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Titre: Couplages de processus stochastiques en géométrie sous-riemannienne

Résumé :
Dans cette thèse on s’intéresse à l’étude des couplages des mouvements browniens sous-elliptiques
sur plusieurs variétés sous-riemaniennes: les groupes de Carnot libres d’ordre 2, incluant le
groupe d’Heisenberg, ainsi que les groupes de matrices SU(2) et SL(2,R). Ces derniers peuvent
être vus, avec le groupe d’Heisenberg, comme des espaces modèles de courbure constante en
géométrie sous-riemanienne. On utilise la décomposition du mouvement brownien sous la forme
d’un mouvement brownien sur une variété riemannienne, que nous nommerons bruit directeur,
ainsi que d’un processus pouvant s’interpréter comme l’aire balayée par ce bruit directeur. La
méthode de couplage utilisée ici consiste alors à définir un couplage pour les bruits directeurs et
à en étudier l’effet sur les aires balayées.

En s’inspirant de précédents travaux sur le groupe d’Heisenberg on s’intéresse d’abord aux
couplages avec succès, c’est à dire les couplages pour lesquels le temps de rencontre entre les
processus est fini presque surement. En utilisant la décomposition de Karhunen-Loève pour les
ponts browniens, on construit des couplages non co-adaptés avec succès sur SU(2) et sur les
groupes de Carnot libres de profondeur 2 sur Rn avec n ≥ 3. Lorsque les processus partent de
la même fibre on obtient également un résultat sur SL(2,R). En particulier ces constructions
mènent à des estimées du taux de couplage dont on déduit des inégalités pour le semi-groupe
de la chaleur et pour les fonctions harmoniques. On propose aussi la construction explicite d’un
couplage co-adapté sur SU(2).

Enfin, on développe un nouveau modèle de couplage "en un coup" basé sur résolution d’un
problème inverse pour obtenir de bonnes estimées de la distance en variation totale entre les
lois des processus. Ce travail est effectué sur les groupes de Carnot libres de profondeur 2 et
utilise une décomposition du mouvement brownien via les polynômes de Legendre. Il permet
aussi d’obtenir des relations similaires à la formule de Bismut-Elworthy-Li pour les gradients de
semi-groupes, via l’étude d’un changement de probabilité sur l’espace des vecteurs Gaussiens.

Mots-clés : Géométrie sous-riemannienne, Processus stochastiques, Inégalités fonction-
nelles, mouvement Brownien sous-elliptique

Institut de mathématiques de Bordeaux
UMR 5251, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence cedex, France.



Title: Coupling of stochastic processes in subRiemannian geometry

Abstract:
This thesis deals with the study of the couplings of subelliptic Brownian motions in several
subRiemannian manifolds: the free, step 2 Carnot groups, including the Heisenberg group, as
well as the groups of matrices SU(2) et SL(2,R). These last ones can be seen, together with the
Heisenberg group, as some model spaces with constant curvature in subRiemannian geometry.
We use the decomposition of the Brownian motion as a Brownian motion on a Riemannian
manifold, that we will call driving noise, as well as a process that can be interpreted as the area
swept by the driving noise. The coupling method used here consists in defining a coupling for
the driving noises and then study its impact on the swept areas.

Taking inspiration from previous works on the Heisenberg group, we first focus on successful
couplings, that is couplings where the processes meet at an almost surely finite time. Using
the Karhunen-Loève expansion of the Brownian bridges, we construct successful non co-adapted
couplings on SU(2) and on the free step 2 Carnot groups with rank n ≥ 3. When the processes
start from the same fiber we also get a result on SL(2,R). In particular we obtain estimates
of the coupling rate, leading to gradient inequalities for the heat semi-group and for harmonic
functions. We also describe the explicit construction of a co-adapted successful coupling on
SU(2).

Finally, we develop a new coupling model "in one sweep", which is based on the study of
an inverse problem to obtain good estimates of the total variation distance between the laws of
the processes. This work is done for any free, step 2 Carnot groups and uses a decomposition of
the Brownian motion via the Legendre polynomials. This method also allows us to obtain rela-
tions similar to the Bismut-Elworthy-Li formula for the gradient of the semi-group by studying
a change of probability on the Gaussian space.

Keywords: SubRiemannian geometry, Stochastic processes, Functional inequalities, Subel-
liptic Brownian motion
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Chapter 1

Résumé étendu en français

Ce court chapitre est la seule partie de cette thèse en français. Il a pour but de présenter
le problème et de donner un aperçu des résultats obtenus.

1.1 Contexte d’étude

1.1.1 Notion de couplage

Nous donnons tout d’abord une définition de la notion de couplage. Soit G une variété
(dans notre cas une variété sous-riemanienne) et g, g̃ ∈ G. On appelle couplage de deux
mouvements browniens partant de (g, g̃) toute mesure de probabilité sur C([0, T [, G ×
G) (pour T ∈ [0,+∞]) pour laquelle la première marginale suit la loi d’un mouvement
Brownien (Bt)t partant de g et la seconde marginale suit la loi d’un mouvement brownien
(B̃t)t partant de g̃. En d’autres termes, il s’agit d’étudier la loi jointe du processus (Bt, B̃t)t.

Voici quelques exemples simples (mais non moins utiles) de couplages partant de (x, x̃)
sur R2:

1. Le couplage synchrone: On construit Bt et B̃t égaux à une translation près:

B̃t − x̃ = Bt − x.

2. Le couplage par réflexion: On choisit une base orthonormée (e1, e2) de R2 telle
que e1 := x−x̃

∥x−x̃∥2 . Soit (B1
t , B

2
t )t un mouvement brownien 2-dimensionel partant de

0. On construit alors:

Bt = x+B1
t e1 +B2

t e2 et B̃t = x̃−B1
t e1 +B2

t e2.

Les deux mouvements browniens (Bt)t et (B̃t)t sont en fait construits grâce à une
symétrie axiale.

Le couplage par réflection produit des mouvements browniens qui se rencontrent en
un temps p.s. fini. Usuellement, et tout particulièrement dans la sous-section 1.1.3,
une fois que les processus se sont rencontrés on choisit Bt = B̃t.

Notons que ces deux couplages sont co-adaptés, c’est à dire que le futur des deux
processus construits ne dépend que de leur passé commun. En fait (Bt, B̃t)t est même
markovien. Voici un exemple de couplage non co-adapté sur R:
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3. Un couplage avec connaissance du futur: Soit T > 0, on peut décomposer le
mouvement brownien dans une base de L2([0, T ]). Par exemple, en utilisant la
décomposition de Karhunen Loève, on a:

Bt = x+
√
T
∑
j≥1

ξj

√
2

jπ
sin

(
jπt

T

)
+

t√
T
ξ0

et B̃t = x̃+
√
T
∑
j≥0

ξ̃j

√
2

jπ
sin

(
jπt

T

)
+

t√
T
ξ̃0

où (ξj)j≥0 (resp. (ξ̃j)j≥0) sont identiquement et indépendemment distribuées et
suivent une loi normale N (0, 1). On peut alors construire le couplage (Bt, B̃t)t en
choisissant un couplage (ξj, ξ̃j) pour tout j ≥ 0. En prenant par exemple ξ1 ̸= ξ̃1 et
ξ0 = ξ̃0, on a B̃T = BT − x + x̃: le couplage n’est pas co-adapté puisqu’on a besoin
de la connaissance du futur (la valeur BT ) de l’un des processus pour construire le
second.

Ces exemples se généralisent à Rn en toute dimension ainsi qu’à certaines variétés rieman-
niennes comme la sphère ou le plan hyperbolique. Notons que l’on peut aussi considérer
des couplages statiques: il s’agit de définir un couplage ponctuellement et non sur toutes la
trajectoire du processus. Ce type de couplage sera uniquement considéré dans le chapitre
7 et dans le chapitre 8).

1.1.2 Temps de couplage

Pour un couplage (Bt, B̃t)t donné, il peut être intéressant d’étudier le premier temps de
couplage τ , c’est à dire le premier temps de rencontre des mouvements browniens. En
effet, il est aisé de montrer l’inégalité de couplage suivante:

dTV (L(Bs),L(B̃s)) ≤ P(τ > s) ∀s > 0

où dTV est la distance en variation totale. En particulier, les couplages pour lesquels
cette inégalité devient une égalité sont appelés couplages maximaux. Si P(τ > t)
et dTV (L(Bt),L(B̃t)) ont le même ordre de grandeur pour t grand, le couplage est dit
efficace. Dans le cas de variétés riemanniennes qui ont de bonnes propriétés de symétrie,
les couplages maximaux sont obtenus avec un couplage par réflexion. En étudiant le taux
de couplage, c’est à dire la quantité P(τ > t), on peut aussi obtenir des inégalités pour le
gradient du semi groupe de la chaleur et des résultats sur les fonctions harmoniques.

1.1.3 Mouvements browniens en géométrie sous-riemannienne

Sur une variété sous-riemannienne G, le mouvement brownien peut s’écrire sous la forme
(Bt)t = (Xt, zt)t avec (Xt)t un processus de diffusion elliptique et zt = f ((Xs)s≤t) où f est
une fonctionnelle. Grâce à cette structure, il suffit de construire un couplage de processus
elliptiques (bien mieux connus) (Xt, X̃t)t pour obtenir un couplage sur G. Dans ce travail
nous étudions les couplages de mouvements browniens sur les variétés sous-riemanniennes
suivantes:

• Le groupe d’Heisenberg H, pour lequel (Xt)t est un mouvement brownien sur R2 et
zt est l’aire signée (à valeurs dans R) balayée par (Xs)s≤t (appelée aire de Lévy).
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• Le groupe spécial unitaire SU(2), où (Xt)t est un mouvement brownien sur la sphère
S2 et où zt est l’aire signée (modulo 4π) balayée par (Xs)s≤t.

• Le groupe spécial linéaire SL(2,R), où (Xt)t est un mouvement brownien sur le plan
hyperbolique et où zt est l’aire signée (modulo 4π) balayée par (Xs)s≤t.

Ces trois espaces peuvent êtres vus comme des espaces modèles à courbure constante en
géométrie sous-riemannienne.

Nous nous intéressons aussi aux groupe de Carnot libres de profondeur 2 sur Rn avec
n ≥ 2. Dans ce cas, (Xt)t est un mouvement brownien sur Rn et zt = (zi,jt )1≤i<j≤n ∈ R

n(n−1)
2

où zi,jt est l’aire signée (à valeurs dans R) balayée par le processus (X i
s, X

j
s )s≤t, c’est à dire

une aire de Lévy. Pour n = 2, il s’agit exactement du groupe d’Heisenberg.

1.1.4 Couplages avec succès sur le groupe d’Heisenberg

Dans le cas du groupe d’Heisenberg nous pouvons citer deux constructions notables (à
quelques variantes près). La première est un couplage co-adapté, avec succès proposé par
Kendall [37]. Cette construction utilise en alternance les couplages miroir et synchrone.
Notons que ce couplage a été généralisé par Kendall [37] aux groupes de Carnot libres
d’ordre 2. Le second est un couplage non co-adapté proposé par Banerjee, Gordina et
Mariano [6]. Ce couplage est construit en se ramenant à deux mouvements browniens
partant de la même fibre et en utilisant un couplage avec connaissance du futur. On
choisit en particulier ξk = ξ̃k pour tout k ̸= 1. Il a été prouvé que ce couplage non co-
adapté est efficace. Il a aussi été montré qu’un couplage co-adapté (et donc en particulié
celui de Kendall) ne peut être efficace. En notant dcc la métrique sous-riemannienne
(distance de Carnot-Carathéodory), on obtient:

P(τ > t) ≤ C

(
dcc(B0, B̃0)√

t
1{X0 ̸=X̃0} +

dcc(B0, B̃0)
2

t
1{X0=X̃0}

)
. (1.1)

Ce résultat permet d’obtenir des inégalités de gradients de deux types:

• La première concerne les gradients du semi groupe de la chaleur (Ptf)t associé au
mouvement Brownien sur le groupe d’Heisenberg. Il existe une constante C telle
que, pour toute fonction f bornée et C∞:

||∇Ptf ||∞ ≤ C√
t
||f ||∞ ∀t ≥ 1. (1.2)

• La seconde concerne les gradients de fonctions harmoniques. Il existe une constante
C telle que, pour toute fonction f définie sur un domaine compact D, continue sur
la fermeture de D, positive et harmonique, et pour tout x ∈ D:

∥∇Hf(x)∥H < C

(
1 +

1

δx
+

1

δ4x
+

(1 + δx)
3

δ4x

)
f(x) (1.3)

avec δx := dcc(x,D
c).

Ici ||∇·||∞ est la norme sup de la longueur de gradient et ∥∇H ·∥H est la norme du gradient
horizontal associée à la structure sous-riemannienne. Les définitions et les relations entre
ces objets sont donnés dans la sous-section 3.1.6.
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1.2 Résultats

Dans cette thèse, nous nous intéressons à la construction explicite de couplages pour
lesquels les estimées du taux de couplage sont suffisamment bonnes. Les travaux présentés
concernent les publications suivantes:

[18] Magalie Bénéfice, Marc Arnaudon, and Michel Bonnefont. Couplings of Brown-
ian motions on SU(2,C). In Geometric science of information. Part I, volume 14071 of
Lecture Notes in Comput. Sci., pages 592–600. Springer, Cham, [2023] ©2023

[25] Magalie Bénéfice. Couplings of Brownian motions on SU(2) and SL(2,R).
Stochastic Processes and their Applications, page 104434, 2024

[24] Magalie Bénéfice. Non co-adapted couplings of Brownian motions on subRieman-
nian manifolds. https://arxiv.org/abs/2312.14512, 2023

[26] Magalie Bénéfice. Non co-adapted successful couplings of Brownian motions on
the free, step 2 carnot groups. https://arxiv.org/abs/2407.06593, 2024

[3] Marc Arnaudon, Magalie Bénéfice, Michel Bonnefont, and Delphine Féral. A
coupling strategy for Brownian motions at fixed time on Carnot groups using Legendre
expansion. https://arxiv.org/abs/2407.04321, 2024

1.2.1 Couplages avec succès

Nous avons pu généraliser les couplages avec succès présentés pour le groupe d’Heisenberg
(le couplage co-adapté de Kendall [37] et le couplage non co-adapté de Banerjee, Gordina
et Mariano [6]) au cas de SU(2) dans [18, 25, 24]. Une des difficultés majeures de ce
travail est la prise en compte de la courbure de la sphère dans laquelle vit (Xt, X̃t)t. Sur
SU(2), en notant dcc la distance sous-riemannienne usuelle et pour t suffisamment grand,
le couplage non co-adapté entraine l’inégalité suivante:

P(τ > t) ≤ Ce−ctdcc ((X0, z0), (X
′
0, z

′
0)) (1.4)

où C et c sont des constantes indépendantes de la distance initiale. En considérant des
mouvements browniens partant de la même fibre (X0 = X̃0), nous avons aussi généralisé
ce couplage non co-adapté, avec succès, au cas de SL(2,R). En particulier, pour SL(2,R),
(1.4) reste vraie pourvu que X0 = X ′

0. De l’inégalité (1.4), nous avons pu déduire une
inégalité de gradient sur SU(2), similaire à (1.2). Pour t suffisamment grand:

||∇HPtf(g)||H ≤ 2||f ||∞Ce−ct p.s..

Sur SL(2,R), nous obtenons un argument direct pour prouver que toute fonction har-
monique bornée est constante sur chaque fibre.

Nous nous sommes aussi intéressés à la généralisation du couplage non co-adapté de
Banerjee, Gordina et Mariano [6] et de toutes ses applications au cas général des groupes
de Carnot libres de profondeur 2. La difficulté majeure est ici de devoir travailler sur
une des aires balayées (zi,jt )t tout en gardant un certain contrôle sur les autres. Toujours
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en utilisant un couplage avec connaissance du futur comme décrit en Sous-section 1.1.1,
notre stratégie consiste à travailler sur la matrice (zi,jt )1≤i,j≤n ligne par ligne et à choisir
ξk = ξ̃k uniquement pour k ≥ n et k = 0. En particulier, nous utilisons la théorie des
matrices de Wishart et de leurs inverses. Nous obtenons un résultat similaire à (1.1), avec
des constantes explicites, ainsi que des inégalités de gradients semblables à (1.2) et (1.3).
En utilisant des relèvements sur les groupes de Carnot libres, cette stratégie offre aussi
des résultats directs sur tous les groupes de Carnot homogènes de profondeur 2.

1.2.2 Couplage en un coup

Les derniers résultats présentés ici concernent un couplage sur les groupes de Carnot libres
de profondeur 2 sur Rn, que nous noterons Gn, avec n ≥ 2. Ce couplage n’est pas avec
succès mais il permet une bonne estimation de la quantité P(BT ̸= B̃T ) et donc de la
distance en variation totale dTV

(
L(BT ),L(B̃T )

)
pour un temps préalablement fixé T :

dTV

(
L(BT ),L(B̃T )

)
≤ C1(n)

dcc(B0, B̃0)√
T

+ C2(n)
dcc(B0, B̃0)

2

T
. (1.5)

avec

C2(n) :=
1√
π

(
6
√
n+

4√
n

)
and C1(n) :=

1√
2π

+

√
2(n− 1)

3
C2(n). (1.6)

Notons que l’inégalité est similaire à celle obtenue avec le couplage avec succès mais que les
constantes C1(n) et C2(n) obtenues avec cette méthode sont meilleures. Cette méthode
permet à nouveau d’obtenir l’inégalité de gradient de gradient (1.2) avec C = C1(n)
explicite. Ce travail est effectué en collaboration avec Marc Arnaudon, Michel Bonnefont
et Delphine Féral.

Nous traitons les parties horizontales (Xt) et verticales (zt) des processus en même
temps. Nous utilisons une décomposition du mouvement brownien semblable à celle pro-
posée pour le couplage non co-adapté de la sous-section 1.1.1 mais utilisant cette fois
les polynômes de Legendre. Nous nous ramenons alors à l’étude d’un problème inverse,
faisant intervenir à nouveau des matrices de Wishart, ainsi qu’à l’étude des couplages de
vecteurs gaussiens.

En utilisant le même problème inverse et un changement de probabilité sur les vecteurs
gaussiens, nous obtenons une inégalité de type Bismut-Elworthy-Li pour dgPtf(·). Nous
pouvons en déduire des inégalités de gradient de type Poincarré-inverse: pour T > 0,
p ∈ (1,∞], q son conjugué, pour tout g, h ∈ Gn:

∥dgPTf(h)∥ ≤ (PT |f |p)1/pMq(T ) (1.7)

avec Mq(T ) une constante dépendant du temps T mais pas de g et h. Il est à noter que
nous espérons pouvoir améliorer ces résultats dans le futur en ayant de meilleures estimées
pour l’étude des moments des khi-deux pondérés.

Enfin, nous obtenons aussi une inégalité de type log Harnack. Pour toute fonction f
positive sur Gn, T > 0 et g, g̃ ∈ Gn:

PT (ln f)(g̃) ≤ ln(PTf(g)) + C(n)dcc(g, g̃)
2 (1.8)

où C(n) est une constante explicite.
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1.2.3 Couplage statique

Nous proposons également un couplage de type différent sur les groupes de Carnot. Ce
couplage est statique dans le sens où l’on ne couple que les lois pour un temps fixé (et
pas les trajectoires) et conduit à des estimées de Wasserstein de type L1, voir Théorème
8.2.1. Il généralise les résultats de Bonnefont et Juillet [22].
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Chapter 2

Presentation of the results

In this Chapter, we give an extensive presentation of the problem. We present the coupling
method and the subRiemannian structure. We also recall the existing results on the
Heisenberg group which gave the basis of this study. We then give a presentation of the
results obtained in this thesis. Finally, we present the organisation for the remainder of
the document.

2.1 Research context

2.1.1 Introduction to the couplings of Brownian motions

We first answer to a basic question: what is a coupling? A coupling of two probability
measures µ and ν on a measurable space (Ω,F) is a probability measure π on (Ω2,F2)
such that µ is its first marginal distribution and ν its second one. In this thesis, we
consider couplings of the paths of two continuous Markov processes (Xt)t, (X̃t)t starting
at x, x̃, more precisely of subelliptic Brownian motions, on a manifold E. In this case the
probability measure π lives on C([0, T [, E × E) (with T ∈ [0,+∞]), its first marginal is
the law of a Brownian motion (Xt)t starting from x and its second marginal is the law
of a Brownian motion (X̃)t starting from x̃. In other words, we consider the joint law of
(Xt, X̃t)t.

We first give two simple but useful examples in the case where E = Rn and where
the processes are the usual (elliptic) n-dimensional Brownian motions. Note that these
constructions can be extended to Riemannian manifolds (see [48]). This last point will
also be discussed in Subsection 2.3.2.

• The reflection coupling (or mirror coupling):

This coupling was introduced by Lindvall and Rogers in [43]. It can be described
as follows. Supposing that x ̸= x̃, we denote e1 := x−x̃

∥x−x̃∥2 and (e2, . . . , en) such
that (e1, e2, . . . , en) is an orthonormal basis of Rn. Let (B1

t , B
2
t , . . . , B

n
t )t be a n-

dimensional Brownian motion starting from 0. The reflection coupling (Xt, X̃t)t of
two Brownian motions on Rn starting from (x, x̃) can then be constructed by taking:

Xt = x+B1
t e1 +

n∑
i=2

Bi
tei and X̃t = x̃−B1

t e1 +
n∑

i=2

Bi
tei. (2.1)
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By construction the two Brownian motions are symmetric with respect to the affine
hyperplane x+x̃

2
+ e⊥1 . Then the Brownian motions are equal if and only if one of

them hits this hyperplane. The Euclidean distance between Xt and X̃t is given by
Rt = ∥x− x̃∥2 + 2B1

t and acts like a Brownian motion. In general we consider this
construction by reflection until Xt = X̃t. After this time we shall take the Brownian
motions to be equal.

• The synchronous coupling (or parallel transport coupling):

Let (e1, . . . , en) be any orthonormal basis on Rn and (B1
t , . . . , B

n
t ) be a n-dimensional

Brownian motion starting from 0. We construct the synchronous coupling (Xt, X̃t)
starting from (x, x̃) such that:

Xt = x+
n∑

i=1

Bi
tei and X̃t = x̃+

n∑
i=1

Bi
tei. (2.2)

In fact Xt and X̃t are equal, up to a translation. In particular the distance Rt is
constant. Some reader could be quizzical about the "complexity" of Equation (2.2),
as it simply means that Xt − x = X̃t − x̃ a.s. However this construction using a
basis will be useful to understand the description of the synchronous coupling in
Riemannian manifolds made in Subsection 4.1.4 (Example 4.1.10).

Note that the two above couplings are co-adapted, i.e., the future of the processes
only depends on their common past. In fact these two couplings are even Markovian.
We now present a last coupling which is not co-adapted and uses Brownian bridges.
Such a construction has first been introduced by Banerjee and Kendall to deal with the
Kolmogorov diffusions [8]. A similar construction has also been used by Banerjee, Gordina
and Mariano [6] to obtain results for the Brownian motion in the Heisenberg group. This
last construction will be more detailed in Subsection 2.2.2.

• A finite-look-ahead coupling :

Let T > 0, (Bbr
t , B̃

br
t )t∈[0,T ] a coupling of Brownian bridges on the interval of time

[0, T ], ξ0, ξ̃0
L∼ N (0, 1) and x, x̃ ∈ R. We construct:

Xt := x+Bbr
t +

t√
T
ξ0 and X̃t := x̃+ B̃br

t +
t√
T
ξ̃0. (2.3)

This defines a coupling (Xt, X̃t)t∈[0,T ] of one dimensional Brownian motions starting
from (x, x̃) on the time interval [0, T ]. In particular, if we have x = x̃ and we
choose ξ0 = ξ̃0, we get XT = X̃T . If (Bbr

t )t∈[0,T ] ̸= (B̃br
t )t∈[0,T ], this coupling is not

co-adapted as we need to know the value of (Xt)t at time T to construct (X̃t)t∈[0,T ].
We now explain how to construct an explicit coupling of Brownian bridges. The
method applied in [6] is to use expansions of the Brownian bridges by using complete
orthonormal systems of functions in the space L2([0, T ]). For example, using the
Karhunen-Loève expansion we can write:

Bbr
t =

√
T
∑
j≥1

ξj

√
2

jπ
sin

(
jπt

T

)
and B̃br

t =
√
T
∑
j≥1

ξ̃j

√
2

jπ
sin

(
jπt

T

)
(2.4)

with (ξj)j≥1 (resp. (ξ̃j)j≥1) a sequence of independent variables with the same
distribution N (0, 1). Then the coupling is described if we construct a coupling
(ξj, ξ̃j)j≥1 of the two Gaussian sequences.
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2.1.2 Some usual applications

Aside from providing a better understanding of the geometry of the state space, the cou-
pling method for Brownian motions is a great tool for many analysis results involving the
harmonic functions and the heat semi-group like Harnack, Poincaré, Sobolev or Wasser-
stein inequalities (see [41, 56, 28, 27] for some examples). We now presents two types of
coupling leading to some of these inequalities.

• For a coupling (Xt, X̃t)t, one can first define the first coupling time (or first meeting
time) of two Brownian motions:

τ := inf{t ≥ 0 | Xt = X̃t}. (2.5)

The first category of coupling, and the one we will study in the major part of this
work, is about couplings such that the coupling rate P(τ > t) can be estimated.
This includes the successful couplings, i.e., the couplings such that τ is a.s. finite.
In fact, one can get good estimates of the total variation between the laws of the two
coupled processes by using the following Coupling inequality (or Aldous inequality,
see [5], chapter VII) which is true for all Markov processes:

dTV

(
L(Xt),L(X̃t)

)
≤ P(τ > t) for all t > 0. (2.6)

As an example on Rn, we invite the reader to look at the reflection coupling described
above. Using the fact that the distance between the two Brownian motions is, up
to a multiplicative constant, a one-dimensional Brownian motion, the first coupling
time τ is the first hitting time of this one-dimensional Brownian motion whose
distribution is well known. In particular, for t large enough, we obtain:

dTV

(
L(Xt),L(X̃t)

)
≤ P(τ > t) ≤ 1√

2π

∥x− x̃∥2√
t

. (2.7)

Moreover, the reflection coupling is maximal in the sense that the Coupling in-
equality (2.6) can be changed into an equality. If it has been proven that such
couplings always exist in the case of càdlàg processes on Polish spaces [52], they can
be very difficult to study (explicit construction, simulation, estimation of a coupling
rate) as one will often need some knowledge of the future of one of the process. For
a Riemannian manifold having a sort of "reflection structure" just as the Brown-
ian motion on the plane or on the sphere (see [40, 33]), this can also be done by
using a reflection coupling. In this specific case the coupling is co-adapted and
even Markovian. More generally, the existence of Markovian maximal couplings of
regular elliptic diffusions has been studied in [9], with the proof that this existence
depends on the same rigidity properties of the Riemannian manifold as well as on
strong conditions on the drift part of the the diffusion processes. In fact, Markovian
or co-adapted maximal couplings are rare in Riemannian manifolds.

Another application of the successful couplings is to get gradient inequalities. In
fact, if f is a C1 bounded function on the manifold E, then, denoting by Pt the heat
semi group, we have for x, x̃ ∈ E:

|Ptf(x)− Ptf(x̃)| ≤ E[|f(Xt)− f(X̃t)|] ≤ 2∥f∥∞P(τ > t). (2.8)
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Using the estimate of the coupling rate P(τ > t), in the case of the reflection coupling
on E = Rn, we directly obtain, for t large enough:

|∇Ptf(x)| ≤
1√
2π

2∥f∥∞√
t

. (2.9)

A last application that we will report here has been developed by Cranston on Rn

in [28] and then for complete Riemannian manifolds with Ricci curvature admitting
some lower bound in [27]. We consider the following well known result. Let D ⊂ Rn

be an Euclidean domain, x ∈ D, δx = d(x,Dc). Let also f be a positive and
harmonic function on D. Then:

∥∇f(x)∥ < C

δx
f(x) (2.10)

with C a constant that does not depend on f . For x, x̃ ∈ Rn and any coupling
(Xt, X̃t) of Brownian motions starting from (x, x̃), Cranston noticed that:

|f(x)− f(x̃)| ≤ oscD(f)P
(
τ > τD(X) ∧ τD(X̃)

)
(2.11)

with oscD(f) := supD(f) − infD(f) and τD(Y ) denoting the first exit time of the
set D for a process (Yt)t. Using the reflection coupling on Rn, Cranston obtained a
good estimate for (2.11). To be more precise, for some specific cube Q(x, x̃) ⊂ D,
depending on x and x̃, he obtained: P(τ > τQ(Y )) ≤ |x−x̃|

δx
with Y = (Xt)t or (X̃t)t.

With this inequality, he got (2.10).

• The second category of couplings, which will only be briefly discussed in Chapter 8
covers the couplings satisfying inequalities of the type :

d(Xt, X̃t) ≤ C(t)d(X0, X̃0). (2.12)

This immediately gives an inequality for the L∞ Wasserstein distance between the
laws of the Brownian motions:

W∞(L(Xt),L(X̃t)) ≤ C(t)d(X0, X̃0). (2.13)

This then induces an inequality of commutation of Bakry Emery type between
the gradient and the semi group: |∇Ptf | ≤ C(t)Pt|∇f |. Note that, under some
conditions on the considered state space and the real p, Kuwada [41] proved that
there is a duality between these semi-group inequalities and these type of control of
the Lp Wassertein distance (see Section 8.1).

In Rn, this inequality is trivially obtained for C(t) = 1 with the synchronous cou-
pling. In the case of the Brownian motion in Riemannian manifold with Ricci cur-
vature bounded below by k, (2.13) can be obtained with C(t) = e−

k
2
t by considering

a synchronous coupling.

2.1.3 The subRiemannian structure

We now give a presentation of the subRiemannian structure of dimension N and of con-
stant rank n. For a better understanding of these structures, the reader can see [1, 19]

20



Let G be a smooth connected Riemannian manifold of dimension N and n ≤ N an
integer. For each x ∈ G, we define a vector subspace Hx of dimension n of TxG, the
tangent space in x. This way we define a subbundle of the tangent bundle TG denoted
by H and called horizontal bundle. We can then define the horizontal curves, that
is, the smooth curves γ : I ⊂ R → G such that γ̇(t) ∈ Hγ(t): the horizontal curves are
"moving" only with directions in H. Defining, for all x ∈ G, a scalar product ⟨·, ·⟩Hx on
Hx, smooth in x, we obtain the length L(γ) of the horizontal curve γ:

L(γ) :=

∫
I

√
⟨γ̇(t), γ̇(t)⟩Hγ(t)

dt.

The Carnot-Carathéodory distance between x and y ∈ G is finally defined by:

dcc(x, y) := inf{L(γ) | γ horizontal curve between x and y}.

In what follows we consider subRiemannian manifolds whose horizontal bundle satisfies
the Hörmander condition. This means that, provided that (Y1, ..., Yn) is a local basis
of vector fields in H, the tangent bundle TG is spanned by the vectors Y1, ..., Yn along with
all their commutators obtained by operation with Lie brackets (the family (Y1, . . . , Yn) is
then also called Lie bracket-generating). Then the Carnot-Carathéodory distance is finite
and the subRiemannian structure is well defined.

In the case when (G, ⋆) is a stratified Lie group, we have an easy way to define a
subRiemannian structure by choosing some globally defined and left-invariant basis of
vector fields for H. Indeed, if G is stratified, the associated Lie algebra g (which we
identify with the tangent space T0G) satisfies:

g = g1 ⊕ . . .⊕ gr

with
[g1, gi] = gi+1, [g1, gr] = 0 for all 1 ≤ i ≤ r − 1.

Let X1, . . . , Xn be a linear basis of g1. We define the family of linearly independent vector
fields X̄1, ..., X̄n on TG such that for all g ∈ G:

X̄if(g) =
∂

∂ϵ |ϵ=0
f (g ⋆ exp(ϵXi)) for i ∈ {1, . . . n}. (2.14)

We obtain a basis of g1 which is left-invariant, i.e., for all g, a ∈ G and for every smooth
function f , X̄i (f ◦ transa) (g) = X̄i (f) (transa(g)) with transa := g ∈ G 7→ a ⋆ g ∈ G the
left translation. Moreover, if X1, . . . , Xn satisfies the Hörmander condition, we obtain a
well defined subRiemannian structure by taking H = Span{X̄1, . . . , X̄n}. Note that, with
this last condition, H is called r-step bracket generating.

We can then introduce the sub-Laplacian operator:

L :=
1

2

n∑
1

X̄i
2
. (2.15)

Because Hörmander conditions is satisfied, this operator is hypoelliptic. The subel-
liptic Brownian motion on G is then defined as the diffusion process whose infinitesimal
generator is L. Let denote by (Pt)t the heat semi-group, that is, the semi-group asso-
ciated to L. For all g ∈ G, let consider a Brownian motion (Bt)t starting at g. Then for
all bounded measurable function f on G we have:

Ptf(g) = E[f(Bt)]. (2.16)

In this thesis we will consider some 2-steps bracket generating structures. These are:
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• The free, step 2 homogeneous Carnot groups, including the Heisenberg group.

• The matrices groups SU(2) and SL(2,R) which may be seen, together with the
Heisenberg group, as three model spaces of constant curvature for the left-invariant
subRiemannian manifolds.

In the two following subsections we give a brief introduction to these spaces and their
Brownian motions. A more complete description will be done in Chapter 3.

2.1.4 The free, step 2 homogeneous Carnot groups

For n ≥ 2, we denote by Gn the free step 2 homogeneous Carnot group of rank n. Denoting
by so(n) the set of real skew-symmetric matrices of dimension n × n, Gn can be defined
as the Lie group (Rn × so(n), ⋆) where:

(x, z) ⋆ (x′, z′) =

(
x+ x′, z + z′ +

1

2
x⊙ x′

)
for all (x, z) , (x′, z′) ∈ Rn × so(n)

with x⊙ x′ := x · x′t − x′ · xt where xt ∈M1,n(R) denotes the transpose of x.

For all 1 ≤ i ≤ n, we can use the fact that the associated Lie algebra is stratified to de-
fineXi := ∂xi

and the associated left invariant vector fields X̄1, . . . , X̄n as explained in Sub-
section 2.1.3. In particular we choose the horizontal subbundle H = Span{X̄1, . . . , X̄n}
which is Lie bracket-generating. Then, the Hörmander condition is satisfied and we have
a well defined structure of connected subRiemannian manifold for Gn. The free, step 2
Carnot group Gn is homogeneous, i.e., the dilation dilλ := (x, z) ∈ Gn 7→ (λx, λ2z) ∈ Gn

is a Lie group automorphism for all λ > 0. Moreover we can define a pseudo-norm ∥ · ∥Gn :

||(x, z)||Gn :=
√

||x||22 + ∥z∥2 for all(x, z) ∈ Rn × so(n) (2.17)

where ∥z∥22 :=
∑

1≤i<j≤n

(zi,j)
2. In fact, for all z ∈ so(n), ∥z∥2 is, up to a multiplicative

constant, the usual Hilbert-Schmidt norm of z.

This norm is homogeneous, that is, ∥ dilλ(x, z)∥Gn = λ||(x, z)||Gn for all λ > 0. As
every homogeneous norm induces a pseudo-distance on Gn which is equivalent to the
Carnot-Carathéodory distance, there exist two constants c1 and c2 (depending on Gn)
such that, for any g, g′ ∈ Gn:

c1∥g−1 ⋆ g′∥Gn ≤ dcc(g, g
′) ≤ c2∥g−1 ⋆ g′∥Gn . (2.18)

In fact, as we will see later, some of the results presented in this thesis can be extended
from the free, step 2 Carnot groups to every step 2 homogeneous Carnot groups. Indeed,
for every step 2 homogeneous Lie group G of rank n, there exists a surjective Lie group
morphism ϕ from Gn to G such that, for all g, g′ ∈ Gn, dcc(ϕ(g), ϕ(g′)) ≤ dcc(g, g

′).
Moreover, for all a, a′ ∈ G, there exist g, g′ ∈ Gn such that:

ϕ(g) = a, ϕ(g′) = a′ and dcc(g, g′) = dcc(a, a
′). (2.19)

On Gn, the subelliptic Brownian motion starting from (x, z) ∈ Gn can be written as
Bt = (Xt, zt) with (Xt)t a Brownian motion starting at x on Rn and zt := z+ 1

2

∫ t

0
Xs⊙dXs.
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In fact, zi,jt − zi,j0 is the Lévy area between (X i
s)s≤t and (Xj

s )s≤t. That is, the quantity∫ t

0
X i

sdX
j
s −

∫ t

0
Xj

sdX
j
s . It is important to highlight, that, if we know the path of (Xs)s≤t,

then we know the process (Bs)s≤t. With this in mind, in what follows, we will often call
(Xt)t the leading noise.

Remark 2.1.1. For n = 2, G2 is the well known Heisenberg group which is isomorphic
to H = (R3, ⋆) with (x1, x2, z) ⋆ (x̃1, x̃2, z̃) = (x1 + x̃1, x2 + x̃2, z + z̃ + 1

2
(x1x̃2 − x̃1x2)).

On H, the Brownian motion can be written Bt = (Xt, zt) with (Xt)t a Brownian motion
on R2 and zt−z0 the signed area swept by (Xs)s≤t with respect to the origin of the coordinate
system, i.e., the Lévy area

∫ t

0
X1

sdX
2
s −

∫ t

0
X2

sdX
1
s .

In what follows we will identify these two spaces and mostly use the notation H instead
of G2 except to present general results on the free, step 2 Carnot groups. We will also
denote by ∥ · ∥H the homogeneous norm:

∥(x, z)∥H :=
√
∥x∥2 + |z|.

2.1.5 Model spaces for three-dimensional subRiemannian mani-
folds

We look at the three model spaces: the Heisenberg group E0 := H which has be mentioned
in Remark 2.1.1, the special unitary group E1 := SU(2) and the special linear group
E−1 := SL(2,R). For k ∈ {−1, 0, 1}, Ek is a stratified Lie group. In particular, we can
choose X, Y and Z such that g = g1 ⊕ g2 with g1 = Span{X, Y }, g2 = Span{Z}:

[X, Y ] = Z, [Y, Z] = kX, [Z,X] = kY. (2.20)

In particular (X, Y ) satisfies the Hörmander condition. Then, as explained in subsection
2.1.3, we can endow Ek with a natural left-invariant subRiemannian structure by taking
H := Span{X̄, Ȳ }. In particular H is 2-step bracket generating.

Remark 2.1.2. For every complete simply connected 3D contact subRiemannian manifold
E, we have two functional invariant constants χ and κ that characterize the curvature.
Then, if χ = 0 and κ is constant we have:

• if κ = 0, E is isomorphic to E0;

• if κ = 1, E is isomorphic to E1;

• if κ = −1, E is isomorphic to S̃L(2,R) the universal cover or E−1.

This explains why E0, E1 and E−1 can be seen as the model spaces. Note that we will not
develop any theory about the curvature in this thesis. The reader can be oriented to [1]
for more information.

For every k ∈ {−1, 0, 1}, there exists a natural submersion Πk from Ek to the sim-
ply connected Riemannian surface Mk endowed with the Riemannian metric of constant
sectional curvature k , that is:

• if k = 0, the plane R2;
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• if k = 1, the sphere S2;

• if k = −1, the hyperbolic plane H2.

Note that this submersion is trivial on E0 = H (this is the projection on the two first
coordinates). As E1 = SU(2) is isomorphic to S3, Π1 can be obtained by using the Hopf
fibration. We want to emphasize that every element of E1 = SU(2) and E−1 = SL(2,R)
can be written on the form

exp(φ(cos(θ)X + sin(θ)Y )) exp(zZ) (2.21)

with:

• for k = 1: φ ∈ [0, π[, θ ∈ [0, 2π[ and z ∈]− 2π, 2π];

• for k = −1: φ ∈ [0,+∞[, θ ∈ [0, 2π[ and z ∈]− 2π, 2π].

Note that φ(cos(θ)X + sin(θ)Y ) and zZ are unique. This provides some coordinates
(φ, θ, z) called the cylindrical coordinates. They will be of particular importance in
this manuscript. In particular we can chose Πk such that it sends every point (φ, θ, z) of
Ek to the point of Mk described by the spherical (polar coordinates for k = −1) (φ, θ)
according to a fixed pole N0 ∈ Mk and a vector e0 ∈ TN0Mk. Still using this cylindrical
coordinates, it has been proven in [10, 20, 21] that there exist two constants c1 and c2 such
that, for all elements of Ek (with k = ±1) written in the cylindrical coordinates (φ, θ, z):

c1(φ
2 + |z|) ≤ d2cc(0, (φ, θ, z)) ≤ c2(φ

2 + |z|). (2.22)

By using the left-invariance of the Carnot-Carathéodory distance, the inequalities
(2.22) provides a convenient way to compare two elements in Ek.

As the Hörmander condition is satisfied, the sub-Laplacian operator L is hypoelliptic
and we can define the Brownian motion (Bt)t. By expressing L in cylindrical coordinates,
there exist φt, θt and zt three real diffusion processes, such that Bt = exp(φt(cos(θt)X +
sin(θt)Y )) exp(ztZ) and: 

dφt = dB1
t +

1
2

√
k cot(

√
kφt)dt

dθt =
√
k

sin(
√
kφt)

dB2
t

dzt =
tan

(√
kφt
2

)
√
k

dB2
t

(2.23)

with (B1
t )t and (B2

t )t two real independent Brownian motions.

In particular we have a nice geometrical interpretation of this Brownian motion ob-
tained by Baudoin and Bonnefont in [10, 21, 20]:

• The process (Xt := Πk(Bt))t is a Brownian motion on Mk. Its spherical coordinates
(polar coordinates for k = −1) are given by (φt, θt) with respect to (N0, e0).

• zt− z0 is the signed swept area (modulo 4π) of Xt with respect to the fixed pole N0.

With this interpretation, as for the case of the free, step 2 Carnot groups, the Brownian
motion Bt is all characterized by (Xs)s≤t.
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Remark 2.1.3. Let consider the Brownian motion Bt = (Xt, zt) on the Heisenberg group
H. By identifying (φt, θt) with the polar coordinates of Xt, (φt, θt, zt)t satisfies the stochas-
tic system (2.23) with k = 0 (by passing to the limit):

dφt = dB1
t +

1
2φt
dt

dθt =
1
φt
dB2

t

dzt =
φt

2
dB2

t

(2.24)

with (B1
t )t and (B2

t )t two real independent Brownian motions. In fact, we can also identify
the Heisenberg group with a group of matrices. Then the cylindrical coordinates make
sense and the expression of the Brownian motion can be obtained from (2.24). Note also
that (2.22) is also true on the Heisenberg group with (φ, θ, z) 7→

√
φ2 + |z| defining an

homogeneous norm.

2.2 Couplings of Brownian motions on the Heisenberg
group

As in the examples given in the previous sections, a lot of subelliptic, and more gen-
erally hypoelliptic diffusions, are written under the form (Xt, zt := f((Xs)s≤t))t, with
(Xt)t an elliptic diffusion on a Riemannian manifold that we will call "the driving noise"
and f a functional (see [13] for some examples). Then, a strategy for coupling such
processes consists in choosing a coupling (Xt, X̃t)t of the driving noises and study the
induced process

(
(Xt, zt), (X̃t, z̃t)

)
t
. It gives numerous examples for couplings, successful

or not [29, 16, 22, 17, 39, 38, 37, 6, 7, 25, 6, 8]. This is the strategy used in all this thesis.

As seen in Subsection 2.1.4 and Subsection 2.1.5, the Heisenberg group seems to be
the simplest case (smallest dimension, curvature equal to 0) of all the structures we are
studying. The coupling problem on H has been dealt numerous times: see [17, 16, 39, 38,
37, 6, 22, 7, 44]. The starting idea of this thesis was to extend some of these couplings to
SU(2) and to SL(2,R). In particular, we have focused on two successful couplings:

• A successful co-adapted coupling proposed by Kendall in [37];

• A successful (and even efficient) non co-adapted coupling proposed by Banerjee,
Gordina and Mariano in [6].

In the rest of this section we are going to give a presentation of these two couplings
as it will give a better understanding of the new results we present in this work.

2.2.1 Kendall’s co-adapted successful coupling

On the Heisenberg group we have a nice and direct estimate for the subRiemannian
distance dcc between two Brownian motions. Let (Bt)t := (Xt, zt)t and (B̃t)t := (X̃t, z̃t)t
be two Brownian motions on H starting from (x, z) and (x̃, z̃) respectively. We have
B−1
t ⋆ B̃t = (X̃t −Xt, a+At) with At the signed swept area (starting from 0) between the
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paths (Xs)s≤t and (X̃s)s≤t and a = z̃ − z − 1
2
(x1x̃2 − x2x̃1). Then using the homogeneous

norm defined in (2.17), we directly have:

c1

(
Rt +

√
|At|

)
≤ dcc

(
(Xt, zt), (X̃t, z̃t)

)
≤ c2

(
Rt +

√
|At|

)
(2.25)

with Rt = ∥Xt − X̃t∥2. To construct his successful coupling, Kendall defines a coupling
of the driving noises (Xt, X̃t)t. As explained before this induces a coupling (Bt, B̃t)t on H
and the distance between Bt and B̃t can be controlled by looking simultaneously at the
two processes Rt and At. The coupling strategy consists in switching between the two
Markovian couplings introduced in Subsection 2.1.1: the synchronous coupling and the
reflection coupling. We have already described the behaviour of (Rt)t during these two
couplings. It is also easy to study the process (At)t. In particular:

• During the synchronous coupling (At)t acts (up to a multiplicative constant) like a
Brownian motion and (Rt)t stays constant.

• During the reflection coupling this is
(
Rt

2

)
t
which acts (up to a multiplicative con-

stant) like a Brownian motion.

By using these two couplings, we can assume for simplicity that R0 > 0 and a = 0. The
construction is the following (it is also pictured by Figure 2.1):

1. The reflection coupling is used until the process |At|
R2

t
starting at 0 takes the value κ.

2. While the process |At|
R2

t
starting at κ satisfies |At|

R2
t
> κ− ϵ, the synchronous coupling

is used.
Note that, as Rt stays constant during this step, |At|

R2
t

is a Brownian motion, up to a
multiplicative constant, and will hit κ− ϵ in an almost surely finite time.

3. While the process |At|
R2

t
starting at κ − ϵ satisfies |At|

R2
t
< κ, the reflection coupling is

used.

Steps 2 and 3 are iterated until Rt = 0. Because of this construction, when it occurs,
At = 0. As the distance stays constant during each fixed-distance coupling step, if we
omit these times, Rt is moving as for a simple reflection coupling and so will hit 0 in an
almost surely finite time.

S

R

?

Rt

|A
t|

R Reflexion coupling
S Synchronous coupling
? Reflexion or synchronous coupling

|At|
R2

t
= κ

|At|
R2

t
= κ− ϵ

Figure 2.1: Kendall’s strategy
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To prove that this coupling is successful, it is necessary to show that there are not
too many switches between the two coupling steps. As the different coupling steps are
co-adapted, the final coupling is co-adapted too. However it is not Markovian because
of the hysteresis phenomenon which occurs for κ − ϵ ≤ |At|

R2
t
≤ κ (see the region labelled

with the symbol ? in Figure 2.1): to continue the construction after time t one will need
the knowledge of all

(
|As|
R2

s

)
s≤t

to decide if the strategy uses the reflection coupling or the
synchronous coupling.

In [37], Kendall, also generalised this coupling to free, step 2 Carnot groups by adding
rotations to the usual reflection coupling.

Remark 2.2.1. Although the co-adapted successful coupling constructed by Kendall is
interesting, it does not provide any upper bound for the coupling rate, as pointed in [6].
However, there is a lower bound estimate: for any starting points, there exists a constant
c such that, for t large enough, the coupling rate satisfies:

P(τ > t) ≥ c× 1√
t
. (2.26)

In fact, (2.26) is satisfied by any co-adapted coupling (Bt, B̃t) of Brownian motions on
H. The main idea behind this inequality is that, unless we use a synchronous coupling in
which case τ = +∞, there will exists t0 < τ such that Xt0 ̸= X̃t0. As the coupling rate
after time t0 cannot be better than the one obtained with a reflection coupling on R2, one
get (2.26).

2.2.2 The non co-adapted successful coupling of Banerjee-Gordina-
Mariano

The second strategy of coupling on H, that we present here, is not co-adapted but suc-
cessful and even efficient. It has been proposed by Banerjee, Gordina and Mariano in [6]
and leads to the following theorem:

Theorem 2.2.2 (Banerjee, Gordina, Mariano [6]). Let g = (x, z), g̃ = (x̃, z̃) ∈ H and
ζ ∈ R such that g−1 ⋆ g̃ = (x̃ − x, ζ). There exists a non co-adapted successful coupling
(Bt, B̃t)t on H starting at (g, g̃) and a constant C that does not depend on the starting
points g and g̃ such that for all t ≥ max(2π||x− x̃||2, 4π|ζ|):

P(τ > t) ≤ C1
||x− x̃||2√

t
+ C2

|ζ|
t
. (2.27)

Moreover, this coupling is efficient.

Before explaining the strategy, we make some important remarks.

Remark 2.2.3. For |ζ| < 1, using the equivalence relation (2.18), we deduce from (2.27),
that P(τ > t) ≤ C̃ dcc(g,g̃)√

t
with C̃ a constant that does not depend on g and g̃. Moreover,

if x = x̃, then ∥g−1 ⋆ g̃∥2H = |z − z̃| and we have P(τ > t) ≤ C̃ dcc(g,g̃)
t

.

Remark 2.2.4. Using the results from Remarks 2.2.1 and 2.2.3, we can deduce that, if
the starting points are in the same fiber, co-adapted coupling strategies cannot produce

27



any efficient couplings. It is quite interesting to notice that Banerjee and Kendall also
proposed in [8] a non co-adapted efficient coupling of Kolmogorov diffusions by using a
strategy similar to the one used in Theorem 2.2.2. This suggests that using non co-adapted
constructions should be better to obtain efficient couplings for hypoelliptic diffusions.

We now explain the strategy used by Banerjee, Gordina and Mariano to prove Theorem
2.2.2. The main point is to describe the strategy when the Brownian motions (Bt)t and
(B̃t)t on H start from the same fiber, in the sense that X0 = X̃0. Indeed, by using a
reflection coupling on R2, one can obtain Xt = X̃t in an a.s. finite time. Assuming that
X0 = X̃0, the main idea of this coupling is to divide the time in intervals of constant
length and to define

(
Xt, X̃t

)
t

such that the two processes are equal at the end of each
interval. Let us explain the method on the first interval [0, T ]:

• One take X1
t = X̃1

t .

• 0ne use the finite-look-ahead coupling with the Karhunen-Loève expansion to define
a coupling of (X2

t , X̃
2
t ), as presented in Subsection 2.1.1.

According to (2.3) and (2.4), one have:

X2
t − X̃2

t =
√
T
∑
j≥1

(
ξj − ξ̃j

) √
2

jπ
sin

(
jπt

T

)
+

t√
T
(ξ0 − ξ̃0). (2.28)

By taking ξk = ξ̃k for k = 0 and k ≥ 2, one obtain X2
t − X̃2

t =
(
ξ1 − ξ̃1

) √
2T
π

sin
(
πt
T

)
. In

particular, at time t = T , one have XT = X̃T and zT − z̃T = z0 − z̃0 +
(

ξ1−ξ̃1
2

)
K(T ) with

K(T ) :=
√
2T
π

∫ T

0
sin(πt

T
)dX1

t
L∼ N

(
0, 4T

2

π2

)
. Then the coupling is successful at time T if

and only if
ξ1 − ξ̃1

2
=

(zT − z̃T )− (z0 − z̃0)

K(T )
. (2.29)

The coupling of the two Gaussian variables (ξ1, ξ̃1) is then chosen such that (2.29) oc-
curs with a probability large enough. Note that, here Banerjee Gordina and Mariano
obtain this by constructing a mixed reflection/synchronous coupling of Brownian motions
(Wt, W̃t)t starting from (0, 0) and by choosing ξ1 = W1 and ξ̃1 = W̃1. This particular
strategy for coupling two Gaussian variables permits to compare the coupling time τ to
the first hitting time of a time-changed Brownian motion (this change of time depends
on K(T )). We note that the knowledge of the path of X1 on all the interval [0, T ] is
needed to construct the coupling

(
X2

t , X̃
2
t

)
t∈[0,T ]

. In particular, the obtained coupling is

not co-adapted.

This coupling provides inequalities for the gradient of the heat semi group and for
harmonic functions as in Subsection 2.1.2. The first result is obtained by using Inequality
(2.8) together with the estimate of the coupling rate (2.27). For any bounded measurable
function f on H, there exists a positive constant C such that:

||∇HPtf ||∞ ≤ C√
t
||f ||∞ ∀t ≥ 1 (2.30)
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with |∇H(u)|(x) denoting the length of the horizontal gradient associated to H for any
function u : H → R Lipschitz and ∥∇H(u)∥∞ its sup-norm. In particular, if f is harmonic
and bounded on H it is constant.

The second result is similar to Inequality (2.10) obtained by Cranston. Let denote by
∥ · ∥H the norm induced by the subRiemannian metric on H. We consider a domain D on
H, g ∈ D and δg := d(g,Dc). Then there exists a constant C that do not depend on the
domain D or g such that, for any f ∈ C(D̄) smooth, non-negative and harmonic on D:

∥∇Hf(g)∥H ≤ C

(
1 +

1

δg
+

1 + (1 + δg)
3

δ4g

)
f(g). (2.31)

This is obtained by using Inequality (2.11) and by obtaining an upper bound of

P
(
τ > τD(B) ∧ τD(B̃)

)
proportional to dcc(g, g̃). This result is not direct and more difficult than for the Rie-
mannian case. One of the main idea is to use the Burkholder-Davis-Gundy Inequalities.
However, as the coupling is not co-adapted, the coupling time τ is not a stopping time
for the natural filtration of each of the Brownian motions. Then it is necessary to use
an enlarged filtration. We do not give more details as this result will be generalised in
Chapter 6.

From this, we can also obtain the Cheng-Yau inequality: there exists a constant C
such that, for any g0 ∈ H, r > 0 and for any positive harmonic function f on the open
ball B(g0, 2r),

sup
g∈B(g0,r)

∥∇H ln f(g)∥H ≤ C

r
. (2.32)

2.3 Coupling results on SU(2) and SL(2,R)

As announced before, one of the main line of this thesis is to use the similarities between
the Brownian motion on H, SU(2) and SL(2,R) to extend the two couplings presented in
Subsections 2.2.1 and 2.2.2 from H to SU(2) and SL(2,R). Indeed for these three model
spaces, the Brownian motion can be written (Xt, zt)t with (Xt)t a Brownian motion on
R2/S2/H2 and (zt)t its associated swept area.

We have obtained two results on SU(2): one successful co-adapted coupling and one
successful non co-adapted coupling. In particular, for the non co-adapted coupling, the
coupling rate is exponentially decreasing and proportional to the initial distance between
the processes. For the special case when the Brownian motions start from the same
fiber we have also obtained a non co-adapted successful coupling (with also exponential
coupling rates) on SL(2,R). Please note that, more recently another non co-adapted
coupling strategy have been developed by Luo and Neel [44] for the subelliptic Brownian
motions on H, SU(2), SL(2,R) and also on the universal cover of SL(2,R) and on non-
isotropic Heisenberg groups of any dimension. Their strategy, based on the fact that
the Riemannian manifolds Mk have good properties of symmetry, uses isometries defined
conditional to the coupling time of the area parts of the processes. For Brownian motions
starting from the same fiber, their strategy is maximal. For SU(2) and SL(2,R) they also
obtain an exponential decreasing for the estimation of the coupling rate.
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The results presented in this subsection have been the object of three publications:

[18] Magalie Bénéfice, Marc Arnaudon, and Michel Bonnefont. Couplings of Brownian
motions on SU(2,C). In Geometric science of information. Part I, volume 14071 of Lecture
Notes in Comput. Sci., pages 592–600. Springer, Cham, [2023] ©2023

[25] Magalie Bénéfice. Couplings of Brownian motions on SU(2) and SL(2,R).
Stochastic Processes and their Applications, page 104434, 2024

[24] Magalie Bénéfice. Non co-adapted couplings of Brownian motions on subRieman-
nian manifolds. https://arxiv.org/abs/2312.14512, 2023.

As in subsection 2.1.5, we use the notations Ek, Mk and Πk with k ∈ {±1}. We also
use the decomposition Bt = (Xt, zt) of the Brownian motion described previously.

2.3.1 Comparison between two Brownian motions

As for the Heisenberg group we have a nice (but not immediate) estimate of the sub-
Riemannian distance between two Brownian motions. Let (Bt)t := (Xt, zt)t and (B̃t)t =
(X̃t, z̃t)t be two Brownian motions on Ek starting from g = (x, z) and g̃ = (x̃, z̃). Using
cylindrical coordinates, we prove (see Subsection 3.2.6) that B−1

t B̃t = (ρt,Θt, ζt) with:

• ρt the usual Riemannian distance on Mk between Xt and X̃t;

• ζt ≡ At+ ζ0 mod (4π) where At is the signed swept area between the paths (Xs)s≤t

and (X̃s)s≤t (a more consistent definition of At will be given in Definition 3.2.1).

Then we obtain the following equivalence which is quite similar to (2.25):

c1
(
ρ2t + |ζt|

)
≤ d2cc(Bt, B̃t) ≤ c2

(
ρ2t + |ζt|

)
with c1 and c2 two constants as in (2.22).

2.3.2 General construction of couplings

To construct general couplings of Brownian motions on Ek we use two different strategies.
The first strategy will be used to define and study general co-adapted couplings whereas
the second strategy will be used to construct non co-adapted couplings and only some
specific co-adapted couplings.

First strategy To extend the co-adapted successful coupling result from Kendall de-
scribed in Subsection 2.2.1 from H (the flat case) to SU(2) (a curved manifold case), we
need to define co-adapted couplings and the behaviour of the two processes (ρt)t and (At)t
introduced above. Then it is convenient to define a coupling (Xt, X̃t)t on Mk by using
the Itô depiction of the Brownian motions (Xt)t and (X̃t)t in some well chosen moving
frames (in the sense given by Emery in [30]).

Supposing that Xt ̸= X̃t and that X̃t is not in the (Riemannian) cut locus of Xt in
Mk for all 0 ≤ t ≤ T (with T the stopping time associated to these hypothesis), we can
define two Brownian motions (Xt)t∈[0,T ] and (X̃t)t∈[0,T ] described by the equations:

d∇Xt = dU1(t)e
X
1 (t) + dU2(t)e

X
2 (t) and d∇X̃t = dV1(t)e

X̃
1 (t) + dV2(t)e

X̃
2 (t) (2.33)
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where:

• eX1 (t) :=
exp−1

Xt
(X̃t)

ρt
, with exp−1

Xt
(X̃t) = γ̇(0), γ the unique geodesic such that γ(0) = Xt

and γ(1) = X̃t;

• eX2 (t) such that (eX1 (t), e
X
2 (t)) is a direct orthonormal basis on TXtS

2;

• (eX̃1 (t), e
X̃
2 (t)) is the direct orthonormal basis on TX̃t

S2 obtained by parallel transport
of (eX1 (t), eX2 (t)) along the geodesic γ joining Xt and X̃t.

This defines a coupling (Xt, X̃t)t which is characterized by its starting points and the joint
law of (U(t), V (t))t. By choosing a co-adapted coupling of (U(t), V (t))t, this construction
describes a wide range of co-adapted couplings (Xt, X̃t)t on Mk. This also produces a
co-adapted coupling on Ek. Recalling that t < T (i.e. Xt ̸= X̃t and X̃t is not in the cut
locus of Xt), we prove that the behaviour of the processes ρt and At is then given by the
following system of stochastic differential equations:

dρt = dV1(t)− dU1(t) +
√
k cot(

√
kρt)dt−

√
k

sin(
√
kρt)

dU2(t) · dV2(t) (2.34)

dAt =
tan(

√
kρt
2

)
√
k

(dU2(t) + dV2(t)) +
1

2 cos2(
√
kρt
2

)
(dU2 · dV1(t)− dV2(t) · dU1(t))

(2.35)

dρt · dAt =
1√
k
tan

(√
kρt
2

)
(dV1(t) · dU2(t)− dU1(t) · dV2(t)) (2.36)

with dUi(t) · dVj(t) denoting the derivative of the joint quadratic variation of Ui and Vj.
These results will be stated later in Proposition 4.1.5.

Different examples of interesting choices of (U, V ) will be presented in Subsection 4.1.4.
In particular, to construct a successful co-adapted coupling on SU(2), we shall need:

• a reflection coupling on Mk for which ρt is a Brownian motion (up to a multiplicative
constant) with a drift having the same constant sign than k (see Example 4.1.11).
This is the coupling obtained when (Ut, Vt)t is the reflection coupling on R2.

• a synchronous coupling on Mk for which (Rt)t is deterministic. Because of the
curvature, (Rt)t is not constant (see Example 4.1.10). In particular, for k = 1, this
(Rt)t is decreasing. This is the coupling obtained by taking Ut = Vt.

• a "fixed distance coupling" on Mk for which (ρt)t is constant and (At)t is a Brown-
ian motion up to a multiplicative constant (see Example 4.1.13). This coupling is
obtained by adding a noise to the the synchronous coupling.

Second strategy To describe the coupling (Bt = (Xt, zt), B̃t = (X̃t, z̃t))t on Ek, we can
also directly use the cylindrical coordinates satisfying the system (2.23):

dφt = dB1
t +

√
k
2
cot(

√
kφt)dt

dθt =
√
k

sin(
√
kφt)

dB2
t

dzt =
tan

(√
kφt
2

)
√
k

dB2
t

and


dφ̃t = dB̃1

t +
√
k
2
cot(

√
kφ̃t)dt

dθ̃t =
√
k

sin(
√
kφ̃t)

dB̃2
t

dz̃t =
tan

(√
kφ̃t
2

)
√
k

dB̃2
t

.
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It is then enough to construct a coupling
(
(φt, θt), (φ̃t, θ̃t)

)
t
, that is, the coupling of the

spherical/polar coordinates of the Brownian motions (Xt)t and (X̃t)t on Mk relative to
the reference pole N0. As an example for k = 1, when (Xt)t and (X̃t)t start from a same
meridian of the sphere, that is, φ̃0 = π − φ0, we easily obtain the reflection coupling,
defining the Brownian motion by symmetry with respect to the equator. To do that
we just have to take B̃1

t := −B1
t and B̃2

t := B2
t . When the processes start from a same

parallel, we also have an easy construction of the processes by symmetry with respect to a
meridian. When the initial positions of X0 and X̃0 do not satisfy the two previous cases, a
solution is to consider another system of spherical coordinates by choosing another couple
(N, e) ∈ TM1 of reference such that the new process

((
φ
(N,e)
t , θ

(N,e)
t

)
,
(
φ̃
(N,e)
t , θ̃

(N,e)
t

))
t

satisfies one of the two previous initial conditions.

This change of coordinates is convenient and can be done in general for k ∈ {−1, 1}.
However, one has to take extra care to reconstruct the full coupling (Bt, B̃t)t on Ek. Indeed,
it is natural to introduce the process

(
I
(N,e)
t

)
t
starting at z0 such that

(
φ
(N,e)
t , θ

(N,e)
t , I

(N,e)
t

)
t

satisfies the system (2.23). Then, I(N,e)
t is (up to a constant) the area swept by (Xs)s≤t

relative to the new pole N and in general it is will not be equal to zt. In Section 3.2.7,
we study the relation between

((
Xt, I

(N,e)
t

)
,
(
X̃t, Ĩ

(N,e)
t

))
t
and

(
(Xt, zt), (X̃t, z̃t)

)
t
. More

precisely we give an expression (modulo 4π) of the coordinate (ζt)t of B−1
t B̃t in function

of
(
Xt, I

(N,e)
t

)
t
and

(
X̃t, Ĩ

(N,e)
t

)
t
.

Comparison of the two strategies If this first described strategy is well adapted to
the construction of co-adapted couplings on Mk (and thus on Ek), it cannot be used to
construct non co-adapted couplings. Indeed, (2.33) makes sense only if the moving frames
are adapted to the same filtration which would not be the case with a non co-adapted
strategy. With the second strategy, we are able to define non co-adapted couplings. As
explained above it also permits the construction of co-adapted couplings, such as the
reflection coupling for k = 1. However, it is not obvious that we can define a fixed
distance coupling on Mk by using spherical/polar coordinates whatever the couple (N, e)
of reference.

2.3.3 Co-adapted successful coupling on SU(2)

We present here the construction of our first coupling result (found later in Subsection
4.2.1) :

Theorem 2.3.1. For all a ∈ R, there exists a co-adapted coupling (Xt, X̃t) of Brownian
motions on S2 starting from (x, x̃) such that τ := inf{t ≥ 0 | ρt = 0 and At = a} is
a.s finite. In particular, as ζt ≡ ζ0 + At mod (4π), this induces a successful coupling on
SU(2).

The strategy is similar with the one given in Subsection 2.2.1 but needs some adjust-
ments due to the curvature. The first major difference is that we use the fixed distance
coupling instead of the synchronous coupling. The second one is that if ρt is too close to
π, it is possible to switch too fast from reflection coupling to fixed-distance coupling as the
quadratic variation of the swept area will be very large. To avoid this possibility, an idea
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is to introduce a constant 0 < η < π and the stopping time τη := inf{t ≥ 0 | ρt ≥ π − η}.
If τ > τη, which does not occur a.s., we interrupt the coupling and we use the synchronous
coupling to decrease ρt until it takes the initial value ρ0. This strategy can then be iterated
independently.

Note that, to obtain a coupling in SU(2), we only need to have At ≡ −ζ0(4π) instead
of At = −ζ0. Thus we only need to stop reflection coupling if At enters intervals of the
form:

[−ζ0 + 4nπ + κρ2t ,−ζ0 + 4(n+ 1)π − κρ2t ] , n ∈ Z.

For a good choice of κ, this doesn’t occur for ρt close to π (see Figure 2.2). Then we don’t
need to introduce τη to obtain a successful coupling.

ρ0 π − η
−ζ0 − 4π

−ζ0

−ζ0 + 4π

F

F

R

?

?

ρt

A
t

R Reflexion coupling
F Fixed-distance coupling
? Reflexion or fixed-distance coupling

At = −ζ0 + 4nπ ± κR2
t , n = −1, 0, 1

At = −ζ0 + 4nπ ± (κ− ϵ)R2
t

Figure 2.2: Co-adapted coupling on SU(2)

2.3.4 Non co-adapted successful coupling on SU(2)

The second result we present here is the explicit construction of a non co-adapted suc-
cessful coupling on SU(2) by using the finite-look-ahead coupling. It will be proven later
in Chapter 5.

Theorem 2.3.2. Let g = (x, z), g̃ = (x̃, z̃) ∈ SU(2). There exists a non co-adapted
successful coupling of Brownian motions (Bt, B̃t)t on SU(2) starting at (g, g̃). Moreover,
denoting τ := inf{t ≥ 0| Bt = B̃t}, there exist C and c some non negative constants that
do not depend on the starting points of the process, such that, for all t > 2:

P(τ > t) ≤
(
Ce−ctdcc(g, g̃)

)
∧ 1. (2.37)

Moreover, if x = x̃, for all 0 < q < 1, there exist Cq, c̃ some non negative constants that
do not depend on the starting points g and g̃ such that for all t > 1:

P(τ > t) ≤
(
Cqe

−c̃tdcc(g, g̃)
2q
)
∧ 1. (2.38)

Please note that c̃ does not depend on the choice of q.

Remark 2.3.3. Note that, in the announcement of this theorem we made the constraints
t > 1 and t > 2. However, by changing the constants C and Cq, this can be replaced by
t > t0

2
and t > t0 for any t0 > 0. For t0 small enough, the new constants C(t0) and Cq(t0)

would be of order 1
t0

. Note also that the coupling strategy then depends on the choice of
t0. More details on this will be found in Remark 5.2.6.
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As for the strategy used for the Heisenberg group in Subsection 2.2.2, the key point is
to treat the case when two Brownian motion start from the same fiber, that is X0 = X̃0.
Indeed, using first a reflection coupling on S2, it is possible to reach this situation. Note
that it is then important to control the value of the swept area at the end of this reflection
coupling (this is also the case in H).

As announced before, we construct a coupling of the spherical coordinates (φt, θt) and(
φ̃t, θ̃t

)
satisfying the two first equations in (2.23). In particular, we notice that θt is

a martingale, and thus can be written as a changed-time Brownian motion (Cσ(t))t with
σ(t) only depending on (φs)s≤t. We can do the same for θ̃t = C̃σ̃(t). On a deterministic
interval of time [0, T ], we take:

1. φt = φ̃t. In particular, σ(t) = σ̃(t).

2. We make the similar decomposition as for the Heisenberg group, using Brownian
bridges and the Karhunen-Loève formula, but applied on (Cσ, C̃σ)σ on the interval
of time [0, σ(T )].

With this construction we obtain again XT = X̃T and zT − z̃T = z0 − z̃0 +
(

ξ1−ξ̃1
2

)
K(T ).

However, contrary to the case of the Heisenberg group the random variable K(T ) is not
Gaussian and, in fact, is quite difficult to study (we are not even sure that this variable
admits a density) because of the curvature and especially because of the change of time
σ(t). The strategy then needs more adaptations. Using the fact that zt takes its values
in the compact [−2π, 2π], we can obtain a positive lower bound for P(zT = z′T ) that does
not depend on the starting points. The iteration of the previous construction can then be
compared to the iteration of identically and independently distributed experiments. Thus,
we obtain a successful coupling with a coupling rate exponentially decreasing. Moreover,
for any t0 > 0 and 0 < q < 1, we can obtain some constants Cq and c that do not depend
on the starting points and such that:

P(τ > t) ≤ Cqe
−ct|z − z̃|q for all t > t0. (2.39)

In particular, under the above condition x = x̃, we have:

c1
√

|z − z̃| ≤ dcc(g, g̃) ≤ c2
√

|z − z̃|

with c1 and c2 two constant only depending on the structure of SU(2) (see relation (2.22)).
This leads to Inequality (2.38).

Remark 2.3.4. Note that the above construction can also be done on the Heisenberg
group. It corresponds to work in polar coordinates and not in Cartesian coordinates as it
is done in [6]. However we cannot say if this new coupling is successful on H. Indeed, as
the swept area is not bounded in the Heisenberg group, to obtain a successful coupling it
seems that we would need to iterate our construction for geometrically increasing intervals
of time T . However, as we lack information on K(T ) for T too large, we cannot make
any conclusion. Note that we recover Cartesian coordinates when the pole of the polar
coordinates goes to infinity in R2.
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2.3.5 Successful couplings on SL(2,R)

If the Brownian motions do not start from the same fiber, there does not exist any (almost
surely) successful couplings on SL(2,R). If such a coupling had existed, there would
have been an (almost surely) successful coupling (Xt, X̃t)t on the hyperbolic plane H2.
However, because of the negative curvature of H2, the reflection coupling have a repulsive
effect on the Brownian motions. In fact, there do not exist any successful couplings on
H2. As a proof, we can use Theorem 5.4 from Wang [55] (this result can be applied to
every Riemannian manifold whose Ricci curvature is bounded below): as there exist some
non constant bounded harmonic functions on the Riemannian manifold H2, there is no
successful coupling of Brownian motions on it.

We thus look at the case where the Brownian motions start from the same fiber. Using
exactly the same methods than for SU(2), we obtain:

Theorem 2.3.5. Let g = (x, z), g̃ = (x̃, z̃) ∈ SL(2,R). We suppose that x = x̃.
There exists a non co-adapted successful coupling of Brownian motions (Bt, B̃t)t on SL(2,R)
starting at (g, g̃). Moreover, for all 0 < q < 1, there exist Cq and c some non negative
constants that do not depend on the starting points of the process, such that, (2.38) is still
true for all t > 1.

This result will be later stated in Theorem 5.1.1.

Please note that, contrary to the results by Luo and Neel [44], we cannot extend the
strategy above to the universal covering of SL(2,R). Indeed, as for the Heisenberg group,
for instance we are not able to know if the coupling strategy is successful when the swept
area is not considered in a bounded set. In the future, we hope that we obtain a better
understanding of K(T ) that would allow us to answer this problem. Note also that it
is not possible to obtain a successful co-adapted coupling if the starting points are in
the same fiber. Indeed, except by taking Bt = B̃t (which is clearly not a solution to our
problem), any co-adapted coupling would get (Xt)t away from (X̃t)t with a probability
strictly less than 1 to make them meet again.

2.3.6 Gradient inequalities

As for the Heisenberg group, by using the results from Theorems 2.3.2 and 2.3.5 together
with (2.8), we directly obtain:

Corollary 2.3.6. There exists C > 0 such that, for every function f ∈ C(SU(2)) and
t > 2:

||∇HPtf(g)||H ≤ 2||f ||∞Ce−ct a.e.. (2.40)

In particular, if f is harmonic on SU(2), then it is constant.

We also get some results for SL(2,R):

Corollary 2.3.7. Let g = (x, z), g̃ = (x̃, z̃) ∈ SL(2,R). We suppose that x = x̃ and we
consider a bounded measurable function f on SL(2,R). For all q ∈]0, 1[, there exist Cq, c̃
some constants that do not depend on g, g̃ such that for t > 1:

|Ptf(g)− Ptf(g̃)| ≤ 2||f ||∞Cqe
−ctdcc(g, g̃)

2q.

Moreover, if f is harmonic and bounded, it is constant on each fiber above x, that is, on
the sets of the form {(x, z) ∈ SL(2,R) | z ∈ [−2π, 2π]} .
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These results will be proven in Section 5.4.
Note that in [4], Arnaudon and Thalmaier obtained some expressions for ∇HPtf(g)

on SU(2) (Theorem 3.2 from [4]) but also on SL(2,R) (Theorem 7.1 from [4]). These
expressions are obtained in function of an adapted process (ϕt)t leaving in the cotangent
bundle at the point g. In particular, this leads to:

||∇HPtf(g)||H ≤ ||f ||∞ × C(t) with C(t) <∞.

For now, it does not seem to exist any easy estimate for (ϕt)t and thus for C(t) contrary
to our result in Corollary 2.3.6.

2.4 Coupling results on the free, step 2 Carnot groups

After this work on SU(2) and SL(2,R), we have looked at couplings on the free, step 2
Carnot groups where we have more than one Lévy area. The main idea is to consider a
finite-look-ahead coupling (as in 2.1.1) and to chose more than one non trivial coupling in
the coupling of the Gaussian sequences (ξj, ξ̃j). With this idea we have extended the cou-
pling from [6], as well as its applications, to the general case of free, step 2 Carnot groups.
In particular, we obtain explicit constants for the coupling rate. We have also obtained an
explicit construction of a non co-adapted successful coupling for any homogeneous, step
2 Carnot groups.

The same idea also has permitted to develop one new strategy of coupling on the
Heisenberg group and more generally on all free, step 2 Carnot groups. The goal of this
last strategy is not to obtain a successful coupling but to obtain an efficient coupling for
the Brownian motions at a fixed time T > 0 that we call here a One sweep coupling. It is
based on a nice representation of the Lévy area obtained through a Legendre expansion
of the standard Brownian motion. The obtained coupling rate P(τ > T ) has then the
same order than the one obtained with the non co-adapted successful coupling strategy
but the method is more simple. It also leads to explicit constants. We have just begun to
look at the applications but we present here a result based on a change of probability that
provides several gradient inequalities, including a Bismut-Elworthy-Li type representation
of the semi-group.

The articles associated to these works are the following:
[26] Magalie Bénéfice. Non co-adapted successful couplings of Brownian motions on

the free, step 2 carnot groups. https://arxiv.org/abs/2407.06593, 2024
[3] Marc Arnaudon, Magalie Bénéfice, Michel Bonnefont, and Delphine Féral. A

coupling strategy for Brownian motions at fixed time on Carnot groups using Legendre
expansion. https://arxiv.org/abs/2407.04321, 2024

We remind that we denote by Gn the free, step 2 Carnot group. In particular, we
identify G2 with the Heisenberg group H.

2.4.1 Non co-adapted successful coupling on the free, step 2 Carnot
group

The first result presented here will be stated later as Theorem 6.1.1. It is the extension
of Theorem 2.2.2 to Gn:
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Theorem 2.4.1. Set n ≥ 2. Let g = (x, z), g̃ = (x̃, z̃) be two points in Gn and ζ ∈ so(n)
such that g−1 ⋆ g̃ = (x̃ − x, ζ). There exists a successful coupling of Brownian motions(

Bt, B̃t

)
t
on Gn starting from (g, g̃). Moreover, for all t ≥ βn∥x− x̃∥22 we have:

P(τ > t) ≤
(
C1(n)

||x− x̃||2√
t

+ C2(n)
||ζ||2
t

)
(2.41)

with:

• βn = 2π(n− 1)2
√

2(n− 1);

• C1(n) = 4
√
βn(n− 1) + 1√

π
= 4

√
2π(n− 1)2(2(n− 1))

1
4 + 1√

π
;

• C2(n) = 2βn = 4π(n− 1)2
√

2(n− 1).

In particular Remark 2.2.3 is still true. Compared to the strategy in Subsection 2.2.2
that is used for n = 2, the main difficulty for n ≥ 3, is that we have to deal with n(n−1)

2

Lévy areas instead of just one and that, from a quick look, there is no reason that moving
one area will not impact another one. As in the previous sections we denote Bt = (Xt, zt),
B̃t = (X̃t, z̃t) and B−1

t B̃t = (X̃t −Xt, ζt).

By using the reflection coupling if needed, we can suppose that the processes start
from the same fiber, that is, X0 = X̃0. The strategy is then to work on the area matrix
ζt line by line and to use the fact that ζt is skew symmetric. We explain the strategy on
the first line of the matrix. Let T > 0 and t ∈ [0, T ].

• We chose Xj
t = X̃j

t for all 2 ≤ j ≤ n. In particular, this induces that for all
2 ≤ i, j ≤ n, ζ i,jt stays constant;

• We couple (X1
t , X̃

1
t ) by using the finite-look-ahead coupling given by Equations (2.4)

and (2.28) with ξi = ξ̃i for i = 0 and i ≥ n. Let denote ξ := (ξi)1≤i≤n−1 and
ξ̃ := (ξ̃i)1≤i≤n−1 the two Gaussian vectors left to couple and vt the n−1-dimensional
vector induced by first line of ζt (by skew-symmetry, ζ1,1t = 0 and can be forgotten).
Then we have:

vT = v0 + A(T )
ξ − ξ̃

2
(2.42)

with A(T ) a matrix whose entries are some independent Gaussian variables con-
structed from the paths of all the synchronous coupled coordinates (Xj

t )t∈[0,T ],
2 ≤ j ≤ n. The idea used in this work is to chose a coupling of (ξ, ξ̃) which is
trivial in the directions induced by (A(T )−1v0)

⊥. This way, we get:

ξ − ξ̃

2
=
α− α̃

2

A(T )−1v0
∥A(T )−1v0∥2

(2.43)

with α and α̃ two real Gaussians left to couple. In particular, with this choice, at
time T , either vT is 0 (and thus the first line and the first column of the matrix
ζT are 0), either, it is collinear to v0. The rest of the construction is then done
according to the strategy used on H. In particular, using the fact that the entries
of the matrix A(T ) are some independent Gaussian variables, Inequality (2.41) is
obtained from some properties of the Wishart distribution.
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From this construction, we directly obtain an estimate of the total variation distance
between the laws of the Brownian motion (see Corollary 6.1.11). We also obtain the
estimate (2.30) of the horizontal gradient inequality for the heat semi group on Gn with
an explicit constant (see Corollary 6.3.1). Please note that these results are also obtained
with the strategy presented in the next subsection (Subsection 2.4.2) where we obtain
better estimates.

As for the Heisenberg group we can obtain results for the gradient of harmonic func-
tions similar to (2.31) and (2.32). The details of the estimates can be found in Subsection
6.3.2. The strategy is not so different from the one developed by Banerjee, Gordina and
Mariano aside from the fact that we have to deal with the increase of the dimension. We
also have to take extra care as the choice of the coupling (ξ, ξ̃) in (2.43) is constructed
according to a direction depending on all the paths (Xj

t )t∈[0,T ] with 2 ≤ j ≤ n.

As a corollary of Theorem 2.4.1 we also obtain the existence of a successful coupling
on all homogeneous Carnot groups. Indeed, considering any homogeneous Carnot group
G of rank n, we have raised in subsection 2.1.4 the existence of a surjective morphism
ϕ from Gn to G. The point is that, if (Bt)t is a Brownian motion in Gn, (ϕ(Bt))t is a
Brownian motion on G. By choosing preimages that conserves the distance dcc(a, ã) as in
Relation (2.19), we also obtain the gradient inequality (2.30) with explicit constants.

2.4.2 A new strategy of coupling on the free, step 2 Carnot groups
(One Sweep coupling)

The last result of this thesis that we will present here is a new strategy of non co-adapted
coupling on the free, step 2 Carnot groups. Its is based on the expansion of the Brownian
motion with Legendre polynomials. This is a joint work with Marc Arnaudon, Michel
Bonnefont and Delphine Féral [3]. For T > 0 and for two starting points (g, g̃), the idea is
to construct a coupling of Brownian motions (Bt, B̃t)0≤t≤T with an estimate of P(BT ̸= B̃T )
comparable to the one obtained for the quantity P(τ > T ) in Subsections 2.2.2 and 2.4.1.

Setting n ≥ 2, we obtain the following theorem (it will be also stated later as Theorem
7.2.1):

Theorem 2.4.2. Let T > 0, (g, g̃) ∈ G2
n and ζ ∈ so(n) such that g−1g̃ = (x̃−x, ζ). There

exists a coupling (BT , B̃T ) of Brownian motions at time T and starting at (g, g̃) such that:

dTV

(
L(BT ),L(B̃T )

)
≤ P(BT ̸= B̃T ) ≤ C1(n)

∥x̃− x∥2√
T

+ C2(n)

√
2∥ζ∥2
T

(2.44)

with

C2(n) :=
1√
π

(
6
√
n+

4√
n

)
and C1(n) :=

1√
2π

+

√
2(n− 1)

3
C2(n). (2.45)

As said before, we obtain better constants than with the previous successful coupling
and this coupling also induces estimates of the horizontal gradient of the heat-semi group
(2.30) with these update constants.

For g = (x, z) and g̃ = (x̃, g̃), we explain briefly the strategy used to construct
(BT , B̃T ) =

(
(XT , zT ), (X̃T , z̃T )

)
. Note that, contrary to the previous non co-adapted

constructions presented here, we do not need to make any assumption on x and x̃.
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Using the expansion of the Brownian motion in Legendre polynomials as done by
Kuznetsov in [42], we have, for XT :

XT = x+
√
Tξ0, ZT = z +

1

2

√
Tx⊙ ξ0 + T

∑
k≥0

αkξk ⊙ ξk+1, (2.46)

X̃T = x̃+
√
T ξ̃0, Z̃T = z̃ +

1

2

√
T x̃⊙ ξ̃0 + T

∑
k≥0

αkξ̃k ⊙ ξ̃k+1, (2.47)

where (αk)k≥0 are some deterministic constants that will be given in Chapter 7 and
(ξk)k (resp. (ξk)k) is a sequence of independent Rn-valued Gaussian with the distribu-
tion N (0, In). Note that, here we choose an expansion in a basis built with the Legendre
polynomials instead of the trigonometric polynomials used in the Karhunen Loève expan-
sion. Indeed, when the starting points are not in the same fiber, this decomposition is
more adapted to the computations of the Lévy areas as notice by Kuznetsov in [42].

Let m ≥ 1. By choosing ξk = ξ̃k for any k /∈ {3j , 0 ≤ j ≤ m}, we see that BT = B̃T if
and only if:  ξ̃0 − ξ0 =

x−x̃√
T

m∑
k=1

T
√
α2
3k + α2

3k−1

(
ξ̃3k − ξ3k

)
⊙ Vk = W,

(2.48)

with:
Vk =

α3kξ3k+1 − α3k−1ξ3k−1√
α2
3k + α2

3k−1

, k = 1, . . . ,m.

and

W = −ζ + (x− x̃)⊙

(√
T

2
ξ0 −

√
Tα0ξ̃1

)
.

If we can solve the equation
m∑
k=1

Uk ⊙ Vk = W with unknown variables U1, . . . , Um ∈ Rn

and if the obtained E[||Uk||2] are finite for all 0 ≤ k ≤ m, then we choose the coupling of

(ξ3k, ξ̃3k) such that P

(
ξ3k − ξ̃3k ̸= Uk

T
√

α2
3k+α2

3k−1

)
is minimal.

We get a positive result for m ≥ n+2 by studying the moments of an inverted weight
chi-two distribution with k ≥ m−n degrees of freedom. In fact, we can also get solutions
for m = n + 1 and for m = n − 1. The case m = n + 1 can be dealt similarly to the
general case m ≥ n + 2, however the estimates are not optimal. The case m = n − 1 is
treated for the Heisenberg group in Theorem 7.1.1, that is, for n = 2. For n ≥ 3 if the
inverse problem for m = n − 1 can be solved, it is much more difficult to deal with and
the estimates are not so good. For m = n, the problem is of course invertible but the
obtained quantities E[||Uk||2] are not finite because we are brought back to estimate the
moments of an inverted chi-two with only one degree of freedom.

For now, the better estimates for C1(n) and C2(n) are obtained for m = 2n + 1.
This could be improved by getting a better understanding of the inverted weight chi-two
distribution.

Solving the same inverse problem, we can consider a coupling defined by a change of
probability. In this case, the sequences (ξk)k≥0 and (ξ̃k)k≥0 are defined such that:

• the sequence (ξk)k≥0 is identically distributed will law N (0, In) under the usual
probability P;
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• the sequence (ξ̃k)k≥0 is defined such that (ξk − ξ̃k)k≥0 satisfies (2.48) with m ∈
{k, k ≥ n+ 2} ∪ {+∞}.

At time T , Bg
T = Bg̃

T a.s.. However, the sequence (ξ̃k)k≥0 is not a standard Gaussian
and Bg̃

T is not a Brownian motion under the usual probability P. We thus define another
probability P(g̃) equivalent to P and such that (ξ̃k)k≥0 is independent and identically
distributed with law N (0, In) under P(g̃). In particular, under P(g̃), Bg̃

T is distributed as
a Brownian motion starting at g̃ at time T .

By studying R(g) := dP(g̃)
dP (ω), we first obtain a log Harnack inequality (see also Propo-

sition 7.3.7): for any positive function f in Gn, T > 0 and g, g̃ ∈ Gn:

PT (ln f)(g̃) ≤ ln(PTf(g))

+
∥x− x̃∥22

2T
+

(
6
√
n+

4√
n

)2(
2

T 2
∥ζ∥22 +

2(n− 1)

3T
∥x− x̃∥22

)
. (2.49)

We also obtain a relation similar to the Bismut-Elworthy-Li formula by looking at:

dgPTf(·) = E[f(BT )dgR(·)].

In particular, we obtain an inverse Poincaré-type inequality. Let T > 0, p ∈ (1,∞] and q
the conjugate number of p. For all g, h ∈ Gn:

∥dgPTf(·)∥ ≤ (PT |f |p)1/pMq(T ) (2.50)

with Mq(T ) a constant that depends of the time T but not on g. More details about these
results can be found later in Proposition 7.3.8.

Note that, in a different hypoelliptic setting, this change of probability method was
investigated at least by Guillin and Wang [31] and by Baudoin, Gordina and Mariano [16]
to study some kinetic Fokker-Planck equation.

Another approach to obtain these gradient estimates is through the generalized curvature-
dimension criterion developped by Baudoin and Garofalo [14]. Step 2 Carnot groups are
examples of non-negative curved subRiemannian manifolds and thus a reverse log-Sobolev
is known to hold, see Proposition 3.1 in [11]. See also [12] where the reverse Poincaré
inequality and its constant is studied on general Carnot groups by analytic methods. A
general stochastic method which also provides local estimates can be found in [4] Theo-
rem 7.1, but the constants are not explicit.

For the moment, we do not recover the full reverse log-Sobolev inequality. We still
hope to obtain it with our method.

2.4.3 Static coupling and Wasserstein distance

We also obtain a slightly different result. We do not consider successful couplings but
Wasserstein inequalities, (see the second category of couplings in Subsection 2.1.2). The
main result, Theorem 8.2.1 is an extension of [22] to the case of homogeneous step 2
Carnot groups. The coupling is static, i.e., we only consider the coupling of the laws at
time t. It leads to a L1-Wasserstein inequality.
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2.5 Organisation of the Thesis

Let us sum up the organisation of this research work. Note that, apart from Chapter 3,
it follows the chronology of the research.

Chapter 3

In this chapter, we make a description of the model spaces, their basic properties and
their associated Brownian motions. We study their basic properties and set the notation
used in the remainder of the work.

In Section 3.1 we give some well known information about homogeneous step 2 Carnot
groups and in particular about free, step 2 Carnot groups. In Section 3.2 we present the
subRiemannian manifolds SU(2) and SL(2,R). By studying the cylindrical coordinates,
we give three new results on SU(2) and SL(2,R):

• Proposition 3.2.9 and Corollary 3.2.10 that provides a nice estimate of the distance
between two Brownian motions. It will be used later in Chapter 4

• Lemma 3.2.12, that study the behaviour of the area coordinate under changes of
coordinates. It will be useful in Chapter 5.

We also present a computation of the sub-Laplacian operator using the Campbell Haus-
dorff formula and the Lie Bracket relations of the left invariant vector fields on SU(2) and
SL(2,R).

Chapter 4

In this chapter, we study co-adapted couplings on SU(2) and SL(2,R). We use the Itô
depiction of the Brownian motion in a moving frame and study the behaviour of (Rt)t
and (At)t in Proposition 4.1.5 and give some examples of co-adapted couplings on these
two spaces in Subsection 4.1.4. We then construct the announced co-adapted successful
coupling on SU(2) in Theorem 4.2.1 and Corollary 4.2.2.

Chapter 5

This chapter is devoted to the study of the non co-adapted coupling strategy on SU(2)
and SL(2,R) using the looking-ahead coupling and the Karhunen-Loève expansion. In
particular, we use the spherical/polar coordinates to define the coupling. The coupling
results are stated in Theorem 5.1.1 and Theorem 5.1.2. We also prove some associated
gradient inequality results: Corollary 5.4.1 and Corollary 5.4.2.

Chapter 6

This chapter deals with the non co-adapted successful coupling strategy on all the free,
step 2 Carnot groups Gn, n ≥ 2 (Theorem 6.1.1). Direct results for the gradient of the
heat semi-group on homogeneous Carnot groups of step 2 are also proven in Subsection
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6.3.1. In a second part we prove the results associated to the comparison between the
coupling time and the first exit time of a domain on Gn (Theorem 6.2.2). We deduce the
gradient estimates for the harmonic functions on domains in Subsection 6.3.2.

Chapter 7

In this chapter, we describe the construction of the One-sweep coupling. We first deal on
the case of the Heisenberg group H (Theorem 7.1.1) and then on the general case of the
Carnot group Gn for n ≥ 2 (Theorem 7.2.1). We shall make vary the number of non trivial
couplings of the Gaussian modes (ξj, ξ̃j). In the last section of the chapter (section 7.3.2),
we provide applications to gradient inequalities with a change of probability approach.

Chapter 8

In this short and independent chapter, we do not consider successful couplings but we
discuss the couplings and their link with Wasserstein inequalities. In particular we con-
struct a (static) L1 Wasserstein coupling on all homogeneous step 2 Carnot groups; see
Theorem 8.2.1.

Chapter 9

This last chapter is a conclusion for this thesis. We present some ideas to improve the
results as well as some possible research tracks for the pursue of the study.
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Chapter 3

Description of the model spaces and
their Brownian motions

In this chapter we give some preliminaries about the studied model spaces, that is, the
homogeneous step 2 Carnot groups and the Lie groups SU(2) and SL(2,R). We also give
some important new results on SU(2) and SL(2,R) in Subsections 3.2.6 and 3.2.7. These
two results will be fundamental to apprehend Chapter 4 and Chapter 5 respectively.

We recall to the reader that we gave some preliminaries about general
subRiemannian structures in Subsection 2.1.3.
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3.1 Homogeneous step 2 Carnot groups

3.1.1 Homogeneous Carnot Groups

We first give a global definition for homogeneous Carnot groups. A global theory about
these structures can be found in [19].

Definition 3.1.1. We consider a Lie group G = (RN , ⋆) with RN = RN1 × . . . × RNr

and the dilation
{

dilλ : RN → RN(
x(1), . . . , x(r)

)
7→

(
λx(1), . . . , λrx(r)

) with λ > 0. We also

define
(
X̄1, . . . X̄N1

)
the family of left invariant vector fields such that X̄i(0) = ∂xi

for
1 ≤ i ≤ N1. Then G is a homogeneous Carnot group with step r and N1 generators if the
two following conditions are satisfied:

• dilλ is a Lie group automorphism for all λ > 0;

• H := Span{X̄1, . . . , X̄N1} is Lie-generating, that is, Lie{X̄1, . . . , X̄N1} is of rank N ,
or in other words, (X̄1, . . . , X̄N1) satisfies the Hörmander condition.

In fact, one can prove that the group law ⋆ of all homogeneous Carnot groups has
polynomial components.

On any homogeneous Carnot group G, we can define an homogeneous norm:

Definition 3.1.2. We call homogeneous norm on G any function ∥ · ∥ : G → [0,∞]
satisfying the two following properties:

1. ∥ dilλ(g)∥ = λ∥g∥ for all λ > 0 and g ∈ G;

2. ∥g∥ > 0 if and only if g ̸= 0.

Moreover, if ∥g−1∥ = ∥g∥ for all g ∈ G, then the homogeneous norm is called symmetric.

For each homogeneous group, there exist multiple ways to define a homogeneous norm.
As an example, we can consider:

||(x(1), . . . , x(r))|| :=

(
r∑

i=1

||x(i)||
r
i
2

) 1
r

or ||(x(1), . . . , x(r))|| :=

(
r∑

i=1

||x(i)||
2r!
i

2

) 1
2r!

.

All the homogeneous norms are equivalent in the sense that, for any couple of homogeneous
norms ∥ · ∥ and ∥ · ∥bis on G, there exist c and C two positive constants such that for all
g ∈ G:

c∥g∥ ≤ ∥g∥bis ≤ C∥g∥.

3.1.2 Properties of the homogeneous, step 2, Carnot Groups

In what follows we focus only on homogeneous, step 2, Carnot groups. In the remainder we
simply denote N1 by n, N2 by m, x(1) by x and x(2) by z and we consider the homogeneous
norm ∥ · ∥G given by:

||(x, z)||G =
√

||x||22 + ∥z∥2 (3.1)
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Please note that, for the Hörmander condition to be satisfied, the family induced by
(Xi)1≤i≤n and ([Xi, Xj])1≤i<j≤n must be of rank n+m. In particular, we get that

m ≤ n(n− 1)

2
.

By using polynomial components, we have the following characterisation of the group
law :

Proposition 3.1.1. Set m ≤ n(n−1)
2

and let G = (Rn+m, ⋆) be an homogeneous Carnot
group with step 2 and n generators. There exist C(1), . . . , C(m) ∈ Mn×n(R) such that, for
(x, z) := (x1, . . . , xn, z1, . . . zm), (x′, z′) := (x′1, . . . , x

′
n, z

′
1, . . . z

′
m) ∈ G:

(x, z) ⋆ (x′, z′) =

(
x+ x′,

(
zk + z′k +

1

2
⟨C(k)x|x′⟩

)
1≤k≤m

)
. (3.2)

Moreover, the skew-symmetric parts D(k) = 1
2

(
C(k) −

(
C(k)

)t) of C(k) are linearly inde-
pendent.

Note that the linear independence of the matrices D(k) comes from the Hörmander
condition.

The first example for these Carnot groups is the Heisenberg group H = (R3, ⋆) with:

(x1, x2, z) ⋆ (x̃1, x̃2, z̃) = (x1 + x̃1, x2 + x̃2, z + z̃ +
1

2
(x1x̃2 − x̃1x2))

In particular, this is an homogeneous Carnot group with step 2 and 2 generators. A
generalisation to n generators is given by the free, step 2 Carnot groups:

Definition 3.1.3. The free, step 2 Carnot group with n generators is the homogeneous Lie
group Fn =

(
Rn+

n(n−1)
2 , ⋆

)
such that, for (x, z) =

(
(xi)1≤i≤n, (zi,j)1≤i<j≤n

)
and (x′, z′) =(

(x′i)1≤i≤n, (z
′
i,j)1≤i<j≤n

)
:

(x, z) ⋆ (x′, z′) =

(
(xi + x′i)1≤i≤n,

(
zi,j + z′i,j +

1

2
(xix

′
j − x′ixj)

)
i<j

)
.

Here for 1 ≤ i < j ≤ n, we take C(i,j) =
(
c
(i,j)
l,r

)
l,r

with c(i,j)l,r =


−1 if (l, r) = (i, j)
1 if (l, r) = (j, i)
0 else

.

We will give more details on this group in Subsection 3.1.5.

Let n ≥ 2 and 1 ≤ m ≤ n(n−1)
2

. We denote by (e1, . . . , en+m) the canonical basis on
Rn+m and (ẽ1, . . . , ẽn) the canonical basis on Rm. Let G = (Rn+m, ⋆) be a homogeneous
Carnot group with step 2 and n generator. Defining C(1), . . . , C(m) as in Proposition 3.1.1,
the "horizontal" left-invariant vector fields (X̄1, . . . X̄n) can be explicitly computed:

X̄if(x, z) =
d

dt |t=0
f((x, z) ⋆ tei) (3.3)

= ∂xi
f(x, z) +

1

2

m∑
k=1

n∑
j=1

c
(k)
i,j xj∂zkf(x, z) for 1 ≤ i ≤ n. (3.4)
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We can also look at the "vertical" left-invariant vector fields (Z̄1, . . . Z̄m) such that Z̄k(0) =
∂zk . In fact, by commutation of the "vertical coordinate" z we get:

Z̄kf(x, z) =
d

dt |t=0
f((x, z) ⋆ tek+n)

= ∂zkf(x, z) for 1 ≤ k ≤ m.

Note also that, for any smooth function f on G and λ > 0:

X̄i (f ◦ dilλ) (x, z) = λX̄i(f) (dilλ) for 1 ≤ i ≤ n

Z̄k (f ◦ dilλ) (x, z) = λZ̄k(f) (dilλ) for 1 ≤ k ≤ m.

The sub-Laplacian operator is given by L = 1
2

n∑
i=1

X̄2
i . This is a diffusion operator and,

because the Hörmander condition is satisfied, this is a hypoelliptic operator. As before,
it can be explicitly computed:

L =
1

2

(
n∑

i=1

∂2xi,xi
+

1

2

m∑
k=1

n∑
i,j=1

c
(k)
i,j xj∂

2
xi,zk

+
1

4

m∑
k,l=1

n∑
i,j,r=1

c
(k)
i,j c

(l)
i,rxjxr∂

2
zk,zl

)

+
1

4

m∑
k=1

n∑
i=1

c
(k)
i,i ∂zk . (3.5)

The Hörmander condition and the generalised Chow Theorem permit the definition of
the Carnot-Carathéodory distance dcc. Thus (G,H, dcc) is a connected metric space.

Remark 3.1.2. As for the Heisenberg group,

dcc(0, (x, 0)) = ∥x∥2. (3.6)

More generally g = (x, z), g′ = (x′, z′) ∈ G, we have:

∥x− x′∥2 ≤ dcc(g, g
′). (3.7)

Indeed, if t 7→ γ(t) = (x(t), z(t)) is an horizontal curve joining g and g′, t 7→ γx(t) is a

curve on Rn joining x and x′. As γ is horizontal, we can denote γ̇(t) =
n∑

i=1

α̇i(t)X̄i(γ(t))

and L(γ) =
∫ 1

0

√
n∑

i=1

α̇i(t)2. By construction of X̄i, we then have γ̇x(t) =
n∑

i=1

α̇i(t)∂xi
(γ(t))

and LRn(γx) = L(γ) (here we denote LRn the length of a curve on Rn associated to the
Euclidean norm). In particular ∥x − x′∥2 ≤ L(γ) for any γ horizontal joining g and g′.
This induces (3.7). To show (3.6), that is, when g = 0 and g′ = (x, 0), it is now enough
to verify that γ(t) := (tx, 0) is an horizontal curve.

Note that the function g ∈ G 7→ dcc(0, g) ∈ R+ defines a homogeneous norm. Thus,
using the left-invariance of dcc and the equivalence between homogeneous norms, there
exist c and C two positive constant such that:

c∥g−1 ⋆ g′∥G ≤ dcc(g, g
′) ≤ C∥g−1 ⋆ g′∥G. (3.8)
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3.1.3 The Brownian motion on homogeneous, step two, Carnot
groups

Let G be a homogeneous, step 2, Carnot group with n generators whose law is character-
ized by the matrices (C(k))1≤k≤m as in Proposition 3.1.1. We define the Brownian motion
as the diffusion process (Bt)t which admits the sub-Laplacian L as infinitesimal generator.
In particular it satisfies the stochastic differential equation:

dBt =
n∑

i=1

X̄i(Bt) ◦ dBi
t (3.9)

with ◦d the Stratonovitch differential and (B1
t , . . . , B

n
t ) a Brownian motion on Rn. Using

the explicit computation of L obtained in (3.5), the Brownian motion (Bt)t starting from
g = (x, z) can be described as the continuous process (Bt)t =

((
Xt,
(
zkt
)
1≤k≤m

))
t
with:

• (Xt)t = (X1
t , . . . , X

n
t )t a Rn-Brownian motion starting from x;

• For all 1 ≤ k ≤ m, dzkt = 1
2

n∑
i,j=1

c
(k)
i,j X

j
t dX

i
t +

1
4

n∑
i=1

c
(k)
i,i dt. Denoting by Ai,j

t :=

1
2

(∫ t

0
X i

sdX
j
s −

∫ t

0
Xj

sdX
i
s

)
the Lévy area associated to (X i

t , X
j
t ), we can also write:

zkt = zk0 +
∑

1≤i<j≤n

1

2
(c

(k)
j,i − c

(k)
i,j )A

i,j
t +

1

4

n∑
i,j=1

c
(k)
i,j

(
X i

tX
j
t −X i

0X
j
0

)
In particular, the Brownian motion on G is a continuous process compatible with the

dilation and with stationary independent increments.

Note that if the matrices
(
C(k)

)
1≤k≤m

are skew-symmetric, for all 1 ≤ k ≤ m: zkt =

zk0 +
∑

1≤i<j≤n

c
(k)
j,i A

i,j
t . In particular, on the free, step 2 Carnot group Fn, for 1 ≤ i < j ≤ n,

we have zi,jt = zi,j0 +Ai,j
t .

3.1.4 Lie groups morphisms

In this subsection, we aim to describe some properties to simplify the study of homoge-
neous step 2 Carnot groups. The first one permit us to reduce the study to the cases
where the matrices C(k) are skew-symmetric.

Proposition 3.1.3. Let G = (Rn+m, ⋆) be a homogeneous, step 2, Carnot group with n
generator whose group law is characterized by the matrices (C(k))1≤k≤m as in (3.2). Let
G̃ = (Rn+m, ◦) denote the homogeneous, step 2, Carnot group satisfying:

(x, z) ◦ (x′, z′) =

(
x+ x′,

(
zk + z′k +

1

2
⟨D(k)x|x′⟩

)
1≤k≤m

)
for all (x, z), (x′, z′) ∈ G̃

(3.10)
with D(k) the skew-symmetric parts of C(k). There exists a Lie group isomorphism φ :
G → G̃ such that:
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• For all g, g′ ∈ G, we have:

dcc(g, g
′) = dcc(φ(g), φ(g

′)). (3.11)

• (Bt)t is a Brownian motion on G if and only if (φ(Bt))t is a Brownian motion on G̃.

Proof. We just define the map:{
φ : G → G̃

(x, z) 7→
(
x,
(
zk − 1

4
⟨C(k)x|x⟩

)
1≤k≤m

) .

It is direct to check that this map is bijective, polynomial and respects the group structure,
i.e., φ((x, z) ⋆ (x′, z′)) = φ(x, z) ◦ φ(x′, z′).

Let
(
X̄1, . . . , X̄n

)
be the left-invariant vector fields on G satisfying X̄i(0) = ∂xi

for all
1 ≤ i ≤ n. As φ is an isomorphism and preserves the first coordinate x, the natural left
invariant family of vector fields on G̃ computed in (3.3) can be obtained by lifting the
family

(
X̄1, . . . , X̄n

)
. Indeed, using the bijectivity we can define on G̃ the family of vector

fields
(
¯̃X1, . . . ,

¯̃Xn

)
such that for 1 ≤ i ≤ n, g ∈ G: ¯̃Xi (φ(g)) = (dφ)g(X̄i(g)). These

vector fields are left-invariant and, as φ preserves the coordinate x, we have ¯̃Xi(0) = ∂xi
.

We now prove that φ defines an isometry. We consider an horizontal curve γ joining
g and g′ two points in G and we define γ̃ = φ ◦ γ a smooth curve on G̃ joining φ(g)
and φ(g′). Since γ is horizontal, there exist α1, . . . , αn some smooth functions such that

γ̇(t) =
n∑

i=1

αi(t)X̄i (γ(t)) and we have:

˙̃γ(t) = (dφ)γ(t)

(
n∑

i=1

αi(t)X̄i(γ(t))

)
=

n∑
i=1

αi(t)(dφ)γ(t)
(
X̄i(γ(t))

)
=

n∑
i=1

αi(t)
¯̃Xi (γ̃(t)) .

Thus, not only γ̃ is an horizontal curve on G̃ joining φ(a) and φ(a′), but the length of γ
and γ̃ are equal. We obtain dcc(g, g′) ≥ dcc(ϕ(g), ϕ(g

′)) for all g, g′ ∈ G. As φ is bijective,
with the same method we get dcc(a, a′) ≥ dcc(ϕ

−1(a), ϕ−1(a′)) for all a, a′ ∈ G̃. We obtain
(3.11).
Finally, let (Bt)t be a Brownian motion on G. In particular, (Bt)t satisfies the stochastic
equation (3.9). As, the equation is given with the Stratonovitch integral and φ is smooth,
we get:

dφ(Bt) =

(
dφ ·

n∑
i=1

X̄i

)
(φ(Bt)) ◦ dBi

t =
n∑

i=1

d ¯̃Xi(φ(Bt)) ◦ dBi
t.

Then φ(Bt) is a Brownian motion on G̃. By bijectivity of φ, we obtain the converse
property.

The following proposition permits to reduce the study to the case of free, step 2 Carnot
groups.

Proposition 3.1.4. Let G = (Rn+m, ◦) be a homogeneous Carnot group with step 2 and
n generators. As previously, Fn denotes the free, step 2 Carnot group with n generators.
There exists a surjective Lie group morphism ϕ : Fn → G such that:

1. for all g, g′ ∈ Fn, dcc(g, g′) ≥ dcc(ϕ(g), ϕ(g
′));
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2. for all a, a′ ∈ G, there exist g, g′ ∈ Fn such that ϕ(g) = a, ϕ(g′) = a′ and dcc(g, g′) =
dcc(a, a

′);

3. if (Bt)t is a Brownian motion on Fn, then (ϕ(Bt))t is a Brownian motion on G.

Proof. Using the isomorphism from Proposition 3.1.3 if needed, we can suppose that the
group law of G is characterized by the skew-symmetric matrices

(
C(k)

)
1≤j≤m

with C(k)

skew-symmetric for all 1 ≤ k ≤ m. We define:
ϕ : Fn → G(

x, (zi,j)1≤i<j≤n

)
7→

(
x,

( ∑
1≤i<j≤n

c
(k)
j,i zi,j

)
1≤k≤m

)

It is immediate to verify that ϕ is a Lie group morphism. Moreover, as the matrices(
C(k)

)
1≤k≤m

are linearly independent, ϕ is surjective.

As in the proof of Proposition 3.1.3, we define for g ∈ Fn
¯̃Xi := ϕ(g) 7→ (dϕ)g(X̄i(g))

where X̄1, . . . , X̄n are the left invariant vector fields on Fn with X̄i(0) = ∂xi
. We recall

that for all g = (x, z) ∈ Fn:

X̄i(g) = ∂xi
+

1

2

(∑
1≤l<i

xl∂zl,i −
∑
i<l≤n

xl∂zi,l

)
.

As ϕ is linear, we have dϕ = ϕ. Thus for all g ∈ Fn, using the fact that the matrices C(k)

are skew-symmetric for all 1 ≤ k ≤ n, we get:

˜̄Xi(ϕ(g)) = ∂xi
+

1

2

m∑
k=1

(∑
1≤l<i

xlc
(k)
l,i −

∑
i<l≤n

xlc
(k)
i,l

)
∂zk

= ∂xi
+

1

2

m∑
k=1

n∑
l=1

xlc
(k)
l,i ∂zk

As ϕ preserves the coordinate x, we obtain the relation (3.3) for G: ¯̃Xi describe the left
invariant vector field on G such that ¯̃Xi(0) = ∂xi

. As in the proof of Proposition 3.1.3 this
implies that if (Bt)t is a Brownian motion on Fn, then (ϕ(Bt))t is a Brownian motion on
G. We also get:

dcc(g, g
′) ≥ dcc(ϕ(g), ϕ(g

′)). (3.12)

Let now a, a′ ∈ G. By Chow’s Theorem, there exists an horizontal curve γ̃ : [0, 1] → G
such that γ̃(0) = a, γ̃(1) = a′ and L(γ̃) = dcc(a, a

′).
By definition of an horizontal curve there exist α1, . . . , αn smooth functions such that
˙̃γ(t) =

∑
i

αi(t)(X̄i)(γ̃(t)).

As ϕ is surjective, we can chose g ∈ ϕ−1 ({a}) ̸= ∅. We then define the horizontal curve γ :
[0, 1] → Fn such that γ(0) = g and γ̇(t) =

∑
i

αi(t)X̄i(γ(t)). In particular, γ̃(t) = ϕ(γ(t))

and the lengths of γ and γ̃ are equal. Thus dcc(a, a′) ≥ dcc(γ(0), γ(1)) = dcc(g, g
′) with

g′ := γ(1). As a = ϕ(g) and a′ = ϕ(g′), using (3.12), we get dcc(g, g′) = dcc(a, a
′).
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3.1.5 Free, step 2 Carnot groups

In this subsection, we give more details on the free, step 2 Carnot groups Fn for all n ≥ 2.
In particular, as in Chapter 2, we introduce a representation of this group using skew-
symmetric matrices. This is the representation we will use in all the remainder of this
work.

Representation of the free, step 2 Carnot group by using skew-symmetric
matrices Let first notice that Fn is isomorphic (Lie-group isomorphism) to the group
Gn = (Rn × so(n), ⋆) with so(n) the set of real skew-symmetric matrices of dimension
n × n. Indeed, we simply have to consider the skew-symmetric matrix z = (zi,j)1≤i,j≤n

induced by the n(n−1)
2

vector (zi,j)1≤i<j≤n. For x, x′ ∈ Rn, we define the symplectic form
x ⊙ x′ := x · x′t − x′ · xt where xt ∈ M1,n(R) denotes the transpose of x. The group law
then satisfies:

(x, z) ⋆ (x′, z′) =

(
x+ x′, z + z′ +

1

2
x⊙ x′

)
for all (x, z) , (x′, z′) ∈ Rn × so(n).

In the remainder of this work, we will use Gn instead of Fn (except when dealing with
the Heisenberg group). Note that Proposition 3.1.4 is obviously still true when considering
Gn instead of Fn.

Remark 3.1.5. In fact, for n = 3, up to a reorganisation of the order and signs of the
coefficients, we can replace the symplectic product ⊙ used above by the traditional vector
product ∧ in R3. Indeed, let consider g, g′ ∈ F3 = R3×3, only by reorganising the "z"
coordinate, we can denote g = (x, z2,3,−z1,3, z1,2) and g′ = (x′, z′2,3,−z′1,3, z′1,2). Then:

g ⋆ g′ =

(
x+ x′, z + z′ +

1

2
x ∧ x′

)
.

Pseudo-distance For z = (zi,j)1≤i<j≤n ∈ so(n), we define:

||z||p :=

( ∑
1≤i<j≤n

|zi,j|p
) 1

p

.

In particular, denoting by ∥ · ∥HS the Hilbert-Schmidt norm, we have ∥z∥HS =
√
2∥z∥2

for all z ∈ so(n). Note that, for any x, x′ ∈ Rn, we have ∥x⊙ x′∥2 ≤ ∥x∥2∥x′∥2.

We can then define the homogeneous norm ∥(x, z)∥Gn :=
√

∥x∥22 + ∥z∥2. In particular,
∥(x, z)∥Gn = ∥(x, (zi,j)1≤i<j≤n∥Fn with ∥ · ∥Fn defined in Subsection 3.1.2. As we use
quadratic norms, ∥ · ∥Gn is invariant under any change of basis on Rn in the sense that for
any P ∈ O(n), ∥(Px, PzP t)∥Gn

= ∥(x, z)∥Gn
.

Let define
{ δ : Gn × Gn → R

(g, g′) 7→ ∥g−1g′∥Gn

. This application is a pseudo-distance on Gn.

In particular, it satisfies the pseudo triangular inequality for all (x, z), (x′, z′), (y, v) ∈ Gn:

δ ((x, z), (x′, z′)) ≤ 3

2

(
δ ((x, z), (y, v)) + δ ((y, v), (x′, z′))

)
(3.13)
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Indeed,

∥x− x′∥22 + ∥z′ − z − 1

2
x⊙ x′∥2 ≤ 2∥x− y∥22 + 2∥y − x′∥22 + ∥v − z − 1

2
x⊙ y∥2

+ ∥z′ − v − 1

2
y ⊙ x′∥2 +

1

2
∥ − x⊙ x′ + x⊙ y + y ⊙ x′∥2

and

∥ − x⊙ x′ + x⊙ y + y ⊙ x′∥2 = ∥(x− y)⊙ (y − x′)∥2 ≤ ∥x− y∥2∥x′ − y∥2.

Because of the equivalence between the homogeneous norms, we also have a relation of
equivalence between δ and dcc in the sense that, there exist two constants m1(n), m2(n)
depending on n such that:

m1(n)δ(g, g
′) ≤ dcc(g, g

′) ≤ m2(n)δ(g, g
′) for all g, g′ ∈ Gn. (3.14)

Let γ : t ∈ [0, 1] 7→ (x(t), z(t)) ∈ Gn be an horizontal curve joining g and g̃. For any

1 ≤ i < j ≤ n, γi,j(t) :=

 xi(t)
xj(t)
zi,j(t)

 is an horizontal curve on the Heisenberg group H

and L(γi,j) ≤ L(γ). Thus, dcc ((xi, xj, zi,j), (x̃i, x̃j, z̃i,j)) ≤ dcc(g, g̃). Using the equivalence
relation (3.14) on H, we get:

m1(1)
√

(n− 1)∥x̃− x∥22 + ∥ζ∥2 ≤
n(n− 1)

2
dcc(g, g̃) (3.15)

where ζ ∈ so(n) such that g−1g̃ = (x̃ − x, ζ). In particular, m1(1)
2

n(n−1)
≤ m1(n).

Note that, when x = x̃, this estimate can be more accurate by using Proposition 13.18
from [2] and the left invariant property of the Carnot-Carathéodory distance: we have

dcc(g, g̃) = dcc(0, (0, ζ))
2 = 4π

r∑
i=1

iλi ≥ 4
√
2π∥ζ∥2 with λ1 > . . . > λr the absolute values

of the non zero eigenvalues of ζ and ζ = z̃ − z.

With this same relation we get:

dcc(0, (0, ζ))
2 ≤ 4πn

3
2

√
Tr(ζtζ) ≤ 4

√
2πn

3
2∥ζ∥2. (3.16)

This provides an estimate for the constant m2(n) in (3.14):

dcc(g, g̃) ≤ dcc(0, (x̃− x, 0)) + dcc(0, (0, ζ)) ≤
√
2π(2n)

3
4δ(g, g̃). (3.17)

Brownian motion On Gn = (Rn × so(n)), the Brownian motion (Bt)t =
(
Xt,
(
zi,jt
)
i<j

)
t

can be written Bt = (Xt, zt) with Xt a Brownian motion on Rn and zt = z0+
1
2

∫ t

0
Xs⊙dXs.

In particular, we have a stability of the law of the Brownian motion under any change
on the orthonormal basis on Rn:

Lemma 3.1.6. Let P be an orthogonal matrix, then d(PztP
t) = 1

2
(PXt) ⊙ d(PXt). In

particular, if we define Bt := (X t, zt) with X t := PXt and zt = PztP
t, (Bt)t is a Brownian

motion on Gn.
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Proof. Let P be an orthogonal matrix, and X = PX. We get:

zt = z0 +
1

2

∫ t

0

(
P tXs

)
⊙ d

(
P tXs

)
= z0 +

1

2

∫ t

0

((
P tXs

) (
dX t

sP
)
−
(
P tdXs

) (
X t

sP
))

= P t

(
Pz0P

t +
1

2

∫ t

0

Xs ⊙ dXs

)
P.

3.1.6 Norms of gradients

Let G = (Rn+m, ⋆) be a homogeneous Carnot group with step 2 and rank n. For any f
smooth enough, we define the horizontal gradient by

∇Hf :=
n∑

i=1

X̄i(f)X̄i.

Denoting by ∥ · ∥H the Euclidean norm on H, for any g ∈ G, we have:

||∇Hf(g)||H :=

√√√√ n∑
i=1

(X̄if)2(g).

To obtain estimates of this norm, we use upper gradients. Let us first recall the definition
of an upper gradient. We say that a function u on G is an upper gradient of f if, for every
horizontal curve γ : [0, T ] → G parameterized with the arc-length, we have:

|f(γ(0))− f(γ(t))| ≤
∫ t

0

u(γ(s))ds.

In particular, ||∇H · ||H is an upper-gradient.

As G has a left-invariant structure, it is a regular subRiemannian manifold as described
in [34], and, for all u upper gradient of f :

||∇Hf(g)||H ≤ u(g) a.e. in Ek. (3.18)

See [32, 34] for some proofs and more details. In particular, for f Lipschitz, an upper
gradient will be given by the gradient length associated to the metric space (G, dcc) (see [41,
32]):

|∇f |(g) := lim
r↓0

sup
g ̸=g′

dcc(g,g′)<r

|f(g)− f(g′)|
dcc(g,g′)

. (3.19)

Thus, using (3.18), we have:

||∇Hf(g)||H ≤ |∇f |(g) a.e. in G. (3.20)

In the remainder of this work, when G = Gn, we will sometimes consider the gradient
length associated to the pseudo-metric δ:

|∇f |δ(g) := lim
r↓0

sup
g ̸=g′

δ(g,g′)<r

|f(g)− f(g′)|
δ(g, g′)

for any function f Lipschitz on (G, dcc).
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By equivalence between the pseudo-metric δ and the Carnot-Carathéodory metric dcc,
this notation makes sense. In particular, as δ(g, g̃) ≤ 1

m1(n)
dcc(g, g̃) (see (3.14)), we have

|∇Ptf |δ(g) ≥ m1(n)|∇Ptf |. (3.21)

We can also define the vertical gradient:

∇vf =
m∑
k=1

Z̄k(f)Z̄k.

Considering the Euclidean metric on each fiber Gx := {(x, z) ∈ G | z ∈ Rm} ≈ Rm, as

for the horizontal gradient, we can evaluate ∥∇vf(g)∥ =

√
m∑
k=1

Z̄k(f)2(g). By using the

gradient length associated to Gx endowed with the Euclidean norm, for g = (x, z) and f
Lipschitz, we have:

∥∇vf(x, z)∥ ≤ lim
r↓0

sup
z ̸=z′

∥z−z′∥2<r

|f(x, z)− f(x, z′)|
∥z − z′∥2

a.e.. (3.22)

3.2 The Lie groups SU(2) and SL(2,R)

3.2.1 Definition of SU(2) and SL(2,R) and cylindrical coordinates

We begin with the presentation of the two model spaces and the cylindrical coordinates.

• By SU(2), we denote the group of the unitary two dimensional matrices with com-
plex coefficients and with determinant 1. Considering the manifold structure in-
duced of the usual topology on the matrices group, this is a Lie group. Note that
we have:

SU(2) =
{( z1 z2

−z̄2 z̄1

)
, z1, z2 ∈ C, |z1|2 + |z2|2 = 1

}
=
{( cos(η)eiθ1 sin(η)eiθ2

− sin(η)e−iθ2 cos(η)e−iθ1

)
, η ∈

[
0,
π

2

]
, θ1, θ2 ∈ [0, 2π]

}
.

The associated Lie algebra is su(2) = {A ∈M2,2(C), exp(tA) ∈ SU(2) ∀t > 0}. It is
constituted by the skew-adjoint two dimensional matrices with complex coefficients
and trace 0. It is also the tangent space of SU(2) at point I2. A basis of this algebra
can be formed by the Pauli matrices. We will use these Pauli matrices up to the
multiplicative coefficient 1

2
. We denote:

X =
1

2

(
0 1
−1 0

)
, Y =

1

2

(
0 i
i 0

)
and Z =

1

2

(
i 0
0 −i

)
.

Then (X, Y, Z) is a basis of su(2) and, because of the multiplicative coefficient, it
also satisfies:

[X, Y ] = Z , [Y, Z] = X and [Z,X] = Y. (3.23)
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It is important to notice that all the matrices in SU(2) can be written on the form:

exp(φ(cos(θ)X + sin(θ)Y )) exp(zZ) =

(
cos
(
φ
2

)
ei

z
2 ei(θ−

z
2
) sin

(
φ
2

)
−e−i(θ− z

2
) sin

(
φ
2

)
cos
(
φ
2

)
e−i z

2

)
(this result is trivial taking φ = 2η, z = 2θ1 and θ ≡ θ2 + θ1 mod (2π)). Thus,
we have described a system of coordinates (φ, θ, z) for SU(2) with φ ∈ [0, π], z ∈
]−2π, 2π] and θ ∈ [0, 2π[ called the cylindrical coordinates. We can also consider the
coordinate system induced by exp(xX+yY ) exp(zZ) with (x, y) ∈ R2, z ∈]−2π, 2π].

Let us remark that the cylindrical coordinates are a good way to observe the link be-
tween the sphere S2 and SU(2). Indeed, as there is a trivial diffeormophism between
SU(2) and S3, using the Hopf fibration, we can define a submersion from SU(2)

to S2. For example, we can define it by using the quaternions. For
(
z1 z2
−z̄2 z̄1

)
∈

SU(2), with z1 = x1 + iy1 and z2 = x2 + iy2, we define a unique quarternion
q = x1 + x2i+ y2j + y1k. Denoting N0 = k the north pole in S2, we define:

Π1 : SU(2) → S2

q 7→ qkq∗ = 2(x1y2 + x2y1)i+ 2(y1y2 − x1x2)j + (x21 − x22 − y22 + y21)k
.

One can show (see [20]) that Π1 define a submersion. Using the cylindrical coordi-
nates (φ, θ, z) for q, we obtain:

Π1(q) = sin(φ) sin(θ)i− sin(φ) cos(θ)j + cos(φ)k.

Thus Π1 sends every element of SU(2) described by the cylindrical coordinates
(φ, θ, z) onto the point of S2 described by the spherical coordinates (φ, θ). Moreover,
the fiber over (φ, θ) of this projection is described by {(φ, θ, z), z ∈]− 2π, 2π]}.

• We now deal with the SL(2,R) group. It is the group of two dimensional matrices
with real coefficients and with determinant 1. As for SU(2) this is a Lie group with
the topology of the matrices groups. The associated Lie algebra, denoted sl(2), is
constituted by the two dimensional matrices with real coefficients and trace 0. It
is also the tangent space of SL(2,R) at point I2. The following matrices, using the
same notation as for SU(2), form a basis of sl(2):

X =
1

2

(
1 0
0 −1

)
, Y =

1

2

(
0 −1
−1 0

)
and Z =

1

2

(
0 −1
1 0

)
.

This time, the relation induced by the Lie brackets are:

[X, Y ] = Z , [Y, Z] = −X , [Z,X] = −Y. (3.24)

As before, we can prove that every element of SL(2,R) can be written on the form:

exp(φ(cos(θ)X + sin(θ)Y )) exp(zZ) =(
cosh

(
φ
2

)
cos
(
z
2

)
+ sinh

(
φ
2

)
cos
(
θ + z

2

)
− cosh

(
φ
2

)
sin
(
z
2

)
− sinh

(
φ
2

)
sin
(
θ + z

2

)
cosh

(
φ
2

)
sin
(
z
2

)
− sinh

(
φ
2

)
sin
(
θ + z

2

)
cosh

(
φ
2

)
cos
(
z
2

)
− sinh

(
φ
2

)
cos
(
θ + z

2

) )
with z ∈]− 2π, 2π], φ > 0 and θ ∈ [0, 2π[ as seen in [23] for example. We can thus
define as well a system of cylindrical coordinates on SL(2,R).
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Similarly to SU(2), we can define a submersion Π−1 from SL(2,R) to H2, the
Poincaré upper half-plane:

Π−1 : SL(2) → H2

A =

(
a b
c d

)
7→ ai+ b

ci+ d

.

Using the cylindrical coordinates (φ, θ, z) for A, we get:

Π−1(A) =
i− sinh(φ) sin(θ)

cosh(φ)− sinh(φ) cos(θ)
.

With the help of the Cartesian formula of the hyperbolic metric and trigonometric
relations, we obtain that Π−1 (φ, θ, z) is described by the polar coordinates (φ, θ)
relative to the pole N0 = i. Thus the fiber over (φ, θ) of this projection is given by
{(φ, θ, z), z ∈]− 2π, 2π]}.

Remark 3.2.1. In what follows we will often use the notations Ek and Mk with k ∈
{−1, 1} with:

• E1 = SU(2) and M1 = S2;

• E−1 = SL(2,R) and M−1 = H2.

For the two cases we denote X̄, Ȳ and Z̄ the left-invariant vector fields associated to X,
Y , Z, that is, the vector fields induced by:

∂

∂ϵ |ϵ=0

(
exp

(
φ(cos(θ)X + sin(θ)Y )

)
exp(zZ) exp(ϵA)

)
for A = X, Y, Z.

We can then provide a subRiemannian structure to SU(2) (respectively SL(2,R)) by con-
sidering the horizontal bundle H = Span{X̄, Ȳ } and the associated Carnot-Carathéodory
distance dcc. It has been proven by Baudoin and Bonnefont in [10, 21, 20], that there
exist two constants c1 and c2 such that, for all elements of SU(2) (resp. SL(2,R)) written
in cylindrical coordinates (φ, θ, z):

c1(φ
2 + |z|) ≤ d2cc(0, (φ, θ, z)) ≤ c2(φ

2 + |z|). (3.25)

We now look at the sub-Laplacian operator. Here it is given by L = 1
2

(
X̄2 + Ȳ 2

)
. Note

that, as the considered vector fields are chosen left invariant, the subRiemannian structure
is in fact only determined by the horizontal bundle at point I2, HI2 = Span{X, Y }. In
cylindrical coordinates, we have the following expression for the sub-Laplacian operator:

for SU(2): L =
1

2

(
∂2φ,φ +

1

sin2(φ)
∂2θ,θ + tan2

(φ
2

)
∂2z,z +

1

cos2
(
φ
2

)∂2θ,z + cot(φ)∂φ

)
;

(3.26)

for SL(2,R): L =
1

2

(
∂2φ,φ +

1

sinh2(φ)
∂2θ,θ + tanh2

(φ
2

)
∂2z,z +

1

cosh2
(
φ
2

)∂2θ,z + coth(φ)∂φ

)
.

(3.27)

In the literature, these results are obtained by using direct matrix computations as in [20]
or (only for SU(2)) in [51]1 . We give a different way to prove this result in Subsections
3.2.2 and 3.2.3. Our proof only use the Lie bracket relations (3.23) and (3.24). Moreover,
the proof for SU(2) is easy to adapt to SL(2,R).

1Here the author uses Euler angle parametrization which is quite similar from the one with cylindrical
coordinates.
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3.2.2 Computation of the sub-Laplacian on SU(2)

To obtain the expression (3.26) of the sub-Laplacian operator on SU(2) in cylindrical
coordinates, the first step is the computation of the left invariant vector fields X̄ and Ȳ in
cylindrical coordinates. In order to do that, we need to express the following expressions
in cylindrical coordinates:

exp
(
φ(cos(θ)X + sin(θ)Y )

)
exp(zZ) exp(ϵX)

and exp
(
φ(cos(θ)X + sin(θ)Y )

)
exp(zZ) exp(ϵY ).

We will then study the derivation of these coordinates in ϵ = 0.

We recall that the triplet (X, Y, Z) is a basis of the Lie Algebra su(2) satisfying (3.23).
Thus it can be seen as a direct orthonormal basis for the action of rotation [·, ·]. In order
to simplify the computations, during this proof, we will denote this action of rotation · ∧ ·
as the tensor operator. In the following lemmas we will deal with some basis (u, v, w) of
the Lie algebra satisfying (3.23), that is, such that u ∧ v = w, v ∧ w = u and w ∧ u = v.
We will focus on expressions of the type

exp (αu+ βv + γw) exp (ϵ (α′u+ β′v + γ′w))

for α, β, γ, α′, β′, γ′ real numbers and ϵ real near 0.

Lemma 3.2.2. Let (u, v, w) be a basis of su(2) satisfying (3.23). Then we get:

exp (αu) exp (ϵβv) = exp

(
αu+ ϵ

βα

2

(
cot
(α
2

)
v + w

))
+O

(
ϵ2
)
. (3.28)

More generally we have:

exp(αu) exp(βv) = exp (β(cos (α) v + sin (α)w)) exp (αu) . (3.29)

Proof. Let us deal with (3.28). Using the Campbell Hausdorff formula we have

exp(αu) exp(ϵβv) = exp (αu+ ϵβψ(−adαu)(v)) +O(ϵ2)

with ψ(z) = z
ez−1

=
∑
n≥0

Bn

n!
zn, Bn denoting the Bernoulli coefficients.

We have: ad(αu)(v) = αu ∧ v = αw and ad(2)
(αu)(v) = α2u ∧ w = −α2v.

So we obtain:
ad(k)

(αu)(v) =

{
(−1)nα2nv if k = 2n, n ≥ 0;
(−1)nα2n+1w if k = 2n+ 1, n ≥ 0.

Thus:

ψ
(
−ad(αu)

)
=
∑
n≥0

B2n

(2n)!
(−1)nα2nv −

∑
n≥0

B2n+1

(2n+ 1)!
(−1)nα2n+1w

= Re (ψ(iα)) v − Im (ψ(iα))w.

To obtain the announced equality, we just need to notice that:

ψ(iα) =
iα

eiα − 1
=

iαe−iα
2

ei
α
2 − e−iα

2

=
αe−iα

2

2 sin(α
2
)
=
α

2

(
cot
(α
2

)
− i
)
.
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Note also that exp(A) exp(B) exp(−A) = exp (Ad (exp(A)) (B)) = exp
(
eadA(B)

)
for any

matrices A, B with real or complex coefficients. Thus:

exp(αu) exp(βv) = exp(αu) exp(βv) exp(−αu) exp(αu)

= exp
(
eadαu (βv)

)
exp(αu).

We finally obtain (3.29) as

eadαu(βv) =
∑
k≥0

1

k!
ad(k)

αu(βv) = β

(∑
n≥0

α2n

(2n)!
(−1)nv +

∑
n≥0

α2n+1

(2n+ 1)!
(−1)nw

)
= β (cos(α)v + sin(α)w) .

Lemma 3.2.3. Let (u, v, w) be a basis of the Lie algebra su(2) satisfying (3.23) and
t ∈ su(2) such that u ∧ t = ρw with ρ ̸= 0. Then we get:

exp(αu) exp(ϵt) = exp
(
αu+ ϵ

(
t+ ρ

(
−v + α

2
cot
(α
2

)
v +

α

2
w
)))

+O(ϵ2). (3.30)

Proof. We use exactly the same strategy as for the previous case using the Campbell
Hausdorff formula. This time we have: ad(αu)(t) = αu ∧ t = αρw; ad(2)

(αu)(t) = −α2ρv;
ad(3)

(αu)(v) = −α3ρw.
Thus we obtain:

ad(k)
(αu)(t) =


t if k = 0
(−1)nα2nρv if k = 2n, n ≥ 1
(−1)nα2n+1ρw if k = 2n+ 1, n ≥ 0

and

ψ (−adαu) (t) = t+ ρ (Re (ψ(iα))− 1) v − ρIm (ψ(iα))w

= t+ ρ
(α
2
cot
(α
2

)
− 1
)
v + ρ

α

2
w.

Remark 3.2.4. Note that the two lemmas stay true if the coefficients α and β are complex.

Now we can find the expressions of the invariant vectors on SU(2) in cylindrical
coordinates. We take (φ, θ, z) some cylindrical coordinates of an element of SU(2). We
will denote x = φ cos(θ) and y = φ sin(θ). We look for the cylindrical coordinates of
exp(xX + yY ) exp(zZ) exp(ϵ(aX + bY )), with a,b ∈ R and ϵ small.

• First, we use Lemma 3.2.2 with u = Z, v = aX+bY
r

, α = z, β = r and r =
√
a2 + b2.

Note that w = −bX+aY
r

. We get:

exp(zZ) exp(ϵ(aX + bY )) = exp(ϵr(cos(z)v + sin(z)w)) exp(zZ)

= exp(ϵ(cos(z)(aX + bY ) + sin(z)(−bX + aY ))) exp(zZ)

= exp(ϵ(A(z)X +B(z)Y )) exp(zZ)

with A(z) = a cos(z)− b sin(z) and B(z) = a sin(z) + b cos(z).

If x = y = 0, we obtain the expected expression in cylindrical coordinates. For what
will follows, we will suppose that (x, y) ̸= (0, 0). We recall that φ =

√
x2 + y2.
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• To obtain the expression of exp(xX + yY ) exp(ϵ(A(z)X + B(z)Y )) in cylindrical
coordinates, we use Lemma 3.2.3 with u = xX+yY

φ
, α = φ and t = A(z)X +B(z)Y .

We have u ∧ t = xB(z)−yA(z)
φ

Z thus we take w = Z and ρ = xB(z)−yA(z)
φ

. Taking
v = w ∧ u = −yX+xY

φ
, we obtain a basis (u, v, w) satisfying (3.23). We get:

exp (xX + yY ) exp (ϵ (A(z)X +B(z)Y )) = exp

(
xX + yY + ϵ

(
A(z)X +B(z)Y

+ ρ

(
− −yX + xY

φ
+
φ

2
cot
(φ
2

) −yX + xY

φ
+
φ

2
Z

)))
+O(ϵ2)

= exp ((x+ ϵC)X + (y + ϵD)Y + ϵE · Z) +O(ϵ2)

with C = A(z) + ρy
(

1
φ
− 1

2
cot
(
φ
2

))
, D = B(z) + xρ

(
− 1

φ
+ 1

2
cot
(
φ
2

))
, E = ρφ

2
.

• In cylindrical coordinates we can write:

exp ((x+ ϵC)X + (y + ϵD)Y + ϵEZ) +O(ϵ2)

= exp (x(ϵ)X + y(ϵ)Y ) exp (ϵγ(ϵ)Z) +O(ϵ2).

We use the first equality of Lemma 3.2.2 with u = x(ϵ)X+y(ϵ)Y
φ(ϵ)

, α = φ(ϵ) =√
x(ϵ)2 + y(ϵ)2, v = Z and β = γ(ϵ). We also have w = y(ϵ)X−x(ϵ)Y

φ(ϵ)
. Then we

obtain:

exp (x(ϵ)X + y(ϵ)Y ) exp (ϵγ(ϵ)Z)

= exp

(
x(ϵ)X + y(ϵ)Y + ϵ

γ(ϵ)φ(ϵ)

2

(
cot

(
φ(ϵ)

2

)
Z +

y(ϵ)X − x(ϵ)Y

φ(ϵ)

))
+O(ϵ2)

= exp

((
x(ϵ) + ϵ

γ(ϵ)

2
y(ϵ)

)
X +

(
y(ϵ)− ϵ

γ(ϵ)

2
x(ϵ)

)
Y + ϵ

γ(ϵ)φ(ϵ)

2
cot

(
φ(ϵ)

2

)
Z

)
+O(ϵ2).

Thus we take x(ϵ), y(ϵ) and γ(ϵ) such that:

x+ ϵC = x(ϵ) + ϵ
γ(ϵ)

2
y(ϵ)

y + ϵD = y(ϵ)− ϵ
γ(ϵ)

2
x(ϵ)

E =
φ(ϵ)γ(ϵ)

2
cot(

φ(ϵ)

2
)

(3.31a)

(3.31b)

(3.31c)

Note that x(0) = x, y(0) = y and φ(0) = φ. Finally we get:

exp (xX + yY ) exp (zZ) exp (ϵ(aX + bY ))

= exp (x(ϵ)X + y(ϵ)Y ) exp (ϵγ(ϵ)Z) exp (zZ) +O(ϵ2)

= exp (x(ϵ)X + y(ϵ)Y ) exp (z(ϵ)Z) +O(ϵ2)

with z(ϵ) = z + ϵγ(ϵ)

= exp (φ(ϵ)(cos(θ(ϵ))X + sin(θ(ϵ))Y ) exp (z(ϵ)Z) +O(ϵ2).
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• To obtain the values of the left invariant vector, we now have to study θ′(0), φ′(0)
and z′(0).
Using (3.31c), we directly have z′(0) = γ(0) = 2

φ
tan
(
φ
2

)
E = ρ× tan

(
φ
2

)
with

ρ =
xB(z)− yA(z)

φ
= cos(θ)B(z)− sin(θ)A(z)

= cos(θ) (a sin(z) + b cos(z))− sin(θ) (a cos(z)− b sin(z))

= a (cos(θ) sin(z)− sin(θ) cos(z)) + b (cos(θ) cos(z) + sin(θ) sin(z))

= a sin(z − θ) + b cos(z − θ).

Thus z′(0) = tan
(
φ
2

)
(a sin(z − θ) + b cos(z − θ)).

Then, summing the squares of (3.31a) and (3.31b), we get φ(ϵ)2 = x(ϵ)2 + y(ϵ)2 =
x2 + y2 + 2ϵ (xC + yD) +O(ϵ2), hence 2φ(0)φ′(0) = 2 (xC + yD) and

φ′(0) =
xC + yD

φ
= cos(θ)C + sin(θ)D

= cos(θ)

(
A(z) + ρy

(
1

φ
− 1

2
cot
(φ
2

)))
+ sin(θ)

(
B(z) + xρ

(
− 1

φ
+

1

2
cot
(φ
2

)))
= cos(θ)A(z) + sin(θ)B(z) + ρ

(
1

φ
− 1

2
cot
(φ
2

))
(y cos(θ)− x sin(θ))

= cos(θ)A(z) + sin(θ)B(z)

= cos(θ) (a cos(z)− b sin(z)) + sin(θ) (a sin(z) + b cos(z))

= a cos(θ − z) + b sin(θ − z).

Now note that tan (θ(ϵ)) = y(ϵ)
x(ϵ)

.

Thus θ′(ϵ)
cos2(θ(ϵ))

= y′(ϵ)x(ϵ)−x′(ϵ)y(ϵ)
x(ϵ)2

and θ′(0) = cos2(θ)y
′(0)x−x′(0)y
r2 cos2(θ)

= y′(0)x−x′(0)y
r2

.
Using (3.31a) and then (3.31b), we get:

x′(0) = C − γ(0)

2
y(0) = C − ρ

2
tan(

φ

2
)y

y′(0) = D +
γ(0)

2
x(0) = D +

ρ

2
tan(

φ

2
)x.

We obtain:

θ′(0) =

(
D + ρ

2
tan
(
φ
2

)
x
)
x−

(
C − ρ

2
tan
(
φ
2

)
y
)
y

φ2
=
Dx− Cy

φ2
+
ρ

2
tan
(φ
2

)
=
D cos(θ)− C sin(θ)

φ
+
ρ

2
tan
(φ
2

)
.
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We have:

D cos(θ)− C sin(θ)

= cos(θ)

(
B(z) + xρ

(
− 1

φ
+

1

2
cot
(φ
2

)))
− sin(θ)

(
A(z) + ρy

(
1

φ
− 1

2
cot
(φ
2

)))
= cos(θ)B(z)− sin(θ)A(z) + ρ

(
− 1

φ
+

1

2
cot
(φ
2

))
(x cos(θ) + y sin(θ))

= ρ+ φρ

(
− 1

φ
+

1

2
cot
(φ
2

))
=
φρ

2
cot
(φ
2

)
.

Hence: θ′(0) = ρ
2

(
cot
(
φ
2

)
+ tan

(
φ
2

))
= a sin(z−θ)+b cos(z−θ)

2

(
cot
(
φ
2

)
+ tan

(
φ
2

))
.

• Finally, taking (a, b) = (1, 0), we get X̄ =

 cos(θ − z)
1
2
sin(z − θ)

(
cot
(
φ
2

)
+ tan

(
φ
2

))
tan
(
φ
2

)
sin(z − θ)

 and,

taking (a, b) = (0, 1), we get Ȳ =

 sin(θ − z)
1
2
cos(θ − z)

(
cot
(
φ
2

)
+ tan

(
φ
2

))
tan
(
φ
2

)
cos(z − θ)

 .

We can now calculate the sub-Laplacian operator L = 1
2

(
X̄2 + Ȳ 2

)
(also made in [20]).

X̄2 = cos(θ − z)∂φ

[
cos(θ − z)∂φ +

1

2
sin(z − θ)

(
cot
(φ
2

)
+ tan

(φ
2

))
∂θ

+ tan
(φ
2

)
sin(z − θ)∂z

]
+
1

2
sin(z − θ)

(
cot
(φ
2

)
+ tan

(φ
2

))
∂θ

[
cos(θ − z)∂φ +

1

2
sin(z − θ)

(
cot
(φ
2

)
+tan

(φ
2

))
∂θ + tan

(φ
2

)
sin(z − θ)∂z

]
+tan

(φ
2

)
sin(z − θ)∂z

[
cos(θ − z)∂φ +

1

2
sin(z − θ)

(
cot
(φ
2

)
+ tan

(φ
2

))
∂θ

+tan
(φ
2

)
sin(z − θ)∂z

]
and

Ȳ 2 = sin(θ − z)∂φ

[
sin(θ − z)∂φ +

1

2
cos(θ − z)

(
cot
(φ
2

)
+ tan

(φ
2

))
∂θ+

+ tan
(φ
2

)
cos(z − θ)∂z

]
+
1

2
cos(θ − z)

(
cot
(φ
2

)
+ tan

(φ
2

))
∂θ

[
sin(θ − z)∂φ +

1

2
cos(θ − z)

(
cot
(φ
2

)
+tan

(φ
2

))
∂θ + tan

(φ
2

)
cos(z − θ)∂z

]
+tan

(φ
2

)
cos(z − θ)∂z

[
sin(θ − z)∂φ +

1

2
cos(θ − z)

(
cot
(φ
2

)
+ tan

(φ
2

))
∂θ

+ tan
(φ
2

)
cos(z − θ)∂z

]
.
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We obtain:

X̄2 + Ȳ 2 = ∂2φ,φ +
1

4

(
cot
(φ
2

)
+ tan

(φ
2

))2
∂2θ,θ +

(
1 + tan2

(φ
2

))
∂2θ,z

+
1

2

(
cot
(φ
2

)
− tan

(φ
2

))
∂φ + tan2

(φ
2

)
∂2z,z

= ∂2φ,φ +
1

sin2(φ)
∂2θ,θ + tan2

(φ
2

)
∂2z,z +

1

cos2
(
φ
2

)∂2θ,z + cot(φ)∂φ.

3.2.3 Computation of the sub-Laplacian on SL(2,R)

We now consider the case of SL(2,R). In this case, (X, Y, Z) is satisfying (3.24). In
order to use our previous results, we define (X̃, Ỹ , Z̃) := (iX, iY,−Z). This way we get
(X̃, Ỹ , Z̃) a basis of su(2) satisfying (3.23). We have to study

exp (xX + yY ) exp (zZ) exp (ϵ (aX + bY ))

= exp
(
−ixX̃ − iyỸ

)
exp

(
−zZ̃

)
exp

(
ϵ
(
−iaX̃ − ibỸ

))
.

In the previous part, as said Remark 3.2.4, the computation can be made using complex
coefficients. Then we obtain:

exp(xX + yY ) exp(zZ) exp(ϵ(aX + bY ))

= exp
(
φ(ϵ)

(
cos (θ(ϵ)) X̃ + sin (θ(ϵ)) Ỹ

))
exp

(
z(ϵ)Z̃

)
+O(ϵ2)

= exp
(
iφ(ϵ)

(
cos (θ(ϵ)) X̃ + sin (θ(ϵ)) Ỹ

))
exp

(
−z(ϵ)Z̃

)
+O(ϵ2),

with φ(0) = −iφ, θ(0) = θ and z(0) = −z.
We have:

d

dϵ
(iφ(ϵ))|ϵ=0 = iφ′(0) = i (−ia cos(θ − (−z))− ib sin(θ − (−z))) = a cos(θ+z)+b sin(θ+z);

d

dϵ
(−z(ϵ))|ϵ=0 = −z′(0) = − tan

(
−iφ
2

)
(−ia sin(−z − θ)− ib cos(−z − θ))

= − tanh
(φ
2

)
(a sin(z + θ)− b cos(θ + z)) ;

θ′(0) =
−ia sin(−z − θ)− ib cos(θ − (−z))

2

(
cot

(
−iφ
2

)
+ tan

(
−iφ
2

))
= −i−a sin(z + θ) + b cos(θ + z)

2

(
i coth

(φ
2

)
− i tanh

(φ
2

))
=

−a sin(z + θ) + b cos(θ + z)

2

(
coth

(φ
2

)
− tanh

(φ
2

))
.

We get:

X̄ =

 cos(θ + z)

− sin(z+θ)
2

(
coth

(
φ
2

)
− tanh

(
φ
2

))
− tanh

(
φ
2

)
sin(z + θ)

 and Ȳ =

 sin(θ + z)
cos(θ+z)

2

(
coth

(
φ
2

)
− tanh

(
φ
2

))
tanh

(
φ
2

)
cos(z + θ)

 .
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As before, we can calculate the sub-Laplacian operator:

L =
1

2
(X̄2 + Ȳ 2) = ∂2φ,φ +

1

4

(
coth

(φ
2

)
− tanh

(φ
2

))2
∂2θ,θ +

(
1− tanh2

(φ
2

))
∂2θ,z

+
1

2

(
coth

(φ
2

)
+ tanh

(φ
2

))
∂φ + tanh2

(φ
2

)
∂2z,z

= ∂2φ,φ +
1

sinh2(φ)
∂2θ,θ + tanh2

(φ
2

)
∂2z,z +

1

cosh2
(
φ
2

)∂2θ,z + coth(φ)∂φ.

3.2.4 Norms of gradients on SU(2) and SL(2,R)

Let k ∈ {−1, 1}. We recall that E1 = SU(2) and E−1 = SL(2,R).

As in subsection 3.1.6, for any function f on Ek and g ∈ Ek, we can define the norm
of the gradient ||∇Hf(g)||H :=

√
(X̄f)2(g) + (Ȳ f)2(g) and the gradient length |∇f |(g)

associated to the Carnot-Carathéodory distance. As for the homogeneous Carnot groups,
Ek is a regular subRiemannian manifold. Thus, for all u upper gradient of f , and in
particular for u the gradient length:

||∇Hf(g)||H ≤ u(g) a.e. in Ek. (3.32)

In particular, this is true for the upper-gradient defined by the gradient length.

3.2.5 The Brownian motion on SU(2) and SL(2,R)

The following proposition gives a characterization and a formal geometrical interpretation
of the Brownian motion on SU(2) and SL(2,R) due to Baudoin and Bonnefont (see [10,
21, 20]):

Proposition 3.2.5 ([10, 21, 20]). Let us consider a Brownian motion Bt on SU(2) (resp.
SL(2,R)). There exist three continuous processes (φt)t, (θt)t and (zt)t such that

Bt = exp(φt(cos(θt)X̄ + sin(θt)Ȳ )) exp(ztZ̄) and


dφt = dB1

t +
1
2

√
k cot(

√
kφt)dt

dθt =
√
k

sin(
√
kφt)

dB2
t

dzt =
tan

(√
kφt
2

)
√
k

dB2
t

(3.33)
with B1

t and B2
t two independent Brownian motions in R (in the above formula, we take

k = 1 for the case of SU(2) and k = −1 for the case of SL(2,R)).

Moreover, we have:

• The process (Xt := Π1(Bt))t (resp. (Π−1(Bt))t) is a Brownian motion on the sphere
S2 (resp. the hyperbolic plane H2). Its spherical (resp. polar) coordinates are given
by (φt, θt) with respect to the pole N0 fixed by the submersion.

• zt − z0 is the signed swept area (modulo 4π) of Xt with respect to the fixed pole N0.

Remark 3.2.6. Using the geometrical interpretation stated by this proposition, we can
define a Brownian motion on SU(2) (resp. SL(2,R)) by defining a Brownian motion
(Xt)t on S2 (resp. H2) and by considering its lifting on SU(2) (resp. SL(2,R).
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Let us explain this result.

Proof of Proposition 3.2.5. We define the Brownian motion on SU(2) (resp. SL(2,R) as
the diffusion process Bt with infinitesimal generator L. Using the expression of L in the
cylindrical coordinates obtained in (3.26) and (3.27), we can state that there exist φt, θt
and zt three real diffusion processes, such that:

Bt = exp(φt(cos(θt)X + sin(θt)Y )) exp(ztZ) and



⟨dφt, dφt⟩ = dt

⟨dθt, dθt⟩ = k
sin2(

√
kφt)

dt

⟨dzt, dzt⟩ = 1
k
tan2

(√
kφt

2

)
dt

⟨dθt, dzt⟩ = 1

2 cos2
(√

kφt
2

)dt
⟨dφt, dθt⟩ = ⟨dφt, dzt⟩ = 0

Drift(dφt) =
1
2

√
k cot(φt)dt

Drift(dθt) = 0

Drift(dzt) = 0.

This leads to (3.33).

Because of the properties of Πk described in Subsection 3.2.1, it is immediate that the
spherical (resp. polar) coordinates of Xt with respect to the pole N0 are given by (φt, θt).
Using the two first equations of (3.33), we get the infinitesimal generator of the diffusion
(φt, θt)t:

1

2

(
∂2φ,φ +

k

sin2(
√
kφ)

∂2θ,θ +
√
k cot(

√
kφ)∂φ

)
.

This is the Laplace Beltrami operator on the sphere S2 (resp. the hyperbolic plane
H2) in spherical (resp. polar) coordinates. Moreover, the signed area swept by the path
of (φt, θt)t on S2 (resp. H2) with respect of the pole N0, is given by:∫ t

0

1

k
(1− cos(

√
kφs))dθs =

∫ t

0

2

k
sin2

(√
kφs

2

)
dθs =

∫ t

0

1√
k
tan

(√
kφt

2

)
dB2

t .

The last integral is exactly equal to zt − z0.

Remark 3.2.7. Note that this swept area is a signed value depending of the orientation
of the curve (φt, θt)t. For example, if θt is decreasing for all t, then we get zt − z0 < 0.

Remark 3.2.8. Let consider a Brownian motion on the Heisenberg group (which is the
free Carnot group with step 2 and rank 2) starting at (x, z) ∈ R2 × R. According to
Subsection 3.1.3, it can be defined by Bt := (Xt, zt) with Xt = (X1

t , X
2
t ) a 2-dimensional

Brownian motion starting at 0 and zt = z +At with At denoting the Lévy area associated
to (X1

t , X
2
t ). We thus get a similar geometrical interpretation of the Brownian motion on

the Heisenberg group. Moreover, by denoting (φt, θt)t the continuous process describing
the usual polar coordinates of (Xt)t, (φt, θt, zt)t satisfies the system (3.33) for k → 0, that
is: 

dφt = dB1
t +

1
2φt
dt

dθt =
1
φt
dB2

t

dzt =
φt

2
dB2

t

with (B1
t )t and (B2

t )t two real independent Brownian motions.
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3.2.6 Comparison of two elements in SU(2) and SL(2,R)

The results given in this subsection come from the contribution:

[25] Magalie Bénéfice. Couplings of Brownian motions on SU(2) and SL(2,R). Stochas-
tic Processes and their Applications, page 104434, 2024

To compare (with respect to the subRiemannian structure) two elements expressed in
the cylindrical coordinates g = (φ, θ, z) and g′ = (φ′, θ′, z′) on SU(2) (resp. SL(2,R)),
we would like to use the estimates of the Carnot-Carathéodory distance given by (3.25).
To use this relation, we thus need to compute the cylindrical coordinates (ρ,Θ, ζ) of
g−1g′, or at least ρ and ζ which are the only coordinates appearing in the estimate of
dcc(g, g

′) = dcc(0, g
−1g′). In the following proposition, we give an expression of ρ and ζ in

function of the projections of g and g′ on S2 (resp. H2) and of the last coordinates z and
z′.

Proposition 3.2.9. Let g = (φ, θ, z) and g′ = (φ′, θ′, z′) be two elements of SU(2) (resp.
SL(2,R)) written in cylindrical coordinates. Using the submersions defined in Subsection
3.2.1, we denote x := Π1(g) and x′ := Π1(g

′) (resp. x := Π−1(g) and x′ := Π−1(g
′)). The

cylindrical coordinates of g−1g′ are given by (ρ,Θ, ζ) with for ρ and ζ:

• ρ equals to the usual Riemannian distance on S2 (resp. on H2) between x and x′.

• ζ ∈]− 2π, 2π] and ζ ≡ z′ − z + sign(θ− θ′)Ax′,x,N0 mod (4π) with Aa,b,c the area of
the spherical (resp. hyperbolic) triangle of vertices a, b and c and N0 a pole induced
by the submersion Π1 (resp. Π−1). Note that sign(θ−θ′)Ax′,x,N0 is in fact the signed
area of the oriented triangle of vertices x′, x and N0.

In particular, we directly obtain the estimate:

c1(ρ
2 + |ζ|) ≤ d2cc(g, g

′) ≤ c2(ρ
2 + |ζ|) (3.34)

with c1 and c2 two positive constants only depending on the subRiemannian structure of
SU(2) (resp. SL(2,R)).

Proof. We first begin with the case of SU(2).

Let g = (φ, θ, z) and g′ = (φ′, θ′, z′) be two elements of SU(2) written in cylindrical
coordinates. We denote by (ρ,Θ, ζ) the cylindrical coordinates of g−1g′. Using matrix
computations, we have:

g−1g′ =
(
exp

(
φ(cos(θ)X + sin(θ)Y )

)
exp(zZ)

)−1
exp

(
φ′(cos(θ′)X + sin(θ′)Y )

)
exp(z′Z)

= exp
(
− φ(cos(θ − z)X + sin(θ − z)Y )

)
exp

(
φ′(cos(θ′ − z)X + sin(θ′ − z)Y )

)
exp

(
(z′ − z)Z

)
Then exp

(
ρ(cos(Θ)X + sin(Θ)Y )

)
exp(ζZ) is equal to the matrix product:

(
cos
(
−φ

2

)
ei(θ−z) sin

(
−φ

2

)
−e−i(θ−z) sin

(
−φ

2

)
cos
(
−φ

2

) ) cos
(

φ′

2

)
ei(θ

′−z) sin
(

φ′

2

)
−e−i(θ′−z) sin

(
φ′

2

)
cos
(

φ′

2

)
 .
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In particular we have:

cos
(ρ
2

)
ei

ζ
2 = cos

(φ
2

)
cos

(
φ′

2

)
+ ei(θ−θ′) sin

(φ
2

)
sin

(
φ′

2

)
. (3.35)

From this equation we can get the expected geometrical interpretation on the values ρ
and ζ.

• We begin with ρ: we are going to prove that ρ is the usual distance on S2 between
x and x′ with x := Π1(g) and x′ := Π1(g

′). Let us denote by ρ(x, x′) this distance.
We note that:

cos(ρ(x, x′)) =< x, x′ >R3

= sin(θ) sin(θ′) sin(φ) sin(φ′) + cos(θ) cos(θ′) sin(φ) sin(φ′) + cos(φ) cos(φ′)

= cos(φ) cos(φ′) + sin(φ) sin(φ′) cos(θ − θ′).

From (3.35), we get

cos2
(ρ
2

)
=

(
cos
(φ
2

)
cos

(
φ′

2

)
+ cos (θ − θ′) sin

(φ
2

)
sin

(
φ′

2

))2

+ sin2(θ − θ′) sin2
(φ
2

)
sin2

(
φ′

2

)
=

1 + cos(φ) cos(φ′)

2
+

sin(φ) sin(φ′) cos(θ − θ′)

2

=
1 + cos(ρ(x, x′))

2
= cos2

(
ρ(x, x′)

2

)
.

We obtain the announced result as ρ and ρ(Π1(x),Π1(x
′)) live in [0, π].

Moreover, we get that

cos(ρ) = cos(φ) cos(φ′) + sin(φ) sin(φ′) cos(θ − θ′). (3.36)

• We now deal with ζ. We consider Ax′,x,N0 the area of the spherical triangle with
vertices x′, x and N0, where N0 still denotes the north pole. The lengths of the
opposite sides are respectively φ, φ′ and ρ. Using an equivalent of the Heron formula
for the spherical triangle (see [35]), we have:

cos

(
Ax′,x,N0

2

)
=

1

4 cos
(
ρ
2

)
cos
(
φ
2

)
cos
(
φ′

2

) (1 + cos(φ) + cos(φ′) + cos(ρ)) .

Because of (3.35) and (3.36), we get:

cos

(
ζ

2

)
=

1

cos
(
ρ
2

) (cos(φ
2

)
cos

(
φ′

2

)
+

cos(ρ)− cos(φ) cos(φ′)

sin(φ) sin(φ′)
sin
(φ
2

)
sin

(
φ′

2

))
=

1

4 cos
(
ρ
2

)
cos
(
φ
2

)
cos
(
φ′

2

) ((1 + cos(φ)) (1 + cos(φ′)) + cos(ρ)− cos(φ) cos(φ′))

= cos

(
Ax′,x,N0

2

)
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Thus we have |ζ| ≡ Ax′,x,N0 mod (4π).

Moreover, still using (3.35), we get that sin
(
ζ
2

)
= sin(θ − θ′)

sin(φ
2 ) sin

(
φ′
2

)
cos( ρ

2)
, and so

ζ < 0 if and only if θ < θ′. This gives the expected result.

As the Carnot-Carathéodory distance is left invariant, we have dcc(g, g′) = dcc(0, g
−1 · g′)

and we directly deduce (3.34) from (3.25).

We now deal with the case of SL(2,R). The proof is quite similar as for the case of
SU(2). We use the same notations as before. Let g, g′ ∈ SL(2,R). This time, the matrix
computations give:

g−1 · g′ = exp
(
− φ(cos(θ + z)X + sin(θ + z)Y )

)
exp

(
φ′(cos(θ′ + z)X + sin(θ′ + z)Y )

)
exp

(
(z′ − z)Z

)
If we denote M := exp

(
ρ(cos(Θ)X + sin(Θ)Y )

)
exp(ζZ), we have:

M =

(
cosh

(
ρ
2

)
cos
(
ζ
2

)
+ sinh

(
ρ
2

)
cos
(
Θ+ ζ

2

)
− cosh

(
ρ
2

)
sin
(
ζ
2

)
− sinh

(
ρ
2

)
sin
(
Θ+ ζ

2

)
cosh

(
ρ
2

)
sin
(
ζ
2

)
− sinh

(
ρ
2

)
sin
(
Θ+ ζ

2

)
cosh

(
ρ
2

)
cos
(
ζ
2

)
− sinh

(
ρ
2

)
cos
(
Θ+ ζ

2

) )

The matrix M is also equal to the product:

exp
(
− φ(cos(θ + z)X + sin(θ + z)Y )

)
exp

(
φ′(cos(θ′ + z)X + sin(θ′ + z)Y )

)
.

In particular we get:

M1,1 = cosh
(φ
2

)
cosh

(
φ′

2

)
+ cosh

(φ
2

)
sinh

(
φ′

2

)
cos(θ′ + z)

− cosh

(
φ′

2

)
sinh

(φ
2

)
cos(θ + z)− sinh

(φ
2

)
sinh

(
φ′

2

)
cos(θ′ − θ)

M1,2 = − cosh
(φ
2

)
sinh

(
φ′

2

)
sin(θ′ + z) + sinh

(φ
2

)
cosh

(
φ′

2

)
sin(θ + z)

+ sinh
(φ
2

)
sinh

(
φ′

2

)
sin(θ′ − θ)

M2,1 = − cosh
(φ
2

)
sinh

(
φ′

2

)
sin(θ′ + z) + sinh

(φ
2

)
cosh

(
φ′

2

)
sin(θ + z)

− sinh
(φ
2

)
sinh

(
φ′

2

)
sin(θ′ − θ)

M2,2 = cosh
(φ
2

)
cosh

(
φ′

2

)
− cosh

(φ
2

)
sinh

(
φ′

2

)
cos(θ′ + z)

+ cosh

(
φ′

2

)
sinh

(φ
2

)
cos(θ + z)− sinh

(φ
2

)
sinh

(
φ′

2

)
cos(θ′ − θ)

As cosh
(
ρ
2

)
cos
(
ζ
2

)
= M1,1+M2,2

2
and cosh

(
ρ
2

)
sin
(
ζ
2

)
= M2,1−M1,2

2
, we get:

cosh
(ρ
2

)
cos

(
ζ

2

)
= cosh

(φ
2

)
cosh

(
φ′

2

)
− sinh

(φ
2

)
sinh

(
φ′

2

)
cos(θ′ − θ) (3.37a)

cosh
(ρ
2

)
sin

(
ζ

2

)
= − sinh

(φ
2

)
sinh

(
φ′

2

)
sin(θ′ − θ). (3.37b)
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• This time, the distance between x := Π−1(g) and x′ := Π−1(g
′) satisfies:

cosh(ρ(x, x′)) = cosh(φ) cosh(φ′) + sinh(φ) sinh(φ′) cos(θ − θ′).

Using the identity cosh2(ρ
2
) = 1+cosh(ρ)

2
we obtain:

cosh(ρ) = cosh(φ) cosh(φ′) + sinh(φ) sinh(φ′) cos(θ − θ′) (3.38)

and thus: ρ = ρ(x, x′).

• Using the same notations as before (this time N0 is the pole used to define the polar
coordinates on H2) and the equivalent of the Heron formula for hyperbolic triangles,
we have:

cos

(
Ax′,x,N0

2

)
=

1

4 cosh
(
ρ
2

)
cosh

(
φ
2

)
cosh

(
φ′

2

)(1 + cosh(φ) + cosh(φ′) + cosh(ρ))

= cos

(
ζ

2

)

and thus ζ = sign(ζ)Ax′,x,N0 . Moreover, we have sin
(
ζ
2

)
= sin(θ− θ′)

sinh(φ
2 ) sinh

(
φ′
2

)
cosh( ρ

2)
,

and so ζ < 0 if and only if θ < θ′.

From Proposition 3.2.9, we obtain the following geometrical interpretation of the dis-
tance between two Brownian motions. Using the notations Ek, Mk from Remark 3.2.1,
we have:

Corollary 3.2.10. Let us take Bt and B′
t two Brownian motions on Ek starting from g

and g′ respectively, with (φt, θt, zt) and (φ′
t, θ

′
t, z

′
t) their cylindrical coordinates. We denote

Xt := Πk(Bt) and X ′
t := Πk(B′

t). The cylindrical coordinates of (Bt)
−1B′

t are given by
(ρt,Θt, ζt) with:

• ρt the Riemannian distance between Xt and X ′
t on Mk;

• ζt ∈]− 2π, 2π] and

ζt ≡ z′t − zt + sign(θt − θ′t)AXt,X′
t,N0

mod (4π) (3.39)
≡ ζ0 + At mod (4π) (3.40)

with At the signed swept area between (Xs)s≤t and (X ′
s)s≤t as defined in the following

Definition 3.2.1.

As previously, we directly obtain the estimate:

c1(ρ
2
t + |ζt|) ≤ d2cc(Bt,B

′
t) ≤ c2(ρ

2
t + |ζt|) (3.41)

with c1 and c2 as in Proposition 3.2.9.

The continuous process At announced in this corollary can be defined as follows:
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Definition 3.2.1. Let (Xt)t and (X ′
t)t be two Brownian motions on Mk such that X ′

s is
not in the cut locus of Xs for all s ≤ t. We define the signed swept area At as the signed
area of the oriented loop starting from X ′

0, following:

• the path s 7→ X ′
s, s ≤ t from X ′

0 to X ′
t;

• the geodesic joining X ′
t to Xt;

• the path s 7→ Xt−s, s ≤ t joining Xt to X0;

• finally the geodesic joining X0 to X ′
0.

Note that this definition makes sense for any oriented Riemannian manifold. Here the
sign of the quantity At changes when the paths of X ′

t and Xt are crossing. Note also that
At takes values in R whereas ζt takes values in ]− 2π, 2π].

Proof of Corollary 3.2.10. Applying Proposition 3.2.9, we get the result for ρt. We also
get ζt ≡ z′t − zt + sign(θt − θ′t)AX′

t,Xt,N0
mod (4π). In particular

ζ0 ≡ z′0 − z0 + sign(θ0 − θ′0)AX′
t,Xt,N0

mod (4π).

To finish the proof Corollary 3.2.10, we then just need to remark that (z′t− z′0)+ sign(θt−
θ′t)AX′

t,Xt,N0
− (zt − z0)− sign(θ0 − θ′0)AX′

0,X0,N0
is equal to At.

Remark 3.2.11. Using the polar coordinates and the pseudo norm 3.1 defined in Section
3.1.2, Proposition 3.2.9 and Proposition 3.2.10 also make sense (and are easier to obtain)
for the Heisenberg group with the use of planar triangles.

3.2.7 Stability of z′t − zt under changes of coordinates

The results given in this subsection come from the contribution:

[24] Magalie Bénéfice. Non co-adapted couplings of Brownian motions on subRieman-
nian manifolds. https://arxiv.org/abs/2312.14512, 2023

As before we use the notations Ek, Mk and Πk for k ∈ {−1, 1}.
In Corollary 3.2.10, the quantities ρt, ζt and At are intrinsic to B−1

t Bt and do not
depend on the choice of the projection Πk. As seen in this same proposition, this does
not seem to be the case for the quantity z′t − zt as the quantity sign(θt − θ′t)AXt,X′

t,N0

mod (4π) depends on the choice of the pole N0 and the vector e0. However we will
need to study this non intrinsic quantity when we will define couplings (in particular
non co-adapted couplings) of Brownian motions defined with spherical/polar coordinates.
For various reasons we need to change the system of spherical/polar coordinates on Mk

induced by Πk, in the sense that we change the pole and the vector of reference. Thus it
is interesting to see how z′t − zt reacts. Let us consider (Xt)t and (X ′

t)t as in Proposition
3.2.5. We chose (N, e) ∈ TMk. We also introduce some notations:

• We denote by (φ
(N,e)
t , θ

(N,e)
t ) (resp. (φ′(N,e)

t , θ′
(N,e)
t )) the spherical/polar coordinates

of Xt (resp. X ′
t) relative to N and e.

68

https://arxiv.org/abs/2312.14512


• We denote by It(N, e) (resp. I ′t(N, e)) the signed area swept by (Xs)s≤t (resp.
(X ′

s)s≤t) relative to N and e and starting at point z0 (resp. z′0). More precisely, it is
defined such that (φ

(N,e)
t , θ

(N,e)
t , It(N, e))t satisfies the stochastic differential system

(3.33).

In particular, we have (φt, θt) = (φ
(N0,e0)
t , θ

(N0,e0)
t ) and zt = It(N0, e0). Note that zt ̸=

It(N, e) in general for (N, e) ̸= (N0, e0). Then we have the following results:

Lemma 3.2.12. For all (N, e) ∈ TMk,we have:

At = I ′t(N, e)− It(N, e)− (z′0 − z0) + sign
(
θ
(N,e)
t − θ′

(N,e)
t

)
AXt,X′

t,N

− sign
(
θ
(N,e)
0 − θ′

(N,e)
0

)
AX0,X′

0,N
. (3.42)

In particular, we have:

ζt ≡ I ′t(N, e)− It(N, e) + sign
(
θ
(N,e)
t − θ′

(N,e)
t

)
AXt,X′

t,N

− sign
(
θ
(N,e)
0 − θ′

(N,e)
0

)
AX0,X′

0,N

+ sign
(
θ
(N0,e0)
0 − θ′

(N0,e0)
0

)
AX0,X′

0,N0
mod (4π). (3.43)

Proof. Relation (3.42) is an immediate geometric result. We look at the second relation
(3.43). From Corollary 3.2.10, we have:

ζt ≡ I ′t(N0, e0)− It(N0, e0) + sign
(
θ
(N0,e0)
t − θ′

(N0,e0)
t

)
AXt,X′

t,N0
mod (4π).

Then using (3.42) with N0, we get:

ζt ≡ z′0 − z0 + At + sign
(
θ
(N0,e0)
0 − θ′

(N0,e0)
0

)
AX0,X′

0,N0
mod (4π).

Using (3.42) this time with N , we obtain the expected result.

Remark 3.2.13. If we have X0 = X ′
0 and XT = X ′

T , then for any (N, e) ∈ TMk:

ζt ≡ I ′t(N, e)− It(N, e) mod (4π).

Remark 3.2.14. The impact of these change of coordinates can also be seen directly in
Ek on the process Bt. Let (N, e) ∈ TMk. We claim that the process:

Jt := exp
(
φ
(N,e)
t

(
cos(θ

(N,e)
t )X + sin(θ

(N,e)
t )Y

))
exp (It(N, e)Z)

can be obtained from Bt by looking at g−1Bt exp(zZ) for g depending only on the choice
(N, e) and z depending on N , e but also on X0. Let explain this fact. Taking g =
(φg, θg, zg) ∈ Ek, it is possible to prove that for all h ∈ Ek, Πk(g

−1h) = mg (Πk(h)) with
mg a direct isometry in Mk that can be decomposed as follows:

• We first make a rotation of angle −zg and of axis directed by (0, 0, 1) for SU(2)
(resp. of center N0 for SL(2,R)). It keeps the pole N0 invariant but acts on the
vector of reference e0 = TI2Πk(X);
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• We then apply a direct isometry which acts by translation on the geodesic from Πk(g)
to N0. In particular this isometry transports the new vector obtained above parallelly
along this geodesic. The vector obtained finally is equal to TgΠk(X̄).

Thus, for (N, e) ∈ TMk, we can find g ∈ Ek such that Πk(g) = N and TgΠk(X̄) = e.
For all t, Πk(g

−1Bt) gives the polar coordinates of Πk(Bt) relative to N and e, that is,(
φ
(N,e)
t , θ

(N,e)
t

)
. With similar results as in Proposition 3.2.9, we have g−1Bt equal to:

exp
(
φ
(N,e)
t

(
cos(θ

(N,e)
t )X + sin(θ

(N,e)
t )Y

))
× exp

((
zt − zg + sign

(
θg − θ

(N0,e0)
t

)
AN,Xt,N0

)
Z
)
.

Using some geometric comparisons, we can obtain:

zt − zg + sign
(
θg − θ

(N0,e0)
t

)
AN,Xt,N0 = It(N, e)− zg + sign

(
θg − θ

(N0,e0)
0

)
AN,X0,N0 .

The process Jt is then equal to:

Jt = g−1Bt exp
((
zg − sign

(
θg − θ

(N0,e0)
0

)
AN,X0,N0

)
Z
)
.

We now consider this change of coordinates for the two processes (Bt)t and (B′
t)t that

we want to compare. As before, we define

J ′
t := exp

(
φ′(N,e)

t

(
cos(θ′t

(N,e)
)X + sin(θ′t

(N,e)
)Y
))

exp (I ′t(N, e)Z) .

We have
J ′
t = g−1B′

t exp
((
zg − sign

(
θg − θ′0

(N0,e0)
)
AN,X′

0,N0

)
Z
)

Here it seems evident that, in general dcc(Bt,B′
t) ̸= dcc(Jt, J

′
t). However, if X0 = X ′

0

and XT = X ′
T , as exp(αZ) and exp(βZ) commute for all α, β ∈ R, we have B−1

T B′
T =

exp(−zTZ) exp(z′TZ) and:

J−1
T J ′

T = exp
((

−zg + sign
(
θg − θ

(N0,e0)
0

)
AN,X0,N0

)
Z
)
exp(−zTZ) exp(z′TZ)

exp
((
zg − sign

(
θg − θ0

(N0,e0)
)
AN,X0,N0

)
Z
)
= exp(−zTZ) exp(z′TZ).

Thus at time T , dcc(BT ,B′
T ) = dcc(JT , J

′
T ). This gives an echo of Remark 3.2.13.

In general, by left invariance of the Carnot Carathéodory distance, we have dcc(Bt,B′
t) =

dcc(g
−1Bt, g

−1B′
t). In fact, (g−1Bt)

−1
g−1B′

t = B−1
t Bt and thus, the third cylindrical coordi-

nate of (g−1Bt)
−1
g−1B′

t is equal to ζt as defined in Corollary 3.2.10. Applying the same
Corollary to g−1B′

t and g−1Bt, we obtain the following equality modulo 4π:

ζt = I ′t(N, e)− It(N, e) + sign
(
θg − θ′0

(N0,e0)
)
AN,X′

0,N0
− sign

(
θg − θ

(N0,e0)
0

)
AN,X0,N0

+ sign
(
θ
(N,e)
t − θ′t

(N,e)
)
Amg(X′

t),mg(Xt),N0
.

As we have:

sign
(
θg − θ′0

(N0,e0)
)
AN,X′

0,N0
− sign

(
θg − θ

(N0,e0)
0

)
AN,X0,N0

= −sign
(
θ
(N0,e0)
0 − θ′0

(N0,e0)
)
AX0,X′

0,N
+ sign

(
θ
(N0,e0)
0 − θ′0

(N0,e0)
)
AX0,X′

0,N0
,

and Amg(X′
t),mg(Xt),N0

= AX′
t,Xt,m

−1
g (N0)

with m−1
g (N0) = N , we obtain the relation (3.43)

from Lemma 3.2.12.
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Chapter 4

Co-adapted couplings on SU(2) and
SL(2,R)

This chapter is devoted to the study of co-adapted couplings on SU(2) and SL(2,R). In
particular, we construct a co-adapted successful couplings but only on SU(2) as announced
in Subsection 2.3.3. We recall that, as explained in Chapter 2 (Subsection 2.3.5), there is
no co-adapted successful coupling on SL(2,R).

These results were announced in :

[18] Magalie Bénéfice, Marc Arnaudon, and Michel Bonnefont. Couplings of Brownian
motions on SU(2,C). In Geometric science of information. Part I, volume 14071 of Lecture
Notes in Comput. Sci., pages 592–600. Springer, Cham, [2023] ©2023

and proven in :

[25] Magalie Bénéfice. Couplings of Brownian motions on SU(2) and SL(2,R).
Stochastic Processes and their Applications, page 104434, 2024.

Please note that Section 3.2 and more precisely Subsection 3.2.6 are necessary to
apprehend what follows. In all this chapter, to construct a coupling (Bt,B′

t) of Brownian
motions on the subRiemannian manifold SU(2) (resp. SL(2,R)), we just construct a
coupling (Xt, Yt) of Brownian motions on the Riemannian manifold S2 (resp. H2) and
consider its lifting on SU(2) (resp. SL(2,R)) as in Remark 3.2.6. According to Corollary
3.2.10, to compare (Bt)t and (B′

t)t, we just need to study the processes Rt and At with
Rt := ρ(Xt, Yt) the Riemannian distance between Xt and Yt and with At the area swept
by (Xs, Ys)s≤t as described in Definition 3.2.1. To do that, we make good use of the Itô
depiction of the Brownian motions (Xt)t and (Yt)t in a moving frame as in the first
strategy described in Subsection 2.3.2.
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4.1 Couplings on the simply connected Riemannian surfaces Mk
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4.1.1 Itô depiction and co-adapted couplings for the distance and the
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4.2 Successful couplings on SU(2) . . . . . . . . . . . . . . . . . . . 83

4.2.1 The results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.2 Coupling Brownian motions on the sphere together with their
swept area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.3 Improvement of the strategy for a successful coupling in SU(2) 90

4.1 Couplings on the simply connected Riemannian sur-
faces Mk of constant curvature k and variation of
the swept area

In this section we want to describe a model of co-adapted coupling for every simply
connected Riemannian surface endowed with the Riemannian metric of constant sectional
curvature k. By the Uniformization Theorem, we can reduce our study to one of the
following spaces (endowed with the usual Riemannian metric):

• if k = 0, M0 = R2 ;

• if k > 0, Mk is the sphere of dimension 2 and of radius 1
k
;

• if k < 0, Mk is the hyperbolic space of sectional curvature k.

In particular for M1 = S2, M−1 = H2 and even M0 = R2, this will induce a model of
co-adapted couplings on SU(2), SL(2,R) and the Heisenberg group H respectively.

In the remainder we denote by i(Mk) the injectivity radius of Mk. Note that i(Mk) =
+∞ if k ≤ 0 and i(Mk) =

π√
k

if k > 0.

4.1.1 Itô depiction and co-adapted couplings for the distance and
the swept area

We first give a formal definition of a co-adapted coupling as stated in [39].

Definition 4.1.1. Let consider two continuous Markov processes (Xt)t and (Yt)t on a
manifold M . The process (X̃t, Ỹt)t is said a co-adapted coupling of (Xt)t and (Yt)t if there
exists a filtered probability space (Ft)t such that:

• the processes (X̃t)t and (Ỹt)t are both adapted to (Ft)t;

• for all bounded measurable function f , z ∈M , s, t > 0, the functions
z 7→ E[f(X̃t+s) | Fs, X̃s = z] and z 7→ E[f(Xt+s) | Xs = z] (resp.
z 7→ E[f(Ỹt+s) | Fs, Ỹs = z] and z 7→ E[f(Yt+s) | Ys = z]) are equal PXs-a.s. (resp.
PYs-a.s.).

In fact, this means that the stochastic dynamic of (X̃s+t)s agree with the one from
(Xs+t)s even when the past behaviour of (Yu)u≤t is taken into account.
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In particular, a coupling of Brownian motions (Xt, Yt)t is co-adapted if there exists a
filtration (Ft)t such that (Xt)t (resp. (Yt)t) is a Brownian motion for the filtration (Ft)t.

As explained previously, we are going to use the Itô depiction of a Brownian motion
in a frame in the sense of Emery (see [30] for a basic introduction) to describe a large
class of co-adapted couplings in Mk.

Proposition 4.1.1. We consider (Xt)t a semi-martingale on Mk and (e1(t), e2(t))t a
continuous semi-martingale (adapted to the same filtration than (Xt)t) in the orthonormal
frame bundle OMk above (Xt)t. If (Xt)t is a Brownian motion on Mk, there exists (U1, U2)
a Brownian motion on R2 such that:

d∇Xt = dU1(t)e1(t) + dU2(t)e2(t). (4.1)

Conversely, if Xt satisfies (4.1) with (U1, U2) a Brownian motion on R2, then Xt is a
Brownian motion on Mk.

Even if the proof of this Proposition can be found in the literature (see [30]), we give
it here for the reader.

Proof. Let us begin with the direct implication. For i ∈ {1, 2}, taking Ui such that
dUi(t) = ⟨e∗i (t), d∇Xt⟩, with (e∗1, e

∗
2) the dual basis of (e1, e2) in T ∗Mk, we directly get

that Ui are martingales. Moreover, as Xt is a Brownian motion and (e1, e2)(t) forms an
orthonormal basis of TXtMk, for i, j ∈ {1, 2}:

dUi(t) · dUj(t) = (e∗i ⊗ e∗j)(t)(dXt, dXt) = Tr(e∗i ⊗ e∗j)(t)dt = δi,jdt.

We obtain the expected result.

For the converse implication, as∫ ·

0

⟨ϕ(Xt), d
∇Xt⟩ =

∫ ·

0

⟨ϕ(Xt), e
∗
1(t)⟩dU1(t) +

∫ ·

0

⟨ϕ(Xt), e
∗
2(t)⟩dU2(t)

is a martingale for all ϕ ∈ Γ (T ∗Mk), we obtain that (Xt)t is a martingale. Then for f a
smooth function on Mk, by Itô’s formula, we get:

d(f(Xt)) = df(Xt) · d∇Xt +
1

2
Hess(f)(Xt)(d

∇Xt, d
∇Xt)

with:

Hess(f)(Xt)(d
∇Xt, d

∇Xt) =
∑
i,j

⟨Hess(f)(Xt), (e
∗
i ⊗ e∗j)(t)⟩(e∗i ⊗ e∗j)(t)(d

∇Xt, d
∇Xt)

=
∑
i,j

⟨Hess(f)(Xt), (e
∗
i ⊗ e∗j)(t)⟩⟨e∗i (t), d∇Xt⟩ · ⟨e∗j(t), d∇Xt⟩

=
∑
i,j

⟨Hess(f)(Xt), (e
∗
i ⊗ e∗j)(t)⟩dUi(t) · dUj(t)

= Tr(Hess(f))(Xt)dt = ∆f(Xt)dt.

Thus, (Xt)t is a Brownian motion on Mk.
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Let us go back to the coupling problem. Using Itô depiction, two Brownian motions
(Xt)t and (Yt)t on the Riemannian manifold Mk can be described by the equations

d∇Xt = dU1(t)e
X
1 (t) + dU2(t)e

X
2 (t) and d∇Yt = dV1(t)e

Y
1 (t) + dV2(t)e

Y
2 (t) (4.2)

with:

• U(t) := (U1(t), U2(t)) and V (t) := (V1(t), V2(t)) two Brownian motions in R2;

• eX(t) := (eX1 (t), e
X
2 (t)) a continuous semi-martingale (adapted to the same filtration

than (Xt)t) in the orthonormal frame bundle OMk above (Xt)t.

• eY (t) := (eY1 (t), e
Y
2 (t)) a continuous semi-martingale (adapted to the same filtration

than (Yt)t) in the orthonormal frame bundle OMk above (Yt)t.

Thus a coupling (Xt, Yt) is characterized by its starting points and the joint law of((
U(t), eX(t)

)
,
(
V (t), eY (t)

))
t
.

By choosing a co-adapted coupling of
((
U(t), eX(t)

)
,
(
V (t), eY (t)

))
t
, we can describe and

study a wide range of co-adapted couplings (Xt, Yt)t on Mk.

In the next subsection, we compute the first and second order derivatives of the signed
swept area between two smooth curves in some specific basis of the tangent bundle (see
Lemma 4.1.3). This will allow us to obtain a general stochastic equation for At in the
co-adapted coupling described above. Using some well-known similar results about the
distance in Mk, we will also obtain a stochastic equation for Rt (Lemma 4.1.2).

4.1.2 First and second order derivatives

Let x, y ∈Mk such that 0 < ρ(x, y) < i(Mk). We can define:

• ex1(x, y) =
exp−1

x (y)
ρ(x,y)

∈ TxMk

• ey1(x, y) the parallel transport of ex1 along the geodesic joining x and y;

• ex2(x, y) ∈ TxMk such that (ex1(x, y), e
x
2(x, y)) is an orthonormal positive basis of

TxMk;

• ey2(x, y) ∈ TyMk such that (ey1(x, y), e
y
2(x, y)) is an orthonormal positive basis of

TyMk.

We first give a local expression of the oriented swept area between some paths on Mk

which coincides with the one used to define the process (At)t in Definition 3.2.1. We
consider:

• γx, γy : [0,+∞[7→Mk two curves C1 on Mk starting at x and y respectively;

• (s, t) ∈ [0, 1]× [0,+∞[7→ c(s, t) ∈Mk such that for all t ≥ 0, s 7→ c(s, t) is a geodesic
starting at γx(t) and ending at γy(t).
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• Provided that 0 < ρ (γx(t), γy(t)) < i(Mk) we can define e1(s, t) := ∂sc(s,t)
ρ(γx(t),γy(t))

and
e2(s, t) such that (e1(s, t), e2(s, t)) is an orthonormal positive basis of Tc(s,t)Mk for
each s, t. In particular e1(0, 0) = ex1(x, y) and e1(1, 0) = ey1(x, y).

Considering the positive local chart (x1, x2) induced by the parametrization (s, ς) 7→ c(s, ς)
on Mk, the volume form is given by

√
det(G)dx1 ∧ dx2 where G is the positive definite

symmetric matrix representing the metric in these local coordinates. In particular, we
have:

det(G) = ||∂sc(s, ς)||2||∂ςc(s, ς)||2 − ⟨∂sc(s, ς), ∂ςc(s, ς)⟩2 = det
(
∂sc(s, ς), ∂ςc(s, ς)

)2
where the determinant is calculated in the basis (e1(s, ς), e2(s, ς)) of Tc(s,ς)M for each ς, t.
Note that x1(c(s, ς)) = s if and only if det

(
∂sc(s, ς), ∂ςc(s, ς)

)
> 0. Then, the signed

swept area can be locally defined by:

A(t) :=

∫ 1

0

∫ t

0

det(∂sc(s, ς), ∂ςc(s, ς))dςds. (4.3)

In particular, there exists a vector field V (that will be described just after in Lemma
4.1.3) on Mk ×Mk such that:

A(t) =

∫ t

0

〈
V(γ1(ς),γ2(ς)), (γ̇1(ς), γ̇2(ς))

〉
dς. (4.4)

The following lemma gives the expressions of the first order derivative and the Hessian
of the distance using the basis (ex1(x, y), e

x
2(x, y)) and (ey1(x, y), e

y
2(x, y)) defined above.

Even though this result is well known, we will give its proof later in this subsection as it
uses the same elements as to prove Lemma 4.1.3.

Lemma 4.1.2. Let x, y ∈Mk, r = ρ(x, y) with 0 < r < i(Mk), u ∈ TxMk and v ∈ TyMk.
Then, we have:

dρ(x,y)(u, v) = v1 − u1

and
Hess(ρ)(x,y)((u, v), (u, v)) =

√
k(u22 + v22) cot(

√
kr)− 2

√
ku2v2

1

sin(
√
kr)

.

with ui = ⟨u, exi (x, y)⟩ and vi = ⟨v, eyi (x, y)⟩ for i ∈ {1, 2}.

We also give a result for what could be seen as the first order derivative and hessian
of the signed swept area (if it was a function on Mk ×Mk). As far as the author knows,
this has never been computed before.

Lemma 4.1.3. With the same hypothesis and notations than in Lemma 4.1.2 and V
defined as in (4.4), we have:

〈
V(x,y), (u, v)

〉
=

1√
k
tan

(√
kr

2

)
(u2 + v2),

〈
∇(u,v)V(x,y), (u, v)

〉
=
u2v1 − v2u1

cos2(
√
kr
2
)

+ tan2

(√
kr

2

)
(v2v1 − u2u1).
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Note that the above results are given as general formulas for the three cases k > 0,
k < 0 and k = 0 (taking the limits when k tends to 0 in the last case).

To prove these two lemmas, we need to evaluate in zero the first and second derivatives
of the functions r : t 7→ ρ(γx(t), γy(t)) and A with γx(t) := expx(tu) and γy(t) := expy(tv).
We use the notations c(s, t), e1(s, t), e2(s, t) to denote the same objects as previously. In
particular, as 0 < ρ(x, y) < i(Mk), there exists t0 > 0 such that (e1(s, t), e2(s, t)) is well
defined for t ∈ [0, t0].

Let define s 7→ J(s, t) := ∂tc(s, t). With this choice of γx and γy, s 7→ J(s, t) := ∂tc(s, t)
is a Jacobi field for all t ≥ 0. For i ∈ {1, 2}, we denote:

ui(t) := ⟨J(0, t), ei(0, t)⟩, ui := ui(0) and vi(t) := ⟨J(1, t), ei(1, t)⟩, vi := vi(0).

In the basis (e1(s, t), e2(s, t)) we have the following decomposition of this Jacobi field J :

Lemma 4.1.4. With the above notations and hypothesis we can write J(s, t) = j1(s, t)e1(s, t)+
j2(s, t)e2(s, t) with:

j1(s, t) = u1(t)(1− s) + v1(t)s; (4.5)

j2(s, t) = u2(t) cos(
√
kr(t)s) +

v2(t)− u2(t) cos(
√
kr(t))

sin(
√
kr(t))

sin(
√
kr(t)s); (4.6)

u′2(0) =
√
k
u2 cos(

√
kr)− v2

sin(
√
kr)

u1; v
′
2(0) =

√
k
u2 − v2 cos(

√
kr)

sin(
√
kr)

v1. (4.7)

Note that for all the following computations, we will use the notations ∇s for ∇∂sc(s,t)

and ∇t for ∇∂tc(s,t). This lemma is the main result to prove Lemma 4.1.2 and Lemma
4.1.3.

Proof of Lemma 4.1.4. For t constant, s 7→ ei(s, t) is defined by parallel transport along
s 7→ c(s, t). Thus ∇sei(s, t) = 0 and we have:

∇sJ(s, t) = ∂sj1(s, t)e1(s, t) + ∂sj2(s, t)e2(s, t)

and ∇s∇sJ(s, t) = ∂2ssj1(s, t)e1(s, t) + ∂2ssj2(s, t)e2(s, t).

By definition of the Jacobi fields, we also have:

∇s∇sJ(s, t) = −R(J(s, t), ∂sc(s, t))∂sc(s, t)
= −r(t)2(j1(s, t)R(e1(s, t), e1(s, t))e1(s, t) + j2(s, t)R(e2(s, t), e1(s, t))e1(s, t))

= −kr(t)2j2(s, t)e2(s, t).

By solving the differential equations{ ∂2ssj1(s, t) = 0
j1(0, t) = u1(t)
j1(1, t) = v1(t)

and

{ ∂2ssj2(s, t) = −kr(t)2j2(s, t)
j2(0, t) = u2(t)
j2(1, t) = v2(t)

we obtain (4.5) and (4.6).
We now just have to compute u′2(0) and v′2(0). As u2(t) = ⟨∂tc(0, t), e2(0, t)⟩ and t 7→
c(0, t) is a geodesic, we have:

u′2(t) = ⟨∇t∂tc(0, t), e2(0, t)⟩+ ⟨∂tc(0, t),∇te2(0, t)⟩ = ⟨∂tc(0, t),∇te2(0, t)⟩.
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Thus, u′2(0) = ⟨u,∇te2(0, t)|t=0⟩ and, in the same way, we have v′2(0) = ⟨v,∇te2(1, t)|t=0⟩.
Note that, as ⟨e2(s, t), e2(s, t)⟩ = 1 and ⟨e2(s, t), e1(s, t)⟩ = 0, we have:

⟨∇te2(s, t), e2(s, t)⟩ =
1

2
∂t⟨e2(s, t), e2(s, t)⟩ = 0 and

⟨∇te2(s, t), e1(s, t)⟩ = ∂t(⟨e2(s, t), e1(s, t)⟩)− ⟨e2(s, t),∇te1(s, t)⟩ = −⟨e2(s, t),∇te1(s, t)⟩.

Then, ∇te2(s, t) = −⟨∇te1(s, t), e2(s, t)⟩e1(s, t). We have:

∇te1(s, t) = ∇t

(
∂sc(s, t)×

1

r(t)

)
= − r′(t)

r(t)2
∂sc(s, t) +∇t(∂sc(s, t))×

1

r(t)

= −r
′(t)

r(t)
e1(s, t) +

∇sJ(s, t)

r(t)
since ∇ is torsion free.

Thus:

⟨∇te1(s, t), e2(s, t)⟩ =
1

r(t)
∂sj2(s, t)

=
√
k

(
−u2(t) sin(

√
kr(t)s) +

v2(t)− u2(t) cos(
√
kr(t))

sin(
√
kr(t))

cos(
√
kr(t)s)

)
.

(4.8)

We obtain:

∇te2(0, t) = −
√
k
v2(t)− u2(t) cos(

√
kr(t))

sin(
√
kr(t))

e1(0, t)

and ∇te2(1, t) = −
√
k
v2(t) cos(

√
kr(t))− u2(t)

sin(
√
kr(t))

e1(1, t).

This gives (4.7).

We can now give the proofs of the two Lemmas.

Proof of Lemma 4.1.2. The general formulas for L′(0) and L′′(0) are classical results that
can be found in numerous books. As an example they are given in Lemma 6.1.1 and
Theorem 6.1.1 in [36]. With our notations, we obtain:

r′(0) =

(∫ 1

0

d
ds
⟨J(s, t), r(t)e1(s, t)⟩

r(t)
− ⟨J(s, t), r(t)∇se1(s, t)⟩

r(t)
ds

)
|t=0

(4.9)

r′′(0) =
1

r

(∫ 1

0

∂sj2(s, t)
2 − r(t)2j2(s, t)

2 ⟨R(e1(s, t), e2(s, t))e2(s, t), e1(s, t)⟩ ds
)

|t=0

− 1

r
[⟨∇t∂tc(s, t), r(t)e1(s, t)⟩t=0]

1
0 . (4.10)

In particular, as said before, ∇se1(s, 0) = 0, thus r′(0) = j1(1, 0)− j1(0, 0) = v1 − u1.
We now look at r′′(0). We note that t 7→ c(s, t) is a geodesic for s = 0 and s = 1. Thus,
we have ∇t∂tc(s, t) = 0. As (e1(s, t), e2(s, t)) is an orthonormal basis,

⟨R(e1(s, t), e2(s, t))e2(s, t), e1(s, t)⟩ = k.
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Thus, r′′(0) = 1
r

∫ 1

0
∂sj2(s, 0)

2 − kr2j2(s, 0)
2ds. Using, (4.6) and (4.8) evaluated in

t = 0, we get:

r′′(0) = kr

∫ 1

0

(
sin2(

√
krs)− cos2(

√
krs)

)(
u22 −

(v2 − u2 cos(
√
kr))2

sin2(
√
kr)

)

− 4u2
v2 − u2 cos(

√
kr)

sin(
√
kr)

cos(
√
krs) sin(

√
krs)ds.

By integrating we finally obtain r′′(0) =
√
k
(
(u22 + v22) cot(

√
kr)− 2 u2v2

sin(
√
kr)

)
.

Proof of Lemma 4.1.3. We first explain why we just need to compute A′(0) and A′′(0).
As γx and γy are chosen to be two geodesics, we have ∇t(γ̇x(t), γ̇y(t)) = 0. Using relation
(4.4), we then obtain:

A′(t) = ⟨V(γ1(t),γ2(t)), (γ̇1(t), γ̇2(t))⟩ and A′′(t) = ⟨∇(γ̇1(t),γ̇2(t))V(γ1(t),γ2(t)), (γ̇1(t), γ̇2(t))⟩.

For t = 0, we obtain
〈
V(x,y), (u, v)

〉
and

〈
∇(u,v)V(x,y), (u, v)

〉
.

We now use relation (4.3) to compute A′(0) and A′′(0). We have:

A′(t) =

∫ 1

0

det(∂sc(s, t), ∂tc(s, t))ds =

∫ 1

0

det(r(t)e1(s, t), J(s, t))ds = r(t)

∫ 1

0

j2(s, t)ds

= r(t)

(∫ 1

0

u2(t) cos(
√
kr(t)s) +

v2(t)− u2(t) cos(
√
kr(t))

sin(
√
kr(t))

sin(
√
kr(t)s)ds

)

= (u2(t) + v2(t))
1√
k
tan

(√
kr(t)

2

)
.

We obtain the first expected result. This also leads to:

A′′(t) = (u′2(t) + v′2(t))
1√
k
tan

(√
kr(t)

2

)
+ (u2(t) + v2(t))

r′(t)

2 cos2(
√
kr(t)
2

)
.

Note that r′(0) has been calculated for the proof of Lemma 4.1.2, so:

A′′(0) = (u′2(0) + v′2(0))
1√
k
tan

(√
kr

2

)
+ (u2 + v2)

v1 − u1

2 cos2(
√
kr
2
)
.

Finally:

A′′(0) =

(
u2 cos(

√
kr)− v2

sin(
√
kr)

u1 +
u2 − v2 cos(

√
kr)

sin(
√
kr)

v1

)
tan

(√
kr

2

)
+ (u2 + v2)

v1 − u1

2 cos2(
√
kr
2
)

= − (u2u1 − v2v1) tan
2

(√
kr

2

)
+ (u2v1 − v2u1)

1

cos2(
√
kr
2
)
.
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4.1.3 Description of the model for co-adapted couplings on Mk

Using the model from Subsection 4.1.1 with the orthonormal frame used in Subsection
4.1.2, we obtain the relations announced in Subsection 2.3.2: Let Mk, i(Mk) and ρ be
defined as above.

Proposition 4.1.5. Let us consider x, y ∈ Mk such that 0 < ρ(x, y) < i(Mk) and
(U(t), V (t))t a co-adapted coupling of Brownian motions on R2.
For t ∈ [0, T ], we construct (Xt)t and (Yt)t two processes on Mk starting from x and y
with T := inf{t > 0 | ρ(Xt, Yt) = 0} and such that (Xt)t and (Yt)t satisfy (2.33) with:

• eX1 (t) =
exp−1

Xt
(Yt)

ρ(Xt,Yt)
a unitary vector on TXtMk;

• eX2 (t) such that (eX1 (t), eX2 (t)) is a positive orthonormal basis on TXtMk;

• (eY1 (t), e
Y
2 (t)) the parallel transport of (eX1 (t), e

X
2 (t)) along the geodesic joining Xt

and Yt (this defines a positive orthonormal basis on TYtMk).

Then (Xt, Yt)t is a co-adapted coupling of Brownian motions.

Let denote by Rt the Riemannian distance ρ(Xt, Yt) and by At the area swept by
(Xs, Ys)s≤t as in Corollary 3.2.10. Then (Rt)t and (At)t satisfy:

dRt = dV1(t)− dU1(t) +
√
k cot(

√
kRt)dt−

√
k

sin(
√
kRt)

dU2(t) · dV2(t) (4.11)

dAt =
tan(

√
kRt

2
)

√
k

(dU2(t) + dV2(t)) +
1

2 cos2(
√
kRt

2
)
(dU2 · dV1(t)− dV2(t) · dU1(t))

(4.12)

dRt · dAt =
1√
k
tan

(√
kRt

2

)
(dV1(t) · dU2(t)− dU1(t) · dV2(t)) (4.13)

with dUi(t) · dVj(t) denoting the derivative of the joint quadratic variation of Ui and Vj.

Note that, if k tends to 0, we obtain some well known relations for the Heisenberg
group.

Remark 4.1.6. Let denote by (Bt,B′
t)t the coupling of Brownian motion induced (by

lifting) by the above construction on SU(2), SL(2,R) and H. Using Proposition 4.1.5
together with Corollary 3.2.10, we have a way to obtain an estimate of dcc(Bt,B′

t).

Proof of Proposition 4.1.5. As we define the processes until the first time T where Rt ∈
{0, i(Mk)}, eX1 (t) and eY1 (t) are well defined on [0, T [. By construction U , V , eX1 , eX2 , eY1
and eY2 , X and Y are adapted to the same filtration. Thus the processes (Xt)0≤t≤T and
(Yt)0≤t≤T are Brownian motions on Mk and we obtain a co-adapted coupling.

To deal with the second part of the proof, we just need to notice that eXi (t) =
eXt
i (Xt, Yt) and eYi (t) = eYt

i (Xt, Yt) for all i ∈ {1, 2}. We obtain Equation (4.11) by
using Lemma 4.1.2 and Itô’s formula:

dRt = dρ(Xt,Yt)(d
∇Xt, d

∇Yt) +
1

2
Hess(ρ)(Xt, Yt)((d

∇Xt, d
∇Yt), (d

∇Xt, d
∇Yt))
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We now deal with Equation (4.12). As (4.4) is true for every C1 paths γ1 and γ2, we have:

At =

∫ t

0

〈
V(Xς ,Yς), ◦d(Xς , Yς)

〉
with ◦ d the Stratonovich derivative

=

∫ t

0

〈
V(Xς ,Yς), d

∇(Xς , Yς)
〉
+

1

2

∫ t

0

〈
∇d∇(Xς ,Yς)V(Xς ,Yς), d

∇(Xς , Yς)
〉
.

Using Lemma 4.1.3, we obtain the expected result. The last relation in Proposition
4.1.5 is immediate.

Remark 4.1.7. In fact, with some computations similar to the ones from Subsection
4.1.2, we can describe the covariant derivative of (eXi (t))t (resp. (eYi (t))t) along (Xt)t
(resp. (Yt)t):Dte

X
1 (t) =

√
k
(

dV2(t)−dU2(t) cos(
√
kRt)

sin(
√
kRt)

)
eX2 (t)− k

2

(
dV2(t)−dU2(t) cos(

√
kRt)

sin(
√
kRt)

)2
eX1 (t)

Dte
X
2 (t) =

√
k
(

−dV2(t)+dU2(t) cos(
√
kRt)

sin(
√
kRt)

)
eX1 (t)− k

2

(
dV2(t)−dU2(t) cos(

√
kRt)

sin(
√
kRt)

)2
eX2 (t)

andDte
Y
1 (t) = −

√
k
(

dU2(t)−dV2(t) cos(
√
kRt)

sin(
√
kRt)

)
eY2 (t)− k

2

(
dU2(t)−dV2(t) cos(

√
kRt)

sin(
√
kRt)

)2
eY1 (t)

Dte
Y
2 (t) = −

√
k
(

−dU2(t)+dV2(t) cos(
√
kRt)

sin(
√
kRt)

)
eY1 (t)− k

2

(
dU2(t)−dV2(t) cos(

√
kRt)

sin(
√
kRt)

)2
eY2 (t)

See Appendix B for a proof.

In particular, we can define our moving frames as the solutions of a system of stochastic
differential equations depending on U1, U2, V1, V2 and Rt. In the case where no singular-
ities appear in this system, our coupling keeps sense even if Rt ∈ {0, i(Mk)} (if this
is the case for t = 0, we just need to chose an arbitrary value for eX1 (0)). Then we can
consider Rt as a signed distance, Yt = expXt(Rte

X(t)) and the results of Proposition 4.1.5
are still true.

In R2, there exists a general method to construct co-adapted couplings. The proof of
the following proposition can be found in [38] for example.

Proposition 4.1.8. We consider the filtered probability space (Ω, (Ft)t,P). The following
assertions are equivalent:

(i) (U, V ) is a co-adapted coupling of Brownian motions in R2;

(ii) Enlarging the filtration if needed, there exists a two dimensional Brownian motion
W adapted to the filtration and independent of U , and K(t), K̂(t) ∈ M2,2(R) with
K(t)K(t)T + K̂(t)K̂(t)T = I2, K(t), K̂(t) ∈ Ft such that :

dV (t) = K(t)dU(t) + K̂(t)dW (t). (4.14)

Using (4.14), we can rewrite our relations for Rt and At:
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Proposition 4.1.9. For a co-adapted coupling satisfying Proposition 4.1.5 and relation
(4.14), we have:

dRt · dRt = 2(1−K1,1(t))dt;

dRt
(m)
=

√
k cot(

√
kRt)dt−

√
k

sin(
√
kRt)

K2,2(t)dt =
√
k
cos(

√
kRt)−K2,2(t)

sin(
√
kRt)

dt;

dAt · dAt = 2
tan2(

√
kRt

2
)

k
(1 +K2,2(t))dt;

dAt
(m)
=

1

2 cos2(
√
kRt

2
)
(K1,2(t)−K2,1(t));

dRt · dAt =
1√
k
tan

(√
kRt

2

)
(K1,2(t)−K2,1(t))dt.

4.1.4 Some examples of co-adapted couplings on the Riemannian
manifold Mk

In this subsection, we give some examples of co-adapted couplings on Mk constructed
by using Proposition 4.1.8. As explained in the Proposition 3.2.5, all these constructions
induce co-adapted couplings of Brownian motions on the subRiemannian manifolds H,
SU(2) and SL(2,R).

Example 4.1.10 (Synchronous coupling).

We take K(t) = I2, K̂(t) = 0, dV (t) = dU(t). We get:

dRt · dRt = 0;

Drift(dRt) =
√
k
cos(

√
kRt)− 1

sin(
√
kRt)

dt = −
√
k × tan

(√
kRt

2

)
dt.

Thus Rt is deterministic and Rt =
2√
k
arcsin

(
e−

kt
2 sin(

√
kR0

2
)
)
. We also have:

dAt · dAt = 4
tan2(

√
kRt

2
)

k
dt and Drift(dAt) = 0.

In particular, At is a martingale.

Example 4.1.11 (Reflection coupling).

For K(t) =

(
−1 0
0 1

)
, K̂(t) = 0, dV1(t) = −dU1(t) and dV2(t) = dU2(t), we get:

dRt · dRt = 4dt and Drift(dRt) = −
√
k × tan

(√
kRt

2

)
.

As before, we have:

dAt · dAt = 4
tan2

(√
kRt

2

)
k

dt and Drift(dAt) = 0.

Note that, using Remark 4.1.7, we can show that Rt keeps sense even if Rt ≤ 0 and thus
obtain a coupling with a signed distance.
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Example 4.1.12 (Perverse coupling).

We use here the terminology introduced by Kendall in [38] to name some shy couplings
of Brownian motions on R2.

For K(t) =

(
1 0
0 −1

)
, K̂(t) = 0, dV1(t) = dU1(t) and dV2(t) = −dU2(t), we get:

dRt · dRt = 0;

Drift(dRt) =
√
k
cos(

√
kRt) + 1

sin(
√
kRt)

dt =
√
k × cot

(√
kRt

2

)
.

Thus Rt is deterministic and Rt =
2√
k
arccos

(
e−

kt
2 cos

(√
kR0

2

))
for k ̸= 0. We also have

At constant.

In all these examples, dRt · dAt = 0.
We can also add a noise to these couplings in order to remove the drift part. In particular,
by doing it for the synchronous coupling, we obtain a new coupling with constant distance
between the Brownian motions:

Example 4.1.13 (Fixed-distance coupling).

Taking K(t) =

(
1 0

0 cos(
√
kRt)

)
, K̂(t) =

(
0 0

0 sin(
√
kRt)

)
, we get Rt constant. We

also have:

dAt · dAt = 2
tan2(

√
kRt

2
)

k
(1 + cos(

√
kRt))dt =

4

k
sin2

(√
kRt

2

)
dt =

4

k
sin2

(√
kR0

2

)
dt;

Drift(dAt) = 0.

Note that At is a Brownian motion up to a multiplicative constant.

We can do the same for the reflection coupling.

Example 4.1.14 (Reflection coupling with noise:).

For K(t) =

(
−1 0

0 cos(
√
kRt)

)
, K̂(t) =

(
0 0

0 sin(
√
kRt)

)
, we get:

dRt · dRt = 4dt and Drift(dRt) = 0.

Thus 1
2
Rt is a Brownian motion. We also have:

dAt · dAt =
4

k
sin2

(√
kRt

2

)
dt and Drift(dAt) = 0.

For these two couplings, dRt · dAt = 0 too.

Remark 4.1.15. • Let x, y ∈Mk with 0 < ρ(x, y) < i(Mk) if k > 0. Let f : [0,∞[→
[0,∞[ be a positive (deterministic) function such that f(0) = ρ(x, y). In [48], Pascu
and Popescu proved that there exists a co-adapted coupling of Brownian motions
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(Xt, Yt)t starting at (x, y) such that Rt = f(t) if and only if f is continuous a.s.
and satisfies, a.e. for t ≥ 0, the differential inequality:

−
√
k tan

(√
k
f(t)

2

)
≤ f ′(t) ≤

√
k cot

(√
kf(t)

2

)
.

In particular the synchronous coupling and perverse coupling described above are the
couplings realizing the extrema of this inequality.

• In the case where k = 0 we find all the expected results for the Heisenberg group.
See for example [37, 38, 22].

4.2 Successful couplings on SU(2)

4.2.1 The results

We use the same notations as in Section 4.1.

We want to describe the construction of a successful coupling on SU(2). To begin
with, for k > 0, we construct a successful coupling of Brownian motions on Mk and their
swept areas for the areas lying in R. Note that, since k > 0, we have i(Mk) =

π√
k
. Note

that the two following results have been previously stated as Theorem 2.3.1.

Theorem 4.2.1. For k > 0, let x, y ∈Mk and a ∈ R. There exists a coupling (Xt, Yt) of
Brownian motions on Mk starting from (x, y) such that τ := inf{t > 0|Rt = 0 and At = a}
is a.s. finite with At the signed swept area (started from 0) defined in Definition 3.2.1.

The proof will be given in Subsection 4.2.2. For now we set k = 1. As ζ ≡ At + z′0 −
z0 + sign(θ0 − θ′0)AY0,X0,N mod (4π), the coupling of Theorem 4.2.1 for a = z′0 − z0 +
sign(θ0 − θ′0)AY0,X0,N0 also induces a successful coupling on SU(2). We thus obtain the
following coupling result:

Corollary 4.2.2. There exists a co-adapted successful coupling in SU(2).

In fact, using the compactness of SU(2), the last coordinate zt of any Brownian motion
lies in R/]− 2π, 2π]. Then we can change some steps of the strategy of Theorem 4.2.1 to
obtain a faster coupling. This will be commented at the end of this section in Subsection
4.2.3.

4.2.2 Coupling Brownian motions on the sphere together with
their swept area

In this subsection, we give the proof of Theorem 4.2.1. We first explain the global strategy.
As said before, our method is based on the idea from Kendall [37] for coupling two dimen-
sional real Brownian motions and their swept areas. The original idea is to switch between
reflection and synchronous coupling, using reflection coupling to make Rt decrease, and
synchronous coupling to keep the swept area comparable to R2

t and decreasing as well.
Here, in comparison to Kendall’s original proposition, we will need to use the fixed-
distance coupling defined in Example 4.1.13 instead of the synchronous coupling in order
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to keep Rt constant. If not, we would have a strictly positive probability to be trapped
in a "synchronous coupling step" without returning in a "reflection coupling step". Note
that, for k → 0, i.e., for real two dimensional Brownian motion, fixed-distance coupling
and synchronous coupling describe in fact the same coupling.

We first make and explain some hypothesis on the initial parameters.

• We can first suppose that 0 < R0 < i(Mk). Indeed, by taking t0 > 0 any determin-
istic positive real, we can define the coupling (Xt, Yt)t∈[0,t0] such that Xt and Yt are
independent. Then we have 0 < Rt0 < i(Mk) a.s..

• Without loss of generality, we can suppose that a = 0 by considering the process
At − a instead of At.

• Using fixed-distance coupling if necessary, we can suppose that A0 = 0 without
changing the value of R0 (indeed, At is a changed-time Brownian motion during the
fixed-distance coupling).

Let η > 0 such that i(Mk)− 2η > R0 > 0. We define another stopping time:

τη := inf{t > 0|Rt ≥ i(Mk)− η}.

We are going to study first τ ∧ τη instead of τ : this way we will have Rt < i(Mk)− η for
all t < τ ∧ τη. We define κ and ϵ such that κ > ϵ > 0.

We will construct the coupling as follows on [0, τ ∧ τη] :

1. We use the reflection coupling until the process |At|
R2

t
starting at 0 takes the value κ;

2. While the process |At|
R2

t
, starting at κ, satisfies |At|

R2
t
> κ− ϵ we use the fixed-distance

coupling;

3. While the process |At|
R2

t
, starting at κ − ϵ, satisfies |At|

R2
t
< κ we use the reflection

coupling.

We iterate the steps 2. and 3. until Rt = At = 0 or Rt = i(Mk)− η.

Proposition 4.2.3. Under the hypothesis i(Mk)− 2η > R0 > 0, the co-adapted coupling
described below satisfies τ ∧ τη < +∞ a.s. for k > 0. Moreover, we get P(τ > τη) < 1.

Proof of Proposition 4.2.3. Let us denote τ ′ := τ ∧ τη. We define N (ϵ) : [0, τ ′] → {0, 1}
such that N (ϵ)(t) = 0 during fixed-distance coupling and N (ϵ)(t) = 1 during reflection
coupling. We get, for all t > 0:

dRt = 2N (ϵ)(t)dCt −
√
k tan

(√
kRt

2

)
N (ϵ)(t)dt

dAt =
2√
k
×

sin(
√
kRt

2
)

cos(N (ϵ)(t)
√
kRt

2
)
dC̃t

with Ct and C̃t two independent Brownian motions in R. Note that, during reflection
coupling (i.e., when FN (ϵ)(t) = 1) we have |At|

R2
t
≤ κ, whereas during fixed-distance cou-

pling (i.e., N (ϵ)(t) = 0) we have |At|
R2

t
≥ κ− ϵ. As R varies only during reflection couplings,
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if Rt → 0, we have R2
t ≥ 1

κ
|At|, thus At → 0. In fact, with this strategy we have

τ ′ = inf{t | Rt ∈ {0, i(Mk) − η}}. For the following computation, we take t < τ ′. This
way we have 0 < Rt < i(Mk)− η.

Let us define σ(t) :=
∫ t

0
4
R2

s
ds and Kσ(t) = ln(Rt). Using Itô’s formula, we get:

dKσ(t) · dKσ(t) =
4N (ϵ)(t)

R2
t

dt = N (ϵ)(t)dσ(t)

Drift(dKσ(t)) = −
√
k

Rt

tan

(√
kRt

2

)
N (ϵ)(t)dt− 2N (ϵ)(t)

R2
t

dt

= −N (ϵ)(t)

√
kRt tan

(√
kRt

2

)
4

+
1

2

 dσ(t).

With this change of time, excluding the times when N (ϵ)(t) = 0 (fixed-distance coupling)
during which K stays constant, σ 7→ Kσ acts like a Brownian motion with a negative
drift.
Let us also define Wσ(t) =

At

R2
t
. Using Itô’s formula, we get:

dWσ(t) · dWσ(t) =

 4 sin2
(√

kRt

2

)
kR4

t cos
2
(
N (ϵ)(t)

√
kRt

2

) +
16N (ϵ)A2

t

R6
t

 dt as ⟨dCt, dC̃t⟩ = 0

=

1

4

(
2√
kRt

)2 sin2
(√

kRt

2

)
cos2

(
N (ϵ)

√
kRt

2

) + 4N (ϵ)(t)W 2
σ(t)

 dσ(t);

Drift(dWσ(t)) =

(
2
√
k

R3
t

tan

(√
kRt

2

)
N (ϵ)(t)At + 3× 4N (ϵ)(t)

At

R4
t

)
dt

= N (ϵ)(t)Wσ(t)

(√
kRt

2
tan

(√
kRt

2

)
+ 3

)
dσ(t).

Finally, dKσ(t) · dWσ(t) = −2At

R4
t
× 4N (ϵ)(t)dt = −2N (ϵ)(t)Wσ(t) dσ(t).

Let S := σ(τ ′). For the following part, in order to simplify the notations, we will denote
σ instead of σ(t) and N (ϵ)(σ) instead of N (ϵ)(t). We want to show that τ ′ < +∞ a.s..
As
∫ S

0
e2Kσdσ =

∫ τ

0
4e2 log(Rt) dt

R2
t
= 4τ ′, this is the same as showing that

∫ S

0
e2Kσdσ < +∞

a.s..
First of all let us note that the number of changes of types of coupling (reflection coupling/
fixed-distance coupling) is countable as it is finite on all closed and bounded interval of
time [S1, S2] such that S2 < τ ′. Actually if there were an infinite number of changes of
types of coupling, we could define (considering the time scale induced by σ) two sequences
(σs

n)n and (σr
n)n such that σs

n < σr
n < σs

n+1 for all n ≥ 0 and such that N (ϵ)(σ) = 0 on
[σs

n, σ
r
n[ and N (ϵ)(σr

n) = 1. As S2 < τ ′, we would have Rt ̸= 0 and Wσ well defined on
[S1, S2] such that |Wσs

n
| = κ and |Wσr

n
| = κ − ϵ. As (σs

n)n and (σr
n)n would converge to

the same limit and as |W | is continuous, this would lead to a contradiction.
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Thus we have a countable number of changes of type of coupling. Using the previ-
ous notations, let us denote by [σs

n, σ
r
n[ the intervals during which N (ϵ)(σ) = 0 and by

[σr
n, σ

s
n+1[ the intervals during which N (ϵ)(σ) = 1. The same way we denote tsn and trn such

that σ(tsn) = σs
n and σ(trn) = σr

n.
As seen before, (Rt)t is constant on intervals [tsn, t

r
n[ and acting as a two times Brow-

nian motion with negative drift out of these intervals. As the time needed to exit a
bounded open interval for a real Brownian motion with negative drift is a.s. finite, we
have

∑
n≥0

(tsn+1 − trn) < +∞ a.s.. Note that:

∫ S

0

N (ϵ)(σ)e2Kσdσ =
∑
n≥0

∫ σs
n+1

σr
n

R2
tdσ =

∑
n≥0

∫ tsn+1

trn

4dt = 4
∑
n≥0

(tsn+1 − trn).

Then, this quantity is a.s. finite and, in order to show that τ ′ < +∞, it is enough to show
that: ∫ S

0

(1−N (ϵ))e2Kσdσ < +∞.

As (Rt)t and (Kσ)σ are constant during fixed-distance coupling, we have:∫ S

0

(1−N (ϵ))e2Kσdσ =
∑
n≥0

∫ σr
n

σs
n

e2Kσdσ =
∑
n≥0

e2Kσs
n (σr

n − σs
n).

Thus it is enough to show that
∑
n≥0

e2Kσs
n (σr

n − σs
n) < +∞ a.s..

• We first show the equality:

E

[
exp

(
−
∑
n≥0

e2Kσs
n (σr

n − σs
n)

)∣∣(Kσs
m
)m

]
= exp

−
∑
n≥0

eKσs
n ×

√
kRtsn

2

sin
(√

kRtsn

2

) × 2
√
2ϵ

 .

(4.15)
As our coupling is the fixed-distance one on [σs

n, σ
r
n], there exists Vσ, a real Brownian

motion, such that:

dWσ =
1√
kRt

sin

(√
kRt

2

)
dVσ =

1√
kRtsn

sin

(√
kRtsn

2

)
dVσ.

In particular |Wσ| only depends on Rtsn for σr
n ≥ σ ≥ σs

n and so depends on Kσs
n

only.
Then, knowing

(
Kσs

m

)
m

, σr
n − σs

n is the first hitting time of k − ϵ by the process
|Wσ|. As |Wσs

n
| = κ, by continuity, Wσ keeps the same sign all along the interval

[σs
n, σ

r
n]. Then we have:

σr
n − σs

n = inf{σ > 0 |Wσ+σs
n
= sign(Wσs

n
)(κ− ϵ)}

= inf{σ > 0 |(Wσ+σs
n
−Wσs

n
) = sign(Wσs

n
)(κ− ϵ− κ)}

= inf

σ > 0

∣∣∣∣∣∣∣
√
kRtsn

sin
(√

kRtsn

2

)(Wσ+σs
n
−Wσs

n
) = −

√
kRtsn

sin
(√

kRtsn

2

)sign(Wσs
n
)ϵ

 .
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Moreover, on [σs
n, σ

r
n] and conditional on Kσs

n
,

√
kRtsn

sin

(√
kRtsn
2

)(Wσ+σs
n
−Wσs

n
)σ is a real

Brownian motion starting from 0. Thus, conditional on Kσs
n
, σr

n − σs
n has the same

law than Tan , the first hitting time of an =
√
kRtsn

sin

(√
kRtsn
2

)ϵ for a real Brownian motion

starting at 0. Using the Laplace transform we get:

E[exp(−µTan)] = exp(−an
√

2µ) ∀µ > 0

and E[exp (−µ(σr
n − σs

n)) |Kσs
n
] = exp

−
√
kRtsn

sin
(√

kRtsn

2

)ϵ√2µ

 .

Finally:

E
[
exp

(
−e2Kσs

n (σr
n − σs

n)
)
|(Kσs

m
)m
]
= exp

−
√
kRtsn

sin
(√

kRtsn

2

)ϵ√2eKσs
n

 .

Furthermore, conditional to (Kσs
m
)m, (σr

n − σs
n)n are independent. Thus:

E

[
exp

(
−

N∑
n=0

e2Kσs
n (σr

n − σs
n)

)∣∣∣∣(Kσs
m
)m

]
= exp

−
N∑

n=0

√
kRtsn

2

sin
(√

kRtsn

2

)2ϵ√2eKσs
n

 .

Using the dominated convergence theorem we get the announced equality.

• We now deal with the quantity
∑
n≥0

√
kRtsn

2

sin
(√

kRtsn

2

)eKσs
n occurring in the previous result.

Let us first notice that
∫ σs

n

0
N (ϵ)(σ)dσ =

n−1∑
m=0

(σs
m+1 − σr

m). During reflection times

([σr
m, σ

s
m+1]), the quantities σs

m+1−σr
m are the first exit times from the open ]−κ, κ[

of the diffusionWσ starting at ±(κ−ϵ) ∈]−κ, κ[. Note that, unlike the fixed-distance
coupling case, here the sign of Wt can change.

During these times we have:
dWσ(t) · dWσ(t) =

1

4

tan
(√

kRt

2

)
√
kRt

2

2

+ 4W 2
σ(t)

 dσ(t)

Drift(dWσ(t)) = Wσ(t)

(√
kRt

2
tan

(√
kRt

2

)
+ 3

)
dσ(t).

(4.16)

We now take m some positive integer. We define a new time-change: ζm(σ) :=∫ σ

0
dWs+σr

m
· dWs+σr

m
. As Rt is upper-bounded by i(Mk) − η on [0, τ ′], there exists

M a positive constant such that
tan

(√
kRt
2

)
√
kRt
2

< M and
√
kRt

2
tan
(√

kRt

2

)
< M . Thus,

σ

4
≤ ζm(σ) ≤

(
M2

4
+ 4κ2

)
σ and

∣∣∣∣Drift(dWσ)

dζm(σ)

∣∣∣∣ ≤ 4κ(M + 3).
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Then there exists a one dimensional Brownian motion Bm, starting at 0 and inde-
pendent of ζm, such that for all σ ∈ [0, σs

m+1 − σr
m]:

Bm
ζm(σ) − 4κ(3 +M)ζm(σ) ≤ Wσ+σr

m
−Wσr

m
≤ Bm

ζm(σ) + 4κ(3 +M)ζm(σ).

We now obtain

ζm(σ
s
m+1 − σr

m) ≥ inf{ζ > 0 | Bm
ζ + 4κ(3 +M)ζ = κ−Wσr

m
}

∧ inf{ζ > 0 | Bm
ζ − 4κ(3 +M)ζ = −κ−Wσr

m
}.

As Wσr
m

can only take the two values κ−ϵ and −(κ−ϵ), we get ζm(σs
m+1−σr

m) ≥ Tm
with:

Tm := inf{ζ > 0 | Bm
ζ + 4κ(3 +M)ζ = ϵ} ∧ inf{ζ > 0 | Bm

ζ − 4κ(3 +M)ζ = −ϵ}.

In particular, we have:

σs
m+1 − σr

m ≥ 1
M2

4
+ 4κ2

Tm. (4.17)

For all m, (Tm)m is a sequence of independent and equally distributed variables with
non-negative and finite mean. Then, the strong law of large numbers yields:(

M2

4
+ 4κ2

)
1

n

n−1∑
m=0

(σs
m+1 − σr

m) ≥
1

n

n−1∑
m=0

Tm
a.s.−−−−→

n→+∞
E[T0].

Thus, a.s. for n large enough, we get :∫ σs
n

0
N (ϵ)(σ)dσ

n
=

1

n

n−1∑
m=0

(σs
m+1 − σr

m) ≥
E[T0]

2(M
2

4
+ 4κ2)

> 0. (4.18)

Moreover, we obtain
∫ σs

n

0
N (ϵ)(σ)dσ

a.s−−−−→
n→+∞

+∞.

Let us now recall that Kσ = K0 +
∫ σ

0
N (ϵ)(s)dCs −

∫ σ

0
N (ϵ)

(√
kRt tan

(√
kRt
2

)
4

+ 1
2

)
ds.

Thus Kσ−K0+
∫ σ

0
N (ϵ)

(√
kRt tan

(√
kRt
2

)
4

+ 1
2

)
ds is a Brownian motion for the change

of time
∫ σ

0
N (ϵ)(s)ds.

Note that:

1

2
≤

∫ σs
n

0
N (ϵ)

(√
kRt tan

(√
kRt
2

)
4

+ 1
2

)
ds∫ σs

n

0
N (ϵ)(s)ds

.

By the strong law of large number for Brownian motions, we also have:

Kσs
n
−K0 +

∫ σs
n

0
N (ϵ)

(√
kRt tan

(√
kRt
2

)
4

+ 1
2

)
ds∫ σs

n

0
N (ϵ)(s)ds

a.s−−−−→
n→+∞

0.

Finally, a.s. for n large enough, we obtain:

Kσs
n∫ σs

n

0
N (ϵ)(s)ds

≤ −1

4
. (4.19)
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By combining the results (4.18) and (4.19), we get a.s. for n large enough:

1

n
Kσs

n
=

Kσs
n∫ σs

n

0
N (ϵ)(s)ds

×
∫ σs

n

0
N (ϵ)(s)ds

n
≤ −c0

4
< 0

with c0 := E[T0]

2
(

M2

4
+4κ2

) . It remains to notice that a.s., for all n, we have 0 <
√
kRtsn

2
< π

2
.

Thus:
√
kRtsn

2

sin
(√

kRtsn

2

) ≤ π

2
and

∑
n≥M

√
kRtsn

2

sin
(√

kRtsn

2

)eKσs
n ≤ π

2

∑
n≥M

(e−
c0
4 )n < +∞.

Finally we get: ∑
n≥0

√
kRtsn

2

sin
(√

kRtsn

2

)eKσs
n < +∞ a.s.. (4.20)

• Using (4.15) and (4.20), we have E[exp(−
∑
n≥0

eKσs
n (σr

n − σs
n))|(Kσs

m
)m] > 0 a.s..

Thus, still conditional to (Kσs
m
)m, the event exp(−

∑
n≥0

eKσs
n (σr

n−σs
n)) > 0 has a non-

zero probability. Equivalently the event
∑
n≥0

eKσs
n (σr

n − σs
n) < +∞ has a non-zero

probability. As
(
e2Kσs

n (σr
n − σs

n)
)
n

are independent, using the Kolmogorov zero-one
law, we get P(

∑
n≥0

eKσs
n (σr

n − σs
n) < +∞|(Kσs

m
)m) = 1 a.s..

Finally,
∑
m≥0

e2Kσs
m (σr

m − σs
m) < +∞ a.s. and so τ ′ < +∞ a.s..

To show that P(τ > τη) < 1, we just need to remark that this event only depends on the
evolution of Rt. As Rt is acting as a time-changed Brownian motion with negative drift
omitting the times where it stays constant, we directly obtain our result.

We can now give the proof of Theorem 4.2.1.

Proof of Theorem 4.2.1. To construct a successful coupling, we just need to start the
coupling described in Theorem 4.2.3.

(i) If τ ∧ τη = τ , we obtain Rt = At = 0.

(ii) If τ ∧τη = τη, we use a synchronous coupling until Rt = R0 and then a fixed distance
coupling until At = 0 and we re-start the coupling of Theorem 4.2.3.

At step (ii), as Rt is deterministic and decreasing during synchronous coupling, each
"synchronous step" will take a constant finite time. It also takes an a.s. finite time
to obtain At = 0 with fixed distance coupling. Thus we repeat the same experiment
independently. As the probability that τ < τη is non-zero during the coupling of Theorem
4.2.3, it will take a finite number of change of coupling to be in this event and then have an
a.s. finite time of success. Let us remind that, if R0 ∈ {0, i(Mk)}, we need to use coupling
of independent Brownian motions on any finite deterministic interval of time before our
successful coupling to start with Rt ∈]0, i(Mk)[. This does not change our result.

89



4.2.3 Improvement of the strategy for a successful coupling in
SU(2)

We have seen previously that Theorem 4.2.1 can be used directly to prove Theorem 4.2.2.
However, using the compactness of SU(2), we can make two improvements for the initial
strategy to obtain a co-adapted successful coupling in SU(2). We take k = 1.

• Considering At mod (4π) instead of a value in R, we can suppose that At stays in
] − 2π, 2π]. The idea is to take κ small enough such that fixed-distance coupling
is stopped when the process Wσ starting at ±κ hits ±(κ− ϵ) with this time a non
zero probability to reach one or another of these values. Then there will be less
time spent in fixed-distance coupling than in Theorem 4.2.3. To be more precise,
for n ≥ 0, there exists (Vσ)σ a Brownian motion starting at 0 such that:

σr
n − σs

n = inf

{
σ
∣∣∣ sign(Wσs

n
)κ+

sin
(

Rtsn

2

)
Rtsn

Vσ ∈
{

sign(Wσs
n
)(κ− ϵ)

; sign(Wσs
n
)

(
4π

R2
tsn

− (κ− ϵ)

)}}

= inf
{
σ | sign(Wσs

n
)
sin
(

Rtsn

2

)
Rtsn

Vσ ∈ {−ϵ; 4π
R2

tsn

− 2κ+ ϵ}
}
.

If 4π
R2

tsn

− 2κ + ϵ > 0, which is the case for κ < 2
π
+ ϵ

2
, then the above stopping time

is less than Tan with an defined as before. This way, instead of (4.15), we obtain:

E

[
exp

(
−
∑
n≥0

e2Kσs
n (σr

n − σs
n)

)∣∣∣∣∣ (Kσs
m
)m

]
> exp

−
∑
n≥0

eKσs
n ×

Rtsn

2

sin
(

Rtsn

2

) × 2
√
2ϵ

 .

• In addition to decreasing the time spent in fixed-distance coupling, having bounded
values for At prevents from using synchronous coupling when Rt is too close of
i(M1) = π. Let us explain this.
During reflection coupling, Wσ stays continuous and still satisfies (4.16). Supposing
that Rt ≤ π− η for all t in [trm, t

s
m+1], we still have (4.17). Moreover, supposing that

Rt > π − η for some t ∈ [trm, t
s
m+1], we get |Wσ(t)| = |At|

R2
t
≤ 2π

(π−η)2
. Choosing η, κ

and δ such that 2π
(π−η)2

< κ − δ < 2π, we obtain |Wσ(t)| < κ. This is the case for
κ − δ > 2

π
. Note that, in order to keep the previous improvement, we take δ < ϵ

2
.

Thus reflection coupling will not end while Rt stays up to π − η. Moreover, there
will exist t̃rm ∈]trm, tsm+1[ such that |Wσ(t̃rm)| = κ − δ and Rt ≤ π − η for all t in
[t̃rm, t

s
m+1]. As before, we obtain:

σs
m+1 − σr

m > σs
m+1 − σ(t̃rm) ≥

1
M2

4
+ 4κ2

T̃m

with, T̃m defined as Tm but with δ instead of ϵ:

T̃m := inf{ζ > 0 | Bm
ζ + 4κ(3 +M)ζ = δ} ∧ inf{ζ > 0 | Bm

ζ − 4κ(3 +M)ζ = −δ}.

Thus, using (T̃m)m instead of (Tm)m, we get again (4.18). Following the rest of the
proof of Theorem 4.2.3, we directly obtain τ < +∞ a.s..
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Chapter 5

Non co-adapted couplings on SU(2) and
SL(2,R)

In this chapter, we continue the generalisation of the successful couplings from the Heisen-
berg group to SU(2) and, in a weaker sense, to SL(2,R). We take inspiration from the
non co-adapted coupling due to Banerjee, Gordina and Mariano [6]. Contrary to Chapter
4, here, the successful coupling we construct is non co-adapted and its coupling rate can
be estimated. We then give estimates of the coupling rate for SU(2) and, if the processes
start from the same fiber, for SL(2,R). These estimates leads to some gradient estimate.

The work presented here, together with Subsection 3.2.7, can be found in the publi-
cation:

[24] Magalie Bénéfice. Non co-adapted couplings of Brownian motions on subRieman-
nian manifolds. https://arxiv.org/abs/2312.14512, 2023.

Note that, more recently, Luo and Neel [44] also studied non co-adapted successful
couplings of subelliptic Brownian motions on H, SU(2), SL(2,R) and also on the universal
cover of SL(2,R). By using a different strategy, they obtained estimates of the same order
for the coupling rate P(τ > t).

Please note that Section 3.2 and more precisely Lemma 3.2.12 are necessary to
apprehend what follows.
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5.4 Applications to gradient estimates . . . . . . . . . . . . . . . . 111

5.1 The main coupling theorems

The results stated here have been briefly presented in Subsections 2.3.4 and 2.3.5. The
main result is the existence and the construction of a non co-adapted coupling with an
exponentially decreasing coupling rate proportional to the distance between the starting
points of the processes. We remind that, using the decomposition given by the fibration,
every element of SU(2) (resp. SL(2,R)) can be written on the form g = (x, z) with x an
element of the sphere S2 (resp. of the hyperbolic plane H2) and z ∈]− 2π, 2π].

If the starting points of the Brownian motions are in a same fiber, we obtain a successful
coupling on SU(2) and on SL(2,R).

Theorem 5.1.1. Let g = (x, z), g′ = (x′, z′) ∈ SU(2) (resp. SL(2,R)). We suppose that
x = x′.
There exists a non co-adapted successful coupling of Brownian motions (Bt,B′

t)t on SU(2)
(resp. SL(2,R)) starting at (g, g′). Moreover, denoting τ := inf{t | Bt = B′

t}, for all
0 < q < 1, there exist Cq and c some non negative constants that do not depend on the
starting points of the process, such that, for all t > 1:

P(τ > t) ≤
(
Cqe

−ctdcc(g, g
′)2q
)
∧ 1. (5.1)

This Theorem will be proven in Section 5.2.

In the case of SU(2), we can first use a reflection coupling to bring back the processes
in the same fiber and then the construction from Theorem 5.1.1. We get a successful
coupling whatever the starting points of the processes:

Theorem 5.1.2. Let g, g′ ∈ SU(2). There exists a non co-adapted successful cou-
pling of Brownian motions (Bt,B′

t) on SU(2) starting at (g, g′). Moreover, denoting
τ := inf{t | Bt = B′

t}, there exist C, c some non negative constants that do not depend on
the starting points of the process, such that, for all t > 2:

P(τ > t) ≤
(
Ce−ctdcc(g, g

′)
)
∧ 1. (5.2)

This Theorem will be proven in Subsection 5.3.2. Please note that, with Theorem
5.1.1 and Theorem 5.1.2, we improve and give a proof of the results announced during
the GSI’23 Conference ([18], Theorem 3 ).

All along this chapter we use the following notations (previously defined in Subsection
3.2). For k ∈ {−1, 1}, we have:

• E−1 = SL(2,R), E1 = SU(2);

• M−1 = H2, M1 = S2.
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Let consider (Bt = (Xt, zt))t and (B′
t = (X ′

t, z
′
t)t two Brownian motions on Ek. We recall

that, according to Proposition 3.2.5, the cylindrical coordinates (φt, θt, zt)t and (φ′
t, θ

′
t, z

′
t)t

of these processes satisfies the systems:
dφt = dB1

t +
√
k
2
cot(

√
kφt)dt

dθt =
√
k

sin(
√
kφt)

dB2
t

dzt =
tan

(√
kφt
2

)
√
k

dB2
t

and


dφ̃t = dB̃1

t +
√
k
2
cot(

√
kφ̃t)dt

dθ̃t =
√
k

sin(
√
kφ̃t)

dB̃2
t

dz̃t =
tan

(√
kφ̃t
2

)
√
k

dB̃2
t

.

As in Corollary 3.2.10, we denote by (ρt,Θt, ζt) the cylindrical coordinates of B−1
t B′

t.

5.2 The Brownian motion start from the same fiber

As announced we first deal with the coupling in the case where x = x′, that is, with
the proof of the Theorem 5.1.1. Let first consider some deterministic constants T > 0,
φ0 ∈]0, i(Mk)[ and θ0 ∈]0, 2π[ with i(Mk) the injectivity radius of Mk. We begin with the
construction of a coupling strategy on [0, T ]:

Proposition 5.2.1. Let k ∈ {±1}. We fix (N, e) ∈ TMk. We consider (Xt)t and (X ′
t)t

two Brownian motions on Mk and
(
φ
(N,e)
t , θ

(N,e)
t

)
t
,
(
φ
(N,e)
t

′
, θ

(N,e)
t

′)
t
their spherical/polar

coordinates relative to (N, e). We suppose that φ(N,e)
0 = φ

(N,e)
0

′
= φ0 and θ(N,e)

0 = θ
(N,e)
0

′
=

θ0. We also consider the swept areas (It(N, e))t and (I ′t(N, e))t, as defined in Subsection
3.2.7, starting from z0 and z′0 respectively such that z0 − z′0 ∈]− 4π, 4π[.
There exists a coupling of (Xt)t and (X ′

t)t such that XT = X ′
T a.s. and such that, for T

small enough, we have:

min
z0,z′0

(
P
(
IT (N, e)− I ′T (N, e) ≡ 0 mod (4π)

))
> 0.

5.2.1 Construction of the coupling on [0, T ]

Proof of Proposition 5.2.1. To simplify the notations and as the change of coordinates
induced by (N, e) doesn’t intervene in this section, during this proof we will simply de-
note

(
φ
(N,e)
t , θ

(N,e)
t , It(N, e)

)
by (φt, θt, It) and

(
φ
(N,e)
t

′
, θ

(N,e)
t

′
, I ′t(N, e)

)
by (φ′

t, θ
′
t, I

′
t). By

exchanging the roles of Xt and X ′
t if needed, we can suppose that z0 − z′0 > 0.

We first chose B1
t = B1′

t and thus φt = φ′
t for all t ∈ [0, T ]. We define the change of

time σ(t) =
∫ t

0
k

sin2(
√
kφs)

ds. There exist two Brownian motions (βσ)σ and (β′
σ)σ adapted

to the filtration
(
Fσ−1(σ)

)
σ

such that:{
θt = θ0 + βσ(t)

θ′t = θ0 + β′
σ(t)

.

As in the coupling described in [6], we are going to couple (βσ)σ and (β′
σ)σ using Brownian

bridges. Knowing all the path of (φt)t∈[0,T ] we define, for σ ∈ [0, σ(T )]:{
βσ = Bbr

σ + σ
σ(T )

ξ0

β′
σ = Bbr′

σ + σ
σ(T )

ξ0
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with (Bbr
σ )σ and (Bbr′

σ )σ two Brownian bridges on [0, σ(T )] and ξ0 a Gaussian variable with
mean 0 and variance σ(T ), independent of the Brownian bridges. This way we will be able
to define (B2

t )t (resp. (B2′
t )t) such that dB2

t = sin(
√
kφt)√
k

dβσ(t) (resp. dB2′
t = sin(

√
kφt)√
k

dβ′
σ(t)).

Using the Karhunen Loève decomposition of the Brownian bridges, for σ ∈ [0, σ(T )], we
can write:

Bbr
σ =

√
σ(T )

∑
j≥1

ξj

√
2

jπ
sin

(
jπσ

σ(T )

)
(5.3)

(
resp. Bbr′

σ =
√
σ(T )

∑
j≥1

ξ′j

√
2

jπ
sin

(
jπσ

σ(T )

))
(5.4)

with (ξj)j (resp. (ξ′j)j) a sequence of independent standard Gaussian variables, indepen-
dent of (B1

t )t. Note that, because of this independence with (B1
t )t, knowing (B1

s )s∈[0,T ],
B2

t :=
∫ t

0

√
k

sin(
√
kφs)

dβσ(s) defines an almost surely continuous process with independents

increments and such that B2
t

L∼ N (0, t), that is, a Brownian motion. As that distribution
doesn’t depend of the conditioning, (B1

t )t and (B2
t )t are two independent Brownian mo-

tions and our coupling is well defined.
We now explain how we chose (ξj)j and (ξ′j)j. If we take ξj = ξ′j for all j ≥ 2, we get:

βσ − β′
σ = (ξ1 − ξ′1)

√
2σ(T )

π
sin

(
πσ

σ(T )

)
.

Note that, with this choice of (ξj, ξ′j)j≥2, Xt and X ′
t are equal only for t ∈ {0, T}. When

we look at the impact of the choice of (ξ1, ξ′1) on the swept areas, we have:

It − I ′t = z0 − z′0 +

∫ t

0

tan
(√

kφs

2

)
√
k

sin(
√
kφs)√
k

(ξ1 − ξ′1)

√
2σ(T )

π
d

(
sin

(
πσ(s)

σ(T )

))
= z0 − z′0 +

∫ t

0

1

k

(
1− cos

(√
kφs

))
(ξ1 − ξ′1)

√
2σ(T )

π
cos

(
πσ(s)

σ(T )

)
πd (σ(s))

σ(T )

= z0 − z′0 +

∫ t

0

(
1− cos(

√
kφs)

)
(ξ1 − ξ′1)

√
2

σ(T )
cos

(
πσ(s)

σ(T )

)
ds

sin2(
√
kφs)

= z0 − z′0 +K(t)
ξ1 − ξ′1

2

with K(t) = 2

√
2

σ(T )

∫ t

0

1

1 + cos(
√
kφs)

cos

(
πσ(s)

σ(T )

)
ds.

In order to obtain a successful coupling at time T , we need to have IT −I ′T ≡ 0 mod (4π),
that is, K(T )

ξ1−ξ′1
2

≡ −(z0 − z′0) mod (4π). Let’s take (Wt)t a Brownian motion in-
dependent of (B1

t )t, ξ0 and (ξj)j≥2. We define ς := inf{t|Wt /∈] − z0−z′0
K(T )

,
−(z0−z′0)+4π

K(T )
[}

and W ′
t :=

{
−Wt if t ≤ ς

Wt − 2Wς else
. Note that, by the strong Markov property, (W ′

t)t

is a real Brownian motion starting at 0 and independent of K(T ). We then chose
ξ1 = W1

L∼ N (0, 1) and ξ′1 = W ′
1

L∼ N (0, 1).

In fact, with this construction we have: ξ1−ξ′1
2

= W1∧ς . Thus, we get two cases:
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• If ς ≤ 1, then K(T )
ξ1−ξ′1

2
= K(T )Wς ≡ −(z0 − z′0)(4π).

• If ς > 1, then K(T )
ξ1−ξ′1

2
= K(T )W1 ̸≡ −(z0 − z′0) mod (4π).

We have P(IT − I ′T ≡ 0 mod (4π)) = P(ς ≤ 1). For this probability to be positive,
we need to ensure that K(T ) = 0 does not occur a.s.. This can be obtained from the
following Lemma:

Lemma 5.2.2. Set k ∈ {±1}. Let define A(T ) :=
√

2
T

∫ T

0
sin
(
πt
T

)
dB1

t . Then:

K(T ) = −2T

π
A(T ) + o

(
T

3
2 ln

(
1

T

))
(5.5)

with o the Landau’s notation for an a.s. convergence with T close to 0. In particular,
as A(T ) has a standard Gaussian distribution, we have πK(T )

2T

L−−−→
T→0

N (0, 1) and, thus,
P(K(T ) = 0) −−−→

T→0
0.

The proof of Lemma 5.2.2 will be given in Subsection 5.2.3. From Lemma 5.2.2, we
get that − z0−z′0

K(T )
and −(z0−z′0)+4π

K(T )
are finite with a non zero probability for T small enough.

Moreover, by construction, K(T ) is independent of (Wt)t. Thus we have:

0 < P(ς ≤ 1).

Note that, with this strategy, as (Xt)t and (X ′
t)t only meet at time 0 or T , the

coupling is successful after time T if and only if ς > 1. Note also that, by defining
ς̃ := inf

{
t| |Wt| = 4π

|K(T )|

}
, we have ς̃ ≥ ς and thus P(ς ≤ 1) is bounded below by

P(ς̃ ≤ 1) that does not depend of the starting points (z0, z
′
0).

This ends the proof of Proposition 5.2.1.

Remark 5.2.3. In fact, K(T ) can also be defined for k = 0 which would be the case where
E0 is the Heisenberg group H and M0 = R2. Then Lemma 5.2.2 is also true for k = 0.
Obviously, this is not the case for Proposition 5.2.1 as the "area coordinates" takes values
in all R on the Heisenberg group.

5.2.2 Proof of Theorem 5.1.1

We now have all the tools to construct the successful coupling if the starting points are
in the same fiber. We first begin with the construction of an exponentially decreasing
successful coupling without dependence with the starting points of the Brownian motion.
We now only take k ∈ {−1, 1}. We recall that Ek denotes SU(2) and SL(2,R) depending
of the value of k.

Proposition 5.2.4. Let g = (x, z), g′ = (x′, z′) ∈ Ek. We suppose that x = x′.
There exists a non co-adapted successful coupling of Brownian motions (Bt,B′

t)t on Ek

starting at (g, g′) and T , C̃, c̃ some non negative constants that do not depend on the
starting points of the processes, such that, for all t > T :

P(τ > t) ≤ C̃e−c̃t. (5.6)
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Proof of the Proposition 5.2.4. To define the coupling on [0,+∞[, we divide the time in
intervals [tn, tn+1[ with length Tn small enough, as in Lemma 5.2.2, and we repeat the
coupling from Proposition 5.2.1. As we proved that the probability of success at time
Tn is non zero, reproducing this strategy identically and independently on each interval
[tn, tn+1[ should be efficient.
With this in mind, we consider (Tn)n constant with Tn = T . We define Kn(T ), (W n

t )t and
ςn the objects used in the construction of the coupling from Proposition 5.2.1 for each
interval [tn, tn+1[. It is true that the experiments will not be identical non independent as(
φ
(N0,e0)
tn+1

, θ
(N0,e0)
tn+1

, Itn+1(N0, e0)
)

is, in general, not constant and dependent of(
φ
(N0,e0)
tn , θ

(N0,e0)
tn , Itn(N0, e0)

)
. To avoid this problem, the idea is to change the spheri-

cal/polar coordinate system on each interval of time ]tn, tn+1[ by considering a sequence
(Nn, en)n in TMk such that the new sequence of coordinates(
φ
(Nn,en)
tn , θ

(Nn,en)
tn

)
n

stays constant equal to (φ0, θ0).

To obtain a successful coupling on SU(2) (resp. SL(2,R)), we need to obtain ζtn ≡ 0
mod (4π) for some n. It is true that, for any (N, e) ̸= (N0, e0), we have in general
ζt ̸= It(N, e)−I ′t(N, e). However, using Remark 3.2.13, we have ζt ≡ I ′t(Nn, en)−It(Nn, en)
mod (4π) at last at times t = tn for all n (because Xtn = X ′

tn for all n). Thus, the coupling
is successful if and only if there exists n such that I ′tn(Nn, en)−Itn(Nn, en) ≡ 0 mod (4π).
We consider the variables ς̃n := inf

{
t| |Wt| ≤ 4π

|Kn(T )|

}
as introduced in the last part of

Proposition 5.2.1. By choice of (Tn)n and (Nn, en)n, we have (Kn(T ))n independently and
identically distributed and thus (ς̃n)n is too. In particular ς̃n ≥ ςn for all n. This way we
get:

P(τ > tn) = P(ς i > 1 ∀ 0 ≤ i ≤ n− 1)

≤ P(ς̃ i > 1 ∀ 0 ≤ i ≤ n− 1) = P(ς̃0 > 1)n. (5.7)

This last quantity tends to zero when n → +∞, thus τ is a.s. finite, the coupling is
successful and the coupling rate is clearly exponentially decreasing. More precisely, we
obtain for t ∈ [tn, tn+1[:

P(τ > t) ≤ P(τ > tn) ≤ exp

(
−n ln

(
1

P(ς̃0 > 1)

))

=
1

P(ς̃0 > 1)
exp

−(n+ 1)T
ln
(

1
P(ς̃0>1)

)
T

 ≤ C̃ exp (−tc̃)

with C̃ = 1
P(ς̃0>1)

and c̃ = 1
T
ln
(

1
P(ς̃0>1)

)
.

Note that, if we change the system of coordinates (N0, e0) on Mk at the first step, we
can chose (φ

(Nn,en)
tn , θ

(Nn,en)
tn )n constant equal to a value chosen independent of the initial

position (φ0, θ0) of the Brownian motions. Thus the random variables Kn(T ) and ς̃n do
not depend of these starting points and P(ς̃0 > 1) neither. The coupling rate obtained in
this case does not depend of the starting points.

We now want to study how the coupling built above depends on the starting points
of the Brownian motions.
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Proposition 5.2.5. Set k ∈ {±1}. Let g = (x, z), g′ = (x′, z′) ∈ Ek. We suppose that
x = x′. There exists a non co-adapted coupling of Brownian motions (Bt,B′

t)t on Ek

starting at (g, g′) and some non negative constant C that does not depend on g and g′

such that for |ζ0|small enough (with (ζt) defined as in Corollary 3.2.10):

P(τ > 1) ≤ C|ζ0| ln
(

1

|ζ0|

)
. (5.8)

In particular, for all 0 < q < 1, there exists a coupling and some non negative constant
C̃q (still not depending on the starting points g and g′) such that for all ζ0 > 0:

P(τ > 1) ≤
(
C̃q × |ζ0|q

)
∧ 1. (5.9)

Proof of Proposition 5.2.5. Without loosing generality, we can still suppose that z0−z′0 ∈
]− 4π, 4π]. Then, from Corollary 3.2.10, as X0 = X ′

0, we have exactly ζ0 = z0 − z′0, thus,
(5.8) can be written:

P(τ > 1) ≤ C|z0 − z′0| ln
(

1

|z0 − z′0|

)
.

Let n be an integer that we will specify later, we consider T = 1
n
. We construct on

[0, 1] the coupling described in Proposition 5.2.4 using the decomposition in the intervals
[tj, tj+1] with tj := jT and tj+1 := (j+1)T . We simply denote by It−I ′t the concatenation
of all the (It(Nj+1)− I ′t(Nj+1))t∈[tj ,tj+1[

. Observing that, for t ∈ [0, 1], we have:

It − I ′t = z0 − z′0 +
n−1∑
j=0

Kj(t ∧ T )W j
1∧ςj , (5.10)

we define:

Mt := z0 − z′0 +
n−1∑
j=0

Kj(T )W j

1∧
(

t−tj
T

)1{t≥tj}. (5.11)

On the event τ > 1, we have ςj > 1 for all j ≤ n − 1, and Mt = It − I ′t at times tj.
Moreover, by construction of ςi, Mt ̸≡ 0 mod (4π) for all t ∈ [0, 1]. As a consequence,
τ > 1 if and only if Mt ̸≡ 0 mod (4π) for all t ≤ 1.
As (Mt)t is a martingale, for all t ∈ [0, 1], using the change of time defined by S(t) :=
n−1∑
j=0

Kj(T )
2
(

t−tj
T

)
1{t≥tj}, we can write Mt = z0−z′0+CS(t) with (Cs)s a Brownian motion

starting at 0. As in Lemma A.0.1, we denote D−(z0−z′0)
:= inf{s > 0|Cs = −(z0 − z′0)}

and we get:

P(τ > 1) = P(z0 − z′0 + CS(t) ∈]0, 4π[ for all t ≤ 1)

≤ P(D−(z0−z′0)
> S(nT )) = P

(
D−(z0−z′0)

>

n−1∑
j=0

Kj(T )
2

)
. (5.12)

We separate the cases where |Kj(T )| is large enough and the cases where it is not. We
choose 0 < p0 < 1 such that p0 > P(|G| ≤ 1

2
) with G L∼ N (0, 1). From Lemma 5.2.2, using

the convergence in law, there exists T0 > 0 such that for all T ≤ T0, P
(

π|K(T )|
2T

≤ 1
2

)
< p0.
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If T ≤ T0, we get:

P(τ > 1) = P

(
{τ > 1} ∩

{
∃j ∈ {0, ..., n− 1}

∣∣∣ π|Kj(T )|
2T

>
1

2

})
+ P

(
{τ > 1} ∩

{
∀j ∈ {0, ..., n− 1}, π|K

j(T )|
2T

≤ 1

2

})
≤ P

(
D−(z0−z′0)

>
n−1∑
j=0

Kj(T )
2
>
T 2

π2

)
+ P

(
π|Kj(T )|

2T
≤ 1

2

)n

≤
√
2π

|z0 − z′0|
T

+ pn0 (5.13)

where we use Lemma A.0.1 to get the left hand side term in (5.13). Finally, we have

P(τ > 1) ≤
√
2π|z0 − z′0|n+ pn0 .

If we chose n such that ln(|z0−z′0|)
ln(p0)

≤ n ≤ ln(|z0−z′0|)
ln(p0)

+ 1, we get:

• pn0 < |z0 − z′0|;

• |z0 − z′0|n ≤ |z0 − z′0|
(

ln(|z0−z′0|)
ln(p0)

+ 1
)
.

Moreover, if |z0 − z′0| ≤ p
1
T0
0 , we have 1

n
≤ ln(p0)

ln(|z0−z′0|)
, and thus, T ≤ T0. Then we can use

(5.13) and we obtain Inequality (5.8) and Inequality (5.9).

For |z0 − z′0| > p
1
T0
0 , inequality (5.9) can be obtained directly from (5.6).

Remark 5.2.6. In (5.8), for |ζ0| < p
1
T0
0 (with p0 and T0 defined as in the proof), we can

replace P(τ > 1) by P(τ > t) for all t > 0. The coupling strategy is slightly different since
it depends on the given time t > 0. In particular, the obtained constant C will be of order
1
t

for t close to 0.

Remark 5.2.7. Note here that, if 1√
n−1∑
j=0

Kj(T )2
is integrable, then,

P(τ > nT ) ≤ C|z0 − z′0|

(with C independent of the starting points) which would be better than the obtained inequal-
ity. Here, contrary to the coupling in [6] we have not been able to prove this integrability.

As discussed before in Remark 2.3.4, if we had this integrability, then this coupling
would be successful even for some areas living in R. In particular, this could lead to a
successful coupling on the universal covering of SL(2,R). This could also lead to a new
strategy of successful couplings on the Heisenberg group defining the coupling with polar
coordinates instead of Cartesian coordinates as it is made in [6] .

Remark 5.2.8. The process (Mt)t introduced in the above proof is the one used in [6]
to deal with the case of the Heisenberg group. We can also use it to obtain a proof for
Proposition 5.2.4. Denoting H = inf{t > 0|Ct /∈]− (z0 − z′0), 4π − (z0 − z′0)[}, we get:

P(τ > tn) = P(z0 − z′0 + CS(s) ∈ (0, 4π) for all s ≤ tn)

= P(H > S(tn)) = P

(
H >

n−1∑
k=0

Kk(T )
2

)
.
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Taking some δ > 0 such that
√

δ
2
× 4π ̸≡ π

2
mod (π), and using Lemma A.0.2:

P(H > u) = E[eδHe−δH1{H>u}] ≤ e−δuE[eδH ] ≤ e−δu
cos
(√

δ
2
(4π − 2(z0 − z′0))

)
cos
(√

δ
2
× 4π

) .

Then, P(τ > t) ≤ E[e−δS(tn)] 1

cos
(√

δ
2
×4π

) . As (Kk(T ))k is a sequence of independent and

identically distributed variables, we get:

E
[
e−δS(tn)

]
=

n−1∏
k=0

E
[
e−δ(Kk(T ))2

]
= E

[
e−δ(K0(T ))2

]n
≤ enT

ln(E[exp(−δ(K0(T ))2)])
T .

As P
(
K0(T )

2
= 0
)
< 1, we have E

[
exp

(
−δK0(T )

2
)]

< 1 and E
[
e−δS(tn)

]
≤ e−nT

c(δ,T )
T

with c(δ, T ) = − ln
(

E
[
exp

(
−δK0(T )

2
)])

> 0. This gives the expected rate of conver-
gence.

We can now give the final construction of the successful coupling from Theorem 5.1.1:

Proof of Theorem 5.1.1. We first use the coupling from Proposition 5.2.5 on [0, 1] and,
then we construct the rest of the coupling using Proposition 5.2.4 on [1, τ ]. We have, for
t > 1:

P(τ > t) = P(τ > 1)P(τ > t|τ > 1)

≤ C̃q × |ζ0|qC̃ exp(−(t− 1)c̃).

As X0 = X ′
0, we have c1

√
|ζ0| ≤ dcc(B0,B′

0) ≤ c2
√

|ζ0|. This gives the expected inequality.

5.2.3 Behaviour of K(T ) for T close to 0

In this subsection we prove the asymptotic behaviour of K(T ) stated in Lemma 5.2.2.

Proof. The proof is using series expansion for T close to 0. In all that follows Landau’s
notations o and O are used for an a.s. convergence with T close to 0. We give the proof
for k ̸= 0 but note that the same method can be used for k = 0. Let t ∈ [0, T ]. We first
claim that:

σ(t) : =

∫ t

0

k

sin2(
√
kφs)

ds

=
kt

sin2(
√
kφ0)

(
1− 2

√
k cot(

√
kφ0)

1

t

∫ t

0

B1
sds+ o

(
T ln

(
1

T

)))
. (5.14)

Indeed for s ∈ [0, t], using the Itô formula, we have:

sin(
√
kφs) = sin(

√
kφ0) +

∫ s

0

√
k cos(

√
kφu)dB

1
u

+
k

2

∫ s

0

(
− sin(

√
kφu) +

cos2(
√
kφu)

sin(
√
kφu)

)
du.
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We remind that, using the law of the iterated logarithm, we have, for s small enough:
Bs = o

(√
s ln

(
1
s

))
. More generally, if we consider the martingale Ms :=

∫ s

0
v(ω, u)dB1

u,
for s→ 0, we have:

Ms = o

(√
⟨Ms,Ms⟩ ln

(
1

⟨Ms,Ms⟩

))
. (5.15)

Indeed, we just have to use Dambis-Dubins-Schwartz Theorem to write (Ms)s as a time-
changed Brownian motion. Then the law of iterated logarithm gives the expected result.
Thus, for s→ 0, using (5.15) for v(u) =

√
k cos(

√
kφu) and remarking that

∫ s

0
v(u)2du =

O(s) (we use the continuity of φ and the compactness of [0, T ]), we get:∫ s

0

√
k cos(

√
kφu)dB

1
u = o

(√
s ln

(
1

s

))
.

Thus:

sin2(
√
kφs) = sin2(

√
kφ0) + 2 sin(

√
kφ0)

∫ s

0

√
k cos(

√
kφu)dB

1
u + o

(
s ln

(
1

s

))
The same way, using the Itô formula and relation (5.15), we have:

cos(
√
kφu) = cos(

√
kφ0)−

∫ u

0

√
k sin(

√
kφv)dB

1
v − k

∫ u

0

cos(
√
kφv)dv (5.16)

= cos(
√
kφ0) + ϵ(u).

with ϵ(u) = o
(√

u ln
(
1
u

))
. In particular,

∫ s

0
ϵ(u)2du = o

(
s2 ln

(
1
s

))
. Thus, applying

(5.15) to
∫ s

0
ϵ(u)dB1

u, we get:∫ s

0

√
k cos(

√
kφu)dB

1
u =

√
k cos(

√
kφ0)B

1
s + o

(
s ln

(
1

s

))
.

Finally we obtain:

sin2(
√
kφs) = sin2(

√
kφ0) + 2

√
k sin(

√
kφ0) cos(

√
kφ0)B

1
s + o

(
s ln

(
1

s

))
= sin2(

√
kφ0)

(
1 + 2

√
k cot(

√
kφ0)B

1
s + o

(
T ln

(
1

T

)))
as s ≤ T.

and:
1

sin2(
√
kφs)

=
1

sin2(
√
kφ0)

(
1− 2

√
k cot(

√
kφ0)B

1
s + o

(
T ln

(
1

T

)))
.

We just have to integrate this expression to obtain (5.14). We can then deduce an estimate
for cos

(
πσ(t)
σ(T )

)
. Indeed, we have:

1

σ(T )
=

sin2(
√
kφ0)

kT

(
1 + 2

√
k cot(

√
kφ0)

1

T

∫ T

0

B1
sds+ o

(
T ln

(
1

T

)))
. (5.17)

Thus, as 1
t

∫ t

0
B1

sds = o
(√

T ln
(
1
T

))
for all 0 ≤ t ≤ T , we obtain:

πσ(t)

σ(T )
=
πt

T

(
1− 2

√
k cot(

√
kφ0)

(
1

t

∫ t

0

B1
sds−

1

T

∫ T

0

B1
sds

)
+ o

(
T ln

(
1

T

)))
.
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Finally:

cos

(
πσ(t)

σ(T )

)
= cos

(
πt

T

)
+ sin

(
πt

T

)
πt

T
× 2

√
k cot(

√
kφ0)

(
1

t

∫ t

0

B1
sds−

1

T

∫ T

0

B1
sds

)
+ o

(
T ln

(
1

T

))
.

Using the same methods as in the first part of the proof, we have:

√
k sin(

√
kφu) =

√
k sin(

√
kφ0) + ϵ(u) with ϵ(u) = o

(√
u ln

(
1

u

))

and so: cos(
√
kφt) = cos(

√
kφ0)−

∫ t

0

√
k sin(

√
kφu)dB

1
u − k

∫ u

0

cos(
√
kφu)du

= cos(
√
kφ0)−

√
k sin(

√
kφ0)B

1
t + o

(
T ln

(
1

T

))
.

Then we get:

1

1 + cos(
√
kφt)

=
1− cos(

√
kφt)

sin2(φt)

=

(
1− cos(

√
kφ0) +

√
k sin(

√
kφ0)B

1
t + o

(
T ln

(
1

T

)))
× 1

sin2(
√
kφ0)

(
1− 2

√
k cot(

√
kφ0)B

1
t + o

(
T ln

(
1

T

)))

=
1− cos(

√
kφ0) +

√
k
(
sin(

√
kφ0)− 2 cot(

√
kφ0)(1− cos(

√
kφ0))

)
B1

t

sin2(
√
kφ0)

+ o

(
T ln

(
1

T

))
.

We can now finalize the computation of K(T ) =
√

2
σ(T )

∫ T

0
2

1+cos(
√
kφt)

cos
(

πσ(t)
σ(T )

)
dt. Using

the previous results, we get:

2

1 + cos(
√
kφt)

cos

(
πσ(t)

σ(T )

)
=

2

sin2(
√
kφ0)

(
R1(t) +R2(t) +R3(t)

)
+ o

(
T ln

(
1

T

))
.

With

R1(t) :=
(
1− cos(

√
kφ0)

)
cos

(
πt

T

)
R2(t) :=

√
k
(
sin(

√
kφ0)− 2 cot(

√
kφ0)

(
1− cos(

√
kφ0)

))
B1

t cos

(
πt

T

)
R3(t) :=

√
k
(
1− cos(

√
kφ0)

)
× 2 sin

(
πt

T

)
πt

T
cot(

√
kφ0)

(
1

t

∫ t

0

B1
sds−

1

T

∫ T

0

B1
sds

)
.
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In particular
∫ T

0
R1(t)dt vanishes. We also have:∫ T

0

sin

(
πt

T

)
πt

T

(
1

t

∫ t

0

B1
sds−

1

T

∫ T

0

B1
sds

)
dt

=

∫ T

0

π

T
sin

(
πt

T

)∫ t

0

B1
sdsdt−

1

T

∫ T

0

B1
sds

([
−t cos

(
πt

T

)]T
0

+

∫ T

0

cos

(
πt

T

)
dt

)

=

([
− cos

(
πt

T

)∫ t

0

B1
sds

]T
0

+

∫ T

0

cos

(
πt

T

)
B1

t dt

)
−
∫ T

0

B1
sds

=

∫ T

0

cos

(
πt

T

)
B1

t dt.

Thus
∫ T

0
(R2(t) +R3(t)) dt =

√
k sin(

√
kφ0)

∫ T

0
B1

t cos
(
πt
T

)
dt.

As
∫ T

0
B1

t cos
(
πt
T

)
dt = −T

π

∫ T

0
sin
(
πt
T

)
dB1

t , we obtain:

∫ T

0

2 cos
(

πσ(t)
σ(T )

)
1 + cos(

√
kφt)

dt = − 2
√
kT

sin(
√
kφ0)π

∫ T

0

sin

(
πt

T

)
dB1

t + o

(
T 2 ln

(
1

T

))
.

Using (5.17) we also have
√

1
σ(T )

= sin(
√
kφ0)√
kT

(
1 + o

(√
T ln

(
1
T

)))
and:

K(T ) =
−2

√
2T

π

∫ T

0

sin

(
πt

T

)
dB1

t + o

(
T

3
2 ln

(
1

T

))
.

As
∫ T

0
sin2

(
πt
T

)
dt = T

2
, the distribution of A(T ) :=

√
2
T

∫ T

0
sin
(
πt
T

)
dB1

t is a standard

Gaussian and K(T ) = −2T
π
A(T ) + o

(
T

3
2 ln

(
1
T

))
.

5.2.4 A study of the event {K(T ) = 0}

As said in Remark 5.2.7, we are not really satisfied about the knowledge we have of the ran-
dom variable K(T ). According to Lemma 5.2.2, we have information for T small enough
only. During the preparation of this work we however developed another strategy based
on the use of a simplified version of Malliavin calculus as can been found in [46].Taking
account of Remark 5.2.3, we show the following result for k ∈ {−1, 0, 1}:

Lemma 5.2.9. Supposing that φ0 > 0 for k ≤ 0 and φ0 = π
2
√
k

for k > 0, we have
K(T ) ̸= 0 a.s..

In particular, this allows us to prove Proposition 5.2.1 and Proposition 5.2.4 without
any restriction on T . However, we did not succeed to obtain information about 1√

n−1∑
j=0

Kj(T )2

with this strategy.

Proof of Lemma (5.2.9). We consider a real deterministic variable a and a functional
h : Ω × [0, T ] 7→ R that we suppose admissible in the sense that (h(t))0≤t≤T is adapted
to the filtration induced by (B1

t )0≤t≤T and that the process Mah
t defined by Mah

t =

e−a
∫ t
0 h(s)dBs−a2

2
h(s)2ds is a martingale on [0, T ] at least for a near 0. To simplify the nota-

tions, as T is fixed, we will denote K(T ) by K. We then define:
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• Bah
t := B1

t +
∫ t

0
ah(s)ds;

• φah such that:

{
dφah

t = dBah
t +

√
k
2
cot(

√
kφah

t )dt

φah
0 = φ0

;

• σah(t) :=
∫ t

0
k

sin2(
√
kφah

s )
ds;

• Kah := 2
√

2
σah(T )

∫ T

0
1

1+cos(
√
kφah

s )
cos
(

πσah(s)
σah(T )

)
ds.

Using Girsanov theorem, as Mah is a martingale on [0, T ], we can define a new probability
measure dPah

|Ft
:=Mah

t dP|Ft for 0 ≤ t ≤ T , such that (Bah, φah, σah, Kah) has the same law
under Pah than (B1, φ, σ,K) under P. Let us first suppose that we have the two following
strong hypothesis:

• Hypothesis H1: h is bounded;

• Hypothesis H2: sup
|a|≤m

d
da
Kah ∈ L2(dP) for all m > 0.

For every f : R 7→ R, bounded and C1 , we have:

d

da
EPah [f(Kah)] =

d

da
E
[
Mah

T f(Kah)
]

(5.18)

= E

[(
−
∫ T

0

h(s)dBs− a

∫ T

0

h(s)2ds

)
Mah

T f(Kah)

]
+ E

[
Mah

T f ′(Kah)
d

da
(Kah)

]
.

(5.19)

Indeed, for any m > 0, we have

sup
|a|≤m

|Mah
T | ≤ exp

(
m

∣∣∣∣∫ T

0

h(s)dBs

∣∣∣∣)with
∫ T

0

h(s)dBs
L∼ N

(
0,

∫ T

0

h(s)2ds

)
.

In particular, as h is bounded, we have exp
(
m
∣∣∣∫ T

0
h(s)dBs

∣∣∣) ∈ L2(dP). With the same
arguments,

sup
|a|≤m

| d
da
Mah

T | ≤
(∣∣∣∣∫ T

0

h(s)dBs

∣∣∣∣+m∥h∥∞
)
exp

(
m

∣∣∣∣∫ T

0

h(s)dBs

∣∣∣∣) ∈ L2(dP).

Thus, under the hypothesis H1 and H2, we can differentiate under the expectation sign
which leads to (5.18).

As EPah [f(Kah)] is constant, we obtain:

E[Mah
T f ′(Kah)

d

da
(Kah)] = E

[(∫ T

0

h(s)dBs+ a

∫ T

0

h(s)2ds

)
Mah

t f(Kah)

]
.

In particular for a = 0:

E[f ′(K)
d

da |a=0
(Kah)] = E

[∫ T

0

h(s)dBsf(K)

]
. (5.20)
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For ϵ > 0, we define fϵ smooth such that fϵ(x) :=


2ϵ if 2ϵ < x
x if − ϵ < x < ϵ
−2ϵ if x < −2ϵ

and such that

|f ′
ϵ(x)| ≤ 1 for all x ∈ R. Applying (5.20) to f we have:∣∣∣∣E [f ′

ϵ(K)1{|K|≤ϵ}
d

da |a=0
(Kah)

]∣∣∣∣ ≤ E

[∫ T

0

h2(s)ds

] 1
2

E
[
fϵ(K)2

] 1
2

+ E

[∣∣∣∣f ′
ϵ(K)1{|K|>ϵ}

d

da |a=0
(Kah)

∣∣∣∣] .
We then get:∣∣∣∣E [1{|K|≤ϵ}

d

da |a=0
(Kah)

]∣∣∣∣ ≤ 2ϵE

[∫ T

0

h2(s)ds

] 1
2

+ E

[
1{2ϵ>|K|>ϵ}

d

da |a=0
(Kah)

]
.

By passing to the limit for ϵ→ 0, we obtain:

E

[
1{K=0}

d

da |a=0
(Kah)

]
= 0. (5.21)

Our strategy is now to compute d
da |a=0

(Kah) and choose a good h such that relation (5.21)
can be true only for K ̸= 0 a.s.
As the differential stochastic equation defining φah is smooth in a, a 7→ φah is smooth in
a too. Denoting Xah

t := d
da
φah
t , we have:{
dXah

t = h(t)dt− k
2 sin2(

√
kφa

t )
Xah

t dt

Xah
0 = 0

.

Thus using the method of variation of the constant, we obtain an explicit expression for
Xah

t :

Xah
t =

∫ t

0

h(u)e
− k

2

∫ t
u

1

sin2(
√
kφah

s )
ds
du =

∫ t

0

h(u)e−
1
2
(σah(t)−σah(u))du.

Note that, providing sin(
√
kφ0) ̸= 0, we have sin(

√
kφs) ̸= 0 for all s ∈ [0, T ] a.s. By

absolute continuity of P with respect to Pah, we also get sin(
√
kφah

s ) ̸= 0 for all s ∈ [0, T ]
a.s. Using this together with the continuity of φah, we obtain:

d

da
σah(t) =

∫ t

0

−2k
√
k cos(

√
kφah

s )Xah
s

sin3(
√
kφah

s )
ds

=

∫ t

0

−2k
√
k cos(

√
kφah

s )

sin3(
√
kφah

s )

∫ s

0

h(u)e−
1
2
(σah(s)−σah(u))duds

=

∫ t

0

h(u)

∫ t

u

e−
1
2
(σah(s)−σah(u))−2k

√
k cos(

√
kφah

s )

sin3(
√
kφah

s )
dsdu (5.22)

We then have:

d

da
Kah = −1

2

d

da
σah(T )

1

σah(T )
Kah + 2

√
2

σah(T )

∫ T

0

cos

(
πσah(s)

σah(T )

) sin
(√

kφah
s

)√
kXah

s(
1 + cos

(√
kφah

s

))2ds
−
∫ T

0

d
da
σah(s)σah(T )− σah(s) d

da
σah(T )

(σah(T ))2

π sin
(

πσah(s)
σah(T )

)
1 + cos

(√
kφah

s

)ds
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By combining this with (5.22), switching the orders of integration to isolate h, and using
the definition of σ(s) :=

∫ s

0
k

sin2(
√
kφρ)

dρ, we obtain

d

da
Kah =

∫ T

0

h(u)

∫ T

u

G(φah)(s)e−
1
2
(σah(s)−σah(u))dsdu

with:

G(φah)(s) =
k
√
k cos(

√
kφah

s )

sin3(
√
kφah

s )

Kah

σah(T )
+

2
√
2k√

σah(T )

cos
(

πσah(s)
σah(T )

)
(
1 + cos(

√
kφah

s )
)2 sin(√kφah

s )

+

√
2

σah(T )

2k
√
k cos(

√
kφah

s )

sin3(
√
kφah

s )

2π

σ(T )2

∫ T

0

k

sin2(
√
kφah

ρ )

∫ ρ

s

sin
(

πσah(v)
σah(T )

)
1 + cos(

√
kφah

v )
dvdρ.

In particular, if K = 0, a = 0 and s = 0:

G(φ)(0) =
2
√
2k√

σ(T )

1(
1 + cos(

√
kφ0)

)2 sin(√kφ0)

+

√
2

σ(T )

2k
√
k cos(

√
kφ0)

sin3(
√
kφ0)

2π

σ(T )2

∫ T

0

k

sin2(
√
kφρ)

∫ ρ

0

sin
(

πσ(v)
σ(T )

)
1 + cos(

√
kφv)

dvdρ.

• For k > 0, choosing φ0 =
π

2
√
k
, we get: G(φ)(0) = 2

√
2k√

σ(T )
> 0.

• For k = 0, choosing φ0 > 0, we have φs > 0 for all s ∈ [0, T ] and thus G(φ)(0) > 0
a.s..

For k > 0, taking K = 0, a = 0 and s = T , and supposing that φ0 > 0, we get
G(φ)(T ) < 0 a.s. because φs > 0 a.s. for all s ∈ [0, T ].

For the heuristic of the proof, let us suppose that G(φah)(s) ∈ L2(dP) for all s ∈ [0, T ].
Under this hypothesis, using the fact that h is adapted to the filtration (Fu)u∈[0,T ], we
can write:

E[1{|K|=0}
d

da |a=0
(Kah)] = E

[
E

[
1{|K|=0}

∫ T

0

h(u)

∫ T

u

G(φ)(s)e−
1
2
(σ(s)−σ(u))dsdu

∣∣∣∣Fu

]]
=

∫ T

0

E

[
h(u)e

1
2
σ(u)E

[
1{|K|=0}

∫ T

u

G(φ)(s)e−
1
2
σ(s)ds

∣∣∣∣Fu

]]
du

Then we could define h̃(u) := E
[
1{|K|=0}

∫ T

u
G(φ)(s)e−

1
2
σ(s)ds

∣∣Fu

]
and choose

h(u) =
h̃(u)1{h̃(u)̸=0}

|h̃(u)|+ |h̃(u)|2
e−

1
2
σ(u).

As it is bounded and adapted, such a h would be admissible and would satisfy Hypothesis
H1. Supposing that H2 is also true, by using (5.21) we would obtain:∫ T

0

E

[
1{h̃(u)̸=0}h̃(u)

2

|h̃(u)|+ |h̃(u)|2

]
du = 0 (5.23)
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In particular we would have a.s. h̃(u) = 0 for all u ∈ [0, T ] (by continuity) and then, for
all u ∈ [0, T ]:

E

[
1{|K|=0}

∫ T

u

G(φ)(s)e−
1
2
σ(s)ds

]
= 0.

Thus, by differentiating in u, we would get E
[
1|K|=0G(φ)(u)e

− 1
2
σ(u)
]
= 0 for all u (in

particular for u = 0 and for u = T ). As we have noticed that G(φ) is not identically zero,
this would lead to K ̸= 0 a.s.

It seems difficult to directly obtain G(φah)(s) ∈ L2(dP) for all s ∈ [0, T ] as well as H2.
In fact, problems could only occur if φah

s is too close to zero or i(Mk).

Let first suppose that k > 0. In this case, i(Mk) =
π√
k
. For η > 0 small enough, we

choose χη :
]
0, π√

k

[
→ R smooth such that:

• χη(x) = x if x ∈
[

η√
k
, π√

k
− η√

k

[
;

• 0 < χ′
η(x) ≤ 1 ∀x ∈

[
0, π√

k

[
;

• χη(x) ∈
[

η

2
√
k
, π√

k
− η

2
√
k

]
∀x ∈

]
0, π√

k

[
.

We then define generalisations of (φah, σah, Kah):
φ(a, η)(s) := χη(φ

ah
s )

σ(a, η)(t) =
∫ t

0
k

sin2(
√
kφ(a,η)(s))

ds

K(a, η) = 2
√

2
σ(a,η)(T )

∫ T

0

cos(πσ(a,η)(s)
σ(a,η)(T ) )

1+cos(
√
kφ(a,η)s)

ds

.

Let denote by (Ω,F ,P) the probability space used here. By nature of φ, for all ω ∈ Ω there
exists η0(ω) > 0 such that χη0(ω)(φt(ω)) = φt(ω) for all t ∈ [0, T ]. Thus, K(0, η0(ω))(ω) =
K(ω).

Let now consider η > 0 deterministic. We are going to work with K(0, η) instead of
K. Noticing that d

da |a=0
φ(a, η)(t) = χ′

η(φt)X
a
t |a=0, defining G as before, we can show that:

d

da
K(a, η) =

∫ T

0

h(u)

∫ T

u

χ′
η (φ(a, η)(s))G(φ(a, η))(s)e

− 1
2
(σ(a,η)(s)−σ(a,η)(u))dsdu.

This time we have G(φ(a, η))(s) bounded for all s ∈ [0, T ]. In particular, G(φ(a, η))(s) ∈
L2(dP) for all s ∈ [0, T ] and the hypothesis H2 is satisfied too. We define:

h̃η(u) := E

[
1{|K(0,η)|=0}

∫ T

u

G(φ(0, η))(s)e−
1
2
σ(s)ds|Fu

]

and then we can choose h(u) =
h̃η(u)1{h̃η(u)̸=0}

|h̃η(u)|+ |h̃η(u)|2
e−

1
2
σ(u) with h bounded and admissible.

Using (5.21), as (χ′
n(φu))u is bounded, adapted to the filtration, we have:∫ T

0

E

[
h̃η(u)2

|h̃η(u)|+ |h̃η(u)|2
1{h̃η(u)̸=0}χ

′
η(φu)

]
du = 0 (5.24)
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We get h̃η(u) = 0 for all u ∈ [0, T ] a.s. and E
[
1{|K(0,η)|=0}

∫ T

u
G(φ(0, η))(s)e−

1
2
σ(s)ds

]
= 0

for all u ∈ [0, T ]. Thus, by differentiating in u, we get:

E
[
1{|K(0,η)|=0}G(φ(0, η))(u)e

− 1
2
σ(u)
]
= 0 for all u and in particular for u = 0 and u = T.

(5.25)
Using the same arguments as before, Relation (5.25) is true only if K(0, η) ̸= 0 a.s.
Finally:

P(K = 0) = P

(⋃
m≥1

{
K

(
0,

1

m

)
= 0

})
≤
∑
m≥1

P

(
K

(
0,

1

m

)
= 0

)
= 0.

For k ≤ 0, i(M0) = +∞ and for η < 1, we choose χη :]0, π[→ R smooth such that:

• χη(x) = x if x ∈ [η, 1
η
];

• 0 < χ′
η(x) ≤ 1 ∀x ∈]0,+∞[;

• χη(x) ∈
[
η
2
, 2
η

]
∀x ∈]0, π[.

The rest of the proof runs the same way as for k > 0.

5.3 Successful coupling in SU(2)

We now want to prove Theorem 5.1.2, that is the successful coupling result for SU(2).
We then take k = 1, that is, E1 = SU(2), M1 = S2 and i(M1) = π.

5.3.1 Description of the reflection coupling in S2 by using the
spherical coordinates

We first explicit one possible construction for a successful coupling in S2. As explained in
[40], the reflection coupling is maximal in S2. It can be constructed by different ways. See
for example [40, 27] for a construction using projections. As seen in Chapter 4, it can be
done using covariant derivatives (see Example 4.1.11). We can also obtain this coupling
directly with the spherical coordinates (φt, θt)t and (φ′

t, θ
′
t)t:{

dφt = dB1
t +

1
2
cot(φt)dt

dθt =
1

sin(φt)
dB2

t

and

{
dφ′

t = dB1
t
′
+ 1

2
cot(φ′

t)dt

dθ′t =
1

sin(φ′
t)
dB2

t
′ .

Changing the pole and vector of reference in S2 if needed,we can suppose that φ0 = π−φ′
0,

φ0 ∈]0, π
2
[ and θ0 = θ′0. To construct the reflection coupling, we take B1

t = −B1
t
′ and

B2
t = B2

t
′, we get φt = π−φ′

t and θt = θ′t for all t. With this construction the paths of the
two Brownian motions in S2 have a symmetry with respect to the equator. In particular
for t ∈ [0, τ1], defining ρt := ρ ((φt, θt), (φ

′
t, θ

′
t)), we have ρt = π − 2φt. We obtain:

d
(ρt
2

)
= −dB1

t −
1

2
tan
(ρt
2

)
dt. (5.26)

Note that we obtain the same equation as for the reflection coupling obtained in Exam-
ple 4.1.11.
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Proposition 5.3.1. We consider the reflection coupling described above. For any 0 ≤
u < π

2
, let denote Tu := inf{t | ρt

2
= u}. If ρ0

2
< u < π

2
, then:

E[T0 ∧ Tu] ≤
ρ0
2

(
2u− ρ0

2

)
. (5.27)

Moreover, the reflection coupling is successful. If we denote by τ1 its first coupling time,
we have:

• E[τ1] ≤ ρ0
2

(
π − ρ0

2

)
.

• there exist some constants C, c > 0 independent of the distance between the starting
points such that:

P(τ1 > t) ≤ Cρ0
e−ct

t
.

Proof. We first prove Inequality (5.27). Let π
2
> u > ρ0

2
. Let define three processes:

• Wt :=
ρ0
2
+Bt, with (Bt)t a standard Brownian motion;

• Ut := u − |u −Wt| = ρ0
2
+ βt − Lu

t (W ) with βt := −
∫ t

0
sign(u −Ws)dBs defining a

standard Brownian motion and Lu
t (W ) the local time of (Wt)t in u.

• (Vt)t starting at ρ0
2

satisfying: dVt = dβt − 1
2
tan(Vt)dt. In particular (ρt)t and (Vt)t

have the same distribution.

We also define the stopping time T̃v := inf{t > 0 | Vt = v} for v ∈ R. We claim that
Vt ≤ Ut for all 0 ≤ t ≤ T̃0 ∧ T̃u. Let explain this fact.
We consider T := inf{t > 0 | Ut = Vt}. As ρ0

2
< u, for t small enough, we have Ut < u.

Thus, d(Ut − Vt) = 1
2
tan(Vt)dt > 0 and T > 0 a.s.. We suppose that T < T̃0 ∧ T̃u.

Then, we have UT = VT < u and, by continuity of U , there exists ϵ > 0 such that, for all
t ∈ [T − ϵ, T ], Ut < u. In particular, Lu

T−ϵ(W ) = Lu
T (W ). We obtain:

0 = UT − VT

= UT−ϵ − VT−ϵ +
1

2

∫ T

T−ϵ

tan(Vs)ds

with UT−ϵ−VT−ϵ > 0 and with 1
2

∫ T

T−ϵ
tan(Vs)ds > 0 since T < T̃0. We get a contradiction,

thus T ≥ T̃0 ∧ T̃u so Vt < Ut on ]0, T̃0 ∧ T̃u[.
As Ut = 0 if and only if Wt ∈ {0, 2u}, we get:

T̃0 ∧ T̃u ≤ inf{t > 0 | Wt /∈]0, 2u[} := H− ρ0
2
,2u− ρ0

2
.

Finally, as T0 ∧ Tu has the same distribution as T̃0 ∧ T̃u we get:

E[T0 ∧ Tu] ≤ E[H− ρ0
2
,2u− ρ0

2
] =

ρ0
2

(
2u− ρ0

2

)
.

We can now look at the coupling rate of the reflection coupling. As, ρt
2
< π

2
a.s., we have

τ1 = T0 ∧ Tπ
2
. Using the previous results, we have T 0 ∧ T π

2
≤ Ha,b, with a = −ρ0

2
and
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b = π − ρ0
2
. From Lemma A.0.2, we obtain:

P(τ1 > t) ≤ E

[
e−δHa,b

Ha,b

Ha,be
δHa,b1{Ha,b>t}

]
≤ e−δt

t
×

(π − ρ0
2
)ρ0
2

cos2
(√

δ
2
π
)

with δ such that 0 <
√

δ
2
< 1

2
, that is, 0 < δ < 1

2
. Taking C = π

2 cos2
(√

δ
2
π
) and c = δ, we

have:

P(τ1 > t) ≤ P(S1 > t) ≤ ρ0C
e−ct

t
.

with c and C not depending on the initial distance between the Brownian motions. In
particular, the coupling is successful.

5.3.2 Proof of Theorem 5.1.2

We now deal with the coupling (Bt = (Xt, zt),B′
t = (Xt, zt))t on SU(2) announced in The-

orem 5.1.2. As explained before, the idea is to use the reflection coupling until the first
time τ1 such that Xτ1 = X ′

τ1
and then to use the Brownian bridges coupling to couple the

"area parts". According to Theorem 5.1.1, we need to have an estimate of the quantity
E[|ζτ1|q ∧ 1] for at least one q ∈]0, 1[. Thus we need the following Proposition:

Proposition 5.3.2. At the end of the reflection coupling we have, for 0 < p < 1
2
:

E[|ζτ1|
1
2
+p] ≤ C̃pdcc(B0,B

′
0).

with C̃p some constant independent of B0 and B′
0.

Proof of Proposition 5.3.2. By construction of the reflection coupling using the change of
pole (N1, e1), the quantity AXt,X′

t,N1
is equal to 0 for all t. Then by Lemma 3.2.12,

we have ζt ≡ I ′t(N1, e1) − It(N1, e1) mod (4π). As ρt
2

= π
2
− φt, using the equa-

tion of (I ′t(N1, e1)− It(N1, e1))t we get ζt ≡ ζ0 − 2
∫ t

0
tan
(
ρs
2

)
dB2

s mod (4π) . We
define ϕp : x ∈]0,+∞[ 7→ x

1
2
+p with 0 < p < 1

2
. We are interested in the quantity

E
[
ϕp

(
|ζ0 − 2

∫ τ1
0

tan
(
ρs
2

)
dB2

s | ∧ 4π
)]

. As ϕp(x+ y) ≤ ϕp(x) + ϕp(y) for all x, y > 0,

E

[
ϕp

(∣∣∣∣ζ0 − 2

∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ ∧ 4π

)]
≤ ϕp (|ζ0|)

+ E

[
ϕp

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ ∧ 4π

)]
.

Since |ζ0| is bounded by 2π, we have ϕp(|ζ0|) ≤ δp
√

|ζ0| ≤ δ̃pdcc(B0,B′
0) with δp and δ̃p

two constants independent of B0 and B′
0 . We now just need to prove that the quantity

E
[
ϕp

(∣∣2 ∫ τ1
0

tan
(
ρs
2

)
dB2

s

∣∣ ∧ 4π
)]

is upper bounded by ρ0 up to a multiplicative constant.
It is obvious for ρ0 large enough, thus we consider ρ0 ≤ m, with m > 0 chosen later in
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the proof. We can write:

E

[
ϕp

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ ∧ 4π

)]
=

∫ ϕp(4π)

0

P

(
ϕp

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ ∧ 4π

)
> y

)
dy

=

∫ 4π

0

P

(
ϕp

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣) > ϕp(x)

)
ϕ′
p(x)dx

=

∫ 4π

0

P

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x

)(
1

2
+ p

)
xp−

1
2dx.

We set 0 < α < 1. We are going to split the integral into two parts:

∫ ( ρ0
2 )

1
α

0

P

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x

)
ϕ′
p(x)dx (5.28)

and ∫ 4π

( ρ0
2 )

1
α

P

(∣∣∣∣2 ∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x

)
ϕ′
p(x)dx. (5.29)

By simply upper-bounding the probability by 1, the quantity (5.28) can be upper-bounded
by ϕp

((
ρ0
2

) 1
α

)
≤
(
ρ0
2

) 1+2p
2α . For α ≤ 1

2
+ p and m small enough, we have

(
ρ0
2

) 1+2p
2α ≤ ρ0

2
.

To deal with the second quantity we look at P
(∣∣2 ∫ τ1

0
tan
(
ρs
2

)
dB2

s

∣∣ > x
)
. Using the same

notations as in Proposition 5.3.1, we consider ρ0
2
< u < π

2
. We have:

P

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x

)
= P

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x, Tu < T0

)
+ P

(∣∣∣∣2 ∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x, Tu > T0

)
≤ P(Tu < T0) + P

(∣∣∣∣2∫ Tu∧T0

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x

)
≤ P(Tu < T0) +

1

x2
E

[
4

∫ Tu∧T0

0

tan2
(ρs
2

)
ds

]
≤ P(Tu < T0) +

4 tan2 (u)

x2
E [Tu ∧ T0] .

As the drift part in the equation of (ρt)t (given by (5.26)) is negative, we have Tu ≥
inf{t > 0 | ρ0

2
− B1

t = u} and T0 ≤ inf{t > 0 | ρ0
2
− B1

t = 0}. Thus, using relation
(A.5) from Lemma A.0.2 with a = −ρ0

2
and b = u − ρ0

2
, we get P(Tu < T0) ≤ ρ0

2u
. From

Proposition 5.3.2, we have E [Tu ∧ T0] ≤ ρ0
2

(
2u− ρ0

2

)
. Thus:

P

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x

)
≤ ρ0

2

(
1

u
+ 4

tan2(u)

x2

(
2u− ρ0

2

))
. (5.30)

We introduce β such that 0 < β < 1. We first chose u(x) := xβ. If
(
ρ0
2

) 1
α < x < 1 and

β < α, we have ρ0
2
< u(x) < π

2
. Then we use inequality (5.30) with u = u(x). We get:
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∫ 1

( ρ0
2 )

1
α

P

( ∣∣∣∣2 ∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x

)
ϕ′
p(x)dx

≤ ρ0
2

∫ 1

( ρ0
2 )

1
α

(
x−β + 8

tan2(xβ)

x2
xβ
)
dx

≤ δβ
ρ0
2

∫ 1

0

(
x−β + x3β−2

)
xp−

1
2dx,

with δβ independent of ρ0. The last integral is finite if and only if p+ 1
2
> β > 1

2
− p

3
. In

particular, this is the case for β = 1
2
. If x > 1, we use inequality (5.30) with u ≡ 1. We

get: ∫ 4π

1

P

(∣∣∣2 ∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣ > x

)
ϕ′
p(x)dx ≤ ρ0

2

∫ 4π

1

(
1 + 8

tan2(1)

x2

)
ϕ′
p(x)dx.

We thus have (5.29) upper bounded by ρ0 up to a multiplicative constant only depending
of m, β and p.

We can now give the proof of Theorem 5.1.2:

Proof of Theorem 5.1.2. To construct our successful coupling on SU(2), we first construct
the reflection coupling described above until time τ1, that is, until Xτ1 = X ′

τ1
. Then, we

use the coupling from Theorem 5.1.1 to deal with the swept area coordinates. As the
coupling rate from the two couplings have an exponential decay, we obtain a successful
coupling with an exponential decay on SU(2). We want to obtain the initial distance-
control from inequality (5.2). We denote τ2 := inf{t > τ1 | Bt = B′

t}. The first meeting
time τ of the Brownian motions in SU(2) satisfies τ = τ1+τ2. Then we have, for 1

2
< q < 1

and t > 2:

P(τ > t) = P

(
τ > t, τ1 ≤

t

2

)
+ P

(
τ > t, τ1 >

t

2

)
≤ P

(
τ2 >

t

2
, τ1 ≤

t

2

)
+ P

(
τ1 >

t

2

)
≤ E

[
P

(
τ2 >

t

2

∣∣∣∣ |ζτ1|) 1{τ1≤ t
2
}

]
+ Cρ0

e−c t
2

t
2

≤ E
[
Cqe

−c̃ t
2 |ζτ1 |q1{τ1≤ t

2
}

]
+ 2Cρ0

e−c t
2

t

≤ Cqe
−c̃ t

2 E [|ζτ1|
q] + 2Cρ0

e−c t
2

t
.

As ρ0 ≤ ρ0 +
√
|ζ0| with ρ0 +

√
|ζ0| equivalent to dcc(B0,B′

0) (in the sense of (3.41)),
using Proposition 5.3.2, we obtain the expected inequality.

5.4 Applications to gradient estimates

In this section, we show the gradient inequalities previously stated in Subsection 2.3.6.
They involve the heat semi group (Pt)t, i.e., the semi-group with infinitesimal generator
1
2
L, the sub-Laplacian operator. We recall that, for all g ∈ G and f a measurable bounded
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function, considering a Brownian motion (Bt)t starting at g, we have Ptf(g) = E[f(Bt)].
As in Subsection 3.2.4, we denote by ∇H the subgradient induced by the sub-Laplacian
operator and by || · ||H the norm induced by the subRiemannian structure. Then, we can
use the coupling rate of Theorem 5.1.2, to obtain the following gradient inequality on
SU(2):

Corollary 5.4.1. There exists C > 0 such that, for every function f ∈ C(SU(2)) (or
simply bounded measurable) and t > 2:

||∇HPtf(g)||H ≤ 2||f ||∞Ce−ct a.e.. (5.31)

In particular, if f is harmonic on SU(2), then it is constant.

Proof of Corollary 5.4.1. Let g, g′ ∈ SU(2). We consider (Bt,B′
t)t the coupling con-

structed in Theorem 5.1.2 starting from (g, g′) and τ its first coupling time. As SU(2) is
compact and f continuous, then it is bounded and we get for t > 2:

|Ptf(g)− Ptf(g
′)| = |E[f(Bt)− f(B′

t)]|
≤ E[|f(Bt)− f(B′

t)|] = E[|f(Bt)− f(B′
t)|1{τ>t}]

≤ 2||f ||∞P(τ > t) (5.32)
≤ 2||f ||∞Ce−ctdcc(g, g

′).

In particular, g 7→ Ptf(g) is Lipschitz and |∇Ptf |(g) ≤ 2||f ||∞Ce−ct. We just use (3.32)
to obtain: ||∇HPtf(g)||H ≤ 2||f ||∞Ce−ct a.e..
If f is harmonic on all SU(2), we have Ptf = f and so ||∇Hf(g)||H ≤ 2||f ||∞C1e

−C2t for
all t a.e.. Then, letting t tend to +∞, we obtain ||∇Hf(g)||H = 0 and so X̄f = Ȳ f = 0
a.e.. Using the Lie bracket generating property of H = Span{X̄, Ȳ }, we get f constant
a.e. and, by continuity, f is constant on SU(2).

Using Theorem 5.1.1, we also get some (weaker) results for SL(2,R):

Corollary 5.4.2. Let g = (x, z), g′ = (x′, z′) ∈ SL(2,R). We suppose that x = x′ and we
consider a bounded measurable function f on SL(2,R). For all q ∈]0, 1[, there exist Cq, c
some constants that do not depend on g, g′ such that for t > 1:

|Ptf(g)− Ptf(g
′)| ≤ 2||f ||∞Cqe

−ctdcc(g, g
′)2q.

Moreover, if f is harmonic and bounded, it is constant on each fiber above x, that is, on
the sets of the form {(x, z) ∈ SL(2,R) | z ∈ [−2π, 2π]} .

The computations to prove Corollary 5.4.2 are quite similar than for Corollary 5.4.1:

Proof of Corollary 5.4.2. We suppose that g = (x, z), g′ = (x′, z′) ∈ SL(2,R) with x =
x′. The same way as for inequality (5.32), using Theorem 5.1.1, for t > 1 we obtain
|Ptf(g)− Ptf(g

′)| ≤ 2||f ||∞Cqe
−ctdcc(g, g

′)2q.
Moreover, if f is harmonic, Ptf = f . Then |f(g) − f(g′)| ≤ 2||f ||∞Cqe

−ctdcc(g, g
′)2q.

Taking t→ 0, we get f(g) = f(g′). Thus, z 7→ f(x, z) is constant for all x ∈ H2.
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Chapter 6

Successful couplings on the
homogeneous, step 2, Carnot groups

The present chapter is devoted to the construction of a non co-adapted successful coupling
on Gn, the free, step 2 Carnot groups of rank n for all n ≥ 3. By an extensive study of
the properties of the obtained coupling we also present several applications to gradients
inequalities. We remind that, when n = 2, G2 is the Heisenberg group. The idea is then
to generalise the results from Banerjee, Gordina and Mariano [6] to higher dimension.
Please note that the generalised strategy and its induced estimates still makes sense for
n = 2 and that, in this case, it is exactly following the strategy from Banerjee, Gordina
and Mariano. We thus make the analysis keeping generality for n ≥ 2.

Note also that a co-adapted successful strategy can be found in the work from Kendall
in [37] without any estimate of the coupling rate.

The content of this chapter will make the object of a publication which is currently in
construction:

[26] Magalie Bénéfice. Non co-adapted successful couplings of Brownian motions on
the free, step 2 carnot groups. https://arxiv.org/abs/2407.06593, 2024.
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6.1 The non co-adapted coupling strategy for Gn

Using the notations from Subsection 3.1.5, we consider Gn = Rn × so(n). We recall
that, on Gn, the Brownian motion starting at (x, z) can be decomposed under the form
(Bt)t = (Xt, zt)t where (Xt)t is a Rn Brownian motion starting at x and zt = z+ 1

2

∫ t

0
Xs⊙

dXs. Moreover, for two Brownian motions (Bt)t = (Xt, zt)t, (B̃t)t = (X̃t, z̃t)t, we have
B−1
t B̃t = (X̃t − Xt, ζt) with ζt = z̃t − zt − 1

2
Xt ⊙ X̃t ∈ so(n). In particular, for any

1 ≤ i ̸= j ≤ n, using Itô formula, we can write:

dζ i,jt =
1

2
X̃ i

tdX̃
j
t −

1

2
X̃j

t dX̃
i
t −

(
1

2
X i

tdX
j
t −

1

2
Xj

t dX
i
t

)
− 1

2
d
(
X i

tX̃
j
t −Xj

t X̃
i
t

)
= X̃ i

tdX̃
j
t −X i

tdX
j
t +

1

2
d
((
X̃ i

t +X i
t

)(
Xj

t − X̃j
t

))
. (6.1)

Let also notice that if XT = X̃T , ζT = z̃T − zT .

The main Theorem of this section is the successful non co-adapted coupling result
stated previously as as Theorem 2.4.1:

Theorem 6.1.1. Set n ≥ 2. Let g = (x, z), g̃ = (x̃, z̃) be two points in Gn and ζ ∈ so(n)
such that g−1 ⋆ g̃ = (x̃ − x, ζ). There exists a successful coupling of Brownian motions(

Bt, B̃t

)
t
on Gn starting from (g, g̃). Moreover, for all t ≥ βn∥x− x̃∥22 we have:

P(τ > t) ≤
(
C1(n)

||x− x̃||2√
t

+ C2(n)
||ζ||2
t

)
(6.2)

with:

• βn = 2π(n− 1)2
√
2(n− 1);

• C1(n) = 4
√
βn(n− 1) + 1√

π
= 4

√
2π(n− 1)2(2(n− 1))

1
4 + 1√

π
;

• C2(n) = 2βn = 4π(n− 1)2
√

2(n− 1).

To prove this theorem we describe a strategy for the case when x = x̃ and then deal
with the general case.

6.1.1 The Brownian motion start from the same fiber

Let us describe the strategy for the case when x = x̃, that is, when the Brownian motions
start from the same fiber. The main idea is to work on the matrix (ζt)t line by line. For
each line we will applied the following Proposition:

Proposition 6.1.2. Let g = (x, z), g̃ = (x̃, z̃) be two points in Gn such that x = x̃. Let
1 ≤ i0 ≤ n−1. For two Brownian motions Bt and B̃t we denote vi0t :=

(
ζ i0,it

)
i∈{1,...,n}\{i0}

∈
Rn−1 and

τ̄i0 := inf{t ≥ 0 | Xt = X̃t and zi0,it = z̃i0,it ∀1 ≤ i ≤ n}.
There exists a non co-adapted coupling (Bt, B̃t)t such that τ̄i0 is a.s. finite and satisfies
for all t ≥ ∥vi00 ∥2:

P (τ̄i0 > t) ≤ ∥vi00 ∥2
t

× 2π(n− 1) (6.3)

Moreover, for l, i ∈ {1, . . . n} \ {i0}, we have ζ l,it = ζ l,i0 for all t ∈ [0, τ̄i0 ].
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Remark 6.1.3. As (ζt)t is skew-symmetric, at time τ̄i0 the ith0 line and the ith0 column
are null.

Remark 6.1.4. As 2π(n− 1) > 1 for all n ≥ 2, Inequality (6.3) can be replaced by

P (τ̄i0 > t) ≤ E

[(
∥vi00 ∥2
t

× 2π(n− 1)

)
∧ 1

]
for all t ≥ 0.

Proof of Proposition 6.1.2. For the proof we can suppose without lost of generality that

i0 = 1. Then v1t =

ζ
1,2
t
...
ζ1,nt

. Let T > 0 and v :=
v10

∥v10∥2
. We choose:

• X i
t = X̃ i

t for 2 ≤ i ≤ n. Then ζ l,it stays constant equal to 0 for 2 ≤ l < i ≤ n.

• We define the coupling (X1
t , X̃

1
t )t by using the Karhunen-Loève expansion of the

Brownian bridges as in the looking-ahead coupling introduced briefly in Section 2.1
and used for the study of SU(2) and SL(2,R) in Section 5.2.1. We have for t ∈ [0, T ]:

X̃1
t −X1

t =
∑
j≥1

ξ̃j − ξj
2

× 2

√
2T

jπ
sin

(
jπt

T

)
+
(
ξ̃0 − ξ0

) t√
T

with (ξj)j≥0 (resp. (ξ̃j)j≥0) a sequence of independent variables with the same
distribution N (0, 1).

We choose ξj = ξ̃j for j = 0 and for j ≥ n. With these choices, for all 2 ≤ i ≤ n, using
(6.1) we get:

ζ1,it = ζ1,i0 +

∫ t

0

(
X̃1

s −X1
s

)
dX i

s = ζ1,i0 +
n−1∑
j=1

ξ̃j − ξj
2

K(i−1),j(t)

with: K(i−1),j(t) := 2
√
2T
jπ

∫ t

0
sin
(
jπs
T

)
dX i

s. Note that, as we consider the coordinates ζ1,it

for 2 ≤ i ≤ n, we introduce a shift of the index i to define K(i−1),j(t). This will simplify
the notation in the remainder of the proof. For j, l > 0, we have:

E

[∫ T

0

sin

(
jπs

T

)
dX i

s

∫ T

0

sin

(
lπs

T

)
dX i

s

]
=

∫ T

0

sin

(
jπs

T

)
sin

(
lπs

T

)
ds

=
1

2

∫ T

0

(
cos

(
(j − l)πs

T

)
− cos

(
(j + l)πs

T

))
ds

=

{
0 if j ̸= l
T
2

if j = l.

Thus, we have K(i),j(t) = 2T
jπ
G(i),j(t) for all 1 ≤ i, j ≤ n − 1 with (G(i),j(T ))i,j some

independent standard Gaussian variables.

In particular, denoting A(t) := (K(i),j(t))1≤i,j≤n−1 ∈ Mn−1,n−1(R), ξ := (ξj)1≤j≤n−1 ∈
Rn−1 and ξ̃ := (ξ̃j)1≤j≤n−1 ∈ Rn−1, we have:

v1t = v10 + A(t)
ξ̃ − ξ

2
.
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Note that A(T ) is measurable with respect to the σ-field σ
(
Xj

t , 0 ≤ t ≤ T , 2 ≤ j ≤ n
)

and thus will be independent of (X1
t )t and (X̃1

t )t. As the entries K(i),j(T ) of the matrix
A(T ) are independent random variables with a density, A(T ) is a.s. invertible. Indeed,
the Lebesgue measure of any hyperplane is null. Thus the Lebesgue measure of the kernel
of the determinant is also null and P

(
det(A(T )) = 0

)
= 0.

By considering the inverse of A(T ), we can now see that the coupling is successful at
time T if and only if:

ξ̃ − ξ

2
= −A(T )−1v10 = −∥v10∥2A(T )−1v. (6.4)

We define f1 := A(T )−1v
||A(T )−1v||2 and f2, . . . , fn−1 such that (f1, f2, . . . , fn−1) is an orthonormal

basis of Rn−1. Let Wt be a n − 1 dimensional Brownian motion starting from 0 and
σ := inf{t ≥ 0 |W 1

t = ∥v10∥2||A(T )−1v||2}. We define W̃t such that W j
t = W̃ j

t for all j ≥ 2
and

W̃ 1
t :=

{
−W 1

t if t ≤ σ

W 1
t − 2W 1

σ else
.

In particular, W̃ 1
t −W 1

t

2
= −W 1

σ∧t.

We can now define the coupling for the Gaussians vectors (ξ, ξ̃). We choose: ξ =
n−1∑
l=1

W l
1fl and ξ̃ =

n−1∑
l=1

W̃ l
1fl. As (Wt)t is independent of (fl)1≤l≤n−1, this provides a well

defined coupling for
(

Bt, B̃t

)
t
. In particular, ξ̃−ξ

2
= −W 1

σ∧1f1 = −W 1
σ∧1

A(T )−1v
||A(T )−1v||2 . Accord-

ing to (6.4) and by definition of σ, the coupling is successful if and only if σ < 1.
Note that we have:

v1t = ∥v10∥2v −
W 1

σ∧1
||A(T )−1v||2

A(t)A(T )−1v

and at time t = T :

v1T =

(
∥v10∥2 −

W 1
σ∧1

||A(T )−1v||2

)
v. (6.5)

For rest of the proof, we will need to study an upper bound of ||A(T )−1v||22 =

vt (A(T )A(T )t)
−1
v. We denote Σ := Diag

(
1, 1

4
, . . . , 1

(n−1)2

)
the (n − 1) × (n − 1) di-

agonal matrix with
(
1, 1

4
, . . . , 1

(n−1)2

)
on the diagonal. We have A(T ) := 2T

π
R(T )Σ

1
2 with

R(T ) =
(
G(i),j(T )

)
1≤i,j≤n−1

. We get:

∥A(T )−1v∥22 =
( π

2T

)2
vt
(
Σ− 1

2R(T )−1
)t (

Σ− 1
2R(T )−1

)
v

=
( π

2T

)2
(R(T )−1v)t

(
Σ−1R(T )−1v

)
≤
( π

2T

)2
(n− 1)2∥R(T )−1v∥22. (6.6)

As the entries of R(T ) are independent with distribution N (0, 1), R(T )R(T )t is a Wishart
matrix W(n−1, n−1) of size (n−1)×(n−1) and with n−1 degree of freedom. Moreover
v is trivially independent of A(T ) and thus on R(T ). Then the distribution of ∥v∥22

∥R(T )−1v∥22
is a chi-square with 1 degree of freedom χ2(1) (see for example [45], Chapter 3).
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Let now give the global construction of our successful coupling. As for the Heisenberg
group, we define a partition of the time line with geometrically growing lengths: t0 = 0 <

t1 < ... < tk < ... such that for all k ≥ 0, Tk := tk+1 − tk =
∥v10∥2

3
2k. We reproduce the

above construction on each interval [tk, tk+1] and we use the exponent "(k)" to distinguish
the objects define above. Note that we do not update the vector v at each iteration but
keep it equal to v10

∥v10∥2
all the time. The obtained matrices A(k)(Tk) are independent and

the same is true for the Brownian motions
(
W

1,(k)
t

)
t
. Then we get τ > tN if and only if

v1t ̸= 0 for all t = tk, k ≤ N which is equivalent to σ(k) > 1 for all k ≤ N − 1. We define
the process (Mt)t at least on [0, tN ] such that:{

M0 = ∥v10∥2
Mt =Mtk −W

1,(k)
t−tk
Tk

× 1

||(A(k)(Tk))
−1

v||2
for tk ≤ t ≤ tk+1

In particular, from (6.5), for all k ≤M , we have vtk =Mtkv.

As (Mt)t is a martingale, it can be written Mt = ∥v10∥2 + βS(t) with β a Brownian

motion starting from 0 and S(t) =
N−1∑
k=0

1

||(A(k)(Tk))
−1

v||22

(
t−tk
Tk

∧ 1
)

1{t≥tk}. By construction

of (Mt)t, we have τ̄1 > tN if and only if D−∥v10∥2 > S(tN) with D−∥v10∥2 := inf{s > 0 | βs =

−∥v10∥2}. Thus, using an estimate of the first hitting time of a Brownian motion (see

Lemma A.0.1 in the appendix), we get P(τ̄1 > tN) ≤
√
2∥v10∥2√

π
E

[
1√
S(tN )

]
. For N ≥ 2, using

(6.6), we have:

S(tN) ≥
1

|| (A(N)(TN))
−1
v||22

+
1

|| (A(N−1)(TN−1)) v||22

≥
(

2TN
π(n− 1)

)2
1

|| (R(N)(TN))
−1
v||22

+

(
2TN−1

π(n− 1)

)2
1

|| (R(N−1)(TN−1))
−1
v||22

≥
(
2∥v10∥22N−1

3π(n− 1)

)2
(

1

|| (R(N)(TN))
−1
v||22

+
1

|| (R(N−1)(TN−1))
−1
v||22

)
.

In particular χ := 1

||(R(N)(TN ))
−1

v||22
+ 1

||(R(N−1)(TN−1))
−1

v||22
is Chi-squared distributed with

two degrees of freedom and E
[

1√
χ

]
=
√

π
2
. We get:

P(τ̄1 > tN) ≤ 2∥v10∥2
3π(n− 1)

∥v10∥22N+1
.

Thus, for t ∈ [tN , tN+1[=
[
∥v10∥2 2

N−1
3
, ∥v10∥2 2

N+1−1
3

[
with N ≥ 2 we have:

P(τ̄1 > t) = P(τ̄1 > tN) < 2∥v10∥2
π(n− 1)

tN+1

< 2∥v10∥2
π(n− 1)

t
.

By construction t2 = ∥v10∥2, thus the inequality is true for all t ≥ ∥v10∥2.

We can now give the global construction for the case when the Brownian motions start
from the same fiber, that is X0 = X̃0:
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Theorem 6.1.5. We set n ≥ 2. Let g = (x, z), g̃ = (x̃, z̃) be two points in Gn and ζ ∈
so(n) such that g−1 ⋆ g̃ = (x̃−x, ζ). We suppose that x = x̃. Then there exists a successful
non co-adapted coupling (Bt, B̃t) starting from (g, g̃) such that, for all t ≥ (n− 1)∥ζ∥2:

P(τ > t) ≤ ||ζ||2
βn
t

with βn = 2π(n− 1)2
√

2(n− 1). (6.7)

Remark 6.1.6. As βn ≥ 1 for all n ≥ 2, (6.7) is trivially still true if t < (n − 1)∥ζ∥2
and can be replaced by:

P (τ > t) ≤
(
||ζ||2

βn
t

)
∧ 1 for all t > 0.

Proof of Theorem 6.1.5. Let g, g̃ ∈ Gn.

Let denote τ0 := 0 and, for 1 ≤ i ≤ n− 1:

τi := inf
{
t > τi−1 | Xt = X̃t and ζ i,jt = ζ̃ i,jt ∀j ∈ {1, . . . n− 1} \ {i}

}
.

For all 1 ≤ i ≤ n− 1, we apply the coupling from Proposition 6.1.5 for i0 = i on [τi−1, τi].

As ζt is skew-symmetric and by construction of the coupling, we have
n−1∑
i=1

τi = τ .

If t ≥ (n− 1)∥ζ0∥2, then t
n−1

≥ ∥vi0∥2 for all 1 ≤ i ≤ n− 1. We obtain:

P (τ > t) ≤
n−1∑
i=2

P

(
τi − τi−1 >

t

n− 1
, τl − τl−1 ≤

t

n− 1
∀1 ≤ l ≤ i− 1

)
+ P

(
τ1 >

t

n− 1

)
≤

n−1∑
i=1

∥vi0∥2
2π(n− 1)2

t
≤
√

2(n− 1)∥ζ0∥2
2π(n− 1)2

t
.

Remark 6.1.7. As ζ is skew-symmetric, there exists a matrix Pv such that (P t
vζPv)i,j ̸= 0

only if i is odd and j = i+1. In particular, ∥P t
vζPv∥2 = ∥ζ∥2. Then applying the coupling

from Proposition 6.1.5 to this new matrix, we can reduce the number of line to be treated.
In particular, we obtain the previous result with 2π(n− 1)⌊n

2
⌋ 3

2 instead of βn.

6.1.2 General case

We can now deal with the general case, that is when x ̸= x̃.

Proof of Theorem 6.1.1. To obtain a successful coupling on Gn, we are going to use first
the reflection coupling until the time τ0 := inf{t ≥ 0 | Xt = X̃t} and then the coupling
from Theorem 6.1.5. Let us remind how we define the reflection coupling. There exists
Ph ∈ O(n) such that (Phx)i = (Phx̃)i for all 2 ≤ i ≤ n, and (Phx)1 − (Phx̃)1 = ||x− x̃||2.
We first define a coupling

(
X t, X̃ t

)
of Brownian motions on Rn starting from (Phx, Phx̃):

we choose X i
t = X̃

i

t for 2 ≤ i ≤ n and dX1
t = −dX̃1

t . We are then able to deduce a
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coupling of Brownian motion on Gn such that (Xt, X̃t) :=
(
P t
hX t, P

t
hX̃ t

)
. In particular,

we have τ0 = inf{t ≥ 0 | X t = X̃ t}. Thus τ0 has the distribution of the first hitting time
Da of a Brownian motion with a = 1

2
||x− x̃||2 and P(τ0 > t) ≤

(
||x−x̃||2√

2πt

)
∧ 1 (see Lemma

A.0.1). At time τ0, the Brownian motions are in the same fiber and we can apply the
coupling from Theorem 6.1.5 on [τ0, τ ]. For t > 0, we get:

P(τ > t) = P

(
τ > t, τ0 ≤

t

2

)
+ P

(
τ > t, τ0 >

t

2

)
≤ P

(
τ − τ0 >

t

2
, τ0 ≤

t

2

)
+ P

(
τ0 >

t

2

)
≤ E

[
P

(
τ − τ0 >

t

2

∣∣∣∣ ∥ζτ0∥2) 1{τ0≤ t
2
}

]
+

||x− x̃||2√
πt

≤ E

[(
||ζτ0||2

2βn
t

)
∧ 1

]
+

||x− x̃||2√
πt

. (6.8)

We now need a good estimate of E [||ζτ0 ||2]. This can be done by using the following
Lemma which will be proven just after the end of the current proof:

Lemma 6.1.8. For every m ≥ 1
2
∥x− x̃∥22, we have:

E

[
∥ζτ0∥2
m

∧ 1

]
≤ ∥ζ∥2

m
+

2
√
2√
m

(n− 1)||x− x̃||2.

If we choose m := t
2βn

with t such that t
2βn

≥ 1
2
∥x − x̃∥22, we can use Lemma 6.1.8

together with (6.8) to obtain the expected result. This ends the proof of Theorem 6.1.1.

We now proceed with the proof of Lemma 6.1.8. We use the results from the coupling
on the Heisenberg group. In particular Lemma 3.4 from [6] can be written this way:

Lemma 6.1.9. Let
(
(Xt, zt), (X̃t, z̃t)

)
t
be a coupling of two Brownian motion on Gn such

that:

• Xj
t = X̃j

t for all t and j ≥ 2;

• dX1
t = −dX̃1

t on [0, S] with S = inf{t ≥ 0|X1
t = X̃1

t }.

For all m ≥ 1
2
|X1

0 − X̃1
0 |2, we have:

E
[∣∣ζ1,jS − ζ1,j0

∣∣ ∧m] ≤ 2
√
2m|X1

0 − X̃1
0 |.

The original proof can be found in [6] for ζ1,jS instead of ζ1,jS − ζ1,j0 . This slight modifi-
cation allows us to release the hypothesis on m and to obtain better estimates for C1(n)
and C2(n) in Theorem 6.1.1 (better order for n). We write here the detail of the proof
for convenience for the reader but the method is the same than in the original work.

Proof of Lemma 6.1.9. For t ∈ [0, S], we have X̃1
t −X1

t = −2X1
t +X1

0 + X̃1
0 and dζ1,jt =

−2(X1
t − X1

0 +
X1

0−X̃1
0

2
)dXj

t . We are going to use the following characterization of the
mean:

E
[∣∣ζ1,jS − ζ1,j0

∣∣ ∧m] = ∫ m

0

P
(
|ζ1,jS − ζ1,j0 | > t

)
dt (6.9)
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Let denote a =
X1

0−X̃1
0

2
. Exchanging the roles of (Xt)t and (X̃t)t if needed we can make

the hypothesis a > 0. For any b ∈ R we denote Db := inf{t ≥ 0 | X1
t − X1

0 = b}. In
particular, we have S = D−a. Then, for y > a2, by comparing the stopping times S and
D√

y−a and by using the Markov inequality we get:

P
(∣∣ζ1,jS − ζ1,j0

∣∣ > 2y
)
= P

(∣∣∣∣∫ S

0

(a+X1
t −X1

0 )dX
j
t

∣∣∣∣ > y

)
≤ P

(
D√

y−a < S
)
+ P

(∣∣∣∣∫ S

0

(a+X1
t −X1

0 )dX
j
t

∣∣∣∣ > y,D√
y−a ≥ S

)
≤ P

(
D√

y−a < S
)
+ P

(∣∣∣∣∫ S∧D√
y−a

0

(a+X1
t −X1

0 )dX
j
t

∣∣∣∣ > y

)
≤ P

(
D√

y−a < S
)
+

1

y2
E

[∣∣∣∣∫ S∧D√
y−a

0

(a+X1
t −X1

0 )dX
j
t

∣∣∣∣2
]

≤ P
(
D√

y−a < S
)
+

1

y2
E

[∫ S∧D√
y−a

0

(a+X1
t −X1

0 )
2dt

]
.

Using some known results on the first exit time of a Brownian motion (see Lemma A.0.2),
we get:

P
(∣∣ζ1,jS − ζ1,j0

∣∣ > 2y
)
≤ P

(
D√

y−a < D−a

)
+

1

y2
E
[
D−a ∧D√

y−a

]
(a+

√
y − a)2

≤ a
√
y
+
a(
√
y − a)

y
≤ 2a

√
y
.

Finally for t > 1
2
|X1

0 − X̃1
0 |2 we obtain:

P
(∣∣ζ1,jS − ζ1,j0

∣∣ > t
)
≤

√
2
|X1

0 − X̃1
0 |√

t
. (6.10)

We come back to Equality (6.9):

E
[∣∣ζ1,jS − ζ1,j0

∣∣ ∧m] = ∫ |X1
0−X̃1

0 |2

2

0

P
(
|ζ1,j − ζ1,j0 | > t

)
dt+

∫ m

|X1
0−X̃1

0 |2

2

P
(
|ζ1,j − ζ1,j0 | > t

)
dt

≤ |X1
0 − X̃1

0 |2

2
+
√
2|X1

0 − X̃1
0 |
∫ m

|X1
0−X̃1

0 |2

2

1√
t
dt

≤ |X1
0 − X̃1

0 |2

2
+ 2

√
2m|X1

0 − X̃1
0 | − 2|X1

0 − X̃1
0 |2

≤ 2
√
2m|X1

0 − X̃1
0 |.

We can now give the proof of Lemma 6.1.8:

Proof of Lemma 6.1.8. We use the same notations as in the proof of Theorem 6.1.1. In
particular we use the notation

(
Bt, B̃t

)
t

to describe the couplings of Brownian motions

induced by
(
X t, X̃ t

)
t
and ζ

t
such that B−1

t B̃t = (X̃ t−Xt, ζt). Note that ζ
t
= PhζtP

t
h. As
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(
X t, X̃ t

)
t
is defined by using the reflection coupling, the conditions of Lemma 6.1.9 are

satisfied.

Note that |X1
0 − X̃

1

0|2 = ∥x − x̃∥22. Then for m ≥ 1
2
∥x − x̃∥22 and for every j ≥ 2, by

applying Lemma 6.1.9, we obtain:

E


∣∣∣ζ1,j

τ0
− ζ1,j

0

∣∣∣
m

∧ 1

 =
1

m
E
[∣∣∣ζ1,j

τ0
− ζ1,j

0

∣∣∣ ∧m] ≤ 2
√
2√
m

∥x− x̃∥2. (6.11)

Moreover, for t ∈ [0, τ0], Xj
t = X̃

j

t for 2 ≤ j ≤ n, thus, (ζ
t
)i,j is constant on [0, τ0] for all

2 ≤ i ̸= j ≤ n. Using equivalences of norms and the fact that ∥ζτ0 − ζ0∥2 = ∥ζ
τ0
− ζ

0
∥2,

we get:

E

[
∥ζτ0∥2
m

∧ 1

]
≤ ∥ζ0∥2

m
+ E

[
∥ζτ0 − ζ0∥2

m
∧ 1

]
=

∥ζ∥2
m

+ E

[
∥ζ

τ0
− ζ

0
∥2

m
∧ 1

]

≤ ∥ζ∥2
m

+
n∑

j=2

E

[
|ζ1,j

τ0
− ζ1,j

0
|

m
∧ 1

]

≤ ∥ζ∥2
m

+
2
√
2√
m

(n− 1)||x− x̃||2.

6.1.3 Coupling on homogeneous Carnot groups and distance in
total variation

From Theorem 6.1.1, we can obtain a successful coupling of Brownian motions for any
homogeneous step 2 Carnot group G.

Corollary 6.1.10. Let G be an homogeneous step 2 Carnot group of rank n. For all
g = (x, z), g̃ = (x̃, z̃) ∈ G we can construct a successful coupling (Bt, B̃t) of Brownian
motions starting from (g, g̃). Moreover, for all t ≥ 4βn∥x− x̃∥22:

P(τ > t) ≤C1(n)
∥x− x̃∥√

t
1{x ̸=x̃} +

C2(n)

m1(n)2
dcc(g, g̃)

2

t
(6.12)

≤C1(n)
dcc(g, g̃)√

t
1{x ̸=x̃} +

C2(n)

m1(n)2
dcc(g, g̃)

2

t
(6.13)

with C1(n) and C2(n) the explicit constants from Theorem 6.1.1.

Proof. Let g = (x, z), g̃ = (x̃, z̃) ∈ G. Using Proposition 3.1.4, we can build a surjective
morphism ϕ : Gn → G that preserves the horizontal coordinates. Moreover, there exists
a = (x, v), ã = (x̃, ṽ) ∈ Gn such that:

ϕ(a) = g, ϕ(ã) = g̃ and dcc(g, g̃) = dcc(a, ã). (6.14)

Using the construction from Theorem 6.1.1, we construct a successful coupling (Bt, B̃t)t
of Brownian motions starting from (a, ã) on Gn. Denoting by S the first coupling time of
(Bt, B̃t)t we have for t ≥ 4βn∥x− x̃∥22:

P(S > t) ≤ C1(n)
∥x− x̃∥2√

t
1{x ̸=x̃} + C2(n)

∥ζ∥2
t
.
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On Gn, we have: ∥x− x̃∥2 ≤ dcc(a, ã) and ∥ζ∥2 ≤ 1
m1(n)2

dcc(a, ã)
2 (see Relations (3.7) and

(3.15)), thus:

P(S > t) ≤ C1(n)
∥x− x̃∥2√

t
1{x ̸=x̃} +

C2(n)

m1(n)2
dcc(a, ã)

2

t
. (6.15)

We can then define a coupling of Brownian motions
(
ϕ(Bt), ϕ(B̃t)

)
t
starting at (g, g̃).

Denoting by τ its first coupling time, we have P(S > t) ≤ P(τ > t). Using (6.15) together
with (6.14), we obtain the expected result.

From these results, by applying the Coupling Inequality (also called Aldous Inequal-
ity), we directly obtain an estimate for the total variation distance between the laws of
the Brownian motion. Please note that the constants obtained above are in fact improved
by the coupling constructed in Chapter 7.

Let µ(x,z)
t denote the law at t of the subRiemannian Brownian motion started at (x, z).

Corollary 6.1.11. Let n ≥ 2, g = (x, z), g̃ = (x̃, z̃) two points in Gn and ζ ∈ so(n) such
that g−1 ⋆ g̃ = (x̃− x, ζ). For t ≥ βn∥x− x̃∥22:

dTV

(
µg
t , µ

g̃
t

)
≤ C1(n)

∥x̃− x∥2√
t

+ C2(n)
∥ζ∥2
t
. (6.16)

with C1(n) and C2(n) the constants given in Theorem 6.1.1.
Replacing Gn by any homogeneous, step 2 Carnot group of rank n, the same property is
true by replacing (6.16) by:

dTV

(
µg
t , µ

g̃
t

)
≤ C1(n)

dcc(g, g̃)√
t

+
C2(n)

m1(n)2
dcc(g, g̃)

2

t
.

6.2 Comparison between the first coupling time and
the first exit time from a domain

In this section, we consider a domain D on Gn. We remind some notations introduced
in Chapter 2. For any process (Yt)t on Gn we define τD(Y ) := inf{t ≥ 0 | Yt /∈ D}.
Using the pseudo-norm δ introduced in Subsection 3.1.5, for any g ∈ D, we denote
δg = δ(g,Dc). For the coupling (Bt, B̃t)t constructed in Theorem 6.1.1, we are going to
compare the coupling time τ with τD(B) ∧ τD(B̃) in order to obtain gradient inequalities
as in [28, 27, 6]. As previously we adapt the proof used for the Heisenberg group to all
free, step 2 Carnot groups [6].

6.2.1 Main results

For n ≥ 2 and g = (x, z), g̃ = (x̃, z̃) ∈ Gn and ζ ∈ so(n) such that g−1 ⋆ g̃ = (x̃ − x, ζ),
we define x̂ := x+x̃

2
∈ Rn and ẑ := z+z̃

2
∈ so(n). In particular, x − x̂ = x−x̃

2
and

z − ẑ − 1
2
x̂ ⊙ x = ζ

2
. For any α > 0 and γ > 0 real, we also define the set Q(α, γ) ⊂ Gn

such that:

Q(α, γ) := {(y, v) ∈ Gn | ∥y − x̂∥2 < α, ∥v − ẑ − 1

2
x̂⊙ y∥2 < γ2}. (6.17)
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Let consider (Bt, B̃t)t the coupling starting at (g, g̃) described in Theorem 6.1.1. We
are first dealing with the problem for D = Q(α, γ). We have the following result:

Proposition 6.2.1. We suppose that ∥x− x̃∥2 ≤ 2√
n−1

. Then, for any 0 < α ≤ γ, there
exist some constants D1 and D2, that depend neither on α, γ nor on the starting points
of the coupling, such that:

P
(
τ > τQ(α,γ)(B)

)
≤ D1(n, γ, α)∥x− x̃∥2 +D2(n, γ, α)max

(
∥ζ∥2, ∥ζ∥22

)
with:

D1(n, γ, α) ≤ D1

(
n
√
n+

n
√
n

α
+
α3

γ4
n+

n9+ 1
4

γ4
+
n11+ 1

4

α4

)
;

D2(n, γ, α) ≤ D2

(
1 +

n8+ 1
2

γ4
+
n10+ 1

2

α4

)
.

The same inequality is true for P
(
τ > τQ(α,γ)(B̃)

)
.

Proposition 6.2.1 will be proven in Subsection 6.2.2. For now we give a direct conse-
quence for the exit time of any domain D.

Theorem 6.2.2. Let g = (x, z), g̃ = (x̃, z̃) ∈ Gn and g−1 ⋆ g̃ = (x̃ − x, ζ) such that
δ(g, g̃) ≤

√
2δg
3

and ∥x− x̃∥2 ≤ 2√
n−1

. Denoting by (Bt, B̃t)t the coupling starting at (g, g̃)
described in Theorem 6.1.1, we have:

P
(
τ > τD(B) ∧ τD(B̃)

)
≤ D1 ×

(
n
√
n+

n
√
n

δg
+
n11+ 1

4

δ4g

)
∥x− x̃∥2

+D2 ×

(
1 +

n10+ 1
2

δ4g

)
max

(
∥ζ∥2, ∥ζ∥22

)
with D1 and D2 two constant that depend neither on g, g̃ nor on n.

Proof of Theorem 6.2.2. By construction of (x̂, ẑ), we have:

δ ((x̂, ẑ), (x, z)) = δ ((x̂, ẑ), (x̃, z̃)) ≤ 1√
2
δ ((x̃, z̃), (x, z)) ≤ δg

3
.

Using the pseudo triangular inequality (3.13), for any (y, v) ∈ Gn, we have:

δ ((y, v), (x, z)) ≤ 3

2

(
δ ((y, v), (x̂, ẑ)) + δ ((x̂, ẑ), (x, z))

)
. (6.18)

Thus, if (y, v) ∈ Q
(

δg
3
√
2
, δg
3
√
2

)
, then δ ((y, v), (x, z)) < 3

2

(√
2× δg

3
√
2
+ δg

3

)
= δg. Thus,

Q := Q
(

δg
3
√
2
, δg
3
√
2

)
⊂ D. We have:

P
(
τ > τD(B) ∧ τD(B̃)

)
≤ P

(
τ > τQ(B) ∧ τQ(B̃)

)
≤ P (τ > τQ(B)) + P (τ > τQ(B)) .

As ∥x− x̃∥2 ≤ 2√
n−1

, we can apply Proposition 6.2.1. We get the expected result.
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6.2.2 Proof of Proposition 6.2.1

Proof of Proposition 6.2.1. It is enough to prove the proposition for (Bt)t. We first notice
that

τQ(α,γ)(B) = inf{t > 0 | ∥Xt − x̂∥2 ≥ α or ∥Ut∥2 ≥ γ2}

with Ut := zt − ẑ − 1
2
x̂ ⊙ Xt. In particular, we have dUt =

1
2
(Xt − x̂) ⊙ dXt and U0 =

z−z̃
2

− x−x̃
4

= ζ
2
. We use the notations from the the proofs of Section 6.1:

• As in the proof of Theorem 6.1.1, we denote: τ0 := inf{t ≥ 0 | Xt = X̃t}, in
particular on [0, τ0], the processes (Xt)t∈[0,τ0] and (X̃t)t∈[0,τ0] are coupled by reflection.

• As in the proof of Theorem 6.1.5, we denote for 1 ≤ i ≤ n− 1:

τi := inf
{
t > τi−1 | X t = X̃ t and ζ i,j

t
= ζ̃

i,j

t
∀j ∈ {1, . . . n− 1} \ {i}

}
.

We remind that τ := inf{t > 0 | Bt = B̃t} is exactly equal to τn−1. We also denote
τ−1 := 0. As we have a different description of the coupling on each of the intervals
of time [0, τ0], [τ0, τ1], ..., [τn−2, τn−1], it will be convenient to decompose the process
(Bt)t = (Xt, zt)t following this time decomposition. One of the main tool that will be
used is the Burkholder-Davis-Gundy Inequality that we will denote afterward "B-D-G
Inequality". Then it will be convenient to consider martingales starting from 0 on each
of these intervals of time. Keeping these constraints in mind, we define:

• for t ∈ [0, τ0], Y0(t) := Xt − x̂ and V0(t) := Ut;

• for 1 ≤ i ≤ n − 1 and t ∈ [τi−1, τi], Yi(t) := Xt − Xτi−1
and Vi(t) := 1

2

∫ t

τi−1
(Xs −

Xτi−1
)⊙ dXs ∈ so(n). In particular, we have:

V j,l
i (t) =

1

2

(∫ t

τi−1

(
Xj

s −Xj
τi−1

)
dX l

s −
∫ t

τi−1

(
X l

s −X l
τi−1

)
dXj

s

)
. (6.19)

Proceeding by induction one can then check that, for all 0 ≤ i ≤ n− 1 and t ∈ [τi−1, τi],
we have:

(Xt − x̂, Ut) =
(
Y0(τ0), V0(τ0)

)
⋆ . . . ⋆

(
Yi−1(τi−1), Vi−1(τi−1)

)
⋆
(
Yi(t), Vi(t)

)
. (6.20)

Moreover, using the fact that we iterate i + 1 times the operation ⋆, we have for all
1 ≤ i ≤ n− 1:

(Xt − x̂, Ut) =

(
i−1∑
j=0

Yj(τj) + Yi(t),

i−1∑
j=0

Vj(τj) + Vi(t) +
1

2

i−1∑
j=0

Yj(τj)⊙

(
i−1∑

l=j+1

Yl(τl) + Yi(t)

))
. (6.21)

We consider two sequences (α(i))0≤i≤n−1 and (γ(i))0≤i≤n−1 satisfying:

n−1∑
i=0

α(i) < α and
n−1∑
i=0

γ(i)2 +
1

2

∑
0≤i<j≤n−1

α(i)α(j) < γ2. (6.22)
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For all 0 ≤ i ≤ n− 1, we define the events:

Ai := {ω, sup
τi−1≤t≤τi

∥Yi(t)∥2 > α(i)} and Γi := {ω, sup
τi−1≤t≤τi

∥Vi(t)∥2 > γ(i)2}.

Using (6.21), we remark that under the event
n−1⋂
i=0

(Ac
i ∩ Γc

i), we have for all 0 ≤ i ≤ n− 1

and for all t ∈ [τi−1, τi]:

∥Xt − x̂∥2 ≤
i∑

j=0

α(j) < α and ∥Ut∥2 ≤
i∑

j=0

γ(j)2 +
1

2

∑
0≤j<l≤i

α(j)α(l) < γ2. (6.23)

In other words, Bt ∈ Q(α, γ) for all t ∈ [0, τ ]. Thus P
(
τ > τQ(α,γ)(B)

)
≤ P

(
n−1⋃
i=0

(Ai ∪ Γi)

)
.

To study these probabilities we will use the three following lemmas.

The first one contains results on the reflection coupling in Rn and is due to Cranston.
These results can be found in the proof of Theorem 1 in [28]. Using the Euclidean norm
∥ · ∥2 instead of the maximum norm ∥ · ∥∞ the results can be presented as follows:

Lemma 6.2.3. For any a > 0, let denote S(a) := inf{t ≥ 0 | ∥Xt − x̂∥2 > a}. With the
previous notations, we have:

P (τ0 > S(a)) ≤ n
√
n∥x− x̃∥2
2a

and E [τ0 ∧ S(a)] ≤
∥x− x̃∥2

2
a.

The second lemma can be seen as the generalisation in higher dimension of Lemma
4.1 from [6]:

Lemma 6.2.4. For any 1 ≤ i ≤ n − 1 and M > 0 there exists a constant C (depending
neither on the starting points of the processes, nor on the rank n of the group) such that:

E

[
1{τi−τi−1<M} sup

τi−1≤t≤τi

∥Yi(t)∥42
]
≤ Cn2E

[
((τi − τi−1) ∧M)2

]
; (6.24)

E

[
1{τi−τi−1<M} sup

τi−1≤t≤τk

∥Vi(t)∥22
]
≤ Cn(n− 1)E

[
((τi − τi−1) ∧M)2

]
. (6.25)

The third lemma gives an estimate for the coupling time after time τ0:

Lemma 6.2.5. Using the previous notations, for any M ≥ βn

2
∥x− x̃∥22, we have:

E
[
(τ − τ0)

2 ∧M2
]
≤ 4

3
M

3
22
√
2βn(n− 1)||x− x̃||2 + 2Mβn∥ζ∥2.

Please note that Lemmas 6.2.4 and 6.2.5 will be proven in Subsection 6.2.3. For now,
we pursue the proof of Proposition 6.2.1.

From Lemma 6.2.3, we obtain:

P(A0) ≤ P
(
τ0 > S (α(0))

)
≤ n

√
n∥x− x̃∥2
2α(0)

. (6.26)
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Using the Markov Inequality, we also have:

P(Ac
0 ∩ Γ0) ≤ P

(
sup

0≤t≤τ0∧S(α(0))
∥Ut∥2 > γ(0)2

)
≤ 1

γ(0)4
E

[
sup

0≤t≤τ0∧S(α(0))
∥Ut∥22

]

≤ 1

γ(0)4

(
E

[
sup

0≤t≤τ0∧S(α(0))
∥Ut − U0∥22

]
+

∥ζ∥22
4

)
.

We remind that, for 1 ≤ j ̸= l ≤ n, dU j,l
t = 1

2

(
(Xt − x̂)jdX l

t − (Xt − x̂)ldXj
t

)
. As the

reflection coupling is a co-adapted coupling, τ0∧S(α(0)) is a stopping time for the common
filtration of (Xt)t and (X̃t)t. Using the B-D-G Inequality, we obtain:∑

1≤j<l≤n

E

[
sup

0≤t≤τ0∧S(α(0))

(
U j,l
t − U j,l

0

)2]

≤
∑

1≤j<l≤n

c2
4

E

[∫ τ0∧S(α(0))

0

|Xj
t − x̂j|2 + |X l

t − x̂l|2dt

]

≤ c2(n− 1)

4
E

[∫ τ0∧S(α(0))

0

∥Xt − x̂∥22dt

]

≤ c2(n− 1)

4
α(0)2E

[
τ0 ∧ S(α(0))

]
≤ c2(n− 1)

8
α(0)3∥x− x̃∥2.

Finally we have:

P (Ac
0 ∩ Γ0) ≤

c2n

8

α(0)3

γ(0)4
∥x− x̃∥2 +

∥ζ∥22
4γ(0)4

. (6.27)

We now look at P

(
n−1⋃
i=1

(Ai ∪ Γi)

)
. We have:

P

(
n−1⋃
i=1

(Ai ∪ Γi)

)
≤

n−1∑
i=1

P

(
τi − τi−1 >

βn
n− 1

)

+
n−1∑
i=1

P

(
τi − τi−1 ≤

βn
n− 1

, sup
τi−1≤t≤τi

∥Yi(t)∥2 > α(i)

)

+
n−1∑
i=1

P

(
τi − τi−1 ≤

βn
n− 1

, sup
τi−1≤t≤τi

∥Vi(t)∥2 > α(i)

)
.

As in Subsection 6.1.1, for all 1 ≤ i ≤ n− 1, we denote viτ0 = (ζ i,jτ0
)j∈{1,...,n}\{i} ∈ Rn−1.

We also recall that βn = 2π(n− 1)2
√

2(n− 1). Iterating (n− 1)-times Proposition 6.1.2
together with Remark 6.1.4, we have:

n−1∑
i=1

P

(
τi − τi−1 >

βn
n− 1

)
≤

n−1∑
i=1

E

[(
∥viτ0∥2

2π(n− 1)2

βn

)
∧ 1

]
≤ E [∥ζτ0∥2 ∧ (n− 1)] .

By hypothesis, we have 1
2
∥x− x̃∥22 ≤ n− 1. Thus, using Lemma 6.1.8, we get:

n−1∑
i=1

P

(
τi − τi−1 >

βn
n− 1

)
≤ ∥ζ∥2 + 2

√
2(n− 1)

3
2 ||x− x̃||2. (6.28)
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Using Markov’s Inequality and Lemma 6.2.4, we obtain:

P

(
τi − τi−1 ≤

βn
n− 1

, sup
τi−1≤t≤τi

∥Yi(t)∥2 > α(i)

)
≤ Cn2

α(i)4
E

[
(τi − τi−1)

2 ∧
(

βn
n− 1

)2
]

P

(
τi − τi−1 ≤

βn
n− 1

, sup
τi−1≤t≤τi

∥Vi(t)∥2 > γ(i)2
)

≤ Cn(n− 1)

γ(i)4
E

[
(τi − τi−1)

2 ∧
(

βn
n− 1

)2
]
.

Thus:

P

(
n−1⋃
i=1

(Ai ∪ Γi)

)
≤ ∥ζ∥2 + 2

√
2(n− 1)

3
2 ||x− x̃||2

+ C

 n2

min
1≤i≤n−1

(α(i))4
+

n(n− 1)

min
1≤i≤n−1

(γ(i))4

E

[
(τ − τ0)

2 ∧ β2
n

n− 1

]
.

(6.29)

Still using the fact that ∥x− x̃∥22 ≤ 2√
n−1

we can also use Lemma 6.2.5 with M = βn√
n−1

to get:

E

[
(τ − τ0)

2 ∧ β2
n

n− 1

]
≤ 4

3
β2
n(n− 1)

1
4 ||x− x̃||2 +

2β2
n√

n− 1
∥ζ∥2. (6.30)

To construct two sequences (α(i))0≤i≤n−1 and (γ(i))0≤i≤n−1 satisfying (6.22), we can
choose α(0) = α

2
, γ(0) = γ√

2
and, for 1 ≤ i ≤ n − 1, α(i) = α

4(n−1)
and γ(i) = γ

2
√
n−1

.
Indeed, we have:

n−1∑
i=0

α(i) <
α

2
+

n−1∑
i=1

α

4(n− 1)
< α

and

n−1∑
i=0

γ(i)2 +
1

2

∑
0≤i<j≤n−1

α(i)α(j)

≤ γ2

2
+

n−1∑
i=1

γ2

4(n− 1)
+

1

2

(
α

2

n−1∑
j=1

α

4(n− 1)
+

∑
1≤i<j≤n−1

α2

16(n− 1)2

)

<
γ2

2
+
γ2

4
+
α2

16
+
α2

32
< γ2.

The last inequality follows from the hypothesis α ≤ γ. We thus obtain inequalities (6.27),
(6.29) and (6.30) which ends the proof of Proposition 6.2.1.

6.2.3 Proofs of the Lemmas

In this subsection we give the announced proofs for Lemma 6.2.4 and Lemma 6.2.5.

We begin with the proof of Lemma 6.2.5.
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Proof of Lemma 6.2.5. From Theorem 6.1.5 and Lemma 6.1.8, for
√
t ≥ m0 :=

βn

2
∥x−x̃∥22

we get:

P
(
τ − τ0 >

√
t
)
≤ E

[(
∥ζτ0∥2

βn√
t

)
∧ 1

]
≤ t−

1
2βn∥ζ∥2 + t−

1
42
√

2βn(n− 1)||x− x̃||2.

Then:

E
[
(τ − τ0)

2 ∧M2
]
=

∫ m2
0

0

P((τ − τ0)
2 > t)dt+

∫ M2

m2
0

P((τ − τ0)
2 > t)dt

≤ m2
0 +

∫ M2

m2
0

P
(
τ − τ0 >

√
t
)
dt

≤ m2
0 +

∫ M2

m2
0

t−
1
4dt× 2

√
2βn(n− 1)||x− x̃||2 +

∫ M2

0

t−
1
2dt× βn∥ζ∥2

= m2
0 +

4

3

(
M

3
2 −m

3
2
0

)
2
√

2βn(n− 1)||x− x̃||2 + 2Mβn∥ζ∥2.

As m2
0− 4

3
m

3
2
0 2

√
2βn(n− 1)||x− x̃||2 = m

3
2
0

√
βn

2
∥x− x̃∥2

(
1− 16

3
(n− 1)

)
< 0 for all n ≥ 2,

we obtain the expected result.

We now deal with the proof of Lemma 6.2.4.

Proof. By construction of the coupling, it is enough to prove these results for i = 1. To
simplify the notations we also suppose that the Brownian motions start from the same
fiber, that is, τ0 = 0. For all t ∈ [0, τ0], we have:

∥Y1(t)∥42 ≤ n
n∑

j=1

|Xj(t)−Xj(0)|4 and ∥V1(t)∥22 ≤
1

2

∑
1≤j ̸=l≤n

(∫ t

0

(Xj
s −Xj

0)dX
l
s

)2

.

Thus, the lemma will be proven if we can show that there exists a constant C̃ (not
depending on the starting points of the processes or the rank n), such that, for any
1 ≤ j ̸= l ≤ n:

E

[
1{τ1<M} sup

0≤t≤τ1

(
Xj(t)−Xj(0)

)4] ≤ C̃E
[
(τ1 ∧M)2

]
(6.31)

and

E

[
1{τ1<M} sup

0≤t≤τ1

(∫ t

0

(
Xj

s −Xj
0

)
dX l(s)

)2
]
≤ C̃E

[
(τ1 ∧M)2

]
. (6.32)

These two results can be seen as a generalisation of Lemma 4.1 from [6] to higher dimen-
sions. Although the method is quite similar, it needs some adjustments due to the change
of the dimension. We give here the detail of the proof for the convenience of the reader
and will point the major element needing extra care.

As in the case of the Heisenberg group, we want to use the B-D-G Inequality. The
main difficulty is due to the fact that the coupling is not co-adapted. Thus, τ1 is not a
stopping time for the usual filtration induced by (Xs)s and we need to consider an enlarged
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filtration. The second difficulty comes from the fact that the considered processes (or most
of them) have to be martingales for this new filtration.

Using the same notations as in the proof of Proposition 6.1.2, we define:

χ2(t) :=
∑
k≥0

1{tk≤t}

(∑
m≥n

ξ(k)m

√
2Tk
mπ

sin

(
mπ ((t− tk) ∧ Tk)

Tk

)
+ ξ

(k)
0

((t− tk) ∧ Tk)√
Tk

)
;

(6.33)

and χ1(t) :=
∑
k≥0

1{tk≤t≤tk+1}

n−1∑
m=1

ξ(k)m

√
2Tk
mπ

sin

(
mπ(t− tk)

Tk

)
(6.34)

such that X1
t = X1

0 + χ1(t) + χ2(t).

We remind that, for all k ≥ 0,
(
ξ
(k)
m

)
1≤m≤n−1

=
n−1∑
l=1

W
l,(k)
1 f

(k)
l with W (k) a Rn−1-

Brownian motion independent of the basis
(
f
(k)
l

)
1≤l≤n−1

. In particular,
(
ξ
(k)
m

)
1≤m≤n−1

has the distribution N (0, In−1) because of this independence. With the same argu-
ment, we can define a Brownian motion (Ct)0≤t≤τ1 starting from 0 by taking Ct :=∑
k≥0

√
Tk

n−1∑
l=1

1{t≥tk}W
l,(k)
(t−tk)∧Tk

Tk

f
(k)
l . In particular (Ct)0≤t≤τ1 is independent of all the bases(

f
(k)
l

)
1≤l≤n−1

. We also have
(
ξ
(k)
m

)
1≤m≤n−1

=
Ctk+1

−Ctk√
Tk

. For t ≥ 0, we define two filtra-
tions:

F⋆
t := σ

(
{Xj

s , s ≤ t ∧ τ1, 2 ≤ j ≤ n} ∪ {Cs, 0 ≤ s ≤ τ1}

∪ {ξ(k)0 , k ≥ 0} ∪ {ξ(k)m ,m ≥ n, k ≥ 0}
)

(6.35)

and

F⋆⋆
t := σ

(
{Xj

s , s ≤ t ∧ τ1, 2 ≤ j ≤ n} ∪ {Cs, 0 ≤ s ≤ t ∧ τ1}

∪ {ξ(k)0 , k ≥ 0} ∪ {ξ(k)m ,m ≥ n, k ≥ 0}
)
. (6.36)

Note here, that, contrary to the case of the Heisenberg group, our coupling strategy needs
the introduction, for all k ≥ 0, of the basis

(
f
(k)
l

)
1≤l≤n−1

which depends on (Xj
s )tk≤t≤tk+1

for all 2 ≤ j ≤ n. We then have to take extra care to define the filtration (F⋆
t )t with

(Ct∧τ1)t and not with a direct concatenation of (W (k)
s )0≤s≤1. Then (X1

t∧τ1 − X1
0 )t is F⋆

0 -
measurable which will be important in the future to deal with the quantity

E

[
1{τ1≤M} sup

0≤t≤τ1

(∫ t

0
(X1

s −X1
0 ) dX

l
s

)2]
with 2 ≤ l ≤ n (upcoming inequality (6.43)).

As for the proof in [6], we have {σ(k−1) > 1} ∈ F⋆⋆
tk

, and thus {τ1 > tk} =
k−1⋂
l=0

{σ(l) >

1} ∈ F⋆⋆
tk

. Since τ1 only takes its values in {tk, k ≥ 0}, τ1 is a stopping time for the
filtration (F⋆⋆

t )t. As F⋆⋆
t ⊂ F⋆

t , we have the same result for the filtration (F⋆
t )t.

For 2 ≤ j ≤ n, (Xj
t∧τ1)t is clearly a (stopped) Brownian motion adapted to the two

filtrations (F⋆⋆
t )t and (F⋆

t )t, thus, using the B-D-G Inequality, we obtain (6.31):

E

[
sup

0≤t≤τ1∧M

(
Xj(t)−Xj(0)

)4] ≤ c4E
[
(τ1 ∧M)2

]
, (6.37)
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with c4 the universal constant for the B-D-G Inequality. With the same arguments, using
two times the B-D-G Inequality, we obtain (6.32) for 2 ≤ j ̸= l ≤ n:

E

[
sup

0≤t≤τ1∧M

(∫ t

0

(
Xj

s −Xj
0

)
dX l

s

)2
]
≤ c2E

[∫ τ1∧M

0

(
Xj

s −Xj
0

)2
ds

]
≤ c2E

[
(τ1 ∧M) sup

0≤t≤τ1∧M

(
Xj

s −Xj
0

)2]
≤ c2E

[
(τ1 ∧M)2

] 1
2 E

[
sup

0≤t≤τ1∧M

(
Xj

s −Xj
0

)4] 1
2

≤ c2
√
c4E

[
(τ1 ∧M)2

]
. (6.38)

Again, c2 and c4 are the two universal constants intervening in the B-D-G Inequality.
Note that these universal constant can be estimated (see [50]).

We now look for (6.31) for j = 1. Let kM ≥ 0 such that M ∈ [tkM , tkM+1[. Let
tk+1 ≤ τ1 ∧ tkM and t ∈ [tk, tk+1]. We denote by (e1, . . . , en−1) the canonic basis in Rn−1.
We get:

|χ1(t)|2 =

∣∣∣∣∣
n−1∑
m

⟨Ctk+1
− Ctk , em⟩

√
2

mπ
sin

(
mπ(t− tk)

Tk

)∣∣∣∣∣
2

≤
∥∥Ctk+1

− Ctk

∥∥2
2

2

π2

n−1∑
m=1

1

m2

≤ 4

3
sup

tk≤t≤tk+1

∥Ct∥22 ≤
4

3
sup

0≤t≤τ1∧M
∥Ct∥22 .

As τ1 takes its values in {tk, k ≥ 0}, there exists 0 ≤ k ≤ kM such that τ1 ∧ tkM = tk.
Thus we have:

sup
0≤t≤τ1∧tkM

|χ1(t)|2 ≤
4

3
sup

0≤t≤τ1∧M
∥Ct∥22 .

Since (Ct∧τ1)t is a (stopped) Brownian motion adapted to the filtration (F⋆⋆
t )t, we can use

the B-D-G Inequality to obtain:

E

[
sup

0≤t≤τ1∧tkM
|χ1(t)|4

]
≤ 16

9

[
sup

0≤t≤τ1∧M
∥Ct∥4

]
≤ 16c4

9
E
[
(τ1 ∧M)2

]
. (6.39)

We now deal with E

[
sup

0≤t≤τ1∧tkM
|χ2(t)|4

]
. Let first consider any deterministic time T .

We have:

E

[
sup

0≤t≤T∧tkM
|χ2(t)|4

]
≤ 8E

[
sup

0≤t≤T∧tkM
|χ1(t)|4

]
+ 8E

[
sup

0≤t≤T∧tkM
|X1

t −X1
0 |4
]

We can apply the B-D-G inequality to (X1
t − X1

0 )t for the deterministic stopping time
T ∧ tkM by considering the natural filtration of (X1

t )t:

E

[
sup

0≤t≤T∧tkM
|χ2(t)|4

]
≤ 8E

[
sup

0≤t≤T∧tkM
|χ1(t)|4

]
+ 8c4(T ∧ tkM )2. (6.40)
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By construction of the coupling, χ2 is independent of τ1, thus, conditioning by τ1 and
using (6.40), we obtain:

E

[
sup

0≤t≤τ1∧tkM
|χ2(t)|4

]
≤ 8E

[
sup

0≤t≤τ1∧tkM
|χ1(t)|4

]
+ 8c4E[(τ1 ∧ tkM )2].

Finally, using (6.39) we get:

E

[
sup

0≤t≤τ1∧tkM
|χ2(t)|4

]
≤ 8c4

25

9
E
[
(τ1 ∧M)2

]
. (6.41)

From (6.39) and (6.41), we obtain (6.31) for j = 1:

E

[
1{τ1≤M} × sup

0≤t≤τ1

|X1
t −X1

0 |4
]
= E

[
1{τ1≤tkM } × sup

0≤t≤τ1

|X1
t −X1

0 |4
]

≤ E

[
sup

0≤t≤τ1∧tkM
|χ1(t) + χ2(t)|4

]
≤ 3× 82c4E

[
(τ1 ∧M)2

]
.

(6.42)

Let us deal with (6.32) for j = 1 and 2 ≤ l ≤ n. For the filtration (F⋆
t )t, (X l

t∧τ1)t is an
adapted Brownian motion. Moreover

(
X1

t∧τ1 −X1
0

)
t

is F⋆
0 -measurable. Then, using the

B-D-G inequality and (6.42):

E

[
1{τ1≤M} sup

0≤t≤τ1

(∫ t

0

(
X1

s −X1
0

)
dX l

s

)2
]
≤ E

[
sup

0≤t≤τ1∧tkM

(∫ t

0

(
X1

s −X1
0

)
dX l

s

)2
]

≤ c2E
[
(τ1 ∧ tkM )2

] 1
2 E

[
sup

0≤t≤τ1∧tkM

(
X1

t −X1
0

)4] 1
2

≤ 8c2
√
3c4E

[
(τ1 ∧M)2

]
. (6.43)

Finally, to obtain (6.32) with j > 2 and l = 1, we can use Itô’s formula to get∫ t

0

(
Xj

s −Xj
0

)
dX1(s) = (X1

t −X1
0 )(X

j
t −Xj

0)−
∫ t

0

(
X1

s −X1
0

)
dXj(s).

Using the previous results, we then have:

E

[
1{τ1≤M} sup

0≤t≤τ1

(∫ t

0

(
Xj

s −Xj
0

)
dX1(s)

)2
]
≤ 16

√
3c4(c2 +

√
c4)E

[
(τ1 ∧M)2

]
.

6.3 Gradient estimates

In this section, we present several gradient estimates. The first ones gives estimates for the
heat semi-group and can be directly deduced from the coupling rate obtained in Section
6.1. Note that these estimates can be improved with the One sweep coupling strategy in
Chapter 7. The second ones are about harmonic functions and come from the comparison
between the first coupling time and the first exit time from a domain dealt with in Section
6.2.
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6.3.1 Estimates of the horizontal and vertical gradient for the
heat semi-group

We first obtain an upper-bound (with an explicit estimate) for the horizontal gradient of
the heat semi-group for any homogeneous step 2 Carnot groups. Let g ∈ G and (Bt)t be
a Brownian motion starting at g. We recall that, for all measurable bounded function f
on G, Ptf(g) = E[f(Bt)].

Corollary 6.3.1. Let G be a homogeneous Carnot group of step 2 and of rank n ≥ 2. For
any bounded measurable function f on G, for any g ∈ G and t ≥ 1:

||∇HPtf ||H ≤ 2||f ||∞
C1(n)√

t
a.e. (6.44)

with C1(n) the explicit constant from Theorem 2.4.1.

Proof. We consider f a bounded measurable function on G and g, g̃ ∈ G. Let consider the
following coupling (Bt, B̃t)t:

• still denoting by τ the first coupling time, for t ∈ [0, τ ], we take (Bt, B̃t)0≤t≤τ the
coupling constructed in Corollary 6.1.10;

• for t ≥ τ , we take Bt = B̃t.

We have:

|Ptf(g)− Ptf(g̃)| = |E[f(Bt)− f(B̃t)]| ≤ E[|f(Bt)− f(B̃t)|]
= E[|f(Bt)− f(B̃t)|1{τ>t}]

≤ 2||f ||∞P(τ > t). (6.45)

Using the estimate of the coupling rate (6.12), we get, for t not to close to 0:

|Ptf(g)− Ptf(g̃)| ≤ 2∥f∥∞
(
C1(n)

dcc(g, g̃)√
t

1x̸=x̃ +
C2(n)

m1(n)2
dcc(g, g̃)

2

t

)
. (6.46)

We have:
|∇Ptf |(g) = lim

r↓0
sup
g ̸=g′

dcc(g,g′)<r

∣∣∣∣Ptf(g)− Ptf(g
′)

dcc(g, g′)

∣∣∣∣ ≤ 2||f ||∞
C1(n)√

t
. (6.47)

In particular, for all t > 0 and f bounded measurable, g 7→ Ptf(g) is Lipschitz on (G, dcc).
As the gradient length |∇Ptf | is an upper-gradient of Ptf , from Inequality (3.18), we
obtain the expected result.

We can also obtain estimates on Gn for the vertical gradient as defined in Subsection
3.1.6.

Corollary 6.3.2. Let n ≥ 3. For any bounded measurable function f on Gn and for any
t ≥ 1:

∥∇vPtf∥ ≤ ||f ||∞
C2(n)

t
a.e. (6.48)

with C2(n) the explicit constant from Theorem 2.4.1.
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Proof. Let denote g = (x, z) ∈ Gn. We set z̃ ∈ so(n) and g̃ = (x, z̃) ∈ Gn. Applying
(6.45) together with the coupling rate estimate (6.2), we get:

|Ptf(g)− Ptf(g̃)| ≤ 2∥f∥∞βn
∥z − z̃∥2

t
with βn =

C2(n)

2
.

As previously, we obtain an inequality for the gradient length defined on the fiber {(x, z) ∈
Gn | z ∈ so(n)}. As for Inequality (3.22), we obtain the expected result.

6.3.2 Estimates of the gradient for the harmonic functions on Gn

By using the results from Theorem 6.2.2, we can obtain the same results than in Corollaries
4.4, 4.5 and 4.6 from [6]. As the proofs are exactly the same, we just give here an overview
of the method and refer the reader to [6] for more details.

As in Section 6.2, we consider a domain D on Gn and D̄ its closure. Let f be a
continuous function on D̄, smooth and such that f is harmonic on D, that is, Lf(g) = 0
for g ∈ D. For any set A ⊂ D, we define oscA(f) := sup

A
f− inf

A
f . In particular, supposing

D̄ compact, by continuity of f on D̄, oscD(f) is finite. Let g = (x, z), g̃ = (x̃, z̃) ∈ D,
as f is harmonic, by Itô’s formula, for any successful coupling (Bt, B̃t)t (defined such that
Bt = B̃t after the first coupling time τ as previously) we get:

|f(g)− f(g̃)| =
∣∣∣E [f(BτD(B))− f(B̃τD(B̃))

]∣∣∣
≤ oscD(f)P

(
τ > τD(B) ∧ τD(B̃)

)
In particular, using the results from Theorem 6.2.2, for g̃ close enough to g, we get:

|f(g)− f(g̃)| ≤ oscD(f)

(
D1 ×

(
n
√
n+

n
√
n

δg
+
n11+ 1

4

δ4g

)
∥x− x̃∥2

+D2 ×

(
1 +

n10+ 1
2

δ4g

)
max

(
∥ζ∥2, ∥ζ∥22

))
.

Finally, using the gradient length associated to the pseudo-distance δ, we get:

|∇Ptf |δ(g) ≤ oscD(f)D1 ×

(
n
√
n+

n
√
n

δg
+
n11+ 1

4

δ4g

)
. (6.49)

Using (3.21), we have: |∇Ptf |δ(g) ≥ m1(n)|∇Ptf |. Then we obtain:

Corollary 6.3.3. Let n ≥ 2 and D a domain on Gn such that its closure D̄ is compact.
For any f ∈ C(D̄) ∩ C2(D) harmonic on D:

||∇Hf(g)||H ≤ oscD(f)
D1

m1(n)

(
n
√
n+

n
√
n

δg
+
n11+ 1

4

δ4g

)
a.e. on D

with D1 the same constant as in Theorem 6.2.2 which depend neither on n, nor on D.
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We now consider the result from Corollary 6.3.3 when we take D = B(g, r) with r > 0
and B(g, r) the usual open ball for the Carnot Carathéodory distance dcc. Using the
homogeneous invariant Harnack Inequality (see for example Theorem 5.7.2 from [19]),
there exists a constant C̄ that does not depend on g and r but only on the metric dcc such
that oscB(g,r)(f) ≤ C̄f(g). This leads to the following result:

Corollary 6.3.4. Let n ≥ 2. There exists a constant C depending on Gn and dcc such
that, for all g ∈ Gn, r > 0 and for any smooth non-negative function f ∈ C(B̄(g, r))
harmonic on B(g, r) we have:

||∇Hf(g)||H ≤ C

(
n
√
n+

n
√
n

δg
+
n11+ 1

4

δ4g

)
f(g) a.e..

Finally, as ||∇Hf(g)||H
f(g)

= ||∇H log f(g)||H, we can obtain the following Cheng-Yau esti-
mate:

Corollary 6.3.5. Let n ≥ 2 and g0 ∈ Gn. We consider a real r > 0 and a smooth
non-negative function f harmonic on B(g0, 2r). Then:

sup
g∈B(g0,r)

||∇Hf(g)||H ≤ C

r
a.e.

with C a constant that does depend only on Gn and dcc (neither on g0 nor on r).

Note that this last result has been proven for all Carnot groups by Baudoin, Gordina
and Mariano in [15] by using analytic methods.
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Chapter 7

One-sweep coupling on the free, step 2
Carnot groups

In this chapter, we present a second coupling strategy on the free, step 2 Carnot groups.
Contrary to Chapter 6, the strategy presented here is not successful. We define the
coupling only on a finite interval of time [0, T ] and evaluate it only at the final time T .
The construction is based on a Legendre expansion of the standard Brownian motion
which is well adapted to the computation of the Lévy area. As in Chapter 6, we obtain
estimates for the distance in total variation and for the horizontal and vertical gradient
of the heat semi-group.

In order to enlighten the simplicity of the method, and since some small complication
arises in the case of higher dimensional Carnot groups, we chose to present first the
construction and the total variation distance estimate in the case of the Heisenberg group.
The case of higher dimensional step 2 Carnot groups on Rn, n ≥ 3 will be investigated in
a second time.

We also use a change of probability technique to obtain a Bismut type formula for the
derivative of the semi-group and from which we derive some reverse Poincaré or reverse
Sobolev inequality for p > 1. We also obtain a log Harnack inequality.

The content of this chapter will make the object of a publication currently in con-
struction:

[3] Marc Arnaudon, Magalie Bénéfice, Michel Bonnefont, and Delphine Féral. A
coupling strategy for Brownian motions at fixed time on Carnot groups using Legendre
expansion. https://arxiv.org/abs/2407.04321, 2024
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7.3.1 Direct estimates for the horizontal and vertical gradient . . . . 149

7.3.2 Coupling with change of probability and applications . . . . . . 150

7.1 The coupling method on the Heisenberg group H

Below, let us denote µx1,x2,z
t to be the law of the subelliptic Brownian motion on the

Heisenberg group starting from (x1, x2, z). The first main result is the estimate of the
Total variation distance between the laws of the Brownian motions in the Heisenberg
group. This result already appears in [6]. One of our improvement here is that we obtain
some explicit constants.

Theorem 7.1.1. There exist two constants C1, C2 ≥ 0 such that for all t ≥ 0 and all
(x1, x2, z) and (x̃1, x̃2, z̃) in H,

dTV

(
µ
(x1,x2,z)
t , µ

(x̃1,x̃2,z̃)
t

)
≤ C1

∥(x̃1 − x1, x̃2 − x2)∥2√
t

+ C2

|z̃ − z − 1
2
(x1x̃2 − x2x̃1)|
t

. (7.1)

Moreover, one can take

C1 =
1√
2π

(
1 +

√
14
)

and C2 =

√
21

2
.

As noticed in [6], Theorem 7.1.1 provides the sharp order of decreasing. In this sense,
the associated coupling is called efficient. It is also noted in [6] that any Markovian or
co-adapted coupling can not reach the sharp estimate when the initial point are in the
same fiber, that is when (x̃1, x̃2) = (x1, x2).

We recall (see Section 3.1 for more details) that the Heisenberg group H can be iden-
tified with (R2 × R, ⋆) equipped with the law:

(x, z) ⋆ (x, z′) =

(
x+ x′, z + z′ +

1

2
x · x′

)
,

where
x · x′ := x1x

′
2 − x2x

′
1 for all x, x′ ∈ R2.

The Brownian motion starting in (x, z) can be written as the continuous process:

B(x,z)
t := (x, z) ⋆

(
Bt,

1

2

(∫ t

0

B1
sdB

2
s −

∫ t

0

B2
sdB

1
s

))
=

(
x+Bt, z +

1

2
(x1B

2
t − x2B

1
t ) +

1

2

(∫ t

0

B1
sdB

2
s −

∫ t

0

B2
sdB

1
s

))
where (B1

t , B
2
t )t≥0 is a standard Brownian motion on R2 and

At :=
1

2

(∫ t

0

B1
sB

2
s −

∫ t

0

B2
sdB

1
s

)
(7.2)

is the Lévy area of the 2-dimensional Brownian motion (x1 +B1
t , x2 +B2

t ). In the re-
mainder, we will often denote

B(x,z)
t = (Xt, zt) where zt = z +

1

2
(x1B

2
t − x2B

1
t ) + At.
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7.1.1 The description of the Brownian motion on H with Legendre
polynomials

Let T > 0 and consider the scalar product defined for f, g ∈ C([0, T ],R) by

⟨f, g⟩ =
∫ T

0

f(t)g(t)dt.

Let take Qk to be the normalized orthogonal polynomials; that is such that ∥Qk∥2 = 1.
By dilation and translation, one sees that

Qk(x) =

√
2

T
Pk

(
−1 +

2x

T

)
where (Pk)k are the standard (normalized) Legendre polynomials, which are orthogonal
for the Lebesgue measure on [−1, 1].

We first consider the following representation of a standard one-dimensional Brownian
motion (Bt)0≤t≤T starting in 0. This representation is somehow close to the standard
Karhunen-Loève decomposition of the Brownian motion but as noticed in [42], it is well
adapted to the computation of the Lévy area.

Lemma 7.1.2. Let (ξk)k≥1 be a sequence of independent and identically distributed ran-
dom variables of law N (0, 1). Define

Bt =
∑
k≥0

ξk

∫ t

0

Qk(s)ds, 0 ≤ t ≤ T. (7.3)

Then the process (Bt)0≤t≤T is a standard Brownian motion on [0, T ].

The proof is done in [42], but let us recall the main ideas for the reader’s convenience.

Proof. Let T ≥ 0 and let (Bt)0≤t≤T be defined by (7.3). The process (Bt)0≤t≤T is clearly
a centered Gaussian process. To prove it is a standard Brownian motion, let us compute
its covariance. For 0 ≤ s, t ≤ T , one has:

E[BsBt] =
∑
k≥0

(∫ t

0

Qk(u)du

)(∫ s

0

Qk(u)du

)
=
∑
k≥0

⟨1[0,t], Qk⟩ ⟨1[0,s], Qk⟩

= ⟨1[0,t], 1[0,s]⟩ = s ∧ t.

where ⟨·, ·⟩ denotes the usual scalar product on L2([0, T ]) and the result follows.

Lemma 7.1.3. Let (ξk)k≥0 be a sequence of independent and identically distributed ran-
dom vectors with common law N (0, I2). Write ξk = (ξ1k, ξ

2
k)

t and for 0 ≤ t ≤ T and
i = 1, 2 let

Bi
t =

∑
k≥0

ξik

∫ t

0

Qk(s)ds. (7.4)
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Then (B1
t , B

2
t )0≤t≤T is a standard two-dimensional Brownian motion and its associated

Lévy area At :=
1
2

( ∫ t

0
B1

sdB
2
s −

∫ t

0
B2

sdB
1
s

)
at the given time T may be written as

AT = T
∑
k≥0

αk ξk · ξk+1 (7.5)

with
αk =

1

2
√

4(k + 1)2 − 1
, k ≥ 0. (7.6)

As before the proof is done in [42], but we shall recall the main ideas for the reader’s
convenience.

Proof. With the notation of Lemma 7.1.3, one has∫ T

0

B1
sdBs =

∑
k,l≥0

ξ1kξ
2
l ck,l with ck,l =

∫ T

0

(∫ t

0

Qk(s)ds

)
Ql(t)dt.

Now by integration by parts, one has for k, l ≥ 0,

ck,l =

(∫ T

0

Qk(u)du

)(∫ T

0

Ql(u)du

)
− cl,k.

Since Qk is a family of orthogonal polynomials, one infers that for (k, l) ̸= (0, 0), ck,l =
−cl,k and thus

ck,l = 0 if |k − l| ≥ 2 or k = l ≥ 1.

Therefore ∫ T

0

B1
sdBs = c0,0ξ

1
0ξ

2
0 +

∑
k≥0

ck,k+1(ξ
1
kξ

2
k+1 − ξ1k+1ξ

2
k).

and thus the Lévy area at the final time T writes:

AT =
∑
k≥0

ck,k+1(ξ
1
kξ

2
k+1 − ξ1k+1ξ

2
k).

The result follows by an explicit computation of the constant ck,k+1.

We recall that here in the case of the Heisenberg group:

ξk · ξk+1 = ξ1kξ
2
k+1 − ξ1k+1ξ

2
k. (7.7)

As a direct application of Lemma 7.1.3, the Brownian motion on H starting in (x1, x2, z)
at time T may be represented by

B(x1,x2,z)
T =

 x1 +
√
Tξ10

x2 +
√
Tξ20

z +
√
T
2
(x1ξ

2
0 − x2ξ

1
0) + T

∑
k≥0 αk (ξ

1
kξ

2
k+1 − ξ1k+1ξ

2
k)


or equivalently with x = (x1, x2),

BT =

(
x+

√
Tξ0

z +
√
T
2
x · ξ0 + T

∑
k≥0 αk ξk · ξk+1.

)
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7.1.2 Proof of Theorem 7.1.1

Before we turn to the proof of Theorem 7.1.1, we recall the standard estimate for Gaussian
vectors on Rd, d ≥ 1 (with the same identity covariance matrix).

Lemma 7.1.4. Let d ≥ 1 an integer, m,m′ ∈ Rd, there exists a random couple (X, Y )
whose marginals are Gaussian random variables N (m, Id) and N (m′, Id) and such that

P(X ̸= Y ) ≤
(
∥m−m′∥2√

2π

)
∧ 1.

Proof of Theorem 7.1.1. For any choice of two Heisenberg valued subRiemannian Brow-
nian motions ((Xt, zt))t≥0 and ((X̃t, z̃t))t≥0 started respectively at (x, z) and (x̃, z̃), we
have

dTV

(
µ
(x,z)
T , µ

(x̃,z̃)
T

)
≤ P

(
(XT , zT ) ̸= (X̃T , z̃T )

)
. (7.8)

Consequently, to establish the estimate (7.1) it is sufficient, for each T > 0, to find
((Xt, zt))t≥0 and ((X̃t, z̃t))t≥0 started respectively at (x, z) and (x̃, z̃), satisfying

P
(
(XT , zT ) ̸= (X̃T , z̃T )

)
≤ C1

∥x̃− x∥2√
T

+ C2

|z̃ − z − 1
2
x · x̃|

T
(7.9)

for C1, C2 > 0 not depending on T .

To perform the construction of the coupling, we construct the Brownian motions
(Xt)t≥0 and (X̃t)t≥0 with the Legendre polynomials as in Lemma 7.1.2.

So let us fix T > 0. We write

∀ 0 ≤ t ≤ T, Xt = x+Bt with Bt =
∞∑
k=0

ξk

∫ t

0

Qk(s) ds, (7.10)

where
(
ξk =

(
ξ1k
ξ2k

))
k≥0

is a sequence of independent R2-valued random vectors with law

N (0, I2). We do the same with (X̃t)0≤t≤T , using independent R2-valued random variables(
ξ̃k

)
k≥0

with law N (0, I2). Equation (7.9) will be obtained thanks to a well-chosen

coupling of (ξk)k≥0 and
(
ξ̃k

)
k≥0

.

At time T , using Lemma 7.1.3, we get

XT = x+
√
Tξ0, zT = z +

1

2

√
Tx · ξ0 + T

∑
k≥0

αkξk · ξk+1, (7.11)

X̃T = x̃+
√
T ξ̃0, z̃T = z̃ +

1

2

√
T x̃ · ξ̃0 + T

∑
k≥0

αkξ̃k · ξ̃k+1, (7.12)

where for k ≥ 0, αk is given by (7.6).

From (7.11) and (7.12), we find that the coupling equation (XT , zT ) = (X̃T , z̃T ) is
equivalent to ξ̃0 − ξ0 = x−x̃√

T

z − z̃ +
√
T
2

(
x · ξ0 − x̃ · ξ̃0

)
= T

∑
k≥0

αk

(
ξ̃k · ξ̃k+1 − ξk · ξk+1

)
. (7.13)
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Replacing ξ̃0 by ξ0 + x−x̃√
T

in the second equation we get

−ζ + (x− x̃) ·

(√
T

2
ξ0 −

√
Tα0ξ̃1

)
= Tα0ξ0 · (ξ̃1 − ξ1) + T

∑
k≥1

αk

(
ξ̃k · ξ̃k+1 − ξk · ξk+1

)
.

(7.14)
where ζ = z̃− z− 1

2
(x · x̃) is the last coordinate in the Heisenberg group of (x, z)−1 · (x̃, z̃)

We are in position to start the coupling. We take

ξk = ξ̃k for all k ̸∈ {0, 3}. (7.15)

so that we are left to couple
(ξ0, ξ̃0), (ξ3, ξ̃3). (7.16)

If (7.15) is satisfied we have the simplification

Tα0ξ0 · (ξ̃1 − ξ1) + T
∑
k≥1

αk

(
ξ̃k · ξ̃k+1 − ξk · ξk+1

)
= Tα2

(
ξ2 · ξ̃3 − ξ2 · ξ3

)
+ Tα3

(
ξ̃3 · ξ4 − ξ3 · ξ4

)
= T

√
α2
2 + α2

3

(
ξ̃3 − ξ3

)
· α3ξ4 − α2ξ2√

α2
2 + α2

3

.

Define

W = −ζ + (x− x̃) ·

(√
T

2
ξ0 −

√
Tα0ξ1

)
∈ R, V =

α3ξ4 − α2ξ2√
α2
2 + α2

3

∈ R2. (7.17)

With these definitions, Equation (7.14) becomes

T
√
α2
2 + α2

3

(
ξ̃3 − ξ3

)
· V = W, (7.18)

and where the random vector V is of law N (0, I2) and is independent of W . Consider
(E1, E2) to be a direct orthonormal basis of R2 and such that E1 is proportional to V .
Writing U = U1E1+U

2E2, and since E1 ·E1 = 0 and E1 ·E2 = 1, the solutions of equation

U · V = W (7.19)

are precisely the vectors U ∈ R2 such that

U2 = − W

∥V ∥2
.

Note that nothing is imposed on the coordinate U1. A solution of (7.14) is thus obtained
if

ξ̃3 − ξ3 = − 1

T
√
α2
2 + α2

3

W

∥V ∥2
E2. (7.20)

We also denote (F1, F2) to be the direct orthonormal basis of R2 and such that F1 is
proportional to x̃ − x. We emphasize that W depends only on ⟨ξ0, F2⟩ (and on ⟨ξ1, F2⟩)
and thus we will also take ⟨ξ̃0, F2⟩ = ⟨ξ0, F2⟩.
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Now by Lemma 7.1.4, given the values of ξk for k ∈ N\{0, 3} and the value of ⟨ξ0, F2⟩,
it is possible to construct a coupling of the three dimensional Gaussian random vectors
(⟨ξ0, F1⟩, ξ3) and (⟨ξ̃0, F2⟩, ξ̃3) such that

P
(
(XT , zT ) ̸= (X̃T , z̃T )|(ξk)k∈N\{0,3}, ⟨ξ0, F2⟩

)
≤ 1√

2π

(
∥x̃− x∥√

T
+

1

T
√
α2
2 + α2

3

|W |
∥V ∥2

)

and thus since V and W are independent

P
(
(XT , zT ) ̸= (X̃T , z̃T )

)
≤ 1√

2π

(
∥x− x̃∥2√

T
+

1

T
√
α2
2 + α2

3

E

[
1

∥V ∥2

]
E[|W |]

)
.

Now since V is a random vector with law N (0, I2), one has

E

[
1

∥V ∥2

]
=

√
π

2
.

Denoting ξ̂0 = 1√
1
4
+α2

0

(√
T
2
ξ0 −

√
Tα0ξ1

)
∼ N (0, I2) and with the same orthonormal basis

(F1, F2) of R2, one has

E[|W |] ≤ |ζ|+
√
T

√
1

4
+ α2

0 E
[∣∣∣(x̃− x) · ξ̂0

∣∣∣]
= |ζ|+

√
T

√
1

4
+ α2

0 ∥x̃− x∥2 E
[
|⟨F2, ξ̂0⟩|

]
= |ζ|+

√
T

3

√
2

π
∥x̃− x∥2

since ⟨F2, ξ̂0⟩ ∼ N (0, 1). Thus the conclusion (7.1) holds with

C1 =
1√
2π

(
1 +

1
√
3
√
α2
2 + α2

3

)

and

C2 =
1√
2π

1√
α2
2 + α2

3

√
π

2

and the result follows by considering the explicit values of the αk given in (7.6).

Remark 7.1.5. The above explicit constant C1 and C2 are not optimal. In some sense,
we try to use the less noise possible in the coupling. It should be possible to decrease their
values by allowing more random Gaussian vectors to be different in (7.15).

Remark 7.1.6. Using the left invariance and the rotational invariance of the Heisenberg
group, it is enough to consider the total variation between the measures µ(a,0,c)

T and µ(0,0,0)
T .

In this case, we can take

ξ̃20 = ξ20 , ξ̃
1
2 = ξ12 , ξ̃

1
3 = ξ13 and ξ̃k = ξk for k = 1 and k ≥ 4.

so that we are left to couple
(ξ10 , ξ

2
2 , ξ

2
3), (ξ̃10 , ξ̃

2
2 , ξ̃

2
3).
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In this case, by rewriting carefully the above proof, one can replace the constant

1√
α2
2 + α2

3

E

[
1

∥V ∥2

]
by E

[
1√

(α2
1 + α2

2)Z
2
1 + (α2

2 + α2
3)Z

2
2

]

where Z1 and Z2 are two independent N (0, 1) random variables. In fact, in view of Remark
7.1.5, if one allows to couple,(

ξ10 , (ξ
2
2 , ξ

2
3), (ξ

2
5 , ξ

2
6), (ξ

2
8 , ξ

2
9), . . .

)
,
(
ξ̃10 , (ξ̃

2
2 , ξ̃

2
3), (ξ̃

2
5 , ξ̃

2
6), (ξ̃

2
8 , ξ̃

2
9), . . .

)
,

the previous constant may even be replaced by

E

 1√∑
k≥1 c

2
kZ

2
k


where (Zn)n≥1 is an independent sequence of N (0, 1) random variables and where c2 is
the sequence:

c2 =
(
α2
1 + α2

2, α
2
2 + α2

3, α
2
4 + α2

5, α
2
5 + α2

6, α
2
7 + α2

8, α
2
8 + α2

9, . . .
)
.

7.2 Distance in total variation of two Brownian motions
on Gn

The aim of this section is to extend Theorem 7.1.1 to free, step 2 Carnot groups Gn =
Rn×so(n) for all n ≥ 2. The method developed here is slightly different, but the estimates
will be similar.

We briefly recall the notations from Subsection 3.1.5. A subRiemannian Brownian
motion in Gn started at (x, z) is a process ((Xt, zt))t≥0 such that (Xt)t≥0 is a Rn-valued
Brownian motion started at x and (zt)t≥0 is the so(n)-valued process satisfying

∀ t ≥ 0, zt = z +
1

2

∫ t

0

Xs ⊙ dXs. (7.21)

We state the following theorem:

Theorem 7.2.1. For T > 0 and (x, z) ∈ Gn let µ(x,z)
T be the law at T of the subRiemannian

Brownian motion started at (x, z). We have for all T > 0 and all ((x, z), (x̃, z̃)) ∈ G2
n,

dTV

(
µ
(x,z)
T , µ

(x̃,z̃)
T

)
≤ C1(n)

∥x̃− x∥2√
T

+ C2(n)
∥z̃ − z − 1

2
x⊙ x̃∥HS

T
(7.22)

where ∥ · ∥HS denote the Hilbert-Schmidt norm and

C2(n) :=
1√
π

(
6
√
n+

4√
n

)
and C1(n) :=

1√
2π

+

√
2(n− 1)

3
C2(n). (7.23)
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Remark 7.2.2. Theorem 7.2.1 also applies when n = 2, that is, in the case of the
Heisenberg group. In order to compare the constants in Theorems 7.1.1 and 7.2.1, note
that ∥z̃ − z − 1

2
x⊙ x̃∥HS =

√
2|z̃ − z − 1

2
(x1x̃2 − x2x̃1)|.

We also recall that, for all v ∈ so(n), ∥|z̃− z− 1
2
x⊙ x̃∥HS =

√
2∥z̃− z− 1

2
x⊙ x̃∥2. We

can then compare the results from Theorem 7.2.1 and Corollary 6.1.11. In particular, for
n large, the estimates from Theorem 7.2.1 are clearly better.

Remark 7.2.3. As in Corollary 6.1.11, Theorem 7.2.1 can be extended to any homoge-
neous, step 2 Carnot group G of rank n. For g, g̃ ∈ G and T > 0, we obtain

dTV

(
µg
T , µ

g̃
T

)
≤ C1(n)

dcc(g, g̃)√
t

+

√
2C2(n)

m1(n)

dcc(g, g̃)
2

t

where µg
t (resp. µg̃

t ) denotes the law of the subRiemannian Brownian motion on G started
at g ∈ G (resp. g̃ ∈ G).

Before giving the proof of this theorem, we make a preliminary study of an inverse
problem.

7.2.1 Some preliminaries

Consider an integrable random variable W taking its values in so(n), and for m ≥ n+ 2,
V1, . . . , Vm, m independent random vectors taking their values in Rn, with law N (0, In)
and independent of W . Our next aim is to solve in U1, . . . , Um random variables with
values in Rn, the equation

m∑
k=1

Uk ⊙ Vk = W. (7.24)

Clearly the solution is not unique. We will make a specific choice which will together give
uniqueness and allow explicit computations. Letting (e1, . . . , en) be the canonical basis of
Rn =Mn,1(R), we have the canonical decomposition

W =
n∑

i,j=1

W i,jeie
t
j =

1

2

n∑
i,j=1

W i,jei ⊙ ej, in particular W j,i = −W i,j. (7.25)

We will denote

Uk =
n∑

j=1

U j
kej, k = 1, . . . ,m, (7.26)

Vk =
n∑

j=1

V j
k ej, k = 1, . . . ,m, (7.27)

U =


U1
1 U1

2 · · · U1
m

U2
1 U2

2 · · · U2
m

...
...

...
...

Un
1 Un

2 · · · Un
m

 =
(
U j
k

)
1≤j≤n, 1≤k≤m

, (7.28)

V =


V 1
1 V 1

2 · · · V 1
m

V 2
1 V 2

2 · · · V 2
m

...
...

...
...

V n
1 V n

2 · · · V n
m

 =
(
V i
k

)
1≤i≤n, 1≤k≤m

(7.29)
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and

W =


0 W 1,2 W 1,3 · · · W 1,n

−W 1,2 0
. . . · · · W 2,n

... . . . . . . . . . ...

...
... . . . . . . W n−1,n

−W 1,n · · · · · · −W n−1,n 0

 =
(
W i,j

)
1≤i≤n, 1≤j≤n

, (7.30)

Equation (7.24) rewrites as

U V t − V U t = W . (7.31)

In particular we have a solution of Equation (7.31) if

V U t = −1

2
W . (7.32)

Proposition 7.2.4. A solution to Equation (7.24) is given by

U t = −1

2
V t
(
V V t

)−1
W . (7.33)

Moreover, we have

E[∥U ∥HS] ≤
1

2
√
m− n− 1

E [∥W ∥HS] . (7.34)

Proof. We easily check that U given by (7.33) is a solution of (7.32) and thus also of
(7.24). We are left to prove that

E[∥U ∥HS] ≤
1

2
√
m− n− 1

E [∥W ∥HS] (7.35)

with U , W defined in (7.28) and (7.30). From (7.33) we get

U U t =
1

4
W t
(
V V t

)−1
W . (7.36)

This yields

∥U ∥HS =
√
Tr (U U t) =

1

2

√
Tr
(
W t (V V t)−1 W

)
. (7.37)

On the other hand, V is independent of W and V V t is a Wishart matrix W(n,m)
of size n × n and with m degree of freedom and thus can be written in singular value
decomposition as

V V t = S tD2S (7.38)

where S and D are two independent random variables taking their values respectively in
O(n) and Mn,n(R), S having uniform law and D being diagonal with positive eigenvalues
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0 < d1 < . . . < dn. From this we get

2E
[√

Tr (U U t)
]

= E

[√
Tr
(
W t (V V t)−1 W

)]
= E

[√
Tr (W tS tD−2S W )

]
= E

[√
Tr (S W W tS tD−2)

]
= E

√√√√ n∑
i=1

d−2
i etiS W W tS tei


= E

E

√√√√ n∑
i=1

d−2
i etiS W W tS tei|W ,D


≤ E


√√√√E

[
n∑

i=1

d−2
i etiS W W tS tei|W ,D

] .
Now for all 1 ≤ i ≤ n,

E
[
etiS W W tS tei|W ,D

]
=

1

n
Tr(W W t)

since S is uniformly distributed and independent of W and D . We get from this

E


√√√√E

[
n∑

i=1

d−2
i etiS W W tS tei|W ,D

] =
1√
n

E
[√

Tr(W W t)Tr (D−2)
]

yielding since Tr (D−2) = Tr
(
(V V t)

−1
)

and is independent of W ,

E[∥U ∥HS] ≤
1

2
√
n

E

[√
Tr
(
(V V t)−1)]E[∥W ∥HS]. (7.39)

By [49] Example 3.1 we have

E
[
Tr
((

V V t
)−1
)]

=
n

m− n− 1
(7.40)

so finally by Cauchy-Schwarz,

E[∥U ∥HS] ≤
1

2
√
m− n− 1

E[∥W ∥HS]. (7.41)

7.2.2 Proof of Theorem 7.2.1

Proof of Theorem 7.2.1. For any choice of two Gn-valued subRiemannian Brownian mo-
tions ((Xt, zt))t≥0 and ((X̃t, z̃t))t≥0 started respectively at (x, z) and (x̃, z̃), we have

dTV

(
µ
(x,z)
T , µ

(x̃,z̃)
T

)
≤ P

(
(XT , zT ) ̸= (X̃T , z̃T )

)
. (7.42)

Consequently, to establish the estimate (7.22) it is sufficient, for each T > 0, to find
((Xt, zt))t≥0 and ((X̃t, z̃t))t≥0 started respectively at (x, z) and (x̃, z̃), satisfying

P
(
(XT , zT ) ̸= (X̃T , z̃T )

)
≤ C1(n)

∥x̃− x∥2√
T

+ C2(n)
∥z̃ − z − 1

2
x⊙ x̃∥HS

T
. (7.43)
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Adopting the same strategy as in Section 7.1, we construct the Brownian motions
(Xt)t≥0 and (X̃t)t≥0 with Legendre polynomials.

So let us fix T > 0. Similarly to Equation (7.4) but now in dimension n, we write

∀ 0 ≤ t ≤ T, Xt = x+Bt with Bt =
∞∑
k=0

ξk

∫ t

0

Qk(s) ds, (7.44)

where

ξk =
 ξ1k

...
ξnk




k≥0

is a sequence of independent Rn-valued random vectors with

law N (0, In). We do the same with (X̃t)0≤t≤T , using independent Rn-valued random
variables

(
ξ̃k

)
k≥0

with law N (0, In). Equation (7.43) will be obtained thanks to a well-

chosen coupling of (ξk)k≥0 and
(
ξ̃k

)
k≥0

.

At time T we get

XT = x+
√
Tξ0, zT = z +

1

2

√
Tx⊙ ξ0 + T

∑
k≥0

αkξk ⊙ ξk+1, (7.45)

X̃T = x̃+
√
T ξ̃0, z̃T = z̃ +

1

2

√
T x̃⊙ ξ̃0 + T

∑
k≥0

αkξ̃k ⊙ ξ̃k+1, (7.46)

where (αk)k≥0 is defined in (7.6).

From (7.45) and (7.46), we find that the coupling equation (XT , zT ) = (X̃T , z̃T ) is
equivalent to ξ̃0 − ξ0 = x−x̃√

T

z − z̃ +
√
T
2

(
x⊙ ξ0 − x̃⊙ ξ̃0

)
= T

∑
k≥0

αk

(
ξ̃k ⊙ ξ̃k+1 − ξk ⊙ ξk+1

)
. (7.47)

Replacing ξ̃0 by ξ0 + x−x̃√
T

in the second equation we get

−ζ+(x− x̃)⊙

(√
T

2
ξ0 −

√
Tα0ξ̃1

)
= Tα0ξ0⊙(ξ̃1−ξ1)+T

∑
k≥1

αk

(
ξ̃k ⊙ ξ̃k+1 − ξk ⊙ ξk+1

)
(7.48)

where ζ = z̃− z− 1
2
x⊙ x̃. We are in position to start the coupling. As in previous section

we let m ≥ n+ 2, that we will choose at the end. We take

ξk = ξ̃k for all k ̸∈ {0, 3, 6, . . . 3m}, (7.49)

so that we are left to couple

(ξ0, ξ̃0), (ξ3, ξ̃3), . . . (ξ3(n−1), ξ̃3m). (7.50)
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If (7.49) is satisfied we have the simplification

Tα0ξ0 ⊙ (ξ̃1 − ξ1) + T
∑
k≥1

αk

(
ξ̃k ⊙ ξ̃k+1 − ξk ⊙ ξk+1

)
= T

m∑
k=1

(
α3k−1

(
ξ3k−1 ⊙ ξ̃3k − ξ3k−1 ⊙ ξ3k

)
+ α3k

(
ξ̃3k ⊙ ξ3k+1 − ξ3k ⊙ ξ3k+1

))
=

m∑
k=1

(
ξ̃3k − ξ3k

)
⊙ T (α3kξ3k+1 − α3k−1ξ3k−1)

=
m∑
k=1

T
√
α2
3k + α2

3k−1

(
ξ̃3k − ξ3k

)
⊙ α3kξ3k+1 − α3k−1ξ3k−1√

α2
3k + α2

3k−1

.

Define

W = −ζ + (x− x̃)⊙

(√
T

2
ξ0 −

√
Tα0ξ̃1

)
, (7.51)

Vk =
α3kξ3k+1 − α3k−1ξ3k−1√

α2
3k + α2

3k−1

, k = 1, . . . ,m. (7.52)

With these definitions, Equation (7.48) becomes

m∑
k=1

T
√
α2
3k + α2

3k−1

(
ξ̃3k − ξ3k

)
⊙ Vk = W, (7.53)

and the random vectors Vk, 1 ≤ k ≤ m are independent with the same law N (0, In).

Let (U1, . . . , Um) be the solution given by (7.33) to Equation (7.24)
m∑
k=1

Uk ⊙ Vk = W .

Using (7.53) we see that a solution to (7.48) is given by

ξ̃3k − ξ3k =
Uk

T
√
α2
3k + α2

3k−1

=: Ûk, k = 1, . . . ,m. (7.54)

Define

ξ =


ξ1
ξ2
...
ξm

 , ξ̃ =


ξ̃1
ξ̃2
...
ξ̃m

 , Û =


Û1

Û2
...
Ûm

 (7.55)

with the Ûk defined in (7.54). The random vectors ξ, ξ̃ and Û take their values inMnm,1(R)
and ξ, ξ̃ have law N (0, Inm). Recalling the system (7.47), we obtain with (7.54) that

P
(
(XT , zT ) ̸= (X̃T , z̃T )

)
≤ P

(
ξ̃0 − ξ0 ̸=

x− x̃√
T

)
+ P

(
ξ̃ − ξ ̸= Û

)
. (7.56)

Observing that the random vector Û is independent of ξ, and using Lemma 7.1.4, we get
the estimate

P
(
(XT , zT ) ̸= (X̃T , z̃T )

)
≤ ∥x− x̃∥2√

2πT
+

E[∥Û∥HS]√
2π

. (7.57)
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By (7.6) the sequence (αk)k≥0 is decreasing, consequently the sequence

 1√
α2
3k + α2

3k−1


k≥0

is increasing and E[∥Û∥HS] ≤
E[∥U∥HS]

T
√
α2
3m + α2

3m−1

. On the other hand using (7.6) we have

for k ≥ 1

1√
α2
3k + α2

3k−1

= 2

(
(4(3k + 1)2 − 1)(4(3k)2 − 1)

(4(3k + 1)2 − 1) + (4(3k)2 − 1)

)1/2

≤ 2

(
42(3k + 1)2(3k)2

8(3k)2

)1/2

≤ 2
√
2(3k + 1).

(7.58)

Recalling that by Proposition 7.2.4,

E[∥U∥HS] = E[∥U ∥HS] ≤
1

2
√
m− n− 1

E [∥W∥HS]

we get

E[∥Û∥HS] ≤
√
2(3m+ 1)

T
√
m− n− 1

E [∥W∥HS] (7.59)

On the other hand, writing from (7.51)

W = −ζ + (x− x̃)⊙

(√
T

2
ξ0 −

√
Tα0ξ̃1

)
,

we get

E[
∥∥W∥2HS

]
= ∥ζ∥2HS + E

∥∥∥∥∥(x− x̃)⊙

(√
T

2
ξ0 −

√
Tα0ξ̃1

)∥∥∥∥∥
2

HS

 .
We will do the computation in an orthonormal basis (E1, . . . , En) of Rn such that x− x̃ =

∥x − x̃∥2E1. Since α0 = 1
2
√
3

we have
√
T
2
ξ0 −

√
Tα0ξ̃1 =

√
T
3
ξ̂0 where ξ̂0 is a Rn-valued

Gaussian random variable with law N (0, In). Writing ξ̂0 =
n∑

i=1

ξ̂i0Ei we obtain

(x− x̃)⊙

(√
T

2
ξ0 −

√
Tα0ξ̃1

)
=

√
T

3
∥x− x̃∥2

n∑
i=2

ξ̂i0E1 ⊙ Ei.

The matrices E1 ⊙ Ei = E1E
t
i − EiE

t
1 being orthogonal each with norm

√
2 we obtain

E

∥∥∥∥∥(x− x̃)⊙

(√
T

2
ξ0 −

√
Tα0ξ̃1

)∥∥∥∥∥
2

HS

 = ∥x− x̃∥22
2T (n− 1)

3
.

We get

E
[
∥W∥2HS

]
= ∥ζ∥2HS +

2T (n− 1)

3
∥x− x̃∥22. (7.60)

Using this estimate in (7.59)) yields

E[∥Û∥HS] ≤
√
2(3m+ 1)

T
√
m− n− 1

(
∥ζ∥HS +

√
2T (n− 1)

3
∥x− x̃∥2

)
. (7.61)
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We can easily prove that the best choice for an integer m is

m = 2n+ 1 implying
√
2(3m+ 1)√
m− n− 1

= 6
√
2n+

4
√
2√
n
. (7.62)

So together with (7.57),

P
(
(XT , zT ) ̸= (X̃T , z̃T )

)
≤

∥x− x̃∥2√
2πT

+
1

T
√
π

(
6
√
n+

4√
n

)(
∥ζ∥HS +

√
2T (n− 1)

3
∥x− x̃∥2

)
.

(7.63)

We obtain the wanted inequality (7.22) with

C2(n) =
1√
π

(
6
√
n+

4√
n

)
and C1 =

1√
2π

+

√
2(n− 1)

3
C2. (7.64)

7.3 Application to gradients inequalities

7.3.1 Direct estimates for the horizontal and vertical gradient

As in Chapter 6, we can obtain direct estimates for the horizontal and vertical gradient
of the heat semi group. Indeed, using the coupling from Theorem 7.2.1, we have:

|Ptf(g)− Ptf(g̃)| ≤ 2||f ||∞P
(

Bg
t ̸= Bg̃

t

)
≤ 2||f ||∞

(
C1(n)√

t
∥x− x̃∥2 + C2(n)

√
2∥z̃ − z − 1

2
x⊙ x̃∥2

t

)
. (7.65)

Using the same arguments as in the proof of Corollaries 6.3.1 and 6.3.2, we obtain:

Corollary 7.3.1. Let Gn be the free step 2 Carnot group of of rank n ≥ 2. For any
bounded measurable function f on Gn, for any g ∈ Gn and t > 0,

∥∇HPtf(g)∥H ≤ 2C1(n)√
t

||f ||∞ a.s. (7.66)

and

∥∇vPtf(g)∥ ≤ 2
√
2C2(n)

t
||f ||∞ a.s.. (7.67)

where C1(n) and C2(n) are the constant appearing in Theorem 7.2.1 (or 7.1.1).

Remark 7.3.2. As for Corollary 6.3.1, we can also show that (7.66) is true on all the
homogeneous step 2 Carnot groups.
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7.3.2 Coupling with change of probability and applications

In this section we will construct couplings at time T with probability one, but the price to
pay will be to make changes of probabilities for the second process. The distance between
semi-groups will be measured by the change of probability. The main results are a log
Harnack inequality (Proposition 7.3.7, an integration by parts formula (Proposition 7.3.8)
which expresses the spatial derivative dPTf of the semi-group PTf of the Brownian motion
by a formula which does not make appear derivative of f , and a reverse Sobolev inequality
(Proposition 7.3.8).

The notations are the same as in the previous section. The processes (Bg
t ) := (Xt, zt)

and (Bg̃
t ) := ((X̃t, z̃t)) started respectively at g = (x, z) and g̃ = (x̃, z̃) are defined with

equation (7.44). The sequence (ξk)k≥0 will be identically distributed will law N (0, In)
under the probability P. The difference will be that we will look for a sequence (ξ̃k)k≥0

which is independent and identically distributed with law N (0, In) under another proba-
bility P(g̃), and so that at time T , a.s. Bg

T = Bg̃
T .

So let us fix K ∈ {n+ 1, . . .} ∪ {∞} and let

JK := {ℓ ∈ N, ℓ ≤ K} if K <∞, J∞ := N and J∗
K := JK\{0} ∀ K. (7.68)

We will take
ξk = ξ̃k for all k ̸∈ 3JK (7.69)

so that we are left to couple
(ξℓ, ξ̃ℓ), ℓ ∈ 3JK . (7.70)

Now we consider the sequence (Vk)k∈J∗
K

defined in (7.52), of independent random vectors
taking their values in Rn, with the same law N (0, In). We solve in (Uk)k∈J∗

K
the equation∑

k∈J∗
K

Uk ⊙ Vk = W (7.71)

with W given by Equation (7.51). Then we will choose (ξ̃k)k≥0 such that almost surely

ξ̃0 − ξ0 =
x− x̃√
T

=: Û0 (7.72)

and
∀ k ∈ J∗

K , ξ̃3k − ξ3k =
Uk

T
√
α2
3k + α2

3k−1

=: Ûk. (7.73)

We denote

∀k ∈ J∗
K , Vk =

n∑
i=1

V i
kei, Uk =

n∑
j=1

U j
kej, (7.74)

βk =
1

T
√
α2
3k + α2

3k−1

(7.75)

V̂ = V̂K =

(
V i
k

βk

)
1≤i≤n, k∈J∗

K

, Û = ÛK = (βkU
i
k)1≤j≤n, k∈J∗

K
, (7.76)

the upper index representing the lines and the lower index representing the columns. With
these notations and similarly as before, Equation (7.71) is equivalent to

Û V̂ t − V̂ Û t = W (7.77)
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with W defined by (7.30). In particular, we have a solution of Equation (7.71) if

V̂ Û t = −1

2
W . (7.78)

The n× n matrix

V̂ V̂ t =
∑
k∈J∗

K

1

β2
k

VkV
t
k (7.79)

is a.s. well-defined since E

[
∞∑
k=1

1

β2
k

Tr(VkV
t
k )

]
< ∞ (the computation (7.58) proves that

βk is of order k). It is a.s. symmetric positive since K ≥ n. Consequently it is invertible,
and a solution to (7.78) is given by

Û t = −V̂ t(V̂ V̂ t)−1W . (7.80)

Let us make a specific choice of probability space, which will be very convenient for
our computations. This probability space is (Ω,A ,P), where Ω := ℓ2(Rn) is the Hilbert
space of square integrable Rn-valued sequences, A is the smallest σ-field for which the
projections are measurable, completed with respect to the probability measure P for which
the canonical projections

ξk : Ω → Rn

ω = (ω0, ω1, . . . , ωk, . . .) 7→ ωk =: ξk(ω)

are i.i.d. and N (0, In). We will need to split Ω into two supplementary orthogonal spaces:
Ω = Ωa ⊕ Ωb. Let us now describe these spaces. For k ≥ 1 and 1 ≤ i ≤ n, we denote by
eik the element of Ω which satisfies ξℓ(eik) = 0 if ℓ ̸= k and ξk(e

i
k) = ei, the i-th element

of the canonical basis of Rn. Letting (f1, . . . , fn) be an orthonormal basis of Rn such that
∥x− x̃∥f1 = x− x̃, for 1 ≤ i ≤ n we denote by f i

0 the element of Ω such that ξℓ(f i
0) = 0

if ℓ ̸= 0 and ξ0(f
i
0) = fi. Notice that the (eik), k ≥ 1, 1 ≤ i ≤ n together with the

(f i
0), 1 ≤ i ≤ n form an Hilbertian basis of Ω and that the random variables ⟨eik, ω⟩,

⟨f i
0, ω⟩ are i.i.d and

Ωa = Span
{
f 1
0 , e

i
k, k ∈ 3J∗

K , 1 ≤ i ≤ n
}
, (7.81)

Ωb = Ω⊥
a = Span

{
f i
0, 2 ≤ i ≤ n

}
⊕ Span

{
eik, k /∈ 3JK , 1 ≤ i ≤ n

}
. (7.82)

For the sequel, we will denote ωa (resp. ωb) the projection of ω on Ωa (resp. Ωb).
Let Aa and Ab be the canonical σ-fields and Pa (resp. Pb) be such that the ⟨ωa, e

i
k⟩,

k ≥ 1, 1 ≤ i ≤ n, ⟨ωa, f
1
0 ⟩ (resp. ⟨ωb, e

j
ℓ⟩, ⟨ωb, f

i
0⟩ ℓ /∈ 3JK , 1 ≤ j ≤ n, 2 ≤ i ≤ n) are

independent N (0, 1) random variables. Then

(Ωa × Ωb,Aa × Ab,Pa × Pb) → (Ω,A ,P)

(ωa, ωb) 7→ ωa + ωb

(7.83)

is an isometry.

Recall that ξ̃k = ξk if k ̸∈ 3JK and ξ̃3k = ξ3k+Ûk if k ∈ JK . Let P(g̃) be the probability
on Ω such that all ξ̃k are i.i.d. and N (0, 1).
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Lemma 7.3.3. The probability P(g̃) is equivalent to P, and

R(u) :=
dP(g̃)
dP

(ω) = e
1
2

(
⟨ω, u

∥u∥⟩
2
−(⟨ω, u

∥u∥⟩+∥u∥)
2
)
= e−⟨ω,u⟩− 1

2
∥u∥2 (7.84)

where u = u(g̃)(ω) ∈ Ω is defined by

uk = 0 ∀ k ̸∈ 3JK and u3k = Ûk(ω) ∀k ∈ JK , (7.85)

and ⟨ω, u⟩ =
∞∑
k=0

⟨ωk, uk⟩Rn.

In particular,

dR(u(·))|g̃=g = −
∞∑
k=0

〈
ξ3k, dÛk(·)|g̃=g

〉
. (7.86)

Moreover, for all measurable F : Ω → R, we have that F is P-integrable if and only if
ω 7→ F (ω + u(ω)) is R(u) · P-integrable, and in this case

E[F (ω)] = E [F (ω + u(ω))R(u(ω))] . (7.87)

Proof. First observe that for a fixed nonzero vector u ∈ Ωa, we can make the orthogonal
decomposition

ωa =

〈
ωa,

u

∥u∥

〉
u

∥u∥
+ PΩa

(u)⊥
(ωa) (7.88)

where
〈
ωa,

u

∥u∥

〉
is an N (0, 1) real-valued random variable independent of PΩa

(u)⊥
(ωa).

Now remark that the random vector u(ω) satisfies u(ω) = u(ωb) in the decomposition
ω = ωa+ωb of (7.83). This is due to the fact that the Ûk do not change when one replaces
ξ0 by ξ0 + x−x̃√

T
in the expression of

W = −ζ + (x− x̃)⊙

(√
T

2
ξ0 −

√
Tα0ξ̃1

)
.

In other words, u is measurable with respect to σ-field G := σ(ξk, k ̸∈ 3J∗
K)∨σ(P Rn

(x−x̃)⊥(ξ0))

(P Rn

(x−x̃)⊥ denoting the projection in Rn orthogonal to x− x̃).

A second important fact is that ω 7→ u(ω) takes its values in Ωa. In other words uℓ = 0
if ℓ ̸∈ 3J∗

K and u0 is collinear to x− x̃. Consequently, conditioned to G , u is a Ωa-valued
constant. So we can make the same decomposition as in (7.88):

ωa =

〈
ωa,

u(ω)

∥u(ω)∥

〉
u(ω)

∥u(ω)∥
+ PΩa

(u(ω))⊥
(ωa)

where conditioned to G ,
〈
ωa,

u(ω)
∥u(ω)∥

〉
is an N (0, 1) random variable independent of

PΩa

(u(ω))⊥
(ωa). Adding ωb which is G -measurable and orthogonal to Ωa we get

ω =

〈
ω,

u

∥u∥

〉
u

∥u∥
+ P(u)⊥(ω) (7.89)

where conditioned to G ,
〈
ω,

u

∥u∥

〉
is an N (0, 1) real-valued random variable independent

of P(u)⊥(ω).
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Let F : Ω → R a bounded measurable function.

E[F (ω)] = E

[
E

[
F

(〈
ω,

u

∥u∥

〉
u

∥u∥
+ P(u)⊥(ω)

)∣∣∣∣P(u)⊥(ω), G

]]
= E

[∫
R
F

(
x
u

∥u∥
+ P(u)⊥(ω)

)
φ(x) dx

]
where φ is the density of N (0, 1). But∫

R
F

(
x
u

∥u∥
+ P(u)⊥(ω)

)
φ(x) dx =

∫
R
F

(
(x+ ∥u∥) u

∥u∥
+ P(u)⊥(ω)

)
φ(x+ ∥u∥) dx

yielding

E[F (ω)]

= E

[∫
R
F

(
(x+ ∥u∥) u

∥u∥
+ P(u)⊥(ω)

)
φ(x+ ∥u∥) dx

]
= E

[∫
R
F

(
(x+ ∥u∥) u

∥u∥
+ P(u)⊥(ω)

)
φ(x+ ∥u∥)

φ(x)
φ(x) dx

]

= E

E

φ
(〈
ω, u

∥u∥

〉
+ ∥u∥

)
φ
(〈
ω, u

∥u∥

〉) F

((〈
ω,

u

∥u∥

〉
+ ∥u∥

)
u

∥u∥
+ P(u)⊥(ω)

)
|P(u)⊥(ω), G


recalling that conditioned to G ,

〈
ω,

u

∥u∥

〉
is an N (0, 1) real-valued random variable

independent of P(u)⊥(ω). So

E[F (ω)]

= E

φ
(〈
ω, u

∥u∥

〉
+ ∥u∥

)
φ
(〈
ω, u

∥u∥

〉) F

((〈
ω,

u

∥u∥

〉
+ ∥u∥

)
u

∥u∥
+ P(u)⊥(ω)

)
= E

φ
(〈
ω, u

∥u∥

〉
+ ∥u∥

)
φ
(〈
ω, u

∥u∥

〉) F (ω + u)

 .
Observing that

φ
(〈
ω, u

∥u∥

〉
+ ∥u∥

)
φ
(〈
ω, u

∥u∥

〉) = e−⟨ω,u⟩− 1
2
∥u∥2

yields (7.84) via (7.87). Equation (7.86) is a direct consequence.

Corollary 7.3.4. Let us take K = 2n + 1. Let R = R(u) be as in Lemma 7.3.3. Then
R lnR is integrable and

E[R lnR] =
1

2
E
[
∥u∥2

]
≤ ∥x− x̃∥22

2T
+

(
6
√
n+

4√
n

)2
(

1

T 2

∥∥∥∥z − z̃ − 1

2
x⊙ x̃

∥∥∥∥2
HS

+
2(n− 1)

3T
∥x− x̃∥22

)
.

(7.90)
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Proof. Recall that ∥u∥2 = ∥Û2
0∥ + ∥Û∥2 = x−x̃2

T
+ ∥Û∥2

T
, Û being defined in (7.55). First

observe that the inequality in (7.90) comes from (7.59) and (7.60). Secondly, we have
u(ω) = u(ω − u(ω)) since u(ω) ∈ V and u depends only on PV ⊥(ω), see the proof of
Lemma 7.3.3. So using (7.87),

E [R(u(ω))(ω) lnR(u(ω))(ω)]

= E [lnR(u(ω − u(ω)))(ω − u(ω))]

= E [lnR(u(ω))(ω − u(ω))]

= E

[
−⟨ω − u(ω), u(ω)⟩ − 1

2
∥u(ω)∥2

]
= E

[
−E[⟨ω, u(ω)⟩|G ] +

1

2
∥u(ω)∥2

]
with G defined in the proof of Lemma 7.3.3

= E

[
1

2
∥u(ω)∥2

]
since E[⟨ω, u(ω)⟩|G ] = 0: u(ω) is G -measurable and conditioned to G ⟨ω, u(ω)⟩ is Gaussian
and centered.

We will need two preparatory lemmas.

Lemma 7.3.5. Let (Yℓ)ℓ≥1 be a sequence of independent real-valued random variables with
law χ2(2). Let a > 0, for any q > a such that q is an integer, we have

E

[(
∞∑
ℓ=1

Yℓ
ℓ2

)−a]
≤ q2a

Γ(q − a)

2aΓ(q)
. (7.91)

Proof. We have

E

[(
∞∑
ℓ=1

Yℓ
ℓ2

)−a]
≤ E

[(
q∑

ℓ=1

Yℓ
ℓ2

)−a]

≤ q2aE

[(
q∑

ℓ=1

Yℓ

)−a]

= q2a
∫ ∞

0

y−ay
q−1e−y/2

2qΓ(q)
dy

= q2a
2q−aΓ(q − a)

2qΓ(q)
= q2a

Γ(q − a)

2aΓ(q)

where we used in the third line that
∑q

ℓ=1 Yℓ has law χ2(2q) with density

y 7→ 1(0,∞)(y)
yq−1e−y/2

2qΓ(q)
.

Lemma 7.3.6. Let (Vk)k≥1 be a sequence of Rn-valued independent random variables with
law N (0, In). Then for any p ∈ (0, 1),

∀ λ ∈ R, E

exp
λ

Tr

(
∞∑
k=1

VkV
t
k

β2
k

)−1
p ≤ 1 +

∞∑
q=1

(
Cλ

T 2p

)q
q2pqΓ(q(1− p))

q!Γ(q)
<∞

(7.92)
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where

C = C(p) =

(
n2

2

(
2
√
2(3n+ 4)

)2)p

. (7.93)

Proof. It is enough to make the proof with λ > 0. We have

∞∑
k=1

VkV
t
k

β2
k

≥
∞∑
ℓ=1

1

β2
ℓ(n+1)

Mℓ with Mℓ :=

ℓ(n+1)∑
ℓ′=(ℓ−1)(n+1)+1

Vℓ′V
t
ℓ′ .

The matrices Mℓ are Wishart W (n, n + 1) with smallest eigenvalue λmin(Mℓ) having an
exponential law with parameter n/2, or equivalently a law 1

n
χ2(2). Consequently, by

independence, we have

λmin

(
∞∑
k=1

VkV
t
k

β2
k

)
≥

∞∑
ℓ=1

Yℓ
nβ2

ℓ(n+1)

(7.94)

with Yℓ independent χ2(2) random variables. Then using βk ≤ 1
T
2
√
2(3k+1) we can write

λmin

(
∞∑
k=1

VkV
t
k

β2
k

)
≥ T 2

∞∑
ℓ=1

n

C3ℓ2
Yℓ (7.95)

with C3 = n2
(
2
√
2(3n+ 4)

)2
. We have

Tr

(
∞∑
k=1

VkV
t
k

β2
k

)−1

≤ nλmax

( ∞∑
k=1

VkV
t
k

β2
k

)−1


= n

(
λmin

(
∞∑
k=1

VkV
t
k

β2
k

))−1

Consequently, for p ∈ (0, 1),Tr

(
∞∑
k=1

VkV
t
k

β2
k

)−1
p

≤ Cp
3

T 2p

(
∞∑
ℓ=1

Yℓ
ℓ2

)−p

(7.96)

implying

E

exp
λ

Tr

(
∞∑
k=1

VkV
t
k

β2
k

)−1
p ≤ E

[
exp

(
Cp

3

T 2p
λ

(
∞∑
ℓ=1

Yℓ
ℓ2

)−p)]

= 1 +
∞∑
q=1

Cpq
3 λ

q

q!T 2pq
E

[(
∞∑
ℓ=1

Yℓ
ℓ2

)−pq]

≤ 1 +
∞∑
q=1

Cpq
3 λ

q

q!T 2pq
q2pq

Γ(q(1− p))

2pqΓ(q)

where we used Lemma 7.3.5 with a = pq. We finally get

E

exp
λ

Tr

(
∞∑
k=1

VkV
t
k

β2
k

)−1
p ≤ 1 +

∞∑
q=1

((
C3

2T 2

)p

λ

)q
q2pqΓ(q(1− p))

q!Γ(q)
(7.97)
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which is the first inequality in (7.92). We are left to prove that the right hand side is
finite. Using ln Γ(a) ∼ a ln(a) as a→ ∞ we get

ln

(
q2pqΓ(q(1− p))

q!Γ(q)

)
∼ (2pq + q(1− p)− 2q) ln(q) = q(p− 1) ln(q) < −εq ln(q)

with ε = 1−p
2

. Letting α =
(

C3

2T 2

)p
λ we have((

C3

2T 2

)p

λ

)q
q2pqΓ(q(1− p))

q!Γ(q)
≤ αqq−εq for q sufficiently large

and
∑∞

q=1 α
qq−εq <∞, proving the finiteness of the right hand side of (7.92).

Let f : Gn → R a bounded measurable function. We have

PTf(g) = E[f(Bg
T )] together with PTf(g̃) = E[f(Bg̃

T )R(u)] (7.98)

g̃ and u being related as in Lemma 7.3.3. But with our construction, we have a.s Bg̃
T = Bg

T ,
yielding

PTf(g̃) = E[f(Bg
T )R(u)]. (7.99)

From this and Corollary 7.3.4 we get the following log Harnack inequality.

Proposition 7.3.7. Let f be a positive function in Gn, T > 0 and g = (x, z), g̃ = (x̃, z̃) ∈
Gn. Then

PT (ln f)(g̃) ≤ ln(PTf(g))

+
∥x− x̃∥22

2T
+

(
6
√
n+

4√
n

)2
(

1

T 2

∥∥∥∥z − z̃ − 1

2
x⊙ x̃

∥∥∥∥2
HS

+
2(n− 1)

3T
∥x− x̃∥22

)
.

(7.100)

Proof. Again take K = 2n+1. By Equation (7.98) applied to ln f and Young inequality,

PT (ln f)(g̃) = E[ln f(Bg
T )R(u)]

≤ E[R(u) lnR(u)] + lnE [exp ln f(Bg
T )]

= E[R(u) lnR(u)] + ln(PTf(g)).

We conclude with (7.90).

The next proposition aims at establishing an integration by parts formula, together
with a reverse Poincaré inequality.

Proposition 7.3.8. Fix K ≥ n+ 2 (and possibly infinite). Let f : Gn → R be a bounded
continuous function, g = (x, z), h = (hx, hz) ∈ Gn. Denote g̃ = g + h we have

dgPTf(h) = E

[
f(Bg

T )

(
−
∑
k∈JK

〈
ξ3k, Ûk

〉)]
, (7.101)

where (Ûk)k≥0 is given by (7.73). Consequently, for any p ∈ (1,∞], denoting q ∈ [1,∞)

satisfying
1

p
+

1

q
= 1, we have

∥dgPTf(h)∥ ≤ (PT |f |p)1/pmqE

(∑
k∈JK

∥∥∥Ûk

∥∥∥2)q/2
1/q

. (7.102)
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with mq
q = E[|Z|q] the q-th moment of a N (0, 1)-variable Z. The right hand side is finite

for all q ≥ 1 when K = ∞.

In the special case p = q = 2, we get the reverse Poincaré inequality

∥dgPTf(h)∥2

≤
(
PT |f |2

)∥hx∥22
T

+

(
6
√
2n+

4
√
2√
n

)2(
1

T 2

∥∥∥∥hz − 1

2
x⊙ hx

∥∥∥∥2
HS

+
2(n− 1)

3T
∥hx∥22

) .

(7.103)

Proof. Considering a vector h = (hx, hz) ∈ Gn, we will compute

lim
a→0

1

a
(PTf(g + ah)− PTf(g)) . (7.104)

Denote g̃(a) = (x̃(a), z̃(a)) = g + ah. The matrix W (g̃(a)) defined in (7.51) rewrites as

W (g̃(a)) = z − z̃(a)− 1

2
x̃a ⊙ x+ (x− x̃(a))⊙

(√
T

2
ξ0 −

√
Tα0ξ̃1

)
(7.105)

and since x⊙ x = 0,

∀a ∈ R, dg̃(a)W (h) =
d

da
W (g̃(a)) = −hz−

1

2
hx⊙x−hx⊙

(√
T

2
ξ0 −

√
Tα0ξ̃1

)
(7.106)

not depending on a. Consequently, with the notation of (7.76),

dg̃(a)Û
t(h) = V̂ t(V̂ V̂ t)−1dg̃(a)W

t(h) = V̂ t(V̂ V̂ t)−1W t(g̃(1)) (7.107)

does not depend on a, and we have, letting Û t = Û t(g̃(1)) and W t = W t(g̃(1))

Û t(g̃(a)) = aÛ t = aV̂ t(V̂ V̂ t)−1W t. (7.108)

also, Û0(g̃(a)) = a x̃−x√
T

yielding d
da
Û0(g̃(a)) = u0. Then using (7.84) and the fact that

Û = (u3, u6, . . .) we get

1

a
(PTf(g + ah)− PTf(g)) =

1

a
E [f(Bg

T ) (R(au)− 1)]

=
1

a
E

[
f(Bg

T )

(∫ a

0

d

da′
R(a′u) da′

)]
= −1

a
E

[
f(Bg

T (ω))

(∫ a

0

R(a′u)⟨ω + a′u, u⟩ da′
)]

By definition of R(a′u) we have as soon as ω 7→ F (ω) is P-integrable, that ω 7→ F (ω+a′u)
is R(a′u)P-integrable and

E[R(a′u)F (ω + a′u)] = E[F (ω)]. (7.109)
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In our situation f is bounded and ⟨ω, u⟩ =

〈
ω,

u

∥u∥

〉
∥u∥ is P-integrable since, since,

conditioned to G
〈
ω, u

∥u∥

〉
has law N (0, 1), ∥u∥ ≤

∥∥∥ hx√
T

∥∥∥
2
+ ∥Û ∥HS,

∥Û ∥HS =

√
Tr
(
Û Û t

)
=

√
Tr
(
W t(V̂ V̂ t)−1W

)
≤ ∥W ∥HS

(
Tr

((
V̂ V̂ t

)−1
))1/2

,

W is Gaussian and independent of V and

• if K = ∞ then by Equation (7.92)
(
Tr

((
V̂ V̂ t

)−1
))1/2

has exponential moments,

• if K <∞ then
(
Tr

((
V̂ V̂ t

)−1
))1/2

≤ βK

(
Tr
(
(V V t)

−1
))1/2

which is integrable

by (7.40), since we chose K ≥ n+ 2.

So we can apply equality (7.109) after exchanging the orders of integration (which is
allowed here for the same integrability reasons), and we get

1

a
(PTf(g + ah)− PTf(g)) = −1

a

∫ a

0

E [f(Bg
T (ω)) (R(a

′u) ⟨ω + a′u, u⟩)] da′

= −1

a

∫ a

0

E [f(Bg
T (ω − a′u)) ⟨ω, u⟩] da′

= −E

[(
1

a

∫ a

0

f(Bg
T (ω − a′u)) da′

)
⟨ω, u⟩

]
.

Since f is bounded and continuous, and a.s. Bg
T (ω − a′u) → Bg

T (ω) as a′ → 0 we can use
the dominated convergence theorem to obtain

lim
a→0

1

a
(PTf(g + ah)− PTf(g)) = −E [f(Bg

T (ω)) ⟨ω, u⟩] (7.110)

which yields (7.101). To establish (7.102) we first use Hölder inequality which yields

∥dgPTf(h)∥ ≤ E [|f |p(Bg
T )]

1/p E

[∣∣∣∣∣− ∑
k∈JK

〈
ξ3k, Ûk

〉∣∣∣∣∣
q]1/q

. (7.111)

As in the proof of Corollary 7.3.4, conditioning with respect to G we get

E

[∣∣∣∣∣− ∑
k∈JK

〈
ξ3k, Ûk

〉∣∣∣∣∣
q]

= E

[
E

[∣∣∣∣∣− ∑
k∈JK

〈
ξ3k, Ûk

〉∣∣∣∣∣
q ∣∣∣∣∣G

]]

= E

(∑
k∈JK

∥∥∥Ûk

∥∥∥2)q/2

mq
q


with mq

q = E[|Z|q] the q-th moment of a N (0, 1)-variable Z. This proves (7.102). Notice
that when K = ∞ the last term is finite thanks to Lemma 7.3.6 which implies that all
moments of (V̂ V̂ t)−1 are finite. Finally, to prove (7.103) we apply (7.102) with K = 2n+1
which allows to use (7.90) with g̃ = g + h.
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As a final corollary we provide estimates of the horizontal and vertical differential of
the heat kernel (g, h) 7→ pt(g, h) on Gn. Note that it will be useful in Chapter 8.

Corollary 7.3.9. There exist three positive constants K(n), K1(n) and K2(n) only de-
pending on n such that:

|dgpt(0, ·)(h)| ≤ t−
n2

2 e−
K(n)

t
dcc(0,g)2

(
K1(n)

∥hx∥2√
t

+K2(n)
∥hz − 1

2
x⊙ hx∥HS

t

)
. (7.112)

Proof. From [53], see also [12], there exist some positive constants K̃(n) and K̃1(n) de-
pending on n such that:

pt(g, h) ≤
K̃1(n)

t
n2

2

e−
K̃(n)

t
dcc(g,h)2 . (7.113)

Set g, h ∈ Gn then pt(0, g) = P t
2
(p t

2
(0, ·))(g). Using the reverse Poincaré inequality from

Proposition 7.3.8 with f = p t
2
(0, ·):

|dgpt(0, ·)(h)|2 ≤ E
[
p t

2
(0,Bg

t
2

)2
]

×

2∥hx∥22
t

+

(
6
√
2n+

4
√
2√
n

)2(
4

t2
∥hz −

1

2
x⊙ hx∥2HS +

4(n− 1)

3t
∥hx∥22

) .

(7.114)

We now examine E
[
p t

2
(0,Bg

t
2

)2
]
. Using (7.113):

E
[
p t

2
(0,Bg

t
2

)2
]
=

∫
Gn

p t
2
(0, l)2p t

2
(g, l)dl

≤
∫

Gn

K̃1(n)
3

(
t

2

)− 3n2

2

e−
2K̃(n)

t
(2dcc(0,l)2+dcc(g,l)2)dl

≤
∫

Gn

K̃1(n)
3

(
t

2

)− 3n2

2

e−
2K̃(n)

t (2dcc(0,l)2+(dcc(g,0)−dcc(0,l))
2)dl

≤ K̃1(n)
3

(
t

2

)− 3n2

2
∫

Gn

e−
2K̃(n)

t
dcc(0,l)2dl e−

K̃(n)
t

dcc(0,g)2 (7.115)

where the last expression is obtained by using the inequality

2a2 + (a− b)2 = 3a2 + b2 − 2ab ≥ 3a2 + b2 − a2

λ
− λb2

= a2 +
b2

2
with λ = 1/2.

Using the property of the dilation on (Gn, dcc), 1√
t
dcc(0, l) = dcc(0, dil 1√

t
(l)), and since

the homogeneous dimension of Gn is n2, we have:(
t

2

)−n2

2
∫

Gn

e−
2K̃(n)

t
dcc(0,l)2dl =

∫
Gn

e−2K̃(n)dcc(0,l)2dl

which is finite and does not depend on t . The expected result follows.
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Remark 7.3.10. If in the above proof, using the reverse Poincaré inequality (7.102) with
p = 1 + v for v > 0 (and with K = +∞), it is possible to obtain (7.112) with some
constants K(n, v), K1(n, v) and K2(n, v) depending only on n and on v with

K(n, v) =
K̃(n)

1 + v

and where K1(n, v) and K2(n, v) tend to infinity as v → 0.
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Chapter 8

Couplings and Wasserstein distance

8.1 Introduction to the topic

In all this manuscript, we have looked for successful couplings or, at least, couplings
that give estimates of the total variation distance. They are part of the first category of
coupling presented in Subsection 2.1.2. We recall that the second category proposed in
the same subsection is about couplings (Xt, X̃t)t satisfying inequalities of the type:

d(Xt, X̃t) ≤ C(t)d(X0, X̃0) for all t ≥ 0 a.s.. (8.1)

This result implies for all t > 0:

E
[
d(Xt, X̃t)

p
] 1

p ≤ C(t)d(X0, X̃0) (8.2)

and thus the Wasserstein distance inequality for all p ∈ [1,+∞] and t > 0:

Wp

(
L(Xt),L(X̃t)

)
≤ C(t)d(X0, X̃0). (8.3)

As explained previously, results on Riemannian manifolds with Ricci curvature bounded
below by k are well known: using the synchronous coupling, (8.1) is satisfied for C(t) =
e−

kt
2 ; see [54], (the reader can also look at the results for the synchronous coupling in

Subsection 4.1.4 in the case of Riemannian manifold with constant curvature).

Under strong conditions on the considered manifold and for t ≥ 0 and p ∈ [1,+∞]
fixed, Kuwada proved in [41] the existence of a relation of duality between the inequality
(8.3) for all x, x̃ and the following gradient inequalities for any f bounded and Lipschitz:

• if p ∈]1,+∞], by denoting by q ≥ 1 the conjugate of p (q = 1 if p = +∞), for all x:

|∇Ptf |(x) ≤ C(t) (Pt (|∇f |q))
1
q (x) (8.4)

• if p = 1:
||∇Ptf ||∞ ≤ C(t)∥Pt (|∇f |) ∥∞. (8.5)

In these relations, for any f bounded and lipschitz, |∇f |(x) is the gradient length asso-
ciated to the metric defined the same way as in Subsection 3.1.6 and ||∇Ptf ||∞ is the
supremum norm associated.
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As far as we know, there is few studies on subRiemannian manifolds. Using properties
of the carré du champs opérateur and the duality relation, Kuwada, proved that (8.3) and
thus (8.2) is true on the following subRiemannian manifold (still considering the Brownian
motion and the heat semi group):

• On the Heisenberg group for p = +∞ (and thus for all p ∈ [1,+∞]) with C(t) > 0
constant.

• On the nilpotent Lie groups, including the free, step 2 Carnot groups, for p ∈ [1,+∞[
with Cp(t) > 0 constant.

• On SU(2) for p ∈ [1,+∞[ with Cp(t) = Cpe
−t.

One of the question that can be considered is then the following one: can we obtain
explicit coupling satisfying (8.2) or even (8.1)?

A thorough study was made by Bonnefont and Juillet for the Heisenberg group in [22].
In particular they proved that, for C(t) ≡ C > 0 constant, (8.1) cannot be obtain with
any co-adapted couplings of Brownian motions. They also gave an explicit construction
of a coupling (Bt, B̃t) at each time t > 0 satisfying (8.2) for p = 1. As the obtained
construction is not dynamic, it is called static coupling. This coupling is constructed by
considering the heat kernel and thus considering the problem as a transport problem. In
fact, this method can be well generalised to free, step 2 Carnot groups and then to all
homogeneous, step 2 Carnot groups as it will be proven in Theorem 8.2.1.

If the method used to prove these results is different from the one developed in this
manuscript (decomposition of the Brownian motion in a basis of L2[0, T ]), the common
message seems to be that non co-adapted couplings should be the good way to obtain
gradient inequalities for hypoelliptic operator. In the future, it would be interesting to
see if the method of decomposition of the Brownian motion in a basis of L2[0, T ] provides
result to obtain (8.1) or at least (8.2).

8.2 The static coupling on homogeneous Carnot groups

We give here the generalisation of the static coupling from [22] to all homogeneous, step
2 Carnot groups.

Let G be an homogeneous, step 2 Carnot group. We denote by µg
t the law of the

Brownian motion at time t ≥ 0, starting at g ∈ G.

Theorem 8.2.1. Let G be an homogeneous, step 2 Carnot group, t ≥ 0 and g = (x, z),
g̃ = (x̃, z̃) ∈ G. There exists a random vector

(
(X,Z), (X̃, Z̃)

)
such that:

• L (X,Z) = µg
t and L

(
X̃, Z̃

)
= µg̃

t ;

• X̃ −X = x̃− x;

• we have the Wasserstein distance inequality:

W1(µ
g
t , µ

g̃
t ) ≤ E

[
dcc

(
(X,Z), (X̃, Z̃)

)]
≤ Cdcc(g, g̃)

with C a constant that only depends on the rank n of G.
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As explained above, this theorem has been proven on the Heisenberg group, that is
for H ≈ G2, by Bonnefont and Juillet in [22]. The construction is using upper-bounds
for the heat kernel and its differential as well as a Transport Lemma for real density
measures with increasing concave cost functions (Lemma 5.2 [22]). We first present the
generalisation in all dimension of this Transport Lemma:

Lemma 8.2.2. Consider d ∈ N, η a probability measure on Rd. For v ∈ Rd, define the
probability measure (transv)#η : A 7→ η(A − v). Suppose that η has a smooth density f
rapidly decreasing and such that, x 7→ dxf(v) is rapidly decreasing too. Then:

inf
π∈Π(η,(transv)#η)

∫
Rd×Rd

√
|y − x|dπ ≤

∫
Rd

|⟨df(x), v⟩|
√
∥x∥2dx

Proof. We are looking for a upper bound of the 1-Wasserstein distance between (η, (transv)#η)

using the cost function (x, y) 7→
√
∥x− y∥2. We denote it here d1W to avoid confusions

with the Wasserstein distance W1 associated to the Carnot-Carathéodory metric on Gn.
As the cost function is a distance, d1W defines a distance on the set of the positive mea-
sures. Using the Rubinstein-Kantorovich formula recall that, for any probability measure
σ+, σ−, d1W (σ+, σ−) = ||σ+ − σ−||1 with || · ||1 the Kantorovich norm defined on the set
of the signed Radon measure with mass 0.

Set σ = η−(transv)#η. Note that (transv)#η is a measure with density x 7→ f(x−v).
Then, the densities of η and (transv)#η are both rapidly decreasing and σ is a signed
Radon measure with mass 0. We then just need to upper-bound ∥σ∥1.

By smoothness of f , for any Borel set A:

σ(A) = (trans0)#η(A)− (transv)#η(A) =

∫
A

(f(x)− f(x− v))dx

=

∫
A

∫ 1

0

⟨df(x− sv), v⟩dsdx =

∫ 1

0

γs,v(A)ds

with γs,v := ⟨df(x− sv), v⟩dx. As previously, the mass of γs,v is 0. Then:

||σ||1 = ||
∫ 1

0

γs,vds||1 ≤
∫ 1

0

||γs,v||1ds. (8.6)

We now study the quantity ||γs,v||1. For any s ∈ [0, 1], p ∈ Rd, the signed measure
γs,v has a unique decomposition (Jordan decomposition) as the difference of two positive
measures: γs,v = γ+s,v − γ−s,v. In particular the density of γ+s,v is given by

⟨df(x− sv), v⟩+ = max(0, ⟨df(x− sv), v⟩)

and the density of γ−s,v is given by

⟨df(x− sv), v⟩− = −min(0, ⟨df(x− sv), v⟩).

As γs,v has mass 0, γ+s,v and γ−s,v have the same mass ms,v. Using the Wasserstein distance:

||γs,v||1 ≤ ms,vd
1
W

(
γ+s,v
ms,v

,
γ−s,v
ms,v

)
≤ ms,v

(
d1W

(
γ+s,v
ms,v

, δsv

)
+ d1W

(
δsv,

γ−s,v
ms,v

))
.
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Then:

d1W

(
γ−s,v
ms,v

, δsv

)
= inf

π∈Π
(

γ+s,v
ms,v

,δsv

)
∫

Rd×Rd

√
∥y − x∥2dπ(x, y)

=

∫
Rd×Rd

√
∥y − x∥2d

(
γ−s,v
ms,v

⊗ δsv

)
(x, y)

=
1

ms,v

∫
Rd

√
∥sv − x∥2⟨df(x− sv), v⟩−dx

=
1

ms,v

∫
Rd

√
∥x∥2⟨df(x), v⟩−dx.

We also get d1W
(

γ+
s,v

ms,v
, δsv

)
= 1

ms,v

∫
Rd

√
∥x∥2⟨df(x), v⟩+dx. Finally,

||γs,v||1 ≤
∫

Rd

√
∥x∥2|⟨df(x), v⟩|dx. (8.7)

The result ensues from (8.6) and (8.7).

The following Proposition is the key to construct the static coupling:

Proposition 8.2.3. Set a ∈ Gn. There exists a coupling ((X,U), (X, V )) on Gn × Gn

such that:

• L(X,U) = µ0
t ;

• L(X, V ) = L(X,U + a⊙X);

• E
[√

∥U − V ∥2
]
≤ C(n)∥a∥2 with C(n) a constant depending neither on a nor on

t.

Proof of Proposition 8.2.3. Let (X,Z) ∈ Gn be a random vector with distribution µ0
t . For

x, a ∈ Rn, define η(x) := L(Z|X = x) and, η(x, a) := (transa⊙x)#η(x). Identifying so(n)
with Rn(n−1), we apply Lemma 8.2.2 to η(x) with v = a⊙ x. Then there exists (U, V ) on
so(n)× so(n) such that L(U |X = x) = η(x), L(V |X = x) = η(x, a) and

E
[√

∥U − V ∥2 |X = x
]
≤
∫
so(n)

|⟨dfZ|X=x(z), a⊙ x⟩|
√
∥z∥2dz.

In particular, L(X,U) = µ0
t and L(X, V ) = L(X,U + a⊙X). Moreover:

E
[√

∥U − V ∥2
]
=

∫
Gn

∣∣∣∣⟨d(f(X,Z)(x, z)

fX(x)

)
, (0, a⊙ x)⟩

∣∣∣∣√∥z∥2fX(x)d(x, z)

=

∫
Gn

∣∣⟨df(X,Z)(x, z), (0, a⊙ x)⟩
∣∣√∥z∥2d(x, z).

As f(X,Z) = pt(0, ·), using Proposition 7.3.9:

E
[√

∥U − V ∥2
]
≤ K2(n)t

−n2

2

∫
Gn

√
∥z∥2e−

K(n)
t

dcc((0,0),(x,z))2
∥a⊙ x∥HS

t
d(x, z)

≤
√
2∥a∥2K2(n)t

−n2

2

∫
Gn

√
∥z∥2
t
e
−K(n)dcc((0,0),dil 1√

t

(x,z))2 ∥x∥2√
t
d(x, z)

=
√
2∥a∥2K2(n)

∫
Gn

√
∥z∥2e

−K(n)dcc((0,0),(x,z))2∥x∥2d(x, z).
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In particular the integral in the last term is finite and does not depend on t.

We can now give the proof of Theorem 8.2.1.

Proof of Theorem 8.2.1. We first give the proof for the free, step 2 Carnot groups Gn for
all n ≥ 2. As for the proof on the Heisenberg group, we can use the left-invariance of the
subRiemannian structure to suppose that g = 0 and g̃ = (a, b).

Let (X,Z) ∈ Gn a random vector having the distribution µ0
t and consider g′ = (a, 0) ∈

Gn. Note that
g′ ⋆ (X,Z) ⋆ (g′)−1 = (X,Z + a⊙X).

We define (U, V ) as in Proposition 8.2.3, B := (X,U) ∈ Gn and B̃ := (0, b)⋆(X, V )⋆g′ ∈
Gn. By construction L(X, V ) = L(g′ ⋆ (X,Z) ⋆ (g′)−1). Thus:

L(B̃) = L
(
(0, b) ⋆ g′ ⋆ (X,Z) ⋆ (g′)−1 ⋆ g′

)
with (0, b) ⋆ g′ = (a, b) = g̃. Thus, L (B) = µ0

t and L(B̃) = µg̃
t . Using the left-invariant

properties of the Carnot-Carathéodory distance and the estimates (3.6) and (3.16) of the
Carnot-Carathéodory distance, we have:

E
[
dcc(B, B̃)

]
≤ E [dcc ((X,U), (X, V ))] + E [dcc ((X, V ), (0, b) ⋆ (X, V ))]

+ E [dcc ((0, b) ⋆ (X, V ), (0, b) ⋆ (X, V ) ⋆ g′)]

≤ E [dcc ((0, 0), (0, V − U))] + E [dcc ((0, 0), (0, b))] + dcc (0, g
′)

≤
√
2π(2n)

3
4

(
E
[√

∥V − U∥2
]
+
√

∥b∥2
)
+ ∥a∥2.

By construction of (U, V ):

E
[
dcc(B, B̃)

]
≤

√
2π(2n)

3
4

(
C(n)∥a∥2 +

√
∥b∥2

)
+ ∥a∥2

with C(n) as in Corollary 8.2.3. As δ(0, g′) =
√

∥a∥22 + ∥b∥2, using the equivalence be-
tween the homogeneous norms we obtain the expected result for free, step 2 homogeneous
Carnot groups.

Consider now a homogeneous, step 2, Carnot group G of rank n and a, ã ∈ G. Using the
epimorphism ϕ from Proposition 3.1.4 , there exist g, g̃ ∈ Gn such that dcc(a, ã) = dcc(g, g̃).
In particular, if we denote by

(
(X,Z), (X̃, Z̃)

)
the static coupling of Brownian motions on

Gn at time t and starting from (a, ã), then, by Proposition 3.1.4,
(
ϕ(X,Z), ϕ(X̃, Z̃)

)
has

the same distribution as a Brownian motion on G at time t starting from (g, g̃). Moreover:

E
[
dcc

(
ϕ(X,Z), ϕ(X̃, Z̃)

)]
≤ dcc

(
(X,Z), (X̃, Z̃)

)
≤ Cdcc(a, ã) = dcc(g, g̃).

This ends the proof of the Theorem.

With this static coupling, we can obtain an estimate for the gradient of the heat
semi-group:

Corollary 8.2.4. Let G be an homogeneous, step 2 Carnot group. There exists a constant
C > 0 only depending of the rank n of G, such that for any f bounded and Lipschitz on
G and for all t ≥ 0:

||∇Ptf ||∞ ≤ CPt(||∇f ||∞).
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Here ∥∇f∥∞ = sup
g∈G

|∇f |(g) with |∇f |(g) the gradient length associated to the sub-

Riemannian metric as defined in 3.19.

Proof. Let t > 0 et ((X,Z), (X̃, Z̃)) the static coupling of the Brownian motions at time
t starting at (g, g̃) constructed in Theorem 8.2.1.
Note that, by Chow’s Theorem, for any a, ã ∈ G, there exists a horizontal curves γ with
constant length such that γ(0) = a, γ(1) = ã and minimising the Carnot Carathéodory
distance dcc(a, ã) (that is, a geodesic). Then:

|f(a)− f(ã)| = |f(γ(0))− f(γ(1))| =
∫ 1

0

|∇f(γ(t)) · γ̇(t)|dt

≤
∫ 1

0

|
∑

1≤i≤n

∇f(γ(t)) · X̄i(γ(t))γ̇i(t)|dt

≤ ||∇f ||∞
∫ 1

0

√∑
1≤i≤n

γ̇i(t)2dt = ||∇f ||∞
∫ 1

0

||γ̇(t)||Hdt

= ||∇f ||∞dcc(a, a′)

Finally:

|Ptf(g)− Ptf(g̃)| = |E
[
f (X,Z)− f

(
X̃, Z̃

)]
| ≤ E

[
||∇f ||∞dcc

(
(X,Z), (X̃, Z̃)

)]
≤ C||∇f ||∞dcc(g, g̃)

with C the constant from Theorem 8.2.1.
Then |Ptf(g)−Ptf(g̃)|

dcc(g,g̃)
≤ C||∇f ||∞. By passing to the limit, we obtain the expected inequality.

We get here the duality between the gradient estimates and the Wasserstein control
for p = 1 as explained in Section 8.1.
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Chapter 9

Conclusion and outcomes

The first aim of this thesis was the study of successful couplings in SU(2) and in a weaker
sense on SL(2,R). We have obtained the existence and the explicit construction of two
methods on SU(2): one adapted and one co-adapted. The non co-adapted strategy is also
successful on SL(2,R) for Brownian motion starting from the same fiber. For the non
co-adapted strategy on SU(2) and on SL(2,R), we have computed the coupling rate and
obtained the estimate P(τ > t) ≤ Ce−ctdcc(g, g̃) with C, c > 0 some constant independent
of the starting points (with g and g̃ in the same fiber in the case of SL(2,R)). From this
result we have deduced some gradient inequalities.

The results are promising but not entirely satisfying as we have not been able to obtain
estimates for the constants C and c. Here the constants are mostly obtained by using
the compactness of the fibers. We hope that, in the future, a better understanding of
the random variable K(T ) used in Chapter 5 could solve this problem. In particular this
could help us to state on the efficiency of this coupling method. Moreover, if K(T ) have
good properties of concentration around the value 0 (for instance something comparable
to the behaviour of a standard Gaussian variable), we should be able to obtain a successful
coupling on the universal covering of SL(2,R) which could be more relevant for the study
of the model spaces in subRiemannian manifolds.

We recall that, for the cases of SU(2) and SL(2,R), in [44], Luo and Neel devel-
oped another non co-adapted coupling strategy and obtained comparable results for the
coupling rate. If they have been able to state that this alternative method provides an
efficient coupling, they have not obtained explicit constants neither, as they also used the
compactness of SU(2) and SL(2,R). Note that they method provides an efficient coupling
with estimates of the constant on the universal covering of SL(2,R), which, for instance,
is better than our results.

The second part of this thesis is about the free, step 2 Carnot groups Gn, n ≥ 2.
We have obtained two non co-adapted strategies inducing similar estimates of the total
variation distance with explicit constants. We also obtained different gradient inequalities
from these two strategy. In the two cases, the solution come from the knowledge on the
random matrices with independent Gaussian entries and on the Wishart matrices.

For now, the One sweep coupling offers better coupling rates. Aside for the horizontal
and vertical gradient estimates for the heat semi group directly obtained from the coupling
rate, the other results are quite different and, then not really comparable.

Be that as it may, the gradient results induced by the One Sweep coupling are quite
promising and should be more explored. In the future, it could be interesting to see if this
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method could be applied on SU(2) and SL(2,R) even though the difficulty brought by
the random variable K(T ) in the present work should likely appear with the One sweep
strategy.

In this work we have only dealt with subRiemannian manifold whose horizontal bundle
are 2-step bracket generating. It could then be interesting to see if the coupling strategies
can be generalised with higher steps, starting with the Brownian motions on the Engel
group for example. In this case the Brownian motion can be written under the form
(Xt, zt)t where (Xt)t = (X1

t , X
2
t )t is a 2-dimensional Brownian motion and where the

driven process is zt :=
(∫ t

0
X1

sdX
2
s ,

1
2

∫ t

0
(X1

s )
2dX2

s

)
. As for the free, step 2 Carnot group,

the difficulty in the construction of a coupling comes from the necessity to deal with a
multiple dimensional driven process. Thus, a similar method would lead to an inverse
problem that seems, however, more difficult to solve.

Another lead for future research could be to look at other types of hypoelliptic dif-
fusions. As an example, a finite-looking-ahead coupling have been constructed to obtain
efficient couplings for Kolmogorov diffusions (see [8]). With the same idea, it could be
interesting to study efficient or One sweep couplings of the kinetic Brownian motion
and/or of the kinetic Langevin diffusion. In this case, the Brownian motion can be writ-
ten (Xt, zt)t with Xt the velocity of a particle and zt its position. In particular, contrary
to the subRiemannian case considered here, zt has finite variations. Note that, in the
case of the kinetic Langevin diffusion, under good conditions on a chosen semi-metric ρ,
a previous work from Eberle (see [29]) uses a co-adapted coupling to obtain Wasserstein
distance inequalities. As such inequalities have a lot of practical applications, it is a big
issue to improve them. However, even in the case of the kinetic Brownian motion, the
definition of a One sweep coupling is not easy as it seems to be reduced to a non linear
inverse problem.
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Appendix A

Standard Brownian motion - First
hitting time, first exit time

Let (Wt)t be a one dimensional Brownian motion starting at 0. The results we give here
are well known and can be found in numerous references. As they are often used in this
work to obtain estimates of the coupling rates, we give their poof.

We first begin with relations about first hitting time.

Lemma A.0.1. Let a ∈ R. We denote Da := inf{t > 0 | Wt = a}, the first hitting time
of a by (Wt)t. We have, for all t > 0:

P(Da > t) ≤

(√
2

π

|a|√
t

)
∧ 1.

Proof. The density of Da is well known, given by ga(u) = |a|√
2πu3

exp(− a2

2u
) × 1[0,+∞[(u).

Upper bounding the exponential part in this density we get for all t > 0:

P(Da > t) =

∫ +∞

t

|a|√
2π

exp(− a2

2u
)u−3/2du

≤
∫ +∞

t

|a|√
2π
u−3/2du

=
|a|√
2π

[−2u−1/2]+∞
t

= 2
|a|√
2πt

We now list some relations involving the first exit time of a Brownian motion from an
open set:

Lemma A.0.2. We set two reals a and b such that a < 0 < b and

Ha,b = inf{t > 0|Wt /∈]a, b[}.
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Then, for δ > 0, we get:

E[e−δHa,b ] =
cosh

(√
δ
2
(a+ b)

)
cosh

(√
δ
2
(b− a)

) ; (A.1)

E[eδHa,b ] =
cos
(√

δ
2
(a+ b)

)
cos
(√

δ
2
(b− a)

) if

√
δ

2
(b− a) ∈

]
0,
π

2

[
; (A.2)

E[Ha,be
δHa,b ] ≤ −ab

cos2
(√

δ
2
(b− a)

) if

√
δ

2
(b− a) ∈

]
0,
π

2

[
; (A.3)

E[Ha,b] = −ab; (A.4)

P(Ha,b = Db) =
−a
b− a

. (A.5)

Proof of Lemma (A.0.2). For λ ∈ C, let’s define Mλ
t := exp(λ(a+b

2
−Wt)− λ2

2
t) and Nλ

t :=

exp(λ(Wt − a+b
2
)− λ2

2
t). By Ito’s formula, we get dMλ

t = −λMtdWt and dNλ
t = λNtdWt,

thus
(
Mλ

t

)
t
and

(
Nλ

t

)
t
are two local martingales. For all T > 0, we obtain:

E[Mλ
Ha,b∧T +Nλ

Ha,b∧T ] = E[Mλ
0 +Nλ

0 ] = eλ(
a+b
2

) + e−λ(a+b
2

) = 2 cosh

(
a+ b

2

)
. (A.6)

On the other hand, we have:

E[Mλ
Ha,b

] = eλ
b−a
2 E[e−

λ2

2
Ha,b1{WHa,b

=a}] + e−λ b−a
2 E[e−

λ2

2
Ha,b1{WHa,b

=b}]

and E[Nλ
Ha,b

] = e−λ b−a
2 E[e−

λ2

2
Ha,b1{WHa,b

=a}] + eλ
b−a
2 E[e−

λ2

2
Ha,b1{WHa,b

=b}].

Summing the two results, we obtain: E[Mλ
Ha,b

+Nλ
Ha,b

] = 2 cosh
(
λ b−a

2

)
E[e−

λ2

2
Ha,b ].

• To obtain the first relation (A.1) of the Lemma, we choose λ =
√
2δ. We can then

apply the dominated convergence Theorem to (A.6) to obtain E[Mλ
Ha,b

+ Nλ
Ha,b

] =

2 cosh
(
a+b
2

)
. This gives the attended result.

• To obtain the second relation (A.2), we choose λ = i
√
2δ. This time we obtain the

attended result by using the convergence monotone Theorem.

To deal with (A.3), we just need to differentiate the two sides of equality (A.2) in δ. We
deduce (A.4) by evaluating the limit of (A.3) in δ = 0.
Finally, for the last equality, using martingale properties of the Brownian motion we have
E[WHa,b

] = 0. We compare it to:

E[WHa,b
] = aP(Ha,b = Da) + bP(Ha,b = Db) = a+ (b− a)P(Ha,b = Db).
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Appendix B

Derivatives of the moving frames for
co-adapted couplings in Riemannian
manifolds

In this appendix, we aim to compute the covariant Itô differential for the moving frames
(eX1 (t), e

X
2 (t))t and (eY1 (t), e

Y
2 (t))t to obtain the System from Remark 4.1.7. For an intro-

duction to Covariant stochastic calculus in a manifold, we refer the reader to [47].

We can define the covariant derivative of the moving frame eX1 (t) defined above (Xt)t
by Dte

X
1 (t) := �td(�−1

t eX1 (t)) with �−1
t the horizontal lift of (Xt)t, that can be seen as the

parallel transport along (Xt)t. We then get:

Proposition B.0.1. Under the hypothesis of Proposition 4.1.5 and using the same nota-
tions, we have:Dte

X
1 (t) =

√
k(dV2(t)−dU2(t) cos(

√
kRt)

sin(
√
kRt)

)eX2 (t)− k
2

(
dV2(t)−dU2(t) cos(

√
kRt)

sin(
√
kRt)

)2
eX1 (t)

Dte
X
2 (t) =

√
k(−dV2(t)+dU2(t) cos(

√
kRt)

sin(
√
kRt)

)eX1 (t)− k
2

(
dV2(t)−dU2(t) cos(

√
kRt)

sin(
√
kRt)

)2
eX2 (t)

(B.1)

andDte
Y
1 (t) = −

√
k(dU2(t)−dV2(t) cos(

√
kRt)

sin(
√
kRt)

)eY2 (t)− k
2

(
dU2(t)−dV2(t) cos(

√
kRt)

sin(
√
kRt)

)2
eY1 (t)

Dte
Y
2 (t) = −

√
k(−dU2(t)+dV2(t) cos(

√
kRt)

sin(
√
kRt)

)eY1 (t)− k
2

(
dU2(t)−dV2(t) cos(

√
kRt)

sin(
√
kRt)

)2
eY2 (t)

(B.2)

To prove this proposition we prove and use the following Lemma:

Lemma B.0.2. Let x, y ∈Mk, r = ρ(x, y) with 0 < r < i(M), u ∈ TxMk and v ∈ TyMk.
Using the same notations as in Section 4.1.2, we have:

∇(u,v)e
x
1(x, y) =

√
k

(
⟨v, ey2⟩ − ⟨u, ex2⟩ cos(

√
kr)

sin(
√
kr)

)
ex2

and

∇(u,v)e
y
1(x, y) =

√
k

(
−⟨u, ex2⟩+ ⟨v, ey2⟩ cos(

√
kr)

sin(
√
kr)

)
ey2.
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Lemma B.0.2. Using the same objects as in Lemma 4.1.4, we notice that ∇(u,v)e
x
1(x, y) =

∇te1(0, t)|t=0 and ∇(u,v)e
y
1(x, y) = ∇te1(1, t)|t=0. We recall that e1(s, t) = ∂sc(s,t)

r(t)
. From

Lemma 4.1.2, we also notice that r′(t) = v1(t) − u1(t). Using the results from Lemma
4.1.4, we then get:

∇te1(s, t) = ∇t

(
∂sc(s, t)

r(t)

)
= − r′(t)

r(t)2
∂sc(s, t) +

1

r(t)
∇t∂sc(s, t)

= −v1(t)− u1(t)

r(t)2
r(t)e1(s, t) +

1

r(t)
∇sJ(s, t)

= −v1(t)− u1(t)

r(t)
e1(s, t) +

∂sj1(s, t)e1(s, t) + ∂sj2(s, t)e2(s, t)

r(t)

=
√
k

(
−u2(t) sin(

√
kr(t)s) +

v2(t)− u2(t) cos(
√
kr(t))

sin(
√
kr(t))

cos(
√
kr(t)s)

)
e2(s, t).

By evaluating this value for t ∈ {0, 1}, we get the expected result.

To prove Proposition B.0.1, we make the choice here to use the Stratonovich inte-
gral. The covariant Stratonovich differential is defined by ◦Dte

X
1 (t) := �t ◦ d �−1

t eX1 (t).
Moreover, considering the process E(t) :=

∫ T

0
�−1

t Dte
X
1 (t) on R2, we have

E(t) =

∫ T

0

�−1
t ◦Dte

X
1 (t). (B.3)

This enables us to switch from the Stratonovich depiction ◦Dte
X
1 (t) to the Itô depiction

Dte
X
1 (t).

Proof of Proposition B.0.1. Using the chain rule and Lemma B.0.2, we directly obtain: ◦Dte
X
1 (t) =

√
k
(

⟨◦dYt,eY2 (t)⟩−⟨◦dXt,eX2 (t)⟩ cos(
√
kRt)

sin(
√
kRt)

)
eX2 (t)

◦Dte
Y
1 (t) =

√
k
(

−⟨◦dXt,eX2 (t)⟩+⟨◦dYt,eY2 (t)⟩ cos(
√
kRt)

sin(
√
kRt)

)
eY2 (t)

. (B.4)

As (eX1 , e
X
2 ) is an orthonormal moving frame, we have:

0 = ◦d⟨eX2 (t), eXi (t)⟩ = ◦d⟨�−1
t eX2 (t),�

−1
t eXi (t)⟩

= ⟨◦d �−1
t eX2 (t),�

−1
t eXi (t)⟩+ ⟨�−1

t eX2 (t), ◦d �−1
t eXi (t)⟩

= ⟨◦Dte
X
2 (t), e

X
i (t)⟩+ ⟨eX2 (t), ◦Dte

X
i (t)⟩.

Then: ⟨◦Dte
X
2 (t), e

X
1 (t)⟩ = −⟨eX2 (t), ◦Dte

X
1 (t)⟩ and ⟨◦Dte

X
2 (t), e

X
2 (t)⟩ = 0. Using the same

argument on (eY1 , e
Y
2 ), we get: ◦Dte

X
2 (t) = −

√
k
(

⟨◦dYt,eY2 (t)⟩−⟨◦dXt,eX2 (t)⟩ cos(
√
kRt)

sin(
√
kRt)

)
eX1 (t)

◦Dte
Y
2 (t) = −

√
k
(

−⟨◦dXt,eX2 (t)⟩+⟨◦dYt,eY2 (t)⟩ cos(
√
kRt)

sin(
√
kRt)

)
eY1 (t)

. (B.5)

For now we just have the (Itô) covariant derivatives of (Xt)t and (Yt)t:

d∇Xt = dU1(t)e
X
1 (t) + dU2(t)e

X
2 (t) and d∇Yt = dV1(t)e

Y
1 (t) + dV2(t)e

Y
2 (t)
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To complete the previous calculus, we need to compute the the Stratonovich differential
of (Xt)t and (Yt)t. Let us describe the computations for Xt.

Defining the two dimensional real semi martingale Zt :=
∫ t

0
�−1

t ◦ dXt, we have Zt =∫ t

0
�−1

t d∇Xt. In particular, dZt = dU1(t)�−1
t eX1 (t)+ dU2(t)�−1

t eX2 (t). Using the relations
between Itô and Stratonovich differential in R2, we get:

◦dZt = ◦dU1(t)�−1
t eX1 (t)+◦dU2(t)�−1

t eX2 (t)−
1

2
(dU1(t)·d(�−1

t eX1 (t))+dU2(t)·d(�−1
t eX2 (t))).

Then:

◦dXt = �t ◦ dZt

= ◦dU1(t)e
X
1 (t) + ◦dU2(t)e

X
2 (t)−

1

2
(dU1(t) ·Dte

X
1 (t) + dU2(t) ·Dte

X
2 (t)).

As the martingale parts of Itô and Stratonovich differentials are the same, the martingale
part of Dte

X
1 (t) is given by

√
k
(dV2(t)−dU2(t) cos(

√
kRt)

sin(
√
kRt)

)
eX2 (t) and the one for Dte

X
2 (t) is given

by −
√
k
(dV2(t)−dU2(t) cos(

√
kRt)

sin(
√
kRt)

)
eX1 (t). We get:

◦dXt = ◦dU1(t)e
X
1 (t) + ◦dU2(t)e

X
2 (t)−

1

2

√
k

sin(
√
kRt)

dU1(t) · dV2(t)eX2 (t)

+
1

2
dU2(t) ·

(√
k(dV2(t)− dU2(t) cos(

√
kRt))

sin(
√
kRt)

)
eX1 (t)

=

(
◦dU1(t) +

√
k
dU2 · dV2 − cos(

√
kRt)dt

2 sin(
√
kRt)

)
eX1 (t)

+

(
◦dU2(t)−

√
k

2 sin(
√
kRt)

dU1(t) · dV2(t)

)
eX2 (t).

With the same method we get:

◦dYt =

(
◦dV1(t)−

√
k
dU2 · dV2 − cos(

√
kRt)dt

2 sin(
√
kRt)

)
eY1 (t)

+

(
◦dV2(t) +

√
k

2 sin(
√
kRt)

dV1(t) · dU2(t)

)
eY2 (t).

Then we obtain : ◦Dte
X
1 (t) =

(√
k(◦dV2(t)−◦dU2(t) cos(

√
kRt)

sin(
√
kRt)

) + k
2
× cos(

√
kRt)dU1(t)·dV2(t)+dV1(t)·dU2(t)

sin2(
√
kRt)

)
eX2 (t)

◦Dte
Y
1 (t) =

(√
k(−◦dU2(t)+◦dV2(t) cos(

√
kRt)

sin(
√
kRt)

) + k
2
× cos(

√
kRt)dV1(t)·dU2(t)+dU1(t)·dV2(t)

sin2(
√
kRt)

)
eY2 (t)

.

(B.6)

To obtain the Itô depiction of the covariant derivative, we considerE(t) :=
∫ T

0
�−1

t Dte
X
1 (t).

From B.6 we have the expression of ◦dE(t). As (E(t))t is a process in R2, we can use the
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usual formulas to obtain its Itô derivative:

dE(t) =
√
k
dV2(t)− dU2(t) cos(

√
kRt)

sin(
√
kRt)

�−1
t eX2 (t)

+
k

2

cos(
√
kRt)dU1(t) · dV2(t) + dV1(t) · dU2(t)

sin2(
√
kRt)

�−1
t eX2 (t)

− k

2

(
− cos(

√
kRt)dV2(t) + dU2(t)

sin2(
√
kRt)

· dRt

)
�−1

t eX2 (t)

+

√
k(dV2(t)− dU2(t) cos(

√
kRt))

2 sin(
√
kRt)

· d
(
�−1

t eX2 (t)
)
.

Using the stochastic equation of (Rt)t (see 4.11, we get dV2(t) · dRt = −dV2(t) · dU1(t)
and dU2(t) · dRt = dU2(t) · dV1(t). Moreover, we have �td(�−1

t eX2 (t)) = Dte
X
2 (t), with

Dte
X
2 (t) and ◦Dte

X
2 (t) having the same martingale part. Using Relation (B.6), we obtain

the expected equation for (Dte
X
1 (t))t. We use the same method to obtain the second

equation in (B.1). Finally, using (B.5) we also get (B.2).
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