
HAL Id: tel-04681458
https://theses.hal.science/tel-04681458v1

Submitted on 29 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic analysis for caching
Younes Ben Mazziane

To cite this version:
Younes Ben Mazziane. Probabilistic analysis for caching. Artificial Intelligence [cs.AI]. Université
Côte d’Azur, 2024. English. �NNT : 2024COAZ4014�. �tel-04681458�

https://theses.hal.science/tel-04681458v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
Analyse Probabiliste pour le Caching

Younes BEN MAZZIANE
Centre Inria d’Université Côte d’Azur, équipe NEO

Présentée en vue de l’obtention
du grade de docteur en Informatique
d’Université Côte d’Azur

Dirigée par : Sara ALOUF, Chargée de
Recherche, Inria
Co-encadrée par : Giovanni NEGLIA, Di-
recteur de Recherche, Inria
Soutenue le : 13 Mai 2024

Devant le jury, composé de :
Frédéric GIROIRE, Directeur de Recherche, CNRS
Emilio LEONARDI, Professeur, Politecnico di Torino
György DÁN, Professeur, KTH Royal Institute of Technology
Nicolas GAST, Chargé de Recherche, Inria

ANALYSE PROBABILISTE POUR LE CACHING

Probabilistic Analysis for Caching

Younes BEN MAZZIANE

▷◁

Jury :

Président du jury
Frédéric GIROIRE, Directeur de Recherche, CNRS

Rapporteurs
Emilio LEONARDI, Professeur, Politecnico di Torino
György DÁN, Professeur, KTH Royal Institute of Technology

Examinateurs
Nicolas GAST, Chargé de Recherche, Inria

Directrice de thèse
Sara ALOUF, Chargée de Recherche, Inria

Co-encadrant de thèse
Giovanni NEGLIA, Directeur de Recherche, Inria

Université Côte d’Azur

Younes BEN MAZZIANE

Analyse Probabiliste pour le Caching
xiii+114 p.

Analyse Probabiliste pour le Caching

Résumé

Les caches sont de petites mémoires qui accélèrent la récupération des données. L’un des objec-
tifs des politiques de mise en cache est de sélectionner le contenu du cache afin de minimiser
le temps de réponse aux requêtes d’objets. Un problème plus général permet de répondre ap-
proximativement à la requête d’un objet par un objet similaire mis en cache. Ce concept, appelé
"mise en cache par similarité", s’avère utile pour les systèmes de recommandation. L’objectif
est de minimiser le temps de latence tout en fournissant des réponses satisfaisantes.
La compréhension théorique des algorithmes de gestion de la mémoire cache, sous des hy-
pothèses spécifiques sur les requêtes, aide à choisir un algorithme approprié. Les politiques
d’éviction du cache les plus répandues sont celles de l’utilisation la moins fréquente (LFU)
et de l’utilisation la moins récente (LRU). LFU est efficace lorsque le processus requêtes est
stationnaire, et LRU s’adapte aux changements dans les processus de requêtes. Les algorithmes
d’apprentissage séquentiel, tels que l’algorithme aléatoire Follow-the-Perturbed Leader (FPL),
appliqués à la mise en cache, bénéficient de garanties théoriques même dans le pire des cas.
LFU et FPL s’appuient sur le nombre de requêtes d’objets. Cependant, le comptage est un défi
dans les scénarios à mémoire limitée. Pour y remédier, les politiques de mise en cache utilisent
des schémas de comptage approximatifs, tels que la structure de données Count-Min Sketch
avec mises à jour conservatrices (CMS-CU), afin d’équilibrer la précision des comptages et
l’utilisation de la mémoire. Dans le cadre de la mise en cache par similarité, RND-LRU est une
stratégie LRU modifiée. Malheureusement, il reste difficile de quantifier théoriquement à la fois
la performance d’un cache LFU utilisant CMS-CU, celle d’un cache FPL avec un algorithme de
comptage approximatif, ainsi que celle de RND-LRU.
Cette thèse explore trois algorithmes probabilistes : CMS-CU, FPL avec des estimations bruitées
des nombres de requêtes d’objets (NFPL) et RND-LRU. Pour CMS-CU, nous proposons
une approche novatrice pour trouver de nouvelles bornes supérieures sur l’espérance et le
complémentaire de la fonction de répartition de l’erreur d’estimation sous un processus de
requêtes i.i.d. De plus, nous démontrons que NFPL se comporte aussi bien que la politique de
mise en cache statique, optimale et omnisciente, quelle que soit la séquence de requêtes (sous
certaines conditions sur les comptages bruités). Enfin, nous introduisons une nouvelle politique
de mise en cache qui est analytiquement résoluble. Nous montrons alors que cette politique
approxime RND-LRU.

Mots-clés : comptage approximatif, algorithmes probabilistes, apprentissage séquentiel

Probabilistic Analysis for Caching
Abstract

Caches are small memories that speed up data retrieval. Caching policies may aim to choose
cache content to minimize latency in responding to item requests. A more general problem
permits an item’s request to be approximately answered by a similar cached item. This concept,
referred to as "similarity caching," proves valuable for content-based image retrieval and recom-
mendation systems. The objective is to further minimize latency while delivering satisfactory
answers.
Theoretical understanding of cache memory management algorithms under specific assumptions
on the requests provides guidelines for choosing a suitable algorithm. The Least-Frequently-
Used (LFU) and the Least-Recently-Used (LRU) are popular caching eviction policies. LFU is
efficient when the requests process is stationary, while LRU adapts to changes in the patterns of
the requests. Online learning algorithms, such as the randomized Follow-the-Perturbed Leader
(FPL) algorithm, applied for caching, enjoy worst-case guarantees.
Both LFU and FPL rely on items’ request count. However, counting is challenging in memory-
constrained scenarios. To overcome this problem, caching policies operate with approximate
counting schemes, such as the Count-Min Sketch with Conservative Updates (CMS-CU), to
balance counts’ accuracy and memory usage. In the similarity caching setting, RND-LRU is a
modified LRU where a request is probabilistically answered by the most similar cached item.
Unfortunately, a theoretical analysis of an LFU cache utilizing CMS-CU, an FPL cache with an
approximate counting algorithm, and RND-LRU remains difficult.
This thesis investigates three randomized algorithms: CMS-CU, FPL with noisy items’ request
counts estimations (NFPL), and RND-LRU. For CMS-CU, we propose a novel approach to
derive new upper bounds on the expected value and the complementary cumulative distribution
function of the estimation error under a renewal request process. Additionally, we prove that
NFPL behaves as well as the optimal omniscient static caching policy for any request sequence
under specific conditions on the noisy counts. Finally, we introduce a new analytically tractable
similarity caching policy and show that it can approximate RND-LRU.

Keywords: Approximate counting, online learning, randomized algorithms

Acknowledgements

I would like to express my sincere gratitude to my thesis advisors, Sara Alouf and Giovanni Neglia,
for their unwavering patience, support, help, and guidance throughout this journey. Their insights
and expertise have been invaluable, and our numerous discussions have greatly shaped the direction
and content of this thesis.

I am also deeply thankful to Daniel Sadoc Menasche and Francescomaria Faticanti for their
valuable contributions to this manuscript. Their input and feedback were instrumental in refining
my research and ensuring the rigor and clarity of this work.

Additionally, I extend my heartfelt thanks to Frédéric Giroire, Emilio Leonardi, György Dán,
and Nicolas Gast for graciously accepting to be part of my Ph.D. defense jury. I truly appreciate
their commitment, as demonstrated by the time they allocated to reviewing my thesis, participating
in my defense, and offering crucial comments and advice. Their expertise and perspectives have
enriched my work and contributed significantly to its improvement.

I would also like to acknowledge the support and encouragement from my colleagues and
friends, who provided both intellectual and emotional support during my Ph.D. journey. Their
camaraderie and encouragement have been a source of motivation and strength.

Finally, I am eternally grateful to my family for their unconditional love and support. Their
faith in me has been a constant source of inspiration and strength throughout this endeavor.

Contents

1 Introduction 1
1.1 Caching Applications . 1
1.2 Traffic Model . 2
1.3 Cache Management Algorithms . 3
1.4 Approximate counting . 5
1.5 Challenges and Contributions . 6

1.5.1 Sketch algorithms for approximate counting 6
1.5.2 Online learning for caching . 6
1.5.3 LRU-based similarity caching policies 7

1.6 Publications . 7

2 Approximate Counting 9
2.1 Introduction . 9
2.2 Background, Notation, and Assumptions . 10

2.2.1 Data Stream Model . 10
2.2.2 Count-Min Sketch (CMS) . 11
2.2.3 Count-Min Sketch with Conservative Updates (CMS-CU) 12
2.2.4 State of the art . 12
2.2.5 Our Assumptions . 14

2.3 Theoretical Analysis of CMS-CU . 14
2.3.1 CMS: CCDF of the Estimation Error 14
2.3.2 CMS-CU: CCDF of the Estimation Error 15
2.3.3 CMS-CU: Expected Estimation Error 17
2.3.4 Heavy-Hitters Application: Lower Bound on the Precision 18

2.4 Experimental Evaluation and Numerical Analysis 20
2.4.1 Experimental Setting . 20
2.4.2 Numerical Evaluation . 20
2.4.3 The CCDF of the Sketch Estimation Error 21
2.4.4 The Expected Sketch Estimation Error 22
2.4.5 Precision in Detecting ϕ−Heavy-Hitters 25
2.4.6 Configuring CMS-CU with QoS Guarantees 25

2.5 Conclusion . 26

3 Online Learning for Caching 27
3.1 Introduction . 27
3.2 System Description and Background . 29

3.2.1 Caching Problem: Model and Notation 29
3.2.2 Caching and Online Learning . 29

xi

3.2.3 Follow-the-Perturbed-Leader (FPL) . 31
3.3 Extending FPL . 31

3.3.1 Noisy-Follow-the-Perturbed-Leader (NFPL) 32
3.3.2 NFPL for Caching . 33

3.4 Experiments . 36
3.4.1 Traces . 36
3.4.2 Caching policies . 37
3.4.3 NFPL vs. classical policies . 37
3.4.4 NFPL-Fix vs. NFPL-Var . 38

3.5 Conlusion . 38

4 Similarity Caching 39
4.1 Introduction . 39
4.2 Background . 41

4.2.1 Similarity Caching . 41
4.2.2 TTL Approximation for LRU Cache . 45

4.3 Notation and Assumptions . 46
4.4 RND-TTL Approximation for Similarity Caching 47

4.4.1 The RND-TTL Caching Model . 47
4.4.2 Relation Between RND-LRU and RND-TTL 51
4.4.3 RND-TTL Approximation to RND-LRU 52

4.5 Algorithm for Finding Approximate Hit Probabilities 54
4.5.1 Fixed Point Equations . 55
4.5.2 Fixed Point Algorithm . 58
4.5.3 Choice of β . 60

4.6 Numerical Evaluation . 61
4.6.1 Experimental Setting . 61
4.6.2 Benchmarks and Alternative Approaches 62
4.6.3 RND-TTL approximation evaluation . 63
4.6.4 Convergence of Algorithm 3 . 66

4.7 Conclusion . 68

5 Conclusion 69
5.1 CMS-CU . 69
5.2 FPL and Approximate Counting . 70
5.3 An LRU-Based Similarity Caching Policy . 70

Appendix

A Approximate Counting 75
A.1 Proof of Proposition 2.1 (page 14) . 75
A.2 Proof of Lemma 2.1 (page 15) . 75
A.3 Proof of Proposition 2.2 (page 16) . 77

xii

A.4 Proof of Proposition 2.3 (page 17) . 78
A.5 Discussion on the bound (2.15) . 79

B Similarity Caching 81
B.1 R-TTL . 81
B.2 Proof of Proposition 4.1 (Occupancy, page 49) 82
B.3 Generalized Poisson Arrivals See Time Averages (PASTA) property 83
B.4 Proof of Proposition 4.2 (Item hit probability, page 50) 84
B.5 Proof of Proposition 4.3 (RND-LRU insertion rate, page 52) 84
B.6 Proof of Proposition 4.4 (RND-LRU refresh rate, page 52) 85
B.7 Proof of Lemma 4.1 (TC(o) is a singleton, page 55) 86
B.8 Proof of Lemma 4.2 (Differentiability of tC , page 56) 87
B.9 Proof of Proposition 4.7 (page 59) . 87
B.10 Time Complexity of Single Iteration in Algorithm 3 88
B.11 Proof of Proposition 4.8 (Properties of Y (o), page 60) 88
B.12 Additional Experiments . 89
B.13 Implementation Details . 91

Bibliography 93

List of Figures 107

List of Tables 109

xiii

CHAPTER 1
Introduction

Data retrieval systems often duplicate a subset of files from the main memory into cache memories.
When requests involve cached items, responses are expedited compared to those for non-cached
items retrieved directly from the main memory. Thus, the effectiveness of data retrieval systems
relies on the policy overseeing the small cache memory. Caching policies typically lack foresight
into future requests, leading them to store items in the cache based on previous requests. The
percentage of data fulfilled by the cache serves as a performance metric for the caching policy.
The choice of such a policy depends on the characteristics of the request process in the considered
application.

Mapping an algorithm’s input and parameters to a performance metric is crucial for determining
its suitability for a specific application. Moreover, this mapping allows the comparison of algorithms
for the same task according to a performance metric. One could identify this mapping through
simulations. However, this solution is computationally expensive when dealing with vast potential
values for the input and the parameters. The difficulty intensifies when the algorithm incorporates
randomness, turning the performance metric into a random variable and demanding additional
computational power to infer the mapping accurately. This computational challenge is particularly
evident in randomized caching policies, where a large number of possible request sequences and
parameter values exist. Theoretical analysis of algorithms can provide simple formulas capturing
the performance metric of the algorithm as a function of the input and the parameters, alleviating
the need for high computational cost simulations.

In this thesis, we provide a theoretical analysis of three randomized algorithms in caching
under specific assumptions on the request sequence. The remainder of this introductory chapter
is organized as follows: Section 1.2 presents mathematical models for the request sequence from
the literature to capture the characteristics of real-world traffic. Following this, we review popular
caching algorithms and their theoretical analysis under different traffic models in Section 1.3. Many
caching policies base their decisions on the request count for items. We discuss in Section 1.4
different approaches to efficiently count items’s appearances over a large data stream. Section 1.5
presents three randomized algorithms that we analyze in this thesis. Finally, Section 1.6 outlines
the publications associated with this thesis.

1.1 Caching Applications

In CPUs, cache memories are small, high-speed memories employed to store portions of the
main memory. Cache memories boosted the performance of CPUs due to a phenomenon known as
temporal locality, where currently accessed items are likely to be accessed in the near future [Smi82].

1

2 CHAPTER 1 — Introduction

As computing technology advanced and personal computers proliferation, caching enhanced the
performance of local disk access [Smi85].

The invention of the internet in the 1990s marked a new era and led to the development of web
caching to expedite content delivery. Web caching replicates popular items in small proxy servers
or in the user’s machine. This idea offers dual advantages: it reduces latency for users and mitigates
network traffic between the proxy server and the original server [Wan99].

In wireless networks, mobile data usage increased, and consequently, it was necessary to deploy
faster and more efficient content retrieval systems. Subsequently, caching techniques were employed
at the edge of wireless networks, particularly within femtocell base stations [Liu+16].

Content-based image retrieval (CBIR) systems [Fal+08] benefit from deploying cache memories.
In these systems, users submit image queries to retrieve visually similar images. The cache intercepts
user requests, performs a local similarity search within stored items, and provides results if deemed
satisfactory. Such a cache is termed a similarity cache and was later on proposed for contextual
advertising [Pan+09] and recommendation systems [Ser+18].

Today, caching constitutes an integral component of nearly every computing system, spanning
web browsers and databases to operating systems and distributed networks.

1.2 Traffic Model

In caching, a "hit" denotes the successful retrieval of a requested item from the cache. Conversely,
a "miss" occurs when the requested item is not found in the cache, necessitating retrieval from the
main memory or original server. The hit ratio (proportion of requests served by the cache) and the
byte-hit ratio (fraction of bytes served) are metrics to measure the effectiveness of caching policies.
Devising a caching policy that maximizes the hit ratio requires understanding the patterns of the
request process. To this aim, researchers proposed mathematical models for the request process that
simulate user behavior and item access patterns. We distinguish two categories of models.

Stochastic. A stochastic model assumes the request process is a realization from a specific
stochastic process. The Independent Reference Model (IRM) is a basic model where item requests
are independent, and the requested item is sampled from a fixed catalog using a categorical
distribution [Fag77]. Numerous web caching policies are assessed under IRM assumption, often
with request distributions following a generalized Zipf law [Cha+07]. Despite its apparent simplicity,
IRM assumption proves acceptable as an approximation in scenarios where popularity variations
occur gradually [Bre+99]. Renewal models [FRP16] generalizes IRM: requests for different items
are independent, and the inter-arrival times for requests for the same item are identically and
independently distributed (i.i.d.) random variables. Markovian models [Cas11] capture correlations
in the request process. Renewal and Markovian models may fall short in capturing non-stationarity
in the request process. In response, Traverso et al. [Tra+13] propose a novel traffic model named
the Shot-Noise Model (SNM). Distinguishing itself from renewal processes, SNM envisions a
potentially infinite catalog where each item has a distinct lifespan.

Adversarial. An adversarial model makes no prior statistical assumptions about the request
process. This implies that requests may be thought to be generated by an adversary seeking to

1.3 – 1.3 Cache Management Algorithms 3

maximize the cost, such as the number of misses, incurred by a specified caching policy. Analyzing
caching policies within adversarial models provides insights into their worst-case performance
and resilience against nonstationary request processes. In this context, the cost of the algorithm is
compared to that of an optimal, either static or dynamic, policy with hindsight, i.e., with knowledge
of future requests. We distinguish two types of analysis.

Competitive analysis. The performance metric is the competitive ratio, which is the ratio of
the cost incurred by a caching policy and the cost of Belady’s optimal eviction policy with
hindsight [Bel66]. Notably, the Least-Recently-Used (LRU) and First-In-First-Out (FIFO)
eviction policies achieve the optimal competitive ratio for any deterministic policy [ST85].
Moreover, randomized policies achieving the optimal competitive ratio for any randomized
policy have been proposed [MS91; ACN00].

Regret analysis. The performance metric is regret, which is the difference between the
cost of a caching policy and the cost of an optimal static policy with hindsight. In this
setting, the aim is to design no-regret algorithms, i.e., policies whose regret grows sublinearly
with the time horizon. Recently, many no-regret caching policies, inspired by the theory of
Online Convex Optimization (OCO) [Zin03], have been proposed [Pas+19a; BBS20; SNI23].
These policies were motivated by the traffic in wireless networks’ edge, where requests lack
statistical regularity due to the smaller demand volume per edge cache and users’ mobility
between cells [Pas+18]. Andrew et al. [And+13] proves that no algorithm can have both
sublinear regret and a constant competitive ratio.

Similarity caching is a generalization of the classical caching problem. Items are typically
represented as vectors in a metric space, and the distance between their representative vectors,
called embeddings, quantifies the degree of similarity. In similarity caching, there are two types
of hits: exact and approximate. When evaluating the performance of a similarity caching policy,
the hit ratio metric may be modified to take into account the quality of the hits. The design of a
similarity caching policy takes into account the request characteristics and the representation of the
items in the metric space. Recently, Neglia et al. [NGL21] studied the similarity caching problem
under stochastic and adversarial traffic models.

1.3 Cache Management Algorithms

Caching systems may comprise a singular cache overseen by a caching policy dictating the rules
for item admission or eviction. More complex systems incorporate multiple interconnected caches,
allowing each cache to communicate with neighboring caches by forwarding requests. Examples of
such intricate systems include hierarchical web and file system caches. Various caching policies
tailored for networked caches have been proposed, often building upon strategies designed for
managing individual caches [RKT10; Deh+17; JPD17].

This thesis focuses on algorithms designed for a singular cache. The literature on algorithms for
managing an individual cache is extensive. Among the fundamental caching policies are the Least
Recently Used (LRU) and the Least Frequently Used (LFU). We examine each of these policies
and their variants.

4 CHAPTER 1 — Introduction

LRU. This policy keeps the most recently requested items in the cache and removes the least
recently used item upon a cache miss. LRU is widely used in practice because of its simplicity
and good performance. Researchers studied LRU under adversarial and stochastic settings. Sleator
and Tarjan [ST85] proved that LRU achieves the optimal competitive ratio. However, it is easy to
prove that LRU has linear regret [Pas+19a]. The exact computation of LRU’s hit ratio under IRM is
computationally expensive [WK71], but Fagin [Fag77] proposed an efficient method to approximate
it. Moreover, he proved that the aforementioned method is asymptotically accurate. This method is
later called Che’s approximation [CTW02], TTL approximation [JNT18], and extended to other
LRU variants and under more generalized assumptions on the request process [LT15; GV17;
JNT18].

LFU. This policy stores the items with the largest request counts. LFU achieves the optimal hit
ratio under IRM [SKW00]. However, LFU suffers from two limitations. First, keeping statistics
for all requested items may be expensive in terms of memory requirements. Second, LFU fails to
exploit temporal locality. To address these limitations, many variations of LFU were proposed. For
example, Window-LFU [KS02] keeps statistics over the last W requests. Tiny-LFU [EFM17] uses
approximate counting data structures such as the Count-Min Sketch with Conservative Updates
(CMS-CU) [EV02; CM05b] offering a trade-off between memory usage and accuracy in estimating
items requests count. Under adversarial traffic, LFU has unbounded competitive ratio [CKZ01] and
linear regret [Pas+19a].

Other caching policies combine ideas from LFU and LRU such as LRFU [Lee+01] and
ARC [MMb]. Beyond recency and frequency, web caching policies take into account the size of
the items and their retrieval costs [You91; Che98; BSH17]. Shuja et al. [Shu+21] survey machine
learning techniques for devising caching policies.

No Regret Caching Policies. Recently, many papers have proposed caching policies based on
algorithms from Online Convex Optimization (OCO) [Haz16]. These policies are studied under the
adversarial model and evaluated via the static regret metric, which is the difference between the
cost of the algorithm and the cost of the static optimal policy with knowledge of future requests.
Prominent algorithms from OCO, such as Online-Gradient-Descent (OGD), Online-Mirror-Descent
(OMD), Follow-the-Regulated-Leader (FRL), and Follow-the-Perturbed-Leader (FPL), enable the
development of no-regret caching policies.

Paschos et al. [Pas+19a] were the first to derive a caching policy from OGD. Si Salem et
al. [SNI23] proposed a caching policy based on OMD computationally less expensive than the OGD
caching policy. In scenarios where a caching policy is endowed with oracle predictions regarding
future requests, Mhaisen et al. [MIL23] formulate caching policies based on Follow-the-Regulated-
Leader (FRL). These policies achieve sub-zero regret under perfect predictions and maintain a
sublinear regret bound, even in the presence of arbitrarily inaccurate predictions. Policies based on
OGD, OMD, or FRL are designed for continuous caching, such that it is assumed that each item is
divided into a large number of chunks such that storing them can be approximated by continuous
variables. Addressing this, Bhattacharjee et al.[BBS20] applied the Follow-the-Perturbed-Leader
(FPL) algorithm for discrete caching. Mhaisen et al. [Mha+22a] modify the FPL caching algorithm
to incorporate predictions with unknown quality while maintaining sublinear regret. Caching

1.5 – 1.4 Approximate counting 5

policies based on FPL are renowned for their lower computational cost in comparison to OGD,
OMD, and FRL [Mha+22a].

Similarity Caching Policies. Pandey et al.[Pan+09] introduced similarity caching policies as
modified versions of LRU and LFU. One such adaptation is SIM-LRU, which replies to a given
query with the nearest cached item if its dissimilarity is below a predefined threshold. Competitive
analysis has been applied to evaluate SIM-LRU’s performance [CKV09]. RND-LRU, a randomized
version of SIM-LRU, CLS-LRU, SIM-LFU, and Q-cache are other similarity caching policies
proposed in [Fal+08; Pan+09]. Neglia et al.[NGL21] formalized the similarity caching problem and
introduced new policies with optimality guarantees under specific conditions. Recently, gradient-
based similarity caching policies have also been put forward [Sab+21; SNC23].

1.4 Approximate counting

Numerous caching policies base their decisions on the previous requests’ counts of items. A naive
approach for monitoring the request count of items in a data stream utilizes a hash table to store
key-value pairs. Each key represents the identifier of an item, and its associated value tracks the
number of times the item has appeared thus far. This approach is memory expensive for high-speed,
large data streams [Ben+17]. To address this issue, approximate counting algorithms provide a
trade-off between memory usage and accuracy; they can be distinguished into two main types:
counter-based and sketch-based.

Counter-Based Algorithms. Similarly to the exact counting mechanism, these algorithms main-
tain a hashtable where each entry is a key-value pair representing the item’s identifier and an associ-
ated count. Popular algorithms include Approximate Counting [Mor78], Lossy Counting [MMa],
Frequent [KSP03] and Space Saving [MAE05]. To address the limitations of the exact counting
algorithm, these approaches maintain a constraint on the maximum number of entries. They period-
ically decrement counters larger than zero to prevent them from reaching their maximum value, and
employ probabilistic counter increments to reduce memory accesses. The count estimation error for
any item, employing Frequent and Space Saving algorithms with M as the maximal number of
entries, is O

(
1

M

)
, aligning with the optimal error for any deterministic counting algorithm with

M entries [Ber+10].

Sketch-Based Algorithms. In contrast to counter-based techniques, these algorithms assign
multiple counters to an individual item, with the peculiarity that counters are shared among multi-
ple items. Sketch-based algorithms employ hash functions to map counters to items, eliminating
the necessity to store the item’s identifier. The selection of hash functions is done uniformly at
random from a predefined family, introducing an element of randomness into these algorithms.
Popular sketch algorithms include the Count-Sketch (CS) [CCF04] and the Count-Min Sketch
(CMS) [CM05a]. The trade-off between memory and accuracy for CMS and CS is well under-
stood [CCF04; CM05a; CM05b]. Many recent efficient counting algorithms are variants of CMS
and CS [Yan+18b; Yan+18a; Li+20; Zha+21b].

6 CHAPTER 1 — Introduction

1.5 Challenges and Contributions

1.5.1 Sketch algorithms for approximate counting

The Count-Min Sketch maintains a matrix of counters with w columns and d rows. An item
is mapped to a counter from each row r ∈ {1, . . . d} via a hash function hr. Upon a request
for an item n, the counters (1, h1(n)), . . . , (d, hd(n)) are incremented. Therefore, the values of
the d counters of an item n represent upper bounds on n’s request count. The Count-Min Sketch
estimates n’s request count with the minimum value among all n’s counters. While CMS increments
all the selected counters, an update rule known as the Conservative Update [EV02] or Minimal
Increment [CM03], increments only the counters with the smallest value among the selected
ones. Empirically, this update rule improves the accuracy of CMS. Nevertheless, a theoretical
understanding of the advantages of the Conservative Update is missing in the literature. In CMS, a
counter (r, l)’s value is equal to the aggregated request count of all items n such that hr(n) = l.
Conversely, in CMS with Conservative Updates (CMS-CU), requests for an item n, such that
hr(n) = l, only increment the counter (r, l) based on the state of the other selected counters. This
correlation between counters’ growth makes the analysis of CMS-CU challenging.

In this thesis, we prove new bounds on the complementary cumulative distribution function
and the expected value of the estimation error for CMS-CU under an i.i.d. request process (IRM),
providing a theoretical explanation for the advantages of the Conservative Update rule. In fact,
under heterogeneous item probabilities, our formulas show that popular items’ error estimation in
CMS-CU can be considerably smaller than in CMS. Moreover, based on our bounds, we provide
configuration rules for CMS-CU to detect the top C popular items with a specific precision.
We conducted simulations to compare our theoretical bounds with empirical estimations. These
contributions are based on our works [BAN22a; BAN22b], and are presented in Chapter 2.

1.5.2 Online learning for caching

Studying caching policies under adversarial models provides insight into their worst-case perfor-
mance. Many simple caching policies achieve the optimal competitive ratio, including LRU [ST85].
However, classical caching policies such as LRU and LFU do not achieve sublinear regret.

In Section 1.3, we listed no-regret caching policies derived from popular algorithms in the theory
of Online Convex Optimization (OCO). When applied to caching, OCO algorithms necessitate a
memory proportional to the total number of items. FPL-based caching policies require this memory
for counting the requests for each item. We explained in Section 1.4 the challenges in monitoring the
exact request count for each item. We also highlighted that approximate counting algorithms tackle
those challenges by compromising accuracy in estimating requests’ counts. A natural question is
whether an FPL caching policy, when coupled with an approximate counting scheme, maintains its
sublinear regret property.

In this thesis, we prove that an FPL caching policy maintains a sublinear regret under specific
conditions on the requests’ count estimator. These conditions are for example verified when the
requests’ estimates are obtained by subsampling the request process. More specifically, we prove
that the Follow-the-Perturbed-Leader with the limited knowledge of a substream generated from
sampling each request from the original stream of length T with probability f has a sublinear regret

1.6 – 1.5.3 LRU-based similarity caching policies 7

of O
(

1
f

√
T
)

. Additionally, we run simulations to evaluate the performance of the Follow-the-
Perturbed-Leader with noisy requests’ estimates due to sampling, over synthetic and real-world
traces. These contributions are based on [Ben+23] and are presented in Chapter 3.

1.5.3 LRU-based similarity caching policies

As indicated in Section 1.3, accurately computing the hit ratio of LRU under IRM is challenging.
The difficulty arises from the exponential growth of the Markov chain’s state space, which represents
LRU dynamics, with the total number of items. The TTL approximation provides a linear-time
estimation of LRU’s hit ratio, proving to be asymptotically exact. LRU has correlated caching
decisions across items due to the cache capacity constraint. Under IRM, the TTL approximation
models LRU as a system where per-item caching decisions are independent and the cache capacity
constraint holds only on average.

RND-LRU is a generalization of LRU for the similarity caching setting. Caching decisions for
items in RND-LRU are strongly coupled, influenced by both the cache capacity constraint and the
potential for a cached item to serve requests for similar items. This coupling prompts the question
of whether the TTL approximation can be extended to RND-LRU.

In this thesis, we propose an extension for the TTL approximation, called the RND-TTL
approximation, to estimate the hit ratio of RND-LRU under IRM. In particular, we approximate
RND-LRU through another ideal caching policy, RND-TTL, where per-item caching decisions
across items are independent, and the cache capacity constraint is satisfied in expectation.

This approximation models RND-LRU with a novel similarity caching model, that we call
RND-TTL, where caching decisions across items are independent, and the cache capacity constraint
is satisfied in expectation. We run simulations on synthetic and real-world traces to evaluate the
accuracy of our approximation for evaluating RND-LRU’s hit ratio. These contributions are based
on [Ben+22; Ben+24] and presented in Chapter 4.

1.6 Publications

The contributions of this manuscript led to the following publications in peer-reviewed journals and
conferences:

[BAN22a] Ben Mazziane, Y., Alouf, S., & Neglia, G. (2022, May). A Formal Analysis of the Count-
Min Sketch with Conservative Updates. In IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS).

[BAN22b] Ben Mazziane, Y., Alouf, S.,& Neglia, G. (2022 November). Analyzing Count Min Sketch with
Conservative Updates. Computer Networks, 217, 109315.

[Ben+22] Ben Mazziane, Y., Alouf, S., Neglia, G., & Menasche, D. S. (2022, December). Computing the
Hit rate of Similarity Caching. In IEEE Global Communications Conference (GLOBECOM).

[Ben+23] Ben Mazziane, Y., Faticanti, F., Neglia, G., & Alouf, S. (2023 November). No-Regret Caching
with Noisy Request Estimates. In IEEE Virtual Conference on Communications (VCC).

8 CHAPTER 1 — Introduction

[Ben+24] Ben Mazziane, Y., Alouf, S., Neglia, G., & Menasche, D. S. (2024, March). TTL Model for an
LRU-Based Similarity Caching policy. Computer Networks, 241, 110206.

CHAPTER 2
Approximate Counting

LFU variants can benefit from approximate counting schemes to balance memory and accuracy.
As discussed in Section 1.5.1, the conservative update improves the accuracy of the widely used
Count-Min Sketch for approximate counting. Nonetheless, theoretical analysis of the performance
of Count-Min Sketch with Conservative Updates (CMS-CU) is still missing because of its inherent
difficulty. In this chapter, we propose a novel approach to study CMS-CU and derive new upper
bounds on both the expected value and the complementary cumulative distribution function of the
estimation error under an i.i.d. request process.

2.1 Introduction

Counting how many times a given item appears in a data stream is a basic step common to a variety
of applications spanning different domains including network management. For example, routers
and servers often routinely count the number of packets in each flow for troubleshooting, traffic
monitoring [Ben+17], detection of denial of service attacks [LSK11], etc. Similarly, caching policies
often rely on content popularity estimates [EFM17]. Counting is a deceptively simple operation: in
many applications, the available memory does not permit to instantiate a counter for each possible
item, because the number of items is huge (e.g., catalogs of cacheable objects in content delivery
networks) or because counters are updated frequently and then require expensive fast memories
(e.g., for high-rate inline packet flow processing). As a consequence, these applications rely on
approximate counting techniques such as sketch-based algorithms [CH10], among which a popular
one is the Count-Min Sketch (CMS) [CM05a]. Many recent sketch algorithms are variations of
CMS [Yan+18b; Hsu+19; Zha+21b; Yan+21].

CMS achieves significant memory reduction by mapping different items to the same counters
through hash functions. As different items may increment the same counter, CMS suffers from
overestimation errors. When counters are only incremented, a slight modification to CMS operation,
referred to as Conservative Update [EV02] or Minimal Increment [CM03], can reduce the estimation
error. The Count-Min sketch with Conservative Updates (CMS-CU) is successfully employed for
caching [EFM17], heavy flows detection [Wan+21], telemarketing call detection [BdN11], and
natural language processing [GDC12].

Although conservative updates are a minor modification to CMS operation, they entangle the
growth of the counters, making CMS-CU much more difficult to study than CMS. As CMS-CU
reduces CMS estimation errors, it is still possible to maintain the upper bounds originally proposed
for CMS [CM05a; CM05b]. This approach has been adopted in some papers, for example, to study

9

10 CHAPTER 2 — Approximate Counting

CMS-CU’s trade-off between memory and accuracy [Wan+21; Ven+20], but it obviously fails to
capture the specific advantages offered by CMS-CU.

To the best of our knowledge, only a few papers ventured to study CMS-CU [Bia+12; EF15;
Che+21; FK23a; FK23b]. Bianchi et al. relied on a fluid approximation under the assumption that
all counters are equally likely to be updated at each step [Bia+12]. This assumption may be satisfied
only for a large number of counters and a large number of items with similar popularity. In [EF15],
Einziger and Friedman modeled CMS-CU as a stack of Bloom filters [BM03] and derived bounds
for the error’s Complementary Cumulative Distribution Function (CCDF) when requests follow the
Independent Reference Model (IRM) [Fag77]. Unfortunately, the CCDF computation in [EF15]
requires an iterative procedure, whose time complexity grows quadratically with the target error
value (and then in general with the stream length). Fusy and Kucherov [FK23a; FK23b] studied
CMS-CU under IRM with uniform probabilities, revealing a phase transition in the conservative
update strategy’s accuracy. This transition depends on the ratio of distinct items to the number
of counters. The analysis in [Bia+12; EF15; FK23a; FK23b] holds for families of strongly k-
universal hash functions [MR95], only for sufficiently large values of k. Such families are however
incompatible with memory-constrained applications that need CMS-CU since memory requirements
and computation time grow with k [Sie04]. The authors of [Che+21] proposed a statistical estimator
for CMS-CU’s error, but it requires access to the counters associated with one hash function for a
representative stream. Last, the bounds derived in [Bia+12; EF15; Che+21; FK23a; FK23b] are the
same for all items regardless of their popularity, even though it has been observed in [Bia+12] that
the most popular items are better estimated than less popular ones.

In this chapter, we propose a novel analysis of CMS-CU that leads to new upper bounds on both
the CCDF and the expected value of the estimation error under an IRM request process. Our method-
ology diverges from related work as it quantifies the error on a per-item basis, which is particularly
suitable for data streams with heterogeneous items’ popularities. The analysis also overcomes the
limitations of the previous studies as (i) it holds for pairwise independent hash functions, and (ii) it
provides CCDF expressions with time complexity independent of the error’s value. We show that
our formulas can be successfully employed to derive both improved estimates for the precision of
popular items’ detection methods and improved configuration rules for CMS-CU. We compare our
new bounds both qualitatively and quantitatively to those in [CM05a], [CM05b], [Bia+12], [EF15].

The rest of this chapter is organized as follows. In Section 2.2, we provide the background,
review the state-of-the-art studies, and introduce the notation. The theoretical analysis is carried out
in Section 2.3. Section 2.4 presents numerical experiments both on synthetic and real-world traces.
Section 2.5 concludes the chapter.

2.2 Background, Notation, and Assumptions

2.2.1 Data Stream Model

A data stream is a sequence St = (Z(s))s=1,...,t, where Z(s) is an item from a universe I =
{1, . . . , N} [Mut05]. In general, we want to compute a function of the sequence, F(St), for
example, the number of occurrences of a given item, the set of heavy-hitters (items whose number
of requests exceeds a given threshold), or the top-k most frequent items. Streaming algorithms aim
to compute the function of interest using a few passes through the data stream (only one for the

2.2 – 2.2.2 Count-Min Sketch (CMS) 11

applications we consider) with a sublinear amount of memory in the universe’s size N and the data
stream size t. Even for the simple quantities mentioned above, an exact computation requires a
linear amount of memory and then streaming algorithms need to settle for approximate results. The
next section presents two popular streaming algorithms for approximate counting.

In the following, we use Ja, bK to represent the set of integers between a and b and [M] to
represent the set of integers from 1 to M ∈ N. Moreover, we do not append the sketch name to the
symbols to lighten the notation. We believe there will be no ambiguity as each sketch is presented
and analyzed in a separate section.

2.2.2 Count-Min Sketch (CMS)

A Count-Min sketch is a two-dimensional array with d rows, each with w counters. An item i is
mapped to d counters, one per row, via d hash functions {hr}r∈[d] chosen uniformly at random
from a family of strongly 2-universal hash functions. We note that once selected, the hash functions
do not change during the processing of the stream St. We model the association between items
and counters as a bipartite undirected graph G = (I, O, E), where O is the set of counters and
E ≜ {(i, hr(i)) : i ∈ I, r ∈ [d]} is the set of edges. We denote the open neighbourhood of item
i in the graph as NG(i) ≜ {c : (i, c) ∈ E} (we naturally have |NG(i)| = d, for any item i). We
denote the value at time t of the counter in row r corresponding to item i as cr

i (t), with cr
i (0) = 0.

When item i is requested at time t, the counters {hr(i)}r∈[d] are incremented by 1. Namely,

cr
i (t) = cr

i (t− 1) + 1, ∀r ∈ [d]. (2.1)

Let ni(t) denote the number of occurrences of item i in the stream up to time t. Note that cr
i (t)

is updated not only by new requests for item i, but also by requests for all items that are also
mapped by hr to the same counter hr(i), i.e., by all items in the set {j ∈ I : hr(j) = hr(i)}. These
items are said to collide with i. It follows that cr

i (t) =
∑

j: hr(j)=hr(i) nj(t). As such, cr
i (t) upper

bounds ni(t). We denote the error resulting from using cr
i (t) for estimating ni(t) as er

i (t), i.e.,
er

i (t) ≜ cr
i (t)− ni(t). Since all counters’ values {cr

i (t)}r∈[d] upper bound ni(t), their minimum
also upper bounds ni(t). This minimum is the estimate of ni(t) provided by CMS and we denote it
as n̂i(t),

n̂i(t) ≜ min
r∈[d]

cr
i (t) . (2.2)

The estimation error is then

ei(t) ≜ n̂i(t)− ni(t) = min
r∈[d]

er
i (t) . (2.3)

We also introduce δr
i,j(s) to represent the contribution of item j ̸= i to counter hr(i) at time s. We

have:

δr
i,j(s) ≜ 1

(
Z(s) = j, hr(i) = hr(j)

)
, (2.4)

er
i (t) =

∑
s∈[t]

∑
j∈I\{i}

δr
i,j(s) . (2.5)

All quantities we defined are random variables due to the initial random choice of the hash functions.
From (2.5) and the definition of strongly 2-universal hash functions [MR95], one can immediately

12 CHAPTER 2 — Approximate Counting

conclude that E [er
i (t)] =

∑
j ̸=i

nj(t)
w ≤ t

w . Applying (2.3), we obtain the following upper bound
on the expected estimation error:

E [ei(t)] ≤
t

w
⇔ E

[
ei(t)

t

]
≤ 1

w
. (2.6)

Moreover, the random variables {er
i (t)}r∈[d] being i.i.d., an application of the Markov inequality

leads to the following upper bound on the CCDF of ei(t):

Pr
(

ei(t)
t
≥ x

)
≤
(1

wx

)d

. (2.7)

Cormode and Muthukrishnan proved this result in [CM05a, Theorem 1] for the specific value
x = e

w .

2.2.3 Count-Min Sketch with Conservative Updates (CMS-CU)

The conservative update [EV02] or minimal increment [CM03] is an optimization of CMS that
consists in incrementing only the counters that attain the minimum value. The update procedure
when item i is requested at time t becomes

cr
i (t) = max

(
cr

i (t− 1), min
f∈[d]

cf
i (t− 1) + 1

)
, ∀r ∈ [d] . (2.8)

The error er
i (t) in each row r, the count estimate n̂i(t), and the estimation error ei(t), all depend

on cr
i (t) in the same way as in CMS. Equations (2.2) and (2.3) hold with CMS-CU. The quantities

{δr
i,j(s)}s∈[t],j ̸=i are now defined as

δr
i,j(s) ≜ 1

(
Z(s) = j, hr(i) = hr(j), n̂j(s− 1) = cr

i (s− 1)
)
. (2.9)

Equation (2.5) holds for CMS-CU. With respect to (2.4), (2.9) captures the additional condition
that counter hr(i) is updated by a request for j at time s only if its current value cr

i (s− 1) coincides
with the current estimate n̂j(s− 1). Because of this additional condition, CMS-CU enjoys always
a smaller error than CMS. Therefore, CMS upper bounds on the expectation (2.6) and on the
CCDF (2.7) also hold for CMS-CU.

2.2.4 State of the art

When evaluating our analysis in Section 2.4 with synthetic and real traces, we will compare our
results to the seminal paper [CM05a] and its follow-up by the same authors [CM05b] as well as to
the more recent [Bia+12; EF15; Che+21].

Bianchi et al. consider in [Bia+12] a particular case where, at each step, all counters are equally
likely to be updated. The corresponding error is called the error floor and denoted here as ϵf (t).
Experimental observations suggest that the error floor bounds the expected estimation error for any
stream process, i.e.

2.2 – 2.2.4 State of the art 13

E [ei(t)] ≲ ϵf (t) ⇔ E

[
ei(t)

t

]
≲

ϵf (t)
t

. (2.10)

The error floor (denoted here as ϵf (t)) is approximated using the following formula

ϵf (t) ≈ g

w · d
· t , (2.11)

with g = lim
t→+∞

1
t

t∑
s=1

g(s) , (2.12)

g(s) = E
[∣∣∣{r : cr

Z(s)(s− 1) = n̂Z(s)(s− 1)}
∣∣∣] . (2.13)

Equation (2.13) says that g(s) is the expected number of increments made at time s. g can be
approximated by 1

t0

∑t0
s=1 g(s), for t0 large enough. Each value g(s) can be estimated through

Montecarlo simulations or solving numerically an opportune differential equation. The authors
show that g depends on d but not on w.

Building on (2.10), we derive an approximate probabilistic bound on the error by a direct use
of the Markov inequality:

Pr
(

ei(t)
t
≥ x

)
≲

ϵf (t)
xt

. (2.14)

Einziger and Friedman modeled in [EF15] CMS-CU as a stack of Bloom filters. They proposed
approximate bounds on the CCDF of the error ei(t) under the IRM model as follows:

Pr
(

ei(t)
t
≥ x

)
≲

{
PFP(A⌈xt⌉), if E [ni(t)] ≥ 1,

FP(A⌈xt⌉), otherwise,
(2.15)

where Ak ≜ E [|{j ∈ I : n̂j(t) ≥ k}|], FP(n) is the false positive probability of a regular
Bloom filter after n insertions [BM03], and PFP(n) is its average over all the past inser-
tions, i.e., PFP(n) = 1

n

∑n
k=1 FP(k). The false positive probability can be approximated as

FP(n) ≈
(
1− e−n/w

)d
, and Ak for k ∈ N can be recursively computed using the following

formula,

Ak ≈ Dk +
k−1∑
j=1

(Dj −Dj+1) · PFP(Ak−j), (2.16)

where Dk ≜ |{j ∈ I : E [nj(t)] ≥ k}|. Note that the expected number of arrivals E [nj(t)] is
known under the IRM assumption.

Peiqing et al. [Che+21] proposed a method to estimate the error for CMS-CU by leveraging
the knowledge of the sketch counters (Kr

j (t))j∈[w] associated to the hash function hr. Under this
assumption, they propose an estimator (ĝ(δ, t)) for the (1− δ)-quantile of the error ei(t), that is for
gi(δ, t) ≜ inf{q ∈ [0, t] : Pr (ei(t) > q) = δ}). Assuming the values (Kr

j (t))j∈[w] are sorted in
decreasing order, the estimator ĝ(δ, t) has the following expression:

ĝ(δ, t) = Kr
⌈δ1/dw⌉(t) . (2.17)

We observe that in practice the knowledge of (Kr
j (t))j∈[w] requires to simulate the whole

CMS-CU evolution with a computational cost proportional to the stream size t. On the contrary, the
computational cost of our method does not depend on the stream size.

14 CHAPTER 2 — Approximate Counting

2.2.5 Our Assumptions

We will assume in our analysis that the request process follows the Independent Reference
Model (IRM) [Fag77]; in other words, {Z(s)}s∈[t] are i.i.d. categorical random variables with
Pr (Z(s) = i) = pi for i ∈ I , and

∑
i∈I pi = 1. We refer to pi as the popularity of item i. Without

loss of generality, we number items in I according to their popularity rank, hence pi ≥ pi+1, for
i ∈ [N − 1]. Note that there are two sources of randomness in our setting: the hash functions’
selection and the request process St. From now on, the expectation E [.] and the probability Pr (.)
take both kinds of randomness into account.

2.3 Theoretical Analysis of CMS-CU

Under the IRM model, we first prove a tighter upper bound on the CCDF of ei(t) for CMS, then
we upper bound both the CCDF and the expectation of ei(t) for CMS-CU.

2.3.1 CMS: CCDF of the Estimation Error

In this section we derive a bound for CMS error under the IRM assumption that is tighter than (2.7).
As discussed in Section 2.2.3, our new bound applies as well to the CMS-CU error.

Proposition 2.1 (Upper bound on the CCDF of ei(t)/t). The CCDF of the estimation error ei(t),
when using CMS, verifies

Pr
(

ei(t)
t
≥ x

)
≤ A(x)d , (2.18)

where

A(x) ≜ min
k∈J0,w−1K

Ak(x) (2.19)

and

Ak(x) ≜ min

 1
x(w − k)

∑
j>k
j ̸=i

pj + k

w
, 1

 . (2.20)

Proof. See Appendix A.1 page 75.

Proposition 2.1 extends known results in the literature. In particular, upper bounding the right-
hand side of (2.18) by (A0(x))d yields (2.7), and then replacing x = e/w, we obtain [CM05a,
Theorem 1]. Proposition 2.1 also recovers [CM05b, Theorem 5.1], by considering the particular
case where items are requested according to a Zipf distribution with parameter α > 1 and upper
bounding the right-hand side of (2.18) by Aw/3(x)d and the tail

∑
j>w/3 pj by (w/3)1−α. In our

experimental evaluation in Section 2.4, we will use for comparison purposes a combination of
[CM05a, Theorem 1] and [CM05b, Theorem 5.1], namely,

Pr
(

ei(t)
t
≥ x

)
≤ min

(
A0(x)d,Aw/3(x)d

)
. (2.21)

2.3 – 2.3.2 CMS-CU: CCDF of the Estimation Error 15

To highlight the relevance of Proposition 2.1, we present an example where the improvement of
(2.18) over (2.7) is evident.

Example 2.1. We consider a setting with a small set of k popular items collecting a fraction α of
the requests and N − k unpopular ones. More specifically,

pi =
{

α
k , if i ≤ k,
1−α
N−k , otherwise.

(2.22)

For x = β
w for some β ∈ (1 − α, 1] , bounding the right-hand side of (2.18) by (Ak(x))d,

yields a bound asymptotically equivalent* to
(

1−α
β

)d
as w → +∞, in sharp contrast with (2.7)

which provides the trivial bound 1.

2.3.2 CMS-CU: CCDF of the Estimation Error

We consider now CMS-CU and derive an upper bound on the CCDF of the estimation error ei(t)/t.
While the bound that we derived in Proposition 2.1 when CMS is used holds also with CMS-CU,
our objective in this section is to derive a bound that makes use of the enhancement that CMS-CU
brings over CMS. An important step to this end is to characterize the random variable δr

i,j(s)
defined in (2.9). We establish first a preliminary result on the expectation of δr

i,j(s) that proved to
be useful in the following.

Lemma 2.1 (Upper bound on E
[
δr

i,j(s)
]
). The expected contribution of item j to item i’s count at

row r at time s satisfies (2.23).

∃αi,j > 0, βi,j ≥ 0 : E
[
δr

i,j(s)
]
≤ pj

w

(
γi,j + βi,je−αi,j(s−1)

)
, (2.23)

with

γi,j ≜

1, ∀j ≤ i,

min
(
A(pi − pj)d−1, 1

)
, ∀j > i,

(2.24)

and A(x) given in (2.19).

Proof. See Appendix A.2 page 75.

It is interesting to observe the structure of the bound in (2.23). The term pj/w is simply
E
[
δr

i,j(s)
]

with CMS as can readily be seen from (2.4). Therefore, the coefficient of pj/w in
(2.23) is an attenuation term that captures the effect of using the conservative update procedure.
As s → ∞, this attenuation term converges to γi,j . The larger the difference between pi and pj ,
the smaller the term γi,j . This is expected as, the larger the difference in popularity between any
two items i and j, the likelier that cr

i (t) > n̂j(t), and then the lesser item j is able to interfere with
item i’s estimation.

*f(w) is asymptotically equivalent to g(w) when w → +∞ if limw→+∞
f(w)
g(w) = 1

16 CHAPTER 2 — Approximate Counting

Proposition 2.2 (Upper bound on the CCDF of ei(t)/t). The CCDF of the estimation error ei(t),
when using CMS-CU, is upper bounded as follows:

Pr
(

ei(t)
t
≥ x

)
≤ Di(x) +O

(1
t

)
, (2.25)

where

Di(x) ≜ min
(
A(x)d,Bi(x), Ci(x)

)
, (2.26)

Bi(x) ≜ min
k∈J0,w−1K

1
x

 1
w − k

∑
j>k

pjγi,j

+ k

w

 , (2.27)

Ci(x) ≜ min
k∈J0,w−1K

 1

xw

(
1−

(
k
w

)d
)
∑

j>k
j ̸=i

pjγi,j

+
(

k

w

)d

 , (2.28)

and γi,j is given in (2.24).

Proof. See Appendix A.3 page 77.

We use the popularity distribution (2.22) of Example 2.1 to illustrate the improvement brought
by Proposition 2.2 with respect to the bounds (2.7), (2.14), and (2.15), that are respectively pro-
posed/deduced from [CM05a], [Bia+12], and [EF15].

Example 2.2. Consider the popularity distribution in (2.22), w, N → +∞, and w = o(N).*. In
this setting, we show in A.5 that (2.15) results in the trivial bound 1 (this particular result holds for
any popularity distribution).

We define Ci,k(x) such that Ci(x) = mink∈J0,w−1K Ci,k(x), where Ci(x) is given in (2.28). From
Proposition 2.2, if we upper bound D(x) by Ci,k(x) and γi,j by (A0(p1 − pk+1))d−1, we obtain,
for any i ≤ k,

Pr
(

ei(t)
t
≥ x

)
≤ 1− α

x

(
1−

(
k
w

)d
)

wd(p1 − pk+1)d−1
+
(

k

w

)d

+O
(1

t

)
. (2.29)

Choosing x such that 1
x = o

(
wd
)

and x ≤ g·d
w (g is defined in (2.12)), the bound in (2.29)

is O (1/t), whereas (2.7) and (2.14) result in the trivial bound 1.

In Section 2.4 we will provide evidence that the qualitative difference seen in Example 2.2
also exists for realistic values of the parameters and Zipf popularity distributions. For example,
Figure 2.1 shows that our analysis correctly predicts that estimates for item with rank 100 are off
by at most of few units, while state-of-the-art approaches estimate that the error should be at least
10 times larger.

*f(w)=o(g(w)) if limw→+∞
f(w)
g(w) = 0.

2.3 – 2.3.3 CMS-CU: Expected Estimation Error 17

Remark 2.1. Proposition 2.2 combines two results. The first, from our paper [BAN22a], is expressed
as:

Pr
(

ei(t)
t
≥ x

)
≤ min

(
A(x)d,Bi(x)

)
+O

(1
t

)
. (2.30)

The second, from our paper [BAN22b], is given by:

Pr
(

ei(t)
t
≥ x

)
≤ min

(
A(x)d, Ci(x)

)
+O

(1
t

)
. (2.31)

Remark 2.2. The CCDF bound in Proposition 2.2 is equivalent to the CMS CCDF bound in
Proposition 2.1 for the least popular items. Our analysis for these items does not capture the benefit
of the conservative update procedure. Experimentally, we observed that the conservative update
for the least popular items can be accommodated using (2.10) by modifying the functions Ci(x) in
(2.28) as follows,

Ci(x) = min
k∈J0,w−1K

 ϵf (t)

xt

(
1−

(
k
w

)d
) ∑

j>k
j ̸=i

pj +
(

k

w

)d

 , (2.32)

where ϵf (t) is defined in (2.11).

We highlight the usefulness of Proposition 2.2 in Section 2.3.4 where we estimate the precision
achievable by CMS and CMS-CU methods applied to the heavy-hitters detection problem. We
conclude our formal analysis of CMS-CU with the derivation of a bound on the expectation of the
estimation error in the next section.

2.3.3 CMS-CU: Expected Estimation Error

The results obtained so far suggest two possible bounds on the expectation of ei(t)/t. One bound
can be derived using (2.3), (2.5) and Lemma 2.1. Another bound comes from writing the expectation
as the sum of probability tails and using Proposition 2.2.

Proposition 2.3 (Upper bound on E [ei(t)/t]). The error experienced by item i is upper bounded
as follows

E

[
ei(t)

t

]
≤ min

 1
w

∑
j∈I\{i}

pjγi,j ,
1
t

t∑
n=0
Di

(
n

t

)+O
(1

t

)
. (2.33)

Proof. See Appendix A.4 page 78.

While previous studies [Bia+12] and [EF15] bounded the error uniformly across items, Propo-
sition 2.3 provides error bounds that depend on an item’s popularity. In particular, our work is the
first to support analytically the experimental evidence that the most popular items barely experience
any error, as observed in [Bia+12] and also shown in Figure 2.3. In our earlier work [BAN22a], we
use Lemma 2.1 to deduce a weaker bound than (2.33) given by,

E

[
ei(t)

t

]
≤ 1

w

∑
j∈I\{i}

pjγi,j +O
(1

t

)
. (2.34)

18 CHAPTER 2 — Approximate Counting

In order to highlight the importance of Proposition 2.3, we compare (2.33), to (2.6) and (2.10)
using the same popularity distribution as in Examples 2.1 and 2.2.

Example 2.3. Recall the popularity distribution (2.22). From Proposition 2.3, the expectation of
the error for the k most popular items,i.e., any item i such that i ≤ k, verifies,

E

[
ei(t)

t

]
≤ 1

w

∑
j∈I\{i}

pjγi,j +O
(1

t

)
, (2.35)

≤ 1
w

∑
j≤k
j ̸=i

pj + 1
w

∑
j>k

pj (A0(p1 − pk+1)d−1 +O
(1

t

)
, (2.36)

≤ α

w

(
1− 1

k

)
+ Θ

(1
wd

)
+O

(1
t

)
, (2.37)

Equation (2.36) upper bounds γi,j by (A0(p1 − pk+1))d−1 for j > k and 1 otherwise. Equa-
tion (2.37) utilizes A0(p1 − pk+1) = Θ

(
1
w

)
.

The ratio of (2.37) and (2.6) is α(1− 1/k) + o(1), which is smaller than 1 for large w and t.
Comparing (2.37) and (2.10), it is not possible in general to conclude which bound is tighter. In
practice, we will consider the minimum of the two. We stress though that our analysis is formal
whereas that in [Bia+12], leading to (2.10), is based on experimental observations.

Remark 2.3. In practice, metrics like Average Absolute Error: AAE =
∑

i∈I |ei(t)|
|I| , Average

Relative Error: ARE = 1
|I|
∑

i∈I
|ei(t)|
ni(t) and Weighted Average Absolute Error: WAAE =∑

i∈I
ni(t)

t · |ei(t)| are used to evaluate the performance of a sketch, e.g., [Zho+18; Zha+21a;
Hsu+19]. Approximating ni(t) by pi · t allows one to evaluate the expected value of these metrics
as follows:

E [AAE] = 1
|I|

∑
i∈I
E [|ei(t)|] , (2.38)

E [ARE] ≈ 1
|I|

∑
i∈I

E [|ei(t)|]
pit

, (2.39)

E [WAAE] ≈
∑
i∈I

pi · E [|ei(t)|] , (2.40)

then an upper bound can be derived using our result in Proposition 2.3.

2.3.4 Heavy-Hitters Application: Lower Bound on the Precision

Heavy-hitters are items whose request rate exceeds a given threshold ϕ. Detecting heavy-hitters in
a stream can be done using a sketch (for instance CMS or CMS-CU), but sketches overestimate the
number of requests and can then lead to “false positives,” i.e., items with a rate smaller than ϕ can
erroneously be classified as heavy-hitters. Let H be the set of heavy-hitters, H = {i : ni(t) ≥ ϕ·t},
and Ĥ be the set of items classified as heavy-hitters by the sketch, Ĥ = {i : n̂i(t) ≥ ϕ · t}. The

2.3 – 2.3.4 Heavy-Hitters Application: Lower Bound on the Precision 19

“precision” is one metric used for assessing the performance of the sketch [CH10], and is defined as
follows: P ≜ |H|/|Ĥ|. For the sake of simplicity, we assume that ni(t) ≈ pit, for large enough t;
this is reasonable because of the law of large numbers. Under this approximation, |H| is constant
and we can write the expected value of the precision as:

E [P] ≈ |H|
|H|+

∑
i>|H| Pr

(
ei(t)

t ≥ ϕ− pi

) . (2.41)

Combining (2.41) with Proposition 2.2 we obtain a lower bound on the expected precision when
CMS-CU is used. This lower bound will be illustrated in Section 2.4.5 and compared to experimental
values.

Again we highlight qualitatively the advantage of our bound (2.25) (Proposition 2.2) with
respect to (2.7), (2.14), and (2.15) through an example.

Example 2.4. For the heavy-hitter problem we consider a popularity distribution, slightly more
complex than (2.22), with an additional group of medium popular items. More specifically,

pi =

α1/k1, if i ≤ k1,

α2/k2, if k1 < i ≤ k,

(1− α)/(N − k), otherwise,

(2.42)

where α1
k1

> α2
k2

, α = α1 + α2, and k = k1 + k2.
We consider α2

k2
< ϕ < α1

k1
, that is, the heavy-hitters coincide with the k1 most popular items.

The precision is then E [P] = k1/(k1 + S1 + S2), where S1 and S2 are defined as follows:

S1 ≜ (N − k) · Pr
(

eN (t)
t
≥ ϕ− pN

)
S2 ≜ k2 · Pr

(
ek(t)

t
≥ ϕ− pk

)
.

(2.43)

The different approaches estimate in different way the probabilities appearing in (2.43). We study
the regime where both N and w diverge with w = o(N) and N = o(wd).

If we use the bound (2.15) in (2.43), the arguments in A.5 lead to conclude that S1 is potentially
unbounded (N diverges and Pr (eN (t)/t ≥ ϕ− pN) is upper-bounded by a positive constant). The
conclusion is then trivial: the precision is lower bounded by 0. The bound (2.14) does not provide
meaningful bounds for S1 and the precision either.

On the contrary, both (2.25) and (2.7) guarantee that S1 is arbitrarily small asymptotically.
However, the two bounds may draw different conclusions for S2. In fact, (2.7) concludes that S2

can be made smaller than ϵ for ϕ− pk > 1
w

d

√
k2
ϵ . The bound (2.25) can be relaxed to the simpler

form

Pr
(

ei(t)
t
≥ x

)
≤ kd−1

2 (1− α)

wdx

(
1−

(
k
w

)d
)

αd−1
2

+
(

k

w

)d

+O
(1

t

)
, (2.44)

which is obtained similarly to (2.29), by upper bounding Di(x) by Ci,k(x) in the right hand side
of (2.25) and upper bounding γi,j by (A0(pi − pj))d−1. From (2.44), we conclude that there exists

20 CHAPTER 2 — Approximate Counting

Table 2.1: Labels and equations used in the comparison.

Metric [CM05b] [Bia+12] [EF15] [Che+21] [BAN22a] This thesis
CM05 BDLS12 EF15 CWYJL21 BAN22 Ours

CCDF popular i (2.21) (2.14) (2.15) (2.17) (2.30) (2.25)
non-popular i (2.21) (2.14) (2.15) (2.17) (2.30) (2.25), (2.32)

Expected error 1−pi
w (2.10) − − (2.34) (2.33)

Precision ((2.41)) (2.21) (2.14) (2.15) − (2.30) (2.25)

a constant a′ such that S2 is guaranteed to be smaller than ϵ when ϕ− pk > a′·k2
wdϵ

. In conclusion,

if ϕ− pk belongs to the interval
(

a′·k2
wdϵ

, 1
w

d

√
k2
ϵ

]
, our bound predicts that the precision is at least

1− ϵ, while the bound (2.7) simply guarantees a precision inferior to 1− ϵ.

2.4 Experimental Evaluation and Numerical Analysis

2.4.1 Experimental Setting

To support our analysis, we have undertaken three series of experiments in which we simulated
requests for items over time and used CMS-CU to count the requests for each item.

In the first series of experiments, we generated 100 synthetic streams from a Zipf distribution
with shape parameter α = 0.8. Each stream contains 5 million requests for items in the set
I = [N] with N = 106. For each stream, we employed a sketch with a default configuration of
width w = 104 and depth d = 8 and we selected different ‘MurmurHash’ hash functions [YN13] for
each stream by choosing uniformly at random d different seeds. The experimental values reported
for this setting are averaged over the 100 streams (or 100 independent trials). We also computed
the 95% confidence intervals but did not report them as they are very narrow and would not be
visible in the figures. The second series of experiments is identical to the first except for the shape
parameter of the Zipf distribution which is α = 1.1.

In the third series of experiments, we used a trace log of accesses to Wikipedia pages in all
languages during September 2007 [UPS09]. The trace contains 10,628,125 requests. The number
of distinct Wikipedia pages requested in this trace is 1,712,459. We extracted 10 non-overlapping
chunks from this trace, each containing N ′ = 106 requests, and discarded the rest. The number of
distinct items in each chunk is around 3·105. All theoretical values are computed assuming IRM and
that item popularities coincide with empirical frequencies over the first chunk, i.e., pi ≈ ni(N ′)/N ′.
The reported experimental values are instead computed on the remaining 9 chunks of the trace. The
CMS-CU in this setting is configured by default with a width w = 5000 and a depth d = 5.

2.4.2 Numerical Evaluation

For each series of experiments, we report the results obtained for the following metrics: (i) the
CCDF of the sketch estimation error for both a popular item and a non-popular one, (ii) the expected
sketch estimation error for each item along with the Average Absolute Error (AAE), the Average
Relative Error (ARE), the Weighted Average Absolute Error (WAAE) , and (iii) the precision

2.4 – 2.4.3 The CCDF of the Sketch Estimation Error 21

10 6 10 5
x

10 6

10 4

10 2

100

Pr
(e

i(t
)/t

>
x)

Exp
Ours
BAN22
CWYJL21
CM05
BDLS12
EF15

(a) synthetic, α = 0.8

10 6 10 5
x

10 7

10 5

10 3

10 1

Pr
(e

i(t
)/t

>
x)

Exp
Ours
BAN22
CWYJL21
CM05
BDLS12
EF15

(b) synthetic, α = 1.1

10 5 10 4
x

10 4

10 3

10 2

10 1

100

Pr
(e

i(t
)/t

>
x)

Exp
Ours
BAN22
CWYJL21
CM05
BDLS12
EF15

(c) Wikipedia

Figure 2.1: CCDF of error for a popular item.

in the heavy-hitters detection problem. We compare our results to those of [CM05a; CM05b],
[Bia+12], [EF15], and our earlier work [BAN22a] which we refer to as ‘CM05’, ‘BDLS12’,
‘EF15’, and ‘BAN22’ respectively. We also carry out a limited comparison with the method in
[Che+21]—referred to as ‘CWYJL21’—, which differs from our approach and all other methods
listed above in that, in order to estimate the error at time t, it requires access to a sample of the
counters at time t for a representative data stream (see Section 4.2). For completeness, we list the
relevant formulas used in Table 2.1. In the following sections, the estimation of the ground truth
using simulations is referred to as ‘Exp.’

2.4.3 The CCDF of the Sketch Estimation Error

The results are shown in Figures 2.1 and 2.2 for popular and non-popular items, respectively. The
ground truth CCDF (Exp) is not visible in Figure 2.1 as it is 0. Note that all existing approaches,
apart from our earlier work BAN22, provide a single bound for the CCDF that is valid for all items
and is essentially tailored to the unpopular items for which errors are larger. In all three series of
experiments, our bounds are better at capturing the CCDF of the error for popular items (ranks
100 and 50), for which the other state-of-the-art approaches provide only rough estimations; see
Figure 2.1. The interval identified analytically in Example 2.2 (over which our bounds decrease
whereas most of the state-of-the-art bounds are trivially 1) are visible in Figure 2.1. In particular,
in Figure 2.1b our upper bound in the interval [10−6, 10−5] decreases and is below 10−6 while
CM05, BDLS12 and EF15 are equal to 1. The results for EF15 confirm our discussion in A.5.

22 CHAPTER 2 — Approximate Counting

10 6 10 5 10 4 10 3
x

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(e

i(t
)/t

>
x)

Exp
Ours
BAN22
CWYJL21
CM05
BDLS12
EF15

(a) synthetic, α = 0.8

10 6 10 5 10 4 10 3
x

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(e

i(t
)/t

>
x)

Exp
Ours
BAN22
CWYJL21
CM05
BDLS12
EF15

(b) synthetic, α = 1.1

10 5 10 4 10 3
x

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(e

i(t
)/t

>
x)

Exp
Ours
BAN22
CWYJL21
CM05
BDLS12
EF15

(c) Wikipedia

Figure 2.2: CCDF of error for a non-popular item.

The only exception is CWYJL21, which improves on our CCDF bound for large values of the error.
CWYJL21 is better at capturing the CCDF of the estimation error for non-popular items (ranks 105

and 104), with our method being the second best one; see Figure 2.2. Note that CWYJL21 requires
to simulate CMS-CU over a trace drawn from the same distribution, and then its computational
cost grows at least linearly with the length of the stream t.

2.4.4 The Expected Sketch Estimation Error

The results for the synthetic and Wikipedia traces are depicted in Figure 2.3. We observe that
our analysis correctly predicts that different items experience different errors. The bounds BAN22
and Ours improve over CM05. Our bound improves over BAN22 and BDLS12 in all three series
of experiments, namely for the 300 most popular items when α = 0.8, for the 1000 most popular
items when α = 1.1 and for the 400 most popular items for the Wikipedia trace. We notice that our
bounds on the expectations are not always tight leaving room for improvement.

We also show in Table 2.2 other metrics—AAE, ARE and WAAE—commonly used to evaluate
the performance of a sketch (see Remark 2.3). Our formulas are better than CM05 at predicting all
three metrics but the improvement with respect to BDLS12 is only evident for WAAE. The reason
is that our bounds improve BDLS12’s ones only for the most popular items which constitute a
small fraction of the whole catalogue. The difference is then marginal in terms of AAE and ARE
which quantify average errors over the whole catalogue. On the contrary, WAAE is an average
error per stream element and then errors on the most popular items are given a larger weight (i.e.,

2.4 – 2.4.4 The Expected Sketch Estimation Error 23

100 101 102 103 104 105
Item rank

0.0

0.2

0.4

0.6

0.8

1.0

E[
e i

(t)
]/t

×10 4

Exp
Ours
BAN22
CM05
BDLS12

(a) synthetic, α = 0.8

100 101 102 103 104 105
Item rank

0.0

0.2

0.4

0.6

0.8

1.0

E[
e i

(t)
]/t

×10 4

Exp
Ours
BAN22
CM05
BDLS12

(b) synthetic, α = 1.1

100 101 102 103 104 105
Item rank

0.0

0.5

1.0

1.5

2.0

E[
e i

(t)
]/t

×10 4

Exp
Ours
BAN22
CM05
BDLS12

(c) Wikipedia

Figure 2.3: Estimation error for each item.

24 CHAPTER 2 — Approximate Counting

0.0 0.2 0.4 0.6 0.8
× 103

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Exp
Ours
BAN22
CM05
BDLS12
EF15

(a) synthetic, α = 0.8

0.0 0.2 0.4 0.6 0.8
× 103

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Exp
Ours
BAN22
CM05
BDLS12
EF15

(b) synthetic, α = 1.1

0 1 2 3 4
× 103

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Exp
Ours
BAN22
CM05
BDLS12
EF15

(c) Wikipedia

Figure 2.4: Precision as a function of the threshold ϕ.

2.4 – 2.4.5 Precision in Detecting ϕ−Heavy-Hitters 25

Table 2.2: Average Absolute Error, Average Relative Error, Weighted Average Absolute Error.

Synthetic: α = 0.8 Synthetic: α = 1.1 Wikipedia
AAE ARE WAAE AAE ARE WAAE AAE ARE WAAE

CM05 500 260 500 500 1531 500 200 176 200
BDLS12 178.1 93.4 178.1 178.1 545.1 178.1 83.6 73.5 83.6
Ours 178 93.4 152.2 177.9 545.1 54.3 83.5 73.5 44.9
Exp 132.7 70.7 26.5 39.7 124.3 6.8 36.2 32.3 14.8

proportional to their popularity). This metric shows then a clear difference between our approach
and BDLS12.

2.4.5 Precision in Detecting ϕ−Heavy-Hitters

The results are presented in Figure 2.4. Our formulas outperform state-of-the-art methods in
bounding the precision for both synthetic and real-world traces. The improvement is mainly due
to the tightness of our CCDF bound for the most popular items. CM05 achieves high precision
values only for large values of ϕ, as already qualitatively highlighted in Example 2.4. The poor
lower bound on the precision achieved by EF15 was expected seeing its poor CCDF bound in
Figures 2.1 and 2.2. It is interesting to observe that while the BDLS12 CCDF bound may be
tighter than the CM05 CCDF bound for medium error values (like in Figures 2.1a and 2.2a for
x ∈ [3 ·10−5, 10−4]), its precision bound is much poorer. The reason is due to the sum of probability
tails in the denominator of (2.41) being highly affected by the CCDF tail of non-popular items, and
while the CM05 CCDF bound decreases exponentially fast, the BDLS12 CCDF bound decreases
only inversely linearly (compare (2.14) with (2.7)).

2.4.6 Configuring CMS-CU with QoS Guarantees

The bounds we derived can also be used to configure the width w and the depth d of CMS-CU in
order to achieve the desired precision with the minimum amount of memory. If each counter uses 4
bytes, the memory cost of a CMS-CU is M = 4wd bytes. We compared numerically the memory
requirements determined by our approach and by CM05. We do not consider BDLS12 and EF15
in this section as their lower bound on the precision is poor, a configuration method relying on such
bounds will thereby return prohibitively large memory requirements.

For target precision values in the range 0.8–0.975, we performed a search for the total number
of counters (equal to w× d) in the range

[
⌈ 2

ϕ⌉, N
]

(with a step of ⌈2/ϕ⌉) and depth values between
2 and 15 to find the smallest memory which guarantees the target precision. Figure 2.5 shows the
corresponding curves obtained using our approach and CM05. Our approach leads to configuring
CMS-CU using a reduced amount of memory. For instance, we observe in Figure 2.5a a reduction
factor of 4.82 for 95% precision target (1.312 MB with CM05 vs. 0.272 MB with Ours) and up to
8.72 for a precision target of 97.5% (2.512 MB with CM05 vs. 0.288 MB with Ours). The gain is of
the same order for the other traces. In particular, when the shape parameter of the Zipf distribution
is 1.1, the reduction factor is 3.89 and 5.2 for precision targets of 95% and 97.5%, respectively
(see Figure 2.5b). In the case of the Wikipedia trace, the required memory for a precision target

26 CHAPTER 2 — Approximate Counting

80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5
Precision (%)

0.5

1.0

1.5

2.0

2.5

M
em

or
y

re
qu

ire
d

(M
By

te
s)

d=11 d=11 d=11 d=12 d=12 d=12 d=12 d=13
d=6 d=6 d=6 d=5

d=5
d=5

d=4

d=4
Ours
CM05

(a) synthetic, α = 0.8, ϕ = 5 · 10−4

80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5
Precision (%)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
em

or
y

re
qu

ire
d

(M
By

te
s)

d=10 d=10 d=10 d=10 d=12 d=12 d=12 d=12

d=8 d=8 d=7 d=7
d=7

d=6

d=6

d=5
Ours
CM05

(b) synthetic, α = 1.1, ϕ = 5 · 10−4

80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5
Precision (%)

0.2

0.4

0.6

0.8

1.0

M
em

or
y

re
qu

ire
d

(M
By

te
s)

d=10 d=10 d=10 d=10 d=10 d=10 d=10 d=11
d=6 d=6 d=6 d=5

d=5
d=4

d=4

d=4
Ours
CM05

(c) Wikipedia, ϕ = 10−3

Figure 2.5: Estimated memory requirement for a given precision.

of 97.5% is 0.104 MB with our approach as seen in Figure 2.5c, a reduction factor of 9.61 with
respect to the 1 MB advocated by CM05 (reduction factor of 5.58 for a precision target of 95%).

Figure 2.5 suggests that large values of d are required to minimize the memory while achieving
a desired precision target. At the same time, it may be undesirable to select a large number of hash
functions due to computational constraints.

2.5 Conclusion

While it is a common belief that CMS-CU leads to smaller estimation errors for the most popular
items [Bia+12], we are the first to provide quantitative support for such property, thanks to a
per-item study of the estimation error. We showed that our analysis significantly improves existing
bounds for the most popular items and leads, in comparison to the state of the art, to more accurate
estimations for the precision in heavy-hitter detection problems as well as to improved configuration
rules, which avoid to oversize the counting data structure. For less popular items, our bounds are
not tighter than existing ones. In the future, we want then to focus on improving the bounds for the
tail of the popularity distribution. Moreover, we plan on extending our analysis to other popular
sketches based on CMS-CU like the one proposed in [Yan+18b].

CHAPTER 3
Online Learning for

Caching
LFU-style caching policies encompass algorithms derived from the online learning literature.
Notably, the classic Follow-the-Perturbed-Leader (FPL) algorithm, exhibits sublinear regret against
an adversarial request process. Consequently, over time, FPL caching policies asymptotically
perform as well as the optimal static caching policy with knowledge of future requests. However,
a significant drawback lies in the assumption that the cache possesses knowledge of the exact
requests’ count, a presumption often unattainable in high-load or memory-constrained scenarios. In
response to this limitation, we introduce in this chapter the Noisy-Follow-the-Perturbed-Leader
(NFPL) algorithm. NFPL is a variant of the classic FPL, designed to accommodate scenarios
where request estimates are noisy. We prove that NFPL exhibits sublinear regret under specific
assumptions on the requests’ estimator. We run simulations to evaluate the loss in performance due
to noisy requests’ estimates under synthetic and real-world request traces.

3.1 Introduction

Caching techniques are extensively employed in computer systems, serving various purposes such
as accelerating CPU performance [TS98] and enhancing user experiences in content delivery
networks (CDNs) [BOO07]. The primary objective of a caching system is to carefully choose files
for storage in the cache to maximize the proportion of file requests that can be fulfilled locally. This
approach effectively minimizes the dependence on remote server retrievals, which can be costly in
terms of delay and network traffic. The presence of caching systems facilitates more efficient data
delivery in network traffic and leads to enhanced overall system performance.

Caching policies have been thoroughly investigated under numerous assumptions concerning
the statistical regularity of file request processes [Fag77; Tra+13]. However, real-world request
sequences tend to deviate from these theoretical models, especially when aggregated over small
geographic areas [Lec+16]. This deviation has inspired the exploration of online learning algorithms,
beginning with the work of Paschos et al. [Pas+19a], which applied the Online Convex Optimization
(OCO) framework [Zin03] to caching. These algorithms exhibit robustness to varying request
process patterns, as they operate under the assumption that requests may be generated by an
adversary.

In this context, the main metric of interest is the regret, which is the difference between the
cost—e.g., the number of cache misses—incurred by a given online caching algorithm and the cost

27

28 CHAPTER 3 — Online Learning for Caching

of the optimal static cache allocation with hindsight, i.e., with knowledge of the future requests over
a fixed time horizon. In this framework, the primary objective is to design no-regret algorithms, i.e.,
online policies whose regret grows sublinearly with the length of the time horizon [Pas+19a].

Several online caching policies have been proposed in the literature, drawing on well-known
online algorithms such as Online Gradient Descent (OGD) [Pas+19a], Follow-the-Regularized-
Leader (FRL) [MIL22] or Follow-the-Perturbed-Leader (FPL) [Mha+22b]. The latter is especially
promising, as cache updates can be performed without the need for computationally intensive
projection operations over the set of feasible cache states.

Caching policies, including no-regret ones, make admission and eviction decisions based on
information from the request sequence. This can include factors such as the number of past requests
for each file or a list of the most recently requested files. However, when dealing with a vast file
catalog and/or a high request rate, a cache might have to depend on noisy information. For instance,
limited availability of high-speed memory can necessitate the use of approximate counters based on
hash functions [EFM17; BAN22b]. Alternatively, request sampling might be employed to decrease
the frequency of counter updates [Li+16].

Surprisingly, much of the existing literature on no-regret caching policies overlooks these
practical constraints. Typically, these studies operate under the assumption that caches have exact
knowledge of the request sequences. A notable exception is the work presented in [LZ22]. However,
it exclusively examines the scenario in which the cache is only aware of requests for files it already
contains.

In this chapter, we bridge this gap by adapting the FPL algorithm—renowned for its com-
putational efficiency and no-regret properties—to manage noisy request estimates. Our main
contributions are the following:

1. We modify the FPL algorithm to handle noisy request estimates and prove that, under specific
conditions on the estimator, the algorithm maintains sublinear regret. We refer to this extended
version as Noisy-Follow-the-Perturbed-Leader (NFPL).

2. We propose two variants of the NFPL algorithm for the caching problem, namely, NFPL-Fix
and NFPL-Var, where the requests estimator uses sampling. We prove that NFPL-Fix and
NFPL-Var have sublinear regret.

3. We prove a new regret bound for the classic FPL caching policy that is independent of the
catalog size.

4. We show through experimental analysis the advantage of the NFPL algorithm over classical
caching policies. We also evaluate the impact of the sampling rate on the performance of
NFPL-Fix and NFPL-Var.

This chapter is organized as follows. We describe the system assumptions and give background
details in Section 3.2. The extension of FPL to deal with noisy requests and its analysis are described
in Section 3.3. Experimental results are presented in Section 3.4. Finally, Section 3.5 concludes the
chapter.

3.2 – 3.2 System Description and Background 29

3.2 System Description and Background

3.2.1 Caching Problem: Model and Notation

We consider a single-cache system in which file requests for a catalog I with N files can either be
served locally by a cache with finite capacity C or, in the case of a file miss, by a remote server.

Cache state. The local cache has a capacity C ∈ {1, . . . , N} and stores files in their entirety. The
cache state at time t is represented by the vector xt = [xt,i]i∈N , which indicates the files missing in
the cache; that is, xt,i = 1 if and only if file i is not stored in the cache at time t. A feasible cache
allocation is then represented by a vector in the set:

X =
{

x ∈ {0, 1}N
∣∣∣∣∣

N∑
i=1

xi = N − C

}
. (3.1)

Cache updates. Although caching policies are often assumed to update their state after each
request, in high request rate regimes or when cache updates are computationally or communication-
ally expensive, the cache may update its state after receiving a batch of B requests [SNI23]. We
study caching policies in this more general setting and consider a time-slotted operation. At each
time slot t = 1, . . . , T , B requests are collected from the users and the cache state is updated. The
request process is represented as a sequence of vectors rt = (rt,i ∈ N : i ∈ I) ∀t, where rt,i is the
number of requests received for file i in the t-th batch. Then, each vector belongs to the set:

B =
{

r ∈ NN

∣∣∣∣∣
N∑

i=1
ri = B

}
. (3.2)

Cost. At each time slot t, the cache pays a cost equal to the number of misses, i.e., to the number
of requests for files not in the cache. The cost can be computed as follows:

⟨rt, xt⟩ =
N∑

i=1
rt,ixt,i , (3.3)

where ⟨r, x⟩ ≜
∑N

i=1 rixi denotes the scalar product of the two vectors r and x.
For the sake of conciseness, we introduce the following notation. For any vector r, we denote

by M(r) an arbitrary element of arg minx∈X ⟨r, x⟩. Furthermore, given a sequence of vectors
(r1, . . . , rt), we represent their aggregate sum as r1:t ≜

∑t
s=1 rs.

3.2.2 Caching and Online Learning

Caching can be framed as an online learning problem [Haz16], where an agent (the caching system)
chooses an action xt from the set X at each time slot t before an adversary reveals a request
vector rt from the set B.

The cache state is determined by an online algorithm A that, at each time slot t, computes the
cache state xt+1 for the next time slot given the current state xt and the sequence of requests up to
time t, that is {rs}ts=1.

30 CHAPTER 3 — Online Learning for Caching

N catalog size
C cache capacity
B number of requests in each batch
X decision set
B set of request vectors
T time horizon
rt request vector at time step t
xt decision vector at time step t
⟨rt, xt⟩ cost at time step t
r1:t sum of rs for all values of s from 1 to t
M(r) value of x in X that minimizes ⟨r, x⟩
RT (A) regret algorithm A
γt noise vector
r̂t noisy request estimates
B̂ r̂t state space

Table 3.1: Table of notation

The main performance metric used to evaluate an online deterministic algorithm A choosing
action xt at each time step t is the regret defined as:

RT (A) = sup
{r1,...,rT }

{
T∑

t=1
⟨rt, xt⟩ − OPTT

}
, (3.4)

where OPTT = ⟨r1:T , M(r1:T)⟩ is the cost incurred under the request sequence {r1, . . . , rT } by
the optimal static allocation x∗ = M(r1:T). When the algorithm A is randomized, one can define
the expected regret:

RT (A) = sup
{r1,...,rt}

{
E

[
T∑

t=1
⟨rt, xt⟩

]
− OPTT

}
, (3.5)

where the expectation is taken over any random choice of the algorithm A. The expected regret
quantifies then the performance gap over a time horizon T between the algorithm A and the best
static cache allocation with hindsight.

Given the supremum taken over all request sequences in both (3.4) and (3.5), it is evident that
the regret metrics refrain from making any assumptions regarding the characteristics of the request
sequence, such as any inherent statistical regularity. The request sequence may be thought to have
been generated by an adversary seeking to degrade the performance of the caching system. In this
setting, one aims for an algorithm with sublinear regret, RT (A) = o(T). These algorithms are
commonly known as no-regret algorithms since their time-average cost approaches the optimal
static policy’s cost as T grows.

Various algorithms, such as Online Gradient Descent (OGD) and Follow-the-Regularized-
Leader (FTRL), can attain O(

√
T)-regret for caching problems [Pas+19a; MIL22]. However, their

cache update procedures require a computationally expensive projection of a tentative solution back
onto the feasible set X (e.g., its cost is O(N2) for OGD [SNI23]).

3.3 – 3.2.3 Follow-the-Perturbed-Leader (FPL) 31

Algorithm 1: Noisy-Follow-the-Perturbed-Leader with Uniform Noise (NFPL)
Input: Set of decisions X ; T ; η
Output: Sequence of decisions: {xt}T1

1 ˆcosts← 0 ,
2 for round t = 1, 2, ..., T do
3 γt ∼ Unif

(
[0, η]N , IN×N

)
4 xt ←M(ˆcosts + γt)
5 Pay ⟨rt, xt⟩
6 Observe r̂t

7 ˆcosts← ˆcosts + r̂t

8 end

In the next section, we present a lightweight caching algorithm with O(
√

T)-regret.

3.2.3 Follow-the-Perturbed-Leader (FPL)

Within the domain of online learning, the Follow-the-Perturbed-Leader (FPL) algorithm is a notable
projection-free methodology known to achieve sublinear regret. This algorithm was initially intro-
duced by Vempala et al. [KV05], and later studied within the caching framework by Bhattacharjee
et al. [BBS20].

The FPL algorithm serves as a refined version of the traditional Follow-the-Leader (FTL) algo-
rithm [LW94]. The latter greedily selects the state that would have minimized the past cumulative
cost, i.e., xt+1(FTL) = M(r1:t).

While the FTL algorithm proves optimal when cost functions are sampled from a stationary
distribution, it, unfortunately, yields linear regret in adversarial settings [De +14].

The FPL algorithm improves the performance of FTL by incorporating a noise vector γt at each
time step t. This vector’s components are independent and identically distributed (i.i.d.) random
variables, pulled from a distinct distribution (such as the uniform and exponential distributions
in [KV05], and the Gaussian distribution in [BBS20]). The update process unfolds similarly to
FTL:

xt(FPL) = M(r1:t−1 + γt). (3.6)

As shown in [BBS20], FPL provides optimal regret guarantees for the discrete caching problem.
Moreover, the cache update, as specified in equation (3.6), involves storing the files that correspond
to the largest elements of the vector r1:t−1 + γt. FPL cache update necessitates then a sorting
operation. Notably, its computational complexity of O(N log N) is less taxing than the projection
step required by either the FRL or OGD algorithms, as highlighted in [BBS20].

3.3 Extending FPL

The traditional FPL algorithm needs to track the request count for each file in the catalog. As
we discussed in the introduction, in scenarios with a large catalog and/or high request rate, the

32 CHAPTER 3 — Online Learning for Caching

cache may only have access to noisy estimates. For this reason, we introduce the Noisy-Follow-
the-Perturbed-Leader (NFPL), a lightweight variant of FPL that employs noisy request estimates
instead of exact request counts. In Section 3.3.1, we present the NFPL algorithm in detail along with
its regret analysis. Subsequently, in Section 3.3.2, we study NFPL when noisy request estimates
stem from sampling the request process as in [Li+16].

3.3.1 Noisy-Follow-the-Perturbed-Leader (NFPL)

The NFPL algorithm is described in Algorithm 1. NFPL follows in the footsteps of FPL with
uniform noise but observes the estimated requests r̂t instead of the real requests rt. In particular,
at each time slot t, the algorithm generates γt from a multivariate uniform distribution with
uncorrelated components, constrained within the range [0, η]N , and it updates the decision vector xt

with the minimizer of ⟨x, r̂1:t−1 + γt⟩ over x ∈ X . The cost paid at time slot t is equal to ⟨rt, xt⟩.
The total cost of the NFPL algorithm is

NFPLT =
T∑

t=1
⟨rt, M(r̂1:t−1 + γt)⟩. (3.7)

We remark that Algorithm 1 is not just confined to the caching scenario discussed in Section 3.2.
Indeed, it is also applicable to any situation where the agent incurs costs represented by the equation
⟨rt, xt⟩.
Assumption 3.1. r̂t is an unbiased estimator of rt, i.e., E [̂rt] = rt.

Assumption 3.2. Let B̂ be the state space of r̂t. We assume the existence of the following constants:

Â = sup
r̂∈B̂
∥r̂∥1, R̂ = sup

x∈X ,r∈B̂
⟨r, x⟩, (3.8)

D = sup
x,y∈X

∥x− y∥1. (3.9)

Theorem 3.1 (Regret bound NFPL). Under Assumptions 3.1 and 3.2, the NFPL algorithm with

η =
√

R̂ · Â · T/D enjoys sublinear regret:

RT (NFPL) ≤ 2
√

R̂ · Â ·D · T . (3.10)

Proof. It is convenient to define the following two auxiliary quantities

ˆNFPLT =
T∑

t=1
⟨r̂t, M(r̂1:t−1 + γt)⟩, (3.11)

ˆOPTT = ⟨r̂1:T , M(r̂1:T)⟩. (3.12)

We compute the expectation—over {r̂t, γt}T1 —of the difference between the total cost of NFPL
and OPTT = ⟨r1:T , M(r1:T)⟩ as follows

E [NFPLT − OPTT]

= E
[
NFPLT − ˆNFPLT

]
+ E

[
ˆNFPLT − ˆOPTT

]
+ E

[
ˆOPTT − OPTT

]
. (3.13)

3.3 – 3.3.2 NFPL for Caching 33

We have:

E
[
NFPLT − ˆNFPLT

]
= 0, (3.14)

E
[

ˆOPTT − OPTT

]
≤ 0, (3.15)

E
[

ˆNFPLT − ˆOPTT

]
≤ 2

√
R̂ · Â ·D · T . (3.16)

The random vectors r̂t and M(r̂1:t−1 + γt) are independent, hence E [⟨r̂t, M(r̂1:t−1 + γt)⟩] =
⟨rt,E [M(r̂1:t−1 + γt)]⟩ and by linearity of the expectation we deduce (3.14). We have that

ˆOPTT ≤ ⟨r̂1:T , M(r1:T)⟩, we get then (3.15).
The quantity ˆNFPLT − ˆOPTT can be seen as the difference between the cost of an FPL

algorithm with uniform noise, that observes costs {r̂t}T1 , minus the cost incurred by the optimal
static allocation x∗ = M(r̂1:T). Therefore, applying [KV05, Theorem 1.1 a)] with ϵ = 1/η such

that η =
√

R̂ · Â · T/D, we get

E{γt}T
1

[
ˆNFPLT − ˆOPTT

]
≤ 2

√
R̂ · Â ·D · T

for any {r̂t}T1 , and by taking the expectation over the randomness of {r̂t}T1 in both sides of
the last inequality, we find (3.16). Plugging (3.14), (3.15) and (3.16) in (3.13), we deduce that
E [NFPLT − OPTT] ≤ 2

√
R̂ · Â ·D · T for every {rt}T1 , concluding the proof.

Remark 3.1. NFPL regret bound in Theorem 3.1 can be written as α · β where α = R̂ · Â/(R ·A),
β = 2

√
R ·A ·D · T , R = supx∈X ,r∈B̄⟨r, x⟩ and A = supr∈B̄∥r∥1. Observe that β is FPL’s

classical regret bound when the algorithm knows the exact costs [KV05, Theorem 1.1 a)]. It is easy
to verify that α is greater than or equal to 1 and can then be interpreted as the performance loss
the algorithm incurs due to the noisy costs.

3.3.2 NFPL for Caching

We apply NFPL to the caching problem (section 3.2.1), deriving r̂t from sampled requests. Two
methods are explored: NFPL-Fix, sampling a fixed number of requests within each batch, and
NFPL-Var, independently sampling each request within the batch with a fixed probability.

NFPL-Fix. The caching system samples b ≥ 1 requests uniformly at random from a batch of B
requests at each time slot. Let d̂t be the number of requests for each file in the sampled batch at
time step t. NFPL-Fix is Algorithm 1 with noisy request estimates r̂t given by

r̂t = B

b
· d̂t. (3.17)

Corollary 3.1 (Regret bound NFPL-Fix). NFPL-Fix with η = B
√

2T/
√

2C has sublinear re-
gret:

RT (NFPL-Fix) ≤ 2
√

2 ·B
√

C · T . (3.18)

34 CHAPTER 3 — Online Learning for Caching

Proof. Observe that with (3.17), we have that E [̂rt] = rt. Since ∥d̂t∥1 = b, then Â = B and
R̂ ≤ B. We have that D ≤ 2C, hence by applying Theorem 3.1 in this setting, the regret bound
readily follows concluding the proof.

NFPL-Var. The caching system samples each request within the batch of requests with a proba-
bility f > 0 at each time slot. Let ŝt be the number of requests for each file in the sampled batch at
time step t. NFPL-Var is Algorithm 1 with noisy request estimates r̂t expressed as

r̂t = 1
f
· ŝt. (3.19)

Corollary 3.2 (Regret bound NFPL-Var). NFPL-Var with η = B
√

2T/
(
f
√

2C
)

has sublinear
regret:

RT (NFPL-Var) ≤ 2
√

2 · B

f
·
√

C · T . (3.20)

Proof. Observe that with (3.19), we have that E [̂rt] = rt. Moreover, we observe that the maximum
of ∥r̂t∥1 is attained when the sub-batch includes all the requests from the batch, i.e., ∥ŝt∥1 = B. It
follows that Â = B/f and R̂ ≤ B/f . We have that D ≤ 2C, hence by applying Theorem 3.1 in
this setting, the regret bound readily follows concluding the proof.

For b = B and f = 1, request counts are exact, i.e., r̂t = rt, and both NFPL-Fix and NFPL-Var
coincide with the classic FPL. Using Corollary 3.1 or Corollary 3.2 we deduce the following
corollary.

Corollary 3.3 (Regret bound FPL caching). FPL with η = B
√

2T/
√

2C has sublinear regret:

RT (FPL) ≤ 2
√

2 ·B
√

C · T . (3.21)

The authors of [BBS20] proved regret guarantees for FPL applied to caching under perfect
knowledge of the requests when B = 1. We report the result here for completeness.

Theorem 3.2. [BBS20, Thm. 3] FPL applied to the caching problem with B = 1, learning rate
η = 1

4π(ln N)1/4

√
T
C , and noise vectors {γt}T1 , where γt/η is drawn from a standard multivariate

normal distribution, has sublinear regret. More specifically

RT (FPL) ≤ 1.51 · (ln N)1/4 ·
√

C · T . (3.22)

The comparison of Corollary 3.3 and Theorem 3.2 shows that our analysis is also of interest
when requests are exactly known. First, our bound (3.21) is also valid when the requests are batched,
which is of practical interest since updating the cache at each request might be computationally
impractical. Second, our bound does not depend on the catalog size, as (3.22) does, and in particular
it will not diverge as N goes to infinity.

3.4 – 3.4 Experiments 35

(a) Zipf (b) Akamai

0 10 20 30 40 50 60
Time step

0.980

0.983

0.985

0.988

0.990

0.993

0.995

0.998

1.000

Av
er

ag
e

M
iss

 R
at

io

0.990

0.992
OPT
FPL
NFPL f=0.5
LFU
LRU

(c) Round-robin

Figure 3.1: Average miss ratio, C = 100.

36 CHAPTER 3 — Online Learning for Caching

0.05 0.10 0.15 0.20 0.25 0.30
Sampling rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

M
iss

 R
at

io

NFPL-Var C=10
NFPL-Fix C=10
OPT C=10
NFPL-Var C=100
NFPL-Fix C=100
OPT C=100

(a) Zipf

0.05 0.10 0.15 0.20 0.25 0.30
Sampling rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

M
iss

 R
at

io

NFPL-Var C=10
NFPL-Fix C=10
OPT C=10
NFPL-Var C=100
NFPL-Fix C=100
OPT C=100

(b) Akamai

0.2 0.4 0.6 0.8 1.0
Sampling rate

0.990

0.992

0.994

0.996

0.998

1.000

Av
er

ag
e

M
iss

 R
at

io

NFPL-Var C=10
NFPL-Fix C=10
OPT C=10
NFPL-Var C=100
NFPL-Fix C=100
OPT C=100

(c) Round-robin

Figure 3.2: Average miss ratio vs. sampling probability.

3.4 Experiments

We conducted simulations of NFPL-Fix and NFPL-Var and other existing policies, using both
synthetic and real-world traces. Details about the traces are presented in Section 3.4.1, while
Section 3.4.2 discusses the caching baselines. We evaluate the effectiveness of our proposed
algorithms, NFPL-Fix and NFPL-Var, from two perspectives. First, in Section 3.4.3, we compare
the NFPL family of algorithms to traditional caching algorithms. Second, we compare NFPL-Fix
and NFPL-Var and show the effect of sampling on their performance in Section 3.4.4.

3.4.1 Traces

Zipf trace. We generate a total of 5× 106 requests from a catalog of N = 104 files following
an i.i.d. Zipf distribution with exponent α = 1. The Zipf distribution is a popular model for the
request process in caching [Bre+99].

3.4 – 3.4.2 Caching policies 37

Akamai trace. The request trace, sourced from Akamai CDN as documented in [Neg+17],
encompasses several days of file requests, amounting to a total of 2× 107 requests for a catalog
comprising N = 103 files.

Round-robin trace. We generate a total of 106 file requests from a catalog comprising N = 104

files in a round-robin fashion. The round-robin trace is commonly considered as an adversarial
trace [BBS20].

3.4.2 Caching policies

We compare our methods (NFPL-Fix and NFPL-Var) with the optimal static cache allocation with
hindsight (OPT), FPL with perfect knowledge of the requests (equivalent to NFPL-Var with f = 1),
as well as two classic caching policies: Least-Frequently-Used (LFU) and Least-Recently-Used
(LRU). Upon a miss, LFU and LRU evict from the cache the least popular file and the least recently
requested file, respectively. FPL and NFPL policies are configured with T equal to the number of
batches in the corresponding trace.

All the aforementioned caching policies are evaluated with the average miss ratio computed as
follows

1
Bt

t∑
τ=1
⟨rτ , xτ ⟩. (3.23)

For NFPL-Fix and NFPL-Var, the average miss ratio is averaged over M = 50 runs, considering
different noisy request estimates {r̂t}T1 and noise vectors {γt}T1 . To account for the variability
across the runs, we report the first and ninth deciles of the average miss ratio. In all experiments,
the batch size B is set to 200.

3.4.3 NFPL vs. classical policies

We simulate NFPL-Var, with sampling probability f = 0.5, FPL, LRU, LFU, and OPT over all the
presented traces. In Figure 4.3, we show the average miss ratio at each time step t.

In the Zipf trace, files popularity does not change over time and LFU rapidly discerns the most
popular files and subsequently converges to OPT. However, due to the noise γt, FPL requires a
longer duration to accurately determine the files to be stored. NFPL, on the other hand, grapples
with two sources of noise: the inherent noise γt and the additional noise due to sampling. As a
result, NFPL takes even longer to adjust. Nevertheless, both FPL and NFPL outperform LRU,
whose missing ratio fails to converge to OPT.

In the Akamai trace, it is plausible to anticipate fluctuations in popularity over time, and
requests’ temporal correlations. Such patterns can be advantageous for LRU. In fact, LRU now
performs almost on par with LFU. Notably, both FPL and NFPL appear to be converging to the
performance of OPT.

Under the round-robin trace, optimality can be achieved with any static allocation of C distinct
files. However, both LRU and LFU demonstrate equally disappointing performances. This is
because at any time LRU stores the C most recently requested files, while LFU retains the C most
frequently requested ones, but the next request is not for any of these cached files.

38 CHAPTER 3 — Online Learning for Caching

In contrast, both NFPL-Var and FPL showcase performances that are close to optimal. This
reaffirms the resilience and adaptability of online learning policies across request processes as
different as the three traces we considered. Intriguingly, NFPL-Var, which is inherently “noisier,”
outperforms FPL to some extent. This phenomenon can be explained: the noisier r̂1:t +γt, the more
the cache tends to store a random set of files disregarding past requests. Such strategy is precisely
up for the round-robin trace.

3.4.4 NFPL-Fix vs. NFPL-Var

We compare the performance of NFPL-Fix, NFPL-Var, and OPT on all the considered traces for two
cache sizes: C ∈ {10, 200} for the Zipf trace and C ∈ {10, 100} for the Akamai and round-robin
traces. Figure 3.2 illustrates the average miss ratio for all the aforementioned caching policies when
varying sampling probabilities, i.e., f for NFPL-Var and b/B for NFPL-Fix.

Across the various traces we analyzed, the performance difference between NFPL-Fix and
NFPL-Var is consistently minimal for all the sampling rates. This indicates that the selection of the
sampling method may exert only a marginal impact on the performance of NFPL.

The influence of the sampling rate varies across the traces, aligning with the patterns previously
noted in Figure 4.3. For the Zipf and Akamai traces, the performance of both NFPL-Fix and NFPL-
Var tends towards that of OPT with increasing sampling rates. This is attributable to the relatively
stationary nature of these traces, where the count of past requests serves as a good predictor for
future requests; thus, more precise estimates bolster performance. In contrast, the round-robin trace
benefits from noisier estimates, as it is preferable to overlook past requests in this scenario. As a
result, the performance of NFPL-Fix and NFPL-Var deteriorates with a rising sampling rate.

3.5 Conlusion

In this chapter, we introduce the Noisy-Follow-the-Perturbed-Leader (NFPL) algorithm, a variant
of the Follow-the-Perturbed-Leader (FPL) algorithm that incorporates noisy cost estimates, and
provide conditions on the cost estimates estimator for which NFPL achieves sublinear regret. In
the context of the caching problem, we propose two NFPL algorithms, NFPL-Fix and NFPL-Var,
based on sampling, that achieve sublinear regret. By conducting experiments on both synthetic and
real-world traces, we show the impact of request sampling on the performance of NFPL. In future
work, we plan to investigate the regret of NFPL when the request estimator is based on approximate
counting data structures such as the Count-Min Sketch [CM05a].

CHAPTER 4
Similarity Caching

In the preceding chapters, our analysis focused on frequency-based caching policies. However,
caching strategies often integrate recency considerations alongside frequency. Among these, the
Least Recently Used (LRU) policy stands out, valued for its simplicity and performance. LRU
has been studied under various request models, with the Time-To-Live (TTL) approximation
proving effective in estimating LRU’s hit ratio under an i.i.d. request process. Nevertheless, LRU
extensions in the context of similarity caching, such as RND-LRU, remain an area requiring
attention. Similarity caching allows requests for an item to be fulfilled by a similar item. In this
chapter, we delve into the extension of the TTL approximation to accommodate similarity caching.
Specifically, we introduce a novel method for estimating the hit ratio of the similarity caching
policy RND-LRU. Our proposed approach, named the RND-TTL approximation, introduces the
RND-TTL cache model and tunes its parameters to estimate RND-LRU’s hit ratio. The parameter
tuning involves solving a fixed point system of equations for which we provide an algorithm for
numerical resolution and sufficient conditions for its convergence. Our approach for approximating
the hit ratio of RND-LRU is evaluated on synthetic and real-world traces.

4.1 Introduction

Many applications require to retrieve items similar to a given user’s request. For example, in
content-based image retrieval [Fal+08] systems, users can submit an image to obtain other visually
similar images. A similarity cache may intercept the user’s request, perform a local similarity search
over the set of locally stored items, and then if the search result is evaluated satisfactorily, provide
it to the user. The cache may thus speed up the reply and reduce the load on the server, at the cost
of providing items possibly less similar than those provided by the server.

Originally proposed for content-based image retrieval [Fal+08] and contextual advertis-
ing [Pan+09], similarity caches are now a building block for a large variety of machine learning
based inference systems for recommendations [Ser+18], image recognition [DGN17; Ven+18] and
network traffic [Fin+22] classification. In these cases, the similarity cache stores past queries and
the respective inference results to serve future similar requests. Motivated by the large number
of applications, much effort has been devoted recently to formalize similarity caching [NGL21;
GLN21] as well as to propose new caching policies [Zho+20; Sab+21; SNC23].

RND-LRU is a randomized similarity caching policy proposed in the seminal paper [Pan+09].
It is a variant of the least recently used (LRU) policy adapted to the similarity caching setting.
We still lack an analytical evaluation of RND-LRU’s performance. The aim of this chapter is to

39

40 CHAPTER 4 — Similarity Caching

fill this gap. Our objective is to compute the hit ratio, i.e., the fraction of requests satisfied by the
RND-LRU cache.

Computing the hit ratio is a challenging task, even for the classic LRU policy under the
Independent Reference Model (IRM), [Fag77]. Its computational cost is exponential in both the
cache size and the number of items [WK71; DT90]. The so-called Che’s or time-to-live (TTL)
approximation is a highly efficient method for accurately estimating the hit ratio of LRU under IRM
[CTW02; Cho+14]. The TTL approximation leverages the analysis of an opportune cache—which
benefits from decoupling caching decisions across items—and utilizes its hit ratio as an estimate
for the hit ratio of LRU. Many studies [Fag77; FRR12; LT15; JNT18] have provided theoretical
support to the TTL approximation under different assumptions regarding the request process.

As items in a RND-LRU cache are strongly coupled, analyzing RND-LRU becomes even more
challenging. In fact, in classic caching, an item in the cache serves only requests for itself, while in
similarity caching, a cached item can serve requests for a set of similar items as long as neither
these nor their most similar items are cached.

In this chapter, we extend the TTL approximation to RND-LRU, by introducing the RND-TTL
approximation; the latter is based on a novel similarity caching model, that we call RND-TTL. This
approximation involves tuning the parameters of the RND-TTL model to estimate the hit ratio of
RND-LRU. We stress that there has been no prior analysis of the performance of RND-LRU. Our
contributions can be summarized as follows:

1. We propose a novel similarity caching model named RND-TTL and we compute its hit ratio
under IRM.

2. We derive constraints on the RND-TTL cache model’s parameters to approximate RND-
LRU’s hit ratio.

3. The parameter tuning process for the RND-TTL model involves solving a system of fixed
point equations; we present a parameterized iterative algorithm to solve this system and
provide a practical method for selecting the algorithm’s parameter.

4. We provide sufficient conditions for the iterative algorithm to converge.

5. We evaluate the accuracy of our RND-TTL approximation to estimate the hit ratio of RND-
LRU on both synthetic and real-world traces.

The rest of the chapter is organized as follows: We present background material on similarity
caching and the TTL approximation in Section 4.2 and introduce notation and assumptions in
Section 4.3. We define the RND-TTL approximation in Section 4.4 and explain our iterative
algorithm for tuning the parameters of the RND-TTL cache in Section 4.5. We evaluate the
performance of our RND-TTL approximation in Section 4.6 on both synthetic and real word traces
and summarize our findings in Section 4.7. We provide detailed proofs and supplementary material
in the appendices (B.1–B.12).

4.2 – 4.2 Background 41

4.2 Background

4.2.1 Similarity Caching

4.2.1.1 Similarity Search

In similarity search systems, users can query a remote server, storing a set of items I, to send
the k most similar items to a given item n, according to a specific definition of similarity. In
practice, items are often represented by Euclidean vectors (called embeddings) [McA+15] so that
the dissimilarity cost, dis(., .) : I2 −→ R+, can be selected to be an opportune distance between the
embeddings.

An instance of a similarity search system is the content-match system, which serves as a
component in Internet advertising frameworks. Its purpose is to display contextual advertisements
(ads) on a publisher’s webpage upon user access [Pan+09]. Specifically, the task involves sending a
set of k relevant ads to a page, taking into account both its content and the user profile. To evaluate
the appropriateness of an ad for a particular page, a common approach involves representing both
the page and the ad as vectors within the same high-dimensional metric space. The distance between
these representative vectors acts as a measure of suitability, where a smaller distance signifies
a higher suitability of the ad for the page. In this context, the content-match system conducts a
similarity search to identify the k most relevant ads for the page.

Another example of a similarity search system is the Content-Based Image Retrieval (CBIR)
system, which answers queries for an image by the k most similar images [Fal+08]. The similarity
between images is measured via the distance between their representative vectors in a high-
dimensional metric space.

4.2.1.2 Similarity Cache

In practical scenarios, meeting the time constraints for similarity search queries becomes chal-
lenging, especially when dealing with a large catalog size. Addressing this challenge, the seminal
papers [Fal+08; Pan+09] advocate deploying a cache near users. This cache, known as a similarity
cache, operates by maintaining a key-value pair for each item in a subset S of I, where S has
cardinality C. The key of an item n in S is its identifier, whereas the value of n is a list containing
the k′ ≥ k closest items to n (including n), and their corresponding embeddings, within the set I . It
follows that the similarity cache stores W ≤ C · k′ distinct items. A similarity caching policy may
directly answer a similarity search query for an item n by selecting k items out of the W cached
items based on a similarity measure between items’ embeddings. The similarity caching policy
may then provide answers potentially different from the actual k closest neighbors. For example,
SIM-LRU [Pan+09] is a similarity caching policy that operates in two steps to answer a similarity
search for an item n:

1) it locates the closest item to n in S, namely n̂,

2) if n̂ is found to be similar enough to n, SIM-LRU performs a k-nearest-neighbors search
for n within n̂’s value, that is, within the k′ items that are closest to n̂, and answers n’s
request with the resulting k items.

42 CHAPTER 4 — Similarity Caching

It follows that having a larger k′ improves the quality of the approximate answer for the similarity
search. Finally, a similarity cache reduces fetching costs at the expense of approximate answers,
offering an efficient solution for handling time-sensitive similarity search queries.

4.2.1.3 Hit Ratio and Utility

Exact caching policies aim at maximizing the hit ratio given a fixed cache capacity. In similarity
caching, however, hits include both exact and approximate ones. Therefore, a policy that maximizes
the hit ratio might be settling for low-quality answers.

Neglia et al. [NGL21] introduced an objective for similarity caching policies. They assume
the existence of a nonnegative approximation cost for serving requests for an item x with another
item y, denoted Ca(x, y). They also assume a fixed cost Cr for retrieving an item from the original
server. The objective of the similarity caching policy is to minimize the total incurred cost over a
time horizon.

An earlier formulation for an objective for similarity caching policies was proposed by Pandey
et al. [Pan+09]. They assume that there exists a utility function that quantifies the satisfaction of
the users by the answers provided via the similarity caching policy. The objective for similarity
caching proposed by Pandey is to maximize the utility function under a constraint on the maximum
tolerated delay. This constraint is application-dependent and can be expressed as a restriction on
the minimal hit ratio.

Observe that adjusting the criterion of similarity between items in a similarity caching policy
provides some flexibility. A looser criterion increases the portion of approximate hits with respect
to exact hits thereby decreasing simultaneously the average response delay and the utility function.
On the other hand, a stricter similarity criterion reduces the prevalence of approximate hits and as
a result, the hit ratio decreases whereas the average response delay and the utility function both
increase. Our contribution in this chapter is to quantify the hit ratio of the RND-LRU policy for a
given criterion of similarity.

4.2.1.4 RND-LRU and SIM-LRU similarity caching policies

In exact caching, LRU manages a list of cached item keys based on access order. When the LRU
cache receives a request for an item n, it checks its presence. If n is cached, the request is a hit,
and the response is sent immediately to the user, moving n’s key to the list’s front. Otherwise, the
request is a miss, and the request goes to the server. Upon obtaining n from the server, it is added to
the cache, and its key is placed at the front of the list. The least recently used item (bottom of the
list) is evicted, maintaining the fixed cache size.

RND-LRU [Pan+09] is a popular randomized LRU-based similarity caching policy. RND-LRU
maintains LRU’s procedure but adapts the hit definition for similarity caching. RND-LRU keeps
an ordered list, L, of the items in the set S, defined in Section 4.2.1.2. Unlike LRU, even if n
is not in L, RND-LRU can consider a request for n a hit. RND-LRU can answer n’s similarity
search request using its closest item in S, namely, n̂ ≜ arg minm∈L dis(n, m). More specifically,
the request for n is probabilistically answered by sending k closest neighbors of n among n̂’s k′

closest neighbors. RND-LRU’s randomness lies in parameters q = (qm(n))n,m∈I2 . For every pair
of items n and m, qm(n) denotes the probability that a candidate item m is used to respond to a

4.2 – 4.2.1 Similarity Caching 43

query for n, given that m = n̂. The function qm(n) decreases with the dissimilarity between m
and n.

Algorithm 2: RND-LRU [Pan+09]
1: Input:
2: Sequence of requests (r1, . . . , rJ) of lentgh J
3: Initial ordered list of cached items L0 = (l0,1, . . . , l0,C)
4: Probabilities (qn(m))n,m∈I2

5: Output:
6: Ordered list of cached items at each time step j ∈ {1, . . . , J}.
7: Algorithm:
8: for j = 1 to J do
9: Lj = (lj,1, . . . , lj,C)← Lj−1

10: Compute the closest item to rj in Lj−1 as r̂j = arg minm∈Lj−1 dis(rj , m)
11: Generate a uniform random number δ ∈ [0, 1]
12: if δ ≤ qr̂j (rj) then
13: Case 1: Hit, encompassing exact hit and approximate hit
14: Lj ←MoveToFront(Lj−1, r̂j)
15: else
16: Case 2: Miss
17: Lj ←InsertAtFront(Lj−1 \ lj−1,C , rj)
18: end if
19: end for
20: return L1, . . . , LJ

The details of RND-LRU are presented in Algorithm 2. Upon receiving a request at time step t
for item rt, RND-LRU locates the closest item to rt in the cache, denoted as r̂t (line 10). A random
sample δ is generated uniformly at random in the interval between 0 and 1 (line 11). If δ ≤ qr̂t(rt)
we have a hit (line 12), and the query for rt is answered using the k closest neighbours of rt among
the k′ neighbours of r̂t. Note that hits include approximate hits and exact hits (r̂t = rt). After a
hit, the cache is rearranged by moving r̂t’s key to the front of the list (line 14). Alternatively, if
δ > qn̂(n) we have a miss: the request is forwarded to the original server to retrieve the list of k′

closest items to rt in I, out of which the closest k items are provided to the user. RND-LRU evicts
the least recently used key at the bottom of the list and its corresponding key-value pair in the cache.
It then inserts the new key for rt at the front of the list and the corresponding key-value pair into
the cache (line 17).

SIM-LRU [Pan+09] is also an LRU-based similarity caching. It has a similarity threshold d
and uses n̂ to serve n’s request only if dis(n, n̂) ≤ d. SIM-LRU is a particular case of RND-LRU
such that qm(n) = 1 if dis(m, n) ≤ d and qm(n) = 0 otherwise. Note that LRU is equivalent to
RND-LRU when k′ = k = 1, qm(n) = 1 if m = n and qm(n) = 0 otherwise.

44 CHAPTER 4 — Similarity Caching

Table 4.1: Table of notation.

Basic parameters
I set of items
N = |I| catalog size
C cache capacity
λn arrival rate of requests for item n
dis(·, ·) function measuring the dissimilarity between items
d similarity threshold

RND-LRU and R-TTL
LRND-LRU(t) ordered list of cached items in RND-LRU at time t

Ω̃ state space of {LRND-LRU(t), t ≥ 0}
Tn initial timer duration for item n in R-TTL
π̃ limiting distribution of {LRND-LRU(t), t ≥ 0}
µ limiting distribution of the set of cached items in R-TTL
λ̃i

n insertion rate of item n in RND-LRU
λ̃r

n refresh rate of item n in RND-LRU
H hit ratio of RND-LRU
qn(m) probability to use candidate n to serve a request for m
N (n) neighbors of item n
N c[n] neighbors of item n including n
Nm(n) items in N (n) strictly closer to n than m
N c

m[n] items in N c[n] strictly closer to n than m

RND-TTL
SRND-TTL(t) set of cached items in RND-TTL at time t
Ω state space of {SRND-TTL(t), t ≥ 0}
π limiting distribution of {SRND-TTL(t), t ≥ 0}
pi

n insertion probability of item n given that n is not cached
λi

n insertion rate of item n given that n is not cached
λr

n timer refresh rate of item n given that n is cached
Xn(t) 1 if item n is in cache at time t and 0 otherwise
on fraction of time item n spent in the cache
hn hit probability of item n
Tn initial timer duration for item n

4.2 – 4.2.2 TTL Approximation for LRU Cache 45

4.2.2 TTL Approximation for LRU Cache

4.2.2.1 TTL Cache

Time to Live (TTL) serves as a mechanism to limit the duration of data within a network. Various
applications, such as Content Delivery Networks (CDNs) and the Domain Name System (DNS),
leverage TTL to dictate the eviction time for cached items [CK03; CA13; ACN16; Mou+19]. In
TTL caching policies, each cached item is associated with a timer, triggering eviction upon timer
expiration. Analyzing the hit ratio is more straightforward in a TTL cache than in an LRU cache
thanks to the decoupling of caching decisions across items in the former. The seminal work by
Jung et al. [JBB03] introduces an analytical model for the hit ratio of a TTL cache, assuming
that the inter-arrival times for each item are i.i.d. random variables, characterizing the request
process as a renewal process. Subsequent research has explored adapting TTL choices to the request
process [FRP16; Bas+18], and the analysis has been extended to encompass a network of TTL
caches [Cho+14; CA13; ACN16; Ber+14]. A comprehensive overview of TTL caching policies is
provided in [Has+23].

TTL caches are efficient modeling tools to analyze caching policies [GLM16]. In particular, a
TTL caching policy with timers resets per hit was proposed as a model for LRU [Fag77; CTW02].
This TTL caching policy has enough storage for all items, and assigns a deterministic timer with
value Tn to each item n whose expiration triggers eviction. Upon a request for a noncached item n,
i.e., a miss, n is added to the cache with a timer duration of Tn. Conversely, when a request for a
cached item n is received, i.e., a hit, the timer associated with n is reset to the original value Tn.
In this chapter, except otherwise noted, we refer to TTL caches with resets per hit simply as TTL
caches.

4.2.2.2 TTL Approximation

Fagin [Fag77] proposes an efficient method to estimate, under IRM, the hit ratio of the LRU caching
policy. This method approximates the hit ratio of LRU, with the hit ratio of a discrete-time TTL
cache* with a specific choice of TTL values. Specifically, the TTL value Tn for each item n is set
to the characteristic time tC [CTW02], which guarantees that the expected number of cached items
in the TTL cache is equal to the cache capacity C of the LRU cache. This approximation is proven
to be asymptotically accurate [Fag77]. Che et al. [CTW02] rediscovered Fagin’s method under
Poisson requests. Fagin’s approximation is later extended to other caching policies and under more
generalized assumptions on the request process [FRR12; LT15; JNT18; GLM16; GV17], earning
the name TTL approximation in the literature.

In a discrete-time TTL cache, a hit for item n occurs whenever two consecutive requests for n
are separated by strictly less than Tn requests. Under IRM, the request for any item n occurs with
probability pn independently of past requests, and then the hit probability for n in a discrete-time
TTL cache is given by hn = 1− (1− pn)Tn . Fagin’s approximation is thus equivalent to setting,
for every n, Tn to the characteristic time tC which verifies:∑

n∈I

(
1− (1− pn)tC

)
= C. (4.1)

*A discrete-time TTL policy is equivalent to the working set policy used by Fagin.

46 CHAPTER 4 — Similarity Caching

The above expression allows the computation of tC , e.g., by using a bisection method. The hit ratio
for LRU, H , is then approximated as:

H ≈
∑
n∈I

pn

(
1− (1− pn)tC

)
. (4.2)

Another variant of the TTL approximation assumes for every item n that the request process
is Poisson with rate λn, i.e., the inter-arrival time for n is exponentially distributed with mean
1/λn [CTW02; FRR12]. This approach is similar to Fagin’s method where for every n, Tn is set to
the characteristic time tC . However, the hit probability for n in the TTL cache becomes:

hn = 1− e−λntC , (4.3)

and tC verifies: ∑
n∈I

(
1− e−λntC

)
= C. (4.4)

The hit ratio of LRU is then approximated as

H ≈
(

1∑
i∈I λi

)
·
∑
n∈I

λn

(
1− e−λntC

)
. (4.5)

The assumption of a Poisson request process for every item n is a particular case of IRM where the
corresponding probability for n to be requested is λn/

∑
i∈I λi. This specific IRM assumption leads

to a formula for estimating the hit ratio of LRU (see (4.5)) different from the formula proposed
by Fagin (see (4.2)). However, while the additional Poisson assumption is relevant for the hit
probability of the TTL cache, the hit ratio of LRU is insensitive to this additional assumption.
Indeed, both (4.2) and (4.5) are asymptotically accurate approximations to LRU under suitable
conditions [Fag77; FRR12; JNT18].

4.3 Notation and Assumptions

Recall from Section 4.2.1.4 that the use of key-value pairs in SIM-LRU and RND-LRU essentially
converts the search for the k closest items into a search for the closest item key in the cache. To
lighten the presentation, we will simply say from now on that the similarity cache replies to a
request for n with the closest item in the cache.

We list in Table 4.1 the main notation that we use. We assume equal size items and, as
in [McA+15], assume that they can be represented by Euclidean vectors, such that an opportune
distance between vectors informs on the dissimilarity cost, dis(., .), between pairs of items. We
maintain the same notation used in Section 4.2: I denotes the set of items with |I| = N , n̂ is the
closest cached item to n, RND-LRU is parameterized by the vector q = (qm(n))n,m∈I2 , where
qm(n) is the probability that a candidate item m is used to reply to a query for n given that m = n̂,
and SIM-LRU is parameterized by the similarity threshold d. We assume that qn(n) = 1.

Under RND-LRU a request for item n could be served by an item m such that qm(n) > 0.
Therefore, it is convenient to define for n the set of such candidates items as N c[n] ≜ {m ∈ I :
qm(n) > 0}. We call the elements in N c[n] distinct from n the neighbors of n and denote their set

4.4 – 4.4 RND-TTL Approximation for Similarity Caching 47

as N (n) ≜ N c[n] \ {n}. For convenience, we define similarly the sets Nm(n) and N c
m[n]: these

are the respective subsets of N (n) and N c[n], designating items that are closer to n than m is.
Namely, Nm(n) ≜ {l ∈ N (n) : dis(n, l) < dis(n, m)} and N c

m[n] ≜ {l ∈ N c[n] : dis(n, l) <
dis(n, m)}. We denote the ordered list of cached items at any time t in RND-LRU as LRND-LRU(t).
As commonly used, 1(A) stands for the indicator function that A is true.

Throughout the chapter, we assume that requests for items follow the Independent Reference
Model (IRM). We also make use of the following assumptions.

Assumption 4.1. Requests for items are mutually independent Poisson processes. The request rate
for item n is λn and

∑
i∈I λi = 1.

Assumption 4.1 is a particular case of IRM where the probability of a request for item n
coincides with its request rate. However, while Assumption 4.1 is relevant for the hit probability of
the TTL-based similarity caching model that we introduce later, our approximation for the hit ratio
of RND-LRU can be employed under the more general IRM assumption. For the sake of simplicity,
we refer to both the rate of the request of item n and its probability of being requested as λn. Under
Assumption 4.1, the ordered list of cached items in RND-LRU, namely {LRND-LRU(t), t ≥ 0}, is a
continuous time Markov chain with finite state space denoted as Ω̃.

Assumption 4.2. {LRND-LRU(t), t ≥ 0} has a limiting distribution that we denote as π̃ = (π̃L)L∈Ω̃.

Assumption 4.2 eliminates cases where the hit ratio of RND-LRU depends on the initial
list of cached items LRND-LRU(0). This assumption is verified when RND-LRU’s Markov chain is
irreducible. A sufficient condition for irreducibility is that qm(n) < 1 for every n ̸= m.

Assumption 4.3. Items inN (n) can be strictly ordered according to their dissimilarity with respect
to n, i.e., for any m, l ∈ N (n) and m ̸= l, we have dis(n, m) ̸= dis(n, l).

4.4 RND-TTL Approximation for Similarity Caching

Inspired by the TTL approximation that allows us to approximate the hit ratio of an LRU cache,
we introduce in this section the RND-TTL cache model and the RND-TTL approximation method
to estimate the hit ratio of RND-LRU. Firstly, in Section 4.4.1, we describe the RND-TTL cache
model, highlighting its specific characteristics. Secondly, in Section 4.4.2, we explain how the
RND-TTL model can capture the dynamics and behavior of RND-LRU. Thirdly, in Section 4.4.3,
we present the RND-TTL approximation that imposes specific constraints on the RND-TTL caches’
parameters to estimate the hit ratio of RND-LRU.

4.4.1 The RND-TTL Caching Model

Our objective in this section is to introduce a caching model that allows to extend the TTL
approximation in the scope of estimating the hit ratio of RND-LRU. We present in the following a
first extension (called R-TTL) of the TTL cache. While intuitive, this extension suffers from strong
coupling between items, which led us to devise another extension (called RND-TTL) enabling us
to estimate the hit ratio.

48 CHAPTER 4 — Similarity Caching

4.4.1.1 R-TTL: A TTL-Based Similarity Caching Policy

In contrast to the conventional Least Recently Used (LRU) caching strategy, RND-LRU, as detailed
in Section 4.2.1.4, deviates solely in its characterization of hits or misses by permitting approximate
hits. The Time-to-Live (TTL) cache, illustrated in Section 4.2.2.1, has been demonstrated to
asymptotically capture the performance of LRU when its parameters are selected according to the
TTL approximation in Section 4.2.2.2.

Building upon this understanding, we introduce a natural extension of the TTL cache tailored to
emulate RND-LRU, denoted as R-TTL. This caching policy encompasses parameters that include
the timers durations (Tn)n∈I , akin to those in a TTL cache, and (qm(n))n,m∈I2 , where qm(n)
refers to the probability that a request for item n is satisfied by item m under the condition that m
is the closest to n in the cache. R-TTL maintains an analogous procedural framework as the TTL
cache but embraces RND-LRU’s definition of hits or misses.

We provide Algorithm 4 (in B.1) that can be used to simulate R-TTL. Observe how RND-LRU
(see Algorithm 2) and R-TTL have in common the rules used to determine when and if items should
be used to serve a given request. However, whereas an item in a RND-LRU cache can be evicted as
a result of a request arrival that cannot be served, in R-TTL evictions occur after TTL reaches zero.
In addition, a refresh in a RND-LRU cache corresponds to a “move to front” operation, whereas
in R-TTL, it corresponds to a TTL reset. Note that R-TTL is versatile, as we can adjust the hit
probability of an item n by controlling its timer duration Tn.

A natural extension of the TTL approximation, presented in Section 4.2.2.2, to RND-LRU, is
to approximate the hit ratio of RND-LRU with the hit ratio of R-TTL, such that for every item n,
the timer duration Tn is set to the characteristic time guaranteeing that the expected number of
cached items in R-TTL is equal to the cache capacity C of RND-LRU. Unfortunately, while caching
decisions are decoupled in a TTL cache, it is not the case for R-TTL because (i) an item might
not be admitted in the cache if one of its neighbors is cached and (ii) an item’s timer might be
reset by requests for one of its neighbors. The coupling in the caching decisions of R-TTL makes
computing its hit ratio or the characteristic time challenging even under IRM and hence also the
application of the TTL approximation. For this reason, we propose another TTL cache model for
RND-LRU, inspired by R-TTL, that decouples the caching decisions. We refer to this TTL cache
model as RND-TTL.

4.4.1.2 RND-TTL Model for RND-LRU

The RND-TTL cache model is parameterized by the vector of TTLs T = (Tn)n∈I and by two
additional vectors λr = (λr

n)n∈I and pi = (pi
n)n∈I as described next. The parameters T and λr

dictate how long items remain in the cache, while pi characterizes the cache insertion probability.
In the RND-TTL cache, each item is assigned a timer upon its insertion in the cache and is

evicted from the cache when its timer expires. Item n’s timer is initialized with the duration Tn and
is reset to Tn, when n is cached, according to a Poisson process with rate λr

n (the superscript “r”
refers to “reset” or “refresh”).

Upon a request for an item n, either n is in the cache and is used to fulfill the request or it is not
in the cache which gives rise to the two following possible scenarios:

4.4 – 4.4.1 The RND-TTL Caching Model 49

The request for n results in a cache miss and consequently item n is inserted into the cache.
This scenario occurs with probability pi

n (the superscript “i” refers to “insertion”).

The request is fulfilled by the nearest item to n in the cache*, which occurs with probabil-
ity 1− pi

n.

Note that the above model is inspired by the behavior of R-TTL described in the previous
section while ensuring that the dynamics of items are decoupled from each other as in traditional
TTL systems. Indeed, upon a request for a noncached item n, the insertion probability of n depends
on the set of cached items in R-TTL while it is always equal to pi

n in RND-TTL. Moreover, a
request for an item m might reset item n’s timer, when n is cached in R-TTL, while the reset
process for item n’s timer is Poisson with rate λr

n independently from other items’ requests in
RND-TTL. The parameters λr

n and pi
n can be set according to the modeling purposes. We show

later on that T, λr and pi can be set in such a way as to capture the behavior of RND-LRU, with
the coupling between items reflected through a parametrization of these values.

4.4.1.3 Occupancies in RND-TTL

We are interested in computing the fraction of time on spent by item n in the RND-TTL cache in
the stationary setting. Let {Xn(t), t ≥ 0} be the stochastic process taking value 1 when item n is
in the cache and 0 otherwise. The occupancy on is formally written as follows.

on ≜ lim
t→+∞

1
t

∫ t

0
1(Xn(u) = 1) du . (4.6)

Proposition 4.1 (Occupancy). Under Assumption 4.1, the occupancy in the RND-TTL cache of
item n is expressed as:

on =
(1

λi
n

· λr
n

eλr
nTn − 1 + 1

)−1
, (4.7)

where

λi
n = λn · pi

n . (4.8)

Proof. The result follows from a renewal argument, where E
[
T On

n

]
and E

[
T Off

n

]
are the mean

time that an item resides on and off the cache, per cycle,

on =
E
[
T On

n

]
E [T Off

n] + E [T On
n] =

(
E
[
T Off

n

]
· 1
E [T On

n] + 1
)−1

. (4.9)

In the above expression, E
[
T On

n

]
is the mean duration of a busy period of an M/D/∞ queue with

arrival rate and mean residence time given by λr
n and Tn, respectively,

E
[
T On

n

]
= 1

λr
n

(
eλr

nTn − 1
)

. (4.10)

*We assume that the cache statically stores a tombstone item whose distance to all items is infinite. Whenever a
request arrives in an empty cache, the tombstone item is returned as the closest item in the cache.

50 CHAPTER 4 — Similarity Caching

E
[
T Off

n

]
is the mean time to insert an item after it is removed,

E
[
T Off

n

]
= 1

λi
n

. (4.11)

For additional details, we refer the reader to Appendix B.2 page 82.

We stress that under Assumption 4.1, {Xn(t), t ≥ 0} has limiting distribution given by the
occupancy, namely,

lim
t→+∞

Pr (Xn(t) = 1) = on, lim
t→+∞

Pr (Xn(t) = 0) = 1− on . (4.12)

The above equation can be justified thanks to [Ros95, Thm. 3.4.4].

4.4.1.4 Distribution of Set of Cached Items

We denote the set of cached items in RND-TTL at time t as SRND-TTL(t). Formally,

SRND-TTL(t) = {n ∈ I : Xn(t) = 1} . (4.13)

We denote the state space of the stochastic process {SRND-TTL(t), t ≥ 0} as Ω. In TTL-based policies
such as RND-TTL, Ω = 2I , where 2I denotes the power set of I. Observing that the caching
decisions in the RND-TTL cache are independent across items and that {Xn(t), t ≥ 0} has a
limiting distribution for any item n under Assumption 4.1, it follows that {SRND-TTL(t), t ≥ 0}
has a limiting distribution that we denote as π = (πS)S∈Ω. Using (4.12), for any set of cached
items S ∈ Ω, the corresponding limiting probability πS can be computed as follows:

πS =
∏
n∈S

on ·
∏

m/∈S

(1− om) . (4.14)

4.4.1.5 Item’s Hit Probability

We now give an explicit expression for the hit probability for each item in the RND-TTL cache.

Proposition 4.2 (Item’s hit probability). Under Assumption 4.1, the hit probability hn for item n
in the RND-TTL cache is given by:

hn = on + (1− on) · (1− pi
n) , (4.15)

where on is given in (4.7).

Proof. The result follows from observing that in RND-TTL, whenever an item n is in the cache, an
exact hit occurs upon a request for n. Conversely, when n is not in the cache, only an approximate
hit may occur, with probability 1− pi

n. For further details, we refer the reader to Appendices B.3
and B.4 page 84.

4.4 – 4.4.2 Relation Between RND-LRU and RND-TTL 51

The RND-TTL cache can be seen as a generalization of the TTL cache as the latter can be
obtained when two conditions are met: (i) pi

n = 1 for each item n, and (ii) the timer refresh
process of each item n coincides with its request process. The hit ratio of the TTL cache can be
retrieved from (4.15) and (4.7) by letting pi

n = 1 and λr
n = λi

n = λn. Equations (4.3), (4.7) and
(4.15) are then all equivalent.

While we have described the RND-TTL cache model using parameters T, λr and pi, in what
follows, it will be more convenient to retain as parameters T, λr, and λi = (λi

n)n∈I (see (4.8)).

4.4.2 Relation Between RND-LRU and RND-TTL

Using the RND-TTL cache to estimate the hit ratio of RND-LRU is analogous to using the TTL
cache to approximate the hit ratio of LRU. Both RND-TTL and TTL enable the decoupling of
caching decisions across items, with the goal of capturing the behavior of an item n in terms of
its insertion and eviction from the cache, independently of other items. We revisit the concepts of
timer expiration, insertion policy, and timer re-initialization in the TTL cache and the RND-TTL
cache and establish their connection to the caching decisions of LRU and RND-LRU, respectively.

Timer expiration. In both RND-LRU and LRU, an item is evicted from the cache when it is no
longer among the C recently used items. This behavior is captured and represented in RND-TTL
and TTL caches by assigning a timer with a duration of Tn to each cached item n. An item is then
evicted upon expiration of its timer.

Insertion in the cache. In LRU/TTL cache, a non cached item n is always inserted into the cache
when it is requested. It follows that the insertion rate for n, when it is not cached, is equal to its
request rate λn for both LRU and TTL. However, in RND-LRU, this is not the case as a non-cached
item n can be served by a similar item already in the cache. As a result, when n is not in the cache,
the insertion rate for item n in RND-LRU is smaller or equal to λn. In RND-TTL, the parameter
λi

n serves as the insertion rate for item n when it is not cached, allowing RND-TTL to capture the
insertion behavior of item n in the RND-LRU cache by tuning λi

n accordingly.

Timer re-initialization. In LRU, when a cached item n receives a request, it is refreshed by
being moved to the front of the list. This behavior is captured in TTL by re-initializing the timer for
item n. It follows that the refresh rate for n, when it is in the cache, is equal to λn for both LRU
and TTL. However, in the case of RND-LRU, the refresh process is not solely based on its own
request. Item n might also be refreshed when its neighboring items receive requests. As a result, in
RND-LRU, when n is cached, the refresh rate of n is greater than or equal to λn. In RND-TTL,
the parameter λr

n determines the rate at which n’s timer is re-initialized when n is cached. By
appropriately adjusting λr

n, RND-TTL can capture the refresh operation of an item in RND-LRU.
In the next section, we examine the insertion rate and refresh rate of an item in RND-LRU in

detail, which allows us to derive guidelines on how to constrain the parameters λi, λr, and T for
the RND-TTL approximation.

52 CHAPTER 4 — Similarity Caching

4.4.3 RND-TTL Approximation to RND-LRU

We propose an extension of the TTL approximation, named RND-TTL approximation, for estimat-
ing the hit ratio of RND-LRU under IRM. Recall that the TTL approximation uses the hit ratio of a
TTL cache, with specific constraints on its parameters, as an approximation for LRU’s hit ratio. We
highlight that this approximation is asymptotically accurate [Fag77; FRR12; LT15; JNT18]. The
RND-TTL approximation provides, as estimate for RND-LRU’s hit ratio, the one of RND-TTL by
constraining specifically the parameters of RND-TTL. The constraints on the timers of RND-TTL
and the total occupancy are identical to those made by the TTL approximation regarding the TTL
cache. In addition, the RND-TTL approximation introduces constraints related to the insertion and
refresh rates, as detailed later on in this section. We next focus on expressing the insertion and
refresh rates in RND-LRU.

Recall that Ω̃ is the set of all possible ordered lists in the RND-LRU cache and Ω is the set of
all possible sets of cached items in RND-TTL. We define the sets B̃n and Bn representing the lists
and sets of cached items where none of the neighbors of item n is cached. Formally,

B̃n ≜
{

L ∈ Ω̃ : L ∩N c[n] = ∅
}

and Bn ≜ {S ∈ Ω : S ∩N c[n] = ∅} . (4.16)

Additionally, ∀m ∈ N c[n], we define the sets B̃n,m and Bn,m representing the lists and sets of
cached items where m is the closest neighbor of n in the cache. Specifically,

B̃n,m ≜
{

L ∈ Ω̃ : m ∈ L, L ∩N c
m[n] = ∅

}
, (4.17)

Bn,m ≜ {S ∈ Ω : m ∈ S, S ∩N c
m[n] = ∅} . (4.18)

Proposition 4.3 (RND-LRU insertion rate). Under Assumptions 4.1, 4.2 and 4.3, the insertion
rate of item n in RND-LRU, λ̃i

n, is expressed as:

λ̃i
n = f̃ i

n,q (π̃) ≜ λn

 ∑
L∈B̃n

π̃L +
∑

m∈N (n)
(1− qm(n))

∑
K∈B̃n,m

π̃K

 , (4.19)

where π̃ is the limiting distribution of {LRND-LRU(t), t ≥ 0}.

Proof. The result follows from observing that in RND-LRU, when a request for an item n
finds {LRND-LRU(t), t ≥ 0} in state B̃n, n is inserted in the cache with probability 1. On the other
hand, if a request for n finds {LRND-LRU(t), t ≥ 0} in state B̃n,m for any m ∈ N (n), n is inserted in
the cache with probability 1− qm(n). For additional details, we refer the reader to Appendices B.3
and B.5 page 84.

Proposition 4.4 (RND-LRU refresh rate). Under Assumptions 4.1, 4.2 and 4.3, the refresh rate of
item n in RND-LRU, λ̃r

n, is expressed as:

λ̃r
n = f̃ r

n,q (π̃) ≜
∑

m∈N c[n]
qn(m)λm

∑
L∈B̃m,n

π̃L , (4.20)

where π̃ is the limiting distribution of {LRND-LRU(t), t ≥ 0}.

4.4 – 4.4.3 RND-TTL Approximation to RND-LRU 53

Proof. The result follows from observing that in RND-LRU, when a request for an item m finds
{LRND-LRU(t), t ≥ 0} in state B̃m,n, cached item n is refreshed, i.e., moved to the front of the list,
with probability qn(m). For additional details, we refer the reader to Appendices B.3 and B.6
page 85.

RND-LRU RND-TTL

Parameters q = (qm(n))n,m∈I2 λi, λr, T
Content Occupancy Obtained via simulations on (see (4.7))
Total Occupancy C, exact

∑
n∈I on,

in expectation
Limiting Distribution π̃ = (π̃L)L∈Ω̃, π = (πS)S∈Ω

obtained via simulations (see (4.14))
Hit Probability Obtained via simulations hn (see (4.15))
Insertion Rate f̃ i

n,q(π̃) (see (4.19)) λi
n(1− on)

Refresh Rate f̃ r
n,q(π̃) (see (4.20)) λr

non

Constraints on RND-TTL Parameters to Approximate RND-LRU
Timers Tn = T, ∀n ∈ I
Total Occupancy Expected number of cached items = C (see (4.22))
Insertion Rate λi

n(1− on) = f i
n,q(π) (see (4.23))

Refresh Rate λr
non = f r

n,q(π) (see (4.24))

Table 4.2: RND-TTL approximation

To recapitulate our derivations and ease the comparison between RND-TTL and RND-LRU,
we depict in Table 4.2 the notation, the main metrics and their expressions (when available) for
both policies.
Constraints on RND-TTL cache’s parameters. Table 4.2 summarizes the RND-TTL approxima-
tion. First, it imposes on the RND-TTL cache’s parameters the TTL approximation’s constraints:

All items’ timers share the same duration, which we denote as T , i.e.,

Tn = T, ∀n ∈ I. (4.21)

The expected number of cached items in the RND-TTL cache equals C,

∑
n∈I

(1
λi

n

· λr
n

eλr
nTn − 1 + 1

)−1
= C. (4.22)

Note that the term corresponding to item n in the sum in (4.22) is the limiting probability
that n is cached (see (4.12) and Proposition 4.1).

Second, it constrains the (unconditional) insertion and refresh rates under RND-TTL, namely
λi

n(1 − on) and λr
non, to satisfy expressions similar to those verified by the same rates under

RND-LRU, which are given by Propositions 4.3 and 4.4:

54 CHAPTER 4 — Similarity Caching

λi
n(1− on) = f i

n,q(π) ≜ λn

 ∑
S∈Bn

πS +
∑

m∈N (n)
(1− qm(n))

∑
K∈Bn,m

πK

 , (4.23)

λr
non = f r

n,q(π) ≜
∑

m∈N c[n]
qn(m)λm

∑
S∈Bm,n

πS , (4.24)

where π is the limiting distribution for the set of cached items in the RND-TTL cache, computed
in (4.14), and f i

n,q(π) and f r
n,q(π) have been defined to mimic f̃ i

n,q(π̃) and f̃ r
n,q(π̃), respectively

given in (4.19) and (4.20). Substituting π from (4.14) into (4.23) and (4.24), we obtain the following
expressions:

λi
n = λn

 ∏
m∈N (n)

(1− om) +
∑

m∈N (n)
(1− qm(n)) om

∏
l∈Nm(n)

(1− ol)

 , (4.25)

λr
n = λn +

∑
m∈N (n)

qn(m)λm

∏
l∈N c

n[m]
(1− ol) . (4.26)

RND-LRU’s hit ratio approximation. If we can compute values for λr, λi and T verifying the
constraints (4.21), (4.22), (4.25) and (4.26), then using Proposition 4.2, (4.8) and (4.25), we can
estimate the hit ratio of RND-LRU as:

H ≈
∑
n∈I

λn · hn, (4.27)

where
hn = on +

∑
m∈N (n)

qm(n) · om

∏
l∈N c

m[n]
(1− ol). (4.28)

Remark 4.1. In Section 4.4.1.1, we introduced R-TTL as a natural extension of a TTL cache to
model RND-LRU behavior. Recognizing the challenge of applying the TTL approximation to R-TTL,
we proposed the analytically tractable RND-TTL model. Under Assumption 4.1 and assuming a
limiting distribution µ for the set of cached items in R-TTL, it is noteworthy that, by following
steps similar to those used in proving Propositions 4.3 and 4.4, we can establish the insertion rate
and refresh rate of an item n in R-TTL as f i

n,q(µ) and f r
n,q(µ), respectively. This implies that the

constraints imposed by the RND-TTL approximation on the RND-TTL cache are properties verified
for R-TTL.

In the following section, we present an iterative algorithm that enables a numerical determination
of the parameters λr, λi, and T based on the aforementioned description.

4.5 Algorithm for Finding Approximate Hit Probabilities

Let o = (on)n∈I be the vector representing the occupancies in the RND-TTL cache. By defining a
function g as:

g(x1, x2, x3) ≜
(1

x2
· x1

ex1x3 − 1 + 1
)−1

, (4.29)

4.5 – 4.5.1 Fixed Point Equations 55

we can rewrite (4.7) as:

on = g(λr
n, λi

n, T) . (4.30)

The RND-TTL approximation suggests to choose the parameters λr, λi and T for the RND-TTL
cache such that the following set of equations is verified:

λi = E(o) = (En(o))n∈I , (4.31)

λr = R(o) = (Rn(o))n∈I , (4.32)

o = g(λr, λi, T) = (g(λr
n, λi

n, T))n∈I , (4.33)

T ∈ TC(λr, λi) ⇐⇒
∑
n∈I

g(λr
n, λi

n, T) = C, (4.34)

where En(o) and Rn(o) are functions respectively obtained from (4.25) and (4.26), g(λr
n, λi

n, T)
is obtained from (4.29), and TC(λr, λi) is defined as the set of values of the shared timer value
T guaranteeing that, for given λr and λi, the expected number of cached items in RND-TTL
equals C.

Combining (4.31)-(4.34), we obtain a system of 3N + 1 equations in 3N + 1 unknowns (recall
that |I| = N), from which we can obtain in particular the occupancies. Once the occupancies are
known, we can compute the vector of hit probabilities, h = (hn)n∈I , according to (4.28) and
estimate the hit ratio of RND-LRU according to (4.27).

In Section 4.5.1, we establish a sufficient condition for the existence of a solution for the system
of equations (4.31)-(4.34). In Section 4.5.2, we propose an iterative algorithm, with a parameter
β ∈ [0, 1), for numerically finding a solution for the aforementioned system of equations. We also
prove the convergence of this algorithm under specific conditions. Section 4.5.3 outlines a practical
method for tuning the algorithm’s parameter β.

4.5.1 Fixed Point Equations

We denote the set TC(R(o), E(o)) (see (4.34)) as TC(o). We denote the capped simplex as ∆C

such that:

∆C ≜

{
o ∈ RN : 0 ≤ on ≤ 1,

∑
n∈I

on = C

}
. (4.35)

Lemma 4.1 (TC(o) is a singleton). If the “no-coverage” condition:

(no-coverage condition) ∀M ⊂ I : |M| ≤ C,

∣∣∣∣∣ ⋃
n∈M

N (n)
∣∣∣∣∣ < N − C, (4.36)

is satisfied, then TC(o) has a unique element for every o ∈ ∆C . In other words:

∀o ∈ ∆C , ∃!T0 ∈ R+ : F (o, T0) = 0, (4.37)

F (o, T) ≜
∑
n∈I

g(Rn(o), En(o), T)− C, (4.38)

where the symbol ∃! refers to unique existence.

56 CHAPTER 4 — Similarity Caching

Proof. See Appendix B.7 page 86.

A note on (4.36): the right-hand side of the inequality is the number of non-cached items. If the
items inM are cached, then the left-hand side of the inequality refers to the number of items that
are “covered” by the cache as these are neighbors of the cached items, so their requests could be
served by the cache. Having (4.36) satisfied implies that, whichever C (or less) items are cached,
there will always be at least one non-cached item that is not covered by the cache, hence the use of
“no-coverage” to name the condition (4.36).

In practice, the catalog size is much larger than the cache capacity, and requests for many items
miss the cache and are directed to the original server. In other words, the no-coverage condition is
often satisfied in practical scenarios.

Remark 4.2. If (4.36) is not met for some setM, then Lemma 4.1 does not hold. But this also
means that it suffices to store the items inM in the cache to enable the cache to cover at least
N − C items. (Possibly the entire catalog can be served by the cache if no pair of items inM are
neighbors).

From now on, we assume that the no-coverage condition in (4.36) is verified. Therefore, thanks
to Lemma 4.1, TC(o) is a singleton and we can define a function tC from ∆C to R+, where for
each o, it associates the unique element in TC(o), i.e.,

tC(o) = T ⇐⇒ F (o, T) = 0. (4.39)

We also introduce the function G from ∆C to ∆C defined as:

∀o ∈ ∆C , G(o) ≜ g (R(o), E(o), tC(o)) (4.40a)

=
(
g(R1(o), E1(o), tC(o)), · · · , g(RN (o), EN (o), tC(o))

)
, (4.40b)

where g is defined in (4.29). It follows that finding a solution for the system of equations (4.31)-
(4.34) boils down to finding a fixed point of G within ∆C .

For any sets A and B, we denote the set of functions from A to B that are continuously
differentiable as C1(A→ B).

Lemma 4.2 (Differentiability of tC). The function tC is continuously differentiable within the set
∆C , i.e., tC ∈ C1(∆C → R+). The gradient of tC can be expressed as:

∀j ∈ I,
∂tC

∂oj
(o) = − ∂F

∂oj
(o, tC(o)) ·

(
∂F

∂T
(o, tC(o))

)−1
, (4.41)

where F has been defined in (4.38).

Proof. See Appendix B.8 page 87.

Proposition 4.5 (Fixed point existence). The function G is continuously differentiable within ∆C

and it has at least one fixed point in ∆C .

4.5 – 4.5.1 Fixed Point Equations 57

Algorithm 3: Fixed point method
Input: C, λ, dis(., .), d, (qn(i))(n,i)∈I2 , β, stopping condition
Output: Estimation of o, h, tC

Initialization:
1: Obtain tC(0) such that

∑
n∈I

(
1− e−λn·tC(0)

)
= C

2: o(0)← 1− e−λ·tC(0)

3: h(0)← fh(o(0))
4: j ← 1
5: while Stopping condition not satisfied do
6: λi(j)← E(o(j − 1)) (see (4.31))
7: λr(j)← R(o(j − 1)) (see (4.32))
8: Obtain tC(j) such that :

∑
n∈I(g(λr(j), λi(j), tC(j)))n = C (see (4.34),(4.33))

9: o(j)← (1− β) · g(λr(j), λi(j), tC(j)) + β · o(j − 1)
10: h(j) = fh(o(j)) (see (4.28))
11: j ← j + 1
12: end while
13: return h(j), o(j), tC(j)

Compute occupancies given T and
insertion/refresh rates

Compute insertion/refresh rates
given occupancies

Compute T given
insertion/refresh rates

λi, λr

T

o

λi, λr

Figure 4.1: Essence of the fixed point algorithm.

Proof. It is evident that the functions g(·, ·, ·), R(·), and E(·) are continuously differentiable within(
R+)N · (R+)N · R+, ∆C and ∆C , respectively. Furthermore, according to Lemma 4.2, we have

that tC ∈ C1(∆C → R+). As a result, we conclude that G ∈ C1(∆C → ∆C). Noting that ∆C is a
non empty compact convex set, Brouwer’s fixed point theorem [Par99] implies the existence of a
fixed point for G.

Proposition 4.5 indicates that when the no-coverage condition (4.36) is satisfied, it is possible
to find parameters for the RND-TTL cache model that verify the system of equations (4.31)-(4.34).
Therefore, we can apply the RND-TTL approximation to estimate the hit ratio of RND-LRU.

58 CHAPTER 4 — Similarity Caching

4.5.2 Fixed Point Algorithm

We recall that solving the system of equations (4.31)-(4.34) reduces to solving a fixed point equation
for the function G defined in (4.40a). A natural approach to finding a fixed point of G is through
an iterative method. This is illustrated in Figure 4.1. Starting with an initial guess o(0), we perform
iterations of the form o(j + 1) = βo(j) + (1− β)G(o(j)), where β ∈ [0, 1) [Man53]. A detailed
version of these iterations is presented in Algorithm 3. Initially, we guess the occupancies o, using
LRU occupancies as a starting point. Specifically, we set o(0) = 1−e−λtC(0), where tC(0) satisfies
(4.4) and

∑
n∈I on(0) = C (lines 1–2). Then, we compute λi(1) and λr(1) using (4.31) and (4.32),

respectively (lines 5–7). Given λi(1) and λr(1), tC(1) is the unique solution of (4.34) (see (4.37)).
This solution can be obtained using either the bisection or Newton’s method. Next, we calculate the
new estimate of the occupancies o(1) (line 9).

The same procedure is repeated for subsequent iterations until a stopping condition is met. This
condition could be, for example, the difference between the occupancies computed at consecutive
iterations becoming smaller than a given threshold, or reaching the maximum number of iterations
(j ≤ niterations).

Note that in Figure 4.1 the boxes on the left-hand side, together with their inputs (insertion
and refresh rates), represent the conventional perspective on caching. This involves using fixed
rates, and computing item occupancies to estimate hit probabilities. Under a TTL-based model, it
also involves computing the characteristic time to approximate LRU, so that the sum of expected
occupancies equals the cache capacity C. In contrast, the box on the right-hand side takes into
consideration the unique nature of similarity caches. In similarity caches, the insertion and refresh
rates are influenced by the currently cached items, and these rates are determined as a function of
the occupancies.

For a given value of β, the iterations of Algorithm 3 are of the form: o(j + 1) = Gβ(o(j))
such that:

Gβ(o) ≜ (1− β)G(o) + βo . (4.42)

The function Gβ is continuously differentiable thanks to Proposition 4.5. We denote its Jacobian
matrix as JGβ

. We further define for an operator norm ∥·∥ the constant µβ as:

µβ ≜ sup
o∈∆C

∥JGβ
(o)∥. (4.43)

Proposition 4.6 (Fixed point uniqueness and convergence). If

∃β ∈ [0, 1) : µβ < 1, (4.44)

then G has a unique fixed point in ∆C and Algorithm 3 with parameter β converges to this
unique fixed point that we denote as o∗. Moreover, if o(j) is the estimation of o∗ at iteration j in
Algorithm 3, then we have:

∥o(j)− o∗∥ ≤ (µβ)j · sup
x,y∈∆C

∥x− y∥, ∀j ∈ N, (4.45)

where ∆C is defined in (4.35).

4.5 – 4.5.2 Fixed Point Algorithm 59

Proof. Under (4.36), Proposition 4.5 implies that Gβ ∈ C1(∆C → ∆C), and we deduce that Gβ is
Lipshitz with constant µβ [Wea18], i.e., ∥Gβ(x)−Gβ(y)∥ ≤ µβ∥x−y∥ for any x, y. Leveraging
Banach Fixed Point Theorem [MV97], we deduce that (i) Gβ has a unique fixed point denoted
as o∗,β , (ii) Algorithm 3 with parameter β converges to o∗,β , and (iii) the distance between o(j)
and o∗,β satisfies

∥o(j)− o∗,β∥ ≤ (µβ)j · sup
x,y∈∆C

∥x− y∥. (4.46)

Notice that for any β, the respective sets of fixed points of G and Gβ coincide. Therefore, o∗,β = o∗

for any β, which concludes the proof.

In practice, one can compute the norm of the matrix JGβ
for few vectors o ∈ ∆C to get an idea

of the satisfaction of the sufficient condition in (4.44) and then on the convergence of Algorithm 3
with parameter β to a unique fixed point. In the next proposition, we give an explicit formula for
JGβ

to ease its computation.
We denote by Diag(x) an N -dimensional diagonal matrix, where the entries of the vector x

are positioned along its diagonal, and by IN the N -dimensional identity matrix.

Proposition 4.7 (Computation of JGβ
). The Jacobian matrix JGβ

has the following expression:

∀o ∈ ∆C , JGβ
(o) = (1− β)JG(o) + β IN , (4.47)

where

JG(o) = Diag (∂1g) · JR(o) + Diag (∂2g) · JE(o)

− 1
∂3g · 1∂3g⊺ ·

(
∂1g · JR(o) + ∂2g · JE(o)

)
, (4.48)

with

∂jg =
(

∂g

∂xj
(Rn(o), En(o), tC(o))

)
n∈I

, for j ∈ {1, 2, 3}, (4.49)

JR and JE referring to the Jacobian matrices of the functions R and E, respectively, 1 denoting
the N -dimensional column vector with all components equal to 1, and g defined in (4.29).

Proof. See Appendix B.9 page 87.

Time Complexity of Algorithm 3. Let D be the maximum number of neighbors for any item in I
plus 1, more precisely,

D ≜ max
n∈I
|N c[n]|. (4.50)

It is convenient to define K as

K ≜
∑
n∈I

∑
m∈N c[n]

|N c[m]|. (4.51)

60 CHAPTER 4 — Similarity Caching

We show in B.10 that the time complexity of one iteration of Algorithm 3 is O(K). On the other
hand, the TTL approximation for computing the hit ratio of LRU consists of a single iteration
whose time complexity is O(N), where N = |I|. We note that N ≤ K ≤ N3.

We use Proposition 4.6 to bound the number of iterations of Algorithm 3. When the condi-
tion (4.44) is verified, Proposition 4.6 guarantees the convergence of Algorithm 3 to a unique
solution and allows computing the number of iterations l in the algorithm to ensure that the vector
of occupancies in the iteration number l, o(l), is within a distance ϵ from the fixed point o∗, i.e.,
∥o(l) − o∗∥ ≤ ϵ for any norm ∥·∥ in RN . In particular, for norm 2, the diameter of ∆C is

√
2C

and thanks to Proposition 4.6, we obtain that the number of iterations of Algorithm 3 is upper
bounded by ϵ

ln(1/µβ)
√

2C, with µβ defined in (4.43) and satisfying (4.44). We deduce that the time

complexity of Algorithm 3 is O
(

ϵ
√

2C
ln(1/µβ) · K

)
. Observing that K ≤ ND2, the algorithm’s time

complexity is also O
(

ϵ
√

2C
ln(1/µβ) ·ND2

)
.

4.5.3 Choice of β

Our approach for selecting the value of β for Algorithm 3 is based on Proposition 4.6. Let Y (o) be
the set of values of β in [0, 1) for which the spectral norm of JGβ

is smaller than 1, i.e.,

Y (o) ≜
{

β ∈ [0, 1) : ∥JGβ
(o)∥2 < 1

}
. (4.52)

Equation (4.44) in Proposition 4.6 is equivalent to the set
⋂

o∈∆C
Y (o) being non-empty. In

other words, choosing the parameter β of Algorithm 3 from the set
⋂

o∈∆C
Y (o) guarantees the

convergence of Algorithm 3 to the unique fixed point of G.
We stress that the characterization of the sets Y (o) and

⋂
o∈∆C

Y (o) is difficult. For this
reason, we proceed with a randomized approach. First, we randomly sample f vectors from ∆C ,
(o(j))1≤j≤f . Then, for each sampled vector o(j), we compute a subset of values of β leading to
∥JGβ

(o(j))∥2 < 1. We denote the considered subset of Y (o(j)) as Ỹ (o(j)), where Ỹ (o(j)) ⊂
Y (o(j)). Finally, we take the intersection

⋂f
j=1 Ỹ (o(j)) as a set of candidate values for β. When

we use a larger number of sampled vectors, f , the likelihood that the values of β ∈
⋂f

j=1 Ỹ (o(j))
satisfy the condition in (4.44) increases. However, this also comes with the drawback of higher
computational costs.

In the next proposition, we compute the aforementioned subset of Y (o), Ỹ (o), based on the
input vector o. To this aim, we leverage the spectral radius of the Jacobian. Recall that the spectral
radius of a matrix is defined as the maximum absolute value of its eigenvalues. We denote the
spectral radius of matrix M by ρ(M), and its spectral norm by ∥M∥2 =

√
ρ(MM⊺).

Proposition 4.8 (Properties of Y (o)). Let γ be the squared spectral norm of the Jacobian matrix
JG(o) and let η be the spectral radius of the matrix JG(o) + JG(o)⊺,

γ = (∥JG(o)∥2)2 = ρ(JG(o)JG(o)⊺) (4.53)

η = ρ(JG(o) + JG(o)⊺). (4.54)

If
η < min{2, γ + 1} (4.55)

4.6 – 4.6 Numerical Evaluation 61

then Y (o) satisfies

Y (o) ⊃ Ỹ (o) (4.56)

where
Ỹ (o) =

(
max

{
0,

γ − 1
γ + 1− η

}
, 1
)

. (4.57)

Proof. See Appendix B.11 page 88.

Remark 4.3. If, for a given o, JG(o) is antisymmetric, i.e, JG(o) = −JG(o)⊺, then η = 0 and
(4.55) is verified. It follows from Proposition 4.8 that in this case Ỹ (o) =

(
max

{
0, γ−1

γ+1

}
, 1
)

.

For each sample vector o(j) and thus each Jacobian JG(o(j)), we compute the associated con-
stants γj and ηj according to (4.53)-(4.54). We verify next if (4.55) is satisfied for each pair (γj , ηj).
If this condition holds for all pairs, then using Proposition 4.8 we can determine a subset of⋂f

j=1 Y (o(j)), namely
⋂f

j=1 Ỹ (o(j)), and select a value for β from within this subset. Note that
as f increases, the more likely it is for the chosen β to meet the criteria of Proposition 4.6 and ensure
the convergence of the proposed fixed point algorithm. Note also that if (4.55) does not hold for at
least one of the considered pairs (γj , ηj), j = 1, . . . , f , we cannot use Proposition 4.8 to analyze
the convergence of the proposed fixed-point algorithm using the sufficient conditions established
in Proposition 4.6. However, as we will indicate through numerical experiments, the algorithm
converges in practice under much broader settings than those considered in Proposition 4.6.

Remark 4.4. Proposition 4.8 is a general result about fixed point algorithms of the form (4.42). It
establishes a closed-form expression for a subset of values for β, for which the condition of having
the spectral norm of the Jacobian smaller than 1 is satisfied.

4.6 Numerical Evaluation

We assess the accuracy of our proposed RND-TTL approximation method by conducting experi-
ments on both synthetic and real-world traces. The traces are described in Section 4.6.1. To evaluate
our method, we compare our approach for estimating the hit ratio of RND-LRU with other alterna-
tive solutions discussed in Section 4.6.2. Subsequently, we analyze the approximation accuracy in
Section 4.6.3. Our RND-TTL approximation technique involves solving a set of equations using an
iterative fixed-point method outlined in Algorithm 3. In Section 4.6.4, we evaluate the convergence
of Algorithm 3.

4.6.1 Experimental Setting

We evaluate the efficiency of the proposed fixed point method (Algorithm 3) to predict the hit ratio
on synthetic traces and on an Amazon trace [Sab+21].

62 CHAPTER 4 — Similarity Caching
0 20 40 60 80 99

X

99

80

60

40

20

0

Y

Popularity distribution

10 5

10 3

10 1

(a) α = 1.4

0 20 40 60 80 99

X

99

80

60

40

20

0

Y

Popularity distribution

10 5

10 3

10 1

(b) α = 2.5

Figure 4.2: Spatial popularity distribution.

Synthetic traces. For the synthetic traces, each item corresponds to two features, characterized
by a point in a grid, I = [0..99]2 (e.g. Figure 4.2). The total number of items is |I| = 104, and the
dissimilarity function between items dis(·, ·) is the Euclidean distance. Neighbors of item (x, y)
at the same distance are ordered counterclockwise starting from the item to the right, i.e., from
(x + a, y) with a > 0. The synthetic traces are generated in an IRM fashion [Fag77], where the
popularity distribution for an item n = (x, y) is given by

p(x,y) ∼
(

min
{
dis(n, (24, 24)), dis(n, (74, 74))

}
+ 1

)−α
, (4.58)

where α is a parameter controlling the skewness of the popularity distribution. We generate 50
synthetic streams for α = 1.4 and α = 2.5 having in each stream r = 2 · 105 requests for items in
I. Figures 4.2a and 4.2b illustrate the popularity distribution in (4.58) for α ∈ {1.4, 2.5}.

In addition to the popularity distribution (4.58), we consider also a Zipfian popularity distribu-
tion. The corresponding experimental results are presented in B.12.

Real world trace. For the Amazon trace, each item corresponds to an Amazon product. The
request trace in [Sab+21] is generated by mapping every Amazon review for the item to an item
request. Each item has been mapped to a Euclidean space of dimension 100 using the technique in
[McA+15], where the Euclidean distance reflects dissimilarity between two items. Inspired by this
methodology, we generate a corresponding IRM stream of requests matching the item popularity in
the trace in [Sab+21].

4.6.2 Benchmarks and Alternative Approaches

In what follows, we compare hit ratio estimates provided by RND-LRU using Algorithm 3 with the
hit ratio estimations for LRU and for the optimal static allocation. We also propose an alternative
approach to estimate RND-LRU’s hit ratio.

4.6 – 4.6.3 RND-TTL approximation evaluation 63

LRU. The hit ratio and the occupancy for an item n are computed using (4.3) and tC is deduced
using the cache capacity constraint given by (4.4).

Optimal Static Allocation. Under IRM, it is shown in [NGL21] that the maximal hit ratio for a
similarity caching policy is achieved by a policy that permanently stores a set S∗ of C items such
that:

S∗ ∈ arg max
S⊂I,|S|=C

∑
n∈
⋃

j∈S
N c[j]

λn . (4.59)

It follows that the hit ratio of a policy that stores S∗ is an upper bound on the hit ratio of SIM-LRU
and RND-LRU. The maximum hit ratio obtainable by a static allocation under similarity caching
can be obtained by solving a maximum weighted coverage problem. We consider, as in SIM-LRU,
that each item can be used to satisfy any request for items closer than d. The maximum weighted
coverage problem takes as input a capacity C, a set of items I, with N = |I|, their corresponding
weights W = (wn)n∈I and a set of sets R = {R1, . . . , RN} such that Rn ⊂ I . The objective is to
find a set σ∗ ⊂ {1, . . . , N} such that: σ∗ = arg maxσ⊂{1,...,N}:|σ|≤C

∑
n∈∪j∈σRj

wn.
Finding the best static allocation is equivalent to solving a maximum-weighted coverage

problem, with weights wn = λn for n ∈ I, C the cache capacity, and R the set of neighbors for
each item, i.e., R = {N c[n]}n∈I . The maximum weighted coverage problem is known to be NP-
hard. In practice, a popular greedy algorithm guarantees a (1− 1/e) approximation ratio [NWF78;
KMN99].

The greedy algorithm operates as follows: initially, it selects the set Rc1 = R0
c1 with the largest

coverage, where c1 is determined by c1 = arg maxn∈I
∑

m∈Rn
λm. Subsequently, the algorithm

considers sets (R1
n)n∈I defined as R1

n = R0
n \R0

c1 in the next step, and it chooses the set Rc2 based
on c2 = arg maxn∈I

∑
m∈R1

n
λm. The same procedure is repeated until C items are collected or

all the items are chosen.

LRU with Aggregate Requests. Under SIM-LRU an item is refreshed by requests for all its
neighbors. A naive approach to studying a SIM-LRU cache is then to consider that it operates as an
LRU cache with request rates for each item equivalent to the sum of the request rates for all items
in its neighborhood. One can then use the TTL approximation for LRU, leading to the following
formulas:

hn = 1− e−
∑

i∈N c[n] λitC , on = hn. (4.60)

We refer to the TTL approximation for LRU simply as LRU, the greedy algorithm as Greedy,
and LRU with aggregate requests as LRU-agg.

4.6.3 RND-TTL approximation evaluation

We empirically compute the hit ratio of similarity cache mechanisms using SIM-LRU and RND-
LRU on both synthetic and real-world traces described in Section 4.6.1. In the case of synthetic
traces, SIM-LRU and RND-LRU are utilized with similarity threshold parameters d = 1 and d = 2,
for request process skewness α = 2.5 and α = 1.4, respectively. Additionally, given two distinct

64 CHAPTER 4 — Similarity Caching

Table 4.3: Parameters of the experiments.

Variable Synthetic traces Amazon trace
I [0..99]2 Products
N = |I| 104 ≈ 104

λn (4.58) Empirical
dis(·, ·) Euclidean distance Euclidean distance
d 1 and 2 300
Number of requests r 2 · 105 ≈ 105

Number of iterations Alg. 3 25 and 15 40
qn(m) (dis(n, m))−2 (dis(n, m))−0.2

items n and m, we set RND-LRU parameters qn(m) to (dis(n, m))−2 when dis(n, m) ≤ d and
0 otherwise. Note that when d = 1, RND-LRU reduces to SIM-LRU. Results for the hit ratio are
averaged over the 50 request processes for α = 2.5 and α = 1.4. The 95% confidence intervals
were smaller than 1.2 ·10−3 in all the considered synthetic experiments for the hit ratio computation.
For the Amazon trace, SIM-LRU and RND-LRU are employed with a similarity threshold d = 300.
Furthermore, we set RND-LRU parameters to qn(m) = (dis(n, m))−0.2 when dis(n, m) ≤ d and
0 otherwise. In all experiments, we refer to the empirical hit ratios for SIM-LRU and RND-LRU as
Exp-SIM and Exp-RND, respectively.

For all the theoretical computations of the hit ratio, the arrival rates λ for items are taken equal to
the corresponding request probabilities. Our approach utilizes Algorithm 3 with parameter β = 0.5
and a stopping condition determined by a fixed number of iterations. Algorithm 3 is employed to
estimate the approximate hit probabilities for all items, h, and subsequently determines the overall
cache hit ratio H . We refer to the latter estimate, for SIM-LRU and RND-LRU, as Ours-SIM
and Ours-RND, respectively. Alternative methods that can possibly estimate the hit ratio were
presented in Section 4.6.2. The numerical values used for all the experiments are summarized in
Table 4.3.

In Figure 4.3, we show the empirical hit ratio along with its estimates obtained through different
approaches, for the two synthetic settings (Figures 4.3a-4.3b) and for the Amazon trace (Figure 4.3c).
In the considered settings, as Greedy outperforms the other policies, its hit ratio would be an
overestimation. LRU, in contrast, is underperforming and its hit ratio serves as an underestimation.
LRU-agg, the naive approach to study SIM-LRU, underestimates the hit ratio.

Ours-SIM and Ours-RND clearly outperform all the alternative approaches presented in
Section 4.6.2 in estimating the empirical hit ratio, while tending to underestimate it. As LRU does
not take into account the similarity between items, the gap between LRU and Exp-SIM reveals the
benefits of similarity caching over exact caching.

For the synthetic settings in Figures 4.3a and 4.3b, LRU and LRU-agg achieve similar hit ratios.
When λ̃ = (λ̃n)n∈I , where λ̃n =

∑
m∈N c[n] λm, is proportional to λ, LRU and LRU-agg achieve

similar hit ratios. In the choice of the popularity distribution in Figures 4.3a and 4.3b (see (4.58)), a
popular item and its neighbors share similar rates, i.e., λn ≈ λm for m ∈ N c[n]. It follows that in
the settings of Figures 4.3a and 4.3b, the approximations λ̃n ≈ 5 · λn and λ̃n ≈ 13 · λn hold for

4.6 – 4.6.3 RND-TTL approximation evaluation 65

80 160 240 320 400 480 560 640 720
capacity

0.4

0.5

0.6

0.7

0.8

0.9

Hi
t r

at
io Greedy

Exp-SIM
Ours-SIM
Exp-RND
Ours-RND
LRU
LRU-agg

(a) Synthetic trace, α = 2.5, d = 1, 25 iterations

20 40 60 80 100 120 140 160
capacity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Hi
t r

at
io

Greedy
Exp-SIM
Ours-SIM
Exp-RND
Ours-RND
LRU
LRU-agg

(b) Synthetic trace, α=1.4, d=2, 15 iterations.

20 40 60 80 100 120 140 160 180 200
capacity

0.0

0.1

0.2

0.3

0.4

0.5

Hi
t r

at
io

Greedy
Exp-SIM
Ours-SIM
Exp-RND
Ours-RND
LRU
LRU-agg

(c) Amazon trace, d = 300, 40 iterations.

Figure 4.3: Average hit ratio versus cache capacity, β = 0.5.

66 CHAPTER 4 — Similarity Caching

0 20 40 60 80 99X

99

80

60

40

20

0

Y
Occupancy experimental

10 5

10 3

10 1

(a) r = 2 · 105.

0 20 40 60 80 99X

99

80

60

40

20

0

Y

Occupancy theory

10 5

10 3

10 1

(b) 25 iterations.

Figure 4.4: Synthetic trace occupancies: C = 500, d = 1, α = 2.5.

the respective scenarios, especially for the popular items. This provides insight into the comparable
hit ratios observed between LRU and LRU-agg in Figures 4.3a and 4.3b.

While our approach provides the best estimates, we can observe that it slightly underestimates
the hit ratio. In order to understand this effect, we show in Figure 4.4 the empirically estimated
occupancy vector and the one produced by Algorithm 3. The proposed algorithm broadly captures
the empirical occupancy patterns, but with subtleties regarding symmetries. In particular, the
zoom on Figure 4.4b shows that our approach produces a regular chess board pattern. Some items
are predicted to stay almost all the time in the cache while their 4 neighbors are predicted to
spend virtually no time in it. The corresponding empirical occupancy in Figure 4.4a shows a less
symmetric pattern, implying that in this setup SIM-LRU is able to satisfy a group of requests using
a smaller number of cache slots when compared against what is predicted by our approach. This, in
turn, partially explains why our approach underestimates the hit ratio.

4.6.4 Convergence of Algorithm 3

The RND-TTL approximation selects the parameters λi, λr, and T for the RND-TTL cache in
a way that ensures the occupancy vector, as described in (4.7), is a fixed point of the function G
defined in (4.40a). Algorithm 3 employs an iterative procedure aimed at finding a fixed point of G,
thereby determining the appropriate values for the RND-TTL cache’s parameters.

Figure 4.5 shows the evolution of characteristic time tC and hit ratio H over different iterations.
We observe that estimates of H and tC by our algorithm converge in a few iterations (less than 70),
under all considered scenarios. Note that tC(0), the value of tC at iteration 0, is also the value of
tC for LRU (see (4.4)). In addition, across all experiments, tC for Ours-SIM using Algorithm 3
converges to a value larger than tC(0). Indeed, under LRU, tC is bounded by the time required for
C distinct items to be requested. For SIM-LRU and RND-LRU, in contrast, after C distinct items
are requested, an item previously in the cache can remain there, despite not serving any requests.
This occurs due to approximate hits, explaining why tC is larger for Ours-SIM than for LRU.

Proposition 4.6 provides a sufficient condition for the convergence of Algorithm 3 with parame-

4.6 – 4.6.4 Convergence of Algorithm 3 67

0 8 16 24 32 40 48 56 64 72
Iteration

1000
1100
1200
1300
1400
1500
1600

t C

tC

0.7925

0.7950

0.7975

0.8000

0.8025

0.8050

Hi
t r

at
io

Hit ratio

(a) Synthetic trace, α = 2.5, d = 1, C = 500

0 20 40 60 80 100 120 140
Iteration

230
235
240
245
250
255
260
265
270

t C

tC

0.385

0.390

0.395

Hi
t r

at
io

Hit ratio

(b) Amazon trace, d = 300, C = 200

Figure 4.5: Characteristic time tC and hit ratio in different iterations of Algorithm 3 for SIM-LRU.

100 200 300 400 500 600 700
Capacity

0.6

0.8

1.0

1.2

1.4

1.6

Ja
co

bi
an

 N
or

m

Norm 1
Norm 2
Norm
1

(a) Synthetic trace, α = 2.5, d = 1.

20 40 60 80 100 120 140 160
Capacity

0.5

1.0

1.5

2.0

2.5

Ja
co

bi
an

 N
or

m

Norm 1
Norm 2
Norm
1

(b) Synthetic trace, α = 1.4, d = 2.

20 40 60 80 100 120 140 160 180 200
Capacity

100

101

102

Ja
co

bi
an

 N
or

m

Norm 1
Norm 2
Norm
1

(c) Amazon trace, d = 300.

Figure 4.6: Norm JGβ
versus cache capacity, β = 0.5.

68 CHAPTER 4 — Similarity Caching

ter β towards a unique fixed point of G. This condition requires an operator norm of the Jacobian
matrix, JGβ

(o), associated with the map Gβ , to be strictly less than 1 for any o ∈ ∆C .
In Figure 4.6, we show the spectral norm and norms 1 and infinity of JGβ

(o(0)), where o(0)
is given in line 1 of Algorithm 3, for the two synthetic traces and the Amazon trace described in
Section 4.6.1. We provide in B.13 details for the computation of JGβ

. In all the settings, β is set to
0.5. We observe in Figure 4.6 that the norm of the Jacobian matrix JGβ

increases with the cache
capacity. For the synthetic traces, the spectral norm of JGβ

is smaller than 1 for all cache capacities,
whereas in the Amazon trace, for all tested norms, ∥JGβ

∥ exceeds 1. Nevertheless, Proposition 4.6
provides only sufficient conditions and our results (see e.g. Figure 4.5b) suggest that our algorithm
converges also on the Amazon trace.

4.7 Conclusion

We proposed a method named the RND-TTL approximation for estimating the hit ratio of a popular
similarity caching policy, RND-LRU, under IRM. This method tunes the parameters of RND-TTL,
a novel similarity cache model we introduced, and uses its hit ratio as an estimation for RND-
LRU’s hit ratio. We are the first to propose an analytical method for estimating the hit ratio of
RND-LRU. The RND-TTL approximation involves solving a system of fixed point equations via a
parameterized iterative algorithm. We studied the convergence of this algorithm and proposed a
practical way of choosing its parameter.

Our experimental benchmark shows that the RND-TTL approximation accurately estimates the
hit ratio of RND-LRU under IRM, with a relative error below 5% across all tested configurations,
as depicted in Figure 4.3. In future work, we envision investigating analytically the accuracy of our
RND-TTL approximation, similarly to what was done in [FRR12; JNT18] for classic caching.

CHAPTER 5
Conclusion

In this thesis, we studied three randomized algorithms: the Count-Min Sketch with Conservative
Updates (CMS-CU), a modified version of the Follow-the-Perturbed-Leader (FPL) algorithm for
caching, and a variant of the Least-Recently-Used (LRU) policy tailored for similarity caching.
We present summaries of the results for each algorithm and elaborate on potential future research
directions.

5.1 CMS-CU

Summary. CMS-CU, a probabilistic hash-based data structure, estimates the frequency of items
in a data stream. It serves as a building block in numerous recently proposed methods for frequency
estimation [Yan+18b; Zha+21b]. Frequency-based caching policies employ CMS-CU to balance ac-
curacy and memory usage [EFM17]. Despite the widespread adoption of CMS-CU, the advantages
brought by the incorporation of Conservative Updates into the conventional Count-Min Sketch
(CMS) remain insufficiently comprehended.

In Chapter 2, we proved new bounds on the estimation error for items’ counts under an i.i.d.
request process in CMS-CU. These bounds highlight that items with large request counts barely
suffer any error when compared to CMS. Unfortunately, our bounds fail to capture the advantages
of the Conservative Update for less popular items. Moreover, our bounds are exclusive for an i.i.d.
request process.

Perspectives. CMS-CU selects d counters based on the d hash functions and the requested item
at each time step. Simulations suggest that the error in CMS-CU is maximal when the counters
selection is uniformly at random at each time step [Bia+12]. Bianchi et al. studied CMS-CU
with this particular counter-selection via a fluid approximation. However, this approach solves
numerically T differential equations to identify the error after T steps, which is computationally
expensive.

In upcoming research, the objective is to investigate whether the error in CMS-CU is maximal
in the uniformly at random counters selection setting. This instance of CMS-CU poses an intriguing
probability problem, resembling a variation of the balls and bins load balancing problem [Ber+00].
Specifically, the scenario involves m bins and n balls. During each time step, a ball randomly
selects d bins, and it is then placed in the least loaded bin among the chosen ones. This process
shares similarities with CMS-CU with uniform counter selection, where the bins serve as counters.
The key distinction lies in the balls-into-bins variant, where at each time step, exactly one counter
is incremented, in contrast to potentially incrementing up to d counters in CMS-CU. Exploring

69

70 CHAPTER 5 — Conclusion

the connection between these problems might unveil efficient methods for computing the maximal
error in CMS-CU.

5.2 FPL and Approximate Counting

Summary. Counting requests for items is crucial to achieving an optimal hit ratio under a
stationary request process. Interestingly, even under an adversarial request process, this counting is
a building block for a policy attaining a near-optimal regret of O(

√
T), where T is the total number

of requests. This policy is an instance of the Follow-the-Perturbed-Leader (FPL) [KV05], which
has a near-optimal performance for a broad category of online problems, including the caching
problem. In the stationary setting, the optimal strategy stores the items with the highest request
counts. In the adversarial model, FPL adds independent and identically distributed (i.i.d.) noises,
sourced from a distinct distribution, to each item’s counts, storing those with the highest values.

In Chapter 3, we examined the possibility of substituting the exact items’ request counting
component within FPL with an approximate counting algorithm. We showed that FPL maintains a
sublinear regret of O(

√
T) when the estimates of the approximate counting algorithm are unbiased

and satisfy additional criteria. In particular, when counting over a subset of the requests where each
request is included with probability f , FPL achieves a regret of O(

√
T

f).

Perspectives. One significant drawback of the Follow the Perturbed Leader algorithm for caching
lies in its memory requirement ofO (N ln T), where N represents the total number of distinct items
and T is the time horizon. Despite proving that counting over a subset of the requests sequence
within FPL ensures sublinear regret of O(

√
T), the associated memory cost remains at O (N ln T).

In our future research, we plan to explore whether an online algorithm designed for the caching
problem can attain a sublinear regret with sublinear memory in the total number of items. A
parallel inquiry has recently been addressed in the context of the Expert problem. In this problem, a
participant has predictions from M agents, and her objective is to choose a single agent at each time
step, guided by the historical performance of these agents. Srinivas et al.[Sri+22] demonstrated
that the regret for any online algorithm for the Expert problem, operating with a memory of O(S),

is at least Ω
(√

M ·T
S

)
. Meanwhile, Peng et al.[PZ23; PR23] proposed algorithms with sublinear

memory in M , achieving sublinear regret.
The caching problem is a particular case of the Expert problem, with each agent representing a

set of cached items. However, in this case, the number of experts is
(N

C

)
, where C denotes the cache

capacity. Despite this limitation, we are intrigued by the possibility of converting memory-efficient
algorithms designed for the Expert problem into efficient algorithms for the caching problem, while
preserving sublinear regret guarantees.

5.3 An LRU-Based Similarity Caching Policy

Summary. Beyond frequency, caching policies base their decisions on recency as well. The Least-
Recently-Used (LRU) is a simple and efficient recency-based policy. RND-LRU is an adaptation of
LRU for the similarity caching setting where an item’s request can be approximately answered with

5.3 – 5.3 An LRU-Based Similarity Caching Policy 71

a similar cached item. RND-LRU probabilistically answers the request for an item with its most
similar cached item. The analysis of RND-LRU is challenging because of the strong coupling in
caching decisions across items.

In Chapter 4, we proposed an analytically tractable similarity caching model, called RND-TTL,
where caching decisions across items are independent, to approximate the hit ratio of RND-LRU
under an i.i.d. request process. RND-TTL captures the behavior of RND-LRU through a specific
parametrization. Simulations highlight the accuracy of our method over multiple traces.

Perspectives. Our methodology shares similarities with the Time-to-Live (TTL) approximation,
which efficiently estimates the hit ratio of LRU under an i.i.d. request process [Fag77]. Jiang et
al. [JNT18] have previously bounded the estimation error of the TTL approximation. In our future
work, we intend to explore the accuracy of our method in approximating the hit ratio of RND-LRU.

The natural method for precisely computing the hit ratio of RND-LRU is to calculate the limiting
distribution of the Markov chain that represents the list of cached items. The state space of this
Markov chain grows exponentially with the number of items and the cache capacity, making exact
computation costly. Allmeier and Gast [AG22] investigate a more general problem by examining
the dynamics of a Markov chain on a finite but extensive state space. In this case, the state space
is a subset of Sn, where S is a finite set. They demonstrate that, under specific conditions on the
transition rates of the Markov chain, the probability of the chain being in a certain state can be
approximated by the solution of an ordinary differential equation with an error of O(1/n). This
approach is known in the literature as the mean field approximation. In future work, we plan to
investigate the applicability of the aforementioned approximation to RND-LRU.

Appendix

APPENDIX A
Approximate Counting

A.1 Proof of Proposition 2.1 (page 14)

From (2.3) and the fact that the random variables {er
i (t)}r∈[d] are i.i.d. when using CMS, we

have Pr (ei(t)/t > x) =
(
Pr
(
e1

i (t)/t > x
))d. To prove (2.18) it is then sufficient to show that

Pr
(
e1

i (t)/t > x
)
≤ Ak(x) for k ∈ J0, w−1K. For a given k ̸= 0 we consider the event, called Ei,k,

of no hash collision in row 1 between item i and any of the k most popular items (other than i,
if i ≤ k). Formally,

Ei,k ⇔ h1(i) = h1(j), ∀j ≤ k, j ̸= i. (A.1)

By first writing the law of total probabilities with respect to the partition {Ei,k, Ei,k}, and then
using the union bound to write Pr

(
Ei,k

)
≤ k/w and the Markov inequality to upper bound

Pr
(
e1

i (t)/t ≥ x | Ei,k

)
, we obtain

Pr
(

e1
i (t)
t
≥ x

)
≤ Pr

(
e1

i (t)
t
≥ x | Ei,k

)
· 1 + 1 · Pr

(
Ei,k

)
(A.2)

≤ E
[
e1

i (t) | Ei,k

]
xt

+ k

w
(A.3)

≤ 1
x

∑
j>k
j ̸=i

pj Pr (h1(i) = h1(j) | Ei,k) + k

w
(A.4)

≤ 1
x(w − k)

∑
j>k
j ̸=i

pj + k

w
= Ak(x) (A.5)

where (A.4) follows from (2.4)-(2.5) and (A.5) uses Pr
(
Ei,k

)
≤ k/w. By observing that (A.5)

holds also for k = 0, we have completed the proof.

A.2 Proof of Lemma 2.1 (page 15)

We will make use of two quantities to prove Lemma 2.1.

lrj ≜
∑

e∈NG(hr(j))
pe, gj ≜ min

r∈[d]
lrj . (A.6)

75

76 APPENDIX A

For a given realization of G, lrj is an upper bound on the growth rate of counter cr
j(t) and gj is an

upper bound on the growth rate of n̂j(t). To ease the writing, we use A, B, C, and Dr
j as shorthand

for events “hr(i) = hr(j)”, “n̂j(s − 1) = cr
i (s − 1)”, “gj ≥ pi”, and “lrj ≥ pi”, respectively.

Starting from (2.9) we write

E
[
δr

i,j

]
= pjPr (A ∩B) (A.7)

= pj

(
Pr (A ∩B ∩ C) + Pr

(
A ∩B ∩ C

))
(A.8)

≤ pj

(
Pr (A ∩ C) + Pr

(
A ∩ C

)
Pr
(
B |A, C

))
(A.9)

≤ pj

(
Pr
(
A ∩

(
∩e∈[d],e̸=rDe

j

))
+ Pr (A) Pr

(
B |A, C

))
(A.10)

≤ pjPr (A)
(
Pr
(
D1

j

)d−1
+ Pr

(
B |A, C

))
. (A.11)

We now move to deriving upper bounds on Pr
(
D1

j

)
and Pr

(
B |A, C

)
. For j ≤ i, we simply

write Pr
(
D1

j

)
≤ 1. For j > i, we follow the steps in (A.2)-(A.3):

Pr
(
D1

j

)
= Pr

(
l1j − pj ≥ pi − pj

)
(A.12)

≤ Pr
(
l1j − pj ≥ pi − pj | Ej,k

)
· 1 + 1 · Pr

(
Ej,k

)
(A.13)

≤
E
[
l1j − pj | Ej,k

]
pi − pj

+ k

w
. (A.14)

We bound E
[
l1j − pj | Ej,k

]
similarly to what was done for E

[
e1

j (t)/t | Ej,k

]
in (A.3)-(A.5):

E
[
l1j − pj | Ej,k

]
=

∑
i∈I\{j}

pi · Pr (i ∈ NG(hr(j)) | Ej,k) (A.15)

=
∑

i>k,i̸=j

pi · Pr (hr(i) = hr(j) | Ej,k) (A.16)

≤
∑

i>k,i̸=j

pi ·
1

w − k
(A.17)

We combine (A.14) and (A.17) to find Pr
(
D1

j

)
≤ Ak(pi − pj). We again observe that this holds

also for k = 0, which implies that

Pr
(
D1

j

)
≤
{

1, ∀j ≤ i,

min (A(pi − pj), 1) , ∀j > i,
⇔ Pr

(
D1

j

)d−1
≤ γi,j (A.18)

where γi,j is given in (2.24).
To bound Pr

(
B |A, C

)
, we start by making a change of variable. Let z = s− 1. We define

the random variable yj(z) as,

APPENDIX A 77

yj(z) ≜
∑
e∈I

hr0 (j)=hr0 (e)

ne(z) : r0 = argminr∈[d]l
r
j . (A.19)

It follows that n̂j(z) ≤ yj(z). We now use F , J and K as respective shorthand for events “ni(z) >
yj(z)”, “ni(z) > m(z)”, and “yj(z) < m(z)”, with m(z) ≜ (pi + gj)z/2. Under the conditioning
on A, the equality cr

i (z) = cr
j(z) holds. Equation (2.2) implies then that cr

i (z) ≥ n̂j(z). The event
B conditioned on A boils down to cr

i (z) > n̂j(z). Since cr
i (z) ≥ ni(z) and yj(z) ≥ n̂j(z), the

event F implies the event B conditionally on A. We then write

Pr
(
B |A, C

)
= 1− Pr

(
B |A, C

)
≤ 1− Pr

(
F |A, C

)
≤ 1− Pr (J) Pr

(
K |A, C

)
.

The last step follows from the fact that ni(z) and yj(z) are negatively associated [JP83]. Following
(A.19), for every fixed graph realization of G, yj(z) is the sum of negatively associated random
variables [JP83] and has an expected value gjz that is less than m(z) under the conditioning that
the fixed graph G verifies gj < pi (event C). Thus using Chernoff bounds on events J and K we
get

Pr
(
B |A, C

)
≤ βi,je−αi,jz. (A.20)

Using Pr (A) ≤ 1/w, (A.18), and (A.20) in (A.11) we find (2.23) concluding the proof.

A.3 Proof of Proposition 2.2 (page 16)

Proving the bound by Ci(x). Let Er
i,k of no hash collision in row r between item i and any of

the k most popular items (other than i, if i ≤ k). We define Fi,k as their union for all possible
rows r ∈ [d], i.e., Fi,k =

⋃
r∈[d] Er

i,k. By the law of total probabilities with respect to the partition
{Fi,k, Fi,k}, we write, for every k,

Pr
(

ei(t)
t
≥ x

)
≤ Pr

(
ei(t)

t
≥ x | Fi,k

)
· 1 + 1 · Pr

(
Fi,k

)
(A.21)

≤ E [ei(t) | Fi,k]
xt

+
(

k

w

)d

. (A.22)

The last step follows from the Markov inequality and the bound Pr
(
Er

i,k

)
≤ k/w. To bound

E [ei(t) | Fi,k], we first observe that conditioning on Fi,k implies there exists at least a row r0 such
that the event Er0

i,k is true. Using (2.3) and (2.5) we write

E [ei(t) | Fi,k] ≤ E [er0
i (t) | Fi,k] ≤

∑
s∈[t]

∑
j>k
j ̸=i

E
[
δr0

i,j(s) | Fi,k

]
, (A.23)

where we used the fact that E
[
δr0

i,j(s) | Fi,k

]
= 0 for j ≤ k. For j > k, the following holds

78 APPENDIX A

E
[
δr0

i,j(s) | Fi,k

]
≤

E
[
δr0

i,j(s)
]

1− Pr
(
Fi,k

) ≤ E
[
δr0

i,j(s)
]

1−
(

k
w

)d
. (A.24)

Combining (A.22)-(A.24) with (2.23) leads to

Pr
(

ei(t)
t
≥ x

)
≤

∑
j>k,j ̸=i pjγi,j

xw

(
1−

(
k
w

)d
) + 1

xwt

(
1−

(
k
w

)d
) ∑

j>k
j ̸=i

pjβi,j

1− e−αi,j
+
(

k

w

)d

.

As this bound is valid for every k ∈ J0, w − 1K, we can write,

Pr
(

ei(t)
t
≥ x

)
≤ Ci(x) +O

(1
t

)
. (A.25)

Proving the bound by Bi(x). We rely on the same arguments used above and in the proofs of
Proposition 2.1. We denote E1

i,k as Ei,k. We have,

Pr (ei(t)/t ≥ x) ≤ Pr
(
e1

i (t)/t ≥ x
)

(A.26)

≤ Pr
(
e1

i (t)/t ≥ x | Ei,k

)
· 1 + 1 · Pr

(
Ei,k

)
(A.27)

≤
∑
s∈[t]

∑
j>k

E
[
δ1

i,j(s) | Ei,k

]
+ k

w
(A.28)

≤ 1
x(w − k)

∑
j>j

pjγi,j + k

w
+O

(1
t

)
. (A.29)

As this bound is valid for every k ∈ J0, w − 1K, we can write,

Pr
(

ei(t)
t
≥ x

)
≤ Bi(x) +O

(1
t

)
. (A.30)

The bounds that are valid with CMS are also valid with CMS-CU, thus by Proposition 2.1, the
CCDF with CMS-CU is less than A(x)d. Therefore, we get the result of the proposition when we
combine (A.30) and (A.25).

A.4 Proof of Proposition 2.3 (page 17)

We have E [ei(t)] ≤ E [er
i (t)/t] thanks to (2.3) (that holds for CMS-CU). We use Lemma 2.1 and

the linearity of the expectation to deduce that,

E

[
er

i (t)
t

]
≤ 1

t

∑
s∈[t]

∑
j∈I\{i}

pj

w

(
γi,j + βi,je−αi,j(s−1)

)
(A.31)

≤ 1
w

∑
j∈I\{i}

pjγi,j + 1
wt

∑
j∈I\{i}

pjβi,j

1− e−αi,j
(A.32)

≤ 1
w

∑
j∈I\{i}

pjγi,j +O
(1

t

)
. (A.33)

APPENDIX A 79

We observe the following,

E

[
ei(t)

t

]
= 1

t

t∑
n=0

Pr (ei(t) ≥ n) = 1
t

t∑
n=0

Pr
(

ei(t)
t
≥ n

t

)
(A.34)

We use Proposition 2.2 to deduce that,

E

[
ei(t)

t

]
≤ 1

t

t∑
n=0
Di

(
n

t

)
+O

(1
t

)
. (A.35)

We combine (A.35)and (A.34) to find the proposition result.

A.5 Discussion on the bound (2.15)

When all items are requested at least once (which is true under the IRM model for a large enough
stream process), the bound (2.15) proposed in [EF15] becomes trivial if w(N) = o(N) and both w
and N diverge. This happens because

lim
N→+∞

PFP(Ak) = 1, ∀k ∈ N (A.36)

as we explain next. Ak is computed recursively using (2.16), with A1 = D1 = N since all items
are requested at least once. The first computation of (2.16) requires PFP(N). We have

PFP(N) = 1
N

N∑
i=1

(
1− e− i

w(N)

)d

= 1
N

N +
d∑

j=1

(
d

j

)
(−1)j

N∑
i=1

e− ij
w(N)

= 1 +

d∑
j=1

(
d

j

)
(−1)je− j

w(N)
1− e− jN

w(N)

N

(
1− e− j

w(N)

) .

The following then holds

lim
N→+∞

N

(
1− e− j

w(N)

)
= +∞ ⇒ lim

N→+∞
PFP(N) = 1.

Applying (2.16) recursively yields (A.36), confirming that the bound (2.15) boils down to 1.

APPENDIX B
Similarity Caching

B.1 R-TTL

Algorithm 4: R-TTL
1: Input:
2: Sequence of requests (r1, . . . , rJ)
3: Sequence of time instants (τ1, . . . , τJ) when the requests occurred
4: Probabilities (qn(m))n,m∈I2 and timers duration (Tn)n∈I
5: Initial TTL vector (u0,1, . . . , u0,|I|) where u0,n is the initial value of TTL of item n and

0 ≤ u0,n ≤ Tn.
6: Output:
7: Set of cached items at times τ1, . . . , τJ .
8: Algorithm:
9: τ0 ← 0

10: S0 ← {i ∈ I : u0,i > 0}
11: for j = 1 to J do
12: for n = 1 to |I| do
13: uj,n ← max (uj−1,n − (τj − τj−1), 0)
14: end for
15: Sj ← {i ∈ I : uj,i > 0}
16: r̂j ← arg minm∈Sj dis(rj , m)
17: Generate a uniform random number δ ∈ [0, 1]
18: if δ ≤ qr̂j (rj) then
19: Case 1: Hit, encompassing exact/approximate hits
20: uj,r̂j ← Tr̂j

21: else
22: Case 2: Miss
23: Sj ← Sj ∪ {rj}
24: uj,rj ← Trj

25: end if
26: end for
27: return S1, . . . , SJ

Algorithm 4 outlines a pseudo code for the similarity caching policy R-TTL. At each time

81

82 APPENDIX B

step j, the algorithm handles requests for items, updating TTLs and cache contents accordingly. The
set S0 represents the initially stored items, those with TTL values strictly greater than 0 (line 10).
At any time step j ∈ {1, . . . , J}, and for any item i, the variable uj,i, in line 13, monitors the value
of the TTL of item i right before handling the request rj . If the duration τj − τj−1 ≥ uj−1,i, it
indicates that item i’s timer expired within the time interval [τj−1, τj], resulting in uj,i being set to
0. Otherwise, i’s timer at τj did not expire and its value is equal to uj−1,i − (τj − τj−1).

The set Sj , in line 15, characterizes the items in the R-TTL cache immediately before handling
the request for item rj . R-TTL identifies the closest cached item to rj , denoted as r̂j (line 16). The
request for rj is approximately served by r̂j with probability qr̂j (rj), leading to the reset of r̂j’s
timer (line 20). In the event of a miss, item rj is added to the cache (line 23), and its timer is reset
to Trj (line 24). Algorithm 4 returns a list of sets Sj for every j ∈ {1, . . . , J}, corresponding to the
set of cached items in R-TTL immediately after handling the request of item rj .

Note that in practice, we only need to keep track of TTL values greater than zero, corresponding
to cached items. However, to simplify the presentation, Algorithm 4 assumes that TTLs are stored
for all items. Finally, the algorithm assumes that the cache statically stores a tombstone item whose
distance to all items is infinite. Whenever a request arrives in an empty cache, the tombstone item
is returned as the closest item in the cache.

B.2 Proof of Proposition 4.1 (Occupancy, page 49)

To derive the occupancy of an item n, we first observe that the instants when item n is evicted from
the cache are regeneration points of a renewal process [Ros14]. A renewal cycle consists of two
consecutive time periods: a time period of duration T Off

n , that starts immediately after item n is
evicted from the cache and ends when it re-enters the cache, and a time period of duration T On

n ,
that ends when item n is evicted again from the cache. From [Ros95, Thm. 3.6.1, Example 3.6(A)],
the occupancy can be computed as:

on =
E
[
T On

n

]
E [T Off

n] + E [T On
n] . (B.1)

We have that T On
n verifies:

T On
n =

F∑
j=1

Yj + Tn, (B.2)

where (Yj)j∈{1,...,F } are exponentially distributed random variables with parameter λr
n such that

Yj < Tn for j = 1, . . . , F, and F is a geometric random variable. Since we have:

E [Yj | Yj < Tn] = 1
λr

n

− Tn

exp(λr
nTn)− 1 , (B.3)

E [F] = exp(λr
nTn)− 1, (B.4)

we conclude from Wald’s identity and (B.2) that:

E
[
T On

n

]
= eλr

nTn − 1
λr

n

. (B.5)

By combining (B.5) and (B.1) and observing that E
[
T Off

n

]
= 1/λi

n, we get our result.

APPENDIX B 83

B.3 Generalized Poisson Arrivals See Time Averages (PASTA) prop-
erty

We derive in this appendix a generalization of the PASTA property that will be used in the proofs of
Propositions 4.2–4.4. We will construct a counting process {Q(t), t ≥ 0} that is not Poisson but
whose jumps coincide with one of many Poisson processes (to be defined). In our generalization,
we prove that the arrivals of {Q(t), t ≥ 0} see time averages.

Let {M(t), t ≥ 0} be a stochastic process with finite state space E . We assume that
for every S ∈ E , limt→+∞ Pr (M(t) = S) exists and we denote it as π∗

S . We also assume
that limT →+∞

1
T

∫ T
0 1(M(u) = S)du exists and is equal to π∗

S . For every S ∈ E , we define a
Poisson process {PS(t), t ≥ 0}with rate λS . For any S, the processes {PS(t+u)−PS(t), u ≥ 0}
and {M(v), 0 ≤ v ≤ t} are assumed to be independent. This assumption is known as the lack of
anticipation assumption [Wol82; vR88]. We construct a stochastic process {Q(t), t ≥ 0} such that
its jumps coincide with the jumps of {PS(t), t ≥ 0} when {M(t), t ≥ 0} is in state S, for any
S ∈ E . If yS is the number of jumps of {PS(t), t ≥ 0} in [0, t] and t1,S , . . . tyS ,S are the instants
of those jumps, then {Q(t), t ≥ 0} can be formally written as,

Q(t) ≜
∑
S∈E

yS∑
j=1

1 (M(tj,S) = S) . (B.6)

Theorem B.1 (Generalized PASTA). Q(t)/t converges to
∑

S∈E λSπ∗
S , as t goes to +∞, with

probability 1.

Proof. We re-write {Q(t), t ≥ 0} using the notation from [Wol82]:

Q(t) =
∑
S∈E

∫ t

0
1 (M(u) = S) dPS(u). (B.7)

Next, we compute the limit of Q(t)/t as follows,

lim
t→+∞

Q(t)
t

= lim
t→+∞

∑
S∈E

(
PS(t)

t

)
·
(1

PS(t)

∫ t

0
1 (M(u) = S) dPS(u)

)
(B.8)

=
∑
S∈E

λS · lim
t→+∞

1
t

∫ t

0
1 (M(u) = S) ds (B.9)

=
∑
S∈E

λSπ∗
S . (B.10)

To obtain (B.9), we used the PASTA property [Wol82] for each term in the sum. Moreover, we used
the fact that {PS(t), t ≥ 0} is Poisson with rate λS and therefore limt→+∞ PS(t)/t = λS . This
concludes the proof.

A similar result is proven in [RS92, Sect. 3.3] for Markov-modulated Poisson processes.

84 APPENDIX B

Corollary B.1 (Generalized PASTA). For any partition (Bi)i∈{1,...,l} of E such that λS = λi for
any S in Bi, we have that

Q(t)
t

t→+∞−−−−→
l∑

i=1
λi

∑
S∈Bi

π∗
S , w.p. 1. (B.11)

Theorem B.1 and Corollary B.1 provide the average rate of the process {Q(t), t ≥ 0}.

B.4 Proof of Proposition 4.2 (Item hit probability, page 50)

The proof uses the generalized PASTA property derived in B.3, and we will redefine the relevant
processes to serve our purpose.

We redefine M(t) as the set of cached items in the RND-TTL cache at time t, SRND-TTL(t). It
follows that E is equal to Ω, the state space of {SRND-TTL(t), t ≥ 0}. We partition Ω into B1 =
{S ∈ Ω : n ∈ S} and B2 = {S ∈ Ω : n /∈ S}. For any S in B1, we redefine {PS(t), t ≥ 0}
as the request process of n, that is Poisson with rate λn by Assumption 4.1. For any S in B2, we
redefine {PS(t), t ≥ 0} as the request process for n thinned with probability 1− pi

n.
With {M(t), t ≥ 0} and {{PS(t), t ≥ 0} , S ∈ Ω} redefined, Corollary B.1 computes the

rate of {Q(t), t ≥ 0}, defined in (B.6), as λn · on + λn(1− pi
n)(1− on), where on =

∑
S∈B1 πS

and 1− on =
∑

S∈B2 πS . Finally, we only need to show that Q(t) is the number of hits for item n
until time t to deduce that the hit probability is equal to λn · on + λn(1− pi

n)(1− on).
In RND-TTL, whenever an item n is in the cache, an exact hit occurs upon a request for n. In

other words, if {SRND-TTL(t), t ≥ 0} is in state B1, the number of hits for n grows as its request
process (and those added hits are all exact). Conversely, when n is not in the cache, only an
approximate hit may occur, with probability 1− pi

n. In other words, if {SRND-TTL(t), t ≥ 0} is in
state B2, the number of hits for n grows as its request process thinned with probability 1− pi

n (and
those added hits are all approximate). It is clear then that the number of hits for n until time t is
Q(t), which concludes the proof.

B.5 Proof of Proposition 4.3 (RND-LRU insertion rate, page 52)

The proof is similar to that for Proposition 4.2 in B.4.
We redefine M(t) as the ordered list of cached items in the RND-LRU cache at time t,

LRND-LRU(t). It follows that E = Ω̃, the state space of {LRND-LRU(t), t ≥ 0}. For a given item n, we
partition Ω̃ into B̃n = {L ∈ Ω̃ : L∩N c[n] = ∅}, B̃n,m = {L ∈ Ω̃ : m ∈ L, L∩N c

m[n] = ∅} for
every m ∈ N (n), and {L ∈ Ω̃ : n ∈ L}. For any L in state B̃n, we redefine {PL(t), t ≥ 0} as the
request process for n that is Poisson with rate λn by Assumption 4.1. For any L in state B̃n,m with
m ∈ N (n), we redefine {PL(t), t ≥ 0} as the request process for n thinned with probability 1−
qm(n) . For any L such that n ∈ L, we redefine (PL(t)) to be always equal to 0 with probability 1.

With {M(t), t ≥ 0} and {{PL(t), t ≥ 0} , L ∈ Ω̃} redefined, Corollary B.1 computes the

APPENDIX B 85

rate of {Q(t), t ≥ 0}, defined in (B.6) as

λn

 ∑
L∈B̃n

π̃L +
∑

m∈N (n)
(1− qm(n))

∑
K∈B̃n,m

π̃K

 . (B.12)

Therefore we only need to show that Q(t) is the number of insertions for item n until time t to
prove the formula for the insertion rate.

In RND-LRU, when neither n nor any of its neighbors are in the cache, a request for n will
correspond to a miss, and thereby n is inserted in the cache. In other words, when LRND-LRU(t) is in
state B̃n, the number of insertions of n grows as its request process. However, when n is not in the
cache but a neighbor is, n may be inserted with some probability. Specifically, if m is the closest
neighbor of n in the cache, n will be inserted upon a request with probability 1 − qm(n). That
is, when {LRND-LRU(t), t ≥ 0} is in state B̃n,m, the number of insertions of n grows as its request
process thinned with probability 1− qm(n). We deduce that Q(t) is the number of insertions of n
until time t, which concludes the proof.

B.6 Proof of Proposition 4.4 (RND-LRU refresh rate, page 52)

As in B.5, we redefine M(t) as the ordered list of cached items in RND-LRU at time t, LRND-LRU(t).
For a given item n, for every m ∈ N c[n], we define the set B̃m,n = {L ∈ Ω̃ : n ∈ L, L∩N c

n[m] =
∅}.

For any L in Ω̃, we redefine {PL(t), t ≥ 0} as the aggregation of thinned request processes
for items in the subset {m ∈ N c[n] : L ∈ B̃m,n}. For every m in the aforementioned subset, the
thinning probability of m’s request process is qn(m). Under Assumption 4.1, {PL(t), t ≥ 0} is
Poisson and its rate is given by,

λL =
∑

m∈N c[n]
qn(m)λm1(L ∈ B̃m,n). (B.13)

With {M(t), t ≥ 0} and {{PL(t), t ≥ 0} , L ∈ Ω̃} redefined, Theorem B.1 computes the rate
of {Q(t), t ≥ 0}, defined in B.3 as,

lim
t→+∞

Q(t)
t

=
∑
L∈Ω̃

∑
m∈N c[n]

qn(m)λm1(L ∈ B̃m,n) π̃L (B.14a)

=
∑

m∈N c[n]
qn(m)λm

∑
L∈Ω̃

1(L ∈ Bm,n)π̃L (B.14b)

=
∑

m∈N c[n]
qn(m)λm

∑
L∈B̃m,n

π̃L. (B.14c)

It suffices then to show that {Q(t), t ≥ 0} is the number of times n’s timer is refreshed until
time t to deduce that the refresh rate λ̃r

n is given by (B.14c).
In RND-LRU, whenever an item n is in the cache, a hit on n occurs upon a request for m, with

probability qn(m), if n is the item in cache closest to m, and as a result n’s timer is refreshed.

86 APPENDIX B

This holds for any neighbor m of item n (including n). In other words, for any neighbor m such
that {LRND-LRU(t), t ≥ 0} is in state B̃m,n, m’s request process thinned with probability qn(m)
contributes to the growth of the number of timer refreshes for n. No other process contributes to the
refresh counting process, thereby, when {LRND-LRU(t), t ≥ 0} is in state L, the number of times n’s
timer is refreshed grows as the Poisson process PL(t) with rate λL given in (B.13). We conclude
that {Q(t), t ≥ 0} is the number of times n’s timer is refreshed until time t, finishing the proof.

B.7 Proof of Lemma 4.1 (TC(o) is a singleton, page 55)

Let o ∈ ∆C . We first observe that F (o, ·) is an increasing and continuous function in R+ since it is
the sum of increasing and continuous functions in R+ (see (4.38)). As F (o, 0) = −C < 0, proving
the existence of a root T0 of F (o, ·) boils down to proving that limT →+∞ F (o, T) > 0, thanks to
the intermediate value theorem. We prove next that limT →+∞ F (o, T) is indeed strictly positive.

For a given o ∈ ∆C , we consider the setMo having the items with occupancy equal to 1. In
other words,Mo = {n ∈ I : on = 1} (note that we may haveMo = ∅). We can write

o ∈ ∆C
(4.35)=⇒ |Mo| ≤ C (B.15)

(4.36)=⇒

∣∣∣∣∣∣
⋃

m∈Mo

N (m)

∣∣∣∣∣∣ < N − C (B.16)

same
set=⇒

∣∣∣∣∣∣
n ∈ I :

∏
m∈N (n)

(1− om) = 0

∣∣∣∣∣∣ < N − C (B.17)

=⇒

∣∣∣∣∣∣
n ∈ I :

∏
m∈N (n)

(1− om) > 0

∣∣∣∣∣∣ > C (B.18)

(4.25)
(4.31)=⇒ |{n ∈ I : En(o) > 0}| > C (B.19)

(4.29)=⇒
∣∣∣∣{n ∈ I : lim

T →+∞
g (Rn(o), En(o), T) = 1

}∣∣∣∣ > C (B.20)

(4.38)=⇒ lim
T →+∞

F (o, T) > 0 . (B.21)

The implication (B.15) is due to the definition of ∆C (4.35), whereas (B.16) follows from the
no-coverage condition (4.36). Observing that any item n in the set of all neighbors

⋃
m∈Mo N (m)

has at least one neighbor with occupancy 1 (the one from the set Mo), we can rewrite (B.16)
as (B.17). The inequality in (B.18) follows by considering the complementary set. From the
definition of the function E (see (4.25) and (4.31)), it comes that the set in (B.18) is in-
cluded in the set in (B.19), which justifies writing (B.19). The implication (B.20) follows since
limT →+∞ g (Rn(o), En(o), T) = 1 whenever En(o) > 0 (see (4.29)). Using the definition of
F (o, T) in (4.38), it is straightforward to write (B.21). We deduce then the existence of a root of
F (o, ·), namely T0.

The last step of the proof is to show the uniqueness of the root T0. Given that under the
no-coverage condition, there are at least C + 1 functions g (Rn(o), En(o), ·) that are strictly

APPENDIX B 87

increasing (see (4.29) and (B.20)). Consequently, F (o, ·) is strictly increasing and T0 is unique,
which concludes the proof.

B.8 Proof of Lemma 4.2 (Differentiability of tC , page 56)

We follow the steps of the proof of [Oli12][Th.1]. By proving the existence of the partial derivatives
of tC , we show that tC is differentiable. Let o ∈ ∆C and for j ∈ I we define ej as the N -
dimensional vector with all components 0 except the jth one which is 1. We want to show the
existence of

lim
ϵ→0

tC(o + ϵej)− tC(o)
ϵ

. (B.22)

Let A = (o, tC(o)) and Bj = (o + ϵej , tC(o + ϵej)). Since F is the sum of continuously
differentiable functions (see (4.38)), then F is continuously differentiable over ∆C × R+. By the
mean value theorem, there exists some δ between 0 and 1 such that

F (Bj)− F (A) = ∇F ((1− δ)A + δBj) · (Bj −A). (B.23)

To ease the writing we define Lj = (1− δ)A + δBj . From the definition of tC in (4.39), we have
that F (A) = F (Bj) = 0. We expand then the right-hand side of (B.23) to write

ϵ
∂F

∂oj
(Lj) +

(
tC(o + ϵej)− tC(o)

)∂F

∂T
(Lj) = 0

⇔ tC(o + ϵej)− tC(o)
ϵ

= − ∂F

∂oj
(Lj)

(
∂F

∂T
(Lj)

)−1
, (B.24)

where we used the fact that ∂F
∂T > 0 to write the last equality. (Recall from B.7 that F (o, ·) is

continuous and strictly increasing.) When ϵ→ 0, Lj converges to A and (B.24) boils down to (4.41),
completing the proof.

B.9 Proof of Proposition 4.7 (page 59)

The Jacobian matrix of a function f : Rn → Rm is a rectangular matrix with m rows and n
columns. The element in the ith row and jth column represents the partial derivative of the ith
component of the function f with respect to the jth variable.

Let o ∈ ∆C and Pi(o) = (Ri(o), Ei(o), tC(o)). We use the chain rule on G to compute the
partial derivative of its ith component, Gi, with respect to the jth variable.

∂Gi

∂oj
(o) = ∂g

∂x1
(Pi(o))∂Ri

∂oj
(o) + ∂g

∂x2
(Pi(o))∂Ei

∂oj
(o) + ∂g

∂x3
(Pi(o))∂tC

∂oj
(o). (B.25)

Observe that (
∂g

∂x1
(Pi(o))∂Ri

∂oj
(o)
)

1≤i≤N
1≤j≤N

= Diag (∂1g) · JR(o), (B.26)

88 APPENDIX B

and (
∂g

∂x2
(Pi(o))∂Ei

∂oj
(o)
)

1≤i≤N
1≤j≤N

= Diag (∂2g) · JE(o). (B.27)

To prove (4.47), it suffices to prove that(
∂g

∂x3
(Pi(o))∂tC

∂oj
(o)
)

1≤i≤N
1≤j≤N

= − ∂3g⊺

∂3g · 1 · (∂1g · JR(o) + ∂2g · JE(o)) . (B.28)

To this aim, we compute the partial derivatives of tC . These are given in Lemma 4.2 as follows:

∂tC

∂oj
(o) = − ∂F

∂oj
(o, tC(o)) ·

(
∂F

∂T
(o, tC(o))

)−1
. (B.29)

From the definition of F (see (4.38)) and the chain rule, we get

∂F

∂oj
(o, tC(o)) =

∑
i∈I

∂g

∂x1
(Pi(o))∂Ri

∂oj
(o) +

∑
i∈I

∂g

∂x2
(Pi(o))∂Ei

∂oj
(o), (B.30)

∂F

∂T
(o, tC(o)) =

∑
i∈I

∂g

∂x3
(Pi(o)) = ∂3g · 1 . (B.31)

Substituting (B.30) and (B.31) into (B.29) we deduce (B.28). This concludes the proof.

B.10 Time Complexity of Single Iteration in Algorithm 3

In each iteration of Algorithm 3, we compute the functions E(o), R(o), tC(o) and finally
g (E(o), R(o), tC(o)) for a given o ∈ ∆C . It is easy to deduce from (4.31), (4.32) and (4.33)
that the time complexity for computing the functions E, R and g is O (K), O (K) and O (N),
respectively. The computation of tC(o) can be done either through bisection or Newton’s method
thanks to Lemma 4.2. If we consider that the number of iterations in the computation of tC(o) is
constant, then the time complexity for computing tC(o) is O (K). Finally, we deduce that the time
complexity for one iteration of Algorithm 3 is O (K).

B.11 Proof of Proposition 4.8 (Properties of Y (o), page 60)

Let β ∈ [0, 1] and a = max
{

0, γ−1
γ+1−η

}
. For a given o ∈ ∆C , in order to show that (a, 1) ⊂ Y (o),

we first find an upper bound on the squared spectral norm of JGβ
(o). We next observe that

should (4.55) hold, then the upper bound that we found would be smaller than 1 if and only if β
lies within the interval (a, 1), concluding thereby that (a, 1) ⊂ Y (o).

We derive now an upper bound of the square of the spectral norm of JGβ
(o). In our derivations,

we denote the spectral radius of a matrix M as ρ(M) and use IN for the N -dimensional identity

APPENDIX B 89

0 20 40 60 80 99

X

99

80

60

40

20

0

Y

Popularity distribution

10 5

10 4

10 3

10 2

10 1

100

Figure B.1: Spatial popularity distribution: Zipf with exponent z = 1.0.

matrix. Letting A = JG(o), we can start from (4.47) to write

∥JGβ
(o)∥22 =

(
∥(1− β)A + βIN∥2

)2 (B.32a)

= ρ
(
(1− β)2AA⊺ + β(1− β)(A + A⊺) + β2IN

)
(B.32b)

≤ ρ
(
(1− β)2AA⊺ + β(1− β)(A + A⊺)

)
+ β2 (B.32c)

= ∥(1− β)2AA⊺ + β(1− β)(A + A⊺)∥2 + β2 (B.32d)

≤ ∥(1− β)2AA⊺∥2 + ∥β(1− β)(A + A⊺)∥2 + β2 (B.32e)

= (1− β)2γ + β(1− β)η + β2 (B.32f)

= (γ + 1− η)β2 − (2γ − η)β + γ. (B.32g)

Equation (B.32b) follows from the definition of the spectral norm, i.e., ∥M∥2 =
√

ρ(MM⊺).
We can write (B.32c) by observing that ρ(M + β2I) ≤ ρ(M) + β2 for any matrix M . Given that
the spectral norm of a symmetric matrix coincides with its spectral radius, (B.32d) follows. We
can write (B.32e) thanks to the triangular inequality, and (B.32f) using again that ∥M∥2 = ρ(M)
when M is symmetric and then the definitions of γ and η in (4.53) and (4.54), respectively.
Equation (B.32g) readily follows. The upper bound expressed in (B.32g) is less than 1 when β is in
the interval

(
max

{
0, γ−1

γ+1−η

}
, 1
)

under the condition that η < min{2, γ + 1}.

B.12 Additional Experiments

Zipf trace on a grid. Each item corresponds to two features, characterized by a point in a grid,
I = [0..99]2. The total number of items is |I| = 104, and the dissimilarity function between
items dis(·, ·) is the Euclidean distance. Neighbors of item (x, y) at the same distance are ordered
counterclockwise starting from the item to the right, i.e., from (x + a, y) with a > 0. Traces
are generated in an IRM fashion where the popularity distribution for an item in I is Zipf. We
generate 50 synthetic streams using Zipf exponent z = 1.0 and having in each stream r = 2 · 105

requests for items in I. Figure B.1 illustrates the spatial popularity distribution for z = 1.0.

90 APPENDIX B

100 120 140 160 180 200 220 240
capacity

0.40
0.45
0.50
0.55
0.60
0.65
0.70

Hi
t r

at
io

Greedy
Exp-SIM
Ours-SIM
Exp-RND
Ours-RND
LRU

(a) d = 1, 25 iterations

100 120 140 160 180 200 220 240
capacity

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

Hi
t r

at
io

Greedy
Exp-SIM
Ours-SIM
Exp-RND
Ours-RND
LRU

(b) d = 1.5, 20 iterations

100 120 140 160 180 200 220 240
capacity

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

Hi
t r

at
io

Greedy
Exp-SIM
Ours-SIM
Exp-RND
Ours-RND
LRU

(c) d = 2.0, 15 iterations

Figure B.2: Hit ratio versus cache capacity: r = 2 · 105, Zipf with exponent z = 1.0, β = 0.5.

Hit ratio computation. We empirically compute the hit ratio of similarity cache mechanisms
using SIM-LRU and RND-LRU on the Zipf trace with parameter z = 1. We consider three similarity
threshold values d = 1, d = 1.5 and d = 2. Additionally, given two distinct items n and m, we
set RND-LRU parameters qn(m) to (dis(n, m))−2 if dis(n, m) ≤ d and 0 otherwise. Note that
when d = 1, RND-LRU reduces to SIM-LRU. Results for the hit ratio are averaged over the 50
request processes. We refer to the empirical results for SIM-LRU and RND-LRU as Exp-SIM
and Exp-RND, respectively. Our approach utilizes Algorithm 3 with parameter β = 0.5 and a
stopping condition determined by a fixed number of iterations. Algorithm 3 enables us to estimate
the approximate hit probabilities for all items, h, and subsequently determine the overall cache
hit ratio H . We refer to our results, for SIM-LRU and RND-LRU, as Ours-SIM and Ours-RND,
respectively. Possible alternative methods to estimate the hit ratio are presented in Section 4.6.2,
like LRU and Greedy.

Figure B.2 shows the empirical hit ratio along with its estimates obtained through different
approaches. The depicted results confirm the accuracy of our approach in approximating RND-
LRU’s hit ratio.

Figure B.3 illustrates the values of the characteristic time tC and the hit ratio H over different
iterations of Algorithm 3. The findings shown in Figure B.3 validate that Algorithm 3 converges
within a few iterations.

Table B.1 provides details on the average runtime per iteration in Algorithm 3 for d = 1.0,
d = 1.5 and d = 2.0 when the number of iterations is respectively 25, 20 and 15.

APPENDIX B 91

0 3 6 9 12 15 18 21 24
Iteration

141.5
142.0
142.5
143.0
143.5
144.0

t C

tC
0.4118

0.4119

0.4120

0.4121

Hi
t r

at
io

Hit ratio

(a) d = 1

0 3 6 9 12 15 18 21
Iteration

141
142
143
144
145
146
147

t C

tC 0.4318

0.4320

0.4322

0.4324

Hi
t r

at
io

Hit ratio

(b) d = 1.5

0 2 4 6 8 10 12 14
Iteration

142

144

146

148

150

t C

tC
0.45250

0.45275

0.45300

0.45325

0.45350

0.45375

Hi
t r

at
io

Hit ratio

(c) d = 2.0

Figure B.3: Characteristic time tC and hit ratio in different iterations of Algorithm 3 for SIM-LRU:
Zipf with exponent z = 1.0, β = 0.5.

Table B.1: Average runtime per iteration in Algorithm 3: C = 100, Zipf with z = 1.0, β = 0.5.

Similarity threshold Number of neighbors Average runtime
d |N c[n]| per iteration

1.0 5 0.7 seconds
1.5 9 2.5 seconds
2.0 13 5.2 seconds

B.13 Implementation Details

When computing ∥JGβ
(o)∥, we follow a specific procedure. First, we use the formula in (4.48)

to compute the Jacobian matrix JG. To compute the Jacobian matrices JE and JR, we utilize a
function from the torch.autograd Pytorch’s library [Pas+19b]. However, we do not use this function
in the computation of the vectors ∂1g, ∂2g and ∂3g to avoid potential errors that may arise from
floating point precision. Instead, we implement these vectors separately, ensuring accurate results.
The vectors ∂g1, ∂g2, and ∂g3 are implemented separately without relying on the aforementioned
PyTorch function. This is done to ensure accurate results by avoiding potential errors that may arise
from floating point precision.

Bibliography

93

Bibliography

[ACN00] Dimitris Achlioptas, Marek Chrobak, and John Noga. “Competitive analysis of
randomized paging algorithms”. In: Theoretical Computer Science 234 (2000). DOI:
https://doi.org/10.1016/S0304-3975(98)00116-9 (cit. on p. 3).

[ACN16] Sara Alouf, Nicaise Choungmo Fofack, and Nedko Nedkov. “Performance models
for hierarchy of caches: Application to modern DNS caches”. In: Performance
Evaluation 97 (Mar. 2016), pp. 57–82. DOI: 10.1016/j.peva.2016.01.001.
URL: https://inria.hal.science/hal-01258189 (cit. on p. 45).

[AG22] Sebastian Allmeier and Nicolas Gast. “Mean Field and Refined Mean Field Approxi-
mations for Heterogeneous Systems: It Works!” In: ACM Meas. Anal. Comput. Syst.
6 (2022). DOI: 10.1145/3508033 (cit. on p. 71).

[And+13] Lachlan Andrew, Siddharth Barman, Katrina Ligett, Minghong Lin, Adam Meyerson,
Alan Roytman, and Adam Wierman. “A Tale of Two Metrics: Simultaneous Bounds
on Competitiveness and Regret”. In: 26th Annual Conference on Learning Theory.
Vol. 30. Proceedings of Machine Learning Research. PMLR, 2013. URL: https:
//proceedings.mlr.press/v30/Andrew13.html (cit. on p. 3).

[BAN22a] Younes Ben Mazziane, Sara Alouf, and Giovanni Neglia. “A Formal Analysis of
the Count-Min Sketch with Conservative Updates”. In: IEEE INFOCOM - IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS). 2022.
DOI: 10.1109/INFOCOMWKSHPS54753.2022.9798146 (cit. on pp. 6, 7, 17,
20, 21).

[BAN22b] Younes Ben Mazziane, Sara Alouf, and Giovanni Neglia. “Analyzing Count Min
Sketch with Conservative Updates”. In: Computer Networks 217 (2022), p. 109315.
DOI: https://doi.org/10.1016/j.comnet.2022.109315 (cit. on
pp. 6, 7, 17, 28).

[Bas+18] Soumya Basu, Aditya Sundarrajan, Javad Ghaderi, Sanjay Shakkottai, and Ramesh
Sitaraman. “Adaptive TTL-based caching for content delivery”. In: IEEE/ACM trans-
actions on networking 26.3 (2018), pp. 1063–1077 (cit. on p. 45).

[BBS20] Rajarshi Bhattacharjee, Subhankar Banerjee, and Abhishek Sinha. “Fundamental
Limits on the Regret of Online Network-Caching”. In: ACM SIGMETRICS Joint
International Conference on Measurement and Modeling of Computer Systems. 2020.
DOI: 10.1145/3392143 (cit. on pp. 3, 4, 31, 34, 37).

[BdN11] Giuseppe Bianchi, Nico d’Heureuse, and Saverio Niccolini. “On-demand time-
decaying Bloom filters for telemarketer detection”. In: ACM SIGCOMM Comput.
Communi. Rev. 41 (2011). DOI: 10.1145/2043165.2043167 (cit. on p. 9).

[Bel66] L. A. Belady. “A study of replacement algorithms for a virtual-storage computer”. In:
IBM Systems Journal 5 (1966). DOI: 10.1147/sj.52.0078 (cit. on p. 3).

95

https://doi.org/https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1016/j.peva.2016.01.001
https://inria.hal.science/hal-01258189
https://doi.org/10.1145/3508033
https://proceedings.mlr.press/v30/Andrew13.html
https://proceedings.mlr.press/v30/Andrew13.html
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798146
https://doi.org/https://doi.org/10.1016/j.comnet.2022.109315
https://doi.org/10.1145/3392143
https://doi.org/10.1145/2043165.2043167
https://doi.org/10.1147/sj.52.0078

96 BIBLIOGRAPHY

[Ben+17] Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. “Optimal elephant
flow detection”. In: IEEE INFOCOM - IEEE Conference on Computer Communica-
tions. 2017. DOI: 10.1109/INFOCOM.2017.8057216 (cit. on pp. 5, 9).

[Ben+22] Younes Ben Mazziane, Sara Alouf, Giovanni Neglia, and Daniel Sadoc Menasche.
“Computing the Hit Rate of Similarity Caching”. In: IEEE GLOBECOM - IEEE
Global Communications Conference. 2022. DOI: 10.1109/GLOBECOM48099.
2022.10000890 (cit. on p. 7).

[Ben+23] Younes Ben Mazziane, Francescomaria Faticanti, Giovanni Neglia, and Sara Alouf.
“No-Regret Caching with Noisy Request Estimates”. In: IEEE VCC - IEEE Virtual
Conference on Communications. 2023 (cit. on p. 7).

[Ben+24] Younes Ben Mazziane, Sara Alouf, Giovanni Neglia, and Daniel Sadoc Menasche.
“TTL model for an LRU-based similarity caching policy”. In: Computer Networks
(2024), p. 110206. DOI: https://doi.org/10.1016/j.comnet.2024.
110206 (cit. on pp. 7, 8).

[Ber+00] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. “Balanced
allocations: The heavily loaded case”. In: thirty-second annual ACM symposium on
Theory of computing. 2000 (cit. on p. 69).

[Ber+10] Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J. Strauss. “Space-optimal
heavy hitters with strong error bounds”. In: ACM Trans. Database Syst. 35 (2010).
DOI: 10.1145/1862919.1862923 (cit. on p. 5).

[Ber+14] Daniel S Berger, Philipp Gland, Sahil Singla, and Florin Ciucu. “Exact analysis of
TTL cache networks”. In: Performance Evaluation 79 (2014), pp. 2–23 (cit. on p. 45).

[Bia+12] Giuseppe Bianchi, Ken Duffy, Douglas Leith, and Vsevolod Shneer. “Modeling con-
servative updates in multi-hash approximate count sketches”. In: 24th International
Teletraffic Congress (ITC 24). 2012 (cit. on pp. 10, 12, 16–18, 20, 21, 26, 69).

[BM03] Andrei Broder and Michael Mitzenmacher. “Network Applications of Bloom Filters:
A Survey”. In: Internet Mathematics 1 (2003) (cit. on pp. 10, 13).

[BOO07] Tolga Bektas, Osman Oguz, and Iradj Ouveysi. “Designing cost-effective content
distribution networks”. In: Computers & Operations Research 34.8 (2007), pp. 2436–
2449 (cit. on p. 27).

[Bre+99] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. “Web caching and Zipf-like
distributions: evidence and implications”. In: IEEE INFOCOM - IEEE Conference
on Computer Communications. 1999. DOI: 10.1109/INFCOM.1999.749260
(cit. on pp. 2, 36).

[BSH17] Daniel S. Berger, Ramesh K. Sitaraman, and Mor Harchol-Balter. “AdaptSize: Or-
chestrating the Hot Object Memory Cache in a Content Delivery Network”. In:
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI
17). 2017. URL: https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/berger (cit. on p. 4).

https://doi.org/10.1109/INFOCOM.2017.8057216
https://doi.org/10.1109/GLOBECOM48099.2022.10000890
https://doi.org/10.1109/GLOBECOM48099.2022.10000890
https://doi.org/https://doi.org/10.1016/j.comnet.2024.110206
https://doi.org/https://doi.org/10.1016/j.comnet.2024.110206
https://doi.org/10.1145/1862919.1862923
https://doi.org/10.1109/INFCOM.1999.749260
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/berger
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/berger

BIBLIOGRAPHY 97

[CA13] Nicaise Choungmo Fofack and Sara Alouf. “Modeling modern DNS caches”. In:
VALUETOOLS-7th International Conference on Performance Evaluation Methodolo-
gies and Tools. 2013, pp. 184–193 (cit. on p. 45).

[Cas11] Giuliano Casale. “Building accurate workload models using Markovian arrival pro-
cesses”. In: ACM SIGMETRICS Joint International Conference on Measurement
and Modeling of Computer Systems. 2011. DOI: 10.1145/1993744.1993783
(cit. on p. 2).

[CCF04] Moses Charikar, Kevin Chen, and Martin Farach-Colton. “Finding frequent items in
data streams”. In: Theoretical Computer Science 312 (2004). DOI: https://doi.
org/10.1016/S0304-3975(03)00400-6 (cit. on p. 5).

[CH10] Graham Cormode and Marios Hadjieleftheriou. “Methods for finding frequent items
in data streams”. In: The VLDB Journal 19 (2010) (cit. on pp. 9, 19).

[Cha+07] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue Moon. “I
tube, you tube, everybody tubes: analyzing the world’s largest user generated content
video system”. In: 7th ACM SIGCOMM Conference on Internet Measurement. 2007.
DOI: 10.1145/1298306.1298309 (cit. on p. 2).

[Che+21] Peiqing Chen, Yuhan Wu, Tong Yang, Junchen Jiang, and Zaoxing Liu. “Precise error
estimation for sketch-based flow measurement”. In: 21st ACM Internet Measurement
Conf. 2021, pp. 113–121 (cit. on pp. 10, 12, 13, 20, 21).

[Che98] Ludmila Cherkasova. Improving WWW proxies performance with greedy-dual-size-
frequency caching policy. Hewlett-Packard Laboratories Palo Alto, CA, USA, 1998
(cit. on p. 4).

[Cho+14] Nicaise Choungmo Fofack, Philippe Nain, Giovanni Neglia, and Don Towsley. “Per-
formance evaluation of hierarchical TTL-based cache networks”. In: Computer
Networks 65 (2014), pp. 212–231 (cit. on pp. 40, 45).

[CK03] Edith Cohen and Haim Kaplan. “Proactive caching of DNS records: Addressing a
performance bottleneck”. In: Computer Networks 41.6 (2003), pp. 707–726 (cit. on
p. 45).

[CKV09] Flavio Chierichetti, Ravi Kumar, and Sergei Vassilvitskii. “Similarity caching”.
In: Twenty-Eighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems. 2009. DOI: 10.1145/1559795.1559815 (cit. on p. 5).

[CKZ01] Edith Cohen, Haim Kaplan, and Uri Zwick. “Competitive Analysis of the LRFU
Paging Algorithm”. In: Algorithms and Data Structures. 2001 (cit. on p. 4).

[CM03] Saar Cohen and Yossi Matias. “Spectral bloom filters”. In: ACM SIGMOD Inter-
national Conference on Management of Data. 2003. DOI: 10.1145/872757.
872787 (cit. on pp. 6, 9, 12).

[CM05a] Graham Cormode and S. Muthukrishnan. “An improved data stream summary: the
count-min sketch and its applications”. In: Journal of Algorithms 55 (2005). DOI:
https://doi.org/10.1016/j.jalgor.2003.12.001 (cit. on pp. 5, 9,
10, 12, 14, 16, 21, 38).

https://doi.org/10.1145/1993744.1993783
https://doi.org/https://doi.org/10.1016/S0304-3975(03)00400-6
https://doi.org/https://doi.org/10.1016/S0304-3975(03)00400-6
https://doi.org/10.1145/1298306.1298309
https://doi.org/10.1145/1559795.1559815
https://doi.org/10.1145/872757.872787
https://doi.org/10.1145/872757.872787
https://doi.org/https://doi.org/10.1016/j.jalgor.2003.12.001

98 BIBLIOGRAPHY

[CM05b] Graham Cormode and S. Muthukrishnan. “Summarizing and Mining Skewed Data
Streams”. In: SIAM International Conference on Data Mining (SDM). 2005. DOI:
10.1137/1.9781611972757.5 (cit. on pp. 4, 5, 9, 10, 12, 14, 20, 21).

[CTW02] Hao Che, Ye Tung, and Zhijun Wang. “Hierarchical Web caching systems: modeling,
design and experimental results”. In: IEEE Journal on Selected Areas in Communi-
cations 20 (2002). DOI: 10.1109/JSAC.2002.801752 (cit. on pp. 4, 40, 45,
46).

[De +14] Steven De Rooij et al. “Follow the leader if you can, hedge if you must”. In: The
Journal of Machine Learning Research 15.1 (2014), pp. 1281–1316 (cit. on p. 31).

[Deh+17] Mostafa Dehghan, Bo Jiang, Anand Seetharam, Ting He, Theodoros Salonidis,
Jim Kurose, Don Towsley, and Ramesh Sitaraman. “On the Complexity of Opti-
mal Request Routing and Content Caching in Heterogeneous Cache Networks”. In:
IEEE/ACM Transactions on Networking 25 (2017). DOI: 10.1109/TNET.2016.
2636843 (cit. on p. 3).

[DGN17] U. Drolia, K. Guo, and P. Narasimhan. “Precog: Prefetching for image recognition
applications at the edge”. In: ACM/IEEE Symposium on Edge Computing. 2017
(cit. on p. 39).

[DT90] Asit Dan and Don Towsley. “An approximate analysis of the LRU and FIFO buffer
replacement schemes”. In: ACM SIGMETRICS conference on Measurement and
modeling of computer systems. 1990, pp. 143–152 (cit. on p. 40).

[EF15] Gil Einziger and Roy Friedman. “A formal analysis of conservative update based
approximate counting”. In: International Conference on Computing, Networking and
Communications (ICNC). 2015. DOI: 10.1109/ICCNC.2015.7069350 (cit. on
pp. 10, 12, 13, 16, 17, 20, 21, 79).

[EFM17] Gil Einziger, Roy Friedman, and Ben Manes. “TinyLFU: A Highly Efficient Cache
Admission Policy”. In: ACM Trans. Storage 13 (2017). DOI: 10.1145/3149371
(cit. on pp. 4, 9, 28, 69).

[EV02] Cristian Estan and George Varghese. “New directions in traffic measurement and
accounting”. In: SIGCOMM Comput. Commun. Rev. 32 (2002). DOI: 10.1145/
964725.633056 (cit. on pp. 4, 6, 9, 12).

[Fag77] Ronald Fagin. “Asymptotic miss ratios over independent references”. In: Journal of
Computer and System Sciences 14 (1977). DOI: https://doi.org/10.1016/
S0022-0000(77)80014-7 (cit. on pp. 2, 4, 10, 14, 27, 40, 45, 46, 52, 62, 71).

[Fal+08] Fabrizio Falchi, Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and Fausto
Rabitti. “A metric cache for similarity search”. In: ACM Workshop on Large-Scale
Distributed Systems for Information Retrieval. 2008. DOI: 10.1145/1458469.
1458473 (cit. on pp. 2, 5, 39, 41).

[Fin+22] A. Finamore, J. Roberts, M. Gallo, and D. Rossi. “Accelerating Deep Learning
Classification with Error-controlled Approximate-key Caching”. In: IEEE INFOCOM
- IEEE Conference on Computer Communications. 2022 (cit. on p. 39).

https://doi.org/10.1137/1.9781611972757.5
https://doi.org/10.1109/JSAC.2002.801752
https://doi.org/10.1109/TNET.2016.2636843
https://doi.org/10.1109/TNET.2016.2636843
https://doi.org/10.1109/ICCNC.2015.7069350
https://doi.org/10.1145/3149371
https://doi.org/10.1145/964725.633056
https://doi.org/10.1145/964725.633056
https://doi.org/https://doi.org/10.1016/S0022-0000(77)80014-7
https://doi.org/https://doi.org/10.1016/S0022-0000(77)80014-7
https://doi.org/10.1145/1458469.1458473
https://doi.org/10.1145/1458469.1458473

BIBLIOGRAPHY 99

[FK23a] Éric Fusy and Gregory Kucherov. “Count-Min Sketch with Variable Number of
Hash Functions: An Experimental Study”. In: String Processing and Information
Retrieval: 30th International Symposium, SPIRE. 2023. DOI: 10.1007/978-3-
031-43980-3_17 (cit. on p. 10).

[FK23b] Éric Fusy and Gregory Kucherov. “Phase Transition in Count Approximation by
Count-Min Sketch with Conservative Updates”. In: Algorithms and Complexity:
13th International Conference, CIAC 2023. 2023. DOI: 10.1007/978-3-031-
30448-4_17 (cit. on p. 10).

[FRP16] Andrés Ferragut, Ismael Rodriguez, and Fernando Paganini. “Optimizing TTL Caches
under Heavy-Tailed Demands”. In: ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Science. 2016. DOI: 10.1145/2896377.
2901459 (cit. on pp. 2, 45).

[FRR12] Christine Fricker, Philippe Robert, and James Roberts. “A versatile and accurate
approximation for LRU cache performance”. In: 2012 24th International Teletraffic
Congress (ITC 24). IEEE. Krakow, Poland, 2012, pp. 1–8. URL: http://dl.acm.
org/citation.cfm?id=2414276.2414286 (cit. on pp. 40, 45, 46, 52, 68).

[GDC12] Amit Goyal, Hal Daumé III, and Graham Cormode. “Sketch algorithms for estimating
point queries in NLP”. In: Conf. on empirical methods in natural language processing
and computational natural language learning. 2012 (cit. on p. 9).

[GLM16] Michele Garetto, Emilio Leonardi, and Valentina Martina. “A unified approach to the
performance analysis of caching systems”. In: ACM Transactions on Modeling and
Performance Evaluation of Computing Systems (TOMPECS) 1.3 (2016), pp. 1–28
(cit. on p. 45).

[GLN21] M. Garetto, E. Leonardi, and G. Neglia. “Content placement in networks of similarity
caches”. In: Computer Networks 201 (2021), p. 108570 (cit. on p. 39).

[GV17] Nicolas Gast and Benny Van Houdt. “TTL approximations of the cache replacement
algorithms LRU (m) and h-LRU”. In: Performance Evaluation 117 (2017), pp. 33–57
(cit. on pp. 4, 45).

[Has+23] Gerhard Hasslinger, Mahshid Okhovatzadeh, Konstantinos Ntougias, Frank Has-
slinger, and Oliver Hohlfeld. “An overview of analysis methods and evaluation
results for caching strategies”. In: Computer Networks 228 (2023), p. 109583 (cit. on
p. 45).

[Haz16] Elad Hazan. “Introduction to Online Convex Optimization”. In: Foundations and
Trends® in Optimization 2 (2016). DOI: 10.1561/2400000013 (cit. on pp. 4,
29).

[Hsu+19] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. “Learning-Based Frequency
Estimation Algorithms”. In: ICLR. 2019, pp. 1–20 (cit. on pp. 9, 18).

[JBB03] J. Jung, A.W. Berger, and Hari Balakrishnan. “Modeling TTL-based Internet caches”.
In: IEEE INFOCOM - IEEE Conference on Computer Communications. 2003. DOI:
10.1109/INFCOM.2003.1208693 (cit. on p. 45).

https://doi.org/10.1007/978-3-031-43980-3_17
https://doi.org/10.1007/978-3-031-43980-3_17
https://doi.org/10.1007/978-3-031-30448-4_17
https://doi.org/10.1007/978-3-031-30448-4_17
https://doi.org/10.1145/2896377.2901459
https://doi.org/10.1145/2896377.2901459
http://dl.acm.org/citation.cfm?id=2414276.2414286
http://dl.acm.org/citation.cfm?id=2414276.2414286
https://doi.org/10.1561/2400000013
https://doi.org/10.1109/INFCOM.2003.1208693

100 BIBLIOGRAPHY

[JNT18] Bo Jiang, Philippe Nain, and Don Towsley. “On the Convergence of the TTL Approxi-
mation for an LRU Cache under Independent Stationary Request Processes”. In: ACM
Trans. Model. Perform. Eval. Comput. Syst. 3 (2018). DOI: 10.1145/3239164
(cit. on pp. 4, 40, 45, 46, 52, 68, 71).

[JP83] Kumar Joag-Dev and Frank Proschan. “Negative Association of Random Variables
with Applications”. In: The Annals of Statistics 11 (1983). DOI: 10.1214/aos/
1176346079 (cit. on p. 77).

[JPD17] Slad̄ana Jošilo, Valentino Pacifici, and György Dán. “Distributed algorithms for
content placement in hierarchical cache networks”. In: Computer Networks 125
(2017). DOI: 10.1016/j.comnet.2017.05.029 (cit. on p. 3).

[KMN99] Samir Khuller, Anna Moss, and Joseph Seffi Naor. “The budgeted maximum coverage
problem”. In: Information processing letters 70.1 (1999), pp. 39–45 (cit. on p. 63).

[KS02] G. Karakostas and D.N. Serpanos. “Exploitation of different types of locality for Web
caches”. In: ISCC - Seventh International Symposium on Computers and Communi-
cations. 2002. DOI: 10.1109/ISCC.2002.1021680 (cit. on p. 4).

[KSP03] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. “A simple algorithm
for finding frequent elements in streams and bags”. In: ACM Trans. Database Syst.
28 (2003). DOI: 10.1145/762471.762473 (cit. on p. 5).

[KV05] Adam Kalai and Santosh Vempala. “Efficient algorithms for online decision prob-
lems”. In: Journal of Computer and System Sciences 71.3 (2005), pp. 291–307 (cit. on
pp. 31, 33, 70).

[Lec+16] Mathieu Leconte et al. “Placing dynamic content in caches with small population”.
In: IEEE INFOCOM - IEEE Conference on Computer Communications. 2016 (cit. on
p. 27).

[Lee+01] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, S.H. Noh, Sang Lyul Min, Yookun Cho,
and Chong Sang Kim. “LRFU: a spectrum of policies that subsumes the least recently
used and least frequently used policies”. In: IEEE Transactions on Computers 50
(2001). DOI: 10.1109/TC.2001.970573 (cit. on p. 4).

[Li+16] Sheng Li et al. “Full-stack architecting to achieve a billion-requests-per-second
throughput on a single key-value store server platform”. In: ACM Transactions on
Computer Systems (TOCS) 34.2 (2016), pp. 1–30 (cit. on pp. 28, 32).

[Li+20] Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang, Bin Cui, Yafei Dai, and Gong
Zhang. “WavingSketch: An Unbiased and Generic Sketch for Finding Top-k Items
in Data Streams”. In: 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2020. DOI: 10.1145/3394486.3403208 (cit. on
p. 5).

[Liu+16] Dong Liu, Binqiang Chen, Chenyang Yang, and Andreas F. Molisch. “Caching
at the wireless edge: design aspects, challenges, and future directions”. In: IEEE
Communications Magazine 54 (2016). DOI: 10.1109/MCOM.2016.7565183
(cit. on p. 2).

https://doi.org/10.1145/3239164
https://doi.org/10.1214/aos/1176346079
https://doi.org/10.1214/aos/1176346079
https://doi.org/10.1016/j.comnet.2017.05.029
https://doi.org/10.1109/ISCC.2002.1021680
https://doi.org/10.1145/762471.762473
https://doi.org/10.1109/TC.2001.970573
https://doi.org/10.1145/3394486.3403208
https://doi.org/10.1109/MCOM.2016.7565183

BIBLIOGRAPHY 101

[LSK11] Haiqin Liu, Yan Sun, and Min Sik Kim. “Fine-grained DDoS detection scheme
based on bidirectional count sketch”. In: 20th International Conference on Computer
Communications and Networks (ICCCN). 2011 (cit. on p. 9).

[LT15] Emilio Leonardi and Giovanni Luca Torrisi. “Least recently used caches under the
shot noise model”. In: IEEE INFOCOM - IEEE Conference on Computer Communi-
cations. 2015 (cit. on pp. 4, 40, 45, 52).

[LW94] Nick Littlestone and Manfred K Warmuth. “The weighted majority algorithm”. In:
Information and computation 108.2 (1994), pp. 212–261 (cit. on p. 31).

[LZ22] Qingsong Liu and Yaoyu Zhang. “Learning to Caching Under the Partial-feedback
Regime”. In: 2022 18th International Conference on Network and Service Manage-
ment (CNSM). 2022, pp. 154–162 (cit. on p. 28).

[MAE05] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. “Efficient computation
of frequent and top-k elements in data streams”. In: 10th International Conference
on Database Theory. 2005. DOI: 10.1007/978-3-540-30570-5_27 (cit. on
p. 5).

[Man53] W. Robert Mann. “Mean value methods in iteration”. In: American Mathematical
Society 4 (1953) (cit. on p. 58).

[McA+15] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
“Image-based recommendations on styles and substitutes”. In: 38th international
ACM SIGIR conference on research and development in information retrieval. 2015
(cit. on pp. 41, 46, 62).

[Mha+22a] Naram Mhaisen, Abhishek Sinha, Georgios Paschos, and George Iosifidis. “Opti-
mistic No-regret Algorithms for Discrete Caching”. In: ACM Meas. Anal. Comput.
Syst. 6 (2022). DOI: 10.1145/3570608 (cit. on pp. 4, 5).

[Mha+22b] Naram Mhaisen, Abhishek Sinha, Georgios Paschos, and George Iosifidis. “Opti-
mistic No-regret Algorithms for Discrete Caching”. In: ACM Meas. Anal. Comput.
Syst. 6 (2022). DOI: 10.1145/3570608 (cit. on p. 28).

[MIL22] Naram Mhaisen, George Iosifidis, and Douglas Leith. “Online Caching with Opti-
mistic Learning”. In: IFIP Networking Conference. 2022 (cit. on pp. 28, 30).

[MIL23] Naram Mhaisen, George Iosifidis, and Douglas Leith. “Online Caching with no Re-
gret: Optimistic Learning via Recommendations”. In: IEEE Transactions on Mobile
Computing (2023). DOI: 10.1109/TMC.2023.3317943 (cit. on p. 4).

[MMa] Gurmeet Singh Manku and Rajeev Motwani. “Approximate Frequency Counts over
Data Streams”. In: 28th International Conference on Very Large Databases. DOI:
doi.org/10.1016/B978-155860869-6/50038-X (cit. on p. 5).

[MMb] Nimrod Megiddo and Dharmendra S. Modha. “ARC: A Self-Tuning, Low Overhead
Replacement Cache”. In: 2nd USENIX Conference on File and Storage Technologies
(FAST 03). URL: https://www.usenix.org/conference/fast-03/
arc-self-tuning-low-overhead-replacement-cache (cit. on p. 4).

https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1145/3570608
https://doi.org/10.1145/3570608
https://doi.org/10.1109/TMC.2023.3317943
https://doi.org/doi.org/10.1016/B978-155860869-6/50038-X
https://www.usenix.org/conference/fast-03/arc-self-tuning-low-overhead-replacement-cache
https://www.usenix.org/conference/fast-03/arc-self-tuning-low-overhead-replacement-cache

102 BIBLIOGRAPHY

[Mor78] Robert Morris. “Counting large numbers of events in small registers”. In: Commun.
ACM 21 (1978). DOI: 10.1145/359619.359627 (cit. on p. 5).

[Mou+19] Giovane CM Moura, John Heidemann, Ricardo de O Schmidt, and Wes Hardaker.
“Cache me if you can: Effects of DNS Time-to-Live”. In: ACM Internet Measurement
Conference. 2019 (cit. on p. 45).

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge
university press, 1995 (cit. on pp. 10, 11).

[MS91] Lyle A McGeoch and Daniel D Sleator. “A strongly competitive randomized paging
algorithm”. In: Algorithmica 6 (1991). DOI: doi.org/10.1007/BF01759073
(cit. on p. 3).

[Mut05] Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and applications.
Now Publishers Inc, 2005 (cit. on p. 10).

[MV97] Reinhold Meise and Dietmar Vogt. Introduction to functional analysis. Clarendon
Press, 1997 (cit. on p. 59).

[Neg+17] Giovanni Neglia, Damiano Carra, Mingdong Feng, Vaishnav Janardhan, Pietro
Michiardi, and Dimitra Tsigkari. “Access-Time-Aware Cache Algorithms”. In: ACM
Trans. Model. Perform. Eval. Comput. Syst. 2 (2017). DOI: 10.1145/3149001
(cit. on p. 37).

[NGL21] Giovanni Neglia, Michele Garetto, and Emilio Leonardi. “Similarity Caching: Theory
and Algorithms”. In: IEEE/ACM Transactions on Networking (2021). DOI: 10.
1109/TNET.2021.3126368 (cit. on pp. 3, 5, 39, 42, 63).

[NWF78] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. “An analysis
of approximations for maximizing submodular set functions—I”. In: Mathematical
programming 14.1 (1978), pp. 265–294 (cit. on p. 63).

[Oli12] Oswaldo Rio Branco de Oliveira. “The implicit and the inverse function theorems:
easy proofs”. In: arXiv preprint arXiv:1212.2066 (2012) (cit. on p. 87).

[Pan+09] Sandeep Pandey, Andrei Broder, Flavio Chierichetti, Vanja Josifovski, Ravi Kumar,
and Sergei Vassilvitskii. “Nearest-neighbor caching for content-match applications”.
In: 18th International Conference on World Wide Web. 2009. DOI: 10.1145/
1526709.1526769 (cit. on pp. 2, 5, 39, 41–43).

[Par99] Sehie Park. “Ninety years of the Brouwer fixed point theorem”. In: Vietnam J. Math
27.3 (1999), pp. 187–222 (cit. on p. 57).

[Pas+18] Georgios S. Paschos, George Iosifidis, Meixia Tao, Don Towsley, and Giuseppe Caire.
“The Role of Caching in Future Communication Systems and Networks”. In: IEEE
Journal on Selected Areas in Communications 36 (2018). DOI: 10.1109/JSAC.
2018.2844939 (cit. on p. 3).

[Pas+19a] Georgios S. Paschos, Apostolos Destounis, Luigi Vigneri, and George Iosifidis.
“Learning to Cache With No Regrets”. In: IEEE INFOCOM - IEEE Conference on
Computer Communications. 2019. DOI: 10.1109/INFOCOM.2019.8737446
(cit. on pp. 3, 4, 27, 28, 30).

https://doi.org/10.1145/359619.359627
https://doi.org/doi.org/10.1007/BF01759073
https://doi.org/10.1145/3149001
https://doi.org/10.1109/TNET.2021.3126368
https://doi.org/10.1109/TNET.2021.3126368
https://doi.org/10.1145/1526709.1526769
https://doi.org/10.1145/1526709.1526769
https://doi.org/10.1109/JSAC.2018.2844939
https://doi.org/10.1109/JSAC.2018.2844939
https://doi.org/10.1109/INFOCOM.2019.8737446

BIBLIOGRAPHY 103

[Pas+19b] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In:
Advances in Neural Information Processing Systems. Vol. 32. 2019. URL: https:
//proceedings.neurips.cc/paper_files/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf (cit. on p. 91).

[PR23] Binghui Peng and Aviad Rubinstein. “Near Optimal Memory-Regret Tradeoff for
Online Learning”. In: arXiv preprint arXiv:2303.01673 (2023) (cit. on p. 70).

[PZ23] Binghui Peng and Fred Zhang. “Online prediction in sub-linear space”. In: Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 2023 (cit. on p. 70).

[RKT10] Elisha J. Rosensweig, Jim Kurose, and Don Towsley. “Approximate Models for
General Cache Networks”. In: IEEE INFOCOM - IEEE Conference on Computer
Communications. 2010. DOI: 10.1109/INFCOM.2010.5461936 (cit. on p. 3).

[Ros14] Sheldon M. Ross. Introduction to probability models. Academic press, 2014. DOI:
https://doi.org/10.1016/C2012-0-03564-8 (cit. on p. 82).

[Ros95] Sheldon M Ross. Stochastic processes. John Wiley & Sons, 1995 (cit. on pp. 50, 82).

[RS92] Walter A Rosenkrantz and Rahul Simha. “Some theorems on conditional Pasta:
A stochastic integral approach”. In: Operations Research Letters 11 (1992). DOI:
https://doi.org/10.1016/0167-6377(92)90082-E (cit. on p. 83).

[Sab+21] Anirudh Sabnis, Tareq Si Salem, Giovanni Neglia, Michele Garetto, Emilio Leonardi,
and Ramesh K. Sitaraman. “GRADES: Gradient Descent for Similarity Caching”.
In: IEEE INFOCOM - IEEE Conference on Computer Communications. 2021. DOI:
10.1109/INFOCOM42981.2021.9488757 (cit. on pp. 5, 39, 61, 62).

[Ser+18] P. Sermpezis, T. Giannakas, T. Spyropoulos, and L. Vigneri. “Soft Cache Hits: Im-
proving Performance Through Recommendation and Delivery of Related Content”.
In: IEEE Journal on Selected Areas in Communications 36 (2018). DOI: 10.1109/
JSAC.2018.2844983 (cit. on pp. 2, 39).

[Shu+21] Junaid Shuja, Kashif Bilal, Waleed Alasmary, Hassan Sinky, and Eisa Alanazi.
“Applying machine learning techniques for caching in next-generation edge networks:
A comprehensive survey”. In: Journal of Network and Computer Applications 181
(2021). DOI: https://doi.org/10.1016/j.jnca.2021.103005 (cit. on
p. 4).

[Sie04] Alan Siegel. “On Universal Classes of Extremely Random Constant-Time Hash
Functions”. In: SIAM Journal on Computing 33 (2004). DOI: 10 . 1137 /
S0097539701386216 (cit. on p. 10).

[SKW00] D.N. Serpanos, G. Karakostas, and W.H. Wolf. “Effective caching of Web objects
using Zipf’s law”. In: IEEE International Conference on Multimedia and Expo. 2000.
DOI: 10.1109/ICME.2000.871464 (cit. on p. 4).

https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1109/INFCOM.2010.5461936
https://doi.org/https://doi.org/10.1016/C2012-0-03564-8
https://doi.org/https://doi.org/10.1016/0167-6377(92)90082-E
https://doi.org/10.1109/INFOCOM42981.2021.9488757
https://doi.org/10.1109/JSAC.2018.2844983
https://doi.org/10.1109/JSAC.2018.2844983
https://doi.org/https://doi.org/10.1016/j.jnca.2021.103005
https://doi.org/10.1137/S0097539701386216
https://doi.org/10.1137/S0097539701386216
https://doi.org/10.1109/ICME.2000.871464

104 BIBLIOGRAPHY

[Smi82] Alan Jay Smith. “Cache Memories”. In: ACM Comput. Surv. 14 (1982). DOI: 10.
1145/356887.356892 (cit. on p. 1).

[Smi85] Alan J. Smith. “Disk cache—miss ratio analysis and design considerations”. In: ACM
Trans. Comput. Syst. 3 (1985). DOI: 10.1145/3959.3961 (cit. on p. 2).

[SNC23] Tareq Si Salem, Giovanni Neglia, and Damiano Carra. “Ascent Similarity Caching
With Approximate Indexes”. In: IEEE/ACM Transactions on Networking 31 (2023).
DOI: 10.1109/TNET.2022.3217012 (cit. on pp. 5, 39).

[SNI23] Tareq Si Salem, Giovanni Neglia, and Stratis Ioannidis. “No-regret Caching via
Online Mirror Descent”. In: ACM Trans. Model. Perform. Eval. Comput. Syst. 8
(2023). DOI: 10.1145/3605209 (cit. on pp. 3, 4, 29, 30).

[Sri+22] Vaidehi Srinivas et al. “Memory Bounds for the Experts Problem”. In: 54th Annual
ACM SIGACT Symposium on Theory of Computing. STOC 2022. 2022. DOI: 10.
1145/3519935.3520069 (cit. on p. 70).

[ST85] Daniel D. Sleator and Robert E. Tarjan. “Amortized efficiency of list update and
paging rules”. In: Commun. ACM 28 (1985). DOI: 10.1145/2786.2793 (cit. on
pp. 3, 4, 6).

[Tra+13] Stefano Traverso, Mohamed Ahmed, Michele Garetto, Paolo Giaccone, Emilio
Leonardi, and Saverio Niccolini. “Temporal locality in today’s content caching:
why it matters and how to model it”. In: SIGCOMM Comput. Commun. Rev. 43
(2013). DOI: 10.1145/2541468.2541470 (cit. on pp. 2, 27).

[TS98] John Tse and Alan Jay Smith. “CPU cache prefetching: Timing evaluation of hardware
implementations”. In: IEEE Transactions on Computers 47.5 (1998), pp. 509–526
(cit. on p. 27).

[UPS09] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. “Wikipedia Workload
Analysis for Decentralized Hosting”. In: Elsevier Computer Networks 53.11 (July
2009), pp. 1830–1845 (cit. on p. 20).

[Ven+18] S. Venugopal, M. Gazzetti, Y. Gkoufas, and K. Katrinis. “Shadow puppets: Cloud-
level accurate AI inference at the speed and economy of edge”. In: USENIX HotEdge.
2018 (cit. on p. 39).

[Ven+20] Federica Ventruto, Marco Pulimeno, Massimo Cafaro, and Italo Epicoco. “On Fre-
quency Estimation and Detection of Heavy Hitters in Data Streams”. In: Future
Internet 12.9 (2020), p. 158 (cit. on p. 10).

[vR88] Erik A van Doorn and G.J.K Regterschot. “Conditional PASTA”. In: Operations
Research Letters 7 (1988). DOI: doi.org/10.1016/0167-6377(88)90036-
3 (cit. on p. 83).

[Wan+21] Rui Wang, Hongchao Du, Zhaoyan Shen, and Zhiping Jia. “DAP-Sketch: An accurate
and effective network measurement sketch with Deterministic Admission Policy”. In:
Computer Networks 194 (2021), p. 108155 (cit. on pp. 9, 10).

https://doi.org/10.1145/356887.356892
https://doi.org/10.1145/356887.356892
https://doi.org/10.1145/3959.3961
https://doi.org/10.1109/TNET.2022.3217012
https://doi.org/10.1145/3605209
https://doi.org/10.1145/3519935.3520069
https://doi.org/10.1145/3519935.3520069
https://doi.org/10.1145/2786.2793
https://doi.org/10.1145/2541468.2541470
https://doi.org/doi.org/10.1016/0167-6377(88)90036-3
https://doi.org/doi.org/10.1016/0167-6377(88)90036-3

BIBLIOGRAPHY 105

[Wan99] Jia Wang. “A survey of web caching schemes for the Internet”. In: SIGCOMM
Comput. Commun. Rev. 29 (1999). DOI: 10.1145/505696.505701 (cit. on
p. 2).

[Wea18] Nik Weaver. Lipschitz algebras. World Scientific, 2018 (cit. on p. 59).

[WK71] Thomas J. Watson and W.F. King. Analysis of Paging Algorithms. IBM-Report. 1971.
URL: https://books.google.fr/books?id=KTvaPgAACAAJ (cit. on
pp. 4, 40).

[Wol82] Ronald W. Wolff. “Poisson Arrivals See Time Averages”. In: Operations Research
30 (1982). URL: http://www.jstor.org/stable/170165 (cit. on p. 83).

[Yan+18a] Tong Yang, Junzhi Gong, Haowei Zhang, Lei Zou, Lei Shi, and Xiaoming Li. “Heavy-
Guardian: Separate and Guard Hot Items in Data Streams”. In: 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2018. DOI:
10.1145/3219819.3219978 (cit. on p. 5).

[Yan+18b] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. “Elastic sketch: adaptive and fast network-wide
measurements”. In: Conference of the ACM Special Interest Group on Data Com-
munication. SIGCOMM ’18. 2018. DOI: 10.1145/3230543.3230544 (cit. on
pp. 5, 9, 26, 69).

[Yan+21] Kaicheng Yang, Yuanpeng Li, Zirui Liu, Tong Yang, Yu Zhou, Jintao He, Tong Zhao,
Zhengyi Jia, Yongqiang Yang, et al. “SketchINT: Empowering INT with TowerSketch
for Per-flow Per-switch Measurement”. In: 2021 IEEE 29th International Conference
on Network Protocols (ICNP). IEEE. 2021, pp. 1–12 (cit. on p. 9).

[YN13] Fumito Yamaguchi and Hiroaki Nishi. “Hardware-based hash functions for network
applications”. In: 2013 19th IEEE International Conference on Networks (ICON).
2013, pp. 1–6. DOI: 10.1109/ICON.2013.6781990 (cit. on p. 20).

[You91] Neal Young. “On-line caching as cache size varies”. In: Second Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA ’91. 1991 (cit. on p. 4).

[Zha+21a] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng
Liu, Ruwen Zhang, and Junchen Jiang. “CocoSketch: high-performance sketch-based
measurement over arbitrary partial key query”. In: ACM SIGCOMM. 2021 (cit. on
p. 18).

[Zha+21b] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, Li Chen, Shiyi Liu, Naiqian Zheng,
Ruixin Wang, Hanbo Wu, Yi Wang, et al. “{LightGuardian}: A {Full-Visibility},
Lightweight, In-band Telemetry System Using Sketchlets”. In: 18th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 21). 2021 (cit. on
pp. 5, 9, 69).

[Zho+18] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve Uhlig.
“Cold filter: A meta-framework for faster and more accurate stream processing”. In:
International Conference on Management of Data. 2018 (cit. on p. 18).

https://doi.org/10.1145/505696.505701
https://books.google.fr/books?id=KTvaPgAACAAJ
http://www.jstor.org/stable/170165
https://doi.org/10.1145/3219819.3219978
https://doi.org/10.1145/3230543.3230544
https://doi.org/10.1109/ICON.2013.6781990

106 BIBLIOGRAPHY

[Zho+20] J. Zhou, O. Simeone, X. Zhang, and W. Wang. “Adaptive offline and online similarity-
based caching”. In: IEEE Networking Letters 2.4 (2020), pp. 175–179 (cit. on p. 39).

[Zin03] Martin Zinkevich. “Online convex programming and generalized infinitesimal gradi-
ent ascent”. In: Twentieth International Conference on International Conference on
Machine Learning. ICML’03. 2003 (cit. on pp. 3, 27).

List of Figures

2.1 CCDF of error for a popular item. 21
2.2 CCDF of error for a non-popular item. 22
2.3 Estimation error for each item. 23
2.4 Precision as a function of the threshold ϕ. 24
2.5 Estimated memory requirement for a given precision. 26

3.1 Average miss ratio, C = 100. 35
3.2 Average miss ratio vs. sampling probability. 36

4.1 Essence of the fixed point algorithm. 57
4.2 Spatial popularity distribution. 62
4.3 Average hit ratio versus cache capacity, β = 0.5. 65
4.4 Synthetic trace occupancies: C = 500, d = 1, α = 2.5. 66
4.5 Characteristic time tC and hit ratio in different iterations of Algorithm 3 for SIM-LRU. 67
4.6 Norm JGβ

versus cache capacity, β = 0.5. 67

B.1 Spatial popularity distribution: Zipf with exponent z = 1.0. 89
B.2 Hit ratio versus cache capacity: r = 2 · 105, Zipf with exponent z = 1.0, β = 0.5. 90
B.3 Characteristic time tC and hit ratio in different iterations of Algorithm 3 for SIM-

LRU: Zipf with exponent z = 1.0, β = 0.5. 91

107

List of Tables

2.1 Labels and equations used in the comparison. 20
2.2 Average Absolute Error, Average Relative Error, Weighted Average Absolute Error. 25

3.1 Table of notation . 30

4.1 Table of notation. 44
4.2 RND-TTL approximation . 53
4.3 Parameters of the experiments. 64

B.1 Average runtime per iteration in Algorithm 3: C = 100, Zipf with z = 1.0, β = 0.5. 91

109

List of Algorithms

1 Noisy-Follow-the-Perturbed-Leader with Uniform Noise (NFPL) 31

2 RND-LRU [Pan+09] . 43
3 Fixed point method . 57

4 R-TTL . 81

111

Analyse Probabiliste pour le Caching

Younes BEN MAZZIANE

Résumé

Les caches sont de petites mémoires qui accélèrent la récupération des données. L’un des objec-
tifs des politiques de mise en cache est de sélectionner le contenu du cache afin de minimiser
le temps de réponse aux requêtes d’objets. Un problème plus général permet de répondre ap-
proximativement à la requête d’un objet par un objet similaire mis en cache. Ce concept, appelé
"mise en cache par similarité", s’avère utile pour les systèmes de recommandation. L’objectif
est de minimiser le temps de latence tout en fournissant des réponses satisfaisantes.
La compréhension théorique des algorithmes de gestion de la mémoire cache, sous des hy-
pothèses spécifiques sur les requêtes, aide à choisir un algorithme approprié. Les politiques
d’éviction du cache les plus répandues sont celles de l’utilisation la moins fréquente (LFU)
et de l’utilisation la moins récente (LRU). LFU est efficace lorsque le processus requêtes est
stationnaire, et LRU s’adapte aux changements dans les processus de requêtes. Les algorithmes
d’apprentissage séquentiel, tels que l’algorithme aléatoire Follow-the-Perturbed Leader (FPL),
appliqués à la mise en cache, bénéficient de garanties théoriques même dans le pire des cas.
LFU et FPL s’appuient sur le nombre de requêtes d’objets. Cependant, le comptage est un défi
dans les scénarios à mémoire limitée. Pour y remédier, les politiques de mise en cache utilisent
des schémas de comptage approximatifs, tels que la structure de données Count-Min Sketch
avec mises à jour conservatrices (CMS-CU), afin d’équilibrer la précision des comptages et
l’utilisation de la mémoire. Dans le cadre de la mise en cache par similarité, RND-LRU est une
stratégie LRU modifiée. Malheureusement, il reste difficile de quantifier théoriquement à la fois
la performance d’un cache LFU utilisant CMS-CU, celle d’un cache FPL avec un algorithme de
comptage approximatif, ainsi que celle de RND-LRU.
Cette thèse explore trois algorithmes probabilistes : CMS-CU, FPL avec des estimations bruitées
des nombres de requêtes d’objets (NFPL) et RND-LRU. Pour CMS-CU, nous proposons
une approche novatrice pour trouver de nouvelles bornes supérieures sur l’espérance et le
complémentaire de la fonction de répartition de l’erreur d’estimation sous un processus de
requêtes i.i.d. De plus, nous démontrons que NFPL se comporte aussi bien que la politique de
mise en cache statique, optimale et omnisciente, quelle que soit la séquence de requêtes (sous
certaines conditions sur les comptages bruités). Enfin, nous introduisons une nouvelle politique
de mise en cache qui est analytiquement résoluble. Nous montrons alors que cette politique
approxime RND-LRU.

Mots-clés : comptage approximatif, algorithmes probabilistes, apprentissage séquentiel

	Introduction
	Caching Applications
	Traffic Model
	Cache Management Algorithms
	Approximate counting
	Challenges and Contributions
	Sketch algorithms for approximate counting
	Online learning for caching
	LRU-based similarity caching policies

	Publications

	Approximate Counting
	Introduction
	Background, Notation, and Assumptions
	Data Stream Model
	Count-Min Sketch (CMS)
	Count-Min Sketch with Conservative Updates (CMS-CU)
	State of the art
	Our Assumptions

	Theoretical Analysis of CMS-CU
	CMS: CCDF of the Estimation Error
	CMS-CU: CCDF of the Estimation Error
	CMS-CU: Expected Estimation Error
	Heavy-Hitters Application: Lower Bound on the Precision

	Experimental Evaluation and Numerical Analysis
	Experimental Setting
	Numerical Evaluation
	The CCDF of the Sketch Estimation Error
	The Expected Sketch Estimation Error
	Precision in Detecting -Heavy-Hitters
	Configuring CMS-CU with QoS Guarantees

	Conclusion

	Online Learning for Caching
	Introduction
	System Description and Background
	Caching Problem: Model and Notation
	Caching and Online Learningblack
	Follow-the-Perturbed-Leader (FPL)

	Extending FPL
	Noisy-Follow-the-Perturbed-Leader (NFPL)
	NFPL for Caching

	Experiments
	Traces
	Caching policies
	NFPL vs. classical policies
	NFPL-Fix vs. NFPL-Var

	Conlusion

	Similarity Caching
	Introduction
	Background
	Similarity Caching
	TTL Approximation for LRU Cache

	Notation and Assumptions
	RND-TTL Approximation for Similarity Caching
	The RND-TTL Caching Model
	Relation Between RND-LRU and RND-TTL
	RND-TTL Approximation to RND-LRU

	Algorithm for Finding Approximate Hit Probabilities
	Fixed Point Equations
	 Fixed Point Algorithm
	Choice of

	Numerical Evaluation
	Experimental Setting
	Benchmarks and Alternative Approaches
	RND-TTL approximation evaluation
	Convergence of Algorithm 3

	Conclusion

	Conclusion
	CMS-CU
	FPL and Approximate Counting
	An LRU-Based Similarity Caching Policy

	Appendix
	Approximate Counting
	Proof of Proposition 2.1 (page 14)
	Proof of Lemma 2.1 (page 15)
	Proof of Proposition 2.2 (page 16)
	Proof of Proposition 2.3 (page 17)
	Discussion on the bound (2.15)

	Similarity Caching
	R-TTL
	Proof of Proposition 4.1 (Occupancy, page 49)
	Generalized Poisson Arrivals See Time Averages (PASTA) property
	Proof of Proposition 4.2 (Item hit probability, page 50)
	Proof of Proposition 4.3 (RND-LRU insertion rate, page 52)
	Proof of Proposition 4.4 (RND-LRU refresh rate, page 52)
	Proof of Lemma 4.1 (TC(o) is a singleton, page 55)
	Proof of Lemma 4.2 (Differentiability of tC, page 56)
	Proof of Proposition 4.7 (page 59)
	Time Complexity of Single Iteration in Algorithm 3
	Proof of Proposition 4.8 (Properties of Y(o), page 60)
	Additional Experiments
	Implementation Details

	Bibliography
	List of Figures
	List of Tables

