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Abstract (English)

Light-harvesting (LH) molecular antennae are known for their ability to absorb light in the UV-visible

domain via their chromophores and to transfer the associated excitation energy down to an energy trap

within the system to be used for different purposes (photocatalysis, enhanced light emission…).

In particular, the strong LH properties of poly(phenylene ethynylene) (PPE) dendrimers have been

attributed to a unidirectional excitation-energy gradient along a molecular tree from the shortest branches

(leaves: the chromophores) down to the longest branches (trunk: the energy trap). However, setting up

a comprehensive atomistic simulation protocol of excitation-energy transfer (EET) in such 𝜋-conjugated

macromolecules remains challenging to date, especially because of the large number of degrees freedom

and the presence of many conical intersections responsible for nontrivial internal conversion among the

manifold of electronic excited states.

The architectures of both primary chromophores and further units for EET are all based on the same

chemical groups (benzenes and acetylenes), only with different substitution schemes and lengths. In this

thesis, we have carried out various theoretical chemistry studies (regarding structure and dynamics) on

several PPE building blocks so as to rationalize the nature and efficiency of the ultrafast dynamics EET

process via a nonadiabatic chemical perspective.

First, we analyzed the properties of the electronic excited states for both isolated PPE-oligomers and

the first generations of PPE-dendrimers using linear-response time-dependent density functional theory.

After demonstrating the locally-excited character of electronic excited states, we explored their associated

potential energy surfaces (PESs) and characterized their critical points (minima, transition states, and

minimum-energy conical intersections).

Some particular attention was given to the optimization and characterization of the conical intersections,

especially as regards the branching-space vectors and their decompositions on the basis of the normal

modes of vibration of the studied molecules. Together with these characterizations, we parametrized

vibronic-coupling Hamiltonian models consistent with a so-called diabatization by ansatz of the coupled

electronic excited states. From them, we could run wavepacket quantum dynamics simulations based on
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the multi-configuration time-dependent Hartree (MCTDH) formalism so as to simulate EET from first

principles.

Our simulations confirmed the utmost importance of the acetylenic stretching modes for EET to occur.

They also highlighted the relevance of the stretching and rock-bending quinoidal modes of the connect-

ing nodes (twofold or threefold meta-substituted phenylenes) within the dendritic graph. Comparisons

between symmetrical and asymmetrical units illustrated the role of the primary structure (symmetrical

meta-substitution) of the chromophore for efficient light absorption and/or EET. In particular, we inves-

tigated the steady-state spectroscopy of the PPE-chromophore itself, and its unusual emission spectrum

observed experimentally. Here, we faced the case of strongly nonadiabatically coupled electronic excited

states in the Franck-Condon region, for which the Born-Oppenheimer approximation breaks down. We

calculated the vibronic eigenstates in the excited-state manifold, having contributions within two bright

electronic excited states, and evaluated the contributions to both absorption and emission spectra. The

results of our modelling suggest that the observed emissive contribution is the one that has gone through

a transfer from one electronic state to another.

Finally, we explored bottom-up approaches for modelling the coupled PESs of larger PPE-dendrimer

units and simulating the EET process occuring through them. Our strategy made use of the knowledge of

the isolated branches and of how their communication can be viewed as a weak coupling from one branch

to another.
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Abstract (Français)

Les antennes collectrices de lumière sont des molécules capables d’absorber la lumière du domaine UV-

visible et de transférer l’énergie associée à cette excitation à une partie de la molécule où elle sera utilisée

à des fins de photocatalyse ou d’émission augmentée, par exemple.

Les dendrimères de poly(phénylène éthynylène) (PPE) sont connus pour leur propriété de collecte de

lumière, qui est attribuée à un gradient unidirectionnel d’énergie d’excitation le long du dendrimère : depuis

les branches courtes (les feuilles, chromophores) vers les branches longues (le tronc, le piège énergétique).

Cependant, la simulation atomistique exhaustive du phénomène de transfert d’énergie d’excitation (EET)

dans de telles macromolécules 𝜋-conjuguées reste un challenge à ce jour, à cause du nombre de degrés

de liberté ainsi que de la présence d’intersections coniques (CIs) responsables des nombreuses conversions

internes entre les états électroniques excités du dendrimère.

La structure des chromophores primaires ainsi que des premières unités d’EET est basée sur les mêmes

groupes d’atomes (benzènes et acétylènes), avec des schémas de substitution et des tailles différentes.

Dans cette thèse, nous avons étudié théoriquement la structure et l’évolution dans le temps de plusieurs

briques élémentaires de PPE, de façon à rationaliser la nature et l’efficacité de ce phénomène ultrarapide

qu’est l’EET, en gardant une interprétation non-adiabatique et chimique du phénomène.

Dans un premier temps, nous avons caractérisé les états électroniques excités de différents oligomères

de PPE, en utilisant la théorie de la fonctionnelle de la densité dépendante du temps. Après avoir démontré

le caractère local des excitations électroniques, nous avons exploré les surfaces d’énergie potentielle (PESs)

des états excités et caractérisé leurs points critiques (minima, états de transition et CIs d’énergie minimale).

Une attention particulière a été donnée à l’optimisation et à la caractérisation des CIs, en particulier pour

ce qui est des vecteurs de l’espace de branchement et de leur décomposition dans la base des modes normaux

des molécules étudiées. Parallèlement, nous avons paramétrisé des modèles de couplage vibronique pour

les Hamiltoniens moléculaires de PPEs, en lien avec une diabatisation par ansatz des états électroniques

couplés. Nous avons ensuite utilisé ces modèles pour étudier l’évolution temporelle de paquets d’ondes

moléculaires, à l’aide du formalisme de Hartree multi-configurationnel dépendant du temps (MCTDH)

pour simuler l’EET.
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Nos simulations ont confirmé l’importance première des modes d’élongation acétyléniques pour l’EET.

Nous avons également souligné la pertinence des modes d’élongation et de bascule quinoidaux pour les

nœuds (benzènes di- ou tri-meta-substitués) du dendrimère. Une comparaison entre les unités symétrique et

asymétrique de transfert a également illustré le rôle de la structure symétrique du chromophore primaire pour

l’efficacité de l’absorption de lumière par le dendrimère. En particulier, nous avons étudié la spectroscopie

stationnaire du chromophore, notamment pour comprendre son spectre d’émission non-usuel. Notre cas est

celui d’états électroniques excités fortement couplés dans la région de Franck-Condon, où l’approximation de

Born-Oppenheimer n’est pas valide. Nous avons calculé les états vibroniques dans les états excités et montré

qu’ils ont des contributions vibrationnelles non-négligeables dans deux états électroniques optiquement

actifs (donc potentiellement émissifs). Nos résultats suggèrent que la contribution d’émission observée

expérimentalement est celle qui a subi un transfert d’un état électronique à un autre.

Finalement, nous avons exploré une approche ascendante de modélisation des PESs de dendrimères de

PPE et de simulation de l’EET au sein de telles structures. Notre stratégie est basée sur la connaissance

des branches isolées de PPE et du fait qu’elles soient faiblement couplées.
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Chapter 1
General Introduction

Light-matter interactions are ubiquitous in our daily life: the mechanism of vision, the photosynthesis of

plants, the electroluminescence behind flat screens… For each of these light-matter interactions, light induces

transitions between molecular states of matter. Both these transitions and molecular states are central in

the domains of photophysics (modifying the properties of matter via an excitation) or photochemistry

(making chemical reactions via an excitation).

Among all the applications of light-matter interactions, we are here interested in the ability of some

molecular edifices to harvest light, on which relies for instance the phenomenon of photosynthesis. In plant

photosynthesis, chlorophyll molecules absorb natural light (continuous spectrum from the sun) and transfer

the associated energy to a reaction center, where it is used to reduce CO2 (through a non trivial cycle of

chemical reactions, the Calvin cycle). We shall now define light-harvesting antennae, which are molecular

edifices able to absorb light and to transfer the associated excitation energy either to a different part of the

antenna itself or to other molecules for a specific purpose. In the case of natural light-harvesting antennae,

this purpose is in-vivo catalysis for photosynthesis-like processes, occuring at a so-called reaction center.

Among the most studied natural edifices capable of such excitation-energy transfer (EET), we mention

the light-harvesting complexes in the purple bacteria (with high-symmetry ring antennae) [1], in the green

sulfur bacteria (without apparent symmetry in the antenna) [2] or in the plant cryptochromes [3]. In the

case of artificial light-harvesting antennae, the use of the excitation energy can vary, for photocatalysis or

for enhanced emission of light from a fluorophore. In either case, light-harvesting antennae must ensure

an efficient and ultrafast EET, from the absorption of light to the use of the excitation energy by the

photosyntethic complex. The ability to absorb light mostly depends on the so-called chromophore groups

of the antennae. The efficiency of EET is measured by the ratio (or quantum yield) of useful work (or

energy) at the reaction center (depending on the application of the antenna) over the energy associated

to the photons absorbed by the chromophores. The closer to one is the quantum yield, the better is the

antenna as regards its application for EET. On the other hand, the ability to efficiently harvest light for
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Chapter 1. General Introduction

these antennae relies on the ultrafast character for EET, which occurs on the subpicosecond (10−12 s)

timescale in general [4].

The appeal for inspiring artificial light-harvesting antennae from the ones that exist in nature has been

productive for decades, with creative synthetic molecular complexes exhibiting efficient light absorption and

EET [5,6]. On the other hand, the fundamental description of EET within both natural and new artificial

light-harvesting antennae remains a challenge up to date.

1.1 Mechanisms of excitation-energy transfer (EET)

The nature of EET is not consensually described theoretically among all the possible applications it has.

First, EET is defined as an energy transfer from a donor, assumed initially in one of its excited states, D*

to an acceptor, assumed initially in its ground state A

D∗ + A
EET
−−→ D + A∗ (1.1)

which can be studied as any chemical reaction. The first kinetics studies of EET in solids and aggregates

(ensemble of molecules capable of EET) were led by Förster and Dexter, which proposed two mechanisms

schematized in fig. 1.1, a) and b), respectively [7–9].

D*

A

D

A*

a) EET in solids and aggregates
Förster-like

D*

A

D

A*

b) EET in solids and aggregates
Dexter-like

A*

D*

A*

D*

d) Intramolecular EET, 
"non-radiative" transitions

c) Intramolecular EET, 
"radiative" transitions

e) Intramolecular EET, 
"radiative" transitions

f) Intramolecular EET, 
"non-radiative" transitions

"weak" excitonic
coupling

"strong" excitonic
coupling

S₀

S₁

S₂

S₀

S₁

S₂

S₀

S₀

Figure 1.1: Schematic representations of the Förster-like (through-space excitonic coupling) and Dexter-

like (through-bond excitonic coupling) mechanism in a) and b), respectively. Associated interpretations for

intramolecular excitonic sites are given in c) and d), where the red dot is the initial excited donor state.

Finally, the nonadiabatic and chemical interpretation of intramolecular EET via the use of excited-state

potential energy surfaces is illustrated in e) and f).

The ground and excited states of the donor and acceptor are schematized by their highest occupied

and lowest unoccupied molecular orbitals (HOMO, LUMO), and we call excitons the electron-hole pairs
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1.1. Mechanisms of excitation-energy transfer (EET)

responsible for the excited donor or excited acceptor. The two mechanisms differ from the way this

exciton (quasiparticle) is transferred; in particular, the excitonic coupling strength is different. In the

Förster mechanism, the transfer occurs via a simultaneous de-excitation of the donor and excitation of the

acceptor. In this limit of weak excitonic coupling, the transfer is indirect between the donor and acceptor

excited states and occurs via simultaneous radiative electronic transitions (absorption and emission). As

such, the kinetics depends on the orientation of the electronic transition dipole moments of the donor

and the acceptor. On the other hand, the Dexter mechanism involves a transfer of electron within the

excited states of the donor and the acceptor. The excitonic coulping is too strong to be considered as a

perturbation, and the transfer kinetics now depends, to some extent, on the overlap between the frontier

orbitals (highest occupied and lowest unoccupied) of the donor and the acceptor.

The Förster and Dexter theories give different rates 𝑘EET for the EET process. Both rates depend, to

some extent, on the overlap between the fluorescence spectrum of the donor and the absorption spectrum of

the acceptor. The main difference is that the Dexter rate decreases exponentially with the donor-acceptor

distance 𝑅DA, and is proportional to donor-acceptor frontier orbitals interactions, while the Förster rate

decreases with 𝑅−6
DA. These differences discriminates the two mechanisms in a long-range/through-space

(Förster) mechanism and short-range/through-bond (Dexter) mechanism.

Origin of the excitonic coupling, choice of an excitonic Hamiltonian

The origin of excitonic coupling in the Förster-Dexter models of EET kinetics was criticized, notably in

the case of intramolecular EET (covalently bonded donor and acceptor), when applied to natural light-

harvesting antennae [10]. In particular, the short-range mechanism was re-investigated by Harcourt and

Scholes in the view of ab initio quantum chemistry (electronic structure calculations) [11–13]. The role

of Coulombic and exchange integrals, and more generally the nature of the excitonic states for EET was

rephrased in terms of local excitation (LE) and charge transfer (CT) states.

In the cases of LE states, the Frenkel excitonic Hamiltonian model,

𝐻 = ∑
𝑛

𝜖𝑛 |𝑛⟩ ⟨𝑛| + ∑
𝑛<𝑚

𝐽𝑛𝑚 (|𝑛⟩ ⟨𝑚| + |𝑚⟩ ⟨𝑛|) , (1.2)

was perhaps established as a more rigorous and explicit starting point for understanding the EET among

ensembles of molecules [14, 15]. Similarly to the previous models, it relies on the definition of excitons,

here electronic LE excited states |𝑛⟩ for the site 𝑛 of the molecular aggregate. The excitation energy of

a site is 𝜖𝑛 and the excitonic coupling, which eventually induces excitation-energy transfers, is 𝐽𝑛𝑚, see

fig. 1.1, c and d). In essence, these schemes are reminiscent of a Jablonski diagram where the excitonic

states are the electronic states, and the excitonic coupling is responsible for internal conversions.

The interaction between the excitonic sites and their complex environment (solvent, biological medium,

etc.) was first taken into account via a coupling between the electronic excited states and a harmonic

bath (the complex environment to the excitons). In the simple case of one donor and one acceptor, the
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Chapter 1. General Introduction

“bathed” Frenkel Hamiltonian model is reminiscent of the spin-boson model for a two-level system (excited

donor + excited acceptor)

𝐻S = 𝐻D |D⟩ ⟨D| + 𝐻A |A⟩ ⟨A| + 𝐻AD (|A⟩ ⟨D| + |D⟩ ⟨A|) (1.3)

coupled to a harmonic bath

𝐻B =
𝑁

∑
𝑖

ℏ𝜔𝑖
2

( ̂𝑝2
𝑖 + ̂𝑥2

𝑖 ) (|D⟩ ⟨D| + |A⟩ ⟨A|) (1.4)

of 𝑁 oscillators with frequencies 𝜔𝑖. In spin-boson Hamiltonian models, the coupling between the system

(the excitons) and the bath (the vibrations) is linear with the position of the modes and diagonal with

respect to the excitons (it does not couple directly two excitons)

𝐻SB =
𝑁

∑
𝑖

𝜅(D)
𝑖 ̂𝑥𝑖 |D⟩ ⟨D| + 𝜅(A)

𝑖 ̂𝑥𝑖 |A⟩ ⟨A| . (1.5)

In other words, the excitons (LE excited states of the donor and the acceptor) can be interpreted as an

ensemble of spins (two-level systems, donor and acceptor excited states) which are placed in a bath of

bosons (vibrations in molecules, phonons in solids). Both Frenkel and spin-boson Hamiltonian models

are very well suited for the study of quantum dynamics in open systems which include energy dissipation

with an environment (here the harmonic bath). For instance, the time evolution of the populations of the

different electronic states can be calculated using the Redfield equation [4,16]. Other strategies, based on

approximate solutions of the time-dependent Schrödinger equation have also been used for evaluating the

kinetics of electron transfer and energy transfer [3, 17,18].

From excitonic states to nonadiabatically coupled electronic states

In these first attempts of modelling of EET with the Frenkel Hamiltonian model or of D-A systems with

a spin-boson model, the excitonic coupling (the inter-state coupling) is constant. In particular, there

is no explicit coupling between the electronic states and the nuclear coordinates of the molecules. For

intramolecular processes, the absence of explicit electron-nuclei coupling boils down to the assumption that

the EET is mostly due to the interaction with the environment, through tuning terms (linear parameters

in the system-bath interaction) and/or through intramolecular vibrational energy redistribution (quadratic,

harmonic terms in the bath).

From these approximations, a natural extension is the use of a variable excitonic coupling. Two strategies

were proposed: either modify the Harcourt theory to allow an ad hoc variation of the excitonic coupling [19]

or modelling the gradient of the excitonic coupling with respect to some nuclear displacements. The

latter strategy is directly linked to the vibronic coupling Hamiltonian models, where the off-diagonal terms

explicitly depend on displacements associated to the nuclear displacements, originally proposed by Köppel

and co-workers [20]. Historically, these models were used for understanding nonadiabatic effects and

photoinduced phenomena in systems where conical intersections in the excited states are ubiquitous [21–23].
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1.2. Poly(phenylene ethynylene) light-harvesting dendrimers

Using a vibronic coupling model thus provides a nonadiabatic and chemical interpretation of intramolec-

ular EET. Herein, we aim at describing the EET process between a donor and an acceptor as a photoinduced

chemical reaction, with an initial excitation (on the donor states) and with subsequent internal conversions

toward a specific final state (possibly, the acceptor state). To do so, we have to know explicitly the potential

energy surfaces (PESs) of the light-harvesting system (with the donor and the acceptor), see fig. 1.1, e

and f). More importantly, we have to assess the form and the magnitude of the nonadiabatic couplings,

which we identify, in an intramolecular regime, to the excitonic couplings responsible for the transfer of

both population and energy from the donor to the acceptor, here with a diabatic perspective.

From the first theory of Förster to the vibronic coupling Hamiltonian models, a wide variety of mecha-

nisms has been proposed for both identifying the origin of excitonic coupling and evaluating the kinetics of

excitation-energy transfer. This variety also reflects the plurality of light-harvesting systems, both natural

and artificial, exhibiting efficient and ultrafast (subpicosecond) excitation-energy transfer. We now present

one of the most promising class of artificial light-harvesting antennae, the dendrimers of poly(phenylene

ethynylenes).

1.2 Poly(phenylene ethynylene) light-harvesting dendrimers

Poly(phenylene ethynylene) dendrimers (PPE-dendrimers) are macromolecular dendritic systems composed

of benzenes and acetylenes with different substitution schemes and lengths. They consist in molecular

trees where the leaves are the functionalized diphenylacetylene (DPA) fragments at the periphery of the

molecules, see fig. 1.2.

We mention both compact and extended PPE-dendrimers, with equal lengths for all branches or in-

creasing lengths from the periphery to the core, see fig. 1.2 a) and b), respectively. The structure of

PPE-dendrimers is very similar to Bethe (or Cayley) mathematical dendritic graphs. The two sites of the

dendritic graph are benzenes and acetylenes. We define the branches of the graph as linear poly-para-

substituted benzenes and the nodes as di- or tri-meta-substituted benzenes (see fig. 1.3).

In PPE-dendrimers, each node is a tri-meta-substituted phenylene, connecting the leaves (benzenes at

the periphery) to the rest of the dendrimer, up to the core. However, one could imagine an incomplete

dendrimer, with simply di-meta-substituted nodes. To retrieve the analogy with photosynthetic complexes,

the nodes (with the leaves, or chromophores) and branches form the light-harvesting complexes, while the

core is the reaction center for the bacteria or the plant.

Historical synthesis and design of the photophysical properties of PPE-dendrimers

The first synthetic routes for PPE-dendrimers (both compact and extended), proposed by Xu and Moore

[24,25], are responsible for the dendritic nature, and allow one to control the form and the generation (or

size) of the final dendrimer.
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Energy trap

Absorption of light

Excitation-energy transfer

b) Example of an extended PPE-dendrimera) Example of a compact PPE-dendrimer

Figure 1.2: Examples of a) compact PPE-dendrimer of diphenylacetylene: all the branches have the same

lengths (only DPA unit) and b) extended PPE-dendrimer of diphenylacetylene: from the periphery to the

core, the branches are longer (DPA at the periphery and increasingly para-substituted DPA units to the

core). This specific generation of PPE-dendrimer is called the nano-star. For the extended PPE-dendrimer,

the simplified mechanism of light absorption (red arrows on the chromophores) and excitation-energy

transfer (green arrows), funnelled to the core, is given. For both molecules, the energy trap is here a

perylene unit (well-known fluorophore).

Two sites: benzenes and acetylenes Di-meta-substituted 
nodes

Tri-meta-substituted 
nodes

Possibly with branches of 
different lengths

Para-substituted 
branches

Figure 1.3: Definition of the sites, branches, and nodes for the description of the structure of PPE-

dendrimers as Bethe dendritic graphs.

The compact dendrimers (fig. 1.2, panel a)), composed only of branches of the same lengths, are able

to absorb light with a large number of equivalent chromophores (here DPA units). In the view of the

Frenkel Hamiltonian model, a large number of excitonic states would be defined, each associated to one

of the DPA units on the graph [26, 27]. The excitation-energy transfer is thus entropically favored, as a

photoinduced exciton has no reason to stay localized and will explore the graph (statistically).

Among the extended dendrimers synthesized by Moore, we focus in this work on the infamous example of

the so-called nano-star (fig. 1.2, panel b). Its design is simple: rather than using equivalent chromophores in

the entire dendrimer, the idea is to separate energetically the excitons by varying the length of the branches.

The longer is the branch, the longer is the conjugation and thus the lower is the excitonic energy [28–31].

A unidirectional energy gradient is thus obtained, from the periphery (leaves) to the core (energy trap) of
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1.2. Poly(phenylene ethynylene) light-harvesting dendrimers

the dendrimer, and the excitation-energy transfer is now energetically favored. We shall now discuss the

properties and characterization of extended PPE-dendrimers only.

Joint theoretical and experimental efforts on understanding the extended dendrimer

The first estimations of the quantum yield of the PPE-dendrimers, in particular the nano-star, were pro-

posed by Devadoss, Shortreed, and co-workers [32–34], with near-to-one quantum yield from excitations

at 310 nm, 353 nm, and 372 nm (absorption of light by the DPA unit, the 3-ring branch, and the 4-ring

branch). They also estimated that EET was at least two orders of magnitude faster for the extended PPE-

dendrimers than for the compact PPE-dendrimers. The local character of these excitations was evidenced

experimentally from steady-state spectroscopy [35]. Later, Palma and co-workers proposed the first joint

theoretical and experimental study of the nano-star [36]. They estimated the dependence of the absorption

spectrum on the temperature and in particular on the conformations of the nano-star.

The nature of the excitonic coupling between the previously stated local excitations was investigated

by Martinez and co-workers [19, 37]. The electronic excitations of PPE-dendrimers were also studied by

Huang and co-workers, who compared the results obtained from different electronic structure theories and

discussed the excitonic states in the view of locally-excited (LE) and charge transfer (CT) states [38].

Finally, the vibronic spectra of the PPE-dendrimer building blocks were obtained with sufficient resolution

to assess the optically active normal modes for transitions toward the LE excited states [39, 40]. This

was further rationalized by Ho and co-workers for the para-substituted branches and for the smaller di-

meta-substituted PPE [41, 42]. In particular, they unveiled a pseudofragmentation scheme for electronic

excitations and vibrational modes, based on a pair of almost degenerate electronic states. On the other

hand, the excited-state dynamics of DPA itself was studied. Long-lived excited states leading to cis-

trans isomerization of DPA units in PPE-oligomers were characterized, both experimentally [43–45] and

theoretically [46, 47]. In a recent work of Breuil and co-workers, these “dark” states were identified as a

possible alternative for the EET to occur [48].

Up to now, the mentioned studies of PPE-dendrimers are mostly “stationary”, that is they rely on

experimental steady-state spectroscopy or electronic structure calculations for given geometries.

Some playground for nonadiabatic molecular dynamics

Finally, the various experimental studies on PPE-dendrimers concluded on the prominent role of the localized

excitations in the molecule, which was comforted by different theoretical approaches. The mechanism of

the excitation-energy transfer exhibited by the nano-star was yet difficult to assess, in particular because no

direct experiments nor direct atomistic simulations were available to probe EET. In particular, the question

about the through-space (Förster-like) or through-bond (Dexter-like) character of the transfer was not

clearly answered [19,37,49].
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In 2009, Fernandez-Alberti and co-workers proposed the first atomistic simulations of EET in a PPE-

oligomer (the smallest asymmetrical meta-substituted PPE), via direct nonadiabatic molecular dynamics

[50]. They extended their strategy to other extended PPE-oligomers and concluded on several aspects of

the EET mechanism [51–54]. First, the role of the excitonic coupling can be understood as a consequence

of the presence of conical intersections between the electronic excited states. The funneling of excitation-

energy transfer through the PPE-dendrimers was attributed to its molecular vibrations, in particular the

acetylenic elongations, which connect together the locally-excited electronic states, and thus favor the

through-bond mechanism. Overall, their simulations estimate that the intramolecular EET in PPEs occurs

quite efficiently (near 100% of transfer from the initially photoexcited state to the higher-energy electronic

state) and in an ultrafast manner (under 100 fs).

The PPE-oligomers were finally found to be quite interesting playgrounds for the study of nonadiabatic

quantum dynamics methods. For instance, it has been used to study the reliability of open quantum system

dynamics [18,55] or of nonadiabatic excited-state molecular dynamics [56–61].

1.3 A nonadiabatic and chemical perspective for the study of dendrimers

As we have seen, the PPE-dendrimers have been extensively studied both experimentally and theoretically

for their EET abilities. However, the very nature and mechanisms of the photoinduced EET occuring within

the dendrimer and its building blocks are still open to debate. In particular, the explicit simulations in time

of the photoinduced EET has only been made possible, over the last decade, via direct molecular dynamics

simulations.
a) Frenkel excitons 
Excitation energies
Constant excitonic couplings

S₀

Excitonic 
coupling

c) Electronic states 
Potential energy surfaces 
Nonadiabatic couplings

S₀

S₁

S₂

b) Frenkel excitons 
Excitation energies (+ harmonic bath)
Constant excitonic couplings

S₀

Harmonic bath

Harmonic bath

bath

Figure 1.4: Strategies for modelling excitation-energy transfer (EET) occuring from an initially excited

donor (red dot). a) Frenkel exciton model, with constant excitation energies and excitonic couplings. b)

Same with an additional harmonic bath for the vibrations of either of the excitons. c) Interpretation of

EET throught the lens of potential energy surfaces for the electronic excited states

The objective of this thesis is the modelling and simulation of excitation-energy transfer in PPE-

oligomers, the building-blocks of the PPE-dendrimers and the nano-star. It is intended as a starting point

for bridging the first theoretical developments using the Frenkel Hamiltonian model for PPE-dendrimers
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(fig. 1.4 panels a) and b)) with the direct dynamics simulations of PPE-oligomers.

To do so, we first characterize the electronic excitations in the PPE-oligomers and the nonadiabatic

couplings between them, by extensive vibrational analysis of the ab initio (from electronic structure theory)

potential energy surfaces (PESs) (fig. 1.4 panel c)). Then, we propose models of PESs that account for

the most important features of the ab initio PESs and use them to simulate as explicitly as possible the

photoinduced phenomena of interest in a selection of PPE-oligomers, see fig. 1.5. The characterization of

nonadiabatic couplings and the modelling of PESs are intrinsically linked in this work, as we make use of

Hamiltonian models to diabatize the electronic states and to take into account their coupling.

nano-star 
chromophore

nano-star 
first unit 
for transfer 

nano-star 
isolated branch

Figure 1.5: Structure of the simplified nano-star studied in this work. The nano-star chromophore is

highlighted, along with two examples of the nano-star units for transfer, the first one at the periphery and

the ”full” extended branch from the periphery to the core.

This manuscript is organized in three parts. In part I, we present the background for running nona-

diabatic quantum dynamics calculations for systems such as PPE-oligomers. We define the molecular

Hamiltonian and the nuclear motions (chapter 2) and give the equations of motion for the propagation

of nuclear wavepackets within the multiconfiguration time-dependent Hartree formalism (chapter 3). A

particular attention is given to the description of electronic degeneracy, which is ubiquitous in this work.

Theoretical insights and computational details about the electronic structure calculations are also given

(chapter 4).

In part II, we use this theoretical framework to study both steady-state spectroscopy features and real-

time evolutions of photo-excited PPE-oligomers. Our focus is first on the chromophore, the symmetrically

meta-substituted PPE, for which we investigate an unusual fluoresence spectrum (chapter 5). In particular,

we raise the question of the difficult prediction of fluorescence experiments for molecules with strongly

nonadiabatically coupled electronic states near the Franck-Condon region. Then, we study the smallest

PPE-oligomers capable of energy transfer, and apply our theoretical framework to the estimation of the
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quantum yield, the timescale and the mechanism of EET (chapters 6 and 7). Our analyses allow us to

identify the most prominent modes for EET to occur and to describe how the excess energy from the initial

excitation is distributed in the molecular vibrations.

Finally, in part III, we give the outlook for the present work, with our current developments as regards

the description of EET in an entire PPE-dendrimer. First, we discuss the influence of local excitations

on the EET, in particular in the case of symmetrically meta-substituted PPE-oligomers (chapter 8). We

also raise the question of the physical meaning of electronic-state coherences for initially pure states or

superpositions of states. Then, we discuss the feasibility of a bottom-up strategy to model large PPE-

oligomers, eventually dendrimers (chapter 9). This strategy is intermediate between the Frenkel-exciton

Hamiltonian and the linear vibronic coupling Hamiltonian models, with a definition of the Frenkel-exciton

on the isolated fragments of the nano-star, and an ab initio estimation of the excitonic coupling.
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Chapitre 1
Introduction Générale

Les interactions lumière-matière sont omniprésentes dans notre vie de tous les jours : pour notre vision,

dans la photosynthèse des plantes, dans les écrans plats via l’électroluminescence… Pour chacune de ces

interactions lumière-matière, la lumière induit des transitions entre des états moléculaires de la matière. Ces

états moléculaires et ces transitions sont les objets d’étude centraux dans le domaine de la photophysique

(modifier les propriétés de la matière via une excitation) ou de la photochimie (provoquer et contrôler des

réactions chimiques via une excitation).

Parmi toutes les applications des interactions lumière-matière, nous nous intéressons ici à la capacité

de certaines molécules à collecter la lumière, abilité sur laquelle repose notamment le phénomène de la

photosyntèse. Pendant la photosynthèse, les molécules de chlorophylle absorbent la lumière naturelle (le

spectre continu émis par le soleil) et transfèrent l’énergie associée jusqu’à un centre réactionnel, où cette

énergie sera utilisée pour réduire le CO2 de l’atmosphère (au travers d’un cycle non trivial de réactions

chimiques, le cycle de Calvin). Nous définissons maintenant les antennes collectrices de lumière comme

des édifices moléculaires capables d’absorber la lumière et de transférer l’énergie d’excitation associée soit

à une autre partie de l’antenne elle-même, soit à d’autres molécules pour un usage spécifique. Dans

le cas d’antennes collectrices de lumière naturelles, cet usage est la catalyse in-vivo pour les processus

semblables à la photosynthèse, qui se déroulent dans le centre réactionnel de ces systèmes. Parmi les

édifices naturels capables d’un tel transfert d’énergie d’excitation (EET) les plus étudiés, nous citons les

complexes de collecte de lumière dans la bactérie pourpre [1], dans la bactérie chlorobiota [2] ou dans

les cryptochromes [3]. Dans le cas d’antennes collectrices de lumière artificielles, l’utilisation de l’énergie

collectée peut varier, par example pour faire de la photocatalyse ou pour créer une intensification d’émission

d’un fluorophore. Dans tous les cas, les antennes collectrices de lumière doivent assurer un EET efficace et

ultra-rapide, depuis l’absorption de la lumière jusqu’à l’utilisation de l’énergie d’excitation par le complexe

photosynthétique. La faculté à absorber la lumière dépend principalement des groupes chromophore de ces

antennes. L’efficacité de l’EET se mesure quant à elle par le rapport (ou rendement quantique) du travail
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énergétique utile au centre réactionnel (dépendant de l’application voulue pour l’antenne) par l’énergie

associée aux photons absorbés par les chromophores. Plus le rendement quantique est proche de un,

meilleure est l’antenne en ce qui concerne l’application pour faire de l’EET. Aussi, l’efficacité de la collecte

de lumière par ces antennes repose sur le caractère ultra-rapide pour l’EET, qui se déroule sous l’échelle

de la picoseconde (10−12 s) en général [4].

L’attrait pour inspirer des antennes collectrices de lumière artificielles sur celles qui existent dans la

nature a été productif depuis les années 1990, avec le design de complexes moléculaires synthétiques

créatifs pour faire de l’EET [5, 6]. En revanche, parallèlement à l’avancée de ces synthèses, la description

fondamentale de l’EET au sein à la fois des antennes naturelles et des antennes artificielles est restée un

challenge encore jusqu’à aujourd’hui.

1.1 Les mécanismes de transfert d’énergie d’excitation (EET)

La nature même de l’EET n’est pas consensuellement décrite théoriquement parmi toutes les applications

que l’EET possède. Avant tout, l’EET est défini comme un transfert d’énergie depuis un donneur, sup-

posé initialement dans un de ses états excités, D* vers un accepteur, supposé initialement dans son état

fondamental A

D∗ + A
EET
−−→ D + A∗. (1.1)

Ce transfert peut alors être étudié comme une réaction chimique. Les premières études cinétiques théoriques

de l’EET dans les solides et les aggrégats (ensemble de molécules capables d’EET), ont été menées par

Förster et Dexter, qui ont proposé deux mécanismes, schématisés dans la fig. 1.1, a) et b), respectivement

[7–9].

Les états fondamentaux et excités du donneur et de l’accepteur sont schématisés par leurs orbitales

moléculaires hautes occupées et basses vacantes (HOMO, LUMO). Nous appelons excitons les paires

d’électron-trou responsables du donneur excité et de l’accepteur excité. Les deux mécanismes diffèrent dans

la façon dont l’exciton (la quasi-particule) est transféré ; en particulier, la force du couplage excitonique

y est différente. Dans le mécanisme type Förster, le transfert se produit via une désexcitation du donneur

en simultané d’une excitation de l’accepteur. Dans cette limite de faible couplage excitonique, le transfert

est indirect entre les états excités du donneur et de l’accepteur, et se déroule donc via des transitions

électroniques radiatives (absorption et émission de lumière) simultanées. Dès lors, la cinétique dépend

de l’orientation relative des moments de transition électronique du donneur et de l’accepteur. De l’autre

côté, le mécanisme type Dexter implique un transfert d’électron directement au sein des états excités entre

le donneur et l’accepteur. Le couplage excitonique est alors trop fort pour être considéré comme une

perturbation et la cinétique du transfert dépend maintenant du recouvrement entre les orbitales frontières

(HOMO, LUMO) du donneur et de l’accepteur.

Les théories de Förster et Dexter donnent différentes constantes de vitesse 𝑘EET pour les processus
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Figure 1.1 – Représentation schématique des mécanismes de type Förster (couplage excitonique à travers

l’espace) et de type Dexter (couplage excitonique à travers les liaisons), a) et b), respectivement. Les

interprétations associées pour les sites excitoniques intra-moléculaires sont données dans c) et d), où le

point rouge symbolise l’état initial excité sur le donneur. Finalement, une interprétation chimique et non-

adiabatique de l’EET intra-moléculaire, en utilisant les surfaces d’énergie potentielle pour les états excités,

est illustrée en e) et f).

d’EET. Les deux constantes dépendent dans une certaine mesure du recouvrement entre le spectre de

fluorescence du donneur et le spectre d’absorption de l’accepteur. En revanche, la principale différence

est que la constante de Dexter décroît exponentiellement avec la distance donneur-accepteur 𝑅DA, et

est proportionnelle aux interactions entre les orbitales frontières du donneur et de l’accepteur, tandis que

la constante de Förster décroît avec 𝑅−6
DA. Ces différences permettent notamment de séparer les deux

mécanismes en une famille de mécanismes longue-portée/à travers l’espace (Förster) et une famille de

mécanismes courte-portée/à travers les liaisons (Dexter).

Origine du couplage excitonique, choix d’un Hamiltonien excitonique

L’origine du couplage excitonique dans les modèles de type Förster-Dexter pour la cinétique de l’EET a

été critiquée, notamment dans le cas de l’EET intra-moléculaire (liaison covalente entre le donneur et

l’accepteur) appliqué aux antennes collectrices de lumière dans la nature [10]. En particulier, le mécanisme

courte-portée a été reformulé par Harcourt et Scholes en termes de quantités accessibles en chimie quan-

tique, via des calculs de structure électronique [11–13]. Le rôle des intégrales de Coulomb et d’échange et

plus généralement la nature des états excitoniques pour l’EET ont été reformulés en termes d’excitations

locales (LE) et d’états à transfert de charge (CT).

Dans le cadre d’états LE, le Hamiltonien excitonique de Frenkel

𝐻 = ∑
𝑛

𝜖𝑛 |𝑛⟩ ⟨𝑛| + ∑
𝑛<𝑚

𝐽𝑛𝑚 (|𝑛⟩ ⟨𝑚| + |𝑚⟩ ⟨𝑛|) , (1.2)
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a depuis été établi comme le plus rigoureux et plus explicite point de départ pour comprendre l’EET au

sein d’ensembles de molécules [14, 15]. Comme les modèles précédents, le Hamiltonien de Frenkel repose

sur la définition d’excitons, ici des états électroniques localement excités |𝑛⟩ pour le site 𝑛 de l’aggrégat de

molécules. Nous définissons l’énergie d’excitation d’un site, 𝜖𝑛 et le couplage excitonique, 𝐽𝑛𝑚, qui induit

finalement les transferts d’énergie d’excitation entre les excitons, voir fig. 1.1, c) et d). En substance,

ces schémas peuvent rappeler un diagramme de Jablonski où les états excitoniques seraient les états

électroniques singulets ; les couplages excitoniques sont alors responsables des conversions internes entre

les états électroniques.

L’interaction entre les sites excitoniques et leur environnement complexe (le solvant, le milieu biologique,

etc.) est d’abord prise en compte par un couplage entre les états electroniques excités et un bain vibrationnel

harmonique (qui symbolise l’environnement des excitons). Dans le cas simplifié d’un donneur et d’un

accepteur, le Hamiltonien de Frenkel couplé à un bain rappelle le modèle spin-boson pour un système à

deux niveaux (donneur excité et accepteur excité)

𝐻S = 𝐻D |D⟩ ⟨D| + 𝐻A |A⟩ ⟨A| + 𝐻AD (|A⟩ ⟨D| + |D⟩ ⟨A|) (1.3)

couplé à un bain harmonique

𝐻B =
𝑁

∑
𝑖

ℏ𝜔𝑖
2

( ̂𝑝2
𝑖 + ̂𝑥2

𝑖 ) (|D⟩ ⟨D| + |A⟩ ⟨A|) (1.4)

de 𝑁 oscillateurs avec les fréquences 𝜔𝑖. Dans un Hamiltonien de modèle spin-boson, le couplage entre le

système (les excitons) et le bain (les vibrations) est linéaire par rapport à la position des modes, et diagonal

par rapport aux excitons (il ne couple pas directement deux excitons différents)

𝐻SB =
𝑁

∑
𝑖

𝜅(D)
𝑖 ̂𝑥𝑖 |D⟩ ⟨D| + 𝜅(A)

𝑖 ̂𝑥𝑖 |A⟩ ⟨A| . (1.5)

En d’autres termes, les excitons (états électroniques LE du donneur et de l’accepteur) peuvent être in-

terprétés comme un ensemble de spins (systèmes à deux niveaux pour les états excités du donneur et de

l’accepteur) placés dans un bain de bosons (vibrations en moléculaire, phonons en solides). Les modèdes de

Hamiltonien de Frenkel et de Hamiltonien spin-boson sont tous les deux adaptés à des études de dynamique

quantique en systèmes ouverts, qui incluent une dissipation de l’énergie du système dans un environnement

(ici le bain harmonique). Par exemple, l’évolution temporelle de la population des différents états élec-

troniques peut être calculée en utilisant l’équation de Redfield [4, 16]. D’autres stratégies, basées sur les

solutions de l’équation de Schrödinger dépendante du temps, ont été utilisées pour évaluer la cinétique du

transfert d’électron et du transfert d’énergie [3, 17,18].

Des états excitoniques aux états électroniques non-adiabatiquement couplés

Dans ces premières tentatives de modélisation de l’EET avec un Hamiltonien de Frenkel, ou de systèmes D-

A avec un modèle spin-boson, le couplage excitonique (le couplage inter-états) est constant. En particulier,
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il n’y a pas de couplage entre les états électroniques via les coordonnées nucléaires des molécules. Pour

les processus intra-moléculaires, l’absence de couplage électron-noyau revient à supposer que l’EET est

complètement dû aux interactions avec l’environnement, via des tuning terms (paramètres linéaires dans

l’interaction système-bain) et/ou via la redistribution intra-moléculaire de l’énergie vibrationnelle (termes

quadratiques, ou harmoniques, dans le bain). À partir de ces approximations, une extension naturelle est

donc l’utilisation d’un couplage excitonique variable. Deux stratégies ont été proposées : soit modifier

la théorie de Harcourt pour autoriser une variation ad hoc du couplage excitonique [19] ; soit estimer

directement le gradient du couplage excitonique par rapport aux déplacements nucléaires. Cette dernière

stratégie est en réalité directement reliée aux modèles de Hamiltonien de couplage vibronique, où les

termes hors-diagonaux dépendent explicitement des déplacements associés aux déplacements nucléaires,

originairement proposés par Köppel [20]. Historiquement, ces modèles ont été utilisés pour comprendre des

effets non-adiabatiques et des phénomènes photo-induits dans des systèmes où les intersections coniques

entre états excités sont répandues [21–23].

L’utilisation d’un modèle de couplage vibronique permet d’avoir une interprétation non-adiabatique et

chimique du phénomère étudié, ici l’EET. Nous cherchons dans ce travail à décrire le processus d’EET

entre un donneur et un accepteur comme s’il s’agissait d’une réaction chimique photo-induite, avec une

excitation initiale (sur l’état excité d’un des donneurs) et des conversions internes vers un état final spécifique

(idéalement l’état accepteur). Pour ce faire, nous avons à déterminer explicitement les surfaces d’énergie

potentielle (PESs) des antennes collectrices de lumière (avec le donneur et l’accepteur), voir fig. 1.1, e)

et f). Plus important encore, nous devons déterminer la forme et la force des couplages non-adiabatiques

que nous identifions, dans le cas du régime intra-moléculaire, aux couplages excitoniques responsables du

transfert de population et d’énergie du donneur vers l’accepteur (avec un point de vue diabatique).

Ainsi, de la première théorie de Förster vers les modèles de couplage vibronique, un grande variété

de mécanismes a été proposée, pour l’identification de l’origine du couplage excitonique comme pour

l’évaluation de la cinétique du transfert d’énergie d’excitation. Cette variété reflète également la variété

de systèmes (naturels et artificiels) capables de collecter la lumière et d’effectuer un transfert d’énergie

d’excitation efficace et ultra-rapide (sous la picoseconde). Nous présentons maintenant l’une des familles

les plus prometteuses d’antennes artificielles de collecte de lumière, les dendrimères de poly(phénylène

éthynylènes).

1.2 Dendrimères de poly(phénylène éthynylènes), collecteurs de lumière

Les dendrimères de poly(phénylène éthynylène) (dendrimères de PPEs) sont des systèmes dendritiques

macro-moléculaires composés de benzènes et d’acétylènes avec différents schémas de substitution et dif-

férentes longueurs. Ils ressemblent à des arbres moléculaires où les feuilles sont des fragments diphény-

lacétylènes (DPAs, éventuellement fonctionalisés) à la périphérie des molécules, voir fig. 1.2.
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Piège énergétique

Absorption de lumière

Transfer d'énergie d'excitation

b) Exemple d'un dendrimère étendua) Exemple d'un dendrimère compact

Figure 1.2 – Exemples de a) un dendrimère de PPEs compact, où toutes les branches ont la même longueur

(seulement des unités DPA) et b) un dendrimère de PPEs étendu, où de la périphérie au cœur de la molécule,

les branches sont de plus en plus longues. Cette génération spécifique de dendrimère de PPEs est appelée

la nano-star. Pour le dendrimère de PPEs étendu, le mécanisme simplifié d’absorption de lumière (flèches

rouges sur les chromophores) et de transfert d’énergie d’excitation (flèches vertes), canalisé vers le cœur,

est aussi donné. Pour les deux molécules, le piège énergétique est ici une unité pérylène (un fluorophore

bien connu).

Nous mentionnons à la fois les dendrimères de PPEs compacts et étendus, avec des longueurs égales

ou des longueurs croissantes de la périphérie au cœur, voir fig. 1.2 a) et b), respectivement. La structure

des dendrimères de PPEs est très similaire aux graphes mathématiques dits graphes dendritiques de Bethe

(ou Cayley) où les deux sites du graphe dendritique sont des benzènes et des acétylènes. Nous définissons

également les branches du graphes (les benzènes linéairement poly-para-substitués) et les nœuds (les

benzènes di- ou tri-meta-substitués), voir fig. 1.3.

Deux sites, benzènes et acétylènes Nœuds 
di-meta substitués

Nœuds
tri-meta-substitués

Possiblement avec des branches
de longueurs différentes

Branches
Para-substituées 

Figure 1.3 – Définition des sites, branches et nœuds pour la description de la structure des dendrimères de

PPEs comme des graphes de Bethe.

Dans les dendrimères de PPEs, chaque nœud est un phénylène tri-meta-substitué, qui connecte les

feuilles (benzènes à la périphérie) au reste du dendrimère jusqu’au cœur. Cependant, on pourrait imaginer

un dendrimère incomplet, avec des nœuds simplement di-meta-substitués. Pour retrouver l’analogie avec
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les complexes photosynthétiques, les nœuds (avec les feuilles, ou les chromophores) et les branches sont

les complexes de collecte de lumière, alors que le cœur (le piège énergétique) est le centre réactionnel de

la bactérie ou de la plante.

Synthèse historique et design des propriétés photophysiques des dendrimères de PPEs

Les premières routes synthétiques des dendrimères de PPEs (à la fois compacts et étendus) proposées par

Xu et Moore [24,25] sont responsables de leur nature dendritique, et permettent de contrôler la génération

(autrement dit la taille et l’étendue) du dendrimère final.

Les dendrimères compacts (fig. 1.2, a)) composés seulement de branches de mêmes longueurs, sont

capables d’absorber la lumière par un large nombre de chromophores équivalents (ici des unités DPA). Du

point de vue du Hamiltonien de Frenkel, autant d’états électroniques excités seraient définis que d’unités

DPA du graphe [26, 27]. Le transfert d’énergie d’excitation est alors entropiquement favorisé, puisqu’un

exciton photo-induit n’aurait pas de raison de rester localisé et explorerait statistiquement le reste du

graphe.

Opposés aux dendrimères compacts, les dendrimères étendus ont été conçus et synthétisés (fig. 1.2,

b)) avec l’exemple courant de la nano-star. Leur design est simple : plutôt que d’utiliser un seul type de

chromophore pour tout le dendrimère, l’idée est de séparer énergétiquement les excitons, en faisant varier

la longueur des branches. Plus une branche est longue, plus la conjugaison est grande et plus l’énergie

d’excitation du fragment considéré est basse [28–31]. On obtient en fait un gradient unidirectionnel

d’énergie, depuis la périphérie (les feuilles, énergie d’excitation « haute ») vers le cœur (piège énergétique,

énergie d’excitation « basse ») du dendrimère, et le transfert d’énergie d’excitation est alors énergétiquement

favorisé. Nous ne discuterons à partir de maintenant que les propriétés et la caractérisation des dendrimères

de PPEs étendus.

Des efforts théoriques et expérimentaux pour la compréhension des dendrimères étendus

Les premières estimations de rendement quantique de l’EET dans les dendrimères de PPEs, en particulier

dans la nano-star, ont été proposées par Devadoss, Shortreed et Swallen [32–34], avec un rendement estimé

proche de un depuis les excitations à 310 nm, 353 nm et 372 nm (absorption de lumière par l’unité DPA ou

par des branches à trois ou quatre benzènes). Ils ont également estimé que l’EET était au moins deux ordres

de grandeur plus rapide pour les dendrimères de PPEs étendu (où l’EET est favorisé énergétiquement) que

pour les dendrimères compacts (où l’EET est favorisé entropiquement). Le caractère local des excitations

dans la nano-star a ensuite été mis en évidence expérimentalement par spectrosocpie stationnaire [35]. En

2010, Palma et coll. ont proposé la première étude à la fois théorique et expérimentale de la nano-star. Ils

ont notamment reproduit son spectre d’absorption et estimé l’effet de la température et en particulier des

conformations de la nano-star sur le spectre.
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La nature du couplage excitonique entre les excitations locales précédemment mentionnées a été inves-

tiguée par Martinez et coll. [19,37]. Les excitations électroniques des dendrimères de PPEs ont également

été étudiées par Huang et coll., qui comparent les résultats obtenus par différentes méthodes de structure

électronique et proposent une description des états excitoniques en termes d’excitations locales et d’états

à transfert de charge (LE et CT) [38]. En 2004, finalement, les spectres UV-visible des blocs élémentaires

des dendrimères de PPEs ont été obtenus avec une résolution suffisante pour estimer les modes normaux

optiquement actifs pour des transitions électroniques vers les excitations locales [39, 40]. Ces résultats de

spectroscopie stationnaire ont été rationalisés théoriquement par Ho et Lasorne pour les branches para-

substituées et pour le plus petit des PPEs di-meta-substitués [41, 42]. En particulier, ils ont proposé un

schéma de pseudofragmentation pour les états électroniques excités et pour les modes vibrationels de ces

molécules, basé sur une paire d’états électroniques excités presque dégénérés. D’un autre côté, la dy-

namique des états excités de la plus petite unité, le DPA, a été étudiée. Des états excités à longue durée

de vie, menant à une isomérisation cis-trans du DPA dans des oligomères de PPEs ont été caractérisés, à la

fois expérimentalement [43–45] et théoriquement [46,47]. Enfin dans un travail récent de Breuil et Lasorne,

ces états, qui ne sont pas capables d’émettre de la lumière, ont été identifiés comme une possible route

alternative pour l’EET [48]. Jusque là, les études mentionnées étaient principalement des études « sta-

tionnaires », c’est à dire de spectroscopie expérimentale UV-visible ou des calculs de structure électronique

pour des géométries données des molécules.

Un bac à sable pour la dynamique moléculaire non-adiabatique

Finalement, les nombreuses études expérimentales sur les dendrimères de PPEs concluent sur le rôle majeur

des excitations localisées dans la molécule, qui sont confortées par différentes études théoriques. Le mécan-

isme de transfert d’énergie d’excitation par la nano-star est cela-dit toujours difficile à estimer, en particulier

puisque très peu d’expériences directes et de simulations atomistiques directes sont disponibles pour sonder

la molécule pendant l’EET. En particulier, le débat sur la nature du transfert comme se faisant à travers

l’espace (type Förster) ou à travers les liaisons (type Dexter) n’a pas été clairement fermé [19,37,49].

En 2009, Fernandez-Alberti et coll. ont proposé la première simulation atomistique de l’EET dans

un oligomère de PPEs (le plus petit des PPEs asymétriquement meta-substitués), via des calculs de dy-

namique moléculaire non-adiabatique [50]. Ils ont notamment étendu leur stratégie à d’autres oligomères

de PPEs et ont conclu sur plusieurs aspects du mécanisme de l’EET [51–54]. D’abord, le rôle du couplage

excitonique peut être compris comme une conséquence de la présence d’intersections coniques entre les

états électroniques excités. La canalisation, par l’EET, du transfert de l’énergie d’excitation au travers

du dendrimère de PPEs a été attribuée aux vibrations moléculaires et en particulier à celles des liaisons

acétyléniques, qui connectent les états électroniques localement excités et favorisent ainsi un mécanisme de

transfert par les liaisons. En général, ces simulations estiment un rendement quantique à quasiment 100%

pour l’EET après une photo-excitation de l’état localement excité le plus haut, le tout de façon ultra-rapide
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(en moins de 100 fs).

Les oligomères de PPEs ont finalement été retenus comme des bacs à sables intéressants pour l’étude

de méthodes de dynamique quantique non-adiabatique. Ils ont notamment été utilisés pour étudier la

fiabilité de certaines méthodes de dynamique moléculaire dans des systèmes quantiques ouverts [18,55] ou

de dynamique moléculaire non-adiabatique en système fermé [56–61].

1.3 Une vision chimique et non-adiabatique pour l’étude des dendrimères

Comme nous l’avons vu, les dendrimères de PPEs ont été largement étudiés, à la fois expérimentalement

et théoriquement, pour leur capacité à faire de l’EET. Cependant, le caractère même et les mécanismes de

l’EET photo-induit qui se produit dans les dendrimères de PPEs et leurs blocs élémentaires sont toujours

en débat. En particulier, les simulations explicites et résolues en temps de l’EET ont seulement été rendues

possible lors de la dernière décennie via des simulations directes (ou on-the-fly) de dynamique moléculaires

dans les états excités.

L’objectif de cette thèse est la modélisation et la simulation du transfert d’énergie d’excitation dans

différents oligomères de PPEs (les blocs élémentaires de la nano-star). Ces modélisations sont destinées à

être un point de départ pour faire le lien entre i) les premiers développements théoriques, qui utilisent le

Hamiltonien de Frenkel pour les dendrimères de PPEs (fig. 1.4 a) and b)) ; et ii) les simulations directes

de dynamique moléculaire non-adiabatique des oligomères de PPEs pendant l’EET.

a) Excitons de Frenkel
Énergies d'excitation et 
Couplages excitoniques constants

S₀

Couplage
excitonique

c) États électroniques
Surfaces d'énergie potentielle et
Couplages non-adiabatiques

S₀

S₁

S₂

b) Excitons de Frenkel 
Énergies d'excitation (+ bain) 
Couplages excitoniques constants

S₀

Bain harmonique

Bain harmonique

bain

Figure 1.4 – Différentes stratégies pour la modélisation du transfert d’énergie d’excitation (EET) se pro-

duisant depuis un donneur initialement excité (point rouge). a) Modèles d’excitons de Frenkel, avec des

énergies d’excitation et un couplage excitonique constants. b) Idem avec un bain harmonic additionnel

pour les vibrations de chacun des excitons. c) Interprétation de l’EET au travers des surfaces d’énergie

potentielle pour des états électroniques excités, avec une dépendance explicite des surfaces et du couplage

par rapport aux vibrations.

Pour ce faire, nous caractérisons d’abord les excitations électroniques dans les oligomères de PPEs et

les couplages non-adiabatiques entre eux (fig. 1.4, c), part une analyse vibrationnelle des PESs ab initio
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(obtenues par des calculs de structure électronique). Ensuite, nous proposons des modèles de PESs, qui

prennent en compte les principales caractéristiques des PESs ab initio, afin de simuler aussi explicitement

que possible les phénomènes photo-induits dans une sélection d’oligomères de PPEs, voir fig. 1.5. La

caractérisation des couplages non-adiabatiques et la modélisation des PESs sont intrinsèquement liées

ici, puisque nous utilisons des modèles de Hamiltonien de couplage vibronique pour diabatiser les états

électroniques et prendre en compte leurs couplages.

chromophore 
de la nano-star

première unité
transfert dans la
nano-star

une branche isolée
de la nano-star 

Figure 1.5 – Structure d’une nano-star simplifiée, étudiée dans ce travail. Le chromophore de la nano-star

est repéré (rouge), avec deux exemples des unités de transfert (le premier à la périphérie en rouge et bleu,

et la branche étendue « complète » de la périphérie jusqu’au cœur).

Ce manuscrit s’organise en trois parties. Dans la partie I, nous présentons le contexte théorique néces-

saire pour réaliser des calculs de dynamique quantique non-adiabatique, pour des systèmes tels que les

oligomères de PPEs. Nous définissons le Hamiltonien moléculaire ainsi que les mouvements des noyaux

(chapitre 2) et donnons les équations du mouvement pour la propagation des paquets d’ondes nucléaires

dans le formalisme de Hartree multiconfigurationel dépendant du temps (chapitre 3). Une attention par-

ticulière est portée sur la description de la dégénérescence entre états électroniques, qui est omniprésente

dans ce travail. Une présentation de la théorie ainsi que des détails computationnels pour les calculs de

structure électronique est également donnée (chapitre 4).

Dans la partie II, nous utilisons ce cadre théorique pour étudier des propriétés de spectroscopie station-

naire ainsi que l’évolution temporelle de différents oligomères de PPEs photo-excités. Nous nous intéressons

d’abord au chromophore, le PPE symétriquement meta-substitué, pour lequel nous enquêtons sur le spectre

non-usuel de fluorescence (chapitre 5). En particulier, nous posons la question de la prédiction difficile des

expériences de fluorescence pour des molécules dont les états électroniques excités sont fortement couplés

près de la région de Franck-Condon. Ensuite, nous étudions les plus petits oligomères de PPEs capables de

faire de l’EET, et nous appliquons notre cadre théorique de simulation à l’estimation du rendement quan-
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tique, de l’échelle de temps et du mécanisme de l’EET (chapitres 6 and 7). Nos analyses nous permettent

d’identifier les modes les plus importants pour que l’EET se déroule, et nous décrivons comment l’énergie

d’excitation, en excès, est redistribuée au sein des vibrations moléculaires.

Finalement, dans la partie III, nous donnons les perspectives du travail présenté jusque là, avec l’état des

lieux de nos développements actuels pour la description de l’EET dans un dendrimère de PPEs. D’abord,

nous discutons l’influence d’excitations locales sur l’EET, en particulier dans le cas d’oligomères de PPE

symétriquement meta-substitués (chapitre 8). Nous relevons également la question du sens physique des

cohérences entre états électroniques pour des excitations initialement pures ou de superposition d’états.

Enfin, nous discutons la faisabilitié d’une stratégie de modélisation « par le bas » pour les oligomères

de PPEs et finalement pour les dendrimères (chapitre 9). Cette stratégie se veut intermédiaire entre

l’utilisation d’un Hamiltonien de Frenkel et l’utilisation d’un Hamiltonien de couplage vibronique, avec la

définition d’excitons de Frenkel basée uniquement sur les fragments linéaires isolés, ainsi que sur l’estimation

du couplage excitonique autour d’intersections coniques bien identifiées.
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Intermediate Abstract

The atomistic time-dependent simulations of photoinduced excitation-energy transfer (EET) within poly(pheny-

lene ethynylenes) (PPE) oligomers require some important theoretical background. Indeed, treating EET

in the view of nonadiabatic molecular dynamics involves an interplay of both electronic structure calcula-

tions and quantum dynamics simulations, for which we choose grid-based methods here, hence requiring

advanced knowledge on the potential energy surfaces of the studied systems.

The chapter 2 aims at defining, without loss of generality, the molecular Hamiltonian and its represen-

tations, and at highlighting the difficulties that exist for the description of nuclear motions in the case of

degenerate electronic states. In particular, we will focus on the characterization of minimum-energy con-

ical intersections and on setting up models to take them into account for subsequent quantum dynamics

simulations.

In chapter 3, we present the multiconfiguration time-dependent Hartree (MCTDH) formalism for the

variational propagation of nuclear wavepackets and some of its extensions, which will be used in this

work. Together with the definition of the MCTDH ansatz for the wavefunction, we discuss the time-

dependent variational principle and the derivation of the equation of motions for the propagation of nuclear

wavepackets. Some details are given as regards the wavefunction analysis.

Finally, in chapter 4, we present the necessary background for electronic structure theory. We mostly

discuss the use of density functional theory and its linear-response time-dependent extension for probing

the electronic excited states in molecules. The computational details and the level of theory retained for

this work are finally explicited.
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Chapter 2
The Molecular Hamiltonian and its

Representations

“Ça, c’est simplement Jahn-Teller second ordre !”

– Benjamin Lasorne, Day one of this PhD
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Chapter 2. The Molecular Hamiltonian and its Representations

In this chapter, we define the molecular Hamiltonian, the main ingredient for the time-independent and

time-dependent Schrödinger equations. When studying quantum systems such as atoms and molecules, the

Hamiltonian is the mathematical object denoted 𝐻 that contains the physical information about the system.

Through this work, we will discuss different Hamiltonians, from the Coulomb molecular Hamiltonian to the

vibronic coupling Hamiltonian models.

2.1 The molecular Hamiltonian and its kinetic energy operator

2.1.1 General definitions and notations

The non-relativistic Coulomb Hamiltonian for a molecule with 𝑁 nuclei and 𝑛 electrons is

𝐻mol(r, R) = ̂𝑇 el(r) + ̂𝑇 nu(R) + ̂𝑉 el-el(r) + ̂𝑉 el-nu(r, R) + ̂𝑉 nu-nu(R)

=
𝑛

∑
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∇2
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2𝑀𝐴
∇2

R𝐴
+ 1

2

𝑛
∑

𝑖

𝑛
∑
𝑗≠𝑖

𝑒2

4𝜋𝜖0

1
‖r𝑗 − r𝑖‖

+
𝑛

∑
𝑖=1

𝑁
∑
𝐴=1

−𝑍𝐴𝑒2

4𝜋𝜖0

1
‖R𝐴 − r𝑖‖

+ 1
2

𝑁
∑
𝐴=1

𝑁
∑
𝐵≠𝐴

𝑍𝐴𝑍𝐵𝑒2

4𝜋𝜖0

1
‖R𝐵 − R𝐴‖

(2.1)

where

• �el and �nu stand for functions of electronic and nuclear coordinates (and possibly the gradients

with respect to these coordinates), respectively;

• 𝑇 and 𝑉 for kinetic energies and potential energies, respectively;

• r and R are the collections of electronic and nuclear coordinates, respectively;

• ℏ, 𝑚𝑒 and 𝜖0 are the reduced Planck constant, the mass of the electron, and the permitivitty of the

vacuum, respectively;

• 𝑀𝐴, 𝑍𝐴 are the mass and atomic number, respectively, of the nucleus 𝐴.

For derivatives with respect to electronic or nuclear coordinates, we define the gradient operators ∇r𝑖
and

∇R𝐴
, respectively, and the Laplacians (here for Cartesian coordinates) Δr𝑖

= ∇2
r𝑖

and ΔR𝐴
= ∇2

R𝐴
. We

now use atomic units which are defined such that numerically, in this new system of units

ℏ = 𝑚𝑒 = 𝑒2

4𝜋𝜖0
= 1 (2.2)

and we define the fine-structure constant 𝛼 = 𝑒2

4𝜋𝜖0ℏ𝑐 . The Coulomb Hamiltonian is thus recast as

𝐻mol(r, R) =
𝑛

∑
𝑖=1

−1
2

∇2
r𝑖

+
𝑁

∑
𝐴=1

− 1
2𝑀𝐴

∇2
R𝐴

+ 1
2

𝑛
∑

𝑖

𝑛
∑
𝑗≠𝑖

1
‖r𝑗 − r𝑖‖

+
𝑛

∑
𝑖=1

𝑁
∑
𝐴=1

−𝑍𝐴
1

‖R𝐴 − r𝑖‖
+ 1

2

𝑁
∑
𝐴=1

𝑁
∑
𝐵≠𝐴

𝑍𝐴𝑍𝐵
1

‖R𝐵 − R𝐴‖

(2.3)
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2.1. The molecular Hamiltonian and its kinetic energy operator

where energies are in hartree Eh = 𝛼2me𝑐2, lengths in bohr a0 = ℏ/(me𝛼𝑐), and masses in mass of the

electron me.

The present Coulomb molecular Hamiltonian, which is a non-relativistic approximation, is valid in the

absence of external electromagnetic fields (field-free Hamiltonian, for instance for the electric field E = 0).

However, in the context of photophysics, we study molecular systems in the presence of external fields

(for instance for the electric field E ≠ 0), which ideally must be described by quantum electrodynamics

(QED). The field-matter interaction (for instance the light-matter interaction −𝝁 ⋅ E, with the electric

dipole moment 𝝁) is taken into account in QED via quantization of the field, which is out of the scope

of this thesis. Herein, the field-matter interaction is treated as a perturbation to the Coulomb molecular

Hamiltonian and we further discuss it in section 2.3.

In this simple and general formulation of the Hamiltonian, the system of coordinates is Cartesian in the

laboratory frame (LF). For now, only Cartesian coordinates are used; in the next sections of this work, mass-

weighted coordinates and internal coordinates will also be discussed. Among the Cartesian coordinates,

we distinguish degrees of freedom associated to the nuclei (R) and to the electrons (r). Unless otherwise

specified, the basic description of the systems we are interested in relies on this non-relativistic Coulomb

molecular Hamiltonian, such that we neglect the effects of the spin-orbit coupling. Possible relativistic

effects (heavy atoms, orthogonal 𝜋-conjugated systems) would be taken into account as corrections to the

Coulomb Hamiltonian. In the following, we often refer to the Coulomb molecular Hamiltonian simply as

the molecular Hamiltonian.

In the Schrödinger picture of quantum mechanics, we look for the molecular eigenenergies 𝐸𝑚 of the

molecular system described by 𝐻mol by solving the time-independent Schrödinger equation,

∀𝑚, 𝐻mol(r, R)Ψmol
𝑚 (r, R) = 𝐸𝑚Ψmol

𝑚 (r, R) (2.4)

where Ψmol
𝑚 (r, R) are the eigenstates of the molecular system. In the same picture, the time evolution of

the molecular system is given by the time evolution of the total wavefunction Ψmol(r, R, 𝑡) which satisfies

the time-dependent Schrödinger equation,

𝐻mol(r, R)Ψmol(r, R, 𝑡) = 𝑖ℏ 𝜕
𝜕𝑡

Ψmol(r, R, 𝑡). (2.5)

The usual follow-up of the derivation for the description of a molecular system for a quantum chemist is the

use of the Born-Oppenheimer approximation for separating nuclear and electronic degrees of freedom. In a

few words and symbols, the Born-Oppenheimer adiabatic approximation consists in writing the molecular

wavefunction as a simple product of a unique time-independent electronic wavefunction 𝜑el and a time-

dependent nuclear wavefunction 𝜒nu

Ψmol(r, R, 𝑡) ≃ ΨBO(r, R, 𝑡) = 𝜑el(r; R)𝜒nu(R, 𝑡) (2.6)

where the electronic wavefunction is generally a solution to the time-independent Schrödinger equation

𝜑el(r; R) = 𝜙el
𝛼(r; R), discussed later on. The variables after the semicolon in 𝑓(�;�) define “external”

49



Chapter 2. The Molecular Hamiltonian and its Representations

parametric variables for the function 𝑓. Here, this implies that the electronic wavefunction is parametrized

by the nuclear coordinates; that is, there is one wavefunction of the electronic coordinates for each set

of nuclear coordinates. The Born-Oppenheimer approximation then allows us to separate one electronic

state from the others, and to solve the time-dependent Schrödinger equation for this electronic state

and its associated time-dependent nuclear wavefunction. However, electronic states degeneracies (conical

intersections) are ubiquitous in this work, and the application of Born-Oppenheimer-like approximations is

rarely valid. For this reason, we now discuss the interplay of electronic and nuclear motions through the

definitions of adiabatic and (quasi)-diabatic states. The Born-Oppenheimer and adiabatic approximations

will be further discussed after defining the nuclear motions.

2.1.2 Electronic and nuclear motions

The previously discussed Born-Oppenheimer wavefunction, with simple separation of electronic and nuclear

degrees of freedom, is usually justified by comparing the masses associated to both types of degrees of

freedom (𝑀𝐴 ≫ 𝑚𝑒). Although this rationale is really practical, it is not completely rigorous. The

validation or not of the Born-Oppenheimer types of approximation relies on the different timescales for

the motions of the electronic and nuclear degrees of freedom. This implies that not only the ratio of the

masses is important, but also the spatial derivatives (hence the nuclear kinetic energy operators). In this

section, we propose to discuss as rigorously as possible the separation of the nuclear and electronic degrees

of freedom and the physical and mathematical conditions required to do so.

The first incentive for separating electronic and nuclear motions is to write the molecular Hamiltonian

as

𝐻mol(r, R) = ̂𝑇 nu(R) + 𝐻el(r; R). (2.7)

This separation is based on the separation of nuclear-related derivatives only, since the derivative opera-

tors for the nuclei coordinates are gathered in the kinetic energy operator ̂𝑇 nu(R). The time-independent

Schrödinger equation for the electronic Hamiltonian now defines the electronic wavefunctions of the adia-

batic states

𝐻el(r, R)𝜙el
𝛼(r; R) = 𝑉𝛼(R)𝜙el

𝛼(r; R), ∀R. (2.8)

The electronic wavefunctions 𝜙el
𝛼(r; R) form an orthonormal basis ∀R (discussed in section 2.2.2) and they

still depend on the nuclear degrees of freedom. This dependence is said to be parametric as discussed

earlier, and is only due to multiplicative operators varying with R in the electronic Hamiltonian.

The art of quantum chemistry is to treat the electronic Hamiltonian and in particular the electronic

repulsion term (2-electron term), and will be the focus of chapter 4. The electron kinetic energy and

nuclear potential energies are, usually, not the most challenging part to treat because they only consists in

1-electron terms. On the other hand, it is the domain of molecular dynamics to solve the time-dependent

Schrödinger equation for the full molecular Hamiltonian and in particular for the nuclear kinetic energy
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2.1. The molecular Hamiltonian and its kinetic energy operator

operator ̂𝑇 nu(R).

The molecular wavefunction associated to the molecular Hamiltonian eq. (2.7) can be written with the

Born-Huang expansion

Ψmol(r, R, 𝑡) = ∑
𝛼, el

𝜓𝛼(R, 𝑡)𝜙el
𝛼(r; R). (2.9)

We find here an expression of the molecular wavefunction as a sum-of-product of nuclear wavepackets

𝜓𝛼(R, 𝑡) and electronic wavefunctions 𝜙el
𝛼(r, R). Strictly speaking, the nuclear wavepackets can be further

expanded in a basis of time-independent nuclear wavefunctions 𝜒nu
𝑖 (R)

𝜓𝛼(R, 𝑡) = ∑
𝑖, nu

𝑑𝛼𝑖(𝑡)𝜒nu
𝑖 (R). (2.10)

As such, the molecular wavefunction can be somewhat seen as a “direct-product” of

• an orthonormal basis of electronic wavefunctions {𝜙el
𝛼(r; R)};

• an orthonormal basis of nuclear wavefunctions {𝜒nu
𝑖 (R)};

and reads

Ψmol(r, R, 𝑡) = ∑
𝛼, el

∑
𝑖, nu

𝑑𝛼𝑖(𝑡)𝜒nu
𝑖 (R)𝜙el

𝛼(r; R). (2.11)

The previous expression can be seen as a generic form of ansätze for solving the time-dependent Schrödinger

equation with grid-based quantum dynamics (see chapter 3).

Injecting the Born-Huang expression of the molecular wavefunction eq. (2.9) (with sum over 𝛼) into

the time-dependent Schrödinger equation and integrating over the electronic degrees of freedom (with

⟨𝜙el
𝛽 ; R∣), we have

∑
𝛼

⟨𝜙el
𝛽 ; R ∣ 𝐻mol(R)𝜓𝛼(R, 𝑡) ∣ 𝜙el

𝛼; R⟩
el

= 𝑖 ∑
𝛼

⟨𝜙el
𝛽 ; R ∣ 𝜙el

𝛼; R⟩
el

𝜕
𝜕𝑡

𝜓𝛼(R, 𝑡) (2.12)

In this expression, we used the Dirac notation ⟨𝑎 | 𝑏⟩el to designate the integration over the electronic

degrees of freedom ∫ 𝑎∗(r)𝑏(r)dr. Again, the parametric dependence on nuclear degrees of freedom is

given for the electronic bras ⟨�; R| and kets |�; R⟩. The right-hand-side sum simplifies to one term (in 𝛽)

because of the orthogonality of the electronic wavefunctions. The left-hand side is further “simplified” by

looking closely to the effect of the nuclear kinetic energy operator (KEO)

̂𝑇 nu(R) =
3𝑁
∑
𝐴=1

− 1
2𝑀𝐴

𝜕2

𝜕𝑅2
𝐴

(2.13)

on the nuclear-electronic wavefunction products. We now use the indices 𝐴 = 1 … 3𝑁 for the 3𝑁 nuclear

degrees of freedom, where the mass 𝑀𝐴 is the same for the three coordinates (𝑥, 𝑦, 𝑧) of each atom. For

the first-order derivatives, we find

𝜕
𝜕𝑅𝐴

(𝜓𝛼𝜙el
𝛼) = ( 𝜕

𝜕𝑅𝐴
𝜓𝛼) 𝜙el

𝛼 + 𝜓𝛼 ( 𝜕
𝜕𝑅𝐴

𝜙el
𝛼) (2.14)
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and consequently for the second-order derivatives

𝜕2

𝜕𝑅2
𝐴

(𝜓𝛼𝜙el
𝛼) = ( 𝜕2

𝜕𝑅2
𝐴

𝜓𝛼) 𝜙el
𝛼 + 2 ( 𝜕

𝜕𝑅𝐴
𝜓𝛼) ( 𝜕

𝜕𝑅𝐴
𝜙el

𝛼) + 𝜓𝛼 ( 𝜕2

𝜕𝑅2
𝐴

𝜙el
𝛼) . (2.15)

Again, multiplying to the right by 𝜙el∗
𝛽 the previous relations and integrating over the electronic degrees of

freedom (electronic bra-ket notation) yields

⟨𝜙el
𝛽 ; R ∣ 𝜕

𝜕𝑅𝐴
𝜓𝛼𝜙el

𝛼; R⟩
el

= ( 𝜕
𝜕𝑅𝐴

𝜓𝛼) ⟨𝜙el
𝛽 ; R ∣ 𝜙el

𝛼; R⟩
el

+ 𝜓𝛼 ⟨𝜙el
𝛽 ; R ∣ 𝜕

𝜕𝑅𝐴
𝜙el

𝛼; R⟩
el

(2.16)

and
⟨𝜙el

𝛽 ; R ∣ 𝜕2

𝜕𝑅2
𝐴

𝜓𝛼𝜙el
𝛼; R⟩

el
= ( 𝜕2

𝜕𝑅2
𝐴

𝜓𝛼) ⟨𝜙el
𝛽 ; R ∣ 𝜙el

𝛼; R⟩
el

+ 2 ( 𝜕
𝜕𝑅𝐴

𝜓𝛼) ⟨𝜙el
𝛽 ; R ∣ 𝜕

𝜕𝑅𝐴
𝜙el

𝛼; R⟩
el

+ 𝜓𝛼 ⟨𝜙el
𝛽 ; R ∣ 𝜕2

𝜕𝑅2
𝐴

𝜙el
𝛼; R⟩

el
.

(2.17)

Let us define notations for the nuclear-space derivatives of the electronic states

𝐹 (𝐴)
𝛼𝛽 (R) = ⟨𝜙el

𝛼; R ∣ 𝜕
𝜕𝑅𝐴

𝜙el
𝛽 ; R⟩

el
(2.18)

and for the second-order derivatives

𝐺(𝐴)
𝛼𝛽 (R) = ⟨𝜙el

𝛼; R ∣ 𝜕2

𝜕𝑅2
𝐴

𝜙el
𝛽 ; R⟩

el
. (2.19)

Using this, we rewrite eq. (2.17) as

⟨𝜙el
𝛽 ; R ∣ 𝜕2

𝜕𝑅2
𝐴

𝜓𝛼(R, 𝑡)𝜙el
𝛼; R⟩

el
= 𝛿𝛽𝛼 ( 𝜕2

𝜕𝑅2
𝐴

𝜓𝛼(R, 𝑡))

+ 2𝐹 (𝐴)
𝛽𝛼 (R) ( 𝜕

𝜕𝑅𝐴
𝜓𝛼(R, 𝑡))

+ 𝐺(𝐴)
𝛽𝛼 (R)𝜓𝛼(R, 𝑡).

(2.20)

In the context of adiabatic electronic wavefunctions, the previously derived nuclear dependence of the

electronic wavefunctions are known as first- and second-order non-adiabatic couplings (NACs) 𝐹 (𝐴)
𝛼𝛽 (R)

and 𝐺(𝐴)
𝛼𝛽 (R), respectively. Their effect is often grouped together within the non-adiabatic coupling matrix

elements in the kinetic energy operator, as

Λ𝛼𝛽(R) = −
3𝑁
∑
𝐴=1

1
𝑀𝐴

𝐹 (𝐴)
𝛼𝛽 (R) 𝜕

𝜕𝑅𝐴
−

3𝑁
∑
𝐴=1

1
2𝑀𝐴

𝐺(𝐴)
𝛼𝛽 (R) (2.21)

which can be defined in a matrix-vector form if mass-weighted coordinates are used instead of Cartesian

coordinates. For now, we keep the unspecified electronic basis set and continue the derivation by inserting

the previous relation eq. (2.20) in eq. (2.12)

𝑖ℏ 𝜕
𝜕𝑡

𝜓𝛽(R, 𝑡) = (∑
𝐴

− ℏ2

2𝑀𝐴

𝜕2

𝜕𝑅2
𝐴

+ 𝐻el
𝛽𝛽(R) − ∑

𝐴

ℏ2

2𝑀𝐴
𝐺(𝐴)

𝛽𝛽 (R)) 𝜓𝛽(R, 𝑡)

+ ∑
𝛼≠𝛽

(𝐻el
𝛽𝛼(R) − ∑

𝐴

ℏ2

2𝑀𝐴
(2𝐹 (𝐴)

𝛽𝛼 (R) 𝜕
𝜕𝑅𝐴

+ 𝐺(𝐴)
𝛽𝛼 (R))) 𝜓𝛼(R, 𝑡)

(2.22)
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Equation (2.22) describes the general propagation of a nuclear wavepacket 𝜓𝛽(R, 𝑡) and is the basis of

discussion for both fully quantum and mixed quantum-classical dynamics. The first term (first parenthesis)

describes the evolution of the nuclear wavepacket on state 𝛽 relatively to the electronic surface 𝛽, while

the second term includes (potential and/or kinetic) coupling between the electronic surface 𝛽 and all

other electronic surfaces (labeled 𝛼 ≠ 𝛽). From here, two classes of molecular dynamics method can be

defined. Quantum “wavepacket-based” dynamics keep the wavepacket character for the nuclear degrees

of freedom; classical “trajectory-based” dynamics approximate the wavepacket definition with ensembles

of classical trajectories for the nuclear motions. In quantum dynamics calculations, the complexity of

the nuclear kinetic energy operator ̂𝑇 nu strongly depends on the choice for the coordinate system, which

is discussed in section 2.4. In trajectory-based dynamics, the nuclear motions satisfy Newton’s classical

equations of motion, with forces parametrized or defined from quantum mechanical quantities, hence

the mixed quantum-classical qualification for such methods when several electronic states are coupled

(nonadiabatic context).

In both quantum dynamics and mixed quantum-classical methods, the representation for the electronic

degrees of freedom is crucial, and is discussed in section 2.2. In particular, this choice is heavily related to

the electronic structure methods available, because of the evaluation of the electronic Hamiltonian matrix

representation (𝐻el
𝛼𝛽) and the non-adiabatic coupling vectors (NACVs).

In this work, only quantum dynamics calculations are considered, based on the multi-configuration time-

dependent Hartree (MCTDH) formalism, which is presented and discussed in chapter 3. A brief discussion

of the place of MCTDH within the landscape of molecular dynamics will also be given there.

Take-home messages

1. The molecular Hamiltonian has been explicited, and the molecular, electronic and nuclear

wavefunctions have been defined.

2. We defined the nuclear motions from the effect of the nuclear kinetic energy operator of

the molecular wavefunction.

3. We explicited the theoretical propagation of nuclear wavepackets, eq. (2.22), for which

the electronic representation is crucial.

2.2 Electronic representations and basis sets

According to the Born-Oppenheimer approximation, the electronic structure problem is crucial and comes

first for all molecular dynamics simulations, and generally consists in solving the time-independent Schrödinger’s
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equation (TISE) for the electronic degrees of freedom that we recall here

𝐻el(r, R)𝜙el
𝛼(r; R) = 𝑉𝛼(R)𝜙el

𝛼(r; R) (2.23)

where the eigenfunctions 𝜙el
𝛼(r; R) of the electronic Hamiltonian 𝐻el(r, R) are called the adiabatic electronic

states, at any R, and 𝑉𝛼(R) are the adiabatic potential energy surfaces (PESs). In this section, the

superscript �el will be replaced by �ad on relevant quantities (except operators). By definition, the matrix

of the electronic Hamiltonian is diagonal in the adiabatic representation, and the matrix elements of the

(nuclear-)space derivatives of the adiabatic states define the non-adiabatic couplings, previously stated in

eqs. (2.18) and (2.19). In other words, the adiabatic representation yields a diagonal matrix for what

comes from the electronic Hamiltonian (defining the adiabatic PESs) and a full matrix for the nuclear

kinetic energy operator. Within the adiabatic basis set representation, two very similar approximations are

found: the adiabatic approximation and the Born-Oppenheimer approximation. The Born-Oppenheimer

approximation consists in strictly neglecting all the nuclear-space derivatives of the electronic states (the

NACs)

𝐹 ad,(𝐴)
𝛼𝛽 ≃ 0 and 𝐺ad,(𝐴)

𝛼𝛽 ≃ 0 (2.24)

while the adiabatic approximation allows in principle the second-order corrections in the diagonal elements

of the kinetic energy operator 𝐺ad,(𝐴)
𝛼𝛼 to be non-zero (diagonal Born-Oppenheimer corrections, DBOC). As

a consequence of these approximations, the equation for the propagation of nuclear wavepackets eq. (2.22)

reads

𝑖 𝜕
𝜕𝑡

𝜓𝛽(R, 𝑡) = (
3𝑁
∑
𝐴=1

− ℏ2

2𝑀𝐴

𝜕2

𝜕𝑅2
𝐴

+ 𝑉𝛽(R) + 𝜆 (
3𝑁
∑
𝐴=1

− ℏ2

2𝑀𝐴
𝐺(𝐴)

𝛽𝛽 (R))) 𝜓𝛽(R, 𝑡) (2.25)

with 𝜆 = 0, 1 in the Born-Oppenheimer and adiabatic approximations, respectively. The propagation of

a nuclear wavepacket for a given electronic state 𝛽 is now independent from the other electronic states

𝛼 ≠ 𝛽.

As mentioned, the difference in masses of electrons and nuclei is not a sufficiently strong condition to

ensure the approximations of eq. (2.24). In particular, the regions of molecular geometries for which two

or more electronic states are degenerate break down the Born-Oppenheimer or adiabatic approximations,

as we will illustrate now with the off-diagonal Hellmann-Feynman theorem.

2.2.1 The diagonal and off-diagonal Hellmann-Feynman theorems

The Hellmann-Feynman theorem is widely used for computing the nuclear forces (or gradients) using the

information of the adiabatic states and the nuclear-derivatives of the electronic Hamiltonian within the

adiabatic-type approximations

𝜕𝑉𝛼
𝜕𝑅𝐴

(R) = ⟨𝜙ad
𝛼 ; R ∣ 𝜕𝐻el

𝜕𝑅𝐴
(R) ∣ 𝜙ad

𝛼 ; R⟩
el

. (2.26)
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In addition, an off-diagonal Hellmann-Feynman theorem is easily derived. First, considering two adiabatic

electronic states and differentiating (with respect to the nuclear degrees of freedom) their orthonormal

condition

⟨𝜙ad
𝛼 ; R ∣ 𝜙ad

𝛽 ; R⟩
el

= 𝛿𝛼𝛽 (2.27)

one finds

⟨ 𝜕
𝜕𝑅𝐴

𝜙ad
𝛼 ; R ∣ 𝜙ad

𝛽 ; R⟩
el

+ ⟨𝜙ad
𝛼 ; R ∣ 𝜕

𝜕𝑅𝐴
𝜙ad

𝛽 ; R⟩
el

= 0 (2.28)

so that 𝐹 ad,(𝐴)
𝛼𝛽 = −𝐹 ad,(𝐴)∗

𝛽𝛼 . Then for the Hamiltonian matrix elements,

𝜕
𝜕𝑅𝐴

(⟨𝜙ad
𝛼 ; R ∣ 𝐻(R) ∣ 𝜙ad

𝛽 ; R⟩
el

) = ⟨ 𝜕
𝜕𝑅𝐴

𝜙ad
𝛼 ; R ∣ 𝐻(R) ∣ 𝜙ad

𝛽 ; R⟩
el

+ ⟨𝜙ad
𝛼 ; R ∣ 𝜕

𝜕𝑅𝐴
𝐻(R) ∣ 𝜙ad

𝛽 ; R⟩
el

+ ⟨𝜙ad
𝛼 ; R ∣ 𝐻(R) ∣ 𝜕

𝜕𝑅𝐴
𝜙ad

𝛽 ; R⟩
el

.

(2.29)

Using the fact that the adiabatic states are the exact eigenfunctions of the electronic Hamiltonian and

eq. (2.28), we continue

0 = − 𝑉𝛼(R) ⟨𝜙ad
𝛼 ; R ∣ 𝜕

𝜕𝑅𝐴
𝜙ad

𝛽 ; R⟩
el

+ ⟨𝜙ad
𝛼 ; R ∣ 𝜕

𝜕𝑅𝐴
𝐻(R) ∣ 𝜙ad

𝛽 ; R⟩
el

+ 𝑉𝛽(R) ⟨𝜙ad
𝛼 ; R ∣ 𝜕

𝜕𝑅𝐴
𝜙ad

𝛽 ; R⟩
el

.
(2.30)

Finally we find for the first-order NACV, for 𝛼 ≠ 𝛽

𝐹 ad,(𝐴)
𝛼𝛽 =

⟨𝜙ad
𝛼 ; R ∣ 𝜕

𝜕𝑅𝐴
𝐻(R) ∣ 𝜙ad

𝛽 ; R⟩
el

𝑉𝛽(R) − 𝑉𝛼(R)
(2.31)

which is thus singular when 𝑉𝛽(R) − 𝑉𝛼(R) = 0. In such regions and looking back to the electronic and

nuclear equations of motion eq. (2.22), the kinetic energy operator diverges and the propagation becomes

unpraticable. For working with eq. (2.22) in the presence of degenerate electronic states, it is then necessary

to choose an electronic representation that is not the adiabatic one. In this context, we now present the

concept of quasi-diabatic states and their use for representing the potential energy surfaces and couplings

in a smooth way with respect to R.

2.2.2 Transformations to and from adiabatic electronic states

2.2.2.1 Arbitrary working electronic states and adiabaticity

Let us define some orthonormal basis of two “working” electronic states {|𝜙1; R⟩ , |𝜙2; R⟩}, in which the

electronic Hamiltonian matrix reads

H(R) = ⎡⎢
⎣

𝐻11(R) 𝐻12(R)

𝐻21(R) 𝐻22(R)
⎤⎥
⎦

(2.32)
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with all the matrix elements being real-valued (such that 𝐻12(R) = 𝐻21(R)). For the sake of simplicity,

we shall rewrite the “working” Hamiltonian as an averaged-trace matrix and a traceless matrix

H(R) = 𝑆(R)𝟙 + ⎡⎢
⎣

−𝐷(R) 𝑊(R)

𝑊(R) 𝐷(R)
⎤⎥
⎦

(2.33)

with

𝑆(R) = 𝐻11(R) + 𝐻22(R)
2

, (2.34)

𝐷(R) = 𝐻22(R) − 𝐻11(R)
2

(2.35)

and

𝑊(R) = 𝐻12(R) = 𝐻21(R). (2.36)

For the purpose of this section, we do not need to further specify the coordinate system nor the actual

dependence of the previous quantities with respect to the coordinates. We only require the matrix elements

of 𝐻 to be smoothly varying with the nuclear coordinates. We can write the adiabatic electronic states as

a unitary transformation of the “working” electronic states, for instance with a rotation parametrized with

the angle 𝜃(R)

∣𝜙ad
1 ; R⟩ = cos 𝜃(R) |𝜙1; R⟩ + sin 𝜃(R) |𝜙2; R⟩ (2.37a)

∣𝜙ad
2 ; R⟩ = − sin 𝜃(R) |𝜙1; R⟩ + cos 𝜃(R) |𝜙2; R⟩ . (2.37b)

The unitary transformation, satisfying U†(R)U(R) = U(R)U†(R) = 𝟙 is here a rotation

U(R) = ⎡⎢
⎣

cos 𝜃(R) − sin 𝜃(R)

sin 𝜃(R) cos 𝜃(R)
⎤⎥
⎦

(2.38)

and allows us to write the transformation in a vector-matrix form for the electronic states1

(∣𝜙ad
1 ; R⟩ ∣𝜙ad

2 ; R⟩) = (|𝜙1; R⟩ |𝜙2; R⟩) U(R), with 𝑈𝑖𝑗 = ⟨𝜙𝑖 ∣ 𝜙ad
𝑗 ⟩ (2.39)

and for the matrix representations of the Hamiltonian

V(R) = U†(R)H(R)U(R), (2.40)

where V(R) is the (ordered) diagonal matrix of the adiabatic energies. In other words, the diagonalization

of the “working” Hamiltonian boils down to the evaluation of the rotation angle 𝜃(R). We rewrite the

diagonal matrix of the adiabatic energies

V(R) = ⎡⎢
⎣

𝑉1(R) 0

0 𝑉2(R)
⎤⎥
⎦

= Σ(R)𝟙 + ⎡⎢
⎣

−Δ𝑉 (R) 0

0 Δ𝑉 (R)
⎤⎥
⎦

(2.41)

1We stress here that with more than two electronic states, the transformation U needs only to be unitary; for the two-state

case, the form of a rotation matrix is convenient.
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with

Σ(R) = 𝑉1(R) + 𝑉2(R)
2

(2.42)

and

Δ𝑉 (R) = 𝑉2(R) − 𝑉1(R)
2

≥ 0. (2.43)

Let us note that the averaged-trace identity matrix in H(R) is unchanged by any rotation and in particular

by U(R), such that

𝑆(R) = Σ(R). (2.44)

As a consequence, we can define the unitary transformation from the remaining traceless matrix directly.

Evaluating the matrix products in eq. (2.40), we identify the so-called adiabaticity conditions

𝐷(R) sin 2𝜃(R) + 𝑊(R) cos 2𝜃(R) = 0 (2.45a)

𝐷(R) cos 2𝜃(R) − 𝑊(R) sin 2𝜃(R) = Δ𝑉 (R) (2.45b)

These equations simply define the conditions for transforming a given “working” electronic basis set into

the adiabatic electronic basis set. One can find the solutions for the adiabaticity conditions eq. (2.45)

sin 2𝜃(R)
cos 2𝜃(R)

= tan 2𝜃(R) = −𝑊(R)
𝐷(R)

(2.46a)

√𝐷(R)2 + 𝑊(R)2 = Δ𝑉 (R) ≥ 0. (2.46b)

Thus, the adiabatic energies are found as the eigenvalues of the “working” Hamiltonian

𝑉1,2(R) = Σ(R) ± Δ𝑉 (R) = 𝑆(R) ± √𝐷(R)2 + 𝑊(R)2 (2.47)

and the associated adiabatic electronic states (associated eigenvectors) can be obtained using the parametrized

angle satisfying

cos 2𝜃(R) = 𝐷(R)
Δ𝑉 (R)

, sin 2𝜃(R) = − 𝑊(R)
Δ𝑉 (R)

, tan 2𝜃(R) = −𝑊(R)
𝐷(R)

. (2.48)

We note that the effect of the rotation on the “working” electronic states is related to its effect on the

Hamiltonian matrix representation. Indeed, while the electronic states undergo a rotation of angle 𝜃(R),

the traceless matrix elements of H(R) (𝐷 and 𝑊) undergo a rotation of angle −2𝜃(R).

The previous derivations are used hereafter for illustrating two purposes. First we will present the

particular case of quasi-diabatic electronic states for the electronic representation. Then, we will discuss

the properties of crossing potential energy surfaces and in particular of conical intersections.

2.2.2.2 The case of (quasi-)diabatic electronic states

Until here, we have described the adiabatic representation for the electronic states, for which the off-

diagonal terms of the nuclear kinetic energy operator are non-zero and diverge in the region of electronic
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state degeneracy (eq. (2.31)). On the other hand, diabatic electronic states are defined as a different set

of electronic states for which

Λdia
𝛼𝛽(R) = 0. (2.49)

These general conditions can be expressed in terms of the adiabatic-to-diabatic unitary transformation

(from 𝑛 adiabatic states to 𝑛 diabatic states) Udia(R) defined in a similar way to eq. (2.38) (for two

states). This transformation is such that the (non-diagonal) Hamiltonian representation Hdia(R) and the

(diagonal matrix of) adiabatic potential energies are linked through the relation

V(R) = Udia†(R)Hdia(R)Udia(R). (2.50)

It can be shown (see Ref [62]) that the effect of the transformation for the first-order non-adiabatic coupling

matrix is

Fad(R) = Udia†(R)Fdia(R)Udia(R) + Udia†(R) 𝜕
𝜕RUdia(R). (2.51)

The diabaticity conditions eq. (2.49) imply that

Fdia(R) ≃ 0. (2.52)

Injecting eq. (2.52), we find the diabaticity conditions in terms of the adiabatic-to-diabatic unitary trans-

formation

Fad(R) ≃ Udia†(R) 𝜕
𝜕RUdia(R). (2.53)

Applying this to the previous case of two electronic states, the conditions can be further rewritten with

respect to the nuclear-space derivatives of the rotation angle 𝜃dia(R)

𝐹 ad,(𝐴)
12 (R) ≃ − 𝜕

𝜕𝑅𝐴
𝜃dia(R). (2.54)

For the diabaticity conditions to be strictly fulfilled, a complete (infinite) basis set of electronic states

is required, which is impracticable in practice. For this reason, the diabaticity condition is always only

approximately fulfilled in molecular systems (of more than two nuclei)2 and the electronic states are called

quasi-diabatic electronic states. In the rest of this work, only quasi-diabatic states are discussed, and for

the sake of simplicity, we shall call them diabatic states [62,63]. As a matter of fact, we even do not have

a direct usage of the diabatic states, because of the diabatization procedure that we use (that is, we do

not explicitly check Λdia = 0).

The ways of obtaining approximate diabatic states are numerous and cannot be comprehensively cited

here. Nonetheless we cite the main families of methods. First, for the (most common) case of two

electronic states, one can directly line-integrate the NAC vector with eq. (2.54) [64]. However, the results

for this direct method may depend on the integration path. Some authors also proposed to propagate the

adiabatic-to-diabatic transformation matrix Udia† within on-the-fly dynamics calculations [65,66].
2For diatomics, there is only one internal coordinate 𝑅 = ||R1 − R2|| and no conical intersections and no path dependence

for integrating eq. (2.54)
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Other methods based on explicitly knowing the adiabatic wavefunctions for instance using block-

diagonalization of the electronic Hamiltonian, have been developed, first by Pacher, Köppel and Ceder-

baum [67, 68]. In particular, this was explored for multiconfiguration wavefunction electronic structure

methods by Atchity and Ruedenberg [69] and applied for triatomic molecules [70,71]. It was further gener-

alized later by Nakamura and Truhlar [72–74]. Block-diagonalization was also recently reused as an analysis

tool for building PESs [75,76].

The second main family is the so-called diabatization by ansatz and is the retained method in this

work [20, 77, 78]. The main strategy behind diabatization by ansatz consists in fitting vibronic-coupling

Hamiltonian models to ab initio data. The matrix elements of the “working” Hamiltonian models Hel(R)

are smooth functions of the nuclear coordinates. The advantages of it is that the focus of the diabatization

is on the PESs, and therefore only requires information about the adiabatic energies or associated derivatives

with respect to the nuclear coordinates. For instance this is compatible with electronic structure methods

that are not based on wavefunctions, such as reduced-density methods. The drawback is shared with the

main advantage, which is that one does not work directly with the electronic excited states as mathematical

nor numerical objects, and thus have no direct access to the diabatic states.

Apart from mathematical definitions and problems, let us sum up in a few words the concept of diabatic

states as we use them in this work.

Take-home messages

1. Diabatic states are electronic states associated to ”slowly” and smoothly varying poten-

tial energy surfaces with respect to the nuclear coordinates, as opposed to the adiabatic

potential energy surfaces. The aim is to eliminate the singularity in the kinetic energy

operator (kinetic couplings) for geometries around energy degeneracy, replacing it with

off-diagonal terms in the electronic Hamiltonian (potential couplings).

2. From a chemist point of view, we follow the electronic states based on a specific character

(diabatic view: symmetry labels, resonant Lewis structures, localized excitations) rather

than based on energy ordering (adiabatic view: spectroscopic ordering).

2.3 Interaction with an external field

In the previous sections, we defined molecular eigenstates, which are expanded in the basis of electronic

states and nuclear wavepackets, and are studied quantum mechanically. One of the purposes of this thesis is

not only the description of the molecular states but also their interaction with an external field. In particular,

for both steady-state and time-resolved studies of photoinduced phenomena, we may be interested in the
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interaction with an external electric field, E ≠ 0. This interaction must be dealt with and we choose to

include it in our simulations as a perturbation to the molecular Hamiltonian. Thus, the molecular states

are treated quantum mechanically, but the electric field and its interaction with the molecular states will

be included classically.

2.3.1 Semi-classical interaction with the electric field

Let us introduce an external monochromatic electronic field E(𝑧, 𝑡) of wavelength 𝜆 (and frequency 𝜈 = 𝑐
𝜆

with 𝑐 the speed of light in vacuum) polarized along the unitary vector x, travelling along z. The associated

angular frequency and wavenumber are 𝜔 = 2𝜋𝜈 and 𝑘 = 2𝜋
𝜆 , respectively, such that

E(𝑧, 𝑡) = 𝐸𝑥 cos (𝜔𝑡 − 𝑘𝑧)x = 𝐸𝑥 cos (𝜔𝑡 − 2𝜋𝑧
𝜆

)x. (2.55)

Here, we will neglect the effect of the magnetic field for its interaction with the electrons and the nuclei.

Thus, we only consider the classical electric field, for which the potential energy of interaction with a set

{𝑞𝑖, r𝑖} of charged particles (here, all electrons and nuclei) gives the interaction Hamiltonian

𝐻ext(𝑡) = −𝐸𝑥 ∑
𝑖

𝑞𝑖𝑥𝑖 cos (𝜔𝑡 − 2𝜋𝑧𝑖
𝜆

). (2.56)

For our purposes, electric fields involved in transitions between molecular states will be characterized with

a wavelength much larger than the size of the molecules.3 This legitimates the long-wave approximation,

which neglects the space variation of the electric field,

𝐻ext(𝑡) ≃ −𝐸𝑥 ∑
𝑖

𝑞𝑖𝑥𝑖 cos (𝜔𝑡) (2.57)

that can be rewritten effectively as

𝐻ext(𝑡) = −𝝁(r, R) ⋅ E (2.58)

where 𝝁(r, R) is the dipole moment operator of the molecule and E is the electric field. We note that this

is the usual semi-classical picture for the electric field interaction, with length-gauge; analogous equations

can be found for the velocity-gauge. Considering the interaction of the molecule with the electric field only

by adding eq. (2.58) to the molecular Hamiltonian eq. (2.1) is the dipole approximation. Unless otherwise

specified, in the rest of this thesis, we always assume the dipole approximation to be valid.

2.3.2 Transition dipole moments and the Condon approximation

The first-order perturbative dipole approximation for the interaction of the molecule with the electric field

is standard and allows us to simply treat the electric field as a first-order perturbation to the reference

3For the UV-visible transitions, the order of magnitude of the wavelength is 𝜆 ≃ 100 nm while the molecular sizes range

from 0.1 nm to 1 nm.
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molecular Hamiltonian. As such, the transition probabilities between the molecular states can be evaluated

from the transition dipole moments (TDMs) matrix elements,

TDM𝑖𝑓 = ⟨Ψmol
𝑖 ∣ 𝝁(r, R) ∣ Ψmol

𝑓 ⟩ , (2.59)

where 𝑖 and 𝑓 are the labels for the initial state and final state, respectively. Here, the braket notation

accounts for the integration over both electronic and nuclear degrees of freedom. Assuming separable

molecular states (that is, adiabatic electronic states within the Born-Oppenheimer approximation or locally

diabatic states), one can separate the electronic and nuclear degrees of freedom

⟨Ψmol
𝑖 ∣ 𝝁(r, R) ∣ Ψmol

𝑓 ⟩ ≃ ⟨𝜓nu
𝑖 𝜙el

𝑖 ∣ 𝝁el(r) + 𝝁nu(R) ∣ 𝜓nu
𝑓 𝜙el

𝑓 ⟩

= ⟨𝜓nu
𝑖 𝜙el

𝑖 ∣ 𝝁el(r) ∣ 𝜓nu
𝑓 𝜙el

𝑓 ⟩ + ⟨𝜓nu
𝑖 𝜙el

𝑖 ∣ 𝝁nu(R) ∣ 𝜓nu
𝑓 𝜙el

𝑓 ⟩ .
(2.60)

Now using different notations for the integration over the electronic and nuclear degrees of freedom, the

second term of eq. (2.60) reads

⟨𝜓nu
𝑖 𝜙el

𝑖 ∣ 𝝁nu(R) ∣ 𝜓nu
𝑓 𝜙el

𝑓 ⟩ = ⟨𝜓nu
𝑖 ∣ 𝝁nu(R) ∣ 𝜓nu

𝑓 ⟩
nu

⟨𝜙el
𝑖 ; R ∣ 𝜙el

𝑓 ; R⟩
el⏟⏟⏟⏟⏟⏟⏟

=𝛿𝑖𝑓

(2.61)

and is non-zero when considering that the transition does not change the electronic state. This leads to

the study of (ro)vibrational spectroscopy, with the transition probabilities being governed by the matrix

elements of the nuclear transition dipole moment ∣⟨𝜓nu
𝑖 ∣ 𝝁nu(R) ∣ 𝜓nu

𝑓 ⟩
nu

∣
2
. On the other hand the first

term of eq. (2.60) is

⟨𝜓nu
𝑖 𝜙el

𝑖 ∣ 𝝁el(r) ∣ 𝜓nu
𝑓 𝜙el

𝑓 ⟩ = ⟨𝜓nu
𝑖 ∣ ⟨𝜙el

𝑖 ; R ∣ 𝝁el(r) ∣ 𝜙el
𝑓 ; R⟩

el
∣ 𝜓nu

𝑓 ⟩
nu

= ⟨𝜓nu
𝑖 ∣ 𝝁el

𝑖𝑓(R) ∣ 𝜓nu
𝑓 ⟩

nu
(2.62)

where we defined 𝝁el
𝑖𝑓(R) the electronic transition dipole moment (ETDM) between the initial and final

electronic states. The probability of vibrational-electronic transitions (vibronic transitions) is evaluated by

computing the expectation value of the ETDM with respect to the nuclear wavefunctions.

Let us consider the initial state is the electronic ground state of a given molecule, and the geometry

R = Req of the molecule is the minimum of the electronic ground state. The ETDM can be expanded as

a Taylor series along a set of nuclear coordinates corresponding to the normal modes (Q instead of R) of

the molecule (defined later on in section 2.4)

𝝁el
0𝑓(Q) = 𝝁el

0𝑓(Qeq) +
3𝑁−6
∑

𝑖

⎛⎜
⎝

𝜕𝝁el
0𝑓

𝜕𝑄𝑖
∣
eq

⎞⎟
⎠

(𝑄𝑖 − 𝑄𝑖,eq) + ⋯ (2.63)

The zeroth order in eq. (2.63) leads to the Condon approximation [79, 80] when computing the ETDM

toward an excited state and the associated vibronic spectrum. In particular, one can integrate the ETDM

over the nuclear degrees of freedom and obtain within the so-called Franck-Condon framework [81]

⟨𝜓nu
𝑖 ∣ 𝝁el

𝑖𝑓(R) ∣ 𝜓nu
𝑓 ⟩

nu
≃ 𝝁el

0𝑓(Qeq) ⟨𝜓nu
0 ∣ 𝜓nu

𝑓 ⟩
nu

. (2.64)
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Within an harmonic approximation for the nuclear wavefunctions, the squared overlaps ∣⟨𝜓nu
𝑖 ∣ 𝜓nu

𝑓 ⟩
nu

∣
2

are

known as the Franck-Condon factors and constitute the most straigthforward way of computing stationary

vibronic spectra toward excited states in a time-independent framework [82, 83]. The first-order terms

in eq. (2.63) are known as the Herzberg-Teller approximation of the ETDM and are necessary when the

zeroth order is zero for symmetry-forbidden transition within the electronic states (also known as intensity

borrowing). The previous approximations can be generalized with electronic excited states as initial states

and electronic ground state as the final state for emission.

For our purposes, we will see that the ETDM can in general be approximated to the zeroth order. In

particular when using diabatic electronic states and associated diabatic ETDM, their nuclear variations are

assumed to be small at best or smooth at worst, with respect to the nuclear degrees of freedom.

Take-home messages

1. We apply the perturbative dipole approximation to take into account the interaction

between the molecules and the electric field.

2. We use the Condon approximation (constant electronic transition dipole moments) to

compute vibronic spectra within the Born-Oppenheimer approximation or when using

diabatic electronic states.

2.4 The choice of coordinates

Until now, the coordinates of the nuclei were always given in the Cartesian laboratory-frame or were

unspecified. Within the previous sections, the derivation (and in particular the nuclear-space derivatives)

obtained for Cartesian coordinates are valid for any system of rectilinear coordinates. However, the results

obtained are true for any system of coordinates. In this section, we briefly sum up the choices to be made

for the coordinate system (coords) in molecular dynamics. Going back to nuclear wavepacket dynamics,

the numerical implementations for eq. (2.22) strongly depend on the choice of the system of coordinates,

as regards many aspects.

First, the ansatz for the wavepacket 𝜓𝛽(coords, 𝑡) can be adapted to the coordinates. For instance in

wavepacket-based quantum dynamics, the wavepacket is expanded in a basis of primitive functions: Gauss-

Hermite functions in the case of normal coordinates. On the other hand, in trajectory-based dynamics,

the wavepacket is approximated by an ensemble of nuclear trajectories, for which the Cartesian coordinates

are more natural. Next, the matrix of the nuclear kinetic energy operators, including the NACs (for the

same electronic state or different ones), are also strongly determined by the choice of coordinates. In a

molecular system, normal coordinates (associated to the normal modes of the equilibrium geometry of a
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given molecule) yield a simple diagonal, harmonic oscillator type for the kinetic energy operator, similarly

to Cartesian coordinates. The kinetic energy operator is however more complicated for a polyspherical and

curvilinear system of coordinates.

In addition, for grid-based quantum dynamics, the potential energies 𝐻el
𝛼𝛼(coords) or 𝐻el

𝛼𝛽(coords)

of the electronic Hamiltonian must be known. This part is strongly dependent on the phenomenon to be

studied, and the choice of coordinates must allow for a correct description of the associated potential energy

surfaces. For instance, for chemical reactivity (bond breaking), one expects strong anharmonic potential

energies for which complicated system of coordinates can be really convenient. On the other hand, for

phenomena involving only small nuclear displacements, the normal modes of vibration are expected to be

relevant (for both kinetic energy and potential energy). Hence, for grid-based quantum dynamics, the choice

of coordinates is in general a trade-off between simplicity for the kinetic energy operators or simplicity for the

electronic state potential energies (similarly to the choice between adiabatic and diabatic representations).

The more separable is the nuclear Hamiltonian representation (kinetic energy and potential energy parts in

Hamiltonian), the more adapted the coordinates are for quantum dynamics (less correlation). As we will

see later on, this is not a problem in this work because of the use of separable Hamiltonian models, with

normal coordinates only.

We, hereafter, briefly describe the most common systems of coordinates, starting from the Cartesian

coordinates to find internal coordinates, of interest for geometry optimization problems (minima, transition

states). Next, we define normal coordinates, with a particular focus on the normal modes of vibrations,

which we use in this work used for exploring PESs and for defining the nuclear wavepackets.

2.4.1 From Cartesian coordinates to internal coordinates

Suppose that we have a set of 𝑁 nuclei having masses {𝑀1, ⋯ , 𝑀𝑁}, for which the 3𝑁 Cartesian coordinates

are collected in

R̃ = ⎛⎜⎜
⎝

�̃�1𝑥, �̃�1𝑦, �̃�1𝑧⏟⏟⏟⏟⏟
R̃1

, ⋯ , �̃�𝑁𝑥, �̃�𝑁𝑦, �̃�𝑁𝑧⏟⏟⏟⏟⏟⏟⏟
R̃𝑁

⎞⎟⎟
⎠

T

(2.65)

with respect to a Galilean laboratory-fixed frame (𝑥, 𝑦, 𝑧) with fixed origin 𝑂 (independent of the molecule).

As the Coulomb molecular Hamiltonian is invariant by translation, one can always translate the coordinates

of the nuclei so that the center of mass is superimposed with the origin of the coordinates, the so-called

space-fixed frame (repeating the nuclei masses for 𝑥, 𝑦 and 𝑧)

R̃COM =
∑𝐴 𝑀𝐴R̃𝐴

∑𝐴 𝑀𝐴
and R = R̃ − R̃COM. (2.66)

From there, we define mass-weighted translation vectors; for the 𝑥-components

D̃1 = (√𝑀1, 0, 0 ⋯ √𝑀𝑁, 0, 0)
T

(2.67)
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and equivalently for the 𝑦- and 𝑧-components, in vectors D̃2 and D̃3, respectively. With the same idea,

we define mass-weighted rotational vectors; for the rotation around 𝑥

D̃4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(𝐺1𝑦𝑂13 − 𝐺1𝑧𝑂12) √𝑀1

(𝐺2𝑦𝑂13 − 𝐺2𝑧𝑂12) √𝑀2

⋮

(𝐺𝑁𝑦𝑂13 − 𝐺𝑁𝑧𝑂12) √𝑀𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.68)

and equivalently for rotations around 𝑦 and 𝑧 in vectors D̃5 and D̃6, respectively, with O the matrix of

eigenvectors (columns) of the inertia tensor

I =
⎡
⎢
⎢
⎢
⎣

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧

𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧

𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

⎤
⎥
⎥
⎥
⎦

= ∑
𝐴

⎡
⎢
⎢
⎢
⎣

𝑀𝐴 (𝑅2
𝐴𝑦 + 𝑅2

𝐴𝑧) −𝑀𝐴 (𝑅𝐴𝑥𝑅𝐴𝑦) −𝑀𝐴 (𝑅𝐴𝑥𝑅𝐴𝑧)

−𝑀𝐴 (𝑅𝐴𝑦𝑅𝐴𝑥) 𝑀𝐴 (𝑅2
𝐴𝑥 + 𝑅2

𝐴𝑧) −𝑀𝐴 (𝑅𝐴𝑦𝑅𝐴𝑧)

−𝑀𝐴 (𝑅𝐴𝑧𝑅𝐴𝑥) −𝑀𝐴 (𝑅𝐴𝑧𝑅𝐴𝑦) 𝑀𝐴 (𝑅2
𝐴𝑥 + 𝑅2

𝐴𝑦)

⎤
⎥
⎥
⎥
⎦

. (2.69)

O defines the principal-axis frame for the molecular geometry, and G𝐴 are the coordinates of nuclei A in

this frame

G𝐴 = R𝐴O. (2.70)

The vectors D̃𝑖=1…6 define the mass-weighted translation and rotation vectors. If normalized they represent

the so-called translational and rotational normal modes D𝑖. This first separation of translational and

rotational motions is often referred to as the definition of the Eckart frame, or the body-fixed frame,

and provides the definition of Euler angles. In practice for a definition of internal coordinates or later

on normal coordinates, the previous transformations are common. It is for instance the case for the

vibrational analysis in the Gaussian package, where the six vectors previously defined are used to produce

the remaining 𝑁vib = 3𝑁 −6 vectors from a Schmidt orthogonalization, providing the tranformation matrix

D from mass-weighted Cartesian coordinates (with the diagonal matrix of nuclear masses M)

Rmw = M 1
2 R (2.71)

to internal coordinates

s = DRmw. (2.72)

These internal coordinates are not uniquely defined. In general, it is only an intermediate step either for

the diagonalization of a Hessian matrix, yielding the normal modes of the molecule at the given geometry

or for optimization steps in gradient-descent and quasi-Newton algorithms. In this work, we prefer the use

of the singular-value decomposition for the determination of the internal coordinates instead of a Schmidt

orthogonalization, only because of its simpler general implementation.

On a final note of this section, let us inspect the derivatives associated to mass-weighted coordinates

for a function 𝑓(Rmw) (for instance the energy)

𝜕𝑓
𝜕𝑅mw

𝐴
(Rmw) = 1

√𝑀𝐴

𝜕𝑓
𝜕𝑅𝐴

(R) (2.73)
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where this can be shown using the chain rule for instance. It is then to be noted that in a mass-weighted

Cartesian frame, coordinates are weighted with M1/2 while successive derivatives are weighted with M−1/2.

2.4.2 Introduction to normal coordinates

Although Cartesian coordinates are simple to use for having an unambiguous geometry of a molecule or

for the derivation of general theorems in quantum chemistry and quantum dynamics, they are in general

not adapted to practical studies. For instance in this work, we study vibrational motions from both time-

independent and time-dependent perspectives. The natural system of coordinates for these are the normal

coordinates, which are molecule-dependent and can be computed for each geometry of the molecule, based

on the harmonic approximation for the nuclear displacements around an equilibrium geometry. Other

studies, focused on chemical reactivity and bond breaking/bending might require more involved system of

coordinates, such as Jacobi coordinates or poly-spherical coordinates. In other words, normal coordinates

are well-suited for small amplitude motions, while large amplitude motions require more involved system of

coordinates.

For the purpose of defining normal coordinates, let us suppose that the lower lying electronic state

(electronic ground state) satisfies the Born-Oppenheimer approximation and is well-separated from any

other electronic state, with potential energy 𝑉 (R). We assume that this potential has a minimum (set

as the zero energy), and we choose a translation such that this minimum (the equilibrium geometry) is at

Req = 0. The potential can be expressed as a Taylor series of the displacements X = R − Req

𝑉 (X) = 1
2

3𝑁
∑
𝑖=1

3𝑁
∑
𝑗=1

𝜕2𝑉
𝜕𝑋𝑖𝜕𝑋𝑗

∣
0

𝑋𝑖𝑋𝑗 + ⋯ (2.74)

where 𝑖 runs over all the coordinates ((𝑥, 𝑦, 𝑧) for nucleus A), and where the gradient is zero because we

expand the potential around an equilibrium geometry. Using mass-weighted displacements (similarly to

mass-weighted Cartesian coordinates, 𝑥𝑖 = √𝑀𝑖𝑋𝑖), the nuclear Hamiltonian takes the form

𝐻(x) = −ℏ2

2

3𝑁
∑
𝑖=1

𝜕2

𝜕𝑥2
𝑖

+ 1
2

3𝑁
∑
𝑖=1

3𝑁
∑
𝑗=1

𝜕2𝑉
𝜕𝑥𝑖𝜕𝑥𝑗

∣
0

𝑥𝑖𝑥𝑗. (2.75)

The mass in the kinetic energy term is now directly taken into account in the nuclear derivatives; on the

other hand, the potential energy term is invariant under mass-weighting. As of now, the Hamiltonian is not

separable with respect to the coordinates, because of cross-terms 𝑥𝑖𝑥𝑗 in the potential energy term. The

solution is thus to diagonalize the matrix (for 𝑖, 𝑗 indices) of the nuclear second derivatives of the potential

(that is, the Hessian matrix)

𝐾𝑖𝑗 = 𝜕2𝑉
𝜕𝑥𝑖𝜕𝑥𝑗

(2.76)

which has 3𝑁 eigenvalues and eigenvectors, 𝑘𝑖 and Lmw
𝑖 , that define the normal coordinates4

𝑄𝑖 =
3𝑁
∑

𝑖
𝐿mw

𝑖,𝑗 𝑥𝑗 (2.77)

4A training jupyter-notebook for vibrational analysis of equilibrium geometries is available online at https://github.

com/jwjgaliana/toolbox-qcqd/tree/main/fchk2NormalModes.
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where Lmw is an orthogonal matrix. We must stress here that the newly defined normal coordinates are

still rectilinear coordinates, as they are obtained from linear combinations of Cartesian coordinates. The

Hamiltonian representation within this set of coordinates is now separable

𝐻(Q) = −ℏ2

2

3𝑁
∑

𝑖

𝜕2

𝜕𝑄2
𝑖

+ 1
2

3𝑁
∑

𝑖
𝑘𝑖𝑄2

𝑖 . (2.78)

The normal-mode displacements and associated mass-weighted curvatures (𝑘𝑖) define the vibrations and

associated frequencies (𝜔𝑖 = √𝑘𝑖, where the reduced mass is 𝜇𝑖 = 1 when using mass-weighted coordi-

nates) of the molecule for a given geometry. For this separable Hamiltonian, the vibrational eigenenergy

depends on the vibrational numbers 𝜈𝑖

𝐸vib = ∑
𝑖

𝐸𝜈𝑖
= ∑

𝑖
ℏ𝜔𝑖 (𝜈𝑖 + 1

2
) (2.79)

with the associated zero-point energy

𝐸ZPE = ∑
𝑖

1
2

ℏ𝜔𝑖. (2.80)

It is to be noted that normal coordinates are generally better defined by a priori transforming the Hessian

to an internal coordinates basis set, so as to better separate translational/rotational modes from vibrational

modes.5 Let us stress that the normal modes of vibration obtained from a mass-weighted Hessian are not

adapted to displacements in a non-mass-weighted Cartesian system of coordinates. In particular, in the

rest of this work, we distinguish

• the normal modes of vibration: a rigorously orthonormal basis set (mass-weighted);

• the Cartesian displacements associated to normal modes of vibrations: a normalized (but nonorthog-

onal) set of vectors for which the coordinates have been “de-mass-weighted”.

Unless otherwise specified, in the following, each time a projection is made on normal modes, it is on the

normal modes of vibration; each time a displacement is made, it is from the Cartesian displacements.

Take-home messages

1. We make the choice of normal coordinates (adapted to the normal modes of vibration

of a given molecule) for the rest of this work.

2. From the time-independent perspective, the normal modes of vibration are used to com-

pute UV-visible spectra (vibronic properties) from computing the overlaps between vi-

brational wavefunctions of initial and final states.

5Translational and rotational modes have zero-valued eigenvalues, resulting in 3𝑁 − 6 or 3𝑁 − 5 non-zero eigenvalues in

general or for linear molecules, respectively.
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3. From the time-dependent perspective, the normal coordinates are used for the definition

of practical primitive basis sets (Gauss-Hermite functions) for low-energy and small-

amplitude motions.

2.5 Conical intersections and models of potential energy surfaces

In the rest of this chapter and unless otherwise specified, we now choose nuclear coordinates expressed in

the system of normal coordinates. Thus, all previously defined quantities having nuclear dependence on R

are now explicitly functions of the normal coordinates Q. In particular, let us inspect the halved energy

difference for the case of two adiabatic electronic states

Δ𝑉 (Q) = 𝑉2(Q) − 𝑉1(Q)
2

≥ 0 (2.81)

and suppose there exists a geometry QX for which

Δ𝑉 (QX) = 0. (2.82)

This geometry is called a conical intersection (CoIn) and is the focus of this section. We shall briefly

describe the important features of CoIns from an adiabatic PESs point of view and illustrate that with

plausible but simple diabatic models of PESs. Then, we will present the advances in finding CoIns and in

particular a minimum-energy conical intersection (MECI). Finally, we will present the diabatic models we

retain for diabatization by ansatz around conical intersections.

2.5.1 Conical intersections, adiabatic and diabatic representations

As we already stated before, CoIn geometries exhibit a singular character in the adiabatic electronic states,

as the off-diagonal kinetic energy operator

Fad
12(Q) =

⟨𝜙ad
1 ; Q ∣ 𝜕

𝜕Q𝐻el(Q) ∣ 𝜙ad
2 ; Q⟩

𝑉2(Q) − 𝑉1(Q)
(2.83)

which indeed diverges at the exact locus QX of a CoIn. With the adiabatic representation, we define the

Hellmann-Feynman gradient difference (GD) vector

gad(Q) = 1
2

(⟨𝜙ad
2 ; Q ∣ 𝜕

𝜕Q𝐻el(Q) ∣ 𝜙ad
2 ; Q⟩ − ⟨𝜙ad

1 ; Q ∣ 𝜕
𝜕Q𝐻el(Q) ∣ 𝜙ad

1 ; Q⟩)

= 1
2

(𝜕𝑉2
𝜕Q − 𝜕𝑉1

𝜕Q ) = 𝜕
𝜕Q(Δ𝑉 )(Q)

(2.84)

and the Hellmann-Feynman derivative coupling (DC) vector

had(Q) = ⟨𝜙ad
1 ; Q ∣ 𝜕

𝜕Q𝐻el(Q) ∣ 𝜙ad
2 ; Q⟩ = 2Δ𝑉 (Q)Fad

12(Q) (2.85)
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Let us suppose that we are at the exact CoIn geometry, Δ𝑉 (QX) = 0. At this geometry, the given expression

of the GD vector eq. (2.84) may be ill-defined because Δ𝑉 (Q) is no longer differentiable everywhere around

QX. On the PESs, this can be understood by looking closely at the locus of the CoIn, where a double-cone

cusp is found for the upper and lower surfaces. In the following, we further illustrate this using a toy model

of diabatic Hamiltonian.

We reuse the “working” Hamiltonian and electronic states defined in section 2.2.2.1 and suppose it is

a sufficiently diabatic representation

H(Q) = 𝑆(Q)𝟙 + ⎡⎢
⎣

−𝐷(Q) 𝑊(Q)

𝑊(Q) 𝐷(Q)
⎤⎥
⎦

. (2.86)

The associated eigenvalues and energy difference are

𝑉1,2(Q) = Σ(Q) ± Δ𝑉 (Q) = 𝑆(Q) ± √𝐷(Q)2 + 𝑊(Q)2 (2.87a)

Δ𝑉 (Q) = √𝐷(Q)2 + 𝑊(Q)2. (2.87b)

At Q = QX, to ensure Δ𝑉 (QX) = 0, we must have

𝐷(QX) = 0 and 𝑊(QX) = 0 (2.88)

Three main gradients are thus identified for the characterization of a CoIn. The gradient of the tuning 𝐷

between the diabatic electronic states, which tunes the diabatic states so that their energies get closer.

The gradient of the coupling 𝑊 between the diabatic electronic states, which couples the diabatic states

so that their characters get closer. And finally the gradient of the average energy 𝑆, which defines the tilt

of the CoIn.

The energy difference Δ𝑉 can simply be seen as a function of the tuning and the coupling values, 𝐷

and 𝑊 respectively. In this case, we can have a first-order expansion of the energy difference in terms of

𝐷 and 𝑊. Accordingly, the energy degeneracy is lifted linearly around the CoIn geometry when moving

along the gradients of 𝐷 and 𝑊 (hence ultimately the coordinates Q that makes 𝐷 and 𝑊 change to first

order). These two gradients form a 2-dimensional space in which the energy difference is lifted linearly

from the CoIn geometry. This 2-dimensional space in the nuclear space is called the branching space or

branching plane, and is spanned by two (non-uniquely defined) branching-space vectors. They correspond

to the diabatic equivalent of the GD and DC vectors defined for the adiabatic electronic states. We stress

again here that because the degeneracy is lifted along two directions only, there remain 3𝑁 − 8 dimensions

in nuclear space for which the degeneracy is conserved. As a consequence, when one finds a conical

intersection, it is not unique. This is the concept of the conical intersection seam, a 3𝑁 − 8 subspace in

which conical intersections are linked together. Because there is no uniqueness of a conical intersection,

one can always try to find the minimum-energy CoIn within a seam, like any other critical points in PES.

This is the subject of the section section 2.5.2, on finding minimum-energy conical intersections (MECIs).
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2.5.1.1 Evaluation of the branching-space vectors without the electronic states

Concerning the derivative coupling had defined in eq. (2.85), although not directly ill-defined away from

degeneracy points, it is not routinely obtained in all electronic structure methods. In particular, single-

reference methods of evaluation of the electronic excited states, in our case the time-dependent density

functional theory (chapter 4) exhibit two main problems. First, because it is based on the linear-response

of the electronic ground state, it cannot describe adequatly a degeneracy between the electronic ground

state and one electronic excited state. For this reason, in the following, we only present results regarding

the degeneracy between electronic excited states; the electronic ground state is always supposed to be

well-separated from the electronic excited states (and it is for the molecules studied here). Next, among

the electronic excited states, the derivative coupling is never obtained exactly, as opposed to wavefunction

methods where it can be evaluated from the derivatives of configuration interaction vectors and orbitals.

Different strategies have been proposed (and benchmarked) for estimating and evaluating the DC vector

and how to use its approximation for molecular dynamics, in particular for trajectory-based dynamics

calculations [84]. In this work, we evaluate the DC vector using energy derivatives only, based on the

proposition of Gonon and co-workers [85]. The idea is to reconstruct the branching-space vectors from

the knowledge of the Hessian of the squared energy difference Δ𝑉 2. Indeed, the squared energy difference

is a regular function having a minimum at a CoIn geometry, and it is differentiable at the locus of a

CoIn. Furthermore, because we know that Δ𝑉 = 0 is lifted to first order around a CoIn through only

two directions, the Hessian of Δ𝑉 2 = 0 must have two non-zero eigenvalues at a CoIn. Let us write the

successive derivatives of the squared energy difference

𝜕
𝜕𝑄𝑗

(Δ𝑉 2)(Q) = 2Δ𝑉 (Q) 𝜕
𝜕𝑄𝑗

(Δ𝑉 )(Q)
⏟⏟⏟⏟⏟⏟⏟

𝑔ad
𝑗 (Q)

= 2Δ𝑉 (Q)𝑔ad𝑗 (Q) (2.89)

and
𝜕2

𝜕𝑄𝑖𝑄𝑗
(Δ𝑉 2)(Q) = 2Δ𝑉 (Q) 𝜕2

𝜕𝑄𝑖𝑄𝑗
(Δ𝑉 )(Q) + 2𝑔ad𝑖 (Q)𝑔ad𝑗 (Q) (2.90)

which can be rewritten in matrix-vector form, defining KSED the Hessian matrix of the squared energy

difference and dropping the coordinate dependence

KSED = Δ𝑉 (K2 − K1) + 2 (gadgad,T) , (2.91)

where K𝑖 is the Hessian for the adiabatic electronic state 𝑖 at the CoIn. The first term is thus simply the

difference in the adiabatic Hessians of the considered electronic excited states, times the halved energy

difference. The second term is the dyadic product of the adiabatic halved gradient difference with itself.

Diagonalizing KSED yields some type of vibrational analysis of the squared difference energy. Far from

a point of degeneracy, negative non-zero eigenvalues are found and correspond to directions along which

the energy difference can be further minimized. Close to a point of degeneracy, two non-zero eigenvalues
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𝑙1,2 should be found and the associated orthogonal eigenvectors u1,2 correspond, once scaled and up to a

rotation, to the branching-space vectors. Indeed, by construction, these eigenvectors are orthonormal

u𝑖 ⋅ u𝑗 = 𝛿𝑖𝑗 (2.92)

and can be re-scaled

x𝑖 = √𝑙𝑖
2

u𝑖. (2.93)

so that they have the physical meaning of an energy gradient. At a CoIn geometry, the pair of vectors

(x1, x2) spans the same subspace as the branching-space vectors (gad, had) and both pairs are thus related

through a rotation.6 We note that the Hessian of the squared energy difference can be written, at a CoIn

geometry, as a dyadic sum of the branching-space vectors (spectral decomposition)

KSED = 2 (x1xT
1 + x2xT

2 ) . (2.94)

2.5.1.2 Visual inspection of conical intersections

Now, let us focus on illustrating the properties of the “working” diabatic Hamiltonian with a two-dimensional

case of a given CoIn with a very simple expansion and toy-model

𝑆(𝑋, 𝑌 ) = ”tilt” × 𝑋 + 3𝑋2 + 3𝑌 2

𝐷(𝑋, 𝑌 ) = 𝑌

𝑊(𝑋, 𝑌 ) = 𝑋.

(2.95)

The average energy is harmonic, with equal curvatures (= 6 for the toy-model) for 𝑋 and 𝑌 coordinates.

The tilt parameter is turned on or off and prescribes the presence or not of a gradient for the average

energy. The tuning is linear in 𝑌 and the coupling is linear in 𝑋. The locus of the CoIn is simply here

(𝑋, 𝑌 ) = 0. The adiabatic and diabatic surfaces for these models (with zero tilt and with non-zero tilt)

are given in fig. 2.1 with two different ranges for the (𝑋, 𝑌 ) plane.

Looking at the adiabatic surfaces for the zero-tilt case: the surfaces seem governed by the quadratic

average energy far from (𝑋, 𝑌 ) = 0 (upper panel), but close to this point the surfaces happen to have a

linear double-cone shape (lower panel). On the other hand, the diabatic surfaces are simple paraboloids in

𝑋 and 𝑌, with non-zero position for their minima. In this thesis, we mostly encounter two topologies of

CoIns, characterized by symmetrical and asymmetrical double wells on the lowest potential energy surface.

We illustrate it again with two-dimensional models, for a symmetrical double-well

𝑆(𝑋, 𝑌 ) = 3𝑋2 + 3𝑌 2

𝐷(𝑋, 𝑌 ) = 2𝑌

𝑊(𝑋, 𝑌 ) = 𝑋

(2.96)

6A training jupyter-notebook for implementing and manipulating a simple numerical branching-space is available online

https://github.com/jwjgaliana/toolbox-qcqd/tree/main/fchk2NumericalBranchingSpace.
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Figure 2.1: Adiabatic and diabatic potential energy surfaces for simple models of conical intersections,

without (left) and with (right) tilt.

and for an asymmetrical double-well

𝑆(𝑋, 𝑌 ) = 𝑋 + 𝑌 + 3𝑋2 + 3𝑌 2

𝐷(𝑋, 𝑌 ) = 𝑋 + 2𝑌

𝑊(𝑋, 𝑌 ) = 𝑌

(2.97)

The adiabatic and diabatic surfaces for these models (symmetrical and asymmetrical) are given in fig. 2.2

with, again, two different ranges fo the (𝑋, 𝑌 ) plane. On the left, the symmetrical double-well correspond

to an anisotropic conical intersection (coupling on Y greater than tuning on X) with similar curvatures.

On the right, the asymmetrical double-well corresponds to an example of tuning along both directions and

coupling along one, with a tilt.

The accurate description of high-dimensional PESs of crossing electronic excited states around conical

intersections is a challenging task and one of the main aspect of the present thesis. In the following, we

briefly present strategies for finding the MECI for a given pair of electronic states and present the principal

ideas of vibronic coupling Hamiltonian models for the diabatic states around CoIns.

2.5.2 Geometry optimization of MECI

Formally, the optimization of a MECI geometry between two electronic states can be seen as a constrained

optimization of the average energy 𝑆(R), under the constraint that the energy difference is zero. This

boils down to

min
Δ𝑉 (R)≤𝜖

𝑆(R) (2.98)
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Figure 2.2: Adiabatic and diabatic potential energy surfaces for simple models of anisotropic conical

intersections; symmetrical (left) and asymmetrical (right) double-well.

where 𝜖 is a convergence criterion for the energy difference. Depending on the algorithm chosen, the

other optimization criteria will be the root mean square and maximum absolute value of the optimizing

gradient and of the nuclear displacements. Historically, the first algorithms were proposed in 1993 by

Manaa and Yarkony (with Lagrange multipliers) [86] and in 1994 by Bearpark, Robb and Schlegel (without

Lagrange multiplier) [87]. During this work, we mostly used home-made implementations of a family

of without-Lagrange-multiplier algorithms. These implementations are based on the propositions of the

composed gradient (CG) and composed steps (CS) algorithms developed non-exhaustively by Bearpark,

Sicilia, Ruiz-Barragan, and co-workers [87–89].

In the following, all quantities depend on the nuclear coordinates that we express in the Cartesian

system of coordinates R and we drop this dependence for the sake of readability. Let us define the gradient

average s for two electronic states, labeled 𝑎 and 𝑏, as

s = 𝜕
𝜕R𝑆 = 𝜕

𝜕R (𝑉𝑎 + 𝑉𝑏
2

) = 1
2

(𝜕𝑉𝑎
𝜕R + 𝜕𝑉𝑏

𝜕R ) (2.99)

and re-define

u1 = gad

||gad||
and u2 = had

||had||
(2.100)

the normalized branching-space vectors (BS vectors) for the considered electronic states. Because the BSVs

are the vectors along which the degeneracy is lifted to first order, one strategy is to follow the negative of

the gradient average (in order to decrease the energy average) but projected out of the BS, to stay in the

intersection space (IS). This is done by defining the projector onto the BS

PBS = u1uT
1 + u2uT

2 (2.101)

72



2.5. Conical intersections and models of potential energy surfaces

which holds if the BS vectors are defined such that uT
1 u2 = 0.7 Similarly, we define the projector onto the

intersection-space (IS), the complementary space to the branching-space

PIS = 𝟙 − u1uT
1 − u2uT

2 . (2.102)

We can now define the gradient of the seam which is the gradient of the average energy projected onto

the intersection-space

gIS = PISs (2.103)

Ideally, one can think of a gradient-descent algorithm (first-order) optimization algorithm that uses the

gradient of the seam to optimize the energy average and to satisfy the constraint in energy difference.

Two problems are encountered doing so. First, the raw gradient of the seam does not guarantee that

the energy difference will be minimized. Indeed, the projection out of the branching space (if adequately

described) only guarantees that the energy difference will not vary much. Thus, such an algorithm is bad

for approaching the CoIn seam, because no effort on the gradient is dedicated to changing the energy

difference. Second, due to the first-order character of the algorithm, the convergence might be very slow.

For the first problem of approaching the CoIn seam, one common strategy is to use as a gradient for the

optimization a composed gradient, which is numerically relevant for optimizing both the energy difference

and the energy average

gCG = gIS + f(gad) (2.104)

where the second term is a function of the gradient difference vector. Usually, this function is simply

proportional to the direction of the gradient difference. Common choices are for instance

f(gad) = 2Δ𝑉gad (2.105a)

or = 2𝛼Δ𝑉gad (2.105b)

or = 2 Δ𝑉
||gad||

gad

||gad||
(2.105c)

Historically, the first expression was proposed as it is the gradient of the (well-defined) squared energy

difference Δ𝑉 2. The second (with 𝛼 ∈ ℝ+) and third expressions have been proposed because of their

better convergence performance. In the following and unless otherwise specificied, we use the proposition

eq. (2.105c) which is the best prediction for finding Δ𝑉 2 ≃ 0. With the composed gradient algorithm, the

optimization step is a trade-off, through the value of Δ𝑉, between

• following the gradient difference (f(gad)) when the energy difference is large;

• following the gradient of the seam (gIS) when the energy difference is small

although the gradient used for computing the displacements from one geometry to the next is unique.
7Let us note here that for two column vectors u and v, we write their dyadic product uvT and their scalar product uTv.
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For the second problem, the usually implemented extension of the gradient-descent is the Newton-

Raphson (NR) search, which is a second-order search. For an objective function Ε(R) to be minimized

associated to the gradient gCG, we use a second-order Taylor expansion

Ε(R + ΔR) = Ε(R) + gT
CGΔR + 1

2
ΔRTKΔR (2.106)

where K is the Hessian of the objective function and ΔR is the coordinates change between two consecutive

optimization steps. In particular, if a minimum is seeked, the gradient of the objective function (expanded

to first-order) is seeked to be zero

0 = gCG(R + ΔR) = gCG(R) + KΔR (2.107)

so that the NR predicted change in coordinates is

ΔRNR = −K−1gCG. (2.108)

In practice, in optimization algorithms (and in particular in quantum chemistry), the Hessian is rarely known

at each step of the optimization. It is rather updated from gradient information. In the case of geometry

optimization, the iterative scheme of Broyden-Fletcher-Goldfarb-Shanno (BFGS) is often used [90]. It

consists in the calculation of an approximate Hessian W(𝑛+1) at step 𝑛+1 knowing the approximate Hessian

W(𝑛) at step 𝑛 and the change in gradients ΔgCG = g(𝑛+1)
CG −g(𝑛)

CG and coordinates ΔR = ΔR(𝑛+1)−ΔR(𝑛)

from step 𝑛 to step 𝑛 + 1. The BFGS Hessian update reads

W(𝑛+1) = W(𝑛) + ΔgΔgT

ΔgTΔR − W(𝑛)ΔRΔRTW(𝑛),T

ΔRTW(𝑛)ΔR
. (2.109)

The advantages of an Hessian update such as the BFGS scheme is twofold. First, the updated Hessian is

always invertible, by construction, if the initial Hessian is. Indeed, it is recursively built from a matrix that

is invertible and two dyad products which are invertible. Second, the updated Hessian allows us to have

a second-order algorithm without computing the Hessian at each step, which is computationally expensive

in electronic structure methods. With the use of an approximate Hessian instead of an exact Hessian, the

NR search eq. (2.108) is rather called a quasi-Newton search

ΔRQN,(𝑛+1) = − (W(𝑛+1))−1 g(𝑛+1)
CG . (2.110)

In general, the second-order expansion and the use of an approximate Hessian are valid only in a certain

region around the current geometry. The change in coordinates ΔR is thus estimated by minimizing the

model of the objective function under a size constraint

min
||ΔR||≤𝜏

𝐸(R + ΔR) (2.111)

Finally, we mention that we tried a recently imagined Lagrange-multiplier algorithm, which avoids the

knowledge of the derivative coupling, proposed by Joubert-Doriel and co-workers [91]. We give more details

about it in appendix A.
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2.5. Conical intersections and models of potential energy surfaces

2.5.3 Vibronic coupling Hamiltonian models around conical intersections

As we have seen, in the presence of CoIns (MECI or not), the adiabatic representation for the electronic

states is not convenient because of the ill-defined kinetic energy operator. For quantum dynamics simu-

lations, it is then necessary to work with a different basis set of the electronic states, which we will call

a diabatic basis set {𝜙dia
𝛼 (Q)} (see above) in the following. The matrix representation of the electronic

Hamiltonian is full (but symmetric) in the previous basis of 𝑛 electronic states

Hdia(Q) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐻11(Q) 𝐻12(Q) ⋯ 𝐻1𝑛(Q)

𝐻21(Q) ⋱ ⋮

⋮ ⋱ ⋮

𝐻𝑛1(Q) ⋯ ⋯ 𝐻𝑛𝑛(Q)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2.112)

where all the matrix elements are assumed to be smoothly varying with the nuclear coordinates (here

normal mode coordinates). First, without any assumption on the nature of the diabatic states, the diabatic

Hamiltonian elements can be expanded as Taylor series around a reference point. A convenient choice for

this reference is the minimum of the electronic ground state (the Franck-Condon point, FC point), definining

Q = 0 with Q the normal coordinates associated to the 𝑁 equilibrium normal modes 𝑖 (reference harmonic

approximation). Doing so we have

𝐻𝛼𝛼(Q) =
𝑁

∑
𝑖=1

1
2

𝑘(0)
𝑖 𝑄2

𝑖 + 𝐸(𝛼) +
𝑁

∑
𝑖=1

𝜅(𝛼)
𝑖 𝑄𝑖 +

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

1
2

𝛾(𝛼)
𝑖𝑗 𝑄𝑖𝑄𝑗 + ⋯ (2.113a)

𝐻𝛼𝛽(Q) = 𝑊 (𝛼,𝛽) +
𝑁

∑
𝑖=1

𝜆(𝛼,𝛽)
𝑖 𝑄𝑖 +

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

1
2

𝜇(𝛼,𝛽)
𝑖𝑗 𝑄𝑖𝑄𝑗 + ⋯ (2.113b)

The zeroth- and first-order parameters correspond to a diabatic version of

• the vertical transition energy, 𝐸(𝛼) for state 𝛼;

• the vertical energy gradient, 𝜿(𝛼) for state 𝛼;

and

• the constant coupling 𝑊 (𝛼,𝛽) between states 𝛼 and 𝛽;

• the inter-state coupling gradient 𝝀(𝛼,𝛽) between states 𝛼 and 𝛽.

Let us note here that the constant coupling is in general nullyfied by building diabatic electronic states that

coincide/match with the adiabatic electronic states at the reference point (typically the minimum of the

electronic ground state).

The quadratic diagonal terms k(𝛼) = k(0) + 𝜸(𝛼,𝛼) have a particular role in the expansion as they are

necessary for the harmonic approximation for the excited states PES. Indeed, with this framework of normal

coordinates, the kinetic energy operator and the diagonal quadratic terms define the harmonic oscillators
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for each normal mode. The first-order diagonal terms allow us to take into account the shift between

the harmonic oscillator of the reference state and of the other diabatic states. Using only the harmonic

approximation and the first-order terms in the Taylor expansion consists in the linear vibronic coupling

(LVC) Hamiltonian model. Strictly speaking however, the LVC Hamiltonian uses the same curvatures for

the reference state and the other diabatic states (k(𝛼) = k(0)).

On the other hand, the bilinear diagonal terms 𝜸 and 𝝁 allow us to take into account the primary

Duschinsky effect between the normal modes. This is the usual mode mixing of the ground state equilibrium

normal modes, to describe the excited state equilibrium normal modes. The bilinear off-diagonal terms

describe a secondary Duschinsky effect, which is caused by the non-negligible vibronic coupling. Including

these bilinear terms yield the quadratic vibronic coupling (QVC) Hamiltonian model.

The vibronic coupling Hamiltonian (VCH) models given in eq. (2.113) serve as parametrized surrogate

models for diabatization by ansatz [20,77]. We thus stress again here that this diabatization scheme does

not yield the diabatic electronic states, but only diabatize the potential energy surfaces. The most popular

usage of the VCH models is to fit the different parameters on ab initio electronic structure calculations of

the adiabatic electronic states. The aim is to find reliable VCH parameters to reproduce the (ill-defined

around CoIns) adiabatic PESs, and using the underlying (smooth) diabatic PES models for the quantum

dynamics calculation. Another strategy relies not on fitting the VCH parameters but on identifying them

locally to adiabatic energy gradients or adiabatic Hessians, for instance. Both strategy will be used in this

work.

For now, the parameters are non-necessarily zero for all the normal modes of the system of interest.

When electronic diabatic states can be associated to irreducible representations (for molecular geometries

having symmetry), normal modes have specific parameters according to their associated irreducible repre-

sentations and those of the electronic states. We illustrate this with the case of two electronic states in

the following section.

2.5.3.1 Two-state case, with symmetry-adapted electronic states

We consider a molecular geometry that is optimized in the electronic ground state, and assume that it

belongs to a given non-trivial Abelian symmetry point group (for instance C2v). The adiabatic excited states

at this geometry thus belong to irreducible representations (IRs, for instance A1 or B2). The equilibrium

normal modes are also labelled with respect to IRs. Let us assume that adiabatic states (Sa and Sb) are

close in energy and strongly coupled, with different IRs

Γad
𝑎 ≠ Γad

𝑏 . (2.114)

A VCH model can be derived for describing this pair of coupled adiabatic excited states. In particular, a

symmetry-adapted basis of diabatic states can be chosen as underlying states of the VCH model, with IRs

Γdia
𝑎 = Γad

𝑎 and Γdia
𝑏 = Γad

𝑏 . (2.115)
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At the origin (reference or equilibrium geometry), the diabatic energy gradients must be totally symmetric,

hence they must have non-zero components only along normal modes of the totally-symmetric IR ΓTS. In

the same way, the diabatic inter-state coupling gradient must have non-zero components along the normal

modes satisfying

Γdia
𝑎 ⊗ ΓNM𝑖

⊗ Γdia
𝑏 ⊃ ΓTS. (2.116)

Because the symmetry point group is assumed Abelian, the IR for the normal modes satisfies ΓNM = Γ𝑎⊗Γ𝑏.

For instance, within the Abelian symmetry point-group C2v and with two adiabatic electronic states of IRs

A1 and B2:

• the diabatic energy gradients are expanded along the normal modes of symmetry A1;

• the diabatic inter-state coupling gradient are expanded along the normal modes of symmetry B2.

It can be further generalized for second-order bilinear terms, with products of same IRs modes for 𝛾

parameters and products of A1 and B2 modes for 𝜇 parameters. Prototypical examples on the pyrazine or

butatriene cations can be found in Ref [78, 92]. A similar model will be used in chapters 5 and 7 of this

work. We stress that although the symmetry-adapted diabatic states are a natural choice for the diabatic

states, one can always use a rotation of the diabatic basis set, associated to a change of the Hamiltonian

representation.

2.5.3.2 Two-state case, without symmetry-adapted electronic states

As opposed to the previous case, we now consider

Γad
𝑎 = Γad

𝑏 . (2.117)

In this case, both the diabatic energy gradients and inter-state coupling gradient have non-zero components

along the same totally-symmetric normal modes. For instance, within the symmetry point-group CS and

with two adiabatic electronic states beloging to A’, all the normal modes belonging to A’ contribute to the

diagonal and off-diagonal parameters of the VCH model. In this case, a systematic strategy is to express

the Hamiltonian using the gradient average s, the gradient difference g and the inter-state coupling h

vectors components

𝐻dia(Q) = ⎡⎢
⎣

𝐸(𝑎) 0

0 𝐸(𝑏)
⎤⎥
⎦

+ ∑
𝑖

⎛⎜
⎝

𝑠𝑖𝑄𝑖𝟙 + ⎡⎢
⎣

−𝑔𝑖𝑄𝑖 ℎ𝑖𝑄𝑖

ℎ𝑖𝑄𝑖 𝑔𝑖𝑄𝑖

⎤⎥
⎦

+ 1
2

⎡⎢
⎣

𝑘(𝑎)
𝑖 𝑄2

𝑖 0

0 𝑘(𝑏)
𝑖 𝑄2

𝑖

⎤⎥
⎦

⎞⎟
⎠

(2.118)

which is reminiscent of a LVC model with different curvatures for the two diabatic states. Compared to the

case with symmetry, the parameters of the branching plane can be associated to a pair of branching-space

vectors determined from the adiabatic electronic states at the reference point. Again, any rotation of these

branching-space vectors or of the underlying diabatic states is valid, so that some choice is required here.

A similar strategy has been used in [93] and will be applied in chapter 6 of this work.

77



Chapter 2. The Molecular Hamiltonian and its Representations

Take-home messages

1. Conical intersections are molecular geometries at which at two least adiabatic electronic

states are degenerate. They are characterized by an intersection space (seam of degen-

eracy) and a branching space (spanned by two vectors, the branching-space vectors).

2. The branching-space vectors are linked to the Hellmann-Feynman gradient difference

and derivative coupling vectors (hence to the nonadiabatic couplings).

3. They can be evaluated numerically using only the nuclear derivatives of the energy of

the two considered states.

4. Minimum-energy conical intersections can be found by using constrained optimization

of the mean energy; algorithms that do not require explicitly the nonadiabatic couplings

have been implemented.

5. Vibronic coupling Hamiltonian models can be used to describe the potential energy

surfaces around conical intersection, and serve as ansätze for diabatization procedures.
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Chapter 3. Quantum Dynamics and Variational Equations of Motion

In this chapter, we discuss the solutions of the time-dependent Schrödinger equation in the context

of the propagation of multi-dimensional molecular wavepackets. In particular, we focus on the use of the

multiconfiguration time-dependent Hartree (MCTDH) method, and present the main aspects of its usage.

This presentation is strongly inspired from the first review on the MCTDH formalism, Ref [94] (for physical

and numerical details) and on the textbook Applications of Quantum Dynamics in Chemistry, Ref [95].

Unless otherwise specified, all quantum dynamics calculations presented in this work are run with the

MCTDH implementation of the Quantics package [96].

3.1 Time-dependent Schrödinger equation and variational principle

The time-dependent Schrödinger equation reads

𝑖ℏ 𝜕
𝜕𝑡

Ψ(Q, 𝑡) = 𝐻Ψ(Q, 𝑡), (3.1)

where Ψ(Q, 𝑡) is the time-dependent wavefunction (i.e. wavepacket) describing the quantum state of

interest, with Q the dynamical degrees of freedom, and 𝐻 is the Hamiltonian of the system (here time-

independent). For the rest of this chapter, let us consider ℏ = 1 for the sake of simplicity (which boils down

to the use of adimensional physical quantities and atomic units in particular). The aim of this chapter is the

discussion of the differential equation eq. (3.1) from mathematical and numerical perspectives. Detailed

discussions of the Hamiltonian and its representations, and of the coordinates, as well as their physical

meaning were the subject of chapter 2.

Equation (3.1) does not have analytical solutions for systems of many particles in general. The aim of

quantum dynamics (QD) is thus to solve (or propagate) the time-dependent Schrödinger equation (TDSE)

eq. (3.1), with various strategies and approximations. In this section, we focus on solving the TDSE

eq. (3.1) without using mixed quantum-classical approximations, that is by entirely treating all the degrees

of freedom (electronic and nuclear) as quantum degrees of freedom. Thus, for now, the degrees of freedom

in Q are unspecified as regards their nuclear or electronic character. To numerically solve the problem of

variationally propagating an approximate wavefunction in time, one requires two main pre-requisites:

• an approximate ansatz for the wavefunction Ψ(Q, 𝑡);

• a time-dependent variational principle,

which will result in optimal approximate solutions of the TDSE.

In this chapter, we first present the variational principle for solving the time-dependent Schrödinger

equation and then define the three most common ansätze for the wavefunction. Next, we discuss the

equations of motion emerging from these definitions, with a focus on the MCTDH equations of motion.

Finally, we give an overview of the extensions of MCTDH, in particular for including a large number of

degrees of freedom.
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3.1. Time-dependent Schrödinger equation and variational principle

3.1.1 The time-dependent variational principle

Without loss of generality, let us define the functional |Ψ(𝑡)⟩ = |Ψ[𝜆(𝑡)]⟩, as a given ansatz for the multi-

dimensional wavepacket, with complex-valued variational parameters 𝜆(𝑡). The simplest expression of a

time-dependent variational principle (TDVP) is the Dirac-Frenkel variational principle (DFVP),

⟨𝛿Ψ ∣ 𝐻 − 𝑖 𝜕
𝜕𝑡

∣ Ψ⟩ = 0. (3.2)

Here, 𝛿Ψ represents the mathematical extension of the differential variation to a functional and is determined

by the infinitesimal changes in the variational parameters, 𝛿𝜆(𝑡). Given a functional form (an ansatz) of

Ψ(𝑡) as Ψ[𝜆(𝑡)] and from the condition assumed in eq. (3.2), one is able to produce the equations of

motion related to the variational parameters of Ψ(𝑡), 𝜆(𝑡), that is, an expression for 𝜕𝜆
𝜕𝑡 (𝑡) (ordinary

differential equations for 𝜆(𝑡)). The ansatz |Ψ[𝜆(𝑡)]⟩ will be optimized (satisfying the time-dependent

variational principle) to be the best approximation of the exact wavefunction (which satisfies the exact

time-dependent Schrödinger equation). The TDVP is further discussed in section 3.4.1.

3.1.2 The choice of the ansatz for numerical calculations

We now have to define the functional form of the ansatz for the time-dependent wavefunction. In the

following, unless otherwise specified, we define

• 𝑓 the number of dynamical degrees of freedom, such that Q = (𝑄1, ⋯ , 𝑄𝜅, ⋯ , 𝑄𝑓);

• 𝑖𝜅 = 1, ⋯ , 𝑁𝜅 the index of the (orthonormal) so-called primivite basis functions 𝜒(𝜅)
𝑖𝜅

(𝑄𝜅) for the

degree of freedom (DOF) 𝜅. In this work, the primitive basis functions are Gauss-Hermite functions,

solutions of the one-dimensional quantum harmonic oscillator (other choices are possible).

• 𝑗𝜅 = 1, ⋯ , 𝑛𝜅 the index of single-particle functions (SPFs) that we define below.

Time-dependent Hartree and standard method

The time-dependent Hartree (TDH) ansatz is a simple Hartree product with a time-dependent complex

pre-factor

ΨTDH(𝑄1, ⋯ , 𝑄𝑓, 𝑡) = 𝑎(𝑡)
𝑓

∏
𝜅=1

𝜑(𝜅)(𝑄𝜅, 𝑡), (3.3)

where we define the time-dependent single-particle functions (SPFs)

𝜑(𝜅)(𝑄𝜅, 𝑡) =
𝑁𝜅

∑
𝑖𝜅=1

𝐵(𝜅)
𝑖𝜅

(𝑡)𝜒(𝜅)
𝑖𝜅

(𝑄𝜅). (3.4)

For each degree of freedom, we define a single SPF which is a time-dependent linear combination of the

primitive basis functions associated to the considered degree of freedom. Both the pre-factor and the

SPFs are time-dependent (𝑎(𝑡) and 𝐵(𝜅)
𝑖𝜅

(𝑡)). The analogous method in quantum chemistry problems is
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the time-dependent Hartree-Fock (TDHF) method, for which the wavefunction is antisymmetric instead of

a simple Hartree product. The roles of SPFs and primitive basis functions are then similar to the roles of

molecular orbitals and atomic orbitals, respectively.

On the other hand, the “standard method” (SM) ansatz is a sum-of-product expansion of the wave-

function

ΨSM(𝑄1, ⋯ , 𝑄𝑓, 𝑡) =
𝑁1

∑
𝑖1=1

𝑁2

∑
𝑖2=1

⋯
𝑁𝑓

∑
𝑖𝑓=1

𝐶𝑖1𝑖2⋯𝑖𝑓
(𝑡)

𝑓

∏
𝜅=1

𝜒(𝜅)
𝑖𝜅

(𝑄𝜅), (3.5)

where the 𝜒(𝜅)
𝑖𝜅

(𝑄𝜅) is is the 𝑖th𝜅 primitive basis functions for the degree of freedom 𝜅. If the primitive

basis set is complete, the results are numerically exact (same as full configuration interaction in electronic

structure theory). There are no SPFs, but we consider a linear combination (defined with the 𝐶𝑖1𝑖2⋯𝑖𝑓
(𝑡),

or C tensor) of all the configurations generated from the primitive basis functions. Only the C tensor

is time-dependent, but its size is the very limit of the “standard method”, as it depends directly on the

number of degrees of freedom and the size of the primitive basis (scaling in 𝑁𝑓 if 𝑁𝜅 = 𝑁 ∀𝜅). This

exponential scaling is often referred to as the curse of dimensionality. To overcome this problem, one

solution is to build an ansatz that benefits from both the TDH and the SM strategies: a multiconfiguration

ansatz with an efficient contraction of the associated configuration tensor C. Other solutions may be found

by optimizing basis functions to use smaller basis sets or in pruning the ansatz (non-direct-product basis

set or selected configurations) [97–99].

Multiconfiguration time-dependent Hartree

The multiconfiguration time-dependent Hartree (MCTDH) ansatz is also a sum-of-product expansion

ΨMCTDH(𝑄1, ⋯ , 𝑄𝑓, 𝑡) =
𝑛1

∑
𝑗1=1

𝑛2

∑
𝑗2=1

⋯
𝑛𝑓

∑
𝑗𝑓=1

𝐴𝑗1𝑗2⋯𝑗𝑓
(𝑡)

𝑓

∏
𝜅=1

𝜑(𝜅)
𝑗𝜅

(𝑄𝜅, 𝑡), (3.6)

where we now define different sets of single-particle functions (with indices 𝑗𝜅 = 1, ⋯ , 𝑛𝜅) as

𝜑(𝜅)
𝑗𝜅

(𝑄𝜅, 𝑡) =
𝑁𝜅

∑
𝑖𝜅

𝐵(𝜅,𝑗𝜅)
𝑖𝜅

(𝑡)𝜒(𝜅)
𝑖𝜅

(𝑄𝜅). (3.7)

By setting 𝑛1 = 𝑛2 = ⋯ = 𝑛𝑓 = 1 from the MCTDH ansatz, we retrieve the TDH ansatz (allowing only one

TDH configuration, i.e one Hartree product). Compared with TDH, the tensor A(𝑡) is a generalization of

the pre-factor 𝑎(𝑡), and is stored numerically as a vector, generally called 𝐴-vector in the following. While

TDH is the time-dependent version of the self-consistent field algorithm, MCTDH is a time-dependent

version of multiconfiguration self-consistent field (MCSCF) methods in quantum chemistry. By setting

𝑛𝜅 = 𝑁𝜅 from the MCTDH ansatz, we retrieve the “standard method” ansatz and only have a unitary

transformation between the primitive basis set and the SPFs basis set. This unitary transformation is

physically irrelevant and can be fixed, such that in the case 𝑛𝜅 = 𝑁𝜅, the SPFs basis is time-independent

and similar to the primitive basis. The advantage of MCTDH is of course to take a SPFs basis set smaller

than the primitive basis set, leading to fewer equations of motion and a smaller coefficient tensor.
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For the sake of readability, let us introduce the compact notations

J = (𝑗1, ⋯ , 𝑗𝑓) composite indices

AJ = 𝐴𝑗1⋯𝑗𝑓
corresponding A-vector

ΦJ =
𝑓

∏
𝜅=1

𝜑(𝜅)
𝑗𝜅

configuration (Hartree product).

(3.8)

The MCTDH ansatz now reads

ΨMCTDH(𝑄1, ⋯ , 𝑄𝑓, 𝑡) = ∑
J

AJ(𝑡)ΦJ(𝑄1, ⋯ , 𝑄𝑓, 𝑡), (3.9)

where the multiconfiguration character of the ansatz is made clearer.

Until now, the electronic degrees of freedom are implicit. In particular, eq. (3.9) is implicitly given for

the propagation of the wavepacket on a single electronic state. If several electronic states (denoted with

the kets |𝛼⟩) are considered, the MCTDH ansatz is

∣Ψsingle(𝑄1, ⋯ , 𝑄𝑓, 𝑡)⟩ = ∑
𝛼

∑
J

AJ𝛼(𝑡)ΦJ(𝑄1, ⋯ , 𝑄𝑓, 𝑡) |𝛼⟩ (3.10)

where the 𝐴-vector is now also indexed with the electronic degrees of freedom 𝛼. This simple extension

is called the single-set formalism; the SPFs sets are uniquely defined for all the electronic states (and thus

not indexed with 𝛼). On the other hand, indexing the SPFs sets with 𝛼 yields the multi-set formalism, for

which different SPFs sets are defined for each electronic states

∣Ψmulti(𝑄1, ⋯ , 𝑄𝑓, 𝑡)⟩ = ∑
𝛼

∑
J𝛼

AJ𝛼(𝑡)Φ(𝛼)
J (𝑄1, ⋯ , 𝑄𝑓, 𝑡) |𝛼⟩ (3.11)

where the indices J𝛼 are indexed with 𝛼, but not directly the 𝐴-vector. In general, the multi-set formalism is

better suited for the propagation of wavepackets on electronic states with very different potential energies.

Both formalisms will be used in this work but for the sake of simplicity, in this chapter we discuss the

MCTDH method within the single-set formalism, eq. (3.9), only.

Take-home messages

1. The time-dependent variational principle is given for an unspecified ansatz.

2. Three ansätze are defined, for the ”standard method”, the time-dependent Hartree

(TDH), and the multiconfiguration time-dependent Hartree (MCTDH) formalisms.

3. For the MCTDH ansatz, compact notations are defined and both single-set and multi-set

formalisms are explicited.
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3.2 Derivation of the equations of motion

In this section, we derive the variational equations of motion for the TDH ansatz Then, we give the

analogous equations of motion for the MCTDH ansatz and discuss them. We choose to derive only the

TDH ansatz as being more straightforward than for MCTDH but similar in essence. In the following and

for the sake of readability, we discard the coordinate dependence on dynamical degrees of freedom Q in

the notations.

3.2.1 Derivation for the TDH ansatz

For the derivation of the equations of motion, we need the definition of the TDH ansatz, eq. (3.3), and

the Dirac-Frenkel variational principle, eq. (3.2). Because of the product-form of the ansatz, there is not a

unique definition of Ψ(𝑡). Indeed, a phase factor can be attributed either to a SPF Hartree product or to

the pre-factor, and compensated in the other terms1. We thus impose constraints separetely on each SPF

𝑖 ⟨𝜑(𝜅)(𝑡) ∣ �̇�(𝜅)(𝑡)⟩ = 𝑔𝜅(𝑡) (3.12)

where the functions 𝑔𝜅 must be real-valued for the norms of the SPFs to stay constant.2 From now on,

we shall assume 𝑔𝜅(𝑡) ∈ ℝ and ⟨𝜑(𝜅)(0) ∣ 𝜑(𝜅)(0)⟩ = 1 such that ⟨Φ(𝑡) | Φ(𝑡)⟩ = 1. We will see at the end

of the derivation that straighforward choices can be made for 𝑔𝜅. This will be referred to as the gauge

freedom in the following.

Let us rewrite the TDH ansatz as

Ψ(𝑡) = 𝑎(𝑡)Φ(𝑡) (3.13)

and define Φ(𝜅) the single-hole function for each DOF 𝜅 as

Φ(𝜅)(𝑡) = ∏
𝜈≠𝜅

𝜑(𝜈)(𝑡) (3.14)

such that

Φ(𝑡) = 𝜑(𝜅)(𝑡)Φ(𝜅)(𝑡) ∀𝜅. (3.15)

These notations for the complete configuration Φ as a product of the single-particle function 𝜑(𝜅) and the

single-hole function Φ(𝜅) will be widely used in the following derivation.

From time differentiation of eq. (3.13), we find

Ψ̇ = ̇𝑎
𝑓

∏
𝜅=1

𝜑(𝜅) + 𝑎
𝑓

∑
𝜅=1

�̇�(𝜅) ∏
𝜈≠𝜅

𝜑(𝜈)

= ̇𝑎Φ + 𝑎
𝑓

∑
𝜅=1

�̇�(𝜅)Φ(𝜅)

(3.16)

1A naive example is for 𝑏 a non-zero complex number, for which 𝜑(1)𝜑(2) = (𝑏𝜑(1)) ( 𝜑(2)

𝑏 ). During time evolution, without

any specification, there is no certainty that 𝑏 stays associated to these two SPFs in this way.
2The proof reads 𝜕

𝜕𝑡 ⟨𝜑(𝜅) ∣ 𝜑(𝜅)⟩ = ⟨�̇�(𝜅) ∣ 𝜑(𝜅)⟩ + ⟨𝜑(𝜅) ∣ �̇�(𝜅)⟩ = 2ℜ (⟨𝜑(𝜅) ∣ �̇�(𝜅)⟩) = 2ℑ (𝑔𝜅) which gives a constant

norm for 𝜑(𝜅) if 𝑔𝜅 is real-valued.
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where we defined the following notation for time-derivative ̇𝑓 = 𝜕𝑓
𝜕𝑡 . In an analogous way, the variation of

the functional Ψ with respect to its functional parameters, 𝑎 and 𝜑(𝜅) reads

𝛿Ψ = (𝛿𝑎) Φ⏟
pre-factor variation

+ 𝑎
𝑓

∑
𝜅=1

(𝛿𝜑(𝜅)) Φ(𝜅)

⏟⏟⏟⏟⏟⏟⏟
SPF variations

. (3.17)

We can now apply the Dirac-Frenkel variational principle eq. (3.2) separately with respect to 𝛿𝑎 and 𝛿𝜑(𝜅).

For the variation along the pre-factor, 𝛿𝑎

0 = ⟨𝛿Ψ(pre-factor) ∣ 𝐻 − 𝑖 𝜕
𝜕𝑡

∣ Ψ⟩

= ⟨𝛿𝑎Φ ∣ 𝐻 − 𝑖 𝜕
𝜕𝑡

∣ 𝑎Φ⟩

= ⟨𝛿𝑎Φ ∣ 𝐻 ∣ 𝑎Φ⟩ − 𝑖 ⟨𝛿𝑎Φ ∣ ̇𝑎Φ + 𝑎
𝑓

∑
𝜅=1

�̇�(𝜅)Φ(𝜅)⟩

= (𝛿𝑎)∗𝑎 ⟨Φ ∣ 𝐻 ∣ Φ⟩ − 𝑖(𝛿𝑎)∗ ̇𝑎 ⟨Φ | Φ⟩ − 𝑖(𝛿𝑎)∗𝑎 ⟨Φ ∣
𝑓

∑
𝜅=1

�̇�(𝜅)Φ(𝜅)⟩ .

(3.18)

Using ⟨Φ | Φ⟩ = 1, ⟨Φ ∣ 𝐻 ∣ Φ⟩ = 𝐸 and ⟨Φ ∣ �̇�(𝜅)Φ(𝜅)⟩ = ⟨𝜑(𝜅) ∣ �̇�(𝜅)⟩ we get

0 = 𝑎𝐸 − 𝑖 ̇𝑎 − 𝑖𝑎
𝑓

∑
𝜅=1

⟨𝜑(𝜅) ∣ �̇�(𝜅)⟩ . (3.19)

Using the definition eq. (3.12) of the constraints 𝑔𝜅, we arrive to the first equation of motion, for the

pre-factor 𝑎(𝑡)

𝑖 ̇𝑎 = (𝐸 −
𝑓

∑
𝜅=1

𝑔𝜅) 𝑎. (3.20)

For the variation along the SPF 𝛿𝜑(𝜅)

0 = ⟨𝛿Ψ(SPF 𝜅) ∣ 𝐻 − 𝑖 𝜕
𝜕𝑡

∣ Ψ⟩

= ⟨𝑎 (𝛿𝜑(𝜅)) Φ(𝜅) ∣ 𝐻 − 𝑖 𝜕
𝜕𝑡

∣ 𝑎Φ⟩

= ⟨𝑎 (𝛿𝜑(𝜅)) Φ(𝜅) ∣ 𝐻 ∣ 𝑎Φ⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
a©

− 𝑖 ⟨𝑎 (𝛿𝜑(𝜅)) Φ(𝜅) ∣ ̇𝑎Φ⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟
b©

− 𝑖 ⟨𝑎 (𝛿𝜑(𝜅)) Φ(𝜅) ∣ 𝑎
𝑓

∑
𝜈=1

�̇�(𝜈)Φ(𝜈)⟩
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

c©

.

(3.21)

We note that the notations for indices in the differentiation of Ψ (ket side) must be different (𝜈) than the

one for the varied SPF (bra side), 𝜅. The first term reads

a© = |𝑎|2 ⟨(𝛿𝜑(𝜅)) Φ(𝜅) ∣ 𝐻 ∣ Φ⟩

= |𝑎|2 ⟨(𝛿𝜑(𝜅))∣ ⟨Φ(𝜅) ∣ 𝐻 ∣ Φ(𝜅)⟩ ∣𝜑(𝜅)⟩

= |𝑎|2 ⟨(𝛿𝜑(𝜅)) ∣ ℋ̂(𝜅) ∣ 𝜑(𝜅)⟩

(3.22)

where we define the mean-field Hamiltonians

ℋ̂(𝜅) = ⟨Φ(𝜅) ∣ 𝐻 ∣ Φ(𝜅)⟩ (3.23)
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obtained upon integrating the Hamiltonian over all DOFs but 𝜅. Each mean-field Hamiltonian ℋ̂(𝜅) acts

on the SPFs of the degree of freedom 𝜅. The second term reads

b© = 𝑖𝑎∗ ̇𝑎 ⟨(𝛿𝜑(𝜅)) Φ(𝜅) ∣ Φ⟩

= 𝑖𝑎∗ ̇𝑎 ⟨(𝛿𝜑(𝜅)) ∣ 𝜑(𝜅)⟩

= |𝑎|2 (𝐸 −
𝑓

∑
𝜈=1

𝑔𝜈) ⟨(𝛿𝜑(𝜅)) ∣ 𝜑(𝜅)⟩ using eq. (3.20) with index 𝜈.

(3.24)

Finally, the last term reads

c© = 𝑖|𝑎|2 ⟨(𝛿𝜑(𝜅)) Φ(𝜅) ∣
𝑓

∑
𝜈=1

�̇�(𝜈)Φ(𝜈)⟩

= 𝑖|𝑎|2
𝑓

∑
𝜈=1

⟨(𝛿𝜑(𝜅)) Φ(𝜅) ∣ �̇�(𝜈)Φ(𝜈)⟩

(3.25)

and because ⟨(𝛿𝜑(𝜅)) Φ(𝜅) ∣ �̇�(𝜈)Φ(𝜈)⟩ = ⟨(𝛿𝜑(𝜅)) 𝜑(𝜈) ∣ �̇�(𝜈)𝜑(𝜅)⟩ we find

c© = 𝑖|𝑎|2
𝑓

∑
𝜈=1

⟨(𝛿𝜑(𝜅)) 𝜑(𝜈) ∣ �̇�(𝜈)𝜑(𝜅)⟩

= 𝑖|𝑎|2 ⟨(𝛿𝜑(𝜅)) ∣ �̇�(𝜅)⟩ + 𝑖|𝑎|2
𝑓

∑
𝜈≠𝜅

⟨(𝛿𝜑(𝜅)) 𝜑(𝜈) ∣ �̇�(𝜈)𝜑(𝜅)⟩

= 𝑖|𝑎|2 ⟨(𝛿𝜑(𝜅)) ∣ �̇�(𝜅)⟩ + 𝑖|𝑎|2
𝑓

∑
𝜈≠𝜅

⟨𝜑(𝜈) ∣ �̇�(𝜈)⟩ ⟨(𝛿𝜑(𝜅)) ∣ 𝜑(𝜅)⟩

= 𝑖|𝑎|2 ⟨(𝛿𝜑(𝜅)) ∣ �̇�(𝜅)⟩ + |𝑎|2
𝑓

∑
𝜈≠𝜅

𝑔𝜈 ⟨(𝛿𝜑(𝜅)) ∣ 𝜑(𝜅)⟩ .

(3.26)

In the end, collecting a© = b© + c© we find

⟨(𝛿𝜑(𝜅)) ∣ ℋ̂(𝜅) ∣ 𝜑(𝜅)⟩ = (𝐸 −
𝑓

∑
𝜈=1

𝑔𝜈) ⟨(𝛿𝜑(𝜅)) ∣ 𝜑(𝜅)⟩

+ 𝑖 ⟨(𝛿𝜑(𝜅)) ∣ �̇�(𝜅)⟩ +
𝑓

∑
𝜈≠𝜅

𝑔𝜈 ⟨(𝛿𝜑(𝜅)) ∣ 𝜑(𝜅)⟩ .
(3.27)

The two sums cancel with only the 𝜅 index remaining so that we can rewrite

𝑖 ⟨(𝛿𝜑(𝜅)) ∣ �̇�(𝜅)⟩ = ⟨(𝛿𝜑(𝜅)) ∣ ℋ̂(𝜅) ∣ 𝜑(𝜅)⟩ − (𝐸 − 𝑔𝜅) ⟨(𝛿𝜑(𝜅)) ∣ 𝜑(𝜅)⟩ (3.28)

which defines the coupled equations of motion for the SPFs. For the whole derivation, (𝛿𝜑(𝜅)) was arbitrary,

so we can finally write the full set of coupled equations of motion for the TDH ansatz

𝑖 ̇𝑎 = (𝐸 −
𝑓

∑
𝜅=1

𝑔𝜅) 𝑎 (3.29a)

𝑖�̇�(𝜅) = (ℋ̂(𝜅) − 𝐸 + 𝑔𝜅) 𝜑(𝜅). (3.29b)

The most common choice for the constraints is 𝑔𝜅 = 0 so that

𝑖 ̇𝑎 = 𝐸𝑎 (3.30a)

𝑖�̇�(𝜅) = (ℋ̂(𝜅) − 𝐸) 𝜑(𝜅) (3.30b)
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3.2. Derivation of the equations of motion

3.2.2 Equations of motion for the MCTDH ansatz

With the MCTDH ansatz, we have a similar problem of no uniquely defined expansion of the wavefunction

that we had for TDH. To lift the ambiguity, we define the contraint operators ̂𝑔(𝜅) for the SPFs

𝑖 ⟨𝜑(𝜅)
𝑙 ∣ �̇�(𝜅)

𝑗 ⟩ = ⟨𝜑(𝜅)
𝑙 ∣ ̂𝑔(𝜅) ∣ 𝜑(𝜅)

𝑗 ⟩ (3.31)

that we can choose to be Hermitian if the SPFs are to remain orthogonal. This is easily shown by time

differentiating the overlap matrix between the SPFs. Typically, in the general implementation of MCTDH,

we choose ̂𝑔(𝜅) = 0.

Again, the ansatz can be rewritten as an expansion in terms of single-hole functions, that are useful for

the definition of many MCTDH-related quantities. We can rewrite the multi-dimensional wavepacket as a

sum over the indices of SPFs for one degree of freedom 𝜅

Ψ =
𝑛𝜅

∑
𝑙

∣𝜑(𝜅)
𝑙 ⟩ ⟨𝜑(𝜅)

𝑙 ∣ Ψ⟩
𝜅

=
𝑛𝜅

∑
𝑙=1

𝜑(𝜅)
𝑙 Ψ(𝜅)

𝑙 (3.32)

where we define Ψ(𝜅)
𝑙 the single-hole function for the DOF 𝜅

Ψ(𝜅)
𝑙 = ∑

𝑗𝜅

𝐴𝐽𝜅
𝑙

Φ𝐽𝜅 (3.33)

with the following compact index definitions

𝐽𝜅 = (𝑗1, ⋯ , 𝑗𝜅−1, 𝑗𝜅+1, ⋯ , 𝑗𝑓) compact indices with hole at index 𝜅

𝐽𝜅
𝑙 = (𝑗1, ⋯ , 𝑗𝜅−1, 𝑙, 𝑗𝜅+1, ⋯ , 𝑗𝑓) compact indices with index 𝑙 instead of index 𝑗𝜅

Φ𝐽𝜅 =
𝑓

∏
𝜈=1,𝜈≠𝜅

𝜑(𝜈)
𝑗𝜈

single-hole configuration

(3.34)

which are the analogous of the SPFs compact notations eq. (3.8) for the single-hole functions. In simple

words, the wavefunction can be expressed as a sum (over the index of SPFs of one degree of freedom)

of products of each SPF of the set with a wavefunction “holed” for this SPF. Let us note that with

these definitions, we have simple expressions of the variation of the ansatz with respect to its functional

parameters:
𝛿Ψ
𝛿AJ

= ΦJ with eq. (3.9) (3.35a)

𝛿Ψ
𝛿𝜑(𝜅)

𝑗

= Ψ(𝜅)
𝑗 with eq. (3.32). (3.35b)

The linear variation along the 𝐴-vector gives the associated configuration (partial linearity), the linear

variation along one SPF gives the associated single-hole function.

Let us introduce MCTDH-related quantities necessary for writing the MCTDH equations of motion.

From the single-hole functions, we define the mean-field Hamiltonians

⟨ℋ̂⟩
(𝜅)

𝑘𝑙
= ⟨Ψ(𝜅)

𝑘 ∣ 𝐻 ∣ Ψ(𝜅)
𝑙 ⟩ . (3.36)
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Compared with TDH, we now have matrices of mean-field Hamiltonians for each degree of freedom.

Similarly, we define the reduced density matrices from the single-hole functions

𝜌(𝜅)
𝑘𝑙 = ⟨Ψ(𝜅)

𝑘 ∣ Ψ(𝜅)
𝑙 ⟩ . (3.37)

Finally, for each degree of freedom we define the projector onto the corresponding set of SPFs

̂𝑃 (𝜅) =
𝑛𝜅

∑
𝑗=1

∣𝜑(𝜅)
𝑗 ⟩ ⟨𝜑(𝜅)

𝑗 ∣ . (3.38)

With these definitions, we give the equations of motion for the MCTDH ansatz

𝑖 ̇AJ = ∑
L

⟨ΦJ ∣ 𝐻 ∣ ΦL⟩ AL (3.39a)

𝑖�̇�(𝜅)
𝑗 = ( ̂1 − ̂𝑃 (𝜅))

𝑛𝜅

∑
𝑘,𝑙=1

(𝝆(𝜅)−1)
𝑗𝑘

⟨ℋ̂⟩
(𝜅)

𝑘𝑙
𝜑(𝜅)

𝑙 . (3.39b)

We can also define vectors of SPFs

𝝋(𝜅) = (𝜑(𝜅)
1 ⋯ 𝜑(𝜅)

𝑛𝜅 )
𝑇

(3.40)

and give a more compact second set of equations

𝑖�̇�(𝜅) = ( ̂1 − ̂𝑃 (𝜅)) 𝝆(𝜅)−1 ⟨𝓗⟩(𝜅) 𝝋(𝜅). (3.41)

Let us compare the TDH and MCTDH equations of motion. The propagation of the 𝐴-vector eq. (3.39a)

in MCTDH is equivalent to the propagation of the TDH pre-factor eq. (3.30a). The main difference is that

eq. (3.39a) depends on the matrix elements ⟨ΦJ ∣ 𝐻 ∣ ΦL⟩ for all configurations of MCTDH (secular-type

equations), rather than simply on the energy of the one propagated configuration in TDH. The propagation

of SPFs is also more complicated for MCTDH, where the projector and density reduced density matrix for

the propagated degrees of freedom are also required, on top of the mean-field operators.

Take-home messages

1. We have used the TDH ansatz and the TD variational principle to derive the equations

of motion (EOM) in the case of one configuration of SPFs (Hartree product). The EOM

include one equation for the pre-factor and a set of coupled equations for the SPFs.

2. We defined the quantities related to the MCTDH ansatz (namely, the matrices of mean-

field Hamiltonians, the MCTDH density and the operator for the MCTDH projection)

and presented the equations of motion of MCTDH as a generalization of TDH.
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3.3 MCTDH computational details and wavefunction analysis

We now briefly discuss the computational details for integrating the ordinary differential equations for the

variational parameters 𝐴𝐽(𝑡) and 𝜑(𝜅)
𝑗 (𝑡), which define the MCTDH equations of motion. Two main numer-

ical aspects will be discussed: the representation of the multi-dimensional wavepacket and the integration

of the equations of motion. These discussions are quite general and are not necessarily specific to the use

of the MCTDH ansatz.

3.3.1 Representation of the wavepacket

As we have seen in section 3.1.2, the ansätze (SM, TDH or MCTDH) are defined with respect to {𝜒𝑗}𝑗
,

a set of orthogonal primitive basis functions (for MCTDH, see eq. (3.7)). This way of representing the

wavefunction or the wavepacket Ψ is called the finite basis representation (FBR): the wavefunction is

explicitly expanded in a (finite) direct-product of time-independent basis sets. These functions are in

general chosen as solutions of simple eigenvalue model problems, for example the particle-in-a-box (sine

functions) or, herein, the harmonic oscillator (Gauss-Hermite functions). One advantage of the FBR is

that the effect of differential operators ( 𝜕
𝜕𝑥 for the degree of freedom 𝑥) is simple, and known explicitly,

on the primitive basis functions. On the other hand, for instance in the case of MCTDH, the FBR for

the wavefunction boils down to knowing the 𝐴-vector (definition of the configurations of SPFs) and the

𝐵-vector (definition of the SPFs with respect to the primitive basis). However, such a representation is not

adapted for evaluating multiplicative operators, such as in the operator for the potential energy.

As a consequence, another representation of the wavefunction must be found to be compatible with

the multiplicative operators, for instance 𝑉, at a given point 𝑥𝑖

(𝑉 Ψ)𝑖 = (𝑉 Ψ)(𝑥𝑖) = 𝑉 (𝑥𝑖)Ψ(𝑥𝑖). (3.42)

One way of defining the grid points 𝑥𝑖 is the use of the discrete variable representation (DVR). The DVR

is a representation of the wavefunction with DVR functions, obtained from the FBR functions (they are

linked together with a unitary transformation) and centered around the DVR points. The DVR points and

DVR functions are obtained via the diagonalization of the matrix representation of the coordinate operator

(for a given degree of freedom) in the FBR.

In practice, we use a given primitive basis to define the wavefunction (at any time) in the FBR. The

DVR is computed accordingly to the choice of the primitive basis and its size, such that a spatial grid is

defined for the calculation, for which the value of the wavefunction is known for each grid point. The FBR

serves all calculations involving differential operators; the DVR serves all calculations involving multiplicative

operators and wavefunction spatial analysis.
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3.3.2 Propagation and relaxation

We are now aware of two representations for the wavefunction, adapted to differential and multiplicative

operators, respectively. In addition, we have derived (or assume we know) the equations of motions for the

variational parameters of a given ansatz (here, MCTDH). For MCTDH, solving the equations of motion is

twofold. First, as in any method for solving the time-dependent Schrödinger equation, one has to choose

an integrator for evaluating the formal, ideal, solution

Ψ(𝑡) = exp (−𝑖𝐻𝑡)Ψ(𝑡 = 0) (3.43)

given that the initial state Ψ(𝑡 = 0) is known. For MCTDH, this boils down to integrating the (coupled)

first-order differential equations, eqs. (3.39a) and (3.39b). In the context of quantum dynamics, the

integration of the equations of motion is also called propagation. Different integration (or propagation)

algorithms exist and we mention for instance the split-operator scheme, the Runge-Kutta scheme and the

short iterative Lanczos (SIL) scheme. The integration algorithm can be different for the equations of

motion of the 𝐴-vector or of the SPFs.

Second, the propagation of the MCTDH equations of motion is very expensive because of the evaluation,

at each step, of the matrix ⟨ΦJ ∣ 𝐻 ∣ ΦL⟩ for the integration of the 𝐴-vector and of the mean-field matrices

⟨ℋ̂⟩
(𝜅)

𝑘𝑙
for the integration of the SPFs. In addition, these matrices also couple the equations of motion

together. This explicit and straigthforward update of the mean-field matrices, at each step of the simulation,

is called the variable mean-field approach (VMF). An approximation for speeding up the calculations is the

constant mean-field approach (CMF) which, in essence, consists in updating the mean-field matrices less

often. This approximate mean-field update holds in general because the mean-field matrices vary slowly

compared to the wavefunction. The gain is twofold: the matrices are not to be computed at each time-step

and the differential equations of the 𝐴-vector decouples (and becomes linear) from the ones of the SPFs

(which stay non-linear).

We now briefly present the propagation schemes used in this work. As regards the practical calculations,

we are interested in three types of calculations. The first two are time evolution (real-time propagation)

and simple relaxation (negative imaginary-time propagation) of the system. The simple relaxation is a way

to use propagation to find the lowest vibronic eigenstate having non-zero overlap with the initial guess

(used to find the vibronic ground eigenstate). The last calculation is the improved relaxation, which allows

one to access vibronic excited eigenstates rather than only the vibronic ground eigenstate.

Unless otherwise specified, the CMF approach is used for real-time propagation and improved relaxation.

In these cases, we integrate the 𝐴-vector with the already mentioned SIL integrator and the SPFs with

the Bulirsch-Stoer (BS) integrator for real-time propagation and for improved relaxation. The use of

different integration schemes is adapted to the linear and non-linear nature of the equations of motion

for the 𝐴-vector and the SPFs, respectively. The VMF approach is used in the case of simple relaxation

(imaginary-time propagation) and the Adam-Bashforth-Moulton (ABM) integration scheme is used for both
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𝐴-vector and SPFs. Further details are beyond of the present scope, and can be found in Refs [94,95].

3.3.3 Time-resolved and energy-resolved wavefunction analysis

In this section, we briefly present how to analyse the observables from the wavefunction (obtained from either

propagation or relaxation) for time-resolved (expectation values) and energy-resolved (spectra) applications.

We note that most of these analyses require the knowledge of the wavefunction on a given spatial grid,

hence the definition and use of the DVR.

3.3.3.1 Diabatic and adiabatic populations

As we have seen in chapter 2, the molecular wavefunction can be expanded in the basis of the electronic

states

|Ψ(Q, t)⟩ = ∑
𝛽

Ψ𝛽(Q, 𝑡) ∣𝜙el
𝛽 ; Q⟩ , (3.44)

where the many-body electronic basis set is chosen as being orthonormal for all Q,

⟨𝜙el
𝛽 ; Q ∣ 𝜙el

𝛼; Q⟩
el

= 𝛿𝛽𝛼, (3.45)

such that 𝛿𝛽𝛼 is the Kronecker symbol. The Dirac’s “bra-ket”-notation corresponds here to an implicit

integration over the electronic degrees of freedom, while the nuclear degrees of freedom (positions; Q) have

to be specified explicitly. The previous definitions are general and do not require the use of an MCTDH

wavepacket. However, we must still assume that the electronic basis set is diabatic, ∣𝜙el
𝛼⟩ = ∣𝜙dia

𝛼 ⟩. The

corresponding density operator is defined as

̂𝜌(Q, 𝑡) = |Ψ(Q, 𝑡)⟩ ⟨Ψ(Q, 𝑡)| , (3.46)

which expands as

̂𝜌(Q, 𝑡) = ∑
𝛽

∑
𝛼

Ψ𝛽(Q, 𝑡)Ψ∗
𝛼(Q, 𝑡) ∣𝜙dia

𝛽 ; Q⟩ ⟨𝜙dia
𝛼 ; Q∣ . (3.47)

“Bra-ket”-type electronic integration brings the following discrete density matrix representation,

𝜌𝛽𝛼(Q, 𝑡) = ⟨𝜙dia
𝛽 ; Q ∣ ̂𝜌(Q, 𝑡) ∣ 𝜙dia

𝛼 ; Q⟩
el

= Ψ𝛽(Q, 𝑡)Ψ∗
𝛼(Q, 𝑡). (3.48)

Now, integrating the density operator over the nuclear degrees of freedom (integrating over Q) yields a

reduced-density representation,

𝛾𝛽𝛼(𝑡) = ∫
Q

Ψ𝛽(Q, 𝑡)Ψ∗
𝛼(Q, 𝑡)dQ. (3.49)

The diabatic electronic populations are thus defined as

𝑃𝛽(𝑡) = 𝛾𝛽𝛽(𝑡) = ∫
Q

|Ψ𝛽(Q, 𝑡)|2dQ, (3.50)
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and the diabatic electronic coherences satisfy

𝐶𝛽𝛼(𝑡) = 𝛾𝛽𝛼(𝑡) = 𝛾∗
𝛼𝛽(𝑡) = 𝐶∗

𝛼𝛽(𝑡), (3.51)

for 𝛼 ≠ 𝛽.

In the rest of this chapter, Dirac’s “Bra-ket”-notation will no longer be used for integration over the

electronic degrees of freedom. Hence, and unless otherwise specified, we shall now use ⟨� |�′⟩ only as a

shorthand notation so as to refer to the integration over Q (the nuclear degrees of freedom). With this in

mind, we get for the populations

𝑃𝛽(𝑡) = ⟨Ψ𝛽 ∣ Ψ𝛽⟩ (𝑡), (3.52)

and for the coherences (for the diabatic states 𝛼 ≠ 𝛽)

𝐶𝛼𝛽(𝑡) = ⟨Ψ𝛽 ∣ Ψ𝛼⟩ (𝑡). (3.53)

Let us notice that when dealing with two-level electronic systems, the evaluation of such magnitudes in

practice simply involves to get the expectation values of Pauli operators over time.

Now, since the representation of the wavepacket is diabatic in MCTDH, the evaluation of adiabatic

populations is to be done a posteriori, computing at each time of the propagation the adiabatic transfor-

mation and integrating the resulting multi-dimensional adiabatic wavepackets over the DVR grid, which

is known to be a challenging task on the numerical front. Unless otherwise specified, the adiabatic pop-

ulations discussed in this work are obtained thanks to the recent implementation of the time-dependent

discrete variable representation (TD-DVR) formalism in the Quantics analysis programs for single-set

calculations [100,101].

3.3.3.2 A note on the expectation values of state-specific operators

Given an operator 𝑂 acting on Q and with no off-diagonal term among the electronic manifold, the

expectation value of 𝑂 for the system is

⟨𝑂⟩ =
⟨Ψ ∣ 𝑂 ∣ Ψ⟩

⟨Ψ | Ψ⟩
= ∑

𝛽
⟨Ψ𝛽 ∣ 𝑂 ∣ Ψ𝛽⟩

= ∑
𝛽

𝑃𝛽
⟨Ψ𝛽 ∣ 𝑂 ∣ Ψ𝛽⟩

⟨Ψ𝛽 ∣ Ψ𝛽⟩
= ∑

𝛽
𝑃𝛽 ⟨𝑂⟩

𝛽
,

(3.54)

assuming ⟨Ψ | Ψ⟩ = 1 and where the electronic populations (weights) are 𝑃𝛽 = ⟨Ψ𝛽 ∣ Ψ𝛽⟩. The expec-

tation value for the whole system can thus be interpreted as a population-weighted sum of state-specific

expectation values ⟨𝑂⟩
𝛽

(with state-occurence probability weights, the populations 𝑃𝛽). In other words,

two types of state-specific expectation values can be discussed:

• normalized (state-specific) expectation values

⟨𝑂⟩
𝛽

=
⟨Ψ𝛽 ∣ 𝑂 ∣ Ψ𝛽⟩

⟨Ψ𝛽 ∣ Ψ𝛽⟩
, (3.55)

which are “intensive” expectation values in the sense that they cannot be added together;
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• population-weighted (for any state-contribution) expectation values

⟨Ψ𝛽 ∣ 𝑂 ∣ Ψ𝛽⟩ = 𝑃𝛽 ⟨𝑂⟩
𝛽

, (3.56)

which are “extensive” expectation values in the sense that they can be added together to obtain the

full expectation value upon adding the contributions for all the electronic states.

In single-set calculations, the population-weighted expectation values are directly obtained, and must be

normalized to access the state-specific expectation values. Normalized state-specific expectation values

are required when studying the system in some given electronic state during a phenomenon that involves

population transfer.

Conceptually speaking, state-specific expectation values correspond to what could be measured ideally

(for example, a bond length, assuming specific knowledge of the electronic state). In contrast, a state-

contribution expectation value is already weighted by the probability of observing the state and tells us

how much it partially contributes to a global observable (for example to the total energy).

3.3.3.3 Autocorrelation functions and power spectra

On the other hand, real-time propagations also allow us to access energy-resolved quantities, such as

spectroscopic properties via a linear-response analysis. We define the autocorrelation function

𝐶(𝑡) = ⟨Ψ(0) | Ψ(𝑡)⟩ (3.57)

for which, unless otherwise specified, the so-called 𝑡/2-trick is used (valid only for real-valued initial

wavepackets)

𝐶(𝑡) = ⟨Ψ(𝑡/2)∗ | Ψ(𝑡/2)⟩ (3.58)

The Fourier transform of the autocorrelation function yields the so-called power spectrum associated to

the propagation

𝐼(𝜔) ∝ ∫
+∞

−∞
𝐶(𝑡) exp (𝑖𝜔𝑡)d𝑡. (3.59)

Because the propagation time is finite, the autocorrelation function is multiplied by a decaying function

𝑔(𝑡) = cos𝑛(𝜋𝑡/2𝑇 ), (3.60)

where 𝑇 is the propagation time, and 𝑛 is an integer, set to 𝑛 = 1 in our calculations. Overall, this function

filters the signal and reduces the presence of the Gibbs phenomenon (unphysical oscillations and negative

intensities). Additionally, the autocorrelation function is multiplied by a Gaussian function characterized

by the damping time

𝜏 = 2
√

2 log 2
Δ𝜔

(3.61)
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to simulate the experimental full width at half-maximum (FWHF) of the peaks, Δ𝜔. In the rest of this

work, such intensity spectra are referred to as power spectra.3 Unless otherwise specified, we use the

Condon approximation for the diabatic states, such that there is no explicit account of the dependence

on the nuclear geometry of electronic transition dipole moments. As such, we will directly identify the

previously defined power spectra as absorption and emission steady-state spectra.

Take-home messages

1. FBR and DVR have been defined.

2. Computational details for both propagation and relaxation calculations are given.

3. The diabatic populations and coherences have been defined. The adiabatic populations

are computed using the TD-DVR approach.

4. Expectation values are analysed in terms of the choice of normalization. State-specific

and state-contribution expectation values have been defined.

5. Power spectra have been defined in the case of real-time propagation, using the associ-

ated autocorrelation function.

3.4 Additional discussion, extensions of MCTDH

3.4.1 A geometric interpretation of the TD variational principle

General reformulation of the TD variational principle

In this section, we discuss the geometric interpretation of the Dirac-Frenkel variational principle, applicable

for the different ansätze presented above [102,103]. We recall the abstract formulation of the Dirac-Frenkel

variational principle

⟨𝛿𝑢 ∣ 𝐻 − 𝑖 𝜕
𝜕𝑡

∣ 𝑢⟩ = 0 (3.62)

where without any assumption, 𝑢 lies in a complex Hilbert space ℋ. Let ℳ be a Kähler submanifold of

ℋ and 𝑢 ∈ ℳ the chosen ansatz (𝑢 = ΨTDH, ΨSM, or ΨMCTDH). The exact solution would be Ψ(x, 𝑡)

(satisfying the time-dependent Schrödinger equation), function of the degrees of freedom x and of the

3A training jupyter-notebook for the use of autocorrelation functions to compute power spectra in the case

of UV-visible steady-state spectroscopy is available at https://github.com/jwjgaliana/toolbox-qcqd/tree/main/

autocorrelation2spectrum.

94

https://github.com/jwjgaliana/toolbox-qcqd/tree/main/autocorrelation2spectrum
https://github.com/jwjgaliana/toolbox-qcqd/tree/main/autocorrelation2spectrum


3.4. Additional discussion, extensions of MCTDH

time 𝑡. The function 𝑢(x, 𝑡) is the approximation of the exact solution

𝑢(x; 𝝀(𝑡)) = 𝑢[𝝀(𝑡)](x) ≃ Ψ(x, 𝑡) (3.63)

where the ansatz 𝑢(x, 𝑡) is a holomorphic functional of the variational complex-valued parameters 𝝀(𝑡),

such that 𝑢(x, 𝑡) = 𝑢[𝝀(𝑡)](x). From now on, we discard the dependence on the degrees of freedom x.

Assuming 𝑢(𝑡) is complex-differentiable (holomorphic functional) with respect to the parameters 𝝀(𝑡), we

denote 𝒯𝑢(𝑡)ℳ the complex linear tangent space of ℳ at 𝑢(𝑡), consisting in of all the derivatives with

respect to the parameters 𝝀(𝑡)

𝒯𝑢(𝑡)ℳ = span ({ 𝜕𝑢
𝜕𝜆𝑖

}
𝑖
) . (3.64)

The variations of 𝑢(𝑡) are then

𝛿𝑢 = ∑
𝑖

𝜕𝑢
𝜕𝜆𝑖

𝛿𝜆𝑖 ∈ 𝒯𝑢(𝑡)ℳ. (3.65)

We stress here that the previously presented ansätze satisfy a condition of “contact” for the tangent space.

In simple words, the ansatz can be written in terms of linear variations with respect to its own variational

parameters (partial linearity, see the role of 𝑎(𝑡) in TDH or 𝐴J(𝑡) in MCTDH).

The Dirac-Frenkel variational principle can also be rephrased in the following terms. The function of

time 𝑢 is found at every time 𝑡 so that its time derivative 𝜕𝑢
𝜕𝑡 satisfies

⟨𝛿𝑢 ∣ 𝐻𝑢 − 𝑖𝜕𝑢
𝜕𝑡

⟩ = 0 ∀𝛿𝑢 ∈ 𝒯𝑢(𝑡)ℳ. (3.66)

Using the Dirac-Frenkel variational principle for all the variations 𝛿𝜆𝑖, we find the differential equations

satisfied by the variational parameters. Let us notice that the time derivative of 𝑢(𝑡) also depends on the

time derivatives of 𝜆𝑖,
𝜕𝑢
𝜕𝑡

= ∑
𝑖

𝜕𝑢
𝜕𝜆𝑖

𝜕𝜆𝑖
𝜕𝑡

∈ 𝒯𝑢(𝑡)ℳ (3.67)

so that solving the equations of motion for the variational parameters 𝜆𝑖(𝑡) is solving the equations of

motion for 𝑢(𝑡). Solving the equations of motion for 𝑢(𝑡) at a given time 𝑡 thus yields the time derivative
𝜕𝑢
𝜕𝑡 ∈ 𝒯𝑢(𝑡)ℳ, which can then be propagated.

Geometric interpretation of the TD variational principle

Let us give a geometric interpretation of the DFVP through the discussion of the real part of eq. (3.66).

The time derivative obtained from the equations of motion 𝜕𝑢
𝜕𝑡 (𝑡) satisfies

𝜕𝑢
𝜕𝑡

(𝑡) = arg min
𝑤∈𝒯𝑢(𝑡)ℳ

(∣∣𝐻𝑢(𝑡) − 𝑖𝑤(𝑡)∣∣). (3.68)

In other words, within the Dirac-Frenkel variational principle, 𝜕𝑢
𝜕𝑡 is the orthogonal projection of 1

𝑖 𝐻𝑢 onto

the tangent space 𝒯𝑢(𝑡)ℳ (see fig. 3.1). Note that 1
𝑖 𝐻𝑢 does not necessarily lies in ℳ nor in 𝒯𝑢(𝑡)ℳ,

such that it can not be described with 𝑢(𝑡) or 𝜕𝑢
𝜕𝑡 (𝑡). Compared to the variational principle used in the
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+

Figure 3.1: Geometric interpretation of the Dirac-Frenkel variational principle, representing the Hilbert space

ℋ, the ansatz and its manifold 𝑢(𝑡) ∈ ℳ, and the tangent space of the ansatz 𝒯𝑢(𝑡)ℳ. Reproduced from

Lubich, 2008 [102]

context of the time-independent Schrödinger equation, this interpretation consists in an error minimization

in the tangent plane 𝒯𝑢(𝑡)ℳ.

The Dirac-Frenkel variational principle is one out of various variational approximations of quantum

dynamics. The error made by the choice of the Dirac-Frenkel variational principle and the ansatz 𝑢(𝑡) is

upper bounded, and this error bound is found to be

||𝑢(𝑡) − Ψ(𝑡)|| ≤ ∫
𝑡

0
dist ( 1

𝑖ℏ
𝐻𝑢(𝑠), 𝒯𝑢(𝑠)ℳ) d𝑠. (3.69)

The theory of the Dirac-Frenkel variational principle and its variants is still an active field for error estimates

in applied mathematics [104]. More could be said about the simplecticity of the present variational principle

but is out of the scope of this work. For a recent review of the mathematical aspects of the time-dependent

variational principle, see Ref [105].

3.4.2 Including more degrees of freedom

MCTDH is very well suited for medium-size systems, typically less than 10 degrees of freedom. In practice,

two criteria are limiting when looking for higher dimensionality. The first one is the size of the primitive

basis set, which is important for the SPF equations of motion and also all the post-treatement calculations.

The second one and most important is the number of SPFs which directly gives the number of coupled

equations of motion. The more the SPFs, the longer the calculation. When the system has too high

dimensionality, or requires an important number of SPFs, the calculation might simply be infeasible. In this

work, two strategies may be employed (mode-combination and multi-layer MCTDH), both having strong
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similarities.

3.4.2.1 Mode combination

In the first definition of the MCTDH ansatz (eq. (3.6)), one set of SPFs is defined for each degree of

freedom, and the SPFs are simple linear combinations of primitive basis functions of a single coordinate.

However, the MCTDH equations of motion do not require the SPFs to depend on a single coordinate.

A set of SPFs can be defined for a group of degrees of freedom and depend on several coordinates. For

instance, let us define a set of SPFs for a group Q𝜆 of three primitive coordinates (𝑞𝜆,1, 𝑞𝜆,2, 𝑞𝜆,3)

𝜑𝜆
𝑗 (Q𝜆, 𝑡) = 𝜑𝜆

𝑗 ((𝑞𝜆,1, 𝑞𝜆,2, 𝑞𝜆,3), 𝑡)

=
𝑁1,𝑁2,𝑁3

∑
𝑖1,𝑖2,𝑖3

𝐵(𝜆,𝑗)
𝑖1,𝑖2,𝑖3

(𝑡)𝜒(𝜆,1)(𝑞𝜆,1)𝜒(𝜆,2)(𝑞𝜆,2)𝜒(𝜆,3)(𝑞𝜆,3).
(3.70)

In the previous expression, the SPFs set is adapted to a combined degree of freedom 𝜆, involving the

initial degrees of freedom (𝜆, 𝑖). Usually to reach convergence, the set of SPFs for the combined mode

(�̃�) is bigger than the set of one isolated non-combined mode (𝑛) but much smaller than the size of the

direct-product of the sets of SPFs of the non-combined modes (𝑛3). Although the number of SPFs to

propagate is significantly reduced when using mode combination, the propagation of the newly defined

multi-dimensional SPFs takes more computational power and time (notably because of the evaluation of

multi-dimensional integrals). As a consequence, the mode-combination strategy alone is typically limited

to the combination of up to three degrees of freedom, otherwise the combination becomes inefficient.

In the end, mode-combination is a good strategy for medium-dimensional systems, typically for con-

tracting a 15-dimensional basis of the initial SPFs to an 8-dimensional basis of mode-combined SPFs. Yet,

the propagation of MCTDH wavepackets in high-dimensional systems is still difficult, or unfeasible, for

more degrees of freedom.

3.4.2.2 Multi-layer MCTDH

The strategy behind multi-layer (ML) MCTDH consists in expanding the SPFs (SPFs of the upper layer

𝑧 − 1) in another set of time-dependent functions (SPFs of the lower layer 𝑧) [106–108]

𝜑𝑧−1,(𝜅up)
𝑚 (𝑄𝜅𝑧−1

up
, 𝑡) =

𝑛𝑧
1

∑
𝑗1

⋯
𝑛𝑧

𝑝𝑧

∑
𝑗𝑝𝑧

𝐴𝑧,𝑚
𝑗1⋯𝑗𝑝𝑧 (𝑡)

𝑝𝑧

∏
𝜅low=1

𝜑𝑧,(𝜅low)
𝑗𝜅low

(𝑄𝑧
𝜅low

, 𝑡) (3.71)

with combined modes 𝑄𝜅𝑧−1
up

= (𝑄𝑧
1, ⋯ , 𝑄𝑧

𝑝𝑧). For instance, the first layer would be

Ψ(𝜅)(𝑄𝜅, 𝑡) =
𝑛1

1

∑
𝑗1

⋯
𝑛1

𝑝1

∑
𝑗𝑝1

𝐴1
𝑗1⋯𝑗𝑝1

(𝑡)
𝑝1

∏
𝜅=1

𝜑1,(𝜅)
𝑗𝜅

(𝑄1
𝜅, 𝑡) (3.72)

in the same manner as in MCTDH. The first difference is that the second layer is not the last one. In other

words, the first SPFs are not expanded in the primitive basis set but in a new basis set of different SPFs

𝜑1,(𝜆)
𝑚 (𝑄1

𝜆, 𝑡) =
𝑛2

1

∑
𝑗1

⋯
𝑛2

𝑝2

∑
𝑗𝑝2

𝐴2,𝑚
𝑗1⋯𝑗𝑝2

(𝑡)
𝑝2

∏
𝜆=1

𝜑2,(𝜆)
𝑗𝜆

(𝑄2
𝜆, 𝑡) (3.73)
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and iteratively until the last layer for which the SPFs are expanded in the primitive basis set. In practice

and in the rest of this work, we do not explicitly formulate the ML-MCTDH ansatz as its form is very

system-dependent. Instead, we give the associated so-called ML-tree, representing the layers of SPFs and

associated size of basis sets.

There are many benefits from using the ML-MCTDH ansatz. The first one is to allow for the propagation

of wavepackets for more than about tens of degrees of freedom. Without an ML-strategy, the length of the

𝐴-vector would simply be too large, as it depends on the size of the direct-product of the first-layer SPFs

basis sets. The calculation rapidly becomes impracticable (exponential scaling, curse of dimensionality).

The second benefit is to speed-up calculations that would be possible in MCTDH but slow, at a reduced

cost in accuracy. Indeed, in practice the multi-layer MCTDH ansatz is a way to prune the space spanned by

the SPFs and the configurations. The convergence must be carefully checked when using ML-MCTDH over

an MCTDH calculation. Thanks to this speeding-up, the third benefit is that one can work with combined

modes at the lowest layer instead of one-dimensional degrees of freedom. This allows one to retrieve

some correlation between the degrees of freedom within the mode-combined SPFs, at some negligible

computational cost (calculation of the associated multi-dimensional integrals, practicable for combination

of two or three modes).

The practical use and advantages of ML-MCTDH for the purposes of this thesis will be discussed in

the results part of the manuscript.

Take-home messages

1. The time-dependent variational principle, and in particular its geometric interpretations,

can be related to the time-independent variational principle as an error minimization.

2. The obtention of equations of motion from the time-dependent variational principle can

be generalized to any ”well-behaved” ansatz.

3. The MCTDH formalism can be directly used with combined modes in order to treat

systems with a larger number of degrees of freedom.

4. A more general extension of it is known as the multi-layer variant of MCTDH, where

MCTDH is recursively used to propagate ”hierarchical combinations” of modes at dif-

ferent levels (layers).
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3.4.3 MCTDH in the landscape of nonadiabatic molecular dynamics methods

To conclude, let us discuss the place of MCTDH, in terms of advantages and limits, in the landscape of

the nonadiabatic molecular dynamics (NAMD) methods (for closed quantum systems). We note that this

discussion is not meant to be an exhaustive review of the nonadiabatic dynamics methods. In fig. 3.2,

we schematize the strategies behind trajectory-based quantum dynamics (surface hopping, for instance),

wavepacket dynamics (MCTDH here), and Gaussian wavepacket dynamics.

c) Gaussian wavepacket dynamics
    GWP-based: direct dynamics

t = 0 t = t₁ t = t₂

t = 0 t = t₁ t = t₂

b) Wavepacket quantum dynamics
    Grid-based: diabatic PESs

t = 0 t = t₁ t = t₂

a) Mixed quantum-classical dynamics
    Trajectory-based: direct dynamics

Figure 3.2: Schematic representation of the main families of (a) mixed quantum-classical dynamics meth-

ods, and (b) and (c) wavepacket quantum dynamics methods. The cross symbols represent symbolically

the interface with direct dynamics calculations, hence no explicit parametrization of the potential energy

surfaces.

Grid-based and wavepacket nonadiabatic molecular dynamics methods

As already mentioned, MCTDH is a grid-based and wavepacket propagation method for running quantum

dynamics calculations, see fig. 3.2, panel b). It relies notably on

1. the definition of an explicit grid of points (both spatially and in the functional space, DVR and FBR,

respectively);

2. and the knowledge of diabatic potential energy surfaces and inter-state couplings on the grid and as

analytic functions.

Thanks to the explicit and variational (“exact” at convergence) propagation of the wavepacket, based

on the time-dependent Schrödinger equation (“first principles”), MCTDH is often used as a reference for

benchmarking other quantum dynamics methods. However, the strengths of the method are also its biggest

weaknesses: the grids are exponentially growing with the number of degrees of freedom (so-called curse of

dimensionality), and the required prior knowledge of the diabatic Hamiltonians prevents the use of MCTDH

as a predicting tool on itself, for instance as regards chemical reactivity. Exact grid-based quantum dynamics
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methods are thus particularly indicated for the calculation of electronic and/or vibrational spectra, or any

other problems with “small amplitude” nuclear displacements. Situations with large amplitudes or strong

geometry changes require either a more involved choice of the system coordinates, hence more complicated

nuclear KEO and parametrization of the PESs, or a completely different strategy.

Trajectory-based nonadiabatic molecular dynamics

Among the alternatives to grid-based methods, there is the family of direct dynamics (or on-the-fly) meth-

ods, in which the energies, gradients and couplings are evaluated on-the-fly during the propagation. The

most prominent advantages are twofold. First, the prior parametrization of the PESs and their diabatiza-

tion is avoided, and the choice of the coordinates is less important. Second, and most importantly, the

propagation is more “blind”, in the sense that the “wavepacket” is allowed to explore channels of relaxation

that could have not been predicted with prior parametrization of the PESs. The main drawback is that

the limitations on the system size and number of degrees of freedom are now due to electronic structure

calculations, which are to be run at each step of the propagation. Another limitation, related again to the

electronic structure but shared with the parametrization of the PESs, is the evaluation and propagation of

the nonadiabatic couplings [84] and the reliability of the electronic structure method used.

Among the most popular direct dynamics methods are the mixed quantum-classical methods based on

trajectory surface hopping (TSH), see fig. 3.2, panel a) [109,110]. In TSH, the wavepacket is approximated

to an ensemble of trajectories (characterized by their positions and momenta, the distribution {x(𝑡), p(𝑡)}),

while the electronic superpositions mostly serve the calculation of the probabilities to “hop” from one

state to another (see for instance Tully fewest switches surface hopping algorithm) [109, 111]. However,

such trajectory-based methods suffer difficulties to account for many quantum effects. Indeed, in mixed

quantum-classical methods, the nuclear degrees of freedom are not propagated quantum mechanically, but

classically. As such, the coherence of the electronic wavepacket might be overestimated (the superposition

of electronic states is attributed to a “classical” trajectory), and decoherence corrections must be applied

(see a recent review from Subotnik and co-workers [112]). On the other hand, the coherence of the nuclear

wavepackets are usually neglected because the trajectories are uncoupled.

A promising solution to join the best of both worlds from grid-based and direct dynamics methods

has been designed by using Gaussian wavepacket dynamics (originating from the seminal work of Heller

[113, 114]). In particular, the variational multiconfiguration Gaussian wavepacket method (vMCG) takes

advantage of a superposition of Gaussian wavepackets (see fig. 3.2 panel c)) to both:

1. account for an accurate description and propagation of the wavepackets (vMCG)

2. evaluate (and diabatize) the electronic excited states and their PESs in an on-the-fly fashion (using

Gaussians moments) (direct-dynamics, DD-vMCG)

In DD-vMCG, the Gaussian wavepackets are propagated with the time-dependent Schrödinger equation, but
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their centers are the closest one can find to classical trajectories, which allows the PESs to be computed

on-the-fly [115, 116]. Another strategy is to directly propagate these Gaussian wavepackets as classical

trajectories, as proposed by Martinez and co-workers in the full multiple spawning (FMS) method [117].

“Hierarchy” of the nonadiabatic molecular dynamics methods

As regards the comparison of fitting PES or on-the-fly or direct strategies for grid-based and trajectory-

based methods, a comprehensive discussion is provided in Ref [118]. For the discussion of the “exactness”

of the propagation methods, the wide diversity of nonadiabatic quantum dynamics methods (which have

not been exhaustively mentioned here) is explicited with a rather clear hierarchy in Ref [119]. In particular,

the exact factorization has been shown to provide such a hierarchy, from exact to mixed quantum-classical

methods [120].

On a final note, for the rest of this work, we study isolated molecular systems through the definition

of dimensionally reduced models and we propagate the associated wavepackets explicitly via MCTDH and

its extensions (mode combination and multi-layer) only.
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Chapter 4. Electronic Structure Theory

In this chapter, we briefly present the electronic structure problem and discuss the ways of solving

the time-independent Schrödinger equation. The aim of this chapter is to give a minimal background

for the discussion of the electronic structure calculations presented through this work. In particular, the

problem of many-body electronic structure is herein discussed via the derivations of the effective one-body

Hartree-Fock theory and the density functional theory. My personal research project was not focused on the

developement of electronic structure methods nor on directly assessing their validity. However, electronic

structure calculations comes first in this work both for characterizating the systems and phenomena of

interest and for modelling tools for bridging electronic structure and quantum dynamics. As such, this

chapter is thought as a minimal guide for enlightened users of electronic structure methods interested in

the study of electronic excited states in isolated molecules. It is organized as follows. First, we recall the

time-independent electronic Schrödinger equation and discuss the difficulty of dealing with the electronic-

repulsion term (two-body term). Then, the Hartree-Fock theory for solving the Schrödinger equation is

presented for both ground and excited electronic states. This presentation is extended to the density

functional theory and its time-dependent flavor, along with a brief discussion of the existing approximate

functionals. Finally, we summarize computational details as regards the electronic structure calculations

done in the rest of this work.

4.1 Position of the problem

Let us consider again the time-independent Schrödinger equation (TISE), at some given molecular geometry

(implicit here), for the electronic wavefunction, which will be the focus of this chapter

∀𝛼, 𝐻el(x)𝜙el
𝛼(x) = 𝐸𝛼𝜙el

𝛼(x) (4.1)

where we consider the 𝑛-electron Hamiltonian and wavefunction in the position and spin representation with

x = (r, 𝝈) the space coordinates and the spin coordinates of the 𝑛 electrons. The 𝑛-electron Hamiltonian

only contains one-electron and two-electron terms

𝐻el(x) =
𝑛

∑
𝑖

−1
2

∇2
r𝑖

−
𝑛

∑
𝑖

𝑁
∑

𝐴

𝑍𝐴
||R𝐴 − r𝑖||⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℎ𝑖, one-electron term

+
𝑛

∑
𝑖

𝑛
∑
𝑗>𝑖

1
||r𝑗 − r𝑖||⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑔𝑖𝑗, two-electron term

= ̂𝑇 el + ̂𝑉 el-nu + ̂𝑉 el-el

(4.2)

where we dropped the constant nuclear-nuclear interaction ̂𝑉 nu-nu. The kinetic energy of the electrons and

the electronic-nuclear interaction (the first two terms) are one-electron terms and do not represent the

challenging part in electronic structure theory. The third term is the electronic repulsion 1
𝑟𝑖𝑗

= 1
||r𝑗−r𝑖|| and

its role is the focus of this section. From eq. (4.2), there are two main families of approximations. The first

family is composed of ab initio methods, solving the time-independent Schrödinger equation for 𝐻el which

requires approximations because of the two-electron term. On the other hand, one can use “empirical”

104



4.2. Hartree-Fock theory

models for 𝐻el and parametrize these models against experimental or ab initio data, which is related to,

for instance, tight-binding methods for estimating electronic properties. In this work, as regards electronic

structure calculations we focus on ab initio methods and discard tight-binding-like methods.

4.2 Hartree-Fock theory

4.2.1 Variational approach for the electronic ground state

The Hartree-Fock theory is a variational method for which the ansatz for the electronic wavefunction is

built from a Slater determinant, so as to account for the antisymmetry property of the wavefunction but

with minimal correlation.

The Rayleigh-Ritz time-independent variational principle for the expectation value of the energy of the

electronic ground state, defined as the functional

ℰ[𝜙el] =
⟨𝜙el ∣ 𝐻el ∣ 𝜙el⟩

⟨𝜙el | 𝜙el⟩
with ⟨𝜙el ∣ 𝜙el⟩ = 1 (4.3)

consists in finding the optimized electronic wavefunction that minimizes the energy ℰ (under the normaliza-

tion constraint for the wavefunction). The problem formally consists in the minimization of the Lagrangian

functional

ℒ[𝜙el, 𝜆] = ⟨𝜙el ∣ 𝐻el ∣ 𝜙el⟩ − 𝜆 (⟨𝜙el ∣ 𝜙el⟩ − 1) (4.4)

where the Lagrange multiplier 𝜆 ensures the constraint that the electronic wavefunction is normalized at

stationarity. The optimized electronic wavefunction is found for the stationary conditions

𝛿ℒ = 0 (4.5)

which can be rewritten in terms of variations for the ansatz and for the Lagrange multiplier, leading to

⟨𝛿𝜙el
0 ∣ 𝐻el − 𝜆0 ∣ 𝜙el

0 ⟩ = 0 (4.6)

for real valued wavefunctions. In the previous equation, the optimal Lagrange multiplier 𝜆0 occurs to be

the minimized energy ℰ0 of the electronic ground state within the accessible Hilbert submanifold for the

chosen ansatz. We note that eq. (4.6) is simply a different formulation of the stationary conditions for the

Lagrangian and resembles the Dirac-Frenkel variational principle presented in chapter 3. Let us now define

the ansatz for the electronic wavefunction 𝜙el used for the Hartree-Fock theory, as a Slater determinant

𝜙el(x1, ⋯ , x𝑛) = 1√
𝑛!

∣
∣
∣
∣
∣

�̃�1(x1) ⋯ �̃�𝑛(x1)

⋮ ⋱ ⋮

�̃�1(x𝑛) ⋯ �̃�𝑛(x𝑛)

∣
∣
∣
∣
∣

. (4.7)

The functions �̃�𝑎 are the spin-orbitals and are the functions effectively optimized to access the minimum

energy of the ground electronic state and the associated electronic wavefunction. Again, the problem of
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finding ℰ can be rewritten as minimizing the Lagrangian

ℒ[{�̃�𝑎}, {𝜖𝑏𝑎}] = ℰ[{�̃�𝑎}] −
𝑛

∑
𝑎

𝑛
∑

𝑏
𝜖𝑏𝑎 (⟨�̃�𝑎 | �̃�𝑏⟩ − 𝛿𝑎𝑏) (4.8)

where the objective function ℰ[𝜙el] = ℰ[{�̃�𝑎}] is minimized under the constraints that the spin-orbitals form

an orthonormal basis set. The associated Lagrange multiplier 𝜖𝑏𝑎 have the dimension of energy. From this

point, it can be shown through infinitesimal variation of the spin-orbitals that the previous minimization

problem is equivalent to satisfying (stability conditions)

ℱ̂(𝑖)�̃�𝑎(𝑖) =
𝑛

∑
𝑏

𝜖𝑏𝑎�̃�𝑏(𝑖) (4.9)

where ℱ̂ is the associated one-electron (for the 𝑖th electron), so-called Fock operator. It is defined as

ℱ̂(𝑖) = ℎ̂(𝑖) + ∑
𝑏, occupied

𝒥𝑏(𝑖) − 𝒦𝑏(𝑖) (4.10)

where ℎ̂(𝑖) is the one-electron core Hamiltonian, 𝒥𝑏(𝑖) and 𝒦𝑏(𝑖) are the Coulomb and exchange one-

electron operators, respectively. It can be shown that the Fock operator is invariant to an arbitrary unitary

rotation (gauge freedom) and that the Fock matrix in the basis set {�̃�𝑎} can be diagonalized such that

the Fock operator has a diagonal matrix representation in a new so-called canonical basis set {𝜑𝑎}

ℱ̂(𝑖)𝜑𝑎(𝑖) = 𝜖𝑎𝜑𝑎(𝑖). (4.11)

The latter formulation is thus a practical way of solving the variational principle as a pseudo eigenvalue

problem. Now, as electrons are indistinguishable and we only have one- and two-electron terms to consider,

let us consider the previous “pseudo-”eigenvalue problem (non-linear) for “electron 1” only. Solving the

linear many-body Schrödinger equation now boils down to solving a set of one-electron non-linear pseudo-

eigenvalue problems, with the subtelty that the Fock operator ℱ̂(1) depends on all the occupied spin-

orbitals. The Fock operator can be rewritten as the sum of the core-Hamiltonian operator ℎ̂(1) for one

electron and an effective potential operator 𝑣HF(1), caused by all other electrons, having the role of an

approximation of the electron-electron repulsion term. This way, the Hartree-Fock theory is clearly identified

as a mean-field theory and the energy is finally obtained as

ℰ0 = ∑
𝑎

𝜖𝑎 − 1
2

∑
𝑎

∑
𝑏

⟨𝑎𝑏 ‖ 𝑎𝑏⟩2el (4.12)

which requires the evaluation of the two-electron integrals

⟨𝑎𝑏 ‖ 𝑎𝑏⟩2el = ⟨𝜑𝑎(1) ∣ 𝒥𝑏(1) ∣ 𝜑𝑎(1)⟩ − ⟨𝜑𝑎(1) ∣ 𝒦𝑏(1) ∣ 𝜑𝑎(1)⟩ (4.13a)

⟨𝜑𝑎(1) ∣ 𝒥𝑏(1) ∣ 𝜑𝑎(1)⟩ = ∫ ∫ 𝜑∗
𝑎(x1)𝜑∗

𝑏(x2) 1
𝑟12

𝜑𝑎(x1)𝜑𝑏(x2)dx1dx2 (4.13b)

⟨𝜑𝑎(1) ∣ 𝒦𝑏(1) ∣ 𝜑𝑎(1)⟩ = ∫ ∫ 𝜑∗
𝑎(x1)𝜑∗

𝑏(x2) 1
𝑟12

𝜑𝑏(x1)𝜑𝑎(x2)dx1dx2 (4.13c)
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where we defined handy notations ⟨𝑖𝑗 ‖ 𝑘𝑙⟩2el for two-electron integrals (integration of 𝑟−1
12 ) by giving only

the index of the spin-orbitals. This notation is the usual physicist’s notation; different notations for two-

electrons integrals have been proposed elsewhere [121].

The Hartree-Fock equations eq. (4.11) are not strictly a linear eigenvalue problem, as stated above,

because of the dependence of the Fock operator on all the occupied spin-orbitals. On a practical aspect,

the equations are solved iteratively, until self-consistency is reached. In other words, an initial guess of

spin-orbitals is made to build the Fock operator matrix representation, which is diagonalized to produce

new spin-orbitals, used in the next step as the initial guess and so on. Self-consistency criteria can be

chosen as convergence within an energy threshold or as unchanged spin-orbitals. This procedure is referred

to as the self-consistent field (SCF) procedure in quantum chemistry programs. Numerically, the procedure

is implemented through the Roothaan equations (in the context of closed-shell and restricted spin-orbitals)

which are the matrix reformulation of the Hartree-Fock equations eq. (4.11) given a non-orthonormal

atomic orbital basis set {𝜒𝜇},

FC = SC𝝐. (4.14)

In equation eq. (4.14), F is matrix representation of the Fock operator in the set of atomic orbitals; S is

the overlap matrix for the non-orthogonal set of atomic orbitals and C is the matrix defining the molecular

orbitals as linear combinations of the atomic orbitals. Finally, 𝝐 is the diagonal matrix for the “energies”

of the molecular orbitals.

4.2.2 Configuration interaction and linear-response for the electronic excited states

In the previous section, we accessed the many-body electronic ground state energy and wavefunction

using a mono-determinental ansatz. Let us assume this Hartree-Fock solution for the time-independent

Schrödinger equation and build the configuration interaction singles (CIS) wavefunction from mono-excited

Slater determinants

𝜙el,CIS(x1, … , x𝑛) = ∑
𝑎

∑
𝑟

𝑐𝑟
𝑎𝜙𝑟

𝑎(x1, … , x𝑛) (4.15)

where 𝜙𝑟
𝑎 is obtained from the Hartree-Fock solution by promoting an electron from the occupied orbital 𝑎

to the unoccupied orbital 𝑟 (a single excitation). This simple CIS formalism allows us to define the excitation

energies 𝜔CIS from the electronic ground state to the electronic excited states from the eigenvalue problem

AX = 𝝎X (4.16)

where A is the matrix representation of the electronic Hamiltonian eq. (4.2) in the basis of the mono-excited

determinants, X is the matrix of the CIS expansion coefficients for the different excited states and 𝝎 the

diagonal matrix of the associated CIS excitation energies 𝜔𝑛 ∝ 𝐸𝑛 − 𝐸0. However, CIS being limited to

singles, it is only an approximate formulation of the exact full configuration interaction, which is generally

not practical. Yet, CIS is still a convenient way to think of the electronic transitions that we will further

discuss within the theory of linear-response of approximate electronic structure methods.
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Let us go back to Hartree-Fock theory, and assume an electronic ground state wavefunction 𝜙0 for

the unperturbed electronic Hamiltonian. A common strategy to find the electronic transitions from this

electronic ground state is to evaluate the linear-response of the wavefunction due to an external perturbation

representing a periodic electric field. Such a perturbative treatement, formulated in the frequency-domain,

yields first-order response equations for the HF theory

⎛⎜
⎝

A B

B∗ A∗
⎞⎟
⎠

⎛⎜
⎝

X𝑛

Y𝑛

⎞⎟
⎠

= 𝜔𝑛
⎛⎜
⎝

1 0

0 −1
⎞⎟
⎠

⎛⎜
⎝

X𝑛

Y𝑛

⎞⎟
⎠

(4.17)

where A and B are formed from the knowledge of the spin-orbitals of the electronic ground state calculation

𝐴𝑎𝑟,𝑏𝑠 = (𝜖𝑟 − 𝜖𝑎)𝛿𝑎𝑏𝛿𝑟𝑠 + ⟨𝑟𝑏 ‖ 𝑎𝑠⟩ (4.18a)

𝐵𝑎𝑟,𝑏𝑠 = ⟨𝑟𝑠 ‖ 𝑎𝑏⟩ . (4.18b)

Equation (4.17) is often referred to as the time-dependent Hartree-Fock (TDHF) equation although it

is derived as a linear-response equation. Its solutions yield a pair of an electronic excitation X𝑛 and an

electronic de-excitation Y𝑛, related to the excitation energy 𝜔𝑛. These excitations and de-excitations

are related to resonance versus anti-resonance terms obtained in the transition probability between two

electronic states when considering the time-dependent perturbation theory.

We stress here that the problem of finding the electronic excited states is not solved directly but rather

through the determination of the electronic transitions from an initial electronic ground state. We note that

the eigenvalue problem 4.17 can be derived equivalently from the equations of motion; the linear-response

of the wavefunction to a perturbation; or the random-phase approximation (RPA). In essence, for a given

theory of the electronic ground state, the linear-response theory and first order spectral response to a time-

dependent perturbation yield an eigenvalue problem for the electronic transitions. Hartree-Fock thus has

its time-dependent extension, related to the CIS formalism when the de-excitations terms are neglected. In

the next section, we will present a similar formalism evaluating electronic transitions within the context of

the density functional theory (DFT).

Take-home messages

1. The Hartree-Fock equations for the electronic ground state are obtained by solving the

time-independent variational principle for a Slater determinant built from spin-orbitals.

2. The Hartree-Fock equations are solved iteratively (SCF algorithms) and expressed in

matrix-vector forms (Roothaan equations).

3. The electronic excited states can be approximated to the solutions of Casida-like equa-

tions (see below), a linear-response of the Hartree-Fock electronic ground state.
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4.3 Density functional theory

Electronic structure methods based on the wavefunction are computationally expensive and become not

practical for large systems. In this section, we present the density functional theory (DFT) and the associ-

ated density functional approximations (DFAs) for solving the electronic structure problem.

4.3.1 DFT for the electronic ground state

This section is strongly inspired from the lectures of J. Toulouse and their recent review on density functional

theory and approximations [122].

4.3.1.1 One-electron density and universal functional

The electronic structure problem, within the non-relativistic limit, is concerned with the kinetic energy for

the electron ̂𝑇 el, the electron-electron interaction ̂𝑉 el-el and the external potential from the nuclei ̂𝑉 el-nu

(see eq. (4.2)). The external potential is what defines the molecular system, from the knowledge of the

nucleus positions, and is a multiplicative operator for which the representation in position is 𝑣ne(r) for

one electron at position r (often called the external potential 𝑣ext(r)). Having this and assuming an exact

solution to the Schrödinger equation, one obtains the electronic wavefunction for the electronic ground

state 𝜙el(x1, … , x𝑛) (with x𝑖 = (r𝑖, 𝜎𝑖)), and can further define the one-electron density

𝜌(r) = 𝜌(r1) = 𝑛 ∫|𝜙(x1, x2, … , x𝑛)|2d𝜎1dx2 ⋯ dx𝑛. (4.19)

The one-electron density is a reduced-density function formed from the wavefunction integrated over all

spin coordinates and over the position of all the electrons except one (chosen as the first one here, but all

are indistinguishable) and is the focus interest of DFT. In a few words, given the external potential, the

electronic wavefunction and the one-electron density are consequently obtained

𝑣ne(r) ⟶ 𝜌(r). (4.20)

The first theorem of foremost importance for DFT is the first Hohenberg-Kohn (HK) theorem, for which

the proposition is that this mapping can be inverted [123]. In other word, by only knowing the ground-state

density 𝜌(r) for an 𝑛-electron system, one is able to recover the underlying external potential (up to a

constant)

𝜌(r) ⟶ 𝑣ne(r), (4.21)

and consequently all observables of the 𝑛-electron system. Mathematically speaking, the external potential

(and thus any observable for the 𝑛-electron system) is a functional of the density

𝑣ne = 𝑣[𝜌], (4.22)
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and the ground state wavefunction for the external potential is also a functional of the density, such that

the rest of the electronic Hamiltonian can also be evaluated as a functional of the density

𝐹[𝜌] = ⟨𝜙el[𝜌] ∣ ̂𝑇 el + ̂𝑉 el-el ∣ 𝜙el[𝜌]⟩ . (4.23)

The previous functional of the density is called the “universal” functional of DFT in the sense that it does

not depend on the external potential. Altogether we finally write the functional for the energy of the ground

state

𝐸[𝜌] = 𝐹 [𝜌] + ∫ 𝑣ne(r)𝜌(r)dr (4.24)

satisfying the variational principle such that

𝐸0 = min
𝜌

(𝐹[𝜌] + ∫ 𝑣ne(r)𝜌(r)dr). (4.25)

The optimum obtained for the minimal ground state energy 𝐸0 is the optimal density of the electronic

ground state 𝜌0(r) for the given potential 𝑣ne(r). The latter proposition is often referred to as the second

HK theorem. Compared to the variational principle for the wavefunction (4-𝑛 spin-space parameters), we

have here a tremendous simplification with a variational principle for the density (3 spatial parameters).

Although this functional is universal in principle, it is an impossible task to have a practical use of it

formally, in particular because of the kinetic energy of the electron within the 𝑛-electron system. Indeed,

even if the universal functional exists, it is not known explicitly.

4.3.1.2 The Kohn-Sham method

A first approximation scheme was proposed shortly after the HK theorem: the Kohn-Sham (KS) scheme

[124]. The main idea behind the KS method is to replace the many-body problem of interacting electrons

with a simpler system of “non-interacting” electrons having the exact same electron density. The universal

functional is rewritten as

𝐹[𝜌] = 𝑇S[𝜌] + 𝐸Hxc[𝜌]. (4.26)

The second term, the Hartree-exchange-correlation energy, is the focus of the density functional approxi-

mations (DFAs) and is discussed later on. The advantage of the previous mapping is the evaluation of the

first term, the kinetic energy for the electrons 𝑇S[𝜌], which can now be simply evaluated with a variational

principle with mono-determinantal wavefunctions.

𝑇S[𝜌] = min
𝜙∈𝒮𝑛

𝜌
⟨𝜙 ∣ ̂𝑇 el ∣ 𝜙⟩ = ⟨𝜙[𝜌] ∣ ̂𝑇 el ∣ 𝜙[𝜌]⟩ (4.27)

where 𝒮𝑛
𝜌 is the mathematical space of all the 𝑛-electron mono-determinantal wavefunctions having density

𝜌. The energy of the electronic ground state is then

𝐸0 = min
𝜙∈𝒮𝑛

𝜌
⟨𝜙 ∣ ̂𝑇 el + ̂𝑉 el-nu ∣ 𝜙⟩ + 𝐸Hxc[𝜌𝜙] (4.28)
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with, at the minimum, the optimal density 𝜌0 of the electronic ground state, but with the subtelty that 𝜙0

is not the wavefunction of the ground state. For the Hartree-exchange-correlation energy functional, let us

decompose again
𝐸Hxc[𝜌] = 𝐸H[𝜌] + 𝐸x[𝜌] + 𝐸c[𝜌]

= 1
2

∫ 𝜌(r1)𝜌(r2)
|r1 − r2|

dr1dr2 + 𝐸x[𝜌] + 𝐸c[𝜌]
(4.29)

where the first term (Hartree energy) is the classical Coulombic interaction between two electron densities

and the other two terms are exchange and correlation functionals, respectively, and must be approximated.

On practical terms, as for the HF approximation and its derivation, the minimization problem is effec-

tively solved using spin-orbitals so that the density, hence the energy, are functionals of the spin-orbitals

𝐸[{𝜑𝑖}] =
𝑛

∑
𝑖

∫ 𝜑∗
𝑖 (r) (−1

2
∇2

r + 𝑣ne(r)) 𝜑𝑖(r)dr + 𝐸Hxc[𝜌] (4.30)

with

𝜌(r) =
𝑛

∑
𝑖

|𝜑𝑖(r)|2. (4.31)

Similarly to the constrained variational approach for deriving the HF equations, the variational principle

leads to the KS equations

(−1
2

∇2
r + 𝑣ne(r) + 𝑣Hxc(r))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℎS, one-electron operator

𝜑𝑖(r) = 𝜖𝑖𝜑𝑖(r). (4.32)

The KS equations resembles the canonical HF equations, only with a new potential that is the Hartree-

exchange-correlation potential

𝑣Hxc(r) = 𝛿𝐸Hxc[𝜌]
𝛿𝜌(r)

(4.33)

obtained from the extension of the derivation to the Hartree-exchange-correlation functional. It is to

be noted that the existence of such a potential is not guaranteed in general, and is known as the 𝑣-

representability problem, or condition, which is the main issue of KS-DFT.

In the exact same way as in HF equations, the solution of KS equations are found iteratively, until self-

consistency of the density is reached. In practice, a basis set of atomic orbitals is given and the equivalent

of the Roothaan equations for the KS one-electron operator ℎ̂S are found and solved. Compared to the

HF approximation and the Roothaan equations, using DFT “only” requires defining an Hartree-exchange-

correlation functional. If the functional 𝐸Hxc is exact, the DFT energy and density for the electronic

ground state are exact, but in practice, only approximate functionals for exchange and correlation energies

are accessible, hence used.

4.3.1.3 Exchange-correlation approximations

In this section, we briefly review the historical approximation types for the exchange-correlation functionals,

from the simplest to the more involved ones. These density functional approximations (DFAs) have histor-

ically been illustrated as the rungs of a Jacob’s ladder, the lowest rung being closer to the Hartree theory
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and the highest rung being closer to the many-body perturbation theory [122]. The first approximation

was proposed together with the non-interacting mapping by Kohn and Sham [124] and is the local-density

approximation (LDA)

𝐸LDA
xc = ∫ 𝜌(r)𝜖UEG(𝜌(r))dr (4.34)

where 𝜖UEG(𝜌(r)) is the exchange-correlation energy per particle for an uniform electron gas (UEG) at the

given density 𝜌(r). The latter energy per particle is decomposed in an exchange contribution, computed

analytically, and a correlation contribution which can only be estimated numerically.

The second rung in the ladder of DFAs is the family of generalized-gradient approximation (GGA)

functionals of the form

𝐸GGA
xc = ∫ 𝑒GGAxc (𝜌(r), ∇𝜌(r))dr. (4.35)

Compared to LDA functionals, the GGA functionals are said to be semilocal due to the use of the local

gradient of the density ∇𝜌(r) on top of the local density 𝜌(r). Far from being comprehensive, we cite

• the B88 exchange functional (Becke 1988 [125]), which is a correction to LDA using the modulus of

the density gradient |∇𝜌(r)| and is fitted to Hartree-Fock exchange energies of rare-gas atoms;

• the LYP correlation functional (Lee-Yang-Parr 1988 [126]), which is a density functional depending

on the density 𝜌(r), the square of the density gradient (∇𝜌(r))2 and the Laplacian of the density

∇2𝜌(r).

An extension of GGA (meta-GGA) was later introduced by adding dependency on the non-interactive kinetic

energy density, re-inserting kinetic energy from the orbitals of the KS single-determinant wavefunction.

The next rung of the Jacob ladder consists in the hybrid functionals, where hybrid implies using a mix

of Hartree-Fock exchange energy and exchange and/or correlation from LDA and GGA functionals. Within

this family, Becke proposed a three-parameter hybrid (3H) approximation [127,128]

𝐸3H
xc [𝜙] = 𝑎𝐸HF

x [𝜙] + 𝑏𝐸GGA
x [𝜌𝜙] + (1 − 𝑎 − 𝑏)𝐸LDA

x [𝜌𝜙] + 𝑐𝐸GGA
c [𝜌𝜙] + (1 − 𝑐)𝐸LDA

c [𝜌𝜙] (4.36)

where the energy functionals are here functionals of the mono-determinantal wavefunction 𝜙 consistent

with the density 𝜌𝜙. One example of a 3H functional is the hybrid B3LYP [129] and is a mix of the

previously cited B88 exchange and the LYP correlation functionals ((𝑎, 𝑏, 𝑐) = (0.20, 0.72, 0.81)).

Another common hybrid approximation is the simpler in form one-parameter hybrid (1H) [130] and

adapted to any lower approximation

𝐸1H
xc [𝜙] = 𝑎𝐸HF

x [𝜙] + (1 − 𝑎)𝐸LDA/GGA
x [𝜌𝜙] + 𝑎𝐸LDA/GGA

c [𝜌𝜙]. (4.37)

A trade-off for 𝑎 must be found, and it is generally taken around 0.25 based on fitted experimental data.

The B97 (Becke 97 [131]) family of functionals is an example of 1H hybrid functional with GGA initial

approximation.
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Up to these hybrid functionals, DFAs are still usually bad appproximations for electronic ground and

excited states of large molecules or for charge-transfer systems, for instance. One important step toward

the last rungs of Jacob’s ladder for DFAs is the long-range correction (LC), which is proposed in the

range-separated scheme for hybrid functionals. There are different range-separated schemes, but the initial

idea is to have a mix of exchange functional from HF and the targeted DFA using a parameter (previously

denoted 𝑎) that depends on 𝑟12

𝐸LC
x = 𝐸 lr,HF

x [𝜙] + 𝐸sr,DFA
x [𝜌𝜙] + 𝐸DFA

c [𝜌𝜙] (4.38)

where the long-range (lr) and short-range (sr) exchange functionals are calculated using long-range and

short-range electron-electron interactions

𝑤lr
ee(𝑟12) = error-function(𝜇𝑟12)

𝑟12
and 𝑤sr

ee = 1
𝑟12

− 𝑤lr
ee(𝑟12) (4.39)

where 𝜇 parametrizes the degree of separation [132]. The LC scheme was further extended to 3H and 1H

hybrid functionals, using the long-range and short-range versions of the exchange functionals. This is the

case of the Coulomb attenuating method (CAM)

𝐸CAM
xc [𝜙] = 𝑎𝐸sr,HF

x [𝜙] + 𝑏𝐸 lr,HF
x [𝜙]

+ (1 − 𝑎)𝐸sr,DFA
x [𝜌𝜙] + (1 − 𝑏)𝐸 lr,DFA

x [𝜌𝜙] + 𝑐𝐸GGA
c [𝜌𝜙] + (1 − 𝑐)𝐸LDA

c [𝜌𝜙]
(4.40)

for which the most known application is the CAM-B3LYP functional, extensively used in this work. Com-

pared to B3LYP, the parameters of CAM are the same for correlation but slightly different for exchange

(𝑎 = 0.19, 𝑏 = 0.65) and the LC parameter is 𝜇 = 0.33 a0−1 [133]. For 1H hybrid functional, we cite the

𝜔-B97X functional which is the LC corrected B97 functional with re-optimized parameters 𝑎 = 0.16, 𝑏 = 1

and 𝜇 = 0.3 a0−1 [134].

In this thesis, we almost exclusively used range-separated hybrid functionals for the electronic ground

and excited states. Unless otherwise specified, the preferred functional is CAM-B3LYP. Some side projects

to this work suggested the use of different range-separated hybrid functionals such as the family of 𝜔-B87

functionals for the electronic excited states.

Take-home messages

1. The density functional theory (DFT) uses the one-electron density, rather than the elec-

tronic wavefunction, to minimize the energy of the electronic ground state.

2. The Hohenberg-Kohn theorems allows one to rewrite the external potential as a func-

tional of the density, and to minimize the energy accordingly.

3. The Kohn-Sham (KS) scheme defines a mapping of the many-body problem for the

electrons with a system of non-interacting electrons.
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4. With the KS scheme, the kinetic energy functional is easily computed, and only the

exchange-correlation potential must be approximated.

5. The approximations for exchange-correlation potentials are numerous, and we choose, as

regards our calculations, the CAM-B3LYP functional (range-separated hybrid functional).

4.3.2 Linear-response time-dependent DFT and electronic excited states.

In the previous section, we described DFT and usual DFAs for the electronic ground state. In this section, we

briefly present how DFT has been extended for studying electronic excited states and transition energies,

within the framework of the linear-response time-dependent DFT (LR-TD-DFT). This presentation is

strongly inspired from the review article of M. E. Casida and M. Huix-Rotllant [135] and the book chapter

Introduction to TDDFT of E. Gross and N. Maitra [136].

Similarly to Hohenberg and Kohn theorems, TD-DFT has for fundation the Runge and Gross (RG)

theorems. The first one states that the time-dependent electron density 𝜌(r, 𝑡) and the initial wavefunction

𝜙0 = 𝜙(𝑡 = 0) determines the external potential (up to an additive function of time only)

𝑣ext(r, 𝑡) ⟷ 𝜌(r, 𝑡) given 𝜙0. (4.41)

The difference compared with HK first theorem is the dependence on the information at 𝑡 = 0 or within

the functional formalism

𝑣ext(r, 𝑡) = 𝑣[𝜌, 𝜙0], (4.42)

where the external potential now includes both the electron-nuclear potential and the external time-

dependent perturbation (such as electromagnetic radiations). Analogous to the time-independent case

and the Kohn-Sham scheme, one can consider the RG theorem in the case of non-interacting electrons

𝑣KS(r, 𝑡) ⟷ 𝜌(r, 𝑡) given 𝜙0
KS (4.43)

where the density is the same as in the case of the interacting electrons. The so-called KS potential can

be rewritten as

𝑣KS[𝜌, 𝜙0
KS](r, 𝑡) = 𝑣ext[𝜌, 𝜙0](r, 𝑡) + 𝐸H[𝜌] + 𝑣xc[𝜌, 𝜙0, 𝜙0

KS](r, 𝑡) (4.44)

retrieving the external potential, the Hartree potential and a new exchange-correlation potential, functional

of the density and of the initial states for interacting electrons and non-interacting electrons. The new KS

scheme for the time-dependent Schrödinger equation now gives the time-dependent KS equations

[−∇2
r

2
+ 𝑣KS[𝜌, 𝜙0

KS](r, 𝑡)] 𝜑𝑖(r, 𝑡) = 𝑖𝜕𝜑𝑖(r, 𝑡)
𝜕𝑡

. (4.45)

However, the conditions for the existence of the exchange-correlation functional 𝑣xc[𝜌, 𝜙0, 𝜙0
KS] are not

trivial and constitute an important fundamental question in TD-DFT [137]. Furthermore, it is a highly
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complicated mathematical object and is, in the context of the TD-DFT presented here, strongly simplified.

The most current approximation is the “Adiabatic Approximation”. Let us stress here that the “Adiabatic

Approximation” in the context of TD-DFT is not the same as the adiabatic approximation in the context

of nuclear motions. It consists in neglecting all memory or history effects in the exchange-correlation

functional (Markovian-like approximation), thus writing

𝑣xc[𝜌, 𝜙0, 𝜙0
KS] ≃ 𝑣AAxc [𝜌𝑡](r) = 𝛿𝐸xc[𝜌𝑡]

𝛿𝜌𝑡(r)
. (4.46)

In other words, the time-dependent exchange-correlation potential only depends on the functional derivative

of the exchange-correlation functional at time 𝑡 with respect to the density at time 𝑡.

Although TD-KS equations could be propagated in time, the problem is more easily solved, for weak

external perturbation, within the linear-response (LR) formalism. Let us begin with the LR formalism for

the interacting system, with the underlying 𝜙0 wavefunction for the electronic ground state. Let us assume

that the initial state is the electronic ground state of the system, and assume that we have the following

separation for the external potential

𝑣ext(r, 𝑡) = 𝑣ext,0(r) + 𝛿𝑣ext(r, 𝑡). (4.47)

The response of the time-dependent density to the external perturbation 𝛿𝑣ext(r, 𝑡) is

𝜌(r, 𝑡) = 𝜌0(r) + 𝜌1(r, 𝑡) + 𝜌2(r, 𝑡) + … (4.48)

For the linear-response formulation of TD-DFT, we are simply interested in the first-order term

𝜌1(r, 𝑡) = ∫
+∞

0
d𝑡′ ∫ 𝜒(r, 𝑡, r′, 𝑡′)𝛿𝑣ext(r′, 𝑡′)dr′ (4.49)

where we define the so-called density-density linear-response function 𝜒

𝜒(r, 𝑡, r′, 𝑡′) = 𝛿𝜌(r, 𝑡)
𝛿𝑣ext(r′, 𝑡′)

∣
𝑣ext,0

. (4.50)

Using the completeness relation for the excited states of the unperturbed electronic Hamiltonian and a

Fourier transform one can write the previous response function in the frequency-domain

𝜒(r, r′, 𝜔) = lim
𝜂→0+

∑
𝛼≠0

[⟨𝜙0 | ̂𝜌(r) | 𝜙𝛼⟩ ⟨𝜙𝛼 | ̂𝜌(r′) | 𝜙0⟩
𝜔 − 𝜔𝛼 + 𝑖𝜂

− ⟨𝜙0 | ̂𝜌(r′) | 𝜙𝛼⟩ ⟨𝜙𝛼 | ̂𝜌(r) | 𝜙0⟩
𝜔 + 𝜔𝛼 + 𝑖𝜂

]. (4.51)

In the previous expression, the electronic excited state wavefunctions 𝜙𝛼 and associated excitation energies

𝜔𝛼 = 𝐸𝛼 − 𝐸0 would be the solutions of the CIS eigenvalue problem eq. (4.16). The poles of the density-

density linear-response function in the frequency domain theoretically give the excitation energies. In

particular, we find again the resonance (∝ (𝜔 − 𝜔𝛼)−1) and anti-resonance (∝ (𝜔 + 𝜔𝛼)−1) with respect

to the frequency of the perturbation (see for instance first-order time-dependent perturbation theory in

Ref [138]).
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Chapter 4. Electronic Structure Theory

Now, we want to take advantage of TD-DFT by using the KS scheme of non-interacting electrons, which

yield the same time-dependent density. The definition of the response function holds for the non-interacting

system, yielding

𝜒KS(r, 𝑡, r′, 𝑡′) = 𝛿𝜌(r, 𝑡)
𝛿𝑣KS(r′, 𝑡′)

∣
𝑣KS,0

(4.52)

for which we can also give the frequency-space representation, introducing the spin-orbitals for the electronic

ground state of the non-interacting system

𝜒KS(r, r′, 𝜔) = lim
𝜂→0+

∑
𝑎

∑
𝑟

(𝑓𝑎 − 𝑓𝑟) 𝜑(0)∗
𝑎 (x)𝜑(0)

𝑟 (x)𝜑(0)∗
𝑟 (x′)𝜑(0)

𝑎 (x′)
𝜔 − (𝜖𝑟 − 𝜖𝑎) + 𝑖𝜂

(4.53)

where 𝑓𝑎,𝑟 are occupation numbers for the orbitals 𝜑𝑎,𝑟 with energies 𝜖𝑎,𝑟. The problem is now that

the poles of the KS density-density linear-response function are not the ones of the true density-density

response function eq. (4.51). We must take into account the exchange-correlation potential and the

so-called exchange-correlation kernel 𝑓xc

𝑓xc[𝜌0](r, 𝑡, r′, 𝑡′) = 𝛿𝑣AAxc [𝜌](r, 𝑡)
𝛿𝜌(r′, 𝑡′)

∣
𝜌=𝜌0

= 𝛿2𝐸xc[𝜌](r, 𝑡)
𝛿𝜌(r′𝑡′)𝛿𝜌(r, 𝑡)

∣
𝜌=𝜌0

. (4.54)

to correct the response function. Assuming this is known, the true density-density response function is,

within the TD-KS scheme

𝜒[𝜌0](r, 𝑡, r′, 𝑡′) = 𝜒KS[𝜌0](r, 𝑡, r′, 𝑡′)

+ ∫ d𝑡1 ∫ dr1 ∫ d𝑡2 ∫ dr2𝜒KS[𝜌0](r, 𝑡, r1, 𝑡1)

× [𝛿(𝑡1 − 𝑡2)
|𝑟1 − 𝑟2|

+ 𝑓xc[𝜌0](r1, 𝑡1, r2, 𝑡2)] 𝜒[𝜌0](r2, 𝑡2, r′, 𝑡′)

(4.55)

which is known as a Dyson-like equation [136].

Having the KS orbitals for the ground state, the previous problem can be reformulated in terms of

matrix-vector equations. The excitation energies can be found by solving the Casida equations

⎛⎜
⎝

A B

B∗ A∗
⎞⎟
⎠

⎛⎜
⎝

X𝑛

Y𝑛

⎞⎟
⎠

= 𝜔𝑛
⎛⎜
⎝

1 0

0 −1
⎞⎟
⎠

⎛⎜
⎝

X𝑛

Y𝑛

⎞⎟
⎠

(4.56)

where A and B are obtained from the difference energy for KS orbitals and from the expectation values

of the exchange-correlation kernel

𝐴𝑎𝑟,𝑏𝑠 = (𝜖𝑟 − 𝜖𝑎)𝛿𝑎𝑏𝛿𝑟𝑠 + ⟨𝑟𝑏 | 𝑎𝑠⟩ + ⟨𝑟𝑏 | 𝑓xc | 𝑎𝑠⟩ (4.57a)

𝐵𝑎𝑟,𝑏𝑠 = ⟨𝑟𝑠 | 𝑎𝑏⟩ + ⟨𝑟𝑠 | 𝑓xc | 𝑎𝑏⟩ (4.57b)

where ⟨𝑖𝑗 | 𝑓xc | 𝑘𝑙⟩ consists in the two-electron Coulomb integrals with the exchange-correlation kernel

instead of 𝑟−1
12 . Thus, we find similar equations for TD-HF (eq. (4.17)) and TD-DFT (eq. (4.56)), with A

and B defined with 𝑟−1
12 and 𝑓xc for TD-HF and TD-DFT, respectively. Similarly, the solutions of eq. (4.56)

are twofold, with the onward transitions X𝑛 and the backward transitions Y𝑛. Neglecting the latter is
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4.4. Computational and practical details

known as the Tamm-Dancoff approximation (TDA), which in practice corresponds to B = 𝟎. Such a final

approximation yields approximate CIS-type equations (eq. (4.16)) for the KS orbitals.

For the rest of this work, when we refer to TD-DFT calculations, we refer to the use of the working

equations derived by Casida for the LR-TD-DFT [135,139]. Unless otherwise specificed, there are no other

approximations done for the ground and excited electronic structure of the molecule of interest. To go

beyond some approximations, we mention the recent advances of the use of the Bethe-Salpeter equation

formalism for quantum chemistry [140,141].

Take-home messages

1. The Runge-Gross theorems allow one to rewrite the time-dependent external potential

as a functional of the time-dependent density and of the initial electronic ground state.

2. The Kohn-Sham scheme is also extended to the time-dependent flavor The time-

dependent exchange-correlation potential depends on both the electronic ground state

of the interacting and non-interacting systems (memory effects).

3. The adiabatic approximation consists in neglecting all memory effects in the exchange-

correlation potentials.

4. The linear-response theory, applied to the TD-DFT within the adiabatic approximation,

yields the Casida equations, for which the solutions are the electronic excitations and

de-excitations.

5. The most important limits of TD-DFT is the estimation of the transition energy toward

charge transfer states and the absence of double excitations.

4.4 Computational and practical details

We briefly expose the computational details for all the electronic structure calculations presented in this

thesis. Unless otherwise specified, the Gaussian16 package (revision A.03 [142]) has been used for all

calculations. In general, we use the DFT for the electronic ground state and the linear-response TD-DFT

for the electronic excited states. The TDA is in general turned off, such that the TD-DFT calculations

are to be interpreted as a true linear response from the excitation of the electronic ground state. The

chosen level of theory is CAM-B3LYP/6-31+G* for which the validity (for the electronic transitions of the

molecules of interest here) has been assessed against experiments [41,42,143]. The functional CAM-B3LYP

is a range-separated hybrid functional, defined in section 4.3.1.3. The basis of atomic orbitals is 6-31+G*
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Chapter 4. Electronic Structure Theory

which belongs to the family of Gaussian-type atomic orbitals (GTOs), or Pople basis sets [144, 145]. The

number “6” stands for the use of six Gaussian functions to describe the orbitals associated to the core

shell of the atoms. The numbers “31” stand for the use a split-valence double-zeta scheme for the valence

electrons of the atoms. The orbitals are polarized (superscript *) by adding d orbitals for the atoms with a

𝑛p𝑥 valence shell. Diffuse orbitals (+) are added (adding 𝑛 + 1-type orbitals for atoms with a 𝑛𝑙𝑥 valence

shell) [146,147].

Geometry optimizations for minima and transition states are done using the widely used optimization

algorithm of Schlegel [148] and its variants implemented in Gaussian16. As regards energy derivatives, the

energy gradients and Hessians are computed analytically for ground and electronic excited states [149,150].

For TD-DFT calculations, the electronic transition dipole moments (ETDMs) are also obtained for each

transition. The oscillator strengths are given in the “length gauge” [151].

Finally, steady-state spectroscopy calculations in the framework of the Franck-Condon principle (Born-

Oppenheimer and Condon approximations) are done using the FCHT module with the adiabatic Hessians

flavor [82, 152, 153]. The Franck-Condon (zeroth order in the ETDM) and Herzberg-Teller (first order in

the ETDM, for symmetry-forbidden electronic transitions) contributions to the absorption and emission

electronic (and vibronically resolved) spectra can thus be computed.
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Intermediate Abstract

In this part, we characterize three poly(phenylene ethynylene) (PPE) oligomers that are building blocks

for the light-harvesting PPE-dendrimer presented in chapter 1. For the three cases, we characterize the

electronic excited states via their excitation energies and chemical characters, as well as their minima,

transition states and minimum-energy conical intersection geometries.

In chapter 5, we focus on the chromophores of PPE-dendrimers (the symmetrically di-meta-substituted

phenylene) and their steady-state spectroscopy properties. In particular, we devise models of potential

energy surfaces for the strongly-coupled electronic excited states of the chromophore unit. These models

serve for running nonadiabatic quantum dynamics to investigate the vibronic eigenstates of the molecule and

identify the involved electronic-vibrational (vibronic) transitions for both absorption and emission spectra.

In chapter 6, we propose a framework for studyding excitation-energy transfer (EET) in the first unit of

PPE-oligomer that exhibit it: the asymmetrical di-meta-substituted phenylene node with branches of two

and three phenyl rings, respectively. We identify the most prominent nuclear motions to correctly describe

the EET process and propose a time-resolved analysis of correlated electronic and vibrational transfers. We

also propose an extension toward a more systematic construction of high-dimensional models of EET in

such molecules.

Finally, in chapter 7, we extend the previous framework of characterization for EET to the first generation

of PPE-dendrimers. The molecule of interest is now a tri-substituted phenylene node, where more excitation

channels are available for the absorption of light than in the previously studied unit. Similarly, we identify

the main features of the mechanism of EET within a more involved landscape of both electronic excited

states and vibrations in the molecule.

Parts of the results presented for the chromophore and for the first unit for EET have been published

[154,155].
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Chapter 5
The Chromophore of the PPE-dendrimers,

1,3-bis(phenylethynyl)benzene

“Les états électroniques, ils sont ce qu’ils sont. Mais...”

– Benjamin Lasorne, Everyday of this PhD
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Chapter 5. The Chromophore: m22

As we have seen in the chapter 1, 𝜋-conjugated dendrimers are known for their light-harvesting prop-

erties, for which the efficiency depends on two crucial ingredients: the nature of the chromophores and the

graph structure of the dendrimer skeleton. A common choice for the dendrimer skeleton is an extended

structure, where the chromophores are the “leaves” of a “tree-like” dendrimer with longer “branches”

from the periphery to the core of the light-harvesting molecule. In this thesis, we study extended den-

drimers of poly(phenylene ethynylenes) (PPEs) where the chromophores and the skeleton are made of the

same “sites”, para-conjugated benzenes and acetylenes. The primary chromophores in PPE-dendrimers are

diphenylacetylenes (DPAs or tolane, called p2 in the following) and the features of PPE-dendrimers stem

from the local excitations (LE) on the peripheral DPAs, p2 units.

This chapter focusses on the characterization and study of this first (chromophore) building block of

the PPE-dendrimers. More rigorously, the effective chromophores of the PPE-dendrimers are the 1,3-

bis(phenylethynyl)benzene fragments (called m22 in the following), which – in fact – can be seen as two

DPAs units sharing one central meta-substituted phenylene ring [42]. The principal aim of this study is

to explore plausible explanations for the rather unusual UV-visible spectra of the m22 PPE-oligomer. The

first observation is the strong resemblance between the absorption spectra of the simple unit p2 and the

symmetrically meta-substituted unit m22 (fig. 5.1, blue lines).

a

Figure 5.1: Left: Absorption (blue lines) and emission (red lines) experimental spectra of diphenylacety-

lene (panel a, p2) and 1,3-bis(phenylethynyl)benzene (panel b, m22), measured at −198 °C (75 K). Data

reproduced with permission from Q. Chu and Y. Pang, Spectrochim. Acta A 60, 1459 (2004) [39].

Right: Lewis structures at the ground-state equilibrium geometry of diphenylacetylene (p2) and 1,3-

bis(phenylethynyl)benzene (m22).

This additivity of the UV-visible spectra was already identified more generally in PPE-dendrimers with

p2 primary units, and was attributed to the LE character of the excited states of m22. This was further

rationalized via a pseudofragmentation scheme of m22 into two p2 units sharing a central ring, consistent

with the electronic state characters [19,42]. Thus, the absorption of light by the chromophore m22 simply
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5.1. Time-independent characterization

boils down, from this point of view, to the absorption of light by two distinct but equivalent p2 units.

On the other hand, steady-state UV-visible spectroscopy shows that the emission spectrum of m22

is completely different from the emission spectrum of p2 (fig. 5.1, red lines) [19, 37, 39]. The difference

between the maxima of absorption and emission (the Stokes shift) in m22 was measured at low temperature

as Δ ̄𝜈 ≃ 2300 cm−1. As can be seen from the UV-visible spectra, this Stokes shift does not correspond

to the usual hypothesis of strong changes in equilibrium geometry, which generally holds for bell-shaped

absorption and emission spectra (see fig. 5.2).

ν = 0

ν'

ν' = 0

ν

E
n
e
rg

y

0-ν' ν-0

In
te

n
si

ty

0-0'

In
te

n
si

ty

Wavelength

ν' = 0

ν = 0

Q, normal mode

Energy

E
n
e
rg

y

a) bell-shaped UV-visible spectra b) triangular-shaped UV-visible spectra

Wavelength Q, normal mode

Figure 5.2: Schematic representation of usual absorption and emission vibronic spectra (blue and red lines),

with simplified one-dimensional potential energy profiles for strongly shifted (a) and unshifted (b) harmonic

oscillators for the electronic ground and excited states.

We thus qualify this shift as being unusual and attribute this character to the fact that it is absent

from the UV-visible spectra of p2 and that it cannot be reproduced theoretically within the framework of

Born-Oppenheimer and harmonic approximations, as we will further discuss.

This chapter is organized as follows. First, we discuss in section 5.1 the molecular geometries, the

excited-state properties, and the normal modes of vibration of the m22 molecule. In section 5.2, we

describe simple and low-dimensional modes of coupled diabatic states for studying m22 beyond the Born-

Oppenheimer approximation, and propose a simple extension to medium-dimensional models in section 5.3.

Finally in section 5.4, we give outlooks for this work and explain how it articulates with the next chapters.

5.1 Time-independent characterization

The electronic ground state and first electronic excited states of 1,3-bis(phenylethynyl)benzene (m22) have

already been studied theoretically in previous works. In particular, Emmeline K. Ho and Gabriel Breuil first

explored the potential energy surfaces (PESs) and associated electronic states of para-substituted oligomers

of PPE p𝑛 (𝑛 = 2, … , 7) [41] and of the symmetrically meta-substituted PPE m22 [42]. In this section,

we greatly benifit from their work and present again the most important properties of the electronic states

of m22. In particular, we will describe the critical points of the PESs of m22 (minima, transition states,

and minimum-energy conical intersections) and the normal modes of vibration of the molecule. This serves

as a starting point for discussing all variants of meta-substituted PPEs that we have studied in the rest of

the thesis.
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Chapter 5. The Chromophore: m22

We briefly recall the computational details. We use DFT and TD-DFT for evaluating electronic ground-

state and excited-state energy derivatives, respectively, at the CAM-B3LYP/6-31+G* level of theory (see

chapter 4 for more details). The validity of this level of theory for para-substituted PPEs has been assessed

against experiments [41,143].

5.1.1 Electronic states and vibrational analysis

The minimum of the electronic ground state is a C2v molecular geometry (𝑁at = 36) and is consistent with

the Lewis structure shown in fig. 5.1, right panel. The structure of the local acetylene and phenylene moi-

eties is that of their individual electronic ground state (alternated C − C ≡ C − C and aromatic patterns,

respectively). The singlet electronic excited states from vertical transitions have different symmetry and

belong to irreducible representations of the C2v point group (A1, A2, B1, or B2). The most important pairs

of molecular orbitals involved in the transitions S0 ⟶ S1 and S0 ⟶ S2 are shown in fig. 5.3. The first

two singlets S1 and S2 (vertical transition energies 𝐸 = 4.43 eV and 4.47 eV, respectively) have B2 and A1

symmetry, respectively and are almost degenerate (Δ𝐸 = 0.04 eV) at this geometry. Let us note already

that at this C2v geometry, the density differences and the transition densities, also shown in fig. 5.3, are

delocalized over the whole molecule and are consistent with the symmetry of the considered excited state.1

HOMO-1

HOMO

LUMO

LUMO+1

51%

43%

16%

76%

f = 1.7066

f = 0.3673

Figure 5.3: HOMO-1, HOMO, LUMO, and LUMO+1 Khon-Sham molecular orbitals at the minimum of

the electronic ground state MinS0. The electronic transition dipole moments (ETDMs) are given (in atomic

units) for the first two vertical transitions. The vertical ETDM from S0 to S1 = 1B2 (in blue) is polarized

along the 𝑦-axis. The vertical ETDM from S0 to S2 = 1A1 (in red) is polarized along the 𝑧-axis. The main

two one-electron transitions between the molecular orbitals are given, with the corresponding weights. The

density differences and the transition densities from the ground state to both excited states are also shown

(grey/white and cyan/yellow isovalues, respectively).

We also computed the normal modes of vibration (𝑁vib = 102), which belong to the irreducible

representations of the C2v point group. Let us note already that the in-plane modes belong to either the A1

or B2 irreducible representations. Unless otherwise specified, the normal modes of vibration are computed

1A program for the re-construction of the transition density using the NTO calculation implemented in the Gaussian16

package is available at https://github.com/jwjgaliana/toolbox-qcqd/blob/main/TransitionDensity.py
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5.1. Time-independent characterization

after prior i) separation of the translational and rotational normal modes and ii) projection in a basis of

internal coordinates.

In the rest of this chapter, this geometry will be referred to as the Franck-Condon (FC) geometry (or

MinS0) and the normal modes, accordingly, will also be referred to as the FC normal modes or S0 normal

modes. This will have its importance later on for understanding the issue of mode mixing in the electronic

excited states. In this work, we focus on the in-plane normal modes of vibration (symmetry A1 and B2

in the C2v point group). A selection of relevant in-plane normal modes is shown in fig. 5.4, illustrated by

their associated Cartesian displacements from the minimum geometry of S0. The main characteristics of

these normal modes are gathered in table 5.1.

50

84 88

81

87

75

86

54

85

53

1026 cm-1 1029 cm-1 1029 cm-1 1473 cm-1 1656 cm-1

1682 cm-1 1692 cm-1 1694 cm-1 2367 cm-1 2367 cm-1

Figure 5.4: Geometry of m22 at MinS0 (carbon and hydrogen nuclei in black and grey, respectively) and

Cartesian displacements (blue arrows) associated to a selection of 10 normal modes of vibration. These

normal modes are either A1 (50, 54, 75, 81, 85, and 88) or B2 (53, 84, 86, and 87) in the C2v point group.

Table 5.1: Symmetry label in the C2v point group, chemical nature, frequency (wavenumber in cm−1)

and reduced masses (in AMU) of a reduced selection of 10 in-plane normal modes of vibration at the FC

geometry of m22.

Mode 50 53 54 75 81 84 85 86 87 88

Symmetry A1 B2 A1 A1 A1 B2 A1 B2 B2 A1

Nature Tria. Tria. Tria. Quin. Quin. Quin. Quin. Quin. Acet. Acet.

̄𝜈 (cm−1) 1026 1029 1029 1473 1656 1682 1692 1694 2367 2367

𝜇 (AMU) 6.2 6.2 6.2 3.7 5.5 5.9 5.8 5.9 12.0 12.0

In particular, we will distinguish four types of prominent modes:

• phenylene triangular stretching modes (50, 53 and 54);

• quinoidal stretching modes (81, 85 and 86);

• anti-quinoidal rock-bending modes (75, 84);

• and acetylenic stretching modes (87 and 88).
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Each mode considered in this chapter is either A1 or B2 in the C2v point group (in-plane totally or non-

totally symmetric modes) or A’ in the Cs point group (totally symmetric, in-plane modes). This selection

of normal modes is based on prior identification of the optically active modes in steady-state absorption

spectroscopy [41,42].

Within the C2v molecular geometries, the PES of the first electronic excited state S1 has two transitions

states, of B2 and A1 symmetry, respectively. Their energies in the first excited state are 𝐸TS(B2) = 4.25 eV

and 𝐸TS(A1) = 4.29 eV with imaginary frequencies 𝜔TS(B2) = 𝑖4890 cm−1, and 𝜔TS(A1) = 𝑖15 110 cm−1.

The imaginary frequency associated to the two TS geometries are consistent with the closeness to a CoIn

seam. What we mean is that the strong “negative” value of the TS curvature (imaginary frequency) is

caused by the second order Jahn-Teller effect, which makes negative the curvature of the lower lying excited

state. The Cartesian displacements associated to the imaginary frequency of both TS are given in fig. 5.5.

The two normal modes with imaginary frequencies are similar in their displacements together, and also

with the non-totally symmetric acetylenic normal mode in S0.

Figure 5.5: B2 Cartesian displacements associated to the imaginary frequency of each of the two transition

states (TS) B2 and A1 (left and right, respectively) in the first excited states of m22.

In addition, the PES of the S1 excited state has two equivalent mirror-image Cs minima with 𝐸 =

4.12 eV. Each of these minima is consistent with a local excitation (LE) on either of the p2 pseudo

fragments of m22 (left and right, for instance, in the chosen orientation), see fig. 5.6 for the Lewis

structures and fig. 5.7 for the interpolation between two geometries.

Figure 5.6: Lewis structures at the Cs geometry of the two equivalent minima of the electronic excited

state S1. Distances of the acetylenic bonds are given in Å.

Accordingly, the symmetry of the excited state is A’ at the minima of S1. The underlying molecular

transition involves the promotion of an electron from a bonding to an antibonding orbital with respect to

the acetylenic bond, consistent with an intermediate cumulenic C = C = C = C bonding pattern for the

equilibrium geometry MinS1. With the symmetry-breaking from C2v to Cs, the S1 normal modes are now
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localized on one or the other of the p2 pseudo fragments.

MinS0

MinS1MinS1

HOMO

LUMO

HOMO

LUMO

Figure 5.7: 1D-cut of the S0, S1, and S2 PES from the FC geometry to the MinS1 geometries (left and

right). The HOMO-LUMO transition (82% of the S0⟶S1 transition) is also represented at the minima of

S1, with the associated electronic transition dipole moment 𝝁(S1) (in atomic units) in the standard axes

of the C2v point group.

Finally, to better understand the topology of the S1-S2 coupled PESs, we search for the minimum-energy

conical intersection (MECI) between the two considered states. The MECI is optimized by minimizing the

energy average ̄𝐸 under the constraint that the energy difference Δ𝐸 = 𝐸(S2)−𝐸(S1)
2 is below a given

threshold (Δ𝐸 < 5 × 10−5 Eh). Hence at the MECI geometry, the gradient average vector

s = 𝜕
𝜕Q (𝐸(S1) + 𝐸(S2)

2
) (5.1)

is zero in the intersection space at the MECI and the remaining non-zero part of s in the branching plane

characterizes the tilt of the MECI. We found the optimized geometry of the S1-S2 MECI as a C2v molecular

geometry with ̄𝐸 = 𝐸(S1)+𝐸(S2)
2 = 4.29 eV, in agreement with previous work [42]. Further characterization

of the MECI arises from the nature of the branching-space vectors. The MECI couples a pair of B2 and

A1 electronic states, through a pair of branching-space vectors that also belong to B2 and A1 irreducible

representations. From an adiabatic point of view for this two electronic states, at any C2v molecular

geometry, the gradient difference (GD) vector g is totally symmetric (A1) and the derivative coupling (DC)

vector h is non-totally symmetric (B2). This condition for the DC vector comes from the nature of the

symmetry-adapted electronic states B2 and A1

Γ(S1) = B2 and Γ(S2) = A1 so that Γ(S1) ⊗ Γ(S2) = B2. (5.2)

As described in chapter 2, the branching-space vectors (x1, x2) can be obtained upon the diagonalization

of the Hessian of the squared energy difference KSED. By construction, the re-scaled eigenvectors (x1, x2)

are orthogonal. In addition, the Hellmann-Feynman DC and GD vectors belong to the irreducible repre-

sentations B2 and A1, respectively and are orthogonal. As a result, the re-scaled eigenvectors (x1, x2)
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directly identify to the branching-space vectors DC and GD, namely (h, g). We illustrate the Cartesian

displacements associated to the DC and GD vectors in fig. 5.8, left and right, respectively. As stated

previously, the DC vector h is B2 and from visual comparison with the S0 normal modes, it is mostly

a linear combination of the non-totally symmetry acetylenic stretching mode 87 and the anti-quinoidal

rock-bending mode 84. On the other hand, the GD vector g is A1 and mostly a linear combination of the

central quinoidal stretching mode 81 and the totally symmetric acetylenic stretching mode 87. Similarly,

the gradient average vector s, related to the tilt of the MECI, is A1. We project the GD and DC vectors

onto S0 normal modes and give the corresponding components of the branching-space vectors, along with

the proportion to the total vectors, in table 5.2.

B2 A1

Figure 5.8: Geometry of m22 at the S1-S2 MECI (carbon and hydrogen nuclei in black and grey, respectively)

and Cartesian displacements (blue arrows) associated the numerical evaluation of the branching-space

vectors (BSV) of the MECI at this geometry. The BSV on the left and right are associated to the highest

and lowest non-zero eigenvalues of the Hessian of the squared energy difference, respectively.

Table 5.2: Projection of the derivative coupling, gradient difference, and gradient average vectors (h, g,

and s, respectively) along the selected S0 normal modes of vibration. Associated contributions to the full

vectors are given in the last three columns (in percentages). Columns to the right give the mass-weighted

shift between the critical point geometries of the PESs and the FC geometry of m22 (in a0
√me).

Mode Sym. h g s %h %g %s FC-MinS1 FC-TS(B2) FC-TS(A1) FC-MECI

50 A1 0.000 -0.021 -0.021 0.0 1.3 1.4 -4.897 -4.132 -6.965 -6.749

53 B2 0.071 0.000 0.000 0.6 0.0 0.0 3.883 0.000 0.000 0.000

54 A1 0.000 -0.011 -0.010 0.0 0.4 0.3 -4.851 -5.121 -3.311 -4.196

75 A1 0.000 0.077 0.074 0.0 17.8 17.9 -0.987 -2.125 1.795 1.712

81 A1 0.000 -0.119 -0.115 0.0 42.6 42.7 -4.014 -2.777 -7.888 -7.688

84 B2 -0.383 0.000 0.000 17.8 0.0 0.0 -6.882 0.000 0.000 0.000

85 A1 0.000 0.067 0.064 0.0 13.6 13.4 -4.110 -5.120 -2.654 -2.702

86 B2 -0.066 0.000 0.000 0.5 0.0 0.0 -1.274 0.000 0.000 0.000

87 B2 -0.776 0.000 0.000 72.9 0.0 0.0 7.254 0.000 0.000 0.000

88 A1 0.000 -0.059 -0.055 0.0 10.4 9.8 -7.593 -7.904 -6.599 -6.894

Sum 91.8 86.0 85.6

From this selection of relevant critical points in the adiabatic PESs of S1 and S2, we notice that the
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5.1. Time-independent characterization

transition state geometries (C2v) are really close to the S1-S2 minimum-energy conical intersection (MECI),

with energy differences below 0.1 eV. On the other hand, the MinS1 geometries (Cs) exhibit much larger

energy difference. This is the basis for our discussion of the S1-S2 PES of m22: from a C2v geometry

toward a Cs geometry, the electronic degeneracy is strongly lifted. On the other hand, along a line of C2v

geometries, the electronic degeneracy is slowly varying. The energy landscape for the S1 and S2 electronic

state is summarized in fig. 5.9 with 2D-interpolations from the FC geometry to i) the MECI geometry and

ii) the MinS1 geometries.
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Figure 5.9: 2D-interpolations of S1 and S2 PESs from the FC geometry to MinS1 minima (Cs displacements)

and from the FC geometry to the MECI (C2v displacements).

We gather in table 5.3 the energy of the electronic ground and excited states for the discussed critical

points in the PESs of m22 (minima, TS, and MECI). The geometry of these points is compared to the

geometry of MinS0. To do so, we compute the mass-weighted shift vector of the coordinates of the current

geometry (minima, TS, MECI) from the reference geometry (MinS0)

ΔRmw = (R(current) − R(reference)) ⋅ M 1
2 (5.3)

and project it onto the normal modes of vibration of MinS0

𝑑𝑖 = ΔRmw ⋅ Lmw
𝑖 (S0) ∀𝑖 normal mode. (5.4)

In general, we shall give these “shift components” in mass-weighted atomic units, a0
√me. Such quantities

are gathered in the last columns of table 5.2 for the previously mentioned S0 normal modes of vibrations.

In the following, we often refer to these shifts with respect to the FC geometry to describe the PESs of

m22. For instance, from the column-entry “FC-MinS1” in table 5.2 we read that the Cs minimum of S1 is

displaced of about ±7 a0
√me along both acetylenic stretching normal modes of S0 (87 and 88). This is

consistent with a localized excitation on one of the p2 pseudo fragment. Indeed, the ± combinations of

87 and 88 yield localized acetylenic stretching modes on the left or right p2 pseudo fragments. This is also

consistent with the mode mixing between the normal modes of S0 at MinS0 and the normal modes of S1

at MinS1.
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Table 5.3: Adiabatic energies (in eV) of the electronic ground state and first two electronic excited states

for a selection of critical points in p2 and m22. The minimum of the electronic ground state is taken as the

reference energy for each molecule. For transition-state geometries, the imaginary frequency is also given

(in cm−1). The lengths of the acetylenic bonds are given (𝑑(C ≡ C) in Å). For m22 MinS1, the value (in

bold) is given for the C ≡ C bond in the excited part of the molecule; the other bond length is 1.210 Å.

Geometry 𝐸(S0) 𝐸(S1) 𝐸(S2) 𝐸(S2) − 𝐸(S1) 𝜔TS 𝑑(C ≡ C)

p2 MinS0 0.00 4.48 5.08 0.60 1.210

p2 MinS1 0.32 4.14 4.84 0.70 1.255

m22 MinS0 0.00 4.43 4.47 0.04 1.210

m22 MinS1 0.32 4.12 4.66 0.54 1.254

m22 TS B2 0.18 4.25 4.33 0.08 i4890 1.233

m22 TS A1 0.19 4.29 4.30 0.01 i15110 1.229

m22 MECI 0.19 4.29 4.29 < 0.0001 1.230

Take-home messages

1. The MinS0 geometry of the m22 molecule is a C2v molecular geometry and exhibit almost

degenerate vertical excitations toward the S1 and S2 states, of symmetry B2 and A1,

respectively.

2. The S1 PES has two transition states in the C2v molecular space and two equivalent

(”left” and ”right”) minima in the Cs molecular space.

3. The MECI between the S1 and S2 states has been found, with a branching space mostly

expanded on the B2 acetylenic stretching (for the derivative coupling) and on the A1

quinoidal stretching (for the gradient difference). The MECI connects the two ”left” and

”right” LE states of the m22 molecule.

4. In the following, one choice for a pair of diabatic states will be this pair of localized

excited states, both having A’ symmetry in the Cs point group. Another choice for a

pair of diabatic states will be the electronic states having A1 or B2 symmetry. In contrast

to the pair of localized diabatic states, the A1 and B2 diabatic states will be referred to

as delocalized because they belong to irreducible representations of the C2v point group.
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5.1. Time-independent characterization

5.1.2 Describing the PESs around the MECI

Until now, we only described the S1 and S2 PESs from optimized critical points or interpolations between

them. From now on, we start exploring the high-dimensional PESs of m22 via 1D- or 2D- cuts (profiles

and surfaces, respectively) along specific directions. Choices have to be made regarding:

• the reference point for the PES cut origin;

• the direction to follow from the reference point.

In the following, we often refer to PES cuts as “rigid scans” along given directions (typically, normal-mode

Cartesian displacements, or combinations of them). For this section, we consider PES cuts along the

branching-space vectors, from the MECI, see fig. 5.10.

a) b)

Mean E Mean E Mean EMean EΔE ΔE ΔE ΔE

Figure 5.10: Upper panels: 2D-cuts of the S1 and S2 adiabatic PESs along the branching-space vectors h

and g, from the MECI geometry. Lower panels: 1D-cuts along h (lower left) and g (lower right) vectors

from the MECI geometry. The right panels (b) present a zoomed representation of the PESs (smaller

displacements) around the MECI (linear regime).

In other words, we explore the branching plane around the MECI. With our symmetry-based definitions,

the A1 GD vector g connects roughly the C2v MECI and the two C2v transitions states which are apparent

minima of S1 (either A1 or B2) in the C2v subspace projected out of the DC vector h. These C2v geometries

will be identified as minima of delocalized diabatic electronic states. The DC vector h connects the C2v

geometry of the MECI to the two equivalent minima in the Cs point group. As expected, the energy profiles
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Chapter 5. The Chromophore: m22

are even with respect to the non-totally symmetric displacements (DC, coupling vector h expanded along

B2 normal modes) and arbitrary with respect to the totally symmetric displacements (GD, tuning vector g

expanded along A1 normal modes).

5.1.3 A first note on localized vs. delocalized representations

Localized representations of molecular orbitals and normal modes of vibration

As we pointed out, two types of molecular geometries are relevant in the S1 PES of m22: C2v and

Cs geometries. Consequently, the molecular orbitals and normal modes of vibration adapt to the C2v

symmetry (they are delocalized) or to the Cs symmetry (they are localized). When the reference is the

FC geometry, the delocalized electronic and vibrational properties are natural. On the other hand, the

localized properties arise naturally when the reference is one or the other of the two equivalent Cs minima

in S1. However, both delocalized or localized properties can be used to characterize the two types of

geometries. For instance, it has been shown that the frontier orbitals at the FC geometry can be combined

together to form localized orbitals on the two p2 pseudo fragments [19, 42]. Indeed, the normalized sum

and difference of the delocalized pairs of HOMO-1/HOMO and LUMO/LUMO+1 at the FC geometry

lead to molecular orbitals localized on one or the other of the two p2 pseudo fragments (see fig. 5.11).

The localized orbitals obtained at the FC geometry are in very good agreement with the localized orbitals

obtained in Cs geometries for the minima of S1.

+ -

+ -
HOMO-1

HOMO

LUMO

LUMO+1

HOMO
Left

LUMO
Left

HOMO
Right

LUMO
Right

a) FC geometry (C2v)c) MinS1 geometry (Cs)
            Left

c') MinS1 geometry (Cs)
            Right

b) FC geometry (C2v)
Normalized sum

b') FC geometry (C2v)
Normalized difference

Figure 5.11: a) Delocalized orbitals HOMO-1, HOMO, LUMO, and LUMO+1 at the FC geometry of m22.

b) and b’) Localized orbitals obtained as the combinations [sum and difference] of (HOMO-1, HOMO) and

(LUMO and LUMO+1) at the FC geometry of m22. c) and c’) Localized orbitals HOMO and LUMO at

the MinS1 geometries of m22 [left and right].

We also observe a localization of the normal modes of vibration computed at the minima of S1 compared
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5.1. Time-independent characterization

to the S0 normal modes. This is related to what is usually referred to as mode mixing. At MinS1, the

new normal modes can be expressed in the basis of the S0 normal modes. More specifically, the overlaps

between the two basis sets can be gathered in a single orthogonal matrix, the Duschinsky matrix, such that

the displacements along the S1 normal modes Q′ are expressed as

Q′ = JQ + d (5.5)

where J is the Duschinsky matrix, Q are the displacements along the S0 normal modes and d is the

shift vector, defined in eq. (5.4). The Duschinsky matrix is the generalization of a rotation matrix for

the 3𝑁 − 6 normal mode coordinates, transforming displacements viewed from the S0 normal modes to

displacements viewed from the S1 normal modes. A visual example for this is the transformation of the

acetylenic stretching modes 87 and 88. For instance, as regards the acetylenic stretching displacements,

we find from the Duschinsky matrix the approximate relations

𝑄′
87 ≃ 0.99 × (cos 42°𝑄87 − sin 42°𝑄88) + 𝑑87 + ∑

𝑖≠87,88
𝐽87,𝑖𝑄𝑖,

𝑄′
88 ≃ 0.99 × (sin 42°𝑄87 + cos 42°𝑄88) + 𝑑88 + ∑

𝑖≠87,88
𝐽88,𝑖𝑄𝑖.

(5.6)

Thus, modes 87 and 88 at the MinS1 geometry are approximately (for 99% of the displacements) a

rotation of modes 87 and 88 at the MinS0 geometry, with an angle of about 42°. Up to a scaling factor,

the two pairs of modes are indeed related through plus and minus linear combinations, similarly to the

localization strategy used for the molecular orbitals. The main explanation for such simple combinations

lies in underlying symmetries (for orbitals and normal modes) of the central benzene (which involves E-type

degenerate frontier orbitals and normal modes).

Localized vs. delocalized electronic states and potential energy surfaces

Until now, we have characterized the m22 molecule through its PESs critical points and associated normal

modes of vibration. We have identified local excitations yielding two equivalent Cs minima, linked together

via a MECI lying within the C2v molecular geometries. The full picture allows us to understand the first

two adiabatic excited states of the molecule as either

• a coupled pair of delocalized, symmetry-adapted, diabatic excited states, 1A1 and 1B2;

• or a coupled pair of equivalent localized diabatic excited states, “right” or “left”, 1√
2 (1A1 ± 1B2).

We have seen that the main directions for linking the MinS0, MinS1/MinS1’ and TS(B2), TS(A1), and

MECI geometries are in principle the branching-space vectors GD and DC, g and h, respectively. In the

following, we will often refer to either delocalized or localized electronic states. Let us discuss this concept

on simple “toy Hamiltonian models” of the generic form

𝐻deloc = 𝑆𝟙 + ⎡⎢
⎣

−𝐷 𝑊

𝑊 𝐷
⎤⎥
⎦

and 𝐻 loc = 𝑆𝟙 + ⎡⎢
⎣

−𝑊 𝐷

𝐷 𝑊
⎤⎥
⎦

(5.7)
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where we suppose here that 𝐷 and 𝑊 are smooth functions of the coordinates and are obtained to first

order upon displacements along the GD vector g and the DC vector h, respectively. Similarly, the function

𝑆 is obtained to first order upon displacements along the gradient average vector s. Let us assume for

the sake of simplicity that the shared average potential 𝑆 bears all quadratic (harmonic) terms and that 𝐷

and 𝑊 only consist in linear terms or bilinear cross terms. For g and h totally and non-totally symmetric,

respectively, the first Hamiltonian in eq. (5.7) consists in a delocalized representation of the PESs, and

the second one in a localized representation of the same PESs. Both pair of underlying diabatic states are

linked together via a Nikitin rotation (45° for the electronic states, 90° for the h and g vectors) which

preserves the adiabatic PESs.

We illustrate the toy models of Hamiltonian with a schematic representation of the associated diabatic

potential energies in fig. 5.12 (left for delocalized, right for localized). For a double-well shaped potential

energy along the DC vector h, a strong coupling 𝑊 (linear with respect to h) must exist, and in such a

case the delocalized (unshifted along 𝑄h) diabatic states are almost degenerate but strongly coupled (red

lines). After a Nikitin rotation, the roles of the GD and DC vectors are swapped, such that we have now

the situation of two localized (shifted along 𝑄h) diabatic states (blue lines) but only weakly coupled (via

the GD vector).

Figure 5.12: Schematic representations of delocalized (red) and localized (blue) diabatic potential energies,

with the same coordinate 𝑄ℎ. As 𝑄ℎ linear terms only appear in the 𝑊 function, 𝑄ℎ is a coupling coordinate

in the delocalized case and a tuning coordinate in the localized case.

Take-home messages

1. The CoIn seam in the S1/S2 manifold is induced by symmetry in the sense that the two

electronic states are of different symmetry at the MECI geometry.

2. Two equivalent representations, localized and delocalized, can be used for either i) the

electronic states and consequently ii) the molecular orbitals and iii) the normal modes

of vibration.
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3. They describe the same adiabatic PESs, and are linked together via a Nikitin rotation

(45°) for the electronic states, and role swapping (rotation 90°) for the branching-space

vectors (hence, coupling and tuning vectors).

4. In section 5.2, we will use the convenient delocalized representation to parametrize

models of PESs for the S1/S2 manifold.

5.1.4 Vibronic spectra within the Franck-Condon framework

We now discuss our first attempts at reproducing the experimental steady-state spectra for m22. One

common method is the time-independent framework, where the transitions probabilities are evaluated

through the calculation of Franck-Condon factors (FCFs). The usual framework, for instance implemented

in the Gaussian package, uses the Born-Oppenheimer approximation, the Franck-Condon approximation

(Franck-Condon framework), and the harmonic approximation to compute the FCFs [82, 152, 153]. In the

following, we often use the notations 𝑛𝑣(es)
𝑣(gs) where 𝑛 is the normal mode of vibration for which a transition

is observed with vibrational numbers 𝑣(es) and 𝑣(gs) in the excited and ground states, respectively. For

instance, the notation 871
0 corresponds to a transition from the electronic ground state with 𝑣87(gs) = 0

to the electronic excited state with 𝑣87(es) = 1. The 0-0 transition on the other hand is 00
0, also termed

the band origin, and is unique, with all active modes involved (vibrational overlap ⟨0 ⋯ 0 | 0 ⋯ 0⟩)

Results from Franck-Condon factors calculations

In fig. 5.13 we compare the (low temperature) experimental spectra (a) to the theoretical absorption

and emission spectra obtained within the Franck-Condon framework (b and c). We first describe the

absorption spectra (blue lines). We observe in spectra b) and c) a difference for the position of the 00
0

transition (vibrational overlap ⟨0 | 0⟩ for the 00
0 transition), compared to the most intense transition in the

experimental absorption spectrum.

This difference for the 00
0 transition (a few nm) is only a measure of the accuracy of the level of theory

for predicting the excitation energies. Yet, we have a good agreement for the vibrational progression of

the absorption spectra (comparing a) and b) for instance). The spectra in c) are obtained by “trimming”

the spectra in b), selecting only the transitions involving the ten most-relevant normal modes of vibration

presented above (the other active modes being mostly triangular quinoidal modes). We can thus note

that the small number of selected modes already accounts for most of the vibrational progression in the

absorption spectrum. Now looking at absorption vs. emission (blue vs. red lines), the theoretical spectra

exhibit the most intense peak in absorption and in emission is the same wavelength (and is attributed to

the 00
0 band-origin transition in both cases), with no Stokes shift at all. The next most intense in both

absorption and emission spectra are obtained for vibronic transitions involving quinoidal stretching modes
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Figure 5.13: Absorption (blue lines) and emission (red lines) steady-state spectra of m22. a) Experimen-

tal spectra measured at −198 °C (75 K). Data reproduced with permission from Q. Chu and Y. Pang,

Spectrochim. Acta A 60, 1459 (2004) [39]. b) Theoretical spectra obtained within the Franck-Condon

framework with account of all normal modes of vibration. c) Theoretical spectra obtained by ”trimming”

with a certain selection of the most prominent normal modes (triangular, quinoidal, and acetylenic nature).

(85) and acetylenic stretching modes (87, 88).

We clearly identify the 00
0 transition as the most intense at 0 K from the FCFs calculation, in both

absorption and emission spectra. A usual Stokes shift would arise from 𝑛𝑣
0 [and/or 𝑛0

𝑣] transitions (strong

vibrational overlap ⟨0 | 𝑣⟩ for the mode 𝑛), in absorption [and/or emission] for instance, that are greater

than the 00
0 transition (see again ideal bell-shaped absorption and emission spectra in fig. 5.2)

The main objective of the rest of this chapter is thus to reproduce the Stokes shift that is absent

from routine Franck-Condon factors calculations of the vibronic spectra. First, we rationalize the observed

steady-state spectroscopy problem with a simple 1D model of double-well shaped potential energy profile

and 1D Franck-Condon factors.

A minimalistic rationalization of the present problem

We know that the PES of the first excited state of m22 is a double-well with respect to nuclear displacements

along some of the B2 normal modes (in particular along the acetylenic stretching mode with wavenumber

̄𝜈 ≃ 2300 cm−1). The absorption spectrum is almost not affected by this PES shape, since the absorption

spectrum of m22 is the same as the one of p2 (both experimentally and theoretically). Emission is more

involved.

Let us consider a centered harmonic potential in the electronic ground state and of the two symmetrically

shifted, “uncoupled”, harmonic potential energy in the first excited state (L, left and R right, see fig. 5.14).
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Figure 5.14: Schematic representation of the model harmonic potential energies in the electronic ground

and first excited state along a non-totally symmetric displacement.

The potential energies for the two uncoupled electronic excited states represent the two locally excited

states in m22, with left and right p2 pseudo fragments. With no coupling between the two excited wells,

a simple description of the first two vibrational states in the electronic excited states (tunnelling pair) are

the renormalized sum and difference of the left and right first vibrational states (neglecting the overlap)

|0S⟩ ≃ |0L⟩ + |0R⟩√
2

, (5.8a)

|0A⟩ ≃ |0L⟩ − |0R⟩√
2

(5.8b)

where S and A subscripts stand for symmetric and anti-symmetric, respectively. The two vibrational states

are degenerate if the wells are uncoupled. Let us assume we know the 1D FCFs for the left and right

wells, separately. With the uncoupled scheme, we can compute the new generalized Franck-Condon factors

between the ground-state vibrational contributions |0⟩ or |1⟩ and the excited state vibrational contributions

∣0S,A⟩. Indeed, we have, using ⟨0 | 0L⟩ = ⟨0 | 0R⟩

| ⟨0 | 0S⟩ |2 = (⟨0 | 0𝐿⟩ + ⟨0 | 0𝑅⟩√
2

)
2

(5.9a)

= 1
2

(⟨0 | 0𝐿⟩2 + ⟨0 | 0𝑅⟩2 + 2 ⟨0 | 0𝐿⟩ ⟨0 | 0𝑅⟩) (5.9b)

= 2| ⟨0 | 0𝐿⟩ |2 = 2| ⟨0 | 0𝑅⟩ |2 (5.9c)
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and using ⟨1 | 0L⟩ = − ⟨1 | 0R⟩

| ⟨1 | 0𝐴⟩ |2 = (⟨1 | 0𝐿⟩ − ⟨1 | 0𝑅⟩√
2

)
2

(5.10a)

= 1
2

(⟨1 | 0𝐿⟩2 + ⟨1 | 0𝑅⟩2 − 2 ⟨1 | 0𝐿⟩ ⟨1 | 0𝑅⟩) (5.10b)

= 2| ⟨1 | 0𝐿⟩ |2 = 2| ⟨1 | 0𝑅⟩ |2. (5.10c)

As a result, the Franck-Condon factors of an uncoupled symmetric double-well shaped harmonic potential

boil down to twice the Franck-Condon factors of the separate simple-well harmonic potential. Thus, the

transition probability |⟨1 | 0𝐴⟩|2 has no reason to be greater than the transition probability |⟨0 | 0𝑆⟩|2 if there

is not already an unusual Stokes shift for the simple-well situation. Yet, this contribution to the emission

spectrum might not be negligible, as in the case of m22.

Thus, for the cases of m22 and p2, we know from the experiments that the simple-well situation (isolated

p2) exhibits no Stokes shift. The main idea developed in this chapter is that the vibronic eigenstate in

the excited state manifold resembles to some extent a |0𝐴⟩ vibrational state and that this odd character is

possible because of the presence of a conical intersection in the excited state.

Take-home messages

1. It is expected from the simulation of vibronic spectra via FCFs calculations that the

Stokes shift is not reproduced. Indeed, we identified two distinct localized minima in

S1 for the m22 molecule (that were very similar to locally excited p2 pseudo fragment),

linked together via a MECI with the second excited state S2.

2. Thus, the absorption spectrum is correctly reproduced because it is as if the absorption

took place from the symmetrical ground state to one or the other of the two p2 pseudo

fragments.

3. The simulation of emission in the Franck-Condon framework is rationalized in the same

way: it is as if the emission took place from one and only one of the two excited p2

pseudo fragments, toward the symmetrical electronic ground state.

4. In the following, we make (and intend to test) the hypothesis that the most intense

transition for emission is a of the type ”𝑛0,A
1 ”, that is, a non-negligible overlap between

the first anti-symmetric vibrational state (in the excited states) and the first vibrational

state (in the ground state).

We now illustrate this hypothesis with a more rigourous model, explicitly taking into account the

coupling between the two electronic states, beyond the Born-Oppenheimer approximation.
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5.2. The use of quantum dynamics for steady-state spectroscopy

5.2 The use of quantum dynamics for steady-state spectroscopy

In this section, we describe vibronic coupling Hamiltonian (VCH) models for the first two electronic ex-

cited states of the m22 molecule. We explore the use of linear vibronic coupling (LVC) and quadratic

vibronic coupling (QVC) Hamiltonian models, originally proposed by Köppel and co-workers [20]. With

these diabatic-by-ansatz, “coupled”, PESs, we run nonadiabatic quantum dynamics to estimate plausible

contributions to the absorption and emission spectra. Let us stress that the use of quantum dynamics to

evaluate transition probabilities from the autocorrelation function has been widely used in the context of

absorption, where the initial state is in general not challenging to describe [78, 92]. Here, we extend this

strategy to the context of emission spectra, where the nature of the transitions is more complicated to

understand notably as regards spontaneous vs. stimulated emission.

LVC and QVC for a pair of A1/B2 electronic states

We recall that the first two electronic excited states are 1B2 and 1A1 at the FC geometry, respectively.

We choose as a pair of diabatic states this pair of so-called crude-adiabatic states at the FC geometry.

Neglecting all out-of-plane motions, we restrict ourselve to the study of C2v and Cs planar molecular

geometries (A1 coordinates preserve symmetry, B2 coordinates break left/right symmetry). The general

QVC Hamiltonian model for the B2 and A1 delocalized electronic states is

�̂�dia = ( ̂𝑇nu(Q)) 𝟙2 + ⎡⎢
⎣

𝐸(1)(Q = 0) 0

0 𝐸(2)(Q = 0)
⎤⎥
⎦

+ ∑
𝑖

⎡⎢
⎣

1
2𝑘(1)

𝑖 𝑄2
𝑖 0

0 1
2𝑘(2)

𝑖 𝑄2
𝑖

⎤⎥
⎦

+ ∑
𝑖

Γ𝑖=A1

⎡⎢
⎣

𝜅(1)
𝑖 𝑄𝑖 0

0 𝜅(2)
𝑖 𝑄𝑖

⎤⎥
⎦

+ ∑
𝑖

∑
𝑗

𝑗≠𝑖,Γ𝑖⊗Γ𝑗=A1

⎡⎢
⎣

1
2𝛾(1)

𝑖,𝑗 𝑄𝑖𝑄𝑗 0

0 1
2𝛾(2)

𝑖,𝑗 𝑄𝑖𝑄𝑗

⎤⎥
⎦

+ ∑
𝑖

Γ𝑖=B2

⎡⎢
⎣

0 𝜆𝑖𝑄𝑖

𝜆𝑖𝑄𝑖 0
⎤⎥
⎦

+ ∑
𝑖

∑
𝑗

Γ𝑖⊗Γ𝑗=B2

⎡⎢
⎣

0 1
2𝜇𝑖,𝑗𝑄𝑖𝑄𝑗

1
2𝜇𝑖,𝑗𝑄𝑖𝑄𝑗 0

⎤⎥
⎦

.

(5.11)

The eigenvalues of the above Hamiltonian at a given geometry are to be compared with the adiabatic

energies obtained from electronic structure calculation (ab initio data) at the same geometry. The diabatic

parameters can be fitted to the ab initio data by computing the eigenvalues of the model (global fit from

ab initio data). Alternatively, the diabatic parameters can be directly identified to energy derivatives such

as gradient vectors, branching-space vectors, and (after some manipulations) Hessians (local fit from ab

initio data). In either case, in this quite general model,

1. the first matrix represents the kinetic energy operator for the normal modes of vibration (no cross

terms), identical for both diabatic states;

2. the second matrix represents vertical transition energies at the reference point Q = 0 from the ground

state to the two diabatic excited states;
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3. the third matrix represents what would be the distortion matrix in the Franck-Condon framework

(diagonal change of curvature between the normal modes in the ground state and in the diabatic

excited states);

4. the fourth matrix represents the gradients of energy for the diabatic excited states at the reference

point (first-order, linear terms);

5. the fifth matrix represents the gradient of the diabatic inter-state coupling at the reference point

(first-order, linear terms);

6. the sixth matrix represents to some extent the normal mode mixing between the S0 normal modes

and the normal modes of the diabatic excited states for modes of same symmetry only (primary

Duschinsky transformation);

7. the seventh matrix represents to some extent the normal mode mixing between the S0 normal modes

and the normal modes of the diabatic excited states for modes of different symmetry only (secondary

Duschinsky transformation).

The primary Duschinsky transformation is the usual normal mode mixing observed between electronic states

of identical symmetry. Indeed, in such a case, all molecular geometries have the same symmetry point group

C2v. As a consequence, the Hessian matrices are block-diagonal with symmetry-adapted blocks and the

mode mixing occurs only within groups of modes that have the same symmetry (A1 with A1, B2 with B2).

On the other hand, in a case where S0 normal modes allow symmetry-breaking to occur from one group

to another (here, C2v to Cs), the Hessian matrices in the low-symmetry geometries are not block-diagonal

with respect to the S0 normal modes. In particular in our case, this leads to mode mixing between S0

normal modes of different symmetry (B2 and A1). The most striking example of secondary Duschinsky

transformation is the localization of the acetylenic stretching modes from the S0 normal modes to the S1

normal modes, explicited in eq. (5.6). This will be made clearer when discussing the PESs of the LVC

model vs. the PESs of the QVC model in a reduced 3-dimensional model of m22 electronic excited states.

The numerical parameters obtained for the LVC and QVC Hamiltonian models presented in this chapter

are gathered in appendix B. They are the ready-to-use numerical parameters for encoding the operator files

in the Quantics package. However, as much as possible, in the corpus of this thesis we present VCH

parameters via more natural and easy-to-compare equivalent parameters. In particular, for the curvature

parameters 𝑘(𝑠)
𝑖 we give the associated frequency 𝜔(𝑠)

𝑖 in cm−1. Additionally, for the numerical parameters of

the diabatic gradients 𝜅(𝑠)
𝑖 and the inter-state coupling gradient components 𝜆(𝑟𝑠)

𝑖 , we give the characteristic

shifts

𝑑(𝑠)
𝑖 = −𝜅(𝑠)

𝑖

𝑘(𝑠)
𝑖

and 𝑑(𝑟𝑠)
𝑖 = ± 2𝜆(𝑟𝑠)

𝑖

𝑘(𝑟)
𝑖 + 𝑘(𝑠)

𝑖

(5.12)

in mass-weighted atomic units. The latter shifts are for instance to be compared with the shift vector present

in the Duschinsky transformation. When given, the bilinear parameters associated to cross terms in the
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5.2. The use of quantum dynamics for steady-state spectroscopy

QVC Hamiltonian model are given directly in atomics units and can be compared, after some manipulations

(second-order Jahn-Teller effect due to the coupling), with adiabatic Hessians from electronic structure

calculations.

Definition and role of the electronic ground state for quantum dynamics simulations

In this section, we make use of LVC and QVC Hamiltonian models for a minimal (1+2)-state 3-dimensional

model. As of now and until otherwise specified, we will only consider the electronic ground state as com-

pletely uncoupled to the electronic excited states (hence the “(1+2)-state” notation). This is compatible

with the sudden approximation for the electronic excitation. This way, the electronic ground state, although

explicitly defined, only serves

• for defining initial wavepackets for sudden excitations toward the electronic excited states;

• or for representing the propagated wavepackets in the S0 normal-mode basis set.

We already note that the explicit treatement of S0-Si couplings (i > 0), to go toward explicit excitations

from the ground to the excited states, is an outlook of the present study, and will be shortly mentioned in

chapter 8.

The present section is structured as follows. First, we describe the model and how it is parametrized to

reproduce the adiabatic PESs from ab initio data. A first comparison is made between LVC and QVC sets

of parameters and the effect of QVC on the PES models is discussed. Next, quantum dynamics simulations

are presented and discussed for the two following purposes: finding the vibronic eigenstates and elucidating

the early dynamics of the reduced model with different initial states. From this, the power spectra for

absorption and emission are discussed in terms of plausible contributions to the total vibronic spectra.

5.2.1 Simple models of potential energy surfaces

We, hereby, choose 3 modes among the S0 normal modes which are

• the non-totally symmetric acetylenic stretching mode, 87 (B2);

• the totally symmetric acetylenic stretching mode, 88 (A1);

• and the totally symmetric quinoidal stretching mode on the central benzene, 81 (A1).

The two acetylenic stretching modes are chosen as we expect them to be the main actors for the presence

of the unusual Stokes shift (Δ ̄𝜈Stokes is of about 2300 cm−1, close to the wavenumber of the acetylenic

stretching modes, 2360 cm−1 and 2100 cm−1 at MinS0 and MinS1, respectively). Thus, the inter-state

coupling gradient will be defined only for the B2 acetylenic stretching mode. The diabatic gradient (hence

diabatic gradient difference) will expand in the plane (𝑄81, 𝑄88), such that the CoIn seam is oblique in this

plane.
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Fitting procedure

The starting geometry for PESs cuts (or rigid scans) is here the geometry of the optimized MECI. As a

consequence, all critical points in the PES models are only apparent critical points from the point of view

of the optimized MECI, which is the only fully optimized geometry. In other words, all coordinates are

frozen at the coordinates of the MECI, except for the three chosen modes

Q3D = (𝑄1 … , 𝑄𝑖, … , 𝑄3𝑁−6) with
⎧{
⎨{⎩

𝑄𝑖 = 𝑄𝑖 ∈ ℝ if 𝑖 ∈ (81, 87, 88)

𝑄𝑖 = 𝑄𝑖,𝑋 otherwise.
(5.13)

Still, to compare with ab initio energy derivatives, we expand the L/QVC models from the apparent FC

geometry (that is at (𝑄81, 𝑄87, 𝑄88) = (0, 0, 0)). At this geometry, we compare the apparent vertical

transition energies and vertical gradients with the ab initio ones of the fully optimized FC geometry.

2D-cuts of PESs are generated by incrementing Cartesian displacements along two desired normal

modes. 1D-cuts are enough for adjusting the first-order parameters (diabatic gradients and inter-state

coupling gradient) while 2D-cuts are necessary for evaluating bilinear terms (cross terms with respect to

different normal modes). Since the geometries are C2v for any cuts where 𝑄87 = 0, the diabatic electronic

states keep their B2 or A1 symmetry, and can be identified to S1 and S2 adiabatic states, up to relabelling

before and after the crossing of the MECI. As such, one can adjust the diagonal (symmetry-preserving)

diabatic parameters independently from the off-diagonal (symmetry-breaking) parameters. The fitting

procedure minimizes the following function for the symmetry-preserving parameters

𝐿(𝐸(1), 𝐸(2), 𝜿, 𝜸, k81, k88) =

∑
𝑛,𝑄87=0

[(𝐻11[𝐸(1), 𝜿(1), 𝜸(1)](Q3D(𝑛)) − 𝐸A1
(𝑛))

2
+ (𝐻22[𝐸(2), 𝜿(2), 𝜸(2)](Q3D(𝑛)) − 𝐸B2

(𝑛))
2
] ,

(5.14)

and allows for the optimization of both B2 and A1 diabatic surfaces simultaneously. Then, taking the

resulting parameters for granted, the eigenvalues of the full LVC and QVC models are fitted to the ab

initio data from 2D-cuts (87,81) and (87,88) so as to optimize the parameters related to the non-totally

symmetric normal mode 87. Again, the parameters are obtained through a least-square fitting procedure

minimizing the function

𝐿(𝜆87, 𝝁, k87) =

∑
𝑛

[(𝑉1[𝜆87, 𝝁, k87](Q3D(𝑛)) − 𝐸S1(𝑛))
2

+ (𝑉2[𝜆87, 𝝁, k87](Q3D(𝑛)) − 𝐸S2(𝑛))
2
] ,

(5.15)

where 𝑉1(Q3D) and 𝑉2(Q3D) are the eigenvalues of the Hamiltonian models. The resulting parameters are

presented in table 5.4 via their natural equivalent quantities when possible.

We note that the presented LVC and QVC sets of parameters are obtained independently, that is: we do

not take the LVC parameters for granted to optimize the additional bilinear parameters of the QVC model.

We can compare the two sets of parameters. First the additional QVC parameters have little to no effect
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Table 5.4: LVC and QVC model parameters obtained upon fitting ab initio calculations. The curvatures

𝑘(𝑠)
𝑖 are illustrated with the associated frequency 𝜔(𝑠)

𝑖 in cm−1. Parameters associated to the first-order

expansion (𝜆𝑖 or 𝜅(𝑘)
𝑖 ) are given by the associated characteristic shift in the mass-weighted framework for

displacement along the normal-mode directions. Parameters associated to the second-order bilinear terms

(𝛾(𝑘)
𝑖,𝑗 or 𝜇𝑖,𝑗) are given directly in atomic units. Superscripts (1) and (2) refer to diabatic excited states

A1 and B2, respectively, coincident with S2 and S1 at the FC geometry. The corresponding LVC and QVC

parameters in mass-weighted atomic units are gathered in appendix B.

Parameter Equivalent Value (LVC) Value (QVC) Unit

𝐸(1) – 4.405 4.407 eV

𝐸(2) – 4.380 4.379 eV

𝜅(1)
81 𝑑(1)

81 7.900 8.203 a0
√me

𝜅(2)
81 𝑑(2)

81 3.094 3.059 a0
√me

𝜅(1)
88 𝑑(1)

88 -7.205 -7.365 a0
√me

𝜅(2)
88 𝑑(2)

88 -8.274 -8.289 a0
√me

𝜆87 𝑑87 7.417 6.569 a0
√me

𝛾(1)
81,88 – 0 −2.594 × 10−6 Eh/(a0

2me)

𝛾(2)
81,88 – 0 −0.512 × 10−6 Eh/(a0

2me)

𝜇87,81 – 0 −1.084 × 10−6 Eh/(a0
2me)

𝜇87,88 – 0 −11.867 × 10−6 Eh/(a0
2me)

𝑘(1)
81 𝜔(1)

81 1515 1513 cm−1

𝑘(2)
81 𝜔(2)

81 1552 1549 cm−1

𝑘(1)
88 𝜔(1)

88 2274 2274 cm−1

𝑘(2)
88 𝜔(2)

88 2281 2280 cm−1

𝑘(1)
87 𝜔(1)

87 2200 2212 cm−1

𝑘(2)
87 𝜔(2)

87 2201 2171 cm−1

on the vertical transition energies at the apparent FC geometry and the frequencies. Only the frequency

of the coupling normal mode 87 is significantly different (2201 cm−1 in LVC vs. 2171 cm−1 in QVC). On

the other hand, the flexibility offered by bilinear terms (𝛾 and 𝜇) slightly affects the first-order gradient

and coupling parameters (𝜅 and 𝜆). In particular again in the case of the coupling normal mode 87, the

linear coupling parameter is reduced of one unity, which is compensated by the secondary Duschinsky term

between both acetylenic stretching modes, 𝜇87,88. In the following, we will see that both the LVC and

QVC models correctly reproduce the adiabatic PESs, and we will now make more explicit the effect of this

strong bilinear coupling term for the acetylenic stretching modes.
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Comparison of the fitted energies to the ab initio data

Let us first illustrate the results for the LVC model. The 1D-cuts from the MECI along the A1 normal

modes 81, 88, and the B2 normal mode are shown in fig. 5.15 with the corresponding diabatic potential

energies (blue for A1, red for B2).

Figure 5.15: Adiabatic energies from electronic structure calculations (symbol +) and diabatic potential

energies for the pair of delocalized diabatic states (blue and red lines) along Cartesian displacements

associated to the A1 normal modes 81, 88, and the B2 normal mode 87. The adiabatic energies (eigenvalues)

for the LVC Hamiltonian model are also given for the B2 normal mode 87 (purple lines). For unspecified

coordinates, the values are those at the MECI; all coordinates are mass-weighted and given in atomic units.

Let us already notice that the symmetry-adapted diabatic states are fully degenerate along the symmetry-

breaking normal modes. For these 1D-cuts (here only along 87), the localized diabatic states are better

adapted to the adiabatic surfaces. In addition, the localized diabatic states are simply obtained by rotating

the already parametrized model, such that the exact same set of parameters is valid, only with different

diabatic Hamiltonian matrix elements. In particular, the roles of the inter-state coupling gradient 𝝀 and

of the gradient difference 𝜿(2)−𝜿(1)

2 are swapped. In the case of symmetry-preserving normal modes, the

adiabatic energies coincide with the potential energies of the pair of delocalized diabatic states A1 and

B2. In the case of a symmetry-breaking normal mode, the adiabatic energies coincide with the potential

energies of the pair of localized diabatic states.

As expected from the contributions of the chosen normal modes to the ab initio derivative coupling

vector, the B2 normal mode 87 strongly “digs” the PESs into a double-well shaped potential energy profile,

from the MECI. Similarly, the A1 normal modes 81 and 88 lift the degeneracy from the MECI, with a

stronger effect of the quinoidal mode 81 for the CoIn seam. The physical relevance of the 3-dimensional

model can be further evaluated by comparing the critical points of the reduced dimensional adiabatic

surfaces and of the fully optimized adiabatic surfaces. Such energies are gathered in table 5.5.

The adiabatic PESs for the 2D-cuts are shown in fig. 5.16, again for the LVC model only. As we

have already discussed, the LVC and QVC parameters show little difference for the zeroth and first order

terms. The main difference lies in the coupling parameters related to the non-totally symmetric acetylenic

stretching. The effect of the non-negligible cross term 𝜇87,88 is illustrated in fig. 5.17 by looking at the

2D-cut (87,88) of the S1 PES in both LVC and QVC cases. For the case of LVC, the two potential energy
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a)

b)

Figure 5.16: Adiabatic PESs of the LVC model (in eV) of electronic states S1 (a) and S2 (b) for the 2D

cuts (81,87), (87,81) and (81,88), from left to right. Energy is given in eV, as inset in the contour lines.

For unspecified coordinates, the values are those at the MECI; all coordinates are mass-weighted and given

in atomic units.

wells in the S1 have their main axes aligned with the original directions of the normal modes. However,

we know from the vibrational analysis at the MinS1 geometries that in such a region of the PES (the

two equivalent wells of the MinS1), the normal modes are localized. In particular, we explicited them as

the normalized sum and difference of the delocalized S0 normal modes, via a Duschinsky transformation.

The strong 𝜇87,88 parameter translates this strong (yet expected) Duschinsky effect on the PESs. Now

with the QVC PESs, the two wells have been rotated so that their main axes are aligned with the sum

and difference of the initial S0 normal modes and directions (which are closer to the true directions of the

S1 normal modes). Yet, we expect the effect of such a rotation to be rather small on the physics of the

system, as the two rotated axes are almost equivalent. Indeed, the two acetylenic stretching modes have

similar frequencies, such that the wells are almost isotropic ellipsoids along modes 87 and 88.

Table 5.5: Energies (in eV) of the critical points in the ab initio PESs (CAM-B3LYP/6-31+G* level of

theory) and in the parametrized 3-dimensional LVC PES models or QVC PES models.

Critical Point MinS1 TS(B2) TS(A1) 𝐸S1
(0) 𝐸S2

(0) MECI

CAM-B3LYP/6-31+G* 4.12 4.25 4.29 4.43 4.47 4.29

LVC Model 4.209 4.273 4.288 4.380 4.405 4.29

QVC Model 4.208 4.272 4.286 4.379 4.407 4.29

147



Chapter 5. The Chromophore: m22

Figure 5.17: PESs of the first excited state in the LVC (left) and the QVC (right) models for the 2D cut

(87,88) (B2 and A1 acetylenic stretching modes, respectively). Energy is given in eV, as inset in the contour

lines. Central arrows correspond to the directions of the main axes of the ellipsoids along both coordinates.

For unspecified coordinates, the values are those at the MECI; all coordinates are mass-weighted and given

in atomic units.

Take-home messages

1. We have sucessfully parametrized LVC and QVC Hamiltonian models for a (1+2)-state

3-dimensional model, so as to reproduce the most important features of the S1/S2

manifold as regards the presence of the MECI (explicitly included in the data set).

2. Although the dimensionality of the model is strongly reduced, the criticial points of the

S1/S2 manifold are comparable, in energy, with the previously described fully optimized

geometries.

3. Little to no physically relevant effect, at such low-dimensionality, was attributed to the

bilinear terms of the QVC Hamiltonian.

5.2.2 Understanding fluorescence in strongly nonadiabatically coupled manifold

We use the previously described (1+2)-state 3-dimensional PES models to run wavepacket dynamics cal-

culations. The MCTDH multi-set formalism is used for the definition of the molecular wavefunction.

Corresponding numerical details are presented in table 5.6. The primitive basis (PB) functions are Gauss-

Hermite functions of the mass-weighted coordinates and the size of the basis is chosen so as to have a

relevant range for the spatial grid (about ±40 a0
√me). In the following, propagations in imaginary time

(simple relaxation) and in real time (wavepacket dynamics) are done (time of simulation 200 fs, printing of

the output files every 0.5 fs and printing of the wavefunction every 1 fs).
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Table 5.6: Single-particle functions (SPFs) and primitive basis (PB) parameters for the relaxation and

propagation of nuclear wavepackets. Setting the reduced masses for the primitive basis harmonic oscilator

functions to 1.0 is relevant when using mass-weighted coordinates.

Coordinates Basis type Size of the basis Eq. position Frequency Reduced mass SPFs

Q81 HO 15 0.0 1655 cm-1 1.0 multi-set 8,8,8

Q87 HO 15 0.0 2365 cm-1 1.0 multi-set 8,8,8

Q88 HO 15 0.0 2365 cm-1 1.0 multi-set 8,8,8

First, imaginary-time propagations allow us to probe the vibronic eigenstates within the coupled elec-

tronic manifold. Beyond the Born-Oppenheimer approximation, the vibronic eigenstates expand in the

chosen basis for the electronic excited states. In the presented delocalized representation for the VCH

models, the electronic excited states are the diabatic delocalized states 1A1 and 1B2. We have for the

vibronic eigenstates

Ψ(exc)
𝑘 (q, Q) = 𝜓A1,𝑘(Q)𝜙A1

(q; Q) + 𝜓B2,𝑘(Q)𝜙B2
(q; Q) (5.16)

where Q = QND are the N nuclear degrees of freedom included in the model and q are the electronic degrees

of freedom. Numerically, the electronic degrees of freedom are treated via a dedicated set of single-particle

functions (SPFs) for which the index is the index of the electronic states. Thus, the electronic degrees of

freedom are now implicit, and we discard them in the following. The underlying electronic states 𝜙A1
(Q)

and 𝜙B2
(Q) are quasi-diabatic states, which vary moderately and smoothly (ideally not at all to first-order)

with the nuclear degrees of freedom QND. The vibronic eigenstates in the electronic ground state are

obtained more easily than in the excited state manifold, as the diabatic electronic ground state does not

couple to other states (Born-Oppenheimer approximation for the electronic ground state).

Definition and choice of the initial states

The sudden approximation implies to use the ground-state vibrational wavepacket as a starting point,

directly projected onto one of the electronic excited state (diabatic states here). Thus, the trivial initial

states from sudden approximation are

ΨA1
(Q3D, 𝑡 = 0) = 𝜓(0)

GS(Q3D)𝜙dia
A1

ΨB2
(Q3D, 𝑡 = 0) = 𝜓(0)

GS(Q3D)𝜙dia
B2

,
(5.17)

where electronic degrees of freedom are implicit because of the a priori diabatization. In the following, we

discuss the obtention of vibronic eigenstates in the excited-state manifold and the autocorrelation functions

for the two initial states in eq. (5.17). However, let us already note that two other sudden approximation

are valid, if one switches to the localized representation of the diabatic states. The initial states would
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then rather be

Ψ(Q3D, 𝑡 = 0) = 𝜓(0)
GS(Q3D)𝜙dia

L = 𝜓(0)
GS(Q3D)

𝜙dia
A1

+ 𝜙dia
B2√

2

Ψ(Q3D, 𝑡 = 0) = 𝜓(0)
GS(Q3D)𝜙dia

R = 𝜓(0)
GS(Q3D)

𝜙dia
B2

− 𝜙dia
A1√

2
.

(5.18)

The use of localized or delocalized initial states is further discussed in chapter 8, and has be explored in

Ref [55].

Obtention of the vibronic eigenstates in the S1/S2 manifold

The two delocalized initial states eq. (5.17) yield, after an imaginary time of about 20 fs, two quasi-

degenerate (Δ𝐸 = 0.0076 eV) but distinct lowest-energy vibronic eigenstates in the S1/S2 manifold. Al-

though imaginary time has no physical relevance, the short time indicates a short number of steps to

variationally optimize the vibronic eigenstates from the guesses that are the initial states.

Let us compare for the two states the transition energy (with respect to the ZPE of the electronic

ground state in the 3D model), the diabatic populations (presented in table 5.7) and the shapes of the

wavefunctions (shown in fig. 5.18).2

Table 5.7: Vibronic eigenstates energies and diabatic populations. The transition energy is computed upon

setting the energy reference to the zero-point energy of the 3D model, 𝐸 = 0.396 eV

Vibronic state Total energy (eV) Transition energy (eV) 𝑃A1
𝑃B2

LVC
Ψ(0)

exc 4.576 4.180 0.20 0.80

Ψ(1)
exc 4.584 4.188 0.78 0.22

QVC
Ψ(0)

exc 4.576 4.176 0.19 0.81

Ψ(1)
exc 4.584 4.187 0.77 0.23

Clearly from the populations and from the shapes of the nuclear wavefunction contributions, the two

states form a complementary pair of quasi-degenerate states. In the following, we use even and odd

adjectives for reference to the parity with respect to the B2 normal mode 87.

The first vibronic state, obtained via the initially fully populated state B2, has even contributions in the

B2 state and odd contributions to the A1 state. The shape of the even contributions are almost unchanged

compared with the shape of the initial wavefunction (they almost stay |𝑣 = 0⟩), and the wavefunction is

simply shifted toward the MECI position. The shape of the odd contributions are almost |𝑣 = 1⟩, centered

at the MECI but with density maxima shifted toward the minima of the S1 PES. The even and odd

parities in the targeted state and non-targeted state (B2 and A1 respectively) are expected. Indeed, the

wavefunction staying (diabatically) on the initial surface does not experience the coupling coordinate 87.
2Because we discuss here the vibronic eigenstates, hence stationary states, of the parametrized models, we talk about

time-independent wavefunctions rather than wavepackets.
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a)

b)

a)

b)

Figure 5.18: Vibrational contributions in diabatic electronic states B2 (a) and A1 (b) for the first (left)

and second (right) vibronic eigenstates of the coupled S1/S2 manifold, in planes (87,81), (87,88), and

(81,88) from left to right. For unspecified coordinates, the values are those at the MECI; all coordinates

are mass-weighted and given in atomic units. The blank panels correspond to the wavefunctions having

the B2 coordinate 87 in the nodal plane and thus zero contribution.

The wavefunction that is transferred from the initial surface to the non-targeted surface does so via the

coupling coordinate 87, which is B2, hence a change of parity after the transfer. The same observation

holds for the second vibronic eigenstates, only by changing the roles of A1 and B2 states.

In other words, although the propagation occurs in imaginary time, the relaxation can be seen as

the equilibrium of a “transfer of excitation” from one diabatic excited state to the other. The initial

wavefunction conserves 80% of its initial electronic population in the final vibronic eigenstate, with little to

no variation of shape compared to the ground state. About 20% of the initial wavefunction is transferred

to the other excited state, and undergoes a change of symmetry due to the B2 character of the coupling

coordinate. This means that the coupling criteria (energy difference and coupling strength) are strong

enough so that the vibronic eigenstates necessarily have non-negligible contributions in both diabatic states.

To compare with the adiabatic point of view in textbook vibronic spectroscopy, one could invoke the

Herzberg-Teller terms (intensity borrowing from other states through vibronic coupling), which cannot be

seen as a perturbation here.

Vibrational interaction diagram for the vibronic transitions

We propose to interpret again the first two vibronic eigenstates as an interaction diagram comparable to

a molecular orbital diagram. In fig. 5.19, we represent the first two uncoupled vibronic eigenstates on

the B2 and A1 surfaces (left and right, respectively) and the first two coupled vibronic eigenstates for

the B2/A1 (S1/S2) manifold. The interaction diagram and in particular the twofold vibrational character

of the vibronic eigenstates allows us to propose a first attribution of the vibronic transitions expected in

steady-state absorption and emission (blue and red arrows).
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4.264

0 (ZPE)

Figure 5.19: Representation of the vibronic eigenstates as interacting two-state(A1, B2)-two-body(Q87,

Q88) vibronic wavefunction components. The vibrational number 𝑣 refers to the excitation number of the

non-totally symmetric normal mode of vibration 87. The nuclear wavefunction contributions are shown in

the plane (87,88).

For absorption, the initial state will unambiguously be 𝜓(0)
GS(Q3D) in the electronic ground state. Such

a vibrational wavefunction, which is simply written |𝑣81, 𝑣87, 𝑣88⟩ = |0, 0, 0⟩, is even with respect to all

nuclear degrees of freedom. This vibrational wavefunction will thus overlap with all even contributions

in the vibronic eigenstates of the S1/S2 manifold. Such overlaps are possible from S0 to the B2 state

(polarized along 𝑦) or from S0 to the A1 state (polarized along 𝑧), for which we know that both are bright

states, from their oscillator strengths at the FC geometry. These overlaps yield first the 00
0 transition,

schematized in fig. 5.19 (blue arrows) and give the associated band origin in the absorption spectrum. As

we will see later, the next transitions will depend first on excitations for the A1 normal modes, |𝑣81⟩ or

|𝑣88⟩ ≠ 0 (vibrational progression).

For emission, two cases arise for each vibronic eigenstates of the S1/S2 manifold. Focussing on the

lowest one, two vibrational contributions associated to the two diabatic states (B2 polarized along 𝑦, A1

polarized along 𝑧) are present. The “initial state” for emission is thus not so unambiguously defined as in

S0, in particular in the case of spontaneous emission. However, we can think of two direct contributions

• “emitting” from the even vibrational contribution, on the 𝑦-polarized B2 diabatic state;

• or “emitting” from the odd vibrational contribution, on the 𝑧-polarized A1 diabatic state

where the transition probabilities for both cases will be determined, similarly to the case of absorption, by

the overlap between vibrational wavefunctions (fig. 5.19 red arrows). The first contribution overlaps first

and mostly with the |𝑣81, 𝑣87, 𝑣88⟩ = |0, 0, 0⟩ in the electronic ground state, yielding the same 00
0 transition

than is absorption. The second contribution overlaps first and mostly with the |𝑣81, 𝑣87, 𝑣88⟩ = |0, 1, 0⟩

in the electronic ground state, yielding a “𝑛0
1” transition with 𝑛 = 87, thus shifted compared to the 00

0
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5.2. The use of quantum dynamics for steady-state spectroscopy

transition of ̄𝜈87 = 2360 cm−1. Note that in “𝑛0
1”, the superscript �0 refers to one of the vibrational

contributions (the odd one, here) of the lowest vibronic eigenstates. The vibronic progression in both

contributions to the emission occurs, as expected, due to the non-zero overlaps with the next vibrational

states in the electronic ground state.

A word on higher excited vibronic eigenstates

Until now, the first two vibronic eigenstates have beeen represented and discussed in terms of the shape

of their vibrational contributions. The next excited vibronic eigenstates are found using the improved

relaxation algorithm (see the end of this chapter, table 5.13 for results from the LVC model and table 5.14

for results form the QVC model, with comparison in table 5.15). The sizes of the primitive bases and

the SPF bases have been augmented so that the wavefunction remains centered with respect to the B2

normal mode. Without this, the nuclear space is not large enough for the high excitations to be correctly

described. Even with a large basis (51 HO basis functions and 21 SPFs per degrees of freedom and per

state), we note that there is some “leakage” of the nuclear wavefunction at the spatial boundaries for the

highly excited states.

From table 5.13, we see indeed that the first two vibronic eigenstates (column “relax=0”) are the lowest

pair of vibronic eigenstates previously identified, and are mostly excited along 87 in the 20% populated state.

The other excitation numbers are always lower than 0.40 for these states. The next vibronic eigenstates,

on the other hand, maintain ⟨𝑛87⟩A1 or B2
≃ 0 or 1 but also have close-to-one excitation numbers for the

A1 normal modes. These excitations lead to the two vibronic progressions from the 00
0 transition along 81

and 88, namely the 81𝑣
0 and 88𝑣

0 transitions.

Obtention of the absorption and emission spectra

The power spectra for absorption and emission contributions can be computed directly via the Fourier

transform of the autocorrelation functions of the adequate propagated wavepackets. The different initial

states and calculations schematically correspond to the illustrated transitions in fig. 5.19. First, let us focus

on the two real-time propagations (pure A1 or B2 initial states) in the excited-state manifold.

In particular, we are first interested in the early dynamics trajectories, up to 25 fs. We propose to

approximate the “trajectories” of the wavepackets to the evolution of their center position in the 2D-cut

(81,88), because they are centered with respect to the normal coordinate 87. In fig. 5.20 a), we illustrate

again the PESs with A1 and B2 diabatic potential energies and recall the positions of the MECI and

transitions states. The unspecified coordinates is the normal coordinate 87, set to 0, such that the first two

adiabatic energies are always either the diabatic potential energy of the A1 or B2 states. The populations

of the diabatic and adiabatic states are also illustrated as functions of time, fig. 5.20 b).

Around the FC point, the initially pure diabatic states consist in a 40:60 superposition of the pair of S1

and S2 states (due to the coupling along the normal mode 87). The trajectories start from the (apparent)
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a) b) a) b)

Figure 5.20: (a) Trajectories of the centers of the wavepackets in the 2D-cut (81,88) up to 25 fs in the

LVC model. The linewidth of the ”trajectory” in each diabatic state at a given time is proportional to the

associated population at this time. Diabatic PESs A1 and B2 in blue and red, respectively; adiabatic PESs

S1 and S2 in dashed and plain lines, respectively. (b) Diabatic (plain lines) and adiabatic (dashed lines)

populations. Left and right panels show the propagations for an initial state on A1 and for an initial state

on B2, respectively.

FC geometry. We observe that for initially pure states A1 and B2, the population is rapidly transferred to

the initially unpopulated state and that the two diabatic trajectories follow different gradients. The seam

of CoIns is also represented, and is parallel to neither the 81 nor the 88 axis. In addition, we observe that

the wavepackets cross the seam twice within the first 25 fs, which is consistent with the strong oscillations

between populations of the adiabatic states S1 and S2. We stress here the importance of mode 81 in the

description of the seam. Indeed, with a model reduced to acetylenic vibrations only (87 and 88), the initial

state would be on the wrong side of the seam with respect to the FC geometry (the seam is oblique in the

(𝑄81, 𝑄88) plane).

We now discuss the direct obtention of power spectra from real-time propagations. For each power

spectrum, we illustrate two different broadening choices. A first illustration is obtained with a damping

time 𝜏 = 100 fs, yielding highly-resolved power spectra. A second illustration is obtained with a damping

time 𝜏 = 19 fs which is more realistic for comparison with low but non-zero temperature experiments.

The two previously described “trajectories” (precisely, wavepacket dynamics) yield two distinct but

equivalent contributions to the absorption spectra. Both contributions are physically relevant as both are

obtained upon sudden excitation toward an optically bright state in the FC region. The two contributions

are shown in fig. 5.21 (left), where the transition energies are obtained with respect to the zero-point

energy in the electronic ground state. Contributions to the emission spectrum are evaluated through

the propagation of the vibrational wavefunction on the A1 and B2 diabatic states of the first two quasi-

degenerate vibronic eigenstates (fig. 5.21 center and right). As a result, we illustrate a total of four distinct

plausible contributions to the emission spectrum.

The main spectroscopic data of our simulations are collected in table 5.8. We stress that up to now,

the theoretical spectra have not been shifted to match experimental data. The wavelength position for the
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Figure 5.21: Left: simulated contributions to the absorption spectrum from electronic ground state to

electronic excited state B2 (plain lines) and A1 (dashed lines). Center: simulated contributions to the

emission spectrum from vibrational wavefunctions on B2 (plain lines) and A1 (dashed lines) of the first

vibronic eigenstate. Right: simulated contributions to the emission spectrum from vibrational wavefunctions

of B2 (plain lines) and A1 (dashed lines) of the second vibronic eigenstate. Pale and dark colors indicate

the use of damping times 19 fs and 100 fs, respectively. All results are for the LVC model.

main transitions and associated vibronic progressions are given within each contribution. Both absorption

contributions yield the same transition energies and associated wavelengths. The 00
0 transition occurs at

296 nm. For emission, we find two contributions with the most intense transition at 296 nm and 297 nm,

consistent with the 00
0 transition. These contributions are called non-Stokes contributions in the rest of the

text. More importantly, we find two contributions for which the most intense transition is at 319 nm which is

consistent with a 870
1 transition. These contributions are called Stokes contributions in the rest of the text.

With respect to the maximum in absorption, these two contributions are shifted to the red wavelengths by

23 nm ≡ 2400 cm−1, which is, expectedly, consistent with the loss of an acetylenic vibrational quantum.

Table 5.8: Spectroscopic data for theoretical absorption and emission spectra in the LVC model, before any

comparison with the experiments. One row is given for absorption as both computed spectra are identical

for reading the transition energies. The four contributions to the emission spectrum are given next. The

most intense transition for each contribution is given in bold. The second transition with low intensity is

given in parenthesis. Associated vibronic progression are given with respect to the most intense transition

of each contribution.

Spectrum contribution 𝜆max (nm) First vibronic progression (cm−1)

Absorption 296, (284), 278 –, (1430), 2190

Emission

Ψ(0)
exc, non-Stokes 297, (312), 319 –, (1620), 2320

Ψ(0)
exc, Stokes 319, (337), 345 –, (1670), 2360

Ψ(1)
exc, non-Stokes 296, (311), 318 –, (1630), 2340

Ψ(1)
exc, Stokes 319, (336), 344 –, (1590), 2280
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Comparison to the experiments

We now compare the results of our calculations to experimental spectra obtained at low-temperature

(−198 °C ≡ 75 K) in fig. 5.22 [39]. The theoretical spectra are now all shifted in energy so that the

band origins from the theoretical absorption (297 nm) and from the experimental absorption (304 nm)

match. The associated wavelength shift (again, applied for all spectra) of 7.3 nm consist in fact in an

(homogeneous) energy shift of Δ𝐸 = 0.10 eV and Δ ̄𝜈 = 818 cm−1. This (small) shift is, firstly, attributed

to the not-perfect accuracy of the reduced model for reproducing the PESs and, second, to the level of

theory for the electronic structure. For instance, the minima of S1 in the LVC model are 0.09 eV higher

than the actual fully optimized minima of S1, which is consistent with higher transition energies overall for

the theoretical spectra.

Stokes

Stokes

Figure 5.22: Theoretical absorption spectrum reproduced in (a) and (b), theoretical emission spectrum

from a given (first or second) vibronic eigenstate, contributions of B2 (a) and of A1 (b). Left: absorption

and emission toward and from the first vibronic eigenstate. Right: absorption and emission toward and from

the second vibronic eigenstate. Blue and red circles indicate the maxima for the theoretical absorption and

emission spectra. Realistically broadened bands are obtained using a damping time 𝜏 = 19 fs. Experimental

absorption and emission spectra (dashed lines in (a) and (b)) are reproduced from Spectrochim. Acta A

60, 1459 (2004) [39]. Copyright 2003 Elsevier B.V.

Overall, the absorption spectrum is correctly reproduced from what we can expect from a 3-dimensional

model. We will see in the next section that these results are easily quantitatively improved by simply

adding physically relevant degrees of freedom. On the other hand, the main unexplained feature of the

experimental emission (the unusual Stokes shift), is not completely solved. Indeed, the study of the first

vibronic eigenstates in the nonadiabatically coupled S1/S2 manifold results in an ambiguous initial state and

indicates two types of contributions to the emission spectrum. The non-Stokes contributions are obtained

and are expected to be prominent in steady-state spectroscopy, as if we had two different, uncoupled

diabatic states. Indeed, vibronic eigenstates have most of the electronic population associated to the even

vibrational contributions, which ultimately yield the non-Stokes contributions. The Stokes contributions
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are always identified as coming from wavepackets having undergone transfer from one diabatic state to

another, caused by the non-zero and strong coupling between them. Let us mention here that the two

diabatic states can be distinguished theoretically by their different polarization (𝑦-axis for B2, 𝑧-axis for

A1).

Concluding remarks

It is not trivial to understand which contributions or combination of contributions should or could be

directly compared to the steady-state spectroscopy experiments. Indeed, the pair of vibronic eigenstates is

sufficiently close so that we cannot expect only one of the two to be the “emissive state”. Thus even if the

ETDMs of both diabatic states were taken into account, the similar roles of B2 and A1 states would imply

that both Stokes and non-Stokes contributions have non-negligible transition probabilities. An explanation

could be found on the reliability of the ab initio data to estimate the L/QVC parameters such that the

percentages of transferred wavefunction is clearly underestimated. However, non-Stokes contributions

being similar to the absorption contributions, if the transfer were strong enough for Stokes contributions

to be prominent, the 00
0 transition in absorption would also be too small compared to the 871

0 transition.

On a final note, we presented here a plausible interpretation for the presence of an unusual Stokes

shift in the fluorescence spectrum of m22. However, our results are not in agreement with the usual

way that spontaneous emission in fluorescence spectroscopy is understood. Indeed we expect, from our

modelling, two differently polarized (and orthogonal) contributions to the emission spectrum, which would

hold in the case of a “long-lived coherence” from absorption to emission. It is as if the emissive species

conserved history about their initial excitation. This “long-lived coherence” should not occur in fluorescence

experiments, and is still to be evaluated, both theoretically and experimentally. For the theoretical outlooks,

one can first estimate the importance of the missing nuclear degrees of freedom (section 5.3), and second,

can go toward simulating time-resolved fluorescence or angle-resolved (poralized-resolved) fluorescence. Of

course, the latter meets with experimental outlooks, and have not been explored yet, to our knowledge.

Take-home messages

1. By relaxing 3-dimensional nuclear wavepackets in the (1+2) 3-dimensional LVC (or QVC)

models, we identified a ”tunnelling” pair of vibronic eigenstates, having non-negligible

contributions in both electronic excited states (𝑦- and 𝑧-polarized).

2. We characterized two different contributions (Stokes and non-Stokes) to the emission

spectrum with (equivalently)

• the identification of the possible vibronic transitions between the electronic ground

state and the excited state manifold;
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• a direct evaluation of the power spectra for absorption and emission.

3. The resulting absorption and Stokes-emission spectra are in good agreement with the

experiments, although the absence of the non-Stokes-emission spectrum is not yet un-

derstood from our modelling

5.3 Toward higher dimensionality

We extend the previous study to a higher-dimensional LVC model, taking into accounts 10 normal modes

in total. At our level of theory for the electronic structure, the ten selected modes account for almost 90%

of the branching-space vectors components and most of the shifts from the FC geometry toward critical

points of the S1/S2 PESs. In terms of vibrational nature, our choice of ten modes is a selection among

the most optically active triangular (stretching), quinoidal (stretching) and anti-quinoidal (rock-bending),

and acetylenic (stretching) normal modes of vibration, with ground-state wavenumbers ranging around

1100 cm−1, 1650 cm−1, and 2300 cm−1, respectively.

5.3.1 Systematic LVC model for the potential energy surfaces

In this section, and contrarily to the previous model, the reference point (origin) for PES cuts is the

optimized FC geometry. The choice has been made so as to rely only on the optimized FC geometry in order

to have a more transferable/systematic procedure for building simple models of PESs in PPE-oligomers.

Indeed, as we will see in the next chapters, the optimization of the MECI is not easily guaranteed for other

PPE-oligomers.

Let us note that, herein, the superscripts for diabatic quantities (1) and (2) correspond to the delocalized

states B2 and A1, respectively, consistent with their ordering at the FC geometry. Also, because the FC

geometry is fully included in the model, we take the vertical transition energies 𝐸(𝑠)(Q = 0) for granted

for the fitting procedure. Therefore, the reduced coordinates are now

Q10D = (𝑄1 … , 𝑄𝑖, … , 𝑄3𝑁−6) with
⎧{
⎨{⎩

𝑄𝑖 = 𝑄𝑖 ∈ ℝ if 𝑖 ∈ (50, 53, 54, 75, 81, 84, 85, 86, 87, 88)

𝑄𝑖 = 0 otherwise.
(5.19)

Because we generated the 1D-cuts from the FC geometry which is also the reference point of the LVC model,

and because the model has no bilinear terms, we can fit the parameters of each profile independently of

the others. For A1 profiles we minimize the functions

𝐿(𝑘(1)
𝑖 , 𝑘(2)

𝑖 , 𝜅(1)
𝑖 , 𝜅(2)

𝑖 ) = ∑
𝑛

𝑤(1)(𝑛) (𝑉1[𝑘(1)
𝑖 , 𝑘(2)

𝑖 , 𝜅(1)
𝑖 , 𝜅(2)

𝑖 ](𝑄𝑖(𝑛)) − 𝐸S1
(𝑛))

2

+ ∑
𝑛

𝑤(2)(𝑛) (𝑉2[𝑘(1)
𝑖 , 𝑘(2)

𝑖 , 𝜅(1)
𝑖 , 𝜅(2)

𝑖 ](𝑄𝑖(𝑛)) − 𝐸S2
(𝑛))

2
,

(5.20)
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and for B2 profiles the following functions

𝐿(𝑘(1)
𝑖 , 𝑘(2)

𝑖 , 𝜆𝑖) = ∑
𝑛

𝑤(1)(𝑛) (𝑉1[𝑘(1)
𝑖 , 𝑘(2)

𝑖 , 𝜆𝑖](𝑄𝑖(𝑛)) − 𝐸S1
(𝑛))

2

+ ∑
𝑛

𝑤(2)(𝑛) (𝑉2[𝑘(1)
𝑖 , 𝑘(2)

𝑖 , 𝜆𝑖](𝑄𝑖(𝑛)) − 𝐸S2
(𝑛))

2
.

(5.21)

Note that we added weight functions to the fitting procedure for better robustness of the overall fit, with

𝑤(1)(𝑛) = exp (−
𝐸S1

(𝑛) − 𝐸S1
(Q = 0)

∣𝐸S1
(𝑛max) − 𝐸S1

(Q = 0)∣
) (5.22)

which gives importance to S1 for the regions near the apparent S1 minima of the profiles and

𝑤(2)(𝑛) = exp (− Δ𝐸(𝑛)
Δ𝐸(𝑛min)2 ) (5.23)

which gives importance to S2 for the regions near conical intersections (with Δ𝐸(𝑛) = 𝐸S2
(𝑛) − 𝐸S1

(𝑛))

For each mode, we give in fig. 5.23 the 1D-cut, the results from the fitting procedure for the concerned

1D-cut and the weights used to obtain such results. Overall, we obtain a very good agreement between

the ab initio PESs and the model of PESs along the 1D-cuts.

50 81755453

84 88878686

Figure 5.23: Adiabatic energies (in eV) from electronic structure calculations (symbol +) and from the

2-state 10-dimensional LVC model, along Cartesian displacements associated to the selection of S0 normal

modes. For unspecified coordinates, the values are those at the FC geometry (0); all coordinates are mass-

weighted and given in atomic units. The weights functions used in the fitting procedure are also given

(dashed lines) with ranges specified in the right axis of each figure.

The LVC parameters are given in table 5.9. Let us already note that the results for the modes 81, 87,

and 88 are comparable between the 3D and 10D models, although the reference geometry for 1D-cuts was

not the same. Again, we assess the validity of the LVC model by searching for the critical points (minima,

transition states, and MECI) within the PES of the reduced model. Such critical points are described in

table 5.10. A good agreement is found when comparing fully optimized geometries, with overall better

described minima in S1 for the 10-dimensional model than for the 3-dimensional model, as expected.
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Table 5.9: Frequency (in cm−1) and characteristic shift (in a0
√me) of the energy gradient and inter-

state coupling gradient for the delocalized representation of the LVC model, obtained upon fitting 1D-cuts

through the 10 selected modes. The parameters 𝜔(𝑠)
𝑖 correspond to curvatures 𝑘(𝑠)

𝑖 . The parameters 𝑑(𝑠)
𝑖

correspond to energy gradients 𝜅(𝑠)
𝑖 . The parameters 𝑑(12)

𝑖 correspond to inter-state coupling gradient 𝜆𝑖.

The vertical transition energies are those obtained from electronic structure calculation at the FC geometry.

The corresponding LVC and parameters in mass-weighted atomic units are gathered in appendix B.

Mode i Symmetry 𝜔(1)
𝑖 𝜔(2)

𝑖 𝑑(1)
𝑖 𝑑(2)

𝑖 𝑑(12)
𝑖

50 A1 1014 1005 4.318 6.185 0.0

53 B2 1034 1014 0.0 0.0 3.843

54 A1 1026 1027 -5.274 -4.347 0.0

75 A1 1445 1477 -2.283 1.061 0.0

81 A1 1640 1546 -2.747 -7.31 0.0

84 B2 1533 1780 0.0 0.0 -7.251

85 A1 1670 1608 -5.242 -3.706 0.0

86 B2 1629 1623 0.0 0.0 1.478

87 B2 2316 2387 0.0 0.0 -7.155

88 A1 2346 2380 8.487 7.318 0.0

Table 5.10: Characteristics of the critical points obtained in the PESs of the 10-dimensional LVC Hamil-

tonian model. The first part of the table gathers the energy (in eV) for the two adiabatic states for the

10-dimensional geometries of the critical points. The second part of the table gives the critical-point posi-

tions in normal coordinates (in a0
√me), with respect to the FC geometry.

𝐸(S1) 𝐸(S2) Δ𝐸 50 53 54 75 81 84 85 86 87 88

MinS1 4.176 4.688 0.256 -4.798 -3.513 5.008 1.358 4.356 7.325 4.637 -1.462 7.112 -7.981

MinS2 4.301 4.324 0.012 -6.185 0.000 4.347 -1.061 7.310 0.000 3.706 0.000 0.000 -7.318

TS(B2) 4.273 4.351 0.039 -4.318 0.000 5.274 2.283 2.747 0.000 5.242 0.000 0.000 -8.487

TS(A1) 4.301 4.324 0.012 -6.185 0.000 4.347 -1.061 7.310 0.000 3.706 0.000 0.000 -7.318

MECI 4.329 4.330 < 0.001 -7.148 0.518 2.271 -2.330 8.734 -0.010 2.576 -0.064 0.051 -6.700

5.3.2 A first step toward high-dimensional quantum dynamics

We run similar dynamics calculations as in the case of the 3-dimensional model. Because of the number of

degrees of freedom, a scheme for the contraction of the SPFs basis set has to be chosen. For the sake of

simplicity and because the number of modes is not overwhelming, we choose to use the MCTDH ansatz

with simple mode combination. Four combined modes are defined by combining

• the triangular modes (50, 53 and 54);

• the quinoidal and anti-quinoidal modes of the central phenylene ring (75, 81 and 84);
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5.3. Toward higher dimensionality

• the quinoidal modes of the peripheral phenylene rings (85 and 86);

• and the acetylenic modes (87 and 88).

This choice was made so as to have overall good convergence (conservation of energy and conservation

of centers of wavepackets along B2 normal modes to 0, i.e. no symmetry breaking) within a reasonable

computational cost (about 1 h of human-time on a 16-core machine, for 200 fs of simulation). The numerical

parameters for the definition of the MCTDH wavepackets are given in table 5.11.

Table 5.11: Single-particle functions (SPFs) and primitive basis (PB) parameters for the relaxation and

propagation of nuclear wavepackets. The degrees of freedom are grouped in four combined modes to reduce

the computational cost of the propagation. Setting the reduced masses for the primitive basis harmonic

oscilator functions to 1.0 is relevant when using mass-weighted coordinates.

Coordinates Basis type Size of the basis Eq. position Frequency Reduced mass Comb Mode SPFs

Q50 HO 15 0.0 1026 cm−1 1.0 #1
17

Q53 HO 15 0.0 1029 cm−1 1.0 #1

Q54 HO 15 0.0 1029 cm−1 1.0 #1

Q75 HO 15 0.0 1473 cm−1 1.0 #2
21

Q81 HO 15 0.0 1656 cm−1 1.0 #2

Q84 HO 15 0.0 1682 cm−1 1.0 #2

Q85 HO 15 0.0 1692 cm−1 1.0 #3
13

Q86 HO 15 0.0 1694 cm−1 1.0 #3

Q87 HO 15 0.0 2367 cm−1 1.0 #4
13

Q88 HO 15 0.0 2367 cm−1 1.0 #4

The energies and populations of the first two vibronic eigenstates in the S1/S2 manifold are presented

in table 5.12. Let us notice that the transferred population is more important for this 10-dimensional model

than for the 3-dimensional model, with 25% and 40% of transferred population for the first two eigenstates,

respectively.

Table 5.12: Vibronic eigenstates energy and diabatic populations. The transition energy is computed by

setting the energy reference to the zero-point energy of the 10D model, 𝐸 = 0.993 eV

Vibronic state Total energy (eV) Transition energy (eV) 𝑃A1
𝑃B2

Ψ(0)
exc 5.138 4.145 0.75 0.25

Ψ(1)
exc 5.161 4.168 0.40 0.60

The contributions to the absorption and emission spectra are also computed and shown in fig. 5.24

toward and from the first two vibronic eigenstates. The vibrational structure of the absorption spectrum is
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in good agreement with the experiments, thanks to the additional modes compared to the 3-dimensional

model. This agreement is better for the low-energy vibronic transitions, and the differences (compared

with the experiments) for higher-energy transitions can be attributed to anharmonicity. We find again, as

expected, the same Stokes and non-Stokes contributions.

Stokes

Stokes

Figure 5.24: Theoretical absorption spectrum reproduced in (a) and (b), theoretical emission spectrum

from a given (first or second) vibronic eigenstate, contributions of B2 (a) and of A1 (b). Left: absorption

and emission toward and from the first vibronic eigenstate. Right: absorption and emission toward and from

the second vibronic eigenstate. Blue and red circles indicate the maxima for the theoretical absorption and

emission spectra. Realistically broadened bands are obtained using a damping time 𝜏 = 19 fs. Experimental

absorption and emission spectra (dashed lines in (a) and (b)) are reproduced from Spectrochim. Acta A

60, 1459 (2004) [39]. Copyright 2003 Elsevier B.V.

The non-Stokes contributions share the vibrational structure with the absorption spectrum. However,

the Stokes contributions now exhibit an intense transition at 320 nm, before the “0-1” transition 870
1

(associated to the non-totally symmetric acetylenic stretching normal mode). This new transition is another

“0-1” transition, 840
1 associated to the anti-quinoidal rock-bending mode 84. It is expected to be intense

because of the strength of the coupling along the mode 84. Indeed the transferred wavepacket has almost

|𝑣 = 1⟩ vibrational contribution along both modes 84 and 87. In the experiments, such a band is not

directly observed, but we note the presence of a shoulder in the blue-region of the most intense band of

emission. At the moment, our main hypothesis is that the parametrization and the level of theory we used

for the electronic structure calculations may overestimate the coupling along the normal mode 84. It is also

possible that the LVC model is too simple to take into account strong coupling along several directions,

with the same order of magnitude.

With the same idea as when looking at early dynamics, we can study the “trajectory” of the center of the

wavepackets for the two different excitations and along the various normal modes of vibration. We propose

to evaluate the state-specific expectation value of the position operators as functions of time, see fig. 5.25.

More importantly, we can check that the wavepackets are centered with respect to the B2 normal modes

of vibration (not breaking symmetry). This is also a check for validating the choice of the primitive basis
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5.3. Toward higher dimensionality

set contraction (the choice of the combined modes and associated SPFs basis size). Indeed we observed

that the position along the B2 normal modes is one of the first observable to significantly diverge when

the calculation is not converged enough because of primitive or SPFs basis choices (unphysical symmetry

breaking).

b)

a)

Figure 5.25: Left: Time evolution of the population of the diabatic (plain lines) and adiabatic states (in

transparency). Right: Time evolution of the state-specific expectation values of the position operator in

diabatic states D1 = B2 (blue lines) and D2 = B1 (red lines) for the different normal modes of vibration

in the 10-dimensional model. Labels a) and b) refer to initial excitation on the diabatic state B2 and A1,

respectively.

Again, we observe the similar role of the B2 and A1 diabatic states after an initial excitation on a pure

diabatic state. Overall, the symmetry properties of the excited wavepacket is maintained (as expected).

Such analysis of the trajectory of the wavepackets will come handy in the following for studying:

• the use of more complicated initial states and of possible symmetry-breaking for the wavepackets

propagation (see chapter 8);

• the electronic-vibrational communication in excitation-energy transfer in asymmetrically substituted

PPE-oligomers and for comparision to mixed quantum-classical dynamics.

Take-home messages

1. We successfully extended our strategy for the simulation of absorption and emission spec-

tra for the case of strongy nonadiabatically coupled electronic excited states to medium-
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dimensionality (ten degrees of freedom) for both the PES models and the wavepackets

dynamics.

2. Our results are qualitatively improved, as expected by taking into account more optically

active modes, but the absence of the non-Stokes contribution in the absorption is yet to

be explained.

Let us now conclude on our quantitative results for both the low- and medium-dimensional studies of

1,3-bis(phenylethynyl)benzene.

5.4 Concluding remarks

5.4.1 Fluorescence in the context of nonadiabatically coupled electronic excited states

We presented here the first quantum dynamics study of 1,3-bis(phenylethynyl)benzene (m22) via explicit

wavepacket propagation. This study aimed at the exploration and characterization of the adiabatic PESs

of m22; the diabatization and choice of models (3-dimensional LVC/QVC and 10-dimensional LVC) of such

PESs; and the modelling of absorption and emission properties in the context of a nonadiabatic process.

Our results are summarized and compared with time-independent simulations of vibronic spectra and with

the low-temperature experimental UV-visible spectra in fig. 5.26, left. The spectra are slightly shifted

so that the most intense band (identified as a band-origin 00
0 transition) in absorption matches between

experiments and theory (fig. 5.26, right).

We find that the case of m22 is a striking example of a breaking of the Born-Oppenheimer approximation

with significant effect on the observed vibronic spectra. Indeed, the results from time-independent spectra

simulations, within the Born-Oppenheimer approximation, reproduce the absorption (blue lines) but also the

associated mirror-imaged emission (non-Stokes spectra, green lines). This result for emission is completely

off compared to the experimental fluorescence, yet matches the expected emission spectrum of the single

diphenylacetylene fragments. On the other hand, our moddeling unveiled plausible contributions, induced

by the presence of a conical intersection between S1 and S2, which are consistent with the experimentally

observed Stokes shift (Stokes spectra, red lines).

However and as already stated, our simulations cannot discriminate between non-Stokes and Stokes

contributions to the emission spectrum. With our results and comparison to the experiments, we find that

the description of fluorescence experiments is ambiguous is the case of strongly nonadiabatically coupled

electronic excited states, for which complicated vibronic eigenstates exist.

164



5.4. Concluding remarks

260 280 300 320 340 360
Wavelength (nm)

0

0

0

0

0

0

N
or

m
al

iz
ed

in
te

ns
it

y

00
0

851
0

871
0

871
0 · 851

0

872
0

872
0 · 851

0873
0 882

0

881
0 · 871

0

872
0881

0

871
0

851
0541

0

00
0

f) TD (LVC)
10 Modes

e) TD (QVC)
3 Modes

d) TD (LVC)
3 Modes

c) TI (BO + FC)
10 Modes

b) TI (BO + FC)

a) Experiment

Absorption

Stokes Emission

Non-Stokes Emission

260 280 300 320 340 360
Wavelength (nm)

0

0

0

0

0

0

N
or

m
al

iz
ed

in
te

ns
it

y

00
0

851
0

871
0

871
0 · 851

0

872
0

872
0 · 851

0873
0 882

0

881
0 · 871

0

872
0881

0

871
0

851
0541

0

00
0

f) TD (LVC)
10 Modes

e) TD (QVC)
3 Modes

d) TD (LVC)
3 Modes

c) TI (BO + FC)
10 Modes

b) TI (BO + FC)

a) Experiment

Absorption

Stokes Emission

Non-Stokes Emission

Figure 5.26: Comparison of absorption (in blue) and emission (in green or red) spectra from the experiments,

panel a), and from different types of simulations, panels b) to f). For emission, we distinguish non-Stokes

and Stokes contributions, in green and red, respectively. To the left, all theoretical spectra are unshifted

in energy. To the right, all theoretical spectra are shifted (within each panel) such that the maximum of

theoretical absorption matches the maximum of experimental absorption. Panels b) and c) are obtained

from routine time-independent Franck-Condon calculation with only ten modes selected in c). Panels

d) and e) are obtained from time-dependent calculations with the 3-dimensional models (LVC and QVC,

respectively). Panel f) is obtained from time-dependent calculations with the 10-dimensional model (LVC).

5.4.2 Outlook for theoretical and experimental studies

This study objectives were to have a complete understanding of the m22 emission spectrum and to reproduce

the experimental Stokes shift. We were able, as of now, to propose a rationalization of such an energy

shift. We also hope that we have correctly raised the question of the relevant nature of the non-trivial

initial state for spontaneous emission in the context of strongly nonadiabatically coupled electronic excited

states. In particular, this question calls for further theoretical and experimental studies.

First, theoretically: can we better understand the process of spontaneous emission with such an ill-

behaved system with respect to the Born-Oppenheimer approximation and Franck-Condon principle? The

first improvement could come from scientific communities working on explicitly including the electric field

to molecular physics simulations. Indeed, the presented study is limited to the approximation of sudden

excitations, with no explicit light-matter couplings between the electronic ground state and the targeted

electronic excited states. Having a time-resolved characterization of the electronic (or more specifically

vibronic) excitations from the electronic ground to the excited states would help us to better tackle the
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rationalization of the evolution of the initial wavepackets.

Complementary work already started regarding this question, via the use of simple LVC models and

hierarchical equations of motion (HEOM) [55], will not be directly presented here but is an outlook of this

work. On the other hand, the explicit simulation of spontaneous emission via quantum electrodynamics

(quantization of the electric field and of the vacuum state) is also out of the scope of this thesis.

Second, experimentally: is there a way to discriminate the theoretically identified Stokes and non-Stokes

contributions? The theoretical contributions involved in our simulations of the UV-visible spectra of m22 are

associated to well-defined polarizations. However, steady-state spectroscopy experiments are not supposed

to depend on the orientation of the molecule, in particular in solution (free rotational averaging). The

question raised is now the very nature of fluorescence obtained experimentally for m22: is it spontaneous

emission; a sort of stimulated emission; a Raman resonant-like emission? New experiments such as time-

resolved fluorescence (for a study of electronic coherence) and angle-resolved fluorescence (for a study of

polarization) might help us to address the question. In any case, we can confess that no answer has been

provided to us over the last couple of years.

5.4.3 The role of the symmetry of the chromophore as regards excitation-energy transfer

Replacing the chromophore m22 in the context of the light-harvesting PPE-dendrimers, what is the role

of the coupled electronic excited states? As we have seen, the S1/S2 manifold of m22 can be seen as a

pair of localized states, which correctly fits the additive property of the absorption spectrum expected in

a PPE-dendrimer. More importantly, the oscillator strength of the first excited state (𝑓 = 1.71) in the

m22 PPE-oligomer (a pseudo dimer of p2) is enhanced compared to the oscillator strength of the first

excited state (𝑓 = 0.93) in the isolated p2 PPE-oligomer. In addition, the second excited state of the m22

PPE-oligomer, with almost identical excitation energy, is also bright, which gives a second channel of initial

excitation as regards excitation-energy transfer.

In other words, the symmetrically substituted chromophores in the PPE-dendrimers are likely to absorb

more efficiently the light, with close-to-degeneracy excited states in the UV spectral domain and enhanced

oscillator strengths compared to isolated diphenylacetylenes. The role of the symmetry for the efficiency

of the chromophore as regards the transfer of absorbed energy will be studied in part III, chapter 7, where

we study the tri-meta-substituted PPE-oligomer with the chromophore m22 linked with an energy-trap.
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5.A Table of characteristics for the vibronic excited eigenstates

Table 5.13: Energy, diabatic populations and wavepacket centers for vibronic eigenstates obtained from initialization

on A1 (top table) or B2 (bottom table) for the LVC model. The vibronic eigenstates have been obtained via improved

relaxation. To ensure better convergence, the primitive basis and SPFs basis sets have been augmented (51 HO basis

functions for the PB and multi-set (1,21,21) for the SPFs)

Relax=n 0 1 2 3 4 5 6 7 8 9

From initial state A1

Energy (eV) 4.188 4.372 4.556 4.473 4.556 5.275 5.296 5.286 6.512 6.51

𝒫A1
0.781 0.758 0.741 0.736 0.741 0.618 0.526 0.595 0.595 0.578

𝒫B2
0.219 0.242 0.259 0.264 0.259 0.382 0.474 0.405 0.405 0.422

⟨𝑄87⟩A1
(a.u.) 0 0 0 -0.002 -0 0.011 0.004 -0.008 -0.008 0.024

⟨𝑄87⟩B2
(a.u.) 0 0 0.001 -0.008 -0 -0.01 -0.002 -0.016 -0.015 0.016

⟨𝑄81⟩A1
(a.u.) 7.177 8.997 10.605 6.767 10.605 5.338 5.438 5.273 6.052 6.11

⟨𝑄81⟩B2
(a.u.) 5.55 -0.186 -4.271 6.106 -4.27 6.966 5.688 6.724 5.681 5.43

⟨𝑄88⟩A1
(a.u.) -7.34 -7.327 -7.317 -9.661 -7.317 -8.426 -6.848 -7.606 -6.799 -6.594

⟨𝑄88⟩B2
(a.u.) -7.793 -7.893 -7.954 -1.457 -7.954 -6.331 -8.668 -7.702 -8.867 -9.106

⟨𝑛87⟩A1
0.098 0.116 0.132 0.304 0.132 2.221 2.238 2.532 3.182 3.35

⟨𝑛87⟩B2
1.049 1.061 1.069 1.208 1.069 2.638 2.361 2.755 3.614 3.849

⟨𝑛81⟩A1
0.196 1.274 2.344 0.185 2.344 0.438 0.136 0.257 2.183 2.17

⟨𝑛81⟩B2
0.118 0.745 1.486 0.144 1.486 0.447 0.138 0.284 2.152 2.13

⟨𝑛88⟩A1
0.291 0.29 0.289 1.287 0.289 1.968 2.231 1.772 4.24 4.11

⟨𝑛88⟩B2
0.328 0.336 0.342 0.415 0.342 1.845 2.38 1.938 4.339 4.119

From initial state B2

Energy (eV) 4.180 4.367 4.555 4.555 4.555 5.304 5.305 5.300 6.531 6.522

𝒫A1
0.195 0.224 0.251 0.251 0.251 0.505 0.459 0.602 0.562 0.512

𝒫B2
0.805 0.776 0.749 0.749 0.749 0.495 0.541 0.398 0.438 0.488

⟨𝑄87⟩A1
(a.u.) 0 0 0 0 0 -0.016 0 0.005 0.011 -0.004

⟨𝑄87⟩B2
(a.u.) 0 0 0 0 0 -0.02 0 0.008 0.016 0

⟨𝑄81⟩A1
(a.u.) 5.256 10.899 15.096 15.096 15.096 5.54 5.229 5.565 6.067 5.723

⟨𝑄81⟩B2
(a.u.) 3.706 2.265 0.799 0.799 0.799 5.38 5.253 6.461 5.346 5.271

⟨𝑄88⟩A1
(a.u.) -7.709 -7.613 -7.543 -7.543 -7.543 -8.17 -8.891 -7.156 -8.007 -9.056

⟨𝑄88⟩B2
(a.u.) -8.152 -8.157 -8.161 -8.161 -8.161 -7.298 -6.85 -8.348 -7.25 -6.342

⟨𝑛87⟩A1
1.048 1.06 1.07 1.07 1.07 1.938 1.899 2.024 2.901 2.821

⟨𝑛87⟩B2
0.088 0.107 0.131 0.131 0.131 1.288 1.255 2.012 3.184 3.042

⟨𝑛81⟩A1
0.106 1.21 2.289 2.289 2.289 0.14 0.128 0.139 2.108 2.19

⟨𝑛81⟩B2
0.053 0.996 1.934 1.934 1.934 0.144 0.139 0.191 2.055 2.16

⟨𝑛88⟩A1
0.321 0.313 0.307 0.307 0.307 2.593 2.754 2.351 4.781 4.91

⟨𝑛88⟩B2
0.358 0.359 0.36 0.36 0.36 3.361 3.284 2.883 4.746 4.571
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Table 5.14: Energy, diabatic populations and wavepacket centers for vibronic eigenstates obtained from initialization

on A1 (top table) or B2 (bottom table) for the QVC model. The vibronic eigenstates have been obtained via improved

relaxation. To ensure better convergence, the primitive basis and SPFs basis sets have been augmented (51 HO basis

functions for the PB and multi-set (1,21,21) for the SPFs)

Relax=n 0 1 2 3 4 5 6 7 8 9

From initial state A1

Energy (eV) 4.187 4.369 4.442 4.442 4.485 5.265 5.264 5.266 6.535 6.553

𝒫A1
0.77 0.742 0.651 0.647 0.688 0.613 0.589 0.631 0.512 0.455

𝒫B2
0.23 0.258 0.349 0.353 0.312 0.387 0.411 0.369 0.488 0.545

⟨𝑄87⟩A1
(a.u.) 0 0 0 -0.015 0 -0.006 -0.019 0.011 0.013 -0.012

⟨𝑄87⟩B2
(a.u.) 0 0 -0.046 -0.032 0 0.01 0.034 -0.014 0.022 -0.028

⟨𝑄81⟩A1
(a.u.) 6.869 9.103 4.867 4.806 6.237 3.875 3.758 3.955 5.49 4.748

⟨𝑄81⟩B2
(a.u.) 5.098 -1.333 7.895 7.914 5.388 8.44 8.106 8.735 4.752 4.94

⟨𝑄88⟩A1
(a.u.) -8.026 -7.838 -5.128 -5.148 -10.951 -7.583 -6.958 -7.552 -10.296 -11.037

⟨𝑄88⟩B2
(a.u.) -9.179 -9.544 -14.473 -14.347 -2.686 -9.999 -10.832 -10.116 -6.856 -6.684

⟨𝑛87⟩A1
0.104 0.134 0.582 0.6 0.417 0.922 1.036 0.847 5.172 4.283

⟨𝑛87⟩B2
1.056 1.08 1.328 1.333 1.26 2.019 2.182 1.889 5.519 4.135

⟨𝑛81⟩A1
0.18 1.251 0.167 0.166 0.162 0.521 0.41 0.547 0.942 0.598

⟨𝑛81⟩B2
0.1 0.67 0.246 0.247 0.113 0.544 0.417 0.601 0.655 0.515

⟨𝑛88⟩A1
0.348 0.342 0.558 0.541 1.3 3.152 3.111 3.183 3.729 5.133

⟨𝑛88⟩B2
0.454 0.494 1.18 1.154 0.328 2.765 2.753 2.902 3.537 4.996

From initial state B2

Energy (eV) 4.176 4.364 4.552 4.552 4.552 5.301 5.303 5.303 6.589 6.597

𝒫A1
0.194 0.218 0.242 0.242 0.242 0.274 0.274 0.274 0.46 0.453

𝒫B2
0.806 0.782 0.758 0.758 0.758 0.726 0.726 0.726 0.54 0.547

⟨𝑄87⟩A1
(a.u.) 0 0 0 0 0 0.024 0.011 -0.009 -0.011 0.024

⟨𝑄87⟩B2
(a.u.) 0 0 0 0 0 -0.007 0.005 -0.005 -0.004 0.023

⟨𝑄81⟩A1
(a.u.) 4.815 9.849 13.928 13.928 13.927 5.59 5.695 5.682 5.846 5.873

⟨𝑄81⟩B2
(a.u.) 3.437 2.196 0.866 0.866 0.866 3.467 3.458 3.466 4.177 4.089

⟨𝑄88⟩A1
(a.u.) -9.131 -8.96 -8.803 -8.803 -8.803 -11.12 -9.437 -9.41 -10.047 -10.112

⟨𝑄88⟩B2
(a.u.) -8.799 -8.799 -8.804 -8.804 -8.804 -7.936 -8.55 -8.559 -7.302 -7.355

⟨𝑛87⟩A1
1.052 1.059 1.068 1.068 1.068 1.675 1.521 1.527 5.751 5.816

⟨𝑛87⟩B2
0.096 0.11 0.13 0.13 0.13 0.385 0.326 0.329 4.36 3.958

⟨𝑛81⟩A1
0.09 1.182 2.256 2.256 2.256 0.288 0.388 0.377 0.474 0.512

⟨𝑛81⟩B2
0.046 1.003 1.95 1.95 1.95 0.127 0.158 0.155 0.6 0.699

⟨𝑛88⟩A1
0.45 0.434 0.419 0.419 0.419 3.588 3.526 3.525 3.698 3.631

⟨𝑛88⟩B2
0.418 0.418 0.419 0.419 0.419 4.059 4.14 4.14 4.792 5.132
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Table 5.15: Relative difference between the values obtained from the LVC and QVC models, tables 5.13 and 5.14.

Relax=n 0 1 2 3 4 5 6 7 8 9

From initial state A1

Energy (eV) 0.024 0.069 2.566 0.698 1.583 0.190 0.608 0.380 0.352 0.656

𝒫A1
1.429 2.156 13.825 13.756 7.703 0.816 10.696 5.705 16.211 27.033

𝒫B2
4.783 6.202 25.788 25.212 16.987 1.292 15.328 9.756 17.008 22.569

⟨𝑄87⟩A1
0 0 0 -86.667 0 -283.333 -121.053 172.727 161.538 -300.000

⟨𝑄87⟩B2
0 0 -102.174 -75.000 0 200.000 105.882 -14.286 168.182 -157.143

⟨𝑄81⟩A1
4.484 1.164 117.896 40.803 70.034 37.755 44.705 33.325 10.237 28.686

⟨𝑄81⟩B2
8.866 -86.047 154.098 22.846 179.250 17.464 29.830 23.022 19.550 9.919

⟨𝑄88⟩A1
-8.547 -6.520 -42.687 -87.665 -33.184 -11.117 -1.581 -0.715 -33.965 -40.256

⟨𝑄88⟩B2
-15.100 -17.299 -45.042 -89.845 -196.128 -36.684 -19.978 -23.863 -29.332 -36.236

⟨𝑛87⟩A1
5.769 13.433 77.320 49.333 68.345 140.889 116.023 198.937 38.476 21.784

⟨𝑛87⟩B2
0.663 1.759 19.503 9.377 15.159 30.659 8.203 45.844 34.517 6.917

⟨𝑛81⟩A1
8.889 1.839 1303.593 11.446 1346.914 15.931 66.829 53.016 131.741 262.876

⟨𝑛81⟩B2
18.000 11.194 504.065 41.700 1215.044 17.831 66.906 52.745 228.550 313.592

⟨𝑛88⟩A1
16.379 15.205 48.208 137.893 77.769 37.563 28.287 44.329 13.703 19.930

⟨𝑛88⟩B2
27.753 31.984 71.017 64.038 4.268 33.273 13.549 33.218 22.675 17.554

From initial state B2

Energy (eV) 0.024 0.069 2.566 0.698 1.583 0.190 0.608 0.380 0.352 0.656

𝒫A1
1.429 2.156 13.825 13.756 7.703 0.816 10.696 5.705 16.211 27.033

𝒫B2
4.783 6.202 25.788 25.212 16.987 1.292 15.328 9.756 17.008 22.569

⟨𝑄87⟩A1
0 0 0 -86.667 0 -283.333 -121.053 172.727 161.538 -300.000

⟨𝑄87⟩B2
0 0 -102.174 -75.000 0 200.000 105.882 -14.286 168.182 -157.143

⟨𝑄81⟩A1
4.484 1.164 117.896 40.803 70.034 37.755 44.705 33.325 10.237 28.686

⟨𝑄81⟩B2
8.866 -86.047 154.098 22.846 179.250 17.464 29.830 23.022 19.550 9.919

⟨𝑄88⟩A1
-8.547 -6.520 -42.687 -87.665 -33.184 -11.117 -1.581 -0.715 -33.965 -40.256

⟨𝑄88⟩B2
-15.100 -17.299 -45.042 -89.845 -196.128 -36.684 -19.978 -23.863 -29.332 -36.236

⟨𝑛87⟩A1
5.769 13.433 77.320 49.333 68.345 140.889 116.023 198.937 38.476 21.784

⟨𝑛87⟩B2
0.663 1.759 19.503 9.377 15.159 30.659 8.203 45.844 34.517 6.917

⟨𝑛81⟩A1
8.889 1.839 1303.593 11.446 1346.914 15.931 66.829 53.016 131.741 262.876

⟨𝑛81⟩B2
18.000 11.194 504.065 41.700 1215.044 17.831 66.906 52.745 228.550 313.592

⟨𝑛88⟩A1
16.379 15.205 48.208 137.893 77.769 37.563 28.287 44.329 13.703 19.930

⟨𝑛88⟩B2
27.753 31.984 71.017 64.038 4.268 33.273 13.549 33.218 22.675 17.554
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Chapter 6
The First Unit for Excitation-Energy

Transfer in PPE-dendrimers

“Is this gradient, or this Hessian, mass-weighted? Should it be mass-weighted? and this

displacement? What is its reduced mass? ...”

– Benjamin and me, Every two weeks
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Chapter 6. The First Unit for EET: m23

As already mentioned, dendrimers of poly(phenylene ethynylenes) (PPEs) exhibit efficient light-harvesting

features. In chapter 5, we presented the chromophore of PPE-dendrimers, 1,3-bis(phenylethynyl)benzene

(m22), for which the absorption properties were qualified as additive with respect to the two local diphenyle-

nacetylene (p2) pseudo fragments. Although we have seen that the emission properties of m22 were more

difficult to understand and reproduce, the local pseudofragmentation scheme is enough to understand the

efficiency of m22 as a chromophore for light-harvesting dendrimers. In this chapter, we are now interested

in the process of excitation-energy transfer: how is the energy, associated to light absorption by the chro-

mophore, transferred within the molecule? In particular, atomistic simulations of the EET with explicit

treatement of the initial excitation and the excitation transfer are challenging tasks. For answering these

questions more practically, we focus on the first unit of excitation-energy transfer (EET) in PPE-dendrimers:

the asymmetrically meta-substituted benzene (called m23 in the following, see fig. 6.1).

Figure 6.1: From left to right, representative Lewis structures of the minimum of the electronic ground

state, the minimum of the first electronic excited state and the minimum of the second electronic excited

state of the asymmetrically meta-substituted benzene.

The origin of EET in PPE-dendrimers and oligomers, among them m23, has been extensively studied

both experimentally and theoretically. In the PPE-dendrimers, the role of the energy gradient (due to the

different lengths of the branches) was first identified as central for the experimentally observed ultrafast

EET [32,33,156,157]. In addition, the origin of the energy gradient, associated to local excitations (LE) for

the excited states, was evidenced experimentally [34,35] and rationalized theoretically with Frenkel excitonic

models [30,31]. As regards the electronic structure of PPE-oligomers, Huang and co-workers proposed an

extensive theoretical analysis of the excited states of m23 [38], and showed the reliability of CAM-B3LYP

TD-DFT (compared to its computational cost) to reproduce the main features of the electronic excited

states. On the other hand, Fernandez-Alberti and co-workers proposed, for m23 and other meta-substituted

PPEs, the first fully atomistic and time-resolved simulations of EET in PPE-oligomers, via trajectory-based

nonadiabatic molecular dynamics (trajectory surface hopping, TSH). Their direct-dynamics simulations

unveiled ultrafast EET (within 30 fs after excitation) and highlighted the role of acetylenic bonds in the

observed ultrafast and efficient EET [50, 51, 56, 58]. The transient absorption of m23 has also been

simulated, using similar mixed-quantum classical nonadiabatic dynamics, and was proposed as a spectral

fingerprint of EET [59].

In this chapter, we propose the simulation of EET via quantum wavepackets propagation, in the first

unit of energy transfer of the PPE-dendrimer, m23. First in section 6.1 we interpret again the process
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6.1. Time-independent characterization

of EET via electronic structure calculations, which gives us a simple stationary picture of EET within

m23 (and is easily generalized to larger PPE-branches, see Ref [54]). In particular, we examine the EET

through the lens of conical intersections and strongly nonadiabatically coupled electronic excited states.

Next, we make use of this characterization to build dimensionally reduced vibronic coupling Hamiltonian

(VCH) models in section 6.2, with the particular context of a conical intersection that is not induced by

the symmetry of the electronic states. In section 6.3, we simulate the process of EET in our model, and

analyse it via time-resolved studies of the correlations between electronic and nuclear quantities, energy

decomposition and redistribution, and electronic coherence and decoherence. Finally, we explore different

strategies to include most of the nuclear degrees of freedom and evaluate their influence on our modelling

of EET.

6.1 Time-independent characterization

The level of theory (CAM-B3LYP/6-31+G*), is identical to the previous study of m22.

6.1.1 Electronic states and vibrational analysis

The minimum of the S0 electronic ground state is a Cs molecular geometry (𝑁at = 48). The Lewis structure

is, similarly to the case of m22, consistent with ground state acetylenic and aromatic patterns for the local

acetylenes and benzenes. At this minimum of S0 (FC geometry), the vertical transition energies (VTEs)

for the first two singlet electronic states are 𝐸(S1) = 3.88 eV and 𝐸(S2) = 4.45 eV, respectively. We give

the frontier orbitals and the most important transitions toward the two electronic states in fig. 6.2.

HOMO-1

HOMO

LUMO

LUMO+1

b) FC geometry m23 (Cs) c) FC geometry p2 (D2h)a) FC geometry p3 (D2h)

HOMO p2

LUMO p2

HOMO p3

LUMO p3

Electronic state S1 Electronic state S2

Figure 6.2: First frontier orbitals for the isolated p3 and p2 fragments (a and c, respectively) and for the

m23 molecule (b) at the minimum geometry of S0 in each case. For m23 (b), the most intense transition for

a vertical transition toward S1 (blue) and S2 (red) is represented, with the associated electronic transition

density, electric transition dipole moment (it atomic units), and oscillator strength.
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Chapter 6. The First Unit for EET: m23

S1 is mainly obtained from a HOMO/LUMO transition (82%) and S2 is mainly obtained from a HOMO-

1/LUMO+1 transition (61%). For comparison, the first vertical transition energy in the isolated p3 and

p2 fragments are 𝐸(S1, p3) = 3.90 eV and 𝐸(S1, p2) = 4.48 eV, respectively (within 0.03 eV the same as

in m23). The frontier orbitals of the isolated fragments are also given in fig. 6.2 (all calculations are done

at the same level of theory). We find that the meta-substitution sufficiently breaks the conjugation so that

the first two electronic excited states at the FC geometry are ideally localized excitons. This contrasts with

the symmetrically meta-substituted phenylene m22 where the electronic states were delocalized over the

two fragments at the FC geometry, although localized excitons were obtained for the minima of its first

excited state. Thus for m23, directly at the FC geometry and consistently, as we will see, with the minima

of S1 and S2, the first pair of electronic excited states are a pair of localized excitons, which is the basis

for future diabatic models.

We illustrate again the (local) excitonic character of the pair (S1, S2) by showing the transition densities

toward the two electronic excited states, which are non-negligible only on the p3 and p2 pseudo fragments,

respectively. Accordingly, both electronic excited states are bright, with the LE state on p3 having a stronger

oscillator strength (𝑓(S1) = 2.22 and 𝑓(S2) = 0.81) (and compare well with the oscillator strenths of the

isolated p3 and p3 fragments, 𝑓(p3) = 1.92 and 𝑓(p2) = 0.93).

Normal modes for the electronic ground state

The normal-mode displacements at the FC geometry are adapted to the Cs point group, with in-plane

and out-of-plane normal modes. In this chapter, we focus on the in-plane normal modes (A’ symmetry

label). In particular, and similarly to the study of m22, we are interested in quinoidal, anti-quinoidal, and

acetylenic modes, for which the frequencies vary from 1600 cm−1 to 2360 cm−1. We show in fig. 6.3 the

Cartesian displacements associated to eight of these quinoidal and acetylenic normal modes, along with a

scheme of the associated most representative internal coordinates, and give the frequencies and reduced

masses for these modes in table 6.1.

Although the electronic excited states are localized on the p2 and p3 pseudo fragments, the normal

modes are not completely localized. For instance, as regards the acetylenic stretching modes (118, 119,

and 120) we observe that 118 is mostly localized on the p3 fragment, but neither 119 nor 120 are perfectly

localized on either the p3 or p2 fragments. However, a simple re-combination of the normal modes 119

and 120 yields a pair of more local modes adapted to the isolated fragments, for instance with 119 being

the asynchronous stretching of the p3-acetylenic bonds and 120 being fully localized on the p2-acetylenic

bond (fig. 6.4).

Critical points of the excited-state PESs

The minimum of the first electronic excited state S1 is unambiguous, with energy 𝐸(S1) = 3.61 eV. The

minimum of S2 is obtained with energy 𝐸(S2) = 4.17 eV. The minimum of the second electronic excited
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111
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114

Figure 6.3: Left: Schematic representation of the main internal displacements associated to the 8 selected

normal modes of vibration at the FC geometry of m23. Right: rigorous normalized Cartesian displacements

associated to the 8 selected normal modes of vibration at the same geometry.

Table 6.1: Frequencies and reduced masses of the normal modes of vibration associated to quinoidal and

acetylenic displacements in m23. The numbering of the normal modes is associated to the frequency-

ordering of the normal modes computed at MinS0. The normal modes at other geometries are sorted so as

to satisfy the most overlap with the normal modes of the ground state geometry. The mass-weighted shifts

between the minimum of S0 and the minima of S1, S2 and the MECI are also given. The contributions of

the normal modes to the g, h, and gradient average s vectors at the MECI are given in the last columns,

with the sum of the 8-dimensional model contributions.

Frequency (cm−1) Reduced mass (u) Shift (a0
√me) Contrib. to

Mode (S0) MinS0 MinS1 MinS2 MinS0 MinS1 MinS2 MinS1 MinS2 MECI %g %h %s

111 1656 1616 1539 5.47 4.62 2.64 2.28 5.57 15.61 0 36 21

114 1682 1635 1768 5.87 4.97 7.54 -5.17 4.57 3.79 18 2 5

115 1689 1697 1675 5.77 6.09 5.71 5.76 2.19 -1.49 1 9 7

116 1693 1690 1633 5.87 5.78 5.22 -1.10 -2.72 -0.40 0 3 1

117 1699 1664 1688 6.04 5.50 5.82 -6.00 -1.15 1.82 3 6 8

118 2359 2267 2299 12.00 11.99 11.98 8.07 1.00 -0.97 28 6 31

119 2366 2023 2289 12.00 11.72 11.98 0.85 -2.36 -0.75 14 11 0

120 2367 2357 3279 12.00 12.00 3.03 0.82 8.02 7.32 26 2 7

Sum(8D) 90 75 80

state S2 is more complicated to obtain because, as we will see, it is rather close to the S1/S2 conical

intersection seam. We gather the vertical transition energies and the energy of the minima in table 6.2 for
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119

120

118

p3, async

p2

=

p3, sync

Figure 6.4: Schematic representation of the main internal displacements associated to the acetylenic normal

modes of vibration at the FC geometry of m23 and proposition of approximate localization on the p3 and

p2 fragments.

m23 and the isolated fragments p3 and p2, along with the lengths of the acetylenic bonds in the molecules.

Let us note again the separation between the p3 and p2 pseudo fragments of m23 by noticing that the

energy of the minima of S1 and S2 correspond to the energy of the minima of the S1 in the isolated p3

and p2 fragments, 3.62 eV and 4.14 eV, respectively. The bond lengths are also elongated (from alternate

to cumulenic pattern) accordingly to the localized excitations.

Table 6.2: Adiabatic energies (in eV) of the electronic ground state and first two electronic excited states

for a selection of critical points in isolated fragments p3 and p2 and in m23. The minimum of the electronic

ground state is taken as the reference energy for each molecule. The lengths of the acetylenic bonds are

given (𝑑(C ≡ C) in Å) and the values are bold when it is intermediate between acetylenic and cumulenic

bond patterns. Labels [p2], [p3-in] and [p3-ext] refer for m23 to the acetylenic bond of the p2 pseudo

fragment and of the inner and external acetylenic bonds of the p3 pseudo fragment.

Geometry 𝐸(S0) 𝐸(S1) 𝐸(S2) 𝐸(S2) − 𝐸(S1) 𝑑(C ≡ C)[p2] 𝑑(C ≡ C)[p3-in] 𝑑(C ≡ C)[p3-ext]

p3 MinS0 0.00 3.90 4.81 0.91 – 1.210 1.210

p3 MinS1 0.26 3.62 4.80 1.18 – 1.233 1.233

p2 MinS0 0.00 4.48 5.08 0.60 1.210 – –

p2 MinS1 0.32 4.14 4.84 0.70 1.255 – –

m23 MinS0 0.00 3.88 4.45 0.57 1.210 1.210 1.210

m23 MinS1 0.27 3.61 4.61 1.00 1.210 1.233 1.233

m23 MinS2 0.23 3.99 4.17 0.18 1.245 1.214 1.213

m23 MECI 0.47 4.30 4.30 < 5e−4 1.240 1.214 1.204

Let us note that the normal modes of vibration obtained for the MinS1 and MinS2 geometries are

different from the normal modes of MinS0. Before being able to compare the normal modes from one
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6.1. Time-independent characterization

equilibrium geometry to another, the normal modes have to be ordered with a shared criterion. Indeed,

within the sets of A’ or A” normal modes, mixing is allowed between all modes. Furthermore, with the

localized geometrical distorsion on the p3 and p2 pseudo fragments, there is no guarantee that the normal

modes of similar nature from S0 to S1 or S2 equilibrium geometries keep exactly the same frequency-

ordering. As a consequence, we re-order the modes obtained at MinS1 and MinS2 such that they have

the best individual overlap with the normal modes of MinS0 (which can be related to an analysis of the

Duschinsky matrices).

The frequencies and reduced masses of the (selected) normal modes at MinS0, MinS1 and MinS2

geometries are gathered in table 6.1 after re-ordering. As regards the S1 normal modes, they are very

similar to the S0 normal modes, only with the expected softening of the synchronous p3-acetylenic stretching

normal mode. For the S2 normal modes on the other hand, the discussion is more involved. Indeed, because

of the relative closeness to a conical intersection seam (Δ𝐸 = 𝐸(S2)−𝐸(S1) = 0.18 eV at the minimum of

S2; the optimized MECI is discussed below), some modes have their frequencies particularly exalted. This

is for instance the case of the p2-acetylenic stretching normal mode 120 (last mode 138 before re-ordering

with maximum overlap with 120 in S0 normal modes), for which the frequency is exalted to 3280 cm−1.

As a consequence, this mode is also strongly mixing with C − H normal modes because of the closeness in

frequency, which explains the lowering of its reduced mass and a relatively low overlap with the acetylenic

normal mode 120 in S0 normal modes (yet it is the maximum overlap). For the rest of this chapter and

unless otherwise specified, we only work with the S0 normal modes for which there is no ambiguity of

ordering. The shifts between the MinS0 and other critical points of the S1/S2 surfaces of m23, along the

S0 normal modes, are also given in table 6.1

Take-home messages

1. The minimum of the electronic ground state of the m23 molecule is a Cs geometry, with

vertical transition to S1 and S2 that are both bright and localized (LE) on the p3 or p2

pseudo fragments, respectively.

2. The minima in the S1/S2 PESs maintain this LE character. In particular, the minima

S1 and S2 are comparable with the minima of S1 in the isolated p3 or p2 fragments,

respectively.

3. The pair of LE states can thus be seen as a pair of excitonic states, sharing one central

benzene.

4. The minimum of the PES of S2 and the associated normal modes of vibration suggest

the presence of a nearby conical intersection with the S1 state.
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6.1.2 Nonadiabatically coupled electronic states of same symmetry

Anticipating the study of excitation-energy transfer (EET), let us discuss the possibility of a strong coupling

between the localized excitations (S1 and S2 localized on p3 and p2 pseudo fragments, respectively) via

the search of the MECI for the S1/S2 manifold.

A note on the algorithms for MECI optimization

The optimization of the MECI in m23 was done using a modified home-implementation of the hybrid

composed-gradient/composed-step algorithm of Sicilia and co-workers [88]. The main aspects of the

optimization algorithm have been presented in section 2.5.2. Our implementation differs from the ones in

the literature mostly because of the evaluation of the branching-space vectors, herein obtained numerically

from the Hessian of the squared energy difference [85].

We note here that the S1/S2 MECI of m23 is more difficult to optimize because the electronic states

have the same symmetry (see appendix A). More strikingly, we observed for PPE-oligomers that finding a

conical intersection (with no criterion on the average energy) by strictly following the gradient difference

was much more complicated in the case of same-symmetry electronic states. We did not have time to

rigorously explore these problems for the molecules of interest, but intend to improve the algorithm for

MECI search for PPE-oligomers in the future.

Characterization of the S1/S2 MECI

The optimized MECI is obtained with the average energy ̄𝐸 = 4.30 eV and the energy difference Δ𝐸 =

𝐸(S2) − 𝐸(S1) = 0.0003 eV. The branching-space vectors (BSVs) obtained numerically from the diago-

nalization of the Hessian of the squared energy difference KSED are illustrated in fig. 6.5 via the Cartesian

displacements associated to its eigenvectors (u1, u2) (which have been defined in chapter 2). For the rest

of this chapter, we label g and h the re-scaled vectors u1 and u2 associated to the highest and lowest

non-zero positive eigenvalues of KSED. By construction, g and h are orthogonal. However they are not

unambiguously defined, since any arbitrary combination of the two vectors spans the same branching plane.

In the case of m23, the two electronic states are of identical symmetry A’ in Cs, such that there is no sym-

metry guidance for the BSVs. From the adiabatic point of view, both the GD and DC vectors are totally

symmetric in the Cs point group. In other words, the BSVs have the same symmetry and the criterion

of orthogonality alone is not enough to identify them to the Hellmann-Feynman branching-space vectors

(“adiabatic” GD and DC).1

1In the case of a conical intersection between two electronic states of different symmetry, a pair of orthogonal BSVs is

adapted to the irreducible representations of the molecular geometry symmetry. This is the case for m22 (C2v point group),

where the Hellmann-Feynman BSVs, GD and DC vectors, can be identified to A1 and B2 vectors, and can thus be expanded

along either A1 and B2 normal modes, respectively.
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Figure 6.5: Geometry of m23 at the S1-S2 MECI (carbon and hydrogen nuclei in black and grey, respectively)

and Cartesian displacements (blue arrows) associated the numerical evaluation of the branching-space

vectors of the MECI at this geometry. The BSVs on the left and right are associated to the highest and

lowest non-zero eigenvalues of the Hessian of the squared energy difference, respectively.

The definition of g and h vectors as short and long axis of the branching plane, respectively, can thus be

further modified so as to find a more relevant pair of underlying diabatic states. However, this first choice

should already be quite consistent with a pair of weakly coupled localized diabatic states on the p3 and p2

pseudo fragments. The 2D-cut in the PES through directions of the branching plane (g, h) is shown in

fig. 6.6. Contrary to the branching plane of the symmetrically substituted phenylene, the branching plane

of m23 leans toward a strongly favored minimum for S1 (associated to a local excitation on the p3 branch).

In terms of underlying diabatic states, this means that the GD vector favors the diabatic state localized on

the p3 pseudo fragment and that the tuning between the electronic states is predominant compared to the

coupling.
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Figure 6.6: 2D-cuts of adiabatic potential energy surfaces along the branching-space vectors h and g, from

the MECI geometry. The right panel only present a zoomed illustration of the same PESs around the

MECI.

We show the interpolation path between the FC geometry and the MECI geometry in fig. 6.7 (a). The

direction of the interpolation path between the FC geometry and the MECI geometry preserves almost

constant values for the oscillator strengths. The strongest oscillator strengths is expectedly attributed to

the p3 pseudo fragment and associated diabatic state (in blue for Δ𝑄 ≥ 0) while the lowest is attributed
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to the p2 pseudo fragment (in red for Δ𝑄 ≥ 0). The use of Franck-Condon-type approximations for the

localized diabatic states thus holds along this direction. The 1D-cuts from the MECI along the BSVs g

and h are reproduced in fig. 6.7 (b,c). Let us notice again the particular character of the BSVs which

are both totally symmetric, hence two profiles of arbitrary shape (no parity). The oscillator strengths also

support this peculiarity. Starting from the MECI geometry, the pair of oscillator strengths appears to be

“arbitrary”. This is explained by the fact that the BSVs and the underlying diabatic states are defined up to

an arbitrary rotation. From these “arbitrary” values, the direction g tends to couple the localized diabatic

states (toward similar oscillator strengths) and the direction h tends to tune the localized diabatic states

(toward different oscillator strengths).

(a) (b) (c)

Figure 6.7: Oscillator strengths (top panels) and adiabatic energies (bottom panels) of the first two elec-

tronic excited states along: (a) the shift from the FC geometry to the MECI geometry; (b, c) the nuclear

displacements along the branching-space vectors (g: (b); h: (c)) from the MECI geometry (a shifted

displacement from the MECI origin, ΔQ = Q − QMECI, was used for both profiles along either g or h).

The oscillator strengths of the next two (dark) electronic states are shown in grey for information.

The proportion of the BSVs g and h after projection on the selected 8 in-plane normal modes is given

in the last columns of table 6.1. The same quantity is also given for the gradient average s at the geometry

of the MECI. The BSVs and the gradient average are almost completely defined through displacements

along the selected quinoidal and acetylenic modes (90%, 75%, and 80% respectively). This overall good

description of the MECI characteristic directions will be the basis of discussion for the choice of the degrees

of freedom included in the model for quantum dynamics simulations.
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6.1. Time-independent characterization

A stationary picture of EET

Finally, a simplified representation of the S1/S2 manifold is shown in fig. 6.8 via interpolations between the

minima of S1, of S0 and the MECI.

Figure 6.8: Left: oscillator strengths, electronic transition dipole moments (in atomic units), and NTOs for

the first two vertical transitions at the minimum of S0. Right: adiabatic energies of the electronic ground

state and of the first two excited singlet states along linear interpolations between the minimum of S1

(both at −10 and 20), the minimum of S0 (at 0), and the MECI (at 10). The green arrows represent the

idealized pathway for excitation-energy transfer (EET).

In fig. 6.8 left, we recall the vertical transitions from the FC geometry to the first two electronic excited

states. The most important pair of NTOs (> 90% of contribution to the total transition) are shown for the

two transitions. In fig. 6.8 right, the potential energy profiles allow for a first interpretation of the EET in

m23 (green arrows). The photo-induced excitation on the p2 pseudo fragment (S2 adiabatic state, bright)

is transferred via radiationless transition to the p3 pseudo fragment (S1 adiabatic state, also bright). From

such surfaces, it can be inferred that the ultrafast transfer is facilitated by the fast and straightforward

approach to the conical intersection seam after photo-excitation in S2, with non-negligible coupling allowing

for an efficient transfer.

Take-home messages

1. The S1/S2 MECI geometry has been optimized, and its branching plane characterized.

2. The MECI seems energetically accessible due to its closeness with the minimum geometry

of the S2 state.
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3. Both BSVs (hence both gradient difference and derivative coupling) have non-negligible

contributions along acetylenic stretching and quinoidal rock-bending normal modes of

vibration.

It is the very aim of the rest of this chapter to propose a time-resolved study of EET with explicit

propagation of the nuclear wavepackets.

6.2 Potential energy surfaces and steady-state spectroscopy

We choose, similarly to the case of m22, the linear vibronic coupling (LVC) Hamiltonian model to describe

and reproduce the adiabatic PESs of the first two coupled excited states in m23. Because both electronic

states have the same symmetry (A’) in the Cs point group (thus restricting to displacements along in-plane

modes), the choice of the diabatic states for the LVC is nontrivial. In the case of two electronic states

of different symmetry, the choice of symmetry-adapted diabatic states allowed us to use the irreducible

representations to discriminate between coupling modes (off-diagonal terms) and tuning modes (diagonal

terms). Here the identical symmetry for the electronic states (and thus of the BSVs) implies that all

A’ (in-plane) normal modes can be involved in both diabatic potential energies and inter-state coupling,

whatever the choice of the underlying diabatic states. The chosen model is the FC-centered LVC model

H = ̂𝑇nu𝟙 + ⎡⎢
⎣

𝐸(1) 0

0 𝐸(2)
⎤⎥
⎦

+ ∑
𝑖

⎡⎢
⎣

𝑘(1)
𝑖 𝑄2

𝑖 0

0 𝑘(2)
𝑖 𝑄2

𝑖

⎤⎥
⎦

+ ∑
𝑖

⎡⎢
⎣

𝜅(1)
𝑖 𝑄𝑖 0

0 𝜅(2)
𝑖 𝑄𝑖

⎤⎥
⎦

+ ∑
𝑖

⎡⎢
⎣

0 ℎ′
𝑖𝑄𝑖

ℎ′
𝑖𝑄𝑖 0

⎤⎥
⎦

.

(6.1)

The diagonal parameters define the diabatic potential energies, with the vertical transition energies (VTEs)

at the FC geometry 𝐸(𝑠), the vertical gradients 𝜅(𝑠)
𝑖 (providing equivalent shifts toward each diabatic

potential energy minimum) and the curvatures 𝑘(𝑠)
𝑖 (providing equivalent frequencies). The off-diagonal

parameters are the ℎ′
𝑖 components of an inter-state coupling vector h′. Here, a difference is made between

the BSV h obtained from the diagonalization of KSED and the inter-(diabatic-)state coupling h′. The

definition of h′ will be made clearer in the following, but can be seen as of now simply as a linear

combination of the orthogonal BSVs (g, h). Although we do not use here bilinear terms, the model is

strictly speaking between LVC and QVC because of the different curvatures for both diabatic potential

energies. For the sake of simplicity, we will however refer to the model as an LVC Hamiltonian model.

Unless otherwise specified, we do not account for couplings between the electronic ground and excited

states, assuming that the energy difference Δ𝐸(S1 − S0) is large enough. Hence, the electronic ground

state is simply parametrized with the harmonic approximation around the FC geometry, and the model will

be reffered to as a (1+2)-state LVC model.
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6.2. Potential energy surfaces and steady-state spectroscopy

6.2.1 Parametrization of the LVC model

Herein, the parametrization of the 8-dimensional LVC model is done in two steps:

1. we first choose the inter-state coupling h′ via a projection of the BSVs onto the eight selected normal

modes of interest;

2. we then obtain the diagonal parameters upon fitting the adiabatic energies of the model to ab initio

profiles along the selected normal modes.

To do so, rigid scans (1D-cuts in the PES) are computed for displacements along the Cartesian displace-

ments of the selected normal modes from the FC geometry of the molecule, see + symbols in fig. 6.9.

Figure 6.9: Adiabatic energies (in eV) from electronic structure calculations (symbol +) and from the

2-state 8-dimensional LVC model, along displacements associated to the selection of S0 normal modes. For

unspecified coordinates, the values are those at the FC geometry (0); all coordinates are mass-weighted

and given in atomic units.

A motivated choice for fixing the inter-state coupling parameters

As we can see in fig. 6.9, the energy difference is quite large for each profile and the electronic states do not

“accidentally” cross along following a single normal mode. This is the reason why we choose to a priori fix

the inter-state coupling vector h′ because the region around the FC geometry is quite far from the conical

intersection seam. Indeed, we do know the position of the MECI with respect to the FC geometry (table 6.1,

Shift columns) and the associated branching-plane directions (g, h). To use both the knowledge of the

position of the MECI and the lengths of the BSVs, we define a rotation (g, h) → (g′, h′) parametrized

with

tan 𝜃 = −h ⋅ ΔQ𝑋
g ⋅ ΔQ𝑋

, (6.2)
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such that the h′ vector is forced to be orthogonal to the shift ΔQ𝑋 between the FC geometry and

the MECI geometry. We note that this choice is consistent with ensuring that diabatic and adiabatic

states coincide at the FC geometry [93]. Indeed, with the chosen rotation and definition of h′, the off-

diagonal term in eq. (6.1) is zero at both the FC geometry and the MECI geometry. However, there is

a subtelty in this statement. The zero-coupling at the two geometries depends on the dimensionality of

the model. The parametrization of the rotation eq. (6.2) can a priori be done with the full-dimensional

BSVs and FC-to-MECI shift vector; or with vectors reduced to a selection of normal modes. One could

choose the full-dimensionality in the search of a generalized procedure. However for the sake of having

a self-contained model, we choose to parametrize the rotation only within the reduced model. As a

matter of fact, the rotation is only slightly varying when parametrized with full-dimensional vectors, 11-

dimensional vectors (all quinoidal and acetylenic modes) and 8-dimensional vectors (selected modes), with

𝜃 = 18.82°, 14.84° and 14.58°, respectively.

Fitting the parameters for the diabatic potential energies

Let us assume that the off-diagonal parameters are now fixed and discuss the fitting procedure for the

rest of the parameters. In the “built-in” ab initio data set, the fully optimized geometry (FC geometry) is

also the reference point for the LVC model. As a consequence, the VTEs can also be fixed for the fitting

procedure, which allows us to have an unambiguous ordering of the diabatic excited states. Up to this

point, the fitting procedure is quite similar to the procedure for building the 10-dimensional model of m22.

The main difference are

• the absence of discrimination based on symmetry between coupling and tuning characters for the

normal modes;

• and the choice of h′, prior to any fitting procedure.

From a practical point of view, we fit the diagonal diabatic parameters of the profiles one by one. Thus,

for one 1D-cut in the PES, we have a set of displaced geometries {Q𝑛,𝑙}𝑙∈scan = {(0, ⋯ , 𝑄𝑙, ⋯ , 0)}𝑙∈scan,

each along only one normal mode. The parameters of the LVC Hamiltonian are thus obtained by fitting

its eigenvalues (adiabatic energies) to the ab initio energies along each 1D-cut. This is implemented as a

minimization of the least-square function for normal mode 𝑛,

𝐿(𝜅(1)
𝑛 , 𝜅(2)

𝑛 , 𝑘(1)
𝑛 , 𝑘(2)

𝑛 ) =

∑
𝑠=1,2

∑
𝑙∈scan

(𝑉 (𝑠)[𝐸(1), 𝐸(2), 𝜅(1)
𝑛 , 𝜅(2)

𝑛 , 𝑘(1)
𝑛 , 𝑘(2)

𝑛 , ℎ′
𝑛](Q𝑛,𝑙) − 𝐸(𝑠)(Q𝑛,𝑙))

2 (6.3)

where 𝑉 (𝑠)[𝐸(1), 𝐸(2), 𝜅(1)
𝑛 , 𝜅(2)

𝑛 , 𝑘(1)
𝑛 , 𝑘(2)

𝑛 , ℎ′
𝑛](Q𝑛,𝑙) are the eigenvalues of the LVC Hamiltonian, and 𝐸(𝑠)(Q𝑛,𝑙)

the ab initio energies at the displaced geometry Q𝑛,𝑙. Note again that the parameters ℎ′
𝑛 are not opti-

mized, and given as an input to the fitting procedure. The resulting parameters are given in table 6.3 in

the form of “equivalent” magnitudes in terms of frequencies and shifts. The numerical values associated
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to 𝜅(1)
𝑛 , 𝜅(2)

𝑛 , 𝑘(1)
𝑛 , 𝑘(2)

𝑛 , ℎ′
𝑛 for implementing the operators used in quantum dynamics calculations are given

in mass-weighted atomic units in appendix B.

Table 6.3: Equivalent quantities for LVC parameters obtained upon fitting ab initio calculations. Parameters

associated with the harmonic (second-order) expansion (𝑘(𝑛)
𝑖 ) are provided in terms of the associated

frequency, 𝜔(𝑛)
𝑖 . Parameters associated with the first-order expansion (ℎ′

𝑖 and 𝜅(𝑘)
𝑖 ) are provided also in terms

of their characteristic induced geometry shifts, 𝑑′(12)
𝑖 = − 2ℎ′

𝑖

𝑘(1)
𝑖 +𝑘(2)

𝑖
and 𝑑(𝑘)

𝑖 = −𝜅(𝑘)
𝑖

𝑘(𝑘)
𝑖

. The corresponding

LVC parameters in mass-weighted atomic units are gathered in appendix B.

Parameter 𝑘(1)
𝑖 𝑘(2)

𝑖 𝜅(1)
𝑖 𝜅(2)

𝑖 ℎ′
𝑖 Contrib. to

Equivalent 𝜔(1)
𝑖 𝜔(2)

𝑖 𝑑(1)
𝑖 𝑑(2)

𝑖 𝑑′(12)
𝑖 %h′ %g′ %s

Mode

111 1650 1554 2.54 6.06 -1.92 14 1 6

114 1666 1437 -5.28 7.29 2.63 19 17 0

115 1648 1682 5.97 1.81 0.58 2 2 6

116 1684 1599 -1.00 -3.61 -0.71 2 1 2

117 1644 1692 -6.15 -0.55 -0.16 0 5 4

118 2345 2301 8.80 0.98 -0.62 7 37 37

119 2103 2157 1.16 -2.38 -1.46 29 5 1

120 2342 2108 1.62 11.10 1.46 27 32 44

The resulting PESs cuts of the optimized LVC model are compared to the ab initio calculations in

fig. 6.9 (blue and red for the first and second electronic states, respectively). Both adiabatic and diabatic

profiles are shown (in plain and transparent, respectively) and we notice the closeness, along the selected

modes, for the two basis of electronic states. This illustrates the effect of h′ for 1D-cuts along the normal

modes, expected to be small in this region close to the FC geometry with a large energy difference.

The contribution of each mode to the inter-state coupling, the diabatic gradient difference, and the

diabatic gradient average within our reduced 8-dimensional subspace are gathered in table 6.3. Such a

decomposition highlights the importance of the acetylenic modes involving the p2 branch, 119 and 120.

The latter two account together for more than the third of each of the three vectors within the reduced

8-dimensional model. The third acetylenic mode 118, localized on the p3 branch, contributes mostly to

the gradient difference (tuning) and gradient average (tilting). The quinoidal modes of the central meta-

substituted ring can also be qualified as strongly coupling (for 111, stretching mode) and strongly coupling

and tuning (for 114, rock-bending mode). Let us already observe the separate role of these five normal

modes and of the remaining three quinoidal normal modes (115, 116 and 117). Indeed, the first five modes

strongly participate in the BSVs and gradient average and are thus important for the description of the

coupling between the two localized electronic states. On the other hand, the quinoidal normal modes are
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important for correctly describing the minima in the first and second electronic excited states (table 6.1,

Shift columns). In the next sections, we shall examine the effects of freezing or not such modes for quantum

dynamics simulations of EET. Before that, let us discuss the validity of the LVC model for the eight selected

normal modes.

6.2.2 Validation of the LVC model, PES characterization

We discuss here two types of a posteriori validation for the PESs of the LVC model: i) the comparison of

the fully optimized and reduced-dimensional critical points of the S1/S2 manifold; and ii) the comparison

of the gradient difference vector at the reference FC point and at the MECI. These two validations allows

us to estimate how the choices of the reduced dimensionality and of neglecting the bilinear terms (identical

BSVs at the FC and at the MECI) affect the accuracy for the adiabatic PESs.

Minima and MECI of the dimensionally reduced model of PESs

The optimized critical points within the LVC 8D model are in qualitative agreement with the critical

points obtained from full-dimensional optimization in the ab initio PESs (see table 6.4 for comparison).

In particular, the minima of the first and second adiabatic states in the model are less than 0.1 eV off in

energy from the fully optimized geometries. Their shifts with respect to the FC geometry along the eight

normal modes included in the model are in good qualitative agreement (see table 6.4). The same is found

for the MECI (where the apparent MECI of the model was taken as the lowest average-energy crossing

point optimized with an energy difference of 0.0001 Eh = 0.0027 eV).

Table 6.4: Energies in eV of the first two adiabatic excited states at the critical points in the ab initio PESs

(at the CAM-B3LYP/6-31+G* level of theory) and in the LVC PESs model. Positions for the selected

modes (with respect to the MinS0 geometry) of the optimized critical points in the full-dimensional system

and in the dimensionally reduced model are also given (in mass-weighted atomic units a0
√me).

Energies Shifts (a0
√me)

Geometry 𝐸(S1) 𝐸(S2) 111 114 115 116 117 118 119 120

FullD MinS1 3.61 4.62 2.28 -5.17 5.76 -1.10 -6.00 8.07 0.85 0.82

8D MinS1 3.67 4.59 2.58 -5.43 5.94 -0.97 -6.14 8.83 1.27 1.55

FullD MinS2 3.99 4.17 5.57 4.57 2.19 -2.72 -1.15 1.00 -2.36 8.02

8D MinS2 4.03 4.24 5.95 7.19 1.79 -3.57 -0.54 1.01 -2.24 9.50

FullD MECI 4.30 4.30 15.61 3.79 -1.49 -0.40 1.82 -0.97 -0.75 7.32

8D MECI 4.41 4.41 16.74 4.51 -4.89 -0.99 4.88 -0.41 3.08 12.8

This clearly shows that the 8-dimensional model is an acceptable trade-off between size and accuracy,

since relaxing the remaining 130 frozen modes out of a total of 138 only lowers typical energies by about
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6.2. Potential energy surfaces and steady-state spectroscopy

0.1 eV. In particular, the relaxation for the remaining 130 frozen modes is somewhat compensated through

larger displacements in the 8-dimensional reduced model for the S1 and S2 minima. Let us note that

the “optimized” position of the MECI in the reduced dimension is only indicative, because of the strong

dependence of the optimization on the energy difference criterion and on the initial guess. For all the

attempts, the coordinates stay similar to the ones given in table 6.4 with the energy average ̄𝐸 = 4.41 eV

and energy difference Δ𝐸 < 5 × 10−3 eV.

Validation of the parametrized rotation of the branching-space vectors

We can consider that a good agreement between the GD vector at the FC geometry and at the MECI is also

a good a posteriori check of how the linear vibronic coupling model is relevant. In table 6.5 we compare

the GD vector obtained from the fitted diabatic gradients GD = 1
2 (𝜿(2) − 𝜿(1)) at the FC geometry and

g′, the rotated branching-space vector obtained along with h′. We find that the two vectors are almost

aligned, with no striking difference component by component. This illustrates that the branching plane

at the FC and at the MECI can be taken as similar for the targeted pair of localized diabatic states. In

particular, the BSVs suffer very little to no rotation from the FC to the MECI geometry (which could be

associated to strong second-order bilinear coupling terms between both states).

Table 6.5: Halved gradient difference from the fitting procedure at the FC geometry GD(FC) and second

branching-space vector g′, counterpart of the first branching-space vector h′ orthogonalized to the shift

ΔQ𝑋 between FC geometry and MECI. Both quantities are given in thousandth of energy gradients given

in mass-weighted atomic units ( 𝐸ℎ
𝑎0

√𝑚𝑒
)

Mode 111 114 115 116 117 118 119 120

GD(FCP) -0.080 -0.308 0.115 0.066 -0.156 0.448 0.168 -0.420

g′(MECI) -0.083 -0.332 0.091 0.020 -0.142 0.443 0.290 -0.402

|GD(FCP) − g′(MECI)| 0.003 0.024 0.024 0.046 0.024 0.005 0.122 0.018

6.2.3 Validation of the LVC model, steady-state spectroscopy

Another a posteriori validation of the LVC model consists in simulating the UV-visible absorption and

emission spectra. Similarly to the steady-state spectroscopy study done in chapter 5 for the symmetrically

substituted phenylene m22, we can compute different contributions to the absorption spectrum and to the

emission spectrum.

Power spectra from the autocorrelation functions

For the simulation of absorption, two initial states are considered with the excitations toward the first

or the second diabatic states D1, D2, respectively. Within the sudden approximation from the electronic
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ground state, these excitations correspond to promoting the vibrational ground state (an 8-dimensional

Gaussian vibrational wavefunction) to the first diabatic state or the second diabatic state. Indeed, the

BSVs rotation defined in eq. (6.2) ensures that the diabatic states match the adiabatic states at the FC

geometry (reference of our model) as much as possible. In practice, the initial excitations on D1 and D2

yield 95%:5% and 5%:95% mixtures of the adiabatic states, respectively.

For now, let us focus on the excitation toward D1 and D2, which are diabatic states localized on

the p3 and p2 pseudo fragments, respectively. From these, we find two different contributions to the

absorption spectrum. For simulating emission, we first search for the vibronic ground state in the excited-

state manifold. We find it to be unambiguously defined in the S1/S2 manifold, with mostly the D1 state

being populated (population 𝑃(D1) = 0.99) and mostly displaced along the normal modes involving the

p3 pseudo fragment. This result is expected because the minimum of the S1 surface is unique and strongly

displaced along the p3 pseudo fragment normal modes, with large energy difference between the S1 and

S2 states. In other words, the vibronic eigenstate of the S1/S2 manifold is comparable to the vibronic

eigenstate of the S1 state, uncoupled from other electronic states. The emission spectrum in then simply

obtained by the propagation of the vibrational wavepacket of the D1 state in the electronic ground state

surface. Both absorption and emission power spectra are shown in fig. 6.10.
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Figure 6.10: Power spectra contributions obtained from Fourier transform of the relevant autocorrelation

functions. Contribution to absorption from the excitation of D1, D2, or both: plain blue, red lines, and

dashed black line, respectively. Emission from the vibronic ground state in the (D1, D2) manifold: plain

green line. The spectra are realistically broadened by using a damped autocorrelation function with damping

time 𝜏 = 19 fs.
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There are two clearly distinct contributions to the absorption spectrum. As expected from PPE den-

drimer building blocks, they match the vibronic progressions in the absorption spectra of the isolated p2

and p3 fragments, respectively, with the peculiarity for D2 that the band origin is not the most intense

transition (see discussion below and fig. 6.11). We observe typical mirror-image spectra between emission

and the first absorption band, which is consistent with Kasha’s rule in the context of triangular-shaped

spectra (the band associated to the 00
0 transition is the most intense in both absorption and emission). For

an estimation of what could be the total absorption spectrum of m23, we show in fig. 6.10 (black line)

the sum of both contributions with the oscillator strengths of both excited states (at the FC geometry) as

weighting factors.

Comparison of time-dependent vs. time-independent strategies

For further discussion of the power spectra, we compare the quantum dynamics results to absorption

spectra simulated in the time-independent (TI) framework, as implemented in the Gaussian16 package

[82,152,153]. The absorption spectra of m23, p2, and p3 are computed, with full-dimensionality or reduced-

dimensionality (RedDim) including the normal modes from the 8-dimensional (quinoinal and acetylenic)

model.

Unfortunately, as of now, we have no direct comparison with experimental spectra for the isolated

m23 molecule. The closest experiments we have are the attributions of the electronic transitions for the

experimental absorption spectrum of the nano-star only [35, 36], later reproduced with Frenkel exciton

Hamiltonian models [30]. The two contributions to our modelling of the absorption spectrum are compara-

ble with the two most intense bands in the absorption spectrum of the nano-star (313 nm and 361 nm) with

associated vibronic structure. Attention must be paid about the relative intensity between these two peaks.

Indeed, in the nano-star the most intense peak is expectedly the one associated to local excitations on the

p2 branches, which are more numerous than the p3 branches. In m23, because the oscillator strength of the

first excited state (LE on p3) is larger than the oscillator strength of the second excited states (LE on p2),

the most intense band is expectedly the transition at 340 nm–350 nm (for TD and TI spectra, respectively).

Take-home messages

1. A minimum (1+2)-state 8-dimensional LVC model has been parametrized for the S1 and

S2 state of an asymmetrically meta-substituted PPE.

2. The validity of the PESs model has been assessed by comparison with fully optimized

geometries of minima and MECI and by the calculation of steady-state absorption and

emission spectra.
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Figure 6.11: Calculated UV-visible spectra using a time-independent (TI) method giving Franck-Condon

factors within the harmonic and Born-Oppenheimer approximations (a, b, c), and calculated power spectra

using a time-dependent (TD) method beyond the Born-Oppenheimer approximation (d, e). (a) Full

dimensional TI spectra between S0 and S1/S2 (blue/red lines) of m23. (b) Reduced dimensional TI

spectra between S0 and S1/S2 (blue/red lines) of m23, selecting only transitions involving modes of the

8-dimensional model. (c) Reduced dimensional TI spectra between S0 and S1 in p3/p2 fragments (blue/red

lines). (d) Reduced dimensional TD power spectra between S0 and D1 in p3/p2 fragments (blue/red lines).

(e) Reduced dimensional TD spectra between S0 and D1/D2 (blue/red lines) of m23 with and without

coupling (plain and transparent lines).
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6.3 Time-dependent study of excitation-energy transfer

In this section, we discuss the real-time dynamics of the (1+2)-state 8-dimensional model of m23. As

already mentioned, we consider two limiting situations of sudden excitations of an initial vibronic state. In

either case, the initial vibronic state is always the vibrational ground state of the electronic ground state

(namely, an unshifted 8-dimensional Gaussian wavefunction), projected onto one of the diabatic states.

The first situation is to excite the LE state associated with the p2 pseudo branch (D2 state), with the aim

of evaluating the existence, dynamics and efficiency of EET. The second situation is to excite the LE state

associated with the p3 pseudo branch (D3 state) in order to confirm the absence of reverse EET. Of course,

the focus of this work is on the EET occuring from the D2 to the D1 state, hence the first situation.

This section is organized in two parts. First, we will discuss the (1+2)-state 8-dimensional model

in terms of the role and requirement of the selected normal modes to reproduce an ultrafast, efficient

excitation-energy transfer. This study is based on the parametrized 8-dimensional model, but we freeze

some of the normal modes to evaluate their role. In a second part, we focus on the 8-dimensional model

without frozen modes and explore the correlations between the dynamics of electronic population transfer

and the dynamics of the nuclear-related quantities.

6.3.1 Requirements for ultrafast and efficient EET in m23

We hereby study the importance of the different normal modes for reproducing an ultrafast and efficient

EET. We make use of the previously parametrized and discussed (1+2)-state 8-dimensional LVC model for

the PES of m23, which will be the “parent” model for models with fewer degrees of freedom. To evaluate

the importance of one normal mode (or one set of normal modes), we freeze the wavepacket in the direction

associated to this considered normal mode. In the “parent” model, we recall that there are three acetylenic

stretching modes, one anti-quinoidal rock-bending mode, and four quinoidal stretching modes (label 8D

QuinAce.) From this set, we define three “child” models,

• a 3-dimensional model with only acetylenic modes (3D Ace.);

• a 5-dimensional model with only quinoidal and anti-quinoidal modes (5D Quin.);

• and a 5-dimensional model with the three acetylenic modes and both quinoidal and anti-quinoidal

modes localized on the central benzene (5D QuinAce.).

For the “parent” model and the three “child” models, we show in fig. 6.12 the diabatic populations (panels

a-b) and the adiabatic populations (panels c-d) after initial excitation of the diabatic state D2 (mostly LE

state on the p2 pseudo fragment). As the model is essentially a two-level system, we can focus on either

the donor state (decaying state D2 localized on p2) or the acceptor state (populating state D1 localized on

p3). Let us look at the population of the first diabatic state D1 and the first adiabatic state S1 (fig. 6.12,

panels a and c).
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Figure 6.12: Diabatic populations (panels a-b) and adiabatic populations (panels c-d) after initial excitation

of the diabatic state D2 for the ”parent” 8D QuinAce model and the ”child” 3D Ace, 5D Quin, and 5D

QuiAce models (solid, dashed, dotted-dashed, and dotted lines, respectively).

First, we notice that whatever the model, the population of the adiabatic state S1 is strongly oscillating,

while the population of the diabatic state D1 is more monotonic and smoother. This is expected because

the wavepackets are defined with respect to the diabatic states and their evolution is mostly governed by

the diabatic gradients. On the other hand, the oscillations in the adiabatic population can be understood as

multiple crossings of the conical intersection seam (for the PESs of the reduced models) by the propagated

wavepacket.

The 8D QuinAce. “parent” model (blue and red plain lines) exhibits an ultrafast EET (within 25 fs)

with quite a strong quantum yield (from 0 diabatic population to 0.8, or from almost 0 adiabatic population

to 0.9 in average). We note that the “final molecular state” is not clearly established here, with remaining

oscillations in both diabatic and adiabatic populations, making it complicated to systematically evaluate the

quantum yield. As of now, we attribute this still oscillating final molecular state to the low dimensionality

of the model and hence to incomplete internal vibrational redistribution.

The “child” models corroborate, to some extent, this hypothesis. For instance, the 5D QuinAce. model

is similar to the 8D QuinAce. model (blue and red dashed lines), only with the 3 non-central quinoidal

modes being frozen. The quantum yield estimated from the diabatic populations is slightly lower than

in the 8-dimensional model, but more strikingly the oscillations in the adiabatic populations are of higher

amplitude. The EET still occurs, quite efficiently and within the same timescale, but a clear final state is

192



6.3. Time-dependent study of excitation-energy transfer

not unambiguously reached. In particular, there are more possibilities for the system to transfer back the

adiabatic population to the S2 state.

This is even more striking for the 3D Ace. model (blue and red dashed-dotted lines). Indeed, it exhibits

ultrafast EET but the quantum yield is reduced (0.6 at best) and the multiple crossings of the CoIn seam

are non-negligible and are not attenuated with time. On the other hand, freezing the acetylenic modes but

taking into account all the quinoidal modes (5D Quin. model, blue and red dotted lines) clearly affects

the early dynamics after excitation, with no clear EET. Indeed, the transfer is slow and inefficient, for both

diabatic and adiabatic populations.

Take-home messages

1. Altogether, we identify two main features for the EET in PPE-dendrimers:

• the acetylenic modes play the central role for the EET to occur (in an ultrafast

manner, within the first 25 fs) as identified in the literature;

• the quinoidal modes, in particular the ones localized on the central phenylene, sta-

bilize the acceptor state D1 (and consequently S1) so that the EET is unidirectional

and there is no transfer back to the initial donor state.

2. The latter feature will be further explored in the context of energy redistribution in

the following section (focussing on the 8-dimensional model) and of internal vibrational

redistribution with higher dimensionality in section 6.4.

6.3.2 A nonadiabatic perspective of EET: electron-nuclear correlations

In this section, we only discuss the results from the (1+2)-state 8-dimensional model with no further mode

freezing.

6.3.2.1 Population transfer in a two-level system candidate for simulation of EET

Recalling the results from previous section, the excitation initialized on the D2 state (local excitation on

the p2 pseudo branch and mostly S2 electronic state) is rapidly and quite monotonically transferred to the

D1 state (see fig. 6.13, left panel).

As regards the adiabatic populations, we observe that the S2 population decays faster than the D2

population, but undergoes two strong oscillations before starting to stabilize, within 25 fs after excitation.

We interpret these oscillations as a double crossing of the conical intersection seam in our model, which

could cause problems for simulations based on mixed quantum-classical method of nonadiabatic dynamics.
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Figure 6.13: Time evolution of the populations of the first two adiabatic and diabatic states for different

initial states (left: D1, right: D2) for the first 200 fs of simulation.

However, we stress that these oscillations and double crossing of the CoIn seam may be due to the low

dimensionality of the present model.

Another way of characterizing the EET is the evolution of coherence between the electronic states

(here for the simple case of a two-level system). The study of coherence in two-level (or more) systems

for different PPEs will be further studied and discussed in chapter 8. Herein, we simply look for the

coherence between the diabatic electronic states D1 and D2, which is obtained, interestingly enough, as

the expectation values of Pauli matrices in the diabatic representation. The population difference and

real/imaginary parts of the coherence are shown in fig. 6.14, up to 1000 fs.
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Figure 6.14: Time evolution of (a) the diabatic population difference, (b) the real part of the diabatic

coherence, and (c) the imaginary part of the diabatic coherence. Real and imaginary parts of the diabatic

coherence as functions of the diabatic population difference are shown in (d) and (e), respectively. Colors

correspond to different time windows after the initial excitation.

The coherence between the diabatic electronic states remains non-zero all along the simulation, with

significant maxima during the EET process (|𝐶12| = 0.20). After the transfer, the system remains mostly

in D1 but is still exchanging population with D2. We also illutrate the correlation between coherence and

population difference in fig. 6.14 (d) and (e).
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We interpret this result as a signature of the nonadiabatic EET, with three distinct regimes. The first

regime (red line, 0 fs to 20 fs) is the first part of the population inversion, leading to equalization of the

diabatic populations. The second regime (blue line, 20 fs to 40 fs) is the completion of the population

inversion, with the system ending up trapped in the lowest-lying diabatic excite state D1. Finally, the late

dynamics (black line, 40 fs to 200 fs and grey line 200 fs to 1000 fs) corresponds to oscillations in the region

close to equilibrium for the system.

Take-home messages

1. In our modelling of EET, the population transfer from the donor state to the acceptor

state occurs within 25 fs after the initial excitation, with significant quantum yield (80%

for diabatic populations, 90% for the adiabatic populations).

2. For the diabatic states, the coherence and the population transfer are evolving smoothly

during EET, and quite erratically when the final state is reached.

3. Such behaviors are still to be studied for the adiabatic states.

6.3.2.2 Analysis of EET in terms of internal coordinates

Let us now monitor the geometry of the molecule during excitation-energy transfer. In particular, in

this section we are interested in two representations of the geometry changes during EET: via centers

(expectation value of the position) of the nuclear wavepackets in the system of normal coordinates and via

direct monitoring of the internal coordinates, in particular bond lengths.

Wavepacket “trajectories” and state-specific expectation value

As regards the center of the wavepackets, we distinguish the mean expectation value of the position operator

⟨𝑞𝑖⟩ (𝑡) and the state-specific expectation value ⟨𝑞𝑖⟩𝑠 (𝑡) of the same operator. A detailed note on these

different definitions of expectation values as contributions (extensive) of a given electronic state to the total

manifold or measurements (intensive) for the same given electronic state, independently of its population

has been made in chapter 3, eq. (3.54) and after. Another relevant quantity for characterizing the nuclear

wavepacket is the vibrational excitation number ⟨𝑛𝑖⟩𝑠 (𝑡), especially because our model and our dynamics

simulations are built on the basis of normal modes of vibration. The state-specific expectation values of

the position and vibrational number operators are shown in fig. 6.15 for the two distinct types of sudden

excitations.

We first look at the results from the initial excitation on the p3-localized state, D1 (fig. 6.15, left
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Figure 6.15: Results from initial sudden excitations on D1 and D2, left and right panels respectively. The

time evolution of the expectation values of positions (in mass-weighted atomic units) is given in the top

panels. The time evolution of the expectation values of the vibrational excitation numbers is given in the

bottom panels. The expectation values are shown for diabatic states D1 (blue line) and D2 (red line) and

for each normal mode. The nature of the vibration (quinoidal/acetylenic and stretching/rock-bending) is

recalled for each normal mode; for the definition of the normal modes, see fig. 6.3.

panels).2 Focussing first on the D1-expectation values (blue lines), we observe little significant variations

of the wavepacket center along the different normal modes. More precisely, the average of the wavepacket

center for a given direction does not change in time, but oscillates as expected from the dynamics in a

2This simulation is the exact same as the one used in order to produce the power spectrum contribution from the D1 state

to the absorption spectrum.
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quasi-harmonic well. Indeed, after promoting the initial 8-dimensional vibrational ground state of the S0

surface to the D1 surface, the system directly follows the gradient of D1 and does not suffer the effect of the

coupling from the CoIn seam (which is far from both FC and MinS1 geometries). In addition, the standard

deviation of the wavepacket [not shown here] stays almost constant, meaning that the wavepacket in the

D1 surface mostly maintains its shape during the propagation. Let us now mention the D2-expectation

values (red lines), which seem quite erratic. This is explained by the really small, close-to-zero population

in the D2 state (below 0.05 at every time of the simulation, fig. 6.13, left). Such state-specific quantities

does not seem physically relevant here, because the system is quite correctly described by a single and

harmonic surface D1. This is further comforted by turning on and off the coupling for the simulation of

the TD spectra toward the D1 state, as previously illustrated in fig. 6.11 (a).

Now, the discussion of the EET situation (excitation on the D2 state, fig. 6.15, right panels) yields much

more interesting results as regards correlation between population transfer and nuclear motions. During

the first few fs, the initial excitation on D2 involves strong displacements along the anti-quinoidal rock-

bending mode 114 and the (mostly-)p2-acetylenic stretching mode 120 (red lines). Both modes strongly

participate in the model gradient difference g′ vector (table 6.3). Accordingly, the D2 diabatic energy

gradient is important along these two modes within the reduced model, which is consistent with strong 114

and 120 displacements (and vibrational number) following initial excitation on the D2 state. On the other

hand, they also participate strongly in the model inter-state coupling vector h′ such that their excitation

is transferred to the D1 state (blue lines) concomitantly to EET population transfer. In conjunction with

this, the wavepacket shifts along the p3-localized modes (quinoidal mode 117 and acetylenic mode 118),

which corresponds to a displacement toward the equilibrium geometry of the first diabatic state. In other

words, the time evolution of ⟨𝑞𝑖⟩𝑠 (𝑡) for both states is consistent with the role of the corresponding modes

in energy gradient and inter-state coupling vector.

Re-localization of the acetylenic normal modes

Although we clearly identify the conjunction between the population transfer and the changes in geometry

(monitored, for now, via the positions of the wavepackets), our interpretation is not done in the localized

representation for the normal modes (defined in fig. 6.4). We want to be sure to validate the interpretation

of EET in m23 as a transfer between two p2 and p3 pseudo fragments, as if they were different but coupled

molecules. To do so, we ensure a better localization of the acetylenic stretching normal modes 118, 119, and

120, following the schematic idea illustrated in fig. 6.4. We assume that the normal mode 118 is sufficiently

localized on the p3 fragments. For the modes 119 and 120, we find the better combinations of the associated

displacements so that the root-mean-square deviation (RMSD) of the displacements is minimized on the p2

or p3 pseudo fragments, respectively. We find completely localized modes with displacements labeled 𝑄p2

and 𝑄ASp3, which, as indicate the labels, are localized on the p2 and p3 pseudo fragments, respectively.

As expected from a pseudofragmentation scheme, the mode ASp3 is the asynchronous elongation of the
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p3-acetylenic bonds, that is the counterpart of the synchronous elongation of the p3-acetylenic bonds, 118.

Another localization would be to combine 118 and 119 to find one mode per acetylenic bond.

Having the parameters for defining modes p2 and ASp3, we compute the associated expectation values,

shown in fig. 6.16.
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Figure 6.16: Time evolution of the expectation values of position in diabatic states D1 and D2 for an initial

excitation on D2, for normal modes (118, 119, 120) on the left and modes (118, 𝑄p2, 𝑄ASp3) on the right.

We notice a large-period oscillation for ⟨𝑞ASp3⟩ (𝑡), but in low amplitudes, with a periodic envelope of

about 200 fs. For instance, looking at the expectation values for the D1 state (blue lines), the signals for

modes 119 and 120 (equivalent periods 𝑇 = 16.0 fs and 14.8 fs, respectively), are almost added together

for building the mode ASp3. The combination of the two quasi-periodic signals thus yields a beating

signal, just as in accoustic or amplitude modulation. The carrier wave for the ASp3 signal has a period

equivalent to oscillations for modes 119 and 120. For idealized cosine signals for 119 and 120 and with equal

summation, we would find 𝑇 = 15.4 fs and 395 fs for the carrier wave and the modulated wave (beating),

respectively, which is quite consistent with the observation.3 As regards ⟨𝑞p2⟩ (𝑡), its signal resembles the

evolution of 120 because the coefficient in the linear combination of 119 and 120 is much greater for 120.

We interpret this by the fact that 120 is mostly an acetylenic elongation on p2, contaminated with some

3using relations like

cos 2𝜋𝑓𝑎𝑡 + cos 2𝜋𝑓𝑏𝑡 = 2 cos 2𝜋𝑓𝑎 + 𝑓𝑏
2

𝑡 × cos 2𝜋𝑓𝑏 − 𝑓𝑎
2

𝑡 (6.4)

for two ideal cosine signals with frequencies 𝑓𝑎 ≃ 𝑓𝑏.)
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asynchronous elongation on p3.

Toward the monitoring of molecular geometry during EET

For better comparison with the literature of direct-dynamics simulations on systems such as m23 or related,

we now illustrate the evolution of the internal coordinates during the EET process. First, let us define the

displaced Cartesian coordinates

ΔR(𝑠)(𝑡) = ∑
𝑖, modes

⟨𝑞𝑖⟩𝑠 (𝑡)
√𝜇𝑖

LCart,𝑖, (6.5a)

ΔR(𝑡) = ∑
𝑖, modes

⟨𝑞𝑖⟩ (𝑡)
√𝜇𝑖

LCart,𝑖, (6.5b)

where Lcart,i and 𝜇𝑖 are the Cartesian displacements and reduced masses associated to the normal mode

𝑖. The state-specific displaced coordinates ΔR(𝑠)(𝑡) and total displaced coordinates ΔR(𝑡) are calculated

by adding the Cartesian displacements of the normal modes weighted by the position of the center of the

wavepacket. This analysis is closer to trajectory-based simulations. Indeed, we transform the initial output

of quantum dynamics, which are wavepackets in the space of normal mass-weighted coordinates, back

to trajectories or geometries in the Cartesian laboratory-frame. However, compared to mixed-quantum

classical methods, the average trajectory is here unique for each simulation; more specifically, we have one

“average trajectory” for each diabatic state.

Once the geometries are obtained, the relevant distances (bond lengths, or other internal coordinates)

are easily computed knowing the numbering of the atoms. We focus here on the lengths of the acetylenic

bonds, shown in fig. 6.17 for “early” and “late” dynamics in left and right panels respectively. We recall

that the equilibrium length of the acetylenic bond is 1.21 Å in the ground state of PPEs (with an alter-

nated C − C ≡ C − C bonding pattern), and 1.25 Å in the first excited state (toward an ideal cumulenic

C = C = C = C bonding pattern) (see again table 6.2). These values are reported in fig. 6.17 with grey

areas.

During the early dynamics, the p2 acetylenic bond is strongly distorted (fig. 6.17, (a), black line) and

is elongated beyond the equilibrium geometry of MinS1. Within the first 25 fs, it oscillates back toward the

equilibrium geometry of MinS0. During the same time, the “internal” p3 acetylenic bond (the closest to

the central phenylene) is elongated but exhibits large-amplitude oscillations with a period of about 150 fs

(fig. 6.17, (b), black line). The “external” (or peripheral) p3 acetylenic bond is elongated during the same

timescale (first 25 fs) but the high-amplitude oscillations begin only at 50 fs, with a similar period of 150 fs

(fig. 6.17, (c), black line).

From a local, internal-bond, point of view, the excitation on the second excited state D2 yields EET

dynamics with two main features: i) strong elongation of the p2 acetylenic bond; ii) moderate elongation

of the two p3 acetylenic bonds with asynchronous oscillations between the two bond lengths. These are

consistent with previous studies of internal coordinates evolution during EET in m23 [50]. In the latter
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Figure 6.17: Time evolution of the lengths of the acetylenic bonds of m23 in either of the two diabatic

states D1 or D2 (blue and red lines), or in total (black line). The ”early” dynamics is shown in left panels

(up to 200 fs) and the ”late” dynamics is shown in right panels (up to 1000 fs). Grey areas represent the

approximate equilibrium position of the acetylenic bond in the electronic ground and first excited states.

work, the authors used mixed quantum-classical dynamics with propagation of multiple trajectories and

surface hopping. The trajectories are separated into two sets: effective (non back-hopping after) or non-

effective (existing back-hopping) hops from S2 to S1. Our results are consistent with the set of effective-hop

trajectories. Note that the large-amplitude oscillations for the p3 acetylenic bonds are maintained for about

600 fs in our simulations, with four quantum beats (which validates a period with the order of magnitude

≃ 200 fs).

Take-home messages

1. We simulated the early dynamics of EET in the (1+2)-state 8-dimensional model, and

analysed the time evolution of both wavepacket expectation values and of the underlying

molecular geometry.

2. We confirm the role of the acetylenic normal modes in the EET in both
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• the early transfer of electronic population, via the p2-acetylenic vibrations

• the late trapping in the acceptor state, via the p3-acetylenic and, to some extent,

p3-quinoidal vibrations.

6.3.2.3 Study of the internal vibronic redistribution of EET

We now analyze the EET process in m23 through the lens of the internal redistribution of energy. First,

let us stress that the total energy

𝐸total = 𝐸diabatic(𝑡) + 𝐸off-diagonal(𝑡). (6.6)

is conserved but that the total diabatic energy (the sum of the expectation values for all diagonal Hamil-

tonian operators in the two-state formalism) is not. In particular, it can be further decomposed

𝐸diabatic(𝑡) = 𝐸electronic(𝑡) + 𝐸vibrational(𝑡). (6.7)

The electronic and vibrational energy are then defined as

𝐸electronic(𝑡) = 𝑃1(𝑡)𝐸(1)(𝑡 = 0, Q = 0) + 𝑃2(𝑡)𝐸(2)(𝑡 = 0, Q = 0), (6.8a)

𝐸vibrational(𝑡) = ∑
𝑠, states

𝑃𝑠(𝑡) ( ∑
𝑖, modes

⟨𝑇nu,𝑖⟩𝑠
+ 𝜅(𝑠)

𝑖 ⟨𝑞𝑖⟩𝑠 (𝑡) + 1
2

𝑘(𝑠)
𝑖 ⟨𝑞2

𝑖 ⟩
𝑠

(𝑡)). (6.8b)

With these definitions, the electronic energy is the reservoir of energy in the constant part of the diabatic

potential energies at the origin (Q = 0) and the vibrational energy is the energy resulting from the nuclear

displacements from the origin. In other words, the EET can also be interpreted from the perspective of a

spin-boson Hamiltonian model. The spin-part relates to the local electronic excitations and the boson-part

relates to the intra- and inter-state couplings, mediated through the nuclear displacements. Again, such

an interpretation is facilitated by the fact that the present model is a two-level system.

Decomposition of the excess excitation energy

We illustrate the energy decomposition in fig. 6.18. From left to right we show the diabatic, electronic,

and vibrational energies in the system. In fig. 6.18, center panel, black line, we measure that the total

electronic energy decreases from 4.45 eV (initial vertical transition energy) to approximately 3.9 eV. The

excess energy (from the electronic state D2) is expectedly transferred to the vibrational wavepacket as a

vibrational energy fig. 6.18 (right panel, black line).

The decomposition of the vibrational energy in eq. (6.8b) allows for a discussion of the energy per state

and per mode.
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Figure 6.18: Time evolution of the diabatic (diagonal) energy and its decomposition. Contributions from

diabatic states D1 and D2 are blue and red lines, respectively. Left: contributions to the total diabatic

energy (black line). Center: contributions to the total electronic energy (black line). Right: contributions

to the total vibrational energy (black line) from potential energy (transparent lines) and kinetic energy

(dashed lines).

Decomposition of the vibrational energy and identification of the “most” active modes

We now look at the distribution of the excess vibrational energy in the different normal modes, comparing

for each mode the average and specific kinetic energy, potential energy, and vibrational energy. The

contributions of such quantities from the diabatic state D1 are shown in fig. 6.19 (left).

At 𝑡 = 0 fs, all the vibrational energy is in state D2, and is equal to the zero-point energy (ZPE)

associated to the vibrational ground state of the ground electronic state of the molecule. In the first 25 fs,

the vibrational energy in state D2 is transferred to D1.

The vibrational energies in D2 of each mode are shown in fig. 6.19 (right) and quickly tend to an

almost-zero residual energy, consistently with the D2 vibrational energy, see fig. 6.18 (right). Only the

p2-acetylenic mode 120 exhibits significant variations of potential energy and kinetic energy. On the other

hand, the vibrational distribution in D1 is no longer like a ZPE. In particular, the excess energy from the

electronic reservoir is split into two groups, with spectator modes (115, 116, 117 and 118) and active

(excited) modes (111, 114, 119, and 120) (panel (a) in fig. 6.19, left).

Energetically active degrees of freedom

The p2-acytelenic stretching mode 120 is highly excited in the initial state D2, and its excitation is main-

tained in D1 (most energetic mode), which denotes its importance in the reduced model for energy redistri-

bution. The next two most energetic modes are the (almost) asynchronous p3-acetylenic stretching mode

119 and the central anti-quinoidal mode 114. We note that to some extent, the vibrational energy of the

central quinoidal mode 111 also increases, although it seems to be more of a spectator mode.

It is clear from table 6.1 that the modes that contribute strongly to the inter-state coupling vector

keep a significant vibrational excitation after the electronic transfer. On the contrary, the spectator modes
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  a)  a)

  b)

  c)

  a)

  b)

  c)

Figure 6.19: Time evolution of the vibrational, potential, and kinetic energy (a, b, and c, respectively) per

mode for contributions from diabatic state D1 (left) and diabatic state D2 (right).

from the vibrational excitation perspective are only involved in the diagonal gradient vectors (both energy

difference and gradient average vectors). From this internal vibrational redistribution of the excess electronic

excitation, we indeed identify a clear separation between active and spectator modes within our model. This

is also consistent with mixed quantum-classical trajectory-based dynamics calculations in analogous systems

in the literature [158], for which two groups of modes are identified: i) active modes, which transiently store

the excess energy during EET; and ii) spectator modes, which provide a “bath” of lowly-excited modes and

contribute to dissipate the initial excess electronic energy in the late dynamics.

Estimation of the late dynamics (up to the ps)

With the present model, the thermal equilibration of the excess energy among all the normal modes is

(expectedly) not reached even at longer times. The total (for the two diabatic states) vibrational energy

per mode is shown in fig. 6.20 for up to 1000 fs.

Tuning-only modes appear to reach equilibrium with equipartition of the energy within the group (the

four lowest-energy modes). However, the modes strongly involved in the inter-state coupling with the

electronic reservoir are still out-of-equilibrium at longer times. This is related to the limits of the low

dimensionality of the model and most importantly to the absence of interaction with the environment or

low-frequency modes.
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Figure 6.20: Time evolution of the vibrational energy per mode from both diabatic states D1 and D2 up

to 1000 fs.

Take-home messages

1. We provided an energy decomposition analysis for the ultrafast EET in the nonadiabat-

ically coupled electronic states of m23.

2. The first decomposition illustrates that the initial electronic excitation energy is rapidly

transferred to the lower-lying excited state, but via its vibrational energy.

3. The decomposition of the vibrational energy for each modes yields interesting features

of the energy transfer:

• the population transfer is concomitant with a significant transient vibrational en-

ergy in the p2-acetylenic stretching mode (the donor fragment) and in the central

phenylene rock-bending mode (the shared ”articulation” between the donor and

acceptor)

• the excess excitation energy is, after the transfer, trapped mostly into the vibra-

tional energies of the two previously mentioned modes and in the p3-asynchronous

acetylenic stretching.

• the other modes, mostly the quinoidal stretching, are rather spectator of the energy

transfer but are important to stabilize the vibrational energy and the population in

the acceptor state D1.

4. This excitation energy transfer is sort of reminiscencent of the energy transfer in systems

that can be separated into an active system and a passive bath (or of spin-boson models).
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6.4. An attempt of high-dimensional quantum dynamics simulations

6.4 An attempt of high-dimensional quantum dynamics simulations

In this section we parametrize a high-dimensional LVC model for the S1 and S2 PESs of m23. The aim is

to take into account all the 𝑁 = 93 in-plane normal modes (A’), which are involved in both energy and

coupling gradients for the first two electronic excited states (of symmetry A’). The selection of in-plane

modes ranges from 11 cm−1 to 3244 cm−1 (large-scale displacements and C-H vibrations, respectively). The

previously selected eight normal modes are included in this new model, only with a different parametrization

procedure, that we further discuss in the following.

6.4.1 Parametrization of high-dimensional PESs

The aim of this section is to present a rather straightforward way of producing high-dimensional PESs

for having a good estimation of the early and late dynamics for EET. As of now, we choose a model

in-between the linear vibronic coupling (LVC) and quadratic vibronic coupling model (QVC), with all off-

diagonal bilinear terms set to zero. The chosen model Hamiltonian (centered at the FC geometry) reads

H(Q) = ( ̂𝑇nu + ∑
𝑖

1
2

𝑘(0)
𝑖 𝑄2

𝑖 ) 𝟙 + ⎡⎢
⎣

𝐸(1)(Q = 0) 0

0 𝐸(2)(Q = 0)
⎤⎥
⎦

+ ∑
𝑖

⎡⎢
⎣

𝜅(1)
𝑖 𝑄𝑖 0

0 𝜅(2)
𝑖 𝑄𝑖

⎤⎥
⎦

+ ∑
𝑖

⎡⎢
⎣

0 ℎ′
𝑖𝑄𝑖

ℎ′
𝑖𝑄𝑖 0

⎤⎥
⎦

+ ∑
𝑖

∑
𝑗

⎡⎢
⎣

1
2𝛾(1)

𝑖𝑗 𝑄𝑖𝑄𝑗 0

0 1
2𝛾(2)

𝑖𝑗 𝑄𝑖𝑄𝑗

⎤⎥
⎦

,

(6.9)

where the first matrix (proportional to the identity matrix) is the harmonic reference, parametrized at the

minimum of the electronic ground state. This slightly differs from the definition used for the diabatic

curvatures in section 6.2, but is consistent with the first formulation of the LVC model (for instance in

Refs [20,78]). The curvatures of the electronic excited states are still allowed to be different together and

with the electronic ground state because of the diagonal quadratic terms 𝛾(𝑠)
𝑖𝑖 . In other words, we model

the PESs with a Taylor expansion to the second order for the diabatic potential energies and to the first

order for the inter-state coupling. We note here that the most common Frenkel exciton Hamiltonian with a

harmonic bath, often used for the simulation of EET in aggregates and solids, would resemble to the sum

of the first three matrices in eq. (6.9).

A local fitting procedure via identification of energy derivatives

The procedure for the parametrization of the model Hamiltonian requires

• the knowledge of the vertical transtition energies, gradients, and Hessians at the FC geometry

• the knowledge of the position (with respect to the FC geometry) of the MECI and the branching-space

vectors at this geometry.
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The strategy for ensuring the diabatic and adiabatic states match at both FC and MECI geometries is

similar to the one used in the 8-dimensional model. The BSVs (g, h) are rotated into a pair of BSVs

(g′, h′) such that

h′ ⋅ ΔQ𝑋 = 0 (6.10)

with ΔQ𝑋 the position of the MECI with respect to the FC geometry. With the 93 selected normal modes,

the parametrized rotation angle is 𝜃 = 18.82° and is the same than within full-dimensionality because out-

of-plane normal modes do not participate in the h vector. Having parametrized the off-diagonal coupling,

we now focus on the parameters for the diabatic potential energies. The diabatic energies at the FC

geometry 𝐸(𝑠)(Q = 0) simply identify to the adiabatic vertical transition energies of S1 and S2. Similarly,

the diabatic gradients are identified to the adiabatic vertical transition gradients of S1 and S2, projected

onto the S0 normal modes of vibration.

A note on the 𝜸(𝑠) matrices

The definition of the diabatic curvatures and bilinear cross-terms in the excited diabatic states is more

involved. The matrices 𝜸(𝑠) (which account for intra-state mode mixing) can not be directly identified to

the adiabatic vertical transition Hessians of S1 and S2. Indeed, because we defined an inter-state coupling

h′, the choice of the diabatic Hessians (sum of the ground state Hessian KS0
and the 𝜸(𝑠) matrices) must

reflect the effect of the coupling for reproducing the adiabatic Hessians. To ensure this, we define the

diabatic Hessians, according to a second-order Jahn-Teller-type formula

KS0
+ 𝜸(1) = KD1

= KS1
+ 2 h′h′T

𝐸(S2) − 𝐸(S1)
,

KS0
+ 𝜸(2) = KD2

= KS2
− 2 h′h′T

𝐸(S2) − 𝐸(S1)
.

(6.11)

Let us note that this “regularization” of the adiabatic Hessians into diabatic Hessians for the 93-dimensional

model has numerically almost zero effect here. This is only because of the relatively strong energy difference

at the FC geometry (which sort of nullifies the effect of the inter-state coupling at this geometry). We

illustrate this in fig. 6.21 by showing the adiabatic Hessians of S1 and S2 and the diabatic Hessians of D1 and

D2 (first two columns). All Hessians are projected onto the in-plane normal modes; in this representation,

the most important values are on the diagonal. In other words, the normal modes of S0 are almost an

orthonormal basis for the Hessians of the excited states (almost diagonal matrices). The matrices 𝜸(𝑠)

represent the mixing (harmonic oscillator distortion for the diagonal elements) between the S0 normal

modes to describe the energy of the excited states to second order. They are also shown in fig. 6.21

(last two columns, where the Hessian KS0
has been substracted). Such an analysis can be linked to the

calculation of Duschinsky matrices, only with the fact that here the excited states are evaluated at the

same geometry as the ground state equilibrium geometry.

Let us notice for the mode-mixing matrices 𝜸(𝑠) a particular structure with respect to the frequencies of

the normal modes. There seem to be greater values (hence greater mode-mixing) for the group of quinoidal
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and acetylenic modes (1600 cm−1 to 2400 cm−1) both between them and with the other modes. To some

extent, this is also true for the triangular modes (1000 cm−1 to 1600 cm−1), with important mode-mixing

between them.
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Figure 6.21: From left to right, i) adiabatic Hessians KS of S1 and S2 at the FC geometry; ii) constructed

diabatic Hessians KD of D1 and D2 at the FC geometry; iii) mode-mixing matrices 𝜸(𝑠) = KD𝑠
− KS0

for

the two electronic states; iv) same with blanks where values are ≤ 5 × 10−7 Eh
a2
0me

(unselected values). All

Hessians are projected onto the normal modes computed at the FC geometry. The top and bottom panels

correspond to the first and second excited states, respectively. The grey horizontal and vertical lines define

the region of quinoidal, anti-quinoidal, and acetylenic normal modes.

This analysis will serve at least two (not completely unrelated) purposes:

• find mode-combination strategies for correctly taking into account the correlation between the

strongly mixing modes;

• establish system-bath partitions with active modes (as regards spectroscopy and EET) and spectator

modes.

Estimating the validity of the 93-dimensional LVC “plus” model

To evaluate the consistency of the model, we compare the energies of S1 and S2 for the S1/S2 PESs critical

points with the one obtained from usual optimization. The energies for the minima of S1, S2 and the MECI

are given in table 6.6.

We note the good agreement between the S1 minimum in the 93-dimensional LVC model and the S1

minimum in the fully-optimized PESs. The S2 minimum in the 93-dimensional LVC model is really close to
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Table 6.6: Energies in eV of the first two adiabatic and diabatic excited states at the critical points in the

ab initio PESs (at the CAM-B3LYP/6-31+G* level of theory) and in the LVC models (8-dimensional and

93-dimensional). For the models, the optimization method is the COBYLA method inplemented in the

scipy python library.

Model Full-dimensional (ab initio)a 8-dimensional (LVC) 93-dimensional (LVC)

Critical Point S1 S2 MECI S1 S2 MECI S1 S2 MECIb

𝐸(S1) 3.61 3.99 4.30 3.67 4.00 4.40 3.62 4.13 –

𝐸(S2) 4.62 4.17 4.30 4.59 4.23 4.40 4.64 4.13 –

Δ𝐸(S) 1.01 0.18 < 5e−4 1.08 0.23 < 5e−3 1.02 < 5e−3 –

𝐸(D1) – – – 3.67 4.01 4.40 3.64 4.13 –

𝐸(D2) – – – 4.59 4.22 4.40 4.62 4.13 –

aThe diabatic states and their energies are not known from the ab initio calcultions.
bUp to now, the MECI has not been successfully found for the 93-dimensional model.

an S1/S2 conical intersection. However the MECI in the 93-dimensional model has not been found directly

for now. Our model thus seems to underestimate by about 0.15 eV the energy of the MECI (or at least the

energies within the intersection space), which seems superimposed with the minimum of the S2 PES. As

such, the model is clearly perfectible, but we continue with it for the rest of this chapter to evaluate the

feasibility of high-dimensional quantum dynamics (HDQD) simulations in light-harvesting building-blocks

(and eventually dendrimers).

Take-home messages

1. We proposed a systematic and straightforward parametrization of a high-dimensional

(93 modes) vibronic coupling model, including linear off-diagonal (inter-state) couplings

and bilinear diagonal (intra-state) couplings.

2. As only two reference geometries are used to parametrize the model. It is expectedly not

perfect as regards the re-construction of the PESs of the S1/S2 manifold, in particular

for the minima of S2 and of the conical intersection.

3. However, we hope it correctly estimates i) the vertical transition gradients (for the initial

states); ii) the inter-state coupling (for the early dynamics); and iii) the minimum of the

acceptor state (for late dynamics).
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6.4. An attempt of high-dimensional quantum dynamics simulations

6.4.2 Global fitting vs. local fitting, comparison of the 8-dimensional models

Before running high-dimensional quantum dynamics, we compare the EET dynamics simulated for the LVC

parametrized via a global fit (fitting of ab initio PESs, section 6.2.2) and the LVC parametrized via a local

fit (identification of energy derivatives, section 6.4.1). For this comparison, we extract the 8-dimensional

child model from the 93-dimensional parent model, by freezing all unselected normal modes in quantum

dynamics calculations.

We show in fig. 6.22 the population transfer dynamics of EET for simulations for which the matrices

𝛾𝑖𝑗, 𝑖 ≠ 𝑗 are adiabatically switched on from 0 (blue lines) to 1 (gray lines), and to 2 (red lines).
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Figure 6.22: Diabatic and adiabatic populations of the first two excited states in various LVC models, in

top and bottom panels, respectively. The results obtained from varying the 𝛾𝑖≠𝑗 matrices from 0 (LVC

models with different curvatures for the excited states but no mode mixing) to 1 (same with mode mixing)

[in both left and center panels] and from 1 to 2 (articifially enhanced mode mixing) are shown [in both

center and right panels] (colormap from blue to red).

The results obtained in section 6.2.2 from an 8-dimensional global fit of the S1/S2 PESs are recalled

(black line). We want to examine the role of the intra-state bilinear couplings (𝛾𝑖𝑗, 𝑖 ≠ 𝑗) and their relevance

in low-dimensional models. For both diabatic and adiabatic populations, the early EET population transfer

(up to 50 fs) seems to be only slightly affected by the variations on the 𝛾𝑖𝑗, 𝑖 ≠ 𝑗 matrices. In particular,

we note that the diabatic population transfer is slightly faster when switching on, and enhancing, the mode

mixing. This is likely due to the contribution of the 𝛾𝑖𝑗, 𝑖 ≠ 𝑗 parameters to the diabatic gradient difference,

which really drives the early dynamics. Quite counter-intuitively, the diabatic quantum yield (again, before

50 fs) is higher for simulations with no mode mixing, while we would expect bilinear intra-state couplings
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to allow for more efficient relaxations in the S1 electronic state. For longer times, we observe that the

diabatic states mix again with a 50:50 population mix for the case of 1 × 𝛾𝑖𝑗, at both 55 fs and 70 fs.

Quite counter-intuitively again, the transfer is more monotonic in the extreme case of 0 × 𝛾𝑖𝑗 than in

the (supposedly more realistic) case of 1 × 𝛾𝑖𝑗. A plausible explanation would be that accounting for the

mode mixing via non-zero bilinear intra-state couplings is not accurate enough in low-dimensional system.

Indeed, as we will see in section 6.4.3, with the same model (1 × 𝛾𝑖𝑗) but without freezing any in-plane

modes, there are no crossing in the diabatic states anymore. The same is found for the extreme case of

2 × 𝛾𝑖𝑗 which is an artificial enhancement of mode mixing.

Our interpretation is that accounting for mode mixing (that is, intra-state bilinear couplings) via a local

fit of the excited-state Hessians might not be adapted to low-dimensional models. Indeed, with the a priori

more realistic local fit parametrization (1 × 𝛾𝑖𝑗), the results are significantly different from the global fit

parametrization. This can be explained by the fact the 𝛾𝑖𝑗 parameters are obtained for the full-dimensional

system, so that they might be too important when used in a reduced model.

We note that these effects are not found to the same extent in the adiabatic population transfer,

although the simulation of EET with 1 × 𝛾𝑖𝑗 also exhibits important crossings of the CoIn seam at both

55 fs and 70 fs.

6.4.3 Strategies for high-dimensional quantum dynamics and associated feasibility

We now discuss the feasibility of wavepacket propagation and associated analysis for high-dimensional

PESs, wavepackets, and configuration spaces (spatial grids). Indeed, as mentioned in chapter 3, the

equations of motion for MCTDH are tractable for less than ten degrees of freedom; the mode-combination

strategy allows one to easily propagate up to 12-14 degrees of freedom, but the curse of dimensionality

remains. Here, several tens of normal modes can not be propagated with simple MCTDH wavepackets

and combined modes.4 We thus choose the multi-layer strategy (ML-MCTDH) [106–108] for which the

idea is to iteratively combine the modes in order to drastically reduce the number of configurations to be

propagated and the associated mean-field matrices.

6.4.3.1 Construction of the ML-tree helped with chemical intuition

The problem we now face is: how should the 93 modes be combined, i.e. which “ML-tree” has to be

defined. Unfortunately, there is no perfect nor unique answer. Then, we must define criteria for evaluating

the validity of an ML-tree for a given high-dimensional quantum dynamics simulation.

We use here a simple approach, based on separating the modes with respect to their chemical character.

To do so, the simplest separation uses the frequencies and the reduced masses of the normal modes. The

first “guess” for the ML-tree is obtained by defining so-called “nodes” (group of modes or combined

modes) and so-called “layers” (groups of same nodes at the same level). “Branches” are then defined as
493 degrees of freedom with 15 basis function each yield an absurd grid size of ≃ 10109.
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links between two nodes between consecutive layers. Let us start a tree with 4 nodes (first layer), that

will ultimately contain modes belonging to the frequency-windows 0 cm−1 to 1000 cm−1, 1000 cm−1 to

1500 cm−1, 1500 cm−1 to 2300 cm−1, and 2400 cm−1 to 3400 cm−1. From each of these nodes, let us build

4 or 5 branches (toward the second layer) and again 3 or 4 branches (third layer). In each of the latter

branch, we define a (2-by-2-) mode-combined MCTDH wavepacket for consecutive primitive degrees of

freedom. The representation of this “guess” ML-tree is shown in fig. 6.23

Electronic basis set

Primitive basis sets

Layer 0

Layer 1

Layer 2

Layer 3

From 0 to 1000 cm⁻¹

From 1000 to 1500 cm⁻¹

From 1500 to 2000 cm⁻¹

From 2000 to 3500 cm⁻¹

Figure 6.23: First guess of an ML-tree for the quantum dynamics simulations on the (1+2)-state 93-

dimensional LVC model. The layer for the electronic states is given in green. The layers for the vibrational

degrees of freedom are given in red to blue shading, from the top layer to the primitive basis, respectively.

Nodes are in circles, primitive modes are in squares. The size of the basis set for each expansion (nodes or

modes) is given above the corresponding node.

With small SPFs basis sets for each layer, the computational time is reasonable (1 h of human-time, on a

16-core machine, for 10 fs) and we can imagine the ML-tree to be iteratively optimized upon “convergence”.

The criteria that would define a not-optimized ML-tree are (non-exhaustively):

• obviously the absence of energy conservation;

• important natural population of the last SPFs for each node (or normal mode for the last layer),
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analogous to MCTDH;

• or unphysical symmetry-breaking (in the case of PESs and initial states with symmetry).

The “variables” to be optimized are the very structure of the ML-tree (should we add branches, layers?);

and the number of SPFs per node (or mode). Only the energy-conservation and low-natural-population

criteria are used in the case of m23, as the wavepackets have no specific parity as regards the in-plane

normal modes. For now, we only explore such an optimization by changing by hand the size of SPFs basis

sets or the structure of the ML-tree (definition of the layers and the nodes).

Over the first 100 fs of simulation (initial excitation on D2 to simulate EET in m23), we evaluate the

highest last natural population for each node. A typical value of highest last natural population for having

converged diabatic expectation values (which is our main analysis tool here) is 1 × 10−3. We show the

highest last natural populations (multiplied by 1 × 103) for each nodes in fig. 6.24 (left panel for the

simulation with the guess ML-tree). The same quantity is shown for two subsequent optimization steps

“by-hand” in the other panels.
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Figure 6.24: Highest last natural population (over 100 fs propagation) for the set of SPFs of each node

and mode of three ML-MCTDH calculations, with the same ML-tree but for different ”steps” of its

”optimization-by-hand” (increasing or decreasing the number of SPFs per nodes).

We observe that the guess ML-tree yields poorly converged wavepackets. In particular, there are highest

last natural populations at 25×10−3 for nodes 20 and 42 which are the “core” nodes of the ML-tree, and for

node 54 which is the node defining the wavefunction for the acetylenic normal modes (see fig. 6.23). From

the left to the right panels, we successfully optimize the size of the SPFs basis sets for the unconverged

nodes (and similarly for the “too much” converged nodes) to find “better” natural populations for the

SPFs.

However, this comes with a significantly higher computational time, from left to right: 1.5 h, 12 h,

and 80 h with the same 16-core machine. In addition, we note that the energy conservation is more easily

conserved with the initial guess of a naive tree than with the other two attempts (see fig. 6.25 left panel,

with at the end Δ𝐸 = 7.3 meV, 13.4 meV, and 102.2 meV). As of now and with our present expertise of

ML-MCTDH, we were not able to interpret properly such results on the energy conservation for, in our

understanding, “better” converged wavepackets. However, let us note that for the three calculations, the
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6.4. An attempt of high-dimensional quantum dynamics simulations

population transfer is qualitatively the same overall, and quantitatively the same up to 30 fs (fig. 6.25, right

panel).
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Figure 6.25: Left: time evolution of the difference in total energy compared to initial energy of the

wavepacket, for the three ”steps” of the ML-tree optimization. Right: time evolution of the diabatic

populations (and their sum) of the D1 and D2 states for the three ”steps” of the ML-tree optimization.

To conclude on this approach, clearly this ML-tree definition and optimization is too naive and in-

efficient, as the most-adapted ML-trees might be very different at different points of the dynamics. In

particular in the case of EET, we have seen that at least three regimes are identified: initial excitation,

inversion of electronic populations, and harmonic oscillations in the lower-lying diabatic state. The three

regimes involve mainly one diabatic state, two diabatic states, and one diabatic state, respectively, and

are very likely to behave differently as regards the “optimized” character of a given ML-tree. Choosing a

complicated ML-tree for the most complicated regime would then be very expensive as regards the other

regimes. One solution to circumvent this has been designed by Mendive-Tapia and co-workers and consists

in the ML-spawning algorithm, which idea is to adapt the number of SPFs per mode in an on-the-fly

fashion [159, 160]. This algorithm has been successfully used for the study of spin-boson Hamiltonian

models [3] and is likely to be applicable in our case.

6.4.3.2 Potential solutions for systematic definitions of the ML-tree

Construction of the ML-tree helped with system-bath separations

In order to interpret the 93D model as an extension of the model based only on acetylenic and quinoidal

modes, we aim to separate the normal modes in two sets:

• a set of 11 “active” normal modes (all quinoidal, anti-quinoidal and acetylenic modes of m23);

• a set of 82 “spectator” normal modes (all remaining in-plane modes).
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Chapter 6. The First Unit for EET: m23

In order to simplify the (1+2)-state LVC Hamiltonian in eq. (6.9), we set

ℎ′
𝑖 = 0 ∀𝑖 ∈ spectator modes (6.12a)

𝛾(𝑠)
𝑖𝑗 = 0 ∀𝑠 and ∀𝑖, 𝑗 ∈ active modes and spectator modes, respectively (6.12b)

yielding an approximation where the active modes (A) define a “system” minimally coupled to the spectator

modes (S), defining a “vibrational bath”, with a “separable” diabatic Hamiltonian

H(Q) = HA(Q) + HS(Q). (6.13)

Let us stress that even though we set to zero all “explicit” couplings between the active and the spectator

modes (the diabatic Hamiltonian is separable, with no HAS(Q)), the propagations of the two systems are

still coupled.5 To convince oneself, one can notice that the adiabatic Hamiltonian is not separable, due

to the non-zero off-diagonal couplings. Another way of understanding this is to examine the commutator

(discarding nuclear dependence)

[HA, HS] = ⎛⎜
⎝

0 𝐻12,A (𝐻22,S − 𝐻11,S)

𝐻12,A (𝐻22,S − 𝐻11,S) 0
⎞⎟
⎠

(6.14)

as examplified recently by Montorsi and co-workers [161]. This non-zero commutator is involved (theoret-

ically) in the propagation of the active and spectator systems, so that the two systems cannot be seen as

completely uncoupled.

We also propose an ML-tree adapted to this intermediate “system-bath” separation of the normal

modes, based on groups of active (11D) and spectator modes (82D) (see fig. 6.26).

Toward systematic construction of the ML-tree using hierarchical clustering

Recent work from Mendive-Tapia proposed to build ML-trees based on an estimation of the correlation

between the modes included in the calculations [162]. The idea is to use hierarchical clustering, which relies

on two ingredients: i) the estimation of the proximity or distance between two elements (here modes); and

ii) a linkage criterion. Herein, we estimate the distance using the angular distance formula as suggested in

Ref [162]

dist𝑖𝑗 = 2
𝜋

arccos ⎛⎜⎜
⎝

∑𝑙 𝐶𝑙𝑖𝐶𝑙𝑗

√∑𝑙 𝐶2
𝑙𝑖√∑𝑙 𝐶2

𝑙𝑗

⎞⎟⎟
⎠

(6.15)

where the C matrix is a correlation matrix. For our preliminary tests, we tried to estimate a “correlation”

matrix between the S0 normal modes using the 𝜸(𝑠) matrices. However, we note that the choice of 𝜸(s) is

quite arbitrary here, and we might want to use a matrix representing the correlation between the normal

modes via the measure of mode mixing within the excited states.

Now, when the distance matrix is defined (for instance, the mean matrix of 𝜸(𝑠) matrices, shown in

fig. 6.27), the linkage criterion allows us to build a dendrogram which represents an optimal (depending on
5… under certain conditions: different curvatures and gradients for the two excited diabatic states.
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Electronic basis set
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Primitive basis sets
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System

Bath

Figure 6.26: Proposition of an ML-tree for the quantum dynamics simulations on the (1+2)-state 93-

dimensional LVC model with a system-bath separation based. The layer for the electronic states is given

in green. The layers for the vibrational degrees of freedom are given from red, from the top layer to the

primitive basis, respectively. Nodes are in circles, primitive modes are in squares. The size of the basis set

for each expansion (nodes or modes) is given above the corresponding node.

the criterion) way of pairing (clustering) the initial modes together up to a final, unique node. An example

of such a dendrogram in shown in fig. 6.28. With our measure of correlations, the distance matrix should

be read as follows, for instance

• mode 58 is close to mode 118 (small distance, blue color in fig. 6.27); hence, the two modes must

be close together in the dendrogram and must be paired (they are, see fig. 6.28, red branch, lower

left)

• mode 75 is close to mode 119 (small distance, blue color in fig. 6.27); hence, the two modes must

be close together in the dendrogram and must be paired (they are, see fig. 6.28, pink branch, lower

right)

• etc.,

so that the closer modes are paired into clusters of two, which are paired again iteratively. Of course,

the aim is not to interpret each distance and each branch of the dendrogram, but to hope for a reliable

clustering from the correlation measure.
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Figure 6.27: Distance matrix calculated with eq. (6.15) and C = 1
2 (𝜸(1) + 𝜸(2)) for the 93 in-plane normal

modes of the m23 molecule. The red lines are visual guides for the comparison of modes 58 and 75 with

the acetylenic stretching modes 118 and 119.

58 and 118
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75 and 119
are paired

Figure 6.28: Dendrogram obtained from the distance matrix shown in fig. 6.27, illustrating the most efficient

hierarchical clustering of the initial 93 in-plane normal modes into pairs up to a central node. Obtained

using the functions of the python library scipy.cluster.hierarchy.

On a final note, building an ML-tree from the dendrogram directly is not trivial, but one can think of
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6.5. Concluding remarks

additional criteria so as to define the layers and the branches. This work is not done yet, and as of now we

only tried to manually define an ML-tree [not shown here] that reflects the dendrogram. Yet, such hier-

archical cluster analysis seems promising for studies of phenomena involving low-amplitude displacements

in the excited-state, as the information for the correlation of the modes is directly found from vibrational

analysis and from the Duschinsky matrices.

Take-home messages

1. We evaluated both

• the relevance of high-dimensional PESs parametrized with energy derivatives alone;

• the feasibility of associated high-dimensional wavepacket dynamics (with a propo-

sition of a ”performing” ML-tree),

for the specific case of intramolecular excitation-energy transfer, with up to 93 degrees

of freedom.

2. We started a discussion on the relevance of the mode-mixing parameters for simulating

EET and understanding its mechanism.

3. We also explored alternative strategies for the choice of the ML-tree (namely system-bath

separations and hierarchical clustering).

6.5 Concluding remarks

6.5.1 Modelling and simulating EET in an asymmetrical PPE-oligomer

In this chapter, we presented the first quantum dynamics study of the asymmetrically substituted poly(pheny-

lene ethynylene) (PPE) oligomer, the m23 molecule, which is the first unit of PPE for excitation-energy

transfer (EET) in the PPE-dendrimers. We aimed for i) the characterization of electronic excited states of

the molecule and of the normal modes of vibration, both in the electronic ground and excited states; and

ii) an atomistic and time-resolved simulation of intramolecular EET within m23.

In particular, we showed, at our level of theory, the excitonic character of the first two electronic excited

states and characterized their intersection (MECI and branching-space vectors). We re-interpreted the EET

process, via a simple stationary picture, from an initial excitation on the donor state (localized transition

density on the p2 pseudo fragment) to a transfer into the acceptor state (localized transition density on the

p3 pseudo fragment, lower in energy). Strong of this knowledge, we parametrized low-dimensional models
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Chapter 6. The First Unit for EET: m23

of PESs to estimate both the importance of the high-frequency normal modes of vibration in the transfer

and the timescale of the process.

Most importantly, our results show that a minimal model of five modes with the acetylenic stretching and

the central-quinoidal modes is enough to predict an ultrafast (within 25 fs after excitation) and efficient

(80% quantum yield) excitation-energy transfer. The model is completed with other quinoidal modes,

yielding an 8-dimensional model able to reproduce correctly both the transfer from the donor state to

the acceptor state and the energy trapping in the acceptor state. Such results are obtained from the

interpretation of the expectation values for both monitoring the molecular geometry and monitoring the

energy distribution during the electronic population transfer.

6.5.2 A trade-off between fully explicit PESs and parametrizing costs

Our short-term outlooks are to extend this strategy for the atomistic simulation of EET to more real-

istic models, ideally to the full-dimensional system. However, even in this smallest unit for EET, full-

dimensionality is 𝑓 = 𝑁vib = 138, which is untractable for both parametrization of the PESs and propaga-

tion of the nuclear wavepackets. In this chapter, we proposed a first attempt of high-dimensional quantum

dynamics with all in-plane modes of the molecule (𝑓 = 93).

We based our parametrization procedure on local derivatives only, using two optimized geometries,

the Franck-Condon geometry (for estimating the initial state for the dynamics) and the minimum-energy

conical intersection geometry (for estimating the nonadiabatic coupling between the excited states). This

strategy is clearly not adapted for explicitly reproducing the full-dimensional adiabatic PES of the excited

state. However, it is an acceptable trade-off as an advanced (and easily parametrized) Frenkel-exciton

Hamiltonian model. The model can also be seen in the fashion of a spin-boson system, only with an

explicit and discrete bath (first quantization) made of the spectator normal modes. In particular, we

started a discussion on the relevance of the intra-state bilinear coupling parameters (which reflects mode

mixing) for both modelling and designing EET. Finally, we explored the feasibility of high-dimensional

quantum dynamics calculations by discussing different strategies for the multi-layer combination of the

numerous degrees of freedom.

Medium-term outlooks concern the parametrization of similarly advanced Frenkel-exciton Hamiltonian

models for an arbitrary shape and size of the PPE-oligomer. We explicit our ideas for tackling this task in

part III, chapter 9.
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Chapter 7. The First PPE-Dendron

We have presented in chapters 5 and 6 the two main ingredients for light-harvesting PPE-dendrimers.

We first presented the chromophore m22, which consists in a symmetrically meta-substituted benzene with

two bright electronic excited states able to collect light in the UV-visible domain. Then, the prototypical

molecule m23, which is an articulation of p2 and p3 pseudo fragments, has been extensively studied. A

simple and relatively low-dimensional model was able to reproduce the ability of the system to efficiently

transfer excitation energy from the shortest branch (p2) to the longest branch (p3). For both systems, the

importance of the acetylenic and quinoidal normal modes of vibration has been demonstrated as regards

both steady-state spectroscopy properties and excitation-energy transfer features. In this chapter, we shall

focus on the very first dendron of PPE-dendrimers for studying excitation-energy transfer (EET) in oligo-

PPEs and PPE-dendrimers. The first dendron is the tri-meta-substituted benzene with two equivalent p2

pseudo fragments and one p3 pseudo fragment, denoted d223 in the rest of this chapter and shown in

fig. 7.1. We stress already that different pseudofragmentation schemes can be used for the study of d223.

a) b) c)

+ + +

d223

three
states

two
states

one
state

p3 + m22 p3 + 
p2 + p2

one
state

one
state

one
state

Figure 7.1: Ground-state Lewis structure of the first dendron of PPE-dendrimers, d223 (a), and schemes

of pseudofragmentation for d223 as a p3 pseudo fragment and an m22 pseudo fragment (b), or as a p3

pseudo fragment and two p2 pseudo fragments (c).

The present chapter is organized as follows: in section 7.1, we briefly describe the electronic excited

states of d223 and some of the most important features of the associated adiabatic PESs. In section 7.2,

we propose (1+3)-state LVC Hamiltonian models for reproducing the PESs and NACs of d223, and use

these models in section 7.3 to simulate EET in d223 and evaluate both its timescale and quantum yield.

The aim of this chapter is to make the first step toward simulating larger PPE-dendrimers prototypes.

Numerous types of analysis have already been presented in chapter 6 and have been published, and will be

directly re-used in this chapter (for instance, the wavepacket analysis in terms of the diabatic expectations

values, the transformation into internal coordinates for trajectory-like monitoring…) [155].

7.1 Electronic excited states of a tri-meta-substituted PPE

The minimum of the electronic ground state (FC geometry) of d223 is a C2v geometry. We examine

the vertical transitions from the electronic ground state to the first four electronic singlet excited states,

through the visual inspection of the NTOs and the transition densities, shown in fig. 7.2.
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Figure 7.2: First two pairs of natural transition orbitals (NTOs) and the associated transition densities for

the electronic states S1 to S4 at the mininum of the electronic ground state (vertical transitions). The

electronic transition dipole moments (ETDMs) are also given, in atomic units and with respect to the axes

for the C2v point group of symmetry.

The vertical transitions to S1, S3, and S4 are similar to what is known for local excitations (LE) on the

previously studied fragments. In particular, the first excited state has a non-negligible transition density

localized on the p3 pseudo fragment and belongs to the A1 irreducible representation (𝑧-polarized). The

third and fourth excited states have non-negligible transition densities on the m22 pseudo fragment and

belong to B2 and A1 irreducible representations (𝑦- and 𝑧-polarized), respectively. The NTOs involved

are in very good agreement with the isolated m22 fragment. However, the second excited state is not

a local excitation, but a charge transfer (CT) state with almost zero oscillator strength. The NTOs are

not localized strictly on the same fragments (except for the contributions from the central benzene). The

transition density clearly corroborates this, with only non-negligible density on the central benzene. As
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Chapter 7. The First PPE-Dendron

regards the state ordering, we note that it is the same for both CAM-B3LYP and 𝜔B97XD functionals

at the FC geometry optimized with CAM-B3LYP. We did not further investigate the state ordering for

optimized geometries with 𝜔B97XD.

Optimization of minima and transition states

As regards the critical points of the excited-state PESs, we give the energies for the minima and transition

states in table 7.1.

Table 7.1: Adiabatic energies (in eV) of the electronic ground state and first four electronic excited states

for a selection of critical points in d223. The minimum of the electronic ground state is taken as the

reference energy for each molecule. The lengths of the acetylenic bonds are given (𝑑 = 𝑑(C ≡ C) in

Å) and the values are set in bold when they are intermediate between acetylenic and cumulenic bonding

patterns. Labels [p2], [p3-in] and [p3-ext] refer for d223 to the acetylenic bond of the p2 pseudo fragments

and of the inner and external acetylenic bonds of the p3 pseudo fragment.

Geometry Sym. 𝐸(S0) 𝐸(S1) 𝐸(S2) 𝐸(S3) 𝐸(S4) 𝑑[p2] 𝑑[p3-in] 𝑑[p3-ext]

p3 MinS0 D2h 0.00 3.90 4.81 – 1.210 1.210

p3 MinS1 D2h 0.26 3.62 4.80 – 1.233 1.233

p2 MinS0 D2h 0.00 4.48 5.08 1.210 – –

p2 MinS1 D2h 0.32 4.14 4.84 1.255 – –

m23 MinS0 Cs 0.00 3.88 4.45 1.210 1.210 1.210

m23 MinS1 Cs 0.27 3.61 4.61 1.210 1.233 1.233

m23 MinS2 Cs 0.23 3.99 4.17 1.245 1.214 1.213

d223 MinS0 C2v 0.00 3.86 4.23 4.39 4.47 1.210 1.210 1.210

d223 MinS1 C2v 0.27 3.59 4.32 4.61 4.71 1.210 1.233 1.232

d223 MinS2(CT) C2v 0.13 3.83 4.09 4.31 4.39 1.220 1.221 1.211

d223 MinS2(LE) Cs 0.23 3.98 4.14 4.24 4.66 1.245 1.214 1.213

d223 TS S3 C2v 0.17 3.99 4.17 4.22 4.35 1.231 1.211 1.210

d223 MinS4 C2v 0.14 3.94 4.16 4.26 4.32 1.227 1.212 1.212

In particular, let us notice that the minimum of the first excited state (C2v) is really close in energy

and character (same acetylenic bonding pattern) to the minimum of the first excited state of the isolated

p3 fragment. The critical points of the higher-lying excited states are more complicated to examine. First,

in S2, we find one global minimum for the CT state (C2v) and two equivalent local minima which are the

minima of the LE states on the two p2 pseudo fragments (Cs). Then, we find a transition state (TS,

with 𝜔TS = 𝑖3440 cm−1) in S3 and a minimum in S4 (but with a strong frequency 𝜔 = 6070 cm−1 which

indicates the presence of a nearby conical intersection). We note that the TS is really close in energy
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7.1. Electronic excited states of a tri-meta-substituted PPE

and character to the MinS2 in the m23 molecule; in fact, it is as if the TS was a symmetrically-averaged

geometry of two m23 pseudo fragments. The minima toward the p2 pseudo fragments are then obtained

by following the displacements associated to the TS frequency. Interpolations between the MinS0, MinS1,

TS of S3, and MinS2(LE) geometries are shown in fig. 7.3.

TS S3 MinS0 MinS1

LE (p3)

CT

LE (p2)

LE (p2)

a)

TS S3
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MinS2

(LE)

b)

CTCT CT

CTCT
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TS S3 MinS0 MinS1

TS S3

LE (p3)
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LE (p2)

LE (p2)

MinS2

(LE)
MinS2
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Figure 7.3: Adiabatic energies (top panels) and oscillator strengths (bottom panels) of the first four excited

singlet states along linear interpolations. a) Interpolations between the TS of S3 (at −10), the minimum

of S0 (at 0), and the minimum of S1 (at 10). The characters of the vertical excitations at the MinS0

geometry are also given. b) Interpolations between the TS of S3 (at 0) and the (locally-excited) minima

of S2 (both at −10 and 10).

The C2v symmetry is preserved from the TS of S3 to the minimum of S1, and the characters of

the electronic excitations are maintained. In particular, the CT state and the S2 state match all along

the profile, fig. 7.3 panels a), and start slowly mixing only after the TS of S3. On the other hand, the

interpolation between the TS of S3 and the LE minima of S2 shows symmetry-breaking (from C2v to Cs

molecular geometries, hence the even shape of the potential energy) and avoided crossings (fig. 7.3, panels

b). In particular, the S2 and S3 states change character (approximately halfway between the two optimized

geometries), as we can see from the evolution of the oscillator strengths. The CT state matches with S2 at

the geometry of the TS and with S3 at the LE minima of S2. As a consequence, we note that the m22-like

conical intersection seam does involve three adiabatic electronic states (S2, S3, and S4) depending on the

geometry. However, the coupling between the S2 and S3 states (CT and LE at the MinS0) is expected to

be small, and we will see with 1D-profiles along the normal modes of the MinS0 that the CT state (either
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S2 or S3) can be discarded for describing the m22-like conical intersections.

Optimization of conical intersections in the excited states of d223

In appendix A, we give details about the optimization of the MECIs within this manifold of electronic

excited states. We briefly discuss the results of these optimizations here. We find three optimized MECI

geometries in the first four excited states of d223. The lowest one is found at ̄𝐸 = 4.161 eV, with a

C2v molecular geometry and involves electronic states S1 and S2, localized on the p3 and m22 pseudo

fragments, respectively (see fig. 7.4, panel c)). Two equivalent, mirror-image, intermediate MECI between

the electronic states S2 and S3 are found at ̄𝐸 = 4.164 eV, with a Cs molecular geometry (see fig. 7.4,

panel b)). In this case, S2 resembles more a CT state, but has likely borrowed LE character from other

LE states; S3 is localized on the left or right p2 pseudo fragment. Finally, the expected m22-like MECI

is found between the electronic states S3 and S4 at ̄𝐸 = 4.340 eV, with a C2v molecular geometry, both

states being localized on the m22 pseudo fragment.

A1

A'

B2

B2

A'

A1

a) S3/S4

C2v

b) S2/S3

Cs

c) S1/S2

C2v

Figure 7.4: Transition densities at the geometry of the MECI and profiles along the associated branching-

space vectors, for three MECIs in the excited states of d223: a) between S3 and S4; b) between S2 and S3;

c) between S1 and S2.

Let us stress that we do not require the MECI geometries to build relevant vibronic coupling models,

which is the focus of section 7.2. However, the characterization of such points will help us to understand

which choices of diabatic states (and which inter-state couplings) are relevant.
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7.1. Electronic excited states of a tri-meta-substituted PPE

Vibrational analysis at the Franck-Condon geometry

The Cartesian displacements associated to the quinoidal and acetylenic normal modes of vibration at the FC

geometry are shown in fig. 7.5. This selection of normal modes will be used later on to build a (1+3)-state

10-dimensional model of PESs for the excited states of d223, and is similar to the reduced selection of

modes presented in chapter 6.

146 A1

151 B2

144 B2

149 A1 152 A1

147 B2

148 A1

143 A1 145 A1

150 A1

Figure 7.5: Geometry of d223 at MinS0 (carbon and hydrogen nuclei in black and grey, respectively) and

Cartesian displacements (blue arrows) associated to a selection of ten normal modes of vibration. These

normal modes are either A1 (143, 145, 146, 148, 149, 150, and 152) or B2 (144, 147, and 151) in the C2v

point group.

Table 7.2: Frequencies and reduced masses for the selection of ten normal S0 normal modes. The shifts

(in a0
√me) from the FC geometry to other critical points in the excited-state PESs are also given.

Symm. Freq. Red. mass Shifts to minima and TS (in bold) Shifts to MECIs

in cm−1 in AMU S1 S2(CT) S2(p2) S3(B2) S4 S1/S2 S2/S3 S3/S4

143 A1 1667 5.7 -4.588 -0.523 1.001 2.191 5.384 0.409 1.853 8.777

144 B2 1667 5.7 0.000 0.000 6.630 0.000 0.000 0.000 -4.209 0.000

145 A1 1689 5.8 -6.400 -0.778 -1.124 -0.583 -1.216 2.049 -0.568 -1.879

146 A1 1692 5.8 0.515 1.207 3.473 4.833 2.314 1.961 2.732 0.135

147 B2 1693 5.8 0.000 0.000 1.824 0.000 0.000 0.000 -1.596 0.000

148 A1 1699 6.0 -6.318 -1.031 -0.767 -0.125 -0.945 2.134 -0.920 -1.723

149 A1 2360 12.0 -7.895 -1.832 -0.883 0.089 -0.528 1.581 -0.952 -1.064

150 A1 2367 12.0 -1.743 -1.220 1.171 1.886 1.498 0.301 0.623 1.365

151 B2 2368 12.0 0.000 0.000 -5.588 0.000 0.000 0.000 3.814 0.000

152 A1 2369 12.0 -1.064 -4.739 -6.140 -7.378 -5.830 -6.667 -6.272 -4.618

To briefly conclude on the electronic structure of d223, the oscillator strengths for the three LE states
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Chapter 7. The First PPE-Dendron

are similar to the oscillator strengths of electronic excited states in the isolated p3 and m22 fragments. As

regards the light-harvesting ability for d223, the LE states on the m22 pseudo fragment offer more channels

of excitation (the chromophore is more efficient) than in the case of m23 (where the oscillator strength of

the LE state on the p2 pseudo fragment is significantly weaker). Now, the aim of this chapter is to extend

the atomistic simulation of EET (with the nonadiabatic perspective) used for m23 to d223. In particular,

in section 7.3 we will evaluate if the EET channels are similarly activated or not for the two molecules.

Take-home messages

1. We characterized the vertical transitions at the FC geometry and the excited-state PES

critical points in the first dendron of PPEs, d223. We found that at the FC geometry,

there are three LE states and one CT state.

2. The two LE states on the m22 pseudo fragment are two bright states, hence plausible

excitation channels for EET. The third LE state on the p3 pseudo fragment is also bright,

and is the acceptor state as regards EET.

3. Three different MECIs were optimized. The lowest and highest ones of them are rem-

iniscent of the MECIs in m23 and in m22, respectively. The intermediate MECI seems

to involve the CT state, but is in the same energy domain as the lowest MECI.

4. For the rest of this work, the CT state is discarded, but its influence must be investigated.

As of now, we consider it as a plausible alternative route for EET.

7.2 Vibronic coupling Hamiltonian models for a three-state case

We hereby extend the previously discussed LVC Hamiltonian models to the three-state case. The corre-

sponding LVC Hamiltonian, in a delocalized representation is

H(delocalized) = ̂𝑇nu𝟙 +
⎡
⎢
⎢
⎢
⎣

𝐻11(Q) 𝐻12(Q) 𝐻13(Q)

𝐻21(Q) 𝐻22(Q) 𝐻23(Q)

𝐻31(Q) 𝐻32(Q) 𝐻33(Q)

⎤
⎥
⎥
⎥
⎦

, (7.1)

where the reference position for the functions of Q is the Franck-Condon geometry Q = 0. The diabatic

potential energies are expressed via Taylor series around the FC geometry for the FC normal modes

𝐻𝑛𝑛(Q) = 𝐸(𝑛)(Q = 0) + ∑
𝑖

A1 modes

𝜅(𝑛)
𝑖 𝑄𝑖 + ∑

𝑖
all modes

1
2

𝑘(𝑛)
𝑖 𝑄2

𝑖 (7.2)
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7.2. Vibronic coupling Hamiltonian models for a three-state case

The inter-state couplings satisfy

𝐻12(Q) = 𝐻21(Q), 𝐻23(Q) = 𝐻32(Q) and 𝐻13(Q) = 𝐻31(Q) (7.3)

which are linear functions of Q (see below). The choices for the diabatic states are the following:

• D1 is the A1 state corresponding to the LE state on p3;

• D2 is the B2 state of the pair of LE states corresponding to m22;

• D3 is the A1 state of the pair of LE states corresponding to m22

which is consistent with the ordering of the LE electronic excited states at the Franck-Condon geometry.

Again, we note that at the FC geometry, the S2 state is a CT state. We discard it here as it seems to

have little to no coupling with the other three states (at least there), and we identify, at the FC geometry,

the three LE states to adiabatic states S1, S3, and S4, respectively. Discarding the CT state can be seen

as a prior (to the diabatization by ansatz) diabatization of the ensembles of LE and CT states. Here, it

is simply done in 1D-cuts of the PESs by selecting the adiabatic states with non-zero oscillator strengths

(the LE states) and separating out the close-to-zero oscillator strength (the CT state).

With this 3-state delocalized Hamiltonian model, there are three inter-state coupling vectors (or inter-

state coupling gradients) to consider. The simplest coupling vector is the one for the electronic states D2

and D3, as there are the electronic states localized on the m22 fragment that has been studied already in

chapter 5. D2 and D3 are the delocalized states B2 and A1, respectively, and the coupling between them

is expanded along B2 normal modes

𝐻23(Q) = ∑
𝑖

B2 modes

𝜆(23)
𝑖 𝑄𝑖. (7.4)

For the same reasons, the coupling vector between electronic states D1 and D2 is also of symmetry B2,

with

𝐻12(Q) = ∑
𝑖

B2 modes

𝜆(12)
𝑖 𝑄𝑖. (7.5)

The two couplings are zero by symmetry at C2v molecular geometries (such as the FC geometry, here the

reference point of the LVC Hamiltonian models).

The third coupling to consider is the coupling vector between the electronic states D1 and D3, that are

delocalized states A1 for the p3 pseudo fragment and A1 for the m22 pseudo fragment, respectively. The

coupling vector is thus of symmetry A1 and yields

𝐻13(Q) = ∑
𝑖

A1 modes

𝜆(13)
𝑖 𝑄𝑖. (7.6)

Here, there is some flexibility because the coupling is for electronic states of the same symmetry (similar to

the MECI without symmetry in the asymmetrically substituted PPE, m23). For the sake of simplicity, we
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Chapter 7. The First PPE-Dendron

consider that this coupling is linear with respect to the coupling vector 𝝀(13) and impose that there is no

constant coupling between D1 and D3. In other words, the coupling 𝐻13 is also zero at the FC geometry

Q = 0. This choice is arbitrary and is not guaranteed (which is the case because of symmetry in the other

two cases). It is convenient here for the fitting procedure and for further interpretation, since it ensures

that the diabatic states D1 and D3 match the adiabatic states S1 and S3 at the FC geometry. As discussed

below, it may even be set to zero everywhere in practice.

7.2.1 Parametrization of the LVC Hamiltonian model

We now present the fitting procedures for the parametrization of two LVC Hamiltonian models, with and

without assuming 𝝀(13) = 0. Similarly to the minimal 8-dimensional model of m23 discussed in chapter 6,

we choose the ensemble of quinoidal stretching and anti-quinoidal rock-bending modes in addition to the

four acetylenic stretching modes, resulting in a total of ten normal modes (shown in fig. 7.5). We explore

the S1–S4 PESs via 1D-cuts along these normal modes (shown in fig. 7.6, symbols +). Let us notice that

the shapes of the cuts along A1 and B2 normal modes are analogous to the shapes of the interpolations

presented above, fig. 7.3 a) and b), respectively. In the case of 1D-cuts along A1 normal modes, the weights

are set equal for the three adiabatic states. In the case of 1D-cuts along the B2 normal modes, the weight

of the second adiabatic state (having the double-well shaped potential energy, displaced for the p2 pseudo

fragments) is set to twice the weights of the other states.

The fitted LVC parameters are given in table 7.3, with and without the inter-state coupling 𝐻13 between

the pair of A1 electronic states.

Finally, let us mention that the presented (1+3)-state model is parametrized and given in a basis of

delocalized diabatic states (with respect to the pseudo m22 fragment). One of the consequences is that the

couplings between the p3 and p2 pseudo fragments are not directly comparable with the couplings obtained

for the m23 molecule. However, a rotation applied to the three diabatic states allows us to consider an

LVC Hamiltonian model for the localized fragments p3, p2 “left”, and p2 “right”

H(localized) =
⎡
⎢
⎢
⎢
⎣

𝐻11

√
2

2 (𝐻12 + 𝐻13)
√

2
2 (𝐻13 − 𝐻12)

√
2

2 (𝐻12 + 𝐻13) 𝐻23
𝐻33−𝐻22

2
√

2
2 (𝐻13 − 𝐻12) 𝐻33−𝐻22

2 −𝐻23

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

0 0 0

0 𝐻22+𝐻33
2 0

0 0 𝐻22+𝐻33
2

⎤
⎥
⎥
⎥
⎦

(7.7)

with the parameters and functions 𝐻𝑖𝑗(Q) defined for the LVC for delocalized states (see eq. (7.1)). The

newly defined coupling 𝐻′
23 = 𝐻33−𝐻22

2 now couples two localized states associated to the “left” and

“right” p2 pseudo fragments. The couplings 𝐻′
12 =

√
2

2 (𝐻12 + 𝐻13) and 𝐻′
13 =

√
2

2 (𝐻13 − 𝐻12) are

obtained accordingly to this rotation, and now represent the couplings between the LE-p3 state and the

“left” and “right” LE-p2 states, respectively. They are equal along A1 displacements and opposed along

B2 displacements. The associated inter-state coupling gradients are given in table 7.4 and compared to

the case of delocalized diabatic states.
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A1B2 B2A1 A1

B2A1 A1A1 A1

A1B2 B2A1 A1

B2A1 A1A1 A1

With all couplings allowed

Without the H13 coupling

Figure 7.6: Adiabatic energies (in eV) from electronic structure calculations (black symbol +) and from

the 3-state 10-dimensional LVC Hamiltonian model (blue and red lines), along Cartesian displacements

associated to the selection of S0 normal modes. For unspecified coordinates, the values are those at the FC

geometry (0); all coordinates are mass-weighted and given in atomic units. The diabatic potential energies

are also given in transparency. The adiabatic energy for the charge transfer state (discarded for the fitting

procedure) is also shown (grey symbol +). The results with all coupling and without the 𝐻13(Q) coupling

are given in top and bottom panels, respectively.
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Chapter 7. The First PPE-Dendron

Table 7.3: Frequencies (in cm−1) associated to the curvature parameters, and characteristic shifts (in

a0
√me) associated to the energy gradients and inter-state coupling gradients for the delocalized repre-

sentation of the 3-state LVC Hamiltonian models, obtained upon fitting 1D-cuts through the ten selected

modes. The parameters 𝜔(𝑠)
𝑖 correspond to curvatures 𝑘(𝑠)

𝑖 . The parameters 𝑑(𝑠)
𝑖 correspond to energy

gradients 𝜅(𝑠)
𝑖 . The parameters 𝑑(𝑟𝑠)

𝑖 correspond to inter-state coupling gradients 𝜆(𝑟𝑠)
𝑖 . Results from both

fitting procedures with and without the A1 inter-state coupling gradient 𝜆(13)
𝑖 are given. The B2 parameters

really are the same in either case because each profile is optimized independently from the others. The

corresponding LVC parameters in mass-weighted atomic units are gathered in appendix B.

Mode 𝑖 Symmetry 𝜔(1)
𝑖 𝜔(2)

𝑖 𝜔(3)
𝑖 𝑑(1)

𝑖 𝑑(2)
𝑖 𝑑(3)

𝑖 𝑑(12)
𝑖 𝑑(23)

𝑖 𝑑(13)
𝑖

143 A1 1670 1687 1457 4.420 -2.217 -6.568 0.000 0.000 4.187

144 B2 1853 1455 1585 0.000 0.000 0.000 5.811 -8.908 0.000

145 A1 1652 1690 1690 6.529 0.427 0.536 0.000 0.000 -0.017

146 A1 1690 1664 1656 -0.414 -4.702 -2.808 0.000 0.000 -0.047

147 B2 1743 1529 1691 0.000 0.000 0.000 -3.382 -2.592 0.000

148 A1 1657 1697 1688 6.341 0.083 0.372 0.000 0.000 -1.544

149 A1 2369 2352 2282 8.541 0.687 0.783 0.000 0.000 1.555

150 A1 2251 2344 2144 2.355 -1.396 -1.645 0.000 0.000 3.967

151 B2 2420 2266 2275 0.000 0.000 0.000 1.884 -7.122 0.000

152 A1 2359 2354 2328 1.683 7.826 7.196 0.000 0.000 1.427

Mode 𝑖 Symmetry 𝜔(1)
𝑖 𝜔(2)

𝑖 𝜔(3)
𝑖 𝑑(1)

𝑖 𝑑(2)
𝑖 𝑑(3)

𝑖 𝑑(12)
𝑖 𝑑(23)

𝑖 𝑑(13)
𝑖 = 0

143 A1 1595 1687 1539 4.582 -2.217 -5.598 0.000 0.000 0.000

145 A1 1652 1690 1690 6.529 0.427 0.536 0.000 0.000 0.000

146 A1 1690 1664 1656 -0.414 -4.701 -2.808 0.000 0.000 0.000

148 A1 1646 1697 1699 6.403 0.083 0.388 0.000 0.000 0.000

149 A1 2319 2352 2333 8.721 0.687 0.941 0.000 0.000 0.000

150 A1 2088 2344 2303 2.445 -1.396 -1.186 0.000 0.000 0.000

152 A1 2329 2354 2358 1.805 7.826 6.938 0.000 0.000 0.000

Table 7.4: Charateristic shifts (in a0
√me) of the inter-state coupling gradients in the case of delocalized

and localized diabatic states (D2,D3) for the m22 pseudo fragment.

Mode 𝑖 143 144 145 146 147 148 149 150 151 152

Symmetry A1 B2 A1 A1 B2 A1 A1 A1 B2 A1

𝑑(12)
𝑖 0.000 5.811 0.000 0.000 -3.382 0.000 0.000 0.000 1.884 0.000

𝑑(13)
𝑖 4.187 0.000 -0.017 -0.047 0.000 -1.544 1.555 3.967 0.000 1.427

𝑑(loc,12)
𝑖 2.580 4.109 -0.012 -0.033 -2.392 -1.086 1.067 2.567 1.332 0.998

𝑑(loc,13)
𝑖 2.580 -4.109 -0.012 -0.033 2.392 -1.086 1.067 2.567 -1.332 0.998
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7.3. Time-resolved simulation of EET in a tri-meta-substituted PPE-oligomer

Take-home messages

1. We parametrized two (1+3)-state 10-dimensional LVC Hamiltonian models for the three

LE states of the d223 molecule. The difference between the two models is the definition

of the 𝐻13 coupling, set explicitly to zero in one of the two models.

2. This choice has little to no effect as regards the 1D-cuts along the normal modes of

vibration.

3. However, its physical relevance for modelling EET might be twofold:

• in the delocalized representation, there is no reason for the coupling between the

A1 states to be zero

• in the localized representation, the choice of no coupling boils down to no coupling

between the p3 and the p2 pseudo fragments along A1 modes.

7.3 Time-resolved simulation of EET in a tri-meta-substituted PPE-oligomer

The excitation-energy transfer (EET) in the d223 molecule consists in i) the excitation of electronic states

localized on the m22 pseudo fragment (previously defined diabatic states D2 and D3) and ii) the transfer

of the excitation-energy to the electronic state localized on the p3 pseudo fragment (previously defined

diabatic state D1). Unless otherwise specified, the three diabatic states are the delocalized (as regards the

m22 pseudo fragment viewed as two p2 pseudo fragments) electronic states, for which two (1+3)-state 10-

dimensional LVC Hamiltonian models have been parametrized in section 7.2. The two models correspond

to two arbitrary choices for the definition (and subsequent parametrization) of the A1/A1 coupling 𝐻13,

for which the effects on the dynamics of EET are now discussed.

7.3.1 Comparison of EET with and without A1/A1 couplings

The comparison of the simulations with and without the A1/A1 coupling 𝐻13 (fig. 7.7 plain and dashed

lines) suggests that the early dynamics is almost unchanged by this coupling.
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Figure 7.7: Time evolution (up to 50 fs) of the populations of the three diabatic excited states for different

initial states, in the case of a (1+3)-state 10-dimensional LVC Hamiltonian model with all linear inter-state

couplings allowed (plain lines) and without the A1/A1 inter-state coupling 𝐻13 (dashed lines). From left

to right, initial states for the dynamics are D1, D2, and D3, respectively.

Let us first focus on the results from the LVC Hamiltonian model “with coupling”. Consistently with

the donor-donor-acceptor scheme of d223, the two excitation channels (on donor states D2 and D3) have

an analogous relaxation channel toward the D1 state. The population of the acceptor D1 (blue line) state

reaches 50% around 15 fs in both cases, and oscillates around a maximum of 80% after 20 fs, irrespective of

the initial excitation. The populations of the donor states D2 and D3 exhibit differences for the very early

dynamics (due to the choice of the initial state) but show identical transient regimes after 5 fs. In both

cases, some population is transferred between the two states in the very early dynamics up to 5 fs where the

superposition of the donor states is sligtly in favor of the donor state D2 (the B2 state, coupling with the

two other A1 states). The resulting dynamics is a non-totally monotonic transfer from the excited donor

state to the acceptor state, and a sort of transient accumulation in both donor states before the transfer

is completed toward the acceptor state D1. This is also noticeable by the slowdown in the population of

the acceptor state D1.

The two models, with and without A1/A1 coupling (plain and dashed lines) yield similar results for the

early dynamics of the population transfer itself. A significant difference is obtained only as regards the

initial excitation on the donor state D3 (the A1 state on the m22 pseudo fragment), where the transient

population of the other donor state (D2) is more important than with coupling. The excess of transient

population here is comcomitant with the deficit of population in the acceptor state D1. In other words,

the presence of the coupling slightly speeds up the early transfer from initial excitation on D3, most likely

thanks to a more efficient direct transfer from the donor state D3 to the acceptor state D1. The effect

of this modelling choice seems rather innocent in the present case of a donor-donor-acceptor dendrimer,

because both donor states are somehow quite equivalent.

Let us now discuss how the population evolves after the transfer from the D2/D3 pair donor states

to the acceptor state D1, and compare the results for the models with and without the coupling 𝐻13

(fig. 7.8). Without the coupling 𝐻13, the population of the D1 state is allowed to transfer back to the

D2/D3 manifold, at approximately 𝑡 = 50 fs. An interpretation of this is that in the absence of the A1/A1
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7.3. Time-resolved simulation of EET in a tri-meta-substituted PPE-oligomer

coupling 𝐻13, the effect of the coupling 𝐻12 is too important compared to other (intra- or inter-state)

couplings. However, the population is rapidly transferred again to the acceptor state D1, thus only yielding

an additional transient regime for the populations. Overall, both modelling choices lead to equivalent final

states, but may have different detailed relaxation dynamics for the first 100 fs.
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Figure 7.8: Time evolution (up to 200 fs) of the populations of the three diabatic excited states for different

initial states, in the case of a (1+3)-state 10-dimensional LVC Hamiltonian model with all linear inter-state

couplings allowed (plain lines) and without the A1/A1 inter-state coupling 𝐻13 (dashed lines). In left and

right panels, the initial states for the dynamics D2 and D3, respectively.

To conclude on this comparison, we investigated here the effect of the A1/A1 coupling even though

the underlying electronic states are not “first neighbours” in terms of adiabatic ordering. We also mention

that in the case of “freezing” the 𝐻13 to zero without re-fitting the other parameters, the “late” dynamics

behavior is similar to the case of 𝐻13 = 0 prior to the fitting procedure. We thus expect this coupling

to be necessary for every situation where the chromophores (here m22) and the energy-“trap” (here p3)

share non-negligible similar electronic transition densities (on the “linker” between the two fragments, here

a benzene). This confirms the importance of the choice of the diabatic states and the activation or not of

the coupling 𝐻13 to correctly model energy-trapping (the final state of excitation-energy transfer) in tri-

meta-substituted dendrimer nodes. This holds here in a low-dimensional model (ten degrees of freedom out

of 174) of the tri-meta-substituted PPE-oligomers, but further studies involving more degrees of freedom

and the intra-state couplings (Duschinsky contributions) would be necessary to complement the present

study and rule out any artefacts due to low dimensionality.

We clearly identified, in our simulations, three regimes, for which the effect of the 𝐻13 coupling is

different. First, the very early dynamics (first transfer from the D2/D3 manifold to the D1 acceptor state)

has almost no dependence on the choice of the 𝐻13 coupling. The second regime (around 50 fs) exhibits

a non-negligible superposition of the D2 and D3 donor states, and lasts longer in the case of no coupling

between the D3 and D1 states. Finally, the late dynamics, where the wavepacket is definitely trapped in

the acceptor state D1, is the same for both situations, only with a time delay between them.

For the rest of this chapter, we will discuss only the results obtained with the (1+3)-state 10-dimensional

LVC with all couplings, as it is the closer we have to an ideal excitation-energy transfer.
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7.3.2 Electronic and vibrational monitoring of EET

Similarly to the study of EET in m23, we analyse the dynamics of the electronic populations and of the

state-specific expectation values of nuclear-dependent operators for three initial state (D1, D2, and D3).

7.3.2.1 Kinetics of the population transfer

The adiabatic and diabatic population dynamics for the three simulations are shown in fig. 7.9, up to 200 fs.

Again, the adiabatic populations are computed using the time-dependent DVR which yields approximate

adiabatic populations. The reason why we choose a TD-DVR integration is that the DVR integration

(with no speeding-up algorithm) for ten degrees of freedom takes more than a few hours for computing

the adiabatic populations for each time step, while the TD-DVR adiabatic populations are obtained in

about a minute. One consequence of the TD-DVR integration for the adiabatic populations is the rather

non-smooth variations of the populations. However, for all three simulations, the adiabatic and diabatic

populations are relatively close, except for the early dynamics. Another consequence is that there are

numerically different results from TD-DVR integrations even for physically identical situations (example:

initialization on “left” or “right” diabatic states, shown and discussed in chapter 8).
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Figure 7.9: Time evolution (up to 200 fs) of the populations of the first three adiabatic and diabatic states

for different initial states, in the case of a (1+3)-state 10-dimensional LVC Hamiltonian model with all

linear inter-state couplings allowed. From left to right, the initial states for the dynamics are D1, D2, and

D3, respectively.

We briefly recall that the initializations on D2 or D3 represent two distinct excitation channels of EET

in d223, even though the probability of light absorption toward D2 is stronger than the one toward D3

(due to a significantly larger oscillator strength associated to D2). In either case, the dynamics goes

toward a similar relaxation channel, with ultrafast and very efficient EET (within 25 fs, quantum yield of

about 80%). The previously identified “transient” state in D2 before almost entirely transferring population

to D1 is consistent with the fact that D2 is intermediate in energy (at least around the Franck-Condon

region and at the local minima of the p2 pseudo fragments) and is responsible for a non-negligible part

of the coupling toward D1 (for instance along the central-quinoidal rock-bending mode 144). In essence,

the system d223 acts similarly to m23 being excited on its S2 electronic states, but there are now twice
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7.3. Time-resolved simulation of EET in a tri-meta-substituted PPE-oligomer

more excitation channels (S3 and S4), with a clear enhancement of the oscillator strength thanks to the

symmetrical substitution of the chromophore fragment. In the next section, we confirm the equivalent

character between the EET from both excitation channels by monitoring the nuclear geometry during the

population transfer.

7.3.2.2 “Trajectories” of EET, monitoring the molecular geometry

The expectation values of the position of the propagated wavepackets (so-called centers of the wavepackets)

for the two excitation channels (initial state D2 or D3) are shown in fig. 7.10, for the ten selected normal

modes.
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Figure 7.10: Time evolution of the expectation values of position (in mass-weighted atomic units) of the

centers of the nuclear wavepackets in either of the three diabatic states D1, D2, and D3 (blue, green, and

orange lines). Dynamics initialized on D2 and D3 are shown in top and bottom panels, respectively.

Let us notice that the propagated wavepackets maintain their even character with respect to the normal

modes that belong to the B2 irreducible representation, which is a positive sign as regards the size of the

grid and the spreading of the wavepackets. On the other hand, the wavepacket centers are significantly

(and rapidly) moving, at least in the acceptor state D1, along the A1 normal modes. This is expected

since the gradients along these modes are non-negligible, except to some extent for mode 146 (for which

the displacements are less important). Most importantly, the trajectory of the centers of the wavepacket

are very similar when comparing the two initial excitations. Again, this shows how the two channels of

excitation lead to the same EET channel, with almost identical vibrational relaxations in the D1 acceptor
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Chapter 7. The First PPE-Dendron

state from the two initial excitations.

As regards the internal coordinates, similar conclusions can be drawn. We show in fig. 7.11 the acetylenic

bond lengths in all three diabatic states as well as in the total contribution to the molecular geometry. As

expected from the visual inspection of the centers of the wavepackets, the internal coordinates have similar

evolutions for the two excitation channels. We stress that although it is not trivial from visual inspection:

the left and right panels are indeed (slightly) different.

a) b)

c)

d)

a)

b)

c)

d)

Initial Excitation on D₂ Initial Excitation on D₃

a)

b)

c)

d)

Figure 7.11: Time evolution of the lengths of the acetylenic bonds of d223 in either of the three diabatic

states D1, D2, and D3 (blue, green, and orange lines), or in total (black line). Grey areas represent the

approximate equilibrium positions of the acetylenic bonds in the electronic ground and first excited states.

Dynamics initialized on D2 and D3 are shown in left and right panels, respectively.

Up to now, there was no major difference between EET in m23 or in d223, except for the enhanced

oscillator strength of the excitation channels in d223. However, there is another advantage of having a

symmetrically substituted chromophore m22, as opposed to only one p2 pseudo fragment. This advantage

can be seen in the initial distortion of the p2 pseudo fragments, fig. 7.11, panels a) and b). In either case of

initial excitation (D2 or D3), the initial distortion is split into the two p2 acetylenic bond lengths on average,

whereas in the case of d223 the initial excitation on D2 yields a very strong distortion, going far beyond

the excited-state bonding pattern. We expect this to be a signature of a smoother and more efficient

internal redistribution of the excess electronic energy, helped by the fact that the initial vibrations are split

into the whole m22 chromophore. In particular, we also expect this smoother internal redistribution to be

responsible for fewer back-transfer of energy to the higher-excited states, as opposed what we observed in
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7.3. Time-resolved simulation of EET in a tri-meta-substituted PPE-oligomer

our simulations of EET in m23.

7.3.2.3 Intramolecular vibrational energy redistribution during EET

Our framework (closed quantum systems) is not well-suited for the study of energy redistribution and

thermal equilibration in a medium. However, such phenomena happen in larger timescales compared to

the ultrafast EET that we are facing here. As a result, we are interested in the early repartition of the

photoinduced excess of electronic energy (the excitation energy from the donor states D2 and D3) within

the normal modes of the acceptor state (D1 here, localized on the p3 branch). In fig. 7.12, we show the

vibrational energy mode per mode for the diabatic states D1, D2, and D3, with initial excitation either on

D2 or D3.

D1 D2 D3

Excitation in D2

Excitation in D3

D1 D2 D3

Figure 7.12: Vibrational energy (in cm−1) per mode for contributions from the diabatic states D1, D2, and

D3 (left to right, respectively). The initial state is either D2 or D3 in top and bottom panels, respectively.

We recall that in the case of m23, the same vibrational energy analysis suggested that the p2-acetylenic

stretching normal modes were strongly distorted and excited, and we associated the re-crossing of the

conical intersection seam to these intense vibrational excitations. Here, we notice that the acetylenic

stretching modes end up bearing a smaller part of the total excess energy coming from EET. In partical,

the m22-asynchroneous stretching mode (151) is indeed distorted in the D2 and D3 states, but (expectedly

from the internal coordinates analysis) its vibrational behavior stays reasonable (slightly above the zero-

point energy) even at the crucial time of the electronic population transfer (around 15 fs). On the other

hand, the central-phenylene rock-bending mode 144 is also strongly excited; in particular at the time of

the transfer from the pair of the donor states to the acceptor state (when the system reaches 80% of yield

for EET), and is then stabilized with the other active modes.
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Chapter 7. The First PPE-Dendron

Take-home messages

1. The photoinduced excess vibrational energy in the p2-acetylenic stretching modes is

reduced compared to the asymmetrical meta-substituted PPE. This might be related to

a more important stability of the d223 dendrons as regards photo-induced EET compared

to the m23 oligomer (photo-protection).

2. The central-phenylene rock-bending mode is the most excited mode as regards EET in

the acceptor state.

7.4 Concluding remarks

7.4.1 Modelling EET in a tri-meta-substituted node of the PPE-dendrimers

In this chapter, we characterized the electronic excited states of the first dendron of PPEs, namely d223.

In particular, we modelled the PESs and NACs associated to the locally-excited states, and ran time-

resolved simulations of the excitation-energy transfer after excitation of either of the two donor states

of the chromophore (m22). The EET was found to occur with very similar relaxation channels for both

situations (exciting the brightest or darkest states of the m22 pseudo fragment). The role of the coupling

beween the A1 p3-localized electronic state and the A1 m22-localized electronic state was also investigated

and our results suggest that it has a non-crucial, yet non-negligible, effect on the dynamics of the system,

at least for low-dimensional models.

As regards the CT state, we did not account for its existence in the quantum dynamics simulations. The

investigation of its importance for the EET mechanism is yet another debate, which opened first for the

m23 molecule [38]. As regards our present framework (TD-DFT with CAM-B3LYP functional), we are not

able to validate nor its energy nor its coupling with the LE states. Our estimation is for now limited to the

estimation of the coupling at the MECI geometries where the CT state is involved. A first step toward this

characterization has been done, and further comparisons with another tri-meta-substituted PPE-oligomer

(the symmetrically substituted one, d222) might help us to identify its role. Such studies and comparisons

are underway (and not shown here), with the supervision of the research internship of a 2nd-year Master

student on the characterization of the d222 molecule, bearing similar features.

However, results of the simulation of EET for the d223 dendron with only the LE states are quite similar

to the simulation done for the m23 molecule. We would expect the effect of the CT state to be rather

small on the dynamics of the system, maybe slowing down the dynamics via possible alternative but not

“quenching” routes for EET (LE2,3 → LE1 versus LE2,3 → CT → LE1).
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7.4.2 Toward an explicit simulation of the EET

Our most short-term outlook is now the study of local (“left” or “right”) excitations for the d223 dendron,

as it is a very convenient playground for it. Indeed, we have seen that the m22-like MECI couples a pair of

delocalized states (localized on m22) that can also be seen as a pair of p2-localized states. Such excitations

have already been explored for the same molecules within other frameworks (open quantum systems and

hierarchical equations of motion) [18, 55]. We demonstrate in chapter 8 the feasibility of such excitations

within our framework (MCTDH).
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Intermediate Abstract

In part II, we used nonadiabatic quantum dynamics to reproduce steady-state spectroscopy and to probe

the EET dynamics in PPE-oligomers. We based our modelling on the prior characterization of the electronic

excited states and their potential energy surfaces. Two of these oligomers have C2v molecular geometries,

such that there are two types of excitations for the chromophores: delocalized excitations or localized

excitations.

In chapter 8, we discuss the influence on EET of initially localized or delocalized excitations, in the

case of the first dendron of PPE-dendrimers. We investigate this effect in the view of “pure” delocalized

electronic states or superpositions of them, and raise a question of the physical meaning of the coherence

within the excited-state manifold.

In chapter 9, we propose a bottom-up strategy to model EET in an extended branch of the nano-star

(with 2-, 3- and 4-ring fragments). Our strategy takes advantage of the easily characterized isolated linear

fragments, which define localized Frenkel excitons. The excitonic coupling is estimated from the knowledge

of isolated meta-substituted fragments and the characterization of conical intersections within their excited

states.

Finally in chapter 10, we give concluding remarks for the present work.
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Chapter 8. Control of the Electronic Excitation

In part II, we characterized the electronic locally-excited states (LE) of two symmetrically-substituted

building blocks of the PPE-dendrimers, namely the m22 chromophore and d223 dendron. We discussed the

importance, as regards the excitation channels of EET, of the C2v molecular geometry for both molecules.

Indeed in both cases, the m22-localized electronic states are delocalized over the whole m22 fragment, and

the delocalized initial excitations are thus on either of the two delocalized states, belonging to A1 or B2

irreducible representations.

In this chapter, we present our most recent analysis of local initial excitations, in particular for the case

of the d223 dendron, and evaluate the possible effect on the EET relaxation channel on localized rather

than delocalized excitations. We also discuss such excitations from the analysis of diabatic (and adiabatic)

coherences. We hope that such advances can lead to an extension of our framework that is compatible

with the simulation of light pulses for the calculation of two-dimensional electronic and time-resolved

spectroscopies.

8.1 Diphenylacetylene-localized excitations, the case of d223

We have seen in chapter 5 that the chromophore m22 has an absorption spectrum similar to the isolated p2

fragments (diphenylacetylene), which was rationalized by the nature of the first pair of electronic excited

states [42]. In the PPE-dendrimer, this corresponds, in terms of Frenkel excitons, to an ensemble of p2

pseudo fragments able to absorb light, simultaneously or not, and able to transfer the associated excitation-

energy via the m23 or d223 units. Herein, we evaluate the EET mechanism from this starting point of a

local excitation on only one of the p2 pseudo fragments.

8.1.1 Transformation from delocalized to localized states

To study such local excitations, we already mentioned that another choice of diabatic electronic states

was possible. Indeed, we showed that for the 3-state model of d223, the Nikitin transformation for the

delocalized diabatic states gives a Hamiltonian for the localized diabatic states, recalled hereafter

H(localized) =
⎡
⎢
⎢
⎢
⎣

𝐻11

√
2

2 (𝐻12 + 𝐻13)
√

2
2 (𝐻13 − 𝐻12)

√
2

2 (𝐻12 + 𝐻13) 𝐻23
𝐻33−𝐻22

2
√

2
2 (𝐻13 − 𝐻12) 𝐻33−𝐻22

2 −𝐻23

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

0 0 0

0 𝐻22+𝐻33
2 0

0 0 𝐻22+𝐻33
2

⎤
⎥
⎥
⎥
⎦

(8.1)

with the parameters and functions 𝐻𝑖𝑗(Q) defined for the LVC Hamiltonian with delocalized states (see

eq. (7.1)).

However, the Nikitin transformation can be directly operated on the initial wavepackets, thus changing

the initial state for the dynamics, without changing the diabatic states. We recall that the delocalized

diabatic states D1, D2, and D3 are the A1 p3-localized and (B2, A1) pair of m22-localized diabatic states,
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8.1. Diphenylacetylene-localized excitations, the case of d223

respectively. The initial excitations used in chapter 7 for simulating EET were

ΨB2
(Q, 𝑡 = 0) = 𝜓(0)

D0
𝜙dia
B2,m22 = 𝜓(0)

D0

⎛⎜⎜⎜⎜⎜
⎝

0

1

0

⎞⎟⎟⎟⎟⎟
⎠

and ΨA1
(Q, 𝑡 = 0) = 𝜓(0)

D0
𝜙dia
A1,m22 = 𝜓(0)

D0

⎛⎜⎜⎜⎜⎜
⎝

0

0

1

⎞⎟⎟⎟⎟⎟
⎠

. (8.2)

The simulations run from these initial states are reported again in fig. 8.1, left panels. With operating the

Nikitin transformation, we keep the same definition of the Hamiltonian and of the diabatic states but have

ΨL/R(Q, 𝑡 = 0) =
√

2
2

𝜓(0)
D0

(𝜙dia
B2,m22 ± 𝜙dia

A1,m22) =
√

2
2

𝜓(0)
D0

⎛⎜⎜⎜⎜⎜
⎝

0

1

±1

⎞⎟⎟⎟⎟⎟
⎠

(8.3)

which are now local excitation on the “left” or “right” p2 pseudo fragment, depending on the orientation (in

the following, we talk about the pair of “L/R” and “R/L” states). The transformation is really simply a sum

and difference of the delocalized states, such that the populations for these new initial states are 0:50:50

superpositions (in the view of the delocalized states). The simulations run from these locally-excited states

are reported in fig. 8.1, center panels. Finally, the simulations run from the locally-excited states by directly

using the local representation of the Hamiltonian (eq. (8.1)) are shown in fig. 8.1, right panels. We note

that the latter two types initial states (for center and right panels) are exactly equivalent.

Figure 8.1: Time evolution (up to 50 fs) of the populations of the first three adiabatic and diabatic states

for different initial states, in the case of a (1+3)-state 10-dimensional LVC Hamiltonian model. In the left

and center panels, the pair of diabatic states for m22 are the delocalized diabatic states. In right panels,

the pair of diabatic states for m22 are the localized diabatic states. The initial state 𝜙(𝑡 = 0) for the

dynamics is recalled on top of each panel.

Let us stress again that the adiabatic populations are only approximatly computed here (TD-DVR),
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Chapter 8. Control of the Electronic Excitation

hence they can not be directly compared (within numerical details) from one simulation to the other.1

8.1.2 Equivalence of EET from delocalized and localized excitations

For the diabatic populations, we find, as expected, that the “R/L” and “L/R” initializations yield the exact

same dynamics, from both the perspective of the localized or delocalized diabatic states (center and right

panels, respectively). In either of the four cases, the acceptor state D1, localized on p3 and thus unchanged

by the Nikitin transformation, exhibits the same behavior.

This is made clearer in fig. 8.2, where we show again the (delocalized and localized) diabatic populations

for the initial states 𝜙(𝑡 = 0) = B2, 𝜙(𝑡 = 0) = B2 in 𝐻deloc, and 𝜙(𝑡 = 0) = B2 in 𝐻 loc.
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Figure 8.2: Time evolution (up to 50 fs) of the populations of the (delocalized or localized) diabatic states

for different initial states, in the case of a (1+3)-state 10-dimensional LVC Hamiltonian model with all

linear inter-state couplings allowed. From left to right, the initial states for the dynamics are D1, D2, and

D3, respectively.

We also note that the behavior of the D2 state as transiently more populated than the D3 state,

observed in the case of delocalized excitations, is found again to some extent from the localized excitation.

In fact, we note that after the first 5 fs, the populations of (D2, D3) are the same after a localized and a

delocalized initial excitation. This is consistent with the fact that the (D2, D3) pair of m22-localized states

are almost degenerate and strongly coupled at the FC geometry, where the dynamics is initialized. Hence,

even though the initial excitation is localized, the system rapidly enters a transient regime with slightly

favored population transfer for the D2 state. Accordingly, the relaxation channel toward the acceptor state

D1 is almost unchanged.

1Preliminary results on a reduced 6-dimensional model, with usual DVR integration and no “quick” algorithm yields, as

expected, the exact same adiabatic populations for the “left” and “right” initial excitations.
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8.2 “Strong” coherence or not, another story of representations?

In chapter 3, we have defined the diabatic coherence between the diabatic states 𝑟 and 𝑠

𝐶𝑟𝑠(𝑡) = ⟨𝜓𝑠 | 𝜓𝑟⟩ (𝑡). (8.4)

where the braket notation is defined for the integration over the nuclear degrees of freedom. In a two-level

model (two electronic states), we have seen that these quantities can be simply obtained by evaluating

the expectation values of the Pauli matrices. For the present case of a three-level system, such quantities

would rather be evaluated by calculating the expectation values of the Gell-Mann matrices [163,164].2 For

instance, the coherence between the diabatic states D1 (A1 p3-localized) and D3 (A1 m22-localized), for a

given propagated wavepacket |Ψ⟩ would be

ℜ(⟨𝜓1 | 𝜓3⟩) = 1
2

⟨Ψ | 𝝀4 | Ψ⟩ and ℑ(⟨𝜓1 | 𝜓3⟩) = 𝑖
2

⟨Ψ | 𝝀5 | Ψ⟩ (8.5)

with 𝝀4 and 𝝀5 two of the eight Gell-Mann matrices

𝝀4 =
⎛⎜⎜⎜⎜⎜
⎝

0 0 1

0 0 0

1 0 0

⎞⎟⎟⎟⎟⎟
⎠

and 𝝀5 =
⎛⎜⎜⎜⎜⎜
⎝

0 0 −𝑖

0 0 0

𝑖 0 0

⎞⎟⎟⎟⎟⎟
⎠

. (8.6)

Delocalized excitations

We start by discussing the coherences in the case of delocalized excitations, with initialized dynamics on

the D2 or D3 states which are B2 and A1, respectively. We show in the first two rows of fig. 8.5 the diabatic

coherences for the delocalized states with propagations initialized on the D2 and D3 states, respectively.

Because the diabatic states and the initial states are adapted to symmetry, the coherence, evaluated via

the simple overlap of the nuclear wavepackets, is zero at every time for states of different symmetry. As a

result, we have for the delocalized excitations

𝐶12(𝑡) = 0 and 𝐶23(𝑡) = 0 (black and red lines). (8.7)

On the other hand, the coherence between the diabatic states D1 and D3 (both A1) has no reason to be zero

by symmetry (blue line). Hence, 𝐶13(𝑡) is the only non-zero off-diagonal element of the reduced-density

matrix during the transfer. In particular, the coherences 𝐶𝑟𝑠(𝑡) as functions of the population differences

𝑃𝑠(𝑡) − 𝑃𝑟(𝑡) are shown in the last colum of the same figure. Similarly to the case of the m23 molecule,

we cleardy identify two distinct regimes of the coherence 𝐶13 for the EET and for the oscillations in the

acceptor state.

A visual aid for rationalizing the null coherence between diabatic states of different symmetry is given

in fig. 8.3, panels a) or b).
2The Gell-Mann matrices are a generalization of the Pauli matrices for the three-level case.
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Figure 8.3: a) and b) Initial wavepackets ΨB2
(Q, 𝑡 = 0) and ΨA1

(Q, 𝑡 = 0) on pure delocalized diabatic

states. c) Initial wavepacket on one of the two localized diabatic states, ΨL/R(Q, 𝑡 = 0). d) Same viewed

as a superposition of the delocalized diabatic states. The coupling between the diabatic states D2 and D3

is non-totally symmetric, hence a change of parity for wavepackets when they transfer from one state to

the other.

In any case, the initial wavepacket is totally symmetric (it is the vibrational ground state of the electronic

ground state). Once projected, for instance, onto the D2 state (of symmetry B2), it keeps its totally-

symmetrical character. However, when a part of the wavepacket starts transferring to the D1 or the D3

states (D3 in the visual aid, of symmetry A1), it changes parity (due to the non-totally symmetric couplings).

There is no overlap between the nuclear wavepackets of D2 and D3 (or D1), hence no coherence 𝐶23(𝑡)

(nor 𝐶12(𝑡)). In this same situation however, the nuclear wavepackets transferred to D1 or D3 are both

non-totally symmetric and can overlap, hence a non-zero coherence 𝐶13(𝑡).

Localized excitations

We show in the last two rows of fig. 8.5 the diabatic coherences for the delocalized states again, but with

propagations initialized on the “left” and “right” states (obtained from eq. (8.3)). Because of the initial

50:50 preparation of the initial states, the initial coherence between the D2 and D3 excited states is equal

to one. It rapidly decreases which is consistent with the decay of the initial superposition of the donor

states in favor of the population of the acceptor state. Accordingly, the coherence between the D1 and D2

(or D3) states is non-negligible in the early dynamics (instead of zero in the case of initialization on pure

delocalized states). More precisely, the coherence between the acceptor (D1) and the donor states (D2 and

D3, initially populated with equal weights in the case of localized excitations) are very similar in variations

and in amplitudes.

Similarly, a visual aid for rationalizing the non-zero coherence between diabatic states of different

symmetry but with localized excitations is given in fig. 8.3, panels c) and d). We interpret the allowed

non-zero coherence as due to the initial superposition which attributes nuclear wavepackets with similar

parities to both D2 and D3 delocalized states.
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8.2.1 Comparison of the coherences in localized and delocalized representations
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Figure 8.4: Population differences and coherences between the diabatic states 𝑟 = 1, 𝑠 = 2 (black),

𝑟 = 2, 𝑠 = 3 (red), and 𝑟 = 1, 𝑠 = 3 (blue). The results are given, from top to bottom panels, for initial

excitations on D2, D3,
√

2
2 (D2 + D3), and

√
2

2 (D3 − D2), respectively.
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Chapter 8. Control of the Electronic Excitation

8.2.2 Are what we call here coherences representation-dependent?

In this work, what we called diabatic coherences are quantities that depend on the representation of the

electronic states. By this, we mean that the coherence between two electronic excited states for i) an

initial superposition of state; or ii) an initial pure state, depends on the choice of the representation for

the electronic states. We illustrated this by evaluating the coherence between states of symmetry with two

limiting cases: pure states (delocalized) or superposition of states (localized). However, the superposition

of the D2 and D3 states to form “left” and “right” states are not superpositions in the localized diabatic

representations.

With the current state of our expertise on coherence, we are not able to correctly assess the physical

meaning of the coherence we are measuring for pairs of diabatic states. The question of the physical

meaning would be the same for the coherence between adiabatic states (briefly presented in the next

section), which is simply another representation for the electronic states.

8.2.3 Toward adiabatic coherences

For the calculation of adiabatic coherences, we face the same problem as for the calculation of adiabatic

populations: the size of the grid prevent the exact evaluation of high-dimensional integrals on the nu-

clear degrees of freedom. We briefly mention here that we extended the use of the diabatic-to-adiabatic

transformation for the calculation of adiabatic populations to the calculation of the adiabatic coherences.

Essentially, the calculation is the same, simply using the different indices for the electronic states.
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Figure 8.5: Population differences and coherences between the adiabatic states 𝑟 = 1, 𝑠 = 2 (black),

𝑟 = 2, 𝑠 = 3 (red), and 𝑟 = 1, 𝑠 = 3 (blue). The results are given for initial excitations on D2 and
√

2
2 (D2 + D3) it top and bottom panels, respectively.
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8.3. Concluding remarks and open questions

8.3 Concluding remarks and open questions

Almost no effect of local excitations on the EET in the first dendron

To conclude, we have seen that localized excitations (simulated here by a superposition of delocalized

states) on one or the other of the p2 pseudo fragments in the first dendron of PPE-dendrimer have the

same EET dynamics than delocalized excitations. Hence, as regards the EET phenomenon, there seems to

be no optimal excitation channel, and both types of excitations would result in the same light-harvesting

processes.

Coherence and electronic representations

However, there are still open questions on the coherences between the electronic states. In particular, we

are interested now in investigating the physical relevance of the zero-by-symmetry coherence computed

between electronic states which belong to different irreducible representations. Are we missing an integral

contribution in our calculation of the coherence, eq. (8.4)? Or is the coherence zero at all times 𝑡 because

it is zero at 𝑡 = 0? On the other hand, we can also question the physical relevance of the non-negligible

coherences obtained when considering an initial superposition of states, to simulate a local excitation

ΨL/R(Q,𝑡=0). Is this coherence only non-negligible in the representation for which the initial state is a

superposition? Is it nullified when computing again the coherence in other representations, such as a

localized representation or an adiabatic one?

We have not addressed these questions at the moment, but we mention that this is an active discussion.

It is notably the case in the context of attochemistry, where the preparation of initial superposition of states

is a central subject [165–167].

Toward electronic excitations via laser pulses

Finally, we mention that our present framework is well-suited for pulses study, which could serve different

purposes. First, laser pulses could be used to prepare more realistically, as regards the experiments, super-

positions of states. In particular, it has been applied to the symmetrically meta-substituted chromophore

m22, to explore the feasibility of laser-controlled excitations toward symmetry-preserving or symmetry-

breaking initial states [55]. We aim at reproducing these results for the first generation of dendron d223,

which has also been explored recently [18].

In a second step, we would like to simulate pump-probe experiments, using two delayed laser pulses.

In particular, this could also help us to disentangle the open questions of coherence, by predicting time-

dependent observables and evaluating the possible effect, or not, of coherence on them. Of course, this

would require further comparison with the experiments.
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Chapter 9. Modelling of PPE-dendrimers

In part II, we simulated excitation-energy transfer (EET) in the smallest di- and tri-meta-substituted

PPEs having an energy gradient from one branch to another. Such simulations required the characterization

of the electronic excited states of the molecules and the parametrization of models for the excited-state

potential energy surfaces (PESs). However, explicitly simulating the whole molecule becomes unfeasible

for larger PPE-oligomers or for PPE-dendrimers such as the nano-star.

Historically, the first attempts of modelling and simulating EET in PPE-dendrimers were based on

the Frenkel-exciton Hamiltonian [30] which consists in having excitation energies for each chromophore

and excitonic couplings between them. In the framework of the Frenkel-exciton Hamiltonian models, the

nuclear motions are in general included only via the definition of a harmonic bath of vibrations coupled to

the localized excitons (the system).

In this chapter, we propose a strategy based on the Frenkel-exciton Hamiltonian model (viewing each

exciton as an isolated fragment) supplemented by a linear vibronic coupling Hamiltonian to model the

excitonic coupling (as explicitly depending on the nuclear motions). In essence, each exciton (linear para-

substituted fragments) shall have the diabatic potential energy of the corresponding isolated fragment, and

the coupling between two excitons should expand in the normal modes of the associated isolated fragments.

We design and evaluate the feasibility of our methodology on one “full” extended branch of the simplified

nano-star, having 2-ring, 3-ring, and 4-ring fragments connected sequentially via shared di-meta-substituted

phenylenes (called b234 in the following, see fig. 9.1).

=

Figure 9.1: The ”full” extended branch of the simplified nano-star, symbolically decomposed in three

isolated linear para-substituted branches. This pseudofragmentation scheme will serve for the definition

and parametrization of a model based on the Frenkel-exciton Hamiltonian.
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9.1. Pre-requisites for an extended pseudofragmentation scheme

9.1 Pre-requisites for an extended pseudofragmentation scheme

In order to use the knowledge of the isolated linear para-substituted PPE fragments, we must first check

if the electronic excited states of the “full” extended branch are compatible with the description of local

excitations on the linear pseudo fragments.

9.1.1 Electronic states in one of the nano-star branch

We show in fig. 9.2 the energies, transition densities and oscillator strengths for the first four vertical

transitions from the Franck-Condon geometry of b234.

f = 3.9874 f = 1.4208 f = 0.0023 f = 0.7968
E = 3.59 eV E = 3.89 eV E = 4.37 eV E = 4.45 eV

f = 3.6866
E = 3.59 eV

f = 1.6641
E = 3.89 eV

f = 0.0024
E = 4.37 eV

f = 0.8078
E = 4.45 eV

Figure 9.2: Transition densities for the first four electronic excited states at the minimum of the electronic

ground state of the b234 extended branch of PPEs, for two geometry configurations (”external” and

”internal” in left and right, respectively). We note here that the minima of the electronic ground states

of the two configurations are separated by only 2 × 10−5 eV. In the text, we focus on the ”external”

configuration (left).

We identify three bright localized electronic states with non-negligible oscillator strenghts: S1, S2,

and S4 localized on the p4, p3, and p2 pseudo fragments, respectively. The electronic state S3 is also

reminiscent of a local excitation on the p4 pseudo fragment, but has near-zero oscillator strengths (in fact,

it is comparable with the S2 state in the isolated p4 fragment).

The three bright localized electronic states are the main motivation for modelling EET in the b234

extended branch using only knowledge from the S1 electronic states in the isolated p4, p3, and p2 fragments.

Now, a pre-requisite for comparing the nuclear motions of the isolated fragments and of the pseudo

fragments in the “full” molecule is to be able to superimpose the isolated fragments to the molecule.

9.1.2 Alignments of isolated fragments to the “full” extended branch

To do so, we use the functions implemented in the python library Procrustes [168]. The aim of this

library is to use the solutions of generalized procrustes problems to find the best rotations and permutations
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Chapter 9. Modelling of PPE-dendrimers

so as to align two distinct molecules.1 In fig. 9.3, we show the initial inputs and outputs for our alignment

procedure, which can be generalized for transforming also the normal modes of vibration (see below).

p4 p3 p2

Figure 9.3: Alignment of the linear para-substituted PPEs with four, three, and two phenyl rings on the

b234 molecule, from left to right, respectively. The molecule in black is the total molecule in which the

fragments are identified. The atoms in red are the definition of the selected fragment in the total molecule.

The molecule in blue is the isolated molecule to be aligned with the selected fragment.

Take-home messages

1. We identified three local excitations in the simplified nano-star extended branch, which

will now be identified to the first excited excited states of the isolated p4, p3, and p2

fragments.

2. We verify that the alignement between the isolated fragments and the linear pseudo

fragments defined in the ”full” molecule is feasible.

9.2 Modelling EET with local excitations and isolated fragments

We aim to take advantage of the easily identified local excitations in the b234 molecule to build a model from

the knowledge of the linear, para-substituted fragments only. We choose the Frenkel-exciton Hamiltonian
1Note that the procedure is some sort of optimization: our algorithm “loops” over different rotations and permutations,

individually generated using the Procrustes library, until convergence of the root-mean-square deviation is reached.
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9.2. Modelling EET with local excitations and isolated fragments

as a basis for the model, and give it back as much information as possible from the PESs of the fragments.

9.2.1 Frenkel Hamiltonian with explicit dependence on localized modes

The conceptual formulation of the present model is a Frenkel-exciton Hamiltonian, with three excitons

(the first excited state of the isolated p2, p3, and p4 fragments), as a function of the normal coordinates

Q = (Qp𝑛)
𝑛=4,3,2

HFrenkel-LVC = ̂𝑇 nu𝟙 +
⎡
⎢
⎢
⎢
⎣

𝐻p4(Q) 𝐻p4–p3(Q) 𝐻p4–p2(Q)

𝐻p3–p4(Q) 𝐻p3(Q) 𝐻p3–p2(Q)

𝐻p2–p4(Q) 𝐻p2–p3(Q) 𝐻p2(Q)

⎤
⎥
⎥
⎥
⎦

. (9.1)

We define the diabatic potential energies for the excitonic states

𝐻p𝑛(Q) = 𝐸(1)
p𝑛 (Qp𝑛 = 0) + 𝜿(1)

p𝑛 ⋅ Qp𝑛 + 1
2

k(1)
p𝑛

⋅ Q2
p𝑛

(modes in the excited fragment)

+ ∑
𝑚≠𝑛

1
2

k(0)
p𝑚

⋅ Q2
p𝑚

(modes in the ground-state fragments),
(9.2)

where the excitation energy is the first excitation energy of the excited fragment, for which the energy

gradients and the curvatures are used to have a realistic diabatic PES for the considered excited fragment.

The curvatures with respect to the normal modes for all the other fragments are the ones of the fragments

electronic ground states, and can be seen here as a harmonic “bath” to the excited fragment. The excitonic

coupling, on the other hand, would be defined as

𝐻p𝑛–p𝑚(Q) = 𝑊 (1)
p𝑛–p𝑚 + 𝝀(1)

p𝑛–p𝑚 ⋅ (𝑎𝑛Qp𝑛 + 𝑎𝑚Qp𝑚) . (9.3)

The very challenge of this model and this description is the definition and evaluation of the coupling 𝑊 (1)
p𝑛–p𝑚

and of the inter-state coupling gradient 𝝀(1)
p𝑛–p𝑚. In particular, the choice and definition of the composed

mode on which it is expanded

Qp𝑛–p𝑚
?= (𝑎𝑛Qp𝑛 + 𝑎𝑚Qp𝑚) , (9.4)

are not trivial. In particular, we will see that the most challenging part of the parametrization procedure

for such a model is the definition of the “coupling modes” Qp𝑛–p𝑚.

There are now two different parametrizations and uses for the present extended Frenkel-exciton model:

• first, one can “empirically” parametrize the couplings and compare different limiting situations (“toy

models” with only a constant coupling, or only a coupling gradient, symmetrical or not…). When the

experiments are available and comparable to computed observables, a limiting model can be asserted

or eliminated for the description of the excitonic couplings in the considered systems;

• second, one can try to use the knowledge on the isolated pairs of excitons (here di-meta-substituted

fragments) to evaluate the coupling directly from ab initio calculations.

The first strategy aims at identifying the most important parameters for EET to occur, while the former

aims at being predictive as regards EET. We mostly discuss the second strategy in the next sections.
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Chapter 9. Modelling of PPE-dendrimers

9.2.2 A zeroth-order model for the excitonic coupling

The symmetrically meta-substituted PPE, namely m22, could be used to design a zeroth-order model for

the variable excitonic couplings 𝐻p𝑛–p𝑚(Q) in PPE-oligomers. This zeroth-order model would consist in

a decomposition of the coupling gradient only on the synchronous elongations in the modes of the linear

para-substituted p𝑛 and p𝑚 fragments. The excitonic couplings would then be

𝝀(1)
p𝑛–p𝑚 ⋅ Qp𝑛–p𝑚

!= 1
2

(𝜿(A1)
m22 − 𝜿(B2)

m22) ⋅ Qm22
!= 1

2
(𝜿(A1)

m22 − 𝜿(B2)
m22) ⋅ (𝑎𝑛Qp𝑛 + 𝑎𝑚Qp𝑚) (9.5)

where =! is symbolic for the approximation (and identification) of the left-hand side to the right-hand side.

Our understanding is that it should also require prior average-trace and traceless separation of the 2 × 2

submatrix.

𝑊 (1)
p𝑛–p𝑚 = 1

2
(𝐸(1)

p𝑚 − 𝐸(1)
p𝑛 ) . (9.6)

From our knowledge of the m22 molecule, it should boil down to approximately 1 × 10−4 Eh/(a0
√me) of

gradient coupling along the acetylenic modes which is also the order of magnitude in the m23 parametrized

model. However, it would fail completely to estimate the coupling along other modes than the combined (in

a synchronous way) acetylenic stretching of the two fragments linked together with the meta substitution,

hence the “zeroth-order” label of such a parametrization.

9.2.3 Toward a realistic estimation of the excitonic coupling

In this section, we estimate the excitonic coupling by identifying it to the branching-space vectors in a

without-symmetry LVC Hamiltonian model. More specifically, we propose to take into account the coupling

between the fragment p𝑛 and p𝑚 via the inter-state coupling vector in the fragment m𝑛𝑚.

From the meta-substituted to the para-substituted fragments

We illustrate our strategy with the case of the excitonic coupling between the p3 and p2 pseudo fragments.

First, the gradient of the inter-state coupling h′
m23, obtained from the branching-space vectors and the

position of the MECI, is re-used as the gradient of the excitonic coupling, 𝝀(1)
p𝑛–p𝑚

𝝀(1)
p2–p3 ⋅ Qp2–p3

!= 1
2

h′
m23 ⋅ (𝑎𝑛Qp2 + 𝑎𝑚Qp3) (9.7)

and the collective modes (collective as regards p2 and p3) are defined as combinations of the modes of the

isolated p2 and p3 fragments.

Our aim is thus to “project” the inter-state coupling onto the normal modes of the isolated p2 and p3

fragments. However, let us already stress the difficult definition of this “projection”. Indeed, the inter-state

coupling has 3𝑁m23 components and the displacements for the normal modes of p2 and p3 have 3𝑁p2 and

3𝑁p3 components, respectively. Hence, a somehow common, intermediate but orthonormal, basis set must

be built and use for this projection of quantities from the “parent” meta-substituted fragments onto the

“child” linear para-substituted fragments.
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9.2. Modelling EET with local excitations and isolated fragments

A naive prior but ill-defined common “basis set” of modes

For now, we stay within an “approximate” framework where we simply “pad” the normal modes of the

isolated p2 and p3 fragments with zeros on the m23 atoms that do not participate in the considered

fragment. For instance, for the normal mode 56 of p2 (the acetylenic stretching)

Lp2-in-m23
56 = (𝐿1,56 … , 𝐿𝑖,56, … , 𝐿3𝑁m23,56) with

⎧{
⎨{⎩

𝐿p2-in-m23
𝑖,56 = 𝐿p2

𝑖,56 if 𝑖 in the fragment p2

𝐿p2-in-m23
𝑖,56 = 0 otherwise

(9.8)

and similarly for the modes in p3 (for instance, the normal mode 87 of p3, the synchronous acetylenic

stretching). Two examples of these 3𝑁p2 + 3𝑁p3 newly defined modes are illustrated in fig. 9.4, where

the child linear para-substituted fragments (p2, p3, and p4) have been aligned with the meta-substituted

parent fragments (m23 and m34).

Figure 9.4: Alignment of the linear para-substituted PPEs with four, three, and two phenyl rings on the m23

and m34 molecules (top and bottom panels). Left and right panels are simply two different views of the

same molecules and displacements. The molecule in black is the total molecule in which the fragments are

identified. The transformation of the normal modes is illustrated with acetylenic displacements, computed

from the isolated fragment, but applied to the atoms of the ”full” molecule (in blue and red).
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Chapter 9. Modelling of PPE-dendrimers

The basis of p2-in-m23 and p3-in-m23 “padded” modes is not an orthogonal basis and is not directly

comparable to the basis set of the normal modes of the parent fragment m23. In particular, the p2-in-m23

and p3-in-m23 modes are not orthogonal. More importantly, most of the modes have displacements on

the central-phenylene ring, so that one must be careful about double-counting of nuclear displacements on

the shared phenylene ring. We also note that there are more of these modes (expectedly) than there are

modes of m23.

For now, let us assume (wrongly!) that we can project the normal modes of m23 into the p2-in-m23

and p3-in-m23 modes. More precisely, we compute the overlap between one mode of m23 (for instance

the acetylenic mode 118) with the “padded” modes of p2 and p3. We obtain overlap tables (rectangular

matrices) such as the one given in table 9.1, where we illustrated the case of the synchronous acetylenic

stretching (118) and the anti-quinoidal rock-bending (114) of m23.

Table 9.1: Overlap between some normal modes of m23 with the normal modes of the isolated p2 and p3,

aligned with m23. Only the five modes with the most overlap are given for each fragment.

normal mode 118 overlaps with...

mode in p3 overlap squared mode in p2 overlap squared

87 -0.992642 0.985339 60 0.189619 0.035955

88 -0.114963 0.013217 59 -0.189234 0.035810

91 -0.011286 0.000127 57 0.162140 0.026289

92 0.011275 0.000127 58 -0.161714 0.026151

89 -0.009687 0.000094 66 -0.132253 0.017491

normal mode 114 overlaps with...

mode in p3 overlap squared mode in p2 overlap squared

84 0.675256 0.455970 54 0.772456 0.596689

85 -0.446913 0.199731 53 0.321393 0.103293

82 0.307569 0.094599 52 0.299956 0.089974

83 0.307559 0.094593 55 0.297376 0.088432

86 -0.125210 0.015678 51 0.066739 0.004454

The table must be read as follows: the squared overlap of the mode 118 in m23 (p3-localized syn-

chronous acetylenic elongation) is 0.98 with the mode 87 of p3 (synchronous acetylenic elongation) and

0.04 with the mode 60 in p2 (C-H stretching).2 From this, it is rather clear that the modes 118-m23 and

88-p3 have analogous displacements, but again they are not similar. A second example, with important

displacements on the shared central phenylene, is given with the mode 114-m23. The squared overlap

2We stress again that this squared overlap is not comparable to a percentage, because the basis on which it obtained is

not orthogonal.
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of the mode 114 in m23 (central anti-quinoidal rock-bending) is 0.46 with the mode 84 in p3 (quinoidal

stretching) and 0.60 with the mode 54 in p2 (quinoidal stretching). Here, we thus understand that the

rock-bending mode in m23 (which has no direct equivalent in the p3 and p2 fragments) can be seen as a

sum of two modes of quinoidal stretching on the localized p3 and p2 fragments.

9.2.4 A proof of principle: dynamics in the exdented Frenkel-exciton Hamiltonian model

We hereby give our first attempt of a bottom-up modelling, for which the requirements are

• the FC geometries of the isolated p4, p3, and p2 fragments and the energy derivatives for their S1

state;

• the S1/S2 MECI geometries of the isolated m23 and m34 fragments and energy derivatives of their

S1 and S2 states;3

• the FC normal modes of the isolated p4, p3, p2, m23, and m34 fragments.

We choose for the primitive basis only local modes, that is, the normal modes calculated for the isolated

p4, p3, and p2 branches. The selection of modes is similar to our previous choices in part II: for each

fragments, we select the modes of acetylenic stretching and quinoidal stretching. Of course, the anti-

quinoidal rock-bending modes are only effectively obtained when we consider the excitonic coupling, as

previously derived (see again table 9.1). Herein, this consists in a selection of 15 modes in total from the

linear para-substituted fragments.

We show the results for the propagation of mode-combined MCTDH wavepacket for the three choices

of excitations (exciton p4, p3, and p2) in fig. 9.5 (from left to right, respectively).

As of now, these results cannot be fully analysed and must be discussed very carefully (we do not aim

at giving general results for EET in PPE-dendrimers with the present calculations). Yet, let us comment

on the main features of the time evolution of the diabatic populations in the present bottom-up simulation.

First, the initially populated p4 exciton (blue lines) stays populated, and does not transfer significantly

toward the other excitons, p3 and p2 (green and yellow lines), see fig. 9.5, left panels.

Next, we initialize the dynamics with the p3 exciton. It is rapidly transferred to the p4 exciton (within

the first 70 fs) but the transfer is not unidirectional, or monotonic, in the sense that the p3 exciton is

populated again after this time. In particular, we see in the longer times that the p3 and p4 excitons do

not stop from exchanging population. As of now, we interpret this results as a consequence of a wrong

estimation of the excitonic coupling between the p3 and p4 excitons.

Finally, we set the initial wavepacket in the p2 exciton, that is the last chromophore of the extended

branch. We observe a rapid transfer from the p2 to the p3 excitons, and a total decay of populations
3The S1/S2 MECI geometry in the m34 molecule has not been found yet. The geometry used instead is here the minimum

of the S2 state, which is rather “close” to the intersection seam (Δ𝐸 = 0.25 eV)
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Figure 9.5: Time evolution of the diabatic and adiabatic populations (up to 200 fs and 1000 fs in top and

bottom panels, respectively) for initial excitations on the diabatic state of p4, p3, and p2, from left to

right, respectively.

from the p2 exciton. However, the final quantum yield is not very efficient, as a non-negligible part of the

population stays trapped in the p3 exciton. Most importantly, the overall EET from the initial exciton p2

to the final exciton p4 is slow (500 fs to reach 60% of quantum yield).

9.2.5 The next step: benzene and acetylene local sites

An extension, or maybe an alternative, to this pseudofragmentation scheme based on the linear para-

substituted fragments is a pseudofragmentation based on the local benzenes and acetylenes of the PPE-

dendrimer. Previous work by Ho and Lasorne explored the calculation of the excitation energies of linear

para-substituted fragments from an extended Hückel orbital scheme. The basic idea is to expand the

excitation energy of the linear fragments, with arbitrary lengths, on the nuclear displacements associated

to the acetylenes and to the benzenes. The most challenging part would now be to find transferable

parameters for estimating the inter-state coupling (between linear fragments consecutively linked together

via meta-substitution) as a function of displacements on the connecting benzene and on the first adjacent

acetylenes.

9.3 Challenges and open questions

The challenges for the outlook of building Frenkel-LVC Hamiltonian models in a bottom-up way for the

PPE-dendrimers are numerous. First, in our diabatic perspective of locally-excited electronic states, the

alignment of the isolated fragments with the total extended branch is crucial, and might be not trivial.
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In particular, the correspondence between the normal modes of the isolated linear fragments (or child

fragments) and the modes of the total extended branch (or parent fragment) must be carefully defined.

Indeed, a simple projection of the parent normal modes onto the child, localized normal modes is not

directly feasible. We identify here two main questions:

• is it possible to define a generalized projection, or a generalized basis set of localized normal modes,

without “double-counting” the displacements in the meta-substituted phenylenes for instance?

• is it possible to use such a generalized projection for transferring the parameters known for the isolated

pairs of first-neighbour linear fragments to a generalized excitonic coupling gradient?

On the other hand, the question of the relevance of such modelling choices has to be addressed. In

particular, are the branching-space vectors, obtained near conical intersection seams between the localized

fragments, good estimates of the excitonic coupling in a Frenkel-exciton Hamiltonian? Indeed, this estima-

tion seems to mostly provide excitonic couplings relative to the through-bond, Dexter-like mechanism. Can

we use an analogous strategy to estimate the excitonic coupling (more likely the constant one) relative to

the through-space, Förster-like mechanism? We hope to be able to tackle these questions in future works.

265





Chapter 10
General Conclusions

10.1 Historical interest for PPE-dendrimers as light-harvesting antennae

Since the 1990’s, the extended dendrimers of poly(phenylene ethynylene) (PPE), and the so-called nano-

star [25] on which we focussed, have drawn the attention of researchers, both experimentalists and theo-

reticians, for their remarkable ability for excitation-energy transfer (EET). The experiments demonstrated

the additive character of the steady-state absorption spectrum and measured the quantum yield of EET,

after photo-excitation of the peripheral chromophores, as close to one [32–35]. As regards modelling,

Frenkel-exciton Hamiltonian models were first proposed so as to reproduce the spectroscopic features of

the nano-star [29, 30]. This was further rationalized with electronic structure calculations that suggested

a mechanism based on electronic excited states localized on the linear para-substituted fragments, hence

an easily identified unidirectional energy gradient, from the peripheral to the central fragments [36, 38].

Finally, the first simulations of the excited-state dynamics following photo-excitation of the nano-star build-

ing blocks, proposed in 2009 [50–52], highlighted the role of the high-frequency acetylenic vibrations for

EET in the PPE-oligomers [53].

The EET observed in PPE-oligomers is thus to be interpreted as an electronic population transfer

mediated by some nuclear motions. On this ground, modelling and simulating EET in such molecules

must be done as in the case of nonadiabatic processes (beyond the Born-Oppenheimer approximation),

and discussed via the knowledge of the potential energy surfaces and nonadiabatic couplings in PPE-

oligomers [18,42]. In this thesis, we proposed among the first quantum-mechanical simulations (as regards

both time-independent and time-dependent Schrödinger equations) of EET dynamics in PPE-oligomers.

In part I, we first explicited the framework we used for running nonadiabatic quantum dynamics, by

defining the molecular Hamiltonian and its representations (adiabatic and diabatic). More importantly, we

presented the multiconfigurational time-dependent Hartree (MCTDH) formalism that we used to quantum-
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mechanically propagate the nuclear wavepackets associated to the photo-excited molecules of interest.

In part II, we applied this framework to the study of the chromophores and of the units for EET in the

nano-star. In both cases, vibronic coupling Hamiltonian models (linear and quadratic, up to ten degrees

of freedom) were parametrized so as to account for the conical intersections in the first electronic excited

states of the PPE-oligomers. The parametrization of such models was obtained by detailed analysis of the

excited-state PESs (search of minima, minimum-energy conical intersections and calculation of PES-cuts).

We used such models for mainly two purposes: i) producing steady-state absorption and emission spectra;

and ii) evaluating the kinetics of photo-induced EET, as if it were a photochemical reaction. As regards

the EET process, we showed that it was similar for asymmetrical and symmetrical PPE-oligomers (namely

m23 and d223 molecules, see part II, chapters 6 and 7). It occurs, in our modelling, within 25 fs and with

high quantum yield (about 90%). In particular, we affirm the prominent roles of the acetylenic elongations

and highlighted the importance of the central-quinoidal rock-bending vibrations. We proposed a detailed

analysis of the EET process, by monitoring the geometry during EET and by estimating the redistribution

of the excess excitation energy in the vibrational degrees of freedom of the molecules. The feasibility of

high-dimensional quantum dynamics (up to 90 degrees of freedom) was also explored, with a particular

attention given to the parametrization of high-dimensional excited-state PESs and to the definition of

multi-layer MCTDH trees.

Finally, in part III, chapter 9, we defined a bottom-up approach for modelling PPE-dendrimers, by

defining an intermediate model between the Frenkel-exciton Hamiltonian models and the vibronic coupling

Hamiltonian models. In essence, we decomposed an extended branch of the nano-star into isolated linear

para-substituted fragments. Each one of these isolated fragments was then used to define a Frenkel-

exciton in the model. The excitonic coupling was then estimated from the knowledge of the first-neighbour

articulations on the meta-substituted phenylene, shared by two consecutive linear fragments. As of now,

we only explored the feasibility of such a model but already have promising results for simulating sequential

EET from the shortest to the longest fragment.

10.2 A recent renewal of interest for PPE-oligomers

PPE-oligomers have regained attention in the early 2020’s, as an interesting playground for the use of

nonadiabatic excited-state molecular dynamics [57, 58, 60, 61]. In particular, the EET in the asymmetrical

unit have been investigated through the calculation of transient absorption pump-probe simulations [59].

The linear para-substituted fragments also regained interest as promising 𝜋-conjugated molecular wires

[169,170].

In this thesis, we addressed one unanswered spectroscopic question for the PPE-oligomers. We focussed

in part II, chapter 5, on the symmetrically di-meta-substituted chromophore (namely m22), for which the

absorption and the emission spectra exhibit an unusual Stokes shift and we investigated the role of symmetry
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for the position of the band origin in emission. We modelled the PESs of the first two electonic excited

states of m22, which are a pair of strongly nonadiabatically coupled and quasi-degenerate, bright electronic

states, even near the Franck-Condon region. We attributed the measured Stokes shift to an emissive

contribution that has been transferred from one of the bright states to the other because of the strong

coupling components along the acetylenic elongations. We raised the question of the difficult simulation of

emission and fluorescence in the case of strongly nonadiabatically coupled electronic states, of which m22

seems to be an exacerbated case.

Finally, in part III, chapter 8, we started a discussion on the preparation and the importance of super-

position of states, in particular in the context of localized excitations on two equivalent fragments of the

molecules. We showed the small influence of local excitations on the EET process. In addition, we explored

open questions as regards the physical interpretation of electronic coherences between electronic states of

different symmetry, after photo-excitation of pure states or superpositions of states. Finally, we mentioned

the feasibility of explicitly simulating the electronic excitations with laser pulses [18, 55], which we hope

will eventually lead to the simulation of time-resolved spectroscopies.

10.3 Position of the present work in the existing literature

We show in fig. 10.1 a tentative map of the existing nonadiabatic molecular dynamics simulations on

PPE-dendrimers and oligomers, for which this work is complementary.
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Figure 10.1: A tentative map of the existing nonadiabatic molecular dynamics simulations on PPE-

dendrimers and oligomers (dimers, dendrons and extended branches), classified with respect to their prop-

agated quantities and Hamiltonian modelling strategies. Detailed references for the different simulations

are given in the text.
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In blue, we mention the direct-dynamics trajectory surface hopping simulations of Fernandez-Alberti,

Soler, Freixas and co-workers [50–53, 57, 60], in particular their recent simulations involving the NEXMD

software [58, 61]. In orange, we first cite the seminal work of Mukamel, Chernyak, Tretiak, Minami and

co-workers on the use of the phenomenological Frenkel-exciton Hamiltonian model for the description of

both compact and extended dendrimers (with spectral responses and the Redfield equation) [28–31]. We

also mention the work of Jaouadi, Desouter-Lecomte, Mangaud and co-workers on using reduced density

operators propagation (within the context of HEOM) of effective vibronic coupling Hamiltonian models for

dimers and dendrons [18, 55, 171]. Finally, the present work explored the explicit propagation of quantum

wavepackets (with the MCTDH and ML-MCTDH formalisms) for PPE-oligomers. Both excitonic and

vibronic Hamiltonian models have been parametrized, from low-dimensional (up to ten degrees of freedom)

models for dimers, dendrons, and extended branches [154, 155] to high-dimensional (up to 90 degrees of

freedom) models.
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10.1 Intérêt historique pour l’EET dans les dendrimères de PPEs

Depuis les années 1990, les dendrimères étendus de poly(phénylène éthynylène) (PPE), particulièrement

la nano-star [25] à laquelle nous nous sommes intéressés, ont attiré l’attention de chercheurs en chimie

expérimentale et théorique pour leur capacité remarquable à assurer des transferts d’énergie d’excitation

(EET). Les études expérimentales ont d’abord démontré le caractère additif du spectre UV-visible de

la nano-star, et permis d’estimer le rendement quantique après photo-excitation des chromophores pé-

riphériques [32–35]. Concernant la modélisation, des modèles de Hamiltonien d’exciton de Frenkel ont

été proposés pour reproduire les propriétés spectroscopiques de la nano-star [29, 30]. Une rationalisa-

tion de ces études phénoménologiques à l’aide de calculs de structure éléctronique a également permis

de suggérer un mécanisme basé sur les excitations électroniques localisées sur les fragments linéairement

para-substitués, avec ainsi un gradient d’énergie d’excitation unidirectionnel depuis la périphérie vers les

fragments centraux [36, 38]. Enfin, les premières simulations de la dynamique des états excités suivant

une photo-excitation des blocs élémentaires de PPEs, proposées en 2009 [50–52], ont démontré le rôle des

vibrations acétyléniques, de haute fréquence, pour que l’EET se déroule de façon ultra-rapide [53].

L’EET observé dans les oligomères de PPEs a pu alors être interprété comme un transfert de population

électronique porté par certains déplacements nucléaires. Sur cette base, la modélisation et simulation de

l’EET dans de telles molécules doivent être réalisées comme s’il s’agissait d’un processus non-adiabatique

(au-delà de l’approximation de Born-Oppenheimer) et discutées via la connaissance des surfaces d’én-

ergie potentielle et des couplages non-adiabatiques au sein des oligomères de PPEs [18, 42]. Dans cette

thèse, nous avons proposé les premières simulations quantiques (du point de vue des deux équations de

Schrödinger, indépendante et dépendante du temps) de la dynamique de l’EET dans les oligomères de

PPEs.

271



Chapitre 10. Conclusion générale

Dans la partie I, nous avons d’abord présenté le cadre de travail utilisé pour réaliser des calculs de

dynamique quantique non-adiabatique, en définissant le Hamiltonien moléculaire et ses représentations

(adiabatique et diabatiques). Nous avons également présenté le formalisme de Hartree multiconfigurationel

dépendant du temps (MCTDH) que nous avons utilisé pour propager, de façon quantique, les paquets

d’ondes nucléaires associés aux molécules d’intérêt photo-excitées.

Dans la partie II, nous avons étudié, dans ce même cadre, les chromophores de la nano-star et les

premières unités réalisant l’EET en son sein. Dans les deux cas, des modèles de Hamiltonien de couplage

vibronique (linéaire et quadratique, jusqu’à dix degrés de liberté) ont été paramétrisés de façon à prendre en

compte la présence d’intersections coniques entre les premiers états électroniques des oligomères de PPEs.

Ces paramétrisations sont obtenues après une étude détaillée des PESs des états excités (recherche et

caractérisation de minima, d’intersections coniques d’énergie minimale, ou par des coupes de PESs). Nous

avons ensuite utilisé de tels modèles pour principalement deux usages : i) produire des spectres d’absorption

et d’émission stationnaire ; et ii) évaluer la cinétique de l’EET photo-induit, comme s’il s’agissait d’une

réaction photochimique. Pour ce qui est du processus d’EET, nous avons montré qu’il était similaire pour

les oligomères asymétriquement et symétriquement substitués (c’est à dire pour m23 et d223, voir partie II,

chapitres 6 and 7). Dans nos simulations, cet EET se déroule en moins de 25 fs avec un rendement

quantique haut (autour de 90%). En particulier, nous avons pu affirmer le rôle premier des élongations

acétyléniques et nous avons souligné l’importance des modes de vibration de bascule sur le phénylène central.

Nous avons proposé une analyse détaillée du processus d’EET, en suivant la géométrie de la molécule au

cours de l’EET et en estimant la redistribution de l’énergie d’excitation en excès au sein des degrés de

liberté vibrationnels de la molécule. Également, la faisabilité de calculs de dynamique quantique en haute

dimensionalité (jusqu’à 90 degrés de liberté) a été explorée, avec une attention particulière donnée à la

paramétrisation de PESs pour une telle dimensionalité et à la définition des arbres de multi-layer MCTDH.

Finalement, dans la partie III, chapitre 9, nous avons défini une approche ascendante pour la modéli-

sation de dendrimères de PPEs, en définissant un modèle intermédiaire entre un Hamiltonien d’excitons de

Frenkel et un Hamiltonien de couplage vibronique. En substance, nous avons décomposé une branche éten-

due de la nano-star en des fragments linéairement para-substitués isolés. Chacun de ces fragments isolés a

alors été utilisé pour définir un exciton de Frenkel dans le modèle. Le couplage excitonique a lui été estimé

en connaissance des articulations de deux fragments consécutifs, en remarquant que ces deux fragments

partagent un phénylène. Pour l’instant, nous avons simplement exploré la faisabilité d’un tel modèle, mais

avons déjà pu analyser des résultats prometteurs pour simuler l’EET dans des branches étendues.

10.2 Un intérêt récemment renouvelé pour les oligomères de PPEs

Les oligomères de PPEs ont retrouvé une certaine attention depuis le début des années 2020, étant vus

comme des « systèmes jouets » assez intéressants pour comparer et étudier plusieurs méthodes de dy-
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namique moléculaire non-adiabatique dans les états excités [57, 58, 60, 61]. Également, l’EET dans l’unité

symétrique a été étudié à nouveau au travers de simulations d’expériences pompe-sonde, pour reproduire par

exemple des spectres d’absorption transitoire dans les états excités [59]. Les fragments linéairement para-

substitués quant a eux ont connu un nouvel intérêt comme possible fils moléculaires 𝜋-conjugés [169,170].

Dans cette thèse, nous avons de notre côté enquêté sur une question spectroscopique jusque là sans

réponse sur les oligomères de PPEs. Dans la partie II, chapitre 5, nous nous sommes intéressés au chro-

mophore symétriquement meta-substitué (la molécule m22), pour lequel les spectres d’absorption et d’émis-

sion stationnaires présentent un déplacement de Stokes non-usuel. Nous avons étudié le rôle éventuel de

la symétrie dans la position de la bande d’origine à l’émission, comme une possible explication de ce dé-

placement de Stokes. Nous avons modélisé les PESs des deux premiers états électroniques excités de m22,

qui forment une paire d’états bright fortement couplés et quasiment dégénérés, même dans la région de

Franck-Condon. Nous avons attribué le déplacement de Stokes mesuré à une contribution à l’émission due

à un paquet d’ondes nucléaire qui aurait été transféré d’un des états bright à l’autre, à cause du couplage

non-adiabatique fort, porté principalement par les élongations acétyléniques. Nous avons également posé

la question de la difficile simulation de l’émission de lumière et de la fluorescence par des molécules dont

les états électroniques sont fortement couplés non-adiabatiquement, pour lequel m22 semble être un cas

très particulier.

Finalement, dans la partie III, chapitre 8, nous avons entamé une discussion sur la préparation et l’im-

portance des superpositions d’états électroniques, en particulier dans le contexte d’excitations localisées

sur des fragments équivalents d’une même molécule. Nous avons montré que dans le cas de d223, ces

excitations localisées n’avaient que très peu d’effet sur le processus d’EET. Nous avong également exploré

des questions qui nous semblaient ouvertes en ce qui concerne l’interprétation physique de la cohérence

électronique entre des états de symétries différentes, après la photo-excitation d’états purs ou de super-

positions d’états. Finalement, nous avons également mentionné la possibilité d’aller vers des simulations

explicites des excitations électroniques depuis l’état fondamental, avec l’utilisation de pulses laser [18,55].

Nous espérons que de telles études pourront mener à la simulation de spectroscopies résolues en temps.

10.3 Positionnement de ce travail au sein de la litérature existante

Nous montrons dans la fig. 10.1 une proposition de positionnement de différentes études de dynamique

moléculaire non-adiabatique sur les oligomères et dendrimères de PPEs, pour lesquelles le présent travail

est complémentaire.

En bleu, nous mentionnons les simulations de dynamique directes basées sur des ensembles de trajec-

toires réalisées par Fernandez-Alberti, Soler, Freixas et coll. [50–53,57,60], avec notamment les récentes im-

plémentations de telles méthodes dans leur logiciel, NEXMD [58,61]. En orange, nous citons d’abord le tra-

vail précurseur de Mukamel, Chernyak, Tretiak, Minami et coll., sur l’usage de modèles phénoménologiques
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Figure 10.1 – Une proposition de carte des simulations existantes de dynamique moléculaire non-adiabatique

sur les dendrimères et oligomères (dimères, dendrons et branches étendues) de PPEs, classées en fonction

de la quantité propagée et de la modélisation choisie pour le Hamiltonien. Les références associées aux

différentes simulations sont précisées dans le texte.

de Hamiltonien (dit de Frenkel) pour la description de dendrimères compacts et étendus (avec notamment

des réponses spectrales et la résolution de l’équation de Redfield) [28–31]. Nous mentionnons également

les travaux de Jaouadi, Desouter-Lecomte, Mangaud et coll. basés sur la propagation des opérateurs de

densité réduite (avec notamment la méthode HEOM) dans le cas de modèles vibroniques effectifs, pour

des dimères et des dendrons de PPEs [18, 55, 171]. Finalement, le travail développé dans ce manuscrit a

été d’utiliser les outils existants de propagation exacte de paquets d’ondes (dans le formalisme MCTDH et

ML-MCTDH) pour simuler l’EET dans des oligomères de PPEs. Nous avons étudié à la fois des modèles de

Hamiltonien excitonique et de Hamiltonien vibronique, pour des systèmes de basse dimensionalité (jusqu’à

dix degrés de libertés pour les dimères, dendrons et branches étendues) [154, 155] mais aussi pour des

systèmes de haute dimensionalité (jusqu’à 90 degrés de liberté).
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Appendix A. Optimization of Minimum-Energy Conical Intersections

In this appendix, we give additional details as regards the strategies used in this work to optimize

minimum-energy conical intersection (MECI) geometries.

Two main strategies have been applied and implemented in home-made interfaces for the Gaussian16

package. Both are based on energy derivatives only and do not require the explicit knowledge of the

derivative coupling vector.

A.1 Projected seam gradient and numerical branching space

The first one is strongly inspired from the implementations of Harvey, Sicilia, Ruiz-Barragan and their

co-workers [88, 89, 172], which are inspired from the original work of Bearpark [87]. We implemented a

version of the algorithms of Harvey and of Sicilia (with and without energy switch, respectively) with a

numerical evaluation of the branching space. This numerical evaluation of the branching space is obtained

via the diagonalization of the Hessian of the squared (halved) energy difference

KSED = 2Δ𝑉 (K2 − K1
2

) + 2 (gadgad,T) (A.1)

which yields two eigenvectors associated to non-zero eigenvalues, u1 and u2. The choice of the gradient

seam would then be, at the locus of a conical intersection, the projection of the gradient average s on the

intersection space

gIS = PISs (A.2)

with

PIS = 𝟙 − u1uT
1 − u2uT

2 (A.3)

and

PBS = u1uT
1 + u2uT

2 . (A.4)

From this point, the algorithms we implemented are very similar to the ones of Harvey and Sicilia

• for a Harvey-like optimization, the effective gradient (composed gradient, CG) for the optimization

is

gCG = gIS + f(gad). (A.5)

and the displacement is computed as a quasi-Newton step using a BFGS update for the Hessian. We

call this a “CG” algorithm in the following. The variants for the definitions of the function-vector f

are given in eq. (2.105).

• for a Sicilia-like optimization, the effective gradient for the optimization and the calculated displace-

ments depend on the closeness to the CoIn seam

– if Δ𝐸 > Δ𝐸switch, the step is similar to the Harvey-like optimization (composed gradient

eq. (A.5) and a unique quasi-Newton step)

290



A.2. Lagrange multipliers and updated branching space

– if Δ𝐸 ≤ Δ𝐸switch, the step is divided into two displacements (composed step, CS); one following

the gradient of the seam eq. (A.2) with the associated quasi-Newton step and one following

directly the gradient difference.

We call this a “CG-CS” algorithm in the following.

The most obvious disadvantage of our implementation of these algorithms is the requirement of the

Hessians for computing the numerical branching-space vectors. Furthermore, such an approximation of

the branching space is ill-defined at “true” conical intersections, that is numerically degenerate states

(Δ𝐸 < 10−7 Eh).

A.2 Lagrange multipliers and updated branching space

The second strategy is based on the use of a Lagrange multiplier to satisfy the Δ𝐸 = 0 constraint during

the optimization. We implemented a version of a very recent algorithm proposed by Joubert-Doriol and

co-workers, where they designed their algorithm as a method without any explicit use of the derivative

coupling (exact or approximate) [91]. In particular, we were interested here in their new single Lagrange

Multiplier (SLM) algorithm, for which we implemented a home-made version.

Details about the SLM algorithm can be find in the original paper [91]. In essence, the displacements

from one step to another of the optimization are computed using

• the Hessian for the average energy (updated with a BFGS algorithm using the gradient average);

• the Hessian for the squared energy difference (updated with a BFGS algorithm using the gradient

difference);

• the Lagrange multiplier, updated using the two previously mentioned Hessians, the gradient average

and the gradient difference.

The branching space is not directly necessary for the calculation of the new displacements at each step,

hence the branching-space vectors have not to be known explicitly. The advantage is here twofold. First,

similarly to our modified implementations of the CG and CG-CS algorithms (appendix A.1), there is no

need for the explicit knowledge of the derivative coupling vector, making the optimization feasible for all

electronic structure methods (as long as the energy gradients can be obtained). Second, and this is a

tremendous advantage, there is no need of computing the adiabatic excited-state Hessians at each step

(unlike what was presented in appendix A.1).

A.3 The difficult approach of the seam in m34

All three algorithms (CG, CG-CS, and SLM) failed to optimize the S1/S2 MECI geometry in the case of the

m34 molecule (3-ring and 4-ring meta-substituted pseudo fragments, 𝑁atoms = 72). In particular, up to
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Appendix A. Optimization of Minimum-Energy Conical Intersections

now, all the optimizations led to an absurd drift in the energy of the ground state (8 eV above the minimum

of the electronic ground state at step 90, and accordingly same for all the excited-state energies). These

energy drifts are consistent with the absurd geometries obtained, which correspond to the breaking of some

cumulenic bonds between acetylenes and phenylenes. In particular, the electronic states have completely

lost the LE character of the initially targeted states (and the associated conical intersection).
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Figure A.1: Results of an attempt of MECI optimization, using the SLM algorithm [91], for the S1/S2

conical intersection in the m34 molecule (𝑁atoms = 72). Left, energies (in Eh) of the first and second

adiabatic states during optimization; right, energy average and energy difference (in Eh) between the first

and second adiabatic states during optimization.

It is more likely that the present algorithms are not adapted to so many degrees of freedom. In particular,

the update of the Hessians might be problematic in the current state of the implementation (in Cartesian

coordinates rather than in internal coordinates). Also, we still have to investigate the characters of the first

two electronic excited states of such a meta-conjugation of 3-ring and 4-ring pseudo fragments, to better

estimate the possibility for this MECI to exist in the S1/S2 manifold of m34.

A.4 Choice of the algorithm for the different molecules

We give in table A.1 the outcome of the three algorithms (CG, CG-CS, and SLM) for different PPE-

oligomers. We did not exhaustively tested all the algorithms nor all the variants (convergence criteria,

maximum displacements…) on each molecule.

In our experience, the approach of the CoIn seam was relatively easy with the three algorithms in the

case of electronic states with different symmetry (for instance, A1 and B2 in the case of m22, or d223).

On the other hand, finding the seam in the case of electronic states with same symmetry was much more

complicated. To some extent, the CG-CS algorithm was able to better optimize the MECI geometry (for

m23 for instance), which we attributed to a more stable conservation of the small energy difference once

the CoIn seam was reached. In either case, our latests attempts were much more successful using the SLM

algorithm (see fig. A.2 for a selection of successful optimizations, as opposed to the ones of m34)
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A.4. Choice of the algorithm for the different molecules

a) m22 S₁/S₂ b) m22 S₁/S₂

d) d223 S₂/S₃c) d223 S₃/S₄

Figure A.2: Results of MECI optimization, using the SLM algorithm [91], for a) the S1/S2 MECI of m22;

b) the S1/S2 MECI of m23; c) the S3/S4 MECI of d223; d) the S2/S3 MECI of d223. Energies are given

in Eh.

Table A.1: Outcome of the three algorithms (composed gradient, mixed composed gradient/composed

step, and SLM) for different PPE-oligomers and conical intersections.

Molecule, CoIn / Algo. CG [172] CG-CS [88] SLM [91]

m22 S1/S2 converged converged converged

m23 S1/S2 X converged converged

m34 S1/S2 X X X

d222 S1/S2 converged not tested converged

d222 S2/S3 not tested not tested converged

d223 S1/S2 not tested converged converged

d223 S2/S3 not tested converged converged

d223 S3/S4 converged not tested converged
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In this appendix, we give the numerical parameters for the definition of the vibronic coupling Hamiltonian

models used throughout this work, which have been encoded in the operator format of Quantics. All the

parameters except the energies are given in mass-weighted atomic units. In particular,

• the first-order parameters are given in Eh
a0

√me
(gradients of the energies or of the couplings, 𝜅𝑖, 𝜆𝑖, or

ℎ′
𝑖);

• the second-order parameters are given in Eh
a2
0me

(curvatures 𝑘𝑖, mode-mixing couplings 𝛾𝑖𝑗 or 𝜇𝑖𝑗).
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Appendix B. Parameters for Vibronic Coupling Hamiltonian Models

B.1 C2v symmetrically meta-substituted PPE (m22)

B.1.1 (1+2)-state 3-dimensional LVC and QVC models [global fit]

Table B.1: LVC parameters obtained upon fitting ab initio calculations. The diabatic energies at the

reference point are 𝐸(1) = 4.405 eV and 𝐸(2) = 4.380 eV.

LVC

Mode 𝑖 Symmetry 𝑘(0)
𝑖 𝑘(1)

𝑖 𝑘(2)
𝑖 𝜅(1)

𝑖 𝜅(1)
𝑖 𝜆𝑖

81 A1 0.00056900 0.00004764 0.00005004 -0.00037632 -0.00015483 0.0

87 B2 0.00011627 0.00010051 0.00010055 0.0 0.0 0.00074566

88 A1 0.00011636 0.00010737 0.00010805 0.00077356 0.00089401 0.0

Table B.2: QVC parameters obtained upon fitting ab initio calculations. The diabatic energies at the

reference point are 𝐸(1) = 4.407 eV and 𝐸(2) = 4.379 eV.

LVC

Mode 𝑖 Symmetry 𝑘(0)
𝑖 𝑘(1)

𝑖 𝑘(2)
𝑖 𝜅(1)

𝑖 𝜅(1)
𝑖 𝜆𝑖

81 A1 0.00056900 0.00004751 0.00004981 -0.00038974 -0.00015231 0.0

87 B2 0.00011627 0.00010156 0.00009792 0.0 0.0 0.00065516

88 A1 0.00011636 0.00010737 0.00010795 0.00079081 0.00089479 0.0

QVC

𝛾(1)
81,88 -0.00000259

𝛾(2)
81,88 -0.00000052

𝜇87,81 -0.00000108

𝜇87,88 -0.00001187
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B.1. C2v symmetrically meta-substituted PPE (m22)

B.1.2 (1+2)-state 10-dimensional LVC model [global fit]

Table B.3: LVC parameters for the (1+2)-state 10-dimensional [global fit] of m22. The diabatic energies

at the reference point are 𝐸(1) = 4.4293 eV and 𝐸(2) = 4.4734 eV.

Mode 𝑖 Symmetry 𝑘(0)
𝑖 𝑘(1)

𝑖 𝑘(2)
𝑖 𝜅(1)

𝑖 𝜅(2)
𝑖 𝜆𝑖

50 A1 0.00002184 0.00002133 0.00002099 0.00009210 0.00012980 0.0

53 B2 0.00002196 0.00002220 0.00002135 0.0 0.0 0.00008370

54 A1 0.00002197 0.00002186 0.00002189 -0.00011530 -0.00009514 0.0

75 A1 0.00004509 0.00004333 0.00004528 -0.00009890 0.00004805 0.0

81 A1 0.00005690 0.00005583 0.00004959 -0.00015338 -0.00036253 0.0

84 B2 0.00005873 0.00004876 0.00006576 0.0 0.0 -0.00041519

85 A1 0.00005944 0.00005789 0.00005365 -0.00030346 -0.00019885 0.0

86 B2 0.00005958 0.00005509 0.00005472 0.0 0.0 0.00008113

87 B2 0.00011627 0.00011131 0.00011828 0.0 0.0 -0.00082134

88 A1 0.00011636 0.00011424 0.00011757 0.00096955 0.00086032 0.0
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Appendix B. Parameters for Vibronic Coupling Hamiltonian Models

B.2 Cs asymmetrically meta-substituted PPE (m23)

B.2.1 (1+2)-state 8-dimensional LVC model [mixed global/local fit]

Table B.4: LVC parameters for the (1+2)-state 8-dimensional model of m23. The diabatic energies at the

reference point are 𝐸(1) = 3.8766 eV and 𝐸(2) = 4.4520 eV.

Mode Symmetry 𝑘(0)
𝑖 𝑘(1)

𝑖 𝑘(2)
𝑖 𝜅(1)

𝑖 𝜅(2)
𝑖 ℎ′

𝑖

111 A’ 0.00005691 0.00005649 0.00005014 -0.00014338 -0.00030371 0.00009640

114 A’ 0.00005873 0.00005760 0.00004286 0.00030431 -0.00031251 -0.00011256

115 A’ 0.00005925 0.00005640 0.00005875 -0.00033673 -0.00010607 -0.00003386

116 A’ 0.00005951 0.00005888 0.00005307 0.00005883 0.00019169 0.00003792

117 A’ 0.00005994 0.00005612 0.00005941 0.00034508 0.00003239 0.00000969

118 A’ 0.00011557 0.00011414 0.00010996 -0.00100405 -0.00010761 0.00006847

119 A’ 0.00011623 0.00009186 0.00009662 -0.00010674 0.00022954 0.00014127

120 A’ 0.00011634 0.00011389 0.00009228 -0.00018406 -0.00102473 -0.00013513
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B.3. C2v symmetrically tri-meta-substituted PPE (d223)

B.3 C2v symmetrically tri-meta-substituted PPE (d223)

B.3.1 (1+3)-state 10-dimensional LVC models [global fit with all couplings]

Table B.5: LVC parameters for the (1+2)-state 10-dimensional [global fit] of d223. The diabatic energies

at the reference point are 𝐸(1) = 3.8598 eV, 𝐸(2) = 4.3897 eV, and 𝐸(3) = 4.4693 eV. All couplings have

been allowed (as long as they are adapted to symmetry).

Mode 𝑖 Symmetry 𝑘(0)
𝑖 𝑘(1)

𝑖 𝑘(2)
𝑖 𝑘(3) 𝜅(1)

𝑖

143 A1 0.00005768 0.00005792 0.00005910 0.00004407 0.00025597

144 B2 0.00005768 0.00007126 0.00004395 0.00005217 0.0

145 A1 0.00005924 0.00005664 0.00005932 0.00005930 0.00036978

146 A1 0.00005945 0.00005929 0.00005745 0.00005692 -0.00002453

147 B2 0.00005948 0.00006306 0.00004852 0.00005937 0.0

148 A1 0.00005991 0.00005701 0.00005979 0.00005917 0.00036151

149 A1 0.00011563 0.00011651 0.00011486 0.00010813 0.00099516

150 A1 0.00011632 0.00010519 0.00011405 0.00009544 0.00024767

151 B2 0.00011642 0.00012159 0.00010656 0.00010746 0.0

152 A1 0.00011653 0.00011554 0.00011504 0.00011252 0.00019448

Mode 𝑖 Symmetry 𝜅(2)
𝑖 𝜅(3)

𝑖 𝜆(12)
𝑖 𝜆(23)

𝑖 𝜆(13)
𝑖

143 A1 -0.00013105 -0.00028946 0.0 0.0 0.00021350

144 B2 0.0 0.0 0.00033478 -0.00042812 0.0

145 A1 0.00002533 0.00003181 0.0 0.0 -0.00000099

146 A1 -0.00027012 -0.00015984 0.0 0.0 -0.00000274

147 B2 0.0 0.0 -0.00018869 -0.00013984 0.0

148 A1 0.00000496 0.00002201 0.0 0.0 -0.00008968

149 A1 0.00007889 0.00008465 0.0 0.0 0.00017465

150 A1 -0.00015918 -0.00015696 0.0 0.0 0.00039799

151 B2 0.0 0.0 0.00021486 -0.00076213 0.0

152 A1 0.00090028 0.00080972 0.0 0.0 0.00016269
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B.3.2 (1+3)-state 10-dimensional LVC models [global fit without 𝐻13 coupling]

Table B.6: LVC parameters for the (1+2)-state 10-dimensional [global fit] of d223. The diabatic energies

at the reference point are 𝐸(1) = 3.8598 eV, 𝐸(2) = 4.3897 eV, and 𝐸(3) = 4.4693 eV. The parameters are

obtained with setting all the couplings 𝜆(13)
𝑖 to zero.

Mode 𝑖 Symmetry 𝑘(0)
𝑖 𝑘(1)

𝑖 𝑘(2)
𝑖 𝑘(3) 𝜅(1)

𝑖

143 A1 0.00005768 0.00005279 0.00005910 0.00004919 0.00024191

144 B2 0.00005768 0.00007126 0.00004395 0.00005217 0.0

145 A1 0.00005924 0.00005664 0.00005932 0.00005930 0.00036978

146 A1 0.00005945 0.00005929 0.00005745 0.00005692 -0.00002453

147 B2 0.00005948 0.00006306 0.00004852 0.00005937 0.0

148 A1 0.00005991 0.00005626 0.00005979 0.00005991 0.00036028

149 A1 0.00011563 0.00011162 0.00011486 0.00011302 0.00097347

150 A1 0.00011632 0.00009054 0.00011405 0.00011009 0.00022132

151 B2 0.00011642 0.00012159 0.00010656 0.00010746 0.0

152 A1 0.00011653 0.00011261 0.00011504 0.00011545 0.00020321

Mode 𝑖 Symmetry 𝜅(2)
𝑖 𝜅(3)

𝑖 𝜆(12)
𝑖 𝜆(23)

𝑖 𝜆(13)
𝑖

143 A1 -0.00013105 -0.00027539 0.0 0.0 0.0

144 B2 0.0 0.0 0.00033478 -0.00042812 0.0

145 A1 0.00002533 0.00003181 0.0 0.0 0.0

146 A1 -0.00027012 -0.00015984 0.0 0.0 0.0

147 B2 0.0 0.0 -0.00018869 -0.00013984 0.0

148 A1 0.00000496 0.00002323 0.0 0.0 0.0

149 A1 0.00007889 0.00010634 0.0 0.0 0.0

150 A1 -0.00015919 -0.00013061 0.0 0.0 0.0

151 B2 0.0 0.0 0.00021486 -0.00076213 0.0

152 A1 0.00090028 0.00080099 0.0 0.0 0.0
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