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Ines COUSO

KTH Royal Institute 
of Technology 
University of Oviedo Reviewer

 Dr.  Yves GRANDVALET University of Technology Examiner
of Compiègne
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Abstract
CID Team (Knowledge, Uncertainty, Data)

Heudiasyc Laboratory

Doctor of Philosophy

Conformal prediction methods for complex data: Application to
real estate management

by Soundouss Messoudi

Uncertainty quantification is not an easy task. Its difficulty depends on various
factors related to the available data, the application domain, and also the learned task.
Having multiple outputs to predict simultaneously can be even more demanding,
principally when these outputs are correlated.

This research work focuses on producing confidence regions for such complex
problems, by using conformal prediction: a theoretically proven method that can be
added to any Machine Learning model to generate set predictions whose size and
statistical guarantee depend on a user-defined error rate.

Our first and main problem of interest consists of multi-target regression, where
the objective is to predict many real-valued outputs at once. First, a simple exten-
sion of single-target regression conformal methods is proposed by following a naive
approach that treats these targets as independent. Second, copulas are exploited to
take into account the existing correlations between outputs when giving conformal
regions. Third, ellipsoids are considered in order to produce more flexible conformal
regions according to the possible relationships between targets while maintaining the
desired error rate.

Our second problem of interest is an applied research work that deals with debt
prediction for tenants of rented social housing to control the errors of a particular
class in a imbalanced binary classification context. In this case, mondrian conformal
prediction, which is a variant of conformal inference, is used to treat this problem
with the guidance of real estate experts.

Keywords: conformal prediction, multi-target regression, uncertainty, debt predic-
tion.
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Chapter 1

Introduction

Sometimes it is the people no one can imagine
anything of who do the things no one can imagine.

— Alan Turing

Contents

1.1 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . 3

Scientific advances in Artificial Intelligence have been highly useful in
many domains during the last few decades, with new emerging methods
being employed more and more in everyday life applications [Sarker, 2021].
However, exclusively relying on Machine Learning and Deep Learning
model predictions for decision-making can sometimes come with irrepara-
ble consequences, especially when the domain application implicates hu-
man safety, such as health-care or autonomous driving. In these cases, it is
of the utmost importance to introduce uncertainty estimation to the model
predictions so that experts can decide to which degree they can trust these
outcomes.

To solve these issues, conformal prediction was proposed by Vladimir
Vovk, Alexander Gammerman and Vladimir Vapnik [Gammerman et al.,
1998] in the late nineties as a simple, robust and flexible framework that
can provide confidence regions while respecting the desired error rate.

Although being relatively recent, this theoretically-proven framework
has gained popularity over the last few years. Indeed, it has its own
Symposium “COPA” (Conformal and Probabilistic Prediction and its Ap-
plications), which is held each year since 2012, and a dedicated GitHub
repository [Manokhin, 2022] created in late 2019, and with over 700 stars
at the time this thesis is written. Also, it has more and more papers being
published each year, as it can be seen in Figure 1.1.

This thesis contributes to the research field around this method by
applying conformal prediction to complex data: a first methodological
work focused on multi-target regression, and a second applied work on a



2 1.1 thesis outline

Figure 1.1: Conformal prediction paper publication growth.

real-estate problem encountered by domain experts from Sopra/Steria, a
major French company that is interested in our research studies.

1.1 thesis outline

This thesis manuscript is organized as follows:

• Chapter 2 - Literature review

This chapter presents a small reminder on Machine Learning, in par-
ticular supervised learning, and a quick overview on uncertainty and
its sources, before introducing some methods to estimate it in predic-
tions.

• Chapter 3 - Conformal Prediction

This chapter details conformal inference methods in both classifica-
tion and regression cases. An application example is also given as
a walk-through to understand better conformal prediction and its
principles.

• Chapter 4 - Conformal prediction for multi-target regression

This chapter presents our contributions to the conformal inference
research field by extending it to the multi-target regression problem,
with three main methods (naive, copula, and ellipsoid).

• Chapter 5 - Conformal prediction applied to real estate man-
agement
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This chapter presents a real-world application of conformal predic-
tion to solve a tenant’s debt classification problem, by using Mon-
drian conformal prediction and following the requirements of real
estate experts.

1.2 main contributions

During the last three years, we published a collection of scientific papers
in peer-reviewed conferences and one journal. These contributions are
presented throughout this thesis manuscript in the following chapters:

• Chapter 3 - Conformal Prediction

– Messoudi et al. (2020). “Deep Conformal Prediction for Ro-
bust Models”. In: International Conference on Information Pro-
cessing and Management of Uncertainty in Knowledge-Based
Systems.

This paper consists of a first exploratory work on conformal pre-
diction based on a density estimation method, and applied to three
kinds of data. It is used in Chapter 3 as an illustrative example of
conformal prediction and how it can make DL models more robust
to noise and outliers.

• Chapter 4 - Conformal prediction for multi-target regression

– Messoudi et al. (2020). “Conformal multi-target regression
using neural networks”. In: Conformal and Probabilistic Pre-
diction and Applications.

– Messoudi et al. (2021). “Copula-based conformal prediction
for multi-target regression”. In: Pattern Recognition.

– Messoudi et al. (2022). “Ellipsoidal conformal inference for
Multi-Target Regression”. In: Conformal and Probabilistic Pre-
diction with Applications.

In the context of multi-target regression, the first paper proposes a
naive approach of conformal prediction applied to multi-target re-
gression by considering that the targets are independent. The second
one extends this work by using copulas to exploit dependencies be-
tween targets when constructing hyper-rectangle conformal regions.
The third one suggests another approach that produces ellipsoidal
conformal regions, a more flexible form that adds in efficiency while
maintaining validity. These papers constitute the bulk of our contri-
butions in Chapter 4.
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• Chapter 5 - Conformal prediction applied to real estate man-
agement

– Messoudi et al. (2021). “Class-wise confidence for debt predic-
tion in real estate management: discussion and lessons learned
from an application”. In: Conformal and Probabilistic Predic-
tion and Applications.

This applied research paper presented in Chapter 5 uses a variant
of conformal prediction to control the errors of a minority class in
a real-world problem, which is the binary classification of tenant’s
debt. This work was conducted by following suggestions of real
estate experts.

In addition to these publications, a conference paper was published as a
side collaboration on the label ranking problem. This work uses imprecise
probabilities to propose an efficient way to make partial predictions with
constraint satisfaction.

• Alarcón et al. (2020). “Cautious label-wise ranking with constraint
satisfaction”. In: International Conference on Information Process-
ing and Management of Uncertainty in Knowledge-Based Systems.

Finally, and for a scientific diffusion in France and other French-
speaking countries, some of the published papers were presented in
French national conferences:

• Alarcón et al. (2020). “Apprentissage de rangements prudent avec
satisfaction de contraintes”. In: 29èmes Rencontres francophones sur
la Logique Floue et ses Applications.

• Messoudi et al. (2020). “Prédiction conformelle profonde pour
des modèles robustes”. In: Extraction et Gestion des Connaissances
(EGC 2020).

• Messoudi et al. (2021). “Confiance de classe pour la prédiction de
dette en gestion immobilière”. In: 30èmes Rencontres francophones
sur la Logique Floue et ses Applications.

• Messoudi et al. (2022). “Prédiction conformelle basée sur les cop-
ules pour la régression multi-cibles”. In: Extraction et Gestion des
Connaissances (EGC 2022).



Chapter 2

Literature review

As far as the laws of mathematics refer to reality,
they are not certain; and as far as they are certain,
they do not refer to reality.

— Albert Einstein

Contents

2.1 Reminder on Supervised Learning . . . . . . . . . . . . . . . 6

2.2 Overview on uncertainty . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Types of uncertainty . . . . . . . . . . . . . . . . . . . 8

2.2.2 Sources of uncertainty . . . . . . . . . . . . . . . . . . 8

2.3 Uncertainty estimation methods . . . . . . . . . . . . . . . . 9

2.3.1 Bayesian Inference . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Imprecise Probabilities . . . . . . . . . . . . . . . . . . 11

2.3.3 Calibration methods . . . . . . . . . . . . . . . . . . . 11

2.3.4 Conformal Prediction . . . . . . . . . . . . . . . . . . 13

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that
focuses on building mathematical models based on data to make decisions
on their own, without being explicitly programmed to predict a specific
outcome. One of these models’ main objective is to be able to generalize
from data samples presented to them so as to give accurate and precise
predictions on never-before-seen examples.

There exists many types of ML algorithms depending on the tasks that
need to be learned. In this thesis, we will focus on predictive uncertainty, i.e.
estimating the uncertainty of each prediction given its corresponding input
example. Hence, in this chapter, we will only fixate on supervised learning
problems and predictive uncertainty, by presenting its types, sources, and
methods to treat it.



6 2.2 overview on uncertainty

2.1 reminder on supervised learning

The supervised learning setting consists of training a model on input data
that has been labeled by human experts to generate a corresponding out-
put data. Thus, a supervised learning model aims at finding the hidden
patterns between the inputs and the outputs.

To give a clearer mathematical explanation to supervised learning, let
us consider an object x belonging to an object space X and its target y belong-
ing to a target space Y. A predictor H can be defined as a map:

H : X→ Y.

In classification, the target y is a label from Y = {C1, . . . ,Ck},k ∈ N. In
regression, y is a real value in Y ⊂ R. Note that, in some cases, we will use
the notation z = (x,y) to talk about examples, samples or instances 1, with Z
being the example space defined as Z := X×Y.

Obtaining a prediction with the predictor H can be done in two ways as
illustrated in Figure 2.1 [Vovk et al., 2005]: using transduction, which points
out at the inference setting where the logic behind predictions on test
objects comes from observing available training examples, or induction, i.e.
the predictor H derives a general rule from observing training examples in
the inductive step, that is then applied to the test objects in the deductive
step.

Figure 2.1: Inductive and transductive prediction.

The predictor H is often parametrized with θ ∈ Θ. Thus, a predictor
H models Pθ(y | x) and estimates θ given samples from the distribution D
over X×Z.

2.2 overview on uncertainty

The provided data samples used for training an ML algorithm are often
finite, limited and sometimes biased. Hence, it is logical to believe that
the predictions of the algorithm hold no guarantees over their validity and

1 The three terms example, sample and instance will be used interchangeably.
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so are uncertain. Thus, it is important to quantify this uncertainty and
take it into consideration in the decision-making process, especially when
it comes to sensitive real-world applications.

An example can be seen in Computer Vision where the Deep Learn-
ing (DL) model makes mistakes that a human eye will not do. For in-
stance, [Hendrycks et al., 2021] builds two natural adversarial data sets:
ImageNet-A, which contains harder examples that the model should be
able to classify, and ImageNet-O, which contains anomalies of unforeseen
classes. Figure 2.2 shows that models can be easily fooled even by natu-
ral examples and synthetically generating them. [Messoudi et al., 2020b]
presents in Figure 2.3 for a binary classification setting (with a score close
to 0% being a female, and a score close to 100% being a male) an adver-
sarial attack in which an image of a female is tweaked in different ways to
make the Convolutional Neural Network (CNN) mistakenly predict it as a
male.

These examples emphasize the importance of uncertainty quantifica-
tion and how it can make ML and DL models more robust in order to
avoid such wrong predictions, especially when it comes to high-risk real-
world applications such as with self-driving cars or in the medical field.

Figure 2.2: Natural adversarial examples. The black text is the actual class,
and the red text is a ResNet-50 prediction and its confidence.

Figure 2.3: Adversarial attack examples. The black text is the actual class,
and the green (when correct) and red (when incorrect) texts are a CNN
prediction.
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2.2.1 Types of uncertainty

It is quite common to divide uncertainty into two different aspects [Der
Kiureghian et al., 2009]:

• Epistemic uncertainty: arises due to the lack of knowledge, mean-
ing that the learner does not have enough information to make a
decision. For instance, in a computer vision setting, predicting the
type of round fruit (apple, plum, tangerine or orange) from sample
pictures may be a difficult and uncertain task if few fruit pictures
are available. This kind of uncertainty is important to account for in
high-risk applications and when dealing with small, sparse data.

• Aleatoric uncertainty: refers to the variability in the predictions that
comes from randomness. A simple example would be the outcome
of a dice roll, which has 6 different results with the same probability
of happening without any way of knowing on which face it is going
to land.

Another way of differentiating between the types of uncertainty is to
check whether we can get rid of the uncertainty or not by adding new
information. If we take the same examples as above, adding new pictures
to the training set will enable the learner to differentiate between round
fruits. In this case, epistemic uncertainty is often referred to as “reducible”
uncertainty. However, rolling the dice 1000, 10000 or 100000 times will not
affect the randomness of its outcome. Aleatoric uncertainty is thus often
associated with “irreducible” uncertainty.

Figure 2.4 taken from [Hüllermeier et al., 2021] shows the difference
between these two types of uncertainty in a binary classification setting
that tries to tell crosses and circles apart, with the prediction at the query
point (indicated by a question mark). It is reducible in the left figure
by adding more data, thus more knowledge is needed to eliminate other
hypotheses and keep only the correct one, and non-reducible in the right
figure because the two classes overlap in the region where the query point
is, even if we only have one hypothesis.

2.2.2 Sources of uncertainty

Another way to differentiate uncertainty is by specifying on what it bears:

• Model uncertainty: comes from the selection of an appropriate
model and an estimation of its parameters, and can happen if
training and testing data distributions are generated differently,
often known as data set shift. It can also come from a reduced
hypothesis space and a finite sample. This form of uncertainty can
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Figure 2.4: Illustrative example of reducible (left) vs. non reducible (right)
uncertainty.

mostly be reduced by providing more training data, which is why it
is linked to epistemic and reducible uncertainty.

• Data uncertainty: is a characteristic of the underlying distribution
that generated the data, such as having a defective sensor that in-
troduces a noise when measuring some input feature, or having a
non-expert annotator that hardly differentiates between the labels,
particularly if data is missing or if the input features are ambiguous.
Since data uncertainty is intrinsically related to the data collecting
process, getting more examples will not help resolve this issue. Thus,
it is often connected with aleatoric and irreducible uncertainty.

Knowing which type and source of uncertainty we are dealing with is
a first important step towards building robust ML and DL models, as each
one of them has different techniques to quantify them and thus to treat
them in order to help the model generalize better. For example, the next
data points to inject into an active learning model can be chosen based on
uncertainty quantification [Monarch, 2021], by determining whether the
model is confused because of a lack of knowledge (as not having enough
pedestrian images when it comes to a self-driving car object detection), or
because of a problem in the data itself (as training on images taken during
a sunny day and testing on images taken on a snow storm). The approach
to solve those distinct issues will differ. For instance, the first uncertainty
type can be reduced by injecting more samples (of pedestrians) and the
second by adding a new feature (that describes the weather).

2.3 uncertainty estimation methods

In probability theory and statistics, there exists two main approaches to
estimate the unknown parameters θ:
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• Bayesian statistics: use priors and Bayes rule to estimate uncertainty
from available information, by considering that the unknown param-
eters θ are uncertain quantities modelled by probabilities. This ap-
proach can be applied both to repeated and non-repeated events.

• Frequentist statistics: use sampling distribution to represent uncer-
tainty, meaning that the unknown parameters θ are calculated by
repeating the event many times.

In this section, we will present some of the methods used in both
approaches to estimate predictive uncertainty.

2.3.1 Bayesian Inference

Bayesian inference relies on Bayes’ Theorem on conditional probabili-
ties [Bayes, 1763] to quantify the ignorance about the unknown parameters
θ after knowing the distribution D. This quantity is referred to as the
posterior distribution P(θ | D) and is calculated as follows:

P(θ | D) =
P(θ) · P(D | θ)

P(D)
=

P(θ) · P(D | θ)∫
P(θ ′) · P(D | θ ′) · dθ ′

, (2.1)

where P(D) is the marginal likelihood computed by integrating out θ, P(θ)
is the prior distribution that defines the available information or beliefs
before knowing the distribution D, and P(D | θ) is the likelihood function
that captures assumptions about the data dependence on the parameters.
Using Bayes’ Theorem also enables us to update the calculations whenever
additional data is available, which is highly useful in an online learning
setting.

Once we have the posterior distribution, we can calculate the posterior
predictive distribution of a new instance x as:

P(y | x, D) =

∫
P(y | x, θ) · P(θ | D) · dθ (2.2)

As mentioned earlier, Bayesian inference is effective for events that can
not be repeated, which makes it more general than frequentist approaches.
It is also widely adopted in many domains, such as in glaciology to esti-
mate the sea-level rise due to the ice sheets melting [Gopalan et al., 2021],
in hydrology to model water quality [Freni et al., 2010], in medical sciences
to robustly diagnose tuberculosis [Abideen et al., 2020], or in autonomous
driving control [Michelmore et al., 2020]. However, it has significant draw-
backs, mainly related to the sensitive task of choosing a prior and the
computational cost of the integral calculations of the marginal likelihood.
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2.3.2 Imprecise Probabilities

Imprecise probability theory [Walley, 1991] is a generalization of tradi-
tional probability theory, in which a set of probability distributions P
(i.e. a credal set) is used instead of only one precise probability measure P.
In case of high uncertainty, they can provide set-valued predictions based
on lower and upper probabilities defined as:

P(θ | D) = inf
P∈P

P(θ | D) and P(θ | D) = sup
P∈P

P(θ | D) (2.3)

When there is not enough information, [Zaffalon, 2002] considers that
credal sets are better at depicting true uncertainty in noisy data. In partic-
ular, they seem well-fitted to distinguish between aleatoric and epistemic
uncertainty. However, using imprecise probability approaches comes at a
high computational cost, since they require handling a set of probabilities
instead of one single probability.

2.3.3 Calibration methods

Calibration can be expressed as the requirement that a probabilistic pre-
diction p̂(y) should converge to the true probability p(y). This is often
done through the use of proper scoring rules (for more details, please
read [Gneiting et al., 2007]). Another popular means of quantifying uncer-
tainty in a probabilistic setting is to perform a Bayesian analysis [Kendall
et al., 2017], yet such analysis methods do not come with statistical or
calibration guarantees.

There are different methods of calibration, but we will only present the
most famous ones:

• Platt scaling [Platt, 1999]: This parametric calibration method turns
outputs into probability distributions by using logistic regression. To
do so, Platt scaling transforms a real-valued function f whose sign
gives a binary classification into the function:

P(y = 1 | f) =
1

1+ exp(af+ b)
,

where a and b are scalar parameters estimated using maximum like-
lihood on a calibration set.

• Histogram binning [Zadrozny et al., 2001]: This method transforms
the predicted probabilities by partitioning them intom bins, and then
estimating the respective posterior probability P(y = 1 | B) for each
bin B by the fraction of positive training examples. Thus, histogram
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binning is a non-parametric and non-monotonic method that does
not need any model to get calibrated results.

• Isotonic regression [Zadrozny et al., 2002]: This calibration method
relies on fitting a non-parametric regression line such that it is chosen
from the class of all isotonic (i.e. non-decreasing) functions. It is seen
as an intermediary approach between Platt scaling and histogram
binning, since it is a non-parametric monotonic function that does
not rely on any model to get calibrated results. Isotonic regression
is considered as the most common method of calibration used in
Machine Learning.

Figure 2.5 compares between three calibration approaches: Platt scal-
ing, histogram binning and scaling-binning (a hybrid approach that ap-
plies a scaling function and then takes the average of the function val-
ues [Kumar et al., 2019]).

Figure 2.5: Visualization of calibration approaches. The black crosses are
the ground truth labels, and the red lines are the output of the calibration
methods.

To quantify calibration, Expected Calibration Error (ECE) [Naeini et al.,
2015] is often used to compute the gap between accuracy and confidence of
equally-sized bins. Plotting accuracy vs. confidence results into a reliability
diagram as seen in Figure 2.6, with red bars reflecting this gap for each bin,
which clearly state the importance of using a calibration method. For more
details about calculating accuracy, confidence and ECE values as well as
plotting the reliability diagram in Figure 2.6, please refer to the paper [Guo
et al., 2017].

Despite these great results, calibration methods have two limitations.
The first one is that these post-processing methods only improve calibrated
probabilities, but do not guarantee perfectly calibrated predictions. More-
over, they give a point prediction, which does not distinguish between
different sources of uncertainty.
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Figure 2.6: Reliability diagrams for CIFAR-100 before (far left) and after
calibration (middle left, middle right, far right).

2.3.4 Conformal Prediction

Conformal prediction [Vovk et al., 2005] is a model-agnostic method that
provides strong frequentist statistical guarantees on the error rate ε. It
can be considered as a form of distribution-free uncertainty quantification,
since it makes very little assumption about the underlying data distribu-
tion (except exchangeability), and thus is valid for many practical cases.

This method can be applied on any ML algorithm, by employing its
predictions to compute a non-conformity score that is used to quantify
how strange an example is compared to training examples. This score
then enables us to obtain a prediction set Ŷ such that:

P(y ∈ Ŷ) > 1− ε,

where size reflects the difficulty of the example. Figure 2.7 taken from [An-
gelopoulos et al., 2021] illustrates this property by showing the ability of
conformal prediction to give larger prediction sets (always containing the
true label) when the given image becomes more and more ambiguous.

Figure 2.7: Prediction set generated by conformal prediction for three
progressively more difficult examples of the class fox squirrel.
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2.4 conclusion

In this chapter, a reminder on Machine Learning, more specifically su-
pervised learning problems, was given along with a small overview on
uncertainty and famous methods widely used for treating predictive un-
certainty. For more details about each type of uncertainty and different
ways to quantify them, the reader can refer to [Hüllermeier et al., 2021].

Since conformal prediction is the main method used in our thesis, it
will be thoroughly presented in the next chapter.



Chapter 3

Conformal Prediction

It is also a good rule not to put overmuch confidence
in the observational results that are put forward
until they are confirmed by theory.

— Sir Arthur Stanley Eddington
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Conformal prediction was initially introduced by Vovk, Gammerman
and Shafer [Vovk et al., 2005] based on transduction, randomness and
hypothesis testing in order to obtain prediction regions having a desired
confidence. This chapter presents the main ideas behind conformal predic-
tion in the transductive setting, and its extension to the inductive setting
for both classification and regression. It also demonstrates the effective-
ness of this framework through an application example for classification
that we presented in our paper [Messoudi et al., 2020b]. For more details
about conformal prediction, one can read the books “Algorithmic Learn-
ing in a Random World” [Vovk et al., 2005] and “Conformal Prediction for
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Reliable Machine Learning: Theories and Applications” [Balasubramanian
et al., 2014], and follow the tutorial [Shafer et al., 2008].

3.1 transductive conformal prediction (tcp)

To explain how conformal inference works in the transductive setting, we
will consider a classification problem, with the successive examples:

z1 = (x1,y1), z2 = (x2,y2), . . . , zn = (xn,yn),

with xi ∈ X an object and yi ∈ Y its label. For any sequence z1, z2, . . . , zn ∈
Z∗ and any new object xn+1 ∈ X, we can redefine the simple predictor H
seen before as:

H : Z∗ ×X −→ Y. (3.1)

This simple predictor H gives a point prediction H(z1, . . . , zn, xn+1) ∈ Y
for yn+1, the true label of xn+1.

Let ε ∈ (0, 1) be the probability of error called the significance level that
enables this simple predictor to become a confidence predictor Γ such that:

Γ : Z∗ ×X× (0, 1) −→ 2Y, (3.2)

where 2Y denotes the power set of Y. This confidence predictor can predict
a subset of Y with a confidence level 1 − ε, corresponding to a statistical
guarantee of covering yn+1, the true label of xn+1.

To build such a predictor, conformal prediction relies on a non-
conformity measure (NCM) An that estimates how compliant an example zi
is to other examples in a bag *z1, . . . , zi−1, zi+1, . . . , zn+. This An produces
a non-conformity score αi such as:

αi := An(*z1, . . . , zi−1, zi+1, . . . , zn+, zi). (3.3)

Comparing αi with other non-conformity scores αj with j 6= i, a p-value
πi of zi is used to calculate the proportion of less conforming examples
than zi, with:

πi =
|{j = 1, . . . ,n : αi 6 αj}|

n
. (3.4)

If the p-value approaches the upper bound 1, then zi is consistent
compared to the other examples. On the contrary, if it approaches the
lower bound 1/n, then zi is seen as an outlier.

For a classification problem, and to compute the p-value for the new
object xn+1, each possible label y ∈ Y is considered in (3.4). Hence, the
conformal predictor is obtained by predicting the set:
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Γε(xn+1) =

{
y ∈ Y :

|{i = 1, . . . ,n,n+ 1 : αyn+1 6 α
y
i }|

n+ 1
> ε

}
. (3.5)

[Hechtlinger et al., 2018] shows in Figure 3.1 the decision boundaries
on a classification problem using three methods. While the algorithms
kNN and kernel SVM provide 3 regions corresponding to each class in the
well-known Iris data set problem, the conformal prediction method is able
to produce 2 more additional regions: the overlapping area is classified as
a {0, 1} set and the white area is classified as the empty set .

Figure 3.1: Decision boundaries on Iris data set with a (a) kNN, (b) kernel
SVM, and (c) conformal prediction methods.

Constructing a conformal predictor therefore amounts to defining a
non-conformity measure that can be built based on an ML algorithm called
the underlying algorithm of the conformal prediction.

3.2 assumptions , properties and limitations

One of the most interesting characteristics of conformal prediction is that it
needs little assumptions to provide set predictions based on order statistics.
These assumptions are either the i.i.d. condition or exchangeability, which
is a weaker condition. These minimal assumptions enable the conformal
inference framework to offer many interesting properties and advantages
with a few drawbacks that can be overcome.

3.2.1 i.i.d. and exchangeability assumptions

A sequence of random variables is independent and identically distributed
(i.i.d.) when the individual random variables are all drawn from the same
probability distribution and are mutually independent. In other words, let
X1, . . . ,Xn be n random variables in I ⊆ R and FXi be the distribution of
Xi. X1, . . . ,Xn are i.i.d. if and only if:

FX1(x) = FXk(x) ∀k ∈ {1, . . . ,n} and ∀x ∈ I
FX1,...,Xn(x1, . . . , xn) = FX1(x1) . . . FXn(xn) ∀x1, . . . , xn ∈ I
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If the sequence of random variables X1, . . . ,Xn is i.i.d. then the rank
of Xn will be uniform over {1, 2, . . . ,n}. By choosing a probability of error
(or significance level) ε ∈ (0, 1), conformal inference relies on this result to
define a quantile q1−ε based on the order statistics X(1) 6 X(2) 6 . . . 6 X(n)

such that q1−ε = X(d(1−ε)·ne).
Conformal prediction also holds under the exchangeability assumption,

another condition that is weaker than the i.i.d. assumption. In this case,
the random variables X1, . . . ,Xn are exchangeable if for every permutation
τ of the indices 1, . . . ,n, we have:

P(X1, . . . ,Xn) = P(Xτ(1), . . . ,Uτ(n))

In other words, the joint probability distribution of the original sequence
is exactly the same as the joint probability distribution of the permuted
sequence, meaning that the order of the random variables is not impor-
tant. This is considered when handling data examples in the conformal
prediction framework.

3.2.2 Properties and advantages

Validity

This is one of the two fundamental characteristics desired in conformal
inference. It indicates that the error rate does not exceed the chosen signif-
icance level ε for a confidence level equal to 1− ε, meaning that

P(yn+1 ∈ Γε(xn+1)) > 1− ε. (3.6)

Efficiency

The prediction set Γε(xn+1) = Y is always valid, but it does not provide
any information. That is why efficiency is another desirable property of
conformal prediction. It aims at obtaining prediction sets that are as small
as possible, which is more informative. Thus, in a classification setting,
the prediction set of object xn+1 must have as few classes as possible (i.e.,
|Γε(xn+1)| should be small), and in regression, the prediction interval must
be as tight as possible.

Flexibility

Conformal inference is a framework that can be applied on top of most
Machine Learning algorithms, whether in classification or in regression,
as we will see later. Hence, the quality of the resulting prediction sets
depends on the defined non-conformity measure.
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Nested prediction sets

This property refers to the fact that the confidence predictor Γε must be
decreasing for the inclusion with respect to ε, such that:

∀n > 0, ∀ε1 > ε2, Γε1(z1, . . . , zn, xn+1) ⊆ Γε2(z1, . . . , zn, xn+1). (3.7)

That is, the more confident we want to be, the larger Γε should be.
Figure 3.2 shows this concept of nested conformal regions with different
confidence levels.

Figure 3.2: Illustration of conformal nested predictions.

3.2.3 Limitations

One important drawback of conformal prediction in the transductive set-
ting is that it is not computationally efficient, since the non-conformity
measure needs to be derived from all previous examples for each new ex-
ample. Thus, this approach is defective when dealing with a large amount
of data, especially for any time consuming training tasks such as Deep
Learning models.

Another limitation that is worth mentioning is that conformal predic-
tors are not conditionally valid, meaning that the confidence level is only
guaranteed on all data generally instead of subsets of data. That is, we do
have P(yn+1 ∈ Γε(xn+1)) > 1− ε but not P(yn+1 ∈ Γε(xn+1) | xn+1) > 1− ε.
An example where this could be problematic would be the case of highly
imbalanced data, where the minority class’s participation in the validity is
largely insignificant, since it is dominated by the majority class. Thus, the
probability of error for examples in the minority class will be much higher.

Both of these limitations can be overcome with other variants of con-
formal prediction, respectively using Inductive and Mondrian conformal
prediction. These will be detailed in the following sections.
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3.3 inductive conformal prediction (icp)

Inductive Conformal Prediction (ICP) is a method presented in [Pa-
padopoulos, 2008] that replaces the transductive setting with an inductive
one, in order to solve the computational inefficiency problem. In this case,
the predictor derives a general rule from observing training examples,
that is then applied to the test examples.

In the inductive approach, the original training data set *z1, . . . , zn+ is
split into two parts. The first part Ztr = *z1, . . . , zl+ is called the proper
training set, and is used to train the underlying algorithm on which the
non-conformity measure Al is based. The second smaller part Zcal =

*zl+1, . . . , zn+ is called the calibration set. For each example of the calibra-
tion set i = l+ 1, . . . ,n, a non-conformity score αi is calculated once by
applying (3.3) to get the sequence αl+1, . . . ,αn, which is used when com-
puting the p-value for the new object xn+1 and obtaining the set Γε(xn+1).

3.3.1 ICP for classification

In a classification problem, the objective is to associate to an object xi ∈ X
a certain class among a set of labels with yi ∈ Y = {C1, . . . ,Cp}. Given any
new object xn+1 ∈ X, it is possible to predict yn+1 ∈ Y by following the
inductive conformal framework steps:

1. Split the original data set Z into a proper training set Ztr with |Ztr| = l
and a calibration set Zcal with |Zcal| = n− l = q.

2. Train a classification underlying algorithm H : X → Y on Ztr to obtain
the non-conformity measure Al. A usual non-conformity measure in a
classification setting when h is a probabilistic classifier is defined as
follows:

Al = 1− P̂H[y | x]. (3.8)

3. Apply the non-conformity measure Al to each example zi of Zcal to
get the non-conformity scores α1, . . . ,αq.

4. Choose a significance level ε ∈ (0, 1) to get a prediction set with a
confidence level of 1− ε.

5. For a new object xn+1, compute a non-conformity score for each class
Ck ∈ Y:

α
Ck
n+1 = Al((xn+1,y = Ck)). (3.9)

6. For each class Ck ∈ Y, compute the p-value:

π
Ck
n+1 =

|{i ∈ 1, . . . ,q,n+ 1 : αCkn+1 6 αi}|

q+ 1
. (3.10)
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7. Build the prediction set:

Γε(xn+1) = {Ck ∈ Y : πCkn+1 > ε}. (3.11)

Figure 3.3 shows the different cases that can occur in a conformal pre-
diction set depending on calibration data, the chosen ε, and Equation
(3.11). The prediction set can be a singleton when the predictor is sure
(in blue), a set with more than one class (in green) in case of ambiguity
and an empty set ∅ (in red) when the model does not know or did not see
a similar example during training.

ε = 0.2
αcal

{0, 1}

π0 = 10
15

= 0.66

π1 = 13
15

= 0.86

{0}

π0 = 5
15

= 0.33

π1 = 3
15

= 0.20

∅

π0 = 2
15

= 0.13

π1 = 1
15

= 0.06

Figure 3.3: Illustrative examples of inductive conformal prediction sets for
a binary classification problem.

3.3.2 ICP for regression

In a regression problem, the objective is to associate to an object xi ∈ X a
real value with yi ∈ R its label. In conformal prediction, it is not possible
in regression to replace ŷ with all possible values in R when calculating
the non-conformity score for each new object xn+1. Thus, the result of
a conformal regressor is to produce a prediction interval depending on
the chosen significance level. In this case, the inductive conformal setting
follows these steps:

1. Split the original training data set Z = *z1, . . . , zn+ into a proper
training set Ztr = *z1, . . . , zl+, with |Ztr| = l and a calibration set
Zcal = *zl+1, . . . , zn+, with |Zcal| = n− l = q.

2. Train a regression underlying algorithm on Ztr, and get the non-
conformity measure Al. The standard non-conformity measure is the
absolute difference between the actual value yi and the predicted
value ŷi by the underlying algorithm:

Al = αi = |yi − ŷi|. (3.12)

3. For each example zi of Zcal, calculate the non-conformity score αi to
get the sequence α1, . . . ,αq.
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4. Set a significance level ε ∈ (0, 1) depending on the desired confidence
level.

5. Sort the calibration non-conformity scores α1, . . . ,αq in a descend-
ing order and get the index of the (1 − ε)-percentile of the non-
conformity score αs, such as αs := αd(1−ε)·qe. Thus, we obtain:

P (αi 6 αs) > 1− ε. (3.13)

6. For a new object xn+1, get the underlying algorithm’s prediction ŷn+1
and compute its conformal prediction interval:

Γε(xn+1) = [ŷn+1 −αs, ŷn+1 +αs] . (3.14)

Using the standard non-conformity measure in (3.12) means that all
prediction intervals have the same size 2αs. Hence, the standard prediction
interval does not reflect the difficulty of predicting yi for each individual
example xi. Using a normalized non-conformity measure provides indi-
vidual bounds for each example by scaling the standard non-conformity
measure with a difficulty estimator σi, so that the prediction interval is
smaller for “easy” examples, and bigger for “hard” examples. In this case,
the non-conformity measure becomes:

αi =
|yi − ŷi|

σi
. (3.15)

Thus, we have:

P

(
|yi − ŷi|

σi
6 αs

)
> 1− ε, (3.16)

which becomes an equality if the method is perfectly calibrated. For a new
object xn+1, the prediction interval is expressed as:

Γε(xn+1) = [ŷn+1 −αsσn+1, ŷn+1 +αsσn+1] . (3.17)

There are a lot of ways to calculate σi. Table 3.1 presents some of the
well-known methods to do so.

Figure 3.4 illustrates the difference in interval sizes between two objects
that have the same prediction from the underlying regressor, but have
different difficulty estimator values, mainly since object x1 is located in a
high density region, making it easier to predict compared to x2, which is
located in a low density region.

3.4 mondrian conformal prediction (mcp)

Mondrian Conformal Prediction (MCP) is a variant of conformal predic-
tion that provides a guarantee on a subset of the data set, or on specific
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Normalizing Algorithm Difficulty Estimator Description

Artificial Neural Network σi = exp(µi) +β, with µi = ln(|yi − ŷi|), Estimates the error of the underlying
algorithm by predicting the value µi.

[Papadopoulos et al., 2011b] β > 0 is a sensitivity parameter.

k-nearest neighbors σi = exp(γλki ), with λki =
dki

median(dkj ,zj∈Ztr)
, Measures dki , the sum of the distance of

zi from its k-nearest neighbors xi1 , . . . , xik ,
and normalizes it with the median of all
dkj over all training examples.

[Papadopoulos et al., 2011a] where dki =
∑k
j=1δ(xi, xij), δ is a distance

and γ > 0 is a sensitivity parameter.

k-nearest neighbors σi = exp(γλki ) + exp(ρξki ), with ξki =
ski

median(skj ,zj∈Ztr)
, Adds the parameter ξki to the previous

difficulty estimator that calculates the
standard deviation ski of the outputs and
scales it with the median of all standard
deviations skj of all training examples.

[Papadopoulos et al., 2011a] where ski =
√
1
k

∑k
j=1(yij − yi1...k)

2

and yi1...k = 1
k

∑k
j=1yij ,

ρ > 0 is a sensitivity parameter.

Table 3.1: Difficulty estimator examples for normalized non-conformity
measures in regression.

Figure 3.4: Conformal interval predictions of two examples with the same
regressor prediction value.

categories of the data set. This variant is originally established for a classi-
fication problem by creating class-conditional or attribute-conditional cat-
egories [Vovk et al., 2003]. However, a mondrian version exists for regres-
sors [Boström et al., 2020]. We will only focus on the class-conditional
conformal classifier that guarantees an error rate for each class based on
the chosen confidence level.

The main difference between an inductive conformal classifier and
a class-conditional conformal classifier is in the computation of the
p-value (3.10), in which, instead of taking all non-conformity scores αi
in the calibration set, we only consider those related to the examples
belonging to the same class we are hypothetically testing for the object
xn+1. The p-value becomes:

π
Ck
n+1 =

|{i ∈ 1, . . . ,q : yi = Ck,αCkn+1 6 αi}|
|{i ∈ 1, . . . ,q : yi = Ck}|

. (3.18)
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Class-conditional MCP is mostly used when data is imbalanced, in
order to maintain the same error rate even for the minority class. Figure 3.5
illustrates the prediction sets that we can obtain using the same examples,
calibration data and chosen ε as in Figure 3.3 for ICP, but with Equation
(3.18) instead. This shows the changes in predictions for the blue example.

ε = 0.2
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= 0.66
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π1 = 8
10

= 0.80

π0 = 1
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= 0.16

∅

π1 = 2
10

= 0.20

π0 = 1
6
= 0.16

∅

π1 = 1
10

= 0.10

Figure 3.5: Illustrative examples of class-conditional MCP sets for a binary
classification problem.

3.5 example : density-based conformal prediction for clas-
sification

This section will showcase the relevance and flexibility of conformal pre-
diction, by applying it to different data types and ML problems based
on [Hechtlinger et al., 2018] and presented in our paper [Messoudi et al.,
2020b].

3.5.1 Method

The main idea of this approach relies on a density estimate p̂(x | y) of
p(x | y) for the label y ∈ Y. These are then used to build a class-conditional
threshold t̂y to which will be compared future observations such as:

t̂y = sup

{
t :

1

ny

∑
{zi∈Zcaly }

I(p̂(xi | y) > t) > 1− ε

}
, (3.19)

where ny is the number of elements belonging to the class y in Zcal, and
Zcaly = {zi ∈ Zcal : yi = y} is the subset of calibration examples of class y.
For a new object xn+1, we set the conformal predictor Γεd such that:

Γεd(xn+1) =
{
y ∈ Y : p̂(xn+1 | y) > t̂y

}
. (3.20)
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We can rewrite (3.20) so that it approaches (3.11) with a few differences.
The main ones are the fact that Γεd uses a conformity measure (calculating
how much an example is compliant with the others) instead of a non-
conformity measure as in Γε, with αyi = −p̂(xi | y) [Vovk et al., 2005], and
that the number of examples used to build the prediction set depends on y.
Another difference is the use of “greater or equal” sign in equations (3.21)
and (3.19) that should be replaced by a “greater” sign in order to have an
equivalence, and thus rewrite Γεd as:

Γε(xn+1) =

{
y ∈ Y :

|{zi ∈ Zcaly : αyi > α
y
n+1}|

ny
> ε

}
. (3.21)

Proposition 1 The equations

Γε(xn+1) =

{
y ∈ Y :

|{zi ∈ Zcaly : αyi > α
y
n+1}|

ny
> ε

}
, (3.22)

and Γεd(xn+1) = {y ∈ Y : p̂(xn+1 | y) > t̂y}, (3.23)

such that t̂y = sup

{
t :

1

ny

∑
{zi∈Zcaly }

I(p̂(xi | y) > t) > 1− ε

}
,

are equivalent.

Proof 1 Let f(t) be the decreasing function

f(t) =
1

ny

∑
{zi∈Zcaly }

I(p̂(xi | y) > t).

Let us prove that (3.23) =⇒ (3.22).
Let y ∈ Γεd(xn+1). Since t̂y is the upper bound such that f(t̂y) > 1− ε, then

p̂(xn+1 | y) does not satisfy this inequality, thus:

f(p̂(xn+1 | y)) =
1

ny

∑
{zi∈Zcaly }

I(p̂(xi | y) > p̂(xn+1 | y)) < 1− ε

=
1

ny

∑
{zi∈Zcaly }

1− I(p̂(xi | y) 6 p̂(xn+1 | y)) < 1− ε

= 1−
1

ny

∑
{zi∈Zcaly }

I(p̂(xi | y) 6 p̂(xn+1 | y)) < 1− ε

Thus we have:

1

ny

∑
{zi∈Zcaly }

I(p̂(xi | y) 6 p̂(xn+1 | y)) > ε (3.24)
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Since p̂(xn+1 | y) is a conformity score, whereas αyi is a non-conformity score,
we can write p̂(xn+1 | y) = −αyi [Vovk et al., 2005]. So (3.24) becomes

1

ny

∑
{zi∈Zcaly }

I(αyi > α
y
n+1) > ε =⇒

|{zi ∈ Zcaly : αyi > α
y
n+1}|

ny
> ε

This shows that (3.23) =⇒ (3.22).

Let us now prove that (3.22) =⇒ (3.23). Using the indicator function of
the complement, and changing the non-conformity score into a conformity score
as shown before, we can simply find that

|{zi ∈ Zcaly : αyi > α
y
n+1}|

ny
> ε =⇒ 1

ny

∑
{zi∈Zcaly }

I(p̂(xi | y) > p̂(xn+1 | y)) < 1−ε

Using the same function f, we then have

f(p̂(xn+1 | y)) < 1− ε. (3.25)

Let us show by contradiction that p̂(xn+1 | y) > t̂y.
Suppose that p̂(xn+1 | y) 6 t̂y. Since f is a decreasing function, we have
f(p̂(xn+1 | y)) > f(t̂y). By the definition of t̂y, we have f(t̂y) > 1− ε. Thus
f(p̂(xn+1 | y)) > f(t̂y) > 1− ε. However, this contradicts (3.25). So we proved
that (3.22) =⇒ (3.23), which concludes the proof.

�

The training and prediction algorithms for density-based conformal
classification are defined in the algorithms 1 and 2.

Algorithm 1 Training algorithm

Input: Training data Z = (xi,yi), i = 1 . . . n, Class list Y, Confidence
level ε, Ratio p.
Initialize: p̂list = list, t̂list = list
for y ∈ Y do

Xtry , Xcaly ←− SubsetData(Z, Y,p)
p̂y ←− LearnDensityEstimator(Xtry )
t̂y ←− Quantile(p̂y(Xcaly ), ε)
p̂list.append(p̂y); t̂list.append(t̂y)

end for
return p̂list, t̂list
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Algorithm 2 Prediction algorithm

Input: Input to be predicted x, Trained p̂list, t̂list, Class list Y.
Initialize: C = list
for y ∈ Y do

if p̂y(x) > t̂y then
C.append(y)

end if
end for
return C

3.5.2 Experimental setting

To examine the effectiveness of the conformal method on different data
types, three data sets for binary classification were used. They are
CelebA [Liu et al., 2015], an image data set to determine a person’s
gender, IMDb [Maas et al., 2011], a textual data set describing film
reviews for sentiment analysis, and EGSS [Arzamasov, 2018], a tabular
data set for the study of electrical networks stability.

The overall approach1 (presented in Figure 3.6) follows the same steps
as in ICP for classification and meets the conditions listed above (the i.i.d.
or exchangeability assumptions). The detailed approach is as follows:

1. Divide the data set into proper training Ztr = (Xtr, Ytr), calibration
Zcal = (Xcal, Ycal) and test Zts = (Xts, Yts) sets.

2. Use Ztr to train the DL model corresponding to each type of data.

3. Exploit the last before dense layer as a feature extractor to obtain a
vector of size 50 that represents the object (image for CelebA, text for
IMDb, or vector for EGSS).

4. Use a Gaussian kernel density estimator of bandwidth 1 available in
Python’s scikit-learn on Ztry of each class y.

5. Compute the density scores p̂(xcal | y) for calibration data Zcaly and
sort them in descending order to determine the chosen ε threshold
t̂y for each class y to delimit their density regions.

6. With Zts, compute the density score of each object for each class
p̂(xts | y) and compare them to t̂y to obtain the prediction set Γεd(x

ts).

The architecture deployed for CelebA for computer vision is shown in
Figure 3.7 and described as follows:

1 The code is available on GitHub at https://github.com/M-Soundouss/density based
conformal prediction

https://github.com/M-Soundouss/density_based_conformal_prediction
https://github.com/M-Soundouss/density_based_conformal_prediction
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• Load the ResNet50 base model [He et al., 2016] pre-trained on the
data set ImageNet [Deng et al., 2009].

• Fit the model to CelebA by adding dropouts and max pooling to the
output.

• Use an intermediate dense layer as a feature extractor with a vector of
size 50 representing the image, which will be used later for conformal
prediction (image representation).

• Add a dense layer with one single neuron to obtain the class of the
image (male or female).

Figure 3.7: Architecture of the CNN model for CelebA.

The architecture implemented for IMDb for opinion mining is shown
in Figure 3.8 and described as follows:

• Do an embedding of the input data to transform the positive integers
into dense vectors of fixed size 50.

• Apply a bidirectional GRU (Gated Recurrent Unit).

• Apply max pooling and a dense layer of size 256.

• Apply a second dense layer of size 50 that will be used as a feature
extractor with a vector of size 50 representing the text, which will be
dedicated later for conformal prediction (text representation).

• Add a dense layer with one single neuron to obtain the class of the
text (positive or negative).

The architecture used for EGSS to deal with tabular data is shown in
Figure 3.9 and described as follows:
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Figure 3.8: Architecture of the GRU model for IMDb.

• Apply a dense layer of size 128 on the input data.

• Fit the model to CelebA by adding dropouts and max pooling to the
output.

• Use an intermediate dense layer as a feature extractor with a vector of
size 50 representing the vector, which will be used later for conformal
prediction (vector representation).

• Add a dense layer with one single neuron to obtain the class of the
vector (stable or unstable).

Figure 3.9: Architecture of the MLP model for EGSS.

Figure 3.10 visualizes the density regions via a Principal Component
Analysis with a dimension reduction from R50 to R2. Results show the
distinct regions of the classes 0 (in red) and 1 (in blue) with a non-empty
intersection (in green) representing a region of aleatoric uncertainty, i.e. an
ambiguity region with both classes overlapping. In this case, the conformal
classifier returns a {0, 1} set. The points outside these three regions belong
to the region of epistemic uncertainty, meaning a poorly informed region
with out-of-distribution data. In this case, the conformal classifier “does
not know” and returns an empty set ∅.
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Figure 3.10: Conformal prediction density regions for all data sets.

3.5.3 Results on test examples

To obtain more information, we calculated the accuracies on Zts with dif-
ferent values for 0.01 6 ε 6 0.5, by considering ŷDLi the prediction of the
underlying DL model (CNN, GRU or MLP), ŷCONFi the prediction of the
conformal pipeline, and by introducing the term V = {i | ŷCONFi ∈ {{0}, {1}}},
i.e. the conformal singleton prediction samples. These accuracies are:

• DL accuracy: the accuracy of the underlying DL model, meaning:

DL accuracy =
1

n

∑
i

IŷDLi =yi
.

• Valid conformal accuracy: the accuracy of the conformal classifier
when only considering the singleton predictions 0 or 1 (without tak-
ing into account the {0, 1} and the empty sets), expressed as:

Valid conformal accuracy =
1

|V |

∑
i∈V

IŷCONFi =yi
.

• Valid DL accuracy: the accuracy of the underlying DL model on test
examples for which the conformal classifier predicts 0 or 1, i.e.:

Valid DL accuracy: =
1

|V |

∑
i∈V

IŷDLi =yi
.

The percentage of empty sets ∅ and {0, 1} sets was also calculated from
all the predictions made by the conformal classifier on Zts. Results are
shown on Figure 3.11.
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Figure 3.11: The accuracy and the percentages according to ε for CelebA
(top), IMDb (middle) and EGSS (bottom).

When it comes to accuracy, results show that the addition of conformal
prediction to a deep learning model does not degrade its performance
when it predicts only one class, but even improves it (for EGSS). The
conformal approach abstains from predicting (empty set ∅) or predicts
both classes for ambiguous examples, thus making it possible to have a
more reliable prediction of the label. It is also noticed that as ε grows, the
percentage of predicted {0, 1} sets decreases until it is no longer predicted
(at ε = 0.15 for CelebA for example). Conversely, the opposite is observed
with the percentage of empty sets ∅ which escalates as ε increases.
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3.5.4 Illustration on noisy and foreign examples

celeba Two types of noise were introduced: a noise masking parts of
the face and another Gaussian on all the pixels. These perturbations and
their predictions are illustrated in Figure 3.12 with “CNN” the prediction
of the underlying DL model and “CNN + CP” that of the conformal classi-
fier. This example shows that both models correctly identify the woman in
image (a). However, by masking image (b), the CNN predicts it as a man
with a score of 0.6 whereas the model of conformal prediction is more cau-
tious by indicating that it does not know (∅). When applying a Gaussian
noise over the whole image (c), the CNN predicts that it is a man with a
larger score of 0.91, whereas the conformal classifier predicts both classes.
For outliers, examples (d), (e), and (f) illustrate the ability of the confor-
mal model to identify different outliers as such (∅) in contrast to the deep
model that predicts them as men with a high score.

Figure 3.12: Examples of noisy and outlier images for CelebA.

imdb Figure 3.13 displays a comparison of two texts before and after
randomly changing a few words (in bold) by others in the model’s vocabu-
lary. The actual text is correctly predicted as negative by both models, but
once it is noisy, it becomes positive for the GRU. However, the conformal
classifier is more cautious by indicating that it can be both cases ({0, 1}).
For the outlier example formed completely of vocabulary words, the GRU
model predicts positive with a score of 0.99, while the conformal classifier
correctly identifies it as meaningless text (∅).



34 3.6 conclusion

Figure 3.13: Examples of noisy and outlier texts for IMDb.

egss Figure 3.14 visualizes through a Principal Component Analysis a
comparison of the positions of the test examples on the density regions
before (a) and after (b) the addition of a Gaussian noise. This shows that
several examples are positioned outside the density regions after the intro-
duction of the disturbances. The outlier examples (c) created by modifying
some characteristics of these test examples with extreme values (to simu-
late a sensor failure, for instance) are even further away from the density
regions, and recognized as such by the conformal classifier (∅).
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Figure 3.14: Density visualization of noisy and outlier examples for EGSS.

3.6 conclusion

In this chapter, we structured some main concepts of conformal prediction
and showed via an application how it can be used to have more reliable
and cautious models for different data types (image, text, tabular) by de-
tecting ambiguous examples and handling noisy and outlier ones.

In the next chapter, we will focus on applying conformal prediction to
a more complex learning problem, which is multi-target regression.



Chapter 4

Conformal prediction for multi-

target regression

Man’s mind once stretched by a new idea, never
regains its original dimension.

— Oliver Wendell Holmes
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The most common supervised task in Machine Learning is to learn a
single-output prediction model. However, this setting can be generalized
to multi-task learning [Caruana, 1998], where the objective is to predict
multiple outputs from the input features characterizing the data set. For
instance, multi-label classification focuses on having numerous binary out-
puts [Zhang et al., 2013], label-ranking algorithms can be seen as problems
with ordinal target values [Vembu et al., 2010], and multi-target regression
considers real output values [Borchani et al., 2015]. A multi-output learn-
ing algorithm can be improved by providing an estimate of the confidence
to be placed in its predictions. This can be a great added value when it
comes to real-world applications with scarce data (for instance in the med-
ical domain where examples are very hard to collect for specific targets,
and where predictions are used for critical decisions) or with multiple,
possibly correlated output variables to predict at once. It is then natural to
try to leverage such correlations to improve predictions.

Most research work on conformal prediction for multi-task learning fo-
cuses on the problem of multi-label classification [Wang et al., 2015; Wang
et al., 2020], where each task is a binary classification one. Conformal
prediction for multi-target regression has been less explored, even though
it can be quite useful in practice. To our knowledge, only a few stud-
ies deal with conformal prediction for multi-target regression: [Kuleshov
et al., 2018] provide a theoretical framework to use conformal predictors
within manifold (e.g., to provide a unidimensional embedding of the multi-
variate output), while [Neeven et al., 2018] use a straightforward multi-
target extension of a conformal single-output k-nearest neighbor regres-
sor [Papadopoulos et al., 2011a] to provide weather forecasts. However,
this latter essentially verifies validity (i.e., having well-calibrated outputs)
for each individual target.

In this chapter, we go through this largely unexplored area by extend-
ing single-output regression methods in conformal prediction to the multi-
target problem, and come up with other non-conformity measures that
take into consideration the correlation between the outputs.

The first section will briefly present the multi-target regression setting,
with details about data and metrics that we take into account for our con-
formal approaches. The second section will focus on a naive conformal
approach that treats targets independently (as in our paper [Messoudi et
al., 2020a]). The third section will exploit copulas to consider the depen-
dence structure between the targets in the conformal approach (which is
the main contribution of our paper [Messoudi et al., 2021c]). The last sec-
tion will concentrate on an ellipsoidal approach that gives a more flexible
conformal region (which is thoroughly explained in our paper [Messoudi
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et al., 2022a]). Thus, most of the content of this chapter will be taken from
these cited papers.

4.1 multi-target regression (mtr)

In this section, we will introduce the multi-target regression setting and
the considered metrics used to evaluate our methods. We will also present
the synthetic and real-world data sets on which our experiments are con-
ducted.

4.1.1 An overview on MTR

Let us consider a multi-target regression problem. As seen before, we have
the same setting of z1 = (x1,y1), z2 = (x2,y2), . . . , zn = (xn,yn) successive
examples drawn from a distribution on the example space Z := X×Y, with
xi ∈ X an object in the vector space of objects X and yi = (y1i , . . . ,y

m
i ) ∈ Y

its target, where, in this case, the target space Y = {y1, . . . ,ym} ⊂ Rm

is made of m real-valued targets (we will use superscripts to denote the
dimensions, and subscripts to denote sample indices). This simply means
that the objective of multi-target regression is to predict multiple outputs
based on the input features characterizing the data set, which generalizes
standard regression. There are two distinct approaches to treat MTR called
algorithm adaptation and problem transformation methods.

For algorithm adaptation, standard single-output regression algorithms
are extended to the multi-target regression problem. Many models
were adapted to the MTR problem, such as Support Vector Regres-
sors [Sánchez-Fernández et al., 2004], regression trees [De’Ath, 2002],
kernel methods [Baldassarre et al., 2012] and rule ensembles [Aho et al.,
2009].

In problem transformation, one usually adapts multi-target regression
data sets to the single-target regression task, building a model for each
output and then regrouping all the predictions. Many renowned multi-
label classification problem transformation methods were extended to the
multi-target regression case by [Spyromitros-Xioufis et al., 2012], such as:

• Binary relevance [Li et al., 2003]: creates m data sets, one for each
label. One binary classifier is then trained on each data set indepen-
dently, and the prediction for a new example is the union of all the
m predictions of all single-label classifiers.

• Classifier chains [Read et al., 2011]: decides on an order for all
labels, and then each binary classifier for each label adds all previous
classifier predictions as additional features.

As our goal here is not to produce a new MTR method, but rather
to propose a flexible means to make the predictions reliable through
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conformal inference, we will not make a more detailed review of those
methods. The reader interested in different methods can consult for
instance [Spyromitros-Xioufis et al., 2016].

4.1.2 Evaluation of conformal MTR

As seen in subsection 3.2, performance metrics usually considered for con-
formal prediction are validity and efficiency. These same metrics will be
employed to evaluate our methods by adapting them to the MTR setting.
In this case, we will define a global significance level εg, which is the error
rate of the m-dimensional confidence region generated by conformal pre-
diction. More details about how to define εg will be given for each method
in the upcoming sections.

Validity is computed by calculating the accuracy of each non-
conformity measure (NCM) and comparing it with the calibration line.
This line represents the case where the error rate is exactly equal to εg for
a confidence level 1− εg, which is the desired outcome of using conformal
prediction. In multi-target regression, the accuracy is computed based on
whether the observation y of object x belongs to the conformal prediction
region [Γεg(x)] or not depending on the chosen significance level εg.

Concretely, for each considered confidence level εg and new object xn+1
in the test set Xts, we obtain a prediction [Γεg(xn+1)]. From this, we can
compute the empirical validity as the percentage of times that [Γεg(xn+1)]
contains the true observed value yn+1, i.e.

Val ([Γεg(xn+1)]) =

∑
(xn+1,yn+1)∈Zts 1yn+1∈[Γεg(xn+1)]

|Zts|
.

Doing it for several values of εg, we obtain a calibration curve that should
be as close as possible to the identity function in order for the conformal
approach to be exactly valid. This enables us to introduce another metric,
area of validity, which provides the average difference between a perfect
calibration (the identity function) and the observed curve. This means, in
particular, that a negative value indicates that the observed frequency is in
average below the specified confidence degree.

Efficiency in single-output regression is measured by the size of the
intervals, and a method is all the more efficient as predicted intervals
are small. To assess efficiency in multi-target regression, we can simply
compute the volume of the obtained predictions. For each experiment, we
then compute the median value of those volumes (for the estimation to be
robust against very large conformal prediction regions), thus we have:

Eff([Γεg(xn+1)]) = Vol([Γ
εg(xn+1)]).
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Since the volume of an area depends on its shape, efficiency will be
defined differently for each conformal approach in its own section.

4.1.3 Data description

For comparison purposes, we chose to apply our methods on the same syn-
thetic and real data sets. Thus, it is essential to present them before giving
more details on our conformal approaches to treat multi-target regression.

On synthetic data

The synthetic data set aims at assessing the performance of all our methods
by controlling the dependence structure between the outputs. It contains
50000 instances and is created as follows:

• x is 2-dimensional with x1 and x2 generated independently using a
uniform distribution with values between −5 and 5.

• y is a 2-dimensional linear transformation of x plus some Gaussian
centered noise:

y = Ax+ ε with A =

[
0.7 0.3
0.2 0.8

]
and ε ∼ N(0,Sx).

The covariance matrix Sx of ε depends on x and is a weighted average
of four covariance matrices at four different points µi:

Sx =

4∑
i=1

∆(x,µi)∑4
j=1∆(x,µj)

×Covµi (4.1)

where ∆ is an inverse distance calculated as follows:

∆(x,µi) =
(

1

d(x,µi) + ξ

)4
(4.2)

with ξ a small value used to avoid a division by 0. Figure 4.1 shows
the four µi points that are placed at the extremities of our distribution
with the following coordinates:

µ1 = (−5, 5), µ2 = (5, 5), µ3 = (−5,−5), µ4 = (5,−5)

These µi points have the distinct covariance matrices Covµi :

Covµ1 = Covµ4 =
[
0.1 −0.09

−0.09 0.1

]
, Covµ2 = Covµ3 =

[
0.1 0.09
0.09 0.1

]
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Figure 4.1: Representation of µi points and their covariance matrices.

On real data

We also used 19 data sets with various numbers of targets to compare be-
tween the different conformal approaches. These data sets are from Mulan
and the UCI repository. Their information is summed up in Table 4.1.

Names Instances Features Targets Source
res building 372 105 2 [Rafiei et al., 2016]
enb 768 8 2 [Tsoumakas et al., 2011]
music origin 1059 68 2 [Zhou et al., 2014]
bias corr 7750 25 2 [Cho et al., 2020]
jura 359 15 3 [Tsoumakas et al., 2011]
scpf 1137 23 3 [Tsoumakas et al., 2011]
indoorloc 21049 520 3 [Torres-Sospedra et al., 2014]
sgemm 241600 14 4 [Nugteren et al., 2015]
atp1d 337 411 6 [Tsoumakas et al., 2011]
atp7d 296 411 6 [Tsoumakas et al., 2011]
rf1 9125 64 8 [Tsoumakas et al., 2011]
rf2 9125 576 8 [Tsoumakas et al., 2011]
osales 639 413 12 [Tsoumakas et al., 2011]
wq 1060 16 14 [Tsoumakas et al., 2011]
scm1d 9803 280 16 [Tsoumakas et al., 2011]
scm20d 8966 61 16 [Tsoumakas et al., 2011]
oes10 403 298 16 [Tsoumakas et al., 2011]
oes97 334 263 16 [Tsoumakas et al., 2011]
com crime 2215 125 18 [Redmond, 2011]

Table 4.1: Information on the used multi-target regression data sets.

After presenting the multi-target regression setting and the different
data sets used in our experiments, we will now detail how conformal
prediction and multi-target regression can be combined, starting with the
naive conformal MTR approach..
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4.2 naive conformal mtr

Within the MTR setting, instead of having one single real-valued output,
we have a multi-dimensional output Y = {y1, . . . ,ym} with yj ∈ R, j ∈
{1, . . . ,m} the different individual real-valued m targets. In this first ap-
proach, we make target-wise predictions. This implies that for each in-
dividual target, a conformal inference approach will need to produce an
individual interval prediction. Thus, given a new object xn+1 and a global
significance level εg, we can define a hyper-rectangle [Γεg(xn+1)] as:

[Γεg(xn+1)] = ×mj=1[ŷjn+1, ŷ
j
n+1]. (4.3)

where × is a Cartesian product, m is the number of targets and ŷjn+1, ŷ
j
n+1

are respectively the lower and upper bounds of the interval predictions
given by the non-conformity measure for each target in Y. This hyper-
rectangle forms the volume:

Vol([Γεg(xn+1)]) =

m∏
j=1

(ŷ
j
n+1 − ŷ

j
n+1

).

Thus, validity for a conformal approach based on a hyper-rectangle will be
calculated based on the times where a global ground-truth yn+1 of a new
object xn+1 belongs to this volume, i.e. each single ground-truth yjn+1 for

each individual target yj should be between the bounds ŷjn+1, ŷ
j
n+1 of its

interval prediction. Efficiency will consist on computing this volume that
should be as tight as possible. Figure 4.2 illustrates this hyper-rectangle
for a 2-dimensional multi-target regression problem.

yn+1
ŷn+1

ŷ2n+1

ŷ2n+1

ŷ1n+1 ŷ1n+1

[Γεg(xn+1)]

P
(
y1n+1 ∈

[
ŷ1n+1, ŷ

1
n+1

])
= 1− ε

P (
y
2n
+
1
∈ [ŷ

2n
+
1 ,ŷ

2n
+
1 ])

=
1
−
ε

y1

y2

Figure 4.2: Illustration of a hyper-rectangle conformal region.
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With this view, the objective of conformal inference for MTR is to satisfy
the global significance level εg required by the user such that:

P(yn+1 ∈ [Γεg(xn+1)]) > 1− εg. (4.4)

This probability can also be expressed using the individual interval
predictions for each target Yj as follows:

P(y1n+1 ∈ [y1n+1,y1n+1], . . . ,y
m
n+1 ∈ [ymn+1,ymn+1]) > 1− εg. (4.5)

In this case, εg comes from choosing the corresponding individual sig-
nificance levels ε1, . . . , εm that allow us to obtain the sought-after confi-
dence level 1− εg for the whole hyper-rectangle in order to verify that a
correctly predicted example must have all of its m observed values yj in
the corresponding interval predictions for each target.

To do so, we propose a naive approach that considers all individual
significance levels as equal, i.e. ε1 = . . . = εm = εt and that all targets
are independent. This means that the actual confidence level of the hyper-
rectangle is estimated as:

1− εg =

m∏
j=1

(1− εj) = (1− εt)
m (4.6)

This can be linked to the simple and conservative approach of Bonfer-
roni correction [Weisstein, 2004] in a multiple-comparison correction case.

To adapt the conformal prediction framework to the multi-target re-
gression problem, we can calculate the corrected value of εt that should be
used in order to obtain a global εg, so as to get an overall confidence level
of the hyper-rectangle 1− εg. This corrected εt is defined as follows:

εt = 1−
m
√
1− εg ≈

εg

m
when εg is small. (4.7)

Our experiments focus on this corrected individual significance level.
Apart from this assumption, we use the possible links between yj when

proposing other extensions to existing NCMs following two main ideas.
The first one is to learn the normalizing coefficients by a multi-target
model. Thus, this latter will exploit the information coming from training
each task and will share representations between related targets in order to
generalize better and give greater performance results (see [Ruder, 2017]
and [Caruana, 1993]). The second idea is to use a deep fixed-length repre-
sentation of the data that was learned from trying to predict all the targets
at once when calculating the normalizing coefficient in k nearest neighbors
based non-conformity measures, thus embedding the correlation informa-
tion in the deep network layers. This is based on the fact that using repre-
sentations of the examples instead of the raw instances is a good method
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to boost the performance of the neural network on tabular data by helping
it generalize better (see [Guo et al., 2016] and [De Brébisson et al., 2015]).

4.2.1 Naive non-conformity measures

Since we will compute the non-conformity scores on each target individu-
ally and will adjust them to fit the MTR case by recalculating the needed
εt, we will express non-conformity measures for a single target yi. We use
three existing normalized non-conformity measures described in Table 3.1
of Chapter 3 in the single-output regression as follows:

• SINGLE: uses the normalized non-conformity measure:

αi =
|yi − ŷi|

exp(µi) +β
, (4.8)

where each µi = ln(|yi − ŷi|) is estimated by a single deep neural
network trained on each output separately.

• Original k-NN (O-KNN): adopts the k-nearest neighbors non-
conformity measure:

αi =

∣∣∣∣∣ yi − ŷiexp(γλki )

∣∣∣∣∣ , (4.9)

based on λki only, with the distances calculated between the original
form of the examples xi. We recall that:

λki =
dki

median(dkj , zj ∈ Ztr)
, dki =

∑k

j=1
δ(xi, xij),

where δ is a distance.

• Original k-NN with Standard Deviation (OS-KNN): adopts the k-
nearest neighbors non-conformity measure:

αi =

∣∣∣∣∣ yi − ŷi

exp(γλki ) + exp(ρξki )

∣∣∣∣∣ , (4.10)

based on λki and ξki , with the distances calculated between the origi-
nal form of the examples xi. We recall that:

ξki =
ski

median(skj , zj ∈ Ztr)
,

where ski =

√
1

k

∑k

j=1
(yij − yi1...k)

2 and yi1...k =
1

k

∑k

j=1
yij .
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To these existing non-conformity measures, we add three new ones
defined as:

• MULTI: trains a single deep neural network to estimate the normal-
izing coefficients µi in (4.8) for all outputs at the same time.

• Representation k-NN (R-KNN): instead of using the original form
of the data, it employs the learned deep representations of the ex-
amples extracted from the before last dense layer of the underlying
algorithm’s neural network to compute dki in λki for the k-nearest
neighbors non-conformity measure (4.9).

• Representation k-NN with Standard Deviation (RS-KNN): uses the
k-nearest neighbors non-conformity measure (4.10) with λki and ξki
where the learned deep representations of the examples are used to
calculate dki .

4.2.2 Experimental setting

Since Transductive Conformal Prediction (Section 3.1) is not computation-
ally efficient when using deep learning architectures, we use the Inductive
Conformal Prediction (ICP) framework in order to only train the underly-
ing deep neural network model once. Hence, we follow the steps in Figure
4.3:

1. Split the data set into proper training Ztr, calibration Zcal and test Zts.

2. Use Ztr to train the underlying algorithm, which is a deep neural
network, and get the output predictions and the representations of
each example.

3. For each non-conformity measure, learn the appropriate normalizing
algorithm (deep neural network for SINGLE and MULTI NCMs, and
kNN on the original examples for O-KNN and OS-KNN NCMs and
their representations for R-KNN and RS-KNN NCMs) using Ztr.

4. After choosing εg, calculate the corrected εt as in Equation (4.7) and
compute the individual non-conformity scores for all targets for each
NCM by using Zcal in order to obtain their individual αjs for j ∈
{1, . . . ,m}.

5. For each new object xn+1 in Zts, predict ŷ and its representation using
the underlying neural network, and compute all of its individual
interval predictions to form the hyper-rectangle depending on the
chosen significance level εg for each NCM.
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Since we are working with neural networks, we normalize all the fea-
tures and targets to have a mean of 0 and a standard deviation of 1 as a
pre-processing step in order to make the deep neural network optimization
easier. Then, we conduct all our experiments with 10-folds cross validation,
meaning that each data set is split into 10 equally-sized folds and the ex-
periments are repeated for each k fold as the test set and the remaining
k− 1 sets as the training set. This procedure is necessary in order to elim-
inate biased results caused by a specific split of the data or the examples
chosen in the calibration set. The results are thus averaged on all 10 folds.

The overall focus of this naive approach is to compare between the
different non-conformity measures presented above. Thus, for all exper-
iments on all data sets, we keep the same amount of examples in the
calibration set, which is 10% of the training examples. We also do not
optimize the sensitivity parameters for each data set and use the same val-
ues, which are β = 0.1 for SINGLE and MULTI NCMs, and γ = ρ = 0.5 for
the remaining NCMs. Moreover, we keep the same underlying Machine
Learning algorithm for all experiments, which is a deep neural network.
Its architecture is as follows:

• Apply a dense layer to the input (with the number of the continuous
features and the number of one hot values for the categorical fea-
tures), with “selu” activation (scaled exponential linear units [Klam-
bauer et al., 2017]).

• Add three other hidden dense layers with dropouts and “selu” acti-
vation.

• Add a dense layer with “selu” activation and use it as a feature
extractor to produce a representation vector with a fixed size.

• Add a final dense layer with m neurons representing the targets and
a linear activation to get the outputs predicted by the model.

The results of this deep neural architecture will enable us to cal-
culate values of the normalizing coefficients for the corresponding
non-conformity measure:

• µi: estimate the error ln(|yi − ŷi|) which will be learned by the
normalizing neural network. This Multi-Layer Perceptron (MLP) is
composed of three hidden dense layers with “selu” activation and
dropouts and a final dense layer with one output for each target
separately in the case of the SINGLE non-conformity measure, or
with m neurons for all targets at once in the case of the MULTI
non-conformity measure.

• λki and ξki : use the deep representations of each example to compute
dki for the k-nearest neighbors based non conformity measures R-
KNN and RS-KNN.
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4.2.3 Results on synthetic data

Using the synthetic data set described above, we computed the mean va-
lidity and efficiency (surface) of all non-conformity measures for different
values of εg. Results in Table 4.2 show that they all have similar perfor-
mances when it comes to validity, i.e. they are valid, but become a little
bit over-conservative as εg grows. For efficiency, the MULTI NCM slightly
outperforms the others, giving the tighter conformal prediction regions.

synthetic (k = 2) εg = 0.01 εg = 0.05 εg = 0.1 εg = 0.15 εg = 0.2

Validity SINGLE 99.14± 0.09 95.60± 0.20 91.29± 0.37 86.71± 0.46 82.37± 0.65
MULTI 99.16± 0.08 95.51± 0.24 91.20± 0.32 86.79± 0.41 82.39± 0.56
O-KNN 99.15± 0.10 95.65± 0.19 91.23± 0.41 86.81± 0.44 82.43± 0.60
R-KNN 99.17± 0.08 95.62± 0.28 91.34± 0.28 87.07± 0.51 82.62± 0.63
OS-KNN 99.16± 0.08 95.69± 0.18 91.29± 0.38 86.78± 0.49 82.52± 0.46
RS-KNN 99.18± 0.08 95.71± 0.17 91.31± 0.34 86.91± 0.52 82.60± 0.51

Efficiency SINGLE 3.60± 0.12 2.27± 0.09 1.72± 0.07 1.41± 0.06 1.19± 0.05
MULTI 3.59± 0.12 2.24± 0.08 1.71± 0.06 1.40± 0.05 1.18± 0.04
O-KNN 3.84± 0.19 2.35± 0.11 1.78± 0.09 1.44± 0.07 1.21± 0.06
R-KNN 4.12± 0.22 2.43± 0.14 1.80± 0.09 1.45± 0.07 1.20± 0.07
OS-KNN 3.80± 0.15 2.35± 0.11 1.77± 0.08 1.44± 0.07 1.21± 0.06
RS-KNN 3.86± 0.20 2.36± 0.12 1.76± 0.08 1.43± 0.07 1.20± 0.06

Table 4.2: Validity and efficiency results for synthetic data with naive con-
formal MTR.

4.2.4 Results on real data

To motivate the choice of using a corrected naive conformal MTR approach,
we compute the empirical validity for each target of the “bias corr” data
set, as well as its uncorrected hyper-rectangle validity (i.e. by choosing εt
equal to the desired hyper-rectangle’s significance level εg) in Figure 4.4.
The results show that for each target, all NCM lines are in agreement, or
slightly above the calibration line. However, when computing the validity
for the hyper-rectangle, the performance of the conformal predictors for
multi-target regression (computed without our naive correction) is less
than the calibration line, due to the observation made earlier. This proves
the utility of using our corrected naive approach to compute the actual
values of εt and obtain a 1− εg confidence level on all the hyper-rectangle.

Results of the corrected validity and efficiency using our naive confor-
mal MTR approach are summarized in Tables 4.3 and 4.4 for εg = 0.1.
Other results in a figure form for more εg values are shown in Figures 4.5
and 4.6 for “bias corr” and “sgemm” data sets. Figures for the remaining
data sets can be found in Appendix A. Note that for data sets with more
than four targets, we use a logarithmic scale to plot the median volume,
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Figure 4.4: Uncorrected empirical validity results per target for “bias corr”.

as hyper-rectangle volumes quickly decrease when lowering the required
confidence.
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Figure 4.5: Naive conformal results for “bias corr”.
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Figure 4.6: Naive conformal results for “sgemm”.

In the case of validity, results are summarized in Table 4.3 and shown
in sub-figures (a), i.e. sub-figures 4.5a, 4.6a, A.1a, A.2a, A.3a, A.4a, A.5a,
A.6a, A.7a, A.8a, A.9a, A.10a, A.11a, A.12a, A.13a.
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Data set SINGLE MULTI O-KNN R-KNN OS-KNN RS-KNN

res building 88.97± 5.48 88.67± 6.51 90.85± 3.86 90.86± 5.15 91.39± 4.50 93.02± 5.15
enb 91.55± 4.62 91.54± 3.04 89.85± 3.48 91.02± 3.22 90.11± 3.86 90.76± 4.12
music origin 92.17± 2.83 90.47± 2.57 89.62± 4.32 90.47± 4.01 89.90± 4.07 89.81± 5.02
bias corr 90.33± 0.98 90.19± 1.43 90.41± 1.22 90.31± 1.33 90.37± 1.17 90.65± 1.31
jura 91.67± 4.48 90.82± 5.55 91.09± 4.61 91.66± 4.96 91.93± 3.60 89.13± 5.62
scpf 92.88± 3.15 92.26± 2.82 91.20± 3.76 92.61± 3.71 92.61± 3.76 91.72± 3.59
indoorloc 90.94± 0.53 91.08± 0.73 91.70± 0.86 91.61± 0.98 90.74± 0.97 90.56± 0.65
sgemm 96.34± 0.13 96.40± 0.17 96.53± 0.19 96.48± 0.18 96.50± 0.18 96.32± 0.19
rf1 92.38± 0.87 92.55± 0.95 91.88± 1.35 91.69± 1.19 91.23± 1.29 91.48± 1.08
rf2 91.48± 1.18 91.44± 1.42 91.44± 1.12 91.51± 1.33 91.06± 1.75 91.94± 1.54
osales 92.97± 4.03 93.59± 4.81 95.46± 2.26 93.42± 3.43 94.37± 4.75 92.33± 3.09
wq 92.83± 2.84 91.89± 3.11 93.49± 2.88 92.26± 2.63 93.58± 2.76 92.74± 2.98
scm1d 94.25± 1.29 93.97± 1.15 93.53± 1.41 93.81± 1.20 92.51± 1.06 94.47± 1.11
scm20d 94.89± 1.18 95.16± 0.99 95.57± 0.61 94.91± 0.78 93.99± 0.84 94.62± 1.05
com crime 93.54± 2.31 93.68± 2.45 94.81± 1.71 93.95± 1.24 94.76± 1.70 94.13± 2.32

Table 4.3: Naive conformal empirical validity results for all data sets with
εg = 0.1.
In red are mean values greater than 94% and in orange are mean values between
92% and 94%.

Data set SINGLE MULTI O-KNN R-KNN OS-KNN RS-KNN

res building 19.36± 8.39 18.86± 10.58 25.19± 14.89 18.01± 7.46 19.35± 9.73 16.64± 7.66
enb 2.24± 0.74 2.27± 0.58 2.97± 0.54 3.06± 0.83 2.86± 0.56 2.37± 0.49
music origin 21.45± 4.92 19.30± 5.92 13.94± 2.38 15.23± 2.93 13.59± 2.26 14.26± 2.36
bias corr 1.73± 0.08 1.72± 0.03 2.19± 0.22 2.27± 0.24 2.24± 0.19 2.18± 0.24
jura 1.722 ± 1.262 1.192 ± 65.51 75.80± 43.64 1.152 ± 68.92 87.58± 66.63 91.95± 67.66
scpf 4.98± 4.69 4.83± 4.99 0.38± 0.39 11.95± 19.66 0.51± 0.42 5.50± 5.04
indoorloc 0.15± 0.06 0.16± 0.06 0.35± 0.17 0.22± 0.17 0.20± 0.11 0.14± 0.11
sgemm 1.05−3 ± 5.74−4 1.04−3 ± 4.61−4 1.70−3 ± 1.31−3 1.51−3 ± 9.87−4 1.72−3 ± 1.38−3 1.25−3 ± 8.81−4
rf1 0.06± 0.04 7.02−3 ± 6.09−3 1.85± 3.22 1.44± 2.84 1.48± 3.31 1.27± 2.99
rf2 4.99−3 ± 2.94−3 3.18−3 ± 1.80−3 2.29± 3.71 3.82± 9.38 2.80± 6.28 3.09± 8.08
osales 3.4319 ± 1.0120 7.7622 ± 2.3323 1.1810 ± 1.6510 3.9711 ± 1.1912 5.0910 ± 9.4310 1.4910 ± 4.4210
wq 1.7114 ± 2.5214 8.5513 ± 7.6013 6.6712 ± 7.6112 1.7813 ± 2.9013 2.5912 ± 1.8912 6.4312 ± 5.2212
scm1d 6.174 ± 3.764 4.264 ± 2.744 5.955 ± 9.895 8.735 ± 1.116 2.134 ± 4.334 1.215 ± 1.925
scm20d 3.686 ± 3.876 5.056 ± 4.956 2.138 ± 1.298 1.837 ± 1.157 7.965 ± 4.385 6.375 ± 6.885

com crime 5.6814 ± 1.6915 3.8514 ± 1.1515 3.5512 ± 1.0313 8.517 ± 1.178 1.1511 ± 2.6811 1.588 ± 2.738

We note XY the value X× 10Y .

Table 4.4: Naive conformal empirical efficiency results for all data sets with
εg = 0.1.
Tighter volumes are in bold. Reported results are mean values of medians over all
folds.
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Validity results prove that using our naive approach to get corrected
values of εt provides valid (in a conservative way) conformal predictions
in the case of multi-target regression. All NCMs seem to perform well
on all data sets, without any obvious best non-conformity measure for
all data sets. However, we notice two distinct cases. The first one has a
validity close to the calibration line, as for “bias corr” (sub-figure 4.5a). The
second one has a validity that is higher than the confidence level defined
by εg values, as for “sgemm” (sub-figure 4.6a), which indicates that the
correction may be too strong. This distinct behavior can also be shown in
Table 4.3 when comparing different validity results of all NCMs, especially
as the number of targets m grows.

In the case of efficiency, results of the median hyper-rectangle volume
are summarized in Table 4.4 and illustrated in sub-figures (b), i.e. sub-
figures 4.5b, 4.6b, A.1b, A.2b, A.3b, A.4b, A.5b, A.6b, A.7b, A.8b, A.9b,
A.10b, A.11b, A.12b, A.13b.

Efficiency sub-figures show that the overall volume decreases as εg
grows, and significantly faster as the number of targets m increases. This
can be explained by the fact that the confidence level becomes smaller,
which means that we allow for tighter prediction intervals (as we approach
a point prediction), and therefore the conformal regressor tends to give
prediction intervals that are smaller and smaller for each target (values
less than 1). Then after multiplying these intervals to compute the volume,
we find that the hyper-rectangle volume approaches 0 faster when m is
large (which justifies the use of a logarithmic scale for data sets with more
than four targets).

Table 4.4 shows that, for most data sets, using a MULTI NCM gives
predictions with tighter volumes compared to a SINGLE NCM. However,
when comparing non-conformity measures based on k-nearest neighbors,
we cannot observe a best NCM overall as the results differ from one data
set to another.

Since graphs mostly collide and have high standard deviation at times
in sub-figures (b), we also drew box plots of median hyper-rectangle vol-
umes in sub-figures (c), i.e. sub-figures 4.5c, 4.6c, A.1c, A.2c, A.3c, A.4c,
A.5c, A.6c, A.7c, A.8c, A.9c, A.10c, A.11c, A.12c, A.13c. These confirm all
observations previously made. Moreover, they show that using a MULTI
NCM reduces the volumes’ variability compared to the SINGLE NCM.
However, using the deep learning representation for kNN-based NCMs
(R-KNN and RS-KNN) does not always give smaller box plots, as it in half
of the times adds variability (as for “bias corr” in sub-figure 4.5c).

4.2.5 Computation time

During the experiments, we also computed the time taken in seconds for
each non-conformity measure to train and predict for each fold on all data
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sets. Note that since O-KNN and OS-KNN (respectively R-KNN and RS-
KNN) share the same values of parameter λki , the training of the k-NN
is done at the same time for both of them. Thus, the computation time is
grouped for both of them. The results of these computation times averaged
on 10 folds are shown in the Table 4.5.

Data set SINGLE MULTI O/OS-KNN R/RS-KNN

res building 18.59 8.63 0.18 0.55

enb 19.18 11.23 0.10 0.24

music origin 39.20 19.78 0.13 0.31

bias corr 224.67 151.02 0.82 3.93

jura 17.65 7.74 0.23 0.66

scpf 30.41 15.88 0.17 0.30

indoorloc 140.64 53.64 33.85 32.19

sgemm 2831.40 729.09 33.89 31.12

rf1 124.46 93.12 1.91 2.15

rf2 274.16 96.56 2.36 2.23

osales 205.04 49.24 0.97 1.57

wq 187.13 49.31 0.70 0.88

scm1d 245.47 22.28 7.13 4.25

scm20d 193.92 23.54 4.06 4.14

com crime 239.56 45.90 1.38 1.51

Table 4.5: Average computation time in seconds for naive conformal
NCMs.

From these results, the non-conformity measures based on k-nearest
neighbors O/OS-KNN and R/RS-KNN have slightly equal computation
time, showing that using the original form of the examples or a deep
representation of them does not affect the computation time. However,
when comparing SINGLE to MULTI non-conformity measures, we notice
that the first one is much slower than the second one, with an increasing
difference between them as the number of targets m grows. This is due
to the fact that the SINGLE NCM needs to train additional m− 1 models
compared to the MULTI NCM, with each time corresponding to a training
done on one single target separately. This shows another advantage of
using a MULTI NCM approach instead of a SINGLE one.
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4.3 copula-based conformal mtr

This section introduces our copula-based approach to improve the naive
conformal prediction in the multi-variate regression setting by considering
the possible relationships between the outputs. We first recall some basics
of copulas and refer to Nelsen [Nelsen, 1999] for a full introduction, before
detailing how we apply them to MTR conformal purposes.

4.3.1 An overview on copulas

A copula is a mathematical function that can describe the dependence be-
tween multiple random variables. The term “copula” was first introduced
by Sklar [Sklar, 1959] in his famous theorem, which is one of the fundamen-
tals of copula theory, now known as Sklar’s theorem. However, these tools
have already been used before, as for instance in Fréchet’s paper [Fréchet,
1951] and Höffding’s work [Höffding, 1940] [Höffding, 1941] (reprinted
as [Höffding, 1994]). Copulas are popular in the statistical and financial
fields [Embrechts et al., 2002], but they’re nowadays more and more used
in other applied scientific domains as well, such as hydrology [Favre et al.,
2004], medicine [Nikoloulopoulos et al., 2008], etc.

Let Y = (Y1, . . . , Ym) be an m-dimensional vector composed of the ran-
dom variables Y1, . . . , Ym. Let its cumulative distribution function (c.d.f.)
be F = FY : Rm → [0, 1]. This c.d.f. carries two important information:

• The c.d.f. of each random variable Yj s.t. FYj(y) = P(Yj 6 y), ∀i ∈
[1,m].

• The dependence structure between them.

The objective of copulas is to isolate the dependence structure from the
c.d.f.s FYj by transforming them into uniform distributed functions Uj and
then expressing the dependence structure between Uj. In other words, an
m-dimensional copula C : [0, 1]m → [0, 1] is a c.d.f. with standard uniform
U(0, 1) marginals. It is characterized by the following properties:

1. C is grounded, i.e. if uj = 0 for at least one j ∈ {1, . . . ,m}, then
C(u1, . . . ,um) = 0.

2. If all components of C are equal to 1 except uj for all uj ∈ [0, 1] and
j ∈ {1, . . . ,m}, then C(1, . . . , 1,uj, 1, . . . , 1) = uj.

3. C is m-increasing, i.e., ∀a,b ∈ [0, 1]m,a 6 b:

∆(a,b]C =
∑

i∈{0,1}m
(−1)

∑m
j=1 ijC(ai11 b

1−i1
1 , . . . ,aimm b

1−im
m ) > 0. (4.11)
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The idea of copulas is based on probability and quantile transforma-
tion [McNeil et al., 2015] defined in the following proposition:

Proposition 2 Let F be a cumulative distribution function and F← its generalized
inverse, i.e. the function F←(t) := inf{y ∈ R : F(y) > t}.

1. Quantile transformation. If U ∼ U(0, 1) has a standard uniform distri-
bution, then P(F←(U) 6 y) = F(y).

2. Probability transformation. If Y has a univariate continuous c.d.f. F,
then FY ∼ U(0, 1).

Using the above proposition, we can see that all multivariate distribu-
tion functions include copulas and that we can use a mixture of univariate
marginal distributions and a suitable copula to produce a multivariate dis-
tribution function. This is described in Sklar’s theorem [Sklar, 1959] as
follows:

Theorem 4.3.1 (Sklar’s theorem) For any m-dimensional c.d.f. F with
marginal distributions F1, . . . , Fm, there exists a copula C : [0, 1]m → [0, 1] such
that:

F(y1, ...,ym) = C(F1(y1), . . . , Fm(ym)),y ∈ Rm. (4.12)

If Fj is continuous for all j ∈ {1, . . . ,m}, then C is unique.

With the equation 4.12 and Fj ◦ F←j (z) > z, we can get:

C(u1, ...,um) = F(F←1 (u1), . . . , F←m(um)). (4.13)

Fréchet-Höffding bounds

One can show that all dependency structures, i.e., all copulas, lie between
the Fréchet-Höffding bounds that correspond to extreme dependencies
called comonotonicity and countermonotonicity. In the case of two uni-
form random variables u1 and u2, theses random variables are comono-
tonic if u1 = u2 (positive dependency), and countermonotonic if u2 =

1− u1 (negative dependency) [Schmidt, 2007].

Theorem 4.3.2 (Fréchet-Höffding bounds) Let M(U) = min16j6m{uj} and
W(U) = max{

∑m
j=1 uj −m+ 1, 0}.

1. For any d-dimensional copula C, W(U) 6 C(U) 6M(U),U ∈ [0, 1]m.

2. W is a copula if and only if m = 2.

3. M is a copula for all m > 2.

Another special instance of dependency that is in between these two
bounds is the independence, whose copula is expressed as Π(U) =

∏m
j=1 uj

for U ∈ [0, 1]m.
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Archimedean copulas

Archimedean copulas are a special class of copulas that are widely used
because they are easy to construct, many copula families belong to this
class, and they have a variety of interesting properties (typically explicit,
useful in calculations, simple sampling in most of the cases. . . ). The main
idea behind Archimedean copulas is based on a generator function φ and
its pseudo-inverse φ[−1], defined in [McNeil et al., 2015] as follows:

Definition 1 (Archimedean copula generator) A continuous, strictly de-
creasing, convex function φ : [0, 1]→ [0,∞] satisfying φ(1) = 0 is known as an
Archimedean copula generator. It is known as a strict generator if φ(0) =∞.

Definition 2 (Pseudo-inverse) Let φ : [0, 1]→ [0,∞] be a continuous, strictly
decreasing function with φ(1) = 0 and φ(0) 6∞. We define a pseudo-inverse of
φ with domain [0,∞] by:

φ[−1](t) =

{
φ−1(t) for 0 6 t 6 φ(0)

0 for φ(0) 6 t 6∞ (4.14)

Based on these definitions, the bivariate Archimedean copula is de-
scribed in the following theorem [Nelsen, 1999]:

Theorem 4.3.3 (Bivariate Archimedean copula) Let φ be a continuous,
strictly decreasing function from [0, 1] to [0,∞] such that φ(1) = 0, and
let φ[−1] be the pseudo-inverse of φ defined as in 4.14. Then the function
C : [0, 1]2 → [0, 1] given by:

C(u, v) = φ[−1](φ(u) +φ(v)) (4.15)

is a copula if and only if φ is convex.

In the case of multivariate random variables, the construction of an
m-dimensional copula requires that the Archimedean copula generator φ
should be strict. Then:

C(u1, . . . ,um) = φ[−1](φ(u1) + . . .+φ(um)) (4.16)

gives a copula in any dimension m if and only if the generator inverse
φ−1 : [0,∞]→ [0, 1] is completely monotonic [McNeil et al., 2015].

Table 4.6 summarizes characteristics of three one parameter
Archimedean copula families [McNeil et al., 2015].

Empirical copulas

Parametric copula approaches, such as choosing within the Archimedean
copula families, can have an important weakness when estimating the
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Family
Gumbel

[Gumbel, 1960]
Clayton

[Genest et al., 1993]
Frank

[Frank, 1979]

Generator φ(t) (−ln t)θ 1
θ(t

−θ − 1) −ln(e
−θt−1
e−θ−1

)

Parameter θ range θ > 1 θ > −1 θ ∈ R

Strict Yes θ > 0 Yes
Lower Π W W

Upper M M M

Table 4.6: Archimedean copula families.

marginals and the parameters, especially when strong assumptions about
the dependence structure are made. The Empirical copula presents a
non-parametrical way of estimating the marginals directly from the ob-
servations [Ruschendorf, 1976; Ruymgaart, 1978]. It is defined as fol-
lows [Hofert et al., 2019]:

Cn(U) =
1

n

n∑
i=1

1(Ui 6 U) =
1

n

n∑
i=1

m∏
j=1

1(Uji 6 uj),U ∈ [0, 1]m. (4.17)

where Ui,n are the pseudo-observations that replace the unknown
marginal distributions, which are defined as:

Ui = (U1i , . . . ,U
m
i ) = (F1(Y

1
i ), . . . , Fm(Y

m
i )), i ∈ {1, . . . ,n}. (4.18)

where Fj for j ∈ {1, . . . ,m} is estimated by:

Fj(y) =
1

n+ 1

n∑
i=1

1(Yji 6 y),y ∈ R. (4.19)

The idea behind empirical copulas is to make rank transformations of
data samples of size n drawn for each dimension d from its corresponding
estimated marginal distribution.

4.3.2 Copula-based non-conformity measures

As seen before, the objective of the conformal prediction framework for
MTR in the normalized setting is to satisfy a global significance level εg
required by the user such that:

P(yn+1 ∈ [Γεg(xn+1)]) > 1− εg. (4.20)

This probability can also be written as follows:

P(y1n+1 ∈ [y1n+1,y1n+1], . . . ,y
m
n+1 ∈ [ymn+1,ymn+1])
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= P

(
|y1n+1 − ŷ

1
n+1|

σ1n+1
6 α1s, . . . ,

|ymn+1 − ŷ
m
n+1|

σmn+1
6 αms

)
> 1− εg. (4.21)

Thus, we need to find the individual non-conformity scores α1s, . . . ,αms ,
defined for instance by target-wise confidence levels εj, such that we en-
sure a global confidence level 1− εg. Extending

P(Q 6 αs) = 1− εg := FQ(αs),

where F denotes here the joint cumulative distribution induced by P, and
considering the random variables Qj = |yj − ŷj|/σj, j ∈ {1, . . . ,m}, we get:

P(Q1 6 α1s, . . . ,Q
m 6 αms ) > 1− εg. (4.22)

Should we know the joint distribution in (4.22), and therefore the depen-
dence relations between target predictions, it would be relatively easy to
get the individual significance levels1 εj associated to the individual non-
conformity scores αjs such that we satisfy the chosen confidence level 1−εg.
Yet, such a joint distribution is usually unknown. We propose a simple
and efficient method to do so, leveraging the connection between (4.22)
and copulas. Before doing that, note again that under the assumption that
we are well calibrated, we can transform (4.22) into

F(α1s, . . . ,α
m
s ) = 1− εg. (4.23)

Considering (4.23), and following Sklar’s theorem, we have

F(α1s, . . . ,α
m
s ) = C(F1(α

1
s), . . . , Fm(α

m
s ))

= C(1− ε1, . . . , 1− εm)
= 1− εg

where the second line is obtained from (3.16). Clearly, if we knew the
copula C, then we could search for values εj providing the desired global
confidence.

A major issue is then to obtain or estimate the copula modelling the
dependence structure between the targets and their confidence levels. As
copulas are classically estimated from multi-variate observations, a simple
means that we will use here is to estimate them from the non-conformity
scores generated from the calibration set Zcal. Namely, if αji is the non-
conformity score corresponding to the jth target of the zi example of Zcal

for i ∈ {l+ 1, . . . ,n}, we simply propose to estimate a copula C from the
matrix:

1 Note that there may be multiple choices for such individual levels. Here we will fix them
to be equal for simplicity.
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A =

α
1
l+1 α2l+1 . . .
... . . .
α1n αmn

 . (4.24)

On three specific copulas

We will now provide some detail about the copulas we performed exper-
iments on. They have been chosen to go from the one requiring the most
assumptions to the one requiring the least assumptions.

the independent copula The Independent copula means that the
m targets are considered as being independent, with no relationship be-
tween them. It is a strong assumption, but it does not require any estima-
tion of the copula. In this case, (4.22) becomes:

Π(F1(α
1
s), . . . , Fm(α

m
s )) =

m∏
j=1

Fj(α
j
s) =

m∏
j=1

P(Qj 6 αjs)

>
m∏
j=1

(1− εj) = 1− εg,

If we assume that all ε1, . . . , εm equal the same value εt, then:

m∏
j=1

(1− εj) = (1− εt)
m = 1− εg.

Thus, we simply obtain (4.7) seen in the naive conformal approach (Section
4.2), which is:

εt = 1−
m
√
1− εg.

This individual significance level εt is then used to calculate the different
non-conformity scores αjs for each target in the multi-target regression
problem for the Independent copula.

the gumbel copula The Gumbel copula is a member of the
Archimedean copula family which depends on only one parameter, and
in this sense is a good representative of parametric copulas. It comes
down to applying the generator function φ(Fj(α

j
s)) = (− ln Fj(α

j
s))

θ and
its inverse φ[−1](Fj(α

j
s)) = exp−(Fj(α

j
s))

1/θ to (4.16), resulting in the
expression

CθG(F1(α
1
s), . . . , Fm(α

m
s )) = exp−

 m∑
j=1

(
− ln Fj(αjs)

)θ1/θ. (4.25)
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In this case, we need to estimate the parameter θ. Since the marginals
Fj(α

j) are unknown, we also need to estimate them. In our case, we
will simply use the empirical c.d.f. induced by the non-conformity scores
α
j
i of matrix A. An alternative would be to also assume a parametric

form of the Fj, but this seems in contradiction with the very spirit of
non-conformity scores. In particular, we will denote by F̂j the empirical
cumulative distribution such that

F̂j(β) =
|{α

j
i : α

j
i 6 β, i ∈ {l+ 1, . . . ,n}}|

n− l
, β ∈ R.

The parameter θ can then be estimated from matrixA using for instance
the Maximum Pseudo-Likelihood Estimator [Hofert et al., 2019] with a
numerical optimization, which can be done by using the Python library
“copulae”2. Once this is obtained, we then get for a particular choice of εj

that

Cθ̂G = exp−

 m∑
j=1

(
− ln(1− εj)

)θ̂1/θ̂ (4.26)

= exp−

 m∑
j=1

(
− ln Fj(αjs)

)θ̂1/θ̂ (4.27)

And we can search for values εj that will make this equation equal to
1− εg, using the estimations F̂j. The solution is especially easy to obtain
analytically if we consider that ε1 = . . . = εm = εt, as we then have that

εt = 1− (1− εg)
1/ θ
√
m,

and one can then obtain the corresponding non-conformity scores
α1s, . . . ,αms by replacing Fj by F̂j.

We chose this particular family of Archimedean copulas because its
lower bound is the Independent copula (as seen in Table 4.6). We can eas-
ily verify this by taking θ̂ = 1. Thus, we can capture independence if it is
verified, and otherwise search in the direction of positive dependence. One
reason for such a choice is that the previous experiments in our naive ap-
proach indicate that the product copula gives overly conservative results.

the empirical copula Parametric copulas, as all parametric models,
have the advantage of requiring less data to be well estimated, while hav-
ing the possibly important disadvantage that they induce some bias in the
estimation, that is likely to grow as the number of target increases. The Em-
pirical copula presents a non-parametric way of estimating the marginals

2 https://pypi.org/project/copulae/

https://pypi.org/project/copulae/
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directly from the observations [Ruschendorf, 1976; Ruymgaart, 1978]. It is
defined as follows [Hofert et al., 2019]:

CE(u) =
1

n− l

n∑
i=l+1

1ui6u =
1

n− l

n∑
i=l+1

m∏
j=1

1
u
j
i6u

j , u ∈ [0, 1]m, (4.28)

where 1A is the indicator function of event A, and for i ∈ {l + 1, . . . ,n}
the inequalities ui 6 u need to be understood component-wise. ui are
the pseudo-observations that replace the unknown marginal distributions,
which are defined as:

ui = (u1i , . . . ,u
m
i ) = (F̂1(α

1
i ), . . . , F̂m(α

m
i )), i ∈ {l+ 1, . . . ,n}, (4.29)

where distributions F̂j are defined as before. Simply put, the Empirical
copula corresponds to consider as our joint probability the empirical joint
cumulative distribution. We then have that

CE(F1(α
1
s), . . . , Fm(α

m
s )) =

1

n− l

n∑
i=l+1

m∏
j=1

1
u
j
i6Fj(α

j
s)

. (4.30)

Using that Fj(α
j
s) = 1− ε

j, we can then search for values of εj, j = 1, . . . ,m
that will make (4.30) equal to 1− εg. Note that in this case, even assuming
that ε1 = . . . = εm = εt will require an algorithmic search, which is
however easy as CE is an increasing function, meaning that we can use a
simple dichotomic search.

4.3.3 Experimental setting

We choose to work with a Neural Network (NN) and a Random Forest
(RF) as the underlying algorithms, and compare between the three copula
functions to show that adding copulas to the non-conformity measures
works with any underlying algorithm. However, our approach can be
easily adapted to any multi-variate regression model.

To compute the non-conformity scores over the calibration set, we use
the MULTI NCM presented in the naive approach, i.e. the normalized
non-conformity score given by (4.8) as described in [Papadopoulos et al.,
2011b], and predict µi = ln(|yi− ŷi|) simultaneously for all targets by a sin-
gle multivariate MLP. We chose this NCM among the six previous tested
NCMs since all of them nearly performed the same, but with the MULTI
NCM being better than the SINGLE one, and giving hyper-rectangle me-
dian volumes with low variability.

Experiments are conducted on normalized data with a mean of 0 and a
standard deviation of 1, with a 10-fold cross validation to avoid the impact
of biased results, and with a calibration set equal to 10% of the training
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examples for all data sets. We take the value β = 0.1 for the sensitivity
parameter and do not optimize it when calculating the normalizing coeffi-
cient µi. We follow the steps in Figure 4.7 as described below:

1. Get the proper training data Ztr, calibration data Zcal and test data
Zts

2. Train the underlying algorithm (NN or RF) on the proper training
data Ztr. The Neural Network’s architecture is composed of a first
dense layer applied to the input with “selu” activation (scaled expo-
nential linear units [Klambauer et al., 2017]), three hidden dense lay-
ers with dropouts and “selu” activation, and a final dense layer with
m outputs and a linear activation. The Random Forest is trained for
each target alone using Python sklearn’s implementation, then each
target is predicted independently to get the results. Then, predict
Ŷcal and Ŷts for calibration and test data respectively using the un-
derlying algorithm.

3. Train the normalizing Multi-Layer Perceptron on the proper training
data (Xtr,µtr = ln(|Ytr − Ŷtr|), corresponding to the error estimation
of the underlying algorithm. The normalizing MLP consists of three
hidden dense layers with “selu” activation and dropouts and a final
dense layer with m outputs for predicting all targets simultaneously.
This approach was chosen since it proved to be more efficient than a
single target approach that we experimented in the naive approach.
Then, predict µcal and µts for calibration and test data respectively
using the normalizing MLP.

4. If needed, get an estimation3 of the copula C from the matrix A of
calibration non-conformity scores.

5. For a chosen global significance level εg, get the individual signifi-
cance level εj = εt for j ∈ {1, . . . ,m} and calculate αs = {α1s, . . . ,αms }
for all targets using calibration data, according to the methods men-
tioned before.

6. Get the interval predictions for each new object xn+1 of Zts with:

[Γεg(xn+1)] = [ŷn+1 −αs(exp(µn+1) +β), ŷn+1 +αs(exp(µn+1) +β)] .
(4.31)

Remark 1 We choose εj = εt for j ∈ {1, . . . ,m} as we have no indication that
individual targets should be treated with different degree of cautiousness. However,
since copulas are functions from [0, 1]m to [0, 1], there is in principle no problem in
considering different confidence degrees for different tasks, if an application calls
for it.

3 In the case of the Gumbel copula, we use a Maximum Pseudo-Likelihood Estimator with
a numerical optimization using the BFGS algorithm
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The implementation was done using Python and Tensorflow. The cop-
ula part of our experiments was based on the book [Hofert et al., 2019] and
the Python library “copulae”. This work’s code is available on GitHub4.

4.3.4 Results on synthetic data

Using the synthetic data set described in section 4.1.3, we calculated the
mean validity and efficiency (surface) of all non-conformity measures for
different values of εg. Results in Table 4.7 show that all NCMs have almost
the same performance when it comes to validity, i.e. they are valid, but the
Independent copula becomes a little bit overly conservative as εg grows,
while both Gumbel and Empirical copulas stay exactly valid. For efficiency,
we can clearly see that the RF NCMs give tighter volumes when compared
to NN ones, but overall Gumbel and Empirical copula approaches give the
best results, with nearly unnoticeable difference between them.

synthetic (k = 2) εg = 0.01 εg = 0.05 εg = 0.1 εg = 0.15 εg = 0.2

Validity Independent NN 99.04± 0.13 95.52± 0.35 91.14± 0.59 86.87± 0.69 82.42± 0.62
RF 99.04± 0.18 95.70± 0.28 91.37± 0.46 87.09± 0.33 82.69± 0.52

Gumbel NN 99.16± 0.11 94.99± 0.26 89.95± 0.43 85.03± 0.38 80.35± 0.43
RF 99.12± 0.16 95.00± 0.29 90.07± 0.43 84.87± 0.42 80.36± 0.49

Empirical NN 99.16± 0.11 95.08± 0.41 89.98± 0.45 84.91± 0.39 79.96± 0.30
RF 99.12± 0.16 95.26± 0.32 89.96± 0.53 84.87± 0.42 79.82± 0.47

Efficiency Independent NN 3.58± 0.27 2.28± 0.15 1.72± 0.11 1.41± 0.09 1.18± 0.08
RF 3.32± 0.12 2.10± 0.06 1.58± 0.04 1.28± 0.03 1.08± 0.02

Gumbel NN 3.70± 0.28 2.18± 0.16 1.62± 0.11 1.31± 0.10 1.10± 0.08
RF 3.41± 0.12 1.98± 0.04 1.47± 0.03 1.17± 0.02 0.99± 0.01

Empirical NN 3.69± 0.28 2.20± 0.15 1.62± 0.12 1.30± 0.10 1.08± 0.08
RF 3.41± 0.11 2.03± 0.05 1.47± 0.04 1.17± 0.02 0.97± 0.02

Table 4.7: Validity and efficiency results for synthetic data with copula-
based conformal MTR.

4.3.5 Results on real data

Analysis on validity and efficiency

This section presents the results of our experiments, investigating in par-
ticular the validity and efficiency of the proposed approaches. Figures 4.8,
4.9 and 4.10 detail these results for “bias corr”, “sgemm” and “wq”. Com-
plementary results for the remaining data sets can be found in Appendix
B. Note that for data sets with more than four targets, we use a logarithmic
scale to plot the median volume.

4 https://github.com/M-Soundouss/CopulaConformalMTR

https://github.com/M-Soundouss/CopulaConformalMTR
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Figure 4.8: Copula conformal results for “bias corr”.
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Figure 4.9: Copula conformal results for “sgemm”.
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Figure 4.10: Copula conformal results for “wq”.

The results of the error rate or validity curves are shown in sub-figures
(a) for the Neural Network (i.e. sub-figures 4.8a, 4.9a, 4.10a, B.1a, B.2a,
B.3a, B.4a, B.5a, B.6a, B.7a, B.8a, B.9a, B.10a, B.11a, B.12a) and (b) for the
Random Forest (i.e. sub-figures 4.8b, 4.9b, 4.10b, B.1b, B.2b, B.3b, B.4b,
B.5b, B.6b, B.7b, B.8b, B.9b, B.10b, B.11b, B.12b) for each data set.

Validity results clearly show that the best performance is obtained by
using the Empirical copula, where the model is well calibrated. For most
of the studied data sets, the Empirical copula curve is almost perfectly
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aligned with the calibration line, and thus almost exactly valid. This is
due to the fact that Empirical copula functions use non-parametric esti-
mate of the marginals based on the observations, which enables the model
to better adapt to the dependence structure of each data set. This de-
pendence structure is neglected when using an Independent copula-based
non-conformity measure, since the m targets are treated as if they were
independent, and so the link between them is not exploited when com-
puting εt. This also means that the difference between the Empirical and
the Independent copula-based NCMs is bigger when there is a strong de-
pendence between the non-conformity scores, and is an indication of the
strength of this dependence. For instance, we can deduce that the targets
are strongly related for “sgemm” by the big gap between the Indepen-
dent and Empirical curves (Figures 4.9a and 4.9b). For the Gumbel copula,
the accuracy curve is generally closer to the calibration line than the one
for the Independent copula. This supports the existence of a dependence
structure between the targets, since the lower bound of the Gumbel copula
is the Independent copula, which means that if the targets were in fact
independent, the two curves would perfectly match. This can be seen in
Figures 4.8a and 4.8b for “bias corr”, where the curves almost overlap all
the time, meaning that the targets are likely to be independent.

From the empirical validity results, we also noticed that the Empirical
copula NCM can be slightly invalid sometimes (Figures 4.10a and 4.10b
for “wq”). We explain this by the fewer number of examples, in which
case one could use a more regularized form than the Empirical copula.
However, when a lot of examples are available (for instance, more than
200000 observations for “sgemm”), the validity curve of the Empirical
copula NCM is perfectly aligned with the calibration line, meaning that
this measure is exactly valid (Figures 4.9a and 4.9b).

These conclusions concerning the empirical validity are the same for
both underlying algorithms, which suggests that the difference regard-
ing the validity performance mainly comes from the chosen copula-based
NCM.

Efficiency results are illustrated in sub-figure (c) for all data sets (i.e.
sub-figures 4.8c, 4.9c, 4.10c, B.1c, B.2c, B.3c, B.4c, B.5c, B.6c, B.7c, B.8c, B.9c,
B.10c, B.11c, B.12c) for εg = 0.1.

Efficiency results show that, for each underlying algorithm, the Inde-
pendent copula NCM has a bigger median hyper-rectangle volume com-
pared to the Gumbel and Empirical copula NCMs, especially in those cases
where the existence of a dependence structure is confirmed by the cali-
bration curves as for “sgemm” (Figure 4.9c). This is due to the fact that
using an Independent copula ignores the dependence between the non-
conformity scores, which leads to an over-estimation of the global hyper-
rectangle error. This impact is avoided when using the Empirical copula
because it takes advantage of the dependence structure to construct better
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interval predictions. However, when the individual targets seem to be in-
dependent as given by the calibration curves, we can no longer notice a
difference between using the different copula-based NCMs when measur-
ing the efficiency, as for “bias corr” (Figure 4.8c). Another remark concern-
ing efficiency is that the box plots for Empirical copula are tighter than
the other two, which shows that the values are homogeneous on all folds
compared to the Independent copula for instance, where the variability is
much more visible.

When comparing between the underlying algorithms, we can see that
the Neural Network gives tighter volumes for “sgemm” (Figure 4.9c). We
can explain this by the fact that “sgemm” has more data, and the strong
dependence structure is taken into consideration when training the Neural
Network model that is learned on all targets simultaneously, as opposed
to the Random Forest that is trained on each target individually. For “wq”
(Figure 4.10c), the Random Forest gives better results since this data set
has 14 targets but a few examples, which hinders the training process
of the Neural Network, thus giving an advantage to the Random Forest
underlying algorithm.

The empirical validity and efficiency results are summarized in Ta-
bles 4.8 and 4.9. The validity simply provides the average difference be-
tween a perfect calibration (the identity function) and the observed curve
for each copula. This means, in particular, that a negative value indicates
that the observed frequency is in average below the specified confidence
degree.

Data set Independent Gumbel Empirical

NN RF NN RF NN RF

res building 4.36± 8.38 7.33± 7.01 −0.94± 9.34 0.05± 7.30 −2.26± 9.49 −1.59± 8.63
enb 2.95± 6.31 2.53± 4.48 −0.12± 6.32 −3.72± 4.41 −0.11± 6.52 −5.42± 4.22
music origin 2.19± 4.89 3.32± 4.68 −0.93± 4.66 0.17± 4.93 −1.41± 4.84 −0.56± 5.14
bias corr 1.87± 1.82 1.54± 1.48 0.59± 1.88 0.19± 1.64 0.66± 1.98 0.15± 1.69
jura 2.49± 8.77 2.22± 8.05 −3.55± 8.95 −3.56± 8.45 −4.63± 8.74 −6.05± 8.43
scpf 22.33± 4.79 18.56± 4.32 15.60± 4.70 11.57± 5.01 −3.47± 4.87 0.48± 5.79
indoorloc 3.77± 1.11 3.89± 1.56 1.80± 1.16 1.09± 1.39 0.03± 1.13 0.12± 1.40
sgemm 25.14± 0.84 28.07± 0.40 3.06± 0.68 1.99± 0.39 −0.14± 0.39 −0.15± 0.39
rf1 6.01± 1.44 4.99± 1.28 2.98± 1.38 1.98± 1.33 −0.40± 1.49 −0.34± 1.48
rf2 5.78± 2.68 4.94± 1.76 3.08± 2.37 1.98± 1.89 −0.30± 1.60 0.24± 1.68
osales 11.54± 6.29 15.94± 7.17 1.54± 6.65 3.86± 7.28 −8.54± 6.90 −3.86± 6.71
wq 3.65± 4.64 3.63± 4.28 −2.59± 4.53 −7.87± 4.84 −8.82± 4.71 −9.31± 4.49
scm1d 14.77± 2.84 14.58± 2.89 10.66± 2.67 9.79± 2.84 −0.57± 1.85 −0.79± 2.30
scm20d 14.44± 2.06 14.97± 2.02 10.52± 2.33 9.39± 2.10 −1.16± 2.01 −1.54± 2.09
com crime 17.08± 3.60 18.27± 3.22 10.71± 3.56 9.11± 4.15 −2.45± 3.36 −2.38± 3.76

Table 4.8: Area of validity summarized results for all data sets.
Best results are in bold. In red are mean values with a gap greater than 10 and in
orange are mean values with a gap between 5 and 10.
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Independent Gumbel Empirical

NN RF NN RF NN RF

res building 8.861 ± 5.461 1.01± 5.77−1 3.221 ± 1.031 3.97−1 ± 2.18−1 2.331 ± 7.15 2.54−1 ± 1.03−1

enb 3.43± 1.44 1.14−1 ± 3.03−2 2.76± 1.02 8.45−2 ± 2.88−2 2.71± 1.23 8.64−2 ± 2.92−2
music origin 4.021 ± 1.541 2.471 ± 1.181 3.271 ± 1.51 2.071 ± 1.11 3.081 ± 1.461 1.811 ± 7.82
bias corr 1.88± 2.86−1 1.88± 2.43−1 1.81± 2.73−1 1.81± 2.26−1 1.81± 2.73−1 1.83± 2.25−1
jura 4.412 ± 4.942 3.721 ± 5.511 1.772 ± 1.612 9.66± 7.64 1.772 ± 1.612 9.66± 7.64
scpf 1.0311 ± 3.0211 8.7210 ± 2.0611 1.0211 ± 3.0211 7.5610 ± 2.0811 1.127 ± 2.057 5.716 ± 1.547

indoorloc 1.31−1 ± 7.77−2 4.76−1 ± 7−1 1.15−1 ± 7.95−2 4.13−1 ± 6.02−1 1.03−1 ± 7.65−2 4.26−1 ± 6.5−1
sgemm 7.97−4 ± 4.81−4 1.75−2 ± 2.58−3 2.47−4 ± 1.45−4 7.48−3 ± 7.91−4 2.17−4 ± 1.25−4 7.4−3 ± 8.15−4
rf1 7.19−3 ± 1.23−2 5.64−5 ± 4.87−5 5.15−3 ± 9.11−3 3.56−5 ± 3.44−5 4.49−3 ± 9.23−3 2.81−5 ± 1.67−5

rf2 2.17−3 ± 2.89−3 2.67−4 ± 3.54−4 1.67−3 ± 2.45−3 1.42−4 ± 1.71−4 1.52−3 ± 2.42−3 1.42−4 ± 1.71−4

osales 4.7517 ± 1.4218 7.1810 ± 2.1211 4.7517 ± 1.4218 7.1810 ± 2.1211 1.3110 ± 2.0210 8.895 ± 9.435

wq 6.3215 ± 1.8816 1.5512 ± 1.6512 6.3215 ± 1.8816 8.2911 ± 1.8612 7.9611 ± 8.9711 5.0910 ± 6.5610

scm1d 1.085 ± 1.045 1.725 ± 1.665 1.674 ± 1.334 2.114 ± 1.584 2.313 ± 1.933 3.433 ± 2.273
scm20d 2.186 ± 4.266 5.776 ± 5.386 2.145 ± 2.885 1.026 ± 7.35 2.734 ± 2.584 2.015 ± 1.065
com crime 1.2813 ± 2.91213 3.2911 ± 6.2511 5.119 ± 1.0810 2.088 ± 3.598 5.397 ± 8.187 2.176 ± 4.256

We note XY the value X× 10Y .

Table 4.9: Efficiency (hyper-rectangle median volume for εg = 0.1) summa-
rized results for all data sets.
Tighter volumes are in bold. Reported results are mean values of medians over all
folds.

The numbers confirm our previous observations on the graphs, as the
average gap is systematically higher for the Independent copula and lower
for the Empirical one, with Gumbel in-between. In the few cases where
the Independent copula gives better results, data is often scarce, as seen for
“wq”. We can however notice that while the Empirical copula provides the
best results, it is also often a bit under the calibration line, indicating that
if conservativeness is to be sought, one should maybe prefer the Gumbel
copula. These outcomes are the same for both NN and RF, without one
algorithm being overall better than the other. About the same conclusions
can be given regarding efficiency, with the Empirical copula giving the
best results and the Independent one the worst.

Analysis on the effect of calibration data size

To complete our experiments and analyze the sensitivity of our approach
to the size of the calibration set, we conducted the same experiments on
two data sets, where we retained only 1% and 5% of the whole data set:
“indoorloc” which has a lot of examples (21049) and “music origin” which
has fewer examples (1059). We only used Neural Networks as the under-
lying algorithm with the Empirical and Gumbel copulas non-conformity
measures to compare between them. Figures 4.11 and 4.12 show the results
for both data sets.

Results clearly show that with fewer examples for “music origin”,
the Empirical non-conformity measure is often invalid and also unstable
(has larger variability) with 1% of the examples as calibration data
(Figure 4.11a). This can also be seen in the difference of variance between
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Figure 4.11: Copula conformal results for different calibration data sizes
for “music origin”.
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Figure 4.12: Copula conformal results for different calibration data sizes
for “indoorloc”.

values for the empirical validity, with 10% having more homogeneous
values as compared to 5% and 1% respectively. Using the Gumbel
copula, which is semi-parametric, helps to attenuate the effect, with more
consistent results even for 1% (Figure 4.11b). For “indoorloc”, the impact
of the percentage of data used is insignificant, since the validity curves
overlap for 10%, 5% and 1% of data used for calibration, mainly because
1% of the whole data set is still quite large (about 200 samples, to be
compared with the 10 samples of “music origin”). This is the case for both
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Empirical and Gumbel copulas, giving the same results as earlier, i.e. the
Empirical copula being exactly valid and better than the Gumbel copula.

4.3.6 Computation time

Table 4.10 shows computation time for all data sets and for both under-
lying algorithms, since the normalizing MLP model is the same for all
NCMs. Results clearly shows that Random Forests are faster than Neural
Networks, with the exception of “scm1d”.

Time (s) Neural Networks Random Forests

res building 32.96 11.44
enb 55.91 16.23
music origin 62.95 20.17
bias corr 611.35 135.80
jura 27.80 10.39
scpf 90.39 12.93
indoorloc 627.16 223.31
sgemm 6966.29 5229.56
rf1 480.45 141.96
rf2 463.85 238.86
osales 161.13 115.15
wq 108.99 25.77
scm1d 349.37 1032.2
scm20d 329.81 230.04
com crime 273.24 194.81

Table 4.10: Computation time for all real data sets.
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4.4 ellipsoidal conformal mtr

This section will present our work on ellipsoidal conformal MTR, which
tries to exploit the shared information between the different targets of
a multi-target regression problem with another more flexible confidence
region shape: ellipsoids.

An ellipsoid E is a set of the form:

E = {x ∈ Rn : (x− µ)TΣ(x− µ) 6 1}, (4.32)

where Σ is a (positive) definite matrix and µ ∈ Rn is the center of the
ellipsoid. Its volume is defined by:

Vol(E) = (det(Σ))−1/2 Vol(Bn), (4.33)

where the unit ball Bn = {x ∈ Rn : ||x||2 6 1} is an ellipsoid and its volume
depending on the dimension n is calculated as:

Vol(B2) = π, Vol(B3) =
4π

3
,

Vol(Bn) = Vol(Bn−2)×
(
2π

n

)
. (4.34)

4.4.1 Ellipsoidal non-conformity measures

Knowing that the ellipsoid5 is one of the most flexible geometrical
shapes, [Johnstone et al., 2021] proposed for a robust optimization
problem an ellipsoidal NCM:

αi =

√
(yi − ŷi)T Σ̂−1(yi − ŷi), (4.35)

where yi − ŷi is a vector of univariate non-conformity scores (here, the
regressor’s error rate) and Σ̂−1 is the sample inverse-covariance matrix of
the observed errors.

The standard global ellipsoidal NCM in (4.35) uses a sample inverse-
covariance matrix Σ̂−1 globally-estimated from the training data errors.
Therefore, it resembles the standard approach in the univariate case where
the non-conformity score is not tailored to each instance. We propose to
use instead a normalized inverse-covariance matrix Σ̂−1i for each instance
xi, to take into consideration a locally-estimated covariance matrix of the
instance. The normalized NCM in this case is:

αi =

√
(yi − ŷi)T Σ̂

−1
i (yi − ŷi) (4.36)

5 Note that the term “ellipsoid” used in this paper refers to a k-dimensional ellipsoid.
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This NCM enables us to define the conformal prediction region as an
ellipsoid Ei given by the following theorem:

Theorem 4.4.1 The ellipsoid Ei given by the NCM

αi =

√
(yi − ŷi)T Σ̂

−1
i (yi − ŷi),

which center is the regressor’s prediction ŷi, and covariance matrix is Σ̂−1i
α2s

, is a
conformal valid prediction.

Proof 2 Let Ei be the ellipsoid to which the ground truth yi of an instance xi
should belong. To satisfy the validity of a conformal predictor considering a
significance level ε, we have:

P(yi ∈ Ei) > 1− ε
⇐⇒ P(αi 6 αs) > 1− ε.

⇐⇒ P

(√
(yi − ŷi)T Σ̂

−1
i (yi − ŷi) 6 αs

)
> 1− ε.

⇐⇒ P

√(yi − ŷi)T
Σ̂−1i
α2s

(yi − ŷi) 6 1

 > 1− ε.

Following an ellipsoid’s definition, we can see that

Ei =

{
yi ∈ Rk : (yi − ŷi)

T Σ̂
−1
i

α2s
(yi − ŷi) 6 1

}
.

Ei is the ellipsoid given by the center ŷi and the matrix Σ̂−1i
α2s

. �

The volume of Ei, its efficiency, is equal to the volume of an ellipse:

Vol(Ei) = αks det
(
Σ̂i
)1/2 Vol(Bk), (4.37)

where Bk = {y ∈ Rk : ||y||2 6 1} is the unit ball.
Figure 4.13 illustrates ellipsoidal conformal regions for a 2-dimensional

MTR problem compared to a hyper-rectangle conformal region for the
same object xn+1. It shows that they can be different depending on the
relationship between the outputs.

Local covariance matrix estimation

As mentioned above, the NCM given by (4.36) is mainly composed of a
normalized inverse-covariance matrix Σ̂−1i for each instance xi, meaning
that we need to estimate locally a covariance matrix ˆCovi for xi. Thus, we
propose to calculate Σ̂i by:
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Figure 4.13: Illustration of an ellipsoidal conformal prediction.

Σ̂i = λ ˆCovi + (1− λ)Σ̂, (4.38)

where Σ̂ is the global covariance matrix estimated from error rates over all
training instances in Ztr, that is from the observed errors (yi − ŷi), ˆCovi is
the local covariance matrix of instance xi, and λ is a parameter to control
the trade-off between Σ̂ and ˆCovi in order to get a positive definite matrix
Σ̂i and avoid numerical instability. Its value should be high enough to
ensure that the influence of ˆCovi is predominant compared to Σ̂.

To estimate ˆCovi, we propose to use a kNN model to get the neigh-
boring instances of xi from Ztr, and then use the observed error rates on
these instances to estimate ˆCovi. That is, given xi, we consider the k near-
est instances xj ∈ Ztr from xi, and estimate ˆCovi from the observed errors
(yj − ŷj) for instances xj.

4.4.2 Experimental setting

Our experiments are conducted using Python and the code is available in
GitHub 6. Their objective is to compare between four NCMs:

• Standard Empirical Copula (SEC): produces same-size hyper-
rectangle conformal regions by non-parametrically estimating the
dependence structure from calibration data. Although not present
in Section 4.3, we can easily derive it by considering the standard
NCM αi = |yi − ŷi|.

• Normalized Empirical Copula (NEC): constructs personalized
hyper-rectangle conformal regions with a difficulty estimator σi
learned by a Multi-Layer Perceptron.

6 https://github.com/M-Soundouss/EllipsoidalConformalMTR

https://github.com/M-Soundouss/EllipsoidalConformalMTR
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• Standard Global Ellipsoid (SGE): generates same-size ellipsoidal
conformal regions by exploiting the global inverse-covariance matrix
Σ̂−1 from training data [Johnstone et al., 2021].

• Normalized Local Ellipsoid (NLE): gets individual ellipsoidal con-
formal regions using the local covariance matrix of each instance.

Table 4.11 summarizes the features of the different methods. We can
see from it that local ellipses can capture both covariance structures and
local variations, hence providing possibly better results.

Is Local Captures Covariance

SEC x x
NEC X x
SGE x X
NLE X X

Table 4.11: Properties of the used non-conformity measures.

The experiments are conducted with a 10-fold cross validation follow-
ing the steps in Figure 4.14 described below:

1. Split data into proper training Ztr, calibration Zcal and test Zts sets,
by allocating 10% of the data to Zts, and splitting the remaining 90%
of the instances into Ztr and Zcal, with |Zcal| = 10% of training data.

2. Train the underlying algorithm on Ztr, here a multi-output random
forest using Scikit Learn’s “MultiOutputRegressor”, calculate Σ̂ of
the errors made on Ztr instances, and get the regressor’s predictions
for Zcal and Zts.

3. For the normalized NCMs, train the normalizing models on Ztr: an
MLP for NEC to get σi by learning µi, and a kNN for our method
NLE to get the neighboring instances of xi, which number is equal to
5% of the number of Ztr instances, to calculate Σ̂i.

4. For each instance in Zcal and Zts, get σi values for NEC using the
MLP, and Σ̂i values for NLE using the kNN with λ = 0.95, a high
value that favors the impact of ˆCovi in (4.38).

5. Choose the significance level’s value ε.

6. Obtain the non-conformity scores for the different NCMs for Zcal,
sort α1, . . . ,αq in a descending order and get the index s of the (1−ε)-
percentile of the non-conformity score αs.

7. For a new object xn+1 in Zts, get its hyper-rectangle or ellipsoidal
prediction region depending on the used NCM.
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4.4.3 Results on synthetic data

For synthetic data, we calculated the mean validity and efficiency (surface)
of all non-conformity measures for different ε values. Results are summed
up in Table 4.12. They show that all NCMs are exactly valid, with a slight
difference between them. However, when it comes to efficiency, our local
ellipsoid NCM outperforms the others, giving the best results with tighter
conformal prediction regions.

synthetic (k = 2) ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2

Validity

SEC 99.21± 0.12 95.11± 0.23 90.25± 0.35 85.07± 0.45 80.07± 0.79
NEC 99.24± 0.11 95.08± 0.31 90.26± 0.39 84.99± 0.41 80.12± 0.81
SGE 98.97± 0.17 95.02± 0.37 90.00± 0.50 84.95± 0.49 79.94± 0.73
NLE 99.01± 0.15 94.89± 0.28 90.02± 0.48 84.91± 0.33 80.00± 0.45

Efficiency

SEC 3.95± 0.13 2.32± 0.04 1.75± 0.03 1.39± 0.02 1.16± 0.02
NEC 3.99± 0.14 2.32± 0.04 1.76± 0.03 1.38± 0.02 1.16± 0.02
SGE 4.19± 0.17 2.51± 0.05 1.84± 0.04 1.46± 0.02 1.20± 0.02
NLE 2.85± 0.07 1.81± 0.02 1.39± 0.02 1.14± 0.01 0.97± 0.01

Table 4.12: Validity and efficiency results for synthetic data.
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Figure 4.15: Results’ visualization for synthetic data with ε = 0.1.

For visualization purposes, we drew prediction regions (a rectangle
for the empirical copula NCMs and an ellipse for the ellipsoid NCMs) in
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Figure 4.15. We notice that both empirical copula NCMs give almost the
same results, which explains why their efficiency results in Table 4.12 are
almost equal. Another remark is that the normalized ellipse NCM in sub-
figure 4.15d shows that the drawn ellipses follow the choice of µi values
and their covariance matrices used to generate synthetic data, which shows
that our method respects the local covariance, thus explaining the gain in
efficiency going from a rectangle to an ellipse.

4.4.4 Results on real data

Following the same experiment protocol described above, we calculate
validity and efficiency values for all NCMs with ε = 0.1. These results
are summarized in Table 4.13.

ε = 0.1 Validity Efficiency
SEC NEC SGE NLE SEC NEC SGE NLE

res building 83.59± 6.73 85.48± 4.02 85.75± 5.08 89.54± 5.11 0.30± 0.07 0.22± 0.06 0.31± 0.08 0.17± 0.05
enb 83.98± 6.37 84.89± 5.99 87.23± 4.15 89.57± 5.22 0.13± 0.03 0.08± 0.02 0.11± 0.02 0.04± 0.02
music origin 88.76± 3.59 88.66± 2.64 89.70± 4.80 89.05± 4.30 10.98± 1.11 16.54± 3.30 10.60± 1.41 9.55± 0.73
bias corr 89.98± 0.93 90.42± 1.32 90.24± 1.06 90.29± 1.48 1.47± 0.06 1.32± 0.05 1.37± 0.05 1.19± 0.07
jura 86.93± 6.20 85.81± 4.69 86.64± 5.22 88.30± 8.03 24.29± 14.14 12.79± 7.57 12.89± 4.26 10.17± 5.60
scpf 84.52± 5.18 84.26± 4.95 87.86± 5.02 87.87± 4.75 3.7710 ± 6.8310 1.2610 ± 2.8110 4.877 ± 8.716 69.59± 89.96
indoorloc 90.32± 0.48 90.32± 0.58 90.37± 0.96 90.11± 0.89 0.06± 0.01 0.05± 0.01 0.07± 0.01 0.29± 0.03
sgemm 90.04± 0.17 90.05± 0.27 89.98± 0.20 90.03± 0.17 8.45−5 ± 2.56−6 7.34−5 ± 3.15−6 1.84−5 ± 4.93−7 1.15−5 ± 3.41−7

atp1d 72.09± 11.19 66.74± 10.73 85.18± 7.08 85.78± 5.50 6.25± 3.47 1.02± 1.15 8.17± 5.63 0.47± 0.45
atp7d 72.29± 11.82 68.54± 12.96 81.82± 10.41 86.13± 10.83 8.07± 10.73 0.64± 0.35 6.84± 9.23 4.11± 7.57
rf1 89.10± 2.14 89.13± 1.99 90.04± 1.50 90.20± 1.53 5.75−7 ± 3.79−7 3.60−7 ± 2.16−7 6.20−7 ± 5.27−7 4.14−8 ± 3.34−8

rf2 90.18± 1.53 89.79± 1.76 90.26± 1.31 89.98± 1.36 7.50−7 ± 4.40−7 3.13−7 ± 2.38−7 6.49−7 ± 4.96−7 4.44−8 ± 2.41−8

osales 81.39± 7.02 78.86± 7.88 86.71± 3.95 88.12± 4.64 5.606 ± 9.556 1.2015 ± 3.4515 1.475 ± 2.465 8.084 ± 1.265

wq 72.74± 4.43 78.49± 2.76 89.15± 4.91 87.55± 3.91 1.3110 ± 6.279 3.9317 ± 1.1818 1.169 ± 7.068 1.359 ± 1.089
scm1d 89.70± 1.27 89.60± 1.61 90.07± 1.27 90.42± 1.25 6.864 ± 2.924 1.123 ± 6.222 4.212 ± 1.792 8.86± 3.42
scm20d 88.23± 1.14 88.72± 1.64 89.26± 1.02 89.45± 1.15 7.985 ± 6.575 7.024 ± 3.854 3.213 ± 2.273 5.522 ± 3.542

oes10 74.15± 13.92 66.13± 19.95 87.57± 8.13 88.58± 6.84 7.625 ± 2.236 1.055 ± 2.865 1.836 ± 4.836 8.253 ± 1.264

oes97 69.11± 8.18 62.94± 15.06 89.22± 6.47 87.99± 7.41 1.455 ± 4.165 3.866 ± 8.386 6.906 ± 1.537 1.187 ± 1.827
com crime 86.18± 3.51 84.61± 3.04 90.21± 3.66 89.03± 2.34 5.199 ± 9.749 7.054 ± 7.614 1.175 ± 1.495 2.80± 7.01

We note XY the value X× 10Y .

Table 4.13: Validity and efficiency results for all real data sets.
For validity, in red are mean values lower than 80% and in orange are mean values
between 80% and 85%. For efficiency, tighter volumes are in bold. Reported
results are mean values of medians over all folds.

Validity results show that the ellipsoid NCMs perform better than the
empirical copula NCMs, especially when it comes to small data sets (with
less than 1000 instances). For these data sets, the empirical copula NCMs
are invalid with higher variance. This can be explained by the fact that
these NCMs are non-parametric, mostly relying on the size of calibration
data which is insufficient for smaller data sets. This simply confirms that
good performances are achieved when there is a good trade-off between
the inductive bias (the amount of made hypothesis) of the method and
the amount of data at disposal. Empirical copulas, that make very little
assumptions, perform badly when having only a small amount of Zcal.
Even with our theoretical guaranties, the effect of low calibration data can
still be noticed for our method (as in “atp7d”), however its impact is less
visible.
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Figure 4.16: Results’ visualization for “enb” with ε = 0.1.
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Figure 4.17: Results’ visualization for “res building” with ε = 0.1.
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Efficiency results show that our method gives the tightest volumes most
times, with a massive difference when compared to other NCMs in some
cases such as “scpf” and “osales”, “scm1d”, “scm20d” and “community
crime”. This confirms that our NCM takes advantage of the flexibility
of an ellipsoid shape in order to give tailored prediction regions for each
instance depending on its local covariance. For the few data sets where an
empirical copula approach gives a tighter volume, this NCM tends to be
invalid (except for “indoor localization”).

Figures 4.16 and 4.17 illustrate prediction regions for all NCMs for
“enb” and “residential building” data sets. For “enb”, we can clearly see
that even if the dependence structure is roughly the same for all instances,
our method NLE enables us to have adjustable ellipsoid sizes. For “resi-
dential building”, the different dependence structures in each space region
emphasizes the importance of using an approach that takes into considera-
tion local covariance matrices for each instance, and thus, give a noticeable
advantage to our method, especially when compared to NEC.

4.4.5 Computation time

Table 4.14 shows computation time for all data sets and for all NCMs.

Time (s) Proper Train SEC NEC SGE NLE

res building 1.58± 0.17 0.22± 0.17 5.85± 1.48 0.10± 0.02 0.13± 0.06
enb 0.37± 0.01 0.16± 0.02 5.79± 0.78 0.10± 2.03−3 0.13± 0.03
music origin 5.58± 0.51 0.17± 0.03 9.63± 2.03 0.11± 0.03 0.15± 0.02
bias corr 13.07± 1.02 0.21± 0.03 56.53± 1.162 0.14± 0.05 0.89± 0.11
jura 0.60± 0.04 0.07± 0.01 8.48± 1.68 5.99−4 ± 1.20−3 9.94−3 ± 8.94−4
scpf 2.49± 0.37 0.35± 0.05 6.31± 7.52 1.30−3 ± 6.39−4 0.07± 0.01
indoorloc 2.252 ± 7.98 0.35± 0.05 11.95± 0.41 1.28−3 ± 4.58−4 82.40± 3.91
sgemm 2.622 ± 13.51 4.84± 0.47 92 ± 1.282 0.01± 1.69−3 1.203 ± 15.07
atp1d 15.74± 0.39 0.13± 0.01 10.82± 1.39 5.98−4 ± 4.88−4 0.04± 3.64−3
atp7d 13.27± 0.56 0.12± 0.01 9.01± 4.16 2.98−4 ± 4.55−4 0.02± 7.84−4
rf1 1.792 ± 16.74 0.52± 0.04 6.38± 0.79 1.58−3 ± 4.87−4 1.90± 0.12
rf2 6.012 ± 28.05 0.48± 0.05 7.91± 1.67 1.57−3 ± 4.97−4 16.56± 1.16
osales 20.62± 2.15 0.27± 0.03 12.83± 8.82 9.83−4 ± 4.38−4 0.15± 0.02
wq 9.26± 0.89 0.36± 0.05 12.05± 5.17 1.08−3 ± 2.94−4 0.06± 0.01
scm1d 2.913 ± 9.822 1.24± 0.51 53.24± 34.83 3.13−3 ± 1.01−3 15.99± 5.36
scm20d 4.572 ± 9.06 0.99± 0.14 62.22± 6.50 2.87−3 ± 6.96−4 2.82± 0.34
oes10 45.35± 3.42 0.32± 0.04 14.83± 3.18 1.09−3 ± 6.98−4 0.05± 0.01
oes97 33.52± 2.51 0.33± 0.04 19.87± 1.07 1.08−3 ± 6.88−4 0.04± 9.27−3
com crime 2.182 ± 8.46 0.50± 0.07 28.76± 2.82 1.69−3 ± 7.79−4 0.41± 0.06

We note XY the value X× 10Y .

Table 4.14: Computation time for all real data sets.

When comparing both standard methods, we can see that the standard
global ellipsoid NCM is faster. This also applies on normalized NCMs
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with the normalized local ellipsoid NCM outperforming the normalized
empirical copula NCM (except for “indoorloc”, “sgemm” and “rf2”). This
can be explained by the fact that the MLP model used to get σi takes
longer to train than the kNN used for our ellipsoidal method. Of course,
the computation time for the normalized empirical copula approach can
be smaller if we change the normalizing model, but we decided to use the
same model as in our previous work for comparison purposes. We can
also explain the longer computation time for “indoorloc”, “sgemm” and
“rf2” with the fact that these data sets are larger, providing us with a bigger
number of neighbors (which size is equal to 5% of training data) to take
into consideration for each time.

4.5 conclusion

In this chapter, we proposed three approaches to produce conformal re-
gions while dealing with multi-target regression problems.

In our first approach, we applied inductive conformal prediction to
multi-target regression using deep neural networks. We extended non-
conformity measures from the single-output regression problem to the
multi-target regression case and proposed new non-conformity measures.
We also introduced a naive method to compute the necessary significance
levels for each target to get the desired overall confidence level, which was
proven to work with our empirical study. However, this naive approach
produces over-conservatively valid NCMs (as expected from a Bonferroni-
like correction), that often give big hyper-rectangle regions with high vari-
ability.

Our second approach dealt with these issues by exploiting a link be-
tween non-conformity scores and copulas, a commonly used tool to model
multi-variate distribution, in order to obtain valid NCMs for multi-target
regression. Experiments on various data sets for a small choice of repre-
sentative copulas show that the method indeed allows to improve upon
the naive independence assumption for different underlying algorithms
(Neural Networks and Random Forests). Those first results indicate in
particular that while parametric, simple copulas may provide valid results
for some data sets, more complex copulas may be needed in general to
obtain well calibrated predictions, with the cost that good estimations of
such copulas require a lot of calibration data.

In our third and final approach, we proposed a more flexible confor-
mal MTR method that provides normalized ellipsoidal uncertainty regions
based on the local covariance matrix of the instance. This method showed
that it can give tighter volumes compared to our copula-based approach,
and thus better efficiency results while maintaining a validity defined by
the required confidence level.



Chapter 5

Conformal prediction applied

to real estate management

Torture the data, and it will confess to anything.

— Ronald Coase
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This thesis is part of a partnership between the University of Technol-
ogy of Compiègne and Sopra/Steria. One of the objectives of this part-
nership is to help the company enrich its real estate management services
offer and enhance the value of the numerous building data (BIM: Build-
ing Information Modeling, IoT: Internet of Things and ERP: Enterprise
Resource Planning) that are not yet exploited to their full potential. As a
result, tenants’ debt prediction is a project that was conducted during this
thesis in order to apply conformal prediction methods to one of Sopra/Ste-
ria customers’ problems. In this chapter, we will present this work, mainly
based on our paper [Messoudi et al., 2021a].

5.1 tenants’ debt prediction : problem description

Social housing is housing intended for people with modest incomes who
would have difficulty finding housing on the private market. The social
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lease is granted under conditions of income or family composition. Even
if these rents are smaller than the average rents in the geographic sector,
the social housing remains a victim of unpaid rent. The generating facts
that explain these unpaid situations originate from predictable reasons (job
insecurity, multiple consumer loans, etc.) or unpredictable (tight budget,
health problems, change in family situations such as a birth or a divorce...).
In addition, the number of households in debt is likely to increase with
issues such as the health crisis due to the COVID-19 pandemic [Manville
et al., 2020]. In each case, social property owners must study the particular
situation of the household in difficulty of payment and hire social counsel-
lors and litigation managers to help them resolve their problems before
reaching an unfortunate eviction phase.

Thus, it is essential for social property owners to anticipate tenants that
are likely to fall into debt, and more importantly, limit the number of ten-
ants that are misclassified as in debt in order to avoid paying unnecessary
costs, or wasting some social agent time that could otherwise have been
used to the benefit of tenants really in need. On the other side, while it
is important to maintain a good overall accuracy, the accuracy on the debt
class is not so important, as misclassifying a tenant as having no debt only
delays the recovering procedure. To control all these factors, we propose a
class-wise confidence approach based on Mondrian conformal prediction
which was previously presented in 3.4. Before explaining our conformal
class-wise approach, we will briefly recall classic techniques for error con-
trol in binary classification, and detail the data preparation approach.

5.2 some error control methods for binary classification

In a supervised learning setting, binary classification consists of classifying
an object xi ∈ X into one of two labels: the negative class 0 or the positive
class 1, such that the target space is Y = {0, 1}. To evaluate a binary
classifier, a confusion matrix can be drawn based on its predictions as
follows:

Predicted Positive Predicted Negative

Ground-truth Positive TP (True Positive) FN (False Negative)
Ground-truth Negative FP (False Positive) TN (True Negative)

Table 5.1: Confusion matrix for a binary classification problem.

This confusion matrix is used to assess the number of examples that
were correctly classified (i.e. TP and TN), and those who were misclassified
(i.e. FP and FN). These values are then exploited to compute the accuracy
and its complement the error rate of the classifier as:
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Accuracy =
TP+ TN

TP+ FN+ TN+ FP
Error rate = 1−Accuracy. (5.1)

In most cases, traditional classification techniques aim at minimizing
the error rate by giving the same importance to both types of errors FP
and FN. However, this can be problematic, particularly when data is im-
balanced. Some methods emerged to treat the asymmetry that can occur
in errors by differentiating between FPR, i.e. the False Positive Rate also
referred to as type I error, and FNR, meaning the False Negative Rate also
called type II error. They are defined as follows:

FPR(ŷ) = P(ŷ = 1 | y = 0) FNR(ŷ) = P(ŷ = 0 | y = 1). (5.2)

cost-sensitive classification Cost-sensitive classification
(CSC) [Domingos, 1999] is a framework implemented to control asym-
metric error by taking into account different costs for both FPR and FNR.
Many algorithms were proposed to consider these costs from the start,
such as a hybrid genetic decision tree [Turney, 1994] and BEE-Miner which
is based on bees algorithm [Tapkan et al., 2016]. Other methods modify
existing cost-insensitive algorithms to make them cost-sensitive such as:

• Thresholding [Sheng et al., 2006]: seeks the best classifier’s probabil-
ity estimate from training data as the threshold, and uses it to predict
the label of test data.

• Rebalancing [Zadrozny et al., 2003]: changes the proportion of the
labels in training data either by assigning weights to instances or by
over-sampling/under-sampling.

neyman-pearson classification Neyman-Pearson classification
(NPC) is a method that applies the Neyman-Pearson lemma [Lann, 1959]
to find a classifier that solves, during training, the following minimization
problem:

min
FPR(ŷ)6ζ

FNR(ŷ), (5.3)

where ζ ∈ (0, 1) is a small user-specified level. This is done by following an
empirical risk minimization or a plug-in approach. Unlike other methods,
NPC gives a probabilistic guarantee over the type I error bound. For more
details, the reader can refer to [Tong et al., 2016].
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5.3 class-wise mcp

Our primary goal in this work and the associated application is to control
the error rate of a given class, while preserving a relatively low global
error rate. A specificity of this case is that the error rate of the remaining
class is of marginal importance, and to some extent what really matters for
this second class is the efficiency, i.e., the ability to identify some samples
belonging to it. In practice, this means that we need to specify different
significance levels for the classes and for the global data set. For this
purpose, we adapt the class-conditional Mondrian conformal prediction
described in Section 3.4.

Let εg ∈ (0, 1) be the global error rate for all the data set, ε0 ∈ (0, 1)
be the one specified for the label y = 0, meaning that the person is not in
debt, and ε1 ∈ (0, 1) be the one related to the class y = 1, i.e. the person is
in debt. ε0 is therefore the variable over which we wish to have a strong
control (in order not to send unnecessary social agents to the tenants). We
have

εg = ε0P(y = 0) + ε1P(y = 1). (5.4)

With εg and ε0 chosen by the user, and provided we have reasonable
estimations of P(y = 0) and P(y = 1), we can calculate ε1 by:

ε1 =
εg − ε0P(y = 0)

P(y = 1)
. (5.5)

When defining εg and ε0, and since ε1 ∈ (0, 1), we need to respect the
condition:

ε0P(y = 0) < εg < ε0 + (1− ε0)P(y = 1), (5.6)

otherwise we would obtain an unfeasible ε1.
This enables us to have individual significance levels for each class that

will guarantee an overall confidence level for the data set. Apart from this
step, the other steps of class-conditional MCP remain the same. Thus, in
our approach, we have the following procedure:

1. Split the original data set into a proper training set, a calibration set
per class and a test set.

2. Use the proper training set to train the underlying algorithm, get
the output predictions for the calibration and test sets and calculate
their non-conformity scores based on the standard non-conformity
measure in Equation (3.8).

3. Estimate the class prior probabilities P(y = 0) and P(y = 1) from the
training set.

4. Fix εg and ε0 and compute ε1 based on the Equation (5.5), with
respect to the specified condition in (5.6).
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5. For each example in the test set, and for each class, compute the
p-values using Equation (3.18) for class-conditional Mondrian con-
formal prediction.

6. For each example in the test set, get its set prediction using Equa-
tion (3.11).

Some comments are now in order. From Equation (5.5), it is clear that
whenever ε0 is fixed, the value of ε1 increases as εg grows. Now, if our
goal were to maximize our accuracy, we would set εg = ε0 = ε1, as usual.
However, in our setting, what is important is to identify a suitable number
of persons that will be in debt rather than being too cautious. Hence, our
goal for class 1 is to have a reasonable, if not maximal specificity, that is to
ensure that a high amount of prediction sets (3.11) will contain only one
value for class 1. As the size of Γε decreases when ε increases, it is then
desirable to have a high ε1, hence to pick εg > ε0.

5.4 general approach

Our approach to predicting which tenants are likely to fall into debt fol-
lowed several steps in order to move from a data warehouse provided by
Sopra Steria to a binary prediction (indebted, not indebted) data set based
on tenant information. These steps, summarized in Figure 5.1, are:

Figure 5.1: The global approach to tenants’ debt prediction.

• Data extraction from the DWH database provided by Sopra Steria
through the joins between the tables of interest for our problem.

• Data cleaning through transformation, addition, and selection of im-
portant variables for our problem in order to obtain a data set ex-
ploitable for Machine Learning with characteristics and a target (in-
debted, not indebted).
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• Training the Machine Learning model with a class confidence ap-
proach to control the overall error of the model as well as the error
of the class of interest (not indebted) to limit costs.

• Prediction of a new tenant as indebted or not indebted by the Ma-
chine Learning model and validation of the results on a test set.

5.4.1 Data extraction and cleaning

The origin of the data set comes from a data warehouse of one of Sopra
Steria’s customers that contains monthly historical records of tenant activ-
ity from January 2018 to December 2019. This data has been anonymized
in accordance with the EU General Data Protection Regulation (GDPR) to
protect the tenants’ privacy. Figure 5.2 shows some of the relationships be-
tween the tables used for our application which were chosen because they
contain information about the tenants, their personal situation (age, mari-
tal status, ...), their financial situation (job, salary, ...), their rental property
(number of rooms, geographical location, ...), and the payment operations
related to the rent (rent, bills, amounts collected, ...). In agreemen with
experts, we judged that this information was the most interesting and rele-
vant for our problem, i.e. the prediction of tenants likely to fall into a debt
situation.

The extraction of the data consisted of the following steps:

1. Read the csv files of the mentioned DWH tables, reformat the missing
values, and select the important variables determined by Sopra/Ste-
ria (according to the Excel ’table description’ file).

2. Prepare the data of the rented element (’elo info’) through the joins
between the dimension table ’rented element’ and the lower hierar-
chy tables linked to it.

3. Prepare the contract data (’contract info’) through joins between the
the dimension table ’contract details’ and the lower hierarchy tables
linked to it.

4. Prepare the household data (’household info’) through joins between
the fact table ’household’ and the lower hierarchy tables linked to it.

5. Prepare the household data (’household detail info’) through the
joins between the fact table ’household details’ and the lower hier-
archy tables linked to it.

6. Prepare the data of the client account (’tenant info’) through the joins
between the fact table ’client account’ and the lower hierarchy tables
linked to it.
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Figure 5.2: Physical Data Model (PDM) of the tables concerned by our
application.

7. Merge the data ’household info’ and ’household detail info’ in ’all
household info’.

8. Merge the data ’all household info’ and remaining ’info’ tables in
’tenants households’.

9. Save the ’tenants households’ data set in historical ’json’ format.

Figure 5.3 shows the result obtained which is the file ’tenants house-
holds to history.json’ containing a dictionary of the tenants whose key is
the ’tenant account ref’ of the tenant and the value is its history (several
lines historized according to a ’time id’ field).

The steps for preparing the final data set are as follows:

1. Read the file ’tenants household to history.json’ in historical format
in a dictionary.
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Figure 5.3: Extract from the file ’tenants households to history.json’.

2. Based on the monthly payment transactions, add a new variable cal-
culating the cumulative debt amount, which is a sum of the differ-
ence between the collected amount and the invoice amount for each
month.

3. Based on the amount of accumulated debt, add a Boolean variable
“indebted” which is equal to 0 if the person is not indebted, and 1 if
they are indebted for each month. Note that a person is considered
indebted if the amount of their cumulative debt is greater than or
equal to twice the gross monthly rent.

4. Transform the data set into a tabular format (one row per ’tenant
account ref’ where each original DWH field whose value varies over
time is replaced by n fields corresponding to the number of months
of available history).

5. For each ’tenant account ref’, check if it has been indebted for the
whole duration of the available history. If the person has not been
indebted, take a period of three months at random and record the
start date of the kept history in a ’hist start’ variable. If not, take a
period of three months at m− 5 of the month m of the debt occur-
rence (to have a latency of one month) and record the start date of
the history kept in a variable ’hist start’. Note that for indebted peo-
ple, and since for each example we take a history of 3 months over
a period of almost 2 years, we can have more than one example for
each person corresponding to different periods of time, in which this
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person can be indebted or not. This extraction strategy was chosen
to have a larger data set.

6. Rename all history variables according to the order of the month (1,
2 or 3) in the saved history.

7. Keep only the maximum, minimum or average of variables contain-
ing amounts or dates (for example, keep the minimum of ’cnc dtdval’,
which corresponds to the start date of the validity of a contract).

8. Remove redundant values (for example, keep only one value of ’age
std’).

9. Delete the business key columns.

10. Delete columns with more than 99.5% missing data and columns
with a single value.

11. Save the data set in tabular “csv” format in the file ’tenants house-
holds tabular.csv’ in the folder ’output’.

Figure 5.4 shows the result obtained which is the file ’tenants house-
holds tabular.csv’ containing thus a tabular data set with each example
(line) representing a client and its history of 3 months, with a target vari-
able ’indebted’ (= 1 if indebted and = 0 if not). It indicates whether the
tenant was in debt two months after the 3 month history.

Figure 5.4: Extract from the file ’tenants households tabular.csv’.

The resulting data set contains 28566 examples, 44 variables, and a
Boolean class with 1 being in debt and 0 being out of debt. It is also highly
imbalanced with only 7.89% of renters having debt and has many missing
values due to the fact that some of the data is collected through annual
surveys.
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5.4.2 Experimental setting

In our study, we focused on two main experiments, the first one being a
comparison between ICP and MCP with the same εg, and the second one
being the adaptation of class-conditional MCP to control εg and ε0 values.

We chose the gradient boosting algorithm “LightGBM” as the under-
lying algorithm since it can handle missing values and both categorical
and numerical features. We used the standard non-conformity measure
f(z) = 1− P̂h[y | x]. We also tried three types of splitting for the data set,
with a test set equal to 20% of the data set, and with a calibration set equal
to 20% of the training examples. These splitting approaches are as follows:

• Random: examples are split randomly on all training, calibration and
test sets. From the application perspective, this is clearly unrealistic,
as future events will be used to predict past ones (which is in practice
impossible), and as the same tenant will possibly be in different sets,
thus making unclear whether exchangeability holds. However, we
would argue that this is true for most actual applications, where a
task typically involves predicting future observations from past ones,
and this does not stop most ML (including those on conformal pre-
diction) papers to consider random splits on benchmarks to validate
approaches. Since this is the standard splitting strategy that is used
in all classic benchmarks, a random split therefore seems a good
point to provide a proof-of-concept.

• Person: examples are split according to the tenant’s ID, since we
can have many examples for the same person. This means that the
examples in the test set are those of people the algorithm did not
see before in the training and calibration phases. This seems a more
realistic scenario, as in practice tenants used in the training phase
will often be past tenants, and tenants used in the operational phase
will be new ones, different from the past ones.

• Time: the test predictions are done on examples from the future
based on a training and calibration done on examples from the past.
This is done by using randomised 2018 data for the training and
calibration, and keeping 2019 data for the test based on the feature
“history start”, so that the test set was made of approximately 20% of
the data set. This is undoubtedly the most realistic splitting strategy
with respect to the application goal, however as we shall see this is
also the one in which standard conformal prediction does not work
very well, for potential reasons we will discuss.

For comparison purposes, Figure 5.5 shows the confusion matrix re-
sults for all splitting protocols using the underlying algorithm “LightGBM”
with a threshold of 0.3 (so as to settle a low percentage of tenants wrongly
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predicted as defaulting). This first figure shows how badly the underlying
algorithm performs when it comes to handling imbalanced data, especially
in the case of time-based splitting.
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Figure 5.5: Confusion matrices for the underlying algorithm for all split-
ting protocols.

The first experiment was conducted based on the steps for the inductive
conformal classifier as described in Section 3.4, for values of ε ranging
from 0.1 to 0.9, where εg = ε0 = ε1 in the case of MCP.

The second experiment was conducted by adapting class-conditional
MCP to specify the error rate of the class 0 and the overall error rate, in
order to limit the number of misclassified people that are predicted as
in debt when in fact they are not. To do so, we followed our class-wise
confidence approach as described in Section 5.3, with different εg and ε0
values.

5.4.3 What did work

This section presents the promising results of our experiments, investigat-
ing in particular the difference between ICP and MCP, and the validity and
efficiency of the proposed approach.

For our first experiment, and to verify the validity of ICP and MCP, we
calculate the global accuracy and the accuracy of each class, and compare
them with the calibration line. This line represents the case where the error
rate is exactly equal to ε for a confidence level 1− ε, which is what we
seek to obtain in an exactly valid conformal predictor. Results are shown
in Figures 5.6 and 5.7 for each Random and Person types of splitting.

In the case of ICP (Figures 5.6a and 5.7a), results show that the global
validity for all the data set is reached. However, it is not respected for
the classes, more importantly for the class 1 corresponding to in debt ten-
ants, since we have fewer examples for this class. This shows the problem
of having an imbalanced data set in terms of categories or classes, and
how the least represented area of the observations’ space suffers the most



90 5.4.3 what did work

when a simple conformal prediction method is used. Indeed, a very bad
validity for the minority class can be compensated by a slightly conserva-
tive validity for the majority class. This problem is resolved in the case
of MCP (Figures 5.6b and 5.7b), which gives better validity results that
are almost exactly valid for the global data set and also for each individ-
ual class, including the minority class 1. In our case, a person-based split
slightly outperforms a random-based split since this latter is invalid for
the minority class 1 at ε values between 0.1 and 0.5.
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Figure 5.6: Validity results for Random-based split.
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Figure 5.7: Validity results for Person-based split.
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To evaluate the efficiency of ICP and MCP, we calculated the percentage
of singletons, empty sets ∅ and {0, 1} sets from all the predictions of the test
examples. Results are shown in Figure 5.8 for person-based splits, and are
similar for the random-based split.
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Figure 5.8: Percentage results for Person-based split.

For efficiency results, it is noticed that as ε decreases, the percentage
of predicted empty sets ∅ lessens. It is even no longer predicted (at ε =

0.1 for MCP). Conversely, the opposite is observed with the percentage
of singleton sets which grows constantly as ε decreases until ε = 0.1
for ICP and ε = 0.2 for MCP. From that moment, we notice a mirror
effect between the percentage of singletons and the percentage of {0, 1}
sets, which was null until now, and that grows whereas the percentage
of singletons declines, with bigger values in the case of MCP. This can be
explained by the fact that in MCP, the confidence level is guaranteed for
each class as well as the global data set, meaning that the model predicts
more {0, 1} sets to have a more reliable prediction, even for the minority
class. The same observations are made for both splitting methods.

For the second experiment, we used our class-wise confidence ap-
proach and specified different values for the significance levels εg and
ε0. Figures 5.9 and 5.10 show the confusion matrix for both random and
person splits with εg = 0.05 and ε0 = 0.01 and with εg = ε0 = 0.01,
corresponding to a classical MCP classifier.

In addition to having the percentage and amount of data falling in each
cell, we have added an extra element, which is either the proportion of sin-
gleton predictions in the case of correct predictions (that is, the ratio of {0}
or {1} among the predictions), or the proportion of empty set predictions
in case of incorrect predictions.
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Figure 5.9: Confusion matrix for class-wise confidence with εg = 0.05 and
ε0 = 0.01.
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Figure 5.10: Confusion matrix for class-wise confidence with εg = ε0 =
0.01.

For our approach, Figure 5.9 shows that the error rate for class 0 is
approximately equal to the chosen ε0, and that the error rate for class 1 is
also approximately 0.52, the result of Equation (5.5) when ε0 = 0.01 and
εg = 0.05. Also, the global validity is approximately equal to 95% as it
was chosen by the social property owners, which shows that our method
achieves a class-wise confidence while keeping a global confidence, both
chosen by the user. Similarly, Figure 5.10 shows expected results for the
more classical choice εg = ε0. However, a striking difference between the
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two is the number of precisely recognized persons that will be in debt or
not in debt, i.e. the percentage of singletons. For in debt persons, in the
matrices of Figure 5.10, this amounts to 19 persons for the random-based
split (4.2% of 449 persons) and 25 persons for the person-based split (5.4%
of 466 persons), while in the matrices of Figure 5.9, this amounts to 91 per-
sons for the random-based split (41.4% of 222 persons) and 108 persons
for the person-based split (43.2% of 249 persons). So indeed our accu-
racy on the first class has dropped drastically in our scheme, even with
a small margin between εg and ε0, but the clear upside is that we were
able to detect much more (about four times more) problematic tenants,
allowing for more prevention. For people who are not in debt, 2534 per-
sons are precisely predicted in the case of classical MCP (Figure 5.10) for
the random-based split (48.5% of 5224 persons) and 2854 persons for the
person-based split (54.6% of 5227 persons), whereas with our class-wise
approach (Figure 5.9), this amounts to 5052 persons for the random-based
split (96.7% of 5224 persons) and 5056 persons for the person-based split
(96.6% of 5233 persons), meaning that experts will have much less {0, 1}
cases to verify manually when using our method. This can be explained
by the fact that, contrary to our approach, all ε values are equal in the
classical MCP, thus ε1 = 0.01, which leads to more {0, 1} sets predicted in
order to ensure the 99% validity for the minority class. Consequently, this
impacts the class 0, by decreasing the percentage of precisely predicted
non in debt persons. Again, it is useful to recall that in this application,
tenants that will be in debt and predicted as not in debt will anyway be
detected and helped if possible. In Appendix C, Tables C.1 and C.2, we
provide the full results obtained for various choices of εg and ε0, in the
case of random and person splits.

As a conclusion, the first feedback from Sopra Steria and an involved
customer was enthusiastic and showed the advantages of using our class-
wise approach, especially when it comes to the absolute number of well-
verified tenants, a more important indicator for our data provider than the
ratio. Indeed, using the person splitting strategy, it is possible to reserve
an amount of tenants’ data for training and calibration (for instance, ten-
ants that are no longer customers of the social property owner), and only
predict in the production phase on new never-seen-before tenants. Our
empirical results also tend to indicate that the common assumption of con-
formal prediction (variable exchangeability, i.e., the fact that the drawn
inferences are invariable under observation permutation) holds at least ap-
proximately in those cases.

They should also be compared to the confusion matrices of Figure 5.5,
where the number of tenants falsely predicted as defaulting is as high as
the number of tenants rightly predicted as defaulting, both for the random
and person splits. This also shows that the conformal approaches can bring
a significant edge when compared to standard methods.
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5.4.4 What did not work

This section presents the results of our experiments for the time splitting
strategy. For our first experiment, we verify the validity of ICP and MCP
for the time splitting strategy by comparing the global accuracy and the
accuracy of each class with the calibration line. Results are shown in
Figure 5.11.
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Figure 5.11: Validity results for Time-based split.

In both cases, we notice that both methods are performing actually
very badly, with the global and class accuracies below the calibration line.
We also observe slightly better results for the MCP when it comes to the
minority class 1, with its accuracy being closer to the global and majority
class ones as compared to the ICP. We will discuss the possible reasons
behind such a result in the next section.

For the second experiment, Figure 5.12 shows the confusion matrix
of our class-wise approach for time split with εg = 0.05 and ε0 = 0.01
and with εg = ε0 = 0.01, corresponding to a Mondrian approach. These
results go together with the results of our first experiment, showing that
the chosen ε values are not respected for the class-wise approach with an
actual global accuracy of 89.88% instead of 95% and an actual accuracy of
3.83% instead of the computed 45% for class 0 (c.f. Appendix C Table C.3
for full results). When closely examining the results, we also observe that
for MCP (Figure 5.12b), the percentage of singletons is very small for all
of the confusion matrix cells, meaning that the experts should manually
verify nearly all examples. The only case where the amount of singleton
is high (Figure 5.12a) is when most predictions belong to the class 0, in
which case they are totally uninformative (hence useless).
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Figure 5.12: Confusion matrix for class-wise confidence with a Time-based
split.

As a conclusion, the time-based strategy, the splitting protocol that uses
the temporal aspect of the data set and is the most consistent with our final
applied intent, did not work. We discuss the possible fixes to that in the
next section.

5.4.5 What’s next

Overall, some of our experiments have shown that conformal approaches
can be used to finely control class-wise defined errors, the need of which
may easily arise in applications where some type of errors should be con-
trolled finely, while other ones are deemed less important.

However, not everything worked, and even in those cases where it
worked, there are probably still some room for improvement:

• Time-based split: in this case, the lack of an exact validity could
be explained by the fact that the time splitting strategy violates the
exchangeability assumption, possibly by a change of conditions not
detected and not present in the data that changes the underlying
distribution. Discussions with our end-user (Sopra Steria) did not
make us able to identify a possible source for such a change, as the
data set is a real, but outdated one. One possibility to solve this issue
would be to explore, use and/or adapt conformal approaches able
to deal with (temporal) distribution shift in the test set [Gibbs et al.,
2021].

• Better control of the error to satisfy the end-user: what Mondrian
conformal prediction can provide is a control of the class-conditional
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error, that is, knowing that y = c, we have validity on the probability
P(y ∈ Ŷ | y = c) where Ŷ is our conformal prediction. However, what
the user is ultimately interested in is the control of P(y = c | Ŷ = {c}),
of which our approach only provides a proxy (deemed satisfying
by the user). Our next step would therefore be to search to control
P(y = c | Ŷ = {c}), possibly by combining different conformal pre-
dictors (e.g., Class-wise with global ones), or by using Venn-Abers
predictors [Vovk et al., 2014] that are able to provide calibrated proba-
bilities as outputs, with the caveats that they provide multiple values
for those, of which at least one is ensured to be calibrated.

5.5 conclusion

In this work, we used the conformal prediction, and in particular the class-
conditional Mondrian variant, to have more control on the error rate of
a certain class, while preserving an overall confidence. We applied our
method to the real estate domain in order to help social property owners
limit the number of people that are falsely predicted as in debt when, in
fact, they are not, as these misclassifications are costly. The results show
the interest of this method on our data set when two types of splits are
considered (random and person based), with less-satisfying results when
using the time-based split.



Chapter 6

Conclusion and perspectives

In this thesis, the objective was to study distribution-free uncertainty quan-
tification via conformal prediction and apply it on complex data with two
main research directions.

The first study was focused on multi-target regression, a multi-task
learning problem that was scarcely explored in the conformal prediction
field. The idea was to provide a global confidence level on all targets at
once instead of treating them individually. To do so, we first used a naive
approach to get a hyper-rectangle conformal region with a Bonferroni-like
correction that produces over-conservatively valid non-conformity mea-
sures. We then solved this issue by proposing a method that exploits
the dependency structure between non-conformity scores using copulas,
which improves the performance of non-conformity scores (for both valid-
ity and efficiency) compared to the independence assumption as supposed
previously. Finally, we presented a more flexible approach that gives an
ellipsoidal conformal region by using the local covariance matrix of each
example. This last method gives tighter volumes while maintaining the
required validity.

The second direction was an applied research work to control the errors
of a binary classification problem related to the tenants’ debt prediction,
with the guidance of real estate experts. This was achieved by using class-
conditional Mondrian conformal prediction and showed the benefits of
applying such a method, which is limiting the number of people that are
falsely predicted as in debt. However, it is still lacking when we consider
a time-based approach when splitting data.

For multi-target regression, perspectives include exploring further the
flexibility of our methods, for instance by adapting them to the richer
conformal predictive distributions [Vovk et al., 2017], by exploring the
possibility of using vines [Joe et al., 2011] to model complex dependencies,
or by proposing protocols allowing to obtain εg from different individual,
user-defined confidence degrees.

Another future study would be to explore other ways to estimate the
local covariance matrix in the ellipsoidal conformal approach, for example
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by taking into consideration a density estimation by performing element-
wise prediction. We would also like to adapt our method to other uncer-
tainty ones such as jack-knife+ [Barber et al., 2021] and its leave-one-out
approach that allows to use all data in the training, especially for small
data sets.

We also would like to directly learn a cost function that takes into
consideration validity and efficiency [Colombo et al., 2020] for a multi-
target regression problem, possibly by using the hyper-rectangle volume
as a parameter to define εt values that give us the smallest volume for the
same validity.

Finally, while we mostly focused on multi-variate regression in this
thesis, it would be interesting to try to extend the current approach to
other multi-task settings, such as multi-label problems. A possibility could
be to make such problems continuous, as proposed for instance by [Liu,
2019].

For our applied research on tenants’ debt prediction, our contribution
is rather modest from a methodological perspective, but it opens up ques-
tions about a problem we think is important: the one of identifying how
various error rates should be elicited/chosen when considering conformal
frameworks with such multiple error rates. Indeed, while choosing equal
error rates is common in systematic studies, it can hardly be expected in
real-life applications that all targets need the same accuracy.

From an application point of view, the perspectives include treating
missing values to improve classification results, as for the moment we
use a model that handles them naturally. Also, we would like to explore
other non-conformity measures other than the standard one used in this
work. Moreover, it would be interesting to work on the time-based split,
by applying conformal prediction methods that treat temporal data such
as time series [Chernozhukov et al., 2018], or by considering the combina-
tion of conformal approaches with robust approaches to the distribution
shift [Tibshirani et al., 2019] in order to obtain validity even when the data
generating distribution varies over time.



Appendix A
Complementary experimental

results of naive conformal

MTR

This appendix presents complementary validity and efficiency results of
the remaining data sets. Note that for data sets with more than four targets,
we use a logarithmic scale to plot the median volume.
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Figure A.1: Naive conformal results for “res building”.
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Figure A.2: Naive conformal results for “enb”.
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Figure A.3: Naive conformal results for “music origin”.
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Figure A.4: Naive conformal results for “jura”.
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Figure A.5: Naive conformal results for “scpf”.
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Figure A.6: Naive conformal results for “indoorloc”.
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Figure A.7: Naive conformal results for “rf1”.
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Figure A.8: Naive conformal results for “rf2”.
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Figure A.9: Naive conformal results for “osales”.
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Figure A.10: Naive conformal results for “wq”.
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Figure A.11: Naive conformal results for “scm1d”.
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Figure A.12: Naive conformal results for “scm20d”.
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Figure A.13: Naive conformal results for “com crime”.
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Appendix B
Complementary experimental

results of copula conformal

MTR

This appendix presents complementary validity and efficiency results of
the remaining data sets.
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Figure B.1: Copula conformal results for “res building”.
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Figure B.2: Copula conformal results for “enb”.
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Figure B.3: Copula conformal results for “music origin”.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1− εg

0

20

40

60

80

100

Va
lid

ity
 (%

)

NN : Empirical validity for jura
Calibration line
Independent Copula
Gumbel Copula
Empirical Copula

(a) Validity (NN)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1− εg

0

20

40

60

80

100

Va
lid

ity
 (%
)

RF : Empirical validity for jura
Calibration line
Independent Copula
Gumbel Copula
Empirical Copula

(b) Validity (RF)

NN RF

101

102

103

Independent

NN RF

Hyper-rectangle median volume for jura (log) 
 Gumbel

NN RF

Empirical

(c) Efficiency (both)

Figure B.4: Copula conformal results for “jura”.
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Figure B.5: Copula conformal results for “scpf”.
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Figure B.6: Copula conformal results for “indoorloc”.
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Figure B.7: Copula conformal results for “rf1”.
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Figure B.8: Copula conformal results for “rf2”.
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Figure B.9: Copula conformal results for “osales”.
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Figure B.10: Copula conformal results for “scm1d”.
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Figure B.11: Copula conformal results for “scm20d”.
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Appendix C
Additional results of MCP for

tenants’ debt prediction

Tables C.1, C.2 and C.3 present a complete overview of our results for
different choices of ε0 and εg for all splitting strategies.
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Epsilons Accuracy (%) {0, 1} sets (%) ∅ sets (%)
εg (chosen) ε0 (chosen) ε1 (computed) Global Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

0.01 0.01 0.01 99.28 99.26 99.56 51.5 95.81 0.0 0.0
0.02 0.01 0.14 98.04 99.26 83.81 14.15 86.11 0.0 0.0
0.03 0.01 0.26 97.22 99.26 73.39 8.91 79.47 0.0 0.0
0.04 0.01 0.39 95.89 99.26 56.54 4.95 67.95 0.0 0.0
0.05 0.01 0.52 95.31 99.26 49.22 3.33 58.61 0.0 0.0
0.06 0.01 0.64 94.56 99.26 39.69 1.91 44.69 0.0 0.0
0.07 0.01 0.77 93.45 99.26 25.72 0.0 0.0 5.13 2.69

0.08 0.01 0.9 92.4 99.26 12.42 0.0 0.0 69.23 17.47

0.05 0.05 0.05 95.17 95.15 95.34 18.7 76.33 0.0 0.0
0.06 0.05 0.18 93.93 95.15 79.6 5.39 47.81 0.0 0.0
0.07 0.05 0.3 92.72 95.15 64.3 0.0 0.0 10.2 4.97

0.08 0.05 0.43 91.9 95.15 53.88 0.0 0.0 39.22 26.44

0.09 0.05 0.56 91.23 95.15 45.45 0.0 0.0 60.0 37.8
0.1 0.05 0.68 90.58 95.15 37.25 0.0 0.0 73.73 45.94

0.11 0.05 0.81 89.24 95.15 20.18 0.0 0.0 89.02 57.5
0.12 0.05 0.94 88.26 95.15 7.76 0.0 0.0 96.86 63.22

0.1 0.1 0.1 90.71 90.86 88.91 5.18 40.98 0.0 0.0
0.11 0.1 0.23 89.66 90.86 75.61 0.0 0.0 22.87 17.27

0.12 0.1 0.35 88.41 90.86 59.87 0.0 0.0 58.84 49.72

0.13 0.1 0.48 87.78 90.86 51.88 0.0 0.0 72.97 58.06

0.14 0.1 0.61 87.03 90.86 42.35 0.0 0.0 81.08 65.0
0.15 0.1 0.73 86.09 90.86 30.38 0.0 0.0 90.23 71.02

0.16 0.1 0.86 85.11 90.86 17.96 0.0 0.0 96.05 75.41

0.14 0.15 0.02 87.03 86.03 98.67 35.3 79.97 0.0 0.0
0.15 0.15 0.15 85.74 86.03 82.26 0.0 0.0 28.84 41.25

0.16 0.15 0.28 84.65 86.03 68.51 0.0 0.0 62.18 66.9
0.17 0.15 0.4 83.6 86.03 55.21 0.0 0.0 77.14 76.73

0.18 0.15 0.53 83.13 86.03 49.22 0.0 0.0 83.81 79.48

0.19 0.15 0.66 82.32 86.03 39.02 0.0 0.0 89.39 82.91

0.2 0.15 0.78 81.06 86.03 23.06 0.0 0.0 95.65 86.46

0.21 0.15 0.91 80.08 86.03 10.64 0.0 0.0 98.78 88.34

0.19 0.2 0.07 81.85 81.0 91.8 0.0 0.0 17.8 37.84

0.2 0.2 0.2 80.77 81.0 78.05 0.0 0.0 58.3 76.77

0.21 0.2 0.33 79.47 81.0 61.64 0.0 0.0 79.1 86.71

0.22 0.2 0.45 78.74 81.0 52.33 0.0 0.0 86.2 89.3
0.23 0.2 0.58 78.11 81.0 44.35 0.0 0.0 90.3 90.84

0.24 0.2 0.71 77.28 81.0 33.92 0.0 0.0 94.2 92.28

0.25 0.2 0.83 76.13 81.0 19.29 0.0 0.0 97.5 93.68

0.26 0.2 0.96 74.99 81.0 4.88 0.0 0.0 99.7 94.64

0.24 0.25 0.12 76.86 76.1 85.81 0.0 0.0 52.7 79.69

0.25 0.25 0.25 75.95 76.1 74.28 0.0 0.0 72.66 88.79

0.26 0.25 0.38 74.57 76.1 56.76 0.0 0.0 85.93 93.33

0.27 0.25 0.5 74.08 76.1 50.55 0.0 0.0 90.14 94.17

0.28 0.25 0.63 73.29 76.1 40.58 0.0 0.0 92.93 95.15

0.29 0.25 0.76 72.24 76.1 27.27 0.0 0.0 96.98 96.04

0.3 0.25 0.88 71.21 76.1 14.19 0.0 0.0 98.97 96.64

Table C.1: Summary results for class-wise confidence with different values
of ε for Random split.
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Epsilons Accuracy (%) {0, 1} sets (%) ∅ sets (%)
εg (chosen) ε0 (chosen) ε1 (computed) Global Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

0.01 0.01 0.01 99.3 99.33 98.94 45.44 94.63 0.0 0.0
0.02 0.01 0.13 98.37 99.06 90.5 17.38 88.92 0.0 0.0
0.03 0.01 0.26 97.29 99.06 77.11 9.98 82.01 0.0 0.0
0.04 0.01 0.38 96.09 99.06 62.2 5.93 72.79 0.0 0.0
0.05 0.01 0.54 95.0 99.09 50.92 3.37 56.78 0.0 0.0
0.06 0.01 0.63 94.21 99.06 38.88 1.74 43.4 0.0 0.0
0.07 0.01 0.75 93.0 99.06 23.76 0.0 0.0 16.0 2.83

0.08 0.01 0.88 92.25 99.06 14.47 0.0 0.0 64.0 13.38

0.05 0.05 0.05 94.32 94.43 93.04 16.67 72.1 0.0 0.0
0.06 0.05 0.18 93.32 94.43 80.65 4.13 38.76 0.0 0.0
0.07 0.05 0.31 92.29 94.43 67.83 0.0 0.0 12.63 10.14

0.08 0.05 0.44 90.91 94.43 50.65 0.0 0.0 46.08 41.41

0.09 0.05 0.57 89.79 94.43 36.74 0.0 0.0 68.6 54.3
0.1 0.05 0.7 89.07 94.43 27.83 0.0 0.0 82.25 59.94

0.11 0.05 0.83 88.37 94.43 19.13 0.0 0.0 90.78 64.25

0.12 0.05 0.95 87.24 94.43 5.0 0.0 0.0 97.95 69.57

0.1 0.1 0.1 89.93 90.0 89.02 2.7 25.81 0.0 0.0
0.11 0.1 0.23 88.64 90.0 71.96 0.0 0.0 44.95 50.0
0.12 0.1 0.36 87.78 90.0 60.51 0.0 0.0 62.1 64.5
0.13 0.1 0.49 86.64 90.0 45.33 0.0 0.0 79.05 74.36

0.14 0.1 0.62 85.9 90.0 35.51 0.0 0.0 87.62 78.26

0.15 0.1 0.75 85.02 90.0 23.83 0.0 0.0 95.24 81.6
0.16 0.1 0.88 84.0 90.0 10.28 0.0 0.0 97.52 84.38

0.14 0.15 0.02 86.18 85.08 98.31 22.78 70.41 0.0 0.0
0.15 0.15 0.15 85.03 85.08 84.39 0.0 0.0 28.79 43.24

0.16 0.15 0.28 84.29 85.08 75.53 0.0 0.0 60.38 63.79

0.17 0.15 0.41 82.9 85.08 58.65 0.0 0.0 77.45 78.57

0.18 0.15 0.54 81.85 85.08 45.99 0.0 0.0 85.61 83.59

0.19 0.15 0.68 80.77 85.08 32.91 0.0 0.0 93.12 86.79

0.2 0.15 0.81 79.68 85.08 19.62 0.0 0.0 97.71 88.98

0.21 0.15 0.94 78.56 85.08 6.12 0.0 0.0 99.49 90.56

0.19 0.2 0.08 80.39 79.47 91.15 0.0 0.0 20.35 32.5
0.2 0.2 0.2 79.69 79.47 82.3 0.0 0.0 58.66 66.25

0.21 0.2 0.32 78.89 79.47 72.12 0.0 0.0 72.65 78.57

0.22 0.2 0.44 78.19 79.47 63.27 0.0 0.0 81.22 83.73

0.23 0.2 0.55 77.22 79.47 50.88 0.0 0.0 88.58 87.84

0.24 0.2 0.67 76.47 79.47 41.37 0.0 0.0 92.91 89.81

0.25 0.2 0.79 75.49 79.47 28.98 0.0 0.0 95.86 91.59

0.26 0.2 0.91 74.17 79.47 12.17 0.0 0.0 98.8 93.2

0.24 0.25 0.12 76.37 75.47 87.0 0.0 0.0 54.07 77.59

0.25 0.25 0.25 75.34 75.47 73.77 0.0 0.0 76.73 88.89

0.26 0.25 0.38 74.53 75.47 63.45 0.0 0.0 84.33 92.02

0.27 0.25 0.51 73.43 75.47 49.33 0.0 0.0 90.15 94.25

0.28 0.25 0.64 72.34 75.47 35.43 0.0 0.0 94.57 95.49

0.29 0.25 0.77 71.18 75.47 20.63 0.0 0.0 97.52 96.33

0.3 0.25 0.89 70.29 75.47 9.19 0.0 0.0 98.91 96.79

Table C.2: Summary results for class-wise confidence with different values
of ε for Person split.
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Epsilons Accuracy (%) {0, 1} sets (%) ∅ sets (%)
εg (chosen) ε0 (chosen) ε1 (computed) Global Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

0.01 0.01 0.01 99.73 99.98 97.66 82.61 99.65 0.0 0.0
0.02 0.01 0.14 93.63 99.98 39.57 18.59 98.35 0.0 0.0
0.03 0.01 0.28 91.07 99.98 15.11 2.58 88.98 0.0 0.0
0.04 0.01 0.41 90.24 99.98 7.23 1.14 77.97 0.0 0.0
0.05 0.01 0.55 89.88 99.98 3.83 0.25 43.48 0.0 0.0
0.06 0.01 0.68 89.66 99.98 1.7 0.0 0.0 100.0 1.08

0.07 0.01 0.82 89.5 99.98 0.21 0.0 0.0 100.0 2.56

0.05 0.05 0.05 96.65 98.7 79.15 46.45 96.44 0.0 0.0
0.06 0.05 0.18 91.29 98.7 28.09 6.2 77.33 0.0 0.0
0.07 0.05 0.32 89.75 98.7 13.4 0.0 0.0 17.31 2.46

0.08 0.05 0.45 89.01 98.7 6.38 0.0 0.0 63.46 9.77

0.09 0.05 0.59 88.7 98.7 3.4 0.0 0.0 92.31 12.56

0.1 0.05 0.72 88.43 98.7 0.85 0.0 0.0 100.0 14.81

0.11 0.05 0.86 88.36 98.7 0.21 0.0 0.0 100.0 15.35

0.1 0.1 0.1 75.52 77.64 57.45 6.76 48.08 0.0 0.0
0.11 0.1 0.23 71.57 77.64 19.79 0.0 0.0 90.62 36.34

0.12 0.1 0.37 70.45 77.64 9.15 0.0 0.0 96.32 43.79

0.13 0.1 0.5 70.05 77.64 5.32 0.0 0.0 98.44 46.07

0.14 0.1 0.64 69.78 77.64 2.77 0.0 0.0 99.89 47.48

0.15 0.1 0.77 69.53 77.64 0.43 0.0 0.0 100.0 48.72

0.14 0.15 0.02 57.49 52.93 96.38 28.46 60.81 0.0 0.0
0.15 0.15 0.15 51.46 52.93 38.94 0.0 0.0 68.08 75.26

0.16 0.15 0.28 48.89 52.93 14.47 0.0 0.0 97.51 82.34

0.17 0.15 0.42 48.13 52.93 7.23 0.0 0.0 98.62 83.72

0.18 0.15 0.55 47.76 52.93 3.62 0.0 0.0 99.68 84.33

0.19 0.15 0.69 47.51 52.93 1.28 0.0 0.0 100.0 84.7
0.2 0.15 0.82 47.4 52.93 0.21 0.0 0.0 100.0 84.86

0.19 0.2 0.07 44.9 42.18 68.09 0.0 0.0 45.23 86.0
0.2 0.2 0.2 40.41 42.18 25.32 0.0 0.0 93.01 94.02

0.21 0.2 0.33 39.04 42.18 12.34 0.0 0.0 98.19 94.9
0.22 0.2 0.47 38.4 42.18 6.17 0.0 0.0 99.31 95.24

0.23 0.2 0.6 38.08 42.18 3.19 0.0 0.0 99.87 95.38

0.24 0.2 0.74 37.84 42.18 0.85 0.0 0.0 100.0 95.49

0.25 0.2 0.87 37.77 42.18 0.21 0.0 0.0 100.0 95.52

0.24 0.25 0.12 37.06 35.59 49.57 0.0 0.0 65.01 93.25

0.25 0.25 0.25 33.71 35.59 17.66 0.0 0.0 97.21 95.87

0.26 0.25 0.38 32.79 35.59 8.94 0.0 0.0 98.92 96.26

0.27 0.25 0.52 32.32 35.59 4.47 0.0 0.0 99.65 96.44

0.28 0.25 0.65 32.1 35.59 2.34 0.0 0.0 100.0 96.51

0.29 0.25 0.79 31.9 35.59 0.43 0.0 0.0 100.0 96.58

Table C.3: Summary results for class-wise confidence with different values
of ε for Time split.



Bibliography

Abideen, Zain Ul, Mubeen Ghafoor, Kamran Munir, Madeeha Saqib, Ata
Ullah, Tehseen Zia, Syed Ali Tariq, Ghufran Ahmed, and Asma Zahra
(2020). “Uncertainty assisted robust tuberculosis identification with
bayesian convolutional neural networks”. In: Ieee Access 8, pp. 22812–
22825 (cited on p. 10).
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sont données”. In: Ann. Univ. Lyon, 3ê serie, Sciences, Sect. A 14, pp. 53–
77 (cited on p. 52).

Freni, Gabriele and Giorgio Mannina (2010). “Bayesian approach for uncer-
tainty quantification in water quality modelling: The influence of prior
distribution”. In: Journal of Hydrology 392.1-2, pp. 31–39 (cited on p. 10).

Gammerman, Alex, Volodya Vovk, and Vladimir Vapnik (1998). “Learning
by transduction”. In: Proceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence, 148–155 (cited on p. 1).

Genest, Christian and Louis-Paul Rivest (1993). “Statistical inference pro-
cedures for bivariate Archimedean copulas”. In: Journal of the American
statistical Association 88.423, pp. 1034–1043 (cited on p. 55).

Gibbs, Isaac and Emmanuel Candès (2021). “Adaptive Conformal Infer-
ence Under Distribution Shift”. In: arXiv preprint arXiv:2106.00170 (cited
on p. 95).

Gneiting, Tilmann and Adrian E Raftery (2007). “Strictly proper scoring
rules, prediction, and estimation”. In: Journal of the American statistical
Association 102.477, pp. 359–378 (cited on p. 11).

Gopalan, Giri, Andrew Zammit-Mangion, and Felicity McCormack (2021).
“A Review of Bayesian Modelling in Glaciology”. In: arXiv preprint
arXiv:2112.13663 (cited on p. 10).

Gumbel, Emil Julius (1960). “Distributions des valeurs extremes en
plusiers dimensions”. In: Publ. Inst. Statist. Univ. Paris 9, pp. 171–173

(cited on p. 55).
Guo, Cheng and Felix Berkhahn (2016). “Entity embeddings of categorical

variables”. In: arXiv preprint arXiv:1604.06737 (cited on p. 43).
Guo, Chuan, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger (2017). “On

calibration of modern neural networks”. In: International Conference on
Machine Learning. PMLR, pp. 1321–1330 (cited on p. 12).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep
residual learning for image recognition”. In: CVPR, pp. 770–778 (cited
on p. 29).
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McNeil, Alexander J, Rüdiger Frey, and Paul Embrechts (2015). Quantita-
tive risk management: concepts, techniques and tools-revised edition. Prince-
ton university press (cited on pp. 53, 54).
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