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Titre : Mécanique de l’endommagement nonlocal avec interactions évolutives pour la modélisa-tion des matériaux quasi-fragiles : endommagement anisotrope et approche Eikonale à gradientimpliciteMots clés : Quasi-fragile, non-local, endommagement anisotrope, gradient implicite, Eikonal
Résumé : La prévision de la nucléation etde la propagation des �ssures est essentiellepour décrire la réponse des structures dansdes conditions de chargement complexes. Onobserve l’apparition de micro�ssures di�usesavant la formation d’une macro�ssure. Dansle cas de matériaux quasi-fragiles, on observeun comportement adoucissant lié à une perteprogressive de rigidité. D’un point de vue ther-modynamique, ce comportement peut être dé-crit de manière continue par une variable d’étatd’endommagement. Cependant, les modèlesd’endommagement locaux conduisent inévita-blement à un problème aux valeurs limitesmal posé. Dans un contexte d’éléments �nis,les résultats numériques dépendent donc dumaillage. Les modèles d’endommagement nonlocaux permettent d’obtenir des résultats indé-pendants du maillage en introduisant des in-teractions de voisinage par le biais d’une lon-gueur interne. Les approches non locales clas-siques considèrent des interactions isotropeset constantes, ce qui ne permet pas de re-produire correctement l’ensemble du proces-sus de dégradation. Des approches prenant encompte des interactions évolutives existent etpeuvent mieux décrire le comportement de la�ssuration. Cette thèse vise à fournir des as-pects théoriques et numériques pour le déve-loppement de modèles d’endommagement àgradient implicite avec interactions évolutives.Tout d’abord, les modèles non-locaux sont étu-

diés et comparés en analysant les e�ets debord et la di�usion de l’endommagement dansun essai d’écaillage unidimensionnel en dyna-mique explicite.L’approche non-locale Eikonale est étudiée,où les interactions évolutives sont considé-rées par le biais d’une métrique riemanniennedépendante de l’endommagement. La versionavec gradient de ce modèle (ENLG) est en-suite dérivée d’un cadre micromorphe basésur la géométrie di�érentielle, conduisant àune expression de dissipation respectant ausecond principe de la thermodynamique. Uneformulation variationnelle simpli�ée est dé-veloppée pour évaluer les capacités du mo-dèle dans des simulations numériques quasi-statiques bidimensionnelles avec endommage-ment isotrope. En�n, la régularisation ENLG estcouplée à un modèle d’endommagement ani-sotrope prenant en compte un tenseur d’en-dommagement de second ordre. L’anisotropieinduite est naturellement prise en compte dansle comportement et dans les interactions évo-lutives. Des simulations en deux et trois di-mensions sont étudiées et comparées aux ré-sultats expérimentaux existants dans la litté-rature, tout en soulignant les aspects numé-riques associés. Une analyse détaillée décrit lesavantages de la prise en compte de l’endom-magement anisotrope et des interactions ani-sotropes dépendantes de l’endommagement.





Title : Non-local damage mechanics with evolving interactions for modeling quasi-brittle mate-rials : anisotropic damage and gradient-enhanced Eikonal approachKeywords : Quasi-brittle, non-local, anisotropic damage, gradient-enhanced, Eikonal
Abstract : Predicting the cracking nucleationand propagation is essential to describe struc-tural response under complex loading condi-tions. Di�use micro-cracks are observed toappear before coalescing into a macro-crack.In the case of quasi-brittle materials, strain-softening behavior is observed and is related toa progressive loss of sti�ness. From a thermo-dynamics viewpoint, this can be described in acontinuum way by a damage state variable.However, local continuum damage mecha-nics models inevitably lead to an ill-posedrate equilibrium problem. In a �nite ele-ment context, numerical results are, the-refore, mesh-dependent. Non-local damagemodels can recover mesh-independent re-sults by introducing neighborhood interactionsthrough an internal length. Classic non-local ap-proaches consider isotropic and constant in-teractions, which cannot reproduce the entiredegradation process appropriately. Evolving in-teraction approaches exist and may better des-cribe the cracking behavior. This thesis aimsto provide theoretical and numerical aspectsfor developing evolving interactions gradient-enhanced damage models. Firstly, non-localmodels are studied and compared by analy-

zing boundary e�ects and damage di�usionin a one-dimensional explicit dynamics spal-ling test. The Eikonal non-local approach is gi-ven attention, where evolving interactions areconsidered through a damage-dependent Rie-mannian metric. The gradient-enhanced ver-sion of this model (ENLG) is then derived from adi�erential geometry-based micromorphic fra-mework, leading to a dissipation expressionful�lling thermodynamics second principle. Asimpli�ed variational formulation is developedto evaluate the model’s capabilities in two-dimensional isotropic damage quasi-static nu-merical simulations. Finally, the ENLG regula-rization is coupled to an anisotropic damagemodel considering a second-order damage ten-sor. Damage-induced anisotropy is naturallyconsidered in the behavior and the evolvinginteractions. Simulations in two and three-dimensional contexts are studied and compa-red to existing experimental results from theliterature while highlighting the numerical as-pects involved. A detailed analysis describesthe advantages of considering anisotropic da-mage and damage-dependent anisotropic in-teractions.
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Introduction
1 General context and motivations

Accurately predicting the response of structures subjected to complex loading scenarios
is a challenging task in engineering. In practice, standard design codes concentrate on
bearing capacity and yield analysis, which implies using safety factors. Therefore, the
fine description of failure mechanisms and how energy is dissipated are often simplified or
completely neglected. This approach is generally accepted mainly for pragmatic reasons:
designed systems can usually resist the incoming loads during their lifespan. However,
given that the actual capacities are, in fact, unknown, structural overdesign becomes
inevitable.

In the context of climate change, overdesign is directly related to resource consumption
and, thus, Greenhouse gas (GHG) emissions. IEA (2019) estimated that, in 2018, 11%
of used energy and process-related CO2 emissions came from manufacturing building
materials and products (e.g., cement, steel, and glass). We must, therefore, reduce the
unnecessary extra material used in construction sites and the industry. Consequently, a
better comprehension of material degradation (i.e., the appearance of micro and macro-
cracks and their influence on material properties) and durability becomes indispensable.
In particular, studying cracking nucleation and propagation is essential to assess realistic
structural performances. This is already the case for analyzing sensible structures, where
there is little room for errors. For instance, crack opening is an essential input data for
the estimation of leakage rate through containment walls of nuclear power plants. In
this context, predictions must be more accurate and provide useful information about
remaining service life. Therefore, studying material degradation plays a significant role in
these estimations.

Research on cracking mechanisms has also gained attention in other engineering
problems related to the energetic transition. One can cite the hydrogen embrittlement in
metals (transition from ductile to quasi-brittle or brittle behavior), implying severe safety
risks in its transportation and storage, or the study of fracture networks in enhanced
geothermal systems. Last, but not least, the study of fracture mechanisms plays also a
major role in the understanding of ice mechanics. Particularly, accurate models describing
degradation become essential in the estimation of mass-loss in ice sheets, which drastically
contributes to the sea level rise.

Quasi-brittle materials are present almost everywhere, and some examples are concrete
and mortar, some rocks, tough ceramics, masonry, sea ice, wood, and many others. The
degradation of the mechanical properties mainly characterizes them due to cracking when
subjected to load. Therefore, there is undoubtedly a need to describe their behavior.
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2 Scientific approach and objectives
The main aim of this thesis is to provide theoretical and numerical developments concerning
modeling degradation mechanisms in quasi-brittle media. The objective is to provide,
in fine, a reliable and robust numerical framework for predicting cracking in structural
simulations. For this sake, we restrict ourselves to only studying material degradation
induced by mechanical loading.

Continuum mechanics is used, so the medium is described based on a Representative
Elementary Volume, which the size is sufficiently more significant than the material
heterogeneity and smaller than the structure considered. Thus, material behavior is
defined in a homogenized way following a consistent thermodynamic framework. Energy
dissipation and associated irreversible processes are studied following thermodynamics
principles, which can guarantee that a constitutive equation is physically admissible.
Consequently, the degradation of mechanical properties is modeled through an additional
internal variable called damage (Kachanov, 1958; Rabotnov, 1969; Lemaitre, 1971; Mazars,
1984b). Accordingly, micro-cracks are described implicitly within the Representative
Elementary Volume, and fracture is considered a consequence of considerable material
degradation. Isotropic and anisotropic damage models are considered in this thesis.

Structural simulations are considered within the framework of finite element analysis.
Due to their inevitable well-known mesh dependency, regularization techniques should be
considered, given that strain localization cannot be described with local damage models
(Bažant & Oh, 1983b; Bazant et al., 1984). This dissertation works with non-local damage
models of integral and gradient types, which act as localization limiters (Pijaudier-Cabot
& Bažant, 1987; Peerlings et al., 1996a). The study of these techniques is the core of the
developments described in this work. The non-local continuum concept introduces the
idea that the constitutive relation in a given point is a function of what occurs in the entire
body. Neighborhood interactions are therefore used to enrich the continuum description
by adding higher gradients or spatial averaging based on a material characteristic length
(Bažant & Jirásek, 2002). The central assumption is that the damage variable is considered
to grow in function of a non-local equivalent strain (Jirásek, 1998).

Although regularizing the response allows recovering mesh objectivity, non-local
classical damage models exhibit some physical inconsistencies and can not accurately
describe all physical phenomena related to damage (Geers et al., 1998; Simone et al., 2004;
Krayani et al., 2009; Giry et al., 2011). Some of these aspects are studied in detail in
this work, highlighting the need to consider evolving non-local interactions approaches.
We mainly focus on the so-called gradient-enhanced Eikonal approach (Desmorat et al.,
2015b). Along with equilibrium, it considers an additional Helmholtz-type differential
equation to be solved for the non-local equivalent strain. From a differential geometry-
based Micromorphic Media Theory, a new derivation of this model is proposed, which
verifies the Clausius-Duhem inequality. The main idea is that damage is supposed to curve
the space where non-local interactions occur. Such a space deformation is represented
through introducing a damage-dependent Riemmanian metric in the formulation. We
propose to formulate this metric based on a qualitative analysis of how micro-cracks
development modifies the medium’s interactions.
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3. Scope and outline

The variational formulation (weak form) of the coupled problem is derived for the
generic case of a second-order anisotropic damage tensor. A fixed-point algorithm scheme
is applied to the variational formulation at the global level to solve the non-linear coupled
problem, whereas an iterative Newton-Raphson procedure is used for behavior integration
at the quadrature points. The provided numerical simulations consider both isotropic and
anisotropic damage behavior. Based on tensor representation theory concepts (Boehler,
1987), we propose considering the metric as a structural tensor modifying the non-local
interactions. The tensors corresponding homogeneous polynomials are used to introduce
a visualization tool using ellipses. It highlights how anisotropic damage naturally induces
anisotropic evolving non-local interactions. Numerical results are provided and compared
to existing experimental data from the literature. The discussion focuses on the model’s
capabilities to represent realistic cracking mechanisms and its possible application to
real-scale structures.

3 Scope and outline

This thesis is organized into two main parts and five chapters. Part I is dedicated to
presenting an overall introduction to the main concepts studied in this work. Part II
assembles the main contributions of this dissertation to the subject in terms of theoretical
derivations, formulations, numerical developments, and results.

The first two chapters are presented in Part I. Chapter 1 first provides an overview of
the experimental observations from the literature concerning quasi-brittle materials. The
described observations highlight the need to further understand degradation mechanisms
in these materials. Secondly, the most common crack modeling strategies are reviewed.
Special attention is given to Continuum Damage Mechanics, which is the basis of all
developments in this dissertation. Essential concepts of this theory are described, and a
few damage models are finally presented.

Chapter 2 provides a literature review of the non-local damage theory. It is highlighted
that, from the structure perspective, finite element simulations with local damage models
cannot provide meaningful results. The critical elements of strain localization and bifurca-
tion are introduced to highlight the need to regularize the solution. It provides a discussion
on non-locality in a broad sense and how the term “non-local” is understood following
different communities. Then, the classic integral and gradient-enhanced approaches are
described within the damage mechanics framework. The concept of non-local interactions
between points in a medium is introduced. It is explained why evolving and eventually
anisotropic interactions need to be considered. Attention is given to the so-called Eikonal
damage formulation. Finally, other well-known regularization approaches are briefly
described.

The last three chapters are presented in Part II. Chapters 3 and 4 are composed of
published peer-reviewed journal articles, with some additional developments, illustrations,
and modifications to fit this thesis’s style and global track. The same holds for Chapter 5,
except that, at the moment of the submission of this manuscript, the corresponding article
follows the review process.
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Chapter 3 concentrates on one-dimensional theoretical and numerical developments
concerning non-local damage models (Ribeiro Nogueira et al., 2022a). It starts with a
wave dispersion analysis on local and gradient-enhanced damage models. Subsequently,
boundary effects and damage diffusion are studied by analyzing a numerical spalling test.
A complete explicit dynamics finite element code is developed for this sake. Finally, classic
and evolving interactions non-local approaches are compared.

Chapter 4 provides an alternative derivation of the gradient-enhanced Eikonal damage
model (Ribeiro Nogueira et al., 2024a). As a departure point, it is proposed to consider the
micromorphic approach based on a different geometric description of the problem. Some
differential geometry concepts are briefly introduced, and the strong form of the Eikonal
problem, along with its boundary condition, is derived. Some additional comments on the
bifurcation analysis of gradient-enhanced models are provided, establishing a relation with
the results presented in the wave dispersion analysis from Chapter 3. Finally, the numerical
implementation of the gradient Eikonal approach is described, and its regularization
properties are evaluated through two-dimensional isotropic damage numerical simulations.

Last, Chapter 5 addresses the extension of the gradient Eikonal model to the case of
anisotropic damage. The model is coupled to a second-order tensorial damage constitutive
behavior. A specific plane-stress behavior is derived for two-dimensional simulations.
Visualization of ellipsoid representing damage and metric tensors illustrates how induced
anisotropic behavior naturally results in evolving anisotropic interactions. The numerical
solution of the coupled problem is detailed, both at the structure and quadrature point
levels. A comprehensive discussion on the advantages of such models is provided, presenting
well-known structural results in two- and three-dimensional contexts.
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1
Experimental findings and Continuum Damage
Mechanics for quasi-brittle materials

This chapter has two main objectives. Firstly, it gives an overview of the experimental
observations taken from the literature concerning quasi-brittle materials. This introduction
will be essential to understand the modeling techniques and the numerical results described
in the other chapters. Secondly, it aims to give helpful information about available crack
modeling approaches. Particularly, continuum damage mechanics is given attention, and
its standard thermodynamic framework is recalled. The main concepts of this theory are
described, and a few damage models are finally presented.
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Chapter 1. Quasi-brittle materials and Continuum Damage Mechanics

1 Literature review on experimental observations
for quasi-brittle materials

In general terms, a material can be defined as quasi-brittle when it shows a strain-softening
behavior (i.e., a decrease in stress while the strain increases) after the elastic limit, as
shown in Figure 1.1. This behavior is accompanied by a progressive reduction in stiffness,
thus introducing the notion of the degradation of material properties. Quasi-brittleness
has been documented in various materials, including concrete (e.g., Terrien (1980)), mortar
(e.g., Peng et al. (2022)), masonry (e.g., Anthoine et al. (1995)), tough ceramics (e.g.,
Swain (1991)), wood (e.g., Miyauchi and Murata (2007)) and rocks (e.g., Hudson et al.
(1971)).

Figure 1.1 • Schematic illustration of different types of material behavior: brittle, ductile
and quasi-brittle (Bažant, 2019).

As pointed out by Bažant (2019), it is crucial to notice that the concept of quasi-
brittleness depends on the ratio size between the structure and the Fracture Process Zone
(FPZ), where micro-cracks develop. These concepts will be further detailed in section
Section 1.2.

1.1 Behavior
Quasi-brittle materials exhibit different behavior under quasi-static and fast dynamic loads.
In concrete, for instance, Bischoff and Perry (1991) gathered and reviewed experimental
observations of the compressive strength for various loading rates. It was observed that
the strength obtained in dynamics is considerably higher than that under quasi-static
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loading (i.e., strain rate 10−6). Similar results lead to the same conclusions for dynamic
tensile tests (Klepaczko & Brara, 2001).

Two different regimes are observed: the first involves a relatively small increase in the
strength in function of the strain rate, while the second exhibits a considerable increase
in the strength. Either in compression or in tension, the first regime can be attributed
to the presence of water in the concrete, while the increase in strength, in tension, can
be explained by the Steffan effect (Rossi, 1991; Rossi et al., 1994b). In compression,
the strength increase in the second regime is related to structural (inertial) effects of
confinement (see, for instance, numerical simulations taking into account inertial effects
in (Desmorat et al., 2010)). On the contrary, inertial effects cannot explain the strength
increase in tension. A diffusive network of micro-cracks emerges, leading to a delay in
failure due to macro-crack localization. In this case, one can refer to the quasi-deterministic
fragmentation aspect of rupture under high strain rates (e.g., Denoual and Hild (2002)).

In the following, a concise review of experimental observations concerning quasi-brittle
materials is provided, with a focus on quasi-static loading conditions (cyclic or not).

1.1.1 Direct and indirect tension

A typical quasi-brittle response can be experimentally observed for concrete and masonry-
unit mortar interface, as shown in Figure 1.2. The end of the elastic regime is characterized
by a relatively small tensile strength, followed by a non-linear softening behavior. It will
be shown later that this phase is closely related to the growth of micro-cracks within
the medium. Under direct tension, cracking mechanisms develop orthogonal to the
loading direction. Both curves exhibit unloading and reloading phases, which highlight
a degradation of the stiffness (changing in elastic slopes), as well as the appearance
of permanent (inelastic) strains. This macroscopic effect is mainly attributed to the
roughness of cracked surfaces and aggregate interlock mechanisms, which may create also
frictional sliding and manifest as hystereris loops (Bažant & Gambarova, 1984; Andrieux
et al., 1986; Ragueneau et al., 2000; Desmorat et al., 2007b; Richard et al., 2010). Similar
experimental results were also obtained by Reinhardt and Cornelissen (1984) in uni-axial
alternate tensile and compressive loading for concrete. The softening behavior of concrete
under direct tensile loading was also demonstrated by Evans and Marathe (1968).

However, experimental set-ups for direct tension tests are particularly complex to
handle, due to instabilities and snap-back effects during strain-softening. Alternatively,
material behavior under tension can be studied using other tests, such as the Brazilian
split test (Carneiro, 1943) and three (e.g., Landis (1999)) or four-point bending tests
(e.g., Hordjik (1991) in concrete and Labuz and Biolzi (1998) in rocks), which lead to an
indirect tension state.

1.1.2 Compression and dilatancy

In uni-axial compression, cracking mechanisms develop parallel to the loading direction.
As for tension, unloading-loading cycles show permanent strains and hysteresis loops,
as shown in Figure 1.3a. Another direct observation from experimental results is that
the compressive strength is around one order higher than the tensile one for concrete.

9



Chapter 1. Quasi-brittle materials and Continuum Damage Mechanics

(a) Concrete (b) Masonry unity-mortar interface

Figure 1.2 • Experimental behavior observed in direct tension for concrete (Terrien,
1980) and masonry unity-mortar interface (Peng et al., 2022)

Moreover, a quasi-brittle behavior can be observed, but considerably less brittle than the
response in tension. These aspects are known as the tension-compression dissymmetry
behavior.

As noticed by Mazars (1984b) when developing a material criterion function in terms of
an equivalent strain, the cracking mechanisms in quasi-brittle materials, such as concrete,
are related to the extensions. In compression, the degradation is mostly a consequence
of the transversal (positive) strain generated by Poisson’s effect. Given that the cracks
are parallel to the load direction, some regions of material still resist to the load, what
explain the less brittle behavior. This is the one of the first macroscopic manifestations of
the cracking induced anisotropic behavior.

(a) Longitudinal stress-strain response (b) Longitudinal strain in function of the
transversal one

Figure 1.3 • Experimental behavior observed in uni-axial compression for concrete
(Ramtani, 1990).
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Another important aspect is the manifestation of dilatancy (i.e., increasing volume).
Figure 1.3b shows the evolution of the longitudinal strain (ε1) in function of the transverse
strain (ε2) during a uni-axial compression test. One can observe that the apparent
Poisson’s ratio νapp = −ε2/ε1, increases, reaching almost νapp = 2 at the end of the test.
Dilatancy can be estimated from the trace of the strain tensor, which in this case equals
ε1(1−2νapp). Since ε1 < 0, one has definitely an increasing volume in the softening regime.
This behavior is attributed to the cracking patterns parallel to the loading direction in
compression, which reduce the resistance to lateral expansion while maintaining almost
the same resistance in the longitudinal direction.

Figure 1.4 • Stress-strain of a cyclic tension-compression test (Nouailletas et al., 2015).

1.1.3 Unilateral effect

The unilateral behavior of concrete was observed in different experimental studies (e.g.,
Reinhardt and Cornelissen (1984), Mazars et al. (1990), and Nouailletas et al. (2015)).
This behavior is characterized by the micro-cracks closure under compression loading,
leading to the recovery of the initial stiffness.

Figure 1.4 shows the stress-strain curves obtained from an experimental campaign
conducted on notched concrete specimens (Nouailletas et al., 2015). Typical quasi-brittle
behavior can be observed during the loading-unloading phases in tension, with a gradual
reduction in stiffness. The so-called unilateral effect takes place after tension unloading
and reloading in compression (negative stresses and strains). The compressive regime
shows an almost elastic response up to approximately twice the tensile strength, indicating
that the stiffness was recovered and the micro-cracks were partially or totally closed.
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1.1.4 Induced anisotropic character of degradation

Quasi-brittle materials can be considered as initially isotropic, in the sense that the
measured elastic properties are the same in all directions. In a homogenized macroscopic
framework, the behavior of a given concrete or rock can be initially described by two
elastic parameters: Young’s modulus and Poisson’s ratio.

(a) Micro-cracks observed by X-rays (b) Experimental apparatus for acoustic
measurements

Figure 1.5 • Crack patterns observed and experimental set-up used in (Berthaud, 1991).

As previously discussed, elastic properties degrade in the softening phase due to the
appearance of micro-cracks. If a sufficiently randomly oriented network of micro-cracks
is considered, one expects that the elastic properties will be equally deteriorated in all
directions, and the material remains isotropic. However, micro-cracks typically have
preferential directions to occur. In tension, they are orthogonal to the loading direction,
while in compression they are parallel (Figure 1.5a). The elastic properties are therefore
modified according to these preferential directions. For instance, Berthaud (1991) studied
the variation on elastic properties along different directions in cubic concrete specimens
(Figure 1.5). Wave velocities measurements (Figure 1.5b) confirmed the induced anisotropy
in the damaged material, whereas it was initially isotropic. For different damaged states,
no considerable impact on the longitudinal waves parallel to the loading direction was
observed. Conversely, a decrease of the velocity and amplitude of the waves perpendicular
to the loading directions was detected. Similar findings were reported by Bogucka et al.
(1998), where it was proposed that the material undergoes a transition from initial isotropic
to transverse isotropic during the compression load. It is important to highlight, however,
that for general non-proportional loading, the damaged material should not be restricted
to the transverse isotropic class of symmetry, as micro-cracks may develop in different
directions.

Similar conclusions regarding induced anisotropy can be drawn for rock materials.
Passelègue et al. (2018) studied the induced anisotropy behavior, and the associated crack
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Figure 1.6 • Evolution of the anisotropy degree in function of volumetric strains during
loading cycles (Passelègue et al., 2018).

closure effect, applying cyclic loading on Westerly Granite specimens using a triaxial
apparatus. During the tests, the confining pressure was maintained constant, and different
loading cycles were applied, increasing the value of the axial stress σ1 to reach a target
one σD = σ1 − σ3, with σ3 denoting the radial stress. The analysis was then enhanced
by measuring the acoustic emissions (AE) and the wave velocities with pressure (P) and
shear (S) sensors in different directions. Thus, one way of quantifying the anisotropy
in the material is to compute anisotropy parameters (C0

p − C90
p )/C0

p and (Cv
s − Ch

s )/Cv
s ,

where C0
p denotes the P-wave velocity measured at 0◦ angle with respect to the axial

direction. Similarly, C90
p stands for the P-wave velocity measured at a 90◦ angle. The

preferential vertical shear velocity is Cv
s and its horizontal counterpart Ch

s .
Figure 1.6 shows the evolution of the anisotropy parameters as a function of the

volumetric strain and the differential stress σD. For the first loading cycle (grey filled
dots) and small values of σD (dark blue), the wave velocities C0

p and C90
p are almost the

same. This corroborates the hypothesis of initial isotropy. Then, correlated to a more
pronounced increase in the acoustic events, the anisotropy parameters start to increase.
Unloading curves (empty dots) highlight a decreasing degree of anisotropy, retrieving
almost the initial isotropic state. This is related to the crack closure effect. However,
unloading does not follow the same loading path, which indicates hysteresis, particularly
noticeable for higher levels of σD in the second and third cycles.

1.2 Acoustic emissions, FPZ and size effect

Acoustic emissions and FPZ. Besides the complex experimental behavior observed
at the material point level, other aspects have a significant impact in the overall behavior
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of quasi-brittle materials: the FPZ and the structure size. Initially, during the early
stages of loading, micro-cracks are distributed in a zone of finite size, and may eventually
coalesce into a localized macro-crack. This non-linear region of degradation events differs
from the surrounding domain, which remains elastic.

Shah (1990) studied the initiation and propagation of the FPZ in notched mortar
specimens during cyclic tension loading tests (Figure 1.7a), based on acoustic emissions.
The appearance of micro-cracks induces internal micro-seismic events under loading
conditions, and can be captured by acoustic sensors fixed on the specimen.

(a) Structural response under cyclic tension
loading

(b) Location of acoustic events for different
load stages

Figure 1.7 • Experimental observations of the FPZ based on acoustic emissions (Shah,
1990).

Figure 1.8 • Acoustic emissions in a notched three-point bending test (Grégoire et al.,
2015).

Figure 1.7b shows the observed source location of acoustic emissions for different load
stages. Initially, distributed acoustic events appear indicating the occurrence of micro-
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cracks inside the specimen. Subsequently, as loading progresses, a localized macro-crack
takes place in previous damaged zones. A major contribution of this work is the observation
that the cluster of micro-cracks moves forward along with crack-tip propagation. These
results were confirmed by Labuz and Biolzi (1998) in tests on four-point beams made
of Charcoal granite and Berea sandstone. They observed that the size of the intrinsic
fracture process zone (i.e., approximately the width where AE events are localized) was
much smaller than the structure one. Similar conclusions were obtained by Landis (1999)
in a three-point bending test on mortar specimens, where the localization of micro-cracks
(see also, for instance, Alam et al. (2014)) into a narrow zone (signaling macro-crack
appearance) was correlated to a change in AE events. Grégoire et al. (2015) provided
similar results for three-point bending tests in notched and unnotched concrete specimens.
In contrast to previous studies, they analyzed acoustic energy for different AE events, as
seen in Figure 1.8. Around the notch, it is observed a zone with distributed grey/white
points corresponding to a diffuse low acoustic energy at the beginning of the load. This
is followed by a concentration of AE events with high energy (in red) from the notch to
the top of the beam. In all these results, the width of the FPZ can be estimated based
on a window of these acoustic events (e.g., it is considered as the extent of the spatial
distribution of energy in (Grégoire et al., 2015)). Other experimental techniques, such as
Digital Image Correlation (DIC) (e.g., Roux et al. (2009)), can be used to study the FPZ.
A detailed review of experimental techniques used for studying the FPZ in quasi-brittle
materials is given in (Zhang & Zhou, 2022).

Size effect. Acoustic data are extremely important to highlight the physical processes
behind degradation in quasi-brittle media. Furthermore, the presence of a FPZ, which is
confirmed by AE events, has an important consequence for structural scaling: the so-called
size effect. The size effect refers to the modification in load capacity (structural strength),
represented by a nominal stress σN computed in function of the ultimate load, among
geometrically similar structures. In quasi-brittle materials, it has been experimentally
observed as a decrease in σN while the size of the structure increases (e.g., Grégoire et al.
(2013) and Hoover et al. (2013) for concrete, Labuz and Biolzi (1998), Pijaudier-Cabot
et al. (2022), and Li et al. (2023b) for rocks, Li et al. (2023a) for anisotropic geomaterials).

In the literature, the size effect can be attributed to two main reasons. On one hand,
a statistical explanation, concerning the randomness of materials. Larger structures
inevitably have a higher probability to fail, and therefore a smaller σN (Weibull, 1939;
Rossi et al., 1994a). On the other hand, a deterministic one, theoretically introduced
by a simplified energy release analysis (Bažant, 1984b). As previously mentioned, its
occurrence depends on the size ratio between the FPZ and the structure. We will see
later on that these aspects imply an introduction of a characteristic (or internal) length
in modeling strategies.

As extensively described in the literature (e.g., Bažant (1984b, 2002) and Bažant and
Planas (2019)), in the absence of a material characteristic length in a certain theory,
physical scaling functions follow power laws, i.e., σN ∝ (size)s, with s denoting an
exponent. This behavior is observed in theories within the framework of classic continuum
mechanics, which are based on the principle of local action. Strength of materials and
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(a) Limit cases of size effect according to (b) Size effects results (Bažant & Pfeiffer,
1986, 1987) taken from Bažant and
Planas (2019)

Figure 1.9 • Asymptotic cases of size-effect and a few experimental results (Bažant &
Planas, 2019)

linear elastic fracture mechanics (LEFM) are well known examples (Bažant, 1993). In
theories based on strength criteria for elasticity or plasticity (limit analysis), the scaling
power law has a null exponent, i.e., σN is constant and does not depend on the structure
size (Bažant & Planas, 2019). This scenario is intuitive: if the same material is used in
geometrically similar structures, they should fail according to the same strength criteria.
In a log-log plot, this corresponds to the horizontal dashed line shown in Figure 1.9a,
indicating the absence of size effect. This is the case when the size of the FPZ is nearly
equal to the structure size. Conversely, in LEFM, the scaling exponent of power laws
equals −1/2 (see derivations in (Bažant, 1993) based on the J-integral), corresponding to
the slope 2 : 1 in the log-log plot (Figure 1.9a). This scenario arises when the size of the
FPZ is small when compared to the structure size.

The case of quasi-brittle materials corresponds exactly to the transition between both
theories. In these materials, the size of the FPZ is not negligible. In practice, it is all about
a matter of scale (Bažant, 2002, 2019): structure made of a quasi-brittle material exhibits
a brittle response at large scales but a quasi-brittle response at sufficiently small scales.
Based on this dual asymptotic behavior, Bažant (1984b) proposed the first deterministic
size effect law for quasi-brittle materials. A comparison with experimental results from
concrete and mortar is given in Figure 1.9b.

These fundamental aspects of modeling quasi-brittle materials at the structural scale
underscore the necessity for models to account for the size effect inherent in these materials.
Models are fitted based on experimental results (specimen size in the laboratory), whereas
the size of the structural application is of some order of magnitude larger. Therefore, any
modeling technique should intrinsically account for this effect to ensure accurate results.
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Figure 1.10 • Kinematics of a medium crossed by a discontinuity.

2 Crack description

A crack induces a (strong) discontinuity (denoted by Γ in Figure 1.10) in the structure
and is consequently not compatible with the usual notions of continuum mechanics. Let
us define a body Ω ⊂ Rd, with d = 1, 2 or 3 and denote x its local coordinates. In a given
time t, the displacement field u(x, t) is no more continuous and can be described by the
sum of a smooth contribution û(x, t) and a jump [[u]], reading:

u(x, t) = û(x, t) + HΓ(x)[[u]](x, t) ∀x ∈ Ω (1.1)

where HΓ(x) denotes the Heaviside function. The standard gradient definition of the
strain tensor ε becomes deprecated and it can be rewritten as:

ε(x, t) = ∇sû(x, t) + HΓ(x)∇s[[u]](x, t) + δΓ([[u]] ⊗ n)s ∀x ∈ Ω (1.2)

with ∇s(•) =
(
∇(•) + ∇⊤(•)

)
/2 denoting the symmetric part of ∇(•), ⊗ denotes the

tensor product, δΓ is the Dirac distribution and nd is the normal vector on the discontinuity
surface. Thus, the displacement jump induces a unbounded contribution in the strain
tensor field.

Essentially, there are two different ways of describing a crack: explicitly or implicitly.
In the explicit approach, the discontinuity is directly taken into account in the formulation,
such as its geometry, propagation direction and the kinematics conditions to respect
on its surface. Accordingly, dissipation mechanisms (e.g., friction and cohesive crack
openings) are described at the crack level. In the implicit approach, the crack is described
in a diffusive or smeared manner within the medium. Its effects are thus considered in
macroscopic constitutive relations linking strains to stresses. In this case, dissipation
mechanisms take place in a finite volume rather than at the crack surface. In the following
sections, a brief review of crack modeling techniques is described. Enriched continuum
models, such as gradient, micromorphic, non-local and phase-field are given attention in
Chapter 2.
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2.1 Explicit approaches

Discrete models (DM). Introduced by (Cundall & Strack, 1979) as a discrete model
made out of particles (also known as the distinct-element method), the discrete element
method (DEM) was initially developed to study granular materials such as sand. In this
method, the domain is represented as an assembly of rigid discs in contact with each
other, allowing equilibrium states to be obtained by integrating particles movements. The
calculation was therefore handled by solving the global dynamic equilibrium with assumed
force-displacement laws when contact occurs. Particle deformation was not considered
in this approach, as the global behavior was supposed to depend mostly on rigid bodies
movements. However, this method cannot effectively represent cohesive cracking in quasi-
brittle materials.An alternative approach was proposed by Zubelewicz and Bažant (1987),
where the contact laws were replaced by an elastic force-displacement relation with a
certain ultimate strength, similar to brittle models. These authors also suggested using
irregular polygons in place of perfect discs, which allow a better description of diffuse
cracking in these materials.

In the same framework of discrete modeling, lattice models represent the medium as
an assembly of ligaments (beam or truss elements). One of the earliest works on this
approach appeared even before the distinct-element method. Hrennikoff (1941) proposed
to represent the behavior of shells under bending from a network of elastic truss elements.
Lattice models have since been extend to the analysis of cracks by introducing failure
criteria (random) or softening laws to the ligament elements (e.g., Herrmann et al. (1989),
Bažant et al. (1990), and Arslan et al. (2002)).

Figure 1.11 • DM – Illustration of a DM mesh and its hybrid elements linked by a
network of beams.

Another class of discrete models is the so-called hybrid approach. Basically, this
method combines elements of both particle and lattice models, and it is often referred to
as beam-particle models (D’Addetta et al., 2002; Cusatis et al., 2011b, 2011a; Vassaux
et al., 2016; Pathirage et al., 2023). Typically, the domain of the structure is discretized
using irregular polygons, whose centers are connected by beam elements to represent a
cohesive behavior (see Figure 1.11). Frictional contact can be modeled on the surface of
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particles, whereas cohesive behavior is taken into account by the beam network. Finally,
fracture is considered through failure criteria applied to the beam elements, allowing for
the explicit observation of global crack paths (Figure 1.11). For instance, Oliver-Leblond
(2019) were able to obtain realistic crack paths from the analysis of mixed-mode tests
in concrete specimens with a beam-particle model. However, applying these models in
industrial application for structural analysis on larger scales can be challenging due to the
expensive and time-consuming nature of numerical calculations.

LEFM. An explicit structural approach to model cracks is fracture mechanics (Griffith,
1921; Irwin, 1957; Rice, 1968) and its numerous variations. LEFM studies singular stress
fields at crack tips (experimentally confirmed by photo-elasticity, for instance) and crack
propagation in materials. As mentioned before, in brittle materials, i.e., when the FPZ is
sufficiently small compared to the structure, one expects elastic behavior just before crack
propagation. In this situation, the so-called stress intensity factors become important to
quantify the stress field in the three main modes of failure. Crack propagation is analyzed
in terms of the energy release rate and its comparison with a critical energy required
for propagation, which is seen as a material property (Griffith, 1921). This criteria was
further extended to the intensity factor in mode I failure by Irwin (1957).

Figure 1.12 • LEFM – (a) Cracked body. (b) Initial finite element mesh. (c) Crack
propagation and re-meshed domain.

In the context of finite element analysis, studying crack propagation within LEFM
implies using re-meshing techniques (see for instance Bouchard et al. (2000) and the
references therein). At the initial phase, the cracked body (Figure 1.12a) is discretized
with an initial mesh (Figure 1.12b), taking into account the geometry of the crack at that
moment. The propagation direction is then evaluated based on a certain criterion (e.g.,
maximal normal stress, maximal energy release rate), and the length of propagation is
determined. Subsequently, the domain is re-meshed (Figure 1.12c) to account for the new
crack geometry.

In these approaches, as cracks are described explicitly, one may have access to in-
formation such as crack paths, propagation directions, and crack width. Despite their
relevance in describing fracture propagation, these methods are more suitable to study
just one (existing) crack and are limited to structural aspects, defining fracture criteria
and constitutive relations separately. Crack initiation and the associated non-linearities
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in the FPZ cannot be described by LEFM.

Embedded finite element method (EFEM). In the case of a weak discontinuity,
where the displacement remains continuous while a jump appears in strains, the finite
element problem needs to be modified. Ortiz et al. (1987) proposed to enrich the description
of localized shear bands by introducing additional shape functions at the element level.
A local bifucartion analysis is used to decide which elements require enrichment. The
additional degrees of freedom associated to the incompatible modes are eliminated by static
condensation,enabling the representation of discontinuities at the element level. Thus, the
global size of the finite element problem remains unchanged, and the implementation can
be simplified by incorporating modified material behavior laws at the Gauss points (see
for instance Kakarla (2020), Kakarla et al. (2021), and Ribeiro Nogueira et al. (2022b)).

Figure 1.13 • EFEM – Illustration of cracks embedded in finite elements.

It is evident from Equations (1.1) and (1.2) that the kinematics of a crack cannot
be described by a standard finite element approach. Usual variational formulations
require displacement field and its associate virtual one to belong to the square integrable
Sobolev space H1(Ω). When unbounded strains occur, as in the presence of strong
discontinuities such as cracks, the variational formulation becomes meaningless. Inspired
by the discontinuous Galerkin method, Simo et al. (1993) extended the analysis to finite
elements crossed by a strong discontinuity, i.e., where there is a jump in the displacement
and unbounded strains. Many others contributed to the so-called strong discontinuity
approach, and a detailed review of different formulations can be found in (Jirásek, 2000).

Two different major families of models can be distinguished: continuum strong dis-
continuity approach (CSDA) and discrete strong discontinuity approach (DSDA). In the
first case (Oliver, 1996; Oliver et al., 2004), the formulation is based on a transition from
weak to strong discontinuity, representing the limit case of the last one by an equivalent
regularized continuum approach. In the DSDA case, separation laws are defined on
the discontinuity surface, where traction vectors are obtained by the traction continuity
condition (e.g., Wells and Sluys (2001), Alfaiate et al. (2002), and Dias-da-Costa et al.
(2009)).

Due to its local character, one important drawback of this method is that the continuity
of the crack path is not ensured (see Figure 1.13). This can lead to stress locking effects
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and tracking algorithms become necessary (e.g., Oliver et al. (2002a) and Riccardi et al.
(2017)).

Extended finite element method (XFEM). The extended finite element approach
(Moës et al., 1999) was introduced as a technique to avoid remeshing in LEFM numerical
analysis. Essentially, the meshed continuum and the discontinuity are treated separately,
based on the partition of unity finite element method (PUFEM) introduced by Melenk
and Babuška (1996) and Babuška and Melenk (1997). In the literature, one may also find
references to the generalized finite element method (GFEM), which is very similar to the
XFEM approach (Belytschko et al., 2009).

Unlike the EFEM approach, the XFEM introduces local enrichment functions with
associated extra degrees of freedom. Consequently, the approximation of the displacement
field is therefore a sum of a regular contribution and an irregular one. The irregular part
is treated by these generalized shape functions, which are basically a multiplication of the
standard and the enriched ones. A comparison of EFEM and XFEM approaches can be
found in (Jirásek & Belytschko, 2002; Oliver et al., 2006).

Figure 1.14 • XFEM – Illustration of a continuous crack path and enriched nodes (in
red).

The idea of XFEM is to provide jump and near-tip enrichment to specific nodes around
a discontinuity (e.g., nodes in red in Figure 1.14). In this sense, the method allows for
enriching the problem with extra user defined shape functions based on a priori knowledge
of the solution. Since the discontinuity is treated independently of the mesh, the continuity
of the crack path is guaranteed, and accurate fracture mechanics (FM) results can be
obtained even with coarse meshes (Moës et al., 1999). Initially developed to the modeling
of stress-free discontinuities, the method was then extended to cohesive cracks by Moës
and Belytschko (2002).

However, these methods are limited to study crack propagation and cannot describe
the initiation phase based on the coalescence of micro-cracks. The degradation of elastic
material properties observed experimentally for quasi-brittle materials is not represented
as well.

Cohesive zone models (CZM). The concept of cohesive zone models (CZM) traces
back to foundational works by Dugdale (1960) and Barenblatt (1962). Although introduced
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(a) Equilibrium crack contour described by
Barenblatt (1962).

(b) Illustration of a crack opening at ele-
ments’ interface

Figure 1.15 • CZM – Illustrations of theory assumptions and numerical considerations.

for different applications, both authors realized that stresses could still be transmitted
between two surfaces located in the material. Barenblatt (1962) studied the analytical
solutions for what the author called equilibrium cracks. It was found that some cracks can
have a specific contour (Figure 1.15a), with a smooth closing of the opposing faces at the
edge. In this situation, the tensile stress at the contour of an equilibrium cracks is finite.
Molecular cohesion forces were used to model the crack edges, while the inner region of
the crack is considered as stress-free. Dugdale (1960) considered cohesive constant yield
stress transmitted through the lips of an internal cut in a steel sheet. In this case, the idea
was not used to model fracture itself, but the extension of the plastic zone in function of
the applied stress. In terms of application, the work of Hillerborg et al. (1976) is of much
importance, as it applies a cohesive model (often referred by fictitious crack model) in
finite element analysis. Also, it represents a considerable improvement in crack modeling,
because it is capable to describe not only the propagation of existing cracks, but also the
initiation. The softening behavior was therefore described in terms of stress and crack
opening displacements, which were considered to occur in the fictitious crack zone able to
transfer stresses.

Since then, CZM has been widely developed for dynamic (e.g., Xu and Needleman (1994)
and Camacho and Ortiz (1996)) and quasi-static (e.g., Bittencourt et al. (1992) and Tijssens
et al. (2000)) analyses by various researchers. In finite element simulations, cohesive
interface elements are typically employed (see for instance Figure 1.15b) around the
boundaries of finite elements to represent the cohesive zones where traction is transmitted
and related to separation by softening behaviors. The inner part of finite elements is
considered to remain elastic, which is often referred as the bulk material. Thus, energy
dissipation is concentrated on the cohesive zones (see Elices et al. (2002) for a detailed
review). Consequently, the simulations are strongly mesh-dependent, as pertinently
pointed out by Falk et al. (2001) and Tijssens et al. (2000). Indeed, simulations are
often mesh-dependent due to the artificial directions imposed by finite element interfaces.
This limitation hampers the ability of CZM to predict realistic crack paths in structural
analysis applications where the crack initiation location is not known a priori (i.e., the
majority of cases in structural analysis applications). However, these models can still
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2. Crack description

accurately provide other results, such as the peak load, for instance (Tijssens et al., 2000).

×Remark 1.1. Probabilistic approaches have been also employed to describe
cracking behaviors. For instance, Rossi and Wu (1992) and Rossi et al. (1996)
considered a randomly distributed Young’s modulus in a finite element mesh to
account for material heterogeneity. Also, similar to CZM models, the cracks were
modeled by contact elements respecting a Rankine criterion in function of a randomly
distributed tensile strength. Continuum damage mechanics formulations of this kind
were also developed in (Tailhan et al., 2010; Tailhan et al., 2013; Rastiello et al.,
2015), where the tensile strength and fracture energy were considered randomly
distributed. The key idea of this family of probabilistic models is to consider that
the parameters of the statistical distributions of some material properties depend
on the size of the finite element itself, considered as representative of a volume of
heterogeneous material. For more details concerning these models, the interested
reader is referred to the cited works.

2.2 Implicit approaches
Smeared crack. The main idea of smeared crack models is the indirect consideration
in the stress-strain relationship of distributed cracks inside finite elements. Essentially,
this approach partitions strains into elastic and inelastic components (Jirásek, 2011). For
instance, Rashid (1968) introduced zero stiffness coefficients in the direction perpendicular
to the crack, assuming a transition from isotropic to orthotropic behavior following the
axis defined by the crack. In this first approach, however, the crack position is fixed once
a strength criterion is reached. A rotating crack model was proposed by Gupta and Akbar
(1984), allowing the crack direction change if the principal strains directions change. Yet,
Jirásek and Zimmermann (1998a) identified stress transfer inconsistencies (i.e., stress
locking) across an open crack in this model. To address this, (Jirásek & Zimmermann,
1998b) proposed transitioning from a rotating crack model to a damage model.

Furthermore, smeared crack models suffer from mesh dependency in terms of structural
response and directional mesh bias in crack paths (e.g., Rots (1988)). In this approach,
the effects of a crack are smeared within finite element (of finite size) by considering
inelastic strains. The main consequence is that energy dissipation therefore depends on the
elements’ size (i.e., the smeared zone), which implies lack of objectivity in the formulation.
Moreover, with mesh refinement, energy dissipation tends to zero, which is nonphysical.
This behavior, common in smeared crack models (including damage models), will be
further explored in this manuscript. On the contrary, discrete models, such as EFEM,
define a traction-separation law on the discontinuity surface. Thus, no size dependence
takes place and objectivity is guaranteed.

Crack band. A simple and efficient remedy for mesh-dependency in numerical simula-
tions was proposed by Bažant and Oh (1983b). Inspired by Hillerborg et al. (1976), they
introduced the so-called crack band approach. The core concept was to fix the size where
the micro-cracks develop (i.e., softening behavior in the FPZ). Here, the softening law
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Figure 1.16 • Crack band approach: illustrative scheme of the band containing micro-
cracks and three different discretizations.

is adjusted based on the element size to maintain consistent energy dissipation equiva-
lent to the intrinsic dissipation of the material. The equivalent displacement openings
in the cracked zone uf can be computed by uf = εfwc, where εf is the strain due to
micro-cracking and wc is the band width (see Figure 1.16). As described by Bažant
and Oh (1983b), the crack band and the fictitious crack (line) model (Hillerborg et al.,
1976) are equivalent, provided the latter uses an equivalent stress-opening relation. These
methods are often referred as energy regularization methods, a concept that will be further
elucidated in Chapter 2.

×Remark 1.2. So far, the word damage was intentionally almost not employed
in the previous sections. There are two primary reasons for this choice. Firstly,
the term holds a specific significance within the context of this manuscript, and it
requires a defined framework before its extensive usage. This will be done in the
next section. Secondly, by refraining from frequent use, we aim to underline the
distinct meaning of the term within our theoretical models and prevent confusion
with empirical observations.

3 Continuum damage mechanics (CDM)

In the present work, CDM will be used to describe the degradation of mechanical properties.
Initially developed to study tertiary creep in metals (Kachanov, 1958), this method
introduces a new variable (damage) for representing micro cracks, which are in fact
discontinuities, at the continuum level. Consequently, cracks are described implicitly (see
Figure 1.17) within the REV, and fracture is viewed as the result of material degradation.
From a numerical point of view, in finite element analysis, the material is treated as
homogeneous at Gauss quadrature points (Figure 1.17), where constitutive relations are
defined.
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3. Continuum damage mechanics (CDM)

Figure 1.17 • CDM – Notion of Representative Elementary Volume (REV) and micro-
cracks described by an equivalent damage variable.

×Remark 1.3. Defined in this context, CDM also falls within the framework
of implicit crack approaches, where micro-cracks are treated in a smeared manner.
Nevertheless, given its fundamental role in this thesis, CDM deserves a detailed
description in a separate section.

Figure 1.18 • CDM – Illustration of idealized total (δS) and damaged (δSd) surfaces.

The damage variable can therefore be defined as a surface ratio at the REV scale (see
Lemaitre (1996), Lemaitre and Desmorat (2005), and Lemaitre et al. (2009) for further
details):

D(n) = δSD

δS
(1.3)

where δS and δSD are the total surface of the section and the surface corresponding to the
micro-cracks, respectively (Figure 1.18). In the general case, it can depend on the normal
to the surface, considering therefore a preferential direction of micro-cracks. Initially,
there are no micro-cracks, and δSD = 0 and D = 0. When δSD = δS, all the surface is
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covered by micro-cracks (coalescence) and the REV is fully broken. The damage variable
is therefore bounded as 0 ⩽ D ⩽ 1.

Basically, damage can be described by a scalar D, a second-order tensor D or other
variations, and it is supposed to fully represent the degradation state of the material.
These aspects are detailed in Section 3.2 and Section 3.3, but before, the thermodynamic
framework needs to be introduced.

3.1 Thermodynamic framework
Material laws are commonly defined following a natural phenomenological approach,
introducing some material parameters to be identified by experimental data fitting.
Increasing the number of constitutive law parameters may help describing material
responses but their overuse has a more limited scientific value. A high number of
parameters needs a large experimental database to feed the calibration process but could
also lead to less physical responses.

In this context, it is important to describe new material laws following a consistent
thermodynamic framework. Energy dissipation and associated irreversible processes are
therefore studied following thermodynamics principles, which can guarantee if such a
constitutive equation is first of all physically admissible.

Let us recall some usual thermodynamic notions, which will be of extreme importance
to better understand the formalism introduced in Chapter 4.

First principle. Considering the body Ω introduced in Figure 1.10, at first view without
a discontinuity, we can define the following quantities (see Lemaitre et al. (2009) for
further details):

• Internal energy E:
E =

∫
Ω
ρe dV (1.4)

where ρ is the material density and e is the specific internal energy.

• Kinetic energy K:
K = 1

2

∫
Ω
ρv · v dV (1.5)

with v denoting the velocity field.

• Rate of heat Q received by the body Ω:

Q =
∫

Ω
r dV −

∫
∂Ω

q · n dS (1.6)

where r is a heat source, q is the heat flux through the boundary ∂Ω of normal n

• Power of the external forces Pext:

Pext =
∫

Ω
f · v dV −

∫
∂Ω

td · v dS (1.7)

where f is the volumetric force and td = σ · n are the stress vector, with σ denoting
the Cauchy stress tensor.

26
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• Power of internal forces Pint:

Pint = −
∫

Ω
σ : ε̇ dV (1.8)

where “:” denotes the double contraction between two tensors.

• Power of acceleration forces Pa:

Pa =
∫

Ω
ργ · v dV (1.9)

with the acceleration field γ = dv/dt.

The first principles reads (energy conservation):
d

dt
(E +K) = Pext +Q (1.10)

or noticing that Pext + Pint = Pa and dK/dt = Pa, combined with the expressions of Pint
and Pa and divergence theorem, one has:

d

dt

∫
Ω
ρe dV =

∫
Ω
ρė dV =

∫
Ω

σ : ε̇ dV +
∫

Ω
(r − ∇ · q) dV (1.11)

which finally reads:

ρė = σ : ε̇ + r − ∇ · q (1.12)
where “∇·” denotes the divergent operator.

Second principle. This principle postulates that the rate of entropy production is
always greater or equal to the rate of heat divided by the temperature received by the
body. Thus: ∫

Ω

[
ρṡ + div

(
q

T

)
− r

T

]
dV ⩾ 0 (1.13)

Clausius-Duhem inequality. Clausius-Duhem inequality assembles both first and
second thermodynamics principles by introducing the specific Helmholtz free energy
ψ = e − T s, where T is the temperature and s is the specific entropy. The inequality
locally reads:

σ : ε̇ − ρ(ψ̇ + sṪ ) − q · ∇T
T

⩾ 0 (1.14)

One may notice that ψ is a thermodynamic state potential and is a function of the state
variables (internal and observable) that fully define material state. It describes the amount
of mechanical energy available. Hence, considering a general material behavior, heat
transfer and dissipative mechanisms (represented by general state variables Vk, with
k ⩾ 1), the Helmholtz free energy reads:

ρψ = ρψ(ε, T,Vk) (1.15)

The derivative with respect to time is:

ρψ̇ = ρ
∂ψ

∂ε
: ε̇ + ρ

∂ψ

∂T
Ṫ + ρ

∂ψ

∂Vk

• V̇k (1.16)

where “•” denotes a general contraction, depending on the order of the state variable Vk.
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State laws. In a Coleman and Noll (1963) fashion, the state laws are obtained by
substituting Equation (1.16) in Equation (1.14):

(
σ − ρ

∂ψ

∂ε

)
: ε̇ +

(
s + ρ

∂ψ

∂T

)
Ṫ − ρ

∂ψ

∂Vk

• V̇k − q · ∇T
T

⩾ 0 (1.17)

Standard arguments allow to separately evaluate each term in the equation. For
instance, under isothermal and uniform temperature transformation (i.e., Ṫ = 0 and
∇T = 0), considering no dissipative mechanisms (i.e., V̇k = 0), one has:

(
σ − ρ

∂ψ

∂ε

)
: ε̇ = 0 (1.18)

which needs to be verified for any ε̇. Thus, the first state law reads:

σ = ρ
∂ψ

∂ε
(1.19)

We say that σ is thermodynamic force associated to the state variable ε. Consequently,
under uniform expansion without dissipative mechanisms, one has:

s = −ρ∂ψ
∂T

(1.20)

where the entropy is the thermodynamic force associated to the temperature. In the
general case, the state law for dissipative mechanisms is:

Ak = ρ
∂ψ

∂Vk

(1.21)

with Ak denoting the thermodynamic force associated to the state variable Vk.

Dissipation. The total dissipation verifying the inequality is:

Dtot = −Ak • V̇k − q · ∇T
T

⩾ 0 (1.22)

where the last term is associated to the dissipation by heat conduction and it is always
positive following Fourier’s law (i.e., q = −kcond∇T and kcond∥∇T∥2/T ⩾ 0). The first
term is also called intrinsic dissipation and is related to the (mechanical) energy dissipated
as heat, and one has:

D = −Ak • V̇k ⩾ 0 (1.23)

Processes are considered thermodynamically acceptable if the Clausius-Duhem inequal-
ity is verified at each instant during the evolution mechanisms. Correspondingly, if any
irreversible process such as plasticity or damage occurs, energy must be dissipated and
remain positive.
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Legendre-Fenchel transform and example of elasticity. Some models are better
described by the specific Gibbs free enthalpy ψ⋆, which can be obtained by the Legendre-
Fenchel:

ψ⋆ = sup
ε

[
1
ρ

σ : ε − ψ(ε)
]

(1.24)

Ignoring the temperature for simplicity, let us consider the case of elasticity with the
following Helmholtz free energy:

ρψ(ε) = 1
2ε : E : ε (1.25)

where E denotes the fourth-order Hooke’s tensor. Taking the derivative with respect to ε,
one finds ε = E−1 : σ, where E is required to have the major symmetries (i.e., Eijkl = Eklij),
so the existence of an elastic potential is verified. Substitution in Equation (1.24) leads
to1

ρψ⋆(σ) = σ : E−1 : σ − 1
2
(
E−1 : σ

)
: E :

(
E−1 : σ

)
= 1

2σ : E−1 : σ (1.26)

with the new state law:
ε = ρ

∂ψ⋆

∂σ
(1.27)

×Remark 1.4. Given its potential nature, the free energy must preserve the
material symmetries. In the case of isotropy, one has:

ρψ(QT · ε · Q) = ρψ(ε) ∀Q | QT · Q = I (1.28)

with I denoting the second-order identity tensor. It means that the potential should
by invariant with respect to any rotation or symmetry. A convenient way to do so is
to define it in terms of the invariants of ε. In the case of elasticity, the free energy
reads:

ρψ(ε) = G ε : ε + λ

2 (tr ε)2 (1.29)

where G is the shear modulus and λ is the Lamé’s parameter. This expression can
be obtained by simply replacing E = 2GI ⊗ I + λI ⊗ I in Equation (1.25).
In this way, the derived constitutive relations are invariant under changes of frame
reference for a given class of symmetry, respecting the principle of objectivity (see
for instance Truesdell and Noll (1965) and Boehler (1987)).

Example of plasticity, normality rule and evolution laws. In the case of a
perfect elasto-plastic material (i.e., without hardening), we can introduce the tensor of
(irreversible) plastic strains V1 = εp as a state variable, and therefore the only dissipative
mechanism. Considering the partition of strains ε = εe + εp, with εe the elastic strains

1Note that
(
E−1 : σ

)
: E :

(
E−1 : σ

)
= E−1

ijpqσpqEijklE
−1
klmnσmn = E−1

ijpqσpqIijmnσmn = σijE−1
ijpqσpq

where E : E−1 = I, with I = I ⊗ I denoting the fourth order symmetrized identity, and ⊗ is the symmetric
tensor product. It is defined as (a ⊗ b) : c = a · c · b for any second-order tensors a, b and c.
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tensor, and writing the following Helmholtz potential:

ρψ = ρψ(ε, εp) = 1
2 (ε − εp) : E : (ε − εp) (1.30)

the first state law (constitutive behavior) reads:

σ = ρ
∂ψ

∂ε
= E : (ε − εp) = E : εe (1.31)

and:
A1 = ρ

∂ψ

∂εp
= −E : (ε − εp) = −σ (1.32)

where A1 is the thermodynamic force associated to εp. The expression of the dissipation
reads therefore:

D = σ : ε̇p (1.33)

Let us introduce a criterion function f(σ), which defines the conditions for plastic
flow. The elastic behavior is characterized by f < 0, whereas plasticity takes place when
the consistency conditions f = 0 and ḟ = 0 are verified.

According to the Hill principle (Hill, 1948, 1967), among all admissible states, the
stress maximizes the plastic dissipation under the constraint f = 0. Introducing the
plastic multiplier λ̇f , and considering that maximizing D is equivalent to minimize −D,
one has:

∂

∂σ

(
−σ : ε̇p + λ̇ff

)
= 0 and ∂

∂λ̇f

(
−σ : ε̇p + λ̇ff

)
= 0 (1.34)

This gives the normality rule:

ε̇p = λ̇f
∂f

∂σ
and f(σ) = 0 (1.35)

Therefore, these equations define the evolution of the plastic tensor, following a direction
∂f/∂σ, which is normal to the elasticity domain, implying its convexity. From the
thermodynamic perspective, the dissipation reads:

D = λ̇f

(
σ : ∂f

∂σ

)
⩾ 0 (1.36)

which is naturally verified if f is convex with respect to σ. This can be generalized to
any other behavior by postulating a pseudo-dissipation potential F (Ak), from which the
evolution laws can be obtained:

V̇k = −λ̇f
∂F

∂Ak

and D = λ̇f

(
Ak • ∂F

∂Ak

)
⩾ 0 (1.37)

verifying the Clausius-Duhem inequality respecting convexity properties of F . At this
point, three different situations can exist (Halphen & Nguyen, 1975; Germain et al., 1983):

• Associated evolution (Standard generalized materials). The evolution law is derived
from a pseudo-dissipation potential which equals the criterion function (i.e. F = f).
This is the case, for instance, of associated plasticity.
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• Non-associated evolution. The evolution law is derived from a pseudo-dissipation
potential which is not equal to the criterion function (i.e. F ̸= f). This is the case,
for instance, of non-associated plasticity (often employed, e.g., in soils behavior
modeling)

• Non-standard evolution. The evolution law does not derive from a pseudo-potential
and the positivity of the dissipation needs to be proven. It is generally the case for
the majority of damage models avaiable for quasi-brittle materials.

3.2 Isotropic damage

The case of isotropic damage respects D(n) = D, ∀ n, which is reasonable from a physical
perspective when micro-cracks have no preferential direction (i.e., they are randomly
orientated, as shown in Figure 1.19).

Figure 1.19 • CDM – Illustration of randomly orientated micro-cracks and isotropic
(scalar) damage variable

The principle of strain equivalence (Lemaitre, 1971) states that the strain in a damaged
material (i.e., ε̃) equals the strain in a fictitious undamaged material (i.e., ε), where the
stress is replaced by its effective counterpart. Mathematically, this is expressed as:

σ

Ẽ
= σ̃

E
(1.38)

with σ̃ the effective stress and Ẽ the effective Young’s modulus.
Following this definition and in conjunction with the concept of effective stress (Rabot-

nov, 1969), one has:

σ̃ = σ

1 −D
and σ = (1 −D)Eϵ = Ẽε (1.39)

which basically translates the constitutive relation for one-dimensional problems.

Marigo. One of the first damage models formulated within the framework of standard
generalized materials was proposed by Marigo (1981). The Helmholtz free energy potential
is expressed as:

ρψ = ρψ(ε, D) = 1
2(1 −D)ε : E : ε = 1

2ε : Ẽ : ε and Y = −∂ρψ

∂D
= 1

2ε : E : ε (1.40)
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with Y denoting the thermodynamic force associated to D, often referred to as the
energy release rate, and Ẽ = (1 − D)E is the effective Hooke’s tensor. Therefore, the
intrinsic dissipation is D = Y Ḋ ⩾ 0, naturally verified if Ḋ is derived from a convex
pseudo-potential of dissipation F . Moreover, in the associated evolution case, one has:

Ḋ = λ̇f
∂F

∂Y
= λ̇f with F = Y − κ(D) (1.41)

Thus, F also serves as the criterion (yield) function f and D follows a similar normality
rule. The function κ(D) is often referred to as a consolidation function, reflecting the
evolution of the elastic domain with respect to damage. The damage multiplier λ̇f is
derived from the consistency condition (Ḟ = 0), yielding:

Ẏ − ∂κ

∂D
Ḋ = Ẏ − ∂κ

∂D
λ̇f = 0 and λ̇f = Ẏ

∂κ
∂D

(1.42)

Finally, modeling choices involve determining the expression of κ(D), while verifying the
dissipation inequality, guaranteed by ∂κ/∂D > 0. It should be noted that this behavior
introduces a symmetric yield surface in the stress space, which is not in agreement with
experimental observation of tension-compression dissymetry in quasi-brittle materials.

Mazars. A damage model considered more appropriate to quasi-brittle materials, such
as concrete, was introduced by Mazars (1984b). The main aspect was related to the
experimental observation that extensions (in terms of strains) control the appearance of
cracks in concrete, while retaining the same free energy as proposed in (Marigo, 1981).
Accordingly, the criterion function was defined in terms of strains:

f(e,D) = e− κ(D) with e =
√

⟨ε⟩ : ⟨ε⟩ (1.43)

Here, e is an equivalent measure of the strains, taken in this case as the Mazars’ equivalent
strain, written in terms of the principal strains. The operator ⟨•⟩ denotes the positive
part of •, also called Macaulay brackets. The damage threshold κ0 is defined such that
κ(0) = κ0. One should notice that the equivalent strain is not restricted to isotropic
damage behaviors and can be easily adapted for anisotropic damage models, as we will
see later.

As described in (Mazars, 1984b; Mazars, 1986), the model is non-standard, and damage
evolution is given by Ḋ = F̃ (e) ⟨ė⟩ for f = 0 and ḟ = 0, which does not derive from a
pseudo-potential. The only necessary condition to satisfy the Clausius-Duhem inequality
is that the function F̃ (e) must be continuous and positive for all e.

This criterion naturally takes into account a slight tension-compression dissimetry in
the yield surface. In uni-axial tension ε1 > 0, one has e = ε1. On the contrary, in uni-axial
compression one has ε1 < 0 and ε2 = ε3 > 0, with εi denoting the principal strains. The
equivalent strain is therefore e =

√
2ε2 = −

√
2νε1 > 0, where ν is the Poisson’s ratio.

Given that for concrete-like materials, ν is around 0.2, the criterion is reached earlier in
tension than in compression for a given value of ε1. As a consequence, the associated
yield stress is bigger in compression, as damage is a consequence of the Poisson effect.
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However, the dissimetry is not only related to the yield stress, but also to damage
evolution in compression or in tension. Mazars (1986) proposed to decouple the evolution
law by introducing two damage variables:

Dt,c = 1 − κ0(1 − At,c)
κ

− At,c exp(−Bt,c(κ− κ0)) (1.44)

Here, the indexes indicate which variable and parameters (compression ·c or tension ·t)
may be employed. The final damage is therefore obtained as a linear combination of these
two variables based on the stress state.

Nevertheless, despite the verification of the dissipation inequality, the introduction of
two damage variables is questionable. From a thermodynamic point of view, damage is a
state variable and should describe the degradation state of a given material independently
of the load sign. This can be achieved, for instance, with damage variables of tensorial
nature, as we will see later on.

De Vree. Another definition of an equivalent strain measure was proposed by De Vree
et al. (1995), based on a modified Von Mises equivalent stress. The expression is then
extended to strains and reads:

e = k − 1
2k(1 − 2ν)I1 + 1

2k

√√√√ (k − 1)2

(1 − 2ν)2 I
2
1 − 12k

(1 + ν)2J2 (1.45)

where I1 = tr ε is the first invariant of strain tensor and J2 = 1
6 (3 tr (ε · ε) − I2

1 ) is the
second one. The parameter k is obtained as a ratio between compression and tension
strength (usually k = 10), which enforces the dissimetry tension-compression in the
criterion. Due to the introduction of J2 in the formulation, this criterion can be more
useful for problems dealing with mixed mode failure or when shear is predominant.
Moreover, it is more adapted to be used with only one damage variable and its associated
evolution law, as the one proposed by Peerlings et al. (1998):

D = 1 − κ0

κ
(1 − αt + αt exp [−Bt (κ− κ0)]) (1.46)

which is very similar to the one proposed by Mazars, with an additional term αt accounting
for residual stresses. As highlighted by the authors, softening starts exactly at κ = κ0, so
the initial increase in the stress under compression, experimentally observed, is neglected.

Other propositions of equivalent measures of the strain. For instance, Jirásek
and Patzák (2002) introduced an equivalent strain based on a energy norm and a Rankine
criterion. A modified smooth Rankine equivalent strain was proposed in (Jirásek & Bauer,
2012), where a scaling factor was used to guarantee that the equivalent strain equals the
axial one in uni-axial tension. Nguyen et al. (2018) compared the response of different
equivalent strain formulations with a gradient-enhanced regularized damage model at the
structural scale. The authors proposed a new bi-energy norm equivalent strain, capable
of dealing with both compression and tension separately. Shedbale et al. (2021) studied
different equivalent strains with the so-called localizing gradient damage model. They
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showed that the common equivalent strains, coupled with this specific regularization
approach, were not capable of reproducing realistic crack paths in mixed-mode failure
problems. The authors therefore proposed a modified Ottosen equivalent strain, which
proved to be more adequate for treating these problems.

Isotropic model taking into account for unilateral effect and hysteresis. Once
the thermodynamic framework is defined, damage models can increase in complexity
to describe additional effects observed experimentally, such as the unilateral effect and
hysteresis, which are experimentally observed for quasi-brittle materials. For instance,
this can be achieved by adding state variables and splitting deviatoric and hydrostatic
contributions in the potential.

Richard et al. (2010) proposed the following free energy potential:

ρψ = 1
2[K3

(
(1 −D) ⟨tr ε⟩2 − ⟨−tr ε⟩2

)
+ 2(1 −D)Gε′ : ε′

+ 2DG (ε′ − επ) : (ε′ − επ) + γα : α] +H(z) (1.47)

where K is the bulk modulus, •′ is the deviatoric part of •, επ is a second order tensor
accounting for sliding, α is the second order tensor associated to the kinematic hardening,
z is the internal variable related to the isotropic hardening and H(z) its associated
consolidation function. Notice that a similar approach was proposed by Desmorat et al.
(2007b).

The term (1 −D) acts directly on positive hydrostatic strains, but does not affect the
bulk modulus under compression. This simple split allows to consider a partial recovery
of the stiffness due to the unilateral effect. Dissipation from sliding between the lips
of a crack is accounted for through the state plasticity-type variable επ, affecting only
the deviatoric part of the free energy. Additionally, friction is considered by introducing
common kinematic and isotropic hardening mechanisms. Richard et al. (2010) showed
that the final model can accurately reproduce well known experimental findings, such as
permanent strains, unilateral effect, and hysteric loops. However, the induced anisotropic
character of degradation cannot be represented by this model. For further insights into
CDM models considering cyclic loading effects, the reader may also refer to Richard and
Ragueneau (2013) and Sellier et al. (2013a, 2013b).

Isotropic damage models accounting for strain rate effects. To accurately describe
the experimentally observed increase in strength under high strain rates (see Section 1.1),
the evolution of the damage variable needs to be adapted. For instance, Dubé et al. (1996)
proposed to modify the expression of the damage multiplier issued form the normality
rule to directly consider strain rate. The main idea is that, for high strain rates, damage
evolution should become slower. From the observation that the damage rate cannot
decrease without any constraints, Allix and Deü (1997b) and Allix (2001) introduced a
bounded rate-dependent damage evolution for laminated composites. They showed that
these so-called delay damage models were also capable of regularizing the response in terms
of mesh-objectivity, by indirectly introducing a characteristic length in the formulation.
Gatuingt and Pijaudier-Cabot (2002) developed a viscoplastic rate-dependent isotropic
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damage model for the analysis of structures subjected to explosion and impacts. The
model is based on a intersection between Mazars’ and Gurson’s yield surfaces, activating
viscoplastic mechanisms based on the stress state.

3.3 Anisotropic damage
The use of isotropic damage models, such as those proposed by Mazars (1984b), has
proven successful in modeling one-dimensional (1D) problems and providing reasonable
approximations for three-dimensional (3D) damage under proportional loading conditions
(Lemaitre & Desmorat, 2005). However, in quasi-brittle materials, such as concrete,
damage is inherently anisotropic due to various well-established behaviors, including the
dissimilarity between tension and compression, unilateral effects, and induced anisotropy.

Figure 1.20 • CDM – Illustration of micro-cracks orientated following a preferential
direction and anisotropic (tensorial) damage variable

In general, micro-cracks have a notable preferential direction (see for instance Fig-
ure 1.20). Thus, describing damage with tensors, instead of a single scalar variable,
becomes crucial, taking into account the preferential directions of material degradation
(Fichant et al., 1999).

Various anisotropic damage models have been developed, where damage was represented
through vectors (Krajcinovic & Fonseka, 1981), second-order tensors, fourth-order tensors
(Krajcinovic & Mastilovic, 1995; Maire & Chaboche, 1997) and even eighth-order tensors
(Chaboche, 1982). However, fourth-order and eighth-order tensors prove to be too complex
due to the large number of components, making them challenging to identify fully. As
a result, many authors have opted to work with second-order tensors (Cordebois &
Sidoroff, 1982a; Ladevèze, 1983; Murakami, 1988; Halm & Dragon, 1998; Desmorat,
2004; Desmorat, 2015), restricting the damage description to orthotropic behaviors. This
assumption allows representing well with the observed crack patterns in quasi-brittle
materials, where cracks typically propagate either perpendicular or parallel to the loading
direction. In the following, the principles of mechanical equivalence are briefly recalled
and a few anisotropic damage models are described.

On the principle of strain equivalence in anisotropic damage. The direct gener-
alization of the effective stress concept in the case of a second order anisotropic damage D
reads (see Sidoroff (1981), Cordebois and Sidoroff (1982a), Lemaitre (1996), and Murakami
(2012) for further details):

σ̃ = (I − D)−1 · σ (1.48)
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where σ̃ is essentially an asymmetric tensor (i.e., σ̃ij ̸= σ̃ji). If one applies the principle
of strain equivalence in this case, it turns out that the inverse of the effective elasticity
tensor, or more precisely, the effective compliance, is not symmetric. Consequently, the
existence of a (damaged) elastic potential becomes impossible.

More generally speaking, one has (Sidoroff, 1981; Cordebois & Sidoroff, 1982a):

σ̃ = M (D) : σ (1.49)

with M (D) a fourth-order damage effect tensor, mapping the stress tensor to its effective
counterpart. Notice that, in practice, it can be dependent on damage variables of any
order, but a second-order tensor D is considered here for illustration. The principle of
strain equivalence reads:

Ẽ−1 : σ = E−1 : σ̃ = E−1 : (M (D) : σ) (1.50)

which leads to:2
Ẽ−1 = E−1 : M (D) (1.51)

This is required to have the major symmetries to allow the existence of an elastic potential.
As pointed out by Sidoroff (1981), this strongly restricts the construction of tensor
M (D). For instance, a symmetric tensor Ẽ−1 can be obtained in the case of isotropic
damage, which definitely makes no sense within an anisotropic damage framework. In
other situations, expressions of M (D) will generally not lead to a symmetric effective
compliance tensor.

Principle of energy equivalence. To address the issues presented above, Sidoroff
(1981) and Cordebois and Sidoroff (1982a) proposed a principle of complementary energy
(Gibbs) equivalence, which reads:

ρψ⋆ (σ,D) = 1
2σ : Ẽ−1 : σ = ρψ⋆ (σ̃) = 1

2σ̃ : E−1 : σ̃ (1.52)

Combined with Equation (1.49) this leads to:

Ẽ−1 = MT (D) : E−1 : M (D) (1.53)

where Ẽ−1 is symmetric for any appropriate choice of M (D) (e.g., Chow and Wang
(1987a, 1987b)), such as a symmetric fourth-order tensor. For instance, one can define the
equivalent stress as the symmetric tensor (Cordebois & Sidoroff, 1982a):

σ̃ = (I − D)− 1
2 · σ · (I − D)− 1

2 =
[
(I − D)− 1

2 ⊗ (I − D)− 1
2
]

: σ (1.54)

which allows to define a symmetric effective Hooke’s tensor based on the concept of
complementary energy equivalence. Saanouni et al. (1994) extended this concept to the
principle of total energy equivalence. Notice that a general thermodynamic framework
was proposed by Ladevèze (1983) where the Ladevèze tensor H = (I − D)− 1

2 was used as
a state variable.

2E−1 : (M (D) : σ) = E−1
ijklMklpqσpq =

(
E−1 : M (D)

)
: σ
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×Remark 1.5. Here, H is a tensor-valued function of D, so the power −1/2 is
applied in terms of the principal values.

Maire and Chaboche. Maire and Chaboche (1997) introduced a thermodynamic
framework to describe anisotropic damage with a few options to be considered separately
in behavior formulations. In the case of an initial isotropic material, the Helmholtz
potential is defined as:

ρψ = 1
2ε : Ẽ : ε and Ẽ = E − D : E (1.55)

where the variable D depends on the modeling state variable chosen. Considering a second
order damage tensor, the fourth-order variable D reads:

D = (α− β)
2 (I ⊗ D + D ⊗ I) + β (I ⊗ D) (1.56)

where α and β are weighting coefficients. Other modeling choices (fourth-order damage
tensor, scalar decomposition, etc.) can be found in (Maire & Chaboche, 1997). In spite of
being defined following an usual thermodynamics framework, Cormery and Welemane
(2002) showed that this approach would lead to different Helmholtz potentials in function
of the basis vectors used to represent D. As a consequence, the damage model formulated
as so induces the existence of a potential that is not unique.

Halm and Dragon. This model proposes a second order damage tensor written in
terms of eigenvalues Di and respective eigenvectors vi (Halm & Dragon, 1998):

D =
3∑

i=1
Divi ⊗ vi (1.57)

The damage variable D is a symmetric second order tensor and admits 3 non negative
eigenvalues. Basically, any damage state can be described by a family of three orthogonal
systems of microcracks. The Helmholtz potential is therefore written in terms of the
invariants family of ε and D, namely:

tr ε, tr (ε · ε) , tr (ε · D) , tr (ε · ε · D) (1.58)

The final model is capable to represent some complex aspects such as the unilateral
effect, induced anisotropy, and frictional blockage and sliding that occurs while exhibiting
hysteric effects.

Lemaitre, Desmorat and Sauzay. Based on the work of Ladevèze (1983), Lemaitre
et al. (2000) proposed a different form of the Gibbs potential decoupling deviatoric and
hydrostatic contributions, while the principle of strain equivalence remained valid:

ρψ⋆ = 1 + ν

2E tr (H · σ′ · H · σ′) + 3(1 − 2ν)
2E

σ2
H

1 − ηDDH

(1.59)
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where σH = 1/3 tr σ, DH = 1/3 tr D, and ηD is parameter generally taken as ηD ≈ 3.
This expression naturally induces the elasticity law:

ε = ρ
∂ψ⋆

∂σ
= 1 + ν

E
σ̃ − ν

E
tr σ̃I with σ̃ = (H · σ′ · H)′ + σH

1 − ηDDH

I (1.60)

where the expression of the effective stress derives directly from the potential, which was
not the case for Cordebois and Sidoroff (1982a), for instance. Further discussions take
place in (Lemaitre & Desmorat, 2005), where a detailed expression of the damage effect
tensor M (D) is derived.

Desmorat. Desmorat (2015) proposed a specific model for quasi-brittle materials.
According to this formulation, damage is represented using the second-order Ladevèze
tensor H = (I−D)− 1

2 . Denoting once again with vi the eigenvectors of D and with Di the
corresponding eigenvalues, the Ladevèze tensor reads H = Hivi ⊗ vi = (1 −Di)− 1

2 vi ⊗ vi.
As a consequence, Hi = 1 when Di = 0 (undamaged state), and Hi → ∞ when Di → 1
(fully damaged state). The unbounded nature of Hi enhances the formulation’s ability
to model the extreme scenario of fully damaged material at infinite strain (Desmorat,
2015). Moreover, from a numerical perspective, the unboundedness simplifies the handling
of upper bounds (see for instance Desmorat et al. (2007a)) for damage tensors when
implementing the constitutive law at the integration point level.

In this model, the Ladevèze tensor H is a state variable, instead of D. Accordingly,
the Gibbs free enthalpy reads:

ρψ∗
0 = ρψ∗

0(σ,H) = tr (H · σ′ · H · σ′)
4G + 1

18K

[1
3tr H2 ⟨tr σ⟩2 + − ⟨tr σ⟩2

]
(1.61)

and the strain tensor is obtained as:

ε = ρ
∂ψ∗

0
∂σ

= 1
2G (H · σ′ · H)′ + 1

9K

[1
3tr H2 ⟨tr σ⟩ + ⟨−tr σ⟩

]
I (1.62)

The stress-strain constitutive relation is given by:

σ = Ẽ : ε (1.63)

where Ẽ represents the effective (damaged) Hooke’s tensor, defined as:

Ẽ = 2G
[
H−1 ⊗ H−1 − H−2 ⊗ H−2

tr H−2

]
+m(H)I ⊗ I m(H) =


3K

tr H2 if tr ε > 0
K otherwise

(1.64)

×Remark 1.6. For an undamaged medium, H = I and the undamaged Hooke’s
tensor is retrieved. With λ = K − 2G/3 being the Lamé’s parameter, one has:

Ẽ = E = 2G
[
I ⊗ I − I ⊗ I

tr I

]
+ 3K

tr I
I ⊗ I = 2G I ⊗ I + λ I ⊗ I (1.65)

In this thesis, this constitutive behavior will serve as the anisotropic model used
in regularized damage simulations at the structural scale. Compared to the original
formulation, a few modifications are introduced and a plane-stress version of such a
model is derived. A detailed explanation of its numerical implementation is provided in
Chapter 5.
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Microplane. An alternative approach to modeling anisotropic damage is presented
in (Bažant & Oh, 1983a; Bažant, 1984a; Bažant & Gambarova, 1984; Bažant & Prat,
1988; Bažant et al., 1996). Inspired by the work of Taylor (1938) and the "Slip theory of
plasticity" by Batdorf and Budianski (1949), the microplane theory was first developed by
Bažant and Oh (1983a) regarding quasi-brittle materials such as concrete.

The main idea employed by Taylor in polycrystalline metals plasticity was that the
constitutive relations could be described on planes of various orientations within the
material, instead of laws written in tensorial form. Later, Batdorf and Budianski (1949)
assumed that the stress on these "slip planes" must be obtained by projection of the
macroscopic stress tensor (static constraint). The strain tensor is therefore calculated by
superposing all contributions of the slip planes.

In fact, the slip theory was found to be more suitable to describe plastic behaviours.
The strain softening typical behaviour of quasi-brittle materials needed a description
adapted to its own micro structure. Bažant and Oh (1983a) and Bažant (1984a) introduced
the microplane theory with major changes in comparison with the slip theory.

As the main mechanisms controlling softening behavior in concrete are the extensions,
the static constraint was replaced by a kinematic constraint, projecting the strain tensor
on each microplane. Furthermore, contributions on each plane are no more superposed
and the corresponding macroscopic stress tensor is obtained by the means of the principle
of virtual work. Despite the fact that the model actually describes the behavior in a
lower scale, microplane behaviors are defined as a homogenized material, with material
parameters obtained in function of REV parameters.

Figure 1.21 • microplane

In terms of continuum mechanics, each point of the body x ∈ Ω can be seen as a
group of microplanes (denoted here by α) of all possible orientations in space. The basic
assumption is that, in a kinematic constraint condition, the behavior can be described
independently on each plane and a variational principle is used to construct the equivalent
macroscopic stress tensor σ. The unit sphere S is considered to represent all microplanes
possible directions of normal mα, as seen Figure 1.21.

In spite of well experimental data fitting, a few microplane models proposed could not
verify some thermodynamic criteria, as shown in (Carol et al., 2001). Basically, previous
microplane models used to define stress and strain in a more intuitive way, which lead to
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formulations where the micro stresses were not taken as the associated variables of the
strains. Carol et al. (2001) and Kuhl et al. (2001) presented a few examples of microplane
formulations leading to spurious energy dissipation or even energy generation regarding
some loading cycles.

In the aim of creating a consistent approach for microplane new developments, Carol
et al. (2001) proposed a thermodynamic framework based on the main assumption that
the macroscopic free Helmholtz potential is obtained in function of potentials defined at
each microplane. This is obtained by:

ψ = 3
2π

∫
S
2

ψα(εα
m, ε

α
t , ε

α
V , ε

α
D) dV (1.66)

where the specific free energy at each microplane ψα is a function of the microstrains
εα

m, ε
α
T , ε

α
V , ε

α
D, obtained by projection, and all state variable controlling the behavior at

the microscopic level. The satisfaction of the second principle implies that (Kuhl et al.,
2001):

Dα = −∂ψα

∂Vα
k

· V̇α
k ≥ 0 (1.67)

where Vα
k is used for all internal variables defined at the microplane level. This simple

assumption guarantees that dissipating a positive energy at each microplane leads to
a positive dissipation in the macroscopic level. The microplane consistent stresses are
therefore defined as:

σα
V = ∂ρψα

∂εV

, σα
D = ∂ρψα

∂εD

, σα
T = ∂ρψα

∂εT

(1.68)

Micro-mechanics damage. Notice that for the previous approaches, the characteris-
tics of micro-cracks, such as orientation, spatial distribution and geometry, were never
considered. Micro-mechanics based damage models can account for this information
by up-scaling homogenization techniques. Essential information, such as friction and
sliding mechanisms can be studied in detail. These aspects are not covered in this thesis.
For further information, the reader may refer to Pensée et al. (2002), Zhu et al. (2008),
Kachanov (1992), Kachanov et al. (1994), and Kachanov (1993).
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Summary of Chapter 1

Experimental observations:

• Softening behavior due to the degradation of elastic properties.

• Asymmetric behavior between tension and compression.

• FPZ diffuse micro-cracks occur before coalescence into a macro-crack (con-
firmed by acoustic emissions).

• Induced anisotropic behavior due to preferential directions of degradation.

• Unilateral effect under cyclic loading, stiffness recovery, hysteresis and
permanent strains.

• Size effect related to the ratio size between the structure and size of the
FPZ.

Crack description:

• Explicit approaches: cracks are explicitly considered in the formulations.
Examples: DM, CZM, EFEM, XFEM, GFEM, LEFM.

• Implicit approaches: the effects of a crack are smeared over a volume and
indirectly considered in the macroscopic behavior law. Examples: smeared
cracks (fixed and rotating), crack band, CDM.

• CDM: derived within thermodynamic principles. Micro-cracking is described
in a continuum framework using isotropic (scalar) or anisotropic (e.g.,
tensorial) damage variables.
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2
Generalities for non-local damage mechanics

Essential concepts of damage mechanics, from a structural point of view, are described in
this chapter. The critical elements of strain localization and bifurcation are introduced
to highlight the need to regularize the solution. An overview of the so-called non-local
damage theory in integral and gradient versions is provided. The reasons for incorporating
evolving and potentially anisotropic interactions are detailed. Finally, other well-known
regularization approaches are briefly described.
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Chapter 2. Generalities on non-local damage mechanics

1 Localization, bifurcation and mesh sensitivity

Physical point of view. The term “localization” refers to the physical observation
wherein mechanical fields become concentrated in a narrow but finite zone. For instance,
shear bands were experimentally observed in some soils or granular materials, such as sand
(see Figure 2.1a)). In this scenario Figure 2.1a, the non-linear behavior is concentrated in
this zone, while the rest of the domain remains elastic. The corresponding kinematics
are given in Figure 2.1b, where the displacement field remains continuous and a jump
may appear in the strain field. In contrast to a strong discontinuity observed in crack
kinematics, as introduced in Chapter 1, this situation is often referred to as a weak
discontinuity.

(a) Shear band experimentally observed in a
sand specimen (Alshibli & Sture, 2000)

(b) Kinematics of a weak discontinuity

Figure 2.1 • Localized shear band and weak discontinuity

In the context of describing the cracking behavior of quasi-brittle materials, nonlin-
ear behavior occurs within a significant FPZ, where micro-cracks develop (resulting in
nonlinearity) and eventually merge to form a macro-crack. In this scenario, the localized
band can be perceived as a region where these micro-cracks accumulate, while other areas
of the domain exhibit elastic behavior. The strong discontinuity kinematics is therefore
retrieved when a fully localized macro-crack appears (see for instance Figure 1.8).

×Remark 2.1. Models like crack-band and smeared crack address the scenario of
weak discontinuity case, where dissipation occurs in a finite zone (band).In contrast,
models like CZM or some strong discontinuity approaches, assume that dissipation
happens at the interface of the discontinuity through traction-separation laws.

Mathematical point of view. The main scientific question is to determine under
which conditions localization takes place. Specifically, the question pertains to how a
continuum transitions from a uniform state to a bifurcated one, characterized by the
concentration of inelastic strains within a localized band.
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Hadamard (1903) was one of the first to study the discontinuities in this sense and
proposed a relation to express jumps of continuum quantities across surfaces. Further
work was carried out in some classic papers, such as Hill (1958) for the uniqueness and
stability in solutions, Thomas (1961), Hill (1962), and Rudnicki and Rice (1975) for elasto-
plastic behaviors and Rizzi et al. (1995) for damage. A comprehensive mathematical
analysis of localization for damage models can be found in (Jirásek, 2007; Masseron
et al., 2022). In the aim of introducing the basic concepts of localization analysis and its
consequences, the main equations of bifurcation theory are briefly recalled in the following.
For simplicity, interactions with boundaries are disregarded. For further details on these
aspects, interested readers may refer to the work of Benallal and co-authors (Benallal &
Billardon, 1991; Benallal et al., 1993; Lemaitre et al., 2009).

The departure point is the continuum depicted in Figure 2.1b, so the study of localiza-
tion seeks to establish the necessary conditions for the occurrence of a weak discontinuity.
Let •− and •+ denote any quantity associated to Ω− and Ω+, respectively. As previously
introduced, by definition, the associated jump can be computed by [[•]] = •+ − •−. At the
onset of localization (i.e., just before the emergence of the localized band), the general
framework assumes the following hypotheses:

(i) Initial uniform and homogeneous state.

(ii) The strain is still continuous but a jump takes place in the strains rate.

(iii) Continuity of stresses rate vector on the discontinuity surfaces, i.e., σ̇− ·nd = σ̇+ ·nd

(iv) Discontinuity of velocity gradients can only take place in the out-of-plane direction.

Following Hadamard (1903), the jump in components of the gradient of a vector field
a is written in index notation as [[ai,j]] = mindj, where mi denotes a proportionality
coefficient and ndj represents the components of the normal vector to the surface nd. In
the case of the strain rates, the expression needs to be symmetrized, resulting in:

[[ε̇]] =
∂u̇

∂x

 = 1
2 (m ⊗ nd + nd ⊗ m) (2.1)

Vector m has a specific physical meaning defining the bifurcation mode. For instance, if
m is co-linear to nd, one has a mode I failure, whereas mode II shear failure is characterized
by the orthogonality between m and nd (see the case depicted in Figure 2.1a).

The constitutive behavior can be written in a incremental form as σ̇ = L : ε̇, with L
denoting the fourth-order tangent stiffness tensor, depending only on the state variables
at the current state for a rate-independent material behavior. Consider the case where the
inelastic behavior evolves outside and inside the band, leading to [[σ̇]] = L : [[ε̇]] (continuous
bifurcation). Substituting this expression and Equation (2.1) into the traction continuity
condition yields:(

L : 1
2 (m ⊗ nd + nd ⊗ m)

)
· nd = (nd · L · nd) · m = 0 (2.2)
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×Remark 2.2. In index notation and using Einstein summation convention, the
left side of above equation reads:

1
2Lijkl(mknl + nkml)nj = 1

2 (njLjiklmknl + njLjilknkml)

= niLijklnlmk

= (nd · L · nd) · m (2.3)

where the minor symmetries of the tangent stiffness were used (i.e., Lijkl = Ljikl =
Lijlk) and the subscript “d” of the normal nd was omitted for readability.

Therefore, Equation (2.3) is an eigenvalue problem with null eigenvalues, where the
bifurcation modes m are the eigenvectors associated with the null eigenvalues of the
so-called second-order acoustic tensor nd · L · nd. For a non-trivial solution, the following
necessary condition for bifurcation must be satisfied:

det [nd · L · nd] = 0 (2.4)

Thus, bifurcation can occur if and only if there exist a direction nd such that the
acoustic tensor becomes singular. The case where the region outside the band is under
elastic unloading (discontinuous bifurcation, where det [nd · L · nd] < 0) can be also easily
derived (Lemaitre et al., 2009). However, it is pertinent to highlight, as noted by the
same authors, the continuous bifurcation is reached first, and the discontinuous case may
follow. Therefore, the majority of localization studies limit the analysis to the singularity
of the acoustic tensor (e.g., Jirásek (2007), Jirásek and Suárez (2016), and Masseron et al.
(2022)).

×Remark 2.3. The acoustic tensor has this name for a specific reason. In the
case of an isotropic elastic material, the acoustic tensor takes on a specific form.
Let’s consider its expression:

nd · E · nd = nd · (2GI ⊗ I + λI ⊗ I) · nd

= G (niδikδjlnl + niδilnlδjk) + λniδijδklnl

= G (nknj + niniδjk) + λnjnk

= G I + (G+ λ) (nd ⊗ nd) (2.5)

where, once again, the lower script “d” of the normal was again omitted for readability.
In a orthonormal basis containing nd, we can represent this in matrix format:

nd · E · nd =


2G+ λ

G

G


(•,•,nd)

=


ρc2

L

ρc2
T

ρc2
T


(•,•,nd)

(2.6)

where cL =
√

(2G+ λ) /ρ and cT =
√
G/ρ are the longitudinal and the transversal

wave speeds, respectively.
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Therefore, the acoustic tensor contains essential information about the wave velocities
related to the material properties. As seen in Chapter 1, acoustic measurements can
provide useful information about damage and degraded elastic properties.

Important mathematical and numerical consequences. In quasi-static analysis,
the singularity of the acoustic tensor implies the loss of ellipticity (see for instance
Benallal and Billardon (1991)) of the boundary value problem. This loss of ellipticity
leads to an ill-posed linearized rate equilibrium problem, where an infinite number of
linearly independent solutions can be obtained at the bifurcation point. As a consequence,
the size of the localization zone cannot be uniquely determined. In dynamics, the
hyperbolic equilibrium equations become elliptic, defining the loss of hyperbolicity and
the ill-posedness of the problem. In a one-dimensional context, Sluys (1992) analytically
demonstrated that a local medium will inevitably lead to imaginary wave speeds. This
implies that the structure is divided into two different zones: one where elastic waves can
propagate and another one where the wave speed becomes imaginary. These last aspects
will be further studied in Chapter 3.

A significant numerical consequence of this behavior is that finite element simulations
do not converge upon mesh refinement. To illustrate this, let us consider the simulation of
the well known L-shape test (Winkler et al., 2001, 2004) with a local anisotropic damage
model (Desmorat, 2015). Figure 2.2 shows the global response obtained for different
meshes in terms of the force and displacement computed at the point of loading application.
The corresponding maps of the first damage eigenvalue D1 show that damage tends to
localize in a zone of vanishing volume as the mesh is refined. As expected, convergence
with respect to the mesh is not observed in either the global response or the damage maps.

Therefore, finite element numerical simulations with local damage models are not
meaningful, exhibiting a significant sensitivity to spatial discretization. This sensitivity can
lead to spurious energy dissipation at the structural level, which is physically unacceptable.
Moreover, damage patterns depend on the mesh orientation. To obtain meaningful results
with these approaches, the numerical solution needs to be regularized.

Energetic regularization. One may employ regularization techniques to guarantee a
mesh-independent solution when dealing with strain softening. As explained in Section 2,
one option is to utilize a simple energetic regularization approach (Hillerborg et al., 1976;
Bažant & Oh, 1983b). This approach involves defining model parameters in each element
(depending on the characteristic size of the element) to dissipate the same amount of
energy that is needed to create a crack surface for such a material (see for instance
derivations in (Kakarla et al., 2021) for a microplane model).

Nevertheless, several authors (Mosler & Meschke, 2004; Jirásek & Grassl, 2008; Jirásek
& Bauer, 2012) have shown that these regularization methods lead to different crack
paths for different mesh orientations. For instance, Figure 2.3 shows considerably different
damage maps obtained for different meshes in the simulation of the Shi-test (Shi et al.,
2000) with a energy-regularized microplane damage model (Ribeiro Nogueira et al., 2022b).

Consequently, while energy-based methods can help regularize the overall structural
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Figure 2.2 • Mesh dependency of local damage simulations

response, they might not suffice for sophisticated analyses aiming to capture detailed
crack paths and failure patterns. In such cases, more advanced regularization approaches
become necessary. These approaches typically involve introducing additional parameters
that account for the localization process within a continuous medium.

2 General non locality and enriched continua

As micro-cracking that is responsible of strain-softening is distributed over a region of
finite size within the media, it is reasonable to apply a continuum framework to describe
the behavior of the REV under consideration (Bazant et al., 1984). However, the lack
of a formulation capable to provide a meaningful solution to the differential equilibrium
equations led to some distrust among certain researchers (Bažant & Jirásek, 2002). In
fact, from a mathematical viewpoint, it is shown that the local damage problem provides a
solution when treated with certain initial and boundary conditions (Bažant & Belytschko,
1985). The main challenge to overcome is that the basic assumption of a classical local
continuum does not provide a representative solution of quasi-brittle media (Bažant
(1976), Bazant et al. (1984)). Non-local continuum approaches can be applied, to provide
consistent solutions and in particular numerical finite implementations that converge
towards a physical response.

In the following section a brief description of a variety of non-local damage models
acting as localization limiters is presented. The fundamental concepts of non-local
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Figure 2.3 • Mesh-dependent damage profiles obtained with a energy-based regularized
microplane model (Ribeiro Nogueira et al., 2022b)

approaches will be introduced, as well as the physical justifications of their use for the
simulation of quasi-brittle media. The main feature of these models is the introduction
of a characteristic length into the constitutive relations, which is treated as a material
parameter. The size of the FPZ is related to this length.

Essentially, non-locality is introduced in quantum mechanics where a particle can
know the state of another one instantaneously, even when they are far away from each
other. Numerous academic discussions may take place regarding a possible violation of
the principle of locality and therefore of the special relativity postulates (see for instance
Popescu (2014) and the references therein). Indeed, locality implies that different points
in space can only influence each other by the existence of fields, so the information (or
effects) can propagate (Haag, 1992). Therefore, the speed at which effects are propagating
is limited to the speed of light by Einstein’s postulates (see EPR papers by Einstein et al.
(1935)). In this context, the discussion between general local and non-local theories in
physics is actually a vast subject.

Let us introduce the non-local concept from the viewpoint of other domains, which
is less general than the notion of non-locality brought by quantum mechanics, but still
similar in some ways.

Non-local means algorithms are used for instance in image denoising (Buades et al.
(2005a), Buades et al. (2008)). The idea is basically an extension of neighborhood image
filters, using pixels similarity to reduce noise. For a discretized image, the non-local
quantity for a given noisy pixel i is the result of a weighted average of all the other pixels
j of the entire image. This is achieved by introducing a weight function (Gaussian in
this case), which computes the similarity between two given pixels by the Euclidean L2
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Figure 2.4 • Example of image denoising with a non-local algorithm (Buades et al.,
2005b)

distance. This procedure is responsible for smoothing a given image (Figure 2.4). In
fact, this filtering technique can be seen as a convolution integral between a correlation
Gaussian function and a given field.

Similarly, a convolution product is used in the field of topology optimization, where
mesh dependent designs and non-convergent sequences of the minimization problem are
also an issue. As shown for image analysis, the main idea is to regularize a sort of density
field of the material, which equals 0 for a void and 1 for the material itself. Applying
a similar non-local integral average, one substitutes a possible non-regular density field
(as done for image noise) by a smooth differentiable one (Bourdin, 2001). An equivalent
approach for regularizing the topology optimization problem is to apply a Helmholtz-type
partial differential equation. In this case, the aim is to replace the classical non-local
integral density filtering approach by a more numerical friendly one, which is also more
efficient and suitable for parallel computing (Lazarov & Sigmund, 2011).

A huge variety of physical problems have been addressed using non-local approaches
(Eringen, 2002): dispersion of high frequency waves in electromagnetic field theories,
fracture in non-regular solids, viscosity in micro-channel flows in fluid dynamics and many
others. In regards specifically to solid mechanics, the concept of a non-local continuum is
introduced to overcome the incapability of local theories to describe some behaviors. For
better comprehension, it is necessary to enhance the concept of a local continuum theory.

One of the basic assumptions of continuum mechanics is the principle of local action
(Truesdell & Toupin, 1960; Truesdell & Noll, 1965). For instance, for a given continuum
body Ω ⊂ R3, this principle dictates that the state of a material is defined for each point
x ∈ Ω and it is a functional of the state variables computed at that point. Moreover, this
state depends also on what occurs at infinitesimal distance from the point x, but neglects
for example long-range effects (Eringen & Kafadar, 1976).

But how is it possible to speak about a continuum in the case of heterogeneous
materials like concrete?

Essentially, a continuum body can be conceptually subdivided into infinitesimal
elements. The decision to treat a material as a continuum is intricately linked to the scale
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chosen for analysis. This is where the notion of a Representative Elementary Volume
(REV) comes into play. The size of the REV must be sufficiently large to encompass the
material’s heterogeneity yet small enough to remain within the scope of the structure under
consideration. In this context, fields (e.g., displacement field) are considered as continuous
and regular enough for differentiation, enabling the solution of partial differential equations
within the body.

While classical (local) field approaches suitably describe various material behaviors,
they fail when confronted with certain experimental findings. It is the case for instance
of local elasticity, which wrongly predicts the material wave speed when dealing with
short wavelengths excitation (Eringen and Kafadar (1976), Eringen (1978)). As shown
in Section 1, local damage models fail to predict the fracture process in strain-softening
materials, providing physically meaningless results in finite element simulations. As
showcased in Section 1, the strain field becomes close to a Dirac delta distribution upon
localization, which means that high strain gradients take place in small (but finite)
zones (obviously, this remark depends on the structural scale considered). Consequently,
the equivalent homogenized volume for continuum damage mechanics analysis is not
representative of what happens in lower scales. Indeed, the stress field is not smooth
in this region, indicating the necessity of accounting for micro-structural aspects in the
macroscopic model (Bažant and Oh (1983b), Bazant et al. (1984) ). In fact, the assumption
of distributed micro-cracks within the REV is no longer valid as the damage field is no
more smooth (Peerlings, 1999). The size of a localization zone can vary from millimeters
in metals to up to 3 times maximum aggregate size in concrete (Bažant & Pijaudier-Cabot,
1988). Hence, material degradation is concentrated in a finite zone, which implies finite
energy dissipation.

Visibly, classical continuum approaches lack some information in the scale of the micro-
structure, which becomes necessary for treating some specific problems such as strain
localization. Introducing a characteristic length (intrinsically linked to a characteristic
time in dynamics) facilitates the description of interactions at a lower scale and delineates
the range of validity of the theory under consideration. In continuum mechanics, a
characteristic length lc (or internal length) may be introduced into the constitutive
relations, which is related to the size of the REV and the FPZ (Bažant & Jirásek, 2002).
Thus, if the wavelength of the excitation (or the strain/stress fields) is approximately
equal to lc, local theories ay inadequately describe the material behavior (Eringen (1976),
Eringen (1978), Bažant and Jirásek (2002), Jirásek (2004)).

One may argue that an explicit description of the micro-structure (e.g., aggregates
and cement paste for concrete) would be capable to overcome this issues, which is true.
However, the implementation of lattice, discrete or hybrid models at a structural level
is still impractical due to expensive calculations. Alternatively, local continuum models
can be enriched to take into account the missing micro-structural information. Various
enriched continuum approaches exist, such as Cosserat-type models (Cosserat & Cosserat,
1909), micropolar and micromorphic theories (Eringen & Suhubi, 1964; Mindlin, 1964;
Suhubl & Eringen, 1964; Eringen & Kafadar, 1976; Eringen, 1999), and gradient theories
(Aifantis, 1984; Frémond & Nedjar, 1996; Lorentz & Andrieux, 1999). Other approaches
are more numerically oriented, primarily aiming to introduce a characteristic length
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Chapter 2. Generalities on non-local damage mechanics

scale into the formulation to mitigate the ill-posedness of the problem without directly
addressing micro-structural phenomena. In this latter case, non-locality primarily serves
as a mathematical tool (a localization limiter) to regularize the response provided by the
model. Among them, it is worth citing integral non-local formulations (Pijaudier-Cabot
& Bažant, 1987), implicit gradient formulations (Peerlings et al., 1996a; Peerlings et al.,
2004), the thick level-set model (Moës et al., 2011), phase-field formulations (Francfort
& Marigo, 1998; Bourdin et al., 2000; Miehe et al., 2010; Pham et al., 2011), and more
recently the Lipschitz regularization (Moës & Chevaugeon, 2021; Chevaugeon & Moës,
2022) and the graded damage approach (Valoroso & Stolz, 2022).

Figure 2.5 • Illustrative scheme of the kinematics in a regularized continuum

In these regularized continuum models, the strain and the displacement fields remain,
a priori, continuous, as shown in Figure 2.5. Damage and strains concentrate in a finite
zone and can take higher values in its center. Notice that this last tends to a Dirac
distribution for a vanishing internal length, which corresponds, in the limit case, to a
jump in the displacement field.

The concept of non-local continuum introduces the notion that the constitutive relation
in a given point is a function of what occurs in the entire body. Neighborhood interactions
are therefore used to enrich the continuum description by incorporatinghigher gradients
or spatial averaging, based on a material characteristic length. From a thermodynamic
viewpoint, the balance equations such as energy exchange, are no longer locally defined.
The material state in a specific point is therefore a functional of the internal variables of
all the points in its vicinity (Eringen, 2002).

Non-locality is a complex subject and more aspects may be covered. Some theories
introduce only a weak or limited form of non-locality (Eringen (2002), Bažant and Jirásek
(2002)), such as the gradient (explicit) ones, where interactions are limited to infinitesimal
distances (Peerlings et al., 2004). In the following, non-local damage models will be
presented in integral and implicit gradient forms, which are considered as strong non-local
approaches, allowing long-range interactions. A visco-damage law could be also used,
which is similar to apply a characteristic length by means of a rate effect (Bažant & Jirásek,
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2002) and can be treated as a temporal regularization (Sluys & de Borst, 1994). From
now on, the terms non-local and local will be used to referrer to continuum mechanics
applications, but relations may exist between these theories and the general non-locality
in physics (Eringen, 2002). Indeed, both approaches study long-range interactions and
information exchange between material points.

×Remark 2.4. Some notions of interactions between points in a continuum date
back to the work of French researchers in molecular models for elasticity. Names,
such as Poisson, Cauchy and Navier, formulated and discussed different aspects
regarding models of matter. A detailed review on these theories is provided in
(Capecchi et al., 2010). For instance, as described in the last cited work, Poisson
had already postulated the existence of an internal length for molecular actions (the
radius of molecular activity).

3 Classic integral and gradient-enhanced non-local
approaches

Figure 2.6 • Illustrative scheme on the difference between a local and a non-local dam-
aged continuum

In local damage models, the constitutive relations are defined for every point x ∈ Ω,
and σ(x) = F(ε(x),D(x)) with F representing a functional (see Figure 2.6 left). In non-
local damage models, the constitutive relation is enriched by considering what happens in
the neighborhood, so one has σ(x) = F(ε(x),D(x), lc, lxξ), with lxξ = ||x − ξ|| denoting
an euclidean distance between points x and ξ. This last is often referred as an interaction
distance.

3.1 Classic integral non-local approach (INL)
Pijaudier-Cabot and Bažant (1987) proposed a non-local integral damage theory, which
replaces a local field X(x) driving the damage evolution by a weighted average over the
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whole domain Ω:

X̄(x) = 1
Vr(x)

∫
Ω
ϕ(x, ξ, lc)X(ξ)dVξ and Vr(x) =

∫
Ω
ϕ(x, ξ, lc)dVξ (2.7)

with X̄(x) denoting the corresponding non-local field and ϕ(x, ξ, lc) is a weight function
generally taken as the Gaussian distribution:

ϕ(x, ξ, lc) = 1
2π 2

3 l3c
exp

(
−||x − ξ||2

2l2c

)
(2.8)

for which Vr(x) = 1 when Ω = R3. A visualization of the Gaussian distribution on R2 is
shown in figure Figure 2.7.

×Remark 2.5. Another possibility is to use a bell-shaped function, which has a
bounded support, instead of an unbounded one for the Gaussian function.

The Gaussian weight function ϕ(x, ξ, lc) is non negative and decreases with the distance
lxξ. It is usual to use different weight functions for the averaging integral, most of them
are modified versions of the common Gaussian one. For instance, a weight function used
in (Krayani et al., 2009; Giry, 2011; Pijaudier-Cabot & Grégoire, 2014) is the Gaussian
ϕ(x, ξ, lc) = exp (−4||x − ξ||2/l2c).
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Figure 2.7 • Typical Gaussian weight function

One may notice that lc defines also the significant part of the domain which will
contribute to the resulting non-local field. In the (1D) case, statistical analyses show that
99, 9% of non-zero values of ϕ are obtained for the interval [−3lc, 3lc].

Originally, Pijaudier-Cabot and Bažant (1987) introduced the non-local damage theory
for averaging the thermodynamic force Y , so the scalar damage variable D is computed
in function of Ȳ . Bažant and Pijaudier-Cabot (1988) proposed to average D itself so
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3. Classic integral and gradient-enhanced non-local approaches

the constitutive equations were computed with the non-local damage variable D̄. Jirásek
(1998) tested different ways of introducing non-locality in damage formulations, considering
also the average of other variables. Particularly, it is shown that averaging D would
lead to stress locking behaviors, what could not describe the crack initiation. In a 1D
context, the author shows that formulations which average either Y or the strain ε are
more capable to describe the degradation process.

In this thesis, the local equivalent strain field e is averaged and the evolution respects
the modified damage criterion f = ē−κ, where e is substituted by its non-local counterpart
ē. Direct substitution in Equation (2.7) gives the non-local equivalent strain field:

ē(x) = 1
Vr(x)

∫
Ω
ϕ(x, ξ, lc)e(ξ)dVξ (2.9)

where the definition of Vr(x) from Equation (2.7) implies that the non-local integral does
not change an uniform equivalent strain field.

In a 1D framework, the Gaussian weight function reads:

ϕ(lxξ, lc) = 1√
2πlc

exp
(

− l2xξ

2l2c

)
(2.10)

where lxξ = |x − ξ| is the Euclidean distance between points x and ξ. For a given
characteristic length, Figure 2.8a shows two different Gaussian functions. The choice
of the multiplying factor (4 or 0.5) can drastically change the size of the FPZ and give
different results for the same material (i.e., same characteristic length). The form of the
damage profile is basically a combination between lc and this multiplying factor. Moreover,
Figure 2.8b shows the influence of the characteristic length on the form of the Gaussian
weight function.
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3.2 Gradient-enhanced non-local damage (GNL)
Gradient-enhanced models were firstly introduced in plasticity theories with the contribu-
tion of several authors (e.g., see Aifantis (1984), Lasry and Belytschko (1988), Aifantis
(1987), and Mühlhaus and Aifantis (1991)), where the main idea was to introduce high-
order gradients of the equivalent plastic strain into the constitutive relations. These
models were developed to overcome usual drawbacks in materials simulations, particularly
in scenarios where localization phenomena induce mesh dependency, such as in shear band
problems.

Inspired by these concepts, gradient-enhanced descriptions were also introduced in
damage mechanics (e.g., Nedjar (1995), Peerlings et al. (1996a)), where high-order gradients
(strain, internal variables, etc.) are also used in the constitutive relations. The objective
was to capture the influence on the macroscopic behavior of important microscopic
phenomena not well described in the usual local damage continuum mechanics. In fact,
as mentioned before, the main hypothesis of continuum mechanics is to work with a
REV of the material studied, which entails considering a finite volume size much bigger
than the inhomogeneities of the micro structure. Within this framework, the constitutive
relation may be defined locally for each point of the continuum. However, under high
strain gradients, it is more appropriate to describe the behavior in a global manner, in
which all the structure volume contributes to the stress-strain relation computed for a
given point x (Bazant et al., 1984).

Gradient-enhanced damage approaches enable taking into account the spatial interac-
tion between points (such as the influence of microstructure on the damage process) by
introducing non-locality in the form of high-order gradients (Peerlings, 1999). Basically,
gradient regularization can be achieved by using the conventional integral non-local theory,
substituting the local equivalent strain in Equation (2.9) by its Taylor expansion:

e(ξ) = e(x) + ∇e(x) · (ξ − x) + 1
2∇(2)e(x) : (ξ − x) ⊗ (ξ − x) + ... (2.11)

where ∇(2) is the second-order gradient, “:” is the double contraction product and ⊗ is
the tensor product between two second-order tensors. Substituting Equation (2.11) in
Equation (2.9) and neglecting high order terms, one has the approximation:

ē(ξ) ≈ e(x) + ∇e(x)
Vr(x) ·

∫
Ω
ϕ(x, ξ, lc)(ξ − x)dVξ

+ ∇(2)e(x)
2Vr(x) :

∫
Ω
ϕ(x, ξ, lc)(ξ − x) ⊗ (ξ − x)dVξ (2.12)

As previously discussed, the Gaussian distribution is commonly taken as the weight
function ϕ(x, ξ, lc). By computing the integrals in Equation (2.12) over R3, one obtains
the following explicit gradient equation:

ē(x) = e(x) + c∇2e(x) (2.13)

where the first integral of Equation (2.12) vanishes due to the isotropy of the Gaussian
function averaging an odd function. The term ∇2 is the Laplacian operator and the
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gradient coefficient c is given by (Peerlings, 1999):

ci = c = 1
2Vr(x)

∫
Ω
ϕ(x, ξ, lc)(ξi − xi)2dVξ. (2.14)

In fact, considering the isotropy of the Gaussian function when integrating over R3, the
second integral of Equation (2.12) equals cI, where I is the second-order identity tensor.
In this case, ∇(2)e(x) : cI = c∇2e(x) and c = l2c/2 for the Gauss function introduced in
Equation (2.8).

One may notice that normally Ω ⊂ R3, as the structure is finite and has its own
boundaries. In this case, the first integral does not vanish while the coefficient c is also
different. Nevertheless, it is more important to verify that the gradient-enhanced non-local
models are useful as an approximation of the conventional integral one (Peerlings et al.,
2001).

Solving Equation (2.13) by applying a variational formulation followed by a Galerkin
approach leads to C1 continuity requirements for the displacement shape functions (as e
is a function of the displacement field). From a numerical viewpoint, the explicit gradient
damage model is not suitable to be used with usual linear shape functions. A more
numerical friendly approach is obtained by differentiating two times the Equation (2.13)
and neglecting high order terms, which results in the implicit gradient-enhanced damage
equation (Peerlings et al., 1996a):

ē(x) − c∇2ē(x) = e(x) (2.15)

which only requires C0 displacement shape functions in a finite element context. The
global problem consists therefore in finding a couple (u,ē) solution of the equilibrium
equation and the Helmholtz-type differential equation. This will be solved in the following
sections by a finite element coupled problem, as introduced in (de Borst et al., 1995) and
Peerlings et al. (1996a).

×Remark 2.6. An exact equivalence between the implicit gradient formulation
and the integral non-local one is derived by Peerlings et al. (2001), by means of a
Green function G(x; y) solution of a similar Helmholtz problem, replacing e(x) by
the Dirac distribution:

G(x; y) − c∇2G(x; y) = δ(x; y) (2.16)

so the non-local equivalent strain field is obtained by:

ē(x) =
∫

Ω
G(x; y)e(y)dVy (2.17)

Thus, the implicit gradient approach can be seen as the non-local integral approach
with a Green weighting function.

A comparison of integral non-local models and explicit/implicit gradient ones can be
found in (Peerlings et al., 2001). It demonstrates that the explicit gradient formulation
allows only interaction between points at infinitesimal distances. Consequently, this
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formulation and other high-order gradient ones are classified as weakly non-local models
(Bažant & Jirásek, 2002). From a mathematical perspective, they can even be regarded
as local (Peerlings et al., 2001). Conversely, the implicit gradient-enhanced damage model
developed in (Peerlings et al., 1996a) is considered as a strongly non-local model (Bažant
& Jirásek, 2002). This classification arises from its equivalence to the integral type ones.
Indeed, spatial interactions are not restricted to an infinitesimal domain, but can occur
within the entire structure. Additionally, while the explicit gradient approach presents
an unbounded wave velocity, both the implicit and the integral non-local models show a
limit which is the elastic wave velocity (Peerlings et al., 2001).

×Remark 2.7. The solution of Equation (2.15) requires the introduction of a
boundary condition. In the variational framework of finite element analysis, the
literature (e.g., Peerlings et al. (1996a), Peerlings et al. (1998), and Geers et al.
(1998)) often refers to a natural zero flux condition, i.e., ∇ē · n = 0 on ∂Ω, with n

denoting the outward normal to the boundary ∂Ω. Peerlings et al. (1998) showed
that this leads to equal averages of ē and e over the domain. However, the physical
interpretation of the homogeneous Neumann boundary condition remains an open
question(Peerlings et al., 1996b, 2004; Simone, 2007).

3.3 Comments on bifurcation and regularization in non-local
continuum

Convergence with respect to the mesh can be obtained in finite element simulations when
a characteristic length is introduced in the formulation (see for instance Pijaudier-Cabot
and Bažant (1987) and Peerlings et al. (1996a)). However, providing a mathematical proof
of regularization for such models is a challenging task and requires a detailed localization
analysis. Bifurcation analysis in non-local or enriched continuum were conducted by many
authors.

Pijaudier-Cabot and Benallal (1993) studied strain localization and bifurcation in
quasi-statics and dynamics for a non-local continuum of integral-type. They derived the
expression of a pseudo-acoustic tensor, containing the wavelength of the bifurcation mode
by the means of the Fourier transform of the weighting function. Based on a geometric
solution, they showed that the bifurcation condition in a local continuum is a lower bound
of the non-local one. Contrarily to the local continuum, only one wavelength, proportional
to the characteristic length, is allowed at bifurcation in a non-local one. Moreover, wave
propagation is dispersive in a such medium.

Sluys and de Borst (1994) studied bifurcation in gradient-dependent mediums through
wave propagation and dispersion analysis in one-dimensional bars. They analyzed the
characteristics of the resulting wave equation, highlighting that the problem is well-posed
in a gradient-dependent medium. While the wave speed is always imaginary in local
classic models, it becomes real for most of the wavelengths in the case with gradient
enhancement. Other authors developed similar studies for different gradient and integral
non-local models, leading to similar conclusions (Peerlings et al., 1996b, 2001; Askes &
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Sluys, 2002; Pijaudier-Cabot et al., 2004; Di Luzio & Bažant, 2005; Comi et al., 2007).
Nonetheless, it is important to notice that, in general, these analyses consider the

classical (but strong) hypothesis of a linear comparison solid (Hill, 1958). In other words,
the linearized rate equilibrium problem is considered, so all the regions of the continuum
have the same tangent stiffness at the onset of softening. These aspects will be further
studied in Chapter 3 and Chapter 4.

4 Non-local models with evolving interactions

In spite of the agreement that continuum damage should be non-local, the classical
regularized models are not capable to reproduce the entire degradation process occurring
in quasi-brittle materials. For instance, damage attraction on the boundary has been
reported (Krayani et al., 2009) and leads to non physical spalling failures. Simone et al.
(2004) showed that classical integral or implicit gradient theories fail to describe crack
initiation, specially near strong variations on the strain field, which was not related
to boundary effects, for example. Additionally, when strain localization occurs, the
coalescence of micro-cracks into a macro-crack should induce a discontinuity in the
displacement field. Classic models do not enable describing such a transition, as damage
is diffused in a large zone. Thus, despite regularizing the response to recover objectivity,
non-local classical damage models exhibit physical inconsistencies and therefore can not
accurately describe all physical phenomena related to damage.

Bažant (1991) investigated the interaction between micro cracks and showed that for
the case where damage is not sufficiently small, the weight function should depend on
the stress state in the vicinity of a given point. This implies that non-local interactions
must evolve as damage grows, rather than remaining isotropic and constant throughout
the fracture process. Geers et al. (1998) showed that the classical constant gradient
damage model, fails when treating highly damaged zones. To address this, they proposed
a strain-based transient-gradient damage model, considering that the gradient parameter c
(∝ lc) evolves in function of the local strain state. This simple assumption yields a damage
profile that does not spread over a zone upon localization, thus being consistent with the
mechanical material response. Giry et al. (2011) proposed a stress-based non-local damage
model which allows the internal (or characteristic) length to evolve in function of the
stress state. The internal length is computed by applying an influence factor depending
on the principal stresses of a neighborhood point. The evolution of non-local interactions
was also proposed in many other damage models, based on the stress, strain, damage
or the micro structure (e.g., Bažant (1994), Pijaudier-Cabot et al. (2004), Desmorat
and Gatuingt (2007b), Pijaudier-Cabot and Dufour (2010), Nguyen (2011), Rojas-Solano
et al. (2013), Desmorat et al. (2015b), Poh and Sun (2017), Vandoren and Simone (2018),
Nguyen et al. (2018), Jirásek and Desmorat (2019), and Negi et al. (2020)).

Although not yet clearly clarified, the influence of the fracture process in non-local
interactions needs to be taken into account. The goal is to fully simulate the physical
behavior from diffused micro cracks to a fully localized macro crack. In this context, the
non-local damage models should overcome the following drawbacks: damage initiation,
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damage diffusion and boundary effects (these points are further explained in the remainder
of this manuscript). In the following sections, a few of the previously mentioned approaches
are described, giving attention to the so-called eikonal approach (Desmorat et al., 2015b).

4.1 Strain-based gradient-enhanced
From the observation that the GNL approach leads to the growth of a damage band
that is not physical, Geers et al. (1998) proposed one of the earliest evolving (isotropic)
interaction models, where the gradient parameter varied with strain. The resulting
modified differential equation is as follows:

ē− ζ(e)∇2ē = e (2.18)

where ζ(e) is a transient gradient parameter (the gradient activity), defined as:

ζ(e) =
c

(
e
eζ

)nζ if e ⩽ eζ

c if e > eζ

(2.19)

Here, eζ and nζ denote material parameters. A simplified version of this model, which is
more numerical friendly, was proposed by Saroukhani et al. (2013). This approach enables
better modeling of the transition behavior between CDM and FM, as the damage band
does not spread upon localization and the gradient activity converges to a discontinuity.

4.2 Non-local stress-based (NLSB)
The main idea of the NLSB model is to take into account the influence of the stress field
when computing the weight function. This is done by introducing an influence factor,
denoted as ρ, into the non-local regularization, leading to the following modified weight
function (Giry et al., 2011):

ϕ(x, ξ, lc, ρfac) = exp
−4

(
||x − ξ||
ρfaclc

)2
 (2.20)

where ρfac is a function of the stress field and is defined as ρfac = ρfac(x, σi(ξ)) with σi

denoting the principal stresses. In the general case, ρfac(x, σi(ξ)) is the radial coordinate
of an ellipsoid associated with the stress state of a nearby point ξ. Thus, this model
naturally addresses boundary effects issues, given that the stress state is considered to
modify non-local interactions in the presence of a free boundary.

In the 1D case, the influence factor is defined as:

ρfac(ξ) = |σ(ξ)|
ft

(2.21)

where σ(ξ) is the stress computed for the point ξ and ft is the tensile strength of
the material. According to this definition, the influence factor ρfac(ξ) is equal to zero
when ξ belongs to a free boundary, corresponding to the zero normal stress condition.
Consequently, the weight computed between a given point inside the domain and another
one on the free edge is null (i.e., no interactions are modeled). Moreover, if ρfac(ξ) = 1,
the classical INL formulation is recovered.
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4.3 Stress-based gradient-enhanced damage
Vandoren and Simone (2018) proposed a stress-based anisotropic gradient-enhanced model
that builds upon the integral version introduced by Giry et al. (2011) to account for
evolving internal interactions based on the stress state in the medium. The following
Helmholtz differential equation was proposed:

ē− ∇ · (c · ∇ē) = e (2.22)

where c is a second-order tensor accounting for the influence of the anisotropic stress state
on the interactions. Once again, Equation (2.22) needs to be supplemented by a modified
Neumann boundary condition, which reads (c · ∇ē) · n = 0. Two different models can be
derived, depending on the definition of tensor c which can be based on either the principal
stress components or the equivalent stress. In the first case, one has:

c = R
(
σi

ft

si ⊗ si

)
R⊤ (2.23)

where si is the stress eigenvector, ft is the material strength, and R is the rotation tensor
from the basis of principal stress directions to the external basis in which ∇ē is written.
Additional details can be found in the cited work.

4.4 Localizing gradient damage model
A localizing gradient damage model was proposed by Poh and Sun (2017). Developed
within the framework of the micromorphic theory, this model modifies the extended
thermodynamic potential proposed by Peerlings et al. (2004) and Forest (2009) to account
for damage-dependent non-local interactions. The resulting modified Helmholtz-type
differential equation reads:

ē− ∇ · (gc∇ē) = e (2.24)

where g(D) is an exponentially decreasing function of the scalar damage variable D, given
by:

g(D) = (1 −R) exp (−η0D) +R − exp (−η0)
1 − exp (−η0)

(2.25)

with η0 denoting a material parameter and R > 0 being a small parameter accounting
for residual non-local interactions. It is chosen such that g(0) = 0 and g(D → 1) = R. A
similar formulation that couples the effects of damage and stress on non-local interactions
was introduced by Negi et al. (2020).

4.5 Internal time non-local approach
In the INL model introduced in Section 3.1, points interact through an Euclidean distance
lxξ normalized by the characteristic length lc. The basic idea of considering an internal
time (Desmorat & Gatuingt, 2007b) instead of a distance is to naturally take into account
the influence of damage in the evolution of non-local interactions. The key modification is
to consider a Gaussian weight function ϕ = ϕ(τxξ, τc), where τxξ is the information time
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propagation and τc the characteristic (or internal) time. Thus, the classical Euclidean
distance between points x and ξ is replaced by the propagation time of an elastic wave in
the continuum, which varies based on damage.

The material elastic wave speed c0 is proportional to the square root of the Young’s
modulus (E), which is reduced to the effective modulus Ẽ = (1 − D)E when damage
occurs. Therefore, for a homogeneously damaged material (D = D0), the information
propagation time is defined as:

τxξ = ||x − ξ||
c̃

= lxξ

c0
√

1 −D0
and τxξ

τc

= lxξ

lc
√

1 −D0
= l̃xξ

lc
(2.26)

where c̃ is the effective wave speed affected by damage.
According to Equation (2.26), if damage occurs, the time required to propagate

information (interaction) between points increases, and tends to infinity when damages
tends to the unity. Furthermore, one has:

τxξ

τc

= lxξ

lc
√

1 −D0
= l̃xξ

lc
(2.27)

where lc = τcc0 and l̃xξ is an effective distance which increases with damage (Desmorat
et al., 2015b). For an undamaged material, the internal time is thus equivalent to the
classical non-local integral model. Similarly, the internal time approach can be seen as
a non-local damage model with evolving internal length l̃c = lc

√
1 −D0 (Desmorat &

Gatuingt, 2007b; Desmorat et al., 2015b). Pijaudier-Cabot and Dufour (2010) proposed a
similar non-local model, using an attenuation function to describe the influence of damage
on interactions.

4.6 Eikonal non-local approach (ENL)
The ENL damage model is a geometric extension of the non-local internal time model
introduced by Desmorat and Gatuingt (2007b). Desmorat et al. (2015b) proposed to search
a solution to the wave propagation equation based in the Wentzel–Kramers–Brillouin
(WKB) approximation. The WKB method is used mostly in quantum mechanics to give an
approximated solution of the Schrödinger equation. Here, it is applied to high-frequency
(i.e., high wave number and small wave length) waves propagating in a damaged medium,
which corresponds to the onset of localization introduced before and the limitations of
local models.

As derived in (Desmorat et al., 2015b) and further detailed in (Marconi, 2022) following
the principal of virtual work, the expression of the displacement field can be written as:

u(x, t) = u0(x) exp [i (k0S(x) − ωt)] (2.28)

where u0(x) is the wave amplitude, κ0 = ω/c0 is the wave number, ω the angular
frequency, and S(x) is the eikonal function. In the case of isotropic damage, substituting
this expression in the wave equation leads to the following so-called eikonal equation (see
Desmorat et al. (2015b) for a detailed development):

∥∇S∥ = 1√
1 −D

(2.29)
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As highlighted by Desmorat et al. (2015b), S is equivalent to a signed distance l̃, if one
considers the initial wave front as the zero level set of function S. For instance, in a 1D
framework, Equation (2.29) reduces to:

dl̃ = dx√
1 −D

(2.30)

which defines a field of damage-dependent effective distances. The Euclidean distance lxξ

between points x and ξ is therefore scaled by the factor 1/
√

1 −D, as already observed
in the internal approach in Equation (2.26). Therefore, the effective distances increase
with damage and can eventually tend to infinity in the limit case where D → 1.

In the generic case of anisotropic damage modeled by a second-order tensor, the eikonal
equation reads:

∇l̃ · g−1 · ∇l̃ = 1 (2.31)

where g = (I − D)−1 is a damage-dependent Riemannian metric. Therefore, the effective
distances l̃ are geodesics in a space curved by damage. Notice that the above equations
remains valid for the case of isotropic damage, so one retrieves Equation (2.29) with
g = I/(1−D). For an undamaged medium, the Riemannian metric reduces to a Euclidean
one, i.e., g = I and one has l̃xξ = lxξ.

Further details on this approach are provided in Chapter 4, where an independent
derivation of the method following the micromorphic approach is presented.

Eikonal non-local integral (ENLI). In its integral form, the isotropic damage ENLI
formulation proposes the following weighting function when computing the non-local
equivalent strain:

ϕ(x, ξ, lc, D) = exp
(

−4
l̃2xξ

l2c

)
(2.32)

where the damage-dependent effective distances field replaces the Euclidean one. Thus,
the general theoretical framework of integral non-local theories is preserved.

As the distances increase with damage, points separated by a highly damaged zone
become considerably far apart from each other and the non-local interactions are reduced
through Equation (2.32). A tendency toward the transition between CDM and FM
is naturally considered in such an approach, as the non-local interactions vanish upon
localization (i.e., a new traction-free boundary is created).

The computation of the geodesic interaction distances requires specific algorithms,
such as the Fast Marching Method (Sethian, 1996). The first numerical implementation
of this method in a finite element context was proposed by Rastiello et al. (2018b).
Additionally, Thierry et al. (2020a) and Jirásek and Desmorat (2019) conducted studies
on the regularization properties of the ENLI approach in 1D settings. Further studies
regarding its regularization properties and behavior near free boundaries are provided in
(Ribeiro Nogueira et al., 2022a). These aspects are also detailed in Chapter 3.

Figure 2.9 depicts an example of effective (geodesic) interactions distances (Rastiello
et al., 2018b) field compared to the wave propagation obtained by the internal time
approach in a notched specimen (Desmorat & Gatuingt, 2007b). For the ENL case,
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Figure 2.9 • Illustration of geodesic distances (left) obtained by the Eikonal approach
and the corresponding wave propagation (right) obtained by the internal
time approach (taken from Rastiello et al. (2018b)).

the notch is represented by a completely damaged zone. This illustration shows a good
agreement between the effective distances and the wave propagation, highlighting that
the Eikonal solution represents a geometric approximation of the wave propagation.

One of the disadvantages of the use of such an approach in finite element computations
is the fact that the interaction distances field needs to be computed for every iteration at
every Gauss point by using very fine Fast-Marching grids for achieving accurate results
and a robust implementation (Rastiello et al., 2018b). The extension of this method to
anisotropic damage and its applications at large-scale analysis, eventually in 3D, can
become rapidly prohibitive. This is also true for the internal time approach.

Eikonal gradient-enhanced (ENLG). Following the derivation introduced by Peer-
lings et al. (1996a), a gradient-enhanced version of the ENL approach was proposed in
(Desmorat et al., 2015b). The differential problem for calculating the non-local variable ē
that controls damage evolution is:

ē− c√
det g

∇ ·
(√

det g g−1 · ∇ē
)

= e Ω (2.33)

g−1 · ∇ē · n = 0 ∂Ω (2.34)

where det g must stay positive, according to Equation (5.1). Notice that the GNL model
by Peerlings et al. (1996a) is retrieved by considering an Euclidean metric g = I.

The key concept is that anisotropic behavior in quasi-brittle materials is induced by
damage, while the medium is initially considered isotropic. The induced anisotropy is
incorporated through the ENLG model, where non-local interactions naturally evolve
from isotropic to anisotropic based on the damage-dependent Riemannian metric.

An analysis on its regularizing properties and boundary effects in a 1D framework is
provided in (Ribeiro Nogueira et al., 2022a) and further detailed in Chapter 3. Marconi
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(2022) conducted two-dimensional computations utilizing an ENLG regularized isotropic
damage model and investigated the coupling between damage and plasticity within
a one-dimensional framework. Recently, Ribeiro Nogueira et al. (2024a) proposed a
robust thermodynamics framework based on the Micromorphic Media Theory (Forest,
2009) to derive the eikonal formulation. Using concepts from differential geometry, the
authors independently derived (5.1), obtained the boundary condition (5.2) (a detail not
covered by Desmorat et al. (2015b)), characterized energy dissipation, and verified the
Clausius-Duhem inequality.

×Remark 2.8. Given its numerical friendly aspect, as well as its capability to
describe anisotropic evolving interactions coupled with anisotropic damage, this is
the approach that is further studied and developed in this thesis.

5 Other regularization approaches
Other regularization approaches exist, and some of them merit a few comments here due
to the similarities with the main approach exploited in this thesis. The micromorphic
framework, in particular, will be given special attention in Chapter 4.

Apart from the recent developments in (Masseron et al., 2023), its is worth mentioning
that all the regularization approaches mentioned in the following are typically restricted
to applications in the case of isotropic damage.

5.1 Phase-field
The phase-field approach can find its origins in the variational approach to brittle fracture
(Francfort & Marigo, 1998), which was numerically implemented and further discussed
in (Bourdin et al., 2000). The main idea is to regularize a sharp crack by introducing a
diffuse and smooth scalar phase-field variable φ, which equals 1 in the crack surface and
decays to zero in its surroundings. In a 1D setting, the diffusive variable can be written
as a decaying exponential φ = exp (−|x|/l0), which is solution of the differential equation
(Miehe et al., 2010):

φ− l20
d2φ

dx2 = 0 (2.35)

with l0 denoting a length-scale parameter. The generalization of this equation to a
multi-dimensional framework gives:

φ− l20∇2φ = 0 in Ω Γl0 =
∫

Ω
γ(φ,∇φ) dV =

∫
Ω

1
2l0

(
φ2 + l20∇φ · ∇φ

)
dV (2.36)

where γ is the so-called crack surface density function and Γl0 is the regularized crack
functional, which can be seen as the crack surface (Miehe et al., 2010). The gradient
equation on φ can be obtained by a variational principle from the crack functional.

A particular form of the total energy functional can be written as:

E(u, φ) = 1
2

∫
Ω
(1 − φ)2ε : E : ε dV + 1

2

∫
Ω

Gc

l0

(
φ2 + l20∇φ · ∇φ

)
dV (2.37)
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where the second term stands for the volumetric regularized version of the energy dissipated
upon the creation of crack surface, with Gc denoting the critical fracture energy. The
left-hand side of Equation (2.37) stands for the elastic energy degraded by the term (1−φ)2.
The phase-field problem consists in finding a solution couple (u,φ) that minimizes the total
energy functional under the work of external forces, following the so-called alternating
minimization approach. Therefore, from a purely pragmatic point of view, the final
problem is very similar to gradient-enhanced non-local damage models described earlier.
A comparison between these approaches is presented in (de Borst & Verhoosel, 2016) and
an extensive review on phase-field methods can be found in (Wu et al., 2019).

It is important to notice that the phase-field variable is, in principle, not related to
the damage variable in the sense of CDM. The classic degradation term (1 − φ)2, for
instance, induces a stress-strain relationship different from the one derived for CDM.
Moreover, as highlighted by Bažant et al. (2022b), l0 is not linked to a characteristic
length intrinsic to a material, but mainly serves as a regularization parameter. Thus,
the overall approach needs to be modified and enriched with CZM techniques to address
realistic quasi-brittle fracture and size effect (see for instance Feng and Wu (2018)). The
application of phase-field models to induced anisotropy in quasi-brittle materials is still an
open question, specially if one seeks to model its influence in the degradation of elasticity
properties.

×Remark 2.9. Given that gradients of the phase-field variable are considered in
the regularized form of the fracture energy, the phase-field approach is essentially
non-local.

5.2 Thick level set (TLS)

Introduced by Moës et al. (2011) and further developed in (Bernard et al., 2012; Parrilla
Gómez et al., 2015; Salzman et al., 2016; Moreau et al., 2017), the idea of the TLS
approach is that the evolution of the damage variable D follows the motion of a level
set ϕl, which represents a distance between the boundary of an undamaged zone and a
damaged one, while respecting:


D(ϕl) = 0 if ϕl ⩽ 0
D′(ϕl) ⩾ 0 if 0 ⩽ ϕl ⩽ lc

D(ϕl) = 1 if ϕl ⩾ lc

(2.38)

where lc is a characteristic length defining the damaged zone.
The free-energy Helmholtz potential of this approach is the same as the one of local

isotropic damage models (see Equation (1.40)), which need to be regularize to obtain
meaningful responses. The regularizing non-local character of TLS model entirely relies
on the evolution of damage in function of the level set under the condition ∥∇ϕl∥ = 1 (see
Cazes and Moës (2015) for further details).

A total energy functional can also be written for such an approach (Cazes & Moës,
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2015):
E(u, ϕl) = 1

2

∫
Ω
(1 −D(ϕl))ε : E : ε dV +

∫
Ω
YcD(ϕl)dV (2.39)

where Yc is a material parameter. The stationarity with respect to ϕl gives the evolution
criteria of the damage front. For instance, a criterion proposed by Bernard et al. (2012)
postulates that the front moves when Ȳ reaches Ȳc, which are the non-local counterparts
(weighted average) of Y and Yc.

In this approach, the damage definition in the sense of CDM is not lost. However,
applications to anisotropic damage behavior may become arduous, as one should define
the evolution of a damage tensor, and not a single scalar variable, in function of the level
set.

5.3 Lip-field approach
Moës and Chevaugeon (2021) introduced the Lipschitz regularization for softening in a 1D
setting. Recently, Chevaugeon and Moës (2022) presented 2D numerical implementations
of this method applied to quasi-brittle fracture. The main idea of this method is to impose
a Lipschitz regularity on the damage field, defined by the Lipschitz constant lip(D) as the
minimum value M , so that:

|D(x) −D(ξ)| ⩽Mdist(x, ξ) ∀ x, ξ ∈ Ω (2.40)

where dist(x, ξ) is the minimal length path between x and ξ. This enforces the non-
local character of the method, as the damage variable depends on its neighbors. The
regularization space is defined as:

L = {D ∈ L∞ | lip(D) ⩽ 1/l′} (2.41)

with l′ denoting the regularizing length, equivalent to an internal length. The solution
of the coupled problem follows an alternating minimization procedure under constraints.
Numerically, an additional lip-mesh is needed to link the integration points of the finite
elements where the damage field is defined. As shown in (Moës & Chevaugeon, 2021;
Chevaugeon & Moës, 2022), this approach is suitable to model the transition between
CDM and FM, since the damage band does not spread upon localization. This is a
characteristic similar to non-local damage models with evolving internal length.

Finally, given that the Lipschitz constraint is imposed for the damage field, there is no
need to penalize the damage behavior by adding its gradients to the energy functional.
The potential is purely local, while the non-locality is brought into play by the regularity
constraint. First results concerning the extension of this regularization approach to
anisotropic damage behaviors are provided by Masseron et al. (2023).

5.4 Peridynamics
Introduced in the pioneering work of Silling (2000) and further enhanced in (Silling &
Askari, 2005; Silling et al., 2007), the peridynamics formulation is an alternative point of
view of continuum mechanics. Differential equations are replaced by integral ones, which

67



Chapter 2. Generalities on non-local damage mechanics

is an essential characteristic to model discontinuities inside a continuum (i.e., there is no
need to impose derivative requirements). The equations of motion, in its original version,
can be written as:

ρ(x)ü(x, t) =
∫

Rx

f (u′ − u,x′ − x) dVx′ + bd(x, t) (2.42)

where ü denotes the acceleration field, f is a sort of interaction force vector, bd stands for
a prescribed body force vector and Rx is a neighbor region of x. It is easy to see that,
this approach is, by nature, non-local since interactions between material particles are
not only allowed but used to construct the entire theory. Recently, Hobbs et al. (2022)
studied the capability of a bond-based model to reproduce size effect experiments.

Due to some inconsistencies with the original approach (e.g., permanent strains not
linked to shear in metals), Silling et al. (2007) proposed to generalize the theory with the
notion of force and deformation state vectors. For instance, one may refer to Tupek et al.
(2013) for the incorporation of damaging behaviors in this kind of method.

Based on a wave dispersion analysis, Bažant et al. (2016) showed that peridynamics
models suffer from some inconsistencies. Particularly, it is shown that the dispersive
behavior in elasticity is coupled to the one acting as a localization limiter. In other words,
all the behavior is non-local, both in the elastic and damaging phases. Bažant et al.
(2022b) extended the critics to phase-field models while comparing it to peridynamics and
the microplane-based crack-brand approach (see also Bažant and Nguyen (2023)).

Motivated by these criticisms, Bazilevs et al. (2022) recently proposed to incorporate
the M7 microplane model into peridynamics to simulate concrete failure. As analyzed
in (Bažant & Nguyen, 2023), this could improve the performance of the peridynamics
approach to model realistic quasi-brittle fracture.
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Summary of Chapter 2

Localization:

• Strain localization is a physical phenomenon which cannot be described
with local models.

• In quasi-static, the rate equilibrium problem is ill-posed (loss of ellipticity)
and an infinite number of linearly independent solutions can be obtained.

• In dynamics, the problem is ill-posed as hyperbolic equilibrium equations be-
come elliptic (loss of hyperbolicity). The obtained wave speed is imaginary
and waves cannot propagate.

• As a consequence, finite element simulation do not converge upon mesh
refinement and can lead to spurious dissipation upon failure.

• The response needs to be regularized.

Non-local damage mechanics:

• Localization limiters for smoothing the field controlling damage evolution.

• Concept of neighborhood interactions between points introduced by
weighted average integral or spatial gradients.

• Classic approaches consider isotropic and constant interactions, leading
to an incorrect description of material degradation.

• Approaches with evolving non-local interactions were proposed to address
the issues of classic non-local models.

• Other regularization approaches exist, but most of them are limited to the
case of isotropic damage.
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Part II
Non-local damage mechanics

with evolving interactions
The following chapters present the main contributions of this thesis to the subject.
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3
Analytical and numerical one-dimensional study
of non-local damage models
This chapter provides one-dimensional analytical and numerical developments concerning
non-local damage models. The analysis is extended to approaches with evolving non-local
interactions, particularly the eikonal formulation. Except from the wave dispersion analysis
in Section 1, a few modifications in the text, and the figures adjusted to fit the global style
of the thesis, this chapter was extracted from Ribeiro Nogueira et al. (2022a), Comptes
Rendus. Mécanique, 350 (G3).
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Chapter 3. One-dimensional study of regularized damage models

1 Wave dispersion analysis

The developments in this section are entirely based on the works of Sluys (1992), Sluys
et al. (1993), Sluys and de Borst (1994), Peerlings et al. (1996b, 2001), Di Luzio and
Bažant (2005), and Comi et al. (2007) (see also the references therein). Here, it is proposed
to extend the discussion to the ENLG model in a 1D isotropic damage setting.

Let us consider a one-dimensional bar of infinite length, so we can neglect boundary
effects in the following wave dispersion analysis. In the case of uni-axial tension on the x
direction (with corresponding basis vector ex), the rate equilibrium equation reads:

∂σ̇

∂x
= ρ

∂2u̇

∂t2
(3.1)

where σ is the stress in the bar and u̇ stands for the velocity. The following (classical)
hypothesis are made:

(i) The bar departs from a homogeneous uniform state (ε0, D0) at t = t0, where ε0 and
D0 denote the initial strain and damage in the bar, respectively. At t = t0 + ∆t,
one has ε = ε0 + εa, ε̇ = ε̇a, D = D0 +Da and Ḋ = Ḋa, with •a denoting a small
perturbation of quantity •. The problem is therefore linearized by neglecting high
order terms.

(ii) It is supposed that ḟ = 0 (consistency condition), i.e., damage grows everywhere in
the bar.

(iii) Only positive strains are considered (tension case), so the local equivalent strain is
the strain ε itself.

Under these conditions, the local constitutive behavior is written in terms of stress and
strain rates:

σ̇ = E(1 −D0)ε̇− ḊEε0 (3.2)

1.1 Local damage model
In the local model, damage evolves in function of the equivalent strain, or here, directly ε.
Here, one has:

Ḋ = g′∂κ

∂ε
ε̇ = g′ε̇ (3.3)

where g′ = ∂D/∂κ and ∂κ/∂ε = 1 under the consistency condition. Substituting Equa-
tion (3.3) into Equation (3.2) leads to:

σ̇ = [E(1 −D0) − g′Eε0] ε̇ = Lε̇ (3.4)

where L denotes the tangent modulus. Substituting into Equation (3.1) and taking
into account that ε̇ = ∂u̇/∂x, one obtains the following wave equation (see for instance
Peerlings et al. (2001)):

c2
p

∂2u̇

∂x2 − ∂2u̇

∂t2
= 0 (3.5)
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1. Wave dispersion analysis

where:
cp =

√
L

ρ
= ce

√
1 −D0 − g′ε0 (3.6)

is the phase velocity and ce =
√
E/ρ denotes the elastic wave speed.

One can easily see from Equation (3.6) that the medium is not dispersive, i.e., the
phase velocity does not depend on the wave number k. Moreover, the phase velocity
becomes imaginary during strain-softening (L < 0), and waves cannot propagate in a
local softening medium. This corresponds to the loss of hyperbolicity of the dynamic
equilibrium problem (see for instance Sluys (1992)) and, therefore, it is ill-posed (see for
instance (Benallal et al., 1993)). One should also notice that the condition L = 0, at the
onset of softening in a 1D setting, corresponds to the singularity of the acoustic tensor
previously mentioned.

1.2 GNL model
Linearized GNL model. When considering non-locality, the linearized equilibrium
can be rewritten as:

(1 −D0)E
∂2u̇

∂x2 − g′Eε0
∂ ˙̄e
∂x

= ρ
∂2u̇

∂t2
(3.7)

In the proposed 1D framework, differentiating the Helmholtz-type differential equation
of the GNL model (Peerlings et al., 1996a) with respect to time gives:

˙̄e− c
∂2 ˙̄e
∂x2 = ∂u̇

∂x
(3.8)

which is coupled to the equilibrium Equation (3.7) through the term ∂u̇/∂x.

Wave propagation. The dispersion relation can be found by introducing solutions into
Equation (3.7) and Equation (3.8) in the form of harmonic waves:

u̇ = v̂ exp (ik(x− cpt)) (3.9)
˙̄e = ˆ̄e exp (ik(x− cpt)) (3.10)

Substituting Equation (3.10) into Equation (3.8) gives:

v̂ =
ˆ̄e(1 + ck2)

ik
(3.11)

and in Equation (3.7):

−E(1 −D0)k2v̂ − g′Eε0ikˆ̄e = −ρ(cpk)2v̂ (3.12)

which is finally simplified by introducing the expression of v̂ from Equation (3.8), yielding:

k2
[(
ρc2

p − E(1 −D0)
)

(1 + ck2) + g′Eε0
]

= 0 (3.13)

A non-trivial solution of the above equation is obtained for k ≠ 0, which, after some
algebra, gives:

cp = ce

√
1 −D0 − g′ε0

1 + ck2 (3.14)
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Chapter 3. One-dimensional study of regularized damage models

which differs from the phase velocity obtained for the local model because of the term
(1+ck2). When c = 0, i.e., when the material has no internal length, the retrieved behavior
is purely local with ē = e with an imaginary wave velocity. Moreover, Equation (3.14)
shows that the gradient-enhanced non-local medium is dispersive. The overall envelope
group is a superposition of several harmonic waves propagating at different speeds (the
phase velocity), such that the shape of the global pulse can be deformed during propagation.

The phase velocity from Equation (3.14) is real for any k > kc, with:

kc =
√

1
c

(
ε0g′

1 −D0
− 1

)
(3.15)

denoting the critical wave number, and λc = 2π/kc the corresponding critical wave length.
As highlighted in previous studies (see, for instance, inter alia Sluys (1992),Sluys

et al. (1993), Sluys and de Borst (1994), Peerlings et al. (2001)), harmonic waves with
wavelengths bigger than λc (associated to k < kc) cannot exist in a realistic softening
medium, so the phase velocity remains real. Indeed, strain-softening regions are small but
finite, defined by some internal length scale ∝ 1/kc. Consequently, large wavelengths do
not fit in these zones, so such waves do not exist.

Given the dispersive character of the propagation, the loading wave can be transformed
into an unique stationary (i.e., with cp = 0) harmonic localization wave (Sluys & de Borst,
1994; Comi et al., 2007). This situation happens exactly when k = kc (associated to λc),
which highlights the existence of an internal length associated to the critical wavelength.
This is further detailed in Section 1.4.

1.3 ENLG model
Linearized ENLG model. In the case of uni-axial tension on the x direction and
written in the basis (ex, ey, ez), the anisotropic damage tensor and the Riemannian metric
reduce to:

D =


D

0
0

 g =


1

1−D

1
1

 (3.16)

Given that ∇ē · ey = 0 and ∇ē · ez = 0, substituting into Equation (5.1) yields:

ē− c
√

1 −D
∂

∂x

(√
1 −D

∂ē

∂x

)
= e (3.17)

which is essentially the same equation as the GNL model, with the additional term√
1 −D. Now, computing the derivative with respect to x, one has:

ē+ c

2
∂D

∂x

∂ē

∂x
− c(1 −D)∂

2ē

∂x2 = e (3.18)

Then, differianting with respect to time, gives:

˙̄e+ c

2

[
∂Ḋ

∂x

∂ē

∂x
+ ∂D

∂x

∂ ˙̄e
∂x

]
− c(1 −D)∂

2 ˙̄e
∂x2 + cḊ

∂ē

∂x
= ė (3.19)
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1. Wave dispersion analysis

Now, considering D = D0 +Da, ē = ē0 + ēa and e = e0 + ea, with •a denoting a small
perturbation of quantity • (i.e., | •a | ≪ | •0 |), Equation (3.19) can be rewritten as:

˙̄ea + c

2

[
∂Ḋa

∂x

(
∂ē0

∂x
+ ∂ēa

∂x

)
+
(
∂D0

∂x
+ ∂Da

∂x

)
∂ ˙̄ea

∂x

]

− c(1 − (D0 +Da))∂
2 ˙̄ea

∂x2 + cḊa

(
∂ē0

∂x
+ ∂ēa

∂x

)
= ėa (3.20)

After linearization this becomes:

˙̄ea + c

2

[
∂Ḋa

∂x

∂ē0

∂x
+ ∂D0

∂x

∂ ˙̄ea

∂x

]
− c(1 −D0)

∂2 ˙̄ea

∂x2 + cḊa
∂ē0

∂x
= ėa (3.21)

Noting that all the derivatives of the initial quantities with respect to the spatial
coordinate vanish in the homogeneous initial state, and that •̇ = •̇a for all quantities, one
obtains the linearized rate form of the ENLG model:

˙̄e− c(1 −D0)
∂2 ˙̄e
∂x2 = ∂u̇

∂x
(3.22)

Wave propagation. Substituting Equation (3.9) and Equation (3.10) into Equa-
tion (3.22) gives:

v̂ =
ˆ̄e(1 + c(1 −D0)k2)

ik
(3.23)

which is exactly the same equation obtained for the GNL model with the term c(1 −D0)
in the place of c. In the case of the ENLG model, this represents the evolving character
of the non-local interactions. As done for the GNL model, a similar reasoning allows to
define the phase velocity for the ENLG model:

cp = ce

√
1 −D0 − g′ε0

1 + c(1 −D0)k2 (3.24)

and the corresponding critical wave number:

kc =
√

1
c(1 −D0)

(
ε0g′

1 −D0
− 1

)
(3.25)

It’s noteworthy that at the onset of softening in an undamaged medium, the ENLG
and GNL models essentially give the same response. The same conclusions as before hold
for the ENLG model, with some small differences, as detailed in Section 1.4.

1.4 Results, discussion and comparison of models
Exponential softening law. To illustrate the wave dispersion behavior of the models
described above, let us consider the following damage evolution law:

D = 1 − κ0

κ
exp [−Bt (κ− κ0)] (3.26)
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Chapter 3. One-dimensional study of regularized damage models

with:
g′ = ∂D

∂κ
= (Btκ0/κ+ κ0/(κ2)) exp(−Bt(κ− κ0)) (3.27)

Here, the damage threshold κ0 is a fixed parameter and should not be confused with a
quantity referring to the initial homogeneous state of the medium. Damage evolves based
on the criterion function f = ē− κ, respecting Karush-Kuhn-Tucker (KKT) conditions:

fκ̇ = 0, f ⩽ 0, κ̇ ⩾ 0 (3.28)

The parameters used for this study were taken from Peerlings et al. (2001), with
the additional parameter Bt = 1000. The other ones are E = 20 000 MPa, κ0 = 0.0001,
ce = 1 000 m/s and c = 1 mm2.

Figure 3.1 shows the obtained dispersive behavior by plotting the phase velocities, for
both the GNL and ENLG models, considering three different initial homogeneous states
(ε0, D0).
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Figure 3.1 • Exponential softening law – phase velocity curves as functions of the wave
number for the GNL and ENLG models. Blue lines correspond to D0 = 0.0,
red lines to D0 = 0.51256 and brown lines to D0 = 0.85631.

At damage initiation, i.e., when ε0 = κ0 and D0 = 0, one can easily see that the
GNL and ENLG models give exactly the same response (solid and dashed blue lines in
Figure 3.1). For higher initial strain states, and consequently higher initial damage levels,
the phase velocity is reduced, so the propagation is slower for a damaged medium. In all
the situations, the damaged elastic wave velocity ce

√
1 −D0 in the medium (dashed lines

in Figure 3.1) is an upper bound, representing a physical limit to the propagation.
Furthermore, the critical wave number kc (i.e., the intersection point of the curve with

the horizontal axis) increases with the damage level (see the zoom in Figure 3.1). This
is the case for both models, with a faster increase for the ENLG approach. This is in
agreement with the WKB approximation used to derive the ENLG model, which works
for high frequency waves (small wavelengths and therefore high wave numbers).
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1. Wave dispersion analysis

These differences, more pronounced for higher damage levels, appear also in the
overall evolution of the phase velocity. For the same relatively small wave number, the
propagation is slower for the ENLG model compared to the GNL one, which is due to the
additional term (1 −D0) in Equation (3.24).
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Figure 3.2 • Exponential softening law – evolution of the critical wavelength as a function
of the initial homogeneous strain state.

Moreover, the associated critical wavelength λc is expected to decrease as a function
of the initial strain state (or the initial damage level). Figure 3.2 shows its evolution as a
function of ε0 for the GNL and ENLG models. This is a typical result already observed
in analyses concerning other non-local models (e.g, Pijaudier-Cabot and Benallal (1993),
Peerlings et al. (1996b, 2001), Di Luzio and Bažant (2005), and Comi et al. (2007)). As
λc is well defined for both models, localization is expected to take place in a band of
finite width. Given its decreasing nature, the critical wave length describes a narrowing
localization band when D → 1, which is retrieved before by the ENLG model, as indicated
in Figure 3.2.

×Remark 3.1. Besides its utility in studying the regularization properties of
non-local models, this wave dispersion analysis can be extremely useful in the context
of damage-fracture transition modeling. Comi et al. (2007) provide useful insights
into how the critical wavelength can be related to the number of finite elements needed
to describe the localization band. For instance, the authors show that a critical
damage value can be derived, from which a discontinuity should be introduced in
the formulation. Moreover, they argue that non-local models with very fine meshes
could be sufficient to describe the narrowing localization band but find their limits in
applications concerning large-scale structures.

In the case of the exponential law used here, D → 1 at infinity strain, and therefore
λc slowly decreases for the GNL model, since the evolution of kc (Equation (3.15)) is
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Chapter 3. One-dimensional study of regularized damage models

affected by the damage evolution law through the only term (1 −D0). On the contrary,
the ENLG model provides a more realistic description of this phenomenon, since the term
(1 − D0) appears two times in Equation (3.25) due to the damage-dependent evolving
interactions. In this case, λc → 0 is reached before for the ENLG model with a realistic
value of D0 = 0.99947, as shown in Figure 3.2. This behavior highlights the capability of
the ENLG model to describe the transition from damage to fracture.
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Figure 3.3 • Linear softening law – phase velocity curves as functions of the wave number
for the GNL and ENLG models. Blue lines correspond to D0 = 0.0, red
lines to D0 = 0.46059, and brown lines to D0 = 0.79927.

Linear softening law. To illustrate the influence of the damage evolution law in the
observations previously described, let us consider the linear softening law, as done in
(Peerlings et al., 2001):

D =


κc

κ
κ−κ0
κc−κ0

if κ < κc

1 if κ ⩾ κc

(3.29)

where κc is a material parameter, so σ = 0 for a finite value of the strain. The derivative
with respect to history variable is:

g′ = ∂D

∂κ
= κcκ0

κ2(κc − κ0)
(3.30)

Figure 3.3 shows the corresponding phase velocities obtained for the linear softening
law, as done in Figure 3.1 for the exponential one. The material parameters remain the
same as before, with κc = 0.0125, as used in (Peerlings et al., 2001). In general, the
same conclusions as before hold, except for the fact that kc seems to slowly increase with
damage for the GNL model.

This is confirmed by the evolution of λc in function of the initial strain state. In this
case, as depicted in Figure 3.4, a considerable difference is observed when compared to
Figure 3.2. Given that for the linear law one has D = 1 for a finite strain, one can easily
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2. Boundary effects and damage diffusion in explicit dynamics

see that the critical wavelength vanishes when ε0 = κc for the GNL model. Therefore,
both GNL and ENLG models should describe a narrowing localization band upon failure
with a linear softening law. Nonetheless, this is achieved more rapidly for the ENLG
model, which has smaller critical wavelengths for a same initial strain state.
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Figure 3.4 • Linear softening law – evolution of the critical wavelength as a function of
the initial homogeneous strain state.

2 Boundary effects and damage diffusion in explicit
dynamics

This section analyzes and compares numerically several non-local damage formulations,
particularly regarding the obtained damage evolution close to the domain’s boundaries
and/or in highly damaged zones. Following previous works in literature, numerical studies
are performed by simulating the so-called spalling phenomenon, i.e., the tensile failure
under an impact compression load. Experimentally, this loading condition is obtained
thanks to Hopkinson-bar spall experiments (Klepaczko & Brara, 2001; Schuler et al., 2006;
Erzar & Forquin, 2010). It is well-known that local damage models cannot reproduce the
experimental spalling, as strain localization will inevitably lead to an ill-posed boundary
value problem and, therefore, mesh-dependent results. Classical non-local models (i.e.,
with a constant characteristic length) should naturally recover objectivity but fail to
determine the spalling thickness (Krayani et al., 2009), leading to non-physical spalling
failures.

Attention is given to five non-local approaches for regularizing the damage problem.
Localization is numerically studied in a 1D dynamic problem similar to the one presented
in Section 1. The latter is not intended to reproduce the dynamic material behavior but
is used here as a localization tool. An explicit dynamic 1D finite element (FE) analysis
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Chapter 3. One-dimensional study of regularized damage models

code is therefore developed to illustrate the advantages and drawbacks of each approach.
In the following, all the formulations are written for the 1D case for conciseness.

2.1 Local model
In the isotropic case, one may consider a scalar damage variable D. Following a thermo-
dynamic framework, the Helmholtz free energy potential and the intrinsic dissipation read
ρψ = ρψ(ε,D) = 1

2(1 −D)Eε2 and D = Y Ḋ, respectively. Here, E is the Young modulus,
ε is the small strain, and Y = −ρ∂ψ/∂D is the energy release rate. The Cauchy stress is
thus written as:

σ = ρ
∂ψ

∂ε
= (1 −D)Eε (3.31)

Damage is considered to evolve according to the exponential (Feenstra, 1993) law from
Equation (3.26) and the equivalent strain is defined as the positive part of the strain (i.e.,
if ε > 0, e = ε; else e = 0).

2.2 Non-local models
Two main families of non-local models are considered in this section in a 1D settting:

(i) Integral formulations (INL). The non-local equivalent strain is computed by:

ē(x) = 1
Vr(x)

∫
Ω
ϕ(lxy, lc)e(y)dy Vr(x) =

∫
Ω
ϕ(lxy, lc)dy (3.32)

where lxy = |x − y| is the Euclidean distance between points x and y in Ω, and
ϕ(lxy, lc) is the weight function taken as a Gaussian distribution:

ϕ(lxy, lc) = exp
−4

(
lxy

lc

)2
 (3.33)

(ii) Gradient formulations (GNL). The non-local equivalent strain is now the solution
of the following Helmholtz-like differential equation:

ē(x) − c
d2ē(x)
dx2 = e(x) in Ω with dē(x)

dx
= 0 on ∂Ω (3.34)

with c being a model parameter (homogeneous to the square of a length) and ∂Ω
denoting the boundary of Ω. To provide the variational formulation corresponding
to Equation (3.34), let us introduce the non-local virtual strains admissibility set:

E = {η | η(x) ∈ H1(Ω)} (3.35)

The problem to be solved for computing the non-local equivalent strain field thus
reads: ∫ L

0
c
dē

dx

dη

dx
dx+

∫ L

0
ēηdx =

∫ L

0
eηdx ∀η ∈ E (3.36)

where the zero flux boundary condition has been used (Lasry & Belytschko, 1988;
Mühlhaus & Aifantis, 1991; Peerlings et al., 1996a). In the previous equation the
dependency of (e, ē, η) on the space variable x was omitted for the sake of conciseness.
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2.3 Non-local models with evolving internal length
Several authors proposed to take into account the influence of the damaging process on
non-local interactions. In general, one aims to completely simulate the strain localization
process from diffused damage (i.e., micro-cracking phase) to damage localization (i.e.,
fully localized macro-crack phase). To achieve this goal, several drawbacks of standard
INL and GNL formulations should be overcome:

(i) Damage initiation near a crack tip. This is the shift of the maximum non-local
equivalent strain far from the crack tip, leading to damage initiation problems
(Simone et al., 2004). This drawback will not be treated in this section.

(ii) Damage attraction to the boundaries. This is the gradual shift of the maximum
damage value to the boundary of the domain. This is related to the truncated
interaction domain for INL models or the symmetry imposed by the zero flux
condition on the boundary for GNL models. However, one expects that the response
should become local in this case (vanishing non-local interactions) (Krayani et al.,
2009; Pijaudier-Cabot & Dufour, 2010).

(iii) Damage diffusion. Upon strain localization, the micro-cracks coalescence into a
macro-crack should induce a discontinuity in the displacement field. Classic models
do not enable describing such a transition, as damage is diffused in a large zone.
Thus, the internal length should account for this effect and be modified throughout
the damage process (Geers et al., 1998). In the 1D numerical context of the analysis
presented in the following, damage diffusion will be considered to occur when D ≈ 1
in more than one FE. Conversely, a perfectly localized damage profile is considered
when D ≈ 1 in just one FE.

In particular, attention is focused on a Stress-Based integral Non-Local (NLSB) for-
mulation (Giry et al., 2011), and on the Eikonal Non-Local (ENL) formulation (Desmorat
et al., 2015b; Rastiello et al., 2018b) (in both integral and gradient forms). Already
introduced in Chapter 2, these approaches are briefly recalled here in the 1D setting of
the present analysis.

2.3.1 Stress-based non-local damage model

The NLSB model (Giry et al., 2011) takes into account the influence of the stress field at
point y in the computation of the weight function at point x. This is done by replacing
the characteristic length in Equation (3.33) by:

lc,xy = ρfac(y)lc ρfac(y) = |σ(y)|
ft

(3.37)

2.3.2 Eikonal non-local damage model

Integral-type formulation (ENLI). It is supposed that non-local interactions between
a point x and any other point y belonging to Ω depend on an effective distances field
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l̃xy(y) which is the solution of an eikonal equation with a damage dependent metric field.
In a 1D context, the eikonal equation to be solved ∀x ∈ Ω can be written as:

√
1 −D(y)

∣∣∣∣∣dl̃xy(y)
dy

∣∣∣∣∣ = 1 with l̃xy(y = x) = 0 (3.38)

Equation (3.38) can be integrated analytically, and the effective distance between
points x and y reads (Desmorat et al., 2015b; Thierry et al., 2020a):

l̃xy =
∫ max(x,y)

min(x,y)

dy√
1 −D(y)

> lxy (3.39)

According to such an approach, the main modification with respect to the INL
formulation is the use of the l̃xy instead of lxy in Equation (3.33).

Gradient-type formulation (ENLG). In 1D tension, the modified version of the
Helmholtz’s Equation (3.34) to be solved to compute the non-local strain field is:

ē(x)−c
√

1 −D(x) d
dx

(√
1 −D(x)dē(x)

dx

)
= e(x) in Ω with dē(x)

dx
= 0 on ∂Ω (3.40)

Similarly to Equation (3.36), the variational formulation of the ENLG problem reads:∫ L

0
c
√

1 −D
dē

dx

dη

dx
dx+

∫ L

0

ēη√
1 −D

dx =
∫ L

0

eη√
1 −D

dx ∀η ∈ E (3.41)

The latter is basically the same equation obtained for the classical GNL model, with the
additional term

√
1 −D. In the ENLI formulation, this term appears in Equation (3.38)

and is related to the determinant of the Riemannian metric.

2.4 Unidimensional dynamic problem
The spalling test (Figure 3.5) will be used to underline some typical drawbacks and
advantages of different regularization models. As already done in (Krayani et al., 2009;
Giry et al., 2011), this test is simulated to study boundary effects and localization
properties of modified non-local formulations. A precise review of this problem was also
presented in (Pijaudier-Cabot & Grégoire, 2014), where the advantages of considering a
modified interaction-based non-local approach (Rojas-Solano et al., 2013) were presented.

Description of the spalling test. Experimentally, spalling can be obtained with
a modified Hopkinson test (Figure 3.5). The experimental setup consists of an input
striker, an incident bar, and the specimen. After being transmitted to the specimen,
the compression wave starts to reflect as a tensile wave at the free boundary. For a
strain-softening material, when the sum of the compression and tensile contributions to
the elastic wave is greater than the material tensile strength, a fully localized cracking
occurs. Thus, the spalling test is an excellent tool for simulating strain localization and
evaluating the properties of damage models.
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Figure 3.5 • Illustrative scheme of the spalling test with a Hopkinson bar (Erzar &
Forquin, 2010)

2.4.1 Weak form of the dynamic equilibrium problem

Let us consider a 1D domain Ω = [0, L], with an imposed Neumann condition (external
impulsive force) on ∂ΩF = {x = L}. The other boundary is stress-free.

Variational problem. Let us introduce the following admissibility spaces:

U = {u | u(x, t) ∈ H1(Ω), u(x, t) ∈ H2(I) , u(x, t = 0) = 0 ∀x ∈ Ω} (3.42)
V = {v | v(x) ∈ H1(Ω), v(x, t) = 0 on ∂uΩ} (3.43)

where Hn(·) denotes the n-order Sobolev space over a domain and I = [0, T ] is the time
interval.

Neglecting body forces, the variational dynamic equilibrium problem to be solved
consists in finding u = u(x, t) ∈ U such that:

∫ L

0
σ(u)ϵ(v)dx+

∫ L

0
ρüvdx = Td(t)v(L) ∀ v ∈ V (3.44)

where ü = ∂2u/∂t2 is the acceleration field, and Td(t) is the applied traction (force per
unit area) on ∂F Ω.

Time discretization. The equation (3.44) is solved for each time instant t ∈ I after
time discretization (e.g., using the Newmark scheme). Here, the explicit central difference
scheme is employed. Accordingly, the time interval is discretized as t → tn ∈ [0, T = nt∆t]
with n ∈ [[1, nt]] and ∆t the time step. At time tn+1, one thus solves for ün+1 the time
discretized variational equation:

∫ L

0
ρün+1vdx = Td,n+1v(L) −

∫ L

0
σ(un+1)ϵ(v)dx ∀ v ∈ V (3.45)
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where: 
un+1 = un + ∆tu̇n + 1

2∆t2ün

u̇n+1 = u̇n + ∆t
2 (ün+1 + ün) .

(3.46)

In Equations (3.44) and (3.46), down-scripts n and n+ 1 are used to denote quantities
computed at time instants tn and tn+1. The same nomenclature will be adopted in the
remainder of the text.

Space discretized problem. To solve the variational Equation (3.44), the computa-
tional domain Ω is discretized into a FE mesh Ωh containing nel linear bar elements of
constant length h. Accordingly, the displacement field is approximated as a function of
the nodal displacements through the elementary shape functions. Stress and strains are
computed at the quadrature points of the FEs. A single integration point located at the
center of the FE is considered for linear elements. We denote by G the set of the ngp = nel

integration points of Ωh.

Constitutive model. The stress is evaluated according to the constitutive relation
from Equation (3.31). For the numerical simulations of this paper, the history function
driving damage evolution is defined as the historical maximum of the non-local strain.
For the integration point xi, it is computed as κi = κ(xi) = maxt(κ0, ēi) with ēi = ē(xi).
Damage grows according to Equation (3.26).

2.5 Non-local fields computation
The non-local field (ē) is computed following one of the methods introduced before: INL,
GNL, ENLI, ENLG or NLSB. In a FE context, one computes the non-local strain field to
evaluate damage, and thus the stress, for each Gauss integration point of Ωh.

2.5.1 Integral non-local methods

For a given Gauss point xi ∈ G, the non-local equivalent strain ēi = ē(xi) is obtained as:

ēi =
∑ngp

j=1 ejϕ(l∗ij, l∗c,ij)∑ngp

j=1 ϕ(l∗ij, l∗c,ij)
(3.47)

where ej = e(xj) and we exploited the fact that all FEs have the same size.
The main difference between the different integral-type non-local formulations discussed

before is in the way how l∗ij and l∗c,ij are computed.

INL. In the standard INL formulation, l∗ij = lij = |xi − xj| and l∗c,ij = lc.

NLSB. In the NLSB damage model (Giry et al., 2011), the weighting function depends
on the stress field. In the explicit 1D implementation of this work, the modified internal
length l∗c,ij is directly computed from the stress (σj,n = σn(xj)) at the previous time step,
whereas l∗ij = lij = |xi − xj|.
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The following steps are needed to perform the computation. The coefficient ρfac,j =
ρfac(σj,n) is first computed for xj ∈ G as:

ρfac,j =
|σj,n|/ft if |σj,n|/ft ⩽ 1

1 otherwise
(3.48)

The modified characteristic length is then computed as:

l∗c,ij =
ρfac,jlc if ρfac,jlc ⩾ h

h otherwise
(3.49)

Finally, the non-local weight ϕ(lij, l∗c,ij) is computed and used in Equation (3.47).

ENLI. For the ENLI formulation, the damage dependent interaction distances need
to be computed. In Equation (3.47), l∗c,ij is taken equal to lc whereas l∗ij is the effective
distance l̃i,j between the two integration points xi and xj (Jirásek & Desmorat, 2019;
Thierry et al., 2020a). Numerically, the integral (3.39) is replaced by a finite sum over all
the points in the interval [xi, xj].

Jirásek and Desmorat (2019) proposed two schemes to perform the integral calculations:
a simple trapezoidal rule such that

√
1 −D is element-wise constant and a modified

approach assuming that damage is linear between two adjacent integration points. As
shown in (Thierry et al., 2020a), the first approach has better localization properties,
especially when combined with appropriate path-following algorithms (Rastiello et al.,
2022).

According to the latter approximation, l∗ij = l̃i,j is computed as:

l̃i,j = l̃i,j−1 + h

2

 1√
1 −Dj−1,n

+ 1√
1 −Dj,n

 , xj > xi (3.50)

where Dj−1,n = Dn(xj−1) and Dj,n = Dn(xj).

2.5.2 Gradient-enhanced non-local methods

GNL. Equations (3.36) and (3.44) need to be solved as a coupled problem (Simone
et al., 2003a).

×Remark 3.2. This is similar to implement thermo-elasticity equations with an
equivalence between nodal temperatures and nodal non-local strains (Pijaudier-Cabot
& Grégoire, 2014). This simple analogy allows to easily incorporate non-local gradient
formulations (or even phase-field models) in commercial FE analysis software (see,
e.g., Azinpour et al., 2018; Marconi, 2022).

Accordingly, the non-local strain field and the corresponding trial field (η) are dis-
cretized by appropriated shape functions. Many authors argued that it was necessary (or
at least advisable) to employ displacement shape functions one order higher than those
used for the non-local field (Peerlings et al., 1996a; de Borst et al., 1996). Indeed, using
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the same interpolation functions for the displacement and the non-local strain may lead
to stress oscillations. However, Simone et al. (2003a) showed that the gradient-enhanced
damage problem should not be considered as a mixed problem (i.e., the Babuska-Brezzi
condition does not apply) but rather a coupled one. Consequently, the interpolation
functions chosen for the two unknown fields are not related and can be taken simply as
linear-linear.

ENLG. Similarly to the standard GNL formulation, the governing Equations (3.41)
and (3.44) are solved as a coupled problem. To preserve the explicit feature of the present
FE implementation, the Helmholtz Equation (3.41) is computed with Dn = D(κn). This
is consistent with the choice made for the ENLI formulation.

2.5.3 More numerical details

Computation of evolving non-local interactions. For all the non-local models with
evolving distance models, damage and stress are always one step delayed with respect to
the displacement, given the choice to explicitly compute the non-local evolving interactions.
This is in agreement with the quasi-static implementations developed by Rastiello et al.
(2018b) for the ENLI model, and by Giry et al. (2011) for the NLSB model.

Equivalent strain interpolation for the GNL and ENL models. For both gradient
models, once the nodal non-local equivalent strain field is obtained at time tn+1, the shape
interpolation functions are applied to obtain the corresponding values at the Gauss points.

Dealing with the case of D tending to the unity. Generally, FE solvers for CDM
problems limit damage growth to a certain fixed quantity D⋆ at the Gauss quadrature point
while integrating the material behavior law (updating internal variables, computing the
stress, and evaluating the elemental stiffness matrix). In nonlinear quasi-static analyses,
where the stiffness matrix need to be inverted to compute the solution displacement field,
D⋆ is chosen in a way that the stiffness matrix does not become singular.

In the case of the explicit time integration scheme of this work, there is no need to
inverse the stiffness matrix for the computations. Thus, D⋆ is taken as close as possible
to unity, to avoid problems when computing the effective distances field for ENLI. This
is automatically handled by the library numpy in Python. Machine precision is taken
into account by setting 1/

√
1 −D⋆ equal to numpy.inf, which is equivalent to the largest

number that can exist with the available memory in the machine. Then, when evaluating
the Gauss weighting function with l̃i,j = numpy.inf, the Python code will return 0. This
is in agreement with the fact that non-local interactions should vanish upon damage
localization as stated by the ENLI model. So in this case, D⋆ can be taken as high as the
machine supports.

2.6 Results and discussion
The spalling experiment will be treated hereafter. To limit numerical noise at the
introduction of the loading, a linear ascending and descending compression stress is
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applied during a finite time tste (Figure 3.6). The total loading time is tloa and the final
stress applied is −σ0. A signal length l0 can be related to the loading time by l0 = tloace,
where ce =

√
E/ρ denotes the longitudinal wave velocity. Choosing σ0 ⩾ ft leads to strain

localization and therefore damage develops. The main advantage of comparing non-local
models studying this problem is the easiness to control where localization occurs; the
fracture will be located exactly at a distance lspal = l0/2 from the free-edge.

Figure 3.6 • One dimensional bar model of the spalling problem. A compression signal
comes from the right and is reflected in tension when it reaches the free
left boundary.

The material parameters used for the simulations are the same as those in Krayani et
al., 2009; Giry et al., 2011, i.e., E = 1MPa, κ0 = 1, Bt = 2, L = 25cm, ft = 1MPa, σ0 =
αft, lc = 3cm and ρ = 1kg/m3. Here, α ⩾ 1 is a constant parameter chosen arbitrarily to
make damage appears. The simulation time is set to T = 1.5L/ce = 0.3750ms. Time step
is chosen as ∆t = ∆tcrit/2, where ∆tcrit is the critical time step related to the explicit
scheme and depends on the mesh size. A study of the influence of ∆t on the obtained
responses for the considered non-local formulations is presented in (Ribeiro Nogueira et al.,
2022a).

2.7 Boundary effects and damage diffusion with fixed interac-
tions models

Let us first consider the standard INL model. Different mesh discretizations (with nel

ranging from 100 to 400) are used in computations to study mesh sensitivity of the obtained
responses. A sufficiently large loading time is considered. In particular, tloa = L/ce and
tste = 0.05tloa. This means that l0 = L; therefore, one should expect a damaged band
centered in the middle of the bar.

2.7.1 Damage regularization and diffusion

Figure 3.7 (left) shows the damage distribution along the bar obtained for α = 1.1. As
expected, damage reaches its maximum close to the middle of the bar (x = L/2) but it
diffuses on a bigger zone than one FE. Moreover, the INL model regularizes the response
as the damage profiles converge upon mesh refinement.

The choice of α may modify the obtained response. Figure 3.7 (right) shows the
damage profiles computed for different values of α. For a fixed loading duration, changing
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Figure 3.7 • INL damage model – Convergence of the damage profile upon mesh refine-
ment (left) and influence of the loading parameter α on damage diffusion
upon damage localization (right).

α changes the strain rate, which would affect the non-local averaging. This is also the
case for the other non-local models studied in this work. However, the presented results
can provide information on the main features of the responses provided by the different
formulations studied (when compared for a given α).

The time evolution of the damage field on the bar is shown in Figure 3.8 for α = 2.
Damage first takes its maximum value in only one FE, then starts to diffuse in the
surrounding FEs. At the end of the simulation, damage equals unity in a quite large zone.
As already pointed out in (Geers et al., 1998), the non-local field still evolves outside the
localization zone due to strain intensification. Non-local interactions are even allowed to
take place between points separated by highly damaged zones, as the material state is not
taken into account in the averaging process.

2.7.2 Boundary effects

Damage attraction to the free boundary is observed when lspal < lc. To highlight this
problem, a few values of l0 are used with a FE mesh of 100 elements. Here, α is set equal
to 2 to observe a damaging process up to failure (i.e., D ≈ 1 in at least one FE).

INL formulation. For values of lspal < lc, damage is gradually attracted by the boundary
and takes its maximum at the free-edge (Figure 3.9). This effect is related to the fact
that the interactions introduced through the non-local weight function ϕ only depend on
the euclidean distance between points. Near a free boundary, the interaction domain is
truncated; therefore the non-local weights computed for these points are bigger. In this
case, this results in an infinitely small spalling thickness: the distance from the free-edge
to the point of maximum damage is nil (D ≈ 1 shifts to the free boundary). As shown in
Figure 3.9 (right) damage diffusion is also present in the last steps of the computation. As
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Figure 3.8 • INL damage model – Damage evolution throughout time for l0 = 25 cm.

expected, this indicates that the transition from diffuse damage to fully localized damage
cannot be conveniently described with this model.
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Figure 3.9 • INL damage model – Influence of l0 on damage attraction (left) and its
evolution throughout time (right).

INL vs GNL formulations. This result may also be extended to the classical gradient-
enhanced damage model (GNL), as a zero flux condition is applied to solve the non-local
strain diffusion equation. Figure 3.10 illustrates the equivalence between GNL and INL
formulations. The two models provide very similar results. The small differences between
them are certainly related to the fact that they are equivalent stricto sensu only when an
infinite domain is considered for a Green’s weight function (Peerlings et al., 2001). Mesh
refinement may slightly reduce the differences between these models (see Figure 3.10).
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Figure 3.10 • INL and GNL damage models – Equivalence between the two formulations
for 100 and 500 FEs.

2.8 Boundary effects and damage diffusion with evolving inter-
actions models

In this section, a comparison of the non-local models with evolving interactions is performed.
Two different loading cases are considered:

(i) Loading case A – Damage localization far from the free boundary (lspal =
6.250cm > lc): tloa = 0.5L/ce.

(ii) Loading case B – Damage localization near the free boundary (lspal = 2.500cm < lc):
tloa = 0.2L/ce.

In all the cases studied, tste is assumed equal to 0.1tloa. The effect of the strain rate on
the localization process is studied by modifying the loading parameter α. Since changing
tste has almost the same effect, this parameter is taken constant for the sake of simplicity
and conciseness of presentation.

2.8.1 Damage diffusion (loading case A)

Integral formulations. The loading case A is simulated for two meshes containing 100
and 500 linear FEs and α = 1.5. Figure 3.11 (left) compares the damage profiles computed
using the INL, NLSB, ENLI, ENLG, and GNL damage models at time t = T . Damage
diffusion is observed for the INL model, but is much smaller for the NLSB and ENLI
formulations. As expected, the ENLI model allows for a better description of the damage
localization process, since damage concentrates on only one FE as non-local interactions
vanish when damage localizes. Conversely, damage is spread over three FEs for the NLSB
model. Figure 3.11 (right) gives the same results for a mesh with 500 FEs. Here, the
ENLI formulation spreads damage over three FEs, whereas the NLSB model spreads it
over on nine FEs.
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Figure 3.11 • INL, GNL, NLSB, ENLI, and ENLG damage models – Comparison
between all the models studied for two meshes with 100 and 500 FEs.

Integral vs. gradient formulations. The damage profile computed with the GNL
model is thinner than the one obtained using the INL formulation. The ENLG model
provides almost the same damage profile as the ENLI formulation, except for highly
damaged zones (Figure 3.11 right). Indeed, the damage is spread over a large region (its
width is still smaller than the one computed by the classical non-local models). This is an
unexpected behavior, given that the ENLG formulation is an approximation of the ENLI
model and therefore should give similar results. However, the damage diffusion is clearly
reduced upon mesh refinement for the ENLG formulation (Figure 3.11).

Table 3.1 • INL, GNL, NLSB, ENLI, and ENLG damage models – Width of the damaged
zones for each non-local model for a mesh with 500 FEs.

Non-local model INL GNL ENLI ENLG NLSB
Width (% lc) of the

damaged area when Dmax = 0.99 157 120 90 87 73
Width (% lc) of the

damaged area when Dmax → 1 170 133 90 87 73

From Figure 3.11, one can also see that the widths of the damaged zones for the
models with evolving interactions are smaller than those given by the classic formulations.
Moreover, the models with fixed distances propagate the damage front while time passes
even after damage attains unity, as we will see later on. Thus, widths of the damaged
area (i.e., total of elements where D > 0) are not constant for these models and tend
to increase (see Table 3.1). Differently, models with evolving distances do not show an
evolution of the damage zone when comparing profiles for Dmax = 0.99 and Dmax → 1. In
this situation, the ENLG and ENLI formulations give very similar widths, and the NLSB
model shows the smaller one. Smaller damaged zones are indeed expected for the evolving
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interaction approaches. In the case of the ENLI and ENLG models, the interactions begin
to evolve since damage appears and vanish upon damage localization. For the NLSB
model, the stress field is reduced when damage occurs, leading to an evolution of the
internal length. Even in the case where there is no damage, σ < ft induces an evolution
of the interactions for the NLSB model. Furthermore, one may expect these widths to
not evolve after damage localization on one FE, as interactions between points through
highly damaged zones should not occur.
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Figure 3.12 • INL, GNL, NLSB, ENLI, and ENLG damage models – Influence of α on
the size of the localization zone for a mesh with 500 FEs.

Influence of the strain rate. Parameter α influences the damage diffusion process for
all the considered models. In any case, evolving interaction models give more representative
results of the degradation process. The damage profiles obtained by these approaches are
almost insensitive to mesh refinement. The main difference between the formulations is
their capability to describe damage localization, which ENLI better simulates. Figure 3.12
allows quantifying better the influence of α on the damage diffusion mentioned above for a
mesh with 500 FEs. The number (Nα) of FEs where diffusion occurs is dependent on the
value of α for all the models, but the influence of such a parameter is more pronounced
for the INL and GNL models.

2.8.2 Boundary effects (loading case B)

Another usual situation for which one may compare non-local models is when the damaged
band is located near a free boundary.

Integral vs. gradient formulations. Figure 3.13 shows the results for the INL,
ENLG, ENLI and NLSB models for α = 2. No damage attraction from the boundary is
observed for the ENLG and NLSB formulations. In those cases, the boundary effect does
not occur, so it is possible to determine the spall location numerically. Contrarily, the
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Figure 3.13 • INL, GNL, NLSB, ENLI, and ENLG damage models – Comparison of
damage profiles near the boundary for α = 2.

ENLI formulation shows a minor boundary effect compared to the INL model, but some
influence on its response is still observed. Despite such a damage attraction, it is still
possible to define the spall location for the ENLI formulation, as the fully damaged area
does not reach the free-edge.
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Figure 3.14 • INL, GNL, NLSB, ENLI, and ENLG damage models – Comparison of
damage profiles near the boundary for α = 1.5.

Influence of the strain rate. Figure 3.14 shows the same results, but for α = 1.5.
Decreasing α reduces the damage diffusion for all the models. The boundary effect is also
reduced for the INL and GNL models (for the given problem). However, the damage value
at the free-edge increases when reducing α from 2 to 1.5 for the ENLI formulation. In this
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Figure 3.15 • INL, GNL, NLSB, ENLI, and ENLG damage models – Comparison
regarding the effect of α on the damage value on the boundary for a mesh
with 500 elements.

situation, a minor parasite effect can also be observed for the ENLG model. The NLSB
model does not show any boundary effect. Still, it exhibits a small region of minor damage
(also for α = 2) in the vicinity of the main damaged zone (see Ribeiro Nogueira et al.
(2022a) for a better explanation of this effect). Figure 3.15 shows the comparison between
all the non-local models regarding the influence of α on the boundary effect considering
only the cases where damage reaches the unity. Finally, although the ENLG formulation
shows damage diffusion, the model gives more reliable results regarding the maximum
damage location when the bar is submitted to higher strain rates than the ENLI model.

The spall location can be numerically estimated without any problem despite minor
damage diffusion or attraction for the models with evolving interactions. One should
consider, for example, the middle of the region where damage attains its maximum and
compute its distance to the free-edge. This is not possible with the classic non-local
formulations, as maximum damage inevitably shifts to the free-edge during the simulation,
which is shown in detail in the following.

2.9 Further analyses: differences observed between models with
evolving interactions

Given the results presented in the previous section, a more specific analysis may be
performed to highlight better and justify the differences between the different formulations
with evolving interaction distances. In particular, it is essential to understand the
differences observed between the ENLG and ENLI models regarding damage diffusion,
as they should give similar results. Moreover, an overall comparison between the ENLG,
ENLI, and NLSB formulations is also necessary. For this purpose, one may compare the
dissipated energy and the evolution of the free-surface/face velocity (i.e., the velocity
registered on the free-edge of the ejected part of the specimen, which corresponds to the
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spalling phenomenon). The standard INL and GNL formulations are also analyzed for
completeness.

A semi-analytical study is also developed in (Ribeiro Nogueira et al., 2022a) to illustrate
the differences between the integral models in the computation of the non-local strain field.
The observed behaviors are in agreement with the numerical results given in the following
and may highlight how these models deal with existing or newly created boundaries.
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Figure 3.16 • Linear elastic (left) and local damage (right) models – Free-surface velocity
profiles.

2.9.1 Free-surface velocity

As already explained, when damage attains unity in the bar, the left part of the bar is
ejected. The free-face velocity (at x = 0 cm), i.e., the so-called ejection velocity, is a
good indicator of regularization and can be used to highlight the differences observed
between the models studied. To this end, let us consider once again the loading case A of
Section 2.8.1. The same material parameters as in the previous examples are used, and
α = 1.5 for all the models. It should be noticed that, for the numerical examples of this
work, the input signal comes from the right to the left, so the free-surface velocity has a
negative sign. For better comprehension, the absolute value of this velocity will be taken
for the analyses presented hereafter. Comments are given using only the term "velocity",
but one may consider that this refers to its absolute value.

Elastic and local damage response. The free-surface velocity obtained for a linear
elastic material model is shown in Figure 3.16 (left). As expected, convergence is obtained
upon mesh refinement. Moreover, one may only see the input signal which is reflected on
the free-edge, given that no damage occurs. If a local damage model is considered (see,
e.g., Section 2.1), damage will take place at a certain distance from the free boundary (i.e.,
the spalling distance). Figure 3.16 (right) shows the free-surface velocity profile obtained
for a local damage model. In this case, mesh dependency is clearly observed after the
maximum velocity value is reached.
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Figure 3.17 • GNL (left) and INL (right) damage models – Mesh convergence of the
free-surface velocity response.

Models with fixed interaction distances. In the case of the INL and GNL models,
the free-surface velocities computed for different meshes are shown in Figure 3.17. As
expected, both models give similar results, but some differences exist after the first
reflection on the damaged zone occurs. In both cases, one may see the subsequent periodic
signals arriving at the free-edge. However, the signal periods reduce after each round trip
between the free-surface and the damaged zone. This indicates that the damage profile
is still evolving after damage reached unity in the middle of the damaged band. Due
to damage diffusion, the velocity also attains a limit point when time passes, but this
condition arrives sooner for the GNL model than for the INL one.

Models with evolving interaction distances. The limit point of the velocity is not
observed for the models with evolving interactions (Figure 3.18). For the three considered
formulations (ENLI, ENLG, and NLSB), the reflections due to spalling can be seen in the
velocity profile. Here, the signal periods are not reduced, which indicates that there is
no propagation of the damage front after damage localization. The convergence is only
attained for more than 500 FEs, and the velocities given by the three considered models
are similar to the ones found in (Dandekar & Bartkowski, 2001; Dandekar, 2001; Mariani
& Gobat, 2019). Significantly, the ENLG model shows the same type of velocity when
compared to the simulations obtained for cohesive elements in (Camacho & Ortiz, 1996).
Further details concerning these aspects are provided in (Ribeiro Nogueira et al., 2022a).
In any case, these results show that the ENLG regularizes the response and corroborate
the analytic results obtained in Section 1.

2.9.2 Dissipated energy

To study how energy is dissipated for all the non-local models discussed in this work,
loading case A is again considered assuming α = 1.5. This choice ensures that damage
attains unity for all models. However, as shown in Sections 2.8.1 and 2.8.2, models with
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Figure 3.18 • NLSB (top), ENLI (left), and ENLG (right) damage models – Mesh
convergence of the free-surface velocity response.

evolving internal length tend to spread damage over more FEs. In this work, the simple
local expression of the intrinsic energy dissipation (Y Ḋ) is employed. This latter quantity
is computed for all time instants using a conventional numerical integration scheme and
is accumulated over time. The profiles of dissipated energy along the bar are depicted in
Figure 3.19 (left) for time t = T .

×Remark 3.3. Peerlings et al. (2004) presented a thermodynamic formulation
of the classic GNL approach, showing that the thermodynamic force Y remains
unchanged compared to the local description. Same comments on this subject are
given by Desmorat et al. (2010), following also the framework proposed by Forest
(2009), regarding the micromorphic approach for damage. However, to our knowledge,
there is no similar development for models considering evolving non-local interactions.
It is still unclear if these formulations imply different expressions of Y . This subject
is addressed in Chapter 4.
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Figure 3.19 • INL, GNL, NLSB, ENLI, and ENLG damage models – Dissipated energy
for t = T (left) and when the maximum damage value reaches 0.99 (right).

Models with fixed distances. As expected, the widths of the zones where dissipa-
tion occurs are higher for the classical formulations than for the models with evolving
interactions. The GNL model dissipates energy on a thinner region compared to the INL
formulation.

Models with evolving distances. Despite the similarity observed in Figure 3.11 in
terms of damage profiles obtained with all the formulations with evolving distances, one
observes a huge difference in the dissipated energy between the NLSB model and the
other formulations. The stress-based model continues to dissipate energy in the vicinity of
the damage localization zone. Similarly, the ENLG formulation spreads the energy over
a considerable zone compared to the ENLI model, thus reflecting the damage diffusion
observed for this model.

Slightly different considerations can be done if one observes what happens at the time
instant such that the first FE reaches a damage value of about 0.99 (Figure 3.19 (right)).
In that case, models with evolving interactions give energy profiles that are similar between
them but are different from those obtained through the classical approaches. Figure 3.21
shows the corresponding total dissipated energies (i.e., previous results integrated over
the bar). The total dissipated energy is very similar between the approaches with evolving
interactions and is almost the same for the ENLG and ENLI models when D = 0.99. For
t = T (end of the analysis), the ENLG and NLSB models show an increased dissipation,
whereas the dissipation no more evolves for the ENLI model. The models with evolving
non-local interactions dissipate much less energy than the classic formulations with fixed
distances, which is expected as the widths of the damaged zones are smaller for the
evolving distances approaches.

These conclusions can also be extended to the damage profiles (Figure 3.20). The
evolving non-local models give almost the same damage profiles, except for some slight
differences near the highly damaged zone. Damage diffusion is observed neither for the
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2. Boundary effects and damage diffusion in explicit dynamics

NLSB nor the ENLG formulations, as damage localizes in only one FE as for the ENLI
model. These considerations signal that some unexpected behavior occurs when damage
tends to unity, especially for the ENLG formulation, which should not diffuse damage
upon localization.

It should be noticed that, from a theoretical viewpoint, eikonal formulations (ENLI or
ENLG) should not continue to compute a damage evolution after localization (Desmorat
et al., 2015b; Rastiello et al., 2018b; Thierry et al., 2020a). For the ENLI model, the
computed effective interaction distances tend to infinity when damage tends to one.
Consequently, non-local interactions vanish. The equivalent conclusion for the ENLG
model is that the contributions of a highly damaged element in Equation (3.41) also tend
to infinity. Thus, one should expect that after damage localization, the non-local strain
field computed by the ENLG model should not evolve in the vicinity of the localized
element.
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Figure 3.20 • INL, GNL, NLSB, ENLI, and ENLG damage models – Damage profiles
when the first element reaches D = 0.99 for the different non-local model
studied.

×Remark 3.4. Geers et al. (1998) encountered the same problem when imple-
menting a similar evolving interactions gradient model based on the strain state. The
strain-based gradient damage model converged to a discontinuity for high levels of
damage (D = 0.999). Still, they argued that any further increase in damage at this
moment was completely local and of numerical sources. They proposed to stop any
evolution of the non-local equivalent strain inside the localized zone when a critical
value of the equivalent strain was attained. Moreover, without this modification, they
saw oscillations of ē in the surroundings of the highly damaged regions, which was
responsible for damage evolution in these zones.

In other words, the non-local averaging and the equilibrium equations become decoupled
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Chapter 3. One-dimensional study of regularized damage models

upon localization, which is the theoretical case for ENLG (from a physical viewpoint,
micro-cracks should not interact through the new boundary created by a highly damaged
zone). However, damage diffusion is much more present in the ENLG formulation, as
interactions are directly computed from the FE solving of the Helmhotz-like problem. A
similar behavior was described in (Geers et al., 1998) for a strain-based GNL model without
the introduction of artificial modifications to decouple the equilibrium and Helmthotz
equations. For ENLI, the computed distances are introduced into the weight function;
therefore, the use of an integral approach is more suitable to reduce the interactions
numerically.
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Figure 3.21 • INL, GNL, NLSB, ENLI, and ENLG damage models – Total dissipated
energy for t = T (left) and when damage value reaches 0.99 (right).

2.9.3 Numerically modified ENLG

To obtain a numerical approximation of the ENLG model corresponding to its theoretical
assumptions, the gradient problem is restated in a modified way. Following the same
arguments of Geers et al. (1998), one can decouple the non-local averaging Helmholtz-type
equation from the equilibrium equation when damage tends to unity on a FE. In other
words, the non-local equivalent strain is frozen in the localized FE, and interactions
between FEs crossed by the damaged band vanish. One should notice that another option
is to limit the evolution of the internal length (or the gradient parameter) considering the
size of elements in a mesh (e.g., Giry et al. (2011) and Vandoren and Simone (2018)).

From a numerical viewpoint, when damage reaches a limit value Dc = D⋆ at a
given integration point, the second term of the left-hand-side and the right-hand-side in
Equation (3.41) are multiplied by a very large value,1 and the first term of the left-hand-
side is multiplied by a null one. This corresponds to the case where damage tends to unity.
Such a modification is done at the FE matrix contribution of the localized element and
not in the entire domain.

1numpy.inf in the Python code used in this chapter.
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2. Boundary effects and damage diffusion in explicit dynamics

As detailed in (Ribeiro Nogueira et al., 2022a), this solution allows palliating the
parasite damage diffusion of the ENLG model. It is shown in the following chapters that
this effect is in some ways less, but still present, in 2D and 3D quasi-static simulations
with the ENLG model.
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Chapter 3. One-dimensional study of regularized damage models

Summary of Chapter 3

Wave dispersion analysis:

• Wave propagation is dispersive in non-local models, which is also true for
the ENLG evolving interactions approach.

• Contrarily to a local damage model, the phase velocity remains real and
waves do propagate in a gradient-enhanced medium.

• GNL and ENLG models give essentially the same response at damage initiation,
but differ for higher initial strain states.

• Loading waves can be transformed into an unique stationary harmonic local-
ization wave, associated to a critical wavelength λc.

• For both GNL and ENLG models, λc decreases with the initial strain state,
and the narrowing localizing band is better described by the ENLG
approach.

• In all situations, the velocities are limited to the physical damaged elastic
wave velocity ce

√
1 −D0.

Boundary effects and damage diffusion:

• Classical non-local approaches with fixed non-local interactions are prone
to drawbacks such as damage diffusion across damage bands and damage
attraction from the free boundaries.

• The formulations with evolving interactions proved to be more efficient in
dealing with boundary effects and damage diffusion, while retaining their
regularization properties.

• The eikonal approach has shown to be more efficient in simulating the bridge
between Continuum Damage Mechanics and Fracture Mechanics since
the damage field naturally tends to localize in only one FE.

• The NLSB model has shown a good response when boundary effects occur,
especially when the damaged band is located close to the free-edge.

• The eikonal formulations are more sensitive to boundary effects, but the
ENLG model is less affected by the free boundary problem when compared
to the ENLI formulation.

• The ENLG model showed, however, an unexpected damage diffusion upon
localization. This latter spurious response can be treated by a numerical
procedure limiting damage to a critical value and freezing the interactions.

• The ENLG model regularizes the response, which is in agreement with the
wave dispersion analysis.
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4
Differential geometry-based derivation of ENLG
models using a micromorphic media framework

This chapter presents a derivation of ENLG damage models within a micromorphic media
framework using differential geometry. Firstly, the boundary value problem is defined
in its weak (variational) form. Then, a geometric description of the thermodynamics of
the isotropic and anisotropic ENLG models is introduced. After recalling a few essential
elements of differential geometry, the equations of the ENLG model are obtained, and
the expressions of the stress tensor and energy dissipation are derived. The importance
of adopting a differential geometry framework is emphasized by highlighting certain ther-
modynamic inconsistencies that arise when the ENLG model is derived using a standard
micromorphic media framework. Additionally, a brief comparison with other formula-
tions is presented, along with comments on the regularization properties of the ENLG are
provided through a bifurcation analysis. Finally, numerical simulations are illustrated
to compare the GNL and ENLG models regarding structural responses, damage profiles,
and “pseudo-crack” paths. Apart from some text modifications, additional developments,
comments and figures, this chapter was extracted from Ribeiro Nogueira et al. (2024a),
Engineering Fracture Mechanics, 295, 109670.
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1 Introduction
One of the main criticisms of non-local regularization techniques is that they lack a
well-defined thermodynamic background. In these models, the variable controlling damage
growth is usually taken as the non-local equivalent strain, whereas the damage variable
remains purely local. Thus, the intrinsic energy dissipation is evaluated following the
standard thermodynamics theory (i.e., no effects of non-locality are taken into account in
the free-energy potential).

To overcome this issue, Peerlings et al. (2004) proposed a thermodynamics framework
for deriving the GNL model. The non-local equivalent strain and its gradient were
considered state variables in the free-energy potential, together with damage and the
displacement field. To account for non-local interactions and the exchange of energy in
the entire body, the Clausius-Duhem inequality was globally verified (i.e., the positivity
of the total dissipation on the whole body was exploited). Constitutive relations were
derived following usual arguments, leading to a modification of the elasticity law. The
Helmholtz differential equation was derived with no need to define some generalized
stresses. A very similar free-energy potential was proposed in (Forest, 2009), where the
micromorphic approach was used to derive the same equations of the model, with the
explicit contribution of generalized terms in the local energy balance. Other equivalent
techniques introduce a residual term, respecting an insulation condition, in the point-wise
Clausius-Duhem inequality, taking into account the energy exchange between neighbor
points (Polizzotto et al., 1998; Borino et al., 1999; Polizzotto, 2003).

In this chapter, a differential geometry-based derivation of the ENLG formulation is
presented based on a micromorphic media framework (Forest, 2009). A form of the free
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2. ENLG model

energy potential is then proposed. In this formulation, the non-local strain is considered a
morphological description of the abstract differentiable manifold where the Riemannian
metric is defined (i.e., it is defined on a Riemannian space deformed by damage). Figure 4.1
depicts a qualitative representation of the curved space. An exponential isotropic damage
profile was considered in one direction to compute the metric field. From top left to bottom
right, snapshots are given at increasing damage levels in the middle of the damaged band.
The red line represents the geodesic path between two points separated by the damaged
zone. Computations were carried out with the SageManifolds project, within the open-
source SageMath software (The Sage Developers, 2022). Similar results where obtained
by (Rastiello et al., 2018b) using a Fast-Marching method to solve the Hamilton-Jacobi
equation controlling damage dependent non-local interaction distances.

Employing differential geometry concepts, all the equations of the ENLG non-local
model are derived. It is also shown that the expression of the energy dissipation for the
ENLG model differs from the usual ones considered in the classic non-local models.

2 ENLG model

This section presents the ENLG model considering a second-order damage tensor (D)
for describing material degradation (its principal components take values between zero
(sound material) to unity (totally damaged material) in the corresponding directions).
First, the variational boundary value problem to be solved is introduced in its general
anisotropic framework. The formulation concerning the isotropic damage case is then
introduced as a special case.

2.1 ENLG boundary value problem (BVP)
The ENLG regularization (Desmorat et al., 2015b) naturally considers non-local inter-
actions which are function of the damage state (represented through the second-order
damage tensor D). This agrees with the desired characteristics described by (Bažant et al.,
2022a) for non-local models to represent the crack-parallel stresses well. The resulting
differential problem to be solved was already introduced in Equations (5.1) and (5.2).

Let us consider a n-dimensional solid body Ω ⊂ Rn, with n ∈ [[1, 3]] ( Figure 4.2). The
boundary ∂Ω ⊂ Rn of the body is split into two subdomains ∂ΩF ⊂ Rn and ∂Ωu ⊂ Rn

such that ∂Ω = ∂ΩF ∪ ∂Ωu and ∂ΩF ∩ ∂Ωu = ∅. Neumann conditions are applied on
∂ΩF and Dirichlet conditions on ∂Ωu . Quasi-static conditions are considered. Given
this choice, the time dependence of all quantities is omitted in the following, and all the
variables introduced should be referred to the present time t ∈ [0, T ] with T being the
total time.

Admissibility spaces. Let us introduce the following functional spaces:

U = {w | w ∈ H1(Ω) , w = ud on ∂Ωu} (4.1)
U(0) = {w | w ∈ H1(Ω) , w = 0 on ∂Ωu} (4.2)

V = {w | w ∈ H1(Ω)} (4.3)
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Figure 4.1 • Qualitative representation of damage curving the space where non-local
interactions take place.

where ud = ud(x) : ∂Ωu → Rn is the imposed displacement on ∂Ωu and H1 denotes a
square integrable Sobolev space.

Equilibrium problem. Neglecting body forces, and under quasi-static conditions,
the variational equilibrium problem to be solved consists in finding at each time t, the
admissible displacement field u ∈ U satisfying:∫

Ω
σ(ε(u),D) : ε(v) dV =

∫
∂Ω

td · v dS ∀ v ∈ U(0). (4.4)

where u = u(x) : Ω → Rn is the displacement vector field, v = v(x) : Ω → Rn is a virtual
displacement field, σ(ε(u),D) is the Cauchy stress tensor, ε(u) (respectively, ε(v)) is
the small strain tensor applied to u (respectively, v), ":" denotes the double contraction
between tensors, and td = td(x) : ∂ΩF → Rn is the imposed traction vector on ∂ΩF .

Damage problem. The variational form of the Helmholtz Equation (5.1) reads:∫
Ω

√
det g ē η dV −

∫
Ω
c∇ · (

√
det g g−1 · ∇ē) η dV =

∫
Ω

√
det g e η dV ∀ η ∈ V (4.5)

where η = η(x) : Ω → R is a virtual non-local equivalent strain field. Using the identity:

c∇ · (
√

det g g−1 · ∇ē η) = c∇ · (
√

det g g−1 · ∇ē)η + c(
√

det g g−1 · ∇ē) · ∇η (4.6)
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Figure 4.2 • Domain and boundary conditions.

equation (4.5) can be rewritten as:
∫

Ω

√
det g ē η dV −

∫
∂Ω
c
√

det g η (g−1 · ∇ē) · n dS

+
∫

Ω
c(
√

det g g−1 · ∇ē) · ∇η dV =
∫

Ω

√
det g e η dV ∀η ∈ V (4.7)

Taking into account for the Neumann zero flux condition (5.2), one obtains the final
problem to be solved. It consists in finding at each time t the field ē ∈ V satisfying:∫

Ω

√
det g ē η dV +

∫
Ω
(c
√

det g g−1 · ∇ē) · ∇η dV =
∫

Ω

√
det g e η dV ∀η ∈ V (4.8)

The variational formulation of the GNL model by (Peerlings et al., 1996a) is retrieved
by considering g = g−1 = I (i.e., the Euclidean metric).

2.2 Isotropic ENLG model as a special case

Simplified two- (2D) and three-dimensional (3D) isotropic damage mechanics formulations
can be obtained by considering specific metrics. In the following, the 3D, full 2D, plane-
stress, and plane-strain problems are treated separately for completeness.

3D problem. The isotropic 3D Helmholtz problem to be solved can be derived consid-
ering D = DI, such that the metric tensor reads:

g = I
1 −D

(4.9)

Observing that:

det g = 1
(1 −D)3 ; g−1 = (1 −D)I ;

√
det g g−1 = 1√

1 −D
I (4.10)
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equations (5.1) and (5.2) can be simplified as:

ē− c
√

(1 −D)3∇ ·
(

1√
1 −D

∇ē
)

= e on Ω (4.11)

∇ē · n = 0 on ∂Ω (4.12)

where we exploited the condition 1 −D > 0 to simplify the Neumann boundary condition.
The variational equation (4.8) can thus be rewritten as:∫

Ω

1√
(1 −D)3

ē η dV +
∫

Ω

c√
1 −D

∇ē · ∇η dV =
∫

Ω

1√
(1 −D)3

e η dV ∀η ∈ V (4.13)

2D Plane-stress and plane-strain conditions. The equations introduced above
can be used to address the situations of plane-stress and plane-strain, as well as full 2D
conditions:

(i) Plane-strain conditions. The complete 3D equations (4.11)-(4.12) are still applicable
since the out-of-plane component of ∇ē can be assumed null whereas the out-of-plane
component of the damage tensor can be assumed to be the same as in the other
directions.

(ii) Plane-stress conditions. In this case one can assume the size of the domain in
the out-of-plane direction to be negligible with respect to other dimensions. As a
consequence, ∇ē has in-plane components only and the Riemannian metric can be
written as:

g = I2

1 −D
(4.14)

where I2 denotes the in-plane identity tensor. According to this choice:

det g = 1
(1 −D)2 ; g−1 = (1 −D)I2 ;

√
det g g−1 = I2 (4.15)

Equations (5.1) and (5.2) can be finally simplified as:

ē− c(1 −D)∇ · ∇ē = e on Ω (4.16)
∇ē · n = 0 on ∂Ω (4.17)

The variational equation to be solved finally reads:∫
Ω

1
1 −D

ē η dV +
∫

Ω
c∇ē · ∇ηdV =

∫
Ω

1
1 −D

eη dV ∀η ∈ V (4.18)

(iii) Full 2D conditions. Equations (4.16), (4.17) and (4.18) also hold in full 2D conditions.

3 Differential geometry viewpoint to the thermody-
namics of ENLG models

Starting from a free-energy potential inspired by the one proposed by (Peerlings et al.,
2004) for deriving the GNL model, this section gives the first insights into a possible
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3. Differential geometry viewpoint to the thermodynamics of ENLG models

thermodynamics framework to derive the ENLG model. The method is based on the
formalism presented by (Forest, 2009) for micromorphic media. It is shown that non-
locality comes into the picture in the expression of the stress tensor (even in elastic
conditions) and affects the intrinsic dissipation. This latter can no more be computed
using the standard expression valid for local models, as for the GNL model.

3.1 Geometric description

Two different spaces are used in the eikonal problem:

(i) A Euclidean space, where the body Ω is placed in a given configuration;

(ii) A Riemannian space, where non-local interactions are computed. In the latter case,
a tangent space is defined at each point of an abstract differentiable manifold M
(i.e., a topological manifold with a globally defined differential structure), where the
metric g defines a scalar product.

To derive the formulation, the non-local equivalent strain is seen as a morphological
descriptor and is an element of M (see (Mariano & Stazi, 2005) for further discussions).
This idea directly stems from the theoretical assumption that damage curves the space
where the non-local interactions are computed (Desmorat et al., 2015b). Similar ideas
were presented in (Ganghoffer & de Borst, 2000; Ganghoffer, 2003), where a metric was
coupled with an internal variable distribution. In their work, the strength of interactions
is incorporated into the space’s geometry, and their effect on the curvature is discussed.

Other contributions where geometric concepts are used to describe damage behaviors
exist. For instance, (Steinmann & Carol, 1998) proposed a geometric framework for
second-order tensorial damage coupled to hyperelasticity. They introduced the concept
of energy metric and its degradation to a damage metric, whose evolution is described
by a dissipation surface. The free-energy was defined then as a function of the degraded
metric. Similarly, (Das et al., 2021) introduced damage-dependent Riemannian metrics in
undeformed and deformed damage configurations for modeling compressible elastomers.
They supposed that these metrics could be obtained by scaling the Euclidean one with a
function in terms of an isotropic damage variable. The introduction of damage gradients
in the free-energy was a consequence of considering the influence of the Ricci scalar
curvature. They highlighted that "...the curvature might be negative and that it tends
to infinity as D approaches 1, which is indicative of a singularity consistent with the
physical understanding of damage.". General geometric analysis was used in (Mariano,
2010). This author discussed introducing the so-called curvature varifolds terms in the
energy functional to describe crack patterns through measures in a fiber bundle. The
minimization problem searches, therefore, for admissible solutions over a class of possible
cracked bodies. He also provides a few more insights on considering a morphological
descriptor (and its gradient) in the expression of the energy for studying crack nucleation.
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3.2 A few useful elements of differential geometry

In curved spaces, contravariant and covariant coordinates differ. The basic rules are: (i)
if a is a vector living in a vectorial space E, then its coordinates are represented by ai

(with upper index); (ii) if a is a covector living in the dual space E∗, then its coordinates
are represented by ai (with lower index); (iii) metric tensors are totally symmetric (and
positive definite) second-order tensors of covariant nature. The metric tensor g ∈ E∗ × E∗

is represented by its covariant components gij, and the metric inverse g−1 ∈ E × E is
represented by its contravariant components gij ; (iv) only upper and lower indexes can be
contracted; (v) the covector a# (of components (a#)i) associated with vector a is given
by:

a# = g · a (4.19)

whereas the vector b♭ (of components (b♭)i) associated with covector b is given by:

b♭ = g−1 · b (4.20)

Scalar product. The scalar product between two covectors b and c is defined as:

⟨b, c⟩g := b · c♭ = b · g−1 · c (4.21)

Gradient of a function. In local coordinates (xi), (∂i = ∂/∂xi) denotes the basis of
the tangent space TxM and dxi is the dual basis of the cotangent space T⋆

xM for x ∈ M
(it is such that dxi(∂j) = δi

j).
The derivative df of a function f : M → R is the 1-form of covariant components

dfi = ∂if . The gradient of f is therefore the vector of contravariant components (∇f)i =
∂if :

∇f = df ♭ = g−1 · df (4.22)

In the case of Euclidean spaces, one can easily show that the gradient ∇f and the 1-form
df do not differ, i.e., ∇f = df .

The Riemannian norm of the gradient ∥∇f∥g is defined as:

∥∇f∥2
g = ⟨∇f,∇f⟩g = ∇f · g · ∇f = df · g−1 · df = ⟨df, df⟩g = ∥df∥2

g (4.23)

Laplacian of a function. The divergence of the gradient on a manifold is the so-called
“connection Laplacian” or “Laplace-Beltrami operator”. It is defined as:

∆f := ∇ · ∇f = 1√
det g

d
(√

det g g−1 · df
)
. (4.24)

In Euclidean spaces, the Laplace-Beltrami operator generalizes the usual Laplacian
definition, i.e., ∆f = d · (df) = ∇ · (∇f).

Following the so-called "micromorphic media theory" (Forest, 2009), ē is taken as the
micromorphic variable, while e is its equivalent macro quantity. As a result, u and ē are
the unknowns of the problem.
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3.3 Damage-deformed Riemannian space

Let us assume that damage is represented through an Euclidean second order tensor
D ∈ E∗ × E∗ of covariant components Dij . According to the Eikonal damage approach, in
the Riemannian space curved by damage, the metric and its inverse read:

g = (q−1 − I♭ : D)−1 (4.25)
g−1 = q−1 − I♭ : D (4.26)

where q = I = δij and I♭ ∈ E × E × E × E is the Euclidean contravariant 4th-order identity
tensor such that:

I♭ = q−1 ⊗ q−1 (4.27)

where ⊗ denotes the standard symmetrized tensor product. Similarly, tensor the covariant
identity tensor I# ∈ E∗ × E∗ × E∗ × E∗, the mixed contravariant-covariant fourth-order
identity tensor I♭

# ∈ E × E × E∗ × E∗ and the conjugated mixed covariant-contravariant
fourth-order identity tensor I ♭

# ∈ E∗ × E∗ × E × E are defined as:

I# = q ⊗ q (4.28)
I♭

# = I♭ : I# = q−1 ⊗ q (4.29)
I ♭

# = I# : I♭ = q ⊗ q−1 (4.30)

×Remark 4.1. Given three tensors S ∈ E × E, U ∈ E × E and T ∈ E∗ × E∗

one has: (S ⊗ U) : T = S · T · U. Given a covariant tensor T ∈ E∗ × E∗ and a
contravariant second order tensor S ∈ E × E, one has: T♭ = I♭ : T, S# = I# : S,
T = I ♭

# : T, and S = I♭
# : S.

In the undamaged medium (i.e., in the Euclidean space), one has:

g = q = I = δij g−1 = q−1 = I−1 = δij (4.31)

so that (4.21) defines the standard scalar product. Based on this description, the isotropic
elasticity law can be easily rewritten as:

σ = 2GI♭ : ε + λTr(q−1 · ε)q−1 (4.32)

with G and λ denoting the two Lamé parameters. Notice that according to previous
equation ε is a covariant tensor (components εij) whereas σ is a contravariant tensor
(components σij).

×Remark 4.2. If one considers g as a tensor-valued function of D, as it is
the case of Ladevèze’s damage variable (see Chapter 1), the standard definition
g = (I − D)−1 still holds. The inverse is taken in function of the principal values of
D, while retaining its covariant nature.
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Chapter 4. Differential geometry-based derivation

Figure 4.3 • Illustrative scheme of the Riemannian metric in an isotropic damaged
medium.

Qualitative representation of the damage-dependent Riemannian metric. To
illustrate the idea behind using a modified metric for computing the non-local interactions,
let us consider first the case of isotropic damage. As explained in Chapter 2, the non-local
fields are computed based on the notion of interaction distances. In the Eikonal approach,
one has interaction Euclidean distances (see Equation (4.31)) for an undamaged medium
(Figure 4.3 left). In other words, the distance between two material points x and ξ is a
straight line.

For a damaged medium, the “communication path” between points x and ξ is rather
tortuous than straight (see Figure 4.3 middle) due to the micro-cracks, and the distance
increases with damage. If the micro-cracks are randomly orientated, one retrieves the case
of isotropic damage. On average, the path is the same for all the possible directions from
point x in this case. For highly damaged mediums, the elevated density of micro-cracks
can make it impossible to find a path through which the points may interact (vanishing
non-local interactions).

Within the framework of CDM, the damaged state is described by an equivalent
homogenized medium. In the case of isotropic damage, the micro-cracks are represented
by the scalar D, and the Riemannian metric is obtained by scaling the Euclidean one with
the factor 1/(1 −D). Therefore, points x and ξ are connected by a sort of slower path,
depending on the damage state of all the points x′ and ξ′ belonging to it. As, shown in
Figure 4.3 right, this is equivalent to consider a curved path defined by the Riemannian
metric g.

When the micro-cracks have a notable preferential direction (denoted by the number
1 in Figure 4.4), the damage state can be described by a single tensor variable D. For
instance, this situation can occur in the case of tension loading following the principal
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Figure 4.4 • Illustrative scheme of the Riemannian metric in an anisotropic damaged
medium.

direction 1. As shown in Figure 4.4 left, points x and x′ hardly see the effect of the
micro-cracks in the damaged medium, and a straight path can still connect them. On the
contrary, the communication path between x and ξ is no more straight, given that the
micro-cracks are perpendicular to the principal direction.

In the equivalent homogenized medium (Figure 4.4 right), this can be represented by
the anisotropic metric. Considering the 2D case for simplicity with the only non-zero
damage principal component D1, and writing the metric in its eigenbasis, one can easily
see that this last is only affected in the principal direction 1. Thus, interactions decrease
in the direction of major damage, representing the induced anisotropic character of the
ENLG model.

3.4 Micromorphic media framework

Extended virtual power principle. Neglecting contact and volume forces, the virtual
power principle reads:

P∗
int(v∗, η̇∗) + P∗

ext(v∗, η̇∗) = 0 ∀ v∗, η̇∗ (4.33)

where v∗ and η̇∗ are the virtual velocity and the virtual variation rate of ē, respectively.
The generalized virtual powers of the internal (P∗

int) and external (P∗
ext) forces read (Forest,

2009):

P∗
int(v∗, η̇∗) = −

∫
Ω

(σ : ε(v∗) + a η̇∗ + b · ∇η̇∗)︸ ︷︷ ︸
:=p(i)(v∗,η̇∗)

dV (4.34)

P∗
ext(v∗, η̇∗) =

∫
Ω

(aeη̇∗ + be · ∇η̇∗) dV +
∫

∂Ω

(
td · v∗ + acη̇∗

)
dS (4.35)
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where a and b are generalized stresses related to the micromorphic variable and its first
gradient, ae and be are the generalized body forces, and ac are the generalized tractions
applied on the boundary ∂Ω.

Exploiting the arbitrary nature of the virtual velocity fields (v∗, η̇∗), one obtains the
following momentum balance equations and the corresponding boundary conditions:

∇ · σ = 0 on Ω (4.36)
∇ · (b − be) − a+ ae = 0 on Ω (4.37)

td = σ · n on ∂Ω (4.38)
ac = (b − be) · n on ∂Ω (4.39)

Entropy principle. Under isothermal conditions, the entropy principle reads:

p(i) − ρψ̇ = σ : ε̇ + a ˙̄e+ b · ∇ ˙̄e− ρψ̇ ⩾ 0. (4.40)

where the free energy potential ψ is considered to be a function of the micromorphic
quantities and their gradients. For a anisotropic damage model with a second order
tensorial damage variable one has:

ρψ = ρψ(ε,D, ē,∇ē) (4.41)

Computing the time derivative of ρψ and replacing the obtained expression into (4.40),
one obtains:(

σ − ρ
∂ψ

∂ε

)
: ε̇ +

(
a− ρ

∂ψ

∂ē

)
˙̄e+

(
b − ρ

∂ψ

∂∇ē

)
· ∇ ˙̄e− ρ

∂ψ

∂D
: Ḋ ⩾ 0 (4.42)

The following state laws can therefore be written:

σ = ρ
∂ψ

∂ε
Y = −ρ ∂ψ

∂D
a = ρ

∂ψ

∂ē
b = ρ

∂ψ

∂∇ē (4.43)

3.5 Derivation of the anisotropic ENLG model
Let us suppose that the non-local equivalent strain is a map, i.e., a linear application from
the manifold to the real space, ē : M → R.

Drawing from the free-energy potential postulated by (Peerlings et al., 2004) for
deriving the standard isotropic GNL model, a free-energy potential for the anisotropic
ENLG model can directly be written on the manifold as:

ρψ = ρψ(ε,D, ē, ∇̃ē) = ρψ0 + 1
2h(e− ē)2 + 1

2hc∥∇̃ē∥2
g (4.44)

where, to avoid confusion, the symbol ∇̃ is used to denote that the gradient (and also the
divergence in the remainder of this section) is computed in the deformed space by damage
(i.e., on the manifold M). The symbol ∇ is used to denote the Euclidean gradient. Here,
ρψ0 = ρψ0(ε,D) is the free-energy potential postulated by the anisotropic damage model
(see e.g., (Desmorat et al., 2007a; Desmorat, 2015; Masseron et al., 2022)) and h > 0 is a
model parameter (homogeneous to a stiffness). Moreover, notice that in such a differential
geometry description, the damage tensor D is of covariant nature as ε.
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State laws. The expression of the stress tensor, the generalized stresses and the ther-
modynamic force associated with damage can be obtained by applying these state law, as
follows:

(i) The stress tensor σ reads as the sum of a standard contribution (σ0) and a damage-
dependent term related to non-locality:

σ = σ0 + h(e− ē)∂e
∂ε

(4.45)

with:
σ0 = ρ

∂ψ0(ε,D)
∂ε

(4.46)

×Remark 4.3. Since ε is a covariant second-order tensor, ∂e/∂ε and ∂ψ0/∂ε

are both contravariant second-order tensors. This can be easily inferred by:

δe = ∂e

∂ε
: δε δe =

(
∂e

∂ε

)ij

δεij (4.47)

δψ0 = ∂ψ0

∂ε
: δε + ∂ψ0

∂D
: δD δψ0 =

(
∂ψ0

∂ε

)ij

δεij +
(
∂ψ0

∂D

)ij

δDij (4.48)

As a consequence, σ is a contravariant second-order tensor.

(ii) The generalized stresses a and b (covariant vector of components bi) read:

a = −h(e− ē) (4.49)

b = ρ
∂ψ

∂∇̃ē = hcg · ∇̃ē (4.50)

(iii) The thermodynamic force associated with damage Y is once again contravariant
(components Y ij) and reads:

Y = Y0 + Z (4.51)

with:

Y0 = −ρ∂ψ0(ε,D)
∂D

(4.52)

Z = −hc

2
∂∥dē∥2

g

∂g−1 : ∂g−1

∂D
(4.53)

The tensorial function Z can be understood as a non-local rate of energy restitution
of the model. Such an additional non-local term does not appear in the case of the
GNL model (Peerlings et al., 2004). As already mentioned, in this last case the
dissipation does not differ from the one corresponding to the local model.

×Remark 4.4. Since D and g−1 are covariant and contravariant second-
order tensors, respectively, ∂ψ0/∂D is a contravariant second-order tensor,
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∂g−1/∂D is a contravariant fourth-order tensor and ∂∥dē∥2
g/∂g−1 is a co-

variant second-order tensor. The double contraction between these two latter
tensors is thus possible and gives a contravariant second-order tensor Z.

Helmholtz problem. Introducing the usual assumption (Forest, 2009) of no generalized
volume forces (ae = 0, be = 0), from the balance equation (4.37), one has:

∇̃ · b♭ − a = 0 (4.54)

where b♭ is the vector associated with the covector b:

b♭ = hcg−1 · b = hc∇̃ē (4.55)

Substituting (4.55) into (4.54) one obtains:

∇̃ · (hc∇̃ē) − hē+ he = 0 (4.56)

and then, exploiting the fact that h and c are both constant and non-null:1

ē− c∇̃ ·
(
∇̃ē
)

= e (4.57)

To derive the boundary condition on ∂Ω for the Helmholtz problem, one can rewrite
(4.39) as:

⟨b,n⟩g = b♭ · n = 0 (4.58)

which implies:
∇̃ē · n = 0 (4.59)

or equivalently:
g−1 · dē · n = 0 (4.60)

×Remark 4.5. The normal vector n is a covector of components ni to be consistent
with (4.38).

Exploiting, as in (Desmorat et al., 2015b), that in an Euclidean space dē = ∇ē,
equation (4.57) can also be written as:

ē− c√
det g

∇ · (
√

det g g−1 · ∇ē) = e (4.61)

Similarly, the boundary condition on ∂Ω reads:

g−1 · ∇ē · n = 0 (4.62)

The problem (5.1)-(5.2) is thus retrieved.

1The same expression was obtained by (Desmorat et al., 2015b).

118



3. Differential geometry viewpoint to the thermodynamics of ENLG models

×Remark 4.6. Different from the derivation proposed in (Ribeiro Nogueira et al.,
2024a), another appropriate choice is to use the free energy ρψ(ε,D, ē, dē), which
leads to the same equations. In this case, one has directly the vector (bi):

b = ρ
∂ψ

∂dē
= hcg−1 · dē = hc∇̃ē (4.63)

with the boundary condition on ∂Ω:

⟨b,n⟩g = g−1 · dē · n = 0 (4.64)

Variational formulation. A variational formulation for the ENLG model can be
obtained directly starting from equation (4.57).2 One has:∫

M
ē η volg −

∫
M
c∇̃ ·

(
∇̃ē
)
η volg =

∫
M
e η volg. (4.65)

where:
c∇̃ ·

(
∇̃ēη

)
= c∆̃ēη + c⟨∇̃ē, ∇̃η⟩g (4.66)

and volg is the n-form (the volume form):

volg =
√

det(g)dx1 ∧ dx2... ∧ dxn (4.67)

with ∧ denoting the so-called wedge product. The above integral thus becomes:∫
M
ē η volg −

∫
M
c∇̃ ·

(
∇̃ē η

)
volg +

∫
M
c⟨∇̃ē, ∇̃η⟩gvolg =

∫
M
e η volg (4.68)

Applying the divergence theorem:∫
M
c∇̃ ·

(
∇̃ē η

)
volg =

∫
∂M

c η∇̃ē · n dS (4.69)

enforcing the boundary condition (4.59) and remembering that ⟨∇̃ē, ∇̃η⟩g = ⟨dē, dη⟩g

(see equation (4.23)), one ends up with:∫
M
ē η volg +

∫
M
c ⟨dē, dη⟩gvolg =

∫
M
e η volg. (4.70)

A straightforward rewriting of last variational equation is:∫
Ω

√
detg ē η dV +

∫
Ω
c
√

detg(g−1 · ∇ē) · ∇η dV =
∫

Ω

√
detg e η dV (4.71)

On the expression of Y (and of Z). The terms figuring in the expression of the
thermodynamic force Z in (4.53) read:

∂∥dē∥2
g

∂g−1 = ∂g−1

∂g−1 : (dē⊗ dē) = I♭
# : (dē⊗ dē) = I ♭

# : (dē⊗ dē) = dē⊗ dē (4.72)

∂g−1

∂D
= −I♭ (4.73)

2Alternatively, one could use the micromorphic approach by writing the principle of virtual work in
the curved space.
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The tensor Z can thus be written as:3

Z = hc

2 I♭ : (dē⊗ dē) (4.74)

Finally, the expression of the dissipation rate taking into account the modified energy
release rate for the 3D anisotropic ENLG model is (substituting into equation (4.53)):

D = Y : Ḋ =
(

Y0 + hc

2 I♭ : (dē⊗ dē)
)

: Ḋ ⩾ 0 (4.75)

where Y0 : Ḋ is supposed to be positive or null by local model construction (see, e.g.,
(Desmorat, 2015)).

To rewrite previous equation in the Euclidean space, one can exploit the fact that
dē = ∇ē. As a consequence, I♭ : (dē⊗ dē) = ∇ē⊗ ∇ē, and the above expression can be
simplified as:

D =
(

Y0 + hc

2 (∇ē⊗ ∇ē)
)

: Ḋ ⩾ 0 (4.76)

Damage-induced curvature of the space. For the case of the ENLG model, the
Christoffel symbols are damage-dependent (Desmorat et al., 2015b), which also induces
a damage-dependent Ricci curvature tensor R (of components Rij) by definition. One
can obtain a scalar measure of the curvature in the space created by damage via the
contraction g−1 : R. The metric becomes the identity for an undamaged medium, and
Christoffel symbols vanish, so the curvature is null. As pointed out by (Ganghoffer, 2003),
further investigation is necessary to better understand the meaning of this curvature in
terms of topological aspects, bridging micro-structural to macroscopic approaches.

3.6 Isotropic ENLG model derivation
Let us now consider the isotropic ENLG damage formulation. The metric g is now given
in local coordinates by g = q/(1 −D) and its inverse reads g−1 = (1 −D)q−1.

The expression of the stress tensor σ, and of a and b, are exactly the same as in
Equation (4.45), Equation (4.49) and Equation (4.50). The thermodynamic force Z

figuring in Equation (4.86) can be derived from the one obtained for the anisotropic model
considering:

Y0 = −ρ∂ψ0

∂D
q−1 D = Dq (4.77)

Substituting (4.77) into (4.75), one has:

D = Y : Ḋ

=
(

−ρ∂ψ0

∂D
q−1 + hc

2 ∇ē⊗ ∇ē
)

: Ḋq

=
(

−3ρ∂ψ0

∂D
+ hc

2 ∇ē · ∇ē
)
Ḋ = Y Ḋ ⩾ 0 (4.78)

3Notice that I♭ : (dē ⊗ dē) ̸= dē♭ ⊗ dē♭ since the Euclidean metric is used in I♭.
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where we exploited the following property:

(∇ē⊗ ∇ē) : q = tr(∇ē⊗ ∇ē) = ∇ē · ∇ē (4.79)

×Remark 4.7. Alternatively one could follow an independent derivation. In that
case, one obtains:

Z = −hc

2
∂∥∇̃ē∥2

g

∂D

= −hc

2
∂

∂D
(g−1 · dē · g · g−1 · dē)

= −hc

2
∂

∂D

[
(1 −D)q−1 · dē · q · q−1 · dē

]
= hc

2 dē · q−1 · dē (4.80)

Now, one can easily notice that dē · q−1 · dē in (4.80) is a scalar product in the
Euclidean space, i.e.:

dē · q−1 · dē = ∥dē∥2 = ⟨dē, dē⟩q = dē · dē = ∇ē · ∇ē (4.81)

As a consequence, the expression of the dissipation rate taking into account the
modified energy release rate for the full 3D isotropic ENLG model is:

D = Y Ḋ =
(

−3ρ∂ψ0

∂D
+ hc

2 ∇ē · ∇ē
)
Ḋ ⩾ 0 (4.82)

3.7 On the importance of using a differential geometry frame-
work

To underline the importance of a proper geometrical description, let us now try deriving
the ENLG model using a standard approach, i.e., by assuming that all the quantities
belong to the same Euclidean space.

Drawing from the free-energy potential postulated by (Peerlings et al., 2004), a free-
energy potential for the anisotropic ENLG model in a fully Euclidean context can be
written as:

ρψ = ρψ(ε,D, ē) = ρψ0 + 1
2h
√

detg (e− ē)2 + 1
2hc

√
detg g−1 : (∇ē⊗ ∇ē) (4.83)

To study the implications of such a choice, let us consider the 3D isotropic formulation.
Using (4.10), the free-energy potential (4.83) can be rewritten as:

ρψ = ρψ(ε, D, ē) = ρψ0(ε, DI) + 1
2h

1√
(1 −D)3

(e− ē)2 + 1
2hc

1√
1 −D

∇ē · ∇ē (4.84)
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From the state laws, one obtains:

σ = σ0 + h
1√

(1 −D)3
(e− ē)∂e

∂ε
(4.85)

Y = Y0 + Z (4.86)

a = − h√
(1 −D)3

(e− ē) (4.87)

b = hc√
1 −D

∇ē (4.88)

where:

Y0 = −ρ ∂ψ0

∂(DI) : I = −3ρ∂ψ0

∂D
⩾ 0 (4.89)

Z = −h

2
∂

∂D

 1√
(1 −D)3

(e− ē)2 + c√
1 −D

∇ē · ∇ē


= −h

2

3
2

1√
(1 −D)5

(e− ē)2 + c

(1 −D)2 ∇ē · ∇ē
 ⩽ 0 (4.90)

The Helmholtz problem (4.11)–(4.12), is straightforwardly obtained by replacing
previous equations into (4.37) and (4.39), with the usual assumption that ae = ac = 0
and be = 0.

Comments on stress tensor and energy dissipation. Although the BVP correspond-
ing to the ENLG model can be derived from (4.84), one can detect some inconsistencies
in the previous formulations by investigating the expressions of σ and Y for the isotropic
case. In particular:

(i) Stress tensor. Let us compare expressions (4.85) and (4.45). Contrarily to (4.45)
(and contrarily to the GNL model), the term (1 − D) figures in the denominator
of the non-local contributions. It results from the "arbitrary" modification of the
free-energy potential by (Peerlings et al., 2004) to account for damage-dependent
interactions. Now, the term σ0 = (1 − D)E : ϵ vanishes when D → 1. However,
if an arbitrary small constant value is chosen for h, the second contribution to σ

in equation (4.85) may eventually tend to infinity when D → 1. This is physically
inconsistent since a zero-stress condition should be described.

(ii) Energy dissipation. Let us now consider the expression (4.90) of the non-local
thermodynamic force Z. According to (4.90), Z is always negative. Consequently,
the dissipation inequality D = (Y0 + Z)Ḋ ⩾ 0 may not be verified when D → 1.
Conversely, the Clausius-Duhem inequality is always fulfilled when the expression of
Z is derived with the differential geometry-based derivation.

The inconsistencies mentioned above are intrinsically related to how the modified
free-energy potential (4.84) was written in a purely Euclidean setting. To obtain the
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3. Differential geometry viewpoint to the thermodynamics of ENLG models

expression of b allowing for obtaining the Helmholtz problem (4.11)–(4.12) corresponding
to the ENLG model, the factor

√
detg was added to the terms related to the non-local

strain and its gradient. However, this led to a wrong description of the stress tensor and
intrinsic dissipation. In other words, such a way of defining the free-energy potential does
not allow for correctly deriving the ENLG model.

3.8 Comparison with other formulations from the literature

3.8.1 Micromorphic model of Poh and Sun (2017)

The free energy reads:

ρψ = ρψ(ε, D, ē) = 1
2(1 −D)ε : E : ε + 1

2h (e− ē)2 + 1
2hcg(D)∥∇ē∥2 (4.91)

where g(D) is defined in Equation (2.25). Following usual arguments, one can derive the
modified Helmholtz problem and obtain Equation (2.24).

According to this formulation, the intrinsic dissipation reads:

D = 1
2

(
ε : E : ε − ∂g

∂D
hc∇ē · ∇ē

)
Ḋ ⩾ 0 (4.92)

which is always positive for Ḋ ⩾ 0, provided that ∂g/∂D < 0.

Similarities and differences. This model closely resembles the isotropic ENLG dam-
age model, with the only difference being the decreasing function g which is naturally
introduced by the metric g in the ENLG model. However, this latter presents some
interesting features:

(i) residual non-local interactions do not exist since the gradient term in (5.1) vanishes
when damage approaches the unity (i.e., ē → e when D → 1);

(ii) vanishing non-local interactions (or vanishing internal length) naturally represent
damage-to-fracture transition. This means that a "pseudo-crack" can be described,
and interactions between material points crossed by it are no longer allowed;

(iii) finally, the ENLG model does not require the introduction of additional parameters
for describing the evolving interactions, as this approach relies entirely on a geometric
problem description.

3.8.2 Stress-based GNL model of Vandoren and Simone (2018)

As already introduced in Chapter 2, the stress-based gradient-enhanced anisotropic model
was proposed by Vandoren and Simone (2018).
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Chapter 4. Differential geometry-based derivation

Similarities and differences. From a mathematical viewpoint, the stress-based GNL
model is very similar to the ENLG one. Choosing, for instance, c = g−1 (Equation (2.22)),
the only missing term in their model is related to

√
detg =

√
detc−1, which naturally

appears in the ENLG formulation.
However, conceptually, the differences between the two formulations are more pro-

nounced. Stress-based formulations (Giry et al., 2011; Vandoren & Simone, 2018) are
suitable for modeling evolving interactions due to damage evolution and vanishing interac-
tions close to stress-free boundaries. In contrast, the ENLG model is suitable for dealing
with newly created boundaries (i.e., damaged bands) inside the considered domain only.

The influence of existing boundaries on non-local interactions is not considered in
ENL formulations. However, they can be easily introduced by applying a modified
metric depending on damage and stress states. For instance, one could imagine writing
g = [c · (I − D)]−1. A similar formulation that couples the effects of damage and stress on
non-local interactions was introduced by (Negi et al., 2020). The free-energy potential
proposed by the last cited paper has strong relations with the one proposed for the ENLG
model based on a geometric damage description (equation (4.44)).

4 Comments on bifurcation in a gradient-enhanced
Eikonal continuum

To better understand the regularization properties of the ENLG model within a general
context,this section proposes to investigate the bifurcation in a gradient-enhanced con-
tinuum. This analysis is primarily inspired by the work of Pijaudier-Cabot and Benallal
(1993). It is proposed here to extend the discussion to the gradient-enhanced models GNL
and ENLG in the case of isotropic damage.

Similar to the wave dispersion analysis in Chapter 3, we extend Equation (3.1) to the
3D setting:

∇ · σ̇ = ρ
∂u̇2

∂t2
(4.93)

where u̇ denotes the velocity field and σ̇ is given by the linearized material behavior,
expressed as:

σ̇ = (1 −D0)E : ε̇ − ḊE : ε0 (4.94)

with D0 and ε0 defining an initial homogeneous equilibrium state. Here, we considered
that h ≪ ∥E∥. To compare the subsequent resulting expressions with those developed in
(Pijaudier-Cabot & Benallal, 1993), it is considered that damage evolves based on the
non-local counterpart of the thermodynamic force Y , leading to:

D = g(κ) f = Ȳ − κ Ḋ = ∂g

∂κ
κ̇ = g′κ̇ (4.95)

with the criterion function f to be considered under the consistency condition ḟ = 0,
implying ˙̄Y = κ̇ as damage evolves. As we will see further on, this choice leads to
expressions of Ȳ and its derivatives which are more simple to handle and depend also on
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E. Consequently, Equation (4.93) can be rewritten as:

∇ ·
[
(1 −D0)E : ε̇ − g′ ˙̄Y E : ε0

]
= ρ

∂u̇2

∂t2
(4.96)

where the classic assumption of damage evolution occurring in all the points of the solid
is adopted.

4.1 Linearized gradient-enhanced models
ENLG model. Let us consider the general ENLG Equation (4.61) applied to the
thermodynamic force Y ::

Ȳ − c√
det g

∇ · (
√

det g g−1 · ∇Ȳ ) = Y (4.97)

Expanding this equation yields:

Ȳ − c√
det g

[(
∇ · (

√
det g g−1)

)
· ∇Ȳ +

√
det g g−1 : ∇(2)Ȳ

]
= Y (4.98)

By following the development in Section 1.3, assuming a small perturbation around
the initial state, g = g0 + ga and Ȳ = Ȳ0 + Ȳa and differentiating with respect to time
while considering the initial homogeneous state, we obtain:

˙̄Y − cg−1
0 : ∇(2) ˙̄Y = Ẏ (4.99)

with g−1
0 = I − D0. This equation represents the linearized version of the ENLG

model Helmholtz-type equation expressed in a rate form considering anisotropic (damage)
interactions. This is equivalent to considering an anisotropic weighting function depending
on the normal nd (as discussed in (Pijaudier-Cabot & Benallal, 1993)).

One can easily retrieve the case of isotropic damage by considering g−1
0 = (1 −D0)I,

which gives:
˙̄Y − c(1 −D0)∇2 ˙̄Y = Ẏ (4.100)

which is essentially equal to the 1D setting described by Equation (3.22) replacing ē by
Ȳ . Thus, Equation (4.99) generalizes the linearized ENLG model for any dimension,
considering isotropic and anisotropic cases.

GNL model. The linearized version of the GNL model equation can be obtained from
the ENLG one, considering g−1

0 = I, resulting in:

˙̄Y − c∇2 ˙̄Y = Ẏ (4.101)

which is exactly the one derived for the 1D setting in Equation (3.8).

×Remark 4.8. Notice that Ẏ is given by:

Ẏ = 1
2 (ε̇ : E : ε0 + ε0 : E : ε̇) = ε0 : E : ε̇ (4.102)
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due to the major symmetries of E.

4.2 Linearized coupled problem for the ENLG model
Following Pijaudier-Cabot and Benallal (1993), let us consider the velocity field written
in the form of a harmonic wave propagating in the direction nd:

u̇ = A exp [−ik(nd · x − cpt)] (4.103)

with A denoting its amplitude and k the wave number. The rate of deformation ε̇ can be
computed as:

ε̇ = ∇su̇ = −1
2ik [A ⊗ nd + nd ⊗ A] exp [−ik(nd · x − cpt)] = ε̂ exp [−ik(nd · x − cpt)]

(4.104)
where ε̂ denotes the tensorial amplitude.

A particular solution of the non-local field can be written in the form of a harmonic
wave:

˙̄Y = Ŷ exp [−ik(nd · x − cpt)] (4.105)

∇ ˙̄Y = −ikŶ nd exp [−ik(nd · x − cpt)] (4.106)

∇(2) ˙̄Y = −k2Ŷ nd ⊗ nd exp [−ik(nd · x − cpt)] (4.107)

Substituting these expressions into Equation (4.99), we obtain:

Ŷ = ε0 : E : ε̇

1 + ck2g−1
0 : (nd ⊗ nd)

(4.108)

which can be again simplified in the case of isotropic damage as:

Ŷ = ε0 : E : ε̇

1 + ck2(1 −D0)(nd · nd) = ε0 : E : ε̇

1 + ck2(1 −D0)
(4.109)

Substitution of Equation (4.108) combined with Equation (4.105), Equation (4.104)
and Equation (4.103) into Equation (4.96), leads to:[

(1 −D0) (nd · E · nd) − g′

1 + ck2(1 −D0)
(nd · E : ε0 ⊗ ε0 : E · nd)

]
· A = ρc2

pA (4.110)

which can be recast in the form:[
nd · L(k) · nd − ρc2

pI
]

· A = 0 (4.111)

Here, L(k) denotes the non-local (dependent on the wave number) tangent operator,
defined as:

L(k) = (1 −D0)E − g′

1 + ck2(1 −D0)
E : ε0 ⊗ ε0 : E (4.112)
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×Remark 4.9. Considering the minor and major symmetries of E, notice that
the following equalities were used to derive Equation (4.110):

E : (A ⊗ nd + nd ⊗ A) · nd = Eijkl(Aknl + nkAl)nj

= njEjiklnlAk + njEjilknkAl

= 2 (nd · E · nd) · A (4.113)
(E : ε0) · nd (ε0 : (E : (nd ⊗ A))) = (Eijklεklnj)(εmnEmnqpnp)Aq

= (nd · E : ε0 ⊗ ε0 : E · nd) · A (4.114)

The expression in Equation (4.110) closely resembles the one obtained by Pijaudier-
Cabot and Benallal (1993) for the classic integral approach. In their case, the dependence
on the wave number is considered through the Fourier transform of the weighting function,
whereas here it is related to the term ck2(1 −D0).

If c = 0, the continuum has no non-local effects, and we retrieve the tangent operator
of a local continuum (see for instance Jirásek (2007)). This is equivalent to a have a
Dirac distribution as the weighting function for the integral approach (Pijaudier-Cabot &
Benallal, 1993). This condition can be achieved independently of the value of c for the
ENLG model. Indeed, for high initial damage levels, the regularizing term ck2(1−D0) tends
to vanish, which represents the damage-dependent vanishing interactions characteristic of
the model.

GNL model. A similar derivation for the GNL model leads to:

L(k) = (1 −D0)E − g′

1 + ck2E : ε0 ⊗ ε0 : E (4.115)

This formulation behaves similarly to the INL classic approach.

×Remark 4.10. The expression of the tangent operator highlights an essential
aspect of a non-local continuum. It depends on the material behavior through g′ and
the regularization technique employed through c. Therefore, the behavior influences
the regularization properties and vice versa, highlighting that experimental fittings
must be carried out at the structural level and not only at the RVE scale.

4.3 Bifurcation analysis
ENLG model. Let us consider the static case (i.e., cp = 0), so the non-trivial solution
of Equation (4.111) is obtained by:

det
[
nd · L(k) · nd

]
= 0 (4.116)

which is exactly the same bifurcation condition derived for a local continuum, as described
in Chapter 2. Here, the main difference lies in the term nd · L(k) · nd, which represents a
sort of pseudo-acoustic tensor (Pijaudier-Cabot & Benallal, 1993) dependent on the wave
number of the bifurcation mode.
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From Equation (4.111), we can derive the following bifurcation conditions:

(1 −D0)(1 + ck2(1 −D0))
g′ I = (nd · E · nd)−1 · (nd · E : ε0 ⊗ ε0 : E · nd) (4.117)

which can be further simplified as:

(1 −D0)(1 + ck2(1 −D0))
g′ = (nd · E : ε0) · (nd · E · nd)−1 · (ε0 : E · nd) (4.118)

×Remark 4.11. It’s worth noting that:

(1 −D0)(1 + ck2(1 −D0))
g′ δrp = (nd · E · nd)−1

rj niEijklεklεmnEmnpqnq (4.119)

which leads to (r = p):

(1 −D0)(1 + ck2(1 −D0))
g′ = (nd · E · nd)−1

pj niEijklεklεmnEmnpqnq

= (nd · E : ε0)j (nd · E · nd)−1
jp (ε0 : E · nd)p

= (nd · E : ε0) · (nd · E · nd)−1 · (ε0 : E · nd) (4.120)

where the symmetry of (nd · E · nd)−1 was used.

As pointed out by Pijaudier-Cabot and Benallal (1993) and Leblond et al. (1994), the
localization condition in a non-local continuum is satisfied for an admissible direction
nd and its corresponding wave number of the bifurcation mode. This holds true for the
ENLG model. Equation (4.118) clarifies that the ENLG model exhibits the same behavior
for D0 < 1. Each solution direction nd has an unique admissible wave number associated
with it, which differs from the classic local continuum. In this last case, since c = 0, the
influence of k vanishes from the left-hand side of Equation (4.118), allowing all wave
numbers for a given direction nd.

The limit case where D0 → 1 demonstrates the re-localizing nature of the ENLG
model, retrieving a local bifurcation condition for high damage levels. This behavior is in
agreement with the theoretical assumptions of the Eikonal formulation. Indeed, if D0 → 1
in Equation (4.100), one has Ȳ → Y . Consequently, the Green function associated to the
Helmholtz-type differential equation tends to the Dirac distribution (see Chapter 2). Thus,
the equivalent ENLI formulation also exhibits the same re-localizing behavior. While
desired for vanishing interactions in non-local models, this behavior may lead to spurious
behavior in numerical simulations upon failure.

It is important to highlight that D0 = 1 corresponds to an initial fully damaged
material (equivalent to the appearance of a macro-crack) rendering the entire bifurcation
analysis meaningless for any non-local or local continuum model.

GNL model. Similarly, the bifurcation equation for the GNL model is:

(1 −D0)(1 + ck2)
g′ = (nd · E : ε0) · (nd · E · nd)−1 · (ε0 : E · nd) (4.121)
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The only difference compared to the ENLG model is related to the term 1+ck2. Notice
that the non-local term contributing to the equation does not vanish for high damage
levels.

Geometric representation. One searches for the admissible directions nd and the
corresponding wave numbers. The geometric method proposed by Benallal and Lemaitre
(1991) and further applied to the non-local integral theory in (Pijaudier-Cabot & Benallal,
1993; Baxevanis et al., 2008) is used here.

Let us consider the ENLG model and an initial isotropic medium. Now, E reads as in
Equation (1.65) and one has:

(nd · E · nd)−1 = I
G

− λ+G

G(λ+ 2G)nd ⊗ nd (4.122)

E : ε0 · nd = λtr ε0nd + 2Gε0 · nd (4.123)
nd · E : ε0 · nd = λtr ε0 + 2Gnd · ε0 · nd (4.124)

and the right-hand side of Equation (4.118) can be re-expressed as:

(nd · E : ε0) · I · (ε0 : E · nd)
G

− λ+G

G(λ+ 2G) (nd · E : ε0 · nd) (nd · ε0 : E · nd) (4.125)

Substituting Equations (4.123) and (4.124) into the previous equation combined with
Equation (4.118), we obtain:

4Gε2
T + 4G2

λ+ 2G

(
εN + λtr ε0

2G

)2

= (1 −D0)(1 + ck2(1 −D0))
g′ (4.126)

where εT and εN denote the tangential and normal components of the strain vector ε0 · nd,
respectively. They are defined as:

εN = nd · ε0 · nd (4.127)
ε2

T = (ε0 · nd) · (ε0 · nd) − ε2
N (4.128)

In the (εN , εT ) plane, the initial strain state ε0 can be geometrically represented
by Mohr circles describing the state for all directions nd. Moreover, Equation (4.126)
represents an ellipse in the same plane, whose size is controlled by the term 1+ck2(1−D0).
Thus, different ellipses exist for different wave numbers k. The bifurcation criterion in a
gradient-enhanced continuum can be, therefore, interpreted as the condition where the
corresponding ellipse, for a given wave number, is tangent to the biggest Mohr circle,
defining a unique couple (k,nd) (see Figures 4.5 and 4.6).

GNL model. The geometric bifurcation expression for the GNL model is similar to
that of the ENLG model, with the following equation:

4Gε2
T + 4G2

λ+ 2G

(
εN + λtr ε0

2G

)2

= (1 −D0)(1 + ck2)
g′ (4.129)

The only difference compared to the ENLG model is the absence of the term (1 −D0)
in vanishing the wave number influence for high damage levels.
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Figure 4.5 • Geometric representation of bifurcation for an initial strain state corre-
sponding to D0 = 0.0.

Illustrative example. Let us consider the following initial state of strains for illustra-
tion:

ε0 =


ε01

−νε01
−νε01

 (4.130)

along with the damage evolution law:

D =


√
κc√
κ

√
κ−√

κ0√
κc−√

κ0
if κ < κc

1 if κ ⩾ κc

(4.131)

THis lax is essentially the same as the one proposed in Equation (3.29), modified to
account for the fact that here the criterion function is written in terms of the energy release
rate. Parameters used in the examples depicted in Figures 4.5 and 4.6 are E = 20000 MPa,
ν = 0.2, κ0 = 1.11 × 10−4MPa, κc = 6.00 × 10−3MPa and c = 1 mm2. The initial state is
ε01 = 0.0001 with g′ = 5208.33 MPa−1.

The first bifurcation occurs for a local model (i.e., c = 0) or for a non-local one with
wave number k = 0 (i.e., infinite wavelength 2π/k). This is represented in Figure 4.5
by the intersection of the Mohr circle of the strains and the red ellipse at (εN , εT ) =
(7.6 × 10−5, 4.8 × 10−5). Considering nd = (cos θ, sin θ, 0)⊤, the corresponding bifurcation
angle between the loading direction and the normal to the discontinuity is θ = 26.57◦.
Similar results were obtained by Jirásek (2007) and Masseron et al. (2022) with different
damage models.

It follows that the bifurcation condition in a local continuum serves as a lower bound
for the ENLG and GNL models. For any c > 0 and k > 0, the corresponding ellipse is
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Figure 4.6 • Geometric representation of bifurcation for an initial strain state corre-
sponding to D0 = 0.59.

bigger than that of the local model. For a fixed c, its size increases with the wave number.
For the initial state where D0 = 0.0, there are essentially no differences between the

ENLG and GNL models. The gradient-enhanced continuum is exactly the same for both
cases, resulting in superposed ellipses in Figure 4.5.

Let us consider a different initial state with D0 = 0.59 and ε01 = 2.04×10−4, leading to
g′ = 618.30 MPa−1. The corresponding geometric representation is depicted in Figure 4.6.
In this case, differences between ENLG and GNL models become apparent through the
analysis of the critical wave number (or similarly the critical wavelength). For each model,
there exists an unique kc for which the corresponding ellipse is tangent to the Mohr
circle. This is geometrically represented by the green ellipse in Figure 4.6, achievable for
both models but with different wave numbers. For this example, from Equations (4.132)
and (4.133), one has kENLG

c = 0.68 mm−1 and kGNL
c = 0.44 mm−1. For kGNL = kENLG

c , one
has a bigger ellipse for the GNL model, represented in brown in Figure 4.6, which does
not intersect the strain Mohr circle. Thus, for increasing levels of D0, the critical wave
number increases faster for the ENLG model when compared to the GNL model. The
associated critical wavelength 2π/kc therefore decreases with D0, reflecting the behavior
derived in Chapter 3. It is proportional to

√
c (see Equations (4.132) and (4.133)), and

thus proportional to the internal length, which can be related to the size of the localized
zone.

This is an essential feature of ENLG and GNL models. The gradient parameter c, and
therefore the internal length, define a finite value of the critical wavelength associated to a
bifurcation direction. In contrast, arbitrary wavelengths are possible in a local continuum.
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Critical wave number. The critical wave number for each model can be obtained from
Equations (4.126) and (4.129) and reads:

kENLG
c =

√√√√√ 1
c(1 −D0)

 g′

1 −D0

4Gε2
T + 4G2

λ+ 2G

(
εN + λtr ε0

2G

)2
− 1

 (4.132)

kGNL
c =

√√√√√1
c

 g′

1 −D0

4Gε2
T + 4G2

λ+ 2G

(
εN + λtr ε0

2G

)2
− 1

 (4.133)

These expressions resemble the critical wave numbers obtained by Equations (3.15)
and (3.25) in Chapter 3 based on the wave dispersion analysis in a one-dimensional bar.
A similar expression can be derived from Equations (4.132) and (4.133), by considering
ν = 0 and uni-axial strain state on x direction (which implies that G = E/2, λ = 0,
εT = 0 and εN = ε01), resulting in:

kENLG
c =

√
1

c(1 −D0)

(
g′

1 −D0
2Y0 − 1

)
(4.134)

kGNL
c =

√
1
c

(
g′

1 −D0
2Y0 − 1

)
(4.135)

Here, Y0 = 0.5Eε2
01. The above expressions closely resemble the ones obtained in Equa-

tions (3.15) and (3.25), with 2Y0 instead of ε0, due to the criterion function written in
terms of Y . Thus, the developed geometric representation generalizes the critical wave
number obtained by the wave dispersion analysis.

In conclusion, the ENLG regularization preserves the localization limiting character of
non-local approaches, such as the one described by Pijaudier-Cabot and Benallal (1993)
for the INL model. The minimum wavelength at the onset of localization cannot be zero
and has a critical value associated to a specific bifurcation direction. For high initial
values of D0, the ENLG model tends to approach the local condition for bifurcation,
reducing the influence of c in the analysis. As explained before, this entirely agrees with
the theoretical assumptions of the model and its re-localizing nature. However, it has an
impact in numerical simulations, as we will see in the remainder of this thesis.

Yet, the bifurcation condition was developed following the classical assumptions of
localization analysis: a homogeneous initial state was considered, and boundary effects
were neglected. In reality, the complete regularization properties of non-local models
depend on the entire degradation history. Completing the bifurcation analysis could
involve considering an initial (possibly anisotropic) damage state that is not homogeneous.
For instance, it may be interesting to understand the link between the singularity of the
metric tensor and the bifurcation condition.

5 Numerical simulations
The isotropic ENLG and GNL damage models are implemented in a finite element toolbox
developed in-house at CEA (Badri et al., 2021; Badri & Rastiello, 2023) (for testing
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purposes) using the FreeFEM (Hecht, 2012) platform (https://freefem.org/). Both models
are tested in the simulation of two classic problems to highlight differences and underline
how the ENLG model behaves in situations where the GNL model shows some well-known
drawbacks. Full 2D conditions are considered. Accordingly, the variational equation (4.18)
needs to be solved in addition to the equilibrium equation during the solving process.

5.1 Damage model
An isotropic damage model with a single scalar damage variable D ∈ [0, 1] is considered.
Following (Sarkar et al., 2019) and (Negi & Kumar, 2022), parameter h can be taken
very small compared to the Young’s modulus, and the constitutive stress-strain relation is
simplified as:

σ(u, D) = (1 −D)E : ε(u) (4.136)

The damage variable evolves according to the exponential evolution model introduced
in Equation (1.46), with the damage-driving history variable:

κ = max
t

(κ0, ē) (4.137)

where ē = ē(ε(u)) is the non-local equivalent strain, κ0 is the damage threshold, Bt the
damage brittleness, and αt is a parameter used to account for residual stresses in the
behavior law. The local equivalent strain is computed according to the modified Von
Mises definition (De Vree et al., 1995), defined in Equation (1.45).

Figure 4.7 • Four-point bending test – Geometry and boundary conditions.

5.2 Finite element implementation
The domain Ω is discretized through a finite element mesh Ωh containing linear triangular
elements (Constant Strain Triangles, CST). The unknown displacement and non-local
equivalent strain fields on each finite element are approximated by linear interpolation of
their nodal values (denoted by the piece-wise polynomials P1). This choice is retained
here since the damage variable is kept uniform within an element, ensuring compatibility
between the linear strain and damage and, therefore, yielding a smooth stress field (Simone
et al., 2003a; Peerlings, 1999).
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A staggered/partitioned Picard iteration algorithm is employed to handle non-linearity
(Badri et al., 2021; Badri & Rastiello, 2023). At iteration k + 1, one first computes the
[P1,P1] discretized vector-valued displacement field uh,k+1 ∈ Uh(ud) such that:

∫
Ωh

(1 −Dh,k)ε(uh,k+1) : E : ε(vh) dV =
∫

∂Ωh
F

td · vh dS ∀ vh ∈ Uh(0) (4.138)

and then computes the P1 discretized nonlocal equivalent strain field ēh,k+1 solving:
∫

Ωh

1
1 −Dh,k

ēh,k+1 ηhdV+
∫

Ωh
c∇ēh,k+1·∇ηhdV =

∫
Ωh

1
1 −Dh,k

e(ε(uh,k+1)) ηhdV ∀ηh ∈ Vh

(4.139)
Here, (Uh(ud), Uh(0), Vh) are the discretized counterparts of (U(ud), U(0), V), Dh,k

is the P0 discretized damage field at iteration k, and e(ε(uh,k+1)) is the P0 local strain
field computed from the symetrized gradient of uh,k+1. At each iteration, the field ēh,k+1

is used to update the P0 history variable field κh and compute damage. The computation
is repeated till convergence at each pseudo-time step.

0 5 · 10−2 0.1 0.15 0.20

1

2

3

4
(2)(1) (3)

Displacement, u (mm)

R
ea

ct
io

n
fo

rc
e,

F
(k

N
)

ENLG, 6462els
GNL, 6462els
ENLG, 11504els
GNL, 11504els
ENLG, 16004els
GNL, 16004els

Figure 4.8 • Four-point bending test – Structural force vs. displacement responses
computed using the GNL and ENLG models and three different meshes.

5.3 Four-point bending test

A notched beam is submitted to a four-point bending test (Figure 4.7). Numerically, an
increasing displacement is imposed at the loading points (denoted by the force F ). The
structure is discretized using three different meshes with additional refinement in the
central zone of the beam. They contain 6262 (coarse mesh), 11504 (medium mesh) and
16004 (fine mesh) elements, respectively. Material parameters used in simulations are
given in Table 4.1.
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Table 4.1 • Four-point bending test – Material parameters.

E c κ0 Bt k αt ν

[N/mm2] [mm2] [-] [-] [-] [-] [-]
40000 4 0.000075 300 10 0.92 0.2

Global responses. Figure 4.8 shows the structural responses (force vs. displacement)
obtained using the ENLG and GNL models for the three considered meshes. Mesh
convergence is obtained for the GNL model, whereas slight differences can be observed in
the responses upon mesh refinement for the ENLG formulation. Moreover, the ENLG
model gives more brittle responses than the GNL model, as is expected for evolving
interaction approaches (Giry et al., 2011; Vandoren & Simone, 2018; Rastiello et al.,
2018b).

Figure 4.9 • Four-point bending test – Damage evolution computed using the GNL and
ENLG models (displacement levels identified by labels (1), (2) and (3) in
Figure 4.8).

Damage evolution. The damage maps computed for three different imposed displace-
ment levels using both models are depicted in Figure 4.9. In the early phases of the
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Figure 4.10 • Four-point bending test – Damage maps at the end of the simulation
(step (3) in Figure 4.9) for the GNL and ENLG models (post-processing
element deletion applied for D > 0.995 to identify a "pseudo-crack").

test (step 1), the damage fields provided by the GNL and ENLG models are very similar
(damage starts close to the notch). Then, the damaged zone computed by the GNL model
becomes wider than the one obtained through the ENLG model. In this latter case, the
damage field tends to localize since the early phases of the simulation (i.e., the damage
tends to unity on a single line of elements) and propagates towards the upper part of
the beam (step 2). At the end of the simulation (step 3), nonphysical damage spreading
takes place for the GNL model around the notch. Damage is diffused in a large zone, and
the expected "pseudo-crack" path cannot be described. Conversely, the damage is still
localized in a smaller damage band (with D → 1 on its center) about 2lc in width for the
ENLG model, and the nonphysical damage diffusion does not occur. Very similar behavior
was described by (Rastiello et al., 2018b) considering an integral ENL damage model.

Figure 4.11 • Shear-band test – Geometry and boundary conditions.

This feature can be even better underlined by applying a simple post-treatment of
the damage field. Figure 4.10 shows the damage maps at the end of the simulation,
considering element deletion when D exceeds the arbitrary threshold value of 0.995 at a
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Table 4.2 • Shear-band test – Material parameters.

E c κ0 Bt k αt ν

[N/mm2] [mm2] [-] [-] [-] [-] [-]
20000 2 0.0001 100 1 0.94 0.18

given integration point. In the case of the GNL model, high damage levels are attained over
a large region, which cannot be compared to a realistic "pseudo-crack". Conversely, the
ENLG model provides a more physical "pseudo-cracking" behavior since D → 1 on a single
line of elements. This behavior is directly related to non-local interactions evolution during
the computation. In particular, material points separated by the damage band no longer
interact due to the damage-dependent Riemannian metric. Consequently, nonphysical
damage spreading does not occur. The ENLG not only gives a better description of the
"pseudo-crack" path compared to the GNL model but also shows promising features to
naturally model damage-to-fracture transition, thus coupling CDM and Fracture Mechanics
models.
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Figure 4.12 • Shear-band test – Structural force vs. displacement responses computed
using the GNL and ENLG models and three different meshes.

5.4 Shear-band problem

The second example analyzed is the shear-band test. A square plate is submitted to
a compression action on the upper boundary (Figure 4.11). An increasing vertical
displacement is applied to the top of the specimen, whereas the bottom of the specimen is
constrained. Once again, three different meshes are used for the simulations. They contain
13473 (coarse mesh), 33706 (medium mesh) and 52869 elements (fine mesh), respectively.
A rectangular weakened zone (with κ⋆

0 = κ0/5), 6x3 mm2 in size, is placed on the bottom
left of the specimen to initiate damage. Material parameters are given in Table 4.2.
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Figure 4.13 • Shear-band test – Damage evolution computed using the GNL and ENLG
models (displacement levels identified by labels (1), (2) and (3) in Fig-
ure 4.12).

Global responses. The structural responses obtained using the GNL and ENLG models
and different meshes is given in Figure 4.12. The maximum reaction force is the same for
both models. After the load peak is reached, the responses provided by the two models
start to differ. Mesh convergence is obtained for the GNL model, but differences are
observed in the responses provided by the ENLG model for the different meshes. A clear
tendency toward mesh convergence is, however, observed.

Damage evolution. Figure 4.13 gives the damage maps computed using the GNL and
ENLG models for three simulation steps. In the early phases of the simulation (step 1),
right after the maximum reaction force, damage initiates in the weakened zone and starts
to propagate diagonally in the specimen (step 2). From this point on (step 3), the size of
the damage band tends to increase in the transverse direction (the band enlarges). This is
a well-known drawback of the classic non-local damage models. Contrarily, the shear band
remains stationary for the ENLG model since no non-local interactions occur between
material points. High damage levels are concentrated in a thin band a few elements width.

Such behavior becomes clearer when post-processing the results by deleting the elements
where damage exceeds the threshold value of 0.999 (see Figure 4.14). For illustration,
a very large displacement level is considered in this case (u = 0.5 mm). One can see
that damage exceeds the threshold value in a larger zone in the case of the GNL model,
whereas it tends to concentrate on almost one line of elements in the case of the ENLG
model (i.e., a "pseudo-crack" is described). Once again, the ENLG model provides a more
physical behavior than the GNL one.
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Figure 4.14 • Shear-band test – Damage map computed for a high displacement level
(u = 0.5 mm) (post-processing element deletion applied for D > 0.999 to
identify a "pseudo-crack").

Comments on solution oscillations. The small oscillations observed in the force vs.
displacement responses illustrated in Figure 4.12 concerning the ENLG model are related
to the numerical approximation of the solution. (Vandoren & Simone, 2018) studied this
aspect and its consequences on the damage and non-local equivalent strain evolution.
They showed that, in a finite element context, the vanishing gradient parameter in (2.22)
causes oscillations in the non-local field controlling damage evolution. In this case, mesh
convergence could be affected, and minor damage spreading could take place. Such an
effect is also present in the ENLG model. It is less pronounced in the 2D formulation
used here since the finite element matrix related to the term c in (4.139) does not vanish.
However, the contributions where the term 1/(1 −D) appears can still cause this effect.
Simulations in 1D and 3D of the ENLG model will inevitably show this behavior (see
(Ribeiro Nogueira et al., 2022a) for the 1D case) since the term related to c vanishes when
D → 1.

Vandoren and Simone (2018) proposed to use a minimum value of the gradient
parameter to cancel non-local interactions properly and significantly reduce this effect. A
similar study should be carried out for the ENLG model. The case of the ENLG model
is even more complex, as division by zero appears when D → 1. However, it should
be noted that from a physical viewpoint, the displacement field is no longer continuous
when this condition occurs. Consequently, instead of correcting the damage formulation,
strong discontinuities should be considered in the model to make it more physically and
numerically robust.
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Summary of Chapter 4

Formulation:

• A thermodynamic framework to derive anisotropic and isotropic ENLG damage
models based on a geometric extension of the micromorphic approach was
proposed.

• Compared to the GNL model, the only modification introduced in the free
energy is the consideration of a Riemannian norm (i.e., the non-local
equivalent strain lives in a space curved by damage).

• The bifurcation analysis shows that the ENLG models preserves the lo-
calization limiting character of non-local approaches. It differs from the
GNL model for D0 > 0 and presents a re-localizing nature for high initial
damage levels.

• The derived critical wave number generalizes the expressions obtained from
the wave dispersion analysis in Chapter 3.

Simulations:

• From simplified 2D isotropic damage numerical simulations, it is demonstrated
that the ENLG model gives more realistic crack paths when compared to
the GNL model.

• Damage re-localizes in almost one line of elements for the ENLG model,
which better describes a sort of “pesudo-crack”.

• The numerical examples illustrated in this chapter show that the force-
displacement responses provided by the ENLG formulation are highly brittle.

• In order to reduce the brittleness of the response, which is intrinsic to the
eikonal formulation and more generally to non-local formulations with evolving
interactions, one could use a different constitutive model or proceed with
an ad-hoc calibration of the model parameters.

• The limit case where D → 1 leads to a division by zero in the ENLG
formulation. One has g−1 that becomes singular, given that det(g−1) → 0,
and its inverse (the metric itself) cannot be obtained. In other words, similarly
to a black hole in space-time, D → 1 represents the case where a singularity
appears in the space curved by damage (see Figure 4.1).

• The transition from a regularized ENLG damage model to an explicit crack
description should be considered (see, for instance, (Mazars & Pijaudier-Cabot,
1996; Simone et al., 2003b; Cazes et al., 2009; Cuvilliez et al., 2012; Negi &
Kumar, 2022; Voreux, 2022)). This would be suitable not only to deal with
the singularity, but also to provide direct access to crack information.
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5
Numerical implementations and structural anal-
ysis with ENLG anisotropic damage

The main aim of this chapter is to study the performance and capabilities of the ENLG
regularization coupled to a tensorial damage behavior. The first sections provide a brief
overview of the general equations of Desmorat’s anisotropic damage model (Desmorat,
2015) and the ENLG regularization. A visualization technique based on using ellipsoids is
then introduced for representing damage and metric tensors, and to illustrate how induced
anisotropic behavior naturally results in evolving anisotropic interactions. Subsequently,
the numerical solution of the coupled problem is detailed. A staggered scheme is applied
to solve the variational formulation at the global level, and an iterative Newton-Raphson
procedure is used for constitutive law integration at the quadrature points. Then, the last
section offers a discussion concerning the main features of the presented formulation based
on the 2D simulation of well-known experimental tests. A purely numerical test case
is then developed to show the influence of anisotropic non-local interactions on damage
evolution. Finally, first three-dimensional simulations are briefly presented. Except from
some modifications in the text and additional comments, this chapter was extracted from
Ribeiro Nogueira et al. (2024b) Computer Methods in Applied Mechanics and Engineering,
429, 117100
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1 Introduction
Various anisotropic damage models have been developed to represent quasi-brittle materials
such as concrete, masonry, and certain types of rocks. These models use different
representations of damage, including vectors (Krajcinovic & Fonseka, 1981), second-order
tensors, fourth-order tensors (Krajcinovic & Mastilovic, 1995; Maire & Chaboche, 1997),
and even eighth-order tensors (Chaboche, 1982). However, fourth-order and eighth-order
tensors prove to be too complex due to the large number of components, making them
challenging to fully identify. Consequently, many authors have chosen to work with second-
order tensors (Cordebois & Sidoroff, 1982a; Cordebois & Sidoroff, 1982b; Ladevèze, 1983;
Murakami, 1988; Halm & Dragon, 1998; Desmorat, 2004; Desmorat, 2015), which restrict
the damage description to orthotropic behaviors. This assumption effectively captures
observed crack patterns in quasi-brittle materials, where cracks typically propagate either
perpendicular or parallel to the loading direction.

An alternative approach to modeling anisotropic damage is presented in (Bažant &
Oh, 1983a; Bažant, 1984a; Bažant & Gambarova, 1984; Bažant & Prat, 1988; Bažant
et al., 1996). This approach describes material behavior independently on planes of
various orientations (micro-planes) within a unitary sphere. Strain or stress vectors on
each plane are obtained by projecting their respective macroscopic tensors based on static
or kinematic constraints. For quasi-brittle materials, the strain tensor is projected onto
each micro-plane, and simple constitutive laws are used to compute stress tensors at
micro-planes. The macroscopic stress tensor is then obtained by integrating micro-plane
contributions spherically based on the principle of virtual work.

From a numerical perspective, when applied to simulations at the structure scale,
all the models cited above yield mesh-dependent results without regularization tech-
niques. Non-local damage models, both integral (Pijaudier-Cabot & Bažant, 1987) and
gradient-enhanced (Peerlings et al., 1996a), have been employed to recover objective
results. However, these methods fail to reproduce realistic cracking behavior due to
issues like parasite damage diffusion, incorrect damage initiation, and attraction to do-
main boundaries (Geers et al., 1998; Simone et al., 2004; Pijaudier-Cabot et al., 2004;
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Krayani et al., 2009; Pijaudier-Cabot & Dufour, 2010; Giry et al., 2011; Desmorat, 2015;
Rastiello et al., 2018a; Ribeiro Nogueira et al., 2022a). These drawbacks arise because
the interactions are considered constant and isotropic in classic approaches.

To address these limitations, a new class of non-local models with evolving interactions,
known as transient internal length models, has been developed. Geers et al. (1998) proposed
one of the earliest evolving interaction models, where the gradient parameter varied with
strain but remained isotropic. Isotropic damage-dependent evolving interactions were
introduced in (Poh & Sun, 2017), utilizing the micromorphic framework to derive a
similar gradient-enhanced model. Giry et al. (2011) developed a stress-based evolving
interactions integral model, more suitable to handle free boundaries. As stress fields are
employed, the interactions become inherently anisotropic. A gradient-enhanced version of
this anisotropic interactions approach was presented in (Vandoren & Simone, 2018). Negi
et al. (2020) proposed an anisotropic transient-gradient approach based on (Poh & Sun,
2017), coupling the effects of damage and stress fields in the interactions. Several other
evolving interaction models have been proposed in the literature (e.g., (Pijaudier-Cabot
& Dufour, 2010; Nguyen, 2011; Rojas-Solano et al., 2013; Nguyen et al., 2018; Amani,
2023)).

Inspired by the analogy between non-local interactions and wave propagation time in
damaged media, Desmorat and Gatuingt (2007a) and Desmorat et al. (2015a) introduced
the Eikonal Non-Local (ENL) regularization. This approach models non-local interactions
that depend on the damage field, potentially incorporating anisotropy. In this method,
non-local interaction distances are determined as the solution to a stationary eikonal
equation with a damage-dependent metric field. Rastiello et al. (2018a) presented a
two-dimensional (2D) implementation of the integral ENL regularization for isotropic
damage. Additionally, Thierry et al. (2020b) and Ribeiro Nogueira et al. (2022a) conducted
studies on the regularization properties of the ENL approach in one-dimensional (1D)
settings. Marconi (2022) conducted 2D computations utilizing an ENLG regularized
isotropic damage model and investigated the coupling between damage and plasticity
within a 1D framework. Recently, Ribeiro Nogueira et al. (2024a) provided a novel
theoretical derivation of the gradient-enhanced version of the ENL formulation and
applied it to 2D isotropic damage mechanics simulations.

Classic non-local models, characterized by a constant internal length, have been
employed in the context of anisotropic damage models in previous works. For exam-
ple, Desmorat et al. (2007a) utilized the conventional non-local integral approach alongside
a second-order damage tensor constitutive relation. Kuhl et al. (2000) incorporated a
classic gradient-enhanced model, based on the strain tensor, to regularize the anisotropic
microplane formulation for quasi-brittle materials. Zreid and Kaliske (2014) proposed a
simplified gradient-enhanced regularization of microplane models, where a scalar quan-
tity is used in the regularization instead of the strain tensor. Additionally, Fassin et al.
(2019) introduced a gradient-extended second-order anisotropic damage tensor model
while maintaining the internal length isotropic and constant. Initial anisotropic non-local
regularization, pertaining to materials with intrinsic anisotropy, has also been applied
for modeling composites (Wu et al., 2015; Jin & Arson, 2018; Forghani et al., 2019; Yin
et al., 2020; Lu & Guo, 2022). Similar concepts have been explored in the phase-field
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community (Li & Maurini, 2019; Teichtmeister et al., 2017; Nagaraja et al., 2023), where
the crack energy density was modified using structural tensors containing information
about preferential microstructure directions.

This paper introduces a novel approach by coupling an evolving anisotropic interaction
gradient-enhanced regularization (Desmorat et al., 2015a; Ribeiro Nogueira et al., 2024a)
with an anisotropic damage constitutive behavior (Desmorat, 2015). The key concept
is that anisotropic behavior in quasi-brittle materials, such as concrete, is induced by
damage, while the medium is initially considered isotropic. The induced anisotropy is
incorporated through the ENLG model, where non-local interactions naturally evolve
from isotropic to anisotropic based on a damage-dependent Riemannian metric.

The manuscript is structured as follows. Sections 2 and 3 provide a brief overview
of the general equations of Desmorat’s anisotropic damage model (Desmorat, 2015) and
the ENLG regularization. A visualization technique based on using ellipsoids is then
introduced for representing damage and metric tensors, and to illustrate how induced
anisotropic behavior naturally results in evolving anisotropic interactions. 4 details the
numerical solution of the coupled problem. A staggered scheme is applied to solve the
variational formulation at the global level, and an iterative Newton–Raphson procedure is
used for constitutive law integration at the quadrature points. Finally, 5 offers a discussion
concerning the main features of the presented formulation based on the 2D simulation of
well-known experimental tests. A purely numerical test case is then developed to show
the influence of anisotropic non-local interactions on damage evolution. Finally, a first
three-dimensional (3D) simulation is briefly presented, followed by some conclusions to
close the article.

2 Anisotropic eikonal gradient-enhanced damage for-
mulation

The ENL formulation, as proposed by Desmorat et al. (2015a), introduces a novel perspec-
tive on evolving non-local interactions. The underlying assumption is that damage induces
deformation in the space within which interaction distances are computed. The interaction
distances between the material points are obtained by solving a time-independent isotropic
eikonal equation (a Hamilton–Jacobi stationary equation) with a damage-dependent
Riemannian metric function. In this deformed space, the interaction distance between
two points corresponds to the length of the shortest (geodesic) path connecting them
(see (Rastiello et al., 2018a), for more details and illustrations).

2.1 Eikonal non-local formulation and anisotropic interactions

According to the general framework of anisotropic damage mechanics involving a second-
order (symmetric) tensor damage variable D, the differential problem for calculating the
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non-local variable ē that controls damage evolution is computed as follows:

ē− c√
det g

∇ ·
(√

det g g−1 · ∇ē
)

= e Ω (5.1)

g−1 · ∇ē · n = 0 ∂Ω (5.2)

where g is a damage-dependent Riemannian metric tensor (it completely defines the
deformation of the space where, according to the eikonal formalism, the non-local variable
ē lives):

g = (I − D)−1 (5.3)

In these equations, e is the local counterpart of ē, I is the second-order identity tensor,
Ω is the considered domain, n is the outward normal vector to its boundary ∂Ω, c is
a parameter homogeneous to the square of a length (introducing an initial length scale
in the formulation), ∇ is the gradient operator, ∇· is the divergence operator, and the
symbol · denotes the simple contraction between tensors.

Equation (5.1) was derived by Desmorat et al. (2015a) from the integral-type version
of the ENL model by following the same procedure employed by Peerlings et al. (1996a)
to derive the classic Gradient-enhanced Non-Local (GNL) formulation. Recently, Ribeiro
Nogueira et al. (2024a) proposed a robust thermodynamics framework based on the
Micromorphic Media Theory (Forest, 2009) to derive the ENL formulation. Using concepts
from differential geometry, the authors independently derived Equation (5.1), obtained
the boundary condition Equation (5.2) (a detail not covered in (Desmorat et al., 2015a)),
characterized energy dissipation, and verified the Clausius–Duhem inequality.

Considerations of the free-energy potential and material symmetry. To derive
the ENLG model based on a micromorphic media framework, Ribeiro Nogueira et al.
(2024a) introduced the following free-energy potential:

ρψ = ρψ(ε,D, ē, ∇̃ē) = ρψ0 + ρψnl(ē, ∇̃ē; g−1) (5.4)

where ρψ0 represents a local contribution associated with a specified damage model, and
ρψnl(ē, ∇̃ē; g−1) is the non-local contribution:

ρψnl(ē, ∇̃ē; g−1) = 1
2h(e− ē)2 + 1

2hc∥∇̃ē∥2
g (5.5)

= 1
2h(e− ē)2 + 1

2dē · g−1 · dē (5.6)

Here, h is a parameter homogeneous to a stiffness, ∇̃ denotes the gradient computed in a
curved space, ∥•∥g is the Riemannian norm, and dē denotes a 1-form. See the cited work
for more details.

It is noteworthy that when employing the Euclidean metric, the expression ρψnl(ē, ∇̃ē; g−1)
simplifies to that of the conventional GNL model (Peerlings et al., 1996a; Peerlings et al.,
2004). Specifically, ρψnl

GNL(ē,∇ē) = 1
2h(e− ē)2 + 1

2hc∥∇ē∥2 = 1
2h(e− ē)2 + 1

2∇ē ·∇ē (which
is similar to the phase-field crack density functions). For an isotropic medium, it can be
readily verified that the latter potential maintains invariance under rotations and reflec-
tions, satisfying the isotropy condition ρψnl

GNL(ē,Q ⋆ ∇ē) = ρψnl
GNL(ē,∇ē),∀,Q ∈ O(3),
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where O(3) denotes the orthogonal group, defined as O(3) = {Q | Q⊤ · Q = I}, and ⋆

denotes a general action of a group.1 In the case of an anisotropic medium, it is expected
that ρψnl

GNL(ē,Q⋆∇ē) = ρψnl
GNL(ē,∇ē) for all Q ∈ H ⊂ O(3), where H denotes a specified

symmetry group of the anisotropic material. This ensures that the anisotropic free energy
remains invariant under actions respecting the material symmetry.

Now, the representation theorem (Boehler, 1987) enables the representation of the free
energy as an isotropic function by introducing a structural tensor, denoted as M. This is
achieved by ensuring that Q ⋆ M = M holds for Q ∈ H ⊂ O(3). In the context of the
ENLG model, this requirement holds true with considering the structural tensor equal to
the inverse of the damage-dependent Riemannian metric (M = g−1). Consequently, one
has:

ρψnl(ē,Q ⋆ ∇̃ē; Q ⋆ g−1) = ρψnl(ē, ∇̃ē; g−1) ∀ Q ∈ O(3) (5.7)

This formulation exhibits notable similarities with those developed by Teichtmeister
et al. (2017). In a similar way, Reese et al. (2021) explored the use of an anisotropic
damage variable as a structural tensor in the definition of free energy.

2.2 Comparison with other gradient formulations with evolving
non-local interactions

The general formalism for gradient-damage models can be expressed as follows:

ē− ϕ∇ · (Φ1 · ∇ē) = e Ω (5.8)
Φ2 · ∇ē · n = 0 ∂Ω (5.9)

Now, different choices for functions (ϕ,Φ1,Φ2) lead to specific models:

(i) GNL model by Peerlings et al. (1996a):

ϕ = c Φ1 = I Φ2 = I (5.10)

(ii) Micromophic model by Poh and Sun (2017):

ϕ = c Φ1 = g(D)I Φ2 = I (5.11)

where g(D) is an exponentially decreasing function of an isotropic damage variable D.
It is chosen such that g(0) = 0 and g(D → 1) → R, with R > 0 a small parameter
accounting for residual non-local interactions. According to this formulation non-
local interactions are isotropic.

(iii) Stress-based gradient-damage model by Vandoren and Simone (2018):

ϕ = c Φ1 = R · c(σ) · R⊤ = R ·
(
σi

ft

si ⊗ si

)
· R⊤ Φ2 = Φ1 (5.12)

where σi is the ith principal stress component, si is the corresponding eigenvector,
ft is the material strength, and R is the rotation tensor from the basis of principal

1Here, given a second order tensor A, one has: Q ⋆ A = Q · A · Q⊤.
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2. Anisotropic eikonal gradient-enhanced damage formulation

stress directions to the external basis in which ∇ē is written. This approach allows
modeling introduced anisotropic non-local interactions (see (Vandoren & Simone,
2018) for modified expressions of tensor c(σ)).

(iv) ENLG model by Desmorat et al. (2015a) and Ribeiro Nogueira et al. (2024a):

ϕ = c√
det g

Φ1 =
√

det g g−1 Φ2 = g−1 (5.13)

Some theoretical similarities and differences between these formulations were analyzed
in (Ribeiro Nogueira et al., 2024a). Additionally, the stress-based micromorphic model
by Negi et al. (2020) retains the localizing damage character from (Poh & Sun, 2017),
and couples it with anisotropic interactions based on (Vandoren & Simone, 2018). It
is worth noting that, despite the differences mentioned above, both Negi et al. (2020)
and Vandoren and Simone (2018) employed a scalar damage variable, with no applications
to anisotropic damage behavior (e.g., tensorial damage or microplane) being developed.

A few comments on anisotropic damage and anisotropic non-local interactions.
Here, we distinguish between damage-induced anisotropy at the Representative Elementary
Volume (REV) scale and its effects on induced anisotropic non-local interactions at the
structural level:

• At the REV level, quasi-brittle materials can be considered as initially isotropic
in the sense that the measured elastic properties are the same in all directions.
However, during the softening phase, these properties degrade due to the emergence
of micro-cracks, which typically form along preferential directions (Berthaud, 1991;
Passelègue et al., 2018). Modeling techniques should account for this behavior
(see, e.g., (Ramtani et al., 1992; Papa & Taliercio, 1996; Lemaitre et al., 2000)).
Recently, Loiseau et al. (2023) demonstrated based on discrete element simulations
that isotropic damage models are inadequate for describing the macroscopic stress
state of materials experiencing non-proportional loading. This limitation also
becomes apparent in the comparison between isotropic and anisotropic damage
models in the simulation of a simple non-proportional loading–unloading REV test
case (see B).

• Anisotropic damage behavior in the Fracture Process Zone (FPZ) plays also a
significant role at the structural scale. Recent observations from the so-called
“gap-test” (Nguyen et al., 2020) demonstrated the dependency of the fracture
energy and the effective FPZ size on the crack-parallel stress, i.e., the normal
stress in the propagation direction, or “T-stress” (Bažant et al., 2022a, 2022b). This
behavior entails an increase in fracture energy at moderate crack-parallel compression,
attributed to greater friction in inclined micro-cracks. At high compression levels,
it is characterized by a widening of the FPZ and a decrease in fracture energy.
According to (Bažant et al., 2022a, 2022b; Bažant & Nguyen, 2023), to capture these
effects, modeling techniques should incorporate two main ingredients: a tensorial
softening (anisotropic) damage law at the REV level, capable of representing oriented
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Chapter 5. Numerical simulations with ENLG anisotropic damage

micro-cracks, and two (evolving) independent characteristic lengths for the direction
of the damage band and the transverse direction (anisotropic non-local interactions).

The ENLG anisotropic damage model introduced in this contribution, eventually
coupled to other suitable tensorial damage laws, may contain the necessary ingredients to
capture the T-stress effect. It is worth noting that other approaches, such as crack-band
with microplane or lattice approaches, achieve similar outcomes (Bažant et al., 2022b;
Lyu et al., 2023). Additionally, various non-local models with anisotropic interactions
(e.g., (Giry et al., 2011; Vandoren & Simone, 2018; Negi et al., 2020)) account for two
evolving internal lengths.

In this paper, we focus on presenting the model, its characteristics, and numerical
implementation. Evaluating its capability to verify experimental size-effect and gap-tests
is beyond the scope of this work and is left for future contributions.

2.3 Anisotropic non-local interactions

In contrast to gradient formulations with isotropic damage-dependent non-local interac-
tions, the ENL formulation provide anisotropic interactions by utilizing the inverse of
the metric in (5.13). This section conducts a qualitative analysis of damage dependent
non-local interactions.

Tensor representation via ellipses (2D) and ellipsoids (3D). Given a vector x in
the orthonormal basis {ei} and a symmetric second order tensor T written in the basis
{ei ⊗ ej}, a homogeneous polynomial p(x) = T(x,x) = x · T · x can be associated with
T by exploiting the fact that this latter is a bi-linear form.

Now, considering the principal basis {vi ⊗ vi} of tensor T, such that T = Tivi ⊗ vi

(with Ti denoting the eigenvalues of T), and writing x in the basis {vi}, the homogeneous
polynomial p(x) reads:

p(x) = x · T · x = Tix
2
i =

T1x
2
1 + T2x

2
2 (T ∈ R2 × R2)

T1x
2
1 + T2x

2
2 + T3x

2
3 (T ∈ R3 × R3)

(5.14)

where Einstein summation was used. It is straightforward to observe that equation:

p(x) = 1 (5.15)

corresponds to the equation of a parametric ellipsoid in R3 and an ellipse in R2. Therefore,
one can directly visualize T once its principal basis is known by simply plotting function
(5.15).

×Remark 5.1. This visualization technique is often employed for representing the
stress tensor (via the Lamé’s stress ellipsoids), Reynolds stress anisotropy (Hamilton
& Cal, 2015) or in diffusion-tensor imaging (Westin et al., 2002).

148



2. Anisotropic eikonal gradient-enhanced damage formulation

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

E
ig
en
va
lu
es

of
D

D1 = 0.
D2 = 0.
D1 = 0.7
D2 = 0.3
D1 = 0.9
D2 = 0.05
D1 = 0.9
D2 = 0.9

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

E
ig
en
va
lu
es

of
g
−
1

g1 = 1.
g2 = 1.
g1 = 0.7
g2 = 0.3
g1 = 0.95
g2 = 0.1
g1 = 0.1
g2 = 0.1

Figure 5.1 • Non-local interactions in 2D – Representation according to (5.16) of tensors
D and g−1.

To obtain a better visualization of T, one can also plot:

p(x) = x · T−2 · x = T−2
i x2

i =


x2

1
T 2

1
+ x2

2
T 2

2
(T ∈ R2 × R2)

x2
1
T 2

1
+ x2

2
T 2

2
+ x2

3
T 2

3
(T ∈ R3 × R3)

= 1 (5.16)

As the inverse and the square of a symmetric tensor are both isomorphisms (structure-
preserving bijections), the above polynomial preserves all the properties of (5.15).

Damage and metric tensors representations in 2D. Consider the general form
of the 2D damage tensor D and the corresponding metric inverse g−1 (written in their
principal basis):

D = D1v1 ⊗ v1 +D2v2 ⊗ v2 g−1 = (1 −D1)v1 ⊗ v1 + (1 −D2)v2 ⊗ v2 (5.17)

Figure 5.1 shows their polar visualizations using ellipses in R2 (oriented according to
the principal basis). Four different cases are considered to illustrate the influence of the
anisotropic damage (Figure 5.1 (left)) on g−1 (Figure 5.1 (right)) (which can be seen as a
non-local interactions tensor):

• In the undamaged state, the damage tensor D = 0 is represented by a single point
located at the origin of the axis, whereas g−1 = I is represented by a circle. This
corresponds to considering isotropic non-local interactions, reducing the ENLG
model to the GNL model (Peerlings et al., 1996a).

• If isotropic damage takes place (D1 = D2 = D = 0.9), the interaction tensor is
equally reduced in all directions (orange circle in Figure 5.1 (right)).

• Anisotropic interactions are modeled when damage-induced anisotropy appears. The
green curve corresponds to D1 = 0.7 and D2 = 0.3 with v1 =

√
2/2(ex + ey) and

v2 =
√

2/2(−ex + ey). Since the largest damage value occurs at 45◦, non-local
interactions are strongly reduced in this direction.

149



Chapter 5. Numerical simulations with ENLG anisotropic damage

• The red curve corresponds to the almost uni-axial damage case in the direction of
the axis x, i.e., D1 = 0.9 and D2 = 0.05 with v1 = ex and v2 = ey. Therefore,
the ellipse representing non-local interactions is stretched further in the vertical
direction, meaning that almost no non-local interactions occur in the horizontal
direction.
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Figure 5.2 • Non-local interactions in 3D – Representation according to (5.16) of tensor
g−1 for various damaged states.

Damage and metric tensors representations in 3D. The same considerations hold
for the 3D case. Figure 5.2 shows the ellipsoid visualization of tensor g−1 for various
uni-axial damaged states. Here, damage is considered to occur only in x direction:

D = D1v1 ⊗ v1 = Dxxex ⊗ ex g−1 = (1 −Dxx)ex ⊗ ex (5.18)

As expected, in the undamaged case, interactions are represented by a sphere. When
damage occurs in the x direction, non-local interactions are progressively reduced in this
direction. The higher the damage level, the more important the shrinkage of the ellipsoid
in the corresponding direction.
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3. Anisotropic damage model

2.4 Quasi-static ENLG damage mechanics boundary value prob-
lem

Let us consider a split of ∂Ω into two sub-domains ∂Ωt and ∂Ωu such that ∂Ωu ∪ ∂Ωt = ∂Ω
and that ∂Ωu ∩ ∂Ωt = ∅. Dirichlet boundary conditions (u = ud) are imposed on ∂Ωu

whereas stress tractions (σ · n = td) are imposed on ∂Ωt. Moreover, let us introduce the
following admissibility spaces:

U = {w | w ∈ H1(Ω) , w = ud on ∂Ωu} (5.19)
U(0) = {w | w ∈ H1(Ω) , w = 0 on ∂Ωu} (5.20)

V = {w | w ∈ H1(Ωh)} (5.21)

where H1 denotes a square integrable Sobolev space.
It is straightforward to demonstrate (Ribeiro Nogueira et al., 2024a) that, under

quasi-static conditions, the variational augmented equilibrium problem to be solved at
any time t for finding a solution of the ENLG damage mechanics problem involves seeking
an admissible displacement field u ∈ U and an admissible non-local equivalent strain field
ē ∈ V satisfying:∫

Ω
σ(u) : ε(v) dV =

∫
∂ΩF

td · v dS ∀ v ∈ U(0) (5.22)∫
Ω

√
detg ēη dV +

∫
Ω
c
√

detg (g−1 · ∇ē) · ∇η dV =
∫

Ω

√
detg eη dV ∀ η ∈ V (5.23)

where σ is the Cauchy stress tensor, ε is the small-strain tensor, v is the virtual displace-
ment field, and η is the virtual non-local strain field.

The coupling between the two equations arises from the dependence of σ and g on
the non-local strain via the damage tensor (ē governs its evolution), and the dependency
of e on the displacement via the selected equivalent strain definition:

σ = σ(u,D(ē)) g = g(D(ē)) e = e(ε(u)) (5.24)

3 Anisotropic damage model
For illustrative purposes, this work adopts the constitutive model proposed by Desmorat
(2015) for quasi-brittle materials. Different second-order damage models can be employed
with the ENLG regularization, without necessitating modifications to its theoretical or
numerical framework.

According to the chosen model, damage is represented using the second-order Ladevèze
tensor H = (I−D)− 1

2 . Denoting once again with vi the eigenvectors of D and with Di the
corresponding eigenvalues, the Ladevèze tensor reads H = Hivi ⊗ vi = (1 −Di)− 1

2 vi ⊗ vi.
As a consequence, Hi = 1 when Di = 0 (undamaged state), and Hi → ∞ when Di → 1
(fully damaged state). The unbounded nature of Hi enhances the formulation’s ability to
model the extreme scenario of fully damaged material at infinite strain (Desmorat, 2015).
Moreover, from a numerical perspective, such unboundedness simplifies the handling of
upper bounds (see, e.g., (Desmorat et al., 2007a)) for damage tensors when implementing
the constitutive law at the integration point level.
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3.1 Three-dimensional constitutive model

Gibbs free enthalpy. The Gibbs free enthalpy reads:

ρψ∗
0 = ρψ∗

0(σ,H) = tr (H · σ′ · H · σ′)
4G + 1

18K

[1
3tr H2 ⟨tr σ⟩2 + ⟨−tr σ⟩2

]
(5.25)

where ⟨·⟩ denotes the Macaulay operator, •′ = • − 1
3tr(•)I denotes the deviatoric part of

tensor • and, G and K are the shear and bulk modulus, respectively.

Constitutive relations. The strain tensor is obtained as:

ε = ρ
∂ψ∗

0
∂σ

= 1
2G (H · σ′ · H)′ + 1

9K

[1
3tr H2 ⟨tr σ⟩ + ⟨−tr σ⟩

]
I (5.26)

The stress–strain constitutive relation is given by:

σ = Ẽ : ε (5.27)

with:

Ẽ = 2G
[
H−1 ⊗ H−1 − H−2 ⊗ H−2

tr H−2

]
+m(H)I ⊗ I m(H) =


3K

tr H2 if tr ε > 0
K otherwise

(5.28)

Damage criterion function. The local damage criterion function reads:

f = e− κ (5.29)

where e is an equivalent measure of the strain (computed using, e.g., the Mazars (Mazars,
1984a) or Von Mises definitions (De Vree et al., 1995)), and κ is the consolidation function:

κ = κ0 + SRs
v(tr H − 3) (5.30)

In non-local computations, the damage criterion function (5.29) is simply modified by
substituting e with ē.

Here, S, s and κ0 are material parameters, and Rv is the triaxiality function (Lemaitre,
1996). According to (Desmorat, 2015), this latter function is computed as:

Rv = min
[
1 + 9

2
1 − 2ν
1 + ν

⟨−TX⟩2 , B
]

TX = σH/σeq (5.31)

where σeq =
√

3/2 (σ′ : σ′) is the Von Mises equivalent stress and σH = tr σ/3 is the
hydrostatic stress. Moreover, ν stands for Poisson’s ratio and B is a new material
parameter bounding the triaxiality function in bi-compression.

Damage evolution. In the original model by Desmorat (2015), the direction of damage
evolution is controlled by the effective strain tensor ⟨ε̃⟩ = ⟨E−1 : σ⟩. This choice was
initially introduced by Chambart (2009) to avoid numerical instabilities at high strain
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3. Anisotropic damage model

levels. In the present work, the positive part of the total strain tensor is employed. Using
the normalized form proposed in (Loiseau, 2023; Masseron et al., 2023), one can write:

Ḣ = λ̇P P = ⟨ε⟩
∥⟨ε⟩∥ (5.32)

where P is the normalized damage direction tensor and λ̇ is the damage multiplier
respecting the usual Karush–Kuhn–Tucker (KKT) loading–unloading conditions.

According to Leroux (2012), such a choice allows better representing experimental
crack paths. As a counterpart of this, a bifurcation can be obtained in the behavior
when this choice is made. It should be noticed that is not a strong limit of the present
implementation since instabilities were never experienced in numerical simulations.

3.2 Plane-stress conditions
In addition to the 3D conditions, the simulations in Section 5 will assume plane-stress
conditions. The plane-stress formulation is derived using the same approach as applied
by Jirásek and Suárez (2016) to the anisotropic damage model proposed by Desmorat
et al. (2007a).

Constitutive relations. The in-plane (x, y) stress tensor is written as:

σ2 = Ẽ2 : ε2 + e2εz (5.33)

where:

Ẽ2 = 2G
[
H−1

2 ⊗ H−1
2 − H−2

2 ⊗ H−2
2

tr H−2
2 +H−2

z

]
+ K̃I2 ⊗ I2 K̃ =


3K

tr H2+H2
z

if tr ε > 0
K otherwise

(5.34)

e2 = K̃I2 − 2GH−2
2 H−2

z

tr H−2
2 +H−2

z

(5.35)

with (•)2 denoting the two-dimensional counterpart of tensor (•). Accordingly H2 and
ε2 contains only the in-plane components of H and ε, respectively. From the three-
dimensional constitutive relation, the component σz of the stress tensor is expressed
as:

σz = Ẽεz + e2 : ε2 (5.36)

with:
Ẽ = 2GH−2

z tr H−2
2

tr H−2
2 +H−2

z

+ K̃ (5.37)

Enforcing the plane strain condition σz = 0, the out-of-plane strain component reads:

εz = −e2 : ε2

Ẽ
(5.38)

Substitution into (5.33) yields:

σ2 = Ẽ⋆
2 : ε2 Ẽ⋆

2 = Ẽ2 − e2 ⊗ e2

Ẽ
(5.39)

153



Chapter 5. Numerical simulations with ENLG anisotropic damage

Damage criterion function. The criterion function remains the same as in the 3D
case, with the only difference that trH in (5.30) is replaced by trH2 +Hz, and that the
triaxility TX in (5.31) is computed with σH = tr σ2/2 and σeq =

√
2 σ′

2 : σ′
2.

Damage evolution. Damage evolution occurs as follows:

Ḣ2 = λ̇P2 Ḣz = λ̇ Pz (5.40)

with:
P2 = ⟨ε2⟩

∥⟨ε⟩∥ Pz = ⟨εz⟩
∥⟨ε⟩∥ (5.41)

4 Numerical formulation
The variational formulation for the gradient problem requires solving the weak form
of the equilibrium, taking into account anisotropic damage. Given that the effective
Hooke’s tensor Ẽ is expressed in terms of H for the employed damage model, anisotropic
vanishing non-local interactions are introduced in the variational formulation through the
damage-dependent Riemannian metric g = (I − D)−1 = H2 = H · H.

4.1 Space/time discretized variational formulation

A spatial finite element method is used, with the meshed domain denoted by Ωh. For
quasi-static analysis, a pseudo-time discretization is introduced to represent the applied
load, with n denoting the step of the corresponding time tn. An iterative staggered solution
approach is adopted, and Picard iteration is used to solve the augmented equilibrium
problem. Linear shape functions are employed for both the displacement and the non-
local equivalent strain fields (P1 fields), while the damage, strain, and stress fields are
represented by piece-wise constant functions (P0 fields). This choice guarantees consistency
between fields during the computation of constitutive behavior and helps avoid stress
oscillations (Peerlings, 1999; Simone et al., 2003a). In the following, the superscript h is
used to denote finite element discretized quantities.

The solving process between iterations k and k + 1 can be summarized as follows (all
quantities without a subscript refer to the present pseudo-time step, tn+1):

(i) Given the damage tensor at the previous iteration Hh,k, one finds uh,k+1 ∈ Uh at
iteration k + 1 such that:∫

Ωh
ε(uh,k+1) : Ẽ

(
Hh,k

)
: ε(vh) dV =

∫
∂Ωh

F

td,h · vh dS ∀ vh ∈ Uh(0) (5.42)

×Remark 5.2. At the first iteration (k = 0), the non-local strain and
damage fields are initiated based on the last converged solution, i.e., ē0 = ēn

and H0 = Hn.
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4. Numerical formulation

(ii) The local equivalent strain field is computed based on the updated displacement
field, i.e.:

eh,k+1 = e(ε(uh,k+1)) (5.43)
In computations, the Mazars and the Von Mises strain measures are employed.

(iii) Given ek+1, one searches for ēh,k+1 ∈ Vh satisfying:∫
Ωh

det Hh
n ē

h,k+1ηh dV

+
∫

Ωh
cdet Hh

n h(ēh,k+1; Hh
n) · ∇ηh dV =

∫
Ωh

det Hh
n e

k+1ηh dV ∀ ηh ∈ Vh (5.44)

where:
h(ēh,k+1; Hh

n) = (Hh
n)−2 · ∇ēh,k+1 (5.45)

It is noteworthy that a key assumption made here is related to Hh
n, which represents

the Ladevèze damage variable from the previous converged step. The hypothesis
posits that the damage field responsible for modifying interactions remains unchanged
throughout the iterations within a time step computation. This is in agreement
with the integral-type ENL model implementation by Rastiello et al. (2018a), where
the geodesic distances are computed with the last converged damage scalar field and
are then utilized to compute the non-local equivalent strain field in the subsequent
step. Additionally, it has been observed that convergence problems and oscillations
in the solution fields arise when considering Hh,k inEquation (5.44).
The term (Hh

n)−2·∇ēh,k+1 primarily contributes to reducing interactions (the gradient
effect). As observed by (Vandoren & Simone, 2018), vanishing non-local interactions
can lead to numerical oscillations in the response and affect convergence rate.
Following a similar idea as proposed by (Poh & Sun, 2017), residual non-local
interactions can be eventually considered by modifying Equation (5.45) as:

h(ēh,k+1; Hh
n) =

[
(Hh

n)−2 + ξI
]

· ∇ēh,k+1 ξ ≪ 1 (5.46)

This allows for the consideration of the gradient term with minimal contribution
upon damage re-localization.

(iv) Once ēk+1 is computed, one updates Hh,k+1 = H(ēh,k+1) and substitutes it inEquation (5.42)
to continue the iteration process. The numerical algorithm is detailed in A.

(v) This process is repeated until convergence with respect to an L2-norm for both fields,
given by:

∥ēh,k+1 − ēh,k∥2 =
∫

Ωh
(ēh,k+1 − ēh,k)2dV ⩽ TOLu (5.47)

∥uh,k+1 − uh,k∥2 =
∫

Ωh
(uh,k+1 − uh,k)2dV ⩽ TOLe (5.48)

where TOLu and TOLe are user-defined tolerances.

The numerical implementation of the presented formulation is developed in a in-house
finite element code at CEA (Badri et al., 2021; Badri & Rastiello, 2023), which is based
on the FreeFEM++ finite element solver (Hecht, 2012).
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Modifications to account for plane-stress conditions. As previously detailed, the
decomposition of variables into out-of-plane and in-plane components is crucial. Given
that σz = 0, the argument of the bi-linear form inEquation (5.42) becomes:

ε(uh,k+1) : Ẽ
(
Hh,k

)
: ε(vh) = ε2(uh,k+1) : Ẽ⋆

2(Hh,k
2 , Hh,k

z ) : ε2(vh) (5.49)

Thus, by substituting this expression into Equation (5.42), the weak form of equilibrium
still holds. It is further assumed that ∇ē · ez = 0, leading to:

(Hh
n)−2 · ∇ēh,k+1 = (Hh

2,n)−2 · ∇ēh,k+1 (5.50)

Consequently, the variational equation (5.44) remains valid. The main distinction
from the previous case is that:

det Hh
n = Hh

n,xxH
h
n,yyH

h
n,z − (Hh

n,xy)2Hh
n,z = Hh

n,1H
h
n,2H

h
n,z (5.51)

4.2 Material law at integration point level
A fully implicit integration algorithm is employed for implementing the anisotropic damage
model. This choice, while differing from the explicit approach utilized in (Desmorat, 2015),
offers enhanced robustness by ensuring convergence even for larger strain increments.
The implementation is carried out using the mfront constitutive laws generator (Helfer
et al., 2015). The interface between the finite element solver and the constitutive model
integrator is handled through a custom interface developed with mgis (Mfront Generic
Interface Support). Details concerning the material law integration are discussed in A,
whereas representative local responses at integration point level are addressed in B.

5 Results and discussion
Numerical 2D simulations are presented to elucidate the principal features of the proposed
formulation. Initially, the simulation of the L-shape test, as conducted by Winkler et al.
(2001, 2004), is carried out under plane-stress conditions. Subsequently, the focus shifts
to the simulation of the three-point bending test developed by Gálvez et al. (1998). Both
tests serve as a common benchmark for validating cracking models, especially in scenarios
involving mixed-mode conditions. A novel test case simulating non-proportional loading
on a hexagonal specimen is then proposed to illustrate the differences between isotropic
and anisotropic damage models. Finally, a few 3D results are provided for illustrative
purposes and to initiate discussion on perspectives for future developments.

5.1 Mixed-mode 2D L-shape test
Figure 5.3 illustrates the geometry, boundary conditions, and an example of a finite
element mesh utilized. In all meshes, the characteristic element size le is reduced in the
central part of the specimen, where, based on experimental evidence, damage is expected
to occur.
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Figure 5.3 • L-shape test – Geometry (thickness = 100 mm) and boundary condi-
tions (Winkler et al., 2001, 2004) (left) and an example of a finite element
mesh containing 205 972 CST elements (right).

×Remark 5.3. Finite element meshes are generated using the GMSH mesh gen-
erator (Geuzaine & Remacle, 2009). Accordingly, the characteristic element size
corresponds to the length of mesh edges.

To study mesh convergence, three different meshes are employed in the numerical
simulations, containing 58 710 (le = 0.8 mm), 205 972 (le = 0.4 mm) and 753 143 (le =
0.2 mm) Constant Strain Triangles (CST), respectively. The displacement is constrained
in the x and y directions at the bottom of the specimen. A displacement-controlled
point load is applied vertically to represent the force denoted as F in the figure. The
material is assumed to follow the anisotropic damage model described earlier, with the
equivalent strain calculated using the Mazars definition (??). This decision was made
to accurately predict both the peak load and the overall softening regime, following the
recommendations of Nguyen et al. (2018) and as also used by Sarkar et al. (2019) for the
same reasons.

Several authors (Oliver et al., 2004; Nguyen et al., 2018) have noted that the elastic
material parameters provided in (Winkler et al., 2001, 2004) cannot be directly applied in
numerical simulations as they lead to an overestimation of the initial structural stiffness.

×Remark 5.4. For example, (Nguyen et al., 2018) considered E = 21 000 MPa
and applied the point load at the right of the specimen (not at 30 mm from it). (Wang
et al., 2023) made the same assumption concerning the point load position but
retained the original material parameters. (Zreid & Kaliske, 2014) applied the point
load at a certain distance from the extremity and considered E = 18 000 MPa in
computations.

In the following, to achieve an elastic response consistent with experimental data,
Young’s modulus is set to E = 17 000 MPa (instead of E = 25 850 MPa, as in (Winkler

157



Chapter 5. Numerical simulations with ENLG anisotropic damage

Figure 5.4 • L-shape test – Study on the impact of ξ on the structural responses and
damage maps (maximum principal damage component D1).

et al., 2001, 2004)), while the Poisson’s ratio is kept equal to the experimental value
(ν = 0.18). Five additional material parameters must be defined for using the anisotropic
damage model detailed in 2. In this section, these parameters are set to {c, κ0, S, s, B} =
{7.32 mm2, 1.4 × 10−4, 3.91 × 10−4, 4.9, 5/3}. Moreover, the analysis is carried out for
three different values of ξ to examine the influence of residual non-local interactions on
structural responses and damage evolution.

5.1.1 Role of residual non-local interactions on mesh-convergence and damage
re-localization

Structural response and mesh convergence. Figure 5.4 presents the structural
responses and corresponding damage maps (principal value D1) for various residual
non-local interactions parameter ξ values. Convergence in the overall response with
mesh refinement is attained for ξ = 0.08 and ξ = 0.04, employing a mesh containing
753 143 elements with le = 0.2 mm in the refined region. Similarly, a trend toward mesh
convergence is observed around the peak load in simulations with ξ = 0.008 using the
same mesh. However, differences emerge in the post-peak phase between meshes with
le = 0.4 mm and le = 0.2 mm. Furthermore, the response showcases decreased brittleness
with increasing ξ values, for a given set of material parameters.

Damage evolution. The reduction in brittleness observed in the structural response for
larger values of ξ can be attributed to damage diffusion (Figure 5.4 (top)). In the original
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Figure 5.5 • L-shape test – Warp by scalar plots of the maximum principal damage
component (D1) and the norm of the displacement field (∥u∥).

ENLG model (ξ = 0), non-local interactions vanish upon damage re-localization (Di → 1).
However, with appropriately chosen ξ > 0, moderate residual non-local interactions
persist, leading to minor damage spreading around the re-localized zone. This behavior
also influences the propagation direction associated with the damage band. For instance,
the damage band is almost horizontal for ξ = 0.08, whereas it progressively becomes more
curved as ξ decreases.

These aspects are further illustrated in Figure 5.5, which compares the ability of
the ENLG approach to simulate the tendency toward damage-to-fracture transition for
ξ = 0.04 and ξ = 0.008. The first damage eigenvalue D1 is depicted in Figure 5.5 (bottom
left and right), indicating damage re-localization in a narrow zone for both cases. However,
the damage spreads over a larger zone for ξ = 0.04 compared to ξ = 0.008 (as shown
in the zoomed-in damage maps). An approximation of a jump in the displacement field
(Figure 5.5 (top)) is observed for both values of ξ, which corresponds, in the limit case, to
the kinematics of a crack description (discontinuity). Nonetheless, the simulation better
describes this approximation with ξ = 0.008 (as seen in the zoomed-in displacement field).
It is important to note that this is merely a post-processing analysis of the results because
the adopted continuous finite element formulation cannot capture displacement jumps.

Comments on the choice of ξ. According to this analysis, the smaller the value
of ξ, the better the capability of the ENLG numerical model in representing damage
re-localization, thus indirectly depicting a progressive damage-to-fracture transition. As a
counterpart to this, finer and finer meshes are needed to achieve mesh convergence of the
structural response. The value of ξ in simulations should therefore be carefully chosen
depending on the available computer resources (finer the mesh, larger are CPU times)
and the intended application of the model.
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Figure 5.6 • L-shape test – Convergence upon mesh refinement (left) and comparison
between numerical (mesh with le = 0.2 mm) and experimental (Winkler
et al., 2001, 2004) structural responses (right).

5.1.2 Additional analyses and comparison with experimental results

To compare the results from the numerical simulations with experimental data from the
literature, we retain the value of ξ = 0.04 for the following analyses. This choice allows
for converged results with a relatively high number of elements, yet remaining numerically
feasible within a sequential solving framework without excessive spreading of damage.

×Remark 5.5. Parallel solving techniques were not yet studied and are left for
future work.

Representative structural response and mesh convergence. Figure 5.6 (right)
shows the optimal (compared to experimental results) structural response obtained with
{κ0, S} = {1.7 × 10−4, 3.81 × 10−4}, while all the other parameters remain unchanged
from the previous section. The overall response aligns with the experimental results,
demonstrating that achieving reasonable quasi-brittle responses with the ENLG model,
coupled with the presented anisotropic damage behavior law, is feasible. Improved fitting
might also be attained by modifying the damage evolution law, since the parameter S
controls locally the peak and the post-peak behavior (see, e.g., (Loiseau, 2023)).

Damage evolution. In addition to the structural responses, one can analyze the damage
profiles obtained to evaluate the capability of the present approach to represent “cracking”
behaviors. Figure 5.7 (top) shows the in-plane components (Dxx, Dyy, Dxy) of the damage
tensor at the end of the simulation. As expected, the highest damage level is obtained in
the y direction (Dyy > Dxx > Dxy), which is mainly perpendicular to the “pseudo-crack”
direction. The off-diagonal component Dxy is more pronounced close to the corner, where
damage starts. There, the principal damage directions are slightly rotated with respect to
the main axes (x, y). As shown in Figure 5.7 (bottom), similar considerations hold when
considering the principal damage components (D1, D2).
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Figure 5.7 • L-shape test – Components of the damage tensor (Dxx, Dyy, Dxy) and
associated eigenvalues (D1, D2) at the end of the simulation. Solid white
lines represent the envelope of experimental crack paths from (Winkler
et al., 2001, 2004).

The envelope of crack paths obtained by Winkler et al. (2001, 2004) are represented
in Figure 5.7 by solid white lines. A comparison between the damage band obtained by
the ENLG model and the experimental crack paths reveals good agreement. However, the
curved cracking behavior is less present in numerical results due to the choice of ξ = 0.04,
which could be better represented for simulations with ξ = 0.008, as shown in Figure 5.4.
A fitting procedure for ξ = 0.008 becomes prohibitive in the sequential solver framework
of this contribution due to CPU time, as more elements are required to obtain a converged
response.

To highlight the capabilities of the ENLG model to represent a tendency toward a
transition from damage to fracture, Figure 5.8 displays profiles of the major principal
component of the damage tensor and the resulting displacement field along a line oriented
approximately in the major damage principal direction. As shown in the figure, the damage
field progressively increases in the region preceding the “pseudo-crack”. Subsequently, the
damage tends to reach a unitary value in the central zone of a band, whose maximum
size remains stationary. As seen before, this is better represented for simulations where
ξ = 0.008, but it can be still observed here (ξ = 0.04) at the propagation front of the
damage band. At the same time, the displacement field clearly indicates a tendency
toward a discontinuity centered in the middle of the damage band. It is worth noting,
however, that this discontinuity cannot be represented in the formulation presented here,
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Figure 5.8 • L-shape test – Principal components (D1, D2) of the damage tensor and
vertical displacement (uy) along a line approximately aligned with the
major principal damage direction in the center of the damaged band for
three phases of the damage evolution.

as the displacement field is assumed to be continuous by construction.

5.2 Mixed-mode 2D three-point bending test

The geometric details and boundary conditions for this case are illustrated in Figure 5.9
(top). This configuration corresponds to the small specimens examined in the referenced
study (Gálvez et al., 1998), featuring a notch with a width of 2 mm. Four finite element
meshes were utilized in the numerical simulations, comprising 4 333, 13 422, 47 564,
and 178 476 CST elements, respectively (Figure 5.9 (bottom)). All meshes are locally
refined around the notch tip where the onset of damage is expected to occur. The
displacement is applied at the upper part of the beam under CMOD (Crack Mouth
Opening Displacement) control (calculated as the relative displacement of points A and B
in Figure 5.9). The material parameters for this test are chosen as {E, ν, c, κ0, S, s, B} =
{38 000 MPa, 0.2, 1.0 mm2, 6 × 10−4, 2 × 10−4, 4.9, 5/3}. Moreover, ξ = 0.04. Similar to
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Figure 5.9 • Three-point bending test – Geometry (thickness = 50 mm) and boundary
conditions (top) and example of a mesh containing 178 476 elements (bot-
tom).

the L-shape test, Mazars’ equivalent strain is utilized in the computations.

×Remark 5.6. A simple path-following algorithm is employed for this purpose,
treating the magnitude of the external load as a novel unknown and enhancing the
damage mechanics equilibrium problem through an additional constraint equation. A
detailed description of the final algorithm is omitted here for conciseness, but further
information can be found in (de Borst, 1987; Rastiello et al., 2019; Rastiello et al.,
2022), among others.

5.2.1 Mesh-convergence in terms of damage maps and structural response

Figure 5.10 shows the damage maps (depicting the first principal damage value D1)
obtained for the different meshes alongside the corresponding structural responses. One
can observe convergence of the damage pattern upon mesh refinement, as well as in terms
of the structural response. Regarding the overall response, convergence is achieved with
a mesh containing 178 476 elements with le = 0.1 mm in the refined region. Thus, the
characteristic size of elements required to obtain convergence in this example is two times
smaller than the one for the L-shape test. This can be attributed to the utilization of a
smaller gradient parameter c in the three-point bending test.

5.2.2 Representative results

Representative structural response and comparison to experimental results.
Similar to the L-shape test, the elastic parameters provided in (Gálvez et al., 1998) lead to
an overestimation of the initial structural stiffness. To achieve an elastic response consistent
with experimental data in this test case, the Young’s modulus is set to E = 33 000 MPa
in the following simulations. Additionally, to ensure good agreement between simulations
and experimental results, the following parameters are also modified: {κ0, S} = {7 ×
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Figure 5.10 • Three-point bending test – Mesh convergence in terms of maps of the
maximum principal damage component (D1) and structural response.

10−4, 2.4 × 10−4}. All other parameters remain the same as those used to obtain the
results depicted in Figure 5.10.

The structural responses obtained for the different meshes are depicted in Figure
5.11 (left). With the new set of parameters, mesh convergence is again achieved with
the mesh containing 178 476 elements (with le = 0.1 mm in the refined region). In
Figure 5.11 (center), a comparison is presented between the experimental and numerical
(converged) structural Force vs. CMOD responses. It is shown that the numerical
simulation provides a good estimation of the ultimate force and effectively captures
significant quasi-brittle behavior. Figure 5.11 (right) compares the experimental crack
paths (depicted in white) with the damage pattern (D1 in this case) obtained using
the ENLG model at the simulation’s conclusion. A good agreement with experimental
results is evident, particularly concerning the direction of damage propagation. This
underscores the ENLG regularization’s ability to replicate realistic crack paths while
providing reasonable quasi-brittle responses at the structural scale. However, far from the
notch and near the upper part of the beam, the damage pattern tends to the left of the
envelop crack paths.

Damage evolution. The evolution of the damage maps obtained using the mesh with
le = 0.1 mm for three different loading stages (CMOD = 0.02 mm, 0.06 mm and 0.1 mm)
is presented in Figure 5.12.

Consistent with experimental observations, the damage band exhibit an orientation to
the right of the notch and a slight curvature toward the top of the beam. The Dxx field
indicates considerable damage along the x direction, although it does not consistently
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Figure 5.11 • Three-point bending test – Convergence upon mesh refinement in terms
of the overall response (left). Comparison between numerical (mesh with
le = 0.1 mm) and experimental structural responses (center). Comparison
between experimental crack paths (white solid lines) and the maximum
principal damage (D1) pattern obtained at the end of the simulation
(right).

align with the principal directions in all elements. Similarly, the Dyy map, along with the
map for the off-diagonal term Dxy (central column in Figure 5.12), reveal that principal
directions deviate from the Cartesian axes.

Similar considerations on the damage mechanisms emerge when analyzing the eigen-
values of the damage tensor. The last two columns in Figure 5.12 present color maps for
D1 and D2, obtained at the Gauss points (D1 represents the largest damage eigenvalue).
The D1 damage map clearly reveals the emergence of an equivalent “macro-crack” in a
specific preferential direction. As expected, neither D1 nor D2 correspond precisely to
the Dxx and Dyy damage maps; instead, they represent a combination of the two. This is
crucial for accurately modeling the direction of crack paths and the associated principal
damage perpendicular to them. The evolution of D1 also highlights some minor damage
spread upon re-localization. It exhibits a sharp profile at the propagation front of the
damage band and spreads damage behind it due to the residual non-local interactions.

Non-local interactions evolution. Given the preceding results, it is expected that
non-local interactions are significantly diminished in the direction of the major principal
damage component. If ellipses are used to represent such interactions, their radius is
expected to contract in the same direction. Figure 5.13 illustrates the evolution of
interaction ellipses (i.e., tensor g−1 = H−2) for loading steps where CMOD = 0.02 mm,
0.06 mm and 0.1 mm in Figure 5.11. For visualization purposes, the coarse mesh containing
4 333 elements was used.

Blue disks denote the initial isotropic nature of non-local interactions at the beginning
of the simulation when the material is still undamaged, and g−1 = I. At CMOD
= 0.02 mm, damage initiates from the notch and reached high levels in certain elements.
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Figure 5.12 • Three-point bending test – Evolution of damage patterns (Dxx, Dyy, Dxy =
Dyx, D1, D2) for three different CMOD levels.

As depicted in Figure 5.13, ellipses are oriented in the direction of damage propagation and
compressed perpendicular to it. Elements traversed by collapsed ellipses lose the ability
to communicate with their neighbors as interactions are reduced. However, elements to
the right of the highly damaged zone can still communicate with neighbors from the right
and top, which are parallel to the collapsed zone. Ahead of the zone where ellipsoids are
formed, blue disks indicate that elements have not yet undergone damage. Finally, as
damage propagates toward the top of the beam, a similar collapsed ellipses’ behavior is
observed at CMOD = 0.06,mm and CMOD = 0.1,mm.

The evolution of the interaction ellipses, as demonstrated here, reveals the interesting
characteristics of the ENLG formulation when coupled with an anisotropic damage model.
The ENLG model inherently accounts for two independent material characteristic lengths
for the direction of the damage band and one transverse to it. In other words, the
anisotropic nature of the non-local interactions allows for a natural distinction between
the transverse and parallel directions to the damage band.
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Figure 5.13 • Three-point bending test – Representation according to (5.16) of tensor
g−1 = H−2 for two different CMOD levels (0.02 mm, 0.06 mm). The color
scale is based on the second (smaller) eigenvalue (g−1)2 (the associated
eigenvector gives the direction along which non-local interactions are
mostly reduced).

×Remark 5.7. According to Bažant et al. (2022a), the non-local material charac-
teristic length should vary as a function of the normal stress in the principal direction
of the damage tensor in the developing damage localization band terminating in
fracture. The ENLG model, coupled with an anisotropic damage model, exhibits this
desired behavior.

5.3 Hexagonal specimen under non-proportional loading

To illustrate a scenario where isotropic and anisotropic damage models may yield different
results, we suggest examining the response of an hexagonal specimen submitted to non
proportional loading. The aim of this purely numerical test-case is solely to highlight how
the ENLG formulation with anisotropic non-local interactions and anisotropic damage
behavior can result in distinct damage paths compared to an isotropic ENLG model,
particularly concerning the influence of preexisting directional damage on damage propa-
gation in a different direction. It is important to note that our intention is not to assert
the superiority, if any, of anisotropic damage models over isotropic ones.

Fassin et al. (2019) showed that anisotropic and isotropic damage models may yield
significantly different results regarding damage patterns under non-proportional loading
conditions. However, their analysis was limited to the impact of anisotropic damage
behavior in structural simulations, while the non-local interactions remained isotropic
and constant. In the example presented below, we focus on how the induced anisotropic
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Figure 5.14 • Hexagonal specimen under non-proportional loading – Geometry (thick-
ness = 100 mm) and boundary conditions.

damage behavior leads to evolving anisotropic non-local interactions through the ENLG
model and how this can affect the damage patterns.

The geometry and boundary conditions are given in Figure 5.14 (bottom), along with
the magnitude of the applied displacement for each loading phase (Figure 5.14 (top)). The
specimen is a regular hexagon with 50 mm side length, submitted to a non-proportional
loading applied according to three major phases: (i) Compression loading until uc = umax

c

to introduce a diffuse damage in the specimen (Phase A); (ii) Unloading phase until
uc = 0 to release the compression load (Phase B); (iii) Tension loading until ut = umax

t to
localize damage from the corners (Phase C).

5.3.1 Damage models and material parameters

Three different models are employed for this example: the ENLG (evolving isotropic
interactions) model coupled with a simple isotropic damage constitutive law (Ribeiro
Nogueira et al., 2024a), the ENLG (evolving anisotropic interactions) model coupled with
the tensorial anisotropic damage law by Desmorat (2015), and the GNL (isotropic and
constant interactions) model (Peerlings et al., 1996a) coupled with the same anisotropic
damage law.

In the isotropic case, damage is modeled through a scalar variable D ∈ [0, 1] and the
constitutive law reads σ = Ẽiso : ε with Ẽiso = (1 −D)E. The damage criterion function
is f = ē − κ, with κ the historical maximum of the non-local equivalent strain during
loading (this variable is initialized at κ0). Isotropic damage evolution is considered as
D = 1 − κ0

κ
exp (−Bt(κ− κ0)), where Bt is a material parameter (see B for a comparison

between isotropic and anisotropic damage models at the material point level).
For all the models, the non-local Von Mises equivalent strain with k = 10 is used

to ensure a larger damage threshold in the compression phase compared to the Mazars’
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Figure 5.15 • Hexagonal specimen under non-proportional loading – Damage patterns
obtained for the different models during the test.

strain. To compare, at least qualitatively, the numerical results obtained with the
different models, the remaining material parameters used for simulating this test case were
calibrated to provide a similar initial damage state right after Phase A. In particular, the
elastic properties are set to {E, ν} = {17 000 N/mm2, 0.18} for all the models. Similarly,
the initial length scale parameter is c = 12 mm2 for all the models. The remaining
parameters are chosen as {κ0, Bt} = {9.5 × 10−5, 700} for the isotropic ENLG model,
{κ0, S, s, B} = {7.0 × 10−5, 9.25 × 10−5, 4.9, 1.2} for the anisotropic ENLG model, and
{κ0, S, s, B} = {8.0 × 10−5, 5.8 × 10−5, 4.9, 1.3} for the GNL anisotropic model. The
residual interactions parameter is set to ξ = 0 for all the models.

5.3.2 Representative results

Damage evolution. The damage patterns obtained for each model are depicted in
Figure 5.15 for four loading steps. For the anisotropic damage behavior, only the first
principal damage component is represented, whereas the scalar damage variable is used
for the isotropic model.

At Step 20 (uc = umax
c ), it is observed that, for all models, diffuse damage occurs in

the central part of the specimen due to extensions perpendicular to the loading direction.
At Step 80, a horizontal damage band starts to grow from the corners due to the applied
tension loading in the vertical direction. Until this point, the three models give very
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Figure 5.16 • Hexagonal specimen under non-proportional loading – Straight lines (col-
ored based on D1 values) representing equivalent pseudo-cracks perpen-
dicular to the first principal damage direction.

similar results. However, pronounced differences emerge from Step 86 to Step 101. In the
case of the anisotropic ENLG model, the horizontal damage bands become curved when
crossing the central zone previously damaged during compression loading. Conversely,
the damage bands are not affected by the preexisting damage in the central region for
the ENLG isotropic and GNL anisotropic models, resulting in a almost fully horizontal
damage pattern. In this second case, this behavior mainly arises from constant isotropic
non-local interactions, leading to the diffusion of damage.

Anisotropic interactions and damage-dependent Riemannian metric acting as
a structural tensor. To gain further insight into why the damage patterns become
curved for the ENLG anisotropic model, it is useful to study how the induced anisotropic
behavior affects the evolution of the non-local interactions during the loading steps.

Figure 5.16 shows, for each element, the plane defined by the first damage eigenvector
(i.e., the eigenvector associated with the damage eigenvalue D1) for the ENLG anisotropic
damage model, which can be considered representative of elementary “pseudo-cracks”
developing within each element. One can observe that in the diffuse damage phase (Phase
A), the equivalent “pseudo-cracks” are parallel to the loading (compression) direction.
This observation also applies to the GNL anisotropic model; however, it does not hold for
the ENLG isotropic case, as the concept of damage principal directions is meaningless
with a scalar variable. Then, during the tensile loading phase in the vertical direction,
equivalent “pseudo-cracks” are horizontal and start to rotate during damage propagation
in the central regions of the specimen (Figure 5.16 right) for the ENLG anisotropic model
as an effect of the preexisting damage generated in the compression phase.
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Figure 5.17 • Hexagonal specimen under non-proportional loading – Representation
according to (5.16)) of the tensor g−1 = H−2 for three loading steps (20,
80 and 86) (first row). The color scale is based on the second (smaller)
eigenvalue (g−1)2 (the associated eigenvector gives the direction along
which non-local interactions are mostly reduced). Damage patterns for
the components Dyy (second row) and Dxx (third row) of the damage
tensor.

The key point here is that the anisotropic damage behavior induces anisotropic non-
local interactions through the inverse of the metric g−1 for the ENLG anisotropic model
(Equation (5.13)). Acting as a structural tensor (see Eqs. (5.6),(5.7)), it defines the impact
of the damage–induced orthotropic material symmetry on the non-local contribution of
the free-energy.

This is further supported by the analysis of interaction ellipses and the corresponding
damage patterns for different loading steps (Figure 5.17). One observes that, at Step
20, the interaction ellipses are, again, oriented in the direction of crack propagation and
compressed perpendicular to it. The initial damage thus creates an induced internal
structure and establishes a preferential direction for damage propagation, influencing the
damage pattern during subsequent tensile loading. Such behavior is typically observed in
materials with intrinsic (initial) anisotropy (Teichtmeister et al., 2017; Gültekin et al.,
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Figure 5.18 • Brazilian test – Damage maps of components Dxx, Dyy and Dzz of the
damage tensor.

2018; Li & Maurini, 2019; Gerasimov & De Lorenzis, 2022; Pranavi et al., 2023; Wu
et al., 2015; Jin & Arson, 2018; Forghani et al., 2019; Yin et al., 2020; Lu & Guo,
2022). The main difference with the previously cited works is that, here, the material
undergoes a transition from isotropic to anisotropic behavior, and the influence of such a
damage nature on non-local interactions is naturally taken into account by the evolving
damage-dependent metric g.

5.4 Toward 3D simulations
The developments regarding the ENLG anisotropic model presented in this contribution
can be readily extended to 3D simulations. For illustrative purposes, let us consider the
3D simulation of the Brazilian test and the mixed-mode three-point bending test.

5.4.1 Brazilian test

This example is used here as a purely numerical test for further studying some anisotropic
aspects. For a clear visualization of anisotropic interactions, the domain was discretized
with 14 178 linear tetrahedral elements. The displacements are blocked on the bottom
part of the cylinder and an increasing negative displacement is applied on the top part,
so the specimen is under a compression state. The material parameters for this test
are chosen as {E, ν, c, κ0, S, s, B, ξ, k} = {25 850 MPa, 0.18, 4.0 mm2, 1.25 × 10−4, 1.45 ×
10−4, 4.9, 5/3, 0, 10}.

The damage maps obtained are shown in Figure 5.18 for Dxx, Dyy and Dzz. One can
observe that major damage takes place on the x direction, whereas it is less present on z.
As expected, Dyy remains at zero almost everywhere. Under compression on y, extensions
controlling the damage evolution develop on the perpendicular directions. On the contrary,
models considering a scalar damage variable do not have the notion of direction. In this
last case, damage still develops in the medium (see for instance the simulation of the
Brazilian test in (Wang et al., 2023)), but all the directions are damaged in the same way.

As said before, the damage induced anisotropic behavior at the Gauss points is
responsible for modifying the non-local interactions at the structure scale. In order to
visualize the impact of this influence on the structural response, the tensor representation
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Figure 5.19 • Brazilian test – Ellipsoids representing tensor g−1 = H−2.

by ellipsoids, which was introduced before for the 2D case, is used here. For instance, the
second-order identity tensor, which is isotropic, is represented by a sphere in R3.

Figure 5.19 shows the evolution of the ellipsoids associated to g−1 throughout the
damage growth. The first row shows the damage maps for Dxx during the load, while the
second row depicts the corresponding g−1 ellipsoids colored by the (g−1)xx component.
At the beginning of the simulation on the left, no damage takes place and the material
is considered as isotropic. As a consequence, ellipsoids interactions are in fact spheres
as g−1 = I, representing their isotropic nature. Gauss points are equally influencing
their neighbors in all the directions, which corresponds to the case of the classic gradient-
enhanced approach (Peerlings et al., 1996a). In Figure 5.19 (middle), one can see a state
where damage takes place at small levels, with Dxx going up to 0.5. Interactions start
to be reduced, and the spheres in the middle of the specimen become ellipsoids. The
anisotropic character of the interactions can be easily observed and is predominant on the
x direction. On Figure 5.19 (right), high levels of damage (in red) are attained for the
Dxx component. Ellipsoids minor axes are therefore more affected following the principal
damage direction, which represent the anisotropic vanishing interactions upon damage
localization. Interactions between these points and the rest of the domain are considerably
reduced on x, but not necessarily the same on y and z.

Furthermore, the ellipsoids major axes are mainly orientated following the y direction.
Near the highly damaged elements, some of the ellipsoids are slightly rotated, which
highlights the multi-axial character of damage (and the intrinsically related non-locality)
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in these zones.

5.4.2 Mixed-mode 3D three-point bending test

A relatively coarse mesh (le = 1.0 mm in the refined region, with 121 021 elements and
66 000 degrees of freedom) was generated. The material parameters for this test are
chosen as {E, ν, c, κ0, S, s, B} = {38 000 MPa, 0.2, 4 mm2, 6×10−4, 2.71×10−4, 4.9, 5/3}.
Moreover, the residual interactions parameter is set to ξ = 0.0005.

Figure 5.20 • 3D Mixed-mode three-point bending test – Maps of the six components
(Dxx, Dyy, Dzz, Dxy = Dyx, Dxz = Dzx, Dyz = Dzy) of the damage tensor
D.

Damage evolution. Figure 5.20 displays the maps of the six components of the damage
tensor D in the central region of the beam. Consistent with observations from the 2D
simulation of the same test, the damage band exhibits an orientation to the right of the
notch. It can be clearly observed that the component Dzz remains considerably smaller
than Dxx and Dyy across most regions. This confirms that major damage mechanisms
take place in the plane x− y. Additionally, Figure 5.21 shows the maps of the damage
eigenvalues. Similar to the 2D simulation, the first eigenvalue D1 indicates that an
equivalent “pseudo-crack” appears, which is associated with the damage principal direction.
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Figure 5.21 • 3D Mixed-mode three-point bending test — Maps of the three eigenvalues
(D1,D2,D3) of the damage tensor D.

On the scalability of the model. This 3D simulation highlights a disadvantage of the
model. As explained earlier, achieving converged results requires very fine meshes in the
simulations. For instance, in the 2D simulation of the three-point bending test, a refinement
level of le = 0.1 mm was necessary to achieve a converged structural response consistent
with the reference experimental results. In 2D, this resulted in a mesh containing 178 476
elements (approximately 260 000 degrees of freedom) and a “reasonable” computational
time. However, for a 3D simulation of the same experimental test, using a mesh with
le = 0.1 mm in the refined region leads to a number of degrees of freedom exceeding
10 million. Consequently, the analysis becomes computationally prohibitive with the
sequential solver employed in this work. The use of parallel solving techniques should
be considered in this case. Moreover, while local refinement has been employed in this
contribution, in practical scenarios, the crack path is not known a priori. Mesh adaptation
techniques could thus become useful for the simulation of larger-scale structures.
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Summary of Chapter 5

• The ENLG model has been successfully employed to regularize a tensorial
anisotropic damage law based on Ladevèze’s damage variable H. Different
second-order damage models (eventually using the damage variable D instead
of H) can be also used without modifying the general framework.

• The variational formulation of the coupled problem was established by linking
H and the damage-dependent Riemannian metric g from the ENLG model. It
inherently accounts for two independent material characteristic lengths
for the direction of the damage band and one transverse to it. The framework
is applicable to both 2D and 3D analyses.

• A procedure for considering residual non-local interactions was proposed
through an additional parameter ξ. The smaller the value of ξ, the better the
capability of the ENLG model in representing a progressive damage-to-fracture
transition. As a counterpart to this, finer and finer meshes are needed to
achieve mesh convergence of the structural response.

• The numerically obtained structural responses exhibited quasi-brittle behavior
consistent with experimental observations, as well as damage patterns
which closely matched the experimental ones.

• Tensor visualization using ellipses highlighted the role of the inverse of
the metric (i.e., of damage) in reducing non-local interactions when dam-
age occurs. Additionally, the eigenvectors of the damage tensor provided
crucial information about equivalent “pseudo-crack” growth direction and
propagation.

• The response of a hexagonal specimen under non-proportional loading was
studied. In the case of the ENLG model coupled with anisotropic damage, the
damage patterns become curved when crossing a previously damaged region
in a specific preferential direction thanks to the anisotropic interaction
kernel induced by the damage-dependent Riemannian metric.

• The application of the formulation to 3D simulations is already possible.
However, parallel solving techniques become necessary to perform damage
mechanics simulations with meshes that are fine enough to achieve mesh-
converged results (millions of degrees of freedom).
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Conclusion and perspectives

Conclusion. This thesis aimed to provide new theoretical and numerical developments
concerning modeling quasi-brittle materials. We focused on non-local approaches, specifi-
cally those of gradient-enhanced type and the so-called ENLG anisotropic damage model.

In Chapter 1 a comprehensive literature review on experimental observations related
to quasi-brittle materials was presented. Essential aspects were described, such as the
growth of micro-cracks and their impact on the induced anisotropic behavior of materials.
A brief review of existing explicit and implicit crack modeling strategies followed the
discussion. Special attention was given to contiuum damage mechaics, which describes
the degradation of elastic properties in a homogenized way by a damage state variable.
The main principles of this theory were introduced and discussed, highlighting the role of
anisotropic damage in describing oriented micro-cracks.

Due to the inherent pathological mesh dependency induced by local damage models in
finite element analysis, the numerical solution needs to be regularized. This was briefly
explained in the first part of Chapter 2, which provided a few results of a classic localization
analysis in softening media. Then, the focus shifted to presenting the so-called non-local
approaches, acting as localization limiters and regularizing the response. The concept
of neighborhood interactions was introduced, highlighting that the models considering
isotropic and constant interactions lead to an incorrect description of material degradation.
Common issues of these approaches are damage, excessive diffusion, and spreading and
boundary effects. Therefore, various evolving (and eventually anisotropic) non-local
interactions approaches were proposed in the literature (Geers et al., 1998; Desmorat &
Gatuingt, 2007b; Giry et al., 2011; Poh & Sun, 2017; Vandoren & Simone, 2018) and
briefly described in the chapter. The discussion was also extended to other regularization
techniques, mainly developed for the setting of isotropic damage (Francfort & Marigo,
1998; Bourdin et al., 2000; Moës et al., 2011).

Chapter 3 provided further insights on non-local approaches by providing theoretical
and numerical developments in a 1D setting. Firstly, we conducted a classic wave
dispersion analysis (Sluys et al., 1993; Sluys & de Borst, 1994; Peerlings et al., 2001;
Di Luzio & Bažant, 2005) to compare the regularization characteristics of ENLG and
GNL models. Contrarily to local damage models, propagation is dispersive, and the wave
velocity remains real for the gradient-enhanced models. Loading waves can be transformed
into a unique stationary harmonic localization wave, and a critical wavelength can be
derived. This last is associated with the internal length and the size of the localized zone.
Particularly, the impact of the initial strain and damage states was shown in the differences
observed between GNL and ENLG models. In both cases, the size of the localization

177



Conclusion

zone is well-defined. Subsequently, the analysis was complemented by numerical results in
a one-dimensional dynamics spalling problem. Damage diffusion and boundary effects
were studied, and the capability of the different models in regularizing the response was
discussed. The formulations with evolving interactions (Giry, 2011; Desmorat et al.,
2015b) proved more efficient in dealing with boundary effects and damage diffusion while
retaining their regularization properties.

Further developments concerning the ENLG approach were detailed in Chapter 4. In
this chapter, an alternative derivation of this approach was proposed. A thermodynamic
framework was detailed to derive anisotropic and isotropic ENLG damage models based
on a geometric extension of the micromorphic approach (Forest, 2009). Compared
to the GNL model, the only modification introduced in the free energy considers a
Riemannian norm (i.e., the non-local equivalent strain lives in a space curved by damage).
Qualitative illustrations showed how the interactions between points can be affected
by the existing isotropic or anisotropic network of micro-cracks. Based on the work
of Pijaudier-Cabot and Benallal (1993), a bifurcation analysis in a gradient-enhanced
continuum was then introduced. It was shown that the ENLG model preserves the
localization-limiting character of non-local approaches. It differs from the GNL model
and presents a re-localizing nature for high initial damage levels. The derived critical
wave number generalizes the expressions obtained from the wave dispersion analysis in
Chapter 3. The numerical formulation of the coupled problem was derived, and a few
results concerning 2D isotropic damage simulations were provided. It was demonstrated
that the ENLG model gives more realistic crack paths than the GNL model. Damage
re-localizes in almost one line of elements for the ENLG model, which better describes
a sort of “pseudo-crack”. The limit case where damage tends to the unity leads to a
division by zero in the ENLG formulation. One has the inverse of the metric that becomes
singular, and its inverse (the metric itself) cannot be obtained. In other words, similarly
to a black hole in space-time, this represents the case where a singularity appears in the
space curved by damage.

Chapter 5 addressed the coupling between an evolving anisotropic interactions gradient-
enhanced regularization (ENLG model) and an anisotropic damage constitutive behavior.
A tensorial anisotropic damage law was used based on the second-order Ladevèze’s damage
variable H (Desmorat, 2015). The plane-stress version of the model was therefore derived
to simulate 2D specimens. The variational formulation of the coupled problem was
established by linking H and the damage-dependent Riemannian metric g from the ENLG
model. It inherently accounts for two independent material characteristic lengths for the
direction of the damage band and one transverse to it.

The developed framework was applied to both 2D and 3D analyses. Inspired by the
works of Poh and Sun (2017) and Negi et al. (2020), a procedure for considering residual
non-local interactions was proposed through an additional parameter. It was shown that
this aspect is necessary to provide mesh-converged simulations with a relatively high, but
still numerically attainable, number of elements in the refined region. The numerically
obtained structural responses exhibited quasi-brittle behavior consistent with experimental
observations and damage patterns that closely matched the experimental ones. Moreover,
the anisotropic nature of damage enriches the behavior at the Gauss points, providing
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crucial information about equivalent “pseudo-crack” growth direction and propagation.
A novel hexagonal test was also proposed to show how induced anisotropic interactions

can affect the response. It was shown that the metric acts as a structural tensor, describing
the impact of the induced material orthotropy in the evolution of the damage patterns.

Finally, it was shown that the developments regarding the ENLG anisotropic model
presented in this dissertation can be readily extended to 3D. However, due to the high level
of refinement required in the zone where damage initiates and propagates, the analysis
becomes computationally prohibitive with the sequential solver employed in this work.
Moreover, while local refinement has been used in this contribution, in practical scenarios,
the crack path is not known a priori.

In conclusion, this thesis aimed to study the advantages and inconveniences of using
evolving non-local interactions approaches for degradation modeling in quasi-brittle
materials. Particularly, the capabilities of the ENLG model were studied. It was shown that
this model has interesting characteristics, such as its re-localizing nature and anisotropic
interactions aspects. It progressively describes the damage-to-fracture transition while
retaining its regularization nature.

Perspectives to further research may concentrate on a variety of different topics. We can
divide future works into two central axes: one concerning specific theoretical and numerical
aspects of the modeling techniques and the second mainly related to the application of the
developed models. In the following, a few suggestions are given, which are by no means
exhaustive but may provide helpful ideas.

Perspectives in terms of theoretical and numerical developments of the model-
ing techniques. From a theoretical point of view, extending the bifurcation analysis
of the ENLG model to incorporate anisotropic (potentially non-homogeneous) damage
settings would yield valuable insights into how the singularity of the metric relates to
its re-localizing behavior. This analysis could provide useful information on possible
transition criteria to introduce a discontinuity in the formulation. Additionally, it is
important to investigate the potential impacts of the non-local contribution in the energy
dissipation (see Chapter 4). At first view, since high non-local strain gradients take place
during damage re-localization, the non-local term in Equation (4.76) might significantly
contribute to the energy.

Another important point to consider is the differential-geometry nature of the ENLG
model. While the developments in this thesis enabled a thermodynamic derivation of
the ENLG from the micromorphic approach, a rigorous mathematical framework is still
required. In this context, the Riemannian metric is seen as the Euclidean one scaled
by damage and is solely used only to compute the non-local equivalent strain, while
all the other quantities remain in the Euclidean space. Further studies would require
defining different manifolds, establishing (damage-dependent) transformation between
them and the associated push-back and push-forward operations (see, for instance, Das
et al. (2021)). Additionally, a more general geometric framework of damage models may
be also constructed based on the gauge theory (e.g., Pathrikar et al. (2021))

From a numerical point of view, short-term developments could extend the ENLG
approach to initial anisotropic media (e.g., masonry (Tisserand et al., 2022), composites
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(Yin et al., 2020), etc.). This extension may involve utilizing the metric as a structural
tensor that differs from the identity tensor at the undamaged state (see Teichtmeister
et al. (2017) for examples of initial structural tensor for different class of symmetries).

Developments concerning the transition from damage to fracture (implemented in
strong discontinuity framework) (e.g., Mazars and Pijaudier-Cabot (1996), Simone et al.
(2003b), Cazes et al. (2009), Cuvilliez et al. (2012), and Negi and Kumar (2022)) should
be also considered. In the case of the E-FEM method, for instance, stress-locking effects
may arise due to the loss of continuity of the crack-path, and tracking algorithms may
become necessary (e.g., Oliver et al. (2002b), Riccardi et al. (2017), and Alsahly et al.
(2018)). However, the anisotropic character and the re-localizing behavior of the ENLG
model may avoid the need for tracking algorithms (see, for instance, first results in a 1D
setting (Thierry, 2019).

This transition approach could also be also extended to multi-physics coupling scenarios,
where the ENLG anisotropic model, possibly coupled to strong discontinuity approaches,
could describe the evolution of the material’s anisotropic permeability/diffusion properties
(Armero & Callari, 1999; Bary et al., 2000; Callari & Armero, 2002; Callari et al., 2010;
Rastiello et al., 2015, 2016).

Finally, it is essential to highlight that the applicability of the ENLG approach
to different loading and physical scenarios needs to be addressed. While quasi-static
simulations were the focus of this manuscript, extending the analysis to dynamic loading
is a logical next step. In fast dynamics, for instance, one could study the coupling between
the ENLG model and delay-damage approaches (Allix & Deü, 1997a; Allix et al., 2003;
Desmorat et al., 2010).

Perspectives in terms of applications. As highlighted in Chapter 5, real-scale
3D simulations become prohibitive within a sequential solver. Additional numerical
developments, particularly concerning parallel computation (e.g., Badri et al. (2021) and
Badri and Rastiello (2023)), may be considered to perform damage mechanics simulations
with meshes that are fine enough to achieve mesh-converged results (millions of degrees of
freedom). It would be interesting to see which level of resolution would be required to
provide converged results for minimal residual interactions. Additionally, mesh adaptation
techniques (e.g., Patzák and Jirásek (2004)) could become useful, especially when crack
paths are unknown. Another option is to consider the coupling with more advanced
meshing techniques which avoid re-meshing, such as the X-MESH approach (Moës et al.,
2023; Quiriny et al., 2024).

Regarding the application of ENLG formulations to the simulation of civil engineering
structures, a first aspect to address is the introduction of re-bars inside the concrete (see,
for instance, Ranjbaran (1991) and Sellier and Millard (2019)). It would be necessary to
evaluate whether an explicit or implicit description of the bars would be adequate. In the
explicit case, the main scientific question concerns the boundary condition used on the
steel-concrete interface.

In the same context, the predictive capabilities of the ENLG model need evaluation.
It is crucial to verify the capabilities of the proposed formulation to address size effects
(Grégoire et al., 2013; Hoover et al., 2013) in notched and unnotched three-point bending
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tests, as well as the effects of crack-parallel stresses. This would require the simulation
of gap-tests (Nguyen et al., 2020) and other “distinctive experiments” (see Bažant and
Nguyen (2023)).

Lastly, is the curved damage pattern obtained for the hexagonal specimen something
that can be experimentally confirmed? Experimental campaigns on quasi-brittle materials
for such a test may be challenging due to the applied tension loading. However, alternative
configurations could be explored to reproduce similar loading conditions. Additionally,
better control during tensile loading could potentially be achieved with fiber-reinforced
concretes, for instance.
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A
Implicit damage model integration at Gauss
point level

Constitutive model integration is performed once one has computed the displacement and
non-local equivalent strain fields at global iteration (k + 1). These fields being known,
the goal is to determine H and Ẽ. For brevity, the global iteration index (k + 1) and
the subscript h are omitted. Additionally, for ease of variable initialization, the model
is reformulated using the tensor A = H − I. Consequently, in the undamaged state,
tr (A) = 0. The evolution of damage is thus calculated as follows:

(i) Compute the total strain ε based on the last computed displacement.

(ii) Compute a trial of the criterion function:

ftry = ē− κk κk = κ0 + SRs
vtr (Ak) (0.1)

where ē is the last computed non-local strain, and the triaxiality function Rv is
evaluated based on the solution at previous global iteration with T k

X = tr σk

3σk
eq

.

– If ftry < 0, there is no damage evolution, i.e., A = Ak.
– Otherwise, an iterative procedure is employed to find a solution satisfying
f(A) = 0. In this case (we denote with letter i the local sub-iterations):

∗ One then looks for δAi+1 such that:

f i+1 ≈ f i + df

dA

∣∣∣∣∣
i

: δAi+1 = f i − SRs
vtr (δAi+1) = 0 (0.2)

with:

f i = ē− κ0 − SRs
vtr (Ai) tr (δAi+1) = δλi+1 tr (Pk) (0.3)

Here, the damage rate direction tensor Pk is defined after having computed
the total (or effective) strain tensor at previous global iteration. Finally,
one has:

δλi+1 = ē− κ0

SRs
vtr (Pk) − tr (Ai)

tr (Pk) (0.4)

and then:
Ai+1 = Ai + δλi+1Pk (0.5)
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Appendix A. Implicit damage model integration at Gauss point level

∗ Once local convergence is achieved, one sets:

A = Ai+1 (0.6)

(iii) Update the Ladevèze damage variable at convergence:

H = A + I (0.7)

compute the effective Hooke’s tensor Ẽ = Ẽ (H) from (5.28), and compute the stress
tensor σ = Ẽ : ε. Finally, compute the tensorial damage variable D.

Plane stress modifications in constitutive behavior integration. While the
general process for integrating constitutive behavior remains largely unchanged, there are
specific modifications introduced for plane stress conditions. These adjustments include:

(i) The same procedure as described earlier is applicable to ε2.

(ii) The variation in the damage multiplier is determined by:

δλi+1 = ē− κ0

SRs
v

(
tr (Pk

2) + ⟨εk
z⟩/∥⟨ε⟩∥

) − tr (Ai
2) + Ai

z

tr (Pk
2) + ⟨εk

z⟩/∥⟨ε⟩∥ (0.8)

where A2 = H2 − I2, the triaxiality function Rv is computed after evaluating T k
X

based on σk
2 (see 3), and we assume the damage direction tensor depending on the

total strain (similar formulas hold when considering the effective strain). Thus, one
has:

δAi+1
2 = δλi+1Pk

2 δAi+1
z = δλi+1⟨εk

z⟩/∥⟨ε⟩∥ (0.9)

(iii) At convergence, update the Ladevèze damage variable H2 = A2 + I2, compute
the two-dimensional effective Hooke’s tensor Ẽ⋆

2 = Ẽ⋆
2 (H2, Hz) from (5.39), and

calculate the stress tensor σ2 = Ẽ⋆
2 : ε2. Finally, compute the tensorial damage

variable D2 = I2 − H−2
2 and Dz = 1 −H−2

z .

Representative local responses obtained using the chosen anisotropic damage model at
the integration point level are presented in B.
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Figure A.1 • Local models – Desmorat’s model responses in tension (top-left) and
compression (top-right). Evolution of damage tensor components under
tension (bottom-left) and compression (bottom-right). Micro-cracks are
illustrated to highlight the preferential directions of damage.
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B
Representative local responses of the anisotropic
damage model

Representative responses simulated using the anisotropic damage model discussed in
2 are provided. These numerical results are obtained through mtest, an open-source
Python tool distributed alongside Mfront. This tool enables the simulation of complex
loading conditions at the integration point level, facilitating the testing and validation of
constitutive law implementations without the need for a finite element solver.

1 Pure tension/compression

Figure A.1 (top) displays a typical response obtained with the anisotropic damage model
under tension and compression. The parameters used for this test are the ones proposed
in (Desmorat, 2015), i.e., {E, ν, κ0, S, s, B} = {37 000 MPa, 0.2, 9e−5, 1.45e−4, 4.9, 5/3}.
The tension–compression dissymmetry behavior is illustrated in Figure A.1 (top-right).
This dissymmetry arises due to micro-cracks developing as a consequence of extensions
perpendicular to the applied load, induced by the Poisson’s effect. As a result, damage
variable components evolve more slowly under compression conditions.

Figure A.1 (bottom) depicts the corresponding evolution of the damage variable under
tension and compression. In uniaxial tension along x, micro-cracks develop perpendicular
to the applied load, as qualitatively represented in Figure A.1 (bottom-left). Consequently,
the damage component Dxx rapidly evolves to unity, reflecting the direct tension applied
in this direction. Meanwhile, due to Poisson’s effect, shrinkage occurs on y and z (resulting
in negative strains), causing the damage components Dyy and Dzz to remain unchanged.
In contrast, uniaxial compression along x leads to micro-cracks developing parallel to the
applied load, as illustrated in Figure A.1 (bottom-right). Extensions (resulting in positive
strains) appear on y and z, causing the damage component Dxx to remain constant. The
damage principal directions align with y and z but are associated with indirect extensions.
Consequently, Dyy and Dzz are equal and evolve much more slowly than in the direct
tension case.
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Appendix B. Representative local responses of the anisotropic damage model

2 Non-proportional loading

Non-proportional loading is simulated here to illustrate one of the advantages of employing
the anisotropic damage model over an isotropic one. The total loading time is discretized
into 2000 pseudo-time steps. A non-proportional load is applied, initially imposing
an increasing strain component εxx until step 500 (see Figure B.1). Subsequently, an
unloading phase occurs until step 1000, where εxx = 0 and σxx = 0 (see Figure B.1).
From step 1000 until 2000 (end of the simulation), an increasing strain component εyy

is applied (depicted by the red curve in Figure B.1), with no conditions imposed on the
other components.

Figure B.1 • Local models – Non-proportional strains applied at the quadrature point.

Isotropic vs anisotropic models. The stress–strain response obtained with the
isotropic model is shown in Figure B.2 (top-left). Elastic parameters are consistent with the
ones previously used, {E, ν} = {37 000 MPa, 0.2}. Moreover, {κ0, Bt} = {1 × 10−4, 1000},
which are typically used for the isotropic damage evolution considered here. Figure
B.2 (top-right) illustrates that the response follows the same effective modulus during
unloading on x and loading on y. This is expected since, once damaged, all components
of the effective Hooke’s tensor Ẽiso are affected by the same factor (1 −D). Consequently,
Ẽiso remains isotropic.

On the contrary, the Hooke’s tensor evolves from isotropic to orthotropic in the case
of the tensorial damage model used here. The stress–strain response for the loading
case presented is depicted in Figure B.2 (bottom-left). For comparison purposes, elastic
material parameters are kept consistent with those used for the isotropic model. The
other parameters are taken as in 4.2. The response does not follow the same effective
modulus during reloading on the y direction, reflecting the induced anisotropy due to
damage. The effective Hooke’s tensor components evolve differently as damage takes
place. For instance, from the expression of the effective Hooke’s tensor (Eq. (5.28)), one
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2. Non-proportional loading

observes that the components:

Ẽ1111 = 2G
[
H−1

11 H
−1
11 − H−2

11 H
−2
11

tr H−2

]
+ 3K

tr H2 Ẽ2222 = 2G
[
H−1

22 H
−1
22 − H−2

22 H
−2
22

tr H−2

]
+ 3K

tr H2

(2.1)
are naturally different once damage occurs. As illustrated in Figure B.2 (bottom-right),
the components Ẽ1111 and Ẽ2222 are initially the same in the elastic phase (i.e., when the
material is isotropic). However, they evolve differently as a function of the damage state.
This induced anisotropic behavior is essential for accurately capturing the anisotropic
nature of non-local interactions, which is represented in this work by a damage-dependent
Riemannian metric.

Figure B.2 • Local models – Isotropic model: stress–strain response during non-
proportional loading (top-left) and evolution of Ẽiso components (top-right).
Desmorat’s model: stress–strain response during non-proportional loading
(bottom-left) and evolution of Ẽ components (bottom-right).
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C
Partitioned path-following algorithm for CMOD
control

After assembly, the finite element problem can be written in matrix format such as the
equilibrium reads:

Kuud = F (0.1)

where Kuu and F are respectively the assembled stiffness matrix from the bi-linear and
linear forms of equation 5.42. The unknown displacements vector is denoted d. Similarly,
the weak form of the gradient problem reads:

Keee = Fe (0.2)

where e is the vector of the nodal non-local equivalent strain unknowns. The bi-linear
and linear forms from equation 5.44 lead to the construction of Kee and Fe, respectively.
Dirichlet boundary conditions are considered within the penalization method, such as one
has:

(
Kuu + β1L1T

L

)
d = F + βud

L1L (0.3)

where β is a terrible giant value, as named in FreeFem solver. The column vector 1L

contains a 1 for the L-nth degree of freedom and zeros elsewhere. The corresponding
imposed displacement value is ud

L.
For indirect control, an additional variable γ is introduced to control the amplitude of

the applied displacements, such as ud
L = 1 × γ, with γ a new unknown of the problem.

Therefore, a new equation must be added, which is related to the control condition to be
satisfied, such as:

P (γ,d) = 0 (0.4)

A partitioned method is used, such as d = dI + γdII. Given the known solution
(dn,γn,en) at pseudo-time step n, one searchs for (dn+1,γn+1,en+1). The control conditions
is written in terms of CMOD = ux(B) − ux(A), where ux denotes the x component of the
displacement field.
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For a given iteration and under the CMOD control for the three-point bending problem
studied here, the condition rewrites:

P (γ,d) = CMODn+1 − CMODn − ∆τ
=
[
dx

n+1(B) − dx
n+1(A)

]
− [dx

n(B) − dx
n(A)] − ∆τ

=
[
dx

I,n+1(B) + γn+1dx
II,n+1(B) − dx

I,n+1(A) − γn+1dx
II,n+1(A)

]
− [dx

n(B) − dx
n(A)] − ∆τ

= γn+1
[
dx

II,n+1(B) − dx
II,n+1(A)

]
+
[
dx

I,n+1(B) − dx
I,n+1(A)

]
− [dx

n(B) − dx
n(A)] − ∆τ

(0.5)

and finally, the loading multiplier reads:

γn+1 =
∆τ −

[
dx

I,n+1(B) − dx
I,n+1(A)

]
+ [dx

n(B) − dx
n(A)][

dx
II,n+1(B) − dx

II,n+1(A)
] (0.6)

Here dx(•) denotes the degree of freedom associated to ux(•) and ∆τ is the step length
parametrizing the equilibrium path. For each iteration k + 1, the partitioned staggered
global problem is then solved in five steps:

(i) Obtain dk+1
I,n+1 by solving Kk

uu,n+1dk+1
I,n+1 = F

(ii) Obtain dk+1
II,n+1 by solving

(
Kk

uu,n+1 + β1L1T
L

)
dk+1

II,n+1 = 1 × β1L

(iii) Obtain γk+1
n+1 from equation 0.6 and compute dk+1

n+1 = dk+1
I,n+1 + γk+1

n+1dk+1
II,n+1.

(iv) With dk+1
n+1, calculate the vector related to the local equivalent field Fk+1

e,n+1. Then,
solve for ek+1

n+1 from Kee,nek+1
n+1 = Fk+1

e,n+1.

(v) Check for convergence.
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D
Extended abstract in french

1 Contexte général et motivations

Prédire avec précision la réponse des structures soumises à des scénarios de chargement
complexes est une tâche difficile en ingénierie. En pratique, les codes de conception se
concentrent sur la capacité portante et l’analyse limite, ce qui implique l’utilisation de
facteurs de sécurité. Par conséquent, la description fine des mécanismes de défaillance et de
la dissipation d’énergie est souvent simplifiée ou complètement négligée. Cette approche est
généralement acceptée principalement pour des raisons pragmatiques : les systèmes conçus
peuvent généralement résister aux sollicitations pendant leur durée de vie. Cependant,
étant donné que les capacités réelles sont, en fait, inconnues, un surdimensionnement
devient inévitable.

Dans le contexte du changement climatique, le surdimensionnement est directement
liée à la consommation de ressources et, donc, aux émissions de gaz à effet de serre
(GES). IEA (2019) a estimé qu’en 2018, 11% de l’énergie utilisée et des émissions de
CO2 liées aux processus provenaient de la fabrication de matériaux et de produits de
construction (par exemple, ciment, acier et verre). Nous devons donc réduire l’excès de
matériau utilisé sur les chantiers de construction et dans l’industrie. Par conséquent,
une meilleure compréhension de la dégradation des matériaux (c’est-à-dire l’apparition
de micro et macro-fissures et leur influence sur les propriétés des matériaux) et de la
durabilité devient indispensable. En particulier, étudier la nucléation et la propagation
des fissures est essentiel pour évaluer les performances structurelles de manière réaliste.
C’est déjà le cas pour l’analyse des structures sensibles, où il y a peu de marge d’erreur.
Par exemple, l’ouverture des fissures est une donnée essentielle pour l’estimation du taux
de fuite à travers les parois de confinement des centrales nucléaires. Dans ce contexte,
les prévisions doivent être plus précises et fournir des informations utiles sur la durée de
vie des ouvrages. Par conséquent, l’étude de la dégradation des matériaux joue un rôle
important dans ces estimations.

La recherche sur les mécanismes de fissuration a également attiré l’attention dans
d’autres problèmes d’ingénierie liés à la transition énergétique. On peut citer la fragilisation
par l’hydrogène dans les métaux (transition d’un comportement ductile à quasi-fragile
ou fragile), impliquant des risques de sécurité sévères dans son transport et son stockage,
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ou l’étude des réseaux de fractures dans les systèmes géothermiques. Enfin, mais non
des moindres, l’étude des mécanismes de fracture joue également un rôle majeur dans la
compréhension de la mécanique des glaces. En particulier, des modèles précis décrivant
la dégradation deviennent essentiels dans l’estimation de la perte de masse des calottes
glaciaires, ce qui contribue considérablement à l’élévation du niveau de la mer.

Les matériaux quasi-fragiles sont présents presque partout, et certains exemples sont
le béton et le mortier, certaines roches, les céramiques résistantes, la maçonnerie, la glace
de mer, le bois et bien d’autres. La dégradation des propriétés mécaniques les caractérise
principalement en raison de la fissuration lorsqu’ils sont soumis à une charge. Il est donc
indéniable qu’il est nécessaire de décrire leur comportement.

2 Approche scientifique et objectifs

L’objectif principal de cette thèse est de fournir des développements théoriques et
numériques concernant la modélisation des mécanismes de dégradation dans les mi-
lieux quasi-fragiles. L’objectif est de fournir, in fine, un cadre numérique fiable et robuste
pour prédire la fissuration dans les simulations des structures. À cette fin, nous nous
limitons à étudier uniquement la dégradation des matériaux induite par le chargement
mécanique.

La mécanique des milieux continus est utilisée, de sorte que le milieu est décrit sur la
base d’un volume élémentaire représentatif, dont la taille est suffisamment plus grande
que l’hétérogénéité du matériau et plus petite que la structure considérée. Ainsi, le
comportement du matériau est défini de manière homogénéisée suivant un cadre ther-
modynamique cohérent. La dissipation d’énergie et les processus irréversibles associés
sont étudiés suivant les principes de la thermodynamique, ce qui peut garantir qu’une
relation de comportement est physiquement admissible. Par conséquent, la dégradation
des propriétés mécaniques est modélisée par une variable interne supplémentaire appelée
endommagement (Kachanov, 1958; Rabotnov, 1969; Lemaitre, 1971; Mazars, 1984b). En
conséquence, les micro-fissures sont décrites implicitement dans le volume élémentaire
représentatif, et la rupture est considérée comme une conséquence d’un niveau de dégrada-
tion très important. Les modèles d’endommagement isotrope et anisotrope sont considérés
dans cette thèse.

Les simulations sont considérées dans le cadre de l’analyse par éléments finis. En raison
de la dépendance au maillage bien connue et inévitable, des techniques de régularisation
doivent être envisagées, étant donné que la localisation des déformations ne peut pas
être décrite avec des modèles d’edommagement locaux (Bažant & Oh, 1983b; Bazant
et al., 1984). Cette dissertation travaille avec des modèles d’endommagement non local
de types intégral et gradient, qui agissent comme limiteurs de localisation (Pijaudier-
Cabot & Bažant, 1987; Peerlings et al., 1996a). L’étude de ces techniques est au cœur
des développements décrits dans ce travail. Le concept d’un milieux continu non-local
introduit l’idée que la relation de comportement en un point donné est une fonction de
ce qui se passe dans tout le domaine. Les interactions de voisinage sont donc utilisées
pour enrichir la description du milieux en ajoutant des gradients ou une moyenne spatiale
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basée sur une longueur caractéristique du matériau (Bažant & Jirásek, 2002). L’hypothèse
principale est que la variable d’endommagement est supposée croître en fonction d’une
déformation équivalente non locale (Jirásek, 1998).

Bien que la régularisation de la réponse permette de retrouver l’objectivité vis-à-vis
du maillage, les modèles d’endommagement non-local classiques présentent certaines
incohérences physiques et ne peuvent pas décrire avec précision tous les phénomènes
physiques liés à la fissuration (Geers et al., 1998; Simone et al., 2004; Krayani et al., 2009;
Giry et al., 2011). Certains de ces aspects sont étudiés en détail dans ce travail, soulignant
la nécessité de considérer des approches non locales avec interactions évolutives. Nous nous
concentrons principalement sur l’approche Eikonal à gradient implicite (Desmorat et al.,
2015b). Avec l’équilibre, elle considère une équation différentielle supplémentaire de type
Helmholtz à résoudre pour la déformation équivalente non locale. À partir d’une théorie
des milieux micromorphes basée sur la géométrie différentielle, une nouvelle dérivation de
ce modèle est proposée, qui vérifie l’inégalité de Clausius-Duhem. L’idée principale est
que l’endommagement est supposé courber l’espace où se produisent les interactions non
locales. Une telle déformation de l’espace est représentée par l’introduction d’une métrique
riemannienne dépendante de l’endommagement. Nous proposons de voir cette métrique
basée sur une analyse qualitative de la manière dont le développement des micro-fissures
modifie les interactions du milieu.

La formulation variationnelle (forme faible) du problème couplé est dérivée pour le cas
générique d’un tenseur de dommage anisotrope d’ordre deux. Un schéma point fixe est
appliqué à la formulation variationnelle au niveau global pour résoudre le problème non
linéaire couplé, tandis qu’une procédure itérative de Newton-Raphson est utilisée pour
l’intégration du comportement aux points de quadrature. Les simulations numériques
fournies considèrent à la fois l’endommagement isotrope et anisotrope. Sur la base des
concepts de la théorie de la représentation tensorielle (Boehler, 1987), nous proposons de
considérer la métrique comme un tenseur de structure modifiant les interactions non locales.
Les polynômes homogènes correspondants des tenseurs sont utilisés pour introduire un
outil de visualisation utilisant des ellipses. Il met en évidence comment l’endommagement
anisotrope induit naturellement des interactions non locales évolutives anisotropes. Les
résultats numériques sont fournis et comparés aux données expérimentales existantes de
la littérature. La discussion se concentre sur les capacités du modèle à représenter des
mécanismes de fissuration réalistes et sur son application possible aux structures à grande
échelle.

3 Organisation du manuscrit

Cette thèse est organisée en deux parties principales et cinq chapitres. La première
partie est consacrée à la présentation d’une introduction générale aux principaux concepts
étudiés dans ce travail. La deuxième partie rassemble les principales contributions de
cette dissertation au sujet en termes de dérivations théoriques, de formulations, de
développements numériques et de résultats.

Les deux premiers chapitres sont présentés dans la première partie. Chapter 1 fournit
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d’abord un aperçu des observations expérimentales tirées de la littérature concernant
les matériaux quasi-fragiles. Les observations décrites soulignent la nécessité de mieux
comprendre les mécanismes de dégradation de ces matériaux. Deuxièmement, les stratégies
de modélisation des fissures les plus courantes sont passées en revue. Une attention
particulière est accordée à la mécanique de l’endommagement, qui est la base de tous les
développements de cette dissertation. Les concepts essentiels de cette théorie sont décrits,
et quelques modèles d’endommagement sont finalement présentés.

Chapter 2 fournit une revue de la littérature sur la théorie non locale de l’endommagement.
Il est souligné que, du point de vue de la structure, les simulations par éléments finis
avec des modèles d’endommagement locaux ne peuvent pas fournir des résultats signifi-
catifs. Les éléments critiques de la localisation des déformations et de la bifurcation sont
introduits pour souligner la nécessité de régulariser la solution. On fournit une discussion
sur la non-localité dans un sens large et sur la manière dont le terme « non local » est
compris par différentes communautés. Ensuite, les approches classiques intégrales et à
gradient sont décrites dans le cadre de la mécanique de l’endommagement. Le concept
d’interactions non locales entre les points d’un milieu est introduit. Il est expliqué pourquoi
des interactions évolutives et éventuellement anisotropes doivent être envisagées. Une
attention particulière est accordée à la formulation Eikonale. Enfin, d’autres approches
de régularisation bien connues sont brièvement décrites.

Les trois derniers chapitres sont présentés dans la deuxième partie. Chapters 3 and 4
sont composés d’articles de revues publiés, avec quelques développements, illustrations et
modifications supplémentaires pour s’adapter au style et au suivi global de cette thèse.
Il en va de même pour Chapter 5, sauf qu’au moment de la soumission de ce manuscrit,
l’article correspondant est en cours de révision.

Chapter 3 se concentre sur les développements théoriques et numériques unidimension-
nels concernant les modèles d’endommagement non locaux (Ribeiro Nogueira et al., 2022a).
Il commence par une analyse de la dispersion des ondes sur les modèles d’endommagement
locaux et à gradient. Par la suite, les effets de bord et la diffusion de l’endommagement
sont étudiés en analysant un test numérique d’écaillage. Un code éléments finis en dy-
namique explicite est développé à cet effet. Enfin, les approches classiques et évolutives
des interactions non locales sont comparées.

Chapter 4 fournit une dérivation alternative du modèle d’endommagement Eikonal
à gradient (Ribeiro Nogueira et al., 2024a). Comme point de départ, il est proposé de
considérer l’approche micromorphe basée sur une description géométrique du problème.
Certains concepts de géométrie différentielle sont brièvement introduits, et la forme forte
du modèle Eikonal, avec sa condition aux limites, est dérivée. Quelques commentaires
supplémentaires sur l’analyse de la bifurcation des modèles à gradient sont fournis,
établissant une relation avec les résultats présentés dans l’analyse de la dispersion des
ondes du Chapter 3. Enfin, la mise en œuvre numérique de l’approche Eikonale à gradient
est décrite, et ses propriétés de régularisation sont évaluées à travers des simulations
numériques 2D avec endommagement isotrope.

Enfin, Chapter 5 traite de l’extension du modèle Eikonal à gradient au cas de
l’endommagement anisotrope. Le modèle est couplé à un comportement prenant en compte
un tenseur d’endommagement d’ordre deux. Un comportement spécifique en contraintes
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planes est dérivé pour les simulations 2D. La visualisation des ellipsoïdes représentant
l’endommagement et la métrique illustre comment le comportement anisotrope induit
naturellement des interactions anisotropes évolutives. La solution numérique du problème
couplé est détaillée, tant au niveau de la structure qu’au niveau des points de quadrature.
Une discussion complète sur les avantages de tels modèles est fournie, présentant des
résultats structurels bien connus dans des contextes bidimensionnels et tridimensionnels.
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