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Abstract:
The quantum many-body problem, and especially the study of dynamical properties of a mul-
tipartite quantum system, is one of the hardest problems of modern physics. There exist only
a few analytical results and exact numerical simulations require an amount of resources that
grow exponentially with the system size.

In this thesis, we studied correlations and entanglement properties for systems composed
of magnetic atoms on a lattice, for instance via the generation of spin squeezing. For this
purpose we have developed new approximate numerical methods that allow us to study large
system sizes. This enabled us to propose protocols to generate an amount of spin squeezing that
scales with the system size. The advantage is twofold. Since spin squeezing is an entanglement
witness, this would allow for entanglement detection in a system of magnetic atoms - which has
yet to be realized experimentally. Moreover, spin squeezing offers an important metrological
advantage, as spin-squeezed states can be used for extremely precise measurements of external
magnetic fields, far beyond what one can achieve with independent atoms.

Finally, we studied the generation of other forms of entanglement, namely Dicke squeezing
(of spin or momentum), in systems of Bose-condensed atoms. This form of entanglement is well-
known in spin-1 atomic condensates. Here, we propose a protocol to generalize it to the case
of momentum modes, using a time-dependent Hamiltonian. The entangled states generated
during the dynamics are potentially useful for the precision measurements of inertial forces.

Résumé :
Le problème quantique à N corps, notamment l’étude des propriétés dynamiques d’un système
quantique composite est l’un des problèmes les plus durs de la physique moderne, car il y
a peu de résultats analytiques et les méthodes numériques exactes requièrent des ressources
numériques exponentielles en la taille du système.

Dans cette thèse, nous avons étudié la mise en évidence de propriétés de corrélations et
d’intrication pour des systèmes d’atomes magnétiques sur réseau, par exemple via la compres-
sion de spin. Pour cela nous avons mis au point de nouvelles méthodes numériques approchées,
qui permettent de simuler des systèmes de grande taille. Cela nous a permis de proposer des
protocoles qui permettent de générer de la compression de spin qui croit d’autant plus que le
système est grand, ce qui a un double intérêt. D’une part, il s’agit d’un témoin d’intrication,
qui permettrait donc de détecter de l’intrication dans un système d’atomes magnétiques, ce
qui n’a pas encore été réalisée expérimentalement à ce jour. D’autre part la compression de
spin présente un important intérêt métrologique, puisque les états comprimés permettent des
mesures extrêmement précises de champs magnétiques par exemple, bien au-delà de ce qui est
possible avec des atomes indépendants.

Enfin, nous avons étudié la génération d’autres formes d’intrication, à savoir la compression
à deux modes (de spin, ou d’impulsion), cette fois pour des systèmes d’atomes condensés.
Connue dans le cas de condensats d’atomes de spin-1, nous avons proposé comment généraliser
ce processus au cas de compression en impulsion, en utilisant un Hamiltonien modulé dans le
temps. Les états intriqués ainsi produits sont potentiellement très intéressants dans la mesure
à haute précision de forces inertielles.
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Introduction

The quantum many-body problem, and especially the study of dynamical properties of a mul-
tipartite quantum system, is one of the hardest problems of modern physics. There exist only
a few analytical results and exact numerical simulations require an amount of resources that
grow exponentially with the system size. Indeed, one of the properties of quantum mechanical
systems as opposed to classical one is that the state of a quantum system is described by a
number of parameters exponential in the system size, while it is linear in the system size for
a classical system. This is due to a famous property of quantum mechanical states, namely
superposition. This phenomenon is at the origin of the richness of quantum mechanical states
and properties, such as entanglement. This complexity has for long been a major obstacle to
study large quantum systems, yet recent developments both in the experimental techniques
and in numerical and theoretical methods open new perspectives to study quantum many-body
systems in a controlled way. An especially promising arena is that of ultracold atoms, which
represent the main source of inspiration for our research work.

In this context, this thesis focuses on the study of dynamical properties of large-S spin
systems, related to the properties of ultracold atoms in optical lattices. In this thesis, we will
use exact numerical methods, as well as new approximate theoretical approaches, to investigate
the build up of correlations and entanglement in spin systems and multi-mode bosonic systems.
An important part of this thesis will be dedicated to the presentation of these new theoretical
approaches as well as their benchmark versus exact methods. We will discuss the potential
use of the states generated in the dynamics for metrological applications, and in particular
for precision measurement of magnetic fields or inertial forces. Finally, we propose realistic
protocols, suitable for current experimental platforms, to be implemented in future experiments
in order to realize highly entangled states.

The organization of the present thesis is the following:

1. In Chapter 1, we introduce the key theoretical notions to study the physical properties of
many-body quantum systems. In particular, we present the notion of entanglement and
discuss different manner to characterize and detect it as well as its importance for the field
of metrology. We also discuss the time evolution of quantum systems and the link with
self-thermalization within the framework of the Eigenstate Thermalization Hypothesis.
We review different existing numerical methods, both exact and approximate, that are
widely used to study the quantum many-body problem, and discuss their strengths and
limitations.

2. In Chapter 2, we discuss the specific case of quantum systems made of large-S spins. We
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Introduction

introduce some key notions to investigate the properties of these systems. In particular,
we present two Hamiltonians realized by spin systems, the general One-Axis-Twisting
Hamiltonian, and the more specific dipolar XXZ Hamiltonian for magnetic atoms. In the
case of the OAT Hamiltonian, we review the known results on its dynamics starting from
a coherent spin state. Finally, we review recent experimental realization of the dipolar
XXZ Hamiltonian using magnetic atoms.

3. In Chapter 3, we study in more details the dynamics induced by the dipolar XXZ Hamil-
tonian, starting from a coherent initial state for magnetic atoms pinned on a 1D lattice.
We start by investigating the case with only N = 2 spins, where we can derive exact
results and reproduce exactly the OAT Hamiltonian presented in the previous chapter.
We then move to larger numbers N of spins and discuss the persistence of dynamical
properties obtained in the N = 2 case when increasing N .

4. In Chapter 4 we present the main results of this thesis. Introducing two numerical meth-
ods, based on an approximate separation of variables and on a truncated cumulant ex-
pansion, we are able to study the dynamics of the dipolar XXZ Hamiltonian for very
large 1D chains and 2D square lattices. In particular, we show that in the case of a 2D
square lattice and starting with a uniform coherent spin state, it is possible to gener-
ate spin squeezing in a scalable manner with the atom number N , which offers a clear
metrological advantage compared to independent atoms. In particular the scheme based
on the separation of variables allows us to reinterpret the results obtained in the pre-
vious chapter. We also investigate the equilibrium state properties of the dipolar XXZ
Hamiltonian using both a mean-field approach as well as quantum Monte Carlo. Finally,
we discuss the link between the dynamical properties of the system (in particular the
presence of scalable squeezing) and the thermodynamic properties of the system - namely
the existence of long-range ferromagnetic order in the xy plane at finite temperature.

5. Finally, in Chapter 5, we study another form of spin squeezing, namely Dicke squeezing,
that can be generated from spin-exchange collisions in a spinor condensate. This form
of entanglement is well-known in spin-1 atomic condensates, and we first review the
main properties of the dynamics in that case, starting with a condensate of spins in
the individual state m = 0. Then, we propose a protocol to generalize this entangling
dynamics to the case of momentum modes, using a time-dependent Hamiltonian. The
entangled states generated during the dynamics are potentially interesting for the high-
precision measurement of inertial forces.
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Chapter 1
Many-body quantum dynamics

In this first chapter, we introduce some key theoretical notions concerning many-body quantum
systems. In section 1.1, we review important properties of quantum mechanical states, from
entanglement to out-of equilibrium dynamics. In section 1.2, we present numerical methods to
study these properties.

1.1 Quantum many-body physics and entanglement
The quantum many-body problem can be generically formulated as the problem of solving the
dynamics of a quantum system composed of a large number of degrees of freedom. As such, it
represents one of the hardest problems in physics. A most challenging part of this problem is
to predict the evolution of a system after a quantum quench, i.e. the evolution following the
preparation of the system in a state which is not a Hamiltonian eigenstate.

1.1.1 Information in a quantum state
The way a quantum state is represented is radically different from the way a classical state
is represented. Let us take for instance a chain of spin-1

2 spins. At the single-spin level, a
classical state would just contain the information of the spin being in the state ↑ or ↓, and
can be stored using a single bit. A quantum state, on the contrary, is already a superposition
of the two possible outcomes and it takes a complex number α to express the quantum state
(| ↑⟩ + α| ↓⟩) /

√
(1 + |α|2) of the spin. Depending on the precision one wants, it can correspond

to 2 floating numbers, e.g. each with 64 bits. In the language of quantum computation, this is
what we call a qubit, and it is already clear at this level that a qubit can store more information
than a classical bit.

However, the real difference between classical and quantum arises when looking at the many-
body state of the system. In the classical case, the state of N spins is simply expressed by the
state of all the individual spins (σ1, σ2, ...σN) where the σi all take values in ↑, ↓, and hence it
contains only N classical bits of information. Note that there exist 2N such classical states.
On the other hand, a generic quantum many-body state can not in general be expressed as a
tensor product of N independent single-spin states, but it is a complex linear combination of
all the possible basis states, which requires 2N complex numbers to be specified. The main
difference between classical and quantum information therefore lies in this huge difference in
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Chapter 1. Many-body quantum dynamics

scaling with system size. Whereas it is possible to simulate classical systems of millions of
particles by using conventional (i.e. classical) computers, it is impossible to simulate exactly
the quantum state of more than ≈ 30 quantum S = 1

2 spins because of the exponential scaling
of the quantum information contained in the state. This is one of the main motivations towards
quantum simulation [1]: developing experimental platforms that could simulate the dynamics of
quantum systems with resources that would not increase exponentially with system size. This
would allow one to explore the possibility to scale quantum properties such as entanglement
to increasingly large systems; and to possibly address the question about the existence of a
quantum-to-classical crossover.

1.1.2 Entanglement and metrology
Separability and entanglement. In terms of mathematical structure, the many-body Hilbert
space where the many-body quantum state lives is simply obtained as a tensor product of the
single-body Hilbert spaces, for each degree of freedom. This gives rise to an exponential scaling
of the Hilbert space dimension with the number of components in the system. The fundamental
trait that makes the Hilbert space of N quantum particles astronomically more complex than
the phase space of N classical particles is entanglement, stemming from many-body quantum
superpositions [2]. Before defining what is entanglement, one must first define what entangle-
ment is not, namely separability. A pure many-body quantum state is said to be separable if
it can be written as a tensor product of individual states for the subsystems, namely:

|Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ ...⊗ |ψN⟩. (1.1)

With this definition, it is clear that there are no correlations between the different subsystems,
and the variance of any collective observable would only be the sum of the variances of individual
observables. On the contrary, a state that is not separable is said to be entangled. A typical
example of an entangled state in the case of two spins S = 1

2 is a Bell state such as |↑↑⟩+|↓↓⟩√
2 .

This definition can be extended to density matrices. A quantum state is said to be separable
if its density matrix can be written as a mixture of product states:

ρ =
∑

k

pkρ
(k)
1 ⊗ ρ

(k)
2 ⊗ ...⊗ ρ

(k)
N ,

∑
k

pk = 1 (1.2)

and is entangled otherwise. Note that for a pure state |ψ⟩, the density matrix is simply ρ =
|ψ⟩⟨ψ|.

Entanglement is apparently defined in a negative manner, but in fact one can derive criteria
asserting that a given state is entangled. Such entanglement criteria are based on inequalities
that are satisfied by all separable states [3]. The violation of such an inequality immediately
implies that the state is entangled. Note that this is always a sufficient condition for entangle-
ment, but not a necessary one : a state could be entangled without violating a given inequality.
We will give in subsection 2.1.3 an example of such a criterion based on spin squeezing.

Von Neumann and Renyi entanglement entropy. In order to determine the degree of
entanglement of a pure quantum state, we often consider a bipartition of the system, by cutting
it into two parts A and B. We can then compute the bipartite entanglement of the system, via
the Von Neumann entropy of the reduced state:

SA = −Tr (ρA log ρA) (1.3)

4



1.1. Quantum many-body physics and entanglement

where ρA = TrBρAB is the partial trace over subsystem B of the full density matrix. In the
case of a pure separable state, the density matrix ρA is simply |ψA⟩⟨ψA|, therefore SA (and
similarly SB) are equal to zero because ρA and ρB are just projectors. In order to obtain a
general expression for SA, we can use the Schmidt decomposition of the state |ψAB⟩:

|ψAB⟩ =
∑

i

αi|ui⟩ ⊗ |vi⟩ (1.4)

where |ui⟩ and |vi⟩ are two orthogonal bases for the subsystems A and B diagonalizing the
respective reduced density matrices ρA and ρB, and ∑

i |αi|2 = 1. In this formalism, the
entanglement entropy simply rewrites as:

SA = −
∑

i

|αi|2 log |αi|2. (1.5)

With this expression, it is easier to see that the entanglement entropy is the same for
subsystems A and B. Moreover, we can now clearly see that to maximise this value, one must
take all the αi’s equal to 1√

n
where n is the minimal Hilbert space dimension between the two

reduced Hilbert spaces of the two subsystems:

|ψmax
AB ⟩ =

n∑
i=1

1√
n

|ui⟩ ⊗ |vi⟩. (1.6)

In that case, the entanglement entropy is equal to log n.
There exist other definitions of entanglement entropy, based on the Rényi entropies, Sα,

which are defined in the following way:

Sα (ρA) = 1
1 − α

log (Tr (ρα
A)) = Sα (ρB) . (1.7)

Note that the Von Neumann entropy corresponds to the Rényi entropy for α = 1. Entan-
glement entropies quantify bipartite entanglement of a pure quantum state, but they remain
somewhat abstract in the absence of tangible consequences on the physics of the system. In
this respect, an important consequence of entanglement is that quantum states can be put to
use for some tasks much more efficiently than separate states. Talking about the "usefulness"
of entanglement leads one to introduce different forms of certification with respect to entangle-
ment entropies, focused on the multipartite nature of entanglement rather than on its bipartite
one. A particularly effective framework in this respect is the one of quantum metrology [4, 5]

Quantum metrology. Quantum metrology explores the fundamental limits imposed by
quantum mechanics on the estimation of external fields applied to a system which is sub-
ject to measurements. In this respect, a central goal of quantum metrology is to identify states
of the system, and measurement protocols, which are most effective at the estimation task.

In this thesis we will focus on a specific, yet very important metrological task, which is
the estimation of the parameter of a unitary transformation via interferometry. Consider for
instance an unknown magnetic field B along a given axis z, that one wants to estimate. This
magnetic field couples to the collective spin Jz. This leads to a unitary evolution of the quantum
state with an operator U = eiBJzt = e−iθJz where we defined θ = −Bt the rotation angle. The
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Chapter 1. Many-body quantum dynamics

Quantum Cramér-Rao bound [6] establishes that the lowest uncertainty on the estimate of θ
one can obtain with a given quantum state ρ is bounded from below by:

(δθ)2 ≥ 1
F (ρ, Jz) (1.8)

where F (ρ, Jz) is the so-called quantum Fisher information associated with the state ρ and for
rotations around Jz. For a pure quantum state ρ = |ψ⟩⟨ψ|, we have the following property:

F (|ψ⟩, Jz) = 4Var (Jz) (1.9)

with Var (Jz) = ⟨ψ| (Jz)2 |ψ⟩ − ⟨ψ|Jz|ψ⟩2. Therefore, the larger Var (Jz), the better the esti-
mation will be.

For an individual spin 1
2 , Jz = Sz, and one of the states that maximize the variance of Sz

is simply the eigenstate of Sx:
|x⟩ = | ↑⟩ + | ↓⟩√

2
. (1.10)

The variance is then Var (Sz) = 1
4 since (Sz)2 = 1

4Id and ⟨x|Sz|x⟩ = 0.
Let us now move to the case of N spins, by looking at first to the case of a factorized

state. If we take such a state, it can be written as a product of the states of the N spins:
|ψ⟩ = ⊗N

i=1|ψi⟩. We then have the following inequality:

4Var (Jz) = 4
N∑

i=1
Var (Sz

i ) ≤ N. (1.11)

Therefore, for a factorized state, the maximum variance is obtained for a product state of N
single-spin states similar to Eq. 1.10, and it is proportional to N . Going back to the estimation
problem, this leads to a phase uncertainty:

δθ ≥ 1√
N

(1.12)

which is known as the Standard Quantum Limit (SQL).
However, it is possible to decrease this uncertainty by moving to entangled states. Indeed,

the state that maximises the variance of Jz is the so-called GHZ state or cat state:

|ψcat,N⟩ = | ↑, ..., ↑⟩ + eiϕ| ↓, ..., ↓⟩√
2

(1.13)

where | ↑, ... ↑⟩ (| ↓, ..., ↓⟩) is the tensor product of N spins in the state | ↑⟩ (| ↓⟩). It is easy to
prove that 4Var (Jz) = N2. In that case the variance is proportional to N2, and it leads to the
so called Heisenberg limit of metrology, related to the best possible estimate:

δθ ≥ 1
N
. (1.14)

Note that the cat state is far from being a maximally entangled state in the sense of the Von
Neumann entanglement entropy (here for any bipartition SVN = log 2 instead of N

2 log 2). It is
also worth mentioning that the variance of the collective spin acts as an entanglement criterion
for a pure state, as any factorized state must verify Var (Jz) ≤ N/4.
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1.1. Quantum many-body physics and entanglement

1.1.3 Out-of-equilibrium dynamics
One of the questions that quantum simulation aims to tackle is understanding the out-of-
equilibrium dynamics of quantum systems. A relevant example of such dynamics is offered
by quantum quenches, corresponding to the unitary evolution of a quantum state governed
by a time-independent Hamiltonian of which the state is not an eigenstate. In this context a
fundamental question arises : does the system relax to a stationary regime of dynamics, and
does this regime correspond to thermal equilibrium? In short, does the unitary dynamics lead
to "thermalization"?

Eigenstate thermalisation hypothesis. In order to answer the above questions, the estab-
lished theoretical framework is known as the Eigenstate Thermalisation Hypothesis (ETH) [7].
Let us consider a Hamiltonian H, with eigenstates |λ⟩ and eigenvalues Eλ. Let us define an
initial state:

|ψ (0)⟩ =
∑

λ

cλ|λ⟩. (1.15)

Then the evolved state at time t is given by

|ψ (t)⟩ = U (t) |ψ (0)⟩ = e−itH|ψ (0)⟩ =
∑

λ

cλe
−itEλ|λ⟩ (1.16)

where we have set ℏ = 1 (as we will do in the following of this thesis). We are interested at the
time evolution of an observable Ô, which can be expressed in the eigenbasis of H as:

Ô =
∑
λ,µ

Oλµ|λ⟩⟨µ|. (1.17)

Without loss of generality, the time evolution of the mean value of Ô is then given by:

⟨Ô⟩ (t) = ⟨ψ (t) |Ô|ψ (t)⟩
=
∑

λ

c∗
λe

+itEλ⟨λ|
∑
λ′,µ′

Oλ′µ′|λ′⟩⟨µ′|
∑

µ

cµe
−itEµ |µ⟩

=
∑
λ,µ

Oλµc
∗
λcµe

+it(Eλ−Eµ)

=
∑

λ

Oλλ|cλ|2 +
∑
λ ̸=µ

Oλµc
∗
λcµe

+it(Eλ−Eµ). (1.18)

Let us consider the case of a system for which energy is the only conserved quantity in the
dynamics. For the observable Ô to thermalize, its time average has to converge (after some
relaxation time) to the value predicted by the canonical ensemble ⟨Ô⟩T (or the microcanonical
ensemble, by equivalence between the different ensembles):

⟨Ô⟩T =
Tr
(
e−H/T Ô

)
Tr (e−H/T ) (1.19)

with the temperature T adjusted so as to match the thermal energy to the energy of the initial
state:

⟨ψ (0) |H|ψ (0)⟩ = E =
Tr
(
e−H/T H

)
Tr (e−H/T ) . (1.20)
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Chapter 1. Many-body quantum dynamics

T is often called the quench temperature.
This is a priori not straightforward, since the first term in Eq. 1.18 (that should converge

to ⟨Ô⟩T ) depends on the initial state, and the second term could not vanish due to really close
energy levels. However, if the observable matrix elements verify the following ansatz [8]:

Oµ,ν = O
(
Ē
)
δµ,ν + e−S(Ē)/2fO

(
Ē, ω

)
Rµ,ν (1.21)

then one can show that the observable Ô does thermalize in the sense defined earlier [7]. Here,
Ē = (Eµ + Eν) /2, ω̄ = (Eµ − Eν) /2 and S

(
Ē
)

is the thermodynamic entropy. Finally, O
(
Ē
)

and fO

(
Ē, ω

)
must be smooth functions of their arguments, and Rµ,ν is a random variable

with zero mean value and unit variance. Eq. 1.21 is what is often referred as the ETH, and it
provides a concrete scenario by which a quantum system, through its own unitary evolution,
can relax toward an equilibrium. The next is question one has to ask is then: how general is
this hypothesis? And to what kind of systems does it apply?

Typicality vs. violations of ETH. Before considering states of systems that violate the
ETH, let us study the case of a typical system that will satisfy the ETH. Let us first consider
a local quantum many-body Hamiltonian on a lattice (which is the case of the Hamiltonians
we will study in chapters 3 and 4). We define a bipartition A/B of the whole system, and
we compute the associated Von Neumann entanglement entropy for each eigenstate of the
Hamiltonian. If we do so, we will find two very different scaling behaviours with the size of the
subsystem A. In the case of the ground state (or the most excited state), the entanglement
entropy exhibit a so-called "area-law" [9], which means that SA scales with the area of A. For
instance, in the case of 1D systems, it implies an entanglement entropy independent of the
size of A. However, if we take a typical excited state (whose energy sits in the middle of the
spectrum), then the entanglement entropy will scale as the volume of subsystem A, this is the
so-called "volume-law" scaling of the entanglement entropy. A typical state is therefore expected
to have an important entanglement entropy, but also an important thermodynamic entropy,
which eliminate the off-diagonal term in Eq. 1.21. In fact, it is possible to show that in the
case of a typical ergodic system, the two entropies are equivalent [10]. We can now consider the
case of an initial state, with energy E0, which is not an eigenstate of the Hamiltonian, but that
has an important overlap with eigenstates at energy around E0. If all those states have similar
entropy, we expect that the expectation value of any observable with respect to the long time
unitary evolved state will depend only on its initial energy E0 as stated by the ETH.

However, there can exist eigenstates of the Hamiltonian, with an energy that sits in the
middle of the spectrum, but that exhibit area-law scaling of the Von Neumann entropy (and
similarly a low thermodynamic entropy, as for the ground state). These states are called
quantum many-body scars, and the expectation value of observables for these states can be
very different from the one for other typical states at similar energy. If now our initial state has
an important overlap with a quantum many-body scarred state, then its long-time evolution
will violate the ETH [11]. Note that this is considered to be a weak violation of the ETH,
as only a few eigenstates of the Hamiltonian escape ergodicity. There exists other form of
weak ETH violation, such as Hilbert space fragmentation [11, 12], or even stronger violations
(quantum many-body localisation [13], integrable models [14]) but we will not review them in
details in this manuscript.
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1.2. Numerical and theoretical methods for quantum many-body physics

1.2 Numerical and theoretical methods for quantum many-
body physics

Several numerical and theoretical methods have been developed in the past decades to study
the equilibrium and out-of-equilibrium dynamics of quantum systems. In this subsection, we
list and briefly describe some of the most successful ones, and in particular those which are
relevant for this thesis.

Exact diagonalization. The most straightforward way to study the time evolution of a
quantum system is to diagonalize the full Hamiltonian [15]. This is an exact method, which can
be applied to any kind of system provided that it is sufficiently small. Indeed, the complexity of
this method scales as d3 for a Hilbert space of dimension d. Since the dimension of the Hilbert
space scales exponentially with the number of individual subsystems, it is limited to ∼ O(20)
S = 1/2 spins for instance. A way to push further this method is to diagonalize only partially
the Hamiltonian, using a reduced, adaptative basis built from the Krylov space at each time
step. This procedure is known as the Lanczos algorithm [16,17].

Truncated cumulant expansion. This method relies on assumptions on the properties of
the time-evolved observables rather than the evolved quantum state. Here, it corresponds to
assuming that all high-order correlation functions can be written as a product of cumulant
functions of order n ≤ n0 [18–22]. For instance, in the case of bosons, one can take n0 = 2
and consider only Gaussian wavefunctions, for which any correlation function satisfies Wick’s
theorem - i.e. any high order correlation function can be expressed as a product of second-order
correlation functions. This allows one to build a close set of coupled differential equations that
can be solved easily. In the case of spins, however, we have no guarantee that the evolved state
remains Gaussian at all times, which is often not the case for interacting Hamiltonian. Hence
deviations from the exact solution will increase in time as the higher order cumulants build
up in the exact solution. This limits this method to short time dynamics. We will give more
details on this method in chapter 4, section 4.2.

Quantum Monte Carlo. This name refers to several different methods, that all have in
common the fact they apply the Monte Carlo sampling technique to study the quantum many-
body problem [23–25]. Theses methods can be numerically exact, especially when dealing
with bosons, or approximate if coupled with variational approaches. Monte Carlo methods
can be used to compute ground states and zero temperature properties of a system (e.g. with
Variational Monte Carlo [25]), finite temperature and thermodynamics properties of a system
(e.g. with Path Integral Monte Carlo), and even real-time dynamics properties for closed
systems (e.g. with Time dependent variational Monte Carlo). In this thesis, we used QMC
simulations to determine the thermodynamics of spin models (see chapter 4, section 4.3 for
more details).

Spin-wave theory. This method is based on the transformation of local spin operators into
local bosonic operators. We will give examples of spin-to-boson transformations in section
2.1.4. We then introduce the spin-wave operators as the Fourier transform of the local bosonic
operators. Starting from a coherent spin state - i.e. a classical spin state in the limit S → ∞ -

9



Chapter 1. Many-body quantum dynamics

the spin waves describe the first quantum corrections to the classical limit. At first order, one
can keep only quadratic terms in the Hamiltonian, which amounts to describe the excitations
from the initial state as a gas of non-interacting bosonic quasi-particles. This is known as the
linear spin-wave theory [26, 27]. However it is possible to generalize this method by keeping
higher order terms in the Hamiltonian, leading to interactions between these quasiparticles [28].
These corrections are important in the case of high energy quenches for instance, as linear spin-
wave theory is limited to small deviations from the initial state.

All these numerical methods offer a complementary approach to the quantum many-body
problem, as they can capture different aspects of the quantum dynamics. This is one of the
reasons why in this thesis we used all these numerical methods to obtain the results shown in
the next chapters. However, it is worth mentioning other methods we did not use in this work,
but that have been extensively developed in the past years. In particular, we can evoke the case
of variationnal ansatze. These methods rely on reducing the total Hilbert space to a family
of wavefunctions dependent on a few parameters, and then describe the time evolution of the
system through the time evolution of this parameters [29]. It is quite a powerful method, how-
ever it relies on an uncontrolled approximation, that is that there exist at all time a variational
state that has an important overlap with the exact evolved state of the system. It is there-
fore an approximate method that needs to be benchmarked against other numerically exact
methods. Among the variationnal ansatze we can cite the Matrix Product States [30], which is
very effective at describing the properties of 1D systems and some 2D systems [31]. However
this method suffers from important limitations in the case of higher-dimensional systems of for
systems with a large local Hilbert space, which are the subject of this thesis.

The second method worth mentioning is the Discrete Truncated Wigner Approximation
(DTWA), that sample the quantum noise at the level of the initial state, and then reconstruct
the state of the system at time t by averaging over several classical trajectories. This method has
been generalized to the case of large-S spins under the name of Generalized DTWA (GDTWA)
[32], and it will be interesting to implement this approach and compare its predictions to other
numerical methods as part of future work.

While several of these numerical methods are still more precise than experiments (as they do
not suffer from various sources of noise), they are still limited in system size. We are now at a
threshold where future experimental platforms for quantum simulation might go beyond current
numerical methods (at least in terms of system size). Thus it appears that future developments
in the field will require close collaboration between experimental and numerical improvements.
We will discuss more in details in subsection 2.3.2 the recent experimental developments in the
field of quantum simulation with magnetic atoms.
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Chapter 2
Dynamics of large-S spin systems

In this chapter, we introduce theoretical concepts to study the physics of large-S spins, we
discuss quantum simulation with atoms and we depict the state of the art of the current
experimental platforms. In section 2.1, we introduce the physics of large-S spins and give
some insight into the properties of different families of large-S spin states. In section 2.2, we
discuss a paradigmatic spin Hamiltonian for this work, namely the so-called one-axis twisting
Hamiltonian. We show how it can produce relevant entangled state for metrology during the
dynamics, and we discuss a few experimental realisations of this Hamiltonian. Finally, in section
2.3, we introduce the dipolar Hamiltonian that governs the dynamics of magnetic atoms. This
is the Hamiltonian we will thoroughly study in chapters 3 and 4. We also review some state-
of-the-art experiments using this platform and we discuss future challenges in this field.

2.1 Large-S spin physics

Most of the present experimental platforms for quantum simulation realize ensembles of inter-
acting qubits, i.e. S = 1/2 spin systems, possessing the smallest possible local Hilbert space.
Qubit systems can realize universal models of quantum computation [33], and therefore already
allow in principle for the realization of arbitrary quantum states for arbitrary degrees of freedom
– in which groups of qubits can be thought of realizing higher-dimensional objects.

However, working directly with qudits [34], i.e. elementary degrees of freedom with a higher-
dimensional Hilbert space, offers several advantages, both fundamental as well as practical.
Systems of qudits are naturally realized in experiments using e.g. photonic platforms [35];
molecular magnets [36]; and ensembles of large-S magnetic atoms [37]. N qudits can obviously
encode an exponentially larger amount of quantum information than N qubits; entangled states
of qudits can be more resilient to noise than entangled states of qubits [35]; and using qudits
as quantum sensors [38] instead of qubits can be very advantageous, in that single qudits
already possess highly non-classical states with increased sensitivity to unitary transformations.
The latter aspect also hints at a very intriguing competition that qudit systems (unlike qubit
ones) can exhibit between single-qudit non-classical states and many-qudit non-classical (i.e.
entangled) states.
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Chapter 2. Dynamics of large-S spin systems

2.1.1 Spin algebra
The physics of systems with S = 1

2 spins has been largely studied both experimentally and
theoretically. In fact, it is one of the simplest examples to study and understand quantum
properties and effects, and especially the physics of two-level systems which are of utmost
importance for quantum information.

The dynamics of quantum spin systems descends from the algebraic structure of the spin
operators Sx, Sy and Sz. In the case of spin 1

2 , the spin operators can be written in the
(| ↑⟩, | ↓⟩) basis simply as:

Sz = 1
2

(
1 0
0 −1

)
Sx = 1

2

(
0 1
1 0

)
Sy = 1

2

(
0 −i
i 0

) [
Sj, Sk

]
= iϵjklS

l (2.1)

where we took ℏ = 1 and ϵ is the totally antisymmetric tensor.
We can also define ladder operators S+ and S− which change by one unit the value of the

spin projection along the quantization axis (here z):

S+ = (Sx + iSy) S− = (Sx − iSy) (2.2)
such that S+| ↓z⟩ = | ↑z⟩ and S−| ↑z⟩ = | ↓z⟩.

For a S = 1
2 spin all pure quantum states possess a well-defined orientation for the average

spin ⟨ψ|S⃗|ψ⟩ = n⃗
2 , corresponding to a vector n⃗ on the (unit) Bloch sphere. This means that

superposing two states with e.g. opposite orientations produces a new state which has a well-
defined orientation as well, e.g. |↑z⟩+|↓z⟩√

2 = | ↑x⟩. However, this property is only true for S = 1
2 .

Let us now consider the case of S > 1/2. The spin operators still obey the same commutation
relations, but they are now a representation of dimension d = 2S + 1 of SU (2). This means
that we have d×d matrices to represent the spin operators, and therefore d possible states along
our quantization axis. These states are the eigenstates of Sz and we will label them as |mS⟩
(with mS going from −S to S) such that Sz|mS⟩ = mS|mS⟩. These states are the so-called
Dicke states, and are often used as the computational basis in numerical simulations. However
note that these states are already highly non classical, as we will discuss in the next subsection.

The action of S± on these states is simply given by:

S±|mS⟩ =
√
S (S + 1) −mS (mS ± 1)|mS ± 1⟩ (2.3)

if mS ± 1 ∈ [−S, S] and 0 otherwise. This is enough to fully write down the three matrices of
Sx, Sy and Sz in the |mS⟩ basis.

The commutation relations of the 3 spin operators lead to Heisenberg-like inequalities that
any quantum state must verify, based on the Robertson uncertainty relation. For any state |ψ⟩
in a Hilbert space H and for any two operators A and B acting on H, one must have:√

Var (A) Var (B) ≥ 1
2 |⟨[A,B]⟩| (2.4)

which for the spin operators translates to:√
Var (Sy) Var (Sz) ≥ 1

2 |⟨Sx⟩| (2.5)

valid for any permutation of the indices x, y, z.
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2.1. Large-S spin physics

2.1.2 Semi-classical and non-classical states of qudits
Whereas a S = 1

2 spin can always be represented by a single point on a Bloch sphere (with
some uncertainty due to the Robertson uncertainty relation), it is not the case for S > 1

2 . In
this subsection, we introduce different families of qudits states that are often studied.

We introduced earlier a first family of states, the eigenstates of Sz, also called Dicke states
as they were introduced by Dicke in order to study superradiance [39]. These state are non
classical, as we will discuss further below.

The closest approximation to classical spin states that we can take as an initial state is
represented by coherent spin states (CSS), introduced by Radcliffe in 1971 [40]. This class of
states is analogous to classical states as they describe a fully polarized spin in one direction
(θ, ϕ) of a generalized Bloch sphere of radius

√
S (S + 1) (θ and ϕ being the canonical angles

in spherical coordinates), and they possess minimal uncertainties on the transverse direction in
the sense of Eq. 2.5. They can be seen as eigenstates of an operator Sθ,ϕ = sin (θ) cos (ϕ)Sx +
sin (θ) sin (ϕ)Sy + cos (θ)Sz:

Sθ,ϕ|θ, ϕ⟩ = S|θ, ϕ⟩ (2.6)

where S is the length of the spin.
From this property we can derive the expression of these states in the Dicke basis Sz [41]:

|θ, ϕ⟩ =
S∑

mS=−S

√√√√( 2S
S −mS

)
sin

(
θ

2

)S−mS

cos
(
θ

2

)S+mS

e−i(S+mS)ϕ|S,mS⟩. (2.7)

Indicating with S⊥,1 and S⊥,2 two spin components orthogonal to Sθ,ϕ, one has that Var
(
S⊥,1

)
=

Var
(
S⊥,2

)
= S/2, such that the Heisenberg-Robertson inequality Eq. 2.5 becomes an equality.

In our simulation, we will mostly study the cases where the spins are initially polarized
along x, −x, z or −z, which corresponds to (θ, ϕ) =

(
π
2 , 0

)
,
(

π
2 , π

)
, (0, 0) or (π, 0) respectively.

For instance, for x, one obtains:

|π2 , 0⟩ = |CSSx⟩ =
S∑

mS=−S

√√√√( 2S
S −mS

)
1
2S

|S,mS⟩. (2.8)

From the previous expression, it is clear that the state |CSSx⟩ is different from the state
|mS=+S⟩+|mS=−S⟩√

2 for S > 1/2. This last state is a typical example of non-classical state, also
called Schrödinger’s cat state, that can only be obtained for S > 1

2 .
More generally, instead of a single point on a Bloch sphere, a quantum state for S > 1/2 can

be represented by a whole function on the sphere. The complete information on the quantum
state can be translated into the Wigner function [42], which can take negative values (and
hence is not a proper probability distribution). Partial information is instead contained in the
Husimi Q function [43] which is defined in each point of the sphere as:

Q (θ, ϕ, |ψ⟩) = 2S + 1
4π |⟨θ, ϕ|ψ⟩|2. (2.9)

Q only takes positive values, and it is not a proper probability distribution but, being semi-
positive definite, it loses some of the information on the phases of the quantum state. We show
in figure 2.1 the Husimi Q function for a |CSSx⟩, a Dicke state |S,m = 0⟩ and a Schrödinger’s
cat state for an S = 8 spin.
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Chapter 2. Dynamics of large-S spin systems

(a) CSS along x (b) Dicke state |S = 8, 0⟩ (c) Schrödinger’s cat state

Figure 2.1: Husimi representation of different spin states, for S = 8.

As one can see in figure 2.1b the Husimi function for Dicke states corresponds to a non
classical state (except for m = ±S) that has a rotational symmetry around the z-axis.

These are only two examples of non-classicality, emphasizing the fact that large-spin systems
enjoy a large showcase of non-classical states already at the single spin level.

2.1.3 Squeezed states and entanglement depth
As we discussed above, the state |CSSx⟩ is of minimal uncertainty on the transverse spin com-
ponents Sθ = cos θSy + sin θSz, as δSθ =

√
Var (Sθ) is equal to

√
S/2 whatever the angle θ.

This leads to an uncertainty region that is shaped like a disk as shown in figure 2.1a. While the
Heisenberg-Robertson uncertainty relation bounds the area of this disk from below, nothing pre-
vents the spin state from developing a reduced variance along a given direction θ while increas-
ing it along a perpendicular direction θ+π/2, conserving the total area Var

(
Sθ
)

Var
(
Sθ+π/2

)
.

This phenomenon is called spin squeezing, and it is quantified by using the Wineland squeezing
parameter [44] :

ξ2
R =

2Sminθ

[
Var

(
Sθ
)]

|⟨Sx⟩|2
. (2.10)

The state is said to be squeezed if ξ2
R < 1. For the |CSSx⟩ state instead, ξ2

R = 1.
This definition can be generalized to the case of N spins of length S:

ξ2
R =

2SNminθ

[
Var

(
Jθ
)]

|⟨Jx⟩|2
(2.11)

with J⃗ = ∑
i S⃗i the collective spin operator.

The above definition of spin squeezing is a property of polarized states, i.e. states with
a finite average magnetization ⟨J⃗⟩ ≠ 0, which entails that the minimal variance of a spin
component transverse to the average orientation must be finite as per the Heisenberg-Robertson
inequality. On the other hand Dicke states possess "perfect" squeezing of the uncertainty of a
spin component, namely Var (Jz) = 0, at the expense of a full depolarisation of the collective
spin in the transverse direction, ⟨Jx⟩ = ⟨Jy⟩ = 0. Dicke states can therefore be seen as a limit
of squeezed states for which both the minimal variance as well as the transverse polarization
vanish.

Squeezed states are very interesting because they allow for more precise measurement of
rotation angles, as the variance is reduced for one observable and increased for the conjugate
observable [45]. The lower the squeezing parameter is, the more metrological gain one can get
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2.1. Large-S spin physics

from the state. In particular, for a collection of N coherent spin states |CSSx⟩⊗N , the sensitivity
to a rotation around the z axis would be given by the standard quantum limit (SQL) for N
spins with length S:

δϕCSS = 1√
2SN

. (2.12)

However using a squeezed state, it is possible to go beyond the SQL; since

δϕsqz = ξ√
2SN

(2.13)

giving a better precision when ξ2 < 1, up to the Heisenberg limit δϕH = 1
2SN

when ξ2 scales
as 1/N . It is therefore very appealing to find a protocol that generates squeezing in a scalable
manner with system size. In section 2.2 we will give an example of Hamiltonian that can
generate such states.

Finally, the squeezing parameter can be used as an entanglement witness to determine the
entanglement depth of a given state. A single spin with length S > 1/2 can be squeezed; but
its squeezing parameter is bounded from below by the inverse spin length as [38]:

ξ2
R ≥ 1/(S + 1). (2.14)

A collection of N spins of length S > 1/2 in a separable state can therefore be squeezed, but its
squeezing parameter is bounded in the same way as for a single spin. Entanglement is therefore
witnessed by the squeezing parameter when:

ξ2
R <

1
S + 1 (2.15)

since this condition cannot be achieved by any separable state. Repeating the same argument
for a collection of k spins, this minimal squeezing parameter is:

(
ξ2

R

)
min

= 1
kS + 1 (2.16)

since the collective spin length is at most kS. Hence, finding

ξ2
R <

1
kS + 1 (2.17)

in an ensemble of N > k spins implies that there exists a block of at least k+1 entangled spins,
namely the state displays (k + 1)-partite entanglement [46–48].

Above, we have defined squeezing for spin systems, but it can also be defined for bosonic
systems, a paradigmatic example of bosonic squeezed states being squeezed states of light [49].
In order to draw a parallel between the two, it can be interesting to map spins system onto
bosonic variables, as we will discuss below.

2.1.4 Spin-boson mappings
Here we will consider two spin-boson mappings that are commonly used, the Schwinger trans-
formation [50] and the Holstein-Primakoff one [51].
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Chapter 2. Dynamics of large-S spin systems

Schwinger transformation. In the case of a spin J⃗ , it is possible to represent the spin
operators as a function of two bosonic modes a↑ and a↓, such that:

J+ = a†
↑a↓

J− = a†
↓a↑

Jz = 1
2
(
a†

↑a↑ − a†
↓a↓
)

with the constraint a†
↑a↑ + a†

↓a↓ = N . It corresponds to seeing a spin length F , F ≤ N/2, as
an assembly of N bosonic particles of spin 1/2. It is equivalent physically to a Bose-Einstein
condensate made of N spin-1/2 particles.

This picture can be generalized by introducing more bosonic modes am, m ∈ [−S, S] corre-
sponding to a Bose-Einstein condensate of spin-S particles:

J+ =
S−1∑

m=−S

√
S (S + 1) −m (m+ 1)a†

m+1am

J− =
S∑

m=−S+1

√
S (S + 1) −m (m− 1)a†

m−1am

Jz =
S∑

m=−S

ma†
mam (2.18)

with the constraint ∑S
m=−S a

†
mam = N . The spin operators have now a length F ≤ NS.

Holstein-Primakoff transformation. A second spin-boson mapping that is often used is
the so called Holstein-Primakoff (HP) mapping, that maps a spin of well defined length S onto
only one bosonic mode b. It is defined with respect to a given CSS (here |CSS−Z⟩ = |S,m =
−S⟩) that corresponds to the bosonic vacuum:

S+ = b†
√

2S − b†b

S− =
√

2S − b†bb

Sz = b†b− S. (2.19)

HP bosons satisfy the constraint 0 ≤ b†b ≤ 2S.
In the limit b†b ≪ 2S, one can linearize the HP transformation, to get:

S+ ≈
√

2Sb†

S− ≈
√

2Sb
Sz = b†b− S

at first order.
This expansion is valid in the limit of a dilute gas of bosons, i.e. if the system remains

close to the original CSS. This is the approximation one makes when studying for instance
linear spin-waves excitations around a given classical state. We will discuss in chapter 4 a
generalization of this method that can describe excitations around non-classical states.
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2.2. Many-body spin-squeezing dynamics

2.2 Many-body spin-squeezing dynamics

2.2.1 The OAT Hamiltonian

Spin-squeezed states can be produced in many different ways, but the most studied squeezing
protocol is via a non-equilibrium evolution. The paradigmatic Hamiltonian leading to quantum
states with scalable spin-squeezing is the One-Axis Twisting (OAT) Hamiltonian, introduced
by Kitagawa and Ueda [52]:

HOAT = χ

N
(Jz)2 (2.20)

where Jz = ∑N
i=1 S

z
i is the collective spin for a system of N spins S.

(a) t = 0 (b) t = 0 (c) χt/N = 0.1

(d) χt/N = χtOAT /N ≈ 0.17 (e) χt/N = 0.5 (f) χt/N = χtcat/N = π/2

Figure 2.2: Husimi representation of the wavefunction for the time evolution of a single spin
S = 8 with the OAT Hamiltonian at different times.

Starting with a CSS polarized along x, this Hamiltonian will produce squeezing at short
times (see figure 2.2). In fact, it can be seen in the form HOAT = BJz with an effective magnetic
field B = χ

N
Jz which changes sign from the northern hemisphere to the southern hemisphere of

the generalized Bloch sphere. This leads to a deformation of the uncertainty region as depicted
in figures 2.2b, 2.2c and 2.2d which generates squeezing. After some point, the state will keep
depolarizing, reaching ⟨Jx⟩ = 0 and the state will lose squeezing (with respect to the Wineland
parameter). Remarkably, after a time tcat = πN/2χ, the state will evolve into a GHZ state
|ψcat⟩ = |CSSx⟩+i|CSS−x⟩√

2 (see figure 2.2f).
One can note that the Hamiltonian commutes with J⃗2. This means that if the initial state

is fully polarized, it will remain on the surface of the Bloch sphere during its time evolution,
corresponding to ⟨J⃗2⟩ = NS (NS + 1). This is why we can represent the state evolution as we
did in figure 2.2. For a more generic spin-squeezing dynamics, not conserving ⟨J⃗2⟩, the state of
the system would be rather inside the sphere, corresponding to ⟨J⃗2⟩ < NS (NS + 1).
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Chapter 2. Dynamics of large-S spin systems

2.2.2 Scaling of spin squeezing
The OAT Hamiltonian has been largely studied as it is an exactly solvable model. In fact, it
only involves the collective spin, which makes it invariant under any permutation of the spins,
and it is insensitive to the spatial position of the spins. In particular, Kitagawa and Ueda [52]
showed that the optimal squeezing one can achieve with this protocol scales as :

(
ξ2

OAT

)
min

= 1
2

( 3
2NS

) 2
3

(2.21)

in the thermodynamic limit (N ≫ 1), whereas the time needed to reach this state is:

χtOAT = 3 1
6 (2NS)

1
3 . (2.22)

This corresponds to a sensitivity that scales as 1
N

5/6 from Eq. 2.13, which brings us closer to
the Heisenberg scaling.

Moreover, the scaling of tOAT is quite favourable with system size, and one can hope to
achieve a large amount of squeezing with a large N without exceeding the coherence time of
the system at hand. This is to be compared to the scaling of tcat ∼ N , which requires much
longer coherence time. We show in figure 2.3 the time evolution of the squeezing parameter for
various system sizes.

Figure 2.3: Time evolution of the squeezing parameter, for L× L spins S = 3

2.2.3 Experimental realizations of the OAT model
Since the first theoretical proposal of Kitagawa and Ueda to use the OAT model to generate
squeezing, there have been many ideas to realize experimentally this Hamiltonian in various
platforms.

The first proposals focused on spinor BECs, where the interacting Hamiltonian between
S = 1/2 bosons in a single spatial mode can be mapped onto a OAT Hamiltonian using the
Schwinger transformation [53,54]. This has been realized experimentally in the past decade in
Rubidium condensates [55–58].
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2.3. Simulation with dipolar atoms

Efforts have also been made to realize this Hamiltonian for atoms in a cavity, using light-
matter interactions. By adiabatically eliminating the light degree of freedom, it is possible to
engineer an effective non-linear spin Hamiltonian that corresponds to the OAT model [59]. This
has been realized experimentally in the past few years with atoms [60,61], realizing the highest
levels of squeezing ever recorder [62]; as well as with superconducting circuits [63].

2.2.4 Other squeezing dynamics

The OAT Hamiltonian, while being the most famous Hamiltonian for generating spin-squeezed
states, is far from being the only one known. First, we can cite the two-axis counter twisting
Hamiltonian [52, 64], which is analgous of the OAT model, involving two components of the
collective spin operator:

HT ACT = χ

2i

((
J+
)2

−
(
J−
)2
)

(2.23)

.
There are other families of squeezing-generating Hamiltonians, that instead focus on squeez-

ing for states close to Dicke states, for which the squeezed quantity is Var (Jz). This squeezing
parameter can be defined in the following manner for an assembly of N spins of length S [65]:

ξ2
D = (N − 1)

(
∆̃Jz

)2
+NS2

⟨
(
J̃x
)2

⟩ + ⟨
(
J̃y
)2

⟩
(2.24)

with ⟨
(
J̃α
)2

⟩ = ⟨(Jα)2⟩ − ⟨∑N
i=1 (Sα

i )2⟩ and
(
∆̃Jα

)2
= ⟨

(
J̃α
)2

⟩ − ⟨Jα⟩2. Dicke-squeezed states
have ξ2

D < 1 and are entangled. This parameter is often called Dicke-squeezing parameter as it
is able to detect squeezing for Dicke states, which is not the case with the Wineland parameter
presented in Eq. 2.11.

This squeezing parameter has been for instance used to detect entanglement and squeezing
in spinor BEC of 87Rb [66] where a generalized squeezing parameter of ξ2

D ≈ −11.4 dB was
recorded. We will describe with more details examples of Dicke-squeezing dynamics using spinor
BEC in Chapter 5.

2.3 Simulation with dipolar atoms

The OAT Hamiltonian involves couplings between all the pairs of spins and hence it is part
of the family of long-range interacting models. We can rewrite it in terms of the local spin
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operators in the following manner:

HOAT = χ

N
(Jz)2 = ∆ χ

N
(Jz)2 + (1 − ∆) χ

N
(Jz)2

= ∆ χ

N

∑
i ̸=j

Sz
i S

z
j + ∆ χ

N

∑
i

(Sz
i )2 + (1 − ∆) χ

N

[
J⃗2 − (Jx)2 − (Jy)2

]
= ∆ χ

N

∑
i ̸=j

Sz
i S

z
j + ∆ χ

N

∑
i

(Sz
i )2 − (1 − ∆) χ

N

∑
i ̸=j

(
Sx

i S
x
j + Sy

i S
y
j

)
− (1 − ∆) χ

N

∑
i

(
S⃗2 − (Sz

i )2
)

+ (1 − ∆) χ
N
J⃗2

= χ

N

∑
i ̸=j

∆Sz
i S

z
j + (1 − ∆)

(
Sx

i S
x
j + Sy

i S
y
j

)
+ χ

N

∑
i

(Sz
i )2 + cste.

= limα→0
χ

N

∑
i ̸=j

1
rα

ij

[
∆Sz

i S
z
j + (1 − ∆)

(
Sx

i S
x
j + Sy

i S
y
j

)]
+ χ

N

∑
i

(Sz
i )2 + cste. (2.25)

with rij the distance between the sites i and j. With the last expression obtained above,
we can see the similarity between the OAT Hamiltonian and the XXZ model with long-range
interactions. The question is now the following: can we mimic the OAT dynamics with long-
range interactions when α > 0? In order to tackle this question, we will study the case of
dipolar systems, for which we have a similar Hamiltonian but with α = 3. There exist many
experimental platforms that can realise the XXZ dipolar Hamiltonian. In this section, we will
focus on the case of magnetic atoms, but we will also give examples of other experimental
realisations at the end of the section.

2.3.1 The XXZ Hamiltonian for magnetic atoms
Magnetic atoms offer a unique platform to study the physics of large-S spin ensembles. In
this subsection, we detail the type of interactions between those atoms, and introduce the
Hamiltonian we will be using in our numerical simulations. In the literature on NMR this
treatment goes under the name of "secular approximation" [67].

For an atom in an hyperfine state |F,mF ⟩, if the spin comes from electronic contributions,
we can define a magnetic moment µ⃗ = gµBF⃗ , where g is the Landé factor and µB the Bohr
magneton. This magnetic moment will lead to dipolar interactions between atoms. In the
following, we will replace F and F⃗ by S and S⃗ to make the notation coherent with the previous
sections.

We will consider the situation in which atoms are pinned at the sites r⃗i of a lattice, forming
a Mott insulator [68]. In this case, atoms interact through dipolar interactions, which couple
the atomic spins as follows:

H = d2µ0
∑
i<j

S⃗i · S⃗j − 3
(
S⃗i · r̂ij

) (
S⃗j · r̂ij

)
4πr3

ij

− d
∑

i

B⃗ · S⃗i (2.26)

where d = gµB, r⃗ij = r⃗i − r⃗j, r̂ij = r⃗ij

rij
and B⃗ is an external magnetic field. The dynamics can

thus be computed with spin operators in dimension 2S + 1. For our calculations, let us take B⃗
along the z axis. We also choose the z axis to be our quantization axis, so we can express Sx
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2.3. Simulation with dipolar atoms

and Sy in terms of the ladder operators:

Sx = S+ + S−

2 Sy = S+ − S−

2i . (2.27)

We then move the description to the frame rotating around the z axis at the Larmor
frequency ωL = dB

ℏ to eliminate the term −dB∑i S
z
i , but, doing so, we introduce a fast time

dependence for all the terms that do not commute with Jz = ∑
i S

z
i . If |ψ (t)⟩ is the solution

of Schrödinger’s equation iℏ d
dt

|ψ⟩ = H|ψ⟩, then the state |ψ̃⟩ = U |ψ⟩ in the rotating frame is
evolved by the Hamiltonian:

H̃ = UHU † + iℏ
∂U

∂t
U † (2.28)

where U = exp
[
− i

ℏdBJ
zt
]

is the operator transforming to the frame which rotates at the
Larmor frequency around z. The unitary transformation for the spins reads:

US±U † = e∓iωLtS±. (2.29)

As a consequence, all the terms in H̃ that do not conserve the total magnetization along z
oscillate at a frequency ωL or 2ωL for S±Sz and S±S± terms respectively. If ℏωL is taken to be
much larger than the energy scale of the dipolar coupling d2µ0

4πa3 (a being the minimal distance
between two spins, i.e. the lattice spacing), then the rotating terms will average to zero over a
time shorter than the characteristic time of the Hamiltonian dynamics. As a consequence they
can be neglected in the spirit of the rotating-wave approximation (RWA).

For instance, by expanding the term USx
i S

x
j U

† we find:

USx
i S

x
j U

† = 1
4U

(
S+

i S
+
j + S−

i S
+
j + S+

i S
−
j + S−

i S
−
j

)
U †

= 1
4
(
S−

i S
+
j + S+

i S
−
j

)
+ rotating terms.

The same thing goes for the Sy
i S

y
j term which also reduces to 1

4

(
S−

i S
+
j + S+

i S
−
j

)
. We will

be using later that Sy
i S

y
j = Sx

i S
x
j up to rotating terms.

The last term we must consider is
(
S⃗i · r̂ij

) (
S⃗j · r̂ij

)
. First, one can notice that all the

products of Sz with either Sx or Sy will be discarded (because we will only get terms of the
kind S+Sz or S−Sz). We are thus left with five terms, containing Sx

i S
x
j , Sy

i S
y
j , Sz

i S
z
j , Sx

i S
y
j and

Sy
i S

x
j . Computing the last two terms, we finally find:

USx
i S

y
jU

† = 1
4i
(
−S+

i S
−
j + S−

y S
+
j

)
+ rotating terms

USy
i S

x
j U

† = 1
4i
(
S+

i S
−
j − S−

y S
+
j

)
+ rotating terms

thus the two terms cancel each other (because they share the same prefactor r̂x
ij r̂

y
ij).

Finally, putting all these results together, we have :
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H = d2∑
i<j

µ0

4πr3
ij

[
Sz

i S
z
j + 2Sx

i S
x
j − 3

(((
r̂x

ij

)2
+
(
r̂x

ij

)2
)
Sx

i S
x
j +

(
r̂z

ij

)2
Sz

i S
z
j

)]
(2.30)

where we used that Sy
i S

y
j = Sx

i S
x
j in the RWA. Now we can rewrite

(
r̂x

ij

)2
+
(
r̂x

ij

)2
= 1 −

(
r̂z

ij

)2

because r̂ij is of unit norm. We finally obtain:

H = d2∑
i<j

µ0

4πr3
ij

(1 − 3
(
r̂z

ij

)2
)
Sz

i S
z
j +

1 − 3
1 −

(
r̂z

ij

)2

2

(Sx
i S

x
j + Sy

i S
y
j

)
= d2µ0

∑
i<j

1 − 3r2
z

4πr3
ij

(
Sz

i S
z
j − 1

2
(
Sx

i S
x
j + Sy

i S
y
j

))
. (2.31)

Given the fact that our magnetic field B⃗ is along z, r̂z
ij can be seen as the cosine of the angle

between B⃗ and r⃗ij which we write as cos (θij). We also define J = d2µ0
4πa3 and Jij = Ja3 1−3 cos(θij)

r3
ij

.
Finally, if we consider a one dimensional chain of spins along the x axis, or a two dimensional
square lattice in the Oxy plane (as we will do for the rest of this thesis), then all the r⃗ij are
also in the Oxy plane, which leads to θij = π

2 and thus cos (θij) = 0. We can then rewrite our
Hamiltonian as:

H =
∑
i<j

Jij

(
−1

2
(
Sx

i S
x
j + Sy

i S
y
j + ∆Sz

i S
z
j

))
(2.32)

where ∆ = −2. This Hamiltonian corresponds to the so-called dipolar XXZ model (two direc-
tions with the same coupling and an anisotropy for the third axis). Finally, we must also take
into account a quadratic Zeeman term which comes from the magnetic field, as well as from a
tensor light shift caused by the optical lattice on the atomic spectrum [69]:

H =
∑
i<j

Jij

(
−1

2
(
Sx

i S
x
j + Sy

i S
y
j + ∆Sz

i S
z
j

))
+Bq

∑
i

(Sz
i )2 . (2.33)

Apart from the geometry of the lattice, Bq is the only free parameter in the Hamiltonian
which can be potentially tuned in an experiment. As we will see in the next chapters, the value
of this parameter will have a crucial role on the dynamics of the spin system. Finally, one can
note that this last term corresponds to a OAT Hamiltonian acting only on the individual spins,
and it is a term that was already present in the expression we gave of the OAT Hamiltonian in
Eq. 2.25.

2.3.2 Experimental realisations of the dipolar XXZ model
In the past few years, an increasing number of experiments have been set up using large-spin
magnetic atoms. The recent interest in this field can be explained both by the technological
advances which allow for trapping and precise measurements of the states of those atoms; as
well as their interest as quantum simulators of quantum magnetism and long-range interactions
in general.

Among the experimental platforms, we can cite the ones on Chromium atoms (S = 3),
in which dipolar interactions play a crucial role in spin dynamics [70–73] and allow to study
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strongly interacting systems thanks to the high spin value (interactions are ∼ 36 times stronger
than for spin 1

2 , and ∼ 9 times stronger than spin 1, assuming a fixed gyromagnetic factor g).
Other experiments with fermionic states of Erbium (S = 19

2 ) have achieved a significant
control over the quadratic Zeeman term Bq [69]. Moreover, we can cite experiments on Dys-
prosium (S = 8) [74–76]. Those experiments have worked with thermal atoms, so that their
dipolar interactions are negligible. They have shown that by using the tensorial light shift, one
can create spin-squeezed and cat-like states of single spins [41], and have demonstrated the gain
in sensitivity of quantum sensing using such non-classical states [74] [77].

Finally, many techniques have been developed to monitor and measure with precision the
quantum state of individual or few atoms. One of the most promising ones are the so-called
quantum-gas microscopes, which are now able to measure quantum states of single atoms with
high precision [78] [79]. In a recent experiment with Erbium atoms, it was possible to study
the spatial structure of the ground state of a Hubbard model at half filling [80]. By tuning
the orientation of the dipoles with an external magnetic field, it was possible to modify the
anisotropy of dipole-dipole interactions. This lead to the emergence of a variety of different
stripe phases - also called dipolar quantum solid phases - depending on the orientation of the
dipoles with respect to the lattice axes.

All these experiments have been able to measure the evolution of spin populations [69] and
of the collective spin [72], global correlations along the quantization axis [73] and even bipartite
correlations [81]. However, the certification of entanglement in these systems is still lacking, and
part of the work presented in this thesis is directed toward this effort. In the next chapter, we
will propose various protocols to generate and detect highly entangled states of a few magnetic
atoms. In the following chapter, we will see how to generate scalable squeezing - i.e. stronger
the larger the number of atoms - in 2D arrays of magnetic atoms.

There exist many other platforms to implement and study the dipolar XXZ model. For
instance, Rydberg atoms offer a promising alternative to magnetic atoms thanks to their large
dipole moment in the Rydberg state [82, 83]. The lattice configuration can be controlled with
very high precision using arrays of optical tweezers [84], and they have been used as a quantum
simulator to study different spin Hamiltonians, such as the quantum Ising model with Van
der Waals interactions [85–87], the XY model [88, 89] and even the XXZ model with dipolar
interactions [90]. Among the other existing platforms realizing long-range XXZ models, it is
worth mentioning trapped ions [91,92] and polar molecules [93–95].
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Chapter 3
Few-qudit entangled states with dipolar
interactions

In this chapter, we study the entanglement dynamics of a few qudits under unitary evolution
with the dipolar XXZ Hamiltonian presented in the previous chapter. At first, we detail
our results in the case of only two spins, and we show that for specific parameter values the
Hamiltonian is equivalent to a OAT Hamiltonian. Secondly, we present results for an increasing
number of qudits (from 3 to 6) and discuss how the entangled states seen in the two-qudit case
persist upon scaling up the system size.

3.1 Entanglement dynamics for two qudits

We start by studying the unitary dynamics of an initial factorized state, with only two spins,
with the dipolar XXZ Hamiltonian presented in the previous chapter. For our initial state,
we may consider either the case where both spins are in a given Dicke state along z, or in a
coherent spin state (CSS) along a given direction. If the initial state is a given Dicke state
|S,m⟩ for both spins, as soon as Bq ̸= 0, the spin-changing interaction becomes off-resonant,
and the ensuing evolution of spin populations is rather small. A much more interesting spin
dynamics is instead observed when considering the case of coherent spin states (CSS) as initial
states, which are a superposition of several Dicke states. A uniform coherent spin state along
±z is an eigenstate of the Hamiltonian, so this is not a good choice for the initial state. On the
other hand, a staggered CSS along z leads to almost no dynamics in the presence of the term
Bq. These considerations suggest that the most interesting initial state to consider is a coherent
spin state in the xy plane. Since our Hamiltonian is U(1) symmetric, we choose coherent spin
states pointing along the ±x axis without loss of generality. Both the uniform CSS (both spins
aligned with +x) and the staggered CSS (one spin aligned with +x, the other aligned with
−x) lead to non trivial dynamics, leading to highly entangled states. In this first section, we
will study this dynamics with two spins, starting either with a coherent or a staggered CSS
along ±x. In particular, we will investigate the role played by Bq in the appearance of highly
entangled states, and the origin of this entangling dynamics in relationship with that of the
one-axis twisting model.
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Chapter 3. Few-qudit entangled states with dipolar interactions

In the case of only two qudits, the dipolar XXZ Hamiltonian takes the form:

H2 = −J

2 (Sx
1S

x
2 + Sy

1S
y
2 − 2Sz

1S
z
2) +Bq

(
(Sz

1)2 + (Sz
2)2
)
. (3.1)

We investigate the dynamics of the system after a quench from a factorized initial state,
and we consider two cases : first, the case where the initial state is a staggered CSS along the
x axis, |ψstag⟩ = |Sx⟩ ⊗ | − Sx⟩ with Sx| ± Sx⟩ = ±S| ± Sx⟩, and secondly the case where the
initial state is uniform along the x axis, |ψuni⟩ = |Sx⟩ ⊗ |Sx⟩. The two selected states are both
states of maximal collective-spin length, when defining appropriately the collective spin. In the
case of the uniform CSS, the collective spin of maximal length can be chosen as simply the sum
of the two spins J⃗ = S⃗1 + S⃗2. In the case of the staggered CSS, instead, the collective spin of
maximal length can be chosen as J⃗stag = (Sx

1 − Sx
2 , S

y
1 − Sy

2 , S
z
1 + Sz

2).

Figure 3.1: Time evolution of the variance of Jx
stag, starting with a staggered CSS along x, with

the dipolar XXZ Hamiltonian for N = 2 spins with length S = 3, and for different values of
Bq.

3.1.1 Emergence of the one-axis twisting dynamics from a staggered
initial state

In the case of a staggered initial state, we show the time evolution of the variance of Jx
stag =

Sx
1 − Sx

2 for three different values of Bq in figure 3.1. One can immediately observe that
the dynamics is closely reminiscent to that generated by dynamics obtained with the OAT
Hamiltonian (see figure 2.2 in the previous chapter). In order to draw a parallel between the
dipolar Hamiltonian and the OAT one, we can rewrite the dipolar Hamiltonian in terms of the
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3.1. Entanglement dynamics for two qudits

Figure 3.2: Time evolution of the variance of Jx
stag for different values of S at Bq = J/4.

staggered collective spin:

H2 = J

4

[(
Jx

stag

)2
+
(
Jy

stag

)2
+ (Jz)2

]
− J

4
[
(Sx

1 )2 + (Sx
2 )2 + (Sy

1 )2 + (Sy
2 )2 + (Sx

2 )2 + (Sz
2)2
]

+ J

2S
z
1S

z
2 +Bq

(
(Sz

1)2 + (Sz
2)2
)

= J

4
[
J⃗2

stag − S⃗2
1 − S⃗2

2

]
+ J

4 (Jz)2 +
(
Bq − J

4

) (
(Sz

1)2 + (Sz
2)2
)
. (3.2)

For the special value Bq = J/4, we the have:

H2 = J

4
[
J⃗2

stag − 2S (S + 1)
]

+ J

4 (Jz)2 . (3.3)

Since (Jz)2 commutes with J⃗2
stag, J⃗2

stag is a conserved quantity in the dynamics. The initial state
is an eigenstate of this operator with maximal eigenvalue 2S (2S + 1). The dipolar Hamiltonian
becomes therefore proportional to a OAT Hamiltonian up to a constant.

We can then ask ourselves if the value of S plays a role in the dynamics of the system.
Clearly for Bq = J/4 we expect to recover the OAT dynamics for a collective spin of length
2S, and with a coupling constant J/4 independent of the spin length. This is clearly shown in
figure 3.2, where the variance of Jx

stag is seen to reach the maximal value associated with the
formation of a cat state at the same time for any S. For practical reasons, we will focus in the
following of this chapter on the case S = 3, but all the results obtained here can be generalized
to arbitrary integer S. The case of half-integer S is quite similar, and in the case of Bq = J/4,
the dynamics is just slowed down by a factor 4, therefore we will not discuss the case of half
integer S in this chapter further.

The next question we address is how robust this dynamics is when changing the value of Bq

away from the fine-tuned value Bq = J/4. Figure 3.1, already suggests that the OAT dynamics
survives when Bq differs from J/4, but we want to investigate this in a more quantitative way.
In particular, we want to determine if we can still produce a cat-like state during the unitary
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Chapter 3. Few-qudit entangled states with dipolar interactions

Figure 3.3: Evolution of tcat (top) and C2S
max (bottom) for different values of Bq/J for S = 3.

Note that the vertical axis is in log scale for tcat.

time evolution, and determine how close it is to a perfect cat state. For this purpose, we
introduce the 2S-th order coherence C2S:

C2S (t) = |⟨ψ (t) |
(
S+

1 S
−
2

)2S
|ψ (t)⟩|/Ncat (3.4)

with Ncat the coherence of the cat state, defined by:

Ncat = |⟨ψcat|
(
S+

1 S
−
2

)2S
|ψcat⟩| = 1

2

S−1∏
m=−S

(S(S + 1) −m(m+ 1)) . (3.5)

This coherence probes whether |ψ (t)⟩ is a coherent superposition of states with opposite spin
orientations along x. Note that here S± are defined with respect to x as the quantization axis,
and the normalization Ncat is here such that C2S is always between 0 and 1, and is equal to 1
if the state |ψ (t)⟩ is a cat state of the form:

|ψcat⟩ = |Sx
1 = S, Sx

2 = −S⟩ + eiϕ|Sx
1 = −S, Sx

2 = S⟩√
2

(3.6)

for any value of ϕ. Note also that C2S < |⟨ψ (t) |ψcat⟩| = Fcat, where Fcat is the fidelity with
respect to the cat state, which means that requesting C2S ≈ 1 is a more strict criterion for
the realization of a cat state than that of requesting Fcat ≈ 1. At the same time C2S is more
significant from a metrological point of view, as it expresses the contrast of parity oscillations
under rotation of the state - see subsection 3.2.1. We then look at the maximum value of
C2S in time, C2S

max for different values of Bq and the time needed to reach this maximum tmax.
Results are shown in figure 3.3. The first striking result is that we get almost perfect cat states
(C2S

max > 0.9) for a broad range of values for negative Bq, and for positive Bq values up to 3J/4.
The second result of interest is the behaviour of the time tmax when Bq is close to the critical

value Bc
q ≈ −0.285J . Around this value, the dynamics becomes very slow, and the time is found

to diverge as tmax ∼ 1/|Bq − Bc
q|, leading to the freezing of the dynamics. We will give in the

next chapter an explanation of this divergence, based on an approximate separation of variables
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3.1. Entanglement dynamics for two qudits

for the dipolar Hamiltonian. By controlling Bq one could in principle build a two-qudit gate
that would produce a cat state by first setting Bq ≈ J/4, then almost freezing the dynamics in
that state by switching to Bq ≈ −0.285J . We show in figure 3.4 the resulting dynamics, and
we verify that it indeed leads to a long-lived cat-like state.

Figure 3.4: Time evolution of C2S, starting with a staggered initial state and Bq = 0.25, then
switching to Bq = −0.285 at t = tcat for S = 3.

Finally, we observe in figure 3.3 a sharp dip in C2S
max around Bq = 3J/4. We will comment

on this result more in details in subsection 3.1.2 when studying the uniform initial state as we
will provide by then an explanation for this behaviour. We will also try to generalise these
results to the case of a larger number N of spins in section 3.2.

3.1.2 Emergence of the one-axis twisting dynamics from a uniform
initial state

We now study the case of a uniform initial state. First, we try to determine if there exists a
specific value of Bq for which we can map our Hamiltonian onto a OAT one for the uniform
collective spin, similarly to the staggered case. In order to do so, we rewrite our Hamiltonian
as:

H2 = −J

4
[
(Jx)2 + (Jy)2

]
+ J

2 (Jz)2 + J

4
[
(Sx

1 )2 + (Sx
2 )2 + (Sy

1 )2 + (Sy
2 )2
]

− J

2
[
(Sz

1)2 + (Sz
2)2
]

+Bq

(
(Sz

1)2 + (Sz
2)2
)

= −J

4
[
J⃗2 − S⃗2

1 − S⃗2
2

]
+ 3J

4 (Jz)2 +
(
Bq − 3J

4

) (
(Sz

1)2 + (Sz
2)2
)
. (3.7)

As we can see, for Bq = 3J/4, a uniform initial state fixes the value of J⃗2 to its maximum
2S (2S + 1) and we reconstruct exactly a OAT Hamiltonian up to constant terms. The next
step is then to determine how robust the cat-state formation dynamics is when tuning the value
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Chapter 3. Few-qudit entangled states with dipolar interactions

Figure 3.5: Evolution of tcat (top) and C2S
max (bottom) in the case of a uniform initial state for

different values of Bq/J for S = 3.

of Bq away from this fine-tuned value. Figure 3.5 shows the Bq dependence of C2S
max and tmax,

starting with a uniform initial state - using exactly the same method as for figure 3.3. Note
that, in the case of the uniform initial state, C2S is defined as:

C2S (t) = |⟨ψ (t) |
(
S+

1 S
+
2

)2S
|ψ (t)⟩|/Ncat. (3.8)

As we can see in figure 3.5, there is a range of values of Bq, 0.5 ≲ Bq/J ≲ 1.5 for which the
dynamics produces a cat-like state with high fidelity. However, unlike the case of the staggered
initial state, we do not have a value of Bq for which tmax diverges. Again, we will give an
explanation of this result in the next chapter, based on an approximate separation of variables
for the dipolar Hamiltonian.

Reducing instead Bq towards Bq = J/4, a cat-like state no longer appears in the dynamics,
and we observe rapid variations of tmax, because the absolute maximum is one out of several
local maxima with comparable height. This behaviour is reminiscent of the dip in C2S

max and the
jump in tmax observed in figure 3.3 for the dynamics starting from the staggered initial state
around Bq = 3J/4 , and we discuss its origin in the following subsection.

3.1.3 Generation of a "twin-spin" state
The dipolar XXZ dynamics offers in fact an alternative paradigm of entanglement generation
with respect to the one of the OAT model. In this paradigm, that we indicate here as "twin-
spin state" generation, the length of the collective spin maximized by the initial state is not
conserved. The general Hamiltonian for this dynamics takes the following form:

Hα = χ

N

[
(Jz)2 + α

(
J⃗stag

)2
]

(3.9)

where the initial state is the uniform coherent spin state. Alternatively, when starting from the
staggered initial state one can consider the Hamiltonian:

H̃α = χ

N

[
(Jz)2 + α

(
J⃗
)2
]

(3.10)
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3.1. Entanglement dynamics for two qudits

which results from the previous one by the unitary transformation flipping the x and y spin
components of one of the two spins. We have already seen that the Hamiltonian of Eq. 3.9 is
reproduced by the dipolar Hamiltonian (up to additive constant) when Bq = J/4, with α = 1;
while the Hamiltonian of Eq. 3.10 is reproduced by the dipolar one for Bq = 3J/4, this time
with α = −1/3. It is then instructive to consider the dynamics generated by Hα starting
from the state where collective spin is not conserved. Interestingly, the dynamics has a salient
feature which is independent of the value of α. We show in figure 3.6 the time evolution of the
variance of Jx, the variance of Jx

stag and the mean value of J⃗2 with Hα, for different values of
α. For α = 0, we recover the usual OAT model, which produces a cat state at tcat = Nπ/2χ if
we start with a coherent spin state along x at t = 0. For any non-zero α, we clearly see that
J⃗2 is no longer conserved. However, we notice that for all values of α (and for an even N),
starting with the uniform initial state, the state obtained at t = tcat has a vanishing variance of
Jx

stag. This is a very interesting property since the state we obtain at t = tcat is not separable.
Indeed it indicates that the state we obtain at t = tcat is a superposition of states with the
same projections along the x axis for the individual spins.

(a) α = 0 (b) α = 0.5

(c) α = 1 (d) α = −1/3

Figure 3.6: Time evolution of the variance of Jx and Jx
stag with HST , starting from a uniform

CSS along x, with N = 2, S = 3, χ = 1 and (a) α = 0, (b) α = 0.5, (c) α = 1 and (d)
α = −1/3.

In order to visualise better this property, we plot in figure 3.7 the full state tomography in
the x and z bases. As we can see, the state obtained at t = tcat is always diagonal in the joint
basis Sx

1 , S
x
2 . This numerical observation can be proven analytically. Indeed, our Hamiltonian
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is the sum of two commuting operators, χ
N

(Jz)2 and α χ
N
J2

stag. At t = tcat, we have:

|ψ (tcat)⟩ = e
−itcat

ℏ H |ψ0⟩

= e
−iαχtcat

Nℏ J⃗2
stage

−iχtcat
Nℏ (Jz)2

|Ψ0⟩

= e
−iαχtcat

Nℏ J⃗2
stag |ψcat⟩.

where |ψcat⟩ is the uniform cat state, i.e. |ψcat⟩ = |Sx,Sx⟩+i|−Sx,−Sx⟩√
2 . Since J⃗2

stag commutes with
Jx

stag, we finally have:

⟨ψ (tcat) |Jx
stag|ψ (tcat)⟩ = ⟨ψcat|e

iαχtcat
Nℏ J⃗2

stagJx
stage

−iαχtcat
Nℏ J⃗2

stag |ψcat⟩
= ⟨ψcat|Jx

stag|ψcat⟩

⟨ψ (tcat) |
(
Jx

stag

)2
|ψ (tcat)⟩ = ⟨ψcat|

(
Jx

stag

)2
|ψcat⟩

which means that we have exactly the same variance for Jx
stag at t = tcat as for the cat state

(α = 0), this variance being equal to 0.
In particular, for N = 2 and α = 1 - which is the case obtained with the dipolar Hamiltonian,

with Bq = J/4 - we obtain in the dynamics a very particular state, in which the two spins have
always identical Sx spin components, but the latter components can take several different
values. We will call this state a Twin Spin State (TSS).

The specificity of the twin-spin state is to have perfectly correlated Sx components for the
two spins, so that we can write it in the basis of eigenvectors of the local Sx spin operators as:

|TSS⟩ =
∑
mx

cmx|mx⟩ ⊗ |mx⟩ (3.11)

where Sx|mx⟩ = mx|mx⟩. We can look at the distribution of weights along the diagonal, namely
the |cmx|2 distribution, and we find that it obeys a Gaussian law centred around mx = 0 and
with a standard deviation σ ≈ 0.85

√
S (see figure 3.8).

These states can be seen as a generalization to larger spins S of Bell-states - even though
they are not maximally entangled with respect to entanglement entropy. We will discuss in the
next subsection the entanglement properties of these states.

3.1.4 Entanglement certification
In order to show that the quench dynamics with the dipolar XXZ Hamiltonian - starting with
a uniform of staggered initial state - produces entanglement, we can use the following criterion
for large-S spins [96], that detects entanglement if:

⟨
(
J̃α
)2

⟩ + ⟨
(
J̃β
)2

⟩ −N (N − 1)S2 > (N − 1)
(
∆̃Jγ

)2
(3.12)

with ⟨
(
J̃α
)2

⟩ and
(
∆̃Jα

)2
defined as follows:

⟨
(
J̃α
)2

⟩ = ⟨(Jα)2⟩ −
N∑

i=1
⟨(Sα

i )2⟩
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3.1. Entanglement dynamics for two qudits

(a) α = 0

(b) α = 0.5

(c) α = 1

(d) α = −1/3

Figure 3.7: Tomography of the state obtained at t = tcat, for N = 2 spins of length S = 3 for
(a) α = 0, (b) α = 0.5, (c) α = 1 and (d) α = −1/3 starting with a uniform initial state.
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Chapter 3. Few-qudit entangled states with dipolar interactions

Figure 3.8: Weights |cm|2 of the wavefunction of the TSS along the m1
x = m2

x diagonal, with a
gaussian fit, for S = 20. With our fit we have estimated that we have here a standard deviation
σ ∼ 0.85

√
S.

(
∆̃Jα

)2
= Var (Jα) −

N∑
i=1

⟨(Sα
i )2⟩

and where α, β, γ is a permutation of x, y, z. There exist many such criteria, depending on
which spin components we choose to be staggered, and which spin component we isolate in the
right-hand term. We choose the following criterion:

⟨
(
J̃y
)2

⟩ + ⟨
(
J̃z

stag

)2
⟩ −N (N − 1)S2 > (N − 1)

(
∆̃Jx

stag

)2
. (3.13)

This entanglement criterion is equivalent to the one obtained with the Dicke-squeezing param-
eter of Eq. 2.24, ξ2

D < 1, but with a different choice for α, β and γ. The authors of [96] present
other criteria, but the one mentioned in Eq. 3.12 is the only one that detect entanglement
during the dynamics with the dipolar Hamiltonian. In the case of only two spins, it can be
rewritten in the following way:

Eent = Var
(
Jx

stag

)
+ 2⟨Sz

1S
z
2⟩ − 2⟨Sy

1S
y
2 ⟩ − ⟨(Sx

1 )2⟩ − ⟨(Sx
2 )2⟩ + 2S2 < 0. (3.14)

Any separable state has Eent ≥ 0, so that finding Eent < 0 for a given quantum state means that
this state is entangled. From this expression, it is clear why the TSS state is a good candidate
for an entangled state for this criterion, as it has a vanishing variance of Jx

stag, anticorrelations
along z - which leads to a negative ⟨Sz

1S
z
2⟩ - and a non-zero variance of Sx

1 and Sx
2 .

In order to verify this assumption, we study the temporal evolution of this quantity for
different values of Bq, first starting with a uniform initial state. We show the results for a few
values of Bq between 0 and J in figure 3.9. As we can see, for the cases where we expect to form
a cat state or a TSS state during the time evolution - namely Bq = J/4 and Bq = 3J/4 - we
clearly have Eent that becomes negative, which signals entanglement in the system. Surprisingly,
Eent vanishes at the time at which we expect the cat state or the TSS to form. This means
that the above criterion is not able to detect entanglement for those states event though they
are clearly entangled - for instance the TSS has a finite entanglement entropy, which grows as
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3.1. Entanglement dynamics for two qudits

log(S) with the spin length S. Still, we can see that the above entanglement criterion detects
entanglement when the time evolution leads to a cat-like state (even though not in the case of
the perfect cat state for Bq = J/4), while it remains positive at almost all time when this is
not the case - see e.g. the case Bq = 0.

(a) Bq = 0 (b) Bq = J/4

(c) Bq = 3J/4 (d) Bq = J

Figure 3.9: Time evolution of Var
(
Jx

stag

)
and Eent starting with a uniform initial state, with

the XXZ dipolar Hamiltonian with N = 2 spins of length S = 3 and for different values of Bq.

In a similar manner, we also studied the entanglement generated in the dynamics, starting
with a staggered initial state. For this purpose, we define a second entanglement criterion,
taking a different staggered spin:

⟨
(
J̃y

stag

)2
⟩ + ⟨

(
J̃z

stag

)2
⟩ −N (N − 1)S2 > (N − 1)

(
∆̃Jx

)2
(3.15)

which leads to:

Estag
ent = Var

(
Jx

stag

)
+ 2⟨Sz

1S
z
2⟩ − 2⟨Sy

1S
y
2 ⟩ − ⟨(Sx

1 )2⟩ − ⟨(Sx
2 )2⟩ + 2S2 < 0. (3.16)

We show the time evolution of Var (Jx) and Estag
ent in figure 3.10. Again, we can verify that the

criterion detects entanglement in the dynamics leading to a cat-like state for Bq < 0.75, while
it does not detect entanglement otherwise (Bq = 1).
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Chapter 3. Few-qudit entangled states with dipolar interactions

(a) Bq = 0 (b) Bq = J/4

(c) Bq = 3J/4 (d) Bq = J

Figure 3.10: Time evolution of Var(Jx
stag) and Estag

ent starting with a staggered initial state, with
the XXZ dipolar Hamiltonian with N = 2 spins of length S = 3 and for different values of Bq.

3.2 Extension to 1D chains

In this section, we consider the case of a 1D chain of spins, and we investigate which of the
properties of the N = 2 case resist when going to the case of a 1D chain with larger N . First,
we study the time evolution starting from the uniform and staggered initial state with the
dipolar XXZ Hamiltonian. In particular, we will determine to what extent this dynamics can
still produce cat-like states depending on the value of Bq, and show that it is possible to realise
larger and larger cat states in the staggered case. We will then contrast these results with what
would be expected in the presence of thermalization.

3.2.1 Time evolution after a quench

Dynamics from a staggered initial state. In order to study the case of N spins initialized
in the staggered coherent spin state |Sx⟩ ⊗ | − Sx⟩ ⊗ |Sx⟩ ⊗ . . . , we first define a generalisation
of C2S, namely the coherence of NS-th order:

CNS (t) = |⟨ψ (t) |
(
S+

1 S
−
2 S

+
3 · · ·S±

N

)2S
|ψ (t)⟩|/Ncat (3.17)
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with S+
N for N odd and S−

N for N even, and Ncat the normalization factor defined by:

Ncat = 1
2

S−1∏
m=−S

√
S (S + 1) −m (m+ 1)

N

. (3.18)

We show in figure 3.11 the time evolution of CNS in the case of N = 3 spins, for different values
of Bq, and the evolution of CNS

max and tmax versus Bq.

(a) (b)

Figure 3.11: (a) Time evolution of CNS for different values of Bq, starting with a staggered
initial state, with the XXZ dipolar Hamiltonian with N = 3 spins of length S = 3; (b) evolution
of tmax and CNS

max versus Bq for the same initial state and Hamiltonian.

As we can see, it is still possible to find values of Bq for which we can generate cat-like states
(now with N = 3 spins), even though there is no value of Bq for which we have an exact OAT
Hamiltonian, due to the power law decay of the interactions. Still, we can produce an almost
perfect cat state for Bq = 0.1J , and we find a value Bc

q ≈ −0.46J for which dynamics slows
down drastically (with a seemingly divergent tmax time as tmax ∼ 1/|Bq − Bc

q|). The global
picture is therefore very similar to the one of the N = 2 case, and we can wonder if it remains
the same if we keep increasing N , or if it breaks down after a finite value of N .

We were able to study the evolution of CNS
max with Bq in the case N = 4, and we show our

results of figure 3.12. Again, we could find a few values of Bq, for which the unitary dynamics
starting from a staggered CSS can produce a state close to a perfect cat state.

Due to numerical limitations, we could not study larger system sizes in a systematic way.
Still, we were able to study the time evolution of CNS for a few values of Bq, up to N = 6,
using Lanczos algorithm instead of the full diagonalization of the Hamiltonian. As shown in
figure 3.13, for each N up to N = 6 we could find a value of Bq for which we generate during
the unitary dynamics a state close to a cat state. It is clear from the figure that the larger N ,
the longer the time needed to reach a cat state, but also the lower the maximum value of CNS

is. For larger values of N the value of Bq leading to a cat-like state in the dynamics needs to
be increasingly fine-tuned. For N = 6, changing Bq = −0.3J by an amount ±δB = 0.1J was
enough to eliminate completely the cat-generating dynamics.

Even though our exact diagonalization results are limited to small system sizes, we will
discuss in the next chapter an approximate theoretical scheme that will allow us to study a
larger number of spins N , and determine whether we can have OAT-like dynamics for longer
1D chains or not.
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Chapter 3. Few-qudit entangled states with dipolar interactions

(a) (b)

Figure 3.12: (a) Time evolution of CNS for different values of Bq, starting with a staggered
initial state, with the XXZ dipolar Hamiltonian with N = 4 spins of length S = 3; (b) evolution
of tmax and CNS

max versus Bq for the same initial state and Hamiltonian.

Dynamics from a uniform initial state. In the uniform case, we define in a similar way
a generalization of C2S:

CNS (t) = |⟨ψ (t) |
(
S+

1 S
+
2 S

+
3 · · ·S+

N

)2S
|ψ (t)⟩|/Ncat. (3.19)

As in the staggered case, we show in figure 3.14 the time evolution of CNS for a few values of
Bq, as well as the dependence of CNS

max with Bq. As we can see, the situation seems to degrade
faster upon increasing the system size for the uniform initial state than for the staggered initial
state when increasing N . Even for N = 3, we could not find a value of Bq for which we had
CNS

max > 0.9.
We expect that we find an even lower CNS

max when increasing N , starting from a uniform
initial state, therefore we will not study the case N ≥ 4 here. It appears that it is not possible
to form a cat-like state in 1D chains for a large number of sites N , starting with a uniform
CSS. We will provide in the next chapter arguments that explain this observation, making use
of an approximate separation of variable.

Metrologic interest of the generated state. As discussed in the first chapter, cat states
are very interesting for metrology, since they allow for the most precise measurement of external
fields via interferometric measurements. Indeed, we can show that the quantity CNS is closely
related to the metrological potential of the state under rotation along the x axis. If we consider
a parity measurement, after a rotation of angle ϕ, defined by U (ϕ) = e−iϕJx , we get for a
uniform cat state:

⟨ψcat|U † (ϕ)
N∏

i=1
(2Sz

i )2S U (ϕ) |ψcat⟩ = 4Ncat cos (2NSϕ) . (3.20)

On the other hand, for a general state |ψ⟩, we would get, for the fastest rotating terms:

⟨ψ|U † (ϕ)
N∏

i=1
(2Sz

i )2S U (ϕ) |ψ⟩ = 4NcatC
NS cos (2NSϕ) + . . . (3.21)
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Figure 3.13: Time evolution of CNS for different values of N and Bq starting from a staggered
CSS.

(a) (b)

Figure 3.14: (a) Time evolution of CNS for different values of Bq, starting with a uniform initial
state, with the XXZ dipolar Hamiltonian with N = 3 spins of length S = 3; (b) evolution of
tmax and CNS

max versus Bq for the same initial state and Hamiltonian.

with the slower rotating terms not expressed here. From this it is clear that the quantity CNS

we studied in this chapter expresses the contrast of parity oscillations under rotation of the
state. In the case of N spins of length S, the uncertainty on the estimate of a rotation angle,
δθ, satisfies:

δθ ≳
1

2SN , (3.22)

since the quantum Fisher information for pure states is upper bounded by 4Var (Jµ) ≤ 4N2S2.
However, as we saw in this section, trying to increase N by extending the linear size of the
system leads to states that are further and further apart from an ideal cat state, reducing their
metrological potential, in particular when taking a uniform CSS as initial state. Even though
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extending linearly the system size is not a good way to increase the metrological potential of
the state, there is another way to achieve this goal.

In fact, one could imagine reproducing this experiment with two spatially separated BEC,
realizing de facto two giant spins with a very large effective S that would then be subjected to
the ideal case presented before. This would be a way to realize giant cat states at long times,
or highly squeezed states at short times - since the long-time dynamics can be quite sensitive to
losses induced by dipolar relaxation [97]. An experiment with two separate dipolar BECs has
already been realized [98], although it was initialized in a different state - namely a staggered
CSS along z. Another advantage of this setup is that the time needed to reach a cat state -
and other entangled states in the dynamics - only depends on the number of giant spins, and
not their length, which makes it more advantageous to have two giant spins of size NS than a
chain with 2N sites and a spin S on each site.

3.2.2 Time evolution vs. thermal equilibrium
As we saw in the previous subsection, starting with a staggered initial state, and choosing a
proper value of Bq, it seems possible to generate cat-like states in chains of arbitrary length N .
This result raises a lot of questions, especially regarding the thermalization of the system. On
the one hand, cat states are non typical states at finite energy density, since they have very low
entanglement entropy and extremely strong correlations for a thermal state, and we would not
expect them to appear in the dynamics of systems obeying the ETH [7] (as presented in Chapter
1), and not conserving the total spin J⃗2

stag. Indeed, ideal cat states are defined in the manifold
of maximal collective-spin length, in which the initial state also lives. On the other hand, we
know that whatever the value of Bq for N ≥ 3, we should expect ⟨J⃗2

stag⟩ to evolve in time. Also,
for N ≥ 4, with S = 3 or S = 6, the Hilbert space becomes sufficiently large for us to expect
that the unitary dynamics of the system might display some features of thermalization. In this
subsection we will try to address this apparent contradiction, by studying the time evolution
of ⟨J⃗2

stag⟩ and compare it to its expected thermal value. We will also study the properties of
the eigenstates of the Hamiltonian for different values of Bq and determine which eigenstates
are effectively involved in the dynamics starting from coherent spin states.

Evolution of ⟨J⃗2
stag⟩. In order to determine if the system undergoes thermalization, we study

the time evolution of the mean value of J⃗2
stag during the quench dynamics, for various values

of Bq, and compare it to the thermal average (as expected if the system would thermalize) at
a temperature corresponding to the energy of the initial state of the evolution. In particular,
this will allow us to evaluate to what extent the dynamics leaks out of the sector of maximal
spin length.

As introduced in chapter 1, we first define the temperature associated with the initial state
of the evolution, T0, verifying that the thermal average of H corresponds to the energy of the
initial state:

Tr (ρ (T0) H) = E0 = ⟨ψ0|H|ψ0⟩ (3.23)

with ρ (T ) the density matrix of the thermal state at temperature T . We can then compute
the thermal average of any observable (i.e. the value it would take if the system reached
thermalization) as ⟨O⟩ = Tr (ρ (T0) O). The staggered initial state is a very high energy state
and it would correspond to a negative temperature. Nonetheless, we can consider in all this
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subsection the spectrum of −H instead of H. This will change the spectrum but not the time
evolution of observables of interest.

We compare the thermal average of J⃗2
stag to the time evolution of the same operator for

different values of Bq and different chain lengths N , and we show our results in figure 3.15. As
we can see, in the N = 2 case, we always have J⃗2

stag that remains very close to its initial value,
and it is never close to the thermal value (even though N = 2 may be too small to see proper
thermalization). However, for N = 4, we can see a clear difference between the dynamics at
Bq = 0 or Bq = −0.2J on the one hand, and the dynamics at Bq = 0.25J or Bq = 0.5J on the
other hand. In the first case - for which we generate cat-like states during the dynamics - the
mean value of J⃗2

stag is almost conserved; while in the second case it quickly relaxes to a value
that is close to the thermal expectation value, and never goes back to its initial value. Note that
in the second case we never form cat-like states during the dynamics. Therefore we can clearly
see the crossover (when varying Bq) from a dynamics that seems to display thermalization to
a dynamics not showing it at all. It is worth noticing that in both cases J⃗2

stag is never an
exactly conserved quantity, hence the absence of thermalization is not the simple result of a
conservation law. In order to understand this strange behaviour, we inspect the structure of
the spectrum of our Hamiltonian.

(a) Bq = −0.2J (b) Bq = 0

(c) Bq = 0.25J (d) Bq = 0.5J

Figure 3.15: Time evolution of J⃗2
stag (solid lines) and its thermal average (dashed lines) starting

with a staggered initial state and with the dipolar XXZ Hamiltonian, for different values of N
and different values of Bq.
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Chapter 3. Few-qudit entangled states with dipolar interactions

Eigenstates and eigenvalues of the dipolar Hamiltonian. In order to understand better
the origin of the non-thermal behaviour, we plot in figure 3.16 the eigenenergies as a function
of ⟨J⃗2

stag⟩, in order to identify the presence of eigenstates which are atypical from this point of
view. We show the spectrum of −H, for Bq = −0.2J and Bq = 0.5J in figure 3.16. We also
highlight with red crosses the eigenstates |λ⟩ for which the staggered initial state |ψstag⟩ has
the highest overlap, such that |⟨λ|ψstag⟩| > δ with a threshold δ = 1/NS.

(a) Bq = −0.2J (b) Bq = 0.5J

Figure 3.16: Eigenenergy versus mean value of J⃗2
stag for the different eigenstates of the dipolar

XXZ Hamiltonian for N = 4 spins of length S = 3. Red crosses indicates states with which the
staggered initial state has the highest overlap (see text).

As we can see in figure 3.16b, for Bq = 0.5J , the mean value of J⃗2
stag varies smoothly

with the energy. This is what we would expect from a system obeying the ETH. Moreover
we can notice that the initial state overlaps mostly with typical eigenstates, in the "bulk" of
the spectrum. On the other hand, for Bq = −0.2J , we can see in figure 3.16a that there exist
eigenstates with a very well defined value of J⃗2

stag close to its maximum value; they have a mean
value of J⃗2

stag that is completely different from the one of all the other eigenstates with similar
energy. These are also the states with which the initial state has the highest overlap. Therefore
we are in the case of a violation of the ETH due to the phenomenon of quantum many-body
scars [11], namely the existence of Hamiltonian eigenstates for which the mean value of a given
observable is drastically different from that of most eigenstates with similar energy and from
the thermal one. This is a weak violation of the ETH (as discussed in chapter 1) and it explains
the persistence of cat-like states in the dynamics, in spite of an increasing chain length N .

3.3 Conclusions for this chapter
In this chapter, we have given examples of few-qudit entangled states we could generate during
a quench dynamics with the dipolar XXZ Hamiltonian, starting either with a uniform or a
staggered CSS. In particular, it is possible to generate perfect cat states in the case N = 2 by
setting the value of Bq to J/4. While both initial states share a lot of common properties in the
case N = 2, we observe drastic differences when increasing N , especially the fact that we can
still generate cat-like states with a very good fidelity in the staggered case, up to N = 6, while
they disappear in the uniform case. We provided some explanation of this behaviour in the
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staggered case by looking at the (absence of) thermalization for different values of Bq. However,
we could not study chains of length N > 6 with exact methods, and we can not conclude yet
on the persistence of this dynamics for large systems. We will discuss more in details in the
next chapter the case of large N using an approximate separation of variables.
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Chapter 4
Scalable squeezing generation with the dipolar
XXZ Hamiltonian

In this chapter, we address the question of the production of scalable spin squeezing and
entanglement certification for arrays of magnetic atoms, interacting via the large-S dipolar
XXZ Hamiltonian presented in section 2.3. In section 4.1, we first look at the thermodynamics
of the Hamiltonian at the mean-field level, and study the low-energy spectrum with a linear
spin-wave approach. In section 4.2 we then introduce a method based on an approximate
rotor/spin-wave separation of variables which allows us to understand the emergence of spin
squeezing in the spin models with spatially decaying interactions. We discuss its range of
validity and benchmark it via exact results on small systems. Then in section 4.3 we present
the results obtained with this new method for the quench dynamics of the dipolar XXZ model,
and compare them with those obtained via a truncated cumulant expansion (TCE). Finally,
in section 4.4 we try to connect the dynamics of the system with its thermodynamics by
reconstructing the equilibrium phase diagram of the large-S dipolar XXZ model.

4.1 Equilibrium behaviour of the dipolar XXZ Hamilto-
nian

Unlike the previous chapter, where we only considered very small systems (N ≤ 6), in the
present chapter we want to study the case of large systems (N ∼ 102 − 104) to match current
experimental realisations and understand the scalability of the entangled states produced by
the dynamics. In this context, it is interesting to study the thermodynamics of the large-S
dipolar XXZ model in order to get some insight on the ground state properties and the low
energy spectrum upon varying Bq. In this section, we will first present the mean-field phase
diagram for the ground state of the dipolar Hamiltonian in 1D and 2D, and study how the
ordered ground-state phases survive a finite temperature in 2D. Then we will study the low-
energy spectrum of the Hamiltonian with a linear spin-wave (LSW) approach. In this section,
we will focus on the case S = 3, which corresponds for instance to Chromium atoms; but we
will also discuss the dependence on S of our results. The analysis of the equilibrium behaviour
of the systems will allow us to assess whether the initial states for the dynamics (the uniform
and staggered CSS, as introduced in the previous chapter) are low-energy or high-energy states
for the evolution Hamiltonian. This will be very important in view of the application of the
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Chapter 4. Scalable squeezing generation with the dipolar XXZ Hamiltonian

rotor/spin-wave separation to our problem, and the appearance of scalable spin squeezing.

4.1.1 Mean-field phase diagrams
We start by studying the ground state of the XXZ Hamiltonian in the large N limit, using a
mean-field approach. We recall that our Hamiltonian is the following:

H =
∑
i<j

Vij

(
Sz

i S
z
j − 1

2
(
Sx

i S
x
j + Sy

i S
y
j

))
+Bq

∑
i

(Sz
i )2 (4.1)

with
Vij = J0

|ri − rj|3
(4.2)

as we will consider 1D or 2D systems defined on chains or planes orthogonal to the quantisation
axis. The indices i, j run over the sites of a L-site chain (in 1D) or of a L × L square lattice
(in 2D) with periodic boundary conditions.

We investigate the ground state of the Hamiltonian with a mean field approach, described in
Appendix B.2, for various values of Bq/J and for S = 3. For each ground state, we look at the
mean value of Jx/N and Jz

stag/N which are the order parameters for an xy ferromagnetic phase
and a z Néel phase respectively. We show our results in figure 4.1. It appears clearly that in
the case of the 2D square lattice, we have a persistent xy ferromagnetic order for a large range
of values of Bq, ranging from 0 to ≈ 55J , with an almost perfect ferromagnet (⟨Jx⟩/N ≈ 1) for
small positive Bq. On the other hand, for the 1D chain, we only have a ground state with a
long-range ferromagnetic order for small Bq ≲ 10J and we never reach a perfect ferromagnet.
We should also point out that the prediction of long-range xy ferromagnetism in 1D may be
an artefact of the mean-field approximation, and the true ground state may only possess quasi-
long-range order. In the large Bq limit, on the other hand, we expect that the ground state
becomes a product of single-spin Dicke states |S = 3,m = 0⟩. Finally, in both cases, we have
a long-range Néel order along the z direction for Bq < 0. The mean-field approach predicts a
first order transition between the Néel and ferromagnet phase, at Bq = 0.3J for the 1D case
and Bq = −0.9J for the 2D case.

In the previous chapter, we also saw that it is interesting to consider the dynamics initialized
in a staggered CSS along the x axis. In particular, we saw that the staggered CSS can be close
to the ground state of −H and it leads to the formation of highly entangled states via unitary
dynamics in small 1D systems. Therefore we can investigate the presence of Néel order along
the x axis for various values of Bq/J for the ground state of −H. For the sake of convenience,
we transform H by a rotation of an angle π around the z axis for every other site, leading to
the following "staggered" Hamiltonian:

Hstag = −1
2
∑
i<j

Vij

(
Sz

i S
z
j − (−1)i+j

2
(
Sx

i S
x
j + Sy

i S
y
j

))
−Bq

∑
i

(Sz
i )2 . (4.3)

This transformation also maps the staggered CSS along x into the uniform CSS along x, and
we can perform the same mean-field analysis as before. The only difference is that we should
expect ferromagnetic xy order for negative Bq (penalising spins that tilt out of the xy plane),
and ferromagnetic order along z (instead of a Néel order) for Bq > 0. We show the different
phase diagrams for the 1D and 2D cases in figure 4.2. As expected, we can see that we have a
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4.1. Equilibrium behaviour of the dipolar XXZ Hamiltonian

(a) 1D (b) 2D

Figure 4.1: Mean field phase diagram for the ground state of the dipolar XXZ Hamiltonian,
with S = 3. The simulations have been performed for a 1D chain with length L = 105 and a
2D square lattice with 104 × 104 sites.

ferromagnetic phase along z for Bq > 0 for both the 1D and 2D cases. For the 1D case, only a
small range of Bq (−5.4J ≲ Bq ≲ −0.3J) exhibits ferromagnetic order in the xy plane, which
is similar to the 1D uniform case. However, for 2D, we see a major difference with the uniform
case, as we have only imperfect ferromagnetic order in the xy plane and for a smaller range
of values of Bq (−16.2J ≲ Bq ≲ −3.9J) compared to the uniform case. This can be easily
understood as the long-range nature of the dipolar interactions introduce frustration for the
staggered Hamiltonian, which destabilises the long-range order in the xy plane.

(a) 1D (b) 2D

Figure 4.2: Mean field phase diagram for the ground state of −Hstag, with S = 3. The
simulations have been performed for a 1D chain with length L = 105 and a 2D square lattice
with 104 × 104 sites.
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Chapter 4. Scalable squeezing generation with the dipolar XXZ Hamiltonian

We now have a first idea of the ground state of the large-S dipolar Hamiltonian. The
mean-field approach is not always suited for low dimensional systems, especially so for 1D
chains, but we expect our results to be more reliable in 2D, especially in the presence of long-
range interactions. In the following, we will only focus on 2D square lattices, and we test
whether long-range order in the ground state survives at finite temperature or not. For this,
we construct the mean field phase diagram at each temperature T , and determine whether we
have a long-range order in the thermal state. The detailed procedure is presented in Appendix
B.2. This allows us to determine for each value of Bq a critical temperature Tc at which the
long-range xy order vanishes. We show our results in figure 4.3. Similarly to the case at T = 0,
we see that we have a persistent long-range order in the xy plane for the uniform case for a
wide range of values of Bq, and for relatively high temperatures up to T ≈ 20J . On the other
hand, for the staggered case, we see that long-range order in the xy plane is much more fragile
to temperature, vanishing for T ≳ 8J . Again, this can be understood from the presence of
magnetic frustration in the staggered case due to long-range interactions.

(a) H (b) −Hstag

Figure 4.3: Critical temperature for the different order parameters in the thermal state in
function of Bq, for (a)H and (b)−Hstag, with S = 3 and for a 104 × 104 square lattice.

As already mentioned, mean-field results are not exact in the limit of low-dimensional
systems. We will come back to these results and compare them with the ones of exact unbiased
Quantum Monte Carlo simulations in section 4.4. Still, MF simulations give us an intuition on
the ground state of the system for different values of Bq and of the proximity of the uniform
and staggered CSS to the ground state. We now move beyond the MF approach and study the
low-energy excitations of the system via the LSW approach.

4.1.2 LSW spectrum
The low-energy excitations of the dipolar Hamiltonian, both in the uniform and staggered case,
can be studied in the form of Linear Spin Waves (LSW). For this purpose, we need to rewrite
the Hamiltonian in terms of bosonic operators in momentum space, which then allow us to
clearly identify the different excitation modes. The general procedure is the following:
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4.1. Equilibrium behaviour of the dipolar XXZ Hamiltonian

1. We use the Holstein-Primakoff transformation to map our spins onto bosons in real space.

2. We Fourier transform the local bosonic operators into momentum-space bosonic operators.

3. We keep only quadratic terms for the bosons with finite momentum and use a Bogolyubov
transformation to diagonalize the quadratic Hamiltonian.

We will detail in this subsection each of these different steps.

Holstein-Primakoff transformation. First we write down the Holstein-Primakoff trans-
formation for our Hamiltonian, as introduced in Eq. 2.19. For this transformation, we need
to choose a reference state on each site which corresponds to the bosonic vacuum. In order to
study the low-energy spectrum of the system. This state needs to be the best approximation to
the Hamiltonian ground state in the form of a CSS. Since we are interested in the ferromagnetic
xy phase, we will choose as our bosonic vacuum the CSS along x for all the sites of our 1D
chain or 2D square lattice. This corresponds to writing the local spin operators in the following
way:

Sx
i = −S̃z

i = S − b†
ibi

Sy
i = S̃y

i = S̃+
i − S̃−

i

2i =

√
2S − b†

ibi bi − b†
i

√
2S − b†

ibi

2i

Sz
i = S̃x

i = S̃+
i + S̃−

i

2 =

√
2S − b†

ibi bi + b†
i

√
2S − b†

ibi

2 (4.4)

where the S̃α operators are mapped onto bosons via the HP transformation (see Eq. 2.19).
Standard spin-wave theory amounts to linearizing this HP transformation under the assumption
of a dilute gas of bosonic excitations, ni = b†

ibi ≪ 2S, which assumes that the quantum ground
state is close to the initial CSS. Keeping only the linear and quadratic terms, we obtain:

Sx
i = S − b†

ibi

Sy
i ≈

√
2S bi − b†

i

2i

Sz
i ≈

√
2S bi + b†

i

2 . (4.5)

In the uniform case, this leads to the quadratic Hamiltonian H ≈ ECSS + H2 with:

ECSS = −S2

2
∑
i<j

Vij + NSBq

2

H2 = S

4
∑
i<j

Vij

(
2b†

ibi + 2b†
jbj + b†

ibj + b†
ibj + 3

(
b†

ib
†
j + bibj

))
+ SBq

2
∑

i

(
2b†

ibi + b†
ib

†
i + bibi

)
. (4.6)
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Here ECSS corresponds to the energy of the initial state. In the case of the staggered Hamilto-
nian, we have instead, with −Hstag ≈ Estag

CSS + Hstag
2 :

Estag
CSS = S2

2
∑
i<j

(−1)i+jVij − NSBq

2

Hstag
2 = S

4
∑
i<j

Vij

[
−2(−1)i+jb†

ibi − 2(−1)i+jb†
jbj + ((−1)i+j − 2)(b†

ibj + b†
ibj)

]
− S

4
∑
i<j

Vij((−1)i+j + 2)
(
b†

ib
†
j + bibj

)
− SBq

2
∑

i

(
2b†

ibi + b†
ib

†
i + bibi

)
. (4.7)

In the following, we will focus on the case of the uniform Hamiltonian, and we will give the
final result for the staggered Hamiltonian toward the end of the subsection.

Fourier transform and Bogolyubov transformation. Standard spin-wave theory amounts
to taking the Fourier transform of the bosonic operators:

bi = 1√
N

∑
q⃗

eiq⃗·r⃗ibq⃗, (4.8)

where q⃗ is defined on the Brillouin zone of the lattice. The resulting quadratic Hamiltonian
takes the form:

H2 = 1
2
∑

q⃗

(
b†

q⃗

b−q⃗

)T (Aq⃗ Bq⃗

Bq⃗ Aq⃗

)(
bq⃗

b†
−q⃗

)
− 1

2
∑

q⃗

Aq⃗ (4.9)

with
Aq⃗ = S

(
Ṽ0

2 + Ṽq⃗

4 +Bq

)
, Bq⃗ = S

(
3Ṽq⃗

4 +Bq

)
, (4.10)

where Ṽq⃗ = 1
N

∑
i ̸=j e

−iq⃗·(r⃗i−r⃗j)Vij is the Fourier transform of the interactions. We then introduce
the Bogolyubov operators a†

q⃗ and aq⃗, such that:

bq⃗ = uq⃗aq⃗ − vq⃗a
†
−q⃗ (4.11)

with

Eq⃗ =
√

A2
q⃗ − B2

q⃗ = S

2

√(
Ṽ0 − Ṽq⃗

) (
Ṽ0 + 2Ṽq⃗ + 4Bq

)
,

u2
q⃗ = Aq⃗

2Eq⃗

+ 1
2 , v2

q⃗ = Aq⃗

2Eq⃗

− 1
2 . (4.12)

We then finally obtain a Hamiltonian in the diagonal form:

H2 =
∑

q⃗

Eq⃗a
†
q⃗aq⃗ + 1

2
∑

q⃗

(Eq⃗ − Aq⃗) (4.13)

which allows to compute easily the time evolution of the aq⃗, a†
q⃗ operators. However, we can

notice immediately that we have a vanishing energy E0 = 0 for q⃗ = 0 for all values of Bq, which
means that the Bogolyubov transformation is ill-defined for q⃗ = 0. This suggests that it is not
possible to treat the zero-momentum b bosons in the same way as the finite-momentum bosons.
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4.1. Equilibrium behaviour of the dipolar XXZ Hamiltonian

They will therefore be treated separately, as we will see in the next section, and for the moment
we will focus only on the finite-momentum modes q⃗ ̸= 0.

In the case of the staggered Hamiltonian, we get similar results, with:

Aq⃗ = S

 Ṽ0

2 + Ṽq⃗

2 −
Ṽ

(s)
q⃗

4 +Bq

 , Bq⃗ = S

 Ṽq⃗

2 +
Ṽ

(s)
q⃗

4 +Bq

 . (4.14)

where we have defined the following interaction:

V
(s)

ij = J0(−1)i+j

|r⃗i − r⃗j|3
, (4.15)

and we note Ṽ (s)
q⃗ its Fourier transform.

Numerical results. We now have all the ingredients needed to study the time evolution of
spin-wave excitations in a system of spins initialised in a uniform CSS along x. In particular,
we look at the spectrum predicted by LSW theory and the values of Bq at which we expect a
breakdown of the theory - which corresponds to having at least a momentum q⃗ ̸= 0 for which
we have E2

q⃗ < 0. In the uniform case, we have:

E2
q⃗ = S2

4
(
Ṽ0 − Ṽq⃗

) (
Ṽ0 + 2Ṽq⃗ + 4Bq

)
(4.16)

where Ṽ0 − Ṽq⃗ > 0 for any q⃗ ̸= 0 since the potential Vij is positive. Therefore we expect that
for each q⃗ there is a critical value of Bq, B(c)

q (q⃗) - satisfying B(c)
q (q⃗) = −Ṽ0/4 − Ṽq⃗/2 - below

which the second term becomes negative. The question is then: which is the first mode to
develop an instability when decreasing Bq? We show in figure 4.4 the evolution of E2

q⃗ with Bq

for various values of q⃗ for small system sizes. A square lattice is symmetric under exchange of
the two axes of the lattice. Moreover, the interaction is real, so that we have the same energy
for positive and negative wavevector q⃗. Therefore we can restrict ourselves to wavevectors of
the form (qx, qy) with qx ≥ qy ≥ 0. We can see in figure 4.4 that the modes for which we
have the largest B(c)

q is the mode q⃗ = (π, π). This could have been expected, since it is the
momentum mode that minimises the value of Ṽq⃗, signalling an instability of the system to Néel
order along the z axis.

From this we can determine the critical field B(c)
q at which the LSW theory predicts a

proliferation of excitations, which corresponds to the fact that our reference state is no longer
close to the ground state of the Hamiltonian - indicating the transition from a ground state
with ferromagnetic order in the xy plane to Néel order along the z axis. We can determine
this critical field by computing B(c)

q (π, π) for increasing system size. We show our results in
figure 4.5, which clearly indicates that in the thermodynamic limit we expect a transition at
B(c)

q ≈ −0.93J which is comparable with our mean-field result.
In the case of the staggered Hamiltonian, we get a very different behaviour. First, we expect

that the energy square E2
q⃗ of the different modes crosses 0 when increasing Bq (i.e. we expect a

negative slope with Bq). This is indeed what we can observe in figure 4.6a. However, when we
keep increasing the lattice linear size L, we observe a rapid softening of the modes, especially
the ones at small wavevectors q⃗ = (2π/L, 0) (as shown in figure 4.6b). A softening is also
observed for the uniform case, but it occurs for much larger values of L and at a slower rate.
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(a) L = 2 (b) L = 4

Figure 4.4: LSW spectrum for the uniform Hamiltonian H2 in function of Bq/J for (a) a 2 × 2
square lattice and (b) a 4 × 4 square lattice.

Figure 4.5: Critical value of Bq, B(c)
q (π, π) for increasing linear system size L, for the uniform

quadratic Hamiltonian H2 on a square lattice.

The conclusion from LSW is therefore that long-range xy ferromagnetic order is not sufficiently
stable in the case of the staggered Hamiltonian for LSW to be reliable. As a consequence, the
staggered CSS is a low energy state for −H in 2D only on sufficiently small system sizes.

We also studied the LSW excitations in the 1D case, both for the uniform and staggered
CSS. We show our results in figure 4.7. In both the uniform and staggered cases, we observe a
rapid softening of the modes, similarly to the staggered case in 2D. From this we expect that
the long-range order in the xy plane is stable only for sufficiently small system sizes.

This concludes our study of the equilibrium behaviour of the dipolar XXZ Hamiltonian for
large-S spins. In particular, we have seen that we can expect ferromagnetic long-range order
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(a) L = 4 (b) L = 20

Figure 4.6: LSW spectrum for the staggered Hamiltonian Hstag
2 in function of Bq/J for (a) a

4 × 4 square lattice and (b) a 20 × 20 square lattice.

(a) N = 10 Uniform (b) N = 10 Staggered

Figure 4.7: LSW spectrum in function of Bq/J for a 1D chain of length N = 10 for (a) the
uniform Hamiltonian H2 and (b) the staggered Hamiltonian Hstag

2 .

in the xy plane for a 2D square lattice; and it is therefore interesting to study the unitary
dynamics of a CSS along the x axis, as the dynamics will be necessarily a low-energy one,
possibly approaching the one of the OAT model, as we will see below. However, standard spin-
wave theory may have problems in describing correctly the time evolution of such a quench, due
to the presence of a zero-energy mode at q⃗ = 0⃗ whose bosons can proliferate at no energy cost.
In the next section, we will propose a way to treat separately this mode within a rotor/spin-
wave separation approximation. This will allow us to treat states which go arbitrarily far from
the initial CSS.
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4.2 Rotor/spin-wave approximation for the dipolar Hamil-
tonian

4.2.1 Derivation of the rotor/spin-wave separation
Numerical observations from the previous chapter clearly indicated that the dipolar Hamil-
tonian mimics to some extent the features of the OAT Hamiltonian. We want to further
understand the origin of this correspondence, and probe whether it survives when increasing
the system size, or whether it is just a finite-size effect in small systems. In order to do so, we
develop an approximate separation of variables in the XXZ Hamiltonian, which allows us to
write it as a planar rotor Hamiltonian, analogous to that of the OAT model, plus a correction
coming from linear spin waves. Since we want to relate the dipolar XXZ Hamiltonian to the
OAT model, we shall estimate the relative weight of these corrections. One can formally re-
construct a OAT Hamiltonian from the dipolar one by isolating the interaction term involving
the zero-momentum Fourier component of the spin operators:

∑
ij

VijS
µ
i S

µ
j = 1

N

∑
q⃗

Vq⃗S
µ
q⃗ S

µ
q⃗

= 1
N
V0 (Jµ)2 + 1

N

∑
q⃗ ̸=0

Vq⃗S
µ
q⃗ S

µ
q⃗ (4.17)

where Sµ
q⃗ = ∑

i e
iq⃗·r⃗iSµ

i , and Sµ
0 = Jµ.

Nonetheless, the residual part, coupling finite-momentum components, does not commute
with the zero-momentum one because of the spin SU(2) algebra. An effective separation of
variables can instead be achieved by mapping spins onto bosons, and separating zero-momentum
and finite-momentum components of the Bose field. Limiting oneself to quadratic terms in
the finite-momentum bosonic operators reconstructs LSW theory, which is augmented with
a OAT Hamiltonian for a planar rotor, describing the arbitrarily non-linear dynamics of the
zero-momentum bosons. This gives us the general guideline for the rotor/spin-wave (RSW)
approach [99,100]:

1. We use the Holstein-Primakoff transformation to map our spins onto bosons in real space.

2. We Fourier transform the local bosonic operators into momentum-space bosonic operators.

3. We regroup all the terms containing only zero-momentum bosons: they reconstruct ex-
actly a OAT Hamiltonian for a macroscopic spin operator.

4. We keep only quadratic terms for the bosons with finite momentum and use a Bogolyubov
transformation to diagonalize the quadratic Hamiltonian.

As we can see, the steps 1, 2 and 4 are exactly the same as in the LSW approach described in
the previous section (excluding the q⃗ = 0⃗ mode), therefore we will focus on the third step in
this section.

Zero momentum contribution. We want to isolate the contribution to the Hamiltonian
of the zero momentum (ZM) bosons, at all orders and not only the lowest order. We define
the ZM component of an operator O[ZM]({bi, b

†
i}) as the part that contains exclusively b0, b

†
0
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4.2. Rotor/spin-wave approximation for the dipolar Hamiltonian

operators. From the definition of the Fourier transform, it is straightforward to see that for the
local Bose operators:

b
[ZM]
i = 1√

N
bq⃗=0. (4.18)

We can then extend this to the case of spin operators, and with the same HP mapping we
introduced in the previous section (Eq. 4.4), we obtain:

(Sx
i )[ZM] =

(
−S̃z

i

)[ZM]
= S − 1

N
b†

0b0 = −K̃z

N
= Kx

N(
S̃+

i

)[ZM]
= b†

0√
N

√
2S − b†

0b0

N
= b†

0
N

√
2SN − b†

0b0 = K̃+

N
(4.19)

where we note S̃ and K̃ the rotated operators, which gives us finally

(Sx
i )[ZM] = Kx

N

(Sy
i )[ZM] = Ky

N

(Sz
i )[ZM] = Kz

N
(4.20)

with K⃗ a macroscopic spin operator for a spin of length NS. This means that in the ZM
component we can replace any local spin operator Sα

i by the spin operator Kα/N . Hence the
ZM component of the Hamiltonian becomes:

H[ZM] = 1
N2

∑
i<j

Jij

(
KzKz − 1

2 (KxKx +KyKy)
)

+ 1
N2Bq

∑
i

(Kz)2

= 1
2N Ṽ0

(
KzKz − 1

2
(
K⃗2 −KzKz

))
+ Bq

N
(Kz)2 (4.21)

where K⃗2 = NS (NS + 1) is a constant. After simplification, we obtain:

H[ZM] = χ0 (Kz)2 − Ṽ0

4 S(NS + 1) (4.22)

with χ0 =
(

3
2 Ṽ0 + 2Bq

)
/ (2N). We can rewrite χ0 as 1/2I, introducing a macroscopic moment

of inertia I ∼ O(N). The ZM Hamiltonian is proportional to (Kz)2, and we can identify it
with the projection of the Hamiltonian onto the Dicke-state manifold as discussed below [99].
With this we have reconstructed exactly a planar rotor Hamiltonian, i.e. a OAT Hamiltonian.

RSW separation. The rotor/spin-wave separation of variables amounts then to define the
finite-momentum (FM) Hamiltonian as H[FM] = H − H[ZM], and to approximate this Hamilto-
nian with its lowest-order term in the bq⃗ ̸=0, b

†
q⃗ ̸=0 operators, namely the spin-wave Hamiltonian

at finite momentum:
H[FM] ≈ H[FM]

2 =
∑
q ̸=0

Eqa
†
qaq (4.23)
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so that one obtains the approximate Hamiltonian

H ≈ (Kz)2

2I +
∑
q⃗ ̸=0

Eqa
†
qaq + C (4.24)

with C = ER + 1
2
∑

q⃗ ̸=0 (Eq⃗ − Aq⃗) a constant, and with ER the ground state energy estimated
from the ZM part (see Eq. 4.22). The Hamiltonian is now composed of two commuting terms,
the rotor part at zero momentum and the spin-wave part at finite momentum. The state of the
system is then described as the quantum state of the macroscopic K⃗ spin, and the state of the
quadratic spin-wave modes. The latter is a gaussian state described in terms of the parameters:

Fq⃗ = ⟨bq⃗b−q⃗⟩, Gq⃗ = ⟨b†
q⃗bq⃗⟩. (4.25)

Neglecting the higher-order terms in the FM bosons is legitimate, as long as those bosons form
a dilute gas, namely:

Nbos =
∑
q⃗ ̸=0

Gq⃗ ≪ 2(N − 1)S. (4.26)

The time evolution of the system is then determined by the independent evolution of the rotor
and of the SW degrees of freedom. Applying the separation of variables to all the observables
we are interested in (i.e the collective spin, its variance and the squeezing parameter), we have:

Jx = Kx −Nbos (4.27)

Var (Jx) = Var (Kx) −Nbos (2NS − 2⟨Kx⟩ +Nbos) , (4.28)
and at the lowest order correction, we have for the squeezing parameter:

ξ2 = 2NS
minθ Var

(
Jθ
)

⟨Jx⟩2 ≈ 2NS
minθ Var

(
Kθ
)

⟨Kx −Nbos⟩2 . (4.29)

With this expression of the spin-squeezing parameter, it is clear why in the limit of small
number of bosons Nbos we expect a OAT-like dynamics for the spin-squeezing parameter. In
the case of the staggered Hamiltonian, the only modification for the rotor part is that we have
to consider the following moment of inertia:

1
2Is

=
Ṽ s

q⃗=0 + 1
2 Ṽ

s
q⃗=0 + 2Bq

2N . (4.30)

With this we have all the ingredients needed to study the time evolution of a system of spins
initialised in a uniform or staggered array of CSS along ±x. In the limit of a few bosonic exci-
tations at finite momentum we can expect a OAT-like behaviour emerging even with spatially
decaying interactions.

4.2.2 Benchmark of the RSW approach
Before looking at the prediction of RSW approach for large system sizes, we first check that
it gives correct results in the limit of small systems by comparing with ED results. In this
subsection, we will first look at the spectrum predicted by both methods, and then at the time
evolution of observables starting with a uniform or staggered initial states.
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4.2. Rotor/spin-wave approximation for the dipolar Hamiltonian

Spectrum and tower of states. In order to test our approach, we first try to compare
the spectrum predicted by the RSW theory to the exact spectrum computed with ED, for a
small 2 × 2 plaquette. Since we decouple the rotor Hamiltonian from the spin-wave one, the
eigenstates of the RSW model are given by a tensor product of eigenstates of both models.
For the rotor part, the eigenstates are simply the Dicke states for a giant spin of length NS:
|NS,M⟩, M ∈ [−NS,NS]; while for the spin waves the eigenstates are labelled by the boson
occupation number in each mode q⃗ for the Bogolyubov quasiparticles, |{n(a)

q⃗ }⟩. This leads to
the following energy for a state |M, {n(a)

q⃗ }⟩:

E
(
M, {n(a)

q⃗ }
)

= Egs + 1
2IM

2 +
∑
q⃗ ̸=0

n
(a)
q⃗ Eq⃗ (4.31)

where Egs = ER + 1
2
∑

q⃗ ̸=0 (Eq⃗ − Aq⃗) is the ground state energy. The rotor ground-state energy
ER can be estimated from Eq. 4.22 but this estimate can actually be improved substantially
for small systems by defining the rotor or ZM Hamiltonian as the original spin Hamiltonian
projected onto the Dicke manifold [99] spanned by the states |NS,M⟩:

H[ZM] = PDHPD (4.32)

with
PD =

NS∑
M=−NS

|NS,M⟩⟨NS,M | (4.33)

the projector onto the Dicke-state manifold. Adapting the results of [99] to the case of large
spins, and including a quadratic Zeeman field Bq, we obtain:

H[ZM] = ECSS (Bq = 0) + (Kz)2

2Ĩ

+
(
Bq − 3Ṽ0

4(N − 1)

)
NS∑

M=−NS

⟨NS,M |
∑

i

(Sz
i )2 |NS,M⟩|NS,M⟩⟨NS,M | (4.34)

with 1/2Ĩ = 3Ṽ0/4(N − 1) and ECSS defined in Eq. 4.6. Note that the difference between 1/2Ĩ
and 1/2I (at Bq = 0) is of order 1/N and vanishes in the large N limit. We estimate numerically
from exact diagonalization the contribution of the last term (namely the projection of (Sz

i )2

on the largest Dicke manifold), and in particular we extract the coefficients of its expansion in
powers of Kz:

[
(Sz

i )2
][ZM]

=
NS∑

M=−NS

⟨NS,M |
∑

i

(Sz
i )2 |NS,M⟩|NS,M⟩⟨NS,M⟩

= c+ α (Kz)2 + . . . (4.35)

With this, we can define the rotor ground-state energy:

ER,0 = ECSS(Bq = 0) + c

(
Bq − 3Ṽ0

4(N − 1)

)

= − Ṽ0NS
2

4 + c

(
Bq − 3Ṽ0

4(N − 1)

)
(4.36)
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and the corrected moment of inertia:

χ′
0 = 1

2I ′ = 1
2Ĩ

+
(
Bq − − 3Ṽ0

4(N − 1)

)
α (4.37)

= 3Ṽ0

4(N − 1) (1 − α) + αBq. (4.38)

In this subsection, we will use this corrected energy ER,0 and inverse moment of inertia χ′
0 for

the comparison of the spectrum with ED for small system sizes and for the dynamics of small
systems (up to N = 4). However, to investigate the dynamics of larger systems, it will not be
possible for us to reconstruct numerically the operator

[
(Sz

i )2
][ZM]

, and we will instead follow
the RSW approach in its simpler formulation (see section 4.2.1).

We show in figure 4.8 the energy of the different eigenstates versus their mean value of (Jz)2,
both for the full ED spectrum and the RSW spectrum for the rotor and the first spin waves,
in the uniform case and for a 2 × 2 square lattice with S = 3. In the case of a 2 × 2 plaquette,
we expect only two different LSW energies, at wavevectors q⃗1 = (0, π) and q⃗2 = (π, π). We can
construct the first excited states as (nq⃗1 = 1, nq⃗2 = 0) or (nq⃗1 = 0, nq⃗2 = 1) for one boson (red
crosses in figure 4.8), and (nq⃗1 = 2, nq⃗2 = 0), (nq⃗1 = 0, nq⃗2 = 2) or (nq⃗1 = 1, nq⃗2 = 1) for two
bosons (orange crosses).

As we can see, for small Bq (Bq = J), RSW theory reproduces correctly the low-energy
spectrum of the Hamiltonian and this occurs without any free parameter. We can also see that
the exact Hamiltonian has a clear tower-of-state structure, reminiscent of the OAT model. On
the other hand, for a larger Bq value (Bq = 15J), the agreement is much poorer, signalling
that the assumption of rotor/spin-wave separation is no longer justified, most likely because
the density of bq⃗ ̸=0 bosons becomes larger the larger Bq.

(a) Bq = J (b) Bq = 15J

Figure 4.8: Comparison between the spectrum of the exact Hamiltonian (blue circle) and
RSW model for the rotor (black crosses), with 1 bosonic excitation (red crosses) and 2 bosonic
excitations (orange crosses).

Time evolution of observables. The second step in our benchmarking procedure is to look
at the time evolution, starting with a coherent spin state, and compare the results of RSW
theory and exact diagonalization for small systems in 1D and 2D.
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4.2. Rotor/spin-wave approximation for the dipolar Hamiltonian

(a) Bq = 0.25J (b) Bq = 0

Figure 4.9: Comparison between the time evolution of Var
(
Jx

stag

)
computed with ED (blue)

and with the RSW model with only the rotor (red dashed lines) and the rotor and the spin
waves (red solid lines) for a 1D system of N = 2 spins S = 3 and a staggered initial state.

We start by looking at the case of 1D systems with just N = 2 sites, with a staggered initial
state, as we expect a perfect OAT dynamics for Bq = 0.25J . This is indeed what we see when
plotting Var

(
Jx

stag

)
in figure 4.9a, as we can see that the RSW results perfectly matches the

ED ones, and they correspond exactly to the rotor part - meaning that there are no spin waves.
Indeed, we find for this very specific value of Bq that for the only finite momentum q = π,
we have Bπ = 0. We then vary the value of Bq to see how the RSW prediction evolves when
introducing spin waves. We can see in figure 4.9b that the spin waves introduce deviations
from a perfect OAT dynamics, in the form of oscillations of small amplitudes that can also be
observed with ED. Even though the amplitude of the oscillation is not perfectly reproduced,
we can already see that they have the correct frequency. Finally, it is worth mentioning that
we get with a decent agreement the time at which the variance of Jx

stag reaches its maximum,
without any free parameter. In particular, our approach predicts successfully the fact that the
time needed to reach the maximum of Var

(
Jx

stag

)
nearly doubles when changing the value of

Bq from Bq = 0.25J to Bq = 0.

(a) N = 2 (b) N = 4

Figure 4.10: Corrected inverse moment of inertia 1/2I ′ for various values of Bq, for the uniform
and staggered Hamiltonian for 1D system with (a) N = 2 and (b) N = 4 spins of length S = 3.
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Using the corrected inverse moment of inertia 1/2I ′, we try to determine the value of Bq

at which it vanishes - corresponding to a divergence of tmax as seen in the previous chapter.
We plot in figure 4.10 the value of 1/2I ′ for the uniform and staggered Hamiltonian for various
values of Bq. As we can see, the linear dependence of 1/2I ′ with Bq explains the divergence
of tmax as 1/|Bq − Bc

q| in the staggered case. Also, we can see that the predicted value of
Bc

q ≈ −0.3 for N = 2 and Bc
q ≈ −0.7 is in decent agreement with the value predicted by exact

diagonalization (see figure 3.3 and 3.12b in the previous chapter). Moreover, in the uniform
case, the value of Bq at which we expect 1/2I ′ to vanish is negative - corresponding to a value
of Bq for which we expect a z Néel phase in the ground state - and we do not expect the
separation of variables to hold. This explains why we do not see any divergence of tmax in the
uniform case.

(a) Bq = 0.5J (b) Bq = J

Figure 4.11: Comparison between the time evolution of Var (Jx) computed with ED (blue) and
with the RSW model with only the rotor (red dashed lines) and the rotor and the spin waves
(red solid lines) for a 2D system of N = 2 × 2 spins S = 3 and a uniform initial state.

We also looked at the case of 2D systems, with a uniform initial state to further test our
ansatz. Results are shown in figure 4.11, and we draw the same conclusions as before. In
particular, we seem to have a very good agreement at short times between ED and RSW
results. We further investigate the short-time dynamics by computing the time evolution of
⟨Jx⟩ and the squeezing parameter in the 2D case, starting with a uniform CSS along x. We
show in figures 4.12 and 4.13 the short-time evolution of these observables. As we can see, the
RSW approach reproduces to a good extent the dynamics predicted by ED. Moreover in the
time evolution of the squeezing parameter we can clearly see that the contribution of the SW
corrects the prediction of the rotor-only model to give a better agreement with the exact data.
Adding the two contributions together within the RSW approach, we recover almost exactly
the optimal squeezing value predicted by ED, at least at short times.

From this we can conclude that the rotor/spin-wave separation is indeed justified when the
density of bosons at finite momentum remains small (as predicted from the theory). Therefore
the next step would be to look at the predictions of our RSW approach for the number of
bosons Nbos for increasing system sizes and various values of Bq, so as to test in which regimes
RSW approach can be used reliably to study the dynamics of sizeable spin ensembles.
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4.2. Rotor/spin-wave approximation for the dipolar Hamiltonian

(a) Bq = J (b) Bq = 2J

Figure 4.12: Comparison between the time evolution of ⟨(Jx)⟩/NS computed with ED (blue)
and with the RSW model with only the rotor (red dashed lines) and the rotor and the spin
waves (red solid lines) for a 2D system of N = 2 × 2 spins S = 3 and a uniform initial state.

(a) Bq = J (b) Bq = 2J

Figure 4.13: Comparison between the time evolution of the squeezing parameter ξ2 computed
with ED (blue) and with the RSW model with only the rotor (red dashed lines) and the rotor
and the spin waves (red solid lines) for a 2D system of N = 2 × 2 spins S = 3 and a uniform
initial state.

4.2.3 Population dynamics of the finite-momentum bosons
We first look at the prediction of our approach for the time evolution of

Nbos =
∑
q⃗ ̸=0

⟨b†
q⃗bq⃗⟩ =

∑
q⃗ ̸=0

Gq⃗, (4.39)

starting with a CSS along x, for both the uniform and staggered Hamiltonians, and for 1D and
2D systems. Thanks to the Bogolyubov transformation, we have an explicit formula for the
time evolution of Gq⃗:

Gq⃗ (t) = 2u2
q⃗v

2
q⃗ (1 − cos (2Eq⃗t)) (4.40)

with the same definition of uq⃗, vq⃗ and Eq⃗ as in equation 4.12. In the case where we have at least
a wavevector q⃗ such that E2

q⃗ < 0, this will lead to an exponentially growing number of bosons
in the system and we will be rapidly out of the domain of validity of our approach. As we saw
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in the previous section when using the LSW approach, this occurs when our initial state is not
a low-energy state, due e.g. to the fact that we have crossed a phase transition in the ground
state of the Hamiltonian. In particular, as we will discuss further below, the proliferation of
finite-momentum bosons is at odds with OAT-like dynamics and scalable spin squeezing. On
the other hand, if all the Eq⃗ are real, then we are left with a periodic oscillation of all the Gq⃗’s,
therefore Nbos will be bounded and will oscillate in time. In order to know whether we are in
the domain of validity of the RSW approach or not, we can focus on the maximum value of
Nbos in time, that we call Nmax

bos , and compare it to 2NS. As long as we have Nmax
bos /(2NS)

small compared to 1, we can expect a dynamics that remains close to the one of a OAT model.
We shall discuss more in details in subsection 4.3 the validity and limits of this prediction.

1D systems. We first investigate the case of a 1D dipolar XXZ chain, with both the uniform
and staggered Hamiltonian, with an initial state which is a uniform CSS along x. We show in
figure 4.14 the results for Nmax

bos versus the system size N and for various values of Bq. It clearly
appears that in the case of a uniform initial state, the OAT-like dynamics observed in chapter 3
for small systems cannot persist indefinitely when going to larger ones. Indeed, the number of
bosons generated by the dynamics keeps increasing when N increases, which indicates that for
larger systems there will be no features left of the OAT dynamics. For negative values of Bq we
find instead an exponentially growing number Nbos as soon as Bq = 0. On the other hand, for a
staggered initial state, there seems to be a small range of values of Bq for which Nmax

bos does not
increase for increasing N . This effect would require some fine tuning of the quadratic Zeeman
field Bq: (δBq < 0.2J), but it seems promising for the persistence of OAT-like dynamics.

The data shown in figure 4.14 were calculated for S = 3. However since Eq⃗,Aq⃗ and Bq⃗ are all
proportional to S, changing the value of S will only affect the speed at which the bosons appear
in the system, but not their total number. Therefore the ratio Nmax

bos /(2SN) will go down as
1/S and we expect systems with large S to have a more pronounced OAT-like behaviour the
size N being the same.

(a) Uniform initial state. (b) Staggered initial state.

Figure 4.14: Evolution of Nmax
bos versus the 1D system size N , for various values of Bq and for

S = 3.

These results are consistent with the results obtained with the LSW approach in 1D in
section 4.1.2, as we do have only a small number of bosons for small positive values of Bq in
the staggered case and small negative values of Bq in the uniform case.
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2D systems. For 2D systems, with the uniform initial state, we get very promising results,
as shown in figure 4.15. The ratio Nmax

bos /(2NS) converges to a finite value for increasing system
size. We can then have a look at the evolution of this limit value for different values of Bq

(see figure 4.16). This reveals a large range of values of Bq for which we expect a OAT-like
behaviour even for large system sizes, namely a dynamics leading to scalable spin squeezing.

Figure 4.15: Evolution of Nmax
bos versus the linear system size L (N = L×L), for various values

of Bq and for S = 3.

(a) S = 3

Figure 4.16: Evolution of Nmax
bos versus Bq/J for a linear system size L = 20 (N = L × L) for

S = 3.

On the other hand the staggered initial state becomes unstable for L > 2 and for positive
values of Bq since we get very flat modes, with high values of u2

q⃗v
2
q⃗ ≳ 2, which leads to a very

high boson number even at short times. For negative values of Bq, it is even worse as the SW
is ill-defined, since there exist a wavevector q⃗ for which we have a negative Eq⃗.
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3D systems. So far we have not discussed the case of 3D systems. The fundamental reason
is that in 3D we have to take into account the anisotropy of dipolar interactions:

Vij = 1 − 3 cos2 (θij)
|r⃗i − r⃗j|3

(4.41)

with θij the angle between the dipole-dipole axis r⃗i − r⃗j and the magnetic field B⃗. Due to this
anisotropy, the 3D average of Vij (i.e Ṽ (0)) in space vanishes, which leads to a vanishing OAT
term in the separation-of-variable scheme. This corresponds to having an infinite moment of
inertia I for our centre of mass, thus preventing the collective dynamics of the spins. Therefore
we do not expect any scalable spin squeezing on a 3D cubic lattice. The best case scenario
would be the limit of well separated (and thus weakly coupled) 2D planes along the z direction,
for which we may expect the same scaling as for a single 2D plane. This is why we will focus
only on the 2D case for the rest of this chapter.

4.3 Scalable spin squeezing in 2D lattices
In the previous section we have identified the case of 2D lattices initialised in the uniform
CSS as a very promising candidate for the realization of OAT-like dynamics and hence scalable
squeezing. Since the comparison with ED will not be possible anymore for large system sizes, we
need to introduce a second numerical method to benchmark the prediction of RSW theory. We
choose the approach of the truncated cumulant expansion (TCE) for quantum spin fluctuations.
As we will see, this second method is based on assumptions completely independent from the
RSW approach. This suggests that, if both methods agree, then their predictions are both
quantitatively correct.

4.3.1 Truncated Cumulant Expansion (TCE)
We first introduce a local basis of operators:

Tm,m′

i = |i,m⟩⟨i,m′| (4.42)

where |i,m⟩ is the eigenstate of Sz
i with eigenvalue m. Any local observable can then be

expressed using this basis:
Oi =

∑
m,m′

⟨i,m|Oi|i,m′⟩Tm,m′

i . (4.43)

For instance, for the spin operators, we have:

Sz
i =

∑
m

mTmm
i , S+

i =
∑
m

√
S (S + 1) −m (m+ 1) Tm+1,m

i . (4.44)

One can then reconstruct the time evolution of correlation functions of any observable using
the correlation functions of the T operators:

{⟨Tm,m′

i ⟩}, {⟨Tm,m′

i T n,n′

j ⟩}, {⟨Tm,m′

i T n,n′

j T p,p′

k ⟩}

and so on up to the N -th order (for a system with N spins). In practice, it is not possible to
compute the time evolution of the correlations functions of the T operators at all orders. In
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order to reduce the number of correlators to be evolved, a common strategy is to focus on the
cumulants of the quantum fluctuations of the spin system.

The cumulants of the fluctuations of a set of correlated variables {Oi} are defined in the
following recursive way:

⟨Oi⟩C = ⟨Oi⟩
⟨OiOj⟩C = ⟨OiOj⟩ − ⟨Oi⟩⟨Oj⟩

⟨OiOjOk⟩C = ⟨OiOjOk⟩ − ⟨OiOj⟩C⟨Ok⟩ − ⟨OiOk⟩C⟨Oj⟩ − ⟨OjOk⟩C⟨Oi⟩ − ⟨Oi⟩⟨Oj⟩⟨Ok⟩
= ⟨OiOjOk⟩ − ⟨OiOj⟩⟨Ok⟩ − ⟨OiOk⟩⟨Oj⟩ − ⟨OjOk⟩⟨Oi⟩ + 2⟨Oi⟩⟨Oj⟩⟨Ok⟩

(. . .)

The strategy one can follow is to assume that the cumulants are structured in a hierarchy,
such that higher-order cumulants are smaller than lower-order ones, as it is the case in many
relevant physical examples (e.g. for bosonic or fermionic gases in states close to Gaussian states).
If such a hierarchy exists, it can be conveniently truncated at some finite order, assuming that
all n-th order cumulants for n > n0 vanish – this defines then a n0-th order TCE. In the case
n0 = 1, the TCE approach is equivalent to a single-site mean-field approximation. Since our
goal is to describe the dynamics of quantum correlations, we adopt instead a second-order
TCE, assuming the vanishing of all cumulants starting from 3rd order. Under this assumption,
the evolution of the state can be fully described by knowing the evolution of the expectation
values {⟨Tm,m′

i ⟩} and {⟨Tm,m′

i T n,n′

j ⟩} namely a number of objects ∼ O((2S+1)4N) for a system
invariant under spatial translation. From the previous formula it is clear that the computational
cost increases with the fourth power of the spin length S, so that the system sizes accessible in
practice to this approach decrease with S.

Considering the expectation values ⟨O⟩ ∈ {⟨Tm,m′

i ⟩, ⟨Tm,m′

i T n,n′

j ⟩}, their evolution is dictated
by the Heisenberg equation:

i
d⟨O⟩

dt = ⟨[O,H]⟩. (4.45)

The truncation of the cumulant hierarchy allows then to write the expectation value of the
commutator on the right-hand side as a function of the first-order and second-order cumulants
for the T operators, namely ⟨[O,H]⟩ = FO

(
{⟨Tm,m′

i ⟩, ⟨Tm,m′

i T n,n′

j ⟩}
)
, so that the equations of

motion take the form of a closed set of non-linear differential equations.
Writing the equations of motion of the first- and second-order correlation functions leads to

very lengthy expressions, therefore we shall report them in Appendix A. We solve the coupled
∼ O((2S+1)4N) nonlinear equations of motion via a standard 4-th order Runge-Kutta scheme.
In particular the expectation value of the Hamiltonian can be written as a linear combination
of first- and second-order correlation functions (as it is quadratic in terms of spin operators), so
that the energy is conserved within machine precision by this approach. Notice moreover that
the TCE approach involves only an approximation at the level of the inter-site correlations, but
no approximation is made instead on the statistics of fluctuations of single sites, whose physics
is therefore described exactly – in fact even the two-site physics is exactly described with a
second-order TCE.

In spite of its ability to correctly describe single-site and two-site physics, the TCE approach
has the fundamental shortcoming that no physical quantum state of the spin ensemble may
in fact verify the hypothesis of vanishing cumulants beyond a given order n0 ≥ 2. Indeed,
while Gaussian states (with exactly vanishing third- and higher-order cumulants) exist for
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ensembles of bosonic and fermionic modes, no such states are known for spin ensembles. As a
consequence the TCE approach can produce unphysical results, especially so when correlations
become strongly nonlocal. In the quench dynamics we will study, the initial state has vanishing
cumulants beyond first order (since it is a separable state), so that it is exactly described by
2nd-order TCE, as well as its short-time evolution.

Yet when the dynamics of the 2D array of dipolar spins leads to the appearance of very
strong squeezing – specifically, when it is akin to that of the OAT model – we observe that the
Heisenberg inequality for the collective spin Var (Jmin) Var (Jmax) ≥ ⟨Jx⟩2/4 can be violated
by our TCE results, where Jmax is the anti-squeezed collective-spin component, perpendicular
to Jmin in the yz plane. This violation is the precursor to a drastic decrease of Var (Jmin),
which can become negative – underlying the fact that the second-order TCE approach has
the tendency to strongly overestimate the anti-correlations associated with squeezing. In this
situation we monitor the evolution of the ratio R = 4Var (Jmin) Var (Jmax) /⟨Jx⟩2, and we stop
the time evolution when R(t) reaches a maximum, which is the prelude to the rapid fall to
values below unity and even negative. This is the reason why the TCE results we will show
in the different figures are restricted to short times, not reaching the optimal squeezing time
tOAT .

4.3.2 Time evolution of the squeezing parameter
We now have all the ingredients we need to compute the time evolution of the spin-squeezing
parameter for 2D systems of spins, initialised in a uniform array of CSS along x. We first look
at small values of Bq, well within the validity region of our RSW ansatz, for various values of
S - namely S = 3 (relevant for Chromium), S = 6 (relevant for bosonic Erbium) and S = 8
(relevant for Dysprosium). In each case, we compare RSW results with those coming from
the TCE method. We show our results in figure 4.17. Each colour corresponds to a different
system size, the solid lines for the RSW method and the dots for the TCE method. We also
show in dotted lines the results only for the rotor part of the RSW ansatz, and in dashed lines
the results of the single spin dynamics - namely the quadratic Zeeman term, which acts as a
local OAT Hamiltonian. Finally, the dashed-dotted line delimits the area below which we can
certify that the system is entangled, according to the criterion of Eq. 2.15.

Figure 4.17: Evolution of the squeezing parameter (in dB) versus time for different systems
sizes L (N = L × L), for S = 3, Bq = 2J (left), S = 6, Bq = 4J (centre) and S = 8, Bq = 6J
(right).

As we can see in figure 4.17, in the three cases we have a very good agreement between the
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two numerical methods over the time intervals for which the TCE approach delivers physical
results. Moreover, the time evolution of the spin-squeezing parameter follows almost perfectly
the one predicted by a perfect OAT model (dotted lines), which indicates that we indeed have a
system that is governed by the collective spin dynamics. We therefore have scalable squeezing
in the system, as we can see from the fact that we get more and more squeezing the larger
the system size is (note that the vertical axis is in log scale). One can also notice that in each
case, the squeezing minimum is well below the threshold for entanglement detection, even for
small systems sizes L = 4. All these observations were expected, since the range of validity
of the RSW ansatz coincides with the range of values of Bq for which we expect a OAT-like
dynamics. Even more interestingly, we can have a look at what happens when we take Bq out
of this region of validity, increasing progressively the value of Bq.

Figure 4.18: Evolution of the squeezing parameter (in dB) versus time for different systems
sizes L (N = L × L), for S = 3, Bq = 5J (a), Bq = 7J (b), Bq = 10J (c) and Bq = 14J (d).
We use the same legend convention as figure 4.17.
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As we can see on panel (a) and (b) in figure 4.18, for intermediate values of Bq, we start
to see significant discrepancies between the RSW and the TCE results. This signals that the
picture of separation of variables underlying RSW theory breaks down. This interpretation is
consistent with the fact that the spin-wave correction to the rotor dynamics becomes sizeable,
due to a significant density of finite-momentum bosons produced by the dynamics. Nonetheless,
as we shall also discuss in the next section, the squeezing parameter predicted by the TCE
approach appears to remain scalable for a large range of Bq values, albeit following a behaviour
which can no longer be understood when starting from the OAT paradigm, as shown in panels
(c) and (d). On these panels, the competition between single-spin and many-body physics
becomes manifest, with a short-time behaviour dominated by the Bq term, in which ξ2

R reaches
a nearly size-independent first minimum, followed by antisqueezing dynamics (ξ2

R increases).
This first phase of the evolution is followed by a second phase in which, at least for the largest
system sizes we considered, anti-squeezing stops, and ξ2

R begins to decrease again developing
a second minimum, the deeper the larger the size. This later dynamics is clearly the result
of many-body interactions – as revealed by its scaling nature with the system size. This can
be understood in relationship with a fundamental feature of dipolar spins in 2D, namely their
ability to develop and maintain long-range order at low energy [101] (panel (c) of figure 4.18),
which is not possible for system with short-range interaction due to the Hohenberg-Mermin-
Wagner theorem [102, 103]. Note that for the large values of Bq, since we recover a dynamics
that is similar to the one of single spin dynamics, we expect TCE to give more accurate results
than the RSW method. Finally, as we can see on panel (d), a significant shift in the squeezing
dynamics has occurred when reaching Bq = 14J , at least according to TCE, since we do not
observe scalable squeezing anymore.

4.3.3 Scaling of the squeezing parameter

From the time evolution data, we can then extract the scaling of the squeezing parameter versus
system size for different values of Bq. As mentioned before, we cannot always reach the optimal
squeezing time tOAT with the TCE approach. We can nonetheless investigate the scaling of the
squeezing parameter at different fractions of the optimal time αtOAT , α ∈ [0, 1]. For each time,
when can extract a scaling exponent ν and compare it to the optimal one νopt = 2/3.

We show our results in the case S = 3, Bq = 1 in figure 4.19, based on exact results from
a pure OAT Hamiltonian (solid lines) and our RSW approach (diamonds). As we can see,
for Bq = 1, we obtain the same scaling for the OAT Hamiltonian and the RSW approach.
Moreover, in figure 4.19b, we can clearly see that the scaling of the squeezing parameter with
system size is almost equal to its optimal value even for a small fraction of the optimal time
(α ∼ 0.3 − 0.5). Therefore we will perform the analysis of TCE results at t = 0.3tOAT , for
which we already expect an important scaling of the squeezing parameter with system size
when the dynamics of the system is akin to the OAT dynamics. We show our results on the
scaling of squeezing at t = 0.3tOAT in figure 4.20 for S = 3, 6 and 8. As we can see, we have a
broad transition from a squeezing parameter that scales with system size for low positive Bq,
to an absence of scaling (or inverse scaling) for larger values of Bq. We can see that the two
numerical methods (RSW and TCE) disagree on the value of Bq for the transition between the
two scaling regimes, as the RSW approach tends to overestimate by construction the proximity
to an exact OAT model and hence overestimate the value of the critical Bq. Both methods
predict that this transition between the scaling regimes occurs for values of Bq that seems to
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(a) (b)

Figure 4.19: (a) Evolution of the squeezing parameter (in dB) versus logN for different fractions
α of the optimal time tOAT for S = 3, Bq = J . (b) Evolution of the scaling exponent with the
fraction α.

scale linearly with the spin length S, even though there is no sharp transition.

Figure 4.20: Evolution of the squeezing parameter (in dB) versus Bq/J for different systems
sizes L (N = L × L), for S = 3 (a), S = 6 (b) and S = 8 (c). Solid lines stand for the RSW
method, while the dots correspond to TCE results.
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4.4 Study of the thermodynamic transition
In a recent study [104], the authors proposed the conjecture that thermalization of long-range
xy ferromagnetic order is a sufficient condition for the occurrence of scalable spin-squeezing.
In order to test this conjecture, we will further study the properties of the system around the
thermodynamic transitions we already introduced at the beginning of the chapter.

The previous study of the dynamics revealed two transitions which we can try to relate to
the thermodynamic behaviour. On the one hand, for Bq becoming slightly negative, we have a
fast breakdown of the RSW separation, as the number of bosons explodes in a finite time (see
figure 4.16). Such a phenomenon is due to the fact that we find imaginary energies with the
Bogolyubov transformation, leading to an exponential growth of Nbos. This means that our
initial state becomes a highly excited state when Bq < 0, due to a drastic change in the ground
state properties of the system. On the other hand, for increasing positive Bq, the number of
bosons keep increasing linearly, until we reach a regime where we have no scalable squeezing.
This indicates a second transition, of seemingly different nature from the first one. In this
section, we shall investigate the nature of these two transitions. First, we will study in more
details the thermodynamic phase diagram of our spin system, and then we will have a closer
look at the time evolution of the system for increasing values of Bq, around the thermodynamics
transition predicted in the phase diagram.

4.4.1 Phase diagram
We first reconstruct the phase diagram of the system, by checking the existence of long-range
order for different values of Bq and different temperatures T .

Phase diagram for S = 3. Using numerically exact Quantum Monte Carlo (QMC) simu-
lations, implemented by T. Roscilde, we compute the critical temperature for the existence of
a long-range ferromagnetic order in the xy plane. We also use mean-field theory to compute
the same critical temperature and the critical temperature for long-range Néel antiferromag-
netism along the z axis, as we did in the first section of this chapter. Details of the numerical
computations for both methods are given in the Appendix B.

From the QMC results shown in figure 4.21a, we can see that the thermodynamics exhibits
long-range ferromagnetism in the xy plane for a wide range of values of Bq, 0 < Bq < 54J , and
up to a critical temperature TFM

c which reaches a peak value of ≈ 20J . The FM phase predicted
by MF theory is in relatively good agreement with the one obtained via QMC, even though
the nature of the transition is not correct (we have a mean-field transition from MF theory,
see the appendix for more details). The quantitative agreement between the two methods
is not surprising, given the fact that MF theory becomes exact in infinite dimensions; and
that the long-range tail of dipolar interactions in 2D dominates the thermodynamics of the
system, leading to the existence of a finite-temperature transition. MF theory also allows us
to detect a second ordered phase, for Bq < −1.1J , as the system exhibits long-range Néel
antiferromagnetism along the z axis. Finally, for large Bq, we expect - at the MF level - that
the system is in a product state of single-spin Dicke states |S = 3,m = 0⟩.

The connection between the dynamics of the system and its thermodynamics can be estab-
lished via the mechanism of closed-system thermalization. Indeed, starting from a CSS along x,
the unitary evolution driven by the dipolar Hamiltonian at long times is expected to thermalize
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(a) Equilibrium phase diagram for S = 3. (b) Expectation value of ⟨J⃗2⟩ at TCSS⟨Bq⟩

Figure 4.21: Left : mean-field (MF) and quantum Monte Carlo (QMC) estimates of the tran-
sition temperature to xy-ferromagnetism (XY-FM), to Néel antiferromagnetism (Z-Néel), and
of the coherent-state temperature TCSS. Right: collective-spin square modulus ⟨J⃗2⟩ along the
(Bq , TCSS⟨Bq⟩) line, evaluated for a system of N = 48 × 48 spins.

the state of the system [105], so that the time average of local observables reproduce their
equilibrium expectation values at a temperature TCSS such that

⟨CSSx|H|CSSx⟩ = ⟨H⟩TCSS =
Tr
(
He−H/TCSS

)
Tr (e−H/TCSS) , (4.46)

where ⟨...⟩T denotes the thermodynamic average at temperature T. TCSS is often referred to as
the quench temperature. Figure 4.21a shows a very good agreement between the TCSS computed
with the QMC algorithm (open circles) and the one computed with the MF method (solid line).

The key question in order to know whether to expect long-range order or not after a unitary
evolution of the system at long time is: does the quench temperature TCSS lie below or above
the critical temperature at a given Bq? Here, we can see that we have a clear transition
at Bq,c ≈ 18J , for which TCSS (Bq,c) = TFM

c (Bq,c). This corresponds for our system to a
transition from xy-ferromagnetic (XY-FM) to paramagnetic phase. Regarding the unitary
evolution at long time, this translates in particular into a drop of the collective spin length ⟨J⃗2⟩
from macroscopic values (∼ O(N2)) to microscopic values (∼ O(N)). We can clearly see this
phenomenon in figure 4.21b, as ⟨J⃗2⟩TCSS drops drastically when Bq approaches Bq,c. Note that
the scaling of the square modulus of the collective-spin with system size N is crucial for the
scaling of the squeezing parameter (as having a scalable squeezing parameter requires keeping
the spin polarized, i.e. having a spin length close to NS).

Dependence on S. Given the relatively good accuracy of MF theory in reconstructing the
phase diagram for S = 3, it can be used also for the cases S = 6 and S = 8, which are much
more demanding for unbiased QMC calculations. in figure 4.22 we compare the S = 3 phase
diagram with those for S = 6 and S = 8. MF theory predicts a thermodynamic transition at
the TCSS temperature for Bq,c ≈ 21J for S = 3 (to be compared with Bq,c ≈ 18J from QMC);
Bq,c ≈ 41J for S = 6, and Bq,c ≈ 54J for S = 8. As we can see, Bq,c appears to grow linearly
with S. MF theory also allows one to predict the critical Bq values delimiting the phase which
exhibits xy ferromagnetism.
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The transition to Néel antiferromagnetism is predicted by MF theory to occur for Bq,m ≈
−1.1J for S = 3, Bq,m ≈ −J for S = 6 and Bq,m ≈ −0.95J for S = 8. These predictions
are to be compared with Bq,m ≈ −0.845J (for all spin values) from spin-wave theory. MF and
spin-wave theory, albeit not predicting the same critical field, agree on its weak (or absent)
spin-length dependence.

On the other hand, MF theory predicts a transition from xy ferromagnetism to quantum
paramagnetism in the ground state for Bq > Bq,p with Bq,p ≈ 54J for S = 3, Bq,p ≈ 190J
for S = 6 and Bq,p ≈ 326J for S = 8. The Bq,p values appear to grow with S approximately
as S2. As a consequence the range of Bq values for which one observes xy ferromagnetism at
the quench temperature TCSS appears to shrink with respect to the whole Bq extent of the xy
ferromagnetic phase, due to the different scaling of Bq,c and Bq,p with S.

Figure 4.22: Phase diagrams for the 2D dipolar XXZ model with S = 3(a), 6(b) and 8(c) from
QMC and MF theory.

4.4.2 Time evolution around the thermodynamic transition
In the same fashion as in figure 4.18, we study the time evolution of the squeezing parameter
for S = 3 for increasing values of Bq ranging from 10J to 24J . We also investigate the
time evolution of the average magnetization per spin (⟨Jx⟩/N) and the minimal variance for
the transverse-field components (Var (Jmin)) that contribute to the squeezing parameter. Our
results (obtained with the TCE approach) are shown in figure 4.23. We remark that, for the
values of Bq for which the long-time dynamics is expected to exhibit long-range ferromagnetism
– namely for Bq ≤ Bq,c ≈ 18J – the TCE data exhibit the characteristic finite-size dynamical
precursor of spontaneous symmetry breaking which occurs in the thermodynamic limit. This
can be seen in the first column of figure 4.24 from the persistence of a net magnetization
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⟨Jx⟩/N > 0 for longer times the larger the system size. This scaling persistence of magnetization
can be seen at intermediate times, the early time dynamics being governed by nearly size-
independent single spin physics. Indeed, we can see first a size-independent drop, which is very
well described by the dynamics of single spins subject to the quadratic Zeeman field Bq (black
line on the figures), followed by a tail that scales with system size.

In particular we estimate the extent of this tail from the time t0 at which ⟨Jx⟩ crosses
zero. The scaling of this time with system size for various values of Bq is shown in figure
4.24 (a). We observe that the scaling slows down quite markedly for Bq ≈ Bq,c, reflecting the
thermodynamic transition. This is a signature that, in spite of their approximate nature, the
TCE results appear to be sensitive to the transition itself, whose position was obtained from
unbiased QMC results.

We also observe in figure 4.23 that the dynamics of the minimal variance Var (Jmin) main-
tains some significant scaling, not in its first minimum in time – which is clearly dictated by
the single-spin dynamics – but rather in its second minimum, which comes from many-body
interactions. The depth of the second minimum min2 [Var (Jmin)] is shown in figure 4.24 (b). As
we can see, it exhibits a persistent scaling even past the thermodynamic transition, nevertheless
this scaling does not seem to follow a power law, and it is very different from the scaling which
is exhibited by the OAT model (as N−2/3 when considering the variance per spin). Hence one
might wonder whether this scaling is actually persistent asymptotically; and whether it can
lead to scalable squeezing when ⟨Jx⟩/N remains finite – namely for Bq < Bq,c.

4.4.3 Discussion
All these results allow us to try and draw a link between the scalability of the squeezing at
intermediate times and the presence (or absence) of long-range order at long times in the
thermodynamic limit.

In all the cases where we have TCSS < TFM
c , we expect the establishment of long-range

order in the long time dynamics of the system, which corresponds to a spontaneous symmetry
breaking of the system. This spontaneous breaking of the U(1) symmetry of the Hamiltonian
in the thermodynamic limit can have important consequences for the squeezing dynamics [104].
In fact, it implies that, for finite system sizes, the initial polarization ⟨Jx⟩ associated with the
CSS persists for increasingly long times the larger the system size (and never dies out in the
thermodynamic limit). This is shown in figure 4.23, and was also observed experimentally in
systems of dipolar qubits [106]. As a consequence, in spite of the depolarizing effect coming
from the Bq term, ferromagnetism can protect the spin-squeezing parameter from blowing up,
because it prevents a fast vanishing of the denominator in the squeezing parameter ξ2

R (see
Eq. 2.11) which would lead to anti-squeezing otherwise. Moreover, long-range ferromagnetism
can delay or even reverse the anti-squeezing dynamics. Finally, the collective spin remains of
macroscopic length, as guaranteed by the fact that ⟨J⃗2⟩ ∼ O(N2) throughout the evolution –
although it may differ significantly from its (initial) maximum value NS(NS + 1), as shown in
figure 4.21b.

These observations led the authors of ref [104] to conjecture that thermalization of long-range
xy ferromagnetic order is a sufficient condition for the occurrence of scalable spin-squeezing.
Nonetheless, as we clearly observe in figure 4.18 (c) and (d) and 4.23, for the system sizes we
explored (up to N = 400 for S = 3) the fast depolarization imposed by the Bq term can push
the squeezing parameter to values ξ2

R which are systematically higher than the entanglement
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(d

B
)

<latexit sha1_base64="g2d99gmSAyUSA+IhFRBUY8e+iuE=">AAAB/nicbZDLSsNAFIZP6q3WW1RcuRksgquaSFGXRTfiQirYCzS1TKaTduhkEmYmYgkFX8WNC0Xc+hzufBunaRfa+sPAx3/O4Zz5/ZgzpR3n28otLC4tr+RXC2vrG5tb9vZOXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4HJcbzxQqVgk7vQwpu0Q9wQLGMHaWB17z+NY9DhF1/ePyJMZH9907KJTcjKheXCnUISpqh37y+tGJAmp0IRjpVquE+t2iqVmhNNRwUsUjTEZ4B5tGRQ4pKqdZueP0KFxuiiIpHlCo8z9PZHiUKlh6JvOEOu+mq2Nzf9qrUQH5+2UiTjRVJDJoiDhSEdonAXqMkmJ5kMDmEhmbkWkjyUm2iRWMCG4s1+eh/pJyT0tlW/LxcrFNI487MMBHIELZ1CBK6hCDQik8Ayv8GY9WS/Wu/Uxac1Z05ld+CPr8wc8OpUH</latexit> hJ
x
i/

N

<latexit sha1_base64="+bUvVVYI5jx+eoW24+IHktsn77Q=">AAACD3icbVC7TgJBFJ3FF+Jr1dJmItFAA7uEqCXBxlgYjAImgGR2GGDCzOxmZtaEbJYvsPFXbCw0xtbWzr9xeBQKnuQmJ+fcm3vv8QJGlXacbyuxtLyyupZcT21sbm3v2Lt7NeWHEpMq9pkv7zykCKOCVDXVjNwFkiDuMVL3Budjv/5ApKK+uNXDgLQ46gnapRhpI7Xt46gpOawhGWcu76MmpyLO5jNXN/lCdjSaeJlOORu37bSTcyaAi8SdkTSYodK2v5odH4ecCI0ZUqrhOoFuRUhqihmJU81QkQDhAeqRhqECcaJa0eSfGB4ZpQO7vjQlNJyovycixJUacs90cqT7at4bi/95jVB3z1oRFUGoicDTRd2QQe3DcTiwQyXBmg0NQVhScyvEfSQR1ibClAnBnX95kdQKOfckV7wupkvlWRxJcAAOQQa44BSUwAWogCrA4BE8g1fwZj1ZL9a79TFtTVizmX3wB9bnD3M+mwU=</latexit> V
ar
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)

<latexit sha1_base64="K5zjbrCQwTX6GSMhFQHXn60VzNo=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiSlqMtSNy6r2Ac0MUwm03boZBJmJmII7a+4caGIWz/EnX/jtM1CWw9cOJxzL/fe48eMSmVZ38ba+sbm1nZhp7i7t39waB4dd2SUCEzaOGKR6PlIEkY5aSuqGOnFgqDQZ6Trj69nfveRCEkjfq/SmLghGnI6oBgpLXlmyXmi3t1DbTrNHBHCStA8n3hm2apac8BVYuekDHK0PPPLCSKchIQrzJCUfduKlZshoShmZFJ0EklihMdoSPqachQS6Wbz4yfwTCsBHERCF1dwrv6eyFAoZRr6ujNEaiSXvZn4n9dP1ODKzSiPE0U4XiwaJAyqCM6SgAEVBCuWaoKwoPpWiEdIIKx0XkUdgr388irp1Kr2RbV+Wy83mnkcBXACTkEF2OASNMANaIE2wCAFz+AVvBlT48V4Nz4WrWtGPlMCf2B8/gDG/pQ2</latexit> ⇠2 R
(d

B
)

<latexit sha1_base64="g2d99gmSAyUSA+IhFRBUY8e+iuE=">AAAB/nicbZDLSsNAFIZP6q3WW1RcuRksgquaSFGXRTfiQirYCzS1TKaTduhkEmYmYgkFX8WNC0Xc+hzufBunaRfa+sPAx3/O4Zz5/ZgzpR3n28otLC4tr+RXC2vrG5tb9vZOXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4HJcbzxQqVgk7vQwpu0Q9wQLGMHaWB17z+NY9DhF1/ePyJMZH9907KJTcjKheXCnUISpqh37y+tGJAmp0IRjpVquE+t2iqVmhNNRwUsUjTEZ4B5tGRQ4pKqdZueP0KFxuiiIpHlCo8z9PZHiUKlh6JvOEOu+mq2Nzf9qrUQH5+2UiTjRVJDJoiDhSEdonAXqMkmJ5kMDmEhmbkWkjyUm2iRWMCG4s1+eh/pJyT0tlW/LxcrFNI487MMBHIELZ1CBK6hCDQik8Ayv8GY9WS/Wu/Uxac1Z05ld+CPr8wc8OpUH</latexit> hJ
x
i/

N

<latexit sha1_base64="+bUvVVYI5jx+eoW24+IHktsn77Q=">AAACD3icbVC7TgJBFJ3FF+Jr1dJmItFAA7uEqCXBxlgYjAImgGR2GGDCzOxmZtaEbJYvsPFXbCw0xtbWzr9xeBQKnuQmJ+fcm3vv8QJGlXacbyuxtLyyupZcT21sbm3v2Lt7NeWHEpMq9pkv7zykCKOCVDXVjNwFkiDuMVL3Budjv/5ApKK+uNXDgLQ46gnapRhpI7Xt46gpOawhGWcu76MmpyLO5jNXN/lCdjSaeJlOORu37bSTcyaAi8SdkTSYodK2v5odH4ecCI0ZUqrhOoFuRUhqihmJU81QkQDhAeqRhqECcaJa0eSfGB4ZpQO7vjQlNJyovycixJUacs90cqT7at4bi/95jVB3z1oRFUGoicDTRd2QQe3DcTiwQyXBmg0NQVhScyvEfSQR1ibClAnBnX95kdQKOfckV7wupkvlWRxJcAAOQQa44BSUwAWogCrA4BE8g1fwZj1ZL9a79TFtTVizmX3wB9bnD3M+mwU=</latexit> V
ar
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)

<latexit sha1_base64="K5zjbrCQwTX6GSMhFQHXn60VzNo=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiSlqMtSNy6r2Ac0MUwm03boZBJmJmII7a+4caGIWz/EnX/jtM1CWw9cOJxzL/fe48eMSmVZ38ba+sbm1nZhp7i7t39waB4dd2SUCEzaOGKR6PlIEkY5aSuqGOnFgqDQZ6Trj69nfveRCEkjfq/SmLghGnI6oBgpLXlmyXmi3t1DbTrNHBHCStA8n3hm2apac8BVYuekDHK0PPPLCSKchIQrzJCUfduKlZshoShmZFJ0EklihMdoSPqachQS6Wbz4yfwTCsBHERCF1dwrv6eyFAoZRr6ujNEaiSXvZn4n9dP1ODKzSiPE0U4XiwaJAyqCM6SgAEVBCuWaoKwoPpWiEdIIKx0XkUdgr388irp1Kr2RbV+Wy83mnkcBXACTkEF2OASNMANaIE2wCAFz+AVvBlT48V4Nz4WrWtGPlMCf2B8/gDG/pQ2</latexit> ⇠2 R
(d

B
)

<latexit sha1_base64="g2d99gmSAyUSA+IhFRBUY8e+iuE=">AAAB/nicbZDLSsNAFIZP6q3WW1RcuRksgquaSFGXRTfiQirYCzS1TKaTduhkEmYmYgkFX8WNC0Xc+hzufBunaRfa+sPAx3/O4Zz5/ZgzpR3n28otLC4tr+RXC2vrG5tb9vZOXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4HJcbzxQqVgk7vQwpu0Q9wQLGMHaWB17z+NY9DhF1/ePyJMZH9907KJTcjKheXCnUISpqh37y+tGJAmp0IRjpVquE+t2iqVmhNNRwUsUjTEZ4B5tGRQ4pKqdZueP0KFxuiiIpHlCo8z9PZHiUKlh6JvOEOu+mq2Nzf9qrUQH5+2UiTjRVJDJoiDhSEdonAXqMkmJ5kMDmEhmbkWkjyUm2iRWMCG4s1+eh/pJyT0tlW/LxcrFNI487MMBHIELZ1CBK6hCDQik8Ayv8GY9WS/Wu/Uxac1Z05ld+CPr8wc8OpUH</latexit> hJ
x
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N

<latexit sha1_base64="+bUvVVYI5jx+eoW24+IHktsn77Q=">AAACD3icbVC7TgJBFJ3FF+Jr1dJmItFAA7uEqCXBxlgYjAImgGR2GGDCzOxmZtaEbJYvsPFXbCw0xtbWzr9xeBQKnuQmJ+fcm3vv8QJGlXacbyuxtLyyupZcT21sbm3v2Lt7NeWHEpMq9pkv7zykCKOCVDXVjNwFkiDuMVL3Budjv/5ApKK+uNXDgLQ46gnapRhpI7Xt46gpOawhGWcu76MmpyLO5jNXN/lCdjSaeJlOORu37bSTcyaAi8SdkTSYodK2v5odH4ecCI0ZUqrhOoFuRUhqihmJU81QkQDhAeqRhqECcaJa0eSfGB4ZpQO7vjQlNJyovycixJUacs90cqT7at4bi/95jVB3z1oRFUGoicDTRd2QQe3DcTiwQyXBmg0NQVhScyvEfSQR1ibClAnBnX95kdQKOfckV7wupkvlWRxJcAAOQQa44BSUwAWogCrA4BE8g1fwZj1ZL9a79TFtTVizmX3wB9bnD3M+mwU=</latexit> V
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<latexit sha1_base64="K5zjbrCQwTX6GSMhFQHXn60VzNo=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiSlqMtSNy6r2Ac0MUwm03boZBJmJmII7a+4caGIWz/EnX/jtM1CWw9cOJxzL/fe48eMSmVZ38ba+sbm1nZhp7i7t39waB4dd2SUCEzaOGKR6PlIEkY5aSuqGOnFgqDQZ6Trj69nfveRCEkjfq/SmLghGnI6oBgpLXlmyXmi3t1DbTrNHBHCStA8n3hm2apac8BVYuekDHK0PPPLCSKchIQrzJCUfduKlZshoShmZFJ0EklihMdoSPqachQS6Wbz4yfwTCsBHERCF1dwrv6eyFAoZRr6ujNEaiSXvZn4n9dP1ODKzSiPE0U4XiwaJAyqCM6SgAEVBCuWaoKwoPpWiEdIIKx0XkUdgr388irp1Kr2RbV+Wy83mnkcBXACTkEF2OASNMANaIE2wCAFz+AVvBlT48V4Nz4WrWtGPlMCf2B8/gDG/pQ2</latexit> ⇠2 R
(d

B
)

<latexit sha1_base64="g2d99gmSAyUSA+IhFRBUY8e+iuE=">AAAB/nicbZDLSsNAFIZP6q3WW1RcuRksgquaSFGXRTfiQirYCzS1TKaTduhkEmYmYgkFX8WNC0Xc+hzufBunaRfa+sPAx3/O4Zz5/ZgzpR3n28otLC4tr+RXC2vrG5tb9vZOXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4HJcbzxQqVgk7vQwpu0Q9wQLGMHaWB17z+NY9DhF1/ePyJMZH9907KJTcjKheXCnUISpqh37y+tGJAmp0IRjpVquE+t2iqVmhNNRwUsUjTEZ4B5tGRQ4pKqdZueP0KFxuiiIpHlCo8z9PZHiUKlh6JvOEOu+mq2Nzf9qrUQH5+2UiTjRVJDJoiDhSEdonAXqMkmJ5kMDmEhmbkWkjyUm2iRWMCG4s1+eh/pJyT0tlW/LxcrFNI487MMBHIELZ1CBK6hCDQik8Ayv8GY9WS/Wu/Uxac1Z05ld+CPr8wc8OpUH</latexit> hJ
x
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N

<latexit sha1_base64="+bUvVVYI5jx+eoW24+IHktsn77Q=">AAACD3icbVC7TgJBFJ3FF+Jr1dJmItFAA7uEqCXBxlgYjAImgGR2GGDCzOxmZtaEbJYvsPFXbCw0xtbWzr9xeBQKnuQmJ+fcm3vv8QJGlXacbyuxtLyyupZcT21sbm3v2Lt7NeWHEpMq9pkv7zykCKOCVDXVjNwFkiDuMVL3Budjv/5ApKK+uNXDgLQ46gnapRhpI7Xt46gpOawhGWcu76MmpyLO5jNXN/lCdjSaeJlOORu37bSTcyaAi8SdkTSYodK2v5odH4ecCI0ZUqrhOoFuRUhqihmJU81QkQDhAeqRhqECcaJa0eSfGB4ZpQO7vjQlNJyovycixJUacs90cqT7at4bi/95jVB3z1oRFUGoicDTRd2QQe3DcTiwQyXBmg0NQVhScyvEfSQR1ibClAnBnX95kdQKOfckV7wupkvlWRxJcAAOQQa44BSUwAWogCrA4BE8g1fwZj1ZL9a79TFtTVizmX3wB9bnD3M+mwU=</latexit> V
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<latexit sha1_base64="K5zjbrCQwTX6GSMhFQHXn60VzNo=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiSlqMtSNy6r2Ac0MUwm03boZBJmJmII7a+4caGIWz/EnX/jtM1CWw9cOJxzL/fe48eMSmVZ38ba+sbm1nZhp7i7t39waB4dd2SUCEzaOGKR6PlIEkY5aSuqGOnFgqDQZ6Trj69nfveRCEkjfq/SmLghGnI6oBgpLXlmyXmi3t1DbTrNHBHCStA8n3hm2apac8BVYuekDHK0PPPLCSKchIQrzJCUfduKlZshoShmZFJ0EklihMdoSPqachQS6Wbz4yfwTCsBHERCF1dwrv6eyFAoZRr6ujNEaiSXvZn4n9dP1ODKzSiPE0U4XiwaJAyqCM6SgAEVBCuWaoKwoPpWiEdIIKx0XkUdgr388irp1Kr2RbV+Wy83mnkcBXACTkEF2OASNMANaIE2wCAFz+AVvBlT48V4Nz4WrWtGPlMCf2B8/gDG/pQ2</latexit> ⇠2 R
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)

<latexit sha1_base64="g2d99gmSAyUSA+IhFRBUY8e+iuE=">AAAB/nicbZDLSsNAFIZP6q3WW1RcuRksgquaSFGXRTfiQirYCzS1TKaTduhkEmYmYgkFX8WNC0Xc+hzufBunaRfa+sPAx3/O4Zz5/ZgzpR3n28otLC4tr+RXC2vrG5tb9vZOXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4HJcbzxQqVgk7vQwpu0Q9wQLGMHaWB17z+NY9DhF1/ePyJMZH9907KJTcjKheXCnUISpqh37y+tGJAmp0IRjpVquE+t2iqVmhNNRwUsUjTEZ4B5tGRQ4pKqdZueP0KFxuiiIpHlCo8z9PZHiUKlh6JvOEOu+mq2Nzf9qrUQH5+2UiTjRVJDJoiDhSEdonAXqMkmJ5kMDmEhmbkWkjyUm2iRWMCG4s1+eh/pJyT0tlW/LxcrFNI487MMBHIELZ1CBK6hCDQik8Ayv8GY9WS/Wu/Uxac1Z05ld+CPr8wc8OpUH</latexit> hJ
x
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N

<latexit sha1_base64="+bUvVVYI5jx+eoW24+IHktsn77Q=">AAACD3icbVC7TgJBFJ3FF+Jr1dJmItFAA7uEqCXBxlgYjAImgGR2GGDCzOxmZtaEbJYvsPFXbCw0xtbWzr9xeBQKnuQmJ+fcm3vv8QJGlXacbyuxtLyyupZcT21sbm3v2Lt7NeWHEpMq9pkv7zykCKOCVDXVjNwFkiDuMVL3Budjv/5ApKK+uNXDgLQ46gnapRhpI7Xt46gpOawhGWcu76MmpyLO5jNXN/lCdjSaeJlOORu37bSTcyaAi8SdkTSYodK2v5odH4ecCI0ZUqrhOoFuRUhqihmJU81QkQDhAeqRhqECcaJa0eSfGB4ZpQO7vjQlNJyovycixJUacs90cqT7at4bi/95jVB3z1oRFUGoicDTRd2QQe3DcTiwQyXBmg0NQVhScyvEfSQR1ibClAnBnX95kdQKOfckV7wupkvlWRxJcAAOQQa44BSUwAWogCrA4BE8g1fwZj1ZL9a79TFtTVizmX3wB9bnD3M+mwU=</latexit> V
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<latexit sha1_base64="K5zjbrCQwTX6GSMhFQHXn60VzNo=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiSlqMtSNy6r2Ac0MUwm03boZBJmJmII7a+4caGIWz/EnX/jtM1CWw9cOJxzL/fe48eMSmVZ38ba+sbm1nZhp7i7t39waB4dd2SUCEzaOGKR6PlIEkY5aSuqGOnFgqDQZ6Trj69nfveRCEkjfq/SmLghGnI6oBgpLXlmyXmi3t1DbTrNHBHCStA8n3hm2apac8BVYuekDHK0PPPLCSKchIQrzJCUfduKlZshoShmZFJ0EklihMdoSPqachQS6Wbz4yfwTCsBHERCF1dwrv6eyFAoZRr6ujNEaiSXvZn4n9dP1ODKzSiPE0U4XiwaJAyqCM6SgAEVBCuWaoKwoPpWiEdIIKx0XkUdgr388irp1Kr2RbV+Wy83mnkcBXACTkEF2OASNMANaIE2wCAFz+AVvBlT48V4Nz4WrWtGPlMCf2B8/gDG/pQ2</latexit> ⇠2 R
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)

<latexit sha1_base64="g2d99gmSAyUSA+IhFRBUY8e+iuE=">AAAB/nicbZDLSsNAFIZP6q3WW1RcuRksgquaSFGXRTfiQirYCzS1TKaTduhkEmYmYgkFX8WNC0Xc+hzufBunaRfa+sPAx3/O4Zz5/ZgzpR3n28otLC4tr+RXC2vrG5tb9vZOXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4HJcbzxQqVgk7vQwpu0Q9wQLGMHaWB17z+NY9DhF1/ePyJMZH9907KJTcjKheXCnUISpqh37y+tGJAmp0IRjpVquE+t2iqVmhNNRwUsUjTEZ4B5tGRQ4pKqdZueP0KFxuiiIpHlCo8z9PZHiUKlh6JvOEOu+mq2Nzf9qrUQH5+2UiTjRVJDJoiDhSEdonAXqMkmJ5kMDmEhmbkWkjyUm2iRWMCG4s1+eh/pJyT0tlW/LxcrFNI487MMBHIELZ1CBK6hCDQik8Ayv8GY9WS/Wu/Uxac1Z05ld+CPr8wc8OpUH</latexit> hJ
x
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N

<latexit sha1_base64="+bUvVVYI5jx+eoW24+IHktsn77Q=">AAACD3icbVC7TgJBFJ3FF+Jr1dJmItFAA7uEqCXBxlgYjAImgGR2GGDCzOxmZtaEbJYvsPFXbCw0xtbWzr9xeBQKnuQmJ+fcm3vv8QJGlXacbyuxtLyyupZcT21sbm3v2Lt7NeWHEpMq9pkv7zykCKOCVDXVjNwFkiDuMVL3Budjv/5ApKK+uNXDgLQ46gnapRhpI7Xt46gpOawhGWcu76MmpyLO5jNXN/lCdjSaeJlOORu37bSTcyaAi8SdkTSYodK2v5odH4ecCI0ZUqrhOoFuRUhqihmJU81QkQDhAeqRhqECcaJa0eSfGB4ZpQO7vjQlNJyovycixJUacs90cqT7at4bi/95jVB3z1oRFUGoicDTRd2QQe3DcTiwQyXBmg0NQVhScyvEfSQR1ibClAnBnX95kdQKOfckV7wupkvlWRxJcAAOQQa44BSUwAWogCrA4BE8g1fwZj1ZL9a79TFtTVizmX3wB9bnD3M+mwU=</latexit> V
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)

<latexit sha1_base64="K5zjbrCQwTX6GSMhFQHXn60VzNo=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiSlqMtSNy6r2Ac0MUwm03boZBJmJmII7a+4caGIWz/EnX/jtM1CWw9cOJxzL/fe48eMSmVZ38ba+sbm1nZhp7i7t39waB4dd2SUCEzaOGKR6PlIEkY5aSuqGOnFgqDQZ6Trj69nfveRCEkjfq/SmLghGnI6oBgpLXlmyXmi3t1DbTrNHBHCStA8n3hm2apac8BVYuekDHK0PPPLCSKchIQrzJCUfduKlZshoShmZFJ0EklihMdoSPqachQS6Wbz4yfwTCsBHERCF1dwrv6eyFAoZRr6ujNEaiSXvZn4n9dP1ODKzSiPE0U4XiwaJAyqCM6SgAEVBCuWaoKwoPpWiEdIIKx0XkUdgr388irp1Kr2RbV+Wy83mnkcBXACTkEF2OASNMANaIE2wCAFz+AVvBlT48V4Nz4WrWtGPlMCf2B8/gDG/pQ2</latexit> ⇠2 R
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<latexit sha1_base64="rGeyCeI8eJsHUECrQB0RK8AK1Wo=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRbBU92Vol6EUi/iqYL9gO1SsmnahmaTNckKZenP8OJBEa/+Gm/+G9N2D9r6YODx3gwz88KYM21c99vJrayurW/kNwtb2zu7e8X9g6aWiSK0QSSXqh1iTTkTtGGY4bQdK4qjkNNWOLqZ+q0nqjST4sGMYxpEeCBYnxFsrOTXuo9nd+gaeRXULZbcsjsDWiZeRkqQod4tfnV6kiQRFYZwrLXvubEJUqwMI5xOCp1E0xiTER5Q31KBI6qDdHbyBJ1YpYf6UtkSBs3U3xMpjrQeR6HtjLAZ6kVvKv7n+YnpXwUpE3FiqCDzRf2EIyPR9H/UY4oSw8eWYKKYvRWRIVaYGJtSwYbgLb68TJrnZe+iXLmvlKq1LI48HMExnIIHl1CFW6hDAwhIeIZXeHOM8+K8Ox/z1pyTzRzCHzifP5GKj34=</latexit>
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thermodynamic

transition

Figure 4.23: Extended data for the dynamics of the 2D dipolar XXZ model with S = 3 close to
the thermodynamic transition driven by the quadratic Zeeman shift Bq. First column: average
magnetization; second column: reduction of the minimum transverse variance with respect to
the coherent-spin state value NS/2; third column: squeezing parameter.
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Figure 4.24: Scaling of dynamical features from the TCE results for the S = 3 dipolar XXZ
model. (a) Time t0 at which ⟨Jx/N⟩ crosses zero; (b) Scaling of the second minimum of
Var (Jmin) /N in time.

threshold ξ2
R = 1/ (1 + S) (for Bq > 10J), or even higher than the proper squeezing threshold

ξ2
R = 1 (for S = 3 and Bq > 13J). This means that we lose collective spin squeezing (i.e.

squeezing beyond what can be obtained with a single spin) for values of Bq well below the
critical point Bq,c at which we lose long-range order in the thermodynamic limit. This situation
is not incompatible with scaling of the squeezing parameter (as we can see of figure 4.23),
however scaling occurs for values of the squeezing parameter well above the entanglement and
squeezing threshold. To see scalable squeezing that is compatible with entanglement - and
which would therefore offer many-body metrological advantage compared to single spins [74] -
one may need to go to extremely large system sizes, beyond the reach of current experimental
setups. Long-range ferromagnetism in the thermalized state is thus only a necessary condition
for scalable squeezing during time evolution and in fact this condition can even be relaxed,
see [107]. For scalable squeezing to appear at intermediate times not only should ⟨Jx⟩/N not
scale to zero, but also Var (Jmin) /N must scale to ever lower values with increasing size. Such
a behaviour is apparent in figure 4.23, and even persisting for Bq > Bq,c, although a power-law
decay of Var (Jmin) /N with N is not revealed by our data (see figure 4.24 (b)). Therefore our
results are not inconsistent the conjecture of Ref. [104] that scalable squeezing persists up to the
transition in the thermalized state; yet, for the system sizes we explored, the scaling behaviour
close to the transition appears to be very different from (and much slower than) that of the
OAT model.

4.5 Conclusions of this chapter
In this chapter, we have shown that the non-equilibrium dynamics of 2D arrays of dipolar
large-S spins, initialized in a coherent spin state, features multipartite entanglement in the
form of scalable spin squeezing, obeying the scaling of the OAT model for a sufficiently small
quadratic Zeeman shift Bq. This validates the hypothesis of separation of variables between
collective-spin and spin-wave degrees of freedom. Our results point at the crucial role played by
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the quadratic Zeeman shift on the squeezing dynamics of large-S spins – and, more generally, at
the competition between single- qudit vs. many-qudit Hamiltonians in the entangling dynamics
of qudit ensembles. This picture of separation of variables also allows us to understand better
the results we already obtained and discussed in the previous chapter in the case of 1D systems.

The two-dimensional geometries we explored in this chapter are essential for spin-squeezing
dynamics to occur: indeed, due to its angular dependence the dipolar interaction averages to
zero in three dimensions, so that the collective-spin dynamics is suppressed in 3D. Nonetheless
purely 2D arrays of atoms can be realized either by loading a single layer in a three-dimensional
optical lattice, or by trapping atoms in quantum-gas-microscope setups [80], as discussed in
section 2.3. Hence our work paves the way for the realization of scalable multipartite entangle-
ment in arrays of magnetic atoms (Cr, Er or Dy), representing a most promising platform to
realize quantum simulation and quantum information processing with ensembles of qudits.
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Chapter 5
Dicke-squeezing dynamics in atomic condensates

In the previous chapter, we studied entanglement dynamics through the evolution of the
Wineland spin-squeezing parameter. However, as we mentioned in chapter 2, there exist other
forms of spin squeezing, in particular Dicke squeezing which are fully symmetric under rotation
around a given axis. In the first section of this chapter, we introduce a generic model for the
generation of Dicke squeezing in spinor condensates, via coherent depletion of a condensate
mode. We compare the results obtained with exact diagonalization to the ones predicted by
a Gaussian Ansatz, and we will focus in particular on the metrological interest of the states
generated during the unitary time evolution of the system. We also review different theoretical
proposals and experimental realizations of Dicke-squeezing dynamics in spin-1 condensates. In
section 5.2, we propose to extend this scheme to the case of squeezing and entanglement for
momentum modes, via coherent transfer of particles to opposite-momentum states by periodic
modulation of the scattering length of a condensate.

5.1 Dicke squeezing in spinor BEC
In this first section, we will study the generation of entangled states - namely collective Dicke-
like states - via the coherent depletion of a condensate of S = 1 spins [66, 108].

5.1.1 Derivation of the Hamiltonian
We consider a Bose-Einstein condensate of particles with S = 1 spins, in a single spatial mode.
The Hilbert space of the system is spanned by the Fock basis of occupation states |N−1, N0, N1⟩
for each of the 3 single-spin components along e.g. the z axis, with spin projections m = 0,±1.
We then introduce the following Hamiltonian, that couple the m = 0 mode to the two other
modes via a coherent spin-changing collision:

H = U

N

(
a0a0a

†
1a

†
−1 + h.c.

)
+ U intra

0
2N

(
a†

0a
†
0a0a0 + a†

1a
†
1a1a1 + a†

−1a
†
−1a−1a−1

)
+ U inter

0
2N

(
a†

0a0a
†
1a1 + a†

1a1a
†
−1a−1 + a†

0a0a
†
−1a−1

)
. (5.1)

Here, U/N is the spin-changing collision rate, while U intra
0 /N is the interaction energy for two

particles in the same mode and U inter
0 /N is the interaction energy for two particles in two
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different modes. N is the fixed total number of bosons and its presence in the denominator
gives to the Hamiltonian the right scaling with particle number, and it descends from the fact
that particles are trapped in a mode of volume V ∼ N . From a pure condensate in the m = 0
mode |0, N, 0⟩, the spin-changing collisions can create pairs of atoms in the 1 and −1 modes.
The intraspecies and interspecies interaction terms, depending on the sign of U intra

0 and U inter
0 ,

can favour or disfavour a mixture of the three modes.
In the case where all the intraspecies interactions strength are the same, we can rewrite

the intraspecies interaction terms in terms of the interspecies interaction terms and a constant
term,

(
N2

0 +N2
1 +N2

−1

)
= N2 − 2 (N0N1 +N0N−1 +N1N−1), such that:

U intra
0
N

(
N2

0 +N2
1 +N2

−1

)
+ U inter

0
N

(N0N1 +N0N−1 +N1N−1)

=U0

N
(N0N1 +N0N−1 +N1N−1) + cste.

with U0 = U inter
0 − 2U intra

0 . In the following we will omit the normalization factor N , which can
be simply re-instated when considering the scaling of time scales for the dynamics. With this
convention our Hamiltonian becomes:

H = U
(
a0a0a

†
1a

†
−1 + h.c.

)
− U0

(
a†

0a0a
†
1a1 + a†

0a0a
†
−1a−1 + a†

1a1a
†
−1a−1

)
. (5.2)

This Hamiltonian is symmetric under the exchange 1 ↔ −1. In the following, we will always
consider a quench dynamics, starting from a pure condensate of m = 0 single-spin states
|0, N, 0⟩. Since this initial state is also symmetric under the exchange 1 ↔ −1 the dynamics
will only explore the states with the same particle numbers N1 = N−1. The only states to
consider in the Fock basis are thus of the form |k,N − 2k, k⟩. This reduces the Hilbert space
dimension to Int(N/2) + 1, which is linear in N , and which allows for light calculations with
ED even for large N ≳ 1000.

Starting from a condensate in m = 0, which corresponds to the product state ⊗N |m = 0⟩,
the dynamics in induced by spin-changing collisions. The first questions one can ask are: what
is the maximal population transfer, namely (N1 +N−1)max, over time for different values of the
ratio U0/U? And how does the ratio (N1 +N−1)max /N evolve for increasing N at a fixed ratio
U0/U?

Figure 5.1 shows indeed that the number of atoms in the m = ±1 states increases in time,
until it reaches a maximum. The maximum population transfer depends on the ratio U0/U : the
smaller this ratio, the larger (N1 +N−1)max /N . Moreover the population dynamics is the same
under the transformation U0 → −U0. Therefore we can study the scaling of (N1 +N−1)max /N
with N only for positive U0 (figure 5.2b).

This scaling is shown in figure 5.2a. As we can see, for U0 ≲ 0.9U , we have a macroscopic
proportion of the initial condensate that is transferred to the m = ±1 modes, whereas for
U = U0 most of the atoms remain in the initial mode m = 0. This indicates the presence of a
dynamical phase transition that occurs for 0.9U < U0 < U . Moreover, for N ≈ 1000, the ratio
(N1 +N−1)max /N seems to have converged to a size-independent value. This value is shown in
figure 5.2b as function of U0/U .

The evolution of spin populations gives only very partial information on the nature of the
states generated along the dynamics. Indeed, we expect this coherent depletion dynamics to
generate a collective Dicke-like state, close to |F,M = 0⟩, with F < NS = N (here S = 1).
These states are characterized by a zero variance of the collective spin along z; as well as
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5.1. Dicke squeezing in spinor BEC

Figure 5.1: Time evolution of the mean populations in the modes m ± 1, (N1 +N−1) /N , for
N = 20 and various values of U0.

(a) log((N1 + N−1)max /N) versus logN (b) (N1 + N−1)max /N versus U0/U

Figure 5.2: (a) Scaling of (N1 +N−1)max /N versus N for different values of U0/U in log scale
and (b) (N1 +N−1)max /N versus U/U at N = 1000.

macroscopic collective-spin length, and therefore they allow for very precise measurements of
rotations around the x or y axis.

5.1.2 Study of the metrological properties
In the following, we want to estimate the best sensitivity we can achieve with respect to rotations
around the x axis by using the states produced by the dynamics. First, we need to introduce
the collective-spin operators for the spinor gas:

Jz =
1∑

m=−1
ma†

mam = a†
1a1 − a†

−1a−1, J+ =
0∑

m=−1

√
2a†

m+1am =
√

2
(
a†

1a0 + a†
0a−1

)
. (5.3)
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Note that this corresponds to the generalized Schwinger-boson transformation introduced in
Eq. 2.18, applied to the case S = 1. For a rotation of an angle θ around the x axis, starting
from a state |Ψ⟩, the uncertainty on the estimate of θ by measuring a variation of (Jz)2 is given
by:

(δθ)2 (θ) =
Var

(
(Jz

θ )2
)

(
∂⟨(Jz

θ )2
⟩

∂θ

)2 (5.4)

with Jz
θ = cos θJz −sin θJy. Variance and mean value ⟨. . . ⟩ refer to the state |Ψ⟩. The choice of

(Jz)2 as the operator to measure is motivated by the fact that we expect a very small variance
of this operator in the case of a Dicke-like state.

We can rewrite the denominator of Eq. 5.4 as:

∂⟨(Jz
θ )2⟩

∂θ
= −i⟨

[
(Jz

θ )2 , Jx
θ

]
⟩ = ⟨Jz

θJ
y
θ ⟩ + ⟨Jy

θ J
z
θ ⟩ (5.5)

with Jy
θ = cos θJy + sin θJz and Jx

θ = Jx. This leads to the following expression for δθ:

(δθ)2 (θ) =
Var

(
(Jz

θ )2
)

(⟨Jz
θJ

y
θ ⟩ + ⟨Jy

θ J
z
θ ⟩)2 . (5.6)

We label (δθ)min the minimal uncertainty over all possible values of θ, and we recall (from
chapter 1) that it is bounded from below as specified by the Quantum Cramér-Rao bound [6]:

(δθ)2
min ≥ 1

F (Jx) (5.7)

with F (Jx) the Quantum Fisher information of the state with respect to rotations around x.
For pure states, we have F (Jx) = 4⟨(Jx)2⟩, which gives us the following bound for (δθ)2

min:

(δθ)2 ≥ 1
4⟨(Jx)2⟩

. (5.8)

This tells us that the larger the value of ⟨(Jx)2⟩, the better estimate of θ we can reach. Therefore
we can first have a look at the evolution of the mean value of (Jx)2 in time, and especially
of the maximum reached (Jx)2

max for a given system size N and ratio U0/U . We will focus in
particular on the scaling of (Jx)2

max with system size N , as it will allow us to determine the
metrological gain we can achieve with respect to single spins. In particular, ⟨(Jx)2⟩ growing as
N2 indicates that we can reach Heisenberg scaling for metrology.

5.1.3 Exact results for the dynamics
We thus studied the time evolution of ⟨(Jx)2⟩ starting from the initial state |0, N, 0⟩ for different
values of U0

U
from −1 to 1, and for different values of N .

We show the results of time evolution of ⟨(Jx)2⟩/N2 for a few values of U0/U in figure 5.3.
We also put the results for the population transfer for comparison. First, one can notice that
there is an asymmetry between the case U0 > 0 and the case U0 < 0, thus we will have to
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5.1. Dicke squeezing in spinor BEC

Figure 5.3: Time evolution of ⟨(Jx)2⟩ (solid lines) and of the mean populations in the modes
m ± 1, (N1 +N−1) /N (dashed lines), for N = 20 and various values of U0, (a) U0 = 0 and 1
and (b) U0 = 0.5 and −0.5.

study both cases U0 < 0 and U0 > 0. Indeed, it is possible to introduce the following phase
transformation for the bosonic operators:

ã0 = a0e
iπ/4, ã±1 = a±1e

−iπ/4. (5.9)

The effect of this transformation is to change the relative sign of U and U0, as it maps a†
0a

†
0a1a−1

onto −a†
0a

†
0a1a−1, while the spin populations N0, N±1 remains unchanged. This explains the

origin of the symmetry between ±U0 in the time evolution of the spin populations. On the
other hand, we have, for (Jx)2:

⟨
(
J̃x
)2

⟩ = 1
4
〈(
ã†

1ã0 + ã†
0ã−1

) (
ã†

−1ã0 + ã†
0ã1
)

+
(
ã†

−1ã0 + ã†
0ã1
) (
ã†

1ã0 + ã†
0ã−1

)〉
= 1

4
〈
−a†

1a
†
−1a0a0 − a†

0a
†
0a1a−1 + a†

1a1a0a
†
0 + a†

0a0a−1a
†
−1

〉
+ 1

4
〈
−a†

1a
†
−1a0a0 − a†

0a
†
0a1a−1 + a†

−1a−1a0a
†
0 + a†

0a0a1a
†
1

〉
(5.10)

which is clearly not invariant under the phase transformation that maps U0 unto −U0. We also
observe that the time at which we obtain the maximum population transfer does not always
coincide with the time at which ⟨(Jx)2⟩/N2 is maximal.

We then study the scaling of ⟨(Jx)2
max⟩/N2 - the maximum value of ⟨(Jx)2⟩/N2 during the

time evolution - with the system size N . We show our results in figure 5.4. For both U0 > 0
and U0 < 0, we observe Heisenberg scaling of ⟨(Jx)2⟩ as long as |U0| ≲ 0.85U . However, one
can notice from the different scales on the vertical axis that for U0 > 0 we observe a higher
prefactor λ for Heisenberg scaling (such that ⟨(Jx)2

max⟩ ∼ λN2) for U0 > 0. The λ prefactor is
plotted in figure 5.5 as a function of U0/U . In both cases we observe a dynamical transition at
|U0| ≈ U for which we observe that ⟨(Jx)2

max⟩/N2 goes to zero for increasing system sizes.
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Chapter 5. Dicke-squeezing dynamics in atomic condensates

Figure 5.4: Maximum value of ⟨(Jx)2⟩ reached during the dynamics vs log (N) for different
positive (a) and negative (b) values of U0. Dashed lines correspond to ED results, while the
solid lines correspond to GA results.

5.1.4 Dynamics from a Gaussian Ansatz

Finally, we compared the results obtained with ED with results obtained with an approximate
method, based on the Gaussian Ansatz for the evolved state. In the case of S = 1 spinor
condensates, we could rely only on exact numerical results, as we have light exact numerical
calculations with only three modes. However, we aim to generalize the 3-mode problem to the
case of many momentum modes. In that case, we cannot rely on ED anymore for large system
sizes. Therefore we want to benchmark our Gaussian Ansatz in the case where we also have
ED results to compare with, in order to determine how reliable the results predicted by the
GA are. We detail the equations of motion of the Gaussian ansatz (GA) in Appendix C.1. As
we can see in figure 5.4, it appears that we have good agreement (even though not perfect)
between the exact and approximate numerical methods. In particular, the Gaussian ansatz is
able to predict the dynamical transition observed with ED. From the previous figure, we can
see that the value ⟨(Jx)2

max⟩/N2 reaches a plateau for N ≳ 1000, therefore we can study more in
details the scaling of ⟨(Jx)2

max⟩/N2 at fixed N = 1000 for various values of U0, and we show our
results in figure 5.5. There, we observe that both the ED and GA results predict a maximum
for U0 ≈ 0.75U , with λ ≈ 0.5.

Finally, we investigate the time needed to reach the state that corresponds to ⟨(Jx)2
max⟩, and

its scaling with system size. This is important because if the time needed to reach Heisenberg
scaling is too long, it will be out of reach for any realistic experiment. We show our results from
both ED and GA in figure 5.6. As we can see, we have a time tmax that scales approximately as
N−0.85 in the optimal case U0 = 0.75U (and the power seems to remain the same for values of
U0 such that 0.25U < U0 < 0.85U). However, we have to keep in mind that we must consider an
extensive Hamiltonian, i.e. we must rescale U,U0 → U/N,U0/N , which leads to tmax ∼ N0.15.
This is still a rather favourable scaling and potentially compatible with current experimental
platforms, reaching a few thousands atoms [66, 108, 109]. As we can see in figure 5.6b, for
N = 1000, we only need to reach a time of order tU ∼ 6, namely only ≈ 6 interaction times.
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5.1. Dicke squeezing in spinor BEC

Figure 5.5: Maximum value of ⟨(Jx)2⟩ reached during the dynamics vs log (N) versus U0/U for
N = 1000.

(a) (b)

Figure 5.6: (a) Scaling of tmax with system size, for different values of U0. The black dotted fit
is here to guide the eye, and corresponds to Nα with α = −0.85. (b) N × Utmax versus U0/U ,
for a fixed N = 1000. Dashed lines correspond to ED results, while the solid lines correspond
to GA results.

5.1.5 Sensitivity to rotations
We can now go back to the sensitivity to rotations, and compute (δθ)2 (as defined in Eq. 5.6)
versus θ for the state that maximises ⟨(Jx)2⟩ for a given N and U0/U . Both for ED and GA,
we work with the rotated operators. The expression of the powers of collective spins within the
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GA framework are detailed in Appendix C.2.

(a) ED (b)

Figure 5.7: (a) Uncertainty on the phase estimation N2δθ (θ) versus θ for the optimal state
obtained during the dynamics with ED (green) compared to the uncertainty with a perfect
Dicke state |N,m = 0⟩ for N = 40, U0/U = 0.75. The dashed lines show the QFI for both
states. (b) Same plot, but the ED results are replaced with the GA ones. For δθ, we only show
the limit for θ → 0 (blue dotted line). We also have taken N = 50, since GA allows to study
larger system sizes.

in figure 5.7a, we first show the uncertainty on the phase δθ one can obtain with a perfect
Dicke state |N,m = 0⟩, and compare it with that of the state obtained during time evolution
(with ED) that maximises ⟨(Jx)2⟩ for N = 40, U0 = 0.75U . We also plot for both states the
Quantum Fisher Information associated with a rotation around Jx. For Dicke states, there is
an analytical expression, given by [38]:

F (|N,m = 0⟩, Jx) = 2N (N + 1) . (5.11)

As we can see, measuring (Jz)2 under rotation gives the best possible estimate of the rotation
angle when θ → 0, as δθ reaches the lower bound imposed by the QFI. We also notice that the
state obtained during the dynamics allows for an estimate almost as good as that of a perfect
Dicke state (as expected from the scalability of ⟨(Jx)2

max⟩ with N in the case U0 = 0.75U). In
the large N limit, we thus expect an uncertainty that scales as δθ2 ∼ λ/(N2) with λ ≈ 0.5
according to our numerical results. We then show the results obtained with the GA method
in figure 5.7b. In the case of GA, in order to study the evolution of δθ with θ, we need to
express ⟨(Jy)4⟩ in terms of first-order and second-order correlation functions, which requires
heavy analytical calculation. However, as shown before we are only interested in the optimal
sensitivity, which is obtain in the limit θ → 0. Therefore, we will restrain ourselves only to the
value δθ (0) (blue dotted line) and compare it with the QFI of the state. Again, we can see that
both curves coincide, and they also match the results of the perfect Dicke State |N,m = 0⟩.
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5.1.6 Details about the Gaussian Ansatz
The Gaussian Ansatz, even though approximate, gives correct predictions on the scaling of the
different parameters of interest (δθ, ⟨(Jx)2

max⟩ and tmax) and it allows us to study system sizes
we could not reach with ED, especially if we want to consider more than just 3 condensate
modes.

One of the main differences between the GA and ED simulations is that we start the ED
simulations with a single Fock state, with a fixed total atom number N , whereas for the GA
simulations we assume that our initial state is a coherent state (with average number of atoms
N), corresponding to the best gaussian approximation to a Fock state. In particular, this state
is a superposition of several Fock states with various atom numbers, and an uncertainty of
δN =

√
N around the mean value N .

We first checked that by starting the ED simulations with a coherent state instead of a Fock
state, we obtained similar results in the limit of large N (which is expected, as the relative
uncertainty δN/N goes to 0 for N → ∞. We show the time evolution of ⟨(Jx)2⟩/N2 for both
initial states in figure 5.8. As we can see, for increasing N , we see less and less difference between
the two initial state, and in particular they give the same prediction for the first maximum of
⟨(Jx)2⟩.

(a) N = 25 (b) N = 100 (c) N = 400

Figure 5.8: Time evolution of ⟨(Jx)2⟩ starting from a Fock state (solid blue) and a coherent
initial state (dashed red) with the same mean atom number N = 25 (a), N = 100 (b) and
N = 400 (c). All the simulations have been performed with U = 1 and U0 = 0.75.

Using ED simulations starting with a coherent state, we could also compute the evolution in
time of second-order and third-order cumulant functions, and compare them with the prediction
of the Gaussian ansatz. In particular, we introduce the following third order cumulants:

Q1 = ⟨a0a1a−1⟩ − ⟨a0⟩⟨a1a−1⟩, Q2 = ⟨a†
0a1a−1⟩ − ⟨a†

0⟩⟨a1a−1⟩ (5.12)

which by definition remain zero at all times for the GA. We also compare ED and GA results
for the second-order cumulant F1−1 = ⟨a1a−1⟩. As we can see in figure 5.9, after some time,
third-order cumulants start building up, and this corresponds to the time at which deviations
appears between the ED and GA predictions for the two-point cumulant F1−1. Nonetheless,
they remain rather small at all times.

This indicates that if we want to improve our Gaussian Ansatz we have to consider higher-
order cumulants. We tried to study the time evolution of the system with a 3rd order TCE,
but this led to problems with energy conservation. We assume that this is due to the fact that
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Figure 5.9: Time evolution of 2nd and 3rd order cumulant functions, starting from a coherent
state for GA and ED simulations. All the simulations have been performed with N = 100,
U = 1 and U0 = 0.75.

there exist non physical states for which only the 3 first cumulant orders are non zero, and these
states would push the dynamics outside of the space of relevant physical states. We did not
try to include 4th order cumulants as it leads to rather lengthy expression, but this represents
a direction for future works.

5.1.7 Experimental realizations

Many experiments have been able to realize Hamiltonians similar to the one we studied in this
first section, using for instance condensates of 87Rb atoms in the manifold F = 1 [66, 108, 109]
or F = 2 [110, 111]. Two main schemes emerge have been explored for the production of
highly entangled states, both starting from an initial state where all the atoms are in the
state |F,mF = 0⟩. The first possibility is to let the system evolve under a unitary dynamics
with a Hamiltonian similar to the one presented before, leading to a coherent pair creation
of spins in the mF = ±1 states that is analogous to parametric down-conversion in optical
systems [110, 111]. With this method, a squeezing of −11.4(5) dB was measured using the
squeezing parameter presented in Eq. 2.24, corresponding to an entanglement depth of at least
28 atoms in a system of N = 8000 atoms of 87Rb [66]. The second method consists in varying
adiabatically an external magnetic field in order to cross a quantum phase transition, resulting
from the competition between the spin-changing collisions and a quadratic Zeeman field that
creates an energy difference between the m = 0 state and the m = ±1 states [108, 109, 112].
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The Hamiltonian is the following:

HQPT = c2

N

(
a†

1a
†
−1a0a0 + h.c.

)
+ c2

N
(N0N1 +N0N−1) − qN0 (5.13)

with q the quadratic Zeeman shift. Note that this Hamiltonian is similar to the one discussed
previously, with two main differences. First, there is one term missing in the interspecies
interactions (proportional to N1N−1). Secondly, there is now a quadratic Zeeman shift that
leads to off-resonant spin-exchange collisions if too large. Starting with a large positive q ≫ |c2|,
the ground state is simply a factorized state, where all the atoms are in the m = 0 state. By
adiabatically ramping down q to zero, the system crosses a quantum phase transition, and the
state of the system becomes close to the Dicke state |N, 0⟩ [108]. We tried to compare the
results on the uncertainty δθ obtained with the adiabatically prepared state with those of a
perfect Dicke state. For the state obtained adiabatically, we simply took the ground state of
the above Hamiltonian, and in the case q = 0, and c2 = −1 (as c2 is negative for 87Rb [113]).
We show the comparison for the different states in figure 5.10. Interestingly, in the experiment,
the minimal uncertainty is not reached in the limit θ → 0 but for a (small) finite θ. We assume
that this is due to experimental imperfection, and we tried to simulate that by adding a small
noise, of order 1/N4 on the the coefficient of the wavefunction in the Fock basis |N−1, N0, N1⟩.
By doing so, we indeed have a minimum uncertainty for a finite θ, and an uncertainty that
diverges for θ → 0. In a more recent experiment using the same techniques, a squeezing of
16.6 ± 1.3 dB was recorded for the phase sensing with a Ramsey interferometer in a system of
N = 26400 atoms [114].

5.2 Dicke squeezing in momentum space
We now study the realization of Dicke-like states in spinless condensates, by taking into account
the momentum degrees of freedom instead of the spin degrees of freedom. In momentum space,
the condensate corresponds to a momentum k = 0. If there exists a depletion mechanism that
specifically couples the k = 0 mode to two modes at k = ±k0, the 3-mode system can be
mapped onto a system of bosons with effective S = 1 spin. One can therefore use the results
obtained previously to monitor the entanglement and Dicke squeezing produced in time, but
now in momentum space.

In the first subsection, we derive the interaction Hamiltonian for different momentum com-
ponents. In the second subsection, we show how we can reproduce the results of the previous
section by modulating in time the scattering length of the spin collisions. Finally in the last
subsection we try to generalize these results to the case of more than three momentum modes.

5.2.1 Dicke squeezing from Faraday instability
We first consider the case of a 1D system for simplicity. For a contact interaction in real space
gδ (r), the interaction in momentum space takes the following form:

Hint = U

NS

∑
k,k′q

a†
k−qa

†
k′+qakak′ (5.14)

with U = gad and NS = V/ad the dimensionless volume (in units of ad, which can be thought
of as e.g. the unit-cell volume in an optical lattice). The kinetic energy is analogous to a
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Figure 5.10: Uncertainty on the phase estimation N2δθ (θ) versus θ for the HQPT ground state
(c2 = −1, q = 0) compared to the uncertainty with a perfect Dicke state |N,m = 0⟩ for N = 30.
The dotted lines show the uncertainty when adding a random noise of order 1/N4 to each of
the components of the two states. The dashed lines show the QFI for the ideal Dicke state and
HQPT ground state.
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quadratic Zeeman field Bq, adding an energy offset to the different modes:

Htot = U

NS

∑
k,k′q

a†
k−qa

†
k′+qakak′ +Bq

∑
k

k2Nk. (5.15)

Note that the quadratic Zeeman term suppresses the collision terms if Bq ≫ U/NS, as collisions
become off-resonant. In particular, if we start with a pure condensate with all the atoms at
zero momentum k = 0, the system will remain frozen in that state. In order to have population
transfer from the k = 0 mode and Dicke squeezing, we can think of modulating in time the
coupling constant U , at a frequency ω: U (t) = U0/2 +U1 sin (ωt+ ϕ). This can create Faraday
waves in the system, leading to a spatial modulation of the ground state, namely a non zero
population in two modes ±k0. This has been observed in BEC in various experiments, through
the periodic modulation of the scattering length by using a Feshbach resonance [115–117].

In a first approximation, we will limit ourselves to only three modes, k = 0 and k = ±k0, we
will note N±1 the populations in the ±k0 modes, and we will absorb a factor k2

0 in the definition
of Bq = ℏ2k2

0/(2m) from now on. By doing so, we can rewrite our Hamiltonian in the following
way:

Htot = U

NS

∑
k,k′q

a†
k−qa

†
k′+qakak′ +Bq

∑
k=−1,0,1

k2

k2
0
Nk

= 2U
NS

(
a†

0a
†
0a1a−1 + h.c.

)
+ 2U
NS

(N0N1 +N0N−1 +N1N−1) +Bq (N1 +N−1) (5.16)

up to a constant. We thus have the same Hamiltonian as in the previous section, but now
with the addition of the quadratic Zeeman term. By tuning the frequency and phase of the
modulation of U (t), it will be possible to eliminate this off resonant term and create Dicke-like
states and squeezing in the system during the dynamics. Since we have a periodic modulation
of our Hamiltonian in time, it corresponds to a Floquet Hamiltonian. To study it exactly we
will use Lanczos algorithm instead of full ED in the following subsection.

5.2.2 Modulation of the scattering length and rotating-wave approx-
imation

The first step is to determine the modulation frequency ω at which we have resonant population
transfer in our system, as it is the mechanism leading to the formation of Dicke-like states.
This frequency can be determined either by doing different numerical simulations at fixed Bq

and for various ω, or by computing analytically the Hamiltonian in a rotating frame. The
rotating frame which eliminates the quadratic Zeeman term is given by the transformation U =
exp (−iBqt

∑
k k

2Nk). In our 3-mode system, it simply reads as U = exp [−iBqt (N1 +N−1)].
In this rotating frame, both positive and negative momentum operators rotate with the same
phase. If we rewrite the Hamiltonian in this new frame:

HRF = UHU † + i
∂U
∂t

U †, (5.17)
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we get:

HRF (ω, ϕ) = 2U (t)
NS

(
a†

0a
†
0a1a−1e

−2iBqt + h.c.
)

+ 2U (t)
NS

(N0N1 +N0N−1 +N1N−1)

= U1

iNS

(
a†

0a
†
0a1a−1e

i(ω−2Bq)t+iϕ − a†
1a

†
−1a0a0e

−i(ω−2Bq)t−iϕ
)

+ U0

NS

(N0N1 +N0N−1 +N1N−1) + U0

NS

(
a†

0a
†
0a1a−1e

−2iBqt + h.c.
)

+
U1
(
eiωt+iϕ − e−iωt−iϕ

)
iNS

(N0N1 +N0N−1 +N1N−1)

+ U1

iNS

(
a†

1a
†
−1a0a0e

i(ω+2Bq)t+iϕ − a†
0a

†
0a1a−1e

−i(ω+2Bq)t−iϕ
)
. (5.18)

From this expression, it is clear that in order to have non-rotating collision terms in the limit
of large Bq, we must take ω = ±2Bq. Similarly, when looking numerically at the maximum
population transfer for various values of ω during the time evolution of the system we find a
resonance condition for ω = 2Bq (see figure 5.11). Note that a large value of |U0| > |U1| can
shift this condition (see figure 5.11c), but since we are interested in the case where we have
the largest variance of Jx - which corresponds to |U0| < |U1| from the previous section results
- from now on we will only consider the case ω = 2Bq.

By imposing ω = 2Bq, and assuming that we have a very large Bq ≫ U1, U0, we can perform
a rotating-wave approximation (RWA) and eliminate all the rotating terms. In doing so, we
obtain the following Hamiltonian:

HRWA (ϕ) = U1

iNS

(
a†

0a
†
0a1a−1e

iϕ − a†
1a

†
−1a0a0e

−iϕ
)

+ U0

NS

(N0N1 +N0N−1 +N1N−1) . (5.19)

We can see that we recover a Hamiltonian very similar to the one of Eq. 5.2, with U1 playing
the role of U . Note also that the phase ϕ is important: by taking ϕ = π/2 or ϕ = 3π/2, one
gets:

HRWA

(
ϕ = π

2

)
= U1

NS

(
a†

0a
†
0a1a−1 + a†

1a
†
−1a0a0

)
+ U0

NS

(N0N1 +N0N−1 +N1N−1) , (5.20)

HRWA

(
ϕ = 3π

2

)
= − U1

NS

(
a†

0a
†
0a1a−1 + a†

1a
†
−1a0a0

)
+ U0

NS

(N0N1 +N0N−1 +N1N−1) . (5.21)

As we can see, two different phases ϕ can lead to opposite relative signs between U0 and U1.
Here, we recover exactly the Hamiltonian of Eq. 5.2 in the case ϕ = 3π/2. We saw in the
previous section (figures 5.2b and 5.5) that the relative sign did not matter for the population
transfer, but it plays an important role for the variance of Jx. Therefore we expect that
changing ϕ will not affect the population transfer from the mode 0 to the modes ±1, but it will
drastically affect the value of ⟨(Jx)2

max⟩. This is confirmed in figure 5.12, both with the time
dependent Hamiltonian (dashed lines) and the time-independent Hamiltonian -after making
the RWA (solid lines).
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(a) U0 = 0.01U1 (b) U0 = 0.75U1

(c) U0 = 2U1

Figure 5.11: Maximum population transfer and variance of Jx for different drive frequencies ω.
For all the figures, we have taken N = 50, Bq = 20U1 and ϕ = 0.

Figure 5.13 shows a comparison between results with and without the RWA, validating the
latter approximation when Bq ≫ U . As we can see, in the limit of large Bq, we do have the
same expectation value for the population transfer (N1 + N−1)/N and for the variance of Jx,
whereas for intermediate Bq, we still can see some oscillations due to the not so fast oscillation
present in the RF Hamiltonian.

Finally, we implemented the RF and RWA Hamiltonians for the Gaussian ansatz, and
compared the result obtained with our previous results from ED. We show the results of such
comparison in figure 5.14. As we can see, similarly to the ED case, we have a perfect agreement
between the RWA and RF Hamiltonian for the Gaussian ansatz for a very large Bq = 100U1.
Moreover, as in the spinor case, we see that the Gaussian Ansatz perfectly reproduces ED results
at early times, and it gives a good estimation of the maximum value of ⟨(Jx)⟩/N2 reached during
the time evolution. This Ansatz will be really interesting in order to study the case with more
modes in the system, for which we will not be able to rely on ED results anymore. Indeed, when
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(a) U0 = 0 (b) U0 = 0.75U1

Figure 5.12: Maximum population transfer and variance of Jx for different initial phase ϕ. The
dashed lines corresponds to the evolution with time-dependent Hamiltonian in the rotating
frame HRF, while the solid lines correspond to the time independent Hamiltonian after the
RWA, HRWA. For both figures, we have taken N = 50 and Bq = 50U1.

studying correlations in momentum space, collisions can lead to leakage into other momentum
modes - even if we couple preferentially to two modes via the Faraday instability. We will
discuss more in details the generalisation to M momentum modes in subsection 5.2.4.

5.2.3 Potential metrological application to force sensing
Squeezing in momentum space can be used to measure inertial forces with an enhanced preci-
sion, with respect to independent atoms, as it was possible to measure a magnetic field with
higher precision using spin-squeezed states. Indeed, we consider in 1D an inertial force that
couples to the atoms via the following Hamiltonian:

HF = −F
∑

r

Vrnr (5.22)

with Vr the local potential associated to the force at position r and nr the number of atoms at
position r. Expressing this Hamiltonian in momentum space, we obtain:

HF = − F√
NS

∑
k,q

Vk−qa
†
kaq (5.23)

where Vq is the Fourier transform of Vr at momentum q. In the case of only three momentum
modes k = 0, ±k0, it can be rewritten, up to constant terms, as:

HF = − F√
2NS

[
|Vk0|

(
eiϕJ+ + e−iϕJ−

)
+ V ∗

2k0a
†
−1a1 + V2k0a

†
1a−1

]
= − F√

2NS

[
2|Vk0| (cos (ϕ) Jx − sin (ϕ) Jy) + V ∗

2k0a
†
−1a1 + V2k0a

†
1a−1

]
(5.24)
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(a) B = 20U1 (b) B = 200U1

Figure 5.13: Time evolution of the population in the k = ±1 modes and of the variance of Jx

for the time-dependent (dashed lines) and time-independent (solid lines) Hamiltonians. Here,
we have taken N = 50, U1 = 1, U0 = 0.75, and ϕ = 0.

with Vk0 = |Vk0 |eiϕ. Assuming the terms a†
1a−1 and a†

−1a1 vanishes (as with the RWA approx-
imation), we are left with a Hamiltonian that is proportional to Jϕ = cos (ϕ) Jx − sin (ϕ) Jy.
From this, it is clear why we can apply the same metrological schemes as in the case of measuring
a B field along an axis in the equatorial plane in the case of spinor condensates.

5.2.4 Generalisation to M modes
The first step towards the generalisation to M modes is to consider five modes, i.e. two
additional modes which are not resonantly coupled to the condensate. We take into account
the following modes : −2k0,−k0, 0, k0, 2k0. Similarly to the case with three modes, we assume
that we have a large Bq that gives rise to off-resonant momentum-collision terms. Keeping the
same notation as in subsection 5.2.1, we have the following Hamiltonian:

H = U (t)
NS

∑
k,k′,q

a†
k−qa

†
k′+qakak′ +Bq

∑
k

k2Nk (5.25)

with k, k′ ∈ {0,±1,±2}. We consider again the case of time modulation of the interaction scat-
tering length in order to have the same resonant collision process as before, namely a†

1a
†
−1a0a0

and a†
0a

†
0a1a−1. This again fixes the value of the modulation frequency to ω = 2Bq. Moving

to the same frame as in subsection 5.2.2, and performing the RWA, we obtain, up to constant
terms:

HRW A (ϕ) = U1

iNS

(
a†

0a
†
0a1a−1e

iϕ + a†
−1a

†
−1a0a−2e

iϕ + a†
1a

†
1a0a2e

iϕ + h.c.
)

+ U0

NS

∑
k<k′

NkNk′ . (5.26)

The first interesting result is that we now have other resonant collision processes, that
send two atoms in the ±1 mode to one in the ±2 mode and the other in the 0 mode. In
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(a) (N1 + N−1)/N (b) ⟨(Jx)⟩/N2

Figure 5.14: (a) time evolution of the population in the k = ±1 modes and (b) time evolution
of the variance of Jx for the time-dependent RF (green lines) and time-independent RWA (blue
lines) Hamiltonians. Here, we have taken N = 50, U1 = 1, U0 = 0.75, B = 100 and ϕ = 0.
Solid lines correspond to ED simulations, while dashed lines correspond to the GA results.

the case of many modes, it is easy to see that indeed we expect always a resonant coupling
of the form a†

(n+1)k0
a†

(n−1)k0
ank0ank0 if we choose ω = 2Bqk

2
0 - in order to have a resonant

a†
k0a

†
−k0a0a0 momentum-exchange collision - and if we have a quadratic dispersion relation.

This process could parasite the three-mode dynamics - i.e. Dicke squeezing for an effective
S = 1 spin - described in the previous subsection; however because at early times there are
only a few atoms in the k ̸= 0 modes this process may be slow enough to observe three-mode
dynamics at early times. Note that now we have 5 modes, which reduces drastically the atom
numbers reachable with exact methods, and we will have to rely on Gaussian Ansatz to perform
the numerical simulations for larger system sizes. We did not have the time to perform the
numerical simulations in the case of 5 modes or more during this thesis, but this will be the
subject of future work.

5.3 Conclusions
To conclude, we saw in this chapter that it was possible to generate highly entangled states -
in the form of Dicke-squeezed states - when considering the dynamics of a spinor condensate in
a single spatial mode with spin-exchange collisions. We compared the time evolution predicted
by exact methods with that predicted by a Gaussian Ansatz and we found a good agreement
between the two methods. We also investigated the metrological potential of Dicke-squeezed
states, in particular their sensitivity to rotations and we found that it was possible to achieve
the Heisenberg scaling with number of atoms for the sensitivity to rotations around any axis
in the equatorial plane. Finally, we saw in the second section that it was possible to recover
results similar to the Dicke-squeezing dynamics with a spinless time-dependent Hamiltonian
even in the presence of a strong energy offset between the modes. This requires a periodic
modulation of the scattering length - which leads to a modulation of the effective coupling
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5.3. Conclusions

potential U(t) = U0/2 + U1 sin (ωt+ ϕ). We determined that in order to reach the optimal
squeezed state, we need to reach a ratio U0/U1 = 0.75. This corresponds to having a very
strong modulation of the scattering length with respect to its mean value. This could be done
by operating at the vicinity of a Feshbach resonance [118], around which it is possible to vary
the scattering length by several order of magnitudes, and even changing its sign.

95





Conclusions

One of the main motivations of this thesis was to achieve a better understanding of the dynamics
of quantum spin systems, in particular the build-up of correlations and entanglement in large-
S spin systems, starting with a separable initial state. For this purpose, we developed new
approximate schemes, namely an approximate separation of variables adapted to the large-S
systems, as well as a Gaussian Ansatz (GA) and a Truncated Cumulant Expansion (TCE) for
spin fluctuations.

In the case of the dipolar XXZ Hamiltonian for magnetic atoms, we were able to predict the
existence of highly entangled states in the dynamics - in the form of highly squeezed states and
cat-like states - in the case of only N = 2 spins, starting with a uniform or staggered coherent
spin state in the xy plane. Thanks to the approximate separation of variables, we were able to
extend this result to the case of very large systems sizes in 2D square lattices, in the case of a
uniform initial state. In particular, we have proposed a realistic protocol to realize scalable spin
squeezing, obeying the scaling of the OAT model for a sufficiently small quadratic Zeeman shift
Bq. Hence our work paves the way for the realization of scalable multipartite entanglement in
arrays of magnetic atoms (Cr, Er or Dy), representing a most promising platform to realize
quantum simulation and quantum information processing with ensembles of qudits.

Finally, we studied the generation of other forms of entanglement - namely Dicke squeezing
- in the case of atomic condensates. In particular, we showed that by modulating periodically
in time the condensate scattering length - e.g. via a Feshbach resonance - it was possible to
generate states in the dynamics that reach the Heisenberg scaling of sensitivity with respect
to rotation angles. These results were partly known in the case of spin-1 condensates, for
instance with 87Rb atoms, and we generalized them to the case of spinless condensates by
studying correlations in momentum space. The latter present a potential metrological interest,
as squeezing in momentum space can be used to achieve a better sensitivity - w.r.t. independent
atoms - when measuring inertial forces.

As a further direction, we shall investigate the general case with more than three different
momentum modes. We have shown that in the case of more than three modes, there are other
resonant momentum-collision processes, and it will be important to investigate how much they
change the squeezing dynamics we observe in the three-mode case.

Another interesting future direction will be to implement alternative numerical methods
to compare with our numerical results, and in particular the GDTWA, which can be very
successful in the study of large-S spins. In a recent collaboration with the group of A. M.
Rey and the group of B. Laburthe, we could test the predictions of the TCE approach versus
GDTWA predictions and experimental results for bipartite correlation along quantization axis
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for chromium atoms [81]. This pointed out the good agreement between the different numerical
approaches for short times, as well as the fact that GDTWA is able to predict the correct
structure of spin correlations at longer times.

Finally, we can consider further perspectives, and in particular:

• study itinerant spinful bosons / fermions with e.g. Gaussian Ansatz / Hartree-Fock
approach, in order to investigate spin entanglement resulting from spin-changing collisions
and dipolar interactions;

• study how to create giant dipolar spins with two condensates, and determine what en-
tangled states can emerge and resist dipolar relaxation;

all this in the perspective of a quantum gas microscope which can measure spatially resolved
spin populations.
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Appendix A
TCE equations of motion

We give in this appendix the explicit equations of motions for the second order TCE method
(assuming all the cumulants of order n ≥ 3 remain zero at all times). We recall the expression
of the spin operators in terms of the T operators:

Sz
i =

∑
m

mTmm
i , S+

i =
∑
m

√
S (S + 1) −m (m+ 1)Tm+1,m

i . (A.1)

From now on, we will use the following notation:

C+ (m) =
√
S (S + 1) −m (m+ 1), C− (m) =

√
S (S + 1) −m (m− 1). (A.2)

The commutation relations of the {Tmm′
i } are given by:[
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Therefore we get from the commutation relations with the Hamiltonian:[
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From this expression, we can immediately derive the equation for the time evolution of the
{⟨Tmm′

k ⟩}:

iℏ
d
dt⟨T
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∑
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For the second-order terms, we use Leibniz rule to compute the commutator of Tmm′
k T pp′
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with H, assuming k ̸= g:[
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Using Eq. A.4, we get immediately the equation of motion for ⟨Tmm′
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(A.7)

Finally, assuming that the third-order cumulants all vanish, we rewrite the third order
correlation functions as:
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for i ̸= j ̸= k, which indeed leads to a close set of equations of motion.
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Appendix B
QMC and MF calculations for the phase
diagram

B.1 Quantum Monte Carlo
The QMC simulations have been performed by T. Roscilde using the Stochastic Series Expan-
sion approach with directed-loop updates [119]; this approach can be adapted to spin systems
with arbitrary spin lengths S by using e.g. simple heat-bath transition probabilities dictating
the directed-loop dynamics [120]. Simulations have been performed on N = L × L square
lattices with periodic boundary conditions, and L ranging from 24 to 64. The critical temper-
ature TFM

c for the ferromagnetic-paramagnetic transition of the dipolar XXZ model has been
estimated via the scaling of the correlation length ξ, which can be extracted from the structure
factor:

S (q) = 1
N

∑
ij

eiq·(ri−rj)⟨Sx
i S

x
j ⟩ (B.1)

via the second-moment estimator

ξ = L

2π

√√√√ S (0, 0)
S (2π/L, 0) − 1. (B.2)

This quantity is expected to exhibit the following scaling behaviour at the 2D dipolar transition

ξ ∼ LFξ

(
|T − TFM

c |L1/ν
)

(B.3)

where Fξ is a universal scaling function, and ν = 1 [121]. A representative scaling plot is shown
in figure B.1, showing a very good collapse of the QMC data.

B.2 Mean-field approach
In order to perform the same computation with mean-field theory, we have to postulate that
the thermal state of the system can be written as a separable state ρ(T ) = ⊗N

i=1ρi(T ), where

ρi(T ) = exp(−βHi)
Tr[exp(−βHi)]

. (B.4)

111



Chapter B. QMC and MF calculations for the phase diagram

<latexit sha1_base64="VAKeTIiThS1ekJtjIwYsAh/Wl2s=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQF9ZEirosunHhokJf0MYwmU7aoZNJmJkUSuifuHGhiFv/xJ1/4/Sx0OqBC4dz7uXee4KEM6Ud58vKrayurW/kNwtb2zu7e/b+QVPFqSS0QWIey3aAFeVM0IZmmtN2IimOAk5bwfB26rdGVCoWi7oeJ9SLcF+wkBGsjeTbdql+VvfJ6f1j5p53RTrx7aJTdmZAf4m7IEVYoObbn91eTNKICk04VqrjOon2Miw1I5xOCt1U0QSTIe7TjqECR1R52ezyCToxSg+FsTQlNJqpPycyHCk1jgLTGWE9UMveVPzP66Q6vPYyJpJUU0Hmi8KUIx2jaQyoxyQlmo8NwUQycysiAywx0SasggnBXX75L2lelN3LcuWhUqzeLOLIwxEcQwlcuIIq3EENGkBgBE/wAq9WZj1bb9b7vDVnLWYO4Resj2/KepJ9</latexit>

(T � Tc)L
1/⌫

<latexit sha1_base64="VGoAeudQtybV3ub1BLyK2IbGOdQ=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx48VLAf0ISy2W7apZtN3N0US8jv8OJBEa/+GG/+G7dtDtr6YODx3gwz8/yYM6Vt+9sqrK1vbG4Vt0s7u3v7B+XDo7aKEkloi0Q8kl0fK8qZoC3NNKfdWFIc+px2/PHNzO9MqFQsEg96GlMvxEPBAkawNpLnBhKT1H1iWXqX9csVu2rPgVaJk5MK5Gj2y1/uICJJSIUmHCvVc+xYeymWmhFOs5KbKBpjMsZD2jNU4JAqL50fnaEzowxQEElTQqO5+nsixaFS09A3nSHWI7XszcT/vF6igysvZSJONBVksShIONIRmiWABkxSovnUEEwkM7ciMsImB21yKpkQnOWXV0n7ourUq7X7WqVxncdRhBM4hXNw4BIacAtNaAGBR3iGV3izJtaL9W59LFoLVj5zDH9gff4ATjaSdg==</latexit>

⇠

L

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-40 -30 -20 -10  0  10  20  30  40

L=24
32
40
48
64

Figure B.1: Scaling plot of the correlation length at the ferromagnetic/paramagnetic transition
for the 2D dipolar XXZ model with S = 3 and Bq/J = 17, using the critical exponent ν = 1
and the critical temperature TFM

c = 20.1J . The data stem from unbiased QMC simulations.

H is the effective single-site Hamiltonian

Hi = −H⃗i · (S⃗i − ⟨S⃗i⟩/2) +Bq(Sz
i )2 (B.5)

containing the effective self-consistent field

H
x(y)
i = 1

2
∑

j

Vij⟨Sx(y)
j ⟩

Hz
i = −

∑
j

V s
ij⟨Sz

j ⟩ (B.6)

where ⟨Sµ
i ⟩ = Tr(Sµ

i ρi). The equilibrium state of the system is then evaluated by self-
consistently calculating the average spin ⟨S⃗i⟩ until convergence, starting with a random initial
state. In the particular case of T = 0, we take ρi as the ground state of the current MF
Hamiltonian instead of a thermal distribution. In particular in the xy-ferromagnetic phase the
average spin points in the xy plane; it vanishes in the paramagnetic phase (including the one
at T = 0 for large Bq); while it is staggered along the z axis in the z-Néel phase obtained
for Bq < 0. Note that we have introduced a staggered potential in the z component of the
self-consistent field in order to be able to detect the AFM order along z at the single spin level.
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Appendix C
Dicke squeezing with the Gaussian Ansatz

C.1 Equations of motion
We want to study the time evolution of a condensate of S = 1 spins, under the following
Hamiltonian:

H = U
(
a0a0a

†
1a

†
−1 + h.c.

)
− U0

(
a†

0a0a
†
1a1 + a†

0a0a
†
−1a−1 + a†

1a1a
†
−1a−1

)
. (C.1)

For the Gaussian Ansatz, we assume that we can rewrite the bosonic operators as a0 = ϕ0 +δa0,
a±1 = δa±1 with ϕ0 = ⟨a0⟩ a scalar and ⟨δam⟩ = 0. We then introduce the following two-point
correlation functions for the bosonic operators:

G00 = ⟨δa†
0δa0⟩, F00 = ⟨δa0δa0⟩, G±1±1 = ⟨δa†

±1δa±1⟩, F1−1 = ⟨δa1δa−1⟩ (C.2)

and as the Hamiltonian conserves the magnetization, all the other two-point functions remain
zero at all times. Moreover, since we have a symmetry between ±1 modes, we will assume that
we have G11 = G−1−1 at all times. This gives rise to the following equations of motion:

i
d
dtϕ0 = ⟨[a0,H]⟩ = 2Uϕ̄0F1−1 − 2U0ϕ0G11 (C.3)

i
d
dtF00 = 2UF1−1 + 4UG00F1−1 − 4U0F00G11 (C.4)

i
d
dtF1−1 = U

(
ϕ2

0 + F00
)

(1 + 2G11) − U0F1−1
(
1 + 2|ϕ0|2 + 2G00 + 4G11

)
(C.5)

i
d
dtG00 = 4UiIm

(
F̄00F1−1

)
(C.6)

i
d
dtG11 = 2UiIm

[
F̄1−1

(
ϕ2

0 + F00
)]
. (C.7)

They form a set of classical coupled non-linear equations that we solve using a standard 4th-
order Runge Kutta numerical scheme. For all the results presented in Chapter 5 using the GA
approach, we checked the correctness of our equations by verifying the conservation of energy
in time, which is given by:

⟨H⟩ = 2URe
((
ϕ2

0 + F00
)
F̄1−1

)
− 2U0

(
2
(
|ϕ0|2 +G00

)
G11 +G2

11

)
. (C.8)
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C.2 Phase uncertainty estimation with the Gaussian Ansatz
In order to estimate the uncertainty on the phase estimation with the Gaussian ansatz frame-
work, we need to derive the expression of δθ2 in function of the previous correlation functions.

In particular, for the numerator of δθ2 we need to compute Var
(
(Jz

θ )2
)

in the limit θ → 0
-as it give the best uncertainty. By definition, we have:

Var
(
(Jz

θ )2
)

= ⟨(Jz
θ )4⟩ − ⟨(Jz

θ )2⟩2 (C.9)

with Jz
θ = cos θJz − sin θJy. We first compute the square of Jz

θ :

(Jz
θ )2 = cos2 θ (Jz)2 + sin2 θ (Jy)2 − cos θ sin θ (JzJy + JyJz) (C.10)

and we deduce its mean value by setting to zero all the terms that do no conserve the global
magnetisation (here JzJy and JyJz):

⟨(Jz
θ )2⟩ = cos2 θ⟨(Jz)2⟩ + sin2 θ⟨(Jy)2⟩ (C.11)

Finally, we can take its square, and we obtain:

⟨(Jz
θ )2⟩2 = cos4 θ⟨(Jz)2⟩2 + sin4 θ⟨(Jy)2⟩2 + 2 cos2 θ sin2 θ⟨(Jz)2⟩⟨(Jy)2⟩. (C.12)

Since we have only zero magnetisation states, all the powers of Jz remains zero during the
dynamics which leads to the following expression:

⟨(Jz
θ )2⟩2 = sin4 θ⟨(Jy)2⟩2. (C.13)

We did check numerically that the the first, second and fourth powers of Jz remained zero at
all times using the following expression:

⟨Jz⟩ = G11 −G11 = 0 by definition (C.14)
⟨(Jz)2⟩ = 2G2

11 + 2G11 − 2|F1−1|2 (C.15)
⟨(Jz)4⟩ = 24G4

11 + 24|F1−1|4 − 48G2
11|F1−1|2 + 48G3

11 − 48G11|F1−1|2

+ 26G2
11 + 2G11 − 2|F1−1|2 (C.16)

with the usual definition Jz = a†
1a1 − a†

−1a−1.
Then we can compute the fourth power of Jz

θ :

(Jz
θ )4 = cos4 θ (Jz)4 + sin4 θ (Jy)4

+ cos2 θ sin2 θ ([JzJzJyJy + JzJyJzJy + h.c.] + JzJyJyJz + JyJzJzJy)

where we kept only the terms conserving magnetisation (i.e. with en even number of Jy

operators). As we can see, we have a zero-th order term in cos4 θ that we expect to vanish since
we have only zero magnetization states (Jz = 0), then a second-order term in cos2 θ sin2 θ ∼ θ2

that will be our leading term, and finally a fourth order term in sin4 θ ∼ θ4 that we will neglect.
This gives the following expression at leading order:

Var
(
(Jz

θ )2
)

= cos2 θ sin2 θ⟨[JzJzJyJy + JzJyJzJy + h.c.] + JzJyJyJz + JyJzJzJy⟩ +O
(
θ4
)
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which can be rewritten in terms of the second-order correlation functions as follows:

Var
(
(Jz

θ )2
)

cos2 θ sin2 θ
=
(
2G00 + 2|ϕ0|2 + 1

) (
4G2

11 − 4|F1−1|2
)
G11

+
(
G00 + |ϕ0|2

) (
12G2

11 − 4|F1−1|2 + 6G11 + 1
)

+ 3G2
11 + |F1−1|2

+ 8Re
[(
ϕ2

0 + F00
) (
G2

11F
∗
1−1 − |F1−1|2F ∗

1−1

)]
+ 2Re

[(
F00 + ϕ2

0

) (
4G11F

∗
1−1 + F ∗

1−1

)]
+O

(
θ2
)

where we used the usual definition of Jy =
√

2
2i

(
a†

1a0 + a†
0a−1 − a†

0a1 − a†
−1a0

)
.

Finally, we must compute the denominator of δθ2, which is given by:

(⟨Jz
θJ

y
θ ⟩ + ⟨Jy

θ J
z
θ ⟩)2 (C.17)

with Jy
θ = cos θJy + sin θJz. Again, we will discard all the terms that contains only Jz, or an

odd number of Jy terms, which leaves only:(
−2 cos θ sin θ⟨(Jy)2⟩

)2
= 4 sin2 θ cos2 θ⟨(Jy)2⟩2 (C.18)

with ⟨(Jy)2⟩ which can be expressed as a function of the correlation functions as follows:

⟨(Jy)2⟩ = 2G11
(
G00 + |ϕ0|2

)
+G11 +G00 + |ϕ0|2 + 2Re

(
F ∗

1−1

(
ϕ2

0 + F00
))
.

With this we have all the ingredients needed to compute the limit value of δθ2 when θ → 0,
and we can compare it to the QFI of the state, which is given by 4⟨(Jx)2⟩ = 4⟨(Jy)2⟩ since we
have a U(1) symmetry in the Hamiltonian and in the initial state.
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