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Résumé

Les cellules vivantes sont des éléments fondamentaux de la vie, jouant un rôle à la fois
structurel et fonctionnel dans tous les types d’organismes. Décrites pour la première fois
au XVIIe siècle par Robert Hooke et malgré la myriade de percées réalisées en biologie cel-
lulaire depuis lors, de nombreux aspects de leur biologie sont encore inconnus aujourd’hui.
Les cellules eucaryotes stockent leur information génétique dans des molécules d’ADN en-
fermées dans leur noyau, qui sont transcrites en molécules d’ARN messager qui servent
de plans lors de la synthèse de protéines, une famille de molécules responsables de divers
rôles fonctionnels et structurels au sein des cellules. Les progrès technologiques réalisés
au cours de la dernière décennie, tels que le séquençage de nouvelle génération (NGS) et
l’acquisition de données single-cell, ont ouvert la voie à des jeux de données incroyablement
riches, capables de décrire quantitativement des populations cellulaires avec une extrême
précision : en une seule expérience, on peut aujourd’hui analyser l’expression génique
de dizaines de milliers de cellules sur des dizaines de milliers de gènes. Parallèlement,
le domaine de l’apprentissage automatique a connu une vague d’approches nouvelles et
revisitées (théorie des réseaux neuronaux profonds, transport optimal, noyaux...), rendue
possible par les développements mathématiques et les progrès du matériel informatique.
L’un des principaux objectifs de la biologie computationnelle aujourd’hui est de relier ces
deux domaines en appliquant des approches d’apprentissage automatique à des ensembles
de données biologiques complexes afin de répondre à des questions biologiques difficiles.

L’une des questions clés est celle de l’intégration des données qui consiste à concevoir
des algorithmes capables de produire une représentation commune de plusieurs ensembles
de données provenant de différentes sources ou mesurées selon différentes modalités bi-
ologiques, de sorte à ce que des cellules similaires se retrouvent proches les unes des autres
indépendamment de leur ensemble de données d’origine. Ce problème est très difficile dans
le cas général, et sa résolution a des applications très recherchées telles que la création
d’atlas cellulaires complets pour une maladie en agrégeant les données de nombreux pa-
tients, ou l’inférence de modèles incluant des facteurs provenant de différentes modalités
biologiques. De nombreuses approches ont été proposées pour aborder l’intégration de
données au cours des dix dernières années, à tel point qu’en dépit d’études comparatives
régulières, il est difficile de savoir ce qu’il convient d’utiliser pour une application donnée.
Pour résoudre ce problème, nous avons développé un nouveau framework d’intégration
de données appelé transmorph, qui fournit de nombreux algorithmes d’apprentissage au-
tomatique sous forme de blocs de construction qui peuvent être assemblés en des pipelines
d’intégration de données complexes. Nous montrons que transmorph peut être utilisé
pour construire des pipelines d’intégration de données qui fonctionnent aussi bien que
les approches de l’état de l’art, tout en s’avérant utile pour déterminer quelle sous-unité
algorithmique est la plus adaptée à une situation donnée. Transmorph est aujourd’hui
distribué en tant que framework python open-source, et propose un écosystème de jeux
de données de référence, de mesures d’évaluation de la qualité, d’outils graphiques ainsi
qu’une API utilisateur complète pour construire des modèles d’intégration de données de
bout en bout.

Un autre espoir suscité par ces données single-cell est de pouvoir améliorer notre com-
préhension du cancer, car les tumeurs sont des systèmes cellulaires hétérogènes intégrés
dans un microenvironnement complexe. En particulier, des approches d’analyse facto-
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rielle peuvent être appliquées pour découvrir des signaux multidimensionnels dans l’espace
d’expression génique, qui peuvent ensuite être interprétés à l’aide de bases de données et
reliés à des processus biologiques tels que la prolifération cellulaire, l’activité métabolique
ou les métastases. En utilisant des lignées cellulaires de sarcome d’Ewing inductibles où
l’effet de l’oncogène peut être contrôlé avec précision, nous avons mis en évidence une
douzaine de ces processus et étudié leur dépendance à l’égard de l’activité de l’oncogène.
Nous avons accordé une attention particulière aux signaux liés à la prolifération, et avons
pu mettre en évidence dans de nombreux ensembles de données une trajectoire multidi-
mensionnelle se déroulant dans l’espace d’expression génique correspondant au processus
du cycle cellulaire. Nous avons finalement pu dériver de ces observations un modèle du
cycle cellulaire segmenté, capable d’approximer l’état des cellules individuelles au sein
de leur cycle ainsi que d’autres caractéristiques telles qu’une approximation du temps de
doublement des cellules.



Abstract

Living cells are fundamental building blocks of Life, playing both structural and func-
tional roles in all types of organisms. First described in the XVIIth century by Robert
Hooke and despite the myriad of breakthroughs that were achieved in Cell Biology since
then, many aspects of their biology are still unknown today. Eukaryotic cells store their
genetic information within DNA molecules enclosed within their nucleus, which is tran-
scribed into messenger RNA molecules which serve as blueprints for synthesizing proteins,
which is a diverse family of molecules responsible for various functional and structural
roles within cells. Technological advances that took place during the last decade such as
next-generation sequencing (NGS) and single-cell assays opened the door to incredibly
rich datasets able to quantitatively describe cell populations with extreme precision: in
one experiment, one can today approximate the gene expression of tens of thousands of
cells over tens of thousands of genes. In parallel, the machine learning field also witnessed
a surge of new and revisited approaches (deep neural networks theory, optimal transport,
kernels...), made possible by mathematical and hardware developments. One of the main
goals of computational biology today is to link these two fields by applying machine learn-
ing approaches to complex biological datasets in order to answer challenging biological
questions.

In cancer research, gathering tumor data from different patients yields datasets with
intrinsic statistical biases linked to acquisition methods, genetic specificities, or environ-
mental differences. For this reason, jointly analyzing data coming from different sources
first requires identifying these biases, preferably automatically, and possibly correcting
these biases. One key question referred to as data integration is to conceive algorithms
able to yield a joint representation of several datasets coming from different sources or
measured along different biological modalities, so that similar cells end up close to one
another independently from their dataset of origin. This problem is highly challenging in
the general case, and solving it has very sought-after applications such as creating com-
prehensive cell atlases for a disease by aggregating data from many patients, or inferring
models including factors from different biological modalities. Many approaches have been
proposed to tackle data integration over the last ten years, so much so that despite reg-
ular benchmark studies it is puzzling to know what to use for a given application. To
tackle this issue we developed a new data integration framework named transmorph, that
provides many machine learning algorithms as building blocks that can be assembled into
complex data integration pipelines. We show that transmorph can be used to build data
integration pipelines that work on par with state-of-the-art approaches, while also proving
to be useful to determine which algorithmic subunit is more adapted to a given situation.
Transmorph is today distributed as an open-source python framework, and embarks an
ecosystem of benchmarking datasets, quality assessment metrics, plotting tools as well as
a comprehensive user API to build end-to-end data integration models.

Another hope for these highly resolute single-cell assays is that they could improve our
understanding of cancer, as tumors are highly heterogeneous cell formations embedded in
a complex microenvironment. In particular, factor analysis approaches can be applied to
discover multidimensional signals in the gene expression space that can then be enriched
using databases, and related to interpretable biological processes such as cell proliferation,
metabolic activity or metastasis. Using Ewing sarcoma inducible cell lines where the
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oncogene presence can be precisely monitored, we highlighted a dozen of such processes
and studied their dependence on the oncogene activity. We paid particular attention to
proliferation-related signals, and we could highlight in many datasets a multidimensional
trajectory taking place in the gene expression space corresponding to the cell cycle process.
We were able to derive from these observations a segment-wise cell cycle model, able to
approximate the state of individual cells within the cycle as well as other features such as
cell doubling time.



Contents

Remerciements 1

Résumé 3

Abstract 5

Abbreviations and conventions 11

Manuscript organization and publications 13

1 Introduction 15
1.1 A new generation of biological data . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.1 Bulk mRNA sequencing . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.2 The single-cell revolution . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.3 Processing of single-cell data . . . . . . . . . . . . . . . . . . . . . . 20
1.1.4 Deciphering dynamical cell processes using scRNA-seq data . . . . . 21

1.2 Ewing sarcoma is an aggressive pediatric tumor . . . . . . . . . . . . . . . . 23
1.2.1 Ewing sarcoma’s features . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.2 Multidimensional factor analysis of Ewing sarcoma cell processes . . 25

1.3 Integration of single-cell data . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.1 Data integration links biological datasets across batches or modalities 29
1.3.2 Horizontal integration (HI) links batches anchored by their common

modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.3 Vertical integration (VI) connects modalities measured in the same

cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3.4 Diagonal and mosaic integration jointly embed non- or partially-

anchored datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Transmorph, a novel framework to perform integration of single-cell data 41
2.1 Transmorph: concept and architecture . . . . . . . . . . . . . . . . . . . . . 42

2.1.1 Transmorph allows conceiving end-to-end data integration models . 43
2.1.2 Package implementation . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Transmorph algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.1 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2 Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.3 Mergings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.4 Embedding evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 A few real-life applications of the transmorph framework . . . . . . . . . . . 58
2.3.1 Single-cell RNA-seq datasets . . . . . . . . . . . . . . . . . . . . . . 58
2.3.2 transmorph models perform on par with other state-of-the-art tools . 58
2.3.3 Performing integration in gene space by using an appropriate em-

bedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.4 Gene space integration can be leveraged to annotate cell types reliably 63

7



8 CONTENTS

2.3.5 Transferring cell cycle phase annotations across osteosarcoma and
Ewing sarcoma datasets . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3.6 Data integration of Ewing sarcoma datasets . . . . . . . . . . . . . . 67
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 Unsupervised weights selection for optimal transport-based dataset in-
tegration 71
3.1 General outline of the suggested single-cell dataset integration methodology 72
3.2 Method for kernel density uniformization . . . . . . . . . . . . . . . . . . . 74
3.3 Bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Quadratic program greatly reduces kernel density empirical variance . . . . 75
3.5 Weighted dataset integration . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6 Integration results on synthetic datasets . . . . . . . . . . . . . . . . . . . . 77
3.7 Integration results in cell cycle space . . . . . . . . . . . . . . . . . . . . . . 78
3.8 Integration results on balanced single-cell multi-omics datasets . . . . . . . 78
3.9 Integration results on unbalanced single-cell multi-omics datasets . . . . . . 79
3.10 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.10.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.10.2 Synthetic datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.10.3 Ewing sarcoma single-cell datasets . . . . . . . . . . . . . . . . . . . 80
3.10.4 Multi-omics scSNAREseq dataset . . . . . . . . . . . . . . . . . . . . 80
3.10.5 Optimal transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.10.6 Gromov-Wasserstein problem . . . . . . . . . . . . . . . . . . . . . . 81
3.10.7 Unbalanced optimal transport . . . . . . . . . . . . . . . . . . . . . . 82
3.10.8 Gaussian kernel bandwidth selection . . . . . . . . . . . . . . . . . . 82
3.10.9 Assessing integration quality in scSNAREseq data . . . . . . . . . . 83
3.10.10 Assessing the computational time . . . . . . . . . . . . . . . . . . . . 83

3.11 Discussion about this data integration approach . . . . . . . . . . . . . . . . 83

4 Modeling progression of single cell populations through the cell cycle as
a sequence of switchess 85
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Methods and materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 Single-cell data used in this study . . . . . . . . . . . . . . . . . . . 87
4.2.2 Definition of cell cycle genes . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.3 Pooling reads from neighboring cells for compensating the technical

drop-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.4 Cell cycle trajectory-based single-cell data normalization . . . . . . . 88
4.2.5 Computing the cell cycle trajectory and quantifying pseudotime . . 89
4.2.6 Curvature analysis of the cell cycle trajectory . . . . . . . . . . . . . 90
4.2.7 Estimating the effective dimensionality of a set of vectors . . . . . . 90

4.3 Example of a cell cycle trajectory extracted from single-cell data . . . . . . 90
4.4 Model of cell cycle with switches and divisions . . . . . . . . . . . . . . . . 91
4.5 Simple example of dynamics with switches and cell division events . . . . . 94
4.6 Two-dimensional model of cell cycle progression . . . . . . . . . . . . . . . . 96
4.7 Effective dimensionality versus number of states . . . . . . . . . . . . . . . . 97
4.8 Kinetic model of cell cycle at transcriptomic level . . . . . . . . . . . . . . . 100
4.9 Fitting parameters of the kinetic cell cycle model . . . . . . . . . . . . . . . 102
4.10 Simulating cell cycle trajectories of various durations . . . . . . . . . . . . . 104
4.11 Predicting cell line doubling time from the geometrical properties of cell

cycle trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.12 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



CONTENTS 9

5 Uncovering Ewing sarcoma cell processes using inducible cell lines 109
5.1 Inducible Ewing sarcoma cell lines, a time-resolved study . . . . . . . . . . 109

5.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.1.2 Quality control and data exploration . . . . . . . . . . . . . . . . . . 110

5.2 Identifying Ewing sarcoma transcriptional signatures . . . . . . . . . . . . . 111
5.2.1 Inducible Ewing sarcoma cell lines setup . . . . . . . . . . . . . . . . 112
5.2.2 Indentifying consensual independent components . . . . . . . . . . . 112
5.2.3 From independent components to transcriptional signatures . . . . . 113

5.3 New Ewing sarcoma cell processes have been identified . . . . . . . . . . . . 115
5.3.1 New signatures cover various Ewing sarcoma cell processes . . . . . 116
5.3.2 Factors not directly related to the high expression of EF1 . . . . . . 119

5.4 Summary of Ewing sarcoma cell processes . . . . . . . . . . . . . . . . . . . 119

6 Discussion and conclusion 125
6.1 The future of data integration . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2 Studying the cell cycle in the gene expression space: future challenges . . . 126
6.3 The single-cell asset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography 129

Appendix 149



10 CONTENTS



Abbreviations and conventions

.
This section contains abbreviations and mathematical conventions used in this Ph.D.
thesis, and apply unless explicitly stated otherwise.

Abbreviations
• API: Application Program Interface

• ATAC-seq: Assay for Transposase-Accessible Chromatin using sequencing

• CCA: Canonical Correlation Analysis

• CCT: Cell Cycle Trajectory

• cDNA: Complementary DNA

• DAE: Deep Autoencoder

• DI: Diagonal data Integration

• DL: Deep Learning

• EMT: Epithelial-Mesenchymal Transition

• EWS: Ewing Sarcoma

• EF1: Chimeric protein EWSR1-FLI1

• HGP: Human Genome Project

• HI: Horizontal data Integration

• GEO: Gene Expression Omnibus

• GW: Gromov-Wasserstein

• ICA: Independent Component Analysis

• KNN: k-Nearest Neighbors

• LISI: Local Inverse Simpson’s Index

• MF: Matrix Factorization

• MI: Mosaic data Integration

• ML: Machine Learning

• MNN: Mutual Nearest Neighbors

• MSC: Mesenchymal Stem Cell
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• NGS: Next-Generation Sequencing

• OT: Optimal Transport

• PCA: Principal Component Analysis

• PDX: Patient-Derived Xenograft

• RNA-seq: RNA-sequencing

• scRNA-seq: single-cell RNA-sequencing

• shRNA: Small Hairpin RNA

• SNP: Single-Nucleotide Polymorphism

• TS: Transcriptional Signature

• UMI: Unique Molecular Identifier

• VI: Vertical data Integration

Mathematical conventions
• S (uppercase) designates a set

• N designates the set of non-negative integers, R designates the set of real numbers

• For any set S and k ∈ N, Sk represents the set of vectors of length k whose coordi-
nates belong to S. For any n ∈ N, m ∈ N, Sn×m represents the set of rectangular
matrices of n rows and m columns whose elements belong to S.

• A (uppercase, bold) represents a rectangular matrix. AT is its transpose.

• a (lowercase, bold) represents a column vector. aT is its transpose (it is a row
vector).

• a (lowercase, italic) represents a scalar value.

• X ∈ Nn0×d0 represents a raw counts, unfiltered matrix of n0 cells (in row) by d0
transcripts (in columns).

• X ∈ Nn×d represents a raw counts matrix of n cells (in row) by d transcripts (in
columns).

• X ∈ Rn×d represents a row-normalized, log-scaled gene expression matrix of n cells
(in row) by d transcripts (in columns).

• {a, b, c} represents the set of items a, b and c.

• {a1, . . . , ak} with k a positive integer represents the ordered set of k items a1 to ak.

• 0k represents the column vector of size k where all coefficients are set to 0.

• 1k represents the column vector of size k where all coefficients are set to 1.
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Chapter 1

Introduction

Section 1.3 adatped from (Fouché and Zinovyev, 2023).

The last decades have witnessed many exciting discoveries in the field of Biology, which
transformed the way we study life and in particular how we study living cells. The Hu-
man Genome Project (HGP) was an ambitious scientific program that started during the
1990s (Council et al., 1988) and was completed in the early 2000s (Sequencing, 2004). It
unveiled the first full sequence of a Human genome, containing more than three billion
nucleotides, for a total cost of approximately three billion US dollars. The HGP alone had
a huge impact on biology and medicine (Hood and Rowen, 2013) but in just two decades,
DNA sequencing technologies have rapidly evolved to the point we can today sequence
an entire human genome in less than a day and for less than 1,000 US dollars. In par-
allel, a myriad of other sequencing technologies and biological assays appeared, allowing
researchers to gather data from many more biological modalities such as gene expres-
sion (Klein et al., 2015; Macosko et al., 2015), chromatin accessibility (Buenrostro et al.,
2015a,b), DNA methylation (Guo et al., 2013), protein abundance (Aebersold and Mann,
2003; Westermeier and Marouga, 2005; Tibes et al., 2006), or lipidomics (Wenk, 2005).
Finally, sequencing pipelines also progressed in terms of resolution, resulting in being able
to perform analysis at the level of individual cells (Stuart and Satija, 2019). Thanks to
these successive breakthroughs, the central molecular dogma of molecular biology (Fig.
1.1) formulated by Francis Crick 70 years ago (Crick, 1958) can now be appreciated with
exquisite precision.

Figure 1.1: Molecular biology’s central dogma. Proteins are molecules that carry
out many biological functions such as structure, signaling, or biochemical reactions. These
proteins are sequences of amino acids whose blueprints are stored within the cell’s genome,
as long DNA molecules enclosed within the cell’s nucleus. This genetic information is
carried out of the nucleus for protein synthesis via small intermediary nucleic acids, the
messenger RNAs.

In this new era of ever-growing information, both in terms of quantity and complexity,
computer algorithms have become essential to harness biological data. Biologists have
used biostatistics for a long time to formulate and challenge their hypotheses. As data be-
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Figure 1.2: Hallmarks of cancer as of today, summarizing the various deregulations
cells can undergo that favoritizes tumorigenesis. From (Hanahan, 2022)

came more and more complex, computational systems biology (Kitano, 2002) proved to be
an invaluable tool to describe and predict the behavior of many biological systems thanks
to advanced mathematical models and algorithms. In recent years, high-throughput se-
quencing allowed scientists to generate enormous amounts of data, causing machine learn-
ing (ML) concepts to occupy a large part of computational biology. Today, almost all ML
paradigms have found practical uses in challenging fields such as neuroscience (Vu et al.,
2018) or cancer research (Kourou et al., 2021).

Cancer is a worldwide issue with dramatic health, social and economic consequences.
It is estimated every one out of five people will develop cancer during their life, which
translates to several tens of millions of new patients per year; millions eventually die from
it (WHO, 2018). Cancer occurrence can be challenging to predict as they are usually
highly multifactorial diseases, with many factors having been identified as favoriting its
onset: aging, genetics, chemical reagents, diet, comorbidities, pathogens, radiation, and
hormones, to cite the main ones (Stein and Colditz, 2004). Furthermore, our understand-
ing of tumorigenesis is still evolving today, as indicated by the frequent updates to the
Hallmarks of Cancer (Hanahan and Weinberg, 2000, 2011; Hanahan, 2022) summarized
in Fig. 1.2. Tumors are complex biological systems that are also capable of interacting
with other systems such as the immune system or the vascular system, which makes it
even harder to decipher the tumorigenesis process precisely.

Cancer can occur in children, teenagers, and young adults despite being frequently as-
sociated with aging. These pediatric cancers are rarer, but they still represent tens of thou-
sands of new young patients yearly and unfortunately thousands of deaths (NCI, 2023).
Thanks to the progress in cancer treatment, pediatric cancer prognosis has significantly
improved in the last few decades, with a survival rate of 58% of children and 68% of adoles-
cents in the 1970s to 85% of children and adolescents today. The most frequent pediatric
cancer types are leukemia, brain and spinal cord tumors, neuroblastoma, Wilms tumor,
lymphoma (including both Hodgkin and non-Hodgkin), rhabdomyosarcoma, retinoblas-
toma and bone cancers (including osteosarcoma and Ewing sarcoma) (ACS, 2023). The
Curie Institute is a reference hospital and research center for pediatric cancers in France,
and many important contributions in the field involve researchers from the institute.

This introduction will first present the nature of today’s biological data types. We will
detail in this first section the process of mRNA sequencing (RNA-seq) and single-cell data
acquisition, and will present the basic principles of single-cell RNA-seq (scRNA-seq) data
analysis. In the next section, we will introduce Ewing sarcoma, an aggressive pediatric
tumor I studied during my Ph.D., and notably discuss its features and its well-identified
oncogene, EWSR-FLI1 (EF1). We will introduce in the third section the core concept of
cell process-associated transcriptional signatures, as well as its applications to study cell
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processes like transcriptional cell cycle or tumoral heterogeneity. The final part of this
introduction will be dedicated to questions related to single-cell data integration, which
describes the critical problem of merging datasets across origins and modalities.

1.1 A new generation of biological data
Over the last decade, there has been a surge in the amount of biological data available
to study biological systems. First, more and more data can be acquired from smaller
and smaller systems. If, in the past, biology was the study of living individuals and their
tissues, modern technologies allow scientists to study living cells and their components
at the molecular level. This results in a steep increase in the information gathered per
quantity of biological material available. Going hand-to-hand with this first observation,
data collection, processing, and analysis is today easier than ever thanks to the myriad
of technologies researchers have at their disposal, such as high-resolution assays doable
in routine and efficient bioinformatics pipelines. Finally, biological data is now not only
multi-dimensional (measuring several features from a single biological modality such as
gene expression) but also multi-modal, which means several biological modalities can be
acquired from a single biological sample. All these facts make it so research centers can
produce daily gigabytes of biological data, which brings a crucial need for efficient data
analysis methods to digest this raw data into understandable and interpretable informa-
tion.

This section first presents the principles underlying mRNA sequencing, as this data
modality is the main focus of my work. I will then introduce single-cell assays that proved
to be invaluable in getting an insight into tissue heterogeneity. Finally, I will cover the
state of single-cell RNA-seq data analysis, with the typical preprocessing steps, tools, and
the limits of this type of analysis.

1.1.1 Bulk mRNA sequencing
Molecular biology’s ”central dogma”, stated by Francis Crick in the 1950s, describes genes
as elements of information stored within DNA molecules, expressed as messenger RNA
(mRNA) molecules, further translated into proteins that carry out biological functions
(Lodish et al., 2008) (Fig. 1.1). For this reason, knowing at a given time which genes are
expressed within a living cell provides an insight into which biological processes are either
occurring or about to occur within this cell.

Bulk mRNA sequencing describes a type of biological assay that is used to assess
the mRNAs present in a mixture of many cells. This type of experiment is widely used
today, as it is a relatively easy-to-carry-out assay to compare two cell populations at
the molecular level. The main limitation of bulk RNA-seq is that it makes it difficult
to account for the heterogeneity of cells within the mixture; its single-cell counterpart
addresses this. The complete set of mRNA molecules present within a mixture at a given
time are referred to as this cell’s transcriptome, and can be represented as a long integer
vector x ∈ Nm with m being the total number of unique transcripts {g1, . . . , gm} that
can be expressed within this cell; in practice, m can be several tens of thousand. In this
formalism, each coordinates xi of the expression vector x represents the number of mRNA
molecules sequenced corresponding to the gene gi. This molecular profile can then be used
to characterize cells in the mixture using statistical analyses, and to compare different cell
populations at the gene expression level.

I will now describe a standard bulk RNA-seq acquisition procedure, based on the state-
of-the-art review (Wang et al., 2009) (Fig. 1.3). Starting from a cell mixture, the first step
consists in the preparation of a complementary DNA (cDNA) library from the transcripts
that are found within the mixture. The isolation of RNA molecules is carried out by
degrading DNA molecules using DNAses. Mature mRNA molecules are then selected
by targetting their 3’-polyadenylated tails using poly-T oligomers bound to a substrate.
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During the next step, isolated mRNAs are reverse-transcribed into cDNA molecules, that
are subsequently amplified, then fragmented and selected according to a length criterion.
This allows these molecules to be sequenced efficiently using standard high-throughput
DNA sequencing technologies.

Once cDNA sequences have been obtained, transcriptome assembly can be carried
out by aligning these sequences onto a reference genome in order to determine the corre-
sponding genes. The main caveat at this step is that due to mRNA splicing, query cDNA
sequences do not align contiguously with the reference genome because introns are missing
from the cDNA. To circumvent this issue, non-contiguous sequence alignment algorithms
such as TopHat (Trapnell et al., 2009) use a so-called seed-based heuristic that aligns
subsequences of the query sequence onto the reference one, then extend from these seeds
using dynamic programming to find potential matches. Estimated transcript counts can
eventually be assessed in a final step, thanks to various tools such as HTseq (Anders et al.,
2015).

Figure 1.3: Typical mRNA sequencing pipeline. Image credits: Thomas Shafee,
Wikipedia.

1.1.2 The single-cell revolution
Single-cell RNA sequencing

If bulk RNA-seq provides a strong basis to profile mixtures of cells and highlight strong
gene expression differences between several experimental conditions, it is of limited interest
to explore a single condition containing a heterogeneous cell population, for instance when
multiple cell types are in the cell mixture. In this instance, the resulting bulk profile
typically consists of a weighted average of the different cell types’ profiles, which can be
challenging to deconvolute properly. If measuring mRNA expression within single cells
has been discussed for quite some time now (Eberwine et al., 1992; Kurimoto et al., 2006),
it has only been a few years since platforms supporting this technology have been made
available in research centers. Conducting single-cell RNA-seq (scRNA-seq) experiments
allowed scientists to get an exquisite insight into the heterogeneity of the cells contained
within a tissue of interest, both in terms of cell types and cell states.
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The main difference in scRNA-seq assays compared to bulk assays is the execution of a
preliminary step consisting in the isolation of single cells before mRNA sequencing occurs.
Recent scRNA-seq platforms, such as the 10X pipeline available at the time of writing
at Institut Curie, encapsulate individual cells into lipidic droplets endowed with DNA
molecules composed of a unique nucleic acid sequence that serves as molecular barcodes
to identify each cell in the analysis (Klein et al., 2015; Macosko et al., 2015). Reverse
transcription using oligo-deoxythymine (oligo-dT) primers and cDNA library preparation
occurs within each oil droplet, followed by the usual sequencing and alignment steps.

Using high-throughput scRNA-seq pipelines such as 10X typically yields a few hun-
dred to several thousand cells per acquisition, with tens of thousands of genes measured.
This provides a multidimensional, comprehensive picture of the cell population sample,
which can then be analyzed in depth using advanced data science and machine learning
techniques. The following section will cover the basics of scRNA-seq data analysis, as well
as the primary tools data scientists have at their disposal to decipher the biological signals
present in scRNA-seq datasets.

If scRNA-seq data has many advantages compared to bulk RNA-seq, it also presents
several limitations. First and foremost, scRNA-seq experiments are heavier and costlier
than bulk ones and necessitate specific platforms and pipelines. In addition, scRNA-seq
datasets are typically much larger in storage as they can easily reach several gigabytes
per experiment. For these reasons, acquiring scRNA-seq data should always be motivated
by precise needs and be carried out on biological samples presenting high enough cell
heterogeneity. Furthermore, due to the scarce amount of biological material available
within a single cell compared to bulk assays, scRNA-seq yields way fewer transcripts per
cell than its bulk counterpart. This results in important variations, especially for genes
with low total counts. In the most extreme cases, notable side effects such as the so-called
dropout effect (Kharchenko et al., 2014) can occur. This describes genes expressed in the
cell but not detected in the experiment due to the small number of transcripts available,
thus being falsely considered as non-expressed. Other artifacts can arise within scRNA-seq
pipelines, such as the sequencing of apoptotic cells, or doublets records that characterize
the event where two cells are captured within a single oil droplet. For these reasons and in
order to make scRNA-seq data exploitable, several preprocessing steps are usually carried
out to detect and correct these issues, and will be discussed in the next section.

Other single-cell assays

This last decade has also witnessed a sharp increase in the amount and in complexity
of the data produced for cellular biology, thanks to an ever-growing number of bulk and
single-cell profiling assays. These technologies allowed scientists to study heterogeneous
cell populations through many biological feature spaces (or modalities) such as mRNA
expression (Klein et al., 2015; Macosko et al., 2015), but also DNA methylation (Guo et al.,
2013) and chromatin accessibility (Buenrostro et al., 2015a,b), and protein abundance
(Aebersold and Mann, 2003; Westermeier and Marouga, 2005; Tibes et al., 2006). These
assays can also be carried out either in bulk, which yields a single averaged molecular
profile for each sample, or at the single-cell level, which provides an exquisite insight into
cell states and types present in the cell population.

Thanks to this panel of biological modalities that are today available for studying living
cells, it is now possible to study biological processes through the prism of many different
molecular mechanisms. We already discussed how monitoring gene expression could give
an insight into the molecular actors orchestrating a biological process, but other modalities
can also bring additional complementary information such as genetic variants, epigenetic
regulation, or kinase activity. The big challenge is then to figure out how the actors from
the different modalities interact together to allow a biological process of interest to take
place.

In addition, during the last few years, there have been several joint assays proposed
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to profile single cells through several modalities simultaneously, such as scM&T-seq for
transcriptome and methylome (Angermueller et al., 2016), sc-GEM for genotype, tran-
scriptome and methylome (Cheow et al., 2016), CITE-seq for transcriptome and surface
proteins (Stoeckius et al., 2017), or SNARE-seq for transcriptome and chromatin accessi-
bility (Chen et al., 2019b).

It is also worth mentioning spatial transcriptomics, which yields for each well mea-
surements from a small number of cells while also providing positional information of
cells within the biological tissue (Ståhl et al., 2016). Finally, important phenotypical
information can be obtained from microscopic imaging data, such as whole slide imag-
ing (Pantanowitz et al., 2011). These two modalities bring precious insights into tissue
structure that can be notably leveraged to infer cell-cell interactions, which is a piece of
information that is typically difficult to access using other modalities.

1.1.3 Processing of single-cell data
Let us now go back to scRNA-seq data; once a scRNA-seq dataset has been acquired
and processed into a raw count matrix Xraw ∈ Nn0×d0 of n0 cells measured on d0 tran-
scripts, additional preprocessing steps must be carried out to make them exploitable for
subsequent analyses. Several scRNA-seq data analysis tools can be used to facilitate these
preprocessing steps, the main one being Seurat (Satija et al., 2015; Butler et al., 2018;
Stuart et al., 2019; Hao et al., 2021) for the R language and Scanpy (Wolf et al., 2018)
for the Python language. Both of these packages are quite interchangeable in terms of
features, and I personally choose Scanpy for language convenience.

ScRNA-seq data preprocessing usually starts with the filtering of both cells and genes,
which serves several purposes. First, low-quality cells are removed from the dataset which
limits their impact during the statistical analyses:

• Cells with too few gene counts are taken out, as they can be artefactual and/or may
not carry sufficient statistical power.

• Cells with too high gene counts are presumed to be doublets and are taken out, i.e.
two or more cells captured within in a single oil droplet.

• Apoptotic cells, which can be detected using their high expression of mitochondrial
genes, are also removed.

A second filtering pass is then applied to genes: typically, genes expressed in too few
cells or genes that do not vary widely among the cells are removed from the analysis. In
the end of this filtering step, the raw count matrix Xraw ∈ Nn0×d0 has been sliced into
a filters count matrix Xfiltered ∈ Nn×d, with n selected cells and d selected transcripts.
It is important to keep in mind that all these filtering steps are based on arbitrary ad
hoc thresholds that are decided by the data analyst, often based on visual inspection of
statistical plots. For this reason, it is always necessary to take them with a grain of salt,
and to acknowledge the inevitable biases these steps introduce into the data.

The next preprocessing step consists in transforming raw count values contained in
Xfiltered into comparable, pseudo-continuous values to make statistical analyses easier.
We often first rescale Xfiltered rows so that for each cell, its counts sum up to a fixed
value (typically 104). This normalizes the base transcriptional activity between all cells in
the dataset, which facilitates comparing the expression of individual genes between cells.
There are debates about the well-fondness of this step, notably because this variation of
gene expression can carry relevant biological information, as pointed out in (Hafemeister
and Satija, 2019). For instance, we showed that total counts measured in a cell are highly
correlated to its position within the cell cycle (Zinovyev et al., 2022), which is important
biological information. For these reasons, more advanced count normalization procedures
are today available in state-of-the-art scRNA-seq analysis packages; additional information
on this topic can be found in (Hafemeister and Satija, 2019).
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Once gene counts have been normalized, it is possible to carry out a pooling step,
where for every cell, its global counts are pooled towards the barycenter of this cell’s k-
nearest neighbors (including the cell itself), either using the average or the median for
more robustness to extreme values. Pooling helps to correct outlier or artefactual values
such as the ones caused by dropout, but should be carried out carefully by monitoring the
k value in order to avoid blurring the data too much (for k = 1, data is untouched while
for k = n, all cells are projected into the dataset’s barycenter). More advanced denoising
methods than barycentric pooling can also be mentioned, such as MAGIC (Van Dijk et al.,
2018) or DCA (Eraslan et al., 2019). Counts are finally individually logarithmized via the
mapping x 7→ log(x + 1), facilitating the integration of genes expressed across different
orders of magnitude.

This standard preprocessing pipeline outputs a processed expression matrix X ∈ Rn×d,
and this algorithm can be adapted by removing or adding computational steps such as
z-score computation or data denoising depending on the quality of the data, and needs
of the application. Overall, it is crucial to remember that typically, if two data scientists
process the same dataset, they generally will not end up with the same expression matrix
in the end. Indeed, the final result depends on the choice of several ad hoc thresholds and
decisions taken by the analyst throughout the process. In the two following sections, we’ll
review how preprocessed expression matrices X can be used to study tissue heterogeneity
as well as dynamical processes that occur at the single-cell level.

1.1.4 Deciphering dynamical cell processes using scRNA-seq data

In addition to the benefits of providing insight into the heterogeneity within a cell popu-
lation, single-cell assays also provide a way to follow the progress of a biological process at
the molecular level. In a similar way as chronophotographs allow tracking the dynamics
of a mechanical trajectory (Fig. 1.4), each cell in a single-cell dataset can be seen as
a snapshot of one state of a biological process. This idea has been leveraged in diverse
applications such as lineage tracing (Schiebinger et al., 2019), transcriptional dynamics
(La Manno et al., 2018) or inference of transcriptional trajectories (Chen et al., 2019a).

Transcriptomic trajectories come in various types and shape, such as linear sections
(e.g., apoptosis process), branching sections (e.g., immune cells differentiation), or cyclic
sections (e.g., cell cycle); some processes can be explained by just one of these types
while more complex ones may necessitate combining several of them. The first important
problem in this topic is to infer trajectories followed by cells from a scRNA-seq dataset
solely based on their position in the gene expression space. The general idea of most
approaches proposed to this day is to learn a topology that best fits the geometry of
the data. Elastic principal graphs (Gorban et al., 2007) provide a powerful framework
to approximate point clouds with tree-like structures and have been shown to discover
relevant trajectories from scRNA-seq data (Chen et al., 2019a).

The second important question is to determine the direction of cells along the trajectory
as well as its irreversibility. Some transitions are irreversible like apoptosis or cell cycle,
while others are not such as glucose metabolism regulation. This also brings the question
of the detection of the starting points (or initial states) and ending points (or final states)
of the trajectory, which is highly non-trivial.

Finally, the question of trajectory local dimensionality must be addressed. Indeed, not
all trajectories are best explained by a local dimensionality of 1 like tree-like trajectories.
In fact, we observe dimensionality can vary to higher orders at different points of the
trajectory. This problem has notably been discussed in (Bac et al., 2021), where an
algorithm is proposed to detect the local intrinsic dimensionality of cellular trajectories.



22 CHAPTER 1. INTRODUCTION

Figure 1.4: Single-cell data analysis provides a snapshot of cells in different
transcriptional states, from which trajectories can be derived. (a) Man jumping,
chronophotography by Etienne-Jules Marey, circo 1887. (b) Waddington landscape is a
cell differentiation model where a cell is modeled as a ball rolling downhill following the
curvature of an imaginary transcriptional landscape while differentiating. A scRNA-seq
assay snapshots the ball position at a point of its trajectory. (c) CHLA9 Ewing sarcoma
cell line embedded in a PCA space, each arrow represents a cell with the tip pointing
towards the first derivative of its transcriptome based on RNA velocity (La Manno et al.,
2018); cells are colored by number of transcripts measured. We clearly see the cell cycle
trajectory appear in this representation.
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1.2 Ewing sarcoma is an aggressive pediatric tumor
Ewing sarcoma is a pediatric bone tumor that was first described in the 1920s by James
Ewing (Ewing, 1972), an American pathologist. Based on the primer (Grünewald et al.,
2018), this section starts by presenting the general features of this disease (epidemiology,
semiology, prognosis, and treatment). We will then focus on the mechanisms by which its
well-characterized molecular oncogene, the chimeric protein EF1, deregulates the whole
cell’s transcriptome. We choose to dedicate the last part of this section to present a
study we conducted shortly before starting this Ph.D., during which we identified a set of
gene signatures associated with various Ewing sarcoma cell processes, notably leveraging
multidimensional factor analysis.

1.2.1 Ewing sarcoma’s features
Epidemiology

Ewing sarcoma is a malignant pediatric bone (mainly occurring in the pelvis, femur, tibia,
humerus, fibula, and ribs) and soft tissue (mainly thoracic wall, gluteal muscle, pleural
cavities, and cervical muscles) tumor, that ranks second in frequency among tumors that
occur during childhood and adolescence (70% of the Ewing sarcoma cases occur between
5 and 25 years old, with peak incidence at age 15). It affects approximately 1.5 children,
adolescents, and young adults per million, with 80 to 100 new patients per year in France
(IGR, 2023), with a slightly superior occurrence in male individuals (Jawad et al., 2009).
In 20 to 25% of the cases, tumors are already metastasized at the time of diagnosis (Gaspar
et al., 2015), with primary metastasis targets being lungs and bone marrow.

Ewing sarcoma also occurs more frequently in individuals of European origin, and less
frequently in individuals of Asian or African origin, which suggests the existence of genetic
variants that increase the risk of developing this cancer (Jawad et al., 2009; Fraumeni and
Glass, 1970; Jensen and Drake, 1970; Worch et al., 2011). There are rare cases reported of
familial clustering, and no clear environmental factors have been highlighted to this day
(Joyce et al., 1984).

Semiology and diagnosis

Ewing sarcoma symptoms are diverse, including local pain (notably when walking when
the tumor is located in the legs) and swelling. It is frequent for the pain to be interpreted
as being related to bone growth, or as an injury (Grünewald et al., 2018). Primary tumors
developed by adolescents and young adults tend to occur more frequently in the pelvis
and the axial skeleton, while also being prone to develop in soft tissues (Rochefort et al.,
2017). According to the Grünewald primer, Ewing sarcoma is also not associated with
typical B symptoms (fever, night sweats, and weight loss) until an advanced stage of the
disease, or once the tumor has metastasized.

If, in many patients, the tumor can be detected by palpation, it can be left undiagnosed
for a long time when it has developed more deeply within larger bones. According to
(Widhe and Widhe, 2000), the median time to diagnosis is about 3 to 6 months. In
general, the diagnosis of Ewing Sarcoma is performed using a radiological evaluation that
can also reveal the presence of metastases. The tumor can be seen in radiography as a
mass within the bone, with a multilayered appearance (in ’onion skin’).

Prognosis and treatment

Ewing sarcoma is highly aggressive, with around 75% survival rate at 5 years when the
cancer is not metastasized and in the absence of comorbidities, and 30% to 50% when the
tumor has metastasized depending on the location of the metastasis; interestingly, time
to diagnosis does not seem to influence the survival rate (Brasme et al., 2014). Tumors in
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children tend to be associated with better outcomes, while those developed by adolescents
and young adults are typically larger and more severe. Also, some locations are more
severe than others: for instance, pelvic tumors are associated with a lower survival rate
(Grünewald et al., 2018). According to (Gaspar et al., 2015), estimating the life expectancy
of survivors is still a challenging question.

Localized and metastasized Ewing sarcoma can be treated clinically (SCC, 2023). Most
of the time, chemotherapy is used in order to evaluate the tumor evolution afterward using
RMI or PET scan. If the tumor has stopped growing, it is surgically removed if possible,
treated with radiotherapy otherwise (for instance when the tumor is located in the spine
or in the pelvis). If the tumor continues to grow or if it has metastasized, additional
chemotherapies may be necessary, with the help of surgery and radiotherapy to control
the tumor’s growth.

Ewing sarcoma’s oncogene, EF1, is well-identified

Ewing sarcoma is a cancer type caused in most cases (85%) by a well-characterized onco-
gene, a chimeric fusion protein called EWSR1-FLI1 (also known as EF1, caused by a
chromosomic fusion between the transcription factor FLI1, whose gene is located on the
chromosome 11, and the protein EWSR1, whose gene is located on the chromosome 22
(Delattre et al., 1992). The EF1 protein acts as a transcription factor with high affin-
ity for some genome regions, notably those containing GGAA microsatellites, known as
EWSR1-FLI1 response elements. It is thought that EF1 deregulates the expression of
many genes by binding onto the genome in these various genomic regions, causing critical
modifications to the cell’s phenotype that eventually lead to tumorigenesis.

We studied in the past using single-cell RNA-seq data the deregulation of cell processes
in the presence of EF1 (Aynaud et al., 2020). We notably observed in this study that EF1
seemed to modulate the expression of proliferation-related genes, as well as genes involved
in other metabolic pathways such as oxidative phosphorylation, hypoxia, extracellular ma-
trix organization, and mRNA transcription. We were also able to better characterize the
transcriptomic intratumoral heterogeneity of Ewing sarcoma, notably via matrix factor-
ization methods that allowed us to define sets of genes contributing to specific cellular
processes. We will discuss this work in more detail in section 1.2.2.

Biological models of Ewing sarcoma

There exists several biological models of Ewing sarcoma that can help researchers study
the transcriptomic landscape of this cancer type, either in bulk or at the single-cell level. In
institutes such as Institut Curie where there is a close collaboration between research units
and the hospital, fresh patient tumors can be worked with. These in vivo samples have the
benefit of representing tumors grown in a realistic microenvironment, but they are hard
to acquire as they require to perform a tumor biopsy which is painful for the patient. In
particular, it makes time resolved experiments difficult to conduct as performing daily or
weekly biopsies would be intolerable for the patient. Also, samples often contain cells from
the tumor microenvironment (healthy epithelial and endothelial cells, immune cells...).
This makes bulk single-cell analyses difficult to conduct as it results in mixed signals, and
single-cell datasets require extra data anlysis work in order to isolate tumor cells.

On the other hand of the spectrum one can find Ewing sarcoma cell lines which can
be grown in vitro. Due to the fact they develop in optimal growth condition and lack
tumor microenvironement, they do not faithfully replicate real tumor cells. On the other
hand, cell lines provide an ideal environment to apply very controlled perturbations and
investigate transcriptional dynamics. In particular, we were able to work with inducible
ASP14 cell lines for which EF1 expression can be regulated thanks to a TET genetic
construct: introduction of doxycyclin into the growth medium triggers the expression of
anti-EF1 small hairpin RNAs that cause the degradation of EF1 mRNAs, thus inhibiting
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the effect of EF1. These cell lines can be used to conduct time-resolved experiments, and
observe how depletion and reinduction of EF1 alters Ewing sarcoma cells’ transcriptome.

Patient Derived Xenografts (PDXs) are very potent models for in vivo human tumors,
that can partly overcome the aforementioned issues. They consist of cells or tissue gath-
ered from a patient’s tumor which have been implanted into an immunodeficient or a
humanized mouse (Lai et al., 2017), to emulate a realistic tumor environment which can
be used in personalized medicine for drug probing without putting the patient at risk. It
is important to keep in mind PDX present some limitations, the major concern about this
model being the fact human stroma in the tumor microenvironment is quickly replaced by
murine stroma, which significantly changes tumor interactions with its microenvironment
(Blomme et al., 2018).

1.2.2 Multidimensional factor analysis of Ewing sarcoma cell processes
Cells are complex systems in which many biological processes take place, such as cell
cycle progression, differentiation processes or metabolic activity. Several regulation factors
such as gene expression, chromatin conformation, protein phosphorylation, and regulatory
RNAs subtly orchestrate these cell processes. Following the abundance of these factors
therefore provides a natural way to determine the spectrum of cell processes happening
within an individual cell. When several datasets are acquired at different time points, it it
also possible to follow the evolution of cell processes throughout a time frame which proves
to be highly valuable when following the development of a complex biological object such
as a tumor.

In this section, we will limit ourselves to scRNA-seq transcriptional signatures, but it
is important to remember that other modalities can provide additional information about
cell processes. First, We will define the notion of transcriptional signatures and cover
how they are identified. We will then expand on the types of transcriptional signatures
that are relevant for the analysis of scRNA-seq tumoral datasets, namely cell cycle-related
signatures as well as signatures associated with tumoral heterogeneity.

Cell process-associated transcriptional signatures

A transcriptional signature (TS) designates a set of genes associated with a specific bio-
logical process. The main advantage of using a TS over one specific gene is that it is more
robust to biological or experimentation noise, and it makes it easier to compare cell states
between different cells.

In practice, for a scRNA-seq dataset embedded in a gene space G = {g1, . . . , gd}, a TS
can be defined as a boolean vector t ∈ {0, 1}d where ti = 1 if gi belongs to the signature, 0
otherwise. Then, for any expression matrix X ∈ Rn×d its associated normalized signature
scores is simply defined by xt = Xt/1T

d t ∈ Rn, whose the i-th coordinate contains the
signature score of the i-th cell, and can be used to assess the activity of the associated
biological process within this cell.

It is important to notice that, unlike cell types, a cell can be involved in more than
one cellular process and at different intensity levels in each of these processes. This
suggests the space of biological states is continuous, with some regions corresponding
to impossible conditions (for instance, a cell cannot be in hypoxia while carrying out
oxidative phosphorylation). Therefore, exploring the space of possible cell states is a
complex problem that can lead to exciting discoveries about cell biology, and we will show
some interesting applications in this section.

Independent component analysis

Independent component analysis (ICA) is a matrix factorization (MF) approach where the
signals captured by each individual matrix factors are optimized to become as mutually
independent as possible. ICA was shown to be a useful tool for unraveling the complexity
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of cancer biology from the analysis of different types of omics data. Such works highlight
the use of ICA in dimensionality reduction, deconvolution, data pre-processing, meta-
analysis, and others applied to different data types (transcriptome, methylome, proteome,
single-cell data) (Sompairac et al., 2019).

In ICA we search for an approximation of the observed probability density function
P (x1, x2, .., xn) by P̂ (s1, s2, ..., sn), where new si variables are some linear combinations of
the initial variables xi. We search for such linear transformation that P̂ (s1, s2, ..., sn)
deviates as little as possible from the product of its marginal distributions P (s1) ×
P (s2), .., P (sn) where the deviation is usually defined in terms of information geometry
(e.g., as Kullback-Leibler divergence). It is shown that ICA is efficient in detecting and
correcting the batch effects in omics datasets (Sompairac et al., 2019).

ICA is not a data dimensionality reduction technique per se: therefore, it is usually ap-
plied on top of reduced (e.g., by standard PCA) and whitened representation of the initial
dataset. Therefore, the choice of the number of independent components is an important
hyperparameter (Kairov et al., 2017). In the simplest approach, ICA solution represents a
rotation of the whitened data point cloud such that each normalized coordinate deviates
as much as possible from the standard Gaussian distribution (Hyvarinen, 1999).

In our experiments, we used the stabilized version of ICA (Captier et al., 2022) which
is shown to be the optimal MF approach for reproducible analysis of transcriptomic data
(Cantini et al., 2019). We applied it to cells labeled as T-cells from all datasets to prevent
dataset-specific cell type imbalance from biasing the components.

Identification of transcriptional signatures

Now that TS have been properly defined, let us present the two categories of strategies
that can be carried out to identify them: top-down approaches and bottom-up approaches.
Top-down approaches consist in selecting a set of genes for a specific biological process
by using prior knowledge, such as genes involved in known pathways of this biological
process. These pathways can be taken from the literature, or databases such as KEGG
(Kanehisa et al., 2012) or Reactome (Vastrik et al., 2007; Gillespie et al., 2022). The main
benefit of this type of approach is that it tends to yield high quality, curated lists of genes
that have been validated by the community as being clearly involved in the biological
process of interest. Scores associated with such TS are quite robust, and are based on
biological knowledge. On the other hand, these TS do not directly lead to identifying new
processes, pathways or genes, which makes top-down approaches limited for the unbiased
exploration of biological signals present in a dataset. Also, it is interesting to note that
these TS are usually not specific of a particular biological system, for instance a particular
cancer type, which can be both an upside (less biased analysis) or a downside (missing
important additional effectors). TS determined using top-down approaches are widely
used today in a variety of applications, and are highly valuable for hypothesis validation
as well as data interpretation.

Bottom-up approaches rather try to learn TS in an unsupervised or semi-supervised
manner directly from the data using deconvolution algorithms. Most popular approaches
rely on matrix decomposition algorithms such as non-negative matrix factorization (NMF)
(Lawton and Sylvestre, 1971; Lee and Seung, 1999; Brunet et al., 2004)) and independent
component analysis (ICA) (Jutten and Herault, 1991; Liebermeister, 2002; Zinovyev et al.,
2013; Sompairac et al., 2019). For s ∈ N a number of factors, these methods decompose
a gene expression matrix X ∈ Rn×d into two matrices A ∈ Rn×s and S ∈ Rs×d so that
X ≈ AS. Doing so, the activity of each factor in a given cell can be read in the matrix
A, and the contribution of each gene to a given factor can be read in the matrix S. S can
then be used to convert the factors into TS using an enrichment process, where for each
factor its top contributing genes are identified and linked to a known biological function
based on the literature or databases. Notably, the ToPPGene suite (Chen et al., 2009) is
very precious tool for candidate gene priorization.
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The main differences between NMF and ICA are the optimality criteria and thus
the optimization procedure. NMF constrains both A and S to be non-negative, while
ICA constrains the rows of S to be statistically independent. This highly influences the
factorization output: NMF will tend to have a more easily interpretable output thanks
to the non-negativity of the matrices, while the independence criterion of ICA should
allow for a more subtle disentangling of the underlying biological signals. Both of these
approaches are used today with robust software implementations, and have led to the
discovery of relevant TS.

Transcriptional signatures help decipher tumoral heterogeneity

Tumors are highly heterogeneous biological systems, composed of cells with various types
and states surrounded by a microenvironment at the interface with other systems like the
immune or vascular systems. For this reason, single-cell analysis is an invaluable asset
to improve our understanding of tumorigenesis and metastasis. In particular, profiling
individual tumor cells through scRNA-seq assays gives a precise picture of gene regulation
and biological processes within them. Unfortunately, tumoral heterogeneity also causes
complex interactions between cell types and states, making tumor analysis challenging.
Notably, if the tumoral microenvironment presents clear cell types that are clustered in
the gene expression space, tumor cells often mainly differ by their intrinsic cell states,
which are more challenging to distinguish and classify.

We conducted in the past a study (Aynaud et al., 2020) during which independent
component analysis (ICA) was used as an unsupervised approach capable of disentangling
(TS) present in various cancer datasets. These single-cell datasets included Ewing sar-
coma (EWS) tumors, EWS cell lines, EWS patient-derived xenografts (PDX), but also
retinoblastoma and neuroblastoma tumors. These TS were enriched with the help of pub-
lic databases, and were then used to characterize how cell processes conducted by tumoral
cells differ from those carried out within non-tumoral ones. Diverse TS were identified,
notably several TS associated with cell proliferation, one TS associated with the expression
of the EWS oncogene (EF1), several TS associated with glucose catabolism (cell respira-
tion and hypoxia), as well as diverse other biological functions such as mRNA splicing or
extracellular matrix organization.

TS have been valuable tools for the interpretation of EWS datasets. In particular, they
have been used to observe how EWS cell lines respond to the suppression of EF1 and how
they recover once EF1 is reintroduced. Indeed, these TS allowed us to not only follow the
dynamics of induction at the molecular level, but also at the level of biological processes.
By doing so, we were able to follow how EWS cells behave once they do not have access
to EF1, as well as observe the orchestration of cell processes throughout EF1 reinduction.
During this PHD, we extend this study by generating new EWS inducible datasets using
more recent scRNA-seq technologies. This allowed us to improve the characterization of
EWS TS, and identify new ones. Details about this work are discussed in Chapter 5.

Cell cycle transcriptional signatures

The cell cycle is a fundamental biological process during which a mother cell grows and
divides into two daughter cells. Most living cells can undergo cell cycle, from prokary-
otic organisms like bacteria to plant cells or animal cells; some cells are incapable of cell
division, such as neurons. Cell cycle is a finely regulated process split into ordered suc-
cessive segments called phases, during which specific events occur. For the remainder of
this section, we will only discuss the Eukaryotic cell cycle as it is relevant for studying
tumorigenesis. The following explanation about cell cycle phases is based on the textbook
(Lodish et al., 2008), and additional details can be found in it.

• G0 phase. Cells that do not undergo cell division are often referred to as quiescent
and belong to a phase called G0. Cells enter G0 from G1, and can exit G0 into G1.
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Some cells stay indefinitely in G0, like neurons for instance.

• G1 phase. G1 phase is the first cell cycle phase and it takes place before DNA
replication. During G1, cells grow in size and synthesize proteins and RNA molecules
necessary during the S phase. Once these conditions are satisfied, cell cycle goes
through a first checkpoint called START that allows the cell to enter the S phase
during which DNA is replicated.

• S phase. DNA replication occurs during S phase and is carried out by a DNA
replication machinery. Without going into too much details, the origin replication
complex (ORC), as well as CDT1 and CDC6 load the the replicative helicase complex
MCM. MCM is then phosphorylated by S-phase-specific CDKs and DDKs, which
initiates the opening process of the DNA double helix that allows DNA polymerases
to start DNA replication.

• G2 phase. G2 phase occurs once chromosomes have been replicated, and consists in
a phase where cells synthesize proteins and other factors necessary for cell division.

• M phase. M phase or mitosis describes the phase during which cells divide, and
can be split into four consecutive subphases: the prophase, during which nuclear
envelope is degraded, chromosomes are condensed and mitotic spindle is formed;
the metaphase, during which the mitotic spindle attaches to the chromosomes’ cen-
tromere; the anaphase, during which microtubules that form the mitotic spindle are
shortened which pulls daughter chromatids toward each pole of the cell; the telophase
(and cytokinesis), during which daughter cells are split, their nuclear envelope is re-
formed, and chromosomes are decondensed.

The cell cycle is a highly regulated process, with a variety of factors involved in order to
orchestrate its progression. In the current eukaryotic cell cycle model, the main regulators
are a family of proteins called cyclin dependent kinases (CDKs), that are controlled by
cyclins proteins as well as other kinases. When a CDK is activated by its dimerization
with its respective cyclin, its phosphorylative activity acts as an activator of a specific cell
cycle phase. For this reason, the deactivation of cyclin/CDK complexes is mostly caused
by cyclin degradation.

ScRNA-seq is a very powerful tool to investigate cell cycle progression of individual
cells. Indeed, many cell cycle factors are regulated at the gene expression level, which
makes it possible to determine whether a cell is cycling, and in which phase it currently
is. Cell cycle TS have been proposed to help determining the state of cells within the cell
cycle process, and one of the most popular list of such genes has been published in (Tirosh
et al., 2016). This list of genes was determined in vitro by screening a set of 800 genes
for the response to specific cyclins. Such TS can also be constructed using unsupervised
algorithms such as ICA, and we proposed in the past a set of cell cycle TS from Ewing
sarcoma cells (Aynaud et al., 2020).

In this framework, each cell is associated to a small set of scores (typically from 2 to
4) that identifies its position onto a cycling trajectory, around which cells revolve as they
progress throughout the cell cycle. One score always measures the expression of genes
specific to the G1 and S phases, and another measures the ones specific to the G2 and
M phases. Then, there can be a score associated to histones that are proteins responsible
for cromatin condensation that takes place during mitosis, and another score associated
to genes responsible for the mitosis exit. Overall, monitoring these values allow for a very
precise estimation of the cell cycle phase a cell is undergoing. We worked on improving this
cell cycle model as well as characterizing the interplay between its different components,
which we explain in further details in Chapter 4.
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1.3 Integration of single-cell data
Hand-to-hand with the surge of biological modalities, there has been an explosion in the
number of available datasets helped by various scientific initiatives to make biological
data more easily available (Conesa and Beck, 2019), like with The Cancer Genome Atlas
(TCGA) database. When tackling difficult biological questions, using data gathered across
different sources or modalities is enticing. On the one hand, combining data from different
sources helps to provide a comprehensive view of the biological object of interest. For
example, it can facilitate the discovery of rare but relevant cell types or states, or help
quantify the relative abundance of cell types across a collection of biological samples.
On the other hand, having different modalities at their disposal allows scientists to link
them together, possibly leading to exciting mechanistic discoveries. Finally, there can
be an emergent property where analyzing a biological object through several modalities
simultaneously could yield superior information compared to analyzing each modality
individually.

Unfortunately, there are several obstacles to overcome before data from several sources
and modalities can be used within an analysis pipeline. First, the multiplicity of sources
comes at the price of all sorts of batch effects, as datasets can come from different replicas,
technologies, individuals, or species. Then, combining datasets containing measurements
from various biological modalities is a major computational challenge, especially when
samples are not clearly paired across datasets, as there is no trivial common space to
embed samples together. Therefore, there is a real need for methods and tools that would
be able to tie together biological datasets across datasets (or batches) and modalities.

1.3.1 Data integration links biological datasets across batches or modal-
ities

This last decade has witnessed a sharp increase in the amount and complexity of data
produced for cellular biology, thanks to an ever-growing number of bulk and single-cell
profiling assays. These technologies allowed scientists to study heterogeneous cell popu-
lations through many biological feature spaces (or modalities) such as mRNA expression
(Klein et al., 2015; Macosko et al., 2015), DNA methylation (Guo et al., 2013) and chro-
matin accessibility (Buenrostro et al., 2015a,b), and protein abundance (Aebersold and
Mann, 2003; Westermeier and Marouga, 2005; Tibes et al., 2006). These assays can be
carried out either in bulk, which yields for each sample a single averaged molecular profile,
or at the single-cell level, which provides an exquisite insight into cell states and types
present in the cell population. In particular, carrying out biological assays at the single-cell
level snapshots cells at various points of a dynamical process, which can then be leveraged
for various applications such as lineage tracing (Schiebinger et al., 2019), transcriptional
dynamics (La Manno et al., 2018), inference of transcriptional trajectories (Chen et al.,
2019a) and many more.

In addition, during the last few years, there have been several joint assays proposed
to profile single cells through several modalities simultaneously, such as scM&T-seq for
transcriptome and methylome (Angermueller et al., 2016), sc-GEM for genotype, tran-
scriptome and methylome (Cheow et al., 2016), CITE-seq for transcriptome and surface
proteins (Stoeckius et al., 2017), or SNARE-seq for transcriptome and chromatin accessi-
bility (Chen et al., 2019b). It is also worth mentioning spatial transcriptomics, which yields
measurements from a small number of cells in each well while also providing positional
information of cells within the biological tissue (Ståhl et al., 2016). Finally, important
phenotypical information can be obtained from microscopic imaging data, such as whole
slide imaging (Pantanowitz et al., 2011).

Hand-to-hand with the surge of biological modalities, there has been an explosion in
the number of available datasets helped by various scientific initiatives to make biological
data more easily available (Conesa and Beck, 2019); among these initiatives, one can
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Figure 1.5: Data integration describes a set of problems aiming to tie together
data across different origins or modalities. (a) A biological object can be profiled
through multiple batches (columns) and modalities (rows), and not all batches necessarily
contain measurements for all modalities. (b) Vertical integration (VI) consists in using
cells or samples as anchors to deduce links between features across modalities. (c) Hori-
zontal integration (HI) consists in using overlapping features as anchors to jointly analyze
data coming from different sources. (d) Diagonal integration (DI) consists in embedding
together several batches with non-overlapping modalities. Mosaic integration (MI) is the
problem of missing modalities inference. From (Fouché and Zinovyev, 2023).
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Tool Strategy Input Output Year Reference
ComBAT BA RNA-seq Gene space 2007 (Johnson et al., 2007)

MNN NN RNA-seq Gene space 2018 (Haghverdi et al., 2018)
scmap NN RNA-seq Clustering 2018 (Kiselev et al., 2018)
scvi DAE RNA-seq, spatial Embedding 2018 (Lopez et al., 2018)

ingest DR RNA-seq Embedding 2018 (Wolf et al., 2018)
CONOS NN RNA-seq Graph 2019 (Barkas et al., 2019)

Scanorama NN RNA-seq Embedding 2019 (Hie et al., 2019)
scAlign DAE RNA-seq Embedding 2019 (Johansen and Quon, 2019)

Harmony CL RNA-seq Embedding 2019 (Korsunsky et al., 2019)
Seurat v3 NN RNA-seq Gene space 2019 (Stuart et al., 2019)
LIGER MF RNA-seq Embedding 2019 (Welch et al., 2017)
DESC DAE RNA-seq Embedding 2020 (Li et al., 2020)

BBKNN NN RNA-seq Graph 2020 (Polański et al., 2020)
SpaGE NN RNA-seq, spatial Embedding 2020 (Abdelaal et al., 2020)

Tangram DAE RNA-seq, spatial Embedding 2021 (Biancalani et al., 2021)
Canek NN RNA-seq Embedding 2022 (Loza et al., 2022)

CAPITAL MA RNA-seq Embedding 2022 (Sugihara et al., 2022)
SCISSOR RE RNA-seq Graph 2022 (Sun et al., 2022)
DAPCA MF Any Embedding 2023 (Mirkes et al., 2022)

Table 1.1: A non-exhaustive list of horizontal integration (HI) tools aiming
to jointly embed single-cell datasets measured in the same modality into a
common space. BA: Bayesian, NN: Nearest Neighbors, DAE: Deep Autoencoders, DR:
Dimensionality Reduction, CL: Iterative Clustering, MF: Matrix Factorization, MA: Man-
ifold Alignment, RE: Regression, FR: Framework

mention atlases of entire organisms such as the Tabula Muris (Schaum et al., 2018) and
Human (Tabula Sapiens Consortium et al., 2022) Consortia. We would also like to talk
about disease-based atlas such as The Cancer Genome Atlas (TCGA) database (Weinstein
et al., 2013), and the IMMUcan database (Camps et al., 2023) which provides an exquisite
insight into the nature of tumor microenvironment. When tackling difficult biological
questions, using data gathered across different sources or modalities is enticing. On the
one hand, combining data from different sources helps to provide a comprehensive view
of the biological object of interest. For example, it can facilitate the discovery of rare but
relevant cell types or states, or help quantify the relative abundance of cell types across
a collection of biological samples. On the other hand, having different modalities at their
disposal allows scientists to link them together, possibly leading to exciting mechanistic
discoveries. Finally, there can be an emergent property where analyzing a biological object
through several modalities simultaneously could yield superior information compared to
analyzing each modality individually.

Unfortunately, there are several obstacles to overcome before data from several sources
and modalities can be used within an analysis pipeline. First, the multiplicity of sources
comes at the price of all sorts of batch effects, as datasets can come from different replicas,
technologies, individuals, or even species. Then, combining datasets containing measure-
ments from different modalities is a major computational challenge, especially when sam-
ples are not linked across datasets, as there is no trivial common space to embed samples
together. Therefore, there is a real need for methods and tools that would be able to tie
together biological datasets across datasets (or batches) and modalities. In this review, we
investigate this question through the prism of machine learning paradigms, and present
how a few of these concepts are today widely used within popular, state-of-the-art data
integration methods.
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Figure 1.6: Horizontal integration describes the problem of embedding together
datasets measured along the same biological modality. Different types of popular
machine learning approaches are commonly used to match similar cells across batches.
(a) Manifold alignment techniques find the projection that create the optimal overlap
between two point clouds. (b) Nearest neighbors techniques identifies similar cells across
datasets based on a similarity measure. (c) Deep autoencoders (AEC) learn a joint latent
representation of the data in which batch effects are regressed out. From (Fouché and
Zinovyev, 2023).

1.3.2 Horizontal integration (HI) links batches anchored by their com-
mon modality

Horizontal integration (HI) describes the situation where several batches are all gathered
in a common modality with overlapping feature spaces. It is worth noting that depending
on the tool, there may only suffice that each pair of datasets contains an overlapping
feature space (e.g., dataset A containing features {f1, f2}, dataset B containing features
{f1, f3} and dataset C containing features {f2, f3}). HI is a convenient framework in
which cells can directly be compared across different batches due to their feature space
overlap, which allows the use of natural concepts such as distances, neighborhoods, or
similarity measures. Many tools have been proposed to tackle HI, and we gathered a
non-exhaustive list of them in (Table 1.1). As we can see, these methods employ various
strategies to identify similar cells across batches and embed cells into a joint space. Some
require additional information, such as reference datasets or cell labels. The remainder
of this section is devoted to describing the main computational principles and machine
learning paradigms HI methods rely on and providing some rationale and guidelines about
each of them.

Many HI methods rely on manifold alignment strategies to integrate batches together
[Fig. 1.6a], allowing them to consider the whole data structure instead of matching individ-
ual cells. Perhaps the oldest and most natural manifold alignment technique is Procrustes
analysis (Gower, 1975), named after the mythical greek thug who cut or stretched his vic-
tims so that they fit the length of their bed. This is an old and intuitive machine learning
paradigm mostly used for shape alignment that aims at projecting query datasets onto a
reference one while only allowing simple transformations (rotation, rescaling, and shift-
ing). Procrustes-based methods are not often used to integrate single-cell data, although
some attempts can be found in the literature (Eto et al., 2018). First introduced to infer
cell differentiation trajectories (Schiebinger et al., 2019), discrete optimal transport (OT)
theory and its extensions (Gromov-Wasserstein, partial OT, unbalanced OT) is the most
popular paradigm used for manifold alignment-based HI. It aims to align cells as discrete
probability distributions represented as weighted point clouds in a metric space based on
pairwise cell-cell cost matrices between batches that are often distance matrices. OT and
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its extensions have been successfully applied to horizontal and diagonal data integration
(Demetci et al., 2022; Cao et al., 2022b). Manifold alignment-based HI is a powerful
paradigm, but it can sometimes struggle to solve complex alignment tasks (for instance,
when the structure of a dataset presents ambiguous symmetries or when some batches
contain specific cell types that must not be aligned).

Another class of HI methods seeks similar cells across batches, operating at the single-
cell level rather than at a global level [Fig. 1.6b]. Some are based on the nearest neighbors
approach like mutual nearest neighbors (MNN) (Haghverdi et al., 2018), CONOS (Barkas
et al., 2019), Scanorama (Hie et al., 2019), Seurat (Satija et al., 2015; Butler et al.,
2018; Stuart et al., 2019; Hao et al., 2021) that include different integration schemes
such as CCA and robust PCA (RPCA), or BBKNN (Polański et al., 2020). All nearest
neighbors-based methods rely on the hypothesis that batch effects are almost orthogonal
to biological effects, which would allow identifying similar cells across batches through
simple orthogonal projection. They then apply various strategies to end up with a joint
representation of cells like correction vectors or joint graph construction. These methods
tend to work best when facing slight to moderate batch effects and generally fail when
batch effects are far from being orthogonal to relevant biological signals. They tend
to scale well to large datasets thanks to various optimizations during nearest neighbors
computation like nearest neighbors descent (Dong et al., 2011). Another metric-based
approach is described in Harmony (Korsunsky et al., 2019), which is probably the most
used tool in practice for HI of single-cell data. It uses an iterative algorithm of successive
biased clustering across batches and correction. First, cells are clustered across datasets
with such a bias that penalizes clusters of cells with a homogeneous batch of origin. Then,
cells of a given cluster are pooled towards each other. An optimality criterion is tested
at each iteration to assess whether batch mixing is sufficient, using a local purity metric
called Local Inverse Simpson’s Index (LISI). Due to its simplicity and availability with
both Python and R packages, Harmony is widely used today and still achieves respectable
results in benchmarks (Anaissi et al., 2022) despite being limited when facing strong batch
effects (Luecken et al., 2022).

Deep autoencoders (DAEs) (and more recently variational autoencoders) have been
popular tools in single-cell for a few years already and excel at performing a variety of
complex preprocessing tasks, such as dimensionality reduction (Wang and Gu, 2018), or
denoising and correcting dropouts (Eraslan et al., 2019), as well as acting as generative
models (Trong et al., 2020). DAEs are neural networks that leverage a bottleneck structure
to learn a compressed data representation in a low dimensional space, which can then be
exploited for various tasks [Fig. 1.6c]. DAE is a powerful framework to carry out horizontal
data integration with tools such as scvi (Lopez et al., 2018), scAlign (Johansen and Quon,
2019) or DESC (Li et al., 2020). In particular, scANVI, part of the scvi framework,
is the top performer tool in the (Luecken et al., 2022) atlas-scale benchmark. DAEs
generally have high computational capabilities thanks to the fact to be able to exploit
GPU acceleration during training. The main downside of DAEs is the large amounts of
data necessary for their training and their lack of interpretability, though there are efforts
to improve on the latter point (Svensson et al., 2020; Treppner et al., 2022).

Despite the myriad approaches proposed to tackle HI, it remains challenging today
to correct strong batch effects. For instance, (Tran et al., 2020; Luecken et al., 2022)
showed that if several methods can satisfyingly remove moderate batch effects, integrating
datasets across species remains difficult for unsupervised methods which do not require cell
labeling information. Also, many methods rely on finding first an overlapping feature space
between all datasets, which can be an obstacle when building large atlases combining many
batches of varying quality, where the number of common features can shrink drastically.
Finally, the problem of selecting appropriate metrics to assess data integration quality is
still difficult. Most benchmarks use a mixture of metrics to measure different aspects of
the data integration task such as batch mixture, label clustering or topology preservation,
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depending on the information available:

• Batch mixture metrics such as batch-LISI are commonly used to measure how much
the data integration procedure brought cells from different datasets close to one an-
other. These metrics are popular because they do not require additional information,
such as cell types or states, and can be used as unsupervised tools. Unfortunately,
a good integration does not necessarily imply good batch mixture metrics, as two
datasets without overlapping cell types should not be mixed after integration; sim-
ilarly, projecting all datasets together onto a single point would result in perfect
batch mixing, but all the biological information would be lost. For these reasons,
even though batch mixture metrics are quite informative and widely used, most
benchmarks also include other integration metrics to compensate for these limita-
tions.

• Label clustering metrics, such as normalized mutual information or adjusted Rand
index, provide an additional axis to measure data integration quality by assessing
if cells of similar type cluster together after integration. Label clustering metrics
are usually quite good for controlling the data integration quality if cell types can
be identified confidently. The main downside of these metrics is the necessity to
have high-confidence cell labels available before integration, which is often not the
case (especially as one of the purposes of data integration is to be carried out before
clustering and cell type inference).

• Finally, topology preservation metrics assess how data integration has preserved
relations between the different cells and penalize cases where cells that were close
before integration have been brought far apart by the algorithm (meaning cells that
were initially similar but are dissimilar after integration). Topology can be biology-
driven by observing the conservation of signals related to specific cell processes, such
as cell cycle or other transcriptomic trajectories, or data-driven with algorithms as
simple as comparing the k-nearest neighbors of a cell before and after integration
and penalizing the differences.

Evaluating the quality of a HI can be daunting, as shown by the large variety of metrics
that have been developed for it. In practice, we often use a batch mixture metric such as
LISI, complemented by a secondary metric that can be either a label clustering metric if
high-confidence labels are available and a topology preservation metric otherwise.

1.3.3 Vertical integration (VI) connects modalities measured in the same
cells

Vertical integration (VI) uses several datasets containing individual measurements from
the same cells obtained from joint single-cell assays measured through different biological
features (e.g., gene expression and chromatin accessibility) to infer relations between the
different modalities. VI is usually declined into two variants, namely local VI and global
VI. Local VI identifies links between individual features (such as genes and methylated
promoters), and can be used to formulate hypotheses of direct or indirect biological in-
teractions between the omics layers (e.g., gene expression and accessibility of a chromatin
region), with methods like LMM (Van Der Wijst et al., 2018) or Spearman’s rank cor-
relation coefficient (Cuomo et al., 2020). On the other hand, global VI links features
across different modalities via global factors that can be related to biological processes
(e.g., identifying a group of genes and chromatin regions to correspond to proliferation
activity).

A family of global VI tools are based on a methodology inspired by canonical correlation
analysis (CCA) (Hotelling, 1992), which use joint feature measurements across datasets
to identify correlated features across modalities [Fig. 1.7a]. RGCCA (Tenenhaus and
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Tool Strategy Input Year Reference
CCA FC Any 1936 (Hotelling, 1992)

RGCCA FC Any 2011 (Tenenhaus and Tenenhaus, 2011)
JIVE MD Any 2013 (Lock et al., 2013)

SGCCA FC Any 2014 (Tenenhaus et al., 2014)
MOFA MD Any 2018 (Argelaguet et al., 2018, 2021)

DIABLO FC Any 2019 (Singh et al., 2019)
scAI MD RNA-seq, epigenomic 2020 (Jin et al., 2020)

Seurat v4 NN Any 2021 (Hao et al., 2021)
scMM DAE Any 2021 (Minoura et al., 2021)
SMILE DAE Any 2021 (Xu et al., 2022b)
MIRA TM RNA-seq, chromatin state 2022 (Lynch et al., 2022)

Table 1.2: A non-exhaustive list of global vertical integration (VI) tools that
can be used to learn relations between features across modalities from joint
single-cell assays. FC: Feature Correlation, MD: Matrix Decomposition, NN: Nearest
Neighbors, DAE: Deep Autoencoders, TM: Topic Modelling

Figure 1.7: Two main strategies are used for vertical integration of joint assays.
a Local strategies link features across modalities via pairwise correspondence. b Global
strategies link features across modalities via common biological factors. From (Fouché
and Zinovyev, 2023).
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Tool Strategy Input Output Year Reference
MATCHER MA RNA-seq, epigenetic Gen. Model 2017 (Welch et al., 2017)

CoupledNMF MF RNA-seq, ATAC-seq Clustering 2018 (Duren et al., 2018)
MMD-MA MMD Any Embedding 2019 (Liu et al., 2019)

LIGER MF RNA, ATAC, scMethyl Embedding 2019 (Welch et al., 2019)
UnionCom MA Any Embedding 2020 (Cao et al., 2020a)

bindSC NN Any Embedding 2020 (Dou et al., 2020)
SCIM DAE Any Embedding 2020 (Stark et al., 2020)

MultiVI DAE RNA-seq, ATAC-seq Embedding 2021 (Ashuach et al., 2021)
COBOLT DAE Any Embedding 2021 (Gong et al., 2021)
Pamona OT Any Embedding 2022 (Cao et al., 2022b)

Polarbear DAE RNA-seq, ATAC-seq Embedding 2022 (Zhang et al., 2022a)
GLUE DAE Any Embedding 2022 (Cao and Gao, 2022)
SCOT GW Any Embedding 2022 (Demetci et al., 2022)
scJoint DAE RNA-seq, ATAC-seq Embedding 2022 (Lin et al., 2022)
sciCAN DAE RNA-seq, ATAC-seq Embedding 2022 (Xu et al., 2022a)
scDART DAE RNA-seq, ATAC-seq Embedding 2022 (Zhang et al., 2022b)
StabMap LI Any Embedding 2022 (Ghazanfar et al., 2022)
UINMF MF RNA, ATAC, spatial Embedding 2022 (Kriebel and Welch, 2022)

Table 1.3: A non-exhaustive list of diagonal (DI) and mosaic integration (MI)
tools that integrate single-cell datasets gathered across different biological
samples and modalities. MA: Manifold Alignment, MF: Matrix Factorization, MMD:
Maximum Mean Discrepancy, NN: Nearest Neighbors, DAE: Deep Autoencoders, OT:
Optimal Transport, GW: Gromov-Wasserstein, LI: Linear Inference

Tenenhaus, 2011) extended this framework to simultaneously allow the analysis of more
than 2 datasets. These concepts have been refined in (Tenenhaus et al., 2014) and DIABLO
(Singh et al., 2019) to achieve better feature selection.

On the other hand, other popular global VI tools are based on matrix decomposition
algorithms [Fig. 1.7b] (Lock et al., 2013; Argelaguet et al., 2018, 2020; Jin et al., 2020).
These tools generally aim to decompose each data matrix into a component explained
by global factors, a component containing dataset-specific and modality-specific factors,
and a noise term. They mostly differ by their exact decomposition model and specific
strategies used to infer its parameters.

If deep autoencoders did wonders for HI, they were also successfully applied to VI
problems (Minoura et al., 2021) by using two distinct encoders and decoders using a shared
latent space into which both modalities are projected. This strategy notably allows the
network to ”translate” a modality into another. We can also mention the recent MIRA
method (Lynch et al., 2022), which leverages a variational autoencoder approach to learn
gene expression and chromatin accessibility shared topics.

Overall, the VI framework has allowed the growth of methods taking advantage of
the powerful sample anchoring across datasets, with many approaches proposed inspired
by statistics and machine learning. A few important benchmarks have been carried out
to assess the quality of VI tools, notably (Cantini et al., 2021) which focuses on joint
dimensionality reduction (jDR) methods. Due to the difficulty of setting up joint assays
and the inability of these methods to function without matched cells, there is a crucial
need for diagonal integration (DI) tools that aim to integrate datasets across batches and
modalities.

1.3.4 Diagonal and mosaic integration jointly embed non- or partially-
anchored datasets

Diagonal integration (DI) and mosaic integration (MI) are two data integration frame-
works for single-cell data that do not require datasets to be acquired through matched
biological assays. In this paragraph, we use DI indistinguishably from MI. The goal is to
leverage datasets structure and possibly external information, such as genomic locations,
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Figure 1.8: Several strategies can be carried out to tackle the diagonal integra-
tion computational challenge. (a) A biological object (e.g. a population of cells) can
be profiled using different assays, without obvious means to link both representations. (b)
Knowledge of interaction between features across modalities can be obtained from vertical
integration of external datasets generated using joint assays. This information can then
be leveraged to compare cells between batches even if they are not expressed in the same
modality, which allows to use horizontal integration tools. (c) Datasets can be indepen-
dently encoded into abstractions that can then be matched in an unsupervised fashion to
build a joint representation of datasets. (d) Datasets can be jointly encoded into a unique
abstraction, for instance through a learning process using a deep autoencoder framework,
that can then be used as a joint embedding of datasets. From (Fouché and Zinovyev,
2023).
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pathways, or partial sample or modality overlap to infer complete bonds between cells
across modalities without relying on explicit sample anchoring [Fig. 1.8a,b]. DI generally
aims to build a joint embedding of datasets into a common latent space, while MI focuses
on inferring missing modalities from partially anchored datasets. Let us focus on the two
main families of methods that exist for tackling DI: manifold alignment and deep au-
toencoders. These two machine learning paradigms can handle high levels of abstraction,
which seems required to tackle DI in the general case.

Manifold alignment methods (Welch et al., 2017; Liu et al., 2019; Cao et al., 2020a;
Demetci et al., 2022; Cao et al., 2022b) for DI operate similarly as in the HI case and
work under the assumption stating that smooth point clouds alignment corresponds to
meaningful biological correspondence [Fig. 1.8c]. This allows them to work in an unsu-
pervised fashion without requiring additional knowledge other than data matrices. Despite
working accurately in some cases, it has been shown this hypothesis is far from being uni-
versal (Xu and McCord, 2022). In this article, the authors show that under some simple
data tweaking, such as missing cell types or different sample sizes, manifold alignment
DI methods can generate erroneous embeddings featuring clusters with mixed cell types.
This is concerning, as validating DI is a challenging task, given that it is rarely the case
to have reliable cell type labels across modalities at disposal. Therefore, we suggest that
these unsupervised manifold alignment methods must be used carefully and only when
integration quality control is feasible. In other cases, it is preferable to choose another DI
method that allows the user to provide additional information that helps bridge the gap
across modalities.

As for HI and VI, deep autoencoders are powerful tools for solving DI tasks, with
several advantages. First, they can take advantage of GPU acceleration built in deep
learning libraries to greatly speed up the training process, and naturally scale to very
large datasets. The second benefit of using these neural networks is that they offer the
possibility to train a separate encoder and decoder for each biological modality, which
helps capture modality-specific factors compared to manifold alignment algorithms where
all omics layers are treated similarly. These separate encoders generally share a joint
latent space [Fig. 1.8d], with some form of penalty to force latent representations to
overlap. They also present an algorithmic structure that facilitates the introduction of
external biological guidance, like in the GLUE tool (Cao and Gao, 2022), which uses a
guidance graph as prior knowledge about functional relationships between features across
modalities. We would also like to mention in this category the Polarbear tool (Zhang et al.,
2022a), which leverages deep autoencoders to notably translate single-cell data between
RNA-seq and ATAC-seq.

To the best of our knowledge, there do not exist at the time of writing a large-scale,
independent benchmark of DI methods like for HI (Luecken et al., 2022). This is arguably
difficult to set up due to the number of single-cell modalities available today, given the
fact that, in addition, not all methods can deal with all modalities. Some may also require
specific prior knowledge, and output type may vary. Furthermore, there is a lack of reliable
metrics for assessing the quality of DI methods and real-life benchmarking datasets. A
first breakthrough is to note in this direction, with a NIPS single-cell analysis competition
organized recently which gave access to a public multimodal dataset containing single-
cell gene expression, protein expression, and chromatin accessibility using CITE-seq and
Multiome (Lance et al., 2022). With the democratization of such datasets, benchmarking
DI methods will become more accessible, which will help standardize the field and identify
the best-performing methods for each scenario.

To finish, there is a growing interest in integrating single-cell data with other related
data modalities, such as whole slide images or spatial transcriptomics. There is a particular
interest in deconvoluting spatial transcriptomic spots by integrating them with a single-
cell RNA-seq dataset obtained from a similar same tissue. This is a current challenge,
and several methods have been proposed for this task, notably benchmarked in (Li et al.,
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2022).
There is always an urgent need for large-scale, independent benchmarks like the HI

benchmark proposed in (Luecken et al., 2022), or the VI benchmark carried out in (Cantini
et al., 2021). To the best of our knowledge, there is still a lack of large-scale independent DI
and MI benchmarks. Two things are necessary to carry out such benchmarks: high-quality
datasets and reliable metrics. A list of potential datasets can be found in (Argelaguet
et al., 2021). There is no clear consensus about which quality assessment metric to use,
and most benchmarks like (Luecken et al., 2022) opt for a mixture of metrics that cover
several aspects of data integration: conservation of biological variance (CBV) metrics
which measure how close similar cells (type or state) are after integration, and removal
of batch effects (RBE) metrics. Some CBV metrics are label-based, such as normalized
mutual information (NMI), adjusted Rand index (ARI), average silhouette width (ASW),
class local inverse Simpson’s index (cLISI), isolated label F1 (ILF) and isolated label
silhouette (ILS), others are label-free and generally assess the conservation of biological
processes such as cell cycle, highly variable genes, and transcriptomic trajectories. RBE
metrics include batch-PC regression, batch-ASW, graph connectivity, iLISI, and kBet.
We often observe a tradeoff between CBV and RBE, which can lead to different methods
choice depending on the application, whether it is preferable to have good dataset mixing
or conservation of subtle biological signals.

Overall, DI is arguably the most challenging data integration problem, and solving it
is still a very active research area. This very convenient data integration paradigm is very
versatile, as it theoretically does not need any anchoring (cells or features) between the
different datasets. In practice, if many DI tools indeed work in a completely unsupervised
way leveraging data topology such as MMD-MA (Liu et al., 2019), Pamona (Cao and Gao,
2022) or SCOT (Demetci et al., 2022), others require additional information to bridge the
gap between modalities like GLUE (Cao et al., 2022a) or MultiVI (Ashuach et al., 2021)
which can take a covariate design matrix as an optional parameter. For the moment, it
appears that these biased methods offer more control on the results, as data topology can
be misleading in practice and yield aberrant results (Xu and McCord, 2022). Therefore,
using DI tools that can be enriched with biological context seems to be the best choice
in the applications where such context can be obtained in a reliable way, typically when
integrating datasets where strong covariates exist between modalities.
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Chapter 2

Transmorph, a novel framework to
perform integration of single-cell
data

Adapted from (Fouché et al., 2023), extended.

Batch effects occur in most applications involving datasets gathered across multiple sources
or experiments, and describe strong dataset-specific signals which are often irrelevant to
the studied biological questions. Data integration is a computational paradigm aiming to
learn a joint embedding of datasets in which batch effects are regressed out, meaning only
dataset-independent factors are expressed. The idea is to combine information contained in
several datasets, each of those being supposedly biased by its own specific batch effects. We
focus here on the so-called horizontal data integration (Argelaguet et al., 2021) which seeks
to integrate datasets obtained within the same domain with overlapping feature spaces.
This is different from vertical and diagonal data integration where cells are measured in
different domains, also known as multi-omics data integration. This scenario involves
specific strategies and algorithms which are beyond the scope of this project (see for
instance (Hao et al., 2021)).

Data integration is an important preprocessing step for applications involving several
datasets (Fig. 2.1a). In some cases, something as simple as centering and normaliza-
tion/scaling of features may suffice, but more complex batch effects often require more
subtle, dedicated algorithms to be satisfactorily removed. Data integration can serve var-
ious purposes. The most common usage is to embed items from all datasets into a joint
low dimensional space like in Harmony (Korsunsky et al., 2019), which can then be used
to carry out various techniques such as clustering, label transfer, or visualization. An-
other use case is to directly perform integration in gene space like in MNN (Haghverdi
et al., 2018) so that algorithms needing interpretable features such as matrix factoriza-
tion methods can be used. Finally, integration can be carried out without embedding
data points into an explicit feature space, for instance by outputting a joint graph of cells
across datasets like in BBKNN (Polański et al., 2020).

Data integration finds particularly important applications in single-cell biology. Start-
ing with a biological tissue, a single-cell dataset is generated and contains individual
molecular measurements (for instance gene expression, SNPs, or chromatin accessibility)
about single cells of the tissue. The strength of single-cell analysis is its ability to both
provide an insight into intrinsic cell state, while also giving access to population-level in-
formation that can for instance be used to estimate cell types distribution within a tissue,
which makes this technology relevant for analyzing patient samples in medicine. Due to
genetic and environmental differences between individuals, batch effects are very prone
to appear when dealing with single-cell datasets coming from different patients. The in-
tertwining of batch-dependent and batch-independent factors is therefore an obstacle for
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the analysis of large comprehensive datasets built by aggregating data from different in-
dividuals, notably when building cell atlases (see for instance (Angelidis et al., 2019)).
Data integration is consequently a necessary technology to develop in order to mitigate
dataset-specific signals while preserving relevant biological signals proper to the system
of interest. This chapter contains the extended version of the paper (Fouché et al., 2023)
which presents transmorph, a computational framework we developed to design data in-
tegration algorithms.

2.1 Transmorph: concept and architecture

Figure 2.1: Transmorph is a framework for scRNA-seq data integration. (a)
Schematic representation of the data integration problem. (b) Transmorph integration
models conduct data integration of scRNA-seq datasets. Once the integration has been
performed, cells cluster by type or state instead of origin. (c) Transmorph global package
architecture, featuring internal and external models, benchmarking scRNA-seq databanks,
and analysis tools. (d) Architecture of the model API, which allows engineering new data
integration models using basic building blocks. (e) Directed compatibility chart of the
model API modules, with arrows indicating how algorithms can be articulated within
transmorph pipelines. From (Fouché et al., 2023).

As mentioned in the introduction, integration of single-cell RNA-seq data has been
a prolific topic for the last decade, and dozens of methods still appear each year in the
literature (Argelaguet et al., 2021). We believe this surge of methods comes with an
urgent need for organization, classification, and large-scale benchmarks (see for instance
(Luecken et al., 2022)) of both (a) end-to-end data integration pipelines, in order to guide
the computational biologists that need to apply data integration to their research projects,
and (b) algorithms, to guide methodologists who conceive new data integration methods.
For this reason we introduce transmorph, an intuitive computational framework that aims
to decompose data integration methods into basic algorithmic units that can be freely
rewired to make emerge new data integration pipelines (Fouché et al., 2023). These units
can either be extracted from the literature, such as a nearest neighbors search or a PCA
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projection, or can be customized at will by the user. This flexibility allows scientists
to harness integration methods adapted to the specificities of their data, for instance by
choosing an output algorithm that produces an integration directly in gene space, or by
selecting a matching algorithm that takes data topology into account, such as optimal
transport (Fig. 2.1b).

In addition, transmorph is endowed with other features that facilitate its integration
within real-life workflows of scRNA-seq data analysis (Fig. 2.1c). It is fully compatible
with the standard scRNA-seq library scanpy (Wolf et al., 2018) as they handle the same
type of objects, is interfaced with other first-class data integration tools such as Harmony
(Korsunsky et al., 2019) and scvi (Lopez et al., 2018), and contains several annotated
scRNA-seq datasets as well as standard quality assessment metrics and plotting functions
to validate data integration algorithms. Finally, a comprehensive model API is available
to allow the user to implement their own algorithmic units, using an object-oriented spec-
ification (Fig. 2.1d). For these reasons, we think transmorph is both an original and a
powerful asset to design, apply, and benchmark data integration methods.

2.1.1 Transmorph allows conceiving end-to-end data integration models
Despite potentially achieving very good integration results in specific use cases, we be-
lieve that existing data integration algorithms are flawed by their intrinsic rigidity. By
constraining the user to a fixed algorithm, they tend to excel in some use cases while strug-
gling in others, as we show in the next sections. Also, the lack of access to their internal
algorithms can make results difficult to interpret. Furthermore, these internal algorithms
cannot be easily modified when needed, notably when the user needs a particular output
type that the algorithm is not able to provide. For instance, despite the fact is usually
yields high-quality embeddings, the Harmony algorithm cannot perform data integration
in gene expression space, which can be a downside for the subsequent application of decon-
volution methods such as independent component analysis. Another issue we can mention
is the fact some matching paradigms are not suited for certain datasets topologies, as we
show in the last subsection where nearest neighbors-based algorithms have trouble match-
ing cycling cells. Finally, some algorithms do not scale as well as others to large datasets,
which can disqualify certain tools from being applied in these situations, such as optimal
transport-based methods.

To address these limitations we present transmorph, a novel and ambitious data in-
tegration framework. It features a modular way to create data integration algorithms
using basic algorithmic and structural blocks, as well as analysis tools including embed-
ding quality assessment and plotting functions. The framework also provides annotated,
high quality and ready-to-use datasets to benchmark algorithms (Fig. 2.1c). Finally, it
is meant to be easily expansible by allowing the user to define new algorithmic modules
if necessary. In this framework, data integration models can be assembled by combining
four classes of algorithms: transformations, matchings, embeddings, and evaluators (Fig.
2.1d-e, Tab. 2.1).

• Transformation algorithms take as input a set of datasets and return a new rep-
resentation for each of them, embedded in some feature space (there can be one
separate feature space per dataset or one common feature space). Transformations
are generally used during preprocessing: classic examples are PCA, neighborhood-
based data pooling, or common highly variable genes selection.

• Matching algorithms estimate a similarity measure between cells across datasets.
They are the core component of our integration framework, as their quality directly
influences cell-cell proximity in the final embedding. Transmorph uses three main
categories of matching; (a) label-based matchings which require datasets to be la-
beled beforehand and match items of similar label; (b) neighbor-based matchings
which match items close items with respect to some metric; (c) transport-based
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Transformations Matchings Embeddings Models

Common Features:
Selects and orders com-
mon genes between
either all datasets or
pairs of datasets.
Standardization: Nor-
malize expression values
per gene or per cell in
order to improve the
quality of geometric
methods.
Pooling: Pools each
cell vector towards an
average of its neighbors
to reduce the effect of
outliers.
PCA: Linearly projects
cell vectors into a
variance-preserving,
low dimensional basis
to reduce the curse of
dimensionality effect.
ICA: Linarly projects
cell vectors into a low
dimensional basis of
statistically independent
vectors to reduce the
curse of dimensionality
effect.

KNN: Matches nearest
neighbors of each cell
across batches.
MNN: Matches cells
that mutually belong to
the nearest neighbors of
the other across batches.
Optimal Transport:
Matches cells across
datasets using an opti-
mal transport approach,
with each dataset viewed
as a mixture of Dirac
distributions. This
algorithm performs best
when datasets topologies
are similar, and penal-
izes translations, scaling
and rotations.
Gromov-Wasserstein:
Matches cells across
datasets using a
Gromov-Wasserstein
algorithm which only
accounts for data topol-
ogy, without penalizing
isometric transforma-
tions.
Fused Gromov-
Wasserstein: Matches
cells across datasets
using a linear mixture of
optimal transport and
Gromov-Wasserstein in
order to balance the
penalty between geome-
try and topology.
Combined: Combines
several matchings into a
single one.

Barycenter: Projects
each cell in a query
dataset to the average
value of its matches in
a reference batch that
must be specified by the
user. This embedding
can produce a result
in gene space, that
can then be treated as
scRNA-seq data. It
necessitates that all cells
in the query dataset
have a match.
Graph Embedding:
Links cells from all
datasets into a sin-
gle common weighted
graph. This weighted
graph is then embedded
in a space whose dimen-
sionality is chosen by the
user, a space that is used
as this module’s output.
Due to the nonlinearity
of this approach, the
final representation can
be used for clustering
or other topological
analyses.
LinearCorrection:
Computes correction
vectors from cells in the
query dataset and their
match in the reference
dataset. Unmatched
cells are then attributed
to a mixture of vectors
of the nearest matched
cells. All cells are
eventually translated ac-
cording to the correction
vector that has been
computed.

TransportCorrection
Takes as input two
or more scRNA-seq
datasets, with one cho-
sen as an alignment
reference. It computes
optimal transport be-
tween each dataset and
the reference. It then
uses the barycentric
embedding to align each
dataset to the reference
and can output the
result either in PC space
or in gene expression
space.
EmbedMNN: Takes
as input two or more
scRNA-seq datasets,
without requiring a
reference to be specified.
Cells are matched us-
ing a nearest neighbor
scheme chosen by the
user (KNN or MNN),
and are organized within
a joint weighted graph
whose specification is de-
scribed in Material and
Methods. This graph is
finally embedded using
UMAP or MDE.
MNNCorrection:
Takes as input two
or more scRNA-seq
datasets, with one cho-
sen as an alignment
reference. Cells are
matched using the near-
est neighbor scheme
chosen by the user
(KNN or MNN). It then
uses a linear correction
module to align cells
from each query dataset
onto the reference one.

Table 2.1: Presentation of the main algorithmic modules available in the transmorph
framework that can be used to build data integration pipelines. A brief explanation is
given for each of them, additional information as well as algorithm parameters are available
in section 2.2 and in the transmorph documentation.
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matchings which leverage a distance metric between items within or across datasets
to compute a similarity between items relying on topological correspondence.

• Embedding algorithms are a special class of transformations that take as additional
input similarity relationships between samples that were estimated via a matching.
They return an integrated view of all datasets jointly embedded in a common feature
space, so that matched items tend to be close to one another in the final representa-
tion. The embedding step is in general the last step in an integration model and is
chosen depending on the required output type. For instance, a joint embedding of
datasets in an abstract space is suited for applications like visualization or clustering,
while matrix factorization algorithms often require the embedding to be performed
in an expressive feature space.

• Checking algorithms are special quality control points that can be added to a
pipeline in order to test a condition. They are used to either set a branching point
that leads to different outcomes or create an iterative structure within a model
(”repeat until the integrated representation satisfies this property”). This type of
strategy is notably used within the Harmony algorithm, where an iterative cluster-
ing and correction procedure is applied until an integration metric (Local Inverse
Simpson’s Index in this case) is considered to be satisfactory.

This expressive framework allows the building of complex data integration models suited
for many applications with high computational efficiency and integration quality because
each algorithmic module can be optimized independently. It also provides an objective
comparison between algorithmic modules for a given application. Finally, it is supported
by a sound software ecosystem with benchmarking databanks, pre-built models, and post-
analysis tools, which allows one to carry out data integration within a scRNA-seq analysis
workflow efficiently. Our framework is provided as an open-source Python package, and
the following results showcase its capabilities to solve various challenging real-life problems
of single-cell RNA-seq data integration while being on par with existing tools in terms of
performance. It has been developed to be easily used in notebook environments, with a
strong focus on computational efficiency so that models can be run on small machines in
a few minutes, even in applications involving tens of thousands of cells and more than ten
different datasets and cell types.

2.1.2 Package implementation
Conceiving transmorph from an implementation point of view has been challenging on
many aspects. First, its modular design forced us to ensure all the modules can be freely
articulated together as long as the interaction makes sense in theory (for instance, running
an embedding without matching cells does not work). On the other hand, the implemen-
tation must allow the user to provide various hyperparameters to the algorithmic modules
that can be of various types (booleans, scalars, vectors, matrices, functions...). Therefore,
transmorph must be at the same time flexible in order to allow many types of algorithms to
be expressed while also retaining some rigidity to ensure maximal compatibility between
modules. Finally, transmorph must be usable for real-life, large-scale applications, which
means it must guarantee a reasonable computational efficiency so that it can be used to
integrate tens of thousands of cells in a few minutes on a laptop.

To satisfy all these constraints, we decided to implement the transmorph framework
using a fully object-oriented approach. Every algorithmic module is implemented within
a class, and the hyperparameters for the algorithm are provided by the user as member
attributes when the module is instantiated. Each class can implement various independent
traits using multiple inheritance. For instance, modules such as Principal Component
Analysis or Graph Embedding are endowed with the isRepresentable trait, which allows
them to provide a new data embedding. This design also allows us to factorize some
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redundant code, for instance all modules relying on the pairwise distance between points
are endowed with the usesMetric trait, which caches metric matrices in order not to
recompute them at every step of the pipeline if the representation is unchanged. Every
module also implements one of the four barebones interfaces (Transformation, Matching,
Embedding or Checking), which follow clear specifications to ensure compatibility between
the different components; this interface generally consists of at least a constructor method
and a fitting method. Using this system of basic interfaces that can be expanded with
complex traits and custom functions allows transmorph to provide great flexibility while
staying well specified with robust data flows. Furthermore, code factorization based on
these traits allows us to maintain only one optimized version of each basic algorithm, such
as nearest neighbors search, and make it affect every module.

An integration model is then represented as a directed graph of layers, each layer being
endowed with one or more modules that are executed sequentially. These layers are in
charge of managing a clean data flow, by receiving datasets processed by the upstream
layer, processing them with their internal modules, and passing them to the next layer.
The user can freely articulate layers and modules to define a custom data integration
pipeline, and all module interfaces are public so that adding new algorithms following
the specifications is straightforward. Now that we have described the global transmorph
philosophy and some implementation details let us dive into the available transmorph
modules.

2.2 Transmorph algorithms
This section details all computational bricks that can be used in our framework to design
data integration pipelines. As aforementioned, we separate them into four algorithmic
categories:

• Transforming algorithms, which take as input a set of batches and transform their
geometry, possibly into a new space. This category contains for instance dimension-
ality reduction algorithms and statistical standardization procedures.

• Matching algorithms, which compute for every pair of batches the (possibly weighted)
bipartite matching graph between samples from one batch and samples from the
other. This graph’s edges are weighted, corresponding to the similarity confidence
between two samples.

• Merging algorithms are a special type of transforming algorithms, which take as input
matching between batches in addition to datasets embedding. These algorithms are
used to compute the joint embedding of batches.

• Checking algorithms, which takes a joint embedding of batches and computes an
integration quality statistic. These algorithms are used to assess integration quality,
and can be associated with decision branches.

2.2.1 Transformations
A transformation algorithm takes a set of datasets, each embedded in their respective
space as input, and returns for each of these batches a new representation, which can
preserve initial feature space or not. Let us present the transformation modules currently
available within transmorph.

Common feature space embedding

Many geometrical algorithms operating across batches, such as batch nearest neighbors
and optimal transport, require datasets to be first embedded within a common features
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space – it is in particular crucial when distances are involved. Let X1, X2, . . . , XK be
batches of the same data type (e.g., RNA-seq or ATAC-seq) with respective features
sets F1, F2, . . . , FK . A common feature embedding is typically found by projecting every
batch in the common feature space F̃ =

⋂K
i=1 FK , given this intersection is nonempty. In

the case of strong batch effects, common feature space embedding can be followed by a
standardization step, where all embedding features are corrected batch-wise to mean 0
and variance 1 in order to emphasize relative feature variations between batches rather
than absolute signal.

This transformation is easy to carry out efficiently and gives good results in practice
but suffers from a few downsides. First, it cannot be used in vertical integration or when
batches are expressed in disjoint feature spaces. Furthermore, with an increasing number
of datasets, the cardinal of F̃ tends to shrink, and just one batch of lesser quality can
reduce its size drastically. This procedure might also introduce biases especially when
applied to batches from different biological samples, for instance RNA-seq batches with
different transcriptomic dynamics. In this data type, genes are typically filtered first to
keep only highly variable genes. When embedding batches in a common features space,
only common variable genes are then selected, which could make important variation
signals disappear.

Barycentric pooling

Barycentric pooling is a smoothing technique that moves every point in a noisy dataset
towards the average of its k nearest neighbors. Let (X , d) be a metric space X endowed
with a distance d, and X ∈ X n a dataset. For any set S ⊂ X , the barycenter of S is
denoted by S ∈ X , and is defined as

S = arg min
x∈X

∑
s∈S

d2(x, s) (2.1)

If X is a vector space and d is the Euclidean distance, it is easy to verify that S =
|S|−1 ∑

s∈S s. We use this trick in practice to efficiently compute the Euclidean barycenter
of points in vectorized datasets. For every x ∈ X and k a positive integer, we first define
the set Sx defined as the k-nearest neighbors of x in X; then, every x is projected onto
Sx.

Barycentric pooling is a very useful preprocessing step. First of all, it helps mitigate
the ”dropout” effect in RNA-seq datasets, describing the phenomenon of transcripts being
falsely not detected during sequencing while being present in the mixture. Pooling helps
here by replacing missing counts with the average of this count within similar cells. It
also generally reinforces local dataset geometry and communities by reducing variance and
correcting outliers but can cause excessive fuzziness with large neighborhood sizes.

Principal component analysis

Component analysis techniques change the basis with respect to which a dataset is ex-
pressed into a new basis with more relevant features. These methods can be used to reduce
dataset dimensionality, which notably helps metric-based algorithms deal with the curse
of dimensionality, but also to separate signal from noise and group together features which
depend on a common factor. The most famous component analysis method in the field is,
with no doubt, Principal Component Analysis (PCA) (Hotelling, 1992). This optimiza-
tion problem seeks a set of orthogonal vectors that maximize the variance of data points
when projected orthogonally onto each component. PCA is widely used in many fields
for explanatory data analysis, and as a dimensionality reduction tool during preprocessing
in various algorithms. In the case of scRNA-seq datasets, PCA allows to reduce their
dimensionality from a few tens of thousands features to only a few tens, while preserving
a large part of variance. It is therefore an almost mandatory preprocessing step used by
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most algorithms and tools developed in the field, from k-nearest neighbors computation
to clustering, non-linear dimensionality reduction like UMAP and most data integration
pipelines. For this reason, we decided to include PCA as a transmorph module and it is
included as a preprocessing step in all pre-built transmorph models.

UMAP

Uniform Manifold Approximation and Projection (UMAP) is a widely used, non-linear
dimensionality reduction method (Becht et al., 2019). It first computes an underlying
weighted graph between close points, then optimizes a representation of this graph in a
typically very low dimensional space driven by edge weights. This technique is mainly used
for explanatory data analysis and is highly potent for community detection and trajectory
analysis in single-cell data. We won’t cover the theoretical motivations behind the UMAP
algorithm as they are beyond the scope of our framework. Still, we’ll describe the main
computational steps as they are reused in some transmorph modules.

The graph-building process first identifies edges, then weights them using a local metric
that simulates a uniform distribution of points along the hypothetical underlying manifold.
Let (X , d) be a metric space endowed with a metric d, and X ⊂ X be a dataset embedded
in this space with n samples. For every sample xi ∈ X, and given a positive integer k,
we compute the k-nearest neighbors of xi in X denoted Sxi . Once the neighborhood of
xi has been identified, we must weight the edges from xi to each neighbor. To simulate
a uniform distribution of points along the underlying manifold, edge weights must follow
two rules:

• For every point xi, the edge weight from xi to its closest, non-identical neighbor
must be equal to 1.

• For every point xi, the sum of edge weights from xi to its neighbors must be equal
to log2(k).

To fulfill both properties, an adaptation of the Gaussian kernel was proposed. For each
xi, we define ρi as the distance from xi to its closest, non-identical neighbor. For σi > 0,
edge weight between xi and xj ∈ Sxi is defined as

wρi,σi(xi, xj) = exp
(− max {0, d(xi, xj)} − ρi

σi

)
. (2.2)

σi is defined so that ∑
xj∈Sxi

wρi,σi(xi, xj) = log2(k), and is approximated in practice using
simple binary search. At the end of the procedure, we obtain a weighted graph GX,ρ,σ =
(X, V, wρ,σ) where graph vertices are elements of X, graph edges are V =

⋃
xi∈X Sxi and

wρ,σ is the edge weighting function. This graph can be described by a square adjacency
matrix A where

Aij = wρi,σi(xi, xj) if (xi, xj) ∈ V, 0 otherwise. (2.3)

The last step is to symmetrize A using the following interpretation: the probability that an
undirected edge between xi and xj exists is the probability that a directed edge exists from
xi to xj or from xj to xi. Assuming these two events are independent, the symmetrized
adjacency matrix Â is given by

Â = A + A⊺ − A ◦ A⊺ (2.4)

where ◦ is the matrix Hadamard product (component-wise). This matrix represents a sym-
metrical weighted graph of X samples and can be embedded in a low-dimensional space.
The objective function for the embedding is defined using a set of attractive forces along
edges and repulsive forces between a subsampling of non-linked vertices. Given the graph
is fully connected, an initial embedding can be computed using a spectral layout, which is
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then iteratively optimized using the aforementioned attractive and repulsive forces. These
forces decrease in magnitude after each iteration, guaranteeing convergence. We use the
umap-learn python implementation of UMAP in our framework.

Minimum distortion embedding

Minimum distortion embedding (MDE) is an intuitive framework for non-linear, low di-
mensionality embedding of datasets (Agrawal et al., 2021). It has been developed to unify
embedding methods into a common framework, making them more easily interpretable
and customizable. Let (X , d) be a metric space endowed with a metric d and X ⊂ X be
a dataset embedded in X . For xi, xj ∈ X2, a distortion fij is defined as a function of a
distance dij ≥ 0. The idea is that given a distance dij between xi and xj in a hypothetical
embedding, fij(dij) penalizes dij being too small or too large according to some criteria.

For instance, given a similarity measure wij ≥ 0 between each pair of points, defining
fij(dij) = wijdij is a reasonable distortion choice: it penalizes high distances between
similar items, with little to no constraint between dissimilar items. Negative weightings
can be attributed to pairs of non-similar points, or the embedding can be constrained (for
instance, standardized) to avoid a trivial solution. Instead of using a similarity measure,
distortion functions can also penalize the discrepancy between the embedding distance dij

and d(xi, xj). For well-behaved distortion functions, MDE can be solved as a constrained
optimization problem, either exactly if the objective function is quadratic or using a gra-
dient descent scheme otherwise. We use the pymde python implementation of MDE in our
framework.

2.2.2 Matchings

A matching is an algorithm that takes a set of batches as input, all embedded in some
vector spaces, and returns for every pair of batches and every pair of cells between these
batches, a scalar value we call matching strength. For every pair of batches Xa and Xb of
respective sizes n and m, a matching can therefore be represented as a matrix Pab ∈ Rn×m

where the Pab,ij coefficient is the matching strength between item Xa from batch a and
item j from batch Xb. This section describes in detail the matching algorithms available
in transmorph.

Label matching

Label matching is the simplest supervised matching algorithm we can think of, necessitat-
ing each batch to be associated with a labels vector of same size from a label set L: Xa is
endowed with labels la ∈ Ln, and Xb is endowed with labels lb ∈ Lm. Label matching then
simply associates a matching strength of 1 between samples of same label, 0 otherwise.
For every pair of samples xa,i ∈ Xa and xb,j ∈ Xb,

M label
la,lb

(xa,i, xb,j) = δla,ilbj
(2.5)

where δ is the Kronecker symbol (δxy = 1 if x = y, 0 otherwise). This matching can
be computed efficiently and does not depend on dataset embedding, which can be an
advantage when no clear metric can be defined between them and cannot match cells with
different cell labels. On the other hand, it requires assessing cell labels beforehand, which
is a strong bias and necessitates a third-party algorithm. It also tends to generate a very
high number of matching edges (of the order of |L|−1nm considering labels are balanced
within batches), which can severely reduce the performance of subsequent pipeline steps.
This also implies every sample is matched to all samples with its label, meaning this
matching is insensitive to variations within a label (e.g., cellular subtypes), which tends
to blur results. For these reasons, label matching is not recommended in the general case.
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Still, it could see use in particular scenarios, such as pipeline testings or when precise
labels are available with high confidence.

Batch k-nearest neighbors

For k a positive integer, the batch k-nearest neighbors algorithm is derived from the well-
known k-nearest neighbors algorithm (Fix and Hodges, 1989; Cover and Hart, 1967). It
requires two sets Xa and Xb with items embedded in a common metric space (X , d), and
works best when the batch effect is orthogonal to the biological signal of interest, which
appears to be a reasonable assumption in practice for most single-cell data.

For every item xa,i ∈ Xa, we denote by ra,i(k) the distance to its k-th nearest neighbor
in Xb. We then define the batch k-nearest neighbors of xa,i in Xb as BNNk(xa,i, Xb) =
Xb ∩ B̄(xa,i, ra,i(k)) where B̄(x, r) denotes the closed ball centered in x ∈ X of radius
r ∈ R+. For every pair of samples xa,i ∈ Xa and xb,j ∈ Xb,

MBkNN(xa,i, xb,j) = 1BNNk(xa,i,Xb)(xb,j) (2.6)

where 1S is the indicator function of set S. Batch k-nearest neighbors derived algorithm
have been successfully applied to dataset integration in the single-cell field, for instance in
the BBKNN tool (Polański et al., 2020). It tends to yield high-quality matching results
when the orthogonality of batch effect hypothesis is verified, and only needs the tuning
of the k parameter (typically set between 10 and 50 in our applications). Furthermore, it
also returns a much smaller number of edges compared to label matching of the order of
kn, which greatly improves the performance of subsequent pipeline steps.

Mutual k-nearest neighbors

For k a positive integer, k-mutual nearest neighbors (Haghverdi et al., 2018) is an alter-
native to batch k-nearest neighbors. It tends to provide higher quality edges than batch
k-nearest neighbors, at the cost of increased computation time and lesser edges number.
The idea is to compute reciprocal batch k-nearest neighbors between two batches, and
only keep the intersection of both edge sets.

Given two sets Xa and Xb with items embedded in a common metric space (X , d) and
two samples xa ∈ Xa and xb ∈ Xb, we first compute BNNk(xa, Xb) and BNNk(xb, Xa).
Then,

MMkNN(xa, xb) = 1BNNk(xa,Xb)(xb)1BNNk(xb,Xa)(xa)
= MBkNN(xa, xb)MBkNN(xb, xa)

(2.7)

The mutual k-nearest neighbors approach tends to yield high-quality matchings, in-
heriting all good properties from batch k-nearest neighbors while also being symmetri-
cal. It also works under the assumption batch effect is orthogonal to biological effect,
and always returns a smaller number of edges compared to batch k-nearest neighbors
(MMkNN(xa, xb) = 1 ⇒ MBkNN(xa, xb) = 1). This fact often induces in practice the need
to tune up the k parameter in order to have enough matching edges for subsequent pipeline
steps to be stable.

Discrete optimal transport

Discrete optimal transport (OT) problem can be naturally pictured as follows (Peyré
et al., 2019). Assuming a set of n warehouses containing goods to deliver to m factories,
the optimal transport problem consists in finding the cheapest way to transport all goods
to factories knowing the cost of transporting goods is proportional to both mass carried
and distance traveled. Originally brought into the field as a way to predict cell fate
(Schiebinger et al., 2019), it has more recently been shown to be an interesting asset for
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matching cells across datasets in integration tools like SCOT (Demetci et al., 2020) and
Pamona (Cao et al., 2022b).

Formally, let a ∈ Rn and b ∈ Rm be two histograms, meaning a and b coefficients are
non-negative and each vector sums up to 1. In our analogy, a represents the quantity of
goods stored in each warehouse, and b is the capacity of each factory. We are provided a
cost matrix C ∈ Rn×m, where Cij is the cost of moving one unit of mass from ai to bj .
The optimal transport problem from a to b given cost C can then be expressed as follows:

LC(a, b) = min
P∈(R+)n×m

∑
ij

CijPij

s.t. P1m = a
P⊺1n = b

(2.8)

LC(a, b) is called the Wasserstein distance between a and b for transport cost C, and
is the cheapest cost to transport all mass from a to b in this setup. The optimal transport
plan P∗ is the valid P minimizing Eq. 2.8, and can be row-normalized to 1n to be used
as a probabilistic matching between a and b.

In practice, optimal transport can be computed between two datasets Xa ∈ Rn×da and
Xb ∈ Rm×db with vectorized samples in rows. In this case, it is common to define a = 1

n1n

and b = 1
m1m, and to transform Xa and Xb so that they are expressed in the same feature

space d. It can be achieved for instance by selecting the genes expressed in both datasets,
yielding X̂a ∈ Rn×d and X̂b ∈ Rm×d. The cost matrix C ∈ Rn×m is then typically defined
as the pairwise distance matrix between X̂a and X̂b, for a given distance. If Xa and Xb

cannot easily be embedded in a common features space, the Gromov-Wasserstein approach
is generally a better alternative. We use here optimal transport as a matching algorithm,
by considering the row-normalized Pij

P⊺
i 1m

as the probability that cell i from dataset Xa is
similar to cell j from dataset Xb.

There are obvious limitations to this procedure, notably the mass conservation issue:
OT will always move all mass from a to b, regardless of the possible batch-specific samples.
Consequently, all Xa cells will be mapped to at least one cell in Xb, even though some
cells from Xa may belong to a cell type missing in Xb. Even worse, if there is a class
imbalance between datasets (e.g. 50% of cell type A in dataset Xa, and 25% of cell
type A in dataset Xb), there will necessarily be wrong assignments using this method.
Exact computation of optimal transport is furthermore computationally expensive, of the
order of O((n + m)3) which makes it inefficient for large-scale problems (typically above
104 points). The supplementary note contains an alternate approximate and unbalanced
formulation which provides a good approximation of the solution at a more reasonable
cost, while also dealing with the class imbalance issue.

Entropic regularization of optimal transport

The optimal transport problem can be approximated using an additional entropy term
(Cuturi, 2013; Peyré et al., 2019), which allows the minimization to be carried out using
an efficient iterative procedure. For a given transport plan P, we define its entropy as

H(P) = −
∑
ij

Pij(log(Pij) − 1). (2.9)

H(P) is 1-strongly concave given its Hessian ∂2H(P) = − diag(1/Pij) and Pij ≤ 1.
−H(P) can then be used as a regularizer term in Eq. 2.8 with a regularization term ε > 0
(Wilson, 1969), making the objective ε-strongly convex:
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Lε
C(a, b) = min

P∈(R+)n×m

∑
ij

CijPij − εH(P)

s.t. P1m = a
P⊺1n = b

(2.10)

Sinkhorn-Knopp algorithm can be used to optimize the objective, we invite the reader
to refer to (Cuturi, 2013) for details. In short, the goal is to decompose a transport
plan P = diag(u)K diag(v), where u and v are the unknown scaling variables and K
can be derived from the parameters. u and v can be approached using an iterative two-
step normalization procedure. The smaller ε, the closer the objective is from unregularized
formulation, at a cost of decreased convergence rate. According to (Altschuler et al., 2017)
and assuming n = m for simplicity, this algorithm computes a τ -approximate solution of
the original optimal transport problem in O(n2 log(n)τ−3) operations. It allows to tackle
larger scale problems in reasonable time. In practice, the resulting transport plan is often
more fuzzy and less sparse than the exact solution, which necessitates filtering small values
to stay efficient.

Unbalanced optimal transport

As stated previously, one of the major drawbacks of optimal transport is its constraint to
always move all mass from source distribution to target distribution. As there is almost
always class imbalance between single-cell datasets, this hard constraint necessarily causes
matchings between cells of different cell type. This bad property can be worked around
using an alternative unbalanced optimal transport problem (Liero et al., 2018). The idea
is to relax the hard mass conservation constraint, by rather penalizing mass discrepancy
via a divergence Dφ. Given two penalty coefficients τ1 and τ2, the objective function is
written as

Lτ
C(a, b) = min

P∈(R+)n×m

∑
ij

CijPij + τ1Dφ(P1m|a) + τ2Dφ(P⊺1n|b) (2.11)

This objective function can also be optimized using an adaptation of the Sinkhorn-
Knopp algorithm. Removing the hard mass conservation constraint helps in practice to
deal with situations of class imbalance between datasets, while staying entirely unsuper-
vised.

Gromov-Wasserstein

OT-based matchings all share two common weaknesses. First of all, defining a cost matrix
between two datasets can be non-trivial, especially if they are not embedded in the same
features space. There may be workarounds such as using a latent space embedding method
first, but this is not an easy task in the general case. Furthermore, OT-based matchings
are not invariant to important families of transformations, such as scaling, shifting and
rotation. The Gromov-Wasserstein problem is a natural extension of OT which does not
suffer from these issues. Instead of requiring a cost matrix between datasets, it rather
needs for each dataset inner pairwise costs between samples.

Let Xa ∈ (Xa, da) and Xb ∈ (Xb, db) be two datasets embedded in two possibly distinct
metric spaces, containing respectively n and m samples. We first compute Da ∈ Rn×n

(resp. Db ∈ Rm×m) the pairwise inner distance matrix of Xa (resp. Xb) where Da,ij =
da(xa,i, xa,j) (resp. Db,ij = db(xb,i, xb,j)). We also endow dataset Xa with histogram
a ∈ Rn, and dataset Xb with histogram b ∈ Rm. The Gromov-Wasserstein problem
between Xa and Xb is then defined as
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GW ((a, Da), (b, Db))2 = min
P∈(R+)n×m

∑
iaibjajb

|Da,iaja − Db,ibjb
|Piaib

Pjajb

s.t. P1m = a
P⊺1n = b

(2.12)

This problem being equivalent to a graph matching problem, it is NP-hard (Lyzinski
et al., 2015) thus being difficult to solve in practice. It can be entropy-regularized similarly
to the OT problem using Sinkhorn-Knopp iterations (Peyré et al., 2019).

Fused Gromov-Wasserstein

Fused Gromov-Wasserstein (Vayer et al., 2019) is a natural extension of Wasserstein and
Gromov-Wasserstein mapping. The first one focus on the metric related to the feature
space and the second on the structure of the relations between samples within a dataset.
Therefore, it may be desirable to consider both aspect but combining the Wasserstein and
Gromov-Wasserstein problem with a trade-off parameter α ∈ [0, 1].

With the previous notations, this problem can be formulated as:

FGWα((a, Da), (b, Db), C)2 = min
P∈(R+)n×m

(1 − α)
∑
ij

CijPij

+ α
∑

iaibjajb

|Da,iaja − Db,ibjb
|Piaib

Pjajb

s.t. P1m = a
P⊺1n = b

(2.13)

2.2.3 Mergings
Mergings are a class of transformations that takes as extra input matchings between
batches. A merging F can be seen as a function taking as input a set of datasets
{X1, . . . , XK} with respectively n1, . . . , nK items and a set of matchings {Mij}i,j≤K ex-
pressed as non-negative square matrices, embedding all batches in a common space Y.
Every matching matrix Mij must be row-normalized so that every nonzero row sums up
to 1. If i = j, then Mii is defined as the identity matrix Ini .

Barycentric merging

Barycentric merging is the simplest merging to set up. It works under three assump-
tions, (1) one batch Xr is defined as reference and all batches will be corrected towards
it; (2) reference batch Xr must be expressed in a vector space; (3) for every matching
Msr ∈ Rns×nr , every row must have at least one nonzero element (‖Msr1nr ‖0 = ns).
Assumption (1) is usually specified by the user, and necessitates choosing a good quality
batch with representers in every sample type. Reference choice always introduces a bias in
the integration, which should not be overlooked in results interpretation. Assumption (2)
is easy to verify in practice, as datasets are often vectorized and represented as n × d real-
valued matrices. Assumption (3) necessitates choosing a semicomplete matching, which
maps every sample from batch Xi to at least one sample from batch Xr. Transportation-
based matchings usually verify this assumption, while nearest neighbor-based matchings
do not. Failing to verify assumption (3) will cause non-matched points to be projected to
the 0 of Xr feature space.

Let Xs be a batch to correct with respect to a reference batch Xr given a semicomplete,
row-normalized matching matrix Msr. For every sample xk ∈ Xs, the k-th row αk = Msr,k
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provides a weighting vector which assesses the likelihood of xk corresponding to any sample
of Xr. Barycentric merging F Bary will then project xk into Xr feature space Xr so that

F Bary
Xr,α(xk) = arg min

x∈Xr

∑
i≤nr

αi ‖Xr,i − x‖2
2 . (2.14)

The rationale behind this optimization problem is to bias the classic barycenter problem
(see eq. 2.1) to penalize distances between more similar items. We quickly show xk =∑

i≤nr
αiXr,i is the solution to this problem. Therefore, F Bary can be easily generalized

to project the whole Xs dataset onto Xr given Msr via

F Bary
Xr,Msr

(Xs) = MsrXr. (2.15)

Barycentric merging has been used in several data integration pipelines such as Seurat
(Stuart et al., 2019), SCOT (Demetci et al., 2022) and Pamona (Cao et al., 2022b), and
generally yields good results. However, there are a few downsides to consider. First,
choosing a reference introduces a high bias in the integration, and in some applications,
there may be no natural option to choose as a reference; for instance, every batch could
miss at least one sample class. The barycenter problem also intrinsically relies on a met-
ric. This is an issue for high dimensional problems, for instance, in scRNA-seq datasets
where the curse of dimensionality is a real concern; in this case, barycenter has little to no
interpretable sense. A common solution is first to reduce the dimensionality of Xr using
component analysis or non-linear methods such as UMAP (Becht et al., 2019) or MDE
(Agrawal et al., 2021). One of the other uses of this method is to use a matching com-
puted in a different space than the final embedding. Typically, one computes a matching
in a lower dimensional representation (e.g., PC space) but uses total feature space for
the embedding. This notably allows obtaining corrected feature counts for all batches
with respect to a reference. Combined with a high-quality matching and reference batch,
barycenter merging can nonetheless provide an efficient, high-quality integration without
necessitating batches to be originally in the same space.

Linear correction

Linear correction is a linear merging based on first computing a set of correction vectors
and then using them to correct batches with respect to a reference batch Xr. It not only
necessitates choosing a reference batch but also that all batches are initially embedded
within a common vector space. Compared to barycentric merging, it can work with
incomplete matchings, meaning not every matching row necessitates containing at least
one nonzero element. The algorithm follows a two-step process to correct a given batch:
it first computes correction vectors from matched samples to reference samples. Then
it extrapolates the correction vectors to the unmatched samples. Other tools have used
similar algorithms, notably in (Stuart et al., 2019).

Let X1, . . . , XK be K batches each represented in a common vector space X = Rd,
respectively containing n1, . . . , nK samples. Let 1 ≤ r ≤ K be the reference dataset index,
and M1 ∈ Rn1×nr , . . . , MK ∈ RnK×nr be K matching matrices between each batch and
the reference - by convention Mr = Inr . Each batch Xs is corrected independently towards
the reference Xr. Let Xm

s be the matched samples of Xs (Xs rows so that corresponding
row in Ms contains at least one nonzero element), and Xu

s be the unmatched samples (the
other rows). The first step is to compute the projection of each matched sample to its
barycenter Ym

s = F Bary
Xr,Ms

(Xm
s ). For every matched sample, we compute each corection

vector

Cm
s = Ym

s − Xm
s . (2.16)

Total correction vectors Cs are then computed as follows. We set the correction vector for
every matched sample to the corresponding Cm

s entry. Otherwise, we set the correction
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vector to one of its closest matched samples along the edges of a k-nearest neighbors
graph. If there is no matched sample in the sample’s connected component, the closest
matched sample in terms of distance is selected. Variants exist for this step, for instance,
averaging correction vectors among sets of points (e.g., neighborhood or clustering) instead
of selecting just one to smooth the final representation. In the end, merging is performed
as

F LC
Xr,Ms

(Xs) = Xs + Cs. (2.17)

Like barycentric merging, linear correction can be used to correct feature counts of all
batches with respect to a reference by computing correction vectors in the full feature
space. It can also work with incomplete matchings, where only a subset of samples are
matched to reference samples. Specific sample classes in the source batch remain an issue,
as relevant matches cannot exist in this case; these samples end up either corrected towards
an incorrect sample class, or are linearly translated into empty parts of space. Therefore,
choosing an appropriate reference batch is crucial when using linear correction merging,
and should not be overlooked.

Graph embedding algorithm

Joint graph embedding is an algorithm capable of building a joint weighted graph of cells
from all batches, where two cells are linked together if they appear similar. This graph
is weighted according to a UMAP-like methodology, meaning it can be embedded in a
low dimensional space using UMAP (Becht et al., 2019) or MDE (Agrawal et al., 2021)
optimizers upon minor tuning. The joint embedding algorithm consists of four major
steps. More details can be found in the supplementary note.

1. For each batch, compute its k-nn graph weighted according to UMAP membership
methodology.

2. For each pair of batches, weight matching edges according to UMAP membership
methodology.

3. Build a joint graph combining the edges of steps 1 and 2, possibly selecting only the
most impactful edges.

4. Embed the joint graph in an abstract feature space using a graph embedding opti-
mizer such as UMAP or MDE.

Let {Xi ⊂ (Xi, di), |Xi| = ni}i≤K be a set of finite datasets to integrate, each expressed in
a metric space. Let us also assume we are provided for every pair of datasets Xi and Xj

a matching Mij between Xi samples and Xj samples. We start by computing, for each
batch Xi its directed k-nearest neighbors graph Gi = (Xi, Ei), weighted using UMAP
methodology for computing membership strength [ref] (see section 2.2.1) resulting in an
adjacency matrix Ki describing a k-nearest neighbors strength graph. This guarantees
every sample contains at least one edge of weight 1, and helps to uniformize weights
regardless of batch-specific point density; note that this graph is not symmetrized yet.

The next step is to convert all matching matrices to membership strength matrices
so that edge weights are of the same nature as Ki k-nearest neighbors graphs. For two
batches Xi and Xj associated with a matching matrix Mij ∈ Rni×nj , we distinguish two
cases.

• If (Xi, di) = (Xj , dj) which can often be achieved between datasets of the same data
type using common features selection, weights can be chosen using UMAP method-
ology on the bipartite matching graph Mij using the distance between matched
points, yielding matching strength graph described by matrix Sij .
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• In the general case (Xi, di) 6= (Xj , dj), we can leverage matching strength contained in
Mij to produce a dissimilarity measure, for instance using the trick Dij = inv(Mij +
1) where inv(M) denotes coordinate-wise matrix inversion. This dissimilarity can
then be used to apply the computation of the membership matrix as described in
the previous case.

Once all k-nearest neighbors strength matrices Ki and matching strength matrices Sij

have been computed, they can be assembled in a joint graph G of all batches described
by an adjacency matrix G whose blocks are defined as

G =


K1 S12 S13 . . . S1K

S21 K2 S23 . . . S2K

S31 S32 K3 . . . S3K
...

...
... . . . ...

SK1 SK2 SK3 . . . KK

 . (2.18)

This matrix typically contains a very large number of edges, especially in large-scale ap-
plications. This tends to increase the convergence time of the graph embedding step.
Furthermore, vertices tend to have a very variable number of edges in G, which can result
in embedding instability. To counterbalance these properties, we choose first to carry out
an edge pruning step based on G. Given a target number of neighbors kt > K, for every
G row, all values below the kt-th largest are set to 0 in order to only account for the
high-confidence matches. G is eventually symmetrized into Ĝ using

Ĝ = G + G⊺ − G ◦ G⊺. (2.19)
G can eventually be embedded in an abstract feature space (we often use 2D or 3D in
practice) using a graph embedding optimizer such as UMAP or MDE.

2.2.4 Embedding evaluator
An embedding evaluator algorithm takes in input an embedding of a set of batches in a
common space. It then evaluates embedding quality based on some criteria (e.g., point
communities preservation or local label purity) and returns an embedding quality value
either per point or global.

Local inverse Simpson’s index (LISI)

Local inverse Simpson’s index (LISI) is an integration metric first introduced in Harmony
(Korsunsky et al., 2019), which assesses neighborhood heterogeneity of a data point in
terms of a given label. Simpson’s diversity index is a diversity metric notably used in
ecology to measure class diversity in a set of objects by computing the probability for
two randomly selected items to share the same class. We have chosen to simplify LISI
in our implementation by removing the custom UMAP-like cell-cell weighting introduced
in Harmony in order to both improve its computational performance and make it less
dependent on local geometry. For any set of objects S = {xi}i≤n endowed with labels
yi ∈ Ln, we denote by nl for l ∈ L the number of samples in S with label l. Then,
Simpson’s index of set S is given by

DL(S) =
∑
l∈L

(
nl

n

)2
. (2.20)

For k > 0 a perplexity parameter (we use k = 90) and x an embedded point, we compute
its k-nearest neighbors k-nn(x) which is used as set S. LISIL(x, k) = DL(k-nn(x))−1 is
defined as the inverse of Simpson’s index and estimates, for a given embedded point x,
label diversity in its k-nearest neighborhood. As suggested in Harmony, we can use LISI
in two modes:
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• Batch-LISI, where points are labeled by their initial batch. This metric measures
local batch diversity in embedding, higher diversity meaning higher batch mixing.

• Class-LISI, where points are labeled by their class. This metric measures local class
diversity in the embedding, lower diversity meaning lower mixing between cell types.

Monitoring these two values allows objective comparison of different integration pipelines,
ideally increasing batch-LISI while avoiding increasing class-LISI.

Local label entropy (LLE)

Local label entropy (LLE) is another objective integration metric based on Shannon en-
tropy (Shannon, 1948), and works similarly as LISI. Given an embedded point x, LLE
uses Shannon entropy as a measure of label diversity in its neighborhood k-nn(x) for a
perplexity parameter k > 0. Let L be the set of data points labels, and for a point set S let
fl(S), l ∈ L be the frequency of label l in S. Then, for l > 0 we define the entropic coeffi-
cient h(f) = −f log(f), and we set h(0) = 0 by continuous extension as limh→0+ f(h) = 0.
LLE is then computed as

LLEL(x, k) =
∑
l∈L

h(fl(k-nn(x))). (2.21)

As for LISI, we can define batch-LLE (bLLE) and class-LLE (cLLE) to be able to measure
either batch or class heterogeneity.

Local topology preservation (LTP)

Local topology preservation (LTP) is another unsupervised integration metric which mea-
sures how much the local geometry of batches is affected by integration. Ideally, we would
like integration to preserve the datasets’ topology, meaning initially similar samples are
embedded nearby after integration. LTP compares the samples’ neighborhoods before and
after integration in order to penalize changes in local geometry.

Let X1, . . . , XK be K different batches to integrate into a common embedding space Y.
LTP consists of first computing the K nearest neighbors matrices N1, . . . , NK given neigh-
borhood sizes k1, . . . , kK . Let f :

( ⋃K
k=1 Xk

)
→ Y be the integration function, we then

compute nearest neighbor matrices N′
1, . . . , N′

K on the embeddings f(X1), . . . , f(XK).
LTP then uses the norms ∥∥N1 − N′

1
∥∥2

2 , . . . ,
∥∥NK − N′

K

∥∥2
2

as a measure of local topology distortion after integration. Ideally, a good data integration
algorithm should preserve local topology and keep these values as close to zero as possible.
On the other hand, using f(X) = X guarantees LTPs to be equal to zero while not
performing any form of integration, which proves that LTP cannot be used as a sufficient
measure of integration quality.

Cluster label purity

The last type of data integration quality assessment metric I would like to discuss is cluster
label purity. Single-cell RNA-seq data tends to form clusters in the gene expression space
that regroup cells of similar type or state. For this reason, a reasonable quality assessment
approach in cases where high-quality cell type labels are available is cluster label purity.
The idea is simple, as cell types provide a natural partition of cells C1, . . . , CK with
K ∈ N and ⊔K

i=1 Ci containing all cells from all datasets, ⊔ denoting the disjoint union.
We perform a similarity-based clustering after integration, for instance using the Louvain
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Traag et al. (2019) algorithm, and measure how this new partition D1, . . . , DL differs from
the cell types one with L ∈ N.

In order to penalize clusters that contain mixed cell types, we compute the joint par-
tition matrix J ∈ [0, 1]K×L where Ji,j contains the fraction of cells from cluster j that
are labeled i – ideally, each column of J contains only one nonzero value. The idea is
finally to compute the cluster-wise purity vector p ∈ [0, 1]L defined as the maximum of
J column-wise, and cluster label purity can be computed as ‖p − 1L‖2

2, with low values
being associated to high cluster purity.

2.3 A few real-life applications of the transmorph frame-
work

2.3.1 Single-cell RNA-seq datasets
We used public datasets to benchmark our framework and compare its capabilities with
other state-of-the-art integration pipelines. They were chosen to mimic various real-life
scenarios, with total dataset sizes in the tens of thousands. All datasets contain RNA-seq
data, acquired using 10X technology.

• The Zhou databank was collected from (Zhou et al., 2020) through the Curated
Cancer Cell Atlas (3CA) website and contains osteosarcoma data from 11 different
patients, ranging from 866 to 14,322 cells for a total of 64,557 cells. Each cell was
annotated by the authors with a cell type among chondrocyte, endothelial, fibroblast,
mesenchymal stem cell (MSC), myeloid, myoblast, osteoblast, osteoclast, pericyte,
T cell.

• The Chen databank was collected from (Chen et al., 2019b) using the 3CA website
and contains 61,870 nasopharyngeal cancer single-cell RNA-seq data from 14 dif-
ferent patients, ranging from 1,087 to 11,210 cells. Each cell was annotated by the
authors with a cell type among B cell, endothelial, epithelial, macrophage, malig-
nant, NK cell, plasma, and T cell.

Raw counts have been preprocessed following standard guidelines using the scanpy python
package (Wolf et al., 2018). First, cells with low gene counts or high mitochondrial gene
expression were filtered. Raw counts were then normalized to 10,000 per cell, followed by
neighborhood pooling using 5 nearest neighbors. Counts were then log(1+x) transformed,
and for each dataset, the top 10,000 most variable genes were kept. All these preprocessed
annotated databanks can be automatically downloaded through our framework, in order
to serve for benchmarking integration methods.

2.3.2 transmorph models perform on par with other state-of-the-art
tools

We will first present how the transmorph framework can be used to create data integration
models able to compute a low dimensional joint embedding of two or more datasets so
that similar cells end up close to one another independently from their source. This type
of task is typically used for visual data exploration or as a preprocessing step before
carrying out a clustering algorithm, allowing clusters to only depend on cell type rather
than on the original batch (Fig. 2.2a). A good joint dataset embedding algorithm should
be able to function in a fully unsupervised fashion while being improved by additional
labeling information, and should not require choosing a reference dataset as this induces
an important bias. Ideally, it should also be able to tackle the joint embedding of more
than two datasets simultaneously, with reasonable computational efficiency. We built
a transmorph model for this application, called EmbedMNN, described in (Fig. 2.2b).
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Figure 2.2: Integration of 11 osteosarcoma scRNA-seq datasets (n=64,557)
from different patients. (a) Initial UMAP representation of the osteosarcoma datasets
in their common genes space. (b) Architecture of the pre-built EmbedMNN integration
model, computational modules are executed from left to right and from top to bottom.
(c) Integration results with the supervised version of EmbedMNN. (d) Integration results
with the unsupervised version of EmbedMNN. (e) LISI-batch score of various integration
algorithms (higher is better), mean is marked. (f) LISI-class score of various integration
algorithms (lower is better), mean is marked. (g) Execution time of various integration
algorithms. From (Fouché et al., 2023).
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EmbedMNN is conceptually inspired by CONOS (Barkas et al., 2019), and starts with a
few preprocessing steps (normalizations and dimensionality reduction). It then combines
a nearest neighbors-based joint graph construction step with a low dimensional graph
construction, followed by an embedding step using either UMAP (Becht et al., 2019) or
minimum distortion embedding (MDE) (Agrawal et al., 2021). This allows EmbedMNN to
work without requiring a reference and with datasets of various topologies, and to output
an embedding in a latent space that will be exploitable for clustering and visualization.
Furthermore, EmbedMNN can work either in a fully unsupervised fashion or can take into
account label information to prune matching edges between samples of different labels; we
test both variants in this application.

Even though transmorph is not a data integration algorithm per se, but rather a
framework to conceive data integration methods, we decided to benchmark the Em-
bedMNN model against other state-of-the-art horizontal integration algorithms. For this
benchmark, we selected three algorithms designed to solve the joint embedding problem:
Harmony (Korsunsky et al., 2019), which uses a clustering-driven, iterative strategy to
optimize the embedded representation. scvi (Lopez et al., 2018), a deep learning frame-
work that uses variational autoencoders to compute a latent integrated representation of
datasets. BBKNN (Polański et al., 2020), which builds a weighted joint graph of datasets
together using a batch-balanced variant of k-nearest neighbors. We embedded Harmony,
scvi latent representation, and BBKNN results into a 2D space using UMAP (Becht et al.,
2019) so that all methods’ output space is comparable.

The benchmarking databank consists of 11 single-cell osteosarcoma datasets gathered
from (Zhou et al., 2020), containing approximately 65,000 cells in total, which have been
annotated by the authors with 10 different cell types (Fig. 2.2a). We will use this author
annotation as the ”ground truth” for this application, and measure how the different
methods deviate from it. This use case is quite challenging due to dataset size, number
of batches, and number of classes, but illustrates a reasonable real-life use case of data
integration. Integration performance can be objectively measured through four integration
metrics: batch and class mixing using a lightened version of local inverse Simpson’s index
(LISI) introduced in Harmony, clustering specificity using Louvain or Leiden community
detection algorithm (Blondel et al., 2008; Traag et al., 2019), and computation time. It is to
note that Harmony directly uses batch-LISI as a stopping criterion during its optimization
procedure, so we have to expect it to have superior batch-LISI scores.

All methods could compute the integrated embedding in a reasonable amount of time
given the number of data points (Fig. 2.2g), with the best performer being BBKNN +
UMAP with 1min10s, taking advantage of the highly optimized C++ nearest neighbors
approximation library annoy. Both supervised and unsupervised versions of EmbedMNN
algorithms could finish in under 5 minutes. At the same time, Harmony took 5min30s plus
an extra 30s of UMAP computation to obtain a 2D embedding. scvi was the longest to
complete, with around 10 minutes in total, but in all fairness, the minimum loss seemed
to be reached between the 2 and 3 minutes mark.

Computed joint representations were reasonable overall for all methods, with effective
batch mixing and cell type clustering (Fig. 2.2c-d). Nonetheless, no method achieved both
excellent batch mixing and cell type separation, which is to be expected on such complex
datasets (a large number of cells, patients, and cell types). Unsurprisingly, the supervised
version of EmbedMNN outperformed all other methods by a large margin both in terms
of local cell types homogeneity and clustering purity (Fig. 2.2f), with a very low LISI-
class score for all cell types and a near-100% cluster purity, as it leveraged complete label
information. This allowed it to prune edges between cells of different types during the
matching step, which resulted in a very clean cells graph to embed. On the other hand,
supervised EmbedMNN is associated with inferior batch mixing (Fig. 2.2e), and more
explicit cluster delimitation after integration which can be an obstacle for some trajectory
inference algorithms. The unsupervised version of EmbedMNN appears to be on par with
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the other methods, with good LISI-class and LISI-batch scores (Fig. 2.2e-f) and good
clustering purity (Fig. 6.3).

Overall, this shows that transmorph provides a framework capable of creating data
integration models of sufficient quality to tackle joint dataset integration of challenging
scRNA-seq datasets in terms of computational efficiency and integration quality. In the
next section, we will show that its modularity allows the user to modify a transmorph
model to change its output space (from an abstract space to a gene expression space),
which is not possible to our knowledge with the other tools presented in this first scenario.

All benchmarks have been run on a laptop equipped with 32GB of RAM, an Intel
CPU i7-10750H (12 cores) processor at 5GHz and an NVIDIA GPU GeForce GTX 1650
Ti Mobile.

• EmbedMNN was used on preprocessed counts with transmorph v0.2.0, using default
parameters: ”bknn” matching, 10 matching neighbors, 10 embedding neighbors,
UMAP optimizer and 2 dimensions.

• BKNNCorrection was used on preprocessed counts with transmorph v0.2.0, using
default parameters: ”bknn” matching, 30 matching neighbors, 10 linear correction
neighbors.

• TransportCorrection was used on preprocessed counts with transmorph v0.2.0, using
solver=”unbalanced”, entropy_epsilon=0.02, unbalanced_reg=5.

• Harmony was used with default parameters directly on preprocessed counts using
the rpy2 python interface. We also tried the harmonypy python implementation,
interfaced via scanpy. It successfully converged in under 10 iterations in both cases
and produced comparable results.

• scvi was used on raw counts following the authors’ guidelines with n_layers=2 and
n_latent=30, and was optimized during 124 epochs (automatically chosen by the
software).

• We used the scanpy implementation of BBKNN on preprocessed counts. We carried
out BBKNN with default parameters on a 50-PC representation of datasets using
default parameters, using neighbors_within_batch=3 and 10 annoy trees.

• Seurat was used in RStudio after converting AnnData datasets to h5seurat using the
SeuratDisk package. We carried out the integration using SelectIntegrationFeatures,
FindIntegrationAnchors and IntegrateData with default parameters. We were not
able to complete the last integration step despite our efforts due to memory usage
issues.

2.3.3 Performing integration in gene space by using an appropriate em-
bedding

In some applications, providing a joint embedding of datasets into an abstract space
is not suited, as original features (i.e. genes) do carry important information for out-
put interpretability. This is for instance the case when performing matrix factorization
algorithms such as independent component analysis (ICA) or non-negative matrix factor-
ization (NMF), or when annotating cells with appropriate cell types. In this case, it is
necessary to perform the integration directly within gene space, which brings some tech-
nical difficulties. Notably, gene spaces are often very large which is detrimental to the
scalability of distance-based algorithms due to the curse of dimensionality. In this scenario,
EmbedMNN, Harmony or BBKNN are not adapted, as they are unable to return their
output in full gene space. This would normally imply we need to find another integration
tool to carry out the integration in gene space, which would come with important time
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Figure 2.3: Gene space integration of 14 nasopharyngeal carcinomas scRNA-seq
datasets from different patients (n=61,870). (a) Architecture of the BKNNCorrec-
tion pre-built integration model performing integration in gene space. Computational
modules are executed from left to right and from top to bottom.. (b) UMAP visualiza-
tion of the integration result, colored by dataset (left) and by original cell type annotations
(right). (c) LISI-batch (top, higher is better) and LISI-class (bottom, lower is better) be-
fore and after integration, mean is marked. (d) UMAP representation of the integration
result, endowed with new cell type annotations determined within the integrated gene
space. (e) UMAP representation of the dataset P03, with old (left) and improved (right)
cell type annotations. Comparative plots for other datasets can be found as supplemen-
tary figure. (f) Absolute value of the correlation between each independent component
and each batch among T-cells, before (top) and after (bottom) integration. From (Fouché
et al., 2023).
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costs (package installation, data processing, workflow adaptation...). In this example, we
demonstrate how the modular nature of the transmorph library can instead provide a way
to adapt an existing model to suit a new application easily. We first identify that the
embedding step of EmbedMNN is by design not adapted to a full gene space application.
To tackle this limitation, we can swap this module for something more adapted like a
linear correction step in gene space (Fig. 2.3a), which instead leverages correction vectors
in a similar fashion to what is used within the MNN (Haghverdi et al., 2018) and Seurat
(Butler et al., 2018) tools, and can handle the property of neighbor-based matchings that
do not provide a match to every cell from the query dataset. Given a reference dataset,
the linear correction approach consists in first, finding some matchings between query and
reference items, then computing correction vectors from these queries to their references,
to finally propagating these correction vectors along the query dataset to end up with cor-
rected profiles. This last step allows for the alignment of query cells that have no match
in the reference dataset. Furthermore, contrarily to graph embedding, linear correction
step can be carried out in gene space to obtain a gene expression matrix as output. This
makes it a natural choice for this application.

We use 14 nasopharyngeal carcinoma datasets gathered from (Chen et al., 2020) to
benchmark the strategy (Fig. 2.3b). The goal is to embed these datasets in the space
defined as the intersection of their common most variable genes so that cells sharing
the same annotation end up in close proximity after integration. This is once again a
challenging task as the datasets are quite large (more than 60,000 cells to embed), there
are 8 different cell annotations, some datasets do not contain cells from all types, and the
embedding space is large for a geometrical approach (more than 900 genes). To measure
integration quality from another angle, we carry out ICA on T-cells from all datasets, which
allows us to observe dataset-specific gene expression signals without the bias of cell type
imbalance between datasets. As we can see, before integration the dataset-specific signal
appears to be strongly correlated with several independent components (ICs) computed
by ICA (Fig. 2.3f top).

BKNNCorrection completes in a very reasonable time of 1 minute and 33 seconds and
provides a convincing correction (Fig. 2.3b) by being associated with great improvements
in LISI-batch (Fig. 2.3c top) while maintaining low levels of LISI-class (Fig. 2.3c bot-
tom). We were not able to successfully carry out Seurat integration on these datasets in
a reasonable time and memory usage on this dataset using our machine. Overall, this
showcases how transmorph provides a new way to easily tweak models, allowing them to
tackle different scenarios with good efficiency and integration quality. We also eventu-
ally ensure most of the dataset-specific signal has disappeared after integration (Fig. 2.3f
bottom), resulting in a weak correlation with any of the ICs recomputed by ICA on the
integrated dataset. This is a desired property for subsequent accurate interpretation of
the independent components through, for example, functional enrichment analysis.

2.3.4 Gene space integration can be leveraged to annotate cell types
reliably

Gene space integration can be leveraged in a very natural way to perform cell type anno-
tation. As integration outputs new gene counts for each cell, these new molecular profiles
can be used within the integration space to perform clustering and cell type annotation
via differential gene expression analysis. These newly found annotations can be expected
to be more precise than annotations performed on each dataset individually and can allow
rarer cell types to be identified with high statistical confidence. In particular, most cell
type annotation strategies rely on prior cell clustering to label each cluster with a cell type
according to marker genes. Frequently, rare cell types do not form a separate cluster in
the original datasets due to their limited population size, while they should constitute a
larger cluster once datasets have been integrated together. Newly found annotations can
eventually be mapped back to the individual datasets. We will use this methodology to
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improve annotations found in the previously used nasopharyngeal carcinoma scRNA-seq
datasets.

We performed a clustering of datasets integrated into the space of their common genes
and performed a differential gene expression on these clusters (Fig. 6.4). We then de-
termined cell types by combining initial annotations, well-known marker genes as well as
PanglaoDB (Franzén et al., 2019). Doing so allowed us to confidently annotate 13 differ-
ent cell types, greatly refining initial annotations (Fig. 2.3b-d). Comparing old and new
annotations for each cell shows most annotations have been made more precise rather than
corrected (Fig. 6.4), notably splitting the ”T cell” label into the various lymphoid lineage-
associated labels ”T-naive”, ”T-CD4+”, ”T-CD8+”, ”T-memory” and ”T-proliferating”,
and the ”macrophage” label into the myeloid lineage-associated labels ”macrophages” and
”dendritic cells”. The only different annotations were among ”epithelial”, ”endothelial”
and ”malignant”, which is to be expected as nasopharyngeal carcinomas are endothelial
tumors, making these types hard to strictly separate. All the annotations were eventually
be mapped back into the original datasets (Fig. 2.3e), and convincingly annotated clusters
that can be seen in exploratory data analysis. This notably allowed the identification of
a very small subpopulation of dendritic cells notably characterized by the expression of
CCR7 and CCLE9A genes as well as proliferating T lymphocytes, expressing high levels
of proliferation markers like MKI67 and PCNA. These subpopulations were too rare in
each dataset to form a distinct cluster, which explains why they could not be annotated
initially. It is to note that the CD4 gene was not highly variable within all datasets and
therefore it was missing in the integrated gene space. We validated the LT-CD4+ cluster
by checking the CD4 expression in datasets in which the gene is present (Fig. 6.5). This
application shows how the output of transmorph gene space models can be used to improve
cell type annotations by integrating several datasets directly in gene space.

2.3.5 Transferring cell cycle phase annotations across osteosarcoma and
Ewing sarcoma datasets

Cell cycle is one of the most fundamental biological processes through which biological cells
grow and divide, but is yet to be fully understood. Single-cell transcriptomics offers great
insight into its properties and dynamics, as gene expression regulation is a key factor for
cell cycle progression. Gene expression modulation during the cell cycle can be visualized
and interpreted by looking at the so-called cell cycle plots. In these plots, each cell is
reduced to a small set of coordinates (typically between 2 and 4 (Zinovyev et al., 2022)),
each of those corresponding to the average transcription activity of genes associated with
a specific cell cycle signal (e.g. G1/S phase, G2/M phase, histones) (Fig. 2.4a). In
this configuration, cells revolve along a one-dimensional looping trajectory throughout
their progression in the cell cycle. Studying the geometry of these trajectories and cell
distribution along them can provide exquisite insight into cell cycle speed, cell growth, or
even eventual cell cycle arrest.

A challenging question when studying the cell cycle at the single-cell level is the auto-
matic annotation of cells with cell cycle phases. Some phases like mitosis can be accurately
identified by looking at markers such as the total number of raw counts which drops by a
factor of two after cell division, but other phases are fuzzier, especially for lower-quality
datasets, or fast-cycling cell types. Annotation of scRNA-seq data with cell cycle phases
was studied experimentally in (Mahdessian et al., 2021b), where the authors used genetic
constructs to follow the abundance of key cell cycle proteins which they can then relate
to cell cycle phases, but doing so comes with important costs and experimenter time; a
natural idea would be to transfer labels from datasets annotated using this methodology to
other unlabeled ones. Unfortunately, this is not as easy as it seems: differences in prepro-
cessing, cell types, and cell cycle properties can quite drastically affect a dataset topology
and geometry, making many proximity-based methods irrelevant. A natural label transfer
strategy can be pictured as follows (Fig. 2.4b). First, we carry out data integration of all
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Figure 2.4: Transferring cell cycle phase annotations between osteosarcoma
(U2OS, TC71) and Ewing sarcoma (CHLA9, CHLA10) scRNA-seq datasets.
(a) Visualizing the cell cycle loop of each dataset, approximate positions of cell cycle phases
are annotated. U2OS annotations are provided by the authors, other datasets are colored
according to the number of read counts. (b) Schematic strategy for the data integration-
based label transfer. (c) Architecture of the TransportCorrection pre-built integration
model performing integration in gene space. Computational modules are executed from
left to right and from top to bottom.. (d) Automatically transferred annotations using
the TransportCorrection model. (e) Differential gene expression was performed using a
Wilcoxon rank-sum test, showing the most specific genes associated with cells of each
label. From (Fouché et al., 2023).
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datasets into a common embedding space. Then, we predict cell cycle labels of unlabeled
datasets in this common space using a supervised learning approach. Finally, the learned
labels can be transferred back to the original representations to be interpreted.

In this experiment, we seek to automatically annotate three single-cell RNA-seq Ewing
sarcoma datasets (CHLA9, CHLA10, and TC71) gathered from (Miller et al., 2020b) (Fig.
2.4a). To do so, we will attempt to transfer cell cycle phase, author-provided annotations
contained in an osteosarcoma dataset (U2OS) gathered from (Mahdessian et al., 2021b),
onto the three Ewing sarcoma datasets.

Raw counts for Ewing sarcoma cell lines datasets CHLA9, CHLA10, and TC71 were
obtained from (Miller et al., 2020b). Raw counts and annotations for the osteosarcoma
U2OS dataset were obtained from (Mahdessian et al., 2021b). They were preprocessed
according to state-of-the-art guidelines. Raw counts per cell were normalized to 10,000 to
account for differences in global expression and were then log(1 + x) transformed; the top
10,000 variable genes were kept in each dataset. Data points were eventually pooled to
reduce noise, by setting every cell counts vector to the average of its 5 nearest neighbors
(neighbors were determined using euclidean distance in a 30-PC space). We used cell
cycle genes identified in (Tirosh et al., 2016) to characterize G1/S and G2/M signals. For
fast cell cycle datasets TC71 and U2OS, we used only a subset of informative G1/S genes
which helped to retrieve a proper loop signal (CDK1, UBE2C, TOP2A, TMPO, HJURP,
RRM1, RAD51AP1, RRM2, CDC45, BLM, BRIP1, E2F8 and HIST2H2AC). Integration
was carried out using full gene space.

Preprocessing differences, geometrical specificities and apparent S/G2M label mixing
within the U2OS reference dataset are tough difficulties to overcome both for integration
and label transfer methods. We first attempt to perform the integration using BKN-
NCorrection, setting CHLA10 as the reference dataset considering its good quality and
representativity (cells are scattered uniformly around the trajectory, and the central ”hole”
is well resolved). Unfortunately, predicted cell cycle labels are not satisfying (Fig. 6.2):
post-mitotic cells are associated with the G2/M label, S-phase is labeled too late on the
trajectory, and some early G1 cells are labeled as S. This disappointing performance may
be caused by a lack of orthogonality between cell cycle factors and batch effects. This is
a crucial hypothesis for all neighbors-based dataset integration, not satisfying it results in
a poor matching quality making integration unreliable.

This motivates the need to seek a more appropriate matching algorithm for this situ-
ation. We choose here a transportation-based matching, which is robust for applications
where information is contained in data topology. It relies on discrete optimal transport
that has been brought into the scRNA-seq field a few years ago in (Schiebinger et al.,
2019), which can be pictured as looking for the most economical way to move mass in a
metric space from a point cloud onto another. This class of problems yields a natural and
harmonious way to match cells across batches, by operating at the dataset level instead
of operating at the cell level like in MNN. We can use the transmorph pre-built model
TransportCorrection inspired from SCOT (Demetci et al., 2020) and Pamona (Cao et al.,
2022b), which consists of a few preprocessing steps followed by a transport-based match-
ing, used to project every query item onto the barycenter of its matches (Fig. 2.4c). In
this case, we had to use the unbalanced formulation of optimal transport (Liero et al.,
2018; Peyré et al., 2019) to account for cell cycle phase imbalance between ”standard”
and ”fast” cell cycle datasets; this variant is also implemented in our framework. Label
transfer using this model instead of BKNNCorrection yields much better labeling, entirely
interpretable and in line with the patterns we expect for the ”standard” and ”fast” cell
cycle (Fig. 2.4d). We see mitosis point is now well identified by the automatic annotation,
and S-phase labels are better located. Differential gene expression between the different
identified labels yields well-known cell cycle genes specific to each phase, which shows an-
notation is accurate (Fig. 2.4e). Among these genes we notably see a few well-known ones
appear in all profiles such as the TOP2A gene which is associated with the G2/M phases,
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PCNA with the S phase, and CDC20 with the G1 phase. Therefore in this scenario, the
transportation-based matching was clearly better suited than the nearest neighbors-based
one and allowed an accurate cell cycle label transfer. This shows how important choosing
the right matching can be, and how transmorph addresses it.

In chapter 4, we will present another optimal transport-based algorithm we developed
to perform horizontal integration of single-cell data in the space of cell cycle genes. Instead
of optimizing an unbalanced optimal transport problem, we solve a kernel optimization
task to weight cells so that those in crowded regions of the space weight less than the ones
in sparser regions. We will discuss the methodology and the rationale in more details in
chapter 4.

2.3.6 Data integration of Ewing sarcoma datasets

Figure 2.5: Using transmorph to perform data integration of Ewing sarcoma
datasets (PDX, cell lines, tumors). In (a) and (b), top left plot is coloured
by original dataset. Other plots are couloured by cell process signal, purple is
low, red is high. (a) Common genes UMAP plot of the datasets before integration. (b)
Datasets embedding after applying the EmbedMNN data integration pipeline, showing
cell states are better localized.

We would like to showcase another application of the transmorph package for the
horizontal integration of public Ewing sarcoma (EWS) scRNA-seq datasets. Integrating
cancer data is challenging for several reasons: first, cell states are highly heterogeneous in
such datasets, and are more subtle than cell types; as we can see in Fig. 2.5a, there is no
clear clustering within each EWS dataset. Furthermore, we attempt here to integrate data
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from different EWS models: Patient-Derived Xenografts (PDX352, PDX3360, PDX3381,
PDX3633, PDX3693, PDX3776), cell lines (CHLA9), and tumors (EW1278 and EW1438).
All these EWS models have their biological specificities discussed in the introduction,
which bring important biological biases. Finally, all these datasets originally come from
different patients, with all the inter-individual biases we can think of (age, sex, ethnicity,
environment...). For this reason, such an integration task is highly challenging in practice,
and we can see in Fig. 2.5a a strong clustering per dataset.

We used the gene signatures identified in (Aynaud et al., 2020) to estimate the activity
of 7 cell processes in those datasets via the expression of their respective genes: G1/S
cell cycle phase, G2/M cell cycle phase, EF1 (the EWS oncogene) targets expression, cell
respiration, mitochondrial genes, hypoxia and RNA splicing. We observe in Fig. 2.5a
some activity of these target signals in various parts of the plot, and we would like to
co-embed all these cells so that cells with similar signals end up close to one another. We
chose to use the EmbedMNN algorithm presented in section 2.3.2, as it is a natural data
integration pipeline to pick when we just need a co-embedding of several datasets.

The embedding results after applying EmbedMNN are shown in Fig. 2.5b. We can
see that all of the datasets are embedded into a single cloud with a clear looping part.
Upon closer inspection, this looping structure is associated with cells that present high cell
cycle gene expression, and also metabolic signals (glucose metabolism and mitochondrial
genes), which suggests that proliferating cells have been correctly grouped together. We
also notice the loop contains a region associated with the expression of G1/S genes, and
another region associated with the expression of G2/M genes, which suggests that these
more subtle proliferation signals have also been accounted for by the algorithm. We
also observe good colocalization of other gene signature levels in the embedding. All this
suggests that EmbedMNN was able to satisfyingly integrate these Ewing sarcoma datasets
into a common space, and was able to respect Ewing sarcoma cell states while doing so.

2.4 Discussion

Horizontal data integration and batch effect correction are key computational challenges,
especially in computational biology to be able to properly analyze single-cell data from
different batches or patients (Argelaguet et al., 2021). We identified the need for modu-
lar methods to tackle this problem, and demonstrated the necessity to carefully combine
trustworthy cell-cell similarity algorithms with relevant embedding algorithms. We also
clearly showed how deceiving data integration can be when carried out improperly, which
can be detrimental to subsequent analyses. This alone motivates the need for more mod-
ular tools, where every algorithmic step can be controlled if necessary. To address this
need and instead of introducing yet another data integration technique we present trans-
morph, a novel modular computational framework for data integration, implemented as
an open-source python library. We provided a robust implementation for it and demon-
strated its value through various real-life applications both in terms of efficiency, quality,
and versatility. We would like to highlight that EmbedMNN and TransportCorrection
models represent original and previously not proposed combinations of base algorithms
that were connected into complete data integration methods, using transmorph as a tool-
box for fast building and testing of data integration models. Furthermore, these pre-built
models can easily be transformed into to a combinatorial number of alternative models by
changing their constructor parameters (preprocessing steps, matching type, optimal trans-
port flavor, supervised or unsupervised behavior, gene space output, or linear subspace
output).

If transmorph is an expressive data integration framework that provides a way to artic-
ulate multiple algorithmic modules together in order to shape data integration pipelines,
there still exists some expressiveness limitations to overcome. In particular, if trained
deep learning models such as deep autoencoders (DAE) can be used as custom transfor-
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mation modules, transmorph does not provide a way to either train or fine-tune them
without relying on external libraries. For this reason, we think it is useful to mention the
development of some recent DAE-based data integration algorithms, that use different ap-
proaches to couple several algorithmic paradigms such as Uniport (Cao et al., 2022a) and
MATHCLOT (Gossi et al., 2023) that combine DAE and optimal transport, or SMILE
(Xu et al., 2022b) that replaces the decoder part by an information-based evaluator. Even
if these different tools do not provide as much modularity as transmorph to deal with very
different biological applications of horizontal data integration, they are certainly better
suited for cases necessitating higher levels of abstraction such as cross-modality (vertical,
diagonal, and mosaic) data integration.

We feel that increasing modularity and user agency often leads to bloated, over-
engineered, and impractical pieces of software. For this reason, we provide via trans-
morph several pre-built integration models ready to be used in daily workflows, with
high efficiency and integration quality. For more advanced and specific applications, our
framework also allows building integration models from scratch by combining a variety of
algorithmic modules, all of which are implemented and optimized inside our library. We
eventually provide complete interfaces which allow users to implement their own computa-
tional modules if they need to. All this is endowed with a rich software ecosystem including
benchmarking datasets, integration metrics, monitoring, and plotting tools as well as in-
terfaces with other state-of-the-art data integration tools like Harmony (Korsunsky et al.,
2019) and scvi (Gayoso et al., 2022).

We plan to continue maintaining transmorph in the future, in order to keep it up to
speed with the ever-growing field of data integration methods. We will continue expanding
it with new algorithms, either already existing or to come. We also would also like to add
more support for vertical and diagonal integration, as for now the only diagonal matching
is based on Gromov-Wasserstein which has a hard time scaling to the size of current data
integration problems. For instance, we plan to use gene space transformation to deal with
specific vertical integration cases such as integration between RNA-seq and ATAC-seq
data. We would eventually like to add domain adaptation methods to our framework (for
instance by including supervised PCA (Barshan et al., 2011) or domain adaptation PCA
(Mirkes et al., 2022) to our preprocessing steps), in order to tighten the bridge towards
this growing research field which presents many similarities with data integration.

There are still crucial questions to be answered in order to provide trustable data
integration methods, especially in single-cell biology. Among these questions are the def-
inition of relevant metrics to measure dissimilarity between cells (even more importantly
across different domains), the research of sound and unbiased ways to measure integration
quality, and the necessity to continue to carry out exhaustive benchmarks to identify the
most appropriate data integration methods and algorithms for a given use case.
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Chapter 3

Unsupervised weights selection for
optimal transport-based dataset
integration

Adapted from (Fouché and Zinovyev, 2021).

Recent democratization and flourishing of biological assays at the single-cell level raise
important challenges in subsequent analysis pipelines (Lähnemann et al., 2020). One
of those, known as dataset integration, is of particular interest and aims at tying data
together across different datasets, samples, and modalities (Argelaguet et al., 2021).

Any single cell omics dataset contains biases that may be related to interindivid-
ual specificities, tissue composition and preparation, sequencing technology, experimental
variation, or pipeline parameters. Depending on the study context, some or all of these
factors can be irrelevant to answering the biological questions of interest. On the other
hand, there exist differences between datasets, such as dataset-specific cell populations
or differences in cell type proportions. The dataset integration techniques try to address
a problem consisting of regressing out the irrelevant biases, while preserving insightful
specificities to avoid ”overcorrection”, ideally in an unsupervised fashion. For this reason,
dataset integration is a critical step in any analysis pipeline that includes a step where
data from different sources (e.g., collected from different tumor samples) are combined.
Without a well-developed dataset integration methodology, in the single-cell data analysis
field, we are doomed to deal with one biological sample at a time. Failing to eliminate
improper biases or removing dataset key specificities typically compromises the success of
subsequent visualization, clustering, dimensionality reduction, and prediction techniques;
this usually results in misleading interpretations and altered biological insights.

As mentioned in the introductions, several approaches have been proposed to solve
horizontal integration problems. In single-cell biology, mutual nearest neighbors-based
methods have become popular notably in Seurat (Adey, 2019; Barkas et al., 2019). There
also exists techniques based on generative adversarial networks like MAGAN (Amodio
and Krishnaswamy, 2018), variational autoencoders (Simidjievski et al., 2019), or integral
probability metrics like MMD-MA (Liu et al., 2019). Among those, a class of methods uses
optimal transport (OT) to evaluate the similarity between cells across datasets. These OT-
based methods are generally derived from an algorithm proposed for histogram transfer in
image processing (Ferradans et al., 2013). This was recently brought into the single-cell
field with the SCOT (Demetci et al., 2020) and Pamona (Cao et al., 2020b) tools, which
are built upon an OT variant called Gromov-Wasserstein (GW). We propose an extension
of this class of techniques, focusing on tackling heterogeneity in cell types and phenotypes
between datasets.

We propose in this chapter an original density-based extension of the OT-based in-
tegration pipeline geared towards tackling cell type imbalance issues (Fig. 3.1, d.). We
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challenge our approach against both balanced and unbalanced OT techniques implemented
in SCOT on four pairs of synthetic and biological datasets, with balanced or unbalanced
datasets. We demonstrate in these benchmarks our method to be more robust than the
original one, with reasonable extra cost in terms of computer memory and time. We
also provide a reasoned comparison between OT- and GW-based methods. We eventually
discuss the limitations of this class of methods, and possible extensions.

3.1 General outline of the suggested single-cell dataset in-
tegration methodology

OT integration pipelines generally start by computing a discrete optimal transport plan
between a source and a reference dataset, which describes how to displace source dataset
samples onto reference ones at a minimal cost. This transport plan, hypothesized to
reflect sample-sample similarity between datasets, is then used to compute a barycentric
projection of source samples in the reference space (Ferradans et al., 2013).

We extend this OT integration pipeline with an extra preprocessing step that adjusts
sample weights depending on local point density (Fig. 3.1d). The intuition behind this
approach is to tackle the issue of cell type imbalance, when proportions in cell types differ
between datasets. By increasing sample weights in sparse regions and decreasing sample
weights in populated regions, we hope to uniformize weighting per cell type over both
datasets, correcting cell type imbalance and emphasizing geometric constraints. These
custom weights are used during the optimal transport and integration steps.

We propose a kernel method to adjust weights, seeking weights in the probability
simplex that minimize the empirical variance of the weighted sum of kernels over dataset
samples. We formulate this optimization problem as a standard quadratic optimization
problem, that can be dealt with using state-of-the-art QP solvers.

The whole pipeline is summarized in (Fig. 3.1, d). OT and GW can be computed
with the help of the python package pot (Flamary and Courty, 2017). It notably features
C-accelerated implementations of both Wasserstein and GW distances with very good
performance, associated with computation times typically between one and ten seconds
for all datasets we use.

In order to test the suggested methods, we defined the following datasets (see section
3.10 for a more detailed description, Fig 3.1a-c):

1. A pair of synthetic 1D datasets embedded in a 3D spiraling shape

2. A pair of public Ewing’s sarcoma datasets embedded in cell cycle genes space

3. A pair of datasets obtained with the scSNARE-seq assay (Chen et al., 2019b),
one with chromatin accessibility profiles and the other containing gene counts with
matched cells

A spiraling domain is interesting for several reasons. First, the underlying domain
is continuous, which is a good stress test for integration methods that must preserve
manifold continuity. Also, a spiraling pattern can potentially challenge the integration
techniques (some points close to the spiral center can be mapped to the ”external” regions
of the reference spiral). Quality assessment is eventually performed by comparing, for
each integrated sample, its position in the initial spiral versus in the integrated one.

We chose CHLA9 Ewing sarcoma cell line scRNASeq dataset (n = 3752) from (Miller
et al., 2020b) as a reference, because the differences in cell cycle phases comprised the most
important source of transcriptomic heterogeneity in this dataset (Fig. 3.1, b). PDX352
patient-derived xenograft profiled using scRNASeq (n = 1937) was chosen as the query
dataset among those published in (Aynaud et al., 2020), for its high proportion of non-
proliferative cells and with a clear cyclic structure corresponding to proliferating cells and
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Figure 3.1: Datasets overview and algorithm architecture. (a) Synthetic spiraling
datasets embedded in a 2-PC space. (b) Ewing sarcoma single-cell datasets embedded
in the cell space (x-axis: G1/S genes signal, y-axis: G2/M genes signal). (c) Cell lines
mixture acquired through scSNAREseq embedded in a 2-PC space. (d) A schematic view
of the weighted optimal transport-based integration pipeline. From (Fouché and Zinovyev,
2021).
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its high number of cells. This pair of datasets is a good stress test for integration methods,
as they have quite similar support domains but with very different cell state distributions;
they were also the largest PDX and cell line datasets in the collection.

Eventually, the scATACseq case is interesting as an application of multi-omics dataset
integration, frequently used in dataset integration benchmarks. Indeed, cells being matched
between datasets facilitates integration quality assessment.

3.2 Method for kernel density uniformization

Figure 3.2: Bandwidth and weighting selection of cell cycle datasets. (a) Band-
width choice over cell cycle datasets. Blue: Query dataset. Red: Reference dataset. (b)
Point-wise Gaussian kernel density of each dataset before weights selection. Right: Query
dataset. Left: Reference dataset. (c) Point-wise weights selection, illustrated by color and
dot area. Right: Query dataset. Left: Reference dataset. (d) Relationship between ini-
tial point-wise Gaussian kernel density and selected weight. Right: Query dataset. Left:
Reference dataset. From (Fouché and Zinovyev, 2021).

We propose a density uniformization method to adjust sample weights before unbal-
anced OT or GW dataset integration, increasing the weights of samples in sparse regions
and decreasing the weights of samples in populated regions.

Let {xi}i≤n be a dataset consisting of n samples in a vector space X endowed with n
distance-based positive semi-definite kernels Ki(x) = fi(‖x−xi‖2). Let us further assume
that for all i ≤ n,

∫
X Ki(x)dx = 1. For every x ∈ X , we define the weighted sum of kernels

at x

wα(x) =
n∑

i=1
αi K i(x) (3.1)

with α ∈ Rn. We furthermore constraint α to be contained in the probability simplex,
so that ∑n

i=1 αi Ki(.) is the PDF of a probability distribution of X . This means α � 0n

(coordinate-wise comparison) and αT 1n = 1.
We can write an expression for the empirical variance of wα over the dataset,

v(α) = 1
n

n∑
i=1

(wα(xi) − µα)2 (3.2)

with µα = 1
n

∑n
j=1 wα(xj).
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The kernel uniformization problem can then be stated as minimizing v(α) over the
probability simplex,

min
α∈R n

1
n

n∑
i=1

(wα(xi) − µα)2

s.t. α � 0n

αT 1n = 1

(3.3)

Let K ∈ (R+)n×n be the kernel matrix defined as Kij = Kj(xi), Eq. 3.2 can be
rewritten as a quadratic form of α with M = KT 1n1T

n

v(α) = 1
n
αT (K − M)T (K − M)α (3.4)

Eq. 3.3 defines a quadratic program constrained on a simplex, also known as standard
quadratic optimization problem (Bomze, 1998) that cannot be solved analytically, moti-
vating the usage of interior point methods. We used the Python implementation of osqp
(Stellato et al., 2020) to carry out the computation, using a Gaussian kernel based on the
Euclidean distance matrix (variance-normalized).

3.3 Divergence maximization is a proper heuristic for band-
width selection

We used a Kullback-Leibler (KL)-divergence maximization heuristic to select in an unsu-
pervised fashion a reasonable bandwidth for a Gaussian kernel used in computing weights
(see section 3.10 for details).

For all the datasets we used for testing, the KL-divergence with respect to sigma ap-
pears to contain a single maximum with σ in the interval [10−10, 1010] (Fig. 3.2a, Fig.
6.10-6.11-6.12a). These maxima correspond to the ones we find by fine-tuning the band-
width by hand, and yield quite close to uniform density profiles with small variability (Fig.
3.2b, Fig. 6.10-6.11-6.12b). Our automatic bandwidth selection algorithm implementation
converged to a solution in a reasonable time (under a minute for all datasets).

3.4 Quadratic program greatly reduces kernel density em-
pirical variance

We first verify as a sanity check that carrying out the weighting procedure reduces density
variance as expected over our eight datasets, and by how much. We compare empirical
density variance over all datasets using uniform weights (with αi = n−1 for every sample),
and using weights minimizing density variance over the dataset (Eq. 3.3). Tab. 3.1 shows
empirical variance with and without adjusted weights; we see using weights minimizing
the quadratic program decreases the empirical variance by several orders of magnitude in
all eight datasets. Computation time on our setup varies from 250ms for spiral datasets
to a few tens of seconds for CHLA9. Computation time is directly related to dataset size,
which conditions the quadratic program’s dimensionality.

We can visualize the result of density uniformization on Ewing sarcoma datasets in
Fig. 3.2, c, where chosen weights are represented by both color gradient and dot area.
As expected, samples in populated regions are associated with below-average coefficients,
while samples in sparse regions like loop borders are associated with above-average coef-
ficients. This directly implies the reference dataset needs to be of high quality, without
outliers as they would be associated with high coefficients and probably fool downstream
analyses. However, based on such estimation, it may be possible to identify outliers as
abnormally large weights and set their weights to zero using a threshold. Similar plots
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Dataset Variance, uniform weights Variance, QP weights Change ratio
Spiral (Query) 1.43 × 10−5 4.53 × 10−8 3.16 × 10−3

Spiral (Reference) 1.81 × 10−5 4.01 × 10−8 2.21 × 10−3

PDX352 (Query) 1.80 × 106 3.07 1.70 × 10−6

CHLA9 (Reference) 2.05 × 102 1.64 × 10−2 7.97 × 10−5

scATACseq bal. (Query) 1.20 × 10−1 1.25 × 10−3 1.05 × 10−2

scRNAseq bal. (Reference) 2.16 × 101 2.32 × 10−2 1.08 × 10−3

scATACseq imb. (Query) 1.06 × 10−1 1.88 × 10−3 1.18 × 10−2

scRNAseq imb. (Reference) 3.33 × 101 2.60 × 10−2 7.80 × 10−4

Table 3.1: Gaussian density variance before and after reweighting over each dataset.

for the six other datasets can be examined in Fig. 6.10-6.11-6.12c, and display a similar
trend.

Let us eventually examine the relationship between initial density at a point, and its
estimated weight. We expect points with high initial density values to be associated with
low weights and vice-versa. Fig. 3.2d confirms this trend, but with some interesting extra
observations. First, we notice that the reweighting rule does not seem to be uniquely
determined by initial density at point, as we observe a wide range of weights for a given
initial kernel value. We also observe a quite clear gap between ”large weight points”
(αi ≥ 10−5) and ”small weight points” (αi ≤ 10−5), suggesting the weighting method
to adopt a kind of ”all or nothing” strategy. These observations suggest naive weighting
methods, such as weighting points in an inverse proportional fashion with respect to initial
density, not to coincide with a variance-minimizer weighting. All these observations can be
repeated for Ewing’s sarcoma datasets (6.10d). Interestingly, for scSNAREseq datasets,
the final weight of each point seems to exactly match the normalized inverse of the initial
weighted kernel sum at this point (6.11-6.12d).

3.5 Weighted dataset integration
OT or GW can in the discrete case be used as an integration technique for vectorized
datasets, originally proposed for histogram color transfer in image processing (Ferradans
et al., 2013). We propose to extend this approach to the custom weights case.

Let X and Y be two matrices of Rn×dX and Rm×dY representing two vectorized
datasets containing respectively n and m samples. Distance information is necessary
to carry out OT or GW. For OT, let CXY ∈ Rn×m be the matrix containing pairwise
distances between X and Y . For GW, let CX ∈ Rn×n and CY ∈ Rm×m be two matrices
containing pairwise distances in X and in Y . Let P ∗ be the optimal transport plan from
X to Y , computed either using OT or GW, assuming samples from X (resp. Y ) are as-
sociated either to uniform weights, or weights obtained via the uniformization procedure
described in subsection 3.2. We denote these weights by αX and αY . The idea is then to
consider each row in

T = diag(U1m)−1U (3.5)

as a probability distribution, with U = P ∗ diag(αY )−1 – by construction, each row
sums up to 1. Namely, Tij is interpreted as a probability, P(xi corresponds to yj). We can
then derive an expression for the predicted X dataset position after a weighted barycentric
integration,

X′ = TY . (3.6)

As a last step, we choose to apply an individual small stochastic coefficient to each
integrated point (typically sampled from a normal distribution with mean 1 and standard
deviation 1%) in order to avoid the case where several points are exactly mapped onto
the same location. We found in our tests that this trick greatly improves the convergence
time of some downstream algorithms such as UMAP (Becht et al., 2019).
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3.6 Integration results on synthetic datasets

Figure 3.3: Comparison of integration methods on synthetic spiraling datasets. Left
subpanels: colored by original dataset. Right subpanels: colored by their initial posi-
tion in the spiral, integration should preserve the color gradient. a. Unweighted optimal
transport-based integration. b. Weighted optimal transport-based integration. c. Un-
weighted GW-based transport-based integration. d. Weighted GW-based transport-based
integration. e. Balanced SCOT integration. f. Unbalanced SCOT integration.

We first use two synthetic unbalanced datasets characterized by intrinsic dimensionality
one embedded in a 3D spiraling domain to assess the effectiveness of the different OT-based
integration methods (Fig. 3.3). We focused on two dataset integration evaluation criteria:
domain overlapping (left panes) and manifold structure preservation (right panes), which
are two crucial features for integration methods. By domain overlapping, we mean the
ability of a dataset integration method to result in a data distribution being similar for
two or more integrated distributions. The OT framework does not guarantee this, as a
source point equally transported to two target points will be mapped exactly in between.
By manifold structure preservation here, we mean that the resulting dataset integration
will reproduce the structure of geodesic distances along the two initial data manifolds. For
example, in the spiral example shown in Fig. 3.3, the color denotes the geodesic distance
along the spiral from its central point (blue - close to the center and yellow - far from
the center). In the ideal integration of manifolds, the data points from the query dataset
should find themselves in the position corresponding to their initial geodesic distance.

As expected, the unweighted optimal transport integration is quite successful with
respect to the first criterion, with most query points falling on the reference spiral, but
fails the second one with a lot of query ”exterior” points being mapped on the reference
”interior” (3.3, a). On the other hand, weighted optimal transport integration passes both
tests convincingly (3.3, b).

Both unweighted and weighted GW-based methods pass the overlapping test, but quite
miserably fail the one for manifold preservation, as witnessed by the query data points



78 CHAPTER 3. WEIGHTS SELECTION FOR OPTIMAL TRANSPORT

integrated into the wrong position on the reference spiral (3.3, c, d). In other words,
several points with a blueish color are found where the reference data points are yellow.

We could not achieve a satisfying integration with the SCOT tool, using both the
balanced (3.3, e) and the unbalanced (3.3, f) formulations, despite trying to fine-tune
several parameters in a large range.

Running times on this example were 1.7s for unweighted optimal transport, 2.5s for
weighted optimal transport, 2.5s for unweighted GW, 4s for weighted GW, 0.9s for bal-
anced SCOT, and 0.4s for unbalanced SCOT.

3.7 Integration results on single-cell dataset embedded in
cell cycle space

As a first real-life example, we choose to integrate Ewing sarcoma datasets embedded in
the cell cycle space, where the first (respectively second) dimension corresponds to the
mean expression of genes associated with G1/S (respectively G2/M) phases of the cell
cycle. Cell profiles typically revolve around a loop in this space, according to each cell’s
progression in its cell cycle (Aynaud et al., 2020). Integrating cells in the cell cycle space
has several applications. It can be used to correct the loop domain of an average-quality
dataset with respect to a high-quality reference dataset, or to infer the cell cycle state of
cells in a semi-supervised fashion with label transfer methods if the reference dataset is
labeled.

Here, we choose to integrate an Ewing sarcoma patient-derived xenograft (PDX)
dataset of 1937 cells with a majority of non-proliferating cells (located in the bottom-
left of a cell cycle plot), onto an Ewing sarcoma cell lines dataset (3752 cells) mainly
composed of proliferating cells (Fig 3.1b). A good integration should result in mapping
non-proliferating cells of PDX onto non-proliferating cells of CHLA9, while preserving the
distribution of proliferating cells of PDX over the cell cycle loop.

As in the previous example, we have not been able to achieve satisfying convergence for
all GW-based methods in this example (including SCOT). Fig. 6.13a presents integration
results using unweighted optimal transport. Once again, we assess integration methods on
two criteria: domain overlapping (left panes) and cell cycle phase matching (right panes).
As we can see, unweighted OT integration passes the domain overlapping test but fails
the phase matching one, with non-proliferating cells matched onto proliferating states.
Weighted optimal transport integration (Fig. 6.13b) convincingly passed both tests.

Running times on this example were 5s for unweighted optimal transport and 100s for
weighted optimal transport.

3.8 Integration results on balanced single-cell multi-omics
datasets

Diagonal dataset integration is a challenging task that consists of computing a joint em-
bedding of samples between two biological modalities, without any prior knowledge of
cell types or labels. It does not only require a robust alignment technique, but also
sound cross-representation projections to construct a meaningful common space for the
integration to take place. In the multi-omics dataset we are interested in, performing a
19-component PCA on gene expression data, and reducing chromatin accessibility data to
a 19-dimensional space was sufficient to recover close corresponding clusters in the joint
PCA space. We then performed dataset integration in this PCA space embedding. This
time, we were able to make all methods converge except for the unbalanced formulation
of SCOT.

As both datasets have a clear 3-clusters structure after embedding in a 19-PC space
(Fig. 3.1c) with a one-to-one mapping between cells and clusters, and all integration
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Figure 3.4: Comparison of integration methods on multi-omics scSNAREseq
datasets, assessed as cluster-wise purity after integration. The best methods
should display high purity value for all three clusters. (a) Clusters are balanced
between datasets. (b) Clusters are unbalanced between datasets. From (Fouché and
Zinovyev, 2021).

methods provide a good domain overlapping (Fig. 6.14), we decide to assess integration
quality via cluster purity (as defined in Section 3.10.9) after concatenating reference and
integrated datasets (Fig. 3.4a). All OT-based methods overperform in this test, while
GW methods (including SCOT) struggle to preserve cluster purity properly. In particular,
unweighted optimal transport integration achieves over 90% purity in all clusters, which is
expected as we deal here with perfectly balanced data, so there is no real reason to apply
reweighting. The poor results of GW-based methods may be due to the symmetrical
structure of data, as GW does not penalize isometries between datasets.

Running times on this example were 1.7s for unweighted optimal transport, 4.7s for
weighted optimal transport, 3.8s for unweighted GW, 12.9s for weighted GW, and 150s
for balanced SCOT.

3.9 Integration results on unbalanced single-cell multi-omics
datasets

We then decide to challenge all considered integration methods, by unbalancing them
on purpose so that corresponding clusters do not match in proportion anymore. This
situation can be representative of real-life applications: cell type imbalance is a typical
issue when dealing with unmatched datasets. Once again, all methods perform well in
terms of domain overlapping (Fig. 6.15) but only OT-based methods give satisfying purity
results (Fig. 3.4b). This time, unweighted optimal transport struggles from the unbalance
with 69% purity in cluster 2. On the other hand, weighted optimal transport is robust
to these changes, with all clusters above 80% purity. All GW-based methods are severely
outclassed in this example, with less that 50% purity for clusters 1 and 2 corresponding
to random attribution.

Running times on this example were 1.8s for unweighted optimal transport, 3.3s for
weighted optimal transport, 5.5s for unweighted GW, 11.8s for weighted GW, and 127s
for balanced SCOT.
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3.10 Materials and methods

3.10.1 Datasets

We use four pairs of datasets in various dimensions d to test the different integration
methods: a pair of synthetic datasets (d = 3), a pair of single-cell datasets embedded in
cell cycle space (d = 2) and one scSNAREseq dataset split in two parts, gene expression
(d > 104) and chromatin accessibility (embedded in a d = 19 space). This last dataset
is used in two versions: one complete and one unbalanced. Theoretically, dimensionality
does not play a role when integrating datasets using OT as it only depends on weights and
cost matrix, but in practice, defining a relevant cost between points in high dimensional
spaces is challenging. All datasets are available in supplementary materials.

3.10.2 Synthetic datasets

We generate two one-dimensional datasets, non-identically distributed and unbalanced on
purpose, that we embed in a 3D space along a spiral. Query spiral contains 500 points,
and reference spiral 1000 points. Spirals are then randomly translated in space, and noise
is added (Fig. 3.1a).

3.10.3 Ewing sarcoma single-cell datasets

scRNAseq datasets were gathered from (Aynaud et al., 2020) for Ewing sarcoma patient-
derived xenografts (PDX), and from (Miller et al., 2020b) for Ewing sarcoma cell lines. All
raw datasets were preprocessed using standard methods as follows. Cells with less than 200
genes expressed, as well as genes expressed in less than 3 cells were discarded. Then, cells
with raw counts below 15,000 or above 50,000 or expressing more than 15% mitochondrial
genes were taken out. Cell counts were then normalized to 10,000 counts per cell, before
being log-transformed by the function log(1 + x). The 10,000 genes with higher variance
were kept. All datasets were then smoothed by neighborhood averaging using ten closest
neighbors, using 50 components of PCA for the nearest neighbors computation. The G1/S
and G2/M scores for each cell were computed using Ewing sarcoma-specific signatures of
cell cycle phases (Aynaud et al., 2020).

3.10.4 Multi-omics scSNAREseq dataset

Public chromatin accessibility and gene expression datasets were generated with scSNARE-
seq (Chen et al., 2019a) technology, using a mixture of human cell lines (BJ, H1, K562, and
GM12878) (Chen et al., 2019a). Every cell was analyzed in both of the assays, and is con-
sequently present in both datasets. In other words, the cells were matched between two
data modalities. Chromatin accessibility records were preprocessed using (Chen et al.,
2019a) guidelines, including noise reduction followed by dimensionality reduction using
the cisTopic (González-Blas et al., 2019) R package, resulting in a 1047 × 19 matrix.
ScRNA-seq data was normalized to one count per cell for appropriate scaling in the latent
space. The count matrix was log-normalized, then the 1000 top variable genes were kept.
The matrix was then Z-score-normalized and gloabally divided by 100. Eventually, a
19-component PCA was carried out to match the chromatin accessibility dimension (Fig.
3.1c).

These two datasets have eventually been used to generate unbalanced scSNAREseq
data, in order to make the integration more challenging. We selected at random a fraction
of samples from each cluster: in the scATACseq data, we kept 80% of cells from cluster
0, 100% from cluster 1 and 60% from cluster 2. In the gene expression dataset, 100% of
cells were kept from cluster 0, 60% from cluster 1 and 80% from cluster 2.
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3.10.5 Optimal transport
OT problem between discrete distributions can be pictured as follows (Peyré et al., 2019).
We are given a set of n ”warehouses” and a set of m ”factories”, described with a cost
matrix C ∈ (R+)n×m containing pairwise cost of transport between warehouses and fac-
tories: Cij is the cost required to move one unit of goods from warehouse i to factory
j.

Each warehouse contains a number of goods vi ∈ R+, and each factory requires a
number of goods wj ∈ R+. We assume 1T

nv = 1T
mw = 1.

A transport plan between warehouses and factories is uniquely defined by a matrix
P ∈ (R+)n×m, where Pij is the number of goods sent from warehouse i to factory j. A
transport plan is said to be valid if P1m = v and (P T )1n = w, and we denote the set
of transport plans with valid marginals U(v,w). The total cost C of a transport plan
P ∈ U(v,w) with respect to C is then defined as

CC(P ) =
n,m∑
i,j

CijPij = 〈C,P 〉F (3.7)

where 〈. , .〉F denotes the Froebenius inner product. A transport plan P ∗ is said to be
optimal if it minimizes the cost defined in Eq. 3.7 over all valid plans, and its cost is called
the Wasserstein distance between the query and reference distribution,

WC(v,w) = min
P∈U(v,w)

〈C,P 〉F (3.8)

If factories represent the reference distribution and warehouses the query one, we get
an intuition behind OT-based dataset integration: a transport plan describes how to
displace the whole mass from the query distribution onto the reference one. The OT
plan intuitively favors a natural displacement, with well-preserved local topology, as the
trajectory of masses will typically not cross. Nonetheless, the method is very prone to
overfitting, as it can align any distribution onto any other. Empirical distributions with
similar underlying manifolds (for instance, two point clouds where points are defined as
a ring) but different local densities also tend to be incorrectly integrated, as shown in
section 3.6.

The optimal transport solution can be approximated using an entropic regularizer,
and computed efficiently with the help of Sinkhorn’s algorithm (Cuturi, 2013; Peyré et al.,
2019).

Optimal transport (OT) has already inspired a number of innovative tools in the
single-cell field. It was first presented in (Schiebinger et al., 2019) with Waddington-OT,
an OT-based computational framework dedicated to the analysis of cell fate. Several
OT-based approaches have since been proposed to estimate cell-cell similarity based on
transcriptomics profile (Huizing et al., 2021a,b; Bellazzi et al., 2021). OT has also been
successfully applied to tackle the dataset integration problem, with novel tools like SCOT
(Demetci et al., 2020) and Pamona (Cao et al., 2020b), or spatial inference from omics
data in NovoSpaRc (Moriel et al., 2021). We use the latest SCOT version to date for our
tests, v0.2.0.

3.10.6 Gromov-Wasserstein problem
In the general case, defining a cost matrix between two datasets may be quite complex, for
instance when they are embedded in different data spaces. In these cases, the OT approach
is difficult to set up. The Gromov-Wasserstein (GW) problem is a natural extension of
OT that can overcome these limitations, at the cost of extra hypotheses and computation
time. Let X ∈ (X , dX ) and Y ∈ (Y, dY) be two datasets embedded in two metric spaces,
and CX ∈ Rn×n (resp. CY ∈ Rm×m) be two matrices containing pairwise distances
between points in X (resp. Y ).
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For a transport plan P , we define the transport cost with respect to P as in (Peyré
et al., 2019),

εCX ,CY (P ) =
n,m∑

i,i′,j,j′

|CX
i,i′ − CY

j,j′ |2Pi,jPi′,j′ .

Finding a transport plan P so that Pi,j is large if and only if for all i′, j′, if Pi′,j′

is large then the distance between xi and xi′ is close to the distance between yj and yj′

makes this cost small. Given two histograms v ∈ Rn and w ∈ Rm, the weighted GW
distance between X and Y is then defined as

GWCX ,CY (v,w) = min
P∈U(v,w)

εCX ,CY (P ). (3.9)

This problem is non-convex in this form, but can be rewritten as a quadratic assignment
problem (Loiola et al., 2007). It is NP-hard in the general case, but admits an entropic
regularization and can be solved quite efficiently,while tackling distributions in different
spaces which makes it highly relevant for multi-omics integration. Nonetheless, its lack of
sensivity relative to isometries between datasets can sometimes create incorrect results.

3.10.7 Unbalanced optimal transport
When applying optimal transport to real-life applications, the most common issue to deal
with is associated with sampling biases, and in particular, class imbalance. For instance,
in the single-cell field, we often observe two datasets with similar cell types but dissimilar
relative proportions of these cell types between datasets. In the most extreme case, there
are even cell types that only appear in a single dataset. This situation typically induces
severe overfitting in dataset integration methods, causing cells of a type to be integrated
into cells of another type, resulting in unusable altered data.

A typical way to approach this issue is to use an alternative optimal transport for-
mulation, called unbalanced optimal transport, introduced in (Benamou, 2003). The idea
is to relax marginal constraints on the transport plan by expressing them via penalties,
given a divergence between probability distributions D (for instance Kullback-Leibler or
Jensen-Shannon) and at the cost of extra regularization parameters h1 and h2,

Wh
C(v,w) = min

P∈(R+)n×m
〈C,P 〉F + h1D(v,P1m) + h2D(w,P T 1n) (3.10)

This approach is notably implemented in the SCOT tool (Demetci et al., 2020), and
has been shown to help deal with class imbalance in some cases. We propose an alternative
to this regularization, aiming to correct cell type heterogeneity before optimal transport.

3.10.8 Gaussian kernel bandwidth selection
We choose a Gaussian kernel for the uniformization method described in Section 3.2. The
method contains a single parameter σ called the bandwidth. For x, y ∈ Rn,

Ki(x) = 1
σi

√
2π

exp
(

− ‖x − xi‖2
2

2σ2
i

)
. (3.11)

Parametrizing this kernel over a given dataset is a nontrivial task, as an excessively
small bandwidth won’t allow any influence of a point over its neighborhood, while an
excessively large one will blur data points’ neighborhood. We follow the nearest neighbor-
based bandwidth selection used in UMAP (Becht et al., 2019). The idea is to choose for
each point xi a bandwidth σi so that

k∑
j=1

exp
(− max(0, ‖xi − xij

‖2 − ρi)
σi

)
= log2(k), (3.12)
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where {xi1 , . . . ,xik
} denote the k-nearest neighbors of xi ordered by distance in increasing

order and ρi = ‖xi − xi1‖2. According to (Becht et al., 2019), using this bandwidth
selection greatly improves the representation of high dimensional data.

We use the UMAP implementation to compute these values using k = 15 neighbors.
We did not observe major differences when tuning this parameter between 10 and 50.

3.10.9 Assessing integration quality in scSNAREseq data

ScSNARE-seq data is clearly clustered in three main clusters of similar size (between 300
and 350 cells each), labeled beforehand. To assess integration quality, we run a clustering
analysis after integration using the K-means algorithm (k = 3), and measure label purity
in each of these clusters, defined as the frequency of the majority class in a given cluster,
varying between 1/3 (mixed cluster) and 1 (pure cluster).

3.10.10 Assessing the computational time

All computation times have been recorded on a desktop computer running Arch Linux,
equipped with a 12/24 cores Ryzen 9 3900x, 32GB of DDR4 RAM. Computation was not
GPU-accelerated.

3.11 Discussion about this data integration approach

OT- and GW-based dataset integration methods were originally developed for image pro-
cessing, but find applications in various domains, notably in single-cell with tools like
SCOT or Pamona. We propose an original extension of this class of pipelines, tackling the
issue of integrating datasets with similar effective support domains but different cell types
or phenotypes distribution. These datasets are frequent in single-cell biology, especially
when cells are gathered from different tissues or patients.

We defined an unsupervised procedure that automatically selects sample weights before
OT- or GW-based integration, so that dense regions are associated with lower weights and
vice-versa. The intuition behind this is to correct for cell type unbalance and prioritize
dataset geometry. We demonstrate the effectiveness of this approach on four pairs of
datasets of various dimensions. In particular, we demonstrate this approach’s robustness
in the case of unbalanced datasets, for a reasonable computational cost. We furthermore
formulate a quantitative heuristic that parameterizes the procedure in an unsupervised
fashion.

We also tried to demonstrate the importance of choosing between the OT and the GW
transportation problem. As we showed, it has an important influence on final results and
appears crucial for a successful dataset integration. OT is only usable when a relevant
metric can be defined between samples of different datasets, but will penalize any kind
of transformation between datasets, which can help in the case of symmetrical datasets
(see scSNAREseq examples). On the other hand, GW solution is invariant with respect
to any isometry but can be applied even when both datasets to integrate do not share
the same data space, which makes it very useful in transcriptomics data where finding a
relevant common gene space between datasets is often out of reach. It is also associated
with an extra computational cost, and a more difficult problem to solve that can lead to
convergence issues. In our examples, OT was consistently superior both in terms of speed
and consistency compared to GW.

Nonetheless, the weighted OT integration pipeline does not solve all limitations of OT
dataset integration. For instance, it still struggles with datasets in which at least one
dataset contains specific cell types. In this case, the method will inevitably overcorrect,
resulting in a fraction of mismatched samples. Using distance-based cost matrices also
does not scale well with high dimensional data; therefore, designing a ground cost suitable



84 CHAPTER 3. WEIGHTS SELECTION FOR OPTIMAL TRANSPORT

to high dimensional single-cell data is a crucial question – recently addressed in (Huizing
et al., 2021a).

Another concern for all integration techniques is the question of outliers. In our case,
outliers in the reference dataset can be an issue for the weighting procedure. Indeed, it is
easy to show that using a variance-normalized distance matrix to define kernel density is
not robust to very distant outliers. For now, outliers detection is expected to be a prepro-
cessing step using distance thresholds, but the need to manually tune extra parameters is
never a particularly satisfying solution.

Also, solving a quadratic problem in the probability simplex is challenging in very
high dimension, though we did not find this to be an obstacle as our applications do not
exceed medium-size datasets (< 104 cells). With such dataset sizes, standard interior
point methods are efficient enough to necessitate reasonable computation time (from a
second to a minute). Alternative formulations and strategies may exist though, to at least
approximate the result more efficiently to scale to much bigger datasets (up to 106 cells).
Finally, multi-omics integration (VI) with such methods still highly depends on the latent
space construction, which is still an unsolved question, probably highly dependent on the
application field and needing ad hoc constructions.

Dataset integration using OT and GW is a promising method that can yield high-
quality results in a very competitive time in the context of single-cell data analysis.
Nonetheless, we see the integration pipeline not to be trivial: several decisions must be
taken, such as choosing between OT and GW, using uniform weights or reweighting prior
to integration or defining relevant costs. These decisions highly influence the integration
result, and are determinant for the success of downstream applications. In particular, if
making all weights equal is a tempting (and easy) approach, we demonstrate it causes
issues with unbalanced datasets that are usual when dealing with real-life single-cell data.
Performing unweighted OT and GW integration can, in these cases, lead to severe overfit-
ting and can be solved using reweighting techniques for a reasonable extra computational
cost. We believe OT- and GW-based integration have great potential for the single-cell
field, but need extra pre- and post-processing algorithms to support them; we are looking
forward to seeing more approaches to do so. Finding a comprehensive formulation for
integration quality assessment is also an important question that is still quite open, and
will hopefully lead to various improvements in integration techniques.



Chapter 4

Modeling progression of single cell
populations through the cell cycle
as a sequence of switches

Adapted from (Zinovyev et al., 2022).

Progression through the cell cycle represents a complex dynamical process regulated at
multiple levels, such as transcriptome and proteome. The major components of it have
been characterized (Hunt, 1991; Hunt et al., 2011), and a complex molecular machinery
has been revealed (Tyson, 1991). Nevertheless, many aspects of cell cycle functioning
remain to be elucidated (Giotti et al., 2019).

Progression through the cell cycle can be seen as a trajectory in a multidimensional
space of all possible cellular states, similar to other processes such as differentiation or
aging. However, this trajectory is characterized by special properties because it represents
a periodic process. From an oversimplified perspective, at the end of this trajectory, a
cell splits into two daughter cells twice as small, where each daughter cell has a state
identical to the initial state of its parent. This requirement imposes certain constraints on
the geometry and underlying mechanisms of the cell cycle trajectory (CCT), which could
be reproduced with a mathematical model.

The cell cycle process has been a subject of mathematical modeling for many decades
(Sible and Tyson, 2007; Chen et al., 2004a; Ingolia and Murray, 2004). Most existing
models focused on reproducing the regulatory logic at the level of protein expression,
protein-protein interactions, and post-translational modifications. Multiple modeling for-
malisms have been used such as chemical kinetics (Tyson, 1991; Chen et al., 2004b), logical
modeling (Fauré et al., 2006; Deritei et al., 2019), Petri nets (Kotani, 2002), or approaches
based on tropical algebra (Noel et al., 2012; Radulescu et al., 2012). A hybrid approach,
combining discrete, governed by Boolean dynamics, and continuous, governed by chemical
kinetics, variables was suggested to model cell cycle (Singhania et al., 2011; Noël et al.,
2013). The mathematical description of the cell cycle transcriptional dynamics has not
yet been thoroughly addressed.

High-throughput omics measurements gave rise to many molecular studies to char-
acterize each cell cycle phase regarding their associated molecular changes, i.e., sets of
specifically expressed genes (Giotti et al., 2019; Dominguez et al., 2016). The appearance
of single-cell technologies reinforced the interest towards the description of the molecular
organization of the cell cycle for several reasons. First, it explicitly allows the visual-
ization of the cell cycle trajectory without synchronizing individual cells, which can be
problematic, especially in vivo. Then, recent single-cell transcriptomic and proteomic
studies provide molecular description of progression through the cell cycle in a continuous
fashion. Such representation attempts to delineate the cell cycle phase borders and also
characterizes each cell for its precise progression position within each phase (Hsiao et al.,
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2020; Mahdessian et al., 2021a; Liu et al., 2017; Leng et al., 2015).
A thorough understanding of cell cycle functioning is of utmost importance for cancer

research, where deviation from normal cell cycle progression is expected. Several questions
can be raised; among these, what is the regular pattern of the events comprising a cell cycle,
and to what extent does it vary in normal physiology? What deviations from a normal
cell cycle are characteristic for a tumor cell? What processes trigger these changes, and
are they specific to a cancer type?

4.1 Background
Some mathematical models of the cell cycle try to tackle these questions. For example,
agent-based or cellular automaton cell cycle models focus on the optimization of cancer
drug delivery (Altinok et al., 2007), competition of fast and slow cell cycles within a tumor
under treatment (Tzamali et al., 2020), or cell confluence and elongation of the G1 phase
(Bernard et al., 2019). However, most of the existing models remain limited to describing
the behavior of the cell cycle during tumorigenesis at full complexity, because of the current
discrepancy between the nature of the available molecular data and the level of the details
of these models. Thus, the most comprehensive data source currently available is at the
level of transcriptomic changes in single-cells, while the existing modeling efforts focus on
protein players. The data reveals the role of hundreds of genes and proteins in cell cycle
dynamics, while the models include a tiny fraction of this number. Therefore, we believe
that the development of mathematical models matching the scale and the nature of the
abundant available data is still highly needed. In particular, even a simple mechanical
model of cell cycle transcriptome dynamics, capturing its main features, is lacking in the
field. Using dynamical variables representing relatively large lumps of genes (e.g., all genes
involved in DNA replication) might be a useful coarse-grained approach to model cellular
transcriptomes, which is one motivation of this study.

Single-cell studies provide a snapshot of actively proliferating cells along cell cycle tra-
jectories and represent a unique opportunity to formulate the most general principles of
cell cycle functioning. A recent study has introduced the principle of minimizing tran-
scriptomic acceleration (Schwabe et al., 2020), which suggests that the transcriptomic cell
cycle trajectory represents a spiral, or, after neglecting the relatively slow drift unrelated
to cell cycle progression, a shape close to “a flat circle”. This type of trajectory was indeed
phenomenologically observed in the HeLa cell line profiled with scRNASeq technology,
after deconvoluting the transcriptomic dynamics connected to the cell cycle from other
sources of transcriptional heterogeneity. In particular, the absence of cell cycle-related
transcriptional epochs was deduced from this model.

In the current study, we suggest an extended and different point of view on the prop-
erties of transcriptomic cell cycle trajectory, which, in our opinion, in some cases better
matches its observed properties in various cellular systems when sufficiently good quality
data can be collected. We propose a formal model of CCT as a sequence of epochs of
growth during each of which the trajectory is approximately linear in the space of loga-
rithmic coordinates. Therefore, CCT can be modeled as a piecewise linear trajectory in
the space of logarithms of some extensive cell properties, followed by a shift at the vector
with coordinates − log 2 representing the cell division event. This model explicitly assumes
the existence of well-defined transcriptional epochs in CCT.

Movement along a linear trajectory in the space of logarithms of the values of some
cellular properties means that along the trajectory any two such properties xi, xj are
connected through a power law dependence xi = αxβ

j , with α, β some constants. Such
dependencies are known as allometric in many fields of biology (Pretzsch, 2020; Zhou
et al., 2021; Packard, 2017; Holford and Anderson, 2017; White et al., 2019). Some ap-
proaches in mathematical chemistry and theoretical biology, dealing with systems in stable
non-equilibrium, exploit the linear relations between chemical potentials which can be ex-
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pressed as logarithms of species concentrations (Bauer, 1935; Gorban, 2018).
Particular cases of allometric dependencies are when all the quantities grow linearly

with physical time, or when all the quantities follow exponential growth or decay xi =
bi exp(ait). The model of movement along piecewise linear trajectories with an event of
cell division represents the simplest scenario, easy to simulate and analyse theoretically.
Nevertheless, the most important conclusions derived from this analysis will stay valid for
the trajectories that do not deviate too much from linearity.

Using the model of piecewise linear growth with division, we formulate a fundamental
statement about correspondence between the number of linear segments in the cell cycle
trajectory m, which corresponds to a number of the most important states of the cell
cycle-related transcriptional machinery, and its effective embedding dimension n. The
first part of the statement, m ≥ n, can be described as a strict theorem with formal proof,
whereas the second part, m ≤ n, can be formulated as a feasible hypothesis, that can be
validated using available data. The correspondence m = n suggests that the embedding
dimensionality of the transcriptomic cell cycle trajectory is larger than 2, since the number
of segments we can observe can be as high as 4 or 5. This allows us to state that the shape
of the cell cycle trajectory is essentially not flat.

The type of models discussed here was partly introduced by (Shkolnik, 1989). Here,
we significantly extend the previous effort and adapt it to the description of the cell cycle
trajectory in single-cell datasets.

In order to connect the geometric properties of cell cycle trajectory to interpretable
mechanistic parameters, we extended the model of piecewise linear growth in logarithmic
coordinates to a simple kinetic model with rates depending on time as piecewise constant
functions. In this case, some of the trajectory segments become nonlinear but remain
smooth and do not deviate from linearity too far. Therefore, the suggested model is con-
ceptually similar to previously suggested hybrid discrete-continuous models, but concep-
tualizes them, addresses the transcriptional dynamics and can be fit to multiple available
scRNASeq datasets (Singhania et al., 2011; Noël et al., 2013).

The suggested cell cycle modeling framework and the representation of the cell cycle
progression as a system of switches allows us to 1) determine which genes play the most
important role in each transcriptional epoch, in a concrete system under study, 2) compare
the genes related to the same transcriptional epoch between two biological systems or
conditions, 3) predict the ratios between physical time durations of the transcriptional
epochs, 4) predict the effect of shortening of certain transcriptional epochs on the shape
of the cell cycle trajectory and transcriptional dynamics of the related groups of genes,
and 5) predict the doubling time of proliferating cell populations from the length of the
cell cycle trajectory observed in single-cell RNA-Seq data. The suggested framework can
be exploited to study the cell cycle in various systems, from cell lines to tumors.

4.2 Methods and materials
4.2.1 Single-cell data used in this study
We made a screening of available single-cell sequencing of cancer cell lines in order to
identify datasets with a sufficient number of good quality single-cell transcriptomic profiles,
and in which the principal source of transcriptomic heterogeneity would be progression
through the cell cycle. We identified publicly available RNA-Seq data on CHLA9 Ewing
sarcoma cell line, produced with 10x Genomics sequencing technology (Miller et al., 2020a),
which contained more than 4000 cells with a total number of unique molecular identifiers
(UMIs) varying from 10000 to 50000 per cell, after applying the standard quality criteria
and filtering cells containing a significant fraction (>20%) of reads in mitochondrial genes.
For this dataset, we reanalyzed the raw sequencing data using Kallisto mapper (Bray et al.,
2016), resulting in a loom file that could be used for obtaining the gene expression levels
and for quantifying RNA velocity vectors (La Manno et al., 2018).
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In addition, we used a recently published collection of 200 scRNASeq profiles of cancer
cell lines from the Cancer Cell Line Encyclopedia (CCLE) collection (Kinker et al., 2020).
We also analyzed several scRNASeq datasets by downloading them directly from Gene
Expression Omnibus (GEO).

The estimation of cell line doubling times, when available, were obtained from the
Cellosaurus database (Bairoch, 2018)

4.2.2 Definition of cell cycle genes
We systematically tested several existing definitions of cell cycle gene sets. We verified
that our results remain qualitatively invariant even if the choice of cell cycle gene set can
vary. In our experiments, we used the following cell cycle gene set definitions:

• Standard ”Regev’s set”: markers of S- and G2/M cell cycle phases used in scanpy
tutorials (Tirosh et al., 2016)

• Set of cell cycle genes annotated in Reactome pathway database (Jassal et al., 2020)

• Set of top-contributing genes, extracted from the application of independent com-
ponent analysis (ICA) to the dataset under study, from those components whose
top-contributing genes were strongly associated with the cell cycle. In particular,
similar to our previous work (Aynaud et al., 2020), two independent components
were significantly enriched with the markers of S- and G2/M cell cycle phases in all
single-cell cell line datasets that we analyzed.

Cell cycle phase scores were computed as an average expression of marker genes for the
corresponding cell cycle phase in log scale, which roughly corresponds to the geometric
mean of the raw count measures.

4.2.3 Pooling reads from neighboring cells for compensating the techni-
cal drop-out

We found out that the cell cycle trajectories appear less noisy and more tractable by
trajectory inference methods when the standard pooling approach was applied to the raw
count data, using an initial estimate of cell-to-cell proximity. More precisely, we used the
initial standard data normalization and dimensionality reduction in order to compute the
distances between cells and construct the initial kNN graph, which was used to pool row
reads from a cell and all its k-nearest neighbors. In our experiments, we used k = 10 and
n = 30 components to reduce the data dimensionality during normalization. Pooled read
counts were used for final normalization, but the initial total read counts per cell measure
were kept for visualization and further analysis.

4.2.4 Cell cycle trajectory-based single-cell data normalization
The total number of reads in a cell is a strongly variable signal in proliferating cell pop-
ulations, strongly correlated with cell cycle progression: we observed that cells with the
lowest total number of reads are typically just after the mitosis mark, while cells in the
state preceding mitosis are often associated to a high total number of counts. By itself, it
is an extensive value such that it should be divided (approximately) by half in the process
of cell division. In our modeling approach, we needed a description of the cell state in
terms of extensive values of gene expression levels measured. They would also be divided
approximately by two on average after the moment of cell division. Therefore, the widely
used global library size normalization did not suit our purposes, since after global library
size normalization, cell division does not lead to halving the total number of reads.

At the same time we observed that without any library size normalization, the cells
presumably located at similar stages of cell cycle progression could be characterized by
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a wide range of total number of reads, probably caused by technical variability factors.
Therefore, library size normalization was required but not at the global cell population
level. We hypothesized that the total number of reads should increase in the course
of cell cycle progression on average such that the cells characterized by similar value of
pseudotime along the cell cycle trajectory could be normalized to the same local library
size. As usual, this poses a chicken-or-egg problem because for reconstructing the cell
cycle trajectory one needs normalized data, and for normalization of the library size one
needs a reconstructed trajectory. This problem is similar to those approaches which use
normalization locally conditioned on clusters in single-cell datasets (Azizi et al., 2018).

We used a simplified two-stage approach for library size normalization which preserved
both the geometric structure of CCT and the trend of increasing the total number of reads
along CCT.

1. The row count data have been normalized to the global median number of counts and
ln(x+1)-transformed, using standard functions of scanpy. 10,000 most variable genes
have been selected; the dimensionality was reduced to 30 by PCA. In the reduced
space, a kNN graph has been computed using the standard Euclidean distance for
k=10. This graph was used for pooling reads from neighbor cells, as described above.

2. For such initially normalized dataset, we computed closed cell cycle trajectory in the
subspace of cell cycle genes, by fitting a principal closed curve, using the Python
implementation of ElPiGraph (Albergante et al., 2020). The data points were par-
titioned according to the proximity to the nodes of the EPC.

3. In each partition, we analyzed the distribution of the total number of reads across
cells. We corrected cell-to-node assignment by splitting an anomalously wide par-
tition between two neighboring partitions. The anomalously wide partition corre-
sponded to the moment of cell division since it contained both cells at the very end
of the cell cycle progression with the largest number of reads and cells just after
cell division event containing the minimal number of reads. Splitting this distribu-
tion allowed us to distinguish cells before and after the cell division into distinct
partitions.

4. The median total number of counts in each corrected partition was computed. The
median values of the total number of reads in the cells of each partition have been
smoothed by univariate spline or a piecewise-linear function of pseudotime, taking
into account the cyclic boundaries of the trajectory.

5. Each cell’s library size was normalized to the smoothed local median value of the
total number of reads.

6. The newly normalized pseudocount data matrix passed through the same pre-processing
as described in 1), namely a) Pooling reads from neighbor cells using the kNN graph
obtained with trajectory-based normalized data, b) ln(x+1) transformation, select-
ing most variable 10000 genes.

The cell cycle trajectory-based normalization procedure is illustrated in the Jupyter
notebook at https://github.com/auranic/CellCycleTrajectory_SegmentModel, which
can be easily reused for other cell lines.

4.2.5 Computing the cell cycle trajectory and quantifying pseudotime

We used the ElPiGraph Python package to fit Elastic Principal Curves (EPC) or Closed
EPC (principal circles) to single-cell data distributions (Albergante et al., 2020). ElPi-
Graph was applied in the data space defined by the set of 10,000 most variable genes or by

https://github.com/auranic/CellCycleTrajectory_SegmentModel
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the cell cycle-related genes, after dimensionality reduction by PCA (first 30 principal com-
ponents were retained). In order to compute open EPC with q nodes, first a closed curve
was fit with q/2 nodes, then a node with the least number of data points projected onto it
was removed from the principal graph, and this configuration was used as an initialization
to compute the elastic principal graph without branching and having q nodes.

The pseudotime si for a data point xi was computed as a continuous geodesic distance
measured from the root node to the projection of xi onto the principal curve, quantified in
the units of the number of edges. Therefore, the value of the pseudotime was in the range
[0, q − 1], where q is the number of nodes. The root of the principal curve was chosen as
one of its ends, such that the value of the initial total number of reads would increase as
a function of pseudotime.

4.2.6 Curvature analysis of the cell cycle trajectory
In order to compute the Riemannian curvature of the principal curve defined by the
position of its nodes in the multi-dimensional space yi ∈ Rn, i = 1...q, the node coor-
dinates were first represented as n functions of the natural parameter (pseudotime) s,
yk

i = yk
i (si), i = 1...q, k = 1...n. The value si for each node was taken as the num-

ber of edges of the EPC connecting the node i to the root node. Each set of numbers
yk

i (si), i = 1...q was interpolated by a cubic univariate spline yk(s). In each node i of the
curve, the curvature was evaluated as Ri =

∑n
k=1

(
d2yk(s)

ds2 |s=si

)2
.

4.2.7 Estimating the effective dimensionality of a set of vectors
In order to estimate the effective dimensionality of CCT, we used the scikit-dimension
Python package (Bac et al., 2021). We used linear estimators of global intrinsic dimen-
sionality, based on application of PCA and various approaches to select the significant
number of eigenvalues from the scree plot.

In order to compute the effective rank of a rectangular matrix, we looked at the distri-
bution of its singular values, and selected such a number of them that the ratio between
the largest and the smallest number would not exceed 10, such that the reduced matrix
is well-conditioned.

4.3 Example of a cell cycle trajectory extracted from single-
cell data

The current study is motivated by the observation that after appropriate pre-processing
of single-cell RNA-Seq data (see Methods), one can observe the cell cycle trajectory (Fig-
ure 4.1) which can be approximated by a piecewise linear curve, with a gap between the
beginning and the end of the trajectory corresponding to the cell division moment.

Here we use the example of Ewing sarcoma cell line CHLA9 sequenced at single-cell
level using the Chromium 10x technology (Miller et al., 2020a). The distinguishing feature
of this dataset was that it contained a significant number of proliferating cells with single-
cell transcriptomes of good quality (more than 4000 cells with the total number of Unique
Molecular Identifiers (UMIs) between 10000 and 50000). Also, the proliferation signal in
this dataset seems to explain the largest fraction of transcriptomic heterogeneity, since in
the plane of the first two principal components one can clearly observe the cyclic trajectory.
In other cell line single-cell datasets, the proliferative signal can be masked by other sources
of transcriptomic heterogeneity, requiring special procedures of data treatment to reveal
it (Aynaud et al., 2020) (Liang et al., 2020; Schwabe et al., 2020).

The scRNA-Seq data have been normalized in order to preserve the pattern of dynamics
of the total number of counts (UMIs) along the CCT, see Methods section. The normalized
gene expression levels are represented at the logarithmic scale, following the standard
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practice. The multi-dimensional distribution of single-cell transcriptomic profiles projected
into the space of the first 30 principal components has been approximated by a principal
curve (see Methods). The curvature of the principal curve has been estimated using the
standard formulas of differential geometry, which revealed the existence of curvature peaks,
and reflecting the rapid turning points of the trajectory. We hypothesized that these
turning points correspond to the large-scale changes in the transcriptional programs of
the cell cycle process. The pattern of momentary velocities of the transcriptomic changes,
estimated with RNA velocity, was compatible with this hypothesis (Figure 4.1,A).

The pseudo-temporal dynamics of the known cell cycle-related genes confirmed that the
trajectory curvature peaks delineate biologically meaningful transcriptional epochs. The
epoch 0-A-B can be understood as an early G1 phase of the cell cycle, B-C as significantly
overlapping with late G1- and S-phases, and C-D as overlapping with S- and G2- phases.
The epoch D-E can presumably reflect the relatively short M phase (mitosis). Analysis of
pseudotemporal gene expression dynamics inferred for this cell cycle trajectory shows that
known cell cycle genes such as different cyclin types or E2F transcription factors have
behaviour compatible with our interpretation (Figure 4.1,C). We denote the identified
transcriptional epochs as T1, T1s, T2s and Tm.

The switches between transcriptional epochs should not be confused with the action of
cell cycle checkpoints that delineate cell cycle phases. The connection between the known
molecular checkpoint mechanisms involving mainly protein-protein interactions and post-
translational protein modifications and the transcriptional epochs might not be trivial or
direct: partly, due to the delay between the gene and protein expression, and partly due to
different parameters and constraints on the transcriptional and protein-protein interaction
dynamics.

We can clearly observe the existence of the restriction point at the level of single-cell
transcriptome. In our notations, it belongs to the A-B segment of the cell cycle trajectory
shown in Figure 4.1,A,right. This transcriptional epoch separates post-mitotic (denoted
as T1) and pre-replication parts of G1 phase, which corresponds to the classical definition
of the R-point (e.g., from (Zetterberg et al., 1995)). Interestingly, in Figure 4.1,A,right,
one can observe that RNA velocity vectors reflect cells exiting from cell cycle and re-
entering the cell cycle in the epoch between A and B turning points. Just after this
transcriptional epoch, the expression of E2F transcription factors and Cyclin E start to
increase as expected (Figure 4.1,C).

We can also observe how, during each particular epoch, the components of a specific
checkpoint mechanism are transcriptionally produced ‘just in time’. For example, compo-
nents of the G1 DNA damage checkpoint (e.g., CDC25A, CDKN1A) are produced during
the T1s epoch of the cell cycle trajectory where the S phase starts, the components of
G2 DNA damage checkpoints (e.g., CDC25B, CDC25C, CHEK2) are produced in the
late part of the C-D epoch (T2s), and spindle checkpoint components (e.g., CDC20) are
transcriptionally abundant during the mitosis-related epoch D-E (Tm) and after the cell
division in T1 (Figure 4.1,C). In this sense, the transcriptional dynamics prepare the cor-
rect ground for a proper succession of post-transcriptional events but the exact borders of
the transcriptional epochs do not have to match the precise checkpoint timing.

Remarkably, within each of the identified transcriptional cell cycle epochs, the global
dynamics of the transcriptome remain close to linear in the logarithmic scale. This allows
us to suggest a simple model which can, for example, represent the collective dynamics of
the genes related to the S-phase and G2/M phases (see below).

4.4 Model of cell cycle as a trajectory of allometric growth
with switches and divisions

Based on the observations of the properties of the cell cycle trajectory in several scRNASeq
datasets, we hypothesized that it can be recapitulated by a formal model of linear growth
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Figure 4.1: Cell cycle trajectory (CCT) of CHLA9 Ewing sarcoma cell line in
the single-cell transcriptomic space. (a) Each cell is represented by an arrow reflecting
the momentary direction and the speed of transcriptomic changes, estimated with RNA
velocity. Two projections are shown, in the first two principal components and in the plane
of S-phase and G2-M scores. The color of the arrows signifies either the total amount of
RNA counts in the single-cell profile (blue to yellow scale) or the cells in non-proliferative
state (shown in grey). Red line shows an approximation of the cell cycle trajectory with
a principal curve computed with ElPiGraph, directly in the 30-dimensional space of the
first principal components of the dataset. Several particular positions along the trajectory
(A,B,C,D) mark either the peaks of the Riemannian curvature of the principal curve
(also shown in B) panel) or the beginning (0) and the end (E) of the trajectory. (b)
Pseudotemporal transcriptomic dynamics of several cell cycle-related genes along CCT,
shown relatively to the maximum value units. The pseudotime range is from 0 to 49,
corresponding to the number of nodes in the approximation of the principal curve (50
nodes). In black, an estimation of the Riemannian curvature of the principal curve is
shown, with peaks indicated by letters (A,B,C,D). (c) Pseudotemporal dynamics of genes
whose expression is relatively high in one of the transcriptional epochs (trajectory segment)
compared to other epochs. For each epoch the genes are ranked accordingly to the fold
change of the mean expression of the gene in the epoch and outside the epoch. Only the
genes having relatively large total variance across all cells are shown, and only top 20
genes maximum are shown per epoch for readability. From (Zinovyev et al., 2022).
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in logarithmic coordinates with switches and a cell division event. The suggested model is
hybrid in nature, similar to some previously published models (Singhania et al., 2011; Noël
et al., 2013). Namely, we distinguish the extrinsic observable cell state, characterized by
continuous variables, and the intrinsic hidden cell state, characterized by discrete variables.
The intrinsic state of a cell determines the parameters of the extrinsic dynamic process as
in (Singhania et al., 2011).

Let the extrinsic state of a proliferating cell be determined by n substances quantified
by their amounts, not their concentrations. Instead of their natural units (such as RNA
counts), let us use the logarithms of these amounts. The cell is represented as an n-
dimensional vector, and all possible combinations of these vector components define the
cell configuration space. For our model, it is important that the considered n quantities are
extensive measures, not intensive ones. Extensiveness here means that the total amount
of a substance is a sum of the amounts found in different parts of a cell. A division (for
two almost equal) daughter cells is formalized as a shift by the vector with all components
equal − log 2 in this space. A relevant example of extensive quantity is the total amount of
RNA molecules present in a cell, or the amount of any specific subset of RNA molecules,
i.e., representing mRNAs of the genes involved in a particular process (such as mitosis or
S-phase).

We assume that there exists a finite discrete set of intrinsic cell states. In each of these
states, the cell follows a linear trajectory in the extrinsic and continuous cell state space.
This trajectory extends until the cell meets a condition, where a switch into another
intrinsic state of the cell happens, which changes the direction of the trajectory. For
simplicity, we assume that the conditions of a switch can be described by a linear function.
The cell movement continues until a particular condition is met in which the cell division
event is triggered leading to the aforementioned translation of the vector representing the
extrinsic cell state.

Let us introduce some mathematical notations and consider a deterministic automaton
A whose complete state is represented by a pair (x, s), where x ∈ Rn is a vector in n-
dimensional continuous space (extrinsic state), and s ∈ S is an integer number from a finite
set S = {S1, .., Sm} (intrinsic state). In the rest of the study, we will call x a position of
A and s an intrinsic state of A. We will denote the automaton A in position x and in the
intrinsic state s as A(x|s).

Each intrinsic state Sk is parameterized by a vector ak ∈ Rn, k = 1..m and by a linear
manifold Dk of dimensionality n−1 embedded in Rn (hyperplane), which we will call “the
cell division hyperplane”. Dk can be undefined, in this case, we denote Dk = null.

Let us also introduce a set of p functions G = {g1, ..., gp}, gi : S → S, which we will call
switches. Each switch gi is a map which converts an intrinsic state sj ∈ S into another
intrinsic state sr ∈ S. Each switch gi is parametrized by a hyperplane Li existing in Rn

and inducing the switch function gi each time the trajectory of the automaton intersects
Li (see Figure 4.2,A).

Finally, we introduce the cell division event ϕ which is a map between two states of
A, such that ϕ((x, s)) → (x + d, sd), where d ∈ Rn− is a vector with negative components,
and sd ∈ S is one of the possible intrinsic states of A.

We will characterize any hyperplane here by a linear functional f(x|b, c) = b+ < c, x >
, b ∈ R, c ∈ Rn, where <, > denotes the standard scalar product between two vectors.
Using such a functional, for any pair of vectors xi, xj ∈ Rn we can determine if the linear
segment connecting xi and xj intersects the hyperplane or not. If the segment intersects
the hyperplane then f(xi)f(xj) < 0, and if it does not intersect then f(xi)f(xj) > 0.
f(xi)f(xj) = 0 is satisfied only in a non-general position when either xi or xj is located
exactly on the hyperplane.

The update rules for the automaton A are described as follows. The automaton is
in some initial position x0 and the intrinsic state s0. It starts to move along the linear
trajectory described by the equation x = x0 + a0t, where a0 is the vector of movement
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associated with the state s0. This movement continues unless one of the two events
happens. In the first case, A reaches the corresponding cell division plane D0 (in case D0
is not null). Then, the cell division event is triggered, A(x|s) → A(x+d|sd). In the second
case, x reaches a switch hyperplane Lj and then a switch of the intrinsic state of A happens
without changing its position, A(x|s0) → A(x|gj(s0)). The movement continues along a
new trajectory, corresponding to the new cell state, following the same rules: either the
trajectory hits the cell division hyperplane or any of the switch planes.

To summarize, the automaton A is characterized by its position and the intrinsic state,
see Figure 4.2,A. The asymptotic (in the infinite time limit) temporal dynamics of A is
parameterized by a set of cell division planes D = Di, i = 1...k, a set of switch functions
G = {gi}, i = 1...p, the corresponding switch hyperplanes L = {Li}, i = 1...p, and the
parameters of the cell division event (namely, the translation vector d and the state after
cell division sd).

It is convenient to encode the state s as a binary sequence of length r representing
the on-off states of r triggers. In this case, a switch can be thought of as changing only
one particular trigger from on to off or vice versa. In many situations, this makes the
description of switch functions g : S → S quite natural as explained below. Also, the state
of the trigger might not be strictly binary but characterized by several discrete positions,
for example {0, 1, 2}, just as it is the case in modeling multi-level discrete dynamics, where
each discrete variable can take a value from a pre-defined finite set of levels.

The exact asymptotic trajectory of the automaton A can, in principle, depend on the
initial position x0 and the initial intrinsic state s0 of A.

4.5 Simple example of dynamics with switches and cell di-
vision events

In the above-described switch-like dynamics, one can find examples of relatively complex
behaviors even for simple model settings (Figure 4.2,B-E). As an illustration, we modeled
a simple dividing automaton characterized by a position vector x with only two coordi-
nates x1, x2. The automaton intrinsic state s encoded by only one binary trigger, so the
automaton can be in two states s = 0 and s = 1, characterized by two vectors of move-
ment a0 and a1, respectively. In order to be able to modify the trigger in both directions,
we have to introduce two switch hyperplanes L(+) and L(−) with corresponding switch
functions g(+) = 1 (switch trigger on) and g(−) = 0 (switch trigger off). Note that in this
case the switch functions are constant, i.e., they map any state (which can be either 0 or
1) to a particular state. Let us also assume that the division event changes the automaton
position but does not change its intrinsic state.

In this simple toy example, by slightly varying parameters of the switching hyperplanes
and the movement vectors, one can observe several interesting scenarios. Firstly, we
observe that the automaton can approach and stay on a limit cycle trajectory, or it can
diverge, meaning that one of the coordinates of the vector x goes to infinity or zero
(Figure 4.2,B-C). Convergence or divergence to a limit cycle depends on the initial intrinsic
state and the initial position of the automaton on the birth hyperplane.

In a more complex scenario, the switching dynamics trajectory can be characterized
by two limit cycles that can be achieved from different initial intrinsic states and positions
(Figure 4.2,D).

By varying the positions of the switching hyperplanes in this toy example, one can
observe the effect of non-trivial sensitivity to the initial conditions (Figure 4.2,E). In this
case, the birth hyperplane can be split into a sequence of alternating intervals of equal
length such that starting from one interval, the dynamics finally converges to the limit
cycle, and starting from another interval, the dynamics diverges to infinity.
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Figure 4.2: General schema of switch-like dynamics and application to a toy
model with a single trigger. (a) Schematic two-dimensional example of a limiting
trajectory with division. The division hyperplane D is shown in purple, solid line. The
birth hyperplane B is obtained from D by translation at vector d, shown in cyan (the
most natural is to assume all the components of d to be − log 2). Two switch hyperplanes
L1 and L2 are shown by dotted grey lines. The limiting cycling trajectory is represented
by blue arrows. (b) and (c) Example of single limiting cycle in the switching dynamics.
Depending on the initial state of the automaton and the initial position, the trajectory
enters into the limit cycle or degenerates (goes to infinity). For the same parameters, four
initial conditions are shown. The trajectory is plotted with semi-transparent blue color
such that the intense blue line designates the trajectory cycling multiple times on top of
itself. (d) Example of existence of two limit cycles. Depending on the initial state and
position, the automaton ends up in one of the two possible limit cycles. (e) Example of
non-trivial dependence of the switching dynamics on the initial position of the automaton.
The trajectories drawn by different colors from three closely located initial positions are
shown, with two leading to degenerated dynamics and one located in between the first
two, leading to the limit cycle. In B)-E) panels, the initial position of the automaton is
always shown at the birth hyperplane B (shown by dashed purple line), therefore, it is
characterized by a single number. From (Zinovyev et al., 2022).
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4.6 Two-dimensional model of cell cycle progression, fitted
to the single-cell transcriptomic data

Let us denote the aggregate signal related to the activation of genes associated with the
S-phase of the cell cycle program as S, and the signal related to the activity of genes in
G2 and M phases as M . Therefore, we will characterize the position of the automaton by
a vector (xS , xM ), just as it is presented in Figure 4.1,A, right panel. Let us denote the
position of the turning points in the trajectory as (x(i)

S , x
(i)
M ), where i ∈ {0, A, B, C, D, E}.

We will encode the state of the system by the levels of two triggers, one associated
with the S signal and another associated with the M signal. The three levels are denoted
as a set {2 = synthesis, 1 = decay, 0 = degradation}. Intuitively, these levels correspond
to the state of active transcription of the corresponding set of transcripts (’synthesis’),
absence of active transcription in which the transcripts are passively degraded according
to some base rate (’decay’), and the process of active degradation when the transcripts are
degraded more rapidly than the base rate (’degradation’). The state of the system is thus
encoded by a pair of 3-level variables i, j ∈ {0, 1, 2}. The 2D vectors of linear movement aij

are encoded by six rates kv
j , i ∈ {0, 1, 2}, v ∈ {s, m}, such that aij = (ks

i , km
j ). Following

the intuition behind the introduced trigger levels, we assume constraints kv
2 > 0, kv

1 <
0, kv

0 < 0, kv
0 < kv

1 < kv
2 .

Let us introduce 3 switches. The first switch g1 turns on the synthesis of both variables,
i.e. g1 : (•, •) → (2, 2), where • designates any level of the trigger. The second switch
turns off the synthesis of genes in S-phase: g2 : (2, •) → (1, •). The third switch turns off
all the transcription, g2 : (•, •) → (1, 1). We assume that the division is possible only in
the state (1, 1) with transcription switched off, and that after the division event, the cell
enters into the state of active degradation of the cell cycle genes (0, 0).

The three introduced switches will be characterized by the corresponding switching
hyperplanes. The first switch is triggered when the sum of the collective aggregated levels
of expression of the genes involved in S and G2/M phases reaches some minimum cmin,
therefore, the linear functional associated with the first switch hyperplane is f1(xs, xm) =
xm + xs − cmin. The second switch is triggered whenever the collective aggregated level of
expression of S phase-associated genes reaches some maximum value Smax, therefore, the
linear functional associated with the second switch hyperplane is f2(xS , xM ) = xS −Smax.
Finally, the third switch is triggered when the collective aggregated level of expression of
G2/M phase-associated genes reaches some maximum value Mmax, therefore, the linear
functional associated with the third switch hyperplane is f3(xS , xM ) = xM − Mmax.

In the end, the cell division event is triggered when the collective aggregated level
of expression of G2/M phase-associated genes crosses some threshold Me, therefore, the
linear functional associated with the division event is fd(xS , xM ) = Me − xM .

Let us define the number of parameters in this simple switching model. Three intro-
duced switches are characterized by 4 parameters cmin, Smax, Mmax, Me. There exist 6
rates kv

i characterizing the movement vectors in the 9 = 32 possible states, corresponding
to all possible combinations of trigger levels. However, qualitatively, the dynamics in each
automaton state is determined only by the direction of the corresponding vector and not
its amplitude: therefore, one parameter per state visited is needed during the progres-
sion through the cell cycle. Under certain constraints on the rates formulated above, and
also on the switch parameters (namely, cmin < Smax, Mmax, Me < Mmax), the suggested
model is constructed such that along the cell cycle trajectory only 4 states will be visited
in a predefined order: (0, 0) → (2, 2) → (1, 2) → (1, 1). Therefore, the total number of
parameters equals 8.

Knowing the position of four characteristic points along the cell cycle trajectory,
namely (x(B)

S , x
(B)
M ), (x(C)

S , x
(C)
M ), (x(D)

S , x
(D)
M ), (x(E)

S , x
(E)
M ), it is possible to completely pa-

rameterize the automaton. The starting and the ending point of the cell cycle trajectory
must be connected by the relation (x(0)

S , x
(0)
M ) = (x(E)

S , x
(E)
M )+d, where d is the vector with
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components (− log10 2, − log10 2).
Therefore, we put Smax = x

(C)
S , Mmax = x

(D)
M , Me = x

(E)
M . Instead of using directly the

B point, we will use the position of the non-proliferating cell with the maximum sum of
the coordinates in the S, M plane, and we designate it as xB′

S , xB′
M (other choices are also

possible). Then cmin = x
(B′)
S + x

(B′)
M . Then we define rates:

kv
2 = x

(C)
v − x

(B′)
v

||xC − xB′ ||
, kS

1 = x
(C)
S − x

(D)
S

||xC − xD||
, kM

1 = x
(E)
M − x

(D)
M

||x(E) − x(D)||
, kv

0 = x
(B′)
v − x

(0)
v

||x(0) − xB′ ||
The resulting steady state cell cycle trajectory is shown in Figure 4.3.

Figure 4.3: Modeling transcriptomic cell cycle trajectory by an allometric
growth with switches. (a) Piecewise linear cell cycle trajectory fit to the single-cell
RNASeq data (cell cycle trajectory, shown in Figure 4.1,A,right). The model contains
three switching planes L1, L2, L3, and is characterized by 4 states. The states are encoded
with two triggers, each possessing three possible levels 0,1,2, the biological meaning of
which is specified in B). (b) The growth vectors associated with each state are encoded
by rates kS

i , kM
j , such that the components of the growth vectors equal (kS

i , kS
j ), where i

and j are the levels of the corresponding triggers. From (Zinovyev et al., 2022).

We denote the linear segments of the trajectory shown in Figure 4.3 as T1, Ts, T2, Tm,
assuming that they have significant overlap with G1, S, G2 and M phases correspondingly.

The suggested model describes 2D dynamics of the signals S, M which are empirically
shown to explain most of the variance of all cell cycle genes in scRNASeq data (see below).
However, higher-dimensional generalization of the suggested model is always possible.
Also, in the model, we simplified the observed dynamics in Figure 4.1,A, left which seems
to contain 5 segments, with an additional curvature peak in point A. The segment A-
B seems to contain non-proliferating cells, and might correspond to the transcriptional
epoch most similar to the quiescent cell state, when the active degradation of the mitotic
transcripts is completely finalized. The existence of this epoch is less pronounced in the
S, M projection (Figure 4.1,A,right), therefore we merged segments 0-A and A-B’ as the
first order approximation.

4.7 Connection between the effective embedding dimension-
ality of cell cycle trajectory and the number of intrinsic
states

The introduced cell cycle modeling framework is a simple and empirical model, lacking
mechanistic details. Its main advantage is the possibility of analytical treatment of the
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most general geometrical cell cycle trajectory properties. In this section, we use this
framework to prove a theorem connecting the number of the intrinsic states of the cell
cycle trajectory and its intrinsic dimensionality.

This geometry is embedded into a space of omics measurements, whose dimensionality
might be very high (e.g., expression of thousands of genes). However, we can assume that
the intrinsic dimensionality (ID) of CCT is much smaller and that the extrinsic state of the
cell progressing through the cell cycle can be characterized by n extensive variables, where
n is relatively small. We will refer to n as CCT embedding dimensionality. Empirically, it
can be estimated by studying the snapshot of dividing single-cells profiled with a particular
technology, and computing its global intrinsic dimensionality (ID), provided that other non
cell cycle-related sources of heterogeneity could be dismissed in measurements. Estimating
ID can be done using one of the many existing methods for ID estimation (Bac and
Zinovyev, 2020; Albergante et al., 2019; Bac et al., 2021).

Let us establish the expected relation between n and the number of intrinsic states
m of the automaton approximating CCT. We intend to claim that theoretically n should
match m under some natural assumptions.

We first state that m cannot be smaller than n. In the theory of allometric growth with
switches this statement has a character of strict theorem (see below), m ≥ n. Secondly,
we state that n is expected to be at least equal to m. Both statements are based on
argumentation using “general position” statements. However, the former one is strictly
necessary, while the latter one represents a feasible hypothesis.

Theorem on the number of intrinsic cell cycle states. The number of segments
m in the cell cycle trajectory modeled by the automaton with switches and linear growth
in logarithmic coordinates is not less than the cell cycle trajectory intrinsic dimensionality
n, or m ≥ n.

Proof. Let us consider the CCT dynamics in its n coordinates each of which represents
an extensive variable. The variable extensiveness means, in particular, that its value,
after the cell division moment, is divided by two. In logarithmic scale the cell division
corresponds to the shift by vector d ∈ Rn with n coordinates each of which equals − log 2.
Each intrinsic state is associated with a growth vector ai ∈ Rn, i = 1..m. All non-negative
linear combinations of ai form a convex cone Q = {

∑m
i=1 λiai}, λi ≥ 0. If m < n then

the set of vectors {d, {ai, i = 1..m}} is almost always linear independent and −d /∈ Q.
Hence, −d is linearly separable from Q, according to the standard separability theorems.
Linear separability of a point from a convex cone can be expressed as that for any non-zero
x ∈ Q we can find a linear function l() such that l(d) = 0 and l(x) > 0. This makes the
periodic cell cycle model impossible, because the function l(x) increases along any growth
direction, since for any i and λ > 0 we have l(x+λai) = l(x)+λl(ai) > l(x), and after cell
division l() does not change since l(x + d) = l(x) + l(d) = l(x). Therefore, the necessary
condition of existence of stable cell cycle trajectory is m ≥ n, when the set of vectors
{d, {ai, i = 1..m}} is linearly dependent, and also such choice of ai that −d ∈ Q. Only in
this case one can satisfy the cyclic condition ∑m

i λiai +d = 0 in general position of vectors
{d, {ai, i = 1..m}}.

In simple words, this means that if m < n then in a general position, each cell division
(shift by d) moves a cell state out of the subspace defined by the growth vectors. The
only way to make the trajectory stay in this subspace is to make the cell division vector
d belong to this subspace that can be guaranteed only if m ≥ n (see Figure 4.4). The
condition m ≥ n is necessary but not sufficient for a model to converge to a limit cycle.
For example, in Figure 4.7, m = n = 2 (the theorem condition is satisfied) but the limit
cycle in the model can be achieved only from some initial conditions and for some choice
of vectors a0, a1.

Note that the proven Theorem is more general than the model of allometric growth
with switches itself since it does not assume any particular shape of the switching surfaces
Lk: they can be linear or nonlinear. Another generality consists in that the vector d can
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Figure 4.4: Condition of existence of stable cell cycle trajectory in the model
of allometric growth with switches. For illustration, only two growth vectors a1, a2
are considered, and 2D or 3D embedding space. Stable piecewise linear trajectory is
possible only if the negative of the cell division vector −d belongs to the convex cone
Q =

∑m
i λiai, λi ≥ 0. Only in this case, the cyclic equality ∑m

i λiai + d = 0 is possible. In
general position, the condition can be met only when m ≥ n, where n is the dimensionality
of the trajectory space (see text for the formal proof).

have any non-zero coordinates, not necessarily equal to − log 2.
Examples in Figures 4.2,4.3 shows the case n = 2, m > n. The cell cycle trajectory

modeled in Figure 4.3 contains m = 4 segments in 2D, which makes the vectors ai ∈
R2, i = 1...4 linearly dependent, and, of course, d ∈ R2. The cell cycle model based on
allometric growth is not contradictory in this case.

Now let us formulate our second statement. We can recall that vectors ai are confined
to the n-dimensional intrinsic subspace of CCT by projection from the multi-dimensional
ambient space of all elementary measurements. The choice of n depends on our estimate
of the CCT intrinsic dimensionality. However, movement along vectors ai can be also seen
in the complete space with thousands of coordinates. In this space, for sufficiently small
m, any m vectors will almost always be linearly independent. Only projection into smaller
than m-dimensional space will guarantee that these vectors are linearly dependent. This
makes us hypothesize: if m segments are observed in CCT piecewise linear approximation
in any linear projection then the most natural choice for n is at least m, i.e. n ≥ m. Com-
bining the two statements (m ≥ n and n ≥ m) allows us to state that the correspondence
m = n is the most natural expectation for a cell cycle trajectory.

We explicitly verified this correspondence for the trajectory shown in Figure 4.1. The
curvature analysis suggests the existence of 5 segments for the cell cycle trajectory re-
constructed in the subspace of 30 first principal components of the complete dataset.
However, some of these components might correspond to the variance not related to the
progression through the cell cycle. In order to diminish the possible role of this variance,
we considered a reduced version of the dataset confined to cell cycle-related genes only.
We estimated the global intrinsic dimensionality, using six different linear ID estimators
from scikit-dimension Python package (Bac et al., 2021), and it varied from 2 to 7, with
average value 4.0. The scree plot shows existence of two dominant eigenvalues explaining
83% of total variance, indicating that the trajectory is relatively flat and located close to
a 2D linear manifold. However, the residual variance demonstrated visible patterns re-
lated to transcriptional epochs in at least the first four principal components (Figure 4.5).
The distribution of projections on the first four principal components well separated some
transcriptional epochs (Figure 4.5,diagonal). Also, projections in higher dimensions high-
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lighted the existence of sharp turning points between the segments which were less clear
in the 2D projection on the first two principal components.

In addition, we split the data points into 5 classes according to projection on 5 segments
of the principal curve (0-A, A-B, B-C, C-D, D-E), each of which is approximately linear.
For each of this class, we computed the unity vector corresponding to the direction of the
first principal component in the space of cell cycle genes with 198 dimensions. Afterwards,
we estimated the effective rank of the matrix composed of 5 vectors representing the
directions of the transcriptional epochs in the multi-dimensional space (see Methods), and
it appeared to be 4, which indicates to that at least 4 out of 5 vectors determining the
trajectory segments can be considered linearly independent.

As a result, we concluded that the embedding dimensionality for the transcriptomic
cell cycle trajectory can be estimated as close to four. Therefore, restricting the tra-
jectory to the plane of aggregate collective expressions of genes associated with S phase
and G2/M phase (which roughly corresponds to the first two principal components) is a
useful but incomplete approximation of CCT dynamics. Our reasoning suggests search-
ing for additional biologically meaningful and statistically independent scores describing
the progression through the cell cycle. The concrete gene expression dynamics shown in
Figure 4.1,B provides a hint in this direction, but a careful and complete investigation
of this question should be a subject of a separate study. As an additional argument, we
can mention that some mathematical cell cycle models based on a fit to real data are
four-dimensional (Singhania et al., 2011).

4.8 Extending the modeling formalism to piecewise smooth
trajectories: simple kinetic model of cell cycle at tran-
scriptomic level

The piecewise-linear model of automaton with switches described in the previous sections is
phenomenological and lacks any notion of physical time and connection to the underlying
kinetics of the lumped expression of genes involved in S phase and G2/M phases. A
simple way to make it more concrete but still analytically tractable consists in introducing
explicit processes of synthesis and degradation of the corresponding quantities, with kinetic
rates changing in time. The simplest form of such dependence is piecewise-constant,
with changes in the value of kinetic rates corresponding to the observed switches between
transcriptional epochs of cell cycle progression.

Assuming the same epochs of cell cycle progression as above, and the same notations
for variables (S, M , lumped expression of genes involved in S and G2/M phases corre-
spondingly), their dynamics can be expressed as:{

dS
dt = kS

t (t) − kS
d (t)S

dM
dt = kM

t (t) − kM
d (t)M

. (4.1)

These equations must be accompanied by circular boundary conditions{
S(T ) = Sf S(0)
M(T ) = Mf M(0)

, (4.2)

where Sf , Mf > 1 are some numbers describing the drop of the lumped cell cycle variables
after the moment of cell division. The most natural choice for them is Sf , Mf = 2, as
before: however, here we prefer not to fix these parameters and rather fit them from the
actually observed trajectory.

There exist several reasons for which Sf and Mf might appear in the range 1 ≤
Sf , Mf ≤ 2 and not be equal. The most important of them is the technical biases intro-
duced by sampling a limited amount of RNA, in the process of single-cell transcriptome
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Figure 4.5: Visualizing the transcriptomic cell cycle trajectory of CHLA9 cell
line in projections on the first 8 principal components, computed in the sub-
space of known cell cycle genes. The data points are partitioned according to the
segmentation of the CCT into 5 transcriptomic epochs, also shown in Figure 4.1, 0-A
(blue), A-B (orange), B-C (green), C-D (red), D-E (purple). From (Zinovyev et al.,
2022).
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sequencing. It can lead to the situation when after cell division, the amount of RNA de-
creases non-uniformly between molecular processes. In particular, in all our experiments,
we do observe the total amount of RNA reads does not decrease exactly by 2.0 and is
rather close to 1.7-1.8. The decrease of the individual gene expression after cell division
in terms of the number of reads, forms a bell-shaped distribution around this value with
standard deviation close to 0.2.

The equations (4.1) with piecewise-constant in time kinetic rates and the boundary
conditions (4.2) can be solved analytically for arbitrary number of levels in the piecewise-
constant functions kt(t), kd(t). The resulting dynamics in the plane log S(t), log M(t) rep-
resents a cell cycle trajectory parameterized by physical time, which consists of piecewise-
smooth segments of three types. If a segment is characterized by kS

t (t) = kM
t (t) = 0 then

the corresponding segment is linear in the logarithmic coordinates (since the underlying
dynamics is exponentially decaying). If a segment is characterized by kS

d (t) = kM
d (t) = 0

then the corresponding segment is also linear in both logarithmic and initial coordinates.
For a segment where at least one degradation k∗

d and one production kinetic rate k∗
t are

positive, the dynamics follows a nonlinear curve in the logarithmic space, which remains
monotonous (each of the coordinates does not change the derivative sign). The nonlinear-
ity of the segment becomes important when one of the variables is in a stage exponentially
increasing or decreasing, while the other is in a linear or close to saturation stage. Other-
wise, the segment remains close to a line in logarithmic coordinates.

In order to choose the number of constant levels of the kinetic rates, we studied the
averaged RNA velocity values along the cell cycle as a function of pseudotime (see Fig-
ure 4.6,A,B). For the S variable, we decided to keep only one non-zero level of kS

t (t)
during the transcriptional epoch Ts, and two levels of kS

d (t), one for the exit from mitosis
epoch and one for the rest of the dynamics. The choice was similar for M variable, but
we took into account that a boost of expression of the lumped G2/M genes is visible in
the beginning of the transcriptional epoch T2s, just after switching off the S phase genes.
During mitosis we assumed that all production rates are zero, corresponding to the lack of
transcription in the M phase. The resulting choice of levels for the kinetic rates is shown
in Figure 4.6,C.

The advantage of the proposed simple model of cell cycle trajectory is that it is fully
analytically tractable and its parameters can be uniquely fit to the cell cycle trajectory
observed in single-cell data, given some biologically meaningful constraints. Thus, assum-
ing that the duration of mitosis is by order of magnitude faster than the T1s epoch, for
CHLA9 cell line one estimates the ratio between transcriptional epochs T2s and T1s close
to 1.0 and the value of transcriptional boost of G2/M genes in T2s epoch close to 2.5-fold
(Figure 4.6,C). The determined values of all other parameters can be found in the Jupyter
notebook at https://github.com/auranic/CellCycleTrajectory_SegmentModel.

4.9 Fitting parameters of the simple kinetic cell cycle model

Using the choice of levels for piecewise constant kinetic rates shown in Figure 4.6,C, we
could derive the dependence of the initial state of the cell cycle from the kinetic rates and
the durations of four transcriptional epochs T1, T1s, T2s, Tm:


S(0) = kS

t

kS,2
d

e
k

S,2
d

T1s −1

Sf e
k

S,2
d

(T1s+T2s+Tm)−e
−kS

d
T1

M(0) = kM
t

kM,2
d

p·ek
M,2
d

(T1s+T2s)−(p−1)ek
M,2
d

T1s −1

Mf e
k

M,2
d

(T1s+T2s+Tm)−e
−kM

d
T1

.

(4.3)

Starting from the initial point of the trajectory S(0), F (0) it is possible to analytically
write down the coordinates of all other borders of the transcriptional epochs:

https://github.com/auranic/CellCycleTrajectory_SegmentModel
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Figure 4.6: Simple kinetic model of cell cycle transcriptome dynamics. (a)
Mean RNA velocity values for S-phase and G2/M genes. (b) Pseudotemporal dynamics
of S-phase and G2/M scores (shown with more intense color) and mean RNA velocity
values (shown with semi-transparent color). (c) Description of the simple kinetic model
of cell cycle transcriptome. Model equations are shown on the left and the changes in the
values of kinetic rates (degradation, in red, and synthesis, in green). (d) Result of fitting
the model dynamics to cell cycle transcriptome dynamics observed in CHLA9 cell line.
(e), (f) Inferred physical time and pseudotemporal dynamics of cell cycle transcriptome in
CHLA9 cell line. From (Zinovyev et al., 2022).
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S(T1) = S(0)e−kS
d T1

M(T1) = M(0)e−kM
d T1

S(T1 + T1s) = kS
t

kS,2
d

(
1 − (1 − kS,2

d

kS
t

S(T1))e−kS,2
d

T1s

)
M(T1 + T1s) = kM

t

kM,2
d

(
1 − (1 − kM,2

d

kM
t

∗ M(T1))e−kM,s
d

T1s

)
S(T1 + T1s + T2s) = S(T1 + T1s)e−kS,2

d
T2s

M(T1 + T1s + T2s) = p·kM
t

kM,2
d

(
1 − (1 − kM,2

d

p·kM
t

∗ M(T1 + T1s))e−kM,2
d

T2s

)
S(T ) = S(T1 + T1s + T2s)e−kS,2

d
Tm

M(T ) = M(T1 + T1s + T2s)e−kM,2
d

Tm ,

(4.4)

where T = T1 + T1s + T2s + Tm is the full duration of the cell cycle. One can estimate
the position of these points from the analysis of observed cell cycle trajectory curvature
((s0, m0), (s1, m1), (smax, ms), (sm, mmax), (st, mt), shown by red points in Figure 4.6,D) )
by requiring that the model trajectory should pass as close as possible to them. This defines
an optimization problem which can be easily solved numerically by iterations, using the
simplest fixed-point algorithm. The details of parameter fitting are provided in the Jupyter
notebook at https://github.com/auranic/CellCycleTrajectory_SegmentModel.

We note that this optimization does not allow us to determine all the model parameters
uniquely, since they enter in the aforementioned optimization functional as certain com-
binations (as simple rational functions), namely, kS

t

kS,2
d

, kM
t

kM,2
d

, kS
d T1, kM

d T1, kS,2
d T1s, kM,2

d T1s,

kS,2
d T2s, kM,2

d T2s, kS,2
d Tm, kM,2

d Tm. Two other parameters Mf , Sf define the observed cell
division vector in (4.2). One extra parameter p denotes transcriptional production acceler-
ation of G2/M genes during the transcriptional epoch T2s compared to the transcriptional
epoch T1s (Figure 4.6,C). Not all these quantities are independent, some of them are con-
nected through nonlinear relations:

kS,2
d · T2s

kS,2
d · T1s

=
kM,2

d · T2s

kM,2
d · T1s

,
kS,2

d · Tm

kS,2
d · T1s

=
kM,2

d · Tm

kM,2
d · T1s

, (4.5)

which overall gives 11 independent combinations of parameters provided 10 measurable
coordinates of cell trajectory turning points in Figure 4.6,D.

Altogether, this means that 1) one needs to introduce at least one additional constraint
in order to make the trajectory reconstruction unique and 2) physical time of the epochs
T1, T1s, T2s, Tm can not be uniquely computed from the cell cycle trajectory observed in
the plane of S-, G2/M-phase scores. From the analysis of equations (4.5) it follows that
the model can be uniquely parameterized if one will constrain one of the three quantities
p, T2s

T1s
, Tm

T1s
. Finally, it is convenient to fix the durations T1, T1s to some arbitrary values

which allows to determine parameters kS
d , kM

d and the ratios T2s
T1s

, Tm
T1s

.
In our numerical experiments, we fixed the values of T1 and T1s to their corresponding

pseudotemporal durations (as the corresponding fractions of the total length of the cell
cycle trajectory). We also fixed the ratio Tm

T1s
= 10, assuming that the mitosis must be fast

in physical time compared to the transcriptional epoch including activating the expression
of the genes involved in the S-phase.

4.10 Simulating cell cycle trajectories with various dura-
tions of temporal transcriptional epochs

After fitting the kinetic parameters for an observable in the S-phase vs G2/M score plane
cell cycle trajectory, one can perturb the parameters and investigate how the trajectory
geometry depends on them.

https://github.com/auranic/CellCycleTrajectory_SegmentModel
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In real life scRNASeq datasets, we observe that CCT geometry can appear very dif-
ferent in various biological systems. When projecting onto the plane of standard scores of
S-phase and G2/M phase genes, scRNASeq datasets might not always reveal the circular
nature of CCT. In some cases, the circular structure is not at all detectable via this projec-
tion, (Figure 4.7), and the two scores might be connected via a strong positive or negative
correlation. Also, in some systems we observed co-existence of several CCT shapes, like it
is the case in the U2OS cell line dataset (GSE146773). The univariate histograms of two
score distributions might be characterized by bi- or uni-modal character.

Quite strikingly, we were able to reproduce these patterns qualitatively by fitting the
kinetic parameters to the CHLA9 scRNASeq dataset, and then by manipulating the du-
rations of T1, T1s and T2s transcriptional epochs and producing computer-simulated
trajectory examples. Thus, significant reduction in the duration of both T1 and T1s
epochs led to the negative correlation pattern between S-phase and G2/M scores. This
could be interpreted as drastic reduction of the G1 cell cycle phase. In real life datasets,
such pattern has been observed in human embryonic stem cells (dataset GSE85917).

If both T1 and T2s were shortened then this led to the increase of the positive corre-
lation between two scores, (Figure 4.7). This pattern was indeed observed in human bone
marrow and human neural epithelial stem cell-related single-cell datasets (GSE99095 and
GSE81475).

Figure 4.7: Studying the effect of shortening the durations of transcriptional
epochs T1 and T1s or T1 and T2s on the geometry of cell cycle trajectory
projected onto the S-phase and G2/M-phase scores plane. The simulated tra-
jectories (in the lower part of the figure) are produced by taking the parameters of the
CHLA9 fit of model dynamics (red plot) and changing the durations of T1 and T1s epochs
(violet plot) or the durations of T1 and T2s epochs (blue plot). Each simulation shows
the trajectory (black line) sampled with Laplacian noise added, with score distribution
histograms shown at the plot margins. The upper part of the plot shows six real-life cell
cycle trajectories observed in different systems, with GEO identifiers indicated. In each
plot title either cell line name is provided, or hNPC means human neural precursor cells,
hESC - human embryonic stem cell, hBM - human bone marrow, hNESC - human neural
epithelial stem cell. From (Zinovyev et al., 2022).
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4.11 Predicting cell line doubling time from the geometrical
properties of cell cycle trajectory

The developed simple kinetic model leads to a simple prediction which can be validated:
the total length of the transcriptomic cell cycle trajectory must diminish in rapidly dividing
cells. This can be interpreted as a consequence of the fact that in a rapid proliferation
process, during the post-mitotic G1 phase (T1 transcriptional epoch), there is not enough
time to degrade all mitotic transcripts produced before the cell division moment, so they
are reused in the consequent cell cycle phases, shortening the subsequent G1 phase.

We verified this prediction in a relatively large collection of cell line scRNASeq datasets.
Using the data from Cellosaurus database, we identified those few ones for which the cell
line doubling time has been estimated, and for which the number of available good quality
single-cell profiles exceeded 300.

We used the total length of the principal circle fit in the 2D plane of the scaled to maxi-
mum equals one cell cycle phase scores, as a proxy to quantify the level of CCT contraction
(see Methods). This measure was correlated with cell line doubling time in hours. Two
cell lines CHLA10 and SCC25 appeared to be strong outliers from otherwise significant
positive regression line (Pearson correlation 0.931, p-value=10−5) (Figure 4.8). When this
regression line was used as a predictor, CHLA10 cell line was predicted to have doubling
time around 64 hours (instead of determined by database search of around 32 hours) and
for SCC25 around 78 instead of 50 hours. It is known that cell line doubling time can vary
depending on the growth conditions, so we hypothezised that this variability could explain
the appearance of two outliers. If two of them were kept in the regression calculation, it
remained significant but less strong (Pearson correlation 0.67, p-value=0.01).

Figure 4.8: Dependence of cell line doubling time (DT) on the length of the
principal circle (LP) approximating the cell cycle trajectory in the 2D plane
of scaled (divided by the maximum value) S-phase and G2M scores. On the
left two examples of principal circles are shown in red, and cells in green. On the right
the linear regression line with confidence intervals is shown connecting the length of the
principal circle with cell line doubling time (Pearson correlation 0.931, p-value=10−5).
The regression formula is shown on the plot in top left corner. Two cell lines indicated by
red crosses were eliminated from the regression as evident outliers. From (Zinovyev et al.,
2022).
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4.12 Discussion
This chapter provided a framework for analyzing the cell cycle trajectories using single-
cell omics measurements such as scRNASeq data. Unlike the previously suggested model
of the trajectory as a flat circle, we provide arguments that at least in some conditions
the piecewise-linear in logarithmic coordinates approximation appears to fit the single-cell
transcriptomic data and to be biologically tractable. In particular, it allows us to delineate
transcriptional epochs of cell cycle at which the corresponding segment of the trajectory
remains close to linear in logarithmic coordinates which corresponds to locally allometric
changes of the transcriptome.

We suggest two modeling formalisms to recapitulate the cell cycle transcriptomic dy-
namics as a sequence of switches. The first one is purely phenomenological and describes
the dynamics as a change of states of a hidden automaton, leading to the switches of
parameters of allometric growth, followed by a shift representing the cell division event.
The advantage of this formalism is that it allows us to treat most general properties of
cell cycle trajectory geometry.

In particular, we could prove a fundamental theorem on the number of intrinsic cell
cycle states, which connects the number of linear segments in the trajectory and the
embedding dimensionality of the cell cycle trajectory. The nature of this theorem, relying
on “general position”-type arguments, is reminiscent of the well-known results imposing
constraints on the number of the system’s internal states and the effective dimensionality
of its environment, in several fields of science. For example, the Gause’s law of competitive
exclusion and its generalizations states that the number of competing species is limited by
the effective number of resources, characterizing the environment (Gauze, 1934; Gorban,
2007). The famous Gibbs’ phase rule in thermodynamics connects the effective number
of the intensive variables with the number of components and phases in a system at
thermodynamic equilibrium (Gibbs, 1961; Alper, 1999). All these results are also similar in
terms of practical difficulties related to determining the effective system’s dimensionality.

From the physico-chemical point of view, the effective dimensionality is the number of
the substances “lumps” in the cell cycle kinetics. Lumping-analysis produces a partition
of all chemical species into a few groups and then considers these groups (“lumps”) as
independent entities (Wei and Kuo, 1969). “Amounts” of these lumps are the combinations
of the amounts of the chemical species (Li and Rabitz, 1989, 1990). The theorem on the
number of intrinsic cell cycle states that the number of lumps n does not exceed the number
of the internal states of the cell cycle transcription machinery. This means that kinetics
allows reduction of the huge-dimensional space of all components to n ≤ m number of
aggregated lumps.

The second modeling formalism that we suggested connects the geometric properties
of the cell cycle trajectory to the underlying transcriptional kinetics and physical time. It
uses the simplest chemical kinetics equations with kinetic rates represented as piecewise-
constant functions of time. We show that the suggested model is fully analytically tractable
and, under some biologically transparent assumptions, allows unique determination of its
independent parameter combinations. This type of modeling allowed us to explicitly study
the relation between pseudotime and physical time.

The precise connection between physical time and pseudotime (geometric time) in the
cell cycle is worth studying in more detail since this is the central question in the dynamic
phenotyping approach in general (Golovenkin et al., 2020). Some of these relations can
be potentially quantified from exploring the variations of point density along the inferred
trajectories (Chen et al., 2019a). Related to this, one can expect non-trivial phenomena in
studying the cell cycle trajectory, such as effects of partial cell population synchronization
under assumption of equal cell cycle durations in individual cells. This effect can lead to
the appearance of density peaks in the reconstructed cell cycle trajectories that cannot be
explained by nonlinear relation between physical time and pseudotime (Gorban, 2007).

As one of the applications of the suggested modeling formalism, we performed several
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numerical experiments on changing the durations of the transcriptional epochs overlap-
ping with G1 or G2 cell cycle phases. We observed that these parameters might have a
drastic effect on the shape of the CCT geometry and the form of the univariate variable
distributions. This model prediction can be qualitatively confirmed by observing CCT
properties of several in vitro and in vivo systems. The effect of CCT shrinkage might
be relevant in characterizing the cell cycle properties in various conditions: for example,
when one can manipulate the activity of an oncogene (Aynaud et al., 2020). We show that
the CCT geometry can be predictive to estimate the cell line doubling time which can be
a proxy of cell cycle duration.

The relation between transcriptomic dynamics and the established definitions of cell
cycle phases and cell cycle checkpoints has been discussed and even quantified using stan-
dard molecular biology techniques (Giotti et al., 2019; Hsiao et al., 2020). In this study,
we deliberately leave open the question on defining the exact cell cycle phase borders
from the transcriptomic CCT geometry. We found that this relation can not be the exact
match: one of the reasons for this is delayed production of proteins, and dependence of the
cell cycle progression from post-translational protein modifications. The transcriptomic
dynamics is relatively slow, and activation of protein synthesis is switched on in advance,
leaving time for producing enough proteins needed at a certain stage of the cell cycle
molecular program. Same is true for the process of degradation of RNAs involved in cell
cycle: a cell needs enough time after mitosis to degrade all cell cycle-related transcripts.

The suggested formalism is not limited to transcriptomic data. It looks promising
to analyze the geometrical properties of cell cycle trajectory measured in unsynchronized
cell populations profiled at various levels of molecular description, including epigenetics
and protein expression, when the datasets of sufficient volume and quality will become
available.

A more mechanistic description of the cell cycle has been already proposed in the
context of yeast or mammalian cells (Tyson, 1991; Novák and Tyson, 2004). The math-
ematical models can be based on chemical kinetics or on discrete or hybrid frameworks
(Singhania et al., 2011; Noël et al., 2013), but in all cases, the difficulty when constructing
these models is to select the genes that can capture the main features of the cell cycle and
the different events that allow the switch from one phase to another. We anticipate that
the type of analyses presented here could orient the choice of these genes and inform on
their dynamics.



Chapter 5

Uncovering Ewing sarcoma cell
processes using inducible cell lines

Ewing sarcoma is an aggressive pediatric bone and soft tissue tumor, characterized by
a high genomic stability and a specific oncogene involved in most Ewing sarcoma cases,
EF1, which makes it a very relevant tumor type to study. We described its main features
in the introduction of this Ph.D. thesis, and this chapter will be focused on presenting
the methods we carried out to study the gene expression of Ewing sarcoma cells, and the
results we obtained about their dynamics and their heterogeneity.

In this project, we studied inducible Ewing sarcoma cell lines in which EF1 can be
suppressed, and we used these to follow the effects of removing and reintroducing the
oncogene in the Ewing sarcoma cells. The idea is to observe which cell processes are
perturbated at the gene expression level in the absence of EF1, and to follow the recov-
ery dynamics of these biological signals when EF1 is no longer suppressed. We are also
interested in seeing whether some changes in gene expression that happen after EF1 sup-
pression are irreversible, or if all cells can recover their full initial malignant phenotype.
We also wanted to know if biological signals identified in our last study published in (Ay-
naud et al., 2020) could be found in those new datasets in an unsupervised fashion, and
if new Ewing sarcoma cell processes can be identified. The reason for thinking this could
be the case is the fact we new use a more recent scRNA-seq technology, 10X Genomics,
than those that were used during Aynaud’s study, SmartSeq, and Chromium. Using 10X
should therefore yield datasets with a greater number of cells and more UMIs, which may
allow us to detect more subtle biological signals that could not be observed in the previous
study.

We will first present the experimental setup used to cultivate and gather data from
these Ewing sarcoma inducible cell lines, as well as preliminary data analyses we carried
out (quality control and data exploration). We will then discuss how we identified Ewing
sarcoma biological processes at the transcriptional level in these datasets, and provide a
comparison with the ones identified in the previous study. We will finally dive into these
new transcriptional signatures, and observe how EF1 levels influence the activity of other
Ewing sarcoma biological processes.

5.1 Inducible Ewing sarcoma cell lines, a time-resolved study

5.1.1 Experimental setup

We use ASP14 Ewing sarcoma cell lines that contain a genetic construct that expresses
small hairpin RNAs (shRNAs) anti-EF1 that suppress the effect of EF1, the main Ewing
sarcoma oncogene (Fig. 5.1a). The promoter of this genetic construct contains a TET
system that can be used to control the expression of these shRNAs. By default, anti-EF1
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shRNAs are not expressed, meaning EWSR1-FLI1 mRNAs are normally expressed and
translated into proteins. Introducing doxycycline in the growth medium frees the promoter
(Fig. 5.1b), which triggers the expression of the shRNAs that causes the suppression of
EF1 by degrading EWSR1-FLI1 mRNAs. Removing doxycycline from the medium restores
the initial condition.

The idea of this time-resolved experiment is to follow gene expression at the transcrip-
tome level, and at different points during the induction of EF1 (Fig. 5.1c), to observe
how EF1 affects various cell processes at the gene expression level; all wet lab experi-
ments have been carried out by Lou Carlier during her Master internship (École Normale
Supérieure Paris-Saclay) and Karine Laud-Duval (Institut Curie, U830). ASP14 cells have
been unfrozen, and scRNA-seq acquisition has been performed at day 0 and day 2 in non-
doxycycline conditions (with full EF1 effect). In parallel, another ASP14 culture was
grown for a week in the presence of doxycycline, and has been sampled at days 2, 3, 4, and
7 for scRNA-seq data acquisition. Doxycycline was removed from the growth medium at
day 7, and new scRNA-seq datasets were gathered at days 8, 9, 11, 14, 17, and 21. This
allowed us to study both an inhibition phase (days 2, 3, 4, and 7), a rescue phase (days 8,
9, 11, 14, 17, and 21), and a control condition (days 0 and 2 from the first condition). In
the end, we ended up with 12 scRNA-seq datasets to be analyzed.

Figure 5.1: Inducible cell lines setup. (a) In the absence of doxycyclin, EF1 mRNAs
are transcribed. (b) In the presence of doxycyclin, EF1 shRNAs are expressed and trigger
the degradation of EF1 mRNAs. (c) Time course of the experiment, between day 0 and
day 7 EF1 is inactivated by doxycyclin, doxycyclin is removed at day 7, and induction of
EF1 is followed between days 7 and 21. RNA-seq assays are conducted at days 0 and 2
without doxycyclin (control), and at days 2, 3, 4, 7, 8, 9, 11, 14, 17 and 21.

5.1.2 Quality control and data exploration
We processed all 12 datasets using typical scRNA-seq preprocessing steps. We first filtered
out all cells with only a few genes expressed (<200) and all genes expressed in less than
three cells. We also removed all cells with more than 10,000 gene counts, as we suspected
they corresponded to doublets, as well as cells with more than 10% of mitochondrial genes
that may be undergoing apoptosis. All thresholds have been chosen ad hoc based on visual
inspection of statistical plots. Gene counts per cell were then normalized to 10,000, and
the 10,000 most variable genes were kept in each dataset. We finally performed a denoising
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step where each cell was pooled toward the average of its five nearest neighbors.
Depending on the dataset, this first step filtered a varying proportion of cells (Fig.

5.2a), between 210 cells at day 17 and 2867 cells at day 4; interestingly, days during
which doxycycline was present in the growth medium coincide with days with the highest
number of cells. We also visualized all the datasets together by applying dimensionality
reduction algorithms in the space of their common genes. According to the PCA plot (Fig.
5.2b), datasets seem to be localized per day; in particular, we see day 0 and day 21 datasets
colocalize, and datasets are positioned inbetween in order, in the couterclockwise direction.
This suggests that cells at day 21 have similarities with cells at day 0 and 2, meaning a part
of the malignant gene expression profile may have been recovered. An examination of the
UMAP plot which leverages a non-linear unsupervised dimensionality reduction algorithm
(Fig. 5.2c) reveals that cells are also clustered per day in this space, but day 0 and day 2
do not colocalize with day 21. Instead we see three big clusters, one corresponding to day
0 and day 2 (pre-inhibition), one corresponding to the doxycycline condition (inhibition),
and one containing the activation days (day 8 to day 21). Interestingly, day 7 does not
cluster with the other inhibition days despite cells also being inhibited at this time point.
In order to get a better understanding of this experiment, we will discuss and interpret
these datasets in the next sections through the prism of cell processes and transcriptional
signatures.

Figure 5.2: New inducible cell lines datasets presentation. (a) Number of cells selected
after preprocessing within each batch. (b) PCA representation of datasets concatenated
in common genes space. (c) UMAP representation of datasets concatenated in common
genes space.

5.2 Identifying Ewing sarcoma transcriptional signatures

Ewing sarcomas are complex biological systems composed of cells that carry out various
biological processes. For instance, some cells undergo cell cycle or metabolize glucose,
others show apopotosis signals... The important subtlety to account for is that these cell
processes are not mutually exclusive, meaning a single cell can undergo several processes
at the same time (but not necessarily at equal intensity). For this reason, there is a
crucial need for deconvolution methods that would facilitate the discovery of the biological
processes carried out within a cell mixture, as well as identifying, for each individual cell,
which cell processes this cell is undergoing. This type of methodology allows scientists
to get an insight into the heterogeity of processes happening within tumors, which is a
precious information to better understand their development.

In this section, we will present how Independent Component Analysis (ICA) can be
applied as a deconvolution method to identify the various cell processes happening within
a population of cells measured through a single-cell RNA-seq assay. We will present two
applications of this methodology, one that we carried out in the past on various Ewing
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sarcoma datasets, and a more recent application to inducible Ewing sarcoma cell lines.
By modulating the oncogene expression, we were able to observe how cancer-related cell
processes slow down when the oncogene activity is removed, and we could follow the or-
chestration of the come-back of these phenotypes once the oncogene is reintroduced. Also,
ICA being a linear deconvolution method, it naturally yields individual gene contribution
to each of the identified processes which can be used as a powerful interaction discovery
tool.

5.2.1 Inducible Ewing sarcoma cell lines setup
As discussed in the introduction of this thesis, we applied ICA in the past to single-cell
RNA-seq datasets (Aynaud et al., 2020). It allowed us to identify a set of transcriptional
signatures related to various Ewing sarcoma biological processes, such as expression of
EF1 targets, cell cycle-related signatures, glucose metabolism, hypoxia and extracellular
matrix organization. Even though all these signatures represent relevant Ewing sarcoma
phenotypes, they are clearly skewed towards ”EF1-high”-related signals. Furthermore,
they were identified based on the Fluidigm-C1 scRNA-seq technology, which is far behind
today’s standards in terms of sequencing depth and number of cells.

We therefore decided to carry out a new experiment using the inducible ASP14 cell
lines using the 10X Genomics technology, in order to answer several questions. First of all,
we wanted to ensure these transcriptional signatures are robust and can be redisovered
in a new independent dataset. If this is the case, we also wanted to see if a higher
resolution scRNA-seq assay could identify more non-EF1-high transcriptional programs.
The experiment was scheduled over 21 days as follows, and was carried out by K. Laud-
Duval and L. Carlier (U830):

• Cells were sequenced at day 0 (D0) and D2 in the absence of doxycyclin, thus allowing
the effect of EF1. These time-points represent the pre-inhibition condition.

• In another cell culture, doxycyclin was added at D0. Cells were sequenced at D2,
D3, D4 and D7. These time points represent the inhibition condition.

• Doxycyclin was removed from the medium at D7. Cells were sequenced at D8, D9,
D11, D14, D17 and D21. These time points represent the induction condition, and
we expect the EF1-high phenotype to progressively come back throughout these
days.

This time-resolved experiment allowed us to obtain a set of 12 scRNA-seq datasets: D0,
D2, D2DOX, D3DOX, D4DOX, D7DOX, D8, D9, D11, D14, D17 and D21. These datasets
were preprocessed using the scanpy (Wolf et al., 2018) Python package following state-of-
the-art guidelines for preprocessing scRNA-seq data. We first filtered out cells with too
few gene counts, cells with too many (doublets), as well as apoptotic cells characterized by
a large proportion of mitochondrial genes expressed. We used in this first step thresholds
empirically determined for each dataset. We then independently normalized total counts
at 10,000 in each cell, and applied the log(1 + x) function to each value of the resulting
matrix. We then selected for each dataset the 10,000 most variable genes, in order to
improve downstream analyses both in terms of efficiency and quality. We finally pooled
each cell to the average of its 5 nearest neighbors, to mitigate biological noise and smooth
the dataset.

5.2.2 Indentifying consensual independent components
One of the goal of this project was to identify new Ewing sarcoma transcriptional signa-
tures, if possible using cells from all datasets in the analysis. The main problem of this
approach is the various batch effects that exist between the different batches: scRNA-seq
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analyses are indeed carried out at different time points, under different biological condi-
tions. For this reason, it was clear that concatenating all datasets into a single one then
applying ICA to this would highlight these batch effects. In this case we were nontheless
able to rediscover a few independent components, such as the ones associated with cell
cycle (G1/S and G2/M), as well as the component that we interpreted as EF1 targets
expression. In order to obtain more subtle signals, we therefore decided to carry out a
different approach.

The idea was to first compute the independent components in each dataset separately,
and then use this result to define ”consensual” independent components that would be
reproducible in many datasets. We therefore used a mutual nearest neighbors search
approach between independent components that can be summarized as follows. Given N
scRNA-seq datasets Xi (i ≤ N), we first computed a set of d ≥ 0 independent components
in each of them (Vi = {vi1, . . . , vid} for Xi). Then, for each pair of component sets Vi

and Vj , components in Vi are matched to the components in Vj following a mutual nearest
neighbor (MNN, or Reciprocal Best Hit, RBH) approach. For an integer neighborhood
size k, two components v1 ∈ V1 and v2 ∈ V2 are MNN if v1 belongs to the k-nearest
neighbors of v2 among the components of V1, and reciprocally. Doing so over all pairs
of component sets yields a large network of components, where edges represent the MNN
hits.

We carried out this analysis using the stabilized-ica package (Captier et al., 2022), com-
puting independent components from each day separately. In order to also capture signals
that may not strongly vary within one dataset such as oncogene activity, we added also
three meta-days to the analysis: INHIBITION which groups D2DOX, D3DOX, D4DOX
and D7DOX, ACTIVATION which groups D8, D9, D11, D14, D17 and D12, and ALL
which groups all datasets. We then conducted the MNN-based graph construction which
yielded the network displayed on Fig. .... We then used the Cytoscape tool Shannon
et al. (2003) to refine the graph layout in order to better visualize its structure Fig ....
Interestingly, many pseudo-cliques (i.e. clusters of nodes with strong levels of intercon-
nectivity) can be observed with nodes that represent similar components coming from
different datasets. In the following section, we describe how we can turn these component
cliques into transcriptional signatures.

5.2.3 From independent components to transcriptional signatures
We opted for a simple rank-based selection scheme to obtain a representative gene set of
each pseudo-clique. We ranked gene scores within each component vi, selected the top
25 genes Gi = {gi1 , . . . , gi25}. We finally defined the set G of consensus genes for the
component as G =

⋃N
i=1 Gi, so that any gene that is highly ranked within at least one

component is included in the final set. The value 25 was chosen after some testing as
it allowed to have consensus gene sets of reasonable size (around 100 genes), but we are
aware that tuning this parameter can drastically change the result. Once this step has
been completed, we end up with a gene set for each pseudo-clique.

In order to interpret these gene sets, one must go through a gene enrichment process
that consists in screening the existing databases for cell processes or pathways involving
genes of these sets. We opted for the ToppGene tool (Chen et al., 2009), which allows the
user to input a list of genes and searches diverse types of databases (molecular functions,
biological processes, cellular components, mouse and human phenotypes, pathways, dis-
eases, literature...) for these genes. ToppGene then yields a complete report that details
the entities found in the database that match the set of genes with additional informa-
tion such as the number of genes matched as well as the Bonferroni p-value of the hit
(available both without and with Bonferroni correction). We performed here an empiri-
cal selection, only keeping gene sets with convincing Bonferroni p-values (< 10−10) and
process specificity.

Once gene sets have been enriched, we manually curate them by investigating for
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Figure 5.3: Full graph of Ewing sarcoma independent components computed
from the transcriptional data. Each node represents one independent compo-
nent from a given day of the induction. Pseudo-cliques have been annotated
based on their most significant and consensual contributing genes.
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each gene set the different hits, as well as evaluating their relevance. We ended up by
keeping 16 pseudo-cliques whose we were able to relate the genes set to a diversity one
of several biological processes including EF1 activity, cell cycle, chromatin state, cellular
organization, morphogenesis, stress and glucose metabolism. The cliques we chose not
to conserve either appeared to contain mixed signals that we were not able to properly
interpret. For this reason, we decided not to include them in further analyses. In the next
section, we will cover in depth the nature of these 16 signatures.

5.3 New Ewing sarcoma cell processes have been identified
In the past we identified, using another ICA-based approach, a set of gene signatures that
we could link to several Ewing sarcoma set processes (Aynaud et al., 2020); we ended
up confidently characterizing 7 independent components corresponding to EF1 targets
expression, G1/S cell cycle phase, G2/M cell cycle phase, two components related to
redox reactions, mRNA splicing and a metabolic signal containing glycolysis and hypoxia
factors. We plotted for every pair of signals the x/y plot of all cells (Fig. 5.5), and we can
already see that some old signatures have been independently rediscovered (for instance,
G1/S and G2/M cell cycle components that have an almost perfect correlation compared
to those reported in the Aynaud study). On the other hand, many signals appear to be
new, such as the two cell cycle-related signatures ”G2/M Exit” and ”Histone”. In the
remainder of this section, we will investigate these signals more closely.

Figure 5.4: Correlation plots between all pairs of transcriptional signals (old
and new). Plot color indicates the correlation coefficient, red for -1 and green
for +1.
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5.3.1 New signatures cover various Ewing sarcoma cell processes
We discovered in this study 16 consensus transcriptional signatures from the study of
the inducible cell lines datasets, signatures that cover various aspects of the Ewing sar-
coma’s biology: cell proliferation, metabolism, EF1 targets, stress, development, struc-
ture... Complete signatures can be retrieved at the following address: File link

Figure 5.5: Expression dynamics of the 16 Ewing sarcoma transcriptional signals
identified throughout the induction.

EF1 targets

Let us discuss first the central transcriptional signature, IC-EF1, that has been identified
in our study and contains many genes whose expression is directly correlated with the
expected EF1 levels: genes from this signature tend to be highly expressed in the initial
condition, before doxycyclin is added into the medium, they then drop in expression in
presence of doxycyclin which inhibits the effect of EF1, and slowly increase once doxycyclin
is removed and EF1 levels go up again. This behavior has been validated by analyzing
EF1 levels by Western blot, confirming IC-EF1 is high when the EF1 protein is present
and vice-versa. Interestingly, the ICs cluster related to this signature only consists of 3
ICs that come from the three meta datasets, ACTIVATION, INHIBITION and ALL.

In particular, 29 genes in this IC-EF1 signatures were already flagged as Ewing sarcoma-
related genes according to the database DisGeNET (Piñero et al., 2020): in alphabeti-
cal order, ABHD6, ADRB3, CALCB, CAV1, CCND1, CDH11, CEBPB, EPHA3, FAS,
FCGRT, GJA1, GLG1, HES1, IGF1, JAK1, LINGO1, MCL1, MMP1, MYC, NKX2-
2, NR0B1, PRKCB, RAMP1, SOX2, STEAP1, TCF4, TNNT1, TWIST1, and WT1.
We also find 35 genes from the IC-EF1 signatures in common with the prioritized EF1
targets identified in (Aynaud et al., 2020): in alphabetical order, ABHD6, ATP1A1,
CADPS2, CAPRIN1, CAV1, CCND1, CDH8, CES1, CLDN1, COL21A1, CTTNBP2,
DLGAP1, HES1, HMCN1, IGF1, KCNE4, KDSR, LIPI, LRRC4C, MAN2A1, MYC,
NPTXR, NTNG1, PCDH7, PCSK2, PRKCB, RBM11, SLAIN1, SLC26A2, SLCO5A1,
TNFAIP6, TRPM4, TSPAN13, UGT3A2, and ZC3H13. These matchings comfort us in
flagging this consensus IC as being related to Ewing sarcoma.

This gene set will be of utmost importance in our analyses as it can be used for us as
a proxy for EF1 activity, with several advantages: first, it is challenging to read EWSR1-
FLI1 mRNAs in a single-cell assay as they cannot be distinguished from the wild-type

https://drive.google.com/file/d/1XVf-5J-0nE-jG_i-0wvQ1yi6_ppKmrw0/view?usp=sharing
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Figure 5.6: Dynamics of the transcriptional signal identified as EF1-related
throughout the induction, IC-EF1. (a) Distribution of the signal among cells
throughout the induction. (b) Western blot of the EWSR1-FL1 protein at day 0, day 7
(doxycycline condition) and day 21 (top). Relative quantitative estimation of the EWSR1-
FL1 presence according to this Western blot (bottom). (c) UMAP representations of cells
from each day independently, colored by IC-EF1; day 2 seems to contain a subpopulation
of cells that present lesser expression of IC-EF1.
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FLI1 ones. Furthermore, following the expression of a single gene tends to be more noisy
than averaging counts over an entire gene signature. For this reason, in the following
sections, we will use IC-EF1 as a readily accessible measure approximating the presence
of EF1 mRNAs.

As expected, we observed a noticeable decrease in IC-EF1 levels upon introducing
doxycycline in the growth medium, which suggests that EWSR1-FLI1 was correctly sup-
pressed (Fig. 5.6a). It is followed by a steady increase of IC-EF1 levels between days
9 and 17 after doxycycline has been removed after day 7. These EWSR1-FLI1 dynam-
ics have been confirmed by Western blot, carried out by Lou Carlier (ENS Paris-Saclay,
U830), shown in Fig. 5.6b. Closer day-per-day inspection, notably using the UMAP di-
mensionality reduction algorithm Becht et al. (2019), allows us to take a closer look into
dataset heterogeneity (Fig. 5.6c). If IC-EF1 signals are quite homogeneously high on day
1, we observe a cell subpopulation on day 2 with a lesser IC-EF1 signal that we could not
explain. DOX days present noticeably decreased IC-EF1 signal, which we can see progres-
sively reappear starting from day 11 (3 days after removal of doxycycline). Interestingly,
day 21 stays heterogeneous, with approximately half of the cells that have recovered a
pre-DOX IC-EF1 signal. It is still unclear if EF1-low cells at day 21 would have been able
to shift to an EF1-high profile if the experiment had been conducted over a longer period
or if they were locked into an EF1-low phenotype. Further investigation will be required
to answer this question.

Proliferation signals

Four cell cycle-related Ewing sarcoma transcriptional signatures have been identified in
our new study, while we reported only two during the previous project (Aynaud et al.,
2020), one related to genes associated with phases G1 and S, and another related to G2
and M-phase genes. We identified with high confidence these two signals within our ICs
network, each of which corresponding to a clique containing one IC from each dataset. In
addition, we characterize here two new cell cycle-related cell processes: after enrichment,
one corresponds to genes involved in the mitosis process, and the other contains a number
of histones and other chromatin organization factors.

The two first gene signatures, related to the G1 and S phases for the first one and to the
G2 and M phases for the second one, contain many well-known proteins that play a role
in the cell cycle machinery or regulation. We can for instance mention PCNA, genes from
the ORC family, various cyclin and CDKs, or centromeric proteins. We will investigate
later in this manuscript the interplay between IC-EF1 signal and these two cell processes.

We identified a third consensual cell cycle signature associated with G2/M-related
genes. Upon closer inspection, many genes in this signature are involved in cell processes
such as mitosis, cytoskeleton organization, and chromatin organization. We also noticed a
nonlinear positive correlation with the G2/M component. For these reasons, we interpreted
this biological signature as cellular processes involved in mitosis resolution and labeled it
”G2/M exit”. The last cell cycle signature we identified contains many genes involved
in chromosome organization such as centromeric proteins, histones and other nucleosome
packaging factors such as ASF1B.

These four cell cycle components can be observed throughout the induction in Fig.
5.7. We see in these plots quite typical cell cycle signal profiles, with a clear cell cycle loop
during the early days and day 21. Interestingly, we still observe strong cell cycle signals
at days 2, 3, and 4 while EF1 is suppressed, and lesser signals at days 7, 8, and 9. We also
observe a well-resolved cell cycle loop in the early days, that degrades over days once EF1
is suppressed to the point it is barely visible on day 7. Once doxycycline is removed from
the growth medium and EF1 suppression stops, the cell cycle loop reappears progressively
until it retrieves its initial shape at day 21. Also, the dataset at day 21 is to take with a
grain of salt, as it contains a heterogeneous cellular population mixing EF1-low and EF1-
high profiles. This suggests that in the absence of EF1, genes associated with the G1/S
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and G2/M phases of the cell cycle are less expressed, which may lead to lower proliferation
levels. We also observe a complete recovery of the cell cycle signal in cells that recover
the EF1-high phenotype once doxycycline is removed, which suggests the proliferation
phenotype could be recovered.

5.3.2 Factors not directly related to the high expression of EF1
Many new transcriptional signals have also been highlighted during this study, notably
some connected to non-EF1-high cell phenotypes. We identified in particular clear varying
signals during the induction, and we will focus on three categories: stress signals, structural
signals, and metabolic signals.

Stress signals

First of all, we identified three stress-associated transcriptional signals (Fig. 5.4, Fig.
5.8): two signatures related to apoptosis, and one related to protein folding and unfolded
proteins signals. Interestingly, one apoptosis-related signature (APOPTOSIS BIS) seems
to be strongly anticorrelated with the EF1 targets signature (Fig. 5.8b), which suggests
this component may correspond to a cellular stress associated with the depletion of EF1
– correlations are best observed at day 21 which contains a mixed population of EF1-low
and EF1-high cells. We notably see that this stress component is mostly low at days 0
and 2, then increases as doxycycline is added to the growth medium to peak around day
8, then more and more cells retrieve low levels of this stress signature as the suppression
of EF1 is removed. The levels of the two other stress-related signals, APOPTOSIS and
UNFOLDED PROTEINS does not seem to be strongly affected by the abundance of EF1.

Structural and invasion signals

We also characterized four consensus independent components containing genes related
to cellular structure, adhesion, motility and extracellular matrix configuration (Fig. 5.9).
The first signature, INVASION (Fig. 5.9a), contains genes related to tumoral cell inva-
sion such as ZEB1, ZEB2 SNAI1, SNAI2, Twist1 or Notch1, and its expression seems
to be correlated with the abundance of EF1. The three other signatures (ADHESION
WOUNDING, ADHESION WOUNDING BIS and ECM WOUNDING) (Fig. 5.9b-d)
contain many genes related to cell-cell adhesion, extracellular matrix and response to
wounding, and appear to be anti-correlated with EF1 targets expression, meaning genes
from these signatures tend to be downregulated in the presence of EF1. For these reasons,
we believe these four signatures can help monitor Ewing sarcoma cell processes related to
EMT, loss of cell adhesion and more generally metastasis.

Morphogenesis and angiogenesis development signals

We could finally confidently associate two consensual components (MORPHOGENESIS
and MORPHOGENESIS BIS) to the expression of development genes, and in particular
some factors involved in angiogenesis (Fig. 5.10). These two components have very similar
patterns, and appear to be highly correlated (Fig. 5.5). Interestingly, genes contained in
these two morphogenesis-related signatures appear to be at higher expression levels when
EF1 is suppressed.

5.4 Transcriptional programs of Ewing sarcoma: a summary
and what comes next

Ewing sarcoma is a complex disease characterized by highly heterogeneous tumors. The
usage of inducible Ewing sarcoma cell lines in which the abundance of EF1, the Ew-
ing sarcoma oncogene, can be finely monitored in conjunction with single-cell RNA-seq
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Figure 5.7: 2D Ewing sarcoma cell cycle plots, day by day. Each dot represents
a cell, and each cell’s coordinates correspond to the average expression of
genes contained in a pair of cell cycle signatures. Gray dots represent cells
from other days, for reference. (a) Representing cells in the space of G1/S genes
versus G2/M genes makes cell cycle loops appear, especially during the early days. (b)
G2/M genes versus ”G2/M exit” genes (genes involved in mitosis). (c) G2/M genes versus
”histones” signature (this signature also contains other chromatin remodeling factors).
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Figure 5.8: 2D Ewing sarcoma gene expression plots, day by day. Each dot
represents a cell, the x-axis corresponds to the average expression of the genes
contained in the newly identified EF1 targets signature, the y-axis corresponds
to the average expression of the genes contained in each stress signature. Gray
dots represent cells from other days, for reference. (a) EF1-independent apoptosis
signal. (b) EF1-dependent apoptosis signal. (c) Unfolded proteins signal.
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Figure 5.9: 2D Ewing sarcoma gene expression plots, day by day. Each dot
represents a cell, the x-axis corresponds to the average expression of the genes
contained in the newly identified EF1 targets signature, the y-axis corresponds
to the average expression of the genes contained in each structure-related
signature. Gray dots represent cells from other days, for reference. (a) Invasion-
like signal. (b) Adhesion and response to wounding genes signal (component 1). (c)
Adhesion and response to wounding genes signal (component 2). (d) Extracellular matrix
and response to wounding signal.
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Figure 5.10: 2D Ewing sarcoma gene expression plots, day by day. Each dot
represents a cell, the x-axis corresponds to the average expression of the genes
contained in the newly identified EF1 targets signature, the y-axis corresponds
to the average expression of the genes contained in each development-related
signature. Gray dots represent cells from other days, for reference. (a) First
morphogenesis-related signal. (a) Second morphogenesis-related signal.
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data analysis allowed us to get an insight into the transcriptional heterogeneity of Ewing
sarcoma cells.

We were able to both confirm a part of the results of the previous study reported in
(Aynaud et al., 2020), and iterate on them by identifying many new Ewing transcriptional
programs, especially those that are not related to the EF1-high condition. Furthermore,
by applying consensus ICA as a deconvolution method, we could identify transcriptional
signatures shared amongst many datasets, increasing our approach’s robustness. First of
all, we found in an unsupervised manner a consensual gene set containing a major gene
overlap with the IC10 signature reported in (Aynaud et al., 2020) that we could link to
the expression of EF1 target genes. We also identified four cell cycle-related components:
G1/S genes, G2/M genes, end of G2, and a last component containing histone genes as
well as other factors related to chromatin conformation – while only the first two were
reported in the previous study; we also discussed how the expression of these cell cycle
factors is modulated in the presence of EF1. We then uncovered many components asso-
ciated to cell processes downregulated when EF1 is abundant, such as apoptosis, cellular
stress associated to unfolded proteins, or cell-cell and cell-matrix adhesion factors. Fi-
nally, we highlighted one component containing genes involved in tumoral invasion, EMT,
and tumor metastasis, that appears to be upregulated in the EF1-high conditions. We
believe that identifying these gene signatures could facilitate the tracking of their asso-
ciated cellular processes, and may improve our capabilities of understanding the tumoral
heterogeneity of Ewing sarcomas.

There is also the question of the possible phenotype shift irreversibility after the EF1
suppression. Indeed, we observed that unlike day 0, where most cells expressed high
levels of the EF1 signature, a large fraction of cells on day 21 still appear to be EF1-low
profiles. This observation raises the following question: Would these EF1-low cells acquire
an EF1-high profile if we waited longer, or are these cells stuck within an EF1-low state
due to the EF1 depletion? Answering this problem will be a puzzling task, as even if we
conducted the experiment for longer, it would have been difficult to distinguish between
shifts from EF1-low to EF1-high, and natural selection that would be caused by EF1-
high cells that have a competitive advantage due to their more active proliferation. A
possibility to explore could be to use molecular tags in order to follow cell lineages, and
identify EF1-high cells whose mother cell was EF1-low. In all cases, I think it will be
difficult to conclude on this point with the data currently available.



Chapter 6

Discussion and conclusion

In this thesis, we reported our works on three main research axes: single-cell data analysis,
development of data integration methods for single-cell data, and study of the cell cycle at
the transcriptional level. In this concluding chapter, we will briefly return to these three
topics, and discuss our contributions to them as well as future challenges that are still to
be overcome.

6.1 The future of data integration
Data integration consists of distinct challenges depending on the anchoring that exists
between datasets, and each facet of DI requires distinct tools that leverage various algo-
rithmic strategies. For instance, metric-based methods excel at solving HI tasks, whereas
linear matrix analysis methods excel at solving VI tasks. Machine learning paradigms with
high abstraction levels, such as manifold alignment methods and deep neural networks,
are excellent assets for dealing with DI and MI problems, the latter also performing well
at HI and VI tasks. Overall, VI methods are pretty good at solving the task, HI methods
are capable of dealing with small to moderate batch effects but still struggle to mitigate
significant batch effects such as inter-species data, and DI/MI problems are arguably still
unsolved in the general case.

We introduced the transmorph framework that articulates computational blocks to
conceive HI pipelines in an attempt to unify many types of data integration methods, in
particular those that rely on two successive computation steps: a matching step, that iden-
tifies similar cells across datasets, and an embedding step that converts this matching into
a joint representation. This flexible framework is entirely open source, and can therefore
be extended with new algorithms or features in order to increase its expressiveness.

It is essential to note that there are important pitfalls to data integration that must not
be overlooked. The primary issue that can be encountered is named overcorrection and
describes an undesirable event where a data integration method incorrectly aligns cells that
do not share the same biological type or state. This typically happens when batch effects
are too strong, when a dataset contains specific cell types, when cell type distribution is
highly imbalanced, or when there is little anchoring between batches. Overcorrection can
be difficult to detect when there is no easy access to cell labels and is a critical issue that
hinders every subsequent analysis step. Indeed, it can lead to cells belonging to the same
cluster without sharing critical biological properties such as cell type or states. Other
issues are worth noting even though they are not exclusive to the data integration task,
such as the difficulty in differentiating between true zeros and missing values in RNA-seq
datasets or the fact that different modalities are often expressed using different data types
(e.g., binary or integer data) which may be difficult to handle jointly within mathematical
frameworks. Finally, data integration tools based on abstract machine learning paradigms
such as deep autoencoders often come at the cost of a decrease in model interpretability
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which is an important downside for any health-related application. However, many efforts
are made to overcome this issue (Svensson et al., 2020; Treppner et al., 2022), and we
expect to see many more in the years to come.

To conclude, years of algorithmic and computational advances made it possible to solve
most HI and VI problems with satisfying performance, with only the most complicated
instances still being problematic (e.g., HI of many batches with strong batch effects).
Solving DI and MI is the next computational challenge. The most promising approaches
that have been developed to tackle it are based on deep learning models, particularly deep
autoencoders. It has been shown that purely unsupervised DI may not be a well-posed
problem and could suffer fundamental flaws (Xu and McCord, 2022), which greatly incen-
tivizes using knowledge-driven tools that allow the user to include external information to
enhance models with functional information that link features across modalities. Finally,
apart from developing new tools, there is also an urgent need to enrich the data integration
ecosystem with organizing frameworks, standardized benchmarks, datasets, and quality
assessment metrics.

6.2 Studying the cell cycle in the gene expression space:
future challenges

We studied the notion of the cell cycle in the transcriptional space in depth through these
two projects, and attempted to tackle two challenging questions: first, we provided a new
way to model the cell cycle progression under the prism of gene expression as a piecewise-
linear trajectory in the transcriptional space. We also show how horizontal data integration
and notably optimal transport can be leveraged to accurately match cycling cells between
two scRNA-seq datasets – either using the transmorph framework or with the alternative
kernel methodology. I would like to end this chapter by mentioning that there is still a
lot to achieve to improve our understanding of the cell cycle from a transcriptomic point
view, and by providing a few examples of the current and future challenges in this topic.

First of all, a challenging question discussed in (Chervov and Zinovyev, 2022) is to
demonstrate the existence of different cell cycle profiles that correspond to different tra-
jectory geometries in the cell cycle space. In this theory, different trajectory shapes in the
cell cycle gene expression space suggest different cell cycle speeds, in particular according
to Chervov, at least two profiles can be identified: ”normal” cell cycle where cells revolve
around the typical triangular trajectory versus ”fast” cell cycle, where most cells follow a
more linear anticorrelated trajectory (Fig. 6.1). Interestingly, some cell populations even
display a mixture of these two profiles, with a fraction of cells following the ”standard” cell
cycle trajectory and another fraction following the ”fast” trajectory. Identifying molecular
markers of the ”standard” and ”fast” cell cycles would give a way to safely deconvolute
such datasets by separating the two intertwined trajectories.

Another fundamental question I could not answer is the following: Do all cells whose
transcriptome revolves around the cell cycle loop actually proliferate? It may seem coun-
terintuitive to think that cells could express high levels of cell cycle genes even if they do
not undergo cell division, but the examination of some datasets makes me think it could
be the case. For instance, in chapter 5, we will study Ewing sarcoma datasets in which
the oncogene EF1 has been almost completely suppressed, yet we observe many of those
cells with high cell cycle gene expression, which is even more puzzling given the fact that
we do not observe many dividing cells under the microscope in these conditions. For this
reason, the transcriptional cell cycle loop may be a condition sine qua non for cell division
to occur, but may not be sufficient.

Finally, even though horizontal data integration algorithms now provide sound ways of
aligning single-cell datasets in the cell cycle space – notably thanks to optimal transport,
some caveats persist in order to fully exploit these algorithms for automatic cell cycle
phase annotation. The most prominent one is the accurate delineating of cell cycle phases
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Figure 6.1: According to Chervov, there exists several trajectory geometries in
the cell cycle gene expression space that correspond to different proliferation
speeds. Cells are colored by number of counts, red arrows indicate to the point
of mitosis. (a) Non-proliferating cell populations. (b) Proliferating cell populations. (c)
Fast proliferating cell populations. Taken from (Chervov and Zinovyev, 2022).

along the cell cycle trajectories, in particular the junction between the G1 phase and S
phases and the junction between the G2 and M phases. Indeed, these two pairs of phases
appear to be close in terms of expressed genes as a major function of G1 (respectively G2)
is the synthesis of proteins involved in the S (respectively M) phase. This makes accurate
automatic labeling challenging, as the boundaries within these two pairs of phases appear
to be fuzzy.

I would like to close this section by stating that I do not expect scRNA-seq to be
informative enough to answer these three important problems confidently. In my opinion,
information contained within other modalities, such as proteomics, chromatin conforma-
tion, and microscopy, will be key to better understanding the cell cycle at the molecular
level. Unfortunately, multimodal data acquisition and integration is still challenging and
costly today, but I am optimistic that the next few years will provide us with new exciting
insights into the cell cycle molecular machinery, and that multimodal approaches will help
us get a full picture of this complex system.

6.3 Single-cell data is a powerful asset in computational bi-
ology to decipher complex heterogeneous cell processes

Many complex biological systems, such as tumors, the brain, or the immune system, are
highly heterogeneous in terms of cell types and states. Deciphering the biological processes
happening in such systems is very enticing, but also highly challenging because of the very
high heterogeneity of cells, as well as the high number of interactions happening between
them. For this reason, single-cell assays have proven to be invaluable in analyzing such
biological systems. In my projects, I focused on studying single-cell RNA-seq data, as a
cell’s transcriptome provides relevant insight into many processes undergone or about to
be undergone by the cell. Nonetheless, it is important to remember that RNA-seq is just
one biological modality among others, and that it is difficult to get the full picture of a
cell’s biology by just looking at its genetic expression. For this reason, studying complex
biological systems can be facilitated by using other biological modalities, at the single-cell
level or not, such as chromatin conformation, proteomics, genomics, or spatial transcrip-
tomics. This also brings the need for not only horizontal data integration methods, but
also vertical and diagonal integration algorithms that can combine the information present
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throughout the different biological modalities, in order to get a better understanding of
the underlying biological processes and cell-cell interactions.

We also showed the importance of using single-cell data when studying Ewing sarcoma:
all the chapter 5 could not have been written if we had used bulk RNA-seq instead of
single-cell RNA-seq assays. Even though differences between cells are more subtle than
in other biological systems such as the immune system, where the gene expression is so
different between cell types that clear clusters are identifiable in the transcriptional space,
differences between transcriptional programs in Ewing sarcoma cells still exist, and are
very relevant to understand the cell processes they carry out. For instance, we would not
have been able to understand the heterogeneity of Ewing sarcoma cells at the end of the
induction without having access to single-cell data: both bulk RNA-seq analyses and other
assays, such as Western blot yielded an average profile between EF1-low and EF1-high
cells, that finally did not correspond to any of the two subpopulations. Here, we were able
to conclude on the coexistence of two Ewing sarcoma cell subpopulations, one composed of
cells that have fully recovered their initial malignant state and cell processes, and another
with cells that have not. This observation yields relevant biological questions, such as the
possible irreversibility of the malignant to non-malignant phenotype shift upon depletion
of EF1, and may lead to future studies.

For this reason, we would advocate for using single-cell assays when studying Ewing
sarcoma cells whenever possible, despite the additional time, effort, and cost it takes to
carry out such experiments. Single-cell assays not only provide finer insights into the
biology of cells contained in a biological system, but also help avoid formulating erroneous
conclusions and hypotheses when studying such heterogeneous cell populations. We are
very excited to see the future of these projects leveraging the analysis of Ewing sarcoma
inducible cell lines at the single-cell level, notably by exploring not only the RNA-seq
modality but also others such as chromatin accessibility and proteomics. We also think
that unsupervised deconvolution methods, such as ICA or NMF, will continue to prove
useful to deconvolute gene expression data in tumors and other data modalities, possibly
in other biological systems.
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Figure 6.2: Presentation of the datasets used in applications. (a) Cell type dis-
tribution within the osteosarcoma datasets used for joint space integration. (b) UMAP
representation of the osteosarcoma datasets within their common genes space, colored by
dataset (top) and by author-provided cell type (bottom). (c) Cell type distribution within
the nasopharyngeal carcinoma datasets used for gene space integration. (d) UMAP rep-
resentation of the nasopharyngeal carcinoma datasets within their common genes space,
colored by dataset (top) and by author-provided cell type (bottom). (e) UMAP represen-
tation of the osteosarcoma and Ewing sarcoma datasets used for cell cycle label transfer.
From (Fouché et al., 2023).



BIBLIOGRAPHY 151

Figure 6.3: Comparing the different joint analysis methods on osteosarcoma
datasets. (a) 2D embeddings of integration results, colored by dataset. (b) 2D embed-
dings of integration results, colored by author-provided cell type. (c) 2D embeddings of
integration results, colored by Leiden clustering. (d) Cluster purity (percentage of cells
belonging to cluster i with cell type j) From (Fouché et al., 2023).
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Figure 6.4: Using gene space integration to improve dataset annotations. (a)
Most specific genes associated to each cluster according to a Wilcoxon rank-sum test. The
proposed annotation is written in red. (b) Leiden clusters computed after gene space
integration. (c) Annotation transfer rates indicate among cells with the new annotation,
what fraction of them was of each previous label. From (Fouché et al., 2023).
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Figure 6.5: Expression of CD4 co-localizes with the LT-CD4+ cluster (CD4 gene
is missing from the P07 dataset, therefore it is missing from the common gene space into
which datasets are integrated). From (Fouché et al., 2023).
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Figure 6.6: UMAP representation of each nasopharyngeal carcinoma dataset,
with old and new cell type annotations (P01 -> P09). From (Fouché et al., 2023).
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Figure 6.7: SFigure 5B / UMAP representation of each nasopharyngeal
carcinoma dataset, with old and new cell type annotations (P01 -> P09).
From (Fouché et al., 2023).
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Figure 6.8: MNN-based integration fails at the task of transferring cell cycle phase anno-
tations across datasets. (a) Representing each dataset in the G1/S signal versus G2/M signal basis. In
this representation, it is difficult to see the cell cycle loop of fast-cycling datasets (U2OS and TC71). (b)
Representing each dataset in the G1/S signal versus G2/M signal basis, colored by raw counts number.
In this representation, it is difficult to identify the mitosis moment of fast-cycling datasets (U2OS and
TC71). (c) Visualizing the cell cycle loop of each dataset, approximate positions of cell cycle phases are
annotated. All datasets are colored according to individual cells’ number of counts, which helps to see the
point of mitosis (see the main figure for annotations). (d) Cells position in cell cycle space after MNN-based
integration (CHLA10 is used as a reference during the integration). (e) MNN-based cell labeling, in cell
cycle space after MNN-based integration. (f) MNN-based cell labeling, using an improved fast signature
for fast cycling datasets to visualize the cell cycle loop. We observe here many annotation weaknesses.
From (Fouché et al., 2023).
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Figure 6.9: Optimal transport-based integration allows for sound cell cycle
phase labeling of osteosarcoma and Ewing sarcoma datasets. (a) Transport-based
cell labeling, in cell cycle space after Transport-based integration. (b) Transport-based
cell labeling, within the initial G1/S signal versus G2/M signal basis. (c) Differential gene
expression was performed using a Wilcoxon rank-sum test, showing the most specific genes
associated with cells of each label. From (Fouché et al., 2023).
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Figure 6.10: Bandwidth and weightening selection of balanced scSNAREseq
datasets. (a) Bandwidth choice over scSNAREseq datasets. Right: Query dataset.
Left: Reference dataset. (b) Point-wise Gaussian kernel density of each dataset before
weights selection. Right: Query dataset. Left: Reference dataset. (c) Point-wise weights
selection, illustrated by color and dot area. Right: Query dataset. Left: Reference dataset.
(d) Relationship between initial point-wise Gaussian kernel density and selected weight.
Right: Query dataset. Left: Reference dataset. From (Fouché and Zinovyev, 2021).

Figure 6.11: Bandwidth and weightening selection of unbalanced scSNAREseq
datasets. (a) Bandwidth choice over scSNAREseq datasets. Right: Query dataset.
Left: Reference dataset. (b) Point-wise Gaussian kernel density of each dataset before
weights selection. Right: Query dataset. Left: Reference dataset. (c) Point-wise weights
selection, illustrated by color and dot area. Right: Query dataset. Left: Reference dataset.
(d) Relationship between initial point-wise Gaussian kernel density and selected weight.
Right: Query dataset. Left: Reference dataset. From (Fouché and Zinovyev, 2021).
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Figure 6.12: Bandwidth and weightening selection of spirals datasets. (a) Band-
width choice over scSNAREseq datasets. Right: Query dataset. Left: Reference dataset.
(b) Point-wise Gaussian kernel density of each dataset before weights selection. Right:
Query dataset. Left: Reference dataset. (c) Point-wise weights selection, illustrated by
color and dot area. Right: Query dataset. Left: Reference dataset. (d) Relationship
between initial point-wise Gaussian kernel density and selected weight. Right: Query
dataset. Left: Reference dataset. From (Fouché and Zinovyev, 2021).

Figure 6.13: Comparison of OT-based integration methods on Ewing sarcoma
datasets embedded in cell cycle space. Left subpanes: colored by original
dataset. Right subpanes: colored by initial position in the spiral, integration
should preserve gradient. (a) Unweighted optimal transport-based integration. (b)
Weighted optimal transport-based integration. From (Fouché and Zinovyev, 2021).
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Figure 6.14: Comparison of integration methods on balanced scSNAREseq
datasets. Left subpanes: colored by original dataset. Right subpanes: col-
ored by initial position in the spiral, integration should preserve gradient. (a)
Unweighted optimal transport-based integration. (b) Weighted optimal transport-based
integration. (c) Unweighted GW-based transport-based integration. (d) Weighted GW-
based transport-based integration. (e) Balanced SCOT integration. From (Fouché and
Zinovyev, 2021).
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Figure 6.15: Comparison of integration methods on unbalanced scSNAREseq
datasets. Left subpanes: colored by original dataset. Right subpanes: col-
ored by initial position in the spiral, integration should preserve gradient. (a)
Unweighted optimal transport-based integration. (b) Weighted optimal transport-based
integration. (c) Unweighted GW-based transport-based integration. (d) Weighted GW-
based transport-based integration. (e) Balanced SCOT integration. From (Fouché and
Zinovyev, 2021).







 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 

Biological tissues can nowadays be profiled at the single-cell level using single-cell RNA 

sequencing, which yields large datasets describing the transcriptional landscape of the 

individual cells. Leveraging machine learning algorithms, we developed automated 

methods to facilitate the integration, the analysis and the interpretation of such datasets, 

finding medical applications in the study of Ewing sarcomas, a pediatric bone cancer type. 

In particular, we propose a new, highly modular computational framework for data 

integration called transmorph that allows the user to build and benchmark data integration 

pipelines. 

MOTS CLÉS 

 

single-cell RNA-seq, apprentissage automatique, optimisation, transport optimal, 

intégration de données, apprentissage non-supervisé, déconvolution, sarcome d'Ewing, 

biologie computationnelle, cycle cellulaire, 

hétérogénéité tumorale 

RÉSUMÉ 

 

Les tissus biologiques peuvent aujourd'hui être profilés à l’échelle de la cellule unique en 

utilisant le séquençage de l'ARN en single-cell, ce qui produit de grands jeux de données 

décrivant le paysage transcriptionnel des cellules individuelles. En nous appuyant sur des 

algorithmes d'apprentissage automatique, nous avons développé des méthodes 

automatisées pour faciliter l'intégration, l'analyse et l'interprétation de ces jeux de données, 

dont nous montrons des applications médicales dans l'étude des sarcomes d'Ewing, un 

type de cancer pédiatrique des os. En particulier, nous proposons un nouveau framework 

informatique hautement modulaire pour l'intégration des données, appelé transmorph, qui 

permet à l'utilisateur de construire et de comparer des pipelines d'intégration de données. 

 

Traduit avec DeepL.com (version gratuite) 
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single-cell RNA-seq, machine learning, optimization, optimal transport, data integration, 

unsupervised learning, deconvolution, Ewing sarcoma, computational biology, cell cycle, 
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