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Abstract
Neuroimaging has become an essential tool in the study of markers of Alzheimer’s dis-

ease. However, analyzing complex multimodal brain images remains a major challenge for
clinicians. To overcome this difficulty, deep learning methods have emerged as a promising
solution for the automatic and robust analysis of neuroimaging data.

In this thesis, we explore the use of deep generative models for the detection of anomalies
associated with dementia in 18F-fluorodeoxyglucose positron emission tomography (FDG
PET) data. Our method is based on the principle of pseudo-healthy reconstruction, where
we train a generative model to reconstruct healthy images from pathological data. This
approach has the advantage of not requiring annotated data, which are time-consuming and
costly to acquire, as well as being generalizable to different types of anomalies. We chose
to implement a variational autoencoder (VAE), a simple model, but that proved its worth
in the field of deep learning. However, assessing the performance of our generative models
without labeled data or ground truth anomaly maps leads to an incomplete evaluation.

To solve this issue, we have introduced an evaluation framework based on the simulation
of hypometabolism on FDG PET images. Thus, by creating pairs of healthy and diseased
images, we are able to assess the model’s ability to reconstruct pseudo-healthy images. In
addition, this methodology has enabled us to define new metrics for assessing the quality of
reconstructions obtained from generative models. The evaluation framework allowed us to
carry out a comparative study on twenty VAE variants in the context of FDG PET pseudo-
healthy reconstruction. The proposed benchmark enabled us to identify the best-performing
models for detecting dementia-related anomalies.

Finally, several significant contributions have been made to open-source software. A
PET image processing pipeline has been integrated into the Clinica software. In addition,
this thesis gave rise to numerous contributions to the development of the ClinicaDL software,
including its improvement, the addition of new functionalities, software maintenance and
participation in project management.
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Résumé

La neuroimagerie est devenue un outil essentiel dans l’étude des marqueurs de la maladie
d’Alzheimer. Cependant, l’analyse de ces images complexes provenant de différentes modal-
ités d’imagerie cérébrale reste un défi majeur pour les cliniciens. Pour surmonter cette
difficulté, les méthodes de deep learning ont émergé comme une solution prometteuse pour
l’analyse automatique et robuste des données de neuroimagerie.

Dans cette thèse, nous explorons l’utilisation de modèles génératifs profonds pour la dé-
tection d’anomalies associées à la démence dans les données de tomographie par émission de
positons au 18F-fluorodésoxyglucose (TEP au FDG). Notre méthode repose sur le principe
de la reconstruction pseudo-saine, où nous entraînons un modèle génératif à reconstruire des
images saines à partir de données pathologiques. Cette approche présente l’avantage de ne
pas nécessiter de données annotées, qui sont longues et couteuses à acquérir, ainsi que d’être
généralisable à différents types d’anomalies. Nous avons choisi d’implémenter un autoen-
codeur variationnel (VAE), un modèle simple mais qui a fait ses preuves dans le domaine du
deep learning. Cependant, analyser la performance de nos modèles génératifs sans disposer
de données labellisées ou de cartes d’anomalies mène à une évaluation incomplète.

Pour résoudre ce problème, nous avons mis en place un cadre d’évaluation basé sur la
simulation d’hypométabolisme dans les images de TEP au FDG. Ainsi, en créant des paires
d’images saines et pathologiques, nous sommes en mesure d’évaluer la capacité du modèle
à reconstruire des images pseudo-saines. De plus, cette méthodologie nous a permis de
définir de nouvelles métriques pour évaluer la qualité des reconstructions générées par les
modèles génératifs. Le cadre d’évaluation a rendu possible une étude comparative sur une
vingtaine de variantes du VAE dans le contexte de la reconstruction pseudo-saine de TEP
au FDG. Cela nous a permis d’identifier les modèles les plus performants pour la détection
des anomalies liées à la démence.

Enfin, plusieurs contributions significatives ont été apportées à des logiciels open-source.
Un pipeline de traitement d’images TEP a été intégré au logiciel Clinica. De plus, cette thèse
a donné lieu à de nombreux apports au logiciel ClinicaDL, avec notamment l’amélioration
de sa structure, l’ajout de nouvelles fonctionnalités, la maintenance du logiciel, ou encore la
participation à la gestion du projet.
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1

Introduction

Dementia and Alzheimer’s disease

Dementia is a broad term used to describe a variety of symptoms associated with a decline in
cognitive functions that hamper daily life. It is defined in the fifth edition of the Diagnostic
and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013) as a
neurocognitive disorder with:

• a significant cognitive decline in one or more cognitive domain: complex attention,
executive function, learning and memory, language, perceptual motor skill, social cog-
nition;

• an interference with everyday activities;

• symptoms not due to other medical disorders such as depression or schizophrenia.

According to the study of Nichols et al., 2022, as dementia is more likely to develop
with age, and given the global population’s aging trend, the global burden of the disease
will increase significantly in the coming decades.

The most common cause of dementia is Alzheimer’s disease, with over 60% of the cases.
Other causes include vascular dementia, Lewy body dementia, frontotemporal dementia, and
more rarely Parkinson’s disease, posterior cortical atrophy, variants of primary progressive
aphasia, etc. (see Figure 1).

Figure 1: Different types of dementia and their rate. Alzheimer’s Association, “What Is
Dementia?”, www.alz.org/alzheimers-dementia/what-is-dementia

Alzheimer’s disease is a chronic neurodegenerative disease that affects cognitive function,
in particular memory, thinking and behavior. The disease appears with age and touches

https://www.alz.org/alzheimers-dementia/what-is-dementia
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mostly the elderly population. The first symptoms of Alzheimer’s disease are short-term
memory loss, which gradually worsens over time. As the disease progresses, patients may
encounter additional symptoms such as deterioration in language abilities, disorientation,
confusion, and changes in mood and behavior (McKhann et al., 1984).

The diagnosis of Alzheimer’s disease relies on clinical assessment, where clinicians em-
ploy a set of tests to evaluate the cognitive abilities of the patient (Khan, 2016; Epelbaum et
al., 2023). A commonly used cognitive test is the mini mental state examination (MMSE),
during which the clinician evaluates various aspects of cognitive function with a quiz of 30
questions (Folstein et al., 1975). These questions cover six categories: orientation in time and
space, memory, learning and transcription, attention and calculation, language and object
identification, and praxis. Typically, a score above 27 out of 30 indicates normal cognitive
function, while scores below this threshold indicate varying degrees of cognitive impairment,
with lower scores corresponding to more severe dementia. Another score, the Clinical De-
mentia Rating (CDR), evaluates six distinct domains: memory, orientation, judgment and
problem-solving, engagement in community affairs, management of home and hobbies, and
personal care (Hughes et al., 1982). CDR ranges from 0 to 3: a score of 0 means that
the patient is cognitively normal, whereas a score superior to 0 indicates cognitive impair-
ment, from low (0.5) to severe (3). However, these scores gauge the severity of the patient’s
symptoms, meaning that the diagnosis is made once the disease has already manifested.

Even though the causes of Alzheimer’s disease are not totally understood, the amyloid
cascade hypothesis, introduced by Hardy et al., 1992, is a prominent theory in the field of
Alzheimer’s disease research. It suggests that the disease develops through the following
steps:

• The event triggering the apparition of the disease is the accumulation of β-amyloid
peptide in the brain under the form of plaques.

• One of the consequences of this is the excessive phosphorylation of tau proteins in the
brain, that will form tangles inside neurons, altering their functioning.

• This will cause the neurodegeneration, and possibly the death of the neurons.

• Ultimately, this will lead to the cognitive decline that is characteristic of Alzheimer’s
disease.

While trying to understand the causes of Alzheimer’s disease, this hypothesis also provides
several biomarkers that could facilitate early diagnosis and potentially help to predict the
evolution of the disease. Jack et al., 2016 proposed the A/T/N classification system to
characterize the pathological changes associated with Alzheimer’s disease. It categorizes
these changes into three major components: amyloid (A), tau (T), and neurodegeneration
(N), which are also the components of the amyloid cascade hypothesis. This classification
has later been expanded by Hampel et al., 2021.

There is currently no cure for Alzheimer’s disease. However, very recently, several phase
3 trials of β-amyloid depleting therapies have demonstrated their effectiveness to slow down
the progression of cognitive decline (Van Dyck et al., 2023; Sevigny et al., 2016). This has



3

led to approval of several treatments by the FDA either through the accelerated approval 1

or traditional pathway2. In each of these cases, it is essential to detect the disease as early as
possible, and if possible before the appearance of the first symptoms, to ensure effectiveness
of the medication. Furthermore, given that Alzheimer’s disease progresses gradually over
several years, conducting clinical trials for such treatments becomes exceedingly costly. This
underscores the importance of meticulous patient selection, particularly targeting those ex-
hibiting early signs of Alzheimer’s disease. In this context, medical imaging plays a key role
to observe the physiological changes that appear in the brain several years before the symp-
toms, such as neurodegeneration, cortical atrophy, β-amyloid aggregation or accumulation
of tau protein (Hardy et al., 1992; Jack et al., 2016; Hampel et al., 2021).

Neuroimaging data for neurodegenerative disorders

Medical imaging is a process which consists in creating a 2D or 3D image of the interior of
the body. There are multiple acquisition techniques, including x-ray, computed tomography,
magnetic resonance imaging or positron emission tomography. These modalities use the
different physical properties of the body, allowing the creation of its visual representation
(Smith et al., 2010). Medical images give various indications to clinicians, such as changes
in shape (enlargement or atrophy of specific structures), shifts in tissues’ intensity, and the
emergence of abnormal characteristics like tumors or lesions, all of which may suggest the
presence of a disease.

In the context of brain disorders, medical imaging allows the observation of several
biomarkers related to dementia. Thus, medical imaging plays a crucial role for the detection,
diagnosis and monitoring of neurodegenerative diseases (Burgos, 2023).

One of the most used modalities in clinical applications but also in research is magnetic
resonance imaging (MRI), and more specifically structural MRI that provides high resolution
visualization of the brain anatomy, while remaining non-invasive. MRI exploits the magnetic
properties of hydrogen nuclei present in body tissues to generate contrast. Depending on the
electromagnetic radiation emitted and the image post-processing step, it is possible to obtain
very different images, also called sequences, with different contrasts between tissues, allowing
the observation of diverse structures and features. T1-weighted (T1w), T2-weighted and
FLAIR are the most commonly used sequences for brain structural MRI, but many others
exist. Moreover, several data acquisition techniques and image reconstruction algorithms
can be used to improve the quality of the image (improve resolution, improve contrast, filter
artifacts, correct bias field, etc.).

In the case of dementia, brain structural MRI is used for computer-aided diagnosis,
since various features can be derived from T1w images such as whole brain volume, density
of specific tissues like gray matter, or local cortical thickness and surface area, which are
indicative of atrophy, a key marker of neurodegenerative diseases.

1https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alz
heimers-drug

2https://www.fda.gov/news-events/press-announcements/fda-converts-novel-alzheimers-disea
se-treatment-traditional-approval

https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-drug
https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-drug
https://www.fda.gov/news-events/press-announcements/fda-converts-novel-alzheimers-disease-treatment-traditional-approval
https://www.fda.gov/news-events/press-announcements/fda-converts-novel-alzheimers-disease-treatment-traditional-approval
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For instance, we can observe the structure of a brain thanks to a T1w MRI of a cognitively
normal subject in Figure 2. For comparison, in the T1w MRI of the patient with Alzheimer’s
disease, we note neuronal loss as evidenced by gray matter atrophy and the increased space
occupied by cerebrospinal fluid (appearing dark).

Figure 2: T1-weighted MRI of a cognitively normal subject (top) and of a patient with
Alzheimer’s disease (bottom). We highlighted significant atrophy in the parietal lobe in
yellow, important neuronal loss in the hippocampus in red, and expansion of the ventricles

in green.

Another relevant imaging modality for Alzheimer’s disease and dementia is positron
emission tomography (PET) as it allows observing the physiological changes that appear
in the brain several years before the symptoms, such as neurodegeneration, β-amyloid ag-
gregation or accumulation of tau protein (Herholz, 1995; Herholz et al., 2007; Quigley et
al., 2011). PET is a modality using nuclear properties of radioactive substances that are
injected intravenously to the patient. It results in a 3D image that highlights the concen-
tration of the radioactive tracer that has been administered. Since it is an invasive method,
and the equipment and operation is quite expensive, this modality is more used for research
purposes than in clinical routine for the computer-aided diagnosis of dementia.

There are three types of tracers commonly used for the diagnosis of Alzheimer’s dis-
ease (Nordberg et al., 2010) that allows observing the three biomarkers associated with
Alzheimer’s disease: the concentration of β-amyloid, of the tau protein, and the metabolism
of the brain that can indicate neurodegeneration. In this PhD work, we will focus on the use
of 18F-fluorodeoxyglucose (FDG), which is a glucose analog that concentrates in areas that
consume a lot of it, such as the brain, and will thus highlight its metabolism. In the case of
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neurodegenerative diseases, FDG PET is used to localize brain areas with altered glucose
metabolism, also called hypometabolism. It is a tracer that allows observing the earliest
signs of Alzheimer’s disease, and is commonly used in clinical practice. Indeed, like other
fluorine-18 tracers, it has a relatively long half-life (approximately 110 minutes), eliminating
the need to synthesize it onsite.

As an example, we display in Figure 3 FDG PET images of a cognitively normal sub-
ject and of a patient with Alzheimer’s disease. The tracer is expected to concentrate in
the gray matter, which is the brain region containing neurons that have a high metabolic
activity and significant glucose consumption. We observe on the scan of the cognitively nor-
mal subject that the tracer intensity is relatively homogeneous within the cortical ribbon,
demonstrating the healthy functioning of the brain. However, on the scan of the patient
with Alzheimer’s disease, we observe some regions with a lower intensity in the gray matter,
indicating hypometabolism related to the disease.

Figure 3: FDG PET of a healthy control subject (top) and of a patient with Alzheimer’s
disease (bottom)

We saw in the examples above that some biomarkers that are observable through PET
images can be used to detect physiological changes in the brain that are related to demen-
tia, such as amyloid accumulation or metabolic dysfunction. However, in clinical practice,
PET scans are mostly analyzed visually by a nuclear physician and reading interpretation
highly depends on the physician expertise (Perani et al., 2014). Therefore, we would like
to automate the analysis of PET images and provide to clinicians a reliable and robust
computer-aided diagnosis tool for detecting dementia-related anomalies.
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Deep learning for computer-aided diagnosis

During the last decade, breakthroughs in deep learning and computer vision combined with
the increasing quality and quantity of medical data available have offered many new possi-
bilities in medical image processing and analysis (Litjens et al., 2017; Esteva et al., 2017;
Zhou et al., 2021). Deep learning algorithms are now capable of accomplishing tasks that
require a high level of expertise, leading to the development of tools for computer-aided
diagnosis (Litjens et al., 2017; Burgos et al., 2021a; Suganyadevi et al., 2022). These tech-
nologies are meant to assist healthcare professionals in the diagnostic process by analyzing
medical data, such as images or clinical data, and providing additional information that can
be used to make a more accurate or early diagnosis.

Neuroimaging does not escape this trend as diagnostic support appears to be helpful
for many brain disorders such as dementia, brain tumor and stroke (Venkatraghavan et al.,
2023). When reducing the scope to dementia, computer-aided diagnosis consists in using
machine learning and deep learning algorithms to analyze neuroimages obtained from modal-
ities like MRI or PET. These systems can automatically detect subtle anomalies, quantify
certain features, and highlight areas of concern in order to support clinicians in diagnosing
dementia. Computer-aided diagnosis systems do not aim to replace the expertise of health-
care professionals, but rather serve as a supplementary tool to automatize repetitive, long
and arduous tasks, and by reducing interpretation errors, especially when there is a need to
analyze a large volume of data.

We show in Figure 4 the increasing number of articles published on the computer-aided
diagnosis of Alzheimer’s disease since 2005, proving the growing interest of the scientific
community and the high potential of these methods. We also notice that in 2023, the
number of articles about deep learning approaches surpasses the number of articles about
machine learning approaches, showing that deep learning is becoming a new standard for
analyzing medical images.
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Figure 4: Number of articles presenting machine learning and deep learning approaches
for the computer-aided diagnosis of Alzheimer’s disease published over the years, according

to PubMed (query available in Appendix A).

A first strategy to exploit neuroimaging data involves using them to train a classification



7

algorithm to distinguish between subjects with dementia from those considered healthy.
This approach either leverages patterns and features extracted from neuroimages to de-
velop a machine learning algorithm, or directly uses images to train deep learning classifiers
(Samper-González et al., 2018; Pellegrini et al., 2018; Wen et al., 2020; Burgos et al., 2020;
Burgos et al., 2021a; Ebrahimighahnavieh et al., 2020).

An alternative approach involves training an algorithm to identify patterns or abnormal-
ities within medical data. Anomaly detection refers to the detection of abnormal patterns
or deviations from what can be normally observed. In the context of dementia, it includes
anomalies in neuroimaging scans, such as changes in brain structure (visible is structural
MRI) or function (visible in functional MRI and FDG PET) that may be indicative of
dementia-related pathology. Machine learning, and more recently deep learning, is increas-
ingly being used for anomaly detection in dementia research (Choi et al., 2019; De Carli
et al., 2019; Baydargil et al., 2021; Shi et al., 2023; Hinge et al., 2022; Hassanaly et al.,
2024b; Hassanaly et al., 2024c; Solal et al., 2024a). These algorithms can learn to detect
subtle abnormalities in neuroimaging data that may not be apparent to the human eye, thus
potentially enabling earlier and more accurate diagnosis of dementia and related conditions.

To detect subtle anomalies in brain FDG PET, an approach has been proposed by
Burgos et al. (Burgos et al., 2015; Burgos et al., 2017; Burgos et al., 2021b). The proposed
method consists in generating a pseudo-healthy PET image specific to the subject and using
this model to create a subject specific abnormality map. To this end, subjects that are the
most similar to the patient under investigation in terms of demographic characteristics and
morphology are selected in a control dataset; and by combining it with the patient’s MRI, a
model of the PET image is created. The abnormality map is then generated by comparing
both PET images (the real one and the synthesized one). To create the PET image model,
images selected in the control dataset are first transformed using a registration algorithm
to be in the same space as the subject under investigation. Indeed, these images are not
originally aligned due to acquisition differences (rotation, translation). Then the model is
created using a fusion algorithm. The model is composed of the standard deviation and
mean value of the selected subjects.

Although this method for early diagnosis of dementia on FDG PET gave good results,
many new deep learning algorithms developed in recent years have the potential to enhance
them, and improve anomaly detection in neuroimaging. For instance, deep generative mod-
els have shown promising results for anomaly detection in medical imaging (Schlegl et al.,
2017; Baur et al., 2021a; Chen et al., 2022; Zhang et al., 2023; Lagogiannis et al., 2023).
We would like to use deep generative models for pseudo-healthy reconstruction in order to
detect anomalies in brain FDG PET, with the goal of assisting clinicians diagnosing diseases
causing dementia.

Contributions

The objective of this PhD was to develop an unsupervised anomaly detection approach based
on deep generative models applied to brain FDG PET. More specifically, we focused on using
variational autoencoders (VAEs) for reconstructing pseudo-healthy images for the detection
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of dementia-related anomalies, without the need for labeled data. During the thesis, three
main categories of contributions emerged: methodological advancements in deep learning,
the application of these techniques to the field of neuroimaging, and the development of
software tools to support the implementation and deployment of these methods in clinical
research.

A preliminary work was to develop a pipeline for the preprocessing of PET images. This
pipeline had to be in the Brain Imaging Data Structure (BIDS) framework, as the images
are stored following this convention (Gorgolewski et al., 2017). The pipeline performs an
affine registration to a standard space and the intensity normalization of PET images.

Once the FDG PET data were pre-processed, we trained VAEs to reconstruct pseudo-
healthy images with images of cognitively normal subjects. However, if we do not need
manually labeled data for this task, we also do not have labeled data for the evaluation
of our trained models. One solution would be to refer to a clinician. However, in order
to provide a tool for robust and automatic assessment of the performance of the models,
we built a framework for the evaluation of pseudo-healthy reconstruction approaches in
the absence of ground truth. This framework consists in simulating anomalies in images
of healthy subjects to generate pairs of pathology-free and pathological (e.g., mimicking
dementia-like lesions) images. We complemented the framework by defining new healthiness
and anomaly metrics. The healthiness metric measures whether the reconstructed image is
of healthy appearance to evaluate the model capacity to reconstruct pseudo-healthy images,
whereas the anomaly metric measures whether the input image contains anomalies using
both the pseudo-healthy reconstruction and the input image. This resulted in a multitude
of experiments to extensively evaluate a 3D VAE trained on full resolution PET using
the framework, including an analysis of the VAE latent space. A preliminary version of
this work has been published as a conference proceeding (Hassanaly et al., 2023a), before
being extended to a journal version published in the Special Issue for Generative Models of
Machine Learning for Biomedical Imaging (Hassanaly et al., 2024b).

We then proposed a benchmark of 20 VAE-based models focused on the pseudo-healthy
reconstruction of 3D FDG PET images in the context of dementia. We compared many
VAE-based models that have not been applied to medical image analysis yet: in contrast
to computer vision works, where datasets typically contain several tens of thousands of
images, it has been interesting to examine the performance of such models when trained on
a relatively small dataset, comprising only a few hundred images, which is typical in medical
imaging. The models were evaluated and compared thanks to the evaluation framework. A
preliminary version of this work has been published as a conference proceeding (Hassanaly
et al., 2023b), before being extended to a journal version that has been submitted to Medical
Image Analysis (Hassanaly et al., 2024c).

Finally, a significant contribution of this thesis is the participation to the develop-
ment of the open-source software packages Clinica and ClinicaDL. Clinica (Routier et al.,
2021) is an open-source software for reproducible processing of neuroimaging datasets and
multi-modal neuroscience studies. I added to Clinica the PET images processing pipeline,
named pet-linear; I also updated the BIDS converter for the ADNI database. ClinicaDL
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(Thibeau-Sutre et al., 2022b) is an open-source software that aims at enhancing the re-
producibility and rigor of research on deep learning in neuroimaging. My contributions to
ClinicaDL are numerous: from a refactoring of the whole software engine and structure, to
the micromanagement of the project, passing by the addition of new features and the main-
tenance of the software. This work has been used extensively by other researchers of the
laboratory and led to several publications in journals (Routier et al., 2021; Thibeau-Sutre
et al., 2022b) and conferences (Thibeau-Sutre et al., 2022a; Hassanaly et al., 2024a).

Outline of the manuscript

The manuscript is organized as follows:

• In Chapter 1, after presenting the state-of-the-art of unsupervised anomaly detec-
tion applied to medical imaging and neuroimaging, we focus on our application by
describing the imaging modality, the dataset and more generally the materials we use
in our work.

• In Chapter 2 we demonstrate that the VAE is well suited for pseudo-healthy recon-
struction through a theoretical analysis, and implement this generative model first for
a toy dataset and then for real brain FDG PET data, before raising some limitations
due to the lack of evaluation materials and tools.

• In Chapter 3 we therefore introduce an evaluation method based on the simulation of
anomalies related to dementia on 3D FDG PET in order to measure the performance of
generative deep learning models for unsupervised anomaly detection when no ground
truth data is available.

• In Chapter 4 we use both the VAE regularized latent space and the introduced
evaluation method to push the evaluation further and try to explain and interpret the
results of our model.

• In Chapter 5 we compare about 20 different VAE variants in the context of UAD
applied to dementia, and provide a method to select the best architectures and pa-
rameters when benchmarking models.

• In Chapter 6 we present the numerous software contributions that have been made
during this thesis, especially to the Clinica (Routier et al., 2021) and ClinicaDL
(Thibeau-Sutre et al., 2022b) open source software packages.

• Finally, in the Conclusion and Perspectives chapter, we sum up our contributions,
discuss the results and outline potential future research directions.
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Chapter 1

Anomaly detection in brain FDG
PET

1.1 Unsupervised anomaly detection in medical imaging

The synergy between innovations in imaging technologies, the growing volume of medical
data, and sophisticated machine learning algorithms have given rise to algorithms capable of
performing complex tasks such as anomaly detection for computer aided diagnosis (Fernando
et al., 2021).

1.1.1 Supervised vs unsupervised approaches

A strategy for anomaly detection with deep learning consists in using a supervised algorithm
that learns from annotated data. This has the advantage of having remarkable performance
on the specific task learned, which can be classification between normal and abnormal images
(Esteva et al., 2017; Wen et al., 2020) or anomaly segmentation (Zhou et al., 2018; Isensee
et al., 2021). However, this strategy has several drawbacks: the first one is that it requires a
large amount of annotated data that are time-consuming and costly to acquire. The second
one is that the model’s results will be affected by potential annotation errors. The last
disadvantage is that the models will be specific to the data, diseases and anomalies they
have been trained on. This might be an issue especially for rare diseases for which few data
samples are available.

Another strategy, called unsupervised anomaly detection (UAD), consists in using self-
supervised, weakly supervised or unsupervised learning for anomaly detection (Chen et al.,
2022; Zhang et al., 2023). The underlying idea of these methods is to learn the distribu-
tion of healthy data. One can then use it to detect out-of-distribution samples, and thus
identify abnormal cases. Another way is to use generative models to reconstruct pseudo-
healthy images from the healthy data distribution: since the model is trained to reconstruct
only normal data, we assume that the reconstruction of abnormal images will be imper-
fect, and by comparing the input real image to the reconstruction, we should be able to
detect anomalies. The first advantage of this strategy is that it does not require voxel-level
annotation. Another benefit is that it should be able to detect any type of anomaly, poten-
tially linked to different diseases. Deep generative models such as variational autoencoders
(VAEs) (Kingma et al., 2014), generative adversarial networks (GANs) (Goodfellow et al.,
2014) and more recently denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020)
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have shown great results for image generation tasks and unsupervised anomaly detection in
medical imaging (Esmaeili et al., 2023), including neuroimaging (Wang et al., 2023; Gong
et al., 2023).

1.1.2 State-of-the-art on anomaly detection in medical imaging

Unsupervised methods having many benefits, their use for anomaly and outlier detection
in medical imaging has increased over the last years, especially methods based on image
synthesis.

A family of methods do not rely on the image reconstruction, but rather consist of out-
of-distribution detection algorithms. For instance, Alaverdyan et al., 2020 used a siamese
autoencoder on 2D patches to detect epilepsy lesions on T1w and FLAIR MRI. The model
learns a latent representation of each voxel of MRI from healthy controls, using the patch
surrounding the voxel. The siamese autoencoder consist of two autoencoders sharing the
same weights and latent space, that are regularized by enforcing two similar patches x1 and
x2 to have close latent space representations z1 and z2. Then, a one-class support vector
machine (SVM) is trained to classify abnormal voxels’ latent representations as outliers in
the latent space, allowing to detect a neighborhood of abnormal voxels that correspond
to brain lesions. This method has further been applied to the detection of white matter
hyper-intensities (Pinon et al., 2023b), by training the one-class SVM at the patient level
instead of training it on the training set. It has further been applied to Parkinson’s disease
and improved by using a generative mixture model to have a proximity measure in order to
detect out-of-distribution latent vectors (Pinon et al., 2023a).

Concerning pseudo-healthy reconstruction, the underlying idea is to create new healthy
looking images from existing data using a generative model such a VAE (Kingma et al.,
2014), GAN (Goodfellow et al., 2014) or DDPM (Ho et al., 2020). By training only with
images from healthy subjects, the model learns the distribution of normal or healthy data.
We then expect that the reconstruction of an image with this model will look like a healthy
version of the original image, whether the image is that of a healthy subject or a patient
with a disease, thus the name pseudo-healthy reconstruction. The reconstructed pseudo-
healthy image is finally compared to the real one to detect anomalies and possibly compute
an anomaly score.

Pseudo-healthy reconstruction has been used in numerous fields of medical imaging
(Fernando et al., 2022), for instance to detect various lung anomalies such a pneumonia on
chest x-ray (Nakao et al., 2021; Kim et al., 2023), retinal anomalies on optical coherence
tomography (Schlegl et al., 2017; Schlegl et al., 2019; Zhou et al., 2023), breast cancer on
mammogram (Park et al., 2023), skin cancer on dermatoscopic images (Lu et al., 2018),
tumors detection on PET, computed tomography and PET-CT (Astaraki et al., 2023), or
malignant tissues on colonoscopy (Tian et al., 2021). In the following, we will reduce the
scope to methods applied to neuroimaging.

Several methods based on autoencoders have been developed, starting by Zimmerer et
al., 2018 who used a context-encoding VAE for the detection of brain glioma and multiple
sclerosis lesions on anatomical MRI. The localization of the anomalies was improved in a
subsequent work using a pixel-wise KL distance (Zimmerer et al., 2019). Another work by



1.1. Unsupervised anomaly detection in medical imaging 13

Chen et al., 2018b introduced constrained adversarial autoencoders. Marimont et al., 2021
used both prior-based anomaly score and reconstruction-based anomaly score with a vector
quantized VAE (VQVAE). Pinaya et al., 2022b also used a VQVAE together with an au-
toregressive transformer in the latent space to better learn the probability density function
of healthy data. To show the efficiency of autoencoders, Baur et al., 2021b implemented an
autoencoder with a spatial latent space and skip-connections and compared the result to a
UNet trained for supervised anomaly segmentation. Bercea et al., 2023c tried to generalize
UAD to non hyper-intense anomalies in order to detect various pathological features using
a reverse autoencoder. Lüth et al., 2023 reused the general principle of pseudo-healthy
reconstruction with autoencoders but in their case, the encoder is improved thanks to con-
trastive learning in order to use high level features of the image to learn a better latent
representation.

Based on the fundamental work of Schlegl et al., 2017 who introduced AnoGAN and
its improved version, the f-AnoGAN (Schlegl et al., 2019), several frameworks using GANs
have been developed. For instance, the VAEGAN (Baur et al., 2019), the ANT-GAN (Sun
et al., 2020), or the cycleGAN (Xia et al., 2019; Xia et al., 2020). More recently, Shi et
al., 2023 introduced GANCMLAE, a GAN-based approach combined with an autoencoder
and constrained by multiple losses for the early detection of brain atrophy. Another novel
and interesting approach has been proposed by Siddiquee et al., 2023, who train a GAN-
based model with both healthy and abnormal images to have a fully unsupervised method.
Finally, Bercea et al., 2023d combined both a latent generative model and high quality
reconstruction networks based on in-painting GAN to detect stroke lesions on T1w MRI.

Baur et al., 2021a summed up and compared many of the VAE and GAN approaches
that had been used for unsupervised brain tumor and multiple sclerosis lesion segmentation
on MRI data.

More recently, following the success of diffusion models for image generation, DDPMs
have also been used for anomaly detection tasks in medical imaging. Wyatt et al., 2022
introduced AnoDDPM, a DDPM based anomaly detection method on T1w MRI with partial
diffusion strategy, in order to reduce the computational cost for both training and inference.
They also explore the use of Simplex noise, claiming that Gaussian noise doesn’t allow to
detect anomalies of different scale. This approach has been ranked among the best in a
recent review (Bercea et al., 2023a). Wolleb et al., 2022 used denoising diffusion implicit
models combined with classifier guidance applied to lung X-ray and brain MRI. Pinaya et
al., 2022a combined a VQVAE with diffusion model in the latent space to identify abnormal
areas in the latent space, in order to further localize anomalies in the image. He showed
that DDPM methods outperform his previous work, in which he used transformers in the
latent space (Pinaya et al., 2022b). This work has subsequently been improved by Graham
et al., 2023 who introduced the latent diffusion model. It consists of a diffusion model that is
trained on the 3D latent space of a VQVAE, in order to improve the reconstruction quality.
Finally, (Bercea et al., 2023b) uses an iterative process combined with in-painting approach
to refine the anomaly mask obtained with DDPM.

Most methods for UAD have been applied to brain structural MRI, often targeting
sharp and visible anomalies such as tumors or multiple sclerosis lesions. Only a few studies
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have focused on other modalities such as computed tomography or PET, probably because
fewer data is available. Choi et al., 2019 implemented a simple VAE for anomaly detection
on 2D slices extracted from brain FDG PET. Baydargil et al., 2021 used a GAN with an
autoencoder architecture for the generator (with a parallel model for the encoder) to detect
anomalies on FDG PET in the context of Alzheimer’s disease. Another interesting appraoch
is the use of multi-modal VAE in order to combone features of different modalities Kumar
et al., 2023; Lawry Aguila et al., 2023.

In most cases, the proposed methods work with 2D images that are extracted from 3D
volumes. But recently, numerous articles working directly with 3D images or trying to
reconstruct 3D volumes have been published. Pinaya et al., 2022b validated their model
on both 2D and 3D images. Chatterjee et al., 2022 proposed a compact version of the
context encoding VAE of Zimmerer et al., 2018 that is trained on 2D slices that are stacked
to obtain a 3D volume. Han et al., 2021 presented a similar strategy, which consists of
using three successive slices to reconstruct the following three slices to take into account the
3D structure of the image. Luo et al., 2023 directly trained a 3D encoder to detect brain
abnormalities on T2-weighted volumes. Bengs et al., 2021 compared 3D and 2D VAEs for
anomaly detection on brain MRI. Bengs et al., 2022 trained a VAE on 3D T1-weighted
MRI by additionally considering the age information. Simarro Viana et al., 2020 proposed
a 3D extension of the 2D f-AnoGAN and refined the training steps to detect traumatic
brain injuries. Finally, DDPMs do not scale well to 3D images, as they require much more
memory (Wyatt et al., 2022; Graham et al., 2023).

In this work, we aim to apply UAD methods to identify metabolic changes associated
with Alzheimer’s disease and other dementias (Chételat et al., 2020) that are visible in brain
18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) images. 18F-FDG PET
images are 3D images that highlight the concentration of administered FDG, a tracer used to
localize hypometabolism in the case of neurodegeneration (Herholz, 1995). This application
is particularly interesting as deep learning methods for UAD have rarely been applied for
the diagnosis of dementia (Choi et al., 2019; Baydargil et al., 2021; Hinge et al., 2022),
whereas this approach could enable early diagnosis since changes visible in neuroimaging
can occur years before the onset of initial symptoms (Jack et al., 2016). The metabolic
abnormalities can be difficult to detect as they are diffuse and sometimes subtle (limited
difference in intensity between normal tissues and areas with hypometabolism) (Burgos et
al., 2021b), contrary to glioblastoma or white matter hyper-intensities usually studied on
structural MRI (Baur et al., 2021a; Xia et al., 2020; Chen et al., 2018b; Zimmerer et al.,
2019).

1.2 Materials

1.2.1 Positron emission tomography

Positron emission tomography is a modality using nuclear properties of radioactive materials
that are injected in the patient intravenously. This method is invasive, but the quantity of
radioactive isotope is small enough to be harmless for the patient. As soon as the radioactive
isotope disintegrates, it emits a positron. When the emitted positron encounters an electron,
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they will combine to form a positronium. This positronium will quickly annihilate into two
photons (corresponding to gamma rays) that will propagate in opposite directions. The
sensor around the patient will catch these photons, and when it detects two photons in a
really short interval, it is possible to deduce the origin of the emission (on the line between
the two points) (Sharp et al., 2005).

Positron emission tomography is used to visualize a biological process of an organ by
attaching a radioactive isotope to a specific molecule we want to trace, forming a radiotracer.
Finding the emission location allows finding the concentration of the molecule we are tracing,
and if this molecule (for example glucose) intervenes in the functioning of an organ, we can
deduce in which part of it the operation is done. For example, this can be used to find
which parts of the brain use glucose and which do not (which implies disorder).

There are three types of tracers commonly used for the diagnosis of Alzheimer’s disease
(Nordberg et al., 2010). The first category is that of amyloid tracers that allow visualizing
the aggregation of β-amyloid in the brain. Several molecules exist such as Pittsburgh com-
pound B, 18F-florbetapir, 18F-flutemetamol, or 18F-florbetaben (Landau et al., 2014). The
second category corresponds to tracers used for tau protein imaging, such as 18F-flortaucipir,
which are useful for any tau pathology (Leuzy et al., 2019). Examples are given in Figure 1.1.

FDG PET Tau PET Amyloid PET

Figure 1.1: Example of PET images. Left: 18F-FDG PET displaying brain glucose
metabolism. Middle: 18F-flortaucipir PET displaying the presence of tau neurofibrillary
tangles. Right: 18F-florbetapir PET displaying the presence of amyloid plaques. All the

images correspond to the same Alzheimer’s disease patient from the ADNI database.

In this PhD work, we will focus on the use of the last category of tracers: FDG.

1.2.2 Data preprocessing using Clinica

During this PhD project, we used FDG PET scans that have been acquired using different
protocols, scanners and imaging centers. Therefore, a preprocessing pipeline is essential for
preparing PET images for deep learning training, aiming to reduce biases due to different
image provenance and acquisition. The pet-linear pipeline1 have been developed for this
purpose, and added it to the Clinica open-source software (Routier et al., 2021).

The pet-linear pipeline performs a spatial registration to the MNI ICBM 2009c Non-
linear Symmetric template (Fonov et al., 2009; Fonov et al., 2011), followed by an intensity

1https://aramislab.paris.inria.fr/clinica/docs/public/dev/Pipelines/PET_Linear/

https://aramislab.paris.inria.fr/clinica/docs/public/dev/Pipelines/PET_Linear/
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normalization of PET images. A prerequisite of the pipeline is to register the MRI scan as-
sociated to the PET scan in the MNI space using t1-linear pipeline from Clinica2. Then,
several steps of processing are applied to the PET images.

Step 1: Register the PET image to the associated T1w image The first step of
the pipeline is a rigid transformation of the PET scan to the associated T1w MRI in its
native space. Only the transformation from the PET native space to the T1w MRI space
is saved (and not the registered PET image). The reason is that it is easier to find a rigid
transformation in the patient anatomical space from the PET native space to the T1w MRI
space than directly computing a linear transformation from the PET space to the MNI
space.

Step 2: Compose transformation to register PET image to MNI The t1-linear

pipeline that have to be run before using the pet-linear pipeline to save the affine reg-
istration between the T1w MRI and the MNI template (Fonov et al., 2009; Fonov et al.,
2011). We then compose this transformation and the one from PET to MRI computed
during the first step to get the transformation from the PET native space to the MNI space.
This resulting transformation is applied to the PET image using the SyN algorithm (Avants
et al., 2008) from the ANTs software package (Avants et al., 2014), and the registered PET
image is saved.

Step 3: Perform intensity normalization using a reference region defined in the
MNI space Then, the registered PET image intensity is normalized using the mean in-
tensity in reference regions, resulting in a standardized uptake value ratio (SUVR) map
(Nugent et al., 2020). This is necessary because the image intensity depends on the quan-
tity of tracer injected to the subject during the acquisition but also the physiology and
the morphology of the subject. The pipeline uses a binary mask of the reference region
to compute the mean SUVR, then the whole image intensity is divided by this value for
normalization. The reference region used to compute the SUVR can be chosen by the users
depending on the tracer used for the PET and the disease studied: the region is selected
depending on where the tracer concentration is expected to be unaffected by the disease
under study and remain relatively constant.

In our case, as we work with FDG PET on Alzheimer’s disease, we created two masks
for pons and cerebellum-pons regions. We used the Pick Atlas3 because it is the only
open-source atlas with those regions defined in the MNI space. However, as we can see
in Figure 1.2, the cerebellum-pons region defined in the atlas (in blue) is overflowing on
other tissues, so we had to refine the masks. To make it more specific, we removed voxels
overlapping with tissues that cannot be in the cerebellum or the pons. To this end, we used
SPM software4 that provides tissue probability maps in the MNI space. We binarized these
probability maps to make tissue masks, and merged the binary masks of the cerebrospinal-
fluid, the skull, the “others” (skin...) and the background to have a mask of all tissues

2https://aramislab.paris.inria.fr/clinica/docs/public/dev/Pipelines/T1_Linear/
3https://www.nitrc.org/projects/wfu_pickatlas/
4https://www.fil.ion.ucl.ac.uk/spm

https://aramislab.paris.inria.fr/clinica/docs/public/dev/Pipelines/T1_Linear/
https://www.nitrc.org/projects/wfu_pickatlas/
https://www.fil.ion.ucl.ac.uk/spm
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outside the brain. We then removed voxels of the regions defined in the Pick Atlas that
were overlapping with the mask we obtained (in green). Finally, we eroded the cerebellum
and pons regions to be sure that it will not overflow on any images registered in the MNI
space (in red).

Figure 1.2: Different masks of the cerebellum-pons region. We can see in blue the region
as defined in the Pick atlas that is clearly overflowing. In yellow there is the old mask
used in Clinica, which is the original mask cropped. However, this mask still overflows.
In green, we can see the mask after removing the overlapping parts with SPM extra brain

regions. And in red the final mask we obtained after eroding the green one.

As intensity normalization is a very import step in the pipeline, even if an accurate
mask of the reference regions was defined, the first and last deciles from the voxel intensity
distribution are removed to compute the SUVR to be sure to filter outliers from voxels from
neighboring regions. What is more, an additional non-linear registration of the PET native
space to the MNI space is computed, only to refine the calculation of the SUVR. Indeed,
linear registration is simple and does not assure that cerebellum-pons region is perfectly
registered to the MNI space. So this extra step is performed to have the best estimation
possible of the SUVR. However, this non-linear transformation is just a side step, it is not
saved or used for other purposes.

Step 4: Cropping A last optional step can be performed: the cropping of the image to
center the image and remove the extra background.

An illustration of the resulting registered, normalized and cropped FDG PET image is
displayed in Figure 1.3. The pipeline can be applied to other tracers than FDG.

1.2.3 Data selection

FDG PET scans used in this study were obtained from the ADNI database (Mueller et al.,
2005; Jagust et al., 2010; Jagust et al., 2015). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial MRI, PET, other biological markers, and
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Figure 1.3: FDG PET images in its native space (top), and the same image registered
to the MNI space and normalized in intensity (bottom, overlaid on the MNI template)

clinical and neuropsychological assessment can be combined to measure the progression of
mild cognitive impairment and early AD.

We selected FDG PET images co-registered, averaged and uniformized to a resolution of
8 mm full width at half maximum to reduce the variability due to the use of different scan-
ners. We only used PET images for which a T1-weighted (T1w) MR image was available at
the same session for preprocessing purposes. The images were then processed using Clinica’s
(Routier et al., 2021) pet-linear pipeline: they were registered using a rigid transformation
to the corresponding T1w MRI of the same session, and then affinely registered to the MNI
ICBM 2009c Nonlinear Symmetric template (Fonov et al., 2009; Fonov et al., 2011) using
the transformation computed with the t1-linear pipeline. They were then normalized in
intensity using the average PET uptake in a region comprising cerebellum and pons, and
cropped. In the end, the dimension of the PET scan is 169× 208× 179 with 1 mm isotropic
voxels.

In the ADNI database, there is a total of 3511 FDG PET scans from 1600 participants.
This includes 554 cognitively normal (CN) subjects (1010 images) that we selected since
UAD models are trained only on images from healthy subjects. We know that physiological
changes can appear several years before the first clinical symptoms, so to ensure that images
really correspond to a healthy brain, we kept only scans from subjects that are CN for at
least three years after the session considered. We discarded 78 subjects (129 images) for
whom diagnosis progresses to AD, 72 subjects (72 images) for whom there is a unique session
(which is not enough to assess the reliability of the CN label) and 21 subject (49 images) for
whom there are multiple conversions or regressions. We finally keep 383 stable CN subjects
(760 images).
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There are also 560 AD patients (791 images). We removed 2 patients (2 images) with
unstable AD diagnosis, 3 patients (3 images) of regressive AD, 189 patients (189 images)
for whom there is a unique session, and 4 subjects that were already in the training set. In
the end, we keep the 362 baseline sessions of the remaining AD patients for testing purposes
and discarded all the other images.

1.2.4 Data quality control

To filter out potential PET images not correctly registered to the MNI template, we per-
formed quality control. We first controlled the quality of the registration between the T1w
MRI and the MNI template, as it is an intermediate step when registering the PET im-
age to the MNI space. The approach relies on a pre-trained neural network called DARQ
(Fonov et al., 2022) that learned to classify images that are adequately registered to the
MNI template.

We then assessed the quality of the alignment of the PET image itself with the MNI
template. Here the approach relies on a metric that measures the overlap between the
output of the pet-linear pipeline, i.e. the PET image supposedly aligned with the MNI
template, and a mask corresponding to the outside of the brain obtained from the MNI
template. If the overlap is large, we assume that the PET image is not well-registered, as
illustrated in Figure 1.4.

Figure 1.4: Example of an FDG that is well registered and passed quality control (top),
and an FDG PET that is badly registered and did not pass quality control (bottom).
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Both quality control pipelines are available in the ClinicaDL open-source software5

(Thibeau-Sutre et al., 2022b).
After running both quality control pipelines, we discarded a total of 30 images: 18 images

from CN subjects and 9 images from AD patients after t1-linear quality control, and 3
images from CN subjects after pet-linear quality control.

Finally, our dataset is composed of 739 images from 378 CN subjects and 353 images at
baseline from 353 AD patients.

1.2.5 Data preparation using ClinicaDL

For our deep learning experiments, we split our dataset of 378 CN subjects into training
and test sets at the subject’s level to avoid any form of data leakage (Wen et al., 2020),
stratifying by sex and age to reduce biases. Only baseline sessions were kept in the test
set to avoid biased results. The test set, comprising 60 CN subjects (60 images), is used
to assess whether the healthy images are reconstructed as healthy. We denote it as “Test
CN”. We then performed a six-fold cross validation on the training data to estimate the
variance due to data splitting Bouthillier et al., 2021. 53 subjects (53 images) belong to
the validation sets to monitor the training and 265 subjects (between 510 and 538 images
depending on the fold) are used to train our models. The details of the dataset splitting
and folds statistics are summarized in Table 1.1.

5https://clinicadl.readthedocs.io/en/latest/Preprocessing/QualityCheck/

https://clinicadl.readthedocs.io/en/latest/Preprocessing/QualityCheck/
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Chapter 2

Variational autoencoder for
pseudo-healthy reconstruction

In this chapter, we begin by providing an in-depth description of the variational autoencoder
framework, proving its suitability as a generative model for unsupervised anomaly detection.
Following this, we show the results of preliminary experiments conducted on a toy dataset,
before presenting subsequent analyses on real medical images, and more precisely on brain
3D FDG PET.

2.1 Variational autoencoder

A VAE is a deep learning model (Kingma et al., 2014) combining two parameterized models:
the encoder or recognition model, and the decoder or generative model.

Let’s consider an observed variable x randomly sampled from an unknown process with
an unknown probability distribution p(x). We try to approximate this process with a model
pθ(x), with parameters θ such that x ∼ pθ(x).

Our goal is to approximate the true distribution of the data p(x) with pθ(x), by learning
a set of parameters θ, such that for any observed x

pθ(x) ≈ p(x) .

To do so, we use a deep latent variable model that will allow us to map the complex unknown
real distribution p(x) to a latent distribution that can be simple. Let z be a random vector
jointly-distributed with x, we have

pθ(x) =

∫
z

pθ(x, z)dz (2.1)

where pθ(x, z) represents the joint distribution under pθ of the observable data x and its
latent representation or encoding z.

If we apply the chain rule to Equation 2.1, we obtain

pθ(x) =

∫
z

pθ(z)pθ(x | z)dz (2.2)

where:



24 Chapter 2. VAE for pseudo-healthy reconstruction

• pθ(z) is the latent space’s prior distribution, usually specified by the user. It is often
approximated by a Gaussian normal centered distribution p(z) = N (z; 0, I).

• pθ(x | z) is the generative model (also called decoder by analogy with the auto-encoder)
that needs to be computed.

However, pθ(x) is impossible to compute because it is intractable, we thus cannot opti-
mize the generative model and find θ. Indeed, the posterior pθ(z | x) is intractable, which
leads to an intractable joint distribution pθ(x, z). To make it feasible and solve this is-
sue, it is necessary to introduce a parametric inference model qΦ(z | x) to approximate the
posterior distribution

qΦ(z | x) ≈ pθ(z | x)

with Φ parameterizing q. The model qΦ(z | x) is called the recognition model or encoder
(by analogy with the auto-encoder).

Finally, we have two models qΦ(z | x) and pθ(x | z) (the encoder and the decoder) with
two sets of parameters Φ and θ (the weights of the models) to optimize.

In order to train the model and find optimal values for Φ and θ, we need an optimization
criterion. We will use the observations of x to maximize the likelihood of our model. The
idea is to jointly optimize the parameters θ to improve the generated data quality, which
means minimizing the reconstruction error, and the parameters Φ such that qΦ(z | x) is the
closest to the posterior pθ(z | x). Our criterion is then the addition of a reconstruction error
(for instance, we can use the mean squared error or the binary cross entropy) and a distance
between the distributions qΦ(z | x) and pθ(z | x). We will here use the Kullback-Leibler
(KL) divergence

DKL(qΦ(z | x)∥pθ(z | x)) =
∫

qΦ(z | x) log qΦ(z | x)
pθ(z | x)

dx . (2.3)

After replacing pθ(z | x) by pθ(z,x)
pθ(x)

we quickly arrive to

DKL(qΦ(z | x)∥pθ(z | x)) = log (pθ(x)) +

∫
qΦ(z | x) log qΦ(z | x)

pθ(z,x)
dx

= log (pθ(x))− EqΦ(z|x)

[
pθ(x, z)

qΦ(z | x)

]
,

(2.4)

which gives us

log (pθ(x)) = EqΦ(z|x)

[
log

pθ(x, z)

qΦ(z | x)

]
+DKL(qΦ(z | x)∥pθ(z | x)) . (2.5)

Besides, by definition, the KL divergence between qΦ(z | x) and pθ(z | x) is positive or
null if both distributions are equal. We can deduce from Equation 2.5 that

log (pθ(x)) ≤ EqΦ(z|x) [log(pθ(x, z))− log(qΦ(z | x))] , (2.6)
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which means that EqΦ(z|x) [log(pθ(x, z))− log(qΦ(z | x))] is the evidence lower bound (ELBO)
of the log-likelihood of the function pθ(x) (Kingma et al., 2014) and define our loss function
Lθ,Φ(x)

Lθ,Φ(x) = EqΦ(z|x) [log(pθ(x, z))− log(qΦ(z | x))]

= log (pθ(x))−DKL(qΦ(z | x)∥pθ(z | x)) .
(2.7)

A great advantage of the ELBO is that it allows optimizing both Φ and θ using stochastic
gradient descent (SGD).

After a few calculations, the loss of our model can be expressed by the following equation:

Lθ,Φ(x) = EqΦ(z|x) [log(pθ(x | z))]−DKL(qΦ(z | x)∥pθ(z)) . (2.8)

In practice, when training a VAE, we approximate all the distributions by Gaussian distri-
butions

pθ(z) = N (z; 0, I) , (2.9)

qΦ(z | x) = N (µ(x), σ(x)2) (2.10)

with µ(x) and σ(x) being respectively the mean and the standard deviation of the probability
distribution of a true sample x in the latent space. That is to say, the latent representation
z will be sampled from this distribution. This gives us the following formula:

DKL(qΦ(z | x)∥pθ(z)) = DKL

(
N (µ(x), σ(x)2)∥N (z; 0, I)

)
= −1

2

[
1 + log(σ(x)2)− σ(x)2 − µ(x)2

]
,

(2.11)

which gives us our loss function

Lθ,Φ(x) = EqΦ(z|x) [log(pθ(x | z))]− 1

2

[
σ(x)2 + µ(x)2 − log(σ(x)2)− 1

]
(2.12)

with EqΦ(z|x) [log(pθ(x | z))] the reconstruction loss.
Finally, if we approximate pθ(x | z) with a normal distribution such that pθ(x | z) =

N (f(z), cI), we can find the mean squared error in our reconstruction loss. This gives us
the final loss that we will use

Lθ,Φ(x) = MSE(x, f(z))− 1

2

[
σ(x)2 + µ(x)2 − log(σ(x)2)− 1

]
. (2.13)

However, since z is sampled from a random stochastic operation that is not differentiable,
we cannot perform the gradient back propagation. To tackle this issue, the VAE framework
introduces a reparameterization: instead of sampling a random vector z from µ(x) and σ(x),
we use a new variable ϵ, such that z = µ(x) + σ(x).ϵ with ε ∼ N (0, I). Therefore, all the
operations in the forward process become deterministic, and we can perform SGD.

The VAE is particularly suited for pseudo-healthy reconstruction. Let’s consider D a set
of medical images collected following a similar protocol. D contains healthy and pathological
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images and is the union of two complementary subsets Dh and Dp. For instance, Dh could
be a set of healthy FDG PET images x ∈ D whose distribution is p(x). The goal of pseudo-
healthy image reconstruction is to reconstruct an FDG PET image of healthy appearance
given an input x ∈ D. During the training process, an approximation of the posterior
distribution qϕ(z | x) is learned for x ∈ Dh as the model is trained using only healthy
subjects. In other words, the healthy image true distribution p(x) is approximated with the
learned parametric distribution pθ(x) such that pθ(x) ≈ p(x). During reconstruction, this
approximate posterior is used to estimate the latent variable z for x ∈ D (it can be from
Dh or Dp), i.e., the images (of healthy subjects or patients) are projected into that “healthy
images” learned subspace. Then, the decoder can generate healthy images from z.

2.2 Pseudo-healthy reconstruction on a toy dataset

We run a preliminary set of experiments on a toy dataset to study a simple case of anomaly
detection in a controlled setting. We generated a dataset of 2D synthetic Shepp-Logan
phantoms (Shepp et al., 1974). Shepp-Logan phantoms are 2D images composed of ten
ellipses that schematize human brains (Figure 2.1). It was first used in the seventies (Shepp
et al., 1974) to develop and test human brain image reconstruction algorithms. It is now
widely used as a brain model in computational neuroimaging.

Figure 2.1: Shepp-Logan phantom generated by ClinicaDL. We can distinguish different
regions of interest: the two ventricles in black, the first region of interest at the top and

the second region of interest constituted of three small circles at the bottom

2.2.1 Shepp-Logan dataset

The dataset was generated using ClinicaDL1 (Thibeau-Sutre et al., 2022b). The different
parameters, such as the size of the ellipses and intensity of the different regions, are random
to have different images. The algorithm can synthesize Shepp-Logan phantoms considered
as cognitively normal (CN), or images considered as pathological in which some regions

1https://clinicadl.readthedocs.io/en/latest/Preprocessing/Generate/

https://clinicadl.readthedocs.io/en/latest/Preprocessing/Generate/
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of interest appear smaller. We generated a total of 2000 images of size 128×128: 1000
normal images and 1000 pathological images. Only normal images are used for training and
validation, and all pathological images belong to the test set.

Table 2.1: Distribution of the data in the train, validation and test sets according to the
labels of the generated images

Set Composition

Training 900 normal images

Validation 50 normal images

Test normal 50 normal images

Test pathological 1000 pathological images

2.2.2 2D convolutional VAE

Our model architecture is a simple convolutional VAE. It is composed of a symmetric
encoder-decoder architecture, with four 2D convolutional layers in the encoder and four
2D transpose convolutional layers in the decoder. The latent space is 2D with a size of
8× 8.

We used the pixel-wise binary cross entropy (BCE) loss as reconstruction criterion, even
though it might not be the best choice (since the value of the pixel are in the range [0, 1]). A
reconstruction loss such as the L1 loss or MSE would be more appropriate. We accidentally
used the BCE because we prototyped our model on the MNIST dataset whose images are
composed of binary pixels (0 or 1). Since the results were satisfying, we did not retrain the
model and kept the BCE for this preliminary experiment.

Our total loss L is the sum of the BCE and the KL divergence

L(x, x̂) = BCE(x, x̂)− 1

2

[
σ(x)2 + µ(x)2 − log(σ(x)2)− 1

]
. (2.14)

We trained our model over 50 epochs, with a batch size of 2, a learning rate of 10−4,
and we used the Adam optimizer. In total, the training lasted 11 min on a GPU.

2.2.3 Results

We first evaluated our model on the normal images to see if the reconstruction of images
similar to the training samples was correct. As we can see in Figure 2.2, the reconstruction
image is very similar to the real image. The main difference is the blurriness of the two
regions of interest located at the top and the bottom of the phantom. Otherwise, the
intensity of the different regions are well reconstructed as we can see on the difference map
and the shapes are accurate enough.

We then reconstructed pathological images from test pathological to see if the model can
correct the anomaly. On the example displayed in Figure 2.3, we can see that the abnormal
zone, which is the region at the top of the image, is not well reconstructed. Indeed, we
simulate the pathology by making this region smaller. On the reconstructed phantom, this
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Figure 2.2: Reconstruction of Shepp-Logan phantom on two different normal images.
We can see that the reconstruction is accurate: the ventricles and the border of the images
are well reconstructed. We can also observe that the shapes are less sharp, especially for

the regions of interest.

region of interest is bigger than on the input, as highlighted in the difference map. This
is the expected behavior, since the model only learned to reconstruct normal images. In
that case, the model was not able to reconstruct the anomaly as is, and reconstructed the
abnormal region larger than on the input.

Figure 2.3: Reconstruction of Shepp-Logan phantom on two different pathological im-
ages. We can observe that the atrophied region of interest is generated larger than on the

real image.

We notice that, in both cases, the reference region at the bottom of the phantom (the
three circles) are in general not reconstructed very well: the model seems to reconstruct
them always well aligned and with three circles of the same size. We also generated images
with anomalies in this region by generating smaller circles, or having two or four circles
instead of three; and in every case the model reconstructed the same pattern for this region
of interest, that is three aligned circles with the same size. On one hand, it is a positive
result since it means that the anomalies are not reconstructed by the model. On the other
side, this also means that the difference between the subjects are not well learned by the
VAE.

Even if the results seem visually acceptable, we used quantitative reconstruction metrics
(SSIM, MSE and PSNR, more details in Section 3.2.1) to evaluate the performance of
the model on the whole test sets. Results are reported in Table 2.2. The MSE is just
above 10−3 for both normal and pathological images, and the SSIM is above 0.95 in both
cases, indicating a good reconstruction ability of the VAE. Moreover, the reconstruction
scores are slightly better for normal images than for pathological images. This is a positive
point because it is expected that the model reconstructs the normal images better than the
abnormal ones (since it should not reconstruct the anomalies well).
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Table 2.2: Reconstruction performance of our VAE on normal and pathological images.
The reconstruction is slightly better on normal images than on pathological images.

Test set SSIM ↑ MSE (×10−3) ↓ PSNR ↑

Normal (50 images) 0.958 1.09 29.68

Pathological (1000 images) 0.954 1.28 29.01

To test the robustness of the model, we artificially created different kind of anomalies.
We generated new images for testing purposes by changing the shape of some structures in
the Shepp-Logan phantom, their number, their intensity, ad tried different distortions on
the image. This allows us to evaluate how the model reacts to different kinds of anomaly,
and not only pathological images that resemble normal images. In Figure 2.4, we display
some of the results of this experiment. Other results are available in Appendix B. If the
anomaly is not too severe, such as the elastic deformation on the third image, or local, such
as the addition of a squared artifact on the first image or the change of an ellipse by a
triangle on the second image, then the model can reconstruct a normal version of the image.
However, if the deformation is too important, such as in the last row, then the model cannot
reconstruct a normal image, probably because the input image is too far from the normal
image distribution.

An idea to understand why the model behaves like this is to look at the latent represen-
tation of these images.

2.2.4 Latent space analysis

One of the main advantages of using VAEs for pseudo-healthy reconstruction is the regu-
larized latent space that provides a great insight of the model’s behavior. To this end, we
display in Figure 2.5 the distribution of the latent vectors of both test sets, after reducing
the latent space dimension from 64 to 2 using a principal component analysis (PCA). Al-
though the first two components of the PCA explain only 20% of the variance, we can still
make some interesting observations. First, all the normal images define a unique region in
the graph (in orange). The pathological images, in blue, are also located in the same region,
possibly explaining why they are reconstructed as normal. Indeed, the decoder part of the
VAE learned to reconstruct normal images from latent samples distributed in this part of
the latent space. Finally, we plotted in green the latent representation of the abnormal
images that we created to test the robustness of the method. We observe that most of them
are also distributed in the same region, explaining why the anomalies are reconstructed as
normal by the VAE. We nevertheless notice that there are few points out of the distribution.
For instance, one of them, highlighted in red, corresponds to the latent representation of
the bottom image of Figure 2.4. Since this image is very different from the normal image
distribution, the encoder is not able to deduce a latent representation that corresponds to
the training data distribution. Consequently, the reconstruction from this latent vector by
the decoder is different from a normal Shepp-Logan phantom.
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Figure 2.4: VAE pseudo-healthy reconstruction on images with different kinds of anoma-
lies: presence of a black square hiding a part of the image (top row), changing the shape
of an region of interest from an ellipse to a triangle (second row), applying an elastic de-
formation on the image (third row), and replacing all the ellipses by rectangles (last row).

From this preliminary experiment on Shepp-Logan data, we conclude that the VAE is
a promising generative model for pseudo-healthy reconstruction. It can learn the training
data distribution, and when trained only with normal data, it allows detecting anomalies
from inaccurate reconstructions of pathological images. Moreover, the VAE is simple to
implement, easy to train, and efficient both in terms of computation and resources used.
Finally, by analyzing its regularized latent space, we can understand the behavior of the
model and explain the results we obtained. We will now apply the VAE framework to real
medical images with the aim to detect dementia-related anomalies.
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Figure 2.5: Visualization of the latent space after a PCA. We observe that almost all
the images are in the same zone. The image that is out of the distribution is not correctly

reconstructed.

2.3 Pseudo-healthy reconstruction on FDG PET images

In this section, we present the results we obtained with a VAE for the pseudo-healthy
reconstruction of brain 3D FDG PET images.

2.3.1 Experimental setting

Materials

As explained in details in Section 1.2, we use FDG PET images from the ADNI dataset
(Mueller et al., 2005; Jagust et al., 2010; Jagust et al., 2015). The images are preprocessed
using the pet-linear pipeline from the Clinica open source software (Routier et al., 2021).
They are then carefully selected, for a final set of 739 images from 378 CN subjects and 353
images at baseline from 353 AD patients. We split our CN subjects into train/validation and
test sets at the subject level, and perform a 6-fold cross validation on the train/validation
set using the ClinicaDL open source software (Thibeau-Sutre et al., 2022b). All the AD
patients belong to the test set.

3D convolutional VAE

We opt for a 3D convolutional VAE as VAEs have already shown their efficacy for UAD
in medical imaging (Baur et al., 2021a; Chen et al., 2022): they are easy to train, easily
scalable, are able to handle small datasets, and with good interpretation capacity thanks
to their regularized latent space. Moreover, the VAE framework allows us to learn the
training data distribution, which is an import point specifically for our study, as we will see
in Chapter 4. We implement a 3D VAE to fully exploit the 3D context of high resolution
PET images.



32 Chapter 2. VAE for pseudo-healthy reconstruction

The VAE’s encoder is composed of five convolutional blocks that are the succession of a
3D convolutional layer and a batch normalization with a ReLU activation. Then the vector
is flattened and passes through a dense layer to output the latent space of size 256 in one
dimension. Our decoder is almost symmetrical as it transforms a single vector sampled from
the latent space in a 3D image with a dense layer followed by four deconvolutional blocks that
are composed of an upsampling layer, a 3D convolutional layer and a batch normalization
with a leaky ReLU activation. The output block is composed of an upsampling layer and a
3D convolutional layer with a sigmoid activation. Encoder convolutional layers have a kernel
size of (4, 4, 4), a stride of (2, 2, 2) and a padding of (1, 1, 1) while decoder convolutional
layers have a kernel size of (3, 3, 3), a stride of (1, 1, 1) and a padding of (1, 1, 1). A
detailed schema of the VAE we use can be found in Figure 2.6.

Figure 2.6: Architecture of the 3D convolutional VAE.

Model training

Our 3D convolutional VAE implementation relies on the open-source python library Pythae
(Chadebec et al., 2022). The model was trained on 200 epochs, with a learning rate of 10−5

using the ClinicaDL (Thibeau-Sutre et al., 2022b) software that aims to facilitate the use
of neuroimages with deep learning and improve reproducibility of the experiments.

We trained the VAE on Jean Zay high performance computer cluster with Nvidia Tesla
V100 GPUs that have 32GB of memory, which allowed us to use a batch size of 8. It took
approximately 10 hours to train each fold over the 200 epochs.

Model evaluation

In order to accurately detect anomalies, we first need to assess if the model is able to accu-
rately reconstruct 3D brain FDG PET. Therefore, we use pairwise reconstruction metrics
between the input and reconstructed images (Nečasová et al., 2022). The reconstruction
metrics we use are the mean-squared error, the peak signal-to-noise ratio, the structural
similarity (Wang et al., 2004), and the multi-scale structural similarity (Wang et al., 2003).
For more information, please refer to Chapter 3, Section 3.2.1.
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2.3.2 Results

The variational autoencoder is trained on six folds in order to evaluate the variance due to
data splitting (Bouthillier et al., 2021).

The results obtained on the test set are summarized in Table 2.3. We first observe
that the MSE is almost identical on the six folds, with a mean-squared reconstruction error
around 1.82× 10−3. The performance measured with PSNR are also very similar, which is
coherent as the PSNR is a function of the MSE. We also report that the SSIM varies from
0.874 on average to 0.879 between the folds 4 and 2.

Table 2.3: Reconstruction metrics obtained on the test set for images from healthy
subjects over the 6 folds.

Dataset Fold MSE (×10−3) ↓ PSNR ↑ SSIM ↑ MS-SSIM ↑

CN test set

0 1.834± 0.654 27.527± 1.080 0.875± 0.027 0.944± 0.015

1 1.815± 0.649 27.572± 1.074 0.878± 0.026 0.944± 0.014

2 1.841± 0.746 27.532± 1.113 0.879± 0.025 0.944± 0.015

3 1.826± 0.665 27.547± 1.079 0.876± 0.027 0.943± 0.014

4 1.858± 0.619 27.456± 1.031 0.874± 0.026 0.944± 0.014

5 1.836± 0.727 27.546± 1.134 0.876± 0.028 0.943± 0.015

For the following experiments, as it is difficult to interpret the results across several
folds for a reconstruction task, we select a fold according to the SSIM, which is a perceptual
metric substantially different from the loss being minimized. We select the fold 1, which
presents an average SSIM on the validation set similar to that of the other folds, but has
the highest minimum SSIM (see Table 2.4).

Table 2.4: SSIM obtained on the validation set for all the splits.

Split 0 Split 1 Split 2 Split 3 Split 4 Split 5
mean 0.861 0.865 0.876 0.871 0.868 0.867
std 0.035 0.024 0.030 0.037 0.026 0.034
min 0.698 0.801 0.741 0.66 0.795 0.736
25% 0.852 0.852 0.870 0.863 0.854 0.858
50% 0.870 0.872 0.884 0.881 0.870 0.873
75% 0.882 0.882 0.893 0.891 0.887 0.890
max 0.912 0.905 0.923 0.907 0.908 0.907

The reconstruction metrics of the model trained on the split 1 appear consistent with the
reconstructions of images of CN subject that are displayed in Figure 2.7. The reconstructions
are acceptable for 3D full resolution images: the shape of the brain and the main structures,
such as the ventricles, are well captured. However, smaller anatomical features such as
cortical folds are not well reconstructed.

Once we validated that the reconstruction quality of the VAE is acceptable, we test
it on images of AD patients to verify that we can reconstruct pseudo-healthy images that
allow us to detect hypometabolism. Some examples of reconstructions from AD patients
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Figure 2.7: Examples of reconstructions obtained from real images of CN subjects (even
rows). For each plane, the first image is the input, the second one the model’s reconstruc-

tion and the third one the difference (input - reconstruction).

are displayed in Figure 2.8. We first notice that the intensity of the reconstructed image is
overall higher than the input image, as the difference maps are mostly blue. Moreover, the
hypometabolism are reconstructed as pseudo-healthy (or at least with a higher intensity).
It is particularly visible on the second, fourth and fifth row, where the difference maps show
big differences in the parietal lobe.

To be consistent with the literature, we also compared the reconstruction metrics com-
puted on images of AD patients with the metrics computed on images of CN subjects. We
report the results in Table 2.5. We can see that the reconstruction performance is slightly
better on the images from CN subjects, which is a positive point because, as the model
should correct anomalies on images from AD patients, the reconstruction error is expected
to be higher. However, the difference is not large enough to separate healthy controls from
AD patients.

Table 2.5: Comparison of reconstruction metrics computed on test set with healthy
subjects and test set with patients with AD.

Simulated dementia MSE (×10−3) ↓ PSNR ↑ SSIM ↑ MS-SSIM ↑

CN 1.815± 0.649 27.572± 1.074 0.878± 0.026 0.944± 0.014

AD 2.554± 1.391 26.272± 1.560 0.853± 0.045 0.928± 0.025
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Figure 2.8: Examples of reconstruction obtained from real images of patients. For each
plane, the first image is the input, the second one the model’s reconstruction and the third

one the difference (input - reconstruction).

2.3.3 Discussion and limitations

Using images from healthy subjects and common reconstruction metrics, we confirmed that
the VAE was able to reconstruct subject-specific 3D FDG PET. However, the quality of the
reconstruction can be improved, as we observe that the VAE does not generate the sharp
details of the image very well. The reconstruction is quite blurry, which is expected as the
model is rather simple and generating high resolution 3D images is a difficult task. The
results are still satisfactory for FDG PET images at this resolution since they are smooth
by nature, but we can imagine that the VAE will be limited to other modalities that have
a lot of structural details, such as anatomical MRI. Even though the reconstruction quality
may be sufficient to detect anomalies, it would be difficult to qualify the reconstruction as
being pseudo-healthy at this stage of the evaluation (Baur et al., 2021a). Moreover, using
only reconstruction error to differentiate between healthy subjects and patients is not robust
enough. The major weakness is that little intense anomalies might be difficult to detect for
several reasons: first the model is able to reconstruct a meaningful image even though the
image is abnormal, the reconstruction error due to abnormal regions will be drowned in
the reconstruction noise due to model imperfection, and the reconstruction metrics being
computed on the whole image may not highlight significant difference (Meissen et al., 2021).

In most applications of pseudo-healthy synthesis for UAD, the performance of the model
on real diseased images is measured with a similarity metric using a ground truth anomaly
mask. This has the advantage of giving a quantitative measure for anomaly detection,
however this does not really measure if the reconstructed image is pseudo-healthy. Eval-
uating models on anomaly detection only may lead to incomplete and biased evaluation,
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as the model might not be able to detect every kind of anomalies. In our case, the final
validation step would be to ask a clinician to evaluate the healthiness of the reconstructed
images. However, having a clinician manually rate images is very time-consuming and can
be expensive.

If annotated data are not needed for training, testing the model without labels results
in approximate and incomplete evaluation. This highlights the need of having ground truth
masks for lesions we want to detect, or the target pseudo-healthy reconstruction for images
with anomalies. We will see in the next chapter, how to use simulated data in order to
overcome this limitation.
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Chapter 3

Evaluation and validation of
unsupervised anomaly detection
methods in neuroimaging

This chapter is a part of an article published in the Special Issue for Generative Models
of Machine Learning for Biomedical Imaging.

• Title: Evaluation of pseudo-healthy image reconstruction for anomaly detection with
deep generative models: Application to brain FDG PET

• Authors: Ravi Hassanaly, Camille Brianceau, Maëlys Solal, Olivier Colliot and
Ninon Burgos

• DOI: 10.59275/j.melba.2024-b87a

In this chapter, we introduce a framework for the evaluation of pseudo-healthy recon-
struction approaches in the absence of ground truth. This framework consists in simulating
anomalies on images of healthy subjects to generate pairs of pathology-free and pathological
(e.g., mimicking dementia-like lesions) images. We complement the framework by defining
new healthiness and anomaly metrics. The healthiness metric measures whether the re-
constructed image is of healthy appearance to evaluate the model capacity to reconstruct
pseudo-healthy images, whereas the anomaly metric measures whether the input image
contains anomalies using both the pseudo-healthy reconstruction and the input image. A
preliminary version of this work was published as a conference paper (Hassanaly et al.,
2023a).

3.1 Evaluation of UAD approaches in the literature

In the literature about unsupervised anomaly detection in neuroimaging, many studies have
used the BraTS (glioma) (Menze et al., 2014), ISLES (multiple sclerosis lesions) (Maier
et al., 2017) or ATLAS (stroke lesions) (Liew et al., 2017) datasets, which directly provide
ground truth anomaly masks (Zimmerer et al., 2018; Zimmerer et al., 2019; Chen et al.,
2018b; Baur et al., 2021a; Bercea et al., 2023c; Bercea et al., 2023d; Lüth et al., 2023;

https://doi.org/10.59275/j.melba.2024-b87a
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Wargnier-Dauchelle et al., 2023; Pinaya et al., 2022b; Chatterjee et al., 2022; Luo et al.,
2023; Bengs et al., 2022; Xia et al., 2019; Xia et al., 2020; Sun et al., 2020). Other studies
have used in-house data that may include ground truth anomaly masks (Baur et al., 2019;
Baur et al., 2021b; Siddiquee et al., 2023; Alaverdyan et al., 2020; Luo et al., 2023; Han et al.,
2021). In that case, the evaluation of the model is straightforward: one only has to compute
a metric such as the dice score between the predicted anomaly and the ground truth, as we
would do for the evaluation of supervised anomaly segmentation. Some works have gone
further by introducing new original metrics: Xia et al., 2020 defined a "healthiness" metric,
using a segmentation network to estimate the size of a potential lesion in the pseudo-healthy
reconstruction; and an “identity" metric, based on a multi-scale structural similarity index
on non-pathological tissues. In most of the other cases, when the ground truth anomaly mask
is not available, the evaluation consists in applying a classifier to the reconstructed images
that was trained to distinguish pathological and healthy images, or using the reconstruction
error itself from which an anomaly score is derived. One way to improve the evaluation is to
use synthetic data by corrupting real healthy data with sprites (Bercea et al., 2023c; Pinaya
et al., 2022b).

Strategies developed for pseudo-healthy reconstruction and, more generally, unsuper-
vised anomaly detection, often lack rigorous evaluation. Furthermore, the majority of stud-
ies utilize 2D images, with very few focusing on PET images. This is why, in this chapter,
we introduce an evaluation framework particularly adapted for experiments where ground
truth data is unavailable. Subsequently, we apply this framework to conduct a rigorous
evaluation of a 3D model for pseudo-healthy reconstruction. We apply this model to the de-
tection of anomalies associated with dementia, a task that has received limited exploration
and presents significant challenges.

3.2 Pseudo-healthy image reconstruction evaluation procedure

Rigorous and in-depth evaluation of machine learning models and of their training proce-
dure is crucial, especially in the medical field as overestimated or biased results may lead to
dramatic consequences (Varoquaux et al., 2022). As far as we know, there is no guidelines
nor standard procedure for the evaluation of pseudo-healthy reconstruction for UAD, espe-
cially when a ground truth of the anomalies that should be detected is not available. We
propose here such procedure.

In this context, we can identify two objectives: i) preserve the identity of the subject
in the reconstructed image, ii) reconstruct an image of healthy appearance (Xia et al.,
2020). We have to evaluate the performance of the model for both objectives. For the first
one, we can measure the similarity between images of healthy subjects and their recon-
struction. With regard to the second objective, we can either evaluate whether the images
reconstructed are looking healthy (pseudo-healthy reconstruction task), or measure if the
anomalies detected by this method correspond to the real anomalies present in the image
(anomaly detection task). However, depending on the type of disorder studied, we may not
have ground truth healthy images, nor ground truth anomaly masks, so we cannot use a
metric to quantify how healthy the reconstructed images are nor how well anomalies are
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detected. This is why we developed an evaluation framework that consists in simulating an
abnormal image x′ from a healthy image x in order to have a pair with a diseased image
and its healthy version. To evaluate the healthiness of a reconstructed image x̂′ from an
abnormal simulated image x′, we can measure the similarity between the pseudo-healthy
reconstruction x̂′ and the the original healthy image x.

3.2.1 Evaluation metrics for image reconstruction

The first step to validate a pseudo-healthy reconstruction model is to evaluate the quality
of the reconstruction in the case of images of healthy subjects. We use four metrics that are
common in the image synthesis literature (Nečasová et al., 2022): the mean squared error
(MSE), the peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM) (Wang
et al., 2004) and the multi-scale structural similarity (MS-SSIM) (Wang et al., 2003). This
also aims to validate the fact that the model can reconstruct images that are as healthy as
they originally look.

Mean Absolute Error The MAE is simply the mean of each absolute value of the
difference between the true pixel Xi and the generated pixel X̂i

MAE =
1

n

n∑
i=1

|Xi − X̂i| . (3.1)

This metric needs to be minimal and is equal to 0 if both images are identical.

Mean squared error The MSE is the mean of the square of the difference between the
true pixel Xi and the reconstructed pixel X̂i

MSE =
1

n

n∑
i=1

(
Xi − X̂i

)2
. (3.2)

A low MSE means that the images are close to each other. They are identical if the MSE
is 0.

Peak signal-to-noise ratio The PNSR is a function of the MSE and allows for comparing
images encoded with different dynamic ranges

PSNR = 10 log10

(
MAX2

MSE

)
, (3.3)

with MAX the maximum possible value of the image. We can see that if the images are
similar, the MSE is close to 0, and the PSNR tends toward +∞.

Structural similarity The SSIM is a weighted combination of three comparison mea-
surements between the true image X and the reconstructed image X̂: the luminance l, the
contrast c and the structure s (Wang et al., 2004)
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l(X, X̂) =
2µXµ

X̂
+ c1

µ2
X + µ2

X̂
+ c1

, c(X, X̂) =
2σXσ

X̂
+ c2

σ2
X + σ2

X̂
+ c2

, s(X, X̂) =
σ
XX̂

+ c3

σXσ
X̂
+ c3

,

SSIM = l(X, X̂)α · c(X, X̂)β · s(X, X̂)γ ,

with α, β and γ the weights assigned to each measurement. If we set them all to 1, we
obtain the following formula (Wang et al., 2004):

SSIM =
(2µXµ

X̂
+ c1)(2σXX̂

+ c2)

(µ2
X + µ2

X̂
+ c1)(σ2

X + σ2
X̂
+ c2)

, (3.4)

where:

• µX and µ
X̂

are the means of the true and reconstructed image respectively,

• σX and σ
X̂

are the standard deviations of the true and reconstructed image respec-
tively,

• c1 and c2 are positive constants to stabilize the division. Typical values are c1 = 0.01

and c2 = 0.03.

The SSIM ranges between 0 and 1, with 1 meaning that the two images are identical.

Multi-scale structural similarity The MS-SSIM is similar to the SSIM: it is a weighted
combination of the luminance l, the contrast c and the structure s computed at different
scales between the true image X and the reconstructed image X̂ (Wang et al., 2003). To
do so, we iteratively apply M times a 3D average pooling, which is a low pass filter, to
down-sample the images by a factor of two.

MS-SSIM = lM (X, X̂)αM ·
M∏
j=1

cj(X, X̂)βj · sj(X, X̂)γj , (3.5)

with lj , cj and sj being respectively the luminance, the contrast and the structure between
X and X̂ at the scale j. We choose M = 5, αj = βj = γj and αj , βj , γj taking the following
values (0.0448, 0.2856, 0.3001, 0.2363, 0.1333) for j ∈ [1,M ] based on the values introduced
in the original paper from Wang et al., 2003.

However, since the reconstruction metrics are computed on the whole 3D image and
not only in the abnormal region, their values do not substantially vary when computed for
healthy or abnormal images, as the major part of the image is normal. This is amplified
when the anomalies are subtle. Thus, we cannot rely only on whole image reconstruction
metrics to differentiate healthy subjects from patients.

3.2.2 Simulation-based evaluation framework

In practice, the healthy version of an image with anomalies is rarely available, it is thus
impossible to measure the healthiness of the reconstructed image. In most of the studies
on UAD in medical imaging, the datasets provide lesion masks that can be used as ground
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truths. In this case, one can simply compute a metric such as the dice score between the
anomaly map generated (and usually post-processed to binarize it) and the real lesion mask
to evaluate the capacity of the model to detect and localize anomalies. This can be used as
a proxy measure of the healthiness of the reconstructed image: if we perfectly detect lesions,
it means that the reconstruction is healthy compared to the input image. However, when
studying disorders such as dementia, such lesion masks are not available.

Another way to evaluate the healthiness of the reconstructed images would be to con-
sult a neuro-radiologist or nuclear physician. However, manually rating images is time-
consuming, especially if the aim is to compare different models, and possible only for small
datasets. We are thus looking for a strategy to automatically evaluate models, as a prelim-
inary validation, before soliciting clinicians.

The idea is to simulate abnormal images to evaluate our model. In the literature,
anomalies are often under the form of sprites (i.e. non-realistic artifacts added to the
images) (Bercea et al., 2023c; Pinaya et al., 2022b). However, this is not satisfactory as we
try to detect subtle and less intense anomalies. Realistic anomaly generation has also been
explored, mainly to study the progression of diseases such as cancer or dementia (Manzanera
et al., 2021). When reducing the scope to neuroimaging, most anomaly generation methods
are applied to structural MRI; for instance to simulate the growth of a glioblastoma (Ezhov
et al., 2023), or the progression of atrophy in case of dementia (Khanal et al., 2017; Ravi
et al., 2022). The proposed approaches often rely on complex modeling or the use of deep
learning.

We here propose to simply generate new test sets by simulating hypometabolism on
healthy images to have pairs of healthy (considered as ground truth) and abnormal images.
For this purpose, we designed a mask corresponding to regions associated with AD (parietal
and temporal lobes) (Landau et al., 2012) that were extracted from the third automated
anatomical labelling (AAL3) atlas (Rolls et al., 2020). To obtain a realistic simulated image,
we smoothed the mask with a Gaussian convolution filter with σ = 5. We then reduced the
intensity of the PET signal within the region defined by the mask by different factors to
simulate various degrees of hypometabolism as illustrated in Figure 3.1.

Figure 3.1: Hypometabolism simulation pipeline. The intensity of the image from a
healthy subject is reduced by a chosen factor in a region associated with a dementia.

Having such pairs of images allows us to compare the pseudo-healthy image reconstructed
by the model x̂′ from images presenting anomalies x′ with their corresponding healthy images
x (Figure 3.2), hence better evaluating the model capacity to synthesize pseudo-healthy
images.
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Figure 3.2: Evaluation framework using simulated images. We simulate an abnormal
PET scan x′ from an image of a healthy subject x. If the model works perfectly, the

reconstruction x̂′ should be identical to the original image x.

To ensure that the UAD model being evaluated can generalize to dementia other than
AD, we also generated masks corresponding to five other dementia subtypes: behavioral
variant frontotemporal dementia (bvFTD), logopenic variant primary progressive aphasia
(lvPPA), semantic variant PPA (svPPA), non-fluent variant PPA (nfvPPA) and posterior
cortical atrophy (PCA) based on the regions defined by Burgos et al., 2021b. All the details
about the selected regions are available in Table 3.1 and a pipeline to use the simulation
framework has been integrated into the ClinicaDL open-source software1 (Thibeau-Sutre
et al., 2022b).

This framework will help us to extensively evaluate our model on different kinds of
anomalies (different shapes, locations and intensities) and allow us to define a new metric
to assess the healthiness of reconstructed images.

3.2.3 Measuring the healthiness of reconstructed images

Now that we have pairs of healthy and abnormal images, we want to define a metric that
would help evaluate if the model is able to reconstruct images that are looking healthy. We
call this metric "healthiness" and denote it as H. We can define H as follows:

H =
µM

µM̄

, (3.6)

with µM the average uptake in the region of the mask M used to simulate the anomaly and
µM̄ the average uptake of voxels in the brain excluding the mask M .

This metric compares the average uptake in the region in which we simulate the disease
and the other regions of the brain. For an image from a healthy subject x, the average uptake
in M is similar to the one in M̄ , so H will be close to 1. However, for a simulated image x′,
as the intensity is decreased within the mask M , H will be lower than one. We then have
to measure if the healthiness of the pseudo-healthy reconstruction x̂′ is similar to the one of
the original image x (close to 1), or at least superior to that of the input x′. This can also
be used to measure healthiness for hyper-intense anomalies: the score of the input image
would then be above 1 and, similarly to hypometabolism detection, the reconstruction’s
score should be around 1 (or at least lower than the input image healthiness).

1https://clinicadl.readthedocs.io/en/latest/Preprocessing/Generate

https://clinicadl.readthedocs.io/en/latest/Preprocessing/Generate
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Dementias Regions Associated Masks

Alzheimer’s
disease (AD)

• temporal lobe, including
the lateral and medial regions
and temporal pole

• parietal lobe, including the
superior and inferior regions

Behavioral
variant fron-
totemporal
dementia
(bvFTD)

• orbitofrontal region, com-
prising the anterior, poste-
rior, medial, and lateral or-
bital gyri,

• dorsolateral prefrontal re-
gion, comprising the inferior,
middle, and superior frontal
gyri

• ventromedial prefrontal
region, comprising the gyrus
rectus, medial frontal cortex,
subcallosal area, and superior
frontal gyrus medial segment.

Logopenic
variant
primary

progressive
aphasia
(lvPPA)

• tempo-parietal region,
comprising the inferior pari-
etal lobule, posterior middle
and superior temporal gyri.

Semantic
variant
primary

progressive
aphasia
(svPPA)

• anterior temporal region,
comprising the hippocampus,
amygdala and temporal pole.

Non-fluent
variant
primary

progressive
aphasia

(nfvPPA)

• frontal region, comprising
the inferior frontal gyrus, pre-
central gyrus and anterior in-
sula.

Posterior
cortical
atrophy
(PCA)

• occipital region, comprising
the inferior, middle and supe-
rior occipital gyri.

Table 3.1: Regions associated with different dementia as defined in Burgos et al., 2021b
and the masks used for hypo-metabolism simulation.
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This simple metric will allow us to evaluate the performance of the model for recon-
structing healthy images, but as it uses the framework described in Section 3.2.2, it cannot
then be used on real images since we do not have the a priori information on the location
of anomalies. This is why we introduce another method to validate the anomaly detection
using the pseudo-healthy reconstruction.

3.2.4 Anomaly detection and localization

The goal of this other method is to localize and assess the severity of anomalies in real
images of patients by comparing them to their pseudo-healthy reconstruction. The idea
is similar to the healthiness metric, but we cannot use an anomaly mask to compute the
metric. Instead, we use a brain atlas to define regions in which we compare the average
uptake between the input image x and the pseudo-healthy reconstruction x̂′. This region-
wise anomaly score allows us to assess if an image contains anomalies and if so, to localize
them.

This method can be validated using the evaluation framework described in Section 3.2.2
as we know where the anomalies are.

We define the regions that we use starting from that of the second automated anatom-
ical labelling (AAL2) atlas (Rolls et al., 2015). To simplify the analysis, we merged the
120 regions into 23 regions: orbitofrontal, dorsolateral prefrontal (DLPFC), ventromedial
prefrontal (VMPFC), motor, opercular, medial temporal, lateral temporal, temporal pole,
sensory, medial occipital, lateral occipital, medial parietal, lateral parietal anterior cingulate
gyrus, middle cingulate gyrus, posterior cingulate gyrus, midbrain, amygdala, thalamus, in-
sula, hippocampus, cerebellum and cerebellar vermis. We refine these regions using the gray
matter mask of the MNI ICBM 2009c Nonlinear Symmetric template (Fonov et al., 2009;
Fonov et al., 2011) to keep only the tracer uptake in the gray matter.

Note that both metric have different objectives: the first one is used to evaluate the
model ability to reconstruct pseudo-healthy images, and the second one is a metric for the
anomaly detection task.

3.3 Results

In this section, we present the results obtained when applying the proposed validation
procedure to the pseudo-healthy reconstruction of 3D FDG PET images with a VAE for
the detection of anomalies characteristic of Alzheimer’s disease and other dementias. As a
reminder, the validation procedure consists of four steps:

• computing reconstruction metrics for images of healthy subjects to evaluate the quality
of the reconstruction (results presented in Chapter 2, Section 2.3.2);

• measuring the healthiness of the reconstructed pseudo-healthy images using the sim-
ulation framework by comparing the pseudo-healthy reconstruction x̂′ to the original
scan from a healthy subject x, and also by computing the newly introduced healthiness
metric H;
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• detecting regions of the brain containing anomalies using an atlas and validating this
approach with the simulation framework;

• detecting anomalies on a real dataset of patients diagnosed with AD.

The results are presented for the model trained on split 1, because it is difficult to
interpret the results across several folds (see Section 2.3.2).

3.3.1 Evaluation of the model using the simulation framework

Results on simulated AD-like FDG PET images

To evaluate the impact of the anomaly severity on the ability of the VAE to reconstruct
pseudo-healthy images, we simulated different degrees of hypometabolism from 5% to 70%
(Figure 3.3). We first remark that the reconstruction is satisfying until around 20% of
simulated hypometabolism as the MSE between the reconstruction x̂′ and the ground truth
x is almost constant.

Figure 3.3 also shows that the MSE between the simulated input image x′ and the output
x̂′ is higher for more severe anomalies. This confirms that the model cannot reconstruct
well highly abnormal areas.

We then compared the reconstruction error that was obtained for the simulated data (i.e.,
MSE(x′, x̂′), in orange in Figure 3.3) with the error that exists between the real healthy
images from the CN test set and the reconstructions obtained from the simulated data (i.e.,
MSE(x, x̂′), in blue in Figure 3.3). We remark that MSE(x′, x̂′) does not increase as much
as MSE(x, x̂′) with the hypometabolism severity. This means that the reconstruction x̂′ is
more similar to the ground truth x than the abnormal simulated image x′. However, the
error still increases between the reconstruction x̂′ and the ground truth x, meaning that a
healthy image cannot be totally recovered when the anomalies are too intense. We also ob-
serve that for low degree hypometabolism (<20%), both MSEs are similar. This means that
the residual error due to the model imperfect reconstruction dissimulates the reconstruction
error due to low degree anomalies. To confirm our observations, we computed a t-test assess-
ing whether there was a significant difference in MSE between the reconstruction from the
simulated input x̂′ and the ground truth x using images with various degrees of anomalies.
The p-values were corrected for multiple comparisons using the Bonferroni method with 10
comparisons. The difference in MSE becomes significant (p-value<0.005) for anomalies of
degree 20% and above. This shows that we can detect hypometabolism around 25% using
the residual error, which corresponds to the average difference in metabolism between CN
subjects and AD patients in a region of interest relevant to AD in ADNI (Landau et al.,
2012), knowing that this dataset includes patients at a very early stage of the disease.

Figure 3.4 displays the real image of a CN subject x and its pseudo-healthy reconstruc-
tion x̂, as well as the simulated AD version x′ (with a hypometabolism degree of 30%) and
its reconstruction x̂′ obtained from the same CN subject, together with the residual images.
We observe that the input and output images of the CN subject are quite similar, both the
shape of the brain and the uptake distribution look alike. The differences are due to the
model imperfect reconstruction and correspond to the minimal error that it can achieve.
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Figure 3.3: Evolution of the MSE with increasing degrees of hypometabolism simulat-
ing AD-like anomalies. We plot the distribution of the MSE between the pseudo-healthy
reconstruction and the original image MSE(x, x̂′) blue, and the MSE between the pseudo-
healthy reconstruction and the simulated data MSE(x′, x̂′) orange. Each MSE is normal-
ized by the average MSE obtained when reconstructing from the original healthy images.

When feeding the simulated hypometabolic image x′ to the model, we observe that the
reconstructed image x̂′ looks healthier than the input image. The areas highlighted in blue
in the residual map correspond to the regions where hypometabolism was simulated.

Another interesting point is that both images reconstructed from the same CN subject x̂
and x̂′ are almost identical, with an SSIM of 0.987. This shows that the model reconstructs
almost the same image for the same subject, whether the input image is healthy or presents
anomalies.

Figure 3.4: Example of results obtained from a real image of a CN subject (top row) and
an image simulating AD hypometabolism based on the same CN subject (bottom row).
For each plane, the first image is the input, the second one the model’s reconstruction and
the third one the difference (input - reconstruction). More examples of reconstructions are

available in Appendix C.

Results when simulating various types of dementia

In this section, the degree of hypometabolism is set to 30% but the brain region where
it is simulated changes to reflect various types of dementia. We report in Table 3.2 the
different reconstruction metrics computed between the original images from CN subjects in
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the test set x and the images reconstructed from the hypometabolic scans simulating the
different types of dementia x̂′. We observe that the metrics are similar for all the simulated
dementias, which means that the model can generalize to anomalies with different locations
and shapes, as well as different severity degrees, as we showed previously.

Table 3.2: Reconstruction metrics computed between the original healthy PET scans
from CN subjects in the test set and the images reconstructed with the 3D VAE from the

hypometabolic scans simulating different types of dementia.

Simulated dementia MSE (×10−3) ↓ PSNR ↑ SSIM ↑ MS-SSIM ↑

AD 2.230± 0.655 26.646± 0.996 0.848± 0.050 0.938± 0.015

bvFTD 2.268± 0.686 26.584± 1.042 0.849± 0.051 0.940± 0.015

PCA 2.090± 0.698 26.962± 1.119 0.851± 0.051 0.942± 0.015

lvPPA 2.073± 0.680 26.992± 1.104 0.850± 0.051 0.941± 0.015

nfvPPA 2.093± 0.692 26.953± 1.107 0.851± 0.051 0.941± 0.015

svPPA 2.029± 0.703 27.101± 1.150 0.852± 0.051 0.942± 0.016

We also computed the metrics between the images reconstructed from the original
healthy scans x̂ and the images reconstructed from the simulated hypometabolic scans x̂′

in Table 3.3. Both reconstructions are almost identical, with an SSIM on average superior
to 0.99. We can conclude from this experiment that the model is able to reconstruct the
healthy version of an image independently of the nature of the dementia that causes the
anomaly.

Table 3.3: Structural similarity between the pseudo-healthy reconstruction x̂′ and the
reconstruction from the healthy image x̂ for the different dementias simulated.

Simulated dementia SSIM ↑

AD 0.9878± 0.0014

bvFTD 0.9921± 0.0013

PCA 0.9974± 0.0003

lvPPA 0.9937± 0.0008

nfvPPA 0.9964± 0.0005

svPPA 0.9995± 0.0002

Measuring healthiness of a pseudo-healthy reconstruction

We computed the proposed healthiness metric for the different simulation experiments: on
the test sets simulating AD with various intensity degrees and on the test sets simulating
the different dementia subtypes.

We can see in Figure 3.5 that the healthiness score for the original PET scans from CN
subjects x ranges between 0.99 and 1.08, which can define a baseline of what we can consider
as healthy with this metric. As expected, we observe that the healthiness of simulated images
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x′ is lower than that of the original image x. At 5% of simulated hypometabolism, the score
is still between 0.97 and 1.06, so it can be considered as healthy, which is coherent for very
low anomaly severity. From 15% of simulated hypometabolism, we can clearly see that
the healthiness score drops and become much lower than that of the healthy images: it is
inferior to 1.0 for 15% of simulated hypometabolism, and it is between 0.82 and 0.91 for
30% of simulated hypometabolism. The important point is that the healthiness score of
the reconstruction x̂′ is always superior to the one of the simulated image x′. We can see
that it is even really close to the healthiness of the original image x: for 30% of simulated
hypometabolism the healthiness of reconstructed images is between 0.95 and 1.03.

Figure 3.5: Evolution of the distribution of the healthiness metric computed for
the ground truth healthy images, their corresponding simulated images and their
pseudo-healthy reconstructions when increasing the percentage of AD-like simulated hy-

pometabolism.

We observe the same behavior for all the other simulated dementias in Figure 3.6. How-
ever, we note that the healthiness of the ground truth, i.e. that obtained for images of CN
subjects, varies depending on the dementia simulated because the mask used to compute it
differs. For example, in the case of svPPA, the healthiness of the ground truth is lower than
that of AD (between 0.67 and 0.92). This can be explained by the fact that the mask used
for svPPA is located in the temporal pole, where FDG uptake is lower compared to other
regions, even on healthy images, as we can see in Figure 3.7. However, we can still observe
that the healthiness is lower on the simulated image compared to the healthy image and
almost equal on the reconstruction.

This method relies on the simulation framework and can only be used to evaluate the
model performance. However, we would like a method or metric that allows clinicians to
know if an image presents anomalies, and possibly localize them.

Anomaly detection applied to simulated data

To detect anomalies in real images of patients, i.e., without having to rely on the simulation
framework, we proposed to compute the mean uptake in regions of an atlas and compared
the values between input and output. If the value in the reconstructed image x̂ is close to
the input image x, then the region is not likely to be abnormal, otherwise, if the regional
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Figure 3.6: Evolution of the distribution of the healthiness metric computed for the
ground truth healthy images, their corresponding the simulated images and their pseudo-

healthy reconstructions for different dementias simulated at 30%.

uptake in the reconstructed image x̂ is significantly different from the one in the original
image x, then there may be an anomaly. We validated this assumption using the simulation
framework.

In Figure 3.7, we plotted the average uptake in the regions of the atlas we used and
compared these values between the original image x, the simulated one x′ and the recon-
struction x̂′ using a Wilcoxon-Mann-Whitney test corrected with Bonferroni for multiple
comparisons using the statannotations package2. First, we remark that the average uptake
is not consistent between all the regions of the brain, so we cannot really compute a shift
from an average value for the whole brain, but we have to analyze the average uptake for
every region. We can then observe that the average uptake is not significantly different
between the original image x and the simulated one x′, the original image x and the recon-
struction x̂′, and the simulation x′ and its reconstruction x̂′ for most of the regions, except
the hippocampus, the amygdala, the parietal lobe and the temporal lobe. These regions
correspond to the regions used to simulate anomalies corresponding to AD. We can see
that the average uptake is lower on the simulated image x′ compared to the original image
x. This is expected as the hypometabolism simulation consists in lowering the intensity in
those regions. We can also see that the average uptake is significantly higher in these regions
compared to the average uptake on the simulated images. Without a priori knowledge on
the nature of the anomaly we want to detect, we can see that on this test set, it is likely
to be abnormal in these regions. This corroborates with the regions we actually used to
simulate hypometabolism.

Now that we extensively used the simulation framework to validate our model on different
aspects: pseudo-healthy reconstruction, anomaly detection, generalization to anomalies of
different intensities, locations and shapes, we will examine the results on the images of AD
patients from the ADNI database.

2https://statannotations.readthedocs.io/en/latest/index.html

https://statannotations.readthedocs.io/en/latest/index.html
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Figure 3.7: Distribution of the mean FDG PET uptake in different regions of the brain:
comparison between the CN subjects from the test set, their AD-like hypometabolic sim-

ulation, and their pseudo-healthy reconstruction.

3.3.2 Results on AD patients from the ADNI dataset

The results of the anomaly detection method applied to real AD patients are reported in
Figure 3.8. We can observe that in general, the average uptake is higher in the pseudo-
healthy reconstruction. We cannot really detect abnormal areas even though we can see
that regions such as the posterior cingulate, hippocampus, parietal lobe, lateral temporal
lobe seem to be regions with the largest differences between the AD patients and their
pseudo-healthy reconstruction. This global analysis can help us describe the cohort and
understand at the population level the shift from the CN population. However, it is not
really an image-level anomaly detection tool. For that, we need to observe individually each
image. Some examples of reconstructions from AD patients are displayed in Chapter 2,
Section 2.3.2, Figure 2.8.

Figure 3.8: Distribution of the mean FDG PET uptake in different regions of the brain:
comparison between the original image from AD patients, their pseudo-healthy reconstruc-

tion and the CN population.

3.4 Comparison between VAE and Unet

To demonstrate the value of the evaluation procedure, we trained an Unet with an ar-
chitecture very similar to the VAE’s one (we added skip connections and removed the
probabilistic part of the latent space). The expected result of this experiment is that the
model should be able to reconstruct good quality images by learning the identity function.
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Indeed, the model learning to reconstruct its inputs, it should probably use higher level
skip-connections to minimize the reconstruction error. However, when trying to reconstruct
images with anomalies, the model should also reconstruct an image similar to the input,
instead of a pseudo-healthy version, as it did not learn any data distribution, but just an
identity function.

We can observe in Table 3.4 that the reconstruction of the Unet is almost identical to the
input image, with an SSIM of 0.99 on average. Compared to the VAE (Table 2.3), the MSE
is almost 100 times lower with the Unet. This means that the Unet is able to reconstruct
images of high quality. However, we can see that the reconstructions are also similar to the
input when the input is a simulated abnormal image, meaning that the model probably also
reconstructs the anomalies.

Table 3.4: Comparison of the reconstruction results obtained for Split 1 between the
Unet and VAE.

Model Dataset MSE (×10−3) ↓ PSNR ↑ SSIM ↑ MS-SSIM ↑

Unet
Test CN 0.024± 0.005 46.281± 0.878 0.990± 0.001 0.999± 0.000
Test AD 0.028± 0.020 45.864± 1.555 0.990± 0.002 0.999± 0.000

AD 30 0.024± 0.006 46.271± 0.934 0.990± 0.001 0.999± 0.000

VAE
Test CN 1.815± 0.649 27.572± 1.074 0.878± 0.026 0.944± 0.014
Test AD 2.554± 1.391 26.272± 1.560 0.853± 0.045 0.928± 0.025

AD 30 2.345± 0.639 26.403± 0.890 0.869± 0.027 0.934± 0.015

This can be verified by observing directly the images in Figure 3.9. We can see that the
reconstruction is identical to the input, and the difference is null. We thus cannot detect
anomalies.

Figure 3.9: Example of results obtained with the Unet from a real image of a CN subject
(top row) and an image simulating AD hypometabolism based on the same CN subject
(bottom row). For each plane, the first image is the input, the second one the model’s

reconstruction and the third one the difference (input - reconstruction).

This is confirmed when computing the healthiness metric defined in Section 3.2.3. Even
though we can see from the reconstruction metrics that the model is not able to reconstruct
pseudo-healthy FDG PET images, this is a limit case. In a more realistic scenario, recon-
struction metrics and visual assessment of the images are not enough to estimate if a model
is able to perform well. In Figure 3.10a, we can see that the healthiness of the reconstructed
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(a) Unet (b) VAE

Figure 3.10: Comparison of the distribution of the healthiness metric between the Unet
and VAE for both CN and simulated AD subjects. For both models, the healthiness is
constant (between 0.98 and 1.09) for images from healthy subjects of the test set (in blue),
and the reconstruction is healthy as expected (in orange). For simulated images (AD
30), we can see that the healthiness is between 0.83 and 0.91 (dark green). However, the
healthiness of the Unet reconstruction (light green) is the same (between 0.84 and 0.92),
meaning that the reconstruction cannot be considered as pseudo-healthy. On the other
hand, the healthiness of the VAE reconstruction, between 0.96 and 1.02, is higher than for
the simulated image given in input. The VAE reconstruction can thus be considered as

healthy.

image is equal to the one of the input image, meaning that the model could not reconstruct
pseudo-healthy images.

3.5 Discussion

In this chapter, we proposed an in-depth validation procedure for pseudo-healthy synthesis
with deep generative models in the context of UAD. This evaluation method relies on a
simulation framework and is suited for applications for which ground truths are not available
to measure the performance of the model. This procedure helps to extensively test a model
on different aspects: the quality of the reconstruction, the healthiness of the reconstructed
images, and the possibility to detect anomalies on both simulated and real data. We applied
this procedure to evaluate the ability of a 3D VAE to detect anomalies related to Alzheimer’s
disease on 3D brain FDG PET data from the ADNI database.

To overcome the absence of ground truth anomaly masks for the evaluation of the model,
we introduced a framework to simulate different kinds of dementias from images of healthy
subjects. Having such pairs of diseased and healthy images allowed us to measure the
reconstruction error between the pseudo-healthy reconstruction and the original image from
the healthy subject. We showed that the pseudo-healthy reconstruction is more similar to
the original image from the healthy subject than from the hypometabolic simulated image
(Figure 3.3). Moreover, in the case of AD, the typical variation of metabolism in relevant
regions is around 25% (Landau et al., 2014), which corresponds to the intensity degree of
anomalies that we can detect using the reconstruction error (Figure 3.3).
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We also showed that the reconstructed images are looking healthy by introducing a new
healthiness metric, which we validated thanks to the simulation framework. This analysis
showed that the relative average uptake in the region used to simulate hypometabolism
compared to the other regions of the brain is higher on the reconstruction, which means
that the VAE can reconstruct a pseudo-healthy image (Figure 3.5 and Figure 3.6). Actually,
if the simulated hypometabolism is reasonable (<30%), the healthiness of the reconstructed
pseudo-healthy images is similar to that obtained for the original image from a healthy
subject. We also simulated dementias other than AD and showed that the VAE was indeed
able to generalize to anomalies in different parts of the brain. This is an important point
as many diseases are rare, so it is impossible to detect them using a traditional supervised
machine learning approach due to lack of data.

We do not only rely on the simulated data to estimate the performance of the model, but
we also use the image from AD patients to test the model in a more realistic context. Using
the anomaly metric, we see that the pseudo-healthy reconstructions of images from real
AD patients seem to have an average uptake similar to the healthy population (Figure 3.8.
Unfortunately, at this stage, the individual analysis remains only visual and not quantitative
since there is no ground truth healthy image for these patients, nor lesion masks.

The main advantage of using the proposed simulation framework is the possibility of
quantitatively measuring the performance of the model using metrics (reconstruction and
healthiness). This is crucial for further evaluation when one needs to compare models. To
illustrate this, we trained an Unet model with a similar architecture to the one of the VAE.
This experiment highlight the importance of not only relying on reconstruction metrics and
observations, and demonstrate that simulated data can be useful to identify models that
are not suited for pseudo-healthy reconstruction.

It also allows testing the model in many different conditions, with various kinds of
anomalies, and validate the fact that the model can generalize well. Another benefit is that
this may lead to more robust anomaly detection by the clinician, as it may be difficult to
be vigilant on the whole image when manually inspecting a 3D scan.

One weakness of using simulated data is that they might not be very realistic. However,
we can clearly see that the simulated images are abnormal, which still allows evaluating
performance, even though they are not totally realistic. For an even more comprehensive
assessment, we may consider simulating a broader variety of anomaly types. Specifically,
simulating non-symmetric or non-uniform anomalies could better capture the heterogeneity
observed in dementia. Additionally, simulating smaller anomalies, which may challenge the
detection using a VAE, would further enrich the evaluation.

Another potential limitation of the proposed evaluation framework is that the evaluation
only relies on the difference between input and reconstructed images, i.e., the residual. The
use of an anomaly mask that could be compared with the ground truth using a metric such
as the dice score could be a great improvement. A simple solution may be thresholding
the difference maps, or use Z-scores to attenuate the reconstruction noise and accentuate
the anomaly (Solal et al., 2024a). In addition, the only parameter for the simulation of
anomalies is the degree of hypometabolism. However, establishing a correlation between
this parameter and the progression or severity of the disease, as measured by cognitive
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scores (such as the MMSE or CDR), or the time elapsed before the first symptoms, poses a
challenge. In other words, interpreting the intensity of the simulated anomalies in relation
to the patient’s cognitive status is not straightforward.

The proposed validation procedure is applicable outside the use case presented here.
Most of the code that we used is available in ClinicaDL (Thibeau-Sutre et al., 2022b),
an open-source software that is developed for reproducibility of deep learning studies in
neuroimaging. Pipelines are available to perform the following steps:

• selecting subjects from a neuroimaging dataset,

• rigorously separating data into independent training, validation and testing sets,

• easily training a VAE on neuroimages,

• constructing new test sets by generating simulated data using the proposed method,

• running tests to evaluate models.

Moreover, all the preprocessing pipelines are also available in Clinica (Routier et al., 2021),
an open-source software for reproducible processing of neuroimaging datasets and multi-
modal neuroscience studies. Clinica has been used to:

• curate and organize the ADNI dataset following a community standard, namely the
brain imaging data structure (BIDS) (Gorgolewski et al., 2016),

• perform linear registration and intensity normalization of the FDG PET scans.

Finally, all the code for training and evaluating the model is available on a Github repository:
https://github.com/ravih18/UAD_evaluation_framework; and is tagged on Zenodo
under the following DOI: https://zenodo.org/doi/10.5281/zenodo.10568859.

3.6 Conclusion

In this chapter, we presented an extensive evaluation procedure of pseudo-healthy recon-
struction for unsupervised anomaly detection in the case where ground truths are not avail-
able. It consists in different steps that are: the measurement of the reconstruction error on
images from healthy subjects, the use of a simulation framework to create pairs of healthy
and diseased images; the introduction of a metric to measure the healthiness of images when
using the simulation framework; the use of a brain atlas to detect anomalies by compar-
ing the input and the reconstructed images using the simulation framework and the real
pathological images from ADNI dataset. The procedure is summarized in Figure 3.11.

This procedure has been applied to a 3D VAE that is suited to detect anomalies due
to dementia on brain FDG PET. The VAE has been trained to reconstruct healthy-looking
images using images of healthy subjects. We saw that the model can indeed reconstruct
subject-specific pseudo-healthy images and can help to detect anomalies. We also validated
the model ability to detect anomalies of different intensities, shapes and locations. However,
the performance could be increased by improving the quality of the reconstruction.

https://github.com/ravih18/UAD_evaluation_framework
https://zenodo.org/doi/10.5281/zenodo.10568859
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Figure 3.11: Schema summarizing proposed evaluation framework. The VAE is trained
only with FDG PET of healthy subjects. Then, FDG PET scan of healthy subjects from
the test set are used to assess the reconstruction performance of the model, and also to
build new test sets with simulated hypometabolic scans. The simulated data are finally
used to measure the ability of the VAE to reconstruct pseudo healthy images thanks to

the introduced healthiness metric and anomaly score.

In order to benefit from both the evaluation framework and the VAE regularized latent
space, we will analyze in the following chapter the latent representation of simulated data.
Our aim is to provide a tool for interpreting the outcomes of the generative model.
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Chapter 4

Study on the VAE latent space

This chapter is a part of an article published in the Special Issue for Generative Models
of Machine Learning for Biomedical Imaging.

• Title: Evaluation of pseudo-healthy image reconstruction for anomaly detection with
deep generative models: Application to brain FDG PET

• Authors: Ravi Hassanaly, Camille Brianceau, Maëlys Solal, Olivier Colliot and
Ninon Burgos

• DOI: 10.59275/j.melba.2024-b87a

Now that we extensively tested the VAE under various conditions in Chapter 3 thanks
to the simulation framework, we would like to better understand its behavior and interpret
the results. One of the main advantages of the VAE over other generative models is its
consistent latent space that we use for this purpose.

In this chapter, we will present the results of a set of experiments on the latent space
to verify that the VAE can learn the healthy image distribution, given that there are only
images of healthy subjects in the training set. Indeed, for instance, we would like to under-
stand why the reconstruction x̂′ obtained from a simulated abnormal image x′ looks similar
to the reconstruction x̂ obtained from the original input image x. Actually, there is no
reason that would a priori explain why the reconstruction of an abnormal image would be
realistic and correspond to a healthier version of the input image. We could imagine that,
like for out-of-distribution detection methods, the model would not reconstruct the input
image at all. This is why we will use the latent space representation to study our model and
understand what the VAE learns. In the latent space, all the input images are projected into
a one dimension vector space of size 256 through the encoder. The advantage of the VAE
is that the latent space is consistent, that is to say that, in theory, the latent representation
of the images are organized with respect to the image distribution. We will verify whether
this is actually the case.

4.1 Latent space visualization

We first visualize the latent space using a principal component analysis (PCA) to reduce
the latent dimension from 256 to 2. We fit the PCA on the latent representation of healthy

https://doi.org/10.59275/j.melba.2024-b87a
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images from the training set, as we can see in Figure 4.1a. Even if we plot only the first
two principal components, this already indicates how the encoder behaves. This will help
us to verify whether the learned posterior is the same for healthy and abnormal images, i.e.,
whether qϕ(z | xh) ≈ qϕ(z | xp).

We then predict the principal components of the latent representation of images from
the CN test set with the same PCA, as well as their hypometabolic version simulating AD.
A remarkable point is that the projection is almost the same for images that have been
simulated from this test set, as shown with the paired points in Figure 4.1b. This explains
why their reconstruction are almost identical, as we noticed in section 3.3.1. Indeed, the
decoder will reconstruct two similar images from two similar latent vectors.

We also project latent vectors of images from the AD test set, and we can see that the
points are in the same area of the latent space (Figure 4.1a). This validates our hypothesis
that images presenting anomalies (real or simulated) are projected into the healthy images’
latent distribution that was learned on the training set. We can observe that in practice
qΦ(z | xh) ≈ qΦ(z | xp) and that the latent representation z is a small sphere in the latent
space.

Another interesting point is that the latent space seems to capture the simulated progres-
sion of AD. We observe in Figure 4.1d that the principal component vectors of AD simulated
images are aligned in the latent space, near the original image latent representation, and
ordered by severity.

4.2 Learning the data distribution

We can also verify that if two images are close in the image space, there are close in the
latent space and vice versa. We compare the distance between images in both latent- and
image-space. More precisely, for each image latent vector zi of the dataset, we compute the
Minkowski distance with the latent vectors zj of all the other images

DMinkowski =

(
n∑

i=1

|zi − zj |p
) 1

p

. (4.1)

We arbitrarily choose p = 10 in all our applications as we wanted p to be high enough
to compute distance in a space of dimension 256.

4.2.1 Intra- vs inter-subject distance

When studying dementia, datasets are often longitudinal, which means that several images
are available per subject. This allows us to first evaluate an intra-subject distance that is
computed between a certain image of a subject and all the other images available for the
same subject. We can also compute an inter-subject distance.

We used the Minkowski distance to compute intra-subject and inter-subject distances in
the latent space. We first observe that, for a given image of a subject, all the closest images
in the latent space are images of the same subject, acquired during other visits. Figure 4.2
displays the box plots of the mean distance between the latent representation of an image
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(a) (b)

(c) (d)

Figure 4.1: Latent space representation (first two PCA components). The latent distri-
bution of the train set learned by the VAE (in blue) is compared to the latent distribution
inferred on the test set with CN subjects (a), test set with AD patients (c), and image

simulating AD-like hypometabolism with progression from 5% to 70% (b, d).
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and that of the other images of the same subject, and the mean distance between an image
and the five closest latent representations of images that are not from the same subject.
The difference between intra-subject and inter-subject distances is statistically significant
(p-value ≪ 0.005 according to a Mann-Whitney U test). This clearly indicates that all the
images from a same participant are very close in the latent space compared to the average
distance between two images from different participants.

Figure 4.2: Box plot showing the distribution of the Minkowski distance computed be-
tween the latent representation of images from the same subject (intra-subject) and be-

tween the closest latent representation of images from other subjects (inter-subject).

4.2.2 Linear mixed effect models applied to latent representations

We finally want to check if the model can learn the data distribution, in the sens that, if
two images are similar in the image space, are they close in the latent space?

For a certain image of a subject, the closest image from another subject is selected, as
well as the tenth, the twentieth, the thirtieth and the fortieth closest images in the latent
space (after discarding images from the same subject). We then compute the Euclidean L2

norm and the SSIM between our image and the collection of five images selected. Computing
these distances in both the latent space and the image space allows identifying potential
correlation between the two representations. To this end, we fitted a linear mixed effect
model (LMM) to estimate the tendency of the evolution of the distance in the latent space
with regard to the distance in the image space (or the similarity in the image space).

Linear mixed effect model

LMM is a statistical regression method used to analyze data that are dependent. It is
particularly adapted to studies in which several observations are available per subject, such
as in longitudinal studies. Here our different observations are the N closest images in the
latent space (the tenth, the twentieth, the thirtieth and the fortieth closest images). The
equation of the LMM is

Yij = β0 + β1Xij + γ0i + γ1iXij + ϵij ,
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(a) Distance in latent space (Minkowski) compared
to distance in image space (MSE)

(b) Distance in latent space (Minkowski) compared
to similarity in image space (SSIM)

Figure 4.3: Evolution of the MSE and the SSIM compared with the Minkowski distance
in the latent space. Each curve represents an image i and comprises ten points. Each point
of the curve corresponds to the distance Dij of this image i with the jth closest images in

the latent space, j being in {1, 6, 11, 16...41, 46}.

where (Xij , Yij) are respectively the distance in the latent space and the image space of
the jth closest subject of subject i, β0 and β1 are the population effect parameters, γ0i and
γ1i are the individual effect parameters and ϵij the residual error. Each subject is modeled
by a linear function of intercept β0 + γ0i and slope β1 + γ1i. β1 is the mean slope of the
population and γ1i is the variance of each individual. We can then estimate the tendency
of the evolution of the distance in the latent space with regard to the distance in the image
space by observing the values of β1 + γ1i.

Results

To ensure that, if two points are close in the latent space, their corresponding images are
close in the image space; and similarly, if they are far in the latent space, their corresponding
images are not similar. We plot curves representing the evolution of the MSE and the SSIM
with regard to their Minkowski distance in the latent space (Figure 4.3) and fit two linear
mixed effects models on both sets of curves to observe the general tendency: one for the
MSE in Figure 4.3a and one for the SSIM in Figure 4.3b. We can see that the distance in the
latent space increases when the MSE between two images grows and when the SSIM between
the two images decreases. In other words, similar images have close latent representations.
Detailed results of LLMs are available in Table 4.1.

4.3 Discussion

Choosing a VAE as generative model allowed us to perform analyses in the latent space. In
particular, we used it to explain how the VAE behaves and interpret some of the results.
We first observed that the latent representation of a same patient is always very close in
the latent space, and almost identical between the simulated and the original PET scans
(Figure 4.1). More globally, we showed that the VAE encoder is able to map the complex
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Table 4.1: Result of linear mixed effect models corresponding to Figure 4.3. The top two
rows correspond to the model fitted on the MSE against the Minkowski distance in the
latent space. The bottom two rows correspond to the model fitted on the SSIM against
the Minkowski distance in the latent space. "intercept" correspond to the intercept of the
model and “latent" to the slope. “Coef." is the estimation of the value of the intercept or the
latent, “Std. Err." is the standard error on this value, z is the z-score of this estimation,
P > |z| the p-value associated with this z-score and the last column is the confidence

interval of the value.

Coef. Std.Err. z P > |z| [0.025 0.975]

MSE
(×10−3)

intercept -7.806 0.583 -13.397 0.000 -8.948 -6.664
latent 3.361 0.164 20.459 0.000 3.039 3.683

SSIM
intercept 0.932 0.009 106.935 0.000 0.915 0.949
latent -0.079 0.002 -31.688 0.000 -0.084 -0.074

data distribution to a simple multivariate Gaussian distribution of lower dimension. This
explains why, for small deviations from the healthy image distribution (anomalies that we
simulated), the model is able to reconstruct an image that is plausible (Figure 3.4), that
corresponds to the patient under investigation, and seems to be pseudo-healthy. This can
be explained by disentangling the functioning of the encoder and the decoder: the encoder
catches the image structural information that is specific to the subject, and the decoder,
given a latent representation z, can only reconstruct healthy looking images because it is
what it has been trained to do. This is not straightforward, and the model could have other
behaviors. Indeed, we identify three different scenarios:

• the model reconstructs the identity, meaning that a healthy image has a healthy
reconstruction and an abnormal image is reconstructed with its anomalies,

• the model does not reconstruct abnormal images at all as it has never seen some,
which would be a behavior similar to out-of-distribution detection,

• the model reconstructs pseudo-healthy images since it could learn well the healthy
image distribution, which seems to be the case.

Combining the latent space analysis with our simulation framework shows that the model
has a similar behavior for the different kinds of anomalies (Table 3.2) and that the VAE can
generalize well.

Our experiments on the latent space show that the encoder is working as we can expect.
To improve the quality of the reconstructed images, a first simple step would be to use a
more powerful generator (Duquenne et al., 2022). If given a latent representation z the
model can reconstruct perfectly the image x, then we could detect anomalies with a high
accuracy. We can also imagine that combining a VAE with a diffusion model as done by
Pandey et al., 2022 might be a good solution to improve the decoder. It showed great results
on 2D images, and future work could consist in comparing and evaluating such approach on
a 3D task on all the different aspects we enunciated.
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4.3.1 Conclusion

In this chapter, we exploited the latent space properties to understand the VAE behavior and
interpret the results. We saw that the model can encode very similar latent representations
for different images of a same subject (different sessions, or simulated images), and more
generally, that the latent distribution represents well the image distribution. This is the
expected behavior for the encoder. That means that if we want to improve the quality of
the reconstruction, we would have to use a better decoder.

Now that we extensively tested the vanilla VAE, it would be interesting to try other gen-
erative models, and more specifically the numerous VAE variants that have been developed
in the computer vision literature to improve the VAE framework (Chadebec et al., 2022),
and see if it is possible to find a model that performs better than the baseline VAE.
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Chapter 5

Benchmark of VAE-based approaches

This chapter has been submitted to Medical Image Analysis.

• Title: Pseudo-healthy image reconstruction with variational autoencoders for anomaly
detection: A benchmark on 3D brain FDG PET

• Authors: Ravi Hassanaly, Maëlys Solal, Olivier Colliot, Ninon Burgos

• Contributions: This was a shared work between Maëlys Solal and me. I have led
the study, implemented most of the code and wrote the major part of the manuscript.

Pseudo-healthy reconstruction approaches that have been developed for medical imaging
often rely on generative models such as variational autoencoders (VAEs) (Kingma et al.,
2014), generative adversarial networks (GANs) (Goodfellow et al., 2014) and more recently
diffusion models (Ho et al., 2020). Even though diffusion models have shown remarkable
performance for image generation, they do not easily scale to 3D images (Graham et al.,
2023), mainly because of memory issues. On the GAN side, after the foundational work
of Schlegl et al., 2017, AnoGAN and f-AnoGAN (Schlegl et al., 2019), only a few works
have been published. They either use cycle GANs (Xia et al., 2020) or combine GANs with
autoencoders (Shi et al., 2023; Bercea et al., 2023d). On the other hand, even though VAEs’
image generation quality is lower, they are easy to train, they scale well to high-dimensional
data, provide good interpretation capacity thanks to their regularized latent space, and are
able to handle small datasets. Many new VAE extensions have shown their efficacy in the
computer vision literature (Burda et al., 2016; Burgess et al., 2018; Caterini et al., 2018;
Chen et al., 2018a; Davidson et al., 2018; Ghosh et al., 2019; Higgins et al., 2017; Kim
et al., 2018; Kingma et al., 2016; Larsen et al., 2016; Makhzani et al., 2015; Rezende et al.,
2015; Snell et al., 2017; Tolstikhin et al., 2018; Tomczak et al., 2018; Van Den Oord et al.,
2017; Zhao et al., 2019), but only a handful have been applied to medical imaging (Baur
et al., 2021a; Baur et al., 2021b; Chen et al., 2018b; Choi et al., 2019; Mostapha et al.,
2019; Uzunova et al., 2019; Harkness et al., 2023).

In 2021, Baur et al., 2021a compared VAE-based approaches to the best GANs for un-
supervised anomaly segmentation in brain structural magnetic resonance imaging (MRI).
It was conducted on models that had already been employed for UAD in the medical imag-
ing context, such as Context VAE (Zimmerer et al., 2019), Constrained AAE (Chen et al.,
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2018b), or AnoVAEGAN (Baur et al., 2019). They showed that the vanilla VAE used for
density-based restoration (Chen et al., 2020) outperforms other models, including GAN ap-
proaches, at the cost of a longer inference time. They compared the performance of their
models using segmentation metrics such as the dice similarity coefficient (DSC) and the area
under the precision-recall curve (AUPRC) computed between the residual (i.e. the differ-
ence between the input and the reconstructed image) and the ground truth anomaly mask
provided in the datasets they used. This study focused on the segmentation of glioblas-
toma and multiple sclerosis lesions, which consist of sharp and intense anomalies that are
segmented in 2D slices extracted from MRI volumes.

Following the work of Baur et al., 2021a, we propose a benchmark of 20 VAE-based
models focused on the pseudo-healthy reconstruction of 3D FDG PET images for anomaly
detection in the context of dementia. We compare many VAE-based models that have not
been applied to medical image analysis yet, thanks to the software package of Chadebec
et al., 20221. In contrast to computer vision works, where datasets typically contain several
tens of thousands of images, it will be interesting to examine the performance of such models
when trained on a relatively small dataset, comprising only a few hundred images, which is
typical in medical imaging. Our contributions are threefold:

1. first, we propose a rigorous method and provide the associated software tool that
we used to define the optimal architecture of the vanilla VAE and select the best
hyper-parameters of the VAE variants in the context of neuroimaging;

2. then, we put in application the evaluation framework introduced in Chapter 3 to
thoroughly assess the ability of 20 VAE models to reconstruct pseudo-healthy images
for the detection of dementia-related anomalies in 3D brain FDG PET and compare
their performance;

3. finally, we conclude on the best performing models, providing a state-of-the-art on the
use of 3D convolutional VAEs in such context.

A preliminary version of this work was published as a conference paper (Hassanaly et al.,
2023b), and is available in Appendix D. The present chapter is an extension of this previous
work with the following improvement: (i) the addition of new VAE-based models; (ii) an
extensive search of the best encoder-decoder architecture and hyper-parameters for each
model; (iii) the use of full resolution 3D brain FDG PET; (iv) and an extensive evaluation
of the different models.

5.1 Extensions to the variational autoencoder framework

Several contributions have been proposed to improve the VAE framework (Chadebec et al.,
2022). These contributions can be divided into four categories that correspond to different
objectives.

The aim of the first category of approaches is to improve the prior distribution p(z) by
using a variational mixture of posteriors as prior (VAMP) (Tomczak et al., 2018), by using a

1https://pythae.readthedocs.io/en/latest/index.html

https://pythae.readthedocs.io/en/latest/index.html
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specific geometry in the latent space such as hyperspherical VAE (SVAE) (Davidson et al.,
2018), by learning the prior on a discrete latent space with vector quantized-VAE (VQVAE)
(Van Den Oord et al., 2017), or by substituting the prior with a density estimation method
using regularization with a gradient penalty (RAE-GP) or an ℓ2 penalty on the decoder
(RAE-ℓ2) (Ghosh et al., 2019).

Other methods aim to better estimate the lower bound by using importance weighting
(IWAE) (Burda et al., 2016), by using linear normalizing flows (VAE LinNF) (Rezende et
al., 2015), inverse autoregressive flows (VAE-IAF) (Kingma et al., 2016) or Markov chain
Monte Carlo using Hamiltonian importance sampling (HVAE) (Caterini et al., 2018) to
better estimate the posterior.

Approaches in the third category encourage disentanglement of the features in the latent
space by adding a weight to balance the terms of the loss in Equation 2.12 (β-VAE) (Higgins
et al., 2017), subsequently improved with a better reconstruction capacity by progressively
increasing the KL-divergence term (Disentangled β-VAE) (Burgess et al., 2018), by decom-
posing the loss to show a total correlation term (β-TC VAE) (Chen et al., 2018a), or by
encouraging the distribution of the latent variable q(z) to be factorial (FactorVAE) (Kim
et al., 2018).

Finally, other methods change the distance computed between the distributions by
adding the mutual information between x and z as regularization (InfoVAE) (Zhao et al.,
2019), using another divergence term in the loss such as the maximum mean discrepancy
in the Wasserstein autoencoder (WAE) (Tolstikhin et al., 2018) or a discriminator to dif-
ferentiate a prior’s sample from a posterior’s sample in the adversarial autoencoder (Adv.
AE) (Makhzani et al., 2015), or by changing the reconstruction metric for another similarity
metric such as the multi-scale structural similarity (MS-SSIM VAE) (Snell et al., 2017), or
for the prediction of a discriminator on the output of the VAE (VAEGAN) (Larsen et al.,
2016).

All of these models, described in more detail in Appendix E, perform well in computer
vision, as shown by Chadebec et al., 2022 who compared 19 of them on classic computer
vision datasets (MNIST, CIFAR10 and CELEBA) on five tasks: image reconstruction,
image generation, classification, clustering and interpolation. However, they have not been
compared in the context of medical imaging.

5.2 Selection method and evaluation of the models

When evaluating unsupervised anomaly detection approaches, two aspects are usually as-
sessed: their ability to reconstruct images of high quality and their ability to detect anoma-
lies. The first aspect can only be fully assessed when reconstructing images of healthy
subjects. Commonly used metrics are the mean-squared error (MSE), the peak signal-to-
noise ratio (PSNR) and the structural similarity (SSIM) (Wang et al., 2004). These paired
metrics are computed between the input and reconstructed images (Nečasová et al., 2022).
See Chapter 3, Section 3.2.1 for more information. To assess the second aspect, since we
not have the ground truth anomaly masks, we rely on the evaluation framework presented
in Chapter 3, Section 3.2.2. It consists in simulating the effect of a disease on images of
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healthy subjects by reducing the PET uptake within areas of the brain associated with dif-
ferent dementias (Burgos et al., 2021b) defined using a mask M . This approach effectively
replicates realistic regional hypometabolism and provides pairs of diseased images with the
original healthy scan that is used as the target ground truth for the pseudo-healthy recon-
struction. We also use the defined healthiness score H to evaluate whether a model is able
to reconstruct images that are looking healthy. This metric is supposed to be around 1 for
images of healthy subjects, lower than 1 for simulated images, and expected to be around 1
again for the pseudo-healthy reconstructions.

As we consider that to accurately detect anomalies a model should reconstruct pseudo-
healthy images of high quality, we use the pairwise performance measures as a first step of
our evaluation to select the best models. We especially rely on the SSIM, rather than the
MSE or PSNR, as it is a perceptual metric that appears more informative than a pixel-
wise difference, and because it is a different metric than the optimization criterion, which
is MSE for all the models except for the MS-SSIM VAE (Snell et al., 2017). In particular,
the SSIM is used as the selection criterion when searching for the best hyper-parameters’
configurations and selecting the best trained models, and is combined with the MSE when
searching for the best encoder-decoder architecture. We use the simulation framework with
the healthiness metric in a second step to push further the evaluation of the trained models
being compared.

5.3 Materials

As explained in details in Section 1.2, we use FDG PET images from the ADNI dataset
(Mueller et al., 2005; Jagust et al., 2010; Jagust et al., 2015). The images are preprocessed
using the pet-linear pipeline from the Clinica open source software (Routier et al., 2021).
They are then carefully selected, for a final set of 739 images from 378 CN subjects and 353
images at baseline from 353 AD patients. We split our CN subjects into train/validation
and test sets at subject level, and perform a 6-fold cross validation on the train/validation
set using the ClinicaDL open source software (Thibeau-Sutre et al., 2022b). All the AD
patients belongs to the test set.

We also use the 60 images from the CN test set to build new test sets by using our
simulation method presented in Chapter 3, Section 3.2.2, which results in a total of 14
simulated test sets. These test sets are denoted using the dementia simulated and the
hypometabolism intensity. For instance, “Test AD 30” corresponds to images simulating
AD with a 30% hypometabolism.

5.4 Model selection

We aim to compare 20 AE and VAE-based models. For the comparison to be meaningful,
we must find the best architectures and parameters for each model. We decided to use
the same encoder-decoder architecture for all the models as it would have been too long
to find an optimal architecture for each model, and as we believe it makes the comparison
fairer. The architecture was obtained using a random search on the vanilla VAE. We then
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attempted to find optimal hyper-parameters for each model through either a random search
or a grid search. Once the best parameters for each model were found, we trained them on
all the six splits of the cross-validation, and we selected the best. The best trained models
were finally evaluated using the simulation framework and metric presented in Chapter 3.
The procedure is summarized in Figure 5.1. The random search and evaluation procedures
are implemented in ClinicaDL (Thibeau-Sutre et al., 2022b)2 while the VAE-based models
are implemented in Pythae (Chadebec et al., 2022)3, which are both open-source software
packages.

Run VAE
architecture

random search

Select the 
best VAE 

architecture

Run VAE variants’
hyper-parameter
random search

Select best
hyper-

parameters

Train the 
models
on all 

the splits

Select 
the best 

split

Evaluate
the 

models

Figure 5.1: Diagram summarizing the benchmark steps. We represent steps performed
on training sets in purple (random search and training), the selections on the validation

sets are represented in blue and the final evaluation on test sets is in green.

All the models were trained for 200 epochs on an HPC with Nvidia Tesla V100 GPUs
that have 32 GB of dedicated memory. The choice for the batch size and the learning rate
will be discussed further in this section. We used the same environment to train all the
models.

5.4.1 Selection of the encoder-decoder architecture

The training parameters and the encoder-decoder architecture were selected with a random
search for the vanilla VAE. We trained the models on a random selection of three splits as
a trade-off between reducing the variance due to data splitting and the computational time
required to train the models. We then selected the models based on the average SSIM and
MSE, computed within the full image field of view, on the validation sets.

We defined a modular architecture for the encoder and decoder, which is shown in
Figure 5.2. The encoder (shown in Figure 5.2a) is composed of a number Be of blocks, each
containing a number Se of sub-blocks. Similarly, the decoder is composed of a number Bd of
blocks, each containing a number Sd of sub-blocks (Figure 5.2b). For a chosen architecture,
the sub-blocks can either all be convolutional or all be residual (see Figure 5.2c). In both
cases, the convolution layers are followed by a batch normalization, and we use a swish
activation function as suggested in Vahdat et al., 2020.

In the encoder, the number of channels is doubled by the first convolution in each block.
At the same time, the size of the image is divided by 2 along each dimension by using a 3D
convolution with kernel size (4, 4, 4), stride (2, 2, 2) and padding (1, 1, 1). The following sub-
blocks are optional, and their convolution operations have kernel size (3, 3, 3), stride (1, 1, 1)

and padding (1, 1, 1). In the decoder, the last sub-block of each block is preceded by an
upsampling layer, to be roughly symmetrical with the encoder. Convolution operations in

2https://clinicadl.readthedocs.io/en/latest/
3https://pythae.readthedocs.io/en/latest/

https://clinicadl.readthedocs.io/en/latest/
https://pythae.readthedocs.io/en/latest/
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(a) Encoder architecture with Be blocks and Se sub-blocks. Blocks and sub-blocks in dashed lines are
optional.
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(b) Decoder architecture with Bd blocks and Sd sub-blocks. Blocks and sub-blocks in dashed lines are
optional, and layers in dotted lines are only included if last_conv = True.
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(c) Sub-block architecture. Left: convolutional sub-blocks. Right: residual sub-blocks. Black sub-blocks:
image size is divided by 2 along each dimension by using 4x4x4 convolutions with stride 2 (layers in darker
gray), used as the first sub-block of each encoder block. Gray sub-blocks: image size remains the same
by using 3x3x3 convolutions with stride 1 (layers in light gray). BN: batch normalization, SiLU: swish

activation function

Figure 5.2: Encoder-decoder modular architecture. The number of convolution kernels
in each sub-block is indicated under the sub-block (e.g. Ce).

the decoder have kernel size (3, 3, 3), stride (1, 1, 1) and padding (1, 1, 1). This architecture
was inspired from ResNet models (He et al., 2016) and VGG models (Simonyan et al., 2014).

The parameters of this modular architecture (summarized in Table 5.1) are therefore
the following: the latent space size, the number of blocks in the encoder Be, the number
of blocks in the decoder Bd, the number of sub-blocks per encoder block Se, the number
of sub-blocks per decoder blocks Sd, the number of channels for the first encoder block
Ce, the number of channels for the last decoder block Cd, and the layer type (convolution
or residual). We implement a random search to explore this parameter space, and choose
possible values for each parameter based on previous experiments, intermediate results (as
we launched the random search in successive batches) and intuition. We decided to set the
batch size of the data loader to 8. Even though this is a constraint for configurations that
would require more memory, this choice allows flexibility; in scenarios where certain VAE
variants require more memory, we can reduce the batch size while maintaining a reasonable
number of images per batch (e.g., 6 or 4). Details of all the parameters tested, and their
impact are discussed in Appendix F.
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Table 5.1: Hyper-parameters included in our encoder-decoder VAE architecture random
search

Hyper-parameter Label Search space Selected
value

Number of encoder blocks Be {4, 5, 6} 5
Number of sub-blocks per encoder block Se {1, 2, 3} 1
Number of channels for the first encoder sub-block Ce {16, 32} 16
Number of decoder blocks Bd {4, 5, 6} 5
Number of decoder sub-blocks Sd {1, 2, 3} 1
Number of channels for the last decoder sub-block Cd {16, 32} 16
Latent space size {256, 512, 1024} 256
Learning rate {10−3, 10−4, 10−5} 10−4

Block type {conv, res} conv
Added convolution in last decoder block last_conv {True, False} False

After comparing around 200 configurations, the encoder architecture selected is com-
posed of five blocks, each with one sub-block, each containing a convolutional layer, a batch
normalization and a swish activation function. These blocks are followed by a flatten and
a fully connected layer. The latent space has size 256. The decoder is symmetrical, it is
composed of a fully connected layer followed by five blocks, each with one sub-block, each
composed of an upsampling layer, a convolutional layer, a batch normalization and a swish
activation. This model has 16 channels after the first encoder block and before the last
decoder block. This is shown in Figure 5.3 and detailed in Table 5.2.
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Figure 5.3: Diagram of the selected VAE architecture

5.4.2 Selection of the models’ hyper-parameters

Once we found an encoder-decoder architecture that gave good performance, we used it
for the AE and 18 VAE variants presented in Section 5.1. However, all of these variants,
except the SVAE (Davidson et al., 2018), have supplementary hyper-parameters that may
have significant impact on the models’ performance. We therefore searched for the best
configuration of hyper-parameters for each model in the context of 3D brain FDG PET
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reconstruction by launching either a random search (when we searched for more than one
hyper-parameter) or grid search (when there is only one hyper-parameter). Similarly to the
architecture search, we train each configuration on three splits. We then selected the best
set of hyper-parameters for each VAE-based model, using the best average SSIM on the
validation set as criterion.

As there were many models to optimize, we limited the number of random searches to
N × 10 with N the number of parameters to search. For instance, when there was only one
hyper-parameter to tune, we launched a grid search with maximum 10 different values for
that parameter, if there were two parameters, we trained a maximum of 20 models and so
on. This may not be the fairest decision as it does not allow exploring the same percentage
of the parameter space depending on N (as it scales to the power N and not linearly), but
it accounts for the fact that a model with more parameters may be more tedious to tune.
Moreover, we carefully chose a range of values to test for each hyper-parameter of each
model based on the original implementation papers, our prior knowledge of the models,
and the work done by Chadebec et al., 2022. Note that some of the hyper-parameters
were excluded from our search when an optimal value was provided in the literature, which
allowed reducing the number of configurations trained.

Following the vanilla VAE training, the different configurations were trained by default
with a batch size of 8 and a learning rate of 10−4 on 200 epochs. When some set of hyper-
parameters led to memory errors, we gradually reduced the batch size to 6, 4 or 2, and when
they lead to errors in the computation of the loss, we reduced the learning rate to 10−5. In
spite of this, combinations leading to errors were removed, further reducing the size of the
hyper-parameter space.

The details relating to the different VAE-based models, their hyper-parameters, the
random search, the trained configurations and the results are provided in Appendix E. A
summary is proposed in Table 5.3.
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Table 5.3: Summary of the hyper-parameters optimized and selected thanks to the random search for each VAE variant. The hyper-parameters are
detailed in E.

Models Hyper-parameters Search space Selected value

Adv. AE (Makhzani et al., 2015) adv. loss scale
{0.001, 0.01, 0.05, 0.1, 0.25,
0.5, 0.75, 0.9, 0.95, 0.99}

0.9

β-TC VAE (Chen et al., 2018a)
β {0.001, 0.005, 0.01, 0.05, 0.1, 1, 2, 5, 10} 2
α {1, 3} 1
γ {1, 3} 1

β-VAE (Higgins et al., 2017) β
{0.001, 0.005, 0.01, 0.05,
0.1, 0.5, 2, 5, 10, 100}

10

Dis. β-VAE (Burgess et al., 2018)
β {0.01, 0.1, 1, 5, 10} 10
C {5, 25, 50} 50
warm-up epochs {100, 1000} 1000

FactorVAE (Kim et al., 2018) γ {2, 5, 10, 15, 20, 30, 40, 50, 100, 200} 40

HVAE (Caterini et al., 2018)
nlf {1, 2, 10, 15, 20} 10
ϵlf {0.00001, 0.0001, 0.001, 0.01} 0.00001

β0
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0}

0.8

InfoVAE (Zhao et al., 2019)

kernel choice {rbf, imq} rbf
α {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} 1
λ {0.01, 0.1, 1, 10, 100} 0.1
kernel bandwidth {0.01, 0.1, 0.5, 1, 5, 10, 100} 0.1

IWAE (Burda et al., 2016) n samples {2, 3, 4, 5, 6, 8, 10, 12, 15, 20} 6

MS-SSIM VAE (Snell et al., 2017)
β {0.01, 0.1, 1, 10, 100} -
window size {2, 3, 5, 11} -
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Table 5.3: Summary of the hyper-parameters optimized and selected thanks to the random search for each VAE variant. The hyper-parameters are
detailed in E.

Models Hyper-parameters Search space Selected value

RAE-ℓ2 (Ghosh et al., 2019)
embedding weight {0.00001, 0.0001, 0.001, 0.01, 0.1, 1} 0.0001
reg. weight {0.00001, 0.0001, 0.001, 0.01, 0.1, 1} 1

RAE-GP (Ghosh et al., 2019)
embedding weight {0.00001, 0.0001, 0.001, 0.01, 0.1, 1} 0.01
reg. weight {0.00001, 0.0001, 0.001, 0.01, 0.1, 1} 0.0001

SVAE (Davidson et al., 2018) latent space size {8, 16, 32} -

VAEGAN (Larsen et al., 2016)
adv. loss scale {0.3, 0.5, 0.7, 0.9} 0.5
reconstruction layer {1, 2, 3, 4} 1

VAE-IAF (Kingma et al., 2016)
n MADE blocks {2, 4, 6, 8} 4
n hidden in MADE {2, 3, 4, 5} 4
hidden size {64, 128, 256} 128

VAE LinNF (Rezende et al., 2015) flows
{10P, 10R, 5P, 5R, 5P5R, 5R5P,
5PR, 5RP, 2PR, 2RP}

10R

VAMP (Tomczak et al., 2018)
number components {10, 20, 30, 40, 50} -
linear scheduling steps {0, 20, 40} -

VQVAE (Van Den Oord et al., 2017) quantization loss factor {0.25, 0.5, 0.75, 0.9, 1, 1.5, 2, 4} 2
n embeddings {128, 256, 512, 1024} 512

WAE (Tolstikhin et al., 2018)
kernel choice {rbf, imq} rbf
reg. weight {0.01, 0.1, 0.5, 1, 5, 10, 100} 0.1
kernel bandwidth {0.01, 0.1, 0.5, 1, 5, 10, 100} 5
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We report in Table 5.4 reconstruction metrics for the 18 VAE variants with the best
configuration of hyper-parameters that we tested. Out of all the models, only three did not
perform well on the validation set (highlighted in gray): the VAMP (Tomczak et al., 2018)
with an average SSIM of 0.702, the MS-SSIM VAE (Snell et al., 2017) with an average SSIM
of 0.472 and the SVAE with a very low average SSIM of 0.151. We found it quite surprising
that the MS-SSIM VAE (Snell et al., 2017) performed so poorly in terms of average SSIM,
since it optimizes a perceptual metric related to the SSIM, namely the multi-scale SSIM.
These results could potentially be explained by the fact that the MS-SSIM computation in
3D is very costly, meaning that the only kernel size that allowed training in a reasonable
amount of time was 2, potentially leading to a poor estimation of the metric, especially
since the kernel size suggested in the MS-SSIM original implementation is 11 (Wang et
al., 2003). In the end, only three models with three different combinations of parameters
were trained successfully, possibly explaining why we did not find a configuration giving
acceptable reconstruction. Finally, the SVAE did not train with a high dimensional latent
space (hundred and above) due to the computation of the Bessel function in the loss. Since
this model does not have any hyper-parameter to tune, we decided to launch a grid search
to find the best latent space size (within the set {8, 16, 32}). The reduction of the latent
space size may explain why the reconstruction is not satisfying, as we know that low latent
dimensions lead to poorer reconstructions. Moreover, the SVAE seems to be better suited for
hyperspherical data distributions, which is not the case in our application. For the following
experiments, we decided not to consider the VAMP (Tomczak et al., 2018), MS-SSIM VAE
(Snell et al., 2017) and SVAE (Davidson et al., 2018).

Table 5.4: Reconstruction metrics obtained for the best configuration of each VAE variant
on the validation sets (mean ± std computed over the three splits randomly selected)

Models SSIM ↑ MSE (×10−3) ↓ PSNR ↑

β-TC VAE (Chen et al., 2018a) 0.870± 0.002 1.901± 0.123 27.41± 0.27

β-VAE (Higgins et al., 2017) 0.868± 0.003 1.995± 0.067 27.17± 0.14

Dis. β-VAE (Burgess et al., 2018) 0.874± 0.006 2.004± 0.153 27.18± 0.30

FactorVAE (Kim et al., 2018) 0.876± 0.003 1.895± 0.084 27.47± 0.14

HVAE (Caterini et al., 2018) 0.873± 0.007 1.862± 0.068 27.48± 0.14

InfoVAE (Zhao et al., 2019) 0.877± 0.006 1.813± 0.075 27.63± 0.13

IWAE (Burda et al., 2016) 0.865± 0.007 2.087± 0.146 27.02± 0.24

MS-SSIM VAE (Snell et al., 2017) 0.472± 0.034 70.174± 5.660 11.61± 0.36

RAE-GP (Ghosh et al., 2019) 0.880± 0.006 1.715± 0.105 27.84± 0.26

RAE-ℓ2 (Ghosh et al., 2019) 0.884± 0.005 1.815± 0.049 27.61± 0.11

SVAE (Davidson et al., 2018) 0.151± 0.001 632.694± 5.106 1.99± 0.03

VAEGAN (Larsen et al., 2016) 0.860± 0.013 2.241± 0.193 26.64± 0.38

VAE-IAF (Kingma et al., 2016) 0.823± 0.005 2.272± 0.057 26.65± 0.08

VAE LinNF (Rezende et al., 2015) 0.871± 0.001 1.855± 0.125 27.54± 0.21

VAMP (Tomczak et al., 2018) 0.702± 0.097 5.581± 0.874 22.73± 0.72

VQVAE (Van Den Oord et al., 2017) 0.881± 0.003 1.805± 0.032 27.62± 0.07

WAE (Tolstikhin et al., 2018) 0.881± 0.005 1.862± 0.075 27.54± 0.08
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5.4.3 Selection of the best trained models

Once the best parameters were selected through the random search, all 17 models (AE,
VAE and the 15 remaining VAE-based models) were trained on the six splits of the cross-
validation. We kept the same training parameters as for the random search: the models
were trained on 200 epochs, with a learning rate of 10−4 and a batch size of 8. There were a
few exceptions: the VAE-IAF (Kingma et al., 2016) was trained with a learning rate of 10−5

to avoid errors during training. The RAE-GP (Ghosh et al., 2019) was trained with a batch
size of 6, the VAEGAN (Larsen et al., 2016) with a batch size of 4 and the IWAE (Burda
et al., 2016) with a batch size of 2 because of the high memory usage of these models.

We then selected the best fold for each model using the average SSIM on the validation
sets. The performance of all 17 models on the six splits are presented in Table 5.5, with
the best split of each model highlighted in bold. We can notice that the splits 2 and 3 are
over-represented among the selected models. This can be explained by the fact that the
cross-validation is not stratified, and the distributions of age and sex between training and
validation sets for split 2 and 3 are more similar than for the other splits (Table 1.1).

5.5 Results obtained for the best models on the test sets

Once all the models with a correct reconstruction were trained and the best model was
selected (optimal set of parameters among those tested and best split), we could evaluate
each model using the procedure defined in Section 5.2. Pseudo-healthy images were recon-
structed for each of the 15 test sets (the test set with the images of healthy subjects and
the 14 test sets with simulated images) in order to measure the performance of the models
both qualitatively by visualizing the pseudo-healthy reconstructions, and quantitatively by
computing the reconstruction metrics and the healthiness score.

5.5.1 Quantitative evaluation of the pseudo-healthy reconstructions from
images of control subjects

We first assessed whether the different models could correctly reconstruct images of healthy
subjects from the test set by computing the SSIM, MSE and PSNR between the input and
the pseudo-healthy reconstruction. Results are reported in Table 5.6. We observe that the
reconstruction metrics of all but two models are in the same order of magnitude, with an
SSIM on average between 0.873 (VAE, Kingma et al., 2014) and 0.887 (RAE-GP, Ghosh
et al., 2019), an MSE on average between 1.6× 10−3 for the RAE-GP (Ghosh et al., 2019)
and 1.859× 10−3 for the IWAE (Burda et al., 2016), and a PSNR on average between 26.7
(VAEGAN, Larsen et al., 2016) and 28.1 (RAE-GP, Ghosh et al., 2019). This shows that the
RAE-GP (Ghosh et al., 2019) has the best reconstruction capacity. On the other hand, the
VAEGAN (Larsen et al., 2016) and the VAE-IAF (Kingma et al., 2016) perform the worst,
with respectively an average SSIM of 0.866 and 0.837, and an average MSE of 2.195× 10−3

and 2.099× 10−3, which is even worse than the vanilla VAE and the AE.
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Table 5.6: Reconstruction metrics obtained for images from Test CN (mean ± std com-
puted over images from the test set)

Models SSIM ↑ MSE (×10−3) ↓ PSNR ↑

AE 0.882± 0.026 1.649± 0.613 28.00± 1.10

Adv. AE (Makhzani et al., 2015) 0.882± 0.028 1.707± 0.610 27.83± 1.06

β-TC VAE (Chen et al., 2018a) 0.878± 0.025 1.720± 0.565 27.79± 1.05

β-VAE (Higgins et al., 2017) 0.876± 0.027 1.846± 0.638 27.49± 1.04

Dis. β-VAE (Burgess et al., 2018) 0.880± 0.023 1.841± 0.634 27.50± 1.06

FactorVAE (Kim et al., 2018) 0.879± 0.026 1.651± 0.584 27.98± 1.06

HVAE (Caterini et al., 2018) 0.882± 0.024 1.809± 0.635 27.59± 1.09

InfoVAE (Zhao et al., 2019) 0.883± 0.024 1.704± 0.594 27.84± 1.04

IWAE (Burda et al., 2016) 0.876± 0.026 1.859± 0.564 27.44± 1.03

RAE-GP (Ghosh et al., 2019) 0.887± 0.023 1.605± 0.671 28.14± 1.13

RAE-ℓ2 (Ghosh et al., 2019) 0.882± 0.024 1.631± 0.531 28.02± 1.02

VAE (Kingma et al., 2014) 0.873± 0.028 1.736± 0.566 27.75± 1.02

VAEGAN (Larsen et al., 2016) 0.866± 0.027 2.195± 0.641 26.72± 1.04

VAE-IAF (Kingma et al., 2016) 0.837± 0.027 2.099± 0.720 26.92± 1.00

VAE LinNF (Rezende et al., 2015) 0.881± 0.023 1.807± 0.610 27.58± 1.05

VQVAE (Van Den Oord et al., 2017) 0.884± 0.026 1.649± 0.593 27.99± 1.10

WAE (Tolstikhin et al., 2018) 0.883± 0.026 1.651± 0.618 27.99± 1.10

5.5.2 Quantitative evaluation of the pseudo-healthy reconstructions from
images with simulated dementia

The first evaluation step with simulated data is to compute reconstruction metrics between
the pseudo-healthy reconstructions obtained from these simulated data and the ground
truth images used to simulate hypometabolic images, which are the targets. These results
are reported in Table 5.7. For all the models, the reconstructions are slightly worse than
for images reconstructed from the ground truth itself (Table 5.6) with an average SSIM
between 0.854 (VAEGAN, Larsen et al., 2016) and 0.878 (RAE-GP, Ghosh et al., 2019), an
average MSE between 1.997 × 10−3 for the RAE-ℓ2 (Ghosh et al., 2019) and 2.650 × 10−3

for the VAEGAN (Larsen et al., 2016), and an average PSNR between 25.88 (VAEGAN,
Larsen et al., 2016) and 27.12 (RAE-ℓ2, Ghosh et al., 2019). The only exception is the VAE-
IAF (Kingma et al., 2016), for which the SSIM increases from 0.837 on average to 0.842.
However, the reconstruction metrics are still quite high, meaning that the reconstructions
from simulated hypometabolic images are similar to their target.

5.5.3 Qualitative evaluation of the pseudo-healthy reconstructions

Examples of pseudo-healthy reconstructions obtained from the original image of a control
subject and images with simulated dementia are displayed in Figure 5.4. We first observe
that all the models are able to reconstruct the input image of a healthy subject. We
can recognize the shape of the brain, the areas with high metabolism (gray matter) and
the others with a lower metabolism (white matter, ventricles). The VAE-IAF (Kingma
et al., 2016) reconstruction has an artifact in the precuneus, which appears as a spherical
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Table 5.7: Reconstruction metrics obtained between pseudo-healthy reconstructions ob-
tained from the simulated images of Test AD 30 and the ground truth images (mean ± std

computed over images from the test set)

Models SSIM ↑ MSE (×10−3) ↓ PSNR ↑

AE 0.876± 0.025 2.067± 0.643 26.99± 1.03

Adv. AE (Makhzani et al., 2015) 0.878± 0.027 2.021± 0.620 27.07± 0.99

β-TC VAE (Chen et al., 2018a) 0.871± 0.024 2.094± 0.605 26.92± 1.02

β-VAE (Higgins et al., 2017) 0.873± 0.026 2.107± 0.678 26.90± 1.00

Dis. β-VAE (Burgess et al., 2018) 0.874± 0.023 2.158± 0.667 26.80± 1.02

FactorVAE (Kim et al., 2018) 0.873± 0.024 2.157± 0.603 26.78± 0.94

HVAE (Caterini et al., 2018) 0.876± 0.023 2.071± 0.646 26.98± 1.04

InfoVAE (Zhao et al., 2019) 0.878± 0.022 2.044± 0.595 27.02± 0.97

IWAE (Burda et al., 2016) 0.864± 0.027 2.265± 0.571 26.55± 0.91

RAE-GP (Ghosh et al., 2019) 0.878± 0.022 2.118± 0.690 26.88± 0.99

RAE-ℓ2 (Ghosh et al., 2019) 0.877± 0.023 1.997± 0.564 27.12± 0.99

VAE (Kingma et al., 2014) 0.870± 0.027 2.075± 0.589 26.95± 0.95

VAEGAN (Larsen et al., 2016) 0.854± 0.027 2.650± 0.662 25.88± 0.97

VAE-IAF (Kingma et al., 2016) 0.842± 0.025 2.322± 0.735 26.47± 0.97

VAE LinNF (Rezende et al., 2015) 0.876± 0.022 2.179± 0.614 26.74± 0.97

VQVAE (Van Den Oord et al., 2017) 0.878± 0.025 2.089± 0.596 26.92± 0.97

WAE (Tolstikhin et al., 2018) 0.877± 0.025 2.087± 0.650 26.95± 1.04

hypermetabolism. This probably explains why the average SSIM is lower for the VAE-IAF
(Kingma et al., 2016) than for other models. We can also see that the VAEGAN (Larsen
et al., 2016) tends to reconstruct the image with a higher average intensity, as shown by
the fact that the difference map is mostly negative (meaning that the reconstruction’s voxel
values are superior to the input’s voxel values).

When reconstructing images with different degrees of simulated AD, we observe that
all the models are able to reconstruct images that are visibly healthy by correcting the
hypometabolism simulated. On the difference maps, we can recognize the mask used for
the simulation as an anomaly, meaning that the model is able to reconstruct pseudo-healthy
images. From this qualitative analysis, the models that seem to perform the best in terms
of anomaly detection are the VAE-IAF (Kingma et al., 2016) (excluding the fact that it
reconstructs an artifact), the β-VAE (Higgins et al., 2017), the disentangled β-VAE (Burgess
et al., 2018) and the HVAE (Caterini et al., 2018), at least for images with low (AD 15)
and medium (AD 30) severity. It is indeed possible to better distinguish the abnormal area
in both hemispheres on the difference maps, and the reconstruction errors do not hide the
anomaly.

Additional examples of pseudo-healthy reconstructions obtained for different subjects
and different simulated dementias are displayed in Appendix G.
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Figure 5.4: Examples of reconstructions obtained with the different VAE variants from
the original image of a cognitively normal subject (images of the first column, Test CN)
and from the same subject with AD simulated at different intensity degrees (AD 15, AD
30, AD 50 and AD 70). The first row shows the input image in odd columns and the mask
of the simulated disease in even columns when the input is a simulated image. All the
other rows are the pseudo-healthy reconstructions of the models in odd columns and the

difference between the pseudo-healthy reconstruction and the input in even columns.
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5.5.4 Quantitative evaluation with the healthiness metric

After qualitatively analyzing the pseudo-healthy reconstructions, we computed the healthi-
ness score defined in Section 5.2 for the different simulated test sets.

Figure 5.5 displays the distribution of the healthiness score for the ground truth (i.e.,
the images of healthy subjects), the images simulating AD with 30% hypometabolism (AD
30) and the reconstructions obtained for the different models from the AD 30 images. As
expected, the healthiness of the ground truth is between 1.0 and 1.08, and it drops to between
0.83 and 0.90 when simulating AD with a hypometabolism intensity of 30%. Studying the
healthiness of the pseudo-healthy reconstruction for each model, we first observe that all
the models are able to reconstruct images that are healthier than the simulated input as the
healthiness of the reconstructions (around 1) is superior to the healthiness of the simulated
images they were reconstructed from (around 0.87). We can observe that three models
seem to perform slightly better than the others, namely the β-VAE (Higgins et al., 2017),
the disentangled β-VAE (Burgess et al., 2018) and the VAE-IAF (Kingma et al., 2016) with
a healthiness between 0.97 and 1.04 for the first two and 0.96 and 1.03 for the third. On
the other hand, the VAEGAN (Larsen et al., 2016) appears to be the model with the worst
performance (with a healthiness between 0.93 and 1.0), followed by the FactorVAE (Kim
et al., 2018) and the RAE-GP (Ghosh et al., 2019) (which have a healthiness score between
0.94 and 1.01).

These results are consistent with the qualitative analysis, as we observed that the β-VAE
(Higgins et al., 2017), disentangled β-VAE (Burgess et al., 2018) and VAE-IAF (Kingma et
al., 2016) seemed to better highlight the simulated anomalies, while the VAEGAN’s (Larsen
et al., 2016) poor reconstructions tended to hide the anomalies.

We also analyzed the impact of the severity of the simulated disease on the healthiness
metric. Figure 5.6 displays the evolution of the healthiness for all the models with increasing
severity of simulated AD from 5% to 70%. We notice that all the models reconstruct images
that are decreasingly healthy according to this metric when increasing the severity of the
simulated disease. As in the previous experiment, the β-VAE (Higgins et al., 2017) and
disentangled β-VAE perform the best for high hypometabolism, followed by the VAE-IAF
(Kingma et al., 2016). The VAEGAN (Larsen et al., 2016) and RAE-GP (Ghosh et al., 2019)
have the worst performance. However, the healthiness of the reconstruction remains above
the one of simulated data, which means that all the models can reconstruct pseudo-healthy
images.

Figure 5.7 displays for various dementia subtypes (PCA, bvFTD, lvPPA, svPPA and
nfvPPA simulated at 30%) the distribution of the healthiness computed for the ground truth,
the simulated images and the images reconstructed with all the models. All the models
have very similar performance with a healthiness between 0.95 and 1 when simulating PCA,
between 0.9 and 1.1 for bvFTD, between 0.96 and 1.6 for lvPPA, between 0.68 and 0.87
for svPPA, and between 1.0 and 1.1 for nfvPPA. As for AD, the VAEGAN’s (Larsen et al.,
2016) performance is slightly lower than that of the other models, and the β-VAE (Higgins
et al., 2017) and disentangled β-VAE (Burgess et al., 2018) seem to perform slightly better
than the average. We notice that the healthiness of the ground truth, derived from the
images of CN subjects, depend on the simulated dementia, given the different masks used
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Figure 5.5: Ridgeline plot showing the distribution of the healthiness metric for images
from Test AD 30. The first row corresponds to the healthiness of the ground truth, the
second row to the healthiness of the images simulating AD with 30% hypometabolism used
as input, and the remaining rows to the healthiness of the pseudo-healthy reconstructions

obtained with the VAE models.

for computation. For example, in the case of svPPA, the ground truth’s healthiness tends
to be lower than that of AD (falling between 0.67 and 0.92). This difference comes from the
mask’s location in the temporal pole for svPPA, where FDG uptake is naturally lower even
in healthy images, in contrast to other regions (Solal et al., 2024a).

To push further the comparison of the models, we jointly analyzed their performance in
terms of reconstruction accuracy and healthiness. Figure 5.8 displays a joint density plot
of the SSIM and healthiness metric computed for pseudo-healthy reconstructions obtained
from images simulating AD at 30% of hypometabolism. We carefully selected four models
that we compare to the VAE: the VAEGAN (Larsen et al., 2016) that performs worse
than most models, both in terms of reconstruction accuracy and healthiness, the RAE-GP
(Ghosh et al., 2019) that has a good reconstruction but a low healthiness performance,
the VAE-IAF (Kingma et al., 2016) that has the worst reconstruction accuracy but a good
healthiness, and finally the β-VAE (Higgins et al., 2017) that has both good reconstruction
and healthiness performance. This analysis confirms that, among the selected models, the
β-VAE is the one that performs the best, and the VAEGAN is the one performing the worst.
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Figure 5.6: Healthiness metric depending on the severity of the anomalies simulated. The
healthiness of the ground truth, which is constant, is displayed as reference. The healthiness
of the images simulating AD rapidly drops with the hypometabolism increasing from 5% to
70%. The other curves correspond to the healthiness of the reconstructions obtained with
the VAE models. Each dot represents the mean value of the healthiness, and the error bar

represents the standard deviation.

5.5.5 Qualitative analysis of the pseudo-healthy reconstructions obtained
from real AD patients

Even though no ground truth is available, it is important to analyze the behavior of the VAE
models on data from real patients, here with AD. Figure 5.9 displays examples of pseudo-
healthy reconstructions obtained from the image of an AD patient. This patient presents
a typical hypometabolism in the parietal and temporal lobes, which is detected by all the
models. However, we also observe for all the models what appears as hypermetabolism
in the frontal lobe, which is not typical of AD and probably results from reconstruction
inaccuracies as this tendency was also visible for the CN subject displayed in Figure 5.4,
better seen in Appendix G, Figure G.2.

5.6 Discussion

This benchmark assessed the ability of 20 VAE models to reconstruct pseudo-healthy 3D
brain FDG PET images for anomaly detection. We first searched for the best encoder-
decoder architecture for the vanilla VAE. We then optimized the hyper-parameters of all the
VAE-based models. After discarding the models with low reconstruction performance, we
trained the 17 remaining ones on all the splits of the cross-validation to select the best split
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Figure 5.7: Distribution of the healthiness metric depending on the dementia simulated at
30% hypometabolism: PCA, bvFTD, lvPPA, svPPA and nfvPPA. Each box plot displays
the median, the lower and upper quartiles and the minimum and maximum (excluding out-
liers) of the healthiness. The first box (top row) shows the healthiness of the ground truth,
the second one the healthiness of the simulated images used as input and the remaining
ones the healthiness of the pseudo-healthy reconstructions obtained with the VAE models.

for each model. Finally, we compared the trained models using conventional reconstruction
metrics, as well as the simulation framework paired with the healthiness metric we previously
proposed in Chapter 3.

5.6.1 Model selection

We performed an extensive random search to define the optimal encoder-decoder architec-
ture for the vanilla VAE. 200 models were trained for a total of approximately 5000 GPU
hours. The architecture we obtained is similar to what we could implement following ex-
amples and guidelines found in the literature with the objective to obtain a small model
that allows fitting 3D high resolution images in the GPU memory: the encoder and decoder
are symmetric, they are composed of five blocks, each containing only one 3D convolution
layer, a batch normalization and a swish activation (Vahdat et al., 2020). This architec-
ture is for instance very similar to the one we tested in Chapter 2, Section 2.3. Having
a small encoder and decoder proves especially advantageous in this benchmark for models
with heightened memory-requirements, like the VAEGAN (Larsen et al., 2016) (due to its
extra discriminator network), the IWAE (Burda et al., 2016) (since it uses several samples
from the latent space), and the VAE-IAF (Kingma et al., 2016) (since it has extra layers
for the auto-regressive flows in the latent space). This architecture was used for all the
VAE-based models. Whilst optimizing the architecture for the vanilla VAE may give this
model an advantage, it was not conceivable for us, given our computational resources, to
optimize the encoder-decoder architecture separately for all the models.

To optimize the hyper-parameters of each VAE variant, 324 models were trained for a
total of approximately 18,000 hours of GPU use. At this stage we removed three models
from the study, as they led to poor reconstructions in comparison with the others: the SVAE
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Figure 5.8: Joint density plot of the healthiness metric (x-axis) and SSIM (y-axis) com-
puted for pseudo-healthy reconstructions obtained from images from Test AD 30. A good
model should appear on the top right part of the graph (high SSIM and healthiness close

to 1).

(Davidson et al., 2018), the MS-SSIM VAE (Snell et al., 2017) and the VAMP (Tomczak
et al., 2018). For each remaining model, it was possible to find a set of hyper-parameters
that led to good reconstruction performance.

After training the models with the selected hyper-parameters on the six splits of the
cross-validation, we selected the best split for each of them. We observed that splits 2
and 3 gave the best results for 13 models out of 17 (Table 5.5). This can be explained by
the fact that the cross-validation was not stratified, and so the validation set may not be
representative of the training population for some of the splits (Table 1.1). This may have
biased the selection of the hyper-parameters since some models were not trained on splits 2
and 3 when randomly selecting three folds out of six, which may result in underestimated
performance for these configurations. However, it would have been too long to train all the
configurations on all the splits; and we appraise that we still found a satisfying combination
of parameters with respect to the reconstruction metrics, even though it may not be the
best one.

All the selection steps were based on the validation sets, potentially leading to over-
fitting on these validation sets. Performing a 6-fold cross-validation and randomly selecting
the splits reduced this risk.

5.6.2 Model evaluation

To evaluate the different models, we applied the evaluation procedure presented in Chap-
ter 3. This evaluation consists in two main steps: first measuring the reconstruction per-
formance of the models using reconstruction metrics for images of healthy subjects, and
then using simulated data in order to evaluate the ability of the models to reconstruct
pseudo-healthy images (i.e. whether the reconstructions appear healthy).
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Figure 5.9: Example of reconstructions obtained from the different VAE variants on an
AD patient (on axial, coronal and sagittal slices). The first row shows the input image in
odd columns. The rows below are the pseudo-healthy reconstruction of the models in odd
columns, and the difference between the pseudo-healthy reconstruction and the input in

even columns.
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In terms of reconstruction metrics, for the images of healthy subjects (Table 5.6), all
the trained models led to similar performance, with the nine best models having an average
SSIM above 0.88, seven models having an average SSIM between 0.86 and 0.88, and only
one having an average SSIM below 0.86. All the models were able to reconstruct realistic
brain images, as shown in Figure 5.4. Many models performed better than the vanilla VAE
according to both the MSE and the SSIM, but not substantially. The reconstruction metrics
computed between the reconstructions obtained from simulated images and the ground
truth (Table 5.7) show that the reconstructed images are quite similar to their healthy
target (i.e., the original images used to simulate hypometabolic images), indicating that the
reconstruction capacity of the models is not affected when using images with anomalies as
input.

In terms of healthiness, on images simulating AD, it appears that the β-VAE (Higgins et
al., 2017), the disentangled β-VAE (Burgess et al., 2018) and the VAE-IAF (Kingma et al.,
2016) performed better than the other VAEs, whereas the VAEGAN (Larsen et al., 2016)
and the RAE-GP (Ghosh et al., 2019) gave the worst results (Figure 5.5). Interestingly, the
healthiness distribution of the ground truth images is multi-modal, and so is logically the
distribution of simulated images. This is also the case of the healthiness distributions of
the reconstruction for most of the models, especially for the FactorVAE (Kim et al., 2018)
and the VQVAE (Van Den Oord et al., 2017) for which we can properly recognize the shape
of the distribution. However, the reconstructions of the two best performing models, the
β-VAE (Higgins et al., 2017) and the disentangled β-VAE (Burgess et al., 2018), have a uni-
modal healthiness distribution, potentially explaining why they are not the best performing
models in terms of reconstruction metrics. This may be explained by the fact that, in both
cases, we set β = 10 (≫ 1), giving more weight to the KL term than the reconstruction
term in the loss.

As illustrated in Figure 5.7, most of the models were able to reconstruct images of healthy
appearance also for dementia subtypes different from AD. As for AD, the best performing
models were the β-VAE (Higgins et al., 2017) and the disentangled β-VAE (Burgess et al.,
2018). The VAE LinNF (Rezende et al., 2015) and the HVAE (Caterini et al., 2018) also
seem to have a higher healthiness than the other models. On the other hand, the VAEGAN
(Larsen et al., 2016), the RAE-GP (Ghosh et al., 2019) and the FactorVAE (Kim et al., 2018)
were the models with the lowest performance. We could further see that the healthiness
metric was not optimal for all the dementia subtypes. For instance, for PCA and svPPA,
the healthiness of simulated images was not substantially different from that of the ground
truth. Nevertheless, we observed that the healthiness of the reconstruction was close to that
of the ground truth and higher than that of simulated data, which is sufficient to assess the
healthiness of reconstructed images.

In general, we observed that all the models were able to reconstruct images with a
healthiness substantially above the healthiness of simulated images, regardless of the kind
of simulated anomalies, and almost equal to the healthiness of the ground truth, indicating
that the reconstructions are indeed healthy looking.

To push further the model comparison, we jointly analyzed reconstruction and health-
iness metrics (Figure 5.8). The RAE-GP (Ghosh et al., 2019) was the model with the
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best reconstruction, but was ranked among the worst in terms of healthiness. Even though
the reconstructions look healthy when compared to the simulated input, it means that the
RAE-GP (Ghosh et al., 2019) did not learn the healthy image distribution as well as other
models, but rather learned to reconstruct the input as is. On the contrary, the VAE-IAF
(Kingma et al., 2016) was the model with the worst reconstruction, but was among the
best in terms of healthiness. This can be explained by the presence of a reconstruction ar-
tifact that impacts the reconstruction score. The β-VAE (Higgins et al., 2017) was the best
model in terms of healthiness and was average in terms of reconstruction, and the VAEGAN
(Larsen et al., 2016) under-performed both in terms of reconstruction and healthiness.

A surprising result highlighted by the benchmark is that the simple AE performed well in
comparison with more complex models, especially according to the healthiness for simulated
data. Although it was expected that this model would be able to reconstruct images of
healthy subjects, there was no certainty that the AE would be able to reconstruct healthy
looking images from simulated images, especially when simulating severe hypometabolism
(50% and more). It would be interesting to assess the performance of this model when given
real images from AD patients.

In our previous study (Hassanaly et al., 2023b), we compared a subset of the models
that we present here on down-sampled 3D brain FDG PET. Another major difference with
the present work is that we had trained the models with default hyper-parameters’ values.
We observe that some of the models that performed poorly in this previous study, such as
the VAEGAN (Larsen et al., 2016) and the VAE LinNF (Rezende et al., 2015), performed
much better after searching for optimal hyper-parameters, whereas the VAMP (Tomczak et
al., 2018) and the MS-SSIM VAE (Snell et al., 2017) still perform poorly even after hyper-
parameters tuning. Even though not surprising, this highlights the benefit and need of
optimizing each model, even though this step does not guarantee reaching good performance.

5.6.3 Limitations and perspectives

The main limitation of our work is the absence of ground truth masks for the anomalies
we aim to detect. However, this benchmark proved the utility of the simulation-based
evaluation framework we previously introduced in Chapter 3, which allowed evaluating the
pseudo-healthy images reconstructed by the models using pairs of abnormal and healthy
images for the same subjects, for different dementia subtypes and severity degrees. The
evaluation framework also introduced the healthiness metric that automatically quantifies
whether a reconstruction is pseudo-healthy. This framework is a first evaluation step that
does not require the involvement of a clinician: it would indeed be impossible to ask a
clinician to rate the reconstructions of 20 different models. However, a limitation is that
we do not really evaluate how well each model is able to detect anomalies using these
pseudo-healthy reconstructions. A solution would be to use the anomaly score proposed
in Chapter 3, Section 3.2.4, or abnormality maps using Z-scores (Solal et al., 2024a). A
comprehensive evaluation would ultimately require using real images with real anomalies
and having the results reviewed by clinicians.
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The current evaluation is limited to the quality of the reconstructions and their degree
of healthiness, and does not directly assess how well each model learned the healthy dis-
tribution. An interesting work would be to compare the latent distributions of the trained
models to assess whether the posterior learned by the different models is the same for images
from healthy and diseased subjects. This could be done using the simulation framework of
Chapter 3 and comparing the latent representations of both the original and simulated im-
ages. It would help us to understand the performance difference between the various VAEs,
and may give us some ideas to improve them.

The models were compared on a single modality, FDG PET. It would be further in-
teresting to test these models on structural MRI, which have different characteristics, such
as sharp structures. This would also allow us to compare the performance of these VAE
variants with other approaches in the literature, as many have been developed to detect
lesions in structural MRI. Similarly, it would be interesting to include other VAE models
that performed well in computer vision such as Hierarchical VAEs (Sønderby et al., 2016;
Ranganath et al., 2016; Vahdat et al., 2020; Maaløe et al., 2019), that have already success-
fully applied to medical imaging (Dorent et al., 2023), or compare VAEs to other generative
models such as GANs and diffusion models.

5.6.4 Reproducibility

In order to make this study as reproducible as possible (Colliot et al., 2023; Colliot et al.,
2024), we tried to follow the guidelines of the MICCAI reproducibility checklist4:

• the publicly available dataset and final cohort we work with is mainly described in
Section 1.2 with details of the preprocessing and data selection steps presented in Sec-
tion 1.2.3. We provide a summary of participant demographics for the train, validation
and test splits in Table 1.1;

• the architecture choices for the VAE and the impact of those choices are detailed in
Section 5.4.1 and Appendix F;

• the VAE variants are described in Appendix E with the range of hyper-parameters
considered for each of them;

• the training protocol and the method to tune and select hyper-parameters are de-
scribed in Section 5.4.2 and Appendix E;

• we also provided a clear definition of the specific evaluation metrics and statistics used
to report results in Chapter 3, Section 3.2.1 and Section 3.2.2.

Moreover, most of the code that we used is available in ClinicaDL (Thibeau-Sutre et
al., 2022b), an open-source software that is developed to enable reproducible deep learning
studies in neuroimaging. Pipelines are available to perform the following steps:

• selecting subjects from a neuroimaging dataset,

• rigorously separating data into independent training and testing sets,
4https://miccai2021.org/files/downloads/MICCAI2021-Reproducibility-Checklist.pdf

https://miccai2021.org/files/downloads/MICCAI2021-Reproducibility-Checklist.pdf
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• rigorously splitting the training set using a cross-validation,

• launching random searches to optimize architecture and hyper-parameters,

• easily training VAE-based models on neuroimages,

• constructing new test sets by generating simulated data using the method described
in Chapter 3,

• reconstructing pseudo-healthy images from trained models for the tests sets and com-
puting the reconstruction metrics used in evaluation.

All the VAE-based models are implemented in Pythae (Chadebec et al., 2022), an open-
source Python library that aims at unifying the implementation of VAE-based models, and
facilitating benchmarks. Moreover, all the preprocessing pipelines are available in Clinica
(Routier et al., 2021), an open-source software for reproducible processing of neuroimaging
datasets. Clinica has been used to:

• curate and organize the ADNI dataset following a community standard, namely the
brain imaging data structure (BIDS) (Gorgolewski et al., 2016),

• perform linear registration and intensity normalization of the FDG PET scans (pet-linear
pipeline).

Finally, all the code for random searches, model training and evaluation is available in the
following repository: https://github.com/ravih18/UAD_VAE_benchmark. This repository
includes dependencies and software versions used.

5.7 Conclusion

In summary, we presented in this chapter a benchmark of twenty VAE-based models for the
unsupervised detection of dementia related anomalies in 3D brain FDG PET. The aim was
to introduce the use of recent VAE variants with medical imaging data of high dimension
and compare their performance. We proposed a random search method to find the optimal
architecture for the vanilla VAE, as well as a random search method to tune the hyper-
parameters of the implemented models.

We observed that 17 of the 20 models had a good reconstruction quality. Using our
previously proposed evaluation framework presented in Chapter 3, we showed that the 17
models were able to reconstruct pseudo-healthy images when fed with simulated abnormal
images. By simulating AD with varying intensity and dementia other than AD, we also
showed that these models were able to generalize to anomalies of different shapes, local-
izations and intensities. If no model clearly outperformed the others, the β-VAE (Higgins
et al., 2017) and disentangled β-VAE (Burgess et al., 2018) slightly outperformed the other
models, while remaining easy to tune and not being noticeably computationally costly.

Even if it is recognized that VAEs generate blurry images, all these experiments showed
that most of the models were able to reconstruct good quality pseudo-healthy 3D FDG

https://github.com/ravih18/UAD_VAE_benchmark
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PET. The VAE variants showed similar performance and did not systematically outperform
the vanilla VAE (or even the simple AE).

Finally, we can conclude that most VAEs are well suited for pseudo-healthy reconstruc-
tion of brain FDG PET images
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Chapter 6

Reproducible neuroimaging
processing with deep learning with
Clinica and ClinicaDL open-source
software packages

This chapter is a compilation of two journal articles and one conference proceeding.
The first one has been published in Frontiers in Neuroinformatics.

• Title: Clinica: an open-source software platform for reproducible clinical neuroscience
studies

• Authors: Alexandre Routier, Ninon Burgos, Mauricio Díaz, Michael Bacci, Simona
Bottani, Omar El-Rifai, Sabrina Fontanella, Pietro Gori, Jérémy Guillon, Alexis
Guyot, Ravi Hassanaly, Thomas Jacquemont, Pascal Lu, Arnaud Marcoux, Tris-
tan Moreau, Jorge Samper-González, Marc Teichmann, Elina Thibeau-Sutre, Ghislain
Vaillant, Junhao Wen, Adam Wild, Marie-Odile Habert, Stanley Durrleman, Olivier
Colliot

• DOI: 10.3389/fninf.2021.689675

• Contributions: Integration of pet-linear pipeline. Small contributions.

The second one has been published in Computer Methods and Programs in Biomedicine

• Title: ClinicaDL: an open-source deep learning software for reproducible neuroimag-
ing processing

• Authors: Elina Thibeau-Sutre, Mauricio Diaz, Ravi Hassanaly, Alexandre Routier,
Didier Dormont, Olivier Colliot, Ninon Burgos

• DOI: 10.1016/j.cmpb.2022.106818

• Contributions: Detailed in Section 6.2.6

The third one has been published in the proceedings of SPIE Medical Imaging 2024:
Image Processing conference.

https://doi.org/10.3389/fninf.2021.689675
https://doi.org/10.1016/j.cmpb.2022.106818
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• Title: Recent advances in the open-source ClinicaDL software for reproducible neu-
roimaging with deep learning

• Authors: Ravi Hassanaly, Camille Brianceau, Mauricio Diaz, Sophie Loizillon,
Elina Thibeau-Sutre, Nathan Cassereau, Olivier Colliot, Ninon Burgos

In this chapter, we present the software contributions that have been made during this
PhD thesis. This includes contributions to two open-source projects: Clinica and ClinicaDL.
Clinica and ClinicaDL are two open-source packages that aim to enhance the reproducibility
of neuroimaging studies. An overview of the Clinica and ClinicaDL workflow is available in
Figure 6.1. Additionally, all the code developed for the different experiments performed dur-
ing this thesis have been released under the form of GitHub repositories for reproducibility
purposes.
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Figure 6.1: Overview of the Clinica and ClinicaDL workflows. Data preprocessed by Clinica are stored in a BIDS-like structure called CAPS. ClinicaDL
further allows preparing data experiments and creating training, validation and test sets. Various models can then be trained and results are stored in a

unified structure called MAPS. Finally, ClinicaDL allows running inference, saving predictions and interpreting the results.
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6.1 Clinica

Clinica is an open-source software platform designed to make clinical neuroscience studies
easier and more reproducible (Routier et al., 2021). Clinica aims for researchers to (i) spend
less time on data management and processing, (ii) perform reproducible evaluations of their
methods, and (iii) easily share data and results within their institution and with external
collaborators. The core of Clinica is a set of automatic pipelines for processing and analysis
of multi-modal neuroimaging data (currently, T1-weighted MRI, diffusion MRI, and PET
data), as well as tools for statistics and machine learning. It relies on the brain imaging
data structure (BIDS) for the organization of raw neuroimaging datasets and on established
tools written by the community to build its pipelines. It also provides converters of public
neuroimaging datasets to BIDS.

6.1.1 Data structures

Brain Imaging Data Structure (BIDS)

When dealing with multiple datasets, it is difficult to automate the execution of neuroimag-
ing pipelines, since their organization may vary from each other or even within each individ-
ual dataset. If we consider neuroimaging datasets involving many participants, the lack of
a clear structure will necessitate a large amount of time to curate these databases and make
them easily usable. Besides, large databases are often associated with database management
systems, which involve additional technical and financial resources to be maintained.

The brain imaging data structure (BIDS)(Gorgolewski et al., 2016) is a community
standard enabling the storage of multiple neuroimaging modalities and behavioral data.
The BIDS standard provides a unified structure and makes easier the development and
distribution of code that uses neuroimaging datasets. Moreover, the BIDS format is based on
a file hierarchy rather than on a database management system, thus avoiding the installation
and maintenance of additional software. As a result, BIDS can be easily deployed in any
environment. The specification is intentionally based on simple file formats and folder
structures to reflect current laboratory practices, which makes it accessible to a wide range
of scientists coming from different backgrounds.

For these reasons, Clinica has also adopted this standard, and expects input data that
are BIDS-compliant for the execution of pipelines.

ClinicA Processed Structure (CAPS)

Clinica has its own specifications for hierarchical storage of processed data, called CAPS1

(ClinicA Processed Structure). The idea is to include in a single folder all the results
generated by the different pipelines, and to organize the data following the main patterns
of the BIDS specification. CAPS folders are kept separate from the raw data. Indeed, when
processing data, it is very common to have the raw dataset located on a separated storage
or read-only storage, while ongoing processed data are located on a separate location or on
a faster data storage.

1https://aramislab.paris.inria.fr/clinica/docs/public/latest/CAPS/Introduction/

https://aramislab.paris.inria.fr/clinica/docs/public/latest/CAPS/Introduction/
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Processed data include image-valued scalar fields (e.g., segmentation labels, tissue maps),
meshes, mesh-valued scalar fields (e.g., cortical thickness maps), deformation fields, scalar
outputs (e.g., volumes, regional averages), etc.

Of note, there exists an ongoing initiative called BIDS-derivatives that aims to pro-
vide a BIDS standard for processed data. However, CAPS specification have been written
before the start of the BIDS-derivatives, which explains why Clinica does not use the lat-
ter. Moreover, in their current state, several outputs needed by Clinica are not covered or
well-adapted.

6.1.2 Main functionalities

Clinica provides tools to curate several publicly available neuroimaging datasets and auto-
matically convert them into the BIDS standardized data structure. For all converters, the
user only needs to download the dataset. All subsequent conversion steps are performed
automatically (no user intervention is required) and use parallelization for faster processing.
For further details, the reader can refer to (Samper-González et al., 2018). Clinica currently
provides converters for the following studies: Alzheimer’s Disease Neuroimaging Initiative2,
the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing3, the Open Access
Series of Imaging Studies4, the frontotemporal lobar degeneration neuroimaging initiative5

and the UKbiobank6.
Additionally, Clinica provides processing pipelines that involve the combination of dif-

ferent software packages. It currently relies on FreeSurfer (Fischl, 2012), FSL (Jenkinson
et al., 2012), SPM (Friston, 2003), Advanced Normalization Tools (ANTs)7 (Avants et al.,
2014), MRtrix38 (Tournier et al., 2012), and the PET Partial Volume Correction (PETPVC)
toolbox9 (Thomas et al., 2016). The pipelines are written using Nipype (Gorgolewski et al.,
2011). Features extracted with the different pipelines can be used as inputs to statistical
analysis, which relies on SPM (Friston, 2003) and SurfStat10 (Worsley et al., 2009), or ma-
chine learning analysis, which relies on scikit-learn (Pedregosa et al., 2011). The pipelines
are described in Figure 6.2.

6.1.3 Integration of the pet-linear pipeline in Clinica

The pet-linear pipeline performs a spatial normalization to the MNI space and intensity
normalization of PET images. The first step of the pipeline is an affine registration to
the MNI152NLin2009cSym template (Fonov et al., 2009; Fonov et al., 2011) in MNI space
with the SyN algorithm (Avants et al., 2008) from the ANTs software package (Avants
et al., 2014). Then, the registered image intensity is normalized using the mean intensity
in reference regions, resulting in a standardized uptake value ratio (SUVR) map. The
normalized imaged is finally cropped to remove the background, before being saved as a
NIfTI file in the CAPS. The details of the pipeline are given in Chapter 1, Section 1.2.2.

2http://adni.loni.usc.edu
3https://aibl.csiro.au
4https://www.oasis-brains.org
5https://memory.ucsf.edu/research-trials/research/allftd
6https://www.ukbiobank.ac.uk/

http://adni.loni.usc.edu
https://aibl.csiro.au
https://www.oasis-brains.org
https://memory.ucsf.edu/research-trials/research/allftd
https://www.ukbiobank.ac.uk/
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Figure 6.2: List of the pipelines currently available in Clinica with their dependencies
and outputs. GM, gray matter; CSF, cerebrospinal fluid; WM, white matter; FA, frac-
tional anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, radial diffusivity, SVM,

Support Vector Machine; ICBM, International Consortium for Brain Mapping.

I added the pet-linear pipeline to Clinica. All the steps were originally implemented in
Python using Nipype (Gorgolewski et al., 2011), a Python library that provides an interface
for most of the neuroimaging software tools. The pipeline has now migrated from Nipype
to Pydra for its backbone dataflow engine (Jarecka et al., 2020) in the more recent versions
of Clinica Vaillant et al., 2023. A set of instantiation and non-regression tests for the
continuous integration process have been developed to ensure the robustness of the pipeline
(and the software in general). Finally, the documentation of the pipeline7 is available online.
The pipeline is available since the release 0.4 of Clinica.

7https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/PET_Linear/

https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/PET_Linear/
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6.2 ClinicaDL

ClinicaDL is an open-source software package entirely written in Python. It uses the Py-
Torch library as backbone. ClinicaDL extends PyTorch for neuroimaging applications, where
the dataset structure plays a key role in the organization of the data and metadata. The
software is publicly distributed as an easy-to-install package and is referenced in the Pypi
package index8. Releases are performed on a periodic basis and the code follows the most
standard current practices for software development. The functionalities described in this
chapter correspond to version 1.5.1. For more information on the versions of the dependen-
cies, the reader can refer to the poetry.lock file9.

ClinicaDL has been designed to be used via the command line interface, with sepa-
rate sub-commands performing the main tasks, as defined in a classical machine learning
pipeline: prepare-data, train, predict. Other sub-commands are available in order to al-
low the user to structure the datasets, create synthetic data, search for hyperparameters and
interpret trained networks. These functionalities are also available through the command
line (tsvtools, generate, random-search, and interpret).

6.2.1 Main functionalities

The main functionalities of ClinicaDL cover all the steps needed for deep learning experi-
ments, from dataset management to the evaluation of results and network interpretation.
ClinicaDL’s workflow is illustrated in Figure 6.3. In addition to pre-implemented options,
the source code aims at being modular and the documentation helps users to easily imple-
ment their custom experiments10. Technical details for each command can be found in the
user documentation.

Preprocessing images

ClinicaDL works with preprocessed images obtained using Clinica for different imaging
modalities. This software provides, light preprocessing pipelines for anatomical MRI and
PET images that output images suited for further analysis with deep learning.

ClinicaDL proposes a simple tool to transform NIfTI images into PyTorch tensors. The
objective is to facilitate the training phase by decompressing and save the images beforehand
(the NIfTI format usually provides compressed images). The user can choose the shape of
these tensors by selecting a mode that is an image, a patch, a region of interest (roi) or a
slice.

Generation of toy datasets

ClinicaDL facilitates the generation of synthetic data for evaluation and verification pur-
poses. The synthetic data is already organized in the CAPS format (see Section 6.1.1). Four
types of data can be created:

8https://pypi.org/project/clinicadl
9https://github.com/aramis-lab/clinicadl/blob/v1.5.1/poetry.lock

10https://clinicadl.readthedocs.io/en/latest/Contribute/Custom/

https://pypi.org/project/clinicadl
https://github.com/aramis-lab/clinicadl/blob/v1.5.1/poetry.lock
https://clinicadl.readthedocs.io/en/latest/Contribute/Custom/
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Figure 6.3: ClinicaDL main functionalities. extract, tsvtools and generate func-
tionalities read and write in the ClinicA Processed Structure (CAPS), which contains
neuroimaging data preprocessed by Clinica pipelines. ClinicaDL writes its own output,
the Model Analysis and Processing Structure (MAPS), which contains the results of the
training phase as well as inference on new data or the results of interpretability methods.

• Trivial data: A mask is used to create incomplete images. By default, a mask based
on a neuroanatomical atlas is used to create images where only half of the brain is
present (half-left or half-right). Other kinds of tampering can be created by supplying
a customized mask. The final result is the suppression of the region present in the
mask.

• Random data: All the images belonging to this type of data are obtained from
a single image, adding random white noise. The standard deviation of the noise is
a parameter chosen by the user. Resulting images are then randomly distributed
between two possible labels.

• Shepp-Logan data: 2D images whose appearance is based on the Shepp-Logan
phantom Shepp et al., 1974 are generated (see Chapter 2, Section 2.2).

• Hypo-metabolic data: 3D FDG PET images with an hypometabolism simulated
following the procedure detailed in Chapter 3, Section 3.2.2.

Preparing metadata

To use the train and inference functionalities of the software or to analyze the data, inputs
must be organized in the right way. A collection of tools to handle metadata of BIDS-
formatted datasets is proposed with ClinicaDL. These tools are intended to provide the
correct organization of the data: get the labels used for classification, split the data to
define test, validation and train subsets, and analyze the population of interest. This set of
commands is available through the command clinicadl tsvtools, it includes:
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• Extraction of labels specific to a particular diagnosis trajectory (e.g. participants
labeled with Alzheimer’s disease diagnosis for all their sessions).

• Splitting the dataset at subject level to produce similar distributions from a specific
population, using as parameters sex and age.

• Splitting the dataset at subject level to perform k-fold cross validation.

• Writing reports to summarize the demographics and clinical distributions of a specific
label.

Random search

Random search consists in randomly sampling sets of hyperparameters (architecture and
other training hyperparameters) to select the best set of hyperparameters as a result. In
ClinicaDL, this hyperparameter space is described by a configuration file created by the
user. We used this functionality to perform experiments of Chapter 5.

Training networks

The main functionality of ClinicaDL is to train neural networks to learn a task. These tasks
can be:

1. Classification (of a categorical label, for example the diagnosis),

2. Regression (of a continuous label, for example the age),

3. Image reconstruction.

Segmentation is currently not handled by ClinicaDL. However, as the software is meant to
be extensible, new tasks can be easily added by advanced users.

Some pre-built deep learning architectures for each task are available in ClinicaDL and
their list and details can be displayed with the command clinicadl train list_models.
However, an objective of the library is to allow the users to add and use their custom
architectures easily. To this end, users can implement their custom networks by filling
an abstract template, which includes specific methods that are used in ClinicaDL. The
procedure of such addition is detailed in the documentation11.

The models produced by ClinicaDL correspond to the ones that obtained the best per-
formance on the validation set according to metrics chosen by the user. ClinicaDL saves
at the end of each epoch the state of the network and of the optimizer. For each selection
metric given in input, it replaces the corresponding current best model by the current state
if the performance on the validation set is better than the current best value. To minimize
the size of the produced MAPS, the checkpoints are deleted at the end of the training pro-
cedure. They are only used to resume a stopped job, thanks to the dedicated command
resume.

The command line interface of ClinicaDL offers many options, as there is a large number
of training parameters. This is why we tend to a parametrization by configuration files only.

11https://clinicadl.readthedocs.io/en/latest/Contribute/Custom/

https://clinicadl.readthedocs.io/en/latest/Contribute/Custom/
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Performance evaluation

ClinicaDL provides specific functions to easily perform inference with models previously
trained with the tool. For instance, this is useful to evaluate the model performance on an
independent test set. The results are written in the MAPS as pre-formatted reports with
the metric values at different levels (e.g. image-level and patch-level) and the output values
computed for each input image of the data group.

The metrics computed depend on the task learned by the network. The regression task
is associated with the mean squared error and mean absolute error, reconstruction task is as-
sociated with the mean squared error, mean absolute error the structural similarity (Wang
et al., 2004) and the peak signal-to-noise ration, and the classification task is evaluated
thanks to balanced accuracy, accuracy, sensitivity, specificity, positive and negative predic-
tive values. Advanced users can add any new metric by following the procedure described
in the advanced user guide.

Interpretation

The most critical issue of deep learning methods is their lack of transparency. This is
why some interpretability methods have been developed specifically for the field. These
methods allow better understanding which patterns or zones of the images have been linked
to the result produced by the network. For instance, the gradient back-propagation method
proposed in (Simonyan et al., 2013) is implemented in ClinicaDL.

6.2.2 Model Analysis and Processing Structure (MAPS)

As Clinica, ClinicaDL has its own output data structure, called the Model Analysis and
Processing Structure (MAPS). All the functions of ClinicaDL are meant to work on this
structure to easily retrieve the parameters of the command line, the weights of the best
models, the checkpoints, or the predictions made on the training and validation sets to
compute the results at the image level on independent test sets. At the root of the hierarchy,
the file environment.txt summarizes the environment used for training, and maps.json

gathers the arguments provided to the command line.
This structure includes a hierarchy of three levels:

1. Splits The first level contains one folder per train / validation split. The training
procedure of each split can be launched independently.

2. Selection metrics During the training procedure of a particular split, one network is
selected per selection metric given in input. These networks correspond to the network
having the best validation performance according to their metric during the training
procedure.

3. Data groups Finally, the best networks selected are evaluated on data groups. The
characteristics of these data groups (TSV file of participant and session IDs with label
values, and path to the CAPS directory) are stored at the first level of the hierarchy in
the groups folder. This specification ensures the consistency between the evaluations
of different networks trained on different splits and selected on different metrics.
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An example of the MAPS obtained when training a classification convolutional neural net-
work trained on images is displayed in Appendix H. The MAPS also stores training logs.
Two different formats are available: they can be opened with Tensorboard12 and are also
available as TSV files.

6.2.3 Main features of ClinicaDL

In this section, we focus on how ClinicaDL aims to address three recurrent issues of deep
learning applied to neuroimaging: the difficulties using neuroimaging datasets, the lack of
reproducibility of deep learning studies, and the methodological flaws that can be found in
the literature.

Easy use of neuroimaging

One difficulty faced by data scientists is the manipulation of raw neuroimaging datasets, as
their organization can be quite difficult to understand. Moreover, raw images coming from
different scanners may need some preprocessing to be handled by deep neural networks.
These preprocessing steps are easier to perform and manage when data are organized in a
standard manner.

A first step to make it easier to use neuroimaging datasets and to make experiments
reproducible is to be part of the effort made by the BIDS community to standardize the
organization of the datasets. The CAPS is part of this effort: this BIDS-like structure has
the added benefit of considering all datasets as longitudinal and always using compressed
NIfTI files (Li et al., 2016). ClinicaDL can automatically read in a CAPS and load images
that have been converted and processed by Clinica for training and inference, enabling to
easily train deep neural networks on the most common neuroimaging datasets. ClinicaDL
also allows extracting 2D slices, 3D patches or regions of interest as PyTorch tensors from
3D brain volumes to facilitate training (Figure 6.4).

Reproducibility of deep learning studies

The initial step to achieve reproducibility is through transparency by sharing a usable code.
The source code of ClinicaDL is available on GitHub13. Moreover, a set of instantiation and
non-regression tests are run at each commit to ensure that the code does not break when
adding new features (see Section 6.2.4 for more information on tests). This is crucial for the
stability of the tool, especially for open-source software, where any person can contribute
to the project.

However, sharing code is not enough to be fully transparent. The code and documen-
tation of ClinicaDL are versioned to allow the user to retrieve the exact version needed for
method reproducibility. Then, two files at the root of the experiment folder identify the
software and dependencies’ versions (environment.txt) and variables such as threading,
GPU usage and random seed (maps.json), allowing to re-run experiments with the same
environment and same computational parameters.

12https://www.tensorflow.org/tensorboard
13https://github.com/aramis-lab/ClinicaDL

https://www.tensorflow.org/tensorboard
https://github.com/aramis-lab/ClinicaDL
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from T1W, PET 

or FLAIR

Figure 6.4: Schema of the prepare-data pipeline. It offers the possibility of extracting
2D slices, 3D patches or regions of interest as PyTorch tensors from 3D NIfTI files and

store them in the same CAPS.

Moreover, the function clinicadl train –config_file was designed to repeat experi-
ments based on a configuration file. Together with the maps.json in which all the hyperpa-
rameters of each experiment are saved, it allows to easily re-run experiments with the exact
same configuration. However, we remind that it is still the users’ responsibility to describe
their GPU system.

Documentation is also a crucial point to ensure transparency and code usability by
other teams, which then allows result reproducibility. This is why ClinicaDL comes with
documentation support, and tutorials14.

Avoid common methodological biases in your neuroimaging studies

As explained by Kaufman et al., 2012, data leakage is “the introduction of information
about the target of a data mining [a.k.a. machine learning] problem that should not be
legitimately available to mine from”. They give two main reasons for data leakage:

• leaking features, occurring for example when input data include features that are
highly correlated to the target label due to a selection bias or if the target is a cause
of the feature,

• leakage in training examples, occurring when data used for training is not legitimate
towards data used for performance evaluation (for example, if there is an intersection
between training and test data).

Wen et al., 2020 reported that data leakage contaminated nearly half of the studies using
a convolutional neural network on T1c MRI for the diagnosis of Alzheimer’s disease. They
also identified different scenarios of data leakage that may corrupt the model training and
bias the results. These scenarios are summarized in Figure 6.5.

14https://aramislab.paris.inria.fr/clinicadl/tuto/2023/html/

https://aramislab.paris.inria.fr/clinicadl/tuto/2023/html/
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Figure 6.5: Illustration of the scenarios that can lead to data leakage.

To limit the risk of data leakage, ClinicaDL includes a set of pipelines and tests to avoid
users making the most common methodological mistakes:

1. Data splits are performed at the subject level and cannot be performed on-the-fly, but
must be done prior to training networks (to avoid a biased split).

2. Data splits are performed independently for each label. However, if labels B & C
are subsets of a parent label A, transfer learning from a task implying A to a task
implying B and/or C may result in a biased transfer learning. Therefore, ClinicaDL
splits B and C with respect to A split.

3. In the classification case, the image-level prediction is the weighted sum of parts of
the image. These weights are computed from the predictions on the training or the
validation sets, but no other set (to avoid biased ensemble learning).

4. At the root of the MAPS, the file train+validation.tsv comprises all the participant
and session IDs seen during the training procedure. If transfer learning is performed,
this list of IDs is updated to include the IDs of participants and sessions seen during
the training of the source task. ClinicaDL prevents the user from creating a data group
having common IDs with this list (to avoid biased data split and transfer learning).

6.2.4 Development practices

ClinicaDL has adopted standard practices for software development and distribution of the
software with the aim to facilitate the reproduction of experiments.
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Distribution and Installation

The source code is hosted on Github15. It uses a version control system and the releases are
strictly labeled with the version number. In consequence, the source code used in a specific
experiment can be easily retrieved. Labeled versions of the code are released as Python
packages that are permanently stored in the official Python Package Index. Good practices
related to the version control system include atomic committing, clear commit messages
and peer-reviewed contributions.

The installation of the released packages is performed with a single command (pip
install clinicadl). As often, when installing Python packages, users are advised to
install it into a virtual environment to avoid requirement conflicts. Instructions for developer
installation are also available in the README of the repository.

Continuous Integration and Deployment

Each contribution is peer-reviewed by a developer different from the original author. The
resulting code is only integrated to the development branch if the post commit actions are
executed in a satisfactory way. The ensemble of these actions is described in the Continuous
Integration pipeline:

• Environment and dependencies verification: The creation of an environment
with all the dependencies necessary to install the package is performed in this step.

• User interface tests: The command line interface is tested using the Pytest library.
This library allows combining several sets of possible commands used in the user
interface. These are systematically tested to avoid errors in the main interface of
ClinicaDL.

• Functional tests: A different kind of tests is executed before the integration of new
code. These tests are called functional tests and are designed to check for the proper
operation of the different functionalities proposed by the software: e.g. “Train”, “Trans-
fer Learning”, “Interpretation” and “Random Search” tests use a truncated dataset to
verify that these functionalities run properly on a GPU machine. Other functionalities
such as “Predict” to perform inference, “Generate” to create custom datasets or “TSV
Tools” to generate files adapted to the task / dataset are also checked.

• Documentation build: New contributions and/or modifications to the code are
expected to be accompanied by the respective documentation. For that reason, doc-
umentation is built during the continuous integration pipeline. More details are ex-
plained in Section 6.2.4.

• Deployment: This step is only executed on labeled commits. Indeed, if a commit has
a label to reference a version, a Python package is built and uploaded to the Python
Package Index and a new version is published.

15https://github.com/aramis-lab/ClinicaDL

https://github.com/aramis-lab/ClinicaDL
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Documentation

The documentation of ClinicaDL is available online at https://clinicadl.readthedocs.
io. It is automatically built after each commit by Read the Docs16. The documentation is
versioned in the same way as the source code. All previous tags are easily accessible online
with the version panel in the bottom right corner of any page.

6.2.5 Recent advances

In this section, we present in more detail ClinicaDL’s new features, which have been de-
signed and implemented since the last journal publication (Thibeau-Sutre et al., 2022b)
and conference presentation (Thibeau-Sutre et al., 2022a). These new features are summa-
rized in Figure 6.6. Three of them concern the topics described in Section 6.2.3 (easy use
of neuroimaging data, reproducibility and validation). We also added features related to
usability (making the platform more user-friendly and adding deep learning features) and
performance.

Easy use of neuroimaging. We added various functionalities for data augmentation and
synthetic data generation. ClinicaDL now supports TorchIO (Pérez-García et al., 2021)
data augmentation. Other generation pipelines have been implemented to generate motion
artifacts (Loizillon et al., 2023) and hypometabolic data (Chapter 3, Section 3.2.2). These
generation pipelines can be used for data augmentation, but also to validate models on
synthetic data. Finally, ClinicaDL can now be used with MRI FLAIR sequence that is
processed by Clinica.

Reproducibility. We made major improvements to the continuous integration. We added
versioning of test data used for continuous integration with data version control (DVC)17

. We also added non-regression tests for some pipelines and unitary tests for some critical
functionalities of the software. There is now the possibility to fix the seed to improve the
reproducibility of the results. This will, for example, determine the initialization of the
model and the data loading sequence. However, despite having control over some GPU
seeds, certain hardware-related factors such as architecture, memory configuration, clock
speed, and calculation variations may still be beyond control, impacting reproducibility
across different GPUs.

Rigorous validation. Another development axis has been to generalize experiment prepa-
ration to any neuroimaging dataset. Indeed, ClinicaDL initially resulted from work on the
reproducibility of Alzheimer’s disease classification (Wen et al., 2020) and thus some of its
features were not generic enough. We have enhanced tools for manipulating TSV files to
make them more generic and to handle both cross-sectional and longitudinal studies. Qual-
ity control (QC) of both raw and processed data is important to mitigate sources of bias
and short-cut learning. QC algorithms that were already included in ClinicaDL have been
updated to their latest version (Fonov et al., 2022) and we added a new pipeline to check the

16https://readthedocs.org/
17https://dvc.org

https://clinicadl.readthedocs.io
https://clinicadl.readthedocs.io
https://readthedocs.org/
https://dvc.org
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registration of positron emission tomography (PET) images with a template. We further
added a new method to interpret pretrained models.

Usability and performance. Making the software user-friendly has always been a goal
for the development team by keeping the documentation up to date, writing tutorials or
providing options such as the use of configuration files to simplify the command line. To go
further, many new features have been added. Moreover, ClinicaDL now supports tracking of
experiments via MLflow18 (an open-source platform) and Weights and Biases19 (a Python
based platform) (Biewald et al., 2020), which are widely used in the machine learning
community. The command line could sometimes be tedious to use, especially when changing
many parameters of the experiments. This is why we created a TOML generator20, a
web application that helps to configure experiments through a graphical user interface.
Furthermore, new tutorials21are available online: the aim is to show and explain how to use
Clinica and ClinicaDL as well as providing guidelines and spreading good practices to the
community

We also added new features to enhance the performance of model training with Clini-
caDL. First, we integrated the PyTorch profiler that helps users to track GPU usage. Then,
we performed developments to allow people to harness the power of high-performance com-
puting (HPC) clusters (with multiple GPUs) and of state-of-the-art GPUs (Nvidia Tesla
V100 and even A100), in particular those including tensor cores. We implemented multi-
GPU training through distributed data parallelism. We added the use of automatic mixed
precision for optimal use of GPU cards with tensor cores. This is even more crucial in
medical imaging, as the size of data can saturate the memory of the GPUs. Thus, it gives
the possibility to use larger or more complex models, use full resolution high dimensional
images or increase the batch size.

Figure 6.6: New features of the ClinicaDL software platform.

18https://mlflow.org
19https://wandb.ai/site
20https://clinicadl-toml-generator.streamlit.app
21https://aramislab.paris.inria.fr/clinicadl/tuto/2023/html/index.html

https://mlflow.org
https://wandb.ai/site
https://clinicadl-toml-generator.streamlit.app
https://aramislab.paris.inria.fr/clinicadl/tuto/2023/html/index.html
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6.2.6 Personal contribution

Since the beginning of my PhD, I have been involved in the ClinicaDL project and partici-
pated in its development. Over the past three years, I have made many contributions, both
in terms of software development and project management.

The first contribution was to initiate a full refactoring of the software. The software had
historically been developed for the reproducible classification of T1w MRI in the context of
AD (Wen et al., 2020). After some years, many new features have been added, that still
relied on that original implementation. The structure of the software, and the repository or-
ganization, started to be outdated, and understanding the code, maintaining it, and adding
new features became more and more difficult. This is why, with the other project mem-
bers, we decided to completely re-code the backbone engine of the software. Following this
initiative, ClinicaDL has been refactored to have an object-oriented code, whereas it was
only executing function in its initial version. This considerably increased the flexibility and
organization of the code. This first version of the classes that we have designed is displayed
in Figure 6.7. This prototype has then been upgraded during the following years. We also
defined the MAPS (Section 6.2.2) to manage the outputs of our deep learning experiments.
The goal was to design a structure that can store all the results of an experiment, includ-
ing parameters and environment, in order to favor reproducibility. Finally, we added new
standard Python dependencies, such as Click22 to manage the command line interface.

After the software refactoring, many new features have been added to ClinicaDL during
the thesis. Especially, all the deep learning tools that have been used to run experiments have
been integrated to the software. For instance, it is possible to train VAEs for reconstruction
as done in Chapter 2. It is also possible to generate hypometabolic FDG PET and use
the evaluation framework introduced in Chapter 3. Finally, all the VAE models tested
in Chapter 5 are implemented in Pythae, and are available in a separate package called
ClinicaDL-Pythae23. In addition to that, many existing features have been improved, and
new ones have been added. It includes the parallelization of the prepare-data pipeline, a
new option to save reconstruction tensors and latent tensors, new metrics for evaluation,
new deep learning models, and a quality check pipeline for PET images.

As part of this project, a significant effort was dedicated to promoting the software by
presenting it during conferences, congresses, and workshops. Additionally, I took the re-
sponsibility of training newcomers, including PhD students who would be using ClinicaDL
for their research and software engineers involved in its development. Furthermore, I played
an active role in providing user support, by addressing inquiries and issues raised by ex-
ternal users on the forums dedicated to the software. Additionally, I provided assistance
to users within our laboratory, ensuring that they could utilize the software efficiently and
effectively to meet their research needs. Finally, I actively participated in updating the
user’s documentation.

Last but not least, I have also contributed to the management of the project. This
involved creating short and midterm roadmaps, suggesting ideas for new features and func-
tionalities, prioritizing tasks based on the roadmap, and planning the software releases.

22https://click.palletsprojects.com/en/8.1.x/
23https://github.com/aramis-lab/clinicadl-pythae

https://click.palletsprojects.com/en/8.1.x/
https://github.com/aramis-lab/clinicadl-pythae
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Figure 6.7: First UML diagram of ClinicaDL. We distinguish five main blocks: one re-
lated to data (CapsDataset), one for the deep learning models that inherited from Pytorch
(Network), one for the validation (CrossValidation), one that contain metrics (MetricMod-

ule), and finally one that manage the trainer and the MAPS (MapsManager).

Additionally, I was during a long time in charge of reviewing new contributions before inte-
grating them into the main codebase. This review process aimed to maintain code quality,
consistency, and stability throughout the development cycle.

6.2.7 Discussion and future development

In this section, we presented the ClinicaDL software platform. It can facilitate and improve
the trustworthiness of research in deep learning for neuroimaging.

Good practices are essential in research to provide strong foundations to those whose
work is built on the findings of others. Working with neuroimaging data can be com-
plex, making it intricate to reproduce experiments. The same applies to the field of deep
learning, the important number of parameters to choose from can make difficult usability,
reproducibility or validation. In this way, a versioned and open-source software like Clini-
caDL is a first step towards reproducibility. ClinicaDL is built in a way that makes it easy
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to get started. Researchers can use it “as is” or as a starting point to further develop tools
for their research.

Future direction includes the development of feature such as:

• adding the segmentation task;

• adding new state-of-the-art models;

• giving the possibility to directly read neuroimaging data from BIDS (and not only
CAPS);

• improving the trainer in order to enhance the training performances;

• improving the code structure to facilitate new contributions;

• improving tests and continuous integration pipeline;

• providing more tools for validation of training procedures.

The general objectives are oriented toward a more user oriented software by improving
the interface, usability and performance, and integrate deep learning tools that have been
adopted by the community.

6.3 Other contributions

In our quest of enhancing reproducibility in research, we have made all the code utilized
in the different experiments conducted for this thesis publicly available. As a result, each
article that has been published is accompanied by an associated GitHub repository, ensuring
the reproducibility of our research. Moreover, this initiative facilitates the accessibility of
our methods and results for fellow researchers, enabling them to easily utilize and build
upon our work.





113

Conclusion and Perspectives

Conclusion

In this thesis, we explored the use of deep learning to automatically analyze neuroimages and
provide a computer-aided-diagnosis tool in the context of dementia. Especially, we focused
on brain FDG PET, an imaging modality used for the detection of hypometabolism indi-
cating neurodegeneration, a biomarker used for early diagnosis of AD and other dementia
causes. Our strategy was to use generative models, and more precisely, we trained varia-
tional autoencoders, to reconstruct pseudo-healthy images. This generative model, when
trained with FDG PET images of healthy subjects only, learns their distribution. Thus,
when reconstructing an image with unknown diagnosis, we expect the reconstruction to
be anomaly free, since the model only learned to reconstruct “healthy images”. Then, by
comparing the input image to its reconstruction, areas of the brain that are substantially
different are probably abnormal, indicating the presence of anomalies related to the disease.
The main advantage of this approach is that it does not require a labeled dataset.

A prerequisite to the VAE training was to preprocess the FDG PET images that we se-
lected for our experiments. To this end, we developed the pet-linear pipeline that performs
a linear registration to the MNI152NLin2009cSym template and an intensity normalization,
resulting in an SUVR map. Moreover, we implemented a quality control pipeline to select
images that were correctly preprocessed. We finally carefully selected stable healthy patients
from the ADNI database in order to use their FDG PET images to train the VAE.

Once our dataset preprocessed, we trained a first simple 3D convolutional VAE to re-
construct healthy looking 3D brain FDG PET. Although we did not need annotated data
for training purposes (we only ensured that the images used in the train/validation set
corresponded to CN subjects), it was a challenge to evaluate quantitatively the ability of
our model to reconstruct pseudo-healthy images without any ground truth masks of the
anomalies we aimed to detect.

Since visual and qualitative evaluation was not an option at such an early stage of the
method development, we proposed an evaluation framework to enable a complete assess-
ment of generative models for the pseudo-healthy reconstruction of brain FDG PET. This
framework relies on simulating hypometabolism mimicking the effect of the diseases causing
dementia on images of healthy subjects from the test set. Using this technique, we obtained
pairs of healthy and abnormal images that allowed us to evaluate both the ability of the
model to reconstruct pseudo-healthy images, and the capacity to detect anomalies thanks
to the pseudo-healthy reconstruction. Additionally, we defined a new healthiness metric
and an anomaly score to quantitatively measure the performance of the generative model
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for this task. Finally, we exploited the possibility given by the VAE latent properties and
simulated images in order to explain the VAE results.

After proving that the VAE is well suited for pseudo-healthy reconstruction of 3D brain
FDG PET thanks to its simplicity and efficiency, we benchmarked 20 models: the autoen-
coder, the vanilla VAE and 18 variants of the VAE, and compared them using the previously
introduced evaluation procedure. We first performed a random search in order to find the
best architecture on the vanilla VAE. We then used the same architecture for all the 20
models, and searched for the optimal hyperparameters for all the models of this study. Fi-
nally, we compared the models both in terms of reconstruction quality and healthiness of
the reconstructed images. We concluded from this benchmark that 17 out of 20 models can
reconstruct good quality images, and that the 17 are able to reconstruct 3D brain FDG
PET looking healthy when fed with abnormal images.

Finally, I have highly contributed to the development of ClinicaDL during this the-
sis. The purpose of this open-source software is to offer tools that facilitate the use of
neuroimaging data in deep learning research, with an emphasis on reproducibility and con-
ducting rigorous experiments.

As a conclusion, during this PhD thesis, we developed, implemented and shared most of
the tools needed to conduct research in the field of unsupervised anomaly detection for brain
FDG PET. It includes preparation of the data, software to implement deep learning models,
and an evaluation framework. Thanks to this, we could provide a state-of-the-art on the
use of 3D convolutional VAEs in such context, and opened the way to future developments.

Perspectives

A first avenue of research to continue and improve this work, would be to use a generative
model that is able to reconstruct images of better quality. We have already tested many
VAEs variants. However, it would be interesting to implement other approaches such as gen-
erative adversarial networks and diffusion probabilistic models (DDPMs) that have proven
their ability to reconstruct images of better quality than VAEs(Esmaeili et al., 2023; Wang
et al., 2023; Gong et al., 2023). Especially, DDPMs seem to be the new state-of-the-art for
image generation (Dhariwal et al., 2021).

For the moment, we mainly rely on the reconstruction error to detect anomalies. The
use of difference maps is quite limited and could be improved in order to obtain more robust
and precise anomaly maps. For instance, the use of z-scores have been explored (Solal et
al., 2024a; Solal et al., 2024b) to leverage different sources of variance that would affect the
model reconstruction.

More generally, rigorous evaluation and validation is a crucial step in deep learning
applied to medical imaging (Varoquaux et al., 2022), since wrong estimation of the results
can have dramatic impact. We showed in Figure 4 that the number of articles published
about deep learning for computer-aided diagnosis is on the rise. However, in practice,
translation to clinical applications are really limited. One of the reasons is the lack of trust
of clinicians and patients in these tools. This why it is essential to build new evaluation
methods in order to improve trust in deep learning algorithm.
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Besides, interpretability is a field of deep learning research that has gained a lot of interest
in recent years. It is also a great tool to increase reliability of deep learning algorithms, that
are often perceived as “black boxes”, in the context of medical imaging.

Another avenue for improvement would be to apply the anomaly detection approach
to different data. This includes using a different PET tracer, for instance amyloid tracers,
in order to detect signs of AD earlier, or using different modalities, such as anatomical,
diffusion or functional MRI, in order to see if the approach can be more robust. Ultimately,
the use of mutli-modal data, i.e. using different imaging modalities together with clinical
data, can be a key to build better performing and robust computer-aided diagnosis tools.
Finally, most of the research is realized on research datasets, that are well curated, often
acquired following a rigorous protocol. It is rarely the case of clinical data. Because of
this, models developed in a research context may not generalize to real clinical applications,
slowing down the process of translation to clinic. This highlight the need to extend what
we have done from research datasets to clinical datasets.

Last but not least, the development of software tools is indispensable, not only for ensur-
ing research reproducibility but also for facilitating the transition from research to clinical
applications. For the moment, most of the software frameworks focus on providing resources
to develop and train new models using medical imaging data. However, to the best of our
knowledge, only MONAI24 offers the possibility to easily deploy trained models for clinical
settings. Indeed, deploying deep learning models can be challenging, particularly in medi-
cal imaging applications where stringent security measures and performance considerations
are primordial. This is probably a significant drag for the use of deep learning in clinical
practice.

In a nutshell, I believe that greater emphasis should be placed on enhancing evalua-
tion methodologies, developing software tools for model deployment, creating robust and
interpretable models, and providing access to larger and more diverse datasets, including
clinical data. These efforts are essential for facilitating the translation of research methods
for computer-aided diagnosis into clinical applications.

24https://monai.io/deploy.html

https://monai.io/deploy.html
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Appendix A

PubMed database queries

Machine learning query

(alzheimer [Title] OR "Cognitive Impairment" [Title] OR "MCI" [Title])

AND ("classif*" [Title] OR "diagnos*" [Title] OR "identif*" [Title] OR "detect*" [Title]
OR "recogni*" [Title] OR "prognos*" [Title] OR "predict*" [Title])

AND (mri OR "Magnetic Resonance Imaging" OR neuroimaging OR (brain AND imag-
ing) OR positron OR PET)

AND ("Matrix completion" [Title/Abstract] OR "Support vector machine$" [Title/Abstract]
OR "linear mixed-effect$" [Title/Abstract] OR "Machine Learning" [Title/Abstract] OR
"logistic regression" [Title/Abstract] OR "Random Forest" [Title/Abstract] OR "kernel$"
[Title/Abstract] OR "decision tree$" [Title/Abstract] OR "least-squares" [Title/Abstract])

NOT ("cnn$" [Title] OR "Convolutional Network$" [Title] OR "Convolutional neural
Network$" [Title] OR "Deep Learning" [Title] OR "Neural Network$" [Title] OR "autoen-
coder$" [Title] OR gan [Title] OR adversarial [Title] OR "deep belief network$"[Title])

Deep learning query

(alzheimer [Title] OR "Cognitive Impairment" [Title] OR "MCI" [Title])

AND ("classif*" [Title] OR "diagnos*" [Title] OR "identif*" [Title] OR "detect*" [Title]
OR "recogni*" [Title] OR "prognos*" [Title] OR "predict*" [Title])

AND (mri OR "Magnetic Resonance Imaging" OR neuroimaging OR (brain AND imag-
ing) OR positron OR PET)

AND ("cnn$" [Title/Abstract] OR "Convolutional Network$" [Title/Abstract] OR "Con-
volutional neural Network$" [Title/Abstract] OR "Deep Learning" [Title/Abstract] OR
"Neural Network$" [Title/Abstract] OR "autoencoder$" [Title/Abstract] OR gan [Title/Abstract]
OR adversarial [Title/Abstract] OR "deep belief network$"[Title/Abstract])
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NOT ("Matrix completion" [Title] OR "Support vector machine" [Title] OR "linear mixed-
effect" [Title] OR "Machine Learning" [Title] OR "logistic regression" [Title] OR "Random
Forest" [Title] OR "kernel" [Title] OR "decision tree" [Title] OR "decision trees" [Title] OR
"least-squares" [Title])
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Appendix B

Anomaly detection in Shepp-Logan
phantoms

Figure B.1: VAE pseudo-healthy reconstruction on images with different missing com-
ponents: the top ROI is missing (top), the left ventricle is missing (bottom).
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Figure B.2: VAE pseudo-healthy reconstruction on images with anomalies on the bottom
ROI: the presence of an extra ellipse (top), the absence of an ellipse (bottom).
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Figure B.3: VAE pseudo-healthy reconstruction on images with different intensities:
intensity of the top ROI set to 0 (first row), intensity of the ventricles set to 0.2 (second
row), intensity of the central ROI set to 1 (third row), and intensity of the ventricles set

to 1 (last row).
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Figure B.4: VAE pseudo-healthy reconstruction on image with a 15° rotation.
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Appendix C

Examples of reconstructions obtained
for healthy subjects and simulated
hypometablic images
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Figure C.1: Examples of reconstructions obtained from a real image of CN subjects
(even rows) and the image simulating 30% AD hypometabolism based on the same CN
subject (odd rows). For each plane, the first image is the input, the second one the model’s

reconstruction and the third one the difference (input - reconstruction).
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Appendix D

Unsupervised anomaly detection in
3D brain FDG PET: A benchmark of
17 VAE-based approaches

This Appendix as been published as a conference proceeding in the Deep Generative
Models workshop at the 26th International Conference on Medical Image Computing and
Computer Assisted Intervention (DGM@MICCAI 2023, Vancouver, Canada).

• Title: Unsupervised anomaly detection in 3D brain FDG PET: A benchmark of 17
VAE-based approaches

• Authors: Ravi Hassanaly, Camille Brianceau, Olivier Colliot, Ninon Burgos.

D.1 Introduction

Recent advances in medical image analysis have allowed the emergence of algorithms that
can perform complex tasks such as computer-aided diagnosis (Chen et al., 2022; Fernando
et al., 2021) with pseudo-healthy reconstruction for unsupervised anomaly detection (UAD).
Contrary to supervised approaches, UAD does not require human annotations that are costly
and time-consuming, and enables the detection of any type of anomalies, without having
seen them before. Most approaches rely on generative models to reconstruct healthy looking
images, also called pseudo-healthy images (Baur et al., 2021a; Chen et al., 2022; Fernando
et al., 2021). The assumption is that if a model is trained with images from subjects
diagnosed as healthy, the reconstruction of images with a pathology should not contain
pathology-specific features and look like a healthy image. Comparing the pseudo-healthy
reconstruction with the real image then allows the detection of anomalies.

The application context of our work is the detection of metabolic changes visible in brain
18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) caused by Alzheimer’s
disease and other dementias (Chételat et al., 2020). These subtle changes appear several
years before the first symptoms and can be used for early diagnosis (Jack et al., 2016;
Hampel et al., 2021). In neuroimaging, deep learning methods for UAD have not been much
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applied for the diagnosis of dementia (Choi et al., 2019). It is a challenging task because the
metabolic abnormalities are diffuse and little intense, which makes them difficult to detect
(Burgos et al., 2021b).

The different pseudo-healthy reconstruction approaches that have been developed for
medical imaging rely on variational autoencoders (VAEs) (Kingma et al., 2014), generative
adversarial networks (GANs) (Goodfellow et al., 2014) and more recently diffusion models
(Ho et al., 2020). We aim to compare VAE-based models as they have shown their efficacy
for UAD in medical imaging (Baur et al., 2021a; Chen et al., 2022), are easy to train, easily
scalable, with good interpretation capacity thanks to their regularized latent space, and are
able to handle small datasets. Much research to improve the original VAE has been achieved
in the computer vision literature (Burda et al., 2016; Chen et al., 2018a; Ghosh et al., 2019;
Higgins et al., 2017; Kim et al., 2018; Kingma et al., 2016; Larsen et al., 2016; Makhzani
et al., 2015; Rezende et al., 2015; Snell et al., 2017; Tolstikhin et al., 2018; Tomczak et al.,
2018; Van Den Oord et al., 2017; Zhao et al., 2019), but only a few have been translated
to medical imaging applications (Baur et al., 2021a; Chen et al., 2018b; Choi et al., 2019;
Mostapha et al., 2019; Uzunova et al., 2019).

We propose a benchmark of seventeen VAE-based models and show results in the con-
text of pseudo-healthy reconstruction for dementia from 3D FDG PET. As far as we know,
the only study that has compared VAEs for neuroimaging data is that of Baur et al., 2021a.
However, it was restricted to models that had already been used for medical imaging appli-
cations. Many other VAE extensions have thus not been assessed. Also, it was dedicated to
the detection of very sharp and intense anomalies, such as brain tumors or multiple sclerosis
lesions, which is very different from the identification of subtle anomalies found in PET
images of patients with cognitive disorders. Finally, it was performed in 2D. Our work aims
to contribute to this effort by evaluating a much wider set of approaches, including many
that were never used in medical imaging, relying on the work of Chadebec et al., 2022.
This will provide an insight into the performance that such models can achieve in detecting
anomalies in 3D data when trained with a relatively small dataset (few hundreds of images)
compared to most datasets used in the computer vision literature (several tens of thousands
images). The models will be evaluated and compared based on reconstruction quality and
on their ability to generate healthy looking images using a previously proposed simulation
framework (Hassanaly et al., 2023a).

D.2 Methods

D.2.1 Variational autoencoder framework for pseudo-healthy image re-
construction

Let D be a set of medical images of the same modality acquired following a similar protocol.
D can contain healthy and pathological images and can be divided in respectively two
complementary subsets Dh and Dp. Let’s take as an example a set of FDG PET images
x ∈ Dh whose distribution is p(x). The goal of pseudo-healthy image reconstruction is
to generate an FDG PET image of healthy appearance. The idea is to approximate the
healthy image true distribution p(x) with a chosen model pθ(x) such that pθ(x) ≈ p(x).
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Then, during reconstruction, the images (of healthy subjects or patients) are projected into
that “healthy images” learned subspace by the generative model.

This can be modeled using the VAE framework (Kingma et al., 2014) by assuming that a
latent variable z is involved in the generation process of x: pθ(x) =

∫
z p(z)pθ(x | z)dz where

z ∼ pθ(z) is the prior distribution on the latent space and pθ(x | z) is the generative model
(or the decoder) that learns to generate healthy images from z. To compute the appropriate
z for each data input x of our dataset, we need the posterior distribution pθ(z | x). Since it
is untractable, we approximate it using variational inference by introducing another model
qϕ(z | x) such that qϕ(z | x) ≈ pθ(z | x). qϕ(z | x) is the inference model (or encoder). Both
the decoder and encoder are parametric models whose parameters are given by a neural
network.

The objective is to maximize the likelihood of pθ(x), which is equivalent to maximizing
the evidence lower bound, which defines our loss function Lθ,Φ (Kingma et al., 2014)

log (pθ(x)) ≥ Lθ,Φ(x) = EqΦ(z|x)

[
log
(
pθ(x | z)

)]
−DKL

(
qΦ(z | x)∥pθ(z)

)
(D.1)

with DKL the Kullback-Leibler divergence.
During the training process, we learn an approximation of the posterior distribution

qϕ(z | x) for x ∈ Dh as we train our model using only healthy subjects. When using the
model for inference, we use this approximate posterior to estimate the latent variable z for
x ∈ D (it can be from Dh or Dp).

D.2.2 Extensions to the variational autoencoder framework

As explained in detail in Chadebec et al., 2022, several contributions have been proposed
to improve the VAE framework. They can be divided into four categories that correspond
to different objectives:

• improve the prior distribution p(z) by using a variational mixture of posteriors as prior
(VAMP) (Tomczak et al., 2018), by learning the prior on a discrete latent space with
vector quantized-VAE (VQVAE) (Van Den Oord et al., 2017), or by substituting the
prior with a density estimation method using regularization with a gradient penalty
(RAE-GP), or an ℓ2 penalty on the decoder (RAE-ℓ2) (Ghosh et al., 2019);

• better estimate the lower bound by using importance weighting (IWAE) (Burda et al.,
2016), and using a linear normalizing flow (VAE LinNF) (Rezende et al., 2015) or an
inverse autoregressive flow (VAE-IAF) (Kingma et al., 2016) to better estimate the
posterior;

• encourage disentanglement of the features in the latent space by adding a weight to
balance the terms of the loss in Eq. D.1 (β-VAE) (Higgins et al., 2017), decomposing
the loss to show a total correlation term (β-TC VAE) (Chen et al., 2018a), or by
encouraging the distribution of the latent variable q(z) to be factorial (FactorVAE)
(Kim et al., 2018);
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• and change the distance computed between the distributions by adding the mutual
information between x and z as regularization (InfoVAE) (Zhao et al., 2019), using
another divergence term in the loss such as the maximum mean discrepancy in the
Wasserstein autoencoder (WAE) (Tolstikhin et al., 2018) or a discriminator to differen-
tiate a prior’s sample from a posterior’s sample in the adversarial autoencoder (AAE)
(Makhzani et al., 2015), or by changing the reconstruction metric for another similar-
ity metric such as the multi-scale structural similarity (MS-SSIM VAE) (Snell et al.,
2017), or for the prediction of a discriminator on the output of the VAE (VAEGAN)
(Larsen et al., 2016).

In our benchmark, these models will be compared to the autoencoder (AE) and VAE
(Kingma et al., 2014), which makes a total of seventeen models. All of these methods
have shown great results in other fields of computer vision, and, since VAE-based models
can learn the data distribution on a small dataset, we keep the focus on them and aim to
assess their performance in the context of medical imaging.

D.2.3 Evaluation of the models

We can distinguish two main objectives when generating pseudo-healthy images: preserv-
ing the subject’s identity in the reconstructed image and ensuring that the reconstruction
appears healthy (Xia et al., 2020).

For the subject identity preservation, we evaluate the models on real images from healthy
subjects only: the pseudo-healthy reconstruction of an image of a healthy subject should
be identical to the input. This is assessed using three commonly used paired reconstruction
metrics: the mean-squared error (MSE), the peak signal-to-noise ratio (PSNR) and the
structural similarity (SSIM) (Wang et al., 2004).

To evaluate the capability of each model to reconstruct healthy looking images, since we
do not have access to ground-truth lesions masks, we use the evaluation framework that has
been introduced in Hassanaly et al., 2023a. It consists in simulating the effect of the disease
by reducing the intensity of the PET uptake within regions associated with different demen-
tias, thus mimicking regional hypometabolism (Burgos et al., 2021b). After locally reducing
the intensity of the image by a certain percentage, a Gaussian smoothing is applied to have
a realistic result and diffuse anomalies. That way we can have pairs of diseased images with
the original healthy scan that is used as ground-truth for the pseudo-healthy reconstruction
as we do not have ground truths for images from real patients in our dataset. We simulate
five different dementias on images of healthy subjects: Alzheimer’s disease (AD), behavioral
variant frontotemporal dementia (bvFTD), logopenic variant primary progressive aphasia
(lvPPA), semantic variant PPA (svPPA) and posterior cortical atrophy (PCA). This allows
us to evaluate the capability of the model to generalize to anomalies caused by different
dementia subtypes. In addition, we simulate different degrees of AD severity by varying the
reduction in intensity from five to seventy percents to study the sensitivity of the UAD ap-
proaches on subtle and severe anomalies. We compute the reconstruction error in the whole
image, in the region associated with the simulated dementia and in the complementary of
this region in the brain.
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D.2.4 Materials

FDG PET scans used in this study were obtained from the publicly available ADNI database
(Jagust et al., 2010) (https://adni.loni.usc.edu). We selected FDG PET images co-
registered, averaged and uniformized to a resolution of 8 mm FWHM to reduce the variability
due to the use of different scanners. The images were then linearly registered to the standard
MNI space, normalized in intensity using the average PET uptake in a region comprising
cerebellum and pons, and cropped using the Clinica pet-linear pipeline (Routier et al.,
2021). We finally down-sampled the images to a voxel size of 80 × 96 × 80 to reduce their
dimension and the memory usage.

ADNI includes a total of 733 FDG PET scans of cognitively normal (CN) participants
with a stable diagnosis over a three-year window (corresponding to 301 subjects). We
discarded 144 images that were not correctly registered according to the quality check algo-
rithms implemented in ClinicaDL (Thibeau-Sutre et al., 2022b).

D.2.5 Experimental setting

We split our dataset of 247 remaining CN subjects at the subject’s level to avoid data
leakage (Wen et al., 2020): 50 CN subjects (50 images) compose the test set, 19 subjects
(19 images) belong to the validation set and 178 subjects (452 images) are used to train our
models. The split is stratified by sex and age to reduce biases. The 50 images of the CN
subjects from the test set are also used to simulate the hypometabolic images, mimicking
various dementias and AD severity degrees.

For the comparison to be as fair as possible, all the models share the same encoder and
decoder architecture. The encoder is composed of three blocks that are the succession of a
3D convolutional layer and a batch normalization with a ReLU activation. Then the tensor
is flatten and passes through a dense layer to output a one dimensional latent space. The
decoder is almost symmetrical: it is composed of a dense layer followed by three blocks that
are composed of a 3D deconvolutional layer and a batch normalization with a leaky ReLU
activation. We tested several sizes of latent space (16, 64, 128 and 256), but as we observed
similar performance, we report the results for a size of 128, consistent with the choice made
in Baur et al., 2021a.

We also use the same training parameters and environment to train all the models. We
trained each model on 300 epochs with a learning rate of 10−5 and a batch size of 24 on an
HPC with Nvidia Tesla V100 GPUs that have 32GB of memory. We are aware that model
performance can greatly vary depending on these parameters, but for fair comparison, we
decided to choose the best parameters on the VAE and use the same for all models. It takes
on average between 1’ and 1’30” to train one epoch with comparable performance for each
model on our computer cluster, meaning around 7 h per model for 300 epochs.

VAE-based model implementation relies on Pythae (Chadebec et al., 2022) and neu-
roimage processing on ClinicaDL (Thibeau-Sutre et al., 2022b), two open source software
tools. The code used for this study is available on GitHub and can be used to reproduce
the experiments: https://github.com/ravih18/VAE-models-for-UAD.

https://adni.loni.usc.edu
https://github.com/ravih18/VAE-models-for-UAD
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Figure D.1: Example of FDG PET image of a CN subject (X) with the corresponding
pseudo-healthy reconstruction (X̂) and difference image (∆), followed by an image simu-
lating AD hypometabolism obtained from X (X ′) with the corresponding pseudo-healthy
reconstruction (X̂ ′) and difference image (∆′), and the mask used to generate X ′ (M).

The pseudo-healthy reconstructions were obtained from the vanilla VAE model.

D.3 Results

D.3.1 Pseudo-healthy reconstruction from images of control subjects

We first assessed whether the different models could preserve the subject’s identity by com-
puting the MSE, PSNR and SSIM between the input and reconstructed images of the CN
subjects. Results are reported in Table D.1. We observe that no model clearly outperforms
the others. On the other hand, VAMP (Tomczak et al., 2018), VAE LinNF (Rezende et al.,
2015), MS-SSIM VAE (Snell et al., 2017) and VAEGAN (Larsen et al., 2016) perform less
well than the others (MSE > 0.05, PSNR < 20 dB, SSIM < 0.5). A possible explanation is
that the dataset is too small for these models to learn the data distribution.

The other models obtain a similar performance with, on average, an MSE < 0.04, PSNR
> 24 dB and SSIM comprised between 0.69 and 0.75. Not surprisingly, the AE leads
to a good performance for this reconstruction task according to the MSE, as it is the
optimized metric. The vanilla VAE (Kingma et al., 2014) seems to be one of the best
models but does not stand out from the other models. It is probable that some models
would benefit from hyper-parameter fine-tuning to perform better, but it is interesting to
see that optimal parameters obtained on classic computer vision datasets do generalize to
this different application for many models.

D.3.2 Pseudo-healthy reconstruction from images simulating dementia

In the following, we discarded the four models that did not give acceptable reconstructions.
We first report, for the five dementia subtypes considered simulated with a hypometabolism
of 30%, the MSE and SSIM between the simulated image and their reconstructions within
the binary mask where hypometabolism was applied (e.g. between X ′ and X̂ ′ within the
binarized mask M in Fig. D.1). All the models reach a very similar performance with an
MSE on average across models of 0.0132 (min MSE of 0.0096 for the RAE GP (Ghosh et al.,
2019) and max MSE of 0.0183 for the IWAE (Burda et al., 2016)) and an average SSIM of
0.710 (min SSIM of 0.684 for the IWAE (Burda et al., 2016) and max SSIM of 0.733 for
the RAE-ℓ2 (Ghosh et al., 2019)). This means that the VAE-based models can generalize
to various kinds of anomalies located in different parts of the brain, and that none of the
tested models can be selected based on this criteria. The average MSE over all the models
and all the dementia subtypes (between X ′ and X̂ ′) is 0.0132 in the pathological masks M

against 0.0072 outside the masks, which makes a 58.6% difference between both regions.
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Figure D.2: Bar plot of the evolution of the MSE when computed within the mask
characteristic of AD between the image simulated with different degrees of hypometabolism

and its reconstruction. We observe that most models can scale to large anomalies.

The average SSIM is 0.710 inside masks M against 0.772 outside the masks for a 8.4%
difference. This shows that the reconstruction error is much larger in regions that have
been used for hypometabolism simulation, as expected. For comparison, the percentage
difference is only 10.2% for the MSE and 0.2% for the SSIM when computed between the
pseudo-healthy reconstruction X̂ ′ and the real pathology-free images X. This illustrates
that the models are all capable of reconstructing the pathological regions as healthy.

We then report in Fig.D.2 the MSE within the mask simulating AD when generating
hypometabolism of various degrees (5% to 70%) for each model. It is interesting to observe
that most of the models could be used to detect anomalies of higher intensity, as they have
an increasing difference in terms of MSE for hypometabolism of 20% and more. The same
trend was observed with the SSIM. The RAE-ℓ2 (Ghosh et al., 2019) does not scale as
well as other models, probably because the regularization is done on the decoder weights,
so nothing prevents the encoder from learning a posterior that is less general. We also
notice that the IWAE (Burda et al., 2016) has a worse reconstruction on the pathological
region compared to other models, and this becomes more pronounced when the severity
of the disease is increased. However, this does not mean that IWAE (Burda et al., 2016)
better detects pathological areas since the reconstruction is poor in the whole image as well,
meaning that IWAE (Burda et al., 2016) cannot perform well when the image is out of
the training distribution. Surprisingly, the simple autoencoder gives similar results as other
methods.

D.4 Conclusion

The proposed benchmark aimed to introduce the use of recent VAE variants with medical
imaging data of high dimension and compare their performance on the detection of dementia-
related anomalies on 3D FDG PET brain images. We observed that most models have a
comparable reconstruction ability when fed with images of healthy subjects, and that their
outputs correspond to healthy looking images when fed with images simulating anomalies.
Exceptions are the VAEGAN (Larsen et al., 2016), VAMP (Tomczak et al., 2018), VAE
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LinNF (Rezende et al., 2015), MS-SSIM VAE (Snell et al., 2017), RAE-ℓ2 (Ghosh et al.,
2019) and IWAE (Burda et al., 2016). Thanks to the evaluation framework that consists in
simulating images with anomalies from pathology-free images, we showed that most models
can generalize pseudo-healthy reconstruction to different dementias and different severity
degrees. These results are interesting as it means that VAE-based models developed for
natural images can generalize well to other tasks (here 3D brain imaging): they are easy to
use and do not necessarily require a large training set, which might not be the case for other
types of generative models. We also showed that in our scenario (small dataset of complex
3D images) the simplest models (vanilla AE and VAE) lead to results comparable to that
of the more complex ones. Nevertheless, the results are for now limited to the detection
of simulated anomalies. An evaluation on real images would be necessary to confirm these
observations.

The proposed benchmark could be used in future work to assess whether the posterior
learned by the different models is the same for images from healthy and diseased subjects
using the simulation framework to compare the latent representation of both the original and
simulated images, thus explaining the results of the models. It would also be interesting to
compare some of the VAE-based models to GANs or diffusion models, and assess whether
it would be possible to improve reconstruction quality while learning the distribution of
healthy subject images.
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Appendix E

Description of the VAE variants and
of their hyper-parameter selection
procedure

This Appendix describes all the VAE variants. Hyper-parameters were chosen following
implementations and recommendations from the original papers and the benchmark previ-
ously done by Chadebec et al., 2022. The results of the random searches are reported for
each of the models. For each model, we selected the configuration with the best average
SSIM on the validation folds.

E.1 Adversarial Autoencoder

The adversarial autoencoder (Makhzani et al., 2015) is a probabilistic autoencoder model
that uses the GAN framework to perform variational inference in the latent space. It uses a
discriminator network to differentiate a prior’s sample from a posterior’s sample as a form
of regularization. Its objective and training are quite similar to that of a VAE

LAdv. AE = Ez∼qϕ(z|x) [log pθ(x|z)] + αLGAN ,

where
LGAN = Ez̃∼pz(z) [log(1−D(z̃)] + Ex∼pθ

[
Ez∼qϕ(z|x)[logD(z)]

]
.

We set the discriminator to be the same as in Chadebec et al., 2022, that is, a multilayer
perceptron with a single hidden layer with 256 units and ReLU activation. We performed
a grid search of 10 configurations for

α ∈ {0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99} .

The results are reported in Table E.1.
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Table E.1: Results of the random search on the hyper-parameters of the Adv. AE:
ranking according to the SSIM of the 10 best configurations (mean ± std over the three

folds randomly selected).

adversarial
loss scale SSIM ↑ MSE (×10−3) ↓

0.9 0.873± 0.005 1.770± 0.083
0.01 0.872± 0.003 1.771± 0.144
0.1 0.869± 0.005 1.846± 0.115
0.5 0.869± 0.015 1.811± 0.094

0.75 0.869± 0.006 1.784± 0.142
0.25 0.866± 0.002 1.841± 0.155
0.99 0.865± 0.014 1.863± 0.094
0.05 0.863± 0.009 1.779± 0.103

0.001 0.863± 0.007 1.860± 0.075
0.95 0.856± 0.001 1.814± 0.118

E.2 β-TC VAE

The β-TCVAE, or Total Correlation VAE (Chen et al., 2018a), is an extension of the β-
VAE (Higgins et al., 2017), which aims at further isolating sources of disentanglement by
rewriting the ELBO in the following way:

Lβ-TCVAE = Ez∼qϕ(z|x) [log pθ(x|z)]− Lreg ,

where

Lreg = αDKL [qϕ(z, x)||qϕ(z)pθ(x)]+βDKL

qϕ(z)||∏
j

qϕ(zj)

+γ
∑
j

DKL [qϕ(zj)||pz(zj)] .

The regularization term is therefore the sum of the mutual information between x and z,
the total correlation, which models the dependence between dimensions of the latent vector,
and the dimension-wise KL divergence, which prevents each dimension of the latent variable
from diverging too far from its prior.

Following the authors’ suggestion, we set α = γ = 1 for most of the models and per-
formed a grid search for parameter β ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 1, 2, 5, 10}. We also
tried the configurations (β, α, γ) = (1, 1, 3) and (β, α, γ) = (1, 3, 1), which made a total of
12 configurations. The results are reported in Table E.2.
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Table E.2: Results of the random search on the hyper-parameters of the β-TC VAE:
ranking according to the SSIM of the 10 best configurations (mean ± std over the three

folds randomly selected).

β α γ SSIM ↑ MSE (×10−3) ↓
2 1 1 0.870± 0.002 1.901± 0.123

0.05 1 1 0.866± 0.002 1.953± 0.082
1 1 3 0.866± 0.003 1.993± 0.077
5 1 1 0.864± 0.004 1.923± 0.072

0.005 1 1 0.864± 0.009 1.871± 0.113
0.001 1 1 0.863± 0.005 1.903± 0.138

1 3 1 0.862± 0.010 1.810± 0.034
10 1 1 0.862± 0.008 1.969± 0.095

0.01 1 1 0.860± 0.010 1.917± 0.096
0.1 1 1 0.855± 0.010 1.864± 0.100

E.3 β-VAE

The β-VAE (Higgins et al., 2017) was introduced to encourage the disentanglement of
features in the latent space by adding a weight β in front of the KL term to adjust the
balance between reconstruction and regularization. The objective is:

Lβ-VAE = Ez∼qϕ(z|x) [log pθ(x|z)]− βDKL [qϕ(z|x)||pz(z)] ,

where setting β > 1 leads to stronger disentanglement whereas using a smaller β can favor
better reconstruction abilities.

We performed a grid search of 10 configurations for β ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 2, 5, 10, 100}.
The results are reported in Table E.3.

Table E.3: Results of the random search on the hyper-parameters of the β-VAE: ranking
according to the SSIM of the 10 best configurations (mean ± std over the three folds

randomly selected).

β SSIM ↑ MSE (×10−3) ↓
10 0.868± 0.003 1.995± 0.067

0.005 0.868± 0.006 1.785± 0.142
0.01 0.867± 0.006 1.755± 0.122

0.001 0.866± 0.005 1.825± 0.072
0.05 0.866± 0.008 1.859± 0.090

2 0.863± 0.009 1.9± 0.072
0.1 0.863± 0.011 1.894± 0.103
0.5 0.858± 0.011 1.835± 0.117

5 0.856± 0.011 1.969± 0.095
100 0.816± 0.008 3.716± 0.292

E.4 Disentangled β-VAE

The disentangled β-VAE (Burgess et al., 2018) introduces a way to progressively increase
the latent encoding capacity to improve the reconstruction accuracy in comparison with the
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β-VAE (Higgins et al., 2017). The objective becomes

Ldisentangled β-VAE = Lrec − β|DKL(qϕ(z|x)||p(z))− C| ,

with C the value of the KL divergence term we would like to approach.
We performed a random search on the three parameters: β ∈ {10−2, 10−1, 1, 5, 10},

C ∈ {5, 25, 50} and the number of epochs (warm-up epochs) during which the KL divergence
in the ELBO will increase from 0 to C, which can be 100 or 1000. We trained a total of 20
configurations (out of 60 possible combinations), and the results of the random search are
given in the Table E.4.

Table E.4: Results of the random search on the hyper-parameters of the Dis. β-VAE:
ranking according to the SSIM of the 10 best configurations (mean ± std over the three

folds randomly selected).

β C warm-up
epoch SSIM ↑ MSE (×10−3) ↓

10 50 1000 0.874± 0.006 2.004± 0.153
0.1 25 1000 0.873± 0.002 1.821± 0.056

1 50 100 0.873± 0.007 1.852± 0.092
0.01 5 1000 0.871± 0.004 1.755± 0.055
0.1 50 100 0.871± 0.009 1.869± 0.073

0.01 25 1000 0.870± 0.003 1.753± 0.074
10 5 1000 0.870± 0.003 2.053± 0.110
0.1 5 1000 0.869± 0.014 1.815± 0.036

1 5 100 0.869± 0.008 1.879± 0.064
5 25 1000 0.867± 0.002 2.009± 0.068

E.5 Factor VAE

Kim et al., 2018 proposed a new metric for disentanglement that encourages the latent
representation to be factorial, and independent across each dimension of the latent space.
The loss function is the following:

LFactorV AE = LV AE − γDKL(qϕ(z)||q̄ϕ(z))) ,

with q̄ϕ(z) :=
∏d

j=1 qϕ(zj) for a model with a latent space of dimension d.
We performed a grid search of 10 configurations to find the optimal γ ∈ {2, 5, 10, 15, 20, 30, 40, 50, 100, 200}.

The results are reported in Table E.5.
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Table E.5: Results of the random search on the hyper-parameters of the FactorVAE:
ranking according to the SSIM of the 10 best configurations (mean ± std over the three

folds randomly selected).

γ SSIM ↑ MSE (×10−3) ↓
40 0.876± 0.003 1.895± 0.084

100 0.875± 0.007 1.827± 0.092
15 0.874± 0.004 1.872± 0.048
20 0.869± 0.010 1.875± 0.090
50 0.866± 0.011 1.850± 0.070

200 0.864± 0.008 1.820± 0.032
10 0.864± 0.011 1.859± 0.086
30 0.864± 0.020 1.805± 0.096
5 0.862± 0.019 1.890± 0.075
2 0.852± 0.016 1.901± 0.081

E.6 Hamiltonian VAE

Caterini et al. introduced a new method to obtain a low variance unbiased estimation of
the ELBO using Markov chain Monte Carlo with Hamiltonian importance sampling (Neal,
2005) and by proposing a method to select optimal reverse kernels, building the Hamiltonian
VAE (Caterini et al., 2018) with the following loss:

LHV AE = Ez0∼q0θ,ϕ(.,.)

[
log pθ(x, zK)− 1

2
ρTKρK − log q0θ,ϕ(z0)

]
+

l

2

where (z0, ρ0) = Hθ,ϕ(z0, γ0/
√
β0), H is the Hamiltonian importance sampling (Neal, 2005),

β0 is the inverse temperature and γ0 ∼ N (·|0, I).
There are three hyper-parameters that we randomly searched for: the number of step in

the leapfrog nlf ∈ {1, 2, 10, 15, 20}, the leapfrog step size ϵlf ∈ {10−5, 10−4, 10−3, 10−2} and
β0 ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} the tempering factor in the Hamiltonian
Monte Carlo Sampler. We trained 20 configurations out of 220 possible combinations. The
results are reported in Table E.6. Note that some configurations were really long to train,
sometimes exceeding the time limit of the HPC used to train the models.

Table E.6: Results of the random search on the hyper-parameters of the HVAE: ranking
according to the SSIM of the 10 best configurations (mean ± std over the three folds

randomly selected).

nlf ϵlf β0 SSIM ↑ MSE (×10−3) ↓
10 0.00001 0.8 0.873± 0.007 1.862± 0.068
2 0.00001 0.7 0.870± 0.002 1.905± 0.079
2 0.001 0.2 0.870± 0.004 1.847± 0.082
1 0.001 0.5 0.869± 0.008 1.853± 0.101

15 0.00001 0.2 0.868± 0.009 1.854± 0.075
1 0.001 0.7 0.865± 0.004 1.890± 0.102
2 0.01 1 0.865± 0.005 1.911± 0.066

15 0.001 0.4 0.865± 0.008 1.805± 0.024
15 0.001 0.1 0.864± 0.009 1.908± 0.084
10 0.0001 0.9 0.863± 0.003 1.882± 0.104
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E.7 Info VAE MMD

To improve both the generative model and the amortized inference distribution, Zhao et al.,
2019 proposed to add the mutual information between z and x in the objective function of
the VAE. To be optimized, the loss is rewritten as follows:

LInfoV AE = EpD(x)Eqϕ(z|x)[log pθ(x|z)]−(1−α)EpD(x)DKL(qϕ(z|x)||p(z))−(α+λ−1)D(qϕ(z)||p(z))

with D the maximum mean discrepancy (MMD).
We performed a random search of the following parameters: α ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0},

λ ∈ {0.01, 0.1, 1, 10, 100}, the choice of the kernel for the MMD ∈ {rbf, imq} (rbf: radial basis
function, imq: inverse multi-quadratic) and the kernel bandwidth ∈ {0.01, 0.1, 0.5, 1, 5, 10, 100}.
We trained 30 configurations out of 420 possible combinations. The results are reported in
Table E.7.

Table E.7: Results of the random search on the hyper-parameters of the InfoVAE: ranking
according to the SSIM of the 10 best configurations (mean ± std over the three folds

randomly selected).

kernel
choice α λ

kernel
bandwidth SSIM ↑ MSE (×10−3) ↓

rbf 1 0.1 0.1 0.877± 0.006 1.813± 0.075
rbf 0.4 1 0.5 0.875± 0.006 1.804± 0.052
rbf 1 0.1 0.5 0.874± 0.003 1.770± 0.077
rbf 0.00001 100 1 0.873± 0.002 1.852± 0.095
rbf 0.00001 10 0.5 0.873± 0.004 1.846± 0.094

imq 0.4 100 0.1 0.872± 0.008 1.866± 0.045
imq 1 10 1 0.872± 0.006 1.830± 0.068
rbf 0.6 0.01 5 0.871± 0.007 1.832± 0.088
rbf 1 100 0.01 0.870± 0.004 1.768± 0.079

imq 0.2 0.01 0.01 0.870± 0.005 1.830± 0.107

E.8 IWAE

Instead of relying on a single sample for estimating the posterior, the IWAE (Burda et al.,
2016) utilizes importance weights during the sampling process in the latent space on multiple
samples (Monte Carlo estimator), assigning higher weights to more probable samples. This
provides a new ELBO that becomes tighter when the number of samples increases. The loss
is the following:

LIWAE = Ez1,...,zk∼qϕ(z|x)

[
log

1

k

k∑
i=1

pθ(x, zi)

qϕ(zi|x)

]
with k ∈ {2, 3, 4, 5, 6, 8, 10, 12, 15, 20} the number of samples to use in the Monte Carlo
estimator.

When k grows, the IWAE becomes very memory greedy and time-consuming during
training, especially with 3D images. We had to reduce the batch size to 2, and, in spite
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of this, the model would crash because of memory when setting k > 6. The results are
reported in Table E.7.

Table E.8: Results of the random search on the hyper-parameters of the IWAE: ranking
according to the SSIM of the 3 best configurations (mean ± std over the three folds

randomly selected).

number of
samples SSIM ↑ MSE (×10−3) ↓

6 0.865± 0.007 2.087± 0.146
3 0.861± 0.002 2.048± 0.064
4 0.854± 0.013 2.178± 0.201

E.9 MS-SSIM VAE

Snell et al., 2017 proposed an extension of the VAE, called the expected loss VAE, where
the pixel-wise reconstruction loss can be replaced by any deterministic reconstruction loss.
For this, the probabilistic decoder pθ is replaced by a deterministic equivalent fθ so that the
reconstruction x̂ of x given z ∼ qϕ(z|x) is given by x̂ = fθ(x) and the reconstruction loss is
given by ∆(x, x̂). The objective becomes

LEL-VAE = Eqϕ(z|x) [∆(x, x̂)]− βDKL [qϕ(z|x)||pz(z)] .

Following the authors’ suggestion, we use the MS-SSIM, or multi-scale structural similarity,
as our reconstruction loss.

We performed a random search on β and the window size used in the computations of
the MS-SSIM, where β is sampled from {0.01, 0.1, 1, 10, 100} and the window size is sampled
from {2, 3, 5, 11}. We trained 10 configurations out of 20 possible combinations. The results
are reported in Table E.9.

The training time was too long for configurations with a window size different from 2,
explaining why Table E.9 contains only five configuration with a window size of 2.

Table E.9: Results of the random search on the hyper-parameters of the MS-SSIM VAE:
ranking according to the SSIM of the 5 best configurations (mean ± std over the three

folds randomly selected).

β
window

size SSIM ↑ MSE (×10−3) ↓

100 2 0.472± 0.034 70.174± 5.660
1 2 0.453± 0.050 75.443± 11.098
1 2 0.448± 0.018 74.110± 1.158
1 2 0.445± 0.050 76.354± 8.802

0.01 2 0.393± 0.039 84.579± 7.183
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E.10 Regularized auto-encoder

Ghosh et al., 2019 claimed that the probabilistic sampling in VAE is equivalent to a noise
injection to the decoder, acting as a stochastic regularization of the latent space. The
authors proposed a new approach that consists in replacing the random noise injection by
a deterministic regularization in the decoder. The training objective becomes

LRAE = ∥x− x̂∥22 + β.LRAE
Z + λ.LREG ,

with LREG the regularization term for the decoder and LRAE
Z = 1/2∥z∥22 a constraint on

the latent space. The authors suggested two different regularization terms for the decoder:

• the first option is a L2 norm on the weights of the decoder LREG = ∥θ∥22, giving the
RAE-ℓ2 model;

• another choice is to apply a gradient penalty on the discriminator LREG = ∥∇Dθ(Eϕ(x))∥22,
giving the RAE-GP model.

We performed a random search on both λ and β, that are both sampled from {10−5, 10−4, 10−3, 10−2, 10−1, 1}.
We trained 20 configurations for both the RAE-ℓ2 and the RAE-GP out of 36 possible com-
binations for each model. The results are respectively reported in Tables E.10 and E.11.

Table E.10: Results of the random search on the hyper-parameters of the RAE-ℓ2: rank-
ing according to the SSIM of the 10 best configurations (mean ± std over the three folds

randomly selected).

embedding
weight

reg
weight SSIM ↑ MSE (×10−3) ↓

0.0001 1 0.884± 0.005 1.815± 0.049
0.0001 0.001 0.883± 0.002 1.765± 0.070
0.0001 1 0.879± 0.008 1.848± 0.059
0.0001 0.01 0.879± 0.009 1.857± 0.064

0.00001 0.01 0.879± 0.007 1.868± 0.055
0.1 0.001 0.878± 0.007 1.814± 0.052

0.00001 0.01 0.878± 0.006 1.785± 0.076
0.1 0.0001 0.878± 0.007 1.853± 0.077

0.00001 0.1 0.878± 0.007 1.783± 0.107
0.00001 0.01 0.877± 0.005 1.831± 0.121
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Table E.11: Results of the random search on the hyper-parameters of the RAE-GP:
ranking according to the SSIM of the 10 best configurations (mean ± std over the three

folds randomly selected).

embedding
weight

reg
weight SSIM ↑ MSE (×10−3) ↓

0.01 0.0001 0.880± 0.006 1.715± 0.105
0.0001 0.0001 0.877± 0.008 1.744± 0.056

0.1 0.00001 0.877± 0.009 1.820± 0.093
1 0.001 0.867± 0.003 1.756± 0.063

0.1 0.01 0.861± 0.011 1.828± 0.031
0.1 0.1 0.845± 0.012 1.750± 0.107

0.0001 0.1 0.842± 0.010 1.769± 0.079
0.1 0.1 0.839± 0.008 1.799± 0.101

0.00001 1 0.825± 0.013 1.906± 0.135
0.1 1 0.808± 0.004 1.924± 0.145

E.11 Hyperspherical VAE

The hyperspherical VAE (Davidson et al., 2018) uses a von Mises-Fisher (vMF) distribution
as prior, leading to a hyperspherical latent space. This model has the advantage of not
having additional hyper-parameters compared to a standard VAE but only works with
a small latent space as large values lead to errors when computing the modified Bessel
function involved in the probability density function of the vMF distribution. Therefore, we
performed a grid search on three different smaller latent space sizes: 8, 16, 32. The results
are reported in Table E.12.

Table E.12: Results of the random search on the hyper-parameters of the SVAE: ranking
according to the SSIM of the 3 best configurations (mean ± std over the three folds

randomly selected).

latent space
size SSIM ↑ MSE (×10−3) ↓

16 0.151± 0.001 632.694± 5.106
32 0.150± 0.002 640.791± 4.328
8 0.083± 0.028 189.998± 68.394

E.12 VAEGAN

In the VAE-GAN (Larsen et al., 2016), a discriminator is trained on the output of a VAE
to enhance the VAE’s reconstruction abilities. The idea is to use the learned feature rep-
resentations from intermediate layers of the GAN discriminator as a basis for the VAE
reconstruction objective, assuming that the discriminator can capture high-level structures
relevant to the data distribution. Overall, this allows replacing voxel-wise similarity between
input and output by feature-wise similarity. For z ∼ pz(z) and x̂ ∼ Dθ(z), the objective is
given by

LVAE-GAN = Ez∼qϕ(z|x) [logN (Dl(x)|Dl(x̂), I)]−DKL [qϕ(z|x)||pz(z)]−log

(
D(x)

1−D(Dθ(z))

)
,
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where D denotes the discriminator, Dl the hidden representation of the l-th layer of the
discriminator, and Dθ the decoder. We also added a hyper-parameter α to the decoder’s
loss, such that high values of α encourage better reconstruction with respect to the features
learned at the layer l of the discriminator.

We set the discriminator to be a neural network with 4 convolutions and 2 fully con-
nected layers, with batch normalization and ReLU activation. We set the margin to 0.4
and the equilibrium to 0.68 as in the original paper. We performed a random search for
α ∈ {0.3, 0.5, 0.7, 0.9} and l ∈ {1, 2, 3, 4}. This model is particularly long to train and, due
to memory constraints, we reduced the batch size to 4 instead of 8 for these models. We
trained 10 different configurations out of 16 possible combinations. The results are reported
in Table E.13. We note that there is a strong correlation between the chosen reconstruction
layer in the decoder and the quality of the reconstruction.

Table E.13: Results of the random search on the hyper-parameters of the VAEGAN:
ranking according to the SSIM of the 10 best configurations (mean ± std over the three

folds randomly selected).

adversarial
loss scale

reconstruction
layer SSIM ↑ MSE (×10−3) ↓

0.5 1 0.860± 0.013 2.241± 0.193
0.1 1 0.851± 0.015 2.671± 0.090
0.1 1 0.849± 0.006 2.547± 0.356
0.3 2 0.799± 0.050 3.705± 0.559
0.3 2 0.780± 0.101 3.968± 0.642
0.9 3 0.714± 0.148 9.727± 4.423
0.7 3 0.692± 0.101 9.832± 1.185
0.8 3 0.572± 0.061 10.336± 5.712
0.9 4 0.560± 0.113 24.463± 6.516

E.13 VAE with inverse auto-regressive flows

The VAE with inverse auto-regressive flows (Kingma et al., 2016) incorporates a series of
inverse auto-regressive flows in the encoder, enhancing the flexibility of the learned posterior
distribution, and scaling well to high-dimensional latent spaces. We use masked autoencoder
for distribution estimation (MADE) (Germain et al., 2015) as normalizing flow, as suggested
in Kingma et al., 2016 and implemented in Pythae (Chadebec et al., 2022).

We performed a random search on the following parameters: the number of MADE
blocks ∈ {2, 3, 4, 5, 6, 8}, the number of hidden layers in the MADE blocks ∈ {2, 3, 4, 5} and
the size of the hidden layers ∈ {64, 128, 256}. We trained 30 different configurations out of
72 possible combinations. However, we noticed that the performance was really poor when
the number of MADE blocks was odd, reducing the possible values for this parameter to
even numbers. The results are reported in Table E.14.



E.14. VAE with linear normalizing flows 145

Table E.14: Results of the random search on the hyper-parameters of the VAE-IAF:
ranking according to the SSIM of the 10 best configurations (mean ± std over the three

folds randomly selected).

n MADE
blocks

n hidden
in MADE

hidden
size SSIM ↑ MSE (×10−3) ↓

4 4 128 0.823± 0.005 2.272± 0.057
4 5 256 0.823± 0.008 2.248± 0.063
2 5 256 0.823± 0.007 2.220± 0.071
8 4 128 0.822± 0.005 2.282± 0.092
6 5 128 0.820± 0.004 2.259± 0.148
6 5 64 0.820± 0.003 2.403± 0.107
4 3 128 0.819± 0.008 2.260± 0.055
4 2 64 0.818± 0.015 2.331± 0.133
4 5 64 0.817± 0.006 2.359± 0.114
8 5 64 0.816± 0.005 2.546± 0.028

E.14 VAE with linear normalizing flows

The VAE with linear normalizing flows (Rezende et al., 2015) enables a better approximation
of the posterior distribution qϕ(z|x) using a series of linear normalizing flows, which are
invertible transformations. To get the latent vector zK , z0 is sampled from qϕ(z|x) and
passes through K linear normalizing flows fk such that zK = fK ◦ ... ◦ f2 ◦ f1(z0). These
flows enable the model to capture complex distributions in the latent space. The authors
suggest using a succession of linear flows, and more precisely planar or radial flows, because
it is computationally efficient to compute their Jacobian, as needed to compute the loss

LV AElinNF = Lrec + log qϕ(z0)− log q(zK)−
K∑
k=1

log |det ∂fk
∂z

| .

We tried 10 different configurations of flows ∈ {10P, 10R, 5P, 5R, 5P5R, 5R5P, 5PR, 5RP, 2PR, 2RP},
with P designating a planar flow and R a radial flow. The results are reported in Table E.15.
We note that configurations with radial flows clearly outperform configurations with planar
flows.

Table E.15: Results of the random search on the hyper-parameters of the VAE LinNF:
ranking according to the SSIM of the nine best configurations (mean ± std over the three

folds randomly selected). P designate a planar flow, R designate a radial flow.

flows SSIM ↑ MSE (×10−3) ↓
10R 0.871± 0.001 1.855± 0.125
5R 0.860± 0.008 1.897± 0.066

2PR 0.827± 0.005 2.262± 0.135
5PR 0.737± 0.058 3.218± 0.205

5P5R 0.720± 0.095 3.148± 0.763
5RP 0.716± 0.112 3.829± 0.942

5R5P 0.708± 0.080 4.652± 1.518
5P 0.679± 0.098 4.897± 1.878

10P 0.570± 0.064 8.082± 4.095
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E.15 VAE with VampPrior

The VAE with a “Variational Mixture of Posteriors” prior, or VampPrior (Tomczak et al.,
2018), aims to replace the simple normal prior with a mixture of distributions (e.g. mix-
ture of Gaussians), allowing capturing more complex data distributions. We optimize the
following loss:

LV AMP = Lrec − (log pλ(z)− log qϕ(z|x))

with pλ(z) = 1
K

∑K
k=1 qϕ(z|uk), K being the number of components, and uk being the

“pseudo-input” learned through back-propagation.
We performed a random search on the number of components K ∈ {10, 20, 30, 40, 50} and

the number of linear scheduling steps ∈ {0, 20, 40}. The results are reported in Table E.16.

Table E.16: Results of the random search on the hyper-parameters of the VAMP: ranking
according to the SSIM of the 10 best configurations (mean ± std over the three folds

randomly selected).

number
components

linear
scheduling

steps
SSIM ↑ MSE (×10−3) ↓

20 40 0.702± 0.097 5.581± 0.874
10 20 0.686± 0.019 7.231± 5.478
10 20 0.678± 0.025 5.841± 0.902
20 20 0.633± 0.007 3.640± 0.025
20 0 0.631± 0.003 3.569± 0.108
20 20 0.628± 0.002 3.586± 0.120
30 20 0.625± 0.005 3.892± 0.150
30 0 0.622± 0.001 3.965± 0.091
40 40 0.621± 0.005 4.151± 0.226
40 0 0.620± 0.004 4.074± 0.169

E.16 Vector-quantized VAE

Van Den Oord et al., 2017 suggested using discrete (rather than continuous) latent repre-
sentations and having a learned (rather than static) prior. The latent space is structured as
an RK×D vector space. We denote E = {e1, e2, ..., eK} where ei ∈ RD for i ∈ {1, 2, ...,K}.
We say that K is the size of the latent embedding space, and D is the dimension of the
embedding vectors.

For an embedding size d, the input x is passed through the encoder to obtain the output
ze(x) ∈ Rd×D, which is then passed through the discretisation bottleneck to map it to
an element of zq(x) ∈ Ed such that (zq(x))j = ek where k = argminl ||ze(x) − el||2 for
j ∈ {1, 2, ..., d}. As the argmin operation lacks differentiability, learning of the embeddings
and regularisation of the latent space is managed by integrating the stopgradient operator
sg into the training objective:

LVQVAE(x) = log p(x|zq(x)) + ||sg[ze(x)]− e||22 + β||ze(x)− sg[e]||22 .
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As suggested by the authors, we replaced the term ||sg[ze(x)] − e||22 in the loss by
the exponential moving average (EMA) update with a decay of 0.99. We then consid-
ered two hyper-parameters in our random search: the size of the latent embedding space
K ∈ {128, 256, 512, 1024} and the regularization weight β ∈ {0.25, 0.5, 0.75, 0.9, 1, 1.5, 2, 4}.
The results are reported in Table E.17.

Table E.17: Results of the random search on the hyper-parameters of the VQVAE:
ranking according to the SSIM of the 10 best configurations (mean ± std over the three

folds randomly selected).

commitment
loss factor

quantization
loss factor

num
embeddings

use
EMA decay SSIM ↑ MSE (×10−3) ↓

0.25 2 512 True 0.99 0.881± 0.003 1.805± 0.032
0.25 0.25 1024 True 0.99 0.880± 0.009 1.866± 0.064
0.25 0.5 256 True 0.99 0.879± 0.005 1.797± 0.037
0.25 0.25 512 True 0.99 0.877± 0.007 1.836± 0.093
0.25 4 1024 True 0.99 0.876± 0.005 1.854± 0.065
0.25 0.75 256 True 0.99 0.874± 0.011 1.896± 0.065
0.25 0.9 512 True 0.99 0.870± 0.004 1.927± 0.023
0.25 1.5 256 True 0.99 0.870± 0.011 1.856± 0.100
0.25 4 1024 True 0.99 0.870± 0.011 1.854± 0.056
0.25 1.5 1024 True 0.99 0.868± 0.014 1.827± 0.084

E.17 Wasserstein auto-encoder

The Wasserstein auto-encoder (Tolstikhin et al., 2018) introduces the use of a penalized
form of the Wasserstein distance to measure the dissimilarity between the model’s generated
distribution and the true data distribution. This leads to more stable training, mitigating
mode collapse and improving the model’s ability to generate diverse and realistic samples.

LWAE = Lrec + λDZ(pz(z), qϕ(z)) ,

with DZ an arbitrary divergence. Different divergences DZ are suggested by the authors,
we here use the maximum mean discrepancy (MMD).

We performed a random search on three parameters: the kernel choice ∈ {rbf, imq}, the
regularization weight λ ∈ {0.01, 0.1, 0.5, 1, 5, 10, 100} and the kernel bandwidth ∈ {0.01, 0.1, 0.5, 1, 5, 10, 100}.
The results are reported in Table E.18.
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Table E.18: Results of the random search on the hyper-parameters of the WAE: ranking
according to the SSIM of the 10 best configurations (mean ± std over the three folds

randomly selected).

kernel
choice

regularization
weight

kernel
bandwidth SSIM ↑ MSE (×10−3) ↓

rbf 0.1 5 0.881± 0.005 1.862± 0.075
rbf 0.5 0.1 0.880± 0.002 1.835± 0.096
rbf 0.5 0.5 0.879± 0.004 1.798± 0.035
rbf 0.01 0.1 0.879± 0.006 1.866± 0.061

imq 5 1 0.878± 0.003 1.838± 0.073
rbf 10 5 0.877± 0.005 1.838± 0.090

imq 1 1 0.876± 0.006 1.835± 0.097
imq 1 0.01 0.876± 0.007 1.882± 0.067
imq 5 100 0.874± 0.002 1.894± 0.070
imq 100 100 0.874± 0.016 1.865± 0.069
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Appendix F

Details of the encoder-decoder
architecture selection procedure

In previous works (Hassanaly et al., 2024b; Hassanaly et al., 2023a), we set the latent space
size to 128 as a trade-off between performance and resources but observed that a larger
latent space would lead to better reconstructions. We therefore decided to try sizes from
the set {256, 512, 1024}. For choosing the number of blocks for the encoder and decoder,
Be and Bd, we initially tried the integer range from 3 to 7. This parameter influences the
size of the last feature map before the fully connected layer, and therefore the number of
parameters in that layer. We noticed that having an encoder with 3 blocks leads to a very
large number of parameters in the fully connected layer (around 750,000 if Ce = 16 or double
if we double Ce ), whereas an encoder with 7 blocks would lead to very small feature maps
(1 × 1 × 1). We therefore reduced the range, and chose values between 4 and 6. We kept
the number of sub-blocks in the encoder and decoder Se and Sd relatively small to restrain
the number of parameters of our model whilst still testing deep architectures. We chose
the number of channels Ce and Cd based on previous experiments and decided to set it to
either 16 or 32. We also added the possibility to add a convolution layer in our last decoder
block (shown by dotted lines in Figure 5.2). We also included the learning rate and the
optimizer as parameters in our random search. We first performed experiments where the
learning rate was chosen from {10−5, 10−4, 10−3}, but setting it to 10−3 led to errors in the
computation of the loss, so we pursued our search with only 10−5 and 10−4 as options. The
optimizer could be either Adam or Adamax, following the suggestions from Vahdat et al.,
2020. The parameters included in our random search are summarized in Table 5.1.

After attempting to train 200 models, a pattern emerged, and we could select and test an
additional architecture following our intuition. These results are summarized in Table F.1
and Table F.2. Certain parameters, such as the learning rate, the latent space size, and the
number of channels Ce and Cd were easy to choose as a clear relation with the reconstruction
metrics could be observed, allowing us to choose to set the learning rate to 10−4, the latent
space size to 256 and De = Cd = 16. We particularly struggled to train models with
residual sub-blocks due to memory constraints, and those that were able to train did not
give very good results, so we focused our efforts on models with convolutional sub-blocks.
The optimizer did not seem to make a large difference, so we chose Adam. For the remaining
parameters, we observed that there was no need for a very deep architecture (or large number
of sub-blocks within blocks), whereas a large number of blocks was beneficial in terms of
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memory as it induced a smaller number of parameters before the fully connected layer.
After analyzing these results and noticing these patterns, we decided to test an extra model
which we designed to be symmetrical (for the sake of simplicity) and as light as possible in
terms of memory (128 MB instead of 286 MB), as we knew that some of the models that
we would train later with this architecture are much more memory greedy. We selected
random splits by drawing 3 cards from a deck of 6 cards to train our model, and found
that this model performed similarly to the best performing models from our random search
(equivalent SSIM and best MSE). We therefore decided to select this architecture as it was
simpler (because symmetrical) and smaller in terms of memory and number of parameters.
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Benchmark reconstructions
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Figure G.1: Examples of reconstructions (coronal slices) obtained with the different VAE
variants from the original image of a cognitively normal subject (images of the first column,
Test CN) and from the same subject with AD simulated at different intensity degrees (AD
15, AD 30, AD 50 and AD 70). The first row shows the input image in odd columns and
the mask of the simulated disease in even columns when the input is a simulated image. All
the other rows are the pseudo-healthy reconstructions of the models in odd columns and
the difference between the pseudo-healthy reconstruction and the input in even columns.
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Figure G.2: Examples of reconstructions (sagittal slices) obtained with the different VAE
variants from the original image of a cognitively normal subject (images of the first column,
Test CN) and from the same subject with AD simulated at different intensity degrees (AD
15, AD 30, AD 50 and AD 70). The first row shows the input image in odd columns and
the mask of the simulated disease in even columns when the input is a simulated image. All
the other rows are the pseudo-healthy reconstructions of the models in odd columns and
the difference between the pseudo-healthy reconstruction and the input in even columns.
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Figure G.3: Examples of reconstructions (axial slices) obtained with the different VAE
variants from the same subject with different dementia subtypes simulated at 30% intensity
degree (bvFTD 30, lvPPA 30, svPPA 30, nfvPPA 30 and PCA 30). The first row shows the
input image in odd columns and the mask of the simulated disease in even columns. All
the other rows are the pseudo-healthy reconstructions of the models in odd columns and
the difference between the pseudo-healthy reconstruction and the input in even columns.
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Appendix H

Example of MAPS

results
environment.txt
split-0

best-loss
model.pth.tar
train

description.log
train_image_level_metrics.tsv
train_image_level_prediction.tsv

validation
description.log
validation_image_level_metrics.tsv
validation_image_level_prediction.tsv

training_logs
tensorboard
training.tsv

groups
train
train+validation.tsv
validation

maps.json

Table H.1: Example of the Model Analysis and Processing Structure (MAPS) obtained
when training a classification network on whole images. Folders are in bold.

Only the first split was trained (folder split-0) and one model was selected based on its
validation loss (folder best-loss).

The only data groups are train and validation, which are automatically created during
training. The characteristics of these groups are defined in groups, whereas the folder
in split-0/best-loss contains the results for each input image (file *_prediction.tsv)

and a set of metrics (file *_metrics.tsv) for each data group.
Finally, training logs are available for each split training in the folder training_logs.

These logs are available in two different formats, Tensorboard compatible and TSV.
As the training procedure ended without raising an error, the checkpoints were erased (this

allows saving storage space).
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Appendix I

Data access

ADNI

Data collection and sharing for this work was funded by the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI
(Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the Na-
tional Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering,
and through generous contributions from the following: AbbVie, Alzheimer’s Association;
Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-
Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.;
Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company
Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunother-
apy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & De-
velopment LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.;
NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer
Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Thera-
peutics. The Canadian Institutes of Health Research is providing funds to support ADNI
clinical sites in Canada. Private sector contributions are facilitated by the Foundation for
the National Institutes of Health (www.fnih.org). The grantee organization is the North-
ern California Institute for Research and Education, and the study is coordinated by the
Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI
data are disseminated by the Laboratory for Neuro Imaging at the University of Southern
California.

www.fnih.org




161

Bibliography

Alaverdyan, Z., J. Jung, R. Bouet, and C. Lartizien (2020). “Regularized siamese neu-
ral network for unsupervised outlier detection on brain multiparametric magnetic reso-
nance imaging: application to epilepsy lesion screening”. In: Medical image analysis 60,
p. 101618.

American Psychiatric Association (2013). Diagnostic and statistical manual of mental dis-
orders (5th ed.)n. Washington, DC.

Astaraki, M., F. De Benetti, Y. Yeganeh, I. Toma-Dasu, Ö. Smedby, C. Wang, N. Navab, and
T. Wendler (2023). “AutoPaint: A Self-Inpainting Method for Unsupervised Anomaly
Detection”. In: arXiv preprint arXiv:2305.12358.

Avants, B. B., C. L. Epstein, M. Grossman, and J. C. Gee (2008). “Symmetric diffeomorphic
image registration with cross-correlation: Evaluating automated labeling of elderly and
neurodegenerative brain”. In: Medical Image Analysis. Special Issue on The Third In-
ternational Workshop on Biomedical Image Registration – WBIR 2006 12.1, pp. 26–41.
doi: 10.1016/j.media.2007.06.004.

Avants, B. B., N. J. Tustison, M. Stauffer, G. Song, B. Wu, and J. C. Gee (2014). “The
Insight ToolKit image registration framework”. In: Frontiers in Neuroinformatics 8.

Baur, C., S. Denner, B. Wiestler, N. Navab, and S. Albarqouni (2021a). “Autoencoders
for unsupervised anomaly segmentation in brain MR images: A comparative study”. In:
Medical Image Analysis 69, p. 101952. doi: 10.1016/j.media.2020.101952.

Baur, C., B. Wiestler, S. Albarqouni, and N. Navab (2019). “Deep autoencoding models
for unsupervised anomaly segmentation in brain MR images”. In: Brainlesion: Glioma,
Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop,
BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September
16, 2018, Revised Selected Papers, Part I 4. Springer, pp. 161–169.

Baur, C., B. Wiestler, M. Muehlau, C. Zimmer, N. Navab, and S. Albarqouni (2021b). “Mod-
eling healthy anatomy with artificial intelligence for unsupervised anomaly detection in
brain MRI”. In: Radiology: Artificial Intelligence 3.3, e190169.

Baydargil, H. B., J.-S. Park, and D.-Y. Kang (2021). “Anomaly Analysis of Alzheimer’s
Disease in PET Images Using an Unsupervised Adversarial Deep Learning Model”. In:
Applied Sciences 11.5, p. 2187. doi: 10.3390/app11052187.

Bengs, M., F. Behrendt, J. Krüger, R. Opfer, and A. Schlaefer (2021). “Three-dimensional
deep learning with spatial erasing for unsupervised anomaly segmentation in brain MRI”.
In: International journal of computer assisted radiology and surgery 16, pp. 1413–1423.

Bengs, M., F. Behrendt, M.-H. Laves, J. Krüger, R. Opfer, and A. Schlaefer (2022). “Unsu-
pervised anomaly detection in 3D brain MRI using deep learning with multi-task brain

https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.media.2020.101952
https://doi.org/10.3390/app11052187


162 Bibliography

age prediction”. In: Medical Imaging 2022: Computer-Aided Diagnosis. Vol. 12033. SPIE,
pp. 291–295.

Bercea, C., B. Wiestler, D. Rueckert, and J. Schnabel (2023a). “Evaluating Normative Learn-
ing in Generative AI for Robust Medical Anomaly Detection”. In.

Bercea, C. I., M. Neumayr, D. Rueckert, and J. A. Schnabel (2023b). “Mask, Stitch, and
Re-Sample: Enhancing Robustness and Generalizability in Anomaly Detection through
Automatic Diffusion Models”. In: ICML 3rd Workshop on Interpretable Machine Learn-
ing in Healthcare (IMLH).

Bercea, C. I., B. Wiestler, D. Rueckert, and J. A. Schnabel (2023c). “Generalizing Unsuper-
vised Anomaly Detection: Towards Unbiased Pathology Screening”. In: Medical Imaging
with Deep Learning.

— (2023d). “Reversing the abnormal: Pseudo-healthy generative networks for anomaly de-
tection”. In: International Conference on Medical Image Computing and Computer As-
sisted Intervention. Springer Nature Switzerland, pp. 293–303.

Biewald, L. et al. (2020). “Experiment tracking with weights and biases”. In: Software avail-
able from wandb.com 2, p. 233.

Bouthillier, X., P. Delaunay, M. Bronzi, A. Trofimov, B. Nichyporuk, J. Szeto, N. Moham-
madi Sepahvand, E. Raff, K. Madan, V. Voleti, et al. (2021). “Accounting for variance
in machine learning benchmarks”. In: Proceedings of Machine Learning and Systems 3,
pp. 747–769.

Burda, Y., R. B. Grosse, and R. Salakhutdinov (2016). “Importance Weighted Autoen-
coders”. In: ICLR.

Burgess, C. P., I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and A. Lerchner
(2018). “Understanding disentangling in β-VAE”. In: arXiv preprint arXiv:1804.03599.

Burgos, N. (2023). “Neuroimaging in Machine Learning for Brain Disorders”. In: Machine
Learning for Brain Disorders. Springer, pp. 253–284.

Burgos, N., S. Bottani, J. Faouzi, E. Thibeau-Sutre, and O. Colliot (2021a). “Deep learning
for brain disorders: from data processing to disease treatment”. In: Briefings in Bioin-
formatics 22.2, pp. 1560–1576.

Burgos, N., M. J. Cardoso, A. F. Mendelson, J. M. Schott, D. Atkinson, S. R. Arridge, B. F.
Hutton, and S. Ourselin (2015). “Subject-Specific Models for the Analysis of Pathological
FDG PET Data”. In: Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2015. Lecture Notes in Computer Science. Springer, pp. 651–658. doi: 10.10
07/978-3-319-24571-3_78.

Burgos, N., M. J. Cardoso, J. Samper-González, M.-O. Habert, S. Durrleman, S. Ourselin,
O. Colliot, A. D. N. Initiative, F. L. D. N. Initiative, et al. (2021b). “Anomaly detection
for the individual analysis of brain PET images”. In: Journal of Medical Imaging 8.2,
p. 024003.

Burgos, N. and O. Colliot (2020). “Machine learning for classification and prediction of brain
diseases: recent advances and upcoming challenges”. In: Current Opinion in Neurology
33.4, pp. 439–450.

Burgos, N., J. Samper-González, A. Bertrand, M.-O. Habert, S. Ourselin, S. Durrleman,
M. J. Cardoso, and O. Colliot (2017). “Individual Analysis of Molecular Brain Imaging

https://doi.org/10.1007/978-3-319-24571-3_78
https://doi.org/10.1007/978-3-319-24571-3_78


Bibliography 163

Data through Automatic Identification of Abnormality Patterns”. In: Molecular Imaging,
Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment.
Lecture Notes in Computer Science. Springer, pp. 13–22. doi: 10.1007/978-3-319-67
564-0_2.

Caterini, A. L., A. Doucet, and D. Sejdinovic (2018). “Hamiltonian variational auto-encoder”.
In: Advances in NeurIPS 31.

Chadebec, C., L. J. Vincent, and S. Allassonniere (2022). “Pythae: Unifying Generative
Autoencoders in Python - A Benchmarking Use Case”. In: Thirty-sixth Conference on
NeurIPS Datasets and Benchmarks Track.

Chatterjee, S., A. Sciarra, M. Dünnwald, P. Tummala, S. K. Agrawal, A. Jauhari, A. Kalra,
S. Oeltze-Jafra, O. Speck, and A. Nürnberger (2022). “StRegA: Unsupervised anomaly
detection in brain MRIs using a compact context-encoding variational autoencoder”. In:
Computers in Biology and Medicine 149, p. 106093.

Chen, R. T., X. Li, R. B. Grosse, and D. K. Duvenaud (2018a). “Isolating sources of disen-
tanglement in variational autoencoders”. In: Advances in NeurIPS 31.

Chen, X. and E. Konukoglu (2018b). “Unsupervised Detection of Lesions in Brain MRI
using constrained adversarial auto-encoders”. In: MIDL.

— (2022). “Unsupervised abnormality detection in medical images with deep generative
methods”. In: Biomedical Image Synthesis and Simulation. Ed. by Burgos, N. and Svo-
boda, D. Elsevier, pp. 303–324.

Chen, X., S. You, K. C. Tezcan, and E. Konukoglu (2020). “Unsupervised lesion detection
via image restoration with a normative prior”. In: Medical image analysis 64, p. 101713.

Chételat, G., J. Arbizu, H. Barthel, V. Garibotto, I. Law, S. Morbelli, E. van de Giessen,
F. Agosta, F. Barkhof, D. J. Brooks, et al. (2020). “Amyloid-PET and 18F-FDG-PET in
the diagnostic investigation of Alzheimer’s disease and other dementias”. In: The Lancet
Neurology 19.11, pp. 951–962.

Choi, H., S. Ha, H. Kang, H. Lee, D. S. Lee, and Alzheimer’s Disease Neuroimaging Initiative
(2019). “Deep learning only by normal brain PET identify unheralded brain anomalies”.
In: EBioMedicine 43, pp. 447–453. doi: 10.1016/j.ebiom.2019.04.022.

Colliot, O, E Thibeau-Sutre, C Brianceau, and N Burgos (2024). “Reproducibility in medical
image computing: What is it and how is it assessed?”

Colliot, O., E. Thibeau-Sutre, and N. Burgos (2023). “Reproducibility in Machine Learning
for Medical Imaging”. In: Machine Learning for Brain Disorders. Ed. by O. Colliot.
Neuromethods. New York, NY: Springer US, pp. 631–653. doi: 10.1007/978-1-0716-
3195-9_21.

Davidson, T. R., L. Falorsi, N. De Cao, T. Kipf, and J. M. Tomczak (2018). “Hyperspherical
variational auto-encoders”. In: arXiv:1804.00891.

De Carli, F., F. Nobili, M. Pagani, M. Bauckneht, F. Massa, M. Grazzini, C. Jonsson,
E. Peira, S. Morbelli, D. Arnaldi, and f. t. A. D. N. Initiative (2019). “Accuracy and
Generalization Capability of an Automatic Method for the Detection of Typical Brain
Hypometabolism in Prodromal Alzheimer Disease”. In: European Journal of Nuclear
Medicine and Molecular Imaging 46.2, pp. 334–347. doi: 10.1007/s00259-018-4197-7.

https://doi.org/10.1007/978-3-319-67564-0_2
https://doi.org/10.1007/978-3-319-67564-0_2
https://doi.org/10.1016/j.ebiom.2019.04.022
https://doi.org/10.1007/978-1-0716-3195-9_21
https://doi.org/10.1007/978-1-0716-3195-9_21
https://doi.org/10.1007/s00259-018-4197-7


164 Bibliography

Dhariwal, P. and A. Nichol (2021). “Diffusion models beat gans on image synthesis”. In:
Advances in neural information processing systems 34, pp. 8780–8794.

Dorent, R., N. Haouchine, F. Kogl, S. Joutard, P. Juvekar, E. Torio, A. J. Golby, S. Ourselin,
S. Frisken, T. Vercauteren, et al. (2023). “Unified brain MR-ultrasound synthesis using
multi-modal hierarchical representations”. In: International conference on medical image
computing and computer-assisted intervention. Springer, pp. 448–458.

Duquenne, P.-A., H. Gong, B. Sagot, and H. Schwenk (Dec. 2022). “T-Modules: Transla-
tion Modules for Zero-Shot Cross-Modal Machine Translation”. In: Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, pp. 5794–5806.

Ebrahimighahnavieh, M. A., S. Luo, and R. Chiong (2020). “Deep learning to detect Alzheimer’s
disease from neuroimaging: A systematic literature review”. In: Computer methods and
programs in biomedicine 187, p. 105242.

Epelbaum, S. and F. Cacciamani (2023). “Clinical Assessment of Brain Disorders”. In: Ma-
chine Learning for Brain Disorders. Springer, pp. 233–252.

Esmaeili, M., A. Toosi, A. Roshanpoor, V. Changizi, M. Ghazisaeedi, A. Rahmim, and M.
Sabokrou (2023). “Generative Adversarial Networks for Anomaly Detection in Biomedi-
cal Imaging: A Study on Seven Medical Image Datasets”. In: IEEE Access 11, pp. 17906–
17921.

Esteva, A., B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun (2017).
“Dermatologist-level classification of skin cancer with deep neural networks”. In: nature
542.7639, pp. 115–118.

Ezhov, I., K. Scibilia, K. Franitza, F. Steinbauer, S. Shit, L. Zimmer, J. Lipkova, F. Kofler,
J. C. Paetzold, L. Canalini, et al. (2023). “Learn-Morph-Infer: a new way of solving the
inverse problem for brain tumor modeling”. In: Medical Image Analysis 83, p. 102672.

Fernando, T., H. Gammulle, S. Denman, S. Sridharan, and C. Fookes (2022). “Deep Learning
for Medical Anomaly Detection A Survey”. In: ACM Computing Surveys 54.7. doi: 10
.1145/3464423.

Fernando, T., H. Gammulle, S. Denman, S. Sridharan, and C. Fookes (2021). “Deep Learning
for Medical Anomaly Detection – A Survey”. In: ACM Computing Surveys 54.7.

Fischl, B. (2012). “FreeSurfer”. In: Neuroimage 62.2, pp. 774–781.
Folstein, M. F., S. E. Folstein, and P. R. McHugh (1975). ““Mini-mental state”: a practi-

cal method for grading the cognitive state of patients for the clinician”. In: Journal of
psychiatric research 12.3, pp. 189–198.

Fonov, V., A. C. Evans, K. Botteron, C. R. Almli, R. C. McKinstry, and D. L. Collins
(2011). “Unbiased average age-appropriate atlases for pediatric studies”. In: NeuroImage
54.1, pp. 313–327. doi: 10.1016/j.neuroimage.2010.07.033.

Fonov, V. S., M. Dadar, T. P.-A. R. G. Adni, and D. L. Collins (2022). “DARQ: Deep
learning of quality control for stereotaxic registration of human brain MRI to the T1w
MNI-ICBM 152 template”. In: NeuroImage 257, p. 119266.

https://doi.org/10.1145/3464423
https://doi.org/10.1145/3464423
https://doi.org/10.1016/j.neuroimage.2010.07.033


Bibliography 165

Fonov, V., A. Evans, R. McKinstry, C. Almli, and D. Collins (2009). “Unbiased nonlinear
average age-appropriate brain templates from birth to adulthood”. In: NeuroImage. Or-
ganization for Human Brain Mapping 2009 Annual Meeting 47, S102. doi: 10.1016/S1
053-8119(09)70884-5.

Friston, K. J. (2003). “Statistical parametric mapping”. In: Neuroscience databases: a prac-
tical guide, pp. 237–250.

Germain, M., K. Gregor, I. Murray, and H. Larochelle (2015). “Made: Masked autoencoder
for distribution estimation”. In: International conference on machine learning (ICML).
PMLR, pp. 881–889.

Ghosh, P., M. S. Sajjadi, A. Vergari, M. Black, and B. Schölkopf (2019). “From variational
to deterministic autoencoders”. In: arXiv:1903.12436.

Gong, C., C. Jing, X. Chen, C. M. Pun, G. Huang, A. Saha, M. Nieuwoudt, H.-X. Li, Y.
Hu, and S. Wang (2023). “Generative AI for brain image computing and brain network
computing: a review”. In: Frontiers in Neuroscience 17, p. 1203104.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio (2014). “Generative Adversarial Nets”. In: Advances in Neural Information
Processing Systems. Vol. 27.

Gorgolewski, K., C. Burns, C. Madison, D. Clark, Y. Halchenko, M. Waskom, and S. Ghosh
(2011). “Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing
Framework in Python”. In: Frontiers in Neuroinformatics 5. doi: 10.3389/fninf.2011
.00013.

Gorgolewski, K. J., F. Alfaro-Almagro, T. Auer, P. Bellec, M. Capotă, M. M. Chakravarty,
N. W. Churchill, A. L. Cohen, R. C. Craddock, G. A. Devenyi, A. Eklund, O. Esteban,
G. Flandin, S. S. Ghosh, J. S. Guntupalli, M. Jenkinson, A. Keshavan, G. Kiar, F. Liem,
P. R. Raamana, D. Raffelt, C. J. Steele, P.-O. Quirion, R. E. Smith, S. C. Strother, G.
Varoquaux, Y. Wang, T. Yarkoni, and R. A. Poldrack (2017). “BIDS Apps: Improving
Ease of Use, Accessibility, and Reproducibility of Neuroimaging Data Analysis Methods”.
In: PLOS Computational Biology 13.3, e1005209. doi: 10.1371/journal.pcbi.1005209.

Gorgolewski, K. J., T. Auer, V. D. Calhoun, R. C. Craddock, S. Das, E. P. Duff, G. Flandin,
S. S. Ghosh, T. Glatard, Y. O. Halchenko, et al. (2016). “The brain imaging data struc-
ture, a format for organizing and describing outputs of neuroimaging experiments”. In:
Scientific data 3.1, pp. 1–9.

Graham, M. S., W. H. L. Pinaya, P. Wright, P.-D. Tudosiu, Y. H. Mah, J. T. Teo, H. R. Jäger,
D. Werring, P. Nachev, S. Ourselin, et al. (2023). “Unsupervised 3D out-of-distribution
detection with latent diffusion models”. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI). Springer, pp. 446–456.

Hampel, H., J. Cummings, K. Blennow, P. Gao, C. R. Jack Jr, and A. Vergallo (2021).
“Developing the ATX (N) classification for use across the Alzheimer disease continuum”.
In: Nature Reviews Neurology 17.9, pp. 580–589.

Han, C., L. Rundo, K. Murao, T. Noguchi, Y. Shimahara, Z. Á. Milacski, S. Koshino, E.
Sala, H. Nakayama, and S. Satoh (2021). “MADGAN: Unsupervised medical anomaly
detection GAN using multiple adjacent brain MRI slice reconstruction”. In: BMC bioin-
formatics 22.2, pp. 1–20.

https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.1371/journal.pcbi.1005209


166 Bibliography

Hardy, J. A. and G. A. Higgins (1992). “Alzheimer’s disease: the amyloid cascade hypothe-
sis”. In: Science 256.5054, pp. 184–185.

Harkness, R., A. F. Frangi, K. Zucker, and N. Ravikumar (2023). “Learning disentangled
representations for explainable chest x-ray classification using Dirichlet VAEs”. In: Med-
ical Imaging 2023: Image Processing. Vol. 12464. SPIE, p. 1246411. doi: 10.1117/12.2
654345.

Hassanaly, R., S. Bottani, B. Sauty, O. Colliot, and N. Burgos (2023a). “Simulation based
evaluation framework for deep learning unsupervised anomaly detection on brain FDG-
PET”. In: Medical Imaging 2023: Image Processing. Vol. 12464. SPIE, pp. 511–518.

Hassanaly, R., C. Brianceau, O. Colliot, and N. Burgos (2023b). “Unsupervised anomaly
detection in 3D brain FDG PET: A benchmark of 17 VAE-based approaches”. In: Deep
Generative Models workshop at the 26th International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI 2023). Vancouver, Canada.

Hassanaly, R., C. Brianceau, M. Diaz, S. Loizillon, E. Thibeau-Sutre, N. Cassereau, O.
Colliot, and N. Burgos (2024a). “Recent advances in the open-source ClinicaDL software
for reproducible neuroimaging with deep learning”. In: SPIE Medical Imaging. San Diego,
United States.

Hassanaly, R., C. Brianceau, M. Solal, O. Colliot, and N. Burgos (2024b). “Evaluation of
pseudo-healthy image reconstruction for anomaly detection with deep generative mod-
els: Application to Brain FDG PET”. In: Machine Learning for Biomedical Imaging 2
(Special Issue for Generative Models), pp. 611–656. doi: 10.59275/j.melba.2024-b87a.

Hassanaly, R., M. Solal, O. Colliot, and N. Burgos (2024c). “Pseudo-healthy image recon-
struction with variational autoencoders for anomaly detection: A benchmark on 3D brain
FDG PET”.

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep residual learning for image recogni-
tion”. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778.

Herholz, K, S. F. Carter, and M Jones (2007). “Positron emission tomography imaging in
dementia”. In: The British Journal of Radiology 80 (special_issue_2), S160–S167. doi:
10.1259/bjr/97295129.

Herholz, K. (1995). “FDG PET and differential diagnosis of dementia”. In: Alzheimer Disease
and Associated Disorders 9.1, pp. 6–16. doi: 10.1097/00002093-199505000-00004.

Higgins, I., L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and
A. Lerchner (2017). “beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework”. In: ICLR.

Hinge, C., O. M. Henriksen, U. Lindberg, S. G. Hasselbalch, L. Højgaard, I. Law, F. L.
Andersen, and C. N. Ladefoged (2022). “A Zero-Dose Synthetic Baseline for the Person-
alized Analysis of [18F]FDG-PET: Application in Alzheimer’s Disease”. In: Frontiers in
Neuroscience 16.

Ho, J., A. Jain, and P. Abbeel (2020). “Denoising diffusion probabilistic models”. In: Ad-
vances in NeurIPS 33, pp. 6840–6851.

https://doi.org/10.1117/12.2654345
https://doi.org/10.1117/12.2654345
https://doi.org/10.59275/j.melba.2024-b87a
https://doi.org/10.1259/bjr/97295129
https://doi.org/10.1097/00002093-199505000-00004


Bibliography 167

Hughes, C. P., L. Berg, W. Danziger, L. A. Coben, and R. L. Martin (1982). “A new clinical
scale for the staging of dementia”. In: The British journal of psychiatry 140.6, pp. 566–
572.

Isensee, F., P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein (2021). “nnU-Net:
a self-configuring method for deep learning-based biomedical image segmentation”. In:
Nature methods 18.2, pp. 203–211.

Jack, C. R., D. A. Bennett, K. Blennow, M. C. Carrillo, H. H. Feldman, G. B. Frisoni, H.
Hampel, W. J. Jagust, K. A. Johnson, D. S. Knopman, R. C. Petersen, P. Scheltens,
R. A. Sperling, and B. Dubois (2016). “A/T/N: An Unbiased Descriptive Classification
Scheme for Alzheimer Disease Biomarkers”. In: Neurology 87.5, pp. 539–547. doi: 10.1
212/WNL.0000000000002923.

Jagust, W. J., D. Bandy, K. Chen, N. L. Foster, S. M. Landau, C. A. Mathis, J. C. Price,
E. M. Reiman, D. Skovronsky, and R. A. Koeppe (2010). “The Alzheimer’s Disease Neu-
roimaging Initiative Positron Emission Tomography Core”. In: Alzheimer’s & Dementia
6.3, pp. 221–229. doi: 10.1016/j.jalz.2010.03.003.

Jagust, W. J., S. M. Landau, R. A. Koeppe, E. M. Reiman, K. Chen, C. A. Mathis, J. C.
Price, N. L. Foster, and A. Y. Wang (2015). “The Alzheimer’s Disease Neuroimaging
Initiative 2 PET Core: 2015”. In: Alzheimer’s & Dementia 11.7, pp. 757–771. doi: 10.1
016/j.jalz.2015.05.001.

Jarecka, D., M. Goncalves, C. J. Markiewicz, O. Esteban, N. Lo, J. Kaczmarzyk, and S.
Ghosh (2020). “Pydra-a flexible and lightweight dataflow engine for scientific analyses”.
In: Proceedings of the 19th python in science conference. Vol. 132, p. 139.

Jenkinson, M., C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith (2012).
“Fsl”. In: Neuroimage 62.2, pp. 782–790.

Kaufman, S., S. Rosset, C. Perlich, and O. Stitelman (2012). “Leakage in data mining:
Formulation, detection, and avoidance”. In: ACM Transactions on Knowledge Discovery
from Data 6.4, 15:1–15:21. doi: 10.1145/2382577.2382579.

Khan, T. (2016). “Chapter 2-Clinical diagnosis of Alzheimer’s disease”. In: Biomarkers in
Alzheimer’s disease, pp. 27–48.

Khanal, B., N. Ayache, and X. Pennec (2017). “Simulating longitudinal brain MRIs with
known volume changes and realistic variations in image intensity”. In: Frontiers in neu-
roscience 11, p. 132.

Kim, H. and A. Mnih (2018). “Disentangling by factorising”. In: ICML. PMLR, pp. 2649–
2658.

Kim, M., K.-R. Moon, and B.-D. Lee (2023). “Unsupervised anomaly detection for pos-
teroanterior chest X-rays using multiresolution patch-based self-supervised learning”. In:
Scientific Reports 13.1, p. 3415.

Kingma, D. P. and M. Welling (2014). Auto-Encoding Variational Bayes. arXiv: 1312.6114.
Kingma, D. P., T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling (2016).

“Improved variational inference with inverse autoregressive flow”. In: Advances in NeurIPS
29.

https://doi.org/10.1212/WNL.0000000000002923
https://doi.org/10.1212/WNL.0000000000002923
https://doi.org/10.1016/j.jalz.2010.03.003
https://doi.org/10.1016/j.jalz.2015.05.001
https://doi.org/10.1016/j.jalz.2015.05.001
https://doi.org/10.1145/2382577.2382579
https://arxiv.org/abs/1312.6114


168 Bibliography

Kumar, S., P. R. Payne, and A. Sotiras (2023). “Normative modeling using multimodal varia-
tional autoencoders to identify abnormal brain volume deviations in Alzheimer’s disease”.
In: Medical Imaging 2023: Computer-Aided Diagnosis. Vol. 12465. SPIE, p. 1246503.

Lagogiannis, I., F. Meissen, G. Kaissis, and D. Rueckert (2023). “Unsupervised Pathology
Detection: A Deep Dive Into the State of the Art”. In: arXiv preprint arXiv:2303.00609.

Landau, S. M., B. A. Thomas, L. Thurfjell, M. Schmidt, R. Margolin, M. Mintun, M. Pon-
tecorvo, S. L. Baker, W. J. Jagust, and the Alzheimer’s Disease Neuroimaging Initiative
(2014). “Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotrac-
ers”. In: European Journal of Nuclear Medicine and Molecular Imaging 41.7, pp. 1398–
1407. doi: 10.1007/s00259-014-2753-3.

Landau, S. M., M. A. Mintun, A. D. Joshi, R. A. Koeppe, R. C. Petersen, P. S. Aisen,
M. W. Weiner, and W. J. Jagust (2012). “Amyloid Deposition, Hypometabolism, and
Longitudinal Cognitive Decline”. In: Annals of Neurology 72.4, pp. 578–586. doi: 10.10
02/ana.23650.

Larsen, A. B. L., S. K. Sønderby, H. Larochelle, and O. Winther (2016). “Autoencoding
beyond pixels using a learned similarity metric”. In: ICML. PMLR, pp. 1558–1566.

Lawry Aguila, A., J. Chapman, and A. Altmann (2023). “Multi-modal Variational Autoen-
coders for Normative Modelling Across Multiple Imaging Modalities”. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. Springer,
pp. 425–434.

Leuzy, A., K. Chiotis, L. Lemoine, P.-G. Gillberg, O. Almkvist, E. Rodriguez-Vieitez, and
A. Nordberg (2019). “Tau PET imaging in neurodegenerative tauopathies—still a chal-
lenge”. In: Molecular Psychiatry 24.8, pp. 1112–1134. doi: 10.1038/s41380-018-0342
-8.

Li, X., P. S. Morgan, J. Ashburner, J. Smith, and C. Rorden (2016). “The First Step for
Neuroimaging Data Analysis: DICOM to NIfTI Conversion”. In: Journal of Neuroscience
Methods 264, pp. 47–56. doi: 10.1016/j.jneumeth.2016.03.001.

Liew, S.-L., J. M. Anglin, N. W. Banks, M. Sondag, K. L. Ito, H. Kim, J. Chan, J. Ito, C.
Jung, S. Lefebvre, et al. (2017). “The anatomical tracings of lesions after stroke (atlas)
dataset-release 1.1”. In: bioRxiv, p. 179614.

Litjens, G., T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van
der Laak, B. van Ginneken, and C. I. Sánchez (2017). “A survey on deep learning in
medical image analysis”. In: Medical Image Analysis 42, pp. 60–88. doi: https://doi
.org/10.1016/j.media.2017.07.005.

Loizillon, S., S. Bottani, A. Maire, S. Ströer, D. Dormont, O. Colliot, and N. Burgos (2023).
“Transfer learning from synthetic to routine clinical data for motion artefact detection
in brain T1-weighted MRI”. In: SPIE Medical Imaging 2023: Image Processing. doi:
10.1117/12.2648201.

Lu, Y. and P. Xu (2018). “Anomaly detection for skin disease images using variational
autoencoder”. In: arXiv preprint arXiv:1807.01349.

Luo, G., W. Xie, R. Gao, T. Zheng, L. Chen, and H. Sun (2023). “Unsupervised anomaly
detection in brain MRI: Learning abstract distribution from massive healthy brains”. In:
Computers in Biology and Medicine 154, p. 106610.

https://doi.org/10.1007/s00259-014-2753-3
https://doi.org/10.1002/ana.23650
https://doi.org/10.1002/ana.23650
https://doi.org/10.1038/s41380-018-0342-8
https://doi.org/10.1038/s41380-018-0342-8
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1117/12.2648201


Bibliography 169

Lüth, C. T., D. Zimmerer, G. Koehler, P. F. Jaeger, F. Isensee, J. Petersen, and K. H.
Maier-Hein (2023). “CRADL: Contrastive Representations for Unsupervised Anomaly
Detection and Localization”. In: Bildverarbeitung für die Medizin 2023.

Maaløe, L., M. Fraccaro, V. Liévin, and O. Winther (2019). “Biva: A very deep hierarchy of
latent variables for generative modeling”. In: Advances in neural information processing
systems 32.

Maier, O., B. H. Menze, J. Von der Gablentz, L. Häni, M. P. Heinrich, M. Liebrand, S.
Winzeck, A. Basit, P. Bentley, L. Chen, et al. (2017). “ISLES 2015-A public evaluation
benchmark for ischemic stroke lesion segmentation from multispectral MRI”. In: Medical
image analysis 35, pp. 250–269.

Makhzani, A., J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey (2015). “Adversarial autoen-
coders”. In: arXiv:1511.05644.

Manzanera, O. E. M., S. Ellis, V. Baltatzis, A. Nair, L. Le Folgoc, S. Desai, B. Glocker, and
J. A. Schnabel (2021). “Patient-specific 3D cellular automata nodule growth synthesis
in lung cancer without the need of external data”. In: 2021 IEEE 18th International
Symposium on Biomedical Imaging (ISBI). IEEE, pp. 5–9.

Marimont, S. N. and G. Tarroni (2021). “Anomaly detection through latent space restora-
tion using vector quantized variational autoencoders”. In: 2021 IEEE 18th International
Symposium on Biomedical Imaging (ISBI). IEEE, pp. 1764–1767.

McKhann, G., D. Drachman, M. Folstein, R. Katzman, D. Price, and E. M. Stadlan (1984).
“Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group*
under the auspices of Department of Health and Human Services Task Force on Alzheimer’s
Disease”. In: Neurology 34.7, pp. 939–939.

Meissen, F., B. Wiestler, G. Kaissis, and D. Rueckert (2021). “On the Pitfalls of Using the
Residual as Anomaly Score”. In: Medical Imaging with Deep Learning.

Menze, B. H., A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren,
N. Porz, J. Slotboom, R. Wiest, et al. (2014). “The multimodal brain tumor image
segmentation benchmark (BRATS)”. In: IEEE transactions on medical imaging 34.10,
pp. 1993–2024.

Mostapha, M., J. Prieto, V. Murphy, J. Girault, M. Foster, A. Rumple, J. Blocher, W.
Lin, J. Elison, J. Gilmore, et al. (2019). “Semi-supervised VAE-GAN for out-of-sample
detection applied to MRI quality control”. In: MICCAI. Springer, pp. 127–136.

Mueller, S. G., M. W. Weiner, L. J. Thal, R. C. Petersen, C. Jack, W. Jagust, J. Q. Tro-
janowski, A. W. Toga, and L. Beckett (2005). “The Alzheimer’s Disease Neuroimaging
Initiative”. In: Neuroimaging Clinics of North America. Alzheimer’s Disease: 100 Years
of Progress 15.4, pp. 869–877. doi: 10.1016/j.nic.2005.09.008.

Nakao, T., S. Hanaoka, Y. Nomura, M. Murata, T. Takenaga, S. Miki, T. Watadani, T.
Yoshikawa, N. Hayashi, and O. Abe (2021). “Unsupervised deep anomaly detection in
chest radiographs”. In: Journal of Digital Imaging 34, pp. 418–427.

Neal, R. M. (2005). “Hamiltonian importance sampling”. In: talk presented at the Banff
International Research Station (BIRS) workshop on Mathematical Issues in Molecular
Dynamics.

https://doi.org/10.1016/j.nic.2005.09.008


170 Bibliography

Nečasová, T., N. Burgos, and D. Svoboda (2022). “Validation and Evaluation Metrics for
Medical and Biomedical Image Synthesis”. In: Biomedical Image Synthesis and Simula-
tion. Ed. by N. Burgos and D. Svoboda. The MICCAI Society Book Series. Academic
Press, pp. 573–600.

Nichols, E., J. D. Steinmetz, S. E. Vollset, K. Fukutaki, J. Chalek, F. Abd-Allah, A. Abdoli,
A. Abualhasan, E. Abu-Gharbieh, T. T. Akram, et al. (2022). “Estimation of the global
prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the
Global Burden of Disease Study 2019”. In: The Lancet Public Health 7.2, e105–e125.

Nordberg, A., J. O. Rinne, A. Kadir, and B. Långström (2010). “The use of PET in
Alzheimer disease”. In: Nature Reviews Neurology 6.2, pp. 78–87. doi: 10.1038/nrn
eurol.2009.217.

Nugent, S., E. Croteau, O. Potvin, C.-A. Castellano, L. Dieumegarde, S. C. Cunnane, and S.
Duchesne (2020). “Selection of the optimal intensity normalization region for FDG-PET
studies of normal aging and Alzheimer’s disease”. In: Scientific Reports 10.1, p. 9261.
doi: 10.1038/s41598-020-65957-3.

Pandey, K., A. Mukherjee, P. Rai, and A. Kumar (2022). “DiffuseVAE: Efficient, Control-
lable and High-Fidelity Generation from Low-Dimensional Latents”. In: Transactions on
Machine Learning Research.

Park, S., K. H. Lee, B. Ko, and N. Kim (2023). “Unsupervised anomaly detection with
generative adversarial networks in mammography”. In: Scientific Reports 13.1, p. 2925.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. (2011). “Scikit-learn: Machine learning in
Python”. In: the Journal of machine Learning research 12, pp. 2825–2830.

Pellegrini, E., L. Ballerini, M. d. C. V. Hernandez, F. M. Chappell, V. González-Castro,
D. Anblagan, S. Danso, S. Muñoz-Maniega, D. Job, C. Pernet, et al. (2018). “Machine
learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia:
a systematic review”. In: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease
Monitoring 10, pp. 519–535.

Perani, D., P. A. Della Rosa, C. Cerami, F. Gallivanone, F. Fallanca, E. G. Vanoli, A. Panza-
cchi, F. Nobili, S. Pappatà, A. Marcone, et al. (2014). “Validation of an optimized SPM
procedure for FDG-PET in dementia diagnosis in a clinical setting”. In: NeuroImage:
Clinical 6, pp. 445–454.

Pérez-García, F., R. Sparks, and S. Ourselin (2021). “TorchIO: a Python library for efficient
loading, preprocessing, augmentation and patch-based sampling of medical images in
deep learning”. In: Computer Methods and Programs in Biomedicine 208, p. 106236.

Pinaya, W. H., M. S. Graham, R. Gray, P. F. Da Costa, P.-D. Tudosiu, P. Wright, Y. H.
Mah, A. D. MacKinnon, J. T. Teo, R. Jager, et al. (2022a). “Fast unsupervised brain
anomaly detection and segmentation with diffusion models”. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 705–
714.

Pinaya, W. H., P.-D. Tudosiu, R. Gray, G. Rees, P. Nachev, S. Ourselin, and M. J. Cardoso
(2022b). “Unsupervised brain imaging 3D anomaly detection and segmentation with
transformers”. In: Medical Image Analysis 79, p. 102475.

https://doi.org/10.1038/nrneurol.2009.217
https://doi.org/10.1038/nrneurol.2009.217
https://doi.org/10.1038/s41598-020-65957-3


Bibliography 171

Pinon, N., G. Oudoumanessah, R. Trombetta, M. Dojat, F. Forbes, and C. Lartizien (2023a).
“Brain subtle anomaly detection based on auto-encoders latent space analysis: applica-
tion to de novo parkinson patients”. In: 2023 IEEE 20th International Symposium on
Biomedical Imaging (ISBI). IEEE.

Pinon, N., R. Trombetta, and C. Lartizien (2023b). “One-Class SVM on siamese neural
network latent space for Unsupervised Anomaly Detection on brain MRI White Matter
Hyperintensities”. In: Medical Imaging with Deep Learning.

Quigley, H., S. J. Colloby, and J. T. O’Brien (2011). “PET imaging of brain amyloid in
dementia: a review”. In: International Journal of Geriatric Psychiatry 26.10. doi: 10.1
002/gps.2640.

Ranganath, R., D. Tran, and D. Blei (2016). “Hierarchical variational models”. In: Interna-
tional conference on machine learning. PMLR, pp. 324–333.

Ravi, D., S. B. Blumberg, S. Ingala, F. Barkhof, D. C. Alexander, N. P. Oxtoby, A. D. N.
Initiative, et al. (2022). “Degenerative adversarial neuroimage nets for brain scan simu-
lations: Application in ageing and dementia”. In: Medical Image Analysis 75, p. 102257.

Rezende, D. and S. Mohamed (2015). “Variational inference with normalizing flows”. In:
ICML. PMLR, pp. 1530–1538.

Rolls, E. T., C.-C. Huang, C.-P. Lin, J. Feng, and M. Joliot (2020). “Automated anatomical
labelling atlas 3”. In: Neuroimage 206, p. 116189.

Rolls, E. T., M. Joliot, and N. Tzourio-Mazoyer (2015). “Implementation of a new par-
cellation of the orbitofrontal cortex in the automated anatomical labeling atlas”. In:
Neuroimage 122, pp. 1–5.

Routier, A., N. Burgos, M. Díaz, M. Bacci, S. Bottani, O. El-Rifai, S. Fontanella, P. Gori,
J. Guillon, A. Guyot, R. Hassanaly, T. Jacquemont, P. Lu, A. Marcoux, T. Moreau, J.
Samper-González, M. Teichmann, E. Thibeau-Sutre, G. Vaillant, J. Wen, A. Wild, M.-O.
Habert, S. Durrleman, and O. Colliot (2021). “Clinica: An Open-Source Software Plat-
form for Reproducible Clinical Neuroscience Studies”. In: Frontiers in Neuroinformatics
15, p. 39. doi: 10.3389/fninf.2021.689675.

Samper-González, J., N. Burgos, S. Bottani, S. Fontanella, P. Lu, A. Marcoux, A. Routier,
J. Guillon, M. Bacci, J. Wen, A. Bertrand, H. Bertin, M.-O. Habert, S. Durrleman,
T. Evgeniou, and O. Colliot (2018). “Reproducible Evaluation of Classification Meth-
ods in Alzheimer’s Disease: Framework and Application to MRI and PET Data”. In:
NeuroImage 183, pp. 504–521. doi: 10.1016/j.neuroimage.2018.08.042.

Schlegl, T., P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-Erfurth (2019). “f-
AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks”.
In: Medical Image Analysis 54. doi: 10.1016/j.media.2019.01.010.

Schlegl, T., P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs (2017). “Un-
supervised Anomaly Detection with Generative Adversarial Networks to Guide Marker
Discovery”. In: Information Processing in Medical Imaging. LNCS. Cham. doi: 10.100
7/978-3-319-59050-9_12.

Sevigny, J., P. Chiao, T. Bussière, P. H. Weinreb, L. Williams, M. Maier, R. Dunstan,
S. Salloway, T. Chen, Y. Ling, et al. (2016). “The antibody aducanumab reduces Aβ

plaques in Alzheimer’s disease”. In: Nature 537.7618, pp. 50–56.

https://doi.org/10.1002/gps.2640
https://doi.org/10.1002/gps.2640
https://doi.org/10.3389/fninf.2021.689675
https://doi.org/10.1016/j.neuroimage.2018.08.042
https://doi.org/10.1016/j.media.2019.01.010
https://doi.org/10.1007/978-3-319-59050-9_12
https://doi.org/10.1007/978-3-319-59050-9_12


172 Bibliography

Sharp, P. F. and A. Welch (2005). Practical Nuclear Medicine. London: Springer, pp. 35–48.
Shepp, L. A. and B. F. Logan (1974). “The Fourier Reconstruction of a Head Section”. In:

IEEE Transactions on Nuclear Science 21.3, pp. 21–43. doi: 10.1109/TNS.1974.64992
35.

Shi, R., C. Sheng, S. Jin, Q. Zhang, S. Zhang, L. Zhang, C. Ding, L. Wang, L. Wang, Y. Han,
et al. (2023). “Generative adversarial network constrained multiple loss autoencoder:
A deep learning-based individual atrophy detection for Alzheimer’s disease and mild
cognitive impairment”. In: Human brain mapping 44.3, pp. 1129–1146.

Siddiquee, M. M. R., J. Shah, T. Wu, C. Chong, T. J. Schwedt, G. Dumkrieger, S. Nikolova,
and B. Li (2023). “Brainomaly: Unsupervised Neurologic Disease Detection Utilizing
Unannotated T1-weighted Brain MR Images”. In: arXiv preprint arXiv:2302.09200.

Simarro Viana, J., E. de la Rosa, T. Vande Vyvere, D. Robben, D. M. Sima, and C.-T. P. a.
Investigators (2020). “Unsupervised 3d brain anomaly detection”. In: MICCAI Brainle-
sion Workshop. Springer, pp. 133–142.

Simonyan, K., A. Vedaldi, and A. Zisserman (2013). “Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps”. In: arXiv: 1312.6034.

Simonyan, K. and A. Zisserman (2014). “Very deep convolutional networks for large-scale
image recognition”. In: arXiv preprint arXiv:1409.1556.

Smith, N. B. and A. Webb (2010). Introduction to medical imaging: physics, engineering
and clinical applications. Cambridge university press.

Snell, J., K. Ridgeway, R. Liao, B. D. Roads, M. C. Mozer, and R. S. Zemel (2017). “Learning
to generate images with perceptual similarity metrics”. In: ICIP. IEEE, pp. 4277–4281.

Solal, M., R. Hassanaly, and N. Burgos (2024a). “Leveraging healthy population variability
in deep learning unsupervised anomaly detection in brain FDG PET”. In: SPIE Medical
Imaging. San Diego (California), United States.

— (2024b). “Studying model variability in deep learning unsupervised anomaly detection
in brain FDG PET”. In: Submitted to Medical Imaging with Deep Learning.

Sønderby, C. K., T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther (2016). “Ladder
variational autoencoders”. In: Advances in neural information processing systems 29.

Suganyadevi, S, V Seethalakshmi, and K Balasamy (2022). “A review on deep learning in
medical image analysis”. In: International Journal of Multimedia Information Retrieval
11.1, pp. 19–38.

Sun, L., J. Wang, Y. Huang, X. Ding, H. Greenspan, and J. Paisley (2020). “An Adversarial
Learning Approach to Medical Image Synthesis for Lesion Detection”. In: IEEE Journal
of Biomedical and Health Informatics 24.8, pp. 2303–2314. doi: 10.1109/JBHI.2020.2
964016.

Thibeau-Sutre, E., M. Díaz, R. Hassanaly, O. Colliot, and N. Burgos (2022a). “A glimpse
of ClinicaDL, an open-source software for reproducible deep learning in neuroimaging”.
In: Medical Imaging with Deep Learning.

Thibeau-Sutre, E., M. Díaz, R. Hassanaly, A. Routier, D. Dormont, O. Colliot, and N.
Burgos (2022b). “ClinicaDL: An open-source deep learning software for reproducible
neuroimaging processing”. In: Computer Methods and Programs in Biomedicine 220.
doi: 10.1016/j.cmpb.2022.106818.

https://doi.org/10.1109/TNS.1974.6499235
https://doi.org/10.1109/TNS.1974.6499235
https://arxiv.org/abs/1312.6034
https://doi.org/10.1109/JBHI.2020.2964016
https://doi.org/10.1109/JBHI.2020.2964016
https://doi.org/10.1016/j.cmpb.2022.106818


Bibliography 173

Thomas, B. A., V. Cuplov, A. Bousse, A. Mendes, K. Thielemans, B. F. Hutton, and
K. Erlandsson (2016). “PETPVC: a toolbox for performing partial volume correction
techniques in positron emission tomography”. In: Physics in Medicine & Biology 61.22,
p. 7975.

Tian, Y., G. Pang, F. Liu, Y. Chen, S. H. Shin, J. W. Verjans, R. Singh, and G. Carneiro
(2021). “Constrained contrastive distribution learning for unsupervised anomaly detec-
tion and localisation in medical images”. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, pp. 128–140.

Tolstikhin, I., O. Bousquet, S. Gelly, and B. Schoelkopf (2018). “Wasserstein Auto-Encoders”.
In: ICLR.

Tomczak, J. and M. Welling (2018). “VAE with a VampPrior”. In: International Conference
on Artificial Intelligence and Statistics. PMLR, pp. 1214–1223.

Tournier, J.-D., F. Calamante, and A. Connelly (2012). “MRtrix: diffusion tractography in
crossing fiber regions”. In: International journal of imaging systems and technology 22.1,
pp. 53–66.

Uzunova, H., S. Schultz, H. Handels, and J. Ehrhardt (2019). “Unsupervised pathology
detection in medical images using conditional variational autoencoders”. In: IJCARS
14, pp. 451–461.

Vahdat, A. and J. Kautz (2020). “NVAE: A deep hierarchical variational autoencoder”. In:
Advances in Neural Information Processing Systems 33, pp. 19667–19679.

Vaillant, G., N. Gensollen, M. Joulot, O. El-Rifai, M. Diaz, O. Colliot, and N. Burgos
(2023). “From Nipype to Pydra: a Clinica story”. In: OHBM 2023-Annual meeting of the
Organization for Human Brain Mapping.

Van Den Oord, A., O. Vinyals, et al. (2017). “Neural discrete representation learning”. In:
Advances in NeurIPS 30.

Van Dyck, C. H., C. J. Swanson, P. Aisen, R. J. Bateman, C. Chen, M. Gee, M. Kanekiyo,
D. Li, L. Reyderman, S. Cohen, et al. (2023). “Lecanemab in early Alzheimer’s disease”.
In: New England Journal of Medicine 388.1, pp. 9–21.

Varoquaux, G. and O. Colliot (2022). “Evaluating machine learning models and their diag-
nostic value”. In: Machine Learning for Brain Disorders. Springer, pp. 601–630.

Venkatraghavan, V., S. R. v. d. Voort, D. Bos, M. Smits, F. Barkhof, W. J. Niessen, S. Klein,
and E. E. Bron (2023). “Computer-aided diagnosis and prediction in brain disorders”.
In: Machine Learning for Brain Disorders. Springer, pp. 459–490.

Wang, R., V. Bashyam, Z. Yang, F. Yu, V. Tassopoulou, S. S. Chintapalli, I. Skampardoni,
L. P. Sreepada, D. Sahoo, K. Nikita, et al. (2023). “Applications of generative adversarial
networks in neuroimaging and clinical neuroscience”. In: Neuroimage, p. 119898.

Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli (2004). “Image quality assessment:
from error visibility to structural similarity”. In: IEEE Transactions on Image Processing
13.4, pp. 600–612.

Wang, Z., E. P. Simoncelli, and A. C. Bovik (2003). “Multiscale structural similarity for
image quality assessment”. In: The Thrity-Seventh Asilomar Conference on Signals, Sys-
tems & Computers, 2003. Vol. 2. Ieee, pp. 1398–1402.



174 Bibliography

Wargnier-Dauchelle, V., T. Grenier, F. Durand-Dubief, F. Cotton, and M. Sdika (2023). “A
Weakly Supervised Gradient Attribution Constraint for Interpretable Classification and
Anomaly Detection”. In: IEEE Transactions on Medical Imaging.

Wen, J., E. Thibeau-Sutre, M. Diaz-Melo, J. Samper-González, A. Routier, S. Bottani,
D. Dormont, S. Durrleman, N. Burgos, and O. Colliot (2020). “Convolutional neural
networks for classification of Alzheimer’s disease: Overview and reproducible evaluation”.
In: Medical Image Analysis 63, p. 101694. doi: 10.1016/j.media.2020.101694.

Wolleb, J., F. Bieder, R. Sandkühler, and P. C. Cattin (2022). “Diffusion models for med-
ical anomaly detection”. In: International Conference on Medical image computing and
computer-assisted intervention. Springer, pp. 35–45.

Worsley, K. J., J Taylor, F Carbonell, M Chung, E Duerden, B Bernhardt, O Lyttelton,
M Boucher, A Evans, et al. (2009). “A Matlab toolbox for the statistical analysis of
univariate and multivariate surface and volumetric data using linear mixed effects models
and random field theory”. In: NeuroImage Organisation for Human Brain Mapping 2009
Annual Meeting. Vol. 47, S102.

Wyatt, J., A. Leach, S. M. Schmon, and C. G. Willcocks (2022). “Anoddpm: Anomaly detec-
tion with denoising diffusion probabilistic models using simplex noise”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 650–656.

Xia, T., A. Chartsias, and S. A. Tsaftaris (2019). “Adversarial Pseudo Healthy Synthesis
Needs Pathology Factorization”. In: International Conference on Medical Imaging with
Deep Learning. PMLR, pp. 512–526.

— (2020). “Pseudo-Healthy Synthesis with Pathology Disentanglement and Adversarial
Learning”. In: Medical Image Analysis 64, p. 101719. doi: 10.1016/j.media.2020

.101719.
Zhang, C., H. Zheng, and Y. Gu (2023). “Dive into the details of self-supervised learning

for medical image analysis”. In: Medical Image Analysis, p. 102879.
Zhao, S., J. Song, and S. Ermon (2019). “Infovae: Balancing learning and inference in

variational autoencoders”. In: Proc AAAI conference on artificial intelligence. Vol. 33,
pp. 5885–5892.

Zhou, S. K., H. Greenspan, C. Davatzikos, J. S. Duncan, B. Van Ginneken, A. Madabhushi,
J. L. Prince, D. Rueckert, and R. M. Summers (2021). “A Review of Deep Learning
in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress
Highlights, and Future Promises”. In: Proceedings of the IEEE 109.5, pp. 820–838. doi:
10.1109/JPROC.2021.3054390.

Zhou, X., S. Niu, X. Li, H. Zhao, X. Gao, T. Liu, and J. Dong (2023). “Spatial–contextual
variational autoencoder with attention correction for anomaly detection in retinal OCT
images”. In: Computers in Biology and Medicine 152, p. 106328.

Zhou, Z., M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang (2018). “Unet++: A nested
u-net architecture for medical image segmentation”. In: MICCAI Deep Learning in Med-
ical Image Analysis and Multimodal Learning for Clinical Decision Support Workshop.
Springer, pp. 3–11.

Zimmerer, D., F. Isensee, J. Petersen, S. Kohl, and K. Maier-Hein (2019). “Unsupervised
Anomaly Localization Using Variational Auto-Encoders”. In: International Conference

https://doi.org/10.1016/j.media.2020.101694
https://doi.org/10.1016/j.media.2020.101719
https://doi.org/10.1016/j.media.2020.101719
https://doi.org/10.1109/JPROC.2021.3054390


Bibliography 175

on International conference Medical Image Computing and Computer Assisted Interven-
tion. LNCS. Springer, pp. 289–297. doi: 10.1007/978-3-030-32251-9_32.

Zimmerer, D., S. A. A. Kohl, J. Petersen, F. Isensee, and K. H. Maier-Hein (2018). Context-
encoding Variational Autoencoder for Unsupervised Anomaly Detection. arXiv: 1812.05
941.

https://doi.org/10.1007/978-3-030-32251-9_32
https://arxiv.org/abs/1812.05941
https://arxiv.org/abs/1812.05941

	Abstract
	Résumé
	Remerciements
	Scientific production
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Dementia and Alzheimer's disease
	Neuroimaging data for neurodegenerative disorders
	Deep learning for computer-aided diagnosis
	Contributions
	Outline of the manuscript

	Anomaly detection in brain FDG PET
	Unsupervised anomaly detection in medical imaging
	Supervised vs unsupervised approaches
	State-of-the-art on anomaly detection in medical imaging

	Materials
	Positron emission tomography
	Data preprocessing using Clinica
	Data selection
	Data quality control
	Data preparation using ClinicaDL


	Variational autoencoder for pseudo-healthy reconstruction
	Variational autoencoder
	Pseudo-healthy reconstruction on a toy dataset
	Shepp-Logan dataset
	2D convolutional VAE
	Results
	Latent space analysis

	Pseudo-healthy reconstruction on FDG PET images
	Experimental setting
	Materials
	3D convolutional VAE
	Model training
	Model evaluation

	Results
	Discussion and limitations


	Evaluation and validation of unsupervised anomaly detection methods in neuroimaging
	Evaluation of UAD approaches in the literature
	Pseudo-healthy image reconstruction evaluation procedure
	Evaluation metrics for image reconstruction
	Simulation-based evaluation framework
	Measuring the healthiness of reconstructed images
	Anomaly detection and localization

	Results
	Evaluation of the model using the simulation framework
	Results on simulated AD-like FDG PET images
	Results when simulating various types of dementia
	Measuring healthiness of a pseudo-healthy reconstruction
	Anomaly detection applied to simulated data

	Results on AD patients from the ADNI dataset

	Comparison between VAE and Unet
	Discussion
	Conclusion

	Study on the VAE latent space
	Latent space visualization
	Learning the data distribution
	Intra- vs inter-subject distance
	Linear mixed effect models applied to latent representations
	Linear mixed effect model
	Results


	Discussion
	Conclusion


	Benchmark of VAE-based approaches
	Extensions to the variational autoencoder framework
	Selection method and evaluation of the models
	Materials
	Model selection
	Selection of the encoder-decoder architecture
	Selection of the models' hyper-parameters
	Selection of the best trained models

	Results obtained for the best models on the test sets
	Quantitative evaluation of the pseudo-healthy reconstructions from images of control subjects
	Quantitative evaluation of the pseudo-healthy reconstructions from images with simulated dementia
	Qualitative evaluation of the pseudo-healthy reconstructions
	Quantitative evaluation with the healthiness metric
	Qualitative analysis of the pseudo-healthy reconstructions obtained from real AD patients

	Discussion
	Model selection
	Model evaluation
	Limitations and perspectives
	Reproducibility

	Conclusion

	Reproducible neuroimaging processing with deep learning with Clinica and ClinicaDL open-source software packages
	Clinica
	Data structures
	Brain Imaging Data Structure (BIDS)
	ClinicA Processed Structure (CAPS)

	Main functionalities
	Integration of the pet-linear pipeline in Clinica

	ClinicaDL
	Main functionalities
	Preprocessing images
	Generation of toy datasets
	Preparing metadata
	Random search
	Training networks
	Performance evaluation
	Interpretation

	Model Analysis and Processing Structure (MAPS)
	Main features of ClinicaDL
	Easy use of neuroimaging
	Reproducibility of deep learning studies
	Avoid common methodological biases in your neuroimaging studies

	Development practices
	Distribution and Installation
	Continuous Integration and Deployment
	Documentation

	Recent advances
	Personal contribution
	Discussion and future development

	Other contributions

	Conclusion and Perspectives
	Conclusion
	Perspectives

	PubMed database queries
	Anomaly detection in Shepp-Logan phantoms
	Examples of reconstructions obtained for healthy subjects and simulated hypometablic images
	Unsupervised anomaly detection in 3D brain FDG PET: A benchmark of 17 VAE-based approaches
	Introduction
	Methods
	Variational autoencoder framework for pseudo-healthy image reconstruction
	Extensions to the variational autoencoder framework
	Evaluation of the models
	Materials
	Experimental setting

	Results
	Pseudo-healthy reconstruction from images of control subjects
	Pseudo-healthy reconstruction from images simulating dementia

	Conclusion

	Description of the VAE variants and of their hyper-parameter selection procedure
	Adversarial Autoencoder
	-TC VAE
	-VAE
	Disentangled -VAE
	Factor VAE
	Hamiltonian VAE
	Info VAE MMD
	IWAE
	MS-SSIM VAE
	Regularized auto-encoder
	Hyperspherical VAE
	VAEGAN
	VAE with inverse auto-regressive flows
	VAE with linear normalizing flows
	VAE with VampPrior
	Vector-quantized VAE
	Wasserstein auto-encoder

	Details of the encoder-decoder architecture selection procedure
	Benchmark reconstructions
	Example of MAPS
	Data access
	ADNI

	Bibliography

