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Chapter 1
Introduction

1.1 Context overview

Following my graduation in 2020 from the DAC Master's course in the Sorbonne
University, which included an enriching experience as a data science intern at Reminiz, |
decided to embark upon the thrilling yet tortuous journey of a PhD. My primary aim was to
continue learning and doing so within an academic environment allowed me to work closely
with highly experienced people who are experts in their fields and close to cutting-edge
research. Another important advantage of working as a PhD student was the possibility
to continue teaching, as | had been giving maths grinds to high school or university
students since | was 17 years old. Finally, | also wanted to work in a challenging domain
of machine learning where | would feel my work had an impact. | was therefore delighted
to be offered to pursue a PhD thesis as part of the SUOG European project at the ISIR
laboratory in Sorbonne Université, with Kévin Bailly, Ferdinand Dhombres, and Arnaud
Dapogny whom | had as a teacher during my master's. This gave me the opportunity
to work on groundbreaking developments in the domain of medical imaging, (with all the
difficulties a truly innovative field entails...) to progress the practices of obstetrics and
gynecology. It also allowed me to work closely with Gauthier Tallec and Edouard Yvinec,
both PhD students who shared the same supervisors as me whose collaboration helped
me for my personal work but also led to two publications out of the scope of this thesis.
We will now present the research domain, the SUOG project and its challenges, and then
deliver our chosen research directions.

1.2 Introduction to the SUOG project

Obstetrics and Gynecology (OB/GYN) denote the medical specialties that concentrate
on the female reproductive system. Whether for pregnancies or breast cancer screening,
medical imaging is essential in this area of medicine to correctly identify anomalies early
enough to allow treatment. 3D and 4D ultrasound (US) scans, magnetic resonance
imaging (MRI), which use strong magnetic fields and radio waves to create pictures of
the anatomy and CT scans which use X-ray can be used in certain specific cases to
produce the images for obstetrics and serve as a support for the expert to deliver a
diagnosis. Nevertheless, 2D ultrasound scanning is still the primary imaging mechanism
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Longitudinal view of the Longitudinal view of the Magnified view of the Longitudinal view of the
bladder cervix gestational sac uterus

Figure 1.1: Examples of images from the SUOG collection are shown in the first row
and their segmentation maps are shown on the second row. The scan plane annotations
corresponding to these examples are reported in this figure. Best viewed in colour.

when it comes to OB/GYN because of its safety and lower cost. Also, ultrasound scans are
often preferred over MRI scans because they offer much faster acquisitions that however
come at the cost of noisy images. These images are captured and stored in real time by
an ultrasound operator.

However, ultrasound screening for OB/GYN is a complex task because of a large
number of disorders (>1K) and an even larger number of signs or findings (>10K) that
point to these disorders. This problem has become critical due to the number of pregnancy
anomalies with 130K cases of congenital anomalies (e.g. structural or functional anomalies
occurring during intrauterine life) and 50K cases of ectopic pregnancies (e.g. when
the fertilized egg implants and grows outside of the main cavity of the uterus) per
year in Europe. Moreover, it is exacerbated by the fact that there is only a limited
number of ultrasound screening experts, especially in a field that bears significant
medical responsibility. It is therefore evident that effective assistance would help improve
pregnancy scans. The problematics for ultrasound screening in obstetrics and gynecology
are therefore two-fold: (1) to collect and help filter all relevant images during the scan,
and (2) to help analyze these images and achieve diagnosis.

My thesis is part of the SUOG (standing for Smart Ultrasound in Obstetrics and
Gynecology) European project that aims to create an intelligent ultrasound assistant built
to provide real-time support for the sonographer during the scanning process, and identify
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1.2. Introduction to the SUOG project

the next relevant ultrasound acquisition or make the correct diagnosis. One of the starting
points of this project was the creation of a knowledge base established by international
experts from 9 fetal medicine centers in Europe which gathers hundreds of nodes, all
clustered in three categories: disorders, findings and technical elements. |Initially, the
ultrasound assistant would use a rule-based method based on the semantic information as
well as the implications provided by this ontology to determine which acquisition would be
relevant. This would provide the non-expert sonographer with all the necessary images if
ever an expert verification of the diagnosis was needed. To improve on this method, two
tasks have been identified: scan plane recognition and image retrieval. Both these tasks
are essential for an efficient ultrasound screening as it can guide the sonographer towards
the next relevant ultrasound image acquisition. To deal with those tasks, as a complement
to the SUOG ontology, thousands of images have been richly annotated by experts with
labels extracted from this knowledge base. In particular, for scan plane recognition, there
are 18 different views. For a classification task, they were merged into 8 classes, namely
the longitudinal view of the uterus, oblique views of the uterus, the longitudinal view of
the cervix, the longitudinal view of the bladder, the transverse view of the uterus, the
interstitial portion view of the Fallopian tube, the longitudinal and transverse views of the
adnexa and the ovary, and magnified views of the gestational sac. Furthermore, these 18
views all stem from 5 meta classes. Figure 1.2 illustrates this sub-graph extracted from
the SUOG ontology. Teams from GE Healthcare also segmented 294 images into 10 zones
that do not overlap: the amniotic sac, the embryo, the gestational sac, the midline echo,
the ovary, the uterus borders, the yolk sac, the cervix external ostium, the endometrium
and the trophoblast. Examples of these images along with their pixel-wise segmentation
labels can be found in Figure 1.1. Although The SUOG project offers a limited amount
of ultrasound images (a few thousand), they have been richly annotated in terms of pixel-
wise segmentation and ontology entities. Making use of these annotations which include
strong semantic information in order to yield interesting results with relatively little data is
therefore an exciting challenge. For instance, as a part of the SUOG project and in order
to fully use the structural information from the SUOG ontology, El Ghosh et al. worked
on a graph-based similarity measure named SimSUOG. This work leverages symbolic Al
to compute distances between pregnancy ultrasound images. It is illustrated in Figure
1.3.

Tasks such as scan plane recognition or image retrieval for medical imaging have
already been dealt with using computer vision techniques [32] with relative success. We
thus decide to tackle these problems using deep learning based approaches. From a
machine learning standpoint, these tasks involve several challenges. First (challenge 1),
most of the successful deep learning computer vision models (e.g. for tasks such as object
recognition, object detection or face recognition) rely on large corpses (up to several
millions) of annotated training examples, which is seldom the case when considering
OB/GYN ultrasound imaging tasks (in particular, SUOG only offers a few thousand
annotated images) and which also include noisy images. Second, (challenge 2), how to

7
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Magnified view of the gestational sac

Longitudinal view of the embryo
Magnified view of the gestational
sac

Magnified view of the trophoblast

Transverse view of the right adnexa
Transverse view of the left adnexa

Longitudinal view of the right adnexa

Adnexal view

Longitudinal view of the left adnexa

Longitudinal view of the uterus

Oblique view of the uterus

Sz, e LenusiView Longitudinal view of the cervix

Transverse view on uterus

Bladder and vesicouterine fold
view

Longitudinal view of bladder

Pouch of Douglas view
Transverse view of the Pouch of Douglas

Longitudinal view of the Pouch of Douglas

Figure 1.2: An overview of the scan plane annotations. In this figure we illustrate a
sub-graph of the SUOG ontology. In particular, the 18 different scan plane annotations
are depicted as the leaf entities of this sub-graph, and the meta-views at the second level
ontology entities. Another way to group the different scan plane annotations was used in
chapter 2, and is illustrated here with the 9 colours each representing a different group
of views.

effectively leverage the additional data provided by the SUOG project (namely the rich
structured annotations extracted from the SUOG ontology and the spatial information in
the segmentation maps) remains to be determined. In a nutshell, a classic deep neural
network would not be able to perform very well on medical ultrasound images because
of the lack of a large-scale annotated training set, and would not be able to leverage the
additional information available to enrich this dataset.

1.3 Research Directions

To mitigate the difficulties caused by the relatively small dataset size (challenge 1), we
consider leveraging spatial prior information to guide the learning. This idea stems from
the theory that certain areas of the input image may provide more pertinent information
for making specific diagnostics. For instance, if we want to predict the scan plane in an
early pregnancy ultrasound image, it is clear that the model will be more effective if it
is able to precisely localize the gestational sac and the uterus in some way. To do so,
we investigate forcing the model’s attribution to resemble prior information heatmaps,

8
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Annotations SimSUDG Annotations
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Figure 1.3: An illustration of the semantic-based approach for the similarity of ultrasound
images proposed by El Ghosh et al.. Whereas classic image similarity measures would
consider distances by comparing the annotations, SimSUOG first builds a similarity
measure between all nodes of the SUOG ontology by combining the semantic distance
between two entities and the Information Context of their Lowest Common Ancestor.
This allows SimSUOG to build a sound measure with strong semantic context between
two images annotated using entities extracted from the SUOG ontology.

thus teaching the model where the important information is. As the model would learn
to concentrate and identify the important areas of the input image during training, the
spatial prior would not be needed during inference.

The second track we explore to improve the predictive capacities of a deep neural
network (thus adressing challenge 1 and challenge 2 at the same time) by exploiting
the strong semantic information that can be found in the structured annotations. As
mentioned previously, the SUOG dataset delivers rich annotations for each images and
an ontology from which the annotations are extracted. This work builds upon the idea
that all classes are not equally different. For instance, an African crocodile is closer
semantically speaking to an American alligator than it is to a husky. In the same vein, the
left interstitial portion view is closer to the right interstitial portion view than it is to the
Pouch of Douglas view. The idea would be for the model to predict or separate different
levels of hierarchical annotations using several embeddings. This would enable the model
to build a sounder latent embedding space and therefore better optimize the inter-class
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distances. Another way to do so is to directly integrate the semantic information through
natural language guidance, through rich captioning or meta language guidance. The idea
is to take advantage of the recent progress in the domain of Natural Language Processing
(NLP) to improve the visual model’s capacities. This may allow the model to have a more
accurate representation of the input images through a sharper textual representation.

1.4 Related Work

1.4.1 Deep Learning for Obstetrics and Gynecology

In recent years, computer vision and image analysis have become central to medical
imaging, for tasks such as anomaly or disorder classification, image segmentation or
object detection. In particular, it is important for OB/GYN to better analyze pregnancy
ultrasound scans or breast radiographies. In order to achieve interesting results, research
has turned to artificial intelligence (Al) to analyze these images automatically.

At the beginning of my thesis, we worked on a systematic review of Al techniques
for OB/GYN [32], in order to investigate and evaluate the methods, data and protocols.
We collected all OB/GYN papers published between 2000 and 2020 that mentioned Al
and easily divided them into two subcategories: those using symbolic Al, and those using
statistical Al. Symbolic Al methods include formal logic, knowledge representation, and
rule-based reasoning. These methods are usually explainable, do not need large amounts
of data but rely on human supervision and design, which have made them popular in
medical domains. Statistical Al, or more precisely machine learning methods, usually aim
to optimize algorithms such as Artificial Neural Networks (ANN) and usually necessitate
large amounts of data. Results and predictions given by machine learning methods are also
more difficult to explain, as the mechanism inside the ANN is a form of "black box". We
found that Al is still very seldom used to deal with image or video data (only 12% of the Al
methods in OB/GYN) for OB/GYN tasks, and that all the machine learning methods that
are employed in that field are in reality at the "proof of concept" or "proof of feasibility"
stage. This showcases a lack of novelty in the area, and probably a number of constraints
to the use of machine learning due to the sensitive nature of the OB/GYN examinations.
In addition, as machine learning typically relies on large datasets to effectively learn a
predictive model, this is not helped by the fact that such datasets are rarely available in
OB/GYN. Finally, another reason may be due to the fact that most of the recent advances
in machine learning are typically published in computer science journals and not medical
reviews.

However, deep learning methods, which have become common for most computer
vision tasks such as object detection, object recognition or image segmentation for
example have slowly started to make their way into the medical imaging fields. Burgos-
Artizzu et al. [18] evaluate the impact of deep learning methods such as Convolutional
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Neural Networks (CNNs) on a relatively large medical imaging dataset (12K images) and
show that these types of models can obtain results similar to humans for maternal-fetal
ultrasound classification. In a similar manner, Qu et al. [70] propose to use transfer
learning to deal with limited amounts of data, by using a network that is pretrained on a
larger dataset and fine-tuning it on the available data. They compare these CNN-based
methods to classical machine learning methods (e.g. SVMs and clustering) and show that
using transfer learning limits overfitting and offers the most promising results.

In order to delve deeper into the ultrasound image analysis, we now present works that
deal, on the one hand, with scan plane recognition, a central task in the SUOG project,
and, on the other hand, with breast cancer detection, an ultrasound imaging classification
task that has gained a lot of traction recently.

1.4.2 Scan Plane Recognition

One major task in medical image analysis is scan plane recognition, which aims at
classifying an image into a certain category of standardised ultrasound planes. This task
was originally carried out through manual screening by doctors. However, a high number
of errors have been observed because of the large number of non-experts ultrasound
operators. This task is crucial because it can guide a non-expert sonographer towards the
needed scan plane ultrasound acquisitions, and thereby averting the need for additional
scans due to errors. A significant volume of research concentrates on this task as a
classification task and deal with it rather simply using a CNN and transfer learning
[118, 57, 70, 18]. These works differ from each other through small changes in the
evaluation protocol or database used to train and test. As it is pointed out by Fiorentino
et al. [40], scan plane recognition has very few publicly available datasets, and there
are various tasks even within the scan plane recognition. In particular, the planes that
are typically evaluated are the fetal abdomen scan planes (FASP), the fetal brain scan
plane (FBSP) and the femur standard planes (FFESP). Visual examples of these are
highlighted in Figure 1.4. Therefore a lot of methods propose small adjustments to
improve their prediction scores for a specific dataset, without necessarily comparing to
other methods. For instance, Montero et al. [63] make use of Generative Adversarial
Networks (GAN) to generate synthetic data and therefore learn a classification model with
a larger training dataset. Chen et al. [23] aim to identify scan planes from ultrasound
images and videos automatically on a self-collected dataset. They leverage a DenseNet
architecture and mix high-level features from the shallow layers with low-level features
from the deeper layers to improve their predictive capacity. Sundaresan et al. [93] use
a Fully Convolutional Network (FCN) to simultaneously locate the center of the fetal
heart and classify cardiac views. Similarly, Baumgartner et al. [10] introduce Sononet, a
convolutional neural network (CNN) model designed for the recognition and localization
of fetal standard scan planes. Their approach involves thorough preprocessing of a
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Fetal Fetal 4
abdomen chamber
view
Fetal
femur
Fetal
brain

Figure 1.4: Visual examples of the most common fetal scan planes. Illustration taken
from Fiorentino et al. [40].
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substantial dataset containing over 30,000 2D ultrasound images, employing weakly-
supervised learning to achieve real-time localization. While the previous work makes use
of a localization mechanism to understand the the structure of the image and therefore
improve the scan plane recognition predictions, SonoNet uses the scan plane recognition
predictions to localize certain important structures using a backward pass.

Comparably, research has also investigated using attention mechanisms to better
leverage the spatial information. Schlemper et al. [78] build on Sononet [10] to which they
add attention gates for different ultrasound image analysis tasks such as segmentation or
scan plane recognition. Cai et al. [20] use sonographer gaze tracking data to generate
relevant attention maps. This offers valuable information to the model in order to better
predict the scan plane.

Other methods leverage an auxiliary task to improve performance on the main task.
Xu et al. [110] address scan plane recognition and landmark detection for abdominal
ultrasound images in a multi-task framework. This way, the scan plane recognition task
benefits from the latent information learnt from the landmark detection. Similarly, Zhao
et al. [122] incorporates knowledge of fetal anatomy into scan plane recognition using
a knowledge graph. The knowledge graph facilitates the creation of a co-occurrence
relationship graph, connecting spatial features extracted by a detection module. This
enhances the model’s ability to reason about anatomical structures, thereby improving the
predictive capabilities of the convolutional model. However, these methods necessitate
additional information during inference.

1.4.3 Breast cancer detection

Another OB/GYN task that has gathered a lot of attention in automatic image analysis
is breast cancer detection. Several works have shown an interest in Al methods for
breast cancer detection. Le et al. [53] first showed that support vector machines (SVM)
improved the predictive results when compared to rule-based methods, and Zheng et al.
[125] apply an AdaBoost algorithm to the binary classification task and demonstrates its
effectiveness. Nasser et Yusof [64] propose a systematic review of deep learning methods
for breast cancer detection. They underline the fact that deep learning methods have
obtained promising results using CNNs. For instance, Ha et al. [44] build a CNN with
residual connections to predict breast cancer on MRI imaging data, and Wu et al. [106]
train a custom ResNet-based model updated for high-resolution medical images on a large-
scale database (1M images) and obtain very promising results. However, such large-scale
datasets are seldom available publicly.

Strelcenia et Prakoonwit [90] generate synthetic data with a novel GAN-inspired
method to alleviate this issue. Similarly, Tien et al. [97] combine variations of GAN (e.g.
CycleGAN and DeblurGAN) to improve the quality of the training images. Albargouni
et al. [4] identify the problem of having limited access to expert annotations in the medical
imaging field. They therefore leverage crowdsourcing to improve their model’s capacity
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to predict breast cancer malignancy.

Chen et al. [24] identify that shear-wave elastography (SWE) serves as important
complementary data to the ultrasound images, but are scarce due to the lack of
SWE devices in the majority of hospitals. To enhance the predictive capacities of the
breast cancer classification network with this additional data, they propose cross-modal
and semantic data augmentation simultaneously. More specifically, a modal translator
synthesizes SWE images from ultrasound images, while two losses predict the presence of
cancer: one on the ultrasound scans, and one on pairs of US-SWE images. Lee et al. [54]
also use additional auxiliary images to improve the prediction task. They try to deal with
cancer risk prediction using a prior image as additional information. To do so, both the
present scan and the prior scan are passed through a shared CNN backbone for feature
extraction. They then leverage a decoder based on a transformer architecture to fuse
the relevant information from both inputs and improve the model’s capacity to evaluate
the breast cancer risk. Shareef et al. [82] also use a transformer architecture to capture
local context in the input image. However, they deal with breast cancer detection in
a multitask manner, both solving a classification task and a cancer segmentation task.
They both use a CNN to extract hierarchical and local patterns and a SWIN transformer
to leverage long-range dependencies. They show that learning to predict a segmentation
map for the cancerous areas of the image greatly improves the classification predictions.

The take-home message of this section is that deep learning methods have recently
been applied to OB/GYN imaging tasks such as scan plane recognition or breast cancer
detection for instance. However, results have not been as convincing as in other
computer vision domains because of the difficulty to access large-scale annotated datasets
(challenge 1). Since this data is not available in our research context, we aim to make
use of available additional information to improve the deep learning model’s predictive
capacities and therefore reflect on different ways to guide the model through this data
(challenge 2). In particular, we leverage spatial prior information (i.e. pixel-wise
segmentation maps, see Chapter 2 of this thesis) and structured annotations extracted
from a hierarchical class ontology (i.e. meta-annotations, see Chapter 3) in order to add
spatial or semantic context to our input samples.

1.5 Summary of contributions

In an attempt to leverage the power of deep learning methods in an OB/GYN context, we
decide to integrate additional information (whether it be spatial information or structured
annotations) to alleviate the problem of small datasets.

We first investigate the interest of adding a spatial prior to the scan plane recognition
classification task. To do so, we guide the deep learning model’s focus towards certain
specific salient zones in order to improve its predictive capacities. We then aim to
improve the model’s capacity to separate scan plane recognition classes using structured
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annotations. We train the model in order to be able to separate different levels of classes
and therefore create better latent representations for the ultrasound images.
To sum it up, our contributions in this thesis are three-fold:

e In order to integrate spatial prior information, we introduce the Prior-Guided
Attribution method (PGA). The aim of this method is to force the model to
concentrate on certain specific regions of the input image that might be more
discriminative for the model's predictions. We therefore implement a Privileged
Attribution Loss (PAL) that maximizes the cross-correlation between the attribution
map and a prior information heatmap where the salient areas are highlighted. We
also propose a Prior Allocation Strategy, that enables the model to incorporate
multiple spatial priors while still giving some liberty for the model to look elsewhere.

e To improve the capacities of a computer vision model for an image similarity task, we
introduce a novel way to integrate structured annotations in the learning process.
We introduce meta-embeddings that are pushed to encode hierarchical semantic
information extracted from a class ontology by the Semantic Abstraction Loss
(SAL). This loss is built as a weighted average of DML losses. We also introduce
new ways to integrate this information through natural language. First we propose
to input the hierarchical annotations as rich captioning. Second, we build on the
work from Roth et al. [75] and guide the meta-embeddings with natural language,
introducing Ontology Language Guidance (OLG).

e From an experimental standpoint, we validate both these methods on several use
cases. For the classification task, we demonstrate that the PGA method is generic
by conducting experiments on facial expression recognition, breast cancer detection
and scan plane recognition. For the visual similarity learning task, we conduct
experiments on an open-set birds classification dataset and validate its interest for
OB/GYN tasks on scan plane recognition with the SUOG dataset.

1.6 List of Publications

The work presented in this thesis led to the following preprints and publications:

1.6.1 International Journals

¢ Dhombres, F., Bonnard, J., Bailly, K., Maurice, P., Papageorghiou, A. T., &
Jouannic, J. M. (2022). Contributions of artificial intelligence reported in obstetrics
and gynecology journals: systematic review. Journal of medical Internet research
(JMIR), 24(4), e35465. [32]

15



Chapter 1. Introduction

{ Bonnard, J., Dapogny, A., Zsamboki, R., De Braud, L., Jurkovic, D., Bailly, K.,
& Dhombres, F. (2023). Prior-Guided Attribution of Deep Neural Networks for

Obstetrics and Gynecology. IEEE Journal of Biomedical and Health Informatics
(JBHI). [14]

1.6.2 International Conferences

{ Bonnard, J., Dapogny, A., Dhombres, F., & Bailly, K. (2022, August). Privileged
attribution constrained deep networks for facial expression recognition. In 2022 26th
International Conference on Pattern Recognition (ICPR) (pp. 1055-1061). IEEE.
[13]

{ Bonnard, J., Dapogny, A., Dhombres, F., & Bailly, K. Ontology-Guided Learning
for Obstetrics and Gynecology. Under review at ICPR 2024

1.6.3 National Conferences

{ Bonnard, J., Dapogny, A., Dhombres, F., & Bailly, K. Privileged attribution
constrained deep networks for facial expression recognition. In 2022 Reconnaissance
des Formes, Image, Apprentissage et Perception (RFIAP).

1.6.4 International Workshops

¢ Bonnard J. Numeric Al research : Neural network and Privileged Information. In
2022 SUOG Workshop

1.7 Outline

This thesis is divided into two main chapters where we investigate ways to better deal
with OB/GYN imaging challenges. In chapter 2, we first present our work concerning the
integration of prior spatial information to improve the model’s predictions, and therefore
answering challenge 1. More precisely, we present the novel Prior-Guided Attribution
(PGA) method that guides the CNN-based network’s attribution towards carefully-chosen
salient areas. In this chapter, we first expose different methods that use prior information
guidance or attribution constrained learning. We then delve deeper into the method and
next demonstrate the effectiveness of the proposed method on several different tasks and
datasets, while also discussing the importance of the prior information selection.
Second, in chapter 3, we introduce our work concerning the integration of structured
annotations in metric learning, therefore addressing challenge 2. More specifically, we
introduce our novel Lg,;, and OLG methods that incorporate strong semantic information
extracted form the annotations through meta-embeddings and language guidance. In this
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chapter, we first present the most common deep metric learning baselines and methods
that leverage hierarchical annotations in their learning framework. We then present
both Lgaz, and OLG in more detail and finally prove the interest of this method on a
publicly-available birds classification DML dataset and the SUOG scan plane recognition
task. Finally, we discuss the advantages and limitations of this method before suggesting
interesting future research.
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Chapter 2
Privileged Attribution Learning to
deal with small datasets

2.1 Introduction

Ultrasound scanning is standard-of-care practice in obstetrics and gynecology, and the
automatic analysis of these images has become ubiquitous for the development of efficient
clinical decision support systems for non-expert operators, especially since the availability
of ultrasound experts is insufficient. As it is often the case because of the cost of medical
images, the SUOG project has access to a limited number of annotated images (challenge
1), and dealing with tasks such as scan plane recognition with deep learning models can
be difficult. However, structured spatial information is available through a few hundred
segmentation maps (challenge 2).

In order to alleviate the issues caused by the lack of annotated data, we therefore
leverage this spatial prior information to guide the network. We build upon the idea that
certain regions of the input image hold greater significance for accurate predictions (i.e.
the eyes, eyebrows, mouth and nose are more important for facial expression recognition
than the hair or the background). To improve the model’'s predictive power, we guide
the model's attribution maps, which correspond to the importance or relevance of the
input features with respect to the model’s outputs. Specifically, we introduce the novel
Privileged Attribution Loss (PAL) at train time that maximizes the cross-correlation
between these attribution maps and carefully chosen priors, therefore encouraging the
model to pay more attention to certain specific areas of the input image. This allows
the model to capitalize on additional expert information that is available during training
without needing it at test time, which means that the method comes at virtually no cost
during inference. To enable the integration of multiple prior information maps at the same
time, we propose the Prior Allocation Strategy (PAS) that allocates a fraction of channels
of the network’s attribution to each individual prior, while still leaving the network some
freedom to focus on different areas. The proposed method, Prior Guided Attribution
(PGA), encompasses both PAL and PAS to guide the network towards any kind of spatial
prior. The overall pipeline is illustrated in Figure 2.1. The method presented is generic and
can be readily adapted for various computer vision tasks with distinct priors. To evaluate
this, we initially implement PGA for Facial Expression Recognition (FER). The reasons for
using FER as a proxy task are two-fold: First, the results of deep learning approaches for
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FER are usually hindered by data scarcity, as the annotation is expensive compared to other
computer vision subdomains. Second, face images can benefit from side annotations such
as face bounding boxes and landmarks extracted using off-the-shelf methods. We then
extend the application of PGA to two OB/GYN tasks: breast cancer detection (employing
a single semantic segmentation map as a prior) and automatic scan plane recognition in
early pregnancy ultrasound images, incorporating limited segmentation maps as spatial
priors. The results demonstrate promising outcomes when compared to existing baselines.
To summarize, the main contributions proposed in this chapter are:

e We introduce a Prior Attribution Loss (PAL) term that seeks to maximize the cross-
correlation between the model's attribution and prior information maps, therefore
ensuring that the model focuses on specifically chosen areas of the input image.

e We introduce a Prior Allocation Strategy (PAS) that allows the method to
incorporate multiple maps of additional prior information while still compromising
on the strength of the constraint. Additionally, we discuss and evaluate the choice
of the number and granularity of prior heatmaps that are used to guide the network.

e We introduce PGA, a method that guides the model towards salient regions of the
input image, built as the association of both PAL and PAS. PGA helps learning
with few data for medical imaging, only necessitating additional prior information
at train time and not at inference time.

e Experimentally, we show that PGA is generic and improves the predictive power of
deep neural networks when applied to different tasks and images types. We then
compare the impact of different priors on the method and therefore discuss the
choice of said prior maps.

This chapter is divided as follows: in section 2.2 we present state-of-the-art methods
for FER and methods that learn with spatial prior guidance and common attribution
methods. In Section 2.3 we then present our method to integrate spatial prior information
to improve the predictive power of the model. We then demonstrate the interest of this
method with experimental results on various tasks and datasets in Section 2.4, and finally
provide a discussion on this research and outline future directions for further work regarding
the ideas introduced in this chapter in Section 2.5.

2.2 Related Works

In this section, we give an overview of methods that leverage spatially constrained
attribution learning. In particular, we first present methods that deal with facial expression
recognition then medical imaging tasks with spatial priors, then methods where the
attribution is constrained to improve the predictive capacity of the model.
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Figure 2.1: Overview of the Prior-Guided Attribution (PGA) pipeline. During training, the
model uses the input image, the ground-truth labels and the prior heatmaps. The image
is passed through a network, whose predictions are matched with the labels through a
cross-entropy loss. The image's attribution is then calculated on a portion of channels
of a specific layer, chosen using the Prior Allocation Strategy (PAS). For these channels,
the attribution is then constrained to correspond to a certain prior heatmap with the
Privileged Attribution Loss (PAL). During inference, only the image is needed for the
network to produce its predictions.
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2.2.1 Spatial prior guidance learning

Computer vision models learn to analyze structures inside images. This heavily relies
on a sound understanding of the spatial information of the input image. Recent works
have made use of prior spatial knowledge in order to improve the network’s capacity to
respond to specific computer vision tasks. We first broadly present face analysis and facial
expression recognition methods that are spatially constrained, and then focus on medical
imaging tasks that leverage prior spatial knowledge.

2.2.1.1 Constrained Learning for facial expression analysis

The face can hold a lot of semantic information about a person, its personal psychological
state or can be decisive in human communication. Automatic face analysis has become
a crucial topic in computer vision and is largely used in domains such as security,
entertainment or healthcare. Multiple different ways to describe facial expressions or affect
have been explored in the literature. One track based on the Facial Action Coding System
(FACS) proposed by Ekman et Friesen [35] consists in characterizing facial expressions as
a combination of 44 facial muscle activations, referred to as Action Units (AUs), therefore
supposedly objective. A number of these AUs are highlighted in Figure 2.2. Another way
to describe facial expressions is in a categorical manner. Ekman et Friesen [36] proposed
a list of universally recognized basic emotions, namely anger, sadness, happiness, fear,
surprise, disgust or neutral. Another important computer vision task for face analysis
is facial landmark alignment, which consists in identifying all the facial landmark points
(usually 68 or 80 landmarks) which describe the head pose and location. This task is
often used as an additional input for feature extraction, used to then deal with facial
expressions. In this chapter, we will work with the Facial Expression Recognition (FER)
task that aims at predicting the basic emotion from a facial image, as a similar task
to scan plane recognition (relatively small annotated datasets, approximately the same
number of classes, available spatial prior information).

Dapogny et al. [28] have worked on predicting local facial expressions in order to better
deal with occluded faces. They use random facial masks create local facial subspaces and
then use randomized decisions trees to predict the local emotion. These local emotions
predictions are then leveraged to help with occluded facial images. One of the conclusions
of their work is that the spatial distribution of the facial features is paramount in the
prediction of human emotions. Since then, a lot of recent research has focused on
constraining their learning mechanism to leverage spatial prior information to improve
the model’s results on diverse face analysis tasks.

A first research track explored by several recent works is to guide their face analysis
task using a spatial module. Authors in [123] improve their model's robustness and
therefore perform better for FER in the wild. First they use a local feature extractor that
divides the input features into multiple patches that therefore keep the spatial coherence
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of the image and the local facial features, and then mix them to global features in a
residual manner. This enables the model to learn salient global and local features, which
improves the model’s results on FER baselines and occluded or in-the-wild FER datasets.

Action Unit (AU)
Descriptions

1 - Inner Brow Raise
2 - Outer Brow Raise
4 - Brow Lower
5 - Upper Lid Raise
6 - Cheek Raise
7 - Lid Tighten
9 - Nose Wrinkle
10 - Upper Lip Raise
12 - Lip Corner Pull
14 - Dimple
15 - Lip Corner Depress
17 - Chin Raise
20 - Lip Stretch
23 - Lip Tighten
24 - Lip Press
25 - Lips Part
26 - Jaw Drop

- 23 —— \
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Figure 2.2: Visual examples of the most common action units activation for each of the
8 basic emotions. lllustration taken from Langner et al. [52].

Other methods leverage an adjacent task in order to improve the predictions on their
main task. For instance, Pu et al. [69] use an Action Unit (AU) prediction module to
improve their FER model. First a common shared CNN backbone extracts features for
both tasks. They then use prior information in the form of an emotion-AU relationship
graph that links the facial expressions with the most common AU activations (examples
of such AU-Expression relations are depicted in Figure 2.2). In particular, a learned
attention mechanism is constrained so that it would match the aforementioned relations.
For instance, since the "lip corner puller" action unit (which usually represents a smile)
is heavily correlated to the "happiness” emotion, the learned attentional coefficient is
supposed to match the prior value. They therefore leverage prior knowledge to improve
the FER predictions. Similarly, Shao et al. [81] aim at predicting facial action units by
first predicting face alignment points. The prediction of the 68 face alignment points
first give spatial context to the backbone that can be beneficial in order to predict action
units. However, they go further to make use of both tasks. They use prior knowledge
linking each action unit with their characteristic alignment points. They refine attention
maps using heatmaps created from said facial landmarks, and use these attention maps
to spatially guide the action unit detector towards the most discriminative areas of the
input image. This work both leverages an adjacent task to integrate prior knowledge, but
also constrains the network spatially to improve its predictive capacity.
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Other methods directly take advantage of additional information to make sure their
model focuses on the most salient areas of the input image instead of modelling it with
an intermediate network. For instance, Jacob et Stenger [49] use heatmaps in which the
areas of each action units are highlighted as prior spatial information for facial action unit
detection. They propose to constrain the attention maps constructed by a Transformer
decoder to resemble these heatmaps. These attention maps are created to accentuate
the most relevant areas of an input image with respect to another (cross-attention) or the
same (self-attention) input. This method therefore enables the network to mainly focus
on the the areas that are most discriminative for the task at hand, in particular to predict
the presence of a specific action unit. While this prior information can be quite costly
because it necessitates a heatmap for each action unit for each training image, it has the
advantage of needing no additional information during inference because the model has
learnt to identify the important zones during training.

These works have demonstrated that leveraging spatial information to guide the
learning has a positive impact on facial expression tasks. For medical imaging, we could
argue that the presence and the position of certain structures can be crucial to analyze
the image. We therefore present methods that spatially constrain the learning for medical
images.

2.2.1.2 Spatially guided learning for medical imaging tasks

In order to remain closer to the main task in the framework of the SUOG project, we now
focus on methods that constrain their learning for medical imaging tasks.

One way to integrate spatial information is to use it for preprocessing. For instance,
Zeng et al. [121] use spatial priors for a multi-modal registration workflow. This task
aims to align several images into a shared coordinate system. They propose an image
segmentation network aimed at identifying the different liver structures and then predict
the image alignment. However, they incorporate prior knowledge to improve the model's
prediction capacity by using an initial rib cage segmentation to generate an initial
alignment upon which they build their model.

Another way to do so is to guide the main task using an adjacent task. For example,
Men et al. [61] propose a Multimodal GuideNet that aims to predict the probe motion
from an ultrasound scan. The idea behind this work is to provide guidance for the less
experienced sonographer to improve their scanning skills. To do so, they jointly learn
to predict the gaze motion. The gaze trajectory prediction module therefore provides
the model with crucial spatial information in order to predict the probe motion correctly.
Similarly, Wang et al. [101] integrates gaze tracking information to improve a abdomen
segmentation model. They argue that segmentation annotations is very costly in terms of
time and effort and necessitates expert knowledge. They propose to weaken the demand
for these high-cost labels by using the more convenient, but less precise gaze-tracking
heatmaps. More specifically, they highlight the most relevant areas of the input image
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by computing the cross-attention between both the input image and the gaze-tracking
heatmap. This provides the model with human cognitive expert information since it
follows the attention of the highly professional medical experts.

Other methods make use of the nature of attention methods, aimed at discovering
strong semantic relations between local spatial features. For instance, Cai et al.
[19] propose to deal with vulvovaginal candidiasis detection (e.g. a specific disorder
classification task) using attention guidance. They observe that the disorder is usually
hard for the model to pick up automatically because of the small size of the symptoms
and the lack of labeled data. Therefore, they use strong spatial information to guide
their model’s attention. First, they use an image encoder backbone pre-trained for the
detection of the main symptom (candida detection). They then introduce an attention-
based module meant to recognize strong relevant information for the disorder classification
task. To do so, they apply a cross-attention between low-level fine-grained feature maps
and high-level coarse feature maps. The idea behind that is that different structures
that identify the candidiasis disorder are visible at different scales, therefore the model
performs better when it is able to use both coarse and fine-grained spatial information. In
the context of chest X-ray segmentation, Miao et al. [62] also use a spatial prior to guide a
self-supervised vision transformer. The authors use prior knowledge segmentation masks
that highlight certain relevant structures of the input image and introduce a loss designed
to make different attention maps correspond to the aforementioned spatial priors. They
demonstrate that this guidance not only improves the segmentation results but also yields
attention maps that are more interpretable.

For lung and heart 3D segmentation, Xie et al. [108] also introduce a prior-guided
model that learns region-wise local consistency in the latent feature space. Built upon
the philosophy of BYOL [43], a local consistency loss forces the voxel areas to correspond
for different transformations of the same image. This provides the model with semantic
information and context about the different structures. They prove that this spatial
information significantly improves the segmentation results on multiple datasets.

These methods, whether they guide the model’s attention or use an adjacent task to
incorporate spatial expert information, do not ensure that the model makes use of this
specific information. Some research has aimed at directly guiding the model’s relevance
or attribution.

2.2.2 Attribution methods

Attribution methods aim at evaluating the relevance of specific input features on the
output. In a computer vision context, a model’'s attribution directly computes how
important each pixel of the input image is for the final prediction.

Two large families of attribution methods have emerged, namely the occlusion-
based methods and the gradient-based methods. Occlusion-based methods [119] consist
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in computing the attribution of a certain patch of pixels by comparing the outputs
given by the input feature with the outputs given by the image where this patch of
pixels is occluded. However, the occlusion-based methods usually involve prohibitive
computational costs on images.

In order to reduce the runtime, gradient-based methods were introduced. First,
Simonyan et al. [86] introduced image-specific class saliency maps. These are computed
as the derivative of the wanted class with respect to the input image. This straightforward
method allows for a good evaluation of the input feature’s impact at the cost a single
backward pass. Shrikumar et al. [84] developed on this idea a proposed a technique to
sharpen these attribution maps called Gradient*Input. They obtain these maps by taking
the signed partial derivative of the output with respect to the input and multiplying it by
the input itself. The idea is that the gradient represents how important a certain feature
is, and the input represents how strongly it is expressed in the final prediction. Chen
et al. [26] even proved that this was the exact relevance of the input features for any
ReLU-based convolutional models. In a similar manner, Selvaraju et al. [80] presented
the Grad-CAM method. The method computes class-specific attribution heatmaps by
multiplying each channel of the feature map given by the last convolutional layer by its
"importance" (e.g. the mean -over that specific channel- of the gradient of the chosen
output class with respect to the last convolutional layer's output). Examples of such
attribution maps are illustrated in Figure 2.3. Finally, another popular gradient-based
method is Integrated Gradients, introduced by Sundararajan et al. [92]. They build this
attribution as the path integral of the gradients along a straight line between a baseline
input (usually a black image) and the actual image. In practice, they compute a certain
number of interpolations (between 20 and 1000) between the baseline image and the
actual input considered. Then, the values of their gradients are computed after a forward
pass and are summed together to give the attribution values. This method is theoretically
better but is not derivable, as it is a built as a Riemann approximation.

These attribution methods have become very popular for explainability reasons as
they offer visual cues to understand "black-box" models’ predictions. However, recent
research has made use of these attribution methods to guide the network's focus towards
certain areas of the input image. This allows for a certain regularization of the model and
alleviates the problem of data scarcity.

2.2.2.1 Attribution guided learning

Several works have investigated constraining their network'’s attribution in order to directly
guide the learning towards important input features. For instance, Du et al. [34]
constrained the occlusion-based attribution of their Natural Language Processing (NLP)
network by reducing the values of words deemed non-important by expert annotated
clauses in the input sentence. However, due to the fact that these methods are not
derivable and their computational inefficiency, most works have focused on gradient-
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Original Image Grad-CAM "Dog" Grad-CAM "Cat"
Figure 2.3: Examples of visualizations for the Grad-CAM method. The first image shows
the picture of a cat and a dog. The other two images show the attribution maps for both
predictions dog and cat, which both highlight the right areas of the input image. The
figure is taken from Selvaraju et al. [80]. Best viewed in colour.

based methods. Erion et al. [37] constrain their attribution so that it would have
satisfying properties such as sparsity or smoothness, but did not explicitly constrain it
using prior information to guide it towards crucial input features. Conversely, in an NLP
context, Liu et Avci [58] added an L2 norm between their attribution (computed with
Integrated Gradients) and an external prior that evaluated if words were toxic or not. For
a computer vision task, Ross et al. [73] investigated the idea to be "right for the right
reasons". They tried to improve the model’s explanations while still keeping the same
level of predictive performance. To do so, they penalize gradients of non-relevant features
using a prior information binary mask as additional annotations. Similarly, Fel et al. [39]
integrate prior heatmaps of human-chosen features as a kind of "correct explanation"
for object recognition predictions. Both these works guide the network towards input
features that are considered important beforehand using prior information. Ismail et al.
[48] introduce "saliency-guided training" in order to get rid of small and noisy gradients.
More specifically, they use a binary mask to get rid of pixels with small gradients, and then
minimize the KL-divergence between the output given by the input image and the masked
input image. This prevents the model from concentrating on noisy gradients that could
pollute the final attribution while maintaining the predictive performance. However, these
four methods constrain the learning in order to improve the model’s explanations, but not
to increase the predictive results. However, Bertoin et al. [12] argued that, in order to
enhance deep reinforcement learning models, they should be able to identify the most
important input features to focus on them and ignore the others. To do so, the model
is trained to predict its saliency maps so that it learns to "look where it looks". This
circumvents the risk that the model would make wrong decisions because of distracting
visual features and therefore improves the models’ policies.
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In this section, we presented works that highlight the advantages gained by
constraining the model spatially on facial expression and medical imaging tasks. To ensure
that the model concentrates on the selected prior areas of the input image, we decide to
guide the network’s attribution, instead of constraining cross-attention or self-attention
modules, or leveraging an adjacent task to improve results on the main task. Unlike most
methods that constrain the attribution in order to improve the network’s explainability,
we use these spatial constraints to improve the prediction results. In particular, our
work guides the model’s attribution towards carefully-chosen prior information heatmaps
(challenge 2) in order to increase the model’s predictive capacities with PGA, while
still leaving some freedom for the model to concentrate on other input features. The
integration of spatial priors enables the model to better deal with the lack of annotated
data (challenge 1).

2.3 Prior-Guided Attribution of deep neural
networks

In this section, we present a novel Prior-Guided Attribution (PGA) method, built to guide
the network towards the most informative areas of the input image. First, we introduce
the Privileged Attribution Loss (PAL), that allows the model to concentrate on certain
areas of the input image by forcing its attribution maps to match a privileged information
heatmap. Second, we present the Prior Allocation Strategy (PAS), which describes the
way multiple prior information maps are integrated at the same time, while still leaving
some freedom for the network to focus on other areas. Third, we discuss the selection of
the prior heatmaps, and finally, we discuss PGA as a regularization tool.

Let f denote the CNN, L the number of layers in f, f, the output vector, I the input
image, a;j.(I) the attribution of the pixel (i, ) of the c-th channel of I and !, the
attribution of the intermediary feature map f'(I) taken at layer [.

2.3.1 Privileged Attribution Loss

In this work we force the model to focus on certain areas of the input image. To do
so, we leverage the model’s attribution. Attribution methods compute the relevance or
importance of certain input features with regards to the prediction. The most common
gradient-based method is named saliency maps, first introduced by Simonyan et al. [85].
The aim is to compute the gradient of the output with respect to certain input pixels.
In our work, we decide to compute the absolute value of the sum of derivatives of the
outputs, since we want to constrain both negative and positive values of relevance on all
output features. In the rest of this work, we refer to this method as the Grad attribution
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method. For a pixel (i,7) at channel ¢, it can be written as:

oxf,
ousel) = |52 @)

In particular, the structure of convolutional neural networks (CNN) can be taken advantage
of. They can be written as a composition of functions or layers:

fI)y=frFofF oo fl (D) (2.2)

where f is either an activation function, a convolutional layer, a batch-normalization layer
of a pooling function.

This enables us to compute the relevance of feature maps from any intermediary
layer instead of pixels from the input image. This might be of interest because each
layer contains a different level of semantic information, therefore constraining deeper
or shallower layers might require different kinds of spatial priors. The attribution for a
channel ¢ at layer [ can therefore be written:

o (D) = |22
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In order to sharpen the attribution maps, Shrikumar et al. [84] introduced a new
attribution method named Gradient*Input that consists in multiplying the derivative with
the input value. One intuition of the difference between the two is that Grad corresponds
to how a small change in the input will impact the output of the network, whereas
Gradient*Input corresponds to the total contribution of a feature on the output of the
network. Furthermore, Chen et al. [26] proved that every RelLU-based CNN can be
decomposed as a piece-wise affine function of each pixel of f! and that the contribution
of each pixel 7, j from channel c of a feature map f! can be written as follows:

051,
oyl = I

We now aim at pushing the intermediary attribution maps towards resembling a
normalized prior information heatmap denoted a*. This encourages the model to "pay
more attention" to the areas highlighted in a* by having a larger impact on the predictions.
We therefore introduce the Privileged Attribution Loss (PAL), which optimizes the cross-
correlation between the attribution map a' and the spatial prior heatmap a*. We choose
to compute the cross-correlation instead of a negative Euclidian distance for instance
because we do not really mind the scale of the attribution map. Formally, if we have
p(a') =% ak ;. and 0®(a) = 35, ;(al ;. — p(al))(af ;. — p(a')), then PAL constraint can
be written as follows:

(D) (2.3)

(DI fi5.0) (2.4)
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This PAL loss term is then added to a classical cross-entropy loss term, denoted
ACE(@)Z

Niorar(©) = Acp(©) + o % Apy 1 (O) (2.6)

where « denotes a weighting scalar hyperparameter denoting the importance of the
constraint. Similarly to L1 or L2 regularization for example, the PAL loss term can
be viewed as a regularization term for the classification objective.

2.3.2 Prior Allocation Strategy

The loss presented above offers a certain limitation as it only takes into account one single
prior heatmap. However, we intend on incorporating several prior maps to guide the model
towards several salient areas, since the SUOG project offers 11 pixel-wise segmentation
maps for a small subset of the ultrasound images. To solve this problem, we introduce the
Prior Allocation Strategy which consists in allocating a certain portion of the attribution
maps to each prior. The first simple strategy involves forcing the first » channels of a
considered layer to resemble the first prior, the next r channels to resemble the second
prior, and so on. We name this the All Channels strategy. However, not allowing the
network any freedom might be too strong a constraint, and a weaker formulation would
be to only force the mean of a certain portion of these channels to resemble a certain
prior. This allows a certain lenience in the learning mechanism while still guaranteeing
that the model globally focuses on the right areas. In particular, with P denoting the
number of different priors we want to use, C; the number of channels in f! that we choose
to constrain and r = | <L |, our new attribution maps are:

. (p+1)r 1 l
Qi ip = Z —Q; e (2.7)
c=pr r
the loss term therefore becomes

! !

a; jp — H(a’)
AL, (0) = P~ wal (2.8)

PAL ;D O-(al) 2JiP

This formulation implies that all images from the training set have a spatial prior. However,
the SUOG dataset only offers segmentation maps for a small subset of the training images.
We therefore introduce a masking term m,, indicating if this spatial prior is present in the
image or not. The loss therefore becomes:
l !
ai,j,p - (a’ ) *

AZPAL(G)) =My Z W;; * Ay ip (2.9)

1,7,P

The above-mentioned approach forces a constraint on all channels when C; = C.
Here again, this constraint might be too strong in the sense that it would not allow the
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model to explore other areas of the input image to find discriminative information (in
other words, the prior knowledge maps might not be exhaustive). This is specially the
case for the SUOG challenges, where the segmented objects might not be the only decisive
structures in order to predict the scan plane. Thus, we decide to only apply this constraint
to a certain portion of channels. This allows certain channels to stay free and investigate
different areas of the input image that might contain crucial information absent from the
prior knowledge maps.

In what follows, we explore four channel strategies, namely All Channels (discussed
earlier), Mean (where C; = C and C' the number of channels in the layer), Mean of Half
(where C; = £) and First P (where C; = P, and P is the number of prior maps).

The impact of the Prior Allocation Strategy is therefore two-fold, as it allows not only
to choose which channels will be constrained and which ones will be free, but also the
correspondence between priors and the allocated channels.

2.3.3 Prior generation and selection

The proposed PGA method is generic and can be used for different computer vision
classification tasks. During training, it utilizes prior spatial information to guide the
network’s attention towards important areas of the input image. Importantly, this
additional information is not needed during inference. Hence, the selection of the prior
plays a crucial role in determining the final predictions. This study examines various
types of priors and assesses how their nature might affect the results on different data.
Specifically, we conduct experiments on three datasets: RAF-DB, a facial expression
recognition dataset (and 3 variations), BUSI, a breast cancer detection dataset and finally
SUOG for scan plane recognition. We now extensively present the datasets and their prior
information heatmaps.

2.3.3.1 RAF-DB

The Real-world Affective Faces Database (RAF-DB) [56] is a dataset for facial expression
where all examples were manually annotated by several annotators. It contains a train
set of 12,271 images and a test set of 3068 images, all annotated with 7 basic emotions,
namely surprise, fear, sadness, happiness, anger, disgust and neutral. In order to better
validate the hyperparameter selection, we created a validation set (15% of the training
set) sampled with the same label distribution as the test set. Facial expression recognition
shares many similarities with scan plane recognition. It is a task limited by the relatively
small number of annotated images in the datasets, it has a similar number of classes
(<10), and has easily available prior spatial information. We therefore use RAF-DB as a
toy dataset to test PGA while the medical images were not yet available. In particular, we
created three different versions of this dataset to highlight certain characteristics of this
method. First, we created RAF-Aligned, where the images are aligned using similarity
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A o
A

RAF-Cropped-Aligned RAF-Aligned RAF-In-The-Wild
Figure 2.4: Three versions of an image taken from the RAF-DB dataset. First row depicts
the RAF-Cropped-Aligned version, where the image is cropped around the face, the second
shows the RAF-Aligned version, where the image is aligned according to the face, and
finally the RAF-In-The-Wild version where the image is not aligned according to the face.

transformation according to two eye locations and the center of the mouth. Then we
used RAF-Cropped-Aligned, where the images are also aligned using the eyes and the
mouth but are closely cropped around the face (this is the version most commonly used
in the FER literature). We name the third version RAF-In-The-Wild, where a random
crop around the face is applied on all the RAF-Aligned images, creating images that are
not aligned according to the facial landmarks. This means that, contrary to RAF-Aligned
and RAF-Cropped-Aligned, the crucial facial information is not mainly located in the same
areas. On both RAF-Aligned and RAF-In-The-Wild, we guide the network using a face
bounding box (bbox prior), available in the dataset, or a heatmap representing all 51
facial landmarks given by an off-the-shelf method [7] (all landmarks prior) to evaluate the
impact of spatial priors that have different scales and compare a dense, coarse prior to a
more fine-grained and sparse heatmaps. More specifically, from a 2D face image /, the face
alignment model g locates 68 facial landmarks that form the face shape y € R%? (the
n-th row of this matrix corresponding to the 2D coordinates of the n-th facial landmark).
Let 1L denote the indicator function which equals 1 when on a landmark, and 0 otherwise.
From these facial landmark coordinates, we create an image a* with:

a;,; =13 (2.10)

Which ultimately gives an image with pixel values of 1 at the landmarks and 0 elsewhere.
We then apply a gaussian filter with a standard deviation o of 3 to this image a*. We
then have:

*letered

(1 —ypn)*+ (J — ym)Q)

Z \/W eap(= 207

For the RAF—Cropped—Allgned version, which encompasses less variability and where

(2.11)
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the crucial information is easier to locate, we force the model’s focus using the previous
all landmarks prior, but also using a prior containing 51 heatmaps, each one representing
a single face alignment point (independent landmarks prior), and a prior that contains
four heatmaps, each representing a group of face alignment points: eyes, eyebrows, nose
and mouth (grouped points prior). This allows a sound evaluation of the impact of having
several specific spatial prior maps instead of having all the crucial structures in one single
map and how semantic groupings of prior information structures can benefit the learning.
Examples of these images can be found in Figure 2.4 and examples of priors in the three
first columns of Figure 2.5.

2.3.3.2 BUSI

The BUSI dataset [3] is composed of 780 breast ultrasound scans (see Table 2.1), collected
in order to predict breast cancer. These images are annotated into three different classes:
benign, malignant and normal. Images annotated as benign or malignant also come with
a binary segmentation map that locates the areas of the tumors. These segmentation
maps are used as our prior information in this work. We observe images with a certain
variability in the location of the highlighted prior information (similarly to RAF-In-The-
Wild), as well as in its shape and size. We separate this dataset into 5 train/val/test
folds with similar label distributions in order to compare the results of different methods.
In particular, we perform a 5-fold cross-evaluation, meaning that we evaluate the model
as the mean accuracy scores on all 5 test sets. Examples of these images can be found
in the two middle columns of Figure 2.5.

2.3.3.3 SUOG

The ten expert centers of the SUOG project collected over 200K ultrasound images at
all stages of pregnancy. The SUOG dataset used in this experiment is composed of 1297
images annotated by the early pregnancy expert group of the consortium. The scan plane
labels are grouped into 8 different labels, namely the longitudinal view of the uterus,
oblique view of the uterus, the longitudinal view of the cervix, the longitudinal view of the
bladder, the transverse view of the uterus, the interstitial portion view of the Fallopian
tube, the longitudinal and transverse views of the adnexa and the ovary, and magnified
views of the gestational sac. An illustration of these groups of views can be found in
Figure 1.2. Among those images, 294 are segmented into 10 zones. We form several
different priors from these segmentation maps:

e All Zones: This prior is composed of the 10 segmentation maps: the amniotic sac,
the embryo, the gestational sac, the midline echo, the ovary, the uterus borders,
the yolk sac, the cervix external ostium, the endometrium and the trophoblast. The
pixel-wise segmentation allows us to have 10 maps that don't overlap.
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e Only Interior: This prior is built as the union of all segmented zones. It therefore
only contains one map.

e Three Zones: For this prior, we group semantically similar segmentation maps
together. We merge all the gestational structures (the amniotic sac, the embryo, the
gestational sac, the yolk sac and the trophoblast) in one map, the uterus structures
(the midline echo, the cervix external ostium, the endometrium and the uterus
borders) in another map and finally the ovary as the final map.

The dataset is split into train and test sets (with a train/test ratio of 5/1), the train set is
then separated into 5 folds of the same size with similar label distribution, which allows us
to choose our hyperparameters with a 5-fold cross-validation (see Table 2.1). Examples
of these images can be found in Figure 2.5.

RAF-DB BUSI SUOG
Figure 2.5: Examples of images and priors for the three datasets explored (RAF-DB,
BUSI, SUOG). For RAF-DB, the first column depicts an image from the RAF-In-The-
Wild dataset, the second column shows the bbox prior and the third column depicts the
all landmarks prior. For BUSI, the the second column depicts the spatial prior highlighted.
For SUOG, the first column shows the Only Interior prior, the second shows the Three
Zones one and the last column depicts the All Zones prior. Best viewed in colour.

The nature of the prior information heatmaps is an important factor in the effectiveness
of the method in several ways. First, the method'’s results can be significantly influenced
by the different semantic granularities of the spatial priors. For instance, a more fine-
grained prior could identify key areas and structures more accurately, but might encounter
challenges generalizing to test examples (as it intuitively may require allocating more
resources within the network to integrate this information), whereas a coarser prior might
recognize broader or less precise areas but could be more easily learned during training.
To explore this phenomenon, we examine the impact of guiding the networks with more
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or less fine-grained priors, e.g. in the context of face analysis, a coarse bounding box and
a more precise landmark heatmap prior. A similar argument could be made about the
fact that some priors have dense highlighted areas whereas other highlight sparse zones.
Identifying dense areas of the input image such as bounding boxes might be a simpler
task than identifying sparse areas such as face alignment points.

Second, the number of different priors can highly affect the method. If the model
is learnt using multiple maps that separate the spatial information into smaller distinct
areas, it might be able to identify these zones more easily. However, it might not benefit
from the relationships between these regions that would be taken into account separately
in the Prior Allocation Strategy, as opposed to using a single prior built as the union
of these areas. To assess this, we compare results obtained by guiding the model with
both a heatmap representing all 51 face landmarks and another prior with 51 heatmaps
representing one landmark individually to investigate the impact of multiple spatial prior
maps for FER. For automatic scan plane recognition, we benchmark with a single, merged
segmentation map as well as multiple segmentation priors.

2.3.4 PGA as a regularization method

Deep learning models often struggle to obtain good predictions for test examples because
it has overfit the training data to some degree. This is particularly relevant when dealing
with small training datasets. Methods such as L2 regularization [33], LASSO [96] or
dropout [89] aim at avoiding this phenomenon, possibly at the cost of increased training
errors. These methods usually consist in enforcing a prior structure on the network
weights or activations. From this point of view, PGA can be viewed as regularization
method, as its goal is to encourage the network to preferably look at certain regions to
decipher the correct classification. As with the aforementionned regularization techniques,
successful integration shall involve finding a successful trade-of between the strength of
this regularization, and the classification loss.

This trade-of depends on a number of settings. First of all, an important such setting
is at what level in the network (i.e. layer) PGA is applied. We know that feature maps
from deeper layers are more precise but hold lower-level semantic information such as
contours or textures, whereas feature maps from shallow layers hold higher-level semantic
information. Constraining layers closer to the output might be better to integrate strong
semantic information, but might penalize every layer coming before in the model if the
localization task is too hard. We could also argue that the optimal layer to constrain might
depend on the nature of the prior. In practice a coarse prior representing the contours
of a specific structure might be more useful in the deeper layers of the network, whereas
a more fine-grained prior with strong semantic information might be better adapted
to layers closer to the output. Second, an important regularization parameter of the
proposed method concerns how many channels are constrained. Forcing all of the channels
individually to resemble a spatial might be too constraining and actually prevent the
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network to learn any interesting patterns. Only constraining the mean of the attribution
channels might offer the network more leeway to shape its attribution maps. Finally, only
constraining a certain fraction of these channels allows the method to guide the model
while giving some freedom for the network to identify and focus on other areas of the
input image that might be interesting for the task at hand. Third, PGA might be sensitive
to noisy spatial priors. Priors that highlight certain zones incorrectly or imperfectly might
propagate errors to the model and therefore force it to focus on unimportant areas of
the input image. However, the constraint on the learning mechanism might still work
as a regularization method and therefore increase predictive performances. The Mean
of Half channel strategy might boost the performances because of the regularization,
while still being able to identify interesting zones that are not highlighted in the spatial
priors. The proposed method also aims at alleviating the problem caused by the limited
amount of annotated images, which often prevents deep learning models to generalize
well to test examples. Finally, the weighting term « in the Privileged Attribution Loss
(PAL) is essential. It enables the model to benefit from the semantic information and
the regularization, while having some freedom to concentrate on the main classification
task. A good compromise needs to be chosen for this weighting term between fine-grained
priors where the highlighted areas are harder to locate, and coarser priors where the crucial
areas are easy to identify. An « term too strong might penalize the model for the main
classification task, but an a term too small might not enable the network to identify the
correct zones. In what follows, we answer those questions and empirically validate the
proposed approach.

2.4 Experiments

In this section, we evaluate the interest of the PGA method for multiple tasks: facial
expression recognition, breast cancer detection and scan plane recognition. First, we
briefly present the implementation details of the method. Second, we discuss results on
the facial expression recognition task in Section 2.4.2, and more specifically the impact
of certain settings and the choice of the prior information used to guide the learning. We
then demonstrate the genericity of the method in Section 2.4.3 by discussing results on
two OB/GYN tasks, breast cancer detection and scan plane recognition. In particular, we
discuss the impact of the nature of the prior to optimize PGA as a regularization tool,
and attach qualitative results to support this discussion.

2.4.1 Implementation Details

We train our model using ADAM optimizer with 8; = 0.9 and 8y = 0.999. For facial
expression recognition, we use a batch size of 16 and a base learning rate of 5¢=° with
polynomial decay, whereas we use a batch size of 32 and a base learning rate of 1e7° for the
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Table 2.1: Description of the RAF-DB, BUSI and SUOG datasets.

Dataset || Train | Val | Test Eval Protocol

RAF-DB || 11044 | 1227 | 3068 | Single Train/Test/Val split
BUSI 561 63 156 Cross-Evaluation
SUOG 944 | 237 | 150 5-fold Cross-Validation

OB/GYN tasks. On the one hand, for RAF-DB, all the results comparing the baseline and
the model trained using PGA are given by a VGG16 architecture, pre-trained on VGGFace
[67] for face recognition. The face images are resized to 244x244 and augmented with
random rotation [-10°, 10°] followed by a random horizontal flip. On the other hand, for
the BUSI and SUOG datasets, we use a VGG16 pre-trained on ImageNet and use data
augmentation methods better adapted to medical imaging on-the-fly, so that each image
has a different transformation at each epoch. The images are only augmented with a
random vertical flip as it allows to keep the ultrasound imaging structure.

As it is depicted in Table 2.1, for RAF-DB, the best model is chosen by keeping
the weights that maximize the accuracy on a validation set sampled with the same label
distribution as the test set, while the best model is chosen by keeping the weights that
maximize the accuracy on a 5-fold validation set for BUSI and SUOG. All results reported
are accuracy results, computed as the number of correct predictions divided by the total
number of predictions.

2.4.2 PGA for Face Image Analysis

In this section we validate the impact of the proposed method for facial expression
recognition. This allows us to investigate which settings of the method fit the best,
such as the layer to which PGA is applied, the attribution method, the choice of the
channel strategy, the sensitivity to incorrect priors and the impact of PGA on very small
datasets.

2.4.2.1 Which layer

One of the first settings of this method to look into, is which layer we are aiming to
constrain to optimize the impact of PGA. Figure 2.6 shows the accuracy results of the
PGA method applied to different layers of a VGG model. It demonstrates an important
performance increase when the method is applied to the last layers of the model. This
could be explained by the fact that the first layers encode low-level information and
might struggle to identify the important zones. In particular, Selvaraju et al. [80] indicate
that the last convolutional layers of a CNN are a good "compromise between high-level
semantics and detailed spatial information”. Another reason for poor performances when
PGA is applied in the first layers of the CNN is that they contain very few channels, and
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Figure 2.6: Performance of the model learnt with PAL applied to different convolutional
layers of the VGG with Grad attribution method and Mean of Half channel strategy. The
plot shows the mean accuracy score and 95% confidence interval. The method yields
better results when applied near the end of the model.

therefore even applying the Mean of Half channel strategy might be too constraining.
Finally, we can observe a drop in performance when we apply the method to the layers 9
and 13, because they precede max-pooling layers, represented in Figure 2.6 by a vertical
line. Indeed, it means that these attribution maps are naturally sparse (e.g. three pixels
out of four have a zero value for a (2, 2) pooling layer) and therefore are unable to match
a the prior information heatmap. We observe that the variance is higher for layers 2 and
5 that also precede a max-pooling layer.

2.4.2.2 Which attribution method

Another sensitive parameter of the method is which attribution method is used. In
this work, we evaluate the PGA method using the Grad and Grad*Input attribution
methods. We see in Table 2.2 that the latter offers better performance results than the
former, whichever channel strategy is used. Some research [84, 6] argues that Grad*Input
provides sharper attribution maps, as the gradient accounts for the importance of a certain
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Table 2.2: Ablation study on RAF-Cropped-Aligned dataset comparing different
attribution methods and channel strategies.

Method Attribution Channels Acc

VGG16 - —— - —— 85.17
VGG16 + PGA Grad All Channels | 85.59
VGG16 + PGA Grad Mean 86.34
VGG16 + PGA Grad Mean of half | 86.47
VGG16 + PGA || Grad * Input Mean 86.64
VGG16 + PGA || Grad = Input | Mean of half | 86.86

input feature, and the input accounts for how strongly it is expressed in the output
prediction. However, we can observe that both attribution methods lead to a steady
boost in performance.

Table 2.3: Accuracy results on RAF-Cropped-Aligned dataset comparing of different

values for C on the channel strategy.

Method o Acc

VGG16 - — = 85.4+0.2
VGG16 + PGA C/4 86.55 4+ 0.56
VGG16+ PGA || C/2 |86.86 + 0.1
VGG16 + PGA || 3C/4 | 86.32+0.25
VGG16 + PGA C 86.38 £ 0.17

2.4.2.3 Which channel strategy

We also evaluate the impact of the PAS and channel strategies with a single prior
in the first place. First of all, we can observe in Table 2.2 that constraining all the
channels of the attribution map improves the accuracy results on RAF-Cropped-Aligned
but is a very strong constraint. For instance, using the Mean channel strategy (e.g.
C; = C) already greatly improves the baseline results by 0.98 points, as is shown in
Table 2.3. This demonstrates that a weaker constraint allows the model to integrate
the spatial information and give sufficient freedom for the network to better predict the
facial expression. We therefore assess the importance of the value of C';. We can observe
on Table 2.3 that taking C; = 2¢ gives similar results to the Mean channel strategy,
which would mean that the constraint is still too strong. However, taking C = % allows
the model to reach an accuracy score of 86.55%, accounting for a 1.15 point increase
compared to the results obtained without PGA. This shows that a weaker constraint allows
the model some freedom to look wherever it wants while still benefiting from the spatial
prior information. Finally, the best results are obtained with the Mean of Half channel
strategy (e.g. C) = %) with an accuracy of 86.86%, which is a 1.46 point increase
compared to the baseline.
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2.4.2.4 TImprecision in landmark annotation

We now assess the importance of informative prior information to fully leverage the power
of PGA. To do so, we train a facial expression model with PGA using incorrect prior
information.

' ‘480
Figure 2.7: Examples of noisy heatmaps. The landmark points were sampled from a
gaussian distribution with values of sigma going from 1 to 5 (from left to right).
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Figure 2.8: Performance of the model learnt with heatmaps created with noisy landmarks
(evaluation for different values of sigma).

To understand the importance of the prior information, we train a face analysis model
with PGA using heatmaps of noisy facial landmarks as a prior. We sampled landmarks
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from a gaussian distribution with sigma equal to 2, 3, 4 and 5, examples of these heatmaps
can be found in Figure 2.7. First of all, we can observe in Figure 2.8, that reports the
classification results of the models trained using the different priors, that the model learnt
with the correct prior (¢ = 0) outperforms all the other models, therefore demonstrating
the importance of having a correct prior. However, even though the mean accuracy
results decrease while the value of sigma increases, we can observe that the models still
all outperform the baseline. This can be explained by the fact that the heatmaps still
highlight roughly interesting areas of the input image, giving a slight indication to the
network as to where to focus. It also reinforces the idea that PGA works as a regularization
method, allowing the model to generalize better on the test set. This result is important
because it means that weaker priors might be sufficient to improve the network’s predictive
capacities, one could therefore rely on less costly annotations to guide the network.

2.4.2.5 Preciseness of the prior information

Table 2.4: Accuracy results on RAF-Aligned. The mean accuracy is computed over 5
runs.

Method Prior MeanAcc | std | Maxacc

Baseline - —— 77.18 0.46 77.87
PGA bbox: 78.2 0.23 | 78.65
PGA all landmarks 78.5 0.31 | 78.94

In order to evaluate the importance of the nature of the prior information, we apply
PGA to the RAF-Aligned dataset (see the second image of Figure 2.4 for an example)
with two different priors, the first being a simple bounding box around the face, and the
second being a heatmap highlighting the 51 face alignment points. Table 2.4 shows us that
guiding the attribution using a bounding box improves the results from 77.18% to 78.2%,
whereas using all the landmarks as prior information improves the results up to 78.5%.
This shows that for images where the crucial information is always located in the same
areas, using a strong and precise prior is more adapted than using a weaker one. This can
be explained by the fact that the model is easily able to locate the important structures
and can therefore leverage the precise information, in this case the face alignment points.

More qualitative results can be analyzed in Figure 2.9, which depicts attribution maps
from the RAF-Aligned test set. We can see in the first row that while the baseline model
does focus on the faces, it also largely highlights irrelevant information such as background
or other faces. The models trained with PGA however always manage to concentrate on
the principal face only. In particular, the model trained with the all landmarks prior has
no trouble identifying the faces, since the faces are always located in the same areas in
the RAF-Aligned dataset. This backs our previous claim that, as the salient areas are
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easy to locate, the more precise prior yields the best results, as we can see in the first and
last columns.

Anger Happy Happy Surprise Happy Disgust Anger

Baseline

First half

Alignment

Second half

Bounding Box
First half

Second half

Disgust lappy Hap Sadn Hapj Jisgust Disgust

Figure 2.9: troisieme colonne problémeAttribution maps of images from the RAF-Aligned
test set. The attribution maps are taken from models learnt with PGA using both a
bounding box prior and face alignment heatmap prior, and compared to the baseline
model. This model is trained using the Mean of Half channel strategy, which means that
the second half of channels is not constrained.

We therefore evaluate the impact of PGA on data where the crucial information is
not always located in the same areas of the input image. We therefore report the results
of PGA on the RAF-In-The-Wild dataset (an example can be found in the third column
of Figure 2.4) in Table 2.5. Results show that a model trained using PGA with a precise
all landmarks prior improved the baseline results, taking the accuracy from 79.73% up to
80.97%, accounting for a 1.24 point increase, while using a broader bbox prior yields an
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Table 2.5: Accuracy results on RAF-In-The-Wild. The mean accuracy is computed over
5 runs.

Method Prior MeanAcc | std | Maxacc

Baseline - — = 79.73 0.34 | 80.15
PGA bbox: 81.5 0.36 | 81.98
PGA all landmarks 80.97 0.5 81.65

accuracy score of 81.5%.

Conversely to the results on the RAF-Aligned dataset, where the faces are always in
the same areas of the image, using a bounding box prior, which does not discern the
precise face alignment points, gives the best results. We therefore argue that using a
broader or less precise prior might be more helpful when the discriminative information is
more difficult to locate.

2.4.2.6 Number of prior spatial information maps

After having evaluated the impact of a more or less precise spatial prior for the PGA
method, we now evaluate our Prior Allocation Strategy and therefore assess how multiple
prior information maps might affect the model’s performance on more stable images from
the RAF-Cropped-Aligned dataset (an example can be found in the third row of Figure
2.4).

Table 2.6: Accuracy results on RAF-Cropped-Aligned. Mean results computed over 5
runs.

Method Prior Channels Accuracy

Baseline — — 85.44+0.2
PGA Independent Mean 86.07 +0.24
PGA Independent | Mean of half | 86.26 & 0.35
PGA Independent First 51 86.42 + 0.15
PGA Grouped Mean 85.78 +£0.33
PGA Grouped Mean of half | 86.31 £ 0.37
PGA Grouped First 51 86.08 +0.29
PGA Grouped First 4 85.59 + 0.25

First of all, we can observe on Table 2.6 that using the independent points (each
map highlighting a single alignment point) prior outperforms the baseline regardless of
the channel strategy used. As discussed earlier, we can see that the Mean of Half channel
strategy yields better results than the Mean channel strategy as it allows the model more
freedom to focus elsewhere and identify interesting areas or structures in the input image.
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We can also see that guiding only the First 51 channels also improves the results, with an
accuracy of 86.42%, which accounts for a 1.02 point increase compared to the baseline.
This shows that guiding the attribution of only one channel at a time of with a very
precise prior (e.g. one face alignment point) is sufficient to improve the predictive results,
while also giving more freedom to the network than the Mean of Half channel strategy.
We can therefore argue that guiding the network with very precise priors such as single
face alignment points might require constraining less channels of the attribution maps to
provide a predictive improvement.

We also evaluate the interest of grouping different priors that are semantically similar.
Table 2.6 shows that constraining the First 4 channels with the grouped points prior
only slightly improves the baseline accuracy scores by 0.19 points. This can be easily
explained by the fact that the model is not constrained enough and does not benefit fully
from the PGA method. To fairly compare with the independent points prior, we therefore
constrain the First 51 channels and observe that we obtain a 0.68 point increase compared
to the baseline accuracy (constraining the first 51 channels corresponds to 10% of all the
channels approximately). The use of PGA with semantically grouped priors offers an
interesting increase in performance, taking the accuracy from 85.4% for the baseline to
85.78% with the Mean channel strategy. However, the Mean of Half channel strategy
yields a large improvement with an accuracy score of 86.31%, probably because the prior
is rather coarse and requires more channels to be constrained.

In a nutshell, these results might indicate that training a model with more fine-grained
priors might require giving more freedom to the network, while fewer and coarser priors
might requirea stronger constraint.

2.4.2.7 PGA helps with small datasets

In general, training deep learning networks on small amounts of annotated data is a
cause of overfitting. We could argue that a relatively small training set could lead to the
network struggling to identify the most discriminative structures of the input image for
its predictions. In this sense, we evaluate the impact of PGA as a regularization method
to help the model learn with few data. We therefore compare the results obtained by
the baseline and the model trained with PGA on RAF-DB when trained with a fraction
of the training dataset. Specifically, the model is trained with 10%, 40% and 70% of
the RAF-DB training set and we report results on the test set. In Figure 2.10, we can
observe a 13 percentage point increase for the model trained with PAL on only 10% of
the training dataset. When trained with 40% and 70% of the train set, the proposed
method obtains 10 and 8 point increase respectively in terms of accuracy. These results
show that PGA works as a regularization method and helps the network fight overfitting
when trained with less data by guiding its focus towards the salient areas.
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Figure 2.10: Comparison of the performance of the baseline and the model guided by
PGA when learnt on a subset of the training data. Results are from the RAF-DB
dataset. Results show that guiding the model with prior information constantly improves
the predictions even when the priors are not perfectly correct.

2.4.2.8 Comparison with state-of-the-art results

We now compare PGA to other state-of-the-art methods. Table 2.7 shows a comparison
of state-of-the-art methods for two very commonly used FER public datasets, RAF-DB
and AffectNet.

First, we can see that our method significantly improves the accuracy results of the
already very competitive baselines on both datasets (4+0.96 points for RAF-DB and +3.69
points for AffectNet) with the exact same number of parameters, inference time and
memory footprint. Also, the privileged prior information is only needed during training
but not during inference, thus this performance upgrade comes at virtually no cost in
inference.

Second, we extend the current state-of-the-art classification results up to 89.54%,
while on AffectNet, we upgrade the results up to 65.83%. This is most likely due to
the fact that, unlike its closest contenders (FDLR [76] and DMUE [83] on RAF-DB
and PAENet [47] on AffectNet), the proposed method guides the network's focus towards
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Method RAF-DB | AffectNet
IPA2LT [120] 86.77 | 57.31
THIN [§] 87.81 | 63.97
DACL [38] 87.78 | 65.20
EfficientFace [123] 88.36 63.70
PSR [99] 88.98 | 63.77
PAENet [47] - 65.29
DMUE [83] 89.42 -
FDLR [76] 89.47 -
Baseline (Resnet50) 88.6 62.14
Ours (Resnet50 + PGA) || 89.54 65.83

Table 2.7: Accuracy results comparison for RAF-DB and AffectNet datasets. Results in
%. PGA proves to outperform the state-of-the-art methods on both datasets.

areas of the input image that are discriminative for the prediction of the facial expression.,
while still letting the model have some freedom in its attribution. Last but not least, our
method could in theory be used on top of these methods.

These results are taken from our publication [13] in 2022. Since then, other methods
such as [112, 113, 60] have outperformed these results, most of them relying on
transformer architectures.

In conclusion, we used a facial expression recognition task as a case study of a
relatively small dataset, on which strong spatial priors can be extracted using off-the-
shelf algorithms. In this context, we evaluated the impact of the proposed PGA method
to improve the network’s predictive capacities. We first showed that the loss is best
applied to the attribution maps given by layers towards the end of the network and not
behind a pooling layer. We also proved that PGA yields better results when applied using
Grad*Input attribution method instead of the Grad attribution method. We showed that
applying PGA to all the channels of an intermediate layer is too strong a constraint, and
that guiding only the mean of half of the channels is a good compromise, since it gives
valuable information as to where the crucial information is located, while still leaving tome
freedom to the model to look elsewhere. Last but not least, we evaluated the impact
of the nature, preciseness and number of prior information heatmaps in the results and
showed that using PGA was all the more relevant that the training dataset is small.

2.4.3 PGA for obstetrics and gynecology

After having evaluated the proposed PGA method on a facial expression recognition task,
and pinpointed its interest for using extra annotation to help the network learn on small
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datasets, we now concentrate on the impact of the method for OB/GYN tasks such as
breast cancer detection and scan plane recognition.

2.4.3.1 Breast cancer detection

Table 2.8: Accuracy results on the BUSI dataset, using the Mean of Half channel strategy.
Results computed over 5 runs.

Method fe! foldl fold2 fold3 fold4 foldb Mean
Baseline || — — 74.74 +1.59 | 84.87+0.76 | 90.86 £ 0.62 | 76.41 +1.78 | 82.56 &= 1.25 || 81.88
PGA 1 77.69+1.24 | 86.92 +0.65 | 90.51 £ 1.15 | 76.02 £ 1.65 | 82.17 = 1.10 || 82.66
PGA 5 75.38 £2.27 | 87.98 +£0.97 | 91.66 £+ 0.81 | 76.66 & 3.45 | 80.51 +0.51 || 82.42
PGA 10 79.10+0.95 | 88.07 £ 1.49 | 92.05 £ 0.77 | 74.74 +1.49 | 80.89 £ 0.62 || 82.97
PGA 20 79.64 £1.89 | 90.06 £1.89 | 91.6 £0.53 | 71.31 £1.72 | 81.41 +0.79 || 82.80

In the previous section, we demonstrated the interest of PGA for facial expression
recognition task. We now extend its interest on an OB/GYN image classification task,
namely breast cancer detection on the BUSI dataset. Table 2.8 shows that applying PGA
consistently improves the network's ability to detect the breast cancer, with an increase
in the mean accuracy over 5 folds. In particular, we can observe a 0.54 point increase
for « = 1 and a 0.78 point increase for & = 5, whereas the largest increment can be
seen for « = 10 (1.09 increase). An explanation for these results could be that the
prior segmented zones are smaller and might be hard for the network to detect, therefore
PGA might not provide sufficient insight into the spatial distribution of the structures
present in the image. The network might be penalized by the fact that many images do
not have a tumor to locate (the images annotated as normal), which might make the
network struggle to know where to focus. An interesting aspect to notice is that we use
a prior which directly indicates the object that the network is trying to detect, whereas
the face alignment points for the RAF-DB and the segmentation maps for SUOG are only
structures meant to help in the final prediction, and not exactly the task that we focus on.
These results therefore prove the genericity of PGA as well as its interest for OB/GYN
tasks.

2.4.3.2 Scan plane recognition

In this section, we evaluate the proposed PGA method on the SUOG dataset for scan
plane recognition. In particular, we discuss the impact of different natures of priors. We
first compare priors that are more or less precise and identify when each can be more
suitable. We then assess when having multiple priors might be useful.

We now validate the interest of PGA and the different priors on an OB/GYN task:
scan plane recognition on the SUOG dataset. This dataset mixes both the specificities
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Table 2.9: Results on the SUOG dataset, using the Mean of Half channel strategy.

Method zones ! Accuracy
Baseline - —— ——— | 79.76 £1.99
PGA Only interior 1 81.46 + 0.97

PGA Only interior 5 83.73 +1.91
PGA Only interior 10 83.86 & 0.77
PGA Three zones 1 82.83 £ 2.27
PGA Three zones 5 84.53 + 1.36
PGA Three zones 10 83.19 £+ 1.42

PGA All zones 1 78.21 £2.13
PGA All zones 5 83.06 = 1.08
PGA All zones 10 82.79 £ 1.14

of the facial expression task, as it contains multiple prior information heatmaps, and the
specific crucial areas are not always located in the same zones of the input image.

First of all, we can see in Table 2.9 that the baseline accuracy reaches 79.76%,
and applying PGA generally improves the predictive capacity of the classification model.
Second, applying both PAL and PAS coupled with the All Zones prior and o = 1 decreases
the accuracy to 78.21%. This can be explained by the fact that these strong and precise
priors can be a difficult to locate, therefore the network might focus on incorrect zones
because the cross-entropy loss term is too important compared to the PAL loss term.
However, increasing the value of « improves the accuracy results since it allows the
model to focus more on identifying the right zones. PGA even achieves an accuracy score
of 83.06% which accounts for a 3.40 points increase.

Working with a broader and less precise prior such as Only Interior, already provides
an interesting increment working with o = 1, with an accuracy score of 81.46%. This
can be explained by the fact that the prior might be easier to identify than the All Zones
one and therefore perform better with a smaller weight on the PAL loss term. However,
increasing the value of « drastically improves the baseline scores by 4.10 points (from
79.76% to 83.86%), most likely because the network is able to identify the crucial zones
with more ease.

Finally, we evaluate the impact of the Three Zones prior, working as a good
compromise between the two previous priors. Again, this remarkably improves the
predictive capacities of the model, climbing up to 84.53% in accuracy (a 4.77 point
increase compared to the baseline). The Three Zones prior therefore constitutes a good
trade-off between a very precise, fine-grained prior that is harder to locate, and an easier,
broader prior that is however less informative.

Following experiments conducted on a facial expression recognition task and presented
in section 2.4.2, we have extended these experiments and have demonstrated the interest
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of PGA for OB/GYN and the importance of a well-chosen prior adapted to the task. In a
nutshell, we showed that a broader prior might be more useful when the important areas
are harder to locate, while a more precise and informative prior will yield the best results
when the model will identify these areas more easily.

Furthermore, we prove the method’s genericity by showing its interest for two different
OB/GYN ultrasound imaging classification tasks, validating a significant increment in
multiple different settings and versions of the RAF-DB dataset and extending the state-
of-the-art for both public FER datasets RAF-DB and AffectNet.
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Figure 2.11: Study of the impact of PGA on different architectures. Results from the
SUOG dataset.

2.4.3.3 PGA works on different architectures

After having proven that the proposed method was of interest in several different
classification settings, we assess its interest for different CNN-based architectures.

To further explore the adaptability of the PGA method to different settings, we
measured the impact of its increment on 4 convolutional architectures, namely VGG16,
ResNet50, MobileNetV1 with a width multiplier set to 1 and EfficientNetB0. We can
observe on Figure 2.11 that applying PGA to different architectures always improves the
mean classification results for scan plane recognition on the SUOG dataset. In particular,
PGA offers an increment of 0.17 points for the MobileNet architecture, which could be
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explained by the size of the model. Indeed, the smaller size of the model and the fact that it
is naturally heavily regularized enables it to fight overfitting but therefore might not benefit
fully from the spatial guidance given by PGA, that also works as a regularization method.
However, as it was shown earlier, both VGG16 and Resnet50 networks gain predictive
power when coupled with PGA (e.g. +1.76 points and +3.73 points respectively). Finally,
EfficientNetBO benefits the most from the attribution guidance, with its accuracy results
climbing from 78.58% without PGA to 83.82% with PGA, accounting for a 5.24 points
increase. This therefore demonstrates that all CNN-based models can benefit from the
proposed method with a carefully-chosen prior.

2.4.3.4 Qualitative Results

We have proved the interest of PGA for multiple tasks and settings with different kinds
of spatial priors. We now analyze the results qualitatively.

Baseline PAL First Half PAL Second Half

Train

Test

Longitudinal view of uterus Longitudinal view of cervix

Figure 2.12: Attribution maps of two images from the SUOG dataset. The maps presented
correspond to the model learnt PGA using the Only Interior prior. Best viewed in colour.
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2.4.3.4.1 Impact of prior We use the attribution maps to better understand the
model’s reasoning. In Figure 2.12, we can see that the baseline model manages to focus
well on the gestational structures of the the test image, but however focuses on the probe
for both the test and training image, visible on the right side of both image. In general,
a general CNN model might wrongly focus on certain artefacts of the ultrasound images
due to noisy acquisition methods, which is a classic side-effect of working on medical
images, and this might be avoided by working with PGA for classification tasks. Also
note that, unlike the model guided by PGA, the baseline model concentrates on a dark
spot next to the top-left uterus border of the test image that is only a cavity and has
not been identified as an important area of this image for the task at hand. In Figure
2.13, the model guided by the Three Zones prior also focuses on this cavity and identifies
it as a gestational structure, while the model guided by the All Zones prior identifies it
as amniotic and gestational sac in Figure 2.14. This shows that a method learnt with a
more fine-grained, precise prior might be more prone to such errors, whereas a larger and
coarser prior might avoid this kind of mistakes because they look for less precise areas or
structures.

More globally, we can assume that more fine-grained priors are more informative since
they are more precise. Nonetheless, they are more likely to make mistakes and highlight
unimportant zones or look for a structure that is absent from the image. For example,
in Figure 2.14, the channels allocated to the ovary or the yolk sac are useless because
used for missing structures. Conversely, a coarser prior such as Only Interior might
guarantee to roughly focus on the correct areas of the image, but will provide less in-
depth information. Therefore, we can conclude that the Three Zones obtains the best
accuracy results because it a good compromise between strong and insightful priors, but
large and easy enough for the model to correctly locate them. These results are essential
because they allow the proposed method to yield very interesting classification results
using a single segmentation map and even significantly improve the model’s predictive
capacity with only three segmentation maps. This means that the model does not need
eleven extremely precise prior segmentation maps to perform well, as labelling images
with such precise ground truth is very costly.

2.4.3.4.2 Impact of PAL weighting coefficient We can observe a certain
impact of weighting term « for the PAL loss. Figure 2.14 depicts attribution maps
of a model trained with the proposed method using the All Zones prior, the first couple
of rows showing results for a = 1, the third and fourth rows for &« = 5 and the fifth and
sixth rows for a« = 10. We can observe that some maps are nearly blank for the a = 5
and a = 10, and we can argue that it is because these objects are seldom present in
the training set, and are therefore difficult to identify for the model. For instance, the
ovary is only present in a few training images and certainly seldom present in the test
set. Therefore another explanation might be that these structures or objects are actually
absent from the current image, and the network might struggle finding similar patterns.
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Gestational
Structures Uterus Structures Ovary Second Half

o=

Figure 2.13: Attribution maps of a test image (midsagittal view through the uterus cervix)
from the SUOG dataset. The maps presented on the first row correspond to the model
learnt with o« = 1, the second o« = 5 and the last a = 10, using the Three Zones prior.
Best viewed in colour.

Finally, structures such as the midline echo, which is essentially just a line, are extremely
hard to locate. This means that in the Prior Allocation Strategy, structures that are
less useful in the scan plane prediction actually limit the model's capacities because a
part of its channels is actually not focusing on anything important. This might be an
explanation as to why the Three Zones and the Only Interior prior yield better results than
the All Zones one, because they cut down useless priors and build a good compromise
that enables the model to focus on more important structures.

However, another important detail to note is that the zones identified by the model
trained with @ = 5 and a = 10 are much neater than those from the first couple of
rows. Indeed, the model might have some trouble identifying the very precise zones for
a = 1 because it focuses too much on the classification loss term, and this could therefore
explain the large gap in performance for a model trained using PGA and the All Zones
prior between o = 1 and o = 5 or 10 (see Table 2.9). We can also note that the difference
in performance between the values of « is much less important for the Only Interior and
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Three Zones priors, as the structures might be easier to identify.

2.5 Conclusion

2.5.1 Discussion

In this chapter, we investigated the idea to leverage prior spatial information to guide a
network's focus towards the most discriminative areas of the input image. In particular,
we noted that OB/GYN ultrasound imaging analysis was crucial, but that deep learning
methods were still seldom used because of the lack of large annotated datasets (challenge
1). Indeed, tasks such as scan plane recognition or breast cancer detection are still dealt
with using rule-based methods or simple machine learning methods such as SVMs. We
build on the idea that some objects or areas of the input image are more informative
in order to make a good prediction. For instance, we argue that the eyes, eyebrows,
mouth or nose hold more useful information to predict the emotion than the hair or
the background. Therefore, in order to leverage the predictive strength of deep learning
networks with limited amounts of annotated data, we take advantage of rich annotations
(challenge 2) and specifically prior spatial information (e.g. segmentation maps) to
help the network pay more attention to certain specific salient areas of the input image
during training. In particular, we introduce the Privileged Attribution Loss (PAL) which
forces the model's attribution maps, corresponding to the relevance of input features
with respect to the outputs, to resemble a prior information heatmap by maximizing their
cross-correlation. This enables the model to capitalize on additional expert information
during training without needing it during inference, therefore coming a virtually no cost at
test time. We also introduce the Prior Allocation Strategy (PAS) that allows the model
to integrate several privileged information heatmaps at the same time while still leaving
some freedom so that the network can investigate different areas of the image. The
proposed Prior-Guided Attribution (PGA) method combines both PAL and PAS to guide
the network’s attribution towards any kind of spatial prior, and works as a regularization
method to fight overfitting.

We first conducted experiments on the face analysis RAF-DB dataset to better
understand and therefore optimize the way to apply PAL to a classification task. We
observed that the Grad*Input attribution method worked best and that the method
obtained better results when applied towards the end of the CNN network while leaving the
network some freedom to focus on other areas of the input image. We then observed the
impact of different priors on several versions of the RAF-DB dataset. Results showed
that a coarser and larger prior might be more useful when the important areas are
difficult to identify, whereas several smaller and more precise priors might be more useful
when these zones are easier to locate. Heatmaps highlighting incorrect or imperfect
spatial information proved to still consistently improve the baseline accuracy results,
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demonstrating the interest of using PGA as a regularization method. This was further
confirmed by results showing that PGA significantly increased the accuracy results when
applied to a model trained on a small fraction of the training set, therefore proving to
attenuate the burden of lack of data. We then proved that the proposed method was
generic as it showed to consistently improve the predictive capacities of the model for
a face analysis task and important increase in accuracy for two OB/GYN tasks, namely
breast cancer detection for the BUSI dataset and scan plane recognition for the SUOG
dataset. The method also proved to work on multiple CNN-based architecture, while
coming at virtually no additional cost during inference.

As a conclusion, it is interesting to note that guiding a CNN-based model for a
classification task using spatial prior knowledge drastically improves the accuracy results
for many different tasks and in many different setups. However, choosing the right spatial
prior for the specific task is essential. A more fine-grained prior is more informative but
might have trouble locating the precise important zones, whereas a coarser prior might
hold less information but will be easier to locate, and as such to learn for the network. In
particular, for the SUOG dataset, the Three Zones prior, built as the union of semantically
similar zones, works best as it is a good compromise between the broad Only Interior prior
and the very precise All Zones prior. This result is important because it means that three
large segmentation maps (which are rare and costly) for only a small fraction of the
training set are sufficient to drastically improve the performances of the classification
model.

2.5.2 Future Works

In the short term, we would like to be able to apply the method to different OB/GYN
tasks. In particular, dealing with disorder prediction can be an interesting path, because it
could help the sonographer with stronger information. This might be especially interesting
because we could guide the model to focus on structures that are directly linked to the
prediction. For instance, we could highlight a certain structure that implies a certain
disorder in order to better predict it (i.e. a gestational sac separate from the uterus is
key to an abdominal ectopic pregnancy, therefore if the network is able to identify both
these structures it will be able to predict the disorder more easily). Another way to do
so would be to use auxiliary tasks to improve the main task, similarly to works such as
[117, 122, 110]. This would be interesting because we could adapt the prior information
needed for the tasks at hand, and therefore guide the attribution maps of the different
networks or branches with specifically chosen prior information.

Another track that we could explore would be to introduce spatial guidance to
transformers and attention mechanisms. Transformers have shown to perform poorly
when trained on small datasets, and using spatial constraints might work as an interesting
regularization tool. Works such as Tallec et al. [95] and Tallec [94] have investigated the
application of privileged spatial guidance for transformers but through the constraint of
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attention maps. We could explore guiding the transformer’s attribution, similarly to what
was presented in this chapter. In particular, we could explore constraining transformer-
specific attribution methods [46, 22].

Finally, since attribution methods were originally proposed for visual explanation [119],
we could investigate evaluating the use of PGA as a way to improve the explainability of
certain classification models. This work could possibly be of great interest because of the
important responsibility in medical domains. In this sense, we could also explore the idea
of updating PGA so that during training it would optimize both the model’s predictions
and its explainability.
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Figure 2.14: Attribution maps of a test image from the SUOG dataset. The maps
presented on the first and second rows correspond to the model learnt with o = 1, the
#6rd and fourth to @ = 5 and the last two rows to o = 10, using the All Zones prior.
The predictions of the three models were added on the right. The models trained with
a = 1 and 5 wrongly predicted Longitudinal view of uterus, whereas the model trained
with o = 10 correctly predicted Longitudinal view of cervix. Best viewed in colour.



Chapter 3
Ontology-Guided Learning

3.1 Introduction

In most of the usual machine learning tasks, the semantic space learnt by the model is
relatively simple and can be formulated as multi-class classification tasks. This means that
all ground-truth classes are considered as distinct and exclusive. For large datasets such
as ImageNet, defining the problem as a classification is largely sufficient because of the
sheer number of training examples, as well as the disparity between classes and the lack
of additional semantic information, and treating it with softmax-based methods [15, 31,
59, 102] renders satisfactory results. Conversely, in obstetrics and gynecology, images are
scarce (challenge 1) and furthermore pregnancy ultrasound images are characterized by
a large number of rare illnesses (more than 1000) and an even larger number of signs. In
particular, the SUOG dataset images are enriched by various annotations extracted from
the SUOG ontology, created by experts from 10 hospitals across Europe. In the previous
chapter, we treated the scan plane recognition problem as a classification task, which did
not allow us to make use of the rich annotations available under the form of the ontology
(challenge 2). Furthermore, the classification framework is suboptimal from an image
retrieval standpoint (e.g. finding similar images to a query image from large database)
which would allow the SUOG assistant to offer similarly annotated images to help guide
the ultrasound operator in real time. We thus decide to explore methods that concentrate
on optimizing the similarity between images, and mostly Deep Metric Learning (DML)
that aims at modeling a sound embedding space for input images.

In a naive DML setup, one would optimize models built to learn an euclidean
embedding space that satisfies a semantic distance among training examples based on
available labels. Yet, using this formulation, one would struggle to capture strong semantic
links between classes as each individual classes are considered equally different (i.e. when
considering ImageNet classification, one could easily assert that an African crocodile is
closer to an American alligator than it is to a saxophone, yet they are all treated similarly
different as they are distinct ImageNet classes). Another problem that stems from the
DML framework is that it is usually used on large-scale datasets, which is seldom the case
in medical imaging tasks, especially for pregnancy ultrasound images. In this chapter, we
therefore aim at integrating strong semantic information to DML methods through higher-
level annotations and language guidance to improve the inter-class similarity distances and
alleviate the size-related problems.
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For this purpose, we introduce a novel way to integrate specific domain knowledge
through meta-annotations extracted from the SUOG ontology. We first introduce meta-
embeddings that are meant to encode the information linked to annotations from different
semantic levels (animal and reptile as meta-annotations for an African crocodile, for
instance) and introduce a novel Semantic Abstraction Loss (SAL) that consists of a
combination of multiple DML losses applied at different semantic levels. In order to make
use of the strong semantic textual information that is carried in the annotations extracted
from the SUOG ontology, we then use a language guidance module as presented by Roth
et al. [75]. We demonstrate that the integration of strong semantic information as meta-
labels or as textual information improves the organization of the latent representation
space and helps for image similarity, but also helps make mistakes that are semantically
closer to the ground-truth, which is crucial to assist in the practice of fetal medicine.
These experiments are first validated on a classic DML dataset (CUB200 [100]) as well
as the SUOG OB/GYN dataset. In summary, the main contributions introduced in this
chapter are:

e We introduce novel meta-embeddings built to encode hierarchical semantic
information extracted from a class ontology. To ensure a sound latent representation
space, we learn a meta-loss Semantic Abstraction Loss (SAL), constructed as a
weighted average of DML losses applied to training pairs of meta-embeddings and
meta-classes.

e We propose two different ways to integrate the rich annotations as textual inputs
to better guide the visual model during training. We first integrate the hierarchical
nature of the annotations as rich captions for language guidance. We also
build on the language guidance proposed by Roth et al. [75], and introduce an
Ontology Language Guidance (OLG) that guides the meta-embeddings using natural
language.

e Experimentally, we validate the interest of introducing higher-level semantic
information for visual similarity on the CUB-200 [100] dataset and prove the
efficiency of this method for assistance in fetal medicine with the SUOG dataset.
The interest of adding strong semantic information in the shape of textual privileged
information is also showed in this chapter. We also demonstrate quantitatively and
qualitatively that the prediction mistakes made by the model are more sound when
learnt with SAL. This method is shown to be generic and to work on many different
DML losses.

This chapter is divided as follows: in section 3.2, we present the historic methods
and state-of-the-art approaches to DML. We then present a DML learning framework
and several commonly used baselines in section 3.3, before introducing the methodology
used to integrate ontology-extracted strong semantic information in 3.4. We then provide

58



3.2. Related Works

02 02 2 02

-\
5 y g
é’b ('0‘9" 00?’
el ‘ "’: 31' ‘ el
Softmax SphereFace CosFace ArcFace

Figure 3.1: lllustration of the decision boundary margin for a binary classification case for
4 different losses. ©1 and O, are the angles between the weight of output and the input
feature. ArcFace has a constant linear angular margin throughout the whole interval.
This figure is taken from Deng et al. [31].

experimental results that demonstrate the interest of our method in 3.5, and finally offer
a discussion on this work and quickly explore possible future works in 3.6.

3.2 Related Works

In this section, we will first give an overview of the basic methods to deal with a DML
framework using deep learning architectures. Then, we will present methods that integrate
language modalities to improve their visual representations, and finally the methods that
leverage structured annotations during learning.

3.2.1 Deep Metric Learning

Deep Metric Learning aims to learn informative embedding spaces that encompass strong
and meaningful semantic context, where the representations of similar images are close
and those of dissimilar images are further away. These types of learning frameworks have
mostly been used in the case of open-set classification where train and test labels aren’t the
same (e.g. face verification), and therefore the problem can't be resolved by a classification
framework. This has led to a great interest in DML for tasks such as zero-shot learning
([71, 74, 77, 79]), clustering ([42, 88, 105, 114]) or person re-identification([31, 79, 59]).

We present here the most popular methods based on the classification framework,
different losses designed to learn on tuples of examples and said tuple selection heuristics
introduced to improve the visual similarity learning. Finally, we put forward methods that
split the embedding metric subspace to improve their predictive model.
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Figure 3.2: Illustration of the concept of triplet loss from Schroff et al. [79]. It aims at
pulling similar pairs of examples closer and push dissimilar pairs of examples further apart.

3.2.1.1 Classification-based methods for DML

Deep Metric Learning aims to learn and optimize an embedding space that has
discriminative properties. This cannot be treated the same as a classification task because
this framework aims to learn a finer semantic information and notably has been used to
solve multiple open-set challenges (i.e. where the labels from the train and test set are
different). However, a naive way that has rendered satisfactory results of dealing with
DML problematics is to use a softmax classifier [15] to separate the training classes, and
then use the latent representation during inference. While this method works well on
classification tasks and manages to well separate the training classes, research showed
that it struggled on large open-set problems. In particular, tasks such as person re-
identification or face recognition needed an expressive and semantically well organized
embedding space to be able to separate thousands of new identities in the test set.
Therefore, a lot of research concentrated on softmax-based losses that explicitly
worked towards creating a sound embedding space with discriminative properties. All
these methods leverage a modified softmax definition, where an angular definition is
presented. One way to better separate classes during training is to implement a margin
penalty to that angular definition. For instance, Liu et al. [59] present SphereFace (Figure
3.1.b) which updates the softmax loss with the A-Softmax loss, which has a multiplicative
angular margin. Wang et al. [103] build on this work and present CosFace (Figure 3.1.c)
and the associated loss LMCL, where the margin term isn't multiplicative but added to
the cosine of the angular term. Finally, Deng et al. [31] introduce ArcFace (Figure 3.1.d),
where the margin is added directly to the angle (e.g. inside the cosine function instead
of outside for LMCL). Deng et al. [31] argue that they obtain a constant angular margin
whatever the angle is, as opposed to LMCL. These results are depicted in Figure 3.1.
These works, focusing mainly on face recognition, mostly leverage very large amounts of
data (millions of training images), which is far from the medical imaging problematic.

3.2.1.2 Metric Learning on tuples of samples

To improve the capacity of a vision model to encode sound semantic information, many
methods have decided to explore the comparison of tuples of examples.
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Hadsell et al. [45] introduced the notion of Siamese networks and contrastive loss.
Instead of optimizing a loss over a sum of individual examples like most conventional
machine learning methods do, the idea is to work with pairs of examples. This loss
explicitly pulls the embeddings of similar pairs of examples closer and pushes embeddings
of dissimilar pairs of examples further apart, with the embeddings outputted by the said
Siamese networks, which are feature extractors with shared parameters. However, Schroff
et al. [79] argues that a contrastive loss encourages all images from one class towards the
same embedding without worrying about the distance between different classes. They
therefore introduce a triplet loss, which works on (anchor, positive, negative) triplets
instead of pairs. The anchor is compared to the positive example (e.g. they share the
same class) and to the negative example (e.g. they have different classes). The idea is to
reduce the intra-class distances and increase the inter-class distances, by forcing a certain
margin between the positive and negative distance for each triplet. This is illustrated
in Figure 3.2. Alternatively, Chen et al. [25] build on the triplet loss for person re-
identification. They introduce a quadruplet loss that takes an anchor, a positive example
and two negative samples. They prove that adding a loss term that pushes away negative
pairs and positive pairs with a smaller margin helps reduce intra-class variance and increase
the inter-class variance. This leads to an overall better generalization. Sohn [87] creates a
(N+1)-tuple loss, where a positive example is pulled towards the anchor while N-1 diverse
negative examples all from different classes are pushed away. The novelty here lies in
the construction of the N-pair mini-batches for highly scalable training, using only 2N
examples instead of (N 4 1)N to build N tuplets of length N + 1. They only use two
samples from each class and are therefore able to build a positive pair for each anchor and
N — 1 negative samples all from different classes. This strategy is illustrated in Figure
3.3.
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(a) Triplet loss (b) (N+1)-tuplet loss (c) N-pair-mc loss
Figure 3.3: An illustration of the N-pair loss introduced by Sohn [87]. While, for a
batch consisting of N distinct queries, the triplet loss requires 3N different examples, and
the (N+1)-tuplet loss needs N(N+1) examples, the N-pair loss only uses 2N examples.
Furthermore, it integrates more variety and leads to a faster convergence, as each query
example is compared with at least one example of each negative class.
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However, these methods need to optimize the way they select their training tuples,
because most tuples are uninformative as they are too easy to classify. In the next section,
we present the numerous tuple selection heuristics mentioned earlier.

3.2.1.3 Tuple Selection heuristics

In this paragraph, let % 2P and z™ denote the anchor, the positive sample and the
negative sample respectively, and f denote a certain feature extractor. Schroff et al. [79]
introduce the idea of carefully selecting triplets to improve the learning dynamics. The
naive way to do it, for a mini-batch, is to average the triplet loss on all valid triplets,
called batch-all mining strategy. However, quickly most triplets become uninformative,
because the distance between the anchor and negative examples is larger than that of the
positive example. Therefore, the informative triplets are diluted in the middle of the trivial
triplets, and the model learns too slowly or stagnates. To alleviate this problem, they argue
that selecting the hardest positive 2? (s.t. argmax»| f(z*) — f(«?)||) and the hardest
negative 2" (s.t. argming | f(x*) — f(z™)]|) for each anchor example 2% would lead to
the best performances, and call it hard negative mining. The problem with hard negative
mining is that it can lead to collapsed models where all embeddings are pushed towards
0. Schroff et al. therefore decide to introduce semi-hard triplet mining, where negative
examples are further from the anchor than the positive example, but still have a positive
loss. They have to meet the specific criterion: || f(z%) — f(a?)| < ||f(z*) — f(a™)] <
| f(x*) — f(2P)|| + « with « being the margin parameter. Additionally, to ensure that
there is a certain representation of each class in each mini-batch of n examples, they build
batches with k examples from 7 different classes. Carvalho et al. [21] propose to divide
the sum of losses induced by all triplets by the number of informative triplets. In practice,
this means that the model uses a batch-all mining strategy at the beginning and ends
with a batch-hard strategy at the end of the training.

Such tuple selection methods that use all the batch examples can often lead to a
trade-off between efficiency and accuracy. Suh et al. [91] propose a new stochastic hard
negative mining method. They assume that distances between embeddings of the same
class are relatively small. They therefore decide to replace every pair-to-pair distance by
a pair-to-class distance using class signatures. This allows them to reduce computing
time and also improve predictive performances. Wu et al. [105] argue that a smart and
efficient sampling strategy is the most important part of a DML pipeline. They advance
that hard negative sampling isn't optimal because the gradient has a high variance and is
dominated by noise, while random sampling mostly yields examples that are too easy and
that induce no loss. Semi-hard negative mining, presented earlier in this subsection, seems
a good compromise between the two. However, after learning very well at the beginning
of the training, semi-hard mining isn't as efficient because there are no examples left in
the semi-hard distance space. Distance weighted sampling is therefore introduced as a
solution to this problem, where negative examples are sampled uniformly according to the
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distance. This allows the model to see a wide range of examples, from easy to hard, and
therefore control the variance.

For each negative pair, Wang et al. [L04] make use of three different kinds of similarities
in their DML framework : self-similarity (computed from the pair itself), negative relative
similarity (computed in relation to neighbouring negative pairs) and positive relative
similarity (computed in relation to neighbouring positive pairs). They use positive relative
similarity to mine informative pairs and use both the self-similarity and negative relative
similarity to weight the chosen pairs. This method is the one giving that gives the
best results, and we will therefore discuss it in more detail in 3.3.2.4 and use it in the
experiments.

In this section, we presented an overview of the most commonly used losses and tuple
selection heuristics. In this work, we will concentrate on those that perform the best.
We now concentrate on the nature of annotations, and more specifically, methods that
leverage textual modalities to add semantic information during the learning.

3.2.2 Leveraging textual modalities for visual Deep Metric
Learning

To better represent the semantic relations between training examples, many researchers
have explored integrating textual modalities during training. In particular, we will present
works on cross-modal retrieval with a language modality and then more specifically visual
DML methods that guide their learning using privileged language representations to
improve their similarity predictions.

3.2.2.1 Cross-Modal Retrieval

The concept of integrating textual modalities for visual similarity shares several aspects
of methodology with the research done on cross-modal retrieval. This task consists in
correlating multiple modalities of inputs, for instance images and texts. One way to do
so is to project the multiple modality inputs into a shared latent representation space.
Zhen et al. [124] optimize a discrimination loss in the common embedding space and in
the label space to learn rich semantic features. Carvalho et al. [21] leverages the classic
DML triplet loss framework for cross-modal retrieval in the cooking context, using a list
of ingredients or cooking instructions as the textual input and an image of the dish as the
visual input. They introduce a double triplet loss that relies on two levels of annotations
(fine and coarse-grained) learned jointly to update their representation space. Similarly,
Xu et al. [109] also take inspiration from DML methods by optimizing the projections
of pairs of samples in order to increase the inter-class variability and reduce the intra-
class variability. To do so, they project the pairs of samples from different modalities in a
common subspace, which are then compared by a feature correlation loss which pulls them
closer if they are of the same class and pushes them apart if they are not. The novelty here
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is that they also use an adversarial loss that should predict which modality the sample
is from originally. Peng et al. [68] integrate Generative Adversarial Networks (GANs)
to improve the model's representation power. First, both text and image modalities
are projected into a shared representation space and compared using an inter-modality
discrimination loss. Second, a generative model is used to reconstruct both the original
image and text, and are compared by an intra-modality discrimination loss. This proves
to increase the model’s performance in terms of retrieval metrics.

These methods create and optimize a shared latent representation space for different
modalities in order to retrieve samples from one modality with a query from another
modality. In our work however, we leverage natural language during training to improve
the visual model’s capacity but do not need it during inference.

3.2.2.2 Guiding DML with privileged language representations

Language models leverage the rich information found on the Internet and are able to
encode very powerful semantic information, most notably thanks to training these models
on few-shot learning tasks [71, 17, 72] using huge corpora of text (e.g. CLIP [71] is
trained on 400 million training samples, corresponding pairs of image and text). They
have recently become ubiquitous in most large-scale deep learning tasks and have also
been used in order to improve other deep learning tasks (e.g. using language to improve
visual encoders). Audio retrieval using natural language queries has been explored by
Oncescu et al. [65], that compare different benchmarks and prove the interest of guiding
the audio retrieval task using language guidance. Radford et al. [71] emphasize on the
idea of learning visual features through natural language supervision. They introduce
a method that replaces class annotations by the rich language representations. They
exploit a very large dataset of 400M (text, image) pairs and very large mini-batches and
evaluate their model using zero-shot transfer on large image classification datasets. To
do so, they use a categorical cross-entropy loss on the similarity matrix between text and
image embeddings, and therefore push for a similarity matrix that looks like the identity
matrix. This method earns excellent results on most common datasets but uses very
large amounts of data and computing power. In a similar vein, although applied to a
DML learning framework more adapted to reasonably small datasets, Roth et al. [75]
capitalizes on a (frozen) language encoder, guiding the visual similarity matrix towards
the textual similarity matrix by means of a matching loss.

We have presented a way to add semantic context to a DML framework through
language guidance. However, this necessitates a text encoder that is knowledgeable in
the training domain, which is not always the case, especially in the medical context.
Another way to improve the semantic information in a vision model is to leverage rich
and structured annotations to guide the learning. This is presented in the next section.

64



3.2. Related Works

3.2.3 Using hierarchical annotations as a prior to guide the
learning

Another way to improve visual similarity learning is to integrate hierarchical annotations
into the learning framework. In particular, the idea is to break the common mistakes done
in classification that treat all classes equally different, and therefore better optimize inter-
class distances. We first present methods that leverage the class hierarchies to better
represent the ground-truth labels in a latent embedding space, then methods that update
the model’s architecture to mimic the class hierarchy, and finally methods that create
custom losses that take into account the hierarchical structure of the data.

3.2.3.1 Using class hierarchies for label-embedding methods

One way to introduce hierarchical class annotations is to map labels to latent
representations that have the potential to better encode the semantic similarity between
pairs of classes. In particular, Frome et al. [41] create a label embedding from a skip-gram
language model and then use a ranking loss between the output of a vision model and the
label embedding. Similarly, Barz et Denzler [9] map images onto a hypersphere such that
the distances represent similarities derived from the Lowest Common Ancestor (LCA) in
the label annotation hierarchy tree. LCA is a similarity metric that indicates a certain
similarity between two nodes of an ontology or a graph, by computing the distance with
their lowest common ancestor.

Akata et al. [2] apply this method for zero-shot classification. They compare and
therefore evaluate multiple output embedding methods: textual similarities (Glove,
Word2Vec, weakly-supervised Word2Vec, BOW), human-annotated attributes and finally
hierarchical embeddings. In another work, Xian et al. [107] create multiple latent visual
embeddings and select one using a ranking loss.

These methods try to create sounder visual similarities by embedding label annotations
using certain heuristics. More specifically, they learn to project samples towards fixed
positions in the latent space and defined by the labels. However, since the fixed target
space is very dependent on the training classes, the methods still present generalization
issues.

3.2.3.2 Hierarchical architectures

Other methods try to integrate the hierarchical nature of the data annotations into the
architectures. Ahmed et al. [1] implement a network of experts, where a generalist CNN
learns to classify a subset of K higher-order classes where K' < C, with C being the
number of classes. The backbone of the generalist network then feeds K expert branches
that learn to discriminate the classes within a specialty. Similarly, Alsallakh et al. [5]
discuss the nature of CNNs and how different convolutional blocks learn different levels of
features. They also implement an AlexNet model where classification branches are added
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after each convolutional block and learn to classify different levels of the class hierarchy.
Yan et al. [115] simplify the class hierarchy by dividing it into coarse and fine-grained
categories. Again, a shared feature extractor feeds both a coarse component classifier and
K fine component classifiers. They however offer a novelty with a probabilistic averaging
layer which allows the model to weight the fine-grained predictions by the coarse class
predictions.

These methods smartly embed the class hierarchy into the model architecture, but
mostly do it for classification tasks and are very specific to certain architectures. This
is particularly problematic because these specific architectures have to be retrained from
scratch and do not benefit from a consistent pretraining on a large-scale database. In
order to bypass that problem, other methods integrate the hierarchical nature of the data
by creating a custom loss.

3.2.3.3 Hierarchical Losses

Different works have highlighted the importance of having a specific loss function that
takes into account higher-level semantic context. Deng et al. [29] argue that most
classification tasks have been trained using unrealistic datasets with a number of class
that isn't large enough and where classes can be easily separated. To build a stronger
classifier that would work in other scenarios, especially with numerous classes (they test
it on ImageNet10K for instance), they propose to minimize a hierarchical cost. This
hierarchical cost is computed as the Lowest Common Ancestor (LCA) metric extracted
from WordNet on SVM and kNN-based classifiers. Verma et al. [98] propose a "context-
sensitive loss" where the LCA extracted from the class hierarchy provides valuable insights
to learn similarity metrics between pairs of classes. Bertinetto et al. [11] argue that recent
methods that have obtained impressive results on most computer vision tasks, have not
really improved the mistakes that were made by these models. This means that even
though the accuracy has increased, when the model makes a mistake (e.g. predicts a
class different from the ground-truth class), the predictions are still semantically very
different to the ground-truth class. This can be an important problem in tasks such as
medical imaging, where we would want for the predictions to be as close as possible to
the ground-truth label semantically even if they are wrong. They therefore introduce a
"hierarchical cross-entropy" as the reweighted sum of the cross-entropies of the conditional
probabilities that are derived from the label taxonomy tree. For image similarity, Ge et al.
[42] update the Triplet Loss by introducing a novel dynamic margin instead of a fixed
one in the original Triplet Loss. This new margin takes the class hierarchy tree into
account to produce the loss term. In particular, negative pairs that are further apart in
the class hierarchy tree will be pushed further apart than negative pairs whose classes are
semantically closer.

Unlike the majority of the works presented in this section, our work builds on DML
frameworks (and not classification or regression tasks) and allows for good generalization
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on classes absent from the training set. Also, it doesn’t require a custom architecture or
heavy ensemble methods. In particular, we leverage structured annotations to better input
semantic context into the vision encoder model and help improve the inter-class distances
with a Semantic Abstraction Loss Lg4;. We also make use of the semantic information
given by a text encoder by guiding the vision encoder with rich captions of these images
extracted from the structured annotations, and by guiding the meta-embeddings using
natural language.

3.3 Deep Metric Learning framework and baselines

In this section, we will first introduce the reader to the common Deep Metric Learning
framework and then present the most used baselines that will be compared in section 3.5.

3.3.1 DML Framework

Metric Learning makes use of distances to mirror similarity measures between data points,
such that similar data will be closer with respect to that distance, and dissimilar data will
be further apart. One of the earliest examples of that is the famous nearest neighbours
classifier (Cover et Hart [27]).

In particular, Deep Metric Learning consists in learning a distance metric d(z;, x;)
over data points z; € X, with X being the training dataset of images. This distance
metric d is parametrized by a deep feature extraction model ¢ : X — & followed by a
linear projection to the target metric space f : ® — ¥ C R? In general, ¥ is normalized
to the unit hypersphere, for better regularization. As opposed to Metric Learning, which
usually builds on fixed feature extraction methods, DML learns an end-to-end embedding
function 1) = f o ¢ that will bring latent representations of similar images closer, and push
the latent representations of dissimilar images further apart. This ¢ function is updated
such that the distances d(v¢(z;), ¢ (z;)) matches the semantic similarity between both
data samples.

The two main ways to characterize the ground-truth similarity are usually either
categorical classes y; € [1,C] with C being the number of classes in the training set,
or using binary pairwise relations. However, in most works, the binary pairwise relations
are extracted from the categorical classes in the first place, with S(z;,z;) = 1,,—,,.
Thus, we start our DML framework using labels as the ground-truth and the basis for our
image similarity. Different DML baselines composed of training losses and tuple selection
heuristics are presented in 3.3.2.
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3.3.2 DML Baselines

We present here a brief overview of some of the most commonly used DML methods
to better introduce the domain to the readers. We first present the softmax, then the
contrastive and triplet losses, then the margin and multisimilarity losses, and finally the
CLIP method.

3.3.2.1 Softmax

The softmax function, first introduced by Bridle [15], maps a vector of real values into a
vector of probabilities:

e*

Softmax(z); = 5T e (3.1)
This function is mostly used as the last activation function in a neural network model for
classification. It is built to output a vector of C' values, each of which roughly representing
a probability for each possible class. Even though it is mostly used for classification tasks,
it can easily be adapted to a DML framework. To do so, one can learn the model
with the softmax loss on all training data, and use the final embedding (the input to
the softmax function) as the embedding representation during inference. This can be
efficient because the layers prior to the softmax activation have learned discriminative
features. This method is particularly effective when there is a large sample-to-class setup,
and while it manages to separate training classes very well, it has trouble generalizing to

new classes, or struggles when the number of classes increases greatly.
As it was discussed earlier in section 3.1, novel research has built upon the softmax
function and focused on providing a better separation between classes. These works have
concentrated on problems with large numbers of classes, such as face verification or person

re-identification for example [31, 59, 102, 103].

3.3.2.2 Contrastive and Triplet Losses

Early research works such as Bromley et al. [16] or Hadsell et al. [45] have introduced a
new learning paradigm to improve the latent representations given by deep architectures
with siamese networks and a contrastive loss. The idea behind this method is to pull
positive pairs of examples closer together, and push dissimilar pairs of examples further
than a certain margin. To do so, both examples are passed through Siamese Networks
that have shared weights, and their representations are then compared with a contrastive
loss. We can write the contrastive loss for examples (x;,v;) and (x;,y;):

Lcontrasti'ue(xiv Yiy Tj, y]> = ]liZjDZj + ]li;éjmax(margin - Di,j7 0)2 (32)

with D;; = ||f(x;) — f(z;)|| for a euclidian distance, with f being an end-to-end
embedding function, and with f(z;) usually a normalized embedding vector.
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This loss uses a margin to separate class clusters. However, Schroff et al. [79] argue that
a contrastive loss comparing pairs of samples only encourages all examples of one class
to be projected onto a single point in the latent representation space, without forcing a
distance between the clusters of different classes. They therefore build on the contrastive
loss for (anchor, positive, negative) triplets instead of (positive, negative) pairs, as it is
illustrated in 3.2. The advantage of this method is that it enforces a margin between
class clusters, but allows a certain lenience towards embeddings of the same class. For a
triplet (x,, x,, ©,), we can write the triplet loss as:

Luripter = _max(|[f(xa) = f(2p)[5 = I (za) = f(@n)l5 + 0, 0) (3-3)

In order to satisfy the constraint:

1f (za) = Fl@p)ll2 + a < [ (2a) = f ()2 (3.4)

for all triplets in the training set.

3.3.2.3 Distance weighted tuple sampling

Many DML frameworks and losses such as the contrastive and triplet loss work comparing
tuples, and a lot of research has been done to optimize the tuple selection methods (see
3.2.1.3). In this work, we decide to follow a tuple selection heuristic presented by Wu
et al. [105] called distance weighted sampling. The rationale behind this method is that,
given a certain anchor, sampling negative examples randomly would not work because
it would induce no loss for most examples, while sampling negative examples that are
too hard would yield a high variance for the gradient. Therefore, the idea is to sample
negative examples uniformly according to the distance, which leads to negative examples
that are scattered instead of amassed in a small specific region.

Figure 3.4 shows how distance weighted sampling offers negative samples that have
different distances whereas the other sampling methods propose examples that are biased
towards certain clusters of distances.

3.3.2.4 Margin Loss and Multisimilarity

Wu et al. [105] introduce a margin loss that better fits the distance weighted tuple
sampling method. This loss can be written as:

Linargin(i, 25, yi.;) = maz(a + yi; (| f (i) — f(z;)[] — B),0) (3.5)

with ., 5 € R and y;; = 1 if examples x; and x; share the same class, and y; ; = —1
otherwise.

In this loss, o serves as a margin of separation in the same way as in the triplet loss,
while 3 serves as a boundary between the positive and negative pairs.
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Figure 3.4: Figure that depicts the empirical distribution of samples drawn from different
strategies. In particular, it shows the distance between examples with respect to the the
norm of the covariance of the gradients. This figure is drawn from Wu et al. [105]

In the very popular Multi-Similarity work, Wang et al. [104] argue that in all DML
frameworks working with tuples, negative pairs are usually weighted by three kinds of
similarities: the self-similarity (Sim-S), precisely the similarity between the positive and
negative example, the positive relative similarity (Sim-P), meaning the relative similarity
of the negative pair with other positive pairs (which is done in the triplet loss), and
negative relative similarity (Sim-N) which weights the negative pair relatively to other
negative pairs. This is illustrated in Figure 3.5. They use the Sim-P to mine informative
pairs (e.g. a negative pair is selected if its similarity is higher than the hardest positive
pair for the same anchor) and integrate Sim-S and Sim-N to weight these examples in
the multisimilarity loss. The weight of a negative pair is computed as such:

B eB(Sij=A)

Yij =11 e, PG (3:6)
with 3, A and tuneable hyper-parameters. This negative pair weighting compares the
Sim-S €2(5.5=Y) with the other negative similarities, therefore Sim-N, with e?(%ix=%  |n
other words, the importance of a certain negative sample in the loss is larger if its distance
with the anchor is smaller than the distance of positiv examples to the same anchor.

Finally, the multisimilarity loss can be written as:

1 &1
Lus = o Y [~ log(1+ Y- e )]
biDa keP;
) ' (3.7)
+[=log(1 4+ Y By
5 keN;
Both these methods have proven their efficiency with great results on most common DML
datasets.
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Figure 3.5: This figure illustrates the concepts of Sim-S, Sim-P and Sim-N. It is taken
from Wang et al. [104]. Sim-S denotes the similarity between the anchor and the negative
sample, Sim-P denotes a relative similarity with positive examples. In other words, for
each anchor, a negative sample is more important if its distance with the anchor is smaller
than the positive examples. Alternatively, Sim-N denotes the importance of a negative

pair with respect to other negative pairs. If the negative sample is closer to the anchor
than the other negative samples, it is considered more relevant in the final loss.

3.3.2.5 CLIP

Radford et al. [71] decide to train computer vision models with natural language
supervision and introduce a method named CLIP. At the heart of this work is the idea
that the semantic information comprised in the textual data can be leveraged easily
(because textual models do not require large annotation resources and are learnt from
large corpuses of text from the internet) and can be a very powerful tool in order to guide
the training of visual models. The idea of this method is to match both corresponding
textual and image latent representations. In theory, the visual encoder should benefit from
the semantic context inherent to the textual data and the expressivity of the language
model pretrained on millions of data from large-scale web-scrapped datasets. Although
this work was originally intended zero-shot predictions, it can easily be used to adapt to
a DML pipeline, comparing visual representations during inference rather than image-pair
embeddings.

In practice, to implement CLIP, models take (image, text) sample pairs as inputs
rather than the more common (image, label) pair. The method then compares the text
embedding created by a text encoder with an image embedding created by a image
encoder. Using large mini-batches, they simultaneously update the weights for both
encoders using a double cross-entropy loss on both axes of the similarity matrix between
the text and image embeddings. The categorical cross-entropy loss (CCE) can be written:

Leceg = — Zyz ~log(f(:)) (3.8)

Although this method has shown very high performance results on many computer vision
tasks, it requires a large training dataset (i.e. CLIP was trained on 400 million pairs of
images and text). This can be difficult to reproduce on smaller DML datasets.
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3.3.2.6 Language Guidance
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Figure 3.6: Overview of the Expert Language Guidance (ELG) method presented by Roth
et al. [75]. A dual encoder embeds both the mini-batch of images and the mini-batch
of captions associated to these images. While the visual encoder is updated by a classic
DML loss, it is also guided by L,,4scn, a loss designed to make the visual similarity matrix
match the textual similarity matrix for each mini-batch. The pre-trained text encoder is
frozen and aims to add context to the visual encoder.

Another way to integrate language guidance in the frame of visual similarity learning
without needing extremely large datasets and enormous computing resources was
introduced by Roth et al. [75]. In this paper, the authors still use a dual encoder, however,
the text encoder is frozen to only update the image representations. They leverage the
strong semantic information learnt by the text encoder and guide the image similarity
matrix Si,,, to resemble the text similarity matrix Sie,;. To do that, they introduce a new
matching loss based on the KL-divergence:

1 B o Szm
Lmatch(simm Steact) - E Z U(Simg) IOg(O_EStgtg) (39)

with B the batch size and o a row-wise softmax.

The final loss term is a weighted average of L, and a classic DML loss that ensures
to learn a sound representation space. It is named Expert Language Guidance (ELG) and
is written as:

Lere = Lpyr +w - Liaten (3.10)

The methodology is presented in Figure 3.6. This method exploits textual information by
matching the visual similarity matrix with the textual similarity matrix. It therefore heavily
relies on the language models, that can be very powerful nowadays in most use cases.
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However, these methods can have limits when applied to some specific niche contexts such
as medical imaging where the language models do not perform as well because it isn't as
present in the web-scrapped resources used to train these models. In the next section we
overcome these limitations by introducing a Semantic Abstraction Loss (SAL) that uses
hierarchical annotations as ground-truth labels. We also introduce a novel way to guide
these meta-embeddings with rich textual annotations, both through rich captioning and
language guidance.

3.4 Exploiting rich semantic annotations for Deep
Metric Learning

In naive DML setups, where all classes are considered exclusive, inter-class distances are
not encoded optimally. To improve the model’s performance in that regard, we propose
in 3.4.1 a novel loss Lg,;, that integrates annotations from multiple abstraction levels as
ground-truth labels. In 3.4.2, we introduce several ways of integrating the rich structured
annotations as textual information, both through rich captioning and through higher-order
ontology language guidance.

3.4.1 Leveraging structured annotations for image similarity

Let z; denote an image, y! the class label associated to the image at the I-th depth of
the class hierarchy (with ¢ being the leaf, and natural class annotation). For instance,
the class hierarchy represented in Figure 3.7 would vyield y? as African crocodile, 1y} as
reptile and y? as animal.

reptile

African American Siberian Australian
crocodile alligator husky terrier

Figure 3.7: An example of a possible ontology for ImageNet classes "African crocodile",
"American alligator", "Siberian husky" and "Australian terrier".

To improve the latent representations of the input images and obtain a better organized
embedding space, we would like for semantic information extracted from higher-order
annotations to be encrypted in the image encoder. In order to obtain these semantically
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rich embeddings, we want to supervise the training of a vision encoder using classes and
meta-classes.

The main idea introduced here is to create meta-embeddings that encode the
information issued from the meta-classes. In the general case, the end-to-end image
encoder ), is created as a composition of derivable /ayers, and particularly as the
composition of a common feature extractor f and a linear projection ¢. It can be written
as:

g (1) = [0 ¢ () (3.11)

We present auxiliary meta-embeddings 1/)£mg(xi) output by meta-projections ¢' built on

a single common feature extractor. They can be written as:

g (i) = f 0 ¢ () (3.12)

These auxiliary embeddings encode the semantic information carried by the meta-
annotations. To push the feature extraction embedding space to reflect these semantic
relations, we introduce a novel loss Lg4;, written as:

L
Lsar =Y oy Lparr (¥ (), yh) (3.13)
1=0

with a; the weight associated to each abstraction level [ in the loss and Lpy,;, the DML
loss (i.e. triplet loss, margin loss or multi-similarity loss for example).

This loss enables the feature extractor f to learn features that are able to discriminate
all meta-classes, and therefore semantic information stemming from the rich class
ontology. This way, the inter-class distances can be represented better in the embedding
space. The method overview is illustrated in Figure 3.8.

To evaluate this method, one only needs the leaf-level meta embeddings (¢5),,,(x:)).
and therefore does not necessitate any additional information during inference. This
method also presents the advantage of being generic and working with different encoder

architectures and different DML losses.

3.4.2 Integrating language information

The rich information that arises from the SUOG ontology comes in multiple forms. We
presented in the previous section how to integrate the structured nature of the annotations
to improve the predictive capacities of the visual similarity model. Another way to make
the most of this ontology is to use the strong and rich textual annotations to guide the
visual encoder. For instance, the textual caption magnified view of the gestational sac
holds a strong semantic meaning in itself that could be extracted by rich language models.
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Figure 3.8: Overview of the proposed approach. A mini-batch of images with two levels
of annotations y" and y! is passed through a vision encoder, and through two projections
¢° and 1*. For each image, these two embeddings are compared to their ground-truth
annotations y° and y' respectively using a DML loss Lpy;r.

3.4.2.1 Rich Captioning

The first idea that came to mind was to integrate the information that comes from the
class hierarchy in a textual manner. For both works that use language guidance and that
are tested in this work, such as CLIP [71] presented in 3.3.2.5 and Language Guidance
[75] presented in 3.3.2.6, we enrich the textual input with hierarchical information.

For instance, for the CUB-200 dataset [100], a bird classification dataset used in this
work (that present more extensively in section 3.5, we have three levels of annotation
hierarchy, with species, genus and family. The textual primer for example x; becomes "a
photo of a y? from the genus y} and the y? family.". For instance, for an image of a
baltimore oriole, the textual primer used by the model for language guidance would be
changed from "a photo of a Baltimore Oriole" to "a photo of a Baltimore Oriole from
the genus Icteridae and the Icterus family”. For the SUOG view dataset, where there is
only one level of label hierarchy, the additional text for the sample z; becomes "y? from
the y} ". This method has the advantage of offering a certain liberty towards the primer,
allowing anyone to change the primer to better fit the domain task. However, it also puts
all the semantic abstraction information at the same level. The information that stems
from the species, genus and family are put together in a single caption, and one of these
might overshadow the representation of the two others.
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3.4.2.2 Language guidance over meta embeddings

To optimize the increment in visual similarity learning brought by the meta embedding
learning presented in 3.4.1, we introduce Ontology Language Guidance (OLG), where we
apply the language guidance loss introduced by Roth et al. [75] and presented in 3.3.2.6
to the aforementioned meta embeddings. We therefore obtain:

L
LOLG = Zal : LDML(¢l(xi)7 yi) +w - LnLatch<S£mg7 Séext) (314)
=0

This loss allows to integrate the rich annotations, both using the multiple levels of
class hierarchy, while also guiding the representations to be sound using a strong textual
guidance. Compared to the rich captioning, OLG also enables the model to better benefit
from the hierarchical nature of the annotations by separating the representations of the
different levels of abstraction of the data. The overview of this method is presented in
Figure 3.9.

3.4.2.3 Making use of a domain specific language encoder

The above-mentioned extensive loss term heavily relies on the good semantic
representations of the textual encoder. These tend to be good enough for large-scale
tasks such as object classification, where a lot of classes are relatively common in the
web-scrapped text datasets that have served for the text encoder pre-training. However,
and it was pointed out as a limitation for this work in [75], the text encoders might have
more trouble working with very specific domains, and might typically struggle to separate
OB/GYN medical terms for instance, where the class separation can be too fine-grained.

We therefore decide to switch the text encoder to a domain specific one, where the
class separations will be broader. Lee et al. [55] build BioBERT on a pre-trained BERT
model that is updated on a biomedical corpus from PubMed and then fine-tuned for
biomedical Named Entity Recognition, Relation Extraction and Question Answering.

Adapting the textual encoder to a domain specific one such as BioBERT improves the
predictive capacity of the model, as is shown in 3.5, and demonstrates that semantic
relations extracted from the textual corpora are highly helpful for visual similarity.
However, using domain specific text encoders for language guidance can sometimes
be detrimental to the visual task at hand. In practice, and as it is highlighted in the
experiments of this chapter, a text encoder trained on the same domain is not sufficient
to improve the semantic context, one needs to take into account the task that the encoder
has been trained on.
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Figure 3.9: Overview of the Ontology Language Guidance (OLG) method. While a vision
encoder takes a mini-batch of images as input and outputs two visual embeddings, a
frozen text encoder takes two mini-batches of captions stemming from 3° and ' (e.g.
the hierarchical annotations) as input and outputs two textual embeddings. A DML loss
is applied to both visual embeddings and a matching loss L,,.:.; is applied to both pairs
of similarity matrices in order to help guide the vision encoder with the context encoded
by the text model. This example only depicts two levels of hierarchical annotations but
it can be generalized to more.
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3.5 Experiments

In this section, we evaluate the interest of guiding a visual similarity framework with
higher-level semantic information. First, we broadly present the tasks, datasets and
implementation details in Section 3.5.1, then we present how higher-order annotations
can improve the predictive capacities of an image similarity model in section 3.5.2 and
finally the impact of language guidance in Section 3.5.3.

3.5.1 Tasks and Datasets
3.5.1.1 Datasets

We present results to experiments led on two datasets: the birds classification dataset
CUB-200 [100] and the scan plane recognition SUOG dataset. CUB-200 is a public
dataset, less noisy than SUOG and where classes are more easily separable for a visual
model pretrained on ImageNet. Let us present both of them:

3.5.1.1.1 CUB-200 CUB-200 is a dataset very widely used for Metric Learning. It
contains 11788 images of birds belonging to 200 different species as a ground-truth class.
The first row of Figure 3.10 highlights examples from CUB-200. We manually extract
the genus and family to which these species belong from the Avibase world bird database
(https://avibase.bsc-eoc.org/avibase.jsp) to create higher-level annotations. The training
set contains all images from 100 species (with 69 different genuses and 28 families), while
the test set contains all images from the other 100 species. This allows us to evaluate
the visual similarity performances of the model on data samples and classes that haven't
been seen during training.

3.5.1.1.2 SUOG The SUOG project collected 200K ultrasound images at all stages
of pregnancy from ten different expert centres across Europe. The subset of images used
in these experiments contain 4323 pregnancy ultrasound images, with 649 used in the test
set, randomly sampled to follow the same label distribution as the train set. The second
row from Figure 3.10 highlights examples from SUOG. We use the view annotations as
the ground-truth label to perform DML on. There are 18 classes that all belong to a set
of 5 metaclasses, all extracted from the SUOG ontology created by OB/GYN experts.
These classes and metaclasses are shown in Table 3.1.

3.5.1.2 Implementation Details

For most experiments, we use a ResNet50 pretrained on the ImageNet dataset (Deng
et al. [30]) as the image encoder, while different text encoders have been tested. We set
the final embedding size of the image encoder to 128 as it is the case in most state-of-the-
art works to ensure a fair comparison. For all trainings, we used ADAM optimizer with
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Meta Label

Label

adnexal view

transverse view of right adnexa

transverse view of left adnexa

longitudinal view of right adnexa

longitudinal view of left adnexa

magnified view of the gestational sac

magnified view of the gestational sac

longitudinal view of the embryo

magnified view of the trophoblast

uterus view

longitudinal view of the uterus

oblique view of the uterus

longitudinal view of cervix

transverse view on uterus

left interstitial portion view

right interstitial portion view

right tubal interstitial portion

left tubal interstitial portion

bladder and vesicouterine fold view

longitudinal view of bladder

pouch of Douglas view

transverse view of Pouch of Douglas

longitudinal view of Pouch of Douglas

Table 3.1: Groups of labels extracted from the SUOG ontology. Another larger illustration
of these annotations can be found in Figure 1.2.
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% L\

Figure 3.10: Examples from the CUB-200 dataset are shown in the first row. Examples
from the SUOG dataset are shown in the second row.

$£1=0.9 and (3,=0.999, and a batch size of 64 unless stated otherwise. For the CUB-200
dataset, we used the common data augmentations used in the state-of-the-art methods:
the training images are randomly cropped while keeping the same aspect ratio and then
are randomly flipped. The test images are cropped and centred. For the SUOG images,
only a simple random vertical flip is applied as it allows keeping the ultrasound imaging
structure.

For all the CLIP experiments, we update multiple details to effectively train on
relatively small datasets. We add a triplet loss term to regularize the training, and work
with pretrained vision (ResNet50 pretrained on ImageNet) and text encoders (BERT-
small model) instead of learning everything from scratch as in the original paper. We also
replace the original CCE by a binary cross-entropy loss (BCE). Using a CCE with large
mini-batches is acceptable in the original paper because of the extremely large number
of classes, whereas we only have 100 classes for CUB-200 and 18 for SUOG. This allows
each image to match several textual inputs (e.g. several examples of the same class in
the same mini-batch).

3.5.1.3 Ewvaluation Metrics

In order to evaluate DML models, classic metrics such as accuracy or Fl-score aren't
optimal because these models output latent representations and not class predictions so
to speak.

In most state-of-the-art DML works, the main evaluation metric used is recall@k. Unlike
what the name suggests, recall@k does not share the same concept as the recall (also
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known as sensitivity) evaluation metric, which counts the number of true positives over
all positive samples. Recall@k equals to 1 when at least one of the K nearest neighbours
of one specific query sample is of the same class as that sample, and 0 otherwise. We
also introduce meta-recall@k, following the same mechanism as recall@k but using the
meta labels as the ground truth. This enables a coarser assessment, and more globally
evaluates the capacity of the model to make "sounder" mistakes.

Table 3.2: Results for the CLIP model on the CUB-200 dataset

Method Recall@1 | std

CLIP 44.98 0.34

CLIP rich text 45.48 0.37

CLIP 4+ Genus-SAL 46.63 0.2

CLIP + Family-SAL 46.57 0.23

CLIP 4+ Genus-SAL + Family-SAL || 47.00 | 04

3.5.2 Guiding the Metric Learning with prior meta
annotations

In this section we validate the impact of the proposed Semantic Abstraction Loss (SAL)
that leverages hierarchical annotations to better characterize the embedding space.

We can observe in Table 3.2 that performing visual similarity at metaclass level allows
the CLIP model to improve its predictive performances with regard to recall@1 on the
CUB-200 dataset. The results go from 44.98% when trained with a CLIP model, to
46.63% when SAL takes into account the genus (y') of the training sample, 46.57%
when taking the family into account (y?) and finally 47.00% when taking both into
account, which demonstrates that the integration of semantic context leads to better
predictions. This accounts for a 2.02 points global increase, while we can also note that
the use of two different levels of hierarchical annotations works better than only using
one. This could demonstrate that even stronger semantic information leads to better
representations. Alternatively, Table 3.3 shows that applying the novel SAL loss to the
multisimilarity [104] DML loss offers a very short increase in performance (+0.09 points
when guiding with the family classes). The small improvement on the multisimilarity
loss could be explained by the fact that the CUB-200 dataset contains a relatively large
number of images and classes. We will see that SAL offers a considerable increment on
multiple DML losses for the SUOG dataset, that has less images and less classes.

Indeed, Table 3.4 shows the impact of the meta-loss SAL for the SUOG dataset. It
shows that, for five different DML losses, the addition of the SAL loss term consistently
improves the recall@k scores (42.34 points for CLIP, +1.95 points for the triplet loss,
+1.58 points for the softmax, +2.69 points for the margin loss and +0.50 points for the
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multisimilarity loss). This shows that the integration of a single level hierarchical semantic
information greatly benefits the model to separate echographic views that can be highly
similar visually. It also demonstrates that the method is generic to all DML losses in this
use case, with the recall@1 scores always higher than the baseline when the weighting of

Table 3.3: Results for the Multism. model on the CUB-200 dataset

Method Recall@1 Genus-Recall@1 | Family-Recall@1

Multism. 63.41 +0.45 71.64 +0.43 86.16 4+ 0.22
Multism. 4+ Genus-SAL 63.36 = 0.19 | 71.93 + 0.26 86.38 4+ 0.28
Multism. + Family-SAL || 63.50 + 0.34 | 71.73 £ 0.50 86.21 +0.27
Multism. + Both-SAL 63.22 +0.16 71.61 +0.30 86.43 + 0.35

SAL is well-chosen.
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Table 3.4: Results for SAL on the SUOG dataset.

DML method o Recall@1 Meta-Recall@1
CLIP 0 36.83 + 1.58 81.97 + 1.56
CLIP 4+ SAL 0.1 | 3739 £1.05 | 82.37 4+ 0.34
CLIP + SAL 0.5)139.17 £ 1.05| 82.16+1.44
CLIP 4+ SAL 1 38.84 + 1.13 81.97+0.77
Triplet 0 52.32 +1.31 90.91 +0.70
Triplet + SAL 0.1 | 54.26 + 1.14 | 91.28 £0.58
Triplet + SAL 0.5|54.27 +£0.38 | 91.65+0.40
Triplet + SAL 1 | 54.27 + 0.69 | 91.83 + 0.50
Softmax 0 55.71 + 0.85 91.74+0.73
Softmax + SAL 0.1 | 57.29 +£ 0.93 | 92.17+0.38
Softmax + SAL 0.5 | 56.73+0.65 | 92.35 + 0.45
Softmax + SAL 1 54.73 +0.74 92.29 4+ 0.83
Margin loss 0 53.19+0.95 89.30 + 0.90
Margin loss + SAL 0.1 | 55.9 + 0.88 91.194+0.65
Margin loss + SAL || 0.5 | 54.3+0.65 | 92.02 + 0.87
Margin loss + SAL 1 52.36 4+ 0.49 91.96 4+ 0.34
Multisimilarity 0 56.16 4+ 0.81 90.45 4+ 0.83
Multisimilarity + SAL || 0.1 | 56.66 + 1.00 | 91.44 4+ 0.55
Multisimilarity + SAL || 0.5 | 54.854+0.50 | 91.96 + 0.34
Multisimilarity + SAL || 1 54.52 +1.19 91.89 + 0.66

Another important aspect of the method to point out is that it allows the model to
make "better" mistakes. Table 3.3 shows results of experiments done on the CUB-200
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dataset, and indicates that the model trained with SAL obtains better results in terms of
genus-recall@1 and family-recall@1 than the baseline. This means that when the nearest
neighbours of the query don’t share the same class as the query sample, most of them
still share the same genus or family.

We can also observe in Table 3.4 that for the SUOG dataset, all five DML methods,
when coupled with SAL, perform better than the baseline in terms of meta-recall@1 even
when they have a lower recall@1 (at best, the input of the SAL loss term increases
the meta-recall@1 by 0.99% for CLIP, 0.92% for the triplet loss, 0.61% for the softmax
and 2.72% for the margin loss). For instance, while applying SAL with a = 1 on the
multisimilarity loss makes the recall@1 drop from 56.16 to 54.52, the meta-recall@1 still
increases by 1.44%. Also, when the compromise is done between both losses by choosing
a smaller and better adapted « at 0.1, both metrics are higher when the model is guided
by rich annotations. This is important because it ensures that even when the model
is not able to represent a test sample correctly, the most similar images in the latent
embedding space are still relatively close semantically. In practice, for a query image
labelled as a "longitudinal view of right adnexa", it is preferable to present as similar an
image labelled "longitudinal view of left adnexa" than an image labelled as "magnified
view of the trophoblast". This property is also interesting in cases such as scan plane
recognition where the datasets are relatively small, because the model generalizes better
as the embedding space is better organized.

One last important detail to highlight is the difference in results between the
multisimilarity-trained model and the CLIP-trained one. Although multisimilarity obtains
very positive results on the CUB-200 dataset, the SAL loss term only provides a very slight
improvement in performance. The CLIP model, however, achieve a 2.02 point increase
form the SAL loss term. This could be explained by the actual nature of the CLIP method,
that aims to match the visual embeddings and the text embeddings through a cross-
entropy loss (see section 3.3.2.5 for further details). This means that the multisimilarity
model benefits from the semantic information through structured annotations and meta-
embeddings, while the CLIP model also takes advantage of this information through
natural language and textual representations too, and therefore probably profits from
large text encoders trained on large-scale databases. Therefore, we explore the idea of
integrating textual data so that the visual model can learn semantic relations from the
textual data. In the next section, we present results from these experiments.

3.5.3 Integrating structured prior information through
natural language

Language models have recently taken the deep learning world by storm because they

manage to encode strong semantic information due to the large-scale training datasets

available. We try to input this information in our deep metric learning framework through
rich textual data, guiding auxiliary embeddings with natural language, and finally by using
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a domain-specific text encoder.

3.5.3.1 Impact of rich textual data during language-guided learning

As leveraging natural language to improve visual deep learning models capacities has
become common, we leverage the strong semantic information obtained through the rich
annotations using textual representations.

We evaluate the impact of the rich captioning method on different datasets. To
do so, we apply ELG to a classic DML method such as multisimilarity but update
the textual input by introducing the higher-level annotations in the captions (i.e. the
simple caption "a photo of a sooty albatross" would be changed to "a photo of a sooty
albatross from the genus diomedeidae from the family phoebastria”). On the CUB-200
dataset, tables 3.2 and 3.5 show that using the rich caption method slightly improves
the predictive performance. For the CLIP method, using a rich textual input improves
the predictive performance by 0.5 points, whereas it improves the recall@1 by 0.14 points
for multisimilarity. To understand the short improvement given by the rich captioning
compared to the use of L4z, we decide to compare the embeddings given by the text
encoder for the simple caption and the rich caption. Results found in Table 3.6 show that
the mean cosine similarity (over all classes) between the embeddings of the rich caption
and the simple caption for the species is very high (0.937), whereas it is much smaller for
the genus and family (0.617 and 0.655 respectively). These results demonstrate that the
text encoding for the rich captions is extremely similar to that of the simple captions and
therefore doesn't fully capture the strong semantic information given by the higher-order
annotations, but rather still focuses on the most precise terms. Also, the difference in
performance between multisimilarity and CLIP can be explained by the fact that for CLIP,
the textual representations are updated, whereas for the multisimilarity loss, the textual
encoder is frozen.

However, on the SUOG dataset, we can observe a slight decrease in performance
when applying the rich textual inputs instead of the simple ones in Table 3.7. This can be
explained by the poor performances of the textual encoder on specific OB/GYN terms.
In particular, we can observe in Table 3.6 that the rich representations are very similar to
both the textual representation of the classes and to the meta-classes (the mean cosine
similarity is respectively equal to 0.937 and 0.916). The main theory behind these results
is that the frozen text encoder has very limited knowledge concerning early pregnancy
and OB/GYN in general, and therefore embeds all the SUOG classes and meta-classes in
a very tight and small space.

3.5.3.2 Guiding meta embeddings using natural language

As we demonstrated the interest of using the SAL loss term in a DML context, we hereby
prove the impact of guiding these meta-embeddings using natural language.
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Table 3.5: Ablation study of Multisim. and Language Guided method on CUB-200
dataset.

Method || ELG | Rich capt. OLG Recall@1
Multisim. X X X 63.41 + 0.45
Multisim. v X X 67.19 £0.12
Multisim. || v v X 67.33 £ 0.22
Multisim. v v Genus+Family (o = 0.25) 67.5 £ 0.33
Multisim. | v v Genus+Family (« = 0.5) | 67.74 + 0.30
Multisim. | v/ v Genus+Family (a = 0.75) | 67.61 + 0.26
Multisim. | v v Genus+Family (a = 1) 66.92 £+ 0.32
Multisim. || v v Genus (o = 1) 66.92 + 0.25
Multisim. v v Family (o = 1) 67.62 £0.35

Table 3.6: Mean cosine similarity between the embeddings of the rich caption and the
simple caption with the CLIP encoder.

Dataset || Level-0 Similarity | Level-1 Similarity | Level-2 Similarity
CUB-200 0.937 0.617 0.655
SUOG 0.937 0.916 —

For the CUB-200 dataset, results in Table 3.5 show the impact of guiding the DML
training with natural language, as presented by Roth et al. [75]. We can also observe that
adding the OLG loss term helps improve the model’s predictive performance, as it helps
structure the embedding space and therefore improve the inter-class distances. When
guiding the model using both genus and family annotations and language guidance, the
model goes from 63.41% to 67.74% at best, the OLG loss term accounting for a 0.55
points increase compared to the model that used simple ELG language guidance.

Table 3.7 shows results for ELG language guidance and OLG on the SUOG dataset.
We can observe that the simple ELG only very slightly improves the recall®1 results
by 0.17 points when guided using a simple caption. As expected, adding a Lga loss
term improves the recall@1 up to 56.49, with the meta-recall@1 increasing by 0.43 points,
which confirms the results discussed previously, while guiding the model using OLG slightly
improves the results, with a recall@1 climbing up to 56.61%. However, we can observe
that the results with OLG are still slightly below those for the model only guided by
Lgar. These results are interesting because they show that language guidance is only
realistically useful when the language model can offer good context to better separate the
different classes. In the case of the SUOG dataset, it seems that the text encoder isn't
powerful or knowledgeable enough to significantly improve the results on its own, and
even slightly degrades the model’s performance, as it is not able to encode the semantic
context between the annotations.
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Table 3.7: Ablation study on SUOG dataset for language guided meta-learning.

DML method || SAL « | Rich capt. | ELG | OLG r@1 meta-r@1
Multisim. X — X | x | 5616+0.81 | 90.45+0.83
Multisim. X X V| x| 5633£098 || 90.17 +0.54
Multisim. X v vV | X | 5621£131 || 90.35+0.89
Multisim. v X v | x | 5649+0.14 [/ 90.88 + 0.86
Multisim. v X v | v [56.61+0.77] 90.57+0.79
Mulism. || v | — | x | X |56.66 4 1.00 | 91.96 & 0.34 |

Table 3.8: Impact of the text encoder on language-guided DML.

DML method || Text encoder recall@1

Multisimilarity CLIP 56.33 + 0.98
Multisimilarity BioBERT 595.29 £ 0.62
Multisimilarity || LargeBioBERT | 55.96 4+ 0.88

We can therefore conclude that using textual information to guide a DML model is
effective when the text encoder is knowledgeable about the information in the training
data. We therefore investigate the interest of using a language representation model
trained on specific data.

3.5.3.3 Using a domain specific text encoder

In order to better understand the results given by language guidance on the SUOG dataset,
we decide to try different text encoders to potentially better encode the captions extracted
from the rich annotations. Results shown in Table 3.7 show us that using a Transformer
language model trained with CLIP to guide the training of a DML model only slightly
improves the recall@1 results on the SUOG dataset. The main hypothesis behind this
result is that the text encoder, trained on a very large object recognition dataset containing
400 million images and text captions, cannot provide sufficient insight on the SUOG
classes to better separate them because of the domain gap. A language encoder trained
on CLIP will therefore have trouble building coherent distances between annotations such
as magnified view of the gestational sac, transverse view of the right adnexa and transverse
view of the Pouch of Douglas.

We therefore try changing the text encoder to introduce a model trained on medical
data, that could possibly help build better embeddings for the SUOG dataset captions.
We therefore investigate both BioBERT [55] and BioBERT-Large, two language models
trained for biomedical text mining on a large biomedical corpus extracted from PubMed,
with the latter using a larger architecture than the former. However, we can see on Table
3.8 that the DML model guided by BioBERT and BioBERT-Large does not perform as
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well as the one guided by the CLIP text encoder. Even though these results are surprising
at first, Figure 3.11 demonstrates an explanation.

This figure shows the pairwise distance between the embeddings of all SUOG classes,
with the groups belonging to the same metaclass are delimited by the blue lines. It
shows that the CLIP text encoder (as opposed to what one could have thought initially)
and the BioBERT-Large text encoder build embeddings that are closer relatively to the
semantic hierarchy between classes than BioBERT. Even though both BioBERT and
BioBERT-Large build relatively sound embeddings, the CLIP text encoder seems to
concentrate on simpler things to separate the classes, bringing closer all embeddings of
adnexal views for example, as the caption is very similar semantically. Another example
of that is that the transverse view of the Pouch of Douglas is considered very close to
longitudinal view of the Pouch of Douglas by the CLIP model and the BioBERT-Large
model whereas the BioBERT model considers them further apart. This can be explained
by the fact that BioBERT is trained on a large corpus of biomedical data for named
entity recognition or relation extraction, and therefore would give more importance to the
terms longitudinal and transverse rather than Pouch of Douglas, which is very specific to
OB/GYN problematics.

Alternatively, both BioBERT and BioBERT-Large represent the adnexal views very
close to several uterus views as well as interstitial portion views, as opposed to the CLIP
model. These representations don’'t match the hierarchy given by the SUOG ontology,
and this therefore confirms that the semantic relations given by the ontology (built by
experts from 10 European centres) and leveraged by Lga; is more accurate than that
given by text encoders such as CLIP or BioBERT and BioBERT-Large.

In a nutshell, the integration of hierarchical annotations through a dedicated loss like
Lsar, improves the vision encoder’s predictive capacity, and using natural language to
guide the visual similarity through rich captioning or OLG also significantly increases the
results in terms of recall@1 and meta-recall@1 when the text encoders perform well on
these input domains.

3.6 Conclusion

3.6.1 Discussion

In this chapter, we explored the integration of rich annotations to improve a deep metric
learning framework. In particular, we started from the problem that classic DML and
classification methods deem different class annotations as exclusive, and therefore treat
any prediction other than the ground-truth annotation as equally wrong. We argue that,
in most cases, that is a suboptimal way to formulate the deep learning problem, (e.g. it
would consider the ImageNet class American alligator to be equally distant to a saxophone
than it is to an African crocodile). Additionally, the semantic representation space for
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SUOG images is structured, as all annotations are extracted from a large ontology created
by experts from 10 hospitals across Europe. To alleviate these issues, we first leveraged
the hierarchical annotations extracted from the class ontology by creating auxiliary meta-
embeddings that are pushed to encode different levels of meta-annotations. To do so,
we propose Lgaz, which is a weighted average of DML losses applied to the auxiliary
embeddings. Lgaz enables the model to better encode inter-class relations, bringing
closer samples from classes that share the same metaclass. This method improves the
representation capacity of the image encoder by ensuring a better integration of the
hierarchical semantic information. Second, we made use of the strong textual information
linked to the annotations. We built our work on the language guidance method presented
by Roth et al. [75], and propose a rich captioning method that integrates the hierarchical
nature of the annotations in the caption used for language guidance. Finally, to be able
to separate the impact of the multiple levels of annotations, we introduced Ontology
Language Guidance (OLG), a method that specifically guides the meta-embeddings using
natural language. One positive takeaway from these methods is that while they require
additional input information during training with the meta-annotations, they do not
necessitate it during inference.

We validated the interest of Lg;, method on the CUB-200 dataset, achieving better
results in terms of recall@1 and meta-recall@1, and on the SUOG dataset, where the
addition of Lg,; consistently improves both metrics for multiple DML baselines. Then,
the increment of rich captioning provided a limited improvement on both datasets, as
the text encoders mainly focused on the leaf-level classes in the rich captions. The
incorporation of OLG circumvented this issue by optimizing the impact of all levels
of annotations. It proved to be efficient on the CUB-200 dataset where the text
encoder managed to provide sufficient semantic context, but however did not improve the
representation capacity of the model on the SUOG dataset, because the text encoders
tested were not able to separate the classes and metaclasses well, due to a domain gap.

As a conclusion, it is interesting to note that guiding a DML model using rich
annotations, whether it be through auxiliary embeddings with Lg4;, or language guidance
with rich captioning or OLG, attest to generally improve the representations given by the
model. However, it is usually more interesting to use textual representations when the
text encoder can provide semantic context in the input domain. This can be verified
qualitatively by comparing distances between the embeddings of all classes or different
visualization techniques. In parallel, using hierarchical annotations to learn auxiliary
embeddings usually improves the performance of the visual encoder.

3.6.2 Future Work

In the short term future, we would like to analyse the interest of the method on another
OB/GYN task on the SUOG dataset. It would be interesting to see if the method brings
forward positive results on DML using disorder annotations as the ground-truth labels.
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Indeed, the current results show encouraging results on DML for scan plane recognition,
which is an important task to help the ultrasound operator in real-time, but for the
sonographer to be able to present similar images in terms of disorder might be a very
important advance for the SUOG project. Similarly, we could investigate the idea of
using the edges of the ontologies as more semantic information. In particular, we could
use the causality links given by the ontology instead of only using the hierarchical links
(i.e. "unilocular cystic liver mass" suggests "fetal abdomen disorder") to improve the
semantic context in the representations created by the deep learning model. Another way
of integrating semantic knowledge into the model’s representations is to use a similarity
metric computed on the SUOG ontology. We could therefore use the metric created
by Mirna El Ghosh for the SUOG project to guide the visual similarities and introduce
graph-based semantic similarity.

Another track we could investigate would be to update the architecture to better fit the
hierarchical nature of the annotations. Works such as [111, 50] leverage ensemble methods
to learn different levels of annotations, while others like [77, 66] divide the embedding layer
into multiple subspace learners following online clustering. We could investigate mixing
both methods, and divide the embedding layer using higher-level annotations. Then the
multiple subspace learners would only need to concentrate on separating different classes
from the same metaclass, without the extra parameters needed for ensemble methods.

89



Chapter 3. Ontology-Guided Learning

magnified view of the gestational sac -
longitudinal view of the embryo -
magnified view of the trophoblast -
longitudinal view of the uterus -
oblique view of the uterus -
longitudinal view of cervix -
transverse view on uterus -

left interstitial portion view -

right interstitial portion view -

right tubal interstitial portion -

left tubal interstitial portion -
transverse view of right adnexa -
transverse view of left adnexa -
longitudinal view of right adnexa -
longitudinal view of left adnexa -
longitudinal view of bladder -
transverse view of Pouch of Douglas -
longitudinal view of Pouch of Douglas -
'

magnified view of the gestational sac -
longitudinal view of the embryo -
magnified view of the trophoblast -
longitudinal view of the uterus -
oblique view of the uterus -
longitudinal view of cervix -
transverse view on uterus -

left interstitial portion view -

right interstitial portion view -

right tubal interstitial portion -

left tubal interstitial portion -
transverse view of right adnexa -
transverse view of left adnexa -
longitudinal view of right adnexa -
longitudinal view of left adnexa -
longitudinal view of bladder -
transverse view of Pouch of Douglas -
longitudinal view of Pouch of Dm.:g\as—I

BioBERT

magnified view of the gestational sac -
longitudinal view of the embryo -
magnified view of the trophoblast -
longitudinal view of the uterus -
oblique view of the uterus -
longitudinal view of cervix -
transverse view on uterus -

left interstitial portion view -

right interstitial portion view -

right tubal interstitial portion -

left tubal interstitial portion -

transverse view of right adnexa - 3
transverse view of left adnexa -

longitudinal view of right adnexa - 2
longitudinal view of left adnexa -

longitudinal view of bladder - 1
transverse view of Pouch of Douglas -

longitudinal view of Pouch of Douglas - 0
'

90

BioBERT-Large
Figure 3.11: Similarity matrices for the SUOG classes for three different text encoders:
CLIP, BioBER and BioBERT-Large. Groups of classes from the same meta-class are
surrounded by blue lines.



Chapter 4
Conclusion

4.1 Discussion

The aim of this thesis was to improve ultrasound image analysis within the framework
of OB/GYN pregnancy scans. In this regard, we identified two main challenges for this
problem, namely the lack of large-scale annotated datasets and the difficulty to integrate
additional rich information such as spatial priors or structured annotations in the learning
framework.

In fact, as part of the SUOG project, my thesis focused on helping the ultrasound
operator in real time. In particular, it aimed at creating deep learning models, integrated
in the ultrasound machine, that would guide the sonographer towards the next acquisition
or towards a sound diagnosis automatically. This is essential because of the complexity
of ultrasound screening caused by the large number of disorders, the even larger number
of signs or findings, and the insufficient number of experts. However, these deep learning
models rely heavily on large amounts of annotated images, which is seldom available
for medical imaging tasks because the acquisition of these images is costly and sensitive
(challenge 1). In practice, the SUOG project only contained a few thousand annotated
ultrasound scans. Nevertheless, different types of additional data were made available for
the project, such as a limited number of pixel-wise segmentation maps, a knowledge base
created by OB/GYN experts containing entities such as disorders, findings and technical
elements, and finally rich annotations extracted from the said knowledge graph. Thus,
finding a way to integrate this strong spatial and semantic information into the learning
framework constitutes an appealing task (challenge 2).

In order to answer these challenges, in chapter 2, we presented our work that leveraged
spatial priors during training in order to improve the model's predictive capacity for small
and noisy datasets (challenge 1). In particular, we introduced Prior-Guided Attribution,
a novel method that guides the CNN-based network to focus towards the most salient
areas of the input image. More precisely, the method forces the network’s attribution
maps (which highlight the most relevant pixels of the input image with respect to the
output) to resemble prior information heatmaps by means of a Privileged Attribution Loss
that maximizes the cross-correlation between the two aforementioned maps. The Prior
Allocation Strategy enables the model to integrate multiple spatial priors while still leaving
some freedom for the model to look into other areas that might be interesting for the final
prediction. Experimentally, we demonstrated that the proposed method was generic and



Chapter 4. Conclusion

consistently increased baseline predictions scores for several tasks and datasets such as
facial expression recognition, breast cancer detection and scan plane recognition, without
needing any additional information during inference. Moreover, we proved that a good
compromise between fine-grained, precise priors and larger, less informative priors offered
the best results. This result is important as this spatial information can be costly and
difficult to obtain. We argue that the ideas presented in this chapter are therefore of
interest for computer vision in general and for OB/GYN in particular to better process
small and noisy datasets.

Second, in chapter 3, we exposed our work concerning the integration of higher-
order annotations extracted from the SUOG ontology to add semantic context to a
Distance Metric Learning learning framework created to deal with scan plane recognition
(challenge 2). In a naive DML setup, examples from separate classes would be
considered equally different, and therefore similarly pushed apart in the latent space
regardless of the semantic distances between classes. For instance, considering ImageNet
classification, it could easily be argued that an American alligator is more similar to an
African crocodile than it is to a saxophone. Thus, we introduced a method aimed at
improving the inter-class similarity distances. In particular, we introduced the Semantic
Abstraction Loss Lga;, built as a weighted average of multiple DML losses applied at
different semantic levels. More precisely, we introduced meta-embeddings that shall
encode the higher-level semantic information from the meta-annotations. We also
proposed to integrate the semantic information extracted from the higher-level annotations
as natural language. To do so, we use language guidance (as introduced by Roth et al.
[75]) with rich captions, and also introduced Ontology Language Guidance, aimed at
guiding the aforementioned meta-embeddings to better separate the increment given by
multiple levels of annotations. Through thorough experimentation, we demonstrated
the interest of Lgsr and OLG on a public birds classification dataset and the SUOG
scan plane recognition dataset. We specifically showed that adding semantic context
through auxiliary embeddings consistently helped improve the visual similarity capacity of
the model for different DML losses, and enabled the model to "make better mistakes"
as the results in terms of recall@1 and meta-recall@1 increased using Lgar. While the
rich captioning method provided only limited improvement because it focused mostly on
leaf-level annotations, OLG obtained better results as it allowed the model to better
separate the impact of each annotations. Also, it is paramount to note that language
guidance and OLG only offer consequent improvement when the language model is able
to provide semantic context in the specific input domain. We argue that the proposed
methods therefore hold interest for OB/GYN imaging tasks to integrate strong semantic
information through hierarchical annotations.
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4.2 Future Works

As it was presented in the conclusions of chapters 2 and 3, short term future works include
applying both methods to disorder recognition, integrating in different and evaluating
different natures of spatial priors or customizing the training architecture to the ground-
truth ontology to better integrate the hierarchical semantic information. We now propose
other possible perspectives for further future works.

4.2.1 Using different additional information to guide the
learning

During this thesis, we leveraged both spatial information and structured annotations as
priors to improve our model’s predictions. One track we could explore for further research
would be to find different priors that we could use as additional information to guide the
learning.

In chapter 2, we use segmentation maps to guide our model spatially. However,
annotating images in terms of pixel-wise segmentation maps can be very costly. We
could therefore investigate other types of spatial priors, such as points that indicate the
center of a structure for instance, or an outline of these important structures to reduce
the cost of additional annotations.

In chapter 3, we use hierarchical annotations in a DML framework to improve the
inter-class distances for a scan plane recognition task. We could therefore investigate
a multi-task framework using both hierarchical labels for scan planes and findings for
instance. This could be of interest because all these annotations are linked in the SUOG
ontology.

An interesting track to investigate would be to leverage off-the-shelf models such
as SAM [51] for instance, as it is able to produce segmentation maps. PGA working
as a regularization technique, we demonstrated in chapter 2 that leveraging incorrect
or imperfect spatial priors was not detrimental to the network’s predictions. This could
therefore improve the model’s results without needing human annotations in the process.

We could also work with other kinds of additional information, such as different
imagery. In the SUOG project for instance, most studies have 2D ultrasound scans but
also use Doppler or 3D ultrasound scans. An interesting idea would be to add semantic
context to the model by learning correspondences between the different modalities, in a
similar fashion to Xie et al. [108]. This would help the model locate important structures
in order to improve its predictions.

4.2.2 Combining statistical and symbolic AI

Another one of the initial goals of the SUOG project was to be able to get the best
of the impressive results obtained by deep learning methods with the transparency and
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explainability of the symbolic methods. This was important because of the responsibility
of these models in the medical domain. One way to investigate this track would be to
mix semantic reasoning or rule-based methods on the SUOG ontology with deep learning
visual reasoning methods.

We could explore a framework similar to VQA, where a symbolic Al model from the
ontology would be able to reason using semantic features extracted by a deep learning
model. For instance, Yi et al. [116] first create an abstract scene representation from the
input image using an object detection module. After having parsed the question using a
neural network, they use a symbolic approach to answer the question. This approach is
very interesting because its prediction or answer can easily be traced back. In particular,
we could implement a similar method in the medical domain that leverages the large and
informative SUOG ontology to answer questions from the ultrasound operator in real time.
In particular, the ontology contains a lot of implications concerning findings and disorders
(e.g. "lack of decidual layer" is key to "caesarean scar ectopic pregnancy"). This could
also mean that, the sonographer could also input certain findings manually and therefore
not only rely on deep learning methods to identify structures or objects in the first place.
In a nutshell, such a predictive framework could be highly beneficial to help non-expert
operators during ultrasound screenings.

4.2.3 SUOG project

Finally, as it was discussed in the introduction (chapter 1), the aim of the SUOG project,
and by extension that of my thesis work was the conception of an intelligent ultrasound
assistant able to guide the sonographer in real time using artificial intelligence. Both
methods presented in this thesis work have been validated on several datasets, but have
not been integrated into the SUOG assistant prototype as | am writing these lines. One
area of improvement that could be considered would be to re-train both PGA and OLG
on the latest SUOG data (new acquisitions and annotations have since been collected),
and integrate the best model into the SUOG assistant for scan plane recognition. To
further extend this work and maybe increase the model’s predictive capacity, both PGA
and OLG could be combined as they are not exclusive, to get the best of additional spatial
information and strong semantic context. In practice, we could investigate guiding the
attribution of a visual encoder in a DML framework.

Another track to be explored would be to apply both these methods to different
OB/GYN tasks on the SUOG dataset. As all images from the SUOG dataset are annotated
in terms technical elements, findings and disorders, it could be very interesting to apply
both PAL and OLG to different classification tasks such as disorder recognition, that could
help the non-expert ultrasound operator perhaps more directly than view classification,
or a model able to recognize certain signs or findings. These models could enhance the
power of the ultrasound assistant, as they would be able to provide several predictions or
highlight several similar images from the annotated database.
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