
HAL Id: tel-04683902
https://theses.hal.science/tel-04683902v1

Submitted on 2 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two examples of multi-scale numerical modelling
combined with advanced X-ray based experiments :
multi-scale imaging for reactive transport in porous

media and X-ray beam induced current (XBIC)
Abdellatif Saadaldin

To cite this version:
Abdellatif Saadaldin. Two examples of multi-scale numerical modelling combined with advanced
X-ray based experiments : multi-scale imaging for reactive transport in porous media and X-ray
beam induced current (XBIC). Material chemistry. Université de Bordeaux, 2022. English. �NNT :
2022BORD0238�. �tel-04683902�

https://theses.hal.science/tel-04683902v1
https://hal.archives-ouvertes.fr


 

 
 

 
 
 
 

THÈSE PRÉSENTÉE  

POUR OBTENIR LE GRADE DE 
 

DOCTEUR DE 
 

L’UNIVERSITÉ DE BORDEAUX 

 

École doctorale des sciences chimiques 

Physico-Chimie de la Matière Condensée 

Par 

 Abdellatif SAADALDIN 
 
 

Two examples of multi-scale numerical modelling combined with 

advanced X-ray based experiments: multi-scale imaging for 

reactive transport in porous media and X-ray beam induced 

current (XBIC) 

 
Sous la direction de : Dr. Dominique BERNARD 
(co-directeur : Prof. Yannick BERTHOUMIEU) 

 
 
Soutenue le 29 Août 2022 
 
Membres du jury : 
 
Mme. CROGUENNEC Laurence Directrice de recherche, ICMCB, France                              Présidente 
Mme. MARONE Federica Directrice de recherche, Paul Scherrer Institute, Suisse      Rapporteur 
M. BRUNO Giovanni  Full professor, BAM - Division 8.5 Micro NDE, Allemagne   Rapporteur 
M. LASSEUX Didier  Directeur de recherche, I2M Dept TREFLE, France          Examinateur 
M. ANDREASEN Jens  Full professor, Technical University of Denmark, Denmark   Examinateur 
M. QATANANI Naji  Full professor, An-Najah National University, Palestine     Examinateur 
M. BERTHOUMIEU Yannick   Professeur des universités, IMS Lab, France    Co-Directeur 
M. BERNARD Dominique   Directeur de recherche, ICMCB, France  Directeur de thèse 



Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisor Dr. Do-

minique BERNARD for all his guidance, support, encouragement and patience throughout

these years. I would also like to thank him for giving me the opportunity to be part of

this great and extraordinary project. I have learnt many exhilarating things and met so

many amazing people who in different ways inspired and helped me to realise my dream.

The project MUMMERING (MUltiscale, Multimodal and Multidimensional imaging

for EngineeRING) was funded by EU Horizon 2020 Marie Sklodowska-Curie Actions In-

novative Training Network, Grant No. 765604; I show my gratitude towards the funding

agency. Special thanks to everyone who was part of this network, for all the efforts and

time they spent so we can have this unforgettable experience. By ’we’ I mean, all the 15

early stage researchers (ESR) whom I would like to thank for their support and kindness.

I would like to thank all the jury members for agreeing to be there in the committee:

Dr. Federica MARONE and Dr. Giovanni BRUNO for reviewing my thesis manuscript,

Dr. Didier LASSEUX, Dr. Laurence CROGUENNEC, Dr. Jens ANDREASEN and

Dr. Naji QATANANI for examining. Special thanks to my Co-supervisor Dr. Yannick

BERTHOUMIEU.

I would like to extend my sincere thanks to my colleagues and all members in the

research group 1, for the cherished time that we spent together in the ICMCB lab. I am

also truly thankful for their prompt help whenever I needed it.

I would like to thank all my friends, the one newly added to the old ones in the list,

for constantly motivating and pushing me to my greater heights even in the toughest

moments. It is their kind help and support that have made my stay a wonderful one.

I would like to express immense gratitude to my parents for their support back home.

I also want to mention my whole family, without whom I would never have become who

I am today. Especially, my daughters Maha and Zaina for being my inspiration.

Finally, I want to dedicate this thesis to my beloved wife, Rana, for her love and

support during this journey. Thank you for always being there for me.

i



Résumé du manuscrit de thèse

Cette thèse est constituée de deux exemples de modélisation numérique multi-échelle

combinée à des expériences de rayons X synchrotron : (1) Imagerie et modélisation multi-

échelle pour le transport réactif à l’échelle du pore, (2) Caractérisation multimodale des

cellules solaires à couche mince en kestérite : résultats expérimentaux et interprétation

numérique. Ces deux exemples ont été développés au sein d’un réseau de formation

appelé MUMMERING (MUltiscale, Multimodal and Multidimensional imaging for Engi-

neeRING). Ce fut une occasion extrêmement enrichissante et passionnante d’apprendre

des choses exaltantes grâce à ce programme de formation.... Permettez-moi donc de com-

mencer ma thèse en expliquant un peu ce qu’est MUMMERING avant de me plonger dans

les détails scientifiques de ce travail. MUMMERING [1] est l’un des programmes du réseau

de formation innovant (ITN) des actions Marie Sklodowska-Curie. Son objectif princi-

pal était de créer un outil de recherche qui englobe les différtents aspects des nouvelles

modalités d’imagerie 3D qui se développent pour des applications dans le domaine de

l’ingénierie des matériaux, et de créer un programme de doctorat qui forme 15 chercheurs

débutants (ESR) dans tous les volets de l’imagerie 3D, de l’acquisition de données à la

modélisation physique, en passant par la reconstruction et la segmentation. En tant que

ITN, MUMMERING a également pour objectif de former une nouvelle génération d’ESR

créatifs et innovants, capables de convertir les connaissances et les idées en produits et ser-

vices pour un bénéfice économique et social, et de travailler en collaboration avec d’autres

ESR du réseau pour résoudre des problèmes réels.

Les modèles et simulations multi-échelles sont des défis importants pour la science

numérique dans de nombreux domaines de recherche. La plupart des phénomènes de

la vie réelle impliquent une gamme étendue d’échelles spatiales et/ou temporelles, ainsi

que l’interaction entre divers processus naturels. De plus, les méthodes d’imagerie multi-

échelle forment un pont entre la compréhension à l’échelle atomique (obtenue par la

microscopie électronique, la diffraction et la spectroscopie, la tomographie à l’échelle

nanométrique) et les objets à l’échelle macro. La microscopie corrélative unifie les infor-

mations dérivées d’une variété de modalités d’imagerie obtenues par la variation d’énergie

et les différentes interactions de la sonde avec le matériau. Les propriétés uniques du ray-

onnement synchrotron, à savoir un spectre continu, un flux et une luminance élevés et

une grande cohérence, en font un outil essentiel dans les modalités d’imagerie à plusieurs

échelles. Les spécialistes des matériaux utilisent généralement le rayonnement X syn-
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chrotron pour étudier la structure des matériaux à l’échelle du micromètre ou du nanomètre.

En établissant un lien entre la structure des matériaux et leur comportement mécanique

et physique, il est possible de concevoir des matériaux aux performances optimisées. La

gamme d’applications des expériences de rayons X synchrotron est très large et cou-

vre des secteurs aussi divers que l’industrie chimique (polymères), l’industrie des semi-

conducteurs, la recherche géologique (et pétrolière), l’industrie agroalimentaire et les ap-

plications de fabrication avancée.

L’objectif principal de cette thèse était de développer une procédure d’imagerie et de

modélisation multi-échelle pour le transport réactif dans les milieux poreux. En outre,

un travail de collaboration intitulé ”Multi-Modal Characterization of kesterite Thin-Film

Solar Cells : Experimental results and numerical interpretation” initié avec Azat M.

Slyamov (ESR 9) est devenu une partie essentielle de mon doctorat. Ce travail est le

résultat de discussions continues au cours des ateliers et des réunions du projet MUM-

MERING. L’objectif principal de cette collaboration était de développer une approche

multi-échelle basée sur les premiers principes pour simuler les expériences de courant

induit par un faisceau de rayons X (XBIC). Ces deux exemples partagent la propriété

d’être des expériences dépendantes des rayons X du synchrotron et le même objectif de

développer des procédures d’imagerie et de modélisation multi-modales et multi-échelles.

Dans le premier exemple, l’imagerie et la modélisation multi-échelle du transport

réactif à l’échelle du pore ont été envisagées. La modélisation du transport dans les

milieux poreux nécessite de garder à l’esprit les aspects multi-échelles existants dans les

structures des milieux poreux. Un milieu poreux est un matériau contenant du vide ;

les filtres, les adsorbants, le papier d’impression, le bois, les matériaux composites et les

tissus biologiques en sont des exemples, tout comme le sol et les chaussées, ainsi que les

réservoirs de pétrole, de gaz et les réservoirs géothermiques [2]. Ces milieux poreux sont

généralement très hétérogènes à l’échelle locale (échelle du pore) et il n’est généralement

pas possible d’utiliser les modèles décrivant le transport à l’échelle du pore pour prédire

et observer le transport à l’échelle globale (échelle macroscopique). Par exemple, dans

un aquifère, à l’échelle du pore, l’écoulement monophasique est régi par l’équation de

Stokes. Cependant, en raison du large éventail d’échelles impliquées, allant de l’échelle

du pore (environ 100 µm) à l’échelle macroscopique (km), et de la géométrie complexe à

l’échelle du pore, il est pratiquement impossible d’utiliser l’équation de Stokes pour décrire

l’écoulement dans le système entier. Au lieu de cela, une approche continue est proposée

pour décrire l’écoulement à l’échelle macroscopique par la loi de Darcy [3]. Dans cette

approche, le milieu poreux est traité comme un continuum et l’écoulement est prédit sans

information sur la configuration microscopique de la géométrie à l’échelle des pores. Le

résultat du travail de Darcy est une loi empirique avec un domaine de validité limité. Par

conséquent, de nombreux chercheurs ont tenté de dériver la loi de Darcy d’une manière

générale en utilisant les informations sur l’échelle des pores au moyen de techniques de

changement d’échelle [4], [5]. Le modèle macroscopique qui en résulte contient la propriété
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effective, le tenseur de perméabilité, qui peut être calculée en utilisant les informations

à l’échelle du pore. Ensuite, plutôt que de traiter le problème en termes d’équations qui

ne sont valables que dans les pores, nous pouvons utiliser les techniques de changement

d’échelle pour dériver des équations macroscopiques qui sont valables partout et sont liées

à la géométrie à l’échelle du pore par les propriétés effectives. Un problème central dans

la recherche sur l’échelle des pores est la détermination de ces propriétés effectives qui

décrivent le comportement d’un milieu poreux à l’échelle macroscopique, c’est-à-dire les

propriétés qui sont pertinentes et peuvent être mesurées dans des expériences en labo-

ratoire ou sur le terrain [6]. La technique de moyenne volumique est l’une des diverses

méthodes théoriques fournissant une description rigoureuse de la procédure de change-

ment d’échelle [5], [7]–[9]. Celle-ci est bien adaptée pour notre problème (transport réactif

en milieu poreux) [9]–[13]. En général, la plupart des systèmes naturels sont hétérogènes

et les propriétés effectives de transport dépendent fortement des détails géométriques [12].

La mesure de la géométrie tridimensionnelle (3D) peut être abordée de plusieurs façons.

La microtomographie synchrotron est l’un des outils avancés de la science des matériaux

qui fournit des images 3D du matériau étudié. Traditionnellement, les images 3D sont

quantifiées par un nombre limité de paramètres (porosité, surface réactive, etc...), et ces

paramètres sont les entrées utilisées dans les modèles. Comme alternative, l’ensemble des

données 3D peut être utilisé comme entrée pour calculer les propriétés effectives [14]–

[17]. Cela favorise la transition vers une prochaine génération de modèles plus précis, qui

incluent l’hétérogénéité de la microstructure.

Pour calculer les propriétés effectives, l’image 3D décrivant la géométrie locale doit être

suffisamment grande pour être représentative. Par représentatif, nous entendons que les

propriétés effectives ne changeront pas pour des images plus grandes. Ce volume minimal

requis est communément appelé volume élémentaire représentatif (VER) [18]. Les outils

d’imagerie modernes fournissent de très grandes images 3D (géométries décrites par des

milliards de voxels), et l’utilisation de ces images 3D entières est un défi. Il convient

donc d’accorder une attention particulière à l’utilisation de la mémoire et au temps de

calcul. Un aspect important de la simulation numérique est la discrétisation de l’espace.

La méthode la plus simple et la plus courante consiste à utiliser une grille cartésienne

régulière (uniforme) (grille de voxels). Les inconvénients des grilles régulières sont les

exigences en matière d’effort de calcul et de taille de mémoire. Par conséquent, une

discrétisation spatiale adaptée est nécessaire pour résoudre ce problème.

Pour les problèmes que nous considérons, les réactions hétérogènes sont dominantes, ce

qui signifie que la partie réactive de l’interface fluide-solide doit être décrite précisément à

l’échelle locale. D’autre part, la distribution spatiale globale du solide doit également être

caractérisée avec précision car elle détermine la représentativité des propriétés moyennes

de transport. Les techniques d’imagerie multi-échelle peuvent fournir une image basse

résolution (LR), correspondant à un large champ de vision, qui peut être utilisée comme

entrée pour le calcul des propriétés de transport moyennes et des images haute résolution
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(HR) qui décrivent l’interface fluide-solide en détail. Pour la modélisation numérique,

nous avons besoin de l’image LR de tout le domaine de calcul, et des informations HR

des zones ayant un fort effet sur le transport, par exemple, les zones où des réactions

importantes ont lieu. L’acquisition d’une image HR de tout le domaine de calcul n’est

pas réaliste, et, si une valeur moyenne n’est pas suffisante pour la modélisation (surface

réactive effective), nous avons besoin d’un moyen d’incorporer dans un modèle multi-

échelle les informations HR et LR. Dans ce travail, nous utilisons un maillage cartésien

non uniforme (NUCM) résultant d’une double approche : d’abord, un grossissement de

la grille visant à améliorer les aspects calculatoires, et ensuite un affinement local de la

géométrie de l’interface visant à améliorer la précision des résultats. Dans l’approche

multi-échelle que nous proposons, les images LR (pertinentes à l’échelle globale) et HR

(pertinentes à l’échelle locale) sont prises en compte dans le processus d’affinement.

Le deuxième exemple concerne la caractérisation multimodale des cellules solaires à

couche mince en kesterite : résultats expérimentaux et interprétation numérique. La

microscopie à rayons X à balayage basée sur le synchrotron est une technique puissante

pour l’étude à haute résolution spatiale des matériaux des cellules solaires : [19], [20].

La grande flexibilité des lignes de faisceaux pour intégrer différentes modalités d’étude

et le développement de l’optique à rayons X permettent d’obtenir et de corréler de

manière unique des informations sur les différentes propriétés des matériaux à l’échelle

nanométrique [21]–[24]. Les techniques analytiques, telles que la fluorescence X (XRF), la

diffraction des rayons X et le XBIC, appliquées simultanément, peuvent fournir des infor-

mations spatialement corrélées entre la composition chimique et les propriétés électriques

de l’échantillon (analyse non destructive) [25]–[30]. Cependant, ces informations ne sont

souvent pas suffisantes pour comprendre les limites des dispositifs de collecte d’énergie.

L’architecture complexe des cellules solaires de nouvelle génération comprenant plusieurs

couches rend difficile la détermination des mécanismes fondamentaux affectant les per-

formances électriques. Une modélisation de premier principe du signal XBIC est nécessaire

pour obtenir une meilleure compréhension des corrélations entre les propriétés des matériaux

et les performances électriques du dispositif. Par conséquent, nous complétons les données

expérimentales avec un modèle numérique multi-échelle du signal XBIC basé sur les pre-

miers principes. L’équation de Poisson et les équations de continuité pour les électrons

et les trous, ainsi que le modèle bidimensionnel (2D) de dérive-diffusion, combinés aux

profils de génération basés sur la simulation Monte-Carlo, sont résolus dans le domaine

de calcul 2D construit à partir des données XRF.

Pour résumer, au cours de ce projet de doctorat, nous avons développé une procédure

d’imagerie et de modélisation multi-échelle pour le transport réactif dans les milieux

poreux, et un modèle numérique 2D pour simuler l’expérience XBIC pour les disposi-

tifs de cellules solaires. L’expérience d’imagerie multi-échelle a été réalisée pendant mon

détachement à l’Institut Paul Scherrer (PSI) dans le cadre du projet MUMMERING. Les

volumes 3D obtenus ont été utilisés dans les applications de la procédure d’imagerie et
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de modélisation multi-échelle proposée pour le transport réactif dans les milieux poreux.

L’expérience XBIC a été réalisée par des chercheurs de l’Université technique du Dane-

mark (DTU) à NanoMAX, une ligne de faisceau de nanosondes à rayons X durs de

l’installation synchrotron MAX IV à Lund (Suède). Les simulations de Monte-Carlo

ont été réalisées en collaboration avec Michael Stuckelberger du Deutsches Elektronen-

Synchrotron (DESY).

Après une introduction, nous exposons brièvement quelques éléments concernant le

rayonnement synchrotron, qui est central pour notre travail. Puis les chapitres suivants

présentent les deux exemples de modélisation numérique multi-échelle combinée à des

expériences de rayonnement X synchrotron.

Dans le chapitre deux, dans un premier temps les bases de l’imagerie microtomo-

graphique 3D et l’expérience d’imagerie multi-échelle que nous avons réalisé sont présentées.

Nous exposons ensuite la formulation mathématique du problème de la diffusion réactive

dans les milieux poreux. Le modèle résultant que nous devons résoudre est présenté avec

sa discrétisation numérique basée sur la méthode des volumes finis centrés sur les cellules.

Dans un second temps, la nouvelle approche de grossissement de la grille est présentée

avec la discrétisation spatiale. Ensuite, nous traitons des différentes stratégies de raf-

finement local du maillage (LMR). Enfin, nous présentons les résultats et discutons des

conséquences de l’approche d’imagerie et de modélisation multi-échelle sur la précision

des propriétés effectives calculées et la réduction du coût de calcul.

Une expérience d’imagerie multi-échelle a été réalisée à la ligne de faisceau TOM-

CAT dans le cadre du projet MUMMERING. Quatre matériaux poreux différents ont été

considérés avec une complexité de structure variable. Pour chaque échantillon, un total

de huit acquisitions a été réalisé à différentes résolutions. La figure 1 illustre le proto-

cole de l’expérience d’imagerie multi-échelle avec des coupes transversales de l’échantillon

de grès de Fontainebleau. Pour chaque échantillon, un balayage complet de l’ensemble

de l’échantillon a été réalisé avec différents grossissements : 2x et 4x, ce qui a per-

mis d’obtenir des volumes 3D pour les échantillons complets avec (1600Ö1600Ö962) et

(2560Ö2560Ö2160) voxels, respectivement. Avec un grossissement de 10x, deux régions

ont été définies pour effectuer une microtomographie locale, ce qui a donné des volumes

3D de (2560Ö2560Ö2160) voxels. À l’intérieur de l’une des régions de grossissement 10x,

deux autres microtomographies locales ont été réalisées avec un grossissement 20x, don-

nant lieu à des volumes 3D de (2560Ö2560Ö2160) voxels.

La figure 2 illustre l’approche de grossissement de la grille développée. Cette approche

nous permet d’avoir une grille grossière loin des interfaces fluide-solide. En fixant la taille

des cellules près des interfaces et en agrégeant 2 Ö 2 cellules actives (ACs) en 2D et 2

Ö 2 Ö 2 ACs en 3D ailleurs, nous obtenons le premier niveau de la grille grossière. En

répétant la même procédure, on obtient la grille grossière finale.

Le NUCM est composé de AC de différentes tailles. Cela nécessite des procédures de

communication des données à travers les interfaces non concordantes pour répondre aux
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Figure 1: Coupes transversales du grès de Fontainebleau avec une approche d’imagerie multi-
échelle.

(a) Original grid. (b) First level of the coarse grid.

(c) Second level of the coarse grid. (d) Final level of the coarse grid.

Figure 2: Grossissement de la grille pour un exemple en 2D.

exigences des schémas de discrétisation. La discrétisation spatiale développée est basée sur

l’interpolation barycentrique. Elle a été utilisée à la fois dans les étapes de grossissement

et d’affinement.

L’approche d’imagerie et de modélisation multi-échelle développée a été testée et ses

avantages ont été étudiés. Trois géométries ont été considérées :

� Une géométrie simple sans zone réeactive
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� La même géométrie avec des parties réactives ajoutées

� Des volumes 3D extraits des volumes Sic-Diamonds

En utilisant la première géométrie, les tests suivants ont été effectués pour étudier les

effets de :

� Affinement global du maillage sur Deff avec les différents niveaux d’interpolation

décrits dans la section 2.3.5.

� Changement de la résolution sur Deff et le temps CPU.

� Approche du grossissement de la grille sur Deff et le temps CPU.

Dans le troisième test, les résultats ont été comparés au cas uniforme et les avantages

de l’application de l’approche développée ont été discutés (voir figure 3).

Figure 3: L’effet de l’approche du grossissement de la grille sur le temps CPU pour les volumes
3D de différentes résolutions en comparaison avec le cas uniforme.

La deuxième géométrie a été utilisée pour étudier les effets sur l’ensemble complet des

propriétés effectives, c’est-à-direDeff et le vecteur U. De plus, elle a été utilisée pour la mise

en œuvre du LMR proposé avec une approche d’imagerie multi-échelle et plusieurs régions

critiques ont été testées. Enfin, une tentative d’application de l’approche développée sur

un ensemble de données réelles a été réalisée en utilisant la troisième géométrie.

Dans le chapitre trois, nous commençons par présenter le travail de collaboration dans

le deuxième exemple sous la forme d’un article publié dans le journal Faraday Discussions.

Dans un second temps, nous présentons les bases de la physique des semi-conducteurs et

décrivons le modèle que nous avons choisi pour notre problème. Ensuite, nous traitons des

approches de modélisation numérique utilisées pour discrétiser et résoudre les équations

différentielles partielles non linéaires couplées afin de simuler l’expérience XBIC. Enfin,

nous présentons quelques résultats supplémentaires et discutons des facteurs possibles

limitant les performances du dispositif considéré sur la base des résultats de la simulation.
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Un échantillon à base de CZTS (cuivre zinc étain sulfure) a été considéré dans l’expérience.

La figure 4 montre les images XRF des éléments constituant l’échantillon et le signal XBIC

correspondant. Comme les mesures ont été effectuées simultanément, aucun recalage des

images XRF et XBIC n’est nécessaire et une corrélation par pixel entre les images peut

être effectuée. Les inhomogénéités de composition les plus importantes dans la couche

de CZTS sont mises en évidence dans les images par des flèches blanches. Elles sont as-

sociées à des densités projetées relativement plus faibles de tous les éléments composant la

couche. Une zone plus notable avec une composition chimique inhomogène est marquée

par la bôıte blanche. La zone correspondante dans l’image XRF du Cd indique des

précipités de CdS résultant du dépôt par bain chimique. Il n’est cependant pas clair si

le précipité de CdS résulte de l’absence de la couche de ZnO déposée sur le dessus. Quoi

qu’il en soit, les images XRF de In et Sn montrent une variation de la composition des

éléments constituant la couche d’ITO qui suit la topologie du précipité de CdS. Globale-

ment, l’image XBIC dans la zone située sous la bôıte blanche montre une diminution du

courant associée aux défauts électroniques causés par la structure perturbée de la couche.

Un domaine de calcul 2D a été généré à partir des données XRF, et une approche

de simulation numérique 2D en volumes finis a été utilisée. En conjonction avec les

équations de continuité pour les électrons et les trous couplées à une simulation de Monte

Carlo (MC) pour l’interaction rayons X/matériau, l’équation de Poisson a été résolue pour

simuler l’expérience XBIC.

Nous avons développé un simulateur basé sur la méthode des volumes finis centrés sur

les cellules combinées au schéma de Scharfetter Gummel. Le simulateur a été conçu pour

prendre en compte :

� La structure réelle de la couche dans les simulations en utilisant le domaine de calcul

2D construit à partir des données XRF.

� Les simulations de Monte-Carlo dans le calcul des profils de génération 2D.

Le simulateur développé a été comparé au logiciel Sesame, montrant un bon accord

pour les cas simples. Des analyses de sensibilité en 2D ont été réalisées pour étudier

certains défauts qui apparaissent lors de la corrélation des données XRF avec les résultats

expérimentaux du XBIC. Dans la section 3.2, nous avons étudié l’effet du type de contact

et les effets de l’absence de couche de ZnO sur les performances du dispositif. Dans

les résultats supplémentaires, les défauts de composition inhomogène ont été abordés en

étudiant les effets des paramètres de la couche absorbante (CZTS) sur le signal XBIC à

l’échelle nanométrique.

À notre connaissance, ce travail peut être considéré comme la première tentative

de simulation des mesures XBIC pour une géométrie d’échantillon réaliste à l’échelle

nanométrique.

Pour conclure, nous avons présenté deux exemples de modélisation numérique multi-

échelle combinée à des expériences de rayons X synchrotron : (1) Imagerie et modélisation
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Figure 4: Images XRF des principaux éléments constituant l’échantillon ainsi que le signal
XBIC résultant de la spécification de la structure en couches avec le domaine de calcul entre
les lignes rouges. Les flèches blanches mettent en évidence les zones associées aux variations
de composition de la couche CZTS et la bôıte blanche indique la zone avec une distribution
inhomogène des éléments des couches CdS et ITO, ainsi que l’absence de la couche ZnO.

multi-échelle pour le transport réactif à l’échelle du pore, (2) Caractérisation multi-

modale des cellules solaires à couche mince en kesterite : résultats expérimentaux et

interprétation numérique. Nous avons montré l’importance des techniques d’imagerie

multi-échelle dans l’approximation des propriétés effectives et les avantages de les com-

biner avec des procédures de modélisation numérique multi-échelle. En outre, nous avons

illustré les avantages de la combinaison de la modélisation numérique multi-échelle avec
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les expériences XBIC pour relier les défauts locaux aux performances globales.

Dans le premier exemple, l’approche d’imagerie et de modélisation multi-échelle pro-

posée a été mise en œuvre avec succès et divers cas d’essai de volume 3D synthétisé et réel

ont été présentés. L’approche proposée de grossissement de la grille et la discrétisation

spatiale ont permis d’améliorer les aspects calculatoires du problème et de maintenir une

grande précision globale des résultats. En utilisant l’approche d’imagerie multi-échelle

dans l’étape d’affinement du maillage local, nous avons pu améliorer la qualité des résultats

lors du calcul des propriétés effectives. Des recherches supplémentaires sont nécessaires

pour identifier les régions critiques à l’étape d’affinement du maillage local.

Dans le second exemple, nous avons développé un simulateur de dispositif 2D basé

sur les premiers principes, conçu pour traiter les structures réelles de dispositifs 2D et

pour combiner la simulation Monte-Carlo afin de simuler les expériences XBIC. La mi-

croscopie à rayons X à balayage corrélatif est un outil puissant pour l’étude de matériaux

fonctionnels tels que les cellules solaires, fournissant une caractérisation corrélative à

résolution spatiale de la composition chimique et des performances électriques à l’échelle

nanométrique. Les cartes XRF combinées et corrélées avec les mesures XBIC permettent

de visualiser les inhomogénéités dans toutes les couches du dispositif et de les corréler avec

l’efficacité de conversion de charge locale. Ensuite, les défauts électroniques identifiés à

partir de cette combinaison peuvent être expliqués en utilisant le simulateur développé.

Pour terminer, dans ce travail, nous avons démontré à l’aide de deux exemples les avan-

tages et les bénéfices de la combinaison entre la modélisation numérique multi-échelle et

les expériences de rayons X synchrotron. Les outils d’imagerie avancés fournissent de très

grands volumes de données qui doivent être traités. Le développement d’outils numériques

multi-échelles est d’une grande importance pour analyser et extraire efficacement des in-

formations précieuses de ces volumes. D’autre part, la comparaison directe entre les

résultats expérimentaux et les résultats de simulation permet de faire un pas en avant

dans la compréhension de la fonctionnalité des matériaux avancés.
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Introduction

This thesis consists of two examples of multi-scale numerical modelling combined with

synchrotron X-ray experiments: (1) Multi-scale imaging and modelling for reactive trans-

port at the pore scale, (2) Multi-modal characterization of Kesterite thin-film solar cells:

experimental results and numerical interpretation. These two examples developed within

a training network called MUMMERING (MUltiscale, Multimodal and Multidimensional

imaging for EngineeRING). It was an extremely pleasurable and exciting opportunity

to learn exhilarating things through this training program.. So, let me begin my the-

sis by explaining a bit about MUMMERING before I delve into the scientific details of

this work. MUMMERING [1] is one of the Marie Sklodowska-Curie Actions Innovative

Training Network (ITN) programs. The overarching goal of it was to create a re-

search tool that encompasses the wealth of new 3D imaging modalities that

are surging forward for applications in materials engineering, and to create

a doctoral programme that trains 15 early stage researchers (ESRs)* in all

aspects of 3D imaging from data acquisition, over reconstruction and segmentation to

physical modelling. As an ITN, MUMMERING also aimed to train a new generation of

creative and innovative ESRs who are able, to convert knowledge and ideas into products

and services for economic and social benefit, and to work collaboratively with other ESRs

in the network to solve real world problems.

Multi-scale models and simulations are important challenges for computational sci-

ence in many domains of research. Most real-life phenomena involve an extended range

of spatial or temporal scales, as well as the interaction between various natural processes.

Moreover, multi-scale imaging methods form the bridge between the atomic

scale understanding gained from electron microscopy, diffraction and spec-

troscopy, through nanoscale tomography and all the way up to macro-scale

objects. Correlative microscopy unifies information derived from a variety

of imaging modalities obtained through energy variation and different probe

interactions with material.*Unique properties of synchrotron radiation, which are

continuous spectrum, high flux and brightness, and high coherence, make it an essential

tool in multi-scale imaging modalities. Material scientists typically use synchrotron X-ray

to probe the structure of materials at the micrometre to nanometre scales. By relating

the structure of materials to their mechanical-physical behaviour, materials with opti-

*Part of MUMMERING proposal [1]
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mized performance can be engineered. The range of applications of synchrotron X-ray

experiments is very large and covers sectors as diverse as chemical (polymer) industry,

semiconductor industry, geology (and oil) research, agro-food industry and advanced man-

ufacturing applications.

The main objective of this PhD was to develop a multi-scale imaging and modelling

procedure for reactive transport in porous media. Furthermore, a collaborative work

titled “Multi-Modal Characterization of Kesterite Thin-Film Solar Cells: Experimental

results and numerical interpretation” initiated with ESR 9 (Azat M. Slyamov) became

an essential part of my PhD. This work resulted from the continuous discussions during

the workshops and meetings in MUMMERING project. The main objective of the collab-

orative work was to develop a multi-scale approach based on first-principles to simulate

X-ray beam induced current (XBIC) experiments. Indeed, these two different examples

are sharing the property of being synchrotron X-ray dependent experiments and the same

objective of developing multi-modal multi-scale imaging and modelling procedures.

In the first example, multi-scale imaging and modelling for reactive transport (trans-

port with reaction at the interfaces; heterogeneous reaction) at the pore scale was consid-

ered. Modelling transport in porous media requires keeping in mind multi-scale aspects

existent in porous media structures. A porous medium is a material containing voids;

examples are filters, adsorbents, print paper, wood, composite materials, and biological

tissues, as well as soil and pavement, and oil, gas, and geothermal reservoirs [2]. Such

porous media are typically highly heterogeneous at local scale (pore scale) and using the

models describing the transport at the pore scale to predict and observe the transport at

the global scale (macroscopic scale) is usually not feasible. For instance, in an aquifer, at

the pore scale, the single-phase flow is governed by the Stokes equation. However, due

to the large range of scales involved, span from the pore scale (about 100 µm) to the

macroscopic scale (km), and to the complex geometry at the pore scale, it is practically

impossible to use Stokes equation to describe the flow in the entire system. Instead, the

continuum approach is proposed to describe the flow in the macroscopic scale by Darcy’s

law [3]. In this approach, the porous media is treated as a continuum and the flow is pre-

dicted without information on the microscopic configuration of the pore scale geometry.

The results of Darcy’s work is an empirical law with limited range of validity. Therefore,

many researchers attempted to derive Darcy’s law in a general way using the pore scale

information by means of change of scale techniques [4], [5]. The resulting macroscopic

model contains the effective property, the permeability tensor, which can be computed

using the information at the pore scale. Then, rather than attack the problem in terms

of equations that are only valid in the pores, we can use the change of scale techniques to

derive macroscopic equations that are valid everywhere and are linked to the pore scale

geometry through the effective properties. A central problem in pore scale research is

the determination of such effective properties that describe the behaviour of a porous

medium on macroscopic scales, i.e., the properties that are relevant and can be measured
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in laboratory or field experiments [6]. The volume averaging technique is one of the vari-

ous theoretical methods providing a rigorous description of change of scale procedure [5],

[7]–[9], and it is well developed for our targeted problem (reactive transport in porous

media) [9]–[13]. In general, most natural systems are heterogeneous and the effective

transport properties are highly dependent on the geometrical details [12]. Measurement

of three-dimensional (3D) geometry can be approached in a number of ways. Synchrotron

microtomography is one of the advanced tool in material science providing 3D images of

the material under investigation. Traditionally, 3D images are quantified through a lim-

ited number of parameters (porosity, reactive surface area, etc...), and these parameters

are the input used in the models. As an alternative, the entire 3D data set can be used as

the input to compute the effective properties [14]–[17]. This supports transition towards a

next generation of more accurate models, which include the microstructure heterogeneity.

To compute the effective properties, the 3D image describing the local geometry should

be large enough to be representative. By representative we mean that the effective prop-

erties will not change for larger images. This minimal required volume is commonly

called the representative elementary volume (REV) [18]. Modern imaging tools are pro-

viding very large 3D images (geometries described by up to billions of voxels), and using

these entire 3D images is challenging. Therefore, special care for the memory usage and

computational time should be taken into account. One important aspect in numerical

simulation is the space discretization, the simplest and commonly way is using regular

(uniform) Cartesian grid (voxel grid). The disadvantages of the regular grids are the

requirements for computational effort and memory size. Therefore, adapted space dis-

cretization is needed to solve that problem.

For the problems we consider, heterogeneous reactions are dominant, meaning that

the reactive part of the fluid-solid interface must be precisely described at the local scale.

On the other hand, the global spatial distribution of the solid must also be precisely char-

acterized because it determines the representativeness of the average transport properties.

Multi-scale imaging techniques can provide a low-resolution (LR) image, corresponding

to a large field of view that can be used as input for computing the average transport

properties and high-resolution (HR) images that describe the fluid-solid interface in de-

tails. For numerical modelling, we need the LR image of all the computation domain, and

HR information of the zones having a strong effect on the transport, for instance, zones

where significant reactions take place. Acquiring a HR image of the full computation

domain is not realistic, and, if an average value is not sufficient for modelling (effective

reactive surface), we need a way to incorporate in a multi-scale model both HR and LR

information. In this work, we use a non-uniform Cartesian grid resulting from a twofold

approach: first, a grid coarsening aiming in improving the computational aspects, and

second a local refinement of the interface geometry aiming in improving the accuracy of

the results. In the multi-scale approach, we propose, both LR (relevant to the global

scale) and HR (relevant to the local scale) images are taken into account through the
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refinement process.

The second example concerns the multi-modal characterization of Kesterite thin-film

solar cells: experimental results and numerical interpretation. Synchrotron based scan-

ning X-ray microscopy is a powerful technique for spatially resolved high-resolution in-

vestigation of solar cell materials [19], [20]. The high flexibility of beamlines to incorpo-

rate different study modalities and the development of X-ray optics allows obtaining and

uniquely correlating information about different properties of materials at the nanoscale

[21]–[24]. Analytical techniques, such as X-ray fluorescence (XRF), X-ray diffraction and

XBIC applied simultaneously can provide spatially correlated information between chem-

ical composition and electrical properties of the specimen without destroying it [25]–[30].

However, such information is often not sufficient to understand limitations of energy har-

vesting devices. The complex architecture of the new generation solar cells comprising

multiple layers makes it hard to determine the fundamental mechanisms affecting elec-

trical performance. First-principles modelling of the XBIC signal is required to obtain a

deeper understanding of the correlations between material properties and the electrical

performance of the device. Therefore, we support the experimental data with a multi-

scale numerical model of the XBIC signal based on first-principles. Poisson’s equation

and the continuity equations for electrons and holes along with the two-dimensional (2D)

drift-diffusion model, combined with generation profiles based on Monte-Carlo simulation

are solved within the 2D computation domain constructed from the XRF data.

In a nutshell, during this PhD project, we developed a multi-scale imaging and mod-

elling procedure for reactive transport in porous media, and a 2D numerical model to

simulate XBIC experiment for solar cell devices. The multi-scale imaging experiment was

carried out during my secondment at Paul Scherrer Institute (PSI) under the framework

of MUMMERING project. The resulted 3D volumes were used in the applications of the

proposed multi-scale imaging and modelling procedure for reactive transport in porous

media. The XBIC experiment was performed by researchers from Technical University of

Denmark (DTU) at NanoMAX, a hard X-ray nano-probe beamline of the MAX IV syn-

chrotron facility in Lund (Sweden). The Monte-Carlo simulations were performed in col-

laboration with Michael Stuckelberger from Deutsches Elektronen-Synchrotron (DESY).

After this introduction, we briefly expose some elements concerning synchrotron ra-

diation as it is a central tool for our work. Then the following chapters present the two

examples of multi-scale numerical modelling combined with synchrotron X-ray experi-

ments.

In chapter two, we start by presenting the basics of 3D microtomography imaging

and the multi-scale imaging experiment we performed. Then we expose the mathematical

formulation of the reactive diffusion problem in porous media. The resulting model that

we need to solve is presented with its numerical discretization based on the cell centred

finite volume method. Thereafter, the novel grid coarsening approach is presented along

with the spatial discretization. Then, we discuss the different strategies for local mesh
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refinement (LMR). Finally, we present the results and discuss the consequences of the

multi-scale imaging and modelling approach on the precision of the computed effective

properties and the reduction of the computation cost.

In chapter three, we begin by introducing the collaborative work in the second example

in the form of a paper accepted for publication in Faraday Discussions journal. Thereafter,

we present the basics of semiconductor physics and describe the model we chose for our

problem. Then, we discuss the numerical modelling approaches used for discretizing

and solving the non-linear coupled partial differential equations to simulate the XBIC

experiment. Finally, we present some supplementary results and discuss the possible

factors limiting the performance of the device under consideration based on the simulation

results.

At the end, we draw some general conclusions, expose the limitations and the difficul-

ties of the selected approaches that we experienced, and discuss the possible developments

of our works.
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Chapter 1

Synchrotron X-ray

1.1 History of Synchrotron X-ray

Since their discovery X-rays have been used to image the bulk of materials which are

non-transparent for visible light. Figure 1.1 shows one of the first X-ray images taken by

Wilhelm Röntgen, after his great discovery in 1895 for new invisible radiation of unknown

nature, which he called X-ray [31]. Due to interactions with the electrons in the material,

X-ray penetrating an object is attenuated. This attenuation depends on the energy of the

X-ray, the thickness, the density and the atomic number of the investigated material.

Figure 1.1: A print of the left hand of Anna Bertha Ludwig Röntgen.

In 1909, it was shown by Barkla and Sadler that many elements, when subject to a

suitable beam of X-rays, emit a homogeneous beam of secondary X-rays of penetrating

power characteristic of the radiating element [32]. X-rays are electromagnetic radiation

that transfer energy in discrete packets (photons) and, interact in different ways with

matter. They are mainly interacting with the electrons located at particular shells in the

atom. When X-rays hit a material some photons transfer their energy to one of the core

shell electrons and ionizes the atom. The electron is either moved to one of the higher
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shells or ejected from the atom. De-excitation is happening by filling the vacancy with an

electron from a higher shell and produces X-ray fluorescence (XRF) or an Auger electron.

In this case, we say that the X-rays are absorbed by the material. Absorption is not the

only way by which X-rays interact with materials; they also scatter, refract and reflect.

Using the X-ray tubes to generate X-rays, great and remarkable results were obtained.

These results were restricted due to the limitations of X-ray tubes in focusing or making

the rays parallel. In 1947, at the General Electric Research Laboratory in Schenectady,

New York, undesirable radiations were observed in the 70 MeV synchrotron [33]. This

radiations cause the charged particles in accelerator (synchrotron) to lose energy. Syn-

chrotrons were originally designed to be used in nuclear physics research and, the observed

radiations have been named after them as synchrotron radiation. Diran Tomboulian and

Paul Hartman performed the first experiments to investigate the possible applications of

synchrotron X-rays at Cornell synchrotron in 1956 [34]. Five years later, was the birth

of the Synchrotron Ultraviolet Radiation Facility (SURF I) at the National Bureau of

Standards in the United States. It is the first facility designed for regular users of syn-

chrotron radiation and is considered as a first-generation synchrotron radiation sources

[35]. In 1973, The first international symposium for synchrotron radiation users took place

at Daresbury Laboratory and provided early impetus for the development of the world’s

first dedicated X-rays synchrotron radiation source. This was a second-generation source

whose primary source of radiation is the lattice dipoles. With electron storage ring of 2

GeV the first second-generation synchrotron source started its operation in 1981 at Syn-

chrotron Radiation Source (SRS), Daresbury [36]. The European Synchrotron Radiation

Facility (ESRF) was the first collaborative synchrotron radiation facility in Europe. In

1988, eleven European countries joined forces to build the world’s most performing and

bright third-generation light source [37]. The first third-generation facility ESRF with 6

GeV electron storage ring completed and began experiments in 1994. Three years later,

the Swiss Parliament approved the Swiss Light Source (SLS) project at Paul Scherrer In-

stitute. The SLS is designed to produce a maximum brilliance in the vacuum ultraviolet

and soft X-ray regions and it is started operation in 2001 [38]. One of the most recent

fourth-generation facility is MAX IV synchrotron in Lund, Sweden. The inauguration of

MAX IV took place on 21st June 2016, with two electron storage rings at 3 GeV and

1.5 GeV, and optimized for the hard X-ray and soft X-ray/ultraviolet spectral ranges,

respectively [39].

Beyond this, a fourth-generation of synchrotron radiation facilities is coming of age in

the first decade of the twenty-first century, which will be defined by a greatly improved

performance, especially with regards to the coherence and brilliance of the x-rays, using

so-called energy recovery linacs (ERLs), and free electron lasers (FELs) [40].
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1.2 The principle

Synchrotron radiation is created by accelerating free particles in high vacuum. When

electrons or other charged particles moving at relativistic speeds are forced by magnetic

fields to follow curved trajectories they are accelerated and then they emit electromagnetic

radiation in the direction of their motion [41].

In the first-generation of synchrotron radiation sources, electrons were accelerated in

a circular orbit (storage ring) and the X-ray beam produced was tangent to the curved

trajectory of the electrons. In the second-generation sources, a polyhedral path was used

in which electrons travel in straight lines before changing its direction under the effect of

bending magnets. This allows localization of the individual radiation sources to be used

in beamlines placed around the path. Moreover, the radius of the individual bends can

be made smaller to produce X-rays of a higher energy and intensity. In each turn the

electrons lose part of their energy, emitting synchrotron radiations. A radio frequency

(RF) accelerator is placed in the section between the bending magnets to compensate the

loss in energy of the electrons by electric field. In the third-generation synchrotron sources,

insertion devices are installed in the straight sections between the two bending magnets.

High magnetic field devices known as wigglers and undulators are the components of

the insertion devices that provide much more brilliant radiation [42]. Figure 1.2 shows

the gain in brightness achieved by the new synchrotron radiation sources, as a function

of time. By brightness (brilliance), we mean the amount of power per unit frequency,

surface area and solid angle.

Figure 1.3 shows schematic representation of a synchrotron radiation facility. Firstly,

electrons are accelerated using the linear accelerator (linc) until their energy reaches

several millions of electron volts (MeV). Then, they are injected to the booster ring and

accelerated until the desired value (energies of several GeV), before their periodic injection

into the storage ring. In the storage ring, the electrons are circulating in close path and

their energies are maintained by the use of an array of magnets. The ring is a structure

consisting of arced sections containing bending magnets, and straight sections used for

insertion devices. The lattice of magnets in an insertion device forces the particles to

execute small oscillations which produce intense beams of radiation. Then, the bending

magnet is used to deflect the electrons around the arced sections causing another emission

of synchrotron radiations. The beamlines run off tangentially to the storage ring, along

the axes of the insertion devices and tangentially at bending magnets. In the beamline,

the radiations pass through a number of optical elements, such as a monochromator,

focusing device, etc., so that a beam of radiation with the desired properties is delivered

to the sample [40].

Since many beamlines and monochromator can be set up at a storage ring, many

experimental setups can be planned in the experimental hutch depending on the research

interest. In this thesis, two different setups were considered in our examples of multi-

scale numerical models: 3D microtomography imaging and X-ray beam-induced current
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Figure 1.2: Evolution of the average brightness of different generations of synchrotrons (after
[41], Fig. 1.4).

Figure 1.3: Schematic representation of a synchrotron radiation facility (Source: EPSIM 3D/JF
Santarelli, Synchrotron Soleil).

(XBIC) setups.

Using the first setup, 3D microtomography imaging, a multi-scale imaging experiment

was performed at TOMCAT beamline from the Swiss Light Source (SLS). The resulted

multi-scale 3D images were used as inputs for the developed multi-scale model in the first

example. Detailed description of the experimental setup and the multi-scale model is

presented in chapter 2. The microtomography imaging is a full-field technique in which,

the X-ray beam is more extended or comparable to the field-of-view (FOV) of interest.
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While in the second setup, XBIC, a highly focused X-ray beam is used to scan the desired

field-of-view. In this scanning-base technique, a wide variety of modalities can be obtained

from different interactions between X-ray and the studied material. X-ray fluorescence

(XRF) combined with XBIC measurements is collected to provide a correlative study

of electrical performance and chemical composition. The experiment was performed at

the NanoMAX beamline which is a part of the MAX IV synchrotron facility. The first-

principles model developed to simulate the XBIC measurements is presented in chapter

3 along with the experimental setup.
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Chapter 2

Multi-scale imaging and modelling

for reactive diffusion at the pore

scale

2.1 Introduction

In this chapter, we focused our attention on reactive transport in porous media. This

phenomenon appears in a wide variety of scientific and engineering domains, including

chemical reaction engineering, soil mechanics, electrochemical systems, oil industry, stor-

age of nuclear waste, groundwater hydrology, and biophysical and biological systems

[43]. Due to their inherently multi-scale nature, such systems can be modelled from

a macroscale (Darcy scale) perspective or a microscale (pore scale) perspective. The

validity and the accuracy of each model is largely dependent on the applications. In

most cases, a multi-scale modelling is required for understanding the multi-physics of

the system [44]–[50]. The combination between microscale and macroscale is achieved by

means of upscaling techniques such as homogenization [51], singular perturbation tech-

nique [52], thermodynamically constrained averaging theory [53] or volume averaging [9].

In the volume averaging method, the model is derived by spatially smoothing the govern-

ing equations at the pore scale. The resulting macroscopic model contains the effective

properties that can be evaluated by solving auxiliary problems, the closure problems, in

representative volumes of the pore scale structure [54]–[56]. To be representative, the

volumes should be large enough to capture all the global features. On the other hand,

they should have high spatial resolution to precisely describe the fluid/solid interface at

the pore scale.

X-ray computed tomography (CT), in particular synchrotron microtomography, is a

powerful tool for detecting the microscale pore structure and it has been applied to many

natural and synthetic porous media [16], [57], [58]. With high resolution (HR) images

more details of the pore structure can be revealed and more accurate description of the

volume can be obtained. However, in most cases, the obtained HR 3D volumes are non-
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representative because they correspond to a small field-of-view. On the other hand, the

low resolution (LR) images provide large field-of-view and are able to capture the global

microscale pore structure, but they are losing the accuracy and are not able to detect

pores with size smaller than the scanning resolution. As reported in the literature, the

scanning resolution has significant effect on the computed effective properties for different

porous materials [59]–[63]. There is an inevitable trade-off between image resolution and

the sample size that should be taken into account in the approximation process. To over-

come this limitation, a detailed 3D volume with different resolutions or different imaging

techniques should be used. Nevertheless, the combination of these multi-scale images into

a single 3D volume is challenging. A multi-scale image fusion of X-ray microtomography

and SEM (scanning electron microscope) techniques was proposed in [64] to compute

the effective properties. The fusion process used was computationally expensive and the

resulted 3D volumes might not be accurate enough for complex structures. Still, they

reported a good agreement with the experimental results. In [65], a multi-scale imaging

and modelling workflow to compute transport properties of rocks with wide pore size

distributions was proposed. Following similar approach as in [66], they used a dry/wet

micro CT imaging technique in order to reveal sub-resolution porous regions coupled with

backscattered electrons (BSE) images and the resulted 3D porosity maps were utilized

into a multi-scale pore network model. In [67], they used four different voxel resolution

(4.4 µm, 6.2 µm, 8.3 µm, 10.2 µm) for scanning the same physical field of view in order to

study the effect of voxel resolution on different porous materials. They also introduced a

numerical coarsening scheme which was used to coarsen a high voxel resolution image (4.4

µm) to lower resolutions images. The HR image was coarsened by mapping the coarser

grid onto the original binarized HR image to reduce the computational power and time

used in the calculation of the effective properties. Acquiring a HR image of a sample large

enough to be representative is time consuming and exhausting as multiple 3D images are

concatenated and correlated to build the full 3D volume. In most cases, it is not realistic

and it is even useless as the HR images are only needed for some critical regions as in

the zones having strong effects on the transport process. In this work, we try to use

information contained in both HR and LR images in a multi-scale model by using a non-

uniform Cartesian grid resulting from a twofold approach: first, a grid coarsening aiming

in improving the computational aspects, and second, a local refinement of the interface

geometry aiming in improving the accuracy of the results. In our multi-scale approach,

both LR (relevant to the global scale) and HR (relevant to the local scale) images are

taken into account through the refinement process.

Identifying the critical regions is not a straightforward procedure. In general, a first

solution of the model at the LR images is required and then the HR information are

injected where it is needed. At the scanning step, this information is lacking and choosing

where to acquire the HR images should be made without it. Some critical regions might

be located in the acquired HR images, but, the rest of them might not be. Hence, the
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refinement step requires being able to inject HR information at any location in the LR

grid. Using the LR and HR images of the same zone of the sample, a statistical model

can be built to represent the LR-HR change of scale. Then, this model can be used

to complement LR images with HR information. This can be achieved by means of

superresolution techniques. The multi-scale imaging experiment presented in section 2.2

was performed having in mind that the resulting multi-scale 3D volumes will be used

in the development of superresolution approach in collaboration with SUPREMATIM

(SUPerREsolution of 3d MATerials IMages) project [68].

The objective of this work was to develop a multi-scale imaging and modelling proce-

dure for reactive transport in porous media. To handle the fluid flow, we first considered

the computation of the effective permeability tensor. The classical methods developed in

house use the finite volume method with staggered grid at uniform Cartesian grid [15].

Applying the same method with the proposed non-uniform grid was very complicated

due to the large number of configuration generated from using the staggered grid struc-

ture. So, as a first step to look for a proof of concept, the case of diffusion reaction was

considered instead to test the proposed multi-scale imaging and modelling approach.

This chapter is arranged as following: In section 2.2, the multi-scale imaging exper-

iment along with the resulting 3D volumes are presented. In section 2.3, we start with

a brief description of the reactive diffusion problem and of the change of scale procedure

using the volume averaging method. Thereafter, the discretization of the problem using

the cell centred finite volume on uniform Cartesian grid is given. Then, the proposed

grid coarsening approach and local mesh refinement along with the spatial discretiza-

tion are presented. Finally, in section 2.4, we present the results and discussions on the

consequences of the multi-scale imaging and modelling approach on the precision of the

computed effective properties and the reduction of the computation cost.
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2.2 Multi-Scale Imaging Approach

The macroscopic properties of solid microscopically heterogeneous materials such as

metals, ceramics, composite materials, porous or granular media, etc. depend on local

properties as well as on the local geometrical organization of their constituents. X-ray

microtomography imaging is a powerful tool for investigating the internal structure of

such materials with wide range of spatial resolutions.

In this section, we first introduce briefly the basics of 3D microtomography imaging

(for more detailed description on this technique, the readers are kindly referred to [42]).

Then, the multi-scale imaging experiment performed at TOMCAT beamline is presented.

2.2.1 3D microtomography imaging

X-ray microtomography is a non-destructive characterization method that allows to

expose the internal geometry of a material. The term tomography denotes imaging by

sections or sectioning that uses any kind of penetrating wave. The term micro simply

describes the scale reached by the technique.

X-ray microtomography can be performed using different X-ray sources namely lab-

based X-ray tubes and synchrotron radiations out of which synchrotron based X-ray

provides the largest number of experimental options for tomography. Among the existing

modalities, we only considered absorption (attenuation) microtomography technique.

Absorption microtomography is based on the detection of X-ray radiation attenuated

by an object. The attenuated X-ray beam is recorded by a detection system, in which it is

converted into visible light by a scintillator. The resulting visible image is then projected

onto a CCD (Charge-coupled device) camera, from which a digital image is read out into

a computer where it is stored and further processed [42]. The produced image is called a

tomogram (radiograph) and it contains all the in-depth information integrated along the

projected direction. To obtain a complete 3D image representing the local attenuation

distribution in the object, radiographic projections should be taken for many angular

positions. Then, the resulted set of projections are used for reconstructing the 3D image.

With the assumption that the acquisition system is able to provide a set of projections

along straight lines (rays), parallel beam geometry as for synchrotron sources, we can

compute the intensity of the transmitted beam along each straight line using the Beer-

Lambert law as follows:

I1 = I0e
−
∫

path

µ(l)dl

(2.1)

where I1 is the intensity of the transmitted beam, I0 is the intensity of the emitted beam

and µ is the linear attenuation coefficient. With calibration procedures, we assume that

both I1 and I0 are measured by the acquisition system, then the projection of µ along a

ray is expressed as follows:

ln

(
I0
I1

)
=

∫

path

µ(l)dl (2.2)
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Taking into account each rays along a line of the detector for all angular positions will

generate a sinogram which is mathematically known as the Radon transform of function

µ. The inverse Radon transform then is used to obtain a reconstructed 2D image of µ

from the projection data.

Unfortunately, there is no exact implementation of the inverse Radon transform. Ap-

proximation techniques should be used in the inversion process which are usually called

tomographic reconstruction methods. The two widely used reconstruction approaches

are: filtered backprojection [69] and the algebraic reconstruction methods [70]. A math-

ematical formulation of these algorithms can be found in [42].

2.2.2 TOMCAT beam line Experiment

During my first year, I did a three weeks secondment at Paul Scherrer Institute (PSI)

in Switzerland. At the beamline TOMCAT from the Swiss Light Source (SLS), I learned

about synchrotron microtomography and multi-scale imaging. We had the attribution of

24 hours for doing multi-scale imaging experiments on different type of materials.

The beamline for TOmographic Microscopy and Coherent rAdiology experimentTs

(TOMCAT) is offering cutting-edge technology and scientific expertise for exploiting the

distinctive peculiarities of synchrotron radiation for fast, non-destructive, high resolution,

quantitative investigations on a large variety of samples. Absorption-based and phase

contrast imaging are routinely performed in an energy range of 8-45 keV [71]. Figure 2.1

illustrates the standard experimental setup for absorption-based 3D microtomography.

Figure 2.1: TOMCAT beamline Experimental setup.

Different combinations of scintillators, microscopes and cameras are available at TOM-

CAT in order to obtain optimal image quality for a given experimental setup. The stan-

dard high resolution microscope (Microscope 1) is based on diffraction-limited optics and,

thanks to its interchangeable (motorized) objectives, the field of view can easily vary from

0.4× 0.3 mm2 up to 13.3× 11.2 mm2 with pixel sizes ranging from 0.16× 0.16 µm2 up to
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5.2× 5.2 µm2. Table 2.1 summarizes the several imaging options (field of view and pixel

size) available. With the advantage of the advanced rotating stage and the sample holder,

we were able to perform multi-scale imaging experiments for different type of materials

since the sample can be centred with 0.1 µm reproducibility.

Objective Magnification Field of View (mm2) Pixel Size (µm2)

PLAPO1.25x 1.25 13.3 x 11.2 5.2 x 5.2

PLAPO2x 2 8.3 x 7.0 3.25 x 3.25

UPLAPO4x 4 4.2 x 3.5 1.63 x 1.63

UPLAPO10x 10 1.7 x 1.4 0.65 x 0.65

UPLAPO20x 20 0.8 x 0.7 0.33 x 0.33

UPLAPO40x 40 0.4 x 0.3 0.16 x 0.16

Table 2.1: Specifications of the different objectives available for Microscope 1.

Figure 2.2 shows the samples used in the experiments. They were chosen to give differ-

ent levels of complexity in the internal structure. Fontainebleau sandstone is an example

of a simple natural porous medium with pure mineral composition mainly consisting in

quartz. The SiC–Diamond (silicon carbide-Diamond) sample is a synthesized composite

obtained by microwave sintering, see [72]. It is composed of silicon carbide and diamond,

and it is an example of two solids phase material. The third sample is a North Sea reser-

voir rock which is another example of sandstone with more complex and heterogeneous

structure consisting of clay, quartz, feldspar and carbonate cement. The last sample being

the most complex one is a carbonate (CaCO3) containing a wide range of pore size which

makes the use of multi-scale imaging techniques essential.

Figure 2.2: Samples used for the multi-scale imaging experiments (red boxes).

For each sample, full scan for the entire sample had been taken with different magnifi-

cations; 2x and 4x, resulting in 3D volumes for the full samples with (1600Ö1600Ö962) and

(2560Ö2560Ö2160) voxels, respectively. With magnification 10x two regions were defined

to perform local microtomography resulting in 3D volumes with (2560Ö2560Ö2160) vox-
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els. Inside one of the regions of magnification 10x, two other local microtomography were

performed with magnification 20x resulting in 3D volumes with (2560Ö2560Ö2160) vox-

els. Figure 2.3 illustrates the multi-scale imaging experiment protocol with cross-sections

of Fontainebleau sandstone sample.

Figure 2.3: Cross sections of Fontainebleau sandstone with a multi-scale imaging approach.

Acquiring 3D volumes in two regions in magnifications 10x and 20x was done keep-

ing in mind that the acquired data will be used by our colleagues in SUPREMATIM

(SUPerREsolution of 3d MATerials IMages) project [68]. This project aims to develop

new superresolution methods guided by HR local sub images of real 3D material data.

The selected mathematical methods are based on local and global Generalized Gaus-

sian Mixture Models as well as Student-t Mixture Models in conjunction with variational

methods. Using both LR and HR information in the same region the statistical model

will be built and then will be used to inject HR information where it’s needed. So, one

HR region will be used to develop the model and the other one will be used for validation.

The Fontainebleau sandstone and SiC-Diamond data sets were used as an application

for PCA reduced Gaussian Mixture models in [73] and for Wasserstein patch prior for

superresolution of 2D and 3D images in [74].

(a) (b) (c) (d)

Figure 2.4: Fontainebleau sandstone cross sections with different resolutions, a) 2x MAG with
pixel size of 3.25 µm, b) 4x MAG with pixel size of 1.63 µm, c) 10x MAG with pixel size of 0.65
µm, d) 20x MAG with pixel size of 0.33 µm.
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(a) (b) (c) (d)

Figure 2.5: SiC–Diamond cross sections with different resolutions, a) 2x MAG with pixel size of
3.25 µm, b) 4x MAG with pixel size of 1.63 µm, c) 10x MAG with pixel size of 0.65 µm, d) 20x
MAG with pixel size of 0.33 µm.

(a) (b) (c) (d)

Figure 2.6: North Sea reservoir rock cross sections with different resolutions, a) 2x MAG with
pixel size of 3.25 µm, b) 4x MAG with pixel size of 1.63 µm, c) 10x MAG with pixel size of 0.65
µm, d) 20x MAG with pixel size of 0.33 µm.

(a) (b) (c) (d)

Figure 2.7: Carbonate (CaCO3) cross sections with different resolutions , a) 2x MAG with pixel
size of 3.25 µm, b) 4x MAG with pixel size of 1.63 µm, c) 10x MAG with pixel size of 0.65 µm,
d) 20x MAG with pixel size of 0.33 µm.

Figures 2.4, 2.5, 2.6 and 2.7 illustrate cross sections of the 3D volumes of Fontainebleau

sandstone, SiC–Diamond, North Sea reservoir rock and carbonate (CaCO3), respectively,

with different magnifications (MAG). From these figures, we can observe various levels of

complexity among the selected materials. The Fontainebleau sandstone is the simplest one

with almost homogeneous structure. The SiC–Diamond sample shows two distinguished

solid phases which can be segmented, generally speaking, easily. In the North Sea reservoir

rock sample, we can observe almost four solid phases which makes the segmentation of

such sample challenging. The carbonate sample being the most complex one with almost

dense structure with MAG 2x and 4x while the sub-micron pores size are visible with

MAG 10x and 20x. Such pores have significant effects on the effective properties of these

types of materials.
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The resulting data sets contain 3D images of real materials with very good quality

images and different resolutions. With the artefacts and problems associated with the

acquisition process, these data sets are of great interest for different applications. These

artefacts and problems are ring artefacts, phase contrast effect, intensity gradients and

registration problem. Due to the lack of time and being out-of-the-scope of this the-

sis, these artefacts will not be discussed any further. Nevertheless, the phase contrast

effect was discussed by ESR 11 of the MUMMERING ITN (Elise O. Brenne) and the

Fontainebleau sandstone set was investigated in [75].

The main goal for this experiment was obtaining multi-scale 3D images to be used

in: (i) the development of superresolution techniques for real 3D materials under the

framework of SUPREMATIM project, (ii) the local mesh refinement step when computing

the effective properties for reactive transport in porous media.

2.2.3 Summary of section 2.2

A multi-scale imaging experiment was performed at TOMCAT beamline in the frame-

work of the MUMMERING project. Four different porous materials were considered with

varied structure complexity. For each sample, a total of eight acquisitions were performed

with different resolutions. The acquired data sets were used in the development of su-

perresolution techniques for real 3D materials under the framework of SUPREMATIM

project.
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2.3 Numerical Modelling

In this section, we start with a brief description of the reactive diffusion problem and

of the change of scale procedure using the volume averaging method. Thereafter, the

discretization of the problem using the cell centred finite volume on uniform Cartesian

grid is given. Then, the proposed non-uniform Cartesian mesh (NUCM) resulting from

the grid coarsening approach and local mesh refinement are presented along with the

spatial discretization. Finally, the computation of the effective properties with different

interpolation levels are presented.

2.3.1 Local equations and change of scale

At the local scale, the governing equations are defined and applying the change of

scale by volume averaging approach led to the equation at the macroscopic scale. The

effective properties appearing in this equation can be computed from the solution of the

closure problems stated at the local scale.

The pore scale configuration is illustrated on Figure 2.8. The solid phase (S) is com-

posed of two materials; SR, a rigid solid able to react in contact with the fluid phase (F)

and SI, the inert part of S. The fluid-solid interface Afs is divided into two components,

Afsr corresponding to the interface with SR, and Afsi corresponding to the interface with

SI. The equation that governs the transport by diffusion reaction at the local scale for

the compound a, is given by:

Figure 2.8: Local scale averaging volume and the notations used.

∂C

∂t
= ∇ · (D∇C), in the F phase (2.3)

where C is the concentration of the transported compound a (mol m-3), t is the time (s)

and D is the bulk diffusion coefficient (m2 s-1). In equation (2.3), we assumed that the

homogeneous reactions are negligible.
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On the fluid-solid interface, we consider a first order reaction expressed by:

−nfs · (D∇C) = k(C − C∗), at Afs (2.4)

where nfs is the unit vector normal to Afs and oriented from the fluid to the solid, k is the

reaction rate (m s-1) and C∗ is the concentration of equilibrium (mol m-3). The reaction

rate k is null on Afsi and is equal to kR on Afsr.

Using H as a reference length (m) and D, we can put the system of equations (2.3)

and (2.4) under dimensionless form. The dimensionless variables used are:

X ′ =
X

H
; t′ =

Dt

H2
; C ′ = CH3; k′ =

kH

D
(2.5)

Omitting the apostrophe (′) to note the dimensionless variables, equations (2.3) and

(2.4) in dimensionless form are rewritten as follows:

∂C

∂t
= ∇ · ∇C, in the F phase (2.6)

−nfs · (∇C) = k(C − C∗), at Afs (2.7)

Applying the change of scale by volume averaging approach and following the steps

presented in [9], the macroscopic diffusion reaction equation is given as follows:

ε
∂⟨C⟩f
∂t

= ∇ ·
[
εDeff · ∇⟨C⟩f

]
+∇ ·

[
εkRU(⟨C⟩f − C∗)

]
− εkR

Afsr

Vf
(⟨C⟩f − C∗) (2.8)

For detailed mathematical developments on how to obtain this result, we refer the

reader to appendix A. In the upscaling procedure, we defined an averaging domainV

including the fluid and solid domains Vf and Vs and the fluid solid interface Afs from

which we defined the porosity by the volume fraction of the F phase as follows:

ε =
Vf
V

(2.9)

Equation 2.8 is describing the diffusion at the macroscopic scale with ⟨C⟩f being the

intrinsic average concentration. It is containing the effective diffusivity tensor Deff and the

effective parameter vector U . These parameters depend on the solution of the following

closure problems which have to be solved at the local scale:

∇2B = 0 (2.10)

−nfs · ∇B = nfs, at Afs (2.11)

B(r + li) = B(r), i = 1, 2, 3 (2.12)
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with

⟨B⟩f = 0 (2.13)

and

∇2s∗ = −Afsr

Vf
(2.14)

−nfs · ∇s∗ = 1, at Afsr (2.15)

s∗(r + li) = s∗(r), i = 1, 2, 3 (2.16)

with

⟨s∗⟩f = 0 (2.17)

Equations (2.12) and (2.16) represent periodic boundary conditions where r is the

position vector and li is the lattice vector. The vector B and the scalar s∗ mainly take

into account the effects of the micro-geometry on diffusion. Using these closure variables,

we can compute the effective parameters as follows:

Deff = I +
1

Vf

∫

Afs

(nfsB)dA (2.18)

and

U =
1

Vf

∫

Afs

(nfss
∗)dA (2.19)

In general, the second term on the right-hand side of the macroscopic equation 2.8

is negligible for the case of diffusion and can be important when convective transport

is important [9], [46]. In this work, these formula were used to study the effect of the

proposed multi-scale imaging and modelling approach on the effective parameters values

and on the computation time.

In this subsection, the information at the pore scale was used to derive the equation

at the macroscopic scale. The resulting closure problems need to be solved at the pore

scale in order to compute the effective properties. In the next subsections, we present

how to solve these problems numerically using the finite volume method on both uniform

and the proposed non-uniform Cartesian mesh.

2.3.2 Numerical model

To compute the effective diffusion tensor Deff, we need to solve the closure problem

(2.10)-(2.13), where the vector B is given by:
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B =




Bx

By

Bz




(2.20)

Hence, we can rewrite the closure problem for B in terms of three scalar problems as

follows:

∇2Bζ = 0 (2.21)

−nfs · ∇Bζ = nζ , at Afs (2.22)

Bζ(r + li) = Bζ(r), i = 1, 2, 3 (2.23)

with:

⟨Bζ⟩f = 0 (2.24)

where the subscript ζ correspond to the three directions of space X, Y , and Z. Further-

more, to compute the vector U we need to solve another scalar problem for s∗ (2.14)-(2.17).

So, we have to solve four scalar problems of the following form:

∇2u = v (2.25)

−nfs · ∇u = b, at Afs (2.26)

u(r + li) = u(r), i = 1, 2, 3 (2.27)

with:

⟨u⟩f = 0 (2.28)

where u corresponds to a component of vector B or to s∗, v is a volume source term and

b a surface source term. The first equation is describing the diffusive transport within

the fluid phase with the volume source term v, the second one is the reaction at the

fluid/solid interface (b can be variable depending on the nature of the considered solid

phase), the third one indicates that u is periodic in all directions at the limits of the

averaging domain and the last one points that the intrinsic average of u should be equal

to zero. Therefore, we need to solve four similar problems with the same matrix and

different second members.

2.3.3 Cell centred finite volume method on uniform Cartesian

mesh

Considering the nature of the computation domain, 3D volumes from microtomogra-

phy imaging are voxelized, using the finite volume method appears as relevant. Due to
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the nature of the problem we used the cell centred finite volume method to discretize the

diffusion equation. The computation domain is discretized into set of control volumes

(active cells). Each active cell (AC) is a parallelepiped of dimensions dx × dy × dz with

the same ratios
dy

dx
and

dz

dx
for all the ACs.

In the cell centred finite volume scheme the local unknowns are localized at the centre

of each AC. We start by the integration of equation (2.25) over an arbitrary control

volume: ∫

CV

(∇2u)dΩ =

∫

CV

vdΩ (2.29)

where CV is the control volume associated to the local unknown. Here, it is the volume

of the AC. Using the Gauss’ divergence theorem, the first term of equation (3.92) can be

transformed in a surface integral giving:

∮

ΓCV

(∇u · n)dΓ =

∫

CV

vdΩ (2.30)

where ΓCV is the boundary of the control volume and n is the vector normal to ΓCV

oriented towards the outside of the AC. Using the notations of Figure 2.9, we can split

the surface integral in (2.30) into the sum of the surface integrals over the interfaces

between the CV and its neighbours. Using the midpoint rule to approximate the surface

and volume integrals, we obtain:

6∑

i=1

(∇u · n)cΓi
Γi = vCV VCV (2.31)

Figure 2.9: Notations for CV faces and surrounding neighbours.
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Where Γi is the area of the face i, (∇u · n)cΓi
is the value at the centre of face i of

the gradient component normal to this face, vCV is the value of the source term in the

AC and VCV is the volume of the AC. When the face i is at the fluid/solid interface,

the term (∇u · n)cΓi
is given by the boundary condition (2.26) (n = nfs). In the other

cases, an approximation of this term must be used based on the values of the unknowns in

the neighbourhood (eventually taking into account the periodicity). When the anisotropic

Cartesian grid is uniform, the approximation is obtained as the difference of the unknowns

at the centres of the cells sharing face i divided by their distance and taking into account

the direction of n. We end up to solve the linear system in the form:

αCV uCV +
6∑

i=1

αiui = vCV VCV −
6∑

i=1

βi(∇u · nfs)cΓi
Γi (2.32)

where:

αCV = −
6∑

i=1

αi (2.33)

αi =





0 , if ΓCVi ∈ Afs
Γi
di

, if ΓCVi /∈ Afs
(2.34)

βi =





1 , if ΓCVi ∈ Afs

0 , if ΓCVi /∈ Afs

(2.35)

Here uCV is the value of the unknown at the centre of the AC, ui is the value of the

unknown at the centre of the neighbour ACi, ΓCVi is the face i of the AC and di is the

distance between uCV and ui.

Applying equation (2.32) for each AC will generate a linear system in the form:

Mu∗ = −G (2.36)

where M is the Na × Na matrix built using the left-hand side of equation (2.32), Na

being the number of ACs. u∗ is the vector of real unknowns and G is the vector composed

of the volumic source terms and the fluid-solid interface flux terms.

2.3.4 Non-uniform Cartesian mesh (NUCM)

In the previous section, a uniform Cartesian mesh was used to discretize the fluid

phase into a number of ACs supporting one unknown localized at their centres. These

ACs are identical with dimensions dx × dy × dz which are equivalent to the scanning

voxels size. For large 3D volumes this number is very massive resulting in computationally

demanding problems. In general, reducing the number of ACs will reduce the CPU time.

Nevertheless, this reduction process should be done efficiently without affecting the final
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results.

We know from equation (2.18) that to compute Deff we need to integrate the com-

ponents of B over the fluid-solid interfaces. It means that the final result depends on

the ACs located at these interfaces and reducing the number of ACs away from them

might not have a major effect. Our grid coarsening approach allows us to have coarse

grid away from the fluid-solid interfaces. By fixing the cells size near the interfaces and

aggregating 2 Ö 2 ACs in 2D and 2 Ö 2 Ö 2 ACs in 3D elsewhere, we get the first level of

the coarse grid. Repeating the same procedure will lead to the final coarse grid. Figure

2.10 illustrates this approach in a 2D example.

(a) Original grid. (b) First level of the coarse grid.

(c) Second level of the coarse grid. (d) Final level of the coarse grid.

Figure 2.10: Grid coarsening for a 2D example.

The proposed NUCM is resulting from a twofold approach: first, a grid coarsening, and

second, a local mesh refinement. In the local mesh refinement step, the HR information

are injected where it is needed at the fluid-solid interfaces which aims to improve the

accuracy of the results. The NUCM is composed of ACs of different sizes. This requires

procedures for communication of data across the non-matching interfaces to accommodate

the requirements of discretization stencils. In the next subsections, we will describe the

grid coarsening approach and the local mesh refinement in details, as well as the spatial

discretization needed at the coarse-fine grid interfaces.
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2.3.4.1 Grid coarsening approach

We start with the initial 3D volume with identical voxels size related to the scanning

resolution. The segmentation process gives labelled 3D images with each voxel assigned

to one of the phases detected within the studied material. The labelled 3D images will

be partitioned in two regions: the active region (value = 1), corresponding to the active

phases where the considered transport is taking place, and the inactive region (value =

0) corresponding to the inactive phases and defining the internal boundary of the active

region.

A NUCM is composed of ACs of different levels (L). An AC of level L comprises S

voxels that were aggregated to form it (S = 23(L−1)). At the beginning of the process, all

the ACs in the active region are composed of one single voxel of dimensions dx× dy× dz

and they are in the same level (L = 1).

The basic rules for the grid coarsening approach to form the NUCM are:

� Coarsening is forbidden for AC sharing at least one face with an internal boundary

(fluid-solid interfaces) or an external boundary and these ACs will stay at level

L = 1.

� Local coarsening is done by aggregation of (2 x 2 x 2) AC of level L to form a single

AC of level L+ 1.

� An AC of level L can only share faces with AC of level equal to L− 1, L or L+ 1.

The NUCM is described by the byte array Mail(Nx, Ny, Nz) built above the 3D volume,

where Nx, Ny and Nz are the dimensions of the 3D volume. Each voxel of Mail has a value

equal to 0 (the voxel is in the inactive region) or L, where L is the level of the AC to

which the voxel belongs. The NUCM is built iteratively from level 1 to Lmax, where Lmax

is the largest mesh level reached during the building process. The value of Lmax can be

determined automatically from the coarsening process or given by the user as an input

parameter.

At level L, the global mesh is composed of ACs of levels 1 to L − 1 that are fixed,

and of the ACs of level L that might be aggregated to create new ACs of level L + 1.

As a benefit from the previous iteration, the domain defining these ACs is divided in a

series of connected components (CC) and the local coarsening from level L to level L+ 1

is performed independently on each CC.

The way we aggregate the ACs of level L will result in a series of CC of level L + 1.

Using the CC will minimize the considered domains and it is a simple way to perform

the local coarsening in a local system of coordinates that can be transposed easily to the

global coordinates. At the beginning of the process, we consider that at level L = 1 all

the ACs belong to the same CC.

The idea is to initiate the coarsening at the centres of the largest regions to have the

largest CC centred there. For that, for each CC of level L, we perform the coarsening

27



process in two steps. In the first step, we compute the distance map of the CC and deter-

mine the AC with the largest value. Then, we test the 8 possible aggregates comprising

the AC and check whether the AC can be aggregated with 7 neighbours to create an AC

of level L+1. If yes, we select the aggregate with the maximum average distance to create

an AC of level L+ 1 and to create the first CC of level L+ 1. The expansion of this CC

is done by using a region growing algorithm. We create a chain made of the ACs on the

boundary of the CC and for each element in the chain we test the 6 possible aggregates of

level L in contact with a face. If the test is positive, we create a new AC of level L+1 and

add it to the chain. This process is repeated until the chain is empty. The CC created in

this first step is almost always the largest one. The number of ACs to be tested after this

step is generally very large and applying the same procedure is CPU time consuming for

a limited benefit. Indeed, the remaining ACs are situated in regions of small extension

and initiating the coarsening at the centres is not providing better results in terms of final

number of aggregated AC.

At the end of first step, we update the distance map for the remaining ACs of level

L. In the second step, we loop over the remaining ACs of level L in the CC. If the value

of the distance map larger than 1, we test whether this AC can be aggregated with 7

neighbours to build an AC of level L + 1. If yes, a new CC of level L + 1 is created and

increased by a region growing algorithm as in the first step. Before checking the next CC,

the distance map is modified by giving the value −1 to all the AC in contact with a face

of an AC belonging to the new CC of level L+1.

The modification of the distance map after each creation of new CC of level L + 1 is

necessary to prevent the situation shown in Figure 2.11. This situation is forbidden by

the basic rules since the AC of level L can only share faces with AC of level equal to L−1,

L or L+ 1.

Figure 2.11: An example of forbidden situation in the NUCM.

The NUCM is composed of ACs of different levels and a specific spatial discretization is
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needed at the coarse-fine grid interfaces. A tailored structure is developed by introducing

ghost unknowns to allow communications between the ACs at different levels.

2.3.4.2 Local mesh refinement (LMR) using Multi-Scale imaging approach

In the problems we are interested in, only certain regions of the physical domain are

critical and a finer grid is needed only there. An alternative way to improve the results

is by local mesh refinement (LMR), in which sequences of nested finer grids are applied

in the critical region(s). To define these regions, prior knowledge is needed, which we

generally do not have for our problems. In adaptive mesh refinement (AMR), a first

approximation of the solution on the coarse mesh is required to identify the regions that

need finer grid and then LMR is applied.

At the time a solution has been built on the NUCM, a LMR is applied at the critical

regions. Usually, the grid in the critical regions is refined by just dividing the ACs into

smaller ones by specific ratio. The fluid-solid interfaces in this case are not changed and

are kept fixed related to the initial scanning resolution.

In the proposed multi-scale imaging approach, multi 3D volumes with different reso-

lutions are obtained. LR 3D images correspond to a large field of view relevant for the

transport at the global scale and HR images describe the fluid-solid interfaces more pre-

cisely. The LR images are used to construct the first approximation on the NUCM. Then,

the HR images are used to replace the LR critical regions information with HR ones in

the LMR step.

At the LMR step, we first apply global modifications to the NUCM resulting from

the grid coarsening approach. We subsample the NUCM by a factor of 2 and increase

the actual level for each AC by 1. Then, for each critical region a parallelepiped sub

volume from the HR images is used to modify the geometry. After that, all the ACs at

the fluid-solid interfaces where we have geometrical changes are set to level 1. At the end

of this step, all the voxels on the interface within the refined region have a level equal to 1

or 2. Then, two verification tests are applied to check that: (1) all the ACs of level 2 have

four sub-voxels in contact with the solid phase, (2) for all faces of an AC in contact with

the solid phase, we have two ACs of the same level in the direction of the normal vector

from the solid to the fluid phase. This is done to preserve the coarsening rules presented

in section 2.3.4.1 and to facilitate the application of the interpolation levels presented in

section 2.3.5.

Before using the HR images we need to decide where the LR critical regions are

located. The criterion for defining these regions depends on the nature of the physical

problems. In many problems, physical quantities like sharp density gradients or large

charge distributions may provide indicators for that. In this work, we performed two

empirical tests to study the possible choices for identifying the critical regions. These

tests are presented in section 2.4.5.
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2.3.4.3 Spatial Discretization

At coarse-fine interfaces, it is no longer possible to use the uniform discretization as

described in section 2.3.3. In this section, we present the modifications and the spatial

discretization needed for the NUCM resulting from the grid coarsening approach and local

mesh refinement. Starting from equation (2.31) to compute (∇u · n)cΓi
we consider three

cases:

� Case one : the AC of level L is sharing a face with an AC of the same level. Here

we use the same discretization as in section 2.3.3.

� Case two : the AC of level L is sharing a face with an AC of level L + 1. One

direct neighbour will be missing to complete the discretization stencil. To over-

come this problem, a ghost unknown will be introduced in the larger neighbour by

interpolation.

� Case three: the AC of level L is sharing a face with an AC of level L−1 and here the

AC missing gradients are evaluated by the arithmetic average of the adjacent smaller

ACs gradients to enforce the flux matching and the continuity of the gradient across

the interface.

Case 1: the AC of level L is sharing a face with an AC of the same level

In this case, the same discretization as in section 2.3.3 will be used.

Case 2: the AC of level L is sharing a face with an AC of level L+ 1

The fine cell ACi at level l with dimensions dxl×dyl×dzl has the unknown ui localized
at the centre. For simplicity, keeping in mind the notation in Figure 2.9, we assume having

face 1 (West) at the coarse-fine interface, the other faces are treated in analogue way in

cases where they are located at the coarse-fine interface. The West neighbour ACj at level

l+1 with dimensions dxl+1×dyl+1×dzl+1 has the unknown uj localized at the centre. We

have to consider four subcases defined by the location of the ACi on the face of its larger

neighbour ACj. Figure 2.12 illustrates the numbering of the different parts of a large face

shared with smaller ACs. Looking to the shared face from the centre of the larger active

cell, number one is the part situated at the upper left corner and numbering is continued

turning in the clock wise direction.

Case 2.1: we consider the face 1 (West) of ACi in contact with part 1 of the face 2

(East) of the larger ACj. A direct West unknown is missing to complete the discretization

stencil. A ghost unknown uj1 is introduced and localized at the centre of the fine grid

ghost cell positions in ACj. We represent uj1 in terms of the available real unknowns at

nearby ACs centres. First, a barycentric interpolation at uj and the two most adjacent

ACs centres except ui is used to approximate un located at the intersection of the line
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Figure 2.12: The numbering of the different parts of a large face shared with smaller ACs.

joining the centre of the ACi and the centre of face 1 of ACi with the triangular plane.

Then, a linear interpolation at ui and un is used to approximate uj1. To compute un,

we use along with uj the unknowns located at the centres of ACk and ACh where ACk

with the unknown uk is sharing face 4 (North) of ACj and ACh with the unknown uh is

sharing face 6 (Top) of ACj. There is three possible different levels for each of them (l,

l + 1, l + 2) and this generates 32 subcases with additional two cases depending on the

location of ACj related to its larger neighbour of level l + 2.

Case 2.1.1: As can be seen from Figure 2.13, ACk is of level l and shares the part

2 of face 4 (North) of ACj, ACh is of level l and shares the part 2 of face 6 (Top) of

ACj. For simplicity, we used localized coordinates at the centre of face 2 of ACj to drive

the interpolation relations, see Figure 2.13. The location of the points involved in the

interpolation are summarized in Table 2.2. The barycentric interpolation for un is defined

as follows:

un = λjuj + λkuk + λhuh (2.37)

where:

λj =
area(pn, pk, ph)

area(pj, pk, ph)

λk =
area(pj, pn, ph)

area(pj, pk, ph)

λh =
area(pj, pk, pn)

area(pj, pk, ph)
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X Y Z

pi
1
2

1
2

1
2

pj −1 0 0

pk −1
2

3
2

1
2

ph −1
2

1
2

3
2

pn −3
4

1
2

1
2

pj1 −1
2

1
2

1
2

Table 2.2: The points involved in the in-
terpolation case 2.1.1.

Figure 2.13: Case 2.1.1 schematic diagram.

Here area(pn, pk, ph) is the area of the triangle composed of the point pn, pk and ph and

it is computed as follows:

area(pn, pk, ph) =
∥−−→pnpk ×−−→pnph∥

2
(2.38)

In a similar way, we can compute uj1 by:

uj1 = λiui + (1− λi)un (2.39)

where:

λi =
disx(pj1, pn)

disx(pi, pn)
(2.40)

where disx is the distance between the two points in the X direction.

Applying equation (2.37) we have:

un =
2uj + uk + uh

4
(2.41)

and using equation (2.39) we get:

uj1 =
ui + 4un

5
=
ui + 2uj + uk + uh

5
(2.42)

Finally, the term (∇u · n)cΓ1Γ1 is approximated as:

(∇u · n)cΓ1Γ1 =
uj1 − ui
dxl

dyldzl (2.43)
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Table 2.3 summarizes the formulas used to approximate the ghost unknown for the

different subcases. Detailed derivation can be found in Appendix B.

Case uj1 Case uj1

Case 2.1.2
2ui + 3uj + 2uk + uh

8
Case 2.1.7

4ui + 3uj + 2uk + uh
10

Case 2.1.3
4ui + 10uj + 4uk + uh

14
Case 2.1.8

4ui + 5uj + uk + 4uh
14

Case 2.1.4
2ui + 3uj + uk + 2uh

8
Case 2.1.9

4ui + 3uj + uk + 2uh
10

Case 2.1.5
2ui + 2uj + uk + uh

6
Case 2.1.10

4ui + 4uj + uk + uh
10

Case 2.1.6
4ui + 4uj + uk + uh

10
Case 2.1.11

4ui + 2uj + uk + uh
8

Table 2.3: The formulas used for the ghost unknown in the subcases of Case 2.1.

Case 2.2: We consider the face 1 (West) of ACi in contact with part 2 of the face 2

(East) of the larger ACj. A direct West unknown is missing to complete the discretization

stencil. A ghost unknown uj2 is introduced and localized at the centre of the fine grid

ghost cell positions in ACj. Similar to Case 2.1, we used first barycentric interpolation

at uj, ACk and ACh to approximate un. In this case, ACk with the unknown uk is

sharing face 3 (South) of ACj and ACh with the unknown uh is sharing face 6 (Top) of

ACj. Then, a linear interpolation at ui and un is used to approximate uj2. There are 11

possible subcases with similar relations as in Case 2.1.

Case 2.3: We consider the face 1 (West) of ACi in contact with part 3 of the face 2

(East) of the larger ACj. A direct West unknown is missing to complete the discretization

stencil. A ghost unknown uj2 is introduced and localized at the centre of the fine grid

ghost cell positions in ACj. Similar to Case 2.1, we used first barycentric interpolation at

uj, ACk and ACh to approximate un. In this case, ACk with the unknown uk is sharing

face 3 (South) of ACj and ACh with the unknown uh is sharing face 5 (Bottom) of ACj.

Then, a linear interpolation at ui and un is used to approximate uj3. There are 11 possible

subcases with similar relations as in Case 2.1.

Case 2.4 We consider the face 1 (West) of ACi in contact with part 4 of the face 2

(East) of the larger ACj. A direct West unknown is missing to complete the discretization

stencil. A ghost unknown uj2 is introduced and localized at the centre of the fine grid

ghost cell positions in ACj. Similar to Case 2.1, we used first barycentric interpolation at

uj, ACk and ACh to approximate un. In this case, ACk with the unknown uk is sharing
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face 4 (North) of ACj and ACh with the unknown uh is sharing face 5 (Bottom) of ACj.

Then, a linear interpolation at ui and un is used to approximate uj2. There are 11 possible

subcases with similar relations as in Case 2.1.

Case 3: the AC of level L is sharing a face with an AC of level L− 1

Special care should be taken into account when the control volume is around a coarse

cell adjacent to the coarse-fine interface. We can approximate the missing unknown by

simply averaging the adjacent fine unknown neighbours there. However, this method will

fail to generate a stable system. This is because of the resulting flux being discontinuous

across the coarse-fine interface. To overcome this problem, we need to enforce the flux

matching and the continuity of the gradient across the interface.

The coarse cell ACi at level l+1 with dimensions dxl+1×dyl+1×dzl+1 has the unknown

ui localized at the centre. As in case 2 we will assume having the face 1 (West) at the

coarse-fine interface. The West neighbours ACjm (m = 1, 2, 3, 4) at level l with dimensions

dxl × dyl × dzl have the unknowns ujm stored at their centres, see Figure 2.14. ACi is an

East neighbour for the ACjm and using equation (2.43) we can approximate the gradient

components normal to this face pointed form ACjm to ACi as follows:

Figure 2.14: Case 3 schematic diagram.

(∇ujm · n)cΓ2 =
uim − ujm

dxl
, m = 1, 2, 3, 4 (2.44)

Where uim are the ghost unknowns as defined in equation (2.39). To enforce the

continuity of the flux, the ACi gradient is taken as the arithmetic average of the ACjm

gradients as follows:

(∇ui · n)cΓ1 = −1

4

4∑

m=1

(∇ujm · n)cΓ2 (2.45)
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and with dxl =
dxl+1

2
the total flux across face 1 will be equal to,

(∇ui · n)cΓ1Γ1 =
1

2

4∑

m=1

ujm − uim
dxl+1

dyl+1dzl+1 (2.46)

As mentioned earlier, the same treatment is done for the other faces taking into account

the change of direction.

The discretization of equation (2.25) using the spatial discretization will result in Na

algebraic equations of the form:

nri∑

i=1

ciui +

ngi∑

i=1

cgiugi = −
nbi∑

i=1

Gi (2.47)

where Na is the number of ACs, nri, ngi and nbi are the number of real unknowns, the

number of ghost unknowns and the number of faces at the fluid-solid interface participat-

ing in the relation associated to the ACi, respectively, ui are the real unknowns localized

at the centres of the ACs, ugi are the ghost unknowns as defined in this section and Gi

the term coming from the boundary condition if the ACi is on the fluid-solid interface.

By writing the ghost unknowns in terms of the real ones, we can rewrite the linear system

in the following form,

MNUCMU = −G (2.48)

where MNUCM is the Nun × Nun matrix built using the right-hand side of equation

(2.47), Nun is the number of unknowns, U is the vector of unknowns and G is the vector

composed of the volumic source terms and the fluid-solid interface flux terms.

2.3.5 Computing the effective diffusion tensor Deff

After solving the linear system 2.36 or (2.48) for each component of the vector B, we

can compute the Deff using the following formula:

Deff = I +
1

Vf

∫

Afs

(nfsB)dA (2.49)

using the outer product or the tensor product of nfs and B, we can rewrite equation

(2.49) in matrix form as follows:




Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz



=




1 0 0

0 1 0

0 0 1



+

1

Vf

∫

Afs




nxBx nxBy nxBz

nyBx nyBy nyBz

nzBx nzBy nzBz




(2.50)
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Here we have used nx, ny and nz to represent the components of the unit vector nfs.

Starting with the first component, we have:

Dxx = 1 +
1

Vf

∫

Afs

nxBxdA (2.51)

by splitting the integral into the sum of the integrals over the interfaces between the active

cells at the fluid-solid interface (ACfs) and its solid face boundaries we have:

Dxx = 1 +
1

Vf

∑

ACfs

∫

ACfs

nxBxdA (2.52)

in the same way we did for equation (2.30), taking into account the notations of Figure 2.9,

we can split the integral in (2.52) into the sum of the integrals over the interfaces between

the ACfs and its boundary neighbours. And using the midpoint rule to approximate the

integrals, we obtain:

Dxx = 1 +
1

Vf

∑

ACfs

(nxBx)cΓi
Γi (2.53)

where (nxBx)cΓi
is the value at the centre of face i of the Bx component in the x direction.

In the cell centred finite volume method the unknowns are localized at the centres of

ACs and an approximation is needed to compute BxcΓi
at the centre of the face i. Different

levels of interpolation can be used to approximate this value.

The simplest way is to approximate it by the value localized at the centre of the AC

at the fluid-solid interface:

BxcΓi
= BxAC

, i = 1, 2, 3, 4, 5, 6 (2.54)

where BxAC
is the value at the centre of the AC and we will refer to this approximation

as Level.0. With a coarse grid this is a poor approximation and the alternative is using

higher interpolation levels.

Level.1.1

Another way to approximate this value is using the boundary condition (2.22). For

any component of the vector B, the boundary condition is given by:

−nx
∂Bζ

∂x
− ny

∂Bζ

∂y
− nz

∂Bζ

∂z
= nζ (2.55)

Assuming the boundary neighbour share the face 1 (West) with the AC and the unit

vector nfs normal to this face has the following components (nx = −1, ny = 0 and nz = 0),

equation (2.55) reduces to:
∂Bx

∂x
= −1 (2.56)
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using the forward difference formula to approximate the derivative at the interface, we

obtain:
BxAC

−BxcΓ1

dx1
2

= −1 (2.57)

and the value of Bx at the centre of face 1 is equal to:

BxcΓ1
= BxAC

+
dx1
2

(2.58)

In the same way, we can approximate BxcΓ2
for the boundary neighbour sharing the

face 2 (East) with the AC by:

BxcΓ2
= BxAC

− dx2
2

(2.59)

On the other hand, the boundary neighbour share the face i (i = 3, 4, 5, 6) with the

AC has a unit vector nfs with zero component in the X direction (nx = 0) and the value

of BxcΓi
is:

BxcΓi
= BxAC

, i = 3, 4, 5, 6 (2.60)

In a similar way, we can approximate BζcΓi
with

∂Bζ

∂ζ
= −1 in the direction ζ and zero

in the other directions.

Level.1.2

Here, we are using linear extrapolation at the AC on the fluid-solid interface and the

relative ACj. Assuming the boundary neighbour share the face 1 (West) with the AC and

the (East) neighbour is the relative ACj, the value at the centre of face 1 at the fluid-solid

interface will be equal to:

BxcΓ1
=

3BxAC
−BxACj

2
(2.61)

In the same way, we can approximate the value at the centre of the other faces.

Level.2

Here, we are using a quadratic interpolation at the AC on the fluid-solid interface and

the relative ACj with the information coming from the boundary condition (2.22). Similar

to Level.1.1 the value of the gradient equal −1 in the same directions of the component

of B and 0 in the other directions. Assuming the case for the component Bx, the value

of Bx at the centre of face 1 (West) will be equal to:

BxcΓ1
=

9BxAC
−BxACj

+ 3dx

8
(2.62)

and we can approximate the value of BxcΓ2
for the boundary neighbour sharing the face

37



2 (East) with the ACi by:

BxcΓ2
=

9BxAC
−BxACj

− 3dx

8
(2.63)

for the boundary neighbour sharing the face i (i = 3, 4, 5, 6) with the ACi the value of

BxcΓi
will be equal to:

BxcΓi
=

9BxAC
−BxACj

8
, i = 3, 4, 5, 6 (2.64)

With the value on the interface, we can compute the effective diffusivity as the integral

over the fluid-solid interfaces of nfsB.

2.3.6 Sparse matrix

In section 2.3.5 we said that “ After solving the linear system ... ”, in fact, solving

the linear system is very challenging. A linear system in the form (2.36) or (2.48) need

to be solved for each component of the vector B and solved for the scalar s∗. Usually, Na

× Na is very large number and storing the whole matrix in the memory is not realistic

and resourcefully demanding. To put in perspective how huge the matrix M is, we

assume a volume discretized in 100 × 100 × 100 cubic voxel with the number of ACs

is equal to (Na = 155920). Storing each element with 32 bit size will require at least

155920× 155920× 32 ≈ 97 GB of random-access memory (RAM). This is a huge amount

of resources, and even with nowadays technology storing the whole matrix is not really

feasible especially for larger volumes. The good news is that we do not need to store the

whole matrix M . The matrix M is a sparse matrix since most of its elements are zeros.

There are many ways to store sparse matrix and the widely used storage format are

COO (Coordinate list) and CSR (Compressed Sparse Row) or CSC (Compressed Sparse

Column). In COO format only the non-zeros are stored by defining three arrays of length

NNZ, where NNZ is the number of non- zeros in the matrix, (rowM(NNZ), colM(NNZ),

valM(NNZ)). For each non-zero the row and column index of that matrix element are

stored in the rowM and colM arrays. The value of the non-zero matrix element is placed

in the corresponding location of the valM array. This is an extremely easy data structure to

generate and it used to build and construct our matrixM . On the other hand, it is not too

efficient on matrix-vector products for the iterative solution of linear systems. Hence, we

change the data structure to CSC format which is more efficient for arithmetic operations,

column slicing, and matrix-vector products. CSC format compresses the column index of

COO from NNZ to column index + 1 (rowM(NNZ), colM(Na+1), valM(NNZ)). Where

valM and rowM store the non-zero values and the row indices correspond to these values,

and colM holds the index in valM and rowM where the given row starts and the last

element is always NNZ.

When the sparse linear system is large using the direct method to solve it is not a
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good choice any more. The iterative methods in this situation are more appropriate for

the solution. They usually require less memory, less computational effort and in general

they are easier to program. The choice of the iterative method is not trivial. Since, the

convergence behaviour of the iterative methods depends on the structure of the matrix

of the linear system under consideration. For our matrix M we used the BiConjugate

gradient method with diagonal scaling and it gave a good convergence rate.

The matrix M is symmetric and positive definite. It is converging quite fast with

the BiConjugate gradient method with diagonal scaling. On the other hand, the matrix

MNUCM is not symmetric; introducing the ghost unknowns with the interpolation method

proposed in 2.3.4.3 breaks the symmetry of the matrix and this will cause the system to

have lower convergence rate.

In fact, solving non-symmetric large sparse linear systems is an active research area

and it is in great importance for many applications. For the scope of this thesis, we

restrict ourself to the BiConjugate gradient method with diagonal scaling since it gives a

quite good results keeping in mind that an improvement can be done in this area.

Having non-symmetric system will raise the following question, is the creation of CC

of level L + 1 as described in 2.3.4.1 always reducing the CPU time? Indeed, the grid

coarsening approach will reduce the number of real unknowns, but this will not mean

that we will always benefit from that in terms of reducing the CPU time. For that, the

creation of new CC should be controlled.

For a CC of N AC of level L + 1, the number of real unknowns is equal to N . Each

of these AC is an aggregate of 8 AC of level L corresponding to 8N real unknowns. The

creation of this new CC of level L+1 decreases the number of real unknowns by 7N . On

the other hand, we will introduce 4 ghost unknowns for each face at the interface with AC

of level L. AssumingM faces at the interfaces, the number of introduced ghost unknowns

will be equal to 4M . Introducing the ghost unknowns will increase the complexity of

the linear system and in return will increase the CPU time. To make sure that we will

always benefit from creating new CC, we should have the advantages from reducing the

number of real unknowns much larger than the disadvantages from increasing the number

of ghost unknowns. We can simply say that the number of real unknowns decrease should

be much larger than the number of ghost unknowns increase (7N >> 4M). For that, we

introduce the parameter τ =
N

M
and it supposed to be much larger than

4

7
, if not, we

reject the new CC of level L+ 1.

2.3.7 Summary of section 2.3

In this section, the proposed multi-scale imaging and modelling approach was pre-

sented.

The choices we made were:

� The reactive diffusion problem was considered to test the proposed approach.
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� The cell centred finite volume method was used in the discretization of the problem.

� The novel grid coarsening approach aiming to reduce the computational time was

based on grouping the voxels away from the fluid-solid interfaces.

� The local mesh refinement step was based on injecting the HR information in the

LR critical regions.

� The developed spatial discretization was based on barycentric interpolation. It was

used in both coarsening and refinement steps.

� The BiConjugate gradient method with diagonal scaling was used in solving the

resulted linear systems.
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2.4 Results and discussion

In this section, the effects of global mesh refinement, change of resolution and the

proposed grid coarsening approach on the effective properties and CPU time are presented.

We first considered a rather simple geometry without reactive parts for which the effects

on Deff were investigated. Then, a reactive part was introduced in the centre of the

previous geometry to study the effects on the complete set of effective properties i.e Deff

and the vector U . With this geometry different critical regions were selected based on

the properties of the solution of the scalar s∗. Finally, a 3D volumes extracted from the

Sic-Diamonds volumes was considered and the implementation of the proposed approach

was tested.

So in total three geometries are considered. In the last period of our work we have been

confronted with a serious technical problem: The HPC server crashed making the compu-

tations with large data impossible. Because of time constraints, it has not been possible

to install the different codes on a new server, and consequently, the results presented for

the last two geometries are only preliminary results.

Chemists usually use a face-centred cubic (FCC) unit cell to describe the lattice struc-

ture in crystalline metals. In FCC arrangement of atoms, the unit cell consists of eight

atoms at the corners of a cube and one atom at the centre of each of the faces of the

cube. We used the same principle to generate our first porous media to test the proposed

multi-scale imaging and modelling approach. Figure 2.15a represents the FCC used in

our computation with slight random perturbations of the sphere radius. This represents

a periodic unit cell defined analytically, i.e. the spheres positions and radius are exactly

known allowing discretization with any resolution. As an example, the cubic domain

visible in blue is discretized in 100 × 100 × 100 cubic voxels. Figure 2.15b shows the

discretized solid phase while, Figure 2.15c shows the discretized fluid phase.

(a) (b) (c)

Figure 2.15: a) FCC with slight random perturbations of the sphere radius , b) the discretized
solid phase, c) the uniform discretized fluid phase.

Using in house program that imitate the effect of changing the scanning resolution

discrete images of any resolution can be generated. By change of resolution we mean,

scanning the same object with different magnifications. A series of 3D volumes for FCC
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sample with different resolutions was generated using magnifications factors 2, 3, 4 and

5. The obtained 3D volumes were of size of 2003, 3003, 4003 and 5003 cubic voxels,

respectively.

Figure 2.16 illustrates the difference between global mesh refinement and change of

resolution. By global mesh refinement we mean that the domain is globally discretized

with smaller mesh size (voxel size). It is usually used to reduce the error resulting from

the domain discretization. Figure 2.16a shows a section of the initial geometry discretized

with 1003 cubic voxels. Figure 2.16b shows a section of the initial geometry with global

refinement of factor 2 discretized with 2003 cubic voxels. While, Figure 2.16c shows a

section of the geometry with scanning magnification 2 discretized with 2003 cubic voxels.

(a) (b) (c)

(d) (e) (f)

Figure 2.16: a) Section of the initial geometry discretized with 1003 cubic voxels, b) Global
mesh refinement of (a) with factor 2, c) The same section as in (a) with scanning magnification
2, (d-f) zoom of the area within the red box in (a-c), respectively.

Figures 2.16(d-f) show a zoom of the area within the red box in the sections (see

Figures 2.16(a-c)). The black mesh (grid) represents the pixel size relevant to the initial

geometry discretization. Whereas, the dash red mesh represents the pixel size correspond

to the discretization with 2002 pixels. From Figure 2.16e, we can clearly see that we

only refine the domain without changing the geometry in the global mesh refinement.

However, in Figure 2.16f, we can see the effect of changing the resolution on the fluid-

solid interfaces. With the HR images more precise description of the fluid-solid interfaces

were obtained.
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In the next subsection the effects of the global mesh refinement and the interpolation

level used to compute Deff (see section 2.3.5) are investigated.

2.4.1 The effect of global mesh refinement on Deff

In the global mesh refinement procedure the initial geometry is discretized with dif-

ferent size of cubic voxels. A series of global mesh refinement with factors 2, 3, 4, 5 and

6 were done to study the effect of global mesh refinement with the different interpolation

levels described in section 2.3.5 when computing Deff. The uniform discretization of the

fluid phase is used to compute Deff using the cell centred finite volume method as de-

scribed in section 2.3.3. Figure 2.17 illustrates these effects on the diagonal components

of the Deff tensor.

(a) (b) (c)

Figure 2.17: The effect of global mesh refinement on the different interpolation levels when
computing Deff. a) Dxx , b) Dyy, c) Dzz.

From Figure 2.17 we can see that decreasing the voxels size (increasing the number of

voxels discretizing the same volume) will affect the components of Deff in different ways

depending on the interpolation level. Level.0 overestimates the Deff components on a

coarse grid and decreases towards the convergence limit with the global mesh refinement.

On the other hand, Level.1.1 and Level.2 underestimate the values and increase toward

the limits. For Level.1.2, it gives a very good approximation for the components of Deff

even with the coarse mesh and the effect of the global mesh refinement is limited. Since

Deff is a global property, using linear extrapolation to approximate the values at the

centre of the faces was very suitable to compute Deff. For that, Level.1.2 was used in the

computation of Deff and the vector U in the next subsections.

2.4.2 The effect of change of resolution on Deff

In the previous subsection, the initial FCC 3D volume discretized in 100× 100× 100

cubic voxels was fixed and we only applied a series of global mesh refinement. Using

interpolation Level.1.2 in the computation of Deff shows that the results are depending

only on the initial 3D volume resolution and the effect of the global mesh refinement is

limited. In this subsection, the effects of change of resolution on Deff and CPU time are

43



presented. Using the uniform discretized fluid phase with different magnifications the Deff

was computed and the results are presented in Figure 2.18.

(a) (b) (c)

Figure 2.18: The effects of global mesh refinement and change of resolution on Deff. a) Dxx , b)
Dyy, c) Dzz.

From Figure 2.18 we can clearly see that increasing the resolution increases the Deff

components in X, Y and Z directions. In the higher resolution 3D volumes we have more

precise details for the fluid-solid interfaces which influences the values of Deff. Moreover,

Deff is strongly related to the porosity of the volume, Figure 2.19 shows the relation

between Deff and the porosity of the 3D volumes at different resolutions. Decreasing the

porosity by 0.05% increases Deff components by 2%. In comparison with the global mesh

refinement, the change of resolution has significant effect on the computed values of the

effective properties.

(a) (b) (c)

Figure 2.19: The effects of porosity on Deff. a) Dxx , b) Dyy, c) Dzz.

Increasing the number of voxels hugely increases the memory usage and the compu-

tation time. Figure 2.20 illustrates the effect of change of resolution on the CPU time.

Increasing the number of voxels by factor of 5 causes the CPU time to increase by a factor

of 700. The CPU time is significantly increased.

In the next subsection, the effects of the proposed grid coarsening approach on the

Deff and CPU time are investigated.

44



Figure 2.20: The effect of change of resolution on the CPU time.

2.4.3 The effect of the grid coarsening approach on Deff and

CPU time

Using the FCC 3D volumes with different resolutions as described in section 2.4.2 we

studied the effect of the grid coarsening approach on Deff and CPU time. The developed

grid coarsening approach was used to generate the NUCM with different Lmax. Then,

the finite volume method along with the spatial discretization (see section 2.3.4.3) were

used to solve the closure problem. Figures 2.21(a-c) illustrate a zoom at the centre of the

section presented in Figure 2.16a With Lmax is equal to 1,2 and 3, respectively. When

(Lmax = 1) the resulting mesh is equivalent to the uniform one. Figure 2.21d shows 3D

sub volume of the same region with Lmax equals 3.

Figure 2.22 illustrates the effect of changing the largest mesh level Lmax when building

the NUCM on Deff components. When (Lmax = 1) the results are equivalent to the

uniform case presented in Figure 2.18. Increasing Lmax has negligible effect in comparison

with the effect of change of the resolution. Using the barycentric interpolation with

locally first-order accuracy in the spatial discretization at coarse-fine interfaces was able

to maintain higher global accuracy.

Figure 2.23 shows the effect of changing Lmax on the CPU time for the 3D volumes

of different resolutions. Different values of the parameter τ were used to force the initial

grid to reach the required Lmax. In the zoomed region in Figure 2.23, we can see that, for

small 3D volumes (100, 200), even if the grid coarsening approach reduces the number of

the real unknowns, the CPU time is increasing. This is due to the fact that we increased

the complexity of the matrix M which in return reduced the convergence rate of the

BiConjugate gradient method. For larger 3D volumes (300, 400, 500), the grid coarsening

approach reduced the CPU time. Table 2.4 shows the relative CPU time for the 3D

volumes of different resolutions. Even for larger volumes the grid coarsening approach is

not always beneficial in terms of CPU time, a trade-off between reducing the number of
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(a) (b)

(c) (d)

Figure 2.21: Sections of the NUCM 1003 zoomed at the center of the section 2.16a with different
Lmax. a) Lmax = 1, b) Lmax = 2, c) Lmax = 3, d) 3D sub volume of (c).

(a) (b) (c)

Figure 2.22: The effect of grid coarsening approach on Deff. a) Dxx , b) Dyy, c) Dzz.

real unknowns and increasing the complexity of the matrix should be taken into account.

Figure 2.24 shows the effect of the grid coarsening approach on the CPU time for the

3D volumes of different resolutions in comparison with the uniform case. According to

the minimum relative CPU time (highlighted red) in Table 2.4, we chose Lmax in the grid

coarsening approach. We can see that using the grid coarsening approach is reducing the
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Figure 2.23: The effect of changing Lmax on the CPU time for the different resolution 3D
volumes.

Size Lmax
CPU Time

(s)

Relative

CPU Time (%)
Size Lmax

CPU Time

(s)

Relative

CPU Time (%)

1 49.6 0 1 15326.3 0

2 104.1 109.8 2 11764.6 -23.2100

3 103.7 109.0 3 9704.0 -36.6

1 867.3 0 4 9669.5 -36.9

2 1116.4 28.7

400

5 9704.0 -36.6

3 1140.1 31.4 1 35925.8 0
200

4 1083.8 24.9 2 27108.8 -24.5

1 4913.8 0 3 17880.5 -50.2

2 4484.6 -8.7 4 19746.2 -45.0

3 3888.9 -20.8

500

5 19229.6 -46.4
300

4 4156.3 -15.4 - - - -

Table 2.4: Relative CPU time for the 3D volumes of different resolutions with different Lmax.
Where the relative CPU time is the difference between the time of Lmax and the time of Lmax = 1
divided by the time of Lmax = 1. The red cells correspond to the minimum relative CPU time.

CPU time up to 50%, depending on the size of the initial 3D volume and on Lmax reached

by the process. In this example, we obtained the maximum benefit of the proposed NUMC

with Lmax = 3.
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Figure 2.24: The effect of the grid coarsening approach on the CPU time for the 3D volumes of
different resolutions in comparison with the uniform case.

2.4.4 The second geometry

In the same way as in subsection 2.4.1, we used the principle of FCC to generate new

set of samples with sizes 1003, 2003 and 4003 to mimic the change of resolution effects. In

the centre of the new sample, the solid phase has been modified adding smaller spheres

that are tagged as reactive part as showed in Figures 2.25 and 2.26.

Figure 2.25: Isosurface of FCC with the reactive part (green) in the centre of the sample.

From Figure 2.26 we can see clearly the effect of changing the resolution on the in-

terfaces of the reactive and inert parts. The effective diffusivity tensor, the vector U,

and the macroscopic reactive source have been computed for the 3D volumes of different

resolutions and the results are illustrated in Figure 2.27. The proposed NUCM was used

in all the computations.

Figure 2.27 shows that increasing the resolution and the quality of the fluid-solid

interfaces is increasing the values of Deff components in all directions. On the other hand,
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(a) (b) (c)

Figure 2.26: Sections with different resolutions. Black = fluid, grey = inert solid, white =
reactive solid, a) Size 100, b) Size 200, c) Size 400.

(a) (b) (c)

Figure 2.27: a) Diagonal terms of the diffusivity tensor, b) Component Ux of the vector U, c)
Macroscopic reaction term.

the values of the component Ux and the macroscopic reactive source are decreasing with

the change of resolutions.

With this geometry different critical regions were selected based on the properties of

the solution of the scalar s∗

2.4.5 Identification of the critical regions; Some empirical re-

sults

When we compute Deff, computations only involve the values of B at the fluid-solid

interfaces. Taking that into account, we first tried to use these values in our criterion for

defining the LR critical regions. We assumed that these regions correspond to the zones

where the component of B in any direction has the larger absolute value. Using this

criterion in the LMR step appeared as insufficient, no improvement of the results being

obtained with the refined meshes.

In the second geometry different critical regions based on the properties of the solution

of the scalar s∗ were selected. In this test, we considered the case with the volume of 2003

as the LR image and the volume of 4003 as the HR image. From Figure 2.27, we observed

that when changing the scanning resolution from 2 to 4 ( size 2003 to 4003) the value

of the averaged diffusivity was increased by 3.6% while, the value of Ux and the reactive

source term were decreased by −11.7% and −50.4%, respectively. This was due to the

change of resolution effects. These values were used as reference for the LMR tests.
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The trivial choice for the critical regions was the geometry of the reactive part. The

LR critical region with the NUCM of size 200 is illustrated in Figure 2.28a, where the

inert part is in purple, the reactive part is in red, ACs of level 1 are in light blue and ACs

of level 2 are in light green. In the LMR step, first, we increased the level for each AC

by 1 and subsample the NUCM by factor of 2 , then we replace the fluid-solid interfaces

in the LR critical region with the HR ones as illustrated in Figure 2.28b, where the inert

part is in purple, the reactive part is in red, ACs of level 1 are in blue, ACs of level 2 are

in light blue and ACs of level 3 are in light green.

(a) (b)

Figure 2.28: a) Section of the NUCM 2003 zoomed at the critical region , b) Section of the
subsampled NUCM with factor 2 (4003) with local refining of the reactive interface.

With the proposed critical regions, which we called first local refining (Ref1), the

value of the averaged Deff is decreased by 0.03%, the value of Ux is increased by 0.4% and

the value of the macroscopic reactive source is decreased by 49.7% when applying LMR.

The LMR with the criterion Ref1 give very good approximation of the macroscopic

reactive term but, have almost no effect on Deff and U in comparison with the reference

values. The reactive term is only determined by the geometry, if the discretization of

the reactive interface is improved, we improve the approximation. The small difference is

due to the difference in porosity. Deff and U are obtained by solving a partial differential

problem on the complete volume. As seen in the first tests, a local refining of the geometry

is not noticeably improving the computed effective properties.

In the closure problem for the scalar s∗, we have a volume source term in all the fluid

domain, and a localized source term on the reactive interface. Comparing the computed

values of s∗ for the 2003 volume with the 4003 one, we noticed that the larger values are

localized in the corner of the sections and that they decrease from 2003 to 4003, see Figure

2.29.

To better characterize the difference between the solution of s∗ for 2003 and 4003

volumes, we computed a projection of the solution for 4003 volume on the mesh used

for 2003 volume. Figure 2.30 illustrate the 3D rendering of the regions with the largest
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(a) (b)

Figure 2.29: Section in the plane YZ for the computed fields s∗, with colour map (blue=-230,
red=+180). a) size 2003 , b) size 4003.

absolute difference.

(a) (b)

Figure 2.30: 3D rendering of the regions with the largest absolute difference. a) difference < -10
, b) difference > 10.

The zones where larger values of s∗ are localized correspond to the zones in blue on

Figure 2.30. From Figure 2.31 we can see that these zones are connected to the centre by

the smaller links (one link indicated by the white arrow) and, the discretization of these

zones had been improved by the change of resolution.

To test this hypothesis, a series of refining had been done as follows:

� Second local refining (Ref2): Eight points situated in the middle of the smaller links

previously identified (white arrow Figure 2.31) are selected, and the fluid zone is

refined within a cube of 203 voxels centred on these points.

� Third local refining (Ref3): The same points as in Ref2 but, with cubes of 303 voxels
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Figure 2.31: Computed fields s∗ for the 200 volume, section in the plane YZ same as in Figure
2.29a with isosurface corresponding to the fluid-solid interface.

� Fourth local refining (Ref4): Eight new points were added corresponding to the links

directly connected to the central zone (yellow arrow Figure 2.31), and the fluid zone

is refined within a cube of 203 voxels centred on all points.

� Fifth local refining (Ref5): The same points as in Ref4 but, with cubes of 303 voxels.

� Sixth local refining (Ref6): The same points as in Ref4 but, with cubes of 403 voxels.

Table 2.5 summarizes the effect of applying the proposed series of refinements and

the results are illustrated in Figure 2.32. With Ref2 we start to have good tendency, the

diffusivity is increasing and the component Ux is decreasing. Increasing the cubes size in

Ref3 have limited effects. Introducing the new points corresponding to the links directly

connected to the central zone in Ref4 gives good improvements to the results. Finally,

using cubes of 303 and 403 voxels in Ref5 and Ref6 give very good results.

Method Averaged deffusivity Ux Reactive source

Change of resolution 3.6% -11.7% -50.4%

Ref1 -0.02% 0.43% -49.7%

Ref2 0.62% -4.91% -49.7%

Ref3 0.81% -5.16% -49.7%

Ref4 1.48% -7.12% -49.7%

Ref5 2.12% -8.65% -49.7%

Ref6 2.35% -9.48% -49.7%

Table 2.5: The effect of the different method of refinement.

The effective properties, Deff and the vector U , are global properties and, they depend

on the entire 3D volume. The series of LMR indicates that the critical regions depend
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(a) (b)

Figure 2.32: The effect of the different refinement methods on: a) Component Dxx of the
diffusivity tensor, b) Component Ux of the vector U.

on the transport in the 3D volume. These tests were an empirical attempt to analyse

the possible choices for the critical regions. Moreover, they are considered as a proof

of concept to the preposed LMR with multi-scale imaging approach. We were able to

successfully implement the preposed approach as shown by these tests. To facilitate the

implementation of the LMR step, a well defined criterion is needed to identify the critical

regions.

2.4.6 Application to a real 3D volume

Using the real 3D volumes acquired in the multi-scale imaging experiment presented in

section 2.2.2 is challenging. The 3D images are virtually free of the artefacts known from

laboratory tomography, such as e.g. beam hardening or excessive noise, thanks to the

monochromaticity and parallelity of the synchrotron beam. Nevertheless, by imperfect

detector elements or by defects on the scintillator, ring artefacts are appearing in the

reconstructed 3D images acquired with magnifications 2x and 4x. Registration of 3D

volumes with different magnifications is challenging, due to the difference in contrast

between the 3D volumes, especially in the higher magnifications 10x and 20x (due to

asymmetric local tomography acquisitions). Moreover, different scintillators were used

with magnifications 2x and 4x, causing the ring artefacts to appear in different sections.

Various methods can be used to deal with these artefacts [76]–[78], we even proposed new

method for correcting these artefacts in collaboration with BAM institute (Bundesanstalt

für Materialforschung und -prüfung). Due to lack of time we were not able to address

suitable corrections to the entire set of the 3D volumes.

For that, we only considered the SiC–Diamond 3D volume acquired with a magnifi-

cation of 4x to test the effect of change of resolution on the effective properties. Figure

2.33 illustrates two sections of the considered sample. Avoiding large ring artefacts, we

have been able to extract two sub volumes of 6003 voxels. Two sections are illustrated in

Figure 2.34.

Image treatment and post-processing were done using in house codes. Simple segmen-

tation algorithm was used, by a simple thresholding to approximate the SiC, diamonds
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(a) (b)

Figure 2.33: Sections of the 3D image of the considered sample: a) X=1280, b) Z=1084.

(a) (b)

Figure 2.34: Sections Z=300 of the two extracted sub-volumes. a) first sub-volume, b) second
sub-volume

and the pores. To facilitate the thresholding, filtering by anisotropic diffusion was used to

improve the definition of the histogram. Figure 2.35 illustrates the effect of the anisotropic

diffusion filter on the images and the corresponding histograms.

To study the effect of change of resolution on the effective properties, the initial grey

scale image of the first sub-volume was downscaled to generate images of 3003 and 1503.

The same post-processing was applied to the samples, sections of the resulting segmented

sub-volumes are shown in Figure 2.36.

The segmented images in Figure 2.36 represent the labelled 3D images used in the grid

coarsening process with SiC in white, Diamond in gray and the pores in black. With the

assumption that SiC represents the reactive part and Diamond represents the inert part,

Figure 2.37a illustrates a section of the NUCM results from the grid coarsening process
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(a) (b)

(c) (d)

Figure 2.35: a) Section Z=300 of the extracted first sub-volume before application of the
anisotropic diffusion filter, b) Section Z=300 of the extracted first sub-volume after application
of the anisotropic diffusion filter, c) Histogram before application of the anisotropic diffusion
filter, d) Histogram after application of the anisotropic diffusion filter.

with Lmax equal 4 and Figure 2.37b shows the corresponding labelled section.

The effect of change of resolution on Deff components, illustrated in Figure 2.38, is

limited due to the downscaling process. Further corrections and post-processing for the

real 3D volumes are needed. Nevertheless, the applications of the proposed multi-scale

imaging and modelling approach for real 3D volumes are demonstrated.

Working with real data is problematic. We mentioned in section 2.2 that the SiC-

Diamond sample was selected as an example of two solids phase material which can

be segmented easily. In fact, due to the phase contrast artefact the segmentation of this

sample was challenging. The objective of this part was to develop multi-scale imaging and

modelling procedures for reactive transport in porous media. These preliminary results

give a proof of concept and validate the proposed procedures. Moreover, they show that

the applicability of the developed procedures is not limited to synthetic samples, but is

also applicable for real data sets.
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(a) (b)

(c) (d)

Figure 2.36: a) Section Z=300 of the extracted first sub-volume before application of the
anisotropic diffusion filter, b) Section Z=300 of the extracted first sub-volume after segmen-
tation, c) Section Z=150 of the segmented volume after sub-sampling by a factor 2, d) section
Z=75 of the segmented volume after sub-sampling by a factor 4.
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(a) (b)

Figure 2.37: Section Z=64 of the first sub-volume. a) The NUCM, where the inert part is in
purple, the reactive part is in red, ACs of level 1 are in blue, ACs of level 2 are in light blue,
ACs of level 3 are in green and ACs of level 4 are in yellow, b) The segmented image, where the
inert part is in gray, the reactive part is in white and the pores in black.

(a) (b) (c)

Figure 2.38: The effect of change of resolution on Deff. a) Dxx , b) Dyy, c) Dzz.
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2.4.7 Summary of section 2.4

In this section, the developed multi-scale imaging and modelling approach was tested

and its benefits were investigated. Three geometries were considered:

� A simple geometry without reactive parts

� The same geometry with reactive parts added

� A 3D volumes extracted from the Sic-Diamonds volumes

Using the first geometry the following tests were performed to study the effects of:

� Global mesh refinement onDeff along with the different interpolation levels described

in section 2.3.5.

� Change of resolution on Deff and CPU time.

� Grid coarsening approach on Deff and CPU time.

In the third test the results were compared to the uniform case and the benefits from

applying the developed approach were discussed.

The second geometry was used to study the effects on the complete set of effective

properties i.e Deff and the vector U . Moreover, it was used for the implementation of the

proposed LMR with multi-scale imaging approach and several critical regions were tested.

Finally, an attempt of applying the developed approach on real data set was performed

using the third geometry.
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2.5 Summary of chapter 2

In this chapter we presented the multi-scale imaging and modelling approach for re-

active diffusion in porous media. The proposed approach consists of two steps, grid

coarsening and local mesh refinement steps. The novel grid coarsening approach is aim-

ing to reduce the computation time by aggregating the voxels away from the interfaces.

At TOMCAT beamline, the multi-scale imaging experiment was performed. In the local

mesh refinement step, both LR images and HR images were used to improve the accuracy

of the results.

The spatial discretization needed in both steps was based on barycentric interpola-

tion. The resulted linear system was solved using the BiConjugate gradient method with

diagonal scaling.

Finally, using synthesized and real data sets different tests were performed to test and

investigate the benefits of the developed multi-scale imaging and modelling approach.
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2.6 Conclusions

In this chapter we presented the first example of multi-scale numerical modelling com-

bined with synchrotron X-ray experiments. The importance of the multi-scale imaging

approach when approximating the effective properties has been presented as well as the

advantage of combining it with multi-scale numerical simulations to improve the compu-

tational time of the approximations.

We developed a multi-scale imaging and modelling approach for reactive diffusion

problems in porous media. This work was a proof of concept for the validity and the

effectivity of the proposed NUCM. Several tests were performed using synthesized and

real data sets to demonstrate the effects and benefits of the proposed approach. The novel

grid coarsening approach was able to reduce the CPU time up to 50% for large volumes in

comparison with the uniform mesh. Moreover, the proposed spatial discretization used at

the NUCM with its first-order accuracy was able to maintain higher global accuracy. The

proposed local mesh refinement using the multi-scale imaging technique was implemented

successfully. LR images corresponding to a large field of view were used as input for

computing the first approximation on the NUCM. Then, the HR images are used to

replace the LR critical regions information with HR ones in the LMR step.

The proposed NUCM can be applied to various type of reactive transport problem in

porous media. Nevertheless, a suitable spatial discretization should be developed at the

coarse-fine interfaces taken into account the targeted problem. The use of the NUCM will

significantly decrease the computation time when approximating the effective properties.

The obtained data sets from the multi-scale imaging experiment are of great interest

for different applications. In general, when developing new approaches synthesized or

artificial samples are used in the testing and validation processes. This data sets with

its variety and complexity give real samples to test the effectiveness of these developed

approaches. Examples of such approaches are; superresolution techniques, reconstruction

and segmentation algorithms and the presented work in this thesis. Due to the lack of

time and the scope of this work the use of this data sets was limited to only an attempt

to test the proposed approach on a real data set.

Finally, this work was a proof of concept with preliminary results. Future tests will

be done to further investigate the effects and benefits of proposed approach taking into

account the specificities of the real data sets. Moreover, to facilitate the implementation

of the LMR step a well defined criterion to identify the critical regions will be investigated.
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Chapter 3

Modelling and simulation of X-ray

beam induced current (XBIC)

experiment

3.1 Introduction

In recent decades, the need of renewable energy sources with simple production and

at low cost is highly urgent [79]. Attention has increasingly focused on photovoltaic (PV)

systems especially on thin film solar cells. In principle, the thinner the layers, the less

amount of material is used, thus the cost of the device will be reduced. Nevertheless,

thin film device fabrication is complex requiring proper control over the entire process

sequence and advanced characterization methods [80], [81].

One of the emerging thin-film PV technologies is based on kesterite crystal structures

such as Cu2ZnSnS4 (copper zinc tin sulfide - CZTS). The fact that it is composed of earth-

abundant and environmental friendly elements makes it a very good candidate for low cost

thin-film solar cells. Another advantage of CZTS is that it is a p-type semiconductor with

direct band gap energy between 1.2 eV and 1.6 eV, and an absorption coefficient greater

than 104 cm−1 in the visible light spectrum. This fact gives CZTS the condition of being a

serious alternative for application as absorber layer in thin-film solar cells [82]. The device

architecture of CZTS solar cells is borrowed from the highly successful Cu(In,Ga)Se2

(CIGS) device architecture, with CIGS replaced by CZTS. CIGS solar cells have more

than 40 years of research and development allowing them to reach a maximum efficiency

of 22.6% [83]. While, for our newly and non-optimized material, the maximum reported

efficiency is only 12%, which is relatively far from the theoretical conversion efficiency limit

of 32.2% [84] . Therefore, advanced characterization techniques are needed to investigate

the possible factors limiting the performance of such devices and to enlarge the knowledge

to overcome these limitations.

The ability to observe at nanoscale the influence of defects on the local performance

of a fully functional CZTS device can be crucial for understanding the spatial correla-
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tions between charge-transport mechanism and defects in the structure of the device.

Synchrotron-based hard X-ray microscopes are able to provide X-ray spot sizes down to

the nanometer scale and very long penetration depths. Multiple analytical techniques

can be applied simultaneously to enable a direct correlation between the electrical per-

formance and the chemical structure, by combining X-ray beam induced current (XBIC)

measurements with X-ray fluorescence (XRF) [29], [30], [85]–[88].

The principle of XBIC is similar to that of electron beam induced current (EBIC) in a

scanning electron microscope [89]: a current measuring device connected to the solar-cell

electrodes evaluates the X-ray beam induced current. The focused X-ray beam, on one

point of the sample, generates excess carriers that will diffuse inside the sample, with

parts of them reaching the edge of the space-charge region (SCR) of the p-n junction.

The electric field inside the SCR, and gradients in the electrochemical potentials of holes

and electrons, i.e. in their quasi-Fermi levels, are the driving forces behind separation

of electrons and holes toward their respective contacts. This leads to an appearance of

current in an external circuit giving rise to the photo-current. By scanning the sample

with the X-ray beam, a two-dimensional map of collected photocurrent in the device is

constructed [90]–[92].

The complex architecture of the new generation solar cells comprising multiple layers

makes it hard to determine the fundamental mechanisms impacting electrical performance.

First-principles modelling of the XBIC signal is a possible way to obtain a deeper under-

standing of the correlations between material properties and the electrical performance of

the device. XBIC experiments on a semiconductor device combined with the modelling

has been performed for a single nanowire with 1D numerical simulation carried out using

Comsol Multiphysics software [93], and for a single-junction, CdTe/CdS solar cell with

a model in PyCDTS, a python-based solver for carrier and defect transport [94], [95].

In the mentioned previous works, 1D virtual sample was considered and drift-diffusion

model was used with constant generation rate to simulate the XBIC experiment. To our

best knowledge, the model presented in this thesis can be considered as the first attempt

to simulate XBIC measurements for a realistic sample geometry at the nanoscale. The

developed python-based 2D device simulator is based on drift-diffusion model combined

with 2D generation profiles resulting from Monte-Carlo simulation. Furthermore, the

simulator is taking into account the real layer structure in the simulations by using 2D

computation domain constructed from the XRF data.

This work is the result of a collaboration with researchers from Technical University

of Denmark (DTU). One goal of MUMMERING was to create collaborative works in sub-

jects related to X-ray imaging modalities between the ESRs. This work initiated from the

continuous discussions during the workshops and meetings in MUMMERING project and

more specifically with ESR 9 (Azat M. Slyamov). The XBIC experiment was performed

by the researchers from DTU and the Monte-Carlo simulations were performed in collabo-

ration with Michael Stuckelberger from DESY. Section 3.2 consists of a paper accepted in
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Faraday Discussions journal titled “Multi-Modal Characterization of Kesterite Thin-Film

Solar Cells: Experimental results and numerical interpretation” presented here under the

format of submission [96]. We chose to present the experimental and main simulation

results in the form of our accepted paper to provide a concrete overview of this work. My

main contribution was the development of a python-based 2D device simulator designed

to handle 2D real device structures and to combine Monte-Carlo simulation in order to

simulate XBIC experiments. In addition to that, I also ran several computational tests

investigating the effects of material parameters, performing sensitivity analysis, obtain-

ing the final results, participating in discussions and in physical interpretations of the

obtained results.

To simulate XBIC measurement, one needs to understand the underlying physics of the

device under experiment. Thin-film solar cells are basically multilayer of semiconductor

materials. In section 3.3, we present the basics of semiconductor physics and the choices

we made for the first-principles model we used in our simulator. Then, the discretization

methods and schemes utilized in our simulator are presented in section 3.4. Finally, in

section 3.5 we give supplementary results to the simulation results presented in section

3.2.

3.2 Multi-Modal Characterization of Kesterite Thin-

Film Solar Cells: Experimental results and nu-

merical interpretation
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Multi-Modal Characterization of Kesterite Thin-Film Solar Cells: Experimental
results and numerical interpretation
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Mariana Mar Lucas,2 Tiago Ramos,2 Angel Rodriguez-Fernandez,4 Dominique Bernard,1 and Jens W. Andreasen2

1CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
2Technical Univ. of Denmark, DTU Energy, 310, Fysikvej, DK-2800 Kgs. Lyngby, Denmark

3Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
4MAX IV Laboratory, Lund University, Box 118, 221 00 Lund, Sweden

(Dated: March 11, 2022)

We report a multi-modal study of electrical, chemical and structural properties of a kesterite
thin-film solar cell by combining the spatially-resolved X-ray beam induced current and fluorescence
imaging techniques for the evaluation of a fully functional device in cross-section geometry. Data
allowed correlating chemical composition, defects at interfaces and inhomogeneous deposition of
the layers with the local charge-collection efficiency of the device. We support our observations
with Monte-Carlo simulations of high-energy X-ray interactions with the semiconductor device, and
finite-volume modeling of the charge-collection efficiency.

I. INTRODUCTION

The growing energy demand is currently being ad-
dressed with a focus on climate change mitigation, and
the development of renewable energy sources [1]. Among
these, solar energy has the potential of becoming a multi-
terawatt technology [2, 3]. In 2017, crystalline silicon-
based photo-voltaic (PV) technology had around 95% of
the solar market share due to the well-established sili-
con industry, relatively high efficiency and stability of
the devices. However, silicon solar modules’ production
is not efficient in terms of energy and material consump-
tion [4–6]. To become a commercially viable alterna-
tive to silicon-based technology, the new generations of
solar cells have to be competitive in terms of stability,
up-scaling and energy-payback time [7]. Thin-film PV
is currently being investigated as a promising candidate
that could satisfy the requirements mentioned above.

One of the emerging thin-film PV technologies is based
on kesterite crystal structures such as Cu2ZnSnS4 (copper
zinc tin sulfide - CZTS). The advantage of kesterite solar
cells is that they can be produced in a low-cost manner,
mostly made of abundant and non-toxic elements. The
high absorption coefficient of CZTS associated with its
direct band gap, allows reducing the thickness of the ab-
sorber layer to few hundred nanometers, making the tech-
nology extremely resource-efficient. However, the most
recent studies on laboratory scale CZTS solar cells have
shown efficiencies just above 10% which is far behind the
predicted theoretical limit of 28% for this type of ma-
terial [8]. The possible factors limiting the performance
are the presence of undesired phases in the composition
of the CZTS absorber layer and defects at the interface
of the device layers [9, 10]. The ability to observe at
the nanoscale the influence of these defects on the local

∗ These two authors contributed equally
† Corresponding author: michael.stuckelberger@desy.de

performance of a fully functional CZTS device can bring
crucial information for understanding spatial correlations
between charge-transport mechanism and defects in the
structure of the device.

Synchrotron-based scanning X-ray microscopy is a
powerful technique for spatially resolved high-resolution
investigation of solar-cell materials [11, 12]. The high
flexibility of beamlines to incorporate different modali-
ties and the advancement of X-ray optics allow obtain-
ing and uniquely correlating information about different
properties of materials at the nanoscale [13–16]. Ana-
lytical techniques, such as X-ray fluorescence (XRF), X-
ray diffraction, ptychography and X-ray beam induced
current (XBIC) applied simultaneously can provide spa-
tially correlated information between chemical compo-
sition and electrical properties of the specimen without
destroying it [17–22]. However, such information is of-
ten not sufficient to understand limitations of energy-
harvesting devices. The complex architecture of the new
generation solar cells comprising multiple layers makes
it hard to determine the fundamental mechanisms im-
pacting electrical performance. First-principles modeling
of the XBIC signal is required to obtain a deeper un-
derstanding of the correlations between material proper-
ties and the electrical performance of the device. There-
fore, XBIC experiments on a semiconductor device com-
bined with the modeling has been performed for a single
nanowire with 1D numerical simulation carried out us-
ing Comsol Multiphysics software [23], and for a single-
junction, CdTe/CdS solar cell with 2D drift-diffusion
modeling [24, 25].

In this paper, we present the results of the multi-modal
study of a CZTS solar cell in cross-section by employ-
ing combined measurements of scanning X-ray analytical
techniques for a correlative investigation of structural,
chemical and electrical properties of a fully functional
device at the nanoscale. We support experimental data
with the finite volume modeling of the XBIC signal by
solving Poisson’s equation and the continuity equations
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for electrons and holes within the 2D computation do-
main constructed from the XRF data.

II. EXPERIMENTAL

A. CZTS solar cell preparation

The solar cell was obtained by deposition of a Mo bi-
layer on a soda-lime glass substrate before pulsed-laser
deposition of CZTS precursors. For good adhesion to
the substrate, the first 200 nm thick Mo layer was de-
posited under 1.3×10−2 mbar pressure. For a lower sheet
resistance, the second 300 nm Mo layer was deposited
under 3.9 × 10−3 mbar pressure. CZTS precursors were
deposited under high vacuum (5×10−6 mbar) from a sin-
tered target with overall CZTS stoichiometry (2.5 cm di-
ameter, 2CuS:ZnS:SnS, Testbourne Ltd), resulting in an
ultra-thin absorber layer (less than 450 nm). Annealing
was performed at 560 ◦C. On top of the absorber layer, a
60 nm CdS buffer layer was deposited by chemical bath

deposition. After that, a 50 nm intrinsic ZnO (i ZnO)
window layer and a 200 nm indium tin oxide (ITO) layer
were sputtered by an RF magnetron, followed by 100 nm
MgF anti-reflection coating. A more detailed description
of the solar cell fabrication has been reported earlier [26].

A multi-modal study of a single device put constraints
on the sample configuration. In contrast to the com-
mon approach of plane-view measurements, the measure-
ments presented hereafter were taken on a cross-section
following a similar experiment design as in reference [27]:
XBIC and XRF measurements of a thin lamella in a
cross-section of the sample allow observing the collec-
tion of charge carriers in the absorber layer on the one
hand, and the elemental distribution on the other hand.
A 1 µm thick lamella was chosen to match the approxi-
mate CZTS grain size determined from preliminary ex-
periment on comparable devices [28, 29]. Furthermore,
the thin sample cross-section allows X-rays to be trans-
mitted and recorded in the far-field regime to derive dif-
ferential phase contrast (DPC) using a pixel array detec-
tor [30].

The investigated CZTS thin-film solar cell was pre-
viously characterized by Raman spectroscopy, X-ray
diffraction, time-resolved photoluminescence, 3D X-ray
Diffraction [29] and resonant ptychographic tomography
[28]. Fig. 1 (left) shows the device architecture alongside
an SEM image of the sample (right) used in the exper-
iment, consisting of a cross-section lamella of ca. 1 µm
thickness derived from the solar cell using a focused ion
beam (FIB) technique. The lamella was extracted from
the best-performing subcell of a device that was sized on
the order of 1 cm2. The entire lamella was scanned, and a
region containing both homogeneous and defective parts
was selected for further analysis.

FIG. 1: Solar-cell device architecture (left) and SEM
image (right) of the cross-section lamella used in the

experiment. The red box indicates the area
raster-scanned by the focused X-ray beam.

B. Analytical techniques

Upon irradiation with X-ray photons whose energy ex-
ceeds the electron-binding energy, core-level electrons are
excited to a higher state or ejected. Excited atoms relax
to the ground state by filling the resulting vacancies with
electrons from one of the higher states. Such transitions
are accompanied by the emission of fluorescent photons
of energies that are characteristic of given types of atoms
in the specimen. Two-dimensional maps of constituent
elements can be derived by scanning the specimen and
recording the energy of emitted fluorescent photons. The
energy spectrum of fluorescent photons at every scanning
position is composed of individual peaks directly related
to the abundance of atoms of constituent elements [31].

The principle of XBIC is similar to that of electron
beam induced current (EBIC) in a scanning electron mi-
croscope: a current-measuring device connected to the
solar-cell electrodes evaluates the X-ray beam induced
current. Excess carriers generated by the X-ray beam
will diffuse inside the sample, with part of it reaching
the edge of the space-charge region (SCR) of the p-n
junction. The electric field inside the SCR separates
electron-hole pairs that give rise to the photo-current in
an external circuit. By scanning the X-ray beam, a two-
dimensional map of collected photo-current in the device
is constructed [11, 32, 33].

C. Measurements

The experiment was performed at the NanoMAX, a
hard X-ray nanoprobe beamline of the MAX IV syn-
chrotron facility in Lund, Sweden [14]. The measure-
ments were carried out under ambient conditions with
a 10.4 keV coherent monochromatic X-ray beam. The
X-ray energy was chosen to yield fluorescent photons
corresponding to K and L transitions of the elements
constituting the sample. The beam was focused by
Kirkpatrick-Baez (KB) mirrors to the spot size of 80 nm×
80 nm on the sample. A piezo stage was used to move the
sample with 50 nm step size in the plane perpendicular to
the beam propagation. An Amptek energy-dispersive flu-
orescence detector was placed 2 cm away from the sample
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under approximately 30◦ relative to the scanning plane to
collect fluorescence photons. A photon counting Dectris
Pilatus 100k pixel-array detector was located 4 m down-
stream from the sample to record the diffraction signal
of transmitted photons. An optical chopper was placed
upstream of the sample to modulate the incident X-ray
beam with a chopping frequency of 617 Hz. The P and
N terminals of the solar cell were connected to the MFLI
lock-in amplifier from Zurich Instruments.

FIG. 2: Schematic of the experimental setup. Incoming
X-rays are focused using KB-mirrors down to

80 nm× 80 nm. The sample is raster scanned in the
lateral plane. A far-field detector measures the

diffraction signal of the transmitted beam, and an
energy-dispersive fluorescence detector collects

fluorescence photons. The X-ray beam induced current
in the semiconductor device is amplified and measured

at every scan position.

III. NUMERICAL MODELING

In this work, a 2D computation domain was generated
from the XRF data, and a 2D finite-volume numerical
simulation approach was used. In conjunction with the
continuity equations for electrons and holes coupled with
a Monte Carlo (MC) simulation for the X-ray/material
interaction, Poisson’s equation was solved to simulate
the XBIC experiment. Simulations were performed on
a regular grid defined from the measurements step size
(50 nm) and taking into account a beam limited to one
point. These simplifications were made to be as close
as possible to the experiment assuming that the physi-
cal processes included in the numerical model were more
relevant than the real intensity profile of the experimen-
tal beam, the consideration of which would have been
beyond the scope of this work.

A. Electron-hole-pair generation from X-ray beam

X-ray propagation and interaction with matter are of-
ten described using analytical models. This approach
might not be sufficient for modeling complex phenom-
ena, and Monte Carlo-based numerical simulations might
be more suitable. In general, a Monte Carlo simulation
employs known probability distributions of various in-
teractions of X-ray photons with matter to model their
propagation within the interaction volume and associ-
ated change of their state. We utilized a personalized
version of Penelope [34], to simulate the generation of
electron-hole pairs in the multi-layered solar cell upon
the incidence of the pencil X-ray beam. The resulting
profiles of the generation rate G were then used in the
modeling of the XBIC signal.

B. Numerical model

The basic equations to be solved in modeling semicon-
ductor devices are Poisson’s equation and the electrons
and holes continuity equation. In steady state, they are
expressed as

∇ · (εrε0∇ψ) = q(n− p+NA −ND), (1)

∇ · Jn = −q(G−R), (2)

∇ · Jp = q(G−R), (3)

where εr, ε0 denote the relative and vacuum permittivity,
ψ the electrostatic potential, q the elementary charge, n,
p the electron and hole densities, NA, ND the ionized ac-
ceptor and donor densities, and Jn, Jp the electron- and
hole-current densities. The Shockley-Read-Hall recombi-
nation rate R is given by

R =
np− n2i

τp(n+ nt) + τn(p+ pt)
, (4)

where ni is the intrinsic carrier density, τp, τn are the hole
and electron lifetimes, and nt, pt are the electron and
hole concentrations when the quasi Fermi-level matches
the trap energy. Using the drift-diffusion model, we ex-
pressed the current densities as

Jn = qµn (−n∇ψn + VT∇n) , (5)

Jp = qµp (−p∇ψp − VT∇p) , (6)

where µn, µp are the electron and hole mobilities, ψn =

qψ +
χ

q
+ VT lnNC, ψp = qψ +

χ

q
+
Eg

q
+ VT lnNV are

the effective potentials for electrons and holes, χ is the
electron affinity, Eg is the energy gap, NC, NV are the
effective densities of state in the conduction and valence
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bands, and VT =
kT

q
is the thermal potential with the

Boltzmann constant k and the temperature T . In equa-
tions (5) and (6), we used the so-called Einstein rela-
tion [35]. Moreover, since we assumed having only non-
degenerate semiconductors, the Boltzmann approxima-
tions were used in our simulations to compute the density
of carriers as follows:

n = NC exp

(
qψ + χ− qϕn

kT

)
, (7)

p = NV exp

(
qϕp − qψ − χ− Eg

kT

)
, (8)

where ϕn and ϕp are the quasi-Fermi potentials for elec-
trons and holes, respectively.

The choice of boundary conditions will effect the so-
lution of the set of partial differential equations. In our
simulations, we considered two types of contacts: Ohmic
and Schottky contacts. For ideal Ohmic contacts, the
space charge vanishes at the contact and the interface
recombination velocities for electrons and holes (Sn, Sp)
are assumed to be infinite. This will impose the Dirich-
let boundary conditions for n and p at the contact. The
Dirichlet boundary conditions for the electrostatic po-
tential at Ohmic contacts is given by the sum of the ex-
ternally applied bias V0 and the built-in potential ψbi.
The physics of Schottky contacts is complex and we used
simplified models. We assumed that the Fermi level in
the semiconductor is lined up with the Fermi level of the
metal and that the electrostatic potential at the bound-
ary is proportional to the electron barrier height ΦBn

.
The carrier concentrations at Schottky contacts depend
in general on the current density at the contact, which
implies that they depend on Sn, Sp, and ΦBn

.
Due to the different orders of magnitude of the depen-

Quantity Expression Value
Concentrations M0 1025 m−3

Potentials Vt =
kT

q
0.02585 V

Length l =

√
ε0kT

q2M0
3.78 × 10−10 m

Energy kT 0.02585 eV
Mobility µ0 10−4 m2 V−1 s−1

Time
l2

µ0Vt
5.53 × 10−14 s

Gen., Rec. rates
VtM0µ0

l2
1.81 × 1038 m−3 s−1

Current density −kTM0µ0

l
1.10 × 1010 A m−2

Velocity
µ0Vt

l
6.84 × 103 m s−1

TABLE I: Quantities used to scale variables to
dimensionless form.

dent variables (ψ, n, p) and to avoid numerical overflow,
rewriting the equations in dimensionless form is neces-
sary. The scaling factors used in the simulations are
summarized in Tab. I.

The finite volume method was used to discretize the
linearized Poisson’s equation and the continuity equa-
tions. A suitable approximation for the current expres-
sions using the Scharfetter Gummel scheme [36] was im-
plemented. The derived coupled nonlinear system was
solved using Gummel’s algorithm [37]. Current densities
were calculated from the resulting solution, and the total
current (XBIC signal) was calculated by integrating the
local current density over the contact.

IV. RESULTS AND DISCUSSION

A. Experimental results

Fig. 3 shows XRF images of elements constituting the
sample and the corresponding XBIC signal. As mea-
surements were performed simultaneously, no registra-
tion of XRF and XBIC images is necessary and per pixel
based correlation between images can be performed. The
most prominent compositional inhomogeneities within
the CZTS layer are highlighted in the images with white
arrows. They are associated with relatively lower pro-
jected densities of all elements composing the layer (ex-
cept for S and Mo, which could not be reliably differ-
entiated from each other [38]). This can be attributed
to reduced thickness due to sample preparation or voids
between CZTS grains filled with CdS [28]. Both factors
will result in reduced charge-collection efficiency that is
correlated with the relative decrease of the XBIC signal
in these regions. A more notable area with inhomoge-
neous chemical composition is marked with the white
box. The corresponding area in the XRF image of Cd
indicates CdS precipitates resulting from the chemical
bath deposition. It is, however, unclear whether the CdS
precipitate resulted in the absence of the ZnO layer de-
posited on top. Regardless, the XRF images of In and Sn
show a variation in composition of elements constituting
the ITO layer that follows the topology of the CdS pre-
cipitate. Overall, the XBIC image in the area below the
white box shows a decreased current associated with the
electronic defects caused by the disturbed layer structure.

B. Construction of the computation domain

Individual XRF maps of elements constituting the
CZTS sample under consideration were used to construct
the computational domain. Image pixels were assigned
to one of the materials according to the nominal archi-
tecture of the device presented in Fig. 1. From the XRF
data, the geometry had been obtained through the fol-
lowing process: We started from the bottom of the image:
Mo will correspond to the pixels having an intensity in
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FIG. 3: XRF images of the main elements constituting
the sample together with the XBIC signal resulting in

the specification of the layered structure with the
computation domain between red lines. The white

arrows highlight the areas associated with composition
variations in the CZTS layer and the white box

indicates the area with inhomogeneous distribution of
elements from CdS and ITO layers, as well as the

absence of the ZnO layer.

the MoS image larger than ξ1, MoS2 to the pixels not yet
defined and having an intensity in the MoS image larger
than ξ2, CZTS to the pixels not yet defined and having an
intensity in the Cu image larger than ξ3, CdS to the pixels
not yet defined and having an intensity in the Cd image

(a)

(b)

(c)

(d)

(e)

FIG. 4: (a) The computation domain based on the XRF
measurements shown in Fig. 3, (b) the experimental
results, and simulation results from applying Ohmic

boundary conditions (c), ideal Schottky contact
boundary conditions with the material parameters

listed in Tab. II (d), and Schottky contact boundary
conditions with work function equal to 5.3 eV for the
MoS2 layer and barrier height equal to 0.5 eV at the

CdS contact (e).

larger than ξ4, etc. The threshold values ξi were selected
manually by combining the six chemical images and ex-
amining the interfaces between the different layers. After
cleaning the geometry defined from the chemical data, we
obtained the grey level image shown as the lowest panel
of Fig. 3. The correlation with the ptychographic recon-
struction of the phase contrast from far-field diffraction
data corroborate the segmentation. At the lower part of
the sample, the MoS2 layer was considered as the elec-
trode, and the boundary condition was applied at the in-
terface with the CZTS layer. At the upper part, the ITO
layer was considered as the electrode, and the boundary
condition was applied at the interface with the ZnO and
CdS layers. The resulting computation domain was then
composed of the three layers encompassed by a red line
in Fig. 3. On the lateral boundaries, we imposed period-
icity, and on the upper and lower boundaries, electrical
contact with the electrodes.

C. 2D Simulations

The computation domain shown in Fig. 4(a) is dis-
cretized into 1435 computation cells with 50 nm× 50 nm
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Parameter Description Unit CZTS CdS ZnO

NC Effective density of state in conduction band m−3 2.2×1024 2.2×1024 2.2×1024

NV Effective density of state in valence band m−3 1.8×1025 1.8×1025 1.8×1025

Eg Energy gap eV 1.4 2.4 3.3

χ Electron affinity eV 4.7 4.5 4.5

εr Relative permittivity − 10 10 9

µn Electron mobility m2V−1s−1 10−2 10−2 10−2

µp Hole mobility m2V−1s−1 2.5×10−3 2.5×10−3 2.5×10−3

τn Electron lifetime s 2×10−8 10−12 10−12

τp Hole lifetime s 10−5 5×10−13 10−7

ND Ionized donor density m−3 0 1022 1023

NA Ionized acceptor density m−3 3×1022 0 0

Sn Interface recombination velocities for electron ms−1 105 105 105

Sp Interface recombination velocities for hole ms−1 105 105 105

ΦBp/ΦBn Electrons barrier height eV −1.2 0.2 0.2

TABLE II: Material parameters used for the 2D simulation reference.

size, equivalent to the measurement grid. For each cell, a
generation profile was derived from the Monte-Carlo sim-
ulation of a pencil beam with an energy of 10.4 keV inter-
acting with the material associated with each layer. The
continuity equations, along with Poisson’s equation were
solved for the entire domain for each generation profile,
and the resulting total current was stored to construct
a 2D map of the XBIC signal. Two types of boundary
conditions are considered: Ohmic and Schottky contacts.
At an Ohmic contact we assume a perfect contact, mean-
ing that there is nothing blocking the carriers from one
material to another. Fig. 4(c) shows the result of apply-
ing Ohmic boundary conditions. From Fig. 4(b) we can
clearly see the effect of the lacking ZnO layer at the right-
hand side of the domain (red box) on the experimental
data, which is not the case for the simulation results in
Fig. 4(c).

At a Schottky contact we assumed having a potential
barrier formed at the interface that impedes the trans-
fer of carriers from one material to another. The barrier
height of an ideal Schottky contact for an n-type semi-
conductor is given by the difference between the contact
work function and the electron affinity as follows:

ΦBn
= φM − χ, (9)

and for a p-type semiconductor the barrier height is given
by the difference between the contact work function, the
electron affinity and the energy gap as follows:

ΦBp = φM − χ− Eg. (10)

After trying different combinations of Ohmic and
Schottky boundary conditions, we chose to apply the

Schottky boundary condition at the top of ZnO or CdS,
and at the bottom of the CZTS region. At the front
contact (top of ZnO or CdS) we have an ITO layer with
work function φM = 4.7 eV [39], and at the back contact
(bottom of CZTS) we have a MoS2 layer. Estimating
the work function of MoS2 is challenging and we first
used the value φM = 5 eV in our simulation which is ap-
proximately equal to the work function of Mo [40]. The
material parameters for each layer used in the simulation
are listed in Tab. II. These parameters were taken from
the literature [41–44]. Fig. 4(d) shows the simulation
results when applying ideal Schottky contact boundary
conditions. We start seeing the effect of the lacking ZnO
layer on the simulation results on the right-hand side of
the domain. In order to match the experimental results,
we did a 2D sensitivity analysis to study the effect of the
barrier height at the contact on the simulation results.

D. 2D sensitivity analysis

In the 2D sensitivity analysis, the results presented in
Fig. 4(d) are used as a simulation reference. We studied
the effect of the barrier height at the top contact of CdS
and at the bottom contact of CZTS.

According to [39], ITO forms an ideal Schottky con-
tact to ZnO. From Fig. 3, in the white box, we can
see inhomogeneities in the distribution of the elements
forming the ITO layer (indium and tin). Therefore, the
assumption of an ideal Schottky contact with the CdS
layer is an oversimplification as it neglects the existence
of surface and interface states. Moreover, Dharmadasa
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(b) S1

(d) S2

(f) S3

(c) S1

(e) S2

(g) S3

(a)

FIG. 5: (a) The computation domain with three distinct layer configurations S1, S2 and S3. (b–g) The 2D
sensitivity analysis was done using the material parameters listed in Tab. II. The effects of changing the barrier
height ΦBn

at the CdS contact along S1, S2 and S3 are shown in (b,d,f), and the effects of changing the work
function φM of MoS2 along S1, S2 and S3 in (c,e,g), respectively. The legends displayed in (f) and (g) refer to

(b,d,f) and (c,e,g), respectively. All curves overlap in (b).

[45] reported that the Schottky barrier formation at the
CdS contact is found to be governed by Fermi level pin-
ning, depending on the contact and the fabrication pro-
cess rather than on the work function of the contact.
At the bottom contact of CZTS, the work function of
MoS2 is varying from 5.15 eV to 5.39 eV depending on
the thickness of the layer [46].

Three different layer configurations are used to present
the 2D sensitivity analysis as line profiles. These
configurations, noted S1, S2 and S3, are localized in
Fig. 5(a). In S1 we have the complete layer structure
ZnO/CdS/CZTS, in S2 and S3 the ZnO layer is missing,
and S3 is on the CdS defect. The effects of changing
the barrier height from 0.25 eV to 0.75 eV at the CdS
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(a) S1

(b) S2

(c) S3

FIG. 6: The 2D sensitivity analysis was performed with
the updated simulation reference to evaluate the effects
of changing the barrier height at the CdS contact along
S1 (a), S2 (b), and S3 (c). The legend displayed in panel
(c) refers to all panels. All curves overlap in panel (a).

contact are presented in Fig. 5(b,d,f) along S1, S2 and
S3, respectively. Along S1 changing the barrier height at
the CdS contact has no effect on the XBIC signal. On
the other hand, increasing the barrier height at the CdS
contact is decreasing the XBIC signal along S2 and S3.
The presence of the ZnO layer with barrier height equal
to 0.2 eV is essential for the performance of the device
under consideration.

Figures 5(c,e,g) show the effects of changing the work
function of MoS2 from 5.05 eV to 5.4 eV on the XBIC sig-
nal along S1, S2 and S3, respectively. The XBIC peak in
the CZTS layer shifts upwards with increasing the work
function of MoS2 along S1, S2 and S3. Therefore, the
presence of the interfacial MoS2 layer with a work func-
tion higher than the one in Mo is beneficial for the per-

formance of the device under consideration. This result
is in good agreement with the result of [47], and in [40]
they found similar behaviour for CZTSe devices.

From Fig. 5 we see clearly that increasing the barrier
height for electrons at the CdS contact will reduce the
XBIC peak at the right-hand side of the domain. More-
over, decreasing the barrier height for holes by increasing
the work function of MoS2 will increase the XBIC peak
for the entire domain. These two parameters need to be
tuned in order to match the experimental results. With a
thickness around 400 nm the work function of MoS2 will
equal approximately 5.3 eV [46]. We updated our XBIC
simulation reference with this value and restudied the ef-
fects of changing the barrier height at the CdS contact
(see Fig. 6) and found the same trend as in Fig. 5.

From Fig. 6 we chose the value of 0.5 eV as the bar-
rier height at the CdS contact to generate the simulation
results illustrated in Fig. 4(e). This value was found to
have the best match to the experimental results and to
reproduce the effect of the absence of the ZnO layer at
the right-hand side of the domain. This suggests that
the XBIC loss at the red box in Fig. 4(b) was caused by
the high barrier height at the CdS contact and the losses
increase with the electronic defects in the white box in
Fig. 3.

E. Analysis

Figure 7(a) shows the computation domain with the
positions at which we chose to analyse the experimen-
tal and simulation results. P1 represents the white ar-
row in Fig. 3 where we have inhomogeneities within the
CZTS layer. P2 indicates the region where we have the
maximum XBIC signal. In P3 and P4 the ZnO layer is
missing, and P4 is on the CdS defect.

Figures 7(b–d) represent the line profiles from the ex-
perimental and simulation results along P1, P2, P3 and
P4, respectively. From these figures we can observe that
the experimental XBIC peak is almost at the center of the
absorber layer (CZTS), while in the simulation result, the
XBIC peak is shifted towards the CZTS/CdS interface.
In spite of that, we can see a good agreement between
the experimental and simulation results in the absorber
layer. In general, it is very hard to avoid the presence of
the secondary phases in CZTS based solar cells [9], and
the experimental peak shift might be due to the pres-
ence of such a phase near the heterointerface. Due to the
experiment’s resolution limitations and 2D configuration
it was difficult to deduce such a phase from the XRF
data in our sample. Moreover, we can see a sharp loss
of the charge collection (XBIC signal) in the simulation
results near the heterointerface. One reason for that is
the limited accuracy of the interface definition: construc-
tion of the domain from the XRF data is challenging due
to the experimental resolution, and the spread of hot
and thermalized charge carriers between the layers is not
accounted for. Furthermore, a simple model at the het-
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(d) P3

(c) P2

(e) P4

(b) P1

(a)

FIG. 7: The computation domain (a) with the location
of line profiles from the experimental and simulated

data along P1, P2, P3 and P4 shown in (b–e).

erointerface was used in our simulation considering the
effective potentials for electrons and holes.

With the assumptions that ITO is an ideal Schottky
contact to ZnO layer with a barrier height equal to 0.2 eV,
and a barrier height equal to 0.5 eV at the CdS/ITO in-
terface, we were able to simulate the effect of the absence
of the ZnO layer on the right-hand side of the domain, see
Fig. 6(c). The results of Fig. 6(c–d) show that increasing
the CdS thickness will increase the charge-carrier loss in
the absorber layer.

In our simulation, we assumed homogeneous layers
with constant parameters. From Fig. 7(b), we can see
a lower current in the experimental result than the sim-
ulation. This is related to the fact that P1 is lying in
one of the regions with an inhomogeneous distribution of
the absorber layer contents. We can see the correlation
between the diffusion of Cd in the absorber layer and the
XBIC signal highlighted by white arrows in Fig. 3.

V. CONCLUSIONS

Correlative scanning X-ray microscopy is a powerful
tool for in situ and operando studies of functional ma-
terials such as solar cells, providing a spatially-resolved
correlative characterization of the chemical composition
and electrical performance at the nanoscale. From the
analysis of the acquired data from different modalities,
we see a significant potential of applying correlative scan-
ning X-ray microscopy to new generations of solar cells.
XRF maps allow us to visualize inhomogeneities in all the
device layers and correlate them with local charge con-
version efficiency obtained from XBIC measurements.

The conventional approach of modeling the perfor-
mance of solar cells considers the nominal architecture
of the device. However, structural variations resulting,
e.g., from the inhomogeneous deposition of layers during
fabrication, as well as various defects occurring in real
devices are not considered. We presented a framework
in which material parameters can be associated with the
local electrical performance based on the actual structure
of the device. The framework consists of constructing a
computational domain from X-ray fluorescence data (and
phase-contrast images, if needed) used for first-principles
modeling of the XBIC signal. The model can then be
used to interpret some aspects of the experimentally mea-
sured XBIC signal. Our approach shows that electronic
defects can be identified by XBIC, correlated with com-
positional and structural inhomogeneities from XRF and
phase contrast, and explained by simulations.

To address some limitations of the current implemen-
tation, new developments will be required: The recorded
data from a 2D projection of a micron-thick cross-section
lamella does not allow the unambiguous assignment of
chemical and morphological inhomogeneities on the scale
of grains and grain boundaries. To achieve this, the data
will have to be extended to 3D by tomographic acquisi-
tion and accompanying extension of the model to 3D.

Page 9 of 12 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
M

ar
ch

 2
02

2.
 D

ow
nl

oa
de

d 
on

 5
/3

0/
20

22
 8

:3
4:

48
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online

DOI: 10.1039/D2FD00044J



10

This is not trivial because of the added experimental
complexity and because neither XRF or XBIC signals
are simple line integrals of the beam path. However, it is
feasible to mill out a pillar that is a functional solar cell
[48] and have it electrically connected during 3D scanning
microscopy measurements [49, 50]. Algebraic iterative
reconstruction algorithms may be applied to reconstruct
the volumetric response of a non-linear beam-matter in-
teraction [51, 52]. To realize a better representation of
the typically nano-structured 3rd generation solar-cell de-
vices, some more challenging requirements should ideally
be met: the material properties need to be determined at
the scale of the measurements and model, as they cannot
be assumed to be representative of homogeneous materi-
als. Furthermore, our simplistic approach includes Monte
Carlo simulations for each material separately, which will
necessarily lead to incorrect generation profiles at inter-
faces. We hope that these considerations will stimulate a
constructive discussion on how to best overcome the chal-
lenges to make optimum use of the boosted brilliance at
next-generation storage rings [53].
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3.3 Basics of Semiconductor Physics

To get an essential knowledge of semiconductor physics, we need to answer two funda-

mental questions: (1) how many charge carriers do we have, i.e. how many electrons and

holes will be contributing to the current? and, (2) how these charge carriers are created

and how do they move?

Our goals in this section are to provide basic and understandable answers to these

questions, summarizing the principles and assumptions we used for formulating the prob-

lem and presenting it in an easy and simple way. For more, details the reader can refer

to [97]–[100].

3.3.1 Semiconductor material

Semiconductors are a group of materials having conductivities between those of metals

and insulators. In crystalline solids, when atoms are placed next to each other, the

structure of their discrete energy levels will be transformed into energy band structure of

allowed and forbidden energies. This energy band splitting and the formation of allowed

and forbidden bands is the energy band theory of crystalline materials. We will use this

energy band model for explanations and formulation of the problem. Figure 3.1a describes

the energy band diagram of intrinsic semiconductor with the two allowed energy bands

shown. There are two energy bands namely the lower band (the valence band) and the

upper band (the conduction band), and each energy band consist of discrete energy levels.

At absolute zero degrees, electrons (black circles) are at the lowest energy state, so that

all states in the valence band are full and all states in the conduction band are empty.

The band gap energy (Eg) is the difference between the energies at the top edge of the

valence band (EV ) and the bottom edge of the conduction band (EC) which is the width

of the forbidden energy band. In this case, the semiconductor acts like an insulator since

there are no free electrons in the conduction band to participate in conducting the current.

As the temperature increases (T > 0 K), a few valence band electrons may gain enough

thermal energy to break the covalent bond and jump into the conduction band. Leaving

behind a positively charged “empty state” (white circles) called a hole which is free to

move in the valence band (see Figure 3.1b).

Going back to our main question, we need to know the number of free electrons in the

conduction band and free holes in the valence band that will be available for conduction.

With the help of quantum mechanics theory (we will not go into details), we can answer

this question. In general, due to the uncertainty principle it is more convenient to deal with

electron and hole densities instead of number. The electron density in the conduction band

is given by the density of allowed quantum states at energy level times the probability that

a state is occupied by an electron. Integrating over the entire conduction band energies

we have the total electron concentration at thermal equilibrium.

77



(a) (b)

Figure 3.1: Band diagram of intrinsic semiconductor: a) T = 0 K, b) T > 0 K.

n =

∫ ∞

EC

gc(El)fF (El, EF )dEl (3.1)

where gc(El) is the density of quantum states in the conduction band, fF (El, EF ) is the

Fermi-Dirac probability function and EF is the energy below which all states are filled

with electrons and above which all states are empty at T = 0 K, and called the Fermi

energy or Fermi level. For an intrinsic semiconductor, the Fermi level generally lies very

close to, but not exactly at, the middle of the band gap (see Figures 3.1a and 3.1b).

Unfortunately, the integral in (3.1) does not have a closed form expression. But, with the

help of Boltzmann statistics and assuming that (El − EF ) ≫ kT , the Fermi probability

function reduces to the Boltzmann approximation, which is:

fF (El, EF ) =
1

1 + e

El − EF
kT

 ≈ e
−

El − EF
kT


(3.2)

where k is Boltzmann’s constant and T is the absolute temperature. Applying the Boltz-

mann approximation to Equation (3.1), the electron concentration in the conduction band

at thermal equilibrium can be written as:

n = NCe

EF − EC
kT


(3.3)

where NC is the effective densities of state for electrons.

Similarly, the hole density in the valence band is given by the density of allowed

quantum states at energy level times the probability that a state is not occupied by

an electron. Integrating over the entire valence band energies we have the total hole

concentration at thermal equilibrium:

p =

∫ EV

−∞
gv(El)(1− fF (El, EF ))dEl (3.4)
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where gv(El) is the density of quantum states in the valence band. With the help of

Boltzmann statistics and assuming that (EF − El) ≫ kT , the thermal equilibrium hole

concentration in the valence band can be written as:

p = NV e

EV − EF
kT


(3.5)

where NV is the effective densities of state for holes.

At finite temperatures thermal generation occurs, which results in creation of electron

hole pairs. This process is balanced by recombination of the electrons in the conduction

band with holes in the valence band. At thermal equilibrium, for intrinsic semiconductors,

the electron density is equal to the hole density and equal to the intrinsic carrier density

ni:

np = n2
i = NCNV e

−Eg
kT


(3.6)

So far, we answered our first question and determined the electron and hole densities at

the conduction and valence bands respectively. In general, the conductivity of an intrinsic

semiconductor at room temperature is very small and not efficient for applications. One

way to improve the electrical properties of semiconductors is by adding a specific dopant

or impurity atoms to the crystal structure. This doping process can greatly change the

electrical characteristics of the semiconductor.

3.3.2 Doping

When electrons and holes generated by impurity are much more numerous than the

thermally generated ones, the semiconductor is called extrinsic semiconductor. Introduc-

ing impurity atoms will add new energy levels for electrons and holes. Depending on

the dopant concentration, the added energy levels may be localized within the forbidden

energy level (band gap) giving a non-degenerate semiconductor. For heavily doped semi-

conductor, the distance between the impurity atoms decreases and atoms will interact.

This will cause the single discrete energy level to split into a band of energies, which may

overlap the bottom of the conduction band or the top of the valence band. When the

concentration of dopant exceeds the density of states NC or NV , we have a degenerate

semiconductor.

In degenerate semiconductors, the Fermi level is located in the conduction or valence

band. So, the assumption that (El − EF ) ≫ kT or (EF − El) ≫ kT is invalid any more

and we need to use the value of Fermi-Dirac integral in equation (3.1) to compute the

carrier densities. In our model, we assume that the semiconductors are non-degenerate

and hence the Boltzmann approximation holds.
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3.3.2.1 n-type material

Adding donor impurity atoms to a semiconductor will increase the density of electrons

in the material. Allowed levels between EF and EC are introduced by replacing some

atoms in the crystal lattice with impurity atoms. From equation (3.3) the density of

electrons and the position of Fermi level are related, so increasing the electrons density will

change the position of Fermi level from the intrinsic case (EFi) and pull it up close to the

bottom of the conduction band see Figure 3.2a. As the electron concentration is greater

than the hole concentration the semiconductor is called n-type. At room temperature,

most of the donor atoms, if not all, donate an electron to the conduction band, leaving

behind an empty state (positively charged) and we can assume that the donor states (Ed)

are completely ionized. Figure 3.2c shows the band diagram for an n-type non-degenerate

semiconductor in complete ionization conditions.

At thermal equilibrium, the semiconductor is electrically neutral. This can be ex-

pressed as the net density charge being equal to zero. Keeping in mind that the product

of n and p is always a constant for a given semiconductor material at a given temperature,

we then have:

n− p−ND = 0 (3.7)

and

np = ni (3.8)

where ND is the ionized donor density. Solving (3.7) and (3.8) for n, we have:

n =
ND +

√
N2
D + 4n2

i

2
(3.9)

In the case where ND ≫ ni, the majority carrier electron concentration in an n-type

semiconductor is given by:

n ≈ ND (3.10)

and the minority carrier hole concentration in an n-type semiconductor is given by:

p =
n2
i

ND

(3.11)

3.3.2.2 p-type material

In the same manner, doping a semiconductor to increase the density of holes will give

a p-type material. Introducing an acceptor atoms to the lattice structure will add an

empty states between EV and EF and pull down the Fermi level close to the top of the

valence band, see Figure 3.2b. For typical acceptor atoms, the ionization energy is few

meV and it is relatively small compared to the band gap energy. At room temperature,

some valence electrons may gain enough energy to jump to the acceptor empty states

leaving behind a hole in the valence band. We assume that all the acceptor states (Ea)
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(a) (b)

(c) (d)

Figure 3.2: Band diagram of doped semiconductor: a) n-type material, b) p-type material,c)
Ionized donor states, d) Ionized acceptor states.

are filled by an electron so as to have complete ionization. Figure 3.2d shows the band

diagram of a p-type non-degenerate semiconductor in complete ionization conditions.

At thermal equilibrium, the charge neutrality condition holds. We then have

n− p+NA = 0 (3.12)

where NA is the ionized acceptor density. Solving (3.12) and (3.8) for p, we have:

p =
NA +

√
N2
A + 4n2

i

2
(3.13)

In the case where NA ≫ ni, then the majority carrier hole concentration in a p-type

semiconductor is given by:

p ≈ NA (3.14)

and the minority carrier electron concentration in a p-type semiconductor is given by:

n =
n2
i

NA

(3.15)

3.3.3 p-n Junction

The position of the Fermi level is significant when analysing a p-n junction. Putting

a p-type material in contact with n-type material will force the electrons in the system to

flow into the lower energy states. The diffusion of electrons from n-type into the p-type

will continue until thermal equilibrium is reached. At thermal equilibrium the position

of Fermi level will be the same for the two materials. In the same way, holes will diffuse
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from p-type into n-type. This diffusion will leave positively charged donor atoms in the

n region and negatively charged acceptor atoms in the p region. Since the donor and

acceptor atoms have fixed charge, this will induce an electric field in the region near the

metallurgical junction and in the direction from the positive to the negative charge. This

depleted region from mobile charges is called the depletion region and also referred to as

the space charge region (SCR). The electrons and holes are swept out of the space charge

region and a barrier for farther diffusion is created by the electric field.

3.3.3.1 Homojunction

We have discussed the basic p-n junction structure and the formation of the space

charge region. Doping a material with different type of dopant to give p-type and n-type

regions will formulate p-n homojunction. Since we have the same material in both regions,

it is convenient to rewrite the electrons and holes densities in terms of the intrinsic carrier

density ni and the intrinsic Fermi level EFi. We then have:

n = nie

EF − EFi
kT


(3.16)

p = nie

EFi − EF
kT


(3.17)

where n and p are the electron and hole densities at thermal equilibrium respectively. At

thermal equilibrium, there is no current and no external excitation is applied. The Fermi

energy level is constant throughout the entire system and the electron and hole current

densities are equal to zero. The differential form of Gauss’s law expresses the local change

of the electric field due to the volumetric charge density:

∇ · (εE) = ρ (3.18)

where ε is the electric permittivity, ρ = q(p− n+ND −NA) is the charge density and E

is the electric field given by:

E = −∇ψ (3.19)

where ψ is the electrostatic potential. Combining equations (3.18) and (3.19), the Pois-

son’s equation in semiconductor is given by:

∇ · (ε∇ψ) = q(n− p− C) (3.20)

where C = ND−NA and q is the elementary charge of electron. In p-n homojunction, we

assume that the intrinsic Fermi level EFi is position independent on material parameters,

but the energy value of this intrinsic level depends on the electrostatic potential. Hence,
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we can take this energy level as reference level for electrostatic potential:

EFi = −qψ (3.21)

Without loss of generality, we can set EF = 0. Equation (3.20) along with (3.21),

(3.16) and (3.17) give the non-linear Poisson equation for semiconductor device under

thermodynamic equilibrium conditions and is given by:

∇ · (ε∇ψ) = q(nie

−qψ
kT


− nie

 qψ
kT


− C) (3.22)

3.3.3.2 Heterojunction

In devices with position dependent parameters where we have different materials (het-

erostructure) the intrinsic Fermi level can not be used as reference level for the electrostatic

potential. Instead, we define a reference level such that the conduction band edge energy

can be written as the difference between the electrostatic potential and the electron affinity

(χ):

EC = −qψ − χ (3.23)

In similar manner the valence band edge can be written as:

EV = −qψ − χ− Eg (3.24)

Hence, the electron and hole densities can be written as:

n = NCe

qψ + χ+ EF
kT


(3.25)

p = NV e

−EF − qψ − χ− Eg
kT


(3.26)

In the same way as in homojunction we assume that EF = 0, so that the non-linear Pois-

son equation for heterostructure semiconductor device under thermodynamic equilibrium

conditions is given by:

∇ · (ε∇ψ) = q(NCe

qψ + χ

kT


−NV e

−qψ − χ− Eg
kT


− C) (3.27)

3.3.4 Semiconductor devices under illumination

In the previous sections our discussion was limited to semiconductors under the ther-

mal equilibrium conditions. Hence, no current flows in the system. If, for example, a

semiconductor device was exposed to a source of light with energy higher than the band

gap energy, some valence band electrons may gain enough energy to jump into the con-

83



duction band creating an electron-hole pair. These excess carriers violate the thermal

equilibrium and current flows in short circuit conditions.

3.3.4.1 Generation and Recombination rates

Generation (G) is an electronic excitation event which increases the number of free

carriers available to carry charge. Recombination (R) is an electronic relaxation event

which reduces the number of free carriers [97]. One may think that these events happen

only due to external excitation. In fact, at thermodynamic equilibrium conditions these

processes occur continually through the lattice vibrational kinetic energy. Since, at ther-

mal equilibrium, for fixed temperature the product of electron and hole densities must

be equal to the intrinsic carrier density. The rate in which an electron is promoted to a

higher energy level due to thermal energy (thermal generation) is equivalent to the rate

at which an electron relaxes to a lower energy level releasing thermal energy (thermal

recombination).

An external excitation such as sunlight, electron beam and x-ray beam (a flux of pho-

tons), can generate electron-hole pairs creating a non-equilibrium condition. A continuous

generation will not cause a continual increase of the carrier concentrations. The system

will attend to restore the equilibrium conditions by recombination processes. These pro-

cesses include contributions from Shocley-Read-Hall (SRH), radiative and Auger recom-

binations.

3.3.4.1.1 X-ray Generation rate

X-ray propagation and interaction with matter are often described using analytical

models. This approach might not be sufficient for modelling more complex phenomena,

and Monte Carlo-based numerical simulations might be more suitable. In general, a

Monte Carlo simulation employs known probability distributions of various interactions

of X-ray photons with matter to model their propagation within the interaction volume

and associated change of their state. In this work, a personalized version of Penelope was

used to simulate the generation of electron-hole pairs in the multi-layered solar cell upon

the incidence of the localized X-ray beam [101]. The resulting profiles of the generation

rate G were then used in the modelling of the XBIC signal.

3.3.4.1.2 Shocley-Read-Hall Recombination

So far, the most important recombination processes in real semiconductors are those

which involve defect or trap states in the band gap [97]. The single-level recombination

can be described by two processes: electron capture and hole capture. The net transition

rate can be described by the Shockley-Read-Hall statistics [100] as:
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R =
np− n2

i

τp(n+ nt) + τn(p+ pt)
(3.28)

where τn, τp are the electron and hole lifetimes, respectively and nt, pt are the electron

and hole concentrations of the trap state that are given by:

nt = NCe

Et − Ec
kT


, pt = NV e

Ev − Et
kT


(3.29)

where Et is the energy of the trap level. Only the Et near the mid-gap are effective

recombination centres. Considering only these traps, we can rewrite (3.28) as:

R =
np− n2

i

τp(n+ ni) + τn(p+ ni)
(3.30)

The carrier lifetimes from a single defect level with density Nt can be described for electron

by:

τn =
1

σnvnNt

(3.31)

and for hole by:

τp =
1

σpvpNt

(3.32)

where σn, σp are the electron and hole capture cross-sections, respectively, and vn, vp are

the thermal velocity of the electron and hole, respectively.

3.3.4.2 Carrier densities at nonequilibrium condition

The external excitation will generate electron-hole pairs, so the semiconductor is no

longer in thermal equilibrium conditions and the Fermi level is no longer strictly defined.

The electron and hole distributions are now governed by general distribution function

instead of Fermi-Dirac probability function in (3.1). One of the great simplifications in

semiconductor physics assumes that if the distributions disturbance is not too great or not

changing too quickly, the populations of electrons and holes each relax to achieve a state

of quasi-thermal equilibrium [97]. In other words, we can simply say that the Fermi level

is split into two different quasi-Fermi levels: one for electrons EFn and another for holes

EFp . Using these two energy levels, we can describe the electrons and holes distributions

under non-equilibrium conditions as follows:

n = NCe

qψ + χ− qφn
kT


(3.33)

p = NV e

qφp − qψ − χ− Eg
kT


(3.34)
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where φn and φp are quasi-Fermi potential for electron and hole, respectively, and they

are given by:

φn = −1

q
EFn (3.35)

φp = −1

q
EFp (3.36)

3.3.4.3 Carrier Transport in Semiconductor: Drift-Diffusion model

There are various existing models for carrier transport in semiconductor. In quan-

tum models the electrons are represented by their wave functions which are solutions

of Schrödinger’s equation. In many cases of semiconductor devices, quantum effects are

negligible, and a semi-classical or classical description of transport is sufficient [102]. The

Boltzmann transport equation is the stating point for driving the classical and semi-

classical models. In this work, we used the classical models for describing the carrier

transport equations. The most commonly used classical model is the drift-diffusion model

since the derivation of the current equations from Boltzmann equation is an extremely

large task. We used purely phenomenological derivation of the current equations by defin-

ing two main sources of current, drift current and diffusion current.

At the atomic scale, the electrons in semiconductor move randomly in all directions by

the thermal energy. This movement will not last forever since the semiconductor crystal is

full of objects with which the electrons collide and lose their energy. The random motion

of electrons lead to an average net displacement equal to zero. On the other hand, if these

electrons experience an electric field E, they will accelerate, on the microscopic scale, with

a constant velocity vdn on the opposite direction of the electric field. This velocity, called

the drift velocity, is proportional to the applied electric field and is given by:

vdn = −µnE (3.37)

where µn is the electron mobility. The resulting drift current density is equal to the

product of the charge per electron, the electron concentration and the drift velocity, and

it is given by:

Jdriftn = −qnvdn = qµnnE (3.38)

In the same way, we can define the drift current density for hole, the only difference

is that, as the hole is a positively charged particle it will accelerate in the same direction

as the applied electric field. The drift current density for hole is given by:

Jdriftp = qpvdp = qµppE (3.39)

where vdp is the drift velocity for hole and µp is the hole mobility.

There is a second mechanism, in addition to drift, that can induce a current in semi-

conductor. Whenever there exists a gradient of carrier concentration, a process of diffusion
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occurs by which the carriers migrate from the region of high concentration toward the

region of low concentration. This current is called the diffusion current. The diffusion of

electrons from a region of high concentration to a region of low concentration produces

a flux of electrons flowing in a specific direction. The resulting current will be in the

opposite direction as electrons have negative charge. The diffusion current is proportional

to the density gradient of the electrons concentration and is given by:

Jdiffn = qDn∇n (3.40)

where Dn is the electron diffusion coefficient. On the other hand, the diffusion current

generated by the movement of holes from a region of high concentration to a region of low

concentration will be in the same direction of the holes flux. The hole diffusion current

density is proportional to the hole density gradient and is given by:

Jdiffp = −qDp∇p (3.41)

where Dp is the electron diffusion coefficient.

So far, we treated the drift and diffusion currents separately. But when both an

electric field and a concentration gradient are present, we write the total current density

for electrons and holes as a combination of both currents as follows:

Jn = qµnnE + qDn∇n (3.42)

Jp = qµppE − qDp∇p (3.43)

where Jn and Jp are the electron and hole current densities, respectively. Moreover,

the total current density J will be equal to the summation of electron and hole current

densities.

J = Jn + Jp (3.44)

In heterostructure device, the drift curent will not be only due to the electric field,

but also due to the variation of material properties. So, we will use the effective electric

fields of electrons and holes, En and Ep, respectively. They are equal to the gradients of

the sum of the electrostatic potential, the electron affinity, the band gap and the effective

densities of state for electrons and holes [97]:

En = −∇
(
ψ +

χ

q
+
KT

q
log(NC)

)
(3.45)

Ep = −∇
(
ψ +

χ

q
+
Eg
q

− KT

q
log(NV )

)
(3.46)

where ψ is the electrostatic potential defined in (3.23). Hence, the drift-diffusion model

87



for heterostructure devices can be written as:

Jn = −qµnn∇
(
ψ +

χ

q
+
KT

q
log(NC)

)
+ qDn∇n (3.47)

Jp = −qµpp∇
(
ψ +

χ

q
+
Eg
q

− KT

q
log(NV )

)
− qDp∇p (3.48)

Another useful form of the drift-diffusion model that arise as a result of the derivations

of Boltzmann’s equations, describes the current densities in terms of the quasi-Fermi

potential for electron and hole, and it is given by:

Jn = −qµnn∇φn (3.49)

Jp = −qµpp∇φp (3.50)

3.3.4.4 Continuity equations for electron and hole

We treated the generation, the recombination, the drift current and diffusion current

individually. But, in reality, these phenomena happen simultaneously. We will consider a

differential volume as shown in Figure 3.3 to derive the continuity equation for electron.

The net increase in the number of electrons per unit time within the differential volume

element due to the x-component of electrons current density is the sum of the net flow

into the volume, the carrier generation and recombination in the volume, that is:

∂n

∂t
dxdydz =

[
Jn(x)

−q − Jn(x+ dx)

−q

]
dydz + (G−R)dxdydz (3.51)

dx

dz

dy

Jn(x) Jn(x+ dx)

Figure 3.3: Differential volume.

Using the Taylor’s expansion of Jn(x + dx) and dividing both sides of the equation

(3.51) by the differential volume, we obtain the net increase in the electron concentration

per unit time as follows:
∂n

∂t
=

1

q

∂Jn
∂x

+ (G−R) (3.52)

The continuity equation for electron (3.52) can be generalized to two and three dimensions
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using the divergence of the current density vector as:

∂n

∂t
=

1

q
∇ · Jn + (G−R) (3.53)

Similarly, the continuity equation for hole is given by:

∂p

∂t
= −1

q
∇ · Jp + (G−R) (3.54)

3.3.5 Formulation of the problem

In the previous subsections, the basics and first principles of semiconductor physics

were presented. In the coming subsections, we sum up and present the system of equations

that needs to be solved in modelling the semiconductor devices. The choice of boundary

conditions will affect the solution of the set of partial differential equations. In this work,

we consider two types of boundary conditions: Ohmic and Schottky boundary conditions.

3.3.5.1 System of equations

The basic equations to be solved in modelling semiconductor devices are: Poisson’s

equation and the continuity equations for electrons and holes. They are expressed in the

steady states as:

∇ · (εrε0∇ψ) = q(n− p+NA −ND) (3.55)

∇ · Jn = −q(G−R) (3.56)

∇ · Jp = q(G−R) (3.57)

where εr, ε0 are the relative and vacuum permittivity, respectively. The current density

resulting from the flow of electrons and holes are given by the Drift-Diffusion model as

following:

Jn = qµn (−n∇ψn + Vt∇n) (3.58)

Jp = qµp (−p∇ψp − Vt∇p) (3.59)

where ψn = ψ +
χ

q
+ Vt ln(NC), ψp = ψ +

χ

q
+
Eg
q

− Vt ln(NV ) and Vt =
kT

q
.

Equations (3.55), (3.56) and (3.57), together with the relations (3.58) and (3.59),

form a system of equations for the three dependent variables ψ, n, and p. For analytical

purposes, it is often helpful to use other variables than n and p in the basic equations.

The current relations can be expressed in terms of the quasi-Fermi potentials as:

Jn = −qµne

ψn − φn
Vt


∇φn (3.60)
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Jp = −qµpe

φp − ψp
Vt


∇φp (3.61)

defining another set of variables in the same way as Slotboom [103] did and as following:

u = e

(
−
φn
Vt

)
, v = e

(φp
Vt

)
(3.62)

Hence, the carrier concentrations can be written as:

n = ue

ψn
Vt


(3.63)

p = ve

−ψp
Vt


(3.64)

Moreover, the steady state equations become:

∇.(εrε0∇ψ) = q(ue

ψn
Vt


− ve

−
ψp
Vt


− C) (3.65)

∇ ·


qµnVte

ψn
Vt


∇u


 = −q(G−R) (3.66)

∇ ·


−qµpVte

−
ψp
Vt


∇v


 = q(G−R) (3.67)

The set of dependent variables ψ, u and v, simplifies and facilitates the mathematical

analysis of the problem, while the set ψ, n and p is generally the best choice of the

dependent variables for numerical simulations.

3.3.5.2 Boundary conditions

To have a complete model, we need boundary conditions. The choice of these condi-

tions will affect the solution of the set of partial differential equations. It depends on the

type of electrical contacts at the boundary. In our simulations, we assumed having two

types of contacts: Ohmic and Schottky contacts.

3.3.5.2.1 Ohmic contacts

For ideal Ohmic contact, the space charge is vanishing at the contact and the surface

recombination is assumed to be infinite. This will impose Dirichlet boundary conditions
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for n and p at the contact

n0 =
ND +

√
N2
D + 4n2

i

2
≈ ND (3.68)

p0 =
n2
i

n0

(3.69)

for n-type material, and

p0 =
NA +

√
N2
A + 4n2

i

2
≈ NA (3.70)

n0 =
n2
i

p0
(3.71)

for p-type material, where n0 and p0 are the concentrations of electron and hole at the

contact.

The Dirichlet boundary conditions for the electrostatic potential at Ohmic contact is

given by the sum of the external applied bias V0 and the built-in potential ψbi:

ψ0 = ψbi + V0 (3.72)

where ψ0 is the electrostatic potential at contact. For calculation of the built-in potential,

we assumed a homogeneously doped semiconductor and no external forces. Then the

Laplacian of the electrostatic potential is identically zero and equation (3.27) reduces to:

NCe

qψbi + χ

kT


−NV e

−qψbi − χ− Eg
kT


− C = 0 (3.73)

For n-type material we have:

NCe

qψbi + χ

kT


− n2

i

NCe

qψbi + χ

kT

 − C = 0 (3.74)

solving (3.74) for ψbi we get:

ψbi = Vt ln

(
ND +

√
N2
D + 4n2

i

2NC

)
− χ

q
(3.75)

in the same fashion, for p-type material, we get:

ψbi = Vt ln

(
NA +

√
N2
A + 4n2

i

2NV

)
− χ

q
− Eg

q
(3.76)
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3.3.5.2.2 Schottky contacts

The physics of Schottky contacts is extremely complex and the models used for simu-

lation are highly simplified. We assume that the Fermi level in the semiconductor is lined

up with the Fermi level of the metal, and that electrostatic potential at the boundary is

proportional to the metal work function. Hence, the Dirichlet boundary conditions for

the electrostatic potential is given by:

ψ0 = −ϕM
q

+ V0 (3.77)

where ϕM is the metal work function. The boundary values for n and p at a Schottky

contact depend on the current densities at the contact. From the thermionic emission

and diffusion theories, we have the following boundary conditions:

Jn · ν = −qSn (n− neq) (3.78)

Jp · ν = qSn (p− peq) (3.79)

where ν is the outward unit normal, Sn and Sp are the surface recombination velocities for

electrons and holes at the contact and neq and peq are the electron and hole concentrations

in thermodynamic equilibrium at the contact.

3.3.6 Summary of section 3.3

After briefly presenting the basics of semiconductor physics, we made the following

choices for the first-principles model we used in our simulator for the XBIC signal:

� The system to be solved is composed of Poisson’s equation plus the continuity

equations for electrons and holes with the drift-diffusion model.

� The generation profile is based on Monte-Carlo simulations.

� We only have non-degenerate semiconductors implying that Boltzmann’s approxi-

mation can be used to compute the carriers concentrations.

� The recompensation term only comes from Shockley-Read-Hall processes.

� The model at the heterointerface simply considers the effective potentials for elec-

trons and holes.
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3.4 Numerical Modelling

Due to the great different orders of magnitude existing between the dependent variables

(ψ, n, p) and to avoid numerical overflow, rewriting the equations in dimensionless form

is necessary. The scaling factors used in the simulations are obtained following [104] and

are summarized in table 3.1. In this section, we only use the scaled quantities for the

numerical derivation and discretization.

We start this section by putting the model in dimensionless form. Then we describe the

discretization methods used in our python-based simulator. Poisson’s equation lineariza-

tion and Scharfetter Gummel scheme are presented. For solving the system of non-linear

equations, we utilized Gummel’s method combined with the lagging approach.

Quantity Expression Value

Concentrations M0 1025m−3

Potentials Vt =
kT

q
0.02585V

Length l =

√
ϵ0kT

q2M0

3.78× 10−10m

Energy kT 0.02585 eV

Mobility µ0 10−4m2V −1s−1

Time
l2

µ0Vt
5.53× 10−14 s

Gen., Rec. rates
VtM0µ0

l2
1.81× 1038m−3s−1

Current density −kTM0µ0

l
−1.10× 1010Am−2

Velocity
µ0Vt
l

6.84× 103ms−1

Table 3.1: Quantities used to scale variables to dimensionless form.

3.4.1 Numerical model

Rewriting equations (3.55-3.59) in terms of the scaled quantities, and using the same

notations as the unscaled ones, we obtain:

∇ · (εr∇ψ) = n− p+NA −ND (3.80)

∇ · Jn = (G−R) (3.81)
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∇ · Jp = −(G−R) (3.82)

Jn = µn (n∇ψn −∇n) (3.83)

Jp = µp (p∇ψp +∇p) (3.84)

where ψn = ψ + χ+ ln(NC) and ψp = ψ + χ+ Eg − ln(NV ).

As we mentioned earlier, writing the set of equations using Slotboom [103] variables

will facilitate the mathematical analysis, so rewriting equations (3.65-3.67) in dimension-

less form is needed. Using the same notations as the unscaled quantities, we have:

∇.(εr∇ψ) = ueψn − ve−ψp − C (3.85)

∇ ·
(
−µneψn∇u

)
= (G−R) (3.86)

∇ ·
(
µpe

−ψp∇v
)
= −(G−R) (3.87)

3.4.2 Poisson’s equation linearization and Discretization

The non-linear Poisson’s equation (3.85) is linearized using the fixed-point method

assuming u and v are known. We assume that:

ψl+1 = ψl + δ (3.88)

where ψl is the potential value from the previous iteration and δ is a perturbation on ψl.

Equation (3.85) is linearized as:

∇ · (εr∇(ψl + δ)) = ule(ψ
l
n+δ) − vle−(ψl

p+δ) − C (3.89)

where ψln = ψl+χ+ ln(NC) and ψ
l
p = ψl+χ+Eg − ln(NV ). Assuming δ is small enough

to permit the terms of second and higher order in Taylor’s expansion to be neglected, we

have:

e(ψ
l
n+δ) ≈ eψ

l
n(1 + δ), e−(ψl

p+δ) ≈ e−ψ
l
p(1− δ)

and equation (3.89) becomes:

∇ · (εr∇(ψl + δ)) = (uleψ
l
n − vle−ψ

l
p)δ + uleψ

l
n − vle−ψ

l
p − C (3.90)

Rewriting equation (3.90) in terms of our main variables (ψ, n, p) using the equations

(3.63), (3.64) and (3.88), we get:

∇ · (εr∇ψl+1)− (nl − pl)ψl+1 = −(nl − pl)ψl + nl − pl − C (3.91)

94



where nl and pl are the electron and hole densities from the previous iteration. Poisson’s

equation (3.91) had been discretized using the finite volume method. By integration over

an arbitrary control volume (CV ) and applying the Gauss divergence theorem, we obtain:

∮

∂CV

εr∇ψl+1 · υdS−
∫

CV

(nl− pl)ψl+1dV = −
∫

CV

(nl− pl)ψldV +

∫

CV

(nl− pl−C)dV (3.92)

where υ denotes the outward pointing normal and ∂CV is the surface of the CV . The

surface integral in the equation (3.92) is split into the sum of line integrals over the planar

interfaces between the control volume CV and its neighbours. According to Figure 3.4,

we have:

Figure 3.4: Control volume CV with its surrounding neighbours.

∮

∂CV

εr∇ψl+1 · υdS =

∫

e

εr
∂ψl+1

∂x
dye −

∫

w

εr
∂ψl+1

∂x
dyw +

∫

n

εr
∂ψl+1

∂y
dxn −

∫

s

εr
∂ψl+1

∂y
dxs

(3.93)

where e, w, n and s refer to the locations of the control volume interfaces with respect

to the east, west, north and south neighbours, respectively. Using the midpoint rule to

approximate the line integral, we obtain:

∮

∂CV

εr∇ψl+1 · υdS = (εr
∂ψl+1

∂x
)e∆ye− (εr

∂ψl+1

∂x
)w∆yw+(εr

∂ψl+1

∂y
)n∆xn− (εr

∂ψl+1

∂y
)s∆xs

(3.94)

where ∆ye, ∆yw, ∆xn and ∆xs are the length of the east, west, north and south interface,

respectively. Applying the central difference formula to approximate gradients at the CV
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interfaces, we get:

∮

∂CV

εr∇ψl+1 · υdS = (εr)e

(
ψl+1
E − ψl+1

CV

∆xE

)
∆ye − (εr)w

(
ψl+1
CV − ψl+1

W

∆xW

)
∆yw+

(εr)n

(
ψl+1
N − ψl+1

CV

∆yN

)
∆xn − (εr)s

(
ψl+1
CV − ψl+1

S

∆yS

)
∆xs

(3.95)

where ∆xE, ∆xW , ∆yN ∆yS are the distance between CV and its east, west, north and

south neighbours, ψl+1
E , ψl+1

CV , ψ
l+1
W , ψl+1

N , ψl+1
S are the nodal values of ψl+1 and (εr)e,

(εr)w, (εr)n, (εr)s are the relative permittivity coefficient evaluated at the interfaces of

the control volume. The interface values of εr were defined by requiring continuity of the

ψl+1 at the control volume interfaces and it is given by the harmonic mean of εr at the

control volume and the adjacent neighbour.

Employing the midpoint rule to approximate the volume integrals in the equation

(3.92) and adding equation (3.95) to it, we get:

αCV ψ
l+1
CV +

∑

i

αiψ
l+1
i = F ; i = E,W,N, S (3.96)

where

αE = (εr)e
∆ye
∆xE

αW = (εr)w
∆yw
∆xW

αN = (εr)n
∆xn
∆yN

αS = (εr)s
∆xs
∆yS

αCV = −(∆x∆y(nl + pl) +
∑

i

αi); i = E,W,N, S

F = ∆x∆y(nl − pl − C − ψl(nl + pl))

3.4.3 Discretizing the continuity equations using the Scharfetter

Gummel scheme

Now we consider the discretization of the electron and hole continuity equations (3.86)

and (3.87). Just as Poisson’s equation, we used the finite volume method for discretiza-

tion of the continuity equations. Starting with electron continuity equation (3.86), it is

convenient to rewrite the second-order equation as a first-order equation to facilitate the

discretization process. By introducing the flux Jn, we obtain:

∇ · Jn = (G−R) (3.97)
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with

Jn = −µneψn∇u (3.98)

Integrating equation (3.97) over an arbitrary control volume CV and applying the Gauss

divergence theorem, we obtain:

∮

∂CV

Jn · υdS =

∫

CV

(G−R)dV (3.99)

The surface and volume integrals in the equation (3.99) are approximated in the same

way as in Poisson’s equation,

−∆yw(Jn)w +∆ye(Jn)e −∆xs(Jn)s +∆xn(Jn)n = (G−R)∆x∆y (3.100)

where (Jn)w, (Jn)e, (Jn)s and (Jn)n are the current density components evaluated at the

interfaces of the control volume, these fluxes need to be expressed in terms of our set of

unknowns, namely the nodal values of the electrostatic potential and electron density.

The electrostatic potential exhibits an exponential layer due to the discontinuities or

exponential layers in the doping profile. The electron and hole densities exhibit similar

behavior. In the approximation of the surface integrals in Poisson’s equation, we assume

implicitly that the electrostatic potential is approximated by a piece-wise linear function.

It is inappropriate to make the same assumption for the electron and hole densities which

will lead under certain conditions into large oscillations. In 1969, a numerically stable

scheme was proposed by Scharfetter and Gummel [105]. They treated the continuity

equations as differential equations in n and p with Jn, JP , µn, µp and the electric field

assumed piece-wise constant between mesh points.

Considering the interval CV < x < E along the line y = yj it follows that:

(Jn)e = (−µneψn∇u)e (3.101)

with:

u(CV ) = uCV , u(E) = uE (3.102)

Integrating from CV to E, we obtain:

(Jn)e =
−(µn)e(uE − uCV )∫ E

CV

e−ψndx

(3.103)

Using a quadrature rule to approximate the integral, same as in[106], [107]:

∫ E

CV

ea(x)dx =





∆xE
ea(E) − ea(CV )

a(E)− a(CV )
, if a(E) ̸= a(CV )

∆xEe
a(CV ) , if a(E) = a(CV )

(3.104)

97



Replacing the integral in equation (3.103) considering the first case, we obtain:

(Jn)e =
(µn)e
∆xE

[
(ψnE

− ψnCV
) (uE − uCV )

e−ψnE − e−ψnCV

]
(3.105)

Moreover, using equation (3.63) we can rewrite the equation (3.105) in terms of electron

concentration:

(Jn)e =
(µn)e
∆xE

[
− (ψnE

− ψnCV
)

e(ψnE
−ψnCV ) − 1

nE +
(ψnCV

− ψnE
)

e(ψnCV
−ψnE) − 1

nCV

]
(3.106)

Rewriting the equation (3.106) with the help of Bernoulli function, we can combine the

two cases as follows:

(Jn)e = −(µn)e
∆xE

[B (ψnE
− ψnCV

)nE −B (ψnCV
− ψnE

)nCV ] (3.107)

where:

B(x) =
x

ex − 1
, B(0) = 1 (3.108)

In similar manner, we can approximate the current densities at the interfaces for rest of

the neighbours as follows:

(Jn)w = −(µn)w
∆xW

[B (ψnCV
− ψnW

)nCV −B (ψnW
− ψnCV

)nW ] (3.109)

(Jn)n = −(µn)n
∆yN

[B (ψnN
− ψnCV

)nN −B (ψnCV
− ψnN

)nCV ] (3.110)

(Jn)s = −(µn)s
∆yS

[B (ψnCV
− ψnS

)nCV −B (ψnS
− ψnCV

)nS] (3.111)

Substituting equations (3.107), (3.109), (3.110) and (3.111) in equation (3.100), we obtain:

βnCV
nCV +

∑

i

βni
ni = Fn; i = E,W,N, S (3.112)

where:

βnE
= −(µn)e

∆ye
∆xE

B (ψnE
− ψnCV

)

βnW
= −(µn)w

∆yw
∆xW

B (ψnW
− ψnCV

)

βnN
= −(µn)n

∆xn
∆yN

B (ψnN
− ψnCV

)

βnS
= −(µn)s

∆xs
∆yS

B (ψnS
− ψnCV

)

βnCV
= (µn)e

∆ye
∆xE

B (ψnCV
− ψnE

) + (µn)w
∆yw
∆xW

B (ψnCV
− ψnW

)+

(µn)n
∆xn
∆yN

B (ψnCV
− ψnN

) + (µn)s
∆xs
∆yS

B (ψnCV
− ψnS

)

98



Fn = (G−R)∆x∆y

Applying the same approach for discretizing the hole continuity equation (3.87), we

get:

βpCV
pCV +

∑

i

βpipi = Fp; i = E,W,N, S (3.113)

where:

βpE = (µp)e
∆ye
∆xE

B (ψpCV
− ψpE)

βpW = (µp)w
∆yw
∆xW

B (ψpCV
− ψpW )

βpN = (µp)n
∆xn
∆yN

B (ψpCV
− ψpN )

βpS = (µp)s
∆xs
∆yS

B (ψpCV
− ψpS)

βpCV
= −

(
(µp)e

∆ye
∆xE

B (ψpE − ψpCV
) + (µp)w

∆yw
∆xW

B (ψpW − ψpCV
)+

(µp)n
∆xn
∆yN

B (ψpN − ψpCV
) + (µp)s

∆xs
∆yS

B (ψpS − ψpCV
)
)

Fp = −(G−R)∆x∆y

3.4.4 Solving the discretized non-linear system

The discretization procedures in the previous sections lead to a set of non-linear equa-

tions that need to be solved in terms of our set of unknowns (ψ, n, p). The widely

used methods to solve this set of equations are the fully coupled Newton’s method and

the decoupled Gummel’s method [108], [109]. In this work, we decided to use Gummel’s

method even though Newton’s method is usually chosen because of its quadratic conver-

gence [110]. One of the advantages of Gummel’s method is the insensitivity to the choice

of the initial guess compared to Newton’s method. This is important since getting a good

initial guess is not trivial especially for our problem. One drawback of Gummel’s method

is that if the recombination term plays an important role, then the method will have a

slow convergence rate and it will probably diverge. In the following, we will see how to

generate a good initial guess and one way to overcome the recombination term problem

by using the so called lagging approach [111], [112].

3.4.4.1 Equilibrium problem

For both methods, having a good initial guess will boost the convergence rate. One

possible choice is the solution of the equilibrium problem. By enforcing vanishing current

and assuming that the Fermi level is constant throughout the entire system, we will obtain

99



the Poisson’s equation at the thermodynamic equilibrium conditions as follows:

∇ · (εr∇ψeq) = NCe
(ψeq+χ) −NV e

(−ψeq−χ−Eg) − C (3.114)

where ψeq is the electrostatic potential at thermodynamic equilibrium conditions. In

equation (3.114), without loss of generality, we assumed that the Fermi level is equal to

zero (EF = 0). With suitable boundary conditions for ψeq, depending on the type of the

contact, we solved the non-linear Poisson’s equation. In the same way as in section 3.4.2,

we used the fixed-point method to linearize equation (3.114):

∇ · (εr∇ψl+1
eq )− (nleq − pleq)ψ

l+1
eq = −(nleq − pleq)ψ

l
eq + nleq − pleq − C (3.115)

where

nleq = NCe
(ψl

eq+χ) (3.116)

pleq = NV e
(−ψl

eq−χ−Eg) (3.117)

are the electron and hole densities at thermodynamic equilibrium conditions and ψleq is

the potential value from the previous iteration. With good initial guess, depending on the

type of the contact, equation (3.115) is solved iteratively until convergence. The resulting

solution (ψeq, neq, peq) will be the initial guess for Gummel’s iteration.

3.4.4.2 Gummel’s Iteration

Gummel [108], [109] developed an iterative approach to solve the coupled non-linear

system of equations by decoupling scheme. Knowing the solution from the previous itera-

tion (ψl, nl, pl) we can solve the linearized Poisson’s equation (3.91) to obtain the value of

the electrostatic potential ψl+1 for the next step. After that, using the updated solution

(ψl+1, nl, pl) we solve the continuity equation for electron (3.81) to update the value of

the electron density nl+1. Finally, we use (ψl+1, nl+1, pl) to evaluate the hole density

pl+1 by solving the continuity equation for hole (3.82). This procedure is repeated until

convergence is obtained.

Figure 3.5 illustrates the algorithm we used in our code to solve the non-linear system.

We start by solving the equilibrium problem to obtain the initial guess (ψeq, neq, peq) for

the out-of-equilibrium problem. We use that to solve the continuity equation for electron

to update the electron density and then solving the continuity equation for hole to update

the hole density. After that, we use the updated values to evaluate the electrostatic

potential of the next step. In the continuity equation for electron and hole, we computed

the recombination term depending on the previous step. When the recombination term is

important, this will lead the system to diverge and to overcome this, we used the lagging

approach.
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Equilibrium problem

∇ · (εr∇ψeq) = (NCe
(ψeq+χ) −Nve

(−ψeq−χ−Eg) − C)

Linearized Equilibrium problem

∇ · (εr∇ψl+1
eq )− (nleq + pleq)ψ

l+1
eq = nleq − pleq − C − (nleq + pleq)ψ

l
eq

Initial guess,
ψ0
n0
p0

Solve for ψl+1
eq

Compute nl+1
eq , p

l+1
eq

Converged? ψeq, neq, peq

Out-of-equilibrium problem

Solve the electron continuity equation for nl+1

∇ · Jn(ψl, nl+1) = −(G−R(ψl, nl, pl))

Solve the hole continuity equation for pl+1

∇ · Jp(ψl, pl+1) = (G−R(ψl, nl+1, pl))

Solve the Linearized Poisson’s equation for ψl+1

∇ · (εr∇ψl+1)− (nl+1 + pl+1)ψl+1 = nl+1 − pl+1 − C − (nl+1 + pl+1)ψl

Converged? ψ, n, p

No

Yes

Initial guess

nl+1

pl+1

ψl+1

No

Yes

Figure 3.5: The algorithm used for our code.

3.4.4.3 Lagging approach

Seidman and Choo [111] suggested partial linearization of the recombination term by

separating it into two terms. This implies an implicit treatment of the recombination rate

in the continuity equation. In our model, we assumed having only the Shocley-Read-Hall
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recombination and it separates as follows:

Rn =
p

τp(n+ nt) + τn(p+ pt)
n− n2

i

τp(n+ nt) + τn(p+ pt)
(3.118)

Rp =
n

τp(n+ nt) + τn(p+ pt)
p− n2

i

τp(n+ nt) + τn(p+ pt)
(3.119)

where Rn and Rp are the separated recombination rate for electron and hole, respectively.

This will require to update some coefficients in the discretized equations (3.112) and

(3.113) as follows:

βnCV
= (µn)e

∆ye
∆xE

B (ψnCV
− ψnE

) + (µn)w
∆yw
∆xW

B (ψnCV
− ψnW

)+

(µn)n
∆xn
∆yN

B (ψnCV
− ψnN

) + (µn)s
∆xs
∆yS

B (ψnCV
− ψnS

)+

(
p

τp(n+ nt) + τn(p+ pt)

)
∆x∆y

Fn =

(
G+

(
n2
i

τp(n+ nt) + τn(p+ pt)

))
∆x∆y

βpCV
= −

(
(µp)e

∆ye
∆xE

B (ψpE − ψpCV
) + (µp)w

∆yw
∆xW

B (ψpW − ψpCV
)+

(µp)n
∆xn
∆yN

B (ψpN − ψpCV
) + (µp)s

∆xs
∆yS

B (ψpS − ψpCV
)+

(
n

τp(n+ nt) + τn(p+ pt)

)
∆x∆y

)

Fp = −
(
G+

(
n2
i

τp(n+ nt) + τn(p+ pt)

))
∆x∆y

3.4.5 Summary of section 3.4

The main choices made in this section were:

� To consider the system to be solved in its dimensionless form to avoid numerical

overflow due to the important difference in the magnitude of the dimensioned un-

knowns.

� Linearization of Poisson’s equation using the fixed-point method.

� Discretization of the equations using the cell centred finite volume method.

� Approximation of the current density at the interfaces of the control volumes based

on the Scharfetter and Gummel numerically stable scheme.

� Resolution of the resulting non-linear system of equations by Gummel’s method

combined with the lagging approach.
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3.5 Supplementary Results

In this section, we give supplementary results to the simulation results presented

in section 3.2. We start with the validation of our simulator by comparing its results

with that of Sesame software [113]. Then, the employment of Monte-Carlo simulation to

obtain the XBIC generation rate is detailed. Finally, the effect of change of some material

parameters on the XBIC signal is presented.

3.5.1 Validation

In this part, we compare the results of our simulator with the well established package

Sesame. Sesame is a 2D python-based solar cell modelling tool developed in 2019 and

it has been benchmarked against other software packages like Sentaurus [114], COMSOL

[115], and SCAPS [116]. We report the results of two tests in this subsection considering

a 2D p-n homojunction first and then a 2D p-n heterojunction.

We first considered the case of a 2D p-n homojunction with the material parameters

given in table 3.2 and with the geometry shown in Figure 3.6. The system is square

with sides of 4 µm with n-type material of 2 µm thickness with doping 1023 m−3 and

p-type material with doping 1021 m−3. At the vertical walls, we imposed periodic bound-

ary conditions and assumed having Ohmic boundary conditions at the top and bottom

contacts.

Parameter [units] Value

NC [m−3] 8×1023

NV [m−3] 1.8×1025

Eg [eV] 1.5

χ [eV] 3.9

εr [-] 9.4

µn [m2V−1s−1] 1×10−2

µp [m
2V−1s−1] 1×10−2

τn [s] 1×10−8

τp [s] 1×10−8

Table 3.2: Homojunction material
parameters.

Figure 3.6: Homojunction geometry.

For the generation rate (G), we used a simple version of Lambert-Beer absorption

model as follows:

G(y) = αϕe(−αy) (3.120)

where α = 2.3× 106 m−1 is the absorption coefficient and ϕ = 1021 m−2s−1 is the incident

flux.
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Comparisons are made on the computed I-V curve (current-voltage characteristic

curve) with our simulator and Sesame. The I-V curve is a graphical representation of the

relationship between the applied voltage at the contacts and the current flowing through

the device. It is one of the most common methods in characterizing solar cell devices. Key

properties like short-circuit current (ISC), open-circuit voltage (VOC), maximum power

point (mpp), fill factor (FF) and energy conversion efficiency (η) can be extracted and

computed from the shape and details of the curve [117], [118]. Figure 3.7a shows the com-

puted J-V curve (J here stands for current density) under illumination with our simulator

and Sesame, while Figure 3.7b shows the computed band diagram under short circuit

conditions. From Figure 3.7, we see good agreement between our simulator and Sesame

software.

(a) (b)

Figure 3.7: Comparison between our simulator and Sesame for the homojunction test. (a) J-V
curve. (b) Band diagram under short circuit conditions.

Next, we considered a 2D p-n heterojunction with the geometry shown in Figure 3.8.

Material 1 was considered as p-type with doping 1021 m−3 and thickness of 1.85 µm while

material 2 was considered as n-type with doping 1023 m−3 and thickness of 0.15 µm. Table

3.3 shows the materials parameters used in the simulations. In the same way as in the

homojunction test, we assumed periodic boundary conditions at the vertical walls, Ohmic

boundary conditions at the top and bottom contacts and used the same generation rate.

The illuminated J-V curve was computed with our simulator and Sesame, and the

results are shown in Figure 3.9a. The band diagram under illumination was computed as

well and the results are presented in Figure 3.9b. Similar to the homojunction test, we

see a good agreement between our simulator and Sesame software for the heterojunction

test.

From the tests we performed, a good agreement was found between our simulator and

Sesame. The need for new simulator was due to the fact that the existent softwares deal

only with virtual domains (samples). Our simulator was designed to take into account
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Parameter [units] Material 1 Material 2

NC [m−3] 8×1023 2.2×1024

NV [m−3] 1.8×1025 1.8×1025

Eg [eV] 1.5 2.4

χ [eV] 3.9 4

εr [-] 9.4 10

µn [m2V−1s−1] 320×10−4 1×10−2

µp [m
2V−1s−1] 40×10−4 1×10−2

τn [s] 5×10−9 1×10−8

τp [s] 5×10−9 1×10−13

Table 3.3: Heterojunction materials parameters. Figure 3.8: Heterojunction geometry descrip-
tion.

(a) (b)

Figure 3.9: Comparison between our simulator and Sesame for the heterojunction test. (a) J-V
curve. (b) Band diagram under short circuit conditions.

XBIC experiments output. The XRF data was used to generate the computation domain

which reflects the real sample structure. Moreover, it was developed to take into account

the Monte-Carlo simulations results and use them to produce the generation rates used

in the simulations.

3.5.2 XBIC Generation rate

For the evaluation of the interaction volume of the X-ray beam with the solar cell

layers, Monte-Carlo simulations have been performed based on the layer stack described

in section 3.2. For each material, a cylinder of material was considered with a 1 µm
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thickness and a diameter of 1 cm large enough to include all scattering. Herein, the X-

ray beam is considered as a perfect pencil beam hitting perpendicularly each cylinder at

coordinates (R,Z) = (0, 0). From this 3D simulation with 1012 incident photons, we have

extracted the dose density, i.e., the energy deposited in the layer per unit volume as a

function of the radial position R and the depth Z, see Figure 3.10a.

(a) (b)

Figure 3.10: Monte-Carlo based three-dimensional simulation of the dose distribution in CZTS
layer for X-ray photons incident perpendicularly at depth Z = 0 and radial distance R = 0. (a)
Radial dose density distribution with logarithmic color scale. (b) Depth integrated dose density
as a function of R.

Figure 3.10b shows the depth integrated dose density as function of R. We used

this data to build the generation profile for each pixel with the following assumptions:

the photon scattering is allowed only in pixels of the same layer and, for the pixels at

the lateral boundaries, we impose periodicity. The term G then is computed with the

following formula:

G =
Dose density× photons flux

W
(3.121)

where W is the pair creation energy and it is approximately equal to 3Eg [119]. For

each pixel in the computation domain the generation rate was computed. Figure 3.11

shows three 2D examples for the generation rate in different layers. The sharp loss of

the XBIC signal in the simulation results near the heterointerface, presented in section

3.2, might also be due to our simplified approach to include Monte Carlo simulations for

each material separately, which will necessarily lead to inaccurate generation profiles at

interfaces.
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(a)

(b)

(c)

Figure 3.11: 2D generation profile examples in different layers with zoom: (a) In ZnO, (b) in
CdS and (c) in CZTS.

3.5.3 Effects of the absorber layer parameters on the XBIC sig-

nal

From the XRF results (see Fig. 3 in section 3.2 ), compositional inhomogeneities

within the CZTS layer can be seen (highlighted with white arrows). They are associated

with relatively lower projected intensities of all elements composing the layer. This can
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be caused by voids between CZTS grains filled with CdS. At the nano scale the effects of

such defects on the performance of the device can be seen by correlating the XRF data

with the XBIC ones. Homogeneous layers with constant bulk parameters were assumed

in our simulations. At this scale, this was an over simplification and material parameters

taking into account the real material composition should be used. Normally, device design

are done using ideal material parameters in order to meet the application requirements.

Nevertheless, due to the manufacturing and deposition processes parameters variations

are unavoidable [120]. The most common impacted parameters are band gap, acceptor

density and carriers lifetime [121]–[123]. They will affect the performance of the device

at the nano scale, which will impact the performance on the larger scale. In this section,

the effect of these parameters for the absorber layer at the nano scale were investigated.

In the 2D sensitivity analysis, the results presented in Fig. 4(e)(section 3.2) were used

as the simulation reference. We studied the effect of the band gap (energy gap Eg ),

acceptor densities (NA) and carriers lifetime (τn and τp) for the absorber layer (CZTS) on

the XBIC signal. Three different layer configurations are used to present the 2D sensitivity

analysis as line profiles. These configurations, noted S1, S2 and S3, are localized in Figure

3.12. In S1, we have the complete layer structure ZnO/CdS/CZTS, in S2 and S3 the ZnO

layer is lacking, and S3 is on the CdS defect.

Figure 3.12: The computation domain with three distinct layer configurations S1, S2 and S3.

The influence of energy band gap of CZTS on the XBIC signal was investigated by

varying the band gap from 1.3 eV to 1.5 eV (possible range according to [124], [125]) and

simulation results are shown in Figure 3.13. It can be seen that by increasing the band

gap of CZTS the XBIC signal decreases. This is mainly due to the direct dependence of

the generation rate on the band gap as shown in equation 3.121. Large band gap means

less electron-hole pair generation, resulting in less short circuit current (XBIC signal).

Lacking ZnO is slightly reducing this effect as shown in Figures 3.13(b–c).

CZTS is a self-doped semiconductor with intrinsic defects formations. The resistivity

and carrier densities are mainly coming from Cu − Zn antisite defect and depends on

the ratio of Cu/(Zn + Sn) [126]. The effect of carrier density on the XBIC signal at the

nano scale was studied by varying the ionized acceptor density (NA) from 4×1020 m−3 to

6×1022 m−3 and the results are presented in Figure 3.14. It can be seen from Figure 3.14a

that the XBIC signal remains nearly unchanged when the acceptor density is less than

4×1021 m−3, however, beyond this value the XBIC signal is strongly affected and the peak
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(a) (b)

(c)

Figure 3.13: The effects of changing the CZTS band gap along S1 (a), S2 (b) and S3 (c). The
legend displayed in panel (c) refers to all panels.

is shifted towards the CZTS/CdS interface. The decrease of the XBIC signal is probably

due to the recombination process that is enhanced by increasing the acceptor density. This

will reduce the minority carrier lifetime (electrons) and lower the possibility of collection

of photon-generated electrons and thus lower the XBIC signal. Furthermore, increasing

the acceptor concentration will decrease the depletion width towards the absorber layer

and cause the XBIC peak to shift towards the CZTS/CdS interface. In principle, similar

behaviour can be seen in Figures 3.14(b–c), but it mostly affects the electron-hole pairs

generated deeply in the CZTS layer and decreases with the increase of the CdS thickness.

The carrier lifetime is one of the parameters which affects the solar cell performance.

In CZTS, it is very short and is found to be lower than 1 ns [127]. The carrier lifetime

is related to the diffusion length which inturn depends on the layer thickness [128], [129].

For the system we have, we studied the effect of the absorber carriers lifetime on the

XBIC signal, see Figure 3.15. In Figure 3.15a we observe a saturation state for carriers

lifetime larger than 1 × 10−9 s (1 ns), which indicates that for these values the diffusion

length is larger than the thickness of the absorber layer. For shorter lifetime, the carriers
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(a) (b)

(c)

Figure 3.14: The 2D sensitivity analysis to evaluate the effects of changing the CZTS carriers
density along S1 (a), S2 (b), and S3 (c). The legend displayed in figure (c) refers to all figures.

generated outside the depletion region are more likely to recombine before diffusion to the

depletion region and being collected. This explains the decrease and the shift of XBIC

signal with shorter carriers lifetime. Lacking ZnO in Figure 3.15(b–c) increases the effect

of decreasing the carriers lifetime on the XBIC signal.

From the above 2D sensitivity analysis, we see that the performance of thin film solar

cells is very sensitive to materials parameters at nano scale, and the functionalities are

not only dependent on the geometry and the bulk properties. The presence of nano scale

defects is highly affecting the performance of the device which impacts the performance in

the application scale. The XBIC signal losses at the inhomogeneous composition defects

are probably due to the variation of the band gap along the device with higher values along

the defects. Moreover, these defects might create recombination centres which reduce the

carriers lifetime and cause less charge collection.

The recorded data from a 2D projection with the present resolution did not allow the

unambiguous assignment of chemical and morphological inhomogeneities in the sample.
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(a) (b)

(c)

Figure 3.15: The effects of changing the CZTS carriers lifetime along S1 (a), S2 (b) and S3 (c).
The legend displayed in panel (c) refers to all panels.

This makes the interpretation of such defects using 2D simulations tools limited.
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3.6 Summary of chapter 3

In this chapter we presented our collaborative work in the framework of MUMMER-

ING project. The experimental setup and the targeted sample along with the experimen-

tal and main simulation results were presented in section 3.2. The XBIC experiment was

performed by the researchers from DTU and the Monte-Carlo simulations were performed

in collaboration with Michael Stuckelberger from DESY.

Physical principles and assumptions we used for formulating the problem to be solved

were presented. Poisson’s equation with the drift-diffusion model were used to describe

the charge collection in semiconductor devices.

We developed a simulator based on cell centred finite volume method combined with

Scharfetter Gummel scheme. The simulator was designed to take into account:

� The real layer structure in the simulations by using 2D computation domain con-

structed from the XRF data.

� The Monte-Carlo simulations in the computation of the 2D generation profiles.

The developed simulator was compared with Sesame package, showing a good agree-

ment for simple cases. 2D sensitivity analyses were performed to investigate some defects

that appear from correlating the XRF data with the XBIC experimental results. In sec-

tion 3.2, we studied the effect of the contact type and the effects of lacking ZnO layer on

the device performance. In the supplementary results, the inhomogeneous composition

defects were addressed by studying the effects of the absorber layer (CZTS) parameters

on the XBIC signal at the nano scale.

To our best knowledge, this work can be considered as the first attempt to simulate

XBIC measurements for a realistic sample geometry at the nanoscale.
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3.7 Conclusions

In this chapter we presented the second example of multi-scale numerical modelling

combined with synchrotron X-ray experiments. The interest of XBIC as a method of

characterization of functional materials such as solar cells has been demonstrated as well

as the benefits of combining it with numerical simulations to relate local defects to global

performances.

We developed a multi-scale approach based on first-principles to simulate XBIC exper-

iments. The conventional approach of modelling the performance of solar cells considers

the nominal architecture of the device. However, structural variations resulting, e.g., from

the inhomogeneous deposition of layers during fabrication, as well as various defects oc-

curring in real devices are not considered. To overpass these limitations, we presented an

approach in which material parameters can be associated with the local electrical perfor-

mance based on the actual structure of the device. The approach consists of constructing

a computational domain from X-ray fluorescence data used for first-principles modelling

of the XBIC signal. The devolved model can then be used to interpret some aspects of the

experimentally measured XBIC signal. Our approach shows that the electronic defects

can be identified by XBIC, correlated with compositional and structural inhomogeneities

from XRF and can be explained by simulations.

The 2D sensitivity analyses suggest that the XBIC loss at the regions lacking the ZnO

layer was caused by the high barrier height at the CdS contact and the losses increase

with the electronic defects. The presence of the ZnO layer was essential for the device

under consideration. Furthermore, having suitable window layer with low barrier height

will increase the performance in such devices. The inhomogeneous composition defects

caused losses of the XBIC signal, from our supplementary results this might be explained

by the variations of the band gap with high values along the defects and the creation of

recombination centres which reduced the carriers lifetime.

The proposed simulator based on first-principles was precise enough to explain ex-

perimentally observed features. It has some limitations, but makes a significant step

forward in the understanding of XBIC measurements by providing results at the nano

scale. Acquiring material properties at the same nano scale is challenging, and even with

advanced models producing accurate device description, if some material parameters are

undetermined, the relevance of the results might be questionable.

To realize a better representation of the typically nano structured 3rd generation

solar-cell devices, some challenging requirements should ideally be met: the material

properties need to be determined at the same scale for the measurements and simulation,

as they cannot be assumed to be representative of homogeneous materials. Furthermore,

our simulator includes Monte Carlo simulations for each material separately, which will

necessarily lead to approximate generation profiles at interfaces.

The 2D aspect of the problem could be extended to 3D by tomographic acquisition and

accompanying extension of the model to 3D. This is important to handle the secondary
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phases and grain boundary issues in CZTS devices. Finally, a detailed and advanced treat-

ment for heterointerface should be addressed to describe the heterojunction at CZTS/CdS

interface.
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Conclusions and Perspectives

In this thesis, we presented two examples of multi-scale numerical modelling combined

with synchrotron X-ray experiments: (1) Multi-scale imaging and modelling for reactive

transport at the pore scale, (2) Multi-modal characterization of Kesterite thin-film so-

lar cells: experimental results and numerical interpretation. We showed the importance

of multi-scale imaging techniques in the approximation of the effective properties and

the advantages of combining it with multi-scale numerical modelling procedures. Fur-

thermore, we illustrated the benefits of combining multi-scale numerical modelling with

XBIC experiments to relate local defects to global performances.

In the first example, the proposed multi-scale imaging and modelling approach has

been implemented successfully and various test cases of synthesized and real 3D volume

were presented. The proposed grid coarsening approach and the spatial discretization

were able to improve the computational aspects of the problem and to maintain a high

global accuracy of the results, respectively. Using the multi-scale imaging approach in

the local mesh refinement step, we were able to improve the quality of the results when

computing the effective properties. Further investigation is needed to identify the critical

regions at the local mesh refinement step.

The BiConjugate gradient method used to solve the nonsymmetric system, resulting

from applying the spatial discretization on the NUCM, was one of the factors limiting

the effects of the grid coarsening approach on the CPU time. Different methods to solve

the nonsymmetric system can be investigated and their effect on the CPU time can be

tested. Furthermore, the barycentric interpolation used to develop the spatial discretiza-

tion causes the nonsymmetric system. To solve this problem, a symmetrical barycentric

interpolation can be developed and tested.

The proposed NUCM with its benefits motivates the extension to reactive transport

in porous media. Using the cell centred finite volume in the computation of, for instance,

the effective permeability tensor will cause stability problems. Therefore, as future work,

a suitable spatial discretization can be developed taking into account staggered grid struc-

tures.

Moreover, the artefacts associated with the acquired data sets can be investigated and

suitable corrections can be applied. Then, more tests can be performed to study further

the effects of the proposed multi-scale imaging and modelling approach on real data sets.

In the second example, we developed a 2D device simulator based on first principles,
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designed to handle 2D real device structures and to combine Monte-Carlo simulation in

order to simulate XBIC experiments. Correlative scanning X-ray microscopy is a powerful

tool for studies of functional materials such as solar cells, providing a spatially-resolved

correlative characterization of the chemical composition and electrical performance at the

nanoscale. XRF maps combined and correlated with XBIC measurements allow visual-

ization of inhomogeneities in all the device layers and correlate them with local charge

conversion efficiency. Then, the electronic defects identified from this combination can be

explained by using the developed simulator.

The experiment’s ultimate resolution was one of the factors limiting the scales at

which the modelling was performed. Recent developments in X-ray optics can yield X-

ray beams focused down to sub-10-nm [130]. Future experiments combining chemical

mapping and electrical performance of thin film devices can differentiate layers with higher

accuracy. Furthermore, in the presented 2D drift-diffusion model, a simple model at the

heterointerface was used, advanced models can be used instead to improve the quality of

the simulation results.

Finally, in this work, we demonstrated with two examples the benefits and advantages

of the combination between multi-scale numerical modelling and synchrotron X-ray ex-

periments. Advanced imaging tools provide very large volumes that need to be handled.

The development of multi-scale numerical tools is of great importance to analyse and to

extract valuable information from these volumes efficiently. On the other hand, the direct

comparison between the experimental and the simulation results gives a step forward in

the understanding of the functionality of advanced materials.
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[52] A. Mikelić, V. Devigne, and C. J. van Duijn, “Rigorous Upscaling of the Reactive

Flow through a Pore, under Dominant Peclet and Damkohler Numbers”, SIAM

Journal on Mathematical Analysis, vol. 38, no. 4, pp. 1262–1287, Jan. 2006, issn:

0036-1410. doi: 10.1137/050633573.

[53] C. T. Gray, William G and Miller, Introduction to the thermodynamically con-

strained averaging theory for porous medium systems. Springer, 2014, isbn: 9783319040097.

[54] F. Valdes-Parada and J. Alvarez-Ramirez, “On the effective diffusivity under chem-

ical reaction in porous media”, Chemical Engineering Science, vol. 65, no. 13,

pp. 4100–4104, Jul. 2010, issn: 00092509. doi: 10.1016/j.ces.2010.03.040.

[55] F. J. Valdés-Parada, M. L. Porter, and B. D. Wood, “The Role of Tortuosity in

Upscaling”, Transport in Porous Media, vol. 88, no. 1, pp. 1–30, May 2011, issn:

0169-3913. doi: 10.1007/s11242-010-9613-9.

[56] F. J. Valdés-Parada, D. Lasseux, and S. Whitaker, “Upscaling Reactive Trans-

port Under Hydrodynamic Slip Conditions in Homogeneous Porous Media”, Wa-

ter Resources Research, vol. 56, no. 1, Jan. 2020, issn: 0043-1397. doi: 10.1029/

2019WR025954.

[57] P. Cloetens, W. Ludwig, E. Boller, F. Peyrin, M. Chlenker, and J. Baruchel, “3D

IMAGING USING COHERENT SYNCHROTRON RADIATION”, Image Analy-

sis & Stereology, vol. 21, no. 4, p. 75, May 2011, issn: 1854-5165. doi: 10.5566/

ias.v21.pS75-S85.

121

https://doi.org/10.1002/2015WR016921
https://doi.org/10.1007/s11242-019-01282-2
https://doi.org/10.1007/s00707-020-02631-9
https://doi.org/10.1016/j.ces.2021.117157
https://doi.org/10.1137/050633573
https://doi.org/10.1016/j.ces.2010.03.040
https://doi.org/10.1007/s11242-010-9613-9
https://doi.org/10.1029/2019WR025954
https://doi.org/10.1029/2019WR025954
https://doi.org/10.5566/ias.v21.pS75-S85
https://doi.org/10.5566/ias.v21.pS75-S85


[58] D. Bernard, D. Gendron, J.-M. Heintz, S. Bordère, and J. Etourneau, “First di-

rect 3D visualisation of microstructural evolutions during sintering through X-ray

computed microtomography”, Acta Materialia, vol. 53, no. 1, pp. 121–128, Jan.

2005, issn: 13596454. doi: 10.1016/j.actamat.2004.09.027.

[59] S. Peng, Q. Hu, S. Dultz, and M. Zhang, “Using X-ray computed tomography in

pore structure characterization for a Berea sandstone: Resolution effect”, Journal

of Hydrology, vol. 472-473, pp. 254–261, Nov. 2012, issn: 00221694. doi: 10.1016/

j.jhydrol.2012.09.034.

[60] L. E. Beckingham, C. A. Peters, W. Um, K. W. Jones, and W. B. Lindquist,

“2D and 3D imaging resolution trade-offs in quantifying pore throats for predic-

tion of permeability”, Advances in Water Resources, vol. 62, pp. 1–12, 2013, issn:

03091708. doi: 10.1016/j.advwatres.2013.08.010.

[61] N. Alyafei, A. Q. Raeini, A. Paluszny, and M. J. Blunt, “A Sensitivity Study of

the Effect of Image Resolution on Predicted Petrophysical Properties”, Transport

in Porous Media, vol. 110, no. 1, pp. 157–169, Oct. 2015, issn: 0169-3913. doi:

10.1007/s11242-015-0563-0.

[62] M. P. Ortega Ramı́rez, L. Oxarango, and A. Gastelum Strozzi, “Effect of X-ray CT

resolution on the quality of permeability computation for granular soils: definition

of a criterion based on morphological properties”, Soil Research, vol. 57, no. 6,

p. 589, 2019, issn: 1838-675X. doi: 10.1071/SR18189.

[63] X. Feng, J. Zeng, H. Zhan, Q. Hu, Z. Ma, and S. Feng, “Resolution effect on

image-based conventional and tight sandstone pore space reconstructions: Origins

and strategies”, Journal of Hydrology, vol. 586, no. January, p. 124 856, Jul. 2020,

issn: 00221694. doi: 10.1016/j.jhydrol.2020.124856.

[64] K. M. Gerke, M. V. Karsanina, T. O. Sizonenko, X. Miao, D. R. Gafurova, and

D. V. Korost, “Multi-Scale Image Fusion of X-Ray Microtomography and SEM

Data to Model Flow and Transport Properties for Complex Rocks on Pore-Level”,

in Day 2 Tue, October 17, 2017, SPE, Oct. 2017, pp. 1–14. doi: 10.2118/187874-

MS.

[65] L. C. Ruspini, G. Lindkvist, S. Bakke, L. Alberts, A. M. Carnerup, and P. E.

Øren, “A Multi-Scale Imaging and Modeling Workflow for Tight Rocks”, in All

Days, SPE, May 2016, pp. 5–6, isbn: 9781613994603. doi: 10.2118/180268-MS.

[66] Long H, Nardi C, Idowu N, et al., “Multi-scale imaging and modeling workflow to

capture and characterize microporosity in sandstone”, International Symposium of

the Society of Core Analysts, pp. 1–13, 2013.

122

https://doi.org/10.1016/j.actamat.2004.09.027
https://doi.org/10.1016/j.jhydrol.2012.09.034
https://doi.org/10.1016/j.jhydrol.2012.09.034
https://doi.org/10.1016/j.advwatres.2013.08.010
https://doi.org/10.1007/s11242-015-0563-0
https://doi.org/10.1071/SR18189
https://doi.org/10.1016/j.jhydrol.2020.124856
https://doi.org/10.2118/187874-MS
https://doi.org/10.2118/187874-MS
https://doi.org/10.2118/180268-MS


[67] S. Shah, F. Gray, J. Crawshaw, and E. Boek, “Micro-computed tomography pore-

scale study of flow in porous media: Effect of voxel resolution”, Advances in Water

Resources, vol. 95, pp. 276–287, Sep. 2016, issn: 03091708. doi: 10.1016/j.

advwatres.2015.07.012.

[68] “SUPREMATIM : SUPerREsolution of 3d MATerials IMages”. (2019), [Online].

Available: https://www.math.u-bordeaux.fr/~jaujol/suprematim/.

[69] G. T. Herman, Image Reconstruction from Projections, The Fundamentals of Com-

puterized Tomography by G. T. Herman. New York: Academic Press, Jan. 1980,

p. 316.

[70] R. Gordon, R. Bender, and G. T. Herman, “Algebraic Reconstruction Techniques

(ART) for three-dimensional electron microscopy and X-ray photography”, Journal

of Theoretical Biology, vol. 29, no. 3, pp. 471–481, 1970, issn: 10958541. doi:

10.1016/0022-5193(70)90109-8.

[71] M. Stampanoni, A. Groso, A. Isenegger, et al., “Trends in synchrotron-based to-

mographic imaging: the SLS experience”, in Developments in X-Ray Tomogra-

phy V, U. Bonse, Ed., vol. 6318, Aug. 2006, p. 63180M, isbn: 0819463973. doi:

10.1117/12.679497.

[72] S. Vaucher, P. Unifantowicz, C. Ricard, et al., “On-line tools for microscopic and

macroscopic monitoring of microwave processing”, Physica B: Condensed Matter,

vol. 398, no. 2, pp. 191–195, 2007, issn: 09214526. doi: 10.1016/j.physb.2007.

04.064.

[73] J. Hertrich, D.-P.-L. Nguyen, J.-F. Aujol, et al., “PCA reduced Gaussian mixture

models with applications in superresolution”, Inverse Problems & Imaging, vol. 16,

no. 2, p. 341, 2022, issn: 1930-8337. doi: 10.3934/ipi.2021053. arXiv: 2009.

07520.

[74] J. Hertrich. “Wasserstein Patch Prior for Image Superresolution”. (2021), [Online].

Available: https://github.com/johertrich/Wasserstein_Patch_Prior.

[75] E. O. Brenne, “Statistical Methods for Quantification and Segmentation of Ma-

terial Microstructure from 3D X-ray Tomography Image Data”, PhD, Technical

University of Denmark, 2021.

[76] D. Bernard and A. Chirazi, “Numerically Enhanced Microtomographic Imaging

Method Using a Novel Ring Artefact Filter”, in Advances in X-ray Tomography

for Geomaterials, London, UK: ISTE, 2010, pp. 117–124, isbn: 1905209606. doi:

10.1002/9780470612187.ch6.

[77] B. Münch, P. Trtik, F. Marone, and M. Stampanoni, “Stripe and ring artifact

removal with combined wavelet—Fourier filtering”, Optics Express, vol. 17, no. 10,

p. 8567, May 2009, issn: 1094-4087. doi: 10.1364/OE.17.008567.

123

https://doi.org/10.1016/j.advwatres.2015.07.012
https://doi.org/10.1016/j.advwatres.2015.07.012
https://www.math.u-bordeaux.fr/~jaujol/suprematim/
https://doi.org/10.1016/0022-5193(70)90109-8
https://doi.org/10.1117/12.679497
https://doi.org/10.1016/j.physb.2007.04.064
https://doi.org/10.1016/j.physb.2007.04.064
https://doi.org/10.3934/ipi.2021053
https://arxiv.org/abs/2009.07520
https://arxiv.org/abs/2009.07520
https://github.com/johertrich/Wasserstein_Patch_Prior
https://doi.org/10.1002/9780470612187.ch6
https://doi.org/10.1364/OE.17.008567


[78] N. T. Vo, R. C. Atwood, and M. Drakopoulos, “Superior techniques for eliminating

ring artifacts in X-ray micro-tomography”,Optics Express, vol. 26, no. 22, p. 28 396,

Oct. 2018, issn: 1094-4087. doi: 10.1364/OE.26.028396.

[79] P. A. Owusu and S. Asumadu-Sarkodie, “A review of renewable energy sources,

sustainability issues and climate change mitigation”, Cogent Engineering, vol. 3,

no. 1, S. Dubey, Ed., Apr. 2016, issn: 2331-1916. doi: 10.1080/23311916.2016.

1167990.

[80] K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview”,

Progress in Photovoltaics: Research and Applications, vol. 12, no. 23, pp. 69–92,

Mar. 2004, issn: 1062-7995. doi: 10.1002/pip.541.

[81] C. Ossig, T. Nietzold, B. West, et al., “X-ray Beam Induced Current Measure-

ments for Multi-Modal X-ray Microscopy of Solar Cells”, Journal of Visualized

Experiments, vol. 2019, no. 150, pp. 1–20, Aug. 2019, issn: 1940-087X. doi: 10.

3791/60001.

[82] F. Boutebakh, M. L. Zeggar, N. Attaf, and M. Aida, “Electrical properties and

back contact study of CZTS/ZnS heterojunction”, Optik, vol. 144, pp. 180–190,

Sep. 2017, issn: 00304026. doi: 10.1016/j.ijleo.2017.06.080.

[83] T. M. Friedlmeier, P. Jackson, A. Bauer, et al., “High-efficiency Cu(In,Ga)Se2

solar cells”, Thin Solid Films, vol. 633, pp. 13–17, Jul. 2017, issn: 00406090. doi:

10.1016/j.tsf.2016.08.021.

[84] M. F. Islam, N. Md Yatim, and M. A. Hashim@Ismail, “A Review of CZTS Thin

Film Solar Cell Technology”, Journal of Advanced Research in Fluid Mechanics

and Thermal Sciences, vol. 81, no. 1, pp. 73–87, Mar. 2021, issn: 22897879. doi:

10.37934/arfmts.81.1.7387.

[85] M. Stuckelberger, B. West, S. Husein, et al., “Latest developments in the x-ray

based characterization of thin-film solar cells”, in 2015 IEEE 42nd Photovoltaic

Specialist Conference (PVSC), IEEE, Jun. 2015, pp. 1–6, isbn: 978-1-4799-7944-8.

doi: 10.1109/PVSC.2015.7355592.

[86] O. F. Vyvenko, T. Buonassisi, A. A. Istratov, et al., “X-ray beam induced cur-

rent—a synchrotron radiation based technique for the in situ analysis of recom-

bination properties and chemical nature of metal clusters in silicon”, Journal of

Applied Physics, vol. 91, no. 6, pp. 3614–3617, Mar. 2002, issn: 0021-8979. doi:

10.1063/1.1450026.

[87] O. F. Vyvenko, T. Buonassisi, A. A. Istratov, and E. R. Weber, “X-ray beam

induced current/microprobe x-ray fluorescence: synchrotron radiation based x-ray

microprobe techniques for analysis of the recombination activity and chemical na-

ture of metal impurities in silicon”, Journal of Physics: Condensed Matter, vol. 16,

no. 2, S141–S151, Jan. 2004, issn: 0953-8984. doi: 10.1088/0953-8984/16/2/017.

124

https://doi.org/10.1364/OE.26.028396
https://doi.org/10.1080/23311916.2016.1167990
https://doi.org/10.1080/23311916.2016.1167990
https://doi.org/10.1002/pip.541
https://doi.org/10.3791/60001
https://doi.org/10.3791/60001
https://doi.org/10.1016/j.ijleo.2017.06.080
https://doi.org/10.1016/j.tsf.2016.08.021
https://doi.org/10.37934/arfmts.81.1.7387
https://doi.org/10.1109/PVSC.2015.7355592
https://doi.org/10.1063/1.1450026
https://doi.org/10.1088/0953-8984/16/2/017


[88] V. I. Orlov, O. V. Feklisova, and E. B. Yakimov, “A Comparison of EBIC, LBIC

and XBIC Methods as Tools for Multicrystalline Si Characterization”, Solid State

Phenomena, vol. 205-206, pp. 142–147, Oct. 2013, issn: 1662-9779. doi: 10.4028/

www.scientific.net/SSP.205-206.142.

[89] H. J. Leamy, “Charge collection scanning electron microscopy”, Journal of Applied

Physics, vol. 53, no. 6, R51–R80, Jun. 1982, issn: 0021-8979. doi: 10.1063/1.

331667.

[90] R. R. Fahrtdinov, O. V. Feklisova, M. V. Grigoriev, D. V. Irzhak, D. V. Roshchup-

kin, and E. B. Yakimov, “X-ray beam induced current method at the laboratory

x-ray source”, Review of Scientific Instruments, vol. 82, no. 9, p. 093 702, Sep.

2011, issn: 0034-6748. doi: 10.1063/1.3633948.

[91] E. B. Yakimov, “Simulation of XBIC Contrast of Precipitates in Si”, Solid State

Phenomena, vol. 156-158, pp. 247–250, Oct. 2009, issn: 1662-9779. doi: 10.4028/

www.scientific.net/SSP.156-158.247.

[92] Y. L. Shabel’nikova, E. B. Yakimov, M. V. Grigor’ev, R. R. Fahrtdinov, and V. A.

Bushuev, “Calculating the extended defect contrast for the X-ray-beam-induced

current method”, Technical Physics Letters, vol. 38, no. 10, pp. 913–916, Oct. 2012,

issn: 1063-7850. doi: 10.1134/S1063785012100239.

[93] L. Chayanun, G. Otnes, A. Troian, et al., “Nanoscale mapping of carrier collection

in single nanowire solar cells using X-ray beam induced current”, Journal of Syn-

chrotron Radiation, vol. 26, no. 1, pp. 102–108, Jan. 2019, issn: 1600-5775. doi:

10.1107/S1600577518015229.

[94] N. M. Kumar, A. R. Shaik, T. Walker, et al., “Mapping current collection in cross

section: The case of copper- doped cdte solar cells”, in 2020 47th IEEE Photovoltaic

Specialists Conference (PVSC), 2020, pp. 2178–2180. doi: 10.1109/PVSC45281.

2020.9300979.

[95] T. Walker, M. E. Stuckelberger, T. Nietzold, et al., “The nanoscale distribution of

copper and its influence on charge collection in CdTe solar cells”, Nano Energy,

vol. 91, no. May 2021, p. 106 595, Jan. 2022, issn: 22112855. doi: 10.1016/j.

nanoen.2021.106595.

[96] A. Saadaldin, A. Slyamov, M. E. Stuckelberger, et al., “Multi-Modal Charac-

terization of Kesterite Thin-Film Solar Cells: Experimental results and numeri-

cal interpretation”, Faraday Discussions, 2022, issn: 1359-6640. doi: 10.1039/

D2FD00044J.

[97] J. Nelson, The Physics of Solar Cells. Imperial college press, May 2003, isbn:

978-1-86094-340-9. doi: 10.1142/p276.

[98] R. Scheer and H.-w. Schock, Chalcogenide photovoltaics: physics, technologies, and

thin film devices. John wiley \& sons, 2011, isbn: 9783527326471.

125

https://doi.org/10.4028/www.scientific.net/SSP.205-206.142
https://doi.org/10.4028/www.scientific.net/SSP.205-206.142
https://doi.org/10.1063/1.331667
https://doi.org/10.1063/1.331667
https://doi.org/10.1063/1.3633948
https://doi.org/10.4028/www.scientific.net/SSP.156-158.247
https://doi.org/10.4028/www.scientific.net/SSP.156-158.247
https://doi.org/10.1134/S1063785012100239
https://doi.org/10.1107/S1600577518015229
https://doi.org/10.1109/PVSC45281.2020.9300979
https://doi.org/10.1109/PVSC45281.2020.9300979
https://doi.org/10.1016/j.nanoen.2021.106595
https://doi.org/10.1016/j.nanoen.2021.106595
https://doi.org/10.1039/D2FD00044J
https://doi.org/10.1039/D2FD00044J
https://doi.org/10.1142/p276


[99] Donald A Neamen, Semiconductor Physics and Semiconductor Devices. New York:

McGraw-Hill, 2012, isbn: 0072321075. doi: 10.3169/itej1954.28.723.

[100] K. K. Sze, Simon M and Ng, Physics of semiconductor devices. John wiley \&
sons, 2006.

[101] F. Salvat, J. Fernandez-Varea, J. Sempau, and OECD Nuclear Energy Agency.,

PENELOPE 2006 : a code system for Monte Carlo simulation of electron and

photon transport ; Workshop Proceedings, Barcelona, Spain, 4-7 July 2006. Nuclear

Energy Agency, Organisation for Economic Co-operation and Development, 2006,

p. 281, isbn: 9264023011.

[102] D. Schroeder,Modelling of Interface Carrier Transport for Device Simulation (Com-

putational Microelectronics). Vienna: Springer Vienna, 1994, isbn: 978-3-7091-

7368-8. doi: 10.1007/978-3-7091-6644-4.

[103] J. Slotboom, “Computer-aided two-dimensional analysis of bipolar transistors”,

IEEE Transactions on Electron Devices, vol. 20, no. 8, pp. 669–679, Aug. 1973,

issn: 0018-9383. doi: 10.1109/T-ED.1973.17727.

[104] P. A. Markowich, The Stationary Semiconductor Device Equations (Computational

Microelectronics). Vienna: Springer Vienna, 1986, isbn: 978-3-211-99937-0. doi:

10.1007/978-3-7091-3678-2.

[105] D. Scharfetter and H. Gummel, “Large-signal analysis of a silicon Read diode

oscillator”, IEEE Transactions on Electron Devices, vol. 16, no. 1, pp. 64–77, Jan.

1969, issn: 0018-9383. doi: 10.1109/T-ED.1969.16566.

[106] P. Farrell and E. Gartland Jr, On the Scharfetter-Gummel discretization for drift-

diffusion continutity equations, 1991.

[107] S. J. Polak, C. Den Heijer, W. H. A. Schilders, and P. Markowich, “Semiconductor

device modelling from the numerical point of view”, International Journal for

Numerical Methods in Engineering, vol. 24, no. 4, pp. 763–838, Apr. 1987, issn:

0029-5981. doi: 10.1002/nme.1620240408.

[108] S. J. Polak, C. Den Heijer, W. H. A. Schilders, and P. Markowich, “Semiconductor

device modelling from the numerical point of view”, International Journal for

Numerical Methods in Engineering, vol. 24, no. 4, pp. 763–838, Apr. 1987, issn:

0029-5981. doi: 10.1002/nme.1620240408.

[109] A. Bortolossi, “3D Finite Element Drift-Diffusion Simulation of Semiconductor

Devices”, Master’s thesis, Politecnico di Milano, 2014.

[110] W. Engl, H. Dirks, and B. Meinerzhagen, “Device modeling”, Proceedings of the

IEEE, vol. 71, no. 1, pp. 10–33, 1983, issn: 0018-9219. doi: 10.1109/PROC.1983.

12524.

126

https://doi.org/10.3169/itej1954.28.723
https://doi.org/10.1007/978-3-7091-6644-4
https://doi.org/10.1109/T-ED.1973.17727
https://doi.org/10.1007/978-3-7091-3678-2
https://doi.org/10.1109/T-ED.1969.16566
https://doi.org/10.1002/nme.1620240408
https://doi.org/10.1002/nme.1620240408
https://doi.org/10.1109/PROC.1983.12524
https://doi.org/10.1109/PROC.1983.12524


[111] T. Seidman and S. Choo, “Iterative scheme for computer simulation of semicon-

ductor devices”, Solid-State Electronics, vol. 15, no. 11, pp. 1229–1235, Nov. 1972,

issn: 00381101. doi: 10.1016/0038-1101(72)90043-3.

[112] J. W. Jerome, TitleAnalysis of charge transport: a mathematical study of semicon-

ductor devices. Springer Science \& Business Media, 1996.

[113] B. Gaury, Y. Sun, P. Bermel, and P. M. Haney, “Sesame: A 2-dimensional solar cell

modeling tool”, Solar Energy Materials and Solar Cells, vol. 198, no. May 2018,

pp. 53–62, Aug. 2019, issn: 09270248. doi: 10.1016/j.solmat.2019.03.037.

arXiv: 1806.06919.

[114] E. Guide, Sentaurus Device User and Version, “Synopsys inc”, Mountain View,

CA, USA, 2013.

[115] C. Multiphysics, “V. 5.4. cn. comsol. com”, COMSOL AB, Stockholm, Sweden,

2017.

[116] M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semicon-

ductor solar cells”, Thin Solid Films, vol. 361-362, pp. 527–532, Feb. 2000, issn:

00406090. doi: 10.1016/S0040-6090(99)00825-1.

[117] T. Soga, “Fundamentals of Solar Cell”, in Nanostructured Materials for Solar En-

ergy Conversion, Elsevier, 2006, pp. 3–43, isbn: 9780444528445. doi: 10.1016/

B978-044452844-5/50002-0.

[118] T. Dittrich, “Basic Characteristics and Characterization of Solar Cells”, in Ma-

terials Concepts for Solar Cells, WORLD SCIENTIFIC (EUROPE), Mar. 2018,

pp. 3–43. doi: 10.1142/9781786344496_0001.

[119] R. C. Alig and S. Bloom, “Secondary-electron-escape probabilities”, Journal of

Applied Physics, vol. 49, no. 6, pp. 3476–3480, Jun. 1978, issn: 0021-8979. doi:

10.1063/1.325257.

[120] M. Huff, “Review—Important Considerations Regarding Device Parameter Process

Variations in Semiconductor-Based Manufacturing”, ECS Journal of Solid State

Science and Technology, vol. 10, no. 6, p. 064 002, Jun. 2021, issn: 2162-8769. doi:

10.1149/2162-8777/ac02a4.

[121] T. Todorov, M. Kita, J. Carda, and P. Escribano, “Cu2ZnSnS4 films deposited by

a soft-chemistry method”, Thin Solid Films, vol. 517, no. 7, pp. 2541–2544, Feb.

2009, issn: 00406090. doi: 10.1016/j.tsf.2008.11.035.

[122] H. Katagiri and K. Jimbo, “Development of rare metal-free CZTS-based thin film

solar cells”, in 2011 37th IEEE Photovoltaic Specialists Conference, IEEE, Jun.

2011, pp. 003 516–003 521, isbn: 978-1-4244-9965-6. doi: 10.1109/PVSC.2011.

6186707.

127

https://doi.org/10.1016/0038-1101(72)90043-3
https://doi.org/10.1016/j.solmat.2019.03.037
https://arxiv.org/abs/1806.06919
https://doi.org/10.1016/S0040-6090(99)00825-1
https://doi.org/10.1016/B978-044452844-5/50002-0
https://doi.org/10.1016/B978-044452844-5/50002-0
https://doi.org/10.1142/9781786344496_0001
https://doi.org/10.1063/1.325257
https://doi.org/10.1149/2162-8777/ac02a4
https://doi.org/10.1016/j.tsf.2008.11.035
https://doi.org/10.1109/PVSC.2011.6186707
https://doi.org/10.1109/PVSC.2011.6186707


[123] X. Wu, W. Liu, S. Cheng, Y. Lai, and H. Jia, “Photoelectric properties of Cu 2

ZnSnS 4 thin films deposited by thermal evaporation”, Journal of Semiconductors,

vol. 33, no. 2, p. 022 002, Feb. 2012, issn: 1674-4926. doi: 10.1088/1674-4926/

33/2/022002.

[124] A. D. Adewoyin, M. A. Olopade, and M. Chendo, “Prediction and optimization

of the performance characteristics of CZTS thin film solar cell using band gap

grading”, Optical and Quantum Electronics, vol. 49, no. 10, p. 336, Oct. 2017,

issn: 0306-8919. doi: 10.1007/s11082-017-1176-3.

[125] A. K. Singh, T. R. Rana, J. Kim, M. Shkir, and T.-C. Jen, “Impact on Structural

and Optical Properties of CZTS Thin Films with Solvents and Ge Incorporation”,

International Journal of Photoenergy, vol. 2021, L. Palmisano, Ed., pp. 1–9, Mar.

2021, issn: 1687-529X. doi: 10.1155/2021/1508469.

[126] M. Jiang and X. Y, “Cu2ZnSnS4 Thin Film Solar Cells: Present Status and Future

Prospects”, in Solar Cells - Research and Application Perspectives, InTech, Mar.

2013. doi: 10.5772/50702.

[127] B. Shin, K. Wang, O. Gunawan, et al., “High efficiency Cu2ZnSn(SxSe1-x)4 thin

film solar cells by thermal co-evaporation”, in 2011 37th IEEE Photovoltaic Spe-

cialists Conference, vol. 1, IEEE, Jun. 2011, pp. 002 510–002 514, isbn: 978-1-4244-

9965-6. doi: 10.1109/PVSC.2011.6186456.

[128] I. L. Repins, H. Moutinho, S. G. Choi, et al., “Indications of short minority-

carrier lifetime in kesterite solar cells”, Journal of Applied Physics, vol. 114, no. 8,

p. 084 507, Aug. 2013, issn: 0021-8979. doi: 10.1063/1.4819849.
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Appendix A

Change of scale by volume averaging
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A.0.1 Change of scale by volume averaging

In volume averaging technique we use the information at the local scale (the pore

scale here) to derive volume averaged equations that are valid at the global scale (the

continuous porous medium scale here). We start by dividing the averaging volumeV into

two parts; Vf represents the volume of the F phase contained within the averaging volume

and Vs represents the volume of the S phase.

V = Vf + Vs (A.1)

We can define the porosity as the volume fraction of the F phase, as follows,

ε =
Vf
V

(A.2)

The idea is to rewrite the equations (2.6) and (2.7) in terms of averaged quantities, so

we introduce the superficial average of C as:

⟨C⟩ = 1

V

∫

Vf

CdV (A.3)

Integrating equation (2.6) over the domain Vf and dividing byV we obtain:

1

V

∫

Vf

∂C

∂t
dV =

1

V

∫

Vf

∇ · ∇C (A.4)

Using the general transport theorem [9] to express the left hand side, we can rewrite

equation (A.4) as follows:
∂⟨C⟩
∂t

=
1

V

∫

Vf

∇ · ∇C (A.5)

In fact, the superficial average concentration is not a good representation of the con-

centration in the F phase and it is more convenient to rewrite equation (A.5) in terms of

the intrinsic average concentration which defined by:

⟨C⟩f = 1

Vf

∫

Vf

CdV (A.6)

These two averaged concentrations are related by:

⟨C⟩ = ε⟨C⟩f (A.7)
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and we can use equation (A.7) in equation (A.5) to obtain:

ε
∂⟨C⟩f
∂t

=
1

V

∫

Vf

∇ · ∇C (A.8)

In equation A.8 we assumed that the porosity is constant. Now we should express the

right hand side of equation (A.8) in terms of the intrinsic average concentration. For that

we decompose the concentration according to GRAY’s decomposition as:

C = ⟨C⟩f + C̃ (A.9)

where C̃ is the concentration perturbation due to the presence of the solid phase. Using

the spatial averaging theorems [9] and equation (2.7) we can rewrite equation (A.8) as

follows:

ε
∂⟨C⟩f
∂t

= ∇ ·


ε∇⟨C⟩f + 1

V

∫

Afs

nfsC̃dA


− avkR(⟨C⟩f − C∗) (A.10)

where av is the specific reactive surface. it represents the reactive surface area per unit

volume, which is given by:

av =
Afsr

V
(A.11)

In equation, (A.10) we assumed that the concentration perturbation due to the pres-

ence of the solid phase is much smaller than the intrinsic average concentration and the

reaction rate kR is constant in the averaging volume. The right hand side of equation

(A.10) is still containing microscopic term that has to be modified. In the same way as

[9] we can represent the concentration perturbation by the following expression:

C̃ = B · ∇⟨C⟩f + s(⟨C⟩f − C∗) (A.12)

where the vector B and the scalar s are the closure variables. Both are solution of partial

differential problems, called the closure problems, which have to be solved at the local

scale:

∇2B = 0 (A.13)

−nfs · ∇B = nfs, at Afs (A.14)

B(r + li) = B(r), i = 1, 2, 3 (A.15)

with

⟨B⟩f = 0 (A.16)

for the vector B and for the scalar s we have:

∇2s = −k̄ (A.17)
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−nfs · ∇s = kR, at Afsr (A.18)

s(r + li) = s(r), i = 1, 2, 3 (A.19)

with

⟨s⟩f = 0 (A.20)

equations (A.15) and (A.19) represent periodic boundary conditions, where r is position

vector and li is the lattice vector. The term k̄ is defined by the following equation:

k̄ =
1

Vf

∫

Afsr

kRdA (A.21)

and with the assumption that kR is constant on the reactive fluid-solid interface, we have:

k̄ = kR
Afsr

Vf
(A.22)

The vector B mainly takes into account the effects of the micro-geometry on diffusion

and the scalar s takes into account the same effects and the effects of the chemical reactions

on the fluid-solid interface. Introducing the variable s∗ defined as
s

kR
, we can rewrite

equations (A.17), (A.18), (A.19) and (A.20) in the following form:

∇2s∗ = −Afsr

Vf
(A.23)

−nfs · ∇s∗ = 1, at Afsr (A.24)

s∗(r + li) = s∗(r), i = 1, 2, 3 (A.25)

with

⟨s∗⟩f = 0 (A.26)

This new form only depends on the micro-geometry and the effect of the reaction rate is

taken into account by the factor kR in the macroscopic equation. Substituting equation

(A.12) in equation (A.10) we obtain the dimensionless macroscopic equation as follows:

ε
∂⟨C⟩f
∂t

= ∇ ·


ε


I+

1

Vf

∫

Afs

(nfsB)dA


 · ∇⟨C⟩f


+∇ ·


ε


kR
Vf

∫

Afs

(nfss
∗)dA


 (⟨C⟩f − C∗)




−εkR
Afsr

Vf
(⟨C⟩f − C∗)

(A.27)

Introducing the dimensionless effective diffusion tensor:

Deff = I +
1

Vf

∫

Afs

(nfsB)dA (A.28)
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and the dimensionless vector:

U =
1

Vf

∫

Afs

(nfss
∗)dA (A.29)

we can rewrite equation (A.27) in the following closed form:

ε
∂⟨C⟩f
∂t

= ∇ ·
[
εDeff · ∇⟨C⟩f

]
+∇ ·

[
εkRU(⟨C⟩f − C∗)

]
− εkR

Afsr

Vf
(⟨C⟩f − C∗) (A.30)

133



Appendix B

Spatial discretization: Cases

2.1.2-2.1.11
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Case 2.1.2, ACk is of level l and sharing the part 2 of face 4 (North) of ACj, ACh

is of level l + 1 and sharing face 6 (Top) of ACj. The localized points involved in the

interpolation are shown in Figure B.1 and summarized in Table B.1. using equation (2.37)

X Y Z

pi
1
2

1
2

1
2

pj −1 0 0

pk −1
2

3
2

1
2

ph −1 0 2

pn −5
6

1
2

1
2

pj1 −1
2

1
2

1
2

Table B.1: The points involved in the in-
terpolation case 2.1.2.

Figure B.1: Case 2.1.2 schematic diagram.

we have,

un =
3uj + 2uk + uh

6
(B.1)

and applying equation (2.39) we get,

uj1 =
ui + 3un

4
=

2ui + 3uj + 2uk + uh
8

(B.2)

Finally, the term (∇u · n)cΓ1Γ1 is approximated using equation (2.43).

Case 2.1.3, ACk is of level l and sharing the part 2 of face 4 (North) of ACj, ACh is

of level l+2 and sharing part 1 of its face 5 (Bottom) with face 6 (Top) of ACj. Because

ACi and ACk are of level 1, this is the only conflagration with ACh of level l + 2. The

localized points involved in the interpolation are shown in Figure B.2 and summarized in

Table B.2. using equation (2.37) we have,

un =
5uj + 4uk + uh

10
(B.3)

and applying equation (2.39) we get,

uj1 =
2ui + 5un

7
=

4ui + 10uj + 4uk + uh
14

(B.4)
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X Y Z

pi
1
2

1
2

1
2

pj −1 0 0

pk −1
2

3
2

1
2

ph −2 −1 3

pn − 9
10

1
2

1
2

pj1 −1
2

1
2

1
2

Table B.2: The points involved in the in-
terpolation case 2.1.3.

Figure B.2: Case 2.1.3 schematic diagram.

Finally, the term (∇u · n)cΓ1Γ1 is approximated using equation (2.43).

Case 2.1.4, ACk is of level l + 1 and sharing face 4 (North) of ACj, ACh is of level

l and sharing the part 2 of face 6 (Top) of ACj. The localized points involved in the

interpolation are shown in Figure B.3 and summarized in Table B.3. using equation

(2.37) we have,

un =
3uj + uk + 2uh

6
(B.5)

and applying equation (2.39) we get,

uj1 =
ui + 3un

4
=

2ui + 3uj + uk + 2uh
8

(B.6)

Finally, the term (∇u · n)cΓ1Γ1 is approximated using equation (2.43).

Case 2.1.5, ACk is of level l + 1 and sharing face 4 (North) of ACj, ACh is of level

l + 1 and sharing face 6 (Top) of ACj. The localized points involved in the interpolation

are shown in Figure B.4 and summarised in Table B.4. using equation (2.37) we have,

un =
2uj + uk + uh

4
(B.7)

and applying equation (2.39) we get,

uj1 =
ui + 2un

3
=

2ui + 2uj + uk + uh
6

(B.8)
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X Y Z

pi
1
2

1
2

1
2

pj −1 0 0

pk −1 2 0

ph −1
2

1
2

3
2

pn −5
6

1
2

1
2

pj1 −1
2

1
2

1
2

Table B.3: The points involved in the in-
terpolation case 2.1.4.

Figure B.3: Case 2.1.4 schematic diagram.

X Y Z

pi
1
2

1
2

1
2

pj −1 0 0

pk −1 2 0

ph −1 0 2

pn −1 1
2

1
2

pj1 −1
2

1
2

1
2

Table B.4: The points involved in the in-
terpolation case 2.1.5.

Figure B.4: Case 2.1.5 schematic diagram.

Finally, the term (∇u · n)cΓ1Γ1 is approximated using equation (2.43).

Case 2.1.6, ACk is of level l + 1 and sharing face 4 (North) of ACj, ACh is of level

l + 2 and sharing part 2 of its face 5 (bottom) with face 6 (Top) of ACj. The localized
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points involved in the interpolation are shown in Figure B.5 and summarised in Table

B.5. using equation (2.37) we have,

X Y Z

pi
1
2

1
2

1
2

pj −1 0 0

pk −1 2 0

ph −2 1 3

pn −7
6

1
2

1
2

pj1 −1
2

1
2

1
2

Table B.5: The points involved in the in-
terpolation case 2.1.6.

Figure B.5: Case 2.1.6 schematic diagram.

un =
4uj + uk + uh

6
(B.9)

and applying equation (2.39) we get,

uj1 =
2ui + 3un

5
=

4ui + 4uj + uk + uh
10

(B.10)

Finally, the term (∇u · n)cΓ1Γ1 is approximated using equation (2.43).

Case 2.1.7, ACk is of level l + 1 and sharing face 4 (North) of ACj, ACh is of level

l + 2 and sharing part 1 of its face 5 (bottom) with face 6 (Top) of ACj. The localized

points involved in the interpolation are shown in Figure B.6 and summarised in Table

B.6. using equation (2.37) we have,

un =
3uj + 2uk + uh

6
(B.11)

and applying equation (2.39) we get,

uj1 =
2ui + 3un

5
=

4ui + 3uj + 2uk + uh
10

(B.12)

Finally, the term (∇u · n)cΓ1Γ1 is approximated using equation (2.43).
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X Y Z

pi
1
2

1
2

1
2

pj −1 0 0

pk −1 2 0

ph −2 −1 3

pn −7
6

1
2

1
2

pj1 −1
2

1
2

1
2

Table B.6: The points involved in the in-
terpolation case 2.1.7.

Figure B.6: Case 2.1.7 schematic diagram.

Case 2.1.8, ACk is of level l + 2 and sharing part 1 of its face 3 (South) with face 4

(North) of ACj, ACh is of level l and sharing part 2 of face 6 (Top) of ACj. The localized

points involved in the interpolation are shown in Figure B.7 and summarised in Table

B.7. using equation (2.37) we have,

un =
5uj + uk + 4uh

10
(B.13)

and applying equation (2.39) we get,

uj1 =
2ui + 5un

7
=

4ui + 5uj + uk + 4uh
14

(B.14)

Finally, the term (∇u · n)cΓ1Γ1 is approximated using equation (2.43).

Case 2.1.9, ACk is of level l + 2 and sharing part 1 of its face 3 (South) with face

4 (North) of ACj, ACh is of level l + 1 and sharing face 6 (Top) of ACj. The localized

points involved in the interpolation are shown in Figure B.8 and summarised in Table

B.8. using equation (2.37) we have,

un =
3uj + uk + 2uh

6
(B.15)
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X Y Z

pi
1
2

1
2

1
2

pj −1 0 0

pk −2 3 −1

ph −1
2

1
2

3
2

pn − 9
10

1
2

1
2

pj1 −1
2

1
2

1
2

Table B.7: The points involved in the in-
terpolation case 2.1.8.

Figure B.7: Case 2.1.8 schematic diagram.

X Y Z

pi
1
2

1
2

1
2

pj −1 0 0

pk −2 3 −1

ph −1 0 2

pn −7
6

1
2

1
2

pj1 −1
2

1
2

1
2

Table B.8: The points involved in the in-
terpolation case 2.1.9.

Figure B.8: Case 2.1.9 schematic diagram.

and applying equation (2.39) we get,

uj1 =
2ui + 3un

5
=

4ui + 3uj + uk + 2uh
10

(B.16)

Finally, the term (∇u · n)cΓ1Γ1 is approximated using equation (2.43).
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Case 2.1.10, ACk is of level l + 2 and sharing part 4 of its face 3 (South) with face

4 (North) of ACj, ACh is of level l + 1 and sharing face 6 (Top) of ACj. The localized

points involved in the interpolation are shown in Figure B.9 and summarised in Table

B.9. using equation (2.37) we have,

X Y Z

pi
1
2

1
2

1
2

pj −1 0 0

pk −2 3 1

ph −1 0 2

pn −7
6

1
2

1
2

pj1 −1
2

1
2

1
2

Table B.9: The points involved in the in-
terpolation case 2.1.10.

Figure B.9: Case 2.1.10 schematic diagram.

un =
4uj + uk + uh

6
(B.17)

and applying equation (2.39) we get,

uj1 =
2ui + 3un

5
=

4ui + 4uj + uk + uh
10

(B.18)

Finally, the term (∇u · n)cΓ1Γ1 is approximated using equation (2.43).

Case 2.1.11, ACk is of level l+2 and sharing part 1 of its face 3 (South) with face 4

(North) of ACj, ACh is of level l + 2 and sharing part 1 of its face 5 (Bottom) with face

6 (Top) of ACj. The localized points involved in the interpolation are shown in Figure

B.10 and summarised in Table B.10. using equation (2.37) we have,

un =
2uj + uk + uh

4
(B.19)
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X Y Z

pi
1
2

1
2

1
2

pj −1 0 0

pk −2 3 −1

ph −2 −1 3

pn −3
2

1
2

1
2

pj1 −1
2

1
2

1
2

Table B.10: The points involved in the
interpolation case 2.1.11.

Figure B.10: Case 2.1.11 schematic diagram.

and applying equation (2.39) we get,

uj1 =
ui + un

2
=

4ui + 2uj + uk + uh
8

(B.20)

Finally, the term (∇u · n)cΓ1Γ1 is approximated using equation (2.43).
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Titre : Deux exemples de modelisation numerique multi-echelle 

combinee avec des experiences avancees utilisant les rayons X : 
l'imagerie multi-echelle du transport reactif en milieu poreux et le 
courant induit par rayon X (XBIC) 

Résumé :  

Dans ce travail, nous présentons deux exemples d'expériences basées sur le 
rayonnement synchrotron et comment, en combinant modélisation et simulations, les 
résultats obtenus peuvent être interprétés en tenant compte des applications visées.  
Nous rapportons une étude multimodale des propriétés électriques, chimiques et 
structurelles d'une cellule solaire en couche mince en kestérite en combinant les 
techniques d'imagerie à résolution spatiale de courant induit par faisceau de rayons X 
(XBIC) et de fluorescence (XRF) pour l'évaluation d'un dispositif entièrement fonctionnel 
en géométrie de section transversale. Nous soutenons les données expérimentales avec 
la modélisation en volume fini du signal XBIC en résolvant l'équation de Poisson et les 
équations de continuité pour les électrons et les trous dans le domaine de calcul 2D 
construit à partir des données XRF.  Les données ont permis de corréler la composition 
chimique, les défauts aux interfaces et le dépôt inhomogène des couches avec 
l'efficacité locale de collecte des charges du dispositif. Nous présentons également une 
procédure d'imagerie et de modélisation multi-échelle pour le transport réactif dans les 
milieux poreux. Pour les problèmes que nous considérons, les réactions hétérogènes 
sont dominantes, ce qui signifie que la partie réactive de l'interface fluide/solide doit être 
décrite précisément à l'échelle locale. D'autre part, la distribution spatiale globale du 
solide doit également être caractérisée précisément car elle détermine la représentativité 
des propriétés moyennes de transport. Dans ce travail, nous utilisons une grille 
cartésienne non uniforme résultant d'une double approche : d'abord, un grossissement 
de la grille visant à améliorer les aspects de calcul, et ensuite un raffinement local de la 
géométrie de l'interface visant à améliorer la précision des résultats. Dans l'approche 
d'imagerie multi-échelle, nous utilisons à la fois des images à basse résolution 
(pertinentes à l'échelle globale) et à haute résolution (pertinentes à l'échelle locale) dans 
le processus d'affinement. Cela améliore la qualité des résultats pour les propriétés 
effectives. Pour les grands volumes, l'approche du grossissement de la grille est capable 
de réduire le temps du CPU de 35 à 50 % sans perdre la précision de la solution. 

Mots clés :  

Rayon X synchrotron, Cellule solaire CZTS, courant induit par faisceau de rayons X 
(XBIC), milieux poreux, moyenne volumique, imagerie multi-échelle, grossissement 
de la grille, raffinement du maillage local, Imagerie 3D. 
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Title : Two examples of multi-scale numerical modelling combined 

with advanced X-ray based experiments: multi-scale imaging for 
reactive transport in porous media and X-ray beam induced current 
(XBIC)  

Abstract :  

In this work, we present two examples of synchrotron X-ray based experiments and how, 
combining modelling and simulations, the obtained results can be interpreted taking into 
account the targeted applications.  We report a multi-modal study of electrical, chemical, 
and structural properties of a kesterite thin-film solar cell by combining the spatially 
resolved X-ray beam induced current (XBIC) and fluorescence (XRF) imaging techniques 
for the evaluation of a fully functional device in cross-section geometry. We support 
experimental data with the finite volume modelling of the XBIC signal by solving the 
Poisson equation and the continuity equations for electrons and holes within the 2D 
computation domain constructed from the XRF data.  Data allowed correlating chemical 
composition, defects at interfaces, and inhomogeneous deposition of the layers with the 
local charge collection efficiency of the device. We also present a multi-scale imaging 
and modelling procedure for reactive transport in porous media. For the problems we 
consider, heterogeneous reactions are dominant, meaning that the reactive part of the 
fluid/solid interface must be precisely described at the local scale. On the other hand, the 
global spatial distribution of the solid must also be precisely characterized because it 
determines the representativeness of the average transport properties. In this work, we 
use a non-uniform Cartesian grid resulting from a twofold approach: first, a grid 
coarsening aiming in improving the computational aspects, and second a local refining of 
the interface geometry aiming in improving the accuracy of the results. In the multi-scale 
imaging approach we use both low-resolution (relevant to the global scale) and high-
resolution (relevant to the local scale) images in refinement process. This improves the 
quality of the results for the effective properties. For large volumes, the grid coarsening 
approach is able to reduce the CPU time by 35-50% without losing the accuracy of the 
solution. 
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