.014 0.047 0.064 0.024 0.008 0.031 0.053

OPA2Vec 0.093 0.058 0.117 0.156 0.075 0.032 0.106 0.157

OWL2Vec 0.091 0.052 0.121 0.152 0.031 0.012 0.040 0.067

Pre-trained Word2Vec 0.136 0.089 0.175 0.227 0.123 0.055 0.177 0.260

OWL2Vec* 0.213 0.143 0.287 0.357 0.170 0.076 0.258 0.376

Table 3.14: Subsumption Prediction Results for FoodOn and GO [70]

Evaluation and Comparison of Subsumption Prediction The results for sub-

sumption prediction, as presented in Table 3.14, indicate that OWL2Vec* significantly

outperforms other methods such as Onto2Vec and OPA2Vec in both the FoodOn and

GO datasets. Specifically, OWL2Vec* achieves the highest MRR of 0.213 and 0.170,

and also leads in Hits@1, Hits@5, and Hits@10 when compared to the baselines

for both datasets. These results highlight the effectiveness of OWL2Vec*’s embed-

ding strategies, which are capable of capturing complex semantic relationships within
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and across ontology hierarchies. This is especially notable in the case of FoodOn,

where OWL2Vec* nearly doubles the MRR of OPA2Vec, the next best performing

method. Similarly, in the GO dataset, OWL2Vec* outperforms OPA2Vec in MRR

by a substantial margin. The performance leap from traditional embedding methods

to OWL2Vec* demonstrates the potential of incorporating comprehensive ontology

features and sophisticated embedding algorithms for enhanced semantic prediction

tasks.

Conclusion In summary, OWL2Vec* stands as a pivotal development in ontology

embedding techniques. By intricately combining the structural, lexical, and logi-

cal facets of ontologies, OWL2Vec* not only achieves superior performance in key

ontology-related tasks but also sets a new benchmark for comprehensive semantic

representation in the realm of ontology embeddings.

3.6.4 Conclusion

The exploration of ontological embedding techniques such as Onto2Vec, OPA2Vec,

and OWL2Vec* is important for our thesis for two reasons. The first one, is to

figure out if word embedding techniques offer better paths than semantic similarity-

based approaches. Recently, and as of the time of writing this thesis, embedding

techniques are being used in different domains and are gaining much attention. This

is amplified by the appearance of Large Language Models (LLMs) and the rise of

Natural Language Processing (NLP) systems and AIs. Which brings us to the second

reason, to show the strength of our work and proposed models and compare them

to the state-of-the-art approaches which would not be complete without including

those that are based on embeddings. These embedding techniques are viable as they

provide a means to convert complex ontological structures into a form that machine
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learning models can process. However they fall very short in expressing the semantics

of logical formulas and are strictly limited to atomic axioms, as well as being slow.

For this, our goal is to propose models that surpass all the shortcomings of methods

mentioned in this section.
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Chapter 4

LEARNING TO CLASSIFY LOGICAL FORMULAS BASED ON THEIR

SEMANTIC SIMILARITY

An important task in logic, given a formula and a knowledge base which represents

what an agent knows of the current state of the world, is to be able to guess the truth

value of the formula. Logic reasoners are designed to perform inference, that is, to

decide whether a formula is a logical consequence of the knowledge base, which is

stronger than that and can be intractable in some cases. In addition, under the

open-world assumption, it may turn out impossible to infer a formula or its negation.

In many practical situations, however, when an agent has to make a decision, it

is acceptable to resort to heuristic methods to determine the probable veracity or

falsehood of a formula, even in the absence of a guarantee of correctness, to avoid

blocking the decision-making process and move forward. In this chapter, we propose

a method to train a classification model based on available knowledge in order to be

able of accurately guessing whether an arbitrary, unseen formula is true or false. Our

method exploits a kernel representation of logical formulas based on a model-theoretic

measure of semantic similarity. The results of experiments show that the proposed

method is highly effective and accurate.

4.1 Introduction

A defining feature for intelligent agents is their ability to reason, that is to draw

logical conclusions from the available premises, which constitute their knowledge [18,

47]. While this capability is very important, an equally important and useful, but

weaker, capability for an agent would be to be able to recognize if a given formula
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is likely to be true or false, given the current knowledge, in the current state of the

world, even though not necessarily in general.

As a matter of fact, we often experience situations where our incomplete knowledge

would not allow us to make exact inferences, yet this does not prevent us to make

decisions, because even when we don’t know a fact that we need in order to move

forward, we are able to make an educated guess (i.e., a prediction based on what we

already know) about the veracity of that fact and proceed with our decision making.

It is this weaker task that we are interested in studying here. We propose a

simple but effective idea, which is to train a classifier against the knowledge base of

the agent, which may be viewed as a set of formulas labeled with their truth value.

The formulas are represented as vectors of similarities to the labeled formulas; to

this end, we propose a model-theoretic semantic similarity measure which can be

computed efficiently. This kernel-representation and its associated similarity measure

are the key ingredients of our proposal.

Recently, a rise of interest in developing connectionist methods for reasoning can

be observed, with proposals such the so-called Logic Tensor Networks [29], or the

Logic-Integrated Neural Network [326] to integrate the power of deep learning and

logic reasoning, or approaches that employ state-of-the-art methods for training deep

neural networks to learn to perform some basic ontology reasoning tasks [168]. As a

further witness of the attention this research field is attracting, some conferences are

beginning to feature tutorials on it, like KDD’21 [353] and there is even an upcoming

Dagstuhl seminar on "Machine Learning and Logical Reasoning: The New Frontier" 1

.

Unlike these approaches, what we propose does not require sophisticated neural

architectures or resource-intensive deep learning; in addition, we do not attack the
1Dagstuhl Seminar 22291, July 17–22, 2022.
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more ambitious challenge of logical deduction, but just that of heuristically guessing

(as human beings do), the truth value of a formula, independently of its being logically

entailed by the available knowledge.

Actually, what people do in case of incomplete knowledge is to somehow mea-

sure the similarity between known/familiar situations and unknown/unfamiliar situ-

ations [370]. Several cognitive tasks, such as learning and interpolation require the

concept of similarity to be performed [116]. There exists a vast literature on similarity

measures, with many proposal arising in the field of machine learning [73]. However,

it appears that the problem of measuring the similarity of logical formulas has been

less investigated and, when it has, that’s often in relation with specific contexts.

While not directly addressing the problem of defining similarity among logical

formulas, Bowles [49] studies the nature of relevance and irrelevance of a proposition

with respect to another. His work shares with the definition of semantic similarity that

we propose here, a basic intuition, which is that the probability that one proposition

is true given that another one is true should play a central role. The definition of

relevance proposed by Makinson in [236], instead, is not in line with what we are

proposing here because it is defined in terms of letter-sharing. A way of measuring

the similarity of a Boolean vector to a given set of Boolean vectors, motivated in

part by certain data mining or machine learning problems, was proposed by Anthony

and Hammer [16]. A similarity measure for Boolean function was proposed by Fišer

et al. [126] in a quite different context, that of circuit synthesis, which explains

the differences with our proposal. One measure of similarity between functions is

the existence of a Lipschitz mapping (with small constant) between them [175]. A

problem somehow related to the one we are dealing with is the problem of measuring

the similarity between logical arguments, which has been studied by Amgoud and

David [13].
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Through an empirical validation we show that the framework we propose allows a

number of quite standard and unsophisticated classification techniques, like support-

vector machines, to learn very accurate models that are capable of “guessing” whether

a given, unseen formula is true or false in the current state of affairs, without the need

to perform any logical deduction.

The rest of the chapter is structured as follows: Section 4.2 states the problem of

formula classification; Section 4.3 defines a semantic similarity measure for formulas

that is the cornerstone of the proposed approach. Section 4.4 provides an empirical

validation of the approach and Section 4.5 draws some conclusions and suggestions

for future work.

4.2 Problem Statement

Let Φ be a set of formulas in a logical language L and let I be an interpretation,

which represents a particular state of affairs or the current state of the world. Under

interpretation I, the formulas in Φ may be labeled as being true or false. One could

thus construct a table
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1, ϕI1

ϕ2, ϕI2

⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ϕi ∈ Φ ⊂ L, for i = 1,2, . . . , and ϕIi is the truth value of ϕi according to

interpretation I. This table can be viewed as a representation of a knowledge base

K consisting of all the formulas ϕi ∈ Φ such that ϕIi = T and all the formulas ¬ϕi ∈ Φ

such that ϕIi = F . K represents what an agent knows (or believes) about the current

state of affairs but, of course, I, the actual state of affairs, is not known in full, which

is like saying that the open world hypothesis holds.

Consider now the problem of guessing or predicting whether a new formula ψ ∉ Φ
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is true or false in I, given K. To be sure, one could use a reasoner to check whether

K ⊢ ψ or K ⊢ ¬ψ. If the reasoner is sound and complete, this can even allow one to

decide whether K ⊧ ψ or K ⊧ ¬ψ. However, even in cases where K /⊧ ψ and K /⊧ ¬ψ,

which are entirely possible in an open world, it would be useful for an agent to be

able to make educated guesses at the truth value of ψ. By an educated guess we mean

a prediction, based on the truth values of the formulas the agent already knows. If

a model to make that type of predictions existed and were fast and accurate enough,

the agent might even used it instead of the reasoner, for time-critical tasks where

having a quick answer is more important than having an answer that is guaranteed

to be always correct.

What we have just described is a classification problem, where given a set of

labeled examples (here, formulas with their truth value), a model is sought for that

is able to accurately predict the label of an unseen case (i.e., a new formula).

To solve this problem, we propose to use a kernel representation, i.e., to represent

formulas as vectors of similarities to a restricted set of formulas whose label

is already known (Φ) and to train a classification model on these labeled examples,

later to be used to classify new, unseen formulas. To this aim, we will stick to very

standard and unsophisticated classification methods.

4.3 Semantic Similarity

We need to define similarity among logical formulas. It is quite obvious that

such a similarity should not be based on syntax, due to the fact that formulas with

widely different syntactical forms may be equivalent. Now, the semantics of logical

formulas is defined in model-theoretic terms. What we are looking for is, therefore, a

model-theoretic notion of formula similarity.

To keep technical complications at a minimum and without loss of generality, let
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us consider propositional logic. As a matter of fact, more expressive logical languages

can be mapped to the propositional case (e.g., description logics and first-order logic

under the Herbrand semantics).

Definition 1 (Language) Let A be a finite set of atomic propositions and let L be

the propositional language such that A∪{⊺,�} ⊆ L, and, ∀ϕ,ψ ∈ L, ¬ϕ ∈ L, ϕ∧ψ ∈ L,

ϕ ∨ ψ ∈ L.

Additional connectives can be defined as useful shorthands for combination of

connectives of L, e.g., ϕ ⊃ ψ ≡ ¬ϕ ∨ ψ.

We will denote by Ω = {0,1}A the set of all interpretations on A, which we may

also call the “universe”. An interpretation I ∈ Ω is a function I ∶ A → {0,1} assigning

a truth value pI to every atomic proposition p ∈ A and, by extension, a truth value

ϕI to all formulas ϕ ∈ L; I ⊧ ϕ means that ϕI = 1 (I is a model of ϕ); if S ⊆ L is a

set of formulas, I ⊧ S means I ⊧ ϕ for all ϕ ∈ S; S ⊧ ϕ means that ∀I ⊧ S, I ⊧ ϕ.

The notation [ϕ] denotes the set of all models of formula ϕ ∈ L: [ϕ] = {I ∈ Ω ∶ I ⊧ ϕ}.

The semantics of a formula ϕ ∈ L is the set of its models, [ϕ].

We might begin by defining the semantic distance between two formulas ϕ and ψ

as the Hamming distance between the two binary string that represent their respective

sets of models:

d(ϕ,ψ) = ∑
I∈Ω

[ϕI ≠ ψI], (4.1)

where [expr] denotes the indicator function, which equals 1 if expr is true and 0

otherwise.

According to this definition, d(ϕ,¬ϕ) = ∥Ω∥ and d(ϕ,ϕ) = 0, which is in good

agreement with our intuition. Also, two formulas that are totally unrelated 2 , like
2Two formulas may be said to be totally unrelated if knowing the truth value of one does not

give any information about the truth value of the other.
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say, p and q, where p, q ∈ A, will have a distance which is half-way in between these

two extreme cases, d(p, q) = 1
2∥Ω∥.

One problem with this notion of distance is that the distance between two given

formulas depends on the number of propositional constants in the language, which is

a little counter-intuitive. For instance, d(p, q) = 2 if A = {p, q}, but d(p, q) = 4 if A =

{p, q, r}, and so on. In addition, to compute it, we have to consider all interpretations

in Ω, even though many of them might be indifferent when it comes to two given

formulas: for example, pqr and pqr̄ are indifferent when comparing p to q.

The former problem disappears if, instead of a distance, we define a similarity,

ranging between 0 and 1 based on the same idea, as follows:

sim(ϕ,ψ) = 1

∥Ω∥ ∑I∈Ω
[ϕI = ψI]. (4.2)

The latter problem is also solved by defining Aϕ ⊆ A as the set of atoms that occur

in formula ϕ and by letting Ωϕ,ψ = 2Aϕ∪Aψ ; Equation 4.2 can now be rewritten as

sim(ϕ,ψ) = 1

∥Ω∥ ∑I∈Ω
[ϕI = ψI] = 1

∥Ωϕ,ψ∥
∑
I∈Ωϕ,ψ

[ϕI = ψI]. (4.3)

According to this definition, for any formula ϕ ∈ L, sim(ϕ,ϕ) = 1, sim(ϕ,¬ϕ) = 0 and,

no matter how many atoms are involved, if Aϕ ∩Aψ = ∅, sim(ϕ,ψ) = 1
2 .

Another interesting property of this semantic similarity is the following, which

ensures that the proposed similarity is consistent with logical negation.

Theorem 1 Let ϕ ψ be any two formulas of L. Then

sim(ϕ,ψ) = 1 − sim(¬ϕ,ψ).

Proof: For all interpretation I, ϕI = ψI ⇔ ¬ϕI ≠ ψI and ϕI ≠ ψI ⇔ ¬ϕI = ψI .
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Therefore, {I ∶ ϕI = ψI} = {I ∶ ¬ϕI ≠ ψI} = Ω ∖ {I ∶ ¬ϕI = ψI} and we can thus write

sim(ϕ,ψ) = 1

∥Ω∥ ∑I∈Ω
[ϕI = ψI] = 1

∥Ω∥∥{I ∶ ϕ
I = ψI}∥

= 1

∥Ω∥∥Ω ∖ {I ∶ ¬ϕI = ψI}∥ = ∥Ω∥∥Ω∥ −
1

∥Ω∥∥{I ∶ ¬ϕ
I = ψI}∥

= 1 − 1

∥Ω∥ ∑I∈Ω
[¬ϕI = ψI] = 1 − sim(¬ϕ,ψ).

◻

Another interesting property of the semantic similarity, as we have defined it,

is that, if Ωϕ,ψ is too large, we are not obliged to perform an exact computation of

sim(ϕ,ψ), but we can approximate it with acceptable accuracy by randomly sampling

n interpretations from Ωϕ,ψ and counting for how many of them ϕI = ψI . Indeed,

sim(ϕ,ψ) may be construed as a probability, namely the probability that, in a ran-

dom interpretation, ϕ and ψ are both true or both false. What we get is an unbiased

estimator of sim(ϕ,ψ), which behaves like a binomial parameter ŝϕ,ψ, whose con-

fidence interval is given by the Wald confidence interval, based on the asymptotic

normality of ŝϕ,ψ and estimating the standard error. This (1 −α) confidence interval

for sim(ϕ,ψ) would be

ŝϕ,ψ ± zα/2
√
ŝϕ,ψ(1 − ŝϕ,ψ)/n, (4.4)

where zc denotes the 1 − c quantile of the standard normal distribution.

For example, if we set n = 30, with a 99% confidence, the actual similarity will

be within a deviation of 2.576
√
1/120 = 0.2351 from ŝϕ,ψ, in the worst case, which

corresponds to ŝϕ,ψ = 0.5; for n = 100, the approximation error will be less than 0.1288

and for n = 1000 it will be less than 0.0407. As a matter of fact, a precise computation

of the similarity between formulas is not really required for the proposed approach to

work.
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This also suggests a way to deal with non-finite interpretations, which might arise

in expressive languages involving variables and functions.

4.4 Experiments and Results

4.4.1 An Example from the Block World

As a first test and example of our proposal, we define a language with four in-

dividual constants, A, B, C, Table, one unary predicate, covered(⋅), and one binary

predicate on(⋅, ⋅). The Herbrand base of this language is finite and consists of twenty

ground atoms, but we can only consider a subset of it, after dropping atoms like

on(A,A), covered(Table), and on(Table,A), which would always be false in every

state of the block world:

A12 = { covered(A), on(A,B), on(A,C), on(A,Table),

covered(B), on(B,A), on(B,C), on(B,Table),

covered(C), on(C,A), on(C,B), on(C,Table) }.

Notice that, given this A12, ∥Ω12∥ = 212 = 4,096. By adding another block D to this

world we can obtain a larger set of atoms

A20 = { covered(A), on(A,B), on(A,C), on(A,D), on(A,Table),

covered(B), on(B,A), on(B,C), on(B,D), on(B,Table),

covered(C), on(C,A), on(C,B), on(C,D), on(C,Table),

covered(D), on(D,A), on(D,B), on(D,C), on(D,Table) },

of size 20, with ∥Ω20∥ = 220 = 1,048,576, and, similarly, by adding a further block E,

a set A30 of 30 atoms, with ∥Ω30∥ = 230 = 1,073,741,824.

The language may then be completed by a minimal set of logical operators, ¬, ∧,

∨. Then we select a reference interpretation, for example

I∗12 = {on(A,Table),on(C,Table),on(B,A), covered(A)},
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corresponding to a given state of a very simple block world containing one table and

three blocks, arranged as in Figure 4.1a.

A

B

C A

B

C

D

A

B

C

D

E

(a) (b) (c)

Figure 4.1: The three block worlds corresponding to the reference interpretations,

respectively, (a) to I∗12, (b) to I∗20, and (c) to I∗30.

We then generate a set Φ of random logical formulas and we assign them a truth

label based on I∗ and train various models on it.

4.4.2 Experimental Protocol

The experiment was divided into two parts. In the first part, we created 3 datasets,

each of which is based on a different universe generated using the language explained

in Section 4.4.1. The universes are depicted in Figure 4.1. We used these sets to test

the performance of models learned using our proposed similarity measure. We con-

sidered different universe complexities and used very small training sets to simulate

a realistic scenario. For this part, no sampling was done, all interpretations in Ωϕ,ψ

were considered as per Equation 4.3. This can be very time-consuming when the two

formulas involve many atoms. For the second part, we created 3 additional sets for

each of the universes used in the first part. These additional sets contain the exact

same formulas as those in the first part, the only difference being the way the simi-

larity was calculated. To investigate what we mentioned in Section 4.3 regarding the

ability to approximate the similarity with acceptable accuracy by randomly sampling
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n interpretations, we approximated the similarities for each of the 3 additional sets

using n = 30, n = 100, and n = 1000 respectively. We then compared the performance

of each of these sets with the base one created in the first part 3 .

Part One: Baseline Experiment.

To see how the proposed method performs, we created the 3 universes depicted in

Figure 4.1, and denoted by Ω12, Ω20, and Ω30. The universes consist of 12, 20, and 30

atoms respectively (sets A12, A20, and A30 as defined above). The following are the

reference interpretations:

• I∗12 = {on(A,Table),on(C,Table),on(B,A), covered(A)}, cf. Figure 4.1a;

• I∗20 = {on(A,Table),on(C,Table),on(B,A),on(D,C), covered(A), covered(C)},
cf. Figure 4.1b;

• I∗30 = {on(A,Table),on(C,Table),on(E,Table),on(B,A),on(D,C), covered(A),
covered(C)}, cf. Figure 4.1c;

Following that, we generated 500 random formulas for each of the universes using

Algorithm 1. Algorithm 1 generates a given number N of random formulas, taking

as input a list of ground atoms A. It is recursive and chooses its next step and which

symbols to add at random. It uses a variable that reduces the probability of adding

a nested subformula the more complex a formula becomes.

We then labeled each of the formulas with its truth, based on the reference in-

terpretation of its universe. The next step was to create the similarity matrix for

each set of formulas. For this part, no sampling was done, in other words all inter-

pretations were taken into account and no noise was added. The similarity between
3All the code and data used for the experiments described in this chapter can be found in

the following repository: https://github.com/ali-ballout/Learning-to-Classify-Logical-
Formulas-based-on-their-Semantic-Similarity.
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Truth Formula ϕ0 ϕ1 . . . ϕm

Truth0 ϕ0 1 S0,1 . . . S0,m

Truth1 ϕ1 S1,0 1 . . . S1,m

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

Truthm−1 ϕm−1 Sm−1,0 Sm−1,1 . . . Sm−1,m

Truthm ϕm Sm,0 Sm,1 ⋯ 1

Figure 4.2: Formula similarity matrix with truth labels.

each formula and all other formulas in the set is calculated using Equation 4.3. To

simplify, we compare formula ϕ to all other formulas in the set of 500 formulas. At

each comparison we check all the unique atoms included in the compared formulas

ϕ and ψ, for an example of what atoms are refer to A12 in Section 4.4.1. We then

generate all interpretations for this set of unique atoms extracted from both formulas.

Then we record the truth for each of the formulas based on each of the generated

interpretations. After that, we count the instances where the truth of formulas ϕ and

ψ are the same. We divide that number by the total number of generated interpreta-

tions and the result obtained is the similarity between ϕ and ψ. We do this, once, for

all pairs of formulas to obtain a symmetric similarity matrix of the shape 500 × 500.

Figure 4.2 depicts the similarity matrix between formulas of a set of formulas of size

m with S being the similarity between each pair. The diagonal is all 1 since it is the

similarity between a formula ϕ and itself. The truth labels of all the formulas are

attached as column Truth to the similarity matrix to obtain the final product of the

process, which is the input to be used for training and testing a machine learning

model.

Now that we have created our labeled datasets, we need to choose a machine
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learning method that is suitable for the task. Through a process of model selection

we decided to use a support vector classifier, it performed the best with the small

training sets that we provided. After performing a grid search we determined the

best hyper parameters, we set the regularization parameter C to 0.1 and the kernel

type to polynomial, of degree 3. We ran, for each of the 3 datasets, a 20-fold cross

validation processes to establish the baseline performance of our proposed method.

All results presented in Table 4.1 are averages of the scores obtained from all the runs

for each dataset. Similarly, confusion matrices displayed in Figure 4.3 are the result

of summing up all confusion matrices of the 20 runs and then normalizing them. We

set the number of formulas included in the training sets of each universe to less than

or equal to ∥A∥ of said universe, the training set sizes were as follows: 10 for Ω12, 20

for Ω20, and 30 for Ω30. Table 4.2 presents the labeled formulas used in the training

set of one of the runs for Ω12.

No agent, human or artificial, has in its knowledge the exhaustive list of all possible

formulas. The rationale for using small training sets in our experiments is that the

knowledge base of an agent is unlikely to contain many formulas; some of them might

be handcrafted and be part of the “background knowledge” of the agent, and the

others acquired through sensors or messages received from other agents. In any case,

it is a principle of economy that the knowledge of an agent be encoded using as

few and as simple formulas as required. We want to test our proposal against a

realistic scenario in which the available knowledge (the formulas whose truth value

is known) is very small compared to the number of semantically distinct formulas

that can be stated in the language. This also has the advantage of demonstrating the

generalization capability of our models.

Notice that, for a language whose set of interpretations is Ω, there are 2∥Ω∥ seman-

tically distinct formulas, which is a really huge number, although most of them would
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be very complicated formulas that one would not expect to find in a real knowledge

base. However, even factoring out very complicated formulas, the number of possible

formulas would be exceedingly large.

To be sure, there exists a choice of formulas that would make the problem we

are studying absolutely trivial. That is when the training set contains at least ∥A∥

formulas, each consisting of a single literal (i.e., a positive or negated atom), such

that the atoms of these formulas are all distinct. It is easy to see that those formulas,

with their truth labeling, would directly give the reference interpretation, from which

the truth value of any other formula can be mechanically computed in linear time

with respect to the length of the formula, without performing any logical deduction

or reasoning.

This is the reason why the formulas of each dataset are extracted from a distri-

bution that is skewed in favor of simpler (i.e., realistic), but not too simple formulas.

Indeed, we ensure that the training set does not contain literals for all the atoms, by

counting the number of literals that are randomly generated and rejecting additional

literals once the maximum number of literals has been reached. That maximum is

set to ∥A∥/2, well below ∥A∥.

Since the dataset consists of randomly generated formulas, it is unbalanced 4 , so

in addition to the accuracy score, which we report because it gives an intuitive idea

of the probability that the prediction is correct, we will provide the Matthews corre-

lation coefficient (MCC) which is a statistical rate between −1 and 1 that produces

a high score only if the prediction obtained good results in all of the four confusion

matrix categories (true positives, false negatives, true negatives, and false positives),

proportionally both to the size of positive elements and the size of negative elements
4The dataset for universe Ω12 has 272 false formulas and 227 true ones (1 missing because it was

a duplicate), for universe Ω20 278 false and 222 true, and for universe Ω30 300 false and 200 true; of
course, these figures vary (between training and test set) for every fold obtained from these datasets.
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in the dataset. So its a very good metric when we don’t have a perfectly balanced

dataset [75]. Results of this part of the experiment are presented in Table 4.1.

Part Two: Sampling Experiment.

In this part of our experiment we investigate a property of our proposed similarity,

which is the ability to approximate sim(ϕ,ψ) with acceptable accuracy by randomly

sampling n interpretations from Ωϕ,ψ. We will name this approximation ŝϕ,ψ.

To this end, we created 3 new matrices for each set of formulas used in Sec-

tion 4.4.2. We ended up with 9 new datasets, 3 for each of the universes depicted

in Figure 4.1 and describe in Section 4.4.2. The similarity in the 9 new matrices

was calculated differently than in Section 4.4.2. For this part, we approximated the

similarity between formulas by randomly sampling a set number n of all interpre-

tations, instead of taking all of them into account as we did in Section 4.4.2. The

number of random samples n considered for creating the matrices is n = 30, n = 100,

and n = 1000. This allows us to simulate the scenario of having a machine with low

computational capacity trying to process a set of interpretations that is too large, and

utilizing sampling as a solution. It also allows us to see how the method performs

when noise is introduced.

The way the similarity is approximated using sampling is not much different from

how it is calculated: we still count the instances where formulas ϕ and ψ have the

same truth, but for n randomly sampled interpretations instead of all interpretations.

Algorithm 2 is used to approximate the similarity between two formulas. In simple

terms, when Algorithm 2 compares two formulas ϕ and ψ, instead of generating all

interpretations corresponding to the set of unique atoms A composing those formulas,

it generates a number n of these interpretations randomly. This sampling is done with

replacement, which means that it is possible that a given interpretation gets sampled

126



multiple times, especially in case n is larger than the number of all interpretations.

We then proceed to count the instances where formulas ϕ and ψ have the same truth

out of these sampled interpretations. After that, we divide the obtained number by

n, the size of the sample, since we are now dealing with n interpretations and not

all of them. The result from that division is the approximation ŝϕ,ψ of the similarity

sim(ϕ,ψ) between ϕ and ψ. We do this for the sets of formulas we randomly generated

in Section 4.4.2 for each of our universes 3 times, once for each number n of samples

we mentioned.

With these 9 new matrices we are able to study how the sample size n might affect

the performance of the method when dealing with different universe complexities. It

will also show us how well an approximation of the similarity performs. We used the

same model to test the performance and the same scoring metrics as the baseline.

We used the same training set sizes for each universe as in the baseline. The results

of this part of the experiment are available in Table 4.1.

4.4.3 Results and Analysis

Baseline Results

We start our analysis with the first part of our experiment, detailed in Section 4.4.2.

The results can be found in Table 4.1 and the corresponding confusion matrices to

offer support in Figure 4.3. A small sample of formulas from the test set for the

smallest universe, with the labels predicted by the model, is provided in Table 4.3.

From this experiment we can determine:

1. The overall performance of our proposed method without sampling while dealing

with universes of different complexities, using very small training sets.

2. The effect the training set size has on performance with respect to the complex-
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Universe Training set Size sample size Accuracy score MCC

Ω12 10

no sampling 0.77 0.56

30 0.76 0.54

100 0.77 0.56

1000 0.77 0.55

Ω20 20

no sampling 0.81 0.63

30 0.81 0.62

100 0.82 0.63

1000 0.82 0.65

Ω30 30

no sampling 0.83 0.66

30 0.79 0.56

100 0.82 0.62

1000 0.83 0.64

Table 4.1: Accuracy and MCC for experiments done on each universe.

ity of the universe addressed.

Regarding the first, Table 4.1 shows that the overall performance of our proposed

method is good. The highest accuracy achieved was 83% for a training set size of 30

formulas and a universe of complexity 30, MCC being 0.66 which is a very good result

when training using an unbalanced set. As a worst case, the method achieved 77%

accuracy with a minimal training set size of 10 formulas and universe complexity
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of 12, MCC of 0.56 is acceptable considering the small training set relative to the

complexity of the universe. Indeed, 30 formulas for a language with 30 propositional

symbols is a really sparse training set, when one thinks that this language has ∼ 109

interpretations and there exist ∼ 10300,000,000 semantically distinct formulas one can

construct!

Formula Label

(on(C,B) ∧ on(B,C)) ∨ (¬¬¬¬on(A,B) ∨ on(B,A)) True

¬(¬(on(A,B) ∧ ((on(C,Tbl) ∨ ¬¬on(C,B)) ∧ covered(A))) ∨ (on(C,A) ∨ on(B,C))) False

¬(((covered(B) ∨ ¬on(B,A)) ∨ (on(B,Tbl) ∧ (on(B,A) ∧ on(C,A)))) ∧ covered(B)) True

¬¬¬on(A,C) True

(on(B,C) ∨ covered(A)) ∨ covered(A) True

¬(¬on(A,C) ∧ ¬covered(C)) False

(on(A,C) ∨ on(C,A)) ∧ ¬(covered(C) ∧ on(A,Tbl)) False

on(C,Tbl) ∧ on(C,B) False

on(C,B) ∨ on(B,C) False

¬on(C,B) ∧ (¬¬¬on(C,B) ∧ covered(B)) False

Table 4.2: A sample training set made of 10 formulas from universe Ω12.

After demonstrating that our proposed method is capable of achieving good results

with very small training sets, we move on to the second point. We can see that the

proposed method can achieve an average accuracy of 80% throughout the runs that use

a very small training set of 10 formulas for Ω12, 20 formulas for Ω20, and 30 formulas
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for Ω30. It would be natural to think that as the universe complexity increases, a

model would require a larger training set to maintain performance, which is what the

results shown in Table 4.1 and Figure 4.3 confirm. From the results see in Table 4.1

where no sampling was considered, we can see that increasing the number of formulas

included in the training set had a very significant effect on performance. This effect

was not limited to maintaining performance, but it resulted in an improvement of up

to 8% in accuracy and 0.14 in terms of MCC.

To put things into perspective, for Ω12 we used for training 10 formulas out of

a possible ∼ 101233 compared to 30 out of a possible ∼ 10300,000,000 for Ω30. In other

words, the transition from Ω12 with 4096 interpretations to Ω30 with ∼ 109, resulted

in a gain of 8% accuracy by just adding 20 formulas to the training set. The increase

in the size of the training set is modest relative to the size of Ω30 or the number of

semantically distinct formulas that can be constructed, while the gain of accuracy

and balance in predictions in terms of MCC is significant.

We observed that the truth value of “simple” formulas turns out to be harder

to predict for the trained models than that of “complicated” formulas (see, e.g., Ta-

ble 4.3). While this must have to do with the geometry of the space of the kernel

representation of formulas induced by the semantic similarity, this phenomenon will

have to be the object of further investigation.

Sampling Results

We now shift our attention to part two of the experiment detailed in Section 4.4.2.

The results of this experiment are also shown in Table 4.1 and the corresponding

confusion matrices to offer support are found in Figure 4.3.

At first glance at Table 4.1, we can tell that the overall performance of the model

does not degrade much when the similarity is approximated using the lowest number
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of samples n = 30. Indeed, we have a loss of accuracy of almost 4% for 2 of our

universes. But this is an acceptable result when considering that in this case we

would no longer have to calculate the exact similarity especially when we are limited

by computational power. In fact, in this case, we would be looking at 30 random

interpretations instead of ∼ 109 for a universe the size of Ω30.

The degradation in accuracy and MCC decreases as we increase the number of

samples from 30 to 100 and then to 1000, it even approaches baseline performance.

This proves what we mentioned in Section 4.3, we are able to approximate the sim-

ilarity with very high accuracy even with a low number of sampled interpretations

when compared to the number of all interpretations.

On the other hand, another increase in the number of samples from 100 to 1000

has no significant effect on performance, which is interesting considering that this

introduces noise (since we allow for repetitions) yet it does not degrade performance.

It also means that for a universe of complexity ∥A∥ there exists an optimal number

of samples n that achieves baseline-similar performance.
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(a) Ωbase12 (b) Ω30
12 (c) Ω100

12 (d) Ω1000
12

(e) Ωbase20 (f) Ω30
20 (g) Ω100

20 (h) Ω1000
20

(i) Ωbase30 (j) Ω30
30 (k) Ω100

30 (l) Ω1000
30

Figure 4.3: Confusion matrices of the similarity approximation using sampling ex-

periment for each universe. Each row represents 4 cases for each universe, starting

with the baseline (no sampling) and then n = 30, n = 100, and n = 1000 respectively.

Each sub-figure is captioned by the universe notation Ω12,20,30 and in superscript the

sample size n used to approximate similarity.

4.5 Conclusion

We have proposed a framework that allows an agent to train, based on a set of

formulas whose truth values are known, a classification model that predicts the truth-
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value of a new, arbitrary formula. This framework uses a semantic similarity between

formulas, which is a key ingredient of our proposal, to perform a kernel encoding of

the formulas, which is then exploited by the classification model. We have tested an

implementation of this framework using SVM, showing that the classification model is

highly accurate (with accuracy around 80%) even when the similarity is approximated

by severely undersampling the interpretations. The practical implications of these

results are that the proposed approach is tractable even for languages with a large (or

infinite but enumerable) number of atoms; indeed, computing a good approximation

of the similarity of two formulas can be done in linear time, as it depends only on the

size of the (random) interpretations sampled.

There is no guarantee that all the predictions made by a model be altogether

consistent. There is no built-in mechanism to ensure that and the mutual consistency

of all the prediction is not part of the measure of the quality of a classifier: every

prediction is made by the model and assessed independently of the others. Of course,

if the predictions were all correct, they would also be consistent and that’s what we

observe empirically, that the predictions tend to be mostly consistent.

Since the knowledge of an agent may not be complete, some formulas, which are

not entailed by it and whose negation is not entailed either, both predictions would be

acceptable, and one might be tempted to count them as correct. However, this is not

what we did: for the purpose of testing our method, what we did was to arbitrarily fix

one interpretation and say it corresponded to the actual state of affairs; use it to label

the training set and evaluate the predictions of the classifiers against the label that

would be thus assigned, even for those formulas whose truth value is not constrained

by the available knowledge. In a sense, we were as strict as one can be when judging

a classifier.
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Algorithm 1 Generating random formulas
Require: A set of atoms A

Ensure: formulas, a list of generated formulas

N ← Number of random formulas to generate

f ← one randomly generated formula

literals← 0 ▷ A counter used to limit the number of literals as sentences

for i = 1→ N do

i← i + 1

f ← random_formula(A,0)

if f in formulas then

i = i − 1

continue

else if length(f.symbols) == 1 then

if literals < length(A)/2 then

literals = literals + 1

else

i = i − 1

continue

end if

else

formulas.append(f)

end if

end for

function random_formula(A, level)

▷ Recursive; the nesting level, initially = 0, is used to progressively reduce the probability of adding nested

subformulas

if randrange(level + 4) then ▷ level+3
level+4

probability of stopping

return choice(A)

end if

if randrange(3) = 0 then ▷ with probability 1
3

return ¬random_formula(A, level + 1)

end if

return random_formula(A, level + 1) ⋅ choice(∧,∨)⋅

random_formula(A, level + 1)

end function

Note: The generation process is slightly biased towards sentences that are neither too simple, nor too complex.
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Algorithm 2 Approximating the similarity by sampling interpretations
Require: 2 formulas ϕ and ψ to be compared

Require: a sample size n

Ensure: ϕ and ψ, in the same universe Ω

Ensure: n > 0

A ← ϕ.atoms ∪ ψ.atoms

interpretations← Sample_interpretations(A, n)

counter ← 0

for w in interpretations do

if ϕ.truth(w) == ψ.truth(w) then

counter ← counter + 1

end if

end for

ŝϕ,ψ ← counter
n

function Sample_interpretations(A, n)

interpretations← array(size = n) ▷ Array to store n interpretations

for i = 0→ n − 1 do

b← array(size = A.length) ▷ Array the size of the list of atoms

for j = 0→ A.length − 1 do

b[j] ← randrange(2)

end for

interpretations[i] ← b

end for

return interpretations

end function
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Formula Actual Predicted

¬(¬(¬(on(B,A) ∧ covered(B)) ∨ ((covered(C) ∨

on(A, )B) ∧ on(C,Tbl))) ∨ ¬((on(B,A) ∧

on(A,Tbl)) ∧ ¬covered(A)))

False False

(on(A,Tbl) ∧ on(B,A)) ∨ ¬¬((on(A,C) ∧

((on(A,Tbl) ∨ covered(A)) ∧ covered(A))) ∨

on(C,B))

True True

covered(B) ∧ on(A,Tbl) False True

((covered(B) ∨ (¬on(A,B) ∧ on(C,Tbl))) ∧

(((on(B,A)∧(on(A,C)∧on(C,Tbl)))∨(on(C,A)∨

on(A,Tbl))) ∧ on(A,Tbl))) ∨ on(C,A)

True True

((covered(A) ∧ covered(B)) ∨ (covered(A) ∨

¬(((covered(A) ∨ on(B,C)) ∨ (on(B,C) ∧

on(B,Tbl)))∨on(C,A))))∨((on(B,A)∨on(A,C))∧

(((on(C,Tbl)∧on(B,C))∧on(A,C))∧covered(A)))

True True

covered(B) ∧ (((on(C,B) ∨ ((on(C,B) ∧

on(B,Tbl)) ∧ ((¬covered(B) ∨ (on(A,B) ∧

¬on(A,C))) ∨ (¬¬on(B,C) ∧ (covered(C) ∨

on(A,B)))))) ∨ covered(C)) ∧ (¬(on(A,C) ∨

on(B,C))∧((covered(A)∨on(C,B))∨(on(A,Tbl)∧

(on(A,Tbl) ∨ on(C,B))))))

False False

Table 4.3: A small sample of the test set with formulas varying in complexity from

universe Ω12.
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Chapter 5

PREDICTING THE SCORE OF ATOMIC CANDIDATE OWL CLASS AXIOMS

Candidate axiom scoring is the task of assessing the acceptability of a candidate

axiom against the evidence provided by known facts or data. The ability to score

candidate axioms reliably is required for automated schema or ontology induction,

but it can also be valuable for ontology and/or knowledge graph validation. Accurate

axiom scoring heuristics are often computationally expensive, which is an issue if you

wish to use them in iterative search techniques like level-wise generate-and-test or

evolutionary algorithms, which require scoring a large number of candidate axioms. In

this chapter, we address the problem of developing a predictive model as a substitute

for reasoning that predicts the possibility score of candidate class axioms and is quick

enough to be employed in such situations. We use a semantic similarity measure

taken from an ontology’s subsumption structure for this purpose. We show that

the approach provided in this chapter can accurately learn the possibility scores of

candidate OWL class axioms and that it can do so for a variety of OWL class axioms.

5.1 Introduction

An ontology is the explicit representation of components of a shared conceptual-

ization [145]. In machines, an ontology is a vocabulary which is used by said machine

in the representation of knowledge. An AI knowledge-based system would take an

ontology as its universe of components and their relations and derive new implicit

knowledge within that universe. For a detailed description of an ontology and its

components please refer to Section 2.1.2 in Chapter 2.

Ontologies play a vital role in data and knowledge integration by making a com-
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mon schema available [154]. Unfortunately, ontology construction is extremely ex-

pensive, in terms of both time and resources, and dependent on the availability of

knowledge experts [154, 331]. The construction of an ontology for a certain field

requires the contribution of a knowledge engineer and of an expert in that specific

field. This dependency persists throughout the lifetime of an ontology as an expert

is required to develop and expand it as new requirements arise. To overcome such

a bottleneck in knowledge acquisition, the field of ontology learning was conceived.

Ontology Learning [154, 215, 234] is the task consisting of the automatic generation of

ontologies. Ontology learning includes a variety of techniques and those are grouped

into:

• Linguistic techniques - Natural language processing mostly used in the prepro-

cessing of data, and some learning tasks such as term extraction [23].

• Statistical techniques - such as data mining and information retrieval methods

used to extract terms and associations between them [127, 128].

• Inductive logic programming (ILP) is a branch of machine learning that uses

logic programming to generate hypotheses based on prior knowledge and a set

of examples [119, 213, 255].

Each one of these technique groups is involved in one or more of the stages of

ontology learning, those stages being preprocessing, term and concept extraction,

relation extraction, concepts and relations hierarchies, axioms schemata and general

axioms [23]. Linguistic techniques can have a role in almost all the stages, but as we

mentioned they are mostly used for data preprocessing. We have already introduced

some statistical and linguistic techniques in Section 3.2 and Section 3.6.

In comparison, ILP techniques are a sub-field of machine learning that follow ex-

haustive statistical or linguistic processing. One such example is [228], where the au-
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thors describe a method for the automated induction of fuzzy ontology axioms which

follows the machine learning approach of ILP named SoftFOIL. One of SoftFOIL’s

limits is a result of its sequential covering strategy. As it uses a greedy search to

find rules, it does not guarantee to find the smallest or best set of rules that explain

the training examples. Another is susceptibility to being trapped in a loop while

searching for the best rule.

A new emerging group of techniques, is a hybrid breed that takes advantage of

combining classical ILP and statistical machine learning. To stay in the context of

the previous examples, a model would be trained with axioms having their scores

assigned by a statistical method, as well as using a similarity measure that results

from the logical processing of the data. This is exactly what we detail in Section 3.4.

A weakness of the models proposed by Malchiodi et al. is that they were still

reliant on the instances in the data set and querying them to construct the similarity

measure (not to figure out an axiom’s truth). This meant that even though it is an

improvement, it still falls victim to the same problems. The authors explicitly mention

that a major weakness of their method is that training such a model consumes a

significant amount of resources.

Our work addresses the shortcomings of the previous techniques that heavily rely

on error-prone instance-dependent statistics. It is also able to predict the scores of

multiple types of axioms and is not bound to simply subsumption. We propose a

method that can be used as a building-block or an extension/plug-in to other existing

statistical analysis or ILP options, such as DL-Learner [51], to allow faster execution

while maintaining high scoring accuracy, while still having the ability to perform as a

simpler stand-alone scorer. The method works by training a model on a set of atomic

class axioms scored by an algorithm, in this case [348]. This enables the model to

predict the score of any new atomic (consisting of a single concept on each side)
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candidate axiom. We experimented using multiple machine learning methods, and

compared our work to the state-of-the-art [240] that aims to achieve the same goal.

This chapter is structured as follows: Sect. 5.2 provides some background about

both axiom scoring and concept semantic similarity which are both prerequisites to

training the models. As for Sect. 5.3 it lays out the method explaining how the axioms

were extracted and scored, how the semantic measure we use was developed, and also

how an axiom based vector space was modeled leading to the prediction of the scores.

We detail our experiments including a comparison with the method presented in [240]

in Sect. 5.4, then present the results while listing our observations and findings. We

end the chapter with some notes and conclusions.

5.2 Background

5.2.1 Axiom Scoring

Axiom scoring can be done using statistical analysis, we detail in the Section 3.2

the possibilistic heuristic that does this using the theory of possibility described in

Section 2.4.3. As a recap, possibility theory [106] is a mathematical theory of epis-

temic uncertainty. Its central notion is that of a possibility distribution which assigns

to each elementary event a degree of possibility ranging from 0 (impossible, excluded)

to 1 (completely possible, normal). A possibility distribution π induces a possibility

measure Π, corresponding to the greatest of the possibilities associated to an event

and the dual necessity measure N , equivalent to the impossibility of the negation of

an event.
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5.2.2 Ontological Semantic Similarity

Semantic similarity is a notion used to define a distance between terms or concepts

based on meaning or semantics. It includes in its calculation only relations of the

type IS-A [32]. It is often confused with semantic relatedness, for example a train

and train tracks are functionally complementary, where as a train and an airplane

are functionally similar. The latter is an instance of semantic similarity where the

relatedness of both terms is based on the defining features they share where both

are vehicles [32, 79]. Most semantic similarity measures that rely on a structured

ontology, are based on path lengths between concepts as well as depth of concept

nodes in an IS-A hierarchy. As for information-based measures they use information

content (IC) of concept nodes derived from the ontology hierarchy structure and

corpus statistics [4].

The similarity measure we utilize and extend in our work is the one created by

Corby et al. [80, 79], under the subsection titled Ontological Approximation. The idea

is to calculate the ontological distance between two concepts by using the subsumption

path length. Following is the general definition:

∀(t1, t2) ∈H2,

DH(t1, t2) =mint(lH(⟨t1, t⟩) + lH(⟨t2, t⟩))

=mint
⎛
⎝ ∑
{x∈<t1,t>,x≠t1}

1/2dH(x) + ∑
{x∈<t2,t>,x≠t2}

1/2dH(x)
⎞
⎠

(5.1)

Formula 5.1 translates to: for all type pairs t1 and t2 in an inheritance hierarchy

H, the ontological distance between t1 and t2 in the inheritance hierarchy H is the

minimum of the sum of the lengths of the subsumption paths between each of them

and a common super type. And the length of the subsumption path between a type

t1 and its direct super type t is equal to 1/2dH(t) with dH(t) being the depth of t in
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H.

The authors implemented this measure as part of a larger ontology-based search

engine tool named Corese [78] 1 . This is the tool that has been used as means of

extracting the semantic similarity between concepts in our method.

We propose an extension to this similarity to present similarities between axioms,

this process is detailed in Sect. 5.3.2.

5.2.3 Instance Semantic Similarity

This similarity is used in the state-of-the-art method detailed in Section 3.4.1.

The support vector clustering method the authors used requires a kernel function

which was assumed to return the similarity between two axioms.

Similar to the ontological similarity, it is based on the semantics of axioms and

not on their syntax. The measure S is defined with values in [0,1], satisfying the

following desirable properties: for all axioms ϕ and ψ,

1. 0 ≤ S(ϕ,ψ) ≤ 1;

2. S(ϕ,ψ) = 1 if and only if ϕ ≡ ψ;

3. S(ϕ,ψ) = S(ψ,ϕ).

In Section 3.4.1 we detail how the similarity works in theory. One problem is

that instead of exactly computing the numerator, which would require to count the

models and counter models of both axioms being compared, a not so convincing rough

approximation of it is used. This approximation is obtained by replacing models and

counter models with instances occurring in the RDF dataset that confirm or contradict

the two axioms. This renders the similarity bound to and limited by instance data,
1https://project.inria.fr/corese/
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which means it is prone to errors as well as unusable in case instance data is scarce

or non existent.

In order to predict the ARI of subsumption axioms in this case, similarities be-

tween positive and negated subsumption axioms need to be computed. For the im-

plementation of the similarity’s computation in terms of SPARQL queries please refer

to Section 3.4.1.

This is a slow process, and for every candidate axiom you would need to calculate

the similarity for it and its negation. Since the queries used are counting queries

similar to those used in the scoring heuristic this means it also suffers from the same

limitations such as heavy computation cost and instance dependency.

5.3 Method

In an OWL ontology containing an inheritance hierarchy of concepts formed by

the subsumption axiom rdfs:subClassOf, our aim is to predict an acceptability score

for a candidate atomic class axiom by learning a set of previously scored axioms of

the same type, the score used is the one detailed in Sect. 5.2.1. A model is built

for each type of axiom to be predicted, this means that the method is repeated for

the number of axiom types being dealt with. To measure the similarity between

(candidate) axioms, we construct a similarity measure by extending the ontological

distance discussed in Sect. 5.2.2, which is defined among concepts, not axioms. To

this end, we consider the following necessary steps:

1. Axiom extraction and scoring: This step constitutes the creation of the set

of scored axioms of a certain type to be learned. We either use a ready scored

set such as we did for our comparison, or we score a new generated set.

2. Semantic measure construction and assignment: This step involves the
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retrieval of concepts used in our set of axioms, and their ontological distance

from the ontology. Followed by extending that similarity to those axioms. This

was done by calculating a single value that represents the similarity between

each pair of axioms, by applying a function such as Average to the ontological

distances of concepts in those axioms.

3. Axiom base vector space modeling: This step focuses on using axiom sim-

ilarity measures as weights/vector components, each axiom can be represented

as a vector in an axiom based vector space.

4. Score prediction: This step is dedicated to training a Machine Learning model

with the data set (vector space model in addition to the scores) and predicting

the acceptability score of new candidate axioms.

We start by collecting the set of scored axioms we plan to train and test our

method with. After that, we query the ontology to retrieve the ontological distances

between all concepts. Then similarity measures between axioms will be derived from

those distances and assigned as weights to represent the axioms as vectors in an

axiom-based vector space. Machine learning models are used in the end to learn

the set of scored axioms with their similarity weights and predict the acceptability

score of a candidate axiom. We will consider subClassOf axioms for the comparison

with [240] since that is the only type of axiom they can address, and their dataset

which we use for said comparison is made of subClassOf axioms. We will also use

disjointWith axioms for our experiment to show that we can apply our method to all

atomic OWL class axiom types, as well as highlight that no leakage or bias is present

from utilizing the subclass of hierarchy.
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5.3.1 Axiom Extraction and Scoring

In this chapter, we consider two approaches. In the first one, we generate a number

of atomic class candidate axioms randomly. The generated candidates are filtered for

duplicates. We then make sure none of the candidates already exists in the ontology

explicitly or implicitly, using the search engine and its reasoner, then we score them.

The other approach, which we prefer and use for controlled tests, is to query exist-

ing axioms. To make sure we have positive scores, we query the ontology for existing

axioms and score them. The same can be said for negatively scored axioms, we can

query the counter type and score it as if it were the first. For example, subClassOf

and disjointWith are counter types so if disjointWith(C1C2) has a positive score,

subClassOf(C1C2) will have a negative one. This is bound by how many axioms

exist to be queried (after inferring implicit axioms).

Query 5.1 is used to extract existing axioms of both types and labeling them to

be scored after with the heuristic. The search engine used is Corese [78] and the

ontology is Dbpedia. After the extraction of the axioms, we select an equal amount

of both classes.

0 SELECT ?class1 ?class2 ?label WHERE {

1 { ?class1 a owl:Class . ?class2 a owl:Class . ?class1

rdfs:subClassOf ?class2

2 filter (!isBlank(?class1) && !isBlank(?class2))

3 filter (?class1 != ?class2)

4 bind(1.0 as ?label) }

5 Union{ ?class1 a owl:Class . ?class2 a owl:Class . ?class1

owl:disjointWith ?class2

6 filter (!isBlank(?class1) && !isBlank(?class2))
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7 filter (?class1 != ?class2)

8 bind(0.0 as ?label) }}

Query 5.1: Axiom extraction

The second step is to score, this is done by simply inputting the extracted axioms

as a text file using the possibilistic heuristic [348], and receiving an output file con-

taining the scores (ARI), it should be noted that the process is very slow thus the

need for a method such as ours.

For disjointWith axioms, possibility only is considered since necessity is mean-

ingless in the case of this axiom and incalculable. So the score is between 0 and

1.

5.3.2 Semantic Measure Construction and Assignment

To be able to assign similarity measures between axioms, we need to retrieve

the ontological distances between all classes. Using Corese in which the ontological

distance metric is implemented, this translates into a function added to the SPARQL

query. Query 5.2 retrieves three columns, the first two contain the combination of

all classes with the third containing the ontological distance denoted by similarity.

Blank nodes are ignored.

0 select * (kg:similarity(?class1, ?class2) as ?similarity)

1 where {

2 ?class1 a owl:Class . ?class2 a owl:Class

3 filter (!isBlank(?class1) && !isBlank(?class2))

4 }

Query 5.2: Class ontological distance retrieval
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Concepts C0 C1 . . . Cn

C0 1 S0,1 . . . S0,n

C1 S1,0 1 . . . S1,n

⋮ ⋮ ⋮ ⋱ ⋮

Cn−1 Sn−1,0 Sn−1,1 . . . Sn−1,n

Cn Sn,0 Sn,1 ⋯ 1

Figure 5.1: Concept similarity matrix.

Scores Axioms A0 A1 . . . Am

score0 A0 1 S0,1 . . . S0,m

score1 A1 S1,0 1 . . . S1,m

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

scorem−1 Am−1 Sm−1,0 Sm−1,1 . . . Sm−1,m

scorem Am Sm,0 Sm,1 ⋯ 1

Figure 5.2: Axiom similarity matrix with labels.

After retrieving the table of similarities, we pivot it resulting in a symmetric n×n

matrix where the first column and the first row are the classes and the cells are

the similarities between them with a diagonal of only 1’s since as we mentioned the

similarity between a class C and itself is 1. The shape of the concept similarity matrix

is illustrated in Figure 5.1.
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From this matrix, we can derive the similarity between axioms. The goal is to end

up with a similar square symmetric matrix of the shape m ×m, m being the number

of axioms, that has axioms instead of concepts as both first row and column, and the

cells would be the similarities between a pair of axioms. Exactly as in the case of

the concept similarity matrix, the diagonal of this matrix will contain only 1’s as the

similarity between an axiom A and itself is 1.

In order to construct this axiom similarity matrix MA depicted in Figure 5.2

alongside the labels, we use Algorithm 3. The algorithm iterates over the set of

labeled axioms TA which we extracted in Section 5.3.1, comparing each axiom Ai to

all other axioms Aj in TA having j increment from i to length of TA − 1 after each

iteration of i. This is so we avoid redundant calculations. While comparing axioms

Ai and Aj, we first deal with the concept on the left side of each axiom, so the left

concept of Ai denoted by Ai[L] and that of Aj denoted by Aj[L]. To retrieve SL the

similarity between those concepts from MC , we search in the first row of the concept

similarity matrix MC for concept Ai[L], and in the first column of MC for concept

Aj[L]. MC[Ai[L],Aj[L]], the intersection between the row where Ai[L] was found,

and the column where Aj[L] was found represents the left side similarity between

axioms Ai and Aj. The same process is repeated for the right side, and then the

axiom similarity S is calculated as a function between SL and SR. In this work we

applied two functions and they were minimum and average. After calculating S in

each iteration of j it is added to MA in the cell where the row is the index of Ai and

column the index of Aj.

5.3.3 Axiom Base Vector Space Modeling

We define a vector-space model to represent axioms as vectors. The number of

dimensions d of our vector space is equal to the number of axioms we have in the
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Algorithm 3 Constructing the matrix of axiom similarities
Require: All concepts included in axioms in TA be present in concept similarity

matrix MC

Ensure: 0 ≤ S ≤ 1 ▷ S is the similarity between 2 axioms

MC ← Concept similarity matrix

TA ← Set of labeled axioms

MA ← Axiom similarity matrix to be filled

for i = 0→ Length(TA) − 1 do

for j = i→ Length(TA) − 1 do

SL ←MC[Ai[L],Aj[L]]

SR ←MC[Ai[R],Aj[R]]

S1 ← Avg(SL, SR) ▷ Experiments were done with (min, Avg)

if Axiom Type is Disjointness or Equivalence then

SL ←MC[Ai[L],Aj[R]]

SR ←MC[Ai[R],Aj[L]]

S2 ← Avg(SL, SR)

else

S2 ← 0

end if

S ←Max(S1, S2)

MA.Add(Ai,Aj, S)

end for

end for

Note: For Symmetric axioms, we have to compare both ways which is what we do

inside the if statement for Disjointness and Equivalence axioms.

149



labeled set TA. Each axiom can be represented as a vector V in this d-dimensional

space. Now that we have the similarities between axioms in our ontology, looking at

the axiom-similarity matrix it would be intuitive to consider each row of the matrix

as a vector V in a vector space where the dimensions d are the columns which are

the axioms themselves having as weights the similarities S. Thus Algorithm 3 is

utilized whenever an axiom is generated or a new candidate axiom is suggested and

will encode said axiom into a vector V in this vector space.

5.3.4 Score Prediction

After constructing our vector space and representing axioms as vectors, we con-

sider the set of scored axioms as a set of vectors. It is now possible to apply regression

machine learning methods on the vector space representation of an axiom base. We

used a range of methods throughout our experiments such as random forests, Support

vector regressor, and neural networks. Trees and random forests were mostly used to

check that there was no bias during the prediction, since they allow us to interpret

our predictive model easily and visually analyse the decisions.

To avoid information leakage since the matrix is symmetric, considering the size

of the matrix is n × n, all models would be trained using an m ×m sub-matrix of

the axiom similarity matrix with the labels, and then tested on a z ×m sub-matrix.

This means an axiom vector V will have m dimensions (features) which are the ones

used to train the model, regardless what the number of dimensions (features) in the

full matrix is. In other words the symmetric part of the matrix equivalent to z (the

columns of n outside the range of m) is discarded. The model’s goal is to predict the

score of a candidate axiom, which is represented as a vector V in our vector space

having m dimensions (features), which are the axiom’s similarities with the axioms

of the same type used to train the model. The score is a number between -1 and
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1 for subClassOf and equivalence, and between 0 and 1 for disjointWith. Here, 1

represents the highest acceptability. Any scorer/scoring algorithm can be used, we

decided on [348] to be able to compare our results with [240].

5.4 Experiments and Results

For the experiments 2 the workstation that was used had the following hardware

configuration:

• Dual CPUs: 2 × Intel(R) Xeon(R) CPU E5-2689 0 @ 2.60GHz base and 3.30

all core boost. With 8 cores and 16 threads per CPU for a total of 16 cores and

32 threads.

• A total of 32 GB of RAM memory with frequency 1600 MHZ distributed as 8

× 4 GB sticks with 4 sticks assigned to each CPU.

• 1 TB of NVME SSD storage with read and write speeds of up to 2000 MB per

second.

5.4.1 Dataset Preparation

For our testing and experiments, and to comply with both the scorer and the

experiment of [240], the ontology used is Dbpedia. This also allows us to show how

our method would perform in a real-world case.

We used two datasets for our experiments, one for axiom type subClassOf and it

is the one used in [240], and another for axiom type disjointWith which is a gener-

ated set of atomic disjointWith candidate axioms, as described in Sect. 5.3.1, scored

using [348].
2All the data and code needed to replicate the experiments available at https://github.com/ali-

ballout/axiom-score-prediction
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For the axiom set used in [240], they have 722 subClassOf axioms and their nega-

tions, making it 1444 axioms. The negations are specific for that similarity and for

the support vector clustering method that was applied in [240]. These negations serve

no meaning if it is possible to predict the scores of the original 722 axioms. For this

reason, and since we had the possibility of an axiom and its negation, we can use

that to calculate the ARI using Equation 3.8. Then the dataset we work with will

be the 722 axioms and their ARI score, since we will not be using the same machine

learning method nor similarity for our proposed solution.

We did not include tests of equivalentClass axiom types since the process of cre-

ating the axiom similarity matrix of that axiom type is the same as disjointWith.

They are both symmetrical axioms and equivalentClass axioms are basically a two

way subClassOf axiom. For that reason we decided to include our experiment on the

type disjointWith.

152



Similarity Method Type Set size ASM Candidate processing NN Random Forest SVR Modified SVC Explained variance

Instance based subClassOf 1444 649,440 1,799 0.35299 0.30707 0.26721 0.572 0.52652

Ontological based subClassOf 722 13.7275 0.01901 0.31442 0.30231 0.33972 NA 0.88859

Ontological based disjointWith 3868 129.9637 0.03359 0.23325 0.21754 0.23771 NA 0.73462

Table 5.1: Time cost in seconds, performance scores in RMSE per model, and the explained variance score of the best

performing model per experiment.

153



For the set of axioms of type disjointWith, we load the Dbpedia OWL file into

Corese. The OWL file contains no individual data which means faster processing in

the search engine, corese reasoner was applied to it to deduce the maximum number of

axioms. Positively scored disjointness axioms were obtained from the results of [264] 3

. Negatively scored disjointWith axioms were existing subClassOf axioms, explained

in Section 5.3.1. In case the used ontology is already populated with explicit axioms,

this would be done in an attempt to obtain a set of axioms that the scorer will not

provide a score close to 0, i.e., a score that implies ignorance for lack of instance

data. This allows us to learn a model that makes better predictions and surpasses

the limitations a statistical scorer can face. But in our case this would result in a

small set of 1120 scored axioms. One of the issues the authors of [240] faced is that

the dataset they were working with was too small and they point out that this had

prevented them from running certain experiments. For this case we combined both

approaches expressed in Section 5.3.1. Randomly generating atomic candidates and

checking that they do not already exist, we managed to score an additional 2748

axioms for a total of 3868. This will allow better testing to see how the method

performs in real-world cases and on a different axiom type.

We will denote by TA the axiom set being used. We will not be comparing the time

needed to score the set of axioms since they both use the same scorer. Heuristic [348]

takes a list of candidate axioms as input and provides as output a list of scored

candidate axioms. It is a slow but precise heuristic that depends on instance data

and counting queries.

After preparing the set of axioms, we have to produce the concept similarity

matrix (CSM) shown in Figure 5.1, a process we detailed in Section 5.2.2. The
3https://bitbucket.org/RDFMiner/classdisjointnessaxioms/src/

master/Results/ClassDisjointnessAxioms/
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processing time for creating the CSM is dependent on the number of concepts. In

our tested dataset, the number of unique concepts was 762 and creating its CSM took

2.0362 seconds.

The next step is constructing the axiom similarity matrix (ASM), and encoding

each of the axioms as vectors V in our vector space. This step is detailed in the second

half of Section 5.3.2 and in Section 5.3.3. The algorithm applied to our axiom data

set TA is Algorithm 3, this is the same algorithm used to encode candidate axioms

into the vector space, it is the equivalent of running queries shown in Section 3.4.1

to retrieve the similarity. In contrast the algorithm we use is not based on instance

counting and is much faster in comparison. Table 5.1 details the time required to

complete the axiom similarity matrix. As observed the time needed to complete the

task of building the ASM significantly increases as the number of axioms processed

increases, but we also know that it depends on the size of the CSM as well from

the time needed to encode a single axiom into a vector. As the number of concepts

increases the CSM being searched increases as it has the shape nconcepts × nconcepts

and the number of cells n2. We would note that the test scenario (3868 disjointWith

axioms) presented in Table 5.1 is extreme, especially the case of Dbpedia, as the

number of axioms needed for training a model does not need to be as large to achieve

peak accuracy/results. It is possible with a dataset size of subClassOf experiment

(722).

While constructing the ASM using the instance similarity method, we had to

calculate the denominators of all axiom pairs as in Equation 3.11. We ran into an

issue of lack of instance data, this means a 0 in the denominator which is obviously a

problem. The authors address this by denoting any similarity between a pair of axiom

where the denominator is 0 (lack of instances) with a 0 as well. This highlights the

weakness of instance based similarity methods. We do not believe that simply saying
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the similarity between a pair of axioms is 0 because they do not share individual data.

5.4.2 Training and Testing

After obtaining our datasets as described in the previous section, we applied dif-

ferent regression methods as mentioned in Section 5.3.4 to check how the similarity

measure performs.

The methods we tested include, but are not limited to, Random Forests, Neural

Networks and Support Vector Regression. Experiments were with both Average and

Minimum functions to get the similarity S between axioms, from SL and SR (as

explained in Section 5.3.2), we will denote by ASF the axiom similarity function here

on out. All this means that the number of experiments performed was large so we

will only report on some scenarios.

We used RMSE (root mean squared error) as the score, to be consistent with [240]

during the comparison. We applied hyper-parameter tuning using grid search as well

as five fold cross validation to infer better models. Table 5.1 shows the best results

(in terms of RMSE) for each experiment using each model.

While replicating the experiment of [240], we decided to test other methods in

addition to theirs. We will use the authors’ best result for the comparison with the

original model. We will be using the original 722 formulas for our proposed method,

since our similarity does not require negated axioms (no need for the extra 722 negated

axioms).

5.4.3 Results and Observations

Comparing ASM creation and candidate axiom encoding time costs in Table 5.1,

for both our proposed method and the one in [240], our ontological based similarity

seems almost instantaneous. For the instance based similarity it is a problem during
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dataset preparation as it needs seven and a half days to prepare a data set of 722

axioms (and their negations), as well as candidate axiom encoding/processing where

it takes half an hour to process every candidate axiom we want to predict a score to,

whereas our ontological based method requires about fourteen seconds to process and

prepare the exact same dataset, and less than 0.1 s to encode a new axiom, making

it much more preferable with regards to time cost.

During the experiments we were unable to compare both methods in anything

other than subClassOf axioms. This is because the method detailed in [240] can

only handle subClassOf axioms making it very limited and constrained, whereas our

proposed method can address all atomic class axiom types, all that is needed is

training one model for each set. Considering the timing needed to prepare the training

data (ASM), as seen in Table 5.1, this is easily doable and very efficient.

We observe in Table 5.1 that the time cost for creating the disjointWith (129 sec-

onds for 3868 axioms) experiment’s ASM was almost ten times that of the subClassOf

(13 seconds for 722 axioms), even though the number of axioms is not ten times as

much, only about five. This is normal since disjointWith axioms are symmetrical, and

as shown in Algorithm 3 and explained in Section 5.3.2, the calculation is doubled

for every axiom to check forwards and backwards the similarity between the pair of

axioms.

It is very important to note that the instance-based similarity method performed

better when used with a machine learning method different from the modified support

vector clustering method used in [240]. It was able to achieve less than half the RMSE

score of what was stated in [240]. This suggests that the modified support vector

clustering method is unnecessarily complicated and not the most appropriate method

to deal with this problem, which turns out to be relatively easy once a good similarity

measure manages to transform it to a suitable representation. The ontological based
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method outperformed the instance based method in Neural Network and Random

forests models. For the same data set, the subClassOf set, the two methods seem to

perform closely in terms of RMSE, while the ontological distance method seems to be

achieving very good scores in the larger disjointWith set. This made us look more in-

depth to what was happening. Turning our attention to the support vector regression

model, we can see in Table 5.1 that for the same dataset (subClassOf) the instance

based measure performed considerably better than the ontological based method, but

was still outperformed in the larger (disjointWith) set as far as performance goes. So

we investigated the reason behind this performance for this specific dataset in this

model, and found the best explanation in the explained variance score. We found that

for the instance based method, according to the explained variance score of 0.56252

for its best performing model the support vector regressor, this performance is specific

to this dataset. This means there exists a bias in the training set and it is expected

that any new candidate will suffer from a higher error rate than what is experienced

in the training stage. This is explained by the fact that both similarity method and

dataset were handcrafted and picked to work with a support vector clustering method

modified to work as a regressor. On the other hand for the ontological based method

the explained variance score throughout all our experiments ranged between 0.71 up

to 0.88 meaning this method will produce better results when predicting scores for

new candidate axioms.

All results shown in Table 5.1 were obtained using the Average Axiom Similarity

Function (ASF), as it outperformed the Minimum ASF in all our runs.

5.5 Conclusion

We have proposed a method with the aim of learning predictors for the accept-

ability of an atomic candidate OWL axiom of any type. The method relies on a
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semantic similarity measure derived from the ontological distance between concepts

in a subsumption hierarchy. Extensive tests that covered multiple parameters and

settings were carried out to investigate the effectiveness and potential of the method

compared with the state-of-the-art.

The results obtained strongly support the effectiveness of the proposed method

in predicting the scores of the considered OWL axiom types with a consistently low

error rate. This allows us to confidently say that our proposed method can be used in

combination with ILP or statistical methods, such as Dl-learner [51] or a Grammatical

evolution approach such as [265], as a building block or extension/plugin to allow

faster execution while maintaining accuracy.

We attribute the high accuracy and extremely good performance of our method to

the close relation between the similarity measure and the model-theoretic semantics

of axioms.
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Chapter 6

PREDICTING THE ACCEPTABILITY OF ATOMIC CANDIDATE OWL CLASS

AXIOMS

The task of evaluating the fitness of a candidate axiom against known facts or data

is known as candidate axiom scoring. Being able to accurately score candidate axioms

is a prerequisite for automatic schema or ontology induction, but can also be useful

for ontology and/or knowledge graph validation. Accurate axiom scoring heuristics

are often heavy to compute, which is a big problem if one wants to exploit them in

iterative search methods like level-wise generate-and-test or evolutionary algorithms,

where large numbers of candidate axioms need to be scored. In this chapter, we

tackle the challenge of learning a predictive model as a surrogate to reasoning, that

predicts the acceptability of candidate class axioms, that is fast to execute yet accurate

enough to be used in such settings. For this purpose, we leverage a semantic similarity

measure extracted from the subsumption hierarchy of an ontology. We prove that the

method proposed in this chapter is able to learn the acceptability labels of candidate

OWL class axioms with high accuracy and that it can do so for multiple types of

OWL class axioms.

6.1 Introduction and Motivation

Ontologies, in the context of information science, are concerned with the cat-

egorization of entities, their associations, similarities, differences, and hierarchical

relationships [161]. They serve as a critical tool in structuring and organizing the

vast amount of digital information, providing a rigorous way to develop a general

definition of a concept or entity. However, the process of ontology construction is
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a labor-intensive and resource-demanding task, heavily reliant on the expertise of

knowledge engineers or domain experts. This reliance extends throughout the ontol-

ogy’s lifecycle, as continuous development and expansion are necessary to accommo-

date evolving requirements. The field of ontology learning emerged as a response to

this challenge, aiming to alleviate the bottleneck in knowledge acquisition by facili-

tating semi-automatic or automatic ontology construction and enrichment [290].

Methods addressing candidate OWL class axiom labeling adhere to the framework

detailed in Chapter 4, where a set of labeled formulas (axioms) are used to construct

a vector space based on the formulas’ semantic similarity. The model is then trained

using this set of formulas with the goal of predicting a label for new candidates. We

have proven that this approach in ontology learning in Chapter 5, which focuses on

predicting a fitness for candidate axioms in the form of a gradual score. Here, the

focus is on the binary classification of a candidate axiom as accepted or rejected.

In this chapter we present a novel approach that effectively addresses the limita-

tions observed in previous techniques, such as the high computational cost during the

training phase and sub-optimal accuracy scores. The solution we propose circumvents

the reliance on potentially error-prone, instance-dependent statistics. Furthermore,

it boasts the capability to predict labels for a variety of axiom types, including sub-

sumption, disjointness, and equivalence.

The focus of this method is on the binary classification of a candidate axiom as

accepted or rejected. We aim to create a method that can be used as a building-block

or an extension/plug-in to other existing statistical analysis or ILP options such as

DL-Learner [51] to allow faster execution while maintaining high scoring accuracy.

The method would still have the ability to perform as a simpler stand-alone labeler.

We compare our proposed model to state-of-the-art description logic reasoners

(DL-reasoners) using DBpedia as a real-world case. The aim of this comparison is
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to see how our work holds up to similar tools in terms of accuracy and efficiency.

We also argue that the ability to reject axioms, which is not available when using

reasoners, is crucial for ontology learning.

This chapter is structured as follows: Section 6.2 provides some background about

concept semantic similarity which is a prerequisite to train the models. As for Sec-

tion 6.3 it lays out the method explaining how the axioms were extracted and labeled,

how the semantic measure we use was retrieved, and also how an axiom based vec-

tor space was modeled leading to the binary classification of axioms. In Section 6.4,

we detail our experiments then present the results while listing our observations and

findings. We end the chapter with some notes and conclusions.

6.2 Concept Semantic Similarity: A Recap

Our primary goal is to create a model that can accurately predict the acceptability

labels of axioms, independent of potentially error-prone instance data. This requires a

training set of labeled axioms and a method to establish relationships between them,

serving as features for the model.

Semantic similarity, a measure of distance between terms or concepts based on

their meaning or semantics. In the context of ontological concepts, it incorporates

the subsumption (IS-A, rdfs:subClassOf) relation [32]. Semantic similarity, based on

a subsumption hierarchy, is a suitable candidate due to its close relation with other

axiomatic relations between concepts/classes, making it useful for predicting new

candidate class axioms of various types.

Notice that semantic similarity is often confused with semantic relatedness, for

example a train and train tracks are functionally complementary, whereas a train and

an airplane are functionally similar. The latter is an instance of semantic similarity

where the relatedness of both terms is based on the defining features they share where
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both are vehicles [32, 80]. Most semantic similarity measures that rely on a structured

ontology are based on path lengths between concepts as well as depth of concept nodes

in a subsumption hierarchy. As for information-based measures they use information

content of concept nodes derived from the ontology hierarchy structure and corpus

statistics [4].

The semantic similarity measure we use for this method is the one we detailed in

Section 5.2.2 of the previous chapter.

6.3 Method

In an OWL ontology containing an inheritance hierarchy of concepts formed by

the subsumption axiom rdfs:subClassOf, our aim is to predict if a candidate atomic

axiom (consisting of a single named class on each side) is accepted or not. We do

this by training a model on a set of previously labeled axioms of the same type

(one of: subsumption, disjointness, equivalence) and their similarity weights. In the

absence of a scored set our method creates one using explicit axioms available in

the ontology. To measure the similarity between (candidate) axioms, we construct a

similarity measure by extending the ontological distance discussed in Section 5.2.2,

which is defined among classes, not axioms. This enables the model to predict the

label of any new atomic candidate axiom of the same type. To this end, we consider

the following steps:

1. OWL ontology closure reasoning: This step involves using DL-Reasoners

the likes of HermiT [138] and Pellet [334] to infer all the axioms (binary relations

between named classes) that can be inferred from the knowledge available in

the ontology. In this chapter, we use it when testing the ability of our model

to accept axioms that are not entailed by a reasoner, or to reject ones that are

entailed by a reasoner.
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2. Axiom extraction and labeling: This step constitutes the creation of the

set of accepted and rejected labeled axioms of a certain type to be learned. One

approach can be querying existing axioms and labeling them as accepted/re-

jected. Another is to use a scorer to label a set of generated candidate axioms

to learn.

3. Semantic measure retrieval and assignment: This step involves the re-

trieval of concepts used in our set of axioms, and their ontological distance

from the ontology, followed by extending that similarity to those axioms. This

was done by calculating a single value that represents the similarity between

each pair of axioms, by applying a function such as Average to the ontological

distances of concepts in those axioms.

4. Axiom base vector space modeling: This step focuses on using axiom

similarity measures as weights, each axiom can be represented as a vector in an

axiom based vector space.

5. Binary Classification: This step is dedicated to training a Machine Learning

model with the data set (vector space model in addition to the extracted labels)

and predicting if new candidate axioms are accepted or rejected.

6.3.1 Owl Ontology Closure Reasoning

The first step in our method is optional when the ontology used is rich in explicit

axioms. It consists of inferring all axioms that are entailed by the knowledge available

in a target OWL ontology. This is useful, and vital for our experiment, for two reasons.

The first is providing a larger pool of axioms to use for training the model. In our

work this is helpful since a larger sample size means more accurate experimental

results. This way we can compare the performance with DL-reasoners in terms of
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accuracy using axioms that reasoners can entail. The second reason would be the

ability to filter new labeled/scored axioms. These axioms would be checked against

our ontology closure. We can then use the newly scored axioms that are not entailed

by the reasoner to evaluate the model’s performance relative to the reasoner’s. This

would show how well the model can handle more challenging cases that the reasoners

cannot.

6.3.2 Axiom Extraction and Labeling

In this chapter, we employed two approaches to build a set of labeled axioms. The

first approach, is to classify axioms using an existing scoring method or use previously

scored axioms from other literature. The second way, which is faster, we call the type

and counter-type technique.

Scoring Method

We used multiple sets of scored axioms for the ontology DBpedia, one set 1 of axioms

generated and scored by Nguyen et al. [264] using the possibilistic heuristic [348].

The rest of the sets we scored ourselves using the same heuristic. The scorer though

accurate, is extremely slow limiting the size of the sets scored. The scorer currently

supports DBpedia and is publicly available 2 . We utilized the version detailed in the

work of Felin et al. [123]. These scored data sets are what we use for our evaluation

and comparison with reasoners in the case of DBpedia. The possibilistic heuristic

scores are considered our ground truth and baseline. For a deep analysis of the

scoring method please refer to Section 3.2. For experiments using other ontologies we

employed the second approach.
1https://bitbucket.org/RDFMiner/classdisjointnessaxioms/src/

master/Results/ClassDisjointnessAxioms/
2https://github.com/RemiFELIN/RDFMining
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Type and Counter Type Technique

In this technique, we query an ontology for existing axioms of a certain type, thereby

obtaining a set of axioms labeled as accepted. We then query axioms of the counter

type. For instance, subClassOf and disjointWith can be considered counter types to

each other. Axioms of the counter type are assigned the label rejected. Since existing

disjointWith axioms can be considered false or rejected subClassOf, we can construct

a sample containing both labels to train a model. We consider disjointWith to be a

counter-type for subClassOf and equivalentClass. While subClassOf and equivalentClass

are counter-types of disjointWith. However, before querying an ontology for existing

axioms, it is advisable to apply a reasoner to obtain the closure of the ontology. The

reasoner can be any suitable choice, such as HermiT or Pellet, and not necessarily the

reasoner included in the engine used. By applying a reasoner to obtain the closure of

an OWL ontology, we ensure that we obtain a complete and consistent set of labeled

axioms for our model.

The axiom type designated as accepted corresponds to the type that the model

will be labeling. For instance, if we assign the accepted label to disjointWith axioms,

it implies that disjointWith is the axiom type that the model is designed to address.

While this may initially appear as a limitation, the efficiency of the process mitigates

this concern. As demonstrated in Table 6.2, which details the time consumption, the

speed of dataset preparation and model training is sufficiently rapid. This allows us

to learn a model for each type of axiom within a relatively short time frame.

We employ Query 6.1 to extract and label existing axioms of both the type and

counter-type. Following the extraction, we ensure an equal representation of both

type and counter-type axioms. The SPARQL endpoint utilized in this process is

Corese [78]. We have selected DBpedia as our test case to illustrate a real-world
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application. While other ontologies could be employed, DBpedia offers several ad-

vantages. It has been widely used in related work and aligns well with the scoring

heuristic we employ for evaluating our candidate axioms.

0SELECT ?class1 ?class2 ?label

1 WHERE {

2 {

3 ?class1 a owl:Class . ?class2 a owl:Class . ?class1

rdfs:subClassOf ?class2

4 filter (!isBlank(?class1) && !isBlank(?class2))

5 filter (?class1 != ?class2)

6 bind(1.0 as ?label)

7 }

8 Union{

9 ?class1 a owl:Class .

10 ?class2 a owl:Class .

11 ?class1 owl:disjointWith ?class2

12 filter (!isBlank(?class1) && !isBlank(?class2))

13 filter (?class1 != ?class2)

14 bind(0.0 as ?label)

15 }

16 }

Query 6.1: Axiom extraction
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6.3.3 Semantic Measure Retrieval and Assignment

To be able to assign similarity measures between axioms, we need to retrieve

the ontological distances between all classes and construct the concept similarity

matrix (CSM). Using Corese in which the ontological distance metric is implemented,

this translates into a function added to the SPARQL query. Query 6.2 retrieves three

columns, the first two contain the combination of all classes with the third containing

the ontological distance denoted by similarity. Blank nodes are ignored.

0select * (kg:similarity(?class1, ?class2) as ?similarity)

1 where{

2 ?class1 a owl:Class .

3 ?class2 a owl:Class

4 filter (!isBlank(?class1) && !isBlank(?class2))

5 }

Query 6.2: Class ontological distance retrieval

After retrieving the table of similarities we povit it resulting in a symmetric n×n

matrix where the first column and the first row are the classes and the cells are

the similarities between them with a diagonal of only 1’s since as we mentioned the

similarity between a class C and itself is 1.

6.3.4 Axiom Base Vector Space Modeling

From the CSM, we can derive the axiom similarity matrix (ASM) with labels

illustrated in Figure 6.1, as explained in Chapter 5 which also highlights that the

function used to calculate the similarity S between a pair of axioms can be either

Average or Minimum.
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Labels Axioms A0 A1 . . . Am

Accepted A0 1 S0,1 . . . S0,m

Rejected A1 S1,0 1 . . . S1,m

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

Rejected Am−1 Sm−1,0 Sm−1,1 . . . Sm−1,m

Accepted Am Sm,0 Sm,1 ⋯ 1

Figure 6.1: Axiom similarity matrix with labels

We define then a vector-space model to represent axioms as vectors. Indeed, we

represent each axiom as a vector whose elements are the kernel values representing the

similarity between the considered axiom and the other axioms present in the labeled

dataset TA. We have been inspired by the Kernel trick in Support Vector Machine

(SVM) which is used to deal with nonlinear classification [257].

The number of dimensions m of our vector space corresponds to the number

of axioms we have in TA. Each axiom is then represented as a vector V in this

m-dimensional space, and corresponds to a row in the axiom similarity matrix as

illustrated in Figure 6.1. The only difference between this matrix and Figure 5.2 is

that instead of continuous scores we assign labels for each vector.

The axiom similarity matrix is updated whenever an axiom is generated or a new

candidate axiom is suggested.
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6.3.5 Binary Classification

It is now possible to apply classification machine learning methods using our la-

beled dataset of axioms represented as vectors. We used a range of methods through-

out our experiments, including but not limited to trees, random forests, kNN, Support

vector classifier, gradient boosting, and neural networks. Trees and random forests

were used to check that there was no bias during the classification. The reason for

this choice is that such methods allow us to interpret our predictive model easily and

visually analyse the decisions. kNN instead was used to test the effect of the similar-

ity measure as a distance (the metric used was Manhattan, due to the large number

of dimensions and the weight was distances). To avoid information leakage since the

matrix is symmetric, considering the size of the matrix is m×m, all predicting models

were trained using an m′×m′ sub-matrix, with m′ <m, of the axiom similarity matrix

with the labels, and then tested on the (m−m′) remaining axioms. Our goal is then

to predict the label of those axioms which have not been used during the training

period. The labels are binary, where 1 represents the label Accepted and 0 represents

the label Rejected.

6.4 Experiments and Results

For the following experiments, the workstation that was used had the following

hardware configuration:

• Dual CPUs: 2 × Intel(R) Xeon(R) CPU E5-2689 0 @ 2.60GHz base and 3.30

all core boost. With 8 cores and 16 threads per CPU for a total of 16 cores and

32 threads.

• A total of 32 GB of RAM memory with frequency 1600 MHz distributed as 8

× 4 GB sticks with 4 sticks assigned to each CPU.
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• 1 TB of NVME SSD storage with read and write speeds of up to 2000 MB per

second.

• Code and ontologies used available in our repository 3 .

6.4.1 Dataset Preparation

As mentioned in Sect. 6.3.5, we have experimented using a range of classification

methods, ontologies and types of axioms. We will focus on disjointness axioms for

examples given to highlight that no leakage or bias is present from using the subClassOf

hierarchy. The first part of our approach was building our datasets as follows:

Ontology Selection

We sought out different ontologies of different sizes and domains to use in our exper-

iments. Some statistics about each ontology used are shown in Table 6.1. Following

is a brief description the ontologies that were selected, as described in Section 3.1.1.

• NTNames 4 .

• Pizza, 5 .

• MatOnto, 6 .

• DBpedia, 7 .

3https://github.com/ali-ballout/axiom-acceptability
4https://semanticbible.com/index.html
5https://protege.stanford.edu/ontologies/pizza/
6https://github.com/inovexcorp/MatOnto-Ontologies
7http://downloads.dbpedia.org/
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Table 6.1: Ontology statistics. Reasoner used: Corese built in reasoner: C , Pellet: P ,

Hermit: H .

Ontology Classes subClassOf disjointWith equivalentClass

NTNamesC 47 278 10 50

PizzaC 101 651 5 101

MatOntoC 847 853 158 9

DBpediaHPC 866 7334 70669 268

Table 6.2: Time cost per step for investigated ontology in seconds for subClassOf.

Ontology CSM Axioms ASM Single Axiom Model

processed vector encoding training

NTNames 0.02 556 22 0.03 0.2

Pizza 0.04 1302 105 0.05 0.4

MatOnto 2.84 1706 212 0.09 0.6

DBpedia 2.17 8600 2497 0.08 3.9

Axiom Extraction and Labeling

Each ontology was loaded into Corese. Since in some of the ontologies the explicit

number of axioms was not big enough for any meaningful experiment, we applied

different reasoning methods to obtain the maximum number of deduced axioms. For

all ontologies, we used Corese reasoner, which is a rule-based engine that can handle

RDF(S) and OWL 2 RL profiles. For DBpedia specifically, we additionaly used
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Hermit and Pellet reasoners to compute the closure, a step which took two hours for

each run using Protegé. 8 Additionally, we used the disjointness axioms generated

and scored by Nguyen et al. [264] for DBpedia, as explained in Section 6.3.2. After

that, we extracted a balanced set of Accepted and Rejected axioms from each ontology

using SPARQL queries and the technique of type and counter type explained in

Section 6.3.2. For instance, for subsumption in DBpedia, we selected 4300 Accepted

and 4300 disjointWith axioms representing Rejected subClassOf axioms, resulting in a

total of 8600 axioms for TA, which is our axiom dataset for this scenario.

Explicit axiom extraction by querying an ontology using a SPARQL endpoint

needs minimal time, as for generating a set of labeled axioms as in [264] the time cost

would depend on the scorer and the method used to generate candidate axioms.

Concept Similarity Matrix

After preparing the set of axioms, we have to produce the concept similarity matrix

(CSM), as explained in Section 6.3.3. The processing time for creating the CSM

depends on the number of concepts. In our tested dataset, MatOnto had 847 concepts

and creating its CSM took 2.84 seconds. In Table 6.2 we present the timings for the

worst-case scenario, which consists of applying our method to the most dense axiom

type that is subsumption for comparison reasons. Other axiom types are naturally

much faster due to their lesser population.

Axiom Similarity Matrix and Vector Space

The next step is constructing the axiom similarity matrix (ASM) as shown in Fig-

ure 6.1 , and encoding each of the axioms as vectors V in our vector space.

Table 6.2 details the time required to complete these operations, all the values
8https://protege.stanford.edu/

173



presented are the mean average of five consecutive runs. As observed the time needed

to complete the task of building the ASM significantly increases as the number of

axioms processed increases, but we also know that it depends on the size of the CSM

as well from the time needed to encode a single axiom into a vector. As the number

of concept increases the CSM being searched increases in size as it has the shape

nconcepts × nconcepts and the number of cells n2. We would like to note that the test

scenario presented in Table 6.2 is extreme, especially the case of DBpedia, as the

number of axioms needed for training a model does not need to be as large to achieve

peak accuracy/results.

6.4.2 Training and Testing

Using the dataset obtained as described in the previous section, the classifiers

we tested were Decision Trees (DT), Random Forests (RF), kNN, support vector

classifier (SVC), Neural Networks (NN) and Gradient boosting (GB). Experiments

were performed over every class axiom type, where the axiom population was enough,

for every ontology in our dataset some results are shown in Figure 6.1. We also

experimented with both Average and Minimum functions to get the similarity between

axioms S. The results of such experimentation can be found in Table 6.3 where models

were trained using 813 axioms split into 406 Rejected and 407 Accepted axioms, and

tested on 349 axioms split into 175 Rejected and 174 Accepted.

We would also like to note that the model training times mentioned in Table 6.2,

are the average for the above mentioned methods except for the extreme case of

DBpedia subsumption using gradient Boosting, where it may take up to 136 seconds

to train the model on a set of 6,000 axioms.

In order to prove that the proposed kernel-based representation of axioms is ad-

vantageous for addressing the task of predicting the acceptability of candidate axioms,
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(a) subClassOf DB-

pedia

(b) subClassOf Ma-

tOnto

(c) disjointWith Ma-

tOnto

(d) equivalentClass

Pizza

Figure 6.1: Performance by axiom type for investigated ontologies

Table 6.3: F1 scores using DBpedia owl:disjointWith, average and minimum as simi-

larity functions.

Function GB kNN NN RF SVC DT

F1 (AVG) 0.988 0.976 0.953 0.985 0.976 0.982

F1 (MIN) 0.977 0.974 0.962 0.976 0.962 0.968

we performed an additional experiment. For this experiment we used a simple naive

kNN method using our axiom similarity measure directly to check the n nearest ax-

ioms to a candidate axiom and then assigning that candidate axiom the label that

occurs most in the n neighbors. To make things fair, we compare the performance

of this naive approach to our proposed kernel-based vector-space representation of

axioms, using kNN. We perform the comparison using DBpedia’s subClassOf axioms

as a dataset. We used as a training set 200 axioms, and for the test set 4000 axioms;

both sets are balanced in terms of labels.

Table 6.4 presents the F1 scores of each of the methods as a function of the number

n of neighbors. From the results we can see that the naive method performs best when
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the number of neighbors is 1, this is because the method does not learn anything and

simply retrieves the closest axioms based on the similarity measure. Our proposed

method on the other hand maintains performance since it uses the similarity matrix

as a kernel to map the neighbors to a plane of dimensions equal to the number of

axioms used in training. Our method outperforms the naive one by a significant

margin every time. This corroborates the hypothesis that the proposed kernel-based

vector-space representation of axioms is capable of capturing useful features of the

semantics of candidate axioms, this offering a clear advantage over the simple and

direct use of the axiom similarity matrix.

Table 6.4: F1 scores for the naive nearest neighbor method and our proposed method

using K-nearest neighbor as the machine learning model, as a function of number n

of neighbors.

Model n1 n3 n15

Naive 0.59 0.49 0.33

kNN 0.86 0.87 0.86
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Table 6.5: Performance of our proposed model when trained using a scored training set and a training set extracted from

the closure of DBpedia as a product of HermiT, Pellet and Corese, compared to reasoners in accepting or rejecting axioms

of different types.

Model scored training set Model closure training set Reasoners

Axiom type Label Precision Recall F1 Precision Recall F1 Precision Recall F1

subClassOf
Accepted 1.00 0.91 0.95 0.66 1.00 0.79 1.00 1.00 1.00

Rejected 0.90 1.00 0.95 1.00 0.48 0.65 1.00 1.00 1.00

disjointWith
Accepted 0.97 0.94 0.96 0.27 0.99 0.43 0.00 0.00 0.00

Rejected 0.83 0.92 0.87 0.99 0.20 0.34 0.23 1.00 0.37
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6.4.3 Proof of Concept

In order to prove that the proposed kernel-based representation of axioms is ad-

vantageous for addressing the task of predicting the acceptability of candidate axioms,

we performed an additional experiment. For this experiment we used a simple naive

kNN method using our axiom similarity measure directly to check the n nearest ax-

ioms to a candidate axiom and then assigning that candidate axiom the label that

occurs most in the n neighbors. To make things fair, we compare the performance

of this naive approach to our proposed kernel-based vector-space representation of

axioms, using kNN. We perform the comparison using DBpedia’s subClassOf axioms

as a dataset. We used as a training set 200 axioms, and for the test set 4000 axioms;

both sets are balanced in terms of labels.

Table 6.4 presents the F1 scores of each of the methods as a function of the number

n of neighbors. From the results we can see that the naive method performs best when

the number of neighbors is 1, this is because the method does not learn anything and

simply retrieves the closest axioms based on the similarity measure. Our proposed

method on the other hand maintains performance since it uses the similarity matrix

as a kernel to map the neighbors to a plane of dimensions equal to the number of

axioms used in training. Our method outperforms the naive one by a significant

margin every time. This corroborates the hypothesis that the proposed kernel-based

vector-space representation of axioms is capable of capturing useful features of the

semantics of candidate axioms, this offering a clear advantage over the simple and

direct use of the axiom similarity matrix.
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6.4.4 Comparing With Reasoners

In this experiment, we compare the performance of our model with HermiT, Pellet,

and Corese in accepting or rejecting candidate OWL class axioms. For this experi-

ment, we prepare a dataset generated and scored by the possibilistic heuristic using

DBpedia ontology which is widely used and represents our real-world scenario. The

generation and scoring required seven days of processing time. The dataset contains:

811 accepted subClassOf axioms and 745 rejected ones, as well as 1276 accepted dis-

jointWith axioms and 823 rejected ones. We split the dataset into training and test

sets. The split was as follows: the subClassOf training set contains 399 accepted and

398 rejected, while the test set contains 412 accepted and 347 rejected. As for dis-

jointWith, the training set contains 524 accepted and 596 rejected axioms, while the

test set contains 752 accepted and 227 rejected.

We evaluated our model and the reasoners on test sets, employing two training

scenarios for our model. In the first scenario, we trained our model using a set

extracted from the closure of DBpedia, produced by the type counter type method.

In the second scenario, we used a scored training set independent of the reasoners.

We evaluated the reasoners by checking if they could entail the candidate axioms

from DBpedia. If a candidate is entailed then it is labeled as accepted otherwise it

is labeled rejected. We assessed precision, recall, and F1-score with our ground truth

being the labels produced by the possibilistic scorer. The results are presented in

Table 6.5.

We noticed that the results of our model were worse when training it using the

closure, and almost perfect when using the scored training set. Therefore, we hy-

pothesized that the labels of the training set from the closure (reasoners product)

could have wrong labels, while the labels from the scorer were more accurate. To test
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this hypothesis, we ran the scored training set through the reasoners to see how they

would label it. Indeed, the reasoners were entailing axioms labeled as rejected by the

scorer, which appear to have a great impact on how the model labeled the test set.

A sample of these axioms can be seen in Table 6.6.

Table 6.6: subClassOf axioms rejected by the scorer and entailed by the reasoners

SubClassOf(Tax Genre)

SubClassOf(Organ Aircraft)

SubClassOf(Guitar Locomotive)

SubClassOf(Treadmill ArchitecturalStructure)

SubClassOf(Quote Work)

SubClassOf(Instrument MilitaryVehicle)

SubClassOf(Guitar Aircraft)

6.4.5 Key Findings and Observations

In all the experiments, the results for different models trained with the same

set were noticeably close. Also, all models consistently achieved very high scores

averaging 90− 95% accuracy. Below we state some noteworthy observations we made

during our experiments:

Axiom Similarity Function

Throughout our experiments, we have observed a consistent trend where most ASMs

that were constructed using the Average function to obtain S gave better results than
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those that were built using the Minimum function. This can be observed in Table 6.3.

The models are scored based on their performance on the test set (i.e., when

classifying axiom candidates never seen before).

We note that Neural Networks were the only model to break this trend. It per-

formed better when the Minimum function was used as seen in Table 6.3. However,

despite that, it had the worst performance out of all the models presented using both

functions, even though different configurations were tested 9 .

Classifier Of Choice

Tree-based models consistently achieved the highest scores. This fact is very evident in

Table 6.3, where the leading models when using the better similarity function Average

were, in order: Gradient Boosting, Random Forest, and Tree. For this reason, and

since all models score close to each other with an accuracy greater than 95%, we

find Random Forests combined with the Average function for S to be the classifier of

choice when creating the model. We chose Random Forest over Gradient Boost since

the time for training Random Forest models is faster while giving up at most 0.1%

accuracy.

Model Perfomance Dealing With Variables

We chose the confusion matrix metric to summarize the results while showing the

support, and how the method performs with different sizes of datasets and ontologies

as a whole. Figure 6.1 presents the performance of the method on three different

ontologies with different sizes as well as different types of axioms and populations.

It is very clear how well the method performs across all those variables. The figure

shows results only from the test set, i.e., when the model predicts labels for candidate
9Can be found in keratest.py in the repository
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axioms it has never seen before. This brings us to the conclusion that the method is

performing as expected with F1 score between 95% to 99%.

6.5 Conclusion

We introduced a method for predicting the acceptability of various atomic candi-

date OWL class axioms, leveraging a semantic similarity measure derived from on-

tological distance in a subsumption hierarchy. Comprehensive testing across various

ontologies and parameters affirmed the method’s robustness.

The method consistently achieved high accuracy in predicting labels for all con-

sidered OWL axiom types, validating its effectiveness. This underscores its potential

for integration with ILP or statistical methods, such as Dl-learner [51] or a Gram-

matical evolution approach [265], to enhance execution speed without compromising

accuracy.
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Chapter 7

SCALABLE PREDICTION OF ATOMIC CANDIDATE OWL CLASS AXIOMS

USING A VECTOR-SPACE DIMENSION REDUCED APPROACH

Scoring candidate axioms or assessing their acceptability against known evidence

is essential for automated schema induction and can also be valuable for knowledge

graph validation. However, traditional methods for accurately scoring candidate ax-

ioms are often computationally and storage expensive, making them impractical for

use with large knowledge graphs. In this chapter, we propose a scalable method to

predict the scores of atomic candidate OWL class axioms of different types. The

method relies on a semantic similarity measure derived from the ontological distance

between concepts in a subsumption hierarchy, as well as feature ranking and selec-

tion for vector-space dimension reduction. We train a machine learning model using

our reduced vector-space, encode new candidates as vectors, and predict their scores.

Extensive tests that cover a range of ontologies of various sizes and multiple parame-

ters and settings are carried out to investigate the effectiveness and scalability of the

method.

7.1 Introduction

Machine learning techniques that tackle the task of candidate axiom scoring face

a scalability problem when dealing with large ontologies and the number of facts and

entities they include [269]. This is because the process can be intensive in terms of

storage and computation, particularly for large and complex datasets. For ontology

learning, this would require techniques to step away from instance data when possible

and rely more on what has already been established in an ontology’s structure. As
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a result, scalable techniques and models with the ability of addressing ontologies of

different sizes while maintaining satisfactory performance without incurring excessive

computational and storage costs become a necessity.

In this chapter, we present the issue of dealing with large ontologies and its effect

in terms of storage and computation when attempting to score candidate class axioms.

In addition, we propose an approach that scores atomic candidate OWL class axioms

of different types for ontologies of different sizes. We do so by utilizing the ontological

semantic similarity, described in Section 5.2.2, between concepts and extending it to

axioms. We incorporate feature selection techniques and apply them to our dataset

to pick the most impactful axioms to act as our dimensions in an axiom-based vector

space. We encode candidate axioms into this vector space without the need for any

instance data. We experiment using DBpedia, Gene ontology (GO), and Cell ontology

(CL) to test the scalability of the approach, as well as the effect of feature selection

on performance, storage cost and computation time.

This chapter is structured as follows: in Section 7.2 we give an overview of some

related work; Section 7.3 provides a recap on ontological axiom semantic similarity,

the possibilistic axiom scorer and feature selection. As for Section 7.4, it lays out

the method explaining how the axioms are extracted and scored, how we build the

semantic measure, and also how we model an axiom based vector-space leading to

the prediction of a candidate axiom’s score. We detail our experiments in Section 7.5

then present and analyze the results in Section 7.6. We end the chapter with some

notes and conclusions.

7.2 Related Work

Since the current chapter aims at developing a novel approach to scalable predic-

tion of candidate class axiom scores, it is relevant to provide an overview of previous
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research on the topic of predicting the score of candidate OWL class axioms. One

such research is the work desribed in Section 3.5. It uses methods such as princi-

ple component analysis (PCA) to map axioms into a lower-dimension space. This

form of dimensionality reduction, which is unrelated to ours in method or goal 1 ,

combined with instance-based similarity measures, resulted in less than satisfactory

performance. Indeed, the authors expected to see a clear separation between accepted

and rejected axioms, which would have made it possible for unsupervised methods to

perform the task of labeling candidate axioms, but their results did not support this

hypothesis.

However, an instance-based similarity measure fully relies on an ontology’s in-

stance data, and any lack of such data results in ignorance, while an excessive amount

of data overwhelms the method. Some follow a different path, such as the works de-

scribed in Section 3.6, which take the embedding approach utilizing an ontology’s

class subClassOf hierarchy, also known as the is-a hierarchy, to predict subsumers.

These methods and others that use embeddings, like the ones we mentioned be-

fore, only address subsumption. They also prove to be computationally complex.

For example, the work done by Chen et al. as it follows a breadth-first algorithm

when embedding a subsumption relation [69]. This algorithm keeps extracting the

subsumers of each of the classes till reaching a leaf, or the superclasses till reaching

the root in order to generate a sentence. The authors mention limiting the length of

their sentences for the evaluation, highlighting a trade-off between having complete

sentence context and redundancy.

We have provided an answer for this challenge in both Chapter 5 and Chapter 6,

where we extend the scope to include disjointWith class axioms as well. However,
1PCA is a technique used to map data into lower dimensional planes, where as feature selection

ranks your dimensions in terms of how useful they are to predict the target value and allows you to
drop the low ranking dimensions.

185



we only experiment using DBpedia, which includes around 760 concepts, positioning

it as a smaller ontology when compared with ontologies with tens of thousands of

concepts such as GO and CL.

The work presented in this chapter specifically aims to address the shortcomings

of the previous models with respect to computational complexity, storage cost, and

scalability. We do this by leveraging feature selection techniques like ones described

in Section 2.5.3 and performing query optimizations. The results of this method will

be compared to those of Chapter 5.

7.3 Background

7.3.1 Ontological Axiom Semantic Similarity and scoring: A Recap

We calculate the axiom semantic similarity as we did in Chapter 5 by performing

the following steps:

1. Extract the distances between all concepts in the ontology and store them in a

concept similarity matrix.

2. Compare each axiom with all other axioms in the dataset.

3. When comparing two axioms, retrieve from the concept similarity matrix the

similarity/distance between the concepts on the left side of the axiom.

4. Repeat the previous step for the right side.

5. In case of symmetric axiom types (disjointness/equivalence) repeat the com-

parison between the left concept from the first axiom and the right concept of

the second axiom, and then between the right concept from the first axiom and

the left concept from the second one. Keep the higher values between both

comparisons.
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6. Take the average of the two values that you have as a result of the previous

step.

7. Store that value in an axiom similarity matrix.

As for the scores of the axioms, we use the possibilistic heuristic as well as another

method described in Section 5.3.1. For more detail on the heuristic refer to Section 3.2.

This process is used for the construction of an axiom-based vector-space, where each

axiom or candidate can be represented by a vector of its similarity to all other axioms.

7.3.2 Feature Ranking and Selection: A Recap

In machine learning, feature selection is referred to as the process of obtaining a

subset from an original feature set according to a certain feature selection criterion,

which selects the relevant features of the dataset. It plays a role in compressing the

data processing scale, where the redundant and irrelevant features are removed [54].

It is particularly useful in the case of high-dimensional datasets. It does not involve

dimension aggregation, nor attempts to map higher-dimensional spaces to lower ones

as done by Malchiodi et al. [239].

According to their relationship with learning methods, feature selection methods

can be classified into filter, wrapper, and embedded models. In our work we use

the filter model, which has a lesser computational cost than the others [54]. A good

feature selection method should have high learning accuracy but less computational

overhead (time complexity and space complexity).

Filter feature selection methods typically utilize evaluation criteria to increase

the correlation between the feature and the class label and decrease the correlation

among features. In addition, the correlation among features is often replaced by

either redundancy or diversity (distance). These measures of relevance, redundancy,
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and diversity may be identical or distinct. Filter methods involve selecting features

based on their individual statistical properties. This can be done using techniques

such as correlation analysis or mutual information, which measure the strength of the

relationship between a given feature and the target variable. At the end, features are

ranked based on their effect on the class label and then a percentage or number of

the can be kept while the rest is discarded.

For example, the mutual information gain (also known as mutual information or

MI) between two variables x and y can be calculated as follows:

MI(x, y) = ∑
y∈Y

∑
x∈X

p(x, y) log p(x, y)
p(x)p(y) (7.1)

where p(x) and p(y) are the marginal probability distributions of x and y, respectively,

and p(x, y) is the joint probability distribution of x and y. Mutual information

measures the amount of mutual dependence between the two variables, with higher

values indicating a stronger relationship. It is often used in feature selection to identify

the most relevant features for a given task.

7.4 Method

Our objective is to develop a scalable method to predict a score for atomic can-

didate OWL class axioms by learning from a set of previously scored axioms of the

same type. To this aim, we exploit the hierarchy of concepts formed by the subsump-

tion rdfs:SubClassOf axioms, combined with feature selection. A separate model is

required for each type of axiom addressed. Following are the steps of our method:

1. Axiom extraction and scoring: This step describes the creation of the set

of scored axioms of a certain type to be learned. One approach would be

to use a scorer to label a set of generated candidate axioms to learn as done
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in the methods we have mentioned in Chapter 5. Another approach can be

to query existing axioms and label them as accepted, then generating some

random axioms and checking that they are not explicitly available or entailed

in the ontology, and labeling them as rejected as done other methods [69].

2. Axiom similarity calculation: This step details how we extract the concepts

used in our set of axioms and retrieve the ontological distances pertaining to

these concepts only. Unlike the method proposed in Chapter 5, we only query

concepts present in our set of axioms instead of all concepts present in the

ontology. We then calculate the axiom similarity measure using the algorithm

detailed in Chapter 5 and briefly explained in Section 7.3.1, but we enhance

performance by leveraging the power of multiprocessing.

3. Axiom-based vector-space modeling: This step focuses on using the axiom

similarity measures as weights; each axiom can be represented as a vector in an

axiom-based vector-space.

4. Vector-space dimensionality reduction: This step consists of applying fea-

ture selection on the axiom similarity matrix to reduce the number of axioms

being used as dimensions to a certain pre-defined number. This results in re-

duced computation and processing when encoding axioms into the vector-space

as well as smaller concept and axiom similarity matrices. Unlike the method in

Chapter 5, which does not acknowledge the challenge of dealing with a large or

rich ontology, we added this step to ensure that the method does not time out

or run out of storage no matter what the size of the ontology is.

5. Candidate axiom encoding: This step describes how a new candidate axiom

is introduced into the vector-space, including the case where the axiom consists
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of concepts not available in the concept similarity matrix. The method in

Chapter 5 does not include such a step since it naively queries all available

concepts. On the other hand, since we added a step that limits our method to

query only concepts found in the set of axioms used, we had to add this new

step to query any new concept that might be introduced by a candidate axiom.

6. Prediction: This step is dedicated to training a machine learning model with

the dataset (vector-space model and scores) and predicting the scores of new

candidate axioms.

We begin by preparing the set of scored axioms that we want to use to train our

model. Then we extract the concepts which our axiom set consists of. After that we

query the ontology to retrieve the ontological distances between only the concepts we

extracted. We then calculate the axiom similarity between our axioms and use it to

model our axiom-based vector-space. We then utilize feature selection to reduce the

size of our vector-space by reducing the number of axioms acting as dimensions to

those that are most impactful, which leads to a reduction in the size of the concept

and axiom similarity matrices. We train a machine learning model using our new

reduced vector-space, encode new candidate axioms as a vector, and predict their

scores.

7.4.1 Axiom Extraction and Scoring

We adopt two approaches to create our set of axioms. The first approach is dis-

cussed in [69]. It dictates that we first query an ontology for existing axioms of a cer-

tain type and by that we obtain a set of axioms which would have positive scores. Fol-

lowing that, we generate rejected axioms. We do this by constructing an axiom with

a pair of random concepts, the axiom is of the form subClassOf/disjointWith(C1C2),
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with C1 ≠ C2. We then check if the axiom exists in or is entailed by the ontology; if so,

the generated axiom is discarded, otherwise it is kept. The resulting generated set of

axioms will have a negative score. The rationale is that a randomly generated axiom

can be expected to be false with a very high probability. In this method, we add

a limit to the number of axioms being selected and generated, while in the method

in Chapter 5 every possible combination is generated: this is a critical point when

dealing with large ontologies.

Query 7.1 is used to extract a given number of existing axioms and generate a

given number of random ones, followed by removing the existing from the generated.

We ignore the blank nodes as well as instances where both classes are the same.

This produces a balanced set of positive and negative axioms. The server used is

Corese [78] which applies reasoning to check entailed axioms.

0 select DISTINCT ?class1 ?class2 ?label

1 where {

2 {select ?random ?class1 ?class2 ?label

3 where {

4 ?class1 a owl:Class

5 ?class2 a owl:Class

6 ?class1 rdfs:subClassOf ?class2

7 filter (!isBlank(?class1) && !isBlank(?class2) &&

(?class1 != ?class2))

8 bind(1.0 as ?label)

9 BIND(RAND() AS ?random) .

10 }

11 ORDER BY ?random
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12 limit 500}

13 UNION{

14 select ?random ?class1 ?class2 ?label

15 where{

16 ?class1 a owl:Class

17 ?class2 a owl:Class

18 filter (!isBlank(?class1) && !isBlank(?class2) &&

(?class1 != ?class2))

19 bind(0 as ?label)

20 BIND(RAND() AS ?random) .

21 }

22 minus{

23 ?class1 a owl:Class

24 ?class2 a owl:Class

25 ?class1 rdfs:subClassOf ?class2

26 filter (!isBlank(?class1) && !isBlank(?class2))

27 bind(0 as ?label)

28 BIND(RAND() AS ?random) .}

29 }

30 ORDER BY ?random

31 limit 500}}

Query 7.1: Extraction of an rdfs:subClassOf axiom balanced set with a size of 1000

axioms using random generation.

A second, more judicious approach adopted in Chapter 5 is to only query existing

axioms. For example, if we want to train a model to predict subClassOf axioms, we
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would query for n subClassOf axioms and consider that as the set of positive subClassOf

axioms. We would then query n disjointWith axioms and consider them as the set of

negative subClassOf axioms. If one query retrieves a number of axioms lesser than the

limit n, we can drop the excess axioms from the other set to maintain balance. The

method in Chapter 5 applies no limit and extracts all available axioms. We again

provide a limit, as methods that implement the approach described in Chapter 4

perform well even with small datasets. Query 7.2 shows our implementation.

0SELECT ?class1 ?class2 ?label

1 WHERE {

2 ?class1 a owl:Class

3 ?class2 a owl:Class

4 ?class1 rdfs:subClassOf ?class2

5 filter (!isBlank(?class1) && !isBlank(?class2) && (?class1 !=

?class2))

6 bind(1.0 as ?label)

7 BIND(RAND() AS ?random) .

8 }

9 ORDER BY ?random

10 LIMIT 500

11SELECT ?class1 ?class2 ?label

12 WHERE {

13 ?class1 a owl:Class

14 ?class2 a owl:Class

15 ?class1 owl:disjointWith ?class2

16 filter (!isBlank(?class1) && !isBlank(?class2) && (?class1 !=
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?class2))

17 bind(0 as ?label)

18 BIND(RAND() AS ?random) .

19 }

20 ORDER BY ?random

21 LIMIT 500

Query 7.2: Extraction of an rdfs:subClassOf axiom balanced set with a size of 1000

axioms using a negated axiom type.

The following step is to score the axioms. This is done by inputting the extracted

axioms into the possibilistic heuristic [348], and receiving an output file containing

the scores (ARI). We note that the process is very slow; Malchiodi et al. mention

that it took a little less than a year to score 722 axioms [240], whence the need for a

method such as ours.

7.4.2 Axiom Similarity Matrix

Like in Chapter 5, the axiom similarity is derived from the concept similarity.

This means that we first need to query Corese, where the ontological distance metric

is implemented as a function, to retrieve this similarity.

Query 7.3 provides our implementation of the retrieval of the concept similarity

measure. In contrast with Chapter 5, this approach takes advantage of the ability

to run multiple queries at a time and considers only concepts found in our set of

axioms instead of all concepts in the ontology. This results in an initial reduction of

computational cost and matrix size. We divide our set of concepts into k subsets,

then query Corese with k queries, each including one of those subsets and the main

set concepts for the distances between them. This allows us to speed up the process
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of creating the concept similarity matrix 5.1 by k times. This also drastically reduces

the storage space needed to store the matrices, by reducing the values to exactly what

is used.

0select * (kg:similarity(?class1, ?class2) as ?similarity)

1 where {

2 ?class1 a owl:Class

3 ?class2 a owl:Class

4 filter (!isBlank(?class1) && !isBlank(?class2) &&

5 str(?class1) IN (subset) && str(?class2) IN (concepts))

6 }

Query 7.3: Concept ontological distance retrieval.

Next, we use the algorithm explained in Section 5.3.2 to calculate the similarity

between axioms. We end up with an m×m axiom similarity matrix 5.2. The diagonal

of this matrix will contain only 1s as the similarity between an axiom A and itself is

1.

7.4.3 Axiom Base Vector-Space Modeling

We model our vector space to encode axioms into vectors. The initial number

of dimensions d of this vector space is equal to the number of axioms in our scored

axiom set. Each axiom can be represented as a vector V in this d-dimensional space.

Considering the components of our vectors are the similarities between axioms, it

would be intuitive to view our axiom similarity matrix as a representation of our

axiom-based vector space. This step is exactly the same as in the previous Chapters,

in that the shape and structure are the same for now. However, the time needed for

construction is greatly reduced due to optimized querying.
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7.4.4 Vector-Space Dimension Reduction

We now shift our focus to ranking and reducing the dimensions of our vector space.

By doing so we achieve the following:

• A reduction in the error rate due to the reduction in noise and redundancy.

• A reduction in the size of our vector-space and storage space for the axiom

similarity matrix.

• A reduction in the size of our concept similarity matrix. The matrix will only

include concepts that constitute axioms acting as dimensions in our vector-

space.

• A reduction in the computational complexity when encoding new candidate

axioms into the vector-space. We will be comparing the new axiom to a subset

of the initial axioms acting as dimensions d.

• A reduction in the look-up time when retrieving the concept similarity value

from the new smaller concept similarity matrix.

• A better dataset for our machine learning model to train on with regards to

redundancy.

To this aim, we consider our dimensions as features and apply a supervised filter-

type feature selection method such as mutual information. This works by taking as

input the axiom similarity matrix along with the scores of the axioms and returning

a ranking of the dimensions from the most to the least impactful. We then keep a

percentage of these dimensions according to their ranks and discard the rest.

Our new axiom similarity matrix is of size m×z, z being the number of dimensions

selected from the original dimensions d. This in turn affects the concept similarity
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matrix, which will become of size n × f , f being the number of concepts included in

the selected axioms acting as dimensions in our reduced vector space. New candidate

axioms will be encoded into the vector space with the reduced number of dimensions.

This means lower processing complexity in terms of computation cost and storage

cost, which are the keys for scalability.

7.4.5 Candidate Axiom Encoding

The candidate axiom encoding process includes two cases. In the first case, the

candidate axiom is made up of two concepts already found in our concept similarity

matrix. If so, the candidate axiom goes straight through the algorithm mentioned in

Section 7.3.1, as we did with the training set. The candidate then becomes a new

vector in our vector-space, ready for score prediction.

The second case covers candidate axioms that contain concepts not found in our

concept similarity matrix. Such candidates invoke a new similarity measure retrieval

query 7.3. In this query the subset variable includes the new concepts and the concepts

variable includes the concepts found in the new reduced set of axioms acting as

dimensions. This produces at most two new rows to be added to the matrix, if none

of the candidate’s concepts are in the concept similarity matrix. After that, the

candidate proceeds normally through the vector encoding algorithm.

7.4.6 Prediction

Now that we have our reduced vector space, we can apply machine learning meth-

ods. A simplistic method such as k-NN can be used to highlight the strength of

our similarity measure, so we use it along with more sophisticated methods such as

random-forest regressors. We choose this method to be able to compare with the

method proposed in Chapter 5, since it achieves it’s best results using that method.
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7.5 Experimentation Protocol

We use the following hardware configuration for our experiments:

• CPU: Intel(R) Xeon(R) CPU W-11955M @ 2.60GHz base and 4.5 GHz all core

boost. With 8 cores and 16 threads.

• A total of 128 GB of RAM memory with frequency 3200 MHZ.

• 1 TB of NVME SSD storage with read and write speeds of up to 2000 MB per

second.

In addition, the code 2 uses the Python multiprocessing package to distribute the

dataset-building and querying tasks over all available cores.

We searched for ontologies of different sizes and domains to use in our experiments

and selected the following ones. Each described in Section 3.1.1.

• DBpedia 3 .

• GO 4 .

• CL 5 .

We will be addressing the method proposed in Chapter 5 as baseline.

For DBpedia, and to be able to compare with the baseline, we use the same

scored subClassOf dataset consisting of 722 axioms. The dataset is scored using the

possibilistic heuristic explained in Section 3.2. As for GO and CL, and since the

baseline does not experiment using these ontologies, we create our own disjointWith
2https://github.com/ali-ballout/Scalable-Prediction-of-Atomic-Candidate-OWL-Class-Axioms-

Using-a-Vector-Space-Dimension-Reduced-Appr
3https://www.dbpedia.org/resources/ontology/
4http://geneontology.org/docs/download-ontology/
5https://www.ebi.ac.uk/ols/ontologies/cl
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datasets using the process described in Section 7.4.1. For each ontology, we create a

balanced set of 600 axioms. For the sake of experimentation and since scoring 722

axioms in our smallest tested ontology took little under a year [240], we gave the

score of 1 to all positive axioms and 0 to all negative axioms. This would turn the

task in those cases to classification, which is not an issue, as long as the approach

proves scalable and with good accuracy. After all, the work that is the foundation

for all these vector-space approaches (Chapter 4) is presented as a formula classifier.

Following the preparation of our dataset, we are now able to train a regressor,

in the case of DBpedia, for performance experimentation in terms of error rate. To

compare with the baseline, we use a random forest regressor, with which the baseline

achieves its best results. In our experiments we consider Processing time as the

time needed in seconds to construct the concept similarity matrix (CSM) and the

axiom similarity matrix (ASM) and Encoding time the time needed to encode cone

new candidate axiom. And in regards to storage cost, we consider the size in mega

bytes (MB) for the ASM and in number of values stored for the CSM.

With the smallest ontology, DBpedia, we perform experiments to analyse the effect

of feature selection on prediction accuracy. Since the DBpedia datasets are correctly

scored using [348], they are the most suitable to use for this type of analysis. The

results for these experiments are presented in Table 7.1 and Figure 7.1.

Using GO and CL we perform experiments to analyse the impact of our current

approach on storage usage and computational cost. For these experiments we set our

feature selection percentage at 40% based on the results from Figure 7.1. We also

note that in these experiments we do not include the performance metric for lack of

space and since its not our main concern, but would like to highlight that an average

F1 score of 0.86 was achieved in both experiments. We compare the feasibility of

both our current approach and the baseline when applied to these ontologies. The
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Table 7.1: Comparison of computational cost in seconds as well as storage cost in

number of values for CSM using using the DBpedia scored subClassOf dataset.

Approach Number of Initial CSM Concepts Processing Encoding

axioms processed size queried time time

baseline 722 580,644 762 13.72 0.019

current approach 722 85,264 292 3.86 0.005

results are presented in Table 7.2 for GO and Table 7.3 for CL.
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Figure 7.1: A graph comparing the performance of our current proposed approach and

the baseline in RMSE using the subClassOf dataset containing 722 axioms throughout

9 experiments (train/test splits), in each experiment the baseline is trained using

100% of the dimensions, while our model is trained using a selected percentage of the

dimensions equivalent to the experiment’s number × 10% so from 10% to 90%.

201



Table 7.2: Comparison of computational cost in seconds as well as storage cost in MB for ASM and number of values for

CSM using the GO disjointWith dataset. Time out error: TO.

Approach Number of ASM Initial Concepts Processing Encoding

axioms processed size CSM size queried time time

baseline 600 62,000 6,214,957,225 78,835 TO TO

proposed approach 600 5.1 95,481 309 312.54 0.034
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Table 7.3: Comparison of computational cost in seconds as well as storage cost in MB for ASM and number of values for

CSM using the CL disjointWith dataset. Time out error: TO.

Approach Number of ASM Initial Concepts Processing Encoding

axioms processed size CSM size queried time time

baseline 600 8,000 874,680,625 29,575 TO TO

proposed approach 600 2.05 216,225 465 103.7 0.015
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7.6 Results and Analysis

Figure 7.1 depicts the performance of both the current proposed method and the

baseline. It compares the error rate in terms of RMSE for both methods through out

a series of 9 experiments where the percentage of dimensions selected in our method

is incremented by 10% each run. This plot shows the effect of feature selection on

the prediction accuracy of the model. We can see that when a very small number

of dimensions is selected (< 30%) the method cannot make accurate predictions.

The error rate decreases as we increase the number of selected dimensions until we

reach 40%. Here we can see that our current approach performs better with fewer

dimensions that the baseline. After the 40% mark, we get a similar or slightly better

performance. We can conclude from this that 40% to 50% can be considered an

optimal percentage of dimensions to remove redundancy and improve performance.

This is exactly the reason why we set the feature selection percentage parameter to

40% for the GO and CL experiments.

Table 7.1 highlights the effects of our current approach on computational cost and

storage cost. Due to our method querying only selected concepts instead of all con-

cepts, we can see that the initial size of the concept similarity matrix is almost seven

times smaller than that in the baseline while processing with the same set of axioms.

This smaller size results in faster look-ups to calculate the axiom similarity measure,

which leads to a reduction in time cost from 13.7 seconds to 3.8 seconds. Also, fewer

dimensions in our vector-space lead to a faster encoding time for a candidate axiom

as we can see a reduction from 0.019 seconds to 0.0053 seconds.

In Table 7.2, we see from the size of the CSM and the concepts queried, that

our method has scaled well from a small-size ontology such as DBpedia to a larger

one such as GO. Even though the number of concepts in the ontology addressed
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changes from 762 to 78,835 our method is able to maintain almost the same size

of the CSM by dealing with a relatively small number of concepts (309). When

compared to the baseline, we notice that it is unfeasible to apply the method to the

ontology. Concerning computational cost, the baseline times out and crashes without

completing the task. As for storage cost, the size of the CSM for the baseline would

be approximately 62 Gbytes compared to 5.1 Mbytes for our method.

We notice that our current approach consumes an increased amount of processing

time up to 312 seconds but maintains a very short axiom encoding time of 0.034

seconds. This increase in processing time is attributed to the querying of the semantic

similarity measure in such a large ontology. It is dependant on the capability of the

SPARQL endpoint and the size of the ontology. However, this is well within acceptable

time.

Similarly, when dealing with the medium-size CL, having 29,575 concepts, our

current approach displays consistency and stability in terms of storage and compu-

tation. Processing time is 103 s, which falls within expectation when compared to

the processing time of GO, the same can be said for the encoding time. Again, the

baseline times out and crashes proving neither feasible nor scalable.

7.7 Conclusion

We have proposed a scalable approach for the score prediction of atomic candidate

OWL class axioms of different types. The method relies on a semantic similarity

measure derived from the ontological distance between concepts in a subsumption

hierarchy, as well as feature selection for vector-space dimension reduction. Extensive

tests that covered a range of ontologies of different sizes as well as multiple parameters

and settings were carried out to investigate the effectiveness and scalability of the

method.
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The results obtained support the effectiveness of the proposed method in predict-

ing the scores of the considered OWL axiom types with lower error rates than the

baseline. More importantly, it does so while being scalable, consistent and stable

when dealing with ontologies of different sizes. This allows us to confidently say that

our proposed method is feasible and able to address large real-world ontologies.
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Chapter 8

OCASP OWL CLASS AXIOM SCORE PREDICTOR WITH ACTIVE LEARNING

Semantic applications require expressive schemas, or ontologies, to exploit the

full potential of knowledge graphs, which have become ubiquitous to express and

organize knowledge in many domains. Existing knowledge graphs are rich in factual

information, but the available schemas, handcrafted by knowledge engineers, are often

minimal and not always complied with by the contributors of factual data. A key

challenge to bridge this gap is to develop methods to induce schema axioms from

factual data. This task can be broken down to two steps: (i) generating candidate

axioms and (ii) scoring them against the available evidence for acceptability. Here, we

focus on the latter, crucial step. Current methods such as OWL2Vec*, Onto2Vec, and

OPA2Vec have shown promise, but accurately predicting the acceptability of axioms

not logically deducible from an ontology remains a challenge. This chapter introduces

OCASP, OWL Class Axiom Score Predictor, a novel active learning approach to

address this issue. The approach exploits a semantic Web reasoner, a data-driven

axiom scoring heuristic, and an existing semantic similarity, which we extend to

include complex class axioms, this defining an axiom-based embedding space. Our

approach aims at providing a more efficient and robust solution for expressive schema

induction, overcoming the limitations of existing methods.

8.1 Introduction

Now that we have addressed scalability, we turn our focus to the challenge of max-

imizing accuracy. Active learning emerges as a promising solution to this challenge.

By involving the model in the learning process, it can selectively query the instances
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for which it needs labels, leading to improved accuracy with less data [325].

We introduce a novel active learning approach for predicting the acceptability

of OWL class axioms in ontology completion. We leverage the semantic similarity

measure introduces in Section 5.3.2 and extend it to include complex class axioms.

Our model aims to overcome existing method limitations, offering a more robust

solution for ontology completion.

The rest of the chapter is organized as follows: Section 8.2 provides a review of

related work, Section 8.3 describes how we extended our axiom semantic similarity

measure, Section 8.4 presents the method and model structure, Section 8.5 details

our experimental protocol and results, and Section 8.6 concludes the chapter.

8.2 Embedding Methods and Active Learning: A Recap

Embedding Methods: Methods like Onto2Vec, OPA2Vec, and OWL2Vec* rely

on embeddings [70, 336, 337]. They are resource-intensive, domain-specific, and sen-

sitive to input quality. They also struggle with complex class relations and differ-

entiating similar sentences [170, 199, 248]. Their limitations suggest the need for

semantically-based solutions. For more information on these embedding based meth-

ods please refer to Section 3.6.

Active Learning: As a learning paradigm, active learning offers efficiency and ac-

curacy but needs proper integration with ontology completion methods [318, 325]. For

more information on Active Learning and its techniques please refer to Section 2.5.4.

Proposed Approach: We propose an active learning approach using an ensem-

ble model and two-layered oracle, including Hermit [138]. Our method extends the

semantic similarity introduced in Section 5.3.2 to address complex axioms and aims

to overcome limitations in previous methods, such as computational cost, robustness

against incomplete or noisy ontologies, and handling of complex class relations. In
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this chapter we will be comparing our new method to the one we proposed in Chap-

ter 7. We will be addressing that method as baseline. We will also be comparing to

state-of-the-art embeddings based methods described in Section 3.6.

8.3 Axiom Semantic Similarity

We extended the axiom similarity measure proposed in Section 5.3.2 to address

some OWL constructs, namely intersection, union, and complement. This implemen-

tation makes the calculation of this distance faster and more scalable. We do not

change the way the measure is extended from classes to atomic axioms.

8.3.1 Class similarity

In our approach, we wrote our own implementation of the concept distance mea-

sure described by Gandon in his thesis [133]. In this implementation we take into

consideration equivalence axioms. Where in a class a has the same distance from two

equivalent classes. And those equivalent classes have a distance of 0 between each

other. We also optimized the calculation to compute distances incrementally and

only on demand. This means less time need since no useless distance calculations are

taking place, as well as a much lesser need for storage since only required distances

are being calculated.

We first compute the depth of each class in the ontology. The depth of a class

is defined as the length of the longest path from the class to the root of the IS-A

hierarchy, D(t) = 1 +max(D(p)), for all parent p of class t. The distance between

each class and its ancestors is then computed as:

Dist(t, a) =
D(a)

∑
i=D(t)

1

2i
(8.1)
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For each pair of classes, the distance is computed as:

Dist(t1, t2) =Dist(t1, a) +Dist(t2, a) (8.2)

With class a being their deepest common ancestor. The distance is normalized by:

NormDist(t1, t2) = Dist(t1, t2)
MaxDist

(8.3)

With MaxDist being the distance between the deepest class and the root multiplied

by two. Finally, the similarity between the two classes is computed as:

Sim(t1, t2) = 1

1 + k ×NormDist(t1, t2) (8.4)

Where k is a scaling constant given by the equation k = 2MaxDepth

100 having MaxDepth

as the depth of the deepest class in the hierarchy. If two classes are the same or

equivalent, the distance is 0 and the similarity is 1.

8.3.2 Axiom Similarity

We extend the class similarity to axioms, defining the similarity between two

atomic axioms candidate axiom ϕ and feature axiom ψ where Lϕ, Rϕ, Lψ, and Rψ are

classes in the axioms (Left and Right sides). We highlight that axioms set as features

in our vector space are always exclusively atomic, the concepts on the left and right

side of these axioms contain no constructors but only named classes.

S(ϕ,ψ) =max(sim(Lϕ, Lψ) + sim(Rϕ,Rψ)
2

,

Itype(ϕ,ψ) ⋅
sim(Lϕ,Rψ) + sim(Rϕ, Lψ)

2
) (8.5)

where Itype(ϕ,ψ) is an indicator function that is 1 if the type of the axioms ϕ and

ψ is either Disjointness or Equivalence, and 0 otherwise.
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8.3.3 Complex Axiom Similarity

We further extend the axiom similarity to complex axioms by considering the

constructors (union, ⊔, intersection. ⊓, and complement, ¬) in the classes. Let ϕ be

a complex axiom. Let Cϕ be the set of classes in the complex concept Lϕ (or Rϕ),

and cψ be the class Lψ (or Rψ).

• For ⊔: sim(Lϕ, Lψ) =maxcϕ∈Cϕ sim(cϕ, cψ);

• For ⊓: sim(Lϕ, Lψ) =mincϕ∈Cϕ sim(cϕ, cψ);

• For ¬: sim(Lϕ, Lψ) = 1 − sim(cϕ, cψ).

8.4 Method and Model Structure

Our method is inspired by the principles of Active Learning [318]. It involves

training three smaller models using pool axiom learning (see Section 8.4.3). Each

model predicts a label for the candidate, and if one model disagrees with the other

two, we call upon an oracle to check the label. The first layer in our oracle stack

is a DL reasoner, and the second layer oracle is a slower but accurate possibilistic

heuristic that may be able to label candidate axioms not logically deducible from the

ontology. If even the second oracle returns “ignorance” due to insufficient data or

evidence, we consider the majority label given by our three models as the designated

label. The incorrect models are then retrained by adding the newly labeled candidate

to their respective training sets. Figure 8.1 illustrates our ensemble model structure

and the process of active learning and candidate axiom labeling.
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Figure 8.1: Depiction of our model’s structure, prediction process and active learning

process.

8.4.1 Preprocessing and Feature Extraction

Ontology Parsing and Structure Analysis

Ontology parsing and structure analysis is the initial phase in the preprocessing of

the ontology data. It involves understanding the ontology’s hierarchical structure.

• Ontology Parsing: The raw ontology file is parsed to extract the axioms and

classes.

• Hierarchy Extraction: The hierarchy within the ontology is identified, this
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includes the subClassOf relation between classes.

• Relationship Analysis: The relationships between different classes are ana-

lyzed, such as equivalence, disjointness and subsumption. This information is

used later in the similarity computation in Section 8.4.1.

Axiom Similarity Computation

Axiom similarity computation is crucial in building a semantic understanding of the

ontology. It involves the following steps:

• Semantic Analysis: Using the relationships extracted from Section 8.4.1, the

semantic meanings of axioms are analyzed and the axioms are parsed into trees.

In the tree each leaf is a named class and each node is a logical constructor.

• Similarity Metrics: The similarity metric we detail in Section 8.3 is applied

to compute the similarity between axioms.

Vector Space Construction

Vector space construction is the process of representing axioms in a numerical format

suitable for machine learning models. It involves:

• Vector Space Dimensionality: All atomic axioms included in our axiom set

are considered as dimensions/features in our vector space.

• Feature Vector Creation: Based on the similarity computed in Section 8.4.1,

feature vectors are created for each axiom. Each axiom is compared with all

the axioms that make up our vector space dimensionality.

• Dimensionality Reduction: we can use feature ranking and selection tech-

niques to reduce the dimensionality of the vector space.
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8.4.2 Ensemble Model Structure

Individual Model Architecture

The ensemble model is constructed by integrating various individual models, each

of which contributes to the final prediction. The architecture of individual models

includes:

• Model Type: The model type used in our ensemble is random forests (RF),

this is due to their proven effectiveness when used for this task by the state-of-

the-art [70, 336, 337] (SOTA).

• Configuration: We set the hyper parameters of the random forest models to

the following: number of estimators 200, empirically between 100 and 200 (200

being best) produces the best results, in our model and the SOTA. A max depth

is not set allowing node expansion until all leaves are pure.

• Training: The models are trained on the feature vectors derived from Sec-

tion 8.4.1. We split the sample data into 3 unique non-overlapping sets having

the same vector space dimensionality. Each model then receives one of these

unique subsets. We do this to guarantee that we create 3 distinct sub-models

especially when using the same classifier, thus ensuring the ensemble is robust

and able to capture as much information from the training data as possible

without noise or redundancy.

Model Integration

The integration of the individual models into an ensemble follows the Query by Com-

mittee approach [319]. Here three sub-models contribute equally to the final predic-

tion. The process includes:
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• Equal Weighting: Each sub-model has an equal weight in the voting process.

• Voting Scheme: The three sub-models make predictions, and a majority vote

is considered as the final decision. If there is unanimous agreement among the

sub-models, the prediction is finalized.

• Oracle Consultation: In the case where only one sub-model disagrees with

the others, an oracle is consulted to determine the true label as described in

Section 8.4.3.

• Oracle Decision Making:

– Definitive Oracle Decision: If the oracle returns a label, its decision is

considered final.

– Oracle Ignorance: In case the oracle returns ignorance due to lack of data,

the majority vote among the sub-models is considered as the final predic-

tion.

8.4.3 Active Learning Process

Our active learning process plays a crucial role in the continuous improvement of

our model and assuring that we get the best performance we can out of our model.

This process includes the following stages:

Pool-Based Sampling

Pool-based sampling is employed using the sub-model’s assigned data subset. With

this technique the model starts out with a very small initial sample to learn and

then iteratively adds more. In our case, we already split our data into 3 smaller

subsets, and so we increase the size of the initial sample so that our sub-models have

a meaningful sample to initially learn before iteratively querying for more samples.
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The process is as follows:

• Initial Training Set Selection: We do this for each individual sub-model in

our ensemble, and using its respective subset of the data. A subset of instances

is randomly chosen to form the initial training set, we set this to 25% of the sub-

model’s data subset size. In pool-based active learning, the initial training set

is randomly selected from the available data, and should be a small percentage

of the whole. The percentage can be decided based on the amount of instances

available, the number of iterations and the samples to query per iteration. Since

we are splitting our data into 3 subsets, taking a very small percentage from an

already small set is not enough to train a model. Also, to optimize the iterative

training process we select a quarter of the data and then iterate to learn the

other most informative quarter by querying. This insures that our models are

adequately trained using sparse instances from the data, and then reinforced

with data they find as most informative via uncertainty sampling.

• Sample Selection: This is done over n iterations with a set m of samples to

learn per iteration. Our aim is to learn the second most informative quarter of

the dataset For this we hope to learn a total of ∣dataset∣/4 instances through

out all iterations. The higher the number of iterations, the lower the number of

samples learnt per iteration. Higher iterations mean better or more informative

samples being selected at the cost of higher training time. In our experiments

we set the number of iterations to 10 to learn 2.5% of the dataset per iteration.

• Uncertainty Sampling: Instances where the model has the greatest uncer-

tainty are prioritized. The most informative instances are selected as samples

to learn and added to the training set. So instances with the probability of

being classified as Accepted or Rejected is close to 50/50 get the highest priority
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to be queried.

Oracle Integration

The oracle is used to determine the true label of candidates when at least one sub-

model disagrees with the others, and the process includes:

• Multi-Layer Oracle Calling: Different layers of oracles are called upon de-

pending on the responses.

– Description Logic Reasoner : A DL reasoner is a tool used to infer logical

consequences from a set of asserted facts or axioms [242]. In our method,

the DL reasoner serves as the first-layer oracle to check the label of a

candidate when there is disagreement among models. It is faster than the

second-layer oracle but is only able to determine if a candidate is entailed.

– Possibilistic Heuristic: Our second-layer oracle, the possibilistic heuristic,

is a slower but accurate oracle used to check the label of a candidate.

This heuristic is capable of labeling axioms that are undeducible from the

ontology using a DL reasoner. Based on possibility theory [104, 153], it

considers confirmations, counterexamples, and cases of ignorance within

an RDF dataset, and defines the possibility and necessity measures of the

axiom. These measures are combined into an acceptance/rejection index

(ARI) that ranges from -1 to 1, reflecting the axiom’s acceptance, rejection,

or a state of ignorance [348].

• Label Acquisition: The oracle structure, consisting of two layers, is designed

to efficiently and effectively handle a variety of candidates. The first layer em-

ploys a DL reasoner. Its role is to evaluate whether a candidate is entailed by

the existing knowledge base (KB). If so, the candidate is labeled as Accepted.

217



This approach is particularly efficient for candidates that are direct logical con-

sequences of the available axioms. However, a DL reasoner operates within

certain limitations. It can only determine if a formula is a consequence of the

available axioms, and it does not necessarily imply that a non-consequence for-

mula is false or impossible, unless a contradiction is explicitly present within

the set of available axioms. Moreover, OWL syntax does not support express-

ing the negation of an axiom directly, posing a challenge for the reasoner to

definitively refute a candidate formula. To compensate for these limitations, a

second layer is invoked when the DL reasoner cannot entail a candidate. This

layer uses an RDF mining tool, RDFMiner, 1 to provide a more definitive Ac-

cepted, Rejected, or Ignorance label based on the evidence present in the RDF

data. While RDFMiner’s heuristic for negation is not as exact as a reasoner,

it offers a more comprehensive evaluation, particularly for candidates that are

not directly deducible through reasoning. The architecture of this two-layer

oracle is thus a balanced and pragmatic approach that leverages the strengths

of both DL reasoning and RDF mining while addressing their limitations. This

enables the model to efficiently and effectively handle a wide variety of candi-

dates, enhancing its overall performance and utility in knowledge acquisition

and reasoning tasks.

• Ignorance Handling: In case of lack of data or uncertainty, the oracle may

return ignorance, and the process detailed in Section 8.4.2 under Oracle Decision

Making, Oracle Ignorance is followed.
1https://github.com/RemiFELIN/RDFMining
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Stream-Based Learning and Model Retraining

With the new labeled data obtained from the oracle or majority vote, the models are

updated and retrained as follows:

• Incorporation of New Data: The newly labeled instances are added to the

respective training set of the sub-models whose prediction is different from the

obtained label.

• Model Retraining: The individual sub-models, within the ensemble, whose

prediction is different from the obtained label are retrained using their respective

updated training set.

• Continuous Improvement: This iterative process continues, allowing the

model to learn from the most informative instances and adapt to the underlying

patterns in the data.

8.5 EXPERIMENTS & RESULTS

For the following experiments, the machine that was used had the following hard-

ware configuration:

• Processor: Intel(R) Xeon(R) CPU W-11955M @ 2.60GHz.

• Memory: A total of 128 GB of RAM.

All our code and the data needed to replicate the experiments can be found in

our repository. 2

2https://github.com/ali-ballout/ocasp-complex-active
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8.5.1 Dataset Preparation

Ontologies

For our experiments we use 3 ontologies of different sizes covering various domains as

described in Section 3.1.1.

• GO 3 .

• FoodOn 4 .

• DBpedia 5 .

We use GO and FoodOn to compare our work with OWL2Vec*, OPA2Vec and

Onto2Vec for the task of class subsumption prediction. As for DBpedia, we use it to

compare our work with the baseline in the task of class subsumption and disjoint-

ness prediction. We also use DBpedia to demonstrate our models performance when

classifying complex axioms.

Axiom Datasets

We used two different processes to produce datasets for our experiments.

• FoodOn and GO: We start out by randomly selecting n rdfs:subClassOf ax-

ioms from the ontology. We proceed to remove these axioms from the original

ontology and make sure that they can not be entailed by the edited ontology

using a DL reasoner. This means that we now have a set of real Accepted axioms

that are not deducible by the DL reasoner from the available ontology. After

that, we generate random rdfs:subClassOf axioms of equal number and make
3http://geneontology.org/docs/download-ontology/
4https://foodon.org/
5https://www.dbpedia.org/resources/ontology/
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sure that they are not present in the ontologies nor entailed according to the

DL reasoner. This means that we now have a set of Rejected axioms. This is

not the ideal way to obtain negative samples, but it is the approach followed by

OWL2Vec* and in the aim of keeping the comparison fair we follow the same

approach. We now have a balanced set of labeled axioms of size 2n. We split

this set into two sets of equal size, one used for training and one used for testing.

• DBpedia: For these experiments we obtained a set of axioms generated by

the grammatical evolution algorithm [122, 123, 265, 264], and labeled using the

possibilistic heuristic [348]. We produced 4 different datasets:

– Atomic disjointWith axioms.

– Atomic subClassOf axioms.

– Complex disjointWith axioms.

– Complex subClassOf axioms.

Vector Space

After producing our axiom sets we create our axiom-based vector space (embedding)

following the process detailed in Section 8.4.1. For axiom sets having atomic axioms,

complex axioms or a combination of both, only the atomic axioms are considered as

features. Each axiom in our axiom set is compared to all the feature axioms of the

vector space and the similarity described in Section 8.3.2 is calculated and set as the

weight of that feature. All axioms are encoded this way to obtain our vector space.

8.5.2 Ensemble Setup

The setup of the ensemble model involves the configuration of individual models

and the determination of their interaction within the ensemble structure. The process
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of ensemble setup is detailed as follows:

• Model Selection: The ensemble is composed of three Random Forest (RF)

models as mentioned in Section 8.4.2 under Model Type.

• Model Configuration: Each RF model is configured with 200 estimators and

a maximum depth is not set as described in Section 8.4.2 under Configuration.

• Integration Mechanism: The models are integrated into an ensemble using

a majority voting scheme. This democratic approach gives equal weight to each

model’s predictions as described in Section 8.4.2 under Equal Weighting and

Voting Scheme.

• Oracle Setup: Both layers described in Section 8.4.3 are set up as services

that receive the candidate and ontology as input and output a label (Accepted,

Rejected, Ignorance).

8.5.3 Ensemble Training

The training process of the ensemble model takes place in multiple stages, includ-

ing data splitting, initial training, pool-based training, prediction, oracle consultation,

and retraining. This last three stages are iterative and follows the principles of Active

Learning, allowing the model to learn and adapt to the underlying patterns in the

data over time.

• Data Splitting: The available labeled data is split into three unique subsets

and assigned to the RF models as described in Section 8.4.2 under Training.

• Initial Model Training: Each sub-model is initially trained on 25% of its

assigned data subset. This percentage is chosen to provide each sub-model with

222



a sufficient initial training set, while also leaving enough data for the iterative

learning process as detailed in Section 8.4.3 under Initial Training Set Selection.

• Iterative Pool-Based Learning: After the initial training, the sub-models

enter an iterative learning phase. In each iteration, the sub-models identify and

select the most informative instances from their remaining data subsets based

on uncertainty as detailed in Section 8.4.3 under Uncertainty Sampling.

• Stopping Criterion: We define our stopping criterion to be when we have

learned a quarter of the dataset size across all iterations as in Section 8.4.3

under Sample Selection.

• Continuous Stream-Based Learning: During testing/prediction, if an or-

acle is called due to a disagreement between the sub-models according to Sec-

tion 8.4.3 and after a label is acquired, the sub-models whose predictions are

inconsistent with the newly obtained label are updated and retrained using their

respective updated training sets, as described in Section 8.4.3.

8.5.4 chapter5testing

We performed multiple experiments, which we will split into two groups. The

first group includes the experiments done on GO and FoodOn for predicting the

acceptability of atomic subClassOf axioms. The second group includes experiments

done on DBpedia for predicting the acceptability of atomic and complex subClassOf

and disjointWith axioms.

Group 1

For the GO dataset, the training set contained contained 4,593 instances of Rejected

axioms and 5,693 instances of Accepted axioms, while the test set contained 4,705
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instances of Rejected axioms and 5,580 instances of Accepted axioms.

For the FoodOn dataset, the training set contained 3,170 instances of Rejected

axioms and 2,995 instances of Accepted axioms, while the test set contained 3,143

instances of Rejected axioms and 2,962 instances of Accepted axioms.

For this group of experiments we compare our model to the embeddings based

models, as well the baseline (our method from Chapter 7).

F1-GO F1-FoodOn MCC-GO MCC-FoodOn

0.6

0.7

0.8

0.9

1
0.93

0.98

0.86

0.96

0.9
0.94

0.8

0.880.89
0.87

0.78

0.73

0.87

0.98

0.73

0.95

0.79
0.82

0.58

0.65

Sc
or

e

OCASP/AL OWL2Vec* OPA2Vec Baseline Onto2Vec

Figure 8.2: Performance of the models in classifying candidate subClassOf axioms for

the GO and FoodOn datasets in terms of F1 score and MCC (Matthews Correlation

Coefficient)

Group 2

For DBpedia we did 4 different experiments:

• Atomic disjointWith: The training set contains 596 Rejected and 524 Ac-

cepted axioms. While the testing set contains 227 Rejected and 752 Accepted
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axioms.

• Atomic subClassOf : The training set contains 398 Rejected and 399 Accepted

axioms. While the testing set contains 347 Rejected and 412 Accepted axioms.

• Complex disjoinWith: For this experiment we have a training set containing

complex axioms along atomic axioms with labels distributed as follows: 736

Rejected and 817 Accepted axioms. We also have a features set which includes

atomic axioms from the training set with labels distributed as follows: 596

Rejected and 524 Accepted axioms. As for the testing set, we included only

complex axioms to focus on the models ability to label those axioms. The label

distribution of our testing set was as follows: 206 Rejected and 1618 Accepted

axioms.

• Complex subClassOf : Producing Accepted subClassOf axioms is difficult es-

pecially when complex constructs are involved. For this, we had to use only

atomic axioms in the training set while we use the test complex axioms in the

test set. The training set we used was the same used for the atomic subClas-

sOf experiment. While the testing set contains 101 Rejected and 17 Accepted

axioms.

For this group of experiments we compare our work with the baseline.

The testing process involved feeding the test data to the trained models and

comparing the predicted labels with the actual labels. The performance of the models

was evaluated using various metrics such as F1-score and MCC score. The results of

the first group of experiments are presented in Figure 8.2. The results of the second

group are presented in Figure 8.3. Table 8.1 gives some insight on how the model

performs in terms of MCC and number of oracle queries.
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Figure 8.3: Comparison of F1 and MCC Scores for DBpedia Ontology (AD: Atomic

Disjoint, AS: Atomic Subclass, CD: Complex Disjoint, CS: Complex Subclass)

8.5.5 Results and Analysis

Performance Analysis of OCASP/AL

Group 1: GO and FoodOn Datasets The performance of OCASP/AL on the

GO and FoodOn datasets (Figure 8.2) demonstrates a strong capability in classifying

atomic subClassOf axioms.

• High F1-Scores: OCASP/AL achieved an F1-score of 0.93 for GO and 0.98

for FoodOn, reflecting high precision and recall.

• Strong MCC: With MCC scores of 0.86 for GO and 0.96 for FoodOn, OCASP/AL’s

predictions were in robust correlation with the actual classifications.
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Table 8.1: MCC score and number of queries made to the oracle over the total number

of instances predicted by OCASP/AL per experiment.

Experiment MCC Queries/Total

GO Subclass 0.8596 1747/10285

FoodOn subclass 0.9616 89/6105

Atomic Disjoint 0.9568 210/979

Atomic Subclass 1 117/759

Complex Disjoint 0.7269 144/1824

Complex Subclass 0.9301 63/118

Group 2: DBpedia Datasets The DBpedia experiments (Figure 8.3) provide

insights into OCASP/AL’s versatility:

• Atomic Experiments: OCASP/AL showed near-perfect performance with

F1-scores of 0.98 (AD) and 1.00 (AS), and MCC scores of 0.9568 and 1 respec-

tively.

• Complex Constructs: In the complex disjoint experiment, OCASP/AL achieved

an F1-score of 0.94 and an MCC of 0.7269, indicating good performance but

room for improvement.

• Contrast in Complex Subclass: The substantial contrast with the nega-

tive baseline MCC achieving 0.9301 with OCASP/AL emphasizes the model’s

capability and adaptability.
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Efficiency in Active Learning Table 8.1 provides a detailed look at the efficiency

of OCASP/AL in terms of the number of queries made to the oracle. The model

demonstrates an impressive balance between query reduction and prediction accuracy:

• FoodOn Subclass: OCASP/AL achieved an MCC score of 0.9616 while mak-

ing only 89 queries out of 6105 total instances, translating to about 1.46% of

queries.

• Atomic Disjoint: Similarly, for the Atomic Disjoint experiment, the model

made 210 queries out of 979 total instances, resulting in an MCC of 0.9568,

thus efficiently leveraging the oracle’s input.

Critical Evaluation of OCASP/AL and Future Directions

• Handling Complex Disjoint Axioms: The Complex Disjoint experiment’s

MCC score of 0.7269, while commendable, indicates room for improvement.

Further refinement in handling complex axioms may lead to even better perfor-

mance.

• Efficiency with Small Datasets: The model’s ability to perform well even

with small datasets (e.g., Complex Subclass) suggests robustness but also opens

avenues to explore optimization in scenarios with limited data availability.

8.6 conclusion

This chapter presented OCASP/AL (OWL Class Axiom Score Predictor with

Active Learning), a novel approach that enhances expressive schema induction in

semantic applications. OCASP/AL generates and scores candidate axioms, leveraging

a semantic Web reasoner, a data-driven heuristic, and an extended semantic similarity
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for complex class axioms. It offers a more efficient and robust solution compared to

existing methods such as OWL2Vec*, Onto2Vec, and OPA2Vec.

The experimental results highlight OCASP/AL’s querying efficiency and ability

to handle both atomic and complex axioms, with a distinctive capability to minimize

oracle interaction without losing accuracy, as demonstrated in the FoodOn Subclass

and Atomic Disjoint experiments.

The success of OCASP/AL in predicting axioms not logically deducible from an

ontology contributes significantly to bridging the gap between factual data and hand-

crafted schemas in knowledge graphs. It offers a promising avenue towards the full

exploitation of knowledge graphs’ potential, paving the way for more expressive and

compliant ontologies across various domains.
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Chapter 9

QUANTIFYING SEMANTIC SIMILARITY IN DESCRIPTION LOGIC

FORMULAS FOR MACHINE LEARNING-BASED TRUTH LABEL

PREDICTION: A MODEL-THEORETIC APPROACH

In the domain of ontology representation and reasoning, accurately determining

the semantic similarity between axiomatic formulas and predicting their truth labels is

essential. This chapter presents a method based on model-theoretic semantics to com-

pute semantic similarity between axioms described in Description Logic. Using tree

structures to represent axioms and strategies reminiscent of the tableaux method, our

approach evaluates the co-satisfiability of axiom pairs across various interpretations,

represented as ABoxes. Leveraging this computed semantic similarity, we introduce

a machine learning model trained to predict the truth labels of unseen formulas.

By integrating traditional logic-based reasoning with machine learning techniques,

our approach offers a novel perspective on knowledge representation and automated

reasoning. Empirical results demonstrate the effectiveness of our method in both

semantic similarity computation and truth label prediction.

9.1 Introduction

This chapter introduces a novel method that leverages the principles of model-

theoretic semantics to compute semantic similarity between OWL axioms. By repre-

senting axioms as tree structures and utilizing strategies reminiscent of the tableaux

method, our approach evaluates the co-satisfiability of axiom pairs across various

interpretations, represented as ABoxes. Building on this foundation, we further in-

tegrate a machine learning model trained on these computed semantic similarities
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to predict the truth labels of unseen axioms. This innovative blend of traditional

logic-based reasoning with contemporary machine learning techniques offers a new

perspective on ontology-based knowledge representation and automated reasoning.

In theory, our proposed method works for all DL axiom types, rather all DL formu-

las.

The empirical results of applying our method underscore its effectiveness not only

in accurately computing semantic similarity between OWL axioms but also in predict-

ing their truth labels with high precision. Through this work, we aim to contribute to

the advancement of ontology representation and reasoning, paving the way for more

sophisticated applications in the semantic web and beyond.

The remainder of this chapter is organized as follows. Section 9.2 provides a short

recap on concepts of model-theoretic semantics and Description Logic, with a focus

on OWL axioms. In the same section we give a brief review on methods presented in

this thesis that influence the method we propose in this chapter. Section 9.3 details

the proposed approach for computing semantic similarity between OWL axioms and

describes the machine learning model developed for truth label prediction. In Sec-

tion 9.4, we present the empirical evaluation of our method, including the dataset,

experimental setup, and results. Section 9.5 discusses the implications of our find-

ings, explores the limitations of the current study, and suggests avenues for future

research. Finally, Section 9.6 concludes the chapter, summarizing the key contribu-

tions and highlighting the potential impact of our work on the field of knowledge

representation and automated reasoning.

9.2 Recap and Review

Description Logic (DL) serves as the formal foundation for constructing and rea-

soning about ontologies, encompassing a range of expressivities including quantifier-
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s/restrictions, which allow for more complex knowledge representation. More infor-

mation on DL is provided in Section 2.2.3.

OWL axioms, fundamental to defining relationships and constraints within Se-

mantic Web ontologies, can be quite complex and vary widely in types, such as class

axioms and property axioms. These intricacies are explored in Section 2.2.7.

Model-theoretic semantics offer a framework for interpreting the symbols and

sentences of a logic system and are directly linked to reasoning methods such as

tableaux methods, which are utilized for semantic evaluations. Details on model-

theoretic semantics are outlined in Section 2.2.4, with a specific focus on tableaux

methods in Section 2.4.4.

In Chapter 4, we present a model-theoretic semantic similarity approach applied

to propositional logic, which was found to be challenging to extend to description

logic due to its increased complexity. This is mentioned in Section 4.3 .

Further exploration of model-theoretic approaches is discussed in the Related

Work chapter, where attempts by Malchiodi et al. to approximate a model-theoretic

approach using instance data are covered. Despite their efforts, they were unable to

achieve satisfactory results and were limited to atomic axioms of the subClassOf

type. This limitation is highlighted in Section 3.4.

In Chapter 5, we propose another method to approximate semantic similarity us-

ing the distance between concepts in the is-A hierarchy. This method was successfully

extended to encompass complex axioms that include negation, union, and intersec-

tion of subClassOf, Disjointness, and Equivalence axioms. The details of this

extension are elaborated in Chapter 8.

However, this extension method was found to be insufficient as it could not be

further extended to include quantifiers/restrictions, which are necessary for a complete

description logic evaluation.
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9.3 Method

Our method, inspired by the principles of tableaux reasoning, seeks to innovate

a similarity measure between formulas by assessing whether the negations of said

formulas are satisfiable within a given ABox. Tableaux methods are well-regarded for

their effectiveness in checking the satisfiability of logical formulas by systematically

attempting to construct a model that satisfies the formula’s conditions. By adapting

this approach to measure similarity, our method evaluates the extent to which any

two formulas, including axioms, share semantic properties by exploring their behavior

under diverse interpretations. Using this new similarity, a machine learning method

can be trained with a set of labeled formulas and then utilized to predict the label of

any unseen formula. In this method there would be no need to train multiple model

for each type, rather one model for any logical formula.

9.3.1 Model theoretic Semantic Similarity

Theoretically, our approach is designed to capture the similarity between any two

logical formulas by examining the consequences of their negations within simulated

environments. This section will detail each step of our method, from the initial

representation of axioms as logical trees to the computation of similarity scores based

on their satisfiability within generated ABoxes. For better comparability we will using

OWL Class axioms as our logical formulas.

Process Overview

Following are the steps for our semantic measure calculation.

Axiom Initialization: Each axiom is conceptualized as an instance within the

theoretical framework of an Axiom class. An axiom is initiated with its literal string
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representation, from which a structured parse tree is constructed. This tree serves as

a formal representation of the axiom’s logical structure, encapsulating the elemental

relationships and entities involved.

Furthermore, to facilitate logical assessments, each axiom is also transformed into

its negated form, represented similarly as a tree (negated_tree). This negation allows

for subsequent evaluations of the axiom’s satisfiability within various interpretative

scenarios, providing a foundation for rigorous logical analysis.

Interpretation Creation: An Interpretation object is formulated encompassing

a set of axioms. In this object we generate an ABox, which consists of a specified

collection of individuals, each assigned to classes and properties. These assignments

are not arbitrary but are derived from the logical constituents and relational structures

identified within the axioms’ trees. The generation of such an ABox is critical as it

simulates a potential real-world scenario or "possible world" where the logical validity

of axioms can be tested. An interpretation object is created for only one pair of

axioms.

Semantic Similarity Calculation: The core of our method lies in the calculation

of semantic similarity between axioms, which is achieved by evaluating the satisfia-

bility of their respective negated forms within the context of the generated ABox.

We approach this in two ways, both of which act as an approximation for the

model theoretic semantic-based similarity as done in Chapter 4 through sampling.

The first way is to generate a specific number of ABoxes with the minimum number

of individuals needed (enough to have one for each class in a pair formulas/axioms).

This approach aims to check if a pair of axioms are co-satisfied or not in the same k

of n worlds. The other approach is to generate one ABox with a specific number of
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individuals. This approach aims to check if a pair of axioms share the same number

k of combined examples and counterexamples out of n instances.

In theory the similarities from both approaches, should be almost equal. We do

not necessarily care about the actual truth of an axiom in any of these ABoxes, rather

how similar the axioms are.

This similarity score, therefore, is computed by systematically iterating either

through each individual in a large ABox and comparing the satisfiability outcomes

for the axioms in question, or through multiple ABoxes and checking if both axioms

hold in each. Such a measure not only reflects the logical coherence between the

axioms but also their semantic alignment under varied interpretations.

Axiom Representation and Negation

Each axiom is initially represented as a structured logical tree, facilitating the appli-

cation of logical operations such as negation and the evaluation of satisfiability. Given

an axiom represented by the formula ϕ, its tree representation T (ϕ) is constructed to

reflect the syntactic structure of ϕ.

The negation of the axiom, ¬ϕ, is then processed to generate a corresponding tree

T (¬ϕ). This transformation involves the application of logical negation rules, which

for classical logical connectors, are defined as follows:

¬(¬A) → A

¬(A ∧B) → ¬A ∨ ¬B

¬(A ∨B) → ¬A ∧ ¬B

¬(∀xP (x)) → ∃x¬P (x)

¬(∃xP (x)) → ∀x¬P (x)
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Below are the transformations applied to common logical constructs found in

ontological axioms:

¬(SubClassOf(A,B)) → ObjectIntersectionOf(A,ObjectComplementOf(B))

¬(DisjointClasses(A,B)) → ObjectIntersectionOf(A,B)

¬(EquivalentClasses(A,B)) → ObjectUnionOf(

ObjectIntersectionOf(A,ObjectComplementOf(B)),

ObjectIntersectionOf(ObjectComplementOf(A),B))

¬(ObjectAllValuesFrom(P,B)) → ObjectSomeValuesFrom(P,ObjectComplementOf(B))

¬(ObjectSomeValuesFrom(P,B)) → ObjectAllValuesFrom(P,ObjectComplementOf(B))

¬(ObjectIntersectionOf(A,B)) → ObjectUnionOf(

ObjectComplementOf(A),ObjectComplementOf(B))

¬(ObjectUnionOf(A,B)) → ObjectIntersectionOf(

ObjectComplementOf(A),ObjectComplementOf(B))

These negation rules ensure that the negation of complex axioms is handled sys-

tematically, preserving the logical integrity while enabling a thorough exploration of

their semantic properties within diverse interpretative contexts.

Example Consider the following complex class axiom:

SubClassOf(ObjectIntersectionOf(ObjectSomeValuesFrom(hasPart,Wheel),

ObjectSomeValuesFrom(hasPart,Engine)),Vehicle)

This axiom asserts that any entity that possesses both a wheel and an engine as parts

is considered a subclass of vehicles.
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Tree Representation The tree structure for this axiom, denoted as T (ϕ), rep-

resents the logical construction where both ’ObjectSomeValuesFrom’ constraints must

be satisfied for the subclass relationship. Figure 9.1 visually represents the structure

of T (ϕ):=.

SubClassOf

ObjectIntersectionOf

ObjectSomeValuesFrom

hasPart Wheel

ObjectSomeValuesFrom

hasPart Engine

Vehicle

Figure 9.1: Tree representation of the axiom

Negation of the Axiom The negation of this axiom is expressed by inverting

the subclass relationship, indicating that there exist instances having both a wheel

and an engine that are not vehicles:

¬(SubClassOf(ObjectIntersectionOf(ObjectSomeValuesFrom(hasPart,Wheel),

ObjectSomeValuesFrom(hasPart,Engine)),Vehicle))

→ ObjectIntersectionOf(ObjectIntersectionOf(ObjectSomeValuesFrom(hasPart,Wheel),

ObjectSomeValuesFrom(hasPart,Engine)),ObjectComplementOf(Vehicle))

Negated Tree Representation The tree structure for the negated axiom, de-

noted as T (¬ϕ), is depicted in Figure 9.2. It visually represents the logical structure

after negation, highlighting the addition of the "ObjectComplementOf" node to de-

note entities that are not vehicles:
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ObjectIntersectionOf

ObjectIntersectionOf

ObjectSomeValuesFrom

hasPart Wheel

ObjectSomeValuesFrom

hasPart Engine

ObjectComplementOf

Vehicle

Figure 9.2: Tree representation of the negated axiom

ABox Generation

The ABox (Assertional Box) is the second component of our method, representing a

specific state or configuration of the world under which the logical truths of axioms

can be tested. The generation of an ABox involves creating a set of individuals and

assigning them to various classes and properties derived from a pair of axioms. This

simulated environment allows us to test the implications of axioms under different

logical scenarios.

Algorithm for ABox Generation The ABox is generated through the following

steps, designed to ensure a comprehensive and realistic simulation of possible worlds:

1. Identify Classes and Properties: Extract all unique classes and properties

from the axioms’ tree representations. This is critical as it determines the kinds

of entities and relationships that need to be simulated in the ABox.

2. Create Individuals: Initialize a predefined number of individuals. Each indi-

vidual in the ABox represents a potential entity that could exist in the ontology’s

domain.
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3. Assign Classes Randomly: Each individual is randomly assigned to classes

based on the classes identified from the axioms. This random assignment sim-

ulates the variability and diversity of real-world entities. A condition is placed

such that each individual has at least one class.

4. Assign Properties Randomly: Properties are randomly assigned to indi-

viduals, establishing relationships between them. This step involves not only

selecting which properties an individual possesses but also linking these proper-

ties to other individuals, thereby creating a network of relationships that mirror

complex ontological structures.

5. Axiom Separation: For the method to work, the ABox generation has to

disregard any logical constraints of the axioms, for this everything is done at

random. The only role for the axioms in this step is to provide classes and

properties, nothing else.

Importance of ABox in Semantic Similarity The generated ABox serves as

the testing ground for evaluating axiom satisfiability. We can observing whether

an axiom’s negated form holds true across various individuals and scenarios within

the ABox. The consistency of satisfiability results across multiple ABoxes or with

variations within the same ABox can indicate the semantic similarity between different

axioms, as axioms that consistently yield similar results under diverse conditions are

considered to be semantically closer.

Satisfiability Checking

The satisfiability checking of negated axioms within an ABox is a critical step in

determining the semantic similarity between axioms. This process involves evaluating
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whether the conditions expressed by the negated axioms are met by the individuals

in an ABox. Here, we outline the theoretical foundation and the procedural steps for

satisfiability checking.

Theoretical Foundation Satisfiability checking is rooted in model-theoretic se-

mantics, where the goal is to determine if there exists an interpretation under which

a given logical formula is true making it a model. In the context of our method, an

ABox serves as this interpretation, providing a specific instantiation of individuals,

classes, and properties that represent possible real-world entities and their relation-

ships.

Procedure for Satisfiability Checking The procedure for checking the satisfia-

bility of a negated axiom involves the following steps:

1. Traversal of the ABox: Each individual in the ABox is examined to determine

if it satisfies the conditions specified by the negated axiom. This involves a

logical evaluation of the axiom’s tree structure against the properties and class

memberships of the individual.

2. Evaluation of Logical Conditions: The negated tree of the axiom is tra-

versed, and for each node (representing a logical operator or class/property),

a check is performed to see if the individual meets the criteria specified by

that node. This includes checking class memberships, property relationships,

and the application of logical operators such as conjunctions, disjunctions, and

negations. Algorithm 4 depicts an implementation of the recursive function

responsible for this evaluation.

3. Returning the Result: If we are checking for examples and counter examples

of the axiom, once all individuals have been evaluated, the results are stored in
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a vector. On the other hand if we are checking if an interpretation is a model

or counter model, then if at any point any individual contradicts the negated

axiom, we return that the interpretation is a model of the axiom. And if we

evaluate all the individuals with out running into any contradiction we can say

that the interpretation is a counter model. When checking models and counter

models we store the results from evaluating an axiom against all generated

ABoxes into a vector.

Implications for Semantic Similarity The results of the satisfiability checking

process are then used for calculating the semantic similarity between axioms. If two

axioms consistently result in similar patterns of satisfiability across multiple ABoxes

or within a diverse ABox, it suggests a strong semantic correspondence between them.

Conversely, discrepancies in satisfiability results may indicate semantic divergence.

In the case of examples and counterexamples the vectors containing the results

of evaluating each of the axioms against all individuals in the ABox are compared.

We denote by k the number of instances where an individual is an example or a

counterexample for both axioms at the same time. The similarity between the axioms

then is k divided by the total number of individuals in the ABox n. This procedure

is depicted in Algorithm 5.

In the case where we are checking for models and counter models, the vectors

containing the results of evaluating each of the axioms against all generated ABoxes

are compared. We denote by k the number of instances where an interpretation is a

model or counter model for both axioms at the same time. The similarity between the

axioms then is k divided by the total number of generated ABoxes n. This process is

depicted in Algorithm 6.
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9.3.2 Model

For this method there will be no difference in the creation of the model than in

Chapter 6. We have an axiom based vector space and our axiom similarity matrix

is produced by invoking either one of Algorithm 5 or Algorithm 6 for every pair of

axioms in our set. The set of axioms may be scored in any of the methods mentioned

in the previous Chapters.

Regarding Active Learning and Scalability, Since in this method we want to know

the raw performance of the new similarity measure we will not be incorporating said

techniques.

9.4 Experiment and Result

For this method our experimental goal is simple. We want to evaluate how it

performs in predicting labels for a set of unseen complex axioms in a real-world

Scenario. For this end, we plan to use DBpedia (Section 3.1.1). We provide two sets of

axioms that also include constructs of the type ObjectUnionOf, ObjectIntersectionOf,

ObjectAllValuesFrom and ObjectSomeValuesFrom. The sets contain axioms of both

subClassOf and disjointWith types. We also created a set of atomic subClassof axioms

to test the performance of the method on purely atomic formulas. This is also because

we can not evaluate this method with our last method’s subClassOf set, since its

extremely small with less than 17 positive axioms to test with.

We plan on experimenting with the difference between the model counter model

approximation and the example counterexample approximation. We also plan on

testing the effect of n the number of ABoxes or individuals generated depending on

the case. For more information on n and sampling please refer to Section 4.3.

For all experiments conducted on our new generated sets of axioms, we will be
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using a 70 − 30 train test split paradigm. We use three different machine learning

methods similar to previous chapters, these methods are random forests, support

vector machines and K-nearest neighbor.

9.4.1 Experiment: The effect of sample size

For this experiment we will be using our generated axiom sets. We will call them

Complex − 1, Complex − 2 and Atomic. Complex − 1 is made up of a combination

of atomic and complex subClassOf and disjointWith axioms. The total number of

axioms in this set is 1,465 axioms split into 662 disjointness axioms and 803 sub-

sumption axioms. Complex − 2 is of a similar composition to complex − 1 in terms

of types and constructs, but has 1,102 disjointness axioms and 343 subsumption ax-

ioms. Atomic on the other hand is made up of purely atomic subsumption axioms

numbered 797. We will test the model counter model approach with multiple sam-

pling sizes specifically 10,100,1,000. This experiment will highlight the effect of the

sample size on the accuracy of the similarity produced which shall be evident through

the model prediction score. Table 9.1 presents the results of the experiment.

9.4.2 Experiment: Model Counter Model VS Example Counterexample

For this part of the experiment, we used the same three sets of axioms but this

time calculated the similarities using the example and counterexample approach. For

the complex sets we specified the number of samples (individuals generated in one

ABox) to 1,000 to be able to compare with the model and counter model approach.

For the atomic set we specified 10,000 samples, so we can check the consistency of

how a higher sample size affects the similarity and prediction accuracy. The detailed

results of this experiment are found in Table 9.1.
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Algorithm 4 Check Satisfiability of a Negated Axiom
Require: node (a leaf node or a tree structure of an axiom), individual (and indi-

vidual from an ABox)

Ensure: Returns true if the axiom is satisfiable the individual, else false

1: function IsSatisfiable(node, individual)

2: if node.type is LEAF then

3: return node.class ∈ individual.classes

4: else if node.type is COMPLEMENT then

5: return ¬IsSatisfiable(node.child, individual)

6: else if node.type is INTERSECTION then

7: return IsSatisfiable(node.left, individual)

8: ∧ IsSatisfiable(node.right, individual)

9: else if node.type is UNION then

10: return IsSatisfiable(node.left, individual)

11: ∨ IsSatisfiable(node.right, individual)

12: else if node.type is ALLVALUESFROM then

13: return ∀v ∈ individual.properties[node.property]:

14: IsSatisfiable(node.body, v)

15: else if node.type is SOMEVALUESFROM then

16: return ∃v ∈ individual.properties[node.property]:

17: IsSatisfiable(node.body, v)

18: end if

19: end function
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Algorithm 5 Compare Two Axioms for Examples and Counterexamples
Require: axiom1, axiom2 (negated axioms), A (the ABox)

Ensure: Returns the similarity score between two axioms

1: function CompareAxioms(axiom1, axiom2, A)

2: count← 0

3: for each individual ∈ A do

4: result1← IsSatisfiable(axiom1, individual)

5: result2← IsSatisfiable(axiom2, individual)

6: if result1 == result2 then

7: count← count + 1

8: end if

9: end for

10: similarity ← count/size of A

11: return similarity

12: end function
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Algorithm 6 Compare Two Axioms Across Multiple ABoxes
Require: axiom1, axiom2 (negated axioms), A (set of ABoxes)

Ensure: Returns the average similarity score between two axioms across all ABoxes

1: function CompareAxiomsMultiple(axiom1, axiom2, A)

2: count← 0

3: num_aboxes← size of A

4: for each A ∈ A do

5: result1← True

6: result2← True

7: for each individual ∈ A do

8: if IsSatisfiable(axiom1, individual) then

9: result1← False

10: end if

11: if IsSatisfiable(axiom2, individual) then

12: result2← False

13: end if

14: end for

15: if result1 == result2 then

16: count← count + 1

17: end if

18: end for

19: similarity ← count/size of A

20: end function
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Table 9.1: Comprehensive Experimental Results Across Datasets and Sample Sizes

Dataset Sample Size Method RF (MCC, F1) KNN (MCC, F1) SVM (MCC, F1)

Complex-1 1000 Model and Counter Model (0.58, 0.80) (0.68, 0.84) (0.58, 0.80)

100 Model and Counter Model (0.54, 0.78) (0.55, 0.78) (0.59, 0.80)

10 Model and Counter Model (0.28, 0.65) (0.32, 0.66) NA, 0.50

1000 Example and Counterexample (0.59, 0.82) (0.59, 0.82) (0.60, 0.82)

Complex-2 1000 Model and Counter Model (0.58, 0.80) (0.68, 0.84) (0.58, 0.80)

100 Model and Counter Model (0.32, 0.71) (0.48, 0.77) (0.06, 0.65)

1000 Example and Counterexample (0.55, 0.80) (0.50, 0.78) (0.56, 0.81)

Atomic 1000 Model and Counter Model (0.76, 0.88) (0.77, 0.88) (0.71, 0.84)

10000 Example and Counterexample (0.76, 0.88) (0.80, 0.90) (0.71, 0.84)
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9.5 Discussion

The experimental evaluation of our method using various datasets and experimen-

tal setups offers valuable insights into its performance and applicability in real-world

scenarios. This discussion aims to highlight key findings, draw critical observations,

and underline the best-performing models based on the results presented in Table 9.1.

9.5.1 Impact of Sample Size

The results from the experiments on different sample sizes reveal significant in-

sights into the scalability and sensitivity of the model. For instance, in the Complex−1

dataset, as the sample size increases from 10 to 1,000, there is a noticeable improve-

ment in both MCC and F1 scores across all methods. This trend underscores the

importance of a sufficient sample size in achieving reliable and accurate predictions.

The diminished performance at a sample size of 10 suggests that the model requires a

larger context of individuals to accurately capture and predict the underlying seman-

tic relationships. However, a sample size of 100 seems to offer an acceptable trade off

in terms of accuracy and computation time. Considering it is 10 times faster to com-

pute yet at most 0.04 points off in terms of F1 when comparing the best performing

model of each experiment.

9.5.2 Comparison of Model Approaches

The experiment comparing the model counter model and the example counterex-

ample approaches demonstrates distinct advantages in certain contexts. For both

the Complex − 1 and Complex − 2 datasets, the example and counterexample ap-

proach generally yielded slightly better or comparable results at the highest sample

size. However, the highest model performance was achieved with the model counter
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model approach with with each dataset when the sample size was the same and

the method was KNN. In the case of Atomic the example counterexample approach

achieved higher performance beating the model counter model but with a 10 times

higher number of samples. We believe that the example counterexample is the better

approach. Our reasoning behind this is that even when the sample size is the same

they can not be equated. The model counter model approach is more computation-

ally complex and this is evident in Algorithm 6. For example, for the model counter

model approach if we set the sample number to 100 ABoxes and each ABox contains

10 individuals we would have 1,000 individuals and the computation time would still

be greater than generating one ABox with a sample size of 1,000 individuals for

the example counterexample approach. In this case example counterexample trumps

model counter model when the former’s sample size is higher in both performance

and time, and when the sample sizes are the same performance is comparable and

efficiency is a magnitude better.

9.5.3 Performance Across Datasets

Across different datasets, the method demonstrated a consistent level of efficacy.

The Atomic dataset, consisting solely of atomic subsumption axioms, showed con-

sistently high performance, highlighting the method’s capability in handling sim-

pler logical constructs with high accuracy. Similarly, the more complex datasets,

Complex − 1 and Complex − 2, were executed with satisfactory performance where

F1 score reached as high as 0.84 with no application of any of our feature selection

or active learning techniques. This shows that the similarity measure is robust and

accurate especially when considering the nature and complexity of axioms processed.

We also highlight hat this is a real-world scenario using an ontology with about 760

classes and a training set of about 1,000 labeled axioms.
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9.5.4 Best Performing Models

Notably, the KNN model frequently outperformed the RF and SVM models in

terms of MCC and F1 scores in scenarios with higher sample sizes. We believe this is

because of the nature of the problem, where at its core a distance/similarity measure is

what models the relations. The high performance of the KNN model in the Complex−

1 dataset at a sample size of 1,000, achieving an F1 score of 0.84, is particularly

noteworthy and suggests that KNN might be especially suited for datasets with mixed

axiom types when optimized sample sizes are used.

9.6 Conclusion

This chapter has presented a novel method for computing semantic similarity be-

tween description logic axioms using a model-theoretic approach. Our experiments

across various datasets demonstrate the method’s robustness and effectiveness, par-

ticularly when coupled with machine learning techniques for truth label prediction.

The empirical results underscore the significance of sample size and the choice of

similarity measure approach, highlighting the superior performance of the example

and counterexample method in most scenarios. Particularly, the KNN model showed

exceptional performance, suggesting that it is well-suited for semantic similarity tasks

within complex axiom sets due to its inherent reliance on distance metrics which align

well with our semantic similarity calculations.

Further research could explore optimizing the computational efficiency of the

model counter model approach or refining the example and counterexample method

to reduce sample size requirements without compromising accuracy. Ultimately, the

integration of model-theoretic semantics with machine learning opens new avenues for

advancing automated reasoning and knowledge representation in ontology-driven sys-
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tems, promising significant improvements in semantic web technologies and intelligent

information retrieval.
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Chapter 10

CONCLUSION

10.1 Contributions

Advancements in the evaluation phase of candidate axioms have long been limited

by computational demands and the inefficiency of existing methods. In this thesis, we

have developed a novel predictive model that utilizes heuristic-based candidates (con-

structed and scored) to revolutionize the evaluation phase of candidate axioms. By

significantly reducing the computational burden, this model allows for more scalable

and practical applications in real-world scenarios. This contribution is thoroughly

discussed and experimentally validated in Chapters 5 and 6.

Machine learning and symbolic reasoning are two separate complex yet very com-

patible disciplines with distinct methods and applications. This thesis bridges this

divide by integrating machine learning techniques with traditional symbolic reason-

ing. This integration aims to drastically increase the efficiency of logical formula

evaluations, making it a cornerstone of modern automated reasoning systems. The

detailed method and the impact of this integration are explored in Chapters 4 and 9.

The scalability of evaluation methods including traditional reasoners and machine

learning models in the context of ontology evaluations has been a persistent chal-

lenge. This thesis introduces scalable machine learning models that predict the score

and acceptability of candidate OWL class axioms using a vector-space dimension-

reduced approach. These models are designed to handle large datasets with little to

no compromise in performance, addressing key scalability issues prevalent in previ-

ous approaches. The development and effectiveness of these models are extensively
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covered in Chapter 7.

Active learning techniques have been notable in refining machine learning models,

yet their application in semantic web technologies remains under explored. This thesis

implements active learning strategies using extended semantic similarity measures

to complex class axioms. This approach significantly enhances model efficiency by

selectively querying instances, which is a main concern for managing larger datasets

with limited labeled data. The application and benefits of active learning in this

context are detailed in Chapter 8.

In the domain of ontology representation and reasoning, accurately determining

semantic similarity between axiomatic formulas and predicting their truth labels is

essential. This thesis presents a model-theoretic approach that utilizes tree struc-

tures to represent complex axioms and employs methods reminiscent of the tableaux

method to evaluate their co-satisfiability across various interpretations. With this

approach, we contribute a semantic similarity between axioms that is a product of

said approach. Leveraging this similarity, a machine learning model is introduced to

predict the truth labels of unseen formulas. This innovative blending of traditional

logic-based reasoning with advanced machine learning techniques provides a novel

perspective on knowledge representation and automated reasoning. The method’s

effectiveness in both semantic similarity computation and truth label prediction is

empirically demonstrated, offering a significant advancement in the field. These con-

tributions are thoroughly discussed and validated in Chapter 9.

10.2 Perspectives

The methods developed in this thesis open several avenues for future research in

the field of knowledge representation and automated reasoning. The integration of

model-theoretic semantics with machine learning, as detailed in this thesis, lays a
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robust foundation for the development of more sophisticated techniques that can fur-

ther enhance the precision and scalability of semantic similarity assessments and truth

label predictions. Future research could explore the application of these methods in

more complex scenarios, including dynamic ontologies where axioms change over time,

thus requiring adaptive models that can respond to these changes efficiently.

Additionally, the methods in this thesis were tested on class axioms, the similarity

computation process in all the models developed guarantees their applicability and

extension to property axioms making it the obvious next step to take in future re-

search. Also, the model-theoretic semantics based similarity allows the extension of

the method to include constructs other than quantifiers such as number restrictions.

Furthermore, the empirical success of the methods introduced invites the explo-

ration of their application across different domains of knowledge, potentially trans-

forming how knowledge is structured and accessed across various industries. From

healthcare to finance, the principles outlined could be adapted to develop domain-

specific models that leverage ontology-based reasoning for more accurate data analysis

and decision-making processes.

Lastly, the integration of these methods with existing infrastructures presents an

exciting challenge. Implementing these advanced reasoning techniques within frame-

works that require logical formula evaluation could lead to significant improvements in

their efficiency and effectiveness, opening up new possibilities for real-time, informed

decision-making. These potential developments represent just the tip of the iceberg

in terms of the practical applications of this thesis’ findings and highlight the need

for ongoing research and collaboration across academic and industry lines.
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