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Abstract 
 

Micro-nano-electromechanical resonators play a more and more important role in various 

domains, such as sensing, high frequency communications, and even in fundamental research. 

They allow mechanical displacement to be coupled with electrical signals for both detection 

and manipulation. So far, researchers continue to develop new device designs in order to meet 

various requirements in applications. More recently, membrane nanoelectromechanical 

resonators have been developed, consisting of a silicon nitride membrane capacitively coupled 

to an aluminium suspended top-gate drum. This unique design not only provides large coupling 

capacitance to external electrical circuits but allows to study mechanical and electrical mode 

coupling. 

In this thesis, we have focused on the study of this type of nanoelectromechanical resonator. In 

the theoretical analysis, we have modelled this silicon nitride membrane nanomechanical 

resonator as a parallel plate capacitor. The simple motion equations allow us to analyse 

parametric amplification in both non-degenerate and degenerate cases, in the linear response 

region. In addition, a double-tone driving scheme has also been investigated, through an 

analogy to optomechanical system. Besides, we also modelled both nanoelectromechanically 

induced transparency and amplification based on mode coupling between the two silicon nitride 

membrane and aluminium top-gate resonators. In the following part of nanofabrication, we have 

presented critical fabrication processes in achieving the device. Both reflow step and dry 

etching step have been discussed and analysed. In the measurement part, besides of basic 

characterization of mechanical properties through aluminium top gate, we exploit scanning 

microwave microscopy to investigate this silicon nitride membrane resonators, such as spatial 

mapping of mechanical modes. The interaction between the AFM tip and the membrane has 

been simulated based on a capacitive coupling. Besides, double-tone driving techniques have 

also been demonstrated through coupling the AFM tip mode to the membrane mode. In addition, 

we also discussed a microwave optomechanical system in which this membrane resonator is 

capacitively coupled to a microwave cavity, for developing microwave optomechanical 

thermometer in the future.  

Keywords: nanofabrication, silicon nitride membrane, nanoelectromechanical resonator, 

nanoelectromechanical modelling, scanning microwave microscopy 
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Résumé 
 

Les micro-nano-résonateurs électromécaniques jouent un rôle de plus en plus important dans 

divers domaines, tels que les capteurs, les communications à haute fréquence et même la 

recherche fondamentale. Ils permettent de coupler un déplacement mécanique à des signaux 

électriques à des fins de détection ou de manipulation. Jusqu'à présent, les chercheurs ont 

régulièrement développé des nouvelles formes de dispositifs afin de répondre aux diverses 

exigences des applications. Récemment, des résonateurs nanoélectromécaniques à membrane 

ont été mis au point. Ils se composent d'une membrane en nitrure de silicium couplée de manière 

capacitive à une grille en aluminium suspendue au-dessus de la membrane. Cette conception 

unique fournit une grande capacité de couplage aux circuits électriques externes, et permet 

également d'étudier le couplage des modes mécaniques et électriques. 

Dans cette thèse, nous nous sommes concentrés sur l'étude de ce type de résonateur nano-

électromécanique. Dans l'analyse théorique, nous avons modélisé ce résonateur nanomécanique 

à membrane en nitrure de silicium et grille en aluminium comme un condensateur à plaques 

parallèles. Les équations du mouvement nous permettent d’étudier l'amplification paramétrique 

de la membrane dans les cas dégénérés et non dégénérés, en régime de réponse linéaire. En 

outre, un schéma de commande à double signal (un sur la membrane et un sur la grille) a 

également été étudié, par analogie avec le système optomécanique. Nous avons modélisé la 

transparence et l'amplification induites par le couplage de mode entre les deux résonateurs à 

membrane SiN et à grille supérieure en Al. Dans la partie suivante, nous avons présenté les 

procédés de nanofabrication critiques pour la réalisation du dispositif. L'étape de fluage et 

l'étape de gravure plasma ont été discutées et analysées.  Dans le chapitre dédié aux mesures, 

en plus de la caractérisation de base des propriétés mécaniques de la membrane actionnée 

capacitivement par la grille en Al, nous exploitons la microscopie à micro-ondes à balayage 

(SMM) pour étudier les résonateurs à membrane en nitrure de silicium, en réalisant une 

cartographie des modes mécaniques. L'interaction entre la pointe AFM et la membrane a été 

simulée sur la base d'un couplage capacitif. En outre, la technique de caractérisation à double 

signal a également été utilisée en couplant le mode de la pointe AFM au mode de la membrane. 

Par ailleurs, nous présentons un système optomécanique à micro-ondes dans lequel ce 

résonateur à membrane est couplé capacitivement à une cavité à micro-ondes, afin de 

développer à l'avenir un thermomètre optomécanique à micro-ondes. 
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Mots clés: nanofabrication, membrane en nitrure de silicium, résonateur nanoélectromécanique, 
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Acronyms and abbreviations 
 

MEMS/NEMS                   Micro/nano-electro-mechanical systems 

IEMN                                 Institut d'Electronique, Microélectronique et Nanotechnologie 

SiN                                     Silicon nitride (Si3N4) 
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CSAR62                            Chemical Semi-Amplified positive tone EB resist 

EBL                                  Electron beam lithography 
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FEM                                  Finite element method 

2D                                     Two-dimensional 
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AC                                     Alternating current 

DC                                     Direct current 

RF                                      Radio frequency 

LO                                     Local oscillator 

IF                                      Intermediate frequency 

DUT                                 Device under test 

VNA                                 Vector network analyser 

PD                                     Photodetector 

S-parameter                      Scattering- parameter 
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Symbol Meaning 𝑟 Radial coordinate in cylindrical coordinate system θ Azimuthal coordinate in cylindrical coordinate system 𝑚 The 𝑚𝑡ℎ order Bessel functions of the first kind 𝑛 The 𝑛𝑡ℎ zero for the 𝑚𝑡ℎ order Bessel functions of the first kind 𝜔𝑚𝑛 Angular frequency, mode (m,n) 𝛼𝑚𝑛 Factor corresponding to mode (m,n) 𝑚𝑒𝑓𝑓,𝑚𝑛 Effective mass corresponding to mode (m,n) 𝑓𝑚𝑛 Resonance frequency, mode (m,n), in the unit of Hz 𝑄𝑚𝑛 Quality factor, mode (m,n) 𝐶𝑔(𝑥) Coupling capacitance between the mechanical element and its gate 𝛿𝑘𝑑𝑐 The modulation of spring constant by DC voltage Ωm Mechanical resonance frequency 𝛾𝑚 Mechanical damping rate 𝛿𝑘 Modulation of mechanical spring constant 𝛼 Duffing nonlinear parameter 𝜔𝑝 Pump signal frequency 𝜔𝑠 Drive signal frequency 𝜔𝑖 Idler signal generated from frequency mixing 𝜑 Phase difference between pump and drive signal 𝛥 Pump tone detuning from 𝛺𝑚, = 𝜔𝑝2 − 𝛺𝑚 𝛿 Pump tone detuning from driving signal 𝜔𝑠, = 𝜔𝑠 − 𝜔𝑝2  (parametric pump) 



 

ix      𝜒𝑠 Mechanical susceptibility of drive signal 𝜒𝑖 Mechanical susceptibility of idler signal Ω1 Resonance frequency of mechanical resonator <1> Ω2 Resonance frequency of mechanical resonator <2> 𝑥1 Amplitude of mechanical resonator <1>  𝑥2 Amplitude of mechanical resonator <2>  𝛾1 Damping rate of mechanical resonator <1>  𝛾2 Damping rate of mechanical resonator <2>  𝛥 Pump tone detuning from sideband, namely 𝛺𝑝 = 𝛺1 ± 𝛺2 + 𝛥 𝛿 Probe tone detuning from probe signal, namely 𝛺𝑑 + 𝛿 (double-tone) 𝜒1,2𝑟𝑒𝑑 Mechanical susceptibility at red sideband, resonator <1> or <2> 𝜒1,2𝑏𝑙𝑢𝑒 Mechanical susceptibility at blue sideband, resonator <1> or <2> 𝛾𝑒𝑓𝑓1,2𝑟𝑒𝑑  Effective damping rate at red sideband while probing signal at the 

mechanical resonator <1> or <2> 𝛾𝑒𝑓𝑓1,2𝑏𝑙𝑢𝑒  Effective damping rate at blue sideband while probing signal at the 

mechanical resonator <1> or <2> 𝐺 Coupling strength between resonators <1> and <2> 𝑔0 Single photon coupling rate, namely 𝑔0 = 𝐺𝑥𝑍𝑃𝐹 𝑥𝑍𝑃𝐹 Zero-point fluctuations, namely 𝑥𝑍𝑃𝐹 = √ℏ 2𝑚𝑒𝑓𝑓Ω𝑚⁄  𝑛𝑝 Photon number generated by pump tone 𝑛𝑚 Phonon number carried by NEMS 𝑛𝑐 Photon number circulating in cavity 𝑇𝑚 Physical temperature occupied by NEMS 𝑆𝑥± Symmetrized spectral density 



 

x      𝜅𝑐𝑎𝑣𝑖𝑡𝑦 Decay rate of cavity 𝛾𝑐𝑎𝑣𝑖𝑡𝑦 Phonon-cavity damping rate Γ𝑜𝑝𝑡 Optical damping effect 𝜔𝑐 Detection frequency of cavity 𝜔𝑑 Driving frequency 

 

In this list, frequency parameters are angular frequency, with SI unit of radians per second 

(rad/s). 
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Chapter 1 Introduction 

Microsystems, applied either in optical or electrical readout, have gained enormous attention in 

various applications, for biology with breath/blood pressure sensors in health monitoring [1], 

microfluidics in biological diagnosis [2], for inertial measurements with accelerators [3] and 

gyroscopes [4] in mobile systems, and RF communication components [5] in modern 

semiconductor industry. In the optical readout scheme, mechanical resonator has been widely 

studied that shows characterizing high resonance frequency, high quality factor and designing 

photonic crystals membrane through the dissipation engineering [6–8]. In the electrical readout 

scheme, micro/nano-electromechanical systems (MEMS/NEMS) resonators, due to having 

electrostatic transductions with low power operation, have been widely applied in high 

frequency electrical systems. MEMS/NEMS have a great promise for allowing for electrical 

integration. In recent years, MEMS/NEMS devices have been made by exploiting varieties of 

materials, such as aluminium [9,10], silicon [11,12], SiN [13,14], silicon carbide [15,16], 

graphene [17,18] and carbon nanotubes [19,20]. 
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Figure 1.1.1. Optical properties of thin films, containing aluminium, crystalline silicon, SiN, 

cubic silicon carbide, graphene and hexagonal boron nitride. Data correspond to transmittance 

(T) except specific reflectivity (R) mention. 
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Figure 1.1.2. Mechanical properties of thin films for MEMS/NEMS or nanomechanical 

resonator, containing aluminium, amorphous silicon, SiN, cubic silicon carbide, graphene and 

hexagonal boron nitride. 

Table 1.1.1. Mechanical properties of related materials 

Materials Mass density (kg/m3) Young’s modulus (GPa) 

Graphene (0.34nm) 2270 kg/m3 or  

0.77 mg/m2 

1000 [21] 

hBN (0.33nm) 2300 kg/m3 or 

0.76 mg/m2 

865 [22] 

Aluminium bulk 2700 70 [23] 

SiN (800nm) 3084 280 [24] 

Silicon bulk 2330 168 [25] 

SiC (2-5mm) 3200 400 [26] 

 

When selecting materials for MEMS/NEMS fabrication, two properties are generally 

considered. (i) Optical properties, e.g., absorption, of these materials [27–33] determine the 
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driving power when MEMS/NEMS coupled with optical system, such as opto-electro-

mechanical system. The material with high optical loss requires larger drive power, leading to 

the undesired heating effects. Fig.1.1.1 shows optical properties of various thin films. SiN thin 

films have very high reflectivity (99.42%), comparing with all other materials, indicating it’s 

the lowest optical loss. Although monolayer graphene with the transmittance (97.4%) is seen, 

however, high quality sample transfer [34,35], as it is suspended over substrate, still limits its 

high quality electrical integration. (ii) Mechanical properties, e.g., tensile stress and mass 

density, of materials [9,36–41][42][43] have also been another important issue. High tensile 

stress yields the potential of achieving high operating frequency [36]. Fig. 1.1.2 and Table 1.1.1 

show tensile stress, Young’s modulus and mass density of various materials. In spite of general 

monolayer graphene with tensile stress (~1.85 MPa) and multilayer hexagonal boron nitride 

(hBN) with tensile stress (~234 MPa), they are not suitable for the practical electrical integration, 

because they not only have uneasy transfer process but also the hBN is insulating, further 

increasing the difficulties. Comparing with graphene and hBN, SiN with tensile stress (1 GPa 

or 0.2 GPa) can be one of the ideal candidate materials for fabricating MEMS/NEMS. Based 

on the mature chemical vapour deposition (CVD) process, the controllable tensile stress of SiN 

deposited on a silicon substrate can be easily implemented. In order to apply SiN to electrical 

systems, a thin conductive coating is required for satisfying this electrical scheme. For instance, 

an aluminium film is chosen, because the mechanical properties of aluminium are comparable 

with SiN. 

 

1.1 SiN mechanical resonators 

In recent years, SiN have been a good candidate because it has low optical loss [29] and 

tunability of mechanical properties, enabling low operation power, high tensile stress [44,45] 

and high quality factors [36,46,47]. SiN thin films have been used for optical readout 

applications, such as squeezed light [48] and entangled optical and mechanical degrees of 

freedom [49]. For example, SiN membranes with high quality factors (107) have been used to 

efficiently couple with an optical cavity [37]. Moreover, SiN also have excellent mechanical 

properties for electrical readout applications, such as mass [50–52] and force sensing [53]. To 

apply SiN to proper applications, we are intended to consider a product of frequency and quality 

factor as a useful merit. [54] It is worth to mention that this product also plays a major role in 

investigating quantum effects if 𝑓 𝑄 > 𝑘𝐵𝑇 ℎ⁄  is feasible [7,55], where 𝑘𝐵 is the Boltzmann 

constant and ℎ is the Planck constant.
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Figure 1.1.3. Quality factor of SiN mechanical resonators and MEMS/NEMS resonators versus 

frequency Ω𝑚 2𝜋⁄ . The blue and red symbols are optical and electrical readout, respectively. 

The orange dashed lines correspond to constant products of 𝑄 ∙ 𝑓 . “*” is performed at 

cryogenics. 

 

Fig. 1.1.3 shows a diagram of quality factor values of SiN mechanical resonators and 

MEMS/NEMS resonators [7,13,14,47,56–78]. In the figure, we see all quality factors beyond 

104. Additionally, they have high frequencies ranging from 105 ~107 Hz. It indicates SiN 

MEMS/NEMS, thanks to miniaturization, have the great potential to be applied in high 

frequency electrical integrated systems, comparing with those applied in optical systems. 
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Figure 1.1.4. Quality factor of SiN membranes [7,13,47,58,62–64,68,69,76–78] (a) and beams 

[56,57,59–61,65–67,70–75](b) versus aspect ratio 𝐿 ℎ⁄ , where 𝐿 is the lateral length and ℎ is 

the thickness. The red and blue symbols are optical and electrical readout, respectively. “*” is 

performed at cryogenics. 
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So far, two types of SiN MEMS/NEMS resonators, e.g., membrane and doubly-clamped beam, 

have been widely studied in the electrical readout. It is obvious that SiN membranes are simply 

symmetric and have larger surface areas than those of beams [61][79], enabling 10-times larger 

the coupling strength and allowing high efficient electrical operation in the integration circuits. 

We compare between SiN membranes and beams to show quality factor as function of the 

aspect ratio. Fig. 1.1.4(a) shows the quality factors of SiN membranes can exceed 109 in the 

electrical readout, rivalling with the optical readout. Besides, SiN membrane mechanical 

resonators have obtained with high quality factor (2.14 × 108 at RT) in the optical readout [7], 

because of the dissipation dilution engineering. In addition, soft clamping schemes have been 

exploited for further reducing damping effects, where most of SiN membrane edges are etched 

away to avoid full clamping [80]. Such SiN membrane resonators are suitable for optical 

readout applications. However, it is very challenging to achieve electrical integration, because 

this type of SiN membrane becomes so fragile to fabricate a suspended top gate. So as to apply 

SiN membrane to the electrical readout, in the nanofabrication process, our SiN membrane has 

been designed to be a fully clamped scheme [81]. It gives SiN membrane an access to achieve 

electrical integration. 

 

1.2 SiN membrane nanoelectromechanical resonator 

In recent years, capacitive transduction schemes become very successful and have been widely 

applied in MEMS applications, such as microphones [82,83] and pressure sensors [84]. Besides, 

resonance frequency tunability can be easily achieved by implementing electrostatic forces. In 

addition, such a capacitive coupling scheme brings flexibility in exploring coupled 

nanoelectromechanical resonators. With the recent development of nanotechnology, 

membrane-based MEMS/NEMS are becoming attractive because they offer large coupling, 

allowing mechanical degrees of freedom to be efficiently coupled with external circuits for 

electrical control and readout. 
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Figure 1.2.1. The electrical readout high-Q mechanical drum resonators made from aluminium, 

SiN, graphene, with prestigious and continuous research&development(R&D) contributions to 

the MEMS optomechanical community. In this community, several important works reported 

by University of Copenhagen, Denmark (group of A. Schliesser) [7,58], National institute of 

standards and technology (NIST), USA (group of John D. Teufel) [9,10,85,86], Cornell 

University, USA (groups/related groups of H. G. Craighead and J. M. Parpia) [42,87], Ecole 

Polytechnique Fédérale de Lausanne (EPFL), Switzerland (group of T. J. Kippenberg) [88–90] 

have been selected. Note that, optical readout (OR) and electrical readout (ER) are remarked 

respectively. Worth to mention that optical readout is laser intensity (LA) measurement and 

electrical readout is microwave voltage (MWV) measurement. 

 

Thus far, membrane-based MEMS/NEMS resonators with capacitive transductions have been 

developed by using aluminium thin membrane [9], SiN drum membrane [46,77,91,92] and 

graphene drum [34,42]. SiN drum membrane, due to the low optical loss, high tensile stress and 

the feasibility of fabrication process, becomes promising. It offers good mechanical properties 

in a wide range of working temperatures and its tensile stress can be engineered in standard 
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Low Pressure Chemical Vapor Deposition (LPCVD). Fig. 1.2.1 shows a review of the recent 

developed circular membrane MEMS resonators, regarding to one of the MEMS/NEMS 

parameters, quality factor, 𝑄𝑚. 
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Figure 1.2.2. The product 𝑓𝑄𝑚 of circular membranes versus aspect ratio 𝐷 ℎ⁄ , where 𝐷 is the 

diameter and ℎ is the thickness. The red and blue symbols are electrical and optical readout, 

respectively. “*” is performed at cryogenics. Optical readout is laser intensity (LA) 

measurement and electrical readout is microwave voltage (MWV) measurement. 

 

For MEMS/NEMS, the other key parameter is resonance frequency, 𝑓. Fig. 1.2.2 shows a 

diagram of the product 𝑓𝑄𝑚  values as function of the aspect ratio for various circular 

membrane MEMS/NEMS resonators, including aluminium drumhead [9,10,86,88,90], SiN 

drum [36,87,93] and graphene drum [42]. According to the figure, we see our SiN circular 

membrane based MEMS/NEMS have great potentials because of the product 𝑓𝑄𝑚 > 1011 at 

RT, competing with the previous results performed at low temperatures. Besides external 

laboratories, IEMN researchers also reported silicon ring-shaped MEMS resonators driven by 

microwave reflectometry method since the year of 2013, for resolution and frequency 

improvement applications of atomic force microscopy [94,95]. 



9                                                           1.2. SiN membrane nanoelectromechanical resonator 

 

 

Figure 1.2.3. The studied device structures in this thesis. (a) shows side view and (b) shows the 

SEM image of SiN membrane nanoelectromechanical resonator capacitively coupled to a 

suspended aluminium top gate. (c) shows side view and (d) shows the SEM image of circular 

SiN membrane covered with a thin aluminium capacitively coupled to the metallic AFM-tip, 

which serves as the gate instead of the Al top gate. 

 

In this thesis work, our studies are based on SiN circular membrane nanoelectromechanical 

resonators, which have been developed by Zhou et al [36] in 2021. As Fig. 1.2.3(a,b) shows, 

the device structure is based on two membrane-based resonators, in which a SiN membrane 

covered with a thin aluminium layer on its surface is capacitively coupled to a suspended 

aluminium top gate. Besides, Fig. 1.2.3(c,d) shows the SiN circular membrane covered with a 

thin aluminium, which will also be electrically detected by adding microwave ac signal onto 

the AFM-tip driving its motion, as it is thought of as flexible and movable gate. 
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1.3 Thermometer 

 

Figure 1.3.1. Gallery of different kinds of thermometer (TM) 

 

Thermometer is a kind of temperature-recording device, which is used in daily life or industry 

as described in Fig.1.3.1. At present, different temperature readout mechanisms mainly involve 

thermoresistive [96,97], thermoelectric [98,99], and thermochromic effect [100][101,102]. 

These conventional thermometers, regarding temperature readout, are facing challenges (e.g., 

outer space or cryogenics), having the limits of Joule heating, localized thermal conductivity 

and extra calibration. There is still a lack of development of primary thermometers for both 

industry and research. 

Nanomechanical resonators can be a type of phonon sensor. The thermal Brownian motions 

carry information of temperature. The basic principle is related to the formula 𝑘𝐵𝑇𝑚 = 𝑛𝑚ℏΩ𝑚, 

where 𝑇𝑚 is the physical temperature carried by NEMS, ℏ is Planck’s constant over 2𝜋, Ω𝑚 is 

resonance frequency of NEMS, and 𝑛𝑚  is the phonon number occupied by the NEMS. By 

integrating the measured spectrum density of thermal Brownian motions, the value of 𝑛𝑚 is 

given by 
12𝜋 ∫ 𝑆𝑥±𝑑𝜔 = ℏ2𝑚𝑒𝑓𝑓Ω𝑚 𝑛𝑚, relating 𝑛𝑚 to the detected physical temperature 𝑇𝑚 (see 

Chapter 5). In other words, NEMS can be used to detect the temperature in forms of phonon 

numbers. It is one kind of primary thermometer based on well-known expressions in physics 

and it does not need to extra calibration from other kind of thermometers. However, it needs an 

accurate determination of the parameter properties, which the present work contributes to 
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establishing. Optomechanical schemes offer a method to readout the thermal Brownian motion 

by using optical/microwave photons. In one part of this thesis, we will also discuss the 

feasibility in the integration of our drum resonator in microwave optomechanical circuits for 

exploring applications of optomechanical phonon thermometer. 

 

1.4 Objectives of this thesis 

 

Figure 1.4.1. Illustration of framework of this thesis. 

This work presents a study of the device properties of SiN membrane nanomechanical 

resonators. It aims at exploring a microwave optomechanical thermometer based on this kind 

of membrane NEMS in the future work. As shown in Fig. 1.4.1, this thesis work consists of 

theoretical modelling of nanomechanical resonator in a capacitive coupling scheme, discussions 

of critical nanofabrication process in achieving the device, exploiting microwave scanning 

microscopy to investigate mechanical properties of SiN membrane, and discussions of 

experimental implementations in integrating membrane NEMS in microwave optomechanical 

circuits. 

In Chapter 2, we present theoretical analysis of the membrane nanoelectromechanical 

resonator, driving in a capacitive coupling scheme. The methodology theories contain 

mechanical mode, resonance frequency and effective mass of SiN circular membrane. Then, 

nanoelectromechanics principles were carefully analysed based on such a capacitive coupling 

scheme by adding electrostatic forces through the mixing dc and ac voltages. Then, parametric 

pump scheme, having non-degenerate and degenerate cases, was introduced to this resonator, 
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which enables signal amplification and de-amplification. Besides, Duffing nonlinear 

behaviours in this mechanical resonator have also been analysed. So as to extend the applicable 

range to electromechanically induced transparency and amplification, an analog to the 

optomechanical experiment, double driving tones have been modelled and developed. Basic 

related measurements of our SiN circular membrane have been conducted in the electrical 

readout. 

In Chapter 3, we present the feasible and detailed nanofabrication process for achieving SiN 

circular membranes, containing a SiN circular membrane covered with a thin aluminium layer 

capacitively coupled to a suspended top gate. The details of fabrication techniques, such as 

electron beam lithography, reactive ion etching, XeF2 etcher tools, have been investigated and 

learnt. Before fabrication process, finite element simulation of a circular membrane was 

performed. Then, critical fabrication steps have been discussed, including the XeF2 selective 

etching process to release SiN membrane from silicon substrate and the reflow process to 

fabricate a top gate of a suspended aluminium membrane. This ultra-clean and CMOS-

compatible process allows the SiN membrane to have a high quality factor (~1.1 × 104) at 

room temperature, enabling electrical integration with external circuits with high efficiency. 

In Chapter 4, we study the mechanical properties by using SMM techniques. In this part, we 

take an AFM-tip as a suspended top gate of the SiN circular membrane, which is used to excite 

and detect mechanical motions of the membrane. In this chapter, we first performed finite 

element simulations for understanding of the tip-membrane interactions based on electrostatic 

forces. Then, spatial mapping mechanical modes of the SiN circular membrane have been 

measured in the linear response region. In addition, in order to study membrane-tip mode 

coupling, we drive the membrane by using double-tone in order to study electromechanically 

induced transparency and amplification. In the final part, we demonstrate measurement of 

thermal Brownian motion of the SiN circular membrane by artificially heating up the membrane 

through adding extra white noise. 

In Chapter 5, we give a general review of basic principle of cavity optomechanical scheme for 

applications of thermometers, including two important issues: the coupling strength and the 

optical spring effect. We quantitatively analysed the advantages of integrating our drum 

membrane nanomechanical resonator in the microwave optomechanical circuits for developing 

thermometer in the future. In addition, to help understanding classical features of 

optomechanics, comparisons between an optomechanical system and a phonon-cavity system 
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have been discussed regarding the optical spring effects. Several important parameters, such as 

coupling capacitance, cavity photon number, in achieving this kind of phonon thermometer 

have been discussed. 

In Chapter 6, we summarize the main results of the throughout work. Besides, several future 

works have been proposed. One of the future works is to build the thermometry experiment 

setup for measuring the temperature ranging from RT to millikelvin. Besides, the optimization 

of the XeF2 etching process and the capacitance theory optimization of the tip-membrane 

interactions could also be interesting for the future work. 
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Chapter 2 Theory and measurement results of 

nano-electro-mechanics 
 

In this chapter, we first introduce the theory analysis of SiN circular membrane, including 

mechanical mode, resonance frequency and effective mass evaluation. Then, 

nanoelectromechanics of SiN membrane is analysed that shows how the AC and DC electrical 

signal control works in the nanoelectromechanical system. Moreover, parametric pump scheme 

is presented in order to show signal amplification and de-amplification in the capacitive 

coupling system. Nonlinearity is also important when signal response occurs in non-linear 

response region. Furthermore, the double-tone driving scheme, analog to optomechanical 

system, has been modelled and analysed in the two nanoelectromechanical resonators. Finally, 

characterization and analysis of SiN membrane nanoelectromechanical resonator are done, such 

as linear behaviour, resonance frequency modulation by DC voltages, etc. 

2.1 High prestressed SiN circular membrane 

2.1.1 Mechanical modes of circular membranes 

We start by analysing membrane's mechanical mode shape, which helps us to calculate a 

resonance frequency for the mechanical mode. Then, we can assess how much effective mass 

is presented in a mechanical mode. 

Theory analytics of circular membranes. We introduce a mechanical system that can be used 

to model an oscillatory motion. In general, circular membranes can be modelled by modified 

beam’s and string’s motion equation and can be reduced to a one-dimensional oscillation in 

form of z(x,y,t), given by [103–105] 𝐸ℎ312(1 − 𝜈2) ∇4𝑧(𝑥, 𝑦, 𝑡) − 𝑇∇2𝑧(𝑥, 𝑦, 𝑡) + 𝜌ℎ 𝜕2𝑧(𝑥, 𝑦, 𝑡)𝜕𝑡2 + 𝛾∗𝑤 𝜕𝑧(𝑥, y, 𝑡)𝜕𝑡 = 𝑞(𝑥, 𝑦)          𝐸𝑞. 2.1.1 

where ∇4= 𝜕4𝜕𝑥4 + 2 𝜕4𝜕𝑥2𝜕𝑦2 + 𝜕4𝜕𝑦4 and ∇2= 𝜕2𝜕𝑥2 + 𝜕2𝜕𝑦2 is the Laplacian operator. 𝐸 is the Young’s 

modulus, 𝜈 is the Poisson coefficient, 𝜌 is the mass density, ℎ is the membrane thickness, 𝑇 =𝑁𝑤 = 𝜎ℎ  is the tensile force per unit length at the membrane edge, 𝑁 being the total force, 𝜎 the 

membrane biaxial stress and 𝑤 the membrane perimeter, 𝑞(𝑥, 𝑦) is the loading force per unit 

area. 
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Here, the simplest case, membrane structure is considered by neglecting the first and fourth 

term because of the large 𝑥𝑦-axial tension effects and taking the load  𝑞(𝑥, 𝑦) as zero. 

 

Figure 2.1.1. Oscillating motion of a circular membrane (light red) in the plane 𝑥𝑦 used in 

Cartesian coordinate system. 

Thus, the description of the equation of free motion becomes 𝜕2𝑧𝜕𝑥2 + 𝜕2𝑧𝜕𝑦2 − 𝜌𝜎 𝜕2𝑧𝜕𝑡2 = 0         𝐸𝑞. 2.1.2 

We noted that the circular membrane is symmetric in Cartesian coordinates, oscillating in form 

of z(x,y,t), as shown in Fig. 2.1.1. To simplify the motion, we use cylindrical coordinates to 

describe the oscillation mechanics by reintroducing two-dimensional Laplacian operator ∇2=𝜕2 𝜕𝑥2⁄ + 𝜕2 𝜕𝑦2⁄ . The converts from Cartesian coordinates to cylindrical coordinates are 𝑥 =𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃, as shown in Fig. 2.1.2. 

 

Figure 2.1.2. Oscillating motion of a circular membrane (light red) in the plane 𝑟, 𝜃  used in 

cylindrical coordinate system. 
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In the following, we will use the cylindrical coordinate system to describe the theoretical 

development progress.The converted equation becomes [106] 1𝑟 𝜕𝜕𝑟 (𝑟 𝜕𝑧𝜕𝑟) + 1𝑟2 𝜕2𝑧𝜕𝜃2 − 𝜌𝜎 𝜕2𝑧𝜕𝑡2 = 0         𝐸𝑞. 2.1.3 

where the oscillation function  in form of z(x,y,t) to z(r,,t) is depicted in Fig. 2.1.2, 𝑟 and 𝜃 are 

radial and angular coordinates reintroduced in cylindrical coordinates. We can find a solution 

of the transformed motion equation as 

𝑧(𝑟, 𝜃, 𝑡) = ∑ ∑ 𝑎𝑚𝑛(𝑡)𝜓𝑚𝑛(𝑟, 𝜃)𝑛𝑚          𝐸𝑞. 2.1.4 

where 𝑎𝑚𝑛(𝑡) is the oscillating displacement of the membrane and 𝜓𝑚𝑛(𝑟, 𝜃) is the mechanical 

mode shape controlled by 𝑟 and 𝜃 coordinates. 𝑚 and 𝑛 are indices that will be defined later 

and related to the nth positive root of the mth order Bessel functions of the first kind. 

Injecting Eq.2.1.4 into Eq.2.1.3 for each mode (m,n) can further be differentiated with 

separating time and spatial functions to be 1𝑎𝑚,𝑛 𝜕2𝑎𝑚𝑛𝜕𝑡2 = 𝜎𝜌 1𝜓𝑚𝑛 ∇2𝜓𝑚𝑛      𝐸𝑞. 2.1.5 

Since the left member depends on time only and the right member on spatial term only, we find 

that 1𝑎𝑚,𝑛 𝜕2𝑎𝑚𝑛𝜕𝑡2 = 𝑐𝑠𝑡.      𝐸𝑞. 2.1.6 

where this constant can be written as −𝜔𝑚𝑛2 , since it is homogeneous to a squared frequency 

and realistic physical solutions will be oscillating. 

According to the one-dimensional oscillating motion, we describe the oscillating as 𝑎𝑚𝑛(𝑡) = 𝐴𝑚𝑛 cos(𝜔𝑚𝑛𝑡) + 𝐵𝑚𝑛 sin(𝜔𝑚𝑛𝑡)        𝐸𝑞. 2.1.7  
where 𝐴𝑚𝑛  and 𝐵𝑚𝑛  are the prefactors of the oscillating magnitude, 𝜔𝑚𝑛  is the angular 

resonance frequency corresponding to the mechanical mode. 

To solve the equation of motion Eq. 2.1.5, we look for a solution of mechanical mode of the 

membrane in formalism of 𝜓𝑚𝑛(𝑟, 𝜃) = ℜ(𝑟)𝛩(𝜃)       𝐸𝑞. 2.1.8 



17                                                                  2.1.1. Mechanical modes of circular membranes 
 

 

 

We noticed an extended product of ℜ(𝑟) and 𝛩(𝜃). Eq. 2.1.6 can be written as 𝜕2𝑎𝑚𝑛𝜕𝑡2 + 𝜔𝑚𝑛2 𝑎𝑚𝑛 = 0      𝐸𝑞. 2.1.9  
Putting back Eq. 2.1.8 and Eq. 2.1.9 into Eq. 2.1.5, we can separate functions ℜ(𝑟) and 𝛩(𝜃)  

and Eq.2.1.5 can be derived to be 

𝛩 1𝑟 𝜕𝜕𝑟 (𝑟 𝜕ℜ𝜕𝑟 ) + ℜ𝑟2 𝜕2𝛩𝜕𝜃2 + 𝜌𝜎 𝜔𝑚𝑛2 ℜ𝛩 = 0      𝐸𝑞. 2.1.10 

 

Therefore, using Eq. 2.1.10 describes the motion of the circular membrane since the left two 

members depending on 𝑟  and the right member on the angle 𝜃  only. Usually, circular 

membranes satisfy two boundary conditions. When the circular membrane is defined with a 

radius of 𝑎  in experiments, one of boundaries as 𝜓𝑚𝑛(𝑎, 𝜃) = 0  must be obeyed due to the 

clamping edge. To ensure 𝜓𝑚𝑛(𝑟, 𝜃)  in the cylindrical coordinate system as a single value, 

another well-known boundary condition is 𝜓𝑚𝑛(𝑟, 𝜃) = 𝜓𝑚𝑛(𝑟, 𝜃 + 2𝑚p)  where it follows 𝑚𝜖ℤ. By separating functions ℜ(𝑟) and 𝛩(𝜃), 𝐸𝑞. 2.1.10 can be rewritten as 1𝑟 𝜕𝜕𝑟 (𝑟 𝜕ℜ𝜕𝑟 ) + 𝜌𝜎 𝜔𝑚𝑛2 ℜ = − 1𝛩 ℜ𝑟2 𝜕2𝛩𝜕𝜃2       𝐸𝑞. 2.1.10𝑎 

Since the left member depends on 𝑟 only and the right member on the angle 𝜃 only, we deduce 

that both terms are constant and we can write − 1𝛩 𝜕2𝛩𝜕𝜃2 = 𝑚2.Eq. 2.1.10a can be related to the 

definition of Bessel function and we look for a possible solution for ℜ(𝑟) in form of 

ℜ(𝑟) = 𝐽𝑚 (𝛼𝑚𝑛𝑟𝑎 )         𝐸𝑞. 2.1.11 

where 𝐽𝑚  is Bessel function of the first kind and 𝛼𝑚𝑛  is the nth positive root of the Bessel 

function for the mth order of the first kind to fulfil the boundary condition: ℜ(𝑎) = 𝐽𝑚(𝛼𝑚𝑛) =0. From Eq. 2.1.10a, we can also deduce that 𝛩(𝜃) = cos(𝑚𝜃)       𝐸𝑞. 2.1.12 

Noting that the boundary condition 𝜓𝑚𝑛(𝑎, 𝜃) = 0  implies that 𝛩(𝜃)  has sine or cosine 

function formalisms. In fact, all solutions will be in cos(𝑚𝜃 + 𝜙)  but we can consider the 

particular case 𝜙 = 0 by choosing 𝜃 conveniently. 

We subsequently investigate the mechanical mode function of the circular membrane to become 

[103] 
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𝜓𝑚𝑛(𝑟, 𝜃) = cos(𝑚𝜃) 𝐽𝑚 (𝛼𝑚𝑛𝑟𝑎 )         𝐸𝑞. 2.1.13 

According to Eq. 2.1.7 and Eq. 2.1.13, we take the mechanical motion of the circular membrane 

to be  𝑧(𝑟, 𝜃, 𝑡) = ∑ ∑ 𝐶𝑚𝑛 cos(𝜔𝑚𝑛𝑡) cos(𝑚𝜃) 𝐽𝑚 (𝛼𝑚𝑛𝑟𝑎 )𝑛𝑚          𝐸𝑞. 2.1.14 

where 𝐶𝑚𝑛 is the prefactor of the oscillatory motion. Note that the time reference can be chosen 

so as to consider only the first term of Eq. 2.1.7. 
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Figure 2.1.3. Plots of Bessel functions of 𝑚𝑡ℎ  order of the first kind. The 𝑛𝑡ℎ  zeros can be 

extracted in the curves intersected with 𝐽𝑚(𝑟) = 0, 𝑟 > 0. 

 

Fig. 2.1.3 shows the mechanical motion modelled as the Bessel functions of the first kind. It 

gives nth positive roots of the mth order Bessel functions of the first kind, namely the value of 𝛼𝑚𝑛. 
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Figure 2.1.4. Simulations. (a) Top view of the oscillatory motion of a circular membrane (light 

red), in which the grey line is the clamped edge. (b) Mechanical mode shapes for first 25 modes 

of the circular membrane, derived from the oscillatory motion function Eq.2.1.14. The colour 

bar is arbitrary amplitude. 

 

Table 2.1.1 𝛼𝑚𝑛 values of the 𝑛𝑡ℎ zeros for the 𝑚𝑡ℎ order Bessel functions of the first kind, 

taken from Fig. 2.1.4. The first 25 mechanical modes here are shown. 

Table 2.1.1. Analytical values of 𝛼𝑚𝑛 for each mechanical mode 

Mode (m,n) n = 1 n = 2 n = 3 n = 4 n = 5 

m = 0 2.4048 5.5201 8.6537 11.7915 14.9309 

m = 1 3.8317 7.0156 10.1735 13.3237 16.4706 

m = 2 5.1356 8.4172 11.6198 14.7960 17.9598 

m = 3 6.3802 9.7610 13.0152 16.2235 19.4094 

m = 4 7.5883 11.0647 14.3725 17.6160 20.8269 

 

In Eq. 2.1.14, oscillating motion function includes the oscillating function cos(𝜔𝑚𝑛𝑡)  and 

mode shape function cos(𝑚𝜃) 𝐽𝑚 (𝛼𝑚𝑛𝑟𝑎 ). Fig. 2.1.4(a) shows a top view of the oscillating. 

Fig.2.1.4(b) shows simulations of circular membranes for the first 25 mechanical modes, which 

were analysed using cylindrical coordinate system based on Eq.2.1.14. According to the mode 
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shape patterns, they are able to affect the corresponding actuating forces. The higher mechanical 

modes are, the higher the driving forces we require, the more difficult to detect mechanical 

vibrations. 

When order m=0, variations of the radial mode n indicate that the mechanical vibrations exhibit 

circularly symmetric amplitudes. If the index m to be 𝑚 > 0 , it will divide the circular 

membrane along azimuthal direction. For instance, when the azimuthal index 𝑚 = 1 , 

mechanical vibrations for modes (1,n) can be observed in this case.  
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2.1.2 Resonance frequency of circular membranes 

The resonance frequencies of the circular membrane are discussed. According to the rigorous 

equations solving in the above, a relationship between 𝛼𝑚𝑛 and angular frequency 𝜔𝑚𝑛 is also 

introduced. The azimuthal portion of the membrane is described to be 𝜕2𝛩𝜕𝜃2 + 𝑚2𝛩 = 0         𝐸𝑞. 2.1.15 

which is already deduced in Eq.2.1.12, it is worth to note that using a 𝑚 square here will be 

more convenient since 𝑚 will be the index of the solution of 𝜓𝑚𝑛. Then, Eq.2.1.10 can be 

written as 1𝑟 𝜕ℜ𝜕𝑟 + 𝜕2ℜ𝜕𝑟2 + 1𝑟2 (−𝑚2)ℜ + 𝜌𝜎 𝜔𝑚𝑛2 ℜ = 0         𝐸𝑞. 2.1.16 

 

Furthermore, this Eq.2.1.16 is reorganized as 

𝑟2 𝜕2ℜ𝜕𝑟2 + 𝑟 𝜕ℜ𝜕𝑟 + (𝜌𝜎 𝜔𝑚𝑛2 𝑟2 − 𝑚2) ℜ = 0        𝐸𝑞. 2.1.17 

Then, a standard Bessel function can be derived from Eq. 2.1.17 unless the third term equal to 

0. Here, 𝑚 as 𝑚𝑡ℎ order Bessel function to obtain 𝛼𝑚𝑛 is defined. Using Eq.2.1.11, we must 

have (𝛼𝑚𝑛𝑟𝑎 )2 = 𝜌𝜎 𝜔𝑚𝑛2 𝑟2 that is given by 𝜌𝜎 𝜔𝑚𝑛2 𝑎2 − 𝛼𝑚𝑛2 = 0       𝐸𝑞. 2.1.18 

Each angular frequency corresponding to different modes can be given to be 

𝜔𝑚𝑛 = √𝜎𝜌 𝛼𝑚𝑛𝑎      𝐸𝑞. 2.1.19 

where 𝜔𝑚𝑛 is the angular frequency corresponding to each mode, 𝜎 is the tensile stress, 𝜌 is the 

effective mass density. 

 

Table 2.1.2 Values of 𝑓𝑚𝑛/𝑓01 ratio calculated from Table 2.1.1, for each mechanical mode 

with the factor 𝑚𝑛 . The resonance frequency 𝑓01  is referred to a fundamental mechanical 

mode (0,1). 

 

 



22                                                              2.1.2. Resonance frequency of circular membranes 
 

 

Table 2.1.2. Analytical values of 𝑓𝑚𝑛𝑓01 = 𝛼𝑚𝑛/ 𝛼01 ratio for each mechanical mode 

Mode (m,n) n = 1 n = 2 n = 3 n = 4 n = 5 

m = 0 1 2.2954 3.5985 4.9033 6.2087 

m = 1 1.5933 2.9173 4.2304 5.5404 6.8490 

m = 2 2.1355 3.5001 4.8319 6.1526 7.4683 

m = 3 2.6531 4.0589 5.4121 6.7462 8.0711 

m = 4 3.1554 4.6010 5.9765 7.3253 8.6605 

 

In the next section 2.3, experimental measurements of a SiN circular membrane with tensile 

stress of 1.0 GPa, effective mass density of 3084 kg/m3, and a membrane diameter of 30 mm 

will be analysed. Using our experimental settings, we calculate Eq.2.1.19 to predict the ratio of 

resonance frequency for each mechanical mode.  

Table 2.1.2 shows 𝑓𝑚𝑛/𝑓01 resonance frequency ratios corresponding to mechanical modes. It 

is obvious that the value of the ratio follows the ratio of the solution for the Bessel function of 

the first kind. It brings convenience for verifying the resonance frequency of one mechanical 

mode. As far as the table shows, the measured resonance frequency 𝑓01 ~11.83 MHz for the 

mode (0,1) on a 30 mm diameter membrane is much smaller than the calculated result 

21.79MHz if we assume a tensile stress of 1.0 GPa. Actually, 11.83 MHz corresponds to a 

tensile stress of about 294.6 MPa. The measured tensile stress is by 70 % lower than the defined 

value of about 1.0 GPa assumed from the sample data sheet. For this case, there are several 

possible reasons: first, the nanoscale holes ~300 nm pattern that forms on the circular membrane 

causes the tensile stress changing of the biaxial stress mode [36]. Second, the release process 

also reduces the tensile stress of the membrane, greatly decreasing the resonance frequency. 

Third, the etch step also creates a realistic undercut, which increases the defined membrane’s 

diameter from 30 to 32 mm. This can increase effective masses and reduce the wanted resonance 

frequency. In fact, for our measurements, the measured resonance frequencies of the resonator 

were truly far lower than theoretical calculation results. 
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2.1.3 Effective mass of circular membranes 

The calculation of the effective mass allows to simplify motion equation into a second order 

differential equation. Despite the calculations of the effective mass performed in [105,107–109],  

in our case, the effective mass of the circular membrane is still important and its calculation is 

critical. 

The equipartition theorem is chosen to define the effective mass of the circular membrane. A 

circular membrane that is infinitely decomposed into small volume elements is analysed in the 

following. To describe the membrane as a damped harmonic oscillator model, a correction term 

referred to the effective mass is introduced [105]. An uncorrected amplitude of the circular 

membrane is also introduced, demonstrating truly its physical displacement at any arbitrary 

position. In this case, the circular membrane with a resonance frequency 𝜔𝑚𝑛 is thought of the 

mechanical mode (m,n), which has been infinite small elements of volume 𝑑𝑉 at a position (𝑥, 𝑦). As previous literature reports [105], the potential energy of such small volume element 𝑑𝑉  corresponding to each mass element 𝑑𝑚 = (𝑥, 𝑦)𝑑𝑉 , where (𝑥, 𝑦)  is a position-

dependent density. Here, such density is a constant 𝜌0 due to the membrane uniformity. The 

kinetic energy for each small volume element of the circular membrane can be given by 

𝑑𝑈(𝑥, 𝑦, 𝑡) = 12 𝜌0𝜔𝑚𝑛2 |𝑧(𝑥, 𝑦, 𝑡)|2𝑑𝑉      𝐸𝑞. 2.1.20 

where 𝑧(𝑥, 𝑦, 𝑡) = 𝑎𝑚𝑛(𝑡)𝜓𝑚𝑛(𝑥, 𝑦, 𝑡) is the oscillatory motion as shown in Fig. 2.1.1. 

Then Cartesian coordinate system can be transformed to cylindrical coordinate system as shown 

in Fig. 2.1.2 by exploiting 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃. In this below, the theory derivations are 

based on cylindrical coordinate system. 

So, the potential energy occupied in each small volume element becomes 

𝑑𝑈(𝑟, , 𝑡) = 12 𝜌0𝜔𝑚𝑛2 |𝑧(𝑟, , 𝑡)|2𝑑𝑉      𝐸𝑞. 2.1.21 

To figure out the total kinetic energy, we integrated over the entire structure of the circular 

membrane. The integrated formulism further is given by 

𝑈𝑡𝑜𝑡(𝑡) = 12 𝜔𝑚𝑛2 |𝑎𝑚𝑛(𝑡)|2 ∭ 𝜌0|𝜓𝑚𝑛(𝑟, )|2𝑑𝑉       𝐸𝑞. 2.1.22
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The kinetic energy of the full membrane is taken equal to the kinetic of an equivalent local mass 

at position (𝑟0, 𝜃0), it can be 12 𝜔𝑚𝑛2 |𝑎𝑚𝑛(𝑡)|2 ∭ 𝜌0|𝜓𝑚𝑛(𝑟, )|2𝑑𝑉
= 12 𝜔𝑚𝑛2 |𝑎𝑚𝑛(𝑡)|2𝑚𝑒𝑓𝑓,𝑚,𝑛|𝜓𝑚𝑛(𝑟0, 0)|2    𝐸𝑞. 2.1.23 

Then, the definition of the effective mass can be given by 

𝑚𝑒𝑓𝑓,𝑚𝑛𝑛𝑜𝑟 (𝑟0, 0) = ∭ 𝜌0 | 𝜓𝑚𝑛(𝑟, )𝜓𝑚𝑛(𝑟0, 0)|2 𝑑𝑉      𝐸𝑞. 2.1.24 

where dV = hdS and 𝜌0ℎ = 𝜌𝑠 is the surface mass density. 

If a general 𝜓𝑚𝑛(𝑟0, 0)  is not at the exact maximum position, it induces a larger position-

dependent effective mass. If measuring the mechanical mode (0,1), we simply achieve the 

maximum amplitude at its centre position (0,0) of the circular membrane, enabling the smallest 

effective mass.  To simplify the expression of effective mass, infinite small volume elements 

with a uniform thickness ℎ of the circular membrane are regarded. The effective mass further 

can be recast as 

𝑚𝑒𝑓𝑓,𝑚𝑛𝑛𝑜𝑟 (𝑟0, 0) = 𝜌0ℎ ∫ 𝑑𝜃2𝜋
0 ∫ |𝑢𝑚𝑛(𝑟, 𝜃)|2𝑟𝑑𝑟𝑎

0        𝐸𝑞. 2.1.25 

where 𝑢𝑚𝑛(𝑟, 𝜃) = 𝜓𝑚𝑛(𝑟, 𝜃) 𝜓𝑚𝑛(𝑟0, 0)⁄   is a normalized mode shape of the circular 

membrane. 

From Eq. 2.1.25, we can deduce the ratio between the effective mass and total mass, M=𝜌0ℎ𝜋𝑎2, 

of the membrane to be 𝑚𝑒𝑓𝑓,𝑚𝑛𝑛𝑜𝑟 (𝑟0, 0)𝑀 = 1𝜋𝑎2 ∫ 𝑑𝜃2𝜋
0 ∫ | 𝜓𝑚𝑛(𝑟, 𝜃)𝜓𝑚𝑛(𝑟0, 0)|2 𝑟𝑑𝑟𝑎

0        𝐸𝑞. 2.1.26 

Using this ratio, we can discuss the mechanical mode of the circular membrane. In subsection 

2.1.2, Bessel functions for the mth order have been discussed with two different conditions: 

when m=0 relating to the boundary condition 𝐽𝑚(𝛼𝑚𝑛) = 0, we reach a simple solution because 

of obvious the maximum amplitude at membrane’s centre; when discussing m>0, we introduce 

an argument for examining where the maximum amplitude of 𝜓𝑚𝑛(𝑟0, 2𝜋) = 𝐽𝑚 (𝛼𝑚𝑛𝑟0𝑎 ) is. We 
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define 𝜂𝑚𝑎𝑥  as the argument for determining the maximum amplitude and forming the 

justification 𝐽𝑚(𝜂). Here, the determination can be given by [103,105] 𝑑𝐽𝑚(𝜂)𝑑𝜂 = 12 [𝐽𝑚−1(𝜂) − 𝐽𝑚+1(𝜂)] = 0         𝐸𝑞. 2.1.27 

which means the extrema of 𝐽𝑚(𝜂) can be determined by searching for 𝐽𝑚−1(𝜂) = 𝐽𝑚+1(𝜂). By 

using this justification, 𝜂𝑚𝑎𝑥 will be found analytically. 

We thus provide the ratios (𝑚𝑒𝑓𝑓,𝑚𝑛/𝑀) of the effective mass of the circular membrane to be 

𝑚𝑒𝑓𝑓,𝑚𝑛𝑛𝑜𝑟 (𝑟0, 0)𝑀 = { [𝐽1(𝛼0𝑛)]2                   𝑖𝑓 𝑚 = 0𝐾𝑚22 [𝐽𝑚+1(𝛼𝑚𝑛)]2          𝑖𝑓 𝑚 > 0            𝐸𝑞. 2.1.28 

where 𝐾𝑚 = 1/𝜓𝑚𝑛(𝑟0, 0) = 1/𝐽𝑚(𝜂𝑚𝑎𝑥) are the normalization constants of 𝜓𝑚𝑛. 

 

Table 2.1.3 Values of 𝑚𝑒𝑓𝑓,𝑚𝑛/𝑚 ratio calculated from Table 2.1.1 for each mechanical mode 

with each factor 𝑚𝑛. 

Table 2.1.3. Analytical values of 𝑚𝑒𝑓𝑓,𝑚𝑛/𝑀 ratio for each mechanical mode 

Mode (m,n) n = 1 n = 2 n = 3 n = 4 n = 5 

m = 0 0.2695 0.1158 0.0737 0.0540 0.0427 

m = 1 0.2396 0.1330 0.0921 0.0704 0.0570 

m = 2 0.2437 0.1556 0.1141 0.0901 0.0744 

m = 3 0.2357 0.1648 0.1262 0.1022 0.0859 

m = 4 0.2255 0.1683 0.1333 0.1102 0.0939 

 

Above all, a circular membrane with the effective mass is analysed to predict the device 

frequency performance. These calculation results clearly demonstrate that the values of 

effective masses of mechanical resonator depend on the mode shapes. Table 2.1.3 shows if the 

azimuthal index 𝑚  does not change, the values of the effective mass ratio decrease with 

increasing the radial index n. In this overall thesis work, for simplicity, the effective mass 𝑚𝑒𝑓𝑓 = 𝑚𝑒𝑓𝑓,𝑚𝑛𝑛𝑜𝑟 (𝑟0, 0) corresponding to each mode has been renamed as 𝑚𝑒𝑓𝑓. That means 
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the ratio relevant to each mode (m,n) has been considered, namely 𝑚𝑒𝑓𝑓 = 𝑚𝑒𝑓𝑓,𝑚𝑛𝑛𝑜𝑟 (𝑟0, 0) =𝑚𝑒𝑓𝑓,𝑚𝑛𝑛𝑜𝑟 (𝑟0,0)𝑀 ∙ 𝑀, where 
𝑚𝑒𝑓𝑓,𝑚𝑛𝑛𝑜𝑟 (𝑟0,0)𝑀  is the effective mass ratio and 𝑀 is the total mass of the 

membrane.
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2.1.4 Summary 

The theory method that includes motion equation of free motion and its simplification has been 

introduced and analysed by considering circular membranes. To solve it, we separate the r,,t 

variables from the motion equation in order to achieve physical functions for motion oscillation 

and mechanical mode shape. Through exploiting boundary conditions, the solution of motion 

equation of free motion has been done. By using this solution, there are three interesting and 

important mechanical parameters discussed, they are mechanical mode, resonance frequency 

and the ratio of effective mass of the circular membrane. According to these derived calculation 

expressions, they are helpful for us to verify whether a mechanical mode can reach, which is 

usually comparable to the measured frequency. Finally, the ratio of effective mass is calculated 

referring to as which mechanical modes preferable. It also correlates to mechanical mode and 

its resonance frequency. 
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2.2 Nanoelectromechanics in a capacitive driving scheme 

In this part, motion equations of nanoelectromechanical resonator are analysed in the 

capacitively driving scheme. Then, parametric pumping scheme, having non-degenerate and 

degenerate cases, are analysed. Duffing nonlinearity is also analysed. Thereafter, double-tone 

driving scheme, an analogy to optomechanical system, is analytically modelled and analysed in 

the nanoelectromechanical system, consisting of SiN membrane capacitively coupled to 

aluminium suspended top gate drum. 

The displacement calculated here will be one of an extended nanomechanical resonator of 

effective mass (𝑚𝑒𝑓𝑓 = 𝑚𝑒𝑓𝑓,𝑚𝑛𝑛𝑜𝑟 (𝑟0, 0)) given by Eq.2.1.25. Similar to the effective mass 

calculation, the externally force F(t) applied to the local mass can be deduced from the 

potential energy 𝐸 obtained by integrating the energy of the local load over a small volume 

and then using 𝐹 = − 𝜕𝐸 𝜕𝑥⁄  at the position (𝑟0,𝜃0). 

2.2.1 Motion equation of nanoelectromechanical resonator driving 

through a capacitively coupling scheme 

 

 

Figure 2.2.1.1. (a) Schematic of an object, attached with a spring with spring constant k and 

effective mass 𝑚𝑒𝑓𝑓, driven by an external force F. (b) A mechanical resonator, consisting of 

parallel plates, in which one is a fixed plate and the other one is a mechanical movable 

element[110], which is electrostatically excited by a mixing voltage 𝑉𝑑𝑐 + 𝑉𝑎𝑐. 

Here, a harmonic oscillator system is taken into accounts as shown in Fig. 2.2.1.1(a). It 

consists of an object, with mass 𝑚𝑒𝑓𝑓 , which is attached to a spring and driven by an 

externally applied force F(t). Besides, we also add the damping force generated by a friction 

force, namely −𝑚𝑒𝑓𝑓𝛾𝑚𝑥̇ , where 𝛾𝑚  is the damping rate of the system. According to 

Newton’s laws, the motion equation of this object is given by 
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𝑚𝑒𝑓𝑓𝑥̈ + 𝑚𝑒𝑓𝑓𝛾𝑚𝑥̇ = 𝐹 − 𝑘𝑥         𝐸𝑞. 2.2.1.1 

 

where x is the mechanical displacement of the object and k is the spring constant. Now, we 

extend this harmonic oscillator system to a capacitively coupled electromechanical resonator 

shown in the Fig. 2.2.1.1(b). By adding 𝑉𝑑𝑐  and 𝑉𝑎𝑐  voltages, electrostatic forces can be 

generated to excite the movable element. The electrostatic force (𝐹 = − 𝜕𝐸 𝜕𝑥⁄ ) can be 

derived through the energy (𝐸 = 𝐶𝑔(𝑥)𝑉2/2) that is stored in the capacitance. Here, V is the 

applied voltage, including DC voltage 𝑉𝑑𝑐  and AC voltage 𝑉𝑎𝑐 cos(𝜔𝑑𝑡)  driving at a 

frequency 𝜔𝑑 , namely 𝑉 = 𝑉𝑑𝑐 + 𝑉𝑎𝑐 cos(𝜔𝑑𝑡) . The 𝐶𝑔(𝑥)  is the effective coupling 

capacitance between the mechanical element and its gate, namely 𝐶𝑔(𝑥) = 𝜀𝑆 (𝑑 + 𝑥)⁄ . Here, 𝜀 is dielectric constant, 𝑆 is the actuation area of mechanical resonator, 𝑑 is the initial distance 

between mechanical element and its coupled gate. The capacitance 𝐶𝑔(𝑥) can be rewritten in 

the form of Eq.2.2.1.2 by using Taylor expansion due to 
𝑥𝑑 ≪ 1, with an initial definition of 𝐶𝑔0 = 𝜀𝑆 𝑑⁄ . To further understand the electrostatic driving, we extend the V 2 to the series of 

the voltage as shown in Eq.2.2.1.3. 

𝐶𝑔(𝑥) = 𝐶𝑔0 (1 − 𝑥𝑑 + 𝑥2𝑑2 − ⋯ )          𝐸𝑞. 2.2.1.2 

𝑉2 = 𝑉𝑑𝑐2 + 2𝑉𝑑𝑐𝑉𝑎𝑐 cos(𝜔𝑑𝑡) + 𝑉𝑎𝑐2 𝑐𝑜𝑠2(𝜔𝑑𝑡)       𝐸𝑞. 2.2.1.3 

For the first term, 𝑉𝑑𝑐2  contributes to tuning a resonance frequency of the mechanical resonator 

and it is an independent term of time variable; For the second term, 𝑉𝑑𝑐𝑉𝑎𝑐 cos(𝜔𝑑𝑡) is a 

common use to excite mechanical resonator oscillating in real experiments when Vdc is set to 

be far more than the Vac in the measurement settings; For the third term, 𝑉𝑎𝑐2 𝑐𝑜𝑠2(𝜔𝑑𝑡) can also 

be exploited by choosing 𝜔𝑑~ Ω𝑚 2⁄  or 𝜔𝑑~Ω𝑚 for performing parametric pumping as can be 

seen in section 2.2.2. 

Mechanical response by an external force with frequency ~𝛀𝒎 . Based on resonance 

frequency modulation for the mechanical resonator, we prefer to find a desirable resonance 

frequency to do several experiments of interests. It enables the improvement of mechanical 

responses. In this case, we discuss the second and third terms 2𝑉𝑑𝑐𝑉𝑎𝑐 cos(𝜔𝑑𝑡)  and 𝑉𝑎𝑐2 cos2(𝜔𝑑𝑡)   with an oscillating frequency of ~Ω𝑚  to drive the mechanical resonator. 

Because the one oscillating frequency is two times than the other, the two mechanical 
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response magnitudes are competing with each other. In order to describe the driving force 𝐹(𝑡) = 𝜕(𝐶𝑔(𝑥)𝑉2/2) 𝜕𝑥⁄ , we substitute the Eq.2.2.1.3 to it and derive the Eq.2.2.1.4. When 

taking into account the second drive term 𝑉𝑑𝑐𝑉𝑎𝑐 cos(𝜔𝑑𝑡), we find a solution in form of the 

displacement 𝑥 = 𝜇𝑥2 𝑒−𝑖𝜔𝑑𝑡 + 𝑐. 𝑐 to solve the motion equation Eq.2.2.1.1, where the 𝜇𝑥 is 

the mechanical amplitude. 𝐹(𝑡) ≈ 𝐶𝑔02𝑑 (𝑉𝑑𝑐2 + 2𝑉𝑑𝑐𝑉𝑎𝑐 cos(𝜔𝑑𝑡) + 𝑉𝑎𝑐2 𝑐𝑜𝑠2(𝜔𝑑𝑡))             𝐸𝑞. 2.2.1.4 

So, we look for a solution by the second term force 𝐶𝑔0𝑉𝑑𝑐𝑉𝑎𝑐 cos(𝜔𝑑𝑡) 𝑑⁄  driving 

mechanical resonator. Then, we obtain a mechanical amplitude 𝜇𝑥  and the phase 𝜑𝑥  as 

presented 

𝜇𝑥(𝜔𝑑) = 𝐶𝑔0𝑉𝑑𝑐𝑉𝑎𝑐𝑚𝑒𝑓𝑓𝑑 1Ω𝑚2 − 𝜔𝑑2 − 𝑖𝜔𝑑𝛾𝑚           𝐸𝑞. 2.2.1.5 

𝜑𝑥(𝜔𝑑) = tan−1 (𝐼𝑚[(𝜇𝑥(𝜔𝑑)]𝑅𝑒[(𝜇𝑥(𝜔𝑑)])            𝐸𝑞. 2.2.1.6  
where 𝜔𝑑  is the driving frequency, 𝑚𝑒𝑓𝑓 is the effective mass of mechanical resonator and 𝛾𝑚  is the damping rate of mechanical resonator and Ωm = √𝑘 𝑚𝑒𝑓𝑓⁄  is the resonance 

frequency. It is worth noting that the mechanical resonator has an approximate amplitude 

maximum when driving frequency 𝜔𝑑 ≈ Ω𝑚. 
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Figure 2.2.1.2. Plots of amplitude (a) and phase angle (b) as function of the ratio of excitation 

frequency to the resonance frequency 𝜔𝑑 Ω𝑚⁄ , for different damping ratio 𝛾𝑚 (2Ω𝑚)⁄ . The 

prefactor of amplitude, namely 
𝐹2𝑚𝑒𝑓𝑓Ω𝑚2 = 𝐶𝑔0𝑉𝑑𝑐𝑉𝑎𝑐2𝑚𝑒𝑓𝑓Ω𝑚2 𝑑  is defined to be 1 in order to see the 

changing trends of the amplitude and phase. Resonance frequency value is also arbitrary. 
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From the Fig. 2.2.1.2(a), we see that the amplitude of mechanical resonator increased as the 

ratio 𝛾𝑚 (2Ω𝑚)⁄  decreases. That means the magnitude of amplitude depending on the damping 

control. In fact, Fig. 2.2.1.2(b) shows the corresponding phase angle transition range 180 ° no 

matter how the damping level is. With the ratio 𝛾𝑚 (2Ω𝑚)⁄  reducing, the transition tilt is going 

sharp; otherwise, it turns out to be smooth. It indicates the damping plays an important role in 

controlling the mechanical amplitude corresponding to these phase shifts. 

Modulation of resonance frequency by using DC voltages. Once a certain DC voltage 

actuating the movable part, it is able to be displaced from the initial equilibrium position 

because of the elastic properties subject to a basis of Hooke’s law. After absorbing the DC 

voltage driving energy, the contribution of DC voltage-induced spring constant 𝛿𝑘𝑑𝑐  to the 

displacement is to be rewritten with the intrinsic spring constant of the membrane. Hereafter, 

the motion equation Eq.2.2.1.1 can be transformed to Eq.2.2.1.7 by adding a DC voltage-

induced spring constant variation 𝛿𝑘𝑑𝑐 [111]. 𝑚𝑒𝑓𝑓𝑥̈ + 𝑚𝑒𝑓𝑓𝛾𝑚𝑥̇ = 𝐹(𝑡) − (𝑘 + 𝛿𝑘𝑑𝑐)𝑥         𝐸𝑞. 2.2.1.7 

 

where a driving force F(t) depending on time variable is indicated. 

We begin by analysing on how the additional spring constant 𝛿𝑘𝑑𝑐  works in this simple 

mechanical system. When a certain DC voltage is acted onto the membrane, the energy (𝐸𝑑𝑐 =𝐶𝑔(𝑥)𝑉𝑑𝑐2 /2) stored in this coupled capacitor can be changed leading to the relevant electrostatic 

force (𝛿𝐹𝑑𝑐 = − 𝜕𝐸𝑑𝑐 𝜕𝑥⁄ ) changed and given by Eq.2.2.1.8. Notably, the negative symbol 

indicates force direction, here it is attractive force. 

𝛿𝐹𝑑𝑐 ≈ − 𝑉𝑑𝑐22 𝜕𝐶𝑔(𝑥)𝜕𝑥 |𝑥=𝛿𝑥            𝐸𝑞. 2.2.1.8 

Furthermore, the additional spring constant dependent of the electrostatic force controlled by 

DC voltages can be rewritten as 𝛿𝑘𝑑𝑐 ≈ − 𝑉𝑑𝑐22 𝜕2𝐶𝑔(𝑥)𝜕𝑥2 |𝑥=𝛿𝑥            𝐸𝑞. 2.2.1.9 

Based on the frequency modulation dependent of the spring constants as shown in Eq.2.2.1.10, 

we can find the modulation relationship between resonant frequency and spring constant 

variation induced by DC voltages. 
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Ω𝑚 = √𝑘 + 𝛿𝑘𝑑𝑐𝑚𝑒𝑓𝑓 = Ω01√1 + 𝛿𝑘𝑑𝑐𝑘              𝐸𝑞. 2.2.1.10 

Combining Eq.2.2.1.9 with Eq.2.2.1.10, Taylor expansion series depicted in Eq.2.2.1.2 can 

be truncated in second-order to achieve Ω𝑚 ≈ Ω01 (1 − 𝐶𝑔0𝑉𝑑𝑐22𝑘𝑑2 )              𝐸𝑞. 2.2.1.11 

where Ω𝑚  is the resonance frequency of mechanical resonator, Ω01 = √𝑘 𝑚𝑒𝑓𝑓⁄  is the 

fundamental resonance frequency of mechanical resonator, 𝑘 is the intrinsic spring constant 

and d is the initial distance of the two plates. 
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Figure 2.2.1.3. Plots of spring constant variation (a) and resonance frequency (b) as function 

of DC voltages, due to different capacitance distances. Here, 100 nm thick SiN drum 

membrane with tensile stress of 1.0 GPa is fixed to be 30 𝜇𝑚 in diameter, the fundamental 

frequency and spring constant are achieved to be 11.67 𝑀𝐻𝑧 and 300 𝑁/𝑚. 

 

Fig. 2.2.1.3(a) shows the modulation of spring constant is performed larger as the distance 

reduces. This indicates the spring variation of membrane can be induced by electrostatic 

forces. The electrostatic force is tuned by the capacitance because of the distance changing. 

Fig. 2.2.1.3(b) shows the resonance frequency tuned larger with the distance decreasing. This 

is consistent with the spring constant variation induced by electrostatic force. The modulation 

of resonance frequency for the mechanical resonator is proportional to 𝑉𝑑𝑐2 , which means Ω𝑚 

as a quadratic function of 𝑉𝑑𝑐 . It is worth noticing that 𝑉𝑑𝑐 ≫ |𝑉𝑎𝑐| is supposed to be the 

measurement condition. The other terms 2𝑉𝑑𝑐𝑉𝑎𝑐 cos(𝜔𝑑𝑡)  and 𝑉𝑎𝑐2 cos2(𝜔𝑑𝑡)  in the 



33                                                    2.2. Nanoelectromechanics in a capacitive driving scheme 
 

 

expression Eq.2.2.1.3 allow to perform experiments with an oscillating force at a driving 

frequency of 𝜔𝑑 ≈ Ω𝑚 or Ω𝑚 2⁄ , for different purposes as can be seen in section 2.2.2. 
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2.2.2 Mechanical parametric pumping 

Parametric amplifications have been investigated in a variety of domains, such as optics, 

electronics, and mechanics [111–113]. Parametric pumping plays very important role in 

electronics. The basic principle is to use one signal (so called pump) to modulate one of the 

parameters in the system in order to transfer the energy from the pump tone to the system. 

 

Figure 2.2.2.1. Operation spectrum landscape, for a general parametric pumping scheme 

 

As shown in Fig. 2.2.2.1, a mechanical resonator with resonance frequency Wm is probed by a 

signal with frequency ws and is pumped by a signal with frequency wp. Here, ∆ is the frequency 

difference between the half pump frequency and the mechanical resonance frequency, namely 

∆ = wp/2 - Wm. d is the frequency detuning between wp/2 and ws, namely d=ws - wp/2. Based on 

these important definitions, we derive formalisms corresponding to two pumping schemes (i) 

non-degenerate case: wp ≠ 2 ws and wp = ws + wi. Note that wi is the frequency of idler signal, 

which is generated due to frequency mixing between the pump and the probe signal. (ii) 

degenerate case: wp =2 ws with d=0, therefore, there is no idler term.  

In this part, 100 nm thick SiN drum membrane with a tensile stress of 1.0 GPa and with a 

diameter of 30 𝜇𝑚 is chosen for achieving resonance frequency around 11.1 MHz and the 

capacitive coupling distance is defined to be 500 nm for calculating a desired capacitance value 𝐶𝑔0(𝑑 = 500 𝑛𝑚, 𝐷 = 30 𝜇𝑚) = 1.251 × 10−14𝐹. 

 

2.2.2.1 Non-degenerate analytical calculation 

According to operation spectrum landscape depicted in Fig. 2.2.2.1, a mechanical resonator 

with a parametric pump is described by a well-known equation of motion [36] 
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𝑚𝑒𝑓𝑓𝑥̈ + 𝑚𝑒𝑓𝑓𝛾𝑚𝑥̇ + (𝑘 + 𝛿𝑘 sin(𝜔𝑝𝑡))𝑥 = 𝐹𝑑              𝐸𝑞. 2.2.2.1 

In order to find a form of solution while satisfying frequency relations 𝜔𝑝 = 𝜔𝑠 + 𝜔𝑖, we look 

for a displacement 𝑥 in form of  
𝜇𝑠2 𝑒−𝑗𝜔𝑠𝑡 + 𝜇𝑖2 𝑒−𝑗𝜔𝑖𝑡 + 𝑐. 𝑐 and write a drive force in a form of  𝐹𝑑 = 𝑓𝑑2 𝑒−𝑖𝜔𝑠𝑡 + 𝑐. 𝑐. The modulation of spring constant, 𝛿𝑘, is proportional to pump force 𝑓𝑝 

(see derivations in 2.2.1). It is worth to note that 𝛿𝑘 ≈ 2𝐶𝑔0𝑉𝑎𝑐𝑉𝑑𝑐𝑑2  and 𝑓𝑝 ≈ 𝐶𝑔0𝑉𝑎𝑐𝑉𝑑𝑐𝑑  are used 

here. The equation of motion thus can be transformed to be 

𝑚𝑒𝑓𝑓𝜇𝑠((Ω𝑚2 − 𝜔𝑠2) − 𝑖𝛾𝑚𝜔𝑠)𝑒−𝑖𝜔𝑠𝑡 + 𝑖 𝛿𝑘2 𝜇𝑖∗𝑒−𝑖(𝜔𝑝−𝜔𝑖)𝑡 = 𝑓𝑑𝑒−𝑖𝜔𝑠𝑡      𝐸𝑞. 2.2.2.2(𝑎) 

𝑚𝑒𝑓𝑓𝜇𝑖 ((Ω𝑚2 − 𝜔𝑖2) − 𝑖𝛾𝑚𝜔𝑖) 𝑒−𝑖𝜔𝑖𝑡 + 𝑖 𝛿𝑘2 𝜇𝑠∗𝑒−𝑖(𝜔𝑝−𝜔𝑠)𝑡 = 0     𝐸𝑞. 2.2.2.2(𝑏) 

Then, equations can be simplified to be 

2𝑚𝑒𝑓𝑓Ω𝑚𝜇𝑠𝜒𝑠−1𝑒−𝑖𝜔𝑠𝑡 + 𝑖 𝛿𝑘2 𝜇𝑖∗𝑒−𝑖(𝜔𝑝−𝜔𝑖)𝑡 = 𝑓𝑑𝑒−𝑖𝜔𝑠𝑡                 𝐸𝑞. 2.2.2.3(𝑎) 

2𝑚𝑒𝑓𝑓Ω𝑚𝜇𝑖𝜒𝑖−1𝑒−𝑖𝜔𝑖𝑡 + 𝑖 𝛿𝑘2 𝜇𝑠∗𝑒−𝑖(𝜔𝑝−𝜔𝑠)𝑡 = 0                 𝐸𝑞. 2.2.2.3(𝑏) 

where two mechanical susceptibilities are defined as 𝜒𝑠 = ( − d − 𝑖𝛾𝑚2 )−1
 and 𝜒𝑖 =( + d − 𝑖𝛾𝑚2 )−1

.  

Amplitudes of the mechanical resonator, corresponding to 𝜇𝑠 and 𝜇𝑖, arrive to be 

|𝜇𝑠(, d, 𝛿𝑘)| = | 2𝑚𝑒𝑓𝑓Ω𝑚𝜒𝑖∗𝑓𝑑(2𝑚𝑒𝑓𝑓Ω𝑚)2𝜒𝑠−1𝜒𝑖∗−1 − 𝛿𝑘24 |              𝐸𝑞. 2.2.2.4(𝑎) 

|𝜇𝑖(, d, 𝛿𝑘)| = | − 𝛿𝑘2 𝑓𝑑∗(2𝑚𝑒𝑓𝑓Ω𝑚)2𝜒𝑠−1𝜒𝑖∗−1 − 𝛿𝑘24 |                𝐸𝑞. 2.2.2.4(𝑏) 

Furthermore, the associated mechanical gain can be obtained from the ratio of signal amplitudes 

corresponding to pump on and pump off, Sig[𝛿𝑘 ≠ 0 ] / Sig[𝛿𝑘 =0] as shown in  

𝐺(, d, 𝛿𝑘) = 1|1 − 𝛿𝑘216(𝑚𝑒𝑓𝑓Ω𝑚)2𝜒𝑠−1𝜒𝑖∗−1|              𝐸𝑞. 2.2.2.5 
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In the following, we choose the same essential simulation parameters, including resonance 

frequency 11.1 𝑀𝐻𝑧, damping rate 948.7 𝐻𝑧, quality factor 11700, and then start to analyse 

mechanical system with amplitude gain 𝐺 as functions of several parameters, e.g., , d, and so 

on. These variable parameters are helpful to understand the critical condition in using 

parametric pumping. 
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Figure 2.2.2.2. Calculations of non-degenerate condition of signal amplitude gain vs.  

= 𝜔𝑝2 −Ω𝑚, corresponding to different ratios of d/gm. In these calculations, pumping force (fp) 

and mechanical damping rate γ𝑚  were kept as constants. Note that the pump force is 𝑓𝑝,𝑠𝑖𝑚(𝑉𝑑𝑐 = 8𝑉,  𝑉𝑎𝑐𝑝 = 50 𝑚𝑉, 𝐶𝑔0 = 1.251 × 10−14
 𝐹) = 10 𝑛𝑁. 

 

Fig. 2.2.2.2 shows signal amplitude gains as a function of , corresponding to different values 

of 𝛿. The 𝐺 decreases with increasing . It means that the pump will lose its efficiency in 

transferring energy to mechanical system, when 
𝜔𝑝2  is far from the resonance frequency Ω𝑚. In 

addition, when we decrease the frequency detuning d, the larger signal amplitude gain was 

obtained. Therefore, for a fixed pumping force, an ideal pumping is to decrease both  and 𝛿 

in order to obtain the large signal gain, 𝐺. 
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Figure 2.2.2.3. Calculations of non-degenerate condition of signal amplitude gain vs. pump 

force (fp). Here gm is fixed as a constant and we set   = wp/2 - Wm = 0. 

 

Besides the frequency, we also should pay attention to the pump force (fp), which defines 

modulation quantity of spring constant dk. Fig. 2.2.2.3 shows signal amplitude gains can be 

enhanced with increasing the pump forces. It presents that the stronger pumping force gives the  

larger the modulation of spring constant, resulting in the larger signal amplitude gain.  However, 

the pump force must not increase too much because the pump force will reach 1 −𝛿𝑘216(𝑚𝑒𝑓𝑓Ω𝑚)2𝜒𝑠−1𝜒𝑖∗−1 = 0, in Eq. 2.2.2.5. At this condition, the mechanical system goes into auto-

oscillation states. 

 

2.2.2.2 Degenerate analytical calculation 

Degenerate pumping scheme as a particular instance: d=0, it means the pump frequency is 

exactly two times of the signal frequency, namely 𝜔𝑠 = 𝜔𝑝2 . Therefore, there is no generation 

of idle signal.   

According to these analytics, we can look for a form of displacement 𝑥 with 𝜇𝑠2 𝑒−𝑖𝜔𝑠𝑡 + 𝑐. 𝑐. 
and write a drive force in a complex form, 𝐹𝑑 = 𝑓𝑑2 𝑒−𝑖𝜔𝑠𝑡 + 𝑐. 𝑐. Note that we introduce a pump 
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phase 𝜑 in the pump signal. We thus inject the derivatives related to this form into the motion 

equation. The motion equation becomes  

𝑚𝑒𝑓𝑓𝜇𝑠((Ω𝑚2 − 𝜔𝑠2) − 𝑖𝛾𝑚𝜔𝑠)𝑒−𝑖𝜔𝑠𝑡 + 𝑖 𝛿𝑘2 𝜇𝑠∗𝑒−𝑖[(𝜔𝑝−𝜔𝑠)𝑡−] = 𝑓𝑑𝑒−𝑖𝜔𝑠𝑡    𝐸𝑞. 2.2.2.6 

Through an approximation Ω𝑚2 − 𝜔𝑠2 ≈ 2Ω𝑚(Ω𝑚 − ω𝑠), we simplify this equation to be 

2𝑚𝑒𝑓𝑓Ω𝑚𝜇𝑠𝜒𝑠−1𝑒−𝑖𝜔𝑠𝑡 + 𝑖 𝛿𝑘2 𝜇𝑠∗𝑒−𝑖[(𝜔𝑝−𝜔𝑠)𝑡−𝜑] = 𝑓𝑑𝑒−𝑖𝜔𝑠𝑡         𝐸𝑞. 2.2.2.7 

Here, we consider the equation of motion using the degenerate condition and deduce the 

amplitude of the mechanical displacement 𝑥 to be 

|𝜇𝑠(∆, 𝛿𝑘, 𝜑)| = 𝑓𝑑 ||[2𝑚𝑒𝑓𝑓Ω𝑚∆ + 𝛿𝑘2 sin(𝜑)] + 𝑖 [𝑘𝑄 − 𝛿𝑘2 cos(𝜑)](2𝑚𝑒𝑓𝑓Ω𝑚∆)2 − [(𝛿𝑘2 )2 − (𝑘𝑄)2] ||      𝐸𝑞. 2.2.2.8 

Furthermore, the associated mechanical gain can be derived again from the ratio of the signal 

amplitudes of the pump on to the pump off as 

𝐺𝑎𝑖𝑛(, 𝛿𝑘, ) = || (2𝑚𝑒𝑓𝑓Ω𝑚∆)2 + (𝑘𝑄)2
(2𝑚𝑒𝑓𝑓Ω𝑚∆)2 − [(𝛿𝑘2 )2 − (𝑘𝑄)2]|| 

× |[2𝑚𝑒𝑓𝑓Ω𝑚∆ + 𝛿𝑘2 sin(𝜑)] + 𝑖 [𝑘𝑄 − 𝛿𝑘2 cos(𝜑)]2𝑚𝑒𝑓𝑓Ω𝑚∆ + 𝑖 𝑘𝑄 |             𝐸𝑞. 2.2.3.10 

In particular, if ∆= 0, the amplitude gain Eq.2.2.3.10 should be given by 

𝐺𝑎𝑖𝑛(∆= 0, 𝛿𝑘, 𝜑) = |1 − (𝑄𝛿𝑘2𝑘 ) cos(𝜑) − 𝑖 (𝑄𝛿𝑘2𝑘 ) sin(𝜑)(𝑄𝛿𝑘2𝑘 )2 − 1 |       𝐸𝑞. 2.2.3.11 
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Figure 2.2.2.4. Calculations of signal amplitude gain vs.  detuning, for degenerate case. Here, 

signal amplitude gains are tuned through pumping force fp, when the phase difference between 

pump and drive signal is given to be p/2. 

 

To simplify the quantity of the pump force, we define a pump force 𝑓0(𝑉𝑑𝑐 = 8𝑉, 𝑉𝑎𝑐𝑝 =0.8𝑉, 𝐶𝑔0 = 1.251 × 10−14𝐹) = 160 𝑛𝑁. Using the degenerate analytical results, we consider 

signal amplitude gains as a function of ∆ detuning, as shown in Fig. 2.2.2.4. It shows that signal 

amplitude gain of the resonator increases with decreasing the frequency detuning ∆ = wp/2 - 

Wm. Likewise, the signal amplitude gains grow if the pump force ratio increases. It exhibits the 

same tendency with non-degenerate case. 
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Figure 2.2.2.5. Calculations of signal amplitude gain vs. the phase difference between the pump 

and drive signal, in degenerate condition. These plots are calculated by taking  /Wm = 0.002. 

Note that a defined pump force 𝑓0(𝑉𝑑𝑐 = 8𝑉, 𝑉𝑎𝑐 = 0.6𝑉, 𝐶𝑔0 = 1.251 × 10−14𝐹) = 120 𝑛𝑁. 

 

Compared to the non-degenerate pumping scheme, the degenerate pumping scheme gives an 

interesting feature that signal gain relies on the pump phase, 𝜑. Fig. 2.2.2.5 shows signal 

amplitude gains periodically modified by rotating the phase about 2p, corresponding to 

different pumping forces. It is worth to note that the dashed line has been remarked to represent 

the gain about 1. Obviously, in degenerate case, we can achieve in amplification and de-

amplification of an input signal through manipulating the pump phase (also for noise).  
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Figure 2.2.2.6. Calculation results of two-quadrature 𝑋𝑄1 and 𝑋𝑄2, in the degenerate case. The 

parametric plots are plotted by the rotating phase frame (0,2p). Here, these plots are calculated 

by fixing /Wm = 0.01, a defined pump force is 𝑓0(𝑉𝑑𝑐 = 8𝑉, 𝑉𝑎𝑐 = 1.6𝑉, 𝐶𝑔0 = 1.251 ×10−14𝐹) = 320 𝑛𝑁. 

 

Fig. 2.2.2.6 shows parametric plots of both quadratures related to the formalism of 𝑥(𝑡) =𝑋𝑄1(𝑡) cos(Ω𝑚𝑡) + 𝑋𝑄2(𝑡) sin(Ω𝑚𝑡) in a rotating frame. When the pumping force increases, 

the larger compressed quadrature ellipses have been achieved, which are different from the one 

without the pumping force (as shown in Fig. 2.2.2.6, the special case 𝑓𝑝 = 0). Degenerate 

pumping gives more flexibility that we could exploit it to amplify one of the quadrature and de-

amplify the other one through controlling the phase. 

 

 

 

 

 

 

 



42                                                                                   2.2.2. Mechanical parametric pumping 
 

 

2.2.2.3 Summary  

We have discussed parametric pumping scheme in an electromechanical resonator, based on 

(i)non-degenerate pumping scheme: 𝜔𝑝 = 𝜔𝑠 + 𝜔𝑖 , 𝜔𝑝/2 = 𝜔𝑠 + 𝛿 , where there is a idler 

frequency that is generated due to frequency mixing between the pump and the probe signal 

and (ii) degenerate pumping scheme: 𝜔𝑝 = 2𝜔𝑠, where this case does not present a idler. In 

general, the non-degenerate case leads electromechanical system to achieving amplification 

used for mechanical amplifier applications; on the other hand, the degenerate case enables 

electromechanical system to de-amplify and amplify signals, which are frequently applied in 

signal-to-noise ratio improvement and thermal noise squeezing applications. Besides, signal 

gain, in both cases, also depends on frequency detuning between ω𝑝 2⁄  and mechanical 

resonance frequency, namely ∆ = ω𝑝 2⁄ − Ω𝑚. 
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2.2.3 Duffing nonlinearity 

In this section, we start to consider Duffing nonlinear mechanical resonator with linear and 

nonlinear terms, which is driven by an external sinusoidal force. This mechanical resonator is 

described as [36]  

𝑥̈ + 𝛾𝑚𝑥̇ + 𝛺𝑚2 𝑥 + 𝛼𝑥3 = 𝐹𝑚𝑒𝑓𝑓 cos(𝜔𝑑𝑡)           𝐸𝑞. 2.2.3.1 

where 𝑥 is the mechanical displacement, 𝑚 is the effective mass, 𝛾𝑚 is the damping rate, Ω𝑚 

is the intrinsic resonant frequency, 𝛼 is the nonlinear parameter, 𝐹 is the amplitude of driving 

force, and 𝜔𝑑 is the driving frequency. 

To solve this Duffing mechanical resonator, we use a solution in form of 𝑥 = 𝜇𝑥(𝑡)2 𝑒−𝑖𝜔𝑑𝑡 +𝑐. 𝑐, where 𝜇𝑥(𝑡) is the complex amplitude dependent of time variable. The relevant derivatives 

of 𝑥  are deduced and derived as described in Eq.2.2.3.2 and Eq.2.2.3.3. Eq.2.2.3.4 gives the 

term in 𝑒−𝑖𝜔𝑑𝑡 coming from 𝑥3. 𝑥̇ = 𝜇̇𝑥2 𝑒−𝑖𝜔𝑑𝑡 + 𝜇𝑥2 𝑒−𝑖𝜔𝑑𝑡(−𝑖𝜔𝑑) + 𝑐. 𝑐         𝐸𝑞. 2.2.3.2 

𝑥̈ = 𝜇̈𝑥2 𝑒−𝑖𝜔𝑑𝑡 + 𝜇̇𝑥2 𝑒−𝑖𝜔𝑑𝑡(−2𝑖𝜔𝑑) + 𝜇𝑥2 𝑒−𝑖𝜔𝑑𝑡(−𝜔𝑑2) + 𝑐. 𝑐          𝐸𝑞. 2.2.3.3 

𝑥3 = (𝜇𝑥2 𝑒−𝑖𝜔𝑑𝑡 + 𝜇𝑥∗2 𝑒𝑖𝜔𝑑𝑡)3
 gives 38 |𝜇𝑥|2𝜇𝑥𝑒−𝑖𝜔𝑑𝑡 + 𝑐. 𝑐       𝐸𝑞. 2.2.3.4 

Then substituting these terms back into Eq.2.2.3.1, it becomes 

𝜇̈𝑥 + 𝜇̇𝑥(𝛾𝑚 − 2𝑖𝜔𝑑) + 𝜇𝑥 (Ω𝑚2 − 𝜔𝑑2 − 𝑖𝜔𝑑𝛾𝑚) + 34 𝛼|𝜇𝑥|2𝜇𝑥 = 𝐹𝑚𝑒𝑓𝑓        𝐸𝑞. 2.2.3.5 

For the purpose of secular perturbation theory, we neglect 𝜇̈𝑥 here. At the same moment, the 𝜇̇𝑥(𝛾𝑚 − 2𝑖𝜔𝑑)  makes an approximation to 𝜇̇𝑥(−2𝑖𝜔𝑑)  attributing to 𝛾𝑚 ≪ 𝜔𝑑 . 

Concurrently, letting 𝜔𝑑~Ω𝑚  gets an approximate mechanical amplitude maximum. 

Furthermore, Eq.2.2.3.5 is re-written as 2𝜇̇𝑥𝛾𝑚 = 2𝑖(𝜔𝑑 − Ω𝑚)𝜇𝑥𝛾𝑚 − 𝜇𝑥 − 3𝑖4 𝛼|𝜇𝑥|2𝜇𝑥𝛾𝑚Ω𝑚 + 𝑖𝐹𝑚𝑒𝑓𝑓𝛾𝑚Ω𝑚              𝐸𝑞. 2.2.3.6 
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A rescaled time variable and amplitude comparable back to the original physical motion 

equation Eq.2.2.3.1 are reintroduced, and the derivatives of time variable and amplitude have 

been described in Eq.2.2.3.7 and Eq.2.2.3.8 respectively. 2𝛾𝑚 𝑑𝜇𝑥𝑑𝑡 = 𝑑𝜇𝑥𝑑𝑡̃            𝐸𝑞. 2.2.3.7 

where 𝑡̃ = 𝛾𝑚𝑡 2⁄  is defined with larger magnitude than the original time variable 𝑡, ascribing 

to the multiplication factor of 𝛾𝑚. 

𝑎 = √ 𝛼𝛾𝑚Ω𝑚 𝜇𝑥            𝐸𝑞. 2.2.3.8 

Simplifying the motion Eq.2.2.3.6, we can introduce an intermediate variable as present in 

Eq.2.2.3.8. When injecting Eq.2.2.3.7 and Eq.2.2.3.8 into Eq.2.2.3.6, the motion equation 

Eq.2.2.3.9 for solving the proportional amplitude 𝜇𝑥 is derived. 𝑑𝑎𝑑𝑡̃ = 2𝑖(𝜔𝑑 − Ω𝑚)𝑎𝛾𝑚 − 𝑎 − 3𝑖4 |𝑎|2𝑎 + 𝑖𝐹𝑚𝑒𝑓𝑓𝛾𝑚Ω𝑚 √ 𝛼𝛾𝑚Ω𝑚           𝐸𝑞. 2.2.3.9 

This equation can be used for secular perturbation theory while the 𝑑𝑎 𝑑𝑡̃⁄  approximating 

zero, so that it is not divergent. Therefore, a certain mechanical amplitude a is found and 

becomes 𝑎 (2Ω𝑥 + 34 |𝑎|2 − 𝑖) = 𝑔          𝐸𝑞. 2.2.3.10 

where Ω𝑥 = (Ω𝑚 − 𝜔𝑑) 𝛾𝑚⁄ , 𝑎 = 𝑥√𝛼 𝛾𝑚Ω𝑚⁄ , and 𝑔 = (𝐹 𝑚𝑒𝑓𝑓𝛾𝑚Ω𝑚⁄ )√𝛼 𝛾𝑚Ω𝑚⁄ . 

Finally, the proportional amplitude corresponding to Eq.2.2.3.10 can be given by 

|𝑎|2 = 𝑔2(2Ω𝑥 ± 34 |𝑎|2)2 + 1               𝐸𝑞. 2.2.3.11 

By analysing this rescaled equation, we can substitute the scaled terms and return back to the 

original physical motion equation Eq.2.2.3.1. Correspondingly, the original amplitude is 

approached to be 

|𝜇𝑥|2 = ( 𝐹𝑚𝑒𝑓𝑓𝛾𝑚Ω𝑚)2
(2(Ω𝑚 − 𝜔𝑑)𝛾𝑚 ± 3𝛼4𝛾𝑚Ω𝑚 |𝜇𝑥|2)2 + 1            𝐸𝑞. 2.2.3.12 
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By deducing Eq.2.2.3.11, we achieve the maximum mechanical amplitude when taking the 

denominator 2Ω𝑥 ± 34 |𝑎|2 = 0. Note that the symbol “+” and “-” correspond to Duffing 

softening and hardening nonlinear responses respectively. We will show the discussion as 

following. 

In this part, 100 nm thick SiN drum membrane with a tensile stress of 1.0 GPa and with a 

diameter of 30 𝜇𝑚 is chosen for achieving resonance frequency around 11.67 MHz, and 

capacitive distance is defined to be around 790 nm for approximating the experimental 

capacitance value. 
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Figure 2.2.3.1. Calculation results of softening and hardening Duffing nonlinear responses as 

function of driving frequency. Note that the dashed lines are unstable solutions.  

 

Nonlinearity is one of important features of a mechanical system applied for signal processing 

or ultrasensitive sensor [114,115]. In general, a mechanical resonator is driven in the linear 

region, so we can neglect the impact of nonlinear term on the mechanical system. However, if 

the nonlinear term cannot be neglected, we need to consider it. In other words, if nonlinear term 𝛼𝑥3 in Eq.2.2.3.1 is comparable with the linear term 𝛺𝑚2 𝑥, forming a comparable expression 𝛺𝑚2 (1 + 𝛼|𝑥|2𝛺𝑚2 )𝑥 , nonlinearity should not be neglected because it does shift mechanical 

resonance frequency. Fig. 2.2.3.1 shows the calculated results of Duffing nonlinearity, including 

the softening (“+”) and hardening (“-”) nonlinear curves. Here, nonlinear parameter, driving 
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force, effective mass, resonant frequency and quality factor are 𝛼 = 6.8 × 1027 𝑚−2 ∙ 𝑠−2 , 𝑓𝑑 = 500 𝑝𝑁, 𝑚𝑒𝑓𝑓 = 4.4 × 10−14 𝑘𝑔, Ω𝑚2𝜋 = 11.6711 𝑀𝐻𝑧 and 𝑄 = 17200, respectively. 
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Figure 2.2.3.2. Calculation results of Duffing mechanical responses. (a) Nonlinear amplitude 

as a function of frequency with  increasing. (b) Nonlinear amplitude as function of frequency 

with the driving force increasing. The calculation static capacitance 𝐶𝑔0(𝑑 ≈ 790 𝑛𝑚, 𝐷 ≈30 𝜇𝑚) ≈ 7.918 × 10−15 𝐹 is used here. 

 

Besides, the specific hardening nonlinearity can be discussed further. Fig. 2.2.3.2(a) shows the 

nonlinearity can be modulated by the control of nonlinear parameter while fixing driving force, 

effective mass, resonance frequency and quality factor being 𝑓𝑑 = 450 𝑝𝑁, 𝑚𝑒𝑓𝑓 =4.4 × 10−14 𝑘𝑔, Ω𝑚2𝜋 = 11.6711 𝑀𝐻𝑧, and 𝑄 = 20000, respectively. This is helpful for us to 

understand whether, or not, a suitable nonlinear curve shape can be approached. Fig. 2.2.3.2(b) 

shows the nonlinearity is able to approach the higher amplitude when increasing the drive force. 

In this case, nonlinear parameter, driving force, effective mass, resonance frequency and quality 

factor being 𝛼 = 5.6 × 1026 𝑚−2 ∙ 𝑠−2 ,  𝑚𝑒𝑓𝑓 = 4.4 × 10−14 𝑘𝑔 , 
Ω𝑚2𝜋 = 11.6711 𝑀𝐻𝑧 , 𝑄 =20000 have been used as well. 
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2.2.4 Double-tone driving scheme in nanoelectromechanics, an 

analogy to optomechanical system 

In previous section 2.2.1 and 2.2.2, both single tone driving scheme and parametric pumping 

scheme have been introduced. In this subsection, we start to analyse a double-tone driving 

scheme in a coupled nanoelectromechanical system, consisting of two capacitively coupled  

nanoelectromechanical resonators. One of the coupled resonators, having the higher resonance 

frequency, is chosen as a phonon-cavity, in order to perform an analog to the optomechanical 

system. Classical optomechanical systems [116] contain a mechanical resonator (e.g., 

membrane) that is embedded and connected to the optical cavity. Through semi-reflected mirror 

side, light waves in forms of photons with a driving frequency are input into the cavity 

interacting with the movable object, namely mechanical resonator. Light waves confined in the 

cavity with higher frequency can be optical cavity mode, and the mechanical resonator with 

relatively low resonance frequency can be mechanical mode, thus establishing the energy 

transduction between the both. Such phenomena have also been observed in the 

nanoelectromechanical systems [117,118]. 

In this double-tone scheme, we use one RF signal to probe one of the coupled resonators and 

take the other RF signal to pump the phonon-cavity at its sideband. More details in both 

experiment and modelling have been reported by Pokharel et al [93]. 

2.2.4.1 Analytical modelling of the double tone driving scheme 

We consider a nanoelectromechanical system as a capacitor consisting of two parallel and 

movable plates, namely 𝐶𝑔(𝑋1, 𝑋2), as shown in Fig. 2.2.4.1, where the displacements 𝑋1 and 𝑋2 correspond to the plates resonating at the frequencies Ω1 and Ω2 respectively. 

 

Figure 2.2.4.1. (a) Sketch of a bottom drum resonator capacitively coupled to a top gate drum 

resonator. (b) Structure of the capacitively coupled two membrane resonators. Note that 𝑉𝑎𝑐(𝜔𝑝, 𝜔𝑑) contains two ac signals, namely sideband pump signal with frequency 𝜔𝑝  and 
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probe signal with frequency 𝜔𝑑. Here, probe signal can drive either SiN drum or Al drum, 

therefore having frequency labelled later by 𝜔𝑑1 or 𝜔𝑑2, respectively. 

 

The driving force of the mechanical system is given by 

𝐹1(𝑋1, 𝑋2) = 𝑉22 𝜕𝐶𝑔(𝑋1, 𝑋2)𝜕𝑋1           𝐸𝑞. 2.2.4.1 

where driving voltage is 𝑉 = 𝑉𝑑𝑐 + 𝑉𝑎𝑐, more details can be found in section 2.2.1. 

Here we think of this driving force with second order Taylor expansion of the capacitance 

approximation 𝐶𝑔(𝑥) ≈ 𝐶𝑔0(1 − 𝑥𝑑 + 𝑥2𝑑2), where we define 𝑥(𝑡) = 𝑋2(𝑡) − 𝑋1(𝑡). Therefore, 

the driving force can be extended to be 

𝐹1(𝑋1, 𝑋2) = 𝑉2𝐶𝑔02 𝜕𝜕𝑋1 (1 − (𝑋2 − 𝑋1)𝑑 + (𝑋2 − 𝑋1)2𝑑2 )           𝐸𝑞. 2.2.4.2 

The motion equations of the mechanical resonators are given by [93] 

𝑋̈1 + 𝛾1𝑋̇1 + Ω12𝑋1 = 𝑉2𝐶𝑔02𝑑𝑚1 (1 − 2(𝑋2 − 𝑋1)𝑑 )             𝐸𝑞. 2.2.4.3(𝑎) 

𝑋̈2 + 𝛾2𝑋̇2 + Ω22𝑋2 = 𝑉2𝐶𝑔02𝑑𝑚2 (−1 + 2(𝑋2 − 𝑋1)𝑑 )           𝐸𝑞. 2.2.4.3(𝑏) 

where 𝛾1,2 is the damping rate, 𝑚1,2 is the effective mass and 𝐶𝑔0  is the initial capacitance 

between two parallel circular membranes with a capacitive distance 𝑑. 

We have discussed the 𝑉2 in the section 2.2.1, and take 2𝑉𝑎𝑐𝑉𝑑𝑐 to analyse the equations. To 

make an electromechanical analog to optomechanical experiments, we made several important 

definitions. First, a resonator having a higher resonance frequency in the coupled mechanical 

system is defined as a phonon-cavity and labelled as the mechanical resonator <1>; the other 

coupled resonator is labelled as <2>. In the following, we will discuss four kinds of double-

tone driving schemes. 
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Table 2.2.4.1. Red sideband pump the phonon cavity and probe the phonon cavity 

Parameter SiN drum resonator <1> Al drum resonator <2> 

Resonance 

frequency 

Ω1 Ω2 

Displacement 𝑋1(𝑡) = 𝑥1(𝑡)2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐 𝑋2(𝑡) = 𝑥2(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡 + 𝑐. 𝑐 

Probe signal Ω𝑑1 = Ω1 + 𝛿 No 

Pump signal Ω𝑝 = Ω1 − Ω2 + ∆ No 

Mechanical 

susceptibility 
𝜒1[Ω𝑑1] = 1Ω1 − Ω𝑑1 − 𝑖 𝛾12  𝜒2[Ω𝑑2] = 1Ω2 − Ω𝑑2 − 𝑖 𝛾22  

Definitions of 

mechanical 

susceptibility 

𝜒1𝑟𝑒𝑑 = 1−𝛿 − 𝑖 𝛾12  𝜒2𝑟𝑒𝑑 = 1Δ − 𝛿 − 𝑖 𝛾22  

Solution of 

displacement 

𝑥1= 𝑓𝑑12𝑚1Ω1 1𝜒1−1[Ω𝑑1] − |𝑓𝑝|2𝜒2[Ω𝑑2]4𝑚1𝑚2𝑑2Ω1Ω2
 

𝑥2 = − 𝑓𝑝∗2𝑚2Ω2 𝑥1𝑑 𝜒2[Ω𝑑2] 
Effective 

damping rate 

𝛾𝑒𝑓𝑓1𝑟𝑒𝑑= 𝛾1+ |𝑓𝑝|24𝑚1𝑚2𝑑2Ω1Ω2 𝛾2(Ω2 − Ω𝑑2)2 + 𝛾224  

No 

 

Red sideband pump the phonon cavity and probe the phonon cavity. We first use one signal 

with frequency Ω𝑑1 to probe around mechanical resonator <1>, namely Ω𝑑1 = Ω1 + 𝛿. Here, 𝛿 

is a small value, indicating a frequency detuning from Ω1. Then, we use the other sideband 
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signal to pump the phonon cavity at its red sideband ~Ω1 − Ω2 . A small pump frequency 

detuning ∆ is defined to be Ω𝑝 = Ω1 − Ω2 + ∆. 

 

 

Figure 2.2.4.2. Spectrum landscape at red sideband pumping scheme while probing the 

phonon-cavity. Purple and grey colors are the mechanical resonator <1> with higher frequency Ω1 and the mechanical resonator <2> with the low resonance frequency Ω2. Green color is a 

probe signal with the frequency Ω𝑑1 = Ω1 + 𝛿 at the phonon cavity. Red color is red sideband 

pumping with the frequency Ω𝑝 = Ω1 − Ω2 + ∆. Blue and orange dashed signal bars describe 

the down-conversion phonons at mechanical resonator <2> and the feedback phonons at the 

phonon-cavity mechanical resonator <1>. 

 

Because the phonon cavity, corresponding to the displacement 𝑋1, is driving with Ω𝑑1, we look 

for Eq. 2.2.4.3(a) frequency match with 𝑒−𝑖Ω𝑑1𝑡. Considering that the mechanical system is 

driving with two tones, namely the probe and the pump, we have the voltage 𝑉𝑎𝑐(ω𝑝, ω𝑑1) =𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 + 𝜇𝑠2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐 . We also define the probed mechanical resonator 𝑋1(𝑡) =𝑥1(𝑡)2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐 and the other coupled mechanical resonator 𝑋2(𝑡) = 𝑥2(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡 + 𝑐. 𝑐. 

The frequency match is given by selecting these terms containing 𝑒−𝑖Ω𝑑1𝑡 . Therefore, 

Eq.2.2.4.3(a) can be modified by 
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𝑉𝑑𝑐𝐶𝑔02𝑑𝑚1 (1 − 2(𝑋2 − 𝑋1)𝑑 ) ∙ 𝑉𝑎𝑐(ω𝑝, ω𝑑1)
= 𝑉𝑑𝑐𝐶𝑔02𝑑𝑚1 (1 − 2 (𝑥2(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡 − 𝑥1(𝑡)2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐)𝑑 )
∙ (𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 + 𝜇𝑠2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐)            𝐸𝑞. 2.2.4.4(𝑎) 

To select the terms related to 𝑒−𝑖Ω𝑑1𝑡, we discuss each term in Eq.2.2.4.4(a) exhibiting below: 

1 ∙ (𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 + 𝜇𝑠2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐)              𝐸𝑞. 2.2.4.5(1)  
The term 

𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 can be neglected due to there no frequency mixing with 𝑒−𝑖Ω𝑑1𝑡 and the 

term 
𝜇𝑠2 𝑒−𝑖Ω𝑑1𝑡 can be kept because of its exact same with 𝑒−𝑖Ω𝑑1𝑡; 𝑥2(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡 ∙ (𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 + 𝜇𝑠2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐)              𝐸𝑞. 2.2.4.5(2)  

The term 
𝑥2(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡 multiplying with 

𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 can be kept due to a frequency mixing 

with 𝑒−𝑖Ω𝑑1𝑡 , and the term 
𝑥2(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡  multiplying with 

𝜇𝑠2 𝑒−𝑖Ω𝑑1𝑡  can be neglected 

because of there no frequency mixing with 𝑒−𝑖Ω𝑑1𝑡; 𝑥1(𝑡)2 𝑒−𝑖Ω𝑑1𝑡 ∙ (𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 + 𝜇𝑠2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐)              𝐸𝑞. 2.2.4.5(3)  
The term 

𝑥1(𝑡)2 𝑒−𝑖Ω𝑑1𝑡 multiplying with other terms can all be neglected because there is no 

frequency mixing with 𝑒−𝑖Ω𝑑1𝑡. 

We summarize our analysis by selecting the terms containing 𝑒−𝑖Ω𝑑1𝑡, which is given by 𝑉𝑑𝑐𝐶𝑔02𝑑𝑚1 (1 − 2(𝑋2 − 𝑋1)𝑑 ) ∙ 𝑉𝑎𝑐(ω𝑝, ω𝑑1) ≝ 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚1 (𝑥1𝑠2 − 𝜇𝑝𝑥22𝑑 ) 𝑒−𝑖Ω𝑑1𝑡   𝐸𝑞. 2.2.4.6(𝑎) 

 

Similarly, Eq.2.2.4.3(b) can be modified by 
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𝑉𝑑𝑐𝐶𝑔02𝑑𝑚2 (−1 + 2(𝑋2 − 𝑋1)𝑑 ) ∙ 𝑉𝑎𝑐(ω𝑝)
= 𝑉𝑑𝑐𝐶𝑔02𝑑𝑚2 (−1 + 2 (𝑥2(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡 − 𝑥1(𝑡)2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐)𝑑 )
∙ (𝜇𝑝∗2 𝑒𝑖Ω𝑝𝑡 + 𝑐. 𝑐)     𝐸𝑞. 2.2.4.4(𝑏)  

To select the terms related to 𝑒−𝑖Ω𝑑2𝑡, we discuss each term in Eq.2.2.4.4(b) exhibiting below: 

−1 ∙ (𝜇𝑝∗2 𝑒𝑖Ω𝑝𝑡 + 𝑐. 𝑐)              𝐸𝑞. 2.2.4.7(1)  
The term 

𝜇𝑝∗2 𝑒𝑖Ω𝑝𝑡 can be neglected due to there no frequency mixing with 𝑒−𝑖Ω𝑑2𝑡; 𝑥2(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡 ∙ (𝜇𝑝∗2 𝑒𝑖Ω𝑝𝑡 + 𝑐. 𝑐)              𝐸𝑞. 2.2.4.7(2)  
The term 

𝑥2(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡  multiplying with 
𝜇𝑝∗2 𝑒𝑖Ω𝑝𝑡  can be neglected due to there no a 

frequency mixing with 𝑒−𝑖Ω𝑑2𝑡; 𝑥1(𝑡)2 𝑒−𝑖Ω𝑑1𝑡 ∙ (𝜇𝑝∗2 𝑒𝑖Ω𝑝𝑡 + 𝑐. 𝑐)              𝐸𝑞. 2.2.4.7(3)  
The term 

𝑥1(𝑡)2 𝑒−𝑖Ω𝑑1𝑡  multiplying with 
𝜇𝑝∗2 𝑒𝑖Ω𝑝𝑡  can be kept because of there a frequency 

mixing 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡 with 𝑒−𝑖Ω𝑑2𝑡. 

We summarize our analysis by selecting the terms containing 𝑒−𝑖Ω𝑑2𝑡, which is given by 𝑉𝑑𝑐𝐶𝑔02𝑑𝑚2 (−1 + 2(𝑋2 − 𝑋1)𝑑 ) ∙ 𝑉𝑎𝑐(ω𝑝) ≝ − 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚2 𝜇𝑝∗ 𝑥12𝑑 𝑒−𝑖Ω𝑑2𝑡     𝐸𝑞. 2.2.4.6(𝑏) 

 

After mixing the frequencies, we derive the analytical motion equations to be 

𝑋̈1 + 𝛾1𝑋̇1 + Ω12𝑋1 = 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚1 (𝑥1𝑠2 − 𝜇𝑝𝑥22𝑑 )𝑒−𝑖Ω𝑑1𝑡            𝐸𝑞. 2.2.4.8(𝑎) 

𝑋̈2 + 𝛾2𝑋̇2 + Ω22𝑋2 = − 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚2 𝜇𝑝∗ 𝑥12𝑑 𝑒−𝑖Ω𝑑2𝑡           𝐸𝑞. 2.2.4.8(𝑏) 
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Based on Ω𝑑1 = Ω1 + 𝛿  and Ω𝑑2 = Ω2 + 𝛿 − ∆ , if ∆, 𝛿 → 0 , we get approximations to be Ω12 − Ω𝑑12 ≈ 2Ω1(Ω1 − Ω𝑑1) and Ω22 − Ω𝑑22 ≈ 2Ω2(Ω2 − Ω𝑑2). The equations are recast by 

Ω1𝜒1−1[Ω𝑑1]𝑥1 = 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚1 (𝜇𝑠2 − 𝜇𝑝𝑥22𝑑 )            𝐸𝑞. 2.2.4.9(𝑎) 

Ω2𝜒2−1[Ω𝑑2]𝑥2 = − 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚2 𝜇𝑝∗ 𝑥12𝑑              𝐸𝑞. 2.2.4.9(𝑏) 

where 𝜒1[Ω𝑑1] = 1Ω1−Ω𝑑1−𝑖𝛾12  and 𝜒2[Ω𝑑2] = 1Ω2−Ω𝑑2−𝑖𝛾22  are the mechanical susceptibilities, 𝜇𝑠 

is a probe signal amplitude, 𝑥1 and 𝑥2 are the slow varying complex amplitudes corresponding 

to the mechanical displacements. 

Because the mechanical displacements in this electromechanical system exhibiting similar a 

behaviour to the optomechanically induced transparency [119][120], the analytical solutions 

from Eq.2.2.4.9 can be described by 

𝑥1 = 𝑓𝑑12𝑚1Ω1 1𝜒1−1[Ω𝑑1] − |𝑓𝑝|2𝜒2[Ω𝑑2]4𝑚1𝑚2𝑑2Ω1Ω2
              𝐸𝑞. 2.2.4.10(𝑎)   

𝑥2 = − 𝑓𝑝∗2𝑚2Ω2 𝑥1𝑑 𝜒2[Ω𝑑2]                  𝐸𝑞. 2.2.4.10(𝑏)   
where 𝑓𝑑1 = 𝑉𝑑𝑐𝐶𝑔0𝜇𝑠𝑑  is the probe force and 𝑓𝑝∗ = 𝑉𝑑𝑐𝐶𝑔0𝜇𝑝∗𝑑  is the conjugate pump force. 

Furthermore, the effective damping rate at red sideband is given by 

𝛾𝑒𝑓𝑓1𝑟𝑒𝑑 = 𝛾1 + |𝑓𝑝|24𝑚1𝑚2𝑑2Ω1Ω2 𝛾2(Ω2 − Ω𝑑2)2 + 𝛾224            𝐸𝑞. 2.2.4.11 

To make the frequency operation clear, we define the mechanical susceptibilities 𝜒1,2𝑟𝑒𝑑 when 

probing at the frequency Ω𝑑1 = Ω1 + 𝛿 and red sideband pumping at the frequency Ω𝑝 = Ω1 −Ω2 + ∆. Then, they are given by 

𝜒1𝑟𝑒𝑑 = 1−𝛿 − 𝑖 𝛾12           𝐸𝑞. 2.2.4.12(𝑎) 

𝜒2𝑟𝑒𝑑 = 1Δ − 𝛿 − 𝑖 𝛾22           𝐸𝑞. 2.2.4.12(𝑏) 
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Table 2.2.4.2. Blue sideband pump the phonon cavity and probe the phonon cavity 

Parameter SiN drum resonator <1> Al drum resonator <2> 

Resonance 

frequency 
Ω1 Ω2 

Displacement 𝑋1(𝑡) = 𝑥1(𝑡)2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐 𝑋2(𝑡) = 𝑥2(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡 + 𝑐. 𝑐 
Probe signal Ω𝑑1 = Ω1 + 𝛿 No 

Pump signal Ω𝑝 = Ω1 + Ω2 + ∆ No 

Mechanical 

susceptibility  
𝜒1[Ω𝑑1] = 1Ω1 − Ω𝑑1 − 𝑖 𝛾12  𝜒2[Ω𝑑2] = 1Ω2 − Ω𝑑2 − 𝑖 𝛾22  

Definitions of 

mechanical 

susceptibility 

𝜒1𝑏𝑙𝑢𝑒 = 1−𝛿 − 𝑖 𝛾12  𝜒2𝑏𝑙𝑢𝑒 = 1𝛿 − 𝛥 − 𝑖 𝛾22  

Solution of 

displacement 

𝑥1= 𝑓𝑑12𝑚1Ω1 1𝜒1−1[Ω𝑑1] + |𝑓𝑝|2𝜒2[Ω𝑑2]4𝑚1𝑚2𝑑2Ω1Ω2
 

𝑥2 = − 𝑓𝑝2𝑚2Ω2 𝑥1∗𝑑 𝜒2[Ω𝑑2] 
Effective 

damping rate 

𝛾𝑒𝑓𝑓1𝑏𝑙𝑢𝑒= 𝛾1− |𝑓𝑝|24𝑚1𝑚2𝑑2Ω1Ω2 𝛾2(Ω2 − Ω𝑑2)2 + 𝛾224   

No 

  

 

Blue sideband pump the phonon cavity and probe the phonon cavity. We still use one signal 

with frequency Ω𝑑1 to probe around mechanical resonator <1>, namely Ω𝑑1 = Ω1 + 𝛿. Then in 

this time, we use the other sideband signal to pump the phonon cavity at its blue sideband ~Ω1 + Ω2. A small pump frequency detuning ∆ is defined to be Ω𝑝 = Ω1 + Ω2 + ∆.  
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Figure 2.2.4.3. Spectrum landscape at blue sideband pumping scheme while probing the 

phonon-cavity. Purple and grey colors are the mechanical resonator <1> with higher frequency Ω1 and the mechanical resonator <2> with the low resonance frequency Ω2. Green color is a 

probe signal with the frequency Ω𝑑1 = Ω1 + 𝛿  at the phonon-cavity. Blue color is blue 

sideband pumping with the frequency Ω𝑝 = Ω1 + Ω2 + ∆. Red and orange dashed signal bars 

are the down-conversion phonons at mechanical resonator <2> and the feedback phonons at the 

phonon cavity mechanical resonator <1>. 

 

Because the phonon cavity, corresponding to the displacement 𝑋1, is driving with Ω𝑑1, we look 

for the Eq. 2.2.4.3(a) frequency match with 𝑒−𝑖Ω𝑑1𝑡. Considering that the system is driving with 

two tones, namely the probe and the pump, we get the 𝑉𝑎𝑐(ω𝑝, ω𝑑1) = 𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 +𝜇𝑠2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐. We also defined the probed mechanical resonator 𝑋1(𝑡) = 𝑥1(𝑡)2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐 

and the other coupled mechanical resonator 𝑋2(𝑡) = 𝑥2∗(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡 + 𝑐. 𝑐 . The frequency 

match is given by selecting these terms containing 𝑒−𝑖Ω𝑑1𝑡. Eq.2.2.4.3(a) can be modified by 𝑉𝑑𝑐𝐶𝑔02𝑑𝑚1 (1 − 2(𝑋2 − 𝑋1)𝑑 ) ∙ 𝑉𝑎𝑐(ω𝑝, ω𝑑1)
= 𝑉𝑑𝑐𝐶𝑔02𝑑𝑚1 (1 − 2 (𝑥2∗(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡 − 𝑥1∗(𝑡)2 𝑒𝑖Ω𝑑1𝑡 + 𝑐. 𝑐)𝑑 )
∙ (𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 + 𝜇𝑠2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐)            𝐸𝑞. 2.2.4.13(𝑎) 

To select the terms related to 𝑒−𝑖Ω𝑑1𝑡, we discuss each term in Eq.2.2.4.13(a) exhibiting below: 



56                                                2.2.4. Double-tone driving scheme in nanoelectromechanics 
 

 

1 ∙ (𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 + 𝜇𝑠2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐)              𝐸𝑞. 2.2.4.14(1)  
The term 

𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 can be neglected due to there no frequency mixing with 𝑒−𝑖Ω𝑑1𝑡 and the 

term 
𝜇𝑠2 𝑒−𝑖Ω𝑑1𝑡 can be kept because of its exact mixing with  𝑒−𝑖Ω𝑑1𝑡; 𝑥2∗(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡 ∙ (𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 + 𝜇𝑠2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐)              𝐸𝑞. 2.2.4.14(2)  

The term 
𝑥2∗(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡 multiplying with 

𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 can be kept due to a frequency mixing 

with 𝑒−𝑖Ω𝑑1𝑡 , and the term 
𝑥2∗(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡  multiplying with 

𝜇𝑠2 𝑒−𝑖Ω𝑑1𝑡  can be neglected 

because of there no frequency mixing with 𝑒−𝑖Ω𝑑1𝑡; 𝑥1∗(𝑡)2 𝑒𝑖Ω𝑑1𝑡 ∙ (𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 + 𝜇𝑠2 𝑒−𝑖Ω𝑑1𝑡 + 𝑐. 𝑐)              𝐸𝑞. 2.2.4.14(3)  
The term 

𝑥1∗(𝑡)2 𝑒𝑖Ω𝑑1𝑡  multiplying with other terms can be neglected because there is no 

frequency mixing with 𝑒−𝑖Ω𝑑1𝑡. 

We summarize our analysis by selecting the terms containing 𝑒−𝑖Ω𝑑1𝑡. It is given by 𝑉𝑑𝑐𝐶𝑔02𝑑𝑚1 (1 − 2(𝑋2 − 𝑋1)𝑑 ) ∙ 𝑉𝑎𝑐(ω𝑝, ω𝑑1) ≝ 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚1 (𝑥1𝑠2 − 𝜇𝑝𝑥2∗2𝑑 ) 𝑒−𝑖Ω𝑑1𝑡   𝐸𝑞. 2.2.4.15(𝑎) 

 

Similarly, Eq.2.2.4.3(b) can be modified by 𝑉𝑑𝑐𝐶𝑔02𝑑𝑚2 (−1 + 2(𝑋2 − 𝑋1)𝑑 ) ∙ 𝑉𝑎𝑐(ω𝑝)
= 𝑉𝑑𝑐𝐶𝑔02𝑑𝑚2 (−1 + 2 (𝑥2∗(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡 − 𝑥1∗(𝑡)2 𝑒𝑖Ω𝑑1𝑡 + 𝑐. 𝑐)𝑑 )
∙ (𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 + 𝑐. 𝑐)     𝐸𝑞. 2.2.4.13(𝑏)  

To select the term related to 𝑒−𝑖Ω𝑑2𝑡, we discuss each term in Eq.2.2.4.13(b) exhibiting below: 

−1 ∙ (𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 + 𝑐. 𝑐)              𝐸𝑞. 2.2.4.16(1)  
The term 

𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 can be neglected due to there no frequency mixing with 𝑒−𝑖Ω𝑑2𝑡; 
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𝑥2∗(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡 ∙ (𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 + 𝑐. 𝑐)              𝐸𝑞. 2.2.4.16(2)  
The term 

𝑥2∗(𝑡)2 𝑒𝑖(Ω𝑝−Ω𝑑1)𝑡  multiplying with 
𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡  can be neglected due to there no a 

frequency mixing with 𝑒−𝑖Ω𝑑2𝑡; 𝑥1∗(𝑡)2 𝑒𝑖Ω𝑑1𝑡 ∙ (𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 + 𝑐. 𝑐)              𝐸𝑞. 2.2.4.16(3)  
The term 

𝑥1∗(𝑡)2 𝑒𝑖Ω𝑑1𝑡  multiplying with 
𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 can be kept because of there a frequency 

mixing 𝑒𝑖(−Ω𝑝+Ω𝑑1)𝑡 with 𝑒−𝑖Ω𝑑2𝑡. 

We summarize our analysis by selecting the terms containing 𝑒−𝑖Ω𝑑2𝑡. It is given by 𝑉𝑑𝑐𝐶𝑔02𝑑𝑚2 (−1 + 2(𝑋2 − 𝑋1)𝑑 ) ∙ 𝑉𝑎𝑐(ω𝑝) ≝ − 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚2 𝜇𝑝𝑥1∗2𝑑 𝑒−𝑖Ω𝑑2𝑡         𝐸𝑞. 2.2.4.15(𝑏) 

 

After mixing the frequencies, the analytical equations are derived to be 

𝑋̈1 + 𝛾1𝑋̇1 + Ω12𝑋1 = 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚1 (𝑥1𝑠2 − 𝜇𝑝𝑥2∗2𝑑 )𝑒−𝑖Ω𝑑1𝑡            𝐸𝑞. 2.2.4.17(𝑎) 

𝑋̈2 + 𝛾2𝑋̇2 + Ω22𝑋2 = − 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚2 𝜇𝑝𝑥1∗2𝑑 𝑒−𝑖Ω𝑑2𝑡           𝐸𝑞. 2.2.4.17(𝑏) 

Based on Ω𝑑1 = Ω1 + 𝛿 and Ω𝑑2 = Ω2 + ∆ − 𝛿, if ∆, 𝛿 → 0, we have approximations to be Ω12 − Ω𝑑12 ≈ 2Ω1(Ω1 − Ω𝑑1)  and Ω22 − Ω𝑑22 ≈ 2Ω2(Ω2 − Ω𝑑2) , the corresponding equations 

are given by 

Ω1𝜒1−1[Ω𝑑1]𝑥1 = 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚1 (𝜇𝑠2 − 𝜇𝑝𝑥2∗2𝑑 )             𝐸𝑞. 2.2.4.18(𝑎) 

Ω2𝜒2−1[Ω𝑑2]𝑥2 = − 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚2 𝜇𝑝𝑥1∗2𝑑               𝐸𝑞. 2.2.4.18(𝑏) 

Due to the mechanical displacements featuring a similar behaviour to the optomechanically 

induced amplification [120],[117], the analytical solutions from Eq.2.2.4.18 can be written by 

𝑥1 = 𝑓𝑑12𝑚1Ω1 1𝜒1−1[Ω𝑑1] + |𝑓𝑝|2𝜒2[Ω𝑑2]4𝑚1𝑚2𝑑2Ω1Ω2
              𝐸𝑞. 2.2.4.19(𝑎)   
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𝑥2 = − 𝑓𝑝2𝑚2Ω2 𝑥1∗𝑑 𝜒2[Ω𝑑2]                  𝐸𝑞. 2.2.4.19(𝑏)   
where 𝑓𝑑1 = 𝑉𝑑𝑐𝐶𝑔0𝜇𝑠𝑑  is the probe force and 𝑓𝑝 = 𝑉𝑑𝑐𝐶𝑔0𝜇𝑝𝑑  is the pump force. 

Likewise, the effective damping rate at blue sideband is given by 

𝛾𝑒𝑓𝑓1𝑏𝑙𝑢𝑒 = 𝛾1 − |𝑓𝑝|24𝑚1𝑚2𝑑2Ω1Ω2 𝛾2(Ω2 − Ω𝑑2)2 + 𝛾224            𝐸𝑞. 2.2.4.20 

We similarly define the mechanical susceptibilities 𝜒1,2𝑏𝑙𝑢𝑒 when probing at the frequency Ω𝑑1 =Ω1 + 𝛿 and blue sideband pumping at the frequency Ω𝑝 = Ω1 + Ω2 + ∆. Then, the mechanical 

susceptibilities 𝜒1,2𝑏𝑙𝑢𝑒 at blue sideband become 

𝜒1𝑏𝑙𝑢𝑒 = 1−𝛿 − 𝑖 𝛾12           𝐸𝑞. 2.2.4.21(𝑎) 

𝜒2𝑏𝑙𝑢𝑒 = 1𝛿 − Δ − 𝑖 𝛾22           𝐸𝑞. 2.2.4.21(𝑏) 

We compare the mechanical susceptibilities between at red and blue sidebands. An analytical 

result is seen as 𝜒2𝑟𝑒𝑑 = −𝜒2∗𝑏𝑙𝑢𝑒. Thus, we rewrite the analytical solutions to be 

𝑥1 = 𝑓𝑑2𝑚1Ω1 1𝜒1−1[Ω𝑑1] ± |𝑓𝑝|2𝜒2[Ω𝑑2]4𝑚1𝑚2𝑑2Ω1Ω2
            𝐸𝑞. 2.2.4.22  

where the symbols ‘-’ and ‘+’ are red and blue sideband. 
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Table 2.2.4.3. Red sideband pump the phonon cavity and probe the coupled Al drum 

Parameter SiN drum resonator <1> Al drum resonator <2> 

Resonance 

frequency 
Ω1 Ω2 

Displacement 𝑋1(𝑡) = 𝑥1(𝑡)2 𝑒−𝑖(Ω𝑝+Ω𝑑2)𝑡+ 𝑐. 𝑐 𝑋2(𝑡) = 𝑥2(𝑡)2 𝑒−𝑖Ω𝑑2𝑡 + 𝑐. 𝑐 
Probe signal No Ω𝑑2 = Ω2 + 𝛿 
Pump signal Ω𝑝 = Ω1 − Ω2 + ∆ No 

Mechanical 

susceptibility  
𝜒1[Ω𝑑1] = 1Ω1 − Ω𝑑1 − 𝑖 𝛾12  𝜒2[Ω𝑑2] = 1Ω2 − Ω𝑑2 − 𝑖 𝛾22  

Definitions of 

mechanical 

susceptibility 

𝜒1𝑟𝑒𝑑 = 1−Δ − 𝛿 − 𝑖 𝛾12  𝜒2𝑟𝑒𝑑 = 1−𝛿 − 𝑖 𝛾22  

Solution of 

displacement 
𝑥1 = − 𝑓𝑝2𝑚1Ω1 𝑥2𝑑 𝜒1[Ω𝑑1]  

𝑥2= − 𝑓𝑑22𝑚2Ω2 1𝜒2−1[Ω𝑑2] − |𝑓𝑝|2𝜒1[Ω𝑑1]4𝑚1𝑚2𝑑2Ω1Ω2
  

Effective 

damping rate 
No 𝛾𝑒𝑓𝑓2𝑟𝑒𝑑= 𝛾2+ |𝑓𝑝|24𝑚1𝑚2𝑑2Ω1Ω2 𝛾1(Ω1 − Ω𝑑1)2 + 𝛾124   

 

Red sideband pump the phonon-cavity and probe the coupled Al drum. We present the 

similar analytical analysis to the red sideband pumping abovementioned by Eq.2.2.4.4. We first 

use one signal with frequency Ω𝑑2 to probe around mechanical resonator <2>, namely Ω𝑑2 =Ω2 + 𝛿. Here, 𝛿 indicates a frequency detuning from Ω2. Then, we use the other sideband signal 

to pump the phonon cavity at its red sideband ~Ω1 − Ω2. A small pump frequency detuning ∆ 

is defined to be Ω𝑝 = Ω1 − Ω2 + ∆. 
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Considering that the mechanical system is driving with the probe and the pump, we have the 𝑉𝑎𝑐(ω𝑝, ω𝑑2) = 𝜇𝑝2 𝑒−𝑖Ω𝑝𝑡 + 𝜇𝑠2 𝑒−𝑖Ω𝑑2𝑡 + 𝑐. 𝑐. We also define the probed mechanical resonator 𝑋2(𝑡) = 𝑥2(𝑡)2 𝑒−𝑖Ω𝑑2𝑡 + 𝑐. 𝑐  and the other coupled mechanical resonator 𝑋1(𝑡) =𝑥2(𝑡)2 𝑒−𝑖(Ω𝑝+Ω𝑑2)𝑡 + 𝑐. 𝑐 . The frequency match is given by selecting these terms containing 𝑒−𝑖Ω𝑑1𝑡. Therefore, Eq.2.2.4.3(a) can be analysed and given by 

𝑋̈1 + 𝛾1𝑋̇1 + Ω12𝑋1 = − 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚1 𝜇𝑝𝑥22𝑑 𝑒−𝑖Ω𝑑1𝑡            𝐸𝑞. 2.2.4.23(𝑎) 

𝑋̈2 + 𝛾2𝑋̇2 + Ω22𝑋2 = 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚2 (− 𝑥2𝑠2 − 𝜇𝑝∗ 𝑥12𝑑 ) 𝑒−𝑖Ω𝑑2𝑡           𝐸𝑞. 2.2.4.23(𝑏) 

Based on Ω𝑑2 = Ω2 + 𝛿 and Ω𝑑1 = Ω1 + ∆ + 𝛿, if ∆, 𝛿 → 0, we have approximations Ω12 −Ω𝑑12 ≈ 2Ω1(Ω1 − Ω𝑑1)  and Ω22 − Ω𝑑22 ≈ 2Ω2(Ω2 − Ω𝑑2) . The analytical equations are 

modified by 

Ω1𝜒1−1[Ω𝑑1]𝑥1 = − 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚1 𝜇𝑝𝑥22𝑑             𝐸𝑞. 2.2.4.24(𝑎) 

Ω2𝜒2−1[Ω𝑑2]𝑥2 = 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚2 (− 𝜇𝑠2 − 𝜇𝑝∗ 𝑥12𝑑 )             𝐸𝑞. 2.2.4.24(𝑏) 

where 𝜒1[Ω𝑑1] = 1Ω1−Ω𝑑1−𝑖𝛾12  and 𝜒2[Ω𝑑2] = 1Ω2−Ω𝑑2−𝑖𝛾22  are the mechanical susceptibilities, 𝜇𝑠 

is a probe signal amplitude, 𝑥1  and 𝑥2  are the slow varying complex amplitudes of the 

mechanical displacements as before. 

So, the analytical solutions from Eq.2.2.4.24 are given by 

𝑥1 = − 𝑓𝑝2𝑚1Ω1 𝑥2𝑑 𝜒1[Ω𝑑1]               𝐸𝑞. 2.2.4.25(𝑎)   
𝑥2 = − 𝑓𝑑22𝑚2Ω2 1𝜒2−1[Ω𝑑2] − |𝑓𝑝|2𝜒1[Ω𝑑1]4𝑚1𝑚2𝑑2Ω1Ω2

               𝐸𝑞. 2.2.4.25(𝑏)   
where 𝑓𝑑2 = 𝑉𝑑𝑐𝐶𝑔0𝜇𝑠𝑑  is the probe force and 𝑓𝑝 = 𝑉𝑑𝑐𝐶𝑔0𝜇𝑝𝑑  is the pump force. 

Then, the effective damping rate at red sideband is given by 
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𝛾𝑒𝑓𝑓2𝑟𝑒𝑑 = 𝛾2 + |𝑓𝑝|24𝑚1𝑚2𝑑2Ω1Ω2 𝛾1(Ω1 − Ω𝑑1)2 + 𝛾124            𝐸𝑞. 2.2.4.26 

We define the mechanical susceptibilities 𝜒1,2𝑟𝑒𝑑 when probing at the frequency Ω𝑑2 = Ω2 + 𝛿 

and red sideband pumping at the frequency Ω𝑝 = Ω1 − Ω2 + ∆. They are given by 

𝜒1𝑟𝑒𝑑 = 1−Δ − 𝛿 − 𝑖 𝛾12           𝐸𝑞. 2.2.4.27(𝑎) 

𝜒2𝑟𝑒𝑑 = 1−𝛿 − 𝑖 𝛾22           𝐸𝑞. 2.2.4.27(𝑏) 
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Table 2.2.4.4. Blue sideband pump the phonon cavity and probe the coupled Al drum 

Parameter SiN drum resonator <1> Al drum resonator <2> 

Resonance 

frequency 
Ω1 Ω2 

Displacement 𝑋1(𝑡) = 𝑥1(𝑡)2 𝑒−𝑖(Ω𝑝+Ω𝑑2)𝑡 + 𝑐. 𝑐 𝑋2(𝑡) = 𝑥2(𝑡)2 𝑒−𝑖Ω𝑑2𝑡 + 𝑐. 𝑐 
Probe signal No Ω𝑑2 = Ω2 + 𝛿 
Pump signal Ω𝑝 = Ω1 + Ω2 + ∆ No 

Mechanical 

susceptibility  
𝜒1[Ω𝑑1] = 1Ω1 − Ω𝑑1 − 𝑖 𝛾12  𝜒2[Ω𝑑2] = 1Ω2 − Ω𝑑2 − 𝑖 𝛾22  

Definitions of 

mechanical 

susceptibility 

𝜒1𝑏𝑙𝑢𝑒 = 1𝛿 − Δ − 𝑖 𝛾12  𝜒2𝑏𝑙𝑢𝑒 = 1−𝛿 − 𝑖 𝛾22  

Solution of 

displacement 
𝑥1 = − 𝑓𝑝2𝑚1Ω1 𝑥2∗𝑑 𝜒1[Ω𝑑1]  

𝑥2= − 𝑓𝑑22𝑚2Ω2 1𝜒2−1[Ω𝑑2] − |𝑓𝑝|2𝜒1∗[Ω𝑑1]4𝑚1𝑚2𝑑2Ω1Ω2
 

Effective 

damping rate 
No 𝛾𝑒𝑓𝑓2𝑏𝑙𝑢𝑒= 𝛾2− |𝑓𝑝|24𝑚1𝑚2𝑑2Ω1Ω2 𝛾1(Ω1 − Ω𝑑1)2 + 𝛾124  

 

Blue sideband pump the phonon-cavity and probe the coupled Al drum. We follow the 

similar analysis to the blue sideband pumping abovementioned by Eq.2.2.4.13. We remain 

probing around the mechanical resonator <2> with the frequency Ω𝑑2 = Ω2 + 𝛿 and pumping 

the phonon cavity mechanical resonator <1> with a blue sideband at the frequency Ω𝑝 = Ω1 +Ω2 + ∆. The analytical motion equations can be analysed and given by 

𝑋̈1 + 𝛾1𝑋̇1 + Ω12𝑋1 = − 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚1 𝜇𝑝𝑥2∗2𝑑 𝑒−𝑖Ω𝑑1𝑡            𝐸𝑞. 2.2.4.28(𝑎) 
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𝑋̈2 + 𝛾2𝑋̇2 + Ω22𝑋2 = 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚2 (− 𝜇𝑠2 − 𝜇𝑝𝑥1∗2𝑑 )𝑒−𝑖Ω𝑑2𝑡          𝐸𝑞. 2.2.4.28(𝑏) 

Based on Ω𝑑2 = Ω2 + 𝛿 and Ω𝑑1 = Ω1 + ∆ − 𝛿, if ∆, 𝛿 → 0, we have approximations Ω12 −Ω𝑑12 ≈ 2Ω1(Ω1 − Ω𝑑1) and Ω22 − Ω𝑑22 ≈ 2Ω2(Ω2 − Ω𝑑2). The modified equations become 

Ω1𝜒1−1[Ω𝑑1]𝑥1 = − 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚1 𝜇𝑝𝑥2∗2𝑑             𝐸𝑞. 2.2.4.29(𝑎) 

Ω2𝜒2−1[Ω𝑑2]𝑥2 = 𝑉𝑑𝑐𝐶𝑔0𝑑𝑚2 (− 𝜇𝑠2 − 𝜇𝑝𝑥1∗2𝑑 )            𝐸𝑞. 2.2.4.29(𝑏) 

where 𝜒1[Ω𝑑1] = 1Ω1−Ω𝑑1−𝑖𝛾12  and 𝜒2[Ω𝑑2] = 1Ω2−Ω𝑑2−𝑖𝛾22  are the mechanical susceptibilities, 𝜇𝑠 

is a probe signal amplitude, 𝑥1  and 𝑥2  are the slow varying complex amplitudes of the 

mechanical displacements. 

Therefore, the analytical solutions from Eq.2.2.4.29 are given by 

𝑥1 = − 𝑓𝑝2𝑚1Ω1 𝑥2∗𝑑 𝜒1[Ω𝑑1]               𝐸𝑞. 2.2.4.30(𝑎)   
𝑥2 = − 𝑓𝑑22𝑚2Ω2 1𝜒2−1[Ω𝑑2] − |𝑓𝑝|2𝜒1∗[Ω𝑑1]4𝑚1𝑚2𝑑2Ω1Ω2

               𝐸𝑞. 2.2.4.30(𝑏)   
where 𝑓𝑑2 = 𝑉𝑑𝑐𝐶𝑔0𝜇𝑠𝑑  is the probe force and 𝑓𝑝 = 𝑉𝑑𝑐𝐶𝑔0𝜇𝑝𝑑  is the pump force. 

Moreover, the effective damping rate at blue sideband is given by 

𝛾𝑒𝑓𝑓2𝑏𝑙𝑢𝑒 = 𝛾2 − |𝑓𝑝|24𝑚1𝑚2𝑑2Ω1Ω2 𝛾1(Ω1 − Ω𝑑1)2 + 𝛾124            𝐸𝑞. 2.2.4.31 

We define the mechanical susceptibilities 𝜒1,2𝑏𝑙𝑢𝑒  when using probe signal at the frequency Ω𝑑2 = Ω2 + 𝛿  and red sideband pump at the frequency Ω𝑝 = Ω1 + Ω2 + ∆ . Then, the 

mechanical susceptibilities 𝜒1,2𝑏𝑙𝑢𝑒 at blue sideband are given by 

𝜒1𝑏𝑙𝑢𝑒 = 1𝛿 − Δ − 𝑖 𝛾12           𝐸𝑞. 2.2.4.32(𝑎) 

𝜒2𝑏𝑙𝑢𝑒 = 1−𝛿 − 𝑖 𝛾22           𝐸𝑞. 2.2.4.32(𝑏) 
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Again, we compare the mechanical susceptibilities between at red and blue sidebands. In this 

case, no relevant analytical result is seen due to 𝜒1𝑟𝑒𝑑 ≠ −𝜒1∗𝑏𝑙𝑢𝑒. Hence, we cannot rewrite the 

analytical red and blue sideband solutions together, which differs from the case that we probe 

the signal at the phonon-cavity resonator <1>. 

 

2.2.4.2 Simulation results of the nanoelectromechanically induced 

transparency and amplification 

In order to build the electromechanical phonon interference analog to the optomechanical 

system, we write the coupling strength of the mechanical resonator <1> as 𝐺 = 𝜕Ω1𝜕𝑋2 ≈ 𝜕Ω1𝜕𝐶𝑔 𝜕𝐶𝑔𝜕𝑋2 ≈
− Ω12𝑑. Using it, we provide single phonon coupling rate 𝑔0 = 𝐺𝑥𝑧𝑝𝑓, where 𝑥𝑧𝑝𝑓 = √ ℏ2𝑚2Ω2 is 

zero-point fluctuation of the coupled mechanical resonator <2> with the low resonance 

frequency Ω2. We therefore take a transform of 
|𝑓𝑝|24𝑚1𝑚2𝑑2Ω1Ω2 to 𝑛𝑝𝑔02 ≈ 2|𝑓𝑝|2𝑚1Ω12 𝑔02ℏΩ𝑝, where 𝑛𝑝 is 

a definition of the phonon number generated by pump tone. Because the mechanical system is 

driven by the probe and pump, the analytical solutions of the coupled mechanical resonators at 

red and blue sidebands can be rewritten by 

𝑥1 = 𝑓𝑑12𝑚1Ω1 1𝜒1−1[Ω𝑑1] ± 𝑛𝑝𝑔02𝜒2[Ω𝑑2]               𝐸𝑞. 2.2.4.33  
where ‘-’ and ‘+’ are red and blue sidebands. 

In this part, 100 nm thick SiN drum membrane with a tensile stress of 1.0 GPa and with a 

diameter of 40 𝜇𝑚 is chosen for achieving resonance frequency around 11.78 MHz. Capacitive 

coupling distance between SiN drum and Al top gate is defined to be 500 nm for calculating a 

desired capacitance value 𝐶𝑔0(𝑑 = 500 𝑛𝑚, 𝐷 = 40 𝜇𝑚) = 2.22 × 10−14 𝐹. 
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Figure 2.2.4.4. Spectrum landscape at red and blue sideband pumping while probing the 

phonon cavity. Green color is the probe signal, (a) red color is the red sideband pump signal; 

(b) blue color is the blue sideband pump signal. 

 

Fig. 2.2.4.4 shows red and blue sideband pumping the phonon-cavity mechanical resonator <1> 

can generate phonons transferring to the unprobed mechanical resonator <2>. Then, the 

phonons stored in the mechanical resonator <2> corresponding to the term 𝑛𝑝𝑔02𝜒2[Ω𝑑2] can 

be fed back to the initial probed mechanical resonator <1> related to the term of 𝜒1[Ω𝑑1] 
through controlling the pump tone. As the mechanical system consisting of two circular 

membranes modelled in Eq.2.2.4.33, the number creation of phonons depends on 𝑛𝑝 from the 

pump tone. The interference efficiency therefore can be enhanced when controlling the number 

of phonons. 
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Red sideband pump the phonon-cavity and probe the phonon cavity. 
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Figure 2.2.4.5. Simulation results of electromechanically induced transparency at red sideband 

pumping scheme. (a) Mechanical amplitude mapping for the phonon-cavity mechanical 

resonator <1>, where ∆  and 𝛿  are the detunings from red sideband and the probe signal 

respectively. (b) Lorentzian curves are extracted from the white dashed lines in (a), with 
∆2𝜋 =6, 0, −6 kHz. The color bar is mechanical amplitude. (a,b) The pump amplitude is 𝜇𝑝 = 0.07 

V; (c,d) The pump amplitude is 𝜇𝑝 = 0.12 V. 

 

Fig. 2.2.4.5(a) shows simulated results of electromechanically induced transparency [119][120] 

when red sideband pumping at the phonon cavity. In this simulation, we use essential 

parameters including the high frequency 
Ω12𝜋 = 11.78 𝑀𝐻𝑧, the low frequency 

Ω22𝜋 = 2.94 𝑀𝐻𝑧, 

effective masses of mechanical resonator <1> about 𝑚1 = 4.4 × 10−14 𝑘𝑔  and mechanical 

resonator <2> about 𝑚2 = 4.41 × 10−13 𝑘𝑔, a capacitive gap distance of about 500 𝑛𝑚, and 

a diameter of circular membrane about 40 𝜇𝑚. Based on pump amplitude 𝜇𝑝 = 0.07 V , we 

use red sideband Ω𝑝 = Ω1 − Ω2 + ∆ to pump the phonon cavity with ∆ sweeping window from 

-10 to 10 kHz, and weakly probe the phonon-cavity mechanical resonator <1> with 𝛿 sweeping 

window from -1.5 to 1.5 kHz. When choosing the detuning 
∆2𝜋 = 6, 0, −6 kHz, the amplitude 

of the phonon cavity can be achieved in Fig. 2.2.4.5(b). It means the amplitude of phonon cavity 
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also depends on the detuning 
∆2𝜋 when keeping the pump amplitude same. For the physics, the 

pump signal acting on the phonon cavity can provide enough phonons to the coupled 

mechanical resonator <2>, namely an energy transfer station. The stored phonons at <2> can 

be fed back to the probed resonator <1>. At this red sideband, destructive phonon interference 

between the probed phonons and phonons induced by the pump can be established. 
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Figure 2.2.4.6. Simulation results of electromechanically induced transparency at red sideband 

pumping scheme. Three red, blue and grey curves performing at 
∆2𝜋 =  0 correspond to different 

pump amounts. 

 

Different pump amplitudes are set to pump the electromechanical system to vary the mechanical 

amplitude of the phonon cavity referring to as the resonator <1>. Fig. 2.2.4.6 shows strong 

suppression of mechanical amplitudes when increasing pump amplitude from 0 to 0.15 V. 

When looking back to Eq.2.2.4.11, we noticed that the effective damping rate 𝛾𝑒𝑓𝑓1𝑟𝑒𝑑 = 𝛾1 +|𝑓𝑝|24𝑚1𝑚2𝑑2Ω1Ω2 𝛾2(Ω2−Ω𝑑2)2+𝛾224  can be increased with the pump amplitude increasing, suppressing 

the mechanical responses much more when Ω2~Ω𝑑2. That is the reason that we see clearly the 

mechanical amplitude decreasing in the centre of the sweeping window. 
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Blue sideband pump the phonon cavity and probe the phonon cavity. 
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Figure 2.2.4.7. Simulation results of electromechanically induced amplification at blue 

sideband pumping scheme. (a) Mechanical amplitude mapping for the phonon-cavity 

mechanical resonator <1>, where ∆ is detuned from blue sideband and 𝛿 is detuned from the 

probe signal. (b) Lorentzian curves are extracted from the white dashed lines in (a), with 
∆2𝜋 =6, 0, −6 kHz.The color bar is mechanical amplitude. (a,b) The pump amplitude is 𝜇𝑝 = 0.07 V; 

(c,d) The pump amplitude is 𝜇𝑝 = 0.12 V. 

 

Fig. 2.2.4.7(a) shows simulated results of electromechanically induced amplification [117] 

[120] when blue sideband pumping at the phonon cavity. In this simulation, we use same 

simulation parameters with the red sideband. Based on mechanical amplitude 𝜇𝑝 = 0.07 V, we 

use blue sideband Ω𝑝 = Ω1 + Ω2 + ∆ to pump the phonon cavity with ∆ sweeping from -10 to 

10 kHz, and weakly probe the phonon-cavity mechanical resonator <1> with 𝛿 sweeping from 

-1.5 to 1.5 kHz. When choosing the detuning 
∆2𝜋 = 6, 0, −6 kHz, the mechanical amplitudes of 

the phonon cavity are able to be observed in Fig. 2.2.4.7(b). For this blue sideband case, the 

phonon cavity can create down-conversion phonons to the coupled mechanical resonator <2>. 

The stored phonons at <2> can be up-conversion fed back to the probed resonator <1>. For this 
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physics, constructive phonon interference between the probed phonons and phonons from the 

pump can be established. 
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Figure 2.2.4.8. Simulation results of electromechanically induced amplification at blue 

sideband pumping scheme. Three blue, red and grey curves performing at 
∆2𝜋 = 0 correspond 

to different pump amounts. 

 

Different pump amplitudes onto pump the electromechanical system are used, so that they 

routinely vary the mechanical amplitude of the resonator <1>. Fig. 2.2.4.8 shows an 

amplification trend of mechanical amplitudes when the pump intensity increases from 0 to 

0.15V. When looking back to Eq.2.2.4.20, we noted a decrease of the effective damping rate, 

namely 𝛾𝑒𝑓𝑓1𝑏𝑙𝑢𝑒 = 𝛾1 − |𝑓𝑝|24𝑚1𝑚2𝑑2Ω1Ω2 𝛾2(Ω2−Ω𝑑2)2+𝛾224 , amplifying the mechanical amplitudes when Ω2~Ω𝑑2. We therefore see the mechanical amplitude increasing in the centre of the sweeping 

window. 
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Figure 2.2.4.9. Spectrum landscape at red and blue sideband pumping while probing the 

coupled mechanical resonator <2>. Green color is the probe signal, (a) red signal bar is the red 

sideband pump signal; (b) blue signal bar is the blue sideband pump signal. 

 

Fig. 2.2.4.9 shows while probing the coupled mechanical resonator <2>, red and blue sideband 

pumping the phonon-cavity mechanical resonator <1> can generate transferring phonons at the 

unprobed mechanical resonator. Then, the phonons stored in the mechanical resonator <1> 

corresponding to the term 𝑛𝑝𝑔02𝜒1[Ω𝑑2] or 𝑛𝑝𝑔02𝜒1∗[Ω𝑑1] can be fed back to the initial probed 

mechanical resonator <2> related to the term of 𝜒2[Ω𝑑2] through controlling the pump tone. As 

the mechanical system modelled in Eq.2.2.4.25 and Eq.2.2.4.30, the number of phonons 

depends on 𝑛𝑝 from the pump tone. Therefore, the interference efficiency can be enhanced 

when controlling the number of phonons. 
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Red sideband pump the phonon cavity and probe the coupled Al drum. 
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Figure 2.2.4.10. Simulation results of electromechanically induced transparency at red 

sideband pumping scheme. (a) Mechanical amplitude mapping for the coupled mechanical 

resonators <2>, where ∆ is detuned from red sideband and 𝛿 is detuned from the probe signal. 

(b) Lorentzian curves are extracted from the white dashed lines in (a),  with 
∆2𝜋 = 6, 0, −6 kHz. 

The color bar is mechanical amplitude. (a,b) The pump amplitude is 𝜇𝑝 = 0.1 V; (c,d) The 

pump amplitude is 𝜇𝑝 = 0.25 V. 

 

Fig. 2.2.4.10(a) shows simulated results of electromechanically induced transparency[119][120] 

when red sideband pumping at the phonon cavity. In this simulation, we use simulation 

parameters including the high frequency 
Ω12𝜋 = 11.78 𝑀𝐻𝑧, the low frequency 

Ω22𝜋 = 2.94 𝑀𝐻𝑧, 

effective masses of mechanical resonator <1> about 𝑚1 = 4.4 × 10−14 𝑘𝑔  and mechanical 

resonator <2> about 𝑚2 = 4.41 × 10−13 𝑘𝑔, a capacitive gap distance of about 500 𝑛𝑚, and 

a diameter of circular membrane about 40 𝜇𝑚. By using the pump amplitude 𝜇𝑝 = 0.1 V, we 

use red sideband Ω𝑝 = Ω1 − Ω2 + ∆ to pump the phonon cavity with ∆ sweeping window from 

-8 to 8 kHz, and weakly probe the coupled mechanical resonator <2> with 𝛿 sweeping window 

from -20 to 20 kHz. When choosing the detuning  
∆2𝜋 = 6, 0, −6 kHz, the mechanical amplitude 

for the coupled resonator <2> can be captured in Fig.2.2.4.10(b). It indicates that the 
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mechanical response also relies on the detuning 
∆2𝜋. In this red sideband case, probing the 

coupled resonator <2> can generate phonons acting onto the phonon cavity <1>. These phonons 

subsequently go back to the probed the resonator <2>. For the physics, destructive phonon 

interference between the phonons at <2> from the probe signal and the phonons at <1> from 

the pump signal is established. 
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Figure 2.2.4.11. Simulation results of electromechanically induced transparency at red 

sideband pumping scheme. Three red, blue and grey curves performing at 
∆2𝜋 = 0 correspond 

to different pump amounts. Inset shows the enlarged region. 

 

Different pump amplitudes are implemented to pump the mechanical system to vary the 

mechanical amplitude for the coupled mechanical resonator <2>. Fig. 2.2.4.11 shows a 

suppression trend of mechanical amplitudes when the pump intensity increases from 0 to 0.15V. 

When looking back to Eq.2.2.4.26, we noted that the effective damping rate 𝛾𝑒𝑓𝑓2𝑟𝑒𝑑 = 𝛾2 +|𝑓𝑝|24𝑚1𝑚2𝑑2Ω1Ω2 𝛾1(Ω1−Ω𝑑1)2+𝛾124  can be increased, suppressing the mechanical amplitudes when Ω1~Ω𝑑1. While satisfying the damping rates 𝛾1 > 𝛾2, we observe Lorentz simulation curves of 

mechanical amplitudes with a much narrower dip in the transparency frequency window, where 

the dip is clear due to the frequency bandwidth of the transparency effect effected by the 

damping rate of the unprobed mechanical resonator <1>. 
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Blue sideband pump the phonon cavity and probe the coupled Al drum. 
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Figure 2.2.4.12. Simulation results of electromechanically induced amplification at blue 

sideband pumping scheme. (a) Mechanical amplitude mapping for the coupled mechanical 

resonator <2>, where ∆ detuned from blue sideband and 𝛿 detuned from the probe signal. (b) 

Lorentzian simulation curves are extracted from the white dashed lines in (a), with with 
∆2𝜋 =6, 0, −6 kHz. The color bar is mechanical amplitude. (a,b) The pump amplitude is 𝜇𝑝 = 0.1V; 

(c,d) The pump amplitude is 𝜇𝑝 = 0.25 V. 

 

Fig. 2.2.4.12(a) shows simulated results of electromechanically induced 

amplification[120][117] when blue sideband pumping at the phonon cavity. In this simulation, 

we use same simulated parameters with the red sideband. When using 𝜇𝑝 = 0.1 V, we use blue 

sideband Ω𝑝 = Ω1 + Ω2 + ∆ to pump the phonon cavity with ∆ sweeping from -8 to 8 kHz, and 

weakly probe the coupled mechanical resonator <2> with 𝛿 sweeping from -20 to 20 kHz. 

Choosing the detuning  
∆2𝜋 = 6, 0, −6 kHz, the mechanical amplitude of the coupled resonator 

<2> can be shown in Fig. 2.2.4.12(b). It proves that the amplitude correlates to the detuning ∆. 

For this blue sideband manipulation, the coupled mechanical resonator <2> creates up-

conversion phonons onto the phonon-cavity mechanical resonator <1>. These phonons then can 

be down-conversion fed back to the probed resonator <2>. For this blue sideband physics, 
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constructive phonon interference between the phonons at <2> and phonons at <1> can be 

established. 
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Figure 2.2.4.13. Simulation results of electromechanically induced amplification at blue 

sideband pumping scheme. Three blue, red and grey curves performing at  
∆2𝜋 = 0 correspond 

to different pump amounts. Inset shows the enlarged region. 

 

Different pump amplitudes pump the mechanical system to investigate the mechanical 

amplitude of the coupled mechanical resonator <2>. Fig. 2.2.4.13 shows an amplification trend 

of mechanical amplitudes when the pump intensity increases from 0 to 0.15 V. Looking back 

to Eq.2.2.4.31, we noticed that the effective damping rate 𝛾𝑒𝑓𝑓2𝑏𝑙𝑢𝑒 = 𝛾2 −|𝑓𝑝|24𝑚1𝑚2𝑑2Ω1Ω2 𝛾1(Ω1−Ω𝑑1)2+𝛾124  gets to be decreased, amplifying the mechanical amplitudes when Ω1~Ω𝑑1 . In terms of satisfying the damping rates 𝛾1 > 𝛾2 , we observe clearly Lorentz 

simulation curves of mechanical amplitudes with a narrow peak in the amplification frequency 

window. It indicates that the smaller damping rate from the phonon cavity determines the 

frequency bandwidth window from the coupled mechanical resonator <2>. 

 



75                                                2.2.4. Double-tone driving scheme in nanoelectromechanics 
 

 

2.2.4.3 Motion behaviours between two parallel circular 

membranes in the nanoelectromechanical system 

 

Figure 2.2.4.14. Blue sideband pump the phonon cavity and probe the phonon cavity. Green 

color is the probe signal and blue color is the blue sideband pump signal. 
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Figure 2.2.4.15. Simulation results of electromechanically induced amplification at blue 

sideband pumping while probing the phonon-cavity mechanical resonator <1>. (a) Mechanical 

amplitude mapping for the phonon-cavity mechanical resonator <1>. (b) Simultaneous 

mechanical amplitude mapping for the coupled mechanical resonator <2>. The color bar is 

mechanical amplitude. The pump amplitude is 𝜇𝑝 = 0.07 V. 

 



76                                                2.2.4. Double-tone driving scheme in nanoelectromechanics 
 

 

Blue sideband to pump the phonon-cavity mechanical resonator <1> is used while probing the 

phonon cavity itself. Fig. 2.2.4.15(a) analytically calculated by Eq. 2.2.4.19(a) shows 

simulating the electromechanically induced amplification [120][117] at blue sideband pumping, 

indicating the establishment of constructive phonon interference between the phonons from the 

probe and the pump. Correspondingly, Fig. 2.2.4.15(b) analytically calculated by Eq. 2.2.4.19(b) 

shows the interfered interaction of the coupled mechanical resonator <2> with the phonon 

cavity in this electromechancial system. 

 

Figure 2.2.4.16. Blue sideband pump the phonon cavity and probe the coupled Al drum. Green 

color is the probe signal and blue color is the blue sideband pump signal. 
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Figure 2.2.4.17. Simulation results of electromechanically induced amplification at blue 

sideband pumping while probing the mechanical resonator <2>. (a) Mechanical amplitude for 

the coupled mechanical resonator <2>. (b) Mechanical amplitude mapping for the phonon-
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cavity mechanical resonator <1>. The color bar is mechanical amplitude. The pump amplitude 

is 𝜇𝑝 = 0.1 V. 

 

In addition, blue sideband can be employed to pump the phonon-cavity mechanical resonator 

<1> while probing the other coupled mechanical resonator <2>. Fig. 2.2.4.17(a) analytically 

calculated by Eq. 2.2.4.30(b) shows simulation of the electromechanically induced 

amplification [120][117] for the mechanical amplitude at blue sideband, indicating establishing 

constructive phonon interference between the phonons from the probe and the pump. 

Fig.2.2.4.17(b) analytically calculated by Eq. 2.2.4.30(a) shows the timely response of 

mechanical amplitude for the phonon-cavity mechanical resonator <1> in this 

electromechanical system. 

 

2.2.4.4 Summary 

The double-tones driving scheme modelling and simulations in the capacitively coupled two 

mechanical resonators have been done. We take an electromechanical analog to the 

optomechanical system, because one mechanical resonator with higher resonance frequency 

becomes a phonon cavity and the other coupled mechanical resonator with the low resonance 

frequency is regarded as an energy transfer station. In this coupled electromechanical system, 

one signal is used to probe one of mechanical resonators; another sideband signal is used to 

pump the phonon-cavity at its red or blue sideband. In order to manipulate the mechanical 

system, we present especial definitions of using red and blue sideband to control mechanical 

resonators. Subsequently, we analysed and simulated electromechanically induced 

transparency and amplification at red and blue sidebands. It is essential to explain the phonon 

interference between the phonons from probe tone and the phonons induced by the pump tone. 

The measurement results of  coupled distinct nanoelectromechanical resonators, described by 

this modelling, has been carried out by Pokharel et al [93]. 

In Chapter 4, we will provide measurements in a coupled electromechanical system consisting 

of a metallic AFM-tip and a circular membrane by scanning microwave microscopy (SMM). 

The results can also be described by using this theoretical model. 
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2.3 Experiment setup and basic related measurement results 

We introduce the room temperature experiment setup that is used for measuring the 

electromechanical system. It consists of SiN drum membrane capacitively coupled to an Al top 

gate. Then, we show analysis of the measurement results. In this thesis work, the experiment 

setup is built by X. Zhou. In this part, SiN drum nanoelectromechanical resonator coupled to 

an Al suspended top gate was fabricated by S. Venkatachalam. To make clear for the 

measurement data taken, it needs to distinguish that the data from section 2.3.2, 2.3.3 and 2.3.4 

were taken by H. Xu and the data from section 2.3.5 were measured by A. Pokharel. 

2.3.1 Experiment setup 

 

Figure 2.3.1. Experiment setup. (a) Cross sectional view of the electromechanical system. (b) 

Schematic diagram of the measurement setup. A microwave source is used to generate a 

microwave signal (yellow) to detect the mechanical displacement of the Al/SiN drum 

membrane system which is excited by the RF signal. The detection feedback signal (blue) 

returns the modulated RF component to be mixed with the reference signal for frequency down 

conversion. Finally, the mechanical displacement is readout by the Lockin amplifier. 

 

Fig. 2.3.1. depicts the measurement setup in the electrical readout scheme. To apply each 

electrical component, we analyse and explain their properties through an analog to the optical 

components. The measurement setup can be divided into blue, red and green three parts. They 

are (i) device under test (DUT), (ii) electrical drive and (iii) microwave emission/detection 

respectively. 
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(i) DUT part (blue) is key. In particular, the bottom mechanical resonator through the top gate 

can be integrated with the compliant electrical circuits. Then, we can add electrical dc and ac 

signals onto the mechanical system, so that the mechanical resonator can be excited. 

(ii) electrical drive part (red) includes electrical bias tee containing ac signal and dc signal. 

These two driving signals play analog roles as to actuation signals in an optical 

excitation/readout scheme. They control the capacitive actuation of the membrane. SiN and Al 

membranes can be actuated by selecting the frequency range around the mechanical resonance 

frequency. ac and dc driving signals can be added through combiner component analog to an 

optical beam splitter. 

(iii) the microwave detection part (green) has several electrical components including 

microwave source, attenuator, high pass filter, circulator, mixer, DC block and amplifier. They 

can be analog to laser source, optical attenuator, spectral filter, optical circulator, optical beam 

splitter, spectral filter and amplifier in the optical readout scheme. According to the detection 

part (green), a microwave source signal with a high frequency 𝜔𝑐 is splitted into two signals. 

One signal is going to detect the mechanical system through high pass filter, circulator and 

combiner; the other signal reaches the LO port of mixer as a reference with a frequency 𝜔𝑐 

through an attenuator. The  yellow signal is the incident microwave signal. Afterwards, the 

feedback signal from the mechanical system is reflected to the mixer component through 

circulator. It carries a signal with a higher frequency 𝜔𝑐 + Ω𝑚  to the RF port of the mixer. By 

mixing the feedback signal and the LO signal in the mixer component, a signal featuring a 

frequency ~Ω𝑚 is detected by the Lockin amplifier. In the following, we provide the signal 

processing method with equivalent circuits of the reflectometry. 

 

Figure 2.3.2. Microwave detection part. (a) Equivalent circuit of reflectometry. The impedance 

of the detection part is Z0 = 50 Ohm and Vin=Vµw is the microwave amplitude with a frequency 𝜔𝑐 delivered to the mechanical resonator. Here, we have inner impedance about 50 Ohm inside 
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the voltage source. (b) Its equivalent parallel RC circuit. 𝐶𝑡 = 𝐶𝑠 + 𝐶𝑚(𝑥) is the total capacitor, 

where 𝐶𝑠  is the circuit stray capacitor induced by electrode pads and 𝐶𝑚(𝑥) is the movable 

capacitor, 𝑥(𝑡) is the displacement of the capacitor, 𝐼𝑑 is the equivalent current source, 𝑅𝑒𝑥 is 

the equivalent external resistance, and 𝜙(𝑡) is the flux in the circuit [36,110]. 

 

We consider the mechanical resonator as a movable capacitor model 𝐶𝑚(𝑥). By using Norton’s 

theorem, we can simplify the equivalent circuit of the reflectometry to a parallel circuit with a 

current source. Fig. 2.3.2 shows the circuit equivalence for the detection part, where the total 

capacitance 𝐶𝑡 = 𝐶𝑠 + 𝐶𝑚(𝑥) . In order to transform the series voltage source circuit to a 

parallel RC circuit, the effective components of the Norton drive circuit can be defined in 

formalism of real part and imaginary part of the complex admittance [110], 𝑌𝑡(𝜔𝑐) =(𝑍0 + 1𝑖𝜔𝑐𝐶𝑡)−1 . Here, 𝑅𝑒[𝑌𝑡(𝜔𝑐)] = 1𝑅𝑒𝑥 , then the equivalent external resistance 𝑅𝑒𝑥 ≈1 (𝜔𝑐2𝐶𝑡2𝑍0)⁄ . To analyse the circuits, we can rewrite the total capacitance 𝐶𝑡 = 𝐶𝑡0 − 𝐶𝑚0 𝑥(𝑡)𝑑  

due to the 𝐶𝑚(𝑥) as a function of the mechanical displacement 𝑥(𝑡). 𝐶𝑡0  is the total static 

capacitance and 𝑑 is the initial capacitor distance. Therefore, an analytical motion equation of 

the flux 𝜙 biased on the 𝐶𝑚(𝑥) can be given by [110] 𝜕𝜕𝑡 ((𝐶𝑡0 − 𝐶𝑚0𝑥(𝑡)𝑑 ) 𝜕𝜙𝜕𝑡 ) + 1𝑅𝑒𝑥 𝜕𝜙𝜕𝑡 = 𝐼𝑑        𝐸𝑞. 2.3.1 

where the total current can be described by 𝐼𝑑 = 𝑖𝜔𝑐𝐶𝑡𝑉𝜇𝑊, which is also written in the form 

of 𝐼𝑑(𝑡) = 𝐼2 𝑒−𝑖𝜔𝑐𝑡 + 𝑐. 𝑐 , where 𝐼  is the complex amplitude of the current. The mechanical 

displacement is written in form of 𝑥(𝑡) = 𝐴(𝑡)2 𝑒−𝑖Ω𝑚𝑡 + 𝑐. 𝑐 , where the 𝐴(𝑡)  is the complex 

amplitude with the frequency around Ωm. Therefore, we can find an exact solution using the 

ansatz 

𝜙(𝑡) = ∑ 𝜇𝑛(𝑡)2+

𝑛=−

𝑒−𝑖(𝜔𝑐+𝑛Ω𝑚)𝑡 + 𝑐. 𝑐        𝐸𝑞. 2.3.2 

To solve 𝐸𝑞. 2.3.1, we look for the solution 𝑉𝑜𝑢𝑡 with the frequency 𝜔𝑐 + Ω𝑚, which was measured 

in the experiments. Derivatives of the relevant amplitudes can be given by 𝜕𝜙1𝜕𝑡 = 𝜇1(𝑡)2 𝑒−𝑖(𝜔𝑐+Ω𝑚)𝑡(−𝑖(𝜔𝑐 + Ω𝑚)) + 𝑐. 𝑐         𝐸𝑞. 2.3.3 
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𝜕2𝜙1𝜕𝑡2 = 𝜇1(𝑡)2 𝑒−𝑖(𝜔𝑐+Ω𝑚)𝑡(−(𝜔𝑐 + Ω𝑚)2) + 𝑐. 𝑐         𝐸𝑞. 2.3.4 

𝜕𝑥𝜕𝑡 = 𝐴(𝑡)2 𝑒−𝑖Ω𝑚𝑡(−𝑖Ω𝑚) + 𝑐. 𝑐           𝐸𝑞. 2.3.5 

Based on detection frequency 𝜔𝑐 ≫ Ω𝑚, we get reasonable approximation 𝜔𝑐 (𝜔𝑐 + Ω𝑚)⁄ ~1. 

Because the typical stray capacitance 𝐶𝑠 is the pF range, we also have a reasonable estimate  𝜔𝑐𝐶𝑡0𝑍0 ≪ 1. In addition, the equivalent parallel RC circuit is a current source circuit, featuring 

a constant total current 𝐼𝑑. Combining with input-output theory [110], we can solve the motion 

equation Eq.2.3.1. It is finally given by 

𝑉𝑜𝑢𝑡 = 𝜔𝑐𝑍0 𝐶𝑚𝑑 |𝑥|2 𝑉𝜇𝑊        𝐸𝑞. 2.3.6 

Here, 𝑉𝑜𝑢𝑡 relates to the flux complex amplitude 𝜇1 with the frequency 𝜔𝑐 + Ω𝑚, 𝑉𝜇𝑊 relates to 

the flux complex amplitude 𝜇0 with the frequency 𝜔𝑐. 

Using Eq.2.3.6, we can measure and analyse the mechanical displacement 𝑥  through this 

microwave reflectometry scheme. Here, we use ac signal generated by the Lockin to excite the 

mechanical resonator, and detect it using a microwave signal 𝑉𝜇𝑊  with the high frequency 𝜔𝑐/2𝜋 = 4.8 𝐺𝐻𝑧. As mentioned above, we convert the  𝑉𝑜𝑢𝑡 to low frequency signal around Ω𝑚 through demodulating it with a signal 𝜔𝑐. All of the measurements at room temperature 

performed under the vacuum (~10−6 𝑚𝑏𝑎𝑟). 
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2.3.2 Mechanical response vs. frequency (in the linear region) 
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Figure 2.3.3. Amplitude of the mechanical resonator driven by DC+AC voltages in the linear 

region. Grey squares are the measurement data and red solid line is a fitting result. The 

amplitude has been adjusted to fit the measurement data. 

 

Table 2.3.1. Linear mechanical amplitude vs. frequency 

Parameter Experiment, mode (0, 1) Analysis, mode (0, 1) 

Resonance frequency 
(MHz) 

11.671 14.51 (𝜎 = 1 𝐺𝑃𝑎,  𝜌 =3084 𝑘𝑔/𝑐𝑚3, 𝛼01 =2.4048, 𝐷 = 30 𝜇𝑚) 

Capacitance (F) ~7.819 × 10−15 (𝑑 =800 𝑛𝑚,  𝐷 = 30 𝜇𝑚) 
~7.918 × 10−15 (𝑑 ≈790 𝑛𝑚,  𝐷 ≈ 30 𝜇𝑚) 

Effective mass 
(𝑚𝑒𝑓𝑓/ 𝑘𝑔) 

range: 4.28 − 6.11 × 10−14 4.4 × 10−14 

Quality factor (𝑄) > 10000 27800 

Driving force (𝑝𝑁) 30.06 (𝑉𝑑𝑐 = 2 𝑉,  𝑉𝑎𝑐𝑠 =1.5 𝑚𝑉𝑝) 

30.39 
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In this part, Table 2.3.1 analytically shows SiN drum membrane with a tensile stress of 1.0 GPa 

and a diameter of 30 mm is defined in order to achieve resonance frequency around 14.51 MHz, 

the value of which is evaluated based on the formula 𝜔𝑚𝑛2𝜋 = 12𝜋 √𝜎𝜌 𝛼𝑚𝑛𝑎  (see section 2.1.2). Here, 

the fundamental mode (0,1) is measured, therefore having the factor 𝛼01 = 2.4048 (see Table 

2.1.1 in section 2.1.1). Similarly, other modes, e.g., (1,1), (0,2), corresponding to different 

resonance frequencies, can also be analysed. 

Experimentally, we show using AC voltages to drive the mechanical resonator in the linear 

region. We choose a DC voltage of 2 V to modulate spring constant to enable a resonance 

frequency of the mechanical resonator. Fig. 2.3.3 shows mechanical response of the resonator, 

in which the measurement data are fitted well by a square root of Lorentzian shape function |𝜇𝑥(𝜔𝑑)| = 𝑓𝑑𝑚𝑒𝑓𝑓 1|Ω𝑚2 −ω𝑑2 −𝑖𝜔𝑑𝛾𝑚|, where 𝑓𝑑  is the driving force 
𝐶𝑔0𝑉𝑑𝑐𝑉𝑎𝑐𝑠𝑑  (𝑉𝑎𝑐𝑠  is the 𝑉𝑝  peak 

voltage during measurements). Then, the following parameters are used for fitting: driving force 𝑓𝑑,𝑓𝑖𝑡 ≈ 30.39 𝑝𝑁 , the capacitance 𝐶𝑔0(𝑑 ≈ 790 𝑛𝑚, 𝐷 ≈ 30 𝜇𝑚) ≈ 7.918 × 10−15 𝐹 , the 

effective mass 𝑚𝑒𝑓𝑓 ≈ 4.4 × 10−14 𝑘𝑔, and the quality factor 𝑄 ≈ 27800, which agrees with 

our setting driving force 𝑓𝑑,𝑠𝑒𝑡(𝑉𝑑𝑐 = 2 𝑉, 𝑉𝑎𝑐𝑠 = 1.5 𝑚𝑉𝑝) ≈ 30.06 𝑝𝑁 . However, 

experimental resonance frequency around 11.671 MHz is achieved, less than the defined one 

around 14.51 MHz. There are two main causes to explain: in nanofabrication process, first, 

releasing of SiN drum membrane actually reduces the tensile stress of the membrane, leading 

to the decrease of resonance frequency; second, the realistic undercut goes larger, namely the 

diameter of drum > 30 𝜇𝑚, thus reducing the resonance frequency of the membrane. Besides, 

the effective mass range around 4.28 − 6.11 × 10−14 𝑘𝑔 is evaluated because the minimal or 

maximal mass of the membrane can be evaluated through removing nanohole materials or not. 

Here, we use the exact calculation of a square root of the Lorentzian function and adjusted the 

amplitude with experimental measurements to fit. 
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2.3.3 Resonance frequency vs. DC voltage (the modulation of 

spring constant) 
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Figure 2.3.4. (a) Spring constant modulation of the mechanical resonator by DC voltages. (b) 

Mechanical resonance frequency modulation by DC voltages. Blue squares are the 

measurement data and red solid lines are fitting results. 

 

In this part, we focus on mechanical resonance frequency modulation by DC voltage. 

Fig.2.3.4(a) shows tuning spring constant variation 𝛿𝑘 as a function of DC voltage, in which 

the measurement data are well fit by a quadratic description 𝛿𝑘 ≈ 𝐶𝑔0𝑉𝑑𝑐2𝑑2 . Fig. 2.3.4(b) shows 

resonance frequency modulation by DC voltages, which presents a good quadratic fitting based 

on Ω𝑚 ≈ Ω01(1 − 𝐶𝑔0𝑉𝑑𝑐22𝑘𝑑2 ), where Ω01  is the resonance frequency of the fundamental mode 

(0,1), 𝐶𝑔0  is the initial capacitance, 𝑘  is the intrinsic spring constant and 𝑑  is the capacitor 

distance. Here, we have reasonable fitting parameters 𝐶𝑔0(𝑑 = 800 ± 37 𝑛𝑚, 𝐷 = 30 𝜇𝑚, 𝜀 ≈1.708 × 10−12 𝐹 ∙ 𝑚−1) ≈ 1.509 × 10−15 𝐹 and 𝑘𝑓𝑖𝑡 ≈ 332 𝑁/𝑚. It is obvious that this fit 

capacitance value differs from the capacitance in section 2.3.2, which is because charging 

effects happened as the leak current effect related to the device gate has been observed at the 

voltage -5.5 V. This effect generates the dielectric cancellation of the capacitor device, reducing 

the capacitance value. Besides, this fit spring constant number is a bit smaller than the 

theoretical analysis value (𝑘𝑠𝑒𝑡 ≈ 365 𝑁/𝑚) calculated according to the formula 𝑘 = 𝑚𝑒𝑓𝑓 ∙𝜔𝑚𝑛2  , where 𝑚𝑒𝑓𝑓 ≈ 4.4 × 10−14 𝑘𝑔  and ω012𝜋 ≈ 14.51 𝑀𝐻𝑧 . As mentioned above, it is 

reasonable because the resonance frequency reduces, generating the decrease of experimental 
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spring constant. It is worth noting that measurement signals around Vdc=0 almost have no forces. 

When Vdc bias goes quite small, mechanical resonator is driven by the small forces, yielding 

signal perished in the noise level. Therefore, when the data taken corresponding to Vdc~0, the 

mechanical vibrations cannot be detected well. 
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2.3.4 Duffing mechanical response vs. frequency (in the nonlinear 

region) 
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Figure 2.3.5. Measurement data of Duffing mechanical responses. Blue squares are the 

measurement data and red solid line is a fitting result. The amplitude has been adjusted to fit 

the measurement data. 

 

Table 2.3.2. Nonlinear mechanical amplitude vs. frequency 

Parameters Fitting results Setting values 

DC voltage - 2 𝑉 

Drive voltage (𝑉𝑎𝑐𝑠) - 20 𝑚𝑉𝑝 

Capacitance (F) 7.918 × 10−15 7.918 × 10−15 

Nonlinear parameter 

(𝛼/𝑚−2𝑠−2) 

5.6 × 1026 - 

Quality factor (𝑄) 2 × 104 - 

Effective mass 

(𝑚𝑒𝑓𝑓/ 𝑘𝑔) 

4.4 × 10−14 - 

Driving force (𝑝𝑁) 500 400.91 

 

In this part, we fit our measurement data by using analytical calculations of Duffing mechanical 

resonator. As analysed in the previous section 2.2.3, a mechanical amplitude has been given by 
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|𝑎|2 = 𝑔2(2Ω𝑥+43|𝑎|2)2+1 , where Ω𝑥 = 𝑄(ω𝑑 Ω𝑚⁄ − 1) , 𝑎 = 𝑥√𝛼𝑄/Ω𝑚2   and 𝑔 = (𝐹/
Ω𝑚3 )√𝛼𝑄3/𝑚𝑒𝑓𝑓2 . We perform data fitting by this. Fig. 2.3.5 shows the measurement data have 

been well fit by Duffing resonator function |𝑎|2 = 𝑔2(2Ω𝑥+43|𝑎|2)2+1 . Then, we have fitting 

parameters to be the capacitance 𝐶𝑔0(𝑑 ≈ 790 𝑛𝑚, 𝐷 ≈ 30 𝜇𝑚) ≈ 7.918 × 10−15 𝐹 , 

nonlinear parameter 𝛼 ≈ 5.6 × 1026 𝑚−2𝑠−2, effective mass 𝑚𝑒𝑓𝑓 ≈ 4.4 × 10−14 𝑘𝑔, quality 

factor 𝑄 ≈ 20000, and driving force 𝑓𝑑,𝑓𝑖𝑡 ≈ 500 𝑝𝑁, which are in agreement with our setting 

driving force  𝑓𝑑,𝑠𝑒𝑡(𝑉𝑑𝑐 = 2 𝑉, 𝑉𝑎𝑐𝑠 = 20 𝑚𝑉𝑝) ≈ 400.91 𝑝𝑁  (𝑉𝑎𝑐𝑠  are the 𝑉𝑝  peak voltage 

during measurements). 
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Figure 2.3.6. Measurement data of Duffing mechanical resonator. Solid circle lines are the 

measurement data. The amplitude has been adjusted to fit the measurement data. 

 

To observe nonlinear behaviours of Duffing mechanical resonator, we have also measured 

couples of mechanical responses. Fig. 2.3.6 shows mechanical amplitudes as function of driving 

frequency, which exhibits nonlinearity clear at the driving force around 400.9 pN. 
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Figure 2.3.7. Measurement data of sweeping forward and backward for Duffing resonator. Red 

circle lines are the sweep forward data and blue triangle lines are the sweep backward data. The 

amplitude has been adjusted to fit the measurement data. 

 

Duffing mechanical resonator also enables transducing small signals between forward and 

backward sweeping bistable states. This phenomena have been observed in several mechanical 

resonators driven by strong electrostatic forces [114,115,121,122]. We have also observed this 

switching feature in our mechanical resonator and demonstrate the switch capability of Duffing 

nonlinearity to perform signal detection. Fig. 2.3.7 shows frequency forward and backward 

sweeping that allow bistable states in the hysteresis. Our results show a switching rate about 

100 Hz in such a kind of high quality factor ~3 × 104 [115]. The inset shows the zoom-in 

forward and backward sweeping directions. They describe the hysteresis window including 

bistable states with stochastic forces assisted switching. This Duffing mechanical resonator 

opens up possibilities to realize potentially signal processing [123,124]. 
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2.3.5 Parametric pumping applications (gain amplification and de-

amplification) 

Through combining an electrical ac signal 𝑉𝑎𝑐 and a dc signal 𝑉𝑑𝑐 for driving the mechanical 

system, we used this microwave reflectometer for readout [36]. We measured a drum 

mechanical resonator with a diameter of 30 mm, having the resonance frequency Ω01/2p 

~11.83MHz at RT [81]. Experimentally, parametric amplification is implemented onto the 

resonator using an ac power supply (Keysight 33500B). A drive signal 𝑉𝑎𝑐𝑠 with an angular 

frequency 𝜔𝑠  and another one pump signal 𝑉𝑎𝑐𝑝  with an angular frequency 𝜔𝑝  can be used 

combining with a controlled phase shift 𝜑. Their amplitudes and frequencies can be adjusted 

so that 𝑉𝑎𝑐𝑠 drives the resonator vibrating around its resonance frequency [125]. 

 

First, we need to verify the contributions from nonlinearity, and then discuss whether or not we 

could reach an infinite mechanical parametric amplification gain, and then examine that it is 

reasonable or not to ignore nonlinearities. Considering the Duffing term, we have the Duffing 

nonlinearity of this drum resonator. Now, we make an analytical comparison between nonlinear 

term 𝛼|𝑥|2 and the linear term 𝛺𝑚2  . Note that if 𝛼|𝑥|2 is comparable with the value of 𝛺𝑚2  , 

forming a comparable expression of the shifted resonance frequency (Ω𝑚2𝜋 )2 ∙ (1 + 38 𝛼|𝑥|2(Ω𝑚2𝜋 )2), the 

nonlinearity should not be neglected because it does shift the mechanical resonance frequency. 

Second, as we mentioned above in the nondegenerate case, the pump force cannot increase too 

much because the pump force will yield 1 − 𝛿𝑘216(𝑚𝑒𝑓𝑓Ω𝑚)2𝜒𝑠−1𝜒𝑖∗−1 = 0, the mechanical resonator 

will enter auto-oscillation states as described in 𝐺(, d, 𝛿𝑘) = 1|1− 𝛿𝑘216(𝑚𝑒𝑓𝑓Ω𝑚)2𝜒𝑠−1𝜒𝑖∗−1|. 
Usually, the parametric amplification gain cannot be infinite because of the nonlinear term not 

working and the working state far away from the auto-oscillation states. 

 



90                                                                                  2.3.5. Parametric pumping applications 
 

 

 

-1000 -500 0 500 1000

0

20

40

60

80

100

Vacp = 0.22 Vp

S
ig

n
a
l 
a
m

p
lit

u
d
e

 (
mV

)

(ws - Wm) / 2p (Hz)

Pump off0.04 Vp

0.20 Vp

(b)

 

 Measurement

 Analysis

0.0 0.1 0.2
0

4

8

12

16

S
ig

n
a

l 
a
m

p
lit

u
d
e

 g
a

in

Vacp (Vp)

(c)

200

300

400

500

D
a
m

p
in

g
 r

a
te

 (
H

z
)

 Measurement

 Analysis

  

0 20 100
1

10

100

Signal amplitude gain

 2.09

 1.66

 1.60

P
u

m
p

in
g

 f
o

rc
e

 (
n

N
)

d / 2p detuning (Hz)

(d)

 

Figure 2.3.8. Nondegenerate parametric pumping scheme. (a) Spectrum operation of the 

resonator, which is parametrically probed with driving frequency ω𝑠 = ω𝑝/2 + 𝛿. The vertical 

bars are the position of the angular frequencies related to the schematic amplitude. (b) 

Mechanical amplitude vs. (𝜔𝑠 − Ω𝑚) 2𝜋⁄ , with pump amplitude 𝑉𝑎𝑐𝑝 varying from 0 to 0.22 

Vp. (c) Signal amplitude gain is measured at δ/2p = 20 Hz. (d) Pumping forces correspond to 

different δ/2p = 1, 20,100 Hz detunings when reaching the same signal amplitude gain 2.09, 

1.66, and 1.60 respectively. 
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Table 2.3.3. Non-degenerate parametric pumping scheme 

Parameters Fitting results Setting values 

DC voltage - 2 𝑉 

Drive voltage (𝑉𝑎𝑐𝑠) - 111.9 𝜇𝑉𝑝 

Pump voltage (𝑉𝑎𝑐𝑝) - 0 ~ 0.22 𝑉𝑝 

Capacitance (F) - 7.918 × 10−15 

Effective mass (𝑚𝑒𝑓𝑓/ 𝑘𝑔) 4.4 × 10−14  -  

Resonance frequency (MHz) - 11.83 MHz 

Detuning 𝛿 (Hz) - 20 

 

Fig. 2.3.8(a) shows nondegenerate parametric pumping scheme, namely ∆ = 0, δ = ω𝑠 −ω𝑝 2⁄ ≠ 0. We investigate the mechanical resonator actuation by probing it with the frequency ω𝑠 = ω𝑝/2 + 𝛿, where 𝛿 is a detuning from ω𝑝2 . Then, we start pumping it with ω𝑝 = 2Ω01. 

Since ω𝑠 ≠ ω𝑝/2 , both frequencies mixture give rise to a resonator idler response at ω𝑖 =ω𝑝 − ω𝑠. In the measurement, we used the experimental drive signal voltages 𝑉𝑑𝑐 = 2𝑉, 𝑉𝑎𝑐𝑠 =111.9 𝜇𝑉𝑝 (𝑉𝑎𝑐𝑠 is the 𝑉𝑝 peak voltage) and vary the pump force in form of 𝜕(𝐶𝑔0𝑉2/2) 𝜕𝑥⁄ ≈𝐶𝑔0𝑉𝑑𝑐𝑉𝑎𝑐𝑝 𝑑⁄  to reach the same amplitude gain, corresponding to different frequency detuning δ/2p= 1 Hz, 20 Hz, 100 Hz, respectively. In this mechanical system, the modulation of spring 

constant dk in form of 𝜕𝑓𝑝 𝜕𝑥⁄ ≈ 2 𝐶𝑔0𝑉𝑑𝑐𝑉𝑎𝑐𝑝 𝑑2⁄  (𝑉𝑎𝑐𝑝 is already the 𝑉𝑝 peak voltage) can be 

induced by pumping force. Fig. 2.3.8(b) shows mechanical responses dependent of varying 

pump forces ranging from 0 to 0.22 Vp in the interval of 0.02 Vp. When 𝑉𝑎𝑐𝑝 is kept off during 

the experiment, the initial drive still excites the mechanical resonator. This may be due to 

slightly different work functions from two inter-electrodes forming the capacitance. Besides, it 

is worth to note that it is observable for 𝑉𝑎𝑐𝑝 = 0.22 𝑉𝑝 starting to perform slightly nonlinearity. 

Fig. 2.3.8(c) shows signal amplitude gain exhibiting a tendency at the frequency 𝜔𝑠 = Ω𝑚 that 

can be described as  

𝐺(∆= 0, 𝛿𝑘, 𝛿) = | 11 + 𝛿𝑘2 16𝑚𝑒𝑓𝑓2 Ω𝑚2 (𝛿 + 𝑖𝛾𝑚2 )2⁄ |        𝐸𝑞. 2.3.7 

The measurement data can be fitted in good agreement with this non-degenerate model, 
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achieving effective mass 𝑚𝑒𝑓𝑓 ≈ 4.4 × 10−14 𝑘𝑔 . Moreover, Fig. 2.3.8(c) also shows more 

energy is able to be transduced to the mechanical system as the pump amplitude increasing, 

resulting in the higher amplitude gain and the lower damping rates. Besides, Fig. 2.3.8(d) shows 

the pumping forces and corresponding 𝛿/2𝜋 detuning to a given gain. We see that the pump 

forces due to δ2p
= 100 Hz  are stronger than those the forces at 20 Hz or 1 Hz while reaching 

the same signal amplitude gain. 

As discussed above, pump power cannot increase too much into the mechanical system because 

the pump force will yield 1 − 𝛿𝑘216(𝑚𝑒𝑓𝑓Ω𝑚)2𝜒𝑠−1𝜒𝑖∗−1 = 0 , thus mechanical resonator entering 

auto-oscillation states. In order to find the critical pumping force, we set the denominator of 

Eq.2.3.7 to be zero, corresponding to mechanical self-auto oscillations. Then, we are able to 

give the critical modulation 𝛿𝑘𝑐 = 2𝑘/𝑄  by taking ∆ = 0  and d = 0 . When the parametric 

pump is more efficient to transfer energy to the system, mechanical resonator achieves the 

higher quality factor. 

 

Table 2.3.4. Degenerate parametric pumping scheme 

Parameters Fitting results Setting values 

DC voltage - 2 𝑉 

Drive amplitude (𝑉𝑎𝑐𝑠) - 201.42 𝜇𝑉𝑝 

Pump amplitude (𝑉𝑎𝑐𝑝) - 0.19 𝑉𝑝 

Capacitance (F) - 7.918 × 10−15 

Quality factor (𝑄) 1.1 × 104 - 

Spring constant 𝑘 ( 𝑁/𝑚) 82 - 

Modulations of spring 

constant 𝛿𝑘 (𝑁 𝑚⁄ ) 

1.2 × 10−2 - 

Pumping force (nN) 4.74 3.81 

 

 

 



93                                                                                  2.3.5. Parametric pumping applications 
 

 

 

-2 -1 0 1 2

0

1

2

3

4

5

6

7

p

 Measurement

 Analysis

S
ig

n
a

l 
a

m
p

lit
u

d
e

 g
a

in

Pump phase 

Pump off

De-amplification

Amplification

p ppp

(b)

 

Figure 2.3.9. Degenerate parametric pumping scheme. (a) Spectrum operation of the resonator, 

which is parametrically pumped at a pumping frequency ω𝑝 = 2Ωm and actuated at 𝜔𝑠 = Ωm. 

The vertical bars represent the position of the angular frequencies related to the schematic 

amplitude. (b) Signal amplitude gain measured with ω𝑠 = ω𝑝 2⁄  (solid squares) and fit by 

analytical calculation (solid line). 

 

Fig. 2.3.9(a) shows a degenerate parametric pumping scheme, namely ∆ = 0, δ = ω𝑠 −ω𝑝 2⁄ = 0. In general, the frequency response of the resonator is present only at frequencies 𝑛𝜔𝑠 (𝑛 being an integer) since 𝜔𝑝 is a multiple factor of 𝜔𝑠 and will mix with 𝜔𝑠 to offer those 

frequencies. Here, we just consider a simple case, namely 𝑛 = 1 . We drive the mechanical 

system by implementing 𝑉𝑑𝑐 = 2 𝑉, 𝑉𝑎𝑐𝑠 = 201.42 𝜇𝑉𝑝 and pumping it by 𝑉𝑎𝑐𝑝 = 0.19 𝑉𝑝. The 

signal amplitude gain is given by 
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𝐺(∆= 0, 𝛿𝑘, 𝜑) = |1 − (𝑄𝛿𝑘2𝑘 ) cos(𝜑) − 𝑖 (𝑄𝛿𝑘2𝑘 ) sin(𝜑)||(𝑄𝛿𝑘2𝑘 )2 − 1|         𝐸𝑞. 2.3.8 

Note that it is the signal amplitude ratio between pump on and pump off. 

 

Fig. 2.3.9(b) shows that the amplitude gain sensitivity to the phase allows a signal transition 

between amplification and de-amplification, the measurement data of which can be fitted well 

by using the above analysis, achieving fitting parameters of quality factor about 𝑄𝑓𝑖𝑡 ≈1.1 × 104, spring constant 𝑘𝑓𝑖𝑡 ≈ 82 𝑁/𝑚, and pump force 𝑓𝑝,𝑓𝑖𝑡(𝛿𝑘 ≈ 1.2 × 10−2 𝑁 𝑚⁄ ) ≈4.74  nN. It is obvious that the fitting pump force agrees with the experiment pump setting 𝑓𝑝,𝑠𝑒𝑡(𝑉𝑑𝑐 = 2 𝑉, 𝑉𝑎𝑐𝑝 = 0.19 𝑉𝑝, 𝐶𝑔0 ≈ 7.918 × 10−15 𝐹) ≈ 3.81 𝑛𝑁 , where 𝑉𝑎𝑐𝑝  is already 

the 𝑉𝑝 peak voltage. Besides, the horizontal red line corresponds to the pump off (𝑉𝑎𝑐𝑝 = 0). 

This degenerate parametric pumping scheme can be potentially used for various applications 

either in signal enhancement or for noise squeezing. 
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Chapter 3 Fabrication of SiN membrane nano-

electro-mechanical resonator 
 

In this chapter, several essential equipments, including electron beam lithography (EBL), 

reactive ion etching (RIE), and xenon difluoride etching (XeF2 etcher) will be first introduced, 

which have been used for fabricating these SiN membrane mechanical resonators. Then, 

COMSOL simulation for designing the circular SiN membrane will be introduced and discussed. 

In the following, critical fabrication process for achieving SiN membrane mechanical resonator 

will be discussed. In the last part, fabrication process of successful SiN membrane mechanical 

resonators will be summarized. 

3.1 Introduction to fabrication tools 

3.1.1 Electron beam lithography (EBL) 

 

Figure 3.1.1. Schematic of equivalent EBL system, consisting of an electron gun, 

electromagnetic (EM) condenser lens, collimating aperture and sets of electron optics lenses 

used to focus and scan the electron beam [126,127]. 
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Electron beam lithography (EBL) system (in Fig. 3.1.1) is one of useful instruments to fabricate 

micro/nanoscale devices. Comparing optical lithography process, EBL gives an access to 

fabricate devices in sub-micron scales. In general, the whole EBL process includes following 

steps: first, patterns design is an early and key step, because it plays an important role in 

designing device structure with writing field, EBL step, EB resist types, dosages and writing 

time. Second, the designed patterns can be translated from GDSII data to a machine-exposable 

file for patterns preparation. Third, sample preparation is to fix samples on a machine-

recognized holder and sample surface height is to be adjusted by using laser-equipped optical 

microscopy. Fourth, machine calibration relates to electron beam focus on the sample surface. 

Fifth, exposure includes setting write dose and write time. Sixth, effects of development on 

writing features lie in developing temperature and the time. 

Nowadays, numerous micro/nano-devices have been used in the reality but their fabricating 

cost-time depends on write fields, write dosage and write beam current. The write time per an 

area in EBL system can be estimated [127] 𝐷𝑜𝑠𝑒[𝜇𝐶 𝑐𝑚2⁄ ] × 𝐴𝑟𝑒𝑎[𝑐𝑚2] = 𝑇𝑖𝑚𝑒[𝑠] × 𝐵𝑒𝑎𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝑛𝐴]        𝐸𝑞. 3.1.1 

where Dose is how many electrons per unit area of exposure on the resist, Area is the exposed 

area, Time is the total exposure time across exposing area, and Beam current is the current of 

the electron beam.  

EBL system consists of an electron gun, EM condenser lens, collimating aperture and series of 

electron optics lenses [126]. Similar to scanning electron microscopy (SEM) system, EBL 

system is by adding additional an EBL electron gun scanning the beam onto a sample. The 

sample can be written accurate according to the instructions produced by the designed patterns. 

In terms of device design, Layout Editor software, interfacing the operator terminal with EBL 

machine (EBPG 5000 PLUS, RAITH, Germany) to translate and convert the device design is 

first critical step. In this step, researchers require to consider essential parameters, such as EB 

resists, write fields, write dosages and write beam current. In order to prepare samples for EBL 

writing, sample holder chosen usually allows sample to adjust its surface height by applying 

laser beam to measure in a range of about ±40 𝜇𝑚. From the operator’s interface in EBL 

system, achieving desired features relies on the machine calibration, because initial system 

settings help the machine to recognize alignment marks and position the beam on the patterns. 

Exposure is to expose designed patterns, where an electron beam interacts with EB resists, 
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positively degrading EB resists in the exposure region. It should be noted that specific 

development manner and time must be treated carefully because of fine features requiring. 

 

Layout Editor drawing pattern. 

 

Figure 3.1.2. Layout Editor drawing of all layer dimensions of SiN drum mechanical resonator 

with an example diameter of 30 mm. It includes contact lines (green) and pads (red) in (a), holes 

pattern (still green) on SiN film in (b), zoomed-in single hole on SiN film in (c), bottom 

electrode Al coating (blue) in (d), support feet (light blue) helping suspended top gate to be 

fabricated in (e), and top-gated  pattern (yellow) in (f). 

 

In this thesis, SiN drum mechanical resonator has been designed and developed by Zhou et al 

[36]. To describe the overall layer dimensions of the device, Layout Editor drawing is presented 

in Fig. 3.1.2. These patterns are designed to be adapted for 320 mm ´ 320 mm cell, required by 

EBL system. The writing resolution is 50 nm, corresponding to current in ranges of 100 nA and 

2 nA. While design preparing, we can translate and convert the design format of GDS.file to 

EBL machine by using pattern generator workflow. 

EB resists selection and spin coating. 

In EBL process, EB resists are of great importance for EB lithography manufacturing. Because 

the focus of the electron beam scans onto a sample, the beam spot is able to change the chemical 
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solubility of EB resists, resulting in an electron-sensitive feature sizes. Since an electron resist 

poly-(methyl methacrylate) (PMMA) was discovered in IBM Watson Research Center in 1968 

[128] and used for microfabrication in 1969 [129], it has been used well in EBL community, 

for various applications ranging from microelectronic/photonic integrated circuits to 

microfluidics. Since another commercial electron resist ZEP520 was reported in 1987 [130] 

and improved in 1992 [131] for quantum wire fabrication, it has also been a good choice for 

nanofabrication. With the dry etching development of process stability, high resolution, high 

contrast and high sensitivity, Chemical Semi-Amplified positive tone EB resists (CSAR62)  

have emerged in 2013 [132] . Copolymer structures similar to ZEP520, it has main composition 

copolymer of poly(a-methylstyrene-co-a-chloromethacrylate) with a concentration of 9% in 

anisole reported in 2014 [133]. CSAR62 resist has also been evidenced with 10 times higher 

sensitivity to electron beam than PMMA while maintaining the same resolution. It is widely 

used in dry etching process for plasma etch stability. 

 

EB resists exposure. 

 

Figure 3.1.3. File preparing process from .gds file to .PAR file through cjob software in EBL. 

 

The exposure step launched under a vacuum chamber (~10−6 Torr).  In IEMN, the designed 

gds file is converted into gpf file for EBL system. The JOB.file is used to expose patterns 

described in gpf file, which contains information of sample holder, current, dose, and the 

patterns. The PAR file is to excute the exposure. The file preparation process is shown in 

Fig.3.1.3. 
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3.1.2 Reactive ion etching (RIE) 

 

Figure 3.1.4. Schematic of RIE system, which is a kind of capacitively coupled plasma system. 

It consists of RF generator, RF match network, main reactive chamber and sample stage chunk 

etc [134,135]. (Photo courtesy to IEMN) 

 

Reactive ion etching (RIE) (in Fig. 3.1.4) is a plasma-processing tool that is widely applied in 

modern semiconductor industries. Dry etching process to remove some materials can be done 

by RIE process. When some radicals and neutrals that can be chemically formed on the 

specimen surface produce volatile precursors, positive ions can be accelerated across plasma 

sheath in the inter-electrode space, so as to add sufficient ions energy forming ions 

bombardment [136]. This ions bombardment plays an important role in creating anisotropic 

profiles, etching rate improvement and surface materials removal. Besides, another approach to 

electron density control in capacitively coupled plasma has also been meaningful [137]. It is 

able to avoid etching instabilities, e.g., process reproducibility. 

In this thesis, a standard capacitively coupled plasma RIE equipment (PlasmaLab 80 Plus, OIPT, 

UK) is used for selective etching of the SiN/silicon against CSAR62 resist.  In order to control 

RIE etch process, several parameters, such as etchant passivation gas, etch time, gas flow rate, 

chamber pressure and RF power are considered. They are collectively major effects on etch rate 

and etch profile.
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3.1.3 Xenon difluoride etching (XeF2) 

 

Figure 3.1.5. Schematic of XeF2 etcher system. It consists of nitrogen source, XeF2 crystals 

source, expansion chamber, etch chamber, vacuum pump, series of control valves and PC 

controller [138]. (Photo courtesy to IEMN) 

 

Xenon difluoride (XeF2) etcher system (in Fig. 3.1.5) is an isotropic silicon-etching tool, which 

is also engaged for modern microelectronics fabrication. This tool is able to use XeF2 gas as an 

etchant to selectively etch the target silicon. Since XeF2 gas was first discovered in Argonne 

National Laboratory in 1962 [139] , Winters et al in IBM Research Laboratory in 1979 [140] 

reported for the first time on the etching of silicon with XeF2 vapour. Their work investigated 

the changing of etch rates with different pressures and found the selectivity of XeF2 for silicon 

with respect to SiC, SiO2, and stoichiometric SiN. Over the past long time till 1995, Hoffman 

et al [141] and Chang et al [138] reported the selectivity of etching silicon with XeF2 to 

photoresist, aluminium, SiO2 etc and used this high etch selectivity in standard CMOS 

fabrication process and MEMS fabrication. In recent years, Vähänissi et al in 2019 [142] have 

also uncovered the selectivity of etching silicon with XeF2 against different compounds, such 

as Ti/Mo, stoichiometric SiN, SiO2, Al2O3, and AIN etc. They revealed the etching selectivity 

ratio between the silicon and the SiN about 30:1 in the fabrication of microelectromechanical 

devices. Rondé et al in 2021 [143] have increased the etch selectivity of silicon against SiN by 

68%, by reducing the processing temperature because of the sensitive proximity effect on a 
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silicon sacrificial layer. Therefore, XeF2 gas as an etchant to etch selectively silicon is a 

promising method and it has been used well in MEMS applications. 

In XeF2 etcher system, it includes nitrogen source, XeF2 crystals source, expansion chamber, 

main etch chamber and vacuum systems. By using cycle mode, this etcher system can expose 

the target specimen to XeF2 gas atmosphere. Using expansion chamber, XeF2 gas from the 

source can be controlled with a pressure. Then, the gas is going to enter the etch chamber to 

perform etch process. A standard XeF2 etcher machine (Xetch Xactix X3B, Xactix, USA) is 

employed in this work for the selectivity of etching silicon with XeF2 against EB resist CSAR62 

and stoichiometric SiN. In order to control the XeF2 etching process, several necessary 

parameters, namely etch mode, etch time, cycle number, gas pressure and pump out pressure 

have to be taken into account. It facilitates wanted etch rate, etch profile and selectivity of mask 

to materials. 

Besides those equipments mentioned above, a standard EB evaporator machine (MEB 500S, 

Plassys, France) is utilized for depositing the target metal materials (e.g., Ti, Au, Al) on a wafer 

under a vacuum. In this thesis work, all metallization process is performed by a professional 

engineer, Marc Dewitte in IEMN. In the process, we choose the deposition speed, e.g., 1 nm/s, 

and pre-clean process (e.g., argon ion cleaning process), and the desired metal thickness. 
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3.2 Design of SiN circular membrane by finite element simulation 

Before the release of SiN membranes from the silicon substrate, the optimization and analysis 

of clamping losses of the SiN membrane are performed by using finite element method (FEM) 

by means of COMSOL multiphysics. A circular SiN membrane with a fixed tensile stress of 

1.0 GPa and diameter of 30 mm is simulated, giving a resonance frequency of 1.353 MHz. The 

clamping occupation ratio () is defined with the total arc length (4𝑙) of the clamping edge 

divided by the circumference (2𝜋𝑟) of the membrane. 
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Figure 3.2.1. Simulation results of mechanical damping rates of SiN circular membrane, 

corresponding to different clamping ratio  = 4𝑙2𝜋𝑟 . The insets are the schematic for the 

definition of clamping occupation ratio, where the dark blue shows the clamping part of the 

membrane. Here, 𝑟 is the radius of the circular membrane. 

 

Fig. 3.2.1 shows the simulation results of damping rate varying 𝛿𝛾𝑚  that is obtained by 

normalizing the damping rate 𝛾𝑚  with the initial damping rate 𝛾𝑚/2p = 9.4  kHz. It is 

simulated with the clamping occupation ratio value  = 16, namely 𝛿𝛾𝑚 = 𝛾𝑚 − 𝛾𝑚( = 16). 

Its specific patterns are subsequently shown in Fig. 3.2.2.  In this simulation, we observed the 

values of 𝛿𝛾𝑚 increasing with the clamping occupation ratio  increasing. It indicates that the 

clamping losses of the circular membrane gradually increase while the clamping edge is 



103                                    3.2. Design of SiN circular membrane by finite element simulation 
 

 

occupied larger on the circumference. It is worth to mention that this simulated circular 

membrane is based on bare silicon nitride membrane. In fact, our final device structure consists 

of two circular membranes, namely the aluminium membrane acting as a suspended top gate 

and the SiN membrane drum. Here, silicon nitride membrane covered by a thin aluminium has 

not yet been simulated, but this kind of concern has been considered in the Fig. 4.2.6 of section 

4.2.1 in chapter 4. The simulation circular membrane consists of silicon nitride circular 

membrane covered with a thin aluminium. For the SiN membrane nanoelectromechanical 

resonators, the dissipation is highly diluted by its high tensile stress [144]. Moreover, the 

mechanical properties of the SiN/Al membrane are still dominated by the silicon nitride with 

high tensile stress, generating the resonant frequency of the membrane remaining silicon nitride 

membrane (also mentioned in section 3.3.3 in chapter 3). 

 

Figure 3.2.2. Simulation results of mechanical vibration of SiN circular membrane. The 

clamping occupation ratio  = 4𝑙2𝜋𝑟 ranging from 1/6 to 6/6. The color on the membrane is 

mechanical amplitude arbitrary (units). The lines on the membrane are referred lines. 

 

This simulation results provide us with a feasible evaluation to achieve a compromise between 

membrane fabrication and low clamping losses. In recent years, soft clamping schemes have 

been exploited to further reduce damping effects, where most of the SiN membrane edges are 

etched away to avoid full clamping [80]. Such membrane nanoelectromechanical resonators are 

well suited for applications in optical readout schemes. It is very challenging to achieve 

electrical integration for this type membranes, as the membrane becomes too fragile to fabricate 
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a suspended top gate. Considering the difficulties in the fabrication process, we therefore design 

the SiN membrane to be a fully clamped scheme (namely  = 1) in this thesis work. In order 

to have a capacitive coupling scheme, a thin aluminium layer will be deposited on surface of 

the SiN membrane. It is designed not to cover the entire clamping edge of the SiN membrane, 

but only the edge where the two leads are connected later in Fig.3.3.15(a), with the  < 0.2, 

so as to reduce additional clamping losses. Besides, we would like to mention that the 

aluminium top gate is also a nanoelectromechanical resonator, with resonance frequency around 

~3 MHz [93]. In order to reduce its clamping losses, the clamping ratio of Al top gate drum 

 = 0.5 is chosen in this thesis work.
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3.3 Fabrication process of SiN membrane nano-electro-mechanical 

resonator 

 

 

Figure 3.3.1. Schematic of nanofabrication process for a SiN membrane 

nanoelectromechanical resonator. It includes the dry etching process to release the membrane 

from silicon substrate, the deposition of aluminium thin layer on the surface of the membrane, 

and the two-step EB lithography process to create a suspended aluminium top gate.    

 

Fig. 3.3.1 contains the following specific fabrication steps: 

(i) alignment marks, contact lines and pads, 

(ii) release of SiN membrane from the silicon substrate, 



106                 3.3. Fabrication process of SiN membrane nano-electro-mechanical resonator 
 

 

(iii) aluminium thin film deposition on the SiN membrane, 

(iv) aluminium suspended top gate on the top of the SiN membrane. 

In this fabrication process, SiN drum mechanical resonators were fabricated from a high 

resistivity (~10 kWcm) silicon substrate deposited with stoichiometric SiN (Si3N4) thin film of 

about 100 nm with  high tensile stress of about 1.0 GPa. 

Before spin coating process, sample clean is always proceeded (see Table 3.3.1). It plays a 

major role in MEMS fabrication process because the fabricated devices are strongly dependent 

of effective masses. Dirty particles carry extra masses to the devices and further hinder the use 

of devices. Therefore, clean process mainly includes two steps, namely clean wafer and 

examine the wafer in optical microscopy. 

 

Table 3.3.1. Clean wafers in our process 

Process Parameters 

Coating photoresist SPR 220 2500 rpm_speed, 

1000 rpm/s_acc., 

15 s_time, 

Bake 100 °C for 2 min 

Wafer laser cutting in IEMN Achieving 1.7𝑐𝑚 × 1.7𝑐𝑚 samples 

Cleaning wafers SVC-14 solvent 70 °C for 3 hour, 

IPA rinsing, N2 blowing 

Wafers examination by optical 

microscopy 

Magnitude: × 10, × 20 etc 
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3.3.1 Alignment marks, contact lines and pads 

These alignment marks (see process in Table 3.3.2) are used to define the relative coordinates 

of each pattern. They allow EB machine to write patterns, for each layer, in the described 

positions on the chip. 

 

Table 3.3.2. Fabrication process of alignment marks, contact lines and pads 

Process Parameters 

Cleaning wafers SVC-14 solvent 70 °C for 3 hour, 

IPA rinsing, N2 blowing 

Activating the surface by 

HDMS+ EL 13%_ 

3000 rpm_speed, 

1000 rpm/s_acc., 

12 s_time, 

170 °C for 5 min 

Spin coating EB resist 

PMMA 3% 

3000 rpm_speed, 

1000 rpm/s_acc., 

12 s_time, 

170 °C for 5 min 

EBL writing patterns Exposure dose 650 mC/cm2, 

Current 50na (marks+lines), 

100na (pads), 

Cell size 320 mm ´ 320 mm 

Developing MIBK (30 ml) : IPA (60 ml) for 1 min 40 s,  

IPA rinsing for 10 s and N2 blowing 

Metal deposition Ar pre-etching for 60s, 

Ti 30 nm at 0.2 nm/s, 

Au 250 nm at 0.5 nm/s 

Lift-off SVC-14 solvent at 70 °C for 3 hours, 

Acetone + IPA rinsing, and N2 blowing 
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Figure 3.3.2. Optical micrographs of alignment marks, contact lines and pads after 

development (a-d), and contact lines and pads after metal deposition (e,f). Note that Au about 

250 nm is used for alignment marks and Al about 250 nm is used for contact lines and pads 

here. 

 

First of all, we start to fabricate the alignment marks, contact line and pads. They are useful as 

fabrication coordinate references in the device fabrication process. The alignment marks allow 

EBL machine to locate and expose pattern features for each fabrication step. Fig. 3.3.2(a,b) 

show alignment marks, which are about 20 mm long ´ 20 mm wide and enable electron beam to 

recognize the wanted location for allocating patterns exposure. Fig.3.3.2(c-f) show contact lines 

and pads, which are about 100 mm ´ 10 mm and 300 mm ´ 200 mm, respectively. In our process, 

Al layer 250 nm in thickness is deposited. All depositions are followed by lift off process so as 
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to transfer the metals on the wafer surface. Contact lines connecting with larger contact pads 

allows mechanical resonator devices to be connected with external circuits through wire 

bonding. 

 

3.3.2 Release of SiN membrane from silicon substrate 

The release method of SiN membrane from the Si substrate includes two-steps dry etching 

process. Because we have defined the circular holes patterns on the SiN membrane through 

CSAR62 resist, RIE is first used for etching SiN/Si materials in order to expose the Si material 

to the XeF2 gas; XeF2 etcher system is then employed for the selectivity of etching Si material. 

Besides, it is worth mentioning that SiN membranes have also been technically released from 

silicon dioxide on silicon substrate by using hydrofluoric acid vapour through critical point 

drying [87]. Here, we have a novel double dry etching process (namely RIE and XeF2 etching) 

to release our SiN membranes from silicon substrate. 

 

Figure 3.3.3. Optical micrographs of CSAR62 resist on SiN membranes. These membranes are 

of 20 mm (a), 30 mm (b) and 40 mm (c) in diameters with nominal holes patterns of 300 nm in 

diameter. (d) The alignment mark enables EBL exposure for the pattern position check. Note 

that here CSAR62 resist is used as a mask. 
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The nominal vibrating membranes with different diameters are defined by using EBL and 

development process is followed to pattern circular symmetric holes on the CSAR62 resist. 

Notably, the release of SiN membrane is possible when the underneath of the SiN film, the 

silicon, is exposed to reactive etchant gas. To facilitate Si etching and thus release SiN 

membrane, circular symmetric holes of 300 nm in diameter spaced by about 1.3 mm are defined 

and they are EB lithographically exposed on the CSAR62 resist, followed by development. 

Then, the pattern is able to be transferred from the resist to the SiN thin film by RIE through 

these circular holes to remove unwanted parts. Fig. 3.3.3(a-c) show optical images of EBL 

exposed patterns, showing the circular membranes with 20 mm, 30 mm and 40 mm diameters 

definitions. For each definition, we define holes patterns all with 300 nm diameter to be exposed 

for the purpose of SiN membrane release. Fig. 3.3.3(d) shows the readout of alignment marks 

in EB writing process. These patterns on CSAR62 resist mask will be used in the following RIE 

and XeF2 etch steps.
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Table 3.3.3. Release of SiN membrane from silicon substrate 

Process Parameters 

Spin coating EB resist CSAR62 3000 rpm_speed, 

1000 rpm/s_acc., 

12 s_time, 

heating at 150 °C for 1 min 

EBL writing hole patterns Exposure dose 630 mC/cm2, 

Current 1na, 

Cell size 320 mm ´ 320 mm 

Developing AR-600-546 solvent for 50 s, 

IPA rinsing for 10 s and N2 blowing 

RIE etching SiN/Si Cleaning for 6 mins, 

SF6/Ar 10 sccm/10 sccm, 

RF Power 30W, Pressure 10 mTorr 

Release SiN film by XeF2 

etching Si 

Advanced Normal, 1 cycle, 

50 s, 3.0 Torr, 800 mTorr 

Remove CSAR62 SVC-14 solvent at 70 °C for 1 hour, 

Acetone + IPA rinsing, and N2 blowing 

 

RIE etching is used to transfer the pattern from the CSAR62 mask to SiN film and locally etch 

the SiN film with sulphur hexafluoride(SF6)/Argon(Ar) chemical gases (flow rate:10 sccm /10 

sccm) and active plasma power 30 Watt. It gives the etching rate of SiN about 20 nm/min. After 

removing SiN parts, the RIE process continues to remove Si parts about 350 nm from the 

substrate. Opening SiN holes through the CSAR62 mask is crucial for the subsequent XeF2 

etching. In case of incomplete SiN layer etch, it would leave an ultrathin layer (< 100 nm) of 

SiN membrane, thereby inhibiting XeF2 gas etching and failing to release SiN membrane from 

the substrate. 
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Figure 3.3.4. Recess characterization of RIE etching SiN thin film. (a) Schematic of cross 

sectional view. (b) Profilometry measurement results and the inset showing an optical image of 

a triangle pattern. The tip scan direction marked by red dashed line and its position marked by 

numbered red circles are present. Note that, CSAR62 resist mask (grey) on silicon remained 

and triangle pattern (yellow location) shows RIE etch cause. 

 

In order to remark the fabrication, etch process logics is thought of as: (a) Etch test of RIE 

process, (b) Etch test of XeF2 process, and (c) Releasing of SiN membrane. 

(a) Etch test of RIE process. 

Fig. 3.3.4 (a) shows RIE etch step of SiN thin film. In order to estimate a membrane fully being 

released or not, etching test is performed in our process. Here, a triangle pattern is defined with 

a dimension of about 20 mm. RIE etch is employed to transfer the triangle pattern from the 

CSAR62 mask to SiN membrane, hence obtaining an inverted pyramid trench. Fig. 3.3.4 (b) 
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inset shows the RIE etched triangle pattern. After analysing measurement resultant each sweep 

line of the tip on each start position, all the measured results can be rebuilt. The recesses exceed 

about 430 nm, implying SiN membrane about 100 nm in thickness and Si about 330 nm in 

thickness. They both have been removed at the centre part of this pattern. While, for the position 

edge, only about 200 nm materials have been etched away. These measurement results are 

important to have evidenced buried Si substrate exposing to reactive etchant gas. 

 

(b) Etch test of XeF2 process. 

XeF2 etcher tool (Xetch Xactix X3B) is engaged to continue to selectively etch Si material after 

RIE etch. This is because RIE etched holes pattern on SiN membrane exposed successfully Si 

material to XeF2 gas. As XeF2 gas has highly selective etching rate between Si and SiN[138], 

this rate is about 100 :1 in this process. Our aim is to use XeF2 gas to etch isotropically the Si 

material to release the target SiN thin film from the substrate, thus forming a vibrating SiN 

membrane. To well release the SiN membrane, the chamber is maintained at 2.2 Torr and two 

cycles of etching are carried out with 30 seconds etch time per cycle. This gives the maximal 

etching rate of Si material about 70.4 nm/s. This rate highly depends on the exposure area and 

the doping density of the Si substrate. In this process, this XeF2 etcher is able to choose “etch 

cycles” at a pressure and time for highly-efficient control of the Si material etching, and it also 

enables high selectivity of etching Si with XeF2 by using CSAR62 resist and SiN masks. 
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Figure 3.3.5. Recess characterization of XeF2 etching the silicon material. (a) Schematic of 

cross sectional view for XeF2 etching step. (b) Profilometry measurement results and the inset 

showing a triangle pattern. The tip scan direction marked by red dashed line and its position 

marked by numbered red circles are present. Note that, CSAR62 resist mask (grey region) is 

still on silicon and triangle pattern (yellow region) shows XeF2 etch cause. 

 

As described in RIE etched process, this triangle pattern etch went beyond at least 200 nm near 

the edge.  So the silicon underneath of the SiN film has been exposed successfully. Fig. 3.3.5 

(a) shows XeF2 etched step, which continues with the RIE process. Fig.3.3.5(b) shows 

profilometry measurement results, where the pattern recess etched at the position edge over at 

least 2 mm and at the centre at least 4 mm. At the same time, the Fig. 3.3.5 inset shows the 

undercut of the triangle pattern about 3 mm, indicating the etch depending on the exposure area. 

From this test observation, the silicon material etched by XeF2 gas can be confirmed. 
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(c) Releasing of SiN membrane 

 

Figure 3.3.6. Optical micrographs of released SiN membranes before (a,b) and after removing 

(c,d) CSAR62 resist mask. 

 

Well etched SiN membrane, or not, can be determined based on three key points: first, The 

residue under the SiN should be checked,second, check the width of undercuts, third, check the 

edge shapes.According to the above analysis of the triangle pattern test, the released SiN 

membrane in principle can be achieved. Preliminary examinations on well-releasing SiN or not 

can be done by using optical microscope. Fig. 3.3.6 shows well-released SiN membranes 

without and with removing the CSAR62 resist mask. The undercuts have been larger than the 

distance between the neighbouring holes ~1.3 mm, indicat`ing a good release of SiN from the 

silicon substrate. 
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Figure 3.3.7. Optical micrographs of partly-released SiN membranes before (a,b) and after (c,d) 

removing CSAR62 resist masks. 

 

Comparing with the well-released SiN membranes in Fig. 3.3.6, Fig. 3.3.7 shows the partly-

released SiN membranes. In these figures, the undercuts can be examined less than the distance 

between the neighbouring holes ~1.3 mm. It means the incomplete release of the SiN film, as 

results of some residues still underneath the SiN film. This problem will be discussed below to 

gather with SEM images. In the nanofabrication part, all SEM images were taken by C. Boyaval 

and X. Zhou. 
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Figure 3.3.8. SEM micrographs of the released SiN membranes with 20 mm in diameter. (a-c) 

images show well-released SiN membrane after XeF2 etching, in which holes are about 352 nm 

in diameter. (d-f) images show partly-released SiN membrane. 

 

SEM microscope is employed to investigate the etch undercut. Unlike optical microscopy, SEM 

tool with electron beam scanning is able to not only examine the XeF2 etched silicon material 

under the SiN film, but also observe whether the residues remain below the membrane or not. 

If residues are observed, it means SiN membranes vibrating are affected. Therefore, this kind 

membrane cannot be used to perform following nanofabrication process. Fig. 3.3.8 shows a 

release comparison of SiN membranes. Fig. 3.3.8(a-c) show well-released SiN membranes, in 

which (c) shows pattern holes of about 352 nm in diameter observed by SEM. It indicates the 

well release of SiN membrane from silicon substrate, due to no residues observed as well. 

Besides, the high selectivity of etching silicon with XeF2 gas is an orient independent (isotropic) 

etch, yet yielding a visible undercut about 1.8 mm next to the outer hole. This value is larger 
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than the distance between nearest neighboring holes. In addition, the edge shape of membrane 

is perfect circular. Thus, it also proves the membrane is well released. On the contrary, 

Fig.3.3.8(d-f) show partly-released SiN membrane examples. XeF2 etching silicon residues are 

observed through these etching holes. The observable residues are attached under the SiN 

membrane, making the membrane difficult to vibrate. And they will lead to imperfect device 

performance. Specifically, Fig. 3.3.8(d) shows flower-like undercut edge exhibiting an 

underetch about 1.3 mm, in which (f) enlarges the hole appearance showing a diameter of about 

284 nm, adversely coexisting the residues with the pattern holes. this flower-like undercut edge 

differs from the circular undercut edge. These phenomena are also observed in larger diameters 

in Fig. 3.3.9. 

 

Figure 3.3.9. SEM micrographs of the released SiN membranes with 40 mm in diameter. (a,b) 

images have well-released SiN membrane, in which holes are about 355 nm diameter. (c,d) the 

SiN membranes have not well been released. 

 

For the fabrication efficiency of SiN membranes, it needs to point out high efficiency depending 

on the well control of RIE and XeF2 etching. Unfortunately, SiN membranes with contaminants 

are sometimes observed after optical microscopy checking. The fabrication efficiency of SiN 

membranes is defined by the ratio between the numbers of well-released clean membrane and 

all devices. For most high fabrication efficiency of SiN membranes, we have obtained the 

membrane success rate 95% at least (namely 60 devices out of 64 devices on a chip).
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3.3.3 Aluminium film deposition on the released SiN membrane 

In order to allow the SiN membrane to be capacitively coupled to an external gate electrode and 

to be electrostatically driven, a thin conductive film on SiN membranes are required, due to the 

insulating feature of SiN material. Here, three critical steps are included: first, EB resist spin 

coating on the released SiN membranes; second, EB lithographically exposing the drum 

patterns; third, metal evaporation performs for achieving a thin conductive film. 

 

Table 3.3.4. Aluminium thin film evaporation on SiN membrane 

Process Parameters 

Spin coating EB resist PMMA 

4% 

2500 rpm speed, 

1000 rpm/s_acc., 

12 s_time, 

heating at 160 °C for 2 min 

EBL writing drum patterns Exposure dose 650 mC/cm2, 

Current 50 na, 

Cell size 320 mm ´ 320 mm 

Developing MIBK (30 ml) : IPA (60 ml) for 1 min 40s, 

IPA rinsing for 10 s and N2 blowing 

Metal evaporation Ar pre-etching for 60s, 

Al 30nm at 0.1 nm/s 

Lift off SVC-14 solvent at 70 °C for 4 hour, 

Acetone + IPA rinsing, and N2 blowing 
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Figure 3.3.10. Optical micrographs of EB resists coating on the released SiN membranes with 

20, 30 and 40 mm in diameters. (a-c) spin coating on SiN membranes is perfect. (d-f) spin 

coating on SiN membranes is imperfect. Note that PMMA EB resist coats on SiN membranes. 

 

Fig. 3.3.10 shows optical images of EB resist on the released SiN membranes after coating. 

They present facing problems for metallization, including two spin coating issues: First issue is 

that EB resist covers uniformly on the SiN membranes in images (a-c). The phenomenon is 

inferred due to the buckling deformation when SiN membranes is released from silicon 

substrate. Second issue is not perfect coating on the SiN membranes in images (d-f) because of 

possible problems generated by spin-coating parameters, e.g., spin speed. If the bad impact 

arises from spin coating control, we are usually able to avoid the issue and use this membrane. 

This is because the morphologies are just not perfect, but do not affect membranes themselves, 
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EBL exposure and later processes. If some bad impacts arise from the contaminants on 

membranes, they are most of possibilities unable to be used, the mechanical resonator featuring 

very fragile SiN membrane does not suggest using ultrasonication machine to remove particles 

in spite of contaminations. 

 

 

Figure 3.3.11. Optical micrographs of drum patterns and metal deposition. (a-c) EBL writing 

drum patterns, followed by development. (d-f) clean drum patterns, followed by lift-off process. 

(e-i) contaminants on drum patterns. 

 

Fig. 3.3.11(a-c) show optical images of the developed drum patterns, which can be used for 

metal evaporation further. Fig. 3.3.11 (d-f) show optical images of perfect lift-off Al film on 

SiN membranes. In our process, Al metal is used, because its mechanical properties, e.g., tensile 

stress, are similarly close to SiN membranes and it is also measured in superconducting circuits 

at cryogenic condition [9]. Fig. 3.3.11 (g-i) show optical images of some contaminants on SiN 

drum membranes. This indicates SiN membranes cannot serve as mechanical resonator devices, 

because these contaminants result in high effective masses, following withreduction of the 

mechanical resonance frequency. It could also lead to low quality factor of the mechanical 

resonator. Besides, only 30 nm thin Al film is deposited on the SiN membranes, it is trivial for 
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affecting the performance of the SiN membranes. Despite the deposition going through the 

holes to the etched silicon cavity, forming a stray capacitance, the etched cavity depth at the 

pattern edge is at least 2 mm, this stray capacitance is quite small compared to the gate 

capacitance. Therefore, we are able to neglect its effect on the overall electrical performance of 

the device. The mechanical properties of the membrane are still dominated by the SiN 

membrane having high tensile stress, and the resonant frequency of the membrane is not 

reduced too much by the extra mass added by this thin Al layer.  

 

3.3.4 Aluminium suspended top gate on the top of the SiN 

membrane 

In order to form a capacitive coupling scheme, a suspended Al top gate on the top of the SiN 

membrane can be fabricated. This process is inspired by nanofabrication process of air bridge 

in superconducting quantum circuits [145]. In our process, sacrificial EB resist layer is first 

fabricated for supporting Al suspended top gate and then EBL is used to expose top gate patterns. 
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3.3.4.1 Coating of EB resist sacrificial layer 

EB resists (either PMMA or PMGI) is exploited as sacrificial layer to spin coat on the Al/SiN 

membranes. As discussed in section 3.1.1, a desired thickness layer of EB resist is defined to 

achieve a distance between the SiN membrane and its suspended top gate. 

 

Table 3.3.5. Coating PMMA resist as sacrificial layer on SiN membrane 

Process Parameters 

Coating EB resist PMMA 

4% 

4000 rpm_speed, 

1000 rpm/s_acc., 

12s time, 

heating at 150 °C for 2 min 

Coating EB resist PMMA 

5% 

3000 rpm_speed, 

1000 rpm/s_acc., 

12s time, 

heating at 150 °C for 2 min 

EBL writing feet patterns Exposure dose 650mC/cm2, 

Current 50na, 

Cell size 320 mm ´ 320 mm 

Developing MIBK (30 ml) : IPA (60 ml) for 1 min 40s, 

IPA rinsing for 30 s and N2 blowing 

Bake and reflowing temperature at 180 °C for 3 mins 
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Figure 3.3.12. Optical micrographs of EB resists spin coating on Al/SiN membranes. (a-c) 

perfect Al/SiN membranes after coating and baking; (d-f) broken Al/SiN membranes after 

coating and baking. 

 

This EB resist will first be soft baked at the relatively low temperature about 150 °C. Fig. 3.3.12 

shows optical images of EB resists spin coating, which include perfect membranes and broken 

membranes. Fig. 3.3.12(a-c) show perfect examples of Al/SiN membranes. They are 20 mm, 

30 mm, and 40 mm in diameters. Comparing with these ideal Al/SiN membranes, Fig. 3.3.12 

(d-f) show some broken examples of the Al/SiN membranes. They present broken features, 

illustrating their properties unable to be used further. The broken phenomena can be inferred 

because of possible soft baking. Baking atmosphere is able to yield heating to form a soft solid 
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EB resist film on the membrane surfaces. This solid EB resist film may deform and break the 

membranes to the generated strain. 

 

 

Figure 3.3.13. Optical micrographs of EBL writing support feet, showing examples of 30 mm 

diameter drum pattern after development. (a,b) before and (c,d) after soft baking. 

 

After patterning the feet of the suspended gate through EBL, followed by development, the 

resist is then baked again at the higher temperature about 180 °C. It is well known as the reflow 

process [145], where the patterns edges are rounded, thereby avoiding the following lift-off 

process. Fig. 3.3.13(a,b) show before soft baking patterns with fine development features, 

exhibiting observable sidewalls. After soft baking at the higher temperature about 180 °C, 

Fig.3.3.13(c,d) show the reflowing process of feet patterns, resulting in the rounded edge. 

Profilometry is further used to measure the thickness of PMMA coating, showing soft-baked 

rounded effects after its development. Fig. 3.3.14 below shows an example of PMMA coating 

thickness about 750 nm which defines the distance between the SiN/Al membrane and its 

suspended top gate. 
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Figure 3.3.14. Profilometry measurement of EB resist coating on the Al/SiN membranes. Pink 

region is PMMA, the height of which is measured by the tip (insert). 

 

 

 

 

 

 

 

 

 

 



127                               3.3.4. Aluminium suspended top gate on the top of the SiN membrane 
 

 

3.3.4.2 Formation of suspended Al top gate on the top of SiN 

membrane 

A bilayer of EB resists are spin coated, namely 2 mm thick MMA (methyl methacrylate), and ∼120 nm thin CSAR62 resist, which helps a suitable critical lift-off process later. The final top-

gate is patterned on this bilayer EB resists through EBL, which is followed with development 

and evaporated with ~550 nm thin Al film.  The device fabrication process has ended up after 

the lift-off process. 

 

Table 3.3.6. Formation of suspended Al top gate on the top of SiN membrane 

Process Parameters 

Spin coating EB resist 

MMA 

2500 rpm_speed, 

1000 rpm/s_acc., 

12s time, 

Softbaking at 130 °C for 2 min 

Coating EB resist 

CSAR62 (1/0.5) 

1500 rpm_speed, 

1000 rpm/s_acc., 

12s_time 

Softbaking at 130 °C for 2 min 

EBL writing top gate 

patterns 

Exposure dose 300 mC/cm2, 

Current 50na, 

Cell size 320 mm ´ 320 mm 

Developing CSAR62 AR600-546 developer for 30 s, 

IPA rinsing for 10 s and N2 blowing 

Developing MMA Methanol (10 ml) : IPA (30 ml) for 35 s 

IPA rinsing for 10 s and N2 blowing 

Metal evaporation Ar pre-etching for 60s,  

Al ~ 550 nm at 0.5 nm/s, 

Lift off SVC-14 solvent at 70 °C for 2 hour, 

Acetone + IPA rinsing, and N2 blowing 
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Figure 3.3.15. Optical micrographs of EB resists coating on the sacrificial layer. (a,b) spin 

coating showing uniform EB resists on Al/SiN membrane; (c,d) spin coating showing a broken 

example of Al/SiN membrane. Note that MMA and CSAR62 EB resists are used here. 

 

Fig. 3.3.15(a,b) show optical micrographs of the final drum patterns (including support feet 

patterns). It indicates a successful sacrificial layer fabrication, contributing to Al suspended top 

gate formation. Besides, Fig. 3.3.15(c,d) show broken examples of the drum patterns. It 

evidences an unsuccessful case for suspending Al top gate. By optimising spin coating 

parameters, it is possible for us to avoid having broken membranes. There include two main 

factors: the first one is the droplets control of EB resists and the second factor is to reduce inner 

pressure during spin coating. For the latter one, we can leave spin coater’s lid open so as to 

reduce pressure inside the machine. 
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Figure 3.3.16. Profilometry measurement of EB resists coating on the sacrificial layer. Pink 

region is PMMA sacrificial layer and light yellow region is MMA-CSAR62 bilayer resists. 

Their total height is measured by the tip (insert illustration). 

 

Fig. 3.3.16 shows the coating bilayer, namely both MMA and CSAR62 resists (light yellow). 

A total height of EB resists about 2.5 mm is measured. This height is higher 3 times than an 

expected Al deposition thickness so as to lead to a critical lift-off. 

It is while worth noting that the final lift-off not only does remove the sacrificial resist (EB 

resist: PMMA) for supporting the top gate , but it also removes the bilayer resists (EB resists: 

MMA and CSAR62) coated on the top of the sacrificial layer for having lift-off of the Al film.  
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Figure 3.3.17. Optical micrographs of top view for the final SiN drum mechanical resonators. 

(a,b) successful examples and (c,d) unsuccessful examples of drum mechanical resonators. Note 

that Al about 550 nm is used for top gate here. 

 

After full fabrication process, we achieved the final SiN drum mechanical resonator consisting 

of the Al/SiN drum membrane capacitively coupled to its Al suspended top gate. Fig.3.3.17(a,b) 

show successful examples of SiN drum mechanical resonators with 30 mm and 40 mm in 

diameters. On the contrary, Fig. 3.3.17(c,d) show failed examples of top gate of SiN drum 

mechanical resonators. These drum resonators are unable to be used further. When the Al top 

gate stick to the bottom drum, these holes on the top of sin drum can be clearly observed. 
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Figure 3.3.18. SEM micrographs of the final SiN drum mechanical resonator. (a,b)  successful 

examples of the final drum resonator with 30 mm in diameter ; (c,d) failure examples of the 

final drum resonator with 40 mm in diameter. 

 

Fig. 3.3.18(a,b) show a successful SiN drum mechanical resonator. From SEM image view, 

Al/SiN membrane under the top gate is connected to one contact line and the Al suspended top 

gate is linked to the other contact line. Fig. 3.3.18(b) shows close-side view of a distance gap.  

However, it cannot indicate the real distance due to the tilted observation angle. It is also worth 

to mention that real electrode gap can be measured by professional laser metrology; or, the real 

gaps have been obtained by measuring the devices and fitting the amplitude of the device. 

Fig.3.3.18(c,d) shows a failed top gate of SiN drum mechanical resonator. A broken open is 

presented on the top of Al suspended top gate. Fig. 3.3.18(d) shows an enlarged feature in the 

broken region. This case has two possible reasons: First, the collapsed SiN membrane 

underneath the top gate leads to device failure, Second, the resist has not yet been removed 

thoroughly, causing a top gate failure. For the fabrication efficiency of Al top gate membrane, 

its fabrication efficiency mainly depends on adding the reflow process (also mentioned in 

Figs.3.3.13 and 3.3.14). Unfortunately, the broken Al top gates are observed by optical 

microscopy examining. Therefore, most high fabrication efficiency of Al top gate is defined by 

the ratio between no broken Al top gates and all devices. We have obtained the final device 

success rate 22% (namely 14 devices out of 64 devices on a chip).
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3.4 Summary 

In this chapter, we introduced key fabrication tools used for nanofabrication process with tool’s 

principle and basic critical steps. Besides, finite element method (FEM) simulation of 

mechanical damping rates of SiN drum membrane is performed so as to optimize the device 

design and help us to understand the trade-off between achieving low clamping losses and 

feasible fabrication process. Main fabrication steps have also been discussed, including (i) 

alignment marks, contact lines and pads, (ii) release of SiN membrane from the silicon substrate, 

(iii) aluminium thin film deposition on the released SiN membrane, and (iv) aluminium 

suspended top gate on the top of the SiN membrane, in order to provide essential and detailed 

guidance for the fabrication of SiN drum membrane mechanical resonator. In addition, two key 

fabrication steps, namely the release of SiN membrane and forming a suspended top gate, have 

been discussed carefully, so as to offer the critical dry XeF2 selective etching process and reflow 

processes. Also, the failure of fabrication has been analysed mainly associated with the EB 

resists coating and lift-off processes. 
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Chapter 4 Scanning microwave microscopy for 

detecting mechanical vibration of SiN membrane 
 

In this chapter, we will introduce a promising SMM technology that is used for investigating 

the mechanical vibrations of SiN drum membrane. Before simulations and experiments, the 

flexible functions of the AFM-tip, serving as a movable gate, will be introduced as it is able to 

accurately approach on a membrane surface with a gap in the nanoscale. Then, comsol 

simulations will be presented in order to help us for better understanding of the interactions 

between the AFM-tip and membrane. Later, characterizations of this SiN drum membrane 

through the AFM-tip will be performed that show basics of the device properties, such as linear, 

nonlinear behaviours and so on. 

4.1 Scanning microwave microscopy 

4.1.1 The overview and the state-of-the-art of scanning microwave 

microscopy 
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Figure 4.1.1. The development of SMM technique, with continuous contributions to the SMM 

imaging community[146–156]. Note that pentagram symbols (IEMN group) are representatives 

for SMM with the frequency up to 110 GHz in a high vacuum. 
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Scanning microwave microscopy (SMM), due to the local manipulation flexibility in the 

nanoscale and very high operating frequency, potentially up to 110 GHz, is an important 

technique for investigating quantitative nanoscale electrodynamics. It mainly contains an 

atomic force microscope (AFM) and allows the metallic AFM-tip to be compliantly connected 

to external electrical measurement systems, such as vector network analyser (VNA). To date, 

investigations of materials’ properties using SMM have been performed in imaging material 

topological phases [150,151,154,156], imaging and calibrating fF/aF-scale 

capacitances[153,157], impedance [158] and carrier densities [148], imaging buried materials 

nanostructures [159] and imaging biological live cells [160]. These previous investigations are 

important implementations beneficial for superconductivity, conductance or capacitance in 

stationary hetero-structures. Because some novel nanoscale structures with high impedance can 

be easily affected by parasitic capacitance, this effect leads to a long signal response time. [161] 

Therefore, high operating frequency will overcome this problem, making improvement of 

signal detecting speed. Fig. 4.1.1 shows the development of SMM in the recent five years 

regarding to the microwave operation frequency, in particular IEMN group performing very 

high operating frequency up to 110 GHz since 2017 [146,162]. This high frequency has the 

potential to be applied in high-speed signal detection for nanoelectronic devices, such as single 

electron transistor [163] and carbon nanotube [164]. 

In this chapter, we show our efforts in extending SMM techniques to the investigations of 

nanoelectromechanical resonators. In the setup, a metallic tip is exploited as a suspended top 

gate over the SiN membrane that is covered with a thin aluminium layer. In our SMM 

equipment, the metallic AFM-tip is connected to a microwave measurement system by a coaxial 

cable. The microwave signal can be generated by either a VNA or a microwave source and is 

detected in a reflection mode. The AFM has also been integrated with a SEM in a vacuum 

chamber (7 × 10−4 mbar). Because of such a vacuum condition and the capacitive coupling 

scheme, the tiny displacement of SiN drum membrane is able to be excited and detected through 

a single metallic AFM tip. 

Here, the AFM-tip-sample interface analysis is first introduced for presenting the AFM-in-SEM 

paramount capability of approaching to or retracting from the SiN sample. In order to excite 

the mechanical vibrations of the membrane, we use lockin amplifier to drive the membrane 

around its resonance frequency. A microwave signal is delivered to the coupled membrane 

through the AFM-tip. Its reflected signal carries the signal of the mechanical vibration back. 

By using such a SMM technique, our measurements are performed at room temperature and the 
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results discussion is made, including SiN membrane’s linear mechanical response, resonance 

frequency modulation, Duffing nonlinear mechanical response, mechanical modes detection 

and double-tone driving scheme. White noise drive of SiN membrane has also been measured. 

Finally, we summarized the main results of this study. 

 

4.1.2 AFM-tip-sample interface and principle 

The distance between the AFM-tip and the sample surface plays an important role in detecting 

mechanical vibrations of the SiN membrane. In the case of capacitive coupling scheme, the 

capacitance value mainly depends on the actuation area and actuation distance between two 

capacitance electrodes. Fortunately, using SMM technique, the AFM-tip position can be 

adjusted for a wanted distance down to 10 nm, where an aF/fF-scale capacitance is convenient 

to be attainable. However, the tip-sample interface principle requires to be well understood. 

Before introducing the operation of AFM-tip, the knowledge of interacting forces between the 

AFM-tip and sample is explained. The electrical potential distribution in the tip-sample 

interface can be influenced by work function variations due to sample surface adsorbates, 

crystallographic orientation, sample surface preparation and even contamination [165,166]. 

Fortunately, supplying electrical charges helps cancelling this kind of intrinsic electrical 

background effect, further contributing to the fF/aF-scale capacitance in experiments. Date back 

the year of 1970, a surface probe apparatus has been applied for investigating the distance 

dependence of van der Waals forces [167], requiring a small-distance force effect between two 

objects [168,169]. Today, AFM has still been a promising tool to measure the atomic level 

effects through its ultrasharp metallic tip, which can be adjusted to approach a sample surface. 

When AFM-tip-sample distance is in several tens of nanometers, the interacting forces are long-

range forces. Therefore, van der Waals forces are weak and can be neglected in our 

case[170,171].  

In the following part, we did not consider this electrical potential in our measurement, because 

its effect is negligible comparing with the potential generated by the large DC bias. 
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Figure 4.1.2. AFM-tip and sample interface. (a) Schematic of the interface between the AFM-

tip and the SiN drum membrane. (b) SEM micrograph of the tip-sample interface, where the 

SiN/Al drum membrane is connected to the grounding through the connected leads and is 

capacitively coupled to the metallic AFM tip. 

 

Fig. 4.1.2 shows a schematic of the interface mainly consisting of SiN/Al drum and a 

conductive AFM-tip. For such an interface, a small distance is able to be obtainable attributed 

to the high-resolution of the manipulation (about 10 nm) of the sample holder piezo-actuator 

scanner along X-Y-Z axes. Besides, if there are no electrical charges on the tip or sample surface, 

electrical potential energy should be zero, the corresponding Coulomb force is zero. For our 

capacitive coupling scheme, the two electrodes, namely the AFM-tip and SiN/Al drum 

membrane, are all conductive, having a tunable Coulomb force between these two objects.   

For the AFM system, an ideal probe contains an ultrasharp tip and is mounted on a soft 

cantilever spring. The AFM-tip is usually fixed and the sample holder mounted on the piezo-

actuator scanner can be moved flexibly along X-Y-Z axes with a maximum span of few tens of 

micrometers. The interacting forces between the AFM-tip and sample surface are able to be 

formed due to Coulomb electrostatic forces. Besides, a focused laser beam spot radiates on the 

right place of the cantilever end for monitoring the small interacting forces changing and it will 

be subsequently deflected to the photodetector window. By using a position-sensitive 

photodetector, the interacting forces variation is convenient to be collected and registered. In 

addition, the converted optical information is able to feed back the piezo-actuator scanner so as 

to maintain a deflection setpoint within a closed loop automation process. Therefore, a desired 

interaction force is reached based on such hybrid AFM controller platform. 
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Figure 4.1.3. Illustration of the cross sectional view of the hybrid AFM-in-SEM setup. (a) A 

laser beam (650 nm) radiates on the top of cantilever end and is deflected to the photodetector 

(PD) to convert the laser intensity to the photoelectric voltage. This voltage signal is fed to the 

XYZ feedback controller to optimally move the piezo-based XYZ scanner [147]. (b) Real photo 

of laser spot (~30 mm) on the cantilever end. 

 

Fig. 4.1.3 illustrates schematically the hybrid AFM-in-SEM in a vacuum atmosphere, where 

the optical system is responsible for monitoring the interacting forces between the AFM-tip and 

the sample surface. The laser radiates a spot on the cantilever end that is reflected towards the 

photodetector window. In general, the interaction between the AFM-tip and sample surface can 

be monitored in several ways. In contact mode, the cantilever is deflected statically by the 

pressure exerted by the sample on the AFM cantilever. The deflection is registered on the 

photodetector and feeds back to the piezo-actuator scanner so as to reach a desirable deflection 

of the AFM-tip cantilever. In tapping mode, the cantilever is mechanically excited by a small 

piezoelectric actuator near its resonance frequency. The vibrating amplitude detected by the 

photodetector is then measured by a lock-in amplifier. When approaching the sample, the 

cantilever vibration amplitude reduces because of the interaction forces between the sample and 

the AFM-tip. The measured amplitude feeds back to the piezo-actuator scanner to reach a 

desirable small average distance between the AFM-tip and the sample surface. Here, the AFM-

tip-in-SEM was designed to operate in contact mode (as can be seen in Fig. 4.1.3 and Fig. 4.1.4).  

Approaching sample surface is necessary for achieving a small inter-electrode distance. The 

better understanding of nanoscale manipulating origin of piezo-actuator XYZ scanner requires 

careful explanations using the approach-retract principle. Therefore, three aspects are discussed: 

(i) Control loop of photodetector feeding to piezo-actuator scanner; (ii) Contact scheme of the 
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AFM-tip approaching sample surface; (iii) Sensitivity measurement based on the approach-

retract process. 

 

Figure 4.1.4. Piezo-actuator XYZ scanner movement along Z-axis. (a) Approaching and (b) 

Contact between the AFM-tip and sample surface. (c) Approach-retract loop flowchart, where 𝑉𝑃𝐷, 𝑉𝑠𝑒𝑡 and 𝑉𝑝𝑖𝑒𝑧𝑜 are the  voltages from the photodetector, controller voltage set-point and 

sample piezo-actuator scanner respectively. 𝑉𝑝𝑖𝑒𝑧𝑜 = 𝑓(∆𝑉)  is the embedded function 

dependent of ∆𝑉 for calculating the voltages to be applied on the piezo-actuator scanner so as 

to assess the approach-retract positioning. 

 

(i) Control loop of photodetector feeding to piezo-actuator scanner 

When the AFM-tip does not touch the sample surface, the laser beam radiates on the cantilever 

without bending and the spot is naturally reflected onto the photodetector window. In other 

words, with approaching the surface, the photoelectric signal from photodetector feeding to the 

piezo-actuator controller does not change. In practice, the initial reference voltage value from 

the photodetector is based on the non-contact mode (Fig. 4.1.4(a)). In fact, the cantilever 

consists of a thin beam that ends with the AFM-tip and behaves as a spring. Once the contact 

happens (Fig. 4.1.4(b)), as mentioned  above, the “spring” cantilever is slightly bent, resulting 
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in a reflected optical intensity variation on the photodetector window. Its updated signal is 

straightforward converted to a voltage value to be transmitted to the piezo-actuator controller 

interacting with the AFM-tip. 

In order to describe the approach-retract principle, a schematic of the loop flowchart is shown 

in Fig. 4.1.4(c). A piezo-actuator scanner assessment with regards to the voltage signal (𝑉𝑝𝑖𝑒𝑧𝑜) 

is introduced, which is able to assess the critical point value while approaching the sample 

surface. With the AFM-tip approaching, actually, the sample on piezo-actuator XYZ scanner 

approaches the AFM-tip. If ∆𝑉 < 0, it means that the AFM-tip is not interacting with the 

surface, namely, which results in the continuation of the approaching process. If ∆𝑉 > 0, it 

means that the AFM-tip has touched the surface and needs to be optimized in time while 

interacting with the controller. If ∆𝑉 = 0, it means that the contact is reached as fixed by the 

set-point 𝑉𝑠𝑒𝑡. 

(ii) Contact scheme of the AFM-tip approaching sample surface 

Table 4.1.1. Essential parameters of the AFM-tip contacting the surface 

Parameters Setting values Calculated values Notes 𝑓𝑐 (nN) 280 - nN to mN 𝐴𝑐 (𝑚2) 2.82 × 10−13 - AFM-tip apex 𝑃𝑐 (GPa) - 0.001 AFM-tip apex 𝐸𝑠𝑎𝑚𝑝𝑙𝑒 (GPa) 280 - Young’s modulus 𝑘𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 (N/m) 22 - Nominal ∆𝑧 (nm) - 12.72 Static cantilever 

deflection 𝑆 (mV/nm) - 0.23 Sensitivity 𝑉ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 (mV) - 3 If ∆𝑧 = 13 nm 

 

Contact pressure. The evaluation of contact pressure on sample surface is important before  

measurements. To our knowledge, the interacting force of the AFM-tip with the sample surface 

is very small, usually the magnitude of order in the range from nN to mN. Based on our 

measurement, we would introduce a formula as 𝑓𝑐 = 𝑘𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 ∆𝑧 = 𝑘𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟𝑆 𝑉ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 and 

then evaluate the values, where the symbol 𝑆  is the sensitivity, which is defined as 𝑆 =𝑉ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 ∆𝑧⁄ . In our case, a contact force 𝑓𝑐 ≈ 280 𝑛𝑁 is assessed. Moreover, an apex radius 
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of contact area approximately 300 nm is achieved. Then, the area of contact can be given by 𝐴𝑐 = 𝜋𝑅2, achieving an area contact about 2.82 × 10−13 𝑚2. 

While having 𝑓𝑐 ≈ 280 𝑛𝑁 and 𝐴𝑐 = 2.82 × 10−13 𝑚2, the corresponding pressure is derived 

in order to verify whether the AFM-tip would damage sample surface. The contact pressure can 

be calculated to be approximately 1 𝑀𝑃𝑎 using the expression 𝑃𝑐 = 𝑓𝑐 𝐴𝑐⁄ . In comparison with  

Young’s modulus about 280 𝐺𝑃𝑎 of the SiN sample surface, the pressure of contact is far less 

than the comparable value, thus evidencing that the contact of AFM-tip does not damage the 

SiN sample surface. 

Contact sensitivity and voltage set-point. The sensitivity of the contact also plays a role in 

the calculation of the contact set-point 𝑉𝑠𝑒𝑡.  In our measurement, the cantilever is a 25Pt300B 

probe purchased from Rocky Mountain Nanotechnology Company and is similar to a soft Pt 

strip spring with a spring constant of about 22 N/m according to the supplier’s probe 

characteristics data (see at https://rmnano.com/). 

When choosing 𝑓𝑐 ≈ 280 𝑛𝑁 together with a spring constant of the AFM-tip about nominal 22 

N/m, the static displacement of contact about 12.72 𝑛𝑚 is calculated using Hooke’s law 𝑓𝑐 =𝑘𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 ∙ ∆𝑧. In order to follow with the experiment, we use the measured value of the 

sensitivity (S) about 0.23 𝑚𝑉/𝑛𝑚 , which is related to the phtotodetector conversion. The 

determination of the sensitivity will be explained after. If evaluating ∆𝑧 ≈ 13 𝑛𝑚 , the 

horizontal voltage (namely set-point voltage, as mentioned above)  is derived to be about 3 𝑚𝑉, 

which is an important parameter to determine whether the AFM-tip touches the sample surface. 

In our measurement, we rounded the set-point about 3 𝑚𝑉 for simplification. 
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(iii) Sensitivity measurement based on the approach-retract process 
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Figure 4.1.5. Sensitivity measurements based on the approach-retract process. (a) Schematic 

diagram of the measurement process. (b) 𝑆22 amplitude and (c) phase record when performing 

the approach-retract measurement. 

 

During measurements, the evaluation of the sensitivity is essential, because the experimental 

horizontal voltage determines how much a set-point voltage should be set. Using approach-

retract method, the horizontal deflection voltage as function of the approaching distance along 

Z-axis is investigated carefully, as shown in Fig. 4.1.5(a). With approaching, the AFM-tip 

touches the sample surface in the position 𝑧 = −715 𝑛𝑚 for the first time (captioned by 1st 

touch). Because of the AFM-tip mounted on the spring cantilever, contact of the AFM-tip 

outreaches farthest the position 𝑧 = −810 𝑛𝑚 (captioned by 1st touch more), which means the 

tip presses the sample surface with a pressure. Then, the AFM-tip retracts at the position  𝑧 =−727 𝑛𝑚 (captioned by 1st retract), but having a small error difference between 1st touch and 

1st retract positions because of the interacting forces between the AFM-tip and the sample 

surface. This error is also present in this experiment configuration although implementing all 

the measurements in a high vacuum. Several sensitivities of contact (see Table 4.1.2) have been 

measured and confirmed, achieving an average sensitivity value around 0.23 𝑚𝑉/𝑛𝑚. 
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Table 4.1.2. Sensitivity measurements based on the approach-retract process 

Measurement number 1st 2nd 3rd 4th 

Sensitivity (mV/nm) 0.232 0.235 0.234 0.233 

 

Besides, a VNA was also exploited at a microwave frequency of 1 GHz in order to observe the 

sensitivity near the contact and extract the signals. Based on the approach-retract method, 𝑆22 

amplitude and phase measurements were performed at the same time. The interacting contact 

region between AFM-tip and the SiN sample surface is observed, as shown in Fig. 4.1.5(b,c). 

As we can see, the 𝑆22 amplitude has much more noise than the phase, which may be attributed 

to the capacitive behaviour of the sample (see the Eq. 4.1.1). Although the S parameter may be 

dependent of the tip-sample distance, using it to precisely detect the contact point may not be 

suitable. As an evidence, the relevant measurement data are still shown in the following. 

 

4.1.3 Vector network analyser measurement 

Because the inter-distance between the AFM-tip and the sample surface is usually in the range 

of tens of nanometers, knowing their physical properties becomes very difficult. However, it is 

well known that there is an electric field distribution while the AFM-tip approaching sample 

surface with supplying electric charges. By measuring the electric field, achieving the local 

impedance and capacitance or conductance becomes convenient. Thus, scattering (so called S-) 

parameters were introduced with VNA apparatus[172,173]. A typical VNA consists of a RF 

source generator, a power splitter, a RF detector/receiver, and other digital signal processing 

circuitry [174]. It is able to measure the amplitude and phase of the transmission RF signal by 

a coaxial cable. RF signal is an electromagnetic wave, featuring a frequency range, amplitude 

and phase. Using the VNA analyser, a RF microwave signal generated at the VNA source is 

splitted into two signals. One signal is referred to the local oscillator (LO), serving as a signal 

reference, and the other RF signal is used for detecting the sample, comparable to the LO. 

Thereafter, the measured signal can be reflected to an embedded measurement channel. The 

outcome RF signal can finally be recorded in formalisms of amplitude and phase. 
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Figure 4.1.6. VNA measurement principles. (a) S-parameters of a two-port VNA network for 

DUT, namely S11, S22, S12, S21. (b) Schematic of using the AFM-tip to measure the sample 

surface. 

 

So as to measure the S-parameters, the RF source is set with a frequency range, amplitude and 

phase to generate an incident microwave that is guided to the sample. This incident wave is for 

instance defined as 𝑎1. Once the incident wave arrives on the sample surface, it is reflected and 

comes back the RF receiver. The reflected wave signal is named as 𝑏1. The forward reflection 

coefficient (𝑆11) is defined and determined, namely 𝑆11 = 𝑏1 𝑎1⁄ , as can be seen in Fig.4.1.6(a). 

Since the VNA has two ports, a second reflection coefficient (𝑆22) is also determined as 𝑆22 =𝑏2 𝑎2⁄ . Additionally, when the microwave signal could go through the sample, such as a 

membrane, measuring a transmission signal is possible. The forward transmission coefficient 

(also called forward gain) (𝑆21) is defined, namely 𝑆21 = 𝑏2 𝑎1⁄  and the reverse transmission 

coefficient becomes 𝑆12 = 𝑏1 𝑎2⁄ . Note that for the correct definition of 𝑆11 and 𝑆21, 𝑎2 must 

be null; similarly, for the correct definition of 𝑆12 and 𝑆22, 𝑎1 must be null. 
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When actually performing measurements, there are some necessary accessories including either 

amplifier or attenuator set for amplifying or attenuating a RF signal. Notably, an interfacing 

mismatch between the impedance of VNA and sample becomes a technical issue. The internal 

impedance of the VNA is referred to as 𝑍𝑟𝑒𝑓 = 50 Ω. Then, the forward reflection coefficient 

(𝑆11) as function of the local impedance is defined to be 

𝑆11 = 𝑍𝑖𝑛 − 𝑍𝑟𝑒𝑓𝑍𝑖𝑛 + 𝑍𝑟𝑒𝑓          𝐸𝑞. 4.1.1 

where 𝑍𝑖𝑛  is the impedance of the measured sample. In the present case, 𝑍𝑖𝑛  is very high, 

usually in the range of 𝑀Ω. It is due to the measured capacitance usually in the magnitude of 

order about aF/fF-scale. Thus, the impedance 𝑍𝑖𝑛 is very far from the reference impedance of 

the VNA analyser setting, leading to inaccurate measurement results. In order to tackle such a 

technical issue, some[172] have used a lumped measurement resistance 50 Ω to absorb spurious 

microwave signal from an incidence, causing much smaller uncertainty. It is because the almost 

0 reflection effect in accordance to 50 Ω resistance. 

Here, the measurements were performed by connecting directly the VNA port to the AFM tip 

with -10 dBm input power and about -13 dBm at the probe tip. By varying the inter-distance, 

the distance-dependent S22 amplitude and phase are measured. As depicted in Fig. 4.1.6(b), the 

microwave signal loss becomes larger with the tip-sample distance increasing, leading to a 

smaller capacitance. The details will also be discussed in the subsequent section 4.2.2. It is 

worthwhile noting that the measured amplitude and phase have different sensitivities to the 

distance change. The microwave amplitude intensity is little sensitive to tip-sample surface 

distance, because of the capacitive behaviour. The S-parameter phase is rather sensitive to the 

surface. All S-parameter measurement results are shown below based on this analysis. 
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Figure 4.1.7. Evolution of the S22 parameter amplitude and phase with the tip-sample distance. 

For (a) and (b), the tip-sample distance ranging from 100 to 1000 nm and the measured 

frequency is 1 GHz. For (c) and (d), the tip-sample distance ranging from 50 to 500 nm and the 

measured frequency is 7 GHz. 

 

A microwave signal is implemented with the frequency of 1 GHz or 7 GHz to measure the 

sample, as changing the distance. Fig. 4.1.7(a,b) shows the measured S22 amplitude and phase 

at frequency of 1 GHz for evaluating microwave signal as function of tip-sample distance. 

Comparing with the amplitude results, we observed the measured phase clearly depends on the 

distance. To confirm whether the measured results can be reproduced, Fig. 4.1.7(c,d) shows the 

measured S22 amplitude and phase at frequency of 7 GHz. Then, similar results were observed. 

The amplitude is still independent of the distance. But, the phase evolution is almost about 

seven times larger than that of the 1 GHz. Thus, we may use the S-parameter to measure the 

phase evolution, instead of the amplitude, so as to characterize the sample. 
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4.1.4 Measurement setup 

 

Figure 4.1.8. AFM-tip capacitively coupling with SiN membrane covered with thin aluminium 

film. (a) SiN membrane is connected to the grounding through wire bonding and zoomed in (b). 

(c) A close view of the tip-sample distance about 50 nm. (d) A retract operation of the AFM-

tip from the surface. 

 

The measurement configuration done by X. Zhou is the same with the previous section 2.3, 

which has been used to measure the membrane nanoelectromechanical resonator through a 

fixed aluminium top gate. Here, instead of the previous fixed aluminium top gate, an AFM-tip 

integrated with SEM in a vacuum (7 × 10−4 mbar) is employed to capacitively couple with a 

SiN drum membrane, as shown in Fig. 4.1.8. In this case, the SiN membrane is connected to 

the ground through bonding wires. More importantly, it is the position, corresponding to the 

fixed AFM-tip, that can be controlled and operated precisely by a piezo-actuator nano-

positioner in X-Y-Z axes. The tip-membrane distance thus can be achieved as required. The 

simulation for this tip-membrane scheme will be shown in the following part. 
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4.2 Characterization and results discussion of mechanical vibration 

of SiN membrane 

In the measurement, we used an AFM tip as a movable and suspended top gate to drive and 

detect mechanical vibrations of the SiN membrane resonator in a capacitive coupling scheme. 

In the following part, numerical simulations are first used to understand this coupling effect. 

Then, the analysis of the measurement results is presented. In this chapter, the measurement of 

the electromechanical properties of the membrane in a SMM scheme has been mainly carried 

out by X. Zhou and D. Theron. 

4.2.1 Finite element method simulation of the tip-membrane 

scheme 

 

Figure 4.2.1. The geometry design. (a) The cone-like AFM-tip over the surface of the 

membrane. (b) The circular membrane. (c) The cross sectional view of the membrane. (d) The 

apex of the AFM-tip. 

 

The finite element method (FEM) simulation is performed in order to understand interactions 

between the metallic tip and the vibration membrane, in a capacitive coupling scheme. The 
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electrostatics modules of COMSOL Multiphysics are chosen in our geometry, which includes 

functions of static capacitance, electric potential, electric field, electric charge and electrostatic 

force distributions based on the circular membrane through the actuation of the AFM-tip. The 

geometry structure (in Fig. 4.2.1), namely a metallic AFM-tip capacitively coupling with a 

conductive circular membrane, is designed and analysed in a vacuum box. The computation 

solves the Maxwell equations in the cases of differential and integral as described as 𝛻 ∙ 𝐃 = 𝛻 ∙ (𝜀0𝜀𝑟𝐄𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒇𝒊𝒆𝒍𝒅) = 𝜌𝑐ℎ𝑎𝑟𝑔𝑒              𝐸𝑞. 4.2.1 ∯ 𝑫𝑑𝑺 

𝜕𝛺 

= ∭ 𝜌𝑐ℎ𝑎𝑟𝑔𝑒  𝑑𝑉 

Ω 

= 𝑄𝑐ℎ𝑎𝑟𝑔𝑒         𝐸𝑞. 4.2.2 

where 𝐃 is the electric displacement vector, 𝐄𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒇𝒊𝒆𝒍𝒅 is the electric field vector, 𝜀0 is the 

dielectric constant in vacuum, 𝜀𝑟 is the relative dielectric, 𝜌𝑐ℎ𝑎𝑟𝑔𝑒 is the electric charge density 

surrounding the geometry structures, 𝑺 is the unit area on the geometry, V is the volume of the 

geometry, and 𝑄𝑐ℎ𝑎𝑟𝑔𝑒 is the electric charge on the surface of the entire geometry. 

In general, FEM simulation requires four steps for carrying on the studied model, including (i) 

the geometry design and boundary condition, (ii) choose materials, (iii) mesh in study, and (iv) 

computation and solution. 

 

 

Figure 4.2.2. Schematic of the studied geometry, namely AFM-tip and SiN/Al circular 

membrane separated by a gap. (a) The geometry placed in the centre part of a defined vacuum 

cubic box. (b) The mesh of the entire studied geometry is performed. The right-corner inset 

enlarges the meshed result. (c) Computation solution showing the analysis of the studied 

geometry. 
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(i) Geometry design and boundary condition. The entire geometry structure studied here is 

elaborated as shown in the Fig. 4.2.1 and optimized in Fig. 4.2.2(a). The tip is similar to a cone 

with features a bottom diameter of 13.85 mm, an apex diameter of 600 nm and a conical height 

of 64.5 mm; for the circular membrane, it is 100 nm thin SiN circular membrane covered with 

30 nm thin Al, consistent with our experiment device. In our model, the gap distance between 

the AFM-tip and the circular membrane can be set as required, for example, 300 nm. Besides, 

specific boundary condition is considered based on electromagnetic propagation in the entire 

studied space. The outer boundary layer, that is defined by vacuum cubic box with dimensions 

of 150 mm ´ 150 mm ´ 150 mm, enough covers all of the studied geometries in order to absorb 

the residual electromagnetic energy, thereby simulating the electromagnetic waves fading 

towards the boundary edge. 

(ii) Choose materials. Rendering dielectric properties of the materials has a key role in 

simulating the studied geometry. In order to describe conveniently, we use the relative 

permittivity (𝜀𝑟) of the material here, namely 𝜀 = 𝜀𝑟 𝜀0, where  𝜀0 = 8.85 × 10−12 𝐹 ∙ 𝑚−1 is 

the vacuum permittivity. The AFM-tip is made from platinum (Pt), thus rendering the relative 

permittivity value to be 1. SiN is the insulating material with the relative permittivity value to 

be 9.7. Al is a conductive material with a relative permittivity value to be 1.  

(iii) Mesh in this study, we choose the most easiest way to mesh the whole geometry with “mesh 

fine”, offered automatically by the software. It is presented in Fig. 4.2.2(b). 

(iv) Computation and solution. The studied geometry can be further computed for solving the 

Maxwell’s equations mentioned above. It is based on electrostatics modules chosen here where 

the solution results of electric potential, electric field and electric charge are contained in 

general. Fig. 4.2.2(c) shows the electric potential distribution surrounding the geometry. 
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Figure 4.2.3. Simulation results of capacitance as function of the tilt angle 𝜃. (a) The geometry 

of AFM-tip capacitively coupling with the circular membrane, tilted an angle 𝜃 from the Z-axis. 

(b) Simulation results of the capacitance as function of the angle 𝜃. 
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Capacitance vs. the tilt angle. When performing the experiments, the capacitance takes a 

significant part in understanding and guiding our measurements. Therefore, we evaluate the 

coupling capacitance between the tip and the drum through the simulation. In order to approach 

the experimental conditions, we start to consider the effects of tip tile angle on the values of the 

coupling capacitance. Fig. 4.2.3(a) shows the side view of the studied geometry with the tilt 

angle changing. The gap has been fixed about 500 nm in this simulation. The simulated 

capacitance value strongly depends on the tilt angle 𝜃, as shown in Fig. 4.2.3(b). It is due to the 

active area between the tip and the drum increasing with increasing the tile angle. The results 

shown here are obtained by two different methods: for first one, the capacitance can be derived 

by stored energy inside the geometry. It can be specified by the general expression 𝐸𝑡 = 𝐶𝑉2 2⁄ , 

where 𝐸𝑡 is the total energy stored in the geometry and 𝑉 is the applied voltage. For second one, 

the capacitance can be achieved by the integration of the surface charge on the entire circular 

membrane, based on the expression 𝑄𝑐ℎ𝑎𝑟𝑔𝑒 = 𝐶𝑉. As shown in Fig. 4.2.3(b), they have same 

trends of the capacitance value to the angle, indicating that the actuation areas exponentially 

increase as the angle increases. These results ascertain the capacitance of the geometry strongly 

depending on the tilt angle that can be adjusted and optimized in our real experiment setup. 
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Figure 4.2.4. Simulation results of the coupling capacitance as a function of the gap between 

the tip and the membrane. (a) The geometry of the simulated system, the tip and the circular 

membrane, which is spaced by a gap distance. (b) Simulation capacitance as function of the gap 

distance. 
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Capacitance vs. the gap. While fixing the tilt angle 𝜃 = 15°, the studied geometry can be 

modelled in Fig. 4.2.4(a), where the gap between the tip and the membrane surface can be 

varied. The capacitance simulation results are plotted in Fig. 4.2.4(b). The capacitance values 

decrease as the gap increases. Both two simulation results generally agree with each other, with 

2% differences in values. In order to compare between 𝜃 = 15° and 𝜃 = 0°, the simulation 

results corresponding to 𝜃 = 0° are also presented, as the values still present differences below 

2%. 

 

Figure 4.2.5. Simulation results of electrostatic properties. (a) Electric charge distribution. (b) 

Electric field distribution. (c) Electrostatic force distribution. All colour bars are the magnitude. 

 

Electrostatic force distributions. In the experiment, the vibrations of the circular membrane 

are excited through its coupled tip by electrostatic forces. In order to better understand this point, 

the geometry is simulated for first showing the charge distribution 𝑄𝑐ℎ𝑎𝑟𝑔𝑒 and electric field 

distribution 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑓𝑖𝑒𝑙𝑑 . Fig. 4.2.5(a) shows electric charge distribution. The attractive 

electrostatic force can be observed because of the positive charge concentration on the apex of 

the AFM-tip and the negative charge distribution on the centre part of the membrane. 

Fig.4.2.5(b) shows electric field distribution. The electric field marked by dark blue mainly 

concentrates on the apex of the AFM-tip and the other marked by light blue distributes on the 

membrane. It is due to the electric field gradient E𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑓𝑖𝑒𝑙𝑑 = −𝛻𝑉 definitely used in the 

simulation. Because the electrostatic force can be described by the expression 𝐹 = 𝑄𝑐ℎ𝑎𝑟𝑔𝑒 ∙𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑓𝑖𝑒𝑙𝑑, the electrostatic force point-by-point can be re-built so as to study the electrostatic 

force distribution on the membrane. Fig. 4.2.5(c) shows the rebuilt electrostatic force 

distribution. It demonstrates the membrane can be resonated by the external electrostatic forces 

adding by the AFM-tip through biasing mixed voltage Vac+Vdc. 
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Figure 4.2.6. Simulation results of damping rate for high (black circle) and low (red square) 

stress SiN circular membrane.  

 

Damping rate vs. DC voltage. Damping is an intrinsic property of the membrane. Based on 

the tip-circular membrane capacitive coupling scheme, we expect the damping rate of 

membrane can be simulated and explained by adding the electrostatic force through the tip. In 

our case, high (0.8 GPa) and low (0.2 GPa) stressed SiN circular membranes have been 

simulated and compared. Here, we simulated the membrane vibrations with real and imaginary 

parts of a complex matrix eigenfrequency in formalism of 𝑓𝑚 = 𝑅𝑒[𝑓𝑚] + 𝑖 ∙ 𝐼𝑚[𝑓𝑚], as the 

vibration of membrane resonator cannot go infinite. For 𝑅𝑒[𝑓𝑚] term, frequency versus DC 

voltages agrees with the quadratic curve (see Fig. 2.3.4(b) in section 2.3.3). For 𝐼𝑚[𝑓𝑚] term, 

it should be damping coefficient proportional to the dissipation 1 𝑄⁄ . With increasing DC 

voltages, the membrane is electrostatically attracted to the metallic tip, resulting in a smaller 

spring constant. Therefore, the dissipation is quadratically increased. This phenomena have also 

been observed in the doubly-clamped beam that is capacitively coupled to its side-gate [175]. 

Fig.4.2.6 shows the damping rate value as a function of DC voltages, exhibiting the parabolic 

shapes exactly in agreement with the previous literatures [176,177]. Unfortunately, our 

experiment results show a different damping behaviour of the membrane, which does not agree 
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with the previous simulation results. In the following, the specific discussion will base on our 

measurement results. Besides, in the following experimental parts, all values of distance 

between the tip and membrane still need further efforts for better calibration. 
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4.2.2 Linear mechanical response of SiN membrane 
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Figure 4.2.7. (a) Signal amplitude and (b) Global driving force dependence of different 

distances. 
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With the distance of the gap increasing, coupling capacitance becomes much smaller, leading 

to larger impedance mismatch. It further causes the microwave signal losses in the detection of 

mechanical vibrations. Thus, the detection signal goes smaller. In order to understand better for 

this driving scheme, the force on the apex of the tip and the global driving force through the tip 

are introduced. Fig. 4.2.7(a) shows signal amplitude decrease with the distance increasing, 

while the global driving force through the tip is set as 𝐹𝑔𝑙(𝐶𝑔0,𝑠𝑖𝑚 ≈ 9.8 × 10−16𝐹, 𝑉𝑑𝑐 =4𝑉, 𝑉𝑎𝑐𝑠 = 300𝑚𝑉𝑝) = 𝐶𝑠𝑖𝑚𝑉𝑑𝑐𝑉𝑎𝑐𝑠𝑑 ≈ 12 𝑛𝑁. By the calculation of the global force distribution, 

the force on the tip apex can be defined as 𝐹𝑎𝑝𝑒𝑥(𝑟𝑒𝑓𝑓 ≈ 0.3 𝜇𝑚) = 𝑟𝑒𝑓𝑓2𝑅2 × 𝐹𝑔𝑙 ≈ 4.8 𝑝𝑁, which 

agrees well with the analysis through the function of |𝜇𝑥(𝜔𝑑)| = 𝐹𝑑𝑚𝑒𝑓𝑓 1|Ω𝑚2 −ω𝑑2 −𝑖𝜔𝑑𝛾𝑚|, giving 𝐹𝑎𝑝𝑒𝑥,𝑓𝑖𝑡(𝑟𝑒𝑓𝑓 ≈ 0.3 𝜇𝑚) ≈ 2.37 𝑝𝑁 as shown in Fig. 4.2.7(a). It also needs to mention that 𝑟𝑒𝑓𝑓 is an effective charge distribution radii on the centre of membrane in radii 𝑅, does not 

definitely equal the radii of the apex of the tip. Here, fitting parameters are the effective radii 𝑟𝑒𝑓𝑓 ≈ 0.3 𝜇𝑚 , the effective mass 𝑚𝑒𝑓𝑓 = 4.5 × 10−14 𝑘𝑔  and the damping rate 𝛾𝑚/2𝜋 =944.48 𝐻𝑧. Moreover, each amplitude curve in Fig. 4.2.7(a) can be analysed by the formula 𝐹𝑎𝑝𝑒𝑥(𝑟𝑒𝑓𝑓) ∙ 𝑄 ≈ (𝑚𝑒𝑓𝑓𝛺𝑚2 ) ∙ 𝑥 , where 𝑄  is the quality factor and 𝑥  is the detected signal 

amplitude. Besides, we also see the shift of resonance frequency going larger when the distance 

decreases. This effect is inferred that the larger interaction area is achieved, the interaction force 

between the both is larger, then the tensile stress is modulated by the force, it becomes smaller, 

therefore, it is tough to drive the membrane, corresponding to higher driving frequency. 

Fig.4.2.7(b) shows the re-built global driving force data extracted from (a), indicating the 

impact of the distance on the signal amplitude. This further results in a weaker detected signal. 

The global force acting onto the membrane can be well fit by an analytical model 𝐹 =𝐹0𝑒−(𝑑/𝑑0) + 𝐹𝑜𝑓𝑓𝑠𝑒𝑡. This means the global driving force in the tip-membrane scheme at 𝑑 =100 𝑛𝑚 can be lost as increasing the distance. Here, fitting parameters are 𝐹0=22.36 nN, d0 = 

154.59 nm and 𝐹𝑜𝑓𝑓𝑠𝑒𝑡=0.32 nN. This analytics helps us for understanding whether a coupling 

capacitance value facilitates detecting the signal magnitude. 

4.2.3 Resonance frequency modulation of SiN membrane 

Resonance frequency modulation through DC voltages can study mechanical properties of the 

resonator. Therefore, the resonance dependence of DC voltages has been measured by setting  

the AFM-tip on the top of the SiN membrane centre. Based on this capacitive coupled scheme, 

the DC and AC electrical signals are added on the tip by a coaxial cable in order to drive the 
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membrane through electrostatic forces. The microwave detection is also implemented for 

readout mechanical responses through frequency down conversion. 
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Figure 4.2.8. (a) Resonance frequency modulation and (b) Damping rate as function of DC 

voltages. 
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Fig. 4.2.8 shows the measured results and an analytical frequency modulation as function of 

DC voltages, namely Ω ≈ Ω𝑚(1 − 𝐶𝑔0𝑉𝑑𝑐22𝑘𝑑2 ) that has been derived in the section 2.2 in Chapter 2. 

From this formula, we knew that the resonance frequency can be normally tuned by the positive 

and negative DC voltages. In this case, we suppose whether the damping of membrane depends 

on (i) the chip clamping 𝛾𝑐ℎ𝑖𝑝 or (ii) tensile stress 𝛾𝜎. Unfortunately, Fig.4.2.8(a) shows the 

frequency modulation cannot be done in the positive voltage region. Fig.4.2.8(b) shows the 

related damping rates behaving the chip clamping dependence. We therefore suppose (i) if 𝛾𝑐ℎ𝑖𝑝 > 𝛾𝜎, that means the measured data not dependent of the AFM-tip. The data cannot be fit 

through the above analytics. In the negative voltage region, Fig.4.2.8(a) shows the frequency 

can be tuned through the AFM-tip. Fig. 4.2.8(b) also shows the related damping dependent of 

the AFM-tip, due to the damping values as in a stable range. We therefore suppose (ii) if 𝛾𝑐ℎ𝑖𝑝 <𝛾𝜎, it is due to the modulation dependence of the tensile stress. The measurement data agree 

well with the analytical formula, giving the spring constant 𝑘 ≈ 223 𝑁/𝑚.The DC voltage-

induced frequency tuning range is about 1000 Hz. Besides, the variation of resonance frequency 

and damping rate is normalized by the maximum or minimum values, remaining the same trend 

changing. This may explain how much the resonance frequency or damping can be tuned by 

DC voltages. It is also worth to mention that the damping dependence of DC voltages has been 

studied [176], which presents quadratic fit. Unfortunately, we have no same observation.  
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4.2.4 Duffing nonlinear mechanical response of SiN membrane 
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Figure 4.2.9. Duffing nonlinear responses as the AFM-tip position changing. The measurement 

data are taken when the AFM-tip position is 𝑥 = 0 𝜇𝑚 , −5 𝜇𝑚  and −10 𝜇𝑚  repectively. 

Square symbols are the measured data and solid lines are the analysis fitting. The distance is 

fixed at about 300 nm. Inset shows schematic of the AFM-tip position moving on the top of 

membrane. 

 

To study whether nonlinearity dependence of AFM-tip position exists, three different positions 

on the SiN drum membrane, along its radial axis at 𝑥 = 0𝜇𝑚, 𝑥 = −5 𝜇𝑚 and 𝑥 = −10 𝜇𝑚, 

are characterized respectively. Fig. 4.2.9 shows nonlinear responses as function of frequency, 

corresponding to different positions. These three AFM-tip positions correspond to different 

global driving forces, namely 𝐹𝑔𝑙1(𝑥 = 0𝜇𝑚) ≈ 10.45𝑛𝑁 , 𝐹𝑔𝑙2(𝑥 = −5 𝜇𝑚 ) ≈ 14.37𝑛𝑁 , 

and 𝐹𝑔𝑙3(𝑥 = −10 𝜇𝑚 ) ≈ 19.6𝑛𝑁. Through these global driving forces, nonlinear responses 

can be measured and be well fit by the Duffing resonator function |𝑎|2 = 𝑔2(2Ω𝑥+43|𝑎|2)2+1, where Ω𝑥 = 𝑄(ω𝑑 Ω𝑚⁄ − 1) , 𝑎 = 𝑥√𝛼𝑄/Ω𝑚2   and 𝑔 = (𝐹/Ω𝑚3 )√𝛼𝑄3/𝑚𝑒𝑓𝑓2 . They have same 

fitting parameters of the effective mass 𝑚𝑒𝑓𝑓 = 4.5 × 10−14 𝑘𝑔 and the quality factor 8500, as 
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detailed in Table 4.2.1. When 𝑥 = 0 𝜇𝑚 , the fit gives Duffing parameter about 4 ×1026 𝑚−2𝑠−2, the force 760 pN. It is worth noting that this fit force basically agrees with the 

force on the tip apex about 418 pN as it has been analysed in the section 4.2.2. When 𝑥 =−5 𝜇𝑚, the fit gives Duffing parameter about 7.8 × 1026 𝑚−2𝑠−2, the fit force 480 pN. The fit 

force agrees with the force on the tip apex about 574.8 pN. When 𝑥 = −10 𝜇𝑚, the fit gives 

Duffing parameter about 4.6 × 1027 𝑚−2𝑠−2, the fit force 188 pN. This fit force seems to 

disagree well with the force on the tip apex about 784 pN. On one hand, the effective radii is 

chosen 𝑟𝑒𝑓𝑓 ≈ 3 𝜇𝑚; on the other hand, this effect is possible due to clamping losses at the edge 

of the membrane. Obviously, the AFM-tip position slightly affect the nonlinear mechanical 

behaviour. Duffing parameter increases with the position moving toward the edge along the 

radial axis of the membrane. This cause may attribute to the clamping losses of the membrane 

near the edge. 
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Table 4.2.1. Duffing nonlinear mechanical response 

Parameters Fitting results Setting values 

AFM-tip position at 𝑥 = 0 

DC voltage 4 𝑉 4 𝑉 

Drive voltage (𝑉𝑎𝑐𝑠) - 0.8 𝑉𝑝 

Global capacitance (F) 9.8 × 10−16 9.8 × 10−16 

Duffing parameter (𝑚−2𝑠−2) 4 × 1026  - 

Effective mass (𝑘𝑔) 4.5 × 10−14 - 

Quality factor 8500 - 

Global driving force (nN) - 10.45 

Force on the apex (pN) 760 418 

   

AFM-tip position at 𝑥 = −5 𝜇𝑚 

DC voltage 4 𝑉 4 𝑉 

Drive voltage (𝑉𝑎𝑐𝑠) - 1.1 𝑉𝑝 

Global capacitance (F) 9.8 × 10−16 9.8 × 10−16 

Duffing parameter (𝑚−2𝑠−2) 7.8 × 1026  - 

Effective mass (𝑘𝑔) 4.5 × 10−14 - 

Quality factor 8500 - 

Global driving force (nN) - 14.37 

Force on the apex (pN) 480 574.8 

AFM-tip position at 𝑥 = −10 𝜇𝑚 

DC voltage 4 𝑉 4 𝑉 

Drive voltage (𝑉𝑎𝑐𝑠) - 1.5 𝑉𝑝 

Global capacitance (F) 9.8 × 10−16 9.8 × 10−16 

Duffing parameter (𝑚−2𝑠−2) 4.6 × 1027 - 

Effective mass (𝑘𝑔) 4.5 × 10−14 - 

Quality factor 8500 - 

Global driving force (nN) - 19.6 

Force on the apex (pN) 188 784 
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Figure 4.2.10. Mechanical modes measured at the distance of about 300 nm and detected with 

distinct frequencies ~9.223 MHz (a), ~14.68 MHz (b) and ~21.15 MHz (c), respectively. (d) 

The analysis of quality factor and damping rate. 

 

Mechanical modes of nanoelectromechanical resonators can be used in investigating signal 

transduction [78,93,172,178] and multimode mass sensing [51]. Therefore, finding distinct 

mechanical modes becomes very interesting. Fig. 4.2.10(a-c) shows three mechanical modes 

(0,1), (1,1) and (0,2) that have been detected at the distinct resonance frequencies. It indicates 

our nanoelectromechanical resonator has potential capabilities of allowing multimode signal 

processing. Through the linear mechanical amplitude function 𝜇𝑥(𝜔𝑑) = 𝐹𝑚𝑒𝑓𝑓 1Ω𝑚2 −𝜔𝑑2−𝑖𝜔𝑑𝛾𝑚, 

the fit results are achieved as given in the Table 4.2.2 below. The achieved 𝑓𝑚𝑛/𝑓01  ratios 

including modes (0,1), (1,1) and (0,2) are in good agreement with the analytical mechanical 

mode theory as presented details in the section 2.1 in Chapter 2. Besides, Fig. 4.2.10(d) shows 
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the analysis of the measured data corresponding to the distinct mechanical modes. The quality 

factor has a increase trend for the mode (0,1) and (1,1), leading to the dissipation (𝑄−1 ) 

decreasing. This is a good agreement with the modal dependence of the dissipation reported 

before [6,87]. In addition, observing that the quality factor of the higher order mode(0,2) going 

down, it results in the larger dissipation. Comparing with the reported results [6], we found the 

dissipation trend of these three modes is same. Therefore, we explain the dissipation is limited 

by the clamping losses corresponding to the radial modes and the higher order mode is limited 

by referring to the intrinsic materials. Then, we also see the damping rate increases with the 

mode shapes with higher frequency detecting.  

Table 4.2.2. Mechanical modes and measured frequency 

Parameters Fitting results Setting values 

#Mode(0,1) 

DC voltage - 4 𝑉 

Drive voltage (𝑉𝑎𝑐𝑠) - 140 𝑚𝑉𝑝 

Global capacitance (F) 9.9 × 10−16 9.9 × 10−16 

Effective mass (𝑘𝑔) 4.5 × 10−14 - 

Resonance frequency 𝑓𝑚𝑛 

(MHz) 

~9.223 - 

𝑓𝑚𝑛/𝑓01 ratio 1 - 

Quality factor 29753 - 

Damping rate (Hz) 310 - 

Global driving force (nN) - 1.84 

Force on the apex (pN) 0.61 0.74 

#Mode(1,1) 

DC voltage - 4 𝑉 

Drive voltage (𝑉𝑎𝑐𝑠) - 99 𝑚𝑉𝑝 

Global capacitance (F) 9.9 × 10−16 9.9 × 10−16 

Effective mass (𝑘𝑔) 4.5 × 10−14 - 

Resonance frequency 𝑓𝑚𝑛 

(MHz) 

~14.679 - 

𝑓𝑚𝑛/𝑓01 ratio 1.5915 - 

Quality factor 30203 - 
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Damping rate (Hz) 486 - 

Global driving force (nN) - 1.31 

Force on the apex (pN) 0.91 0.52 

#Mode(0,2) 

DC voltage - 6 𝑉 

Drive voltage (𝑉𝑎𝑐𝑠) - 99 𝑚𝑉𝑝 

Global capacitance (F) 9.9 × 10−16 9.9 × 10−16 

Effective mass (𝑘𝑔) 4.5 × 10−14 - 

Resonance frequency 𝑓𝑚𝑛 

(MHz) 

~21.145 - 

𝑓𝑚𝑛/𝑓01 ratio 2.2926 - 

Quality factor 15910 - 

Damping rate (Hz) 1329 - 

Global driving force (nN) - 1.96 

Force on the apex (pN) 2.34 0.78 

 

So far, AFM-tip has been used to study damping losses by mechanical impedance 

mismatch[177] and strong coupling between two ultracoherent membrane modes [13,179]. In 

the following, we present the spatial mapping of the mechanical mode using this metallic AFM 

tip, in addition to the functions that can also be provided by a coupled aluminium gate. In the 

setup, the AFM-tip is fixed and the piezo-actuator positioner carrying the drum can move 

flexibly along X-Y-Z axes, respectively. Therefore, we can fix the distance between the tip and 

the membrane, and excite the mechanical modes when moving the tip in X-Y axes. The mode 

shape can be re-built by plotting the maximum amplitude of the detected signal at the frequency 

of mechanical resonance, as functions of the tip position in X-Y axes. 
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Figure 4.2.11. Mechanical modes (0,1), (1,1) and (0,2) detected by the metallic AFM-tip. (a-c) 

are the re-built mechanical amplitudes mapping and (d-f) are the related resultant 3D maps. The 

insets are the simulation results. The color bars are the detected mechanical amplitudes. 
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The scanning rate in the measurement is 28 𝜇𝑚  X-axis ´  28 𝜇𝑚 Y-axis at a fixed distance in 

the Z-axis. Fig. 4.2.11(a-c) shows the measured mechanical modes (0,1), (1,1) and (0,2) in 

amplitude mapping. Fig. 4.2.11(d-f) also shows their resultant spatial 3D maps, exhibiting a 

good overview of the measured mechanical modes. Obviously, the mechanical displacements 

approaching the edge are much smaller than that of the centre. The insets show they have a 

good agreement with the analytical mechanical motion function 𝑧(𝑟, 𝜃, 𝑡) =∑ ∑ cos(Ω𝑚𝑛𝑡) cos(𝑚𝜃) 𝐽𝑚 (𝛼𝑚𝑛𝑟𝑎 )𝑛𝑚 . It has been derived and analyzed in the section 2.1 in 

Chapter 2. 
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Figure 4.2.12. Linear mechanical responses of the AFM-tip (a) and SiN circular membrane (b). 

  

As can be seen in Fig. 4.2.12, the AFM-tip is measured at a resonance frequency ~15.4 kHz 

and the SiN membrane is measured at a resonance frequency ~8.36 MHz. The SiN membrane 

can be chosen as phonon-cavity in order to study the mode coupling through analogy to the 

optomechanical system. The basic principles of phonon-cavity electromechanics have been 

developed and analyzed in section 2.2.4 in Chapter 2. Following the concept of this phonon-

cavity electromechanics, we pump this cavity at the frequency sum/difference Ω1 ± Ω2, where Ω2/2𝜋~15.4 𝑘𝐻𝑧 is low resonance frequency from the AFM-tip mode. Notably, “-” and “+” 

correspond to the red sideband and blue sideband of the phonon-cavity, respectively. 

In our measurement, besides the pump tone, we also use the second tone to probe either the 

phonon-cavity or the coupled tip. Both two-tone operations are able to generate the destructive 

or constructive interference. These inherited physical interference phenomena, namely 

electromechanically-induced transparency [119][120] and amplification [117,120], have been 

introduced in previous microelectromechanical resonators. Four situations, namely when red 

sideband pumping the phonon-cavity, probing either SiN membrane (i) or AFM-tip (ii) and 

when blue sideband pumping the phonon-cavity, probing either SiN membrane (iii) or AFM-

tip (iv), will be discussed in the following. 
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Figure 4.2.13. Red sideband pumping scheme, Ω𝑝 = Ω1 − Ω2. (a) is schematic of probing SiN 

membrane (Ω1), where blue and yellow signal bars are the transduced phonons and green bar 
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is for the probe signal. (b) shows the detected amplitudes of the SiN membrane. (c) the 

measured curve (0.22 𝑉𝑝) in (b) is well fit by using analytical calculation, where a small pump 

frequency detuning is defined as Ω𝑝 = Ω1 − Ω2 + Δ. Here, the plot uses Δ/2𝜋 = 500 𝐻𝑧. 

 

(i) Red sideband pumping the phonon-cavity at Ω𝑝 = Ω1 − Ω2 and probing the phonon-

cavity around Ω1 

Fig. 4.2.13(a) shows phonon transfer traces based on up-conversion and down-conversion, 

which correspond to generating phonons in the unprobed AFM-tip resonator and the generated 

phonons that can feed back the probed phonon-cavity. The interference between these phonons 

generated by the sideband pump and those phonon at Ω1 created by the probe tone therefore 

can be built. Fig. 4.2.13(b) shows vibrating amplitudes of the SiN membrane, which have been 

fitted well by using analytical formula (see section 2.2.4). The fitting parameters are given in 

Table 4.2.3. Besides, a clear dip decrease of vibrating amplitudes of the SiN membrane takes 

place in Fig. 4.2.13(c). It is because the destructive interference, namely electromechanically-

induced transparency [119][120]. As the pump amplitude increasing, the observation of the dip 

is more clear. The further reason is that the damping rate of SiN membrane about 𝛾𝑚1/2𝜋 ≈1220 𝐻𝑧 is two orders larger than that of the AFM-tip about 𝛾𝑚2/2𝜋 ≈ 15 𝐻𝑧. Then, the 

transparency window can be defined by the un-probed AFM-tip. It is obvious that there is a dip 

within the linewidth of the SiN membrane. 
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Table 4.2.3. Essential parameters for red sideband pumping 

the phonon-cavity and probing the phonon-cavity 

Parameters Fitting values Setting values 

DC voltage - 5 V 

Drive voltage (𝑉𝑎𝑐𝑠) - 30 mVp 

Red sideband pump (𝑉𝑎𝑐𝑝) - 0.22 Vp 

Global capacitance (F) 10.1 × 10−16 10.1 × 10−16 

SiN damping rate (Hz) 1220 - 

AFM-tip damping rate (Hz) 15 - 

SiN effective mass (𝑘𝑔) 4.4 × 10−14 - 

AFM-tip effective mass (𝑘𝑔) 2.2 × 10−13 - 

Global driving force (nN) - 3.03 

Driving force on the apex (pN) 9.59 1.21 

Global pumping force (nN) - 22.2 

Pumping force on the apex (pN) 13.63 8.88 
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Figure 4.2.14. Red sideband pumping scheme, namely Ω𝑝 = Ω1 − Ω2 . (a) is schematic of 

probing AFM-tip (Ω2), where blue and yellow signal bars are the transduced phonons and green 
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bar is for the probe signal. (b) shows the detected amplitudes for the AFM-tip. (c) the meausred 

curve (0.22 𝑉𝑝) in (b) is well fit by using analytical calculation. 

 

(ii) Red sideband pumping the phonon-cavity at Ω𝑝 = Ω1 − Ω2 and probing the AFM-tip 

around Ω2 

Fig. 4.2.14(a) shows phonon transfers based on up-conversion and down-conversion, which 

correspond to generating phonons in the unprobed phonon-cavity and the generated phonons 

feeding back the probed AFM-tip. Therefore, the interference between these phonons can be 

built. Fig. 4.2.14(b,c) shows vibrating amplitudes of the AFM-tip, which have been fitted well 

by using our analytical calculation (subsection 2.2.4). The fitting parameters can be found in 

Table 4.2.4. Besides, we note that the suppressing of vibrating amplitudes of the AFM-tip as 

increasing red sideband pump amplitude. It correlates to the destructive interference yielding 

electromechanically-induced transparency [119,120]. The mechanical responses are suppressed 

because of the destructive interferences. In addition, the linewidth of the tip increases with 

increasing the pump amplitude. It is obvious that there is the optomechanical damping effect. 

In other words, the pump forces modulate the mechanical susceptibility of the tip, leading to 

such increases of bandwidth. 
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Table 4.2.4. Essential parameters for red sideband pumping 

the phonon-cavity and probing the AFM-tip 

Parameters Fitting values Setting values 

DC voltage 5 V 5 V 

Drive voltage (𝑉𝑎𝑐𝑠) - 50 mVp 

Red sideband pump (𝑉𝑎𝑐𝑝) - 0.22 Vp 

Global capacitance (F) 10.1 × 10−16 10.1 × 10−16 

SiN damping rate (Hz) - - 

AFM-tip damping rate (Hz) 50 - 

SiN effective mass (𝑘𝑔) 4.4 × 10−14 - 

AFM-tip effective mass (𝑘𝑔) 2.2 × 10−9 - 

Global driving force (nN) - 5.05 

Driving force on the apex (pN) 0.93 2.02 

Global pumping force (nN) - 22.22 

Pumping force on the apex (pN) 4.04 8.89 
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Figure 4.2.15. Blue sideband pumping scheme, namely Ω𝑝 = Ω1 + Ω2. (a) is schematic of 

probing SiN membrane (Ω1), where red and yellow signal bars are the transduced phonons and 
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green bar is for the probe signal. (b) shows the detected amplitudes for the SiN membrane. (c) 

the measured curve (0.20 𝑉𝑝) in (b) is well fit by using analytical calculation, where a small 

pump frequency detuning is defined as Ω𝑝 = Ω1 + Ω2 + Δ. Here, the plot uses Δ/2𝜋 = 500 𝐻𝑧.  

 

(iii) Blue sideband pumping the phonon-cavity at Ω𝑝 = Ω1 + Ω2 and probing the phonon-

cavity around Ω1 

Fig. 4.2.15(a) shows phonon generation based on up-conversion and down-conversion, 

corresponding to creating phonons in the unprobed AFM-tip resonator and the created phonons 

feeding back the probed phonon-cavity. Thus, these created phonons still build an interference. 

Fig. 4.2.15(b) shows vibrating amplitudes of the SiN membrane, which have been well fit by 

using our analytical calculation (see section 2.2.4). The fitting parameters have been detailed in 

Table 4.2.5. Besides, a clear peak increase of vibrating amplitudes of the SiN membrane has 

been observed in Fig. 4.2.15(b,c) with increasing the pump amplitude. It demonstrates the 

constructive interference, namely electromechanically-induced amplification [117,120]. In 

particular, the narrow peak is because the damping rate of the SiN membrane is two orders 

larger than that of the AFM-tip as have been mentioned above. The amplifications of tip 

vibrations are projected onto the resonance of the drum, forming a small peak with a bandwidth 𝛾𝑚2/2𝜋 ≈ 15𝐻𝑧 as the inset shows. 
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Table 4.2.5. Essential parameters for blue sideband pumping 

the phonon-cavity and probing the phonon-cavity 

Parameters Fitting values Setting values 

DC voltage 5V 5 V 

Drive voltage (𝑉𝑎𝑐𝑠) - 40 mVp 

Red sideband pump (𝑉𝑎𝑐𝑝) - 0.20 Vp 

Global capacitance (F) 10.1 × 10−16 10.1 × 10−16 

SiN damping rate (Hz) 1750 - 

AFM-tip damping rate (Hz) 15 - 

SiN effective mass (𝑘𝑔) 4.4 × 10−14 - 

AFM-tip effective mass (𝑘𝑔) 2.2 × 10−13 - 

Global driving force (nN) - 4.04 

Driving force on the apex (pN) 4.54 1.61 

Global pumping force (nN) - 20.2 

Pumping force on the apex (pN) 5.56 8.08 
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Figure 4.2.16. Blue sideband pumping scheme, namely Ω𝑝 = Ω1 + Ω2. (a) is schematic of 

probing AFM-tip (Ω2), where red and yellow signal bars are the transduced phonons and green 
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signal bar is for the probe signal. (b) shows the detected amplitudes for the AFM-tip. (c) the 

measured curve (0.20 𝑉𝑝) in (b) is well fit by using analytical calculation.   

  

(iv) Blue sideband pumping the phonon-cavity at Ω𝑝 = Ω1 + Ω2and probing the AFM-tip 

around Ω2 

Fig. 4.2.16(a) shows phonon generation for up-conversion and down-conversion processes, 

corresponding to creating phonons in the unprobed phonon-cavity and the generated phonons 

feeding back the probed AFM-tip. These creating phonons can generate an interference. 

Fig.4.2.16(b,c) shows vibrating amplitudes of the AFM-tip, which have been well fit by using 

our analytical calculation (see section 2.2.4). The fitting parameter details have been given by 

Table 4.2.6. Besides, an increase of vibrating amplitudes of the AFM-tip has been observed 

with increasing pump amplitude. It reveals the constructive interference, namely 

electromechanically-induced amplification [117,120]. In the blue sideband pumping scheme, 

the bandwidth of the tip decreases with increasing pump amplitude, in agreement with our 

calculation for the effective damping rate as analyzed in the section 2.2.4 In Chapter 2. 
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Table 4.2.6. Essential parameters for blue sideband pumping 

the phonon-cavity and probing the AFM-tip 

Parameters Fitting values Setting values 

DC voltage 5 V 5 V 

Drive voltage (𝑉𝑎𝑐𝑠) - 50 mVp 

Red sideband pump (𝑉𝑎𝑐𝑝) - 0.20 Vp 

Global capacitance (F) 10.1 × 10−16 10.1 × 10−16 

SiN damping rate (Hz) - - 

AFM-tip damping rate (Hz) 15 - 

SiN effective mass (𝑘𝑔) 4.4 × 10−14 - 

AFM-tip effective mass (𝑘𝑔) 2.2 × 10−9 - 

Global driving force (nN) - 5.05 

Driving force on the apex (pN) 1.06 2.02 

Global pumping force (nN) - 20.2 

Driving force on the apex (pN) 3.03 8.08 

 

As the four situations discussed above, the phonon interferences have been carefully analysed 

and explained in our nanoelectromechanical resonators by using the developed models, namely 

electromechanically-induced transparency[119,120] and amplification[117,120], analog to the 

optomechanical system. 

 

4.2.7 White noise drive of SiN membrane 

In order to verify whether SiN membrane resonator can be driven by white noise, the SiN 

membrane is actuated by setting Vdc = 4, 2, 1V and the input noise amplitude is increased so 

that the SiN membrane can be artificially heat up by these stochastic forces and its thermal 

Brownian motions can be observed. From previous measurements, as shown in Chapter 2, the 

spring constant of the SiN drum membrane is around 100. Comparing with these mechanical 

resonator, having the low spring constant, exciting thermal Brownian motion of the SiN 

membrane requires larger amplitude of driving forces. In this thesis, the SMM technique is used 

with a metallic AFM-tip to measure the thermomechanical motion due to Brownian motion of
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the SiN membrane resonator, and it is flexible and feasible to achieve a desirable gap distance, 

namely the distance between the tip and the membrane. To date, ~50 nm gap has reached. 

Fortunately, white noise spectral density is observed without a microwave cavity in the tip-

membrane coupling scheme. When the gap distance is 50 nm, a larger capacitive coupling 

allows enough microwave photons to reach the drum membrane. Their reflection signals can 

carry the thermomechanical motion of the SiN membrane driven by stochastic forces. 
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Figure 4.2.17. White noise power spectral density when Vdc = 4 V. (a) Power spectral density 

of the SiN membrane. (b) Effective temperatures are calculated from the areas under PSD. (c) 

Effective temperatures as function of the input noise amplitudes 𝑉𝑝𝑝2 . 

 

The power spectral density (PSD) data of SiN membrane can be used for calculating the 

effective temperature. Fig. 4.2.17(a) shows PSD of the membrane, driven by different noise 
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amplitudes at a fixed DC voltage Vdc = 4 V. Fig. 4.2.17(a) also shows the areas corresponding 

to 𝑆𝑥[𝜔𝑑] that have been integrated across the frequency around its resonance frequency. The 

effective temperature (𝑇𝑒𝑓𝑓) calculation is given by [180] 

𝑆𝑥[𝜔𝑑]( 𝑚2𝑟𝑎𝑑/𝑠) = 4𝑘𝐵𝑇𝑒𝑓𝑓𝑚𝑒𝑓𝑓Ω𝑚2 𝛾𝑚𝛾𝑚2 + 4(𝜔𝑑 − Ω𝑚)2            𝐸𝑞. 4.2 

This formula is the single-sided noise spectral density. The useful transform of Eq.4.2 also reads 

below in order to know the temperature origin in physics 4𝑘𝐵𝑇𝑒𝑓𝑓 = 𝑚𝑒𝑓𝑓Ω𝑚2 𝑆𝑥[𝜔𝑑] ∙ 𝛾𝑒𝑓𝑓             𝐸𝑞. 4.3 

where the effective damping rate is defined by 
1𝛾𝑒𝑓𝑓 = 𝛾𝑚𝛾𝑚2 +4(𝜔𝑑−Ω𝑚)2 when 𝜔𝑑~Ω𝑚, and the 

right side member relates to the one-side noise power spectral density.  

Obviously, we see that the effective temperature corresponds to the noise power spectral density. 

The noise amplitude spectral density at two sidebands also associates to the measuring areas 

surrounded by the measured curves, revealing how much physical temperature is occupied by 

the mechanical resonator. The more details related to the physical temperature will be presented 

in section 5.1.2 in chapter 5. 

Fig. 4.2.17(b) shows the effective temperature is proportional to the areas under PSD. 

Fig.4.2.17(c) shows the effective temperature increasing with the input noise amplitudes 𝑉𝑝𝑝2  

increasing, because of the Langevin force spectral density 𝑆𝐹𝐹 ∝ 𝑉𝑝𝑝2  [110]. 
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Figure 4.2.18. White noise power spectral density when Vdc = 2 V. (a) Squared noise 

amplitudes of the SiN membrane. (b) Effective temperature is calculated from the area under 

PSD. (c) Effective temperature as function of the input noise amplitude 𝑉𝑝𝑝2 . 

 

In the presence of Vdc = 2 V, Fig. 4.2.18(a) shows the SiN membrane can sense smaller noise 

amplitudes, as the measured signals have been weaker than that of using Vdc=4V. Fig. 4.2.18(b) 

shows the effective temperature proportional to the areas under PSD. Fig. 4.2.18(c) shows the 

effective temperature increasing with the input noise amplitude 𝑉𝑝𝑝2  increasing. 
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Figure 4.2.19. White noise power spectral density when Vdc = 1 V. (a) Squared noise 

amplitudes of the SiN membrane. (b) Effective temperature is calculated from the area under 

PSD. (c) Effective temperature as function of the input noise amplitudes. 

 

When setting Vdc = 1 V, the spring constant modulation of the SiN membrane goes fluctuations. 

This specific discussion has been done in section 2.3.3 in Chapter 2. The DC voltage goes to be 

small, leading to a small electrostatic force, which can be affected by the noise floor. In fact, if 

DC voltage near 0, the data cannot well be detected. Fortunately, although this small voltage
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Vdc = 1 V, the weak signals were still observed in our experiments. It shows the high sensitivity 

of the SiN membrane used to potentially measure the thermal Brownian motion. 

 

4.3 Summary 

In this chapter, the state-of-the-art of SMM tool is overviewed, normally containing AFM-in-

SEM and VNA. Based on the coupling capacitance scheme, the AFM-tip-sample interactions 

and principles are importantly introduced and analysed. We have demonstrated that SMM can 

be used to in-situ characterize mechanical vibrations through a capacitive coupling scheme. 

Then, SiN membrane is able to be measured with the AFM-tip via either VNA or microwave 

interferometry measurement. The setup brings simplicities as both signals for the drive and 

detection are set through a single tip. In order to study the membrane, one COMSOL simulation 

part for the tip-membrane scheme and then six characterization parts of the membrane have 

been performed. First of all, the multiphysics simulation for simulating the tip-membrane 

scheme is to help us for understanding the electrostatic behaviours. Then, the six experiment 

characterizations are summarized below: 

(i) drive and detect linear mechanical responses. It can verify whether the SiN membrane is 

fabricated well or not. Besides, the linear responses are investigated for evaluating key 

parameters, such as quality factor, damping rate and resonance frequency. SMM tool can be 

used to carry on MEMS test, especially the vibration element that is embedded in complex 

circuits. (ii) the resonance frequency modulation through DC voltages. Although the capacitive 

coupling is small, the tip can still be used to tune the spring constant of SiN membrane, and 

further achieve frequency tuning by adding DC voltages. (iii) Duffing nonlinear mechanical 

responses. It can be measured as the tip position changes along the radial axis of the membrane 

and used flexibly to characterize whether nonlinearity depends on the tip position. (iv) 

mechanical modes detection. It helps us to understand the spatial mapping of vibrating 

amplitudes of the SiN membrane and is useful to guide us for choosing mechanical modes used 

in mode-mode coupling experiments. (v) double-tone driving scheme, an analogy to the 

optomechanical system. Double-tone driving scheme, consisting of SiN membrane capacitively 

coupled to a metallic AFM-tip, can be utilized for electromechanically-induced transparency 

and amplification, which exhibits its capabilities of signal amplification and de-amplification. 

Especially, for the blue sideband pumping, the motion of the tip can be amplified. Its bandwidth 

becomes narrowing which could be extended for applications of sensing improvement for the 
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AFM-tip. (vi) white noise drive of the SiN membrane. Our setup exhibits enough sensibilities 

to detect the thermal Brownian motion of the SiN membrane when it is artificially heated up by 

external white noise. 

In addition, the spatial mapping of the mechanical damping and the effect of DC voltages on 

the mechanical damping still need further efforts to understand. In particular, the experiment 

data as shown in Fig. 4.2.8, the damping rates seem to be saturated at the positive DC voltages. 

However, in previous works [176,181], mechanical damping exhibits quadratic dependence on 

the DC voltages, which are quite different with our fully clamped membrane. Some microscopic 

damping model should be developed in order to understand this observation. 
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Chapter 5 Microwave optomechanical 

thermometry 
 

In this chapter, we first present the thermometry principles and discussions, including cavity 

optomechanical scheme and cavity optomechanical readout of thermal Brownian motion. Then, 

we show the experiment expectations of this thesis. 

5.1 The thermometry principles 

As mentioned in Chapter 4, SiN drum membrane serving as NEMS has been tested and 

demonstrated, being able to measure the white noise amplitude. It indicates this drum resonator 

can be a promising NEMS candidate for detecting thermal Brownian motion. 

So far, the cavity-enhanced sensitivity to the readout has been studied by using RLC circuit 

fabricated on printed circuit board (PCB) and coupled with doubly clamped beam structures at 

RT [46,61]. Meanwhile, sideband pump technique enhancing readout sensitivity has also been 

detected. Besides, an optomechanical architecture, containing a three-dimensional 

optomechanical cavity coupling with a prestressed SiN membrane, has been made working 

down to sub-millikelvin, which points the research direction to new optomechanical 

experiments with a high optomechanical cooperativity [47]. Recently, an on-chip thermometry 

was also built by using superconducting microwave circuit cavity to couple with a doubly 

clamped suspended SiN beam [79], which works at millikelvin. So as to focus on the wide 

working temperature range, building an on-chip thermometry needs efforts. In this thesis, SiN 

drum membrane resonator has been developed and tested. On one hand, this drum resonator in 

principle can work not only at RT but also at millikelvin. On the other hand, the large coupling 

capacitance between the drum and the coupled external circuit allows its thermal Brownian 

motion to be read out with relatively lower power operations. 

Using cavity optomechanical scheme, the phonon numbers (𝑛𝑚) of the NEMS oscillator can be 

readout through the photon population (𝑛𝑐) in a microwave cavity through the coupling strength. 

Moreover, the optomechanical sideband pumping method provides an optomechanical gain that 

can help the readout of photons to get rid of thermal noise floor in the detection chain in the 

measurement. 

 



188                                                                                   5.1.1. Cavity optomechanical scheme 
 

 

5.1.1 Cavity optomechanical scheme 

The cavity optomechanical system studies the interaction between the light and the mechanical 

displacement. It consists of two systems, the cavity and the movable object, in which the cavity 

is used to confine electromagnetic fields, in forms of optical/microwave photons. It allows 

mechanical motions to be detected and manipulated by photons. For instance, mechanical 

oscillator has been cooled down into quantum ground states through red sideband cooling 

technique [9]. This technique pumped out the initial thermal phonons carried by the mechanical 

oscillator. Besides, microwave mechanical amplification can also be realized by pumping a 

microwave cavity at its blue sideband [182], through increasing the number of mechanical 

phonons. 

(i) Coupling strength 

 In both optomechanical pumping schemes, one of the key important parameters is the coupling 

strength, 𝐺 , which defines the energy exchanges between photons and mechanical 

displacements in the form of phonons, 𝐺  = −𝑑𝜔𝑐 𝑑𝑥⁄ = −𝑑𝜔𝑐 𝑑𝐶𝑚⁄ × 𝑑𝐶𝑚 𝑑𝑥⁄ . It is also 

written as a function of the photon number 𝑛𝑐, 𝑔 = 𝐺𝑥𝑍𝑃𝐹√𝑛𝑐       𝐸𝑞. 5.1 

where 𝑛𝑐 is generated by the pump tone, which replies to the pumping scheme. And, 𝑥𝑍𝑃𝐹 is 

the zero-point fluctuations, 𝑥𝑍𝑃𝐹 = √ℏ/2𝑚𝑒𝑓𝑓Ω𝑚. 

𝑛𝑐 = 2𝜅𝑒𝑥 (𝐶𝑡ω𝑐2|𝜇𝑝|22 )ℏ𝜔𝑐(𝜅2 + 4Δ2)       𝐸𝑞. 5.2 

Here, 𝐶𝑡 is total static capacitance, 𝜇𝑝 is the pump amplitude, and 𝜅𝑒𝑥 is the coupling rate to the 

outside, 𝜅  is the decay rate of the microwave mode [110]. From the coupling strength 

expression, we know that the 𝐶𝑚  plays a key role in increasing the value of the coupling 

strength, allowing the mechanical motions to be more easily detected/manipulated with the 

relatively lower pump amplitude. From Eq.5.2, it is also easy to see that the pump becomes 

more efficient in generating microwave photons, 𝑛𝑐, at the sideband resolved condition, Ω𝑚 ≫𝜅. Therefore, our nanoelectromechanical membrane resonator is expected to provide the higher 

coupling strength in microwave optomechanical circuits, comparing with those doubly-

clamped suspended beams. 
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Figure 5.1.1. Pump power as function of drum (red) and beam (black) capacitive actuation area. 

The capacitive distance is fixed at 500 nm. The insets show schematics for doubly clamped 

beam and membrane drum in capacitive coupling scheme, respectively. 

 

When fixing the capacitive distance at 500 nm, the coupling strength 𝐺, depending on the 

capacitive actuation area, affects the pump power amount. Fig. 5.1.1 shows if requiring the 

same cavity photon number, the membrane drum, having area about 100-times larger than the 

beam, can reach the photon number with highly efficient pump power. 

For instance, when fixing the phonon number 𝑛𝑚, related to 𝑇𝑚, we are able to discuss whether 

the pump power is reduced and optimized by the device capacitive actuation area. Then, we can 

choose membrane drum (diameter: 100 mm) comparing with the doubly-clamped beam 

(dimension: 100 mm length ´ 330 nm thickness). Thus, the device actuation area is estimated 

about 3.3 × 10−11 𝑚2  for the doubly-clamped beam and about 7.85 × 10−9 𝑚2  for the 

membrane drum. Obviously, the capacitive actuation area of the membrane drum is about 100 

times larger than the doubly-clamped beam. It means the coupling strength 𝐺 of the membrane 
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drum is also larger 100 times than the beam. If requiring to detect same phonon number 𝑛𝑚 ≈1.76 × 1010 , according to Eq.5.2, corresponding photon numbers to beam and drum are 

calculated to be 𝑛𝑐,𝑏𝑒𝑎𝑚 ≈ 3.05 × 1019  and 𝑛𝑐,𝑑𝑟𝑢𝑚 ≈ 7.27 × 1021. It is obvious that drum 

devices having larger capacitive coupling area generate much photons in the cavity with high 

pumping efficiency. Calculation parameters are the detection frequency of cavity 𝜔𝑐/2𝜋 ≈4.8 𝐺𝐻𝑧 , the resonance frequency of resonator Ω𝑚/2𝜋 ≈ 11.8 𝑀𝐻𝑧 , decay rate of cavity 𝜅/2𝜋 ≈ 61 𝑀𝐻𝑧, coupling efficiency 𝜅𝑒𝑥 𝜅⁄ = 0.044. 

 

(ii) Optical damping effect 

This optical damping effect plays a role in studying whether a sideband pump contributes pump 

photons to a microwave cavity. Its further explanation is described below: 

Cavity-dependent optical damping rate Γ𝑜𝑝𝑡 is given by [110] 

Γ𝑜𝑝𝑡 = 𝐺2 1ω𝑐(2𝑚𝑒𝑓𝑓Ω𝑚) (𝐶𝑡ω𝑐2|𝜇𝑝|22 )
× ( 𝜅(Δ + Ω𝑚)2 + 𝜅24 − 𝜅(Δ − Ω𝑚)2 + 𝜅24 )         𝐸𝑞. 5.3 

In order to describe the red and blue sideband pumping, schematic of spectrum operation is 

shown in Fig. 5.1.2. 
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Figure 5.1.2. (a) Red sideband pumping, namely Ω𝑝 = ω𝑐 − Ω𝑚, where red sideband pumps 

the cavity and another signal probes the cavity around ω𝑐. (b) Blue sideband pumping, namely Ω𝑝 = ω𝑐 + Ω𝑚, where a blue sideband pumps the cavity and another signal probes the cavity 

around ω𝑐. 
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Figure 5.1.3. Optical damping effects at red (a) and blue sideband (b), due to the ratio 𝜅 (2Ω𝑚)⁄ < 1, in sideband-resolved condition. 

In red sideband, the first term in Eq.5.3 dominates the transduction behaviour. Approximation 

is given to be Γ𝑜𝑝𝑡 ≈ 𝑔24/𝜅 . Fig. 5.1.3(a) shows Γ𝑜𝑝𝑡 > 0 . As 𝜅 (2Ω𝑚)⁄  decreasing, this 
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results in Γ𝑒𝑓𝑓 = Γ𝑚 + Γ𝑜𝑝𝑡 increase. It demonstrates the mechanical response of the resonator 

is de-amplified, leading to the reduction of quality factor. Moreover, this observation also 

indicates the system energy pumped out of the mechanical mode. Then, this red sideband 

pumping is sideband cooling technique, usually used in quantum engineering [9]. 

In blue sideband, the second term in Eq.5.3 dominates the transduction behaviour. 

Approximately, Γ𝑜𝑝𝑡 ≈ −𝑔24/𝜅  is deduced. Fig. 5.1.3(b) shows Γ𝑜𝑝𝑡 < 0 . As 𝜅 (2Ω𝑚)⁄  

decreasing, it leads to Γ𝑒𝑓𝑓 = Γ𝑚 +  Γ𝑜𝑝𝑡 decrease. This indicates the mechanical amplitude of 

the resonator is amplified, increasing the quality factor of the resonator. This explains pumping 

energy transduced to the mechanical system. 

 

5.1.2 Cavity optomechanical readout of thermal Brownian motion 

The basic principle of phonon thermometry is to readout the thermal Brownian motion of the 

mechanical resonators, which is generated by Langevin force. The integration of the measured 

spectrum density of 𝑆𝑥± gives the half variance of the thermal motion 〈𝛿𝑥2〉, further giving the 

detected temperature 𝑇𝑚. In optomechanical scheme, the sideband pumping readout method 

will change the mechanical damping rate, as mentioned above. The relationships between the 𝑇𝑚 and spectrum density of thermal Brownian motion are described as [110]: 12𝜋 ∫ 𝑆𝑥±𝑑𝜔 = 𝜎𝑥±2 = 𝜎𝑥2             𝐸𝑞. 5.4 

where 𝑆𝑥+ and 𝑆𝑥− are symmetric. 

Then, 𝜎𝑥2 related to 〈𝛿𝑥2〉 is given by 

𝜎𝑥2 = 〈𝛿𝑥2〉 Γ𝑚Γ𝑒𝑓𝑓            𝐸𝑞. 5.5 

where Γ𝑚  is the damping rate, Γ𝑒𝑓𝑓  is the effective damping rate at blue sideband pumping 

scheme. Moreover, 〈𝛿𝑥2〉, a half variance of the thermal motion, is given by 

〈𝛿𝑥2〉 = 𝑘𝐵𝑇𝑚2𝑚𝑒𝑓𝑓Ω𝑚2 = 𝑥𝑍𝑃𝐹2 𝑛𝑚           𝐸𝑞. 5.6 
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In terms of the thermometry principle, Eq.5.6, 5.5, 5.3 and 5.2 and 5.1 are all reinjected to 

Eq.5.4. The detected physical temperature by the nanoelectromechanical resonator, at blue 

sideband, arrived at 

𝑇𝑚 = 12𝜋 ∫ 𝑆𝑥±𝑑𝜔 (2𝑚𝑒𝑓𝑓Ω𝑚2 )𝑘𝐵 (1 − |Γ𝑜𝑝𝑡(∆, 𝐶𝑚, 𝑛𝑐)|Γ𝑚 )            𝐸𝑞. 5.7 

Therefore, this optomechanical thermometer is needed to calibrate, in order to remove the 

effects from sideband pump. One of the methods is to calibrate the variations of the measured 

temperature 𝛿𝑇𝑚 as function of pump power. 

𝛿𝑇𝑚 = 12𝜋 ∫ 𝑆𝑥±𝑑𝜔 (2𝑚𝑒𝑓𝑓Ω𝑚2 )𝑘𝐵 ∙ |Γ𝑜𝑝𝑡(Δ, 𝐶𝑚, 𝑛𝑐)|Γ𝑚
= 12𝜋 ∫ 𝑆𝑥±𝑑𝜔 (2𝑚𝑒𝑓𝑓Ω𝑚2 )𝑘𝐵
∙ 𝐺2 1ω𝑐(2𝑚𝑒𝑓𝑓Ω𝑚)Γ𝑚 (𝐶𝑡ω𝑐2|𝜇𝑝|22 ) × ( 𝜅(Δ − Ω𝑚)2 + 𝜅24 )
= 12𝜋 ∫ 𝑆𝑥±𝑑𝜔 (2𝑚𝑒𝑓𝑓Ω𝑚2 )𝑘𝐵
∙ 𝑔02𝑛𝑐 × ( 𝜅2Ω𝑚( ΔΩ𝑚 − 1)2 + ( 𝜅2Ω𝑚)2 ) × 2Ω𝑚          𝐸𝑞. 5.8 
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Figure 5.1.4. Physical temperature variation as function of pump amplitude, where 
𝜅2Ω𝑚 =0.01 ≪ 1, in the sideband-resolved condition, is chosen. 

 

When fixing the coupling strength, 𝐺 = − 𝑑𝜔𝑐𝑑𝑥 = 𝜔𝑐2𝐶𝑡 𝑑𝐶𝑚(𝑥)𝑑𝑥 , Fig. 5.1.4 shows the 𝛿𝑇𝑚 

increasing as the pump amplitude increasing. Because more phonons are added to the resonator 

due to the pump power from 𝜇𝑝 . The real temperature, detected by the resonator, can be 

obtained by extending this curve to 𝜇𝑝=0. Besides, Eq.5.8 can also be used from calibration of 

the coupling strength, G. In addition, we could also see that blue sideband pumping helps to 

readout small values of 𝑛𝑚, as it brings optomechanical gain. 

Besides, it is also interesting to make comparisons between the microwave optomechanical 

system [36] and the phonon cavity system [93]. The phonon cavity system consists of two 

coupled mechanical resonators. It can be used to exploit as a model system to study classic 

features of optomechanics. For instance, “optical damping” effects have also been demonstrated 

in the phonon-cavity system, consisting of a SiN membrane resonator capacitively coupled to 

an aluminium membrane resonator. This effect is in the phonon cavity scheme given by [93]. 

Its optical damping effect is given by 
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Γ𝑜𝑝𝑡,𝑝ℎ𝑜𝑛𝑜𝑛−𝑐𝑎𝑣𝑖𝑡𝑦 = |𝑓𝑝|24𝑚1𝑚2𝑑2Ω1Ω2 [ 𝛾1(Ω2 + Δ)2 + 𝛾124 − 𝛾1(Ω2 − Δ)2 + 𝛾124 ]
= 𝑛𝑝𝑔02 [ 𝛾1(Ω2 + Δ)2 + 𝛾124 − 𝛾1(Ω2 − Δ)2 + 𝛾124 ]        𝐸𝑞. 5.9 

where 𝛾1  is the damping rate of SiN membrane resonator, Ω2  is the angular frequency of 

aluminium membrane resonator,  𝑓𝑝 is the pump force. 

 

Table 5.1.1. Comparison between optomechanical system and phonon cavity scheme 

Cavity design Cavity decay rate or 

damping rate 

NEMS Al 

drum 

Capacitive coupling strength (G) 

when distance at 500 nm 

RLC 

microwave 

cavity [36] 

𝜅𝑐𝑎𝑣𝑖𝑡𝑦,𝑅𝐿𝐶/2𝜋≈ 61 𝑀𝐻𝑧 

Ω𝑚,𝐴𝑙/2π≈ 3𝑀𝐻𝑧 

𝐺𝑅𝐿𝐶 ≈ 𝜔𝑐4𝜋𝑑 ≈ 4.8 𝑀𝐻𝑧/𝑛𝑚 

Phonon-

cavity [93] 

𝛾𝑐𝑎𝑣𝑖𝑡𝑦,𝑆𝑖𝑁/2𝜋 ≈333 𝐻𝑧  high stress 

SiN drum 

Ω𝑚,𝐴𝑙/2π≈ 3𝑀𝐻𝑧 
𝐺𝑝ℎ𝑜𝑛𝑜𝑛−𝑐𝑎𝑣𝑖𝑡𝑦 ≈ Ω14𝜋𝑑≈ 11.8 𝑘𝐻𝑧/𝑛𝑚 

 

This expression Eq.5.9 is in the similar form of the 𝐸𝑞. 5.3. Now, we can put some experimental 

parameters in both two expressions, in order to make a comparison. To do so, we choose 

capacitive coupling strengths in optomechanical system and phonon-cavity scheme to be the 

same, in order to compare the optomechanical damping effect between them. Fixing the 

capacitive coupling distance at 500 nm in both system, we take RLC microwave cavity with 

frequency of 4.8 GHz reported in [36] and phonon cavity (SiN drum) with frequency of 11.8 

MHz reported in [93]. Therefore, optomechanical coupling strengths in optomechanical system 

is 𝐺𝑅𝐿𝐶 ≈ 4.8 𝑀𝐻𝑧/𝑛𝑚 and it is in phonon-cavity system is 𝐺𝑝ℎ𝑜𝑛𝑜𝑛−𝑐𝑎𝑣𝑖𝑡𝑦 ≈ 11.8 𝑘𝐻𝑧/𝑛𝑚, 

whose values are far from each other. If getting the same optomechanical damping effect, we 

can compare the pump amplitude between in this cavity optomechanical system and this phonon 

cavity scheme. According to Eq.5.3, we take  Γ𝑜𝑝𝑡,𝑅𝐿𝐶 ≈ −𝑛𝑐𝑔02 ∙ 4/𝜅. Similarly, in phonon 

cavity scheme, we know Γ𝑜𝑝𝑡,𝑝ℎ𝑜𝑛𝑜𝑛−𝑐𝑎𝑣𝑖𝑡𝑦 ≈ −𝑛𝑝𝑔02 ∙ 4/𝛾1. In addition, we suppose in both 
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system, the “cavity” is coupled to an aluminium drum resonator, with an effective mass of 4.41 × 10−13 𝑘𝑔 , resonance frequency of 3 MHz, damping rate of 333 Hz, coupling 

capacitance is 1.25 × 10−14 𝐹. If we want to reduce 5Hz from the mechanical damping rate in 

optomechanical system and phonon-cavity system respectively,  Γ𝑜𝑝𝑡/2𝜋 = 5𝐻𝑧, it requires a 

pump amplitude to be |𝜇𝑝,𝑅𝐿𝐶| ≈ 3.816 × 10−13  and |𝜇𝑝,𝑝ℎ𝑜𝑛𝑜𝑛−𝑐𝑎𝑣𝑖𝑡𝑦| ≈ 7.315 × 10−12 , 

respectively. Different from the evaluated values of G, the required pump amplitudes are not 

far from each other. From this comparison, we could see that it is not reasonable to directly 

compare with values of coupling strength G between both systems, because both cavities are 

working in different frequency ranges and definitions of G rely on the resonance frequency of 

the cavity.  

 

5.2 Experiment expectations 

This thesis work has future expectations of experiments for building a phonon thermometer, 

which consists of a microwave cavity and a nanoelectromechanical oscillator. The basic 

principle of this phonon thermometer is to detect the thermal Brownian motion of the oscillator. 

The displacement driven by stochastic forces (Langevin forces), 𝛿𝑥 = 𝐹∙𝑄𝑘 , depends on high 

quality factor (Q) and the mechanical spring constant (𝑘) of the device. We suppose the 

mechanical resonator, having the small values of 𝑘 and the large values of Q, will be perfect 

candidates.
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Unfortunately, it is difficult to reach both ideal conditions. Our SiN membrane 

nanoelectromechanical resonators only bring advantages in the high Q. On the other hand, a 

microwave cavity is also important for the readout of the thermometer. First, a sideband 

resolved condition (𝜅 (2Ω𝑚)⁄ ≪ 1 ) is ideal for building optomechanical thermometer, as 

discussed above. Second, one must consider the coupling strength (𝑔 = 𝐺𝑥𝑍𝑃𝐹√𝑛𝑐), which 

indicates the sensitivity of the mechanical displacement in readout external circuits. The 

coupling capacitance between the movable element and the couple external circuit plays 

important role. The larger values of 𝐶𝑚 requires the lower pump power for readout the same 

amount of the phonon occupation number, 𝑛𝑚. But, at the same time, the optomechanical back-

action effects, optomechanical damping effects will not be negligible and have to be calibrated 

in order to readout the initial values of  𝑛𝑚, which is related to the real detected temperature. 

 

5.3 Summary 

In this chapter, a basic principle of such a kind of phonon thermometry, namely 12𝜋 ∫ 𝑆𝑥±𝑑𝜔 = 𝑘𝐵𝑇𝑚 = ℏΩ𝑚 ∙ 𝑛𝑚, is introduced, where 𝑘 is the spring constant of the device 

and 𝑘𝐵 is the Boltzmann constant. Besides, we also introduced the important optomechanical 

features, including optomechanical coupling strength, the optical damping effect. For the 

coupling strength, we made comparisons between two kinds of mechanical resonator design, 

the doubly-clamped beam and the drum. The capacitance actuation areas are discussed. 

Membrane drum has 100 times larger the capacitance than the doubly-clamped beam, allowing 

its thermal Brownian motion to be readout by relatively lower pump power. Besides, we also 

make comparisons between the optomechanical system and the phonon-cavity system, 

regarding to the optical damping effect, which helps us better understand the classic features of 

the optomechanics. In the final part, we also discussed the expectations of experimental design 

for building the optomechanical phonon-thermometer. 
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Chapter 6 Conclusion and outlook 

In this Ph.D. thesis, main tasks are focused on the theory analysis of the SiN circular membrane 

in Chapter 2, critical nanofabrication processes of the SiN circular membrane in Chapter 3, the 

characterization and simulation of the SiN membrane resonator using SMM techniques in 

Chapter 4, and the discussions of microwave optomechanical thermometry in Chapter 5. 

 

6.1 Conclusion 

In this thesis work, we have studied membrane nanoelectromechanical resonators, consisting 

of a SiN membrane capacitively coupled to a suspended aluminium top gate. The device 

exhibits good mechanical properties at room temperature, high resonance frequency (MHz) and 

quality factor (> 104) under vacuum. It also offers large coupling capacitance, compared with 

conventional SiN doubly clamped nanobeam. 

The design of the membrane nanomechanical resonator is special and can be modelled as an 

electrical component, a parallel plate capacitor. It gives an access to perform parametric 

amplifications in this device. Based on this unique device design, we demonstrated 

electromechanically induced transparency and amplification in a two-tone scheme, which 

allows to make an analogy to optomechanical system. 

Before the nanofabrication, we use the finite element simulation method to optimize the device 

design, making reasonable trade-off between achieving low clamping losses and feasible 

fabrication process. Two critical nanofabrication steps, including the XeF2 etch for releasing of 

the SiN membrane from silicon substrate and the reflow process for fabricating an aluminium 

top gate, have been elaborated. These discussions helped us for further developing/optimizing 

robust fabrication process to achieve SiN membrane resonators. 

Besides using the aluminium top gate, SMM techniques, containing AFM-in-SEM equipment, 

have also been exploited to characterize mechanical properties of the membrane. This AFM-tip 

is able to be manipulated in X-Y-Z axes (about step Min. 1 nm and step Max. 10 mm) in a high 

vacuum chamber. In this part, the tip-membrane interaction has been simulated through finite 

element method, so as to help us for understanding the capacitance and electrostatic force 

behaviours. Then, the AFM-tip capacitively coupling with the SiN membrane resonator covered 

with a thin aluminium has been studied well. In particular, a double-tones driving scheme, one 
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sideband tone and the other probe tone, has also been used for experimentally demonstrating 

amplification and de-amplification in a mode coupling scheme. It is very promising for 

improving the readout sensitivity of signal from the AFM-tip, as the signal is amplified by using 

sideband pumping method. In addition, SMM techniques have the potential for extending to 

measuring other MEMS devices through adding electrostatic forces.   

Considering the future work in developing optomechanical phonon thermometer, we have 

discussed the basic principle of the phonon thermometer based on our drum membrane 

nanoelectromechanical resonator, in optomechanical circuits. Both coupling strength and 

optical damping effects have also been analysed. The SiN membrane drum, comparing with the 

doubly clamped beam structures, has a 100-times larger capacitance, contributing to decrease 

100-times the amount of pump power to the thermometry while reaching the same signal 

detecting gain, in optomechanical readout circuit. Besides, we also made comparisons between 

optomechanical system and the phonon-cavity system, which helps us to understand the 

classical features in optomechanics. 

 

6.2 Outlook 

This thesis work builds essential blocks for developing optomechanical phonon thermometer 

based on SiN membrane resonator in the future. So far, most of microwave cavities, used to 

couple with mechanical resonator, are fabricated with superconducting materials. They are 

therefore limited for the working temperature due to the transition temperature of 

superconducting materials. In the future work, we could expect to develop optomechanical 

thermometer through exploiting 3D cavity to couple with nanoelectromechanical resonator. As 

previous reports, 3D cavity can work well at both RT [61,180] and low temperatures [47]. It 

will allow to have a wide range of working temperature. Besides, it is interesting to study 

several kinds of issues by using this 3D cavity optomechanical system through benefiting from 

large coupling strength, such as exploring nonlinear coupling in optomechanical circuits [183] 

and two-level systems [184]. The specific issues to be solved for building such a thermometer 

can be either theoretical analysis or experimental measurement. For instance, we can propose 

the following problems, including (i) device design and fabrication process, and (ii) 

characterization. To make a reliable thermometer, some future tips can be focused on:  

(i) device design and fabrication process. The large capacitance between the top gate and the 

membrane may be reduced when the number and size of holes are increased. But, these holes
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are necessary to be etched successfully the underneath silicon and release SiN membrane. A 

compromise between feasible holes pattern and successful releasing of SiN membrane must 

also be determined. The capacitive distance between the membrane and top gate can be 

decreased in order to increase the coupling capacitance. However, decreasing below 500 nm 

needs efforts to investigate the fine control of the distance, avoiding the sticking between both 

objects. 

In order to have proper releasing of SiN membrane, the XeF2 etch process should be optimized 

continuously. In our fabrication process, a triangle pattern has been designed for estimating 

whether a membrane is released well or not. Nevertheless, the XeF2 etching rate highly depends 

on the exposure area of the pattern. Further optimization for etching needs to be deeply 

understood. So as to optimize the XeF2 etching, a future work has been considered that it 

contains several holes on the membrane with different diameters for observing the effect of 

XeF2 etching. In this case, the etch time can be evaluated for proper releasing of SiN membrane 

in order to achieve a proper etching process. Furthermore, the distance between neighbouring 

holes can also be changed for estimating the XeF2 etch procedure. This etch optimization can 

also be used in other topological pattern applications, such as heat conduction research with 

ordered or disordered holes pattern [185,186]. 

(ii) characterization. The measurement of temperature for such a device requires to determine 

the parameters that impact the measurement accuracy. Careful characterization needed for the 

NEMS may be performed to better understand the relationship between the device properties 

and the temperature measurement. Moreover, the measured temperature is related to the SiN 

membrane as it has high quality factor. Investigating how the SiN membrane may be thermally 

connected to the detection of the number of phonon carried by the membrane is critical so as to 

usefully measure its physical temperature. 

Besides, when characterizing the membrane through the metallic AFM-tip, we considered 

whether the coupling capacitance between the tip and membrane could be analytically 

calculated. We tried to find the calculation method of the coupling capacitance. We found 

several papers [187,188] that show adjustable capacitors with coaxial cone electrodes. The old 

ideas motivated us for calculating the adjustable capacitor between the tip and membrane, as 

the tip can be seen as a simple cone. There are three steps to be proposed for calculating the 

coupling capacitance, including (I) setup design and calculation, (II) comsol simulation, and 

(III) characterization. To tackle the problem, some future tips may be focused on: 
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(I) setup design and calculation. The sketch of the coupling capacitance between the tip and 

membrane shall be proposed based on the interactions between the both. According to prior 

reports [187,188], they use the coaxial cone electrodes to calculate the capacitance, as the active 

surfaces between the two coaxial cone electrodes are parallel in the geometry structure. 

However, in our case, we have no parallel electrodes, containing a metallic tip suspended on 

the top of a circular conductive membrane. It is obvious that the electric field lines between the 

two electrodes are not uniform along the electrode. This points out a future research direction 

that requires much efforts to solve. In addition, the calculation of the capacitance may be 

conducted once the distribution of electric field lines determined in physics. Based on active 

actuation areas (𝑆𝑓 ) estimated in the formalism of effective distribution of electric fields, 

Gauss’s law, ∫ 𝑫𝑑𝑺 = 𝜀𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑓𝑖𝑒𝑙𝑑𝑆𝑓 = 𝑄𝑐ℎ𝑎𝑟𝑔𝑒 , can be applied in order to deduce the 

relationship between electric field (𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑓𝑖𝑒𝑙𝑑) and charge (𝑄𝑐ℎ𝑎𝑟𝑔𝑒). Using the electric field 

relationship, we can deduce the potential difference (Δ𝑉), because the integral of the potential 

difference is directly related to the electric field (𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑓𝑖𝑒𝑙𝑑). Thus, using the definition of the 

capacitance, namely 𝐶 = 𝑄𝑐ℎ𝑎𝑟𝑔𝑒∆𝑉 , we can derive the final capacitance value. In this part, there 

still exists several problems that limit the current calculation of the capacitance: first, the tilt 

angle θ of the tip (see section 4.2.1); second, the consideration of apex of the tip [189]; third, 

the boundary condition. 

(II) comsol simulation. Based on the setup design and calculation, we can use the simulation 

process (see section 4.2.1) to obtain the capacitance value.  In order to approximate the real 

capacitance value, we have to take same parameters from the setup design and calculation into 

account.  

(III) characterization. After carrying out steps (I) and (II), it may be applied to the practical 

characterization. For instance, in future applications, such as imaging af/fF capacitance 

[153,157], the calibration of the capacitance is very important, because of impedance from 

parasitic capacitance possibly affecting the measurement precision [161]. It is feasible for our 

calculation of the tip-membrane modelling to help to precisely calibrate the capacitance used 

for the applications.
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