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Réduction de modèles en mécanique non-linéaire quasi-statique pour l’estimation de l’état
par recalage en assimilation de données: application aux enceintes de confinement

Résumé : Dans le domaine de la gestion du parc nucléaire, Electricité de France (EDF) s’efforce d’assurer une
compréhension exhaustive de l’état mécanique des enceintes de confinement de ses centrales. Une attention
particulière est portée à l’évaluation des taux de fuite à travers les enceintes de confinement à double paroi.
Pour atteindre cet objectif, d’importants travaux de recherche ont été entrepris, visant à développer des
modèles thermo-hydro-mécaniques (THM) de haute robustesse, spécialement conçus pour la modélisation
du vieillissement de ces imposantes structures en béton précontraint. Une étape cruciale consiste à coupler
ces modèles à des méthodologies d’optimisation avancées, notamment l’assimilation de données. L’objectif
des ingénieurs est d’incorporer les données existantes du parc nucléaire dans ces modèles numériques afin
d’obtenir les paramètres physiques optimaux. Cette approche permet de générer des simulations numériques
qui reflètent au mieux la réalité observée. Cependant, de tels algorithmes peuvent nécessiter des calculs
répétés qui peuvent rendre son coût prohibitif. Dans cette optique, cette thèse vise à développer des méthodes
de réduction de modèles pour les problèmes de mécanique non linéaire avec variables internes, ainsi qu’à
concevoir des algorithmes permettant de coupler ces méthodologies d’assimilation de données aux modèles
réduits, en vue d’accélérer le temps de résolution tout en préservant une qualité d’approximation adéquate.
En se basant sur les équations caractéristiques de ces problèmes et sur le contexte industriel, spécifiquement
le traitement des problèmes de mécanique non-linéaire quasi-statique avec variables internes dans le code de
qualité industrielle code_aster, nous détaillons la mise en place d’un modèle réduit par projection utilisant
la Proper Orthogonal Decomposition (POD). Cette construction d’une approximation linéaire est ensuite
combinée à un processus d’hyper-réduction à travers la méthode ECSW. Dans un second temps, nous avons
étendu cette méthodologie à un cas industriel spécifique, à savoir une section courante de l’enceinte de
confinement d’une centrale nucléaire. Ce cas implique un matériau nécessitant une modélisation multiple
(non linéaire tridimensionnelle pour le béton et linéaire unidimensionnel pour l’acier) avec un comportement
mécanique thermo-hydro activé. De plus, nous avons élaboré des algorithmes basés sur les régions de confiance
pour aborder des problèmes d’assimilation de données variationnelle en utilisant des modèles réduits. Nous
proposons une validation sur des cas en élasticité et des premiers pas sur des cas en mécanique non-linéaire
avec code_aster. Enfin, nous proposons des méthodes visant à accélérer les processus itératifs mettant en
jeu les modèles réduits que nous avons conçu. Cela inclut le développement d’un processus d’hyper-réduction
incrémental ou encore une approche bi-fidélité pour le sampling de l’espace paramétrique.
Mots-clés : Réduction de modèles, Assimilation de données, Vieillissement du béton, Mécanique non-linéaire,
Optimisation
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Reduced order models in quasi-static nonlinear mechanics for state estimation by calibration
through data assimilation: application to containment buildings

Abstract: In the field of nuclear power plant management, Electricité de France (EDF) strives to ensure a
comprehensive understanding of the mechanical state of the nuclear containment buildings (NCBs). Special
emphasis is placed on evaluating leakage rates through double-walled NCBs. To achieve this objective,
major research work has been undertaken to develop highly robust thermo-hydro-mechanical (THM) models,
specially designed to model the ageing of these large pre-stressed concrete structures. A pivotal phase involves
the integration of these models with advanced optimization methodologies, particularly data assimilation.
The engineers aim to incorporate existing data from the nuclear fleet into these numerical models to obtain
optimal physical parameters. This approach enables the generation of numerical simulations that reflect
observed reality as closely as possible. However, such algorithms can require repeated calculations, which can
make them prohibitively expensive. With this in mind, this thesis aims to develop model reduction methods
for nonlinear mechanics problems with internal variables, as well as to design algorithms for coupling these
data assimilation methodologies to reduced models, with a view to accelerating solution time while preserving
adequate approximation quality. Drawing upon the characteristic equations governing these issues and
considering the industrial framework, specifically the treatment of quasi-static non-linear mechanics problems
with internal variables using the industrial-grade code code_aster, we elaborate on the implementation of a
projection-based reduced model employing Proper Orthogonal Decomposition (POD). This construction of a
linear approximation is then combined with a hyper-reduction process using the ECSW method. In a second
step, we have extended this methodology to a specific industrial case, namely a standard section of a NCB. This
case involves a multi-modeling material (three-dimensional nonlinear for concrete and one-dimensional linear
for steel) featuring thermo-hydro-activated mechanical behavior. Moreover, algorithms based on trust-regions
have been devised to address variational data assimilation problems relying on reduced order models. We
propose validation on elasticity cases and first steps on nonlinear mechanics cases with code_aster. Finally,
we introduce methods to expedite iterative processes involving the designed reduced models. These methods
encompass the development of an incremental hyper-reduction process and a bi-fidelity approach for sampling
the parametric space.
Mots-clés : Model order reduction, Data assimilation, Concrete ageing, Nonlinear mechanics, Optimisation
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Résumé détaillé

En tant que protagoniste majeur dans le secteur nucléaire en France, Electricité de France (EDF) assume
un rôle central dans la production et la distribution d’énergie nucléaire. Cette responsabilité englobe
la gestion quotidienne des centrales, le maintien des protocoles de sécurité, et l’amélioration globale de
l’efficacité opérationnelle. Alors que les premières centrales nucléaires françaises, mises en service à la
fin des années 1970, approchent de leur durée de vie opérationnelle initiale de 40 ans, EDF s’attelle
à prolonger cette échéance à 60 ans. Le vieillissement des installations se profile ainsi comme un axe
de recherche essentiel pour les départements d’ingénierie et de recherche et développement (R&D) de
l’entreprise. Un aspect particulièrement critique concerne les enceintes de confinement, qui abritent les
cuves des réacteurs. Ces structures, composées de béton, sont sujettes à des problèmes liés au vieillisse-
ment, en particulier pour les enceintes dotées d’une double paroi. En effet, les enceintes de confinement
à double paroi présentent une possibilité de fuite d’air à travers le béton. Ceci est dû à la porosité
de ce matériau. Actuellement, sur les 56 réacteurs nucléaires toujours en exploitation en France, 24
d’entre eux possèdent une enceinte de confinement à double paroi. Pour évaluer et maintenir la capacité
opérationnelle continue, des tests de pressurisation décennaux sont effectués sur les enceintes de confine-
ment, les soumettant à des pressions allant jusqu’à 5.2 bars. Un critère crucial dans ce processus est le
taux de fuite d’air autorisé à travers les parois, qui ne doit pas dépasser le seuil établi par l’Autorité de
Sûreté Nucléaire (ASN) - soit 1.125% de la masse d’air sec par jour. La structure en béton, renforcée
et précontrainte, est dimensionnée avec minutie pour résister à des charges accidentelles. Ceci inclut
notamment des pressions allant jusqu’à 5.2 bars à l’intérieur de l’enceinte. L’intégrité d’étanchéité des
bâtiments de confinement à double paroi dépend de l’état des fissures dans le béton, un phénomène na-
turel dû à la présence d’armatures. Certaines de ces fissures se produisent pendant la coulée de parties
massives ou singulières du bâtiment de confinement, principalement en raison des contraintes imposées
pendant la phase de maturation du béton. Durant la phase de précontrainte, ces fissures naturelles sont
refermées. Cependant, au fil du temps, le béton subit des contractions dues aux effets de la précontrainte
(fluage) et au séchage (retrait), diminuant la précontrainte et réduisant l’action compressive des câbles
sur les fissures. De plus, les câbles de précontrainte subissent des déformations dépendantes du temps
(relaxation), contribuant à la perte de précontrainte. Cette complexité souligne les défis et les enjeux liés
à la prolongation de la durée de vie opérationnelle des centrales nucléaires. Des efforts de recherche sont
menés afin de disposer d’une meilleure compréhension des phénomènes mis en jeu, que cela soit par le
biais d’essais expérimentaux (voir Figure 1), ou en développant des jumeaux numériques.

(a) Capteurs de
déformations.

(b) Capteurs de
température. (c) Fibres optiques. (d) Maquette VeRCoRs

Figure 1: Visualisation de la maquette VeRCoRs ”VErification Réaliste du COnfinement des RéacteurS
au EDF Lab sur le site Les Renardières, et des capteurs utilisés. Cette maquette constitue est une
reproduction à l’échelle 1/3 d’une enceinte de confinement à double paroi (source: EDF document interne
©).

Cette thèse est motivée par les simulations numériques nécessaires pour le calage de paramètres
pour l’étude d’étanchéité des enceintes de confinement à double paroi. La combinaison de données et de
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modèles numériques, que ce soit pour quantifier les incertitudes (inférence bayésienne) ou l’assimilation de
données, relève du domaine de l’optimisation. Les approches numériques de résolution de cette catégorie
de problème posent des défis liés à l’efficacité computationnelle, notamment dans des scénarios impliquant
de nombreux appels à des codes de calcul. Dans cette thèse, notre principal objectif est de relever les défis
liés à une classe particulière de problème, le recalage par assimilation de données. La résolution de ce
type de problème nécessite de nombreuses évaluations de modèles, et les coûts computationnels associés
à de telles procédures peuvent rapidement devenir prohibitifs lorsqu’un appel au modèle numérique est
coûteux. Dans le cadre présenté ici, les ingénieurs se reposent sur des codes de calcul conçus pour simuler
des problèmes de mécanique des structures non-linéaire. En particulier, pour la simulation de larges
structures en béton précontraint, les ingénieur d’EDF se reposent notamment sur le code de simulation
par éléments finis (EF) pour la mécanique des structures code aster [EDF24]. Ce code de qualité in-
dustrielle permet aux ingénieurs de définir des simulations numériques de référence, que nous appelons
simulations haute-fidélité (HF). Ces dernières sont couplées aux données afin d’identifier les valeurs des
paramètres physiques du modèle µ ∈ P.

La réduction de modèles regroupe un ensemble d’algorithmes visant à réduire considérablement le coût
marginal lié à chaque calcul en exploitant les connaissances acquises lors de simulations HF antérieures.
La réduction de modèles paramétriques (pMOR) désigne un ensemble de techniques dédiées à la création
d’un modèle de substitution moins coûteux, appelé modèle d’ordre réduit (ROM). L’objectif principal est
d’approcher les solutions paramétriques, appartenant à la variété des solutions à l’équation aux dérivées
partielles (EDP) paramétrique étudiée, en s’appuyant sur une connaissance de solutions HF pré-calculées.
A l’aide de ces dernières, ces approches visent à construire un nouveau modèle numérique dont l’évaluation
est moins coûteuse, tout en disposant d’un contrôle sur l’erreur entre les solutions HF et réduites. La
méthode des bases réduites est une instance particulière de ces approches où la solution est obtenue par
projection du problème HF sur un espace de plus petite dimension. L’approche est profondément en-
racinée dans le paradigme hors-ligne/en ligne, impliquant une phase hors-ligne (également appelée étape
d’entrâınement) et une phase en ligne (évaluation de la ROM). Pendant la phase hors-ligne, un ensemble
représentatif de solutions HF (appelé snapshots) est calculé pour une plage prédéterminée de valeurs
de paramètres. Ces solutions servent de base pour construire un espace dit réduit, qui constitue un
sous-espace de faible dimension qui capture les caractéristiques essentielles de l’espace des solutions. La
phase hors-ligne est intensive en calculs mais n’est effectuée qu’une seule fois. Des techniques telles que
la proper orthogonal decomposition (POD [BHL93]) sont souvent utilisées pour identifier les modes dom-
inants de variabilité et extraire les informations les plus pertinentes des solutions HF. La phase en ligne
implique la résolution d’un problème d’approximation considérablement de plus faible dimension dans
l’espace réduit. Cette approche facilite l’évaluation rapide de solutions pour divers paramètres, offrant
une réduction substantielle des coûts computationnels par rapport à la résolution du problème d’ordre
complet. La phase en ligne est considérée comme réussie lorsqu’elle se caractérise par une efficacité en
termes de coût CPU. Historiquement, le paradigme en ligne/hors-ligne trouve son origine dans les struc-
tures inhérentes à certaines EDP, en particulier celles présentant des décompositions paramétriquement
affines. Cette caractéristique structurelle facilite la décomposition du résidu en une somme de fonctions
définies par le produit de coefficients dépendant du vecteur de paramètres et de fonctions indépendantes
des paramètres. Cette disposition permet le calcul préalable de nombreux termes pendant la phase hors-
ligne, en particulier ceux indépendants des paramètres, permettant ainsi une évaluation rapide de la
réponse du système pour des valeurs individuelles de paramètres. Cependant, cette formulation n’est
applicable qu’à un ensemble limité de problèmes physiques. Dans les cas où une décomposition effi-
cace du résidu est impossible, l’utilisation d’un espace de faible dimension ne confère pas un avantage
computationnel substantiel. Étant donné que l’opérateur est non-linéaire, la complexité computation-
nelle de l’assemblage de l’opérateur (jacobien et résidus) évolue avec la dimension du modèle HF. Pour
surmonter ce défi, des méthodes appelées hyper-réduction sont mises en œuvre pour permettre une
évaluation rentable du modèle réduit. Ces approches atténuent efficacement les coûts CPU associés à
l’évaluation des résidus non-linéaires. L’ensemble des approches d’hyper-réduction peuvent être classées
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en deux groupes principaux selon leur philosophie sous-jacente. La première classe vise à construire une
décomposition paramétriquement affine pour approcher la forme résiduelle, alignée sur les problèmes de
décomposition affine où la méthode RB démontre une efficacité de calcul. Elle inclut par exemple la
méthode d’interpolation empirique (EIM [BMNP04]). La seconde classe opère au niveau du maillage afin
de diminuer sa taille et de fait, les coûts d’assemblage. De telles techniques incluent la méthode d’hyper-
réduction a priori [Ryc05], les approches de quadrature empirique [YP19], la méthode energy-conserving
sampling and weighting (ECSW [FACC14]) et la méthode empirical curbature [HCF17].

Comme mentionné précédemment, nous cherchons à concevoir des approches ROM pour des problèmes
d’optimisation dans un cadre industriel, en particulier pour des études de recalage par assimilation de
données. L’assimilation de données (AD) est une technique mathématique visant à estimer les variables
du modèle µ en combinant des informations antérieures avec des observations (par exemple, des données
expérimentales), tout en tenant compte des incertitudes associées. Plus précisément, le recalage du
modèle vise à estimer les paramètres du modèle mathématique µ ∈ P à partir d’une sortie d’observation
y ∈ Rnobs , où P est la région des paramètres et nobs est le nombre d’observations. Lorsqu’il s’agit de
problèmes de mécanique des solides, ces observations peuvent contenir n’importe quelle quantité physique
dérivée du champ de déplacement (déplacements, déformations dans les problèmes statiques, vitesses ou
accélérations dans les problèmes dynamiques). Le défi des méthodes d’AD réside dans la détermination de
la meilleure façon de fusionner des sources d’informations hétérogènes (données et modèles numériques).
Les méthodes disponibles dans la littérature se divisent en deux grandes classes [BC02][B+14] : les ap-
proches basées sur le filtrage [Kal60], qui reposent sur la manipulation et la mise à jour de matrices
de covariance en même temps que l’état; et les approches basées sur le contrôle optimal, connues sous
le nom d’approches variationnelles, où l’on suppose que les statistiques des erreurs sont connues et le
problème est formulé pour résoudre un problème de minimisation donné. Dans ce travail, nous nous
concentrons sur la deuxième classe de méthodes de résolution. Cette dernière repose essentiellement sur
la formulation d’une fonctionnelle de coût mesurant l’écart entre les trajectoires possibles du modèle et
des observations. En utilisant un opérateur d’observation Hhf lié au modèle numérique et un vecteur
d’observations physiques y, les paramètres optimaux sont recherchés en tant que minima de la fonction
de coût mesurant l’écart entre les mesures et les prédictions du modèle numérique:

µa = arg min
µ∈P

disto

(
Hhf(µ), y

)
(1)

où disto (·, ·) est une distance sur les vecteurs d’observation (expérimentaux et numériques). Afin de
résoudre un tel problème, une approche d’AD remarquable est la méthode d’assimilation de données
variationnelle tridimensionnelle (3D VAR [Lor86][LDT86][Tal97]). Dans ce cadre, la fonction de coût
mesure non seulement l’écart entre les prédictions du modèle et les observations, mais tient également
compte des connaissances a priori sur les paramètres grâce à un vecteur de paramètres µb, appelé
l’ébauche. D’une part, ce vecteur représente la connaissance a priori détenue par un expert et peut
être perçu comme un moyen de contourner la non-unicité des solutions en fournissant une connaissance
a priori. D’autre part, ce processus s’aligne avec une régularisation généralisée de Tikhonov, abordant
efficacement la nature mal posée du problème en incorporant des contraintes supplémentaires basées
sur les connaissances de l’expert. La régularisation facilite un processus d’AD plus stable, permettant
une combinaison judicieuse d’informations dérivées du modèle et de données observées pour affiner les
prédictions. Nous nous intéressons donc à la minimisation d’une fonctionnelle:

Jhf (µ) =
1

2
‖µ− µb‖2B−1 +

1

2

∥∥∥y −Hhf (µ)
∥∥∥

2

C−1
R

(2)

où B ∈ Rp×p (resp. CR ∈ Rnobs×nobs) est la matrice de covariance de l’ébauche (resp. associée aux
observations). Dans le cadre établi de l’optimisation, la technique d’optimisation de région de confiance
(TR [CGT00]) émerge comme une méthode de résolution propice à l’usage de ROM. En effet, ces ap-
proches reposent sur l’utilisation de modèles d’approximation définis localement à chaque itération du
processus d’optimisation, tout en réduisant l’espace des solutions admissibles. Cette dernière condition
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semble assez intuitive: puisque nous traitons d’un modèle d’approximation local, nous devrions résoudre
le problème dans une région où ce modèle d’approximation est suffisamment proche du modèle HF. À
travers la méthode TR, nous construisons séquentiellement une série de modèles réduits, générant ainsi
un ensemble correspondant de fonctions de coût J r

k (approximation de l’Equation 2) définies en appelant
ces modèles d’approximation. De manière itérative, les modèles subissent des modifications jusqu’à ce
qu’une estimation fiable du paramètre soit obtenue. Tout l’intérêt de ces approches est d’utiliser des
modèles d’approximation dont le coût d’évaluation est plus raisonnable qu’un appel au solveur HF. Une
stratégie peut donc consister à utiliser les ROM comme modèles d’approximation pour les approches de
régions de confiance.

Les objectifs de cette thèse s’articulent autour de trois axes majeurs. Tout d’abord, notre attention
est dirigée vers la formulation de modèles réduits qui soient non seulement efficaces, mais aussi adaptés
aux contraintes fixées par le recours à un code de qualité industrielle (code aster). Plus précisément,
notre objectif est de construire un modèle réduit adapté aux EDPs associées à nos applications, c’est-à-
dire pour des problèmes quasi-statiques en mécanique des structures non-linéaire. Cela nécessite, entre
autres, le développement d’un modèle capable d’évaluer avec précision les états des matériaux, facilitant
la reconstruction des champs de déplacement et des états de contrainte associés. De plus, une attention
méticuleuse doit être portée dans la création des algorithmes et des méthodologies afin de tenir compte
des contraintes imposées par l’architecture du code de calcul industriel. La stratégie globale doit fournir
une approche capable de traiter un cas d’ingénierie réel: un maillage tridimensionnel représentant une
section courante d’enceinte de confinement, incorporant la modélisation du béton précontraint. Un bref
examen du cadre théorique imposé par l’opération au sein de ce code est justifié à ce stade. Nous
considérons la variable spatiale x dans le domaine Lipschitz Ω ⊂ Rd (d = 2 ou 3) et la variable temporelle
t ∈ [0, tf ]. Nous introduisons un vecteur de paramètres µ, qui appartient au compact P ⊂ Rp, où p est
la taille du vecteur de paramètres. Le vecteur µ contient des vecteurs du modèle mécanique utilisé. En
effet, dans cette thèse, nous nous limitons aux scénarios où le vecteur de paramètres ne comprend pas
de paramètres géométriques. Nous notons u la variable primale du problème (champ de déplacements
dans notre cas) et nous introduisons l’espace de Hilbert (X , ||.||X ) défini sur Ω auquel u appartient.
Nous adoptons la notation uµ afin de souligner la dépendance paramétrique. Bien plus, le cadre établi
par les intégrateurs en temps employés dans le code industriel de référence nous oriente vers l’utilisation
d’intégrateurs à un pas. D’un point de vue physique, cela signifie que la connaissance de l’état actuel
de notre système est dérivée uniquement de l’état calculé précédemment et ignore essentiellement toute
information provenant des états précédents. Nous introduisons la liste des pas de temps {t(k)}K=0, définie
comme suit 0 = t(0) ≤ . . . ≤ t(K) = tf , et nous discrétisons le problème de la manière suivante:

u(k)
µ = u(k−1)

µ + ∆u(k)
µ and t(k)

µ = t(k−1)
µ + ∆t(k)

µ , ∀k ∈ {1, . . . ,K} (3)

Etant donné µ ∈ P, nous cherchons à obtenir la trajectoire temporelle Uµ = {u(k)
µ }K=0, telle que µ ∈ P:

{
R(k)
µ

(
u

(k)
µ , u

(k−1)
µ , v

)
= 0,

u0
µ = u0

µ, ∀v ∈ X ,
(4)

où u0
µ désigne la condition initiale et où R(k)

µ : X × X × X → R la forme résiduelle paramétrique au
k-ième pas de temps. Nous étudions une approximation en dimension finie de cette classe de problèmes,
en considérant un sous-espace X hf ⊂ X de dimension finie N . Dans l’ensemble des équations, l’indice ou
l’exposant ”hf” désigne la discrétisation HF.

Le cas du béton précontraint, modélisé par un couplage entre du béton et de l’acier, entre dans le
cadre de ce formalisme. Plus précisément, le problème cible comprend un aspect multi-modélisation où le
domaine de simulation Ω peut être décomposé en deux sous-domaines: un pour le béton et l’autre pour
l’acier. D’une part, le béton est représenté par un modèle non-linéaire (modèle rhéologique de fluage),
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(a) Visualisation du maillage mécanique.

Ne N1d
e N2d

e N3d
e N Nc Ns

1532 784 693 55 4076 3911 165

(b) Informations liées au maillage.

Figure 2: Visualisation du maillage mécanique (cf. Figure 2a) et information sur le maillage mécanique
(number d’éléments du maillage, que cela soit total ou pour les parties uni- et tri-dimensionnels, Figure
2b).

tandis que les câbles de précontrainte sont décrits par une modélisation unidimensionnelle du comporte-
ment élastique linéaire. Des liaisons cinématiques sont effectuées afin de relier les nœuds du béton et
les nœuds de l’acier: d’un point de vue théorique, un point dans l’acier et son point cöıncident dans le
béton sont supposés avoir le même déplacement. Le maillage cible définissant la simulation HF utilisée
en pratique pour du recalage par les ingénieurs est présenté dans la Figure 2. Le problème étudié se place
dans une étude de couplage faible thermo-hydro-mécanique, où l’état mécanique du matériau est calculé
à partir de connaissances de variables auxiliaires précalculées, dont la température et la concentration
en eau dans le béton. Dans le cadre de notre étude, cette donnée est à prendre en considération dans la
non-linéarité du modèle mécanique, bien que seule la partie mécanique constitue la solution HF à réduire.

Dans le cadre de l’approche de réduction décrite dans ces travaux, nous adoptons une approximation
linéaire en construisant une base POD. Cependant, les problèmes étudiés présentent une forte non-
linéarité et une dépendance paramétrique non-affine. L’approximation des résidus non-linéaires ne permet
donc pas une décomposition efficace hors-ligne/en ligne. Afin de surmonter ce goulet d’étranglement, nous
optons pour une approche d’hyper-réduction de quadrature empirique (EQ), de type ECSW [FACC14],
qui utilise une repondération des contributions élémentaires. Cette méthode échantillonne un sous-
ensemble d’éléments de maillage sur l’ensemble du domaine de calcul pour réduire les coûts d’assemblage
lors de l’appel au modèle réduit. Cette approche repose sur la résolution d’un problème de moindres carrés
à poids positifs par une approche de type active-set [LH95] afin de disposer d’une loi de repondération
la plus creuse possible ρeq ∈ RNe :

ρeq = EQ− solve (G, δ) (5)

où G ∈ RM×Ne est une matrice construite de manière appropriée et δ une tolérance. Grâce à cette
approche, un résidu empirique est généré et utilisé lors de la procédure d’assemblage lors de l’appel du
solveur ROM, ∀v ∈ X hf

bc

Rhf,(k)
µ

(
u(k)
µ , u(k−1)

µ , v
)

=

Ne∑

q=1

Rhf,(k)
µ,q

(
Eno
q u(k)

µ , Eno
q u(k−1)

µ , Eno
q v
)

≈
Ne∑

q=1

(ρeq)qRhf,(k)
µ,q

(
Eno
q u(k)

µ , Eno
q u(k−1)

µ , Eno
q v
)

:= Req,(k)
µ

(
u(k)
µ , u(k−1)

µ , v
)

où X hf
bc est l’espace EF des fonctions vérifiant les conditions aux limites du problème, Rhf,(k)

µ (resp.

Req,(k)
µ ) la forme HF (resp. réduite) obtenue après discrétisation EF de R(k)

µ et Eno
q est un opérateur de
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restriction élémentaire pour l’élément q pour les inconnues nodales.

Néanmoins, dans le cadre de la mécanique du solide, la compréhension de l’état mécanique du matériau
requiert la connaissance du champ de contraintes sur le maillage HF. Cependant, ces champs sont
déterminés par intégration les équations constitutives aux points de quadrature. Du fait de l’adoption
d’un maillage réduit, les variables internes ne sont disponibles qu’aux niveaux des éléments échantillonnés
dans le maillage. Par conséquent, le champ de contraintes est uniquement connu au niveau du maillage
réduit. La reconstruction du champ de contraintes (ou d’efforts généralisés) sur l’ensemble du maillage
HF est ensuite réalisée par le biais d’une procédure Gappy-POD [ES95].

Afin d’établir une ROM robuste sur un ensemble de paramètres, nous adoptons une approche glou-
tonne POD-Greedy [HO08] pour construire le modèle de substitution. Cette méthode itérative vise à
enrichir le modèle réduit, comprenant la base et le maillage réduit, en identifiant à chaque itération la
solution HF qui est la moins bien approximée par la ROM. La solution la moins précise est évaluée en ex-
plorant un ensemble de tests Θtrain, défini comme une approximation discrète de l’espace des paramètres
P. Nous évaluons les erreurs d’approximation (différence entre la solution HF et la solution réduite) sur
l’ensemble des tests afin d’identifier le paramètre pour lequel cette erreur est maximale. Ce paramètre est
ensuite utilisé pour améliorer la qualité d’approximation de la ROM. L’extension de cette méthodologie au
cas paramétrique nécessite des adaptations dans deux aspects de l’algorithme: la construction de la base
et le calcul de l’EQ. Pour la construction de la base, plusieurs possibilités existent: une première approche
consiste à réaliser une nouvelle POD sur l’ensemble des snapshots HF calculés; une seconde approche
implique une méthode incrémentale, connue dans la littérature sous le nom de H-POD [Haa17]. Cette
dernière présente l’avantage de fournir une base hiérarchique obtenue en concaténant la base précédente
avec celle obtenue à partir de nouveaux snapshots.

(a) δ = 10−2 (b) δ = 10−4 (c) δ = 10−6

Figure 3: Maillages réduits de la section standard obtenus pour la solution d’un problème de reproduction
utilisant Nu = 5 modes de déplacement et pour plusieurs paramètres d’hyper-réduction.

L’approche développée permet de disposer d’un sampling effiace pour le maillage réduit et est compat-
ible avec les outils développés au sein d’EDF R&D (voir maillages hyper-réduits de section courante pour
un cas non-paramétrique sur la Figure 3). Ceci permet d’accélérer grandement le temps de calcul, même
pour un maillage grossier, tout en disposant d’une qualité d’approximation suffisante sur les champs de
déplacements. Typiquement, pour un cas non-paramétrique, c’est-à-dire en reproduisant une simulation
HF avec la ROM pour un même paramètre, des erreurs relatives moyennées en temps (Eapp,avg

u,µ ) de l’ordre
du pourcent sont atteintes, avec des accélérations supérieures à 10 en temps CPU (voir Figure 4). Ces
bons résultats s’étendent au cas paramétrique, et à l’étude de quantités d’intérêts utilisées en pratique
pour les études d’ingénierie (perte de précontrainte dans les câbles) ou les problèmes inverses (champs
de déformations au niveau de capteurs).

Dans un second temps, nous proposons une approche de recalage par assimilation de données avec
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(b) Speedups.

Figure 4: Évolution des erreurs d’approximation moyennées dans le temps sur les déplacements et les
speedups en fonction du nombre de modes utilisés (Nu, cf. Figure 4a) et pour plusieurs tolérances
d’hyper-réduction (δ, cf. Figure 4b).

l’utilisation de ROMs afin d’accélérer le processus de recalage des paramètres tout en maintenant la
qualité des résultats obtenus. Nous cherchons à éviter délibérément le cadre classique hors-ligne/en
ligne prédominant dans de tels contextes de résolution de problèmes. En effet, l’espace des paramètres
peut être de grande dimension (p � 1), rendant la construction d’un modèle réduit a priori, trop gour-
mande en ressources. De plus, les modèles numériques HF sur lesquels reposent ces études subissent des
modifications continues, car la modélisation physique du processus est en soi un sujet de recherche. Par
conséquent, une ROM construite une fois peut perdre sa validité en peu de temps, suite à des modifications
apportées au modèle HF. À la lumière de ces observations, nous avons adopté une approche fondée sur
une construction adaptative de la ROM, en développant une approche par région de confiance. Le modèle
réduit est construit à la volée en s’adaptant après chaque résolution d’un sous-problème d’optimisation.
En effet, l’utilisation d’une approche de région de confiance implique la création d’une suite de modèles
d’approximation. Nous résolvons une suite de sous-problèmes d’optimisation, associés à des fonctions de
coût Jk appropriées et à une région de confiance Rk donnée. En conséquence, nous avons une suite de
candidats successifs µk (centre des régions de confiance) qui convergeront vers une solution, que nous con-
sidérons comme la solution à notre problème d’optimisation globale (voir la schématisation de l’algorithme
sur la Figure 5). Nous avons développé une approche couplant TR et ROM pour nos problèmes, en nous
fondant sur des travaux ultérieurs [Zah16]. Ces approches ont été dans un premier temps validé sur des
cas d’élasticité linéaire et non-linéaire, pour différents types d’opérateurs d’observations. Ensuite, des
premiers essais numériques ont été menés pour son extension sur code aster.

Cette méthode a été validée numériquement à travers des expériences jumelles, impliquant la création
d’un problème avec des données synthétiques pour ajuster un modèle numérique pré-défini. Nous
désignons par données synthétiques des informations qui ne proviennent pas d’expériences réelles, mais
qui sont extraites d’appels au code de calcul HF. La validation initiale a été effectuée en utilisant le logi-
ciel de simulation Fenics [ABH+15] pour des lois de comportement en élasticité linéaire et non-linéaire,
tels que le recalage sur un modèle hyper-élastique pour un carré troué soumis à une force volumique (voir
Figure 6a). Des opérateurs d’observation locaux ont été testés sur ce cas, en prenant comme observations
les déplacements aux points d’intersection entre l’inclusion et les axes (horizontaux et verticaux). Ces
expériences ont confirmé la pertinence de la procédure pour notre classe de problèmes, avec des paramètres
recalés correspondant aux attentes théoriques, une décroissance des erreurs relatives (voir Figure 6b et
6c). Bien plus, le nombre d’itérations est raisonnable par rapport à des cas HF, où l’algorithme converge
en quelques dizaines d’itérations. Comme explicité plus haut, des tests préliminaires ont ensuite été
lancés pour étendre cette approche à une implémentation dans le code industriel d’intérêt (code aster).

Enfin, le dernier objectif vise à accélérer les processus de construction de modèles réduits (approche
gloutonne) ou d’optimisation (processus itératif) en s’appuyant sur ces modèles réduits. Malgré leur
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Figure 5: Comparaison d’une approche de recalage par assimilation de données pour le cas HF et pour
le cas d’une approche par régions de confiance avec ROM. Cette dernière approche implique une oucle
interne au sein du processus d’optimisation afin de mettre à jour la ROM au cours des itérations.
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(Fenics)
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Figure 6: Géométrie utilisée pour un cas hyper-élastique (élasticité non-linéaire) d’un carré troué, avec
un opérateur d’observation local, et erreurs relatives sur les paramètres entre les itérés µ(i),r et le vrai
paramètre µt.

efficacité, les méthodes mentionnées précédemment peuvent entrâıner des coûts computationnels sub-
stantiels, qui peuvent entraver l’application industrielle. Nous proposons donc plusieurs approches afin
de réduire certains coûts hors-ligne mis en jeu dans ces procédure. D’une part, les processus impliquant
la procédure EQ reposent sur des problèmes d’optimisation au cours de la phase hors-ligne (cf. Equation
(5)). Le coût de calcul pour résoudre ces problèmes augmente avec le nombre de lignes (représentant
les snapshots et les modes: essentiellement la taille des espaces d’approximation et d’entrâınement) et
de colonnes (indiquant la taille du maillage). Nous proposons donc une approche incrémentale pour
accélérer ces processus.
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(c) Sampling paramétrique
sur un maillage raffiné.

Figure 7: Résultats des méthodologies d’accélération appliquée à un maillage raffiné de section courante
d’enceinte: speedups de la méthode d’hyper-réduction incrémentale, et visualisation des sampling de
paramètres pour les maillages grossiers et raffinés pour µ = [ηdc, κ] ∈ R2.

La méthodologie proposée se fonde sur l’hypothèse de bases incrémentales (H-POD) pour lesquelles les
dictionnaires successifs se construisent aussi de façon incrémentale. L’ensemble des indices actifs pour
une itération précédente est alors pris comme point de départ pour le nouveau problème d’optimisation.
Une telle approche permet typiquement d’accélérer grandement les calculs (speedups pouvant aller
jusqu’à 10) dans le cas d’un maillage raffiné de section courante d’enceinte (voir Figure 7a). D’autre
part, nous étudions la faisabilité d’une approche bi-fidélité pour échantillonner l’espace paramétrique.
Plus précisément, nous étudions des maillages de différentes résolutions (maillage grossier et raffiné)
pour générer un échantillonnage de l’espace paramétrique par processus glouton. Pour les expériences
numériques menées, nous présentons ici par exemple le cas industriel avec un paramètre à deux dimen-
sions µ = [ηdc, κ] ∈ R2. Ici, ηdc représente la viscosité de fluage de dessiccation, et κ est le paramètre
de consolidation pour le fluage propre. Les samplings effectués explorent globalement des zones simi-
laires de l’espace paramétrique. Bien plus, la qualité des ROMs obtenues est similaire. Il peut donc être
intéressant d’utiliser une telle stratégie afin de minimiser les coûts d’appel à la procédure HF lors du
processus glouton.

Ces travaux ont élaboré et mis en œuvre une approche de réduction de qualité élevée pour l’approximation

des problèmes étudiés, en particulier dans le contexte industriel. L’approche par région de confiance avec

modèles réduits semble être une solution prometteuse pour aborder efficacement les problèmes de recalage

par assimilation en mécanique des structures. En se basant sur des aspects incrémentaux ou sur plusieurs

niveaux de fidélité, ces implémentations peuvent être rendues robustes et applicables dans un contexte

industriel. Ceci inclut notamment une réflexion sur la minimisation des coûts offline. En conclusion,

les perspectives futures sont vastes, que ce soit pour étendre l’application des modèles réduits à des

problèmes plus vastes et coûteux, ou pour aborder les problèmes d’assimilation de données dans des cas

réels.
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Chapter 1
Introduction

1.1 Industrial context and motivations

1.1.1 A historical perspective on nuclear energy in France

The quest for energy has been a pivotal driver of societal development throughout our contempo-
rary history. Initially, the abundance of energy was ushered in by fossil fuels in the 19th century,
subsequently complemented by the advent of nuclear power and renewable energies, catalyzing
a transformative evolution in our societies. Energy stands as a fundamental cornerstone for the
functionality of our modern economies and the independence of nations or supranational entities,
particularly during periods of heightened political or economic instability. It is within this context
that the French nuclear industry flourished during the latter half of the 20th century.

Figure 1.1: EDF nuclear fleet in operation in France in 2022. EPR Flamanville 3 under construc-
tion. The digit assigned to each location indicates the count of reactors situated at each power
station (Source: IRSN ©- https://www.irsn.fr).

The oil shocks of the 1970s, acting as pivotal triggers, significantly influenced the trajectory
of the French nuclear program. However, the allure of nuclear energy for French engineers pre-
dates these economic crises, as evidenced by the initial developments of a civil nuclear program in
the 1960s. Indeed, the first generation of reactors (graphite-gas technology) was tested with the

1

https://www.irsn.fr


1.1. INDUSTRIAL CONTEXT AND MOTIVATIONS

construction of nine reactors starting in 1963. Due to techno-economic reasons, the pressurized
water reactor (PWR) technology was adopted from 1968 onwards. Armed with pre-established
knowledge of the required technologies, substantial investments were made in the French nu-
clear industry, shaping the nation’s electrical grid. Consequently, France established an extensive
nuclear power infrastructure during the latter half of the 20th century, incorporating multiple
generations of reactors. This strategic move positioned France as a prominent player in the global
nuclear landscape, symbolizing not only energy security but also technological prowess. Nowa-
days, the current fleet of electricity-generating reactors in operation in France consists of a total
of 56 PWRs, known as ”Generation II,” and one European Pressurized Water Reactor (EPR) cur-
rently under construction in Flamanville (Manche), referred to as ”Generation III” (cf. Figure 1.1).

The development of this extensive nuclear fleet allowed France to significantly reduce its fossil
energy imports. Indeed, while primary energy production tripled between 1973 (514 TWh) and
2021, the share of nuclear power rose from 9% to 75%. The development of nuclear power in
France is therefore an essential part of the country’s energy strategy in order to meet climate
commitments or to maintain competitive electricity production costs. A distinctive feature in
France is the standardized nature of the fleet: all 56 PWRs utilize the same technology and are
technically akin. They are spread across 18 nuclear power plant sites.

1.1.2 Nuclear containment buildings and leakage

A nuclear reactor can be broadly divided into two parts: a ”nuclear island” where nuclear fission
produces heat, and a ”conventional island” where this heat is converted into electrical current.
The nuclear island includes crucial components such as the reactor building, housing the reactor
itself and the entire pressurized primary circuit, as well as some systems ensuring the reactor’s
operation and safety. The nuclear containment building of a nuclear power plant is the third and
final containment barrier, in case of accident, between the radioelements inside the reactor and
the outside world (cf. Figure 1.2). Nevertheless, the design philosophy of nuclear containment
buildings (NCBs) in French nuclear plants has evolved progressively since the early 1970s.

Figure 1.2: Functional principle of a nuclear power plant with air cooler (IRSN ©- https:

//www.irsn.fr).

While NCBs initially consisted of a single prestressed concrete wall, with leak-tightness en-
sured by a steel liner, the ensuing designs featured double concrete walls, comprising an inner
prestressed concrete wall without a steel liner and an outer reinforced concrete wall. From a
simplified point of view, the outer wall ensures reactor protection from external aggressions like
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weather or accidental aggressions like aicraft fall, while the inner wall guarantees leaktightness in
case of internal incident or accident. Moreover, an active system maintains a constant vacuum
between the two walls, allowing potential radioactive elements from internal accidental situations
to be retained and filtered rather than released into the environment.

Within the French nuclear industry landscape, Electricité de France (EDF), as the primary
operator of nuclear facilities in France, is tasked with the generation and distribution of nuclear
energy. Its responsibilities encompass the day-to-day management of nuclear power plants, main-
tenance of safety protocols, and the overall operational efficiency of the nuclear energy sector.
Moreovern EDF adheres to the standards set by the Nuclear Safety Authority (ASN). Initially,
the design of the power plants was based on a 40-year operational lifespan. Given that the first
plants became operational in the late 1970s, the design assumption is approaching its limit. EDF,
as the operator of the French nuclear fleet, has expressed a desire to extend the operational lifespan
of the reactors to 60 years, as this was already done in the US. Thus, plant ageing has become a
major research theme for EDF’s engineering and R&D departments. The containment building,
which houses the reactor vessel, is a non-replaceable component of the structure and thus highly
prone to ageing-related problems. In the current state of the French nuclear fleet, 24 of the 56
nuclear reactors still in operation feature a so-called double-walled containment. As mentioned
above, these NCBs possess a special technical feature which entails a particular risk: the leaking
possibility of high pressurized gas in case of accident through the concrete. Since concrete is a
porous medium, gases can diffuse through the structure and be released, in part, into the outside
environment. The evolution of this phenomenon may be affected by ageing.

The continual operational capability is substantiated through a decennial pressurization test
of the containment structures up to 5.2 absolute bars. The quantified air leakage within the inter-
envelope space must not surpass the criterion stipulated by the ASN (1.125% of dry air mass per
diem). Furthermore, the reinforced and biaxially prestressed concrete structure is meticulously
dimensioned to endure inadvertent loads, encompassing 5.2 bars of pressure and a temperature
of 150◦C within the internal containment. The sealing integrity of double-walled NCBs depends
on the state of concrete cracking in the structure, a natural occurrence in reinforced concrete due
to the presence of reinforcements. Some of this cracking occurs during the casting of massive or
singular parts of the containment building, primarily due to the constraints imposed during the
concrete maturation phase. During the prestressing phase, this natural cracking is closed. During
the operational phase, it is essential to maintain a sufficient state of prestress continuously to keep
these cracks closed. However, concrete contracts over time due to prestress effects (creep) and
drying (shrinkage), shortening the prestressed cables and reducing their compressive action on the
cracks. The high-strength steel cables, too, undergo time-dependent deformations (relaxation),
contributing to prestress loss.

1.1.3 Experimental insights into double-walled nuclear containment
leakage phenomenon

As part of the investigations related to these containment structures, the understanding of the
phenomenology of delayed deformations in large prestressed concrete structures constitutes a do-
main of expertise in which EDF has invested significant resources. The resulting research program
led to the construction of a 1/3 scale model of the containment structures of the P’4 reactor fleet,
named VeRCoRs for ”VErification Réaliste du COnfinement des RéacteurS” (Realistic Verifica-
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tion of Reactor Containment). 30 metres high and 16 metres in diameter, VeRCoRs is the first
research model of this size. The VeRCoRs model, a reduced-scale reproduction of an authentic
double-walled containment structure (P’4 platform), was erected at the EDF Lab Les Renardières
site. This collaborative initiative involves diverse EDF units with shared objectives and began in
August 2013. This testing facility, by virtue of its scale, expedites the ageing process of enclosures
within the nuclear park. Its primary objectives encompass the comprehension and modeling of
the physical phenomena underlying ageing, their intricate interactions, and their implications on
leakage rates. This enhances prognostic capabilities concerning the evolution between tests, its
extrapolation to accident scenarios, and its precise localization. Furthermore, the facility sub-
stantiates the robustness of double-walled NCBs in the context of accident situations. From the
standpoint of engineering disciplines, research endeavors have particularly elucidated that the
temporal progression of prestress loss in cables represents a crucial parameter in the investigation
of leakage rates. Furthermore, a multitude of research initiatives has been dedicated to these
thematic areas. Modeling endeavors have been undertaken to formulate suitable constitutive laws
[Koa23] and numerical models for the simulation of such structures. Besides, investigations are
led to scrutinize the sensitivities of outcomes to parameters [Bou18] and to quantify uncertainties
[Ros22].

(a) Deformation sen-
sors

(b) Temperature sen-
sors (c) Optical fibers (d) VeRCoRs mock-up

Figure 1.3: View of the mock-up: sky view of the mock-up in EDF Lab Les Renardières site, and
layout of the various sensors within the mock-up (source: EDF internal document ©).

This structure, distinguished by its exceptional size for a research facility, also stands as a bea-
con of digital innovation (cf. Figure 1.3). Some sensors mirror those found in current reactors but
are notably more abundant, while others, such as optical fibers, represent novel additions being
meticulously tested. From an experimental perspective, the mock-up helps to assess and check
methodologies before they can be deployed throughout the fleet, or to reflect on the measure-
ment tools to be installed during the construction of future power plants. Furthermore, engineers
aspire to realize the ambitious concept of a digital twin, seamlessly integrating real data (e.g.,
derived from the VeRCoRs model) with numerical models to optimize parameters for physical
models, and delineate their associated values and uncertainties. This acquired knowledge not only
enables the anticipation of the future trajectory of the containment structure but also furnishes
engineers with estimates of critical quantities like leakage rates. Once mastered, this knowledge
could be extrapolated to apply specific methodologies across the entirety of the nuclear fleet. The
VeRCoRs model stands as a noteworthy effort within EDF’s R&D department’s extensive Civil
Work Assessment Project (CIWAP). This comprehensive project encompasses endeavors related
to understanding and modeling leakage from double-walled NCBs, with VeRCoRs model being a
significant component thereof. The first phases of the project focused on modeling the mechanical
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behavior of the model. Several tasks are now underway, including the transposition of this work
to the oldest NCBs in the fleet, and the design of numerical twins based on the models already
established. This thesis falls within the scope of this project supported by EDF R&D.

1.1.4 Digital twin design and challenges for robust and efficient nu-
merical simulation

This thesis is motivated by the numerical simulations involved when tackling the challenge of the
leak-tightness of double-walled NCBs. Indeed, combining data and numerical models—whether
for quantifying uncertainties (Bayesian inference) or data assimilation— pertains to the domain
of optimization problems and poses challenges related to computational efficiency, particularly
in extensive many-query scenarios. Within this thesis, our primary focus is on addressing chal-
lenges related to data assimilation. Nevertheless, these challenges demand a multitude of model
evaluations, and the computational expenses associated with such procedures can swiftly become
prohibitive.

Focusing on the analysis of extensive pre-stressed concrete structures, and grappling with
the complexities of numerical simulation within civil engineering, engineers heavily depend on
computational codes designed for non-linear structural mechanics. Indeed, the numerical models
employed in these investigations rely on industrial-grade finite element codes, specifically designed
for engineering computations in real-world scenarios. Specifically, for the numerical simulations
at stake here, engineers employ the structural mechanics software code aster [EDF24], a ro-
bust finite element code developed by EDF R&D for addressing intricate engineering challenges.
code aster boasts a rich history dating back to the 1980s, originating from the imperative recog-
nized by EDF to create a sophisticated numerical simulation tool for the nuclear and energy sec-
tors. Its continuous refinement over decades has led to a versatile and widely used tool, known for
its proficiency in handling multiphysics simulations, encompassing structural mechanics and heat
transfer, and adeptly simulating complex nonlinear mechanical behaviors. Moreover, code aster

is an open-source software, fostering collaboration and enabling users to customize and extend its
functionalities based on their specific needs.

Figure 1.4: Logo of the high-fidelity industrial-grade finite element code for structural mechanics
developped at EDF R&D (https://code-aster.org).

Computations for simulations entail a substantial time commitment to achieve numerically ac-
curate solutions for the addressed problems. Indeed, certain applications demand a high number
of degrees of freedom (DOFs) to ensure solutions of adequate quality. Besides, the models used are
nonlinear, featuring couplings (both physical and geometric) whose resolution (solvers, integration
of constitutive equations) can be intricate. More precisely, engineers define reference simulations,
which we call high-fidelity (HF) simulations. Regarding our application example, they typically
concern a portion of an NCB, chosen to meet criteria set by the engineers. These are simulations
whose input data are the physical parameters of nonlinear structural mechanics models. In our
scenario, the HF partial differential equation undergoes discretization through the finite-element
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(FE) method for structural mechanics.

However, implementing these models within a computational framework that involves numer-
ous iterations is challenging in practice. Indeed, when algorithms repeatedly invoke HF simu-
lations, they may become impractical. Therefore, it may be imperative to develop algorithms
aimed at alleviating the computational costs of these numerical procedures in view of overcoming
bottlenecks in industrial applications.

1.2 Reduced order models for data-assimilation problems

Within this thesis, all research is framed within the scope of reduced order modeling for data
assimilation challenges within an industrial context. More precisely, the work must conform to
the numerical algorithms and codes employed within the industrial framework and be suitably
adapted to seamlessly integrate into data assimilation procedures. Indeed, the overarching goal
is to develop models that are more cost-effective than current ones, tailored to data assimilation
challenges. These efforts need to adhere to the specificities of the studied physical models while
also navigating the constraints imposed by industrial frameworks. In the following paragraphs,
we first offer a general overview of the employed methodology and then delineate the objectives of
our thesis work. Subsequently, we briefly introduce the development environment used for these
research endeavors.

1.2.1 Methodology overview

Model order reduction (MOR) consists in a broad spectrum of algorithms that aim to drastically
reduce the marginal cost linked to individual computations by leveraging insights gained from
earlier HF simulations. Parametric model order reduction (pMOR) denotes a set of techniques
dedicated to crafting a low-dimensional surrogate model, known as reduced-order model (ROM).
The primary goal is to approximate the solution field across a spectrum of parameters, drawing
upon insights derived from preceding HF simulations. One of the purposes of these methods is
to propose a new numerical model, build upon knowledge frome the HF numerical scheme, and
whose evaluation is affordable, while ensuring similar approximation quality. The latter is often
evaluated by means of the approximation error, which corresponds to the error between the HF
solution, also known as the full-order solution, and the reduced solution. The whole point of
the approach is to have control over the approximation errors on the parametric manifold under
study. Reduced Basis (RB) method is a model order reduction technique employed in the context
of parametrized PDEs. The core idea behind RB method is to construct a low-dimensional sub-
space, known as the reduced basis space, wherein the solution is sought, and therefore, reducing
the computational burden associated with solving the problem for each parameter independently.
The reduced space is made of a a small number of global basis functions, build through precom-
puted solutions (called snapshots) of the HF model. Further details on the RB method can be
found in the following non-exhaustive reference list [RHP08][QMN15][HRS+16]. The RB method
is deeply rooted in the offline/online paradigm. The latter is a systematic strategy which involves a
twofold process: an offline phase (also called training stage) and an online phase (cf. Figure 1.5).
During the offline phase, a representative set of HF solutions is computed for a predetermined
range of parameter values. These HF solutions serve as a basis for constructing a reduced basis
space, a low-dimensional subspace that captures the essential features of the solution manifold.
The offline phase is computationally intensive but is performed only once, independent of the
specific parameters during the online phase. The constructed reduced basis space forms the crux
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of the online phase. Techniques such as Proper Orthogonal Decomposition (POD [BHL93]) are
often employed to identify dominant modes of variability and extract the most relevant informa-
tion from the HF solutions. When faced with a new parameter value, the online phase entails
solving a considerably lower-dimensional approximation problem in the reduced space. This ap-
proach facilitates the swift assessment of solutions for diverse parameters, offering a substantial
reduction in computational expenses compared to addressing the full-order problem.The online
phase is deemed successful when marked by efficiency in terms of CPU cost, making it suitable
for real-time applications, or optimization studies.

OFFLINE STEP ONLINE STEP

Mathematical model

µ ∈ Rp

HF simulation code

code aster

Full Order Model

(FOM)

Learning about the physical discretized system

by successive iterations

Building reduced operators:

reduced basis + reduced mesh

Data Compression Operator CompressionCall to HF solver ⇒ ⇒

Inputs: Reduced operators

Reduced Order Model

(ROM)

Good accuracy but expensive CPU cost Less accuracy (control error) but cheap CPU cost

Figure 1.5: Visualization diagram of the online/offline paradigm: separation between an a priori
phase of ROM construction, executed only once, with high computational cost, and an online
phase of calling with lower CPU cost.

Historically, the online/offline paradigm originated from the inherent structures of some PDEs,
particularly those exhibiting parametrically affine decompositions, a characteristic prominently
present in elliptic problems. This structural feature facilitates the decomposition of the residual
into a sum of functions defined by the product of coefficients dependent on the parameter vector
and functions independent of parameters. Such an arrangement allows for the precomputation
of numerous terms during the offline phase, specifically those independent of parameters, thereby
enabling a rapid evaluation of the system response for individual parameter values. However,
this formulation is only applicable to a limited set of physical problems, particularly those of a
nonlinear nature. In scenarios where an efficient decomposition of the residual is unattainable,
employing a low-dimensional space does not yield a substantial computational advantage. Since
the operator is nonlinear, the computational complexity of the operator assembly (jacobian and
residuals) scales with the size of the HF model. To overcome this challenge, methods known as
hyper-reduction are implemented to enable a cost-effective evaluation of the reduced model. These
approaches effectively alleviate the computational expense associated with evaluating nonlinear
residuals. Further details on these methods are elucidated in Chapter 2.
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As mentioned above, we seek to design ROMs for industrial optimization problems, in particu-
lar for data assimilation studies. Data assimilation (DA) is a mathematical technique, whose aim
is to seek an estimation of model variables µ by combining prior information with observations
(e.g., experimental data) while considering the associated uncertainties. More precisely, model
calibration (or updating) aim to estimate parameter of the mathematical model µ ∈ P from an
observation output y ∈ Rnobs , where P is the parameter region and nobs the number of observa-
tions. When considering solid mechanics problems, those observation may contain any physical
quantity derived from the displacement field (displacements, strains in static problems, velocities
or accelerations in dynamical problems). The challenge for DA methods lies in determining how
best to blend heterogeneous sources of information (data and numerical models). The set of avail-
able methods in the literature falls into two broad classes [BC02][B+14]: filtering-based approaches
[Kal60], which rely on the handling and updating of covariance matrices at the same time than the
state; and optimal control-based approaches, known as variational approaches, where we assume
that the errors statistics are known, and the problem is stated so as to solve a given minimisation
problem. In this work, we focus on the second class of resolution methods. The latter is essentially
founded on the formulation of a deviation function between the model’s possible trajectories and
the observations. Given an observation operator Hhf tied to the numerical model, and a vector of
physical observations y, optimal parameters are sought as minima of the cost function measuring
the deviation between measurements and numerical model predictions:

µa = arg min
µ∈P

disto

(
Hhf (µ) , y

)
(1.1)

where disto (·, ·) is a distance on the observation vectors (experimental and numerical). Like all
inverse problems, challenges of ill-posedness, following Hadamard’s definition [Had02], and ill-
conditioning issues are inherent in model updating problems, exacerbated particularly by the
presence of measurement noise and model bias. Addressing these challenges requires the consid-
eration of regularization techniques to effectively navigate and solve the associated optimization
problem. One prominent DA approach is the Three-Dimensional Variational Data Assimilation
(3D VAR) method. Within this framework, the cost function not only measures the misfit between
model predictions and observations, but also takes a priori knowledge on the paremeters into ac-
count thanks to a parameter vector µb, called the background. The latter embodies the a priori
knowledge held by an expert, encompassing an understanding of the influence of parameters on so-
lution shapes (and observations) or an awareness of the expected order of magnitude of parameters
for the utilized experimental setup. The introduction of the term related to the background is then
perceived as a means to circumvent the non-uniqueness of solutions by providing a priori knowl-
edge. This process aligns with a generalized Tikhonov regularization [Tik], effectively addressing
the ill-posed nature of the problem by incorporating additional constraints based on expert in-
sights. The regularization facilitates a more stable assimilation process. It relies on a judicious
combination of model-derived information and observed data to refine predictions and improve
the accuracy of the assimilated results. Thus, the cost function Jhf is expressed as a weighted
sum of quadratic terms incorporating all the above information (cf. Figure 1.6). This algorithm is
a robust method, historically developed in the meteorological community [Lor86][LDT86][Tal97].
More details are given on the exact formulation of this optimization problem in Chapter 5.

Within the established optimization framework, the trust-region (TR [CGT00]) optimization
technique emerges as a viable solution. The key idea behind these approaches involves using local
approximation models during the optimization iterations, while reducing the set of admissible
solutions. This last condition seems fairly intuitive: since we are dealing with a local approximation
model, we should solve the problem in a region where this approximation model is sufficiently close

8



1.2. REDUCED ORDER MODELS FOR DATA-ASSIMILATION PROBLEMS

y

µb

Jhf (µ) Optimization procedure µa

Figure 1.6: General principles of a 3D-VAR data-assimilation problem given an observation vector
y and a background vector µb.

to the HF model. The approximation models should be less expensive to evaluate in order to gain
in terms of CPU cost. Trust-regions approaches offers a formulation that accommodates the
use of less computationally demanding approximation models during the optimization iterations.
In the context of ROM design, one strategy may be to use ROMs as approximation models
for trust-regions approaches for a specific class of optimization problems namely DA problems.
Through the TR method, we sequentially construct a series of reduced models, thereby generating
a corresponding set of cost functions {J r

k} defined on these approximation models. In an iterative
fashion, the models undergo modifications until a reliable estimate of the parameter is achieved.
Figure 1.7 elucidates the distinction between the conventional approach, relying on the HF code,
and the methodology that integrates TR with ROMs.

measurements (y)

HF FE model

a priori knowledge (µb)

Jhf (µ)
optimization process

(solver)
µa

HF procedure for DA pb

TR-ROM procedure for DA pb

measurements (y)

ROM FE model

a priori knowledge (µb)

J r
0 (µ)

optimization process

(TR solver)
µa

update ROM

µ∗k = arg min
µ∈Rk

J r
k (µ) under PDE-constraint

µk+1 = µk or µ∗kk → k + 1

Figure 1.7: Comparison of the data-assimilation procedure under an HF scheme versus the use
of trust-region with ROM. The call to the TR solver induces a internal loop in the optimization
process with an update of the ROM.
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1.2.2 Objective of the work

The objectives of this thesis can be delineated into three primary topics. Initially, our attention will
be directed towards formulating ROMs that are not only efficient but also well-suited for the pre-
vailing industrial challenges. Specifically, our goal is to construct a ROM tailored to the pertinent
partial differential equations, addressing quasi-static problems in nonlinear structural mechanics.
This requires, among other criteria, the development of a model proficient in accurately assessing
material states, facilitating the reconstruction of displacement fields and associated stress states.
Additionally, our implementations must align with the digital tools employed by engineers, accom-
modating the constraints imposed by industrial architecture and computational codes. Within the
framework of this thesis, all methodologies have been devised within an industrially recognized
finite element simulation code extensively used in structural mechanics: code aster. This reality
underscores the need for meticulous consideration in crafting the algorithms and methodologies.
The overarching strategy should furnish both a systematic approach and a high-quality ROM to
address a real-world engineering challenge: a three-dimensional mesh representing a portion of a
containment structure, incorporating prestressed concrete modeling. A brief examination of the
theoretical framework mandated by the operation within this code is warranted at this juncture.
Further insights into modeling intricacies and decision-making processes will be expounded upon
in Chapter 3.

We consider the spatial variable x in the Lipschitz domain Ω ⊂ Rd (d = 2 or 3) and the
time variable t ∈ [0, tf ]. We introduce a vector of parameters µ, which belongs to the compact
parameter region P ⊂ Rp, where p is the number of parameters. The µ vector contains physical
parameters of the mechanical models used. In this thesis, we limit our consideration to scenarios
where the parameter vector does not include geometric parameters. This decision is made to avoid
the complexity associated with mesh mapping techniques or more intricate methods required to
handle parametric dependencies. Furthermore, the industrial challenges within our framework do
not consider variations in geometry. Thus, such a parametric configuration falls outside of the
scope of our work. We denote by u the primal variable of the problem and we introduce the
Hilbert space (X , ‖.‖X ) defined over Ω to which u belongs. We adopt the notation uµ to highlight
parametric dependency. In a static setting, the problem of interest may be stated as such:

find uµ ∈ X : Rµ (uµ, v) = 0, ∀v ∈ X , µ ∈ P (1.2)

whereRµ : X×X → R is the parametric residual associated with the partial differential equation
(PDE) of interest.

At the core of our investigation lies the temporal evolution of a nuclear containment structure.
This particular problem is characterized by its non-stationary nature. More precisely, our focus is
on formulations of quasi-static problems, ones that encompass a temporal evolution while neglect-
ing inertia terms. The framework established by the time-integrators employed in the reference
industrial-grade code directs us towards the utilization of one-step integrators. From a physical
standpoint, this means that the knowledge of the current state of our system is derived solely from
the previously computed state and essentially disregards any information from preceding states.
We introduce the time grid {t(k)}K=0, defined as 0 = t(0) ≤ . . . ≤ t(K) = tf , and we discretize the
problem as outlined below:

u(k)
µ = u(k−1)

µ + ∆u(k)
µ and t(k)

µ = t(k−1)
µ + ∆t(k)

µ , ∀k ∈ {1, . . . , K} (1.3)

Given µ ∈ P , we seek the sequence Uµ = {u(k)
µ }K=0, such that, for all µ ∈ P :
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{
R(k)
µ

(
u

(k)
µ , u

(k−1)
µ , v

)
= 0,

u0
µ = u0

µ, ∀v ∈ X ,
(1.4)

where u0
µ denotes the primal initial solution of the problem at stake and whereR(k)

µ : X×X×X →
R is the parametric residual at the k timestep. In summary, our focus revolves around quasi-static
non-linear problems, which can be high-dimensional. This class of problems encompasses many
structural mechanics problems. Besides, it is worth noting that the initially presented static prob-
lem (cf. Equation (1.2)) can also be considered as part of this broader class of problems.

We examine a finite-dimensional approximation of this class of problem (cf. Equation (1.4)),
by considering a subspace X hf ⊂ X of finite dimension N . This approximation is referred to as
HF discretization, and throughout the following sections of the manuscript, the ’hf’ subscript or
superscript designates HF discretization. Within this thesis, we employ continuous Lagrange FE
basis functions for discretizing the problems at hand, which represents the standard numerical
approach employed in structural mechanics codes. Our first objective is to construct a model
that is less computationally demanding than this HF problem, while ensuring consistency in the
obtained results. The physical models formulated, the discretization methods utilized, and the
architecture of these codes constitute input data for our problem, to which we must tailor our
approach.

Second, we intend to couple a data assimilation approach with the use of ROMs to speed
up the process of parameter recalibration while upholding the quality of the yielded results. Our
approach aligns with the following paradigm: we deliberately avoid the classic offline/online frame-
work prevalent in such problem-solving contexts. Indeed, such an approach would involve building
a ROM valid over a parameter range before employing it for data assimilation purposes. This
choice would entail studying the influence of approximation error on the result of the data assim-
ilation process and proposing solutions to correct the problem coherently. However, this type of
process is not entirely suitable for the aforementioned industrial context. Indeed, the parameter
space can exhibit a notably high dimension, rendering the construction of a ROM too resource-
intensive. Furthermore, the numerical models on which these studies rely undergo continuous
modification since the physical modeling of the process is a reseach topic in itself. Consequently, a
ROM constructed once may lose its validity within limited time, following modifications to the HF
model. In light of those remarks, we have embraced an approach where data assimilation is based
on an adaptive construction of the ROM, thereby accelerating the data assimilation process. In
this scenario, the ROM is constructed exclusively to address the specific problem at hand, aiming
to expedite the process without necessarily being suitable for all studied problems. Although this
loss of generality may be acknowledged, this approach contributes to curtailing the offline ex-
penses linked with ROM construction. Moreover, it also fits in neatly with the desired industrial
framework, where the modeling of constitutive equations is an ongoing area of research frequently
subjected to challenges. The goal is to establish an on-the-fly approach to optimization problems,
with a specific focus on addressing data assimilation challenges within a variational framework
using ROMs.

Finally, the last objective aims to accelerate the construction processes of ROMs (greedy)
or optimization (iterative process) banking on these reduced models. Despite their efficiency,
the previously mentioned methods can incur substantial computational costs if applied directly.
Hence, our approach revolves around a judicious use of ROMs in an industrial context, considering
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several aspects, namely reducing some offline costs, which can hinder industrial application.

1.2.3 Development environment

A fundamental aspect of this work lies in the fact that, rather than being exclusively geared toward
industrial applications, the advancements were executed within the framework of code aster.
This choice was not only a necessity owing to the intricate nature of the models to be simulated
but also a strategic decision to formulate a methodology that aligns seamlessly with the data
structures and algorithms employed in practical applications. A HF numerical simulation typi-
cally involves input files representing meshes and measurements, yielding output files containing
numerical results. Development work has therefore been carried out in order to ensure consistent
calls with code aster data structures.

As part of a collaborative project (FUI Mordicus) involving various universities and compa-
nies, EDF contributed to the development of a Python module for model reduction calculations.
The objective was to amalgamate methods, such as data compression, optimization, and hyper-
reduction techniques, independent of HF codes. The methodologies presented in this thesis were
integrated with the mordicus package and code aster to facilitate knowledge capitalization within
R&D tools. All algorithms were implemented and incorporated into the mordicus Python code,
while the hyper-reduction methods were embedded in the core of code aster, complementing the
existing projection reduction capabilities within this code.

1.3 Contributions and outline of the thesis

1.3.1 Contributions

The key contributions of this work can be summarized as follows:

� the development of projection-based reduced-order models (ROMs) for parametric quasi-
static problems in nonlinear mechanics, and extension to multi-modeling framework for the
accurate simulation of standard sections of NCBs,

� the developement and implementation of an POD-greedy adaptive approach within an
industrial-grade broadly used FE code code aster and numerical tests on different real-
world problems namely: three-dimensional elasto-plastic plate with holes, and a standard
section of a double-walled NCB,

� the adaptation of trust-region approaches using ROMs for data-assimilation problems, and
the application of this methodologies to nonlinear solid mechanics problems;

� the improvement of the ROM building and the hyper-reduction process for iterative proce-
dure relying ROMs, namely greedy approaches or optimization processes. This encompass
incremental hyper-reduction and multi-fidelity strategies for the parameter sampling.

1.3.2 Structure of the thesis

Given the overarching goals of the thesis, our work can be divided in three parts: first, the
construction of projection-based ROMs for quasi-static problems in nonlinear solid mechanics;
second, the development of a data assimilation algorithm based on the coupling between ROMs
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and trust region approachs; thirds, acceleration strategies for iterative processes relying on ROMs.

Chapter 2 furnishes an extensive review of reduction methods pertinent to our research context.
The methodological decisions inherent in our work and the numerical validation of all introduced
approaches are expounded upon in Chapters 3 and 4. We present two main cases: an elasto-plastic
case and a representative structural volume of a NCB. The first can be seen as an initial step in
the development and validation of the method for a classical nonlinear mechanics problem with a
single modeling approach. The second case extends the method to a multi-modeling scenario for
a problem dependent on precalculated variables. Indeed, this industrial case involves a kinematic
coupling between a three-dimensional model and a one-dimensional model. The rheological model
used for concrete (three-dimensional part) is at the core of a weak coupling of multiple physics.
Consequently, the material behavior is influenced by previously calculated physical fields. The
representative structural volume case is a continuation of previous research efforts on a model
developed and studied in various research works [Bou18][Bou16]. Engineers commonly use this
test case in practical studies concerning NCBs.

Subsequently, our attention is directed toward the entirety of the work pertaining to data
assimilation processes. An overview of existing methods and the theoretical framework for this
category of assimilation problems is provided in Chapter 5, followed by an in-depth exposition
of the methodology developed in our work and a numerical demonstration of the quality of the
optimization process.

To conclude, Chapter 6 proposes numerical strategies for accelerating the iterative processes
presented in the other sections.

1.3.3 Publications and communications

Publications and communications related to this thesis are listed hereafter.

� Publication in peer-reviewed journals:

� [AAB+24b] Eki Agouzal, Jean-philippe Argaud, Michel Bergmann, Guilhem Ferté, and
Tommaso Taddei. A projection-based reduced-order model for parametric quasi-static
nonlinear mechanics using an open-source industrial code. International Journal for
Numerical Methods in Engineering, 125(4):e7385, 2024.

� Preprints:

� [AAB+22] Eki Agouzal, Jean-Philippe Argaud, Michel Bergmann, Guilhem Ferté, and
Tommaso Taddei. A projection-based reduced-order model for parametric quasi-static
nonlinear mechanics using an open-source industrial code. arXiv preprint arXiv:2212.14825,
2022,

� [AAB+24a] Eki Agouzal, Jean-Philippe Argaud, Michel Bergmann, Guilhem Ferté,
Sylvie Michel-Ponnelle, and Tommaso Taddei. Projection-based model order reduc-
tion for prestressed concrete with an application to the standard section of a nuclear
containment building. arXiv preprint arXiv:2401.05098, 2024,

� [AT24] Eki Agouzal and Tommaso Taddei. Accelerated construction of projection-
based reduced-order models via incremental approaches. arXiv preprint arXiv:2401.07108,
2024.
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� Communications in international and national conferences:

� Agouzal E., Argaud J.P., Bergmann M., Ferté G., Taddei T. 2022. Réduction de
modèles de problèmes paramétriques en mécanique non linéaire à l’aide de Code Aster
et Mordicus. 15ème Colloque National en Calcul des Structures (CSMA),

� Agouzal E., Argaud J.P., Bergmann M., Ferté G., Taddei T. 2022. Model reduction ap-
proach for parametric quasi-static non-linear mechanics problem in an industrial codes.
Congrès d’Analyse Numérique (CANUM),

� Agouzal E., Argaud J.P., Bergmann M., Ferté G., Taddei T. 2022. Parametric model
order reduction approach for quasi-static non-linear mechanical problems using an in-
dustrial code: application to an elasto-plastic material. MORE,

� Agouzal E., Argaud J.P., Bergmann M., Ferté G., Taddei T. 2023. Projection-based
model order reduction for large-scale nonlinear problems in structural mechanics using
an industrial code. SIAM CSE,

� Agouzal E., Argaud J.P., Bergmann M., Ferté G., Taddei T. 2023. Projection-based
model order reduction for multi-modelling problems in nonlinear structural mechanics.
M2P,

� Agouzal E., Argaud J.P., Bergmann M., Ferté G., Taddei T. 2023. Projection-based
model reduction for creep behavior in prestressed concretes. YIC,

� Agouzal E., Argaud J.P., Bergmann M., Ferté G., Taddei T. 2023. Projection-based
model order reduction for a representative structural volume of a nuclear containment
building. MorTECH.
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Chapter 2
Model order reduction approaches

2.1 Introduction

This chapter provides a detailed exploration of the model reduction methodology developed and
applied in this thesis, establishing essential connections with prior research. It begins by detailing
the specific physical problems under scrutiny and then outlining the numerical methods employed
to design a suitable ROM for these challenges.

First, Section 2.2 focuses on presenting the specific problems addressed within this work,
namely nonlinear quasi-static problems in structural mechanics. The description of weak formula-
tions of the mechanical problems and their relationships with previously introduced formulations
(cf. Equation (1.2) and (1.4)) are stated. We also explain the discretization methods used, giv-
ing the reader a comprehensive understanding of the scope of the problems investigated in this
thesis. More specifically, the ultimate objective of this work resides in the numerical simulation
of prestressed concrete within the framework of an industrial code. In order to elucidate the
procedure, we opt to address two issues, herein referred to as the single-modeling approach and
the multi-modeling approach. The former pertains to the application of a ROM in the numerical
simulation of a material exhibiting nonlinear behavior with the presence of internal variables; the
latter category of issues involves more intricate physical models that account for the coupling be-
tween multiple materials and mechanical behaviors activated by physical phenomena (that means,
with weak coupling to other physical phenomena). The first category can be viewed as a simplified
version of the second. As a reminder, the latter is the motivation behind our work.

Moving ahead, our focus shifts to a comprehensive exploration of the methodology in use. We
will contextualize this examination within the broader landscape of current research initiatives.
This involves critical decisions about choosing the reduced model method, exploring the approxi-
mation space, and addressing operator nonlinearity (see Section 2.3). Finally, we detail the notion
of a posteriori error indicators and the choice made in a single-modeling case (see Section 2.5).
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2.2 Nonlinear quasi-static problems in structural mechan-

ics

2.2.1 Problem formulation

In our earlier discussion, we introduced the computational domain Ω and the time variable
t ∈ [0, tf ]. Our focus lies on nonlinear mechanical problems involving internal variables, specif-
ically two classes of problems whose PDEs align with the aforementioned framework. First, we
investigate the scenario of a single material, representing a mechanical system with a unique con-
stitutive equation. In the upcoming text, we denote this scenario as a single-modeling formulation.
Subsequently, we introduce the more intricate case of a multi-modeling structure, characterized
by kinematic coupling between computational domains and the possibility of weak multi-physics
coupling. This latter case corresponds to the mechanical model employed for prestressed concrete
in NBCs, and we will provide a detailed exploration of this model later in our discussion (see
Chapter 3, more specifically Section 3.3.3).

As previously stated, our attention is directed towards problems within the realm of structural
mechanics, where the primary unknown of the system is the displacement field u. We concentrate
on nonlinear small-displacement small-strain mechanical problems with internal variables. Within
our context, the constitutive equations are inherently nonlinear, and the system implicitly de-
pends on the history of displacements through a differential equation that incorporates nonlinear
behaviors such as elastoplasticity or viscoplasticity. Our approach adopts the general framework
of materials with internal variables, where these variables serve as secondary parameters in a
mechanical problem. They help capture the internal state of the material and contribute to de-
scribing its history-dependent behavior. The study of internal variables is particularly relevant in
the context of irreversible thermodynamics and constitutive modeling, where it allows for a more
accurate representation of material responses beyond the traditional elastic regime.

Single-modeling formulation

Ω

Γd

Γn fs

ud

fv

As mentioned above, we shall begin our discussion with the case of single-modeling. To be more
precise, we deal with the case of a three-dimensional mechanical system that can be modeled
using a two or three-dimensional approaches (d = 2 or 3). We adopt the framework of continuum
mechanics for small deformations. Within this framework, a comprehensive understanding of the
mechanical state involves the knowledge of the displacement field (uµ), the stress field (expressed
through the Cauchy tensor σµ), and the internal variables (γµ). In this work, we address only quasi-
static formulations, which means that we omit the inertial term from the equilibrium equations.
Time evolution is described by the system of ordinary differential equations in each point in Ω:
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−∇ · σµ = fv

σµ = Fσµ (∇suµ, γµ)
γ̇µ = Fγµ (σµ, γµ)

+ Boundary Conditions (BCs) (2.1)

where the nonlinear operator Fσµ stands for the constitutive equation that maps the state of
stresses in the material from the knowledge of deformations (∇s is the symmetric part of the
gradient, ∇s· = 1

2
(∇ · +∇>·)) and internal variables, while the nonlinear operator Fγµ denotes

an equation of evolution of internal variables within the material. The first equation in the sys-
tem below describes the equilibrium of our system. The evolution equation for internal variables
encapsulates the dynamics of these variables, serving as carriers of information regarding the ma-
terial’s history. These variables play a crucial role in characterizing how the material responds to
external influences over time. At last, the constitutive equation provides us with the stress state
of the material. In our formalism, and within the context considered, the stress state, identified
by the Cauchy stress tensor σµ, is determined by both the deformation of the system (∇suµ)
and the material’s history (internal variables γµ). This equation sheds light on how the material
structurally responds to both instantaneous deformation and its historical interactions, offering a
comprehensive understanding of its mechanical behavior.

As previously indicated, the time-discretization schemes introduced in this context are specif-
ically tailored for one-step integrators (cf. Equation (1.3)). In other words, our approach involves
a backward Euler discretization scheme for the evolution equation such that the quasi-static dis-
cretization of the system leads to the following formulation:





−∇ · σ(k)
µ = f

(k)
v on Ω

γ
(k)
µ = γ

(k−1)
µ + ∆t(k)Fγµ

(
σ

(k)
µ , γ

(k)
µ

)
on Ω

σ
(k)
µ = Fσµ

(
∇su

(k)
µ , γ

(k)
µ

)
on Ω

+ BCs

(2.2)

Theoretically, stresses can be considered as internal variables. Building upon this formulation,
we choose for convenience to restate the problem by displaying only the stress variable in our
formulation, as follows:





−∇ · σ(k)
µ = f

(k)
v on Ω

σ
(k)
µ = F (k)

µ

(
u

(k)
µ , u

(k−1)
µ , σ

(k−1)
µ

)
on Ω

+ BCs

(2.3)

where F (k)
µ (., .) is an appropriate nonlinear operator. In this framework, internal variables are seen

as an inner part of the operator F (k)
µ . As the internal variables take into account the history of the

material, we can either write the residual as an explicitly time-dependent form, or incorporate the
internal variables into the formulation to explicitly denote the dependency. We emphasize that
our methodology is appropriate for problems of the form (2.2), although we further define it for
problems of the form (2.3).

We now explore the incorporation of boundary conditions (BCs) into our formulations. As
previously mentioned, our methodology aligns with the computational framework dictated by the
software used for numerical tests. In the context of the numerical tools employed, we implement
Dirichlet-type conditions to account for linear combinations of state variables. This involves a
linear form c linked to kinematic BCs, assuming the displacement field lies within the kernel
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of this form. Such a selection allows for the representation of arbitrary linear relations on the
displacement field. Beyond handling homogeneous Dirichlet BCs, it supports various scenarios,
such as the uniform translation of an unknown amplitude of a subpart or any other arbitrary
linear relationship between the DOFs of Ω that captures kinematic links between subsystems of
the overall mechanical system. In our work, we consider the general case that encompasses both
non-homogeneous Neumann and homogeneous Dirichlet BCs for appropriate linear combinations
of state variables:

{
σ

(k)
µ · n = f

(k)
s on Γn

c(u
(k)
µ ) = 0 on Ω

(2.4)

where n is the outward normal to the boundary Γn, and f
(k)
v (resp.f

(k)
s ) is the volumic (resp.

surfacic) force applied to the system, and c the previously mentionned linear form. The varia-
tional form of the equilibrium equation given by Equation (2.1) reduces to the following residual
expression:

Rσ
µ

(
σ(k)
µ , v

)
=

∫

Ω

σ(k)
µ : ε(v) dx−

∫

Ω

fvv dx−
∫

Γn

fsv ds, ∀v ∈ X (2.5)

This yields a conventional formulation of the residual form articulated in continuum mechanics,
known as the principle of virtual work. Finally, the variational problem investigated in this
contribution can be summarized as follows ∀k ∈ {1, ..., K}:

Find u(k)
µ ∈ Xbc s.t. ,





Rµ

(
u

(k)
µ , u

(k−1)
µ , σ

(k−1)
µ , v

)
= 0 , ∀v ∈ Xbc

σ
(k)
µ = F (k)

µ

(
u

(k)
µ , u

(k−1)
µ , σ

(k−1)
µ

)
on Ω

σ
(k)
µ · n = f

(k)
s on Γn

(2.6)

where Xbc := {v ∈ X : c (v) = 0, on Ω}. The test space matches the functions belonging to the
kernel of the linear form of the boundary conditions. To provide a more general formalism close to
the previous notations, we detail the relationship between the two residual formulations as follows,
∀v ∈ X :

Rµ

(
u(k)
µ , u(k−1)

µ , σ(k−1)
µ , v

)
= Rσ

µ

(
F (k)
µ

(
u(k)
µ , u(k−1)

µ , σ(k−1)
µ

)
, v
)
. (2.7)

A quick rephrasing reveals that the formulation of this problem aligns with the framework estab-
lished by Equation 1.4, ∀v ∈ X :

R(k)
µ

(
u(k)
µ , u(k−1)

µ , v
)

= Rµ

(
u(k)
µ , u(k−1)

µ , σ(k−1)
µ , v

)
,

The sole distinction between the two residuals lies in the incorporation of time dependency. This
implies that each residual is expressed in a distinct manner. In contrast, the alternative formula-
tion opts for a singular residual, albeit necessitating knowledge of the mechanical state from the
preceding iteration. However, both formulations are equivalent.

Multi-modeling formulation

We now consider the modeling of large prestressed concrete structures. Prestressed concrete is a
construction material that incorporates compressive stresses induced by tensioned high-strength
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steel strands or tendons before the concrete is poured. This process enhances the performance
and durability of the concrete structure. For the mentioned structures, the initial step involves
pouring concrete around sheaths, allowing it to initiate the drying process. Subsequently, cables
are inserted into these ducts and prestressed to meet civil engineering standards. Finally, cement
is poured into the ducts. Once the cement has hardened, the tendons are anchored, creating a
state of compression within the concrete. This compression counteracts the tensile stresses that
the structure may experience during its service life. In order to model such a material, the devel-
oped mechanical model is built on a coupling between a three-dimensional model (modeling the
concrete) and a one-dimensional model (modeling the prestressing steel cables). We assume that
the domain Ω can be split into a three-dimensional domain Ωc, and a one-dimensional domain
Ωs. The latter can be decomposed in nC cables Ωs = {Ci}nCi=1, modeled by curves that correspond
to their mean line. In this case, the vector µ may contain physical coefficients of the constitutive
equations of the steel or the concrete. In view of identifying the displacements in each subdomain,
we shall note uc

µ the displacement in the concrete, and us
µ the displacement in the steel. Both of

those fields can be seen as restrictions of uµ on the corresponding domain. We should distinguish
in a similar manner between deformations, stresses or internal variables in both computational
domains. On the one hand, the mechanical strains tensor within the concrete is the symmetric

gradient of the displacement and is denoted εcµ = ∇su
c
µ = 1

2

(
∇uc

µ + (∇uc
µ

)>
); on the other hand,

the strains within the cables (also called uniaxial strains) are defined as εs
µ = ∂su

s
µ, where ∂s(.) is

the derivative along the cable. As for the internal forces, we denote the stress tensor within the
concrete σµ, the normal forces in the steel Nµ, and the internal variables in the concrete γc

µ and in
the steel γs

µ. The heterogeneous nature of the material, which is broken down into several zones,
explains our decision to label this case as a multi-modeling scenario.

For more detailed behavior modeling, we enable external phenomena to be accounted for
in the mechanical behavior equations. Specifically, the mechanical state of concrete evolves as
a function of its temperature or degree of hydration. As a result, rheological phenomena are
typically thermo-hydro-activated. In other words, we assume that the constitutive equations used
depend on auxiliary variables, which we shall refer to as a vector H. The fields enclosed in H
include previously computed fields and solutions to PDEs that do not depend on the parameters
set in the vector µ. The latter is comprised of fields that may appear and be used in the problem’s
constitutive or evolution equations. In the application case presented, namely in the case of a
thermo-hydro-activated mechanical problem, this vector consists of the pair made of temperature
and water content in the concrete. We introduce the quasi-static equilibrium equations for the
three-dimensional model, where we omit to specify the initial conditions (ICs) and the BCs for
each subdomains:





−∇ · σc
µ = fc on Ωc,

σc
µ = Fσµ

(
εc
µ, γ

c
µ, H

)
,

γ̇c
µ = Fγcµ

(
σc
µ, γ

c
µ, H

)
,

and





∂Nµ

∂s
= fs on Ωs,

Nµ = FN
µ

(
∂su

s
µ, γ

s
µ, H

)
,

γ̇s
µ = Fγsµ

(
Nµ, γ

s
µ, H

)
,

where Fσµ (resp. FN
µ ) stands for the constitutive equation for the three-dimensional (resp. one-

dimensional) problem, while the nonlinear operator Fγcµ (resp. Fγsµ ) denotes an equation of evolu-
tion of internal variables within the concrete (resp. the steel). Further details on the models used
in practice and the dependencies in auxiliary variables are given in Chapter 3.
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We seek to possess a generic formulation for the multi-modeling problem, enabling us to align it
with a problem whose formulation closely mirrors the one previously introduced, specifically in the
context of single-modeling. Attaining common notations subsequently facilitates the availability
of shared operators, applicable in a general manner to both introduced problems. To that end, we
introduce new notations for the fields defined on the whole domain, namely for the displacements,
strains, generalized forces (stresses or normal efforts), internal variables and the loadings. All the
details are provided in Table 2.1.

Notation on Ω Notation on Ωs Notation on Ωc Definition
Sµ Nµ σµ Generalized force
uµ us

µ uc
µ Displacement

εµ εs
µ = ∂su

s
µ εc

µ Strain
γµ γs

µ γc
µ Internal variables

f fc fs External loading

Table 2.1: Notations of the fields defined on the whole computational domain Ω, whose definition
depends on the subdomains (Ωc or Ωs).

These notations enable us to recast the problem in a compact form, which helps to manage
the multi-modeling framework (3d-1d) using three operators, Gµ (.) for the equilibrium equation,
FS
µ (.) for the constitutive equation and Fγµ (.) for the evolution equation for internal variables:




Gµ (Sµ) = f,

Sµ = FS
µ (Sµ, γµ, H) ,

γ̇µ = Fγµ (εµ, γµ, H) ,

where we still omit the ICs and BCs used. In our study, the initial state of the problem is the
material at rest, so all physical fields are assumed to be zero initially. Since a one-step time
integrator is used (cf. Equation (1.3)), it implies that the knowledge of the mechanical state is
derived from the mechanical state previously computed and the knowledge of the field H at the
current time. In our context of multi-modeling problems, BCs reflect engineering assumptions
designed to provide a realistic simulation. The latter comprise both non-homogeneous Neumann
conditions (defined on Γc

n for the concrete) and homogeneous Dirichlet conditions for suitable linear
combinations of the state variables. As in the preceding case, we assume that the displacement
field belongs to the kernel of this form (c linear form in Equation (2.9)). In the general framework
of the unidimensional problem, Neumann BCs on a given cable Ci are expressed as application of

nodal forces Fi,j applied on a set of discrete points {xCij }
n1d
Ci
j=1. This translates into a jump J.K in the

normal efforts at every point xCij . In the end, the multi-modeling problem can be written as:




Gµ
(
S

(k)
µ

)
= f (k) on Ω,

S
(k)
µ = F (k)

µ

(
u

(k)
µ , u

(k−1)
µ ,S

(k−1)
µ , H(k)

)
on Ω,

(2.8)

with BCs expressed as follows:

20



2.2. NONLINEAR QUASI-STATIC PROBLEMS IN STRUCTURAL MECHANICS





Dirichlet BCs : c(u
(k)
µ ) = 0 on Ω,

Neumann BCs :

{
(σµ)(k) · n = f

(k)
s on Γc

n,

JN(k)
µ K(xCij ) = F

(k)
i,j ∀j ∈ {1, ..., n1d

Ci } for Ci, ∀i ∈ {1, ..., nC},
(2.9)

Eventually, the multi-modeling problem written in compact form in the Equation (2.8) to which
the BCs are applied lead to the following variational problem ∀k ∈ {1, ..., K}:

Find u(k)
µ ∈ Xbc s.t.




Rµ

(
u

(k)
µ , u

(k−1)
µ , S

(k)
µ

)
= 0, ∀v ∈ Xbc,

S
(k)
µ = F (k)

µ

(
u

(k)
µ , u

(k−1)
µ ,S

(k−1)
µ , H(k)

)
on Ω,

(2.10)

where Xbc is defined in the same manner as in the single-modeling case. Indeed, the provided
formulation of the boundary conditions is consistent across all given formulations. We denote:

Rµ

(
u

(k)
µ , u

(k−1)
µ , S

(k)
µ

)
= RS

µ

(
F (k)
µ

(
u

(k)
µ , u

(k−1)
µ ,S

(k−1)
µ , H(k)

)
, v
)
, and RS

µ (S, v) =


R

σ
µ

(
σ

(k)
µ , v

)

RN
µ

(
N(k)
µ , v

)

 ,

where we introduce the notations ∀v ∈ [vc, vs]>:





Rσ
µ

(
σ

(k)
µ , v

)
=

∫

Ω

σ(k)
µ : ε (vc) dΩ−

∫

Ω

fv · vc dΩ−
∫

Γ

fs · vc dΓ,

RN
µ

(
N(k)
µ , v

)
=

∫

C
N(k)
µ : ∂sv

s ds−
∫

C
fv · vs ds−

nC∑

i=1

n1d
Ci∑

j=1

F
(k)
i,j v

s(xCij ).

In the residuals presented here, there are two residuals, one associated with the three-dimensional
model, similar to the one-dimensional case, and one associated with the one-dimensional model.
We can observe that both formulations, i.e. single-modeling (cf. Equation (2.6)) and multi-
modeling (cf. Equation (2.10) ), are consistent. The variational formulation can be articulated
in a comparable fashion for both, with similar treatment of boundary conditions. Moreover, the
multi-modeling scenario can be regarded as an extension of the single-modeling case, where the
vector S is confined to stresses σ.

2.2.2 High-fidelity discretization

Given the domain Ω ⊂ Rd, we consider a HF mesh T hf = {Di}Ne

i=1 where D1, . . . , DNe are the
elements of the mesh, and Ne denotes the number of elements in the mesh. In the introduced
notations, we allow for meshes with multiple types of elements within the same mesh. This
feature is closely tied to the architecture of the FE code employed. In this code, specifically for a
three-dimensional mesh, a mesh is structured with multiple levels, incorporating surface elements
to handle applied surface forces effectively. Moreover, for the targeted industrial application, a
coupling between three-dimensional elements and one-dimensional elements requires the presence
of different types of elements (in terms of dimension and possibly order) to ensure an appropriate
formulation. The integer Ne denotes the total number of three-dimensional, two-dimensional or
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one-dimensional elements. Besides, we introduce the continuous Lagrangian finite element (FE)
basis {ϕi}Nno

i=1 associated with the mesh T hf , whose total number of nodes is Nno. The FE space
for the primal unknown is thus defined as follows:

X hf := span {ϕiej, i ∈ {1, ...,Nno}, j ∈ {1, ..., d}} (2.11)

where e1, ..., ed are the vectors of the canonical basis. We further define the nodes {xhf,no
i }Nno

i=1 ,

the quadrature points {xhf,qd
i }Nqd

i=1 associated to the HF-mesh and to the FE discretization and the
application T hf,no (resp. T hf,qd for the quadrature points) which links the global indexing of the
DOFs (resp. unknowns at quadrature points) of the HF-mesh to the local indexing of a specified
element. The iloc-th DOF in the q-th element local indexing is associated to the iglob DOF in the
global indexing:

T hf,no (iloc, q) = iglob, iloc = 1, . . . , nqlp and q = 1, . . . , Ne

where nqlp is the number of DOFs in the q-th element of the mesh. To further clarify the no-

tation, we denote by u ∈ RN the FE discrete vector of displacements, where N = dNno is the
dimension of the space X hf in the single-modeling case, and N = 3

(
N 3d

no +N 1d
no

)
in the multi-

modeling case, where N 3d
no (resp. N 1d

no ) is the number of nodes for the concrete (resp. steel).
Indeed, as a reminder, in the industrial case of prestressed concrete, we have a mesh for the
concrete and another for the steel bars, with each node in both meshes having three degrees
of freedom (Ω ⊂ R3). As far as quantities at quadrature points are involved, we shall distin-
guish between two cases, depending on the two aforementioned scenarios. In the case of single-
modeling (the purely three-dimensional case, for example), we have the stress vector σ ∈ RNg ,
with Ng = d(d+1)

2
Nqd, while in the multi-modeling case, the generalized forces within the material

are denoted by Sµ = [σµ, Nµ]> ∈ RNg , since they are unknowns at quadrature points. For the
record, the size of these vectors isNg = N 3d

g +N 1d
g = 6N 3d

qd +N 1d
qd , whereN 3d

qd stands for the number

of quadrature weights used for the three-dimensional mesh and N 1d
qd for the one-dimensional mesh.

Referring back to the remark in the preceding section, we specifically address the discretization
in the multi-modeling case, since the variational form for the single-modeling case is similar. We
denote by T hf,no the connectivity matrix. In the perspective of a hyper-reduced formulation
introduced in Section 2.4.2, we need to introduce two elemental restriction operators: the nodal
elemental restriction operators {Eno

q }Ne
q=1 which restrict fields defined at nodes to the q-th element

of the mesh (e.g. for displacements) and the quadrature restriction operators {Eqd
q }Ne

q=1, which
handle fields defined at quadrature nodes (e.g., stresses/generalized forces and internal variables):

(
Eno
q u
)
iloc

= (u)Thf,no(iloc,q)
and

(
Eqd
q′ S

)
jloc

= (S)Thf,qd(jloc,q′)

We denote by {uhf,(k)
µ }Kk=1 the FE approximation of the displacement (primal variable) given

by the HF-model at all times, whereas {Shf,(k)
µ }Kk=1 stand for the generalized force fields (stress

or normal efforts). We state the FE discretization of the variational form defined by Equation

(2.10), ∀k ∈ {1, ..., K}, find u
hf,(k)
µ ∈ X hf

bc such that:





Rhf
µ

(
u

hf,(k)
µ , u

hf,(k−1)
µ , Shf,(k−1)

µ ,v
)

= 0, ∀v ∈ X hf
bc ,

Shf,(k)
µ = Fhf

µ

(
u

hf,(k)
µ ,u

hf,(k−1)
µ , Shf,(k−1)

µ , Hhf,(k)
)
,

(2.12)

where X hf
bc :=

{
v ∈ X hf : Bv = 0

}
depicts the test space for displacements, and B ∈ RNd×N is

the kinematic relationship matrix. Nd stands for the number of linear relations between degrees
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of freedom that we intend to enforce. This matrix reflects the discretization of the linear form
formulated by Equation 2.4. Such a formulation on the BCs implies that the kinematic linear ap-
plication depends neither on time nor on the parameter. Each line reflects a kinematic relationship
between nodes of the overall mesh. Therefore, in the multi-modeling case, the said matrix includes
not only the Dirichlet BCs applied to each physical domain, but also the kinematic relationships
between the nodes of two distinct models (kinematic coupling). The independence of the matrix
vector in the parameter (and the displacement field) implies in particular that we do not deal
here with instances of sliding between nodes. In the multi-modeling case we shall discuss, this
means that there is no tendon sliding in the concrete. The operators Rhf

µ and Fhf
µ stands for the

discrete counterparts of the continuous operators Rµ and Fµ introduced in Equation (2.12). The
practical implementation of the FE method relies on iterating through all elements, successively
calling local assemblies to aggregate the elemental contributions. We emphasize that the assembly
procedure can be split into several terms. For example, in the case of the multi-modeling frame-
work, namely for prestressed concrete, the assembly will be split into loop for concrete elements
(three-dimensional for constitutive equations and volumic loadings, and two-dimensional for sur-
facic loadings), and a loop for the steel-elements (one-dimensional for the constitutive equation
and loadings). Thus, in practice, the FE code compute the HF-residuals as sums of elementary
contributions, which can be formulated as follows, ∀v ∈ X hf :

Rhf
µ

(
u(k)
µ , u(k−1)

µ , S(k−1)
µ , v

)
=

Ne∑

q=1

Rhf
µ,q

(
Eno
q u(k)

µ , Eno
q u(k−1)

µ , Eqd
q S(k−1)

µ , Eno
q v
)

=

N3d
e∑

q=1

Rhf
µ,q

(
Eno
q u(k)

µ , Eno
q u(k−1)

µ , Eqd,3d
q σ(k−1)

µ , Eno
q v
)

︸ ︷︷ ︸
:=Rhf,3d

µ

(
u

(k)
µ , u

(k−1)
µ , σ

(k−1)
µ , v

)
+

N2d
e∑

q=1

Rhf
µ,q

(
Eno
q u(k)

µ , Eno
q u(k−1)

µ , Eqd,2d
q σ(k−1)

µ , Eno
q v
)

︸ ︷︷ ︸
:=Rhf,2d

µ

(
u

(k)
µ , u

(k−1)
µ , σ

(k−1)
µ , v

)

+

N1d
e∑

q=1

Rhf
µ,q

(
Eno
q u(k)

µ , Eno
q u(k−1)

µ , Eqd,1d
q N(k−1)

µ , Eno
q v
)

︸ ︷︷ ︸
:=Rhf,1d

µ

(
u

(k)
µ , u

(k−1)
µ , N

(k−1)
µ , v

)
,

where Eno
q (resp. Eqd

q ) is an elementary restriction operator on vectors at nodes (resp. quadrature
points). For operators on vectors at quadrature points, we adopt the specific notation Eqd,•

q for
• ∈ {1d, 2d, 3d}.

To adhere to the theoretical framework required by the formulations in our HF setting, we
handle Dirichlet BCs by dualizing them through the introduction of Lagrange multipliers. Within
this context, the vector solution of the problem at the k-th timestep comprises the displacements
and the associated Lagrange multipliers (u

(k)
µ ,λ

(k)
µ ) ∈ RN ×RNd . The assembly of the FE problem

results in the discrete nonlinear system:

{
Rhf
µ

(
u

(k)
µ , u

(k−1)
µ , S(k−1)

µ

)
+ B>λ(k)

µ = 0,

Bu
(k)
µ = 0.

(2.13)

We employ the Newton-Raphson algorithm to solve (2.13) [EDF24]. It is worth noting that the
Jacobian of the FE discrete residual (2.13) takes the form of a saddle-point system. Dualizing
Dirichlet BCs provides a natural framework for enforcing Dirichlet-type conditions in the interior
of the domain and/or at points that do not coincide with the nodes of the mesh. Readers interested
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in the process of solving the discretized system in the case of dualization can refer to Appendix
A.

2.3 Reduced space construction

In this section, our discussion covers the algorithms needed for constructing a reduced basis for
the problems under investigation. As previously stated, the construction of a reduced basis starts
with a set of precomputed HF solutions, called snapshots, from which we shall construct a low-
dimensional space approximating the solutions sufficiently accurately. We leave the notion of the
approximation quality achieved for a given reduced space for later. In detailing the principle of
the reduced basis method, two challenges naturally arise. First, we must know how to choose the
initial HF solutions, and therefore how to determine the parameters we need to use for training
in P . Therefore, the first question is then to devise a sampling strategy in the parameter space.
The second issue concerns the generation of a reduced basis given a set of available snapshots.

2.3.1 Reduced basis approach

Employing numerical methods requires dealing with discrete sets, entailing an initial discretization
Θtrain of the parameter space P . This discrete set is often referred to as a training set. Typically,
a Cartesian grid discretization is employed in standard procedures. However, sampling the space
in this manner and generating snapshots for all parameters can lead to exceptionally high com-
putational costs, particularly when dealing with high-dimensional parametric spaces. Alternative
methodologies, such as space-filling designs for uncertainty quantification like Latin Hypercube
Sampling [MBC00], can be employed. The initial sampling of the parameter space constitutes a
research topic on its own, offering a multitude of possibilities that heavily depend on the user’s
final intention or the nature of the physical problem. There is no inherent evidence suggesting
that the physical problem exhibits regularity in the parameter space, justifying Cartesian grid
discretization. To avoid a priori reliance on Cartesian grid discretization, efforts have been di-
rected toward the philosophy of mesh refinement. These methods involve intricate mathematical
tools, including a metric on approximation spaces, such as the Grassmann distance [BI19]. In
the context of the presented work, however, we opted for an initial discretization on a Cartesian
grid for simplicity’s sake, focusing on other pertinent issues. The studied scenarios are carried
out on low-dimensional parametric spaces, which justifies this choice. In such scenarios, greedy
approaches are often employed to iteratively generate a set of snapshots. This entails having two
sets: one comprises the previously discrete set of candidates, that is the training set Θtrain, while
the other is constructed iteratively by identifying the appropriate parameters to explore from
the previous set. Although initially designed for static cases, this approach can be adapted to
time-dependent problems. The details of the greedy procedure will be expounded upon in the
subsequent sections. Once all parameters are acquired, we effectively obtain the associated HF
simulations and consequently the solutions to these problems.

As mentioned earlier, we operate within the framework of linear approximations. We seek the
reduced-order solution as a linear combination of modes:

û(k)
µ =

Nu∑

n=1

(
α̂(k)
u,µ

)
n
ζu,n = Zuα̂

(k)
u,µ (2.14)
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where α̂
(k)
u,µ ∈ RNu are referred to as generalized coordinates (or reduced coordinates) and ZNu =

span {ζu,n} is the primal reduced space. The reduced space of dimension Nu arising from the base
vectors constitutes the new approximation space in which solutions are sought (cf. Figure 2.1).
To ensure that the method delivers computational benefits, this space must be designed to be of
lower dimension than the HF space, i.e. Nu � N .

•
uhf
µ1

•

• •
uhf
µN

•
ûµ̃, µ̃ ∈ P

ZNu = span (ζu,n, n ∈ J1, NuK) Mhf

Figure 2.1: A visualization example of a linear reduced space acting as an approximation space
to explore the parametric manifold Mhf = {uµ, µ ∈ P}. Adaptation of Figure from [Qua17].

One popular method that often yields good results is Proper Orthogonal Decomposition (POD
[BHL93][BBI09][Vol11]): it involves choosing a subspace that optimally describes a given set of
data. This method goes by different names in different communities (e.g., principal component
analysis, or Karhunen-Loève expansion). Other approaches exist for specific problems, especially
in the realm of linear control problems, where balanced truncation [Moo81] approaches or dynamic
mode decomposition [Sch10] are popular model reduction procedures. However, in our case, we
choose to rely on the POD method to construct our low-dimensional approximation space. The
subsequent paragraphes (see Section 2.3.3) cover the principles and computational details of the
method.

The approach hinges upon the construction of a linear space tailored for approximating the
parametric manifold of solutions, denoted asMhf = {uµ, µ ∈ P}. From a theoretical standpoint,
assessing the potential quality of approximation necessitates the application of tools derived from
the approximation theory. In order to estimate the accuracy of approximating the manifold Mhf

using a low-dimensional linear space VN , we introduce the Kolmogorov N -width dN
(
Mhf ,X

)
.

For a given finite dimensional space VN , we measure the deviation of Mhf from VN as follows:

distX
(
Mhf ,VN

)
= sup

uµ∈Mhf

inf
vN∈VN

‖uµ − vN‖X

Consequently, the Kolmogorov N -width gauges the manifold’s amenability to approximation by
an optimally chosen vectorial space of dimension N :

dN
(
Mhf ,X

)
= inf
VN⊂Xhf , dim(VN )=N

distX
(
Mhf ,VN

)

We assume that this quantity decays fast with N in the cases considered in our work. Introduced
by Kolmogorov [Kol], this metric delineates the best achievable accuracy when approximating all
conceivable elements of Mhf from an N -dimensional linear space VN , according to the X norm.
A swift decay indicates that, for a given level of accuracy, an approximate space of modest size
can be constructed. The classical problem of approximating any element uµ belonging to Mhf

through finite expansions has been extensively addressed, with reduced basis methods among the
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prominent techniques [MPT02][CD15][CD16]. The regularity of uµ in µ is identified as a potential
factor contributing to a small N -width, as indicated by prior research findings. Specifically, RB
methods, when equipped with well-selected bases, prove adept at capturing additional information
pertinent to the underlying problem. The iterative construction of a linear approximation space
involves the careful selection of particular snapshots. Despite the non-optimality of these gener-
ated spaces, prior investigations suggest that a specific greedy recursive parameter selection within
the RB method yields convergence rates comparable to those achieved by optimal algorithms for
the approximation space. Furthermore, model reduction techniques such as the generalized em-
pirical interpolation method (GEIM [MM13]) or the generalized reduced basis method [LMQR13]
demonstrate a decay in the Kolmogorov width of the solution manifold, closely aligning with dN .
Some classes of physical problems exhibit a gradual decrease in the Kolmogorov N-width, with
convection-dominated issues being a common example in this category. Though methods exist to
address this issue, discussions on these solutions fall outside the scope of this contribution, since
the focus of this work does not encompass the investigation of slow decays.

Within our work, the justification for a linear approximation lies in the inherent regularity of
the target problem (creep behavior of prestressed concrete while ageing), which renders a linear
approach both viable and efficient. It is essential to note, however, that this choice is situated
within a landscape abundant with an alternative category of methods known as nonlinear approxi-
mation methods, which do not rely on approximations from linear spaces but rather from nonlinear
manifolds (the application of these methods exceeds the scope of this thesis). Nonlinear approaches
founded on piecewise affine spaces have been first explored [AZF12][WAZF12][AZW15][GFTBM21].
Thus, other methodologies often leveraging machine learning or deep-learning tools to craft non-
linear approximation spaces have been introduced. They can be cluster-based in order to associate
a proper local basis (ROM-net [DCAR20][PÁKRR21]), or adopt totally non-intrusive approaches
employing neural networks [FDM21][FM22]. Another approach involves the complementary use of
nonlinear mappings to enhance a linear approximation, for example by relying on neural-networks
[BFM23]. It is important to note that our presentation of those methodologies is not exhaustive.

2.3.2 POD-Greedy approach as an iterative algorithm for sampling
the parameter space

Greedy algorithms have emerged as efficient tools in the field of model reduction, offering a sys-
tematic approach to build ROMs by iteratively selecting the most influential parameters. The key
to this approach is to determine such parameters out of a given set of parameters. To elucidate
the greedy process, we first focus on the case of a static problem. Within the realm of greedy
algorithms, several categories of methodologies exist, namely strong greedy and weak-greedy ap-
proaches. Originally, strong greedy methods were developed for static problems. These approaches
hinge on the identification of the best fit error (Ebf

µ,N), corresponding to the projection error that
is the norm of the component outside the approximation space (reduced space):

Ebf
µ,N =

∥∥uhf
µ − ΠZNu

hf
µ

∥∥
X , with ΠZNu

hf
µ = arg min

v∈ZN

∥∥uhf
µ − v

∥∥
X

where ΠZN : X → X stands for the orthogonal projection onto the reduced space ZN . The
objective is to pinpoint the parameter least accurately approximated by the generated space, i.e.,
the one with the largest projection error:

µ∗ = arg min
µ∈Θtrain

Ebf
µ,N
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At each greedy iteration, this approach relies on computing the best-fit errors on a discrete param-
eter set in order to identify a parameter µ∗ for which the error is large. It resorts to a HF solver
to estimate the solution for µ∗, and then it updates the reduced-order basis by using the new
snapshot and modifies accordingly the ROM structures. Thus, greedy procedures are inherently
sequential.

These approaches were subsequently extended to unsteady problems. In this scenario, the
solutions define a trajectory, characterized as the set of snapshots at each time step Uµ = {u(k)

µ }.
The crucial aspect involves devising a novel method for gauging the discrepancy between two
solutions and their temporal evolution. Presented in Equations (2.15) (2.16) (2.17) are various
illustrative examples applicable contingent upon the specific case. It is imperative to highlight
that the judicious selection of a method hinges on the nature of the problem under investigation
and the precise quantities we wish to approximate, whether it be the final state or the entire
trajectory, for instance. For instance, one can consider the projection error in the final state (cf.
Equation (2.15)), the maximum projection error over all time steps (cf. Equation (2.16)), or an
error on the trajectories defined with a specific metric (cf. Equation (2.17)). We do not delve into
the detailed definition of this metric, which can be chosen to consider a time-averaged norm, for
example, using an L2 (0, tf) norm.

µ∗ = arg min
µ∈Θtrain

∥∥u(K)
µ − ΠZNu

(K)
µ

∥∥
X (2.15)

µ∗ = arg min
µ∈Θtrain

(
max

k∈{0,...,K}

∥∥u(k)
µ − ΠZNu

(k)
µ

∥∥
X

)
(2.16)

µ∗ = arg min
µ∈Θtrain

|||Uµ − ΠZNUµ|||X (2.17)

(2.18)

Research on the theoretical convergence properties of these strong-greedy algorithms has been
conducted for steady-state problems [BCD+11][BMP+12]. Specifically, it has been demonstrated
that for problems characterized by an exponentially small Kolmogorov N-width, one can achieve
convergence results between the obtained reduced solution and the HF solution. This implies
an exponential convergence of the approximation error. The fundamental concept underpinning
these algorithms is to establish the theoretical appropriateness of relying on greedy algorithms for
constructing reduced models. These findings have also been extended to time-dependent problems
[Haa13] in subsequent studies, showcasing the validity of applying these greedy approaches to the
problems addressed in this thesis.

However, strong-greedy algorithm is not an efficient way of building iteratively a ROM since
we need to compute HF snapshots to estimate approximation errors. To circumvent this issue,
the weak-greedy algorithm, first proposed in [VPRP03] and then analyzed in a series of papers
[CD15], relies on a posteriori error indicator instead of the approximation error. Thus, since
evaluating such error indicator can be cost-efficient, we can overcome the bottleneck of estimating
the poorly-approximated solution on a given discrete parameter set. Initially introduced for steady
problems, it has been extended to unsteady PDEs [HO08]. Weak-greedy algorithms rely on the
definition of an indicator that increases the approximation error (or is correlated with it) in order
to be able to drive the greedy process:

|||Uµ − ΠZNUµ|||X ≤ ∆µ, ∀µ ∈ P (2.19)
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Besides, one prominent use of greedy algorithms is in the context of POD and Galerkin pro-
jection [Haa13]. These methods aim to capture the dominant modes of a system and create a
reduced subspace that preserves the essential dynamics. Greedy algorithms enhance this process
by intelligently selecting parameter samples to construct an accurate and compact reduced model.
The flexibility of greedy algorithms allows their adaptation to different types of problems, such
as time-dependent or nonlinear systems. Their ability to iteratively refine the ROM by selecting
additional parameters, guided by a prescribed error criterion, ensures an optimal trade-off between
accuracy and computational cost.

2.3.3 Proper Orthogonal Decomposition

In this section, we describe the Proper Orthogonal Decomposition (POD) method and introduce a
method for determining such a basis. We refer to [BHL93], or to more recent works [BBI09][Vol11]
for more details. As mentioned earlier, the objective of POD is to reduce input data by retaining
only essential information using a small number of vectors. In this section, we describe a peculiar
approach to constructing a POD basis, known as the method of snapshots [Sir87]. In scientific
computing, POD has been extensively utilized for reducing the dimensionality of large datasets
arising from simulations or experimental measurements. This reduction in dimensionality not
only facilitates a more efficient storage and computation but also aids in extracting meaningful
patterns and trends from the data. In fluid dynamics, for instance, POD has been employed to
analyze and model turbulent flows, enabling the identification of coherent structures and essential
flow features [BHL93]. This approach aims to build an approximation basis from a set of solutions
previously obtained and generated from a training set Θtrain. This training set is often regarded
as a discretization of the parameter space P . The advantage of this approach lies in generating
a set of uncorrelated vectors from the obtained HF snapshots. The modes are generated and
stored in order of importance, such that the first modes contain the most information regarding
the generated snapshots.

Minimization problem for the Proper Orthogonal Decomposition

More specifically, we assume that we have a set of solution vectors stored in a matrix called the
snapshot matrix, defined as follows S = [u1, ...,untrain

] ∈ RN×ntrain . We assume that the size of the
discrete vectors, i.e., the number of degrees of freedom N in the problem, is much larger than the
size ntrain of the training set, that is N � ntrain. This constitutes the foundational assumption
for the computational efficiency of the method of snapshots. We assume that we choose a fixed
number ` of basis vectors. Subsequently, we shall display a metric to optimally determine this rank.
One may choose to produce a orthonormal basis {ψi}`i=1 that minimizes the distance between the
snapshots and the orthogonal projection onto the reduced subspace generated by this orthonormal
basis Z̃ = span({ψi}`i=1):

∥∥∥∥∥uj −
∑̀

i=1

(uj, ψi)Xψi

∥∥∥∥∥

2

X

= ‖uj − ΠZ̃ui‖2
X = ‖ΠZ̃⊥ui‖2

X

where ΠZ̃ : X → X stands for the orthogonal projection onto Z̃. Therefore, the derivation of
the reduced basis is equivalent to solving the following constrained optimization problem:
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min
ψ1,...,ψ`∈Xhf

ntrain∑

j=1

∥∥∥∥∥uj −
∑̀

i=1

(uj, ψi)Xψi

∥∥∥∥∥

2

X
subject to (ψj, ψj)X = δi,j, 1 ≤ i, j ≤ `

(2.20)

where the constraint certifies that the resulting basis is orthonormal in the sense of the desired
scalar product (·, ·)X . From a discrete viewpoint, the resulting basis is optimal in the sense of
the Frobenius norm FX expressed thanks to the induced norm matrix X, such that, ∀u, v ∈ X hf ,
(u, v)X = u>Xv, and defined such that forall A: ‖A‖FX

= trace
(
A>XA

)
. By introducing

the projection matrix (P)i,j = (uj, ψi)X , which gives in a more compact form P = Z̃>uXS, the
previous optimization problem can be restated in a discrete way as follows:

Zu = arg min
Z̃u∈RN×`

∥∥∥S− Z̃uP
∥∥∥

2

FX

=
∥∥∥S− Z̃uZ̃

>
uXS

∥∥∥
2

FX

subject to Z̃>uXZ̃u = IN

(2.21)

where IN ∈ RN×N is the identity matrix. Once again, the expression of the aforementioned
problem is contingent upon the inner product associated with the Hilbert space. Leveraging the
fact that the matrix X is tied to a scalar product allows for the formulation of a minimization
problem that conveniently omits this matrix, albeit with the requirement of suitably adjusting
the snapshot matrix. Indeed, since matrix X defines a scalar product, it is positive semi-definite.

Hence, it possesses a Cholesky decomposition, X = X1/2
(
X1/2

)>
. As a result, we can rewrite

the previous problem, and return to a minimization of the classical Frobenius norm by modifying

the snapshot matrices and the resulting basis: S =
(
X1/2

)>
S and Zu =

(
X1/2

)>
Zu. A change

of variable reduces to a minimization problem in the sense of the classical Frobenius norm ‖·‖F .
It illustrates that, when using a specific scalar product, it is feasible to revert to a scalar product
associated with a `2 norm, by appropriately adjusting the snapshots matrices and the bases sought.
Thus, the POD basis can be interpreted as a result of the following optimisation problem:

Zu = arg min
Z̃u∈RN×`

∥∥∥S− Z̃uZ̃
>
uS
∥∥∥

2

F
:= Epod,F

(
Z̃u, `,S

)

subject to Z̃>u Z̃u = IN

(2.22)

Link with the Singular Value Decomposition

The POD by the method of snapshots relies on the use of the Singular Value Decomposition (SVD)
of S>S = S>XS. The SVD decomposition expresses this matrix using two orthogonal matrices
U ∈ RN×N and V ∈ Rntrain×ntrain one diagonal matrix Σ ∈ RN×ntrain , containing the singular
values in descending order. Fixing an a priori order ensures the uniqueness of the decomposition.
In the context of the snapshot method, we consider the following correlation matrix:

S>S =
(
UΣV>

)> (
UΣV>

)
= VΣ2V>

The basis vectors are then reconstructed using the values in the following relationship.

Z` = SVΣ−1 = SV



σ1 0

. . .

0 σ`




−1

where σ1, ..., σ` are the singular values of S in decreasing order.
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Theorem 1 (Schmidt-Eckart-Young) Let A ∈ Rm×n and let U, D, V be the SVD decompo-
sition of A, e.g A = UDV>. We denote by r the ranl of A. Let {ζi, σ2

i }ri=1 (resp. {ψi, σ2
i }ri=1)be

the eigenpairs of AA> (resp. A>A). Let Ak =
k∑
i=1

σiζiψ
>
i with k ≤ r. Then, we have:

‖A−Ak‖F = min
B∈Rm×n,rank(B)≤k

‖A−B‖F =

√√√√
r∑

i=k+1

σ2
i

where ‖A‖F =
√∑

i,j A
2
i,j is the Frobenius norm. We also have the alternative definition of

Ak = UkU
>
k A, where Uk = [ζ1, ..., ζk], which is equivalent to the other definition.

The quantity Epod,F

(
Z̃u, `,S

)
defined in Equation (2.22) is referred to as the POD energy.

Indeed, thanks to the Schmidt-Eckart-Young theorem, we can link this norm minimization to the
sum of the singular values. Namely, we have the following expression of the POD energy:

Epod,F

(
Z̃u, `,S

)
=

ntrain∑

i=`+1

σ2
i

Throughout the previous presentation, we set a base search size constructed by POD, e.g. `
base vectors. Interpreting the minimization problem using energy with singular values leads to
a slightly different criterion for constructing the reduced basis. Indeed, it means we no longer
construct a basis by specifying its size, but by focusing on the amount of relative information
it comprises. More precisely, the whole idea is to consider the largest basis, whose POD energy
remains below a given threshold. One classical criterion for building the reduced basis by POD
is the following: the dimension Nu of the reduced space is typically chosen based on the energy
percentage captured by the space:

Nu := min

{
` :
∑̀

i=1

σ2
i ≥

(
1− ε2

POD

) ntrain∑

i=1

σ2
i

}
(2.23)

A swift computation, highlighting the relative information content (RIC)
∑̀
i=1

σ2
i /

ntrain∑
i=1

σ2
i , reveals

that the criterion on the singular values is equivalent to controlling the energy of POD in relation
to the total energy. More precisely, the derivation of this criterion can also be formulated as
follows:
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∑̀

i=1

σ2
i ≥

(
1− ε2

POD

) ntrain∑

i=1

σ2
i ⇔

∑̀
i=1

σ2
i

ntrain∑
i=1

σ2
i

︸ ︷︷ ︸
RIC

≥ 1− ε2
POD ⇔

ntrain∑
i=1

σ2
i −

∑̀
i=1

σ2
i

ntrain∑
i=1

σ2
i

≤ ε2
POD

⇔
ntrain∑

i=1

σ2
i −

∑̀

i=1

σ2
i ≤ ε2

POD

(
ntrain∑

i=1

σ2
i

)

⇔
ntrain∑

i=`+1

σ2
i ≤ ε2

POD

(
ntrain∑

i=1

σ2
i

)

⇔
ntrain∑

i=`+1

σ2
i ≤ ε2

POD

(
ntrain∑

i=1

σ2
i

)

⇔
Epod,F

(
Z̃u, `,S

)

ntrain∑
i=1

σ2
i

≤ ε2
POD

In summary, POD helps us to design an optimal basis in the sense of a scalar product. How-
ever, it must be borne in mind that such a basis represents the approximation of a set of previously
obtained and computed HF snapshots. This necessary condition entails an incompressible com-
putational cost, as successive calls to the HF solver are needed.

Hands-on implementation of the algorithm

The preceding paragraphs explain the general theoretical concepts behind the POD method. Here,
we describe the numerical implementation of this method based on the method of snapshots [Sir87],
introducing the formalism for a static case. We assume that we have a training set of discrete
snapshots {uµj}ntrain

j=1 . The extension to the time-dependent case merely involves adding all the
time snapshots for each parameter in the training set. The rest of the methodology remains the
same. First, we compute a Gramian Cu ∈ Rntrain×ntrain , defined as (Cu)i,j = (uµi)

>Xuµj . In a
second step, we solve the eigenvalue problem:

Cuϕn = λnϕn, λ1 ≥ . . . ≥ λntrain
≥ 0. (2.24)

in order to obtain the eigenpairs (λn,ϕn), for n = 1, . . . , Nu. The number of modes is set by a
criterion, for example the one provided before (cf. Equation (2.23)). Once the number of modes
is chosen, we can define the POD modes as follows:

ζu,n =
1√
λn

ntrain∑

j=1

(ϕn)j uµj (2.25)

In order to introduce compact notation, we shall denote the construction of the reduced basis by
POD procedure by the following operator:

Zu = POD
(
{uµj}ntrain

j=1 , (·, ·) , εPOD

)
(2.26)
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2.3.4 Data-compression methods within the greedy process

The processes discussed here rely on greedy approaches, involving iterative procedures. At each
iteration, new elements {uµj}nnew

j=1 need to be added to the training set. One approach is to
directly include these new elements in the training set and then generate the POD basis using the
same operator as before (cf. Equation (2.26)). However, the computational cost associated with
constructing the POD basis can become prohibitive if a SVD has to be performed for all parameters
at each iteration. Alternatives exist in the literature to implement incremental POD compression
approaches, and these are particularly well-suited for the methods explored in this thesis. In
the literature, two main classes of methods are identified: hierarchical POD (H-POD [Haa17])
and hierarchical approximate POD (HAPOD [HLR18]). The first method is purely hierarchical,
involving the calculation of a POD on the projection of new snapshots onto the reduced space
obtained in the previous iteration. This implies that the reduced basis is adapted following the
equation below:

Zu = [Zu,Zu,new] , with Zu,new = POD
(
{ΠZ⊥uµj}nnew

j=1 , (·, ·) , εPOD,u

)
(2.27)

The HAPOD method, on the other hand, does not provide a hierarchical basis. Nevertheless,
it still relies on the previously computed reduced basis by incorporating it into the new snapshots
(modes multiplied by the square roots of the eigenvalues for consistency):

Zu = POD
(
{ΠZ⊥uµj}nnew

j=1 ∪ {
√
λnζu,n}Nun=1, (·, ·) , εPOD,u

)
(2.28)

In our work, we rely on the HPOD method in the incremental case to provide a hierarchical basis.
Indeed, in terms of data structure, this property facilitates implementation, both in terms of data
storage and hyper-reduction processes. Previous works [IST22] have highlighted the challenge
of finding an optimal tolerance for the data compression. The compression operator seeks to
accurately represent the provided snapshots. However, numerically, the vector projection can
never reach absolute zero. Employing POD on these projected snapshots may lead to unreliable
results, as the energy content of the projected snapshots could be significantly lower than that
of the original snapshot set. This observation explains the importance of introducing a criterion
based on the relative projection error. We rely on the regularization approaches [IST22][AAB+22],
where the number of modes is chosen according to the following criterion:

Nnew = min




M : max

k∈{1,...,K}

∥∥∥∥Π
(Zu⊕Znew

u,M)
⊥
,(.,.)

u
hf,(k)
µ

∥∥∥∥
∥∥∥uhf,(k)

µ

∥∥∥
≤ εPOD,u, Znew

u,M = span
{
ζnew
u,m

}M
m=1





(2.29)
where ⊕ denotes the direct sum of two vector spaces. The reduced basis selectively incorporates
basis vectors that effectively minimize the projection error, discarding others treated as noise.
Additionally, for numerical efficiency, a criterion is pre-established before computing additional
modes. No further POD computation is performed when:

max
k∈{1,...,K}

∥∥∥Π(Zu)⊥,(.,.)u
hf,(k)(µ)

∥∥∥
∥∥∥uhf,(k)

µ

∥∥∥
≤ εPOD,u (2.30)

Based on the very same principle, we assume in this situation that the new snapshots belong
to the previously generated reduced space, and there is no update of the basis. This preliminary
verification avoids unnecessary offline CPU costs.
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2.4 Projection-based model order reduction

In the preceding section, our attention was dedicated to constructing the reduced space, that is to
say the approximation space for our ROM. Now, our focus shifts to delineating how we evaluate
our ROM once this approximation space is established. This presentation unfolds across three
aspects: first, the reduced formulation by projection; second, the hyper-reduction process, which
addresses the nonlinearities of the problem while retaining computational cost advantages; and
finally, the stress field reconstruction process specific to solid mechanics problems when using the
chosen hyper-reduction process.

2.4.1 Reduced formulation

The Galerkin ROM is obtained by projecting the discrete residual operator (meaning onto the
Equation (2.13)) onto the primal reduced basis Zu. We first consider the situation without La-
grange multipliers for the implementations of BCs:

Z>uRhf
µ

(
û(k)
µ , û(k−1)

µ , Ŝ
(k−1)

µ

)
= 0. (2.31)

In addressing homogeneous kinematic links (where the right-hand side is null) between the

DOFs within the domain Ω in this study, expressed as Bu
(k)
µ = 0, it becomes apparent that

specifying these kinematic links as inputs to the online solver becomes unnecessary. Likewise,
no specific treatments for these links are required during online resolution. In this approach, the
reduced basis inherently accounts for kinematic links, leading to a significant simplification in the
coding of the online resolution. It’s noteworthy that such a choice can substantially reduce the
number of unknowns and, consequently, the computational cost. Indeed, we observe that:

ZT
uRhf

µ

(
û

(k)
µ , û

(k−1)
µ , Ŝ

(k−1)

µ

)
+ ZT

uBT λ̂
(k)
µ = ZT

uRhf
µ

(
û

(k)
µ , û

(k−1)
µ , Ŝ

(k−1)

µ

)
+ [BZu]

T λ̂
(k)
µ

= ZT
uRhf

µ

(
û

(k)
µ , û

(k−1)
µ , Ŝ

(k−1)

µ

)
= 0.

(2.32)
By construction, for a given n, the mode ζu,n is a linear combination of the snapshots and,
therefore, its discrete counterpart should verify Bζu,n = 0. This configuration diminishes the
count of unknowns since the Lagrange multipliers can be omitted. They are not required in
solving the nonlinear system, storing them becomes unnecessary, and they don’t play a role in
any data compression operation.

2.4.2 Hyper-reduction techniques

As previously discussed, in the realm of projection-based MOR, hyper-reduction methods are
employed to mitigate the online assembling cost associated with variational forms that exhibit
nonaffine dependencies on parameters and nonlinearity with respect to the unknown variable.
When assembling FE matrices, calculating residuals involves spatial domain integration. The
primary objective is to curb the computational complexity of the resulting ROM, which, when
scaling with the dimension of the HF discretization, becomes computationally infeasible. Ideally,
the goal is to achieve an operation that scales exclusively with the number of modes. This objec-
tive matches the ideal case achieved in a linear case. Thus, perfect online efficiency is achieved
when the cost of invoking the ROM solver remains independent of the dimension of the full-order
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model (FOM).

In this thesis, we opt for a hyper-reduction strategy based on empirical quadrature (EQ). Our
approach involves constructing a reduced mesh to expedite online assembly costs for the ROM.
Here, the term ”reduced mesh” refers to a mesh designed by considering a subset of the cells from
the HF mesh. More precisely, we focus on the ECSW formulation. This EQ procedure, initially
proposed in References [FACC14][FCA15], relies on reweighting either the quadrature points of
the mesh or the elemental contributions to approximate the residuals. Several other techniques
have been introduced in the literature to overcome the bottleneck induced by the projection step
for nonlinear non-affine problems. Additional reweighting methods, such as the Empirical Cuba-
ture Method [HCF17], which has been implemented within an industrial context [CA19][CAB+20],
have been introduced. Hyper-reduction approaches also include algorithms derived from the Em-
pirical Interpolation Method [BMNP04] family, encompassing its discrete variant, or techniques
within the Gappy-POD application, such as A priori Hyper-Reduction [Ryc05], or the Gauss New-
ton with approximated tensors [CFCA13]. These hyper-reduction methods aim to compute an
approximation of the residual form, the cost of which does not scale with the size of the FOM.
They can be categorized into two main groups based on their underlying philosophy. The first
class seeks an affine-parametric decomposition to approximate the residual form, aligning with
the scope of affine-decomposition problems where the RB method demonstrates computational
efficiency. Methods falling into this category include the Empirical Interpolation Method and the
Discrete Empirical Interpolation Method. The second class operates at the mesh level, aiming
to reduce the size of the mesh used to diminish the assembly cost. Techniques within this cate-
gory encompass the A priori Hyper-Reduction method, energy conserving sampling and weighting
approaches, and the empirical quadrature and empirical cubature method. We adopt an EQ
approach with ECSW, which has proved its efficiency in numerical solutions for various physi-
cal phenomena, namely for solid mechanical problems, both in the static/quasi-static [AAB+22]
and dynamical [FACC14][FCA15] framework, for thermo-hydro-mechanical (THM) simulations
[IST22], for fluid mechanics [GFTBM21], for magnetostatic [MR22].

The EQ method’s philosophy is deeply rooted in the structure of FE codes. We begin by
presenting the initially developed method, which relies on all integration points. The hyper-
reduction approach aims to establish an effective method for computing the residual form in the
reduced problems we intend to assess. The underlying idea is that the evaluation of the residual,
and thus the assembly procedure, relies on the computation of successive integrals. All these
integrals rely on the application of a common quadrature rule ρhf . The method seeks to identify
the sparsest possible quadrature rule capable of approximating a carefully selected set of integrals
(or at the very least, integrals easily accessible without additional computations). This problem
can be reformulated as an optimization problem based on signal theory. An alternative approach,
the one we opt for in this study, operates at the elemental level. The structure of an FE code
is characterized by loops over elements, wherein the total contribution (integral over the entire
domain) is computed as a sum of local integrals (integrals over each element). Elemental-level
hyper-reduction involves reweighting the elemental contributions to preserve an approximation of
the total integral value (over all relevant integrals). The objective is to obtain a new quadrature
rule ρeq (total or elementary) as sparse as possible, starting from the so-called HF rule ρhf , which,
according to the approach, is tantamount to getting :

{
ρhf = [ρ1, ρ2, ..., ρNg−1, ρNg ]

> ∈ RNg −→ ρeq = [0, ρ2, ..., 0, ρNg ]
> ∈ RNg (all integration points)

ρhf = [ρ1, ρ2, ..., ρNe−1, ρNe ]
> ∈ RNe −→ ρeq = [0, ρ2, ..., 0, ρNe ]

> ∈ RNe (elementwise)
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There is a natural connection between these two variants of the method. Elemental-level
reweighting involves assigning equal weight to all quadrature points. The construction of the
reduced mesh then naturally follows (cf. Figure 2.2). During the integration calculations, the
elements where all integration weights are zero yield a zero value and can thus be disregarded
in the assembly procedure. It is sufficient, therefore, to eliminate all elements with entirely zero
quadrature weights in the reduced mesh. In the elemental case, the reduced mesh construction
procedure is directly determined by the EQ rule ρeq obtained. For comparative results between
the two methodologies, element-wise versus point-wise, we refer to the following work [DY22].
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Figure 2.2: Reduced mesh construction process, starting from the HF mesh and the empirical
quadrature rule for a simple mesh. Figure 2.2a depicts an HF mesh. In Figure 2.2b, the red
weights are the quadrature weights in ρeq, which are zero, while the cyan weights are non-zero.
This geometry induces the mesh shown in Figure 2.2b.

For simplicity, we exclusively outline the elementwise hyper-reduction procedure for the single-
modeling case, which is universally applicable to any nonlinear behavior. The details of extending
this method to the multi-modeling scenario will be expounded upon during the analysis of said
case (see Chapter 4). As mentioned earlier, the objective is to reweight the elemental contributions
to define an empirical residual form ∀v ∈ X hf

bc :

Rhf
µ

(
u(k)
µ , u(k−1)

µ , σ(k−1)
µ , v

)
=

Ne∑

q=1

Rhf
µ,q

(
Eno
q u(k)

µ , Eno
q u(k−1)

µ , Eqd
q σ

(k−1)
µ , Eno

q v
)

≈
Ne∑

q=1

(ρeq)qRhf
µ,q

(
Eno
q u(k)

µ , Eno
q u(k−1)

µ , Eqd
q σ

(k−1)
µ , Eno

q v
)

:= Req
µ

(
u(k)
µ , u(k−1)

µ , σ(k−1)
µ , v

)
.

By taking similar notations as those introduced in Equation (2.7), the objective of the procedure
is to provide an empirical residual defined from the empirical quadrature rule ρeq as given below
∀v ∈ X hf

bc :

Req
µ

(
u(k)
µ , u(k−1)

µ , σ(k−1)
µ , v

)
= Rσ,eq

(
σ(k), v

)
=
∑

q∈Ieq
(ρeq)qRσ,hf

q

(
Eqd
q σ

(k), Eno
q v
)
, (2.33)

where {σ(k)}Kk=1 are the HF stress snapshots of the problem. In the online phase, the solution is
sought on the primal reduced space ZNu . Therefore, it is sufficient to have a good approximation
of the residual on the space spanned by the reduced order basis vector span{ζu,n} ⊂ X hf .

35



2.4. PROJECTION-BASED MODEL ORDER REDUCTION

The desired residual form is now at our disposal. The next step involves specifying the con-
ditions that the EQ rule must meet in order to establish a construction protocol. Subsequently,
this procedure can be reframed as an optimization problem. Given a tolerance δ > 0, the EQ rule
ρeq should satisfy the following conditions:

1. the number of nonzero entries in ρeq should be as small as possible,

2. the entries of ρeq should be non-negative,

3. (constant-function constraints) the measure of the domain should be conserved:

∣∣∣∣∣
Ne∑

q=1

ρeq
q |Dq| − |Ω|

∣∣∣∣∣ < δ |Ω|

4. (manifold accuracy constraints) the empirical and HF residuals should be close, meaning
that for every primal mode ζu,n and HF snapshot

(
u(k),σ(k)

)
, we have:

∣∣∣∣∣∣
∑

q∈Ieq
ρeq
q Rσ,hf

q

(
Eqd
q σ

(k), Eno
q ζu,n

)
−Rσ,hf

(
σ(k), ζu,n

)
∣∣∣∣∣∣
≤ δ

∣∣Rσ,hf
(
σ(k), ζu,n

)∣∣ (2.34)

All these constraints enable us to recast the empirical quadrature problem as a `0 pseudo-norm
minimisation problem, known as the sparse representation problem:

min
ρ∈Ne
‖ρ‖`0 s.t.

{
‖Gρ− y‖∗ ≤ δ ‖y‖∗

ρ ≥ 0
(2.35)

for a suitable choice of G,y, δ and ‖.‖∗. As analysed in Reference [FACC14], relying on the work
[AK98], such a problem is an NP-hard optimization problem.

Attempting to solve such a problem for our hyper-reduction process is therefore illusory. Nev-
ertheless, the minimization problems related to the `0 pseudo-norm have been extensively explored
in the literature on optimization and signal processing. On one hand, established links between
the `1 norm and the `0 pseudo-norm exist, and the frequent recourse to the latter is aimed at
securing sparse solutions. This analytical framework notably underpins the contributions [YP19],
where the authors proposed an approximation which relies on the `1 relaxation of the problem
where ‖.‖∗ = ‖.‖`∞ . The relaxed problem can thus be reformulated as a linear programming prob-
lem, and solved by resorting to appropriate solvers. Alternative relaxation propositions have been
advanced in the literature, notably through the utilization of an `2 norm and the judicious selec-
tion of a resolution algorithm capable of endowing the problem with the requisite sparsity. Within
this framework, non-negative least squares (NNLS) problems comprise a class of approximation
for the sparse representation problem:

ρeq = argmin
ρ∈RNe+

‖Gρ− y‖2 (2.36)

Hyper-reductions methods founded on non-orthogonal matching pursuit algorithms [MZ93][YWD15]
have been developped to this end. Those approaches rely on numerical methods for sparse inexact
non-negative least-squares initially developped in signal processing. Similarly, Reference FACC14
suggested a methodology called Energy-Conserving Sampling and Weighting method (ECSW)
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that was built on Lawson and Hanson’s algorithm [LH95]. This method constitutes an active-set
approach designed to address a non-negative least-squares problem. The algorithm undergoes a
key modification through the incorporation of an additional stopping criterion, specifically de-
signed to promote solution sparsity. More precisely, a criterion based on the residuals acquired
during the optimization iterations allows for preemptive termination of the iterations:

‖Gρ− y‖2 ≤ δ ‖y‖2 (2.37)

where δ is the previously described tolerance (cf. Equation (2.34)). We may compare our im-
plementation approach with previous methods that relied on exact residual operators requiring
explicit information about internal variables. Within our work, our strategy is designed to be as
non-intrusive as possible, and suitable for an industrial setting. Thus, we choose to reconstruct
integrals of the variational formulation outside the HF code, since we wish not to extract the
discrete residual from the HF code. Such a strategy involves extracting stress fields, HF gradients
of displacement modes, and HF quadrature rules from the HF code, enabling hyper-reduction
processes without explicit knowledge of internal variables. The strategy incurs slightly higher
memory storage costs and an additional call to the HF code for each calculation of the reduced
displacement basis but remains generally applicable, offering a compromise between intrusiveness
and efficiency for less general problems. The computation of the empirical quadrature rule by an
ECSW approach can be viewed as a call to an operator, which relies on the dictionary G and a
hyper-parameter, more precisely a tolerance δ:

ρeq = EQ-solve (G, δ) (2.38)

The various practical steps of the hyper-reduction approach are formalized and illustrated in
Figure 2.3. These steps are divided into three stages: dictionary construction, call to optimization
solver and reduced mesh construction. The last two steps have been detailed previously, and we
now take a moment to elaborate on the first stage. This involves the knowledge of the ROM,
namely of the modes ζu,i, the residual operator Rσ,hf

q (·, ·) (in our case, the integral of the double

contraction product between stresses and deformations), and stress snapshots σ
(k)
µ . On Figure 2.3,

an example of a dictionary G is formalized to help the reader understand the type of problem we
consider. It’s worth noting that alternative strategies could be applied to construct the dictionary,
such as considering projections of stress snapshots onto the reduced space or obtaining stress
snapshots directly from calling the ROMs. We clarify that the dictionary presented here is not
precisely the one used in the practical implementation of our approach to avoid unnecessary
complexity in the document. For more details, the reader can refer to Appendix A.3.2.

2.4.3 Reconstruction of the stress by Gappy-POD

At the end of a call to the reduced solver, we acquire the reduced solutions in displacement along
with the associated stress derived through the integration of the constitutive equation at sampled
elements using empirical quadrature. However, it is noteworthy that these stress vectors do not
inherently pertain to the reduced space specifically designated for stress. Instead, these stress
vectors are derived from integrating the constitutive law within the HF code, utilizing informa-
tion derived from the reduced solution in displacement. In our numerical strategy, our approach
involves the creation of a second POD basis (Zσ or ZS, specifically formed using constraint snap-
shots (or generalized forces). The ultimate goal is to reconstruct a solution constrained within
this newly defined reduced space
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Reduced information

Zu = [ζu,1, ..., ζu,Nu ] ∈ RN×Nu

HF information
{
σ
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}K
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T hf = {Di}Ne

i=1
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ρeq = EQ-solve (G, δ)

{
Ieq = {i ∈ {1, ..., Ne}, s.t. (ρeq)i 6= 0}
T r = {Di}i∈Ieq

Figure 2.3: Scheme of the steps of the ECSW procedure within our framework: construction of
the dictionnary is based on Equation (2.34); the ECSW solver is defined by Equation (2.38); the
strategy of construction of the reduced mesh is described on Figure 2.2.

Indeed, when employing reduced meshes, the information regarding stress is confined to the
quadrature points of the sampled elements. Yet, a comprehensive understanding of the stress field
across the entire HF mesh is essential for an accurate depiction of the mechanical state. Conse-
quently, the reconstruction of the field over the entire mesh becomes imperative. Furthermore,
even in the absence of any hyper-reduction procedure, the stresses obtained lack a predetermined
association with the earlier generated reduced basis, despite the absence of a reduced mesh. This
discrepancy arises from independently generating both reduced bases.

To address these challenges, we implement a Gappy-POD algorithm [ES95] for determining
the generalized coordinates. Ultimately, we successfully reconstruct a comprehensive vector based
on the knowledge of the vector on the reduced mesh. More specifically, for each time step ’k’,
we resolve a least-squares problem using the specified mask. In practice, given a stress vector
σ ∈ RNg defined at the integration points, we build a vector n called mask:

ni =

{
1, if σi is related to an integration point on the reduced mesh
0, otherwise

The latter is therefore the same size as a full vector, and is used to generate a pointwise multi-
plication (n,σ)j = njσj, ∀j ∈ {1, ...,Ng}. Consequently, the outcome of the operation yields a
vector equivalent in size to a full vector (defined on the HF mesh), with components outside the
reduced mesh being set to zero. Subsequently, from this resultant product, an associated scalar
product and an induced norm can be defined in the following manner:

α̂(k)
σ,µ = arg min

α∈RNσ

∥∥σout,(k)
µ − Zσα̂

(k)
σ,µ

∥∥2

n
(2.39)

where the vector σ
out,(k)
µ ∈ RNg is the stress vector designed as follows: the values at the mask are
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obtained by integrating the constitutive equation (the internal variables are known at these mesh
points), and the other values are set to zero.

2.5 A posteriori error indicator

2.5.1 General framework

At this point in the presentation, we lack a precise estimate of the discrepancy between the
reduced solution and HF solutions (called the approximation error), hence the use of the term
a posteriori which is calculated once a solution in the ROM is computed. However, there is a
crucial imperative to gauge the approximation error in real-time applications for various reasons.
Primarily, it is essential to possess the capability to validate a specific level of error incurred by our
ROM. Furthermore, the development of an error indicator becomes pivotal as it guides the greedy
process for parameter selection in iterative procedures. In this context, we distinguish between
the concepts of error estimator and error indicator. While an estimator is used to assess the
approximation error, the indicator is solely correlated with the approximation error. Nevertheless,
this distinction suffices for constructing a greedy process. To derive such indicators, we choose to
rely on residual-based error indicators.

2.5.2 Residual-based error indicator in nonlinear structural mechanics

To define an a posteriori indicator, we rely on operator norms constructed from the residual forms
appearing in the problem. Given a solution trajectory U = {u(k)}Kk=0 and the list of time steps of
the time-dependent problem {∆t(k)}Kk=1, we define the time-discrete L2 (0, tf) residual indicator.:

∆avg,hf
N,µ (U) :=

√√√√√√√√√√

K∑

k=1

∆t(k)




sup
v∈Xhf

bc

Rhf,(k)
µ

(
u

(k)
µ , u

(k−1)
µ , v

)

‖v‖X︸ ︷︷ ︸
:=∆

hf,(k)
N,µ




2

Such a definition is inspired by previous works [HO08] where such a posteriori indicators are
developed for time-dependent problems. We emphasize that this choice of indicator is not unique.
Other works, for instance [IST22], are based on a time-averaged error indicator defined on a
time-averaged residual:

sup
v∈Xhf

bc

Rhf,avg
µ (U, v)

‖v‖X
, with Rhf,avg

µ (U, v) =
K∑

k=1

∆t(k)Rhf,(k)
µ

(
u(k)
µ , u(k−1)

µ , v
)

In practice, efficiently computing such error indicators is challenging. Indeed, these indica-
tors require calculations based on using HF residuals; thus, involving a total quadrature with a
supremum over the entire space X hf

bc . Such a computation is not computationally efficient. Con-
sequently, we have developed a strategy consistent with the constructed ROM and the industrial
code architecture in order to have cost-efficient error indicators.
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Derivation for the single-modeling case

Subsequently, we focus on error indicators for the single-modeling case. We opt for an online/offline
strategy that exploits the fact that the stress prediction belongs to a predetermined reduced space
σ̂

(k)
µ ∈ span (ζσ,n) and that the reduced residual can be expressed accordingly. The objective is

to rely on the stress decomposition onto a reduced space to formulate a readily computable error
indicator. This imparts a dual purpose to the constraint-reduced basis. In addition to conveying
information about the mechanical state throughout the entire mesh, it facilitates the construction
of an indicator.

In the following formulation, we assume that the external loadings do not depend on the time
variable. This choice is made for the sake of simplicity, and we can refer to Appendix B for
more details on the actual procedure when the loading is time-dependent. We introduce the Riesz
elements ψσn ∈ X hf

bc associated to the given linear forms:

(ψσn, v) = Ln(v), ∀v ∈ X hf
bc with





Ln(v) =

∫

Ω

ζσ,n : ε(v) dx, 1 ≤ n ≤ Nσ

LNσ+1 =

∫

Ω

fv · v dx+

∫

Γn

fs · v ds
(2.40)

By means of the decomposition of the stress solution on the stress reduced basis (σ̂
(k)
µ = Zσα̂

(k)
σ,µ),

we can restate the residual evaluation with a reduced solution in stress as:

Rhf,(k)
µ

(
û(k)
µ , û(k−1)

µ , v
)
≈ Rσ,hf

µ

(
σ̂(k)
µ , v

)
= Rσ,hf

µ

(
σ̂(k)
µ , v

)

= Rσ,hf
µ

(
Nσ∑

n=1

(
α̂(k)
σ,µ

)
n
ζσ,n, v

)

=
Nσ∑

n=1

Rσ,hf
µ

((
α̂(k)
σ,µ

)
n
ζσ,n, v

)

Thus, we can recast the dual norm calculation as:

∆
(k)
N,µ = sup

v∈Xbc

[
Nσ∑

n=1

(
α̂(k)
σ,µ

)
n

Ln(v)

‖v‖ −
LNσ+1(v)

‖v‖

]
= sup

v∈Xbc

(
Nσ∑
n=1

(
α̂

(k)
σ,µ

)
n
ψσn − ψσNσ+1, v

)

‖v‖ (2.41)

The dual norm is equal to the norm of its Riesz element, which gives a compact expression for
the error indicator:

(
∆

(k)
N,µ

)2

=

∥∥∥∥∥
Nσ∑

n=1

(
α̂(k)
σ,µ

)
n
ψσn − ψσNσ+1

∥∥∥∥∥

2

=

[
α̂

(k)
σ,µ

−1

]T
ΣN

[
α̂

(k)
σ,µ

−1

]
=
(
α̃(k)
σ,µ

)T
ΣNα̃

(k)
σ,µ (2.42)

where ΣN ∈ RNσ+1,Nσ+1 is the Gramian matrix of the Riesz elements previously introduced, i.e
(ΣN)n,m = (ψσn, ψ

σ
m), and α̃

(k)
σ,µ is the concatenation of the generalized coordinates for the stress
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with [−1].

Given the absence of numerical validation for the multi-modeling case, a derivation is not
explicitly outlined in this thesis. Nonetheless, a derivation for the industrial case is provided in
Appendix B.2.

2.5.3 Discussion about implementation constraints in an industrial
framework for a single-modeling case

Energy norm choice for the single-modeling case

We shall now discuss the effective calculation of the Riesz elements in the context of the in-
dustrial code. However, initially, it is necessary to specify the inner product used, as it de-
termines the Riesz representative. For efficient and code-compatible derivation of an indicator
in the single-modeling case, a consistent choice would be to consider the standard H1 norm:

||u||H1 =
√∫

Ω
∇u · ∇u+ uu dx. As mentioned previously, our choices are constrained by the

industrial context of our implementations. When considering the adoption of such a norm, the
finite element code lacks a swift and efficient method for extracting the matrix Xu. To address this
challenge, we chose to compress the data using an energy norm. Specifically, we are considering
the energy norm associated with a simpler mechanical case, namely linear elasticity. In so doing,
we consider the following linear elastic problem (if we omit the time dependence):





−∇ · σµ = fv on Ω
σµ · n = fs on Γn

uµ = 0 on Γd
σµ = E

1+ν
∇suµ + E

(1+ν)(1−2ν)
(∇ · uµ) 1

(2.43)

where E is the Young’s modulus and ν is the Poisson coefficient. From a variational point of view,
this amounts to considering a case where we are seeking a displacement field u ∈ X hf

bc such that :

aµ (u, v) = F (v) with





aµ (u, v) =

∫

Ω

E

1 + ν
∇su : ∇sv +

E

(1 + ν) (1− 2ν)
(∇ · u) (∇ · v) dx

F (v) =

∫

Ω

fvv +

∫

Γn

fsv

(2.44)
The bilinear form aµ : X × X → R is symmetric, coercive and continuous. As a consequence

of Korn and Poincaré’s inequalities, it defines an equivalent norm of H1: ∀w ∈ X , ‖w‖aµ =√
aµ (u, v). However, this energy norm is parametric. We shall have a parameter-independent

norm, and thus, we choose rely on the energy norm for the centroid of the parameters µ ∈ P :
Xu = Kµ, where Kµ is the stiffness matrix obtained for an elastic problem and the vector of
parameters µ (or at the components of the vector corresponding to the elastic behaviour).

Derivation of the Riesz representatives

We can now shed light on the actual computation of the Riesz representatives. In a general
manner, these vectors can be determined by solving Nσ + 1 linear systems defined by Equation
(2.40) and will hence fulfil the boundary conditions associated with the system: Bψσ

n = 0. In
our framework, it is not straightforward to formulate a problem in variational form by hand or to
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extract all information to solve Equation (2.40) algebraically outside the FE solver. Nevertheless,
functionalities exist to extract Riesz elements of the given linear forms but on a larger space X hf ,
i.e. for vectors that do not satisfy the problem BCs. Indeed, such features are often implemented
in industrial-grade FE codes so that engineers can have access to internal forces vectors or support
reaction forces. Such vectors are often used by engineers and defined as follows:

∀v ∈ RN ,





(Fn, v)`2 =
∫

Ω
ζσ,n : ε(v) dx, ∀n ∈ {1, ..., Nσ}

(FNσ+1, v)`2 =
∫

Ω
fv · v dx+

∫
Γn
fs · v ds

(2.45)

As a reminder, the Riesz elements should belong to the same space as the displacement space.
Therefore, as mentioned previously, the scalar product used for their definition is the scalar prod-
uct associated to the energy norm for the parameter centroid. One may see from Equation
(2.40) that ψσn is solution to a quadratic optimization problem associated with cost function
v 7→ 1

2
vTKµv − vTFn under the equality constraint Bv = 0. The Karush-Kuhn-Tucker (KKT)

optimality conditions read:

{
Kµψ

σ
n + BTλ = Fn,

Bψσ
n = 0

(2.46)

Actually, Equation (2.46) defines an easy problem to provide as an input to a FE solver: it is a
linear elastic case for the parameter centroid, with the very same BCs as the HF problem, and
an explicit field of nodal forces as an external load (previously computed by Equation (2.45)) It
is therefore sufficient to use the HF solver for Nσ + 1 linear problems. Finally, the parameter-
independent matrix that appears in the error indicator definition is computed as follows:

(ΣN)n,m = (ψσn, ψ
σ
m)aµ = ψσ

n · (Kµ ·ψσ
m) = (ψσ

n)T Kµ ·ψσ
m, ∀n,m ∈ {1, · · · , Nσ + 1} (2.47)

For a given HF FE solver, this strategy is a non-intrusive way to compute the error indicator,
since there is no need to retrieve B or Kµ matrices from the FE solver.

2.6 Overview of the reduction methodology

To comprehensively elucidate the methodology employed in this thesis, we offer an overview of
the approach. This step back from the detailed mathematical implementation which has been
thoroughly expounded in the preceding sections, allows for a broader perspective on the algorithms’
overarching structure before delving into subsequent chapters focused on numerical results. The
presentation of the methodology unfolds in two stages. Initially, we define our approach without
incorporating the greedy aspect, that is, by considering the pre-given sampling of parameters or,
for instance, by considering a non-parametric scenario. Such a scenario, often termed the solution
reproduction problem, constitutes a necessary step in testing a model reduction approach. This
case involves replicating a HF problem with a reduced one. Addressing this sub-problem facilitates
the design of algorithmic blocks that can be readily repurposed within the parametric framework,
as well as the provision of validation tests for the latter. In the second stage, we present a
comprehensive overview of the algorithm, taking the greedy aspect into account for sampling the
parametric space.
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2.6.1 Construction of the reduced order model within the offline/online
paradigm

Without accounting for the parameter sampling process, we begin by encapsulating the reduc-
tion methodology employed. A comprehensive delineation is provided within the offline/online
paradigm. Initially, leveraging precomputed HF snapshots, we orchestrate the construction of
the reduced model. This entails formulating a condensed basis for displacements Zu, pivotal for
subsequent projection, an empirical quadrature scheme ρeq, and the derived reduced mesh T r

h , es-
sentials for CPU computational gain. Furthermore, a basis for constraints Zσ or generalized force
ZS becomes mandatory for reconstructing the mechanical state of the structure on the HF mesh.
All numerical methodologies used are described earlier and collectively constitute the offline phase
of the algorithm. The ensuing online phase entails the evaluation of this ROM. In practical terms,
the computational cost of this evaluation, namely the reduced problem resolution, must unequiv-
ocally be cheaper than its HF counterpart. In our scenario, the evaluation occurs in two steps.
Initially, a projection-driven resolution yields coordinates of reduced displacements. The displace-
ment solution is then fully known. However, in practice, to determine the material’s mechanical
state, hence its stress state, it is necessary to perform Gappy-POD to obtain it. Thus, the online
phase produces two sets of generalized coordinates. The summary of the required computation
steps can be found in the Algorithm 1.

Algorithm 1 Key steps of the construction of a ROM: offline/online decomposition

Offline step
Compute the HF-snapshots . Call of HF code:code aster

Construction of the reduced order basis (Zu and Zσ) . Section 2.3.3 and 2.3.4
Empirical Quadrature procedure ρeq . Section 2.4.2
Online step

Compute the primal generalized coordinates
{
α̂

(k)
u,µ

}K
k=1

. Equation (2.31)

Compute the dual generalized coordinates using Gappy-POD
{
α̂

(k)
σ,µ

}K
k=1

. Section 2.4.3

2.6.2 POD-Greedy sampling relying on ECSW procedure

We have designed a POD-Greedy procedure to systematically explore the parametric space for
constructing the reduced model. For the single-modeling scenario, we have devised a weak-greedy
approach, while for multi-modeling, a strong-greedy methodology has been developed, coupled
with a tailored implementation compatible with our industrial code. Supplementary remarks
regarding the extension of the weak-greedy approach to multi-modeling are provided in Appendix
B.2. In both instances, mesh hyper-reduction is accomplished through an ECSW approach applied
to three-dimensional elements (and also surface elements: additional details on implementations
are elucidated in the Appendix). The iterative construction of the reduced model continues until
a user-defined criterion is met. Figure 2.4 offers a graphical representation of the algorithm
employed. The distinctive features of both cases are highlighted using a color-coded scheme, with
augmentations specific to multi-modeling depicted in red.
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Stopping criterion if true ROM built

false

Compute reduced mesh

Compute EQ rule ρeq

Compute reduced bases

Compute solution for µ∗
Loop over the training set

to identify the most poorly

approximated solution

( for the parameter µ∗)

Greedy enrichment Building ECSW hyper-reduced ROM

{uµ}Kk=1, {σµ}Kk=1, {Nµ}Kk=1︸ ︷︷ ︸
= {Sµ}Kk=1

Zu, ZS

ρeq

ECSW hyper-reduced mesh for Ωc

+
keep HF mesh Ωs

Figure 2.4: Schematic diagram of the greedy process implemented to build a reduced model in
the context of single-modeling and multi-modeling problems.
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Chapter 3
Model problems relying on an industrial-grade
finite element code for structural mechanics

3.1 Introduction

The purpose of this section is to present the problem formulations investigated in this thesis.
Specifically, two types of modeling are discussed within the scope of this work: first, the single-
modeling paradigm, scrutinized through the lens of an elastoplastic holed-plate subjected to ten-
sion; and second, and more importantly, the intricate industrial scenario encapsulating a standard
section of a NCB.

The focal point of our modeling aspirations is the section of the NCB, a test case laden with
intricate mechanical phenomena instigated by thermal and hydric influences. More specifically, we
focus on a block of concrete, with a nonlinear rheological behavior. Notably, this case unfolds as a
multi-modeling challenge, given that the containment structures in nuclear facilities are made of
with prestressed concrete. This material is represented in EDF’s engineering studies by kinematic
coupling between two materials, concrete and steel. In summary, our overarching objective is to
construct a ROM capable of a time-dependent problem, potentially activated by weak coupling
phenomena and featuring multi-modeling intricacies, all implemented in an industrially relevant
FE code (code aster).

Within this framework, the implementation of a three-dimensional single-modeling case can be
seen as an initial validation step for our proposed methodology. From a numerical standpoint,
this affords us the opportunity to scrutinize diverse methodologies, encompassing hyper-reduction
and projection-based solvers, within an industrial code for a nonlinear three-dimensional prob-
lem, with temporal evolution (or at least a pseudo-time in the case of static analysis). The
chosen problem for this test is a three-dimensional elastoplastic plate with a hole, a classical solid
mechanics test case. Details regarding the model choices and geometry are provided in Section 3.2.

We dedicate additional effort in Section 3.3 to elaborate on the physical phenomena at play
and the modeling approach used for the industrial case of a standard section of a NCB. First,
we explain the physics of the problem, followed by the development of governing equations to
model such behavior. The choice of governing equations is not the focus of this research and is
based on accumulated knowledge within EDF’s R&D. Finally, we present the specific geometry
studied in this thesis, namely, a representative volume of a containment building section. Again,
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the selection of this geometry and applied conditions stems from engineering studies to develop
a model and corresponds to the three-dimensional model used in practice for leakage studies.
We conclude by providing some numerical examples to enhance understanding of the underlying
physical phenomena at play.

The theoretical and numerical elements presented in this section are derived from online
preprints, specifically from the following works:

� [AAB+24b] Eki Agouzal, Jean-Philippe Argaud, Michel Bergmann, Guilhem Ferté, and
Tommaso Taddei. A projection-based reduced-order model for parametric quasi-static non-
linear mechanics using an open-source industrial code. International Journal for Numerical
Methods in Engineering, 125(4):e7385, 2024.,

� [AAB+24a] Eki Agouzal, Jean-Philippe Argaud, Michel Bergmann, Guilhem Ferté, Sylvie
Michel-Ponnelle, and Tommaso Taddei. Projection-based model order reduction for pre-
stressed concrete with an application to the standard section of a nuclear containment
building. arXiv preprint arXiv:2401.05098, 2024.

3.2 Single-modeling approach: application to an elasto-

plastic analysis of a plate with a hole

We previously introduced a methodology to address the case of single-modeling for handling three-
dimensional materials with nonlinear behaviors and internal variables. As this approach can be
seen as a step towards our complex model, we chose to define an intermediate validation case
to test our approach. This case must be consistent with the introduced notations and feature
nonlinearity that does not introduce additional challenges to our problem. We opted for the case
of a holed plate in elasto-plasticity. This geometry and behavior constitute a classic and straight-
forward validation case in solid mechanics. The geometry is relatively simple, which eases analysis
and modeling. Furthermore, the elasto-plastic behavior introduces a common nonlinearity, as
plastic deformations often occur in real situations where the material reaches its elastic limit.
Additionally, the interpretation of results is facilitated by this type of behavior, as the interaction
between elastic and plastic regimes is clear to interpret for simple numerical models. Moreover,
the numerical treatment of an elasto-plastic behavior allows both static and time-dependent tests,
providing a clear validation of the algorithm’s steps. Hence, this scenario serves as an excellent
option for the initial validation of our reduction methodology..

We validate our reduction procedure through the examination of a three-dimensional elasto-
plastic holed-plate submitted to tensile loading. In this section, we begin by elucidating the
physical formulation of the material’s constitutive equations (Section 3.2.1). Then, we delve into
the resolution algorithm employed in our study (Section 3.2.2), followed by a detailed explanation
of the configuration used in our numerical illustration (Section 3.2.3). To enhance clarity, we may
eliminate the parametric dependence from the notation in this section, symbolizing the omission
of the subscript µ.

3.2.1 Continuous equations

To ensure that the terminology is clear and understandable for all readers, we shall briefly rein-
troduce some of the concepts required to define the behavior laws used in our work. Details of
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mechanical principles are not the main focus of our work, and the reader is invited to refer to the
relevant literature if further or more detailed information is required. We provide some examples
for elasticity [Sal05][LT06] or elasto-plasticity [HS87][BCCF01].

Plasticity in materials mechanics refers to the proficiency of a material to undergo perma-
nent deformation after being subjected to stress beyond its elastic limit. In simple terms, when
a material becomes plastic, it can undergo deformation that persists even after the mechanical
load is removed. Prior to reaching the elastic limit, the material experiences reversible elastic
deformation, returning to its initial shape when the stress is removed. During this period, and for
a specific range of loads, the material remains in an elastic regime. Beyond the elastic limit, the
material enters the plastic domain and undergoes permanent deformation. The material enters a
regime of irreversible phenomena. Generally, plasticity can be characterized by the relationship
between stress (force per unit area) and plastic deformation (or derived quantities), depicted by
a hardening curve. Hardening in materials mechanics occurs when a material becomes stiffer and
stronger as it undergoes plastic deformations. A classic example of hardening is isotropic hard-
ening, where resistance to plastic deformation increases equally in all directions of the material.
In other words, the material hardness uniformly increases, irrespective of the direction in which
plastic deformation occurs.

Within this work, we consider a small-displacement small-strain mechanical problem. We
assume that the total deformation is the sum of a plastic part (εp) and an elastic part (εel):

ε = εel + εp

where the plastic deformation comprises the irreversible part of the behavior. The elastic behavior
depends on two parameters, the Young’s modulus E and the Poisson coefficient ν. The elastic
constitutive equation is :

σ = Fσ (∇su, ε
p) =

Eν

(1 + ν) (1− 2ν)
Tr (∇su− εp) 1 +

E

1 + ν
(e− ep) (3.1)

where the deviator of the strain and stress tensors are introduced:

e = dev (∇su) , ep = dev(εp), s = dev(σ), where dev(τ) = τ − 1

3
Tr(τ)1 (3.2)

As a reminder, these tensor quantities are employed to describe the mechanical behavior of
a material. For instance, the deviator of strains excludes the volumetric component (or uniform
dilation/contraction) of the strain tensor. It focuses on local deformations that alter the shape
of the material without changing its total volume. The deviator of strains and stresses serves to
isolate the non-uniform, local, and deviatoric components of the total tensor quantities.

In this work, we consider a Von Mises criterion for an isotropic hardening. The Von Mises
criterion is based on representing the stress state in terms of an equivalent strain invariant. This
invariant is calculated from the principal components of stresses in a given state and is used for
comparison with a material-specific critical value. The mathematical expression of the Von Mises
criterion for a material in three dimensions is often formulated as follows:

√
3

2
s : s ≤ σy
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where σy is the initial elastic limit of the material. If the inequality above is satisfied, the material
is considered to be in an elastic state. If violated, indicating that the deviatoric stress exceeds the
threshold stress, the material undergoes plastic deformation.

We deviate momentarily in our model presentation to highlight that this category of problem
falls perfectly within the scope of the Equation (2.1). Indeed, in our analysis, the internal variables
(γ) that appear in the model are the plastic strain (εp) and the cumulative plastic strain (p). In
the framework of the formulations presented in the previous chapter, this decision implies that
the evolution equations on the internal variables are expressed using the following system:

(ε̇p, ṗ) = Fγ (σ, εp, p) ⇔





σeq =
√

3
2
s : s

σeq −R(p) ≤ 0 [Von Mises criterion]

p(t) =
√

3
2

∫ t
0
‖ε̇p (τ)‖ dτ

ε̇p = ṗ 3
2σeq s ṗ ≥ 0 ṗ [σeq −R(p)] = 0 [Normality rule]

(3.3)

where σeq is an Von Mises equivalent stress and R(p) denotes the elastic limit, and evolves as a
function of the cumulative plastic strain p. Details regarding the definition of the hardening curve
for our numerical cases are presented later (see Section 3.2.3).

3.2.2 Incremental algorithm for elastoplastic solvers

We provide here the choice of the time discretization algorithm used to solve the elasto-plastic
problem. The time integration of the mechanical behavior of the problem is performed from the
computation of a deformation increment:

ε(k) = ε(k−1) + ∆ε(k−1) (3.4)

This formulation is consistent with the assumption of one-setp time integrators. We recall that
e (resp. s) stands for the deviator of the strain (resp. stress) tensor. The discretization of the
problem results in finding

(
∆p(k−1), ∆εp,(k−1)

)
for a given ∆ε(k−1) such that:

{
p(k) = p(k−1) + ∆p(k−1)

εp,(k) = εp,(k−1) + ∆εp,(k−1) (3.5)

with:





σ(k) = σ(k−1) +
Eν

(1 + ν) (1− 2ν)
Tr
(
∆ε(k)

)
+

E

1 + ν

(
∆e(k) −∆εp,(k)

)

σeq,(k) − R
(
p(k−1) + ∆p(k−1)

)
≤ 0

∆εp,(k−1) = ∆p(k−1) 3

2σeq,(k)
s(k)

∆p(k) ≥ 0

∆p(k)
[
σeq,(k) −R

(
p(k−1) + ∆p(k−1)

)]
= 0

(3.6)
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We choose to consider an algorithm referred to as incremental in the literature, with a first-
order accurate time discretization. The solution varies depending on whether the evolution is
exclusively elastic or elastoplastic. Such a procedure adopted is referred to as the return mapping
algorithm (or radial return)[W+63]. It resorts to an elastic prediction phase, where the stress field
is derived under the assumption of a purely elastic material (σelas

n+1). The function f
(
σelas
n+1, pn

)
is

then estimated based on this prediction. If the solution obtained remains in the elastic region,
the next iteration can be launched. Otherwise, a correction is performed by solving the nonlinear
equation:

f (σn+1, pn + ∆pn) = 0 (3.7)

This equation is nonlinear and is solved through a Newton solver (secant method). The set
of unknowns is inferred from the plastic deformation increment ∆pn. Note that this algorithm
is even applied for static problems. In this case, a pseudo-time is introduced. From a physical
perspective, it can be understood as a time modeling the evolution of the irreversibility within
the material.

Algorithm 2 Return mapping algorithm

Computation of the elastic prediction selas
n+1 = sn + 2µ∆en

Stress computation σelas
n+1, σelas,eq

n+1

Computation of the criterium f
(
σelas
n+1, pn

)

if f
(
σelas
n+1, pn

)
≤ 0 then . Elastic Evolution

Computation of the stress and internal variables:

σn+1 = σelas
n+1, εpn+1 = εpn, pn+1 = pn

end if
if f

(
σelas
n+1, pn

)
> 0 then . Elastoplastic

Find ∆pn solution of . Equation (3.7)

σelas,eq
n+1 − 3E

2(1 + ν)
∆pn −R (pn + ∆pn) = 0

Computation of plastic deformation increments:

εpn+1 = εpn+ + ∆εpn, pn+1 = pn + ∆pn

Update of stress and internal variable: . Equation (3.1)

σn+1 = σn +
Eν

(1 + ν) (1− 2ν)
Tr (∆εn) 1 +

E

1 + ν
(∆en −∆epn)

end if

3.2.3 Choice of the hardening curve

The work hardening curve is chosen to follow a power law (referred as VMIS ISOT PUIS in the
code aster database), which implies that the elastic limit evolves on the accumulated plastic
strain as follows:
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R(p) = σy + σy

(
E

apuiσy
p

) 1
npui

where n, apui are strain hardening coefficients and σy is the initial elastic limit. This algorithm
provides us with stable responses on a range of parameters. The resolution procedure used in
this work is a elastic predictor-return mapping (plastic corrector)[W+63]. In case of a plastic
evolution, the nonlinear equation that ensures the fulfillment of the criterion is solved using the
secant method. All the physical parameters of the problem are summarized in Table 3.1.

E ν σy npui apui

MPa no dim. MPa no dim. no dim.

Table 3.1: Summary of the physical parameters.

3.2.4 Holed plate under tensile loading

Geometric configuration and BCs

y

x∙z
r

lx

ly

p

Γled

Γbed

Figure 3.1: Geometric configuration and loading for the elasto-plastic plate with a hole.

As mentioned earlier, we shall study the problem of a three-dimensional plate with a circular
hole in its centre and subjected to a tension force. The geometrical domain is narrowed for reasons
of symmetry (geometry given on Figure (3.1)). We consider that the tension force is only applied
on the upper boundary of the plate. We assume that the vertical displacement is homogeneous
on the upper boundary, where symmetric boundaries are also applied:

{
−∇ · σ = fv on Ω
σ · ey = −p on Γup

n

, such that





uy = 0 on Γbe
d

ux = 0 on Γle
d

uz = 0 on Γba
d

uz(x1) = uz(x2), ∀(x1, x2) ∈ Γup
n × Γup

n

(3.8)

where the associated boundaries are defined as:
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Γbe
d = {y = 0, ∀(x, z) ∈ [r, `x]× [0, `z]}

Γle
d = {y = 0, ∀(y, z) ∈ [r, `y]× [0, `z]}

Γba
d = {y = 0, ∀(x, y) ∈ [r, `x]× [0, `z] \ {(x, y), s.t. x2 + y2 < r}}

Γup
n = {(x, `y, z), ∀x [0, `x] ,∀z ∈ [0, `z]}

We mainly consider the case of a constant applied force, but we also allow for variable applied
pressure.

Finite element discretization

We consider a three-dimensional quadratic tetrahedral mesh for our numerical investigations. We
provide the mesh information in the Table 3.2b, and a visualization of the mesh (cf. Figure 3.2a).

(a) Mesh visualization.

Ne N no N qd N Ng
11 981 18 446 59 905 55 338 359 430

(b) Mesh information.

Figure 3.2: Details on theesh used for the numerical example for a single-modeling material: mesh
vizualisation (cf. Figure 3.2a); mesh information (cf. Figure 3.2b) : number of three-dimensional
cells ( Ne), number of nodes (N no), number of three-dimensional quadrature points (N qd), size of
the discretized displacement (N ) and stress vectors (Ng).

3.3 Thermo-Hydro-Mechanical (THM) modeling of large

concrete structures

In this section, we start with a detailed presentation of the physical phenomena we are study-
ing, more specifically the Thermo-Hydro-Mechanical (THM) study for large prestressed concrete
structures. First, we present the crucial aspects of concrete mechanics, in order to justify and
understand the chosen numerical modeling. Next, we introduce the numerical model used. We
also detail the assumptions underlying our model, highlighting the choices made to faithfully rep-
resent the mechanisms at play. This second step should also show how this type of problem fits
into the more general framework we have adopted. Finally, we turn to the practical application
of our methodology by presenting the specific problem on which we are testing our model. This
includes specific assumptions on geometry, boundary conditions and a predefined mesh. In partic-
ular, our approach aims to speed up actual calculations by using a pre-existing model from EDF’s
engineering and R&D departments, considered here as the HF problem we seek to reproduce.
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3.3.1 Phenomena related to the aging of concrete in large-scale struc-
tures.

Concrete, as a complex, porous material, exhibits dynamic behavior influenced by its heteroge-
neous nature and the temporal evolution of the properties of its components. This complexity
stems from its composition, a subtle blend of aggregates, cement, water, and any mineral additions
and admixtures, carefully proportioned to meet mechanical and durability requirements. Cement,
the key ingredient in concrete, is produced by firing limestone and clay at high temperatures,
resulting in clinker which, when mixed with water, triggers a chemical process called hydration
[Bye99][T+97]. Hydration is a crucial stage in the hardening of concrete. When water is added
to cement, chemical reactions occur between the cement’s components, forming calcium hydrate
crystals. This process generates heat, known as the heat of hydration, which contributes to the
evolution of the concrete’s mechanical properties. At the same time, concrete undergoes a solidi-
fication phase, during which the cement paste changes from a plastic to a solid state. This initial
hardening provides the necessary strength for concrete to support structural loads. However,
complete hardening may take several weeks or even months, during which time the concrete may
be vulnerable to temporary deformations, notably endogenous shrinkage and desiccation shrink-
age. Thermo-hydro phenomena within concrete encompass interactions between heat generated
by hydration, external temperature variations, and the presence of water. These interactions can
influence the physical properties of concrete, such as thermal shrinkage and crack development.

Shrinkage

In order to understand the phenomena involved, we briefly present some of the mechanical phe-
nomena that induce deformation in concrete. Shrinkage refers to the expansion of volume that
occurs during or after the setting of concrete. This phenomenon can be induced by the hydration
of the concrete, as well as by variations in temperature or the water content of the concrete.
To comprehend various forms of shrinkage, it can be beneficial to categorize contributions based
on the conditions and interactions with the surrounding environment. Endogenous conditions
for concrete refer to an environment where the concrete is subject to internal influences, with
no significant exchange of water with the outside. In other words, concrete is isolated from the
external environment in terms of water supply or significant water losses. Under such conditions,
various types of shrinkage can occur in concrete. Plastic shrinkage is a contraction that occurs
in concrete before it hardens. It arises from a combination of chemical shrinkage, linked to hy-
dration reactions, and desiccation shrinkage, associated with water evaporation from the concrete
surface. The hydration reaction, also referred to as Le Châtelier contraction [LC04], involves the
formation of hydrates with a volume less than the sum of anhydrous cement and water volumes.
Thermal shrinkage occurs due to the material cooling after internal heating caused by exothermic
hydration reactions. As time progresses, water in the capillary pores is consumed by the cement’s
anhydrides’ hydration, termed self-drying, without external water exchange.

Under external conditions, including thermo-hydric loads, additional deformations are associ-
ated with desiccation shrinkage. Desiccation in the context of concrete refers to the water loss from
the material, typically due to the evaporation of water from its surface. This occurrence stems
from the interplay between concrete and the external environment, particularly when external con-
ditions promote rapid water evaporation from the concrete surface. Specifically, this phenomenon
arises from the water imbalance between the evaporated water at the concrete surface and that
retained within its mass, leading to material contraction. This physical phenomenum induces
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transport mechanisms, highly dependent on the ambient relative humidity (RH)[XBMJ94][Che11].
RH is defined as the ratio of vapor pressure to saturation vapor pressure for a given temperature.
For large structures, these phenomena mainly pertain to the hydric behavior of the outer layer
of concrete rather than the average hydric behavior across the structure’s thickness [BBB+18].
Desiccation shrinkage is, therefore, a concrete contraction resulting from desiccation, specifically
the loss of water through evaporation.

Creep

Creep refers to the gradual, slow deformation of a material subjected to a constant stress over
time. In the context of concrete, creep can lead to additional deformations beyond the initial
hardening phase, and it becomes crucial to account for these effects in the design and long-term
performance evaluation of concrete structures. While hypotheses about creep mechanisms may
vary, there is universal acknowledgment of the crucial role of water, leading to the identification of
two creep modes in the short and long term [Ben02]. The diverse responses of concrete to different
stresses constitute a vital area of study for comprehending its behavior under various conditions.
Basic creep and desiccation creep are two separate phenomena that impact the performance of
concrete under specific circumstances. Basic creep pertains to the prolonged deformation of a
concrete structure enduring constant loading, primarily induced by stress relaxation within the
structure over time. The creep process can extend for a considerable duration, and the resultant
deformation is typically irreversible. In contrast, desiccation creep is a deformation resulting from
the loss of water from the concrete.

Prestressed concrete

Prestressed concrete is a technique employed in civil engineering to enhance the strength and
durability of concrete structures. The principle revolves around introducing prestress, i.e. applying
internal forces before the application of service loads. Steel cables, also known as tendons, are
placed in the concrete before it sets, then stretched and anchored. As the concrete hardens,
these tendons exert a compressive force on the material, thereby enhancing its tensile strength.
The purpose is to counteract the tensile forces anticipated in the structure. Thus, such a method
helps reduce deformations, maximize load-carrying capacity. Since such a technique is widely used
in civil engineering to optimize the design of structures and enhance their ability to withstand
significant loads over extended periods, it has also been used for large containment structures on
which we focus. The installation of a prestressed concrete structure involves tensioning the cables
within the concrete. In our case, the tension profile along a cable adheres to an official standard
(BPEL 91 regulation [Règ92]). Considering physical parameters, such as initial tension, a tension
profile is computed along the cable’s length relative to the curvilinear abscissa. The coupling
between cables and concrete can be delineated into three primary stages: before, during, and
after prestressing. In the initial stages of these structures, concrete is poured around sheaths and
initiates the drying process. Subsequently, cables are inserted into these ducts and prestressed
to meet civil engineering standards. Finally, cement is poured into the ducts, facilitating the
continuation of the structure’s life with a kinematic coupling between the concrete and the steel
cables.
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3.3.2 Weak-coupling strategy for the THM numerical model

In this section, we introduce the mathematical model designed to simulate the behavior of pre-
stressed concrete. We consider models that account for the evolution of large concrete structures
over their lifetime, which consists mainly of two stages: young age and long-term evolution. The
young age refers to a stage during which the chemical and physical properties of concrete are
changing at a fast rate, as it sets and hardens. Long-term phase represents the evolution of
hardened concrete under operating conditions (taking into account thermo-hydric loadings) and
mechanical loadings. Within the framework of the FE models employed in practice, we only
consider long-term evolution. Indeed, as stated in the introduction, the motivation for this work
lies in the study of concrete ageing. To this end, real data are measured over periods of several
years, and numerical simulations must be able to cope with the long-term simulation of these
structures. Furthermore, from a purely experimental perspective, engineers possess very limited
data on young age, as the measurement tools available are not set up. This is another reason why
the focus of numerical approaches is primarily on long-term studies.

As indicated above, concrete behavior results from complex physicochemical phenomena, in-
volving multiphysical couplings. Indeed, the phenomena that occur over the lifetime of concrete
are intimately linked to the presence of water in the material and its evolution, as well as to
the temperature of the material. Such material behavior requires a THM modeling strategy: the
behavior of the material is based on knowledge of the temperature (T ), the water content (Cw)
in the concrete and the mechanical fields, in a framework where all these phenomena are coupled
together. Since we are interested in modeling the whole ageing of the concrete structure, our
THM model should encompass the various physical processes which induce deformations within
the concrete: shrinkage, dessication and creep.

Notation Physical quantity Unit
T Temperature K
ξ Hydration degree −
h Ambient relative humidity (RH) −
Cw Water content of concrete −
σ Stress in the concrete Pa

εc = ∇su
c Deformations in the concrete −

N Normal efforts in the prestressing cables N
εs = ∂su

s Deformations in the prestressing cables −

Table 3.2: Fields of interest in the overall THM model for large prestressed concrete structures.

In our framework, we adopt a weakly-coupled approach. This assumption implies that the
computation is carried out in a chained manner. First, a thermal calculation is performed, followed
by a hydric calculation (water diffusion in the concrete). Once all the thermal and hydric fields
are known, a mechanical calculation is conducted. Each calculation step yields fields of interest
which: first describe the state of the material; second, can be reused for subsequent calculation
steps. At the end of the thermal calculation, we get the temperature field (T ) and the degree
of hydration of the concrete (ξ; which will be always analytically given in our simulations); at
the end of the hydric calculation, we get the water content of concrete (Cw); at the end of the
mechanical calculation, we get the displacement fields in the steel cables and in the concrete,
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the associated deformations (ε = [εc, εs]), the stresses in the concrete (σ) and the normal forces
in the cables (N). Table 3.2 details the ouputs for the entire THM calculation. The different
steps in the process are summarized in Figure 3.3. Such a formulation of the problem is founded
on several assumptions. To begin with, the influence of the mechanical response on the thermal
and water fields is neglected [JPCGH07][BBB+18]. Furthermore, it is assumed that the hydric
response has no influence on the thermal fields. Weak-coupling approaches have demonstrated
their effectiveness in modeling prestressed concrete structures, both for a Representative Structural
Volume (RSV) [JPCGH07][BBB+18] and for a full-scale model [ACMC16].

µT

µH

µM

Parameters Thermal Hydric Mechanical

ξ ε σ,N

T Cw

Figure 3.3: Weakly-coupled chained THM approach for large prestressed concrete structures.

3.3.3 THM constitutive equations

As stated above, we describe in the following section the set of equations that make up the
THM problem under study. Prestressed concrete behavior modeling requires a multi-modeling
approach: a three-dimensional nonlinear rheological model is used for concrete; and prestressing
cables are described by a one-dimensional linear thermo-elastic behavior. As mentioned above, the
rheological behavior of concrete is coupled with hydric and thermal phenomena. Thermal-hydric
resolutions are thus solved on the concrete domain (Ωc), while mechanical calculations are solved
on both domains (Ωc and Ωs).

In the following paragraphs, we present the various constitutive equations solved to determine
the mechanical state of the problem. We start with equations related to thermal and hydric
behaviors, solved at the level of concrete. Next, we highlight the constitutive equations for the
rheological model of concrete, followed by the one-dimensional model applied to the cables. We
also elaborate on the coupling between these different domains.

Modeling of the thermal and the hydric behavior of the concrete

First, we introduce the set of equations employed for the first two stages of the chained calculation:
the thermal calculation and the hydric calculation. This decision is motivated by the fact that
this calculation is the starting point for the mechanical calculation, to which we apply our model
reduction methodology. The temperature evolution is modeled by the heat equation [Fou88]:

ρcc
p
p

∂T

∂t
= ∇ · (λc∇T ) , on Ωc, (3.9)
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where ρc is the density of the concrete, cpp heat capacity of hardened concrete and λc thermal
conductivity of hardened concrete. Dirichlet conditions are applied in our context (see details for
the numerical test case in Section 3.3.4).

Since we only consider liquid water diffusion [Gra95], moisture transfer is modeled by a single
nonlinear diffusion on Cw (cf. Equation (3.10a)), which denotes the water content of the concrete.
The diffusion equation depends on Dw, which is a phenomenological diffusion coefficient, and is
assumed to follow Arrhenius’ law [BN72]. In summary, the nonlinear diffusion equation of the
water content can be summed up as follows:





∂Cw
∂t

= ∇ · [Dw (Cw, T )∇Cw] , on Ωc,

Dw (Cw, T ) = Dw,0 (Cw)
T

T 0
w

exp

[
−Uw
R

(
1

T
− 1

T 0
w

)]
,

Dw,0 (Cw) = A exp (BCw) ,

(3.10a)

(3.10b)

(3.10c)

where Uw is the activation energy of drying, R the ideal gas constant and Dw,0 (Cw) is the diffu-
sion coefficient at a reference temerature T 0

w. The latter is assumed to follow a model defined by
previous work [MAA88], which depends on two model parameters A, and B.

At the scale of large concrete structures, measurements of ambient conditions cannot be made
in terms of the water content of the concrete, and are thus conducted in relative humidity [Bou16].
For the sake of consistency and use of collected data, the boundary conditions are formulated in
terms of RH. From an experimental point of view, the drying or wetting cycles are assumed to affect
only the concrete skin. This assumption enables to draw a link between the water concentration in
the concrete and the relative humidity. For a given temperature, these two quantities are related
by a bijective function called the sorption-desorption function:

Cw = fd (h) . (3.11)

Within the framework of these constitutive laws, the sorption-desorption function may be
defined either analytically with hyper-parameters [BBB+18][VG80], or empirically by defining a
function. In our case, we define a sorption-desorption function as shown in Figure 3.4. This curve
is drawn from experimentally acquired points (without interpolation).

When using real life data, the BC of the water diffusion problem are stated in terms of RH. All the
parameters related to the thermal and hydric aspects of the model are summarized and detailed
in Table 3.3.

Modeling of the mechanical behavior of the concrete

We now detail the governing equations for the mechanical behavior of concrete. Since, we consider
small-displacement small-strain mechanical problems, the total strain is decomposed as the sum
of several contributions:

ε = εel + εth + εds + εbc + εdc,

where εel is the elastic strain tensor, εth the thermal strain tensor, εds the dessication shrinkage
strain tensor, εbc the basic creep strain tensor, εdc the dessication creep strain tensor and εen the
autogenous shrinkage. We explain in the following section the evolution and constitutive equation
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(a) Sorption-desorption function used for the
THM problem.

Cw [L m−3] 0 39.0 57.9 76.5 90.1 112.9 128.8
h [−] 0 43 58 75 84 92 100

(b) Summary.

Figure 3.4: Definition of the sorption-desorption function fd (defined in Equation (3.11)). The
table shows the point values given to define the function. The function is computed by linear
interpolation between those points. The reference configuration corresponds to h = 100, which is
the initial RH value in the wall.

Calculation step Notation Physical quantity or parameter Unit
ρc Density kg m−3

Thermal (µT) cpc Heat capacity of hardened concrete kJ kg K−1

λc Thermal conductivity of hardened concrete W m−1 K−1

Dw Phenomenological diffusion coefficient
fd Sorption-desorption function
T 0
w Reference temperature K

Dw,0 Diffusion coefficient at a reference temperature T 0
w

Uw Activation energy of drying kJ mol−1

R Ideal gas constant kJ mol−1 K−1

Hydric (µH) A Model parameter for Mensi’s law 10−15m2 s−1

B Model parameter for Mensi’s law −

Table 3.3: Summary of parameters and physical quantities at stake in the modeling of the thermal
(cf. Equation (3.9) and the hydric (cf. Equation (3.10a)-(3.10b)-(3.10c)) behavior.

that help expressing the different strain tensors.

According to experimental observations, the variation of thermal strain εth is proportionnal
to temperature variations (cf. Equation (3.12a)). The proportionality coefficient αth,c is referred
to as the thermal dilation coefficient of concrete and is assumed to be constant when focusing
on the long-terme phase. Similar experimental observations suggest a linear dependency between
the variations of the dessication shrinkage strains εds and the water content of the concrete Cw
(cf. Equation (3.12b)), which is expressed thanks to dessication shrinkage coefficient (αds). We
assume that we have the same kind of relationship between the autogenous shrinkage εen and the
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(a) Burger rheological model for the basic creep.

Notation Physical quantity or parameter Unit
Ec Young’s modulus (concrete) Pa
νc Poisson’s ratio (concrete) −
αth,c Thermal dilation coefficient (concrete) K−1

αdc Dessication shrinkage coefficient −
βendo Autogeneous shrinkage coefficient −
νbc Basic creep Poisson’s ratio −
krd Reversible deviatoric basic stiffness Pa
ηrd Reversible deviatoric basic viscosity Pa s
ηid Irreversible deviatoric basic viscosity Pa s
Ubc Basic creep activation energy kJ mol−1

T 0
bc Basic creep reference temperature ◦C
κ Basic creep consolidation parameter −
ηdc Desiccation creep parameter Pa s

(b) Summary of the parameters for the me-
chanical model.

Figure 3.5: Parameters for the three-dimensional mechanical model (concrete).

hydratation degree ξ, expressed thanks to a βendo coefficient:





ε̇th = αth,c
∂T

∂t
I,

ε̇ds = αdc
∂Cw
∂t

I,

ε̇en = βendo
∂ξ

∂t
I.

(3.12a)

(3.12b)

(3.12c)

The model selected for the creep deformations is the Burger model developed by previous
work [FMPG12]. This choice is motivated by several experimental validations and is well-suited
for creep investigations on the considered structures, as confirmed by previous work [BBB+18].
We assume that the creep is a phenomenon involving a decoupling of a spherical part and a
deviatoric part. We decompose the Cauchy stress tensor (σ) as the sum of a spherical part (σs)
and deviatoric part (σd):

σ = σsI + σd,

where σs = Tr(σ)/3, and I is the identity tensor. The Burger creep model is built on a decompo-
sition into a reversible and an irreversible part, where we split each tensor into its spherical and
deviatoric part:





ε = εbc
i + εbc

r ,
εbc

i = εbc
rs I + εbc

rd ,
εbc
r = εbc

is I + εbc
id .

Each part (deviatoric and spherical) is described by a Burger-type model. For each chain,
the reversible basic creep strains are modeled by a Kelvin-Voigt rheological elements, whereas the
irreversible basic creep strains are modeled by Maxwell elements. The Kelvin-Voigt model (cf.
Equation (3.13a)) used for the reversible reversible spherical basic creep is expressed thanks to the
stiffness (resp. viscosity) krs (resp. ηrs), while the irreversible spherical basic creep viscosity ηis is
given by a nonlinear relationship, expressed thanks to a consolidation parameter κ (cf. Equation
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(3.13b)).





hσs = krsε
bc
rs + ηrsε̇

bc
rs ,

hσs = η0
is exp

(∥∥εbc
i

∥∥
m

κ

)

︸ ︷︷ ︸
:=ηis

ε̇bc
is , where

∥∥εbc
i

∥∥
m

= max
τ∈[0,t]

√
εbc
i (τ) : εbc

i (τ), ∀t ≥ 0,

(3.13a)

(3.13b)

The deviatoric part is expressed using a similar set of tensor equations (the spherical part being a
set of scalar equations). The aforementioned model accounts for thermo-activation of basic creep.
To this end, stiffness and viscosity parameters expressions follow an Arrhenius’ law:

κ (T ) = κ0 exp

[
−Ubc

R

(
1

T
− 1

T 0
bc

)]
,

where k0
rs is the reversible spherical creep stiffness at a reference temperature T 0

bc and Ubc the
activation energy of basic creep. Finally, the equivalence of spherical and deviatoric chains enables
to restrict the number of model parameters, by assuming a constant creep Poisson ratio νbc, given
by the following relation:

krs

krd

=
ηrs

ηrd

=
η0

rs

η0
rd

=
1 + νbc

1− 2νbc

.

In order to model the dessication creep strain, we consider the following equation, founded on the
work of previous work [BC85]:

ε̇bc =
1

ηdc

∣∣∣ḣ
∣∣∣σ,

where ηdc is a material parameter (Pa s).

Modeling of the coupling between concrete and prestressing cables

To echo our underlying premises, we have two models, one corresponding to concrete, which we
have just presented, and a second corresponding to steel, which we will detail below. In the
numerical model studied here, the one-dimensional mesh (modeling the steel cables) is immersed
within the three-dimensional mesh. This means that the cables ”cross” the concrete cells. A
kinematic linkage is performed in order to connect the concrete nodes and the steel nodes. Since
the coupling is assumed to be perfect (no slip between the tendons and the cement), coincident
points in each material are assumed to have the same displacement. Instantaneous prestressing
losses due to anchor recoil and friction are not taken into account at the scale of the considered
RSV.

Furthermore, the cables are modeled by bars, which means that we resort to a one-dimensional
approach where only the tension-compression forces are considered. In this framework, the struc-
ture is described at each instant by a curve representing its mean line. Consequently, only the
normal efforts appear (efforts defined along the tangent vector to the beam section) in the varia-
tional formulation of the problem. Two sets of equilibrium equations appear in the studied case:
during the prestressing step (namely between the times tinit,p and tend,p) and after the prestressing
step (namely until the end of the study tf):
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{
∂sN (s, t) = fs, ∀t ∈

[
tinit,p , tend,p

]
, and JNK

(
xno,1d
i

)
= − t(k)−tinit,p

tend,p−tinit,pFi,

∂sN (s, t) = fs, ∀t ∈
[
tend,p, tf

]
,

(3.14)

where {xno,1d
i }N si=1 are the nodes of the one-dimensional mesh and Fi are the nodal forces prescribed

in order to respect the BPEL regulation used. We consider a linear thermo-elastic constitutive
equation for the steel cables. Thus, the normal efforts in the cables (N) are linked to the uniaxial
strains (εs) in the cables:

N = EsSs (εs − αth,s∆T ) ,

where Es the Young’s modulus, αth,s the thermal dilation coefficient, Ss the section of the pre-
stressing cables and ∆T is the temperature rise in the beam. Details and informations of the
physical parameters for the three-dimensional are provided on Figure 3.3, whereas those on the
one-dimensional are given on Figure 3.6.

Notation Physical quantity or parameter Unit
Es Young’s modulus (steel) Pa
νs Poisson’s ratio (steel) −
ρs Density (steel) kg m3

αth,s Thermal dilation coefficient (steel) K−1

Ss Cable cross-sections m2

Figure 3.6: Parameters for the one-dimensional mechanical model (steel).

3.3.4 Representative Structural Volume : standard section of a nu-
clear containment building

The physical model is designed to capture the behavior of the so-called standard zone of the
model, which corresponds to a portion of the mesh at mid-height, in the cylindrical part of the
NCB. Thus, the region covered by the Representative Structural Volume (RSV) comprises a three-
dimensional portion containing three tangential prestressing cables and two vertical cables. For
the section studied in this study, the internal radius of the wall is 21.9m, while the external radius
is 23.4m. The width of the standard section corresponds to an angular sector of 4.2. For the scope
of this work, the effect of passive steel reinforcement is being neglected.

Two mesh designs are used in practice: one for thermo-hydric calculations and another for
mechanical calculations. The thermal mesh is refined close to the intrados and extrados to enable
better reconstruction of the thermo-hydric gradients. The fields resulting from this procedure are
then projected onto the mechanical mesh. We highlight the fact that the meshes employed in
these studies are fairly coarse. In fact, these meshes have been built in order to be able to carry
out uncertainty quantification or data assimilation studies. Therefore, engineers had to strike a
balance between affordable computational cost and approximation quality. Numerical solutions
for thermal problems may exhibit oscillations (in terms of temporal and spatial discretizations).
This may imply a violation of the maximum principle. To avoid this phenomenon, linear finite
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(a) Temperature and water content BCs.
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(b) Temperature and water content evolu-
tions.

Figure 3.7: BCs for the thermal and hydric problems visualized on the HF thermal mesh.

elements and a lumping of the mass matrix are used for this study. As previously mentioned,
the thermal mesh does not contain the prestressing cables: it is composed of linear hexahedral
cells (HEXA8). For the mechanical mesh, hexahedral quadratic elements (HEXA20) are employed for
the concrete, and prestressing tendons are represented using SEG2 linear finite elements (2-node
beams).

(a) Vizualisation of the mechanical mesh.

Ne N1d
e N2d

e N3d
e N Nc Ns

1532 784 693 55 4076 3911 165

(b) Summary of the parameters for the one-
dimensional mechanical model.

Figure 3.8: Visualization of the mechanical mesh (cf. Figure 3.8a) and information on the me-
chanical mesh (number of elements and number of nodes for one- and three-dimensional meshes,
Figure 3.8b).

The BCs and loads applied to the RSV zone are detailed below (cf. Equation (3.15)). Figure 3.7
shows the temperature and water content histories adopted for the thermo-hydraulic calculations.
As mentioned above, the BCs applied are Dirichlet conditions for temperature and water content.
These are imposed on the inner wall (intrados) and the outer wall (extrados), as follows:

{
T = Tint, on Γext,
T = Text, on Γint,

and

{
C = Cint, on Γext,
C = Cext, on Γint.

(3.15)

With regard to mechanical BCs, axisymmetric conditions are specified at the lateral boundaries
of the RSV: this implies that normal displacements are assumed to be zero on each lateral face.
Furthermore, vertical displacement is assumed to be blocked on the inner face of the RSV, while
a uniform vertical displacement is used on the upper face. The set of boundary conditions with a
visualization of the mechanical mesh is illustrated in Figure 3.9.
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Figure 3.9: BCs for the mechanical problem visualized on the HF mechanical mesh.

3.3.5 A perspective on these model choices in the context of R&D’s
efforts

The establishment of the mechanical model is based on research efforts spanning multiple stages.
This involves several components, including the development of a constitutive equation, the selec-
tion of a modeling approach for prestressed concrete involving 3d-1d coupling, and the utilization
of a standard enclosure section for mechanical calculations. The choice of a constitutive equation
is a critical aspect of developments concerning these materials. Historically, the initial model
employed was the BETON UMLV concrete behavior [EDF24]. This model relied on the simulation
of two creep models: primary creep, developed from various studies, and drying creep, inspired
by Bazant’s work. For primary creep, the methodology originally developed to predict long-term
deformations under uniaxial stress was adapted. The generalization of this model to account for
multiaxial stress states is achieved through the introduction of an arbitrary, constant, or nearly
equal Poisson’s ratio for creep, compared to the elastic Poisson’s ratio ν.

Two issues existed with this constitutive equation: first, the asymptotic behavior overestimated
creep, and second, control over the apparent creep coefficient was a challenging issue. Therefore,
the basic creep model shifted towards the BETON BURGER constitutive equation [EDF24], on which
we already drew our attention. It should be noted that constitutive equations are still an active
research area. For instance, Bazant’s model [BC85] for drying creep involves an absolute value
that can lead to an overestimation of creep during humidity cycles. Furthermore, the choice of
studying a representative volume is also a central topic of research discussions. Since the early
2000s, the selection of such an approach has been made and refined. An important trade-off must
be made between computational cost, geometric representativeness, and appropriate conditions.
Geometric restrictions must be coupled with a suitable choice of applied BCs to ensure a represen-
tative simulation. Reevaluations of geometry are often performed based on simulation capabilities
or new research findings [Bou16].

Finally, the choice of a numerical simulation with prestressed cables using coupling and ana-
lytical tensioning represents a suitable approach resulting from extensive engineering experiments.
Historically, fixed nodal efforts were often applied to concrete to model cables. The coupling be-
tween cables and concrete allows for a better consideration of prestress loss since the efforts are
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not necessarily fixed. It becomes much easier to represent the problem nonlinearities. Moreover,
the engineers’ chosen approach enables the application of analytical tension profiles (provided by
official regulations [Règ92]) in the cables as the starting point for simulations. Alternative choices
could have been made, such as incorporating numerical calculations in the cables to determine
tension profiles. However, this would require numerical calculations to ensure the convergence of
nonlinear simulations (contact-friction), especially to account for anchor retreat.
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Chapter 4
Numerical investigations on the ROM procedure
for structural mechanical problems with internal
variables

4.1 Introduction

In this section, we present a validation of the methodology outlined in Chapter 2, applying it to
the two validation cases presented in Chapter 3. The objective of this chapter is to Substantiate
the different components of the methodology, with the ultimate goal being the industrial case of
prestressed concrete with parametric variability (theoretical framework in Section 3.3 and numer-
ical experiments in Section 4.3). The numerical results are presented coherently and progressively
towards this end.

First, the focus is on validating the construction of a ROM in the case of single-modeling
problem (see Section 4.2). This process is divided into two parts: first, the solution reproduc-
tion problem (see Section 4.2.3), aiming to reproduce a HF problem with a reduced problem for
the same parameter; second, the parametric problem tests the greedy process on the parametric
manifold (see Section 4.2.4). In a preliminary examination, the focus is on verifying various com-
ponents of the procedure, encompassing creation of both a reduced basis and mesh. Additionally,
within the single-modeling framework, we introduced an error indicator that we seek to assess its
validity on this test case. The solution reproduction problem provides insights into the ROM’s
quality by observing various classical metrics. We focus on the projection error, representing
the error in projecting HF snapshots onto the reduced space (i.e. the best possible error), and
the approximation error, representing the error between the snapshots and the reduced solution
obtained after calling the reduced solver. These metrics pertain to the quality of approximation.
The second set of metrics aims to examine the effective computational gain achieved when using
the reduced solver. This includes the percentage of selected elements, providing an indication of
acceleration in terms of computation time. However, the computational time dependency is not
linear with mesh size. Solver type and implementation can indeed impact the computational cost
depending on mesh size. Besides, in an industrial code, the code may not always be optimized for
smaller meshes, for instance, leading to constant computational costs such as memory allocation.
A clearer way to estimate CPU computational gains is to work with speedups, defined as the ratio
of solver calls:
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4.2. SINGLE-MODELING APPROACH: APPLICATION TO AN ELASTOPLASTIC ANALYSIS OF A PLATE WITH
A HOLE

speedup =
ROM CPU cost

HF CPU cost
(4.1)

The parametric tests aim to apply greedy methods to obtain a reduced basis and test the
same metrics on the model obtained at the end of the procedure. Therefore, in Section 4.2, we
numerically validate the entire procedure on the single-modeling case, by illustrating the method’s
effectiveness on a simpler instance of a single-modeling mechanical problem with internal variables.
Subsequently, in Section 4.3, we seek to extend the validation to the multi-modeling case, introduc-
ing information on the reconstruction of quantities of interest (QoI) obtained by post-treatment
procedures. The ultimate goal of the thesis project is the parameter tuning, making it imperative
that the quantities of interest from the physical problem are accurately reconstructed by the ROM.

All the numerical provided in this Chapter were obtained by relying on FE simulation executed
over a commodity Linux workstation (RAM 32 GB, Intel i7-9850H CPU 2.60 GHz x 12).

The theoretical and numerical elements presented in this section are derived from online
preprints, specifically from the following works:

� [AAB+24b] Eki Agouzal, Jean-Philippe Argaud, Michel Bergmann, Guilhem Ferté, and
Tommaso Taddei. A projection-based reduced-order model for parametric quasi-static non-
linear mechanics using an open-source industrial code. International Journal for Numerical
Methods in Engineering, 125(4):e7385, 2024.,

� [AAB+24a] Eki Agouzal, Jean-Philippe Argaud, Michel Bergmann, Guilhem Ferté, Sylvie
Michel-Ponnelle, and Tommaso Taddei. Projection-based model order reduction for pre-
stressed concrete with an application to the standard section of a nuclear containment
building. arXiv preprint arXiv:2401.05098, 2024.

4.2 Single-modeling approach: application to an elasto-

plastic analysis of a plate with a hole

4.2.1 Definition of the parametric manifold

For the numerical tests, we treat a strain hardening parameter apui and the Poisson’s ratio ν as
varying parameters:

µ =

[
ν
apui

]
∈ R2.

The parameter compact is defined as the Cartesian product of parameter intervals P = Pν×Papui =
[0.21, 0.3] × [0.1, 1000]. At last, we introduce the training set, which is the discrete counterpart
of this compact that we shall consider, denoted as Θtrain = Θtrain,ν × Θtrain,apui . To assess the
methodology, we conducted numerical tests in several steps, each dedicated to validating specific
features of the designed approach. We consider the scenario of an applied constant load, placing
us in a static context. In line with a quasi-static approach commonly adopted in such cases, we
opt for proportional loading. In this configuration, time intervals are treated as pseudo-times.
Regarding the construction of the reduced basis, we regard this pseudo-time as a physical time
scale, and the snapshots taken at this point are also utilized for building the basis. This approach
aims to validate the various components of our methodology. However, a potential limitation
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lies in considering only proportional cases. Therefore, it is relevant to explore temporal variations
in loading to verify that it does not compromise the applicability of the method (see Section 4.2.5).

As described in the methodology section, the first step of the validation is the processing of a
solution reproduction problem, which illustrates the interest of data compression and the construc-
tion of a reduced mesh in terms of CPU cost, while maintaining a quality in the approximation
of the solution. Afterwards, we shall discuss two parametric cases: first, we consider a case with
a scalar parameter; second, we consider the case of a two-dimensional parameter.

|Θtrain,ν |
∣∣Θtrain,apui

∣∣ K
1 1 20

(a) Solution reproduction
problem.

|Θtrain,ν |
∣∣Θtrain,apui

∣∣ K
20 1 10

(b) Parametric Problem for µ =
ν.

|Θtrain,ν |
∣∣Θtrain,apui

∣∣ K
20 20 10

(c) Parametric Problem for µ =
(ν, apui).

Figure 4.1: Summary of the size of the training sets and the number of timesteps (K) used for
the different test cases.

The choice of the parameter subset size (|Θtrain|) and the number of time steps (K) are indicated
in Figure 4.1. We briefly outline here the motivation for these different decisions. As far as the
temporal discretization is concerned, the calculation converges after ten time steps (K = 10) for all
test cases considered. First, when assessing the ROM methodology on the solution reproduction
problem (see Section 4.2.3), we opt to rely on a grid twice as fine as in the parametric case.
Such a choice provides a better visualization of the quality of the ROM, notably in order to test
the correlation between the devised error indicator and the approximation error. As explained
previously, we opt to start from a 2d Cartesian grid of parameters for all the numerical experiments.
Our case is such that the greedy algorithm converges in less than nit = 10 iterations (see detailed
numerical results in Section 4.2.4). Therefore, we choose to consider about twenty parameters in
each direction of the grid, which means |Θtrain| = 40.

4.2.2 Error metric

To assess the quality of the ROM build, we must be able to measure the latter’s quality. One
initial idea is to look at projection errors. This refers to the difference between the HF snapshots
projected onto the reduced space and the HF snapshots. It assesses the best accuracy with which
the reduced model represents important features of the system. We are interested in an error in
time, and formulated on a form of relative error, i.e. by comparison with a reference measurement,
here the norm of the HF model output. In this specific test case, the norm used is the energy
norm at the centroid (‖·‖aµ) presented before (cf. Equation (2.44)), and we consider a uniform
discretization for the time steps, which leads to the following reformulation of the expression for
µ ∈ P :
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Eproj,avg
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The approximation error measures the difference between the output of the full order model and
that of the ROM. A low approximation error indicates a good ability of the ROM to capture
the behavior of the complete system during online calculation. We introduce the time-averaged
projections errors (Eproj,avg

u,µ ) and approximation errors (Eapp,avg
u,µ ) on the displacement for any

µ ∈ P :

Eproj,avg
u,µ =

√
K∑
k=1

∥∥ΠZ⊥u u
hf,(k)

∥∥2

aµ

√
K∑
k=1

‖uhf,(k)‖2
aµ

and Eapp,avg
u,µ =

√
K∑
k=1

‖uhf,(k) − û(k)‖2
aµ

√
K∑
k=1

‖uhf,(k)‖2
aµ

(4.2)

4.2.3 Solution Reproduction Problem

First, we present numerical results for a fixed configuration of parameters, namely for the centroid
µ ∈ P to validate our ROM strategy. In Figure 4.2, we display the snapshots at the last time
step for the problem we wish to reproduce. The vertical displacement component (uy), two stress
tensor components (σxx and σyy) and the plastic zone are depicted. In this scenario, we exam-
ine a situation where the nonlinearity is not prominently activated. The plastic zone, indicating
nonlinear behavior, remains confined in proximity to the hole, while the majority of the material
remains in an elastic regime.

Figure 4.3 represents the POD eigenvalues obtained for the displacements and the stresses.
We notice that the decays of the eigenvalues have a similar profile, although the decay of the
eigenvalues is slightly faster for the displacement field than for the stress field. The plot of the
projection errors as a function of the number of modes used to build the reduced space highlights
this capacity to better estimate the displacement trajectory for a smaller number of modes. This
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(a) Component of the
displacement uy.

(b) Component of the
stress σxx.

(c) Component of the
stress σyy.

(d) Plastic region (red)
vs elastic region (blue).

Figure 4.2: Visualization of different snapshots of the FE solution for HF calculation for the
final time step. The physical parameters used correspond to those used in the study for the
non-parametric case. We provide here a displacement component (vertical displacement), two
components of the Cauchy stress tensor and the description of the plastic (red) and elastic (blue)
zones for this numerical example.

suggests that in order to get projection errors in displacements and stresses at a given order of
magnitude, it is mandatory to have more stress modes than displacement modes. A key aspect
of our reduction methodology lies in the separate construction of two reduced bases, one for dis-
placements and the other for stresses. While this independent approach simplifies our procedure,
it also raises the complexity of predicting a priori the projection of a displacement solution into
the stress space. An undesirable situation we wish to avoid is, for instance, that of obtaining a
displacement response whose constitutive equation integration yields a regime that our reduced
stress space is unable to accommodate. To overcome this limitation, our approach relies mainly on
the idea of considering larger stress spaces. However, we are aware that alternative perspectives
could be formulated in order to have a more systematic and robust numerical method to provide
an adequate stress space for a given reduced displacement space.
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(a) POD eigenvalues.
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(b) Projection errors.

Figure 4.3: Solution reproduction problem: (a) behavior of the POD eigenvalues for displacement
(u) and stress (σ) for several values of N(N = Nu for u and N = Nσ for σ; b) behavior of the
average projection errors) .
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In line with this remark, we start the presentation of numerical results on the ROM with the
error indicator. As a quick reminder, the error indicator’s function is to gauge the accuracy of the
ROM approximation, emphasizing the importance of maintaining a strong correlation between the
indicator and the actual quality of the approximation. Figure (4.4) displays a good correlation
between the the error indicator used and the approximation error on the solution fields. We point
out that, in every case reported here, we have chosen to deal with all the available stress modes.
Indeed, for extremly underresolved reduced spaces, the error indicator is found to be inaccurate.
Since the construction of our error indicator relies on an approximation of the dual norm using the
decomposition of the stress field on the space of stress modes, the correlation between the error
indicator and the approximation errors may be slightly degraded for too coarse approximation
spaces. This choice of treating all the stress modes does not raise overfitting problems during the
Gappy-POD since we have a number of modes lower than the number of elements selected during
the hyper-reduction procedure, in our quite simple case. From a practical standpoint, this choice
allows us not to have to play with the ratio between the two compression tolerances (εPOD,u and
εPOD,σ) for the construction of the reduced problem.

10−4 10−3 10−2 10−1
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10−2

10−1

100

ΔavgN,�

E
ap
p,
av
g

u,
�

Figure 4.4: Correlation between the approximation error on the displacement (Eapp,avg
u,µ ) and the

error indicator (∆avg
N,µ) for the solution reproduction problem.

We have built reduced models for various numbers of modes (compression of the solution space)
and various hyper-reduction parameters (size of the reduced mesh). The aim of investigating this
grid of hyperparameters of the reduced model is multifaceted. First, it enables to investigate a
wide range of approximation errors. Indeed, the quality of the approximated solution depends
on the approximation quality of the integrals involved in the problem (δ) but also on the ap-
proximation quality of the trajectory (Nu). This variation allows us to highlight the correlation
between the approximation error on the displacement field and the error indicator that we have
presented (cf. Figure 4.4, and Colormaps 4.7a and 4.7b). Moreover, for a fixed number of modes,
the projection error constitutes a theoretical lower bound that we wish to be able to reach by
solving the reduced problem. However, the hyper-reduction process introduces a new approxima-
tion. In Figure 4.5, we illustrate that the approximation error tends towards the projection error
for small δ values, while a less restrictive parameter degrades the solution (δ = 10−1 for example).
The slight differences between approximation and projection errors between the last two δ values
comes from the fact that we hit the tolerance of the iterative Newton algorithm used in the HF
solver (which is chosen as the same as in the reduced solver).
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Figure 4.5: Comparison between the approximation and the projection errors with respect to the
number of displacement modes Nu for the solution reproduction problem. Approximation errors
provided here have been computed for different values of the hyper-reduction parameter δ (EQ
tolerance).
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Figure 4.6: Percentage of three-dimensional selected elements depending on the size of the primal
basis (Nu) and the EQ tolerance δ for the solution reproduction problem.

Much more, we observe that the empirical quadrature procedure is able to significantly reduce
the size of the mesh used for online calculations. We keep at most a few percent of the number of
elements in the HF mesh. We thus drastically reduce the computational cost compared to a HF
problem. Indeed, the cost of a reduced problem represents only a few percent of the cost of the
HF calculation. The computational cost reduction, correlated to the number of selected elements
(cf. Colormap 4.7c), depends both on the number of selected modes and on the hyper-reduction
parameter that we choose.

It should be noticed in the following case that the ratio between the computational cost of the
reduced problem and the percentage of selected elements are not strictly correlated, even if the
two quantities follow the same tendency. Indeed, from an algorithmic point of view, the reduction
of the mesh is not the only operation involved between a HF computation and a reduced computa-
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tion, since the projection on the modes and the hyper-reduction entail a modification of the size of
the system, but also of the conditioning of the latter (this can lead to more Newton iterations for a
reduced computation for example). Furthermore, the implementation has been done in an indus-
trial code where fixed costs related to verification and memory allocation processes are necessary
whatever the computation. Nevertheless, in Figure 4.7, we provide a numerical validation that
the percentage of selected elements gives us a good hint on the gain in terms of computational cost.

We have observed that the approximation error on the stresses follows the same pattern as the
approximation error on the displacements on the hyperparameter grid (Nu × δ). This comment
brings us to report only approximation errors on displacements in this contribution.
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Figure 4.7: Solution reproduction problem: colormaps of: (a) approximation errors, (b) error
indicators, (c) percentage of selected elements, (d) percentage of CPU time for different size of
reduced order basis and hyper-reduction parameters.

4.2.4 Parametric problem

Parametric case for µ = ν

In this section, we consider the variation of a single parameter (ν), for a training set of |Θtrain,ν | =
20 values of this parameter. The numerical results presented here and in the last sub-section were
performed for a smaller number of time steps for the sake of efficiency (see parameters in Table 4.1).
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We were able to test the greedy approach on this single parameter nonlinear case where we
fixed a given number of iterations (nit = 5). For the studied example, the algorithm has reached
its convergence for the following number of iteration. All the examples reported here have been
carried out for the tolerance εPOD,u = 10−5, which ensures a good approximation error on the ex-
plored parameters. The evolution of the maximum of the error indicator (cf. Figure 4.8) for several
hyper-reduction parameters shows a convergence after a few iterations. The plateau reached by
the error indicator differs with the accuracy of the approximation of the integrals of the problem.
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Figure 4.8: Maximum of the time-averaged error indicator over the training set depending on the
Greedy iteration for the parametric problem µ = ν.

We report the computational costs associated with the reduced solver by giving the speedup,
where the HF cost is the computational time of solving the HF problem whereas rom cost is the
online cost of evaluating the problem. In Figure 4.9, we notice that the gain in computation time
decreases with each iteration as the percentage of selected elements increases with the number
of HF problems to be estimated and the number of modes to be included in the reduced basis.
Nevertheless, for this single-parameter problem, the speedups obtained are always higher than 10
or even 15, which implies a drastic decrease of the computation time for the model evaluation.
Moreover, the parametric manifold is in our case very well approximated after a small number of
iterations. The plateau observed in Figure 4.8 is reached after a few iterations and shows that for
the given tolerance of hyper-reduction and the desired precision in the compression of the base,
there is no more gain in exploring a new parameter value.

We notice on the reduced meshes obtained at the end of the numerical procedure (cf. Figure
4.10) that the selected elements are mainly located around the hole, which matches the region
where the material enters a nonlinear regime (plastic regime). As we would expect, few elements
are selected in the areas where the behavior is purely elastic (linear). Indeed, one can expect that
the algorithm will select more elements in areas where there is more energy while rewriting the
elementary contributions. If there is a plastic zone and an elastic zone, the selection will therefore
focus on the plastic regions. If the whole geometry is in the plastic region, elements can be selected
from the entire mesh, with the emphasis on the areas that plasticized first. However, it is worth
mentioning that the percentage of elements selected will naturally increase if the plastic zone is
larger. The methodology is adapted for a case where the behavior over the whole geometry is
nonlinear. In this case, greater attention must be paid to the choice of the δ hyperparameter. In
Figure 4.11, we provide a verification of the interpretation formulated above. We denote σref

y the
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Figure 4.9: Parametric problem µ = ν: informations (speedups and percentage of three-
dimensional selected elements ‖ρeq‖`0 /
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[%]) through the Greedy iterations (ε = 10−5) for
different values of δ.

elastic limit used in the nominal study case. By varying this parameter, we can create a regime
with a large plastic region (almost the entire geometry) and a regime with a small plastic region.
The visualization of reduced meshes in relation to the plastic region in these cases confirms our
hypotheses. We therefore believe that the procedure is still effective in the case of a fully plasti-
cized domain.

(a) Reduced mesh
for δ = 10−2.

(b) Reduced mesh
for δ = 10−7.

δ 10−2 10−7

Speedup 17.51 14.77
‖ρeq‖`0 /

∥∥ρhf
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`0

[%] 2.17 4.80

Nu 23 22

(c) Summary of outputs of the hyper-
reduction procedure.

Figure 4.10: Parametric problem µ = ν: hyper-reduced ROM and selected elements at the end of
the POD-Greedy procedure (εPOD,u = 10−5) for two different values of δ.
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(a) σy = 2
3σ

ref
y (b) σy = σref

y (c) σy = 4
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Figure 4.11: Visualization of reduced meshes and the plastic region (obtained for the HF calcu-
lation) for a variation in the elastic limit. The red zone indicates the area where the material
is in the plastic (nonlinear) regime, while the blue zone corresponds to the purely elastic zone.
The meshes selected for the reduced mesh appear in black. The hyper-reduction provided here
has been carried out for a solution reproduction problem where 20 time steps are used in the HF
calculation and for reduction parameters (Nu, δ) = (4, 10−6).

Parametric case for µ = (ν, apui)

Finally, we provide a numerical example for two parameters. We address a training set of size
|Θtrain| = 400. We report here the results for tolerances εPOD,u = 10−5 and δ = 10−7. The choice
of the hyper-reduction parameter is chosen here of the same order of magnitude as the Newton
tolerance for HF computation. In Figure 4.12, we present the evolution of the error indicator
we compute over the greedy iterations. By comparing, for instance, the colormap at the second
iteration and at the third iteration, we notice that the sampling of a parameter leads to a decrease
of the indicator value in the neighborhood of the given parameter. Moreover, we were interested
in the correlation of the error indicator with the error indicator especially with out-of-sample pa-
rameters. To this end, we defined a sub-grid of 25 points, (5×5 Cartesian grid of the parameters),
on which the HF calculations were performed in order to dispose of the projection error. In Figure
4.13, we show the profiles obtained for the error indicators and for the approximation errors on the
parameters chosen for the test. It appears that the error indicator seems to follow the behaviour
of the approximation error.

We point out that we only provide results on the first iterations because we have limited our-
selves to a small number of iterations as the problem is sufficiently well approximated in a short
time. It would therefore not be relevant to compare relative errors where the variation between
the parameters becomes insignificant.

We report the offline costs associated to the construction of the ROM in Table 4.1. We focus
on the computational costs involved in constructing the EQ rule for three-dimensional terms, and
in constructing the reduced displacement basis. Indeed, the number of two-dimensional elements
is lower than that of three-dimensional elements, and therefore absorbs the offline computation
cost. For the basis computation, we use the same number of HF snapshots (in displacements and
stresses). As a result, the Gram matrix constructed for the SVD process has the same size for
both fields (even if the computational cost of constructing the matrix varies). We notice that
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Figure 4.12: Parametric problem µ = (ν, apui): colormaps of the time-averaged error indicators
and selected parameters (points squared in black) for every Greedy iterations.

the computational cost of constructing the reduced basis remains reasonable in the context of our
study, i.e. lower than the computational cost of a HF calculation. In this application case, the of-
fline computational cost of generating the empirical quadrature quickly becomes greater than the
cost of using an HF computation. This observation can be explained by several factors. First, the
construction and solution of the optimization problem is not performed incrementally (unlike our
approach for the reduced basis). An incremental optimization approach based on the knowledge of
an empirical quadrature at the previous iteration is one way of preventing the offline computation
cost from exploding at each iteration, and it seems a suitable way of controlling the CPU com-
putation cost. Second, the optimization problem only depends on the number of elements in the
mesh and the number of snapshots used. In our case, the computational cost of an HF problem
is quite low, and is therefore quickly caught up by the cost of solving the optimization problem.
However, for problems with more pronounced nonlinearities, or larger mesh sizes, it is fairly likely
that the ratio between this offline computation cost and the HF computation cost will shift, as
the latter will be much higher. This interpretation is consistent with pre-existing results in the
literature on problems where HF computation costs are of a different order of magnitude. Finally,
although the hyper-reduction method provides convincing results in the online phase, more work
needs to be done to gain better control over the computational cost of the optimization process.
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Figure 4.13: Parametric problem µ = (ν, apui): correlation between the error indicator and the
approximation errors depending on the numerotation of the test parameters (repartition shown in
4.13a).

Iteration CPU cost (ρeq,Ω) [s] CPU cost (Zu) [s] CPU cost (HF solver) [s]
1 1.11 6.47 · 10−2 9.72 · 101

2 1.73 · 101 7.89 7.25 · 101

3 1.12 · 102 1.93 · 101 9.81 · 101

4 2.55 · 102 2.82 · 101 9.31 · 101

5 6.07 · 102 3.69 · 101 9.22 · 101

6 1.16 · 103 5.10 · 101 9.69 · 101

Table 4.1: CPU Offline costs for the greedy procedure in the case of the multi-parametric problem
µ = (ν, apui).

4.2.5 Extension to a loading-unloading case

We present here the case of a loading-unloading numerical experiment for an elastoplastic case.
Indeed, in the previous sections, we illustrated the interest of our reduction procedure for elasto-
plasticity problems for quasi-static cases with linear loading. To numerically assess whether the
adaptive procedure remains valid in slightly more complex cases, we decided to investigate a load-
unload case leading to an expansion of the yielding surface. Since loading is more complex, the
case presented here is solved in 40 time steps.

Provided that the error indicator constructed remains correlated with the approximation errors
in displacement, the numerical procedure presented above remains valid. We therefore exam-
ine a case, using the previous parameters, where the (previously linear) loading history includes
a loading and then a unloading phase. These steps are detailed in the Figure 4.14, where we
also show a non-zero stress state in the middle of the loading process, illustrating that we are
in a residual stress setting. We only focus on the non-parametric case to highlight the correla-
tion between the error indicator and the approximation error (so as not to overload the document).

To shed light on the correlation between approximation error and error indicator, we choose
to monitor these quantities over the course of the loading history. In the Figure 4.15, we display
the approximation errors in displacement at each time step and the error indicators at each time
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(a) Proportionality coefficient used to multiply
the final load applied as a function of simulation
time.

(b) Example of a stress field component (σxx) in
the middle of loading procedure (end of unload-
ing). Values in light blue correspond to zero
values, unlike values in dark blue or red.

Figure 4.14: Details of the loading-unloading cases studied: presentation of the proprotionality
coefficient by which the final load is multiplied at each time step, and visualization of a stress field
component with non-zero terms at the end of unloading.

step. We notice that the magnitudes are correlated over time for several hyper-reduction param-
eters (and therefore several approximation qualities). We emphasize that it is crucial to ensure
that the approximation error in stress is of similar quality to that in displacement, and that the
Gappy-POD does not degrade the quality of the reduced solution. If this condition is met (as in
the case presented here), the desired correlation is achieved.

We generated a dataset of reduced models by varying the number of displacement modes and
hyper-reduction tolerance. Each pair of parameters then defines a given ROM. In Figure 4.16, we
show the set of error indicators and approximation errors at each time step for all parameter pairs
(i.e. for several built ROMs). We do indeed maintain a correlation between error indicators and
errors.

4.3 Thermo-Hydro-Mechanical (THM) modeling of large

concrete structures

4.3.1 Adaptation of the ROM methodology

We have developed a hyper-reduced ROM approach to account for nonlinearities in three-dimensional
domains. Transitioning to multi-dimensional levels requires some adjustments, primarily at two
levels: first, in the construction of the reduced mesh; and second, concerning the basis used for
reconstructing the stress or normal forces. It is important to note that these two points are inter-
connected and rely on the construction of a reduced integration domain.

In the context of our prestressed concrete problem, we have two meshes—one three-dimensional
with nonlinear behavior and the other one-dimensional with linear behavior. We choose to hyper-
reduce only the mesh associated with concrete, thus retaining the entirety of the bars. No changes
are necessary to preserve the kinematic links between them, as the displacement modes are defined
on global nodal unknowns, encompassing both 3d and 1d DOFs. Consequently, the displacement
modes adhere to the desired kinematic conditions, ensuring the coupling between concrete and
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Figure 4.15: Correlation between approximation errors in displacement (relative error at a given

time step - E
app,(k)
u,µ ) and stress (E

app,(k)
σ,µ ) with error indicators (error indicator at a given time step

- ∆
(k)
N,µ) over the loading history (unit of time denoted by epoch) for Nu = 12 displacement modes

and several hyper-reduction tolerances (δ). In the plot, time steps where loading is zero have been
removed to avoid normalization problems.

steel. It is important to emphasize the significance of this choice since the B-matrix is independent
of displacement fields in our framework, ∀v ∈ X hf :

Rhf
µ

(
u(k)
µ , u(k−1)

µ , S(k−1)
µ , v

)
= Rhf,3d

µ

(
u(k)
µ , u(k−1)

µ , σ(k−1)
µ , v

)
+Rhf,1d

µ

(
u(k)
µ , u(k−1)

µ , N(k−1)
µ , v

)

≈ Req,3d
µ

(
u(k)
µ , u(k−1)

µ , σ(k−1)
µ , v

)
︸ ︷︷ ︸

hyper-reduced

+Rhf,1d
µ

(
u(k)
µ , u(k−1)

µ , N(k−1)
µ , v

)

︸ ︷︷ ︸
not hyper-reduced

:= Req
µ

(
u(k)
µ , u(k−1)

µ , S(k−1)
µ , v

)

Furthermore, we opt to construct generalized force S = [σ,N]> modes, considering both stresses
and normal forces. These quantities are non-homogeneous, necessitating the construction of a
suitable scalar product to handle consistent quantities:
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Figure 4.16: Correlation between approximation errors in displacement with error indicators for
every time steps, with reduced solutions generated forNu ∈ {3, 6, 9, 12} and δ ∈ {10−2, 10−4, 10−6}.

(S1,S2) =

([
σ1

N1

]
,

[
σ2

N2

])

[σ,N ]

=
1

λσ1
(σ1, σ2)2 +

1

λN
1

(N1, N2)2 ,

where λσ1 (resp. λN
1 ) is the largest eigenvalue in the sense of the scalar product `2 for the stress

vectors (normal forces). In summary, in addition to the EQ rule ρeq (and the associated reduced
mesh), the ROM is made up of two reduced bases, defined thanks to the POD operator detailed
in Equation (2.26) as follows:

Zu = POD
{
{uhf,(k)

µ }Kk=1, (·, ·)2 , εPOD,u

}
, and ZS = POD

{
{Shf,(k)

µ }Kk=1, (·, ·)[σ,N ] , εPOD,S

}
.

where εPOD,u and εPOD,u are the two corresponding tolerances. Both for the displacements and
for the generalized forces, we opted for a scalar product `2 on the discrete snapshots. One of the
reasons for this is the difficulty of finding a suitable norm that is both consistent with the THM
problem and easy to implement in code aster (reconsider the need to use an energy norm for
the single-modeling case, given by Equation (2.44)). For these applications, we choose to test
and validate this compression at the discrete level, which is common practice when applying it to
real-world applications. We recall and emphasize that the error indicator developed is limited to
the three-dimensional case. As a result, the greedy procedures described subsequently rely on the
approximation error and thus, we focus on a strong-greedy approach for building ROMs.

4.3.2 Solution Reproduction Problem

We first perform a validation of the methodology on a non-parametric case. We aim to mimic the
HF simulation with our ROM for the same set of parameters. To assess the quality of the reduced
model, we introduce several metrics. First of all, since our ROM is founded on a projection
onto displacement modes, we introduce displacement approximation errors, at a given time step
(E

app,(k)
u,µ ), and averaged over time (Eapp,avg

u,µ ):
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Eapp,(k)
u,µ =

∥∥∥uhf,(k)
µ − û

(k)
µ

∥∥∥
2

2∥∥∥uhf,(k)
µ

∥∥∥
2

2

, and Eapp,avg
u,µ =

√
K∑
k=1

t(k)−t(k−1)

tf

∥∥∥uhf,(k)
µ − û

(k)
µ

∥∥∥
2

2

√
K∑
k=1

t(k)−t(k−1)

tf

∥∥∥uhf,(k)
µ

∥∥∥
2

2

, (4.3)

where tf is the final physical time used in the simulation and where u
hf,(k)
µ and û

(k)
µ are respectively

the solution at the k-th timestep obtained when using the HF model or the ROM for the parameter
µ. For the simulations reported below, we simulate a physical time of around 18 years.

HF problem

In this section, we present the HF problem we wish to reproduce. As previously stated, we are
only seeking to reduce the mechanical calculation in our THM coupling. To this end, we rely on
a thermo-hydraulic calculation, which can be viewed as an initial state common to all parametric
calculations. These two simulations are carried out in compliance with the BCs described previ-
ously. On the figures provided afterwards, the time is given in seconds, as this is the time used in
the numerical code (1 day = 86400 seconds). The time scheme for our creep simulations features
an adaptive time step algorithm. In practice, in all the simulations carried out as part of this
study, the entire simulation is performed over around 50 time steps.

(a) View of the drying field Cw at the last
time step of the HF simulation (top view).
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(b) Evolution of the drying field Cw along x
in the plane (y = 0, z = 0).

Figure 4.17: Water content snapshots (output of the hydric calculation step) at the end of the HF
simulation.

Figure 4.17 displays the water content in the standard section at the end of the HF calculation.
This figure depicts the evolution of the Cw field in the thickness of the containment building (in
the standard section). Likewise, Figure 4.18 shows the evolution of the temperature field in
the thickness of the standard section. The physical parameters used for these calculations are
summarized in Table 4.2 where undefined parameters are chosen as follows:





ηdc = 5 · 109 [Pa−1]
κ = 4.2 · 10−4 [−]

αdc = 7.56 · 10−6 [−]
ηis = 2.76 · 1018 [Pa s]
ηid = 1.38 · 1018 [Pa s]

81



4.3. THERMO-HYDRO-MECHANICAL (THM) MODELING OF LARGE CONCRETE STRUCTURES

(a) View of the temperature field T at the
last time step of the HF simulation (top
view).
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(b) Evolution of the temperature field T
along x in the plane (y = 0, z = 0).

Figure 4.18: Temperature snapshots (output of the thermal calculation step) at the end of the
HF simulation.

From these auxiliary fields (H field in the methodology formulation in Section 2.2) we can
determine all the mechanical fields using the HF code. Figure 4.19 represents the displacement
fields and the components of the Cauchy stress tensor obtained for the HF calculation we are
seeking to reproduce in this section.

(a) ur [m] (b) uθ [m] (c) uz [m] (d) σθθ [Pa]

Figure 4.19: Mechanical fields snapshots (displacements, cf. Figure 4.19a, 4.19b, 4.19c, and
stresses within the concrete, cf. Figure 4.19d) at the end of the HF calculation on the standard
section.

Our first goal is to ensure that the mechanical fields (displacements, stresses in the concrete
and normal forces in the cables) are fairly accurate approximations of the values obtained from
HF calculations. Besides, using a ROM of a standard section should provide a good quality ap-
proximation of the fields used in practical applications by engineers. In our case, this RSV has two
main purposes: first, to compute leakage estimates from prestress loss in the cables, and second,
to perform recalibration tests from deformation data (tangential and vertical deformations) on
the intrados and extrados.

Figure 4.20 depicts the evolution of the mean value of the normal forces in each of the five
cables within the standard section. For the record, the mesh studied contains two vertical cables
and three horizontal cables. Within the framework of the investigated model, the vertical cables
have a similar behavior (as do the three horizontal cables). In the following, we have decided to
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Figure 4.20: Evolution of normal forces in the two vertical (CABV1, CABV2) and three horizontal
(CABH1, CABH2, CABH3) cables of the standard section.

report only the results for one horizontal and one vertical cables (CABV1 and CABH2), to ease
the readability of the results. Figure 4.21 displays the evolution of mechanical strains and total
strains in the concrete. In our notations, (I) stands for intrados whereas (E) stands for extrados.
In our cases of interest, the total strains of the material are not purely mechanical. In general,
data assimilation problems only focus on mechanical deformations. This is of key interest when
reconstructing the strain field from the displacement modes, since the strain includes components
due to temperature gradients and/or water pressure. Indeed, in our ROM resolution procedure,
we have generalized coordinates at our disposal, which enable us to reconstruct the displacement
field in the material. By computing the symmetric gradient of this displacement field, we can
determine the total strains. In order to reconstruct a strain field, we must subtract the terms
related to the thermal and hydric fields. Both these fields may be derived independently of the
reduction process, since we only reduce the mechanical part of the calculation chain. Thus, we
are able to pre-calculate the TH strain fields and subtract them from a total strain field so as to
obtain the reconstructed mechanical strain field.
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Figure 4.21: Comparison for the pointwise values between some components (tangential and
vertical) the mechanical strains and the total strains in sensor zones (extrados (E) and intrados
(I)).

In order to assess the accuracy of our reduced model, we introduce approximation errors for
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these different fields: for the average of the normal forces at the nodes in the CABV1 vertical cable
(E

app,(t)
µ [NV2 ]), and in the horizontal cable (E

app,(t)
µ [NH2 ]), for the average of the tangential strain

and vertical strain on the extrados (E
app,(t)
µ [εm

tt (avg - E) ] and E
app,(t)
µ [εm

zz (avg - E) ]) , and finally

for the average of the tangential strain and horizontal strain on the intrados (E
app,(t)
µ [εm

tt (avg - I) ]

and E
app,(t)
µ [εm

zz (avg - I) ]) . To average the components of the strain tensor, the values at the
Gauss points are extrapolated to the nodes, and the value at the nodes is then averaged. These
relative errors in the deformation fields relate exclusively to mechanical deformations. Indeed,
this is the only part of the tensor that is actually modified by our reduction process, as explained
above.

Speedups and approximation errors

In order to validate the ROM, we verify that the displacement field is properly reconstructed.
Furthermore, since we are interested in the use of the ROM for engineering applications, it is
necessary to confirm the quality of the approximation on the various quantities of interest, more
precisely tangential and vertical deformations and normal forces in the cables (which enables us
to calculate prestressing loss). Ultimately, it is crucial to provide a model that reduces the com-
putation time required whenever a call is made. To this end, we focus on the speedups obtained
after construction of the reduced model (online phase).
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Figure 4.22: POD eigenvalues for the displacement (u) and the generalized forces (S) using a `2

compression for a solution reproduction problem (50 initial snapshots).

Figure 4.22 depicts the POD eigenvalues generated on snapshots of displacements (u) and
generalized forces (S). The decay profiles are quite distinct between the two physical quantities:
the decay of the eigenvalues for displacements is fast, unlike in the case of generalized forces.
This implies that the sizes of the two bases generated for POD tolerances of the same order of
magnitude are significantly different. The displacement basis will always be much smaller than
the generalized force basis.

As a way of assessing the robustness of the reduction approach proposed here, we have built
several ROMs for different numbers of displacement modes and different hyper-reduction toler-
ances. An increase in the number of modes and a decrease in the δ hyperparameter both improve
the quality of the ROM and increase computation time (speedup). Thus, a tradeoff needs to
be found for engineering applications in order to provide a fast and accurate ROM. Figure 4.23
displays the evolution of speedups and time-averaged displacement approximation errors as a func-
tion of the number of modes (for several tolerances). We observe that from 5 modes upwards, The
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Figure 4.23: Evolution of time-averaged approximation errors on the displacements and speedups
as a function of the number of modes used (Nu, cf. Figure 4.23a) and for several hyper-reduction
tolerances (δ, cf. Figure 4.23b).

reduced order model exhibits an good approximation quality, with approximation errors below
the order of 0.2% (for all tolerances studied). In this case, the speedups achieved are substantial:
around 10 for the most severe tolerance (equal to the Newton-Raphson tolerance), around 15 for
the intermediate tolerance studied, and over 30 for the coarsest tolerance. These accelerations in
CPU computation time are all the more appealing as the mesh studied in this study is very coarse,
with only a few hundred elements (cf. Figure 4.24 for further details). This opens the door to
future work on the use of finer meshes in NCB cross-section studies.

(a) δ = 10−2 (b) δ = 10−4 (c) δ = 10−6

Figure 4.24: Reduced meshes of the standard section obtained for a reproduction problem solution
using Nu = 5 displacement modes and for several hyper-reduction parameters.

We have further investigated the quality of the ROM along the time trajectory of the prob-
lem. Figure 4.25 represents the relative errors at each time step for different ROMs. Since the
construction of the ROM is determined by a pair of hyperparameters (Nu, δ), we focused on the
influence of each parameter in fixing the second. The parameters set in the two test cases are
chosen so as to be as restrictive as possible in the parameter sets we explore here. We find that
for our problem, the number of modes has a much greater influence on time-evolution profiles
than hyper-reduction tolerance. Since the latter parameter leads to an increase in mesh size as
it decreases, this prompts us to state that: in this non-parametric case, it is advisable to fix a
number of modes to control the approximation error, and it suffices to take a low or intermediate
tolerance to get good speedups. We notice that for low approximation qualities, there are jumps
in the relative error profiles of the displacement fields. This is due to the fact that the ROM is
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built over the entire life of the standard section, namely with three distinct physical regimes: life
of concrete without cables, prestressing, and life of concrete with cables. For small numbers of
modes, the ROMs is unable to generate modes designed to approximate these three phases. Since
we chose to use no weighting, it will have a tendency to approximate the final step much more
accurately, which is justified by the fact that the number of time steps associated with this phase
is much greater. This higher approximation quality on the last step is of interest for our appli-
cations, as we seek not only a reliable approximation in terms of time trajectories, but also, and
above all, a solution that is truly representative of the system’s final state. If we need control the
time-averaged approximation errors in a different manner, it would be natural to use a weighted
POD in order to take into account the non-constant timestepping.
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(a) Time evolution of relative errors for δ =
10−6 vectors in the reduced basis and varying
number of Nu values.
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Figure 4.25: Evolution of approximation errors on displacements at each time step for several
numbers of modes used or for several hyper-reduction tolerances.

Errors on the quantities of interest

The scope of the research we have undertaken requires us to be confident in our ability to provide
accurate QoIs. Thus, we wish to verify that the ROM obtained, in addition to being a good
approximation of the HF calculation in terms of displacements while being significantly less com-
putationally expensive, can be used in real applications. This is achieved by investigating the
profiles of normal forces in the cables and deformations at the sensor level (average measure of a
component of the strains tensor over the internal or external face). We would like to point out
that data post-processing differs according to the QoIs studied. The reduced mesh contains all
the prestressing cables, while the quadrature laws are unchanged in the one-dimensional mesh. As
a result, we can compute the relative error on normal forces directly after calling up the reduced
model. For strains, however, we must reconstruct the strain fields on the HF mesh, and then apply
the observation operators (physical sensors) used in the HF framework. This step s computation-
ally inexpensive compared to the overall procedure, as the symmetric gradients of the modes are
already known, because they are required for the hyper-reduction process. All that needs to be
done is to multiply these modes to the generalized coordinates and apply the observation operator.
Figure 4.26 provides the time-evolution of the relative errors on the QoIs. On Figure 4.26, we de-
limit the three phases of a mechanical calculation for a nuclear containment building: a first phase
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in which the cables are not involved in the mechanical calculation, i.e. the concrete evolves on its
own; a second phase in which the concrete is prestressed (cf. Equation (3.14) for specific loads
in this case); then, finally, the life of the prestressed concrete, in which the concrete and cables
are fully coupled. The three periods are delimited by dotted black vertical lines. The HF solver’s
adaptive time-stepping process explains the temporal distribution of the various snapshots. The
initial time for plotting corresponds to the first time step output by the reference calculation code.
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Figure 4.26: Evolution of approximation errors on QoIs at each time step for several numbers of
modes used or for several hyper-reduction tolerances (the two vertical lines in black delimit the
prestressing section of the cables).

The pattern of strain changes is similar to that of displacement approximation errors. Fur-
thermore, the observation of a better approximation of deformations during the life of the NCB
after prestressing is also confirmed. This confirms the usefulness of the ROM for data assimila-
tion problems. In practice, data is only available once the cables have been prestressed. For the
sake of clarity, we would like to point out that the time scale for the profile of relative errors in
normal forces is not the same as that for deformations. In fact, only the life of the enclosure after
prestressing is depicted, since normal forces are always zero beforehand, or known analytically.

4.3.3 Parametric problem

In a second step, we study a parametric case. As mentioned above, we consider here a strong-
greedy approach. Thus, in order to drive the greedy search, we consider the maximum approxi-
mation error on a given training set (Θtrain), for the parameters we have not yet examined. As
a reminder, Θ∗ corresponds to the set of parameters used in building the ROM. We introduce a
notation for the maximal error obtained when testing the ROM:

∆stg
N = max

i∈Θtrain\Θ∗
Eapp,avg
u,µi

.

In the physical case under study, uncertainty is mainly limited to five physical parameters
µ = [ηdc, κ, , αdc, ηis, ηid]> ∈ R5, and in particular to the first two. As a validation of our model
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reduction approach, we set all the other parameters of the problem (see values in Table 4.2), and
restrict the parametric problem to the other parameters.

Input parameter Notation Value Unit
Young’s modulus (steel) Es 1.9 · 1011 Pa

Poisson’s ratio (steel) νs 0.3 −
Density (steel) ρs 7850 kg m3

Thermal dilation coefficient (steel) αth,s 1 · 10−5 K−1

Guaranteed maximum load stress at break fprg 1.86 · 109 Pa
Cable cross-section Ss 5400 · 10−6 m

Young’s modulus (concrete) Ec 4.2 · 1010 Pa
Poisson’s ratio (concrete) νc 0.2 −

Density (concrete) ρc 2350 kg m3

Thermal dilation coefficient (concrete) αth,c 5.2 · 10−6 K−1

Autogenous shrinkage coefficient βendo 66.1 · 10−6 −
Dessication shrinkage coefficient αdc X −

Reversible deviatoric basic stiffness krd 5.98 · 1018 Pa
Reversible deviatoric basic viscosity ηrd 8.12 · 1016 Pa s
Irreversible deviatoric basic viscosity ηid X Pa s

Basic creep activation energy Ubc/R 4700 K
Basic creep reference temperature T 0

bc 20 ◦C
Basic creep consolidation parameter κ X −

Desiccation creep viscosity ηdc X Pa−1

Dead weight of upper concrete lifts σz,c 1.375 · 106 Pa
Stress applied to vertical cables σv,s 990.7 · 106 Pa

Stress applied to horizontal cables σh,s 1264.7 · 106 Pa

Table 4.2: Coefficients for the mechanical model fixed for the parametric problem. The notation
X corresponds to the parameters that can vary and, therefore, we do not give a priori numerical
values.

In-sample test for P ⊂ R2

We confine the study to a parametric case with two parameters. The vector of parameters con-
sidered is as follows:

µ =

[
ηdc

κ

]
∈
[
5 · 108, 5 · 1010

]
×
[
10−5, 10−3

]
⊂ R2.

This is tantamount to setting the following parameters (in addition to those given in Table 4.2):

αdc = 7.56 · 10−6 [−], ηis = 2.76 · 1018 [Pa s], ηid = 1.38 · 1018 [Pa s].

We rely on a training space of size |Θtrain| = 25, designed as the tensor product of two one-
dimensional grids log-evenly spaced (5 × 5 grid). This choice results from a tradeoff between
the need for sufficiently fine discretization to have several parameters, and the offline CPU cost
of building the ROM (an HF calculation takes around fifteen minutes). The choice of optimal
discretization is out of the scope of this work and is a field of research of its own. To help
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understand the physical problem under study, Figure 4.27 depicts the evolution of normal forces
over time for different parameter sets. We can clearly appreciate that the loss of prestress in
the cables (a key feature in the study of leakage rates) strongly differs according to the pair of
parameters studied. The observation of these quantities supports the choice of a logarithmic
discretization for the construction of the parametric grid.
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Figure 4.27: Evolution of normal forces over time for pairs of parameters belonging to the para-
metric set of size |Θtrain| = 25. Figures 4.27a-4.27b (resp. Figure 4.27c-4.27d) feature cases where
the parameter κ (resp. ηdc) is fixed. For each pair, we plot the time evolution of the normal forces
averaged over all the nodes of the vertical and horizontal cables.

Figure 4.28 shows the decay of the POD eigenvalues when using the 25 HF snapshots. The
decay is similar to that shown in Figure 4.22. We notice that for the parametric case, the decay
is fast and the gain in compression will be significant.

As a first test, we report a quick evaluation of the construction of a ROM on a smaller train-
ing set, consisting of 4 points. In other words, we take only the extremums of the 2d square to
which all the parameters belong. The aim of this simpler case is to compare the two methodolo-
gies for building POD-reduced bases (in the parametric case) before presenting the case on the
25-point parametric case. Figure 4.29 depicts the speedups and approximation errors obtained
after 4 iterations (the maximum number of iterations possible for this case) for different pairs of
hyper-parameters used for ROM construction: number of modes and hyper-reduction tolerance.
We observe that the hierarchical basis strategy leads to an increase in basis size (in our case),
which reduces speedup and improves approximation quality (to below one percent). On the other
hand, the use of full POD enables much better speedups to be maintained, while reducing the
approximation error, but to a lesser extent. The same tradeoff applies to ROM construction as
described above. In the case studied here, the regularity of the problem (at least for this set of
parameters), prompts us to favor a POD on all snapshots (therefore, the basis is not hierarchical

89



4.3. THERMO-HYDRO-MECHANICAL (THM) MODELING OF LARGE CONCRETE STRUCTURES

0 200 400 600 800 1,000 1,200
10−27

10−20

10−13

10−6

101

n

λ
i/
λ
0

u
S

Figure 4.28: POD eigenvalues for the displacement and the generalized forces (S) using a `2

compression for a parametric problem.

during iterations), in order to have the most efficient ROM both in terms of computational gain,
while having reasonable approximation errors.
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Figure 4.29: Speedups and average approximation errors on displacements fields for µ ∈ Θtrain

using a training set of size |Θtrain| = 4 for different compression tolerances (ε) and hyper-reduction
parameters (δ) and comparison between non-incremental and incremental POD.

Then, we apply this strategy to a larger training set (|Θtrain| = 25 parameters). Figure 4.30
represents the decay of the maximum approximation error on unexplored parameters (used to drive
the greedy procedure). These successive choices clearly lead to a decrease in the maximum error
(cf. Figure 4.32a) and the average error (cf. Figure 4.32b) over the entire training set (explored
and unexplored parameters). Scaling up for each parameter, Figure 4.33 shows the time-averaged
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Figure 4.30: Maximum approximation error on unexplored parameters decreases during greedy
iterations with an hyper-reduction parameter δ = 10−5.
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Figure 4.31: Statistical errors on the training set Θtrain, defined as a 5 × 5 grid along the greedy
iterations. Two strategies are compared: POD on all HF snapshots (red), and incremental POD
(orange).

approximation errors for each parameter over the first iterations of the algorithm. As confirmed
by the other figures, we observe that for the case studied, we have errors of the order of a few
percent on all parameters (no more than ten percent) after just a few iterations. This is due to the
relative regularity of the problem studied. Figure 4.31 displays error statistics (median, quartiles)
over the course of greedy iterations (5 by 5). We compare two approaches for incremental POD
or POD on all snapshots, with error visualization, where we observe a decrease in medians over
the iterations.

Out-of-sample test for P ⊂ R2

All the above numerical results highlight the good approximation quality of the ROM on the train-
ing set. Nevertheless, it is crucial to further assess the methodology’s suitability for out-of-sample
parameters. To this end, we consider a 7-by-7 grid. This ensures that we get non-matching points.
Then, we test the approximation quality of the ROM on this set, called the test set.

Figure 4.34 depicts boxplots for time-averaged approximation errors on the test set for the same
training set for two sets of greedy strategies: one based on a POD on all snapshots (cf. Figure
4.34a) and the other on an incremental POD (cf. Figure 4.34b). From a statistical point of view,
most of the test set features good approximation quality. The distribution of statistics across the
two cases is consistent. For the POD on all snapshots, the error on the training set is of slightly
higher quality than on the test set, while maintaining excellent approximation quality. Despite the
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Figure 4.32: Average approximation errors on displacements fields for µ ∈ Θtrain using a training
set of size |Θtrain| = 25 and a non-incremental POD for different compression tolerances (ε) with
an hyper-reduction parameter δ = 10−5.
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Figure 4.33: Time-averaged approximation errors on displacement on the training set (|Θtrain| =
25) for the first greedy iterations with an hyper-reduction parameter δ = 10−5.
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Figure 4.34: Boxplot for a training set on a 5 × 5 grid (|Θtrain| = 25), verified on a test set on a
7× 7 grid (|Θtest| = 49). The quantities measured are the time-averaged errors on each set, for a
ROM resulting from a greedy procedure, stopped after 5 iterations.

simplicity of the case, it remains complex to perfectly capture the worst-case representations in
the same way as the rest. Nevertheless, the worst-case error remains of the order of a few percent
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on the test set. For the case with incremental POD, the error quality between training and test
sets is very similar, which is consistent with the fact that more modes are used than with POD on
the snapshot set. Yet the difference between training and test sets is due to the smaller quartile
spread on the training set (lower statistical dispersion), which is also coherent.
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Figure 4.35: Statiscal repartition of time-averaged errors generated by several ROMs on the same
test set defined on a 7×7 grid (|Θtest| = 49). Three ROMs are compared (all obtained by a greedy
process): built on a 2× 2 training grid with POD on all HF snapshots (blue), on a 5× 5 training
grid with POD on all HF snapshots (red), and on a 5× 5 training grid with an incremental POD
(orange). Figure 4.35a is a boxplot of time-averaged errors on Θtest and 4.35b is the time-averaged
errors according to the number of the parameters in the Θtest (numerotation is similar to Figure
4.33a, but on a 7× 7 grid).

In a second step, we can also compare the greedy approaches with each other in terms of their
behavior on the test set (cf. Figure 4.35). As can be expected, the poorest approximation case
matches the case with the smallest training set size, followed by the case with 25 points and total
POD, followed by a case with 25 points and incremental POD. This analysis is reflected in the
boxplots (cf. Figure 4.35a), as well as in the plot of errors as a function of parameter indices
(indices are distributed in a similar way to discretization on a 5x5 grid).

4.4 Conclusion

In the previous chapter, we outlined the various stages of a model reduction approach applied to
quasi-static nonlinear mechanics problems in structural mechanics. The final targeted application
concerns a standard section of a nuclear containment building. To this end, we presented two
development stages, starting with the mono-modeling approach, followed by the multi-modeling
approach. The reason for this division was to verify the generality of the proposed approach while
offering a progression in the complexity of the problems tackled. A crucial element was to develop
an approach compatible with the industrial-grade FE code, code aster. The reduction method-
ology put forward is based on several principles, including the construction of a reduced model
for nonlinear cases and a proposed construction approach. The first involves the construction
of a reduced basis, the projection solver, as well as the creation of an empirical quadrature rule
and the resulting reduced mesh. The second approach is greedy in nature, involving methods for
building adapted reduced models, as well as the derivation of an error indicator in the case of
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mono-modeling situations.

For the validation of the single-modeling framework, we successfully implemented the method
directly with an HF industrial code and validated it on an elastoplastic material. We proposed a
time-averaged error indicator to drive the offline Greedy sampling, which is cost-efficient and has
been shown numerically correlated to the approximation errors, and we developped an element-
wise empirical quadrature procedure to reduce online costs. The whole procedure delivers impres-
sive computational cost improvements in the order of O (20− 25) with relative prediction errors
in the order of 10−3. For multi-modeling problems, we also provided ROMs designed to replicate
the behavior of prestressed concrete with high speedups and good approximation errors. Those
ROMs could open the door for their use in real engineering applications, since provide a good rep-
resentation of the variables of interest used in practice by engineers, whether for structural state
analysis (leakage rate study) or for in-depth data analysis (data-assimilation problem, Bayesian
approaches). The next chapter proposes a numerical approach to pave the way for the use of these
ROMs for calibration problems through data assimilation.

Nevertheless, the results achieved call for further research in several directions. Firstly, the
meshes employed represent a simplified case of a standard section of containment buildings, with
simplified loading (no consideration of ten-yearly visits). It might be of interest to investigate how
the model reduction approach can be used to complexify the given problem for this same material
behavior, i.e. the THM approach for prestressed concrete. This may include the adoption of a
more refined, or more complex, mesh (part larger than the RSV, for instance a slice, or even a
full mesh) to see if CPU gains and approximation quality are maintained in such cases. Another
approach could be simply to consider time-varying loading, typically taking into account ten-
yearly visits (vessel pressurization tests). A second point consists in increasing the size of the
parametric space, since the test cases presented here are of small dimensions. Such tests would
raise two questions in particular. First of all, does the proposed linear approach retain its efficiency
(few modes in reduced spaces) as the size of the parameter space increases? Secondly, we might
consider rendering the greedy process effective for large parameter spaces. In this respect, the
extension and validation of the error indicators to the multi-modeling case remains an essential
step towards a weak-greedy approach.
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Chapter 5
A trust-region approach for parameter calibration
through data-assimilation relying on-the-fly
updated reduced order models

5.1 Introduction

Optimization problems guided by partial differential equations, also known as PDE-constrained
optimization problems, natrually arise within diverse fields of engineering and science, and rep-
resent a significant research challenge [BGHvBW03][AKLR18]. Data assimilation (DA) problems
fall notably within this class of problems, wherein the objective is to infer the characteristics of a
system based on observed data and simulations. Our emphasis is on parameter calibration using
data assimilation, which entails identifying the physical parameters that optimally represent the
given data. Our particular focus is on a variational assimilation formulation. Within this frame-
work, optimization relies on minimizing the discrepancy between data and model, while adhering
to the constraint that the obtained solution aligns with the physics prescribed by the model.
Despite the considerable advantages that widespread adoption of PDE-constrained optimization
could bring to engineering and various scientific domains, the substantial computational costs in
terms of time and resources, impedes its broad implementation.

This research primarily focuses on efficiently solving a DA problem, namely a specific class
of optimization problems governed by PDEs in a deterministic setting. The resolution of this
algorithmic category hinges on the application of minimization techniques, with gradient descent
being a common class of algorithms. On the one hand, the study of PDE-constrained optimization
problems can occur in the continuous domain, treating the PDE as a constraint which has to be
met. In this case, optimality conditions form a system of partial differential equations that need
to be analyzed and solved. Then, discretization occurs on this set of obtained equations. On
the other hand, an alternative strategy involves directly working at the level of the discretized
PDE and formulating the optimization problem at that level. This approach proves more practi-
cal for large-scale optimization problems or those relying on industrial codes or complex models.
In such cases, the differentiation step is not problem-dependent, making it more suitable. This
work exclusively considers the discrete formulation of the PDE-constrained optimization problem.
However, as previously highlighted, such optimization problems can incur prohibitively high com-
putational costs. The contribution of Alexandrov [ADJLT98][ALG+01] establishes a practical and
robust framework to hasten optimization problems, employing surrogate models to secure conver-
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gence towards a local optimum. This is achieved through a trust-region approach for resolving
optimization problem. More precisely, this approach is applied for unconstrained optimization
problems [ADJLT98] and nonlinearly constrained optimization [ALG+01]. Moreover, the sur-
rogate models employed for optimization acceleration can take various forms, such as response
surfaces [FK09], projection-based ROMs [FS03][ZF15][QGVW17][ZCK19][YHZ21], or even deep
learning [LMRC21]. In the context of this research, we rely on the use of projection-based ROMs
using a trust-region approach for a specific category of deterministic PDE-constrained problem,
namely DA problems.

In the first chapters, we focused on the offline/online paradigm for building ROMs. For the
optimization procedure, our focus lies in harnessing the iterative nature of optimization processes
to construct ROMs on-the-fly, thereby mitigating the computational burden. These methods are
gaining popularity, offering a versatile approach to various optimization problems. For instance,
the trust-region POD (TR-POD) method [AFS00][BC08], relying on the iterative construction of
ROMs through POD, was developed for optimal control problems. These on-the-fly optimization
methods extend their applications to other areas, including shape optimization [ZF15], topology
optimization [YHZ21] and multi-scale parameter optimization [KO24]. Trust-region approaches
have been particularly studied and tailored to ensure global convergence during iterations. In-
deed, various studies have been conducted to integrate approximation theory related to ROMs
with the aim of coupling it with optimization criteria. The incorporation of concepts such as
error bounds and indicators has demonstrated its effectiveness, particularly in the context of lin-
ear problems [YM13][QGVW17]. Adaptations, including the development of error-awareness trust
regions, have been tailored to address nonlinear PDEs, such as those encountered in subsonic aero-
dynamic shape optimization [ZF15]. The coupling of nonlinear problems with hyper-reduction, to
the best of our knowledge, has a more limited body of literature concerning theoretical proofs of
global convergence. However, recent research efforts have focused on extending such methods to
establish globally convergent approaches for accelerating large-scale optimization [WZ23]. This
methodology aims to provide globally convergent methods to expedite large-scale optimization
processes.

This chapter unfolds in two primary segments. First, we embark on a comprehensive explo-
ration of DA problems, aiming to define pertinent concepts and notations, and articulate the
formulation of the optimization problem. Subsequently, we delve into the trust-region approach,
a powerful optimization technique that can be effectively coupled with the utilization of ROMs.
The subsequent discussion revolves around the synergy achieved through this coupling. The latter
part of the chapter pivots towards a numerical analysis of various mechanical examples to vali-
date the feasibility of employing this approach for our specific problems. When addressing the
numerical solution of optimization problems, a conventional technique employed is the gradient
method. Specifically, for constrained optimization problems, an effective strategy involves relying
an adjoint method. To ease the testing of adjoint methods for gradient calculations, we first focus
on elasticity problems, which we will introduce in Section 5.5 and 5.6. Such mechanical problems
are characterized by a structure allowing for the analytical computation of sensitivities, namely,
the derivatives of residuals with respect to parameters. These cases serve as ideal validation sce-
narios for the proposed method. In the final phase of our exploration, we extend the validation
of the method to problems featuring internal variables and coupled with industrial codes. This
endeavor solidifies the robustness and applicability of our approach across a spectrum of complex
scenarios, marking a crucial step towards addressing the computational challenges inherent in DA
processes. Indeed, iterations for optimization algorithms can number in the dozens. Regarding
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CPU costs, simulating our target problem (standard section of a containment building) requires
roughly ten minutes on available PCs, while the optimal industrial scenario — a full containment
building— takes about 1 day for one HF simulation (for the mechanical step).

5.2 Data-assimilation problem formulation

5.2.1 Concept and notations

µt FE model Observation operator y

µb

J (µ) Optimization procedure µa

+ CR : covariances

+ B : covariances

+ Pa : covariances

Figure 5.1: General principles of a DA problem (example with synthetic data generated from
a true state µt). Observations are generated from a real physical parameter, with associated
uncertainties. In addition, we have prior knowledge of the input parameter (µb), with an associated
uncertainty. Optimization of the cost function (J : P ⊂ Rp → R+) results in a set of parameters,
known as the analysis (µa). It is also possible to obtain the analysis covariance matrix Pa.

In this section, we present the classical concept of a DA problem [B+14], and the associated
notations (cf. Figure 5.1). In the context of the study of a numerical model (described by Equation
(1.2) or (1.4) for example), we assume that the state of the system can be described by a discrete
vector µ ∈ P ⊂ Rp. Besides, we assume that there exist a representation µt of the true real state
of our system. The objective of the approach is to provide a vector of parameters called analysis
(µa) which is designed to combine an a priori knowledge of the system, embedded in a parameter
called the background (µb), and observations of the physical system in its real behaviour (y) to
devise a reliable estimate of this reference true state µt. We define a map from the space of states
(Rp) with the space of observations (Rnobs), called the observation map H, which can be used to
express the observation vector y thanks to the true state µt:

y = H (µt) + e0 (5.1)

where e0 ∈ Rnobs is the model error which aggregates both the instrumental errors (errors of the
measurement tools, etc.) and the representation errors (representativeness of the physical model
with respect to the real data). In order to model in greater detail these errors, we introduce the
covariance matrix of the observation errors CR ∈ Rnobs×nobs as follows1:

[CR]ij = E
[[

e0
]
i
,
[
e0
]
j

]
(5.2)

Likewise, we introduce the background error eb ∈ Rp, which measures the deviation between an a
priori estimate µb (best a priori knowledge before coupling with the data) and the true (unknown)
state:

1Traditionally, in the literature, this covariance matrix is noted R. However, this notation is used in our work
for the residual, which explains the introduction of this new notation CR.
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eb = µb − µt (5.3)

We introduce the covariance matrix of the background errors B ∈ Rp×p:

[B]ij = E
[[

eb
]
i
,
[
eb
]
j

]
(5.4)

These two matrices are assumed to be known to perform the DA problem. They are chosen so
as to be positive definite (and therefore invertible). At last, we assume that the background
and model errors are not correlated. When faced with a DA problem, the expert or engineer
deliberately defines the level of uncertainty attributed to input measurements or their expertise
(prior knowledge) to establish a deterministic approach. This method restricts distributions as
it assumes Gaussian error distributions. However, this assumption enables the formulation of a
deterministic optimization problem that can be resolved once the covariance matrices are provided.

5.2.2 Cost function for variational data-assimilation problem

As explained above, the DA process we present here belongs to the class of variational methods.
This implies that we are addressing the minimization of a cost functional. The latter (Jhf : P →
R+) is defined as the sum of two terms, a first term that measures the deviation from the a priori
knowledge (background) and a second term that measures the deviation from the measurements.
The HF observation operator defined on the parameter set (Hhf : P → Rnobs), corresponds to a
call to the HF solver and a post-processing to generate the observation vector. Thus, the HF cost
function for the DA problem is expressed as follows:

Jhf (µ) =
1

2
‖µ− µb‖2

B−1 +
1

2

∥∥y −Hhf (µ)
∥∥2

C−1
R

(5.5)

The problem regularization term is encapsulated in the first part of this cost function Much more,
this term can be seen as the best state of knowledge the engineer can rely on, before using any
data.

5.3 Trust-region approach for optimization problems

Following the DA framework considered within this work, we consider a constrained PDE opti-
mization problem. Numerous numerical methods exist to solve this optimization problem. In this
section, we focus on trust-region methods and, we provide details on such methodology for solving
unconstrained optimization problems.

5.3.1 Trust-region approach for an optimization problem

We focus herein on optimization methods for unconstrained nonlinear problems, of the form:

min
µ∈Rp

J (µ) (5.6)

where J : Rp → R+ is a real-valued function, which we call in our setting the HF cost func-
tion. Trust-region methods rely on an iterative process. Trust-region methods comprise a suc-
cession of cheaper sub-problems, only valid locally, so as to converge towards the optimal solu-
tion. The approximation model is constructed in conjunction with a function ϑk : Rp → R+,
called the constraint. This function is used in particular to define the trust region, Rk :=
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µ0

µ1

µk

∆k

Figure 5.2: Principle of the trust-region approach with visualization of successive iterates and
associated trust regions when solving an optimization problem.

{µ ∈ Rp, ϑk (µ) ≤ ∆k}, which matches the region where we solve the optimization sub-problem.
Indeed, when the deviation between the approximation objective function and its HF counterpart
is locally small at the center of the trust region µk, the quality of the approximation model is only
assured locally. As a result, the optimization problem at the k-th iteration of the TR algorithm
can be rewritten as follows:

min
µ∈Rk

Jk (µ) (5.7)

In summary, using a trust-region approach involves creating a sequence of approximation models.
We solve a sequence of optimization sub-problems, associated with a appropriate cost functions
Jk and a given trust-region Rk. As a consequence, we have a sequence of successive candidates
µk (center of the trust regions) which will converge towards a solution, which we consider to be
the solution to our global optimization problem. Figure 5.2 is a schematic diagram designed to
illustrate the main ideas behind the method. The red curve defines the sequence of trust-region
centers, seen as successive iterations of the global optimization problem. For each center, the
resolution zone is defined by the blue areas. The subsequent candidate is determined by solving
the approached problem within this specified zone.

TR approaches are particularly useful when the evaluation of the objective function or its gra-
dient becomes cost-prohibitive. These methodologies offer an alternative to linesearch methods
[Wri06][GMW19]. Since the objective is to reframe a problem for easier resolution, the approxi-
mation model (and its gradient) must be cheaper to evaluate than the HF objective function (and
its gradient) if the methodology is to be appropriate. The assumptions adopted can modify the
quality (or speed) of convergence of the methodology developed. However, the principle of the
method remains the same. In the traditional framework of trust-region methods [CGT00], the
model for the sub-problem is often taken as a quadratic approximation of the objective function J ,
with a constraint taken as a Euclidean distance from the center of the trust regions (an illustration
of such a formulation is provided in Appendix C). In general, the approximation model is assumed
to be twice continuously differentiable and the Hessians are assumed to be uniformly bounded (on
Rp, or at least on the set of Rk trust regions).
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5.3.2 Details of the trust-region methodology for an optimization prob-
lem

Each iteration k of the proposed trust region method is divided into four main steps. First, we
set up a trust region model, Jk, and the constraint ϑk. The choice of constraint will be discussed
in more detail later. In a second step, we estimate a candidate point (µ∗k) for the next iteration
as a solution to the optimization problem given by Equation (5.7). There is no evidence that the
candidate point obtained by solving the previous sub-problem effectively decreases the value of the
objective function. It is then necessary to compare the value of the objective function evaluated at
the candidate point, and to compare it with the value obtained for the center of the trust region.
The actualization criterion is defined as follows:

ρk =
J (µk)− J (µ∗k)

Jk (µk)− Jk (µ∗k)
(5.8)

Once the ratio is calculated, the quality of the resolution step (acceptance or non-acceptance
of the candidate point) is assessed by comparing the value of the ratio obtained with 1. This unit
value matches the case where the ratio between prediction and center is calculated for a perfect
model (Jk(µ) = J(µ)). If the ratio is close to unity, the step is accepted and the trsut-region
radius is increased. Otherwise (and even more so if the ratio is negative), the step is rejected
and the radius of the trust-region is reduced. In practice, these conditions are managed using
hyper-parameters to define different decision intervals: parameters governing candidate accep-
tance (0 < η1 < η2 < 1), and parameters concerning radius updating (0 < γ and ∆max). Figure
5.3 displays a graphical summary of the insights to choose or not to choose the candidate and
update the trust-region. We provide more details on the steps below.

If ρk ≤ η1, we consider that the model has not sufficiently decreased the HF objective function.
Heuristically, it means that the size of the trust-region is too large in relation to the quality of the
model used. In that case, the candidate is not accepted, and the radius of the trust-region (∆k)
is chosen to decrease. The choice is made using the hyperparameter 0 < γ < 1 as follows:

∆k+1 ≤ γϑk (µ∗k)

This option enables strict radius decay, while ensuring that the candidate point obtained no longer
belongs to the trust-region. This ensures that the new candidate point is different, and that there
is no infinite loop. This is referred to as an unsuccessful step. In the case where ρk ∈]η1, η2[, the
candidate is accepted, and the radius is not modified ∆k=1 = ∆k. At last, if ρk ≥ η2, we speak of
a very successful stage: the candidate is accepted and we increase the radius of the trust-region.
Heuristically, we assume that the model is so good in the area under consideration that we explore
a little further. In our case, the (arbitrary) choice is as follows:

∆k+1 = min

{
1

γ
∆k, ∆max

}

In practice, computing the evaluation criterion (cf. Equation (5.8)) requires calls to the HF solver,
thereby incurring additional computational costs. Approaches exist in the literature to employ
approximation functions during this step to reduce the computational expense.
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Update of the TR Choice of ∆k+1

Step acceptance What is ρk?

Figure 5.3: Step acceptance and update of the trust-region.

Algorithm 3 Trust-region method with exact evaluation of the objective function.

1: Initialisation: Choice of the initial parameters
2: Update of the constraint and the models: Formulation of the sub-problem so that global

convergence is satisfied. Choose:

� a model Jk : µ ∈ Rp → Jk (µ) ∈ R
� a constraint ϑk : µ ∈ Rp → ϑk (µ) ∈ R,

3: Candidate: Approximate solution of the sub-problem to obtain a candidate µ∗k ∈ Rp:

min
µ∈Rk

Jk (µ)

where the candidate verifies Cauchy’s fractional decay condition.
4: Actual-to-predicted decrease ratio: Compute performance criterion ρk
5: Step assessment and radius update:

� if ρk ≥ η1, then we use the candidate µk+1 = µ∗k,

� if not, do not change the center of the trust-region center µk+1 = µk.

6: Update of the trust-region:

� if ρk ≤ η1, then ∆k+1 ∈ ]0, γϑk (µ∗k)],

� if η1 < ρk < η2, then ∆k+1 ∈ ]γϑk (µ∗k) ,∆k],

� if ρk ≥ η2, then ∆k+1 ∈ [∆k,∆max].

5.4 Trust-region approaches with on-the-fly model order

reduction for static problems

In this section, we introduce the methodology for addressing a static problem (cf. Equation (1.2)),
which serves as an initial stage in tackling an inverse problem. It is noteworthy that this approach
can be readily expanded to quasi-static scenarios, with emphasis on the system’s ultimate state,
for instance. Throughout the numerical experiments conducted, we will elaborate on potential
extensions or adjustments of the method tailored for quasi-static cases.

5.4.1 On the use of reduced order models as approximation models

As mentioned above, the objective of our work consists in using ROMs to address a DA problem.
This implies that we assume that the approximation models studied are ROM-based. Within
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our framework, the ROM is built on-the-fly and thus, the reduced order basis may be updated
throughout the procedure. Indeed, as specified previously, we adapt the ROM at every new
trust-region center µk, and, therefore, change the reduced order basis. To this end, we denote
by Zu,k the reduced order basis at the DA iteration k. We denote by Nu,k the number of modes
at the DA iteration k. We also define the reduced discrete residual at DA iteration k, denoted
Rr
k : RNu × Rp → RNu , as a function of the generalized coordinates and the parameter. This

reduced residual is determined as before by projecting the reduced basis onto the HF residual
Rhf : RNu × Rp → RNu :

∀ (α̂u,µ,µ) ∈ RNu × Rp, Rr
k (α̂u,µ,µ) = Z>u,kR

hf (Zu,kα̂u,µ, µ) (5.9)

Since we possess a sequence of ROMs, we should redefine a reduced cost function at each iteration.
To this end, we introduce a cost function related to the reduced problem (J r

k : P → R+). The
difference between this functional and the HF functional is the call to the reduced observation
operator (Hr

k : P → Rnobs), i.e the call to the reduced solver. In comparison with the HF functional
(cf. Equation (5.5)), the first term is unchanged, and only the observation operator differs in the
second term:

J r
k (µ) =

1

2
‖µ− µb‖2

B−1 +
1

2
‖y −Hr

k (µ)‖2
C−1

R
(5.10)

Given the previous definitions of the HF and reduced cost functions through F (·, ·) defined in
Equation (5.12), the cost functions can be expressed as follows:

{
Jhf (µ) = F (uµ, µ) , where uµ = Shf (µ)
J r
k (µ) = F r

k (α̂u,µ, µ) = F (ûµ, µ) , where ûµ = Zu,kα̂u,µ = Sr
k (µ)

The difference between this functional and the HF functional is the call to the reduced observation
operator (Hr

k : P → Rnobs), i.e the call to the reduced solver. In comparison with the previous
functional (cf. Equation (5.5)), the first term is unchanged, and only the observation operator
differs in the second term:

J r
k (µ) =

1

2
‖µ− µb‖2

B−1 +
1

2
‖y −Hr

k (µ)‖2
C−1

R
(5.11)

In the foregoing steps, the problem is formulated so as to consider observation operators whose
input data are the parameters. However, within this work, we focus on the investigation of cal-
ibration problems through DA in solid mechanics. Hence, the observation vector concerns the
displacement field or a derived field. Data may directly pertain to the displacement field, or
deformations (symmetric gradient), or velocities/accelerations for dynamical problems. This as-
sumption is not restrictive and is consistent with experimental practice. Indeed, for static or
quasi-static solid mechanics problems (focus of our work), real data generally concern displace-
ments, and often even strains (image correlation with speckle, strain gauge on a sample, for
example), since stress measurements are hard to come by. On the basis of this assumption, the
observation operator H : RN → Rnobs obtained from the numerical simulation can be expressed
in terms of the displacement field only. For greater clarity on the links between the various oper-
ators introduced, the operators on the parameters may be expressed using this single observation
operator on displacements and the FE solver:
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Hhf = H ◦ Shf (µ) where
Shf : P → RN

µ 7→ uµ

Hr
k = H ◦ Sr

k (µ) where
Sr
k : P → RN

µ 7→ Zu,kα̂u,µ

where the functional Shf (resp. Sr
k) corresponds to the call to the HF (resp. reduced) solver. This

remark helps us to recast this optimization problem as a PDE-constrained optimization problem,
where the cost function is the same in both cases, but where the use of a ROM transforms the
PDE constraint. More specifically, we introduce the cost function taking as inputs a discrete
displacement field u and a parameter µ, defined as follows:

F (u, µ) =
1

2
‖µ− µb‖2

B−1 +
1

2
‖y −H (u)‖2

C−1
R

(5.12)

This formulation results in a cost function that is solver-agnostic, assisting in the derivation of
the adjoint method. Such a definition divides the said function into two terms, one depending
exclusively on the parameter (F b : P → R+) and the other on the displacement (F o : RN → R+):

F (u, µ) = F b (µ) + F o (u) , where





F b (µ) = 1
2
‖µ− µb‖2

B−1

F o (u) = 1
2
‖y −H (u)‖2

C−1
R

5.4.2 Penalization for dealing with the trust-region constraint for a
PDE-constrained optimization problem

Once the optimization problem is set, the next step is to come up with a suitable resolution
strategy for the trust-region sub-problem. We wish to solve the DA problem for a given ROM, in
the trust-region µ ∈ Rk. When focusing on the problem formulation, this amounts to adding a
constraint to the reduced optimization problem given by Equation (5.19):

min
µ∈Rp

J r
k (µ) = F r

k (α̂u,µ, µ)

subject to

{
Rr
k (α̂u,µ, µ) = 0

ϑ (µ) ≤ ∆k

(5.13)

Our adopted strategy aims to maintain the PDE constraint as an equality constraint, simpli-
fying the problem to focus solely on this remaining consideration. We decide to adopt a penalty-
based approach, reformulating the problem using a logarithmic barrier [N+18, p. 56]. Thus, the
principle is to come back to a problem of the form:

min
µ∈Rp

φγ
r

k

subject to Rr
k (α̂u,µ, µ) = 0

where φγ
r

k may be expressed explicitly as a function of the cost function J r
k (µ). In this case, we

can go back to the previous situation by adapting the gradient calculation. The function φγ
r

k

depends on a hyper-parameter γr. As the latter approaches 0, the function φγ
r

k converges towards
the cost function in the reduced case (J r

k). In practice, two approaches are available, according to
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the conditioning of the problem. A direct approach is to keep to a single parameter (and therefore
a single function to be minimized) for the logarithmic barrier. Nevertheless, many iterations may
be required for convergence. If successive systems are too ill-conditioned, it is more appropriate to
employ a sequence of penalty parameters which converges towards the desired penalty parameter.
As the sequence tends towards the desired parameter, the solution from the previous iteration
is used as the initialization point for the new sub-problem. Within this work, we consider the
following logarithmic barrier:

φγ
r

k (µ) =

{
J r
k (µ)− γr log [∆k − ϑk (µ)] if ∆k − ϑk (µ) > 0

+∞ otherwise
(5.14)

5.4.3 On-the-fly model reduction strategy through optimization iter-
ations

As mentioned before, the reduced basis is updated when a new center of the trust-region is
obtained. We introduce a set Utrain

k , which corresponds to the set of snapshots used for the
construction of the reduced basis at iteration k. A first approach consists in incrementally enriching
the training set, by adding the last obtained center. In a second step, a POD is performed to
obtain the reduced basis.

Utrain
k = Utrain

k−1 ∪ {uµk} , then Zu,k = POD
{
Utrain
k , εPOD,u

}

Then, it remains to define an initial set for the construction of the reduced basis. A natural view
is to restrict to the first trust-region center, which in our setting is the background:

Utrain
0 = {uµb}

Indeed, the background is the best knowledge of the parameters of the mechanical problem. It
therefore seems consistent to use it as the initial point of our problem.

5.4.4 Choice of the constraint for the trust-region in the case of re-
duced order models

As specified in the algorithm, a key step remains the definition of a constraint to set the trust-
region. This affects the shape of the trust-regions, and, thus, convergence. In this work, we
consider two types of trust region. On the one hand, we consider a classical trust-region, i.e.
using a Euclidean distance. In order to avoid being biased by differences in order of magnitude
(adimensionalization), one solution may be to use a matrix norm A, which aims to normalize the
parameters. On the other hand, we consider an error-aware trust-region, inspired by the work
of [Zah16]. To this end, we consider a constraint defined on the grounds of an a posteriori error
indicator:

ϑk (µ) =

{
‖µ− µk‖A , for an appropriate A ∈ Rp×p (’classical’)
∆N,µ, as an error indicator (’errind’)

(5.15)

5.4.5 Gradient computation for the data-assimilation problem using
reduced order models

Several methodologies can be used to solve this optimization problem. We provide here a gradient-
based methodology. Such an approach requires computing the gradients of the cost functions (with
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respect to the parameter). An adjoint approach for PDE constrained optimization [WNLDZ92][Jam88]
is employed to derive the gradient that can be then used for the optimization process. First, we
provide an explanation of the adjoint approach for the HF problem (some additionnal details on
the derivation are provided in Appendix D). This involves formulating a set of equations, known
as the adjoint equations, which specifically concern a variable Λ, known as the adjoint or dual
variable. The primary objective is to ascertain these variables to subsequently compute a gradient
estimate based on their values.

Adjoint approach for the high-fidelity problem

As mentioned above, we start by describing the adjoint approach in the case of an HF calculation.
Thus, we focus on the following constrained optimization problem:

min
µ∈Rp

Jhf (µ) = F (uµ, µ)

subject to Rhf (uµ, µ) = 0
(5.16)

Therfore, the gradient of the cost function for a HF problem is calculated as follows:

∇Jhf (µ) =
∂F

∂µ
(uµ, µ)−Λ>

∂Rhf

∂µ
(uµ, µ) , (5.17)

where Λ ∈ RN is solution of the adjoint equation:

[
∂Rhf

∂u
(uµ, µ)

]>
Λ =

[
∂F

∂u
(uµ, µ)

]>
(5.18)

where ∂Rhf

∂u
∈ RN×N and

[
∂Fhf

∂u

]>
∈ RN .The previous formulation provides an adjoint method of

gradient calculation without specifying the expression of the cost function. Nevertheless, the cost
function for a DA problem has a general expression given by Equation (5.12), with a splitting
in two terms, each depending on u or µ. The cost function can then be derived explicitly with
respect to displacement and parameter:





∂F

∂µ
(uµ, µ) =

∂F b

∂µ
(uµ, µ) = B−1

(
µ− µb

)

∂F

∂u
(uµ, µ) =

∂F o

∂u
(uµ, µ) = − [H (uµ)]>C−1

R (y −H (uµ))

where H is the tangent operator of the observation operator, which includes the model (whether
HF or reduced):

[H (uµ)]ij =
∂Hi

∂µj
(uµ)

Numerical strategy for the adjoint approach for the reduced problem

This point opens a discussion on the choice of methodology for the appropriate computation of the
gradient in the case of a reduced problem. For the HF case, the methodology is quite clear and was
explained previously, that it to say that we rely on an adjoint method for gradient computation.
For the case of a reduced models, two choices are possible. A first method may consist of relying
solely on the adjoint and reducing this problem in order to have a reduced adjoint problem. In
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State Adjoint

HF

ROM •
Goal: gradient for the ROM

Figure 5.4: Choice of the methodology for the gradient computation in the case of a ROM problem.
The bold blue arrows illustrate the path followed to derive the adjoint for the reduced model
that will be used in a gradient method. The reduction is only performed on the state and then the
adjoint is computed from the reduced residual. The arrows in black depict an alternative path
that could have been considered for gradient derivation using an adjoint method.

this case, we have two reduced problems, one associated with the state and a second associated
with the adjoint. This raises a question about the appropriate (coupled) reduction of these two
problems. A second approach is to derive the adjoint only by knowing the given reduced problem,
meaning that we only reduce the state, and from that we derive the adjoint. A priori, this method
is less robust, but this allows us to only have a single reduced model, solely linked to the state.
In this work, we opt for this choice. The reader may rely in part on the illustration given in
the Figure 5.4 for a better understanding of our choices. This also explains the presentation
of the methodology in the following sections. We present the calculation of the adjoint given a
numerical model. Therefore, this calculation holds whether the initial model considered is the
HF or reduced calculation. First, we present the gradient calculation by an adjoint method for
the HF calculation, then that obtained for the ROM (given a reduction only on the state). We
can also extend these remarks to previous choices. In fact, within our methodology, we adopt
a discretize-then-differentiate approach [Gun02]. This means that all the choices (and available
in Figure 5.4) are made starting from the discrete problem. Another approach could consist of
deriving directly at the continuous level (derivation of the adjoint equation) before discretizing
the problem. This is not the choice made throughout this work. The definition of our numerical
strategy can also be interpreted in terms of error control. Indeed, as recalled above, our choice
is as follows: we proceed from the discrete formulation, we construct a reduced approximation
model, and we derive an adjoint from the ROM constructed on the state. This means that we
have error control on the quality of the discrete HF model, on the construction of the ROM on the
state, with an error control on the reduced model using error indicator or control in approximation
error, but not on the adjoint.

Derivation of the adjoint approach for the reduced problem

In this following paragraph, we focus solely on the calculation of the gradient and, therefore,
the adjoint in the reduced case. As a reminder (cf. Figure 5.4), we start from the constrained
optimization problem with a reduction on the state:

min
µ∈Rp

J r
k (µ) = F r

k (α̂u,µ, µ)

subject to Rr
k (α̂u,µ, µ) = 0

(5.19)
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where all operators appearing in the formulation are defined in Section 5.2.2. We can repeat the
same process as for the HF calculation to obtain the gradient of the cost function. The gradient
of the cost function is now expressed as such:

∇J r
k (µ) =

∂F r
k

∂µ
(α̂u,µ, µ)− [Λr

k]
> ∂Rr

k

∂µ
(α̂u,µ, µ) , (5.20)

where Λr
k ∈ RNu,k is solution of the following adjoint equation:

[
∂Rr

k

∂αu,µ
(α̂u,µ, µ)

]>
Λr
k =

[
∂F r

k

∂αu,µ
(α̂u,µ, µ)

]>
(5.21)

We rewrite the previous set of equations in terms of the HF operators initially introduced. To this
end, we draw on the relationship between the generalized coordinates and the total displacement
fields when using a ROM. By relying on Equations (5.9) and (5.4.1), and by applying a chain rule,
we derive the derivatives of the operators with respect to the generalized coordinates:





∂F r
k

∂αu,µ
=

∂F r
k

∂u

∂u

∂αu,µ
=

∂F r
k

∂u
Zu,k =

∂F

∂u
Zu,k

∂Rr
k

∂αu,µ
=

∂Rr
k

∂u

∂u

∂αu,µ
=

∂Rr
k

∂u
Zu = Z>u,k

∂Rhf

∂u
Zu,k

Finally, following the same steps as in the HF case (cf. Equations (5.17) and (5.18)), the gradient
of the cost function is expressed in the reduced case as:

∇J r
k (µ) =

∂F r
k

∂µ
(α̂u,µ, µ)− [Λr

k]
> Z>u,k

∂Rhf

∂µ
(Zu,kα̂u,µ︸ ︷︷ ︸

=ûµ

, µ) = B−1
(
µ− µb

)
− [Λr

k]
> Z>u,k

∂Rhf

∂µ
(ûµ, µ)

(5.22)

where Λr
k ∈ RNu,k is solution of the following adjoint equation:

[
Z>u,k

∂Rhf

∂u
(ûµ, µ) Zu,k

]>
Λr
k = Z>u,k

[
∂F

∂u
(ûµ, µ)

]>
(5.23)

Derivation of the logarithmic barrier

In the framework of the solver for the trust-region sub-problem, we rely on the logarithmic barrier
defined in Equation (5.14) in order to take the trust-region into account. Thus, we need to
compute the gradient of the logarithmic barrier defined in Equation (5.14). Such a development
requires the computation of the gradient of the reduced cost function (see Section 5.4.5) and the
computation of the constraint. The gradient of the logarithmic barrier is expressed as follows:

∇φγrk (µ) = ∇J r
k (µ) +

γr

∆k − ϑk (µ)
∇ϑk (µ)

= B−1
(
µ− µb

)
− [Λr

k]
> Z>u,k

∂Rhf

∂µ
(ûµ, µ) +

γr

∆k − ϑk (µ)
∇ϑk (µ)
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5.5 Numerical analysis of a data-assimilation problem for

a linear elastic problem

In this section, we introduce a linear elasticity test case. This simple case provides an easily
replicable case whose gain in terms of speedups for the ROM does not require a hyper-reduction
process. Hence, it is possible to easily extend the number of tests in order to display the interests
of the method.

First, we present the physical case used, i.e the constitutive equation, geometry and loadings,
as well as the framework of the DA problem (choice of the formulation of the uncertainties and
observation operator). In a second step, we apply the methodology without using trust-regions
(which also matches the case with an infinite trust-region radius, ∆k = ∞). Third, we demon-
strate the good approximation quality obtained for the case of DA with trust-regions. Bearing
in mind that all these results are given for gradient approaches, and for example quasi-Newton
approaches (more precisely BFGS [Fle00]), for the sub-problem resolution, we test alternatives
solvers for the successive sub-problems, in particular using approximate gradient or gradient-free
methods. The robustness of the method when changing the optimization solver ensures that we
have an approach that can be generalized to cases where the gradients are difficult to extract (in
the industrial code at stake, namely code aster) or where we face difficulty obtaining sensitivities.

We present numerical results, with examples built using the open-source Fenics software
[ABH+15][LL17], which has proven its relevance to solid mechanics simulation [Ble18]. Fenics is
used in this Chapter as the HF code for numerical simulation of mechanical problems. Additional
modules have been added to build ROMs from the generated snapshots, with the development of
associated TR solver. To this end, we relied on the numerical solvers available in Python and in
particular scipy [VGO+20].

5.5.1 Problem formulation for a linear elastic problem

Physical problem formulation

We consider a static linear elastic material. Thus, we focus on small-displacement small-strains
problems. The equilibrium equation, the constitutive equations and the boundary conditions used
are summarized through the following set of equations:





−∇ · σµ = fv on Ω
σµ = Fσµ (uµ)
uµ = ud on Γd

σµ · n = fs on Γn

(5.24)

where uµ is the displacement field, σµ is the Cauchy stress tensor, ∂Ω = Γd ∪ Γn, and Fσµ stands
for the constitutive equation. The latter in linear elasticity can be expressed as:

σµ = Fσµ (uµ) = λtr (ε (uµ)) 1 + 2Gε (uµ)

where G is the shear modulus and λ the first Lamé’s parameter and the symmetric gradient of the
displacement is defined as ε (·) = ∇s· = 1

2
(∇ · +∇·>). The variational formulation of the static

problem defined by Equation (5.24) is expressed as follows: find uµ ∈ Xbc such that ∀v ∈ Xbc:

R (uµ, v, µ) =

∫

Ω

λ (∇ · uµ) (∇ · v) + 2G∇suµ : ∇sv dx =

∫

Ω

fvv dx+

∫

Γn

fsv ds,
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where Xbc := {v ∈ X : u = ud on Γd}. The pair of parameters (G, λ) can be rewritten relying on
the Young’s modulus E and the Poisson’s ratio ν:

G =
E

2 (1 + ν)
and λ =

Eν

(1 + ν) (1− 2ν)

We define the parameters for the parametric problem as follows:

µ =

[
E
ν

]
∈ R2 (5.25)

We apply a problem discretization with a continuous Galerkin FE method. We state the variational
form of the problem at stake using the FE space as the approximation space: find uµ ∈ X hf

bc such
that ∀v ∈ X hf

bc :

Rhf (uµ, v, µ) =

∫

Ω

λ (∇ · uµ) (∇ · v) + 2G∇suµ : ∇sv dx =

∫

Ω

fvv dx+

∫

Γn

fsv ds,

Such a formulation allows use to express the HF discrete residual with terms with are u-dependent
and others which are µ-dependent:

find u ∈ RN , such that Rhf (u, µ) = A (µ) u− b,

with the affine decomposition of the stiffness matrix:

A (µ) =
E

1 + ν
A1 +

Eν

(1 + ν) (1− 2ν)
A2, where





v>A1u =

∫

Ω

(∇ · u) (∇ · v) dx

v>A2u =

∫

Ω

∇su : ∇sv dx

These residual expressions are of great interest, since they enable several operators to be computed
efficiently. From the standpoint of the reduction process, the reduced operators are easily com-
putable, and the affine decomposition means we can reduce the computational cost of ROM calls.
From a DA perspective, such a decomposition provides an analytical calculation of sensitivities,
required when applying an adjoint method.

Reduced operators

As mentioned before, the given problem has a parametrically affine decomposition. It is then
convenient to precompute the reduced operators, once the basis is known. To this end, we define
the reduced discrete residual as follows:

Rr (α̂u,µ, µ) = Z>uRhf (ûµ, µ)

=
E

1 + ν
Z>uA1Zuα̂u,µ +

Eν

(1 + ν) (1− 2ν)
Z>uA2Zuα̂u,µ − Z>ub

=
E

1 + ν
Ar

1α̂u,µ +
Eν

(1 + ν) (1− 2ν)
Ar

2α̂u,µ − br

The matrices Ar
1 and Ar

2, and the vectors br can be computed once the reduced basis is known.
At this point, only an evaluation (and a sum of matrices) is required when calling the ROM. To
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estimate the quality of the ROM’s approximation to the HF model, a number of a posteriori error
indicators have been developed. In this work, we introduce an a posteriori error indicator defined
as:

∆Nu,µ =
∥∥Rhf (ûµ, µ)

∥∥
∗

where ‖.‖∗ is an appropriate norm chosen depending on the norm used for the POD compression.

5.5.2 Setup of the test cases for twin experiments

We aim to scale the quantities in the cost functional in order to better set out the optimization
problem at hand. In this section, we set out to establish a clear testbed for formulating the
problem to be solved. The objective is to provide a set of hyper-parameters that enables us to
define a range of problems, common in assimilation. We seek to evaluate if the method aligns
with our requirements. Rather than employing real data, we conduct twin experiments, generating
synthetic data from the numerical model. The data is generated from a parameter by means of
the HF code, and is used (with or without noise) before carrying out a conventional optimization
process. The focus lies in retracing the physical parameter µt used in generating the data. Thus,
our objective is to introduce a method and validate its robustness, so that it can subsequently be
applied to real problems. Therefore, we need to specify a scope where we are able to deal with
several types of problem, but sufficiently narrow and framed to avoid confusion and unnecessary
multiplication of calculations. To introduce our proposed formulation, we consider the case where
the observation vector is a scalar. The scalar formulation is intended only to help us understand
the underlying philosophy. We introduce the following notations:

Ex = E − Eb, νx = ν − νb, yx = y −H (µ)

Then, we can rewrite the HF cost function as:

Jhf (µ) =
E2

x

σ2
E

+
ν2

x

σ2
ν

+
y2

x

σ2
obs

We introduce quantities related to the dimension of each physical quantity (λE and λν for the
parameters, and λobs for the observations) and its order of magnitude. Furthermore, we define
correlation quantities based on the dimensionless physical quantities (σobs, σobs, and σobs). We
can now express a cost functional as follows:

σ2
obsJ

hf (µ) =

(
σobs

σE

)2

E2
x +

(
σobs

σν

)2

ν2
x + y2

x

=

(
σobs

σE

)2(
λobs

λE

)2

E2
x +

(
σobs

σν

)2(
λobs

λν

)2

ν2
x + y2

x

We introduce the following notations, which refer to the observations:





φE =
σE
σobs

φν =
σν
σobs

and





ΛE =
λE
λobs

Λν =
λν
λobs

We choose to treat the part related to observations as an identity matrix for the purposes of these
studies. Consequently, it suffices to introduce these ratios associated with the units to achieve a
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dimensionless approach. Moreover, it is sufficient to control the ratios between the correlations by
considering an identity correlation matrix for the observations, in order to control the weighting
between the observation and background terms. In practice, we consider the inverses of the
correlation matrices :

C−1
R = I and B−1 =

[
1

Λ2
Eφ

2
E

0

0 1
Λ2
νφ

2
ν

]

As a test of the robustness of the developed algorithm, we shall consider a deviation between the
background parameter and the parameter used for the twin experiment. The discrepancy between
µt and µb is adjusted so as to have a relative a priori error between these two parameters (εerr

µ ).

µt = µb + εerr
µ =

[
Eb ± σerr,EEb

νb ± σerr,ννb

]
=

[
(1± σerr,E)Eb

(1± σerr,ν) νb

]

In the set of experiments being simulated here, and in order not to overload this section and
repeat experiments, we chose a relative error that is shared by each parameter (Poisson’s ratio
and Young’s modulus). Likewise, the φ ratio is assumed to be the same for both parameters.

σerr,µ = |σerr,E| = |σerr,ν | , and φ = φE = φν

In practice, we focus on the HF cost functional :

Jhf
(
µ = [E, ν]>

)
=

1

φ2

(
E − Eb

ΛE

)2

+
1

φ2

(
ν − νb

Λν

)2

+ ‖y −H (uµ)‖2
2

With this formalism, it is then also possible to design the matrix A (cf. Equation (5.15)) used to
normalize the constraint in the case of a classical trust-region approach:

A =

[
1/Λ2

E 0
0 1/Λ2

ν

]

We examine the simplest case of an observation operator on the displacement field. Therefore, we
adopt the observation operator equal to the identity. Since this operator is linear, it is equal to
its tangent operator. In short, we get :

H (u) = u, then

{
H = Id
H = ∂H

∂u
= Id

5.5.3 FE discretization and geometry

We consider a holed plate loaded with a tensile force in two dimensions. The geometry is a
rectangle of size (2Lx) × (2Ly), perforated at its center by a circle of radius r. For symmetry
considerations, we shall consider a quarter of the structure and apply the corresponding boundary
conditions. To achieve this, we assume that vertical displacements are blocked on the bottom
face, and that horizontal displacements are blocked on the left face. A visualization of the mesh
is given in Figure 5.5a, while the dimensions of the geometry and informations about the mesh
are provided in the Table given in Figure 5.5b.
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(a) HF mesh used for the holed plate test case.

Lx Ly r Ne N
5 15 2 1096 4594

(b) Summary of the information (mesh and ge-
ometry).

Figure 5.5: Information about the geometry and the mesh for a holed plate.
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(a) φ = 1 and σerr,µ =
2%.
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(b) φ = 10 and
σerr,µ = 2%.
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(c) φ = 100 and
σerr,µ = 2%.
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(d) φ = 103 and
σerr,µ = 2%.
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(e) φ = 1 and σerr,µ =
10%.
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(f) φ = 10 and σerr,µ =
10%.
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(g) φ = 100 and
σerr,µ = 10%.
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(h) φ = 103 and
σerr,µ = 10%.

Figure 5.6: Plot of level lines (with interpolation) related to the cost function for the HF simulation
(Jhf) for different sets of hyper-parameters (weights between the two contributions and initial
errors between the background and real parameter).

Visualisation of the data-assimilation problem for the HF formulation

The definition of an optimization problem set previously (see Section 5.5.2) provides two hyper-
parameters (φ, σerr,µ) to uniquely define a DA problem. As φ tends towards 0, we tend towards an
increasingly convex problem, based solely on the regularization term. When φ tends towards ∞,
the problem tends towards the true inverse problem. The second hyperparameter σerr,µ defines
the gap between the background and the true parameter. When the two values are close, the two
terms of the functional do not compete. In the opposite case, the sum of the two functionals may
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provide a total non-convex functional.

0 10 20 30 40

10−15

10−14

10−13

10−12

10−11

10−10

10−9

i

J
h
f
( µ

(i
),
h
f)

φ = 1
φ = 10

φ = 102

φ = 103

(a) σerr,µ = 2%

0 10 20 30 40
10−14

10−13

10−12

10−11

10−10

10−9

10−8

i

J
h
f
( µ

(i
),
h
f)

φ = 1
φ = 10

φ = 102

φ = 103

(b) σerr,µ = 10%

0 10 20 30 40 50 60

10−13

10−12

10−11

10−10

10−9

10−8

10−7

i

J
h
f
( µ

(i
),
h
f)

φ = 1
φ = 10

φ = 102

φ = 103

(c) σerr,µ = 25%

Figure 5.7: Evolution of the cost function for HF simulation for different sets of hyper-parameters
(weights between the two contributions and starting errors between the background and real
parameter) using ’L-BFGS-B’ method to solve the sub-problem.

Figure 5.6 features examples of cost functions obtained for different hyper-parameter pairs.
In addition, Figure 5.7 displays the convergence curves towards the global minima obtained for a
solution using L-BFGS-B [BLNZ95][ZBLN97] with an adjoint method for an HF case. We have
examples where the BFGS algorithm converges to a local minimum. We notice that the value of
the minimum varies as a function of the φ hyper-parameter. This is to be expected, since when
φ tends to infinity, we tend towards an inverse problem with no regularisation term. For a more
detailed visualisation of the algorithm’s outputs, we provide in Appendix E.1 the results obtained
(cf. Table E.1) for our DA algorithms on the stated HF problem (recalibration using the complete
field in linear elasticity).

5.5.4 Adjoint approach for a trust-region approach with ROM and
without trust-regions
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(a) Young’s modulus (E).
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(b) Poisson coefficient (ν).

Figure 5.8: Comparison between the parameter values obtained for a reduced case with infinite
radius and the parameters obtained by solving the HF problem for the case σerr,µ = 2% with
enrichment considering all available information (εPOD,u = 0).

First, we perform tests without using trust-regions. In other words, we assume a trust-region
with infinite radius at every iteration (∆k =∞). Thus, the point is to consider ROMs, enriched it-
eratively, each time solving the optimization problem over the entire parametric domain (Rk = P).
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This validation stage of the methodology has two key interests: to check that the various compo-
nents of the computational code are working properly (purely computational), and to highlight
the interest of the trust-region radius in the algorithm. The numerical results reported herein
(and in the rest of the Chapter) involve the construction of a reduced basis, enriched iteratively,
with zero POD tolerance (εPOD,u = 0). In other words, we keep all modes available throughout
the iterations. The reason for this choice is that we deal with a static problem (with a single
snapshot per parameter) and the reduction on the parameter space does not require excessively
large bases. Some intuitions about the behaviour of the algorithm with a non-zero tolerance are
provided in the Appendix E.1 (see Section E.1.2). Even with a non-zero tolerance, the algorithm
converges sufficiently close to the solution, but an additional error is introduced. Further work is
being carried out to explore the consequences of using more restrictive tolerance in quasi-static
cases, and the building of an adaptive basis if needed.

We carried out these test cases and compared the numerical results with the solutions obtained
using the HF calculation code. Figure 5.8 depicts the relative errors between the iterates obtained
during the optimization process with ROM and the final solution obtained in the HF case for the
particular case of one value of the σerr,µ parameter. We opted to limit the number of illustrations
so as not to overload this section. We may observe that we converge towards the same solution as
for the HF case, which indicates that the construction of an iteratively enriched ROM is effective
for the cases studied here. On these curves, the number of iterations refers to the total number of
optimization iterations (not trust-region iterations). At certain points on the curves, particularly
at the start of iterations and for high φ values (problem not very regularized), we notice that the
relative error can increase.
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(b) φ = 10 and
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(c) φ = 100 and
σerr,µ = 2%.
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(d) φ = 103 and
σerr,µ = 2%

Figure 5.9: Evolution of trajectories obtained by the optimization process for a case using a
successively reduced model with an infinite trust-region radius. The curve in black corresponds
to the HF case, while the curve in red corresponds to the iterates for the reduced case with
enrichment considering all available information (εPOD,u = 0).

Such behavior is due to the fact that the ROM is of poor quality over the entire parametric
domain, and does not reflect the correct variations in the cost functional. This is illustrated in
Figure 5.9. In the latter, we plot the trajectories of the search of the optimum in the parametric
space. The colormap in the background reflects the HF cost function used (Jhf). We observe
that for large φ values in particular, there’s a real gap between the two values. What’s more, for
the first ROM used (first iteration of TR), the trajectory evolves towards a region where the HF
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cost function is higher than at the start. Nevertheless, ROM enrichment corrects this deviation,
and moves the trajectory towards the true solution. Therefore, the effect of deviation on relative
errors can be seen visually in Figure 5.9.

5.5.5 Adjoint approach for a trust-region approach with ROM and
with trust-regions

We now turn to the methodology as a whole, i.e. the approach with trust-region and ROMs. In
view of the details given above, we have two methodologies to work with: on the one hand, the
classical approach (’classical’), and on the other, the error-aware approach (’errind’), based
on an error indicator.
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(a) φ = 10 and ∆0 =
10−1.
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(b) φ = 10 and
∆0 = 1.
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(c) φ = 103 and ∆0 =
10−1.
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(d) φ = 103 and
∆0 = 1.

Figure 5.10: Evolution of trajectories obtained by the optimization process for σerr,µ = 2% for
different algorithms. The curve in black corresponds to the HF case. The curve in red corresponds
to the iterates for the reduced case with enrichment considering all available information (εPOD,u =
0) for ∆k =∞. The curve in cyan corresponds to the iterates for the reduced case with enrichment
considering all available information (εPOD,u = 0) for a ’classical’ trust-region algorithm.

First, we consider the case of a ’classical’ trust-region approach, that is to say using a Eu-
clidean distance (with adimensionalization). Figure 5.10 illustrates the interest of the trust-region
on the trajectory. In particular, we can see the difference between an initial radius ∆0 = 1 and
a initial radius ∆0 = 10−1 for a value of φ = 103 (close to an unregularized inverse problem).
Restricting the resolution domain prevents the trajectory from deviating too much from the tra-
jectory obtained for an HF case. The analysis we make of this observation is as follows: the fact
of having a small initial radius implies that we prevent the ROM from heading into regions where
the ROM loses validity.

In terms of relatives errors, Figure 5.11 provides the decreases in errors between iterates for
the ROM and in the HF case. We notice that the values tend towards zero and thus that the
parameter values obtained are approximately the same as in the HF case (maximum error up to the
percent). These two remarks illustrate the interest of the approach with ROM and trust-region:
first, we maintain a good quality of approximation, and second, the addition of the trust-region
allows the trajectory no to deviate in areas where the ROM has no validity.
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Figure 5.11: Relative errors between the points obtained during the reduced DA procedure
(E(i),r, ν(i),r) and the analysis obtained for the HF DA (Ea, νa) and by taking all the available
information (εPOD,u = 0).

5.5.6 Numerical examples for alternatives resolution algorithms for
the sub-problem

We intend to enhance the robustness of the approach by using other approaches for the sub-
problem solvers. Indeed, it may be interesting to provide an implementation for cases where
extracting the matrices for an adjoint calculation may be an issue. This situation may appear
when applying the methodology to the industrial-grade FE code code aster. First, we use a
first-order centered finite-difference gradient calculation. Namely, each component of the gradient
is computed according to the classical finite centered difference rule:

∀µ ∈ Rp, (∇J (µ))i =
∂J

∂µi
(µ) ≈ J (µ+ δµiei)− J (µ− δµiei)

2δµi

where ei is the i-th euclidian vector basis and δµi is sufficiently small. The approach is designed
not only to test the quality of gradient calculations using adjoint methods, but also to exploit an
approach requiring gradients for cases where explicit adjoint calculations are not feasible.

Use of an approximate gradient for L-BFGS-B

Figure 5.12 depicts the convergence of the solution by showing the decrease in relative errors over
the iterations. There is a small difference in values of relative errors throughout the iterations,
depending on the set of hyper-parameters, but the resulting final value is similar.

Use of gradient-free approach for sub-problem resolution

In addition, we investigate several gradient-free resolution methods. We rely on Python’s scipy

package, and in particular report results for two algorithms: Nelder-Mead and Powell. The Nelder-
Mead simplex algorithm [NM65] stands as a popular approach for optimizing multidimensional
unconstrained functions. Categorized within the broader class of direct search algorithms, these
methods rely on evaluating the function at a set of sample points and then employ this information
to guide further exploration. The Nelder-Mead minimization technique is predicated on assessing
the function values at (n+ 1) vertices of a general simplex. The simplex is subsequently modified
through operations like reflection, expansion, and contraction, aimed at replacing the vertex with
the highest objective function value with a point that yields a lower value. In contrast, the Powell
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Figure 5.12: Relative errors between iterates and actual values of physical parameters for a DA-TR-
ROM problem for a BFGS approach with exact gradient and approximate gradient (’classical’
approach) for σerr,µ = 25%.

method is a modification of Powell’s conjugate direction method [TFPV92][Pow64], a numerical
optimization technique used to minimize a function. In Powell’s method, the objective is to find
the minimum of a function, and it is distinct from traditional gradient-based methods because
it doesn’t require the function to be differentiable, and it doesn’t involve computing derivatives.
Instead, it performs sequential one-dimensional minimizations along a set of search vectors, which
are updated at each iteration during the main minimization loop (using golden-section search for
instance).

Comparison of different resolution algorithms

In conclusion, we propose a comparison of the results for all the approaches used. Figure 5.14
displays the decreasing values of the cost functions for the two approaches (classical and error-
aware). We notice that the values of the cost functions at convergence are of a similar order of
magnitude. Figure 5.15 illustrates the decrease in relative values (comparison between iterated
and actual values). All algorithms converge to the same value for all approaches, demonstrating
the robustness of the implementation.
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Figure 5.13: Relative errors between iterates and actual values of physical parameters for a DA-
TR-ROM problem for different gradient-free solving algorithms for different initial radii ∆0 for
(σerr,µ, φ) = (25%, 1000).
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Figure 5.14: Evolution of the HF cost function for a DA-TR-ROM problem for different solution
algorithms (with exact gradients, with approximate gradients and without gradients) for an initial
radius of ∆0 = 1.0 for (σerr,µ, φ) = (25%, 1000).

5.6 Numerical analysis of a data-assimilation problem for

a hyperelastic material

In this section, we present numerical results an hyperelastic material. The objective of this study
is to extend the results obtained in the previous section to a nonlinear case, while remaining in
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Figure 5.15: Relative errors between iterates and actual values of physical parameters for a DA-TR-
ROM problem for different solving algorithms (with exact gradients, with approximate gradients
and without gradients) for an initial radius of ∆0 = 1.0 for (σerr,µ, φ) = (25%, 1000).

a static case within the framework of elasticity. The formalism of hyper-elasticity checks these
assumptions. First, we present the general formalism associated with a neo-Hookean hyper-elastic
model. Second, we present the numerical case studied (geometry and mesh), before presenting
numerical results.

5.6.1 Formulation of the physical problem

We provide hereine the HF formulation of an hyperelastic material. Such formalism is used in
order to model highly deformable structures, and is founded on the definition of a energy which
is defined as the quantity of elastic energy that the material stores as a function of the stretching
imposed. Indeed, an hyperelastic problem can be expressed as a minimization problem. We aim
at finding a uµ ∈ X that minimizes a given total potential energy Π (u, µ):

uµ = arg min
u∈X

Π (u, µ) , with Π (u, µ) =

∫

Ω

ψ (u, µ) dx

︸ ︷︷ ︸
Πint

−
(∫

Ω

fvu dx+

∫

Γn

fsu ds

)

︸ ︷︷ ︸
Πext

where the ψ is the elastic energy density, fv is a body force and fs is a traction force. At the
minimum point (uµ) of the potential, its directional derivative with respect to change in the
displacement field uµ is equal to zero ∀v ∈ X hf :

G (uµ, v, µ) = DvΠ =
dΠ (u+ εv)

dε
|ε=0 = 0, (5.26)
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In order to define the stored elastic energy density, we introduce the deformation gradient F (u)
and the Cauchy-Green tensor C (u) for a given displacement u. Those tensors are needed in order
to introduce invariants such as Ic (u) and J (u) (scalars), defined as follows:

{
F (u) = I +∇u
C (u) = [F (u)]> F (u)

and

{
J (u) = det (F (u))
Ic (u) = tr (C (u))

The choice of the hyper-elasticity model corresponds to a choice of the expression of the stored
energy. The latter is expressed thanks to invariants. In our case, we consider a neo-Hookean type
modeling, whose total potential energy is of the form:

ψ (u, µ) =
G

2
(Ic (u)− 3)−G ln (J (u)) +

λ

2
ln (J (u))2 (5.27)

When seeking to calculate the sensitivities of the residual, we decompose the variational form
in order to have terms depending only on the field of displacement and others depending only on
the parameter. We begin by the decomposition of the stored elastic energy:

ψ (u, µ) =
G

2
(Ic − 3)︸ ︷︷ ︸

=ψ1

−G ln (J)︸ ︷︷ ︸
=ψ2

+
λ

2
ln (J)2

︸ ︷︷ ︸
=ψ3

(5.28)

This induces a decomposition of the total potential energy in three seperate terms:

Πint (u, µ) =
G

2

∫

Ω

ψ1 dx

︸ ︷︷ ︸
Πint

1

−G
∫

Ω

ψ2 dx

︸ ︷︷ ︸
Πint

2

+
λ

2

∫

Ω

ψ2 dx

︸ ︷︷ ︸
=Πint

3

(5.29)

The discrete residual can be thus decomposed thanks to three vectors f int
i which are expressed as

nonlinear combination of u:

Rhf (u, µ) =
G

2
f int
1 (u)−Gf int

2 (u) +
λ

2
f int
3 (u)− f ext (5.30)

We reproduce the previous procedure by expressing this discrete residue using the components of
the µ vector:

Rhf (u, µ) =
G

2
f int
1 (u)−Gf int

2 (u) +
λ

2
f int
3 (u)− f ext

= G

(
1

2
f int
1 (u)− f int

2 (u)

)
+
λ

2
f int
3 (u)− f ext

=
E

2 (1 + ν)

(
1

2
f int
1 (u)− f int

2 (u)

)
+

Eν

2 (1 + ν) (1− 2ν)
f int
3 (u)− f ext

As a result, we dispose of a parametric affine decomposition of the discrete residual as in
the case of linear elasticity. In this case, however, the internal force terms are nonlinear terms.
Consequently, the gain in terms of CPU cost is not fully effective unless hyper-reduction is used.
Nevertheless, we chose a nonlinear example in order to illustrate the good convergence of the
algorithm in the case of introducing a nonlinearity. Therefore, for this numerical example, we
decide not to use a hyper-reduction process.

120



5.6. NUMERICAL ANALYSIS OF A DATA-ASSIMILATION PROBLEM FOR A HYPERELASTIC MATERIAL

5.6.2 Two-dimensional hyperelastic test case

Holed-squared under volumic loading

We consider a two-dimensional square subjected to a volumetric force. Figure 5.16 represents the
mesh used for the HF calculations, and the set of parameters is given in Table 5.21. We use a
vertical body force loading.

(a) HF mesh used for the hyperelastic squared
plate test case.

Lx Ly r Ne N
5 5 3.5 1203 5060

(b) Summary of the information (mesh and ge-
ometry).

Figure 5.16: Information about the geometry and the mesh for a holed square.

The type of geometry is quite similar to the case of linear elasticity, where we take into account
a symmetrical geometry. Symmetrical boundary conditions entail that vertical displacements are
restrained at the bottom, while horizontal displacements are restrained at the left. The rest of
the edges are left free. Figure 5.17 represents some HF snapshots (with a multiplicative factor for
visualization) to help observe the displacement field studied.

(a) uhf snapshot for µ =
(E, ν) = (25 · 103, 0.3).

(b) uhf snapshot for µ =
(E, ν) = (50 · 103, 0.3).

(c) uhf snapshot for µ =
(E, ν) = (75 · 103, 0.3).

Figure 5.17: HF snapshots obtained for different sets of parameters for the hyperelastic problem
(×3 for visualisation).

In the present context, we shall consider two observation operators. First, we retain the
simplest operator available and used previously, i.e. one that relies on the entire field (identity).
Second, we look at an operator restricted to two points: the displacement at (0, r) and (r, 0), i.e.
at the intersection between the hole and the vertical and horizontal axes. Hence, these examples
provide an indication of both the extension of the methodology to a nonlinear case, and the use
of a local observation operator, which stand for two ways of stiffening the optimization problem.
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Numerical results on the holed-squared under volumic loading

In this section, we report some numerical results on this geometry and constitutive equation. The
objective of this part is not to perform an extensive study of the algorithm’s behavior on this case,
but to extend the previous experiments to more complex situations to highlight the applicability
of the methodology. In this respect, we restrict ourselves to the use of L-BFGS solver by adjoint
method, as detailed in the previous sections.
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(b) Local observations.

Figure 5.18: Plot of the HF cost function estimated at iterates of the reduced problem, for
different values of initial radii, comparing evolutions for a global or local observation operator for
(σerr,µ, φ) = (25%, 1000).

We achieve a decay of the cost functional and convergence towards an estimate of the param-
eters, whether for an operator over the whole field or for a local operator (cf. Figure 5.18). As
shown in the linear case, the speed of convergence does depend on the initial radius provided
(the method’s hyperparameter), but the cost functional converges to a plateau of similar order of
magnitude depending on the input radius. Furthermore, the plot of iterates and relative errors for
a ’classical’ approach compared to the expected value clearly indicates convergence towards
the desired value, and demonstrates the high quality of the method (cf. Figure 5.19).

In addition, these findings also apply to the case of an error-aware method (’errind’) featuring
an error indicator, in which we converge on the desired solution (cf. Figure 5.20). However, we
shall take the time to add a comment. We report here on results for two different initial radii,
depending on the observation operators, since in this case the convergence of the algorithm is more
sensitive to hyper-parameters, and a priori estimation of the right choice is not always obvious.
Indeed, we rely on error indicators. All we have is a correlation between the approximation errors
between the reduced model and HF and the error indicators. The order of magnitude of these two
quantities are not necessarily the same, and the ”slope” of the correlation is not known in advance.
As a result, this method requires particular care when choosing hyper-parameters, although it does
work and provides quality analyses.

5.6.3 Four-dimensional hyperelastic test case

Geometry and loadings

At last, we introduce a last elasticity case, also founded on hyper-elasticity. The objective of this
test case is to remain with a nonlinear problem while increasing the dimension of the parameter
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Figure 5.19: Evolution of the parameters and the relative errors on the components of the param-
eter vector comparing to the true parameter for different values of initial radii for ’classical’

approach and both global and local observation operators for (σerr,µ, φ) = (25%, 1000).
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Figure 5.20: Evolution of the parameters and the relative errors on the components of the param-
eter vector comparing to the true parameter for the ’errind’ approach and both global (∆0 = 1)
and local observation operators (∆0 = 10) for (σerr,µ, φ) = (25%, 1000).

space. In order to achieve this goal, we consider a rectangular domain with several holes subjected
to a volume force. Circular holes do not have a similar radius across all four holes. The two holes
(half of a circle) at the bottom of the domain have radius r, while the hole in the middle of the
domain on the left (resp. right) has a radius of size rφratio

l (resp. rφratio
r ). Therefore, we have a
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Lx Ly r φratio
r φratio

l Ne N
5 5 1 1.1 0.9 1252 5334

Figure 5.21: Summary of the information (mesh and geometry) for the hyperelastic rectangle test
case.

geometric asymmetry. In addition to this geometric asymmetry, the material has an asymmetry
in terms of physical parameters. The perforated rectangular block is separated vertically with
two distinct hyper-elastic materials, one formed by a pair of material parameters (E0, ν0), and the
other by a second pair (E1, ν1). Figure 5.22 displays the numerical values defining the geometric
domain are provided. The visualisation of the mesh and an example of HF snapshot is provided
on Figure 5.22. As a result, we artificially created a test case with a nonlinearity in terms of
mechanical behavior, asymmetry and a 4-dimensional parameter space. In this case, the vector of
parameters studied is defined as follows:

µ = [E0, ν0, E1, ν1]> ∈ R4

(a) HF mesh used. (b) Example of HF snapshot.

Figure 5.22: Visualisation of mesh and snapshots for the hyperelastic rectangle test case: HF mesh
(cf. Figure 5.22a) and HF snapshot obtained for a given set of parameters (×3 for visualisation)
for (E0, ν0, E1, ν1) = (52.5e3, 0.275, 47.5e3, 0.325) ∈ R4 (cf. Figure 5.22b)

Numerical validation for the four-dimensional parameter with a nonlinear behavior

We present numerical outcomes for a 4-dimensional parameter, emphasizing that our objective is
not an exhaustive analysis of the test case but rather an extension of prior efforts to showcase
the method’s effectiveness in more complex scenarios. The heightened dimension of the current
parameter could stiffen the optimization problem or introduce multiple local optima. Hence, for
such scenarios, we have incorporated the use of bounds to tackle these potential complexities
(µi ∈ [µmin

i , µmax
i ]). We refrain from elaborating further on this matter, as the employment of

bounds for convergence facilitation is a well-established practice in optimization. In our approach,
the selection of an alpha parameter allows us to delineate the resolution domain for each parameter:

µmax
i = µb + αbd

σerr,µ

100
µb, and µmin

i = µb − αbd
σerr,µ

100
µb (5.31)

It is crucial to recognize that this approach is applicable in synthetic experiments; in real-world
situations, such intervals would typically be determined based on engineers’ expertise.
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Figure 5.23: Evolution of the parameters and the relative errors on the components of the param-
eter vector comparing to the true parameter for different values of initial radii for ’classical’

approach on the overall field for a four dimensional test case for (σerr,µ, φ) = (25%, 1000).

Similar to previous cases, we attain a robust approximation quality for the optimization prob-
lem across different initial region values in the ’classical’ setting. In this context, we highlight
that convergence quality remains consistent for all four studied parameters (cf. Figure 5.23). Fur-
thermore, similar results are obtained when employing an error-aware approach (cf. Figure 5.24).
We reiterate the significance of hyperparameter selection for this approach. The algorithm ex-
hibits heightened sensitivity to this hyperparameter in the error-aware scenario (hence the limited
presentation of results in this case). Nevertheless, a well-informed choice becomes feasible once
the correlation between the indicator and approximation error is established.

5.7 Numerical analysis of data-assimilation using code aster:

application to an elasto-plastic material

In this section, we embark on an initial exploration of the trust-region methodology applied to
the reduction approach developed within code aster. The primary objective is to showcase the
applicability of this method within industrial numerical tools, aligning with prior research endeav-
ors. From an algorithmic standpoint, we seek to ascertain the compatibility of these algorithms
with our code structure. In terms of problem complexity, this approach allows us to numerically
explore two avenues: firstly, the complexification of behavior by incorporating quasi-static aspects
and internal variables, and secondly, the consideration of the hyper-reduction process. To do so,
we choose to illustrate the methodology’s first step with the case of the elasto-plastic plate. This
strategy aligns with the same philosophy used for model reduction, aiming for a gradual increase
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Figure 5.24: Evolution of the parameters and the relative errors on the components of the param-
eter vector comparing to the true parameter for ∆0 = 10 for ’errind’ approach on the overall
field for a four dimensional test case for (σerr,µ, φ) = (25%, 1000).

in complexity in the cases studied. To maintain the original formulation, we restrict our analysis
to the final state during the recalibration process, thus remaining within the framework of twin
experiments. The ultimate goal is to determine the parameters used for data generation, given
the knowledge of the final state.

5.7.1 HF calibration example for an elasto-plastic material

We start by defining the twin experiment, utilizing an elasto-plastic behavior law similar to the
one outlined in the previous section of the chapter. The emphasis is on adjusting a vector µ ∈ R4

containing two elasticity parameters and two hardening parameters. Thus, the background vector
is defined as follows:

µb = [Eb, νb, apui,b, σy,b]> ∈ R4

Initially, observe that the choice of the adimensionalization process is tailored to elasticity exam-
ples. The approach presented here proves more robust and is recommended for the expansion of
our research. Practically, recalibration relies on using a multiplier λµ ∈ R4 rather than concen-
trating on physical parameters. We choose to consider the background multiplier as the reference
for multipliers, that is to say λb = [1, 1, 1, 1]>. The key is to consider the inverse problem, where
the regularisation term becomes ‖λµ − λb‖2, in order to seek the parameter multiplier λµ, defined
as:

µ =




λEEb

λννb

λapuiapui,b

λσyσy,b


 ∈ R4. (5.32)

For the tests presented here, we consider an approximate gradient-solving approach using finite
differences. The goal is to validate the algorithm’s compatibility with the problems at hand, and
the non-optimality of relying on finite differences is not seen as a major concern.

The optimization calculations on a four-parameter model yield insightful results. There is com-
mendable convergence in the elasticity parameters, with minimal changes observed in the plasticity
parameters (cf. Figure 5.26). In the specific context considered, where only displacement field
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Figure 5.25: Evolution of the cost function on the components of the parameter vector comparing
to the true parameter for a HF resolution on the overall field for a four dimensional elasto-plasticity
test case for (σerr,µ, φ) = (25%, 1000).

measurements are available and the system operates within a regime with limited plasticization,
the logical outcome is a significant impact of elasticity parameter variations on the displacement
field. This alignment with expectations leads to a noticeable reduction in the cost functional (cf.
Figure 5.25). It’s noteworthy that the absence of stress measurements, while physically inaccessi-
ble at present, limits the full recalibration of other parameters. This observation is not exclusively
tied to ROM but is visualized in the HF case, suggesting potential opportunities for further cali-
bration with stress measurements if available.
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Figure 5.26: Evolution of the relative errors on the components of the parameter vector comparing
to the true parameter for a HF resolution on the overall field for a four dimensional elasto-plasticity
test case for (σerr,µ, φ) = (25%, 1000).

5.7.2 Preliminary tests for calibration using on-the-fly ROM adapta-
tion with code aster

The test case involves initial attempts at parameter calibration on a full field using on-the-fly
hyper-reduced ROM adaptation with code aster, focusing on cases with internal variables. The
primary objective is not an exhaustive review but rather to gauge whether this algorithm could
be a viable solution in the future. To assess this, we conducted a relatively straightforward case
across the entire mechanical field, considering only the final state. Previous observations on the
HF case highlight the significance of monitoring the evolution of the two elasticity parameters.
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We specifically examine a full pod case with enrichment at each TR center µk.
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Figure 5.27: Evolution of the relative errors on the parameter when using ECSW hyper-reduced
ROMs with on-the-fly adaptation with a full POD (elasto-plasticity test case for (σerr,µ, φ) =
(25%, 1000)): Figures 5.27a-5.27b-5.27c are generated for a fixed POD tolerance and Figures
5.27d-5.27e-5.27f are generated for a fixed hyper-reduction tolerance.

Figure 5.27 illustrates two sets of variations: one with a fixed POD tolerance (εPOD,u) and
the other with a fixed hyper-reduction tolerance (δ). These two hyperparameters, controlling
the compression of the basis and meshing, are the key manipulable variables. As expected, for
overly coarse tolerances (≈ 10−2), the algorithm struggles to converge toward the correct solu-
tion for both tolerances. Notably, the POD tolerance exerts a more significant influence than
the hyper-reduction tolerance in our case. However, for reasonable tolerances, the quality of the
approximation achieved is comparable to that of a HF case. This is particularly intriguing as
the number of iterations is close to that of a HF case, implying substantial computational gains
provided that offline costs are optimized (hyper-reduction, reduced basis construction).

These initial indications suggest that the methodology is compatible with the hyper-reduced
ROMs previously built. Nevertheless, a number of tests remain to be carried out in order to
convince ourselves of its quality, notably by making the problem more complex. This would
involve, for example, a highly plasticized case.
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5.8 Conclusion

In this chapter, we presented a novel approach for constructing on-the-fly ROMs during iterations
of an optimization problem. We have demonstrated that trust-region-based approaches, commonly
applied in the literature for PDE-constrained optimization formulations in general, are well-suited
for data assimilation problems, viewing them as optimization challenges. Numerically, we initially
showcased the method’s capability to solve elasticity problems, both linear and nonlinear, without
the use of hyper-reduction. The approach yielded compelling results in terms of parameter conver-
gence and iteration efficiency compared to HF cases. Furthermore, we established its adaptability
to a variety of numerical solvers, with or without gradients, a crucial aspect for the generic appli-
cation to industrial computational codes. This comprehensive study paved the way for initial tests
on code aster. Although not exhaustive, these tests indicate that the method is compatible with
hyper-reduction strategies for more complex problems. Several avenues for future work are, how-
ever, worth exploring. Firstly, enhancing the calibration problem’s complexity, whether in terms
of physics (e.g., standard section) or observation localization, may require suitable adjustments in
the on-the-fly construction. This ensures the method’s capability to handle less well-posed inverse
problems. Secondly, a more in-depth consideration of error indicators could prove valuable for
leveraging information during the optimization process. Yet, this also emphasizes the need for
robust indicators across a broader range of cases, particularly in multi-modeling scenarios.
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Chapter 6
Acceleration of iterative procedures involving
reduced-order models

6.1 Introduction

In the domain of applied mathematics and engineering, the justification for employing iterative
processes is firmly grounded in theoretical underpinnings, showcasing their efficacy in practical
implementations. These strategies include optimization algorithms (cf. Chapter 5) and greedy
processes (cf. Chapter 2), e.g. for building ROMs. However, transitioning these theoretically de-
veloped approaches to industrial or real-world settings encounters significant challenges, primarily
driven by computational costs. Indeed, when accouting for the computational costs within the
online/offline paradigm (cf. Figure 1.5), one may not underestimate offline computations even
if online computational gains are substantial. Indeed, it can become a critical consideration in
addressing real-world engineering problems.

This chapter explores the intricate relationships between theoretical foundations, practical
efficiency, and the obstacles hindering real-world applicability in iterative processes. Through
examples drawn from our research, where the offline/online paradigm is applied, implementation
and use within an industrial context may encounter a number of practical limitations. Notably,
while greedy algorithms prove optimally or near-optimally efficient in numerous scenarios, their
inherently sequential nature can lead to prohibitively high computational costs, especially when
individual unit computations are resource-intensive. This is particularly the case when using
industrial-grade code such as code aster, with its complex three-dimensional models, and the
costs associated with initializing data structures. Furthermore, even with the substantial accel-
eration achieved through the introduced hyper-reduction methodology for online computations,
processes involving EQ procedure rely on optimization problems during the offline stage (cf. Equa-
tion (2.38)). The computational cost for solving such problems escalates with an increase in the
number of rows (representing snapshots and modes: essentially the size of the approximation and
training spaces) and columns (indicating mesh size).

Despite these challenges, even on-the-fly methods operating beyond the offline/online paradigm
encounter similar issues. On-the-fly construction of reduced order bases for optimization problem,
may lead to bases, whose size can expand throughout iterations, potentially compromising speedup
gains. While the methodologies presented in this thesis offer undeniable advantages and pave the
way for applications in real-world scenarios, their optimization is imperative for genuine applica-
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bility with substantial computational cost reductions. The objective of this chapter is to explore
avenues for accelerating iterative processes involving ROMs, with the ultimate goal of easing their
practical utilization. We delineate three primary research directions for accelerating computa-
tional problems. The ideas provided hereafter emerged from the study of greedy processes, but
may also be applicable to optimization problems. First, we could explore the feasibility of employ-
ing a multi-fidelity approach to sample the parametric space. Specifically, we investigate meshes
of varying resolutions (coarse or fine mesh resolution) to generate a sampling of the parametric
space. Second, we introduce an acceleration strategy for optimization algorithms in the derivation
of quadrature rules, specifically when employing an incremental data compression process. This
approach is practical for greedy processes with incremental POD to significantly reduce offline
costs. Moreover, it can serve as a suitable method for optimization problems involving enriched
reduced bases built on a hierarchical foundation.

The theoretical and numerical aspects discussed in this section are based on content extracted
from an online preprint, specifically drawing from the following publication:

� [AT24] Eki Agouzal and Tommaso Taddei. Accelerated construction of projection-based
reduced-order models via incremental approaches. arXiv preprint arXiv:2401.07108, 2024.

6.2 Acceleration processes for greedy procedure

Building upon Veroy’s pioneering work [VPRP03], numerous authors have applied greedy methods
for parameter sampling. We may refer to Chapter 2 for more details on these approaches. Despite
being widely used and extensively studied, these approaches may suffer from several limitations.
On one hand, such algorithms are purely sequential and cannot leverage parallel computation to
reduce CPU costs. Moreover, the offline computation cost at each iteration must be considered:
this includes computing the reduced basis, constructing the empirical quadrature, or iterating over
the training set to determine the least-approximated parameter. We present several approaches
here to expedite the computation times of these different blocks, aiming to enhance the practical
utility of these algorithms. Here, we introduce several approaches to expedite these processes. On
one hand, we propose a multi-fidelity (specifically, bi-fidelity) approach to accelerate the sampling
of the parametric space (see Section 6.2.1), and on the other hand, an incremental approach for
computing the EQ rule (see Section 6.2.2).

To illustrate our methodologies, we revisit the two cases employed for constructing the re-
duced model, namely the elasto-plastic perforated plate and the standard section of a NCB. The
geometry slightly differs for the perforated plate case, where the hole diameter is proportionally
smaller concerning the plate size compared to the cases presented in Chapter 4. In order to present
bi-fidelity approaches, we have at our disposal various meshes. For the elasto-plastic plate, we
present three finely refined meshes uniformly covering the entire geometry (cf. Figures 6.1a, 6.1b,
6.1c). In the industrial case of the standard section of a NCB (cf. Figures 6.1d, 6.1e), we also
applied a uniform refinement based on the mesh commonly used in practical industrial studies,
where only a shape factor is increased. The selection of different mesh sizes is made to obtain finer
meshes while striving to keep the evaluation cost manageable to conduct the tests presented in
this thesis. The various meshes used and additional information are provided in Figure 6.1. The
HF simulations of section 4.2 are performed using the FE software code aster and executed over
a commodity Linux workstation (RAM 32 GB, Intel i7-9850H CPU 2.60 GHz x 12); on the other
hand, the model order reduction procedure relies on an in-house Python code and is executed on
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a Windows workstation (RAM 16 GB, Intel i7-9750H CPU 2.60 GHz x 12).

(a) mesh 1

(EP).
(b) mesh 2

(EP).
(c) mesh 3

(EP). (d) mesh 1 (SS). (e) mesh 2 (SS).

Figure 6.1: Presentation of the different three-dimensional meshes used for the calculations with
code aster. We have 3 meshes of plate with holes (elasto-plastic behavior) under tensile loading:
: (a) coarse mesh (mesh 1: Ne = 1063); (b) intermediate mesh (mesh 2: Ne = 5153); (b) refined
mesh (mesh 3: Ne = 10288); and 2 meshes for a standard section of a power plant containment
building: (a) coarse mesh (mesh 1: Ne = 784); (b) refined mesh (mesh 2: Ne = 1600).
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6.2.1 Multi-fidelity approach for parameter sampling

Initially, we introduce a multi-fidelity approach, drawing inspiration from existing works wherein
coarser simulations are employed to explore the parametric space [BTT24]. This methodology
seeks to minimize the offline computational costs associated with HF simulations. More precisely,
our approach is rather a bi-fidelity approach. Given two meshes, one finer and one coarser, param-
eter sampling using a greedy approach can be performed for both. Consequently, the algorithm
provides an ordered list of parameters {µj}j for exploration to construct a ROM. Application
of this list to the finer mesh yields a ROM with the desired precision. Once the list of param-
eters has been obtained, it is worth assessing the quality of this sampling on the finest mesh.
The bi-fidelity approach is therefore of interest when the sampling obtained on a coarse mesh
provides a good approximation quality, or even a quality similar to that which would have been
obtained by sampling directly with the fine mesh. More precisely, we compute the indices to
explore across all possible meshes {T hf

i }i∈Icomp
• for • ∈ {ep, ss}. The notation ’ep’ refers to the

numerical test cases associated with the elasto-plastic plate, while ’ss’ is indicative of scenarios
pertaining to the standard section. In order to acquire sets of indices, we first compute trajectories
for all parameters in the training set Θtrain and across all available meshes. The, we can rely on a
strong POD-Greedy relying on projection errors to sample the parametric space (see Algorithm 4).

Algorithm 4 Generation of an a priori sampling of the parameter space for a given HF mesh.

Require: a HF mesh T hf
i , and a training set Θtrain

1: Generate HF data for the mesh T hf
i : Uhf

µ,i =
{

u
hf,(k)
µ,i

}K
k=1

, ∀µ ∈ Θtrain

2: Compute explored indexes through a POD strong-greedy process: . See Algorithm 5

indexes(i) = POD-strong-greedy
({

Uhf
µ,i

}
µ∈Θtrain

)

The detailed steps of a strong POD-Greedy approach grounded in projection errors are elucidated
by Algorithm 5. This approach closely aligns with our prior work, particularly concerning the
compression stages involving hierarchical bases (cf. Section 2.3.4). The significant divergence lies
in the foundation on projection errors rather than approximation errors. The primary motivation
behind this choice primarily stems from the desire for test case reproductibility in this section. In
formulating the numerical experiment, we sought a framework where we could forego successive
calls to code aster for practicality reasons (and reproductibility if sharing data with a third party
without installation). This is entirely achievable within this framework, as it only requires access
to precomputed HF snapshots. Aside from this technical detail, the core of the method remains
essentially identical.

Our primary focus is directed towards our case of interest, specifically the standard section of
a NCB. Before relying on the multi-fidelity strategy, we should have a comparative evaluation of
solution quality across meshes of varying granularity. As elucidated in Chapter 4, these meshes are
predominantly utilized for extracting quantities of interest (QoIs), notably normal forces within
the bars and deformations at the sensor locations. Thus, we must have at our disposal a met-
ric that compares these magnitudes between our finest mesh, considered as a reference, and the
coarser mesh. Within this section, we study the solution behavior with respect to two parameters:
the desiccation creep viscosity (ηdc) and the basic creep consolidation parameter (κ) in the param-
eter range µ ∈ P = [5 · 108, 5 · 1010]× [10−5, 10−3] ⊂ R2. We consider a 7 by 7 training set Θtrain
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Algorithm 5 POD strong-greedy process on projection errors (using `2-norm).

Require: Training set Θtrain of size ntrain, nit ∈ N∗ the number of iterations
1: Z = [], Θ∗ = ∅ . Empty reduced basis and set of explored parameters
2: for iit ∈ {1, ..., nit} do
3: for µ ∈ Θtrain \Θ∗ do
4: if iit == 1 then
5: Take the generalized coordinates ∀k ∈ {1, ..., K}:

e(k)
µ = uhf,(k)

µ

6: else
7: Compute error at every time step ∀k ∈ {1, ..., K}:

e(k)
µ = uhf,(k)

µ − ZZ>uhf,(k)
µ

8: end if
9: Compute the time-averaged error:

Eavg
µ =

√√√√ 1

T

K∑

k=1

∆tk

∥∥∥e(k)
µ

∥∥∥
2

2
/

√√√√ 1

T

K∑

k=1

∆tk

∥∥∥u(k)
µ

∥∥∥
2

2

10: end for
11: Take the most poorly-approximated trajectory:

µ∗ = arg max
µ∈Θtrain\Θ∗

Eavg
µ (6.1)

12: Update the set Θ∗ = Θ∗ ∪ {µ∗} . Can be formulated using indexes of parameters within
Θtrain

13: if iit == 1 then
14: Compute reduced order basis: . Equation (2.27)

Zu = POD
(
{ΠZ⊥uµ}Kk=1, (·, ·) , εPOD,u

)

15: else

Zu = [Zu,Zu,new] , with Zu,new = POD
(
{ΠZ⊥uµ}Kk=1, (·, ·) , εPOD,u

)

16: end if
17: end for

and a 5 by 5 test set Θtest. For both sets, parameters are logarithmically spaced in both directions.
Figure 6.2 shows the behavior of (a) the normal force on a horizontal cable, and (b) the tangential
and (c) vertical strains on the outer wall of the standard section of the containment building, for
three distinct parameter values µ(i) = (5.109, κ(i)), for κ(i) ∈ {10−5, 10−4, 10−3}, i = 1, 2, 3. As
previsouly mentioned,“-E” notation indicates that the HF data are associated to the outer face
of the structure. Figure 6.2 showcases the evolution of normal forces in the central horizontal
cable (NH2), the vertical (εzz) and the tangential (εtt) deformations on the outer surface of the
geometry. Indeed, one can observe, for instance, that alterations in the consolidation parameter
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κ exert an influence on the rate of decline of the diverse quantities.
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Figure 6.2: Mechanical response of a NCB under external loading. Comparison of the quantities
of interest computed for the two meshes of the standard section: (a) normal force on a horizontal
cable, (b) tangential and (c) vertical strains on the outer wall of the standard section of the
containment building.

An examination of these QoIs on both meshes illustrates that the evolution profiles are closely
aligned. Figure 6.3 depicts the plots for a parameter at the center of the studied cartesian grid.
The temporal evolutions are comparable, and the profiles overlap for all QoIs. Furthermore, this
effect is substantiated through an analysis of errors across the training set. We introduce errors
on the QoI by considering the temporal evolution:

Emax
µ =

maxk=1,...,K |qhf,(1)
µ (t(k))− qhf,(2)

µ (t(k))|
maxk=1,...,K |qhf,(2)

µ (t(k))|
, Eavg

µ =

∑K
k=1 ∆t(k)|qhf,(1)

µ (t(k))− qhf,(2)
µ (t(k))| dt

∑K
k=1 |q

hf,(2)
µ (t(k))|

.

(6.2)

where q
hf,(i)
µ denotes a given QoI for the mesh i. These two errors reflect the maximum error on

the time trajectory (Emax
µ ) and a time-averaged error over the entire simulated life of the structure

(Eavg
µ ). Table 6.1 shows the behavior of the maximum and average relative errors for the three

QoIs of Figure 6.2. The statistical errors reveal a close equivalence in the results obtained from
the two meshes in the context of this model problem.

max
µ∈Ptrain

Emax
µ (·) Emax

µ (·)/ntrain max
µ∈Ptrain

Eavg
µ (·) Eavg

µ (·)/ntrain

NH2 2.86 · 10−2 6.55 · 10−4 2.86 · 10−2 3.91 · 10−5

εtt − E 4.42 · 10−2 7.68 · 10−3 7.87 · 10−3 4.84 · 10−3

εzz − E 5.03 · 10−2 1.09 · 10−2 1.38 · 10−2 6.73 · 10−3

Table 6.1: Mechanical response of a NCB under external loading. Computation of average (column
1 and 3) and maximum (column 2 and 4) errors over the training set for several errors on the
quantities of interest: maximum error over all time steps (cf. Equation (6.2)).

136



6.2. ACCELERATION PROCESSES FOR GREEDY PROCEDURE

0 1 2 3 4 5 6
·108

0

2

4

·106

t (s)

N
H

2

mesh 1
mesh 2

(a)

1 2 3 4 5 6
·108

−8

−7

−6

−5

−4

·10−4

t (s)

ε t
t

-
E mesh 1

mesh 2

(b)

1 2 3 4 5 6
·108

−6

−5

−4

−3

·10−4

t (s)

ε z
z

-
E mesh 1

mesh 2

(c)

Figure 6.3: Mechanical response of a NCB under external loading. Comparison of the quantities
of interest computed for the two meshes of the standard section: (a) normal force on a horizontal
cable, (b) tangential and (c) vertical strains on the outer wall of the standard section of the
containment building.

Table 6.2 offers a detailed breakdown of the costs associated with the HF solver across the training
set for the two meshes. It is noteworthy that the wall-clock time for a complete HF simulation is
around nine minutes for the coarse mesh and seventeen minutes for the refined mesh.

mean max min Q1 median Q3
mesh 1 546.91 905.53 386.96 387.04 387.12 387.19
mesh 2 1034.07 1658.53 747.60 748.20 749.78 749.40

Table 6.2: HF CPU cost in seconds (s) for the HF simulations on the coarse (mesh 1 - SS) and
the refined mesh (mesh 2 - SS).
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Figure 6.4: Parameters {µj}j selected by Algorithm 5 for (a) the coarse mesh (mesh 1 - SS) and
(b) the refined mesh (mesh 2 - SS).

The entirety of these comparisons, illustrated through this numerical case, demonstrates a
scenario wherein a refined mesh, despite affording a more detailed approach to the problem, can
be effectively approximated by a coarser counterpart. Within this example, solver calls on the
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coarser mesh are approximately half as computationally expensive. Employing the coarse mesh
for sampling could potentially halve the computation time for an equivalent number of iterations.
Figure 6.4 exhibits the parameters chosen by the algorithm for both the coarse (mesh 1 - SS - cf.
Figure 6.4a) and refined (mesh 2 - SS - cf. Figure 6.4b) meshes. We can notice that a significant
proportion of the sampled parameters is concentrated in the bottom-left corner of the parameter
domain for both meshes. To assess the influence of the sampling strategy on performance, we
quantify the projection error. Our objective is to compute the projection errors on a specified set
(either test or train) for a given sampling:

Eproj
it (Θ•) = max

µ∈Θ•

|||Uµ − ΠZit
Uµ|||

|||Uµ|||
, • ∈ {train, test} (6.3)

where ΠZit
Uµ := {ΠZitu(k)

µ } and |||V||| =
√∑K

k=1 ∆t(k)‖v(k)‖2 is the discrete L2(0, T ; ‖ · ‖) norm.

For this case, we choose ‖ • ‖ = ‖ • ‖2 to be consistent with the norm used in the sampling
strategy. This error is consistently computed on the finest mesh, treated as the reference solution.
The performance, as measured through the projection error (cf Equation (6.3)), for the two sam-
ples depicted in the Figure 6.4 is presented in the Figure 6.5, considering both training and test
sets. Remarkably, for this model problem, the choice of the sampling strategy exhibits minimal
impact on performance. Nevertheless, even in this case, the greedy procedure based on the coarse
mesh consistently outperforms random sampling. For this relatively regular problem, it appears
judicious to employ a sampling strategy on a coarser mesh for parameter space exploration, as it
does not seem to significantly degrade the efficacy of the strategy.
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Figure 6.5: Mechanical response of a NCB under external loading. Behavior of the projection
error Eproj

it (6.3) for parameters selected by Algorithm 5 based on coarse (mesh 1) and fine data
(mesh 2); comparison with random sampling: (a) performance on Θtest (5 × 5); (b) performance
on Θtrain (7× 7); (c) behavior of the basis size nit.

To showcase the potential of parameter sampling, we succinctly outline the exploration of the
parametric space in the case of the elasto-plastic plate. Figure 6.6 depicts the parameter sampling
for the three aforementioned meshes. Notably, the Poisson’s coefficient ν exhibits a more significant
impact than the Young’s modulus E across all three meshes, which aligns with the inherent
nonlinear nature of the solution with respect to ν, even within the elastic regime. Despite some
differences, the sampling displays a similar structure in all three cases. This consistency across
varying mesh fineness, given sufficiently close solutions, is further underscored by the second
example. It highlights the capacity of this bi-fidelity strategy to capture nonlinear parameter

138



6.2. ACCELERATION PROCESSES FOR GREEDY PROCEDURE

105 106

0.2

0.25

0.3

0.35

0.4
1

2

3

4

5

6 7 8 9

10 11 12

13 14

E

ν

(a)

105 106

0.2

0.25

0.3

0.35

0.4
1

2

3

4 5 6

7 8 9

10 11 12 13 14

E

ν
(b)

105 106

0.2

0.25

0.3

0.35

0.4
1

2

3

4 5 6

7 8 9 10 11 12

13 14

E

ν

(c)

Figure 6.6: Parameters {µj}j selected by Algorithm 5 for (a) the coarse mesh (mesh 1), (b) the
intermediate mesh (mesh 2) and (c) the refined mesh (mesh 3).

dependencies, offering a potential avenue to reduce offline costs in greedy algorithms for nonlinear
mechanics problems.

6.2.2 Incremental approaches for hyper-reduction procedures

In a second step, our emphasis is on expediting the construction of the EQ approach. The com-
putation cost of building the EQ rule can escalate rapidly, especially with an increasing number
of entries, due to the necessity of optimization algorithms. Our strategy involves developing an
incremental approach to generate new EQ rules based on previously established rules. In this
manner, one can expect to alleviate the computational burden in each iteration. More precisely,
we aim to improve the efficiency of the hyper-reduction process when employing a hierarchical
basis, where new modes are progressively added in each iteration. This is achieved by offering an
incremental formulation of the ECSW approach. It is essential to note that the assumption of a
hierarchical basis remains a fundamental aspect of the algorithm presented here.

Hierarchical bases in a greedy process imply a specific structure for the dictionary at the iteration
n, denoted as Gn. In this context, successive iterations mean adding rows to an existing matrix.
Indeed, the EQ matrix Gn at iteration n satisfies:

Gn =

[
Gn−1

Gnew
n

]
(6.4)

where Gn−1 is the old dictionnary (last greedy iteration) and Gnew
n is the new lines added to

the dictionnary. Readers can refer to Figure 2.3 to comprehend the structure of a given dictio-
nnary. Each row represents information to be estimated, corresponding to a specific mode, a
given parameter, and a time step. A suitable rearrangement readily leads back to an incremental
building strategy of Gn, following Equation (6.4). To provide a better grasp of the algorithm
presented herein, we describe in greater detail the NNLS algorithm used in practice in this work
[LH95]. The latter is detailed in Algorithm 6. The approach begins by taking a set of indices as
input P0, typically initialized with an empty set when there is no prior information, to initiate
the process. Given the matrix G = [g1, . . . ,gN ] ∈ RM×N , the vector x ∈ RN , we introduce the
following notations: G(:, P ) := [gp1 , . . . ,gpm ] ∈ RM×m and x(P ) = vec((x)p1 , . . . , (x)pm) ∈ Rm.
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Moreover, we denote by #P the cardinality of the discrete set P , and we introduce the comple-
ment of P in {1, . . . , N} as P c = {1, . . . , N} \ P . Given the vector x ∈ RN and the set of indices
I ⊂ {1, . . . , N}, notation [α, i?] = mini∈I (x)i signifies that α = mini∈I (x)i and i? ∈ I realizes
the minimum, α = (x)i? . The constant ε > 0 is intended to avoid division by zero and is set to
2−1022. The primary computational expense of Algorithm 6 arises from the repetitive solving of
the least-squares problem at Line 11. Managing the computational cost necessitates restricting
the number of iterations of the problem and, consequently, the number of least-squares problems
to be addressed (output it in Algorithm 6). Although our study does not specifically delve into
this aspect, it’s worth noting that the size of successive problems varies with the number of iter-
ations. Therefore, an optimal implementation of the algorithm would requires the utilization of
solvers tailored to the system’s size (such as QR or pseudo-inverse for instance). However, this
falls beyond the scope of our current investigation. Our objective is to enhance the method’s
speed when using a given solver for Line 11 of Algorithm 6.

Algorithm 6 Active set method for the EQ-procedure (2.38).

Inputs: G ∈ RM×N , b ∈ RM , δ > 0, P0.

Output: ρ approximate solution to (2.38), it number of iterations to meet convergence criterion.

1: Choose ρ = 0, w = C>ρ, P = P0, it = 0.

2: while true do
3: Compute r = G(:, P )x(P )− b.

4: if #P = N or ‖r‖2 ≤ δ‖b‖2 then
5: break

6: end if
7: Set i? = arg maxj /∈P (w)j.

8: Set P = P ∪ {i?}.
9: while true do

10: it = it + 1
11: Define z ∈ RN s.t.z(P c) = 0, z(P ) = G(:, P )†d
12: if z ≥ 0 then
13: Set x = z, w = G>(b−Gx)
14: break

15: end if
16: I = {i ∈ {1, . . . , N} : (z)i < 0}.
17: [α, i?] = mini∈I

(x)i
(x)i−(z)i+ε

.

18: P = P \ {i?}.
19: x = x− α(x− z).
20: end while
21: end while

As depicted in Equation (6.4), our data structure is designed so that new information pertains
solely to the new entries Gnew

n . Initially, we possess a EQ rule capable of providing an estimate for
the first block Gn−1. Consequently, we advocate for initiating the optimization algorithm with a
set founded on our prior knowledge, departing from an empty set. This set is formed as follows:

140



6.2. ACCELERATION PROCESSES FOR GREEDY PROCEDURE

P =
{
i ∈ {1, . . . , Ne} : (ρeq,(n−1))i 6= 0

}
. (6.5)

The ECSW algorithm is thus modified in an iterative way tailored for our greedy processes.
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Figure 6.7: Progressive construction of the quadrature rule mesh 2 for δ = 10−4: (a) number
of iterations of the optimization algorithm; (b) CPU cost for the optimization algorithm; (c)
percentage of sampled elements.

Figure 6.7 illustrates the performance evaluation of the EQ procedure in a test scenario focus-
ing on the finer mesh (mesh 2 - SS). The parameters {µ?,it}maxit

it=1 are chosen using the POD-strong
greedy Algorithm 5 based on HF results obtained from mesh 1 (SS). Figures 6.7 (a)-(b)-(c) provide
insights into the number of iterations necessary for Algorithm 6 to meet the convergence criterion,
the computational cost, and the percentage of sampled elements, directly associated with online
costs, for a given hyper-reduction tolerance δ = 10−4. Similar to the preceding test case, the results
underscore the considerable reduction in NNLS iterations without compromising performance due
to the incremental construction of the quadrature rule. Figure 6.8 shows the normalized residuals
for several tolerances. These indicate the approximation quality for the integrals of interest. We
can see that the convergence thresholds are similar for both incremental and classical algorithms.

Figure 6.9 examines the speedup of the incremental method for three chosen tolerances δ across
different iterations of the greedy process. The observed trend reveals an increase in speedup with
higher iteration counts, attributed to the diminishing percentage of new columns added during
the it-th step in the matrix Gn. Additionally, a notable acceleration in speedup is noted with
decreasing tolerance, aligning with the increased number of iterations required by Algorithm 6 as
δ is reduced.

To substantiate this insight, we propose an alternative procedure that slightly deviates from the
conventional greedy strategy explored before. We sample parameters and consider constructing a
reduced basis once for all obtained snapshots. Subsequently, we incrementally build the dictionary
for each parameter using the previously employed approach. A noticeable distinction arises in the
number of lines added at each greedy iteration. In the earlier case, with each iteration, the new
lines corresponded to residuals computed for both new snapshots and newly obtained modes con-
cerning previous snapshots, given the incremental nature of basis construction (case 1 in Figure
6.10). In the presented case, however, only terms associated with new snapshots are considered,
as the basis was calculated only once at the outset (case 2 in Figure 6.10). Our earlier observation
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Figure 6.8: Normalized residuals for different hyper-reduction tolerances δ for the incremental and
the standard approach on mesh 2

should imply more significant speedups in this scenario, as the percentage of added lines is lower at
each iteration. Figure 6.10 provides a comparative analysis between the two numerical tests. We
observe improved speedups with a less substantial addition of lines at each iteration, supporting
our initial intuition. Employing this approach thus results in CPU time savings. Additionally,
this observation suggests that a thoughtful consideration of matrix construction, in conjunction
with method application, could contribute to accelerating computation time. However, we have
not pursued a more in-depth analysis at this stage.
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Figure 6.9: Speedups achieved when adopting the incremental approach ’incr’ versus the standard
approach ’std’ for several hyper-reduction tolerances δ on mesh 2 for a training set of size 7× 7 =
49.

Much more, we wish to demonstrate that alternative numerical approaches could be employed
to accelerate optimization algorithms. As an example, we introduce a second strategy that we
have explored, which is less intrusive. Unlike the previous strategy, which involves modifying the
algorithm with a non-empty initial active set, this second strategy introduces no alterations to the
algorithm itself. Instead, it relies solely on the modification of the matrix and the right-hand side.
The first step of this methodology is straightforward and is in the same spirit as before.: we aim
to formulate a novel quadrature rule exclusively leveraging the newly acquired data: specifically,
the new rows of the updated dictionary (Gn−1). Consequently, we are equipped with two distinct
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Figure 6.10: Comparison in speedups for the two approaches (case 1: pod-greedy vs case 2:
already computed basis): speedups are presented for (a) a δ = 10−4 tolerance (b) δ = 10−6, while
we present the number of dictionary lines at each iteration (c).

quadrature rules (ρeq
n−1 and ρeq

n,new). This scenario affords us the opportunity to delineate a set
of indices (I), defined as those indices where either of the two vectors exhibits a non-zero com-
ponent. Subsequently, we can constrain the columns of the complete dictionary to this defined
index set, thereby facilitating the resolution of a novel sparse approximation problem. Through-
out this iterative process, it is essential to underscore that there is no need to redefine the second
member : our overarching objective remains consistent since we aim at approximating the precise
approximation of total integrals, spanning the entirety of the physical domain. All the steps in
the algorithm for one iteration are summarized in Algorithm 7.

Algorithm 7 Loop for a direct incremental formulation.

Require: G0 ∈ RM0×Ne , G1 ∈ RM1×Ne , ρeq
0 ∈ RNe , δ

1: Solve a EQ problem on the new dictionnary only:

ρeq
1 = EQ-solve (G1, y1, δ)

2: Definition of a restricted set of indices:

I = I0 ∪ I1, with

{
I0 = {i ∈ {1, ..., Ne}, such that (ρeq

0 )i 6= 0}
I1 = {i ∈ {1, ..., Ne}, such that (ρeq

1 )i 6= 0}

3: Solve a EQ problem on the restriction of the dictionnary:

ρeq
rest = EQ-solve (Grest,yrest, δ) , where Grest = G[:, I] ∈ R(n0+n1)×|I| and yrest = [1, ..., 1]> ∈ R|I|

4: Definition of the new EQ rule:
ρeq[I] = ρeq

rest

where ρeq[I] this corresponds to the vector made up of the values of the initial vector (ρeq) at
the indices given by the set (I).

In the approach detailed above, there is no guarantee that the two sets of indices obtained
are disjoint. A second algorithm suggestion is to enforce that the two sets of indices are disjoint
I0 ∩ I1 = ∅. For this purpose, we define the complement of the first index set (known before
any resolution) Ic0 = {1, ..., Ne} \ I0, and we decide to solve a problem for a dictionnary whose
columns indexes are restricted to the indices of the columns belonging to the complement:
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ρeq
1,rest = EQ-solve (G1[:, Ic0],y1, δ) , then ρeq

1 [Ic0] = ρeq
1,rest, (6.6)

where y1 = G1[:, Ic0] · [1, ..., 1]>. In this case, we could explore three distinct approaches: a first
one, where the second member y is not modified to solve the first sub-problem; a second one,
where a new second member is calculated, which means that we look for a quadrature rule that
is only good on elements belonging to the complement of the reduced mesh initially constructed;
and a third approach, where a new second member is calculated and the dictionary is renormal-
ized. We choose the third option. Varying the initial algorithm in this manner helps stabilize the
algorithm and, in particular, increases the quality of the solution obtained, bringing it closer to
the quality achieved by the classical algorithm. We refrain from delving further into the details;
however, additional information on other test cases can be found in Appendix F for the interested
reader. We present some comparative results with the previous case for two relatively coarse tol-
erances on Figure 6.11. The results presented concern a case where the third approach is used, i.e.
with an adaptation of the second member and a renormalization for step 3 of Algorithm 7. It is
observed that we achieve rather similar speedups across the approaches. Nonetheless, when using
this algorithm, convergence issues surfaced for overly restrictive tolerances, indicating the feasi-
bility of deriving effective incremental optimization approaches to expedite computational costs.
It is crucial to note that these findings constitute an initial stage of research. These approaches
could be further enhanced or optimized to exert more control over the cost. In Appendix F, a
connection between SVD and these approaches is presented, offering a research avenue that could
be judiciously employed to control the size of considered dictionaries, for example. Furthermore,
alternative resolution algorithms beyond the active set NNLS approach could also be explored.
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Figure 6.11: CPU times for various incremental approaches versus the standard approach ’std’ for
several hyper-reduction tolerances δ on mesh 2 - SS for a training set of size 7× 7 = 49.

6.3 Conclusion

Effectively managing the computational demands during the offline training stage remains a signifi-
cant hurdle in the application of model order reduction techniques to nonlinear, non-parametrically-
affine problems. One potential avenue to mitigate this challenge is the use of adaptive sampling
in the parameter domain through greedy methods, which could reduce the number of offline HF
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solves required to achieve the desired accuracy. However, it’s worth noting that greedy methods
are inherently sequential, introducing a non-negligible overhead that could potentially offset the
advantages of adaptive sampling. To tackle these challenges, this study introduces two novel
strategies to expedite greedy methods. The first strategy introduces a two-fidelity sampling ap-
proach aimed at reducing the number of computationally expensive greedy iterations. The second
strategy ncorporates a warm start for the NNLS algorithm to determine the empirical quadrature
rule. Furthermore, we point out that other ideas for improvements can be put forward to take ad-
vantage of the incremental aspect to speed up procedures. The numerical findings in this chapter
underscore the effectiveness and applicability of our methods when addressing unsteady problems.
Our numerical investigations reveal that adopting a sampling strategy based on coarse data yields
performance that approaches optimality. This observation implies that multi-fidelity algorithms
hold substantial promise in efficiently navigating the parameter domain during the training phase.
Additionally, our findings highlight that incorporating a warm start for the NNLS algorithm re-
sults in a noteworthy reduction in computational costs without compromising performance.

The empirical results derived from this research inspire further exploration through theoretical
and numerical investigations. One objective may be to develop both a priori and a posteriori
indicators guiding the selection of mesh hierarchy when relying on multi-fidelity strategies. Sec-
ondly, we could extend the two key components of our formulation—progressive ROM generation
and multi-fidelity sampling—to optimization problems. Specifically, in scenarios where the pri-
mary objective of model reduction is to estimate a targeted quantity of interest (goal-oriented
model order reduction), we envision incorporating our formulation with adaptive techniques for
optimization.
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Chapter 7
Conclusion and perspectives

In this thesis, our research unfolds accross three distinct dimensions:

� first, we crafted projection-based ROMs with ECSW hyper-reduction tailored for nonlin-
ear quasi-static mechanics problems entailing internal variables. The formulation of these
ROMs is explicitly geared towards immediate practical integration into industrial-grade code
code aster;

� second, we devised a trust-region approach relying on ROMs as approximation models aimed
at efficiently resolving calibration problems in a data assimilation framework for nonlinear
solid mechanical problems;

� at last, our attention directed towards developing strategies that augment the applicability
of iterative processes involving ROMs, with the overarching goal of fostering the pragmatic
utilization of ROMs within industrial settings.

In the following paragraphs, we provide a comprehensive analysis of our findings, offering distinct
perspectives on each facet of our research effort. This delineation facilitates a nuanced under-
standing of the contributions made in each area, enriching the overall discourse on the application
of ROMs in the field of non-linear mechanics with internal variables using code aster.

As a first step, we provided a numerical validation of the proposed ROM approach on a case of
an elasto-plastic plate2. This test case matches a particular instance of a generic class of nonlin-
ear mechanical problems with internal variables (single-modeling). The whole procedure delivered
impressive computational cost improvements of O(20 − 25) with relative prediction errors in the
order of 10−3. These results were carried out for a small number of parameters in order to conduct
exhaustive numerical tests. Then, our ROM approach was also numerically validated for a more
complexe problem, namely for prestressed concrete simulations (multi-modeling). The numerical
approach proved extremely effective for a strong-greedy construction procedure with speedups
above 10 even for a very coarse mesh. Therefore, we have a robust approach, implemented in an
industrial setting, for three-dimensional meshes capable of handling a multi-modeling framework.
Additionally, the devised ROMs facilitate the straightforward construction of quantities of interest
crucial for engineering analyses. These quantities fall into two categories: first, the normal forces
in the bars, employed for estimating leakage rates. Second, ROMs assist in generating localized
deformations at the sensor level, which are valuable for recalibration procedures through data as-
similation. In conclusion, the ROM approach aligns well with the quasi-static non-linear problems
integrated into the industrial code code aster and the engineers’ needs. When applied to the
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specific case under consideration, ROM not only achieves substantial computational time savings
but also ensures a certified quality of approximation for both the primal variable (displacement)
and the quantities of interest.

In a second step, we implemented a trust-region approach with ROM as approximation model.
First, we demonstrated the relevance of using this approach for calibration through data assimi-
lation, which can be viewed as a PDE-constrained optimization problem. We have demonstrated
the feasibility and advantages of this approach through numerical illustrations involving twin ex-
periments in both linear and non-linear elasticity using Fenics. These experiments covered global
observations, such as the entire displacement field, as well as local operators. This expansion of
existing methodologies has allowed us to tailor the approach to our specific focus on parameter
calibration. Furthermore, we have even shown that the resolution approach is compatible with
various resolution processes (gradient-free, gradient-approximated) and compatible with using an
industrial-grade simulation tool code aster.

Finally, we introduced methods to expedite iterative processes for resource-intensive strate-
gies, delineated into two components: first, a bi-fidelity approach for systematically sampling the
parametric space to construct the reduced model; and second, an incremental strategy to reduce
the offline computational cost for hyper-reduction. We proposed and numerically validated these
approaches to enhance the efficiency of resource-intensive processes during ROM construction.

In summary, this research led us to formulate cutting-edge methodologies tailored to the in-
dustrial context. These methodologies address the challenges posed by engineers, including the
analysis of quantities of interest and calibration problems. The development has taken place within
an environment relying on high-quality industrial code. Furthermore, we have explored approaches
compatible with this environment, such as implementing an ECSW approach through elementary
integral reconstruction outside the code, devising an error indicator for single-modeling cases, and
exploring alternatives to adjoint methods for optimization problems. Moreover, the emphasis of
this work is on practical applicability. This has led us to focus on on-the-fly ROM construction,
perfectly suited to practical application, and on acceleration techniques to minimize offline con-
struction costs.

The potential for ongoing research is extensive, spanning across the three specific directions
explored in this study. First, the approach in the multi-modeling case has not been tested on
a weak-greedy approach. Thus, the approach in this case relies on comparison with known HF
snapshots. This leads to significant offline computation costs, since it requires a priori knowledge
of these solutions. This is a particular limitation when scaling up. Previous efforts have focused
on the construction of low-cost a posteriori error indicators. Since the efficiency of these indica-
tors in steering greedy search (within a weak-greedy context) has been demonstrated for problems
featuring internal variables, the derivation and implementation of efficient error indicators would
be a key point for computational efficiency. Once this door is opened, a second challenge arises,
which is dealing with the increase in dimensionality of the parametric space. Indeed, the constitu-
tive equations involved in these studies require several dozen parameters, and the dimensionality
increase could be a scientific hurdle to maintaining the validity of the ROM across the entire
parametric range. Ultimately, our efficient ROM approach could lead to the exploration into more
intricate applications, particularly within the realm of engineering problems. The mesh config-
urations utilized here, in fact, embody a historical compromise aligned with the computational
capacities accessible at a specific point in time. Given the advancements achieved in this thesis,
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a logical progression would involve contemplating finer meshes or more intricate geometries, ex-
tending beyond the confines of the concrete material representative volume.

Second, many avenues of work remain to be explored for the calibration procedure, both from
a theoretical point of view and in terms of applications for engineers. In terms of applications,
previous efforts coupled with an implementation with code aster indicate that it is now feasible
to provide a calibration model based on ROMs for the standard section of a nuclear containment
building. The scope of work in this direction may be broken down into three stages: first, a simple
application of the method to the industrial case, by performing a recalibration on the total dis-
placement field; second, an application to the case with the observation operators used in practice
by engineers; and finally, a recalibration on real data. This three-stage work plan is intended to
enable projection-based ROMs for optimization to be used on a real-world engineering problem.
Various issues could arise during these studies, such as the relevance of the choice of modes to the
observation operators used, or the problem’s sensitivity to measurement noise in real-world appli-
cations. A second challenge would be to develop a more mathematically robust implementation
for trust-region algorithm. From the optimization algorithm implementation point of view, our
primary focus was to apply the method to industrial cases. A finer-grained analysis of the solvers
would certainly enable an error analysis with greater control. In terms of a more theoretical line
of research, a mathematical analysis to account for error indicators, in order to perform error-
aware trust-region or adapt the reduced model in another way, would provide more error control.
This would make this method more valuable, especially in competition with other meta-modeling
processes where error analysis is more complicated.

Finally, when devising approach for accelerating iteratives processes involving ROMS, one
should also draw attention on optimization processess. Indeed, within the scope of this thesis,
calibration problems are also investigated. Building upon the bi-fidelity approach for parameter
sampling, a multi-fidelity approach could be explored to offer a robust numerical strategy for
calibration problems in a data assimilation framework. This could complement the perspectives
presented for trust-region algorithms, particularly in terms of error control. Another avenue for
exploration would involve concentrating on the construction of the reduced basis for optimization
processes. While the on-the-fly construction proposed here concatenates successive iterates to
form a reduced basis, it is worth noting that, during an optimization process, the final iterates
are closer to the solution than the initial point. Effectively managing the ROM could involve
assigning relative importance to the various snapshots incorporated. Thus, snapshots could be
weighted to establish a sliding basis.

149



150



Appendix A
Implementation with code aster and mordicus

In this appendix, we provide details on the numerical implementation of algorithms within our
development environment, namely in our industrial-grade FE code code aster, and with the
Python package mordicus. First, we detail the interactions between those two softwares. Second,
we present the details of the Newton algorithms applied within the HF code (with code aster).
Furthermore, in the context of the work presented in this thesis, we demonstrate an application
of the methodology to cases with homogeneous boundary conditions. We extend the approach to
cases with non-homogeneous conditions and outline the necessary modifications in the method-
ology or FE solver to handle these scenarios. This illustrates that such boundary conditions do
not pose limitations to our approach. Finally, we delve into the specifics of the hyper-reduction
approach for our reduction methodology: we outline the method for constructing our dictionaries
in practice and provide details on building a reduced mesh within the framework of code aster.

In this section, we detail the interactions between code aster, and with the Python package
mordicus. The industrial-grade code code aster functions by taking command files as input,
specifying the constitutives equations, numerical models and algorithms to be employed, along
with mesh files or results serving as an initial point (such as a thermal calculation for a thermo-
mechanical calculation using weak coupling). Additionally, a link file is utilized to establish
connections between various objects. On the other hand, mordicus is designed to be software-
agnostic when it comes to input. Reader functions are established for the specific software in use,
for instance, code aster, enabling the export of desired data (e.g., snapshots). This ensures that
the data structure remains independent of the initial software. Subsequent ROM procedures, such
as reduced bases generation or hyper-reduction, can be applied to this structure, and files are then
exported for compatibility with the reference code in use.

The developments had to be articulated on several levels. In the case of code aster, extensive
development and adaptation were necessary to enable the existing software to accommodate a
reduced solver for hyper-reduced models utilizing the ECSW approach. As for mordicus, we had
to add the functionalities of reduced base construction, hyper-reduction and building a reduced
mesh. Furthermore, it’s noteworthy that all the presented test cases are encapsulated within
Python files, each invoking the diverse functionnalities of mordicus, including file reads, external
calls to the FE solver, construction of ROMs, and generation of reduced solutions generated
through code$aster.
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A.1. NEWTON SOLVER

A.1 Newton solver

In this section, we provide details on the numerical procedure used for solving nonlinear systems
with dualisation of boundary conditions in the code aster framework. For this purpose, we first
discuss the procedure used when the kinematic conditions are handled by Dirichlet elimination,
before introducing the dualization of the boundary conditions and the stopping criteria considered.

A.1.1 No dualisation of the boundary conditions

We focus on looking for the k-th timestep solution . The resolution is performed by a Newton-
Raphson type algorithm, which is an incremental algorithm. The iterative process is driven by
the search for a solution at each iteration according to the knowledge at the previous iteration:

u
(k)
θ+1 = u

(k)
θ + ∆u

(k)
θ

The iterate is computed from the solution of the linear system, expressed with the Jacobian matrix
(also called tangent matrix in mechanics) evaluated in u

(k)
θ :

Rhf
(
u

(k)
θ+1

)
≈ Rhf

(
u

(k)
θ

)
+ K

(k)
θ ·∆u

(k)
θ = 0, with K

(k)
θ =

Rhf

∂u

(
u

(k)
θ

)

A.1.2 Dualization of the boundary conditions

For the dualisation of constraints, we must investigate a new increment in displacement and in
terms of Lagrange multipliers:

{
u

(k)
θ+1 = u

(k)
θ + ∆u

(k)
θ

λ
(k)
θ+1 = λ

(k)
θ + ∆λ

(k)
θ

(A.1)

The task is hence to solve the following nonlinear system:

{
Rhf

(
u

(k)
θ+1

)
+ BTλ

(k)
θ+1 = 0

Bu
(k)
θ+1 = u

(k)
d

(A.2)

Using a linearization analogous to the equation, and exploit the linearity of the operator associated
with the kinematic conditions, the assembled discretized system (for one θ iteration) is decomposed
as:

{
Rhf

(
u

(k)
θ

)
+ K

(k)
θ ·∆u

(k)
θ + BTλ

(k)
θ + BT∆λ

(k)
θ = 0
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(k)
θ + B∆u

(k)
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(k)
d

(A.3)

which leads to the following saddle-point problem:

[
K

(k)
θ BT

B 0

][
∆u

(k)
θ
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(k)
θ

]
=

[
−Rhf
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(k)
θ
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(k)
θ

u
(k)
d −Bu

(k)
θ

]
(A.4)
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A.2. MODEL ORDER REDUCTION WHEN USING INHOMOGENEOUS DIRICHLET CONDITIONS

A.1.3 Stopping criterium

Under the philosophy of the formulations in code aster, the internal contributions (work of internal
forces) and external contributions (forces applied to the system) are evaluated separately in the
assembled residue:

Rhf
(
u(k)

)
= Fint,(k)

(
u(k)

)
− Fext,(k) (A.5)

Different criteria are available in code aster. The reader may refer to the code documentation
for more details. Our choice is a relative criterion defined as follows:

∥∥∥Rhf
(
u

(k)
θ

)
+ BTλ

(k)
θ

∥∥∥
∞∥∥∥BTλ

(k)
θ − Fext,(k)

∥∥∥
∞

≤ εnewt (A.6)

The vector BTλ
(k)
θ can be interpreted physically as the opposite of the support reactions at

the nodes where the conditions are dualised. The convergence criterion can be seen as a process
of normalizing the residual calculated at a given iteration with respect to the forces exerted on
the system at that iteration (external forces and support reactions).

A.2 Model order reduction when using inhomogeneous

Dirichlet conditions

A.2.1 Affine decomposition

We consider the situation where the boundary conditions are non-homogeneous. We remain within
the framework where the kinematic link matrix is independent of the parameter or displacement
vector, which is a fundamental assumption of our work. We shall assume BCs in the following
form:

Bu(k)
µ = u

(k)
d , ∀µ ∈ P

where u
(k)
d , ∀k ∈ {1, ..., K} are the BCs vectors used. In order to build a ROM, we need to rely

on a sequence of lifting vectors u(k), ∀k ∈ {1, ..., K}. We define this sequence as follows:

Bu(k) = u
(k)
d

The reduced basis would then be produced from the snapshots by subtracting the lift terms:

Zu = POD
{{
u(k)
µ − u(k)

}K
k=1

, (., .), εPOD,u

}

Thus, we obtain modes that meet homogeneous conditions ∀n ∈ {1, ..., Nu} Bζu,n = 0. We seek
the solution as a linear combination of modes:

û(k)
µ = u(k) +

Nu∑

n=1

(
α̂(k)
µ

)
n
ζu,n = u(k) + Zuα̂

(k)
µ (A.7)

where α̂
(k)
u,µ ∈ RNu are referred to as generalized coordinates and ZNu = span {ζu,n} is the primal

reduced space. Therefore, the residual projection holds the same properties as in the homogeneous
case:
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A.2. MODEL ORDER REDUCTION WHEN USING INHOMOGENEOUS DIRICHLET CONDITIONS

ZT
u ·
[
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(
û(k)
µ

)
+ BT · λ(k)

µ

]
= 0 ⇒ ZT

u ·Rµ

(
û(k)
µ

)
= 0

A.2.2 Reduced Newton iteration for inhomogeneous boundary condi-
tions

We present here the details of the calculation steps for the reduced solver in this case. Reduced
Newton iterations can be formulated as follows:

ZT
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∂Rµ

∂u

(
û

(k)
µ,θ

)
·∆û

(k)
µ,θ = −ZT
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(
û
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)
(A.8)

for a given µ ∈ P and a given k ∈ {1, ..., K}. We rely on the affine decomposition presented above
(see Equation (A.7)):
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)

We introduce the formulation with reduced coordinates in reduced Newton iterations:
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which leads to:

K
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µ,θ ·∆α̂

(k)
µ,θ = −ZT

u ·Rµ

(
u(k) + Zuα̂

(k)
µ,θ

)

The main difference with the previous case during the online phase is simply to add the lifting
terms during Newton iterations, so as to calculate the residuals and Jacobian matrices at the
relevant points.

A.2.3 Implementation in the industrial code

Generic remarks

It is worth highlighting that the required changes to the industrial solver would be the following:
the calculation of a lifting term satisfying the boundary conditions, and the addition of this lifting
term in the residual (and the Jacobian matrix) evaluations at each Newton iteration. However,
these implementations have not been carried out in the industrial code at our disposal, as this
sort of boundary condition is an extension of the case considered in our work.

Simplified framework, initial guess and lifting

In the following, we describe a special case of BCs that do not require modifications to the
heart of the code. We show that even with the current state of the art of industrial code, it is
possible to increase the complexity of simulated boundary conditions, without the need for further
development. Specifically, we consider a case where the Dirichlet data is common to all time steps:

∀k ∈ J1, KK, u
(k)
d = ud

We detail the expression of a Newton iteration as a function of the previous iterations. This is
written as follows. As a result, we can work:
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A.3. DETAILS ON THE HYPER-REDUCTION IMPLEMENTATION
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If we take the initial guess as the lifting, we have the expression we need

u
(k)
µ,θ+1 = Zu ·α(k)

µ,θ+1 + u
(k)
µ,0 ⇒ u

(k)
µ,θ+1 = Zu ·α(k)

µ,θ+1 + u(k) (A.9)

A.3 Details on the hyper-reduction implementation

A.3.1 Computing a reduced mesh in code aster

In order to comprehend the construction of a reduced mesh in code aster, it is necessary to take
some time to comprehend the structure of the utilized mesh and the process for making calls to
conduct a numerical simulation. The FE code used takes a ’.comm’ command file as input, which
reads input files, including the mesh saved in a ’.med’ format. MED serves as the data exchange
model of SALOME, offering a standardized representation of meshes and result fields independent
of the simulated physics.

Meshes are constructed to have a set of nodes defined throughout the entire mesh, followed
by several mesh levels. For instance, in a three-dimensional mesh, there is a mesh containing the
3D meshes, then a 2D mesh to account for volumetric loads, and possibly a 1D mesh if required.
These three mesh levels are defined on the same node field (common to all three and defining the
overall mesh), but the integration points differ, each being specific to its mesh level.

Regarding the command file, it is essential to define how to impose loads. In practice, loads
(volumetric or surface types) can be applied at the node (GROUP NO commande) or element level
(GROUP MA commande). It is noteworthy that there are cases where both forms are equivalent. For
example, certain loads on elements may involve applying nodal forces to all nodes of the elements
in a group. Thus, the concept of node and element groups emerges, utilized in mesh construction
to have groups of elements (or nodes) to which the same load or boundary condition is applied.
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A.3. DETAILS ON THE HYPER-REDUCTION IMPLEMENTATION
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(a) Géométries et noeuds du maillage exemple
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(b) Visualisation des groupes de noeuds et de mailles

Figure A.1: Example of a mesh for a rectangle (representing, for instance, a fixed-end beam under
tension), featuring a node group (fixed support), an element group (elements where the tensile
force is applied), and the associated node group (nodes associated with these elements). This
mesh is a simple representation of a mesh for a beam under tensile load, for example

Within our framework, for simplicity in practical implementation, we have opted not to con-
tinually rewrite command and call files to avoid an excessive proliferation of written files. Conse-
quently, our advancements necessitate the presence of all initially required node and mesh groups
in the final mesh. It is worth noting that this requirement is specific to the practical construction
of meshes in our context and may not be essential for a broader application of the methodology.
However, it is crucial to consider when visualizing the reduced meshes presented in our work.

For each constructed test case, we can establish a set of required node groups and mesh groups
to facilitate the computation. In the illustrated example, maintaining at least one green node and
one magenta mesh is imperative to accurately apply BCs (in the initial ’.comm’ even though we
do not apply them in pratice) and exert tensile forces. Consequently, an initial corrective step is
taken to rectify the reduced mesh by adding elements in cases where mesh groups or nodes are
absent. In instances where a necessary mesh group (or node) is absent in the initial construction,
an element (or an element with vertices belonging to the node group) is randomly selected and
incorporated into the reduced mesh. Additionally, in the case of a multi-level mesh like the one
depicted here, a second correction step is essential for completing the mesh construction. If a 2d
mesh is chosen, the adjacent 3d mesh is appended to the reduced mesh.

A.3.2 Dictionnary construction

Formulation

We resume the example of a solution reproduction problem for a single-modeling case. We describe
more precisely the hyper-reduction process used in our methodology. We keep the same notations
as previously introduced. In such a scenario, we have K HF snapshot (displacements and stresses)
and Nu primal modes at our disposal. We hence have nint = K×Nu manifold accuracy constraints
to fulfill:

(G)lines(n,k), q = Rσ,hf
q

(
Eqd
q σ

(k), Eno
q ζu,n

)
and (y)lines(n,k) = Rσ,hf

(
Eqd
q σ

(k), Eno
q ζu,n

)
(A.10)

where G ∈ Rnint×Ne and y ∈ Rnint and lines : (k, n) ∈ RK×Nu → Rnint a bijection used to have
a unique numerotation of rows (set by the way we build the dictionnary). The last row of the
dictionnary is set in order to fulfill the constant-function constraint :

(G)nint+1, q = |Dq| , and (y)nint+1 = |Ω| (A.11)
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A.3. DETAILS ON THE HYPER-REDUCTION IMPLEMENTATION

Separation of integrals

As we restrict ourselves to a single-mesh study, we have only volumic forces applied to the sys-
tem. From a practical viewpoint, adding directly the residuals can load to numerical instabilities.
Indeed, if the probelm is well represented by a single mode, ζu,n∗, we can have:

Rσ,hf
(
Eqd
q σ

(k), Eno
q ζu,n

)
≈ 0

To tackle this issue, we chose to split the residual in two contributions: one for the internal
forces and the other for the external forces. Such an implementation is consistent with code aster
discrete formulation. The residuals can be expressed thanks to the variationnal form as:

Rσ,hf
q

(
Eqd
q σ

(k), Eno
q ζu,n

)
=

∫

Ωq

σ(k) : ∇sζu,n dx−
∫

Ωq

fv · ζu,ndx (A.12)

We can then define the contributions:

{
Rσ,hf,int
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(k), Eno
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)
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(
Eqd
q σ

(k), Eno
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)
=

∫
Ωq
fv · ζu,ndx (A.13)

With this formulation, we have nlin = (K + 1)×Nu and G and y are modified accordingly:

(G)lines(n,k,∗), q = Rσ,hf
q

(
Eqd
q σ

(k), Eno
q ζu,n

)
and (y)lines(n,k,∗) = Rσ,hf

(
Eqd
q σ

(k), Eno
q ζu,n

)

Normalization

A challenge related to the orders of magnitude arises in the optimization problem construction.
Indeed, we have lines related to volume constraints while others are related to internal or external
forces. Since the algorithms convergence criteria used are designed on the residuals (in the sense
of optimisation, i.e. ‖Gρ− y‖∗), it is likely that some constraints are ’overlooked’ because of the
differences in order of magnitude. To ensure a good behaviour of our strategy, we normalize the
whole dictionary to have an addimensionalized problem:

(G)lines(n,k,∗), q =
Rσ,hf
q

(
Eqd
q σ

(k), Eno
q ζu,n

)

Rσ,hf
(
Eqd
q σ(k), Eno

q ζu,n

) and (G)nint+1, q =
|Dq|
|Ω| (A.14)

Thus, the second member consists only of a unitary vector:

(y)lines(n,k,∗) = 1, and (y)nint+1 = 1 (A.15)

This approach is well suited to industrial codes that are not necessarily designed to have
dimensionless formulations.

A.3.3 Example of visualisation of a dictionnary

In this section, we provide a visualization of the dictionary. We consider a dictionary of size
G ∈ R(ntrain×K×Nu)×Ne . In our framework, the dictionnary is of the following form:
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Appendix B
Derivation and computation on error indicator for
ROMs in structural mechanics

Within this appendix, we delve into a more intricate exploration of the explicit computation of
error indicators. Section B.1 specifically addresses the expansion of error indicators to encompass
time-dependent scenarios. We thoroughly introduce the error indicators practically employed to
steer the greedy process. Additionally, in Section B.2, we put forth a proposal for extending the
error indicator to the multi-modeling scenario. It’s important to note that this extension has not
undergone numerical validation and demands further research for thorough verification.

B.1 Computation of error indicator for a time-dependent

single-modeling case

B.1.1 Time-dependent external forces

In the following section, we consider a formulation where the external loading can vary during
time. We describe the modification of the methodology for computing the designed error indicator.
In such a situation, we have a different linear form for each timestep. We can then define:

(
ψ
σ,(k)
Nσ+1, v

)
= LNσ+1(v), ∀v ∈ X hf

bc with L(k)
Nσ+1 =

∫

Ω

f (k)
v · v dx+

∫

Γn

f (k)
s · v ds

This leads to the modification of the Gramian matrix for the last column and the last row:




∀n,m ∈ {1, ..., Nσ},

(
Σ

(k)
N

)
n,m

= (ΣN)n,m

∀n ∈ {1, ..., Nσ + 1},
(
Σ

(k)
N

)
n,Nσ+1

=
(
Σ

(k)
N

)
Nσ+1,n

=
(
ψσn, ψ

σ,(k)
Nσ+1

)

In practice, we can observe that the Nσ ×Nσ upper-left submatrix doesn’t change over time.
A cost-efficient implementation of the Gramian matrix would be only to change the appropriate
row over time.

B.1.2 Normalisation of the error indicator

In order not to have values of dual norms that differ depending on the order of magnitude of the
loading, we choose to normalize the residual using the norm of the Riesz elements for the external
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B.2. EXTENSION OF THE ERROR INDICATOR FOR A TIME-DEPENDENT MULTI-MODELING CASE

loadings. Moreover, this choice seems consistent with the relative convergence criteria used in
pratice in code aster (see Appendix A.1.3). We define Σ̃N ∈ RNσ+1,Nσ+1:

∀n,m ∈ {1, ..., Nσ},
(
Σ̃

(k)
N

)
n,m

=

(
Σ

(k)
N

)
n,m(

Σ
(k)
N

)
Nσ+1,Nσ+1

=

(
Σ

(k)
N

)
n,m∥∥∥ψσ,(k)

Nσ+1

∥∥∥
2

The actual error indicator used in our computations is:

∆av
N,µ =

√√√√ 1

K

K∑

k=1

(
∆

(k)
N,µ

)2

, with
(

∆
(k)
N,µ

)2

=
(
α̃(k)
σ,µ

)T · Σ̃(k)
N · α̃(k)

σ,µ (B.1)

B.2 Extension of the error indicator for a time-dependent

multi-modeling case

The formulation of the error indicator given in the core of the manuscript is designed for a
three-dimensional problem. In this section, we offer an extension of the method to the case of a
coupled approach. As a reminder, in this case we have two residuals, one for the one-dimensional
contribution and one for the three-dimensional contribution. We have two different operators for
the 3d and the 1d domains:

Rσ
µ

(
σ

(k)
µ , v

)
=

∫

Ω

σ(k)
µ : ε (v) dΩ−

∫

Ω

fv · v dΩ−
∫

Γ

fs · v dΓ

RN
µ

(
N

(k)
µ , w

)
=

∫

C
N (k)
µ : ∂sw ds−

∫

C
fv · w ds−

N 1d∑

i=1

(
t(k) − tinit,p

tend,p − tinit,p
F

)
· wi

︸ ︷︷ ︸
only during a prestressing step

One possible approach could be to reformulate the problem to have a single uniquely defined
operator that accounts for multi-modeling. This involves defining a residual form over the entire
domain, as follows:

R[σ,N ]
µ

([
σ
N

]
,

[
v
w

])
= R[σ,N ]

int,µ

([
σ
N

]
,

[
v
w

])
−R[σ,N ]

ext,µ

([
v
w

])
(B.2)

This way, the problem can be seen through the lens of a single operator. The decomposition
into generalized force modes constructed from the stresses and normal efforts at each point of
the problem then allows for an approach to build an error indicator in the same manner as
previously provided. We can indeed have a linear decomposition over the modes in generalized
forces. Specifically, the restricted operators on each sub-domain (3d and 1d) are linear with respect
to the constraint or normal effort. We encounter the same property that allowed us to derive the
error indicator in the three-dimensional case.
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Appendix C
Example of Trust-Region approach with
quadratic approximation: Application to
Rosenbrock function

This appendix reproduces an approach and an example provided in pre-existing work [Zah16]
with an implementation whose blocks are reused for the elements presented in this thesis. The
interest is to present keys to understanding the trust-region method with the use of quadratic
approximation, which is its natural extension.

C.1 Trust-region approach with quadratic approximation

C.1.1 Application to Rosenbrock function

In order to highlight the methodology on a simple case, we adopt the classic illustration case for
optimization algorithm demonstrations: the Rosenbrock function. This function is often used to
test optimization algorithms. Indeed, this non-linear function has a global minimum µf = (1, 1)
inside a parabolic ”valley” (”banana”). Figure C.1 depicts this function around its global mini-
mum. Conventional gradient algorithms can have difficulty converging quickly, which motivates
tests on this particular function.

Problem formulation

We consider the classic Rosenbrock problem:

∀µ =

[
µ1

µ2

]
∈ R2, F (µ) = 100

(
µ2 − µ2

1

)2
+ (1− µ1)2 (C.1)

The gradient and hessian of F (µ) are expressed as follows:

∀µ ∈ R2 ∇F (µ) =

[
−400µ1 (µ2 − µ2

1)− 2 (1− µ1)
200 (µ2 − µ2

1)

]
et ∇2F (µ) =

[
400 (3µ2

1 − µ2) + 2 −400µ1

−400µ1 200

]

(C.2)
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Figure C.1: Visualization of the Rosenbrock function for (x, y) ∈ [−2, 2]× [−1, 3]

Approximation model

The approximation model function is considered to be a quadratic approximation of F (µ) with
controllable errors introduced in the value and gradient at the expansion point, ∀µ ∈ R2:

G (µ, µk, εk, δk) = F (µk) + εk + (∇F (µk) + δk1)T (µ− µk) + (µ− µk)T ∇2F (µk) (µ− µk) (C.3)

We rely on the analytical expressions for the gradient and hessian obtained in Equation (C.3).With
such a formulation, the parameter εk (resp. δk) may be interpreted as the error when evaluating
the function (resp. function gradient) at the center of the trust region:

G (µk, µk, εk, δk) = F (µk) + εk, ∇G (µk, µk, εk, δk) = ∇F (µk) + δk1 (C.4)

The approximation model mk(µ) is considered to be a quadratic (yet inexact) approximation
of mk(µ) centered within the confidence region. The constraint for the trust-region (ϑk(µ)) is
established relying on the exact point error associated with the objective function, while the
gradient error indicator (ϕk(µ)) is derived from the exact gradient error:

∀µ ∈ R2,





mk (µ) = G (µ, µk, εk, δk)
ϑk (µ) = |F (µ)−mk (µ)|+ |F (µk)−mk (µk)|
ϕk (µ) = ‖∇F (µ)−∇mk (µ)‖

(C.5)

The gradient of the approximation model is defined as such:

∇mk (µ) = ∇F (µk) + δk +∇2F (µk) (µ− µk) (C.6)

The expression for the trust region constraint and the gradient error indicator at the center of the
trust region are :

{
ϑk (µk) = 2εk
ϕk (µk) =

√
2δk

(C.7)

The expression of the trust region constraint at the center of the trust region is :
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C.1. TRUST-REGION APPROACH WITH QUADRATIC APPROXIMATION

ϑk (µk) = |F (µk)−mk (µk)| − |F (µk)−mk (µk)|
= 2 |F (µk)−mk (µk)|
= 2εk

awhile the expression for the gradient error indicator at the center of the trust region is :

ϕk (µk) = ‖∇F (µ)−∇mk (µk)‖
= ‖∇F (µ)−∇F (µk)− δk1‖
=
√

2δk

In order to respect the constraints for global convergence and knowing the expression given by
Equation (C.5), we have the constraints on choice εk and δk:





εk ≤
κϑ
2

∆k

δk ≤
κϕ√

2
min {‖∇mk (µk)‖ , ∆k}

(C.8)

mk (µ) G (µ, µk, εk, δk)

ϑk (µ) |F (µ)−mk (µ)|+ εk

εk
κϑ
2

∆k

δk Backtracking Linesearch sur :
κϕ√

2
min {‖∇mk (µk)‖ , ∆k}

Table C.1: Summary of approximation model choices at each iteration.

Solver for the trust-region subproblem

When using the BFGS interior point method with linear search, we must derive the gradient of the
logarithmic barrier function associated with the optimization problem. The gradient is determined
as follows:

∇φγk (µ) = ∇mk (µ)− γ∇ (log [∆k − ϑk (µk)])

= ∇mk (µ)− γ
(

1

∆k − ϑk (µ)
∇ (∆k − ϑk (µ))

)

= ∇mk (µ) +
γ

∆k − ϑk (µ)
∇ϑk (µ)
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We need to have en expression of the gradient (F (µ)−mk (µ)) for our specific choide of the
approximation model (Equation (C.5)):

∇ (F (µ)−mk (µ)) = ∇F (µ)−∇mk (µ)

= ∇F (µ)−
[
∇F (µk) + δk +∇2F (µk) (µ− µk)

]

= ∇F (µ)−∇F (µk)− δk −∇2F (µk) (µ− µk) .

Thus, the gradient of the trust-region constraint can be written:

∇ϑk (µ) = ∇ (|F (µ)−mk (µ)|+ εk)

= ∇ (|F (µ)−mk (µ)|)
= sgn (F (µ)−mk (µ))

[
∇F (µ)−∇F (µk)− δk −∇2F (µk) (µ− µk)

]

∇φγk (µ) −∇mk (µ) +
γ

∆k − ϑk (µk)
∇ϑk (µk)

∇ϑk (µk) sgn (F (µ)−mk (µ))
[
∇F (µ)−∇F (µk)− δk −∇2F (µk) (µ− µk)

]

Table C.2: Summary of the gradient expression needed to solve the problem numerically in the
trust-region.

Example of a parameter set

In this section, we present some numerical results regarding the minimization of the Rosenbrock
function. Table C.2 summarizes the parameters employed in the optimization algorithm for min-
imizing the Rosenbrock function. We opt to categorize the parameters into two parts: those
associated with the trust region method and others specific to the numerical resolution method
BFGS. It is important to note that we did not aim to obtain an optimal set of parameters. Indeed,
the purpose of this document is solely to gain insight into the algorithm’s behavior. Nevertheless,
we acknowledge that the convergence speed is highly dependent on the hyperparameters.

κϑ κϕ η1 η2 γ ∆0 ∆max

0.5 1.0 0.3 0.6 0.5 1 1e8

(a) Parameters for the trust-region.

c τ γr

10−4 10−1 10−5

(b) Parameters for the BFGS algorithm.

Figure C.2: Parameters used for optimization of Rosenbrock functions.

Figure C.3 highlights the successive centers obtained when using the trust region method.
The initial point provided for our test case is (0, 1), while the final value is (1, 1). Figure C.4
shows the convergence of the center values towards the final value. Table C.2 summarizes the
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exact outputs of the different iterations (center of the confidence region, candidate provided by
the sub-problem solution and associated Boolean acceptance of the candidate). It is clear that
the algorithm will steer into the ”valley” and gradually work its way up to the optimum. This
convergence monitoring is quite satisfactory.

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

x

y

Figure C.3: Visualization of trust region centers over iterations from an initial point µ0 = (0, 1)
to the global minimum µf = (1, 1)

Figure C.5 represents the values of the functionals (objective function and approximation
model) and gradients (objective function and approximation model) at the centers of the trust
region. We notice that the values of the norms of the gradient (Figure C.5a) and the functional
(Figure C.5b) both tend towards 0 (the global minimum of the function is zero, while the local
minimum convergence implies a cancellation of the gradient).

0 10 20 30

10−3

10−2

10−1

100

k

∥ ∥ µ
k
−
µ

f∥ ∥
/
∥ ∥ µ

f∥ ∥

Figure C.4: Evolution of the relative error between the center of the confidence region at iteration
k and the optimal value.

Figure C.6 depicts certain parameters specific to the trust region method throughout the
iterations. Figure C.6a illustrates the radii of the trust regions, while Figure C.6 corresponds
to the ratio used for updating the trust region. The variations in these parameters showcase
the algorithm’s behavior over the course of iterations. The trust region expands when there is a
sequence of highly successful steps (evidenced by high values of the ratio ρk around the twentieth
iteration) and contracts when the outcome is less favorable. Monitoring these parameters is crucial
for verifying the correct implementation and ensuring a judicious choice of hyperparameters.
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‖∇F (µk)‖
‖∇mk (µk)‖

(a) Evolution of gradients over iterations for
the objective function and the approximation
model.
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(b) Model evolution over iterations for objective
function and approximation model.

Figure C.5: Evolution of model evaluations and gradients over iterations for the objective function
F and the approximation model mk at the centers of the trust-region µk.

0 10 20 30

10−2

10−1

100

k

(a) Radius of the trust-region ∆k

0 10 20 30
10−1

100

101

k

(b) Update ratio ρk

Figure C.6: Evolution of the radius of the ∆k trust region and ratio for ρk update over the
iterations.
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Iteration (µk)1 (µk)2 (µ∗k)2 (µ∗k)2 Update
1 0.01071657 0.06975253 0.01071657 0.06975253 True
2 0.01071657 0.06975253 0.16655578 -0.03717835 False
3 -0.05429478 -0.00082821 -0.05429478 -0.00082821 True
4 -0.05429478 -0.00082821 0.28009449 -0.00254455 False
5 -0.05429478 -0.00082821 0.2303478 0.00607251 False
6 -0.05429478 -0.00082821 0.1839345 0.0133266 False
7 -0.05429478 -0.00082821 0.12799273 0.02212548 False
8 -0.05429478 -0.00082821 0.06844636 0.03123113 False
9 -0.05429478 -0.00082821 -0.03037037 0.00714035 False
10 -0.04279195 0.00297439 -0.04279195 0.00297439 True
11 0.25475199 0.04597492 0.25475199 0.04597492 True
12 0.40887598 0.14338131 0.40887598 0.14338131 True
13 0.40725865 0.16131494 0.40725865 0.16131494 True
14 0.40725865 0.16131494 0.65105892 0.37165572 False
15 0.63422116 0.35806608 0.63422116 0.35806608 True
16 0.62543794 0.40429111 0.62543794 0.40429111 True
17 0.62543794 0.40429111 0.82832825 0.6400577 False
18 0.76546561 0.55543945 0.76546561 0.55543945 True
19 0.78511275 0.61062513 0.78511275 0.61062513 True
20 0.82519653 0.67884287 0.82519653 0.67884287 True
21 0.85494312 0.72954289 0.85494312 0.72954289 True
22 0.86243455 0.74323706 0.86243455 0.74323706 True
23 0.97396504 0.93611906 0.97396504 0.93611906 True
24 0.97396504 0.93611906 0.62559565 0.27083389 False
25 0.97396504 0.9361190 0.9392685 0.8805215 False
26 0.97396504 0.93611906 0.93926951 0.88052354 False
27 0.97719616 0.9548519 0.97719616 0.9548519 True
28 0.99826813 0.9960903 0.99826813 0.9960903 True
29 0.99826813 0.9960903 0.86242389 0.72482268 False
30 0.99826813 0.9960903 0.98610839 0.97221267 False
31 0.99826813 0.9960903 0.98605804 0.97211151 False
32 0.99847248 0.99694064 0.99847248 0.99694064 True
33 0.99984926 0.99969614 0.99984926 0.99969614 True
34 0.99984926 0.99969614 0.98500128 0.96995621 False
35 0.99984926 0.99969614 0.99850938 0.99701424 False

Table C.3: Iteration table for minimizing the Rosenbrock function.
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Appendix D
Details for PDE-constrained optimization
algorithms

D.1 Derivation of the adjoint equation for PDE-constrained

optimization

As a reminder, we focus on the case of an HF cost function to present the derivation of an adjoint
equation. We are interested in the PDE-constrained optimization problem:

min
µ∈Rp

Jhf (µ) = F (uµ, µ)

subject to Rhf (uµ, µ) = 0

We refer to the works [Joh12] or [Zah16] for more details. A first method is to derive an adjoint
approach using an algebraic trick. We can write:

dJhf

dµ
=
∂F

∂µ
− ∂F

∂u

[
∂Rhf

∂u

]−1
∂Rhf

∂µ

=
∂F

∂µ
−
[[
∂Rhf

∂u

]−> [
∂F

∂u

]>]>
∂Rhf

∂µ

=
∂F

∂µ
−Λ>µ

∂Rhf

∂µ
.

This Lagrange multiplier is derived from the solution of an equation, called the adjoint equation,
where we seek to determine the solution to the following problem:

[
∂Rhf

∂u
(uµ, µ)

]>
Λµ =

[
∂F

∂u
(uµ, µ)

]>
(D.1)

Other approaches explain in more detail the origin of this algebraic trick and equation. We briefly
present the derivation from sensitivity analysis. This method is also known as the direct method.
This method relies on the appearance of a quantity called sensitivity, which corresponds to the
derivative of the solution as a function of the parameter. However, in practice, this quantity is
rather difficult, if not impossible, to determine. Applying the chain rule to the cost functional
Jhf , we have:
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dJhf

dµ
(µ) =

∂F

∂µ
(uµ, µ) +

∂F

∂u
(uµ, µ)

∂u

∂µ
(µ) . (D.2)

As a reminder, the displacement solution checks the PDE:

Rhf (uµ, µ) = 0, ∀µ ∈ P ,
Then, we can perform the derivation with respect to the parameter vector:

dRhf

dµ
(uµ, µ) = 0 ⇒ ∂Rhf

∂µ
(uµ, µ) +

∂Rhf

∂u
(uµ, µ)

∂u

∂µ
(µ) = 0, (D.3)

� First derivation: Since the Jacobian of the problem is invertible, we can express the following
sensitivities:

∂u

∂µ
(µ) = −

[
∂Rhf

∂u
(uµ, µ)

]−1
∂Rhf

∂µ
(uµ, µ) (D.4)

Therefore, we can combine the equation for the sensitivity and the equation for the gradient
of Jhf . Such a combination can lead to an expression of the gradient of the cost-function:

dJhf

dµ
(µ) =

∂F

∂µ
(uµ, µ)− ∂F

∂u
(uµ, µ)

[
∂Rhf

∂u
(uµ, µ)

]−1
∂Rhf

∂µ
(uµ, µ) (D.5)

If we define the adjoint variable Λ such that:

Λ> = −∂F
∂u

(uµ, µ)

[
∂Rhf

∂u
(uµ, µ)

]−1

(D.6)

we can thus define the gradient:

dJhf

dµ
(µ) =

∂F

∂µ
(uµ, µ) + Λ>

∂Rhf

∂µ
(uµ, µ)

� Second derivation: we introduce a test function Λ, and we can multiply the sensitivity
equation (Equation (D.3)), which gives:

Λ>
[
∂Rhf

∂µ
(uµ, µ) +

∂Rhf

∂u
(uµ, µ)

∂u

∂µ
(µ)

]
= 0

We can add these zero terms to the gradient expression Equation (D.2), this gives us the
following expression:

dJhf

dµ
(µ) =

∂F

∂µ
(uµ, µ) +

∂F

∂u
(uµ, µ)

∂u

∂µ
(µ)−Λ>

[
∂Rhf

∂µ
(uµ, µ) +

∂Rhf

∂u
(uµ, µ)

∂u

∂µ
(µ)

]

︸ ︷︷ ︸
=0

,

=
∂F

∂µ
(uµ, µ)−Λ>

∂Rhf

∂µ
(uµ, µ) +

[
∂F

∂u
(uµ, µ)−Λ>

∂Rhf

∂u
(uµ, µ)

]

︸ ︷︷ ︸
=0, if Λ is solution of adjoint equation

∂u

∂µ
(µ)
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In the case where the multiplier meets the adjoint equation (D.1), we have an expression for
the gradient of the cost function.
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Appendix E
Additional numerical analysis on trust-region
approches relying on ROMs

E.1 Additional numerical investigations for the data-assimilation

problem in linear elasticity

E.1.1 High-fidelity data-assimilation problem: holed-plate under trac-
tion

φ σerr,µ Eb νb Ea νa Jhf (µa) CPU Time (s) nit neval

1 2% 51 · 103 0.306 50.5581827 · 103 0.305484477 3.541475508817821 · 10−10 13.941 33 79
10 2% 51 · 103 0.306 49.9461768 · 103 0.302487792 1.0934289386267248 · 10−11 14.931 40 82
102 2% 51 · 103 0.306 49.9987253 · 103 0.300050883 1.3300032570281602 · 10−13 14.855 32 87
103 2% 51 · 103 0.306 49.9999871 · 103 0.300000514 1.3347642303932904 · 10−15 9.949 34 54
1 10% 55 · 103 0.33 52.7726000 · 103 0.327046401 8.01341300712998 · 10−9 11.988 32 68
10 10% 55 · 103 0.33 49.7485497 · 103 0.311232059 2.3989749766700176 · 10−10 10.532 35 58
102 10% 55 · 103 0.33 49.9945140 · 103 0.300218903 2.860398658370181 · 10−12 16.947 38 87
103 10% 55 · 103 0.33 49.9999445 · 103 0.300002211 2.869206180587488 · 10−14 11.537 38 61
1 25% 62.5 · 103 0.375 56.8999552 · 103 0.365753798 4.2284561246367983 · 10−8 20.097 35 114
10 25% 62.5 · 103 0.375 49.4526953 · 103 0.323362662 1.1980140666316695 · 10−9 32.235 61 168
102 25% 62.5 · 103 0.375 49.9893620 · 103 0.300424251 1.3854000701201777 · 10−11 22.876 59 114
103 25% 62.5 · 103 0.375 49.9998926 · 103 0.300004280 1.3887055982309812 · 10−13 15.538 41 82

Table E.1: Ouputs of the DA process (for different pairs of hyper-parameters) for a solution using
’L-BFGS-B’.

E.1.2 Data-assimilation with ROM and without trust-regions

On the use of various POD tolerances

We report here the results of DA processes using ROM (without TR) for different values of POD
tolerances. We have simulated the different DA problems successively, only adjusting the POD
tolerance as a hyper-parameter of the problem. In this way, we can investigate the sensitivity of the
solution to this parameter. Figure E.1 depicts several evolutions of the cost functions for different
values of POD tolerances (and for different inverse problems, more or less regularised). For the
most regularised problems, i.e. those where the roughing term is most significant, we do not have
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Figure E.1: Visualisation of HF (Jhf) and reduced (J r
k) cost functions for different values of φ

through iterations for σerr,µ = 2%. The parameter sets {µ(i),r}i (resp. {µ(i),hf}i) correspond to the
trajectory obtained for a reduced calculation (resp. HF).

a major differnce on the convergence of the algorithm. The close the problem is to the true inverse
problem, the smaller the value of the local minimum and the greater the difference between the
solvers’ performances. More precisely, we can observe that for a zero POD tolerance, we iteratively
enrich the ROM until we reach the convergence threshold obtained for the HF calculation. This
is no longer the case for higher POD tolerances. This is consistent since the ROM is thus coarser
and cannot reach the same convergence tolerance as the HF model. In the cases observed here,
the error on the final solution is fairly small (we can see that the cost functions have extremely
low values). Nevertheless, it will ne necessary to study this phenomenon on problems with more
complex physics (and more timesteps).

Interest of adaptive enrichment

In this section, we provide an additional analysis of the benefits of iterative basis enrichment
in our framework. This complements the analyses provided in Figure 5.9. More specifically, to
demonstrate the accuracy of the analysis, we show that this is not dependent on the use of a
zero POD tolerance (Figure 5.9) by providing here (Figure E.2) results for a non-zero tolerance.
We plot here the convergence curves (on the cost function) for the HF calculation, and for the
reduced calculation. For the latter, we provide two plots: fisrt, the evaluation of the HF cost
function at iterates in red (which corresponds to what is actually calculated by the minimization
algorithm), and second, the evaluation of the HF cost functions at iteates in blue. We can notice
that during the first iterations the HF cost functions evaluated at reduced iterates increases from
time to time, and so we leave the minimization framework. This is linked to the fact that the
reduced model is moving out of its region of validity. However, over the course of the iterations,
the models becomes better and the phenomenon fades until convergence is reached.

E.2 Additional results for the data-assimilation problem

in hyperelasticity

In the appendix, we provide more insight on an observation made for the four dimensional test case
in hyperelasticity. More specifically, we stated that to ease the convergence of the algorithm, we
constrained parameter values by providing boundaries. The control of these boundaries is defined
by Equation (5.31). In practice, we use slightly more precise constraints to avoid coefficients of
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Figure E.2: Visualisation of HF (Jhf) and reduced (J r
k) cost functions for different hyper-parameter

pairs (φ and σerr,µ) through iterations. The parameter sets {µ(i),r}i (resp. {µ(i),hf}i) correspond
to the trajectory obtained for a reduced calculation (resp. HF). For this simulations, the reduced
order basis is generated thanks to a tolerance εu = 10−5.

Poisson or Young’s modulus taking on non-physical values:

∀i ∈ {0, 1},





Emax
i = µb + αbd

σerr,µ

100
µb, and Emin

i = max
(
µb − αbd

σerr,µ

100
µb, 0

)

νmax
i = min

(
µb + αbd

σerr,µ

100
µb, 0.5

)
, and νmin

i = max
(
µb − αbd

σerr,µ

100
µb,−1

)

Figure E.3 depicts several trajectories of relative errors compared to the expected value for
various alpha values. We can observe that an optimal choice of boundaries reduces the number of
algorithm iterations and improves the approximation error.
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Figure E.3: Evolution of the parameters and the relative errors on the components of the parameter
vector comparing to the true parameter for ∆0 = 10−1 for ’classical’ approach on the overall
field for a four dimensional test case for (σerr,µ, φ) = (25%, 1000) for different values of αbd. The
latter is used to defined the boundaries for the optimization problem.
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Appendix F
Alternatives ideas and algorithms for incremental
hyper-reduction approaches

In this appendix, we provide additional insights into incremental hyper-reduction approaches to
expand upon the topic discussed in Chapter 6. More specifically, we focus on two subjects. First,
we present some supplementary numerical results on the purely non-intrusive incremental approach
mentioned earlier. This serves to illustrate certain choices made in the methodology. Secondly,
we present a theoretical derivation establishing a connection between a low-rank approximation
and a NNLS optimization problem. We do not provide numerical results for this case, but rather
offer some ideas to pave the way for future considerations on the subject

F.1 Numerical experiments on the incremental disjoint

approach

In this section, we present additional numerical results to elucidate the underlying reasons for
certain algorithmic choices made in Algorithm 7. Specifically, the objective of this section is
to showcase some numerical experiments associated with the application of this algorithm and
its variants, demonstrating a degree of applicability of the methodology. Before delving into the
details, we clarify certain technical aspects. The results we present are as follows. Firstly, we focus
on the case referred to as case 2 in Chapter 6. This entails considering a set of modes generated
a priori on a training set of 25 points, testing the incremental aspect by successively adding all
parameters to the problem. Secondly, in this context, we do not explicitly apply the numerical
implementation of the Lawson algorithm. We consider a scenario where the study is conducted on
the GGT matrix. In this context, this approach coupled with the incremental aspect has shown
improved numerical stability.

F.1.1 On the use of disjoint sets and redefinition of approximation for
the incr-dd approach

As stated above, in Chapter 6., we delineated a range of incremental problem-solving strategies,
each with varying degrees of complexity and effectiveness: one involving disjoint sets and another
addressing potential non-disjoint sets, with an emphasis on modifying the second member and
subsequent renormalization.

Figure F.1 illustrates the comparative analysis of these diverse methodologies in the case of nt =
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Figure F.1: Comparison of the outputs (percentage of selected elements and normalized residuals)
for different approaches for the incr-dd method and comparison with the classical approach for
various hyper-reduction tolerance (ntrain, nt) = (25, 20).

20 timesteps and a training set of size ntrain = 25. Notably, in scenarios involving non-disjoint sets,
the incremental process exerts discernible influence on solution quality. Specifically, normalized
residuals surpass the prescribed tolerance threshold, leading to a significantly reduced number of
selected elements compared to the classical approach (Figures F.1d-F.1f). The introduction of
set disjunction ameliorates this discrepancy, yielding a percentage of selected elements that aligns
more closely with the reference solution. Irrespective of the chosen approach, it is noteworthy
that the use of disjoint sets maintains a solution quality closely approximating that of the classical
approach. However, we can acknowledge that initial iterations may yield deviations in normalized
errors, which tend to rectify themselves over the course of subsequent iterations.

Furthermore, our desire to establish this observation led us to conduct an experiment involving
an augmented number of snapshots linked to each parameter. Specifically, we examined a scenario
characterized by a temporal discretization that was doubled (nt = 40). The visual representation
in Figure F.2) substantiates the earlier observation regarding the enhancement in approximation
quality achieved through the implementation of set disjunction (F.2c-F.2d). Additionally, it is
worth noting that, in this context, refraining from updating the second member (referred to as
approach 1) resulted in a deterioration of the solution. Consequently, using a disjoint set approach
and the subsequent recalculation of the second member in the initial stage of the algorithm (per-
formed during the computation on the updated dictionary) is deemed a suitable course of action.

F.1.2 Other solving approaches for sparse representation problem

This approach involves a particular relaxation of the sparse approximation problem, which is much
easier to solve in order to reduce the computational cost. Nevertheless, in practice, other numerical
approaches may be adopted to solve the approximation problem with a similar idea. Indeed, this
kind of problem appears regularly in signal processing and several classes of methods have been
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Figure F.2: Comparison of the outputs (percentage of selected elements and normalized residuals)
for different approaches for the incr-dd method and comparison with the classical approach for
various hyper-reduction tolerance and for a test-case defined by (ntrain, nt) = (25, 40).

developed to tackle this point. In the literature, approaches such as `1-norm minimization[YP19],
LASSO regularization[CACF17] or Orthogonal Matching Pursuit[CA19] are available to address
this kind of mesh sampling problem. By testing our algorithm on at least one alternative algorithm,
we open the door to generalizing the method to speed up mesh sampling methodology, even with
a different resolution algorithm.

We only present results for the incr-dd-disjoint algorithm. Indeed, the low-rank approximation
methodology relies on an analysis with estimates in `2 norm, which does not always stands for
alternative algorithms. In our eyes, this algorithm would require some adaptations for other
solvers. Moreover, we have shown that the computational speedups are much more interesting
for the first algorithm. We present the numerical results for a resolution by Orthogonal Matching
Pursuit algorithm[AKSV18][Tro04]. We observe that the speedups remain of good quality for
several values of hyper-reduction tolerances (see Figure F.5), wether for the resolution step or the
entire procedure.
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Figure F.3: Comparison of the percentage of selected elements obtained depending on the different
method: classical ECSW approach on the full dictionnary (classical), use of a thin svd and a low-
rank approximation (svd (thin)) and use of the incremental dd approach using disjoints sets and
a re-normalization (approach denoted by 3 previsouly - incr-dd-disjoint).
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Figure F.4: Speedups for the solving step of the EQ problem using a incr-dd-disjoint approach
(cf. Figure F.4a) and for the overall procedure (cf. Figure F.4b).

F.2 Low-rank approximation of the dictionnary

F.2.1 Low-rank approximation of G

Use of low-rank and reformulation

Within this section, the objective is to reduce the size of the dictionary to be supplied to the
optimization algorithm. From a heuristic standpoint, the information contained in the lines of the
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Figure F.5: Speedups for the solving step of the EQ problem using a incr-dd-disjoint approach
using an Orthogonal Matching Pursuit Algorithm.

dictionary may be redundant (a line corresponding to a residual for a given snapshot and mode,
at a fixed time step). We therefore use a Singular Value Decomposition (SVD) to reduce the
dictionary to the minimum amount of information required for the optimization process. Next,
we solve an optimization problem for a low-rank approximation of the dictionary containing the
signals. We assume that we have an SVD of the dictionary transpose GT ∈ RNe×n:

GT = UΣVT (F.1)

where U ∈ RNe×Ne , Σ ∈ RNe×n and VT ∈ Rn×n. We shall consider this SVD decomposition and
assume a truncation at rank k, which means we may rewrite the decomposition in the following
matrix form:

GT = UΣVT =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V1 V2

]T
(F.2)

where U1 ∈ RNe×k, U2 ∈ Rm×(Ne−k), Σ1 ∈ Rk×k, Σ2 ∈ R(Ne−k)×(n−k), VT
1 ∈ Rk×n, and V2 ∈

R(n−k)×n. This decomposition choice matches a truncation in the spectrum, which is a classic
method of constructing a low-rank approximation. of a matrix. The orthogonality property of
the V matrix provides the equivalence, for ρ ∈ RNe :

Gρ = y ⇔ VΣUTρ = y

⇔ VTVΣUTρ = VTy

⇔
(
Σ1U

T
1 + Σ2U

T
2

)
ρ = VT

1 y + VT
2 y

We introduce the following matrices:

Gk = Σ1U
T
1 and yk = VT

1 y (F.3)

where Gk ∈ Rk×Ne and Gk = V1Σ1U
T
1 = V1Gk ∈ Rn×Ne . With these notations, Gk defines the k

rank approximation of the dictionary. The matrix Gk is the actual dictionary used for the k rank
approximation least squares problem, defined as follows:

ρeq = EQ-solve (Gk, yk, δk) (F.4)
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where δk is the tolerance given for this simulated problem. For the moment, we do not specify the
rank selection criterion. Assuming we possess a solution to this approximate problem, we need to
achieve an approximation on the dictionary. Successive matrix inequalities lead to the following
inequality:

‖Gρeq − y‖2 ≤ σk+1 (G)
(
‖ρeq‖2 +

∥∥ρhf
∥∥

2

)
+ δk ‖yk‖2 , (F.5)

where σk+1 (G) is the k+1-th singular value of the G matrix.

F.2.2 Details of the derivation of the low-rank algorithm

In this appendix, we detail the calculations used to derive the various inequalities given in Sec-
tion F.2.1. As a reminder, G ∈ Rn×Ne is the dictionary for which we are looking for a sparse
solution, and Gk is its low-rank approximation. In the following equations, ρeq ∈ RNe is the EQ
rule obtained when using the low-rank approximation (see Equation (F.4)). We can derive the
inequations:

‖Gρeq − y‖2 =
∥∥G

(
ρeq − ρhf

)∥∥
2

=
∥∥(G−Gk)

(
ρeq − ρhf

)∥∥
2︸ ︷︷ ︸

(I)

+
∥∥Gk

(
ρeq − ρhf

)∥∥
2︸ ︷︷ ︸

(II)

(F.6)

First, we focus on the error analysis of the term (I):

∥∥Gk

(
ρeq − ρhf

)∥∥
2

=
∥∥Gkρ

eq −V1ΣU>1 ρ
hf
∥∥

2
= ‖Gkρ

eq − yk‖2 ≤ δk ‖yk‖2 (F.7)

The equality is founded on the following equations:

Gkρ
hf = V>1 Gρhf = V>1 y = yk.

Second, we focus on the error analysis of the term (II):

∥∥(G−Gk)
(
ρeq − ρhf

)∥∥
2
≤ σk+1 (G)

∥∥ρeq − ρhf
∥∥

2
≤ σk+1 (G)

(
‖ρeq‖2 +

∥∥ρhf
∥∥

2

)
(F.8)

We can concatenate the two terms of the error bound, leading to the following bound:

‖Gρeq − y‖2 ≤ σk+1 (G)
(
‖ρeq‖2 +

∥∥ρhf
∥∥

2

)
+ δk ‖yk‖2 (F.9)
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