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Chapitre 0

Panorama (Fr)

兩句三年得，一吟雙淚流。

知音如不賞，歸臥故山秋。1

賈島（779–843）

Au cours des dernières décennies, la géométrie hyperbolique s’est imposée comme un

point central de la recherche en géométrie. Depuis le XIXe siècle, lorsque des visionnaires

comme János Bolyai et Nikolai Lobachevsky ont introduit pour la première fois le concept

de géométrie non euclidienne, l’exploration des subtilités de la géométrie hyperbolique a

suscité un intérêt soutenu et fervent. Pendant la seconde moitié du XXe siècle, à mesure

que la topologie en basses dimensions était explorée de manière approfondie, la géométrie

hyperbolique a inspiré une série de résultats profonds et d’une beauté remarquable : il

suffit de mentionner l’héritage de William P. Thuston et la contribution de Mikhael Gromov,

qui constituent la plupart du fondement théorique de cette thèse.

Simultanément, l’étude des groupes infinis a également émergé dans la seconde moitié

du XIXe siècle, établissant des liens étroits avec des considérations géométriques, telles

que le programme d’Erlangen (Klein, 1872) et les contributions de Lie et Poincaré. Dans

le domaine de la géométrie, les groupes apparaissent naturellement lors de l’étude des

symétries et des transformations géométriques. Un exemple notable de l’interaction en-

tre la géométrie et les groupes infinis est le résultat de Dehn sur le groupe fondamental

des surfaces, où la courbure négative est un élément géométrique important. Ce résultat

marque le point de départ de la relation inhérente entre les groupes infinis et la géométrie

1Traduction en français :

Deux vers forgés sur trois années résonnent,

Lus une fois, et deux lignes de larmes coulent.

Si mes chers amis ne peuvent mon travail apprécier,

Aux montagnes d’automne natales, je reviendrai m’allonger.
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hyperbolique.

J’espère que les lecteurs pourront supporter ma verbosité et me permettre de prendre

un peu d’espace pour discuter quelques réflexions philosophiques sur la géométrie et la

dynamique de groupes. Cela aidera les lecteurs non mathématiciens à mieux saisir la

saveur de mon travail. En premier lieu, je partage le même avis que Pierre de la Harpe

[Har00] :

(Traduction en français) L’une de mes convictions personnelles est que la fascination

pour les symétries et les groupes est un moyen de faire face aux frustrations liées aux

limites de la vie : nous aimons reconnaître les symétries qui nous permettent d’aller

au-delà de ce que nous pouvons voir.

Mais les ambitions des mathématiciens vont plus loin. Nous aspirons à reconnaître, à

travers les symétries qui nous sont facilement visibles, les symétries plus obscures qui leur

sont proches mais qui ne sont pas en général intuitivement apparentes. Lorsque la com-

plexité des objets géométriques d’intérêt devient infinie, comme dans le cas des structures

fractales, des graphes infinis ou des surfaces de type infini discutées dans cette thèse, cette

perspective devient particulièrement cruciale. Dans de tels cas, les symétries deviennent

non dénombrables, et l’étude isolée de symétries individuelles ne contribue souvent pas

de manière significative à nous donner une vision globale de la structure des groupes as-

sociés. Dans ces cas, il devient nécessaire de percevoir le groupe, constitué de symétries,

non seulement comme une entité algébrique abstraite, mais comme un objet géométrique

lui-même. La notion d’un groupe topologique sert cet objectif ; il nous permet de traduire

les similitudes entre ces symétries en proximité entre les éléments du groupe (ou, dans le

langage de Bourbaki, en uniformité), ou même en distance, comme les groupes polonais

dont nous parlerons plus tard dans cette thèse. En laissant ces groupes agir continûment

sur des espaces topologiques, nous pouvons comprendre la structure du groupe en tant

qu’un objet géométrique en examinant les régularités de ces actions. Cela nous amène au

deuxième élément du titre de cette thèse : la dynamique de groupes.

La beauté de la géométrie hyperbolique et de la dynamique de groupes ne réside pas

seulement dans leur profondeur, mais aussi dans leur diversité très riche : objets, points

de vue, méthodes, outils ... Comparée à l’immense gamme d’objets et de possibilités dans

le domaine de la géométrie hyperbolique et de la dynamique de groupes, cette thèse ne

représente qu’une petite partie de l’ensemble. Néanmoins, elle traite déjà des corps con-

vexes, des surfaces, des graphes infinis et de la géométrie grossière des espaces métriques.

De plus, les outils et les méthodes utilisés pour résoudre les questions dans cette thèse

proviennent d’un large éventail de disciplines, notamment la topologie, l’analyse fonction-

nelle, la théorie des probabilité, la géométrie métrique, logique mathématique, et cætera.
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Cette thèse sera divisée en trois parties : « Shoulders of Giants » (les épaules des géants),

« Farther Sight of Dwarfs » (la vue plus lointaine des nains), et « Neither Fish, Flesh, nor Fowl »

(idiom. ni chair ni poisson).

La première partie, « Shoulders of Giants », comme le suggère le titre, présentera le

contexte de la recherche et des résultats importants déjà connus. Dans le Chapitre 2, on

commencera par introduire la notion d’espace hyperbolique algébrique (de dimension in-

finie) en utilisant le modèle de l’hyperboloïde. Il s’agit d’espace le plus fondamental en

géométrie hyperbolique. On citera aussi le résultat de Duchesne [Duc23] sur la topologie

polonaise du groupe des isométries de l’espace hyperbolique algébrique de dimension in-

finie, comme un premier exemple (dans cette thèse) de mis en distance des similitudes en-

tre les transformations. On expliquera également les noyaux de type hyperbolique mise en

avant par [MP14; MP19; Mon20]. Ils permettent de construire un plongement d’un ensem-

ble dans un espace hyperbolique algébrique. La Section 2.2 sera consacrée à l’exposition

d’une généralisation de l’espace hyperbolique algébrique, appelée espace hyperbolique au

sens de Gromov. Il s’agit de capturer l’hyperbolicité à grande échelle. Ces espaces jouissent

de nombreuses propriétés similaires à celles de l’espace hyperbolique algébrique : la tri-

chotomie des isométries, la dynamique des isométries sur le bord à l’infini, et cétéra. Pour

des raisons de limitation d’espace, on est malheureusement contraint de mettre de côté la

riche théorie des espaces CAT(0), mais cela ne signifie nullement que cette généralisation

infinitésimal est négligéable.

Dans le Chapitre 3, on introduira et expliquera plusieurs concepts et propriétés fon-

damentales de la dynamique des actions continues des groupes topologiques sur des es-

paces compacts. Dans la Section 3.1, on détaillera la construction du flot minimal universel.

Parmi ses nombreuses constructions équivalentes, on a choisi une approche topologique

qui est légèrement plus compliquée par rapport aux autres. Ce choix est motivé principale-

ment par plusieurs considérations : premièrement, il s’inscrit dans la tradition de Topologie

Générale de Bourbaki [Bou07], car cette construction repose sur le concept d’espace uniforme

introduit par Bourbaki (en particulier, André Weil), abstrayant mathématiquement la no-

tion de proximité tout en restant conforme à l’intuition géométrique ; deuxièmement, cette

construction nous offre une compréhension plus approfondie du flot minimal universel,

en nous permettant d’établir des liens avec certaines propriétés de points fixes pour des

groupes topologiques, telles que la moyennabilité, et la moyennabilité extrême. Par exem-

ple, cela nous permet de le comprendre comme un sous-espace de fonctionnelles linéaires

pour les fonctions uniformément continues à droite bornées définies sur le groupe, ou

plus spécifiquement, comme des moyennes de ces fonctions ; de plus, cette approche évite

certaines discussions sur la théorie des ensembles en logique mathématique, bien que ces

discussions ne soient pas particulièrement difficiles. On s’intéressera en particulier aux
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groupes moyennables, proposés par von Neumann à la suite de son étude du paradoxe

de Banach-Tarski [Neu29]. Ce paradoxe constate que l’on peut découper en un nombre

fini de morceaux une boule solide de dimension 3 et les recoller pour former deux boules

identiques à la première, en utilisant uniquement des translations et des rotations. On

énumérera plusieurs définitions équivalentes d’un groupe topologique moyennable, qui

interagissent avec une diversité de disciplines mathématiques. On abordera également

ses propriétés héréditaires et traitera de manière similaire la moyennabilité extrême, un

renforcement de la moyennabilité.

Le Chapitre 4 se penchera principalement sur les surfaces orientables (de type fini ou

infini) et leurs groupes de difféotopies. En termes simples, les groupes de difféotopies

contiennent les symétries les plus fondamentales des objets géométriques : au sein des

ces groupes, deux symétries sont identifiées si l’une peut se transformer continûment en

l’autre (en temps fini) et vice versa. Cette transformation continue est appelée une homo-

topie. Il existe différentes méthodes pour étudier les groupes de difféotopies, notamment

des approches algébriques (via des actions sur l’homologie, sur le groupe des automor-

phismes extérieurs du groupe fondamental de la surface, sur le groupe de Torelli par auto-

morphismes intérieurs, et cétéra), des approches géométriques ou holomorphiques (via des

actions sur la courbe universelle de Teichmüller et sur les espaces de Teichmüller, et cétéra),

ainsi que des approches topologiques (via des actions sur l’espace projectif des feuilletages

mesurés, sur l’espace des laminations géodésiques, ou encore sur l’espace des feuilletages

non mesurées, et cétéra), voir par exemple un survol dans [Pap15]. Malheureusement, il

n’est pas possible de présenter toutes ces méthodes une à une, car cela transformerait cette

thèse en une longue documentation bibliographique sur les vastes contributions de William

P. Thurston et de ses successeurs. Par conséquent, nous nous concentrerons uniquement

sur les approches combinatoires ou de la théorie géométrique des groupes, à savoir les ac-

tions simpliciales (ou isométriques) des groupes de difféotopies sur les graphes de courbes

et d’autres complexes dérivés ou similaires. L’avantage réside dans deux aspects : ces

complexes ou graphes sont souvent hyperboliques au sens de Gromov, offrant un meilleur

accès aux outils de la géométrie hyperbolique ; en outre, cette perspective nous permet de

reconnaître les groupes de difféotopies comme des groupes d’automorphismes de struc-

tures dénombrables, ou encore, des groupes polonais non archimédiens, et nous disposons

alors des outils provenant de la logique mathématique et de la dynamique topologique, en

particulier de la théorie des modèles et de la théorie descriptive des ensembles. Tous ces

outils peuvent nous aider à déterminer la moyennabilité ou la moyennabilité extrême des

groupes de difféotopies, comme nous le verrons plus loin dans la thèse.

La deuxième partie de la thèse, intitulée « Farther Sight of Dwarfs », se compose de

trois textes académiques rédigés pendant la période de doctorat, respectivement [Lon23b],
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[Lon23a] et [LT24].

Le Chapitre 5 portera sur le plongement des classes homothétiques de certains corps

convexes dans l’espace de Hilbert dans un espace hyperbolique de dimension infinie sur

les nombres réels, en utilisant les noyaux de type hyperbolique. L’idée remonte à la car-

actérisation due à William P. Thurston des métriques plates sur la sphère [Thu98]. Dans

un papier récent, Debin et Fillastre [DF22] donnent un plongement des classes homoth-

étiques de corps convexes de dimension finie. Ils ont adopté une stratégie connue sous

le nom de « géométrie intégrale ». Cette stratégie vise à associer un corps convexe à une

unique fonction continue sur la sphère unité, puis à étudier l’espace de ces fonctions via

l’analyse harmonique ou l’analyse fonctionnelle, pour en déduire des conclusions sur les

corps convexes dans l’espace euclidien. L’analyse ou le calcul dans les espaces euclidiens

classiques a longtemps été perfectionné depuis l’époque de Newton et de Leibniz. Cepen-

dant, lorsque la dimension augmente jusqu’à l’infini, comme dans les espaces de Hilbert

séparables, il y a des points de vue diverse. Les traditions déterministes nous conduisent

souvent vers l’analyse fonctionnelle. Or, dans la seconde moitié du XXe siècle, une anal-

yse stochastique dans les espaces de dimension infinie, telle que le calcul de Malliavin, a

été développée (voir [Da 06]). Dans le Chapitre 5, outre la poursuite du travail laissé in-

achevé en dimensions infinies par Debin et Fillastre, on tente d’étendre la stratégie de la «

géométrie intégrale » aux dimensions infinies à l’aide du calcul de Malliavin. Cela implique

d’associer de manière unique chaque corps convexe à une variable aléatoire, i.e. la fonction

d’appui stochastique, et d’utiliser ensuite les technologies de l’analyse stochastique pour

déduire des conclusions sur les corps convexes de dimension infinie. Un résultat important

du Chapitre 5 consiste à fournir des formules pour les volumes intrinsèques du premier et

du second degré des corps convexes à dimension infinie en utilisant les fonctions d’appui.

Pour une surface de type fini, le groupe de difféotopies sera un groupe discret de type

fini qui, dans la plupart des cas, contient un sous-groupe libre sur deux générateurs. Il en

résulte la non-moyennabilité de cette classe de groupes. Cependant, lorsque la complexité

de la surface sous-jacente devient infinie, les groupes de difféotopies ne sont plus discrets

et le fait d’avoir des sous-groupes libres n’exclut pas la possibilité d’être moyennable. Bien

que l’on ne sache toujours pas si les groupes de difféotopies des surfaces de type infini (ou

gros groupes de difféotopies) sont moyennables, nous montrerons au Chapitre 6, en utilisant

les technologies de la théorie descriptive des ensembles [KPT05], que les groupes de dif-

féotopies ne peuvent jamais être extrêmement moyennables, à l’exception des cas triviaux.

Récemment, de manière analogue au graphe de courbes, la notion de graphe de courbes

fin a été introduite dans le but d’étudier les propriétés combinatoires et géométriques

du groupe d’homéomorphismes des surfaces [BHW22]. Néanmoins, ces graphes hyper-

boliques non localement dénombrables montrent une différence significative par rapport
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aux graphes de courbes en termes de leurs bords à l’infini [BHW22; Bow+22; GM23b;

GM23a]. Malgré toutes ces différences, dans le Chapitre 7, nous montrerons que pour

les surfaces de genre au moins 2, le bord de Gromov des graphes fins de courbes restent

connexe (par arcs) comme les graphes de courbes classiques, répondant positivement un

analogue de la question de Peter Storm dans [KL08].

La troisième partie est appelée « Neither Fish, Fleish, Nor Fowl », car elle s’efforce de

présenter des recherches qui n’avaient pas encore pleinement abouti au moment de la

rédaction de cette thèse.

Pendant une longue période, un théorème folklorique, une action par isométries d’un

groupe moyennable sur un espace hyperbolique au sens de Gromov ne peut pas être de type général,

a été vérifié dans diverses situations, notamment lorsque l’espace hyperbolique est propre,

ou lorsque le groupe moyennable est localement compact et que l’action est métriquement

propre. Mais les arguments ne sont plus valables lorsque nous ne supposons aucune

condition de propreté ou de compacité, par exemple action sur le complexe de projection

d’un gros groupe de difféotopies. Afin de faire face à ces situations, nous utiliserons dans

le Chapitre 9 une autre compactification (ou bordification) pour l’espace hyperbolique au

sens de Gromov que la bordification traditionnelle de Gromov. Cette compactification

témoignera de la rigidité des groupes topologiques moyennables agissant par isométries

sur les espaces hyperboliques géodésiques et séparable, ce qui peut nous aider à prouver

la non-moyennabilité de certains gros groupes de difféotopies.

Dans son travail célèbre [Gro87], Mikhael Gromov a énoncé sans preuve le suivant :

chaque espace hyperbolique géodésique peut se plonger isométriquement dans un espace ultracomplet

d’une manière essentiellement surjective. Dans le Chapitre 8, nous démonterons la première

partie de son énoncé en passant à une construction par ultralimite, mais la deuxième partie

de cet énoncé reste encore inconnue. À la fin du Chapitre 8, nous étudierons aussi quelques

familles d’espaces hyperboliques au sens de Gromov dont le bord à l’infini est préservé

sous quasi-isométries.

Les lecteurs auront peut-être déjà remarqué qu’au long de cette thèse, il s’agit plutôt

d’un parcours en largeur qu’en profondeur d’inconnues. Cela indique que le processus de

recherche est loin d’être complet. Pour chaque sujet abordé dans cette thèse, il y a plus

d’un problème ouvert et beaucoup d’entre eux n’ont même pas encore été attaqués. Voici

une liste incomplète de ces questions :

• Comment calculer les volumes intrinsèques de degré supérieur des corps convexes de

dimension infinie en utilisant uniquement leurs fonctions d’appui ?

• Existe-t-il des interprétations géométriques pour la projection orthogonale des fonctions

d’appui dans le n-ième chaos de Wiener pour n ≥ 2 ?

• Comment peut-on déterminer si un graphe infini dénombrable est un graphe de courbes
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d’une surface orientable ?

• Les gros groupes de difféotopies sont-ils également non moyennables ?

• Quels gros groupes de difféotopies ont un flot minimal universel non métrisable ?

• Quelle est une condition nécessaire raisonnable pour que le bord à l’infini des espaces

hyperboliques au sens de Gromov soit préservée par les quasi-isométries ?

• Peut-on plonger par une quasi-isométrie un graphe de courbes d’une surface de type

fini dans un espace hyperbolique algébrique tel que l’action du groupe de difféotopies

soit équivariante ?

• Les groupes de difféotopies des surfaces de type fini ont-ils de la propriété (T) de Kazh-

dan ? Quid de la propriété de Haagerup ?

• Existe-t-il une interprétation géométrique ou dynamique des points sur le bord de Gro-

mov des graphes fins de courbes ? Si oui, quid de l’interprétation géométrique ou

dynamique de la topologie sur ce bord ?

• Le graphe de courbes fin est-il ultracomplet ?

Ces problèmes ouverts posent des défis passionnants et offrent des opportunités pour la

recherche future, invitant à l’exploration et à l’innovation dans la quête de solutions.

C’est le point final de ma recherche et formation doctorale, mais sans aucun doute le

tout début de ma « Wissenschaft als Beruf ». Comme il reste encore beaucoup à décou-

vrir, permettez-moi de finir ce chapitre introductif par le dicton suivant adapté du célèbre

paradoxe socratique :

Dixi, sed scio me adhuc nihil scire.
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Chapter 1

Panorama (En)

兩句三年得，一吟雙淚流。

知音如不賞，歸臥故山秋。1

賈島（779–843）

Over the past few decades, hyperbolic geometry has emerged as a key focal point in

geometric research. Since the 19th century, when visionaries like János Bolyai and Nikolai

Lobachevsky first introduced the concept of non-Euclidean geometry, there has been a sus-

tained and fervent interest in exploring the intricacies of hyperbolic geometry. As the sec-

ond half of the 20th century unfolded, with the deepening exploration of low-dimensional

topology, hyperbolic geometry gave rise to a series of profound and remarkably beautiful

results: it suffices to mention the legacy of William P. Thuston and the contribution of

Mikhael Gromov, which form the most of theoretic foundation of this thesis.

Simultaneously, the study on infinite groups also emerged in the latter half of the 19th

century, establishing close connections with geometric considerations, such as the Erlangen

program (Klein, 1872) and the contributions of Lie and Poincaré. In the realm of geometry,

groups naturally appear when investigating symmetries and geometric transformations. A

notable instance of the interplay between geometry and infinite groups is Dehn’s result on

the fundamental group of surfaces, where negative curvature serves as a significant geo-

metric element in Dehn’s work. This marks the starting point of the inherent relationship

between infinite groups and hyperbolic geometry.

I hope readers can bear with my verbosity and allow me to take some space to dis-

1Translation in English:

Two verses crafted across three years resound,

Read once, yet two lines of tears abound.

If my dear friends fail to grasp their worth,

To the autumn mountains of home, I’ll return forth.
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cuss some philosophical reflections on geometry and group dynamic. This will help non-

mathematician readers to better capture the flavour of my work. Firstly, I share the same

opinion with Pierre de la Harpe [Har00]:

One of my personal beliefs is that fascination with symmetries and groups is one way

of coping with frustrations of life’s limitations: we like to recognise symmetries which

allow us to recognise more than what we can see.

But mathematicians’ ambitions go beyond that. We aspire to recognise, through the sym-

metries readily visible to us, the more obscure symmetries that are close to them but not

in general intuitively apparent. When the complexity of the geometric objects of interest

becomes infinite, such as in the case of fractal structures, infinite graphs, or the infinite-

type surfaces discussed in this paper, this perspective becomes particularly crucial. In such

instances, the symmetries become even uncountable, and studying individual symmetries

in isolation often does not contribute significantly to our overall view of the structure of the

associated groups. In these cases, it becomes necessary to perceive the group, consisting of

symmetries, not merely as an abstract algebraic entity but as a geometric object itself. The

concept of a topological group serves this purpose; it allows us to translate the similarities

between those symmetries into closeness between group elements (or, in the language of

Bourbaki, uniformity), or even into distance, such as Polish groups that we will talk about

later in this thesis. By letting these groups act continuously on topological spaces, we can

understand the structure of the group as a geometric object by examining the regularities

of these actions. This leads to the second element in the title of this thesis: the group

dynamic.

The beauty of hyperbolic geometry and group dynamics is not just in their depth, but

also in their very rich diversity: objects, viewpoints, methods, tools... When compared to

the immense range of objects and possibilities within the realms of hyperbolic geometry

and group dynamics, what this thesis represents is only a small part of the whole picture.

Yet, it already treats convex bodies, surfaces, infinite graphs, and the coarse geometry

of metric spaces. Not to mention, the tools and methods employed in the solutions to

questions appeared in this thesis come from a broad spectrum of disciplines, including

topology, functional analysis, probability theory, metric geometry, mathematical logic, etc.

The thesis is divided into three parts: “Shoulders of Giants”, “Farther Sight of Dwarfs”,

and “Neither Fish, Flesh, nor Fowl”.

The first part, “Shoulders of Giants", as suggested by the title, will present the con-

text of the research and significant results already known. In Chapter 2, we will begin by

introducing the concept of algebraic hyperbolic space (of infinite dimension) using the hy-

perboloid model. This is the most fundamental space in hyperbolic geometry. Duchesne’s

result [Duc23] on the Polish topology of the group of isometries of the algebraic hyperbolic

10



space of infinite dimension will also be mentioned as a first example (in this thesis) of

measuring the similarities between transformations by distance. The kernels of hyperbolic

type highlighted by [MP14; MP19; Mon20], which allow us to construct an embedding of

a set into an algebraic hyperbolic space, will also be discussed. Section 2.2 will be de-

voted to presenting a generalisation of algebraic hyperbolic space, called Gromov hyperbolic

space. It aims to capture hyperbolicity on a large scale. This space shares many properties

with algebraic hyperbolic space: the trichotomy of isometries, dynamics of isometries on

the boundary at infinity, and so on. Unfortunately, due to space limitations, we are com-

pelled to set aside the rich theory of CAT(0) spaces, but this by no means implies that this

infinitesimal generalisation is negligible.

In Chapter 3, we will introduce and explain several fundamental concepts and prop-

erties of the dynamics of continuous actions of topological groups on compact spaces.

In Section 3.1, we will unravel the construction of the universal minimal flow. Among its

many equivalent constructions, we have chosen a slightly more complicated topological

approach. This choice is motivated mainly by several considerations: firstly, it follows the

tradition of Bourbaki’s General Topology [Bou07], since this construction is based on the

concept of uniform space introduced by Bourbaki (in particular, André Weil), abstracting

mathematically the notion of proximity while remaining consistent with geometric intu-

ition; secondly, this construction offers us a deeper understanding of the universal minimal

flow, by allowing us to link it to certain fixed point properties for topological groups, such

as amenability and extreme amenability. For example, it allows us to see it as a subspace of

linear functionals for bounded right uniformly continuous functions defined on the group,

or more specifically, as means of such functions; moreover, this approach avoids some dis-

cussions of set theory in mathematical logic, although these discussions are not particularly

difficult. In particular, we will be interested in amenable groups, proposed by von Neu-

mann following his study of Banach-Tarski paradox [Neu29]. This paradox states that a

3-dimensional solid ball can be cut into a finite number of pieces and glued back together

to form two balls identical to the first one, using only translations and rotations. We will

list several equivalent definitions of an amenable topological group, which interact with

a diversity of mathematical disciplines. We will also discuss its hereditary properties and

give a similar treatment to extreme amenability, a reinforcement of amenability.

Chapter 4 will primarily delve into orientable surfaces (of finite or infinite type) and

their mapping class groups. In simple terms, mapping class groups contain the most

fundamental symmetries of geometric objects: within these groups, two symmetries are

considered equivalent if one can continuously transform into the other (in finite time)

and vice versa. We refer to this continuous transformation as homotopy. There are various

methods to study mapping class groups, including algebraic approaches (via actions on
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homology, on the outer automorphism group of the fundamental group of the surface,

on the Torelli group by inner automorphisms, etc.), geometric or holomorphic approaches

(via actions on the universal Teichmüller curve and on Teichmüller spaces, etc.), as well

as topological approaches (via actions on the projectivized space of measured foliations,

on the space of geodesic laminations, on the space of unmeasured foliations, etc.), see for

example a survey in [Pap15]. Unfortunately, introducing all these methods one by one is

impractical, as it would turn this thesis into extensive records on the vast contributions of

William P. Thurston and his successors. Hence, we will only focus on geometric group

theoretic or combinatorial approaches, viz. the simplicial (or isometric) actions of mapping

class groups on curve graphs and other derived or similar complexes. The advantage lies

in two aspects: these complexes or graphs are often Gromov hyperbolic, offering a better

access to tools from hyperbolic geometry; also, this perspective allows us to view the map-

ping class groups as the automorphism groups of countable structures, or in other words,

non-Archimedean Polish groups, which further enables us to use tools from mathematical

logic and topological dynamics, especially from model theory and descriptive set theory.

These can all help us to determine the amenability or extreme amenability of mapping

class groups as shown later in the thesis.

The second part of the thesis, “Farther Sight of Dwarfs”, consists of three pieces of aca-

demic writing prepared during the doctoral period, respectively [Lon23b], [Lon23a] and

[LT24].

Chapter 5 will revolve around the embedding of homothetic classes of certain convex

bodies in Hilbert space into an infinite-dimensional hyperbolic space over real numbers, by

using the kernels of hyperbolic type. The idea can be traced back to William P. Thurston’s

characterisation of flat metrics on the sphere [Thu98]. In a recent paper, Debin and Fil-

lastre [DF22] give an embedding homothetic classes of finite-dimensional convex bodies.

They adopted a strategy known as “integral geometry”. This strategy aims to associate a

convex body to a unique continuous function on the unit sphere, then study the space of

these functions via harmonic analysis or functional analysis, deducing conclusions about

convex bodies in Euclidean space. The analysis or calculus in classical Euclidean spaces

has long been polished ever since the time of Newton and Leibniz. However, as the di-

mension increases to infinity as in separable Hilbert spaces, diverse perspectives emerge.

Deterministic traditions often lead us toward functional analysis. Yet, in the latter half

of the 20th century, a stochastic analysis of infinite-dimensional spaces, such as Malliavin

calculus, has been developed (see [Da 06]). In Chapter 5, aside from continuing the work

left incomplete in infinite dimensions by Debin and Fillastre, an attempt is made to extend

the strategy of “integral geometry” to infinite dimensions using Malliavin calculus. This

involves uniquely associating each convex body with a random variable, i.e. stochastic sup-
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port function, and then using technologies from stochastic analysis to deduce conclusions

about infinite-dimensional convex bodies. One significant result in Chapter 5 is providing

formulas for the intrinsic volumes of first and second degree of infinite-dimensional convex

bodies using the support functions.

For a surface of finite type, the mapping class group will be a finitely generated discrete

group that in most cases, contains a free group on two generators. This results in the non-

amenability of this class of groups. However, as the complexity of the underlying surface

goes to infinity, the mapping class groups are no longer discrete and having free subgroups

does not exclude the possibility of being amenable. Although it is still unknown if mapping

class groups of infinite-type surfaces (or big mapping class groups) are amenable, in Chapter

6, using the techniques from descriptive set theory [KPT05], we will show that mapping

class groups can never be extremely amenable except for the trivial cases.

Recently, analogous to the curve graph, the notion of fine curve graph has been intro-

duced to study the combinatorial and geometric properties of the homeomorphism group

of surfaces [BHW22]. Nevertheless, these non-locally countable hyperbolic graphs show

a significant difference from curve graphs in terms of their Gromov boundaries [BHW22;

Bow+22; GM23b; GM23a]. Despite all these differences, in Chapter 7, we will show that

for surfaces of genus at least 2, the Gromov boundary of fine curve graphs remains (path)

connected like the classical curve graphs, providing a positive answer to an analogue of

Peter Storm’s question in [KL08].

The third part is called “Neither Fish, Fleish, Nor Fowl” because it attempts to present

research that had not yet been fully completed at the time of writing this thesis.

In his famous work [Gro87], Mikhael Gromov stated without proof the following: every

geodesic hyperbolic space can be embedded isometrically into an ultracomplete space in an essentially

surjective way. In Chapter 8, we will prove the first part of this statement by passing to an

ultralimit construction, but the second part of this statement is still unknown. At the end of

Chapter 8, we will also study some families of Gromov hyperbolic spaces whose boundary

at infinity is preserved under quasi-isometries.

Over the long term, a folklore theorem, isometric actions of amenable groups on Gromov

hyperbolic space cannot be of general type, has been tested true in various situations, notably

when the Gromov hyperbolic space is proper, or when the amenable group is locally com-

pact and the action is metrically proper. But the arguments no longer hold when we do

not assume any properness or compactness condition, e.g. big mapping class groups acting

on projection complexes. In order to cope with these situations, in Chapter 9, we will use

some other compactification (or bordification) for Gromov hyperbolic space than the tradi-

tional Gromov bordification. This compactification will witness the rigidity of topological

amenable groups acting on Gromov hyperbolic spaces by isometries, which can further
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help us to prove the non-amenability of some big mapping class groups.

Readers might have already noticed that this thesis is more about breadth-first search

than depth-first search for unknowns. This indicates that the research process is far from

complete. For each topic covered in this thesis, there is more than one open problem and

many of them remain even unattacked. Here is an incomplete list of these questions:

• How to compute the higher degree intrinsic volumes of infinite-dimensional GB convex

bodies using only their support functions?

• Are there any geometric interpretations for the orthogonal projection of support func-

tions in n-th Wiener chaos for n ≥ 2?

• How can one determine whether a countably infinite graph is a curve graph of an

orientable surface?

• Are big mapping class groups also non-amenable?

• Which big mapping class groups admit a non-metrisable universal minimal flow?

• What is a reasonable necessary condition for the boundary of Gromov hyperbolic spaces

being preserved by quasi-isometries?

• Can one embed curve graph of finite type surfaces quasi-isometrically into an algebraic

hyperbolic space so that the action of mapping class group is equivariant?

• Does mapping class groups of finite type surfaces enjoy Kazhdan’s property (T)? What

about Haagerup property?

• Is there a geometric or dynamical interpretation of points on the Gromov boundary

of fine curve graphs? If so, what is the geometric or dynamical interpretation of the

topology on this boundary?

• Is the fine curve graph ultracomplete?

These open problems present exciting challenges and opportunities for future research,

inviting exploration and innovation in the quest for solutions.

This is the end point of my doctoral research and education, but no doubt the very

starting point of my “Wissenschaft als Beruf”. As there is still much to be discovered, let

me finish this introductory chapter with the following saying adapted from the reknown

Socratic paradox:

Dixi, sed scio me adhuc nihil scire.
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Chapter 2

Hyperbolic Spaces and Their Geometry

– Elle est donc belle ?

– Belle hyperboliquement.

Thomas Corneille (1625–1709),

Le Berger Extravagant.

2.1 Algebraic hyperbolic spaces

For a number field, say K ∈ {R, C, H}, viz. real numbers, complex numbers or quaternion

numbers1, one can construct hyperbolic space via projectivitising the Minkowski space

similarly to the real cases. As Gromov commented in [Gro93, p. 121]:

These spaces look as cute and sexy to me as their finite dimensional siblings but they

have been neglected by geometers and algebraists alike.

Fortunately, this is no longer the case. Since last decades, the study of these infinite dimen-

sional hyperbolic spaces becomes popular. In this section, we will present some selected

results about these spaces.

2.1.1 Hyperboloid model

Let K be a normed number field. Let J be an index set. We define the associated ℓ2-space

by

H J :=

{
(xj)j∈J ∈ KJ : ∑

j∈J
|xj|2 < ∞

}
.

1In the sequel, the boldface symbols will mean that we tend to treat them under the context of number
fields, whereas the usage of blackboard bold, such as R or C, means that they are considered more from a
metric space perspective.
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We emphasise on the fact that J is not necessarily countable, and when it is uncountable,

the summation ∑j∈J |xj|2 makes sense when every but countably many xj’s are null. As

usual, we also define for every x = (xj) ∈ H J its norm by

∥x∥ :=

(

∑
j∈J

|xj|2
)1/2

and impose for each pair x, y ∈ H J the inner product

(x, y)HJ := ∑
j∈J

xjyj

to make H J a Hilbert space.

Now let us consider the vector space L := K ⊕H J carrying the bilinear form

B0
(
(x0, x), (y0, y)

)
= x0y0 − (x, y)HJ .

The associated quadratic form B0(x, x) is called a Lorentzian quadratic form and the space L
is a Minkowski space.

Let PL be the projective space of the Minkowski space L, i.e. the quotient space of

L \ {0} under the equivalent relation x ∼ tx for every t ∈ K \ {0} and every x ∈ L \ {0}.

The hyperboloid model for |J|-dimensional K-hyperbolic space is given by

H
J
K := {[x] ∈ PL : B0(x, x) > 0}

equipped with a distance function dH : H
J
K × H

J
K → [0, ∞) such that

dH([x], [y]) = cosh−1

(
|B0(x, y)|√

|B0(x, x)| · |B0(y, y)|

)
(2.1)

for every [x], [y] ∈ H
J
K. The metric dH from (2.1) will also be called the hyperbolic metric.

Also, to make a distinction from Gromov hyperbolic spaces that will be introduced below,

the construction H
J
K will be called an algebraic hyperbolic space.

In the following, we will also use the notation Hα
K to denote an α-dimensional K-

hyperbolic space, i.e. α is the cardinal of J.

Now let us recall some basic notions from metric geometry. Let (X, dX) and (Y, dY)

be two metric spaces. A map f : (X, dX) → (Y, dY) is called an isometric embedding if

dY
(

f (x), f (x′)
)
= dX(x, x′) for any x, x′ ∈ X. Let I ⊂ R be an interval, carrying the

usual metric. An isometric embedding γ : I → (X, dX) is then called a geodesic. Moreover,
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if the interval I is bounded, then γ becomes a geodesic segment; if the interval I can be cho-

sen as [0, ∞), then γ is a geodesic ray; and if I = R, then γ is a geodesic line. A metric space

where every two points can be connected by a geodesic is called a geodesic metric space. If

two points x, y ∈ X can be joined by a geodesic segment, then we will denote by [x, y] the

(or anyone, if there are many of them) geodesic segment between these two points.

In fact, this metric make PL a metric space, i.e. (H J
K, dH) as mentioned above. More-

over, it enjoys a stronger property than being geodesic:

Proposition 2.1.1 ([DSU17], Proposition 2.2.2). The hyperbolic metric dH is compatible with the

quotient topology induced by the projectivisation PL. Also, for any [x], [y] ∈ H
J
K, there is a unique

geodesic connecting [x] to [y].

Remark 2.1.2. The second half of Proposition 2.1.1 states that (H J
K, dH) is uniquely geodesic.

When the dimension is finite and K ∈ {R, C, H}, the algebraic hyperbolic space is a

Riemannian manifold where the hyperbolic metric dH becomes the length metric associated

to a certain Riemannian metric, see [Jos02, §4.4] for the discussion when K = R. For

other number fields, the construction of such Riemannian metric is of similar flavour. The

same approach also works for infinite dimensional algebraic hyperbolic spaces Hα
K, i.e.

α ≥ ℵ0. Reader can find information about infinite dimensional Riemannian manifolds

from [Lan99]. Moreover, one should notice that the arguments from [Jos02, §4.4] do not

involve dimensionality, it can soon be seen that Hα
R has constant sectional curvature −1.

Recall that a proper map between topological spaces is such that preimages of compact

sets are compact. A proper metric space (X, dX) if for any point o ∈ X the function x 7→
dX(o, x) is a proper map, or equivalently every closed ball is compact.

We wish to record the following corollary immediate from Proposition 2.1.1 to empha-

size the difference between the infinite dimensional algebraic hyperbolic spaces and the

finite dimensional ones:

Corollary 2.1.3. The metric space (Hα
K, dH) is proper if and only if α < ℵ0.

2.1.2 Isometries on algebraic hyperbolic spaces

An isometry is a bijective isometric embedding. For a metric space (X, dX), the collection of

all isometries X → X, denoted Isom(X), carries a natural binary operation ( f , g) 7→ f ◦ g

by composition that makes it into a group. This group is called the group of isometries of

(X, dX).

Fix K ∈ {R, C, H} and a cardinality α > 0, let Hα
K be the algebraic hyperbolic space

defined as above, B0(x, x) be the corresponding Lorentzian quadratic form, and L be the
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associated Minkowski space. We define the orthogonal group OK(L; B0) to be the group of

K-linear automorphisms T of L such that B0(Tx, Tx) = B0(x, x) for all x ∈ L.

The projectivisation of OK(L; B0) will also yield a group, i.e. the projective orthogo-

nal group, denoted POK(L; B0), of which the elements act on the proectivisation of the

Minkowski space PL ≃ Hα
K. It is not hard to see that the action POK(L; B0) ↷ Hα

K is by

isometries. But actually we can deduce a stronger result:

Theorem 2.1.4 ([DSU17], Theorem 2.3.3). If K ∈ {R, H}, then Isom(Hα
K) = POK(L; B0). If

K = C, then POK(L; B0) < Isom(Hα
K) is a subgroup of index 2.

In the sequel, we will mainly focus on the discussion of the cases where K = R and

we write Hα instead of Hα
R. Also, in the stead of POK(L; B0), we will write POK(1, α) and

even PO(1, α) whenever K = R.

Either from an algebraic perspective (matrix groups) or from the geometric perspec-

tive (groups of isometries), for any strictly positive integer n, there is a standard group

embedding PO(1, n) →֒ PO(1, ∞).

Recall that for Isom(X), the pointwise convergence topology of Isom(X) is the coarsest

topology on the group such that the orbit map Isom(X) → X given by g 7→ gx is continuous

for every x ∈ X.

Proposition 2.1.5 ([Duc23], Lemma 3.2). Endowed with the pointwise convergence topology, the

group POR(1, ∞) is the completion of the union of standard embeddings of POR(1, ∞).

But the standard embedding is not the only way that POR(1, n) for n ∈ N>0 can be put

into POR(1, ∞). This reveals that hyperbolicity in infinite dimensions is genuinely different

from that in finite dimensions.

Theorem 2.1.6 ([MP14; MP19]). Let n ∈ N>0 ∪ {∞}. For any 0 < t ≤ 1, there exists a con-

tinuous irreducible representation ϱt : POR(1, n) → POR(1, ∞) with a ϱt-equivariant embedding

ft : Hn
R → H∞

R with cosh d
(

ft(x), ft(y)
)
= (cosh d(x, y))t for all x, y ∈ H∞

R . Moreover, the

representation ϱt is unique up to conjugacy and is standard if and only if t = 1.

Remark 2.1.7. In view of the standard embedding Hn
R →֒ H∞

R , Theorem 2.1.6 can be restated

by only considering the irreducible self-representations of POR(1, ∞): for each parametre

0 < t ≤ 1 and each positive integer n < ∞, the representation ϱt : POR(1, n) → POR(1, ∞)

is essentially the composition of ϱt : POR(1, ∞) → POR(1, ∞) with the standard embedding

PO(1, n) →֒ PO(1, ∞).

Remark 2.1.8. We first remark that as a quotient group of the orthogonal group OR(1, ∞), the

projective orthogonal group POR(1, ∞) also acts linearly on the Hilbert space H J < L. Here

by irreducibility of a group representation G → POR(1, ∞), we mean that the associated

group representation G → POR(1, ∞) → GL(H J) is irreducible.
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Remark 2.1.9. When t ̸= 1, the representation ϱt is called an exotic representation. The nomen-

clature “exotic” is due to the fact that, unlike Karpelevich-Mostow theorem that holds for

continuous isometric action on finite dimensional spaces, the irreducible representations ϱt

with t ̸= 1 does not preserve a proper totally geodesic subset of H∞. Similar phenomena

were also observed earlier for PSL(2, R) in [DP12] and for automorphism groups of trees

in [BIM05].

Complex projective orthogonal groups POC(1, ∞) also admits exotic representations in

the following sense:

Theorem 2.1.10 ([Mon20]). For any 0 < t ≤ 1, there exists a continuous irreducible represen-

tation ϱt : Isom(H∞
C ) → Isom(H∞

C ) with a ϱt-equivariant embedding ft : H∞
C → H∞

C such that

cosh d
(

ft(x), ft(y)
)
= (cosh d(x, y))t for all x, y ∈ H∞

C .

Remark 2.1.11. The choice of the number field is essential and Theorem 2.1.10 no longer

holds if the target group is changed into POR(1, ∞), as observed in [Sto22].

2.1.3 Kernels of hyperbolic type

The construction of exotic representations appeared in Theorem 2.1.6 and Theorem 2.1.10

relies on the notion of kernel of hyperbolic type, which allows one to put a space into some

hyperbolic space and further yields a canonical hyperbolic representation of the automor-

phism group of this kernel.

Definition 2.1.12 (Kernel of (real) hyperbolic type). Given a set X, a kernel of hyperbolic type

(over R) on X is a function β : X × X → R that is symmetric, non-negative, equal to 1 on

the diagonal with

n

∑
i,j=1

cicjβ(xi, xj) ≤
(

n

∑
k=1

ckβ(xk, x0)

)2

(2.2)

for all n ≥ 1, any x0, x1, . . . , xn ∈ X and any c1, . . . , cn ∈ R.

Remark 2.1.13. If n = 1, then (2.2) implies that β(x, y) ≥ 1 for every x, y ∈ X. In particular,

it is easy to see that β ≡ 1 gives a trivial example of a kernel of real hyperbolic type.

Moreover, it is direct from the definition that the set of kernels of hyperbolic type is closed

under taking pointwise limits.

Remark 2.1.14. For the reason of conciseness, here we only present the kernel of real hyper-

bolic type. A complex version of kernel of hyperbolic type can also be designed, wherein

an extra parametre, Cartan argument, is needed, and we refer reader to [Mon20] for details.
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Kernels of positive type and of conditionally negative type are classical tools for the

study of embeddings into spherical and Euclidean spaces respectively (see for example

[BLV08, Appendix C] for brief introduction). Kernels of hyperbolic type is closely con-

nected to these two notions:

Proposition 2.1.15. The function β(·, ·) : X × X → R satisfies (2.2) if and only if for every z ∈ X,

the function N(x, y) := β(x, z)β(y, z)− β(x, y) is a kernel of positive type, i.e. ∑
n
i,j=1 cicjN(xi, xj) ≥

0 for all n ≥ 1, any x0, x1, . . . , xn ∈ X and any c1, . . . , cn ∈ R.

Proof. It is merely a rearrangement of terms.

Similarly, kernels of hyperbolic type are designed for embedding sets into hyperbolic

spaces.

Theorem 2.1.16 ([MP19]). Let X be a non-empty set with a kernel of hyperbolic type β. Then there

exists a real hyperbolic space Hα for some cardinal α and a map f : X → Hα such that

dH

(
f (x), f (y)

)
= cosh−1 (β(x, y)

)
. (2.3)

Moreover, the space Hα and the map f are unique up to a unique isometry of hyperbolic spaces.

Therefore, denoting by Aut(X, β) the group of bijections of X that preserve the kernel β, there is

a canonical representation Aut(X, β) → Isom(Hα) for which f is equivariant.

Remark 2.1.17. One way to understand Theorem 2.1.16 is the following. Proposition 2.1.15

implies that each kernel of hyperbolic type can be uniquely associated to a positive type

kernel. By Gelfand–Naimark–Segal construction or simply GNS construction, one can build

a Hilbert space via the associated kernel of positive type (we refer to [BLV08, Appendix

C]), which can be further used to construct an algebraic hyperbolic space where the set

carrying the hyperbolic type kernel is embedded.

2.2 Gromov hyperbolic spaces

In this section, we will present the general theory of Gromov hyperbolic spaces. These

spaces can be viewed as generalisations of algebraic hyperbolic spaces. Soon after its birth,

Gromov hyperbolic space has been profoundly studied by many mathematicians from

different aspects. Whereas here, we will only cover a small part of this topic and will mainly

focus on demonstrating the differences between proper settings and non-proper settings.

We refer the reader, if interested, to classic mathematical literature such as [HG90], [BH13,

§III. H], and [DSU17].
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2.2.1 Definitions

Recall that the Hausdorff distance, denoted dHaus, between two closed subsets A, B in a metric

space (X, dX) is given by

dHaus(A, B) := sup {r ≥ 0 : A ⊂ Nr(B) and B ⊂ Nr(A)} ,

where Nr stands for the closed r-neighbourhood in X.

Definition 2.2.1 (Gromov hyperbolic space (version 1)). A geodesic metric space (X, dX) is

Gromov hyperbolic, if there exists some δ ≥ 0 such that for any three points x, y, z ∈ X, the

geodesic segment [x, y] is contained in Nδ([x, z] ∪ [y, z]).

In other words, the geodesic triangles in Gromov hyperbolic space are δ-slim for a uniform

δ ≥ 0. This condition is attributed to Rips by Gromov in [Gro87] and is thus also often

called Rips condition, see for example [HG90, §1.4 Définition 27] and [DSU17, §4.3].

Although Definition 2.2.1 also serves well as a geometric intuition for Gromov hyper-

bolicity, it only works for geodesic spaces. If one wishes to go beyond geodesic spaces,

e.g. discrete metric spaces, this definition will no longer be valid. For this reason, we are

introducing another definition of Gromov hyperbolicity.

Let o ∈ X be a base point. Define the function ⟨·, ·⟩o : X × X → [0, ∞) by

⟨x, y⟩o :=
1
2

(
dX(x, o) + dX(y, o)− dX(x, y)

)
(2.4)

for every x, y ∈ X. The quantity ⟨x, y⟩o in (2.4) is called the Gromov product of x and y based

at o, or simply the Gromov product of x and y. It is clear that Gromov product is symmetric

and ⟨x, x⟩o = dX(x, o).

Definition 2.2.2 (Gromov hyperbolic space (version 2)). A metric space (X, dX) is Gromov

hyperbolic, if there exists some δ ≥ 0 such that

⟨x, y⟩o ≥ min {⟨x, z⟩o, ⟨z, y⟩o} − δ (2.5)

for all x, y, z, o ∈ X.

It is not hard to see that (2.5) is equivalent to the following relaxed inequality, i.e. a

metric space (X, dX) is Gromov hyperbolic if and only if there exists a δ ≥ 0 such that

dX(x, y) + dX(z, o) ≤ max {dX(x, z) + dX(y, o), dX(x, o) + dX(y, z)}+ 2δ (2.6)

for all x, y, z, o ∈ X.
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The equivalent conditions (2.5) and (2.6) are called the Gromov four points condition.

When we wish to emphasise that the metric space (X, dX) is Gromov hyperbolic for a

specific δ ≥ 0, then we will call this space a δ-hyperbolic space.

For a geodesic space, this the Gromov four points condition is equivalent to the condi-

tion that every geodesic triangles are δ′-slim for some other δ′ ≥ 0, see for example [HG90,

§2.3 Proposition 21] and [BH13, §III.H, Proposition 1.22].

Remark 2.2.3. We mention in the interest of curiosity the following notion. As an analogue

to the Gromov four points condition, one can generalise hyperbolicity for a metric space

to combinatorial higher-rank hyperbolicity in the sense of [JL23]. Similar to Rips condition,

for a coarsely injective metric space, having combinatorial higher-rank hyperbolicity is

equivalent to enjoying a slim simplex property [JL23].

Remark 2.2.4. Although Gromov hyperbolicity can be defined for non-geodesic metric space,

many interesting or well-known properties of Gromov hyperbolic spaces are shown under

the context of geodesic metric spaces. But this will not cause us too much difficulty. Because

we can always conveniently embed the original Gromov hyperbolic space isometrically into

its injective hull, and this injective hull is always geodesic and Gromov hyperbolic for the

same δ [Lan13, Proposition 1.3]. Therefore, we can easily extend many properties that hold

in geodesic hyperbolic spaces to more general non-geodesic hyperbolic spaces.

Gromov product ⟨x, y⟩o can be interpreted geometrically as “coarsely the distance between

the base point o to any geodesic segment [x, y]”:

Proposition 2.2.5 ([BH13], §III.H.1). If (X, dX) is a geodesic δ-hyperbolic space, then

d(o, [x, y])− δ ≤ ⟨x, y⟩o ≤ d(o, [x, y]), (2.7)

for all x, y ∈ X. In particular, if [x, y] ⊂ [o, x] or [x, y] ⊂ [o, y], then ⟨x, y⟩o = d(o, [x, y]).

Here we provide several basic examples and non-examples of Gromov hyperbolic space.

Example 2.2.6 (Bounded spaces). The trivial examples of Gromov hyperbolic space are

bounded metric spaces. Indeed, if the metric space is bounded, then the Gromov product

will always be bounded. By taking a sufficiently large δ, the inequality (2.4) will always be

verified.

Example 2.2.7 (Trees). A simplicial tree is an unidirected graph where any pair of distinct

vertices is connected by a unique path. If each edge in this graph is considered to have

length 1, then it becomes a geodesic metric space. Moreover, any geodesic triangles in

a simplicial tree is 0-slim. A simplicial tree is special case of an R-tree, i.e. a geodesic

0-hyperbolic space.
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Example 2.2.8 (Algebraic hyperbolic spaces). Every algebraic hyperbolic space (over the

number field R, C or H) is log(2)-hyperbolic. In fact, as Riemannian manifold, the sec-

tional curvature of an algebraic hyperbolic space is bounded between −4 and −1 and as

a result, an algebraic hyperbolic space is CAT(−1), which further implies that it is log(2)-

hyperbolic. See [DSU17, §3.2 & §3.3] for more detailed discussion.

Example 2.2.9 (Euclidean spaces). The metric space R is 0-hyperbolic. But Rd with Eu-

clidean metric is not Gromov hyperbolic whenever d ≥ 2: for any δ > 0, one can always

find a (large enough) equilateral triangle that is not δ-slim.

The following lemma provides an abundance of Gromov hyperbolic spaces and it can

be shown directly from the definition:

Lemma 2.2.10 (Hierarchical property of Gromov hyperbolic space). Any subspace of a Gro-

mov hyperbolic space is also Gromov hyperbolic. Equivalently, any non Gromov hyperbolic space

cannot be isometrically embedded into a Gromov hyperbolic space.

2.2.2 Gromov boundary

Let (X, dX) be a Gromov hyperbolic space and let o ∈ X be an arbitrary base point. A

sequence (xn)n≥0 in δ-hyperbolic space is Cauchy-Gromov if ⟨xn, xm⟩o → ∞ as n, m → ∞.

We remark that being Cauchy-Gromov of a sequence does not depend on the choice of

the base point o ∈ X. A Cauchy-Gromov sequence (xn)n≥0 is equivalent to another one

(ym)m≥0, if ⟨xn, ym⟩o → ∞ as n, m → ∞.

Definition 2.2.11 (Gromov boundary). Let (X, dX) be a Gromov hyperbolic space. Then we

define its Gromov boundary by the equivalent classes of Cauchy-Gromov sequences in X

and we denote it by ∂X. We say that a sequence (xn)n≥0 converges to a boundary point

ξ ∈ ∂X if it is a representative of ξ. The disjoint union X := X ⊔ ∂X is called the Gromov

bordification of X.

Remark 2.2.12. It is easy to check that the concepts of Cauchy-Gromov sequences and their

equivalence do not depend on the base point o. In particular, the Gromov boundary ∂X is

independent of the choice of o.

Remark 2.2.13. In the literature, when the Gromov hyperbolic space is proper and geodesic,

its Gromov boundary will also be taken as the classes of geodesic rays issued from o, equiv-

alent up to bounded Hausdorff distance. This definition via geodesic rays is sometimes also

called as “visual boundary” of Gromov hyperbolic space. By the virtue of Proposition 2.2.5,

visual boundary is a subspace of Gromov boundary. But if the Gromov hyperbolic space

is geodesic and proper, these two notions are equivalent [BH13, §III.H, Lemma 3.13].
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The Gromov product can be extended to the boundary in the following way. For all

x ∈ X and ξ ∈ ∂X, we define

⟨x, ξ⟩o := sup lim inf
n→∞

⟨x, xn⟩o,

where the supremum is taken among all sequences (xn)n≥0 converging to ξ ∈ ∂X, and also

by setting for all η, ξ ∈ ∂X

⟨η, ξ⟩o := sup lim inf
n,m→∞

⟨ym, xn⟩o,

where the supremum is taken among all sequences xn → ξ and ym → η. In particular,

note that ⟨ξ, ξ⟩o = ∞ for all ξ ∈ ∂X. One also remarks that for any ξ, η ∈ ∂X and any two

sequences xn → ξ and ym → η, we have

⟨ξ, η⟩o − 2δ ≤ lim inf
n,m→∞

⟨xn, ym⟩o ≤ ⟨ξ, η⟩o. (2.8)

For further detail on this estimation, we refer to [HG90, §7.2, Remarque 8]. In particular,

we remark that ⟨ξ, ξ⟩o = ∞ for every ξ ∈ ∂X.

With Gromov product, the Gromov boundary can be endowed with the topology gen-

erated by the neighbourhood basis for ξ ∈ ∂X in the form of {η ∈ ∂X : ⟨ξ, η⟩o ≥ R}, where

R ≥ 0. Similarly, we can define shadow of x ∈ X based at o ∈ X of radius R > 0 by

So(x, R) := {y ∈ X : ⟨y, x⟩o ≥ R}, (2.9)

of which the family generates a topology for the Gromov bordification X.

The following hierarchical property is deduced immediately from the definition.

Proposition 2.2.14 (Hierarchical property of Gromov boundary). Let (X, dX) and (Y, dY)

be two Gromov hyperbolic spaces. For any isometric embedding f : Y →֒ X, it can be extended

continuously to the entire Gromov bordification f : Y → X and f |∂Y : ∂Y →֒ ∂X is a topological

embedding.

The Gromov bordification has a quite nice topology:

Proposition 2.2.15 ([DSU17], Proposition 3.4.18). Let (X, dX) be a Gromov hyperbolic space.

Then with the topology above, the Gromov bordification X is completely metrisable. If X is in

addition proper and geodesic, then the Gromov bordification X is compact and the Gromov boundary

∂X ⊂ X is a closed subspace and thus is also compact. If X is separable, then X and ∂X will both

be separable.

Remark 2.2.16. The compactness result of Proposition 2.2.15 will fail if the properness as-

sumption is dropped. In the literature, when the space is proper and geodesic, the Gromov
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bordification is sometimes also called “Gromov compactification”.

Example 2.2.17 (Bounded spaces). The Gromov boundary of any bounded metric space is

empty: any Cauchy-Gromov sequence must be unbounded. But there exist unbounded

Gromov hyperbolic space of which the Gromov boundary is empty: the space consisting

of one point and issued from this point, infinitely many segments of increasing length til

infinity, see Figure 2.1.

Figure 2.1: An unbounded 0-hyperbolic space with empty Gromov boundary.

Example 2.2.18 (Boundary of regular trees). The Gromov boundary of R consists of two

points, namely {±∞}. The Gromov boundary of Tn (n ≥ 3), the regular tree of valency

n, i.e. the tree where each vertex has exactly valency n, is homeomorphic to the Cantor

set. This uses the fact that all Tn (n ≥ 3) are quasi-isometric and the Gromov boundary is

invariant under quasi-isometries for geodesic Gromov hyperbolic spaces, see §2.2.3. Also,

the Cantor set is compact.

Example 2.2.19 (Boundary of algebraic hyperbolic spaces). The Gromov boundary of an

algebraic hyperbolic space Hα
K is homeomorphic to the space {[x] ∈ PL : B0(x, x) = 0}, i.e.

the natural boundary of hyperboloid [DSU17, §3.5.1]. The same arguments as Corollary

2.1.3 show that ∂Hα
K is compact if and only if it is proper, or equivalently if and only if

α < ℵ0.

The following property is a strengthening of being geodesic:

Definition 2.2.20 (ultracompleteness). A Gromov hyperbolic space (X, dX) is ultracomplete if

for every distinct two points x, y ∈ X, there exists a geodesic [x, y].

Remark 2.2.21. A geodesic line γ : R → X is said to connect η− ∈ ∂X to η+ ∈ ∂X if γ(±n)

converges to η± as Cauchy-Gromov sequences.
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Remark 2.2.22. Any ultracomplete Gromov hyperbolic space is a fortiori a geodesic metric

space, but the converse is not true: in the space X := {(x, y) ∈ R2 : 0 ≤ y < 1 or (x, y) =

(0, 1)}, the point (0, 1) cannot be connected to any point on the Gromov boundary by a

geodesic ray, since such a geodesic must be horizontal. See Figure 2.2.

Figure 2.2: A geodesic non-proper Gromov hyperbolic space that is not ultracomplete.

Remark 2.2.23. There exists geodesic Gromov hyperbolic space that is ultracomplete but not

proper: the curve graph of a hyperbolic surface [Min10, Lemma 5.14]. For the definition of

such a graph, see §4.1.2.

Remark 2.2.24. Ultracompleteness property is sometimes confused with “visibility property”,

viz. each pair of distinct points on the Gromov boundary can be connected by a geodesic

line, but ultracompleteness is a priori strictly stronger than visibility. Figure 2.2 also gives an

example of Gromov hyperbolic space that has visibility property but is not ultracomplete.

In particular, when the space is not geodesic, it can never be ultracomplete while it can

still have visibility property. See in Figure 2.3 such a metric subspace in R2 made of

infinitely many triangles and it has visibility property since the geodesic y = 1 connects

two boundary points at infinity.

Figure 2.3: A proper (non-geodesic) Gromov hyperbolic space that is not ultracomplete.
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The metric space from Figure 2.2 is not proper while that from Figure 2.3 is not geodesic.

But if a Gromov hyperbolic space is both geodesic and proper, then necessarily it is ultra-

complete:

Proposition 2.2.25. If (X, dX) is proper geodesic space that is Gromov hyperbolic, then (X, dX) is

ultracomplete.

Proof. Under the assumptions above, for any point x ∈ X and any boundary point ξ ∈ ∂X,

there is a geodesic ray connecting x to ξ [BH13, §III.H, Lemma 3.1]. Also, the metric space

(X, dX) enjoys visibility property [BH13, §III.H, Lemma 3.2]. Moreover, it is geodesic.

The following statement appears in [Gro87, §7.5], where Gromov claims it without

proof. The correctness of this statement remains unknown; it is still in the status of conjec-

ture:

Conjecture 2.2.26 (Gromov). Every (geodesic) Gromov hyperbolic metric space (X, dX) can be

isometrically embedded via ι into some ultracomplete space (Y, dY) such that supy∈Y dY
(
y, ι(X)

)
<

C < ∞.

If Conjecture 2.2.26 holds, then it means that for any Gromov hyperbolic space (X, dX),

one can find a larger ultracomplete space (Y, dY) with ∂Y ≃ ∂X so that one can always

assume that it is ultracomplete when discussing the dynamics of Isom(X).

We will show a partial affirmation to the above Gromov ultracompleteness conjecture

in Chapter 8.

Finally, we consider the dynamic of isometries on a Gromov hyperbolic space.

Let X be a δ-hyperbolic geodesic space and let G acts on X by isometries. The limit set

of G in bordX, denoted ∂XG, is the collection of elements on ∂X that can be represented by

Cauchy-Gromov sequences of the form (gnx)n≥0 for some x ∈ X and gn ∈ G. It is worth

noticing that if (gnx)n≥0 defines an element ξ on ∂X for some x ∈ X, then one observes

that for any other y ∈ X, the sequence (gny)n≥0 is also Cauchy-Gromov and equivalent to

(gnx)n≥0 as g acts by isometries. Hence the definition of the limit set ∂XG does not depend

on the choice of x.

The following trichotomy for isometries on a Gromov hyperbolic space is very famous.

Although some proofs of the classification suppose that the Gromov hyperbolic space is

proper, see [Cap+15] and [CDP90, Chapitre 9] for example. To be precise, an isometry g on

X is:

▶ elliptic if and only if ∂X⟨g⟩ is empty, or if ⟨g⟩ has bounded orbits;

▶ parabolic if and only if |∂X⟨g⟩| = 1, or if d(x, gnx)/n → 0 as n → ∞;

▶ hyperbolic if and only if |∂X⟨g⟩| = 2, or if d(x, gnx)/n → c > 0 as n → ∞.
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Several facts about the type of isometries are listed in [CDP90, §9.1]. One basic result is

that an isometry shares the same type with its powers.

Recall that in [Gro87, §3.1] Gromov gives a classification for an action of an arbitrary

group Γ on a Gromov hyperbolic geodesic proper space X by isometries. Such a group

action is called:

• elementary and

▶ bounded if it has bounded orbits;

▶ horocyclic if it is unbounded and has no hyperbolic elements;

▶ lineal if it has hyperbolic elements but any two hyperbolic elements have the same

endpoints;

• non-elementary and

▶ focal if it has hyperbolic elements, is not lineal, and any two of its hyperbolic elements

have one common endpoint;

▶ general type if it has hyperbolic elements with no common endpoint.

But in Chapter 9, we will see how these classifications can be generalised to any Gromov

hyperbolic space.

2.2.3 Quasi-isometry

The notion of quasi-isometry is pivotal in coarse geometry, the study of metric spaces at its

large scale, which is one of the central foci of this thesis.

Definition 2.2.27 (quasi-isometry). Let (X, dX) and (Y, dY) be two metric spaces. A (not

necessarily continuous) map f : X → Y is a (λ, k)-quasi-isometry embedding for some λ ≥ 1

and k ≥ 0 if for every x, x′ ∈ X,

1
λ

dX(x, x′)− k ≤ dY
(

f (x), f (x′)
)
≤ λdX(x, x′) + k.

If, in addition, there exists a constant r ≥ 0 such that the r-neighbourhood Nr
(

f (X)
)
=

Y, then f is called a (λ, k)-quasi-isometry. Moreover, two spaces X, Y are quasi-isometric

whenever such a map exists.

Remark 2.2.28. The condition “there exists a constant r ≥ 0 such that the r-neighbourhood

Nr
(

f (X)
)
= Y” is to say that the image of X via f is cobounded in Y, or f is essentially

surjective.

Remark 2.2.29. As a trivial remark, each isometric embedding ι : X → Y is a quasi-isometric

embedding. Each bi-Lipschitz map f : X → Y, i.e. there exists 0 < a < A such that

adX(x, y) ≤ dY
(

f (x), f (y)
)
≤ AdX(x, y) for all x, y ∈ X, is also a quasi-isometric embed-

ding.
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Remark 2.2.30. It is not hard to check that being quasi-isometric forms an equivalent relation

among metric spaces. Indeed, for any (λ, k)-quasi-isometry f : X → Y, one can construct

a (λ′, k′)-quasi-isometry f ′ : Y → X and a constant C > 0 such that dY
(

f ◦ f ′(y), y
)
≤ C

and dX
(

f ′ ◦ f (x), x
)
≤ C for all x ∈ X and all y ∈ Y. Such f ′ will be called a quasi-inverse

of f . Also, the composition of a (λ, k)-quasi-isometry and a (λ′, k′)-quasi-isometry is a

(λλ′, λ′k + k′)-quasi-isometry.

Remark 2.2.31. For a metric space (X, dX), the quasi-isometry group, denoted QI(X), consists

of equivalent classes of quasi-isometries X → X up to bounded distance of images, i.e.

two quasi-isometries f and g are equivalent if supx∈X dX
(

f (x), g(x)
)
< ∞. This group

only depends on the quasi-isometry type of metric spaces, i.e. a quasi-isometry X →
Y will induce a group isomorphism between QI(X) → QI(Y). Since each isometry is

a quasi-isometry, there is a natural group homomorphism Isom(X) → QI(X), but this

homomorphism is in general not an isomorphism: isometry groups are not invariant under

quasi-isometries.

Example 2.2.32. It is an trivial example that all bounded metric spaces are quasi-isometric

to each other and in particular, they are all quasi-isometric to a singleton. Conversely, any

metric space that is quasi-isometric to a point must be of finite diameter.

Example 2.2.33. Let Tn be the regular tree of valency n. For any distinct n, m ≥ 3, the trees

Tn and Tm are quasi-isometric. To show this, it suffices to prove that T3 is quasi-isometric to

Tn for any n ≥ 4. Denote by d3 and dn the metric on T3 and Tn respectively. Label the edges

of T3 by {1, 2, 3} so that no edges of the same label are adjacent. By collapsing to a point

every path in T3 of length n − 3 consisting of edges sequentially labelled 1, 2, 3, 1, 2, . . . , we

define a map f : T3 → Tn that is a (n − 2, 1)-quasi-isometry. See Figure 2.4 for an example.

Example 2.2.34 (Cayley graph). Let G be a finitely generated group. Let S be a finite

generating sets in G. The Cayley graph of G with respect to S, denoted Cay(G, S), is a graph

where vertices are elements in G and g is connected to h by an edge if and only if g−1h ∈ S.

It is a geodesic proper space if one endows it with the simplicial metric dS. We note that

dS is exactly the word metric associated to S, i.e. the distance dS(g, h) is the shortest word

over alphabet S representing g−1h. If S and S′ are two distinct finite generating sets in G,

then there exists a constant λ := max
(

maxs′∈S′ dS(s′), maxx∈S dS′(s)
)
, i.e. the length of the

longest word in the dictionary of translation, such that the map Id : Cay(G, S) → Cay(G, S′)
by g 7→ g for every g ∈ G is a (λ, 0)-quasi-isometry. This means that the Cayley graphs of

a finitely generated group has a well-defined quasi-isometric type.
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Figure 2.4: A (2, 1)-quasi-isometry from T3 to T4.

Definition 2.2.35 (quasi-geodesic). A quasi-geodesic in a metric space (X, dX) is a quasi-

isometric embedding I → X, where I ⊂ R is an interval.

Quasi-geodesics can also be used to characterise Gromov hyperbolicity for geodesic

metric spaces: a geodesic δ-hyperbolic space is where all quasi-geodesic triangles are M-

slim ([BH13, §III.H, Corollary 1.8]). This relies on the following fact, referred as Morse

Lemma:

Proposition 2.2.36. Let X be a δ-hyperbolic space. There exists a function M : [1, ∞)× [0, ∞) →
[0, ∞) depending on δ so that given any pair (λ, k) ∈ [1, ∞)× [0, ∞) and any two points x, y ∈ X,

all (λ, k)-quasi-geodesics connecting x to y are within Hausdorff distance M(λ, k) of each other.

Remark 2.2.37. Different from [BH13, §III.H, Theorem 1.7], we do not assume that X is

geodesic. In fact, by the virtue of [Lan99], one can isometrically embed X into its injective

hull, denoted Inj(X), which is a geodesic metric space that is hyperbolic with the same

δ. Moreover, any quasi-geodesic in X remains quasi-geodesic in Inj(X). So we can con-

clude Proposition 2.2.36 by applying the geodesic version of Morse Lemma [BH13, §III.H,

Theorem 1.7] to Inj(X).

Remark 2.2.38. Since a geodesic is always a (λ, k)-quasi-geodesic for any λ and k, Morse

Lemma also means that in (geodesic) Gromov hyperbolic spaces, quasi-geodesics stay

closed to geodesics, whenever they exist. But this is utterly wrong in general cases: the

spiral in R2 parametrised as t →
(
t, log(1 + t)

)
in polar coordinates is a quasi-geodesic ray

but it stays arbitrarily far away from any geodesic ray in R2.

Remark 2.2.39. The function M : [1, ∞) × [0, ∞) → [0, ∞) is called the Morse function and

for fixed constant λ and k, the value M(λ, k) is called the Morse constant. In particular, the
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Hausdorff distance between the two sides of a geodesic bigon in a δ-hyperbolic space is at

most a multiple of δ (see [HG90, §7.1, Corollaire 3]).

Combining Proposition 2.2.36 and the fact that quasi-geodesic triangles are slim in Gro-

mov hyperbolic spaces, we can soon conclude the following important fact:

Theorem 2.2.40 ([BH13], §III.H, Theorem 1.9). Let (X, dX) and (Y, dY) be geodesic metric spaces

and let f : Y → X be a quasi-isometric embedding. If X is Gromov hyperbolic, then so is Y (with a

different δ ≥ 0).

Remark 2.2.41. Theorem 2.2.40 states that among geodesic metric spaces, Gromov hyperbolic-

ity is invariant under quasi-isometries. But the geodesic assumption cannot be dropped.

The graph {(x, y) ∈ R2 : y = |x|} as a subspace of R2, is not a geodesic metric space but it

is quasi-isometric to a 0-hyperbolic space R, whereas it is not Gromov hyperbolic as R is.

Moreover, we have the following quantitative estimation called quasi-invariance of Gro-

mov product

Proposition 2.2.42 ([HG90], §5.2, Proposition 15). Let (X, dX) and (Y, dY) be δ-hyperbolic

geodesic spaces and let f : Y → X be a (λ, K)-quasi-isometric embedding. Then there exists a

constant C, depending only on δ, λ and K, such that

1
λ
⟨x, y⟩z − C ≤ ⟨ f (x), f (y)⟩ f (z) ≤ λ⟨x, y⟩z + C

We have seen in Remark 2.2.31 that the quasi-isometry group is invariant under quasi-

isometries and in Theorem 2.2.40 that Gromov hyperbolocity is also invariant when the

space is geodesic. But quasi-isometries have the following much stronger property:

Theorem 2.2.43 ([BH13], §III.H, Theorem 3.9). Let f : X → Y be a quasi-isometric embedding

between proper geodesic metric spaces. Assume that X and Y are Gromov hyperbolic. Then it

induces a topological embedding f∂ : ∂X → ∂Y. If f is a quasi-isometry, then ∂X ≃ ∂Y.

Remark 2.2.44. Theorem 2.2.43 is the classical case of the folklore theorem: quasi-isometric

Gromov hyperbolic spaces can be basically treated as the same space. In Chapter 9, we will

give a proof for non proper length spaces as an application of ultralimit. Another (more

quantitative) proof using visual metric can be found in [Väi05, Theorem 5.35]. The use of

Arzelá-Ascoli Theorem is not a necessity and similar geometric arguments also prove the

same result in the setting of geodesic non proper spaces, see [CDP90, Chapitre 3, Théorème

2.2].

Remark 2.2.45. If the space is not Gromov hyperbolic but only CAT(0), then one can define

contracting boundary, which behaves similarly to Gromov boundary, and endows it with

topology generated by shadows, but this boundary is not invariant under quasi-isometries

[Cas16].
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Chapter 3

Analysis on Topological Groups

分析曲折，昭然可曉。1

范瞱（398–445），《後漢書·馬援傳》。

3.1 Universal minimal flow

The universal minimal flow of a topological group G is a canonical compact topological space

on which G acts continuously. It is of great interest in topological dynamics and is closely

connected to various analytic properties of topological groups. For some important non-

locally compact topological groups that appear in geometry, combinatorics and logic, this

canonical flow can be computed explicitly and has meaningful interpretation under the

corresponding contexts. In this section, we will give a brief survey on this notion.

We remark that this section aims at treating a general theory for topological groups that

are not necessarily Hausdorff, which might be handy for the study of topological dynamics

of algebraic groups.

3.1.1 Uniform spaces

Uniform spaces provide a natural setting for studying topological dynamics and analysis

on groups. It can be viewed as a generalisation of metric spaces and in particular, every

metric space is a uniform space defined in the following:

Definition 3.1.1 (uniform space). A uniform space is a pair (X,U ), consisting of a set X and a

uniform structure U ⊂ P(X × X), where the elements E ∈ U is called an entourage satisfying

the following conditions:

1Translation from classical Chinese: By analysing the zigzags, everything is evidently clear.
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(U1) the family U is closed under finite intersection and supsets, i.e. a filter;

(U2) any entourage contains the diagonal ∆ = {(x, x) : x ∈ X};

(U3) if E ∈ U , then there exists F ∈ U such that F ⊂ E−1 := {(x, y) ∈ X × X : (y, x) ∈ E};

(U4) if E ∈ U , then there exists F ∈ U such that F ◦ F := {(x, z) ∈ X × X : ∃y ∈
X such that (x, y), (y, z) ∈ F} ⊂ E.

Moreover, the uniform structure U is separated if

(U5) the intersection of all entourages is the diagonal.

In the sequel, we will write U (X) for the uniform structure on a given uniform space X

whenever it is understood.

Definition 3.1.2 (uniform continuity). A map f : X → Y between uniform spaces is uniformly

continuous if for any entourage V ∈ U (Y), there is an entourage E ∈ U (X) such that(
f × f

)
(E) :=

{(
f (x), f (y)

)
∈ Y × Y : (x, y) ∈ E

}
⊂ V.

The simplest examples of uniformly continuous maps could be the uniformly contin-

uous functions on metric spaces. Moreover, we remark that the uniform spaces and uni-

formly continuous mappings form a category in a very natural way.

Let X be a uniform space. We say that a point y is E-closed to x if the pair (x, y) is

contained in the entourage E ∈ U (X). Each uniform space is naturally a topological space:

the uniform topology in which a neighbourhood base of a point x ∈ X consists of the sets

of points that are E-closed to x as E runs though the entourages of X. In what follows,

we denote by E[x] the points in X that are E-closed to x. Note that a separated uniform

structure induces necessarily a Hausdorff uniform topology.

It is worth remarking that not all topological spaces admit a uniform structure. In fact,

the topological spaces that can carry an associated uniform structure described as above

are exactly the completely regular ones (see for example [Jam13, Proposition 11.5]). Such a

topological space is called a uniformisable space. If we embed the category of uniformisable

spaces into the category of topological spaces, then the category of the uniform spaces will

become a sub-category of uniformisable spaces.

Here we give several important examples of uniformisable spaces:

Example 3.1.3 (Discrete countable space). For a uniformisable space, there could exist sev-

eral uniform structure on it that can induce the same uniform topology. For example, the

space Z with discrete topology can be induced by the discrete uniform structure, i.e. the

uniform structure consisting of all subsets of X × X containing the diagonal ∆, and also

by the uniform structure generated by sets of the form {(x, y) : x = y or x, y ≥ n}. These

uniform structures are said compatible to the topology.

Example 3.1.4 (Compact spaces). An important example of uniformisable space is the com-

pact Hausdorff spaces. The result is known as uniformisation theorem of compact space (see
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[Jam13, Proposition 8.20] or [Bou07, TG II §4, Théorème 1]) and it states that there is a

unique compatible uniform structure on every compact Hausdorff space consisting of all

neighbourhoods of the diagonal as entourages.

Example 3.1.5 (Topological groups). Let G be a topological group. There are two standard

uniform structures on G. The right uniform structure (respectively left uniform structure) on

a topological group G consists of entourages EU containing all the pairs (g, h) such that

gh−1 ∈ U (respectively g−1h ∈ U) for a neighbourhood U of the identity element in G.

We denote the above uniform structure by Ur(G) (respectively Ul(G)). If in addition, the

topology on G is Hausdorff, then both Ur(G) and Ul(G) are separated. But in general,

the left uniform structure and the right uniform structure of a topological group do not

coincide.

At the categorical level, we can define the sum (or coproduct), product, quotient and sub-

object for objects. For uniformisable spaces, the notions of sum, product and subobject

are consistent in the larger category of topological spaces. Namely, the uniform topology

induced by the uniform structure defined on the disjoint union, Cartesian product and sub-

space of uniform spaces are respectively the disjoint union topology, Tychonoff topology

and the subspace topology. See [Isb64] or [Jam13] for example. We will define the product

of uniform spaces in the next paragraph.

Nevertheless, believing that quotient uniform structure will induced quotient topology

is “horribly false”, as stated in [Isb64]. In fact, for every non-normal uniformisable spaces X

equipped with the finest compatible uniform structure, one can always construct a quotient

map f : X → Y of uniform spaces so that the quotient topology on Y induced by f is not

uniformisable (see [Isb64]), e.g. the Moore plane.

3.1.2 Completion and compactification

Recall that a complete metric space is a compact topological space if and only if it is totally

bounded. We have similar characterisation of compactness for uniform spaces.

A uniform space X is compact if the uniform topology on X induced by U (X) is compact,

i.e. every open covering of X admits a finite sub-covering.

Similarly, we can define the completeness of a uniform space. First, let us introduce the

following notion:

Definition 3.1.6 (Cauchy filter). A Cauchy filter over a uniform space X is a filter F ⊂ P(X)

(see condition (U1)) if for every E ∈ U (X), there exists A ∈ F such that A × A ∈ E.

Recall that a filter F over a uniform space X converges to a point x ∈ X if for every

E ∈ U (X), there exists A ∈ F such that A ⊂ E[x], or more general, a filter converges to a
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point in a topological space if every neighbourhood of this point is contained in the filter.

We can immediately conclude the following proposition from the definitions, of which we

exhibit the proof as an example:

Proposition 3.1.7. Let F be a filter over a uniform space X. If F converges to some point x ∈ X,

then F is a Cauchy filter.

Proof. For any entourage E ∈ U (X), one can seek a symmetric entourage by E′ such that

E′ ◦ E′ ⊂ E. Since F converges to x, there exists A ∈ F such that A × A ⊂ E′[x]× E′[x] ⊂
E′ ◦ E′ ⊂ E. This shows that F is Cauchy.

But the converse is not true: any non-complete metric space admits non-convergent

Cauchy sequence and thus a non-convergent Cauchy filter. So we define the following:

Definition 3.1.8 (completeness). A uniform space X is complete if every Cauchy filter con-

verges to some point in X.

There is a useful connection between completeness and compactness in the class of

uniform spaces:

Definition 3.1.9 (total boundedness). A uniform structure U over a set X is totally bounded if

for any entourage E ∈ U , there exists a finite cover {U1, . . . , Un} such that Uk × Uk ⊂ E for

all 1 ≤ k ≤ n. A uniform space X is totally bounded if U (X) is totally bounded.

The following result is a generalisation of Heine-Borel Theorem in the uniform space

settings and the proof is a straightforward adaption of the proof for metric space cases. A

proof in categorical language is available in [Isb64, §II.28].

Theorem 3.1.10 (Heine-Borel). A uniform space is compact if and only if it is complete and totally

bounded.

It somehow responses to the principle proposed by Isbell [Isb64, §I.14]:

As far as a single entourage is concerned2, all uniform spaces are like metric spaces.

Further pursue of this principle allows us to associate the completion of a uniform space

to means and finally leads to analytic properties on topological groups.

Let us first take a glimpse at the following result, which completely establishes the

connection between metric spaces and uniform spaces. The proof is constructive but not

difficult to follow and is given in [Isb64, §I.14]. Here we only state the theorem by refor-

mulating it in the language of entourages:

2In the original text, it says: “As far as a single coverings are concerned, all uniform spaces are like metric spaces.”

Since the definition of uniform spaces via entourages is used here instead of that via uniform coverings, we

make a small modification.
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Theorem 3.1.11. Let X be a uniform space. Then for every entourage E ∈ U (X), there exists a

metric space (M, dM) and a uniformly continuous map f : X → M such that for every bounded

subset B ⊂ M with diameter diam(B) < 1, we have f−1(B)× f−1(B) ⊂ E.

Given a uniform space X, we say that an entourage E ∈ U (X) is realised by a (uniformly

continuous) map f : X → Y if f−1(F[y]) × f−1(F[y]) ⊂ E for some F ∈ U (Y) and every

y ∈ Y. Hence Theorem 3.1.11 says that for any uniform space X, every entourage E ∈ U (X)

is realised by a uniformly continuous map into a metric space.

Recall that the product of uniform spaces Yα, also denoted ∏α Yα, is a uniform space

where the uniform structure is generated by all entourages in the form of

{
(
(xα), (yα)

)
∈
(

∏
α

Yα

)
×
(

∏
α

Yα

)
: (xαi , yαi) ∈ Vi ∈ U

(
Yαi), i = 1, . . . , n

}
,

where n ∈ N. The product uniform structure is the coarsest uniform structure such that the

canonical projection ια : ∏α Yα ↠ Yα via (yα) 7→ yα is uniformly continuous for each α. This

definition is similar to the definition of Tychonoff topology on the product of topological

spaces.

Proposition 3.1.12 (cf. §II.18, [Isb64]). Let X be a separated uniform space and let fα : X → Yα be

a family of uniformly continuous maps that realises every entourage in U (X). Let ια : ∏α Yα ↠ Yα

be the canonical projection. Then there is a uniform embedding f : X → ∏α Yα such that ια ◦ f = fα

for every α.

Proof. Define f (x) := ( fα(x))α ∈ ∏α Yα. It is not hard to verify that f is uniformly contin-

uous. Moreover, since X is separated, for any distinct x ̸= x′ ∈ X, there is a symmetric

entourage E ∈ U (X) such that (x, x′) /∈ E. As the family fα realises every entourage in

U (X), there exists α such that x′ /∈ E[x] ⊃ f−1
α

(
F[ fα(x)]

)
for some F ∈ U (Yα), which

implies that fα(x) ̸= fα(x′). Hence f is a monomorphism. Again, using the fact that fα

realises every entourage in U (X), one can easily show that if f (X) ⊂ ∏α Yα is equipped

with subspace uniform structure, the map f−1 is uniformly continuous and hence f is an

isomorphism.

Remark 3.1.13. The condition of realising entourages is not necessary for f to be a uniform

embedding. Moreover, the product is always defined in the set-theoretic settings: the class

of indices can indeed be taken as a set which is of cardinal at most |U (X)| ≤ |P(X × X)|.
Remark 3.1.14. In general, if the uniform space is not separated, then the uniformly contin-

uous map f : X → ∏α Yα above is no longer necessarily a uniform embedding: f (X) can be

isomorphic to a uniform space between X and its separated replica, i.e. the quotient uniform

space X/R, where R =
⋂{E : E ∈ U (X)}. To be precisely, if Xs is the separated replica of

X, then we can show that X↠ f (X)↠ Xs for some uniformly continuous maps.

43



A completion of a uniform space X is the complete uniform space in which X is densely

embedded via uniformly continuous map.

The following theorem is deduced from Theorem 3.1.11 and Proposition 3.1.12:

Theorem 3.1.15 (cf. §II, [Isb64]). Every separated uniform space can be embedded into a product

of complete metric spaces and thus up to isomorphism, it has a unique completion.

Proof. Theorem 3.1.11 yields a family of uniformly continuous map fα : X → Mα that re-

alises every entourage E ∈ U (X). We may assume Mα to be complete by taking its com-

pletion. Proposition 3.1.12 tells us that there exists a uniform embedding f : X →֒ ∏α Mα.

Note that ∏α Mα is also complete. The closure of f (X) in ∏α Mα is a completion of X.

Moreover, as f (X) ≃ X and f (X) is a subspace of the complete uniform space f (X), it is

not hard to see that any uniformly continuous map X → Y into a complete uniform space

Y has a unique uniformly continuous extension over f (X). Hence any completion of X

must be isomorphic to f (X).

Definition 3.1.16 (reflection). Let X be a uniform space and C be a subcategory of uniform

spaces. The reflection of X in C, denoted X|C , is a uniform space in C together with a

uniformly continuous map r : X → X|C such that for every uniformly continuous map

f : X → Y with Y ∈ C, there is a unique f0 : X|C → Y such that f = f0 ◦ r, i.e. the following

diagram commutes:

X|C
X

Y

f0

r

f

Remark 3.1.17. The second half of the proof of Theorem 3.1.15 actually shows that for sepa-

rated uniform spaces, the completion is a reflection in complete separated uniform spaces.

In general, a reflection if exists, is always unique. Moreover, the uniformly continuous

reflection map r : X|C → (X|C)
∣∣
C is equivalent to the identity map of X|C . Moreover, the

reflection can be considered as a universal object for X in the subcategory C.

Remark 3.1.18. The separated replica of a uniform space X is the reflection of X in the category

of separated uniform spaces, because every equivalent classes in the separated replica must

be sent to the same point under a uniformly continuous map into a separated uniform

space.

Remark 3.1.19. It is easy to see that the reflection of a reflection is still a reflection.

Let UCB(X) be the space of bounded uniformly continuous functions on X. Equipped

with the norm ∥ f ∥∞ := supx∈X | f (x)|, it is a Banach space. By Banach-Alaoglu theorem,

carrying the weak-* topology, the unit ball in UCB(X)∗ is compact and thus totally bounded
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in view of Heine-Borel theorem 3.1.10. It is not difficult to verify that the map x 7→ δx,

where δx( f ) := f (x) for all f ∈ UCB(X), is a uniformly continuous map. Hence for every

uniform space X, there is always at least one uniformly continuous map from X to a totally

bounded separated uniform space.

Now adopting a similar idea of Stone-Čech compactification, we can constructing totally

bounded reflection of uniform spaces:

Theorem 3.1.20. Every separated uniform space X admits a reflection in the totally bounded sepa-

rated uniform spaces.

Proof. Let X be a separated uniform space and let fα be the class of all uniformly continuous

map X → Yα to some totally bounded separated uniform space Yα. So

{
E ∈ U (X) : E =

(
f−1 × f−1)(F), ∃F ∈ U (Yα)

}

is non-empty and forms a coarser uniform structure U ∗(X) on X than the original U (X).

Moreover, by definition there is a family with cardinal at most |U (X)| of uniformly con-

tinuous maps that realises U ∗(X). Hence by Proposition 3.1.12, (X,U ∗(X)) is isomorphic

to a subspace of a product of totally bounded spaces, which is again totally bounded. The

uniform space (X,U ∗(X)) is the desired reflection.

Now we are ready to introduce the following notion:

Definition 3.1.21 (Samuel compactification). For every uniform space X, the Samuel compact-

ification of X is denoted S(X) and is defined by the completion of the totally bounded

separated reflection of its separated replica.

Remark 3.1.22. In the light of Remark 3.1.19, the Samuel compactification of a uniform

space is is a reflection in compact separated uniform spaces and thus is unique up to iso-

morphism. Moreover, by its construction, there is a uniformly continuous monomorphism

X →֒ S(X), of which the image is dense.

Remark 3.1.23. If X is a discrete uniform space, i.e. the every the supset in X × X of the

diagonal is an entourage, then its uniform topology is also discrete. As a discrete topolog-

ical space X, the Stone-Čech compactification βX can be identified with the compact space

of all ultrafilters on X (see for example [HS11, Theorem 3.27]). Moreover, the canonical

identification ι : X → βX has dense image. As a result, both βX and S(X) are a completion

of its totally bounded reflection (X,U ∗(X)), so by Theorem 3.1.15, they are isomorphic.

Finally, we shall establish the connection between Samuel compactification and means.

Definition 3.1.24 (mean). Let V be a Banach space of functions. A mean µ over V is linear

functional µ ∈ V∗ such that µ( f ) ≥ 0 for all f ≥ 0 and µ(1) = 1. The collection of means
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over V is denoted M(V). If in addition µ ∈ M(V) is such that µ( f h) = µ( f )µ(h) for all

f , h ∈ V, then µ is said multiplicative.

Remark 3.1.25. It can be easily deduce from the definition that for all f ∈ V and µ ∈ M(V),

we have inf( f ) ≤ µ( f ) ≤ sup( f ). If V is in addition a Banach function space carrying with

the norm ∥ · ∥∞, then M(V) is a closed subset in the unit ball of V∗ and is compact under

the weak-* topology by Banach-Alaoglu theorem.

If we write Mm(V) the space of all multiplicative means on V, then for a compact space,

we have the following identification:

Lemma 3.1.26. If X is a separated compact uniform space (or equivalently, a compact Hausdorff

space), then Mm
(
UCB(X)

)
≃ X.

Proof. By Riesz-Markov-Kakutani representation theorem, a mean µ ∈ Mm
(
UCB(X)

)
can

be viewed as a probability measure on X with the multiplicative condition

∫

X
f h dµ =

∫

X
f dµ

∫

X
h dµ,

for all f , h ∈ UCB(X). We claim that the support of µ is necessarily a singleton and

thus a Dirac measure. If x, y are two distinct points in the support of µ, by Urysohn’s

lemma, we can find two strictly positive functions f , h ∈ UCB(X) with disjoint supports

and f (x) = h(y) = 1. But this will imply that

0 =
∫

X
f h dµ =

∫

X
f dµ

∫

X
h dµ > 0,

which is a contradiction. Hence δ : X → Mm(UCB(X)) via x 7→ δx is a continuous bijection

and thus an isomorphism between separated compact spaces.

The following characterisation is adopted as one definition of Samuel compactification

in [Pes06], while the original construction in [Sam48] uses ultrafilters and does not involve

means.

Theorem 3.1.27. Let X be a uniform space. Then its Samuel compactification S(X) is isomorphic

to Mm(UCB(X)), i.e. the space of all multiplicative means on UCB(X).

Proof. Since S(X) is a reflection of X in separated compact uniform spaces, every func-

tion f ∈ UCB(X) will induce a unique function ϕ f ∈ UCB(S(X)). Conversely, any

function in UCB(S(X)) will yield a function in UCB(X) by restricting it onto the im-

age of the reflection map. Hence UCB(X) = UCB(S(X)). By Lemma 3.1.26, we have

S(X) ≃ Mm(UCB(S(X))) = Mm(UCB(X)).
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3.1.3 Minimal flows

The classical references of this topic are [Ell69; Pes06] and what we are presenting here is

slightly different from their descriptions.

Let us start with a definition:

Definition 3.1.28 (minimal flow). Let G be a topological group. A compact Hausdorff topo-

logical space X is a G-flow if G acts on X continuously. A G-flow is minimal if it is its only

subflow.

Remark 3.1.29. Here we insist that being Hausdorff is necessary for a proper definition of G-

flows, for the purpose that it has a well-defined uniform structure (see [Jam13, Proposition

8.20] or [Bou07, Théorème 1, TG II §4]). However, we do not require that G is Hausdorff.

It is clear from Zorn’s Lemma that every G-flow contains at least one minimal G-flow,

but there might be several of them. It is easy to verify that a G-flow X is minimal if and

only if for any x ∈ X, the orbit Gx is dense in X.

Let G be a topological group, we define the following notion:

Definition 3.1.30 (bounded right uniformly continuous function). A bounded right uniformly

continuous function f : G → R is a uniformly continuous map with respect to the right

uniform structure on the group G such that supg∈G | f (g)| < ∞. The space of all right

uniformly continuous bounded function is denoted RUCB(G).

By Theorem 3.1.27, we can see that the Samuel compactification S(G) for the right

uniform structure Ur(G) of a topological group G is isomorphic to Mm(RUCB(G)). Hence

there is a natural continuous G-action on S(G) by setting λg( f ) : h 7→ f (g−1h) and

(
gµ
)
( f ) := µ

(
λg( f )

)

for every µ ∈ Mm(RUCB(G)) ≃ S(G), every f ∈ RUCB(G) and every g, h ∈ G.

Let X be a G-flow such that the orbit of o ∈ X is dense in X. Then the orbit map

ρo : g 7→ go is a uniformly continuous map. Since S(G) is a reflection, it will yield a unique

uniformly continuous G-equivariant map S(G) → X such that δe 7→ o, where e ∈ G is the

identity element. As a result, for every point a ∈ S(G), there is a G-equivariant uniformly

continuous map Ra : S(G) → Ga ⊂ S(G) with δe 7→ a. Now define the continuous right

translation on S(G) by

S(G)× S(G) ∋ (x, y) 7→ xy := Ry(x) ∈ S(G),

which makes S(G) into a compact left monoid. In fact, we have Rab = RbRa, Rδe = Id,
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ga = Ra(δg) for all a, b ∈ S(G) and all g ∈ G. In other words, the uniformly continuous

map Ra is G-equivariant for all a ∈ S(G).

Moreover, every minimal subflow of S(G) is also a compact left semitopological semigroup:

since G leaves a subflow M invariant, so will all right translations by elements in M ⊂
S(G).

Theorem 3.1.31 (Ellis). Every non-empty compact left semitopological semigroup contains a idem-

potent.

Proof. Let S be such a semigroup. By Zorn’s Lemma, there is at least a minimal closed

non-empty subsemigroup, denoted T. We claim that this semigroup T only contains idem-

potents (and thus is trivial). Let a ∈ T. Then Ta is also a closed subsemigroup of T and by

minimality, Ta = T. But this implies that the closed subsemigroup {t ∈ T : ta = a} is not

empty and has to be the entire T, which implies that a2 = a.

Now we prove the following result:

Theorem 3.1.32. Let G be a topological group. Then for any pair of minimal G-subflows M, M′ ⊂
S(G), there is a G-equivariant homeomorphism M → M′.

Proof. Since M and M′ are both compact left semitopological semigroup, they contain idem-

potents p ∈ M and p′ ∈ M′ respectively. We claim that Rp′Rp is the desired homeomor-

phism.

First, we remark that by definition Rp : S(G) → M and Rp′ : S(G) → M′. By minimality

of M′, we can conclude that Mpp′ = M′. To show that it is a homeomorphism, it suffices

to prove that it is injective, or it admits an inverse map M′ → M.

Note that by the minimality of M, we have Mp = M, so for any x ∈ M, there exists

some y ∈ M such that x = yp. Hence xp = yp2 = yp = x.

By the same arguments, we have M′p = M. Let b := pp′p ∈ M. Similarly, by the

minimality of M, we can conclude by minimality that Mb = M. Hence there exists c ∈ M

such that cb = p. It is not hard to see that RpRc is a (right-)inverse of Rp′Rp. Indeed, for

any x ∈ M, we compute RpRp′RpRc(x) = xcpp′p = xcb = xp = x. This completes the

proof.

Remark 3.1.33. If M is a minimal G-subflow in S(G) and f : M → M is G-equivariant

continuous map, then f must be a G-isomorphism. In fact, the last sentences of Theorem

3.1.32 means that RpRc is a right-inverse of f , where c ∈ M is such that c f (p) = p.

A minimal G-subflow in S(G) is universal in the following sense:

Proposition 3.1.34. A minimal G-flow M is G-isomorphic to a minimal flow M ⊂ S(G) if and

only if for any G-flow X, there is a continuous G-equivariant map f : M′ → X. If X is in addition

minimal, then f is onto.
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Proof. If X is minimal, then by minimality, f must be surjective whenever it exists. The

necessity of the statement is clear since S(G) is a reflection of G in the category of compact

uniform spaces. For the sufficiency, let f : M′ → M by assumption and h : S(G) → M′,
then f ◦ h|M : M → M is G-equivariant and thus a G-isomorphism. This forces f and h

G-isomorphisms.

Theorem 3.1.32 hence leads to the following notion:

Definition 3.1.35 (universal minimal flow). A G-flow is called universal if it is G-isomorphic

to a minimal G-subflow in S(G). Such a flow is denoted M(G).

Remark 3.1.36. The universal minimal flow of G can also be viewed as a product space of

minimal G-flow. Indeed, the totally bounded separated reflection can be embedded into a

product of totally bounded separated uniform spaces Yα with a uniformly continuous map

G → Yα (see the proof of Theorem 3.1.20). By the uniqueness of completion, the Samuel

compfactification S(G) must be embedded into a product of compact spaces Yα and the

map G → Yα will then yield a G-action on Yα. So the G-action on S(G) can be factored into

diagonal G-action on the components.

For non-Hausdorff topological groups, this definition remains valid. It suffices to notice

the following fact:

Proposition 3.1.37. The separated replica Ĝ of a topological group G is still a topological group

and M(Ĝ) ≃ M(G).

Proof. Let e ∈ G be the identity elements and N (e) be the collection of all neighbourhoods

of e. By definition, Ĝ = G/ ∼, where g′ ∼ g if and only if g′g−1 ∈ ⋂{V : V ∈ N (e)}. To

show the result, it suffices to show that Ĝ is a group, which can be reduced to proving that

[g][h] = [gh] is well-defined. Let g′ ∼ g and h′ ∼ h. We need to show that g′h′h−1g−1 ∈
⋂{V : V ∈ N (e)}. Indeed, for any V ∈ N (e), by continuity of the multiplications, there is

a U ∈ N (e) such that U2 ⊂ V and a W ∈ N (e) with gWg−1 ⊂ U. Since g′ ∼ g, g′g−1 ∈ U,

which implies that g′ ∈ Ug. Also, we have hh−1 ∈ W. So

g′h′h−1g−1 ∈ Ugh′h−1g ∈ UgWg−1 ∈ U2 ⊂ V.

This proves that Ĝ is a group. By definition, S(G) is S(Ĝ). Note that any uniformly

continuous map f : G → X into a separated uniform space must satisfy f (g) = f (h)

whenever g ∼ h. Hence each G-flow is a well-defined Ĝ-flow and vice versa. So their

minimal subflows must be the same in S(G) = S(Ĝ).

The universal minimal flow of a topological group is usually difficult to compute, but

here we give several examples.
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Example 3.1.38 (trivial topology). If G is carrying the trivial topology, then Proposition says

that M(G) is actually a singleton since its separated replica Ĝ is the trivial group.

Example 3.1.39 (compact groups). For a compact Hausdorff group G, its universal minimal

flow is itself. Indeed, in this case S(G) = G and G acts on itself transitively. If it is not

Hausdorff, then its universal minimal flow is its separated replica Ĝ.

Example 3.1.40 (Homeomorphism group of the circle). Let Homeo+(S1) be the group

consisting of all orientation-preserving homeomorphismsof the circle, equipped with the

compact-open topology. Then its universal minimal flow is S1 itself [Pes98].

Example 3.1.41 (Infinite symmetric group). The infinite symmetric group S∞ over a count-

able set ω can be equipped with pointwise convergence topology. Its universal minimal

flow is the compact space of all linear orderings on ω [GW02].

3.2 Amenability

There is a nice survey paper on this topic [GH17] and one may also refer to [Pes06] for

connections between amenability and minimal flows.

3.2.1 Amenable topological groups

Let G be a topological group that is not necessarily locally compact nor Hausdorff. Recall

that a probability measure on a topological space is a positive regular Borel measure with

total measure 1. If G acts on X continuously and µ is a probability measure on X, then µ is

G-invariant if the pushforward measure g∗µ := µ ◦ g−1 coincides with µ for every g ∈ G.

Definition 3.2.1 (amenability). A topological group G is amenable if it admits a G-invariant

probability measure on every G-flow.

Remark 3.2.2. This definition depends on the topology and we remark that for a fixed group

G, if it is amenable with a given group topology (G, τ), then for any coarser group topology

τ′ > τ, the topological group (G, τ′) will remain amenable. On one hand, every group is

amenable if it is equipped with the trivial topology: any continuous action on a G-flow

will be the trivial action and every Dirac measure on the G-flow is G-invariant. On the

other hand, if a group G is amenable for its discrete topology, then it is amenable for every

group topology. Such a group will be called a discretely amenable group.

Before proceeding the other characterisations of amenability of a topological group, we

need to recall some notions from functional analysis.
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Let S be a locally convex topological vector space and let K ⊂ S be a convex compact

subset. We say that G acts on K continuously and affinely if the G-action on K is continuous

and satisfies

g
(
λx + (1 − λ)y

)
= λgx + (1 − λ)gy

for all λ ∈ [0, 1], x, y ∈ K and g ∈ G. Such K will be called an affine convex compact G-space.

Let S be a locally convex topological vector space and K ⊂ S be a convex compact

subset. For each probability measure µ on K, there exists a unique point bµ in K such that

f (bµ) =
∫

K f dµ for all linear forms f ∈ S∗. This point is called the barycenter of µ. See

[Phe01, Proposition 1.1].

Finally, for a real Banach space E, we denote by E∗ its dual and by E∗
1 the unit ball

in E∗ with respect to the operator norm. By Banach-Alaoglu theorem, the unit ball E∗
1 is

compact if it is equipped with the weak-∗-topology. Moreover, given a strongly continuous

representation G → Isom(E), it will naturally induces a continuous affine action on E∗
1 .

Theorem 3.2.3. Let G be a topological group. Then the following are equivalent:

(A1) G is amenable;

(A2) G admits a G-invariant probability measure on its universal minimal flow M(G);

(A3) G admits a G-invariant probability measure on its Samuel compactification S(G);

(A4) Every affine convex compact G-space has a G-fixed point;

(A5) G admits a G-left-invariant mean on RUCB(G).

Proof. The implications (A1)⇒(A2)⇒(A3) are trivial. For (A3)⇒(A4), since a affine convex

compact G-space K is a G-flow, there will be a G-equivariant continuous map f : S(G) → K.

If µ is a G-invariant probability measure on S(G), then the pushforward measure f∗µ

will be a G-invariant probability measure on K, which makes its barycenter G-invariant.

For (A4)⇒(A5), it suffices to notice that the means M
(
RUCB(G)

)
⊂ RUCB(G)∗ is an

affine convex compact G-space. For (A5)⇒(A1), if X is a G-flow and m ∈ M
(
RUCB(G)

)

is G-invariant, then one can define Ff ∈ RUCB(G) by g 7→
∫

X f (gx)dν for some fixed

probability measure ν on X so that the linear form Pm : C(X) → R given by f 7→ m(Ff ) will

yield a G-invariant probability measure on X by Riesz theorem.

Remark 3.2.4. If the topological group G is locally compact, then being amenable is equiva-

lent to having an invariant mean on L∞(G), the essentially bounded functions with respect

to the Haar measure on G.

Recall that a group G is a directed union of a family of subgroups (Hα)α∈A if G =
⋃

α∈A Hα

and for each α1, α2 ∈ A, there is α3 ∈ A such that Hα1 ∪ Hα2 ⊂ Hα3 . We remark that Hα will

be carrying the subspace topology inherited from the group topology on G.

The class of amenable groups enjoys the following hereditary properties.
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Proposition 3.2.5. Let G be a topological group.

(HA1) If G is amenable, then very open subgroup H < G is amenable;

(HA2) If G is a directed union of a family of amenable subgroups (Hα)α∈A, then G is amenable;

(HA3) If G has an amenable closed normal subgroup N such that the quotient G/N is also amenable,

then G is amenable;

(HA4) If H → G is a continuous homomorphism with dense image and if H is amenable, then G is

amenable;

(HA5) A dense subgroup H < G is amenable if and only if G is amenable;

(HA6) G is amenable if and only if its separated replica Ĝ is amenable.

Suppose that G is in addition locally compact.

(HA7) If G is amenable, then every subgroup of G is amenable.

On the proof. The proof of (HA1)-(HA4) is classical and can be found in [Ric67, §4]. For

(HA5) and (HA6), it suffices to notice that a dense subgroup H and the separated replica

Ĝ share the same space of bounded right uniformly continuous functions as G. For (HA7),

it is also classical that any closed subgroup in a locally compact amenable group remains

amenable (see for example [Zim13, §4.2]), so every subgroup of a locally compact amenable

group is amenable since its closure is amenable.

Example 3.2.6 (Compact groups). Every compact group is amenable because the nor-

malised Haar measure serves as an invariant mean on the right uniformly continuous

functions. In particular, every finite group is discretely amenable.

Example 3.2.7 (Abelian groups). The group Z is discretely amenable: the accumulation

point in M
(
RUCB(Z)

)
of µn := ∑

n
i=1 δi/n is a Z-invariant mean. Every finitely generated

abelian group is also discretely amenable because it is a product of finite copies of Z and

finite groups. Every abelian group is discretely amenable because it is the directed union

of finitely generated subgroups in it. This result is also called Markov-Kakutani theorem.

Example 3.2.8 (Free groups). Let n ≥ 2 and Fn be the free group generated by n elements.

Then Fn are not discretely amenable since it admits no invariant finitely additive probability

measure on itself, which further implies that it has no invariant mean RUCB(Fn) for the

discrete topology. But as subgroups of compact group SO(3), the free subgroups Fn are

amenable with the induced (Hausdorff) topology.

Example 3.2.9 (Countable symmetric group). Let S∞ be the group of all permutation on

N. Endow with the pointwise convergence topology, it becomes a non-locally compact

topological group. It is amenable: the group of finitely supported permutations is a dense

subgroup in S∞ and is the directed union of Sn for n ≥ 1. But S∞ is not a discretely

amenable group because by identifying N with vertices in the Cayley graph Cay(F2), it
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will yield a surjective group homomorphism S∞ → F2. The discrete amenability of closed

subgroups in S∞ is related to structural Ramsey theory [Moo13].

Example 3.2.10 (Unitary group). Let H be an infinite dimensional separable complex Hilbert

space. Let U(H) be its unitary group. Equipped with the strong operator topology, the

group U(H) is amenable as it contains a dense subgroup being a directed union of compact

groups U(n). But it contains every countable group as a discrete subgroup [GH17, Lemma

5.1], so (HA1) cannot be replaced by closed subgroups.

3.2.2 Extremely amenable groups

Now we pass to a stronger property than amenability:

Definition 3.2.11 (extreme amenability). A topological group G is extremely amenable if it

admits a fixed point on every G-flow.

Remark 3.2.12. Similarly, extreme amenability depends on the topology and any extremely

amenable topological group remains extremely amenable for any coarser group topology.

In particular, if G is extremely amenable, then it is amenable.

Theorem 3.2.13. Let G be a topological group. Then the following are equivalent:

(E1) G is extremely amenable;

(E2) the universal minimal flow M(G) reduces to a singleton;

(E3) G has a fixed point on its Samuel compactificatin S(G);

(E4) G admits a G-left-invariant multiplicative mean on RUCB(G).

Proof. In light of Theorem 3.1.27, these conditions are all equivalent.

Remark 3.2.14. However, it is worth noticing that, other than the trivial group, no locally

compact groups are extremely amenable [Vee77], thus a fortiori no discrete ones [Ell60].

The class of extremely amenable groups enjoys the following hereditary properties.

Proposition 3.2.15. Let G be a topological group.

(HE1) If G is extremely amenable, then very open subgroup H < G is extremely amenable;

(HE2) If G is a directed union of a family of extremely amenable subgroups (Hα)α∈A, then G is

extremely amenable;

(HE3) If G has an extremely amenable closed normal subgroup N such that the quotient G/N is also

extremely amenable, then G is amenable;

(HE4) If H → G is a continuous homomorphism with dense image and if H is extremely amenable,

then G is extremely amenable;

(HE5) A dense subgroup H < G is extremely amenable if and only if G is extremely amenable;
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(HE6) G is extremely amenable if and only if its separated replica Ĝ is extremely amenable.

Proof. The proofs of (HA1) and (HA3) use the existence of an invariant mean, which also

works if the mean is multiplicative, so one can conclude (HE1) and (HE3). The proofs of

(HA2) and (HA4) use the fixed point criterion for convex compact spaces, which can be

adapted to any compact spaces, hence we can also conclude (HE2) and (HE4). (HE5) and

(HE6) can easily deduced as (HA5) and (HA6).

Example 3.2.16 (Unitary group). Let H be a separable complex Hilbert space of infinite

dimension and let U(H) be its unitary group. Equipped with the strong operator topology,

the group U(H) is extremely amenable. See for example [Pes06, Section 2.2] for detail.

Example 3.2.17. The group Homeo+([0, 1]) of orientation-preserving homeomorphisms is

extremely amenable if it is equipped with compact-open topology. See [Pes98] again for

example.

Example 3.2.18. The group Aut(Q,≤) of order-preserving automorphisms on Q is a closed

subgroup of S∞ with pointwise convergence topology and is extremely amenable. See

[Pes98] for example. But S∞ itself is not extremely amenable because it does not preserve

an order on N, see below.

Example 3.2.19 (Non-archimedean Polish groups). More general, with the pointwise con-

vergence topology, a closed subgroup G < S∞ (or equivalently a non-archimedean Polish

groups) is extremely amenable if and only if G preserves an ordering and has Ramsey

property [KPT05].
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Chapter 4

Mapping Classes on Surfaces

Semper in finem determinatur res.1

Christine de Pizan (1364– circa 1430),

Le Livre de Paix.

4.1 Orientable surfaces

A surface is a locally compact secondly countable 2-dimensional orientable real manifold

and up to homeomorphism, it is uniquely determined by its genus and the space of its

planar and non-planar ends.

4.1.1 Classification of surfaces

Let S be a surface above. Unless otherwise mentioned, all surfaces here below are assumed

to be connected.

The following notion is introduced under more general settings by [Fre31] and here we

give a simplified version. Let S be a surface. If it contains non-empty boundary component,

then we identify it temporarily with its interior, i.e. S \ ∂S. Then we define the following

notion:

Definition 4.1.1 (end). The ends of surface S are the equivalent classe of proper rays, denoted

by End(S), where two proper rays α and β are equivalent if for any compact subset K ⊂ S,

there exists R > 0 such that α
(
[R, ∞)

)
and β

(
[R, ∞)

)
are contained in the same connected

component in S \ K.

1Translation from Latin: A thing is always determined in its end.
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The space S⊔End(S) is a topological space and the induced topology on S is its original

topology. If p ∈ End(S) and a proper ray α is a representative of p, then a basis of

neighbourhood of p consists of the connected component of C ⊂ S \ K for compact subset

K ⊂ S, together with End(C), that contains α
(
[R, ∞)

)
for some large R > 0.

An end p ∈ End(S) is planar if there exists an open neighbourhood U of p in S⊔End(S)

such that S ∩ U as a subsurface is of genus 0. Otherwise, an end will be non-planar, of

which the collection is denoted by End∞(S). Note that End∞(S) is a subset of End(S) and

both End∞(S) and End(S) are carrying the induced topology from the compactification

S ⊔ End(S) described as above.

Remark 4.1.2. We remark that an accumulation point p ∈ End(S) in the end space is not

necessarily a non-planar end, even though each neighbourhood of p in S has infinitely

many ends as subsurface. There exist zero-genus surfaces where all ends are planar but of

which the end space has accumulation point. See Example 4.1.7 and Example 4.1.9.

For a planar end, there are several types. A puncture in particular is an end such

that it admits a neighbourhood in S that is homeomorphic to a once-punctured disc, i.e.

{z ∈ C : 0 < |z| < 1}. An end with boundary component is an end such that it admits

a neighbourhood in S that is homeomorphic to an annulus. There are also other type of

planar end, see Example 4.1.9 for instance.

The following result gives a complete classifications for orientable surfaces as we men-

tion just above:

Theorem 4.1.3 (Richards [Ric63]). Let S and S′ be two orientable surfaces. There exists a home-

omorphism S → S′ if and only if the genus g(S) = g(S′), the end spaces End(S) ≃ End(S′) and

End∞(S) ≃ End∞(S′) are homeomorphic respectively.

We define the complexity of an orientable surface S by ξ(S) := 3g(S) + |End(S)| − 3. An

orientable surface is of finite type if ξ(S) < ∞, otherwise it will be an infinite-type surface.

Moreover, there is a complete description of end space of an orientable surface, see

[AS15, Chapter 1] and [Ric63] for example. In brief, any nested pair of closed subsets of a

Cantor set can be realised as the end spaces of an orientable surface and vice versa:

Theorem 4.1.4. Let X, Y be two closed subset of a Cantor set with Y ⊂ X. Then there exists a

unique (up to homeomorphism) orientable surface S such that End(S) ≃ X and End∞(S) ≃ Y.

Conversely, for any orientable surface S, the spaces End∞(S) ⊂ End(S) are homeomorphic to closed

subsets of a Cantor set.

The following are some important examples of infinite-type surfaces:

Example 4.1.5 (The Loch Ness monster surface). It is the infinite-genus surface with exactly

one end (which is necessarily non-planar). See Figure 4.1. The unique non-planar end is

shown on Figure 4.1 as the infinity at right-hand side.
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Figure 4.1: The Loch Ness monster surface.

Example 4.1.6 (Jacob’s ladder surface). It is the infinite-genus surface with exactly two ends

and both ends are non-planar. See Figure 4.2. The two non-planar ends are visualised in

Figure 4.2 respectively as the infinity at left-hand side and right-hand side.

Figure 4.2: Jacob’s ladder surface.

Example 4.1.7 (The Cantor tree surface). It is the zero-genus surface with end space home-

omorphic to a Cantor set. This surface is homeomorphic to a sphere with a Cantor set

removed. See Figure 4.3. This surface is also called an arboreal surface as per [GLU22]:

equipped with a hyperbolic metric, it is quasi-isometric to a simplicial tree and there is

a cobounded isometric embedding of simplicial tree in the surface. By Richards’ classifi-

cation Theorem 4.1.3, every arboreal surface associated to an regular n-valence tree with
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n ≥ 3 are homeomorphic. In general, the arboreal surfaces associated to a tree whose ends

is homeomorphic to a Cantor set are all homeomorphic.

Figure 4.3: The Cantor tree surface and a cobounded isometrically embedded Cantor tree.

Example 4.1.8 (The blooming Cantor tree surface). It is the infinite-genus surface whose

end space is homeomorphic to a Cantor set and such that every end is non-planar. See

Figure 4.4.

Figure 4.4: The blooming Cantor tree surface.

Example 4.1.9 (The flute surface). The zero-genus surface whose end space has a unique

accumulation point, i.e. is homeomorphic to {0} ∪ {1/n : n ∈ N>0} viewed as subset of R.

This surface is homeomorphic to R2 \Z. See Figure 4.5. The unique accumulation point in

the end space is visualised as the infinity at right-hand side in Figure 4.5.
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Figure 4.5: The flute surface.

4.1.2 Simple closed curves and their graph

A simple closed curve α is a proper topological embedding of the circle S1 into an orientable

surface S. In most of time, we identify a simple closed curve with its image. A simple

closed curve α ⊂ S is separating if S \ α is not connected, otherwise the curve will be

non-separating. Moreover, a simple closed curve α is non-essential if it is separating and one

connected component of S \ α is a topological disc, annulus or a once-punctured topological

disc, otherwise α is an essential simple closed curve.

Figure 4.6: Example of non-essential, non-separating and separating curves (from left to
right) on the Loch Ness monster surface.

Recall that an isotopy is a continuous map Φ : [0, 1]×Y → X such that for every t ∈ [0, 1],
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the map Φ(t, ·) : Y → X is a topological embedding. An isotopy is a special case of a

homotopy, where we only require Φ to be continuous. In particular, a simple closed curve

on a surface S is not essential if and only if it is homotopic to a singleton, a boundary

component of S or a puncture.

We say that two simple closed curves α and β on a surface S are isotopic if there exists

an isotopy Φ : [0, 1]× S1 → S such that Φ(0, ·) = α and Φ(1, ·) = β. We remark that being

isotopic is an equivalence relation among essential simple closed curves on a surface S.

The collection of isotopic classes of essential simple closed curves on an orientable

surface S is denoted by C(S). We say that two isotopic classes of essential simple closed

curves are disjoint if they admit representatives that are disjoint. We can also define a

simplicial metric for isotopic classes C(S). Indeed, we can construct a graph where the

vertices are isotopic classes C(S) of essential simple closed curves on S and two vertices is

connected by an edge if they are disjoint. The distance between two isotopic classes [α] and

[β] is defined as the number of edges of the shortest path connecting [α] to [β]. This metric

graph is called the curve graph of S.

One important geometric property of curve graph is the following:

Theorem 4.1.10 ([MM99]). Let S be an orientable surface of finite type. If ξ(S) > 1, then the

curve graph C(S) is δ-hyperbolic.

Remark 4.1.11. If g(S) = 0 and |End(S)| ≤ 2, then there is no essential simple closed curve

on S, i.e. C(S) is empty. If g(S) = 0 and |End(S)| = 3, 4, or if g(S) = 1 and |End(S)| ≤ 1,

then every pair of non-isotopic essential simple closed curves cannot be disjoint, so the

curve graph will not be connected. If the surface is of infinite type, then the graph C(S) is

bounded.

In general, the curve graph is not proper (even if the surface is of finite type), but it is

still possible to connect an point on its Gromov boundary by a geodesic ray to a vertex in

it. More general, it is ultracomplete [Min10, Lemma 5.14].

Another way to classify essential simple closed curves is to look at their topological

type: for an essential simple closed curve α on surface S, the topological type of α is the

homeomorphic classes of § \ α, i.e. another curve β ⊂ S has the same topological type as α

if and only if for any connected component of S \ α, there exists a homeomorphic connected

component of S \ β, and vice versa.

Recall that a foliation is minimal if no trajectory is a simple closed curve. The space of

minimal foliations is exactly the space of ending laminations (see for example [Ohs90]).

There is a geometric interpretation of the Gromov boundary of curve graph:

Theorem 4.1.12 ([Kla22]). Let S be an orientable surface of finite type. If ξ(S) > 1, then the

Gromov boundary ∂C(S) of its curve graph is homeomorphic to the space of minimal foliations.
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There is a wealth of literature available on this topic and the classical ones are [MM99;

MM00; Min10]. Additionally, by using curves and arcs on orientable surfaces, we can

further construct various hyperbolic spaces. For example, the graph consisting of only iso-

topy classes of non-separating essential simple closed curves is also δ-hyperbolic [Ham14].

When the surface is with boundaries, then an arc on the surface is a proper topological em-

bedding of a real interval. The arc graph, where the vertices are isotopy classes of curves and

arcs, is also a hyperbolic graph [KP10]. Also, a famous technique of Bestvina-Bromberg-

Fujiwara allows us to construct a quasi-tree, which is also δ-hyperbolic, using subsurface

projection [BBF15]. This technique is later on applied to infinite-type surfaces, for example

in [HQR22].

4.2 Mapping Class Group

In this section, we will describe some generalities of mapping class groups of both finite-

type and infinite-type surfaces and focus more on infinite-type surfaces. As before, we only

discuss a very limited part of this topic. For mapping class groups of finite-type surfaces,

the classical reference is [FM11]. For infinite-type surfaces, the mapping class groups are

discussed in a survey paper [AV20].

4.2.1 Definition and basic properties

Let S be an orientable surface of finite or infinite type. Let us consider the group of all

homeomorphisms S → S that fix pointwisely the (possibly empty) boundary component

∂S. We denote this group by Homeo(S) and endow it with compact-open topology for the

canonical action of Homeo(S) on S. In particular, the orientation preserving homeomorphism

group Homeo+(S) is a closed subgroup in Homeo(S) of index 2.

We say that two homeomorphisms ϕ, ψ ∈ Homeo+(S) are isotopic if they are connected

by a continuous path in Homeo+(S). We remark that for any simple closed curves α ⊂
S, the image ϕ(α) is isotopic to ψ(α) as curves. We remark that the (path-)connected

component in Homeo+(S) of identity element contains exactly the orientation preserving

homeomorphisms that are isotopic to the identity element. It is a closed normal subgroup

in Homeo+(S).

The mapping class group of an orientable surface S is denoted by MCG(S) and is defined

by the group of all isotopic classes of orientation preserving homeomorphisms S → S

preserving pointwisely the boundary components. Following our discussion above, the

mapping class group is also defined by the quotient group

MCG(S) := Homeo+(S)/{isotopy},
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where {isotopy} is the closed normal subgroup consisting of homeomorphisms isotopic

to the identity element. Similarly, we can define the extended mapping class group, denoted

by MCG±(S), by the quotient group Homeo(S)/{isotopy}. Moreover, the mapping class

group MCG(S) is a closed subgroup of index 2 in MCG±(S).
If one is interested in the combinatoric or structural properties of mapping class groups,

a good way is to study its action on the curve graph. We remark that the natural action

of mapping classes on the isotopic classes of essential simple closed curves respect the

disjointness, hence the action of MCG(S) on C(S) is simplicial and thus by isometries.

We also remark that this action is in general not transitive, but the action of MCG(S) is

transitive among isotopic classes of curves with the same topological type.

The following fundamental fact about the action of mapping class group on the curve

graph is proven in series of articles [Iva97; Kor99; Luo00; HMV18; BDR20] and we sum-

marise it in below:

Theorem 4.2.1. Let S be an orientable surface that is not a twice-punctured torus. Let C(S)
be the curve graph of S and Aut

(
C(S)

)
be the automorphism group of C(S), equipped with the

pointwise convergence topology. Then the extended mapping class group MCG±(S) is isomorphic

to Aut
(
C(S)

)
as topological groups.

Theorem 4.2.1 allows us to describe explicitly the topology defined on MCG(S): it is the

permutation topology and a basis of neighbourhoods at the identity element Id ∈ MCG(S)
is given by

U(F) := {g ∈ MCG(S) : ga = a (∀a ∈ F)} , (4.1)

where F is a finite collection of isotopic classes of essential simple closed curves.

A weaker result than Theorem 4.2.1 is the following consequence that is usually referred

to as Alexander’s method:

Proposition 4.2.2 ([FM11], §2.3 and [HMV19]). Let S be an orientable surface (of finite or infinite

type) and let ϕ ∈ Homeo+(S). If for any essential simple closed curve α ⊂ S, the image ϕ(α) is

isotopic to α, then ϕ is isotopic to the identity.

Let S be an orientable surface of finite type. A pair of essential simple closed curves

α, β are called filling if S \ (α ∪ β) are disjoint union of annuli, topological disc or once

punctured disc, i.e. any other essential simple closed curve must intersect at least one of α

and β. We remark that such a pair of curves always exists whenever ξ(S) > 1, viz. when

the curve graph is of infinite diameter. In particular, if a mapping class fixes a filling pair

of curves, then it necessarily leaves every isotopic class invariant, which by Alexander’s

method implies that this mapping class is trivial. By treating the finite cases when ξ(S) ≤ 1,

we can conclude the following result:
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Proposition 4.2.3. Let S be an orientable surface of finite type. Then MCG(S) is a discrete group.

One particular class of mapping class allows us to further study the mapping class

group of an orientable surface. Let us consider an orientable surface S and an essential

simple closed curve α ⊂ S. Let us take a small neighbourhood N of α that is homeomorphic

to annulus: by endowing S a Riemannian metric, we may assume (up to isotopy) that α is

geodesic and such neighbourhood can be taken as a small normal neighbourhood of α. Let

A := S1 × [0, 1] be the standard annulus. The orientation on A is given by the embedding

A →֒ R2 with (θ, t) 7→ (θ, t + 1) under the polar coordinates of R2. A “twist map” T : A →
A is a homeomorphism given by the formula T(θ, t) := (θ + 2πt, t). Let ψ : A → N ⊂ S be

an orientation preserving homeomorphism such that ψ
(
S1 × {1/2}

)
= α. Now we define

the Dehn twist along α, denoted by Tα, to be an orientation preserving homeomorphism

S → S given by

Tα(x) :=





ψ ◦ T ◦ ψ−1(x) if x ∈ N

x otherwise.

We remark that if α and β are isotopic, then so will be Tα and Tβ. Hence we are able

to define Dehn twist for isotopic class of simple closed curves, namely Ta ∈ MCG(S) the

mapping class consisting the Dehn twist along α and α ∈ a ∈ C(S).
These Dehn twists are very useful for the study of mapping class groups. Let PMCG(S)

be the subgroup of MCG(S) that induces trivial action on End(S). This group is called the

pure mapping class group. We note that if S is finite-type and if End(S) ̸=, then MCG(S)
is generated by PMCG(S) and permutation of ends. Here permutation of ends can be

realised by products of half twists along two ends.

Theorem 4.2.4 (Chapter 4, [FM11]). Let S be an orientable surface of finite type. Then MCG(S)
is finitely generated. In particular, the pure mapping class group PMCG(S) is generated by finitely

many Dehn twists along non-separating simple closed curves.

But the case where S is infinite-type is much more complicated. We first remark that

MCG(S) is not locally compact, a fortiori not discrete. Indeed, let S be an infinite-type

surface and let F ⊂ S be any finite subset. Due to the infinite type of surface S, there exists

a ∈ C(S) that is disjoint from every element in F. Then the cyclic subgroup generated by

the Dehn twist Ta is contained in U(F) as per (4.1), but it admits no accumulation point.

Moreover, it turns out that compact sets in MCG(S) are nowhere dense. Since MCG(S) is

Baire space, it cannot be algebraically generated by compact sets. See discussion in Chapter

6 or [AV20, Theorem 4.2]. We record these in the following:

Theorem 4.2.5. Let S be an orientable surface of infinite type. Then MCG(S) is not locally

compact, nor is it algebraically generated by a compact set.
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4.2.2 Isometric actions on metric spaces

For a finite-type orientable surface S, the curve graph C(S) is a very useful tool for the

study of mapping class group. But when the surface becomes infinite-type, this graph

becomes bounded and is no longer convenient for geometric group theoretic purposes.

Moreover, there are big mapping class groups that do not admit unbounded continuous

action by isometries on a metric space:

Theorem 4.2.6 ([MR23]). Let S be an infinite-type surface so that either every end of S is planar or

every end of S is non-planar. If the end space of S is countable and homeomorphic to ωα + 1, then

MCG(S) cannot act continuously and unboundedly by isometries on a metric space.

But for another class of infinite-type surfaces, there exist interesting continuous actions

by isometries on a Gromov hyperbolic space. As an example, we will mainly treat in below

the projection complex.

Let S be a connected orientable surface of infinite type. Let MCG(S) be its mapping

class group. As in [MR23, Definition 1.8], a connected compact subsurface K ⊆ S of finite

type is a non-displaceable subsurface if K ∩ gK ̸= ∅ for every g ∈ MCG(S). More rigorously,

the element g should be acting on the isotopic classes of K instead of K itself, but one

may replace it by any of its representatives ϕg ∈ Homeo+(S) in the group of orientation-

preserving homeomorphism of S, and this won’t hinder the definition given above. In the

sequel, one will omit the nuances between g and its representative ϕg, and by abuse of

symbols, one allows MCG(S) to act on S and its subset whenever the action is understood.

For our purpose here, let us consider a non-displaceable subsurface K ⊂ S such that

S \ K =
⊔

β

Pβ,

where each Pβ is a connected neighborhood of a clopen subset of End(S) in S. In fact,

these neighborhoods can be indexed by components β ⊆ ∂K of its boundary. This larger

subsurface is again, after the same arguments, non-displaceable in S.

Denote by [K] the isotopic class of K and it is well-defined since the isotopy between

two sets on a surface clearly yields an equivalence relation. Note that [A]⊔ [B] := [A⊔ B] is

meaningful when A and B are essential subsurfaces such that up to isotopy, the intersection

∂A ∩ ∂B is a disjoint union of simple closed curves, and [A ⊔ B] is defined to be the isotopic

class of a larger subsurface obtained by gluing together the common part of boundaries.

A filling system is a filling pair of simple closed curves on subsurface K. Let us consider

the family I = {g[K] : g ∈ MCG(S)} consisting of isotopic classes of non-displaceable

subsurfaces interchangeable with K. Let FK be a filling system of K. Without loss of

generality, one assumes that [∂K] ⊆ [FK]. Then it is clear that gFK yields a filling system in
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K′ := gK. Pick one gK′ ∈ MCG(S) such that K′ = gK′K and define FK′ = gK′FK. It is clear

that FK′ also lies in a minimal position and that ∂K′ = gK′∂K. There is a corresponding

between the class of filling systems and the class of non-displaceable subsurfaces:

Proposition 4.2.7. Let g ∈ MCG(S). If g[FK] = [FK], then g[K] = [K].

Proof. By definition, one sees that

S \ FK =

(
⊔

α∈A

Dα

)
⊔

 ⊔

β⊆∂K

Pβ


 , (4.2)

where A is a finite index set, Dα is a topological disk indexed by α ∈ A, β is a component

of ∂K, and Pβ is as above. So alternatively, one can write

K = FK ⊔
(
⊔

α∈A

Dα

)
. (4.3)

By applying g on both sides of (4.2) and (4.3), and taking the isotopic classes, one gets

S \ [FK] = S \ g[FK] =

(
⊔

α∈A

g
[

Dα

])
⊔

 ⊔

β⊆∂K

g
[

Pβ

]

 (4.4)

and

g[K] = g[FK] ⊔
(
⊔

α∈A

g
[

Dα

])
= [FK] ⊔

(
⊔

α∈A

g
[

Dα

])
, (4.5)

As g ∈ MCG(S) can only send topological disks to disks and neighborhoods of clopen sets

in End(S) to other neighborhoods, the action of g on ([Dα])α∈A reduces to a permutation

of A after comparing (4.2) and (4.4). This further render (4.5) identical to the class form of

(4.3). Hence g[K] = [K].

In particular, one can conclude the following result:

Corollary 4.2.8. Let [K′] ∈ I . If [K′] ̸= [K], then [FK′ ] ̸= [FK].

Remark 4.2.9. It should be noticed that the converse is not necessarily true. For example,

the Dehn twist τ along an essential simple closed curve in K can yield a filling system that

is not isotopic to the original one, but τ is nevertheless supported on K and thus leave the

class [K] invariant. This also demonstrates that this corollary will fail when one considers

the filling systems and subsurfaces but not their isotopic classes.

Moreover, by the virtue of Corollary 4.2.8, one can deduce:
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Corollary 4.2.10. There are only countably many distinct classes in I .

Proof. For each [K′] ∈ I , the filling system is a priori [FK′ ] fixed. Two distinct classes [K]

and [K′] in I would yield two corresponding finite subsets [FK] and [F ′
K] in C(S), the

collection of isotopic classes of simple closed curves on S. Since C(S) is countable, there is

only countably many possibilities for the finite collection [FK′ ]’s and thus for [K′]’s.

Now one reviews the celebrated construction of Bestvina, Bromberg and Fujiwara from

[BBF15].

Let Y be a collection of metric spaces. Let G be a group acting on Y as well as on each

Y ∈ Y. The action of G is metric-preserving if for every g ∈ G and every Y ∈ Y, there exists

an isometry ιYg : Y → gY such that ιZgh = ιhZ
g ◦ ιZg for every Z ∈ Y and all g, h ∈ G.

A collection
(
Y, (πY(Z))Y ̸=Z

)
with a G action is a G-equivariant projection family if the

following are satisfied:

• Y is a collection of metric spaces equipped with a metric-preserving G-action,

• πY(Z) is a nonempty subset of Y for any two distinct members Y ̸= Z of Y, and

• for every g ∈ G and any two distinct Y, Z ∈ Y, one has πgY(gZ) = ιYg (πY(Z)).

Here πY : Y → P(Y) is called a projection function.

Let Y :=
⊔

Y∈Y Y be the collection of all points in the member metric spaces in Y. The

projection function πY can be extended to Y by setting

πY(x) =




{x} if x ∈ Y

πY(X) if x ∈ X ̸= Y

for every x ∈ Y .

The projection distance is a positive function given by

dπ
Y(X, Z) := diam (πY(X) ∪ πY(Z)) = sup {dY(a, b) : a, b ∈ πY(X) ∪ πY(Z)}

for any X, Z ̸= Y, where dY is the metric in Y. The definition naturally passes to the level

of Y by setting dπ
Y(x, z) = diam (πY(x) ∪ πY(z)).

Definition 4.2.11 (BBF family). Let G be a group and
(
Y, (πY(Z))Y ̸=Z

)
be a G-equivariant

projection family. The family is a BBF family if or every X, Y, Z ∈ Y with Y ̸= X, Z, there

exists a θ > 0 such that

(P0) For all distinct X, Y ∈ Y, one has dπ
Y(X, X) ≤ θ.

(P1) For three distinct X, Y, Z ∈ Y, if dπ
Y(X, Z) < θ, then dπ

X(Y, Z) ≥ θ.

(P2) For all X, Z ∈ Y, there are only finitely many Y ̸= X, Z such that dπ
Y(X, Z) > θ.

Given a BBF family
(
Y, (πY(Z))Y ̸=Z

)
, one can construct a quasi-tree and a hyperbolic

space from this family as the following statement:
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Theorem 4.2.12 (Bestvina-Bromberg-Fujiwara [BBF15]). Let G be a group. Assume that there

exists a BBF family
(
Y, (πY(Z))Y ̸=Z

)
for G and that there exists a δ ≥ 0 such that every Y ∈ Y

is δ-hyperbolic. Then for large enough M > 0, there exists a projection complex PM(Y) and a

hyperbolic space X where every Y ∈ Y is embedded as geodesically convex subspace and G acts on

X by isometries. In addition, the projection complex PM(Y) is a quasi-tree.

Using this theorem above, we are able to construct a Gromov hyperbolic metric space

on which certain big mapping class groups can act continuously and unboundedly by

isometries.

Let S be an infinite-type surface and K ⊂ S be a finite-type non-displaceable subsurface.

Let CS(K) be the curve graph whose vertices are the isotopic classes of simple closed curves

that have a representative contained in K which is essential in K. This graph only depends

on the isotopic class [K] (see [HQR22, Lemma 2.1]), so one can write CS([K]) instead.

Moreover, one can regard CS([K]) as a subgraph of C(S) (see [HQR22, Lemma 2.2]).

Equip each CS([K]) with the simplicial metric. Then the action of MCG(S) on CS([K])

preserves the metric. For any [K1], [K2] ∈ I , when [K1] ̸= [K2], one can find K1 and K2

respective representatives such that there is at least one component of ∂K2 intersects K1 in

an essential curve or arc. One defines the subsurface projection

πCS([K1]) (CS([K2])) ⊆ CS([K1]),

by collection of the curves on [K1] that are essentially disjoint from the boundary of [K2].

Proposition 4.2.13 ([HQR22]). Let S be an infinite-type surface and K be a non-displaceable

subsurface of S. Then the family

YK =
{
CS([K

′]) : [K′] ∈ I
}

together with subsurface projections given above is a BBF family, and for large enough M > 0, one

can construct a quasi-tree PM(YK) and the corresponding blown-up projection complex X from

YK as in Theorem 4.2.12. Moreover, the group MCG(S) acts continuously on PM(YK) and X by

isometries and the action on PM(YK) is of general type.

Moreover, by looking carefully into the construction of the Gromov hyperbolic space XK

in [BBF15], we can conclude that the vertices of XK are the union of CS([K]). By Corollary

4.2.10, we can reorganise the result above in more favourable terms:

Proposition 4.2.14. Let S be an infinite-type surface and K be a non-displaceable subsurface of S.

Then there exists a separable geodesic Gromov hyperbolic metric space XK on which MCG(S) act

continuously by isometries. Moreover, this action is of general type.
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As an application, we mention one interesting result about the normal subgroup struc-

ture of mapping class group of infinite-type surfaces admitting compact non-displaceable

subsurfaces, which can also be viewed as a characterisation of this class of surfaces:

Theorem 4.2.15 ([HQR22]). Let S be an orientable surface of infinite type. Then MCG(S) con-

tains a non-trivial normal free subgroup if and only if S contains a non-displaceable subsurface of

finite type.

As discrete group, it follows immediately that MCG(S) is not amenable, since it con-

tains non-abelian free subgroups. In fact, almost every mapping class groups of an ori-

entable surface is not discretely amenable: if a, b ∈ C(S) are two curves that intersect more

than twice, then the Dehn twists Ta and Tb generate a free subgroup in MCG(S). But

the topological (non)-amenability of big mapping class groups are more difficult to de-

duce. Combining Proposition 4.2.14 and Theorem 9.1.1, we can give a partial answer to

this question:

Corollary 4.2.16. Let S be an infinite-type surface. If S contains a non-displaceable subsurface of

finite type, then MCG(S) is not amenable.
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Part II

Farther Sight of Dwarfs
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Chapter 5

Hyperbolic Embedding of Convex Bodies

Les questions les plus importantes de la vie ne sont

en effet, pour la plupart, que des problèmes de

probabilité.

Pierre-Simon Laplace (1749–1827),

Théorie Analytique des Probabilités.

5.1 Introduction

The idea of endowing the collection of flat figures with a hyperbolic structure dates back

to W. P. Thurston’s work [Thu98], where he provides a complex hyperbolic description of

“triangulations” of a 2-sphere using flat metrics. A notable generalization of this concept is

the study of subspaces of P endowed with an isometric involution, as explored in [BG92].

To begin, it is important to recognize that the homothety classes of ellipses in R2 naturally

correspond to the real hyperbolic plane. These subspaces are isometric to spaces of ho-

mothety classes of plane convex polygons with fixed edge directions and real hyperbolic

distances. This approach has been extended to higher dimension by using mixed volumes

to define hyperbolic metrics on spaces of convex polytopes in Rn. For n = 3, some of these

spaces, which are isometric to real hyperbolic polyhedra, can be isometrically embedded

into P [FI16; FI17]. Further, Debin and Fillastre advance this methodology by using in-

trinsic volumes to hyperbolise the homothety classes of Euclidean convex bodies in higher

dimension [DF22].

Given 2 ≤ d < ∞, a convex body in Rd is a non-void convex compact subset of Rd.

Between any two convex bodies, it is possible to define an “area distance” by using the

intrinsic volumes of convex bodies and mimicking the definition of the distance on the

Klein model of real hyperbolic spaces. The “area distance” then becomes a metric on the
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space of homothety classes of convex bodies K in Rd with 2 ≤ dim(K) ≤ d. In [DF22],

Debin and Fillastre show that this metric space can be isometrically embedded into a real

hyperbolic space of dimension at most ℵ0. Their idea is to identify convex bodies with

their support functions restricted to the unit sphere Sd−1, which reside in the Sobolev

space of functions defined on Sd−1, and then compare the Sobolev subspace with the Klein

model. Moreover, they show that if one normalises the convex bodies K ⊂ Rd so that

diam(K) = 1 and positions them in the way that their Steiner points lie at 0, then the

hyperbolic embedding will be homeomorphic to the space of normalised convex bodies

equipped with the Hausdorff distance.

At the end [DF22, §4], they consider the canonical isometric embedding of Rd into

Rd+k. By identifying two convex bodies K ⊂ Rd and K′ ⊂ Rδ if K only differs K′ from

a homothety in Rmax(d,δ), they are able to send all convex bodies of finite dimension into

an infinite-dimensional real hyperbolic space. But this space is not complete. Examples

are the sequence of n-dimensional unit balls (Example 5.3.13) and the increasing sequence

of non-GB rectangles (Example 5.3.14). So they ask the following question: can one give a

description on the completion of the hyperbolic embedding of finite-dimensional convex bodies?

In answering this question, the present article first gives an elementary proof for em-

bedding homothety classes of Euclidean convex bodies into a real hyperbolic space. This

proof relies on the result about kernels of (real) hyperbolic type given in [MP19]. These

kernels can be viewed as the hyperbolic analogue to kernels of positive and of condition-

ally negative type (compare to, for example, [BLV08, Appendix C]). The definition of the

herein involved kernel of hyperbolic type only uses the intrinsic volumes of convex bodies.

For finite-dimensional convex bodies, the volume of K + rBd ⊂ Rd, where Bd is d-

dimensional unit ball, is polynomial in r > 0 (Steiner formula) and the intrinsic volumes of

K are defined as the normalised coefficients of this polynomial. When it comes to infinite

dimension, the intrinsic volume of a convex body K will be defined as the supremum of

intrinsic volumes of finite-dimensional convex bodies contained in K. So a natural exten-

sion of the aforementioned hyperbolisation process to infinite-dimension is to consider the

class of infinite-dimensional convex bodies with finite intrinsic volumes.

Let H be a separable Hilbert space over R. Dudley introduces the notion of Gaußian

bounded (abbv. GB) subsets [Dud67]. This family of subsets in H has been profoundly

studied in the context of geometric probability and also finds its applications in ergodic

theory [Dud73; Bou88; Web94]. In [Che76], Chevet first defines the i-th intrinsic volume

Vi, for i ≥ 1, of an infinite-dimensional convex compact subset K in H (called an infinite-

dimensional convex body in H) by the supremum of Vi(K′) for all finite-dimensional convex

bodies K′ ⊂ K and then shows that K ⊂ H is GB if and only if its intrinsic volumes Vi(K)

are finite for i ≥ 1 (see Proposition 5.2.4). So the hyperbolisation process is naturally
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applied to the homothety classes of GB convex bodies in H, wherein are contained the

finite-dimensional ones.

Recall that a real hyperbolic space Hα
R is defined by the hyperboloid model constructed

from a Hilbert space H′ on R via a Lorentzian quadratic form, where α = dim(H′) is

a cardinal and is called the dimension of Hα
R. It is a Gromov-hyperbolic space. A real

hyperbolic space is of infinite dimension if α ≥ ℵ0, and if α = ℵ0, one simply writes H∞
R for

convenience.

Theorem 5.1.1. Let H be a separable Hilbert space over R. Let K2 be the collection of homothety

classes of GB convex bodies in H with dimension at least 2. Then there exists an embedding

ι : K2 →֒ H∞
R of K2 into the ℵ0-dimensional real hyperbolic space, thus defining a metric on K2,

and its image ι(K2) forms a convex subset.

Moreover, the map ι extends continuously to the homothety classes of segments in H and sends

them to the Gromov boundary ∂
(
ι(K2)

)
.

To understand GB convex bodies of infinite dimension, the techniques of infinite-dimensional

analysis become indispensable.

Sudakov discovers that a GB convex body K can be associated to a random variable

hK(X) in L1(Ω), where (Ω,F , P) is the probability space on which the isonormal Gaußian

process is defined, and the first intrinsic volume is the expectation of this random vari-

able [Sud71]. It is after decades that this random variable is recognised as the support

function of the convex bodies in a separable real Hilbert space H and notions such as the

Steiner point (or “centre”) find their generalisations in the context of infinite-dimensional

GB convex bodies [Vit01].

To treat these random variables, we turn to Malliavin calculus, which allows us to

compute the Malliavin derivatives DhK(X) of support function of a GB convex body, an H-

valued random variable representing an extremal point in K where the isonormal Gaußian

process is maximised (see Proposition 5.4.18), so that K can be recovered by taking the

closed convex hull of the essential range of DhK(X) (see Corollary 5.4.19). Moreover, the

Steiner point of K is exactly the barycenter in K with respect to the pushforward probability

measure induced by ω 7→ DhK(X)(ω) (see Proposition 5.4.20).

The support function hK(X) of any GB convex body K ⊂ H lies in the Sobolev space

D1,2 and in particular, if K is of finite dimension, then it recovers the Sobolev space in-

troduced in [Sch14; DF22]. Moreover, one can also generalise the formula from [Sch14,

pp.298] or [Che76, Théorème 3.10]. If we set the polarisation

V2(K1, K2) :=
1
2
(V2(K1 + K2)− V2(K1)− V2(K2)) ,

then we have the following result:
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Theorem 5.1.2. Let K, K′ ⊂ H be GB convex bodies and X be an isonormal Gaußian process on

H. Then

V2(K) = πE

[
|hK(X)|2 − ∥DhK(X)∥2

H
]

(5.1)

and

V2(K, K′) = πE [hK(X)hK′(X)− (DhK(X), DhK′(X))H] , (5.2)

where hK, hK′ are the support functions of K and K′.

With formulae (5.1) and (5.2) above, we are able to characterise the equality cases of

Alexandrov-Fenchel inequality for the second intrinsic volumes of GB convex bodies:

Theorem 5.1.3. Let K, K′ ⊂ H be GB convex bodies in H of dimension at least 2. Then V2(K, K′)2 =

V2(K)V2(K′) if and only if K = tK′ + v for some t > 0 and v ∈ H.

For polytopes, Chevet also gives general formulae to compute their intrinsic volumes of

higher degree using the support function hP(X) and some other quantities [Che76, Propo-

sition 3.6’]. The technique of associating an infinite-dimensional GB convex body to its

support function will allow us to work on function spaces instead of geometric objects

while we try to understand GB convex bodies. But the answer to the following question

remains unclear: is it possible to generalise the formulae for GB convex bodies, e.g. the notions

from Malliavin calculus?

Recall that L2(Ω) admits an orthogonal decomposition
⊕

n≥0Hn by the n-th Wiener chaos.

It turns out that the orthogonal projections of the support function hK(X) in Hn’s can

completely determine the size, position and shape of K. The support function hK(X) of K

is approximated by the support functions hP(X) of polytopes contained in it. In a more

general context, it is the estimation of the suprema for infinite Gaußian processes by its

finite sub-processes [BLM13, Chapter 13].

It is worth remarking that in [DF22], Debin and Fillastre also discuss the orthogonal

projection of hK(X) to Hn. The Malliavin calculus generalises their discussion and further

gives to these projections geometric significations: the projection of hK(X) to H0 is the

constant function of V1(K)/
√

2π, the projection to H1 is the Steiner point of K and its

projection to
⊕

n≥2Hn stands for its shape (see Section 5.4.2). Nevertheless, is it possible to

tell the geometric signification of the projections of hK(X) to Hn for each n ≥ 2?

Debin and Fillastre [DF22] show that the homothety classes of the n-dimensional unit

balls [Bn] converge to a point O ∈ H∞
R (see also Example 5.3.13), but they do not converge to

any point in ι(K2). Using the tools from Malliavin derivative, it is possible to adapt integral

geometry into infinite dimension. Particularly, we are able to answer the question asked
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by Debin and Fillastre: the completion for the hyperbolic embedding of finite-dimensional

convex bodies is but the convex hull in H∞
R of homothetic GB convex bodies and the point

O, i.e.

Theorem 5.1.4. Let H be a separable Hilbert space over R and ι : K2 → H∞
R be the embedding in

Theorem 5.1.1. Then ι(K2) = co (ι(K2) ∪ {O}) is the geodesic convex hull, or equivalently each

point in ι(K2) is uniquely associated to a function hK(X) + c ∈ D1,2, where c ≥ 0 is a constant,

K ⊂ H is a GB convex body with Stein(K) = 0 and hK(X) is its support function.

5.2 Gaußian bounded convex bodies

In the sequel, unless otherwise indicated, the space H will be referred to as a separable

infinite-dimensional real Hilbert space carrying an inner product (·, ·)H. Let (ei)i≥1 be an

orthonormal basis of H.

5.2.1 GB and GC sets

Recall that a centred Gaußian process on T is a collection of random variables on a probability

space (Ω,F , P) indexed by t ∈ T such that for any finite subset {v1, . . . , vn} of T, the

random vector (Xv1 , . . . , Xvn) ∼ N (0, Σ) is Gaußian.

For the Hilbert space H, a centered isonormal Gaußian process is a Gaussian process

(Xv)v∈H on H such that E[Xv] = 0, E[XvXu] = (v, u)H for every v, u ∈ H and Xav+bu =

aXv + bXu for any a, b ∈ R and any v, u ∈ H.

The term “isonormal” is due to Segal and this process is introduced in [Seg54] where it

bears the name of “canonical normal distribution”.

Such a process can be constructed explicitly as the following. Let (Xi)i≥1 be a sequence

of orthogaußian random variables, i.e. independent and identically distributed random vari-

ables following N (0, 1). Then an isonormal Gaußian process on H can be defined by

Xv(ω) :=
∞

∑
i=1

(v, ei)HXi(ω)

for all v ∈ H and all ω ∈ Ω.

Conversely, for any orthonormal basis (ei)i≥1 in H, an isonormal Gaußian process

(Xv)v∈H on H must be such that (Xei)i≥1 are orthogaußian. So the isonormal Gaußian

process on H is essentially unique.

Alternatively, it is also possible to regard the isonormal Gaußian process as a random

variable X : Ω → RN and identify H with ℓ2, so that the Gaußian variable Xv = (v, X) =

∑
∞
i=1 viXi ∼ N (0, ∥v∥2).
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It is a consequence of Weil’s converse to Haar theorem [Wei65, Appendice] that in

infinite-dimensional real Hilbert space H, there is no complete analogue to Lebesgue or

Haar measure. But there is still a need for measuring subsets in H. In view of this, Dudley

introduced the following class of subsets that are suitable for measuring [Dud67]:

Definition 5.2.1 (Gaußian bounded sets). Let K be a subset of H and (Xv)v∈H be an isonor-

mal Gaußian process over H. Then K is Gaußian bounded, or GB for abbreviation, if for any

countable (dense) subset C ⊂ K,

P

({
ω ∈ Ω : ∃M ∈ (0, ∞) such that sup

v∈C
Xv(ω) < M

})
= 1.

Remark 5.2.2. For a countable set C, the supremum supv∈C Xv clearly defines a random

variable. Since the isonormal Gaußian process X is linear, if K ⊂ H is in addition convex,

then for any dense subset C ⊂ K, supv∈C Xv is actually supv∈K Xv. So being GB means that

the sample function X(·, ω) of the isonormal Gaußian process is uniformly bounded on K

for almost all ω ∈ Ω. We also remark that for every countable index set C, the random

variable supv∈C |Xv| is almost surely bounded if and only if it has a finite expectation

[LS70]. Moreover, for a GB convex body K, the random variable supv∈C Xv(ω) does not

depend on the choice of countable dense subsets in K [Vit01]. Thus, we will simply write

this random variable as supv∈K Xv in the sequel.

Let us focus on some properties of GB sets in a separable Hilbert space for a while. For

two sets A, B in the vector space H, one can define the Minkowski sum by

A + B := {x + y ∈ H : x ∈ A and y ∈ B} .

Moreover, subsets of H are also carrying the scalar multiplication

tA := {tx ∈ H : x ∈ A}

for any t, and when t > 0, it is called a dilation. As usual, a translation is a map A 7→ A + p

for some vector p ∈ H. A finite combination of dilations and translations will then be

called a homothety. It is obvious from the definition that the class of GB sets are stable

under Minkowski additions and homotheties, as it is also remarked in [DFL71].

Moreover, if K is a GB set in H, then so will be its convex hull, which is the collection

of all convex combinations of points in K. A subset of the GB set K in H is also GB. These

follow directly from the definition. Since being GB is a closed condition, this implies that

the closure of a GB set K is also GB.

Finally, let us mention the following compactness result about GB set: every GB set in H
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is totally bounded and thus is relatively compact [Dud67, Proposition 3.4].

By taking the closed convex hull of a GB set, we are allowed to only focus on convex,

compact, GB subsets in H, which will be called GB convex bodies in H. It is clear that a GB

convex body in H cannot have a non-empty interior, otherwise it would contain an open

ball and would not be totally bounded.

Another similar notion to GB sets is the following:

Definition 5.2.3 (Gaußian continuous set). Let K be a subset of H and (Xv)v∈H be an

isonormal Gaußian process over H. Then K is Gaußian continuous, or GC for abbreviation,

if for almost all ω ∈ Ω, the sample function X(·, ω) is continuous on K.

It is clear that every compact GC set is GB. But the non-GC compacta amongst the GB

sets are quite narrow.

Let K be a subset of H that is convex and symmetric. For each v ∈ H, define ∥v∥K :=

sup {|(u, v)H| : u ∈ K}.

For any two bounded convex subsets K, K′ in H, note K ≺ K′ if K ⊂ span(K′) and K

is compact for ∥ · ∥s(K′), where s(K′) is the symmetric closed convex hull of K′. Then a

maximal GB set is such that K′ will never be GB whenever K ≺ K′. As a result, every GB set

is either maximal or GC [Dud67, Theorem 4.7].

5.2.2 Intrinsic volumes

Let K be a subset of H. The dimension of K will be defined by the dimension of the

subspaces in H generated by K. If K is a convex body in H of dimension d < ∞, then it

can be identified with a convex body in Rd and its k-th intrinsic volume, denoted by Vk(K),

is a positive function that can be characterised by the Steiner formula

vold

(
K + rBd

)
=

d

∑
k=0

rd−kκd−kVk(K), (5.3)

where vold is the Lebesgue measure in Rd, Bd is the unit ball in Rd and κk is the Lebesgue

measure of the unit k-ball. Although Steiner formula depends on the dimension of the

ambient Euclidean space, we emphasise that the intrinsic volumes are independent of the

dimension of the ambient Euclidean space. We remark that if K is d-dimensional, then Vd(K) is

its Lebesgue measure in Rd.

The polarisation of V2 by setting

V2(K1, K2) :=
1
2
(V2(K1 + K2)− V2(K1)− V2(K2))
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provides a positively bilinear form on finite-dimensional convex bodies. More precisely,

V2(·, ·) enjoys the following properties for finite-dimensional convex bodies:

(C1) V2(K, K) = V2(K).

(C2) V2(K1, K2) = V2(K2, K1)

(C3) For any t ≥ 0, V2(tK1, K2) = tV2(K1, K2).

(C4) V2(K1 + K2, K3) = V2(K1, K3) + V2(K2, K3).

(C5) K1 ⊆ K2 implies V2(K1, K3) ≤ V2(K2, K3).

(C6) V2(K1, K2) ≥ 0 and the equality holds if and only if K1 or K2 is a point, or both are

segments in the same direction.

(C7) (Alexandrov-Fenchel inequality) for convex bodies K1 and K2 in Rd of dimension at least

2, V2(K1, K2)
2 ≥ V2(K1)V2(K2), and equality holds if and only if K1 = tK2 + v for some

t > 0 and v ∈ Rd.

These properties are classical and can be shown in geometrical means, see for example

[Sch14, §5]. In terms of mixed volume or quermaßintegrals, V2(K, K′) = V2(K, K′, Bd, . . . , Bd)

if K, K′ ⊂ Rd, where Bd is the unit ball in Rd [Sch14, §5 & §6].

If K is a convex body in H with infinite dimension, then following [Che76], its k-th

intrinsic volume will be defined by

Vk(K) := sup {Vk(C) : C ⊂ K convex body with dim(C) < ∞} .

With this definition, the following properties give a full characterisation of GB convex

bodies in H [Che76, Proposition 4.1]:

Proposition 5.2.4. Let K be a convex body in H. Then the following assertions are equivalent:

(i) K is GB.

(ii) For all k ≥ 1, the intrinsic volume Vk(K) is finite.

(iii) There exists a k ≥ 1 such that the intrinsic volume Vk(K) is finite.

Remark 5.2.5. The definition of the intrinsic volumes of a finite-dimensional convex body

K in H does not rely on the choice of the ambient finite-dimensional subspace. So the

intrinsic volumes are invariant under the action of the orthogonal group O(H). The same

holds for the infinite-dimensional GB convex bodies.

In particular, the first intrinsic volume of a GB convex body K is given by

V1(K) =
√

2πE

[
sup
v∈K

Xv

]
< ∞, (5.4)

see [Sud71; BC74]. More generally, the following formula due to Tsirelson (called Kubota-

Tsirelson formula) provides a way to define or to compute the intrinsic volumes of a GB
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convex body without approximating it by finite-dimensional convex bodies [Tsi86]:

Vk(K) =
(2π)k/2

k!κk
E

[
λk

({
(X1

v, . . . , Xk
v) ∈ Rk : v ∈ K

})]
, (5.5)

where X1, · · · , Xk are k independent isonormal Gaußian process on H and λk is the Lebesgue

measure on Rk. In particular, we remark that it is direct from Kubota-Tsirelson formula

that V1 is additive.

By passing to the limit, properties (C1)-(C7) also hold for all GB convex bodies (but not

the equality condition in (C7)).

5.2.3 Examples

In this section, we record three examples of infinite-dimensional GB convex bodies given

in [Dud67]. Again, let (ei)i≥1 be an orthonormal basis of the separable Hilbert space H.

Let (bi)i≥1 be a sequence of non-negative real numbers. We define the associated ellipsoid

by

E(
(
bi), (ei)

)
=

{
x = ∑

i≥1
xiei ∈ H : ∑

bi>0

x2
i

b2
i

≤ 1

}
.

We remark that such an ellipsoid is compact if and only if bi converges to 0. It is shown that

E(
(
bi), (ei)

)
is GB if and only if (bi)i≥1 ∈ ℓ2, or if E is a Schmidt ellipsoid [Dud67, Proposition

6.3]. Again, the closed unit ball in H is not GB.

Also, for a sequence (ℓi)i≥1 of positive real numbers, we define the rectangle by

R
(
(ℓi), (ei)

)
=

{
x = ∑

i≥1
xiei ∈ H : |xi| ≤ ℓi/2

}
.

Similarly, the rectangle R
(
(ℓi), (ei)

)
is GB if and only if (ℓi)i≥1 ∈ ℓ1 [Dud67, Proposition

6.6]. Moreover, we can explicitly compute out the intrinsic volumes of a GB rectangle:

Lemma 5.2.6. Let R = R
(
(ℓi), (ei)

)
be a GB rectangle as above. Then

Vk(R) = ∑
i1<i2<···<ik

ℓi1ℓi2 · · · ℓik .

Proof. Recall the formula of intrinsic volumes for orthogonal product (see [Che76, (4.4.2)] or

[KR97, Proposition 4.2.3, Theorem 9.7.1] for example): for every GB convex bodies A, B ⊂
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H with (A, B)H = 0,

Vk(A + B) = ∑
i+j=k

Vi(A)Vj(B), (5.6)

where V0(A) = V0(B) = 1. The result follows from an induction on k ≥ 1.

It is worth noticing that both GB ellipsoids and GB rectangles are not maximal, i.e. they

are all GC sets.

Another important example are infinite-dimensional hyperoctahedra. Let (ai)i≥1 be a

sequence of positive numbers. Define

Oc
(
(ai), (ei)

)
=

{
v = ∑

i≥1
aixiei ∈ H : ∑

i≥1
|xi| = 1

}

to be the symmetric closed convex hull of {0} ∪ {aiei ∈ H : i ≥ 1}. Then Oc
(
(ai), (ei)

)
is

GB if and only if ai = O
(
(log i)−1/2

)
, and it is GC if and only if ai = o

(
(log i)−1/2

)
.

5.2.4 Vitale distance

Recall that the support function of a convex body K is defined by hK(x) = supv∈K(v, x)H.

The support function can also be formally extended to RN by

hK(x⃗) = sup
v∈K

∑
i≥1

(v, ei)Hxi (5.7)

for every x⃗ = (xi)i≥1 ∈ RN.

The random variable hK(X) makes sense for an isonormal Gaußian process X and co-

incides with supv∈K Xv, so V1(K) =
√

2πE[hK(X)].

Recall that for a GB convex body K, the Steiner point of K is defined (formally) by

Stein(K) := E [hK(X)X] , (5.8)

where X is the isonormal Gaußian process on H (see [Vit01]). This definition of Steiner

point is understood in the sense that it is uniquely determined by

(
Stein(K), v

)
H = E[hK(X)Xv] ∈ R

for every vector v ∈ V (see Section 5.4.1 and Section 5.4.2 for discussions on the conver-

gence of this expectation). For finite-dimensional convex bodies in H, this definition is the

same as the original definition introduced in [Grü03]. Moreover, we will later see that the
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Steiner point Stein(K) is exactly the barycenter of K with respect to the probability sup-

ported on the extremal points Ext(K) and inherited from the isonormal Gaußian process

(Xv)v∈H (see Proposition 5.4.20).

In the context of a Hilbert space H, the Hausdorff distance between two convex bod-

ies K, K′ ⊂ H is given by dHaus(K, K′) = ∥hK − hK′∥L∞(BH), where BH is the closed unit

ball in H. But this distance function is insufficient for describing the behaviours of GB

convex bodies: the Steiner point is not continuous with respect to the Hausdorff distance

[Vit85] and neither are intrinsic volumes (a unit ball of radius r always has infinite intrinsic

volumes even when r → 0, while {0} is GB with Vk({0}) = 0 for all k ≥ 1).

Let K, K′ be two convex bodies in H. A GB convex body L ⊂ H is said to be equalising

K and K′ if K ⊂ K′ + L and K′ ⊂ K + L. So mimicking the definition of Hausdorff distance,

Vitale defines in [Vit01] the Vitale distance for GB convex bodies by

dVit(K, K′) := inf
{

V1(L) : L ⊂ H is GB equalising K and K′} .

The function dVit(·, ·) yields a distance on GB convex bodies and an écart on compact

convex subsets of H.

On one hand, for any convex body K, K′ ⊂ H, dHauss(K, K′) ≤ dVit(K, K′): the diameter

of L must be less than V1(L) by monotonicity of V1, thus must be contained in a Hilbert

ball with radius V1(L), and if in addition L equalises K and K′, then dHauss(K, K′) ≤ V1(L).

On the other hand, if K, K′ ⊂ Rd, then the GB set L that equalises K and K′ in Rd is at

most a Euclidean ball, so dVit(K, K′) ≤ V1(Bd)dHaus(K, K′), where Bd is the d-dimensional

Euclidean unit ball.

Equipped with dVit, both the space of all GB convex bodies and the space of all GC

convex bodies are complete, and the completion of finite-dimensional convex bodies under

dVit is GC convex bodies [Vit01, Theorem 5]. Also, there exists a constant C > 0 such that

∥Stein(K)− Stein(K′)∥H ≤ CdVit(K, K′) [Vit01, Theorem 8], and this also demonstrates that

the Steiner point is well-defined for all GB convex bodies.

Readers can refer to [Vit01] and [Le08] for further discussion on Vitale distance and its

relation with oscillation of GB convex bodies.

5.3 Embedding into hyperbolic space

In this section, we will construct a distance function for the family of GB convex bodies

in H and isometrically embed it into the infinite-dimensional real hyperbolic space and its

boundary.
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5.3.1 Embedding via hyperbolic kernel

Let us first recall the following basic fact about hyperbolic kernel: by rearranging the terms,

it is not hard to see that β(·, ·) is a kernel of hyperbolic type if and only if for every z ∈ X,

the function

N(x, y) := β(x, z)β(y, z)− β(x, y)

is a kernel of positive type, i.e. ∑
n
i,j=1 cicjN(xi, xj) ≥ 0 for all n ≥ 1, any x0, x1, . . . , xn ∈ X

and any c1, . . . , cn ∈ R.

Let K2 be the family of translation classes of GB convex bodies in H with dim(K) ≥ 2,

i.e. K and K′ are identified in K2 if there exists a p ∈ H such that K = K′ + p.

Two main inconveniences of treating (K2, V2) is that (A3) only holds for positive num-

bers and that K + (−K) ̸= {0}, say Bn + (−Bn) = 2Bn. Due to these observations, the space

K2 looks more like the positive cone of a vector space instead of the entire space. To rule

out the difficulties, let K̃2 be the real vector space spanned by elements K̃ for all K ∈ K2, with

the identification tK̃ = t̃K for every t ≥ 0 and K̃1 + K̃2 = K̃1 + K2 for every K1, K2 ∈ K2.

Under this convention, we have formally K̃ + (−K̃) = 0. As a result, for any v ∈ K̃2, it

can be decomposed into K̃1 − K̃2 for some K1, K2 ∈ K2. Furthermore, we can also linearly

extend V2 to K̃2 by setting V2(−K̃1, K̃2) = −V2(K̃1, K̃2).

Choose an M ∈ K2 and define

ρM(v, w) := V2

(
v, M̃

)
V2

(
w, M̃

)
− V2(M)V2(v, w) (5.9)

for every pair v, w ∈ K̃2.

Proposition 5.3.1. For any M ∈ K2, the bilinear form ρM given as (5.9) defines a positive semi-

definite scalar product on the vector space K̃2.

Proof. It is clear from the definition that ρM is symmetric and bilinear. So it suffices to

show the positive semi-definiteness. Since ρtM = t2ρM for every t > 0, we may assume that

V2(M) = 1. Take any t > 0 and K1, K2 ∈ K2, by Alexandrov-Fenchel inequality, we have

0 ≤ V2(K1 + tM, K2 + tM)2 − V2(K1 + tM)V2(K2 + tM)

= t2[2V2(K1, K2) + V2(K1, M)2 + V2(K2, M)2 − 2V2(K1, M)V2(K2, M)

− V2(K1)− V2(K2)
]
+ C1(K1, K2)t + C0(K1, K2),

where C1(K1, K2) and C0(K1, K2) are constants depending only on K1 and K2. Because the

above polynomial in t always stays positive, its leading coefficient must be positive as well,
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i.e.

2V2(K1, K2) + V2(K1, M)2 + V2(K2, M)2 ≥
2V2(K1, M)V2(K2, M) + V2(K1) + V2(K2).

(5.10)

Now taking any v ∈ K̃2, we may write v = K̃1 − K̃2 and

ρM(v, v) = ρM

(
K̃1 − K̃2, K̃1 − K̃2

)

= ρM

(
K̃1, K̃1

)2
+ ρM

(
K̃2, K̃2

)
− 2ρM

(
K̃1, K̃2

)

= 2V2(K1, K2) + V2(K1, M)2 + V2(K2, M)2

−
[
2V2(K1, M)V2(K2, M) + V2(K1) + V2(K2)

]

≥ 0.

This completes the proof.

Let us consider the projective space of K̃2, denoted by PK̃2.

Recall that two sets K, K′ ⊂ H are homothetic if they K′ is the image of K under a

homothety, which is a finite combination of translations and dilations. By starting with K̃2,

we are taking the quotient by translations; by taking the projective space, we rule out the

dilations. So the projective space PK̃2 contains all homothety class of GB convex bodies of

dimension at least 2. We denote by K2 ⊂ PK̃2 the space of homothety classes of GB convex

bodies of dimension at least 2 and the elements in it by [K] for some K ∈ K2.

Proposition 5.3.2. There is an embedding ι : K2 →֒ Hα
R for some cardinal α.

Proof. By [MP19, Proposition 3.3] and the discussion above, it suffices to design a kernel of

hyperbolic type for K2. We claim that

β([K1], [K2]) :=
V2(K1, K2)√
V2(K1)V2(K2)

is of hyperbolic type. By Proposition 5.3.1, this is equivalent to saying that for any M ∈ K2,

the kernel

NM([K1], [K2]) := β([K1], [M])β([K2], [M])− β([K1], [K2]) =
ρM

(
K̃1, K̃2

)

V2(M)
√

V2(K1)V2(K2)
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is of positive type. Since V2(M) > 0, we have

n

∑
i,j=1

cicjNM([Ki], [Kj]) = ρM

(
n

∑
i=1

ciK̃i√
V2(Ki)

,
n

∑
i=1

ciK̃i√
V2(Ki)

)/
V2(M) ≥ 0,

for any c1, . . . , cn ∈ R and K1, . . . , K2 ∈ K2. This finishes the proof.

Remark 5.3.3. We notice that the orthogonal group O(H) also acts on the homothety classes

of GB convex bodies in H and, as mentioned in Remark 5.2.5, this action preserves the

intrinsic volumes, so it induces an isometric action of O(H) on ι(K2) ⊂ Hα
R.

Moreover, as per (2.3), there is an explicit formula for computing the distance of homo-

thety classes of two GB convex bodies, namely

dH

(
ι([K]), ι([K′])

)
= cosh−1

(
V2(K, K′)√
V2(K)V2(K′)

)
. (5.11)

It is immediate that dH is continuous with respect to dVit for convex bodies with V2(K) = 1:

if L is a GB set body K and K′, then dVit(K, K′) → 0 implies that we can make V1(L) → 0,

which further indicates that V2(L) → 0 as per [Che76, (4.4.1)] or (5.25), hence V2(K, K′) → 1

and dH

(
ι([K]), ι([K′])

)
→ 0 after property (C4) and (C5).

For the embedding granted by Proposition 5.3.2, there is a minimal cardinal ([MP19,

§3]). Nevertheless, to conclude the minimal dimension α, we still need some more infor-

mation on the hyperbolic geometry of convex bodies.

5.3.2 Hyperbolic geometry of GB convex bodies

Debin and Fillastre show that the image of ι restricted to homothety classes of finite-

dimensional convex bodies is geodesic [DF22]. The same result also holds for infinite-

dimensional GB convex bodies:

Proposition 5.3.4. Let K0, K1 ⊂ H be two GB convex bodies with dim(K0), dim(K1) ≥ 2. Then

there is a unique geodesic in Hα
R connecting ι([K0]) and ι([K1]) given by ι([(1 − t)K0 + tK1]) for

t ∈ [0, 1].

Proof. Without loss of generality, we may assume that V2(K0) = V2(K1) = 1. Let a =

V2(K0, K1). By Alexandrov-Fenchel inequality, we have a ≥ 1. Define Kt = (1 − t)K0 + tK1
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for t ∈ [0, 1]. Then we will have

dH

(
ι([K0]), ι([Kt])

)
+ dH

(
ι([K1]), ι([Kt])

)

= cosh−1

(
V2(Kt, K0)√

V2(Kt)

)
+ cosh−1

(
V2(Kt, K1)√

V2(Kt)

)

= cosh−1

(
ta + (1 − t)√

t2 + (1 − t)2 + 2t(1 − t)a

)
+ cosh−1

(
(1 − t)a + t√

t2 + (1 − t)2 + 2t(1 − t)a

)

= cosh−1
(
(1 − t + t2)a + (t − t2)a2

t2 + (1 − t)2 + 2t(1 − t)a

)
=: cosh−1 (ϕ(t, a)

)
.

If a = 1, then it implies that [K0] = [K1] = [Kt] and the existence of a geodesic is automatic.

So suppose that a > 1. Since

∂

∂t
ϕ(t, a) =

(a − 1)a(2t − 1)
(
t2 + (1 − t)2 + 2t(1 − t)a

)2 ,

the function has maxima ϕ(1, a) = ϕ(0, a) = a. Also, we notice that ϕ(t, a) ≥ 0. It soon

follows that

dH

(
ι([K0]), ι([Kt])

)
+ dH

(
ι([K1]), ι([Kt])

)
≤ cosh−1(a) = dH

(
ι([K0]), ι([K1])

)
.

By triangle inequality, it forces the path
(
ι([Kt])

)
t∈[0,1] to be the geodesic between ι([K0])

and ι([K1]) after a suitable parametrisation.

A quick computation allows us to give an isometric parametrisation for the geodesic

segments in ι(K2):

Corollary 5.3.5. Let K0, K1 ⊂ H be two GB convex bodies with dim(K0), dim(K1) ≥ 2. Then

ι

([
K0

V2(K0)
+

K1

V2(K1)

])
∈ Hα

R

is the midpoint on the geodesic segment between ι([K0]) and ι([K1]).

Proof. By assuming V2(K0) = V2(K1) = 1, we will have

dH

(
ι([K0]), ι([K0 + K1])

)
= dH

(
ι([K1]), ι([K0 + K1]))

)
= cosh−1

(
V2(K0, K1) + 1√

V2(K0 + K1)

)
,

which completes the proof.

Let K be the homothety classes of GB convex bodies with non-zero dimension in H, i.e.

GB convex bodies that do not reduce to a singleton. Then we have the following result:
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Corollary 5.3.6. The embedding ι can be extended to K →֒ Hα
R

and there is a bijection between the

Gromov boundary ∂
(
ι(K)

)
and the projective space PH.

Proof. It suffices to show that homothety classes of segments are embedded in ∂Hα
R. Take

a GB convex body K ⊂ H with dim(K) ≥ 2 and V2(K) = 1. Let P be any segment. Then

for every t ∈ [0, ∞), we have dim(K + tP) ≥ 2. It is clear that the path
(
ι([K + tP])

)
t∈[0,∞)

is a geodesic ray, since any finite segment of it is geodesic by Proposition 5.3.4 and

lim
t→∞

dH(ι([K]), ι([K + tP])) = lim
t→∞

cosh−1

(
tV2(K, P) + 1√
2tV2(K, P) + 1

)
= ∞.

In particular, the sequence
(
ι([K + nP])

)
n∈N

is a Cauchy-Gromov sequence converging to

a point ∂Hα
R, denoted by ι([P]).

We remark that ι([P]) does not depend on the choice of K. Indeed, for two distinct GB

convex bodies K, K′ ⊂ H with dim(K), dim(K′) ≥ 2 and V2(K) = V2(K′) = 1, we have

dH

(
ι([K + tP], ι([K′ + tP]

)
= cosh−1

(
tV2(K + K′, P) + 1√

(1 + 2tV2(K, P))(1 + 2tV2(K′, P)

)

is bounded uniformly in t ∈ [0, ∞), thus both ι([K + tP]) and ι([K′ + tP]) converge to the

same point on ∂Hα
R.

We shall show that ι is injective. Given two segments P, P′ ⊂ H that are not in the same

direction, then we have

dH

(
ι([K + nP], ι([K + mP′]

)

= cosh−1

(
1 + nV2(K, P) + mV2(K, P) + nmV2(P, P′)√

(1 + 2nV2(K, P))(1 + 2mV2(K, P′))

)
→ ∞

as n, m → ∞. This means that the geodesic between ι([K]) and ι([P]) is not fellow travelling

with that between ι([K]) and ι([P′]) and forces ι([P]) ̸= ι([P′]).
Finally, we remark that the homothetic classes of 1-dimensional convex bodies are in

bijection with PH ≃ Gr(1,H) by sending a segment passing through the origin 0 ∈ H to

the subspace generated by it. Hence PH is in bijection with ∂
(
ι(K)

)
via ι.

Remark 5.3.7. The fact that PH = ∂ι(K) is not trivial. The Hilbert space that we use

to construct H∞
R is an abstract Hilbert space K̃2 obtained via GNS construction and the

projective space PK̃2, which is in bijection with ∂H∞
R , does not a priori have a relation with

PH. It is still unclear, for example, whether ι restricted to the segments, ι : K \ K2 → ∂H∞
R

is surjective or not. The same remark implies that the action of O(H) by isometries on

ι(K2), as mentioned in Remark 5.3.3, is also non-trivial.
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Since the space Hα
R is regularly geodesic, we can further generalise the result of Propo-

sition 5.3.4 to the boundary as follows:

Corollary 5.3.8. For any distinct [K1], [K2] ∈ K, the geodesic connecting ι([K1]) to ι([K2]) is the

path ι([tK1 + (1 − t)K2]) for t ∈ (0, 1) under a suitable parametrisation.

In the hyperbolic structure, any GB convex bodies can be approximated by the finite-

dimensional convex bodies contained in it.

Proposition 5.3.9. Let K be a GB convex body in H and (Kn)n≥1 be a sequence of finite-dimensional

convex bodies contained in K such that V2(Kn) → V2(K) as n → ∞. Then ι([Kn] converges to

ι([K]).

Proof. Indeed, the Alexandrov-Fenchel’s inequality and the monotonicity of V2 gives the

following estimation

1 ≤ V2(Kn + K)− V2(Kn)− V2(K)

2
√

V2(Kn)V2(K)
≤ 4V2(K)− V2(Kn)− V2(K)

2
√

V2(Kn)V2(K)
→ 1

as n → ∞.

Let K2, f be the homothety classes of finite-dimensional convex bodies that do not reduce

to a singleton or a segment. In view of Proposition 5.3.9, if ι(K2, f ) is the completion of

ι(K2, f ) in Hα
R, then ι(K2) ⊂ ι(K2, f ).

Corollary 5.3.10. The space ι(K2) is separable and the minimal dimension α ≤ ℵ0.

Proof. For any d ≥ 2, the image in Hα
R of the homothety classes of the convex bodies in

Rd is homeomorphic to the space of all convex bodies K in Rd with Stein(K) = 0 and

V2(K) = 1, endowed with Hausdorff distance [DF22]. So it is separable. It soon follows

that ι(K2, f ) is a countable union of separable spaces and is thus separable. As a subspace

of ι(K2, f ), ι(K2) is also separable.

Proposition 5.3.11. The minimal dimension α for the embedding K → Hα
R

is ℵ0.

Proof. Corollary 5.3.10 proves one side, so it remains to show that α ≥ ℵ0. Suppose ab

absurdo that α < ℵ0. Then ∂Hα
R is homeomorphic to Sα−1. Let (ei)i≥1 be an orthonormal

system and let σi = {x ∈ H : x = tei, t ∈ [0, 1]} be the corresponding unit segments. Sup-

pose that σi are sent to ηi ∈ ∂Hα
R via ι. Passing to a subsequence, we may assume by

compactness of Sα−1 that (ηi)i≥1 converges to some η in ∂Hα
R.

For each i ≥ 1, we choose a Cauchy-Gromov sequence
(
ι([K(n)

i ])
)

n≥1 along the geodesic

[ηi, ηi+1] that converges to ηi. By Corollary 5.3.8, the convex bodies K(n)
i are rectangles of

87



the form tσi + (1 − t)σi+1. For convenience reasons, fix a rectangle

R =

{
x1e1 + x2e2 ∈ H : −1

2
≤ x1, x2 ≤ 1

2

}
.

By choosing K(i)
i so that ⟨ηi, ι([K(i)

i ])⟩ι([R]) ≥ 2i, the δ-hyperbolicity of Hα
R yields that

⟨ι([K(i)
i ]), η⟩ι([R]) ≥ min

(
⟨ηi, η⟩ι([R]), ⟨ηi, ι([K(i)

i ])⟩ι([R])

)
− 2δ → ∞

as i → ∞. Hence
(
ι([K(i)

i ])
)

i≥1 is a Cauchy-Gromov sequence converging to η.

Let ti ∈ (0, 1) be such that

K(i)
i = tiσi + (1 − ti)σi+1.

We may also assume a posteriori that ti → 0 as i → ∞. For any λ ∈ [0, 1], we pose

Ki
λ = λK(i)

i + (1 − λ)K(i+1)
i+1 = λtiσi + (λ − λti + ti+1 − λti+1)σi+1 + (1 − λ)ti+1σi+2.

Applying Lemma 5.2.6, we have for sufficiently large i

dH

(
ι([R]), ι([Ki

λ])
)
= cosh−1




1
2

(
V2(R + Ki

λ)− V2(R)− V2(Ki
λ)
)

√
V2(R)V2(Ki

λ)




∼ cosh−1

(
1√

λ(1 − λ)

)
≥ cosh−1(2),

where we have used the asymptotic identification ti, ti+1 ∼ 0 as i becomes large enough.

Hence by (2.7), we have

⟨ι([K(i)
i ]), ι([K(i+1)

i+1 ])⟩ι([R]) ≤ min
λ∈[0,1]

dH

(
ι([R]), ι([Ki

λ])
)
∼ cosh−1(2) < ∞,

which contradicts to
(
ι([K(i)

i ])
)

i≥1 being Cauchy-Gromov.

For convenience, we will simply denote in the sequel by H∞
R the ℵ0-dimensional real

hyperbolic space, in which K2 is embedded.

Moreover, it is worth remarking that the homothety classes of polytopes are dense in

ι(K2).

Proposition 5.3.12. The image of homothety classes of polytopes with dimension at least two is

dense in ι(K2) ⊂ H∞
R .
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Proof. By the remark [Che76, (3.9.1)] (this is an important fact and will be used frequently

in the sequel), for any GB convex body K ⊂ H with dimension at least 2, V2(K) is the

supremum amongst V2(P) of polytopes P contained in K. Then it is possible to choose a

sequence (Pn)n≥1 of polytopes contained in K such that V2(Pn) → V2(K) as n → ∞. Then

dH

(
ι([Pn]), ι([K])

)
= cosh−1

(
V2(Pn + K)− V2(Pn)− V2(K)

2
√

V2(Pn)V2(K)

)

≤ cosh−1

(
V2(2K)− V2(Pn)− V2(K)

2
√

V2(Pn)V2(K)

)

→ cosh−1(1) = 0

as n → ∞.

5.3.3 Examples and non-examples of Cauchy sequences

At the end of [DF22], Debin and Fillastre ask about the completion of ι(K2, f ) inside of H∞
R .

One pathological phenomenon observed by Debin and Fillastre is that there are Cauchy

sequences in ι(K2, f ) that do not converge to any GB convex body. In this section, some

more examples will be presented. In fact, these examples suggest that this is the only

ill-behaved case.

As we remark, ι(K2) ⊂ ι(K2, f ). But the converse is not true, i.e. ι(K2) is not the

completion of ι(K2, f ) in H∞
R . Here are several examples:

Example 5.3.13 (Unit balls). Let Bn ⊂ span(e1, . . . , en) be the unit ball of dimension n

in H. Then by the Steiner formula (5.3), one can compute that V1(Bn) = nκn/κn−1 and

V2(Bn) = (n − 1)π. Using the Steiner formula (5.3), for m ≥ n

volm(Bn + rBm) =
m

∑
k=0

rm−kκm−kVk(Bn + Bm) =
m

∑
k=0

(r − 1)m−kκm−kVk(Bn),

and comparing the terms for k = 0, 1, 2 while r → ∞, we are able to compute V2(Bn + Bm)

in terms of κk’s, so hence V2(Bn, Bm)/
√

V2(Bn)V2(Bm). By Stirling’s approximation, we can

deduce that
(
ι([Bn])

)
n≥2 is a Cauchy sequence in H∞

R . This is already known in [DF22, §4].

We remark that V1(Bn)/
√

2V2(Bn) → 1 as n → ∞.

Example 5.3.14 (Non GB rectangles). Let (ℓi)i≥1 be a sequence of strictly positive numbers.

Suppose that (ℓi)i≥1 is not in ℓ1 so that R
(
(ℓi), (ei)

)
is not GB. But its n-dimensional sections
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Rn := ∏
n
i=1[−ℓi/2, ℓi/2] still define a Cauchy sequence in H if, and only if,

lim
n→∞

∑
n
i=1 ℓ

2
i(

∑
n
i=1 ℓi

)2 = 0,

or equivalently if

lim
n→∞

∑
n
i=1 ℓi√

2 ∑1≤i<j≤n ℓiℓj

= lim
n→∞

V1(Rn)√
2V2(Rn)

= 1.

The proof of this claim is an asymptotic analysis exercise: it suffices to use

∑
1≤i<j≤n

ℓiℓj ∼
1
2

(
n

∑
i=1

ℓi

)2

to prove the necessity and for the sufficiency, we can deduce a contradiction by assuming

n

∑
i=1

ℓ
2
i ∼ k

(
n

∑
i=1

ℓi

)2

for some k ∈ (0, 1]. In particular, if ℓi is of at most polynomial growth, then the corre-

sponding sections converge; but they diverge when ℓi is exponentially increasing. More-

over, given any two sequences (ai)i≥1 and (bi)i≥1 as in the claim above, we likewise define

the n-dimensional sections Rn and R′
n. By Cauchy-Schwarz inequality,

0 ≤ ∑
n
i=1 aibi(

∑
n
i=1 ai

)(
∑

n
i=1 bi

) ≤

(
∑

n
i=1 a2

i

)1/2(
∑

n
i=1 b2

i

)1/2

(
∑

n
i=1 ai

)(
∑

n
i=1 bi

) → 0

as n, m → ∞. Hence

V2(Rn, R′
n)√

V2(Rn)V2(R′
n)

∼

(
∑

n
i=1 ai

)(
∑

n
i=1 bi

)
− ∑

n
i=1 aibi

(
∑

n
i=1 ai

)(
∑

n
i=1 bi

) → 1

as n → ∞. This shows that all convergent n-dimensional sections that are not converging

to a GB rectangle converge to the same point in H∞
R .

Example 5.3.15 (Comparison between rectangles and balls). Let In = ∏
n
i=1[−1, 1] and Bn

be the unit ball as in Example 5.3.13. Both (In)n≥2 and (Bn)n≥2 define a priori convergent

sequences in H∞
R . Since In and Bn both lie in span(e1, . . . , en) ≃ Rn, the identity (see [Sch14,
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pp.298] for example)

V2(K, K′) =
n − 1
2κn−2

(
(hK, h′K)L2(Sn−1) −

1
n − 1

⟨∇hK,∇hK′⟩L2(Sn−1)

)
, (5.12)

where ∇ is the gradient on Sn−1, yields

V2(In, Bn) =
n − 1
2κn−2

∫

Sn−1
hIn(v)dv. (5.13)

Notice that hIn(v) = ∑
n
k=1 |vk| for every v ∈ Sn−1, where vk = (v, ek)H. Applying orthogo-

nal decomposition and Fubini’s theorem to (5.13), we get

V2(In, Bn) =
n

∑
k=1

(n − 1)πκn−3

κn−2

∫ 1

−1
|t|
(

1 − t2
) n−3

2
dt =

2nπκn−3

κn−2
.

Hence by Stirling’s approximation

dH

(
ι([In]), ι([Bn])

)
= cosh−1

(
2nπκn−3

κn−2

1√
2πn(n − 1)2

)
→ 0

as n → ∞. As a result, those two sequences converge to the same point in H∞
R .

Now, let O ∈ H∞
R be the limit of homothety classes of n-dimensional unit balls as in

Example 5.3.13.

Example 5.3.16 (Other non-GB limits). It is possible to construct some more Cauchy se-

quences of ι(K2) in H∞
R that do not converge to the image of any homothety class of a GB

convex body in H. Let I = {te1 : t ∈ [0, 1]} be the unit interval. Then for every n ≥ 1,

Kn := I + cnBn+1 is a GB convex body in H of dimension at least 2 for some cn > 0. Corol-

lary 5.3.6 indicates that ι([Kn]) is on the geodesic between ι([Bn+1]) and ι([I]) ∈ ∂H∞
R . As

H∞
R is regularly geodesic, by choosing a suitable parameter cn > 0 for every n ≥ 1 accord-

ing to Corollary 5.3.5, we can make sure it converges in H∞
R to a point on the geodesic

between O and ι([I]).

5.4 Malliavin calculus and intrinsic volumes

Debin and Fillastre show that the hyperbolisation process can be realised by treating the

Sobolev space via spherical harmonics [DF22]. When it comes to infinite dimension, spher-

ical harmonics will no longer be available since the unit sphere in the Hilbert space H does

not admit a Haar measure (due to the converse Haar’s theorem of Weil [Wei65]). In infinite

dimension, Malliavin calculus becomes indispensable.
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5.4.1 Wiener-Itô decomposition and Malliavin derivative

Let (Ω,F , P) be a probability space and L2(Ω) be the space of real L2-functions on Ω with

respect to the probability measure P. Let H be a separable Hilbert space on R and X be an

F -measurable isonormal Gaußian process on H.

Recall that the Hermite polynomials are polynomials (Hn)n≥0 determined by the recur-

rence relation H0 = 1 and H′
n(x) = nHn−1(x) for all n ≥ 1 and that E[Hn(Z)] = 0 for

all n ≥ 1, where Z ∼ N (0, 1) is a normal Gaußian random variable with variance 1.

For each n ≥ 0, the n-th Wiener chaos Hn is defined as the closure in L2(Ω) of the linear

span of the set {Hn(Xv) : v ∈ H}, where X is the concerned isonormal Gaußian process

on the Hilbert space H. In particular, the space H0 consists of all constant functions and

H1 = {Xv : v ∈ H}.

The terminology follows from the original article [Wie38] where the construction is

similar to the one introduced here, yet the equivalent definition appears decades later in

[Seg56]. The following decomposition is considered due to [Itô51] and reader can refer to

[Nua06, Theorem 1.1.1] or [Wie33, pp.64] for a detailed proof:

Theorem 5.4.1 (Wiener-Itô decomposition). Let (Ω,F , P), L2(Ω) and Hn be as above. Then

one has an orthogonal decomposition L2(Ω) =
⊕

n≥0Hn.

Remark 5.4.2. Here the symbol
⊕

refers to the Hilbert space direct sum, which is the closure

of algebraic direct sum inside of a Hilbert space.

Let d > 0 be an integer and C∞
P (Rd) be the space of smooth functions on Rd which,

together with all their partial derivatives, have at most polynomial growth. By S one

denotes the class of random variables φ : Ω → R such that there exists an n ∈ N, vectors

v1, . . . , vn ∈ H and a function f ∈ C∞
P (Rd) verifying

φ(ω) = f
(
Xv1(ω), · · · , Xvn(ω)

)

for almost every ω ∈ Ω. The random variables φ ∈ S are then called smooth random

variables and the function f ∈ C∞
P (Rd) appearing in the definition for φ ∈ S is then called

a (smooth) representation of φ.

By using the derivatives of its smooth representation, the definition of Malliavin deriva-

tive for smooth random variables soon follows:

Definition 5.4.3 (Malliavin derivative). Let φ(ω) = f
(
Xv1(ω), · · · , Xvn(ω)

)
be a smooth

random variable as above and f be its smooth representation. Then the Malliavin derivative

Dφ of φ is defined by the H-valued random variable

Dφ :=
n

∑
j=1

∂j f
(
Xv1(ω), · · · , Xvn(ω)

)
vj : Ω → H,
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where ∂j f is the j-th partial derivative of f .

Following from Cameron-Martin theorem (see for example [Bog98]), this definition does

not depend on the smooth representations of random variables.

Moreover, Malliavin derivative enjoys the integral-by-parts property, namely

E [(Dφ, v)H] = E [φXv] (5.14)

for every v ∈ H and every φ ∈ S [Nua06, Lemma 1.2.1].

For each N ≥ 0, the space
⊕N

n=0 Hn consists of smooth random variables with poly-

nomial representations of degree at most N. By Stone-Weierstraß Theorem, the set S ∩
⊕N

n=0 Hn is dense in
⊕N

n=0 Hn. It soon follows from Wiener-Itô decomposition that S is

dense in L2(Ω). So it is possible to define the Malliavin derivative of an L2-random vari-

able via approximating by smooth ones.

Let E and F be two Banach spaces. Let A : Dom(A) → F be an (unbounded) operator

from E to F, where Dom(A) is a subspace of E on which A is defined. Such an operator is

called closed, if its graph Γ(A) := {(x, Ax) ∈ E × F : x ∈ Dom(A)} is closed. An operator

is called closable, if the closure of its graph is again the graph of an operator, called the

closure of A.

By virtue of the following result, the Malliavin derivative can be extended to the entire

L2(Ω) [Nua06, Proposition 1.2.1]:

Proposition 5.4.4. The Malliavin derivative D : S ⊂ L2(Ω) → L2(Ω;H) is closable.

Abusing notation, let D be again the closure of Malliavin derivative defined on S and by

density D : L2(Ω) → L2(Ω;H) gives the Malliavin derivative for all L2-random variables.

By passing to limits, the formula (5.14) also holds for every v ∈ H and every φ ∈ L2(Ω).

The Sobolev space D1,2 is the Hilbert space defined by the random variables φ ∈ L2(Ω)

such that the norm

∥φ∥1,2 :=
(

E

[
|φ|2

]
+ E

[
∥Dφ∥2

H
])1/2

is finite, where the inner product is given by ⟨ψ, φ⟩1,2 = E[ψφ] + E [(Dψ, Dφ)H]. In partic-

ular, for each n ≥ 0, Hn ⊂ D1,2.

Let us introduce the adjoint of the Malliavin derivative. One defines the adjoint operator

δ, called the divergence operator or Skorohod integral, by setting taking a random variable δV

for an H-valued random variable V ∈ L2(Ω;H) such that

E[X(δV)] = E[(V, DX)H] (5.15)

for every X ∈ L2(Ω). Moreover, Meyer’s inequality implies that δ : L2(Ω;H) → L2(Ω) is

well-defined and is a continuous operator [Nua06, Proposition 1.5.4].
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One also defines the divergence operator by △ = δD : L2(Ω) → L2(Ω). The following

result seems to be folklore. The proof is not difficult, but it is crucial for our purpose, so a

brief proof is provided:

Proposition 5.4.5. For every n ≥ 0, the n-th Wiener chaos Hn is the eigenspace of Ornstein-

Uhlenbeck operator △ for the eigenvalue n.

Proof. Let (ei)i≥1 be an orthonormal basis of H. Let k⃗ be a multi-index on N and define

Φ⃗k := ∏
i∈supp(⃗k)

Hki
(Xei) , (5.16)

where the Hj are the Hermite polynomials and X is an isonormal Gaußian process on H.

By definition, the collection of Φ⃗k with |⃗k| = n is dense in Hn. By the recurrence relation

DHn(Xv) = nHn−1(Xv)v, one has

DΦ⃗k = ∑
i

kiΦ⃗k−δi
ei,

where δi(j) = δi,j is the Kronecker multi-index. Recall that by [Nua06, (1.46)], one has

δ(φv) + (Dφ, v)H = φXv for every φ ∈ S and every v ∈ H. Hence

△Φ⃗k = ∑
i

kiΦ⃗k−δi
Xei − ∑

i,j
ki
(
k j − δi(j)

)
Φ⃗k−δi−δj

(ei, ej)H

= ∑
i

ki

(
Φ⃗k−δi

Xei − (ki − 1)Φ⃗k−2δi

)
.

Since the Hermite polynomials also enjoy the relations

Hki−1(x)x − (ki − 1)Hki−2(x) = Hki
(x),

it soon follows that △Φ⃗k = nΦ⃗k, which extends to the entire Hn by density. This proves the

claimed.

5.4.2 Support functions as random variables

In conformity with Section 5.2.4, let K be a GB convex body in H and let hK be its support

function. Then hK(X) becomes a random variable over Ω. In particular, 5.4 implies that K

is a GB convex body if and only if the random variable hK ∈ L1(Ω).

Let P = co(v1, . . . , vn) be the closed convex hull of n points v1, . . . , vn ∈ H, i.e. the
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polytope generated these points. By [Che76, Théorème 3.10],

V2(P) = πE

[
hP(X)2 − ∥σP(X)∥2

H
]

(5.17)

where σP(X) is the H-valued random variable such that (σP(X), X) = hP(X), and for any

two polytopes P, P′ ⊂ H,

V2(P, P′) = πE [hP(X)hP′(X)− (σP(X), σP′(X))H] . (5.18)

However, since P, P′ ⊂ Rd = span(e1, . . . , ed) for some d > 0, after [Sch14, §1.7], it is clear

that σP(X) = σP((Xe1 , . . . , Xed)) = ∇hP((Xe1 , . . . , Xed)). As a result, (5.18) is exactly the

same as (5.12).

Remark 5.4.6. More precisely, in [Sch14, §1.7], it is seen that σP(X) is the Fréchet derivative of

the support function hK(X). For more information about the connection between Malliavin

derivative and Fréchet derivative of functions in Wanatabe-Sobolev space, one can refer to

for example [CKL06; Kru14]. But the situation here is much simpler.

Since a polytope is always bounded, σP(X) ∈ L2(Ω;H). It soon follows from (5.17) that

hP(X) ∈ L2(Ω). Moreover, the random variable hP(X) has a almost-everywhere differen-

tiable representation, namely hK : Rd → R, it soon yields σP(X) = DhK(X).

Although the Malliavin derivative is closable, it is in general not continuous. To gener-

alise the formulae (5.17) and (5.18), the following lemmata will be needed:

Lemma 5.4.7. Let φn ∈ D1,2 be a sequence of random variables such that φn → φ in L2(Ω).

Suppose that supn∈N E[∥Dφn∥2
H] < ∞. Then φ ∈ D1,2 and Dφn converges weakly in L2(Ω;H)

to Dφ, or equivalently, φn converges weakly to φ in D1,2.

Proof. Since φn converges to φ in L2(Ω) and supn∈N E[∥Dφn∥2
H] < ∞, (φn)n∈N is a bounded

sequence in D1,2. As D1,2 is a Hilbert space, by Banach-Alaoglu theorem, one can extract

a subsequence (φnk)k∈N that converges weakly to a function ϕ ∈ D1,2. In particular, the

sequence φnk converges to ϕ in L2(Ω), which indicates that ϕ = φ and φ ∈ D1,2. These

arguments can be applied to any subsequence of φn. It follows that φn converges weakly

to φ in D1,2. This proves the claimed result.

Lemma 5.4.8. Let K ⊂ H be a GB convex body and let hK(X) ∈ D1,2 be its support function. If

there exists a sequence of polytopes (Pm)m≥1 such that hPm(X) converges weakly to hK(X) in D1,2,

then there exists another (P̃m)m≥1 such that hP̃m
(X) → hK(X) in D1,2.

Proof. By Banach-Saks theorem, one can extract a subsequence Pnk such that the Cesàro

sums

P̃m =
Pn1 + Pn2 + · · ·+ Pnm

m
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have support functions hP̃m
(X) converging to hK(X) in D1,2.

Proposition 5.4.9. Let K ⊂ H be GB convex bodies and X be an isonormal Gaußian process on

H. Then there exists a sequence of polytopes (P̃N)N≥1 such that V2(P̃N) → V2(K) and hP̃N
(X)

converges to hK(X) in D1,2 as N → ∞.

Proof. Let (Pn)n∈N be an increasing sequence of polytopes included in a GB convex body

K such that Vi(Pn) → Vi(K) as n → ∞ for i = 1, 2. Since hPn(X) ≤ hPn+1(X) ≤ hK(X), it

turns out that hPn(X) converges to hK(X) in L1(Ω). By passing to a subsequence, we may

assume that hPn(X) converges to hK(X) almost surely. By monotone convergence theorem,

hPn(X) also converges to hK(X) in L2(Ω). Since K is bounded, there exists an R > 0

such that the random variable taking values amongst the extremal points of Pn satisfies

∥DhPn(X)∥H < R for every n ∈ N. By Lemma 5.4.7, hK(X) ∈ D1,2 and hPn(X) converges

weakly to hK(X) in D1,2. By Lemma 5.4.8, it is possible to construct polytopes P̃N contained

in K with V1(P̃N) → V1(K) as N → ∞ and that hP̃N
(X) converges to hK(X) in D1,2. Note

that Proposition 5.3.12 asserts that V2(Pi, Pj) → V2(K) as i, j → ∞. Moreover, by (C1) and

(C4), we have

V2(P̃N) =
∑

N
i,j=1 V2(Pni , Pnj)

N2 → V2(K)

as N → ∞.

Remark 5.4.10. In [Che76, Proposition 3.6’], a more general form for Vk(K) with k ≥ 1 is

given. But it is yet unclear whether Vk(K) can also be rewritten in a similar way as (5.1).

Corollary 5.4.11. Let K be a GB convex body in H and X be an isonormal Gaußian process over

H. Then there exists M > 0 such that the Malliavin derivative of its support function satisfies

∥DhK(X)∥2
H ≤ M almost surely.

Proof. Since K is compact, there exists M > 0 such that K ⊂ BH(0, M). Let P̃N be as in the

proof of Proposition 5.4.9. Then DhP̃N
(X) converges to DhK(X) in L2(Ω;H). By passing

to a subsequence, the convergence is with probability 1. But P̃N ⊂ K ⊂ BH(0, M), so

∥DhP̃N
(X)∥2

H ≤ M. The desired result follows from letting N tend to ∞.

Proof of Theorem 5.1.2. Formulae (5.1) and (5.2) follows directly from (5.18) and (5.17) by

passing to the limits.

Debin and Fillastre in [DF22] show that the support functions of convex bodies in Rd of

dimension at least 2 is embedded into a Sobolev space and if in addition that their Steiner

points are positioned at 0, then the support functions restricted to Sd−1 are L2-orthogonal

to the eigenspace of spherical Laplacian for the minimal positive eigenvalue. This result

also holds for infinite-dimensional GB convex bodies in the context of Malliavin calculus.
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Lemma 5.4.12. Let K ⊂ H be a GB convex bodies such that Stein(K) = 0, X be an isonormal

Gaußian process over H and hK be the support function of K. Then hK(X) ∈ ⊕n ̸=1Hn.

Proof. The formula (5.1) shows that hK ∈ D1,2. By definition (5.8), E[hK(X)X] = 0, in

particular, for every v ∈ H, (E[hK(X)X], v)H = E[hK(X)Xv] = 0. But Xv are exactly the

elements in H1. This proves the desired result.

Let Jn : L2(Ω) → Hn be the orthogonal projection onto the n-th Wiener chaos. Then

more generally than Lemma 5.4.12, for a GB convex body K ⊂ H and an isonormal Gaußian

process X over H, the image J0
(
hK(X)

)
= E[hK(X)] = V1(K)/

√
2π and J1

(
hK(X)

)
=

XStein(K).

Moreover, by Proposition 5.4.5, the Ornstein-Uhlenbeck operator △ is commutative

with Jn by linearity of the operator and orthogonality of Hn. At this point, it is possible to

deduce the following Rayleigh’s eigenvalue theorem for random variables in
⊕

n ̸=1Hn:

Proposition 5.4.13. Let φ ∈ ⊕n ̸=1Hn. Then E[∥Dφ∥2
H] ≥ 2∥φ∥2

L2(Ω)
− 2 (E[φ])2 ≥ 0.

Proof. By orthogonality, φ = ∑n ̸=1 Jn φ. Using (5.15), one can compute

E[∥Dφ∥2
H] + 2 (E[φ])2 = ∑

n ̸=1
E[Jn φ(△Jn φ)] + 2 (E[φ])2

= ∑
n ̸=1

nE[|Jn φ|2] + 2 (J0φ)2

= ∑
n≥1

nE[|Jn φ|2] + 2 (J0φ)2

≥ 2 ∑
n ̸=1

∥Jn φ∥2
L2(Ω) = 2∥φ∥2

L2(Ω).

The inequality 2∥φ∥2
L2(Ω)

− 2 (E[φ])2 ≥ 0 is a direct application of Cauchy-Schwarz in-

equality. This completes the proof.

Remark 5.4.14. Let K ⊂ H be a GB convex body with dimension at least 2 and positioned

so that Stein(K) = 0. Let Jn : L2(Ω) → Hn be the orthogonal projection. Then it is clear

that hK(X) ∈ ⊕
n ̸=1Hn and J0(hK(X)) = E[hK(X)] = V1(K)/

√
2π > 0. Similarly to the

discussion above, if h ∈ D1,2 ∩⊕n≥2Hn, we shall have E[∥Dh∥2
H] ≥ 2E[h2], hence −V2(·, ·)

defines an inner product on the space D1,2 ∩⊕n≥2Hn. This implies that the bilinear form

V2(·, ·) defined on the space of support functions of GB convex bodies with dimension

at least 2 and Stein(K) = 0 is of Lorentzian signature, from which one can construct the

infinite-dimensional hyperbolic space H∞
R . This recovers the discussion in [DF22, Proposi-

tion 2.4], in which D1,2 ∩⊕n≥2Hn is identified with H1(Sn−1)01.
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5.4.3 Convex bodies and support functions

This section mainly concerns the following question: given a function in the Sobolev space

D1,2, how can one tell whether it is the support function of a GB convex body in H?

In finite dimension, the support function of a convex body is a function Rd → R that

is convex, positively homogeneous and semi-lower continuous. Moreover, each of such

functions uniquely define a convex body in Rd by

K =
⋂

x∈Rd

{
y ∈ Rd : x · y ≤ hK(x)

}
.

It turns out that K′ ⊂ K ⊂ Rd if and only if hK′(x) ≤ hK(x) for all x ∈ Rd.

This property can be further generalised to infinite dimension:

Proposition 5.4.15. Let K′, K ⊂ H be two GB convex bodies. Then K′ ⊂ K if and only if almost

surely hK′(X) ≤ hK(X), where X is an isonormal Gaußian process on H.

Proof. It is clear that K′ ⊂ K implies hK′(X) ≤ hK(X) by definition. So it remains to

show the converse. Note that by taking the contraposition, the converse is equivalent to

P{hK(X) < 0} > 0 whenever 0 /∈ K. So suppose now that K ⊂ H is a GB convex body

and 0 /∈ K. Then there exists a unique point v ∈ K such that ∥v∥H = inf {∥v′∥H : v′ ∈ K}.

Indeed, v is the nearest point projection to K and if two distinct points v, v′ ∈ K have both

the least distance to 0 amongst points in K, then the midpoint v′′ = v/2 + v′/2 ∈ K would

have a strictly lesser distance to 0. By Gram-Schmidt process, let (ei)i≥1 be an orthonormal

basis of H such that v = te1 with t < 0. Hence

t = sup
w∈K

(w, e1)H. (5.19)

For simplicity, we write wi = (w, ei)H. So

hK(X) = sup
w∈K

(
w1Xe1 +

∞

∑
i=2

wiXei

)
≤ sup

w∈K
w1Xe1 + sup

w′∈K

∞

∑
i=2

w′
iXei . (5.20)

When Xe1 > 0, one can use (5.19) to rewrite the right-hand side of (5.20) into

tXe1 + sup
w′∈K

∞

∑
i=2

w′
iXei (5.21)

Since K is GB, the last term of (5.21) supw′∈K ∑
∞
i=2 w′

iXei is almost surely finite. By indepen-

dence of Xei for i ≥ 1, the two terms in (5.21) are also independent. By making Xe1 ≫ 0

large enough, (5.21) will be negative for a positive probability, and so will be hK(X).
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We denote co(C) be the convex hull of a set C. It immediately follows from Proposition

5.4.15 that for any index set I, we have

sup
i∈I

hKi(X) = hK̃(X), (5.22)

where K̃ := co
(⋃

i∈I Ki

)
is the closed convex hull of the union of Ki’s.

Let ϕ ∈ D1,2. Define

Fϕ := {K ⊂ H : K is a convex body with hK(X) ≤ ϕ} .

Then the following result can be deduced immediately from Proposition 5.4.15:

Corollary 5.4.16. Let K ⊂ H be a GB convex body. Then

K = co
( ⋃

P∈FhK(X)

P
)

. (5.23)

Proof. Let K′ be the right-hand side of (5.23). It is clear that K ⊂ K′ since K ∈ FhK(X).

Conversely, by (5.22),

hK′(X) = sup
P∈FhK(X)

hP(X) ≤ hK(X),

which implies K′ ⊂ K by Proposition 5.4.15. Hence the equality is obtained.

Remark 5.4.17. It is somehow tautological but Corollary 5.4.16 also means that K is the

maximal convex body so that hK(X) is bounded by ϕ = hK(X) ∈ D1,2.

For GC convex body, the isonormal Gaußian process has almost surely a continuous

sample function, so the maxima of the sample function are well-defined and attained.

More generally, for GB convex body K ⊂ H, we can similarly define a point v ∈ K to be

the maximal point of K at state ω ∈ Ω if for every ε > 0,

sup {Xw(ω) : w ∈ K ∩ BH(v, ε)} = hK(X)(ω).

Since H is separable and hK(X) < ∞ almost surely for any K ⊂ H GB convex body, for

almost every state ω ∈ Ω, there exists a maximal point of K. Moreover, for each v ∈ K, the

asymptotic error

lim
ε→0

sup
{

Xw(ω)− X′
w(ω) : w, w′ ∈ K ∩ BH(v, ε)

}

is uniformly bounded in L1(Ω) sense [Vit01].
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The Malliavin derivative of the supremum of a Gaußian process is almost surely the

maximal point:

Proposition 5.4.18. Let K ⊂ H be a GB convex body and hK(X) be its support function. Then for

almost every ω ∈ Ω, DhK(X)(ω) is the unique maximal point of K.

Proof. Note that the proof of [KP90, Lemma 2.6] is available for any non-degenerate Gaußian

process on a compact subset of a separable Banach space, with continuous covariance ker-

nel and having at least a maximal point for almost every ω ∈ Ω. It soon follows that almost

surely there exists a unique maximal point for the isonormal Gaußian process (Xv)v∈K. The

fact DhK(X) being the unique maximal point of K can be deduced via approximation ar-

guments [DN08, Lemma 3.1].

Recall that for f ∈ L2(Ω;H), one can define its essential range by

ess(f) :=
⋂

u=f a.s.

u(Ω).

This intersection is non-void since H is supposed to be separable. Note that by definition

the essential range remains the same for functions that only differ on a negligible set.

Corollary 5.4.19. Let K ⊂ H be a GB convex body and hK(X) be its support function. Then the

closed convex hull of the essential range of the Malliavin derivative co
(
ess(DhK(X))

)
= K.

Proof. Let K′ = co
(
ess(DhK(X))

)
. A priori K′ ⊂ K, as DhK(X) ∈ K almost surely by

Proposition 5.4.18. Conversely, note that

K′ =
⋂

n≥1

{[
co
(
ess(DhK(X))

)
+ BH (0, 1/n)

]
∩ K

}
=:

⋂

n≥1

Kn.

Moreover, the support function hKn(X) is a decreasing sequence convergent to hK′(X). But

for every n ≥ 1, by the definition of maximal points hKn(X) ≥ hK(X). Letting n → ∞ yields

hK′(X) ≥ hK(X), which indicates that K ⊂ K′ after Proposition 5.4.15.

A Maximal point of a GB convex body K, if it is well-defined, is necessarily contained

in the extremal points Ext(K) of K. Hence we can define a measurable map Ω → Ext(K)

by ω 7→ DhK(X)(ω), which will further yield a probability measure µK on Ext(K) by

pushing-forward.

From a functional analysis point of view, for a GB convex body in H, Choquet’s theory

also provides a natural center called the barycenter when a probability measure µ is de-

fined on Ext(K). The barycenter is the unique point b ∈ K such that
∫

Ext(K) ϕ(v)dµ(v) =

ϕ(b) for every affine function ϕ defined on H. See [Phe01] for more details.
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The following proposition allows us to connect the stochastic point of view to this

functional analysis point of view:

Proposition 5.4.20. Let K ⊂ H be a GB convex body and let µK be the pushforawrd measure as

above. Then Stein(K) is the barycenter for µK.

Proof. By Riesz representation theorem, it suffices to show that

(
Stein(K), w

)
H =

∫

Ext(K)

(
v, w

)
H dµK(v)

for any w ∈ H. Since we have δ(φv) + (Dφ, v)H = φXv for every φ ∈ D1,2 and every v ∈ H
[Nua06, (1.46)], it follows that

E
[(

DhK(X), w
)
H
]
= E

[
hK(X)Xw − δ

(
hK(X)w

)]

=
(
Stein(K), w

)
H − E

[
δ
(
hK(X)w

)]

=
(
Stein(K), w

)
H − E

[(
hK(X)w, D1

)
H
]

=
(
Stein(K), w

)
H,

where we have applied the definition of the Steiner point (5.8) and the definition of the

divergence operator δ. As

E
[(

DhK(X), w
)
H
]
=
∫

Ext(K)

(
v, w

)
H dµK(v)

following from the definition of the pushforward measure, we thus complete the proof.

Now we can show Theorem 5.1.3 with the descriptions above.

Proof of Theorem 5.1.3. In classical spectral theory, it is well-known that we can find an or-

thonormal basis (ϕn)n≥1 in L2(Ω) such that △ϕn = λnϕn for every n ∈ N. This basis can be

constructed using the Gram-Schmidt process from the random variables Φ⃗k as described

in (5.16). By Proposition 5.4.5, we may assume that λ0 = 0, ϕ0 = 1 and λn ≥ 1 for all n > 0.

Let K, K′ ⊂ H be two GB convex bodies such that V2(K, K′)2 = V2(K)V2(K′). Without

loss of generality, we may assume that Stein(K) = Stein(K′) = 0. It suffices to show that

K = tK′ for some t > 0.

By eigendecomposition, we write hK(X) = ∑n≥1 anϕn and hK′(X) = ∑n≥1 bnϕn with

an, bn ∈ R. By Remark 5.4.14, we have λn > 1 for all n ≥ 1. Using the formulae (5.1) and

(5.2), as well as substituting hK(X), hK′(X) by the eigendecompositions, we can equivalently
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write the assumption V2(K, K′)2 = V2(K)V2(K′) as

(
a0b0 + ∑

n≥1
(1 − λn)anbn

)2

=

(
a2

0 + ∑
n≥1

(1 − λn)a2
n

)(
b2

0 + ∑
n≥1

(1 − λn)b2
n

)
,

where we have also used the definition △ = δD. Rearranging this formula by grouping

terms into sums of squares, we then get

∑
n≥1

(1 − λn)(anb0 − a0bn)
2 = ∑

i<j
(1 − λi)(1 − λj)(aibj − ajbi)

2. (5.24)

Since λn > 1 for all n ≥ 1, the left-hand side of (5.24) is non-positive, while the right-hand

side of (5.24) is non-negative. This forces each square in (5.24) to vanish, i.e. aibj = ajbi for

all i, j ≥ 0. Consequently, we have hK(X) = thK′(X) for some t ∈ R. Applying (5.2) again,

we then have tV2(K′) = V2(K, K′) > 0, which shows that t > 0. Finally, Corollary 5.4.19

allows us to deduce K = tK′ by taking the closed convex hull of the essential range of the

Malliavin derivatives.

5.4.4 Completion of hyperbolic embedding

Let us consider any sequence (Kn)n≥1 of GB convex bodies in H of dimension at least 2

such that V2(Kn) = 1 and Stein(Kn) = 0 for all n ≥ 1. In this section, the criteria for ι([Kn])

defines a Cauchy sequence in H∞
R will be treated.

Recall the following inequality from [Che76, (4.4.1)]:

V2(K) ≤
V1(K)2

2
≤ 2πdiam(K) + V2(K). (5.25)

Since there is a segment of length diam(K) contained in K, the monotonicity of the intrinsic

volume implies V1(K) ≥ diam(K). Hence we can conclude the following result:

Proposition 5.4.21. Let (Kn)n≥1 be a sequence of GB convex bodies of dimension at least 2 with

V2(Kn) = 1 and Stein(Kn) = 0 for all n ≥ 1. If diam(Kn) → ∞ as n → ∞, then ι([Kn]) will

eventually leave every bounded subset of H∞
R .

Proof. Let (Kn)≥1 be a sequence as above. Suppose that K is also a GB convex body with

dim(K) ≥ 2, V2(K) = 1 and Stein(K) = 0. Then one has by (5.25) and V1(K) ≥ diam(K)
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the inequality

cosh dH

(
ι([K]), ι([Kn])

)
=

V2(Kn + K)− 2
2

≥ (V1(K) + V1(Kn))2 − 4 − 4πdiam(K)− 4πdiam(Kn)

4

≥ (V1(K) + diam(Kn))2 − 4 − 4πdiam(K)− 4πdiam(Kn)

4
,

which diverges to ∞ as n → ∞.

Let O ∈ H∞
R be the limit of image under ι of the homothety classes of n-dimensional

unit balls. If Kn are GB convex bodies as above with diam(Kn) → 0 as n → ∞, then they

forcibly converge to O ∈ H∞
R . This result is already suggested by Example 5.3.13 and

Example 5.3.14.

Proposition 5.4.22. Let (Kn)n≥1 be a sequence of GB convex bodies of dimension at least 2 such

that V2(Kn) = 1 and Stein(Kn) = 0 for all n ≥ 1. Let O ∈ H∞
R be the limit of the image under ι of

homothety classes of n-dimensional unit balls. If diam(Kn) → 0 as n → ∞, then ι([Kn]) converges

to O in dH.

Proof. Let (Kn)n≥1 be such that diam(Kn) → ∞ as n → ∞. Taking limits on every terms in

(5.25) by letting n tend to ∞ yields V1(Kn) →
√

2. Hence

1 ≤ cosh
(

dH

(
ι([Kn]), ι([Km])

))
=

V2(Kn + Km)− 2
2

≤ (V1(Kn) + V1(Km))2 − 4
4

→ 1

as n, m → ∞. So ι([Kn]) defines a Cauchy sequence in H∞
R converging to a point. If we

take the sequence K1, B2/V2(B2), K2, B3/V2(B3), . . . , then their images under ι will become

a new Cauchy sequence, which implies that ι([Kn]) converges to O ∈ H∞
R .

Remark 5.4.23. Although this proof is geometric, the point O has a very specific meaning in

the Sobolev space D1,2. Under the setting above, ι([Kn]) yields a Cauchy sequence in H∞
R

if and only if V2(Kn, Km) → 1 as n, m → ∞, which is again by (5.2) equivalent to

E[∥DhKn(X)− DhKm(X)∥2
H − |hKn(X)− hKm(X)|2] → 0 (5.26)

as n, m → ∞. If diam(Kn) → 0, it turns out that ∥DhKn(X)∥L∞(Ω;H) → 0. Hence in view of

Proposition 5.4.13 and (5.1), hKn(X) converges in D1,2 to the constant function 1/
√

π. This

function corresponds to the limit O of unit balls in H∞
R but it is not the support function of

any GB convex body in view of Corollary 5.4.16 and Corollary 5.4.19: it only bounds the

singleton {0} but differs from the support function of {0}.
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We are now able to conclude Theorem 5.1.4.

Proof of Theorem 5.1.4. Let (Kn)n≥1 be a sequence of GB convex bodies in H. Suppose that

dim(Kn) ≥ 2, Stein(Kn) = 0 and V2(Kn) = 1, such that ι([Kn]) defines a Cauchy sequence

in H∞
R . By Proposition 5.3.12, we may assume that Kn’s are all polytopes.

Now suppose that there exists < A < ∞ such that diam(Kn) ≤ A for every n ≥ 1.

Hence V1(Kn) is bounded after (5.25). By passing to a subsequence, we may assume that

V1(Kn) converges. Together with Proposition 5.4.13, one gets

∥hKn(X)− hKm(X)∥2
L2(Ω) − (V1(Kn)− V1(Km))

2/2π

≤E[∥DhKn(X)− DhKm(X)∥2
H − |hKn(X)− hKm(X)|2].

Letting n, m → ∞, (5.26) forces ∥hKn(X)− hKm(X)∥2
L2(Ω)

→ 0 as n, m → ∞. Hence hKn(X)

converges to a random variable ϕ ∈ L2(Ω). Moreover, by assumption and Corollary 5.4.11,

we have ∥DhKn∥H ≤ diam(Kn) < A almost surely, by Lemma 5.4.7, hKn(X) converges to ϕ

weakly in D1,2.

By Lemma 5.4.8, it is possible to construct another sequence (Pm)m≥1 of polytopes with

Stein(Pm) = 0 and hPm(X) → ϕ in D1,2 as m → ∞; indeed, Pm is the m-th Cesàro sum of

a subsequence of (Kn)n≥1. Moreover, by passing to a subsequence, we may assume that

hPm(X) (resp. DhPm(X)) converges to ϕ (resp. Dϕ) almost surely.

Let Fϕ be the collection of GB convex bodies such that hK(X) ≤ ϕ almost surely. Define

Kϕ := co


 ⋃

P∈Fϕ

P




to be the largest GB convex body such that hKϕ(X) ≤ ϕ and define ψ = ϕ − hKϕ(X).

We claim that co
(
ess(Dϕ)

)
⊂ Kϕ. To this end, it suffices to show that for every v ∈

ess(Dϕ), the random variables satisfies Xv ≤ ϕ almost surely. Let S ⊂ Ω be a subset such

that P(S) = 1 with hPm(X) → ϕ and DhPm(X) → Dϕ pointwisely on S. Then for each

v ∈ ess(Dϕ), there exists ω′ ∈ S with DhPm(X)(ω′) → v as m → ∞. Moreover,

E

[∣∣∣Xv − XDhPm (X)(ω′)

∣∣∣
2
]
= ∥v − DhPm(X)(ω′)∥2

H → 0

as m → ∞, i.e. the convergence is in L2(Ω). By passing to a subsequence, there exists

Sv ⊂ S ⊂ Ω with P(Sv) = 1 such that XDhPm (X)(ω′)(ω) converges to Xv(ω) for every

ω ∈ Sv. By taking the limit along the subsequence (and abusing the notations since the
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limits are the same), it soon follows that

Xv(ω) = lim
k→∞

XDhPm (X)(ω′)(ω) ≤ lim
m→∞

XDhPm (X)(ω)(ω) = lim
m→∞

hPm(X)(ω) = ϕ(ω)

for every ω ∈ Sv. Hence co
(
ess(Dϕ)

)
⊂ Kϕ. As hKϕ(X) + ψ = ϕ, by taking the Malliavin

derivative and their closed convex hull on both sides, we have by Corollary 5.4.19 that

Kϕ ⊂ co
(
ess(DhKϕ(X))

)
⊂ co

(
ess(DhKϕ(X)) + ess(Dψ)

)
= co

(
ess(Dϕ)

)
⊂ Kϕ.

But co
(
ess(DhKϕ(X)) + ess(Dψ)

)
= co

(
ess(DhKϕ(X)) + co

(
ess(Dψ)

)
. As a result, Kϕ +

co
(
ess(Dψ)

)
⊂ Kϕ, which forces Dψ = 0 almost surely, i.e. ψ is almost surely a constant

function. Also, because Pm is the Cesàro sum of Kn’s, it is clear that V2(Pm) converges to 1

as m → ∞. By convergence of hPm(X) to ϕ in D1,2, it soon yields that

πE

[
ϕ2 − ∥Dϕ∥2

H
]
= lim

m→∞
V2(Pm) = 1.

Alternatively, the function ϕ is also the limit point of the support function of GB convex

body Kϕ + bnBn, where bn > 0 and Bn is the n-dimensional unit ball, with bnhBn(X) → ψ

in D1,2. But ι([Kϕ + bnBn]) is a point on the geodesic between ι([Kϕ]) and ι([Bn]) in view

of Proposition 5.3.4. As H∞
R is regularly geodesic, ϕ also represents a point on the geodesic

ι([Kϕ]) and O. In particular, one remarks that dim(Kϕ) < 2 is possible. If dim(Kϕ) = 1,

then ι([Kϕ]) ∈ ∂H∞
R ; or if dim(Kϕ) = 0, i.e. Kϕ = {0}, in which case hKϕ(X) = 0 and the

sequence (Kn)n≥1 converges to O ∈ H∞
R .

Remark 5.4.24. As mentioned in Remark 5.3.3, the orthogonal group O(H) acts on ι(K2) by

isometries. This action soon extends to the completion ι(K2) and the point O is the unique

O(H)-invariant point.
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Chapter 6

Dynamics of Big Mapping Class Groups

Celui qui s’arrête fait remarquer l’emportement des

autres, comme un point fixe.

Blaise Pascal (1623–1662), Pensées.

6.1 Introduction

From a model theoretic aspect, a non-archimedean Polish group can always be realised as

the automorphism group of some countable first-order relational structure. In particular,

one may ask the following question:

Question 6.1.1. Given a countable first-order relational structure F , how can one detect if

its automorphism group Aut(F ) can be realised as the (extended) mapping class group of

an orientable surface?

This chapter tends to give a partial answer to Question 6.1.1: the mapping class groups

of all but finitely many orientable surfaces can never be the automorphism group of a

countable first-order relational structure F such that Age(F ) has Ramsey property.

Recall that a topological group G is said to have fixed point on compacta property or

extremely amenable if every continuous G-action on a compact Hausdorff space admits a

fixed point, or equivalently the universal minimal G-flow M(G) reduces to a singleton.

However, it is worth noticing that, other than the trivial group, no locally compact groups

are extremely amenable [Vee77], thus a fortiori no discrete ones [Ell60].

In a celebrated paper [KPT05], Kechris, Pestov and Todorčević develop a surprising

correspondence (abbrv. KPT correspondence) between model theory, combinatorics and

topological dynamics: if F is a structure with universe N, then the non-archimedean Polish

group Aut(F ) is extremely amenable if and only if the age Age(F ) has Ramsey property.
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So it is a natural question to ask for a non-archimedean Polish group arising in the study

of a geometry object whether or not it is extremely amenable. In particular, it is worth

knowing whether big mapping class groups are extremely amenable or not. One shall

notice that big mapping class groups are not locally compact [AV20, Theorem 4.2].

Theorem 6.1.2. Let Σ be an orientable surface of finite or infinite topological type. Then MCG(Σ)
is not extremely amenable unless Σ is a sphere or a once-punctured sphere, in which cases the

mapping class groups are trivial.

Denote by End(Σ) the end space of a surface Σ. It is a compact space with a natural

continuous MCG(Σ)-action. In many cases, this action is fixed-point free, which will

witness the non extreme amenability of the mapping class group. But this is not always

the case. For example, the Loch Ness monster surface has infinite genus but only one end

and the action of its mapping class group on the end space is trivial. Other non trivial

examples are (non self-similar) surfaces with a unique maximal end [MR22].

The proof of Theorem 6.1.2 mainly relies on the description of extremely amenable non-

archimedean Polish groups provided in [KPT05] and can be divided into the discussion of

two cases, depending on whether the surface is zero-genus or not. When the surface Σ has

zero genus, the Mann-Rafi ordering [MR23] yields two disjoint curves of the same topolog-

ical type unless Σ is a sphere or a once-punctured sphere. In this case, the existence of these

two curves further indicates that MCG(Σ) is not extremely amenable. If g(Σ) > 0, then

one may also find another pair of curves with the same topological type, not necessarily

disjoint, of which the existence also implies the non extreme amenability of MCG(Σ).
Moreover, the proof of Theorem 6.1.2 remains valid for closed subgroup of MCG(Σ)

containing a non-trivial mapping class with finite orbit, including pure mapping class

groups PMCG(Σ), i.e. the subgroup in MCG(Σ) that fixes pointwise every ends, and the

closure of compactly supported mapping class group MCGc(Σ).

Theorem 6.1.3. Let Σ be an orientable surface of finite or infinite type. If G < MCG(Σ) is a

subgroup containing a mapping class ϕ ∈ G such that for some simple closed curve c on Σ, the orbit

{ϕn(c) : n ∈ Z} is finite, then G is not extremely amenable. In particular, the groups PMCG(Σ)
and MCGc(Σ) of a surface Σ with g(Σ) ≥ 1 are not extremely amenable.

Note that the non extreme amenability of PMCG(Σ) can also be shown in a way that

one constructs a PMCG(Σ)-action on the circle S1 without fixed-point from the homomor-

phisms built in [APV20]. But this method cannot be adapted to MCGc(Σ).
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6.2 Non extreme amenability

Recall that the extended mapping class group MCG(Σ)± is defined similarly as MCG(Σ) but

using the group of all automorphisms Homeo(Σ) in the stead of the orientation preserving

one. The result below is already known following several basic facts about mapping class

groups:

Proposition 6.2.1. If the surface Σ is of complexity at least two, then the mapping class group

MCG(Σ) and the extended mapping class group MCG±(Σ) are non-archimedean Polish groups.

Proof. Let C(Σ) be the curve graph of the surface Σ, where vertices are isotopic classes of

essential simple closed curves and an edge is attached to two vertices if the two classes

have disjoint representatives. It is well-known that for a surface Σ with complexity at least

two, of finite or infinite type, we have the isomorphism MCG±(Σ) ≃ Aut(C(Σ)) between

topological groups [Iva97; Luo00; HMV18; BDR20]. Note that the vertices in C(Σ) are

countable. The graph C(Σ) is actually a countable relational first-order structure. Such an

automorphism group is closed subgroup of S∞ and thus a non-archimedean Polish group

(see for example [Kec12, Part I, §9.B(7)]). Hence MCG±(Σ) is a non-archimedean Polish

group. To show that MCG(Σ) is also one, it suffices to demonstrate that MCG(Σ) is

closed in MCG±(Σ). Indeed, given a convergent sequence of homeomorphisms Σ → Σ in

Homeo(Σ) for compact-open topology, if they are all orientation preserving, then so will

be their limit1: when gn → g, for a fixed curve α ⊂ Σ, on one hand the Dehn twist Tgnα

shall converge to Tgα as gnα converges to gα uniformly; but if g is orientation reversing,

then on the other hand Tgnα = gnTαg−1
n converges to gTαg−1, which is a reversing Dehn

twist along gα but not Tgα.

To further discuss the extreme amenability of a non-archimedean Polish group, we

need to introduce the following notions. Let G be a group acting on a space X and Y be a

subspace of X. We call the subgroup G(Y) = {g ∈ G : gy = y, ∀y ∈ Y} of G the pointwise

stabiliser of Y. Similarly, the subgroup GY = {g ∈ G : gY = Y} is called the setwise stabiliser

of Y in G.

The following observation is a natural consequence after KPT correspondence (see

[KPT05, Proposition 4.3]), which can find its root in [GW02].

Lemma 6.2.2. If G is an extremely amenable non-archimedean Polish group acting continuously

on the discrete space N, then G(F) = GF for any finite subset F ⊂ N.

1This fact holds more generally for orientable manifolds and can be seen via using the homologous defi-
nition of orientation, yet here we do not wish to introduce the entire voluminousity of homological theory.
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Sketch of Proof. If G is extremely amenable, then its continuous action on the compact space

LO(N), the space of linear orders on N, has a fixed point, i.e. G fixes a linear order on N.

Let F ⊂ N be a finite set. Since G fixes a linear order on F, the only way that an element in

G leave F invariant is to fix every elements in F.

Remark 6.2.3. For mapping class group MCG(Σ) viewed as a non-archimedean Polish

group, the discrete space N on which it acts on is identified with isotopy classes of curves

on Σ, i.e. vertices in C(Σ).
The end space End(Σ) is a totally disconnected, separable, metrisable topological space

(and thus a closed subset of Cantor set). Among the ends, there are non planary ends, of

which the collection is denoted End∞(Σ), in the sense that every neighbourhood in Σ of a

non planary end has at least genus 1. The non planary ends End∞(Σ) form a closed subset

of End(Σ).

Remark 6.2.4. There is a slight abus de langage here. The neighbourhood mentioned above

resides in the end compactification of Σ instead of End(Σ), but its intersection with Σ

becomes a subsurface in Σ and can still be regarded as a “neighbourhood” of an end.

Let D, D′ be two subsets of End(Σ). We say that D and D′ are isomorphic if D is home-

omorphic to D′ and D ∩ End∞(Σ) is homeomorphic D′ ∩ End∞(Σ) simultaneously.

Mann and Rafi give a way to order the ends of a surface by their similarity [MR23].

Let x, y ∈ End(Σ) be two ends. Then we write x ≼ y if every clopen neighbourhood of y

contains a clopen subset that is isomorphic to a neighbourhood of x. Two ends are said

equivalent if both x ≼ y and y ≼ x. They are said non-comparable if neither case happens.

It is worth noticing that each compact neighbourhood of an end of Σ corresponds to

one of its clopen neighbourhoods D in End(Σ) and this compact neighbourhood can be

chosen to be the end compactification of a subsurface in Σ whose ends are the union of D

with an additional isolated point.

Since the group Homeo+(Σ) acts on the surface Σ continuously, this action has a natural

continuous extension onto the end compactification of Σ. By taking the quotient, it is not

hard to see that MCG(Σ) acts continuously by homeomorphisms on End(Σ) and End∞(Σ)

is an invariant subspace of this group action. Moreover, from the definition, this action

preserves the ordering given above, namely gx ≼ gy for any g ∈ MCG(Σ) if and only if

x ≼ y. In particular, if there exists g ∈ MCG(Σ) such that gx = y, then necessarily x ≼ y.

Adopting the terminology from [FM11], the topological type of a simple closed curve c

on Σ is Σ \ c. Two curves c and c′ on Σ are said to have the same topological type if there is a

homeomorphism between Σ \ c and Σ \ c′.

Remark 6.2.5. Since no distinction will be needed here, in the sequel, a curve on the surface

can mean either a topological embedding of S1 or its isotopy class, depending on the

110



context.

An argument of the renowned Alexander method (see for example [FM11, §2.3] and

[HMV19]) is that given two distinct simple closed curves (up to isotopy) of the same topo-

logical type, one can always find a non-trivial mapping class sending one curve to the

other. Moreover, this mapping class g can be chosen to have finite order if the surface Σ is

of finite type. This is not true in general for infinite-type surfaces, but only some special

cases will be needed for our purpose here and similar arguments yield the same result for

these special cases:

Lemma 6.2.6. Let Σ be a surface with genus 0. Suppose that there exists two disjoint simple closed

curves c, c′ on Σ with the same topological type. Assume that c cuts End(Σ) = E ⊔ N and c′ cuts

End(Σ) = E′ ⊔ N′ in a way that E ≃ E′ and that E, E′ are disjoint. Then there exists a non-trivial

mapping class ϕ ∈ MCG(Σ) such that ϕ(c) = c′ and ϕ2 = Id.

Proof. Figure 6.1 depicts how such a surface Σ looks like. The simplest case is when E

and E′ reduces to singleton and Σ is a twice-punctured sphere. Now the desired ϕ ∈
MCG(Σ) is just the symmetry sending E to E′. More precisely, cut Σ into three parts

S⊔ S′ ⊔
(
Σ \ (S∪ S′)

)
along c and c′ so that ∂S = c and ∂S′ = c′. By Richards’ theorem, there

is a homeomorphism φ : S → S′ sending ∂S to ∂S′. Take a symmetry σ ∈ MCG(Σ \ (S∪ S′))
that interchanges the position of c and c′: σ is the continuous extension by identity of the

symmetry σ ∈ MCG(S0,3), where S0,3 ⊂ Σ \ (S ∪ S′) is a subsurface of finite type with two

of its ends being ∂S = c and ∂S′ = c′. Now ϕ is piecewise defined by σ on Σ \ (S ∪ S′), φ

on S and φ−1 on S′ (up to isotopy).

Let us first deal with the (non) extreme amenability of MCG(Σ) for surfaces Σ with

genus 0 by using the results above.

Lemma 6.2.7. Let Σ be an orientable surface with genus 0 and complexity at least 2. If MCG(Σ)
is extremely amenable, then any two distinct ends in End(Σ) are non-comparable.

Proof. Suppose for contradiction that MCG(Σ) is extremely amenable but there exist two

distinct x, y ∈ End(Σ) such that x ≼ y. Since End(Σ) is metrisable and a fortiori Hausdorff,

we can take a clopen neighbourhood N of y so that x /∈ N. By definition, inside of N, there

exists a homeomorphic copy of a clopen neighbourhood of x but excludes x. This implies

the existence of x′ ∈ End(Σ) which is distinct from x but equivalent to x. Moreover, one

can take a clopen neighbourhood D of x and a clopen neighbourhood D′ of x′ in the way

that D ≃ D′ but D ∩ D′ = ∅. We should note that End(Σ) \ D is also homeomorphic to

End(Σ) \ D′. Now associate D to a subsurface with boundary S ⊂ Σ as described above

so that End(S) = D ⊔ {∗} and find a subsurface S′ ⊂ Σ likewise for D′. By Richards’

theorem, the curves ∂S and ∂S′ have the same topological type and satisfies the hypothesis
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Figure 6.1: Surface of Lemma 6.2.6

of Lemma 6.2.6. But Lemma 6.2.6 indicates that there exists a mapping class ϕ ∈ MCG(Σ)
such that if F = {∂S, ∂S′}, then ϕ ∈ MCG(Σ)F \MCG(Σ)(F). This yields a contradiction to

Lemma 6.2.2.

Now one can show the following proposition:

Proposition 6.2.8. Let Σ be an orientable surface with genus 0. Then MCG(Σ) is extremely

amenable if and only if Σ is a sphere or a once-punctured sphere, in which case MCG(Σ) is the

trivial group.

Proof. If the surface has complexity less than 2, then it has non-trivial discrete group as

mapping class group unless it is a sphere or a once-punctured sphere. So by the virtue of

Lemma 6.2.7, it remains to show that there is no surface with genus 0, complexity at least 2

and pairwise non-comparable ends unless it is a sphere or a once-punctured sphere, where

the statement is satisfied vacuously. Indeed, let Σ be a such surface. Assume that there

exist distinct x, y ∈ End(Σ) and an element g ∈ MCG(Σ) so that gx = y. Then necessarily

x ≼ y as remarked above, which contradicts to the non-comparing assumption. Hence the

action of MCG(Σ) on End(Σ) must be trivial. This implies that MCG(Σ) = PMCG(Σ). By

[PV18, Theorem 3], this means that MCG(Σ) = PMCG(Σ) are simultaneously residually

finite and as a result, the surface Σ must be of finite type. But as the ends of Σ must be all

non-comparable, it only happens when Σ is a sphere or a once punctured sphere, in which

cases MCG(Σ) is trivial.
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Let S1
1 be the surface of genus 1 with one boundary component and let S1,1 be once-

punctured torus. Then there is an element g ∈ MCG(S1
1) and a simple closed curve c on

S1
1 such that {gn(c) : n ∈ Z} is finite. Indeed, by the inclusion homomorphism [FM11,

Theorem 3.18], we have the short sequence

1 → Z → MCG(S1
1) → SL2(Z) ≃ MCG(S1,1) → 1.

Note that

ϕ :=

(
0 −1

1 0

)
∈ SL2(Z) ≃ MCG(S1,1)

is a torsion and that there is a simple closed curve c on S1,1, which can also be regarded as

a curve in S1
1, such that {ϕn(c) : n ∈ Z} is finite. As a result, the orbit of c under the action

of any pre-image g ∈ MCG(S1
1) of ϕ ∈ MCG(S1,1) is finite.

With the observation above, one can now prove Theorem 6.1.2:

Proof of Theorem 6.1.2. If the surface Σ has genus 0, then the extreme amenability of MCG(Σ)
is determined by Proposition 6.2.8. For the torus, the mapping class group is not extremely

amenable since it is a non-trivial discrete group. Suppose now that the surface Σ has

complexity at least 2 and non-zero genus. If Σ contains an essential (sub)surface that is

homeomorphic to S1
1. Then we take a g ∈ MCG(S1

1) and a curve c on S1
1 ⊂ Σ so that

{gn(c) : n ∈ Z} is finite. By the virtue of the inclusion homomorphism [FM11, Theorem

3.18], one can extend g by identity to an element in MCG(Σ). Now the pointwise stabiliser

of F := {gn(c) : n ∈ Z} in MCG(Σ) is different from its setwise stabiliser. Hence by

Lemma 6.2.2, MCG(Σ) is not extremely amenable.

Finally, there are still some details in Theorem 6.1.3 that need further clarifications.

Lemma 6.2.9. Let G be a topological group and H be a dense subgroup of G. Then G is extremely

amenable if and only if H is.

Proof. Note that a topological group G is extremely amenable if and only if it admits a

G-invariant multiplicative mean over RUCB(G), the space of right-uniformly continuous

functions on G, or equivalently the G-action on its Samuel compactification σG has a fixed

point (see for example [Pes06, §1.1]). But if H is a dense subgroup of G, then RUCB(H) ≃
RUCB(G) and any continuous H-action on the multiplicative means of RUCB(G) can be

extended continuously to a G-action on it. Conversely, the restriction of a continuous G-

action on H yields an H-action. Hence H and G can only be simultaneously extremely

amenable.

Proof of Theorem 6.1.3. For any subgroup G < MCG(Σ) with complexity ξ(Σ) > 2 that

contains a mapping class ϕ such that for some simple closed curve c on the surface, the
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orbit F := {ϕn(c) : n ∈ Z} is finite, it is clear that ϕ belongs to GF but not G(F). Hence

the closure of such subgroup G in MCG(Σ) is not extremely amenable. It follows from

Lemma 6.2.9 that G itself is neither extremely amenable.

6.3 Perspectives

In a recent paper, Disarlo, Koberda and González [DKN23] establish a model theoretic

connection between the mapping class groups and the curve graph of non-sporadic finite-

type surfaces, which is motivated by Ivanov’s metaconjecture [Iva06]. Following their ideas,

another way to ask Question 6.1.1 is the following:

Question 6.3.1. Given a graph on countable vertices, how can one detect if it is the curve

graph of an orientable surface?

Another notion that is closely related to the extreme amenability is the amenability of a

topological group, i.e. every continuous group action on a compact Hausdorff space admits

an invariant probability measure over the space. Although the non extreme amenability

is already clear, it remains unknown if there are amenable big mapping class groups. For

every but finitely many finite-type orientable surfaces, the mapping class group is non-

amenable because as a discrete group, it contains a non-abelian free subgroup on two

generators. If the surface is of infinite type, the amenability of its mapping class group is

less clear. For the surfaces Σ of infinite type having a non-displaceable subsurface S of finite

type, one can construct a blown-up projection complex from the curve graphs of the MCG(Σ)-
orbit of S, see for example [HQR22; DD22]. Equipped with the combinatorial metric, the

blown-up projection complex is a separable geodesic Gromov-hyperbolic space on which

the mapping class group MCG(Σ) acts continuously by isometries and the MCG(Σ)-action

is of general type. However, an amenable group can never have a continuous action of

general type on a separable geodesic Gromov-hyperbolic space by isometries (see Chapter

9). This implies that these big mapping class groups are not amenable.
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Chapter 7

Connectedness of the Gromov

boundary of fine curve graphs

Joint work with Dong Tan.

Everything is connected to everything else.

Oliver Wendell Holmes Jr. (1841-1935)

The Bar as a Profession.

7.1 Introduction

Let S be an orientable finite-type surface of genus g ≥ 2. In order to study the group of

diffeomorphisms of surface G, Bowden, Hensel and Webb design for S its fine curve graph

C†(S) [BHW22], where the vertices are smooth curves instead of their isotopy classes, and

the edges are defined by disjointness.

Indeed, the fine curve graph C†(S) shares a lot of similarity with the curve graph of S

and can be considered as an analogue of the curve graph for the mapping class group: the

graph is Gromov hyperbolic [BHW22] and the group of homeomorphisms of surface S is

isomorphic to the automorphism group of the topological version of the fine curve graph

[Lon+21].

But compared to the classical curve graph, the fine curve graph C†(S) is much more

complicated and the dynamics of homeomorphism group on C†(S) is much richer than

the mapping class group on the curve graph: C†(S) is a locally uncountable; there exist

homeomorphisms on the surface S that induce parabolic isometries on C†(S) and by con-

sequences there are points on the Gromov boundary that are not represented by ending

laminations [BHW22; Bow+22], whereas it is the case for curve graphs [Kla22].
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The study of geometric or topological interpretation of points at infinity in the fine

curve graph is still an ongoing project. Efforts are made in understanding the stabilisers of

these points in terms of (homological) rotation sets [Bow+22; GM23a; GM23b].

In this paper, we are more interested in the topological properties of the Gromov bound-

ary of fine curve graphs. This paper is written as one of the initiatives in this direction.

For the curve graph, Peter Storm asked an interesting question about the (path)-connectedness

of its the Gromov boundary, which is recorded in [KL08, Question 10]. This question is

answered positively by [Gab09; LS09; LMS11]. Recently, [Wri23] provides a new proof and

proves that the boundary of curve graph is in addition linearly connected (see Definition

7.2.6).

Let NC†(S) be the subgraph of C†(S) consisting of non-separating curves.

In this paper, we conclude the following results for the topology of Gromov boundary

of the fine curve graph:

Theorem 7.1.1. Let S be an orientable finite-type surface of genus g ≥ 2. Then the Gromov

boundary ∂C†(S) of the fine curve graph is path connected.

Moreover, for any o ∈ NC†(S) and any small enough ε > 0, if b ∈ (1, 1 + ε) and ρo,b is the

visual metric defined on the Gromov boundary, then it is linearly connected.

We remark that Theorem 7.1.1 cannot be deduced from the path-connectedness of the

Gromov boundary of curve graphs, since there are boundary points in the fine curve graph

that are cannot be represented by ending laminations and that path-connectedness is usu-

ally not preserved under taking closures.

We say that a subgraph G of a graph Γ is connected if for any two points a, b ∈ G, there

exists a finite sequence a = v0, v1, . . . , vn = b such that vi is connected to vi+1 by an edge

for all 0 ≤ i ≤ n − 1 and vi ∈ G for all 0 ≤ i ≤ n.

Theorem 7.1.2. Let S be an orientable finite-type surface of genus g ≥ 2. For any integer r > 0

and any o ∈ NC†(S), the r-sphere {α ∈ NC†(S) : d†(α, o) = r} is connected.

The main difficulties of dealing with the fine curve graph is the non-transversality be-

tween topological curves and the lack of analogue in the setting of fine curve graphs of

tight geodesics as in the curve graphs. In order to deduce the results, we first generalise

the criterion introduced by Wright in [Wri23] to any hyperbolic graphs with no “dead ends”

(see Proposition 7.2.7). In order to apply Proposition 7.2.7, it suffices to check that the

assumptions are satisfied by a subgraph quasi-isometric to C†(S). In principle, under the

non-separating and transverse settings, as long as there are only finitely many topological

curves involved, the fine curve graph looks like the curve graph of a punctured subsurface (see

Proposition 7.3.4), which allows us to make use of [Wri23, Proposition 5.4]. The technical

part of the proof lies in passing non-transverse pairs of curves into transverse ones. At
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the end of this paper, we also gave several interesting observations on the group action of

Homeo(S) on the Gromov bordification of C†(S).

7.2 Sufficient condition for linear connecitivty

The following result is pivotal in large scale geometry à la Gromov and is well-known in

proper cases. But we remark that it actually holds for non-proper spaces [Has22; Väi05].

For convenience reason, we state it here below. There are several different proofs from

different approaches and the one we present here might have already been known to

[Cap+15]:

Proposition 7.2.1. Let (X, dX) be a δ-hyperbolic geodesic space and o ∈ X be an arbitrary base

point. Then ∂X is in bijection with the equivalent classes of quasi-geodesic rays issued from o

and two quasi-geodesic rays are equivalent if they have bounded Hausdorff distance. Moreover, a

quasi-isometric embedding f : X → Y induces a topological embedding f∂ : ∂X → ∂Y and f∂ is a

homeomorphism if f is essentially surjective.

Proof. See Chapter 8 and [Väi05]. One idea is to take a ultracomplete supspace and de-

duce similarly as the classical cases, where taking ultralimits play the rôle of Arzelà-Ascoli

theorem.

Another powerful tool to study the Gromov boundary is the following notion of visual

metric that is carefully treated in [DSU17, §3.6] and [Väi05] under general settings:

Theorem 7.2.2 (Väsäilä). Let (X, dX) be a Gromov hyperbolic space. Then ∂X is completely

metrizable. For any based point o ∈ X, the topology is compatible to the visual metric ρo,b from

o ∈ X with parameter b ∈ (1, 1+ ε) for some small enough ε > 0. Moreover, we have the estimation

b−⟨ξ,η⟩o /4 ≤ ρo,b(ξ, η) ≤ b−⟨ξ,η⟩o (7.1)

for every ξ, η ∈ ∂X.

Let X be a δ-hyperbolic geodesic space and let γ ⊂ X be a geodesic. We define for

a point x ∈ X its nearest points projection πγ(x) by the points y ∈ γ satisfying dX(x, y) =

dX(x, γ). We remark that πγ(x) is not empty in a geodesic space: it consists of the minima

of the continuous proper function dX(x, ·) : γ → [0, ∞).

The first result about this notion is referred as the reverse triangle inequality, see (8.1)

from Proposition 8.2.1.

Using this inequality, we can deduce the following estimation, which is essentially a

translation into nearest points projection language of the thinness of geodesic triangles in

Gromov hyperbolic spaces:

117



Corollary 7.2.3. Let X be a geodesic δ-hyperbolic space. Let x, y, o ∈ X be three points and

γ := [o, y] be a geodesic segment. Then for any p ∈ πγ(x),

⟨x, y⟩o = dX(o, p) + O(δ). (7.2)

Proof. Using (8.1) for dX(x, o) and dX(x, y) appeared in (2.4) will yield the result.

Now we can prove the following lemma about the distance between two boundary

points under a visual metric:

Lemma 7.2.4. Let X be a δ-hyperbolic geodesic space. Fix a base point o ∈ X. Let ρo,b be a visual

metric from o with parameter b ∈ (1, 1 + ε) for sufficiently small ε > 0. Then for every large

enough E ≫ 1, λ ≥ 1 and k ≥ 0, there exists a constant C := C(b, k, E, δ) > 0 such that for every

two distinct points ξ, η ∈ ∂Γ and for any ℓ1, ℓ2 continuous (λ, k)-quasi-geodesics connecting o to ξ

and η respectively, if

r := sup{t ≥ 0 : dX(ℓ1(t), ℓ2(t)) ≤ E},

then

b−λr/C ≤ ρo,b(ξ, η) ≤ Cb−r/λ. (7.3)

Proof. By continuity of ℓ1 and ℓ2, if x := ℓ1(r) and y := ℓ2(r), then dX(x, y) = E. Let

γ := [o, y] be a geodesic segment and p ∈ πγ(x). Applying the reverse triangle inequality

(8.1) twice, we have

dX(p, y) = dX(x, y)− dX(x, p) + O(δ) = E − dX(x, o) + dX(o, p) + O(δ).

Using the fact that dX(o, y) = dX(o, p) + dX(p, y), we can further deduce that

dX(o, p) =
1
2
(dX(x, o) + dX(y, o)− E) + O(δ).

Using the (λ, k)-quasi-geodesicity, we have the inequality

r
λ
− k − E/2 + O(δ) ≤ dX(o, p) ≤ λr + k − E/2 + O(δ). (7.4)

But by (2.8), when E is sufficiently large, we have ⟨x, y⟩o = ⟨ξ, η⟩o + O(δ). Combining this

fact with (7.2) and (7.4), we can deduce that

r
λ
− k − E/2 + O(δ) ≤ ⟨ξ, η⟩o ≤ λr + k − E/2 + O(δ).

By setting C := 4bk+E/2+O(δ), we can deduce the desired inequality via applying the esti-
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mation (7.1).

Remark 7.2.5. As mentioned in the proof of Proposition 7.2.1, in a geodesic δ-hyperbolic

space, each boundary point ξ ∈ ∂X can be connected to the base point o by a continuous

(1, Nδ)-quasi-geodesic. So the λ from Lemma 7.2.4 can be taken as 1.

At this moment, we introduce the following notion:

Definition 7.2.6 (Linear connectedness). A metric space (X, dX) is linearly connected if there

is a constant L > 0 such that for each pair x, y ∈ X there is a compact connected set K ⊂ X

containing x, y with diameter at most LdX(x, y).

The application of Lemma 7.2.4 is the following proposition inspired by [MS20, Proof

of Proposition 5.2] and is an improvement of [Wri23, Proposition 2.2].

For notations, let So(r) be the sphere centred at o of radius r > 0 and Bo(r) be the ball

centred at o of radius r > 0.

Proposition 7.2.7. Let Γ be a Gromov hyperbolic simplicial graph and let o ∈ Γ be a base point.

Suppose that the following holds.

(G1) Every vertex of Γ is adjacent to point of Γ that is 1 farther from o.

If in addition there is some D > 0 such that for all r ≥ 0, the following conditions are satisfied:

(G2) For every z ∈ So(r) and x, y ∈ So(r + 1) ∩ Bz(1) there exists a path

x = x0, x1, . . . , xℓ = y

with

xi ∈ (Γ − Bo(r)) ∩ Bx(D)

for 0 ≤ i ≤ ℓ.

(G3) For every adjacent pair x, y ∈ So(r) there exists a path

x = x0, x1, . . . , xℓ = y

with

xi ∈ (Γ − Bo(r)) ∩ Bx(D)

for 0 < i < ℓ.

Then equipped with the visual metric ρo,b from o with parameter b ∈ (1, 1 + ε) for some small

enough ε > 0, the Gromov boundary ∂Γ is linearly connected and path connected.
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Proof. The proof is a straightforward adaption of the proof of [Wri23, Proposition 2.2]. Let

ξ0, ξ1 ∈ ∂X be any two points on the Gromov boundary. Now connect ξ0 and ξ1 to o

respectively by continuous (1, k)-quasi-geodesic rays γ0 and γ1. By the same arguments in

[Wri23, Proof of Proposition 2.2], (G1) assures the existence of a dense subset I ⊂ [0, 1] such

that for all t ∈ I, there is a geodesic ray γt ⊂ Γ connecting o to a point c(t) ∈ ∂Γ. Since the

family (γt)t∈I∪{0,1} consists of continuous (1, k)-quasi-geodesic rays, thus by Lemma 7.2.4,

we can deduce from (G2) and (G3) the same estimation as in [Wri23, Proof of Proposition

2.2], i.e. there exists L > 0 independent of ξ0 and ξ1 such that the diameter diam
(
c(I)

)
<

Lρo,b(ξ0, ξ1) and that c : I → ∂Γ is uniformly continuous. The desired path is then the

closure of c(I).

Remark 7.2.8. Proposition 7.2.7 cannot be obtained by applying [Wri23, Proposition 2.2].

7.3 Fine curve graph

Let S be an orientable finite-type surface of genus g ≥ 2. It is a surface carrying a hyperbolic

metric. In a recent paper, Bowden, Hensel and Webb design for S its fine curve graph

[BHW22] as a combinatorial tool for studying Homeo(S), which is an analogue to the

renown curve graph.

An essential simple closed smooth curve γ is a proper C∞-embedding of the circle S1 →֒
S such that γ is not homotopic to a singleton nor bounds a once-punctured disc or an

annulus. In this chapter, all curves will be essential on the surface S, simple, closed, and

smooth, unless otherwise mentioned.

The fine curve graph C†(S) is a graph where the vertices are essential simple closed

smooth curves on S and two vertices are joined by an edge if they are disjoint. The non-

separating fine curve graph NC†(S) is the subgraph of C†(S) consisting of vertices as non-

separating curves. If they are equipped with the simplicial metrics, then these two con-

nected graphs are quasi-isometric (with the inclusion map being a (1, 1)-quasi-isometry)

and are simultaneously Gromov hyperbolic [BHW22, Corollary 3.9]. Hence by Proposition

7.2.1, the Gromov boundaries ∂NC†(S) is homeomorphic to ∂C†(S).

Remark 7.3.1. We remark that it is possible to construct the fine curve graphs by using non-

differentiable curves, i.e. C0-embedding of S1 →֒ S, which turns out to be the topological

version of the fine curve graphs. However, we remark that any topological curves can be

isotopic to a differentiable curve that is disjoint from it: isotopically mollify the curve

and then move it away. Hence there is a 1-Lipschitz embedding of the fine curve graphs

of differentiable curves into the fine curve graphs of non-differentiable curves and this

embedding is 1-dense, i.e. the two versions of fine curve graphs are quasi-isometric and

have no difference in the view point of large-scale geometry.
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In the sequel, we will denote by d† the simplicial metric on NC†(S). Also, we will also

denoted by NC(S) the simplicial graph where the vertices are isotopic classes of essential

non-separating simple closed curves and two vertices are connected by an edge if they

admit disjoint representative. We remark that NC(S) is also Gromov hyperbolic and is

quasi-isometric to the usual curve graph [Ham14, §3].

Definition 7.3.2 (Transversality). Let α, β be two simple closed curves. We say that they are

transverse if exactly one of the following holds:

• α ∩ β = ∅.

• For every p ∈ α ∩ β, there is an open neighbourhood N ⊂ S of p and a diffeomorphism

onto the unit disk φ : N → D ⊂ R2 such that φ(α ∩ N) = (−1, 1)× {0} and φ(β ∩ N) =

{0} × (−1, 1).

Note that if two curves are transverse, then by compactness, they only intersect at

finitely many points.

A bigon of two transverse curves α, β in a (punctured) surface is a connected component

in the complementary α ∪ β that is homeomorphic to a disk and bounds exactly one subarc

of α and one subarc of β. Two transverse curves α, β are in minimal position if they have no

bigon [FM11, Proposition 1.7].

One advantage of being smooth is that the curves can be taken as geodesic under some

hyperbolic metric:

Proposition 7.3.3 (Proposition 10, Exposé 3, [FLP91]). Let S be an orientable finite-type surface

of genus at least 2. Let γ be an essential simple closed smooth curve. Then there exists a hyperbolic

metric on S such that γ is geodesic. If in addition γ and γ′ are two smooth curves in minimal

positions, then there exists a hyperbolic metric on S such that γ and γ′ are simultaneously geodesic.

An important metric geometric property of the fine curve graph is that it can be ap-

proximated via the curve graph of its punctured subsurfaces:

Proposition 7.3.4 (Lemma 3.4 & Lemma 3.6 [BHW22]). Suppose that α, β ∈ NC†(S) are

transverse, and that α and β are in minimal position in S − P, where P ⊂ S is finite and disjoint

from α ∪ β. Then

dNC(S−P)([α]S−P, [β]S−P) = d†(α, β),

where [α]S−P and [β]S−P are respectively the isotopic classes of α and β in S − P. Moreover,

there is a geodesic α = ν0, ν1, . . . , νn = β in NC†(S) such that νi ∩ P = ∅ and [α]S−P =

[ν0]S−P, [ν1]S−P, . . . , [νn]S−P = [β]S−P is also a geodesic in NC(S − P).

Remark 7.3.5. The finite set P can be empty. In that case, it yields an isometric embedding

of NC(S − P) →֒ NC†(S). This can be realised by choosing a hyperbolic metric on S and

each isotopy class of simple closed curves is sent to its geodesic representative.
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Now we will fix an arbitrary base point o ∈ NC†(S). We write NC†
o,⋔(S) the sub-

graph of NC†(S) where all the vertices are transverse to o. It is a priori equipped with the

subgraph distance but not the induced distance.

Lemma 7.3.6. Let α ∈ NC†(S). Let F ⊂ NC†(S) be a finite collection of pairwise transverse

curves. Suppose that for every γ ∈ F, α ∩ γ ̸= ∅. Then there exists a curve α′ ∈ NC†(S) isotopic

to α that is disjoint from α and is transverse to all γ ∈ F.

Proof. Let A ⊂ S be a small enough annular neighbourhood of the curve γ ∈ F. Since

α is a proper embedding of S1, there are only finitely many connected components in

α ∩ A. Hence it is possible to cut A into finitely many pieces A1, . . . , An so that for each

1 ≤ i ≤ n, the piece Ai contains exactly one connected component of α ∩ A. Note that each

Ai is diffeomorphic to a [−1, 1]2 ⊂ R2 with the image of o ∩ Ai being [−1, 1]× {0}. It is

an elementary exercise to show that under this diffeomorphism, α is isotopic to an α′ that

is transverse to γ and disjoint from α inside of [−1, 1]2. Note that if A is small enough,

then α′ can be taken so that whenever α is transverse to some other finitely many curves,

α′ remains transverse to them. Hence by induction, we can prove the desired result.

We notice that the perturbation in Lemma 7.3.6 can be done within an arbitrarily small

annular neighbourhood. All the isotopic perturbation in the sequel will be of the same

flavour, although the situation might be slightly different.

Proposition 7.3.7. The inclusion map NC†
o,⋔(S) →֒ NC†(S) is a (1, 2)-quasi-isometry, hence

∂NC†
o,⋔(S) ≃ ∂NC†(S).

Proof. For any α ∈ NC(S), if it is not transverse to o, then by Lemma 7.3.6, there is

another α′ ∈ NC†(S) that is disjoint from α and is transverse to o. Hence d†(α, α′) =

d†
(
α,NC†

o,⋔(S)
)
= 1.

For any two vertices α, β ∈ NC†
o,⋔(S), if they are not transverse, then by applying

Lemma 7.3.6, we can find a β′ with d†(β, β′) = 1 that is transverse to both α and o. Now

we can find a geodesic α = ν0, ν1, . . . , νn = β′ in NC†(S) connecting α to β′ with the

property that there is a finite subset P ⊂ S disjoint from o such that νi ∩ P = ∅ for all i and

[α]S−P = [ν0]S−P, [ν1]S−P, . . . , [νn]S−P = [β]S−P is also a geodesic in NC(S − P). Without

loss of generality, we may assume that νi’s and o are in their minimal positions in S − P,

by taking a hyperbolic metric making o a geodesic in S − P as per Proposition 7.3.3, which

in particular implies that νi’s are transverse to o and are contained in NC†
o,⋔(S). Hence

the subgraph distance between α, β′ ∈ NC†
o,⋔(S) is exactly their distance induced from

NC†(S).

Now combine the results of two paragraphs above, we can conclude that the inclusion

map NC†
o,⋔(S) →֒ NC†(S) is a (1, 2)-quasi-isometry and thus by Proposition 7.2.1, their

Gromov boundaries are homeomorphic.
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7.4 Connectivity properties

In order to demonstrate the connectedness of the Gromov boundary of the fine curve graph,

we need only to prove that the spheres in the subgraph NC†
o,⋔(S) enjoys connectivity

properties as in the assumption of Proposition 7.2.7.

For notations, for any positive integer r > 0, let So,⋔(r) be the sphere in NC†
o,⋔(S)

centred at o of radius r, i.e. {α ∈ NC†
o,⋔(S) : d†(α, o) = r}.

Lemma 7.4.1. Let r > 0 be any positive integer and let α, β ∈ So,⋔(r). If α and β are not transverse,

then there exists a β′ ∈ So,⋔(r) isotopic to β but disjoint from it, which is also transverse to α.

Proof. In light of Proposition 7.3.4, we can find a finite subset P ⊂ S so that (o, α) and (o, β)

are in minimal positions in S − P. Up to a small perturbation as in Lemma 7.3.6, the curve

β is isotopic to but disjoint from β′ while β′ is transverse to α. Since the perturbation can

be taken so that β′ remains in a minimal position with o in S − P. By Proposition 7.3.4,

β′ ∈ So,⋔(r).

Lemma 7.4.2. For any positive integer r > 0, the sphere So,⋔(r) is connected.

Proof. Let α, β ∈ So,⋔(r) be distinct non-separating curves. By Lemma 7.4.1, up to per-

turbation, we can choose β′ ∈ So,⋔(r) isotopic to but disjoint from β. Moreover, there

exists a finite set P ⊂ S such that β′, α and o are in minimal positions in S − P. By tak-

ing a hyperbolic metric on S − P as in Proposition 7.3.3, we can even assume that β′ (up

to perturbation), α and o are geodesics. Moreover, in view of Proposition 7.3.4, there is

an isometric embedding via geodesic representations ι : NC(S − P) →֒ NC†
o,⋔(S). Note

that S − P is of at least genus 2 and 1 puncture, i.e. of high complexity as called in

[Wri23]. Then applying [Wri23, Proposition 5.4] and [Wri23, Lemma 2.1] to NC(S − P),

there is a path [α]S−P = [ν0]S−P, [ν1]S−P, . . . , [νn]S−P = [β′]S−P lying inside of the r-sphere

centred at [o]S−P in NC(S − P). Hence the image under the isometric embedding ι via

geodesic representations, α = ν0, ν1, . . . , νn = β′, yields a path connecting α to β′ in

So,⋔(r). Since β and β′ is disjoint, they are adjacent in So,⋔(r). Hence the concatenation

α = ν0, ν1, . . . , νn = β′, β is a path in So,⋔(r) connecting the two vertices.

Similar arguments will soon yield Theorem 7.1.2:

Proof of Theorem 7.1.2. For any two distinct β, γ ∈ {α ∈ NC†(S) : d†(α, o) = r}, as in Lemma

7.4.1, we can similarly perturb them to β′ and γ′ that are isotopic to but disjoint from β

and γ respectively, so that {o, β′, γ′} are transverse and d†(o, β′) = d†(o, γ′) = r. Now by

Lemma 7.4.2, we can connect them by path contained in the sphere.
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The following lemma shows that there is no “dead ends” in the sense of [BM15] inside

of the subgraph NC†
o,⋔(S), i.e. this subgraph satisfies the assumption (G1) in Proposition

7.2.7.

Lemma 7.4.3. For every adjacent pair α, β ∈ So,⋔(r) there exists a path

α = ν0, ν1, ν2 = β

in NC†
o,⋔(S) with ν1 ∈ So,⋔(r + 1).

Proof. Since α and β are disjoint, take a non-empty finite subset P ⊂ S so that P is disjoint

from α∪ β∪ o and that o, α, β are in minimal positions. Take a hyperbolic metric on S− P as

in Proposition 7.3.3 so that α and β are geodesics. By [Wri23, Proposition 5.4], we can find

a geodesic curve ν with respect to the above hyperbolic metric such that it is disjoint from

α and β with dNC(S−P)([ν]S−P, [o]S−P) = r + 1. Hence it lies in a connected component Σ

of S − α ∪ β. Now perturb ν isotopically into ν1 so that it has no bigon with o ∩ Σ in Σ − P.

This will make sure that ν1 is still disjoint from α and β, but is in minimal position with o

in S − P. Note that [ν]S−P = [ν1]S−P. Hence d†(o, ν1) = dNC(S−P)([ν1]S−P, [o]S−P) = r + 1

by Proposition 7.3.4.

Lemma 7.4.4. Let r > 0 and α, α′ ∈ So,⋔(r) be isotopic. Then there exists a path on So,⋔(r)

connecting α to α′, in which every vertices is a curve isotopic to α. If β ∈ NC†(S) is in addition

disjoint from both α and α′, then so will be the vertices in this path.

Proof. Let P ⊂ S be a finite subset so that (o, α) and (o, α′) are in minimal positions in

S − P. Up to a small perturbation as in Lemma 7.3.6, we can take α′′ that is isotopic to but

disjoint from α and that is transverse to α′. Since the perturbation is small, the curve α′′ will

remain in minimal position with o on S − P and is disjoint from β. If α′′ is disjoint from α′,
then the proof is done. Otherwise they have bigons. At least one of these bigons bounds a

topological disk and contains exactly one subarc of α′ and one subarc of α′′. By deforming

isotopically the subarc of α′′ to the other side of α′, the curve α′′ can be deformed into an

isotopic α1 with strictly less intersection points with α′ and also disjoint from α′′. Since

the support of this deformation on S is disjoint from P and β, so α1 remains in minimal

position with o and is still disjoint from β. Hence we can conclude that d†(α1, o) = r and

d†(α1, α′′) = 1. Continuing the construction process, we gain α1, α2, . . . , αn until αn is

disjoint from α′ in a way that d†(αi, o) = r and d†(αi, αi+1) = 1 for all 1 ≤ i ≤ n − 1. Hence

we get a desired path α, α′′, α1, . . . , αn, α′.

If we write Br(γ) := {α ∈ NC†(S) : d†(α, γ) ≤ r} the ball of radius r centred at γ, then

we will have the following result:
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Lemma 7.4.5. For every γ ∈ So,⋔(r) and α, β ∈ So,⋔(r + 1) ∩ B1(γ), then there exists a path

α = ν0, ν1, . . . , νℓ = β in the graph NC†(S) with νi ∈ So,⋔(r + 1) ∩ B1(γ) for 0 ≤ i ≤ ℓ.

Proof. Let P ⊂ S be a non-empty finite subset so that {o, γ, α} are in minimal positions. If

α and β are isotopic in S − P, then by Lemma 7.4.4, we are done. Suppose now that they

are not. Take a hyperbolic metric on S − P so that o and γ become geodesic. Now we take

the geodesic representatives α′ ∈ [α]S−P and β′ ∈ [β]S−P. So {o, γ, α′, β′} are pairwise in

minimal position on S − P. In particular, we conclude that α′, β′ ∈ So,⋔(r + 1) ∩ B1(γ) by

Proposition 7.3.4. By sending the isotopic classes to their geodesic representatives on S− P,

we can construct an isometric embedding ι : NC(S − P) →֒ NC†
o,⋔(S). We remark that

[Wri23, Proposition 5.4] implies that there exists a path in NC(S − P) connecting [α′]S−P to

[β′]S−P in which each vertices has distance r + 1 to [o]S−P and distance 1 to [γ]S−P. Their

images under ι then yield a path from α′ to β′ included in B1(γ). Now we connect a path

from α to α′ as well as from β to β′ as in Lemma 7.4.4. Because the vertices from these two

paths are disjoint from γ, they also lie in B1(γ). By consequences, the concatenation of the

three paths above yield the desired path.

Now we have finished the proof of all assumptions in Proposition 7.2.7 for the subgraph

NC†
o,⋔(S) ⊂ NC†(S) ⊂ C†(S). Note that they are all quasi-isometric. To prove Theorem

7.1.1, it suffices to apply Proposition 7.2.7 to NC†
o,⋔(S).

Proof of Theorem 7.1.1. With D = 1, for the subgraph NC†
o,⋔(S), Lemma 7.4.3 verifies the

assumption (G1) and (G2) from Proposition 7.2.7 and Lemma 7.4.5 verifies the assumption

(G3) from Proposition 7.2.7.

Remark 7.4.6. If the base point o is chosen as a separating curve on S, then instead of

linearly connectivity, we will obtain a polynomial connectivity, i.e. any two points on the

boundary ξ, η ∈ ∂C†(S) can be included in a connected compact set with diameter at

most Lρo,b(ξ, η) + (L + 1)b for some L > 0, since the visual metrics verify the inequality

|ρo,b − ρo′,b| ≤ bd†(o, o′).

7.5 Group action on the boundary

In this section, let us assume that the curves are only C0-embedding of S1 into S, i.e. we

will be considering the topological version of the fine curve graphs. As per Remark 7.3.1,

there is no difference in terms of their boundary at infinity.

Let S be an orientable compact surface as above and let Homeo(S) be the homeomor-

phism group of S. In this section, we will make several observations on the action of the

topological group Homeo(S) on the topological space ∂C†(S).
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We remark that Homeo(S) acts by isometries on the fine curve graph C†(S) and thus on

the Gromov bordification of C†(S). But the action of Homeo(S) on C†(S) is not continuous:

a sequence of homeomophisms gn → Id in compact-open topology (and even isotopic to

Id) can send a simple closed curve γ ⊂ S to gnγ such that gnγ is disjoint from γ for all n,

i.e. d†(gnγ, γ) = 1 does not converge to 0 as n → ∞. But since we are only interested in its

geometry at large scale, this does not cause any problem:

Proposition 7.5.1. The action of Homeo(S) on ∂C†(S) is continuous.

Proof. It suffices to show that whenever given a sequence gn → Id as n → ∞, for any

M > 0 and ξ ∈ ∂C†(S), there exists M′ > 0 and N > 0 such that if ⟨ξ, η⟩o > M′, then

⟨ξ, gnη⟩o > M for any n > N. Indeed, since the open sets on the boundary is also generated

by shadows defined in (2.9), we can find an α ∈ C†(S) such that whenever ⟨α, η⟩o > R, we

have ⟨η, ξ⟩o > M. Moreover, we can assume that ⟨α, ξ⟩o is much larger than R. Since the

topology on Homeo(S) is the compact-open topology, there exists N > 0 such that gnα is

contained in a uniformly small neighbourhood of α for every n > N. This implies that

for any curve γ ⊂ S that is disjoint from this small neighbourhood and a fortiori from

α, γ is also disjoint from gnα for all n > N. Hence d†(α, gnα) ≤ 2 for all n > N. The

same arguments hold for o so that d†(o, gno) ≤ 2 for n > N. Let η ∈ ∂C†(S) such that

⟨η, ξ⟩o > M′. We compute by (2.5) and (2.8)

⟨α, gnη⟩o = ⟨g−1
n α, η⟩g−1

n o ≥ ⟨g−1
n α, η⟩o − 2 − O(δ)

≥ min
(
⟨ξ, g−1

n α⟩o, ⟨ξ, η⟩o
)
− 2 − O(δ)

≥ min
(
⟨ξ, g−1

n α⟩o, M′)− 2 − O(δ)

But as d†(α, gnα) ≤ 2, we have
∣∣⟨ξ, g−1

n α⟩o − ⟨ξ, α⟩o
∣∣ ≤ 2+O(δ), which means that ⟨ξ, g−1

n α⟩o

is also much larger than R. Hence by letting M′ be large enough, we can assure that

⟨α, gnη⟩o > R, which implies that ⟨ξ, gnη⟩o > M for all n > N.

Recall that for a δ-hyperbolic space X and a subgroup G < Isom(X). Let o ∈ X be a

(and thus any) point in X. The limit set of G, denoted Λ(G), is given by

Λ(G) :=
{

ξ ∈ ∂X : gno → ξ for some (gn) ∈ GN
}

.

Now let us examine the limit set of Homeo(S) on the Gromov boundary of C†(S).

Lemma 7.5.2. Let S be an orientable surface as above. The limit set of Homeo(S) on ∂C†(S) is

∂C†(S).

Proof. Let us consider NC†(S), which is quasi-isometric to C†(S). We remark that the

homeomorphism ∂NC†(S) → ∂C†(S) is Homeo(S)-equivariant. So it suffices to show
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that the limit set of Homeo(S) on ∂NC†(S) is ∂NC†(S) itself. Indeed, by the theorem

of classification of finite-type surfaces, for any two non-separating simple closed curves

α, β ⊂ S, there exists ϕ ∈ Homeo(S) such that ϕ(α) = β, i.e. the action of Homeo(S)

on NC†(S) is transitive. Let o ∈ NC†(S) be any base point and ξ ∈ ∂NC†(S). If αn is

a Cauchy-Gromov sequence converging to ξ, then by transitivity of the action, for each

n > 0, there exists ϕn ∈ Homeo(S) such that ϕn(o) = αn. But this means that ϕn(o) → ξ.

Hence we can conclude that Λ
(

Homeo(S)
)

is the entire boundary.

Recall that an isometric group action on a δ-hyperbolic space X is of general type if

there exists two independent hyperbolic isometries, or equivalently if the action admits no

fixed point on ∂X. For isometric actions of general type on δ-hyperbolic spaces, there is an

interesting dynamical property:

Proposition 7.5.3 (Corollary 7.4.3 (ii), [DSU17]). Let X be a δ-hyperbolic space and let G act on

X by isometries. Suppose in addition that the action is of general type. Then the limit set Λ(G) is

the smallest non-empty closed G-invariant subset of ∂X.

Recall that a topological space X on which G acts is said G-minimal if for every point

x ∈ X, the closure of the orbit Gx is X. Such an action will also be called a minimal action.

Proposition 7.5.4. Let S be an orientable surface as above. Then the action of Homeo(S) on

∂C†(S) is minimal.

Proof. In view of Proposition 7.5.3 and Lemma 7.5.2, it suffices to show that the action of

Homeo(S) on C†(S) is of general type. To prove so, it suffices to fix a hyperbolic metric

on S and take two independent pseudo-Anosov isometric homeomorphisms on S, which

will yield two independent hyperbolic isometries on C†(S) as their action of a subgraph of

C†(S) isometric to C(S) is of general type.

To conclude this section, we wish to point out in the interests of curiosity that if S

is a compact surface, then Homeo(S) is a Polish group, i.e. a completely metrizable and

separable topological group, and its continuous minimal actions on compacta are of special

interests. For example, [GTZ21] shows that its universal minimal flow (see Definition 3.1.35)

is not metrisable.
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Part III

Neither Fish, Flesh, nor Fowl
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Chapter 8

Ultralimit and Quasi-isometries

夫雞肋，棄之可惜，食之無所得。1

楊脩 (175–219), cf.《九州春秋》.

In the classical case (X geodesic and proper), we can alternatively define Gromov

boundary as equivalence classes of geodesic rays (see Remark 2.2.13). In non proper set-

tings, joining a point in x ∈ X to a boundary point ξ ∈ ∂X will be rather problematic,

because Arzelà-Ascoli theorem is no longer available. One possibility is to adopt the no-

tions of roads and biroads, which are substitutes of geodesic rays and geodesic lines in an

length hyperbolic space [Väi05]. Here we present another way to overcome this difficulty.

8.1 Ultralimit

Let (X, d) be a metric space. Let Seqb(X) be the collection of all bounded sequences in X.

We assume that the sequences are indexed by N. Recall that a non-principal ultrafilter ω on

N can be regarded as a finitely additive probability measure such that all subsets in N are

measurable (or a mean on N) with ω(S) ∈ {0, 1} and ω(S) = 0 if S is a finite subset of N.

By Zorn’s lemma, there is always a non-principal ultrafilter on N. Moreover, given

a bounded sequence (an)n∈N of real numbers, we can deduce that there exists a unique

l ∈ R such that for all ε > 0, the measure ω ({n ∈ N : |an − l| < ε}) = 1. We denote

l = ω- limn an.

Given two bounded sequences (xi)i∈N and (yi)i∈N of points in X, we define

dω

(
(xi), (yi)

)
= ω- lim

i
d(xi, yi) ∈ [0, ∞)

1Translation from classical Chinese: This is like chicken ribs, discarding them would be a pity, but there is not

much to gain by eating them.
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on Seqb(X). We remark that as both sequences are bounded, the limit is actually taken

inside of a compact set and thus it always exists. We say that (xi) ∼ω (yi) if and only if

dω

(
(xi), (yi)

)
= 0. So ∼ω becomes an equivalent relation on Seqb(X).

Definition 8.1.1 (ω-ultralimit). Let X be a metric space. We denote by Xω the metric space(
Seqb(X)/ ∼ω, dω

)
and we call it the ω-ultralimit of X.

Remark 8.1.2. There are some non-equivalent ways to define the ultralimit of a metric space.

Some authors may not require the sequences in the construction to be bounded, but at the

end the ultralimit will not be a metric space but a space with pseudo-metric. See [Kap00,

§9.2] for instance.

A path in a space X is a topological embedding of the unit real interval [0, 1] →֒ X. We

write γ : x ⇝ y if γ is a path with endpoints x and y. The length of the path γ is denoted

ℓ(γ) defined by

ℓ(γ) := sup

{
n−1

∑
i=0

dX
(
γ(ti), γ(ti+1)

)
: 0 ≤ t0 < t1 < · · · < tn = 1

}
.

Recall that a length metric space (X, dX) is a metric space satisfying the condition:

dX(x, y) = inf
γ : x⇝y

ℓ(γ).

Sometimes, a length metric space is also called an intrinsic metric space.

Proposition 8.1.3. If X is a length space, then for any non-principal ultrafilter ω on N, Xω is

geodesic.

Proof. Let (xi) and (yi) be representatives of two distinct points in Xω and let L = dω

(
(xi), (yi)

)
.

It suffices to find a path γ : [0, L] → Xω such that for every 0 ≤ s ≤ L, dω

(
γ(s), (xi)

)
= s

and dω

(
γ(s), (yi)

)
= L − s. Note that this path will be automatically a geodesic path.

For each i ∈ N, define γi : [0, ℓ(γi)] → X to be a rectifiable path between xi and

yi, parameterised by length, such that the total length ℓ(γi) is less than d(xi, yi) + 2−i.

Reparameterise γi linearly into a path γi : [0, L] → X. Let γ(s) be the equivalent class of

the sequence
(
γi(s)

)
in Xω. Since ω- limi d(xi, yi) = L and ω is non-principal, we have

dω

(
γ(s), (xi)

)
= ω- lim

i

s
L

(
d(xi, yi) +

1
2i

)
= s

and

dω

(
γ(s), (yi)

)
= ω- lim

i

L − s
L

(
d(xi, yi) +

1
2i

)
= L − s.

This proves the desired result.
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Since each geodesic metric space is a priori a length metric space, we can conclude the

following result:

Corollary 8.1.4. If X is a geodesic space, then for any non-principal ultrafilter ω on N, Xω is a

geodesic metric space.

We can define the following isometric embedding ιω : X →֒ Xω by sending each x ∈ X

to the equivalent class of the constant sequence of x. In particular, we have Isom(X) <

Isom(Xω) in the most natural way by g(xn)n∈N = (gxn)n∈N for g ∈ Isom(X).

If (X, dX) is a proper metric space, then ιω is an isometry between Xω and X. For

any bounded sequence (xn) in a proper metric space X, it admits several accumulation

points in X and in particular, its limit along a fixed non-principal ultrafilter is one of these

accumulation points, denoted by x ∈ X. Then the bounded sequence (xn) is equivalent to

the constant sequence of x in Xω.

But generally, the ultralimit of a non-proper metric space is not isometric to itself and

the isometric embedding is not essentially surjective. Here are some examples:

Example 8.1.5 (Countable discrete space). Let the natural numbers (N, δN) be equipped

with the discrete metric. For any non-principal ultrafilter ω on N, we have Nω = (R, δR),

where δR is the discrete metric on R. Indeed, on one hand we see that Nω = NN/ ∼ω

and as a result |Nω| ≤ |R|; on the other hand, the map ϕ : (1, ∞) → Nω by s 7→ (⌊sn⌋)n∈N

is injective, which yields |R| ≤ |Nω| after Cantor-Bernstein theorem. Moreover, since the

distance in (N, δN) is either 0 or 1, so will be its limit taken along the ultrafilter ω, which

makes (δN)ω a discrete metric.

Example 8.1.6 (R-tree). Recall that the SNCF metric, or the French railway metric, dS on R2

is given by

dS(p, q) =




|p − q|, if p, q are linearly dependent

|p|+ |q|, if else
,

where | · | is the ambient Euclidean norm in R2. It is an R-tree. Let X be obtained by gluing

together the ends of countably infinite geodesic rays, i.e. a tree with one root vertex o and

countably many branches of infinite length. Then for any non-principal ultrafilter ω on N,

the ultralimit Xω is (R2, dS), i.e. a tree with one root vertex ιω(o) and |R| many infinitely

long branches. To see this, it suffices to consider the points at distance 1 to o and ιω(o) and

uses the result from Example 8.1.5.

Example 8.1.7 (Real Hilbert space). Recall that the dimension of a real Hilbert space is the

cardinal of a maximal orthonormal set in it. Let H be a real Hilbert space of countable
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dimension and ω be a non-principal ultrafilter on N. It is not hard to see that the ultralimit

is always complete (see [BH13, §I.5, Lemma 5.53]). The ω-ultralimit of a Hilbert space

remains a Hilbert space by defining the inner product ⟨u|v⟩ = ω- limn⟨un|vn⟩, u + v =

(un + vn)n∈N and λu = (λun)n∈N, for any λ ∈ R and every u, v ∈ Hω and their respective

representatives (un)n∈N, (vn)n∈N ∈ Seqb(H).

It is worth noticing that given an orthonormal basis (en)n∈N of H, its ultralimit along

ω
(
(en)n∈N

)ω ⊂ Hω is an orthonormal set but it is not maximal. Let u ∈ Hω be a unitary

vector and (un)n∈N be its representative with un = ∑k∈N xn
k ek. It is not hard to see that u is

orthogonal to (ϵi)i∈I if and only if ω- limn maxk |xn
k | = 0.

If we denote by (ϵi)i∈I the ultralimit of (en)n∈N and an orthonormal basis (ϵj)j∈J con-

taining the ultralimit with I ⊂ J, then |J \ I| ≥ ℵ0. Indeed, for each positive integer n ≥ 1,

we define u(n) ∈ Hω to be the equivalent class of the sequence
(

u(n)
m

)
m∈N

, where

u(n)
m =

nm−1

∑
k=(n−1)m

1√
m

ek ∈ H.

Then
{

u(n) ∈ Hω : n ≥ 1
}

is a countable orthonormal family that is also orthogonal to

(ϵi)i∈I .

Nevertheless, we can still compute explicitly the dimension of Hω. First, we should

notice that |H| ≤
∣∣RN

∣∣ = |R|, while |H| ≥ |R|. Thus |H| = |R|. As a result, we have

|Hω| ≤ |HN| = |R| × |N| = |R|. This yields that dimHω ≤ |R|. Conversely, dimHω =

|J| ≥ |I| = |R|. Hence dimHω = |R|.
Therefore, given a real Hilbert space H of countably infinite dimension, we can conclude

that Hω is a real Hilbert space of dimension |R|.

Example 8.1.8 (Real hyperbolic space). Recall that the algebraic hyperbolic space H(H)

over a field K is constructed from a Hilbert space H over K by projectivising the Minkowski

space L ⊂ K ⊕H equipped with a Lorentzian quadratic form. It is clear from the construc-

tion that H(H)ω = H(Hω) for any non-principal ultrafilter ω on N. In particular, the

ultralimit of a real hyperbolic space of countably infinite dimension is a real hyperbolic

space of dimension |R|.

We have seen in Example 8.1.8 that the ultralimit of a real hyperbolic space remains

a real hyperbolic space but of higher dimension. Both of these two spaces are Gromov

hyperbolic. More generally, δ-hyperbolicity is invariant under taking the ultralimit.

Lemma 8.1.9. If X is a δ-hyperbolic space, then for any non-principal ultrafilter ω on N, Xω is

also a δ-hyperbolic space.
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Proof. Let (xi), (yi), (zi) and (pi) be representatives of any four points in Xω. By the δ-

hyperbolicity of X, we have ⟨xi, yi⟩pi ≥ min
(
⟨xi, zi⟩pi , ⟨zi, yi⟩pi

)
− δ, and by passing to the

limit along the ultrafilter ω, it soon yields that Xω is also δ-hyperbolic.

Finally, we need to point out that ιω can be extended to the Gromov boundaries in a

natural way, i.e. one sets ιω(ξ) ∈ ∂(Xω) to be the limit of ιω(xn) for any Cauchy-Gromov

sequence (xn) converging to ξ. Moreover, it is not hard to see that the embedding ιω : ∂X →֒
∂(Xω) is continuous.

8.2 Ultracompleteness

Recall that a Gromov hyperbolic space X is ultracomplete if any two points in its Gromov

bordification can be connected by a geodesic. In this section, we will give a proof of the

ultracompleteness of the ultralimit Xω of a hyperbolic space X. The fact that ∂X ⊂ ∂Xω

enjoys visibility property is used in [Cap+15, Proof of Proposition 3.1] and such a geodesic

line can be easily constructed by taking ω-limit of geodesic segments, but as ∂X ̸= ∂Xω in

general (see examples in §8.1), this does not imply ultracompleteness of Xω.

In what follows, we will refer to O(δ) an additive error at most a multiple of δ, viz. if

we write f (x) = g(x) + O(δ), then it means | f (x)− g(x)| < Mδ for some uniform M > 0.

Errors O(δ) appear in different places can be different.

For a given geodesic γ in X, we define for a point x ∈ X its nearest points projection

πγ(x) by the points y ∈ γ satisfying dX(x, y) = dX(x, γ). Since a geodesic is a locally

compact space, such y always exists for any x ∈ X. Nearest point projection appears to be

a powerful tool dealing with geodesic Gromov hyperbolic spaces.

The first result is referred as the reverse triangle inequality:

Proposition 8.2.1 ([MT18], Proposition 2.2). Let X be δ-hyperbolic and γ be a geodesic. For any

x ∈ X and any p ∈ πγ(x), we have

d(x, y) = d(x, p) + d(p, y) + O(δ) (8.1)

for all y ∈ γ. Moreover, any geodesic connecting y to x must pass within distance M(1, 2δ) of p.

Let us observe that for any p, q ∈ πγ(x), Proposition 8.2.1 implies d(p, q) ≤ O(δ). This

shows the fact that in a δ-hyperbolic space X the nearest points projection πγ(x) onto the

geodesic γ is coarsely well-defined.

The reverse triangle inequality can be further used to deduce the following estimation.
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Proposition 8.2.2 ([Mah10], Proposition 3.4). Let X be δ-hyperbolic and γ be a geodesic. Let x

and y be two points in X. Suppose that diam (πγ(x) ∪ πγ(y)) is large enough, then for p ∈ πγ(x)

and q ∈ πγ(y), we have d(x, y) = d(x, p) + d(p, q) + d(q, y) + O(δ).

Now we can prove the quasi-ultracompleteness of geodesic Gromov hyperbolic spaces:

Proposition 8.2.3 (quasi-ultracompleteness). Let (X, dX) be a δ-hyperbolic geodesic space. Then

there exists a K > 0, depending only on δ, such that any two points in the Gromov bordification of

X can be connected by a continuous (1, K)-quasi-geodesic.

Proof. Let x ∈ X and ξ ∈ ∂X. Suppose that (xn) converges to ξ. By passing to a subse-

quence, we may assume that dX(xn, x) > 100nδ and dX(xn, xn+1) > 100δ for every n ≥ 1.

Let γn be the geodesic segment [x, xn]. Using δ-slimness and thinness of geodesic triangles

[BH13, §III.H, Definition 1.16 & Proposition 1.17], for each k ≥ 1, we can find a nk such

that the length ℓ
(
γnk ∩ Nδ(γm)

)
> k for all m ≥ nk. Take yk ∈ γnk ∩ Nδ(γm) such that

dX(x, yk) = k. Now, for any i, j ≥ 1, pick m > max(ni, nj), then project yi, yj respectively

to pi, pj ∈ γm. Note that dX(yi, pi) < δ and dX(yj, pj) < δ. Applying Proposition 8.2.2, we

have dX(yi, yj) = |i − j|+ O(δ). This shows that the continuous path

α := [x, y1] ∪ [y1, y2] ∪ [y2, y3] . . .

is a (1, K)-quasi-geodesic for some K > 0 depending only on δ. It is not hard to check that

the sequence (yk) is equivalent to (xn), hence α connects x to ξ. Similar arguments also

imply the existence of a quasi-geodesic connecting two boundary points.

Now we are ready to show the following theorem, of which the proof seems a little

technical:

Theorem 8.2.4 (ultracompleteness of ultralimit). Let (X, dX) be a Gromov hyperbolic geodesic

space and ω be a non-principal ultrafilter over N. Then the ultralimit Xω is ultracomplete.

Proof. We shall show that for any pair of distinct points ξ± ∈ ∂ (Xω), there exists a geodesic

connecting ξ− to ξ+. Let o ∈ X and o = ιω(o) ∈ Xω. By Proposition 8.2.3, we can find a

continuous (1, K)-quasi-geodesic line γ in Xω that connects ξ− to ξ+. Take xn = γ(tn) and

yn = γ(−tn) for an increasing sequence (tn)n∈N of positive numbers with tn → ∞. Due

to (2.8), by passing to subsequences, we may assume that ⟨xn, yn⟩o ≤ ⟨ξ+, ξ−⟩o + 3δ ≤ M

for all n ∈ N and for some positive M < ∞. Let (xn
j )j∈N and (yn

j )j∈N be respectively

representatives of xn and yn. Since

ω
({

j ∈ N :
∣∣∣⟨xn

j , yn
j ⟩o − ⟨xn, yn⟩o

∣∣∣ < 1
})

= 1,
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we may choose for each xn and yn a representative that ⟨xn
j , yn

j ⟩o ≤ M + 1 for all n, j ∈ N.

In the sequel, whenever we write xi
j or yi

j for any i, j ∈ N, it means the j-th component of

the representative chosen above for xi or yi.

Note that the ω-limit of a sequence of geodesics connecting the components in the

representatives of two points in Xω will yield a geodesic between these two points (cf.

Proposition 8.1.3). To avoid any ambiguity, we fix once and for all [xn, yn] a geodesic

segment in Xω between xn and yn that is obtained by taking the ω-limit of a sequence of

geodesic segments [xn
j , yn

j ] in X. For all m ≤ n, we denote πn(xm) and πn(ym) respectively

a nearest point projection of xm and ym on [xn, yn]. Let
(

pm
j (n)

)
j∈N

and
(
qm

j (n)
)

j∈N
be

representatives of πn(xm) and πn(ym).

Now let us define for every n ≥ 1

An =

{
j ∈ N :

∣∣∣d
(

xm
j , pm

j (n)
)
− dω

(
xm, πn(xm)

)∣∣∣ < 1
n

, for all m ≤ n
}

,

and

Bn =

{
j ∈ N :

∣∣∣d
(
ym

j , qm
j (n)

)
− dω

(
ym, πn(ym)

)∣∣∣ < 1
n

, for all m ≤ n
}

.

We further define J0 = N, J1 = A1 ∩ B1 ∩ [1, ∞), and inductively

Jn = An ∩ Bn ∩ Jn−1 ∩ [inf(Jn−1) + 1, ∞),

for all n > 1. Since ω(An) = ω(Bn) = 1, we can also deduce that ω(Jn) = 1 for all n ≥ 0.

Let jn = min(Jn \ Jn+1). Then the sequence (jn)n∈N will be a strictly increasing sequence of

integers. For any k ∈ N, we also define a function ϕ(k) = n whenever jn ≤ k < jn+1. The

function ϕ is non-decreasing and ϕ(k) ≤ k.

Now we wish to construct a sequence of mappings ℓk : R → X so that the ω-limit of

this sequence will yield a geodesic line ℓ in Xω that connects ξ− to ξ+. We insist that ℓk

is not necessarily continuous. Not distinguishing the mapping ℓk from its image, we may

first assume that the geodesic segment
[

xϕ(k)
k , yϕ(k)

k

]
is contained in ℓk and is parameterised

by length with ℓk(0) being a nearest point projection of o to
[

xϕ(k)
k , yϕ(k)

k

]
. We extend ℓk

by the k-th components of a given representative of the continuous quasi-geodesic γ with

the segment between xϕ(k) and yϕ(k) removed so that the parameter of ℓk becomes a well-

defined map R → X.

The first thing we need to verify is that for any t ∈ R, the sequence
(
ℓk(t)

)
k∈N

is

bounded. Indeed, for large enough k, the number ϕ(k) will also be large enough so that

min{d(xϕ(k)
k , o), d(yϕ(k)

k , o)} ≫ |t|, which implies that ℓk(t) ∈
[

xϕ(k)
k , yϕ(k)

k

]
. Recall that ℓk(0)
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is a nearest point projection of o on
[

xϕ(k)
k , yϕ(k)

k

]
. Then by Proposition 8.2.2, we get

d(o, ℓk(t)) = d
(

o,
[

xϕ(k)
k , yϕ(k)

k

])
+ d
(
ℓk(0), ℓk(t)

)
+ O(δ)

≤ ⟨xϕ(k)
k , yϕ(k)

k ⟩o + |t|+ O(δ)

≤ M + 1 + |t|+ O(δ) < ∞

for large enough k. Hence the ω-limit of ℓk defines a map ℓ : R → Xω.

Secondly, we need to show that ℓ is a geodesic line. For any s, t ∈ R, we may take large

enough k so that ℓk(t), ℓk(s) ∈
[

xϕ(k)
k , yϕ(k)

k

]
. As a result,

dω

(
ℓ(t), ℓ(s)

)
= ω- lim

k
d
(
ℓk(t), ℓk(s)

)
= ω- lim

k≫1
|t − s| = |t − s|.

This implies that ℓ is a geodesic line.

Finally, we have to verify whether ℓ connects ξ− to ξ+. To prove this, it suffices to show

that xm and ym are at a uniform bounded distance to ℓ for all m. Let us take any m ∈ N.

Let ℓk(tk) = pm
k

(
ϕ(k)

)
be the nearest point projection of xm

k to
[

xϕ(k)
k , yϕ(k)

k

]
as above. Since

the distance between xm
k and o is bounded, by Proposition 8.2.2, the sequence (tk)k∈N is

also bounded. Let T = ω- limk tk. By picking large enough k, we can assume that ϕ(k) ≥ m.

Hence we have

dω(ℓ, xm) ≤ dω(ℓ(T), xm)

= ω- lim
k≫1

d(ℓk(T), xm
k )

≤ ω- lim
k≫1

(
d(ℓk(tk), xm

k ) + d
(
ℓk(tk), ℓk(T)

))

= ω- lim
k≫1

(
d(ℓk(tk), xm

k ) + |tk − T|
)

= ω- lim
k≫1

d(ℓk(tk), xm
k )

= ω- lim
k≫1

d (pm
k (ϕ(k)), xm

k ) .

Now we need the following set-theoretic remark. Let S = {k ∈ N : k ∈ Jϕ(k)}. We claim

that S = J1. On one hand, for any k ∈ S, there exists n = ϕ(k) such that k ∈ Jk ⊂ J1, which

implies that S ⊂ J1. On the other hand, because J1 =
⋃

n≥1 Jn \ Jn+1, for any k ∈ J1, there

exists some n ≥ 1 such that k ∈ Jn \ Jn+1, which means ϕ(k) = n and k ∈ Jϕ(k), i.e. k ∈ S.

So we prove the claim.

Since we are taking ω-limit and ω(S) = ω(J1) = 1, it is possible to assume that k ∈
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Jϕ(k) ⊂ Aϕ(k), so by Morse Lemma,

d (pm
k (ϕ(k)), xm

k ) ≤ dω

(
xm, πϕ(k)(xm)

)
+

1
ϕ(k)

≤ M(1, K) +
1

ϕ(k)
,

where M(·, ·) is the Morse function. By taking the ω-limit, we have

dω(ℓ, xm) ≤ M(1, K),

for all m ∈ N. This shows that ℓ is at a finite Hausdorff distance from the sequence

(xm)m∈N. The same proof also applies for the sequence (ym)m∈N. Hence ℓ is a geodesic

line in Xω that connects ξ− to ξ+.

Proposition 8.2.5 (Extended Morse Lemma). Let (X, dX) be a Gromov hyperbolic geodesic space

and X be its Gromov bordification. Then any pair of quasi-geodesics connecting two points x, y ∈ X

must be of finite Hausdorff distance.

Proof. Take a ultralimit Xω. Using the arguments from the proof of Theorem 8.2.4, for each

quasi-geodesic, we can find a sequence of geodesic segments converging to a geodesic that

share the same endpoints as the quasi-geodesic. We can conclude the result by applying

Morse Lemma to the quasi-geodesics and these geodesic segments.

Remark 8.2.6. The arguments for converging geodesics is a substitute for Arzelà-Ascoli

Theorem

8.3 Ultracomplete supspace

In this section, we will discuss the induced quasi-isometry between ultralimits from quasi-

isometry between length Gromov hyperbolic spaces.

Theorem 8.3.1. Let (X, dX) and (Y, dY) be two metric spaces. Let ω be a non-principal ultrafilter

on N. Suppose that f : X → Y is a (λ, K)-quasi-isometry. Then there exists a (λ, K)-quasi-

isometry f ω : (Xω, dX
ω) → (Yω, dY

ω) such that f ω|ιω(X) = ιω ◦ f , where ιω : X →֒ Xω is the

canonical isometric embedding.

Proof. Let x ∈ Xω and ψX(x) ⊂ Seqb(X) be the collection of all sequences in X that con-

verges to x. Similarly, we define ψY(y) for y ∈ Yω. Define for each x ∈ Xω

Yx :=
{

y ∈ Yω : ∃(xn) ∈ ψX(x) such that
(

f (xn)
)
∈ ψY(y)

}
.

Note that for any (xn) ∈ ψX(x), the sequence
(

f (xn)
)

is bounded by the virtue of quasi-

isometry, thus Yx is not empty. We claim that Yx is uniformly bounded for every x ∈ Xω.

139



Indeed, for any two sequences (xn), (x′n) ∈ ψX(x), by the definition of quasi-isometry

dY
(

f (xn), f (x′n)
)
≤ λdX(xn, x′n) + K →

ω
K,

as a result dY
ω(y, y′) ≤ K for any y, y′ ∈ Yx ⊂ Yω. Now we define f ω|ιω(X) := ιω ◦ f and

for every x ∈ Xω \ ιω(X), we set f ω(x) to be any point in Yx. Since inequality is stable

under taking limits, the map f ω : Xω → Yω is also a (λ, K)-quasi-isometric embedding. We

claim that f ω is essentially surjective. Indeed, let y ∈ Yω be an arbitrary point. Because

f : X → Y is essentially surjective, there exists a constant C > 0 such that NC
(

f (X)
)
= Y.

By consequences, for any sequence (yn) ∈ ψY(y), we can find a sequence (xn) in X such

that dY
(

f (xn), yn
)
< C + 1 for any n. As a result, by quasi-isometry, for any n, m > 0,

1
λ

dX(xn, xm)− K ≤ dY
(

f (xn), f (xm)
)

≤ dY
(

f (xn), yn
)
+ dY

(
f (xm), ym

)
+ dY(yn, ym)

< 2C + 2 + dY(yn, ym),

which implies that (xn) ∈ Seqb(X). Let x ∈ Xω be the associated point to the above

sequence (xn) ∈ Seqb(X). Then f ω(x) ∈ Yx by definition. Let (x′n) ∈ ψX(x) be such a

sequence that
(

f (xn)
)
∈ ψY

(
f ω(x)

)
. Note that (xn) and (x′n) induce the same point in Xω.

Now we compute

dY
ω

(
f ω(x), y

)
= ω- lim

n
dY
(

f (x′n), yn
)

≤ ω- lim
n

[
dY
(

f (x′n), f (xn)
)
+ dY

(
f (xn), yn

)]

≤ ω- lim
n

[
λdX(x′n, xn) + K + dY

(
f (xn), yn

)]

≤ K + C + 1 < ∞.

In conclusion, we just show that infx∈Xω dY
ω

(
y, f ω(x)

)
≤ K + C + 1 for all y ∈ Yω, i.e. the

map f ω : Xω → Yω is essentially surjective, thus a quasi-isometry.

Now we define the following notion:

Definition 8.3.2 (ultracomplete supspace). Let X be a Gromov hyperbolic space. A ultracom-

plete supspace u(X) of X is a ultracomplete space with an isometric embedding ι : X →֒
u(X).

It turns out that ultracomplete supspace is guaranteed for any Gromov hyperbolic met-

ric space, even not necessarily geodesic. The following fact can be viewed as a partial

affirmation to Conjecture 2.2.26:
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Proposition 8.3.3. For any Gromov hyperbolic space X, there exists a ultracomplete supspace u(X).

Proof. Let Inj(X) be the injective hull of X. It is a Gromov hyperbolic geodesic space with

the same δ as X where X is isometrically embedded [Lan13]. Then by Theorem 8.2.4, the

metric space Inj(X)ω is a desired ultracomplete supspace.

In the follow, we will list some consequences of the existence of ultracomplete supspace.

Corollary 8.3.4. Let (X, dX) be a Gromov hyperbolic space and X be its Gromov bordification. Then

any pair of quasi-geodesics connecting two points x, y ∈ X must be of finite Hausdorff distance.

Also, all quasi-geodesic triangles are slim.

Proof. Take a ultracomplete supspace of X and then apply extended Morse Lemma to u(X).

Note that these results pass to subspaces.

Corollary 8.3.5. Let (X, dX) be a Gromov hyperbolic length space and let o ∈ X be any base point.

Then its Gromov boundary ∂X is the equivalent classes of quasi-geodesics ray issued from o up to

bounded Hausdorff distance.

Proof. With Corollary 8.3.4, we can adapt the proof of Proposition 8.2.3 to length space:

instead of taking geodesics, one takes closed enough paths which are (1, ε)-quasi-geodesics

for sufficiently small ε > 0. As a result, for any point on ξ ∈ ∂X, there exists a quasi-

geodesic ray issued from o converging to ξ. By extended Morse Lemma, any of two quasi-

geodesic rays issued from o and converges to a same point on the boundary must be of

bounded Hausdorff distance. Conversely, by Proposition 2.2.42, any quasi-geodesic ray

converges to a point on ∂X, i.e. all increasing sequences on a quasi-geodesic ray is Cauchy-

Gromov and they are all equivalent. Hence we prove the corollary.

Remark 8.3.6. The definition of Gromov boundary cannot be defined via geodesic rays when

the Gromov hyperbolic space is not ultracomplete. But if the space is indeed ultracomplete,

then similar arguments will show that the three models, defined respectively via geodesic

rays, quasi-geodesic rays and Cauchy-Gromov sequences, are equivalent.

Example 8.3.7. When the space is far from being length, then Corollary 8.3.5 might fail. Let

us consider the standard Cayley graph of free group F2 on two generators. The subspace

X := {bnan : n ≥ 0} has a unique Gromov boundary point but it contains no quasi-geodesic

ray issued from Id ∈ F2.

As reader may notice, some of the above results can also be deduced using injective

hulls, in which the original Gromov hyperbolic space is isometrically embedded. But when

we try to study the large-scale geometry of these spaces, injective hull will no longer be

handy: in general, quasi-isometry between two spaces cannot be extended to a quasi-

isometry between their injective hulls.
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Example 8.3.8. Let Γ := {(x, y) ∈ R2 : y = |x|} be a subspace of R2. It is quasi-isometric to

R. However, the injective hull of R is itself, while Inj(Γ) contains {(x, y) ∈ R2 : y ≥ |x|}
and is not Gromov hyperbolic. As a result, the space R is not quasi-isometric to Inj(Γ) as

geodesic spaces.

Let X and Y be two Gromov hyperbolic spaces. Let u(X) and u(Y) be ultracomplete

supspaces respectively. Then
(
u(X), u(Y)

)
is an admissible pair of ultracomplete supspaces if

any quasi-isometric embedding f : X → Y can be extended to a quasi-isometric embedding

fu : u(X) → u(Y).

Recall that (X, dX) is a discretely geodesic metric space if for any x, y ∈ X, dX(x, y) ∈ N

and there exists an isometric embedding γ : {0, 1, . . . , dX(x, y)} → X with γ(0) = x and

γ
(
dX(x, y)

)
= y.

Proposition 8.3.9. Let X and Y be two Gromov hyperbolic spaces. If X and Y are simultaneously

discretely geodesic metric spaces or length spaces, then they have an admissible pair of ultracomplete

supspaces u(X) and u(Y). Moreover, if X and Y are quasi-isometric, so will be u(X) and u(Y).

Proof. Note that a discretely geodesic Gromov hyperbolic is quasi-isometric to its injective

hull [Lan13, Proposition 1.3]. If X and Y are simultaneously discretely geodesic, then in

light of Theorem 8.2.4, the ultracomplete spaces Inj(X)ω and Inj(Y)ω will be the desired

admissible pair of ultracomplete supspaces. If X and Y are both length spaces, then by

applying Theorem 8.2.4 twice, we can see that the pair (Xω)ω and (Yω)ω is what we

want.

As a classical result deducing from slimness of (quasi)-geodesic triangles, a quasi-

isometric embedding f : X → Y between Gromov hyperbolic geodesic spaces will induce a

topological embedding f∂ : ∂X → ∂Y [CDP90, §3.2, Théorème 2.2]. Using admissible pairs

of ultracomplete supspaces will immediately yield the generalisations:

Proposition 8.3.10. Let X and Y be two Gromov hyperbolic spaces. If X and Y have an admissible

pair of ultracomplete supspaces, then any quasi-isometric embedding f : X → Y will yield a topo-

logical embedding f∂ : ∂X → ∂Y. If in addition, f is a quasi-isometry, then f∂ is a homeomorphism.

In particular, we have:

Corollary 8.3.11. Let X and Y be two Gromov hyperbolic spaces. If X and Y are simultaneously

discretely geodesic metric spaces or length spaces, then any quasi-isometric embedding f : X → Y

will yield a topological embedding f∂ : ∂X → ∂Y. If in addition, f is a quasi-isometry, then f∂ is a

homeomorphism.

Since even when the space is not Gromov hyperbolic, one can still construct its ultralimit

and quasi-isometric embedding can be extended to the ultralimits, we can also deduce the

following result as generalisation of Theorem 2.2.40:
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Proposition 8.3.12. Let X and Y be two length spaces. Suppose that Y is Gromov hyperbolic. If

there exists a quasi-isometric embedding f : X → Y, then X will also be Gromov hyperbolic.

In principle, if a class of Gromov hyperbolic spaces have admissible ultracomplete

supspaces, then we can always try to recover the classical geometric results for this class of

spaces.

Let us finish this appendix with a remark on the group of isometries of a general Gro-

mov hyperbolic space, of which the proof is just an adaption of proper geodesic settings to

ultracomplete supspace. It is essentially the same as [Cap+15, Proposition 3.1] but under

the most general settings:

Proposition 8.3.13. Let (X, dX) be a Gromov hyperbolic space. Then there is a trichotomy for an

isometry g ∈ Isom(X). Namely, the element g is:

▶ elliptic, if and only if ⟨g⟩ has bounded orbits;

▶ parabolic, if and only if dX(x, gnx)/n → 0 as n → ∞;

▶ hyperbolic, if and only d(x, gnx)/n → c > 0 as n → ∞.

For any group G acts on X by isometries, there is a full classification for its action. Namely, the

action is

• elementary and

▶ bounded if it has bounded orbits;

▶ horocyclic if it is unbounded and has no hyperbolic elements;

▶ lineal if it has hyperbolic elements but any two hyperbolic elements have the same endpoints;

• non-elementary and

▶ focal if it has hyperbolic elements, is not lineal, and any two of its hyperbolic elements have

one common endpoint;

▶ general type if it has hyperbolic elements with no common endpoint.

Remark 8.3.14. Sometimes in the literature, by non-elementary action, people might only talk

about the action of general type. This is different from the original nomenclature in [Gro87,

§3.1] .

Remark 8.3.15. Let Y ⊂ X be Gromov hyperbolic space. Suppose that G acts on Y by

isometries and each element g ∈ G can be extended to an isometry on X. Then it is not

hard to see that the isometry type of g remains unchanged after extension, i.e. if g acts

elliptically (resp. parabolically or hyperbolically) on Y, then its extension will be an elliptic

(resp. parabolic or hyperbolic) isometry on X.
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Chapter 9

Hyperbolic Rigidity of Amenable

Groups

天下國家可均也......中庸不可能也。1

孔子（circa 551–479 BCE）， cf.《中庸》。

9.1 Introduction

This chapter mainly concerns the following folklore result: the continuous action by isometries

of an amenable group on a Gromov hyperbolic space can never be of general type. Some special

cases of this result are long known to people.

Let G be an amenable group acting continuously by isometries on a Gromov hyperbolic

space (X, d). Then this action can be extended continuously to the Gromov boundary ∂X.

If X is proper, then the arguments of Lemma 9.3.2 will show that this action cannot be of

general type. When the space (X, d) is not proper, this result also holds for locally compact

amenable groups, deducing from the existence of a Schottky subgroup, which will witness

the non-amenability of locally compact groups [Cap+15].

But in order to study the amenability of big mapping class groups, which are never

locally compact (cf. Theorem 4.2.5), we will need the generalisation of the above result:

Theorem 9.1.1. Let X be a separable geodesic δ-hyperbolic space. Let G be an amenable topological

group acting continuously on X by isometries. Then the action cannot be of general type.

1A quote of Confucius, extracted from 中庸, Doctrine of the Mean. Its translation from classical Chinese to

English is: (Even) the world, the states, and the families may be amenable... the course of the Mean cannot be easily

attained to.

145



We should note that the blown-up projection complex (see §4.2.2 for definition) is a separa-

ble geodesic δ-hyperbolic space, on which the big mapping class group acts continuously

by isometries.

The proof of Theorem 9.1.1 mainly uses the horicompactification defined as in [Duc23].

It is sometimes also known as metric functional compactification [Kar21] or horofunction boud-

nary [BGS85], although these notions have slight nuances in its way of definition as topo-

logical spaces. The elements in horicompactification are called horivectors. For a separable

geodesic Gromov hyperbolic space X, we first show that each horivector is either asso-

ciated to a bounded subset or a unique point on its Gromov boundary ∂X. For those

who are associated to a bounded subset, we call them finite horivectors; otherwise ther

are called infinite. We first prove that there is a continuous and surjective mapping from

the infinite part of horicompactification to the Gromov boundary. Then we show that an

Isom(X)-invariant probability measure on the horicompactification must supported on its

infinite part. Hence the push-forward probability measure will yield an Isom(X)-invariant

measure on the Gromov boundary and this goes back to the classical case of Lemma 9.3.2.

9.2 Compactifications of metric space

In this section, we will mainly discuss several similar compactifications of metric spaces,

especially under the Gromov hyperbolic settings.

9.2.1 Horicompactification and others

First, consider the following mapping from the metric space X to a huge product of com-

pact intervals

Φ : X −→ ∏
y,z∈X×X

[−d(y, z), d(y, z)]

x 7−→
(

d(x, y)− d(x, z)
)
(y,z)∈X×X

and define a compactification of X, denoted X
v
, by the closure of Φ(X) in the product

space. An immediate application of Tychonoff’s theorem implies that X
v

is indeed compact.

Following the usage from [Duc23], this compactification is called the horicompactification

of X. An element of X
v

will be called a horivector in what follows. One remarks that

v(y, z) = v(y, x)− v(z, x) and v(x, y) = −v(y, x) for any horivector v.

Remark 9.2.1. In [Gro87, §7.5.E], such an object is given a name of “differentials of horo-

functions” due to the property v(y, z) = v(y, x)− v(z, x).
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Another slightly different compactification of metric spaces, denoted X
h
, is the closure

of the image of X under the following mapping

Ψo : X −→ ∏
y∈X

[−d(y, o), d(y, o)]

x 7−→
(

d(x, y)− d(x, o)
)

y∈X

with a fixed base point o and it is called the metric compactification of X in [Rie02; Gut19]

for instances. The elements in X
h

adopt the name of metric functional following [Kar21].

One other related notion is Busemann function associated with a geodesic ray γ, namely

βγ(x) = limt→∞ [d(x, γ(t))− t]. In fact, the quantity d(x, γ(t)) − t is monotonically de-

creasing in t > 0 and bounded from below by −d(x, γ(0)), see [BH13, II, Lemma 8.18]. It

is by definition a metric functional based at γ(0).

The following lemma shows that the horicompactification and metric compactification

are essentially the same topological object and that the definition of metric compactification

does not depend on the choice of the base point. See also [Duc23, Remark 2.7].

Proposition 9.2.2. Let (X, d) be a metric space. For any base point o ∈ X, the two spaces X
v

and

X
h

are homeomorphic.

Proof. Let A = ∏y∈X[−d(y, o), d(y, o)] and B = ∏y∈X,z ̸=o[−d(y, z), d(y, z)]. Let πA be the

projection from the product A × B to A. Since B is compact, the projection πA is a closed

mapping (also referred as Kuratowski’s theorem, see [Eng89, Theorem 3.1.16]). Hence,

we have the inclusion πA(X
v
) = πA

(
Φ(X)

)
⊆ Ψo(X) = X

h
per definition of closure.

Conversely, any converging net
(
Φ(xa)

)
a in A × B yields a converging net

(
Ψo(xa)

)
a in A,

which further implies that πA(X
v
) ⊇ X

h
. Therefore πA is a continuous sujection from X

v
to

X
h
. As X

v
is compact and X

h
is Hausdorff, in order to show that πA is a homeomorphism,

it suffices to show that πA is injective on X
v
. Indeed, given two horivectors v, w ∈ X

v

satisfying v(x, o) = w(x, o) for any x ∈ X, we have

v(y, z)− w(y, z) = v(y, o)− v(z, o)− w(y, o) + w(z, o) = 0

for any y, z ∈ X.

The following observation is essential for continuous group actions by isometries on

metric spaces:

Proposition 9.2.3. Let (X, d) be a metric space and G be any topological group acting on X

continuously by isometries. Then the action of G on X
v

is continuous, i.e. X
v

is a G-flow.
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Proof. As horivectors are 1-Lipschitz in both variables, it soon yields that the mapping Φ

is continuous and it turns out that X
v

is an Isom(X)-flow for the pointwise convergence

topology of Isom(X) ([Duc23, Lemma 2.5]). Now let G acts continuously by isometries on

(X, d). Then there is a continuous homomorphism G → Isom(X), which further makes X
v

a G-flow.

horofunctions or Busemann functions have served as replacement for linear functionals

when the space is not linear. In a recent paper [Kar21], Karlsson establishes a similar result

for metric functionals. Thanks to the homeomorphism that we establish in Proposition

9.2.2, we can reformulate his result in terms of horivectors without difficulty.

Proposition 9.2.4 (Hahn-Banach for horivectors). Let (Y, d) be a metric space and X be a sub-

space of Y. Then for every horivector v ∈ X
v
, there exists a horivector V ∈ Y

v
that extends v in the

sense that V(y, z) = v(y, z) for all y, z ∈ X.

9.2.2 Busemann sequences

Now we will adapt some results from [MT18] in terms of horivectors as well as discuss

some properties of Busemann sequences in Gromov hyperbolic spaces.

Definition 9.2.5 (Busemann sequence). Let X be a Gromov-hyperbolic space. A sequence

(xn) ⊆ X is said to be a Busemann sequence if the formula d(xn, x)− d(xn, y) converges for

every x, y ∈ X, i.e. Φ(xn) converges to v ∈ X
v
.

In what follows, we will refer to O(δ) an additive error at most a multiple of δ, viz. if

we write f (x) = g(x) + O(δ), then it means | f (x)− g(x)| < Mδ for some uniform M > 0

independent of x. Errors O(δ) appear in different places can be different.

Let us introduce the notion of orientation of a geodesic γ, which is a strict total order on

the points of γ induced by an isometric parameter γ+ : I → X. Suppose that x = γ+(t),

y = γ+(s) and we say that x ≥ y if and only if t ≥ s. Then given a fixed orientation, the

signed distance function on a geodesic is defined by

d+γ (x, y) =





d(x, y), if x ≤ y

−d(x, y), if x ≥ y
.

Proposition 9.2.6. Let X be a δ-hyperbolic space and γ be a geodesic in X. For any horivector

v ∈ X
v
, up to an additive error at most a multiple of δ and independent of γ, either there exists a

p ∈ γ such that

v(y, z) = v(p, z) + d(y, p) + O(δ), (∀y ∈ γ), (9.1)

148



or there is an orientation for γ so that for every p ∈ γ

v(y, z) = v(p, z) + d+γ (y, p) + O(δ), (∀y ∈ γ). (9.2)

Proof. It follows from [MT18, Proposition 3.6].

Remark 9.2.7. From the proof we can see that, whenever the concerned geodesic γ is a

segment, the case (9.1) will always hold. The case (9.2) can happen only when a Busemann

sequence is fellow-travelling with a geodesic ray, and in that case this sequence will be

Cauchy-Gromov.

For a metric space (X, d), we say that a sequence (xn)n≥0 is Busemann at base point o

if Ψo(xn) converges to a metric functional in X
h
; it is Busemann if Φ(xn) converges to a

horivector in X
v
. Note that if a sequence is Busmann, then it is Busmann at any point

o ∈ X.

Busemann sequences can be used to give a classification for horivectors, as well as met-

ric functionals, on a δ-hyperbolic space. The first type of Busemann sequence is Cauchy-

Gromov.

Lemma 9.2.8. Let X be a δ-hyperbolic space and (xn)n≥0 be a Busemann sequence in it. Assume

that (xn)n≥0 has a Cauchy-Gromov subsequence, then it is itself also Cauchy-Gromov.

Proof. Suppose that it has a subsequence (xnk)k≥0 converging to ξ ∈ ∂X. By assumption, for

any K > 0, there exists a x ∈ X with d(x, o) much larger than 2K such that xnk ∈ So(x, 2K)

for large enough k, i.e. for any M > 0, there exists m > M such that ⟨xm, x⟩o ≥ 2K. Since

the sequence is Busemann, there exists N > 0 such that for all n, m > N

|Φ(xn)(x, o)− Φ(xm)(x, o)| = 2 |⟨xn, x⟩o − ⟨xm, x⟩o| < K.

In particular, by taking a particular xm ∈ So(x, 2K), we can deduce that ⟨xn, x⟩o ≥ K and

that by consequence xn ∈ So(x, K) for all n ≥ N. This implies that xn converge to ξ ∈ ∂X

as a Cauchy-Gromov sequence.

Conversely, we also have the following estimation:

Lemma 9.2.9. Let X be a δ-hyperbolic space. If (xn) ⊆ X is a Cauchy-Gromov sequence that

admits Busemann subsequences, then for any two horivectors v, v′ determined by its Busemann, one

has ∣∣v(x, y)− v′(x, y)
∣∣ ≤ 2δ

for any x, y ∈ X.
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Proof. First compute

|d(xn, x)− d(xn, y)− d(xm, x) + d(xm, y)|
= |d(xn, x)− d(xn, y)− d(x, y)− d(xm, x) + d(xm, y) + d(x, y)|
=2
∣∣⟨xm|x⟩y − ⟨xn|x⟩y

∣∣ .

(9.3)

Without loss of generality, one assumes that (9.3) is equal to 2
(
⟨xm|x⟩y − ⟨xn|x⟩o

)
. By

δ-hyperbolicity, one gets

|d(xn, x)− d(xn, y)− d(xm, x) + d(xm, y)|
=2
(
⟨xm|x⟩y − ⟨xn|x⟩y

)

≤2
(
⟨xm|x⟩y − min

{
⟨xm|xn⟩y, ⟨xm|x⟩y

}
+ δ
)

.

Note that ⟨xm|x⟩y ≤ d(x, y) while ⟨xm|xn⟩y → ∞ as n, m go to infinity. It soon yields

|d(xn, x)− d(xn, y)− d(xm, x) + d(xm, y)| ≤ 2δ (9.4)

for large enough n, m. By taking n tends to infinity alongside one Busemann subsequence

and m alongside another Busemann subsequence, one immediately gets the desired in-

equality.

The following lemma will finish establishing a dichotomy for Busemann sequences and

also horivectors in a δ-hyperbolic space.

Lemma 9.2.10. Let X be a δ-hyperbolic space and (xn)n≥0 be a Busemann sequence in it. Suppose

in addition that (xn)n≥0 converges to a horivector v ∈ X
v

and is not Cauchy-Gromov, then the

function v(·, z) is bounded from below for any z ∈ X.

Proof. Fix any z ∈ X. Suppose for contradiction that v(·, z) is not bounded from below.

Then for any M > 0, there exists an y ∈ X such that v(y, z) < −2M. In terms of limit, it

means that there is an N > 0 such that d(xn, y)− d(xn, z) < −M for all n ≥ N. So for any

n, m ≥ N, we will have

⟨xn, xm⟩z =
1
2
(d(xn, z) + d(xm, z)− d(xn, xm))

>
1
2
(d(xn, y) + d(xm, y) + 2M − d(xn, xm)) > M,

which implies that (xn)n≥0 must be Cauchy-Gromov. Contradiction!
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9.2.3 Horiboundary

For horicompactification, we can define the horiboundary by X
v \ Φ(X), denoted ∂X

v
.

Previously we give a dichotomy for Busemann sequences in a δ-hyperbolic space. The

same dichotomy for horivectors can be established by passing to limits.

Let X
v
∞ be the subset of ∂X

v
so that any of its elements is not not bounded from below.

Also denote by X
v
f the set of horivectors v such that v(·, z) is bounded below for any z ∈ X.

We note that X
v
= X

v
∞ ∪ X

v
f and X

v
∞ ⊆ ∂X

v
.

On one hand, each horivector in X
v
f is uniquely corresponded to a bounded part in X.

Let v ∈ X
v
f . Define the coarse minima based at z of v by

L(v, z) :=
{

y ∈ X : v(y, z) ≤ inf
x∈X

v(x, z) + 1
}

.

Similarly, its coarse minima L(v) is then defined as the union of L(v, z) for all z ∈ X. The

same arguments for [MT18, Lemma 3.13] will yield the following result:

Proposition 9.2.11. Let X be a geodesic δ-hyperbolic space and v ∈ ∂X
v
f . Then there exists a

constant K only depending on δ such that diam
(
L(v)

)
≤ K.

On the other hand, using minimising sequence for such horivector v ∈ X
v
∞, i.e. a sequence

(yn)n≥1 such that v(yn, z) → −∞ as n → ∞, one can construct a boundary correspondence

Ξ : X
v
∞ → ∂X between the infinite part of horiboundary and Gromov boundary [MT18,

Lemma 3.10].

Proposition 9.2.12 ([MT18]). Let X be a separable geodesic Gromov hyperbolic space. Then the

boundary correspondence Ξ : X
v
∞ → ∂X is continuous and surjective.

Remark 9.2.13. In terms of reduced horicompactification (introduced for example in [BF20]),

i.e. the quotient space of X
v

by equivalence relation v ∼ v′ if there exists M > 0 such

that |v(x, y) − v′(x, y)| < M for all x, y ∈ X, then the reduced horicompactification will

become ∂X ⊔ {∗}, where ∂X is the Gromov boundary of X. But this space is in general not

Hausdorff.

9.3 Main result

Let X be a separable geodesic δ-hyperbolic space and D be a dense subset in X. Then the

projection

X
v → ∏

x,y∈D
[−d(x, y), d(x, y)]
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is a homeomorphism. Hence we need only to treat the valuation of horivectors on the

dense subset D with base point o ∈ D. As a result, the expression

X
v
∞ =

⋂

N>0

⋃

x∈D

{
v ∈ X

v
: v(x, o) < −N

}

implies that X
v
∞ and X

v
f = X

v \ X
v
∞ are Borel sets in X

v
.

Suppose that G is an amenable group acting continuously by isometries on X. Proposi-

tion 9.2.3 asserts that the action of G on the horicompactification X
v

is continuous. Hence

there exists a G-invariant probability measure µ on X
v
.

Proposition 9.3.1. Let X be a separable geodesic δ-hyperbolic space. Suppose that G is a group

acting continuously by isometries on X and suppose that the action is unbounded. Let µ be a

G-invariant probability measure on X
v
. Then µ(X

v
f ) = 0.

Proof. Let D be a dense subset in X and o ∈ D be a base point. For a fixed q ∈ Q and two

distinct points x, y ∈ D, the open set

V(x, y, q) = X
v ∩

[−d(x, o), q)× (q, d(y, o)]× ∏

(z,w) ̸=(x,o),(y,o)

[−d(z, w), d(z, w)]




is the collection of all horivectors v in X
v

such that v(x, o) < q < v(y, o). Therefore, the

union Vx,y =
⋃

q∈Q V(x, y, q) is the collection of the horivectors v ∈ X
v

such that v(x, o) <

v(y, o).

Let R > 0 be a positive real number that is larger than the uniform diameter K of coarse

minima L(v) from Proposition 9.2.11. For any z ∈ D, we define

Y(z, R) =
{

v ∈ X
v
f : L(v) ∩ B(z, R) ̸= ∅

}

where B(z, R) = {p ∈ X : d(z, p) < R}. One remarks that L(v) contains L(v, o). So if v ∈
Y(z, R), then L(v, o) will be contained in B(z, 2R). By consequence, for every y /∈ B(z, 2R),

we will have

v(y, o) > inf
x∈X

v(x, o) + 1 > inf
x∈X

v(x, o) = inf
x∈B(z,2R)

v(x, o).

By the density of D in X, it turns out that there must be some x ∈ B(z, 2R) ∩ D such that

v(x, o) < v(y, o). So if one sets B(z, 2R)c to be the complement of B(z, R) in X and

Y′(z, R) =
{

v ∈ X
v
f : ∀y ∈ B(z, 2R)c ∩ D ∃x ∈ B(z, 2R) ∩ D so that v(x, o) < v(y, o)

}
,

then Y(z, R) ⊆ Y′(z, R). In fact, the set Y′(z, R) remains the same even if one removes the

constraint of x, y being in D from the definition. But the definition above means that we
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have the following expression

Y′(z, R) =
⋂

y∈B(z,2R)c∩D


 ⋃

x∈B(z,2R)∩D

Vx,y


 .

This shows that Y′(z, R) is a Borel set in X
v
.

Let g ∈ G be any isometry. For any v ∈ Y′(z, R), we can see that for any g−1y /∈
B(g−1z, 2R), there exists a g−1x ∈ B(g−1z, 2R) such that

(
gv
)
(y, o) = v(g−1y, g−1o)

= v(g−1y, o) + v(o, g−1o)

> v(g−1x, o) + v(o, g−1o)

= v(g−1x, g−1o)

=
(

gv
)
(x, o),

which implies that gv ∈ Y′(g−1z, R). Hence gY′(z, R) ⊆ Y′(g−1z, R). If we apply the

same argument for g−1 and Y′(g−1z, R), then the inclusion above is actually equality, i.e.

gY′(z, R) = Y′(g−1z, R).

Now we claim that µ
(
Y′(z, R)

)
= 0 for all z ∈ X. Indeed, suppose ab absurdo that

there is a point z ∈ X such that µ
(
Y′(z, R)

)
> 0. Note that if v ∈ Y′(z, R), then L(v, o) ∩

B(z, 2R) ̸= ∅, which further implies that L(v) ⊂ B(z, 3R). So if d(z1, z2) > 6R, then

Y′(z1, R) ∩ Y′(z2, R) = ∅. As the action of G on X is unbounded, by picking a sequence

(gn)n∈N of elements in G such that d(gnz, gmz) > 6R for every n ̸= m, we will have

1 = µ
(

X
v
)
≥ µ

(
⋃

n∈N

Y′(gnz, R)

)
= ∑

n∈N

µ
(
Y′(gnz, R)

)
= ∑

n∈N

µ
(
Y′(z, R)

)
= ∞,

which is not possible!

Finally, by density of D in X, we have X
v
f ⊆

⋃
z∈D Y(z, R). So we get

0 ≤ µ
(

X
v
f

)
≤ µ

(
⋃

z∈D

Y(z, R)

)
≤ ∑

z∈D
µ
(
Y(z, R)

)
≤ ∑

z∈D
µ
(
Y′(z, R)

)
= 0.

This completes the proof.

Now we shall prove the following general result:

Lemma 9.3.2. Let X be a δ-hyperbolic space and let G act on X by isometries. Suppose that there

exists a G-invariant probability measure ν on ∂X. Then the action of G cannot be of general type.
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Proof. Suppose for contradiction that the action of G on X is of general type. Then G has no

finite orbit on ∂X. Because ν is G-invariant, so ν is atomless, otherwise the total measure

of ∂X under ν will exceed 1. Moreover, there exists at least one hyperbolic isometry g

in G. Let ∂X⟨g⟩ = {ξ±}. Since ξ± are not atoms, we can find open neighbourhoods U±
of ξ± respectively such that ν(U±) < 1/3. This means that ν(∂X \ U−) > 2/3. Yet by

North-South dynamic of g (see [DSU17, §6.1]), there exists n > 0 such that gn (∂X \ U−) is

contained in U+. Hence we have

2
3
< ν (∂X \ U−) = ν (gn (∂X \ U−)) ≤ ν (U+) <

1
3

.

This is absurd!

Now we are able to prove Theorem 9.1.1:

Proof of Theorem 9.1.1. Suppose that G is an amenable group act continuously by isometries

on a separable geodesic Gromov hyperbolic space (X, d). Then there is a G-invariant prob-

ability measure on X
v
, denoted µ. By Proposition 9.3.1, the probability measure µ must

supported on X
v
∞. The continuous boundary correspondence Ξ : X

v
∞ → ∂X from Proposi-

tion 9.2.12 will yield a G-invariant probability measure Ξ∗(µ) by pushing-forward. Now

the result comes immediately from Lemma 9.3.2.
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Résumé: Cette thèse explore divers sujets liés à
la géométrie hyperbolique et à la dynamique de
groupes, dans le but d’étudier l’interaction entre la
géométrie et la théorie de groupes. Elle couvre un
large éventail de disciplines mathématiques, telles
que la géométrie convexe, l’analyse stochastique,
la théorie ergodiques et géométriques de groupes,
et la topologie en basses dimensions, et cætera.
Comme résultats de recherche, la géométrie hy-
perbolique des corps convexes en dimension infinie
est examinée en profondeur, et des tentatives sont
faites pour développer la géométrie intégrale en
dimension infinie d’un point de vue de l’analyse

stochastique. L’étude des gros groupes de difféo-
topies, un sujet d’actualité en topologie en basses
dimensions et en théorie géométrique de groupes,
est entreprise avec une détermination complète de
leur propriété de point fixe sur les compacts. La
thèse étudie la connexité du bord de Gromov des
graphes de courbes fins, un outil combinatoire util-
isé dans l’étude des groupes d’homéomorphismes
des surfaces de type fini. Enfin, la thèse clarifie
également certains théorèmes folkloriques concer-
nant les espaces hyperboliques au sens de Gromov
et la dynamique des groupes moyennables sur ces
espaces.
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Abstract: This thesis explores diverse topics re-
lated to hyperbolic geometry and group dynamics,
aiming to investigate the interplay between geom-
etry and group theory. It covers a wide range
of mathematical disciplines, such as convex ge-
ometry, stochastic analysis, ergodic and geomet-
ric group theory, and low-dimensional topology,
etc. As research outcomes, the hyperbolic geom-
etry of infinite-dimensional convex bodies is thor-
oughly examined, and attempts are made to de-
velop integral geometry in infinite dimensions from
a perspective of stochastic analysis. The study of

big mapping class groups, a current focus in low-
dimensional topology and geometric group theory,
is undertaken with a complete determination of
their fixed-point on compacta property. The the-
sis also clarifies certain folklore theorems regard-
ing the Gromov hyperbolic spaces and the dynam-
ics of amenable groups on them. Last but not
the least, the thesis studies the connectivity of the
Gromov boundary of fine curve graphs, a combi-
natorial tool employed in the study of the homeo-
morphism groups of surfaces of finite type.
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