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Hétérogénéité des Clients dans les Systèmes d’Apprentissage Fédérés
Résumé

L’Apprentissage Fédéré (FL) est un cadre collaboratif où des clients, tels que des smartphones
et des appareils IoT, entraînent un modèle de machine learning sous la coordination d’un
serveur central sans partager leurs données. L’hétérogénéité des clients dans les systèmes FL
résulte de l’hétérogénéité statistique des jeux de données locaux, des différences de spécifica-
tions matérielles (puissance du CPU, capacité de mémoire), des types de connectivité réseau
(par exemple, WiFi ou 5G) et de disponibilité d’énergie (niveaux de batterie), échappant ainsi
au contrôle du serveur. Cette thèse aborde les défis posés par cette hétérogénéité des clients,
leur impact sur la convergence des algorithmes FL, et propose des solutions pratiques pour
améliorer l’efficacité et l’utilisation des ressources du système. La première contribution traite
le problème de la participation hétérogène des clients : ceux-ci participent à l’entraînement
du modèle de manière occasionnelle et avec des fréquences variées, ce qui pose trois défis
principaux. D’abord, les clients les plus actifs peuvent biaiser le modèle global en raison de
l’hétérogénéité statistique de leurs données. Ensuite, compenser ce biais en surpondérant les
clients moins actifs augmente la variance du processus d’apprentissage. Enfin, la participation
des clients peut être corrélée temporellement et spatialement. Nous caractérisons le compromis
biais-variance et analysons la convergence des algorithmes FL, en supposant que la participa-
tion suit un processus de Markov. Notre algorithme FL prenant en compte les corrélations,
CA-Fed, est le premier à minimiser ce compromis et à accélérer la convergence des algo-
rithmes FL lorsque la participation des clients est corrélée. La deuxième contribution traite
de la variabilité du processus d’apprentissage introduite par la participation hétérogène des
clients. Les méthodes de réduction de variance utilisant des mises à jour du modèle obsolètes
pour les clients non participants présument une participation homogène. Avec une participa-
tion hétérogène, le serveur doit agréger des mises à jour du modèle d’obsolescence variable,
un défi encore inexploré. Nous analysons la convergence de ces algorithmes et proposons
FedStale, un algorithme FL qui combine de manière optimale mises à jour du modèle
fraîches et obsolètes, performant dans divers contextes hétérogènes. La troisième contribution
aborde l’hétérogénéité des ressources réseau : les clients rencontrent des canaux de communi-
cation avec des caractéristiques variées (par exemple, perte de paquets, interférences), ce qui
dégrade les performances des algorithmes FL. Viser une haute fiabilité de transmission dans le
FL est sous-optimal, et les stratégies d’atténuation des pertes (par exemple, les retransmissions)
nécessitent plus de ressources et prolongent la durée de l’entraînement. Nous explorons des
approches algorithmiques pour gérer les pertes pendant l’entraînement et présentons un algo-
rithme FL tolérant aux pertes de paquets, UPGA-PL, offrant des performances comparables à
celles des canaux sans perte au prix de quelques cycles de communication supplémentaires. La
dernière contribution examine l’hétérogénéité des environnements matériels : des clients aux
capacités de calcul variées (dispositifs périphériques, serveurs edge, et infrastructures cloud)
peuvent coopérer pour apprendre un modèle commun ; cependant, cette hétérogénéité rend le
déploiement uniforme du modèle infaisable à l’inférence. Les Systèmes d’Inférence Coopéra-
tive (CIS) permettent aux dispositifs moins performants de déléguer des tâches d’inférence à
des dispositifs plus puissants avec des modèles plus volumineux ; cependant, l’entraînement FL
ne tient pas compte de leur utilisation future à l’inférence. Notre algorithme FL optimisé pour
l’inférence, Fed-CIS, est le premier à considérer la charge future des requêtes d’inférence
pour chaque sous-modèle dès l’entraînement. Il permet aussi aux clients plus puissants de con-
tribuer à l’entraînement des modèles pour les plus faibles. Les remarques finales de cette thèse
abordent les défis ouverts rencontrés et esquissent les directions de recherche futures.

Mots-clés : Apprentissage Fédéré, Optimisation Distribuée, Chaîne de Markov, Réduction de la
Variance



Client Heterogeneity in Federated Learning Systems
Abstract

Federated Learning (FL) is a collaborative framework where clients—typically smartphones
and IoT devices—train a machine learning model under the orchestration of a central server
without sharing their datasets. Client heterogeneity in FL systems stems from statistical hetero-
geneity of local datasets, different device capabilities in hardware specifications (CPU power,
memory capacity), network connectivity types (e.g., 5G and WiFi), power availability (battery
levels), and it is outside server control. This thesis tackles the challenges of client heterogene-
ity in FL systems, their impact on the convergence of FL algorithms, and presents practical
solutions for enhanced system efficiency and resource use. The first contribution addresses
the problem of heterogeneous client participation: clients partake in the model training only
occasionally and with varying frequencies. Three primary challenges arise. First, the “more
participating” clients may bias the global model due to statistical heterogeneity in the clients’
datasets. Second, addressing this bias by overcompensating for “less participating” clients in-
troduces a larger variance in the learning process. Third, client participation can be correlated,
due to the clients’ correlated participation dynamics across time and geographic distributions.
We characterize the bias-variance trade-off resulting from heterogeneous client participation
and analyze the convergence of FL algorithms, assuming that client participation follows a
Markov process. Our correlation-aware FL algorithm, CA-Fed, is the first heuristic to mini-
mize this bias-variance-correlation trade-off and thus achieve faster convergence. The second
contribution addresses the large variability in the learning process introduced by heteroge-
neous client participation. Variance reduction methods that leverage stale model updates for
non-participating clients only consider homogeneous client participation. When participation
is heterogeneous, the server must aggregate client updates with varying staleness—a challenge
that remained unexplored. We analyze the convergence of these algorithms under heteroge-
neous participation, examining the advantages and disadvantages of leveraging stale updates
in such heterogeneous environments. Our Staleness-Aware FL algorithm, FedStale, op-
portunely aggregates fresh and stale updates and performs well across many heterogeneous
settings. The third contribution tackles heterogeneity in network resources: clients experience
lossy communication channels with diverse characteristics (e.g., path loss, interference), which
degrade FL algorithms’ performance. Targeting high transmission reliability in FL is subop-
timal, and loss mitigation strategies (e.g., retransmissions) demand more resources and longer
training durations. We investigate algorithmic approaches for handling losses during training
and present a packet loss-aware FL algorithm, UPGA-PL, with comparable performance to
ideal lossless channels at the cost of a few additional communication rounds. The last con-
tribution investigates heterogeneity in hardware environments: clients with diverse computing
capabilities (e.g., end-devices, edge servers, and cloud infrastructures) may cooperate to learn
a common model; yet, client heterogeneity makes uniform model deployment infeasible at
inference time. Cooperative Inference Systems (CISs) enable less-performing devices to of-
fload parts of their inference tasks to more powerful devices with larger models within the
network; however, FL training overlooks how these models will be used at inference time. Our
inference-aware FL algorithm, Fed-CIS, is the first to consider the future inference request
load for each sub-model at training time. It also enables computationally stronger clients to
help train models for the weaker ones. The concluding remarks reflect on the open challenges
encountered throughout this thesis and outline prospective research directions for future work.

Keywords: Federated Learning, Distributed Optimization, Markov chain, Variance Reduction
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CHAPTER 1
Introduction

1.1 Context of the Thesis

The machine learning (ML) community has made tremendous improvements across many ap-
plication domains by following a simple recipe: gather large training datasets, develop model
architectures, and scale computing resources. This recipe helps to enhance user experience and
engagement with ML technologies, and encourages further investment in ML research and devel-
opment in both current and new application domains.

Breaking down the recipe, we first identify specific difficulties in improving model architectures.
Although developing new models leads to major breakthroughs that improve applications, this pro-
cess often depends on unreliable epiphanies. Research in this field often involves creative rethink-
ing of the modeling problem and exhaustive hyper-parameter exploration, occasionally benefiting
from serendipity.

As a complementary contribution to model architecture search, this thesis focuses on the other
two recipe components: gathering large training data and scaling computational resources. In
these fields, we have greater control and understanding over progress.

The importance of data in machine learning. Machine learning models are notoriously data-
hungry, fed by massive volumes of data. It is well known that simply using more data to train
larger models enhance their prediction accuracy (Polyzotis, Roy, Whang, & Zinkevich, 2017,
2018; Zheng, Li, Li, Shan, & Cheng, 2017; Roh, Heo, & Whang, 2021). The relationship between
data volume and model accuracy has been observed in empirical learning curves generated across
various real-world applications (Hestness et al., 2017). Figure 1.1 breaks down these empirical
learning curves into three key phases:

• The curve begins in the “small data region,” when models struggle to learn from a small
number of training samples, and can only perform as well as “random” guessing.

• The middle area of learning curves is the “power-law region”, where each new training sam-
ple adds knowledge that helps models improve predictions on previously unseen samples.
The power-law exponent defines the steepness of this curve, and depends on the specific ML
task. This power-law region exists across a large range of models, optimizers, regularizers,
and loss functions.

• With sufficiently large training sets, models’ accuracy is predicted to saturate in a region
dominated by “irreducible error” (e.g., Bayes error). However, this region has still not been
observed in real applications.

1
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Figure 1.1: The empirical learning curve of real applications shows robust power-law regions:
scaling the training data set is likely to improve the model’s accuracy (Hestness et al., 2017).

Massive data production on the end-device. In the search for ever-increasing model accuracy,
the data publicly available progressively becomes insufficient. A less exploited source of essen-
tial data is the massive volume generated at the edge of the network, notably through end-user
devices such as smartphones and IoT devices (Uhlemann, Lehmann, & Steinhilper, 2017; Stoica
& Shenker, 2021). These devices are not simply communication tools but prolific data factories,
continuously generating detailed and diversified information. Smartphones, for instance, collect
a plethora of data including images, geographic locations, health measurements, personal pref-
erences, app usage statistics, and even ambient environmental data through sensors. Similarly,
IoT devices generate a continual stream of real-time data about user interactions, system perfor-
mance, and environmental variables. Leveraging this rich data from end-devices offers a critical
resource, aligning with the expanding needs of more sophisticated machine learning architectures
and representing a pivotal shift in machine learning training methodologies.

Disadvantages of centralized training. A standard approach to training machine learning mod-
els involves gathering data in a centralized server, often a cloud-based architecture. We formalize
the problem as follows. Denote the parameter vector w ∈ Rd of a machine learning (for instance,
the vector w can represent the weights of a neural network architecture), and a finite set of devices
N = 1, . . . , N , referred to as clients. Each client i is equipped with a unique dataset Di. In
centralized training, the server aggregates the client datasets into a global dataset D =

⋃N
i=1Di.

Subsequently, the training process can be formulated as an optimization problem run by the server:

min
w∈Rd

1
|D|

∑
z∈D

f(w, z), (1.1)
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where each sample z = (x, y) in dataset D comprises of input features x and the associated target
output y. The loss function f : Rd × (X × Y) → R+ evaluates the model’s performance, where
X and Y denote the spaces of input features and output targets, respectively.

While the solution of Problem (1.1) has motivated a substantial body of research in optimization
techniques, including the gradient descent algorithm (GD) and stochastic approximation methods
such as stochastic gradient descent (SGD) (Robbins & Monro, 1951) and minibatch-SGD, it in-
herently requires the centralization of data. This requirement creates considerable limits. Firstly,
the process of gathering data is communication-intensive and often cost-prohibitive. For example,
transmitting video streams from a large number of cameras might quickly increase communication
overhead and congest network resources. Secondly, data centralization might pose major privacy
risks. Personal data produced by end-user devices is often sensitive, and regulatory frameworks
like the General Data Protection Regulation (GDPR) in Europe or the California Consumer Privacy
Act (CCPA) in California strictly control data collection procedures, making data aggregation un-
lawful. Additionally, concerns over data sovereignty—where data must remain inside the country
of origin—further complicate the viability of centralizing data.

1.1.1 Why Federated Learning?

Federated Learning (FL) (Konečný et al., 2017; McMahan, Moore, Ramage, Hampson, & y Arcas,
2017) is a framework allowing geographically distributed clients to cooperatively learn machine
learning (ML) models, without sharing their own local data. The term “Federated Learning”
first appeared in 2016 in the seminal work McMahan et al. (2017)∗: “We investigate a learning
technique that allows users to collectively reap the benefits of shared models trained from this
rich data, without the need to centrally store it. We term our approach Federated Learning, since
the learning task is solved by a loose federation of participating devices (which we refer to as
clients) which are coordinated by a central server.” In this paradigm, a central server orchestrates
the learning process across a federation of devices, or clients, ensuring that no sensitive data is
transmitted, but rather model parameters are shared.

1.1.2 Main Motivations: Communication Efficiency and Data Privacy

Federated Learning is characterized by a distinctive feature: the local storing of data on each
client’s device. This method produces two substantial advantages, each with unique characteris-
tics. The primary and first motivation for proposing this paradigm was to boost communication
efficiency.† The federated learning framework avoids data transfer in the centralized cloud server,
hence considerably lowering network bandwidth use. For example, transmitting model parameters
rather than high-volume data streams may result in substantial network savings, decreasing both
bandwidth demands and network congestion. Second, by confining data to its originating device,
the federated learning framework fundamentally enhances privacy protection by minimizing data
exposure to potential breaches and unauthorized access. This approach aligns with the principle of

∗Reference McMahan et al. (2017) was uploaded on arXiv on February 17, 2016, before being published in the Pro-
ceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) in 2017. Meanwhile,
Reference Konečný et al. (2017) was initially published on arXiv on October 18, 2016, followed by an updated version
on October 30, 2017.

†Supporting this statement, the title of the seminal paper McMahan et al. (2017) is "Communication-Efficient Learn-
ing of Deep Networks from Decentralized Data."
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data minimization (Regulation (EU) 2016/679 of the European Parliament and of the Council of
27 April 2016 on the protection of natural persons with regard to the processing of personal data
and on the free movement of such data, and repealing Directive 95/46/EC, 2016; European Par-
liament legislative resolution of 13 March 2024 on the proposal for a regulation of the European
Parliament and of the Council on laying down harmonised rules on Artificial Intelligence (Artifi-
cial Intelligence Act) and amending certain Union Legislative Acts, 2016), substantially lowering
the possible attack surface and the overall system’s vulnerability.

1.1.3 Main Settings and Applications: Cross-Silo and Cross-Device

Federated Learning has several practical applications and two primary settings—cross-device FL
and cross-silo FL—that significantly affect algorithm design. Cross-device FL focuses on machine
learning across numerous mobile devices, whereas cross-silo FL promotes collaborative learning
inside or across organizations. While both settings ensure local data storage, along with com-
munication and privacy benefits, they also present distinct characteristics that affect algorithms
implementation (Kairouz et al., 2021, Table 1).

• The number of clients in cross-device FL is generally much larger than in cross-silo FL.
Cross-silo FL typically involves only a few to tens organizations—clients are powerful
servers, clusters, or data centers. For instance, in inter-hospital training, a few clinics col-
laborate to enhance medical ML models without disclosing sensitive patient data (Silva,
Altmann, Gutman, & Lorenzi, 2020). In contrast, cross-device FL may involve millions
of end-devices, like for Google’s keyboard, where Android smartphones cooperate to en-
hance Gboard’s functionalities like next-word prediction, emoji suggestions, and out-of-
vocabulary words discovery (Hard et al., 2018). The quantity of data per client is generally
less in cross-device FL.

• Client availability vary substantially across cross-silo and cross-device settings. Cross-silo
scenarios, characterized by robust computing and network resources, typically guarantee
high client availability and consistent participation in training. In contrast, the enormous,
sporadically available population in cross-device settings makes the client-server commu-
nication more unpredictable and less reliable. Additionally, in cross-device contexts, client
participation may also correlate with local data distributions, generating diurnal or noctur-
nal, semi-cyclic variations that optimization methods must accommodate (Eichner, Koren,
Mcmahan, Srebro, & Talwar, 2019; Zhu et al., 2021; Cho et al., 2023).

• Computation and communication constraints are more stringent in cross-device settings
due to the limited capabilities of end-devices. Conversely, cross-silo clients in data centers
typically have access to hardware accelerators and high-bandwidth connectivity.

• Connection topology also differs between settings. Mobile devices often support the
client–server or hierarchical network topologies (Fercoq, Qu, Richtárik, & Takáč, 2014;
Richtárik & Takáč, 2016; Briggs, Fan, & Andras, 2020; Wainakh, Guinea, Grube, &
Mühlhäuser, 2020), whereas decentralized communications are feasible in cross-silo envi-
ronments (Koloskova, Loizou, Boreiri, Jaggi, & Stich, 2020; Kovalev, Salim, & Richtarik,
2020; Kovalev, Koloskova, Jaggi, Richtarik, & Stich, 2021; Marfoq, Xu, Neglia, & Vidal,
2020).
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In the corporate sector, large companies are recognizing the potential of federated learning for
data-driven decision-making. Besides Google, Apple implemented this technology since iOS 13
for improvements in the QuickType keyboard and voice recognition for "Hey Siri" (Paulik et al.,
2021). Additionally, federated learning is spreading its influence into several other sectors. In the
financial industry, companies like WeBank are using it to detect money laundering operations (Liu,
Kang, Xing, Chen, & Yang, 2020). The healthcare sector is also exploring its benefits: feder-
ated learning is being used to improve the understanding and treatment of complex diseases like
breast cancer (du Terrail et al., 2021) and predicting clinical outcomes in patients with COVID-19
(specifically, to predict the future oxygen requirements and the need for mechanical ventilation
treatment at 24h using data from 20 institutes across the globe) (Dayan et al., 2021).

1.2 A Typical Federated Learning System

In this section, we discuss the typical cross-device federated learning system introduced
in McMahan et al. (2017). This system comprises several end-devices—denoted as clients—
with limited computational capacity and slow internet connections, collaborating in a client-server
architecture where mobiles communicate solely with the server.

1.2.1 Problem Formulation

The canonical federated learning formulation (McMahan et al., 2017; Reddi et al., 2021) involves
a set of clients N = {1, . . . , N}, each client i equipped with a dataset Di consisting of |Di|
samples, collaboratively learning the parameters w ∈ Rd of a global machine learning model (for
instance, the weights of a neural network architecture). Orchestrated by a central server, these
clients cooperate to minimize the global objective:

min
w∈Rd

F (w) ≜
N∑

i=1
αiFi(w),

N∑
i=1

αi = 1, (1.2)

where Fi(w) : Rd → R denotes the local objective function at client i, that typically takes the
form of an empirical risk minimization (ERM) objective function:

Fi(w) ≜ 1
|Di|

∑
zi∈Di

f(w, zi), (1.3)

and f(w, zi) is the loss induced by model w on data sample zi ∈ Di.

Note that αi is the relative weight of client i and its choice affects the definition of the global
objective F (w) in Eq. (1.2). Typical choices are:

• Equal weights to all clients, i.e., αi = 1
N , ∀i, also denoted as “per-client fairness” criterion;

• Weights proportional to the client’s number of samples, i.e., αi = |Di|
|D| , whereD = ∪N

i=1Di,
also known as “per-sample fairness” criterion.
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Remark 1.2.1 (Equivalence of Problems (1.1) and (1.2) under “per-sample fairness” criterion).
When αi = |Di|/|D|, the global objective F (w) in Eq. (1.2) could be rewritten as follows:

F (w) =
N∑

i=1

|Di|
|D|

Fi(w) =
N∑

i=1

|Di|
|D|
× 1
|Di|

∑
zi∈Di

f(w, zi) = 1
|D|

N∑
i=1

∑
zi∈Di

f(w, zi). (1.4)

Setting αi = |Di|/|D| makes the objective function F (w) in Eq. (1.2) equivalent to the ERM
objective function in Eq. (1.1) that one would optimize centrally if we constructed a central training
dataset from the union of their local datasets (D = ∪N

i=1Di).

Compared to the centralized training, we highlight unique properties of Eqs. (1.2) and (1.3):

• Imbalanced and heterogeneous data. The local datasets Di’s can have varied distributions
and sizes. As a consequence, the local objectives Fi(w)’s can be different. For example,
they may have arbitrarily different local minima. Some assumptions on the local distribu-
tions are needed for federated learning to be possible, i.e., for each client to be able to take
benefit of the data at other clients.

• Communication and data privacy constraints. The local datasets Di cannot be shared with
the server or across clients. Therefore, the local objective function Fi or its gradient ∇Fi

can only be computed at the i-th client level, and later communicated to the server.

• Partial and heterogeneous client availability. In cross-device FL, the number of devices N
can be potentially large. At any given time, only a subset (typically fewer than 1%) of clients
are available to connect with the server and participate in the training. Therefore, the server
cannot always compute the global objective F or its gradient∇F because it only has access
to a random subset S ⊆ N of participating clients in each communication round. However,
the objective function F (w) can be employed as a mathematical object in the analysis of
federated learning systems, or even approximated numerically in simulations as part of an
empirical evaluation procedure (we will do this in Chapter 2).

1.2.2 A Typical Federated Learning Algorithm: FedAvg

A typical algorithm to solve Problem (1.2) is Federated Averaging (FedAvg) (McMahan et al.,
2017). FedAvg (Algorithm 1) is an iterative algorithm that divides the training process into
T > 0 communication rounds. At the beginning of the t-th communication round, only a subset
of clients S(t) ⊆ N meeting eligibility rules participates. Specifically, for mobile phones, a
device is typically considered eligible if it is currently plugged in, connected to an unmetered
WiFi network, and idle, as detailed in (Kairouz et al., 2021, Section 1.1.2). Then, the server
broadcasts the current model w(t) to the participating clients S(t) (Line 4). Upon receiving model
w(t), each client i ∈ S(t) locally updates the model, usually through a finite number of local
stochastic gradient descent (SGD) steps, using its local dataset Di (Line 6). Afterwards, the client
sends-back its updated local model w

(t,K)
i to the server (Line 7). Finally, the server aggregates

the local updated models w
(t,K)
i from all participating clients i ∈ S(t) in order to produce a new

global model w(t+1) (Line 8).

The FedAvg algorithm can be extended to a versatile framework known as FedOpt (Reddi et al.,
2021) (Algorithm 2), which grants the algorithm designer the flexibility to modify the client local
update rule, the aggregation method, and the server global update rule. FedOpt maintains the
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Algorithm 1: FedAvg (Federated Averaging McMahan et al. (2017))

1 Input: client datasets {Di}; communication rounds T ; local iterations K; learning rate η
2 server randomly initializes w(1)

3 for global communication round t = 1, . . . , T do
4 server broadcasts w(t) to the participating clients S(t)

5 for participating client i ∈ S(t), in parallel do
6 w

(t,K)
i ← ClientUpdate(w(t), Di,K, η)

7 client sends w
(t,K)
i to the server

8 server aggregates w(t+1) =
∑

i∈S(t)
|Di|
|D| w

(t,K)
i

9 return w(t+1)

10 Procedure ClientUpdate(w(t), Di,K, η)

11 client initializes w
(t,0)
i ← w(t)

12 for local iteration k = 0, . . . ,K − 1 do
13 client samples batch B(t,k)

i ∼ Di

14 client computes w
(t,k+1)
i ← w

(t,k)
i − ηc∇Fi(w(t,k)

i ,B(t,k)
i )

15 return w
(t,K)
i

same core structure as FedAvg, but it incorporates two key distinctions. Firstly, each participating
client i ∈ S(t) communicates the local model update ∆(t)

i ≜ (w(t,K)
i − w(t)) to the server, as

opposed to sending the model w
(t,K)
i itself (Line 7). Secondly, the server aggregates the client

model updates {∆(t)
i }i∈S(t) into a global model update, denoted as ∆(t) (Line 8). Thirdly, the

server leverages the negative of the global update, −∆(t) , as a pseudo-gradient and applies it to
the global model, rather than directly aggregating the models (see Line 9).‡

Remark 1.2.2 (The global update ∆(t) can be considered as a global pseudo-gradient).
When ClientUpdate() and ServerUpdate() are chosen to be Stochastic Gradient De-
scent (SGD) and Aggregate() is the average operator, the negative of the global update ∆(t)

can be rewritten in the form of a global pseudo-gradient:

∆(t) = 1
|S(t)|

∑
i∈S(t)

(
w

(t,K)
i −w(t)

)
= − 1
|S(t)|

∑
i∈S(t)

K−1∑
k=0
∇Fi(w(t,k)

i ,B(t,k)
i ), (1.5)

where by global pseudo-gradient we mean the average gradient computed by the participating
clients in S(t) averaged over the local iterations K.

FedOpt is a widely used framework for describing and analyzing federated training processes, as
illustrated in a recent survey by J. Wang et al. (2021).

‡The FedAvg algorithm (McMahan et al., 2017, Algorithm 1) can be derived by configuring ClientUpdate()
and ServerUpdate() as Stochastic Gradient Descent (SGD) with a fixed server learning rate of ηs = 1.0.
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Algorithm 2: FedOpt (Federated Optimization Reddi et al. (2021))

1 Input: client datasets {Di}; global rounds T ; local iterations K; client and server
learning rates ηc and ηs; ClientUpdate(); ServerUpdate(); Aggregate()

2 server randomly initializes w(1)

3 for global communication round t = 1, . . . , T do
4 server broadcasts w(t) to the participating clients S(t)

5 for participating client i ∈ S(t), in parallel do
6 w

(t,K)
i ← ClientUpdate(w(t), Di,K, ηc)

7 client computes model update ∆(t)
i ≜ (w(t,K)

i −w(t)) and sends it to the server
8 server aggregates clients’ updates: ∆(t) ← Aggregate({∆(t)

i }i∈S(t) , . . .)

9 server updates global model: w(t+1) ← ServerUpdate(w(t),−∆(t), ηs)

10 return w(t+1)

1.3 Client Heterogeneity in Federated Learning

In this section, we examine client heterogeneity, a unique challenge that distinguishes federated
learning from typical centralized model training. We focus on statistical and system heterogeneity
as fundamental challenges of this thesis. This section explores the current methodologies for
tackling these issues, and highlights the novel contributions provided by this manuscript to handle
them.

1.3.1 Statistical Heterogeneity

In federated learning, client-generated data reflect diverse behaviors and preferences, often result-
ing in datasets that are not representative of the overall population distribution. This statistical
heterogeneity, coupled with the uneven distribution of data points among devices, makes the data
not identically distributed (non-IID). Statistical heterogeneity provides a dual challenge.

On the one hand, high statistical heterogeneity challenges the learning of a shared model suited for
all clients. In fact, as observed in (Marfoq, Neglia, Bellet, Kameni, & Vidal, 2021), in presence of
large statistical heterogeneity a global model may perform arbitrarily poorly for some clients.

On the other hand, statistical heterogeneity slows down the convergence of federated learning al-
gorithms like FedAvg. While multiple local updates by each client are crucial for communication
efficiency, these local iterations can negatively affect the training process, as, in presence of sta-
tistical heterogeneity, local client models progressively diverge towards client-specific local mini-
mizers (Karimireddy et al., 2020; X. Li, Huang, Yang, Wang, & Zhang, 2020; Reddi et al., 2021;
T. Li, Sahu, Zaheer, et al., 2020). To address this issue, the SCAFFOLD algorithm (Karimireddy
et al., 2020) employs control variates to correct for the client drift in local updates. The FedProx
algorithm (T. Li, Sahu, Zaheer, et al., 2020) enhances the stability of federated optimization by
adding a proximal term to the local objectives. Both algorithms account for statistical heterogene-
ity.

While this manuscript does not specifically address the problem of statistical heterogeneity, our
analyses of federated learning algorithms always deal with statistical heterogeneity and its effects
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on convergence. Throughout this thesis, following common approaches (X. Li et al., 2020; T. Li,
Sahu, Zaheer, et al., 2020; J. Wang, Liu, Liang, Joshi, & Poor, 2020; J. Wang et al., 2021; Karim-
ireddy et al., 2020; Jhunjhunwala, Sharma, Nagarkatti, & Joshi, 2022), we use two equivalent
measures of statistical heterogeneity: Γ and σ2

g .

Definition 1.3.1 (Measure of Statistical Heterogeneity: Γ). Following prior work (X. Li et al.,
2020), the measure

Γ ≜ F ∗ −
N∑

i=1
αiF

∗
i ≥ 0 (1.6)

defines statistical heterogeneity among clients’ local datasets in terms of the difference between
the optimum of the global objective and the average of the local optima across all clients.

Definition 1.3.2 (Measure of Statistical Heterogeneity: σ2
g ). Following previous works (T. Li,

Sahu, Zaheer, et al., 2020; J. Wang et al., 2020, 2021; Karimireddy et al., 2020; Jhunjhunwala et
al., 2022), the measure

σ2
g ≜

N∑
i=1

αi ∥∇Fi(w∗)−∇F (w∗)∥2 ≥ 0 (1.7)

defines statistical heterogeneity among clients’ local datasets in terms of the variability of local
and global gradients.

Remark 1.3.1 (Equivalence of Heterogeneity Measures Γ and σ2
g ). Under the assumption of L-

smoothness and µ-strong convexity of local objectives, the two measures of heterogeneity—Γ and
σ2

g—are equivalent as shown by the following relationships:

Γ ≜
N∑

i=1
αi [Fi(w∗)− F ∗

i ] ≤ 1
2µ

N∑
i=1

αi ∥∇Fi(w∗)−∇F (w∗)∥2 ≤
σ2

g

2µ, (1.8)

and

σ2
g ≜

N∑
i=1

αi ∥∇Fi(w∗)∥2 ≤ 2L
N∑

i=1
αi [Fi(w∗)− F ∗

i ] ≤ 2LΓ. (1.9)

In Eq. (1.8), the first inequality follows from the Polyak-Lojasiewicz inequality and the second
inequality uses Definition 1.3.2. In Eq. (1.9), the first inequality leverages the L-smoothness
assumption and the second inequality uses Definition 1.3.1.

In both Eqs. (1.6) and (1.7), when the local datasets are identical among clients, the local func-
tions Fi coincide among them and with F ; w∗ is a minimizer of each local function, and
Γ = σ2

g = 0. Generally, smaller values Γ and σ2
g reflect more similar local data distributions

and consequently a lower amount of statistical heterogeneity among clients.

1.3.2 System Heterogeneity

Clients in federated learning exhibit a varied range of characteristics, with differences in storage
capacity, processing resources, and communication capabilities. These disparities originate from
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variations in hardware specifications (CPU power, memory capacity), network connectivity types
(3G, 4G, 5G, WiFi), and power availability (battery levels) (Verbraeken et al., 2020; Kairouz et
al., 2021; Ludwig & Baracaldo, 2022). In this section, we highlight the challenges associated
with system heterogeneity across three distinct scenarios: heterogeneity in client participation, in
network resources, and in hardware configurations.

1.3.2.1 Heterogeneous Client Availability

Systems constraints influence the clients’ availability and activity in the cross-device setting.
Client participation is limited by a variety of factors beyond the server control. These include
different hardware resources, where CPU and memory usage may be shared among concurrent
runtime processes, network constraints such as bandwidth limitations and packet losses, and power
availability, with clients often willing to participate in model training only while charging to pre-
vent battery drain (Bonawitz et al., 2019; J. Wang et al., 2021; H. Yang, Zhang, Khanduri, &
Liu, 2022; Verbraeken et al., 2020; Kairouz et al., 2021; Ludwig & Baracaldo, 2022). Despite
these evidences, a large portion of prior works assumes partial yet homogeneous client partici-
pation, neglecting the influence of such heterogeneity on the convergence of federated learning
algorithms (X. Li et al., 2020; Karimireddy et al., 2020; T. Li, Sahu, Zaheer, et al., 2020; H. Yang,
Fang, & Liu, 2020; Fraboni, Vidal, Kameni, & Lorenzi, 2021; W. Chen, Horváth, & Richtárik,
2022; Rizk, Vlaski, & Sayed, 2022; Cho et al., 2023). We identify and illustrate three main
problems caused by heterogeneous client participation.

Biased global model. Heterogeneous participation can introduce statistical bias in the global
model, favoring clients who participate more frequently. Intuitively, when certain clients par-
ticipate more than others, the global model may disproportionately represent their local objec-
tives, while disadvantaging clients who participate less. All our contributions, in line with other
works (Tan et al., 2022; W. Chen et al., 2022; S. Wang & Ji, 2022; Ribero, Vikalo, & de Veciana,
2023; S. Wang & Ji, 2024), address this problem and, under different assumptions on the clients’
participation, propose aggregation strategies that unbias the global update through an appropriate
aggregation procedure (Algorithm 2, Line 8).

Correlated client availability. The devices eligibility criteria can correlate the client participa-
tion patterns over time and among clients. Temporal correlation can result from a smartphone
that is charged for a few consecutive hours and then unavailable for the rest of the day. Spatial
correlation refers instead to correlated participation dynamics among clients, which often arises
from users’ diverse geographical distribution. For example, clients in the same time zone often
exhibit similar participation patterns, e.g., due to time-of-day effects. These temporal and spa-
tial correlations negatively affect the convergence of federated learning algorithms, introducing
problems such as catastrophic forgetting (Goodfellow, Mirza, Xiao, Courville, & Bengio, 2015;
Kemker, McClure, Abitino, Hayes, & Kanan, 2018). However, most of the prior work disregarded
the temporal and spatial correlations in the clients’ availability patterns. We dedicate Chapter 2
to the analysis of a FedAvg-like algorithm under heterogeneous and correlated client availability.
Our work leads to the design of the first Correlation-Aware FL algorithm: CA-Fed.

Variance in model performance. Even if the potential bias is addressed, partial and heteroge-
neous client participation exacerbates the variability of the learning process. Specifically, the large
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weights assigned to the less participating client amplify variations in the magnitude of client up-
dates, leading to increased variance in the learned model and slower convergence. Recent works
on global variance reduction leverage, in each communication round, stale model updates for non-
participating clients (Gu, Huang, Zhang, & Huang, 2021; H. Yang et al., 2022; Jhunjhunwala et
al., 2022; Yan et al., 2024). However, their analysis is limited to homogeneous client participa-
tion. With varying client participation, global variance reduction methods must face the challenge
of aggregating updates of varying staleness, a complex issue that remains unsolved. We explore
this problem in Chapter 3, and design the first Staleness-Aware FL algorithm: FedStale.

Definition 1.3.3. Throughout this manuscript, following previous works (S. Wang & Ji, 2022,
2024), we model client participation heterogeneity through the participation probability:

pi ≜ ES(t)

[
P(i ∈ S(t))

]
. (1.10)

These probabilities indicate how frequently each client is expected to participate in training and
can generally vary among clients.

1.3.2.2 Heterogeneous Network Resources

Cross-device FL applications commonly involve models exchanged on wireless networks, which
suffer from transmission losses. The performance of FL algorithms can be severely affected by
lossy communication channels, which can exhibit varied characteristics among clients (e.g., path
loss, multi-path fading, scattering, interference) (Eriş, Kantarci, & Oktug, 2021; Chandrasekaran
et al., 2022; H. H. Yang, Liu, Quek, & Poor, 2020; Ye, Liang, & Li, 2022; Baccarelli, Scarpiniti,
Momenzadeh, & Sarv Ahrabi, 2022; M. Chen et al., 2021). Methods like automatic repeat request
and forward error correction (Wen, Li, Zeng, Ren, & Huang, 2019; M. Chen et al., 2021; Su,
Zhou, Cui, & Liu, 2023) are inadequate in this context: first, packet losses can be unavoidable
because out from the server’s control; second, targeting high transmission reliability in FL-oriented
applications may be sub-optimal as it demands longer training time and resource use. As a result,
FL algorithms must deal with packet losses. Chapter 4 considers this scenario, where the losses can
be in downlink, uplink, or both, and proposes an Unbiased Pseudo-Gradient Aggregation-based
Packet Loss-aware FL algorithm: UPGA-PL.

Further network considerations. Federated learning faces challenges due to communication
cost, which can hinder the scaling of distributed optimization algorithms. This has led to the de-
velopment of compression schemes to reduce communication overhead (Haddadpour, Kamani,
Mokhtari, & Mahdavi, 2021; Beznosikov, Horváth, Richtárik, & Safaryan, 2023; Philippenko &
Dieuleveut, 2021; Koloskova, Stich, & Jaggi, 2019). However, these system characteristics also
exacerbate challenges like straggler effect and fault tolerance. Techniques to mitigate stragglers
include asynchronous communication (Lian, Zhang, Zhang, & Liu, 2018), importance client sam-
pling (W. Chen et al., 2022), and dynamic backup workers (Xu, Neglia, & Sebastianelli, 2021).

1.3.2.3 Heterogeneous Hardware Environments

In FL environments with highly heterogeneous hardware (such as smartphones, IoT devices, edge
computing servers, and the cloud), every client would ideally learn a different model architecture,
suited to its capabilities. Yet, FedAvg-based algorithms train and deploy the same model architec-
ture among the network nodes. Recent algorithms have been designed enabling federated training
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of models of different sizes. Federated distillation (Lin, Kong, Stich, & Jaggi, 2020) leverages
the server to distill knowledge across a limited number of models, but requires access to a public
dataset representative of the data distribution among clients. Alternative approaches are sub-model
training (Horvath et al., 2021; Diao, Ding, & Tarokh, 2020), early exit networks (Nawar, Falavi-
gna, & Brutti, 2023), or a combination of these techniques (Ilhan, Su, & Liu, 2023)—which entail
collaboratively training models that share a subset of parameters. On the other hand, at infer-
ence time, Cooperative Inference Systems (CISs) (Salem, Castellano, Neglia, Pianese, & Araldo,
2023; Ren et al., 2023) enable less-performing devices to offload parts of their inference tasks to
more powerful devices within the network, and therefore leverage their larger models to increase
performance. However, current research mainly focuses on model placement optimization inside
the network (E. Li, Zeng, Zhou, & Chen, 2019; Zeng, Li, Zhou, & Chen, 2019), and little effort
has being done on improving training strategies for learning these models. Chapter 5 proposes a
more systematic approach to FL heterogeneous models training in networks, taking into consider-
ation the importance of each model at inference time, and introduces the first Inference-Aware FL
algorithm: Fed-CIS.

1.4 Other Challenges

This section presents an overview of other challenges in federated learning beyond client het-
erogeneity and highlights ongoing efforts to address them, based on recent surveys T. Li, Sahu,
Talwalkar, and Smith (2020); Kairouz et al. (2021); J. Wang et al. (2021). While addressing these
issues is crucial for the development of efficient frameworks, the discussed solutions are often
independent of the techniques proposed to mitigate client heterogeneity effects.

Personalization. Federated learning conventionally presupposes that all clients collaborate to
train a shared, global ML model (McMahan et al., 2017; Konečný et al., 2017; Mohri, Sivek, &
Suresh, 2019). However, as discussed in Section 1.3.1, the global model may not perform as well
for certain clients in the presence of large statistical heterogeneity (Sattler, Müller, & Samek, 2021;
Marfoq et al., 2021; Marfoq, Neglia, Vidal, & Kameni, 2022). Consider, for example, a language
modeling task: given the sequence of tokens “I live in,” the next word necessarily varies from one
client to another. Thus, in some FL applications, learning a personalized model for every client
might be necessary. On the other hand, when clients have little training data, the opposite extreme
of training a local model for each client might also perform poorly. The limits of both purely local
and global models raise a fundamental question: what is the best trade-off between personalization
and federation, and how can this balance be achieved? FL literature provided several algorithms
that compromise between the extremes of purely global and local training paradigms. Sattler et al.
(2021); Mansour, Mohri, Ro, and Suresh (2020); Y. Deng, Kamani, and Mahdavi (2020a) group
clients in clusters and train a FL model for each cluster. Collins et al. (Collins, Hassani, Mokhtari,
& Shakkottai, 2021) examine this problem assuming that clients share a global feature represen-
tation. Even, Massoulié, and Scaman (2022); S. Ding and Wang (2022) introduce a personalized
federated learning algorithm that identifies similarity in clients data. These approaches leverage
prior knowledge regarding some measure of distance between local data distributions, tough to
obtain due to client data confidentiality. In Chapters 2, 3 and 5, we address the training of purely
global ML models. In Chapter 5, we focus on personalized model architectures for different
clients, motivated by system heterogeneity (Section 1.3.2).
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Fairness. Algorithmic fairness (Kearns & Roth, 2019; Pessach & Shmueli, 2022) is a research
field that aims to mitigate the unintended effects of ML models on individuals or sensitive groups
(e.g., ethnicities, genders, and religions). It is crucial to produce models that ensure fair perfor-
mance beyond the average accuracy measure and maintain an adequate quality of service for all
clients. Fairness issues may be exacerbated in federated learning due to statistical and system
heterogeneity (Sections 1.3.1 and 1.3.2). Defining a notion of fairness is tough. By targeting
uniformity of model performance distribution, some works propose min-max optimization to opti-
mize model performance under worst-case data distributions (Hashimoto, Srivastava, Namkoong,
& Liang, 2018; Y. Deng, Kamani, & Mahdavi, 2020b; Mohri et al., 2019), while others propose
alternative objectives to the one in Eq. (1.2) that reweight local losses less aggressively (e.g., a
hybrid between the “per-client” and “per-sample” fairness critera discussed in Section 1.2.1), al-
lowing for a more flexible tradeoff between accuracy and fairness (Zhang, Li, Robles-Kelly, &
Kankanhalli, 2020). Client selection algorithms, including our correlation-aware FL algorithm
CA-Fed (Chapter 2, Algorithm 7), can mitigate unfairness and participation bias by selecting
representative devices, which could produce more informative model updates and speed up con-
vergence (W. Chen et al., 2022; Cho, Wang, & Joshi, 2020; Y. Deng et al., 2020b). However,
finding the underlying data distributions among clients may be prohibitively expensive. Addition-
ally, FL algorithms must be fair to hardware heterogeneity by guaranteeing adequate performance
for “less performing” and “less participating” clients, particularly in cross-device environments
where fairness concerns are prominent. Our CA-Fed carefully handles the participation of the
“less avaiable” and “higly correlated” clients, targeting an overall greater accuracy for all clients.
We discuss CA-Fed’s fairness in Appendix A. There are still several open problems for fairness
in FL, such as understanding the connections between current FL fairness notions and studying
the interactions between fairness and other objectives like personalization and privacy.

Robustness and Privacy. Machine learning is vulnerable to attacks and failures, including data
distribution shifts, adversarial examples, and data poisoning (Athalye, Carlini, & Wagner, 2018).
Federated learning, where millions of client devices participate in the training process, exposes
the global model to new vulnerabilities (Kairouz et al., 2021). Robustness and privacy are crucial
for the trustworthy, practical deployment of federated learning. Adversaries may target decreas-
ing global accuracy or altering model behavior on a minority of clients. They may also act as
eavesdroppers, attempting to obtain sensitive information about clients by simply querying the
final model (Baruch, Baruch, & Goldberg, 2019). Known vulnerabilities include model inver-
sion and membership inference attacks, which target the extraction of sensitive information about
individual data contributors (Nasr, Shokri, & Houmansadr, 2019). Attacks are not always the re-
sult of explicit adversaries, but might originate from malfunctioning or excessively heterogeneous
clients. In this context, statistical heterogeneity (Section 1.3.1) poses significant challenges, as it
is hard to distinguish a client with unique data from an expert attacker. Defenses mechanisms are
typically statistical-based. Differential privacy provides a mathematical foundation for tracking
and limiting information leakage throughout federated learning communication rounds. Robust
aggregation (Pillutla, Kakade, & Harchaoui, 2022) is used to mitigate the effect of corrupt client
updates (e.g., by measuring gradient dissimilarities). As federated learning evolves, robustness
and privacy challenges continue to be key research topics, to protect user data while leveraging
decentralized machine learning advantages (Kairouz et al., 2021; J. Wang et al., 2021).
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Trade-off between Personalization, Fairness, Robustness and Privacy. The balance between
personalization, fairness, robustness, and privacy is crucial. Personalization targets ML models
that perform best for individual clients, while differential privacy compromises performance to
prevent the model from retaining client information. Fairness ensures the model performs well for
clients with data distributions not aligned with the average population, while robustness prevents
these clients from impacting the system’s behavior. These constraints can potentially conflict,
making future research an interesting area to optimize this delicate equilibrium.

1.5 Summary of the Thesis Contributions

Acknowledging the challenges presented in Sections 1.3 and 1.4, this section clarifies the main
contributions of this thesis in addressing client heterogeneity.

Contribution #1. Heterogeneous and Correlated Client Availability

Problem: Heterogeneous Client Availability; Correlated Client Availability (Section 1.3.2.1)

Research Gap: Previous work examined the impact of temporal correlation in the data sampling
process both in centralized (Sun, Sun, & Yin, 2018; Doan, Nguyen, Pham, & Romberg, 2020a,
2020b) and distributed (Doan, 2020) settings, studying a variant of stochastic gradient descent
where samples are drawn according to a Markov chain. In contrast, our work does not assume a
correlation in the data sampling process but rather in the clients’ availability. The heterogeneous
client availability in federated learning, due to network and resource constraints, can bias the
learning process.

Main Contribution:

• We formalize the optimization-bias trade-off induced by heterogeneous client participation
by decomposing the convergence error into an optimization error (related to convergence
speed) and a bias error (indicative of model quality). By minimizing the optimization er-
ror, we show that allocating larger aggregation weights to the “more participating” clients
accelerates convergence.

• We explore the impact of temporal and spatial correlation on client availability, the former
due to correlated client activity across time and the latter due to clients’ correlated geo-
graphic distributions. By modeling client availability as a finite-state Markov chain, we
prove that correlation has a detrimental effect on convergence. Specifically, it slows the
convergence rate to within a logarithmic factor of the corresponding bound observed for
independent client availability; this logarithmic factor is naturally related to the geometric
mixing time of the Markov chain. We also find that lower aggregation weights for “highly
correlated” clients accelerate convergence.

• We finally present the first Correlation-Aware FL algorithm, CA-Fed, to optimize the bias-
variance trade-off and thus obtain faster convergence. CA-Fed dynamically adjusts the
aggregation weight allocated to each client and selectively excludes clients with high tem-
poral correlation and low availability. Experimental evaluations on varied datasets confirm
the effectiveness of CA-Fed compared to state-of-the-art approaches.

Publications:
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• Angelo Rodio, Francescomaria Faticanti, Othmane Marfoq, Giovanni Neglia, and Emilio
Leonardi. “Federated Learning under Heterogeneous and Correlated Client Availabil-
ity”. In: IEEE INFOCOM 2023 - IEEE Conference on Computer Communications.
2023, pp. 1–10. DOI: 10.1109/INFOCOM53939.2023.10228876. Online: https://
ieeexplore.ieee.org/document/10228876

• Angelo Rodio, Francescomaria Faticanti, Othmane Marfoq, Giovanni Neglia, and Emilio
Leonardi. “Federated Learning under Heterogeneous and Correlated Client Availability”.
In: IEEE/ACM Transactions on Networking. 2023, vol. 32, no. 2, pp. 1451-1460.
DOI: 10.1109/TNET.2023.3324257. Online: https://ieeexplore.ieee.org/
document/10292582. Supplementary material: https://ieeexplore.ieee
.org/ielx7/90/10505042/10292582/supp1-3324257.pdf?arnumber=
10292582

Contribution #2. Leveraging Stale Updates for Non-Participating Clients

Problem: Heterogeneous Client Participation; Variance in Model Performance (Section 1.3.2.1)

Research Gap: Variance reduction methods that leverage stale model updates from non-
participating clients, like FedVARP, are often expected to outperform simpler algorithms like
FedAvg under heterogeneous client participation (Jhunjhunwala et al., 2022; S. Wang & Ji,
2024), yet theoretical support is limited to the homogeneous participation setting (Jhunjhunwala
et al., 2022, Theorem 2), and empirical results lack definitive conclusions (S. Wang & Ji, 2024,
Table 5). Under heterogeneous client participation, global variance reduction methods, including
FedVARP, aggregate updates of varying staleness—a problem still unexplored.

Main Contributions:

• We analytically and experimentally reject the belief that FedVARP consistently outperforms
FedAvg, suggesting that leveraging stale updates can be beneficial or detrimental depend-
ing on client data and participation heterogeneity.

• We propose the first Staleness-Aware FL algorithm, FedStale, that updates the global
model using a convex, unbiased combination of fresh and stale updates, parameterized by
a weight β. FedStale spans from FedAvg (β = 0, only fresh updates) to FedVARP
(β = 1, equal weighting of fresh and stale updates). We provide guidelines for tuning the
parameter β to match specific data and participation heterogeneity conditions.

• We evaluate FedAvg, FedVARP, and FedStale across various client data and partici-
pation heterogeneity levels, finding that FedStale outperforms both alternatives in most
settings.

Publications:

• Angelo Rodio and Giovanni Neglia. “FedStale: leveraging Stale Clients Updates in
Federated Learning.” arXiv preprint. 2024. Online: https://arxiv.org/abs/
2405.04171

• Angelo Rodio. “The mupliple facets of Variance Reduction in Federated Learning”. To
appear in: ACM SIGMETRICS Performance Evaluation Review. 2024.

https://ieeexplore.ieee.org/document/10228876
https://ieeexplore.ieee.org/document/10228876
https://ieeexplore.ieee.org/document/10292582
https://ieeexplore.ieee.org/document/10292582
https://ieeexplore.ieee.org/ielx7/90/10505042/10292582/supp1-3324257.pdf?arnumber=10292582
https://ieeexplore.ieee.org/ielx7/90/10505042/10292582/supp1-3324257.pdf?arnumber=10292582
https://ieeexplore.ieee.org/ielx7/90/10505042/10292582/supp1-3324257.pdf?arnumber=10292582
https://arxiv.org/abs/2405.04171
https://arxiv.org/abs/2405.04171
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Contribution #3. Federated Learning in Lossy Communication Channels

Problem: Heterogeneous Network Resources (Section 1.3.2.2)

Research Gap: Prior work has studied the convergence of FL algorithms under various channel
assumptions (H. H. Yang et al., 2020; Ye et al., 2022; Baccarelli et al., 2022; M. Chen et al., 2021).
Directly aggregating client models shared on wireless networks led to a non-vanishing error due to
lossy channels, preventing convergence to the optimal model (M. Chen et al., 2021). To mitigate
this error and control packet losses, strategies such as increasing transmission power, allocating
more radio resource blocks, and implementing retransmission or error correction techniques have
been proposed. losses (M. Chen et al., 2021; Wen et al., 2019; Su et al., 2023).

Main Contribution:

• Challenging standard mitigation strategies for packet losses, we verify that FL algorithms
in heterogeneous, asymmetric lossy channels can achieve performance comparable to ideal,
lossless environments in both theory and practice.

• Our Packet-Losses Aware FL algorithm, UPGA-PL, differs from FedAvg (Algorithm 1) by
incorporating a pseudo-gradient step in place of direct model averaging and adjusting the
aggregation weights to account for heterogeneous lossy channels.

• Empirical results indicate that UPGA-PL, under lossy channels, matches the ideal, lossless
performance within a limited number of additional communication rounds.

Publication:

• Angelo Rodio, Giovanni Neglia, Fabio Busacca, Stefano Mangione, Sergio Palazzo,
Francesco Restuccia, and Ilenia Tinnirello. “Federated Learning with Packet Losses.”
In: IEEE 2023 26th International Symposium on Wireless Personal Multimedia Commu-
nications (WPMC). 2023, pp. 1-6. DOI: 10.1109/WPMC59531.2023.10338845. Online:
https://ieeexplore.ieee.org/document/10338845

Contribution #4. Cooperative Inference Systems: The Case of Early Exit Networks

Problem: Heterogeneous Hardware Environments (Section 1.3.2.3)

Research Gap: The literature on joint training of ML models of various sizes remains under-
studied, and existing training algorithms overlook how these models will be used at inference
time (Horvath et al., 2021; Diao et al., 2020; Nawar et al., 2023). Additionally, research on Col-
laborative Inference Systems (CISs) often assumes that these models are pre-trained, focusing
instead on optimizing their placement within the network (Salem et al., 2023; Ren et al., 2023).

Main Contributions:

• We reformulate the FL problem (Eq. 1.2) taking into account the inference requests for
each sub-model inside the CIS. During training, we allocate larger weights to the models
expected to handle a larger volume of inference requests.

• We present the first Inference-Aware FL algorithm, Fed-CIS, that enables computation-
ally stronger clients to help weaker ones during training based on predefined probabilities.

https://ieeexplore.ieee.org/document/10338845
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Analyzing Fed-CIS’s convergence, we identify a trade-off between generalization, bias,
and optimization errors, and we provide practical algorithmic configuration guidelines.§

• Experimental results show our algorithm outperforms state-of-the-art methods in scenarios
with heterogeneous inference request rates or data availability among clients.

Publication:

• Caelin Kaplan, Angelo Rodio, Tareq Si Salem, Chuan Xu and Giovanni Neglia. “Federated
Learning for Cooperative Inference Systems: The Case of Early Exit Networks.” arXiv
preprint. 2024. Online: https://arxiv.org/abs/2405.04249

1.6 Publications

Published

• Angelo Rodio, Francescomaria Faticanti, Othmane Marfoq, Giovanni Neglia, and Emilio
Leonardi. “Federated Learning under Heterogeneous and Correlated Client Availabil-
ity”. In: IEEE INFOCOM 2023 - IEEE Conference on Computer Communications.
2023, pp. 1–10. DOI: 10.1109/INFOCOM53939.2023.10228876. Online: https://
ieeexplore.ieee.org/document/10228876

• Angelo Rodio, Francescomaria Faticanti, Othmane Marfoq, Giovanni Neglia, and Emilio
Leonardi. “Federated Learning under Heterogeneous and Correlated Client Availability”.
In: IEEE/ACM Transactions on Networking. 2023, vol. 32, no. 2, pp. 1451-1460.
DOI: 10.1109/TNET.2023.3324257. Online: https://ieeexplore.ieee.org/
document/10292582. Supplementary material: https://ieeexplore.ieee
.org/ielx7/90/10505042/10292582/supp1-3324257.pdf?arnumber=
10292582

• Angelo Rodio, Giovanni Neglia, Fabio Busacca, Stefano Mangione, Sergio Palazzo,
Francesco Restuccia, and Ilenia Tinnirello. “Federated Learning with Packet Losses.”
In: IEEE 2023 26th International Symposium on Wireless Personal Multimedia Commu-
nications (WPMC). 2023, pp. 1-6. DOI: 10.1109/WPMC59531.2023.10338845. Online:
https://ieeexplore.ieee.org/document/10338845

• Angelo Rodio. “The mupliple facets of Variance Reduction in Federated Learning”. To
appear in: ACM SIGMETRICS Performance Evaluation Review. 2024.

Submitted

• Angelo Rodio and Giovanni Neglia. “FedStale: leveraging Stale Clients Updates in
Federated Learning.” arXiv preprint. 2024. Online: https://arxiv.org/abs/
2405.04171

• Caelin Kaplan, Angelo Rodio, Tareq Si Salem, Chuan Xu and Giovanni Neglia. “Federated
Learning for Cooperative Inference Systems: The Case of Early Exit Networks.” arXiv
preprint. 2024. Online: https://arxiv.org/abs/2405.04249

§The author’s contribution was primarily focused on the convergence analysis.

https://arxiv.org/abs/2405.04249
https://ieeexplore.ieee.org/document/10228876
https://ieeexplore.ieee.org/document/10228876
https://ieeexplore.ieee.org/document/10292582
https://ieeexplore.ieee.org/document/10292582
https://ieeexplore.ieee.org/ielx7/90/10505042/10292582/supp1-3324257.pdf?arnumber=10292582
https://ieeexplore.ieee.org/ielx7/90/10505042/10292582/supp1-3324257.pdf?arnumber=10292582
https://ieeexplore.ieee.org/ielx7/90/10505042/10292582/supp1-3324257.pdf?arnumber=10292582
https://ieeexplore.ieee.org/document/10338845
https://arxiv.org/abs/2405.04171
https://arxiv.org/abs/2405.04171
https://arxiv.org/abs/2405.04249
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1.7 Thesis Outline

The remainder of this thesis is structured as follows. Chapters 2 and 3 examine the variance-
bias trade-off that arises from heterogeneous client participation in federated learning. Chapter 2
identifies correlated client participation as a primary source of variance and introduces the first
correlation-aware FL algorithm, CA-Fed, to address this problem. Chapter 3 shifts focus away
from correlation to explore other variance reduction strategies: FedStale is our staleness-aware
FL algorithm that leverages stale model updates for non-participating clients. Chapter 4 considers
network heterogeneity by investigating the impact of clients’ diverse communication channel char-
acteristics in wireless networks. Finally, Chapter 5 tackles hardware heterogeneity and presents
our Fed-CIS algorithm to train multiple models with varying architectural complexities. The
concluding chapter includes the author’s comments on interesting problems encountered during
this thesis and outlines potential research directions for future work.



CHAPTER 2
Heterogeneous and

Correlated Client
Participation

This chapter is based on our works Rodio, Faticanti, Marfoq, Neglia, and Leonardi (2023a), pub-
lished in IEEE Conference on Computer Communications (IEEE INFOCOM 2023), and Rodio,
Faticanti, Marfoq, Neglia, and Leonardi (2023b), in IEEE/ACM Transactions on Networking.

2.1 Motivation

As observed in Chapter 1 (particularly in Section 1.3.2.1), the availability of clients in feder-
ated learning can be dictated by external circumstances that are outside the control of the orches-
trating server and hard to predict. For instance, only smartphones that are idle, under charge,
and connected to broadband networks are commonly allowed to participate in the training pro-
cess (McMahan et al., 2017; Bonawitz et al., 2019). These eligibility requirements can make the
availability of devices correlated over time and space (Eichner et al., 2019; Y. Ding et al., 2020;
Zhu et al., 2021; Doan, 2020).

• Temporal correlation may origin, for example, from a smartphone being under charge for
a few consecutive hours and then ineligible for the rest of the day. Similarly, the activity
of a sensor powered by renewable energy may depend on natural phenomena intrinsically
correlated over time (e.g., solar light).

• Spatial correlation refers instead to correlation across different clients, which often emerges
as consequence of users’ different geographical distribution. For instance, clients in the
same time zone often exhibit similar availability patterns, e.g., due to time-of-day effects.

Temporal correlation in the data sampling procedure is known to negatively affect the performance
of ML training even in the centralized setting (Doan et al., 2020a; Sun et al., 2018) and can po-
tentially lead to catastrophic forgetting: the data used during the final training phases can have
a disproportionate effect on the final model, “erasing” the memory of previously learned infor-
mation (McCloskey & Cohen, 1989; Kirkpatrick et al., 2017). Catastrophic forgetting has also
been observed in FL, where clients in the same geographical area have more similar local data
distributions and clients’ availability follows a cyclic daily pattern (leading also to spatial corre-
lation) (Eichner et al., 2019; Y. Ding et al., 2020; Zhu et al., 2021; Tang et al., 2022). Despite

19
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this evidence, a theoretical study of the convergence of FL algorithms under both temporally and
spatially correlated client availability is still missing.

This chapter presents the first convergence analysis of FedAvg (McMahan et al., 2017) under het-
erogeneous and correlated client availability. We assume that the clients’ availability follows an
arbitrary finite-state Markov chain, modeling both temporal and spatial correlation while maintain-
ing analytical tractability. Our theoretical analysis provides valuable insights by (i) quantitatively
measuring the negative impact of correlation on the algorithm’s convergence rate through a novel
additional term that depends on the spectral properties of the Markov chain, and (ii) highlight-
ing an important trade-off between two conflicting objectives: slow convergence to the optimal
model and fast convergence to a biased model that minimizes a different objective function from
the initial target. To leverage this trade-off, we propose CA-Fed, an algorithm which achieves
an optimal balance between maximizing convergence speed and minimizing model bias through
dynamic adjustment of aggregation weights assigned to clients. Depending on their contribution
to the learning process, CA-Fed can decide to exclude clients exhibiting low availability and high
temporal correlation. Our experimental results demonstrate that excluding such clients is a sim-
ple, but effective approach to handle the heterogeneous and correlated client availability in FL.
Across synthetic and real datasets, CA-Fed consistently outperforms the state-of-the-art methods
F3AST (Ribero et al., 2023) and AdaFed (Tan et al., 2022) in terms of test accuracy. These results
underscore the importance of optimizing the training process to leverage available client resources
effectively and mitigate the impact of less available and correlated clients, a task successfully
accomplished by CA-Fed.

The remainder of this chapter is organized as follows. Section 2.2 introduces the problem of corre-
lated client availability in FL and discusses the main related works. Section 2.3 provides a conver-
gence analysis of FedAvg under heterogeneous and correlated client availability. CA-Fed, our
correlation-aware FL algorithm, is presented in Section 2.4. We evaluate CA-Fed in Section 2.5,
comparing it with state-of-the-art methods on synthetic and real-world data. Section 2.6 concludes
the chapter. Appendix A provides detailed proofs and further discussions on CA-Fed.

2.2 Problem Description and Background

This chapter considers a similar optimization problem to the one presented in Chapter 1, Sec-
tion 1.2.1. However, we constrain the search for the parameter vector w within the parameter
space W ⊆ Rd:

min
w∈W ⊆Rd

[
F (w) ≜

N∑
i=1

αiFi(w)
]
. (2.1)

We recall that the coefficients α = (αi)i∈N are positive numbers satisfying the condition∑N
i=1 αi = 1. They represent the target importance that the central server assigns to each client i.

Under proper assumptions, precised in Section 2.3, Problem (2.1) admits a unique solution. We use
w∗ (respectively F ∗) to denote the minimizer (respectively the minimum value) of F . Moreover,
for i ∈ N , Fi admits a unique minimizer. We use w∗

i (respectively F ∗
i ) to denote the minimizer

(respectively the minimum value) of Fi.
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As observed in Chapter 1, Problem (2.1) is commonly solved through iterative algo-
rithms (McMahan et al., 2017; J. Wang et al., 2021) requiring multiple communication rounds
between the server and the clients. Here, we consider the FedOpt algorithm (Section 1.2.2,
Algorithm 2) redefining the ClientUpdate(), Aggregate() and ServerUpdate()
procedures as follows:

• Client i ∈ S(t) updates the global model with its local data through K ≥ 1 steps of local
Stochastic Gradient Descent (SGD):

w
(t,k+1)
i = w

(t,k)
i − ηc∇Fi(w(t,k)

i ,B(t,k)
i ) k = 0, . . . ,K − 1, (2.2)

where ηc > 0 is an appropriately chosen learning rate, referred to as local learning
rate; B(t,k)

i is a random batch sampled from client-i’s local dataset at round t and step
k; ∇Fi(·,B) ≜ 1

|B|
∑

z∈B∇f(·, z) is an unbiased estimator of the local gradient∇Fi.

• The server computes ∆(t) ≜
∑

i∈S(t) qi · ∆(t)
i , a weighted average of the clients’ local

updates with non-negative aggregation weights q = (qi)i∈N . The choice of the aggregation
weights defines an aggregation strategy (we will discuss different aggregation strategies
later).

• The aggregated update ∆(t) can be interpreted as a proxy for −∇F (w(t,0)); the server
applies it to the global model:

w(t+1,0) = ProjW (w(t,0) + ηs ·∆(t)), (2.3)

where ProjW (·) denotes the projection over the set W , and ηs > 0 is an appropriately
chosen learning rate, referred to as the server learning rate.∗

The aggregate update ∆(t) is generally a biased estimator of the pseudo-gradient −∇F (w(t,0)),
to which each client i contributes proportionally to its frequency of appearance in the set S(t) and
its aggregation weight qi. More specifically, under proper assumptions specified in Section 2.3,
we will prove in Theorem 2.3.3 that the update rule described by Eqs. (2.2) and (2.3) converges
to the unique minimizer of a biased global objective FB . This objective function depends both on
the clients’ participation (i.e., on the sequence (S(t))t>0) and on the aggregation strategy (i.e., on
q = (qi)i∈N ):

FB(w) ≜
N∑

k=1
piFi(w), with pi ≜

πiqi∑N
h=1 πhqh

, (2.4)

where πi represents the asymptotic participation of client i, defined as πi ≜ limt→+∞ P(i ∈ S(t)).
We denote π = (πi)i∈N . Moreover, the coefficients p = (pi)i∈N in Eq. (2.4) can be interpreted
as the biased importance the server is giving to each client i during training, in general different
from the target importance α. In what follows, w∗

B (respectively F ∗
B) denotes the minimizer

(respectively the minimum value) of FB .
∗The aggregation rule (2.3) has been considered also in other works, e.g., (Nichol, Achiam, & Schulman, 2018;

Reddi et al., 2021; J. Wang et al., 2021). In other FL algorithms, e.g. FedAvg (Algorithm 1), the server computes an
average of clients’ local models. This aggregation rule can be obtained with minor changes to Eq. (2.3).
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In some large-scale FL applications, like training Google keyboard next-word prediction models,
each client participates in training at most for one round. The orchestrator usually selects a few
hundred clients at each round for a few thousand rounds (e.g., see Kairouz et al. (2021, Table 2)),
but the available set of clients may include hundreds of millions of Android devices. In this
scenario, it is difficult to address the potential bias unless there is some a-priori information about
each client’s availability. Anyway, FL can be used by service providers with access to a much
smaller set of clients (e.g., smartphone users that have installed a specific app). In this case,
a client participates multiple times in training: the orchestrating server may keep track of each
client’s availability and try to compensate for the potentially dangerous heterogeneity in their
availability.

Much previous effort on federated learning (McMahan et al., 2017; X. Li et al., 2020; T. Li,
Sahu, Zaheer, et al., 2020; W. Chen et al., 2022; Fraboni et al., 2021; Tang et al., 2022; Tan et
al., 2022; Ribero et al., 2023) considered this problem and, under different assumptions on the
clients’ availability (i.e., on (S(t))t>0), designed aggregation strategies that unbias ∆(t) through
an appropriate choice of q. Reference X. Li et al. (2020) provides the first analysis of FedAvg
on non-iid data under partial client availability. Their analysis covers both the case when available
clients are sampled uniformly at random without replacement from N and assigned aggregation
weights equal to their target importance (as assumed in McMahan et al. (2017)), and the case when
available clients are sampled iid with replacement fromN with probabilities α and assigned equal
weights (as assumed in T. Li, Sahu, Zaheer, et al. (2020)). However, references (McMahan et al.,
2017; X. Li et al., 2020; T. Li, Sahu, Zaheer, et al., 2020) do not address the variance induced
by the clients stochastic availability. The authors of W. Chen et al. (2022) reduce such variance
by considering only the clients with important updates, as measured by the value of their norm.
References Tang et al. (2022) and Fraboni et al. (2021) reduce the aggregation variance through
clustered and soft-clustered sampling, respectively.

Some recent works (Tan et al., 2022; Ribero et al., 2023; Jee Cho, Wang, & Joshi, 2022) do
not actively pursue the optimization of the unbiased objective. Instead, they derive bounds for
the convergence error and propose heuristics to minimize those bounds, potentially introducing
some bias. Our work follows a similar development: we compare our algorithm with F3AST
from Ribero et al. (2023) and AdaFed from Tan et al. (2022).

The novelty of our study is in considering the spatial and temporal correlation in clients’ availabil-
ity dynamics. As discussed in the introduction, such correlations are also introduced by clients’
eligibility criteria, e.g., smartphones being under charge and connected to broadband networks.
The effect of correlation has been ignored until now, probably due to the additional complexity in
studying FL algorithms’ convergence. To the best of our knowledge, the only exception is Ribero
et al. (2023), which scratches the issue of spatial correlation by proposing two different algorithms
for the case when clients’ availabilities are uncorrelated and for the case when they are positively
correlated (there is no smooth transition from one algorithm to the other as a function of the degree
of correlation).

The effect of temporal correlation on centralized stochastic gradient methods has been addressed
in Sun et al. (2018); Doan et al. (2020a, 2020b); Doan (2020): these works study a variant
of stochastic gradient descent where samples are drawn according to a Markov chain. Refer-
ence Doan (2020) extends its analysis to a FL setting where each client draws samples according
to a Markov chain. In contrast, our work does not assume a correlation in the data sampling but
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rather in the client’s availability. Nevertheless, some of our proof techniques are similar to those
used in this line of work and, in particular, we rely on some results in Sun et al. (2018).

2.3 Convergence Analysis under Markov Availability Assumption

We consider a time-slotted system where a slot corresponds to a single FL communication round.
We assume that clients’ availability over the timeslots t ∈ N follows a discrete-time Markov chain
(S(t))t≥0.†

Assumption 1. The Markov chain (S(t))t≥0 on the M -finite state spaceM is time-homogeneous,
irreducible, and aperiodic. It has transition matrix P , stationary distribution ρ, and has state
distribution ρ at time t = 0.

Markov chains have already been used in the literature to model the dynamics of stochas-
tic networks where some nodes or edges in the graph can switch between active and inactive
states (Meyers & Yang, 2021; Olle, Yuval, & Jeffrey, 1997). The previous Markovian assump-
tion, while allowing a great degree of flexibility, still guarantees the analytical tractability of the
system. The distance dynamics between the current and the stationary distributions of the Markov
process can be characterized in terms of the spectral properties of its transition matrix P (Levin &
Peres, 2017). Let λ̄2(P ) denote the the second largest module of the eigenvalues of P . Previous
work (Sun et al., 2018) has shown that:

max
i,j∈[M ]

∣∣∣[P t]i,j − ρj

∣∣∣ ≤ CP · λ(P )t, for t ≥ TP , (2.5)

where the parameters λ(P ) ≜ (λ̄2(P ) + 1)/2, CP , and TP are positive constants whose val-
ues are defined in (Sun et al., 2018, Lemma 1) and reported for completeness in Appendix B.B,
Lemma B.16.‡ Note that λ(P ) quantifies the correlation of the Markov process (S(t))t≥0: the
closer λ(P ) is to one, the slower the Markov chain converges to its stationary distribution.

In our analysis, we make the following additional assumptions.

Assumption 2. The hypothesis class W is convex and compact with diameter diam(W ), and
contains the minimizers w∗,w∗

B,w
∗
i in its interior.

The following assumptions concern clients’ local objective functions {Fi}i∈N . Assumptions 3
and 4 are standard in the literature on convex optimization (Bottou, Curtis, & Nocedal, 2018,
Sections 4.1, 4.2). Assumption 5 is a standard hypothesis in the analysis of federated optimization
algorithms (J. Wang et al., 2021, Section 6.1).

Assumption 3 (L-smoothness). The local functions {Fi}Ni=1 have L-Lipschitz continuous gradi-
ents: Fi(v) ≤ Fi(w) + ⟨∇Fi(w),v −w⟩+ L

2 ∥v −w∥22, ∀v,w ∈W .

Assumption 4 (Strong convexity). The local functions {Fi}Ni=1 are µ-strongly convex: Fi(v) ≥
Fi(w) + ⟨∇Fi(w),v −w⟩+ µ

2 ∥v −w∥22 , ∀v,w ∈W .

†In Section 2.3.3.1 we will focus on the case where this chain is the superposition of N independent Markov chains,
one for each client.

‡Note that (2.5) holds for different definitions of λ(P ) as long as λ(P ) ∈ (λ̄2(P ), 1). The specific choice for λ(P )
changes the values of CP and TP .
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Assumption 5 (Bounded variance). The variance of stochastic gradients in each device is
bounded: EB∥∇Fi(w,B)−∇Fi(w)∥2 ≤ σ2

i , i = 1, . . . , N .

Assumptions 2–5 imply the following properties for the local functions, described by Lemma 2.3.1
(proof in Appendix B).

Lemma 2.3.1. Under Assumptions 2–5, there exist constants D, G, and H > 0, such that, for all
w ∈W and i ∈ N , we have:

∥∇Fi(w)∥ ≤ D, (2.6)

EB∥∇Fi(w,B)∥2 ≤ G2, (2.7)

|Fi(w)− Fi(w∗
B)| ≤ H. (2.8)

Similarly to other works (X. Li et al., 2020; T. Li, Sahu, Zaheer, et al., 2020; J. Wang et al., 2020,
2021), we introduce a metric to quantify the heterogeneity of clients’ local datasets, typically
referred to as statistical heterogeneity:

Γ ≜ max
i∈N
{Fi(w∗)− F ∗

i }. (2.9)

If the local datasets are identical, the local functions {Fi}i∈N coincide among them and with F ,
w∗ is a minimizer of each local function, and Γ = 0. In general, Γ is smaller the closer the
distributions the local datasets are drawn from.

2.3.1 Optimization-Bias Error Decomposition

Theorem 2.3.2 (Decomposing the total error). Let κ ≜ L/µ. Under Assumptions 2–4, the opti-
mization error of the target global objective ϵ = F (w)− F ∗ can be bounded as follows:

ϵ ≤ 2κ2(FB(w)− F ∗
B︸ ︷︷ ︸

≜ϵopt

+F (w∗
B)− F ∗︸ ︷︷ ︸
≜ϵbias

). (2.10)

Moreover, let χ2
α∥p ≜

∑N
i=1 (αi − pi)2/pi. Then:

ϵbias ≤ κ2 · χ2
α∥p · Γ︸ ︷︷ ︸
≜ϵ̄bias

. (2.11)

Theorem 2.3.2 (proof in Appendix A) decomposes the error of the target objective (ϵ) as the sum of
an optimization error for the biased objective (ϵopt) and a bias error (ϵbias). The term ϵopt, evaluated
on the trajectory determined by scheme (2.3), quantifies the optimization error associated with the
biased objective FB and asymptotically vanishes (see Theorem 2.3.3 below). The non-vanishing
bias error ϵbias captures the discrepancy between F (w∗

B) and F ∗. This term is bounded by the
chi-square divergence χ2

α∥p between the target and biased probability distributions α = (αi)i∈N
and p = (pi)i∈N , and by Γ, that quantifies the degree of heterogeneity of the local functions.
When all local functions are identical (Γ = 0), the bias term ϵbias also vanishes. For Γ > 0, the
bias error can still be controlled by the aggregation weights assigned to the devices. In particular,
the bias term vanishes when qi ∝ αi/πi, ∀i ∈ N . Since it asymptotically cancels the bias error,
we refer to this choice as unbiased aggregation strategy.
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However, in practice, FL training is limited to a finite number of iterations T (typically a few
hundreds (Eichner et al., 2019; Kairouz et al., 2021)), and the previous asymptotic considerations
may not apply. In this regime, the unbiased aggregation strategy can be sub-optimal, since the
minimization of ϵbias not necessarily leads to the minimization of the total error ϵ ≤ 2κ2(ϵopt +
ϵbias). This motivates the analysis of the optimization error ϵopt.

2.3.2 Convergence of the Optimization Error ϵopt

Theorem 2.3.3 (Convergence of the optimization error ϵopt). Let Assumptions 1–5 hold and the
constants M,L,D,G,H,Γ, σi, CP , TP , and λ(P ) defined above. Let Q ≜

∑
i∈N qi. We require

a diminishing step-size η(t)
c > 0 satisfying:

η1 ≤
1

2L(1 + 2KQ) ,
+∞∑
t=1

η(t)
c = +∞,

+∞∑
t=1

ln(t) ·
(
η(t)

c

)2
< +∞. (2.12)

Let T denote the total communication rounds. For T ≥ TP , the expected optimization error can
be bounded as follows:

E
[
FB(w̄(T,0))− F ∗

B

]
≤

1
2 q⊺Σq+υ

π⊺q + ψ + ϕ
ln(1/λ(P ))∑T

t=1 η
(t)
c

,︸ ︷︷ ︸
≜ϵ̄opt

(2.13)

where w̄(T,0) ≜
∑T

t=1 η
(t)
c w(t,0)∑T

t=1 η
(t)
c

, and

Σ ≜diag
(

2(K + 1)πiσ
2
i

+∞∑
t=1

(
η(t)

c

)2
)
, (2.14)

υ ≜
2
K

diam(W )2 + 1
4MQ

+∞∑
t=1

((
η(t)

c

)2
+ 1
t2

)
, (2.15)

ψ ≜
(
4L(1 +KQ)Γ + 2K2G2

)+∞∑
t=1

(
η(t)

c

)2
+H

TP −1∑
t=1

η(t)
c

 , (2.16)

J (t) ≜min
{

max
{⌈ ln (2CPHt)

ln (1/λ(P ))

⌉
, TP

}
, t

}
, (2.17)

ϕ ≜ 2KDGQ
+∞∑
t=1

ln(2CPHt)
(
η(t−J (t))

)2
. (2.18)

Theorem 2.3.3 (proof in Appendix B) proves convergence of the expected biased objective FB

to its minimum F ∗
B under correlated client availability. Our bound (2.13) captures the effect of

correlation through the factor ln (1/λ(P )): a high correlation worsens the convergence rate. In
particular, we found that the numerator of (2.13) has a quadratic-over-linear fractional dependence
on q. Minimizing ϵ̄opt leads, in general, to a different choice of q than minimizing ϵ̄bias.
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2.3.3 Minimizing the total error ϵ ≤ 2κ2(ϵ̄opt + ϵ̄bias)

Our analysis points out a trade-off between minimizing ϵ̄opt or ϵ̄bias. Our goal is to find the optimal
aggregation weights q∗ that minimize the upper bound on total error ϵ(q) in (2.10):

minimize
q

ϵ̄opt(q) + ϵ̄bias(q);

subject to q ≥ 0,
∥q∥1 = Q.

(2.19)

In Appendix D we prove that (2.19) is a convex optimization problem, which can be solved with
the method of Lagrange multipliers. However, its solution lacks practical utility because the con-
stants in (2.10) and (2.13) (e.g., L, µ, Γ, CP ) are in general problem-dependent and difficult to
estimate during training. In particular, Γ poses particular difficulties as it is defined in terms of the
minimizer of the target objective F , but the FL algorithm generally minimizes the biased func-
tion FB . Moreover, the bound in (2.10), as well as the bound in (J. Wang et al., 2020), diverges
when setting some qi values equal to 0, but this divergence is merely an artifact of the proof tech-
nique. For more practical considerations, we present the following result (proof in Appendix C):

Theorem 2.3.4 (An alternative bound on the bias error ϵbias). Under the same assumptions of
Theorem 2.3.2, define Γ′ ≜ maxi{Fi(w∗

B)− F ∗
i }. The following result holds:

ϵbias ≤ 4κ2 · d2
T V (α,p) · Γ′︸ ︷︷ ︸

≜ϵ̄′
bias

, (2.20)

where dT V (α,p) ≜ 1
2
∑N

i=1|αi− pi| is the total variation distance between the probability distri-
butions α and p.

The new constant Γ′ is defined in terms of w∗
B , and then it is easier to evaluate during training.

However, Γ′ depends on q, because it is evaluated at the point of minimum of FB . This depen-
dence makes the minimization of the right-hand side of (2.20) more challenging (for example, the
corresponding problem is not convex). We study the minimization of the two terms ϵ̄opt and ϵ̄′bias
separately and learn some insights, which we use to design the new FL algorithm CA-Fed.

2.3.3.1 Minimizing ϵ̄opt

The minimization of ϵ̄opt is still a convex optimization problem (Appendix E). In particular, at the
optimum, non-negative weights are set accordingly to q∗

i = a(ι∗πi − θ∗) with a and ι∗ positive
constants (Appendix E.B). It follows that clients with smaller availability get smaller weights in the
aggregation. In particular, this suggests that clients with the smallest availability can be excluded
from the aggregation, leading to the following guideline:

Guideline A: to accelerate convergence, we can exclude clients with low availability πi by setting
q∗

i = 0.

This guideline can be justified intuitively: updates from clients with low availability may be too
sporadic to allow the FL algorithm to keep track of their local objectives. Their updates act as a
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noise slowing down the algorithm’s convergence. It may then be advantageous to exclude these
clients.

We observe that the choice of the aggregation weights q does not affect the clients’ availability
process and, in particular, λ(P ). However, if the algorithm excludes some clients, it is possible
to consider the state space of the Markov chain that only specifies the availability state of the
remaining clients, and this Markov chain may have different spectral properties. For the sake of
concreteness, unless otherwise specified, we consider from now on the particular case when the
availability of each client i evolves according to a Markov chain (S(t)

i )t≥0 with transition probabil-
ity matrix Pi and these Markov chains are all independent (Levin & Peres, 2017, Exercise 12.6).
In this case, the aggregate process is described by the product Markov chain (S(t))t≥0 with tran-
sition matrix P =

⊗
i∈N Pi and λ(P ) = maxi∈N λ(Pi), where Pi

⊗
Pj denotes the Kronecker

product between matrices Pi and Pj (Appendix F.B). In this setting, it is possible to redefine the
Markov chain (S(t))t≥0 by taking into account the reduced state space defined by the clients with
a non-null aggregation weight, i.e., P ′ =

⊗
i′∈N |qi′ >0 Pi′ and λ(P ′) = maxi′∈N |qi′ >0 λ(Pi′),

which is potentially smaller w.r.t. the case when all clients participate to the aggregation. These
considerations lead to the following guideline:

Guideline B: to accelerate convergence, we can exclude clients with high correlation (high λ(Pi))
by setting their q∗

i = 0.

Intuition also supports this guideline. Clients with large λ(Pi) tend to be available or unavailable
for long periods of time. Due to the well-known catastrophic forgetting problem affecting gradi-
ent methods (Goodfellow et al., 2015; Kemker et al., 2018), these clients may unfairly steer the
algorithm toward their local objective when they appear at the final stages of the training period.
Moreover, their participation in the early stages may be useless, as their contribution will be for-
gotten during their long absence. The FL algorithm may benefit from directly neglecting such
clients.

We observe that Guideline B strictly applies to this specific setting where clients’ dynamics are
independent (and there is no spatial correlation). We do not provide a corresponding guideline for
the case when clients are spatially correlated (we leave this task for future research). However,
in this more general setting, it is possible to ignore Guideline B but still draw on Guidelines A
and C, or still consider Guideline B if the spatially correlated clients can be grouped in clusters,
each cluster evolving as an independent Markov chain (see Section 2.5, Paragraph 2.5.2).

2.3.3.2 Minimizing ϵ̄′bias

The bias error ϵ̄′bias in (2.20) vanishes when the total variation distance between the target impor-
tance α and the biased importance p is zero, i.e., when qi ∝ αi/πi,∀i ∈ N . Then, after excluding
the clients that contribute the most to the optimization error and particularly slow down the con-
vergence (Guidelines A and B), we can assign to the remaining clients an aggregation weight
inversely proportional to their availability, such that the bias error ϵ̄′bias is minimized.

Guideline C: to minimize the bias error, we assign q∗
i ∝ αi/πi to the clients not excluded by the

previous guidelines.
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2.4 Proposed Correlation-Aware FL Algorithm: CA-Fed

Guidelines A and B in Section 2.3 suggest that minimizing ϵ̄opt can lead to the exclusion of some
available clients from the aggregation step (2.3), in particular those with low availability and/or
high correlation. For the remaining clients, Guideline C proposes setting their aggregation weight
inversely proportional to their availability to reduce the bias error ϵ̄′bias. Motivated by these insights,
we propose CA-Fed, a client aggregation strategy that considers the problem of correlated client
availability in FL, described in Algorithm 3. CA-Fed learns during training which clients to
exclude and how to set the aggregation weights of the remaining clients to achieve a good trade-
off between ϵ̄opt and ϵ̄′bias. While Guidelines A and B indicate which clients to remove, the exact
number of clients to remove at round t is identified by minimizing ϵ(t) as a proxy for the bounds
in (2.10) and (2.20):

ϵ(t) := FB(w(t,0))− F ∗
B︸ ︷︷ ︸

ϵopt

+ 4κ̄2 · d2
T V (α,p)Γ′︸ ︷︷ ︸

ϵ̄′
bias

, (2.21)

where κ̄2 ≥ 0 is a hyper-parameter that weights the relative importance of the optimization and
bias error (see Sec. 2.4.3).

Algorithm 3: CA-Fed (Correlation-Aware FL)

Input : w(0,0), α, q(0), {η(t)
c }Tt=1, ηs, K, κ̄2, β, τ

1 Initialize F̂ (0), F̂ ∗, Γ̂′(0), π̂(0), and λ̂(0);
2 for t = 1, . . . , T do
3 Receive set of active client S(t), loss vector F (t);
4 Update F̂ (t), Γ̂′(t), π̂(t), and λ̂(t);
5 Initialize q(t) = α

π̂(t) ;
6 q(t) ← ComputeWeights(q(t),α, F̂ (t), F̂ ∗, Γ̂′(t), π̂(t), λ̂(t));
7 q(t) ← ComputeWeights(q(t),α, F̂ (t), F̂ ∗, Γ̂′(t), π̂(t), 9π̂(t));

8 for client {i ∈ S(t); q(t)
i > 0}, in parallel do

9 for k = 0, . . . ,K − 1 do
10 w

(t,k+1)
i = w

(t,k)
i − η(t)

c ∇Fi(w(t,k)
i ,B(t,k)

i ) ;

11 ∆(t)
i ← w

(t,K)
i −w(t,0);

12 w(t+1,0) ← ProjW (w(t,0) + ηs
∑

i∈S(t) q
(t)
i ·∆

(t)
i );

13 Procedure ComputeWeights(q, α, F , F ∗, Γ, π, ρ):
14 Sort N by descending order in ρ;
15 ϵ̂← ⟨F − F ∗,π⊙̃q⟩+ 4κ̄2 · d2

T V (α,π⊙̃q)Γ;
16 for i ∈ N do
17 q+

i ← 0;
18 ϵ̂+ ← ⟨F − F ∗,π⊙̃q+⟩+ 4κ̄2 · d2

T V (α,π⊙̃q+)Γ;
19 if ϵ̂− ϵ̂+ ≥ τ then
20 ϵ̂← ϵ̂+;
21 q ← q+;
22 return q
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2.4.1 CA-Fed’s core steps

At each communication round t, the server sends the current model w(t,0) to all active clients
and each client i sends back a noisy estimate F (t)

i of the current loss computed on a batch of
samples B(t,0)

i , i.e., F (t)
i = 1

|B(t,0)
i |

∑
z∈B(t,0)

i

f(w(t,0), z) (line 3). The server uses these values and

the information about the current set of available clients S(t) to refine its own estimates of each
client’s loss (F̂ (t) = (F̂ (t)

i )i∈N ), and each client’s loss minimum value (F̂ ∗ = (F̂ ∗
i )i∈N ), as well

as of Γ′, πi, λ(Pi), and ϵ(t), denoted as Γ̂′(t), π̂(t)
i , λ̂(t)

i , and ϵ̂(t), respectively (possible estimators
are described below) (line 4).

The server decides whether excluding clients whose availability pattern exhibits high correlation
(high λ̂(t)

i ) (line 6). First, the server considers all clients in descending order of λ̂(t) (line 14),
and evaluates if, by excluding them (line 17), ϵ̂(t) appears to be decreasing by more than a thresh-
old τ ≥ 0 (line 19). Then, the server considers clients in ascending order of π̂(t), and repeats the
same procedure to possibly exclude some of the clients with low availability (low π̂

(t)
i ) (lines 7).

Once the participating clients (those with qi > 0) have been selected, the server notifies them
to proceed updating the current models (lines 9–10) according to (2.2), while the other available
clients stay idle. Finally, model’s updates are aggregated according to (2.3) (line 12).

2.4.2 Estimators

We now briefly discuss possible implementation of the estimators F̂ (t)
i , F̂ ∗

i , Γ̂′(t), π̂(t)
i , and λ̂(t)

i .
Server’s estimates for the clients’ local losses (F̂ (t) = (F̂ (t)

i )i∈N ) can be obtained from the re-
ceived active clients’ losses (F (t) = (F (t)

i )i∈S(t)) through an auto-regressive filter with parameter
β ∈ (0, 1]:

F̂ (t) = (1− β1S(t))⊙ F̂ (t−1) + β1S(t) ⊙ F (t), (2.22)

where⊙ denotes the component-wise multiplication between vectors, and 1S(t) is aN -dimensions
binary vector whose i-th component equals 1 if and only if client i is active at round t, i.e., i ∈ S(t).
The server can estimate client-i’s loss minimum value F ∗

i as F̂ ∗
i = mins∈[0,t] F̂

(s)
i . The values of

FB(w(t,0)), F ∗
B , Γ′, and ϵ(t) can be estimated as follows:

F̂
(t)
B − F̂

∗
B = ⟨F̂ (t) − F̂ ∗, π̂(t)⊙̃q(t)⟩, (2.23)

Γ̂′(t) = max
i∈N

(F̂ (t)
i − F̂

∗
i ), (2.24)

ϵ̂(t) = F̂
(t)
B − F̂

∗
B + 4κ̄2 · d2

T V (α, π̂(t)⊙̃q(t))Γ̂′(t). (2.25)

where π⊙̃q ∈ RN , such that (π⊙̃q)i := πiqi∑N

h=1 πhqh

, i ∈ N .

For π̂(t)
i , the server can simply keep track of the total number of times client i was available up to

time t and compute π̂(t)
i using a Bayesian estimator with beta prior, i.e., π̂(t)

i = (
∑

s≤t 1i∈S(s) +
ni)/(t+ ni +mi), where ni and mi are the initial parameters of the beta prior.

For λ̂(t)
i , the server can assume the client availability evolves according to a Markov chain with two

states (active and inactive), track the corresponding number of state transitions, and estimate the
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transition matrix P̂
(t)
i through a Bayesian estimator similarly to what done for π̂(t)

i . Finally, λ̂(t)
i

is obtained computing the eigenvalues of P̂
(t)
i .

2.4.3 The role of the hyper-parameter κ̄2

Theorems 2.3.2 and 2.3.4 suggest that the condition number κ2 has a significant impact on the
minimization of the total error ϵ. Our algorithm uses a proxy (ϵ(t)) for the total error (see (2.21)).
To account for the effect of κ2, we introduced the hyper-parameter κ̄2 ≥ 0, which weights the
relative importance of the optimization and bias error in (2.21). In practice, κ̄2 controls the number
of excluded clients by CA-Fed. A small value of κ̄2 penalizes the bias term in favor of the
optimization error, resulting in a larger number of excluded clients. Conversely, the bias term
dominates for large values of κ̄2, and CA-Fed tends to include more clients. Asymptotically, for
κ̄2 →∞, CA-Fed reduces to the unbiased aggregation strategy.

2.5 Experimental Evaluation

2.5.1 Experimental Setup

Federated system simulator In our experiments, we consider a population of N = 100 clients.
We model the activity of each client i ∈ N as a two-state homogeneous Markov process with state
space S = {“active”, “inactive”}, characterized by a transition matrix Pi, a stationary distribution
π(i), and a second largest absolute eigenvalue λ̄2(Pi) (see Appendix F.C for details). Our goal is
to simulate realistic dynamics of federated systems featuring varying levels of clients’ availability
and correlation. To introduce heterogeneity in clients’ availability patterns, we divide the popu-
lation in two equally-sized classes: the “more available” clients with a steady-state probability of
being active πi,active = 1/2 + g, and the “less available” clients with πi,active = 1/2 − g. Here,
the parameter g ∈ (0, 1/2) controls the degree of heterogeneity in clients’ availability. We fur-
thermore divide each class of clients in two equally-sized sub-classes: clients exhibiting a largely
correlated time behavior (in the following referred to as “correlated” clients) that tend to persist in
the same state for rather long periods (λi = ν with values of ν close to 1), and clients exhibiting
a weakly correlated time behavior (referred to as “weakly correlated” clients) that are almost as
likely to keep as to change their state at every t (λi ∼ N (0, ε2), with ε close to 0). We use g = 0.4,
ν = 0.9, and ε = 10−2.

Datasets and models We conduct experiments on the LEAF Synthetic dataset (Caldas et al.,
2019), a benchmark for multinomial classification tasks, and on the real-world MNIST (L. Deng,
2012) and CIFAR-10 (Krizhevsky & Hinton, 2009) datasets, respectively for handwritten digits
and image recognition tasks. To simulate the statistical heterogeneity present in the federated
learning system, we use common approaches in the literature. For the Synthetic dataset, we tune
the parameters (γ, δ), which control data heterogeneity among clients (X. Li et al., 2020). For
MNIST and CIFAR-10, we distribute samples from the same class across the clients according to
a symmetric Dirichlet distribution with parameter ς , following the same approach as (H. Wang,
Yurochkin, Sun, Papailiopoulos, & Khazaeni, 2020). Unless otherwise indicated, we set γ = δ =
ς = 0.5. We use the original training/test data split of MNIST and reserve 20% of the training
dataset as the validation dataset. For Synthetic and MNIST, we use a linear classifier with a ridge
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penalization of parameter 10−2, which corresponds to a strongly convex objective function. For
CIFAR-10, we use a neural network with two convolutional and one fully connected layers.

Benchmarks We compare CA-Fed, defined in Algorithm 3, with four baselines including two
state-of-the-art FL algorithms discussed in Section 2.2: 1) Unbiased, which aggregates the ac-
tive clients i ∈ S(t) with weights qi = αi/πi; 2) More available, which considers only
the “more available” clients and always excludes the “less available” ones; 3) AdaFed (Tan et
al., 2022), which, similarly to Unbiased, aggregates all active clients, but normalizes their ag-
gregation weights (i.e., it considers qi = αi/πi∑

i∈S(t) αi/πi
); 4) F3AST (Ribero et al., 2023), which,

oppositely to More available, favors the “less available” clients. For all algorithms, we tuned
the learning rates ηc, lr[s] via grid search. For CA-Fed, we use β = τ = 0. Unless otherwise
specified, we assume that the algorithms can access an oracle providing the true availability pa-
rameters for each client: in practice, all the algorithms rely on the exact knowledge of πi,active; in
addition, CA-Fed also receives λ(Pi). In Section 2.5.2, we will relax this assumption by con-
sidering the estimators π̂(t)

i and λ̂(t)
i . The code for our experimental framework is available at:

https://github.com/arodio/CA-Fed.

2.5.2 Experimental Results

CA-Fed vs. baselines Figure 2.1 compares the test accuracy achieved by CA-Fed (κ̄2 = 1)
and the baselines on the Synthetic (Fig. 2.1a), MNIST (Fig. 2.1b), and CIFAR-10 (Fig. 2.1c)
datasets over 10 different runs. Across all three datasets, CA-Fed consistently outperforms the
baselines, achieving higher test accuracy (+1.56 pp on Synthetic; +0.94 pp on MNIST; +1.32 pp on
CIFAR-10) compared to the second best performing method, AdaFed. These results demonstrate
that CA-Fed achieves the best balance between convergence speed and test accuracy. For deeper
insights into the algorithms’ behavior, Figure 2.1d illustrates the cumulative aggregation weights
{ 1

T

∑T
t=1 q

(t)
i }i∈N , representing the cumulative importance that the algorithms assigned to the

clients at the end of the training. In Figure 2.1d, we grouped the clients into three categories:
“more available”, “less available, weakly correlated”, and “less available, correlated”. By setting
the aggregation weights inversely proportional to the clients’ availabilities, Unbiased equalizes
the importance for all clients (see Fig. 2.1d), but achieves a slower convergence (as shown in
Figs. 2.1a, 2.1b, and 2.1c). On the contrary, by excluding all the “less available” clients, More
available achieves a faster convergence but introduces a non-vanishing bias error ϵbias, which,
in practice, leads to poor accuracy performance. The state-of-the-art algorithm AdaFed, similarly
to Unbiased, considers all the active clients, but normalizes their aggregation weights at each
communication round. As a result, similarly to CA-Fed, AdaFed indeed prioritizes the “more
available” clients (as shown in Fig. 2.1d), and then a convergence speed-up could be expected.
However, AdaFed does not exclude the “less available and correlated” clients, and therefore their
presence causes a convergence slowdown. Finally, F3AST favors the “less available, correlated”
clients and achieves a slower convergence with a non-vanishing bias error, which corresponds to
lower accuracy performance. By opportunely excluding some of the “less available and correlated”
clients, CA-Fed achieves the best test accuracy by the end of the training time.

Convergence speed vs. Bias error The trade-off between ϵopt or ϵbias discussed in Section 2.3
is visible in our experiments. In particular, Figure 2.2a compares the test accuracy achieved by

https://github.com/arodio/CA-Fed
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Figure 2.1: Average test accuracy among N = 100 clients achieved by the algorithms on the
Synthetic, MNIST, and CIFAR-10 datasets. Cumulative importance assigned by the algorithms to
the clients after T = 200 rounds on the Synthetic dataset.

More available, Unbiased, and CA-Fed on the Synthetic dataset for T = 500 commu-
nication rounds. As expected, by targeting the minimization of ϵopt and thus excluding the “less
available” clients, More available achieves the fastest convergence at the expense of a large
non-vanishing bias error ϵbias. On the other hand, by targeting the minimization of ϵbias and thus
equalizing the clients’ importance, Unbiased asymptotically removes this error and ultimately
achieves the highest test accuracy at communication round T = 500, but suffers from slower con-
vergence due to the presence of the “correlated” clients. Our algorithm, CA-Fed, leverages the
trade-off between convergence speed and model bias and achieves fast convergence to the neigh-
borhood of the target objective. To explore this trade-off, in Figure 2.2a, we varied the value of
the hyper-parameter κ̄2 in the range {10−2, 10−1, 100, 101, 102}. CA-Fed tends to exclude more
clients for low values of κ̄2 and achieves a similar convergence rate as More available for
κ̄2 = 10−2. For intermediate values of κ̄2, CA-Fed trades a small accuracy decrease for faster
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convergence (refer, for example, to the curves κ̄2 = 100, 101). For κ̄2 = 102, CA-Fed reduces
to Unbiased (their curves overlap in Fig. 2.2a). Moreover, we observe that the optimal value of
κ̄2 depends on the available time for training. Low values of κ̄2 speed-up convergence and then
they can be beneficial for short training durations (e.g., CA-Fed (κ̄ = 10−1) achieves a higher
test accuracy of +2.8 pp with respect to Unbiased at communication round t = 40). For longer
training periods, a larger value of κ̄2 may be preferable as it reduces the bias error and increases the
test accuracy (e.g., CA-Fed (κ̄ = 102) improves of +3.8 pp with respect to More available
at communication round t = 500). Figure 2.2b illustrates the optimal value of κ̄2 for different
durations of the training period T .

Effect of statistical heterogeneity The bias error bounds ϵ̄bias and ϵ̄′bias in Theorems 2.3.2
and 2.3.4 are influenced by the degree of heterogeneity among local functions, commonly known
as statistical heterogeneity, characterized by the constants Γ and Γ′ in (2.11) and (2.20), respec-
tively. To control statistical heterogeneity, we manipulate the dissimilarity among the clients’ local
datasets, specifically through the parameters γ and δ in the case of the Synthetic dataset, as ex-
plained in Section 2.5.1. Figure 2.3 illustrates the impact of γ and δ on the test accuracy achieved
by CA-Fed after T = 200 communication rounds on the Synthetic dataset. As expected, in the
extreme IID setting (when γ = δ = 0), Γ and Γ′ are small, and the bias error ϵbias is negligi-
ble. As a result, More available and CA-Fed (κ̄2 = 10−2) reach the highest test accuracy,
whereas CA-Fed (κ̄2 = 102) and Unbiased present slow convergence. Nevertheless, More
available and CA-Fed (κ̄2 = 10−2) perform poorly as the statistical heterogeneity increases
(i.e., γ = δ ≥ 0.25). In the extreme non-IID setting (when γ = δ = 1), Γ and Γ′ are large,
and ϵbias dominates. In this case, CA-Fed (κ̄2 = 102) and Unbiased should be preferred. For
γ = δ = {0.25, 0.5, 0.75}, CA-Fed (with κ̄2 = 1 or κ̄2 = 10) achieves the highest test accuracy
(+1.6 pp, +1.2 pp, and +1.0 pp with respect to Unbiased).

Estimation of the clients’ availability and correlation In this experiment, CA-Fed utilizes
estimators π̂(t)

i and λ̂(t)
i to estimate the clients’ πi and λi values. We employ a Bayesian estimator

with a beta prior to estimate P̂
(t)
i , which we generate by observing the evolution of the Markov

chain defined by Pi over t′ time-steps. We compute π̂(t)
i and λ̂

(t)
i analytically, following the

methodology explained in Section 2.4.2 and described in detail in Appendix F.C. Figure 2.4a
shows the estimation errors 1

N

∑
i∈N |π̂

(t)
i −πi| and 1

N

∑
i∈N |λ̂

(t)
i −λi| as a function of the number

of historical observations t′. As expected, both errors decrease with an increasing number of
observations, and the estimation error for λi is larger than that for πi. Furthermore, Figure 2.4b
compares the final test accuracy obtained by CA-Fed and the baselines for varying numbers of
historical observations t′ ∈ {101, 101.5, 102, 102.5, 103, 103.5, 104} when training for T = 50
rounds on the MNIST dataset. In this setting, CA-Fed outperforms the baselines for t′ ≥ 100.
This value is reasonable, because estimating λi requires a number of observations comparable to
the expected hitting time for the slowest Markov chain, which is given by maxi∈N

1
(1−λi)πi

= 100.

CA-Fed with Spatial Correlation Although CA-Fed is primarily designed to handle temporal
correlation (as discussed in Section 2.3.3.1), we also evaluate its performance in the presence of
spatial correlation. In the considered spatially correlated scenario, clients are grouped into clus-
ters, and each cluster c ∈ C is characterized by an underlying Markov chain that determines when
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Figure 2.2: Convergence speed vs. Model bias trade-off for different values of κ̄2 on the Synthetic
dataset, for γ = δ = 0.5.
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Figure 2.5: Clients’ activities and CA-Fed’s inclusion/exclusion decisions in the presence of
spatial correlation for different degrees of intra-cluster/inter-cluster data distributions. Average
test accuracy after T = 100 rounds on the MNIST dataset.
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all clients in the cluster are available or unavailable. The Markov chains of different clusters are in-
dependent. Let λc denote the second-largest eigenvalue in magnitude of cluster c’s Markov chain.
To reduce the eigenvalue of the aggregate Markov chain, CA-Fed needs to exclude all clients in
the cluster c̄ = arg maxc∈C λc. In this experiment, we consider a population of N = 100 clients
grouped into |C| = 10 clusters. We equally split the clients, or equivalently, the clusters, into two
categories: “more available” with πc = 0.9 and λc = 0 for c = 0, . . . , 4, and “less available,
correlated” with πc = 0.1 and λc = c/10 for c = 5, . . . , 9. In Figures 2.5a, 2.5b, and 2.5c, each
pixel represents, for each client i ∈ N and for each communication round, the client’s activity (ac-
tive/inactive) and CA-Fed’s decision (included/excluded in training). From the experiments, we
observe that CA-Fed’s decisions depend on the degree of statistical heterogeneity among clients
within a cluster (i.e., intra-cluster) and among clusters (i.e., inter-cluster). When both the intra-
cluster and inter-cluster clients’ data distributions are homogeneous, CA-Fed starts considering
the clients in cluster c̄ = 9 with λc̄ = 0.9, and sequentially excludes, in order, all clients from
clusters {9, 8, 7, 6} (as shown in Fig. 2.5a). When the clients’ data distributions are homogeneous
within clusters, but heterogeneous among clusters (Fig. 2.5b), CA-Fed still excludes all clients
from clusters c = {9, 7, 6}, but decides to include clients from cluster c = 8. This is because these
clients happen to have a lower value of F̂ (t)

i − F̂ ∗
i , and despite having a large λc, CA-Fed decides

to include them. Finally, when both the intra-cluster and inter-cluster clients’ data distributions are
heterogeneous (Fig. 2.5c), CA-Fed can partially include clients from the more correlated clusters,
even though their λc is large. Figure 2.5d compares the test accuracy achieved by CA-Fed and the
baselines with spatial correlation in the same setting as in Figure 2.5c. The experimental results
show that CA-Fed can operate correctly in the presence of spatial correlation and still outperforms
the baselines (+0.6 pp w.r.t. AdaFed).

2.6 Conclusion

This chapter presents the first convergence analysis of a FedAvg-like federated learning algo-
rithm in presence of heterogeneous and correlated client availability. The analysis reveals the
detrimental effect of correlation on the convergence rate and highlights a fundamental trade-off
between convergence speed and model bias. To navigate this tradeoff, we introduce CA-Fed,
a novel FL algorithm, which adaptively manages the conflicting aims of enhancing convergence
speed and reducing model bias, with the ultimate objective of maximizing model quality within
the constraints of the training time available. CA-Fed achieves this goal by dynamically exclud-
ing clients who exhibit high temporal correlation and limited availability, contingent on their data
distributions. Indeed, model updates from such clients may act as noise, increasing variance and
slowing down the algorithm’s convergence. CA-Fed disregards such clients unless their local
datasets notably enhance the quality of the final model. The experimental results validate the ef-
fectiveness of our strategy, demonstrating that CA-Fed is a versatile and resilient FL algorithm,
well-suited to address real-world scenarios characterized by heterogeneous and correlated client
availability. Further discussions on the computation and communication costs, and fairness of
CA-Fed can be found in Appendix A.



CHAPTER 3
Variance Reduction:

leveraging Stale Updates
for Non-Participating

Clients
This chapter is based on our works Rodio (2024), accepted for presentation in the ACM Student
Research Competition (ACM SRC 2024) and forthcoming in the proceedings of ACM Sigmetrics
IFIP Performance 2024, and Rodio and Neglia (2024), currently under peer review and available
as a preprint at https://arxiv.org/abs/2405.04171.

3.1 Motivation

In Chapters 1 and 2, we extensively discussed the bias-variance trade-off that emerges from hetero-
geneous client participation. We observed how such heterogeneity risks biasing the global model
in favor of the “more participating” clients (Chapter 2, Eq. (2.4)). To eliminate this bias, we re-
viewed previous literature (S. Wang & Ji, 2022, 2024) and contributed (Theorems 2.3.2 and 2.3.4)
to propose an unbiased version of FedAvg, where client updates are scaled inversely to their
participation frequency. However, such strategies, while removing bias, exacerbate the variabil-
ity of the learning process. Specifically, the unbiased scaling process amplifies variations in the
magnitude of client updates, leading to increased variance in the model and slower convergence.

Given these challenges, Chapter 2 focused on the impact of correlation in client participation—a
factor previously unexplored—and introduced CA-Fed (Algorithm 7), which adaptively handles
participation of the “less available” and “highly correlated” clients to better balance the bias-
variance trade-off. In this chapter, we set aside the problem of correlation to explore other strate-
gies that navigate the complexities of this trade-off.

To this purpose, global variance reduction methods (Gu et al., 2021; H. Yang et al., 2022; Jhun-
jhunwala et al., 2022; Yan et al., 2024) propose to leverage the most recent, albeit potentially stale,
model updates in place of unavailable updates from non-participating clients. Among these algo-
rithms, FedVARP (Federated VAriance Reduction for Partial client participation) (Jhunjhunwala
et al., 2022)FedVARP has demonstrated, both theoretically and empirically, its capability to ef-
fectively lower variance and consistently outperform FedAvg in settings with partial yet homo-
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geneous client participation. It is anticipated to perform similarly well even in heterogeneous
settings (Jhunjhunwala et al., 2022). However, when client participation varies widely, global
variance reduction methods, including FedVARP, must address the challenge of updates of vary-
ing staleness—a complex issue that remains unexplored and is the focus of this chapter.

This chapter specifically addresses the following questions:

1. Is it really true that FedVARP outperforms the unbiased FedAvg under heterogeneous
client participation?

2. Assuming that each method may be preferable in different settings, can we design an
unbiased algorithm that combines fresh and stale updates and adapts to specific levels of
participation heterogeneity?

Addressing these questions is challenging and requires a deeper understanding of how stale client
updates influence convergence.

Our contributions. We thoroughly analyze this problem and make the following novel contribu-
tions:

1. We analytically and experimentally refute the belief that FedVARP consistently outper-
forms FedAvg. Our convergence analysis reveals that leveraging stale updates can be ei-
ther beneficial or detrimental, depending on the specific level of client data and participation
heterogeneity.

2. We propose FedStale (Federated Averaging with Stale Updates), a novel FL algorithm
that updates the global model through a convex, unbiased combination of fresh and stale up-
dates, parameterized by a weight β. FedStale spans the spectrum from FedAvg (β = 0,
exclusively fresh updates) to FedVARP (β = 1, equal weighting of fresh and stale updates).
Our analysis provides guidelines to tune the parameter β to match specific data and client
participation heterogeneity scenarios.

3. We evaluate FedAvg, FedVARP, and FedStale across multiple levels of client data and
participation heterogeneity. FedStale outperforms both FedAvg and FedVARP across
the vast majority of heterogeneity levels examined.

The remainder of this chapter is organized as follows. Section 3.2 reviews the problem and related
work. Section 3.3 introduces FedStale, our staleness-aware algorithm, through a motivating
example. Section 3.4 provides a convergence analysis of FedStale under heterogeneous client
participation. FedStale is extensively evaluated in Section 3.5, and Section 3.6 concludes the
chapter. Detailed proofs are available in Appendix B.
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3.2 Problem Description and Background

We consider here the same problem described in Section 1.2.1, focusing, for sake of concreteness,
on the “per-client fairness” criterion, i.e., αi = 1

N , ∀i:∗

min
w∈Rd

F (w) ≜ 1
N

N∑
i=1

Fi(w) ≜ 1
ni

∑
zi∈Di

f(w, zi)

 . (3.1)

In this chapter, we consider algorithms obeying the general operation in Algorithm 2, but differing
in the Aggregate() procedure. We recall that, at round t, S(t) denotes the random subset of
participating clients, usually |S(t)| ≪ N . Each client in S(t) runs multiple (K ≥ 1) iterations of
local stochastic gradient descent (SGD) on its local dataset:

w
(t,k+1)
i = w

(t,k)
i − ηc∇Fi(w(t,k)

i ,B(t,k)
i ) for k = 0, . . . ,K − 1

producing the local model w
(t,K)
i , and the sends the model update ∆(t)

i = (w(t) −w
(t,K)
i ) to the

server. The server aggregates these client updates into the global update:

∆(t)
FedAvg = 1

|S(t)|
∑

i∈S(t)

∆(t)
i , (3.2)

and then applies this update to the previous global model in a manner similar to a gradient descent
step to produce the new global model w(t+1) = w(t) − ηs∆(t)

FedAvg.

Following standard assumptions (S. Wang & Ji, 2022; Rodio, Faticanti, et al., 2023b; S. Wang
& Ji, 2024), in line with Section 1.3.2.1, we model client participation heterogeneity through the
participation probability pi:

pi ≜ ES(t)

[
P(i ∈ S(t))

]
. (3.3)

When client participation is homogeneous (pi = p, ∀i), ES(t) [∆(t)
FedAvg] = 1

N

∑N
i=1 ∆(t)

i . Under
this condition, Eq. (3.2) is then an unbiased estimator of the model update as if all clients were
to participate (X. Li et al., 2020; Fraboni et al., 2021). This ensures that the final model fairly
represents all clients.

Conversely, under heterogeneous participation, where probabilities {pi} vary among clients,
Eq. (3.2) becomes a biased estimator of 1

N

∑N
i=1 ∆(t)

i . This bias in the global update tends to
overrepresent clients that participate more frequently, disadvantaging those that participate less.
Participation heterogeneity can then lead to objective inconsistency, causing FedAvg to effec-
tively minimize the biased objective:

FB(w) = 1
N

N∑
i=1

pi∑N
j=1 pj

Fi(w), (3.4)

∗The analysis in this chapter can be immediately extended to any weighted sum of local objectives (i.e, Prob-
lem (1.2)).
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which may arbitrarily deviate from the global objective (3.1).

To effectively minimize objective (3.1) when client participation is heterogeneous, recent
works (Fraboni et al., 2021; S. Wang & Ji, 2022; Fraboni, Vidal, Kameni, & Lorenzi, 2023;
S. Wang & Ji, 2024), including our Rodio, Faticanti, et al. (2023b) (Chapter 2, Theorems 2.3.2
and 2.3.4), have discussed the need to debias ∆(t)

FedAvg. Specifically, Eq. (3.2) has been modified
into Eq. (3.5), resulting in an unbiased version of FedAvg, denoted here as U-FedAvg (S. Wang
& Ji, 2022; Rodio, Faticanti, et al., 2023b; S. Wang & Ji, 2024):

∆(t)
U-FedAvg = 1

N

∑
i∈S(t)

∆(t)
i

pi
. (3.5)

Intuitively, reweighting each client update by p−1
i compensates for less participating clients by am-

plifying their update when they do participate. U-FedAvg naturally extends FedAvg to accom-
modate heterogeneous client participation—reducing to FedAvg when participation is uniform
(pi = |S(t)|

N , ∀i)—and effectively unbiases the global update (ES(t) [∆(t)
U-FedAvg] = 1

N

∑N
i=1 ∆(t)

i ).
However, it also introduces a drawback: the variance of each client updates is now proportional to
p−2

i . As participation probabilities decrease, this variance rapidly increases, becoming the domi-
nant factor that slows down U-FedAvg’s convergence (Rodio, Faticanti, et al., 2023b; S. Wang
& Ji, 2024).

A few recent works have addressed the variance introduced by partial client participation through
global variance reduction, leveraging stale updates to compensate for non-participating clients (Gu
et al., 2021; H. Yang et al., 2022; Jhunjhunwala et al., 2022; Yan et al., 2024). These methods
were originally proposed for homogeneous participation and, if applied in their original form,
would introduce a bias when client participation becomes heterogeneous. Fortunately, unbiasing
them to work in heterogeneous participation scenarios is straightforward, similar to what was done
for FedAvg in Eq. (3.5). We select FedVARP (Jhunjhunwala et al., 2022) as the representative
algorithm and adapt it into U-FedVARP (Unbiased FedVARP).

In U-FedVARP, the server retains the most recent, though potentially stale, update for each client:

h
(t)
i =

∆(t−1)
i if i ∈ S(t−1)

h
(t−1)
i otherwise

, (3.6)

and then uses these stale updates as proxies for missing contributions from non-participating
clients in the current round:

∆(t)
U-FedVARP = 1

N

N∑
i=1

h
(t)
i + 1

N

∑
i∈S(t)

∆(t)
i − h

(t)
i

pi
. (3.7)

Unlike U-FedAvg, which essentially ignores non-participating clients, U-FedVARP utilizes
their last updates, albeit stale, when they do not participate in the training process. When they
participate again, U-FedVARP subtracts these stale updates to eliminate any inconsistency caused
by using stale information, and applies the fresh update. Both corrections are reweighed by p−1

i ,
similarly to U-FedAvg, ensuring that E

[
∆(t)
U-FedVARP

]
= 1

N

∑N
i=1 ∆(t)

i . U-FedVARP’s aggre-
gation (3.7) is then unbiased. Moreover, by leveraging stale updates for non-participating clients,
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U-FedVARP acts as a SAGA-like (Defazio, Bach, & Lacoste-Julien, 2014) variance reduction
method, aiming to reduce the variance caused by partial client participation. This strategy incurs
an additional memory cost of N × d, which must be allocated by the server.

Although variance reduction methods like FedVARP are often believed to outperform simpler
algorithms like FedAvg under partial and heterogeneous client participation, as suggested for ex-
ample in (Jhunjhunwala et al., 2022; S. Wang & Ji, 2024), theoretical support for this belief has
been provided only for homogeneous participation scenarios (Jhunjhunwala et al., 2022, Theo-
rem 2) and empirical results do not lead to definitive conclusions (S. Wang & Ji, 2024, Table 5).

This chapter challenges the presumed superiority of U-FedVARP under client participation het-
erogeneity. Both theoretical and experimental contributions indicate that the relative effectiveness
of U-FedVARP and U-FedAvg varies depending on the specific levels of data heterogeneity and
client participation heterogeneity.

In the remainder of the chapter, we focus on the unbiased versions of the two algorithms. However,
for simplicity, we refer to them simply as FedVARP and FedAvg.

3.3 Proposed Staleness-Aware FL Algorithm: FedStale

We start questioning the expected superiority of FedVARP under client participation heterogeneity
though the following illustrative example.

3.3.1 A Motivating Example

Figure 3.1a considers a two-clients scenario with quadratic bidimensional objectives {Fi(w), i =
1, 2,w ∈ R2}. The global optimum w∗, minimizer of F (w) ≜ 1

2F1(w)+ 1
2F2(w), does not align

with the average of the local optima {w∗
i , i = 1, 2}. Clients participate according to Bernoulli

distributions with parameters {pi, i = 1, 2} and a skewed participation ratio p1/p2 = 100.

Figure 3.1b compares the model trajectories of FedAvg and FedVARP over T = 4000 rounds,
starting from w(1)=(-10,-10) and running the experiments with same clients participation pro-
cesses for comparability. Both algorithms initially share the same trajectory, driven solely by the
participation of client 1, who targets w∗

1. When client 2 first participates, the global update dra-
matically shifts towards w∗

2 due to the reweighting factor 1/p2. As client 2 stops participating, the
two trajectories diverge: FedAvg reverts to approaching w∗

1, influenced only by the participat-
ing client 1, while FedVARP continues to factor in stale updates from client 2. Both algorithms
eventually converge to the global optimum w∗, consistently with the fact that both Eqs. (3.5)
and (3.7) are unbiased. However, FedAvg suffers large variance and slow convergence due to
significant shifts whenever client 2 participates, whereas FedVARP is affected by progressively
more outdated updates from the less participating client, also resulting in suboptimal trajectories
with abrupt corrections. Figure 3.1d compares the losses over these trajectories and confirms that
both FedAvg and FedVARP exhibit high variability for distinct reasons. A hybrid approach that
combines these two dynamics can potentially improve overall performance.
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Figure 3.1: Comparison of FedAvg, FedVARP, and FedStale in a two-clients, 2D quadratic setting
with heterogeneous client participation. Fig. 3.1a: Contour plots of client objectives, their local
optima, and global optimum. Client participation ratio is p1/p2 = 100. Fig. 3.1b: Trajectories by
FedAvg and FedVARP over T=4000 rounds with K=5 local iterations each. While both algorithms
target the global optimum, FedAvg struggles with large variance and FedVARP follows suboptimal
paths due to stale updates. Fig. 3.1c: FedStale (β=0.8) follow a more stable trajectory under
heterogeneous client participation. Fig. 3.1d: Learning curves of FedAvg, FedVARP, and FedStale
over 10 runs. With a lower weight on stale updates (β=0.8), FedStale achieves faster convergence
to the global optimum.
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Algorithm 4: FedStale (Federated Learning with Stale Client Updates)

1 Input: {h(1)
i = 0, pi : ∀i}, β; Output: {∆(t)

FedStale : ∀t}
2 for t = 1, . . . , T do
3 Procedure Aggregate({∆(t)

i }i∈S(t) , β):

4 ∆(t)
FedStale ← β

N

∑
N
i=1 h

(t)
i + 1

N

∑
i∈S(t)(∆(t)

i − βh
(t)
i )/pi

5 for i ∈ S(t) do
6 h

(t+1)
i ← ∆(t)

i // Update memory

3.3.2 A Convex Combination of Fresh and Stale Updates

In Figs. 3.1c and 3.1d, a convex combination of FedAvg and FedVARP updates with a weighting
parameter β = 0.8 results in a more stable trajectory and achieves faster convergence than ei-
ther algorithm alone. This suggests that, in environments with heterogeneous client participation,
parameterizing the weight to stale updates allows us to interpolate the two negative extremes of
large variance (FedAvg) and outdated trajectories (FedVARP). Motivated by these observations,
we propose FedStale (Federated Averaging with Stale Updates), outlined in Algorithm 4. In
each round, FedStale updates the global model through a convex combination of fresh and stale
updates, with parameter β in the range [0, 1]:

∆(t)
FedStale = (1− β)∆(t)

FedAvg + β∆(t)
FedVARP (3.8)

= 1
N

N∑
i=1

βh
(t)
i + 1

N

∑
i∈S(t)

∆(t)
i − βh

(t)
i

pi
. (3.9)

FedStale interpolates between the behaviors of FedAvg when β = 0 and FedVARP when
β = 1, merging the two algorithms into a single, versatile framework. Moreover, by adjusting β,
FedStale can control the influence of stale updates, allowing for a continuum of behaviors that
adapts with the specific level of client data and participation heterogeneity.

Requirements. In its operation, FedStale maintains the same computational and communica-
tion complexity as FedVARP, with tuning β as the only additional requirement. Section 3.5 shows
that a coarse adjustment of β (e.g., β ∈ 0, 0.2, 0.5, 0.8, 1) provides reasonably good performance
across varied settings, thus eliminating the need for fine-tuning.

As for storage requirements, FedStale mirrors FedVARP and other global variance reduction
methods by storing stale updates from all clients at the server. Typically, servers possess more
resources than clients, mitigating potential storage issues. Methods that avoid additional storage
would otherwise escalate computational and communication demands on clients or necessitate
full client participation in certain rounds—a requirement that may be overly demanding or even
impractical, as will be discussed in the following section.

3.3.3 Comparison to Related Work

We discuss variance reduction methods emerged for centralized and distributed optimization.
Some have already been adapted to federated learning, while others are discusses for potential
applicability.
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FedLaAvg (Yan et al., 2024), MIFA (Gu et al., 2021), AFA-CD and AFA-CS (H. Yang et al.,
2022), similarly to FedVARP, address partial yet homogeneous client participation by storing the
stale model updates for each client. However, their approach of uniformly weighting fresh and
stale updates, through a SAG-based (Schmidt, Le Roux, & Bach, 2017) global variance reduction
step, biases the global model leading to objective inconsistency.

SVRG-based Variance Reduction Methods (Johnson & Zhang, 2013; Lei, Ju, Chen, & Jordan,
2017; Nguyen, Liu, Scheinberg, & Takáč, 2017; Fang, Li, Lin, & Zhang, 2018) trade storage
demands with computation needs by periodically calculating, in centralized settings, full or large-
batch gradients. Although offering superior theoretical performance over SAGA-based (Defazio et
al., 2014) variance reduction methods like FedVARP, their extension to FL settings is constrained
by the impractical requirement for all clients to participate simultaneously during certain training
rounds.

SCAFFOLD (Karimireddy et al., 2020) uses control variates to correct for data heterogeneity er-
rors. Adapting this method to handle participation heterogeneity would require clients to perform
local SAGA-like (Defazio et al., 2014) corrections, thereby doubling the communication overhead
as clients must transmit both the model updates and correction vectors to the server. While this
extension remains a topic for future research, we underscore the additional communication com-
plexity involved.

In contrast to previous work, FedStale, much like FedVARP, performs corrections at the server
level without involving clients in variance reduction, thus maintaining the same communication
overhead as FedAvg and still matching SCAFFOLD’s convergence rates.

3.4 Convergence Analysis

Assumption 6 (L-smoothness). The local objective functions areL-smooth, i.e., ∥∇Fi(u)−∇Fi(v)∥ ≤
L ∥u− v∥, ∀u,v, i.

Assumption 7 (Bounded variance at client level). The stochastic gradient at each client is an
unbiased estimator of the local gradient: Eξi∼Di

[∇Fi(w, ξi)] = ∇Fi(w), with bounded variance:
Eξi∼Di

∥∇Fi(w, ξi)−∇Fi(w)∥2 ≤ σ2, ∀w, i. The stochastic gradient noise is independent
across clients, rounds, and local steps.

Assumption 8 (Bounded variance across clients). There exists a constant σ2
g > 0 such that the

difference between the local gradient at the i-th client and the global gradient is bounded, that is
∥∇Fi(w)−∇F (w)∥2 ≤ σ2

g , ∀w, i.

Assumption 9 (Partial and heterogeneous client participation). In each round t, client i partici-
pates with a probability pi, independently of previous rounds and other clients.

Assumptions 6–8 are standard in federated learning convergence analysis (H. Yang et al., 2020;
S. Wang & Ji, 2022; Cho et al., 2023). The terms σ2 and σ2

g denote the variances from stochastic
gradients and data heterogeneity, respectively. Assumption 4, which models client participation
heterogeneity, also appears in some prior works (S. Wang & Ji, 2022, 2024). Exploring more
complex participation dynamics, following the methodologies in (S. Wang & Ji, 2022; Rodio,
Faticanti, et al., 2023b), remains a task for future research.
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3.4.1 FedStale, Upper Bound

We start by providing an upper bound for FedStale’s convergence. We defer detailed proofs to
the Appendix B.

Theorem 3.4.1 (Convergence of FedStale, upper bound). Under Assumptions 6–9, if the
client and server learning rates, ηc and ηs, are chosen such that ηc ≤ 1

8LK and ηs ≤
min

{
Npvar

12(1−β)2 ,
pvarpmin
3β2pavg

}
, the sequence of FedStale iterates satisfies

min
t∈{1,T }

E
∥∥∥∇F (w(t)

FedStale)
∥∥∥2
≤ O

(
F (w(1))− F ∗

ηsηcKT

)
︸ ︷︷ ︸

iterate initialization error

(3.10)

+O
(
β2ηsηcLKH

(1)

pvarpminT

)
︸ ︷︷ ︸

memory initialization error

+O
([ 1
N

+ β2 pavg

pmin

]
ηsηcLσ

2

pvar

)
︸ ︷︷ ︸

stochastic gradient error

+O
([(1− β)2

N
+ β2η2

cL
2K(K − 1)pavg

pmin

]
ηsηcLKσ

2
g

pvar

)
︸ ︷︷ ︸

error from data heterogeneity

,

where F ∗ ≜ minw F (w), H(1) ≜ 1
N

∑N
i=1 ||∇Fi(w(1)) − h

(1)
i ||2, pvar ≜ ( 1

N

∑N
i=1

1−pi
pi

)−1,

pavg ≜ 1
N

∑N
i=1 pi, and pmin ≜ mini pi.

Theorem 3.4.1 relates FedStale’s convergence to the iterate and memory initial errors, and
variances from stochastic gradients (σ2) and data heterogeneity (σ2

g ). It also quantifies the impact
of client participation heterogeneity through the terms pvar, pavg, and pmin. By scaling the client
learning rate as O( 1√

T
), all error components asymptotically vanish, proving the unbiasedness of

update (3.9).

Theorem 3.4.1 integrates FedAvg and FedVARP convergence analyses in a single framework,
providing new insights on their different behaviors. First, for β = 0, the bound provides a conver-
gence result for FedAvg.

Corollary 3.4.2 (Convergence of FedAvg, upper bound). Under same assumptions as Theo-
rem 3.4.1, the sequence of FedAvg iterates satisfies

min
t∈{1,T }

E
∥∥∥∇F (w(t)

FedAvg)
∥∥∥2
≤ (3.11)

O
(
F (w(1))− F ∗

ηsηcKT

)
︸ ︷︷ ︸

iterate initialization error

+ O
(
ηsηcLσ

2

Npvar

)
︸ ︷︷ ︸

stochastic gradient error

+ O
(
ηsηcLKσ

2
g

Npvar

)
︸ ︷︷ ︸

error from data heterogeneity

.

Corollary 3.4.2 shows that client participation heterogeneity only affects FedAvg convergence
through the variance factor 1/pvar. This term captures the variability of participation probabilities
pi and is minimized—and equal to (1 − pavg)/pavg—when client participation is homogeneous.
Conversely, this variance term increases with larger participation heterogeneity, and may become
the dominant factor in Eq. (3.11) that slows down FedAvg convergence. This justifies our obser-
vations for FedAvg in Figure 3.1b.
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Second, for β = 1, Theorem 3.4.1 extends FedVARP known convergence results (Jhunjhunwala
et al., 2022, Theorem 2) to heterogeneous client participation.

Corollary 3.4.3 (Convergence of FedVARP, upper bound). Under the same assumptions as in
Theorem 3.4.1, FedVARP’s iterates satisfy

min
t∈{1,T }

E
∥∥∥∇F (w(t)

FedVARP)
∥∥∥2
≤ O

(
F (w(1))− F ∗

ηsηcT
+ ηsηcH

(1)

pvarpminT

)
︸ ︷︷ ︸

iterate and memory initialization errors

+O
(
ηsηcLpavgσ

2

pvarpmin

)
︸ ︷︷ ︸
stochastic gradient error

+O
(
ηsη

3
cL

3K2(K − 1)pavgσ
2
g

pvarpmin

)
︸ ︷︷ ︸

error from data heterogeneity

. (3.12)

We highlight two differences with respect to FedAvg. First, FedVARP mitigates data hetero-
geneity error: by scaling the learning rate ηc as O(T−1/2), the term in σ2

g decreases as O(T−3/2)
versus O(T−1/2) for FedAvg in (3.11). However, FedVARP amplifies the stochastic gradient
error through the ratio pavg/pmin, and this terms may become dominant as client participation be-
comes more heterogeneous. This drawback, caused from stale updates, was not highlighted by
earlier analyses, which considered only homogeneous client participation.

3.4.2 FedStale, Lower Bound

One may wonder whether the appearance of the factor 1/pmin in FedVARP bound may not be
just an artifact of our proof technique. The following lower bound for FedVARP and FedStale
convergence suggests that this is not the case.

Theorem 3.4.4 (Convergence of FedStale, lower bound). Under Assumption 6, for any time
horizon T ≤ d−1

2 , there exist N local objectives {Fi(w) : Rd → R} for which the iterates of any
first-order black-box optimization procedure which leverages both fresh and stale updates satisfy

min
t∈{1,T }

E
∥∥∥∇F (w(t)

FedStale)
∥∥∥2
≥ Ω

(
F (w(1))− F ∗

p3
minT

3 + 1

)
. (3.13)

Theorem 3.4.4 proves that FedStale for any β > 0, and then FedVARP, requires at least
T ≥ Ω(1/pmin) rounds to minimize objective (3.1).

3.4.3 Finding the optimal weight β∗

FedStale leverages the parameter β to balance the multiple sources of variance in Theo-
rem 3.4.1: stochastic gradients (σ2), data heterogeneity (σ2

g ), and client participation heterogeneity
(through the ratio pavg/pmin).

The quadratic dependency on β of the bound in Theorem 3.4.1, Eq. (3.10), guarantees a unique
minimizer β∗ ∈ [0, 1], generally different from the boundaries values of 0 and 1. The optimal β∗

is:

β∗ =
σ2

g/N

a1
pavg
pmin

σ2

K +
[

1
N + a2

pavg
pmin

η2
cL

2K(K − 1)
]
σ2

g

, (3.14)
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where a1 and a2 are positive numerical constants.

In practice, computing β∗ is challenging due to the unknowns L, σ2, and σ2
g in Eqs. (3.10)

and (3.14), which are difficult to estimate since they depend on the client objectives and on the
specific heterogeneity setting. Moreover, Eq. (3.10) provides a worst-case upper bound for the gra-
dient norm, but convergence may be significantly faster. For instance, the bound becomes vacuous
as pmin approaches zero, yet, if all clients share the same local objective, convergence is unaf-
fected by non-participating clients. Therefore, we primarily use Eq. (3.14) to derive qualitative,
yet important guidelines.

The monotonically increasing behavior of β∗ with σ2
g in Eq. (3.14) suggests

Guideline A: Increase the weight to stale updates, β, when data heterogeneity, σ2
g , increases.

Guideline A is in line with our previous comparison of Corollary 3.4.3 and Corollary 3.4.2. As we
observed, stale updates become more beneficial when data heterogeneity (σ2

g ) is dominant. Con-
versely, as data heterogeneity decreases, the benefit from stale updates diminishes. This outcome
is intuitive: in the extreme case where all clients share same datasets, each local objective aligns
with the global objective. Relying solely on updates from participating clients is then optimal, as
stale updates may only introduce unnecessary noise.

The monotonically decreasing behavior of β∗ with the ratio pavg/pmin in Eq. (3.14) informs

Guideline B: Decrease the weight to stale updates, β, as client participation heterogeneity,
pavg/pmin, increases.

Also Guideline B is grounded in intuition: as client participation is more heterogeneous (pmin ≪
pavg), the least participating clients refresh their stale update less frequently, leading to more out-
dated global updates: leveraging them may yield poor results. Conversely, when client participa-
tion is homogeneous (pmin ≈ pavg), all clients uniformly refresh their update, and global variance
reduction methods perform best.

3.5 Experimental Evaluation

We evaluate the performance of FedStale in experiments. The source code of our experimental
framework is in the supplementary material and will made publicly available after publication.

3.5.1 Experimental setup

System, Datasets, and Models. We simulate a FL system with N = 24 clients. We consider
two image classification tasks: handwritten digits recognition on MNIST (L. Deng, 2012) and
natural image classification on CIFAR-10 (Krizhevsky & Hinton, 2009). Each dataset has 10
classes, or labels. We train two convolutional neural network (CNN) models with slightly different
architectures. These models, with cross-entropy loss, define non-convex objectives (3.1).

Participation heterogeneity. Client participation follows a Bernoulli distribution, in line with
Assumption 9. To simulate heterogeneity in client participation, we randomly divide clients
into two groups based on their participation dynamics: one group of clients always participate,
while the other, less participating group, have participation probabilities pmin varying in the range
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{50, 20, 10, 5, 2, 1, 0.5, 0.2}%. The ratio pavg/pmin specifies the degree of client participation het-
erogeneity.

Data heterogeneity. Following existing work (Sattler et al., 2021), we simulate data heterogeneity
across clients’ local datasets by: 1) randomly partitioning the dataset among clients; 2) swapping
a fraction σ̂2

g of two labels in the second group, with σ̂2
g ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. The

empirical parameter σ̂2
g mirrors the theoretical variance σ2

g in Assumption 8, measuring the degree
of data heterogeneity: σ̂2

g = 0 represents homogeneous (IID) data distributions and σ̂2
g = 1

indicates maximum heterogeneity among client datasets.

Baselines. We compare FedAvg (β = 0), FedVARP (β = 1), and FedStale (for
β ∈ {0.2, 0.5, 0.8}) across diverse heterogeneity settings. Previous work (Jhunjhunwala et al.,
2022) showed that, under partial client participation, FedVARP consistently outperformed both
MIFA (Gu et al., 2021), due to its biased variance correction, and SCAFFOLD (Karimireddy et
al., 2020), that also incurs higher communication costs. We benchmark all algorithms over a
consistent time horizon, corresponding, on average, to the first ten participation instances by the
least participating client. Clients perform K = 5 local iterations. We use a batch size of 128
in all experiments. For all algorithms, we fix the server learning rate ηs to 1 and tune the client
learning rate ηc over the grid {10−2, 10−2.5, 10−3, 10−3.5, 10−4}. While we initially assume all
algorithms have exact knowledge of client participation probabilities, we relax this assumption in
Section 3.5.3. We average results over three random seeds.

3.5.2 Existence of different regimes

In Figure 3.2, we show the empirical values of β that yield the highest test accuracies among
FedAvg (β = 0), FedVARP (β = 1), and FedStale (β ∈ {0.2, 0.5, 0.8}) across diverse
heterogeneity settings on the MNIST dataset. We denote these values as βopt.

The heatmap shows how βopt varies with client participation heterogeneity (pavg/pmin, in the x-
axis) and data heterogeneity (σ̂2

g , in the y-axis). Moreover, each cell reports the performance gains
of the best setting for FedStale. ∆0 and ∆1 denote, respectively, the accuracy improvements
of FedStale(βopt) over FedAvg (β = 0) and FedVARP (β = 1). This visualization aggregates
results from 720 training runs, across 8 participation heterogeneity setups and 6 data heterogeneity
setups, each comparing 5 algorithms for 3 independent seeds.

Multiple regimes in heterogeneity settings. No single algorithm consistently outperforms others
across all settings. Instead, Figure 3.2 shows different zones where the best-performing algorithm
depends on the interplay between data heterogeneity (σ̂2

g ) and client participation heterogeneity
(pavg/pmin). The observed trends reflect our qualitative guidelines.

Specifically, Figure 3.2 identifies three distinct zones where specific patterns in performance
emerge: i) FedVARP yields the best results for large data heterogeneity (σ̂2

g ≥ 0.2) and homoge-
neous client participation (pmin ≈ pavg), favoring larger weights to stale updates (βopt = 1); ii) con-
versely, FedAvg best fits settings with low data heterogeneity (σ̂2

g ≤ 0.2) and large participation
heterogeneity (pavg ≥ 25pmin), where using stale updates overall reduces performance; iii) finally,
a significant transitional zone exists where moderate heterogeneity levels (3pmin ≤ pavg ≤ 25pmin)
favor intermediate βopt values (βopt ∈ {0.2, 0.5, 0.8}), which yield the best performance.
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Figure 3.2: βopt values for FedAvg (β=0), FedVARP (β=1), and FedStale (β∈{0.2, 0.5, 0.8})
across 48 heterogeneity settings on the MNIST dataset. Color gradients range from lighter shades
(βopt=0) to darker shades (βopt=1).

Overall, FedStale prevails in 72% of scenarios within our 6× 8 grid, against FedVARP, 18%,
and FedAvg, 10%. Therefore, FedStale plays a key role—we believe—in bridging the gaps
posed by FedAvg and FedVARP in real-world federated settings, which often exhibit intermedi-
ate levels of client data and participation heterogeneity.

Effect of data heterogeneity. Figure 3.2 shows that βopt increases with data heterogeneity, in
line with Guideline A. Figure 3.3 explores this trend in more detail, by holding participation het-
erogeneity constant at pavg/pmin = 10 and varying data heterogeneity (σ̂2

g ). For all algorithms,
increased data heterogeneity corresponds to lower test accuracies. In Figures 3.3a and 3.3b,
FedStale (β = 0.5), without particular fine-tuning, consistently outperforms FedVARP in set-
tings of moderate participation heterogeneity and improves over FedAvg as client data become
heterogeneous (already at σ̂2

g ≥ 0.2). Moreover, Figure 3.3b shows that FedVARP, despite its
overall lower accuracy, proves to perform better in extremely heterogeneous data scenarios (when
σ̂2

g ≥ 0.8).
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Figure 3.3: Test accuracy of FedAvg (β=0), FedVARP (β=1), and FedStale (β=0.5) varying data
heterogeneity at fixed participation ratio pavg/pmin = 10.
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Figure 3.4: Test accuracy of FedAvg (β=0), FedVARP (β=1), and FedStale (β=0.5) varying client
participation ratio at fixed data heterogeneity σ̂2

g = 0.6.
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Effect of participation heterogeneity. Figure 3.2 shows that βopt decreases as the participa-
tion heterogeneity (pavg/pmin) increases, in line with Guideline B. Figure 3.4 details this dynamic
by fixing data heterogeneity at σ̂2

g = 0.6 and only varying participation heterogeneity. In both
Figures 3.4a and 3.4b, it is evident how FedVARP performs well when client participation is
homogeneous (pmin ≈ pavg), yet struggles with increasing participation heterogeneity. FedAvg
exhibits dual behavior, which confirms that the usefulness of stale updates progressively dimin-
ishes as participation heterogeneity increases (already at pavg ≥ 3pmin). Figure 3.4b also shows
that FedStale (β = 0.5), without specific tuning, maintains robust performance across a wide
range of participation levels (until pavg ≈ 25pmin), and only drops accuracy at pavg ≈ 50pmin.

3.5.3 Online estimation of participation probabilities

We evaluate FedStale with online estimation of client participation probabilities, to simulate
scenarios where these probabilities are unknown before training (Ribero et al., 2023; Rodio,
Faticanti, et al., 2023b; S. Wang & Ji, 2024). To this purpose, we integrate FedStale with
FedAU (S. Wang & Ji, 2024), a state-of-the-art algorithm for tracking client participation dynam-
ics, that balances bias and variance in the estimation through a cutoff mechanism.

Figure 3.5 shows that the integration of FedStalewith FedAU’s estimation technique still aligns
with our guidelines. Moreover, FedVARP performs significantly worse than FedStale(βopt)
when client participation probabilities are estimated (∆1 values in Fig. 3.5). Also, we observe
overall lower βopt values in this scenario. These trends suggest that methods leveraging stale
updates, like FedVARP, might be particularly sensitive to inaccurate pi estimations.
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Figure 3.5: “Exact” vs. “Estimated” participation probabilities, σ̂2
g = 0.6.

3.6 Conclusion

This chapter addresses global variance reduction in federated learning beyond the common as-
sumption of homogeneous client participation. Unlike prior work, our research explores not only
the advantages but also the challenges of leveraging stale client updates across varying heterogene-
ity scenarios. Our algorithm, FedStale, is equipped with guidelines: practitioners can decide
whether storing stale updates is worthwhile or if solely relying on participating client updates
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is more efficient. Exploring this tradeoff paves the way—we believe—for developing federated
learning algorithms more attuned to the varied dynamics of client data and participation hetero-
geneity.



CHAPTER 4
Application to Wireless

Networks with Lossy
Communication

Channels
This chapter is based on our work Rodio, Neglia, et al. (2023), published in 26th International
Symposium on Wireless Personal Multimedia Communications (WPMC 2023).

4.1 Motivation

In many FL applications, such as training Google keyboard next-word prediction model, the clients
are mobile devices such as smartphones or Internet of Things (IoT) devices, and the models are
exchanged on wireless networks incurring potential transmission losses.

As observed in Chapter 1 (particularly in Section 1.3.2.2), lossy communication channels neces-
sarily degrade the performance of FL training on wireless networks. Theoretical and experimental
work (Eriş et al., 2021; Chandrasekaran et al., 2022; H. H. Yang et al., 2020; Ye et al., 2022; Bac-
carelli et al., 2022; M. Chen et al., 2021) has shown that packet losses affect the quality of the final
model towards which the FL training algorithms converge as well as their convergence rate. Un-
der medium/high network background traffic, the authors in (Eriş et al., 2021) measured a twofold
training duration and a halved accuracy in the early stages of the training. Prior work (H. H. Yang
et al., 2020; Ye et al., 2022; Baccarelli et al., 2022; M. Chen et al., 2021) analyzed the con-
vergence of state-of-the-art FL algorithms under different channel assumptions. Specifically, the
authors of (M. Chen et al., 2021) proved the existence of a non-vanishing error due to the lossy
channels, which prevents the convergence of their direct model aggregation scheme to the optimal
model, and proposed to reduce this error by opportunely allocating resources (e.g., transmission
power, radio blocks) to control packet losses. Similar approaches to the one proposed in (M. Chen
et al., 2021) have been considered to mitigate the effect of packet loss on wireless networks, re-
lying on automatic repeat request (ARQ) and forward error correction (FEC) techniques (Wen et
al., 2019; Su et al., 2023).

Despite these efforts, packet losses are typically caused by external factors beyond the control
of the orchestrating server and can therefore be unavoidable (Section 1.3.2.2). Communication

53
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protocols may define a maximum number of retransmissions, but these retransmissions can still
fail. More importantly, we point out that targeting high transmission reliability in FL-oriented
applications may be sub-optimal, as it usually comes at the detriment of training time and/or
resource usage, e.g., in terms of wider sub-channel bandwidth, higher energy consumption, or
both. These issues are even more exacerbated in resource-constrained scenarios, such as the IoT,
where increasing communication reliability may result in a reduced device lifetime or may not be
feasible. Moreover, the iterative nature of the gradient methods used for ML model training makes
them robust against limited errors at intermediate calculations (Xing, Ho, Xie, & Wei, 2016).

For the aforementioned reasons, this chapter diverges from prior work (H. H. Yang et al., 2020;
Ye et al., 2022; Chandrasekaran et al., 2022; Baccarelli et al., 2022; M. Chen et al., 2021; Wen
et al., 2019; Su et al., 2023), which primarily focused on loss mitigation. Instead, we address the
fundamental question of whether FL algorithms can achieve optimal model convergence despite
packet losses. Our response is affirmative, necessitating only slight adjustments to the classic
FedAvg (McMahan et al., 2017) algorithm.

More in detail, we consider a FL framework where losses can occur in the downlink, uplink,
or both, and loss probabilities can differ among clients. Indeed, the channel quality in wireless
networks can vary according to per-user characteristics, such as the relative positioning of the
transmitter and the receiver, the device transmission power, the selected frequency channel. As a
result, the clients will not participate evenly in the training process, potentially leading to learning
a biased ML model (J. Wang et al., 2020; Rodio, Faticanti, et al., 2023a). Thus, the design
of an aggregation strategy becomes critical to ensure the convergence of the FL model in the
presence of packet losses. Previous works (M. Chen et al., 2021; Su et al., 2023) proposed direct
model aggregation schemes, denoted in the following as DMA-PL, which stands for “Direct Model
Aggregation with Packet Losses” and UDMA-PL, which stands for Unbiased DMA-PL. We will
discuss and compare our approach to them in the rest of the chapter.

This work makes the following novel contributions:

• We propose UPGA-PL, a novel algorithm that aggregates pseudo-gradients, instead of
models, and considers the client loss probabilities—therefore its name “Unbiased Pseudo-
Gradient Aggregation with Packet Losses”. Its complexity is comparable to FedAvg;

• We analytically prove UPGA-PL’s convergence to the optimal model, the same model which
would have been learned over ideal, lossless channels. This result proves UPGA-PL’s ability
to filter out the noise due to packet losses.

• We validate our analysis through numerical experiments. While losses largely affect the per-
formance of the state-of-the-art algorithms (M. Chen et al., 2021; Su et al., 2023), UPGA-PL
is robust to them and gains 5–10 percentage points on the test accuracy. Most importantly,
even under severe losses, UPGA-PL achieves the same model’s accuracy as FedAvg under
lossless channels in less than 150 communication rounds.
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4.2 Problem Description and Background

We consider the same optimization problem introduced in Section 1.2.1:

min
w∈Rd

[
F (w) ≜

N∑
i=1

αiFi(w)
]
, (4.1)

recalling that {αi}Ni=1 are positive coefficients, chosen by the server, such that
∑N

i=1 αi = 1. They
represent the weight assigned to each client’s objective function Fi. Typical choices, discussed in
Section 1.2.1, are: 1) αi = 1/N ∀i, the server giving equal weight to all clients, 2) αi = |Di|/|D|,
with D = ∪N

i=1Di, the server giving equal weight to each data sample.

In the following, we recall two alternative algorithms to solve Problem (4.1). For both algorithms,
the server receives either the i-th client’s local model w

(t,K)
i or its model update ∆(t)

i ≜ w
(t,K)
i −

w
(t,0)
i = −η(t)

c
∑K−1

k=0 ∇Fi(w(t,k)
i ,B(t,k)

i ). However, the server aggregation ∆(t) and the new
global model w(t+1) differ in terms of the specific implementation for the Aggregate() and
ServerUpdate() procedures, respectively:

• Option 1) The server can directly aggregate models computing w
(t+1)
DMA =

∑N
i=1 αiw

(t,K)
i :

this scheme follows the FedAvg (McMahan et al., 2017) algorithm (Section 1.2.2, Algo-
rithm 1), and we refer to it as Direct Model Aggregation (DMA).

• Option 2) The server can consider the model updates ∆(t)
i received by the clients as pseudo-

gradients, aggregate them as ∆(t) =
∑N

i=1 αi∆(t)
i , and finally apply a global pseudo-SGD

step as w
(t+1)
PGA = w(t) + ∆(t). This scheme corresponds to FedOpt (Reddi et al., 2021)

(Section 1.2.2, Algorithm 2), with SGD used both as server and client optimizer. We denote
it as Pseudo-Gradients Aggregation (PGA).

The DMA and PGA aggregation schemes are equivalent under lossless channels. However, in
typical FL applications the information is transmitted over lossy channels, which ultimately affect
the workflow of the considered FL algorithm.

We consider the same communication model as in M. Chen et al. (2021); Su et al. (2023): due
to downlink losses, only a subset of clients S(t)

DL ⊆ N correctly receives the model w(t) sent by
the server and computes the local models {w(t,K)

i }
k∈S(t)

DL
. On the other hand, due to losses in the

upstream, the server gathers the updates (either the models w
(t,K)
i or the pseudo-gradients ∆(t)

i )
only from a subset of clients S(t) = S(t)

UL ⊆ S
(t)
DL.∗

Since losses are random and can potentially differ among clients, the aggregation scheme plays an
important role in the quality of the global ML model w(t+1) learned by the FL training algorithm.
Previous works (M. Chen et al., 2021; Su et al., 2023) considered the problem of FL training
under lossy channels and proposed to generalize FedAvg’s DMA aggregation strategy by letting

∗When transmission spans multiple packets, it is possible that only a subset of these packets may be affected by
losses. Under these circumstances, the recipient could still leverage the partially received information effectively.
Nonetheless, insufficient attention has been devoted to exploring this potential (H. H. Yang et al., 2020; Ye et al., 2022;
M. Chen et al., 2021; Wen et al., 2019; Su et al., 2023). We identify a significant opportunity for future research, a topic
we discuss more thoroughly in Section 6.1.
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the server aggregate all received models, i.e., the models of all clients i ∈ S(t):

w
(t+1)
DMA-PL =

∑
i∈S(t) αiw

(t,K)
i∑

i∈S(t) αi
. (4.2)

We refer to this strategy as Direct Model Aggregation with Packet Loss (DMA-PL). The authors
of (M. Chen et al., 2021) also analyzed the convergence of the DMA-PL aggregation scheme under
the effect of packet losses. They showed the existence of a generally non-vanishing error between
the model trained under a non-zero loss rate and the optimal model towards which the training
converges in the absence of losses:

E
[
F (w(t+1)

DMA-PL)
]
− F ∗ ≤ At

(
F (w(1))− F ∗

)
︸ ︷︷ ︸

vanishing term for small statistical heterogeneity

+2ζ1
L

N∑
i=1

αiqi
1−At

1−A ,︸ ︷︷ ︸
non-vanishing error due to statistical heterog. and packet loss

(4.3)

where qi denotes the probability that the server does not receive client-i’s local model, A =
1− µ

L + 4µζ2
L

∑N
i=1 αiqi, L and µ are the L-smooth and µ-strongly convex constants (they will be

introduced in Assumptions 10, 11), and ζ1, ζ2 are parameters that quantify the statistical hetero-
geneity of the local datasets (the larger ζ1 and ζ2, the more heterogeneous the clients’ data). We
observe that, for non-zero loss probabilities and high statistical heterogeneity (large ζ2), it is possi-
ble that the bound does not guarantee convergence (when A ≥ 1). On the contrary, for sufficiently
small ζ2, (4.3) predicts linear convergence to a neighborhood of the optimal solution, whose size is
proportional to the loss probabilities {qi}Ni=1. Motivated by these results, reference (M. Chen et al.,
2021) focuses on resource allocation to reduce loss probabilities and minimize the non-vanishing
term.

Moreover, due to losses, only a subset of the clients contributes to updating the new model
at each round. Previous works (X. Li et al., 2020; J. Wang et al., 2020) have studied partial
client participation due to client sampling, i.e., when the server samples at each round a sub-
set of clients S(t) ⊆ N . Convergence results in X. Li et al. (2020) require unbiased sam-
pling for DMA to converge to the optimal model, i.e., the sampling scheme should satisfy
ES(t) [w(t+1)] =

∑N
i=1 αiw

(t,K)
i (X. Li et al., 2020, Lemma 4), so that in expectation the i-th client

contributes proportionally to its weight in the global objective (4.1). This observation suggests to
unbias the DMA-PL scheme in (4.2) as follows:

w
(t+1)
UDMA-PL =

∑
i∈S(t)

αi

1− qi
w

(t,K)
i , (4.4)

so that the server counterbalances the more severe losses experienced by some clients with larger
aggregation weights. We refer to this aggregation as Unbiased DMA-PL (UDMA-PL). However,
by directly aggregating models, the UDMA-PL scheme suffers a possibly large variance due to
the randomness in the set S(t). Our analysis in Lemma A.1 confirms that this variance leads to a
non-vanishing term, which prevents UDMA-PL from converging to the optimal model. Moreover,
our experimental results in Section 4.4 confirm that UDMA-PL is not a practical solution.
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In the next section, we present UPGA-PL, an unbiased aggregation scheme like UDMA-PL that
filters out the noise due to losses and then succeeds in converging to the optimal model. To the
best of our knowledge, only reference Ye et al. (2022) showed a similar result for a decentralized
FL algorithm, but it required uplink and downlink channels to have the same loss probabilities,
which is uncommon in wireless networks.

4.3 Proposed Packet Loss-Aware FL Algorithm: UPGA-PL

To solve the issues which characterized the DMA-PL and UDMA-PL aggregation schemes, we
propose the Unbiased Pseudo-Gradient Aggregation strategy (UPGA-PL):

w
(t+1)
UPGA-PL = w(t) +

∑
i∈S(t)

αi

1− qi
∆(t)

i . (4.5)

Note that both UDMA-PL and UPGA-PL rely on the knowledge of the loss probabilities {qi}Ni=1.
In practical scenarios, these probabilities can be estimated through channel measurements (Benko
& Veres, 2002; Yajnik, Moon, Kurose, & Towsley, 1999).

As UDMA-PL, UPGA-PL is unbiased because it aggregates the pseudo-gradients with weights
that compensate for clients’ different loss probabilities. At the same time, by aggregating the
pseudo-gradients {∆(t)

i }i∈S(t) rather than the local models {w(t,K)
i }i∈S(t) (as UDMA-PL does),

UPGA-PL can be seen as a stochastic approximation algorithm (Borkar, 2009) with stepsize η(t)
c

(it is easy to verify that each ∆(t)
i is proportional to η(t)

c ). Stochastic approximation theory suggests
that convergence to the optimal model is guaranteed if η(t)

c decreases fast enough to filter out the
noise due to the randomness in the set S(t) (i.e.,

∑
t(η

(t)
c )2 < +∞), but also slow enough for

the algorithm to be able to move from the initial tentative model (w(1)) to the optimal one (i.e.,∑
t η

(t)
c = +∞). Our theoretical analysis below confirms these qualitative considerations: the

UPGA-PL aggregation strategy enables the convergence of FL training algorithms to the optimal
model even in the presence of lossy channels.

With abuse of language, we refer to the FL algorithm defined by the local update rule in (2.2)
and the UPGA-PL aggregation scheme in (4.5) simply as UPGA-PL. The complete procedure is
summarized in Algorithm 5. Similarly, we denote by DMA-PL and UDMA-PL the FL algorithms
obtained replacing line 8 in Algorithm 5 with (4.2) and (4.4), respectively.

In the following, we analyze the convergence of UPGA-PL.

4.3.1 Convergence Analysis

For the analysis of the UPGA-PL algorithm, we make the following hypotheses. Assump-
tions 10 and 11 are standard in the literature on convex optimization (Bottou et al., 2018, Sec-
tions 4.1, 4.2). Assumptions 12 and 13 are standard hypothesis in the analysis of federated opti-
mization algorithms (J. Wang et al., 2021; X. Li et al., 2020, Section 6.1).

Assumption 10. {Fi}Ni=1 are L-smooth: for all v and w, Fi(v) ≤ Fi(w) + ⟨∇Fi(w),v −w⟩+
L
2 ∥v −w∥22.
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Algorithm 5: UPGA-PL (Unbiased Pseudo-Grad. Aggregation under Packet Loss)

Input : Initial model w(1); Weights α = {αi}Ni=1; Client loss probabilities
q = {qi}Ni=1; Learning rates {η(t)

c }t∈T ; Local steps K.
1 for round t = 1, . . . , T do
2 for client i = 1, . . . , N , in parallel do
3 w

(t,0)
i = w(t);

4 for k = 0, . . . ,K − 1 do
5 w

(t,k+1)
i = w

(t,k)
i − η(t)

c ∇Fi(w(t,k)
i ,B(t,k)

i );

6 ∆(t)
i ← w

(t,K)
i −w

(t,0)
i ;

7 Receive {∆(t)
i } from a subset S(t) ⊆ N of clients;

8 w
(t+1)
UPGA-PL ← w(t) +

∑
i∈S(t)

αi
1−qi

∆(t)
i ;

Output: Final model w
(T +1)
UPGA-PL.

Assumption 11. {Fi}Ni=1 are µ-strongly convex: for all v and w, Fi(v) ≥ Fi(w)+⟨∇Fi(w),v−
w⟩+ µ

2 ∥v −w∥22.

Assumption 12. Let B(t,k)
i be a random batch sampled from the i-th device’s local data

uniformly at random. The variance of stochastic gradients in each device is bounded:

E
∥∥∥∇Fi(w(t,k)

i ,B(t,k)
i )−∇Fi(w(t,k)

i )
∥∥∥2
≤ σ2

i for i ∈ N .

Assumption 13. The expected squared norm of stochastic gradients is uniformly bounded, i.e.,

E
∥∥∥∇Fi(w(t,k)

i ,B(t,k)
i )

∥∥∥2
≤ G2 for i ∈ N and t ∈ T , j = 0, . . . , E − 1.

We use the indicator variable ξ(t)
i to denote the outcome of the t-th communication round between

the server and the client i: ξ(t)
i equals one if and only if the server correctly receives client-i’s local

model at round t.

Assumption 14. At each round t, the communication outcomes {ξ(t)
i }Ni=1 are independent among

clients. For each client i, the outcomes {ξ(t)
i }t∈T are independent and identically distributed (iid)

over time with mean E[ξ(t)
i ] = 1− qi.

In Assumption 14, qi denotes the probability that the overall communication between the server
and client i fails either because client i does not receive the global model w(t) or because later
the server does not receive client-i’s update ∆(t)

i . If these events are independent, and qsi and qis

denote the downlink and uplink loss probabilities, respectively, then qi = 1− (1− qsi)(1− qis). If
ARQ or FEC techniques are employed, then qi can be interpreted as the residual loss probability
experienced by the i-th client after potential retransmissions and/or error corrections, therefore our
analysis remains agnostic to these methods.

Assumption 14 provides the flexibility for different loss probabilities across clients in the uplink
and downlink transmissions, but does not consider spatial or temporal correlations, such as those
arising from inter-channel interference or fading effects. We believe that results for Markov Chain
gradient descent methods (where random samples are taken on the trajectory of a Markov chain)
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could be used to study the convergence of UPGA-PL under correlated channels (Sun et al., 2018;
Rodio, Faticanti, et al., 2023a). However, we defer this analysis to future work.

Convergence results for FL algorithms require to bound statistical heterogeneity in terms of some
metric (e.g., X. Li et al. (2020); J. Wang et al. (2020); M. Chen et al. (2021)). We adopt the same
metric introduced in X. Li et al. (2020):

Definition 4.3.1. Let F ∗ and F ∗
i be the minimum values of F and Fi, respectively. The parameter

Γ ≜ F ∗ −
∑N

i=1 αiF
∗
i quantifies the degree of data heterogeneity.

If the local datasets are identical, then the functions {Fi}Ni=1 coincide and Γ = 0. In general, Γ is
larger the more heterogeneous the local data distributions are.

Theorem 4.3.1 (proof in Appendix A) establishes UPGA-PL convergence under lossy channels.
It builds upon X. Li et al. (2020), which considers the ideal lossless scenario. Our primary tech-
nical contribution is captured in Lemma A.1 (Appendix A), with the additional term in (4.7) that
accounts for the lossy channels.

Theorem 4.3.1 (Convergence under lossy channels). Let Assumptions 10–14 hold and L, µ, σi,
G, qi defined therein. Choose diminishing learning rates as η(t+1)

c = 2/µ
8κ+t , with κ ≜ L/µ. Then,

for each t ∈ T , UPGA-PL satisfies:

E
[
F (w(t+1)

UPGA-PL)
]
− F ∗ ≤ κ

8κ+ t

(2KC
µ

+ 4L
∥∥∥w(1) −w∗

∥∥∥2
)

︸ ︷︷ ︸
asymptotically vanishing term

, (4.6)

where:

C =
N∑

i=1
α2

i σ
2
i + 2(K − 1)2G2 + 6LΓ +KG2

N∑
i=1

α2
i

qi

1− qi︸ ︷︷ ︸
effect of lossy channels

. (4.7)

4.3.2 Discussion

UPGA-PL enables convergence under lossy channels Theorem 4.3.1 proves that the ob-
jective F (w), evaluated on the sequence of models {w(t)}t>0 computed by UPGA-PL, con-
verges in expectation to its minimum value F ∗. Moreover, as the function F is strongly con-
vex and then has a unique minimizer, the trained model converges also to the optimal one, i.e.,
limt→∞ E[w(t)

UPGA-PL] = w∗, where w∗ ∈ Rn ∈ arg minw F (w). The UPGA-PL aggregation
strategy (with decreasing learning rates) does not suffer then from residual convergence errors as
DMA-PL and UDMA-PL do.

The effect of packet losses on the convergence The constant C (see (4.7)) quantifies the im-
pact of lossy channels on the convergence in terms of the clients’ loss probabilities {qi}Ni=1. As ex-
pected, the larger the loss probabilities, the larger isC and the slower the convergence predicted by
the bound in (4.6). Moreover, the convergence rate in Theorem 4.3.1 (O(1/t)) is comparable to the
convergence rate of FedAvg in absence of losses under the same assumptions (O(1/(Kt))) (X. Li
et al., 2020).
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Convergence speed vs. residual error The bound in (4.3) suffers from a non-zero residual error
but may achieve linear convergence (At decreases exponentially fast); our bound in (4.6) removes
such error at the cost of a sublinear convergence rate, i.e., of slower convergence. One may then
think that for a short duration of the training period, DMA-PL is preferable to UPGA-PL. In reality,
the bound (4.3) achieves such a rate requiring the use of full gradients at each client (i.e., σ2

i = 0)
and a single local gradient update at each communication round (i.e., K = 1) (M. Chen et al.,
2021); however, these assumptions do not correspond to FL practice (Kairouz et al., 2021).

4.4 Experimental Evaluation

4.4.1 Experimental setup

In the experiments, we consider a population with N = 10 clients. We split the population into
two groups Gi, i = 1, 2, to which we associate different packet loss probabilities qi, i = 1, 2.
After evaluating different loss configurations, we present a challenging setting with q1 = 0.1 and
q2 = 0.9.

We perform experiments on two datasets: the LEAF Synthetic Dataset for multinomial classi-
fication (Caldas et al., 2019) and the real-world MNIST dataset for handwritten digit recogni-
tion (L. Deng, 2012). To introduce statistical heterogeneity in the clients’ datasets, we distribute
the data among clients in a non-IID fashion. The LEAF Synthetic Dataset allows direct control of
statistical heterogeneity through the parameters γ and δ: in our experiments, we set γ = δ = 1.
For MNIST, we generate a non-IID data distribution by splitting the labels among clients, with
each client containing samples from only two classes (Achituve, Shamsian, Navon, Chechik, &
Fetaya, 2021). We define Problem (4.1) with αi = |Di|/|D|,∀i ∈ N .

For the Synthetic LEAF dataset, we train a linear classifier with a ridge penalization of parameter
5× 10−4, which defines a strongly convex objective function that well aligns with our theoretical
assumptions. As for MNIST, we use a CNN architecture with two convolutional and two fully con-
nected layers, resulting in a non-convex objective function that introduces additional complexity
to the learning process.

We compare UPGA-PL, in Algorithm 5, with DMA-PL (aggregation strategy in (4.2)), UDMA-PL
(aggregation strategy in (4.4)), and an ideal lossless FedAvg (when qi = 0 ∀i ∈ N ).
In the experiments, UDMA-PL and UPGA-PL rely on the knowledge of {qi}Ni=1. For all
algorithms, we tuned the learning rate ηc = {η(t)

c }t>0 via grid search with values η =
{10−3, 10−2.5, 10−2, 10−1.5, 10−1}. The reported results are averaged over 10 random seeds.

4.4.2 Experimental results

Figures 4.1–4.2 compare the train loss and test accuracy of DMA-PL, UDMA-PL, and UPGA-PL on
the Synthetic LEAF and MNIST datasets. For both datasets, we include the reference performance
of the ideal lossless FedAvg.

UPGA-PL outperforms the baselines and converges to the optimal model The experimen-
tal results unanimously confirm the advantages of the UPGA-PL aggregation strategy in terms of
train loss and test accuracy on the two datasets. Indeed, UPGA-PL improves the state-of-the-art
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Figure 4.1: Train loss/test accuracy on the Synthetic LEAF dataset.

solutions by 12 percentage points on the Synthetic LEAF dataset (Fig. 4.1b) and by 6 percentage
points on the MNIST dataset (Fig. 4.2b). Moreover, UPGA-PL nearly attains the same perfor-
mance as the FedAvg algorithm in lossless scenarios after around 150 communication rounds for
both the Synthetic LEAF dataset (Fig. 4.1a) and the MNIST dataset (Fig. 4.2a).

In line with our theoretical analysis, the numerical experiments also confirm the effects of lossy
channels on the convergence captured by Theorem 4.3.1 and discussed in Section 4.3.2.

The effects of packet losses on the convergence FL algorithms perform best under the ideal
scenario with lossless channels (qi = 0, ∀i ∈ N ). Nevertheless, our experiments show that a
severe amount of packet losses (q1 = 0.1, q2 = 0.9) slows down but does not prevent convergence
to the optimal model, provided that UPGA-PL is used (UPGA-PL curve overlaps with FedAvg
curve in the absence of losses).

Residual errors DMA-PL and UDMA-PL suffer from non-vanishing errors. The residual error
of DMA-PL is evident in Figure 4.2a, where its loss curve reaches a plateau around the value
0.3, while UPGA-PL converges to the value 0.0, as the ideal FedAvg. On the other hand, the
UDMA-PL aggregation strategy, which should, in theory, unbias the DMA-PL scheme, does not
filter the variance introduced by the lossy channels and suffers a noisy convergence: the UDMA-PL
performance dramatically oscillates in the experiments, and its mean accuracy lies around 50–
70%.

4.5 Conclusion

This chapter addressed the problem of training FL algorithms over real-world wireless networks
with lossy channels. We considered the presence of independent and identically distributed packet
losses in the communication channels between the orchestrating server and the clients and we
showed that the quality of the learned model is highly sensitive to the choice of the aggregation
strategy. To mitigate the negative effects of packet losses, we proposed UPGA-PL, an algorithm
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Figure 4.2: Train loss/test accuracy on the MNIST dataset.

that aggregates pseudo-gradients rather than models and that effectively converges to the optimal
model under asymmetric lossy channels. While its complexity is comparable to FedAvg, under
severe lossy settings UPGA-PL significantly outperformed the state-of-the-art solutions (M. Chen
et al., 2021; Su et al., 2023) and attained very close performance to the optimal scenario with ideal,
lossless channels at the cost of a slower convergence. Our work enabled optimal FL training under
lossy channels, and—we believe—opened interesting research questions. For example, if losses
affect only a part of the transmitted model, would it be possible for the clients or the server to take
advantage of the partial information received instead of ignoring it (as DMA-PL, UDMA-PL, and
UPGA-PL do)? What happens if the losses are correlated (e.g., due to inter-channel interference
and/or fading)? What if they change over time?

Remark

Subsequent to the publication of this research, we identified related work by Salehi and Hossain
(2021), which also analyzes the convergence of FL algorithms under lossy communication chan-
nels. Although they propose a resource allocation strategy to control packet losses—specifically,
they develop a scheduling policy for the allocation of radio blocks to each client, aligning with
previous literature (Wen et al., 2019; M. Chen et al., 2021; Su et al., 2023), yet distinct from our
UPGA-PL algorithm—their analysis already demonstrated convergence of FL algorithms under
lossy communications challenges. We acknowledge the oversight of this seminal contribution and
extend our sincerest apologies to the authors for this omission.



CHAPTER 5
Cooperative Inference
Systems: The Case of
Early Exit Networks

This chapter is based on our work Kaplan, Rodio, Salem, Xu, and Neglia (2024), currently under
peer review and available as a preprint at https://arxiv.org/abs/2405.04249.

5.1 Motivation

After addressing client participation heterogeneity in Chapters 2 and 3, and heterogeneity in net-
work resources in Chapter 4, we devote this chapter to hardware heterogeneity. Network nodes or
clients (e.g., end-devices, edge servers, cloud infrastructures) often exhibit varying memory and
computational capacities (Ren et al., 2023; Campolo, Iera, & Molinaro, 2023), as discussed in
Section 1.3.2.3. This source of heterogeneity makes it infeasible to deploy a uniform ML model
across all network nodes (Lim et al., 2020; Kairouz et al., 2021).

To overcome this problem, Cooperative Inference Systems (CISs) have been developed. These
systems enable less capable devices to offload parts of their inference tasks to more powerful
devices within the network, thereby leveraging their larger ML models to enhance overall perfor-
mance (Salem et al., 2023; Ren et al., 2023).

Most research on CISs assumes the availability of such models and primarily focuses on either
optimizing their placement within a network and/or identifying a beneficial cooperative serving
policy (E. Li et al., 2019; Zeng et al., 2019; Salem et al., 2023; Ren et al., 2023). Significantly less
research has focused on the training methodologies for deploying heterogeneous models within a
CIS. This chapter specifically explores scenarios in which models are collaboratively trained using
distributed datasets, hosted on the very clients that subsequently perform inference tasks.

Federated learning algorithms (McMahan et al., 2017; Kairouz et al., 2021; T. Li, Sahu, Zaheer,
et al., 2020) typically involve the training of a single, common ML model, but can be extended
to simultaneously train models of different sizes. Knowledge distillation (Lin et al., 2020; Mora,
Tenison, Bellavista, & Rish, 2022) can enable knowledge transfer among heterogeneous models—
but requires a public dataset. Alternative approaches involve the simultaneous training of models
that share a subset of parameters.
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Within the latter approach, prevalent methods include the joint training of Deep Neural Networks
(DNNs) that either share entire layers or specific parameters within a layer. This can be achieved
through techniques such as ordered dropout (Diao et al., 2020; Horvath et al., 2021) or early
exits (Teerapittayanon, McDanel, & Kung, 2016, 2017). The final configuration of these shared
parameters is influenced by the diverse and potentially conflicting requirements of the different
models. For instance, parameters within a shared layer may learn to identify features of varying
complexity depending on whether the layer is part of a deeper or shallower DNN.

Despite its importance, previous research has largely overlooked this unique challenge within
CISs. Existing training methods, particularly those designed for distributed early exit net-
works (Teerapittayanon et al., 2017; Nawar et al., 2023; Ilhan et al., 2023), treat all models equally,
failing to account for the heterogeneity in model capacities and performance. Only a few studies
have empirically suggested assigning weights based on model complexity (Hu, Dey, Hebert, &
Bagnell, 2019; Kaya, Hong, & Dumitras, 2019), but they still disregard the corresponding infer-
ence request rates.

To bridge this gap, this chapter introduces a first, theoretically grounded FL training algorithm
specifically designed to improve the overall CIS inference performance.

Our contributions.

• We formalize the first inference-aware FL training framework for CISs, with the goal of
maximizing overall inference accuracy. We reformulate the FL problem (Eq. 1.2) taking
into account the inference requests for each sub-model inside the CIS. During training,
we allocate larger weights to the models expected to handle a larger volume of inference
requests.

• We present Fed-CIS, a novel and practical Inference-Aware FL algorithm designed for
CISs. Two tuning parameters introduce flexibility in our algorithm: the weight assigned
to each exit and the rates for the computationally stronger clients to assist the weaker ones
during training.

• We analyze the impact of our tuning parameters on the convergence of Fed-CIS in terms
of generalization error, optimization error, and bias error, providing a deeper understanding
of how these parameters affect the overall training process and final inference performance.
From this theoretical analysis, we derive practical configuration guidelines for our proposed
training algorithm.

• We evaluate the effectiveness of our algorithm, Fed-CIS, showing that it significantly
outperforms state-of-the-art methods, particularly in realistic scenarios where end devices
handle higher inference request rates.

Outline of chapter. This chapter is organized as follows. Section 5.2 provides relevant back-
ground. Section 5.3 formalizes the model training problem in a CIS and introduces our novel FL
algorithm. We present the theoretical guarantees of our approach in Section 5.3.3. Section 5.4
evaluates our algorithm against state-of-the-art (SOTA) training methods for early exit networks
in a CIS setting. Finally, Section 5.5 concludes the chapter.
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5.2 Background and Related Work

In this section, we discuss the relevant background necessary to understand Cooperative Inference
Systems, Federated Learning, and Early Exit Networks.

5.2.1 Cooperative Inference Systems

Collaborative Inference Systems (CISs) (Ren et al., 2023), also known in the literature as Inference
Delivery Networks (Salem et al., 2023), enable smaller devices to offload part of their inference
tasks to more capable devices, and represent an active field of study. The scope of collabora-
tion in these systems may vary, extending beyond the traditional device-cloud model, to include
intermediate nodes such as edge servers, regional clouds, or a collective of devices within direct
transmission range of each other (Teerapittayanon et al., 2017; E. Li et al., 2019; Zeng et al., 2019;
Ren et al., 2023; Salem et al., 2023).

The form of collaboration within a CIS can also vary widely, from split computing frameworks,
where a DNN is divided and processed across multiple nodes (Matsubara, Levorato, & Restuc-
cia, 2022), to ensemble approaches that leverage multiple models working together for improved
inference accuracy (Malka, Farhan, Morgenstern, & Shlezinger, 2022; Yilmaz, Hasırcıoğlu, &
Gündüz, 2022). In this chapter, we consider a hierarchical structure of nodes, each equipped with
increasingly complex models that collaborate by selectively forwarding inference requests to more
powerful nodes within the network (Salem et al., 2023).

While much previous work has concentrated on optimizing the deployment and utilization of al-
ready trained model in a CIS (E. Li et al., 2019; Zeng et al., 2019; Salem et al., 2023), our research
shifts focus to the less-explored challenge of training these models in a Federated Learning con-
text. Here, each CIS node uses its local dataset to contribute to the training of the set of models
intended for deployment across the network.

5.2.2 Federated Learning for a CIS

Traditional FL algorithms (e.g., FedAvg (McMahan et al., 2017), FedProx (T. Li, Sahu, Zaheer,
et al., 2020)) typically assume that the participating nodes have similar storage and computation
capacities, meaning that each node holds a DNN of the same architecture and can perform an equal
amount of computation during training.

However, recent algorithms have been developed to efficiently train multiple models of different
sizes within a network, with the most practical approach being the joint training of models that
share a subset of parameters. For instance, FjORD (Horvath et al., 2021) introduces a framework
where a DNN is pruned by channels to generate nested submodels of different sizes that can fit
into heterogeneous nodes, following a mechanism known as ordered dropout. A similar idea is
explored in HeteroFL (Diao et al., 2020). Alternative approaches involve the use of early exit
networks (Nawar et al., 2023) or a combination of these two methods (Ilhan et al., 2023). While
our algorithm and analysis apply to both pruning (e.g., ordered dropout) and early exit strategies,
we focus on early exit networks for clarity and concreteness. Early exit networks also offer the
clearest example of collaborative inference, as weaker nodes forward intermediate representations
to more powerful nodes, unlike in FjORD/HeteroFL, where the input is forwarded.
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Figure 5.1: Early Exit Networks for Collaborative Inference System. An input sample is first
passed through the initial layers of the DNN until it reaches Exit 1. If the measure of prediction
uncertainty is below the threshold T1, the prediction is served at the current node. Otherwise, the
intermediate representation of the current input is transferred to a node with greater computational
capacity, and inference continues. This process repeats until the prediction uncertainty is below
Te or the final Exit E is reached.

5.2.3 Early Exit Networks

Early Exit Networks (EENs), introduced initially as BranchyNets (Teerapittayanon et al., 2016),
extend Deep Neural Networks (DNNs) by including additional classifiers (i.e., early exits) at in-
termediate layers (Teerapittayanon et al., 2016). For instance, implementing an early exit into
a standard ResNet-34 architecture may involve adding a classifier after the 18th layer, enabling
the original ResNet-34 to also serve as a ResNet-18 (He, Zhang, Ren, & Sun, 2016). The ini-
tial motivation for such a design is to allow for faster real-time inference with less computational
cost, especially useful in computationally heavy computer vision and natural language processing
tasks (Matsubara et al., 2022, Table 4). Fig. 5.1(a) details the inference process in standard EENs.

The typical training procedure involves minimizing the expected weighted loss across all ex-
its (Teerapittayanon et al., 2016; Huang et al., 2018; H. Li, Zhang, Qi, Yang, & Huang, 2019;
Hu et al., 2019; Kaya et al., 2019):

min
www∈Rd

Ez∼D

[∑
e∈E

αe ℓ
(e)(w, z)

]
, (5.1)

where each data sample z = (x, y) is drawn from the data distribution D, with x as the input
features and y the corresponding target, www represents the EEN parameters, E = {1, . . . , E} is the
set of early exits, ℓ(e) the loss at the e-th exit, and αe ∈ R≥0 is the weight assigned to e-th exit’s
loss. In a CIS, this process extends to a distributed setting where each node holds a model with its
assigned exit and all earlier exits. During inference, the intermediate representation can be sent to
more powerful nodes, as shown in Fig. 5.1(b).



5.3 – Proposed Inference-Aware Algorithm: Fed-CIS 67

The weight coefficients αe are crucial in determining each exit’s (e ∈ E) contribution to the overall
model performance and can be assigned in various ways. Traditional training approaches generally
assign equal weights to all exits (Teerapittayanon et al., 2017; Huang et al., 2018; Nawar et al.,
2023; Ilhan et al., 2023). We refer to these methods collectively as the “Equal Weight” strategy.
Alternatively, more complex approaches have been considered that allocate weights in proportion
to each exit’s computational complexity, often measured in FLOPS, which results in assigning
more weight to later exits (Kaya et al., 2019; Hu et al., 2019, “Linear” baseline). We refer to these
methods collectively as the "FLOPS Prop" strategy. These existing approaches overlook the fact
that inference request rates can vary significantly across real-world networks, leading to accuracy
drops in likely scenarios where end devices (e.g., smartphones) with shallow models handle most
of the requests. Our proposed method addresses this issue by systematically incorporating these
varying request rates into the training process.

5.3 Proposed Inference-Aware Algorithm: Fed-CIS

This section is organized as follows. In Section 5.3.1, we formalize the CIS and the training
objective that takes into account inference requests. In Section 5.3.2, we present our algorithm for
clients in a CIS to cooperatively train an EEN. In Section 5.3.3, we provide theoretical guarantees
on the algorithm’s convergence errors.

5.3.1 Problem Description

Network Topology. In a CIS, the network is composed of a set of nodes N = {1, 2, . . . , N},
organized in a hierarchical tree structure such as a cloud-edge-device model (Ren et al., 2023),
where parent nodes possess greater computational resources and memory than their child nodes.
While we consider a tree topology for presentation purposes, we stress that the proposed algorithm
(Section 5.3.2) and its theoretical guarantees (Section 5.3.3) are broadly applicable to any directed
acyclic graph, regardless of where the most powerful nodes are positioned within the network.

Leaf nodes, which have no children, are represented by the set L ⊂ N , and each node i has a set
of child nodes, denoted by N−

i . During training, each node i holds multiple early exits, up to a
maximum exit Ei ≤ E, with the constraint that Ei > Ej , ∀j ∈ N−

i . However, during inference,
node i utilizes only its largest exit Ei to ensure the most accurate prediction. The set Ne denotes
nodes that use early exit e for inference, i.e., Ne = {i ∈ N | Ei = e}.

Real-time Inference Requests. Local inference requests arrive at each node i ∈ N with an
arrival rate λl

i ∈ R≥0. A child node i can transfer inference requests to its parent node with a
transfer rate λt

i. The total requests at node i include both its local requests and those transferred
from its children. Each node i then serves a fraction ri ∈ [0, 1] of these requests locally using its
largest exit Ei, resulting in a serving rate λs

i :

λs
i ≜

(
λl

i +
∑

j∈N −
i
λt

j

)
ri, (5.2)

while remaining requests are transferred to the parent node:

λt
i ≜

(
λl

i +
∑

j∈N −
i
λt

j

)
(1− ri). (5.3)
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Figure 5.2: An example of a two-layer network with four nodes: Node 0, Node 1, and Node 2
each receive local requests, λl

i (in requests per second, r/s), serve a portion locally, λs
i , and transfer

the remainder, λt
i, to their parent. Node 3 receives requests both locally and from its children, and

serves all requests as it has no parent.

Fig. 5.2 presents a straightforward numerical example illustrating how a CIS manages inference
requests.

The transfer rate λt
i is constrained by an upper limit µmax

i , determined by the network’s upstream
bandwidth or the target inference delays. Each node is aware of its maximum transfer rate µmax

i

and an estimate of its local arrival rate λl
i. Furthermore, nodes rank incoming samples by difficulty,

allowing them to select the fraction fi of most favorable samples to serve locally (Teerapittayanon
et al., 2016; Huang et al., 2018; Kaya et al., 2019). The data distribution of these served samples
at node i is Ds

i .

Training objective for CIS. The primary goal of training in a CIS is to minimize the total loss
across all served samples throughout the network, maximizing inference quality. We formalize
this objective as the first inference-aware training framework for CISs using EENs, where the
optimization problem is defined over the model parameters w ∈ W and the serving fractions {ri}
for each node:

P1 : min
w∈W,{ri}

∑
i∈N

λs
i Ez∼Ds

i

[
f (Ei)(w, z)

]
,

s.t., λt
i ≤ µmax

i , fi ∈ [0, 1], Eqs. 5.2 and 5.3, ∀i ∈ N . (5.4)

Building on existing research that shows deeper early exits typically yield higher inference accu-
racy (Teerapittayanon et al., 2016; Zeng et al., 2019; Baccarelli, Scardapane, Scarpiniti, Momen-
zadeh, & Uncini, 2020), we observe that smaller nodes should prioritize offloading requests to
their parent nodes. We illustrate this point by contradiction: suppose in the optimal solution of P1,
there exists a node with r∗

i > 0 and λt
i < µmax

i . By decreasing r∗
i to 0 or to a value that makes

λt
i = µmax

i and adjusting r∗
j s.t. parent node j serves these additional requests locally, we achieve

another feasible solution to P1 with a smaller loss. This allows us to simplify the optimization
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problem P1 by restricting the search space to strategies that prioritize offloading, resulting in an
equivalent optimization problem, P2, which focuses on minimizing losses at early exits:

P2 : min
w∈W

∑
e∈E

Λe Ez∼D̂e

[
f (e)(w, z)

]
, (5.5)

where Λe ≜
∑

i∈Ne

(
λl

i +
∑

j∈N −
i
λt

j − λt
i

)
is the total serving rate of all nodes using exit e at

inference time, and the data distribution of serving samples at early exit e is D̂e.∗

In P2, the serving rates Λe are constant, depending only on the arrival rates λl
i and the maximum

transfer rates µmax
i . Before training begins, the cloud can collect this information from all nodes

to compute the serving rates Λe.

5.3.2 The Fed-CIS Algorithm

We propose a FL algorithm that enables network nodes to collaboratively train an EEN for Prob-
lem P2 using their local datasets. Each node i is designed to hold all exits up to its largest exit Ei.
Although node i only uses exit Ei for inference, it can still play a crucial role in training smaller
exits, particularly when it owns a substantial amount of data.

At each communication round, the server follows a two-step sampling process: first, it samples
a set of nodes to participate in training, as in traditional FL algorithms; then, it selects a specific
early exit for each chosen node to train. The probability that a node i is selected to train a particular
early exit e is denoted by pi,e, while p ∈ RN×E represents the overall probability matrix. The set
of nodes with a non-zero probability of training exit e is Ce ≜ {i ∈ N | pi,e > 0}, and the set of
all samples from nodes in Ce is De,p ≜ ∪i∈CeDi, where node i holds samples Di.

Our FL algorithm aims to minimize a proxy of the objective in P2, where the empirical loss at
each early exit e is replaced by the empirical loss computed on the dataset De,p. Rather than
strictly matching the weight Λ̃e to the expected inference request rate Λe, we adopt a more flexible
training strategy that allows them to differ. This choice is supported by our theoretical results
in Section 5.3.3. However, even without the analysis, it is evident that when exit e has a high
inference request rate Λe but limited data |De,p|, the empirical loss may be too noisy, making it
preferable to set Λ̃e ≪ Λe.

Our algorithm works as follows: At each communication round t, the server samples nodes and
their corresponding early exits based on the probability matrix p (Lines 3-4). The server then
broadcasts the current global model to the sampled nodes (Line 5). Each node i performs multiple
steps of mini-batch gradient descent on the loss associated with its sampled early exit e, and
returns the updated model to the server (Lines 6-10). TThe server aggregates these updates by
computing a weighted sum of the pseudo-gradients from each node-exit pair (i, e) (Line 11). Each
pair’s weight is determined by three key factors: (i) the importance Λ̃e assigned to exit e; (ii) the
proportion of the dataset that node i used to train relative to the total dataset used to train exit e
( |Si|

|De,p| ); and (iii) the inverse of the probability that node i was selected to train exit e ( 1
pi,e

). The
full procedure is summarized in Algorithm 6.

∗In P2, the transfer rates are given by the recurrence relation λt
i = min

{
µmax

i , λl
i +
∑

j∈N −
i

λt
j

}
.
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Algorithm 6: Fed-CIS (Federated Learning for Cooperative Inference Systems)

1 Input: a randomized initial model w(1), total communication rounds T , local

steps K, global learning rate ηs, local learning rates {η(t,k)
c } at round t and local

step k, sampling matrix p, aggregation weights Λ̃.
2 Output: w(T ).
3 for t = 1, . . . , T do
4 Server samples the set N (t) of node/exit pairs w.r.t. p.
5 Server broadcasts the model w(t) to all nodes in N (t).
6 for (i, e) ∈ N (t) in parallel do
7 w

(t,0)
i,e ← w(t)

8 for k = 0, . . . ,K − 1 do
9 Node i selects a random batch B(t,k)

i

w
(t,k+1)
i,e ← w

(t,k)
i,e − η(t,k)

c

1
|B(t,k)

i |

∑
z∈B(t,k)

i

∇f (e)(w(t,k)
i,e , z)

10 Node i sends w
(t,K)
i,e to the server

11 The server updates its global model:

w(t+1) ← Proj

w(t) + ηs

∑
(i,e)∈N (t)

Λ̃e
|Di|
|De,p|

1
pi,e

(w(t,K)
i,e −w(t))



5.3.3 Generalization-Bias-Optimization Error Decomposition

Our analytical results assume that the serving distribution of every exit e is the same, i.e., D̂e =
D, ∀e. Let w(T ) be the output of our Algorithm 6, FD,Λ(w(T )) be the corresponding expected
loss in Eq. (5.5) that we aim to minimize, and F ⋆

D,Λ be its minimum value. In this section, we

provide an upper-bound for the difference between FD,Λ(w(T )) and F ⋆
D,Λ.

More precisely, we investigate the true error of the algorithm:

ϵtrue ≜ ED,AΛ̃

[
FD,Λ

(
w(T )

)]
− F ⋆

D,Λ, (5.6)

where AΛ̃ is our algorithm and D is the union of the nodes’ datasets drawn from D.

We first list the assumptions needed for our results, denoting node i’s empirical loss on early exit e
of model w as Fi,e(w), i.e., Fi,e(w) ≜ 1

|Di|
∑

z∈Di
ℓ(e)(w, z). We can see from our aggregation

rule that Algorithm 6 is minimizing FD,Λ̃(w) ≜
∑

e∈E Λ̃e
∑

i∈Ce

|Di|∑
i∈Ce

|Di|
Fi,e(w). Let w⋆

i,e,

w⋆
Λ̃, and w⋆

D be the minimizers of Fi,e, FD,Λ̃, and FD,Λ, respectively.

Assumption 15. The loss function is bounded: ∀w ∈ W and z ∈ Z, f(w, z) ∈ [0,M ].

Assumption 16. The hypothesis spaceW ⊂ Rd is convex and compact with diameter diam(W),
and contains the minimizers w⋆

i,e, w⋆
Λ̃ and w⋆

D in its interior.
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Assumption 17. {Fi,e}(i,e)∈N ×E are L-smooth: for all v and w inW ,
∥∇Fi,e(v)−∇Fi,e(w)∥2 ≤ L ∥v −w∥2.

Assumption 18. {Fi,e}(i,e)∈N ×E are µ-strongly convex: for all v and w inW ,
Fi,e(v) ≥ Fi,e(w) + ⟨∇Fi,e(w),v −w⟩+ µ

2 ∥v −w∥22.

Assumption 19. Let Bi be a random batch sampled from the i-th node’s local data
uniformly at random. The variance of stochastic gradients in each node is bounded:
E ∥∇Fi,e(w,Bi)−∇Fi,e(w)∥2 ≤ σ2

i,e for all w inW and (i, e) ∈ N × E .

Assumption 15 is standard in statistical learning theory (e.g., Mohri, Rostamizadeh, and Talwalkar
(2018); Shalev-Shwartz and Ben-David (2014)), while Assumptions 16–19 are standard in the
analysis of federated optimization algorithms (e.g., J. Wang et al. (2021); X. Li et al. (2020);
Rodio, Faticanti, et al. (2023b)). We observe that Assumptions 16, 17, and 19 jointly imply that
the stochastic gradients are bounded. We denote this bound by G, i.e., E ∥∇Fi,e(w,Bi)∥2 ≤ G2

for w ∈ W and (i, e) ∈ N × E .

Theorem 5.3.1 provides an upper bound on the true error of our algorithm in terms of the sum
of three components: a generalization error, a bias error (due to the mismatch between FD,Λ̃ and
FD,Λ), and an optimization error. A detailed proof is available in the Appendix D.

Theorem 5.3.1. Under Assumptions 15–19, the true error of the output w(T ) of Algorithm 6 with
learning rate η(t,k)

c = 2
µ(γ+(t−1)K+j+1) and γ ≜ max{8κ,K} − 1 can be bounded as follows:

ϵtrue ≤ O
(

E∑
e=1

Λ̃e

√
Pdim(He)
|De,p|

)
︸ ︷︷ ︸

ϵgen

+O
(
distTV(Λ̃,Λ)

)
︸ ︷︷ ︸

ϵbias

+O
(
B(Λ̃,p,σ, {|Di|}(i,e)∈N ×E)

KT

)
︸ ︷︷ ︸

ϵopt

,

(5.7)

where κ ≜ L
µ , Pdim(He) represents the pseudo-dimension of the class of models for exit e, distTV

is the total variation distance, Λ = (Λ1, . . . ,ΛE), Λ̃ = (Λ̃1, . . . , Λ̃E), and the expression of B(·)
is provided in Theorem D.4.

5.3.4 Configuration Rules

Theorem 5.3.1 shows that the choice of aggregation weights Λ̃ in Algorithm 6 (Line 11) affects all
three error components: generalization error, optimization error, and bias error—each minimized
by a different choice of Λ̃.

The bias error ϵbias is dominant when each exit e is trained on a large dataset De,p (making ϵgen
small) and the number of communication rounds T is high (making ϵopt small). In such settings,
the optimal strategy sets the aggregation weights Λ̃ equal to the expected serving rates Λ. We
refer to this configuration rule as “Serving Rate”, which effectively eliminates the bias error, as
distTV(Λ̃,Λ) = 0. However, optimization and generalization errors can also play a significant
role. In these cases, deviating Λ̃ from Λ may reduce these errors, though it introduces a non-zero
bias error.

The optimization error ϵopt is strongly influenced by the gradient variance σ2
i,e at each early exit e,

as shown by the B(·) term, whose complete expression can be found in Theorem D.4. Empirical
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evidence shows that gradient variance is significantly higher at the initial exits compared to the
later ones, making the optimization error especially sensitive to the stochastic gradients produced
at these early stages.† To reduce ϵopt, earlier exits with higher variance should be assigned lower
aggregation weights Λ̃e < Λe to lessen their impact during training. In scenarios where the opti-
mization error dominates, it follows that minimizing ϵopt involves setting the aggregation weights
Λ̃e inversely proportional to the gradient variance σ2

i,e. We observe that this approach alters the
weights in the same direction as the “FLOPS Prop” strategy (described in Section 5.2.3), which
also assigns larger weights to more powerful models.

The generalization error, on the other hand, is affected by the ratio Pdim(He)/|De,p|. In prac-
tice, Pdim(He) acts as a proxy for the complexity of the model at exit e. It follows that exits
with a larger model (i.e., larger Pdim(He)), and smaller dataset (i.e., smaller |De,p|), contribute
more to this error component, and thus reducing the aggregation weights associated to these exits
minimizes ϵgen. In extreme cases where the generalization error is dominant, the optimal strategy
requires setting aggregation weights to zero for all exits except the one with the lowest complexity
ratio Pdim(He)/|De,p|. The probabilities pi,e can also play a role in further reducing the general-
ization error, whereby powerful nodes periodically train exit e, practically increasing the sample
size De,p and leading to a reduced ϵgen.

In many realistic scenarios, it is likely that no single error component is dominant, and one might
consider configuring our FL algorithm by minimizing the entire bound in Theorem 5.3.1. How-
ever, this approach is often impractical due to the complexities involved in estimating theoretical
parameters, such as the Lipschitz constant L and the strong convexity constant µ. To address this
issue, our experimental findings suggest that a hybrid strategy, which balances the reduction of
both bias and optimization errors, offers robust performance across many settings. For the remain-
der of this paper, we refer to this heuristic approach as “Balanced Adj”, where the abbreviation
“Adj” stands for Adjustment.

5.4 Experimental Evaluation

In this section, we present experimental results that validate our theoretical analysis in Sec-
tion 5.3.3 and highlight the versatility of our algorithm across various CIS serving rate settings.

5.4.1 Training Details

We conduct experiments on the CIFAR10 and CIFAR100 datasets, employing the ResNet-18
model architecture (He et al., 2016). Both datasets and model are widely used to benchmark
FL algorithms in the presence of device heterogeneity and EENs (H. Li et al., 2019; Hu et al.,
2019; Kaya et al., 2019; Diao et al., 2020; Horvath et al., 2021; Ilhan et al., 2023). We insert early
exits after the 2nd and 5th residual blocks for CIFAR10 and after the 5th and 7th residual blocks
for CIFAR100. For reproducibility, all dataset details, training infrastructure, and hyperparameters
are provided in Appendix F.

†Experimental evidence is provided in Appendix E.
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5.4.2 Evaluation Methodology

Baselines. Our work represents the first attempt to develop a FL training algorithm for use within
a CIS. Due to the lack of established baselines for direct comparison, we compare our approach
to SOTA algorithms proposed to train traditional EENs, focusing on those that have a straight-
forward application to FL and CIS settings (see Section 5.2.3 for a comprehensive description of
these methods). The two strategies in this category are: (i) “Equal Weight,” which assigns equal
weight to all early exits (Teerapittayanon et al., 2017; Huang et al., 2018), and (ii) “FLOPS Prop,”
which weights the exits according to their FLOPS (Kaya et al., 2019). While other centralized
training methods, such as those proposed by Hu et al. (2019); H. Li et al. (2019), could poten-
tially be adapted for our purposes, their extension is less straightforward and would require extra
computation by the nodes. We also implement the (iii) “Serving Rate” and (iv) “Balanced Adj”
strategies, both directly derived from our analysis in Section 5.3.3. The code for our experimental
framework is publicly available.

CIS Topology. We utilize a hierarchical network topology as defined in Section 5.3.1 and con-
sidered in related works (Teerapittayanon et al., 2017; Ren et al., 2023) with seven nodes: four in
the first layer, two in the second, and one in the third, each holding an increasing portion of the
shared model according to their network layer.‡

In Section 5.4.3, we present results for two data partition settings: (a) “equal data partition," where
data is evenly distributed across all network layers, and (b) “biased data partition," where data is
heavily concentrated on the most powerful devices.

Serving Rates. We assume that all inference requests initially arrive at the leaf nodes (λl
i =

0,∀i ∈ N \ L). During inference, each node i assesses the confidence score of the incoming
requests, serving the simplest ones based on its serving rate λs

i and forwarding the remaining,
more complex requests according to its transfer rate λt

i. We evaluate a wide range of serving rates
Λ, including scenarios where (i) the least powerful nodes serve most of the requests; (ii) request
rates are evenly distributed across all layers; and (iii) the most powerful nodes serve most of the
requests. To denote these serving rates, we use the notation x-y-z, where x, y, and z represent the
percentage of inference requests served by nodes using Exits 1, 2, and 3, respectively.

5.4.3 Experimental Results

Table 5.1 presents our results on the CIFAR10 and CIFAR100 datasets under the “equal data
partition” setting. On CIFAR10, our “Serving Rate” and “Balanced Adj” strategies consistently
outperform the “Equal Weight” and “FLOPS Prop” methods across all CIS serving rate configu-
rations, especially in scenarios where the smallest models handle most of the inference requests,
such as in the 80-15-5, 60-30-10, and 45-35-20 settings. In these cases, both “Equal Weight” and
“FLOPS Prop” perform poorly, as they fail to account for the actual distribution of serving rates.
Specifically, in the 80-15-5 setting, “Serving Rate” outperforms “Equal Weight” by 4.3 percent-
age points (p.p.) and “FLOPS Prop” by 22.1 p.p., while in the 5-15-80 setting, “Balanced Adj”
surpasses them by 2.5 p.p. and 1.3 p.p., respectively.

‡We conducted additional experiments with a larger network consisting of 17 total nodes, which confirmed the
consistency of our results. Due to computational constraints, this larger network was not used for all experiments.
Detailed results are in Appendix G, Table D.2.
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Table 5.1: Experimental results for a variety of CIS serving rates on the CIFAR10 and CIFAR100
datasets using an “equal data partition” across the network layers. All reported accuracy values
are the mean value over three independent random seeds.

CIS Serving Rate Setting

Dataset Strategy 80-15-5 60-30-10 45-35-20 33-33-33 20-35-45 10-30-60 5-15-80

CIFAR10
Equal Weight 49.9 ± 1.2 60.6 ± 0.9 68.9 ± 0.6 74.9 ± 0.2 80.4 ± 0.2 83.8 ± 0.3 85.1 ± 0.4

FLOPS Prop 32.1 ± 3.7 47.3 ± 2.9 58.5 ± 2.3 67.3 ± 1.7 76.4 ± 1.1 83.2 ± 0.7 86.3 ± 0.6

Serving Rate (ours) 54.2 ± 2.4 62.6 ± 1.5 69.2 ± 1.3 74.9 ± 0.2 80.9 ± 0.2 84.6 ± 0.5 86.7 ± 0.5

Balanced Adj (ours) 53.4 ± 2.2 61.1 ± 1.2 69.2 ± 0.7 74.9 ± 0.3 80.4 ± 0.5 85.0 ± 0.2 87.6 ± 0.5

CIFAR100
Equal Weight 39.8 ± 1.2 45.9 ± 0.9 51.0 ± 0.6 55.2 ± 0.3 58.3 ± 0.2 60.3 ± 0.2 61.1 ± 0.3

FLOPS Prop 30.4 ± 0.7 40.0 ± 0.6 48.3 ± 0.4 53.3 ± 0.0 58.0 ± 0.1 60.9 ± 0.1 62.1 ± 0.1

Serving Rate (ours) 45.0 ± 0.7 50.2 ± 0.7 53.0 ± 0.8 55.2 ± 0.3 53.2 ± 1.0 56.2 ± 0.1 57.9 ± 0.5

Balanced Adj (ours) 46.6 ± 1.2 49.5 ± 0.8 52.1 ± 0.6 54.8 ± 0.3 57.4 ± 0.2 59.3 ± 0.8 60.7 ± 0.2

To better understand these results, we analyze how different training strategies affect Λ̃ and, in
turn, the CIS test accuracy. First, setting Λ̃ equal to the serving rate Λ minimizes the bias error
ϵbias, which is the objective of our “Serving Rate” strategy. On the CIFAR10 task, with T = 100
communication rounds and a sufficiently large dataset, ϵbias dominates, allowing “Serving Rate” to
empirically minimize this term and perform well across various serving rate settings. In contrast,
“Equal Weight” assigns equal weights to all exits, which can significantly increase ϵbias as serving
rates become more uneven, likely leading to poor performance in scenarios with extreme serving
rate imbalances.

On the CIFAR100 dataset, we observe performance trends similar to CIFAR10 across various
device-biased CIS serving rate settings, including 80-15-5, 60-30-10, 45-35-20, and 33-33-33.
However, when the largest models handle most of the requests, the “FLOPS Prop” baseline out-
performs our “Serving Rate” strategy, likely due to the greater difficulty of the CIFAR100 task,
which results in a larger optimization error. As noted in Section 5.3.4, strategies like “FLOPS
Prop” are expected to perform well in these scenarios, though its performance drops significantly
when the inference load shifts to the first-layer nodes. This shift increases the bias error because
Λ̃ diverges from Λ, causing a significant drop in CIS accuracy. This is evident in the 80-15-5
configuration, where “Serving Rate” and “Balanced Adj” outperform “FLOPS Prop” by 14.6 and
16.2 p.p., respectively.

In Tables 5.2 and 5.3, we present results from experiments on CIFAR10 and CIFAR100 using
the alternative “biased data partition” scheme, where nodes with greater memory and computa-
tional capacity are allocated more data. On CIFAR10, “Serving Rate” and “Balanced Adj” again
consistently outperform other baselines across all CIS serving rate settings, while on CIFAR100,
“Balanced Adj” remains strong in all scenarios, especially when the first-layer nodes handle most
inference requests.

Combining these findings with those from the “equal data partition” experiments, our results show
that the “Balanced Adj” strategy either leads or closely matches the performance of the best meth-
ods across various CIS configurations. Overall, these experiments reinforce the core insights from
Section 5.3.4, highlighting the critical role of error decomposition in selecting aggregation weights
Λ̃. In particular, configuring Λ̃ to minimize bias error ϵbias proves often beneficial. Additionally,
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Table 5.2: Experimental results for a variety of CIS serving rates on the CIFAR10 and CIFAR100
datasets using the “biased data partition”, where the networks layers hold 14.3%, 28.6%, and
57.1% of the data, respectively. All reported accuracy values are the mean value over three inde-
pendent random seeds.

CIS Serving Rate Setting

Dataset Strategy 80-15-5 60-30-10 45-35-20 33-33-33 20-35-45 10-30-60 5-15-80

CIFAR10
Equal Weight 47.4 ± 3.6 58.9 ± 3.5 67.8 ± 2.8 74.9 ± 2.2 80.9 ± 1.4 85.0 ± 0.7 86.7 ± 0.2

FLOPS Prop 31.5 ± 3.2 47.2 ± 2.5 59.0 ± 1.8 68.4 ± 1.4 78.1 ± 0.8 85.4 ± 0.4 88.8 ± 0.4

Serving Rate (ours) 53.1 ± 2.3 60.6 ± 0.7 66.4 ± 1.1 74.9 ± 2.2 81.7 ± 1.7 87.1 ± 0.7 89.2 ± 0.6

Balanced Adj (ours) 51.0 ± 3.2 59.6 ± 4.2 68.0 ± 4.1 74.6 ± 2.2 82.1 ± 1.9 87.5 ± 0.7 90.3 ± 0.6

CIFAR100
Equal Weight 37.3 ± 0.9 44.7 ± 0.6 50.7 ± 0.6 55.6 ± 0.3 59.8 ± 0.1 62.5 ± 0.1 63.6 ± 0.3

FLOPS Prop 31.4 ± 0.6 40.0 ± 0.4 47.7 ± 0.4 54.1 ± 0.1 60.3 ± 0.1 64.3 ± 0.2 66.1 ± 0.3

Serving Rate (ours) 38.1 ± 0.7 45.8 ± 0.4 51.5 ± 0.4 55.6 ± 0.3 55.5 ± 0.7 61.4 ± 0.8 64.9 ± 0.4

Balanced Adj (ours) 42.8 ± 0.9 46.7 ± 0.3 51.1 ± 0.4 53.3 ± 1.1 56.9 ± 1.3 61.7 ± 0.8 64.3 ± 0.8

Table 5.3: Full experimental results for scenarios where nodes with the smallest models and
datasets serve the majority of inference requests the CIFAR10 and CIFAR100 datasets. In this
“highly biased data partition”, networks layers hold 3.4%, 19.9%, and 76.7% of the data, respec-
tively. All reported accuracy values are the mean value over three independent random seeds.

CIS Serving Rate Setting

Dataset Strategy 80-15-5 60-30-10 45-35-20

CIFAR10
Equal Weight 36.5 ± 4.0 45.5 ± 3.2 56.6 ± 3.0

Serving Rate (ours) 41.3 ± 2.7 40.1 ± 2.2 55.3 ± 2.5

Serving Rate p = 0.2 (ours) 49.2 ± 2.9 52.6 ± 3.1 56.8 ± 2.2

CIFAR100
Equal Weight 10.0 ± 1.4 15.8 ± 3.4 24.6 ± 2.9

Serving Rate (ours) 17.9 ± 1.0 20.6 ± 2.1 27.7 ± 3.9

Serving Rate p = 0.2 (ours) 30.1 ± 2.1 30.8 ± 1.2 30.9 ± 0.9
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incorporating adjustments to address the optimization error ϵopt—as done by “Balanced Adj”—
helps ensure that the resulting FL algorithm is robust across a wide range of serving rates, includ-
ing the 80-15-5 and 5-15-80 settings.

Enabling Node Collaboration through Probabilities p. We conducted an ablation study to
examine the impact of the hyperparameter p, focusing on extreme scenarios where nodes with the
smallest models and datasets serve the majority of inference requests. This scenario is especially
relevant, as end devices typically have limited data storage compared to cloud servers or other
more powerful nodes. Results for the most challenging configuration, the 80-15-5 serving rate
setting, are presented in Table 5.4 for both the CIFAR10 and CIFAR100 datasets, where pi,e = p
if e < Ei and pi,Ei = 1−(Ei−1)p. These experiments clearly show that increasing p significantly
improves the overall inference accuracy by enabling stronger nodes to support weaker ones during
training. Additional results on the impact of p can be found in Appendix G, Figure D.1.

Table 5.4: Results for the 80-15-5 serving rate setting using the highly biased data partition, where
the network layers hold 3.4%, 19.9%, and 76.7% of the data, respectively.

Dataset Strategy p = 0 p = 0.2

CIFAR10
Equal Weight 36.5 ± 4.0 -
Serving Rate (ours) 41.3 ± 2.6 49.2 ± 2.9

CIFAR100
Equal Weight 10.0 ± 1.4 -
Serving Rate (ours) 17.9 ± 0.2 30.1 ± 2.1

5.5 Conclusion

We are the first to design an inference-aware FL training algorithm for CISs, demonstrating that
inference serving rates influence all components of training error. When using our inference-
aware configuration rules, which consider the error decomposition into the training process, our
algorithm provides a significant advantage, particularly when inference request rates are unevenly
distributed across the network. Moreover, our rigorous theoretical results are applicable to all
approaches that jointly train models sharing a subset of parameters, including early exit networks,
ordered dropout, pruning, and other nested training methodologies.



CHAPTER 6
Conclusion and

Perspectives
In this manuscript, we performed a comprehensive examination of the several sources of client
heterogeneity in federated learning, and we developed novel algorithms to mitigate their negative
effects on these systems.

Client participation heterogeneity. Chapter 2 addressed the problem of heterogeneous and cor-
related client availability in federated learning, resulting from network and resource limitations as
well as client eligibility requirements. Additionally, Chapter 3 studied the large variability intro-
duced by such heterogeneity in the final model and presented a variance reduction strategy, proven
effective in leveraging stale model updates for non-participating clients.

Network resources heterogeneity. Chapter 4 focused on tackling heterogeneity caused by clients’
diverse communication channels—where each client experiences unique channel characteristics
and packet losses—and presented a packet loss-aware FL algorithm.

Hardware environments heterogeneity. Finally, Chapter 5 was devoted to the training of
heterogeneous-sized FL algorithms, suited for the clients diverse processing capacities, while tak-
ing into account their request rates and deployment at inference time.

In this chapter, we present a summary of the main contributions of this manuscript in Section 6.1,
followed by an overview of prospective future research directions in Section 6.2. The manuscript
closes with concluding remarks in Section 6.3.

6.1 Take-Home Lessons from the Main Contributions

Federated Learning under Heterogeneous and Correlated Client Availability

Chapter 2 presented the first convergence analysis of a federated learning algorithm under het-
erogeneous and correlated client availability. It revealed the detrimental effect of correlation on
convergence rate and highlighted a trade-off between convergence speed and model bias. It pre-
sented the first correlation-aware FL algorithm, CA-Fed, which adaptively handles the conflicting
aims of boosting convergence speed and lowering model bias, by selectively excluding the less
available and more correlated clients from training. Experimental results verify the efficiency of
CA-Fed, making it suited for real-world applications with correlated client availability. Our key
take-away from this chapter is that client sampling may be used to decrease the negative impact
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of correlation in client availability. We identify the need for future research on designing such
sampling strategies.

Leveraging Stale Model Updates for Non-Participating Clients

Chapter 3 explored global variance reduction in federated learning beyond the typical assumption
of homogeneous client participation. Our research underlined, unlike prior work, not only the
advantages but also the disadvantages of exploiting stale client updates in different heterogeneity
conditions. We hope that discussing this trade-off will promote the design of federated learning
algorithms more responsive to the varied dynamics of client data and participation heterogeneity.
We equipped our staleness-aware FL algorithm, FedStale, with guidelines: practitioners can
decide if rely solely on participating client updates or whether it is worthwhile to store stale up-
dates. However, a systematic approach to take this decision is currently lacking and it is subject
for future research.

Federated Learning in Lossy Communication Channels

Chapter 4 investigated the training of FL algorithms in real-world wireless networks with lossy
communication channels. It presented a packet loss-aware FL algorithm, UPGA-PL, that achieves
similar performance under asymmetric lossy channels to ideal, lossless scenarios. UPGA-PL
outperforms state-of-the-art solutions and offers interesting research directions. This chapter’s
first conclusion is that the aggregation strategy considerably affects the quality of the learned
model: for asymmetric lossy channels, pseudo-gradients aggregation significantly outperforms di-
rect model aggregation. The second, interesting insight is that, if losses only impact a portion of
the transmitted model, it is possible to extend our results to prove that training can still benefit
from the partial information received. This study can also be extended to correlated losses result-
ing from, for instance, fading or inter-channel interference, similarly to what done in Chapter 2.

Cooperative Inference Systems: The Case of Early Exit Networks

Chapter 5 presented the first inference-aware FL training algorithm for CISs, Fed-CIS, and
demonstrated that the inference serving rates must be considered at training time if one wants
to improve the overall performance of these systems. Our results apply to all hierarchical training
systems, including early-exit networks, ordered dropout, pruning, and other nested training meth-
ods. By accounting for the expected serving rates at inference time, Fed-CIS provides significant
gains, especially when end-devices serve the majority of requests. More complex algorithm de-
sign may be needed in some other settings, for example when devices store most of the training
data and the cloud serves the majority of requests. These aspects deserve investigation in future
research.

6.2 Perspectives and Future Research Directions

Although this manuscript presented novel algorithms to alleviate the negative impact of client het-
erogeneity in federated learning, it is crucial to acknowledge that some challenges still remain
open. This section presents an overview of these problems, clarifies their complexities, and dis-
cusses possible solutions.
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Semi-Decentralized Topologies for Cross-Device FL

As an alternative to the standard client-server architecture, cross-device FL can leverage semi-
decentralized topologies to address specific challenges of client partial and heterogeneous partic-
ipation (Section 1.1.3). These topologies allow clients with limited connectivity capabilities to
exchange model updates locally in a gossip-SGD fashion, decreasing the number of server com-
munications (J. Wang, Sahu, Yang, Joshi, & Kar, 2019; Costantini, Neglia, & Spyropoulos, 2023).
From the analysis perspective, the inter-client communications within these semi-decentralized
frameworks produce time-varying graphs where a subset of nodes, representing the participating
clients, only connects at certain rounds. To the best of our knowledge, existing decentralized SGD
analyses require strong connectivity of the graph or symmetric adjacency matrices—assumptions
not met when client participation is intermittent (Nedić & Olshevsky, 2015; Nedić, Olshevsky,
& Shi, 2017; Assran, Loizou, Ballas, & Rabbat, 2019; Koloskova et al., 2020); nonetheless, FL
analyses prove convergence with arbitrary small subsets of participating clients (X. Li et al., 2020;
J. Wang et al., 2020, 2021). Future research will focus on bridging the gap between decentralized
and federated learning analyses.

Wireless Networks: Number of Retransmissions vs. Training Time

Previous research on wireless networks with lossy communication channels has focused on two
extreme strategies for handling packet losses: comprehensive error correction and retransmissions
until correct model receipt (M. Chen et al., 2021; Wen et al., 2019; Su et al., 2023), or loss-tolerant
algorithms that enable convergence without any retransmission (Salehi & Hossain, 2021; Rodio,
Neglia, et al., 2023). To the best of our knowledge, there is a significant gap in understanding
the effect of retransmissions on the convergence of FL algorithms. It is expected that an optimal
balance exists between the number of retransmissions and the overall training duration. Future
research will focus on quantifying this trade-off and estimating the ideal number of retransmissions
needed to minimize the overall training time. These estimation must account the influence of
diverse channel characteristics, such as fading, interference, and path loss.

Energy-Driven Correlated Client Participation in Cross-Silo FL

Another open research topic addresses algorithmic approaches to minimize energy consumption in
cross-silo FL systems. Organizations in data centers exhibit heterogeneous participation patterns
with seasonal and diurnal fluctuations, influenced by external factors beyond the server control,
such as solar and wind activities (Eichner et al., 2019; Zhu et al., 2021; Cho et al., 2023). These
variations, correlated across time and space, require dynamic and adaptive resource allocation
strategies. We believe that consensus-based distributed optimization, which allows for variable
communication topologies and partial participation of computing nodes, can play a role in lower-
ing the energy footprint of cross-silo FL systems. This can be achieved by optimizing when and
how nodes are activated based on real-time energy availability and training progress, and remains
an open problem for future investigation.

Incentivizing Client Participation in Federated Learning

One last research direction we discuss in this manuscript involves investigating federated learning
in a setting where the clients can choose to join or leave the federation. Incentives may include
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performance rewards for certain clients in the federation as well as financial support to encourage
client participation. Game-theoretic stability analysis can provide a deeper understanding of this
research area (Donahue & Kleinberg, 2021; Blum, Haghtalab, Phillips, & Shao, 2021; Tu et al.,
2022). Moreover, economic incentives enable the system owner to actively control client participa-
tion (Kang et al., 2019; Cho, Jhunjhunwala, Li, Smith, & Joshi, 2022). Another appealing avenue
for future work involves abandoning the idea of learning a shared, common ML model, and en-
abling clients to train personalized models more suitable to their local data distributions (Mansour
et al., 2020; Y. Deng et al., 2020a; Grimberg, Hartley, Karimireddy, & Jaggi, 2021).

6.3 Concluding Reflections

In concluding this manuscript, the author acknowledges the modest contribution of this thesis in
the vast research landscape. Future researchers will hopefully build upon this thesis, reflecting the
collaborative nature of academic progress.
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APPENDIX A
Heterogeneous and

Correlated Client
Participation

A Proof of Theorem 2.3.2

Theorem A.1 (Decomposing the total error). Let κ ≜ L/µ. Under Assumptions 2–4, the optimization error of the
target global objective ϵ = F (w)− F ∗ can be bounded as follows:

ϵ ≤ 2κ2(FB(w)− F ∗
B︸ ︷︷ ︸

≜ϵopt

+F (w∗
B)− F ∗︸ ︷︷ ︸
≜ϵbias

). (2.10)

Moreover, let χ2
α∥p ≜

∑N
i=1 (αi − pi)2/pi. Then:

ϵbias ≤ κ2 · χ2
α∥p · Γ︸ ︷︷ ︸
≜ϵ̄bias

. (2.11)

The proof of Theorem A.1 employs well-established techniques from convex optimization. It is based on the proof
presented in (J. Wang et al., 2020, Theorem 2).

Proof of Theorem A.1.

By leveraging the L-smoothness and µ-strong convexity properties of F , we obtain:

F (w)− F ∗ ≤ 1
2µ ∥∇F (w)∥2 (A.1)

≤ L2

2µ ∥w −w∗∥2 (A.2)

≤ L2

µ
(∥w −w∗

B∥
2 + ∥w∗

B −w∗∥2) (A.3)

≤ 2L2

µ2

(
FB(w)− F ∗

B︸ ︷︷ ︸
≜ϵopt

+F (w∗
B)− F ∗︸ ︷︷ ︸
≜ϵbias

)
, (A.4)
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where the inequality in (A.1) follows from Assumption 4 and is commonly referred to as the Polyak-Lojasiewicz
inequality; the inequality in (A.2) is derived using the fact that ∇F (w∗) = 0 (Assumption 2) and the definition of
L-Lipschitz continuous gradient for F (Assumption 3); the inequality in (A.3) is based on (a + b)2 ≤ 2(a2 + b2);
lastly, the inequality in (A.4) follows from the µ-strong convexity of both FB and F (Assumptions 4), and uses
∇FB(w∗

B) = 0 and ∇F (w∗) = 0 (Assumption 2). The obtained results complete the first part of the proof,
establishing the bound in (2.10).

Next, to prove the relation in (2.11), we proceed by bounding the term ϵbias as follows:

ϵbias ≜ (F (w∗
B)− F ∗) ≤ 1

2µ ∥∇F (w∗
B)∥2 , (A.5)

where the inequality in (A.5) directly follows from the Polyak-Lojasiewicz inequality (Assumption 4).

Furthermore, we bound the term ∥∇F (w∗
B)∥ as follows:

∥∇F (w∗
B)∥ =

∥∥∥∥∥
N∑

i=1
(αi − pi)∇Fi(w∗

B)
∥∥∥∥∥ (A.6)

≤
N∑

i=1
|αi − pi| ∥∇Fi(w∗

B)∥ (A.7)

≤ L
N∑

i=1
|αi − pi| ∥w∗

B −w∗
i ∥ (A.8)

≤ L
√

2
µ

N∑
i=1
|αi − pi|

√
(Fi(w∗

B)− F ∗
i ), (A.9)

where, in (A.6), we use ∇FB(w∗
B) = 0 (Assumption 2) and apply the definitions of F and FB given in (2.1)

and (2.4), respectively. The bound in (A.7) follows from the triangle inequality. Next, the inequality in (A.8)
uses ∇Fi(w∗

i ) = 0 (Assumption 2) and the L-smoothness of Fi (Assumption 3). Finally, the inequality in (A.9)
leverages the µ-strong convexity of Fi (Assumption 4) and∇Fi(w∗

i ) = 0 (Assumption 2), and follows multiplying
and dividing by

√
pi.

By squaring both sides of Equation (A.9), we obtain:

∥∇F (w∗
B)∥2 ≤ 2L2

µ

(
N∑

i=1

|αi − pi|√
pi

√
pi(Fi(w∗

B)− F ∗
i )
)2

(A.10)

≤ 2L2

µ

(
N∑

i=1

(αi − pi)2

pi

)(
N∑

i=1
pi(Fi(w∗

B)− F ∗
i )
)

(A.11)

≤ 2L2

µ
· χ2

α∥p · Γ, (A.12)

where the inequality in (A.11) follows from the Cauchy-Schwarz inequality. Furthermore, the inequality in (A.12)
holds because:

N∑
i=1

pi(Fi(w∗
B)− F ∗

i ) = F ∗
B −

N∑
i=1

piF
∗
i (A.13)
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≤ FB(w∗)−
N∑

i=1
piF

∗
i (A.14)

=
N∑

i=1
pi(Fi(w∗)− F ∗

i ) (A.15)

≤ max
i∈N
{Fi(w∗)− F ∗

i } ≜ Γ. (A.16)

We remark that the inequality in (A.14) only holds if w∗
B is the global minimizer of FB , as guaranteed by Assump-

tion 2. By replacing (A.12) into (A.5), we have:

ϵbias ≤
1

2µ ∥∇F (w∗
B)∥2 ≤ L2

µ2 · χ
2
α∥p · Γ, (A.17)

which concludes the proof of Equation (2.11), and therefore, of Theorem A.1.

□

B Proof of Theorem 2.3.3

B.A Algorithm Overview and Supplementary Notation

Let w
(t,k)
i represent the model parameter maintained by the i-th client during the t-th global communication round

and the k-th local step. The t-th global communication round can be described as follows: 1) The server broadcasts
the model parameter w(t,0) to the active clients, which adopt it as their local model, i.e., w

(t,0)
i = w(t,0) for i ∈ S(t);

2) Each active client i ∈ S(t) generates a sequence of local models {w(t,k)
i }Kk=1 using the local-SGD update rule

defined in (2.2); 3) The active clients send their model updates ∆(t)
i ≜ w

(t,K)
i − w(t,0) back to the server; 4) The

server aggregates the model updates using the aggregation rule specified in (2.3), resulting in the new global model
parameter w(t+1,0).

wk
t,j+1 = w

(t,k)
i − η(t)

c ∇Fi(w(t,k)
i ,B(t,k)

i ) for k = 0, . . . ,K − 1; (2.2)

w(t+1,0) = ProjW (w(t,0) +
∑

i∈S(t)

qi

(
w

(t,K)
i −w(t,0)

)
) for k = K. (2.3)

The projection operator in (2.3) ensures that the current iterate w(t+1,0) in the optimization algorithm defined by (2.2)
and (2.3) remains within the feasible region W .

Sources of randomness

In the system, we model two sources of randomness. The first arises from the availability of random clients, which
follows a Markov process as stated in Assumption 1. The second source of randomness originates from the random
sampling of batches for computing stochastic gradients. Remember that S(t) denotes the random set of clients avail-
able at the t-th communication round and that B(t,k)

i denotes the random batch independently sampled from client-i’s
local dataset at round t, local iteration k. For the analysis, we introduce the following additional notation:
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S(i:j) ≜ {S(i), . . . ,S(j)}: the family of random sets of clients available from the i-th to the j-th communication
rounds, i < j;

B(t)
i ≜ {B(t,k)

i }K−1
k=0 : the set of random batches sampled by the i-th client at the t-th communication round;

B(t) ≜ {B(t)
i }i∈S(t) : the set of random batches sampled by the available clients (S(t)) in the t-th communication

round;

B(t,i:j)
i ≜ {B(t,i)

i , . . . ,B(t,j)
i }: the set of random batches sampled by the i-th client at the t-th communication

round between the i-th and the j-th local iterations, i < j;

B(t,i:j) ≜ {B(i), . . . ,B(j)}: the set of random batches sampled by the available clients (S(i:j)) between the i-th
and j-th communication rounds, i < j.

With this notation established, the randomness in the t-th communication round, which starts with the initial model
w(t,0) and yields the updated model w(t+1,0), is fully determined by the sets S(t) and B(t). This implies that the
evolution of the algorithm, governed by the update rules in (2.2) and (2.3), from round 0 to round t can be completely
described by the tuple:

H(t) ≜
(
S(0), . . . ,S(t−1);B(0), . . . ,B(t−1)

)
, (A.18)

which represents the historical information up to the t-th communication round.

We introduce the following additional quantities for our analysis:

g(t)(S(t),B(t)) ≜
∑

i∈S(t)

qi

K−1∑
k=0
∇Fi(w(t,k)

i ,B(t,k)
i ), (A.19)

and

ḡ(t)(S(t),B(t)) ≜
∑

i∈S(t)

qi

K−1∑
k=0
∇Fi(w(t,k)

i ), (A.20)

where g(t)(S(t),B(t)) denotes the global pseudo-gradient computed at communication round t, aggregated from the
active clients in S(t), and ḡ(t)(S(t),B(t)) denotes its expected value with respect to the choices of the random batches
B(t,k)

i , for all k = 0, . . . ,K − 1 and i ∈ S(t). With this notation established, the global update rule for the t-th
communication round can be expressed as:

w(t+1,0) = ProjW (w(t,0) − η(t)
c g(t)(S(t),B(t))). (A.21)

B.B Supporting Lemmas

In this section, we introduce several lemmas that are instrumental in proving Theorem B.19. Firstly, we prove
Lemma 2.3.1, introduced in Section 2.3. Its proof relies on the convexity and compactness of the hypothesis class W
(Assumption 2), on the L-smoothness of the functions {Fi}i∈N (Assumption 3), and on the bounded variance of the
stochastic gradients (Assumption 5).

Lemma B.1. Under Assumptions 2, 3, and 5, there exist constants D, G, and H > 0, such that, for w ∈ W and
i ∈ N , we have:

∥∇Fi(w)∥ ≤ D, (2.6)
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EB∥∇Fi(w,B)∥2 ≤ G2, (2.7)

|Fi(w)− Fi(w∗
B)| ≤ H. (2.8)

Proof of Lemma B.1.

The boundedness of the hypothesis classW (Assumption 2) provides a bound on the sequence (w(t,0))t≥0 generated
by the scheme defined in Equations (2.2) and (2.3). Moreover, since w∗

i minimizes ∇Fi(w), we have ∇Fi(w∗
i ) =

0. Furthermore, the L-smoothness of {Fi}i∈N (Assumption 3) leads to the following inequality:

∥∇Fi(w)∥ = ∥∇Fi(w)−∇Fi(w∗
i )∥ ≤ L ∥w −w∗

i ∥ ≜ D < +∞. (A.22)

The bound in (2.6) is directly derived from (A.22), while the bound in (2.8) follows from the continuity of {Fi}i∈N
over the compact set W (Assumption 2). Finally, the inequality in (2.7) requires a bound on the variance of the
stochastic gradients (Assumption 5). In particular, it holds that:

EB∥∇Fi(w,B)∥2 ≤ D2 + max
i∈N
{σ2

i } ≜ G2. (A.23)

□

The following lemma proves that the global pseudo-gradient g(t)(S(t),B(t)) is an unbiased estimator of
ḡ(t)(S(t),B(t)). A similar result has been used in previous works, specifically in (J. Wang et al., 2020, Appendix C1).
Here, we provide a comprehensive proof for this result.

Lemma B.2. Let g(t)(S(t),B(t)) and ḡ(t)(S(t),B(t)) be defined as in (A.19) and (A.20), respectively. The following
equality holds:

EB(t)|S(t),H(t)

[
g(t)(S(t),B(t))

]
= EB(t)|S(t),H(t)

[
ḡ(t)(S(t),B(t))

]
. (A.24)

Proof of Lemma B.2.

EB(t)|S(t),H(t)

[
g(t)(S(t),B(t))

]
= EB(t)|S(t),H(t)

 ∑
i∈S(t)

qi

K−1∑
k=0
∇Fi(w(t,k)

i ,B(t,k)
i )

 (A.25)

=
∑

i∈S(t)

qiEB(t)
i

[
K−1∑
k=0
∇Fi(w(t,k)

i ,B(t,k)
i )

]
(A.26)

=
∑

i∈S(t)

qi

[
EB(t,0)

i

[∇Fi(w(t,0),B(t,0)
i )] + EB(t,0)

i ,B(t,1)
i

[∇Fi(w(t,1)
i ,B(t,1)

i )]

+ · · ·+ EB(t,0:K−1)
i

[∇Fi(w(t,K−1)
i ,B(t,K−1)

i )]
]

(A.27)

=
∑

i∈S(t)

qi

[
∇Fi(w(t,0)) + EB(t,0)

i

[
EB(t,1)

i |B(t,0)
i

[
∇Fi(w(t,1)

i ,B(t,1)
i )

] ]
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+ · · ·+ EB(t,0:K−2)
i

[
EB(t,0:K−1)

i |B(t,0:K−2)
i

[
∇Fi(w(t,K−1)

i ,B(t,K−1)
i )

] ]]
(A.28)

=
∑

i∈S(t)

qi

[
∇Fi(w(t,0)) + EB(t,0)

i

[∇Fi(w(t,1)
i )] + · · ·+ EB(t,0:K−2)

i

[∇Fi(w(t,K−1)
i )]

]
(A.29)

=
∑

i∈S(t)

qiEB(t,0:K−2)
i

[
K−1∑
k=0
∇Fi(w(t,k)

i )
]

(A.30)

= EB(t)|S(t),H(t)

 ∑
i∈S(t)

qi

K−1∑
k=0
∇Fi(w(t,k)

i )

 = EB(t)|S(t),H(t)

[
ḡ(t)(S(t),B(t))

]
, (A.31)

where, in (A.26), we considered that both the evolution of the local models {w(t,k)
i }K−1

k=0 and the choices of the
random batches {B(t,k)

i }K−1
k=0 are independent among different clients i ∈ S(t) within the same communication

round t ∈ T .

□

For the sake of simplicity, we will henceforth denote g(t)(S(t),B(t)) and ḡ(t)(S(t),B(t)) as g(t) and ḡ(t), respectively.
The following lemma decomposes the optimization error into multiple components, which we will bound separately
in subsequent lemmas.

Lemma B.3 (Decomposition of the error in a global communication round). Let Assumption 2 hold. We have:

EB(t)|S(t),H(t)

∥∥∥w(t+1,0) −w∗
B

∥∥∥2
≤

∥∥∥w(t,0) −w∗
B

∥∥∥2
−2η(t)

c EB(t)|S(t),H(t)⟨w(t,0) −w∗
B, ḡ

(t)⟩︸ ︷︷ ︸
bounded in Lemma B.4

+ (η(t)
c )2EB(t)|S(t),H(t)

∥∥∥ḡ(t)
∥∥∥2

︸ ︷︷ ︸
bounded in Lemma B.5

+ 2η(t)
c EB(t)|S(t),H(t)⟨w(T,0) −w∗

B − η(t)
c ḡ(t), ḡ(t) − g(t)⟩︸ ︷︷ ︸

bounded in Lemma B.6

+ (η(t)
c )2EB(t)|S(t),H(t)

∥∥∥g(t) − ḡ(t)
∥∥∥2

︸ ︷︷ ︸
bounded in Lemma B.7

. (A.32)

Proof of Lemma B.3.

∥∥∥w(t+1,0) −w∗
B

∥∥∥2
=
∥∥∥ProjW (w(t,0) − η(t)

c g(t))−ProjW (w∗
B)
∥∥∥2

(A.33)

≤
∥∥∥w(t,0) − η(t)

c g(t) −w∗
B + η(t)

c ḡ(t) − η(t)
c ḡ(t)

∥∥∥2
(A.34)

=
∥∥∥w(t,0) −w∗

B − η(t)
c ḡ(t)

∥∥∥2

+ 2η(t)
c ⟨w(T,0) −w∗

B − η(t)
c ḡ(t), ḡ(t) − g(t)⟩+ (η(t)

c )2
∥∥∥g(t) − ḡ(t)

∥∥∥2
(A.35)

=
∥∥∥w(t,0) −w∗

B

∥∥∥2
− 2η(t)

c ⟨w(t,0) −w∗
B, ḡ

(t)⟩+ (η(t)
c )2

∥∥∥ḡ(t)
∥∥∥2

+ 2η(t)
c ⟨w(T,0) −w∗

B − η(t)
c ḡ(t), ḡ(t) − g(t)⟩+ (η(t)

c )2
∥∥∥g(t) − ḡ(t)

∥∥∥2
, (A.36)

where, in (A.33), we used Assumption 2; whereas, the inequality in (A.34) is due to the contracting property of
projection. We observe that (A.34) does not hold in general if w∗

B ̸∈W .
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□

In what follows, we present a series of lemmas to establish bounds for the error in (A.32).

Lemma B.4. Let Assumption 3 hold and the local functions {Fi}Ni=1 be convex. We have:

− 2η(t)
c ⟨w(t,0) −w∗

B, ḡ
(t)⟩ ≤ −2η(t)

c (1− η(t)
c L)

∑
i∈S(t)

qi

K−1∑
k=0

(
Fi(w(t,k)

i )− Fi(w∗
B)
)

+
∑

i∈S(t)

qi

K−1∑
k=0

∥∥∥w(t,k)
i −w(t,0)

∥∥∥2

︸ ︷︷ ︸
bounded in Lemma B.9

+2(η(t)
c )2LK

∑
i∈S(t)

qi (Fi(w∗
B)− F ∗

i )

︸ ︷︷ ︸
bounded in Lemma B.10

. (A.37)

Proof of Lemma B.4.

We decompose the term −2η(t)
c ⟨w(t,0) −w∗

B, ḡ
(t)⟩, by adding and subtracting w

(t,k)
i :

−2η(t)
c ⟨w(t,0) −w∗

B, ḡ
(t)⟩ = −2η(t)

c ⟨w(t,0) −w
(t,k)
i , ḡ(t)⟩︸ ︷︷ ︸

developed in Eq. (A.39)

−2η(t)
c ⟨w

(t,k)
i −w∗

B, ḡ
(t)⟩︸ ︷︷ ︸

developed in Eq. (A.43)

. (A.38)

We bound the two terms separately. We bound the first term in (A.38) as:

− 2η(t)
c ⟨w(t,0) −w

(t,k)
i , ḡ(t)⟩ = −2η(t)

c

∑
i∈S(t)

qi

K−1∑
k=0
⟨∇Fi(w(t,k)

i ),w(t,0) −w
(t,k)
i ⟩ (A.39)

≤ (η(t)
c )2 ∑

i∈S(t)

qi

K−1∑
k=0

∥∥∥∇Fi(w(t,k)
i )

∥∥∥2
+
∑

i∈S(t)

qi

K−1∑
k=0

∥∥∥w(t,k)
i −w(t,0)

∥∥∥2
(A.40)

≤ 2(η(t)
c )2L

∑
i∈S(t)

qi

K−1∑
k=0

(
Fi(w(t,k)

i )− F ∗
i

)
+
∑

i∈S(t)

qi

K−1∑
k=0

∥∥∥w(t,k)
i −w(t,0)

∥∥∥2
(A.41)

= 2(η(t)
c )2L

∑
i∈S(t)

qi

K−1∑
k=0

(
Fi(w(t,k)

i )− Fi(w∗
B)
)

+
∑

i∈S(t)

qi

K−1∑
k=0

∥∥∥w(t,k)
i −w(t,0)

∥∥∥2

+ 2(η(t)
c )2LK

∑
i∈S(t)

qi (Fi(w∗
B)− F ∗

i ) , (A.42)

where, in (A.40), we used |⟨a, b⟩| ≤ 1
2 ∥a∥

2 + 1
2 ∥b∥

2; in (A.41), we applied the L-smoothness of {Fi(w)}i∈N
(Assumption 3); in (A.42), we added and subtracted Fi(w∗

B).

We bound the second term in (A.38) as:

−2η(t)
c ⟨w

(t,k)
i −w∗

B, ḡ
(t)⟩ = −2η(t)

c

∑
i∈S(t)

qi

K−1∑
k=0
⟨w(t,k)

i −w∗
B,∇Fi(w(t,k)

i )⟩ (A.43)

≤ −2η(t)
c

∑
i∈S(t)

qi

K−1∑
k=0

(
Fi(w(t,k)

i )− Fi(w∗
B)
)
, (A.44)

where, in (A.44), we use the convexity of {Fi(w)}i∈N .

By summing the bounds provided in (A.42) and (A.44), we conclude the proof.
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□

Lemma B.5 (Bound on the squared norm of a global gradient step). Let Assumption 3 hold. We have:

(η(t)
c )2

∥∥∥ḡ(t)
∥∥∥2
≤ 2(η(t)

c )2LKQ
∑

i∈S(t)

qi

K−1∑
k=0

(
Fi(w(t,k)

i )− Fi(w∗
B)
)

+ 2(η(t)
c )2LK2Q

∑
i∈S(t)

qi (Fi(w∗
B)− F ∗

i )

︸ ︷︷ ︸
bounded in Lemma B.10

. (A.45)

Proof of Lemma B.5.

(η(t)
c )2

∥∥∥ḡ(t)
∥∥∥2

= (η(t)
c )2

∥∥∥∥ ∑
i∈S(t)

qi

K−1∑
k=0
∇Fi(w(t,k)

i )
∥∥∥∥2

(A.46)

≤ (η(t)
c )2 ∑

i′∈S(t)

qk′
∑

i∈S(t)

qi

∥∥∥∥K−1∑
k=0
∇Fi(w(t,k)

i )
∥∥∥∥2

(A.47)

≤ (η(t)
c )2QE

∑
i∈S(t)

qi

K−1∑
k=0

∥∥∥∇Fi(w(t,k)
i )

∥∥∥2
(A.48)

≤ 2(η(t)
c )2QLK

∑
i∈S(t)

qi

K−1∑
k=0

(
Fi(w(t,k)

i )− F ∗
i

)
(A.49)

= 2(η(t)
c )2LKQ

∑
i∈S(t)

qi

K−1∑
k=0

(
Fi(w(t,k)

i )− Fi(w∗
B)
)

+ 2(η(t)
c )2LK2Q

∑
i∈S(t)

qi (Fi(w∗
B)− F ∗

i ) , (A.50)

where, in (A.47) and in (A.48), we applied the Jensen’s inequality; in (A.48), we also observed that∑
i∈S(t) qi ≤

∑
i∈N qi ≜ Q; in (A.49), we used the L-smoothness of {Fi(w)}i∈N (Assumption 3); in (A.50),

we added and subtracted Fi(w∗
B) to the sum.

□

Lemma B.6. Let Assumption 5 hold. We have:

2η(t)
c EB(t)|S(t),H(t)

[
⟨w(T,0) −w∗

B − η(t)
c ḡ(t), ḡ(t) − g(t)⟩

]
≤ 2(η(t)

c )2LKQ
∑

i∈S(t)

qi

K−1∑
k=1

EB(t)
i |S(t),H(t)

[
Fi(w(t,k)

i )− Fi(w∗
B)
]

+ 1
2(η(t)

c )2K(K − 1)
∑

i∈S(t)

q2
i σ

2
i

+ 2(η(t)
c )2LK2Q

∑
i∈S(t)

qi (Fi(w∗
B)− F ∗

i )

︸ ︷︷ ︸
bounded in Lemma B.10

. (A.51)



APPENDIX A 113

Proof of Lemma B.6.

We decompose the term ⟨w(T,0) −w∗
B − η

(t)
c ḡ(t), ḡ(t) − g(t)⟩ in two parts:

2η(t)
c ⟨w(T,0) −w∗

B − η(t)
c ḡ(t), ḡ(t) − g(t)⟩

= 2η(t)
c ⟨w(T,0) −w∗

B, ḡ
(t) − g(t)⟩ − 2(η(t)

c )2⟨ḡ(t), ḡ(t) − g(t)⟩. (A.52)

From Lemma B.2, we conclude that EB(t)|S(t),H(t)⟨w(T,0) −w∗
B, ḡ

(t) − g(t)⟩ = 0.

We now focus on:

− 2(η(t)
c )2EB(t)|S(t),H(t)

[
⟨ḡ(t), ḡ(t) − g(t)⟩

]
= (A.53)

= −2(η(t)
c )2EB(t)|S(t),H(t)

[ ∑
i∈S(t)

∑
i′∈S(t)

qiqk′

K−1∑
k=0

K−1∑
k′=0
⟨∇Fi(w(t,k)

i ),∇Fi′(w(t,k′)
i′ )−∇Fi′(w(t,k′)

i′ ,B(t,j′)
i′ )⟩

]
(A.54)

= −2(η(t)
c )2EB(t)|S(t),H(t)

[ ∑
i∈S(t)

q2
i

K−1∑
k=0

K−1∑
k′=0
⟨∇Fi(w(t,k)

i ),∇Fi(w(t,k′)
i )−∇Fi(w(t,k′)

i ,B(t,k′)
i ⟩

]

− 2(η(t)
c )2EB(t)|S(t),H(t)

[ ∑
i∈S(t)

∑
i′∈S(t)

i′ ̸=i

qiqk′

K−1∑
k=0

K−1∑
k′=0
⟨∇Fi(w(t,k)

i ),∇Fi′(w(t,k′)
i′ )−∇Fi′(w(t,k′)

i′ ,B(t,j′)
i′ )⟩

]

(A.55)

= −2(η(t)
c )2 ∑

i∈S(t)

q2
i EB(t)

i |S(t),H(t)

[
K−1∑
k=0

K−1∑
k′=0
⟨∇Fi(w(t,k)

i ),∇Fi(w(t,k′)
i )−∇Fi(w(t,k′)

i ,B(t,k′)
i ⟩

]

− 2(η(t)
c )2 ∑

i∈S(t)

∑
i′∈S(t)

i′ ̸=i

qiqk′

K−1∑
k=0

K−1∑
k′=0
⟨EB(t)

i |S(t),H(t)

[
∇Fi(w(t,k)

i )
]
,

E
B(t,0:k′−1)

i′ |S(t),H(t)

[
E

B(t,j′)
i′ |B(t,0:k′−1)

i′ ,S(t),H(t)

[
∇Fi′(w(t,k′)

i′ )−∇Fi′(w(t,k′)
i′ ,B(t,j′)

i′ )
]]

︸ ︷︷ ︸
=0

⟩, (A.56)

where, in (A.54), we replaced the definitions of gt and ḡ(t) given in (A.19) and in (A.20), respectively; in (A.55),
we consider the cases k = k′ and k ̸= k′ separately; (A.56) follows from the consideration that local models
of different clients evolve independently and then all the terms with k′ ̸= k equal zero because ∇Fi(w,B) is an
unbiased estimator of∇Fi(w). It follows that:

− 2(η(t)
c )2EB(t)|S(t),H(t)

[
⟨ḡ(t), ḡ(t) − g(t)⟩

]
= (A.57)

= −2(η(t)
c )2 ∑

i∈S(t)

q2
i EB(t)

i |S(t),H(t)

[
K−1∑
k=0

K−1∑
k′=0
⟨∇Fi(w(t,k)

i ),∇Fi(w(t,k′)
i )−∇Fi(w(t,k′)

i ,B(t,k′)
i ⟩

]
(A.58)

= −2(η(t)
c )2 ∑

i∈S(t)

q2
i EB(t)

i |S(t),H(t)

K−1∑
k=0

K−1∑
k′=0
k′<k

⟨∇Fi(w(t,k)
i ),∇Fi(w(t,k′)

i )−∇Fi(w(t,k′)
i ,B(t,k′)

i ⟩
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− 2(η(t)
c )2 ∑

i∈S(t)

q2
i EB(t)

i |S(t),H(t)

K−1∑
k=0

K−1∑
k′=0
k′≥k

⟨∇Fi(w(t,k)
i ),∇Fi(w(t,k′)

i )−∇Fi(w(t,k′)
i ,B(t,k′)

i ⟩

 (A.59)

= −2(η(t)
c )2 ∑

i∈S(t)

q2
i

K−1∑
k=0

K−1∑
k′=0
k′<k

EB(t)
i |S(t),H(t)

[
⟨∇Fi(w(t,k)

i ),∇Fi(w(t,k′)
i )−∇Fi(w(t,k′)

i ,B(t,k′)
i ⟩

]

− 2(η(t)
c )2 ∑

i∈S(t)

q2
i

K−1∑
k=0

K−1∑
k′=0
k′≥k

E
B(t,0:k′−1)

i |S(t),H(t)×

×
[
E

B(t,k′)
i |B(t,0:k′−1)

i ,S(t),H(t)

[
⟨∇Fi(w(t,k)

i ),∇Fi(w(t,k′)
i )−∇Fi(w(t,k′)

i ,B(t,k′)
i ⟩

]]
(A.60)

= −2(η(t)
c )2 ∑

i∈S(t)

q2
i

K−1∑
k=0

K−1∑
k′=0
k′<k

EB(t)
i |S(t),H(t)

[
⟨∇Fi(w(t,k)

i ),∇Fi(w(t,k′)
i )−∇Fi(w(t,k′)

i ,B(t,k′)
i ⟩

]

− 2(η(t)
c )2 ∑

i∈S(t)

q2
i

K−1∑
k=0

K−1∑
k′=0
k′≥k

E
B(t,0:k′−1)

i |S(t),H(t)×

×
[
⟨∇Fi(w(t,k)

i ),E
B(t,k′)

i |B(t,0:k′−1)
i ,S(t),H(t)

[
∇Fi(w(t,k′)

i )−∇Fi(w(t,k′)
i ,B(t,k′)

i

]
︸ ︷︷ ︸

=0

⟩
]
, (A.61)

where, in (A.59), we consider the cases k′ < k and k′ ≥ k separately; then, in (A.60) and in (A.61), we use the law
of total expectation.

Finally, we bound the remaining term in the right-hand side of (A.61) as follows:

− 2(η(t)
c )2EB(t)|S(t),H(t)

[
⟨ḡ(t), ḡ(t) − g(t)⟩

]
= (A.62)

= −2(η(t)
c )2 ∑

i∈S(t)

q2
i

K−1∑
k=1

∑
k′<k

EB(t)
i |S(t),H(t)⟨∇Fi(w(t,k)

i ),∇Fi(w(t,k′)
i )−∇Fi(w(t,k′)

i ,B(t,k′)
i ⟩ (A.63)

= (η(t)
c )2 ∑

i∈S(t)

q2
i

K−1∑
k=1

∑
k′<k

EB(t)
i |S(t),H(t)

[∥∥∥∇Fi(w(t,k)
i )

∥∥∥2
+
∥∥∥∇Fi(w(t,k′)

i )−∇Fi(w(t,k′)
i ,B(t,k′)

i

∥∥∥2
]

(A.64)

= (η(t)
c )2 ∑

i∈S(t)

q2
i

K−1∑
k=1

∑
k′<k

EB(t)
i |S(t),H(t)

[∥∥∥∇Fi(w(t,k)
i )

∥∥∥]+

+ (η(t)
c )2 ∑

i∈S(t)

q2
i

K−1∑
k=1

∑
k′<k

E
B(t,0:j′−1)

i |S(t),H(t)

[
E

B(t,k′)
i |B(t,0:j′−1)

i ,S(t),H(t)

∥∥∥∇Fi(w(t,k′)
i )−∇Fi(w(t,k′)

i ,B(t,k′)
i

∥∥∥2
]

︸ ︷︷ ︸
bounded with Assumption 5

(A.65)

≤ (η(t)
c )2 ∑

i∈S(t)

q2
i

K−1∑
k=1

∑
k′<k

EB(t)
i |S(t),H(t)

∥∥∥∇Fi(w(t,k)
i )

∥∥∥2
+ 1

2(η(t)
c )2K(K − 1)

∑
i∈S(t)

q2
i σ

2
i (A.66)
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≤ (η(t)
c )2L(K − 1)

∑
i∈S(t)

q2
i

K−1∑
k=1

EB(t)
i |S(t),H(t)

[(
Fi(w(t,k)

i )− F ∗
i

)]
+ 1

2(η(t)
c )2K(K − 1)

∑
i∈S(t)

q2
i σ

2
i (A.67)

= (η(t)
c )2L(K − 1)

∑
i∈S(t)

q2
i

K−1∑
k=1

EB(t)
i |S(t),H(t)

[(
Fi(w(t,k)

i )− Fi(w∗
B)
)]

+ (η(t)
c )2LK(K − 1)

∑
i∈S(t)

q2
i (Fi(w∗

B)− F ∗
i ) + 1

2(η(t)
c )2K(K − 1)

∑
i∈S(t)

q2
i σ

2
i (A.68)

≤ (η(t)
c )2L(K − 1)Q

∑
i∈S(t)

qi

K−1∑
k=1

EB(t)
i |S(t),H(t)

[(
Fi(w(t,k)

i )− Fi(w∗
B)
)]

+ (η(t)
c )2LK(K − 1)Q

∑
i∈S(t)

qi (Fi(w∗
B)− F ∗

i )

︸ ︷︷ ︸
bounded in Lemma B.10

+1
2(η(t)

c )2K(K − 1)
∑

i∈S(t)

q2
i σ

2
i , (A.69)

where, in (A.64), we used |⟨a, b⟩| ≤ 1
2 ∥a∥

2 + 1
2 ∥b∥

2; in (A.66), we applied Assumption 5; in (A.67), we used
the L-smoothness of {Fi(w)}i∈N ; in (A.68), we added and subtracted Fi(w∗

B) from the sum; finally, in (A.69),
we used

∑
i∈S(t) q2

i f(i) ≤ (
∑

i∈S(t) qi)(
∑

i∈S(t) qif(i)) and
∑

i∈S(t) qi ≤
∑N

i=1 qi ≜ Q. Noting that K − 1 < 2K
concludes the proof of Lemma B.6.

□

Lemma B.7 (Bound on the variance of the stochastic gradients). Let Assumption 5 hold. Similarly to (X. Li et al.,
2020, Lemma 2), we have:

(η(t)
c )2EB(t)|S(t),H(t)

∥∥∥g(t) − ḡ(t)
∥∥∥2
≤ (η(t)

c )2E
∑

i∈S(t)

q2
i σ

2
i . (A.70)

Proof of Lemma B.7.

EB(t)|S(t),H(t)

∥∥∥g(t) − ḡ(t)
∥∥∥2

= (A.71)

= EB(t)|S(t),H(t)

∥∥∥∥ ∑
i∈S(t)

qi

K−1∑
k=0

(
∇Fi(w(t,k)

i ,B(t,k)
i )−∇Fi(w(t,k)

i )
) ∥∥∥∥2

(A.72)

=
∑

i∈S(t)

q2
i

K−1∑
k=0

EB(t)
i |S(t),H(t)

∥∥∥∇Fi(w(t,k)
i ,B(t,k)

i )−∇Fi(w(t,k)
i )

∥∥∥2

+
∑

i∈S(t)

q2
i EB(t)

i |S(t),H(t)

K−1∑
k=0

K−1∑
k′=0
k′ ̸=k

⟨∇Fi(w(t,k)
i ,B(t,k)

i )−∇Fi(w(t,k)
i ),∇Fi(w(t,k′)

i ,B(t,k′)
i )−∇Fi(w(t,k′)

i )⟩


+
∑

i∈S(t)

∑
i′∈S(t)

i′ ̸=i

qiqk′

K−1∑
k=0
⟨EB(t,0:k−1)

i |S(t),H(t)

[
EB(t,k)

i |B(t,0:k−1)
i ,S(t),H(t)

[
∇Fi(w(t,k)

i ,B(t,k)
i )−∇Fi(w(t,k)

i )
]]

︸ ︷︷ ︸
=0

,
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EB(t,0:k−1)
i′ |S(t),H(t)

[
EB(t,k)

i′ |B(t,0:k−1)
i′ ,S(t),H(t)

[
∇Fi′(w(t,k)

i′ ,B(t,k)
i′ )−∇Fi′(w(t,k)

i′ )
]]

︸ ︷︷ ︸
=0

⟩

+
∑

i∈S(t)

∑
i′∈S(t)

i′ ̸=i

qiqk′

K−1∑
k=0

K−1∑
k′=0
k′ ̸=k

⟨EB(t,0:k−1)
i |S(t),H(t)

[
EB(t,k)

i |B(t,0:k−1)
i ,S(t),H(t)

[
∇Fi(w(t,k)

i ,B(t,k)
i )−∇Fi(w(t,k)

i )
]]

︸ ︷︷ ︸
=0

,

E
B(t,0:k′−1)

i′ |S(t),H(t)

[
E

B(t,j′)
i′ |B(t,0:k′−1)

i′ ,S(t),H(t)

[
∇Fi′(w(t,k′)

i′ ,B(t,j′)
i′ )−∇Fi′(w(t,k′)

i′ )
]]

︸ ︷︷ ︸
=0

⟩ (A.73)

=
∑

i∈S(t)

q2
i

K−1∑
k=0

EB(t,k)
i |S(t),H(t)

∥∥∥∇Fi(w(t,k)
i ,B(t,k)

i )−∇Fi(w(t,k)
i )

∥∥∥2

︸ ︷︷ ︸
bounded with Assumption 5

+
∑

i∈S(t)

q2
i

K−1∑
k=0

K−1∑
k′=0
k′<k

EB(t,0:k−1)
i |S(t),H(t)

[
EB(t,k)

i |B(t,0:k−1)
i ,S(t),H(t)

[
⟨∇Fi(w(t,k)

i ,B(t,k)
i )−∇Fi(w(t,k)

i ),

∇Fi(w(t,k′)
i ,B(t,k′)

i )−∇Fi(w(t,k′)
i )⟩

]]

+
∑

i∈S(t)

q2
i

K−1∑
k=0

K−1∑
k′=0
j′>j

E
B(t,0:k′−1)

i |S(t),H(t)

[
E

B(t,k′)
i |B(t,0:j′−1)

i ,S(t),H(t)

[
⟨∇Fi(w(t,k)

i ,B(t,k)
i )−∇Fi(w(t,k)

i ),

∇Fi(w(t,k′)
i ,B(t,k′)

i )−∇Fi(w(t,k′)
i )⟩

]]
(A.74)

=
∑

i∈S(t)

q2
i

K−1∑
k=0

EB(t,k)
i |S(t),H(t)

∥∥∥∇Fi(w(t,k)
i ,B(t,k)

i )−∇Fi(w(t,k)
i )

∥∥∥2

︸ ︷︷ ︸
bounded with Assumption 5

+
∑

i∈S(t)

q2
i

K−1∑
k=0

K−1∑
k′=0
k′<k

EB(t,0:k−1)
i |S(t),H(t)

[
⟨EB(t,k)

i |B(t,0:k−1)
i ,S(t),H(t)

[
∇Fi(w(t,k)

i ,B(t,k)
i )−∇Fi(w(t,k)

i )
]

︸ ︷︷ ︸
=0

,

∇Fi(w(t,k′)
i ,B(t,k′)

i )−∇Fi(w(t,k′)
i )⟩

]

+
∑

i∈S(t)

q2
i

K−1∑
k=0

K−1∑
k′=0
j′>j

E
B(t,0:k′−1)

i |S(t),H(t)

[
⟨∇Fi(w(t,k)

i ,B(t,k)
i )−∇Fi(w(t,k)

i ),

E
B(t,k′)

i |B(t,0:j′−1)
i ,S(t),H(t)

[
∇Fi(w(t,k′)

i ,B(t,k′)
i )−∇Fi(w(t,k′)

i )
]

︸ ︷︷ ︸
=0

⟩
]

(A.75)

≤ E
∑

i∈S(t)

q2
i σ

2
i , (A.76)

where, in (A.73), (A.74), and (A.75), we used the law of total expectation; in (A.76), we applied Assumption 5.
Multiplying both sides of (A.76) by (η(t)

c )2 completes the proof of Lemma B.7.
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□

Lemma B.8. Let Assumption 3 hold and let the local functions {Fi}Ni=1 be convex. Define γt ≜ 2η(t)
c (1− η(t)

c L(1 +
2EQ)).
For a diminishing step-size 0 < η

(t)
c ≤ 1

2L(1+2KQ) , satisfying γt > 0, we have:

− γt

∑
i∈S(t)

qi

K−1∑
k=0

(
Fi(w(t,k)

i )− Fi(w∗
B)
)
≤ −1

2η
(t)
c E

∑
i∈S(t)

qi

(
Fi(w(t,0))− Fi(w∗

B)
)

+
∑

i∈S(t)

qi

K−1∑
k=0

∥∥∥w(t,k)
i −w(t,0)

∥∥∥2

︸ ︷︷ ︸
bounded in Lemma B.9

+2(η(t)
c )2LK

∑
i∈S(t)

qi (Fi(w∗
B)− F ∗

i )

︸ ︷︷ ︸
bounded in Lemma B.10

, (A.77)

Proof of Lemma B.8.

In the following, we require γt > 0.

− γt

∑
i∈S(t)

qi

K−1∑
k=0

(
Fi(w(t,k)

i )− Fi(w∗
B)
)

(A.78)

= −γt

∑
i∈S(t)

qi

K−1∑
k=0

(
Fi(w(t,k)

i )− Fi(w(t,0))
)
− γt

∑
i∈S(t)

qi

K−1∑
k=0

(
Fi(w(t,0))− Fi(w∗

B)
)

(A.79)

≤ −γt

∑
i∈S(t)

qi

K−1∑
k=0
⟨∇Fi(w(t,0)),w(t,k)

i −w(t,0)⟩ − γtE
∑

i∈S(t)

qi

(
Fi(w(t,0))− Fi(w∗

B)
)

(A.80)

≤ γt

∑
i∈S(t)

qi

K−1∑
k=0

1
2

[
η(t)

c

∥∥∥∇Fi(w(t,0))
∥∥∥2

+ 1
η

(t)
c

∥∥∥w(t,k)
i −w(t,0)

∥∥∥2
]

− γtE
∑

i∈S(t)

qi

(
Fi(w(t,0))− Fi(w∗

B)
)

(A.81)

≤ γtη
(t)
c LK

∑
i∈S(t)

qi

(
Fi(w(t,0))− F ∗

i

)
+ γt

2η(t)
c

∑
i∈S(t)

qi

K−1∑
k=0

∥∥∥w(t,k)
i −w(t,0)

∥∥∥2

− γtE
∑

i∈S(t)

qi

(
Fi(w(t,0))− Fi(w∗

B)
)

(A.82)

≤ −γtE(1− η(t)
c L)

∑
i∈S(t)

qi

(
Fi(w(t,0))− Fi(w∗

B)
)

+ γt

2η(t)
c

∑
i∈S(t)

qi

K−1∑
k=0

∥∥∥w(t,k)
i −w(t,0)

∥∥∥2

+ γtη
(t)
c LK

∑
i∈S(t)

qi (Fi(w∗
B)− F ∗

i ) (A.83)

where, in (A.79), we added and subtracted Fi(w(t,0)) to the sum; in (A.80), we used the convexity of {Fi(w)}i∈N ;
note that (A.80) also requires γt > 0; in (A.81), we used the inequality |⟨a, b⟩| ≤ 1

2 ∥a∥
2 + 1

2 ∥b∥
2; in (A.82), we

applied the L-smoothness of {Fi(w)}i∈N (Assumption 3); finally, in (A.83), we added and subtracted Fi(w∗
B) to

the sum.
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In particular, for γt ≜ 2η(t)
c (1− η(t)

c L(1 + 2EQ)) > 0, since 0 < η
(t)
c ≤ 1

2L(1+2KQ) , we further obtain:

−γt

∑
i∈S(t)

qi

K−1∑
k=0

(
Fi(w(t,k)

i )− Fi(w∗
B)
)

≤ −1
2η

(t)
c E

∑
i∈S(t)

qi

(
Fi(w(t,0))− Fi(w∗

B)
)

+
∑

i∈S(t)

qi

K−1∑
k=0

∥∥∥w(t,k)
i −w(t,0)

∥∥∥2

︸ ︷︷ ︸
bounded in Lemma B.9

+2(η(t)
c )2LK

∑
i∈S(t)

qi (Fi(w∗
B)− F ∗

i )

︸ ︷︷ ︸
bounded in Lemma B.10

, (A.84)

where, in (A.84), we used 0 < η
(t)
c ≤ 1

2L(1+2KQ) , which gives − γtE(1 − η(t)
c L) = − 2η(t)

c E (1 − η(t)
c L(1 +

2KQ)) (1− η(t)
c L) ≤ −1

2η
(t)
c E. Moreover, since γt ≤ 2η(t)

c , we also used γtη
(t)
c ≤ 2(η(t)

c )2, and γt

2η
(t)
c

≤ 1.

□

Lemma B.9 (Bound on the divergence of local models). Let Assumption 2, 3, and 5 hold, the local functions {Fi}Ni=1
be convex and G be defined as in Lemma B.1, Equation (2.7). Similarly to (X. Li et al., 2020, Lemma 3), we obtain
the following inequality:

EB(t)|S(t),H(t)

 ∑
i∈S(t)

qi

K−1∑
k=0

∥∥∥w(t,k)
i −w(t,0)

∥∥∥2
 ≤ 1

2(η(t)
c )2E3G2

 ∑
i∈S(t)

qi

 . (A.85)

Proof of Lemma B.9.

EB(t)|S(t),H(t)

 ∑
i∈S(t)

qi

K−1∑
k=0

∥∥∥w(t,k)
i −w(t,0)

∥∥∥2


= EB(t)|S(t),H(t)

 ∑
i∈S(t)

qi

K−1∑
k=1

(η(t)
c )2

∥∥∥∥∥∥
j−1∑
k′=0
∇Fi(w(t,k′)

i ,B(t,k′)
i )

∥∥∥∥∥∥
2
 (A.86)

≤ (η(t)
c )2 ∑

i∈S(t)

qi

K−1∑
k=1

j
j−1∑
k′=0

EB(t)
i |S(t),H(t)

[∥∥∥∇Fi(w(t,k′)
i ,B(t,k′)

i )
∥∥∥2
]

(A.87)

≤ (η(t)
c )2G2

(
K−1∑
k=1

j2
) ∑

i∈S(t)

qi

 (A.88)

= 1
6(η(t)

c )2K(K − 1)(2K − 1)G2

 ∑
i∈S(t)

qi

 , (A.89)

where, in (A.87), we used the triangle and the Jensen’s inequalities; in (A.88), we applied the bound in Lemma 2.3.1,
Equation (2.7); finally, in (A.89), we developed the sum of sequence of squares

∑K−1
k=1 j2 = 1

6K(K−1)(2K−1) ≤
1
2E

3 since E ≥ 1.
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□

Lemma B.10 (Bound on the dissimilarity of local functions). Let Assumption 1 hold and
(
S(t)

)
t≥0

defined therein.

We have:

E

 ∑
i∈S(t)

qi (Fi(w∗
B)− F ∗

i )

 ≤ ( N∑
i=1

πiqi

)
Γ, (A.90)

where Γ is defined in (2.9).

Proof of Lemma B.10.

E

 ∑
i∈S(t)

qi (Fi(w∗
B)− F ∗

i )

 =
N∑

i=1
πiqi (Fi(w∗

B)− F ∗
i ) (A.91)

=
(

N∑
k′=1

πk′qk′

)
N∑

i=1
pi (Fi(w∗

B)− F ∗
i ) (A.92)

≤
(

N∑
k′=1

πk′qk′

)
N∑

i=1
pi (Fi(w∗)− F ∗

i ) (A.93)

≤
(

N∑
k′=1

πk′qk′

)
max
i∈N
{(Fi(w∗)− F ∗

i )}︸ ︷︷ ︸
≜Γ

=
(

N∑
i=1

πiqi

)
Γ, (A.94)

where, in (A.91), we solved the total expectation, observing that E
[∑

i∈S(t) qif(i)
]

=
∑N

i=1 πiqif(i) (Assump-

tion 1); in (A.92), we applied pi ≜ πiqi∑N

k′=1 πk′ qk′
; in (A.93), we used FB(w) ≜

∑N
i=1 piFi(w) and we observed

FB(w∗
B) ≤ FB(w∗); finally, in (A.94), we used

∑N
i=1 pi = 1 and Γ ≜ maxi∈N {(Fi(w∗)− F ∗

i )}.

□

Lemma B.11 (Convergence results under heterogeneous client availability). Let Assumptions 1–3 and 5 hold and the
functions {Fi}Ni=1 be convex. For a diminishing step-size 0 < η

(t)
c ≤ 1

2L(1+2KQ) satisfying
∑+∞

t=1 (η(t)
c )2 < +∞, for

any t0 ≤ T , we have:

T∑
t=t0

η(t)
c E

 ∑
i∈S(t)

qi
(
Fi(w(t,0))− Fi(w∗

B)
) ≤ 2

E
diam(W )2 + (E + 1)

(
N∑

i=1
πiq

2
i σ

2
i

)(+∞∑
t=1

(η(t)
c )2

)

+ 2E2G2
(

N∑
i=1

πiqi

)(+∞∑
t=1

(η(t)
c )2

)

+ 4L(1 +KQ)Γ
(

N∑
i=1

πiqi

)(+∞∑
t=1

(η(t)
c )2

)
:= C0 < +∞. (A.95)
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Proof of Lemma B.11.

We take expectation over B(t) | S(t),H(t) on Lemma B.3:

EB(t)|S(t),H(t)

∥∥∥w(t+1,0) −w∗
B

∥∥∥2
≤∥∥∥w(t,0) −w∗

B

∥∥∥2
−2η(t)

c EB(t)|S(t),H(t)⟨w(t,0) −w∗
B, ḡ

(t)⟩︸ ︷︷ ︸
bounded in Lemma B.4

+ (η(t)
c )2EB(t)|S(t),H(t)

∥∥∥ḡ(t)
∥∥∥2

︸ ︷︷ ︸
bounded in Lemma B.5

+ 2η(t)
c EB(t)|S(t),H(t)⟨w(T,0) −w∗

B − η(t)
c ḡ(t), ḡ(t) − g(t)⟩︸ ︷︷ ︸

bounded in Lemma B.6

+ (η(t)
c )2EB(t)|S(t),H(t)

∥∥∥g(t) − ḡ(t)
∥∥∥2

︸ ︷︷ ︸
bounded in Lemma B.7

. (A.96)

Replacing Lemmas B.4–B.7 in (A.96), we obtain:

EB(t)|S(t),H(t)

∥∥∥w(t+1,0) −w∗
B

∥∥∥2

≤
∥∥∥w(t,0) −w∗

B

∥∥∥2
+ 2(η(t)

c )2LK(1 + 2KQ)EB(t)|S(t),H(t)

 ∑
i∈S(t)

qi (Fi(w∗
B)− F ∗

i )


− 2η(t)

c (1− η(t)
c L(1 + 2EQ))︸ ︷︷ ︸

γt

EB(t)|S(t),H(t)

 ∑
i∈S(t)

qi

K−1∑
k=1

(
Fi(w(t,k)

i )− Fi(w∗
B)
)

︸ ︷︷ ︸
bounded in Lemma B.8

+ 1
2(η(t)

c )2E(E + 1)
∑

i∈S(t)

q2
i σ

2
i + EB(t)|S(t),H(t)

 ∑
i∈S(t)

qi

K−1∑
k=0

∥∥∥w(t,k)
i −w(t,0)

∥∥∥2


︸ ︷︷ ︸
bounded in Lemma B.9

(A.97)

We apply Lemmas B.8 and B.9 to (A.97) with γt ≜ 2η(t)
c (1− η(t)

c L(1 + 2EQ)). We observe that γt > 0 because:

0 ≤ η(t)
c ≤

1
2L(1 + 2KQ) . (A.98)

We obtain:

EB(t)|S(t),H(t)

∥∥∥w(t+1,0) −w∗
B

∥∥∥2
≤
∥∥∥w(t,0) −w∗

B

∥∥∥2
− 1

2η
(t)
c EEB(t)|S(t),H(t)

 ∑
i∈S(t)

qi

(
Fi(w(t,0))− Fi(w∗

B)
)

+ 1
2(η(t)

c )2E(E + 1)
∑

i∈S(t)

q2
i σ

2
i + (η(t)

c )2E3G2 ∑
i∈S(t)

qi

+ 4(η(t)
c )2LK(1 +KQ)

 ∑
i∈S(t)

qi (Fi(w∗
B)− F ∗

i )

 . (A.99)

Computing the total expectation on (A.99), we have:

ES(t),B(t),H(t)

∥∥∥w(t+1,0) −w∗
B

∥∥∥2
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≤ EHt

∥∥∥w(t,0) −w∗
B

∥∥∥2
− 1

2η
(t)
c EES(t),B(t),H(t)

 ∑
i∈S(t)

qi

(
Fi(w(t,0))− Fi(w∗

B)
)

+ 1
2(η(t)

c )2E(E + 1)ES(t),Ht

 ∑
i∈S(t)

q2
i σ

2
i

+ (η(t)
c )2E3G2ES(t),Ht

 ∑
i∈S(t)

qi


+ 4(η(t)

c )2LK(1 +KQ)ES(t),Ht

 ∑
i∈S(t)

qi (Fi(w∗
B)− F ∗

i )


︸ ︷︷ ︸

bounded in Lemma B.10

(A.100)

Applying Lemma B.10 to (A.100) and considering E
[∑

i∈S(t) ai
]

=
∑N

i=1 πiai (Assumption 1), the following
inequality holds:

E
∥∥∥w(t+1,0) −w∗

B

∥∥∥2
≤ E

∥∥∥w(t,0) −w∗
B

∥∥∥2
− 1

2η
(t)
c EE

 ∑
i∈S(t)

qi

(
Fi(w(t,0))− Fi(w∗

B)
)

+ 1
2(η(t)

c )2E(E + 1)
(

N∑
i=1

πiq
2
i σ

2
i

)
+ (η(t)

c )2E3G2
(

N∑
i=1

πiqi

)

+ 4(η(t)
c )2LK(1 +KQ)Γ

(
N∑

i=1
πiqi

)
. (A.101)

Rearranging and summing over t = t0, . . . , T , we obtain the following inequality:

T∑
t=t0

η(t)
c E

 ∑
i∈S(t)

qi
(
Fi(w(t,0))− Fi(w∗

B)
) ≤ 2

E

T∑
t=t0

E
[(∥∥∥w(t,0) −w∗

B

∥∥∥2
−
∥∥∥w(t+1,0) −w∗

B

∥∥∥2
)]

+ (E + 1)
(

N∑
i=1

πiq
2
i σ

2
i

) T∑
t=t0

(η(t)
c )2


+ 2E2G2

(
N∑

i=1
πiqi

) T∑
t=t0

(η(t)
c )2


+ 4L(1 +KQ)Γ

(
N∑

i=1
πiqi

) T∑
t=t0

(η(t)
c )2

 . (A.102)

The first term in the right-hand side of (A.102) is a telescoping sum and we remove the negative term

−E
∥∥∥w(t+1,0) −w∗

B

∥∥∥2
:

T∑
t=t0

η(t)
c E

 ∑
i∈S(t)

qi
(
Fi(w(t,0))− Fi(w∗

B)
) ≤ 2

E
E ∥wt0,0 −w∗

B∥
2 + (E + 1)

(
N∑

i=1
πiq

2
i σ

2
i

) T∑
t=t0

(η(t)
c )2


+ 2E2G2

(
N∑

i=1
πiqi

) T∑
t=t0

(η(t)
c )2
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+ 4L(1 +KQ)Γ
(

N∑
i=1

πiqi

) T∑
t=t0

(η(t)
c )2

 . (A.103)

Finally, by noting that ∥wt0,0 −w∗
B∥ ≤ diam(W ) and

∑T
t=t0(η(t)

c )2 ≤
∑+∞

t=1 (η(t)
c )2 < +∞, we complete the

proof of Lemma B.11.

□

Lemma B.12. Let Assumptions 2 and 3 hold, and the local functions {Fi}Ni=1 be convex. We have:

|Fi(v)− Fi(w)| ≤ D · ∥v −w∥ , ∀v,w ∈W (A.104)

Proof of Lemma B.12.

In Lemma B.1, under Assumptions 2 and 3, we have already proved that:

∥∇Fi(w)∥ ≤ D. (2.6)

Moreover, from the convexity of {Fi}i∈N , it follows that:

⟨∇Fi(v),v −w⟩ ≤ Fi(v)− Fi(w) ≤ ⟨∇Fi(w),v −w⟩. (A.105)

The Cauchy–Schwarz inequality completes the proof of Lemma B.12:

|Fi(v)− Fi(w)| ≤ max{∥∇Fi(v)∥ , ∥∇Fi(w)∥} · ∥v −w∥ ≤ D · ∥v −w∥ . (A.106)

□

Lemma B.13. Let Assumptions 2, 3, and 5 hold. We have:

EBt|S(t),Ht

∥∥∥w(t+1,0) −w(t,0)
∥∥∥ ≤ η(t)

c EG

 ∑
i∈S(t)

qi

 . (A.107)

Proof of Lemma B.13.

The proof is based on (Sun et al., 2018, Proposition 1.4).

EBt|S(t),Ht

∥∥∥w(t+1,0) −w(t,0)
∥∥∥ = EBt|S(t),Ht

∥∥∥∥∥∥−η(t)
c

∑
i∈S(t)

qi

K−1∑
k=0
∇Fi(w(t,k)

i ,B(t,k)
i )

∥∥∥∥∥∥ (A.108)

≤ η(t)
c

∑
i∈S(t)

qi

K−1∑
k=0

EBk
t,0:j−1|S(t),Ht

[
EB(t,k)

i |Bk
t,0:j−1,S(t),Ht

[
∇Fi(w(t,k)

i ,B(t,k)
i )

]]
(A.109)

≤ η(t)
c EG

 ∑
i∈S(t)

qi

 , (A.110)

where, in (A.109), we used the triangle inequality and the law of total expectation; in (A.110), we applied
Lemma 2.3.1, Equation (2.7).
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□

Similarly to (Sun et al., 2018, Theorem 1), we provide the following definition.

Definition B.1. For communication round t ≥ 1, denote the positive integer J (t) as follows:

J (t) ≜ min
{

max
{⌈ ln (2CPHt)

ln (1/λ(P ))

⌉
, TP

}
, t

}
. (A.111)

The parameter J (t) is crucial in our analysis: it represents the communication rounds needed to bound the stationary
distribution convergence of the Markov process (S(t))t>0. It will play a key role in Lemmas B.14–B.18 and in the
proof of Theorem B.19. We remark that, by definition: TP ≤ J (t) ≤ t.

Our definition of J (t) corrects a typo in (Sun et al., 2018, (6.27)), which considered ln (t/(2CPH)) rather than
ln (2CPHt). In fact, we observe that (Sun et al., 2018, (6.28)) and consequently (Sun et al., 2018, (6.35)) do not hold
when J (t) is defined as in (Sun et al., 2018, (6.27)).

Lemma B.14 (Convergence results under heterogeneous and correlated client availability after J (t) communication
rounds). Let Assumptions 1–3, and 5 hold, the local functions {Fi}Ni=1 be convex, and the parameter J (t) ≤ t be as
in Definition B.1. For a diminishing step-size {η(t)

c }t≥1 satisfying
∑+∞

t=1 ln(t) · (η(t))2, for any t0 ≤ T , we have:

T∑
t=t0

η(t)
c E

 ∑
i∈S(t)

qi
(
Fi(w(t−J (t),0))− Fi(w(t,0))

) ≤ C1
ln(1/λ(P )) < +∞, (A.112)

where:

C1 ≜ EDGQ

(
N∑

i=1
πiqi

)(+∞∑
t=1

ln (2CPHt) (η(t−J (t)))2
)
. (A.113)

Proof of Lemma B.14.

This proof is based on (Sun et al., 2018, Equation (6.31)).

T∑
t=t0

η(t)
c E

 ∑
i∈S(t)

qi(Fi(w(t−J (t),0))− Fi(w(t,0)))


≤ Q

T∑
t=t0

η(t)
c E

[
max
i∈N

{
Fi(w(t−J (t),0))− Fi(w(t,0))

}]
(A.114)

≤ DQ
T∑

t=t0

η(t)
c E

∥∥∥w(t−J (t),0) −w(t,0)
∥∥∥ (A.115)

≤ DQ
T∑

t=t0

η(t)
c

t−1∑
d=t−J (t)

ES(d),H(d)

[
EB(d)|S(d),H(d)

∥∥∥w(d,0) −w(d+1,0)
∥∥∥] (A.116)

≤ EDGQ
T∑

t=t0

t−1∑
d=t−J (t)

η(t)
c η(d)E

 ∑
k∈S(d)

qi

 (A.117)
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≤ EDGQ
(

N∑
i=1

πiqi

)
T∑

t=t0

t−1∑
d=t−J (t)

η(t)
c η(d) (A.118)

≤ EDGQ

2

(
N∑

i=1
πiqi

)
T∑

t=t0

t−1∑
d=t−J (t)

(
(η(t)

c )2 + (η(d))2
)

(A.119)

≤ EDGQ
(

N∑
i=1

πiqi

)
T∑

t=t0

J (t)(η(t−J (t)))2, (A.120)

where, in (A.114), we used
∑

i∈S(t) qiai ≤
∑N

i=1 qiai ≤ (
∑N

i=1 qi) ·maxi∈N {ai} = Q ·maxi∈N {ai}; in (A.115),
we applied Lemma B.12; in (A.116), we used the triangle inequality and the law of total expectation; in (A.117),
we applied Lemma B.13 and again the law of total expectation; in (A.118), we observed that E

[∑
k∈S(d) qi

]
=∑N

i=1 πiqi (Assumption 1); in (A.119), we used 2ab ≤ a2 + b2; finally, in (A.120), we applied η(t)
c < η(d) ≤

η(t−J (t)) due to the diminishing learning rate.

We apply then the definition of J (t) in (A.111) and we observe that
∑T

t=t0 ln(t)(η(t−J (t)))2 ≤∑+∞
t=1 ln(t)(η(t−J (t)))2:

T∑
t=t0

η(t)
c E

 ∑
i∈S(t)

qi(Fi(w(t−J (t),0))− Fi(w(t,0)))

 ≤ EDGQ( N∑
i=1

πiqi

) T∑
t=t0

ln (2CPHt)
ln(1/λ(P )) (η(t−J (t)))2


(A.121)

≤ EDGQ
(

N∑
i=1

πiqi

)(+∞∑
t=1

ln (2CPHt)
ln(1/λ(P )) (η(t−J (t)))2

)
(A.122)

= C1
ln(1/λ(P )) . (A.123)

Finally, we conclude that C1 is finite. To this purpose, we observe that J (t) ≤ a ln(t) + b, for opportune positive
values a and b. Let t′ be a positive integer such that t ≥ a ln(t) + b for any t ≥ t′. Then:

T∑
t=t′

ln(t) · (η(t−J (t)))2 =
T −J (t)∑

t=t′−J (t)

ln(t+ J (t)) · (η(t))2 (A.124)

≤
+∞∑
t=1

ln(t+ a ln t+ b) · (η(t))2 (A.125)

≤
+∞∑
t=1

ln ((1 + a+ b) t) · (η(t))2 < +∞. (A.126)

□

Lemma B.15. Let Assumptions 2, 3 and 5 hold, the local functions {Fi}Ni=1 be convex, and J (t) ≤ t be as in
Definition B.1. Let the step-size be decreasing and satisfy:

∑+∞
t=1 ln(t) · (η(t))2 < +∞. For any t0 ≤ T , we have:(

N∑
i=1

πiqi

)
T∑

t=t0

η(t)
c E

[
FB(w(t,0))− FB(w(t−J (t),0))

]
≤ C1

ln (1/λ(P )) < +∞, (A.127)
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where:

C1 ≜ EDGQ

(
N∑

i=1
πiqi

)(+∞∑
t=1

ln (2CPHt) (η(t−J (t)))2
)
. (A.128)

Proof of Lemma B.15.

This proof is based on (Sun et al., 2018, Equation (6.38)).(
N∑

i=1
πiqi

)
T∑

t=t0

η(t)
c E

[
FB(w(t,0))− FB(w(t−J (t),0))

]

=
T∑

t=t0

η(t)
c

N∑
i=1

πiqiE
[
Fi(w(t,0))− Fi(w(t−J (t),0))

]
(A.129)

≤ D
(

N∑
i=1

πiqi

)
T∑

t=t0

η(t)
c E

∥∥∥w(t−J (t),0) −w(t,0)
∥∥∥ (A.130)

≤ D
(

N∑
i=1

πiqi

)
T∑

t=t0

η(t)
c

t−1∑
d=t−J (t)

ES(d),H(d)

[
EB(d)|S(d),H(d)

∥∥∥w(d,0) −w(d+1,0)
∥∥∥] (A.131)

≤ DEGQ
(

N∑
i=1

πiqi

)
T∑

t=t0

t−1∑
d=t−J (t)

η(t)
c η(d) (A.132)

≤ DEGQ

2

(
N∑

i=1
πiqi

)
T∑

t=t0

t−1∑
d=t−J (t)

(
(η(t)

c )2 + (η(d))2
)

(A.133)

≤ DEGQ
(

N∑
i=1

πiqi

)
T∑

t=t0

J (t) · (η(t−J (t)))2 (A.134)

≤ EDGQ
(

N∑
i=1

πiqi

)(+∞∑
t=1

ln (2CPHt)
ln(1/λ(P )) (η(t−J (t)))2

)
= C1

ln(1/λ(P )) , (A.135)

where, in (A.129), we applied FB(w) =
∑N

i=1 piFi(w), where pi = πiqi∑N

h=1 πhqh

; in (A.130), we applied

Lemma B.12; in (A.131), we applied the triangle inequality and the law of total expectation; in (A.132), we applied
Lemma B.13; in (A.133), we used 2ab ≤ a2 + b2; in (A.134), we observed that (η(t)

c )2 + (η(d))2 ≤ 2(η(t−J (t)))2

due to the diminishing learning rate; finally, in (A.135), we applied the definition of J (t) given in (A.111) and we
observed that

∑T
t=t0 ln(t)(η(t−J (t)))2 ≤

∑+∞
t=1 ln(t)(η(t−J (t)))2 < +∞ and then C1 < +∞.

□

Lemma B.16 (Bound on the distance dynamics between the current and the stationary distributions of the Markov
process). Let Assumption 1 hold, and P , ρ defined therein. The following inequality holds:

max
i,j∈[M ]

∣∣∣[P t]i,j − ρj

∣∣∣ ≤ CP · λ(P )t, for t ≥ TP , (5)

where CP and TP are positive constants defined as:

CP ≜

(
d∑

i=2
n2

i

) 1
2

· ∥U∥F ∥U−1∥F , (A.136)



126 APPENDIX A

TP ≜ max

max
1≤i≤d




2ni(ni − 1)(ln( 2ni

ln λ(P )/|λ̄2(P )|)− 1)

(ni + 1) ln(λ(P )/|λ̄2(P )|)


 , 0

 . (A.137)

Here, d, ni, and U are quantities related to the Jordan canonical form of P . Specifically, P = UJU−1, where J
denotes the Jordan M ×M matrix with d blocks Ji, i = 2, . . . , d. Each block Ji, i = 2, 3, . . . , d, has a dimension
ni ≥ 1, and

∑d
i=1 ni = M . Moreover, |U |F denotes the Frobenius norm of the matrix U .

Furthermore, let Assumptions 2 and 3 hold, H be defined as in Lemma B.1, Equation (2.8), and TP ≤ J (t) ≤ t be
defined in (A.111). We obtain the additional inequality:∣∣∣[P J (t) ]i,j − ρj

∣∣∣ ≤ CP · λ(P )t ≤ CPλ(P )J (t) = 1
2Ht, ∀i, j ∈ [M ] and ∀t ≥ TP . (A.138)

Proof of Lemma B.16.

The inequality in (2.5) is proven in(Sun et al., 2018, Lemma 1) and holds for any t ≥ TP . Here, TP is a constant
dependent on the transition matrix P of the Markov chain (S(t))t≥0 defined in Assumption 1. To prove (A.138), we
further observe that 0 < λ(P ) ≤ 1 and TP ≤ J (t) ≤ t. The last inequality in (A.138) follows from the definition
of J (t) in (A.111).

□

We remark that the bounds in (Sun et al., 2018, Lemma 1), and consequently our (A.138), require t ≥ TP . Therefore,
the derivations in (Sun et al., 2018, (6.28)) and (Sun et al., 2018, (6.35)–(6.37)) are not accurate, since they hold for
t ≥ TP . We address this problem with Lemmas B.17 and B.18.

Lemma B.17. Let Assumptions 1–3 hold, and TP be defined as in (A.137). The following inequality holds:(
N∑

i=1
πiqi

)
TP −1∑
t=1

η(t)
c E

[
FB(w(t−J (t),0))− F ∗

B

]
≤ C2 < +∞, (A.139)

where:

C2 ≜ H

TP −1∑
t=1

η(t)
c

( N∑
i=1

πiqi

)
< +∞. (A.140)

Proof of Lemma B.17.

(
N∑

i=1
πiqi

)
TP −1∑
t=1

η(t)
c E

[
FB(w(t−J (t),0))− F ∗

B

]
=

TP −1∑
t=1

η(t)
c

N∑
i=1

πiqiE
[
Fi(w(t−J (t),0))− Fi(w∗

B)
]

(A.141)

≤ H

TP −1∑
t=1

η(t)
c

( N∑
i=1

πiqi

)
≜ C2 < +∞, (A.142)

where, in (A.141), we used the definition of FB from (2.4), and in (A.142), we applied Lemma 2.3.1, Equation (2.8),
which holds for any w ∈W . Lastly, it is worth noting that C2 is a sum of finite elements, and is therefore finite.
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□

Lemma B.18. Let Assumptions 1–3 and 5 hold, and {Fi}Ni=1 be convex. Recall the definitions of J (t) and
TP in (A.111) and in (A.137), respectively. Let the step-size (η(t)

c )t≥1 decrease and satisfy η1 ≤ 1
2L(1+2KQ) ,∑+∞

t=1 (η(t)
c )2 < +∞, and

∑+∞
t=1 ln (t) · (η(t))2 < +∞. For t ≥ TP , we have:(

N∑
i=1

πiqi

)
T∑

t=TP

η(t)
c E

[
FB(w(t−J (t),0))− F ∗

B

]
≤ C1

ln (1/λ(P )) + C3 < +∞, (A.143)

where:

C1 ≜ EDGQ

(
N∑

i=1
πiqi

)(+∞∑
t=1

ln (2CPHt) · (η(t−J (t)))2
)
< +∞. (A.144)

C3 ≜ C0 + MQ

4

+∞∑
t=1

(
(η(t)

c )2 + 1
t2

)
< +∞; (A.145)

Proof of Lemma B.18.

Assume t ≥ TP . With a similar proof technique to (Sun et al., 2018, (6.35)), we derive the following lower bound:

ES(t)|S(t−J (t)),H(t−J (t))

 ∑
i∈S(t)

qi
(
Fi(w(t−J (t),0))− Fi(w∗

B)
) =

=
∑

a∈M
P(S(t) = a | S(t−J (t)),H(t−J (t)))

∑
k∈a

qi
(
Fi(w(t−J (t),0))− Fi(w∗

B)
)

(A.146)

=
∑

a∈M

[
P J (t)]

St−J (t)
,a

∑
k∈a

qi
(
Fi(w(t−J (t),0))− Fi(w∗

B)
)

(A.147)

≥
∑

a∈M

(
ρa −

1
2Ht

)∑
k∈a

qi
(
Fi(w(t−J (t),0))− Fi(w∗

B)
)

(A.148)

=
N∑

i=1
E
[
1i∈S(t)

]
qi
(
Fi(w(t−J (t),0))− Fi(w∗

B)
)
− 1

2Ht
∑

a∈M

∑
k∈a

qi
(
Fi(w(t−J (t),0))− Fi(w∗

B)
)

(A.149)

≥
N∑

i=1
πiqi

(
Fi(w(t−J (t),0))− Fi(w∗

B)
)
− MQ

2Ht max
i∈N

{
Fi(w(t−J (t),0))− Fi(w∗

B)
}

(A.150)

≥
(

N∑
i=1

πiqi

)
·
(
FB(w(t−J (t),0))− F ∗

B

)
− MQ

2t , (A.151)

where, in (A.146), we applied the definition of expected value to the random variable S(t), with a represent-
ing a realization of S(t), that is a state in the state space M, and P(S(t) = a | S(t−J (t)),H(t−J (t))) denot-
ing the conditional probability of the event S(t) = a given (S(t−J (t)),H(t−J (t))); in (A.147), we applied the
Markov property (Assumption 1), observing that P(S(t) = a | S(t−J (t))) = [P J (t) ]St−J (t)

,a
, where [P k]i,j de-

notes the (i, j)-th element of the i-th power of the transition matrix P ; in (A.148), we applied Lemma B.16,
Equation (A.138); for the first term in (A.149), we used

∑
a∈M ρa

∑
k∈a f(i) =

∑
a∈M ρa

∑N
i=1 1{k∈a}f(i) =∑N

i=1 f(i)
∑

a∈M ρa1k∈a =
∑N

i=1 f(i)E
[
1i∈S(t)

]
, where 1i∈S(t) is the indicator function that equals 1 if and only
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if i ∈ S(t); in (A.150), we used E
[
1i∈S(t)

]
= P(i ∈ S(t)) ≜ πi for the first term, and

∑
k∈a qif(i) ≤

∑N
i=1 qif(i) ≤

(
∑N

i=1 qi)(maxi∈N f(i)) = Qmaxi∈N f(i) and
∑

a∈M 1 = M for the second term; finally, in (A.151), we used
the definition of FB in (2.4) for the first term, and we used Lemma 2.3.1, Equation (2.8) for the second term.

Our derivations in (A.150) and (A.151) correct a typo in (Sun et al., 2018, (6.35)), which consideredQ/(2t) instead
of (MQ)/(2t). In (A.151), the dimension (M ) of the state space (M) of the Markov chain

(
S(t)

)
t≥0

appears in

the numerator of the second term.

Note that the steps in (A.148)–(A.151) require t ≥ TP . Multiplying by η(t)
c and summing for t = TP , . . . , T ,

rearranging, and computing the total expectation, we obtain the following inequality:(
N∑

i=1
πiqi

)
T∑

t=TP

η(t)
c E

[
FB(w(t−J (t),0))− F ∗

B

]

≤
T∑

t=TP

η(t)
c E

 ∑
i∈S(t)

qi
(
Fi(w(t−J (t),0))− Fi(w∗

B)
)+ MQ

2

T∑
t=TP

η
(t)
c

t
(A.152)

≤
T∑

t=TP

η(t)
c E

 ∑
i∈S(t)

qi
(
Fi(w(t−J (t),0))− Fi(w∗

B)
)

︸ ︷︷ ︸
bounded with Lemma B.11 + Lemma B.14

+MQ

4

T∑
t=1

(
(η(t)

c )2 + 1
t2

)
, (A.153)

where, in (A.153), we used 2ab ≤ a2 + b2 and we observed that
∑T

t=TP

(
(η(t)

c )2 + 1
t2

)
≤
∑T

t=1

(
(η(t)

c )2 + 1
t2

)
since t > 0 and η(t)

c > 0.

Moreover, if the step-size (η(t)
c )t≥1 decreases and satisfies η1 ≤ 1

2L(1+2KQ) ,
∑+∞

t=1 (η(t)
c )2 < +∞, and

∑+∞
t=1 ln (t) ·

(η(t))2 < +∞, we can further bound the first term in (A.153) by combining Lemma B.11 and Lemma B.14 for
t0 = TP , and we obtain:

T∑
t=TP

η(t)
c E

 ∑
i∈S(t)

qi
(
Fi(w(t−J (t),0))− Fi(w∗

B)
) ≤ C0 + C1

ln (1/λ(P )) < +∞, (A.154)

where:

C0 ≜
2
E

diam(W )2 + (E + 1)
(

N∑
i=1

πiq
2
i σ

2
i

)(+∞∑
t=1

(η(t)
c )2

)

+ 2E2G2
(

N∑
i=1

πiqi

)(+∞∑
t=1

(η(t)
c )2

)

+ 4L(1 +KQ)Γ
(

N∑
i=1

πiqi

)(+∞∑
t=1

(η(t)
c )2

)
. (A.155)

Finally, plugging (A.154) into (A.153), observing that
∑T

t=1

(
(η(t)

c )2 + 1
t2

)
≤
∑+∞

t=1

(
(η(t)

c )2 + 1
t2

)
< +∞ be-

cause
∑+∞

t=1 (η(t)
c )2 < +∞ and

∑+∞
t=1

1
t2 = π

6 < +∞, and denoting C3 ≜ C0 + MQ
4
∑+∞

t=1

(
(η(t)

c )2 + 1
t2

)
< +∞,

we conclude the proof of Lemma B.18.

□
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B.C Proof of Theorem 2.3.3

Theorem B.19 (Convergence of the optimization error ϵopt). Let Assumptions 1–3 and 5 hold and the functions
{Fi}Ni=1 be convex. Recall the constants M,L,D,G,H,Γ, σi, CP , TP ,J (t), and λ(P ) defined above. Let Q =∑

i∈N qi.
Let the step-size η(t)

c > 0 decrease and satisfy:

η1 ≤
1

2L(1 + 2KQ) ,
+∞∑
t=1

ηt = +∞,
+∞∑
t=1

ln(t) · (η(t)
c )2 < +∞. (2.12)

Let T denote the total communication rounds.
For T ≥ TP , the expected optimization error E[FB(w̄(T,0))− F ∗

B] can be bounded as follows:

E[FB(w̄(T,0))− F ∗
B] ≤

1
2 q⊺Σq+υ

π⊺q + ψ + ϕ
ln(1/λ(P ))

(
∑T

t=1 η
(t)
c )

, (2.13)

where w̄(T,0) =
∑T

t=1 η
(t)
c w(t,0)∑T

t=1 η
(t)
c

, and:

Σ ≜ diag
(

2 (E + 1)πiσ
2
i

+∞∑
t=1

(η(t)
c )2

)
; (A.156)

υ ≜
2
E

diam(W )2 + MQ

4

+∞∑
t=1

(
(η(t)

c )2 + 1
t2

)
; (A.157)

ψ ≜ 4L(1 +KQ)Γ
(+∞∑

t=1
(η(t)

c )2
)

+ 2E2G2
(+∞∑

t=1
(η(t)

c )2
)

+H

TP −1∑
t=1

η(t)
c

 ; (A.158)

ϕ ≜ 2EDGQ
(+∞∑

t=1
ln(2CPHt) · (η(t−J (t)))2

)
. (A.159)

Proof of Theorem B.19.

The proof involves three main steps.

Step 1

From Lemma B.15, observe that:(
N∑

i=1
πiqi

)
T∑

t=1
η(t)

c E[FB(w(t,0))− FB(w(t−J (t),0))] ≤ C1
ln(1/λ(P )) < +∞, (A.160)

where:

C1 ≜ EDGQ

(
N∑

i=1
πiqi

)(+∞∑
t=1

ln (2CPHt) · (η(t−J (t)))2
)
< +∞. (A.161)
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Step 2

By combining Lemma B.17 and Lemma B.18, we obtain:(
N∑

i=1
πiqi

)
T∑

t=1
η(t)

c E[FB(w(t−J (t),0))− F ∗
B)] ≤ C1

ln(1/λ(P )) + C2 + C3 < +∞, (A.162)

where C1 is defined in (A.161), and:

C2 ≜ H

TP −1∑
t=1

η(t)
c

( N∑
i=1

πiqi

)
< +∞; (A.163)

C3 ≜
2
E

diam(W )2 + (E + 1)
(

N∑
i=1

πiq
2
i σ

2
i

)(+∞∑
t=1

(η(t)
c )2

)

+ 2E2G2
(

N∑
i=1

πiqi

)(+∞∑
t=1

(η(t)
c )2

)

+ 4L(1 +KQ)Γ
(

N∑
i=1

πiqi

)(+∞∑
t=1

(η(t)
c )2

)
+ MQ

4

+∞∑
t=1

(
(η(t)

c )2 + 1
t2

)
< +∞. (A.164)

Step 3

By summing the results from Steps 1 and 2, given in (A.160) and (A.162), respectively, we have:(
N∑

i=1
πiqi

)
T∑

t=1
η(t)

c E[FB(w(t,0))− F ∗
B] ≤ 2C1

ln(1/λ(P )) + C2 + C3 < +∞. (A.165)

With the convexity of FB(·), applying the Jensen’s inequality, we complete Step 3:(
T∑

t=1
η(t)

c

)(
N∑

i=1
πiqi

)
E[FB(w̄(T,0))− F ∗

B] ≤
(

N∑
i=1

πiqi

)
T∑

t=1
η(t)

c E[FB(w(t,0))− F ∗
B] (A.166)

≤ 2C1
ln(1/λ(P )) + C2 + C3 < +∞, (A.167)

where w̄(T,0) :=
∑T

t=1 η
(t)
c w(t,0)∑T

t=1 η
(t)
c

, and the constants C1, C2, and C3 are defined in (A.161), (A.163), and (A.164),

respectively.

By dividing (A.166) and (A.167) by
(∑T

t=1 η
(t)
c

)
·
(∑N

i=1 πiqi

)
, we obtain the expression for Theorem B.19 given

in (2.13).

□
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C Proof of Theorem 2.3.4

Theorem C.1 (An alternative bound on the bias error ϵbias). Under the same assumptions of Theorem 2.3.2, define
Γ′ ≜ maxi{Fi(w∗

B)− F ∗
i }. The following result holds:

ϵbias ≤ 4κ2 · d2
T V (α,p) · Γ′︸ ︷︷ ︸

≜ϵ̄′
bias

, (2.20)

where dT V (α,p) ≜ 1
2
∑N

i=1|αi− pi| denotes the total variation distance between the probability distributions α and
p.

Proof of Theorem C.1.

The proof follows the same steps as in Theorem A.1, proceeding from (A.9) as follows:

∥∇F (w∗
B)∥ ≤ L

√
2
µ

N∑
i=1
|αi − pi|

√
(Fi(w∗

B)− F ∗
i ) (A.9)

≤ 2L
√

2
µ
dT V (α,p)

√
Γ′, (A.168)

where, in (A.168), we applied the definitions of dT V (α,p) ≜ 1
2
∑N

i=1|αi − pi| and Γ′ ≜ maxi{Fi(w∗
B)− F ∗

i }.

Squaring (A.168), we obtain the following expression:

∥∇F (w∗
B)∥2 ≤ 8L2

µ
d2

T V (α,p)Γ′. (A.169)

Then, replacing (A.169) in (A.5), we obtain:

ϵbias ≜ (F (w∗
B)− F ∗) ≤ 1

2µ ∥∇F (w∗
B)∥2 ≤ 4L

2

µ2 d
2
T V (α,p)Γ′︸ ︷︷ ︸

≜ϵ̄′
bias

, (A.170)

which concludes the proof of Theorem C.1.

□

D Convexity of ϵ̄opt + ϵ̄bias

For the proof of the convexity of ϵ̄opt(q), please refer to Appendix E.A. To prove that ϵ̄bias(q) is also convex, we need
to study the convexity of χ2

α∥p ≜
∑N

i=1 (αi − pi)2/pi in q ∈ {qi > 0 ∀k, ∥q∥1 = Q > 0}. To this purpose, we define
the following functions:

hi : RN
≥0 \ {0} → R≥0, hi(q) ≜ πiqi∑N

k′=1 πk′qk′
; (A.171)

gi : R>0 → R≥0, gi(pi) ≜
(pi − αi)2

pi
. (A.172)
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Finally, we write the chi-square divergence χ2
α∥p between the target and biased probability distributions α and p as:

χ2
α∥p(q) =

N∑
i=1

(gi ◦ hi)(q) =
N∑

i=1
gi(hi(q)). (A.173)

We observe that:

hi(q) is a particular case of linear-fractional functions (Boyd & Vandenberghe, 2004, Example 3.32, p. 97);

gi(·) is a convex in pi over R>0 because sum of convex functions;

each gi ◦ hi is quasi-convex in q ∈ RN
>0 because composition of a convex function (gi) and a linear-fractional

function (hi) (Boyd & Vandenberghe, 2004, p. 102).

However, note that the sum of quasi-convex functions is not necessarily quasi-convex.

Proposition D.1. The function χ2
α∥p(q) is not convex over RN

>0.

Proof of Proposition D.1.

To analyze the convexity of χ2
α∥p(q) =

∑N
i=1(gi ◦ hi)(q) over RN

>0, a possible approach is to check whether each
function (gi ◦ hi)(q) is convex over RN

>0. In what follows, we show that (gi ◦ hi) is not convex over RN
>0.

Consider the case when πi = 1 ∀i ∈ N . We can rewrite (gi ◦ hi)(q) as follows:

(gi ◦ hi)(q) =

(
qi

∥q∥1
− αi

)2

qi

∥q∥1

. (A.174)

We show that this function fails to satisfy the definition of convexity, i.e., ∃ q, q′ ∈ RN
>0, ζ ∈ [0, 1] such that:

(gi ◦ hi)
(
ζq + (1− ζ)q′) > ζ (gi ◦ hi) (q) + (1− ζ) (gi ◦ hi) (q′). (A.175)

The left-hand side (LHS) of (A.175) is:

(gi ◦ hi)
(
ζq + (1− ζ)q′) =

(
ζqi+(1−ζ)q′

i
ζ∥q∥1+(1−ζ)∥q′∥1

− αi

)2

ζqi+(1−ζ)q′
i

ζ∥q∥1+(1−ζ)∥q′∥1

. (A.176)

If we take q : ∥q∥1 = 1, qi = αi, ζ = 1
2 , q′ = Q

N 1, and we let Q→ +∞, then the LHS in (A.176) converges to:

lim
Q→+∞

(
1
2 αi+ 1

2
Q
N

1
2 1+ 1

2 Q
− αi

)2

1
2 αi+ 1

2
Q
N

1
2 1+ 1

2 Q

=

(
1
N − αi

)2

1
N

. (A.177)

On the other hand, for the same choices of qi, q, q′, and ζ, and if we let Q → +∞, the right-hand side (RHS)
of (A.175) is:

ζ (gi ◦ hi) (q) + (1− ζ) (gi ◦ hi) (q′) = 0 + 1
2

(
1
N − αi

)2

1
N

. (A.178)
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Finally, comparing (A.177) and (A.178), we conclude that, for Q large enough, the LHS in (A.175) is larger than
the RHS.

□

Proposition D.2. The function χ2
α∥p(q) is convex over RN

>0 ∩ {q : ∥q∥1 = Q > 0}.

Proof of Proposition D.2.

To verify the convexity of χ2
α∥p(q) =

∑N
i=1(gi ◦ hi)(q) over RN

>0 ∩ {q : ∥q∥1 = Q > 0}, one possible approach
is to demonstrate the convexity of each function (gi ◦ hi)(q) over the set RN

>0 ∩ {q : ∥q∥1 = Q > 0}.

We prove this result for a more general case. We show that, if

g̃ is a convex function over its domain Dg (A.179)

and

h̃(q) = Aq + b

c⊺q + d
, (A.180)

then

g̃ ◦ h̃ is convex over D = RN
>0 ∩ {q : c⊺q + d = Q > 0, Aq + b

c⊺q + d
∈ Dg}. (A.181)

It is then sufficient to apply this result to each pair (gi, hi) to conclude that (gi ◦ hi) is convex and then χ2
α∥p(q) is

convex.

By direct inspection, for all q, q′ ∈ D, ∀ ζ ∈ [0, 1], the following equality holds:(
g̃ ◦ h̃

) (
ζq + (1− ζ)q′) = g̃

(
h̃
(
ζq + (1− ζ)q′)) = g̃

(
ζ ′ Aq + b

c⊺q + d
+ (1− ζ ′) Aq′ + b

c⊺q′ + d

)
, (A.182)

where:

ζ ′ = ζ (c⊺q + d)
ζ (c⊺q + d) + (1− ζ) (c⊺q′ + d) ∈ [0, 1]. (A.183)

Applying the convexity of g̃, we bound Equation (A.182) as follows:

g̃

(
ζ ′ Aq + b

c⊺q + d
+ (1− ζ ′) Aq′ + b

c⊺q′ + d

) convexity of g̃
≤ ζ ′g̃

(
Aq + b

c⊺q + d

)
+ (1− ζ ′)g̃

(
Aq′ + b

c⊺q′ + d

)
(A.184)

= ζ ′
(
g̃ ◦ h̃

)
(q) + (1− ζ ′)

(
g̃ ◦ h̃

)
(q′). (A.185)

Finally, to conclude the proof, we show that ζ ′ = ζ. This is true because, for any q and q′ ∈ D, c⊺q + d =
c⊺q′ + d = Q > 0. In fact, by using this condition in Equation (A.183), we have that:

ζ ′ = ζQ

ζQ+ (1− ζ)Q = ζ, (A.186)

which establishes the convexity of g̃ ◦ h̃ by definition.

□
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E Minimizing ϵ̄opt

Equation (2.13) can be rewritten as:(
T∑

t=1
η(t)

c

)
E
[
FB(w̄(T,0))− F ∗

B

]
≤

1
2q⊺Σq + υ

π⊺q
+ ψ + ϕ

ln(1/λ(P )) (A.187)

=
1
2q⊺Aq +B

π⊺q
+ C ≜ J(q), (A.188)

where:

A ≜ Σ = diag
(

2 (E + 1)πiσ
2
i

+∞∑
t=1

(η(t)
c )2

)
; (A.189)

B ≜ υ = 2
E

diam(W )2 + MQ

4

+∞∑
t=1

(
(η(t)

c )2 + 1
t2

)
; (A.190)

C ≜ ψ + ϕ

ln(1/λ(P ))

=
(
4L(1 +KQ)Γ + 2E2G2

)(+∞∑
t=1

(η(t)
c )2

)
+ 2EDGQ

(+∞∑
t=1
J (t) · (η(t−J (t)))2

)
+H

TP −1∑
t=1

η(t)
c

 . (A.191)

The minimization of (A.188), defines the following optimization problem:

minimize
q

J(q) ≜
1
2q⊺Aq +B

π⊺q
+ C; (A.192a)

subject to q ≥ 0, (A.192b)

π⊺q > 0, (A.192c)

∥q∥1 = Q. (A.192d)

Remark E.1. In Problem (A.192a)–(A.192d), when setting some qi to zero, we do not consider the possibility of
redefining the Markov chain (S(t))t≥0 in Assumption 1 by considering the reduced state space of clients with qi > 0.
In this case, the redefined Markov chain would have a different transition matrix P ′ ̸= P with λ(P ′) ̸= λ(P ),
resulting in C no longer being constant.

E.A The optimization problem in (A.192a)–(A.192d) is convex

Let us rewrite the problem by adding a variable s ≜ 1/π⊺q and then replacing y ≜ sq. We have:

J(y, s) = s

(1
2

y⊺

s
A

y

s
+B

)
+ C = s ·K

(
y

s

)
+ C, (A.193)

where K : RN → R, K(q) ≜ 1
2q⊺Aq +B is a (strictly) convex function, and:

minimize
y, s

J(y, s) = 1
2sy⊺Ay +Bs+ C (A.194a)

subject to y ≥ 0, (A.194b)
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s > 0, (A.194c)

π⊺y = 1, (A.194d)

∥y∥1 = Qs. (A.194e)

Note that the objective function J(y, s) : RN+1 → R, J(y, s) = s · K(y/s) + C in (A.193) is the perspective
of the convex function K(q) + C, and is therefore convex (Boyd & Vandenberghe, 2004, pp. 89–90). Moreover,
the constraints in (A.194b)–(A.194e) define a convex set, and then the optimization problem defined by (A.194a)–
(A.194e) is convex. We solve it with the method of Lagrange multipliers.

E.B Support for Guideline A (Section 2.3)

The Lagrangian function L is as follows:

L(y, s, ι, θ,ω) = 1
2sy⊺Ay +Bs+ C + ι(1− π⊺y) + θ(∥y∥1 −Qs)− ω⊺y. (A.195)

Since the constraint s > 0 defines an open set, the set defined by the constraints in (A.194b)–(A.194e) is not closed.
However, the solution of the optimization problem defined by (A.194a)–(A.194e) is never on the boundary s = 0
because L → +∞ as s → 0+, therefore we can consider s ≥ 0. Moreover, strong duality holds for the Slater’s
constraint qualification for convex problems.

The KKT conditions read: 

∂L
∂s

(y∗, s∗, ι∗, θ∗,ω∗) = 0, (A.196)

∇yL(y∗, s∗, ι∗, θ∗,ω∗) = 0, (A.197)

π⊺y∗ − 1 = 0, (A.198)

∥y∗∥1 −Qs = 0, (A.199)

ω∗⊺y∗ = 0, (A.200)

y∗,ω∗ ≥ 0. (A.201)

In particular, the KKT condition for y∗ read:

∇yL(y∗, s∗, ι∗, θ∗,ω∗) = 1
s∗ Ay∗ − ι∗π + θ∗1− ω∗ = 0, (A.202)

which is satisfied when:

∂L
∂y∗

i

= 1
s∗Akky

∗
i − ι∗πi + θ∗ − ω∗

i = 0, ∀i ∈ N , (A.203)

where Aij denotes the element on the i-th row and the k-th column of matrix A.

Furthermore, the Complementary Slackness conditions in (A.200) and (A.201) present two cases:

1. If y∗
i > 0 (and q∗

i > 0), then ω∗
i = 0 and:

y∗
i = s∗

Akk
(ι∗πi − θ∗), q∗

i = 1
Akk

(ι∗πi − θ∗); (A.204)
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2. y∗
i = q∗

i = 0 otherwise.

By replacing the equality constraint (A.194d) in Problem (A.194a)–(A.194e) with the inequality constraint π⊺y ≥ 1,
we establish an equivalent optimization problem. The equivalence holds because, for any feasible solution y′ with
π⊺y′ > 1, we can consider the solution y′′ = y′

π⊺y′ < y′, leading to a lower objective function value. Additionally, the
new problem states that the Lagrange multiplier (ι∗) associated with the inequality constraint must be non-negative.
By considering Akk ≥ 0 and ι∗ ≥ 0 in Equation (A.204), we conclude that q∗

i increases with πi, providing analytical
support for Guideline A.

E.C Closed-form solution of the optimization problem in (A.192a)–(A.192d)

The solution of the optimization problem in (A.192a)–(A.192d) is not of practical utility because its constants (e.g., L,
ω, Γ, CP ) are in general problem-dependent and difficult to estimate during training. In particular, Γ poses particular
difficulties as it is defined in terms of the minimizer of the target objective F , but the FL algorithm generally minimizes
the biased function FB . Nevertheless, we include the closed-formed solution of the optimization problem in (A.192a)–
(A.192d) for completeness.

We use the active-set method: let X be the set of coordinates corresponding to the active inequalities, i.e., X = {k |
y∗

i = 0}.

From the KKT condition in (A.198), we derive a relation between ι∗ and θ∗:

π⊺y∗ =
∑
k ̸∈X

πiy
∗
i =

∑
k ̸∈X

πi
s∗

Akk
(ι∗πi − θ∗) = ι∗s∗ ∑

k ̸∈X

π2
i

Akk
− θ∗s∗ ∑

k ̸∈X

πi

Akk
= 1. (A.205)

We use the KKT condition in (A.199) to derive another relation between ι∗ and θ∗:

∥y∗∥1 =
∑
k ̸∈X

y∗
i =

∑
k ̸∈X

s∗

Akk
(ι∗πi − θ∗) = Qs ⇔ ι∗ =

Q+ θ∗∑
k ̸∈X

1
Akk∑

k ̸∈X
πi

Akk

, (A.206)

and, replacing (A.206) in (A.205), we derive the closed-form solution for θ∗:

θ∗ =
∑

k ̸∈X
πi

Akk
−Qs∗∑

k ̸∈X
π2

i
Akk

s∗
[(∑

k ̸∈X
1

Akk

)
·
(∑

k ̸∈X
π2

i
Akk

)
−
(∑

k ̸∈X
πi

Akk

)2
] . (A.207)

F Background on Markov Chains

F.A Markov Chain for the Analysis (Section 2.3)

We recall some existing results (Levin & Peres, 2017; Sun et al., 2018) for the Markov chain (S(t))t≥0 used in our
analysis (Assumption 1).

Assumption 1. The Markov chain (S(t))t≥0 on the M -finite state spaceM is time-homogeneous, irreducible, and
aperiodic. It has transition matrix P , stationary distribution ρ, and has state distribution ρ at time t = 0.

Let ρ(t) = [ρ(t)
1 , ρ

(t)
2 , . . . , ρ

(t)
M ],

∑M
i=1 ρ

(t)
i = 1 be the state probability distribution on the Markov chain (S(t))t≥0 at

time step t. Assumption 1 guarantees the existence of a stationary distribution ρ = limt→+∞ ρ(t) = [ρ1, ρ2, . . . , ρM ]
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with mini{ρi} > 0 and ρ⊺P = ρ⊺. Then ρ is a left eigenvector relative to the eigenvalue 1, which is the largest
eigenvalue of the matrix P .

For the transition matrix P , we label its eigenvalues in decreasing order:

1 = λ1(P ) > λ2(P ) ≥ · · · ≥ λM (P ). (A.208)

We define:

λ̄2(P ) := max {|λ2(P )|, |λM (P )|} and λ(P ) := λ̄2(P ) + 1
2 . (A.209)

The second largest absolute eigenvalue λ̄2(P ) of the transition matrix P characterizes the mixing time of a Markov
chain. The absolute spectral gap γ := 1 − λ̄2(P ) and its reciprocal, the relaxation time trel := 1

γ , play a role
in this relationship. To quantify the convergence of the Markov chain towards stationarity, we use the parameter
d(t) ≜ maxa∈M∥[P t]a,· − ρ∥T V , which measures the maximum distance between the distribution [P t]a,· and the
stationary distribution ρ for all initial states a ∈M. The mixing time tmix(ε) is defined as the minimum time at which
the distance d(t) becomes less than or equal to a given threshold ε: tmix(ε) := min {t : d(t) ≤ ε}. Upper and lower
bounds exist for the mixing time based on the relaxation time and the stationary distribution: (trel − 1) log

(
1
2ε

)
≤

tmix(ε) ≤ log
(

1
ερmin

)
trel, where ρmin := mina∈M ρa (Levin & Peres, 2017, pp. 154–156).

F.B Markov Chain for Guideline B (Section 2.4)

In Section 2.3.3.1 (Guideline B), we examine a specific scenario where the availability of each client i follows an
independent Markov chain (S(t)

i )t≥0 with transition probability matrix Pi. This setup allows us to model the aggregate
process as a product of independent Markov chains, known as a Product Chain (Levin & Peres, 2017, Section 12.4).

Definition F.1 (Product Chain). Let P1 and P2 be transition matrices on state spacesM1 andM2 respectively, with
corresponding stationary distributions π1 and π2. We consider a Markov Chain on the state spaceM1 ×M2 that
moves independently in the first and second coordinates according to P1 and P2 respectively. The transition matrix
of this Markov Chain is the Kronecker product P̃ = P1 ⊗ P2, defined as:

P̃ ((x, y), (z, w)) = P1(x, z)P2(y, w). (A.210)

Proposition F.1. The stationary distribution of the Markov chain defined by P̃ = P1 ⊗ P2 is the Kronecker product
ρ̃ = π1 ⊗ π2.

Proof.

We can observe the following:

ρ̃⊺P̃ = (π1 ⊗ π2)⊺ · (P1 ⊗ P2) = (π⊺
1P1)⊗ (π⊺

2P2) = π⊺
1 ⊗ π⊺

2 = ρ̃⊺, (A.211)

where, in (A.211), we used the mixed-product property of the Kronecker product in the second step, and in the third
step, we noted that π1 and π2 are the stationary distributions for P1 and P2, respectively. For a comprehensive list
of properties that the Kronecker product satisfies, please refer to (Meyer, 2001, p. 597).

□
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Proposition F.2 ((Levin & Peres, 2017, Exercise 12.6)). Let u and v be eigenvectors of P1 and P2, respectively, with
eigenvalues λ and µ. Then u⊗ v is an eigenvector of P1 ⊗ P2 with eigenvalue λµ.

Proof.

We can verify the following:

(u⊗ v)⊺(P1 ⊗ P2) = (u⊺P1)⊗ (v⊺P2) = (λu⊺)⊗ (µv⊺) = λµ(u⊗ v)⊺. (A.212)

In (A.212), we used the mixed-product property and the associativity of the scalar multiplication with the Kronecker
product.

□

In general, let P1 be am×mmatrix with eigenvalues λ1, ..., λm, and P2 be a n×nmatrix with eigenvalues µ1, ..., µn.
The complete eigen-decomposition of P1⊗P2 depends on the Kronecker product structure and involves combinations
of the eigenvalues and eigenvectors of P1 and P2.

Proposition F.3 (Spectrum of the Kronecker product, (Meyer, 2001, Exercise 7.8.11)). Let the eigenvalues of P1 ∈
Rm×m be denoted by λi and let the eigenvalues of P2 ∈ Rn×n be denoted by µj . The eigenvalues of P1 ⊗P2 are the
mn numbers {λiµj}m,n

i=1,k=1.

Proof.

Let J1 = A−1
1 P1A1 and J2 = A−1

2 P2A2 be the respective Jordan forms for P1 and P2. We use the mixed-product
property and the inverse property of the Kronecker product to show that P1 ⊗ P2 is similar to J1 ⊗ J2:

J1 ⊗ J2 = (A−1
1 P1A1)⊗ (A−1

2 P2A2)
= (A−1

1 ⊗A−1
2 )(P1 ⊗ P2)(A1 ⊗A2)

= (A1 ⊗A2)−1(P1 ⊗ P2)(A1 ⊗A2). (A.213)

Consequently, the eigenvalues of P1 ⊗ P2 coincide with those of J1 ⊗ J2. Since J1 and J2 are upper triangular
with {λi}mi=1 and {µj}nk=1 on the diagonals, respectively, J1 ⊗ J2 is also upper triangular with diagonal entries
given by {λiµj}m,n

i=1,k=1.

□

Proposition F.4. Let λ̄2(Pi) denote the second largest eigenvalue in absolute value of the transition matrix Pi asso-
ciated with the i-th client, and define λ(Pi) ≜ λ̄2(Pi)+1

2 . For the product chain defined by P =
⊗

k∈K Pi, the second

largest eigenvalue in absolute value λ̄2(P ) and λ(P ) ≜ λ̄2(P )+1
2 satisfy:

λ̄2(P ) = max
k∈K

λ̄2(Pi) and λ(P ) = max
k∈K

λ(Pi). (A.214)

The proof of Proposition F.4 follows a similar structure to the one in (Levin & Peres, 2017, Corollary 12.13). Proof.

From Proposition F.3, we know that the eigenvalues of P =
⊗

k∈K Pi are given by:{∏
i∈N

λi(Pi) : λi(Pi) an eigenvalue of Pi

}
. (A.215)
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Recall that λ̄2(Pi) is the second largest eigenvalue of Pi in absolute value. If k∗ denotes the index such that
λ̄2(Pk∗) = maxk∈K λ̄2(Pi), the second largest eigenvalue in module of P is the product of λ̄2(Pk∗) for the k∗-th
client and λ1(Pj) = 1 for the remaining clients j ̸= k∗. The second result in (A.214) follows from the definitions
of λ(P ) and λ(Pi).

□

F.C Markov Chain for the Experiments (Section 2.5)

In the experiments (Section 2.5.1), we consider a scenario where the activity of each client i ∈ N follows a two-state
homogeneous Markov process. The state spaceM consists of two states: “inactive” (with value 0) and “active” (with
value 1):

0 1p
(k)
0

1− p(k)
0

p
(k)
1

1− p(k)
1

We provide detailed expressions of the transition matrix Pi, stationary distribution π(k), and the second eigenvalue
λ2(Pi) used in the experiments for each client i ∈ N :

Pi =
[

p
(k)
0 1− p(k)

0
1− p(k)

1 p
(k)
1

]
=
[

1− (1− λ2(Pi))πi (1− λ2(Pi))πi

(1− λ2(Pi))(1− πi) λ2(Pi) + (1− λ2(Pi))πi

]
. (A.216)

π(k) = [1− πi, πi] =
[

1− p(k)
1

2− p(k)
0 − p

(k)
1
,

1− p(k)
0

2− p(k)
0 − p

(k)
1

]
. (A.217)

λ2(Pi) = p
(k)
0 + p

(k)
1 − 1. (A.218)

G Experimental Evaluation

G.A Details on Experimental Setup

G.A.1 Datasets and Models

In this section, we provide a detailed description of the datasets and models used in our experiments. We considered
a total of N = 100 clients. We tested CA-Fed on the benchmark synthetic LEAF dataset (Caldas et al., 2019) for
regularized logistic regression tasks, which satisfy Assumptions 3-4. Additionally, we incorporated two “real-world”
datasets: MNIST (L. Deng, 2012) for handwritten digit recognition and CIFAR-10 (Krizhevsky & Hinton, 2009) for
image recognition. Detailed descriptions of the datasets and the models used for each of them are provided below.

Synthetic LEAF dataset Synthetic data provides us with precise control over heterogeneity. The Synthetic LEAF
dataset achieves this by using parameters γ and δ, where γ determines the degree of variation among local models
and δ determines the variability in the local data across different devices. The generation process follows the setup
described in (T. Li, Sahu, Zaheer, et al., 2020; X. Li et al., 2020):
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Table A.1: Average computation time and used CPU/GPU for each dataset.

Dataset CPU/GPU Simulation time

Binary Synthetic Intel(R) Xeon(R) CPU 10min
Synthetic LEAF Intel(R) Xeon(R) CPU 6min
MNIST (L. Deng, 2012) GeForce GTX 1080 Ti 42min
CIFAR10 (Krizhevsky & Hinton, 2009) GeForce GTX 1080 Ti 2h37min

Table A.2: Learning rates η and η̄ used for the experiments in Figure 2.1.
Dataset Unbiased More available CA-Fed (κ̄ = 1) AdaFed (Tan et al., 2022) F3AST (Ribero et al., 2023)

Synthetic LEAF 2.0/2.0 1.0/7.0 2.0/3.0 1.0/1.0 2.0/2.0
MNIST 0.03/1.0 0.1/4.0 0.1/1.0 0.03/1.0 0.1/0.3
CIFAR10 0.03/1.0 0.03/3.0 0.03/1.0 0.03/1.0 0.03/0.3

1. For each client i ∈ N , sample the model parameters Wi ∈ R10×60 and bi ∈ R10 from a normal distribution
with mean µi and standard deviation 1, where µi is sampled from N (0, γ).

2. For each client i ∈ N , generate the client’s input data Xi ∈ Rni×60 as follows: sample each element (xi)j from
a normal distribution with mean vi and standard deviation 1

j1.2 , where vi is sampled from N (Bi, 1) and Bi is
sampled from N (0, δ).

3. Generate synthetic samples (Xi,Yi), where Yi ∈ Rni , according to the model y = arg max(softmax(Wix +
bi)), where x ∈ R60.

The distribution of samples ni = |Di| among the clients follows a power law, resulting in an imbalanced data distri-
bution. We refer to the synthetic dataset with parameters γ and δ as synthetic(γ, δ). We set (γ, δ) values to (0, 0),
(0.25, 0.25), (0.5, 0.5), (0.75, 0.75), and (1, 1) to investigate various levels of heterogeneity in the data.

MNIST To classify handwritten digits in the MNIST dataset, we employ multinomial logistic regression. The
model takes a flattened 784-dimensional (28 × 28) image as input and predicts a class label from 0 to 9 as output. To
introduce heterogeneity in the data distribution, we distribute the dataset among N = 100 clients using a Dirichlet
allocation method (H. Wang et al., 2020) with parameter ς . This allocation scheme allows for varying proportions of
the dataset to be assigned to each client, contributing to the heterogeneous nature of our experimental setting.

CIFAR-10 The CIFAR-10 dataset consists of 60,000 input images, sourced from a collection of 80 million tiny
images, with 10 distinct labels. To partition the CIFAR-10 dataset among N = 100 clients, we employ a Dirichlet
allocation (H. Wang et al., 2020) with parameter ς . For this particular dataset, we train a shallow neural network
comprising two convolutional layers followed by one fully connected layer. This network architecture is designed to
capture relevant features from the CIFAR-10 images and facilitate accurate classification.

G.A.2 Implementation Details
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Machines The experiments were conducted on a CPU/GPU cluster, utilizing various available GPUs such as Nvidia
Tesla V100, GeForce GTX 1080 Ti, and Quadro RTX 8000. The majority of experiments involving Synthetic datasets
were executed on an Intel(R) Xeon(R) CPU E5-1660 v3 @ 3.00GHz. On the other hand, experiments involving
MNIST and CIFAR-10 datasets were performed using GeForce GTX 1080 Ti cards. For each dataset, we conducted
approximately 50 experiments, excluding the time dedicated to development and debugging. Due to the usage of a
train batch size of 32 samples, the experiments with MNIST and CIFAR-10 datasets exhibited slower execution times.
Table A.1 provides the average duration required to execute one simulation for each dataset. The authors are grateful
to the OPAL infrastructure from Université Côte d’Azur for providing resources and support.

Libraries We extensively employed the PyTorch deep learning framework throughout our experiments. PyTorch
provided us with a comprehensive set of tools and functionalities for model construction, training, and evaluation. It
allowed us to efficiently implement and optimize various neural network architectures, including the multinomial lo-
gistic regression model for the MNIST dataset and the shallow neural network for the CIFAR-10 dataset. To simplify
the data preparation process, we utilized Torchvision, a PyTorch package designed for computer vision tasks. Torchvi-
sion facilitated seamless dataset management, including the download and pre-processing of MNIST and CIFAR-10,
enabling us to transform the raw image data into a suitable format for training and evaluation.

Hyper-parameters For each method and task, we performed a grid search to determine the optimal learning
rates η and η̄. For the MNIST and CIFAR-10 datasets, we explored the grids η = {2.0, 1.0, 0.3, 0.1, 0.03, 0.01}
and η̄ = {5.0, 4.0, 3.0, 2.0, 1.0, 0.3, 0.1}. For the Synthetic LEAF dataset, we shifted the grid to η̄ =
{8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0}. Table A.2 reports the learning rates η and η̄ corresponding to the results in
Figure 2.1 for each dataset and method. For CA-Fed, we use the hyper-parameters β = τ = 0. In the case of
AdaFed, we set full device participation, where the parameter server samples all active clients (|St| = |S(t)|). To
ensure a fair comparison, we set the number of clients sampled by F3AST to the average number of clients included
by CA-Fed, which is 45 on average. Furthermore, we set the smoothness parameter β of F3AST to be O(1/T ), as
suggested by the authors in (Ribero et al., 2023, Appendix D).
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H Further Discussion about CA-Fed

H.A CA-Fed’s computation/communication cost

CA-Fed aims to improve training convergence and not to reduce its computation and communication overhead.
Nevertheless, excluding some available clients reduces the overall training cost, as we will discuss in this section
referring, for the sake of concreteness, to neural networks’ training.

In terms of computation, the available clients not selected for training are only requested to evaluate their local
loss on the current model once on a single batch instead than performing E gradient updates, which would require
roughly 2×E − 1 more calculations (because of the forward and backward pass). The selected clients have no extra
computation cost as computing the loss corresponds to the forward pass they should, in any case, perform during the
first local gradient update.

In terms of communication, the excluded clients only transmit the loss, a single scalar, much smaller than the model
update. Conversely, participating clients transmit the local loss and the model update. Still, this additional overhead
is negligible and likely fully compensated by the communication savings for the excluded clients.

H.B CA-Fed and Client Sampling

In cross-device FL, a common practice is to employ client sampling, where a small subset of clients (denoted as St) is
uniformly selected at random from the set of active clients (S(t)) during each communication round of model training.
This is primarily done to mitigate communication overhead and enhance scalability.

In our analysis, based on Assumption 1, we assume that spatial and temporal correlations primarily concern clients’
availability dynamics and we consider, for simplicity, St = S(t). However, our findings have a noteworthy impli-
cation: while the set of available clients S(t) exhibits correlation, the client sampling in St can be designed to make
clients’ participation dynamics independent over time and among clients. A promising direction for future research is
to extend our work in this context and derive a refined bound similar to our result in Theorem B.19 which quantifies
the impact of client sampling on λ(P ).

Consistent with our analysis, we have designed our algorithm to align with the assumption St = S(t). By design,
CA-Fed excludes clients with large temporal correlation and low availability and activates, in each communication
round, only clients satisfying {i ∈ S(t); q(t)

i > 0} (line 8 in Algorithm 3). However, when only a small fraction of
clients is excluded, CA-Fed seamlessly integrates with client sampling. This only involves replacing S(t) with St in
Equation (2.22) and Algorithm 3 (server estimates for clients’ local losses (F̂ (t) = (F̂ (t)

i )i∈N ) are now updated from
the sampled clients’ losses (F (t) = (F (t)

i )k∈St)).

H.C About CA-Fed’s fairness

Strategies that exclude clients from the training phase, such as CA-Fed, may raise concerns about fairness. The
concept of fairness in federated learning does not have a unified definition in the literature (Ludwig & Baracaldo,
2022, Chapter 8). Fairness goals can be established by appropriately selecting the target weights α = {αi}i∈N in
the definition of the global target objective (2.1). For instance, per-client fairness can be achieved by setting αi to be
equal for every client (i.e., αi = 1/N), while per-sample fairness can be accomplished by setting αi proportional to
the local dataset size |Di| (i.e, αi = |Di|/|D|).

Assuming that the global objective in (2.1) truly reflects fairness concerns, then CA-Fed can be considered intrin-
sically fair. This is because CA-Fed continually focuses on minimizing the total error ϵ ≜ F (wT ) − F ∗, which
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guarantees that the performance objective of the learned model is as close as possible to its optimal value at every
time. Although CA-Fed occasionally excludes clients with low availability and high temporal correlation, the opti-
mization problem (2.1) is carefully designed to ensure that the learned model performs well for these clients. As a
result, CA-Fed effectively learns a model that is consistently accurate and fair across all clients, regardless of their
availability or temporal correlation.





APPENDIX B
Variance Reduction:

leveraging Stale Updates
for Non-Participating

Clients
A FedStale, Upper bound

A.A Preliminaries

In this section, we provide an overview of the FedStale algorithm and establish the necessary notation used through-
out this supplementary material.

Algorithm Description

The algorithm’s structure, as outlined in Algorithm 7, is detailed below:

We detail some modifications from the main text, introduced to streamline notation for this proof:

1. In Algorithm 7, we assume that all clients partake in the local optimization step and compute g
(t)
i . However, the

server aggregates only the model updates from participating clients (where ξ(t)
i = 1). This assumption simplifies

notation and is equivalent to a scenario where only participating clients return their model updates to the server.

2. To condense notation, we normalize the client update ∆(t)
i by the client learning rate ηc and the number of local

iterationsK. This results in rescaling the client update ∆(t)
i = (w(t,0)

i −w
(t,E)
i ) by ηc andK. The server update

step is then rewritten as w(t+1) = w(t) − η∆(t), where η = ηsηcK represents an “equivalent” learning rate at
the server level.

3. We explicitly write the participation indicator function ξ(t)
i in the server update ∆(t). This formulation not only

brings transparency to the notation but also allows for a more clear understanding of the FedAvg, FedVARP,
and FedStale updates:

∆(t)
FedAvg = 1

N

N∑
i=1

ξ
(t)
i

pi
g

(t)
i (B.1)
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Algorithm 7: FedStale (Federated Learning with Stale Client Updates) – Ap-
pendix

1 for each round t = 1, . . . , T do
2 for all clients i = 1, . . . , N , in parallel do
3 Initialize w

(t,0)
i = w(t)

4 for local iterations k = 0, . . . ,K − 1 do
5 Sample data B(t,k)

i
iid∼ Di

6 Compute stochastic gradient∇Fi(w(t,k)
i ,B(t,k)

i )
7 Update w

(t,k+1)
i = w

(t,k)
i − ηc∇Fi(w(t,k)

i ,B(t,k)
i )

8 Compute and return g
(t)
i = 1

ηcK (w(t,0)
i −w

(t,E)
i ) to the server

9 Aggregate client updates ∆(t) = 1
N

∑N
i=1 βh

(t)
i + 1

N

∑N
i=1

ξ
(t)
i
pi

(g(t)
i − βh

(t)
i )

10 Update global model w(t+1) = w(t) − η∆(t)
FedStale, η = ηsηcK

11 At the server level, update memory ∀i,h(t+1)
i =

g
(t)
i if ξ(t)

i = 1

h
(t)
i otherwise

∆(t)
FedVARP = 1

N

N∑
i=1

h
(t)
i + 1

N

N∑
i=1

ξ
(t)
i

pi

(
g

(t)
i − h

(t)
i

)
(B.2)

∆(t)
FedStale = (1− β)∆(t)

FedAvg + β∆(t)
FedVARP (B.3)

= 1
N

N∑
i=1

βh
(t)
i + 1

N

N∑
i=1

ξ
(t)
i

pi

(
g

(t)
i − βh

(t)
i

)
(B.4)

= 1
N

N∑
i=1

ξ
(t)
i

pi
g

(t)
i −

β

N

N∑
i=1

(
ξ

(t)
i

pi
− 1

)
h

(t)
i (B.5)

The comparison of Equations (B.1)–(B.5) allows for the following considerations:

1. FedVARP’s update (Eq. (B.2)) recovers FedAvg’s update (Eq. (B.1)) when:

(a) All clients participate in the current round (ξ(t)
i = 1, ∀i), or

(b) All memory terms are set to zero (h(t)
i = 0,∀i).

2. FedStale’s update can be rewritten in three different forms (Equations (B.3)–(B.5)), each offering a unique
perspective:

(a) Eq. (B.3) interprets FedStale’s update as a convex combination of FedAvg’s update (Eq. (B.1)) and
FedVARP’s update (Eq. (B.2)), where β is the parameter of the convex combination;

(b) Eq. (B.4) relates FedStale’s update to FedVARP (Eq. (B.2)), where β acts as a weight for the memory
terms {h(t)

i ,∀i};
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(c) Eq. (B.5) frames FedStale’s in relation to FedAvg(Eq. (B.1)), introducing the memory term h
(t)
i when-

ever client i does not participate and subtracting cumulative memory terms h
(t)
i /pi when client i does

participate again.

The normalized client update g
(t)
i is the average of K local stochastic gradients computed by client i during round t.

We denote it as local stochastic pseudo-gradient:

Remark A.1. The local update g
(t)
i can be considered as a local stochastic pseudo-gradient:

g
(t)
i = 1

ηcK
∆(t)

i = 1
ηcK

(w(t,0)
i −w

(t,E)
i ) = 1

K

K−1∑
k=0
∇Fi(w(t,k)

i ,B(t,k)
i ). (B.6)

Proof.

Unroll the recursion w
(t,k+1)
i = w

(t,k)
i − ηc∇Fi(w(t,k)

i ,B(t,k)
i ) for k = 0, . . . ,K − 1.

□

Additional Notation

Local Stochastic Pseudo-Gradient: g
(t)
i = 1

K

K−1∑
k=0
∇Fi(w(t,k)

i ,B(t,k)
i ); (B.7)

Local Pseudo-Gradient: ḡ
(t)
i = 1

K

K−1∑
k=0
∇Fi(w(t,k)

i ); (B.8)

Global Stochastic Pseudo-Gradient: g(t) = 1
N

N∑
i=1

g
(t)
i ; (B.9)

Global Pseudo-Gradient: ḡ(t) = 1
N

N∑
i=1

ḡ
(t)
i ; (B.10)

Global Stale Pseudo-Gradient: h(t) = 1
N

N∑
i=1

h
(t)
i . (B.11)

Main Assumptions

Assumption 2. The gradients of Fi(w) are L-Lipschitz continuous, ∀w, i.

Assumption 3. The stochastic gradients are unbiased: EB∼Di [∇Fi(w,B)] = ∇Fi(w)
with bounded variance: EB∼Di ∥∇Fi(w,B)−∇Fi(w)∥2 ≤ σ2, ∀w, i.

Assumption 4. The divergence between local and global gradients is uniformly bounded: ∥∇Fi(w)−∇F (w)∥2 ≤
σ2

g , ∀w, i.

Assumption 5. The client participation outcomes follow a Bernoulli distribution with parameter pi, i.e., ξ(t)
i ∼

Bern(pi).
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Sources of Randomness

In this system, we model two sources of randomness. The first arises from the partial and heterogeneous participation
of clients, which follows a Bernoulli distribution as stated in Assumption 5. The second source of randomness
originates from the random sampling of data points for stochastic gradients computation. Recall that 1(t) denotes
the random set of clients participating at the t-th communication round and that ξ(t,k)

i denotes the random data point
independently sampled from client-i’s local dataset at round t, local iteration k. For the analysis, we introduce the
following additional notation:

1(s:q) := {1(s), . . . ,1(q)}: the random set of clients participating from the s-th to the q-th communication
rounds, s<q;

ξ
(t)
i := {ξ(t,k)

i }K−1
k=0 : the set of random batches sampled by the i-th client at the t-th communication round;

ξ(t) := {ξ(t)
i }i∈1(t) : the set of random batches sampled by the participating clients (1(t)) in the t-th round;

ξ
(t,s:q)
i := {ξ(t,s)

i , . . . , ξ
(t,q)
i }: the set of random batches sampled by the i-th client at the t-th communication

round between the s-th and the q-th local iterations, s < q;

ξ(s:q) := {ξ(s), . . . , ξ(q)}: the set of random batches sampled by the available clients (1(s:q)) between the s-th
and q-th communication rounds, s < q.

With this notation established, the randomness in the t-th communication round, which starts with the initial model
w(t) and yields the updated model w(t+1), is fully captured by the sets 1(t) and ξ(t). Thus, the stochastic progression
of our algorithm from the first round to round t can be comprehensively described by the tuple:

H(t) :=
(
1(1), . . . ,1(t−1);B(1), . . . ,B(t−1)

)
, (B.12)

which represents the historical information up to the t-th communication round.

Remark A.2. For any algorithm, Algm ∈ [FedAvg, FedVARP, FedStale], the global pseudo-gradient ∆(t)
Algm is

unbiased with respect to both sources of randomness—client participation and stochastic gradients:

E1(t)|B(t),H(t) [∆(t)
Algm] = g(t),

E1(t),B(t)|H(t) [∆(t)
Algm] = ḡ(t),

and consequently, the global model w(t+1) is also unbiased:

E1(t),B(t)|H(t) [w(t+1)] = w(t) − ηE1(t),B(t)|H(t) [∆(t)
Algm] = w(t) − ηḡ(t).

A.B Supporting Lemmas

In this section, we present key lemmas that underpin the theoretical analysis and facilitate the proof of Theorem A.12.

Lemma A.1 (Descent lemma). Let F : Rd → R be an L-smooth function (Assumption 2), optimized via the sequence
of parameters {w(t)}. At each iteration t, an SGD update is made according to a learning rate η and a stochastic
gradient ∆(t). Let E1(t),B(t)|H(t)

[
∆(t)

]
= ḡ(t). Then, the expected reduction in F after one iteration is bounded by:

E1(t),B(t)|H(t)

[
F (w(t+1))

]
≤ F (w(t))− η

2

[∥∥∥∇F (w(t))
∥∥∥2

+
∥∥∥ḡ(t)

∥∥∥2
−
∥∥∥ḡ(t) −∇F (w(t))

∥∥∥2
]

+ η2L

2 E1(t),B(t)|H(t)

∥∥∥∆(t)
∥∥∥2
. (B.13)
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Proof of Lemma A.1.

By the L-smoothness of F , it follows that:

F (w(t+1)) ≤ F (w(t)) + ⟨∇F (w(t)),w(t+1) −w(t)⟩+ L

2

∥∥∥w(t+1) −w(t)
∥∥∥2

(B.14)

≤ F (w(t))− η⟨∇F (w(t)),∆(t)⟩+ η2L

2

∥∥∥∆(t)
∥∥∥2
, (B.15)

where Eq. (B.15) applies the update rule w(t+1) = w(t) − η∆(t).

Taking expectation over the randomness at the t-th round, due to client participation (inherent in ξ(t)) and to stochas-
tic gradients (inherent in B(t) := {B(t,k)

i }i,k), yields:

E1(t),B(t)|H(t)

[
F (w(t+1))

]
≤ F (w(t))− ηE1(t),B(t)|H(t)⟨∇F (w(t)),∆(t)⟩+ η2L

2 E1(t),B(t)|H(t)

∥∥∥∆(t)
∥∥∥2

(B.16)

≤ F (w(t))− η
[
⟨∇F (w(t)), ḡ(t)⟩

]
+ η2L

2 E1(t),B(t)|H(t)

∥∥∥∆(t)
∥∥∥2

(B.17)

≤ F (w(t))− η

2

[∥∥∥∇F (w(t))
∥∥∥2

+
∥∥∥ḡ(t)

∥∥∥2
−
∥∥∥ḡ(t) −∇F (w(t))

∥∥∥2
]

+ η2L

2 E1(t),B(t)|H(t)

∥∥∥∆(t)
∥∥∥2
, (B.18)

where Eq. (B.17) uses E1(t),B(t)|H(t)

[
∆(t)

]
= ḡ(t) and Eq. (B.18) applies the identity ∥a− b∥2 = ∥a∥2 + ∥b∥2 −

2⟨a, b⟩.

□

Lemma A.2 (Expected value of the local stochastic pseudo-gradients). Let g
(t)
i and ḡ

(t)
i be defined in Eqs. (B.7)

and (B.8), respectively. If the stochastic gradients are unbiased (Assumption 3), the following identity holds:

EB(t)
i |H(t)

[
g

(t)
i

]
= ḡ

(t)
i . (B.19)

Proof of Lemma A.2.

We observe that the randomness in the iterate for a specific client, w
(t,k)
i , is influenced both by the sequence of events

up to time t (denoted asH(t)) and by the random batches used for training up to the k-th iteration (B(t,0:k−1)
i ).

We then rely on a fundamental property of expectations to decompose the expected value of the gradient
∇Fi(w(t,k)

i ,B(t,k)
i ) as:

EB(t,0:k)
i |H(t)

[
∇Fi(w(t,k)

i ,B(t,k)
i )

]
= EB(t,0:k−1)

i |H(t)

[
EB(t,k)

i |B(t,0:k−1)
i ,H(t)

[
∇Fi(w(t,k)

i ,B(t,k)
i )

]]
. (B.20)

We finally use Assumption 3 to conclude that EB(t,k)
i |B(t,0:k−1)

i ,H(t) [∇Fi(w(t,k)
i ,B(t,k)

i )] = ∇Fi(w(t,k)
i ).

Below, we present the detailed derivations of the proof.

EB(t)
i |H(t)

[
g

(t)
i

]
= 1
K

K−1∑
k=0

EB(t)
i |H(t)

[
∇Fi(w(t,k)

i ,B(t,k)
i )

]
(B.21)
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= 1
K

[
EB(t,0)

i |H(t)

[
∇Fi(w(t),B(t,0)

i )
]

︸ ︷︷ ︸
bounded by Assumption 3

+EB(t,0)
i ,B(t,1)

i |H(t)

[
∇Fi(w(t,1)

i ,B(t,1)
i )

]
+ · · ·+

+ · · ·+ EB(t,0:K−1)
i |H(t)

[
∇Fi(w(t,K−1)

i ,B(t,K−1)
i )

]]
(B.22)

= 1
K

[
∇Fi(w(t)) + EB(t,0)

i |H(t)

[
EB(t,1)

i |B(t,0)
i ,H(t)

[
∇Fi(w(t,1)

i ,B(t,1)
i )

]]
︸ ︷︷ ︸

bounded by Assumption 3

+ · · ·+

+ · · ·+ EB(t,0:K−2)
i |H(t)

[
EB(t,K−1)

i |B(t,0:K−2)
i ,H(t)

[
∇Fi(w(t,K−1)

i ,B(t,K−1)
i )

]
︸ ︷︷ ︸

bounded by Assumption 3

]]
(B.23)

= 1
K

[
∇Fi(w(t)) + EB(t,0)

i |H(t)

[
∇Fi(w(t,1)

i )
]

+ · · ·+ EB(t,0:K−2)
i |H(t)

[
∇Fi(w(t,K−1)

i )
]]
(B.24)

= 1
K

K−1∑
k=0
∇Fi(w(t,k)

i ) = ḡ
(t)
i , (B.25)

where Eq. (B.21) uses the definition of g
(t)
i given in (B.7), Eq. (B.22) makes explicit the dependency of the iterate

w
(t,k)
i on the random batches B(t,0:k−1)

i , Eq. (B.23) uses the law of total expectation given in (B.20), Eq. (B.24)
applies the unbiasedness of the stochastic gradient (Assumption 3), and Eq. (B.25) uses the definition of ḡ

(t)
i given

in (B.8).

□

Lemma A.3 (Variance of the local stochastic pseudo-gradients). Let g
(t)
i and ḡ

(t)
i be defined as in Eqs. (B.7) and (B.8),

respectively. If the variance of the local stochastic gradients is bounded by σ2 (Assumption 3), the following inequality
holds:

EB(t)
i |H(t)

∥∥∥g(t)
i − ḡ

(t)
i

∥∥∥2
≤ σ2

K
. (B.26)

Proof of Lemma A.3.

The proof builds on similar observations to those presented in Lemma A.2, but additionally relies on the bounded
variance of local stochastic gradients (Assumption 3).

Below, the detailed derivations.

EB(t)
i |H(t)

∥∥∥g(t)
i − ḡ

(t)
i

∥∥∥2

= EB(t)
i |H(t)

∥∥∥∥∥ 1
K

K−1∑
k=0

[
∇Fi(w(t,k)

i ,B(t,k)
i )−∇Fi(w(t,k)

i )
]∥∥∥∥∥

2

(B.27)

= 1
K2

K−1∑
k=0

EB(t)
i |H(t)

∥∥∥∇Fi(w(t,k)
i ,B(t,k)

i )−∇Fi(w(t,k)
i )

∥∥∥2
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+ 1
K2

K−1∑
k=0

K−1∑
k′=0
k′ ̸=k

EB(t)
i |H(t)⟨∇Fi(w(t,k)

i ,B(t,k)
i )−∇Fi(w(t,k)

i ),∇Fi(w(t,k′)
i ,B(t,k′)

i )−∇Fi(w(t,k′)
i )⟩, (B.28)

where Eq. (B.27) applies the definitions for g
(t)
i and ḡ

(t)
i given in (B.7) and (B.8), and Eq. (B.28) expands the

squared norm. To show that the second term in (B.28) is zero, we use the law of total expectation in a similar way
as in (B.20). Indeed, denote k′′ = max{k, k′}. The following relation holds:

E
B(t,0:k′′)

i |H(t)

[
∇Fi(w(t,k′′)

i ,B(t,k′′)
i )−∇Fi(w(t,k′′)

i )
]

= E
B(t,0:k′′−1)

i |H(t)

[
E

B(t,k′′)
i |B(t,0:k′′−1)

i ,H(t)

[
∇Fi(w(t,k′′)

i ,B(t,k′′)
i )−∇Fi(w(t,k′′)

i )
]

︸ ︷︷ ︸
=0 by Assumption 3

]
= 0. (B.29)

Therefore, only the first term remains:

EB(t)
i |H(t)

∥∥∥g(t)
i − ḡ

(t)
i

∥∥∥2

= 1
K2

K−1∑
k=0

EB(t)
i |H(t)

∥∥∥∇Fi(w(t,k)
i ,B(t,k)

i )−∇Fi(w(t,k)
i )

∥∥∥2
(B.30)

= 1
K2

[
EB(t,0)

i |H(t)

∥∥∥∇Fi(w(t),B(t,0)
i )−∇Fi(w(t))

∥∥∥2

︸ ︷︷ ︸
≤σ2 by Assumption 3

+EB(t,0)
i ,B(t,1)

i |H(t)

∥∥∥∇Fi(w(t,1)
i ,B(t,1)

i )−∇Fi(w(t,1)
i )

∥∥∥2

+ · · ·+ EB(t,0:K−1)
i |H(t)

∥∥∥∇Fi(w(t,K−1)
i ,B(t,K−1)

i )−∇Fi(w(t,K−1)
i )

∥∥∥2
]

(B.31)

≤ 1
K2

[
σ2 + EB(t,0)

i |H(t)

[
EB(t,1)

i |B(t,0)
i ,H(t)

∥∥∥∇Fi(w(t,1)
i ,B(t,1)

i )−∇Fi(w(t,1)
i )

∥∥∥2

︸ ︷︷ ︸
≤σ2 by Assumption 3

]

+ · · ·+ EB(t,0:K−2)
i |H(t)

[
EB(t,K−1)

i |B(t,0:K−2)
i ,H(t)

∥∥∥∇Fi(w(t,K−1)
i ,B(t,K−1)

i )−∇Fi(w(t,K−1)
i )

∥∥∥2
]

︸ ︷︷ ︸
≤σ2 by Assumption 3

]
(B.32)

≤ 1
K2

K−1∑
k=0

σ2 = σ2

K
, (B.33)

where Eq. (B.30) uses (B.29), Eq. (B.31) explicits the dependency of the iterate w
(t,k)
i on the random batches

B(t,0:k−1)
i , Eq. (B.32) applies the law of total expectation given in (B.20), and Eq. (B.33) uses the uniform bound

on the variance of local stochastic gradients (Assumption 3).

□

Lemma A.4 (Variance of the global stochastic pseudo-gradient). Let g
(t)
i and ḡ

(t)
i be defined as in Eqs. (B.7)

and (B.8), respectively. Assuming that client participation outcomes (ξ(t)
i ) are Bernoulli-distributed with parameter

pi, and that the variance of the local stochastic gradients is bounded by σ2 (Assumption 3), the following inequality
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holds:

E1(t),B(t)|H(t)

∥∥∥∥∥ 1
N

N∑
i=1

ξ
(t)
i

pi

(
g

(t)
i − ḡ

(t)
i

)∥∥∥∥∥
2

≤
(

1
N

N∑
i=1

1
pi

)
σ2

NK
. (B.34)

Proof of Lemma A.4.

The proof starts by expanding the squared norm of the average stochastic gradient deviations into a variance term
accounting for individual client gradients and a covariance term between gradients from different clients:

E1(t),B(t)|H(t)

∥∥∥∥∥ 1
N

N∑
i=1

ξ
(t)
i

pi

(
g

(t)
i − ḡ

(t)
i

)∥∥∥∥∥
2

= E1(t),B(t)|H(t)

 1
N2

N∑
i=1

[
ξ

(t)
i

]2
p2

i

∥∥∥g(t)
i − ḡ

(t)
i

∥∥∥2
+ 1
N2

N∑
i=1

N∑
i′=1
i′ ̸=i

ξ
(t)
i ξ

(t)
i′

pipi′
⟨g(t)

i − ḡ
(t)
i , g

(t)
i′ − ḡ

(t)
i′ ⟩

 . (B.35)

We leverage the linearity of expectation, the independence of client participation (ξ(t)) and batch sampling (B(t)),
the independence of batch sampling among clients (B(t)

i and B(t)
i′ ), and Lemma A.2 to show that:

E1(t),B(t)|H(t)

[
ξ

(t)
i ξ

(t)
i′

pipi′
⟨g(t)

i − ḡ
(t)
i , g

(t)
i′ − ḡ

(t)
i′ ⟩
]

=
Eξ(t)|H(t) [ξ(t)

i ξ
(t)
i′ ]

pipi′
EB(t)|H(t)

[
⟨g(t)

i − ḡ
(t)
i , g

(t)
i′ − ḡ

(t)
i′ ⟩
]

(B.36)

=
Eξ(t)|H(t) [ξ(t)

i ξ
(t)
i′ ]

pipi′
⟨EB(t)

i |H(t) [g
(t)
i − ḡ

(t)
i ]︸ ︷︷ ︸

=0 by Lemma A.2

,EB(t)
i′ |H(t) [g

(t)
i′ − ḡ

(t)
i′ ]︸ ︷︷ ︸

=0 by Lemma A.2

⟩ = 0. (B.37)

Finally, we bound the remaining term using Lemma A.3:

E1(t),B(t)|H(t)

∥∥∥∥∥ 1
N

N∑
i=1

ξ
(t)
i

pi

(
g

(t)
i − ḡ

(t)
i

)∥∥∥∥∥
2

= 1
N2

N∑
i=1

E
ξ

(t)
i |H(t)

[(
ξ

(t)
i

)2
]

p2
i

EB(t)
i |H(t)

∥∥∥g(t)
i − ḡ

(t)
i

∥∥∥2

︸ ︷︷ ︸
bounded in Lemma A.3

(B.38)

≤
(

1
N

N∑
i=1

1
pi

)
σ2

NK
, (B.39)

where Equation (B.38) derives from (B.37) and requires the independence of client participation (ξ(t)) and batch
sampling (B(t)); Equation (B.39) replaces the Bernoulli’s second-order moment (pi) and applies Lemma A.3.

□

Lemma A.5 (Client drift due to multiple local iterations). Under bounded local stochastic gradient variance (σ2, as
per Assumption 3) and the client learning rate ηc ≤ 1

2LK , the expected squared deviation of a client’s pseudo-gradient

(ḡ(t)
i ) from its local gradient (∇Fi(w(t))) is bounded as:

EB(t)
i |H(t)

∥∥∥ḡ(t)
i −∇Fi(w(t))

∥∥∥2
≤ 2η2

cL
2K(K − 1)

[
σ2

K
+ 2

∥∥∥∇Fi(w(t))
∥∥∥2
]
. (B.40)
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Additionally, if the variance of local gradients is uniformly bounded across clients (by σ2
g , as per Assumption 4):

EB(t)
i |H(t)

∥∥∥ḡ(t)
i −∇Fi(w(t))

∥∥∥2
≤ 2η2

cL
2K(K − 1)

[
σ2

K
+ 4σ2

g + 4
∥∥∥∇F (w(t))

∥∥∥2
]
. (B.41)

The bound in Eq. (B.41) captures that, when the number of local iterations K equals 1, ḡ
(t)
i and ∇Fi(w(t)) become

equivalent. Proof of Lemma A.5.

This proof is borrowed from (J. Wang et al., 2020), (Jhunjhunwala et al., 2022, Lemma 6). It is included for
completeness.
The proof starts by replacing the definition of ḡ

(t)
i given in (B.8):

EB(t)
i |H(t)

∥∥∥ḡ(t)
i −∇Fi(w(t))

∥∥∥2
= EB(t)

i |H(t)

∥∥∥∥∥ 1
K

K−1∑
k=0

(
∇Fi(w(t,k)

i )−∇Fi(w(t))
)∥∥∥∥∥

2

(B.42)

≤ 1
K

K−1∑
k=0

EB(t)
i |H(t)

∥∥∥∇Fi(w(t,k)
i )−∇Fi(w(t))

∥∥∥2
(B.43)

≤ L2

K

K−1∑
k=0

EB(t)
i |H(t)

∥∥∥w(t,k)
i −w(t)

∥∥∥2
, (B.44)

where Eq. (B.43) follows from the Jensen’s inequality; Eq. B.44 uses the L-smoothness of local gradients (Assump-
tion 2).
Next, the individual difference is bounded as:

EB(t)
i |H(t)

∥∥∥w(t,k)
i −w(t)

∥∥∥2

= η2
cEB(t)

i |H(t)

∥∥∥∥∥
k−1∑
k′=0
∇Fi(w(t,k′)

i ,B(t,k′)
i )

∥∥∥∥∥
2

(B.45)

= η2
c

EB(t)
i |H(t)

∥∥∥∥∥
k−1∑
k′=0

[
∇Fi(w(t,k′)

i ,B(t,k′)
i )−∇Fi(w(t,k′)

i )
]∥∥∥∥∥

2

+ EB(t)
i |H(t)

∥∥∥∥∥
k−1∑
k′=0
∇Fi(w(t,k′)

i )
∥∥∥∥∥

2 (B.46)

≤ η2
c

[
k−1∑
k′=0

EB(t)
i |H(t)

∥∥∥∇Fi(w(t,k′)
i ,B(t,k′)

i )−∇Fi(w(t,k′)
i )

∥∥∥2

︸ ︷︷ ︸
bounded by Assumption 3, in a similar way as Lemma A.3

+k
k−1∑
k′=0

EB(t)
i |H(t)

∥∥∥∇Fi(w(t,k′)
i )

∥∥∥2
]

(B.47)

≤ η2
c

[
kσ2 + k

k−1∑
k′=0

EB(t)
i |H(t)

∥∥∥∇Fi(w(t,k′)
i )−∇Fi(w(t)) +∇Fi(w(t))

∥∥∥2
]

(B.48)

≤ η2
c

[
kσ2 + 2k

k−1∑
k′=0

[
L2EB(t)

i |H(t)

∥∥∥w(t,k′)
i −w(t)

∥∥∥2
+
∥∥∥∇Fi(w(t))

∥∥∥2
]]
, (B.49)

where Eq. (B.45) applies the local update rule w
(t,k)
i = w(t)− ηc

∑k−1
k′=0∇Fi(w(t,k′)

i ,B(t,k′)
i ); Eq. (B.46) leverages

the local stochastic gradient unbiasedness (as per Lemma A.2) and its bias-variance decomposition; Eq. (B.47) in-
volves squaring the former term, zeroing the cross terms as per (B.29), and applying Jensen’s inequality to the latter
term; Eq. (B.48) accounts for the bounded variance of local stochastic gradients in the former term (Assumption 3,
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as in Lemma A.3), and modifies the latter term by adding and subtracting the initial local gradient (∇Fi(w(t)));
finally, Eq. (B.49) uses the norm inequality (∥a + b∥2 ≤ 2 ∥a∥2 +2 ∥b∥2) and the L-smoothness of local objectives
(Assumption 2).

Summing over k = 0, . . . ,K − 1, it yields:

1
K

K−1∑
k=0

EB(t)
i |H(t)

∥∥∥w(t,k)
i −w(t)

∥∥∥2

≤ η2
cσ

2

K

K−1∑
k=0

k + 2η2
cL

2

K

K−1∑
k=0

k
k−1∑
k′=0

EB(t)
i |H(t)

∥∥∥w(t,k′)
i −w(t)

∥∥∥2
+ 2η2

c

K

K−1∑
k=0

k
k−1∑
k′=0

∥∥∥∇Fi(w(t))
∥∥∥2

(B.50)

≤ η2
c (K − 1)σ2 + 2η2

cL
2K(K − 1)

[
1
K

K−1∑
k=0

EB(t)
i |H(t)

∥∥∥w(t,k)
i −w(t)

∥∥∥2
]

+ 2η2
cK(K − 1)

∥∥∥∇Fi(w(t))
∥∥∥2
,

(B.51)

where Eq. (B.51) uses
∑k−1

k′=0

∥∥∥w(t,k′)
i −w(t)

∥∥∥2
≤
∑K−1

k=0

∥∥∥w(t,k)
i −w(t)

∥∥∥2
and

∑K−1
k=0 k = 1

2(K − 1)K.

Define D := 2η2
cL

2K(K−1). Choose ηc small enough such that D ≤ 1/2 (⇒ ηc ≤ 1
2LK ). Rearranging the terms:

1
K

K−1∑
k=0

EB(t)
i |H(t)

∥∥∥w(t,k)
i −w(t)

∥∥∥2
≤ η2

c (K − 1)σ2

1−D + 2η2
cK(K − 1)

1−D

∥∥∥∇Fi(w(t))
∥∥∥2

(B.52)

Substituting (B.52) back into (B.44):

EB(t)
i |H(t)

∥∥∥ḡ(t)
i −∇Fi(w(t))

∥∥∥2
≤ D

2(1−D)
σ2

K
+ D

1−D

∥∥∥∇Fi(w(t))
∥∥∥2

(B.53)

≤ Dσ
2

K
+ 2D

∥∥∥∇Fi(w(t))
∥∥∥2
, (B.54)

where Eq. (B.54) uses D ≤ 1/2. Replacing D := 2η2
cL

2K(K − 1) into (B.54) completes the proof of Inequal-
ity (B.40).
Additionally, inequality (B.41) removes the dependency on ∇Fi(w(t)) by adding and subtracting ∇F (w(t)) in the
squared norm:

EB(t)
i |H(t)

∥∥∥ḡ(t)
i −∇Fi(w(t))

∥∥∥2
≤ Dσ

2

K
+ 2D

∥∥∥∇Fi(w(t))−∇F (w(t)) +∇F (w(t))
∥∥∥2

(B.55)

≤ Dσ
2

K
+ 4D

∥∥∥∇Fi(w(t))−∇F (w(t))
∥∥∥2

+ 4D
∥∥∥∇F (w(t))

∥∥∥2
(B.56)

≤ Dσ
2

K
+ 4Dσ2

g + 4D
∥∥∥∇F (w(t))

∥∥∥2
, (B.57)

where Eq. (B.56) uses the norm inequality (∥a + b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2) and Eq. (B.57) leverages the uniform
variance bound of local gradients across clients (σ2

g , from Assumption 4).

Replacing D := 2η2
cL

2K(K − 1) into (B.57) concludes the proof of inequality (B.41).

□
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Lemma A.6 (Variance of FedStale’s update). Let ∆(t) denote FedStale’s global update with randomness from
client participation (ξ(t)) and batch sampling (B), and ḡ(t) its unbiased counterpart, as per Eqs. (B.4) and (B.10),
respectively. Under Assumptions 2–5, we bound the variance of FedStale’s pseudo-gradient, due to partial partic-
ipation and batch sampling, as:

E1(t),B(t)|H(t)

∥∥∥∆(t) − ḡ(t)
∥∥∥2

≤ 6(1− β)2

N

[
1
N

N∑
i=1

1− pi

pi
EB(t)

i |H(t)

∥∥∥ḡ(t)
i −∇Fi(w(t))

∥∥∥2

︸ ︷︷ ︸
uniformly bounded in Lemma A.5

+
(

1
N

N∑
i=1

1− pi

pi

)
σ2

g +
(

1
N

N∑
i=1

1− pi

pi

)∥∥∥∇F (w(t))
∥∥∥2
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. (B.58)

Proof of Lemma A.6.

The proof starts by substituting the definitions for ∆(t) and ḡ(t), given in (B.4) and (B.10):

E1(t),B(t)|H(t)

∥∥∥∆(t) − ḡ(t)
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(B.59)
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(B.60)

= E1(t),B(t)|H(t)
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bounded by Lemma A.4

, (B.61)

where Eq. (B.59) uses definitions (B.4) and (B.10); Eq. (B.60) involves adding and subtracting ḡ
(t)
i within the

squared norm; Eq. (B.61) is based on ḡ
(t)
i being an unbiased estimator of g

(t)
i (Lemma A.2). The latter term is

bounded by Lemma A.4.

Conditioning on H(t), h
(t)
i is constant, and the first term in (B.61) represents a variance, due to client participation

(ξ(t)) and stochastic gradients (B(t)). Moreover, conditioning on B(t), the randomness in Eq. (B.62) is only due to
client participation (ξ(t)):

Varξ(t)|B(t),H(t)

(
1
N

N∑
i=1

ξ
(t)
i

pi

(
ḡ

(t)
i − βh

(t)
i

))
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= Varξ(t)|B(t),H(t)

(
1
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ξ
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[
(1− β)ḡ(t)
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(B.62)
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ḡ

(t)
i − h

(t)
i

)∥∥∥2
(B.63)

≤ 2(1− β)2
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︸ ︷︷ ︸
T2

, (B.64)

where Eq. (B.62) adds and subtracts βḡ
(t)
i , then rearranges terms for β; Eq. (B.63) derives from the Bernoulli

variance (Var(ξ(t)
i ) = pi(1 − pi)), under Assumption 5; Eq. (B.64) leverages the norm inequality ∥a + b∥2 ≤

2 ∥a∥2 + 2 ∥b∥2.

We proceed by bounding the first term of Eq. (B.64) as follows:
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bounded in expectation by Lemma A.5
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]
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(B.67)

where Eq. (B.65) adds and subtracts the local gradient (∇Fi(w(t))) and the global gradient (∇Fi(w(t))) within the
squared norm; Eq. (B.66) leverages the norm inequality ∥a + b + c∥2 ≤ 3 ∥a∥2 + 3 ∥b∥2 + 3 ∥c∥2; Eq. (B.67)
applies Assumption 4.

We separately bound the second term of (B.64) as follows:
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(B.70)
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≤ 6β2
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(B.71)

≤ 6β2
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bounded in expectation by Lemma A.5
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where Eqs. (B.68) and (B.69) follow the steps of Eqs. (B.65) and (B.66); Eq. (B.70) is based on the L-smoothness
of local objectives (Assumption 2); Eq. (B.71) applies the inequality

∑N
i=1 aibi ≤ (

∑N
i=1 ai)(

∑N
i=1 bi) for positive

ai and bi; Eq. (B.72) defines

H(t) ≜
1
N

N∑
i=1

∥∥∥∇Fi(w(t−1))− h
(t)
i

∥∥∥2
. (B.73)

Finally, the bound in Eq. (B.58) combines Eqs. (B.61), (B.67), and (B.72).

□

Lemma A.7 (Bound on the memory term). Let H(t), the divergence between the local gradient and the historical
pseudo-gradient at time t, be defined in Eq. (B.73). Under Assumptions 2, 3, and 5, the expected historical error
H(t+1) is recursively bounded as:
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Proof of Lemma A.7.

The proof starts by definition of H(t+1):

E1(t),B(t)|H(t)
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= 1
N

N∑
i=1

[
piEB(t)

i |H(t)

∥∥∥∇Fi(w(t))− g
(t)
i

∥∥∥2
+ (1− pi)

∥∥∥∇Fi(w(t))− h
(t)
i

∥∥∥2
]

(B.76)
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+
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, (B.78)

where Eq. (B.75) uses the law of total expectation to separate expectations on client participation (ξ(t)
i ) and batch

sampling (B(t)
i ); Eq. (B.76) solves the inner expectation with respect to client participation (ξ(t)

i ); Eq. (B.77) ma-
nipulates the first term by adding and subtracting ḡ

(t)
i , then leverages the bounded variance of the local stochastic

pseudo-gradients (Lemma A.3, Assumption 3), and similarly corrects the second term with ∇Fi(w(t−1)), then ap-
plies the norm inequality ∥a + b∥2 ≤ (1 + 1

C ) ∥a∥2 + (1 +C) ∥b∥2 for any positive C; Eq. (B.78) is derived from
the L-smoothness property of local objectives (Assumption 2).

The final expression in Eq. (B.74) is derived by observing that
∑N

i=1(1− ai)bi ≤ (1− amin)
∑N

i=1 bi.

□

Lemma A.8 (Variance of FedStale’s update - Initial condition). Denote ∆(1) and ḡ(1) in Eq. (B.4) and (B.10),
respectively. Under Assumptions 3–5, we bound the initial variance of FedStale update, due to partial participation
and batch sampling, as:
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(B.79)

Proof of Lemma A.8.

Similarly to Lemma A.6, we start by the definitions of ∆(1) and ḡ(1) given in Eqs. (B.4) and (B.10):
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︸ ︷︷ ︸
bounded by Lemma A.3

, (B.81)

where Eq. (B.80) adds and subtracts ḡ
(1)
i within the squared norm; Eq. (B.81) is based on ḡ

(1)
i being an unbiased

estimator of g
(1)
i (Lemma A.2, Assumption 3). The latter term is bounded by Lemma A.3.
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Similarly to Eq. (B.62), we observe that the first term in Eq. (B.81) represents a variance. Conditioning on the first
batch sample (B(1)), we solve the expectation with respect to initial client participation (1(1)):

Var1(1)|B(1)
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bounded in expectation by Lemma A.5
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(B.84)

where Eq. (B.82) derives from the Bernoulli variance (Var(ξ(1)
i ) = pi(1−pi)), under Assumption 5; Eq. (B.83) adds

and subtracts the local and global initial gradients (∇Fi(w(1)) and ∇F (w(1))), then leverages the norm inequality
∥a + b + c∥2 ≤ 3 ∥a∥2 + 3 ∥b∥2 + 3 ∥b∥2; finally, Eq. (B.84) uses Assumption 4.

□

Lemma A.9 (Bound on the memory term - Initial condition). Let H(1), the initial error due to the historical pseudo-
gradients, be defined in Eq. (B.73). Under Assumptions 3 and 5, the expected error H(2) is bounded as:
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Proof of Lemma A.9.

Similarly to Lemma A.7, the proof starts with the definition of H(2):

E1(1),B(1)

[
H(2)

]
= 1
N

N∑
i=1

EB(1)
i

[
E

ξ
(1)
i |B(1)

i

[∥∥∥∇Fi(w(1))− h
(2)
i

∥∥∥2
]]

(B.86)

= 1
N

N∑
i=1

[
piEB(1)

i

∥∥∥∇Fi(w(1))− g
(1)
i

∥∥∥2
+ (1− pi)

∥∥∥∇Fi(w(1))− h
(1)
i

∥∥∥2
]

(B.87)

= 1
N

N∑
i=1

pi EB(1)
i

∥∥∥g(1)
i − ḡ
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(B.88)
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where Eq. (B.86) uses the law of total expectation to separate expectations on client participation (ξ(1)
i ) and batch

sampling (B(1)
i ); Eq. (B.87) solves the inner expectation with respect to client participation (ξ(1)

i ); Eq. (B.88) adds
and subtracts ḡ

(1)
i to the first term, then leverages the local pseudo-gradients’ unbiased property (Lemma A.2,

Assumption 3) to separate the two components.

The expression in Eq. (B.85) is finally achieved by observing that
∑N

i=1(1− ai)bi ≤ (1− amin)
∑N

i=1 bi.

□

Lemma A.10 (FedStale: Per Round Progress). Under Assumptions 2–5, and appropriate client and server learn-
ing rates
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8LK ∧ ηs ≤ min
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 , (B.89)

define the following Lyapunov function including the objective value, squared global pseudo-gradient, and historical
error term:

ψ(t+1) := F (w(t+1)) + η2L
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)
H(t+1). (B.90)

We bound FedStale’s per-round performance into a progress term—accounting for the decrement in the objective
value—and a deviation term—from the stochastic gradient noise and data heterogeneity:
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Proof of Lemma A.10.

We introduce the following Lyapunov function, also adopted by (Jhunjhunwala et al., 2022), for any η2L
2 < δ ≤ η

2
and α ≥ 0:

ψ(t+1) := F (w(t+1)) +
(
δ − η2L

2

)∥∥∥∆(t)
∥∥∥2

+ α
1
N

N∑
i=1

∥∥∥∇Fi(w(t))− h
(t+1)
i

∥∥∥2

︸ ︷︷ ︸
≜H(t+1)

. (B.92)
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Considering expectation over the randomness at the t-th round and invoking the standard descent lemma for smooth
objectives (Assumption 2 and Lemma A.1):

E1(t),B(t)|H(t) [ψ(t+1)]

= E1(t),B(t)|H(t)

[
F (w(t+1)) +

(
δ − η2L

2

)∥∥∥∆(t)
∥∥∥2

+ α

N

N∑
i=1

∥∥∥∇Fi(w(t))− h
(t+1)
i

∥∥∥2
]

(B.93)

≤ F (w(t))− η

2

∥∥∥∇F (w(t))
∥∥∥2
− η

2EB(t)|H(t)

∥∥∥ḡ(t)
∥∥∥2

+ η

2EB(t)|H(t)

∥∥∥ḡ(t) −∇F (w(t))
∥∥∥2

+ η2L

2 E1(t),B(t)|H(t)

∥∥∥∆(t)
∥∥∥2

+
(
δ − η2L

2

)
E1(t),B(t)|H(t)

∥∥∥∆(t)
∥∥∥2

+ α

N

N∑
i=1

E
ξ

(t)
i ,B(t)

i |H(t)

∥∥∥∇Fi(w(t))− h
(t+1)
i

∥∥∥2

(B.94)

≤ F (w(t))− η

2

∥∥∥∇F (w(t))
∥∥∥2
− η

2EB(t)|H(t)

∥∥∥ḡ(t)
∥∥∥2

+ η

2N

N∑
i=1

EB(t)
i |H(t)

∥∥∥ḡ(t)
i −∇Fi(w(t))

∥∥∥2

+ δE1(t),B(t)|H(t)

∥∥∥∆(t) − ḡ(t) + ḡ(t)
∥∥∥2

+ α

N

N∑
i=1

E
ξ

(t)
i ,B(t)

i |H(t)

∥∥∥∇Fi(w(t))− h
(t+1)
i

∥∥∥2
(B.95)

≤ F (w(t))− η

2

∥∥∥∇F (w(t))
∥∥∥2

+
(
δ − η

2

)
EB(t)|H(t)

∥∥∥ḡ(t)
∥∥∥2

+ η

2N

N∑
i=1

EB(t)
i |H(t)

∥∥∥ḡ(t)
i −∇Fi(w(t))

∥∥∥2

+ δE1(t),B(t)|H(t)

∥∥∥∆(t) − ḡ(t)
∥∥∥2

+ αE1(t),B(t)|H(t)

[
1
N

N∑
i=1

∥∥∥∇Fi(w(t))− h
(t+1)
i

∥∥∥2
]

(B.96)

≤ F (w(t))− η

2

∥∥∥∇F (w(t))
∥∥∥2

+ η

2N

N∑
i=1

EB(t)
i |H(t)

∥∥∥ḡ(t)
i −∇Fi(w(t))

∥∥∥2

+ δ E1(t),B(t)|H(t)

∥∥∥∆(t) − ḡ(t)
∥∥∥2

︸ ︷︷ ︸
bounded by Lemma A.6

+αE1(t),B(t)|H(t)

[
H(t+1)

]
︸ ︷︷ ︸

bounded by Lemma A.7

, (B.97)

where Eq. (B.94) applies Lemma A.1; Eq. (B.95) follows from Jensen’s inequality, and introduces the global
pseudo-gradient ḡ(t); Eq. (B.96) requires ∆(t) as an unbiased estimator for ḡ(t); and Eq. (B.97) holds for δ ≤ η

2 .

Next, we apply Lemmas A.6 and A.7 into Eq. (B.97):

E1(t),B(t)|H(t) [ψ(t+1)]

≤ F (w(t))

+
[

6δβ2

N

(
1
N

N∑
i=1

1− pi

pi

)
+ α

(
1 + 1

C

)(
1− 1

N

N∑
i=1

pi

)]
η2L2

∥∥∥∆(t−1)
∥∥∥2

+
[
6δβ2

(
1
N

N∑
i=1

1− pi

pi

)
+ α (1 + C) (1− pmin)

]
H(t)

− η

2

[
1− 12δ(1− β)2

ηN

(
1
N

N∑
i=1

1− pi

pi

)]∥∥∥∇F (w(t))
∥∥∥2

+ η

2N

N∑
i=1

EB(t)
i |H(t)

∥∥∥ḡ(t)
i −∇Fi(w(t))

∥∥∥2
+ 6δ
N2

N∑
i=1

1− pi

pi
EB(t)

i |H(t)

∥∥∥ḡ(t)
i −∇Fi(w(t))

∥∥∥2
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+ α

N

N∑
i=1

piEB(t)
i |H(t)

∥∥∥ḡ(t)
i −∇Fi(w(t))

∥∥∥2

+
[
δ

N

(
1
N

N∑
i=1

1
pi

)
+ α

(
1
N

N∑
i=1

pi

)]
σ2

K

+ 6δ(1− β)2

N

(
1
N

N∑
i=1

1− pi

pi

)
σ2

g , (B.98)

where Eq. (B.98) is derived by straightforward reordering of terms.

The initial segment of Eq. (B.98)—comprising the objective value, squared global pseudo-gradient norm, and
historical error at round t—qualifies for bounding within the Lyapunov recursive framework. The conditions for
this recursion step are:[

6δβ2

N

(
1
N

N∑
i=1

1− pi

pi

)
+ α

(
1 + 1

C

)(
1− 1

N

N∑
i=1

pi

)]
η2L2 ≤ δ − η2L

2 ; (B.99)

6δβ2
(

1
N

N∑
i=1

1− pi

pi

)
+ α (1 + C) (1− pmin) ≤ α. (B.100)

Reversing Eq. (B.100), the resulting condition on α is:

α ≥
6δβ2

(
1
N

∑N
i=1

1−pi
pi

)
[1− (1 + C) (1− pmin)] . (B.101)

To ensure Eq. (B.101) is positive (α > 0), a suitable choice for C must satisfy [1− (1 + C)(1− pmin)] > 0:

C <
pmin

1− pmin
=⇒ choose C = pmin

2(1− pmin) .

It follows that 1 + C = 2−pmin
2(1−pmin) , and

α = 12δβ2
(

1
N

N∑
i=1

1− pi

pi

)( 1
pmin

)
. (B.102)

Reversing Eq. (B.99), the resulting condition on δ is:[
6δβ2

N

(
1
N

N∑
i=1

1− pi

pi

)
+ α

(
1 + 1

C

)(
1− 1

N

N∑
i=1

pi

)]
η2L2 ≤ δ − η2L

2 . (B.103)

By replacing α (as per Eq. (B.102)) and 1 + 1
C = 2−pmin

pmin
into (B.103), we have:

6δβ2η2L2

N

(
1
N

N∑
i=1

1− pi

pi

)
+

12δβ2η2L2
(

1
N

∑N
i=1

1−pi
pi

) (
1− 1

N

∑N
i=1 pi

)
(2− pmin)

(pmin)2 ≤ δ − η2L

2 , (B.104)

therefore:

δ ≥
η2L

2

1− 6β2η2L2

N

(
1
N

∑N
i=1

1−pi
pi

)
−

12β2η2L2
(

1
N

∑N

i=1
1−pi

pi

)(
1− 1

N

∑N

i=1 pi

)
(2−pmin)

(pmin)2

. (B.105)
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Choosing δ = η2L requires the following constraints on the step-size:

6β2η2L2

N

(
1
N

N∑
i=1

1− pi

pi

)
≤ 1

4 =⇒ η2 ≤ N

24β2L2
(

1
N

∑N
i=1

1−pi
pi

) ; (B.106)

12β2η2L2
(

1
N

∑N
i=1

1−pi
pi

) (
1− pavg

)
(2− pmin)

(pmin)2 ≤ 1
4 ⇐⇒

⇐⇒ η2 ≤ (pmin)2

48β2L2
(

1
N

∑N
i=1

1−pi
pi

) (
1− pavg

)
(2− pmin)

. (B.107)

Under these requirements, we are able to pick:

δ = η2L; (B.108)

α = 12η2Lβ2
(

1
N

N∑
i=1

1− pi

pi

)( 1
pmin

)
. (B.109)

Replacing the selected values for δ and α into Eq. (B.98) (as per Eq. (B.108) and (B.109), respectively), yields:

E1(t),B(t)|H(t) [ψ(t+1)]

≤ ψ(t) − η

2

[
1− 12ηL(1− β)2

N

(
1
N

N∑
i=1

1− pi

pi

)]∥∥∥∇F (w(t))
∥∥∥2

+ η

2N

N∑
i=1

EB(t)
i |H(t)

∥∥∥ḡ(t)
i −∇Fi(w(t))

∥∥∥2

︸ ︷︷ ︸
uniformly bounded by Lemma A.5

+6η2L
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pi
EB(t)

i |H(t)

∥∥∥ḡ(t)
i −∇Fi(w(t))

∥∥∥2

︸ ︷︷ ︸
uniformly bounded by Lemma A.5

+ 12β2η2L

(
1
N

N∑
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1− pi
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)( 1
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) 1
N
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pi EB(t)
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∥∥∥ḡ(t)
i −∇Fi(w(t))

∥∥∥2

︸ ︷︷ ︸
uniformly bounded by Lemma A.5

+
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1
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σ2

g . (B.110)

Next, applying Lemma A.5 into Eq. (B.110):

E1(t),B(t)|H(t) [ψ(t+1)]

≤ ψ(t) − η

2

[
1− 12ηL(1− β)2

N

(
1
N

N∑
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1− pi

pi
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2

[
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N

(
1
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)
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×

× 8η2
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+
[
η2L

N
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1
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(
1
N

N∑
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)
+ 12β2η2L

(
1
N
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)(
1
N
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)( 1
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2
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+ 6η2L(1− β)2

N

(
1
N
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+
[
η

2 + 6η2L

N

(
1
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N∑
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)
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(
1
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N∑
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)(
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8η2

cL
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(B.111)

where Eq. (B.111) requires minor rearrangements.

Achieving Eq. (B.91)’s per-round progress requires the gradient squared norm’s coefficient should not exceed −η
4 .

This leads to the following step-size requirements:

8η2
cL

2K(K − 1) ≤ 1
8 ⇐⇒ η2

c ≤
1

64L2K2 ; (B.112)

12ηL(1− β)2

N

(
1
N

N∑
i=1

1− pi

pi

)
≤ 1

8 ⇐⇒ η ≤ N

96(1− β)2L
(

1
N

∑N
i=1

1−pi
pi

) ; (B.113)

96ηη2
cL

3K(K − 1)
N

(
1
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N∑
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pi
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≤ 1

8 ⇐⇒ η ≤ N

12L
(

1
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∑N
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1−pi
pi

) ; (B.114)

192β2ηη2
cL

3K(K − 1)
(

1
N

N∑
i=1

1− pi

pi

)(
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pmin

)
≤ 1

8 ⇐⇒ η ≤ 1
24β2L

(
1
N

∑N
i=1

1−pi
pi

) (
pavg
pmin

) . (B.115)

In summary, combining conditions (B.106), (B.107), and (B.112)–(B.115), the necessary step-size requirements
are:

ηc ≤
1

8LK ; (B.116)

ηs ≤ min

 N

12(1− β)2
(

1
N

∑N
i=1

1−pi
pi

) , 2N
3
(

1
N

∑N
i=1

1−pi
pi

) , 1
3β2

(
1
N

∑N
i=1

1−pi
pi

) (
pavg
pmin

)
 . (B.117)

Under these conditions, we bound the gradient squared norm’s coefficient with −η
4 , thus deriving Eq. (B.91).

□

Lemma A.11 (FedStale: Initial progress). Under Assumptions 2–5 and the specified client-server learning rates
(Eq. (B.89)), recall the definition of Lyapunov function ψ(t) in Eq. (B.90). Define the initial error resulting from the
memory term’s initialization as:

H(1) := 1
N

N∑
i=1

∥∥∥∇Fi(w(1))− h
(1)
i

∥∥∥2
. (B.118)
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We decompose FedStale’s initial progress into three main terms: the objective’s initial decrease, the initial memory
error, and FedAvg’s error from stochastic gradients and data heterogeneity—which FedStale also encounters
upon memory initialization:

E1(1),B(1)

[
ψ(2)

]
≤ F (w(1))− η

4

∥∥∥∇F (w(1))
∥∥∥2

+
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(
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1
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N∑
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)( 1
pmin

)]
8η2

cL
2K(K − 1)σ2

g

+ 12β2η2L

(
1
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N∑
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) 1
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∥∥∥2
. (B.119)

Proof of Lemma A.11.

We bound E1(1),B(1) [ψ(2)] following Lemma A.10’s methodology, starting with ψ(t)’s definition from Eq. (B.90):

E1(1),B(1)

[
ψ(2)

]
= E1(1),B(1)

[
F (w(2))

]
+
(
δ − η2L

2

)
E1(1),B(1)

∥∥∥∆(1)
∥∥∥2

+ αE1(1),B(1)

[
1
N
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∥∥∥∇Fi(w(1))− h
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∥∥∥2
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︸ ︷︷ ︸
≜H(2)

(B.120)

≤ F (w(1))− η

2

∥∥∥∇F (w(1))
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+ η

2N
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EB(1)
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︸ ︷︷ ︸
bounded by Lemma A.9

, (B.121)

where Eq.(B.121) leverages LemmaA.1 and Jensen’s inequality, with ∆(t) as an unbiased estimator of ḡ(t) and
δ ≤ η

2 , following Eqs. (B.94)–(B.97). Next, we apply Lemmas A.8 and A.9 into Eq. (B.121):
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]
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uniformly bounded by Lemma A.5
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(B.122)

Then, we invoke Lemma A.5:
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, (B.123)

where Eq. (B.123) results from rearrangement of terms.

Finally, applying the step-size criteria in Eq. (B.89), Eq. (B.119) achieves FedStale’s per-round progress of

−η
4

∥∥∥∇F (w(1))
∥∥∥2

.

□

A.C Proof of Theorem A.12

Theorem A.12 (FedStale’s Convergence). Within Assumptions 2–5 and specified learning rates (Eq. (B.89)),
FedStale’s expected squared gradient norm over T rounds is influenced by the initial errors (related to w(1) and
H(1)), deviations from stochastic gradient variance (σ2) and data heterogeneity (σ2

g ), and the critical hyper-parameter
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β controlling stale updates influence:

min
t∈[1,T ]

E
∥∥∥∇F (w(t))

∥∥∥2

≤
4
(
F (w(1))− E[ψ(T )]

)
ηT

+ β2
[

48ηL
T

(
1
N

N∑
i=1

1− pi

pi

)(1− pmin

pmin

) 1
N

N∑
i=1

∥∥∥∇Fi(w(1))− h
(1)
i

∥∥∥2
]

+ 4ηL
N

(
1
N

N∑
i=1

1
pi

)
σ2

K
+ 4η2

cL
2K(K − 1)σ

2

K
+ 48ηη2

cL
3K(K − 1)
N

(
1
N

N∑
i=1

1− pi

pi

)
σ2

K

+ β2
[
48ηL

(
1
N

N∑
i=1

1− pi

pi

)(
1
N

N∑
i=1

pi

)( 1
pmin

)]
σ2

K

+ β2
[
96ηL

(
1
N

N∑
i=1

1− pi

pi

)(
1
N

N∑
i=1

pi

)( 1
pmin

)]
η2

cL
2K(K − 1)σ

2

K

+ 16η2
cL

2K(K − 1)σ2
g + 192ηη2

cL
3K(K − 1)
N

(
1
N

N∑
i=1

1− pi

pi

)
σ2

g

+ (1− β)2
[

24ηL
N

(
1
N

N∑
i=1

1− pi

pi

)]
σ2

g

+ β2
[
384ηL

(
1
N

N∑
i=1

1− pi

pi

)(
1
N

N∑
i=1

pi

)( 1
pmin

)]
η2

cL
2K(K − 1)σ2

g + 12ηL
NT

(
1
N

N∑
i=1

1− pi

pi

)
σ2

g .

(B.124)

Proof of Theorem A.12.

The proof relies on Lemmas A.10 and A.11, under Assumptions 2–5 and the specified learning rates (Eq. (B.89)).

From Lemma A.10, unfolding the recursion for t = 2, . . . , T through the law of total expectation, it yields:

E1(2:T ),B(2:T )|H(1)

[
ψ(T )

]
≤ ψ(2)︸︷︷︸

bounded in expectation by Lemma A.11

+
T∑

t=2

(
−η4E1(2:T ),B(2:T )|H(1)

∥∥∥∇F (w(t))
∥∥∥2

+
[
η2L

N

(
1
N

N∑
i=1

1
pi

)
+ 12β2η2L

(
1
N
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i=1
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pi

)(
1
N

N∑
i=1

pi

)( 1
pmin

)]
σ2

K

+
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η

2 + 6η2L

N

(
1
N

N∑
i=1

1− pi

pi

)
+ 12β2η2L

(
1
N

N∑
i=1

1− pi

pi

)(
1
N

N∑
i=1

pi

)( 1
pmin

)]
2η2

cL
2K(K − 1)σ

2

K

+ 6η2L(1− β)2

N

(
1
N

N∑
i=1

1− pi

pi

)
σ2

g

+
[
η

2 + 6η2L

N

(
1
N

N∑
i=1

1− pi

pi

)
+ 12β2η2L

(
1
N
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i=1

1− pi
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)(
1
N

N∑
i=1

pi

)( 1
pmin

)]
8η2

cL
2K(K − 1)σ2

g

)
.

(B.125)
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Invoking Lemma A.11 into Eq. (B.125) and taking the total expectation:

E1(1:T ),B(1:T )

[
ψ(T )

]
≤ F (w(1)) +

T∑
t=1

(
−η4E1(1:T ),B(1:T )

∥∥∥∇F (w(t))
∥∥∥2

+
[
η2L

N

(
1
N

N∑
i=1

1
pi

)
+ 12β2η2L

(
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N
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i=1
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pi

)(
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N
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i=1

pi

)( 1
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)]
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K
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η

2 + 6η2L

N
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)
+ 12β2η2L
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)(
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)
+ 12β2η2L
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N
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1− pi

pi

)(
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N
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i=1

pi

)( 1
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8η2

cL
2K(K − 1)σ2

g

)

+
T∑
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[
6η2L(1− β)2

N
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N
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g
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+ 3η2L

N
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N
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g
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N
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1− pi

pi
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pmin

) 1
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i=1

∥∥∥∇Fi(w(1))− h
(1)
i

∥∥∥2
. (B.126)

Dividing both sides of Eq. (B.126) by T and rearranging the terms:

min
t∈[1,T ]

E
∥∥∥∇F (w(t))

∥∥∥2

≤ 1
T

T∑
t=1

E
∥∥∥∇F (w(t))

∥∥∥2
(B.127)
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∥∥∥∇Fi(w(1))− h
(1)
i

∥∥∥2
]
, (B.128)

where Eq. (B.127) follows comparing the minimum expected squared gradient norm across iterations to the average.

Observing that ψ(T ) ≥ F (w(T )), we group errors into common, (1− β2)-specific, and β2-specific terms:

min
t∈[1,T ]

E
∥∥∥∇F (w(t))

∥∥∥2
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. (B.129)

Finally, organizing errors into initial, stochastic gradient-specific, and data heterogeneity-specific terms yields
Eq. (B.124).

□

B FedStale, Lower bound

To prove oracle complexities lower bounds for smooth objectives, we consider the function used by Nes-
terov (Nesterov, 2004; Bubeck, 2015)

F (w) = L

8
(
w⊤A2t+1w − 2w⊤e1

)
(B.130)

= L

8

(w)2
1 +

2t∑
j=1

((w)j − (w)j+1)2 + (w)2
2t+1 − 2(w)1

 (B.131)

where, for t ≤ d−1
2 , At ∈ Rd×d is a symmetric and tridiagonal matrix defined as

(At)ij =


2, i = j, i ≤ t
−1, |i− j| = 1, i ≤ t, j ̸= t+ 1
0, otherwise.

(B.132)

Following the methodology introduced in (Scaman, Bach, Bubeck, Lee, & Massoulié, 2019), our approach relies
on distributing the objective function F (w) across two clients. This split is designed such that most components of
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the parameter vector w(t) remain zero. Local gradient computations increase the number of non-zero components
by at most one whenever a client becomes active, without any additional component revealed until the other client
participates. More rigorously, let i0, i1 ∈ N denote two clients. For every client i ∈ N , we define the objective
functions Fi(w) : Rd → R as follows:

Fi(w) =


NL

8

[
(w)2

1 +
∑t

j=1 ((w)2j − (w)2j+1)2 − 2(w)1
]

if i = i0
NL

8

[∑t
j=1 ((w)2j−1 − (w)2j)2 + (w)2

2t+1

]
if i = i1

0 otherwise.

(B.133)

It is easy to verify that F (w) = 1
N

∑N
i=1 Fi(w).

B.A Upper bound on k(t)

Our objective is to establish an upper bound for the maximum non-zero index of the parameter vector w(t), which
minimizes F (w) at any given time t. We introduce the notations

k
(t)
i = max{k ∈ N, k ≤ d | ∃w(t)

i ∈ Rd such that (w(t)
i )k ̸= 0}

and

k(t) = max{k ∈ N, k ≤ d | ∃w(t) ∈ Rd such that (w(t))k ̸= 0}

to respectively represent the largest index of non-zero components in w
(t)
i and w(t).

At the beginning of each round t, the server initializes k(t)
i to k(t−1) for any participating client i ∈ S(t). Subsequently,

after the local computations conclude, the server updates k(t) to the maximum of all k(t)
i values among participating

clients, which corresponds to the largest index of non-zero components discovered up to time t.

Extending the results of (Scaman et al., 2019, Lemma 23) to scenarios with partial client participation, it can be easily
shown that:

k
(t+1)
i ≤


k

(t)
i + 1{k(t)

i ≡ 0 mod 2} if i = i0 ∧ i0 is active,

k
(t)
i + 1{k(t)

i ≡ 1 mod 2} if i = i1 ∧ i1 is active,

k
(t)
i otherwise.

(B.134)

Due to the stochastic nature of client participation, the sequences k(t)
i and k(t), for i ∈ N and t ∈ T , must be treated

as stochastic processes. Initially, to facilitate the analysis, we assume a deterministic model for client participation.
Subsequently, by leveraging Jensen’s inequality, we generalize our results to account for the expected stochastic
dynamics of client participation.

In what follows, we consider, without loss of generality, that client i0 is always active (p0 = 1), and client i1 exhibits
the minimum availability (p1 = mini pi = p). In terms of upper bound on k(t), this assumption represents a boundary
condition on how fast k(t) can grow in a framework characterized by minimum client participation p.

From the two previous assumptions, we observe that client i1 exhibits a deterministic activity pattern, participating in
every τ = 1/p > 1 communication cycles. We can straightforwardly derive from (B.134) the subsequent update rule
for k(t):

k(t+1) = k(t) + 1{t mod τ ∈ {0, 1}}, ∀t ∈ T (B.135)
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In the example below, we clarify the notation and illustrate the increment process of k(t).

Example B.1. We set p = 1/4, implying τ = 4. Moreover, we assume i1 is active at rounds t = {1, 5, 9, . . . }.

. . .

. . .

i0

i1
0 1 2 3 4 5 6 7 8 9 10

Given the initialization parameters w(0) with k(0) = 0, we observe:

t = 0 : Client i0 is active and increases k(0)
0 = 1 (k(0) is even). k(0) = 1.

t = 1 : Client i0 is active but does not increase k(1)
0 (k(0) is odd). Client i1 is active, k(1)

1 = 2 (since k(0) is odd).
k(1) = 2.

t = 2 : Client i0 increases k(2)
0 to 3 (since k(1) is even). Client i1 is inactive. k(2) = 3.

t = 3 : Client i0 does not increase k(3)
0 (since k(2) is odd). Client i1 is inactive. k(3) = 3.

t = 4 : Client i1 is inactive. k(4) = 3.

t = 5 : Client i1 is active and increases k(5)
1 to 4. k(5) = 4.

t = 6 : Client i0 increases k(6)
0 to 5 (since k(5) is even). Client i1 is inactive. k(6) = 5.

t = 7 : Client i0 is active but does not increase k(7)
0 (k(6) is odd). Client i1 is inactive. k(7) = 5.

t = 8 : Client i1 is inactive. k(8) = 5.

t = 9 : Client i1 is active and increases k(9)
1 to 6. k(9) = 6.

t = 10 : Client i0 increases k(10)
0 to 7 (since k(9) is even). Client i1 is inactive. k(10) = 7.

These observations verify k(t+1) = k(t) + 1{t mod 4 ∈ {0, 1}}, for all t ∈ T .

Moreover, Example B.1 motivates two further observations:

1. Client i1’s initial activation (say j) produces τ distinct temporal sequences (say k(t,j)), each delayed from the
reference sequence k(t,1) up to τ − 1 time steps. Specifically, the following relationship holds:

k(t,j) = k(t−((j+τ−1) mod τ),1), for j = 0, . . . , τ − 1.

In other words, all sequences k(t,j), for j ̸= 1, progress at a slower pace than k(t,1); thus, the sequence k(t,1)

represents the fastest evolution among them.

2. Given the objectives partition among clients as detailed in Eq. (B.133)—with clients i0 and i1 optimizing even
and odd components, respectively—the optimization process in Example B.1 initiates with client i0 targeting
the first (even) component at t = 0. Should we invert their objectives in Eq. (B.133), then client i1 would
commence at t = 0. This switch initiates τ new sequences, k̂(t,j), distinct from the original k(t,j) sequences. For
j = 1, . . . , τ − 1, each k̂(t,j) is one value below its k(t,j) counterpart except for j = 0, where:

(k(t,1))i =
{

(k̂(t,0))i, if i mod τ ∈ {0, 1},
(k̂(t,0))i + 1, otherwise.
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In any case, k(t,1) remains consistently the fastest sequence among k̂(t,j) for j = 0, . . . , τ − 1.

For notational brevity, we denote k(t,1) simply as k(t) in subsequent discussions. The following lemma proves that
at least O (τ) communication rounds are necessary in-between every gradient computation, in order to optimize the
global objective.

Lemma B.1. Given a set N of N clients, with i0 (having p0 = 1) always participating, and i1 (with p1 =
mini∈N pi = p) being the least participating client at a period τ = 1/p > 1, let k(t) = max{k ∈ N, k ≤ d |
∃w(t) ∈ Rd such that (w(t))k ̸= 0} represent the largest index of non-zero components in any parameter vector
w(t) ∈ Rd. Assuming the global objective F (w) is partitioned among clients as specified in Eq. (B.133), the upper
bound for the index k(t) at any time t ≥ 0 is given by:

k(t) ≤ 1 +
⌊
t+ τ − 2

τ

⌋
+
⌊
t+ τ − 1

τ

⌋
. (B.136)

Proof of Lemma B.1.

The proof proceeds by induction on the time step t.

Base case. At t = 0, the initial condition yields:

k(0) ≤ 1 +
⌊
τ − 2
τ

⌋
+
⌊
τ − 1
τ

⌋
= 1, (B.137)

since, for τ ≥ 1, both the floor terms
⌊

τ−2
τ

⌋
and

⌊
τ−1

τ

⌋
evaluate to zero.

Inductive step. Assume Eq. (B.136) is valid for an arbitrary t ≥ 0. Our goal is to show that the relationship holds
for t+ 1 as well. From the induction hypothesis for k(t), we have:

k(t+1) ≤ 1 +
⌊
t+ τ − 1

τ

⌋
+
⌊
t+ τ

τ

⌋
(B.138)

= k(t) +
⌊
t

τ
+ 1

⌋
−
⌊
t− 2
τ

+ 1
⌋
, (B.139)

where, in (B.139), we applied the definition of k(t) from Eq. (B.136).

Next, we observe that the difference
⌊

t+τ
τ

⌋
−
⌊

t+τ−2
τ

⌋
only depends on the congruence class of t mod τ , as the τ

term simplifies in the subtraction. Specifically,

The expression
⌊

t mod τ
τ + 1

⌋
consistently equals one, since 0 ≤ t mod τ

τ < 1.

Conversely,
⌊

t mod τ−2
τ + 1

⌋
is one for t mod τ ≥ 2, and zero for t mod τ ∈ {0, 1}.

Thus, the difference
⌊

t
τ + 1

⌋
−
⌊

t−2
τ + 1

⌋
equals one for t ≡ 0, 1 (mod τ), and zero otherwise.

This observation aligns with the incremental rule of Eq. (B.135), thus concluding the proof.

□
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B.B Lower bound on ||∇F (w(t))||2

Lemma B.2. For any time step t ≤ d−1
2 in a d-dimensional space, and Lipschitz constant L > 0, there exists an

L-smooth convex function F : Rd → R, for which the minimum squared norm of the gradient, evaluated at any point
within the first t steps of any first-order black-box optimization procedure, satisfies:

min
1≤s≤t

∥∥∥∇F (w(s))
∥∥∥2
≥

6L
(
F (w(1))− F ∗

)
t(2t+ 1)2 , (B.140)

where w(s) represents the parameter vector at step s, and F ∗ denotes the minimum value of F .

Proof of Lemma B.2.

We begin by recalling the global objective function (Nesterov, 2004; Bubeck, 2015)

F (w) = L

8 w⊤A2t+1w − L

4 w⊤e1,

where At ∈ Rd×d is the symmetric, tridiagonal matrix, defined for t ≤ d−1
2 as:

(At)ij =


2, if i = j and i ≤ t,
−1, if |i− j| = 1 and i ≤ t, j ̸= t+ 1,
0, otherwise.

Proposition B.3. The function F (w) satisfies Assumption 6.

Proof.

The proof follows directly from (Bubeck, 2015, Theorem 3.14).

□

Our objective is to derive a lower bound on the squared norm of the gradient ∇F (w(t)), specifically, the minimum
gradient norm observed up to and including time step t.

Given the black-box procedure’s assumption, we note that w(t) is restricted to the linear span of e1, . . . , et−1,
implying:

w(t) =
(
(w(t))1, . . . , (w(t))t−1, 0, . . . , 0

)
.

We define w(t,∗) = arg min
w∈Span(e1,...,et−1)

∥∇F (w)∥2, and w(∗) = arg min
w∈Rd

∥∇F (w)∥2. The following inequality

holds:

min
1≤s≤t

∥∥∥∇F (w(s))
∥∥∥2
≥
∥∥∥∇F (w(t,∗))

∥∥∥2
≥
∥∥∥∇F (w(∗))

∥∥∥2

Moving forward in the derivation of the lower bound, our focus shifts towards evaluating
∥∥∥∇F (w(t,∗))

∥∥∥2
. The first

step involves identifying w(t,∗), the parameter vector that minimizes the squared norm of the gradient within the
span of {e1, . . . , et−1}.
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B.B.1 Finding w(t,∗)

Considering w(t) ∈ Span(e1, . . . , et−1), we calculate the gradient of F at w(t) as follows:

∂F (w(t))
∂(w(t))i

=



L
4

[
−1 + 2(w(t))i − (w(t))i+1

]
for i = 1,

L
4

[
−(w(t))i−1 + 2(w(t))i − (w(t))i+1

]
for i = 2, . . . , t− 2,

L
4

[
−(w(t))i−1 + 2(w(t))i

]
for i = t− 1,

L
4

[
−(w(t))i

]
for i = t,

0 for i = t+ 2, . . . , 2t+ 1,

where the gradient evaluations explicitly reflect their dependence on adjacent components i − 1, i, and i + 1, as
a consequence of the structural properties of the symmetric, tridiagonal matrix A, and the boundary conditions
imposed on the vector w(t).

The squared gradient norm,
∥∥∥∇F (w(t))

∥∥∥2
, is then given by:

∥∥∥∇F (w(t))
∥∥∥2

= L2

16

[(
2(w(t))1 − (w(t))2 − 1

)2
+

t−2∑
i=2

(
(w(t))i−1 + 2(w(t))i − (w(t))i+1

)2

+
(
(w(t))t−2 + 2(w(t))t−1

)2
+ (w(t))2

t−1

]
.

Minimizing this expression with respect to w(t) involves setting its partial derivatives to zero, leading to the system
of equations:

∂
∥∥∥∇F (w(t))

∥∥∥2

∂(w(t))i
=



L2

16

[
−4 + 10(w(t))i − 8(w(t))i+1 + 2(w(t))i+2

]
for i = 1,

L2

16

[
2− 8(w(t))i−1 + 12(w(t))i − 8(w(t))i+1 + 2(w(t))i+2

]
for i = 2,

L2

16

[
2(w(t))i−2 − 8(w(t))i−1 + 12(w(t))i − 8(w(t))i+1 + 2(w(t))i+2

]
for i = 3, . . . , t− 3,

L2

16

[
2(w(t))i−2 − 8(w(t))i−1 + 12(w(t))i − 8(w(t))i+1

]
for i = t− 2,

L2

16

[
2(w(t))i−2 − 8(w(t))i−1 + 12(w(t))i

]
for i = t− 1.

The minimizer of
∥∥∥∇F (w(t))

∥∥∥2
now depends on adjacent indices i− 2, i− 1, i, i+ 1, and i+ 2:

(w(t,∗))i =



2
5 + 4

5(w(t,∗))i+1 − 1
5(w(t,∗))i+2 for i = 1,

−1
6 + 2

3(w(t,∗))i−1 + 2
3(w(t,∗))i+1 − 1

6(w(t,∗))i+2 for i = 2,
−1

6(w(t,∗))i−2 + 2
3(w(t,∗))i−1 + 2

3(w(t,∗))i+1 − 1
6(w(t,∗))i+2 for i = 3, . . . , t− 3,

−1
6(w(t,∗))i−2 + 2

3(w(t,∗))i−1 + 2
3(w(t,∗))i+1 for i = t− 2,

−1
6(w(t,∗))i−2 + 2

3(w(t,∗))i−1 for i = t− 1.

The optimal vector w(t,∗) emerges as solution of this system, relating the i-th component directly to (w(t,∗))1 and
(w(t,∗))2. This yields the following recursive formula for i = 3, . . . , t− 1:

(w(t,∗))i = 1
6(i3 − i)(w(t,∗))2 −

1
3(i2 − 4)(w(t,∗))1 + 1

6(i3 − 7i+ 6).
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Finally, leveraging the boundary conditions on (w(t,∗))t−2 and (w(t,∗))t−1, we solve for the initial components
(w(t,∗))1 and (w(t,∗))2. The generalized expression for w(t,∗) is:

(w(t,∗))i =


2t3−3(i−1)t2−(3i−1)t+i3−i

t(t+1)(2t+1) for i = 1, . . . , t− 1,
0 otherwise,

within the linear span of e1, . . . , et−1.

B.B.2 Evaluating
∥∥∥∇F (w(t,∗))

∥∥∥2

To complete the lower bound, we first derive the explicit form of the gradient of F at w(t,∗):

∂F (w(t,∗))
∂(w(t,∗))i

=



L
4

[
2(w(t,∗))i − (w(t,∗))i+1 − 1

]
for i = 1,

L
4

[
−(w(t,∗))i−1 + 2(w(t,∗))i − (w(t,∗))i+1

]
for i = 2, . . . , t− 2,

L
4

[
−(w(t,∗))i−1 + 2(w(t,∗))i

]
for i = t− 1,

L
4

[
−(w(t,∗))i−1

]
for i = t,

0 for i = t+ 1, . . . , 2t+ 1.

This yields the gradient’s i-th component as:

∂F (w(t,∗))
∂(w(t,∗))i

=

−
3Li

2t(t+1)(2t+1) for i = 1, . . . , t
0 for i > t.

Subsequently, the squared norm of the gradient,
∥∥∥∇F (w(t,∗))

∥∥∥2
, is calculated as follows:

∥∥∥∇F (w(t,∗))
∥∥∥2

=
t∑

i=1

(
− 3Li

2t(t+ 1)(2t+ 1)

)2

= 9L2

4t2(t+ 1)2(2t+ 1)2

t∑
i=1

i2

= 3L2

8t(t+ 1)(2t+ 1) ,

by summing the squares of the gradient components and observing that
∑t

i=1 i
2 = 1

6 t(t+ 1)(2t+ 1).

Additionally, considering the initial error:

F (w(1))− F ∗ = 0− L

8

(
1− 1

2t+ 2

)
= L(2t+ 1)

16(t+ 1) ,

we derive the final expression:

min
1≤s≤t

∥∥∥∇F (w(s))
∥∥∥2
≥
∥∥∥∇F (w(t,∗))

∥∥∥2
≥

6L
(
F (w(1))− F ∗

)
t(2t+ 1)2 ,

thus concluding the proof.

□
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B.C Proof of Theorem B.4

Theorem B.4. In a federated learning setting involving a set of N clients (N = {1, . . . , N}), where each client i is
associated with a participation probability pi, let pmin be the minimum participation probability among these clients,
i.e., pmin := mini∈N pi. There exists N local functions Fi : Rd → R, contributing to the global objective function F ,
such that:

1. The function F : Rd → R is L-smooth;

2. Under any first-order black-box optimization procedure up to time-step t, t ≤ d−1
2 , the minimum squared norm

of the gradient of F evaluated at any parameter vector w(s) within this time interval satisfies:

min
1≤s≤t

E
∥∥∥∇F (w(s))

∥∥∥2
≥

3L
(
F (w(1))− F ∗

)
(pmint+ 2)(4pmint+ 9)2 , (B.141)

where w(s) denotes the parameter vector at step s, and F ∗ represents the minimum value of F .

Proof of Theorem B.4.

Given the linear span restriction of w(t) to the first k(t) basis vectors, we have

w(t) =
(
(w(t))1, . . . , (w(t))k(t) , 0, . . . , 0

)
.

From our previous result (Lemma B.2), the minimum squared gradient norm is bounded below by:

min
1≤s≤t

∥∥∥∇F (w(s))
∥∥∥2
≥

6L
(
F (w(1))− F ∗

)
(k(t) + 1)(2k(t) + 3)2 . (B.142)

Considering k(t) as a random variable depending on the geometric distribution of success time with expected value
τ = 1/pmin, and leveraging the upper bound established in Lemma B.1, we have:

E[k(t)] ≤ 3(1− pmin) + 2pmint ≤ 3 + 2pmint. (B.143)

Application of Jensen’s inequality to the function f(x) = 1
(x+1)(2x+3)2 , which is convex over x ≥ 0, completes the

proof:

min
1≤s≤t

E
∥∥∥∇F (w(s))

∥∥∥2
≥

6L
(
F (w(1))− F ∗

)
(E[k(t)] + 1)(2E[k(t)] + 3)2 ≥

3L
(
F (w(1))− F ∗

)
(pmint+ 2)(4pmint+ 9)2 . (B.144)

□



APPENDIX C
Application to Wireless

Networks with Lossy
Communication

Channels
A Proof of Theorem 4.3.1

For the proof, we define the sequence w̄(t,k)=
∑

i∈N αiw
(t,k)
i .

We denote:

B(t) = {B(t,0),B(t,1), . . . ,B(t,K−1)}; (C.1)

H(t) = {B(1),S(1),B(2),S(2), . . . ,B(t−1),S(t−1)}, (C.2)

where B(t,k) = {B(t,k)
i }i∈N is the set of random batches sampled at time (t, k) andH(t) includes all history up to the

t-th round.

Lemma A.1. Let Assumptions 13–14 hold, and w(t) = w
(t)
UPGA-PL. Then:

ES(t),B(t)|H(t)

∥∥∥w(t+1) − w̄(t,K)
∥∥∥2
≤ (η(t))2K2G2 ∑

i∈N
α2

i

qi

1− qi
. (C.3)

Conversely, for w(t) = w
(t)
UDMA-PL, we have:

ES(t)|H(t),B(t)

∥∥∥w(t+1) − w̄(t,K)
∥∥∥2

=
∑
i∈N

α2
i

qi

1− qi

∥∥∥w(t,K)
i

∥∥∥2
. (C.4)

Proof of Lemma A.1.

ES(t)|H(t),B(t)

∥∥∥∥∥w(t) +
∑
i∈N

αi

1− qi

(
w

(t,K)
i −w(t)

)
1

(t)
i − w̄(t,K)

∥∥∥∥∥
2

177
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= Var
(∑

i∈N

αi

1− qi

(
w

(t,K)
i −w(t)

)
1

(t)
i

)
=

=
∑
i∈N

Var
(

αi

1− qi

(
w

(t,K)
i −w(t)

)
1

(t)
i

)
=

=
∑
i∈N

αi
2

(1− qi)2

∥∥∥w(t,K)
i −w(t)

∥∥∥2
Var

(
1

(t)
i

)
=

=
∑
i∈N

α2
i

qi

1− qi

∥∥∥w(t,K)
i −w(t)

∥∥∥2
. (C.5)

Finally:

ES(t),B(t)|H(t)

∥∥∥w(t+1) − w̄(t,K)
∥∥∥2

=
∑
i∈N

α2
i

qi

1− qi
EB(t)|H(t)

∥∥∥w(t,K)
i −w(t)

∥∥∥2

≤
∑
i∈N

α2
i

qi

1− qi
(η(t))2K2G2. (C.6)

Conversely, for w(t) = w
(t)
UDMA-PL, the same proof technique leads to the bound in (C.4), but the steps in (C.6) do

not hold.

□

Proof of Theorem 4.3.1.

ES(t)|H(t),B(t)

∥∥∥w(t+1) −w∗
∥∥∥2

=

= ES(t)|H(t),B(t)

∥∥∥w(t+1) − w̄(t,K)
∥∥∥2

+
∥∥∥w̄(t,K) −w∗

∥∥∥2
. (C.7)

From (X. Li et al., 2020, Lemma 1), (X. Li et al., 2020, Lemma 2), and (X. Li et al., 2020, Lemma 3), recursively:

EB(t)|H(t)

∥∥∥w̄(t,K) −w∗
∥∥∥2
≤

≤ (1− η(t)µ)K
∥∥∥w̄(t) −w∗

∥∥∥2
+ (η(t))2B

K−1∑
k=0

(1− η(t)µ)j (C.8)

≤ (1− η(t)µ)
∥∥∥w̄(t) −w∗

∥∥∥2
+ (η(t))2KB, (C.9)

where B =
∑

i∈N α2
i σ

2
i + 6LΓ + 2(K − 1)2G2.

Combining (C.7) and (C.9), and applying Lemma A.1, we have:

ES(t),B(t)|H(t)

∥∥∥w(t+1) −w∗
∥∥∥2
≤ (1− η(t)µ)

∥∥∥w̄(t) −w∗
∥∥∥2

+ (η(t))2KC. (C.10)

The conclusion of the proof follows similar steps as (X. Li et al., 2020, Theorem 1). We require a learning rate
η(t) ≤ ( 1

µ ,
1

4L) = 1
4L . Set η(t+1) ≤ 2/µ

8κ+t , with κ := L/µ, such that η(1) = 1
4L . Then:

E
[
F (w(t+1))

]
− F ∗ ≤ κ

8κ+ t

(2KC
µ

+ 4L
∥∥∥w(1)−w∗

∥∥∥2
)
. (C.11)

□



APPENDIX D
Cooperative Inference
Systems: The Case of
Early Exit Networks

A Error Decomposition

We start upperbounding the true error by three terms: a generalization error, a bias error (due to the mismatch between
FD,Λ̃ and FD,Λ), and an optimization error:

ϵtrue ≤ 2ED

[
sup

w

∣∣∣FD,Λ̃(w)− FD,Λ(w)
∣∣∣]+ ES,AΛ̃

[
FD,Λ̃(w(T ))− F ⋆

D,Λ̃

]
(D.1)

≤ 2ED

[
sup

w

∣∣∣FD,Λ̃(w)− FD,Λ̃(w)
∣∣∣]︸ ︷︷ ︸

ϵgen

+2ED

[
sup

w

∣∣∣FD,Λ̃(w)− FD,Λ(w)
∣∣∣]︸ ︷︷ ︸

ϵbias

+ES,AΛ̃

[
FD,Λ̃(w(T ))− F ⋆

D,Λ̃

]
︸ ︷︷ ︸

ϵopt

,

(D.2)

where the first inequality is quite standard (e.g., (Marfoq, Neglia, Kameni, & Vidal, 2023, Eq. 9). We obtain the final
result by bounding each term.

B Generalization Error

For the generalization term, let FD,e(w) ≜ Ez∼D[f (e)(w, z)], we observe that

ϵgen ≤
E∑

e=1
Λ̃eED

sup
w

∣∣∣∣∣∣
∑

i∈Ce

|Di|
|De,p|

Fi,e(w)

− FD,e(w)

∣∣∣∣∣∣


=
E∑

e=1
Λ̃eED

[
sup

w

∣∣FDe,p(w)− FD,e(w)
∣∣] . (D.3)

We can then bound the (expected) representativity ED

[
supw

∣∣FDe,p(w)− FD,e(w)
∣∣] for each exit e. Our task is not

necessarily a binary classification task, but its representativity can be bounded by the representativity of an opportune
classification task with the 0-1 loss and set of classifiers H ′

e = {hw,t(z),w ∈ W, t ∈ R+}, where hw,t(z) =
1f (e)(w,z)>t (Mohri et al., 2018, Sec. 11.2.3). In particular, letRD(H) denote the Rademacher complexity of class H
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on datasetD and let F ′
De,p

(w, t) and F ′
D,e(w, t) denote the empirical loss and the expected loss for such classification

problem, respectively. The analysis is then quite standard:

ED

[
sup

w

∣∣FDe,p(w)− FD,e(w)
∣∣]

≤MED

[
sup

w

∣∣∣F ′
De,p

(w, t)− F ′
D,e(w, t)

∣∣∣] (D.4)

≤ 2MEDe,p

[
RDe,p(H ′

e)
]

(D.5)

≤MC

√
VCdim(H ′

e)
|De,p|

(D.6)

= MC

√
Pdim(He)
|De,p|

. (D.7)

For a proof of the three inequalities the reader can refer to (Mohri et al., 2018, Thm. 11.8), (Shalev-Shwartz & Ben-
David, 2014, Lm. 26.2), (Bousquet, Boucheron, & Lugosi, 2004-09-06, 2003, Sec. 5), respectively (the constantC can
be selected to be 320 (Livesay, 2017, Cor. 6.4)). The final equality follows from the definition of pseudo-dimension.

C Bias Error

For the bias term ϵbias, it is sufficient to observe that

ϵbias ≤ ED

[
sup

w

∣∣∣∣∣
E∑

e=1

(
Λ̃e − Λe

)
FD,e(w)

∣∣∣∣∣
]

(D.8)

≤ 2M distTV(Λ̃,Λ). (D.9)

Finally, for the optimization term, we can consider the pair (c, e) to be a fictitious client in a usual FL system and
adapt the proofs in (Salehi & Hossain, 2021; Rodio, Neglia, et al., 2023) to take into account 1) negative-correlation
across fictitious clients’ participation (every client c only trains one exit at each round) and 2) the projection step.

D Optimization Error

Our proof is similar to the proofs in (Salehi & Hossain, 2021; Rodio, Neglia, et al., 2023). We adapt our notation to
follow more closely that in those papers.

Let us consider the node update rule and the server aggregation rule in our algorithm:

w
(t,j+1)
i,e = w

(i,e)
t,j − ηt,j

1∣∣∣B(t,j)
i,e

∣∣∣
∑

z∈B(t,j)
i,e

∇fe(w(i,e)
t,j , z), for j = 0, . . . , J − 1 (D.10)

w(t+1) = w(t) + ηs

∑
e∈E

Λ̃e

∑
i∈Nt,e

|Di|
|De,p|

1
pi,e

(w(t,J)
i,e −w(t)), for t = 1, . . . T. (D.11)

We consider that a node corresponds to the pair k ≜ (i, e) ∈ K, where K ≜ N × E , i ∈ N , e ∈ E , and we define
αk ≜ αi,e ≜ ηsΛ̃e

|Di|
|De,p| , ξ

(t)
k ≜ ξ

(t)
i,e ≜ 1i∈Nt,e , and∇Fk(w(i,e)

t,j ,B(τ)
k ) ≜ 1

|B(t,j)
i,e |

∑
z∈B(t,j)

i,e

∇fe(w(i,e)
t,j , z).
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Moreover, we count gradient steps at nodes and aggregation steps at the server using the same time sequence (τ =
J(t − 1) + j)t=1,...,T,j=0,...,J−1. The set of values I(J) = {Jt, t = 1, . . . , T} corresponds to the aggregation steps.
The equations above can then be rewritten as follows in terms of two new virtual sequences:

v
(τ+1)
k = w

(τ)
k − ητ∇Fk(w(τ)

k ,B(τ)
k ) (D.12)

w
(τ+1)
k =



w(1) for τ + 1 = 0,

ΠW

w
(τ+1−J)
k +

∑
k∈K

αkξ
(τ+1−J)
k

pk
(v(τ+1)

k −w
(τ+1−J)
k )

 for τ + 1 ∈ I(J),

v
(τ+1)
k otherwise.

(D.13)

v
(J(t−1)+j)
k coincides then with the local model w

(i,e)
t,j and w

(J(t−1))
k coincides with the global model w(t).

We observe that, for τ + 1 ∈ I(J), w
(τ+1)
k = w

(τ+1)
k′ for any k and k′, and that, for τ + 1 ̸∈ I(J), v

(τ+1)
k = w

(τ+1)
k .

Moreover, define the average sequences v̄(τ+1) =
∑

k∈K αkv
(τ+1)
k and w̄(τ+1) =

∑
k∈K αkw

(τ+1)
k and similarly the

average gradients g(τ) =
∑

k∈K αk∇Fk(w(τ)
k ,B(t)

k ) and ḡ(τ) =
∑

k∈K αk∇Fk(w(τ)
k ). We also define the sequence

w̄(τ+1)† =


w

(τ+1−J)
k +

∑
k∈K

αkξ
(τ+1−J)
k

pk
(v(τ+1)

k −w
(τ+1−J)
k ), for τ + 1 ∈ I(J)

w̄(τ+1), otherwise.

(D.14)

We note that w̄(τ+1) = ΠW
(
w̄(τ+1)†

)
for τ + 1 ∈ I(J) and coincide otherwise.

We denote by B(τ) = (B(τ)
k )k∈K and ξ(τ) = (ξ(τ)

k )k∈K, the set of batches and the set of indicator variables for node
participation at instant τ . The history of the system at time τ is made by the values of the random variables until that
time and it can be defined by recursion as follows: H(1) = ∅, H(τ+1) = {ξ(τ+1),B(τ),H(τ)} if τ + 1 ∈ I(J) and
H(τ+1) = {B(τ),H(τ)}, otherwise.

We define Gi,e ≜ σ2
i,e + (Ldiam(W))2 and observe that it bounds the second moment of the stochastic gradient at

(i, e):

E
[
∥∇Fi,e(w,B)∥2

]
= E

[
∥∇Fi,e(w,B)−∇Fi,e(w)∥2

]
+ ∥∇Fi,e(w)∥2 (D.15)

≤ σ2
i,e + L2

∥∥∥w −w∗
i,e

∥∥∥2
(D.16)

≤ σ2
i,e + L2 diam(W)2 (D.17)

= Gi,e, (D.18)

where we have used Assumption 16. We also define a uniform bound over all nodes and all exits: G ≜
max(i,e)∈N ×E Gi,e.

Similarly to other works (X. Li et al., 2020; T. Li, Sahu, Zaheer, et al., 2020; J. Wang et al., 2020, 2021), we introduce
a metric to quantify the heterogeneity of nodes’ local datasets, typically referred to as statistical heterogeneity:

Γ ≜ max
(i,e)∈N ×E

Fi,e(w⋆
Λ̃)− F ⋆

i,e. (D.19)

Finally, we define h(τ) ≜ max{τ ′ ∈ I(J) : τ ′ ≤ τ}. Then h(τ) indicates the time of the last server update before τ .

The following lemma corresponds to (Salehi & Hossain, 2021, Lemma 4).
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Lemma D.1.

EB(τ),...,B(h(τ))|H(h(τ))

∥∥∥v̄(τ+1) −w⋆
Λ̃

∥∥∥ ≤ (1− ητµ)EB(τ−1),...,B(h(τ))|H(h(τ))

∥∥∥w̄(τ) −w⋆
Λ̃

∥∥∥
+ η2

τ

∑
k∈K

α2
kσ

2
k + 6LΓ + 8(J − 1)2G2

 . (D.20)

Proof.

From (X. Li et al., 2020, Lemma 1):

EB(τ)|H(τ)

∥∥∥v̄(τ+1) −w⋆
Λ̃

∥∥∥ ≤ (1− ητµ)
∥∥∥w̄(τ) −w⋆

Λ̃

∥∥∥+ η2
τEB(τ)|H(τ)

∥∥∥g(τ) − ḡ(τ)
∥∥∥2

+ η2
τ 6LΓ + 2

∑
k∈K

αk

∥∥∥w(τ)
k − w̄(τ)

∥∥∥2
. (D.21)

From (X. Li et al., 2020, Lemma 2):

EB(τ)|H(τ)

∥∥∥g(τ) − ḡ(τ)
∥∥∥2
≤ EB(τ)|H(τ)

∥∥∥∥∥∥
∑
k∈K

αk

(
∇Fk(w(t)

k ,B(τ)
k )−∇Fk(w(t)

k )
)∥∥∥∥∥∥

2

(D.22)

=
∑
k∈K

α2
kEB(τ)

k
|H(t)

∥∥∥∇Fk(w(t)
k ,B(τ)

k )−∇Fk(w(t)
k )
∥∥∥2

(D.23)

≤
∑
k∈K

α2
kσ

2
k. (D.24)

Combining the two inequalities above:

EB(τ)|H(τ)

∥∥∥v̄(τ+1) −w⋆
Λ̃

∥∥∥ ≤ (1− ητµ)
∥∥∥w̄(τ) −w⋆

Λ̃

∥∥∥+ η2
τ

∑
k∈K

α2
kσ

2
k + η2

τ 6LΓ + 2
∑
k∈K

αk

∥∥∥w(τ)
k − w̄(τ)

∥∥∥2
.

(D.25)

By definition of h(τ), we observe that 0 ≤ τ − h(τ) ≤ J − 1 andH(τ) = {B(τ−1), B(τ−2), . . . , B(h(τ)),H(h(τ))}.

From (X. Li et al., 2020, Lemma 3):

∑
k∈K

αkEB(τ−1),...,B(h(τ))|H(h(τ))

∥∥∥w(τ)
k − w̄(τ)

∥∥∥2

=
∑
k∈K

αkEB(τ−1),...,B(h(τ))|H(h(τ))

∥∥∥(w(τ)
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≤
∑
k∈K
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=
∑
k∈K
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k ,B(i)
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≤
∑
k∈K

αk(τ − h(τ))EB(τ−1),...,B(h(τ))|H(h(τ))

 t−1∑
i=h(τ)

η2
i

∥∥∥∇Fk(w(i)
k ,B(i)

k )
∥∥∥2
 (D.29)

≤ η2
h(τ)(t− h(τ))2G2 (D.30)

≤ 4η2
τ (J − 1)2G2. (D.31)

By repeatedly computing expectations over the previous batch conditioned on the previous history and combining
the inequalities above, we obtain:

EB(τ),...,B(h(τ))|H(h(τ))

∥∥∥v̄(τ+1) −w⋆
Λ̃

∥∥∥ ≤ (1− ητµ)EB(τ−1),...,B(h(τ))|H(h(τ))

∥∥∥w̄(τ) −w⋆
Λ̃

∥∥∥
+ η2

τ

∑
k∈K

α2
kσ

2
k + 6LΓ + 8(J − 1)2G2

 . (D.32)

□

The following lemma corresponds to (Salehi & Hossain, 2021, Lemma 2), but it needs to be adapted to take into
account the projection.

Lemma D.2.

Eξ(h(τ))|B(τ),...,B(h(τ)+1),H(h(τ)) [w̄(τ+1)†] = v̄(τ+1). (D.33)

Proof.

First, we observe that w̄(τ+1)† = w̄(τ+1) = v̄(τ+1) for τ + 1 ̸∈ I(J). For τ + 1 ∈ I(J), h(τ) = τ + 1− J and

Eξ(τ+1−J)|B(τ),...,B(τ+1−J),H(τ+1−J) [w̄(τ+1)†] =

= w̄(τ+1−J) −
∑
k∈K

αkE[ξ(τ+1−J)
k ]
pk

J−1∑
j=0

ητ+1−J+j∇Fk(w(τ+1−J+j)
k ,B(τ+1−J+j)

k ) (D.34)

= w̄(τ+1−J) −
∑
k∈K

αk

J−1∑
j=0

ητ+1−J+j∇Fk(w(τ+1−J+j)
k ,B(τ+1−J+j)

k ) (D.35)

= v̄(τ+1). (D.36)

□

The following lemma corresponds to (Salehi & Hossain, 2021, Lemma 3). We modify the proof to take into account
the correlation in the participation of the fictitious nodes in K. Indeed, each node i selects a single exit to train and
then the random variables {ξ(h(τ))}e∈E are (negatively) correlated.

Lemma D.3.

EB(τ),...,B(h(τ)),ξ(h(τ))|H(h(τ))

∥∥∥w̄(τ+1)† − v̄(τ+1)
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∑
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i,e

pi,e
−

∑
e∈Ei

αi,e

2
 . (D.37)
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Proof.

We have a tighter bound (α2
k instead of αk), observing that Var(X) = E[X − E[X]]2. Let X be a d-dimensional

random variable, we define its variance as follows: Var(X) ≜
∑d

i=1 Var(Xi). We also denote by Ei the set of
exits node i may train, i.e., Ei ≜ {e : pi,e > 0, e = 1, . . . , E}.

In order to keep the following calculations simpler to follow, we denote by Ui,e =
∑τ−h(τ)

j=0 ηh(τ)+j∇Fi,e(w(h(τ)+j)
i,e ,B(h(τ)+j)

i,e ).
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where (D.41) takes into account that ξ(τ+1−J)
i,e ξ

(τ+1−J)
i,e′ = 0 for e ̸= e′ because each node selects a single exit to

train.

Then, the expectation over the random batches is computed
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≤ 4η2
τJ
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N∑

i=1

∑
e∈Ei

α2
i,e

1− pi,e

pi,e
Gi,e, (D.48)

where (D.48) uses ηh(τ)+j ≤ ητ−J ≤ 2ητ .

□

Theorem D.4. Under Assumptions 16–19, the optimization error of Algorithm 6 with learning rate ηt,j =
2

µ(γ+(t−1)J+j+1) and γ ≜ max{8κ, J} − 1 can be bounded as follows:

E
[
FD,Λ̃(w(T ))

]
− F ⋆

D,Λ̃ = κ

γ + JT

(2B
µ

+ µ(γ + 1)
2 E

[
w(1) −w⋆
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])
, (D.49)

where
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2
i,e + 6LΓ + 8(J − 1)2G2 + 4J2

N∑
i=1

∑
e∈Ei

α2
i,e

1− pi,e

pi,e
Gi,e, (D.50)

Gi,e ≜ σ2
i,e + (Ldiam(W))2, (D.51)

G ≜ max
(i,e)∈N ×E

Gi,e, (D.52)

αi,e ≜ ηsΛ̃e
|Di|
|De,p|

. (D.53)

Proof.

As we mention at the beginning of this appendix, we count gradient steps at nodes and aggregation steps at the server
using the same time sequence (τ = J(t − 1) + j)t=1,...,T,j=0,...,J−1. The set of values I(J) = {Jt, t = 1, . . . , T}
corresponds to the aggregation steps.
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where the first inequality is trivially true for τ + 1 ̸∈ I(J) because w̄(τ+1) = w̄(τ+1)†, while for τ + 1 ̸∈ I(J), it

follows from Assumption 16 and
∥∥∥w̄(τ+1) −w⋆

Λ̃

∥∥∥2
=
∥∥∥ΠW(w̄(τ+1)†)−ΠW(w⋆

Λ̃)
∥∥∥2
≤
∥∥∥w̄(τ+1)† −w⋆

Λ̃

∥∥∥2
.

We take expectation over nodes’ participation
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where the equality derives from Lemma D.2 and the inequality from Lemma D.3. We take then expectation over
the random batches
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where the last inequality follows from Lemma D.1 observing that if τ + 1 ∈ I(J), then h(τ) = τ + 1− J .

Finally, we take total expectation
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 .
(D.61)

This leads to a recurrence relation of the form ∆(τ+1) ≤ (1− ητµ)∆(τ) + η2
τB, and the result is obtained following

the same steps in the proof of (X. Li et al., 2020, Thm. 1).

□
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E Gradient Variance Analysis

As discussed in Section 5.3.4, we observed empirical evidence showing that gradient variance is significantly higher at
the initial exits compared to the later ones, making the optimization error especially sensitive to the stochastic gradients
produced at these early stages. We conducted the following experiment: (1) Instantiate an Early Exit Network, e.g.,
a ResNet-18 with early exits after the 2nd and 5th residual blocks for CIFAR10 and after the 5th and 7th residual
blocks for CIFAR100; (2) Iterate over the training data in mini-batches and calculate the gradient of the loss w.r.t. the
weights at each exit; (3) Calculate the point-wise mean of each gradient over the mini-batches for each exit; (4) Take
the mean of the gradient variance mean’s to get a single value representing the average point-wise gradient variance
per exit. We present below the empirical values from conducting this experiment:

Table D.1: Average Point-wise gradient variances per-exit.

Dataset Exit 1 Exit 2 Exit 3

CIFAR10 0.00374 0.00224 0.00101

CIFAR100 0.00216 0.00126 0.00101

F Training Details

Datasets. We use the CIFAR10 and CIFAR100 datasets, which are commonly used to benchmark FL algorithms
and early exit networks (Horvath et al., 2021; Diao et al., 2020; H. Li et al., 2019; Hu et al., 2019; Kaya et al., 2019;
Ilhan et al., 2023). CIFAR10 and CIFAR100 each contain 60,000 total images composed of 32 x 32 colored pixels,
with 10 and 100 classes, respectively. In our experiments, we use 45,000 images for training data, 5,000 images for
validation data, and 10,000 images for test data.

Model Architecture and Hyperparameters. We conduct our experiments using a ResNet-18 model architec-
ture (He et al., 2016), which has been widely used to study early exit networks and device heterogeneity in FL (Horvath
et al., 2021; Diao et al., 2020; H. Li et al., 2019; Hu et al., 2019; Kaya et al., 2019; Ilhan et al., 2023). We insert early
exits after the 2nd and 5th residual blocks for CIFAR10 and after the 5th and 7th residual blocks for CIFAR100. The
training takes place for 100 outer epochs and the number of local epochs per node is scaled such that each node does
the same number of gradient updates. We use mini-batch SGD with a starting learning rate of 0.1 and a cosine an-
nealing schedule, a batch size of 128, weight decay of 5 × 10−4, and momentum of 0.9. These hyperparameter values
were selected based on empirically observing convergence during training for several basic CIS configurations, e.g.,
equal data partition and 33-33-33 serving rate setting. The same values are used for all experiments, i.e., all training
data partitions, CIS serving rate setting, and training strategy configurations. All presented results are the mean value
over three random seeds: 9, 42, and 67.

Training Infrastructure. We conducted our experiments on a computing node equipped with 3 x Nvidia A40 PCIe
GPUs, each providing 10,752 CUDA cores, 336 tensor cores, and 48 GB of RAM. The node is powered by 2 x AMD
EPYC 7282 processors running at 2.8 GHz, with 256 GB of system RAM. The operating system used was a Linux-
based environment (e.g., Ubuntu 20.04), and the experiments were implemented using Python 3.8, CUDA 11.4, and
cuDNN 8.2.
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G Additional Experiments

Table D.2: Experimental results for a CIS with 17 nodes (12 in the first layer, 4 in the second, and
1 in the third) for several CIS serving rates on the CIFAR10 dataset using an equal data partition
across the network layers. All reported accuracy values are the mean value over three independent
random seeds. The performance of the strategies for each serving rate setting follows the exact
same order as in Table 1, indicating that our experimental setup with seven nodes is adequate for
capturing CIS dynamics observed at larger scales.

CIS Serving Rate Setting

Strategy 60-30-10 10-30-60

Equal Weight 58.9 ± 3.9 83.5 ± 0.6

FLOPS Prop 44.6 ± 1.5 82.4 ± 0.5

Serving Rate (ours) 62.1 ± 1.7 84.3 ± 1.1

Balanced Adj (ours) 60.2 ± 3.1 84.7 ± 1.0

Training probability for earlier exits (p)

Figure D.1: Evaluating the impact of p on the test accuracy for the strong cloud bias training data
partition using the “Serving Rate (p = k)” strategy. The dashed lines represent the “Equal Weight”
strategy’s test accuracy for each serving rate setting. We remind the reader that p stands for the
probability that a given client will train each of its smaller exits.





Hétérogénéité des Clients dans les Systèmes d’Apprentissage
Fédérés

Angelo RODIO

Abstract

Federated Learning (FL) is a collaborative framework where clients—typically smartphones
and IoT devices—train a machine learning model under the orchestration of a central server
without sharing their datasets. Client heterogeneity in FL systems stems from statistical hetero-
geneity of local datasets, different device capabilities in hardware specifications (CPU power,
memory capacity), network connectivity types (e.g., 5G and WiFi), power availability (battery
levels), and it is outside server control. This thesis tackles the challenges of client heterogene-
ity in FL systems, their impact on the convergence of FL algorithms, and presents practical
solutions for enhanced system efficiency and resource use. The first contribution addresses
the problem of heterogeneous client participation: clients partake in the model training only
occasionally and with varying frequencies. Three primary challenges arise. First, the “more
participating” clients may bias the global model due to statistical heterogeneity in the clients’
datasets. Second, addressing this bias by overcompensating for “less participating” clients in-
troduces a larger variance in the learning process. Third, client participation can be correlated,
due to the clients’ correlated participation dynamics across time and geographic distributions.
We characterize the bias-variance trade-off resulting from heterogeneous client participation
and analyze the convergence of FL algorithms, assuming that client participation follows a
Markov process. Our correlation-aware FL algorithm, CA-Fed, is the first heuristic to mini-
mize this bias-variance-correlation trade-off and thus achieve faster convergence. The second
contribution addresses the large variability in the learning process introduced by heteroge-
neous client participation. Variance reduction methods that leverage stale model updates for
non-participating clients only consider homogeneous client participation. When participation
is heterogeneous, the server must aggregate client updates with varying staleness—a challenge
that remained unexplored. We analyze the convergence of these algorithms under heteroge-
neous participation, examining the advantages and disadvantages of leveraging stale updates
in such heterogeneous environments. Our Staleness-Aware FL algorithm, FedStale, op-
portunely aggregates fresh and stale updates and performs well across many heterogeneous
settings. The third contribution tackles heterogeneity in network resources: clients experience
lossy communication channels with diverse characteristics (e.g., path loss, interference), which
degrade FL algorithms’ performance. Targeting high transmission reliability in FL is subop-
timal, and loss mitigation strategies (e.g., retransmissions) demand more resources and longer
training durations. We investigate algorithmic approaches for handling losses during training
and present a packet loss-aware FL algorithm, UPGA-PL, with comparable performance to
ideal lossless channels at the cost of a few additional communication rounds. The last con-
tribution investigates heterogeneity in hardware environments: clients with diverse computing
capabilities (e.g., end-devices, edge servers, and cloud infrastructures) may cooperate to learn
a common model; yet, client heterogeneity makes uniform model deployment infeasible at
inference time. Cooperative Inference Systems (CISs) enable less-performing devices to of-
fload parts of their inference tasks to more powerful devices with larger models within the
network; however, FL training overlooks how these models will be used at inference time. Our
inference-aware FL algorithm, Fed-CIS, is the first to consider the future inference request
load for each sub-model at training time. It also enables computationally stronger clients to
help train models for the weaker ones. The concluding remarks reflect on the open challenges
encountered throughout this thesis and outline prospective research directions for future work.

Keywords: Federated Learning, Distributed Optimization, Markov chain, Variance Reduction
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